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ABSTRACT 

Structural variations (SVs), including deletion, insertion, duplication, inversion, translocation, 

aneuploidy and chromoplexy, can contribute to oncogenesis through a variety of mechanisms. Despite 

their importance, the identification of SV in cancer genomes remains challenging.  G-band karyotyping, 

fluorescence in-situ hybridization, and microarrays have been historically widely used, but their usages 

are limited by low resolution, low throughput, and the requirement of prior knowledge for selecting 

candidates. Whole genome sequencing (WGS) is popular for throughput, but the short sequencing reads 

can hardly tackle genomic repeats or complex SVs. We therefore developed a method to identify SVs by 

high-throughput chromosome conformation capture (Hi-C), a technology invented for examining 

chromatin 3D structure. Hi-C presents long re-ligated DNA reads mostly from the same allele, offering 

great advantage for identifying and phasing complex SVs.  By developing a framework that integrates 

WGS, Hi-C, and BioNano optical mapping, a technology that utilizes long DNA molecules, we identified 

and characterized SVs in 36 normal or cancer samples and cell lines, and the integration enabled us to 

reconstruct local haplotype-resolved map that chains a series of complex SVs. We found that each method 

has unique strengths in identifying different classes of SVs at different scales, suggesting that integrative 

approaches are likely the only way currently to comprehensively identify structural variants in the 

genome. 

Next, we ask whether we can apply this integrative framework in a clinical setting to sensitize SV 

detection for improving disease diagnosis and subtyping. Acute myeloid leukemia (AML) is known for 

hallmark SVs recurrently disrupting genes such as MLL, ABL1, NUP214, RUNX1, CEBPA and RARA. 

However, the SV landscape of AML besides those well-known rearrangements is unclear. Recent 

TCGA’s effort that characterized SVs somehow omitted AML possibly due to the lack of blood control. 

We hence applied optical mapping in conjunction with WGS in primary leukemia samples, which 

revealed on average over five thousand SVs per sample. Our computational methods determined that 5-
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10% of the variants likely arose as somatic mutations, affecting 37 leukemia associated genes as well as 

209 cancer driver genes not previously associated with leukemia, and at least 109 recurrently disrupted 

genes not previously associated with cancer. Fifteen of the genes not previously associated with AML but 

mutated in multiple patients’ samples significantly affects survival of AML patients.  

Our SV profiling in both cancer cell lines and primary leukemia samples identified that 42% of 

SVs disrupt functions of non-coding sequences, including the deletion of distal regulatory sequences, 

alteration of DNA replication timing, and the creation of novel chromatin structural domains. Moreover, 

AML was known for mutations on genes encoding DNA or histone modifiers, transcription factors, 

kinases, and large genomic variations that can lead epigenetic reshaping. It raises questions whether those 

mutations drive change of chromatin 3D structure, contributing to oncogenic misregulation in AML, and 

how intergenic SVs affects the chromatin structure. 

Therefore, we performed Hi-C and whole genome sequencing in 21 primary AML and healthy 

donors’ samples, where we identified AML-recurrent or subtype-specific alteration of compartments, 

TADs, and chromatin loops. To study the impact on gene regulation, we performed RNA-Seq, ATAC-

Seq and CUT&TAG for CTCF, H3K27ac, and H3K27me3 in the same patient cohort. We observed that 

the transcriptional misregulation of many AML-related genes, represented by MYCN, MEIS1, GATA3, 

BCL11B, WT1, ERG and MYC, is intimately linked to recurrent gain of loops or compartment switch, 

coupled with simultaneous acquisition of enhancer or repressor on genes’ distal loop anchor. To 

understand how SVs contribute to altered chromatin structure, we profiled SV in the patient samples 

using WGS and Hi-C data, and reconstructed cancer 3D genome surrounding the SV breakpoint, by 

which we identified hundreds of SV-induced neo-loops and enhancer-hijacking events. 

We further explored what drives the chromatin misconfiguration, by profiling DNA methylation 

with whole genome bisulfite sequencing in our AML samples. We identified altered methylation 

correlated with A/B compartment switch, and hundreds of loss of CTCF insulation due to 

hypermethylation on the binding sites, serving as a cause of massive gain of loops. Lastly, we were able 
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to revert the switched compartment and dissociate the gained loops by treating AML cell lines with DNA 

hypomethylation agent 5-azacytidine, accompanied with significant compromised cell proliferation. 

Overall, our work demonstrated that the majority of SVs in cancers or AML are understudied and 

this may hamper the diagnostic and prognostic efforts, underscoring the importance of accurate and 

comprehensive SV detection. We indicate that non-coding SVs may be underappreciated mutational 

drivers in AML, through altering the 3D chromatin structure and triggering enhancer hijacking events. 

AML subtype-specific chromatin structure changes, alongside the gain of de novo enhancers and 

repressors, contribute to the global oncogenic transcriptional misregulation. Its restoration by chemicals 

like 5-Azacytidine provides insights into AML treatment through therapeutically reversing the altered 

chromatin structure.   
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Chapter 1 

Literature review 

1. Structure variations in cancer 

1.1 Landscape of structure variations in cancer 

Structural variations (SVs), including inversions, deletions, duplications, aneuploidy, 

translocations, and chromoplexy are a hallmark of most cancer genomes[1].  The discovery of recurrent 

SVs and the affected genes have greatly advanced our knowledge about oncogenesis.  Numerous 

oncogene activation events have been identified as the product of recurrent SVs and have provided 

successful targets for drug therapies [2-6]. Further, SVs also provide clear diagnostic and prognostic 

information in the clinic[7], and the presence of certain SVs, notably gene fusion events, have clear 

treatment implications[8], particularly for hematopoietic malignancies.  

SV are not unique to cancer genomes. Indeed, every normal individual genome harbors 

thousands of germline SVs, some of which also intersect with genes. Experimental deletion of those 

genes finds most of them dispensable to human health[9]. SVs that presented in cancer genomes mostly 

as somatic variants, in contrast, could have a huge impact. A recent effort of The Cancer Genome Atlas 

(TCGA) analyzed SVs in 2,658 whole genomes from across 38 tumor types, covering the most common 

tumors originated from liver, pancreas, prostate, breast, kidney, central nerve system, lung, bladder, 

skin, soft tissue, thyroid etc. In each individual cancer, 4-5 driver SVs were detected in average, 

affecting both coding and non-coding regions[10].  Some tumor types are more heavily affected by SVs 

like breast adenocarcinomas, whereas colorectal adenocarcinoma bears more burden of point mutations. 
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A set of cancer drivers can be found widely in all or most cancer types, which mostly involving tumor 

suppressors and a few oncogenes. Genes like TP53, CDKN2A, KRAS, PTEN, TERT, CDKN2B, SMAD4, 

PIK3CA, RB1 and so on are most frequently disrupted by driver mutations. Some other genes are 

specifically prevalent in certain cancer types. For instance, SETD2 mutations exclusively occur in 

medulloblastoma[10]. Noticeably, not all the drivers are somatic mutations. A few germline variants 

confers high predisposition to cancers, majorly composed of BRCA2, ATM, EME2 and POLR2L[10]. 

Chromothripsis is a catastrophic event in cancer that involve massive genomic rearrangements at a time 

or within a few cell cycles. Instead of gradually accumulating mutations, one cancer can rapidly acquire 

hundreds of mutations. Recent TCGA work found that chromothripsis is actually so prevalent in 

sarcoma, adenoma, glioblastomas and lung adenocarcinoma that it occurs in more than 40%-50% of 

cases, and most are associated with TP53 mutation[11]. Chromothripisis in all liposarcoma involves 

MDM2 amplification and for more than 20% of cases there is co-amplification of TERT[10]. Similarly, 

around 50% of acral or mucosal melanomas have chromothripisis accompanied with amplification of 

CCND1[10]. Timing mutations by whether they are homogeneous or subclonal SVs, which respectively 

implies to earlier or later events, showed that chromathripsis actually took place at the very early phase 

of oncogenesis[10].  

Screening over 2,000 cancer samples TCGA also found that around 64% of SVs reside in non-

codoing regions, from untranslated regions immediately upstream or downstream of genes to up to 

100Kb away from the most nearby gene. 25% of tumors bear non-coding driver SVs with one-third 

disrupting TERT promoter. Other genes with cis-regulatory altercations include MDM2, CDK4, ERBB2, 

CD274, PDCD1LG2, and IGF[12], some are cancer-type specific. For example,  focal deletions at the 

5’ UTR of BRD4 were found exclusively in ovarian or breast cancers[13]. 
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1.2 Methods for detecting structure variations 

Despite the importance of SVs in cancer, identifying SVs in cancer genomes remains 

challenging, hindering our ability to better understand oncogenesis and to develop targeted treatments 

for cancer. Several methods are currently used to identify structural variations in cancer genomes. G-

band karyotyping has been the major method historically to detect gross structural anomalies in the 

genome, and it is routinely performed today clinically for certain malignancies such as leukemia[14].  

However, karyotyping is an inherently low resolution and low throughput method that cannot adequately 

characterize extensively rearranged genomes. Microarrays are another commonly used method for 

detecting gains and losses of genetic material[15], but they do not provide precise localization of 

rearrangements.  Further, microarrays are inherently limited in detecting balanced rearrangements, such 

as inversions or balanced translocations.  Finally, targeted approaches such as fluorescence in situ 

hybridization (FISH) and PCR are also used extensively in the clinic. FISH mainly uses fluorescence 

labeled DNA probes to complementally bind the sites of interest, thereby illuminating the positions of 

these sites in multiple single cells under a light microscope, and the observer can hence tell whether 

there are typical translocations bringing targeted sites closer. However, FISH is low resolution and both 

PCR and FISH require a priori knowledge of the rearrangement events and hence are not suitable for de 

novo detection of structural variations. 

Recently, high-throughput sequencing-based technologies have emerged as attractive methods 

for SV identification[16, 17]. Targeted approaches such RNA sequencing provide cost-effective means 

of identifying gene fusion events[18, 19], while whole genome sequencing (WGS) can identify high-

resolution genomic rearrangements as well as gains and losses of genetic material [20-23]. Despite their 

success, they are limited by their reliance on short sequence reads (usually less than 100 bp), which 

cannot be effectively mapped to the repetitive regions in the genome. More importantly, these 



4 

 

techniques involve fragmenting the genome into approximately 500 base-pair fragments prior to 

sequencing, and as a result, much of the structural continuity of the genome is lost and it is challenging 

to resolve complex SVs that involve multiple events. Given the aforementioned limitations, it is 

imperative to develop alternative approaches for detecting structural variations that either use longer 

sequence reads or approaches that retain long-range genomic structural information. 

Several technologies that utilize long DNA reads from the genome are available and most widely 

used in these years, such as Nanopore, Pacific Biosciences (Pacbio), Matepair-seq, and BioNano optical 

mapping. Although based on completely different biochemical workflows and sequencing platforms, the 

fundamental idea of Nanopore and PacBio is similar in that they ultimately “read through” DNA 

molecules nucleotide-by-nucleotide. They have been widely used for de novo or improved genome 

assembly for human or other species[24], detecting SVs on various context[25-27], and identification of 

new pathogenes such as the virus genome of Covid-19[28, 29].  Average read length, aside from 

throughput and accuracy, is a major factor that determines the performance of long-read technologies for 

whether they are competent for resolving large and complicated SVs. PacBio has an average read length 

of 10Kb and a regular maximum length of 60Kb, whereas for Nanopore it is 16Kb and 134Kb 

respectively[30, 31]. While those are decent size for detecting simple SVs, it is still difficult to tackle 

genomic repeats that are hundreds of kilobases long, and complex events which chain a series of various 

types of SVs in megabase scales. Mate-pair sequencing represents another solution, which uses long 

DNA reads but sequences them as regular paired-end reads. DNA is hence only sequenced in the 5’ and 

3’end for totally 100 to 300bp with the large trunk in the middle not sequenced through.  The advantage 

is very clear: Unlike Nanopore or PacBio, the final library of mate pair can go to the regular illumine 

sequencing platform, which greatly reduces the cost. The shortcoming also roots from it: SV detection is 

only based on the difference of the actual distance and the expected distance between the 5’ and 3’ of 
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DNA molecules. SVs or SNVs without change of size is not detected, and the exact position of the SV 

in the middle is unknown.    

 
Figure 1- 1: BioNano Optical mapping identify SVs in cancer samples based on restriction enzyme nicking site 

or protein binding recognition motif.  

Restriction enzyme BspQ1 recognizes a seven-basepair sequence and makes a nick on single strand of DNA, 

where green fluorophore is incorporated. The lower panel in the left shows a real picture of DAPI-stained 

DNA molecules, each with multiple GFP nicking labels, linearized and migrating through the a BioNano chip. 

The right panel shows that BioNano computationally convert the picture of DNA labels to map of molecules, 

which are further aligned into longer contigs. It can automatically identify SVs such as insertions and 

translocations by comparing the cancer contigs with genomic maps of reference genome.   

In contrast to the technique mentioned above, BioNano Optical mapping does not sequence each 

single nucleotide but it regarded the genome as a large map of restriction enzyme nicking sites (Figure 

1-1). The newer version of BioNano replaces nicking enzyme with motif-recognition protein, which 

only binds to specific sequence of DNA without nicking the DNA. As DNA molecules maintain an 

average length of 200-250Kb, minimally 150Kb and maximally several megabases[32], BioNano turns 

out a nice fit for scaffolding new genomes, especially for de novo assembly for genome of wild plants 

and crops, which are featured by large numbers of genomic repeats[33-36]. In recent years, it is more 

and more used for detecting SVs in the cancer by comparing the restriction enzyme labeling pattern in 

DNA molecule with that in the reference genome[32], including extra-chromosomal DNA 

(ecDNA)[37]. Since BioNano does not read detailed DNA sequences, it is usually applied in 



6 

 

combination with sequencing-based technologies like WGS, Nanopore or PacBio to reveal a 

comprehensive picture of the tested genome [38-40].  

2. Chromatin spatial organization 

2.1 Hierarchical nuclear architecture 

If the 46 human chromatins were connected head-to-tail in a linear manner, it can stretch as long 

as two meters, but those long strands of DNA have to squeeze into cell nuclei that have an average 

radius of only 3 um[41]. Many proteins facilitate this process by binding to and folding the DNA, wiring 

the DNA into many loops, forming coiled structure and specialized structure at higher order of 

dimensions. Although DNA is highly folded and even more densely compacted during metaphase of 

mitosis, the way DNA is organized leaves high spatial flexibility for it to accommodate DNA 

replication, transcription and repair. The processes that helix of double-strand DNA wrapped into 

beaded threads of nucleosomes, folded at different levels to form chromatin domains, and isolated from 

and connected to each other to occupy specific nuclear territories as we see under the microscope, is 

what we refer as hierarchical chromatin 3-dimensional architecture (Figure 1-2).  

Heterochromatin and phase separation 

In 1930 two distinct forms of chromatin were observed in the nucleus of eukaryotic cells in 

interphase: One of them that densely packed was named heterochromatin, and the other one that loosely 

arranged was named euchromatin[42]. Later, heterochromatin was found to have many nucleosomes 

stacked closely together. While heterochromatin occurs in many different regions of a chromosome, 

they are mainly located at centromeres and telomeres. DNA in heterochromatic regions often contains 

fewer number of genes, and wrapping genes into heterochromatin is a way to downregulate or turn off 
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gene expression[1]. The formation of heterochromatin is thought to be accomplished by the cooperation 

of many non-histone proteins, including heterochromatin protein 1 (HP1) and polycomb group protein 

(PcG).  

 
Figure 1- 2: Hierarchical nuclear architecture.  

This Figure shows the nuclear and chromatin spatial organization from higher to lower order of scale. 

Chromatin occupies their distinct territories in the nucleus, with the periphery part often associated 

with Lamina and forming LADs, which is usually also heterochromatins and B compartment that are 

densely compacted in the form of nucleosome thread. There are A compartments more enriched in the 

center of nucleus with abundant chromatin loops formed.   

Regarding the mechanism of how heterochromatin clustering is initiated and maintained, phase 

separation is one of the emerging popular theories in recent year. It has been found that the HP1 can 

form an oil droplet-like structure in fluid in vitro, and a similar structure was also seen in the nucleus of 

interphase cells. Due to the hydrophobic interaction between HP1 proteins, small droplets fuse together 

to form larger droplets over time, separated from the water phase[43]. HP1 that has the tendency to 
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separate from the hydrophilic phase bind to certain DNA regions, drive the relocation of chromatin and 

form heterochromatin structure.  

Lamina-associated domain, replication timing domain and A/B compartment  

 DNA with similar functions and activities can move and cluster to specific areas. The 46 

chromosomes in human cells each occupy a discrete territory in the cell[44]. The heterochromatin part 

of each chromosome is frequently located near the peripheral area in the nucleus, interacting with the 

lamina protein on the nuclear membrane. Chromatin regions with lamina contact is hence termed 

lamina-associated domains (LAD). LADs are mainly composed of inactive chromatin regions and genes 

with low transcription activities[45]. Nevertheless, positions of the genes and other regions on the 

chromatin are dynamically changing in the nucleus. For example, the FISH experiment showed that 

many genes reposition when their transcription is turned on, as they migrate from the periphery to the 

center of the nucleus[46]. 

DNA replication also gives rise to formation of regional structures. In the process of replication, 

the chromosomes of eukaryotic cells appear to be multi-centered and timely-ordered, which means 

different DNA regions have different replication timings. On average, every specific 400Kb to 800Kb of 

the genome has internally similar and continuous progression of replication time-wisely. Such a unit is 

called replication timing domain[47]. Interestingly, early replication domains are mostly spatially open 

chromatin regions, while late replication domains are mostly tightly compacted regions, and a 

considerable part of it overlaps with LADs[47]. Comparing the replication timing domains between 

humans and mice, they are highly conserved with synteny during evolution[48], indicating that this type 

of domain have essential biological significance in mammals. 

The chromatin structure can also be comprehended by non-microscopic approaches like 

chromatin conformation capture assays (3C). By such method chromatin is also classified into two 
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majorly different compartments, termed as A and B compartment. The two compartments harbor 

abundant chromatin interactions within the same compartment, but much fewer connections between A 

and B compartments[49]. Each chromosome in the human genome have both A and B compartments, 

and the linear length of each compartment is about several million basepairs. The compaction of A 

compartment is relatively loose and open. It is rich in genes and exhibits active chromatin status, marked 

by higher histone 3 lysine 27 acetylation (H3K27ac). It also has a high GC content, and is usually 

located in the center of the nucleus. In contrast, compartment B is more densely compacted than 

compartment A and contains fewer genes. Often, it is located at the periphery of the cell nucleus, which 

usually is also where heterochromatin is located. Compartment B also has more inhibitory epigenetic 

modification like histone 3 lysine 27 trimethylation (H3K27me3). Gene expression in this region is 

usually low or silenced[49]. Interestingly, the A/B compartment most of the time corresponds to the 

DNA replication timing domain, where A mainly corresponds to the area where the replication fires 

earlier, and the B is the area where the replication occurs later[47]. Moreover, the B compartment 

located in the periphery of nucleus often overlaps with the aforementioned LADs[49].  

Loop and Stripe 

 DNA looping is the basic spatial organization of chromatin[50, 51]. Looping is the process that a 

part of a chromatin protrudes outwards and the flanking regions keep getting gathered into the extrusion 

to form a ring structure. Regions at the two sides of the converging point of the loop can be originally 

far away on the linear DNA, but are in proximity spatially. This process is mediated by some structure 

proteins, mainly CTCF, Cohesin, and Mediator[52, 53], as well as various transcription factor, 

synergistic enhancer, and non-transcribed RNA[54]. Cohesin initiates looping and is indispensable to the 

process. Auxin-induced degradation of Cohesin eliminates all the loop domains in the genome without 

affecting compartments or histone marks[55]. CTCF binds to 20% of enhancers and participates in the 
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formation of some promoter-enhancer chromatin interactions. When CTCF is degraded by auxin-

induced system, some chromatin interactions, such as the one between the Yamanaka factor gene SOX2 

and its enhancer, will disappear or get weakened but the global chromatin organization is preserved[56]. 

In addition, the histone H3K4 modification enzymes MLL3 and MLL4 was also found to be involved in 

some chromatin loops. Knocking out these two genes in mouse embryonic stem cells (mESCs) not only 

eliminates some loops, but also affected the binding of Cohesin to DNA[57]. A pair of CTCF binding 

sites on DNA tend to be in opposite directions[51]. Looping is a way to regulate gene expression, 

because it can change the distance between the gene and the regulator. The gene transcription can be 

upregulated or downregulated, depending on what components are in the loop. Approximately 50% of 

human genes can participate in chromatin interaction by DNA looping[58]. 

 Looping is a dynamic process where there is cell-to-cell variation and a timely variation within 

the same cell. The loops extrusion models suggests that loops are initiated by cohesion complex 

(including Rad21 and Mcd1) through entrapping the DNA into its lumen, followed by dynamic sliding 

of DNA loops until it stalls at boundary-binding protein such as CTCF[54, 59]. Although the mobility of 

cohesion is hard to be visualized in vivo in a real time manner, a “stripe” structure has been seen in Hi-C 

map, caused by a single anchor forming frequent contacts with a contiguous genomic interval over a 

population of cells. Stripes is frequently found to be overlapping with regions rich in cohesion loading. 

A stripe can stretch by several hundred kilobases, serving as a bridge for gene to be tethered to 

regulatory elements, especially super enhancer clusters: 76% of stripes are linked to enhancers than a 

random chance of 47%[60].    

Topological associated domain 

Chromatin loops are not completely dispersed in distribution or independent to each other. 

Instead, many loops tend to cluster into domains. In 2012, Dixon et al. discovered that the mammalian 
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genome is organized into specific structure named topological associating domains (TAD) with an 

average size of 1Mb[61], and majority of genes are regulated within TADs and insulated from elements 

in other TADs. An important feature of TAD is that its boundaries are always enriched in binding of 

CTCF, actively transcribed genes, housekeeping genes, and SINE repeat sequences. The loop extrusion 

model explains the TAD formation as a snapshot of Cohesin complex sliding until it encounters CTCF 

bound at the TAD[54]. It implies that CTCF/Cohesin anchor long-range interactions that highly 

represents scaffold of invariant subdomains, while mediator/cohesin sites correlates with individual 

interactions within or between subdomains, which are spatially dynamic and regulated during cell 

lineage commitment[62, 63]. This has been further proved by many studies from different aspects. For 

example, the single-cell Hi-C has seen highly varied individual chromatin loops in individual cell with 

dynamic anchors, but at scales beyond million of basepairs, these cells all exhibit stable contours of the 

TAD domains[64]. Not only CTCF and Cohesin are involved in TAD formation, proteins such as 

MLL3/4, WAPL and zinc finger protein YY1 also play a role[65, 66]. For example, gene knockout of 

WAPL leads to many new chromatin interactions across the TAD boundary[66]. 

More and more evidences suggest that TAD itself is a mode of large-scale insulation[67]. 

Heterochromatin with repressive properties tend to expand on the genome, and such expansion is 

usually blocked at the TAD boundary. TAD is also a unit of gene expression: genes in the same TAD 

usually show convergent regulation, so some TADs are in general more active, while others are more 

silent. TAD is more conservative than chromatin territories. TAD boundaries are mostly stable across 

different cell types and tissues, such as between human embryonic stem cells and human fibroblasts, and 

between mouse embryonic cells and mouse cerebral cortical cells. TAD also maintains its conservation 

over evolution. For example, 54% of the TAD boundaries in the human genome are also TAD 

boundaries in the mouse genome, and the other way round, this ratio is as high as 76%[61]. 
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2.2 Profiling chromatin structure by microscopy or 3C-based methods  

Microscopy-based technologies are historically and widely used for studying the spatial structure 

of the nucleus and chromatin. In general, those methods can be classified as either light microscopy-

based or electron microscopy (EM) -based. For example, the nucleosome polymer structure with a 

diameter of 11 nm[68], and the 30-nm Z-shipped or the 33-nm solenoid-shaped DNA fibers were all 

discovered by electron microscopy[69-71]. Cryogenic electron microscopy (cryo-EM) is an emerging 

popular technology with high resolution and relatively simple operation. However, DNA in vivo is 

almost invisible to cryo-EM. ChromEMT resolves this problem by combining cryo-EM tomography 

with a selective DNA labeling dye DRAQ5 that photo-oxidizes and mediates polymer deposition of 

diaminobenzidine onto DNA, which is further visualized by OsO4 staining[72]. The in situ chromatin 

morphology is thus directly visible by EM. For the first time chromatin inside of nucleus were seen by 

eyes: They are particle-containing fibers with a diameter of 5nm to 24nm, in all phases of cell cycle[72]. 

Our understanding of the spatial organization of chromatin also comes from the extensive use of FISH. 

3D FISH observes interphase DNA in intact nucleus and utilizes confocal imaging technology to label 

multiple sites and directly measure the spatial distance between sites[73].  FISH is further improved by a 

series of super-resolution fluorescence microscopy techniques, such as stimulated emission depletion 

(STED) microscopy[74], photon-activated localization microscopy (PALM) and stochastic optical 

reconstruction microscope (STORM) [75, 76]. Improved probing technologies dramatically increase the 

diversity of color and sites to be detected in each single experiment, such as CRISPRRainbow and HIP-

map which detect 

 the multiple to hundreds of loci each time[77, 78]. 

The application of microscopy is heavily limited by low throughput and low resolution. In 2002, 

the first chromatin conformation capture experiment (3C) was proposed[79]. This method measures the 
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frequency of chromatin contacts or proximity as in a population of cells instead of measuring the direct 

distance between sites.  3C experiment starts with fixation of the cells to preserve the spatial structure of 

chromatin by formaldehyde, then the DNA is cleaved by restriction enzyme, and by applying DNA 

ligase, the DNA that is spatially close to each other will have a higher chance to be linked. Then, reverse 

cross-linking is performed to free DNA from proteins. Primers are then designed based on the two 

regions that are hypothesized to form contacts, and the result can be tested by PCR or qPCR[79]. Based 

on 3C, 4C and 5C were developed to test one-to-multiple and multiple-to-multiple chromatin contacts, 

respectively[80, 81].  

 

In 2009, Hi-C emerged as a revolutionary 3C-based method, for its capability to detect "all 

regions-to-all-regions" chromatin interactions, including cis- and trans- interactions[49]. Based on all the 

routine steps of 3C, Hi-C labels ligated DNA with biotin, which was in later steps selected to enrich 

reconnected DNA fragments from the whole genome. The final readout of Hi-C is sequencing based, 

  
Figure 1- 3: Hi-C reveals compartment and TAD structure of chromatin. 

The left panel shows A (red) and B (blue) compartment from correlation matrix of Hi-C matrix. The 

right panel shows the TAD structure (highlighted by dashed line) from Hi-C matrix heatmap that 

plots pair-wise chromatin contracts. 
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requiring hundreds of million to billions of sequencing reads. Re-ligated reads originated from two loci 

of the genome were mapped back as pairs, and numerous such pairs eventually form an n×n matrix to 

describe the frequency of chromatin contacts between any two given regions. This matrix is usually 

visualized in the form of heatmap, and the chromatin hierarchical structures like compartment and TAD 

were both thereby identified with specific patterns (Figure 1-3). 

2.3 Biological significance of 3D chromatin structure 

In mammals, the spatial organization of chromatin changes drastically as embryonic stem cell 

differentiates. In the nuclei of mouse oocyte, the chromatin is evenly distributed, lacking the common 

TAD or A/B compartment structure. In contrast, sperm still has TAD structure and long-distance 

chromatin interactions[82, 83]. Upon fertilization, the high-level spatial structure of chromatin almost 

disappears, and the reconstruction of chromatin 3D structure lasts until implantation of the egg. During 

this period, TAD and separation of A/B compartments slowly reappear, but DNA coming from the 

sperm and the egg is still spatially separated[84]. In the subsequent embryonic development into 

mesoderm, mesenchymal cells, trophoblast-like cells, or neural precondition cells, at least 36% of the 

human genome has undergone A/B compartment switch[84, 85]. In terminal differentiation stages, more 

than 56% of the human genomes show compartment switch, across various tissue types such as lung 

fibroblast cells IMR90, lymphocytes GM12878, prefrontal cortex cells derived from ectoderm, 

hypothalamic cells, small intestine, pancreas, liver cells derived from mesoderm, ovaries, left and right 

ventricles derived from mesoderm, cells of the pancreas and adrenal glands, etc[86]. Specifically, while 

B cell differentiation is accompanied with increase of B compartment and repressive epigenetic 

modifications[87], the terminal differentiation of pro-pre-B cells to pre-B cells correlates with a 
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significant B-to-A switch, involving genes with essential functions to B cell maturation, including Ebf1, 

Poxo1, IgK and IgI[87]. Replication timing domains also changes along compartment switch, which 

affects 50% of genome.  

TAD are relatively stable during differentiation[85]. However, there are exceptions: the TAD 

boundaries observed in fat precursor cells are inconsistent with those of embryonic stem cells and 

cerebral cortical cells[88]. In contrast, the "strength" of the TAD, that is, the number of chromatin 

contacts within each TAD or across TAD, has a more significant change in differentiation, and this 

number can be increased or decreased. The increase of chromatin contacts is often accompanied with B-

to-A compartment switch and upregulated gene expression in the TAD, and vice versa. Along 

differentiation of ESCs into adipocytes, myotubes or nerve cells, new chromatin loops have appeared, 

linking enhancers to the genes related to the differentiation, alongside the gaining of H3K27ac 

marks[88, 89]. On the other hand, more pluripotency-related interactions disappeared along ESC 

differentiation, and CTCF binding was greatly reduced throughout the genome[88]. It is worth 

mentioning that some areas in TAD are more likely to form internal chromatin interactions than with the 

surrounding areas, known as frequent interacting regions (FIRE)[85]. FIRE often harbors abundant 

enhancers and super enhancer groups, for example, more than 77.8% of the super enhancers in 

GM12878 reside in FIRE[85].  

3. Disruption of 3D genome structure in diseases 

3.1 Impact of DNA mutations and methylations on chromatin conformation 

 As the spatial organization of chromatin tightly associates with gene expression, when the 

chromatin structure is pathologically altered, it can cause dysregulated gene expression that gives rise to 
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developmental deformity, cancers and metabolic disorders. A variety of causes can lead to changes in 

the chromatin 3D structure, such as DNA mutations, including single nucleotide substitution/variations 

(SNV), insertion or deletion of small fragments (<50bp), and structure variations that are large deletion, 

inversion, duplication or translocations (≥50bp), and epigenetic alterations like DNA hypermethylation. 

When these mutations disrupt essential regions like TAD borders that maintain the genomic insulation, 

structural instability might be seen. One model of loss of insulation is shown in the Figure 1-4 below:  

 
Figure 1- 4: Model of TAD fusion, loss of insulatioin, and enhancer hijacking 

The green circle represents boundary elements, majorly CTCF and Cohesin. Mutation, 

deletion, or DNA hypermethylation of CTCF binding motif  all result in prevention of 

CTCF binding and loss of insulation. Two separate TADs hence fuse into a larger one, 

and the gene in the right TAD can be activated by the enhancer in the left TAD.  

two originally insulated TADs merged to form a larger new TAD (neo-TAD)[90]. In such a situation, 

genes that were originally silenced in one TAD can be activated by enhancers in another TAD upon 

fusion, which is termed as "enhancer hijacking"[91]. Opposite to the scenario above, there is also a 

phenomenon of TAD split. In some cancer cells, the number of TAD is increased, with the average size 
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of TAD significantly reduced. The smaller TADs in cancer cells often appear as sub-TADs split from 

the larger TADs in the normal tissue with the boundaries overlapping to each other[92]. At present, the  

specific mechanism of TAD split is not yet clear. A study interrogating all CTCF binding sites in 1962 

samples from 21 cancer types identified 21 insulators showing positive selection for mutations. One of 

the mutation occurs in more than 16% of melanoma and is associated with TGFB1 mRNA up-

regulation[93]. Profiling of chromatin structure on T-ALL also identifies TAD fusion event and gain of 

interaction between MYC and distal enhancers[94]. CTCF depletion was also found to induce heart 

failure and TAD reshaping in mice, while pressure overload in the left ventricle was found correlated 

with loss of CTCF binding in the heart tissue from the patients[95]. 

 Mutations do not have to be at the TAD boundary to cause disease, in fact, even a single 

mutation that compromises the interaction between an important gene and its enhancer can lead to 

severe condition. It was found that globally the genomic regions that interact with gene promoters are 

enriched in disease-related SNPs[96]. For example, the FIRE that contains a large number of chromatin 

links is extremely enriched of disease-related SNPs. Every million basepairs of FIRE contains in 

average 3.33-3.76 diseases SNP, and this number is closer to the upper bound when enhancers are 

present in the FIRE. In comparison, the reference genome contains around 1.45 disease-related SNPs per 

million basepairs. So far, millions of non-coding GWAS SNPs have been identified associated with 

diseases, but the genes they affect and their roles in the disease are mostly unclear. Through the 

chromatin interactions, genes related to those GWAS SNPs can be preferentially identified, and 

thousands of new disease-related genes were thus recognized[96]. 

 Hypermethylation of CpG island and CTCF binding sites have been seen in many cancers.  In 

glioma cells with isocitrate dehydrogenase (IDH) mutations, the gain-of-function mutations in IDH 

prevents DNA demethylation. Excessively high levels of DNA methylation blocks the binding of CTCF, 
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resulting in failure of insulation between two TADs[97]. In such cases PDGFR is activated by a distal 

enhancer. Treatment with demethylase reagents on this type of glioma cells partially restored the 

separation of TAD structure and reduces the expression of PDGFRA[97]. Mutation of succinate 

dehydrogenase (SDH) also causes DNA hypermethylation. Gastrointestinal stromal tumors with SDH 

mutation also exhibit loss of CTCF binding and insulations, which results in activation of FGF3, FGF4 

and PDGFRA[98].  

3.2 Impact of structure variations on chromatin conformation 

 Given that spatial structure of chromatin has undergone dramatic changes in the early embryonic 

development, it is conceivable that development can be heavily interfered if these specialized structures 

were disrupted. Genomic screening on children with chondrogenic dysplasia and polydactyly has found 

some large-scale deletions, inversions, and duplications downstream of WNT6/IHH gene and upstream 

of PAX3 gene, which usually encompass a TAD boundary[99]. These mutations can place a cluster of 

enhancers that was near the EPHA4 gene into the proximity of WNT6/IHH gene or PAX3 gene, and 

ectopically activate their expression through the “enhancer-hijacking” mechanism[99]. The abnormal 

expression of PAX3, IHH and WNT6 genes respectively leads to Brachydactyly, Polydactyly and F 

Syndrome. KCNJ2 gene is also directly related to the limb development. In normal cells, this gene is 

insulated from a series of downstream genes and enhancers by its TAD boundary, including SOX9. 

However, a tandem duplication containing the KCNJ2 and SOX9 genes placed the extra copy of KCNJ2 

downstream to the original copy of SOX9. The enhancers around SOX9 thus ectopically activate 

transcription of the duplicated KCNJ2, which directly leads to limb malformation and Cook syndrome. 
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The alteration of chromatin structures, if created a new interaction between a proto-oncogene and 

an enhancer, or lost the link between a tumor suppressor and its enhancer, may be carcinogenic. Some T 

acute lymphoblastoma leukemia (T-ALL) highly expresses TAL1 and Lymo, which keep lymphocytes 

at a naive stage with uncontrolled active cell propagation. In those cells previous studies found a 

deletion near the TAL1 gene, which overlaps with a binding site of CTCF and Cohesin, and abolishes 

insulation of the TAD[100]. Correspondingly, only in T-ALL was TAL1 found to form a chromatin 

interaction with a distal enhancer. Deletion of this CTCF-binding site in normal cells by CRISPR editing 

recapitulates the TAD alteration, accompanied by TAL1 and Lymo1 transcription activation. [100]. 

Similarly, DNA mutations at the CTCF binding site is associated with activation of BRAF gene in 

esophageal cancer, and FGFR1, EXT2 and RBM15 in liver cancer[100]. Sometimes, a single structure 

variation is sufficient to induce cancer through enhancer-hijacking mechanism. For example, the 

translocation or inversion of chromosome 3, which represents a subtype with the poorest prognosis in 

acute myeloid leukemia (AML), places the enhancer of GATA2 gene into the proximity of the proto-

oncogene EVI1. The EVI1 transcription is drastically enhanced, while GATA2 expression is reduced 

because of the loss of enhancer and it is functionally haploinsuffiicent[101].  

In fact, when examining the SVs and chromatin structure of many different cancer cell lines, we 

found that, although some cancer cell lines lack the signature mutation on certain proto-oncogene, 

translocation and large deletions often occur around these genes and correspondingly change the 3D 

chromatin structure. For example, the prostate cancer cell line PC3 does not have the most common 

ETV4 mutations, but it has a translocation between chromatin 15 and 17 next to gene ETV4, which 

incorporate ETV4 into a neo-TAD[32]. Most of glioma cell lines highly express MYCN, which inhibits 

the expression of MYC (c-myc). SK-N-SH and SK-N-AS are the exceptions which highly express MYC 

instead of MYCN, and they both have a translocation that mediates a neo-TAD formation and 
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incorporation of gene MYC. Similar examples are a large deletion near ERBB2 gene in the pancreatic 

cancer cell PANC-1, and a translocation near ZNF703 and TERT in breast cancer cell T47D, etc., all of 

which form neo-TAD[32]. Many such examples suggest that it is probably not rare incidences for 

oncogenes to be activated by SV-mediated change of chromatin structures. How widely and frequently 

are those events occurring in all types of cancers is an important question, the answer to which might 

offer insights into developing novel therapies to those cancers.  

4. Gap of knowledge 

Although we had seen great potential and advantage of BioNano optical mapping, this 

technology had only been used in genome assemblies back before 2016. It was unclear whether it is 

feasible at all to utilize the long molecules from BioNano to detect SVs in a cancer genome. Around the 

same time, more and more Hi-C data had been generated from ENCODE cancer cell lines, and some cell 

line-specific strange signals on the Hi-C map has drawn attention in the field. Researchers started to 

suspect that those are caused by cancer-specific SVs, but it remained clueless as what type and locus of 

SV can cause what specific shape and distribution of aberrant signal in the Hi-C map. Therefore, we 

wondered whether we can learn and summarize the association between aberrant signals and the 

corresponding SVs, based on the principle of Hi-C experiment, and then create a model algorithm to 

detect SVs, including determining their types, loci and orientations systematically based on Hi-C data. 

Further, we ask whether integration of those technologies would benefit the SV detection in cancer, to 

improve sensitivity, specificity, and resolution. Specifically, we wonder whether the clinical molecular 

diagnosis and subtyping of AML can take advantage of the integrative detection of SVs. Landscape of 

SVs have been studied in many cancer types except AML. One of the possible reason is the lack of 
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normal blood as control. We hence further asked whether we could utilize the publically available 

dataset of human genomic polymorphism to stratify germline and somatic variations.  

As we showed in introduction, aberrant epigenetic modification can change chromatin 3D 

structure. While AML is known for carrying lot of mutations that cause loss or gain of functions in 

epigenetic modifiers, an important question is whether those genomic background will drive alteration 

of chromatin 3D structure in a subtype-specific manner, and how does the chromatin reorganization 

contribute the leukemogenesis. Moreover, if recurrent change of chromatin structure was identified, can 

there be any means to therapeutically restore the chromatin structure as a way to treat disease? Further, 

since SVs can result in neo-TAD formation and enhancer hijacking events, a question is whether such 

events also widely occur in AML, as AML is known for harboring large SVs, such as the classic 

subtype-defining rearrangements including t(8;21), t(t;9), and inv(16).  To answer those questions, a 

method that can process Hi-C data in the presence of SVs is also in demand. Overall, the chromatin 

structure change and their association to cancer development is not well known for all types of cancers. 

Addressing those questions could greatly advance of understanding about oncogeneiss and potentially 

provide novel targets for disease treatment. 

 



 

 

Chapter 2 

 

Integrative Detection and Analysis of Structural Variation in Cancer Genomes 

Abstract 

Structural variants can contribute to oncogenesis through a variety of mechanisms. Despite their 

importance, the identification of structural variants in cancer genomes remains challenging.  Here, we 

present an integrative framework for identifying structural variation in cancer genomes that applies next-

generation optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole 

genome sequencing to systematically detect SVs in a variety of cancer cells. We identify and 

characterize structural variants in 36 normal or cancer samples and cell lines. We find that each method 

has unique strengths in identifying different classes of structural variants at different scales, suggesting 

that integrative approaches are likely the only way currently to comprehensively identify structural 

variants in the genome. Studying the impact of the structural variants in cancer cell lines, we identify 

widespread structural variation events affecting the functions of non-coding sequences, including the 

deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel 

3D chromatin structural domains.  These results benchmark six structural variant detection platforms, 

underscore the importance of accurate and comprehensive structural variant identification, and indicate 

that non-coding structural variations may be underappreciated mutational drivers in cancer genomes.  
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Introduction 

Here we propose an integrative framework to comprehensively detect SVs by using a 

combination of technologies, including WGS, next-generation optical mapping (BioNano Irys), and high 

throughput chromosome conformation capture (Hi-C). Although Irys and Hi-C have been previously 

used for genome assembly [40, 102-109], this is the first time that WGS, optical mapping and Hi-C 

technology are systematically compared and integrated for SV detection in cancer genomes. Irys optical 

mapping works by first introducing single-strand cuts in DNA molecules with a sequence-specific 

nicking endonuclease, and then repairing the nick with fluorescently labeled nucleotides [110]. Each 

DNA molecule is then straightened and electrophoresed through microfluidic nanochannels, through 

which DNA can migrate only when unfolded.  Fluorescently labeled nicks are then imaged within the 

nanochannels. By aligning images of multiple DNA molecules at specific sites, this technology can 

generate high-throughput genomic maps for extremely long, single DNA molecules (~200kb – 1Mb).  

In addition to analyzing Irys optical mapping data, we develop novel algorithms to use Hi-C data 

to systematically identify structural variations genome-wide. Hi-C technology was initially invented to 

investigate genome-wide chromatin interactions [49] but has been recently adopted for other purposes, 

such as genome assembly [104, 105] and haplotype phasing [111].  While the presence of structural 

variants has been observed with Hi-C datasets [51, 104, 112, 113], we have developed and validated an 

algorithm to use Hi-C data to find structural variation in cancer genomes.  We demonstrate that Hi-C can 

accurately detect structural variants in cancer genomes even with modest sequencing coverage (20-100 

million reads or 1-5X coverage).  We compiled a list of high confidence SVs in 8 human cancer cell 

lines by comparing the results from each of the three technologies, and we performed validation 

experiments on a subset of these variants. We observed that each method can detect distinct subsets of 

structural variations: Irys optical mapping and Hi-C excelled at detecting large and complex structural 
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alterations, whereas high coverage WGS was adept at identifying insertions, deletions, and 

rearrangements with high resolution.  Having obtained large-scale genomic structural information from 

Irys and Hi-C, we also investigated the consequences of these large-scale structural alterations in cancer 

genomes. We identified numerous instances of novel 3D chromatin structure alterations as a result of 

structural genome variation, such as the formation or dissolution of topologically associating domains 

(TADs), suggesting a critical role for structural variation in gene misregulation in oncogenesis. 

Results 

An integrated approach for structural variant detection 

 To evaluate the ability of diverse experimental methodologies to identify structural variants, we 

identified SVs and performed cross platform comparisons using a combination of whole-genome 

sequencing, optical mapping, and Hi-C in 8 cancer cell lines and one normal control (GM12878) 

(Figure 2-1a and Table 2-S1). We performed WGS in seven cancer cell lines with an average coverage 

over 30X and we downloaded the WGS data for LNCaP cells from a previous study[114] and for 

GM12878 cells from the Illumina Platinum Genome Dataset.  We performed the initial SV detection 

with an in-house pipeline that uses pair-ended reads, split reads, and read depth from WGS data by 

integrating the results from LUMPY, DELLY, and control-FREEC software[115-117], and performed 

extensive filtering to remove false positive rearrangement calls (Figure 2-S1). Next, we performed 

optical mapping in the same 9 cell lines with an average coverage of ~100X, the most extensive optical 

mapping effort in cancer cells thus far. We used BioNano Refaligner 6119 and pipeline 6498 to conduct 

de novo assembly and SV detection, and used an in-house pipeline to perform further data filtering 

(Figure 2-S2).  On average, we identified ~3,600 SVs in each cell line by optical mapping.  Lastly, we 
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performed Hi-C experiments in 14 cancer cell lines and analyzed an additional 21 previously published 

Hi-C datasets (Table 2-S1)[51, 85, 92, 118-121]. We developed novel algorithms to identify potential 

re-arrangement events using Hi-C data, including translocations, inversions, deletions, and tandem 

duplications (Figure 2-S3). After comparing and merging the results from each platform, we predicted 

thousands of insertions and deletions (>50bp), hundreds of tandem duplications and inter-chromosomal 

translocations, and tens of inversions. We compiled a list of high-confidence SVs, which were predicted 

by at least two of the three methods. As an example, Caki2 cells carry a translocation between 

chromosomes 2 and 3 that was detected by all three methods. This translocation was validated by 

observation of dramatic shifts in DNA replication timing profiles in this region (Figure 2-1b). By 

integrating the SV calls from each method, we can also resolve the structural variants at different 

genomic scales, from chromosome scale alterations to base-pair sequences (Figure 2-1c). We visualized 

the high-confidence SVs as circular genome structural profiles[122], which showed that the cancer 

genomes displayed many more rearrangement events compared with normal cells (Figure 2-1d, Figure 

2-S4).  

Table 2- 1. Number of high-confidence large SVs in cancer and normal cells 

  Confident calls of large intra-chr SVs ≥ 1Mb  
inter-chr TLs 

  Deletions Duplications Inversions Unclassified SVs 
NA12878 0 0 0 0 0 
T47D 4 2 6 13 30 
Caki2 2 2 5 4 26 
K562 4 5 6 11 33 
A549 1 2 0 3 12 
NCI-H460 2 1 0 0 7 
SK-N-MC 2 2 6 3 9 
PANC-1 3 0 0 4 14 
LNCaP 3 0 0 4 9 
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Figure 2- 1. Overall strategy of 

SV detection in cancer genomes.  

a. The pipeline of SV detection, 

validation, and functional 

analysis.  

b. An example of the same 

translocations detected by 

different technologies in Caki2 

cells (hg38 coordinates: 

chr2:204,260,308 and 

chr3:179,694,900).  

c. WGS, Hi-C and optical 

mapping detect SVs at different 

scales. Hi-C can detect SVs 

genome-wide at a scale of up to 

chromosomal size, while optical 

mapping can detect SVs and 

build genome maps at ~10kb 

resolution. Combining Hi-C and 

optical mapping can resolve 

complex rearrangements and 

reconstruct local genome 

structure. WGS detects SVs at 

base pair resolution.  

d. Cancer genomes possess more 

CNVs and translocations in 

comparison with karyotypically 

normal GM12878 cells. Tracks 

from outer to inner circles are 

chromosome coordinates, copy 

number, duplications (red) and 

deletions (blue), and 

rearrangements including 

inversions, inter-chr 

translocations (TLs) and 

unclassified rearrangements. 

Outward red bars in CNV track 

indicate gain of copies (>2, 2-8 

copies), and inward blue loss of 

copies (<2, 0-2 copies).  CNVs 

are profiled by WGS with 

50,000 bp bin size. Duplications, 

deletion, and TLs are detected 

by at least two methods from 

WGS, Irys, and Hi-C. 
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Detection of Large Scale Re-arrangements using Hi-C data 

 The presence of certain strong inter-chromosomal interactions observed in Hi-C interaction 

matrices from cancer cell lines has been suggested to be the likely consequence of SVs [51, 104, 112, 

113]. Several groups have recently proposed that Hi-C can be used to find translocations in cancer 

genomes, but have largely relied on visual inspection of the data to identify SV breakpoints[123, 124].  

Likewise, tools have recently been developed to identify copy number alterations or inter-chromosomal 

translocations in Hi-C datasets[123-126]. While locus specific chromosome conformation capture has 

been used to identify whether individual genes are re-arranged in a given genome49, to our knowledge, 

no algorithm has been developed to use Hi-C for systematic, unbiased, genome-wide detection of a full 

range of SVs, including deletion, inversion, tandem duplication, and inter-chromosomal translocation. 

To address this, we developed a novel computational algorithm to detect structural variations from Hi-C 

interaction frequencies. 

 In a Hi-C experiment in karyotypically normal cells, inter-chromosomal interactions are rare 

(Left panel in Figure 2-2a). However, in the presence of structural variations, dramatic alterations from 

these low frequency interactions are observed.  For example, in Caki2 cancer cells, we observed strong 

“inter-chromosomal” interactions (Right panel in Figure 2-2a), which are due to the fusion of 

chromosome 6 and chromosome 8. The challenge is to determine whether the increased signal is due to 

a rearrangement or due to normal variation in 3D genome organization.  We have developed 

probabilistic models of Hi-C data to model “normal” features of normal 3D genome organization, 

including genomic distance between loci, TADs, A/B compartments, and the increased interactions 

between small chromosomes and between sub-telomeric regions (see Supplementary methods for 

details). In the event of a re-arrangement, the two re-arranged regions are genetically fused, altering the 

linear distance between loci.  This leads to local clusters of deviation from the expected interaction 
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frequencies of the model.  This signature can then be used for systematic identification of structural 

variation in any Hi-C dataset, including both inter-chromosomal translocations and intra-chromosomal 

re-arrangements (Figure 2-2a,b).   We use an iterative approach that first identifies breakpoints using 

low resolution Hi-C contact maps (1Mb bin size for inter-chromosomal, 100kb for intra-chromosomal), 

and then progressively reduces the bin size to refine the exact breakpoints as high as 1kb in certain 

instances.  

 We tested our method with a well characterized chronic myelogenous leukemia cell line (K562) 

and specifically used a limited number of sequencing reads (27 million read pairs and ~1.5X coverage in 

replicate 1, generated as part of this study, and 22 million read pairs and ~1.3X coverage in replicate 2, 

generated previously [51]) to determine whether Hi-C can identify re-arrangements with limited 

sequencing depth.  We started our analysis by comparing large scale re-arrangements identified with a 

Hi-C bin size of 1Mb with published karyotype data for K562[127].  We found 19 re-arrangements 

across the two replicates, 11 of which were known through prior karyotyping and the remaining 8 are 

novel re-arrangement events[127].  The 8 novel re-arrangements were found in replicate experiments 

performed in two independent laboratories, suggesting that these are not a product of clonal evolution. 

Interestingly, several of them are novel complex re-arrangements: one event is between chromosome 16 

and two different regions of chromosome 6 (Figure 2-2c) and in another case, we observed a re-

arrangement between chromosome 1, 6, 18, and 20. We performed fluorescence in situ hybridization 

(FISH) experiments and validated a set of novel re-arrangement events. In total, 18 of the 19 predicted 

translocations using Hi-C data were validated by either FISH or previous karyotyping (Table 2-S2, 

suggesting that our algorithm can identify large-scale structural variation with high specificity.  Next, to 

estimate the precise location of breakpoints, we iteratively applied the algorithm at increasingly smaller 

bin sizes to determine a subset of the re-arrangements with high resolution. For example, in K562 cells, 
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we identified 4 re-arrangements at 1kb resolution, all of which were further validated by PCR and 

Sanger sequencing. 

 

Figure 2- 2. Detection of SVs using Hi-C in cancer genomes.   

a,b. Inter-chromosomal (a) and intra-chromosomal rearrangements (b) detected by using Hi-C 

data (marked by arrow sign). In panel a, GM12878 heat maps are shown at 100kb resolution, and 

Caki2 are shown at 1Mb resolution c. A complex translocation (TL) (chr6-chr16-chr6) in K562 

cells validated by fluorescence in situ hybridization (FISH). Similar results for FISH validation 

experiments were performed using 20 independent metaphase nuclei. Scale bars (white) represent 
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5M. d. Number of inter-chromosomal and intra-chromosomal rearrangements detected by Hi-C 

in 29 cancer genomes and 9 normal genomes. e. An example of the impact of TLs on replication 

timing (RT). RT profiles of chr5 and chr10 of SK-N-MC, when plotted to the reference genome, 

show abrupt shifts at the TL breakpoints (←, left panels), and they are smoothly connected due to 

their juxtaposition in the cancer genome (right panel, normal chr10 is absent in SK-N-MC). Solid 

black (chr10) and red (chr5) lines indicate loess smoothened RT data. As RT experiments were 

designed for validation purposes, one replicate was performed for RT experiments. 

 

 

 To further evaluate the sensitivity of our approach, we evaluated its ability to detect the 

previously identified breakpoints on human chromosome 21 in Tc1 mouse ES cells (Figure 2-S 5a).  

Tc1 ES cells are a mouse ES cell line engineered to carry a copy of human chromosome 21[128].  In the 

process of establishing this cell line, human chromosome 21 was subject to gamma irradiation [128], 

leading to massive genomic re-arrangements, a subset of which have been previously identified using 

PCR and Sanger sequencing [129].  We generated high coverage Hi-C data in Tc1 cells and identified 

SVs using our algorithm (Figure 2-S 5a).  By sub-sampling the data, we evaluated the sensitivity of our 

algorithm at various sequencing depths.  The sensitivity ranges between 40%-90% depending on the 

sequencing depth and method used to call overlap, and appears to plateau when using 100 million 

sequencing read pairs or more (Figure 2-S 5b). In addition, we observe high internal consistency of 

breakpoints calls when there is at least 50 million reads (Figure 2-S 5c,d). These result suggests that our 

method requires only modest sequencing depths to achieve high sensitivity and saturation of breakpoint 

calls, and that we can achieve decent sensitivity with as little as 5-10 million reads. By examining the 

discordant breakpoints, we observe that Hi-C may call breakpoints in identical regions as identified by 

WGS, but identifies a different strand as part of the breakpoint (Figure 2-S 5e-h).  The discrepancies are 

usually involved with complex events, where Hi-C reported the larger scale SVs, while WGS reported 

the smaller SVs for the sample complex event.  This suggests that Hi-C may retain more information 

regarding the large-scale structure of the re-arrangement.  Lastly, to evaluate the effect of sample 
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heterogeneity, we simulated mixed tumor/normal samples by combining Hi-C reads from K562 as well 

as karyotypically normal GM12878 cells at various fractions.  When fixed at a total sequencing depth of 

100 million reads, we observe limited loss of sensitivity even with tumor fractions as low as 30%, 

indicating that Hi-C based SV finding is largely robust to moderate sample heterogeneity (Figure 2-S 

5i). 

 Having demonstrated the sensitivity and specificity of our approach, we expanded our Hi-C 

analysis to 27 additional cancer cell lines and 9 karyotypically normal lines (Figure 2-2d). We observed 

on average 25 re-arrangements in cancer cells and virtually no such events in normal cells. The rare 

instances of re-arrangements in normal cells typically occur immediately adjacent to centromeres and 

therefore potentially represent anomalous or polymorphic assembly differences. In total we identified 

698 rearrangements across all 27 cancer cell lines.  Of these, a majority are inter-chromosomal 

rearrangements, with a roughly 2:1 ratio of inter-chromosomal to intra-chromosomal rearrangements 

identified (424 inter-chromosomal, 274 intra-chromosomal). Interestingly, in some lineages this pattern 

is reversed.  For example, we identify 48 intra-chromosomal rearrangements and 8 inter-chromosomal 

rearrangements in SK-N-DZ cells.  Of the intra-chromosomal rearrangements in SK-N-DZ, 46 of 48 

occur within chromosome 2 alone, suggesting the presence of a complex chromosomal rearrangement in 

chromosome 2 in this cell line.  Finally, we also analyzed the size distribution of intra-chromosomal SVs 

identified by Hi-C (deletions, inversions and tandem duplications).  Hi-C appears to identify mostly 

large structural variants, with only 4.3% of intra-chromosomal SVs being less than 2Mb in size (Figure 

2-S 5j).  This is likely due to the fact that the strongest “normal” Hi-C interactions tend to be local and 

due to genomic features such as TADs and loops[61, 130].  As a result, Hi-C appears to have reduced 

signal-to-noise for finding SVs at the scale of these chromatin architectural features. 
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Validation of Hi-C breakpoints by replication timing  

 We also wanted to validate our Hi-C defined breakpoints using an independent functional test, 

and we chose to use altered patterns of DNA replication timing for this purpose.  Eukaryotic genomes 

replicate via the synchronous firing of clusters of origins, which together produce multi-replicon 

domains each of which complete replication in a short (45-60 min) burst during S-phase[131, 132]. 

Genome-wide profiling of replication timing reveals that these domains can be replicated at different 

times during S phase, with adjacent earlier and later replicating domains punctuated by regions of 

replication timing transition[131, 132]. Consequently, translocations that fuse domains of early and late 

replication can result in earlier replication of the late replicating domain and/or delayed replication of 

the early replicating domain[133, 134]. When mapped to the reference genome, these changes appear as 

abrupt shifts in replication timing profiles that have the potential to validate breakpoints (Figure 2-2g). 

Our Hi-C pipeline identified 249 translocations (at 10kb or 100kb resolution) in 10 cell lines in which 

replication timing data is available, including seven new datasets generated for this study. Among them, 

75 translocations were associated with an abrupt shift in replication timing. Since an abrupt shift is only 

expected for translocation between domains that replicate at different times, we aimed to classify the 

translocations based on the replication timing of the loci. However, the lack of a control cell line that 

represents the pre-translocation replication timing of the loci confounds this classification. To 

circumvent this problem, we classified the genome into regions that are constitutively early replicating 

(CE), constitutively late replicating (CL) and regions that switch replication timing during development 

(S), using 48 replication timing profiles of non-cancerous cell lines and differentiation intermediates 

spanning all three embryonic lineages[135, 136] (See Supplementary Methods). Among the 249 

translocations detected by Hi-C, 9 were CE to CL fusions and 32 were CE to CE or CL to CL fusions. 

As expected, an abrupt shift in timing was identified in CE to CL with a much higher frequency (~67%) 
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than in CE to CE or CL to CL fusions (~13%). Translocations between CE were observed with a 

frequency 3 times higher than expected by chance, which is consistent with previous reports linking 

chromosomal breakpoints to early replication and higher transcriptional activity[137, 138]. Overall, 

replication timing can provide functional validation of a specific class of translocation events that fuse 

regions that are replicated at different times in S phase. 

Cross-platform comparison and integration of SV detection 

 To systematically evaluate the performance of each method for detecting SVs, we compared the 

large SVs predicted by Hi-C, optical mapping, WGS, fusion transcripts, karyotyping[127, 139-146], and 

paired-end tag sequencing (PET-seq)[147, 148] (Figure 2-S 6). We then defined rearrangements 

detected by at least two different platforms as high-confidence SVs, and we compared the results from 

each method to this high-confidence set to assess their contribution and overlap rate as a way to 

approximate their sensitivity and specificity. Contribution of a given method is defined as the fraction of 

high-confidence SVs that are detected by this method, and overlap rate refers to the proportion of SVs 

from one method that overlap with high-confidence SVs.  

 Overall, we observed that 20% of all inter-chromosomal translocations were identified by at least 

2 platforms.  Compared with previously known karyotypes in each lineage, many of them are novel. For 

example, 14 out of 26 translocations in T47D cells found in this study have not been reported before. 

We selected eight of them for further validation, and all of them were confirmed by PCR.  We found 

that Hi-C is a method with significant contribution and high overlap rate (overall 48 % and 66%), and 

with better performance for inter-chromosomal translocations (53% and 66%) than intra-chromosomal 

large SVs (43%, 71%) (Table 2-S 3). Integration of Hi-C, optical mapping and WGS increases the 

overall contribution to 90% (their individual contributions are 48%, 40% and 64%, respectively), and 

this observation holds true for inter-chromosomal translocations (53%, 24% and 56%, respectively, to 
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88%) and intra-chromosomal rearrangements (43%, 59% and 74%, respectively, to 92%). We also 

notice that traditional karyotyping has a high overlap rate with the high confidence calls for all kinds of 

large SVs (88%) and relative good contribution for inter-chr TLs (56%). However, it only contributes to 

2% of the high confidence intra-chromosomal SVs. In addition, traditional karyotyping identifies SVs 

with low resolution (≥5Mb). Therefore, we believe that Hi-C can compensate for the performance of 

karyotyping for intra-chromosomal SV detection.  

 We further integrated the results across different platforms in each cell line into a final high-

confidence SV call set by merging SV calls and refining the SV boundaries using the breakpoints of the 

highest resolution. For example, our Hi-C algorithm identified a large deletion on chr10 in T47D cells 

(~17 Mb deletion), and predicted the first breakpoint is located between chr10:17,760,000-18,300,000 

and the second breakpoint between chr10:35,340,000-35,700,000. When we checked the optical 

mapping, it reported the same deletion between chr10: 18,304,830-35,340,945. The exact breakpoint for 

each end should be located between the pair of nicking enzymes surrounding it (resolution ~10kb). 

Finally, we checked the WGS data, which reported the same deletion at base-pair resolution at chr10: 

18,307,707-35,335,171. Therefore, this is a large deletion of 17,027,464 bp that was reported by all 

three platforms, and we reported this event using the WGS coordinates and set its confidence level as 3 

(3 platforms). Moreover, we resolved the SV type for a subset of unclassified large intra-chromosomal 

rearrangements detected by WGS and optical mapping, based on the orientation and the cross-platform 

classification. For example, Irys reported 24 unclassified intra-chr rearrangements (≥5Mb) in T47D 

cells. By comparing with Hi-C or WGS data, we were able to identify the types for 9 of them (37.5%), 

which include 3 deletions, 2 duplications and 4 inversions.  
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Figure 2- 3. Comparison of SVs 

detected by different methods.  

a. Overlap of deletions in T47D cells 

detected by optical mapping and 

WGS.  

b. Size distribution of deletions 

detected by optical mapping (n=1108) 

and WGS (n=2964, P = 1.33X10-36, 

two-sided Wilcoxon rank-sum test). 

For boxplots, the box represents the 

interquartile range (IQR), and the 

whiskers extend to 1.5 times the IQR 

or to the maximum/minimum if less 

than 1.5x IQR.   

c. Optical mapping detects a 6Kb 

deletion within chrX:96,041,289-

96,072,340 that is missed by WGS.  

d. Reconstruction of the complex 

local structure of a derivative 

chromosome in K562 cells through 

integration of optical mapping, Hi-C 

and WGS.  The rearranged allele 

consists of 5 regions: A (chr13:80.5-

80.8Mb), B (chr13:89.7-93.3Mb), C 

(chr13:107.8-108Mb), D (chr9:130.7-

131.3Mb), and an unalignable region. 

Further, segment B consists of three 

smaller regions (B1, B2, and B3 in the 

Figure). We reconstructed a global 

view of the genome structures in this 

region by stitching several optical 

mapping contigs together (middle 

panel). Each junction of the optical 

mapping genome map can be 

validated by Hi-C data. WGS data can 

provide bp-resolution breakpoints for 

specific breakpoint junctions.  Each 

line in the WGS panel represents a 

read pair. Reads that support the 

breakpoint site are parked as purple 

(forward strand) and red (reverse 

strand).  

e. Strategy of using Hi-C to 

reconstruct SVs. Hi-C shows 

increased interaction frequency if two 

translocated regions are directly 

joined (→) or if they are not 

immediately adjacent (*), but are 

linked to the same rearranged allele.  
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 We also identified thousands of gains or losses of genetic material by optical mapping and WGS 

in each cancer cell line (we did not include Hi-C for this comparison as WGS is inherently better than 

Hi-C in detecting CNVs at similar sequencing depths, as both techniques are essentially based on 

genomic coverage and WGS has more even coverage than Hi-C). We observe that optical mapping 

detects fewer but larger deletions than WGS. For example, in T47D cells, WGS detected 2,943 deletions 

with a median size of 552 bp, while Irys reported 1,128 deletions with a median of 1,335 bp (Figure 2-

3a,b). 84% (2495/2943) of WGS-detected deletions are missed by Irys. Among them, 78% are smaller 

than 1Kb, which are likely to be missed by optical mapping, as its detection relies on changes to the 

distance between nicking sites and it is difficult to identify rearrangements considerably smaller than the 

minimum nicking frequency. Likewise, 58% of the Irys-detected deletions are not captured by WGS.  

This is likely because optical mapping retains long-range contiguity of large DNA fragments (>150kb) 

and can grasp the global view of larger deletions that can be overlooked by WGS. In addition, we found 

3% of the deletions predicted by Irys overlap with multiple smaller WGS deletions, and in those cases, 

the summed size of these WGS deletions are very close to the Irys-detected deletion (Figure 2-S 7a-c).  

We tested a subset of deletions detected by Irys and 87.5% (14 of 16) were validated by PCR (Table 2-S 

2). In addition, optical mapping can identify deletions within repetitive regions where WGS reads are 

not mapped (Figure 2-3c). Further analysis shows that deletions identified by WGS have a higher 

mappability around the breakpoints compared with those identified by Irys, indicating that Irys can more 

sensitively identify deletions in low-mappability regions (Figure 2-S 7d). Megabase-scale deletions are 

a signature of cancer cell lines, which is confirmed by both optical mapping and WGS read depth 

alteration. In contrast, the largest deletion we saw in GM12878 lymphocytes is a 700kb event associated 

with V(D)J recombination.  
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 We further investigated why some other rearrangements were missed by specific methods 

(Figure 2-S 8). Our analysis indicates that, in addition to mappability (Figure 2-S 7d), a major factor 

contributing to discrepancies in SV calls between different methods is the scale with which the SV is 

resolved.  Specifically, since both Hi-C and optical mapping rely on either restriction enzymes or 

nickases that recognize target motifs with a spacing greater than 1kb (Hi-C) and 10Kb (optical 

mapping), they will miss the smaller rearranged regions captured by WGS. On the contrary, since both 

Hi-C and optical mapping identify rearrangements on a larger scale, they are more capable of identifying 

complex rearrangements and events whose breakpoints are located in low-mappability regions.  For 

example, one of the rearrangements in K562 cells is located near a centromere of chromosome 20, 

which is highly repetitive and therefore is unmappable by WGS.  However, Hi-C was able to leverage 

the reads from nearby, mappable portions of the genome to detect the centromere-proximal 

rearrangement, which we subsequently confirmed by FISH. We also observed that both Hi-C and Irys 

are particularly powerful at detecting rearrangements with un-alignable junctions (illustrated in Figure 

2-S 8a and b), which could come from a third chromosome that is too short to be recognized, the non-

templated addition of bases to the genome, or exogenous DNA sequences such as that from viruses. By 

accounting for such differences in scale, it is clear that integration of Hi-C, Irys, and WGS can shed light 

on the global architecture of complex SVs that involve multiple rearrangements (Figure 2-3d). We show 

an example of a derivative chromosome in K562 that involves massive rearrangements among, at least, 

chr1, 9, 13 and 22 (Figure 2-3d). We use the optical map to thread the putative local structure, the WGS 

calls to pinpoint breakpoints, (and the Hi-C data signal to validate the linkage of several adjacent 

rearrangements on the same allele (Figure 2-3e, Figure 2-S 10). In summary, these results illustrate that 

WGS excels at detecting simple translocations and CNVs with high resolution, whereas Hi-C and 

optical mapping are more capable of detecting SVs near un-mappable regions and resolving large and 
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complex SVs (Table 2). Whenever possible, an integrative approach of different methods is essential to 

gain a more comprehensive understanding of structural variation in cancer genomes.  

 

Table 2- 2. Comparison of three methods 

    WGS 
Optical 

mapping 

(Irys) 
Hi-C 

Optical 

mapping 

(Irys) +Hi-

C  

Three 

methods 
Resolution of 

breakpoint 
1bp resolution √√       √√ 

10kb resolution √√ √√ √ √√ √√ 
Low-mappability 

region 
Whole SV located inside a repeat √ √√   √√ √√ 
Breakpoint located inside a repeat √ √√ √√  √√ √√ 

Estimate gap size -   √√   √√ √√ 

SV size 

Global chromosomal alteration   √ √√ √√ √√ 
Deletion ≥1bp ≥100bp ≥1Mb ≥100bp ≥1bp 
Insertion ≥1bp ≥100bp NA ≥100bp ≥1bp 
Inversion ≥1bp ≥70Kb ≥1Mb ≥10Kb ≥1bp 

Inter-chr TL ≥1bp ≥100Kb ≥10Kb ≥10Kb ≥1bp 

Complex SV 
Overcome un-alignable junction   √ √√ √√ √√ 

Link multiple SVs   √ √√ √√ √√ 
Reconstruct structure of complex SVs √ √   √ √√ 

√√  Robust performance.      
  √ Potentially capable of detection depending on variables such as coverage, contig length & label density. 

Better estimation of gaps in human genome  

 Interestingly, in the process of analyzing deletions detected by Bionano, we noticed that optical 

mapping can help refine genome assemblies, especially with respect to estimating the size of gap 

regions. A number of Irys-detected deletions appear in multiple samples including GM12878, and differ 

substantially when we profile SVs using different versions of the reference genomes (hg19 vs. 

GRCh38). Further investigation shows that many such “deletions” identified in the hg19 reference by 

optical mapping consist of gaps in the reference genome. We found that many gaps we re-estimated 

have been corrected in the GRCh38 build, and the corrected size in GRCh38 is very similar to our 

predictions (Table 2-S 4). For example, when we used hg19 as the reference genome, optical mapping 
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in 10 cell types (4 normal primary cells and 6 cancer cell lines) recurrently predicted a 143Kb “deletion” 

within genomic loci chr1: 3,845,268-3,995,268. This region, however, is annotated as a 150Kb gap. 

Therefore, optical mapping predicts that the real gap size in the human reference genome should be 

6.68Kb. In the GRCH38 reference genome, the size of this gap has been corrected to 6.51Kb.  

However, we noticed that there remain several such “deletions” over gap regions even in the GRCh38 

build that are not consistent with our findings with optical mapping, indicating that these gap sizes may 

still be unresolved, or that there may be heterogeneity the human population in gap sizes over these 

regions. The improved gap size estimation for GRCh38 is provided in Table 2-S 5. We compared our 

results with two recent studies that also re-estimated the genomic gaps in the GRCh38 reference[40, 

103]. While our data show consistency to their results (Table 2-S 5), we do observe differences that 

might be due to population polymorphism. For example, while the size estimation for gap in chr11: 

87,978,202-88,002,896 is 24,694 bp in hg38, we observe a range of gap estimates between 889 bp to 

1,535 bp across 9 different cell lines derived from different individuals (the estimation is 1,299 bp by 

Pendleton et al. and 705 bp from Seo et al., respectively). Therefore, the comparison results suggest not 

only the consistency between our results and previous studies in closing gaps in hg38, but also the 

variations that potentially represent the polymorphism between cell lines of individuals and populations.  

Functional consequences of structural variants in cancer genomes 

 We investigated the functional consequences of the genetic alterations identified in cancer cell 

lines.  First, we examined gene fusions due to genomic rearrangements, with a goal to both confirm 

known events and identify novel fusions in these cancer cells. We analyzed RNA-Seq data of 11 cancer 

cell lines and investigated whether we can detect fused gene transcripts that are consistent with the 
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genomic rearrangements identified in this study. We detected RNA-Seq read pairs whose two ends are 

mapped to different chromosomes, crossing the identified translocation breakpoints.  Some of these 

represent well known oncogene transcripts, such as the BCR-ABL gene fusion in K562 cells. 

Importantly, we discovered many novel fusion transcripts involving bona fide oncogenes, such as EVI1-

CFAP70 in T47D cells, whose expression from the translocated exon is over 10 folds higher than that 

from the non-translocated exon. How these novel gene fusions events contribute to the oncogenic 

potential remains to be further investigated. 

         Copy number alterations (CNA) also represent a well-defined class of genetic variation in 

cancer.  Prior studies have shown the presence of recurrently amplified and deleted genes in diverse 

cancer types [15].  Examining the CNA that we identified and by comparing with the recent findings 

from WGS data of 560 breast cancer patients [23], we observed that 8 out of the top 10 frequently 

mutated oncogenes in breast cancer patients were also amplified in T47D cancer cells, and tumor 

suppressor genes such as ATRX and CDKN1B displayed loss of copies (Figure 2-4a), suggesting that 

T47D cells reflect the CNV landscape in breast cancer and our method can accurately capture these 

variations. We further compared the RNA-Seq data in T47D cells with those from human mammary 

epithelial cells (HMEC), confirming that loss-of-heterozygosity (LOH) and homozygous deletions in 

T47D cells indeed lead to significantly reduced gene expression correlated to the number of lost copies 

(Figure 2-S 11a). We made similar observations when comparing transcriptomes in other cancer cells 

(Figure 2-S 11b). As an example, one 18Mb deletion in T47D results in LOH of over 400 genes, and 

decreased transcription of the majority of this set of genes (Figure 2-S 11c,d). We found deletions in 

exonic regions of a total of 25 COSMIC tumor-related genes, and the majority (76%) showed decreased 

transcription (Figure 2-S 11e).  
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Figure 2- 4. The impact of SVs on enhancers.  

a. Copy number changes in T47D cells of Refseq genes, sorted by copy number. Genes that 

are frequently mutated in breast-cancer are labeled if they show amplification (red dots) or 

deletion (yellow dots). The right panel of this figure displays the density plot of gene copy 

numbers. b. A ~3.4kb deletion (chr3:179,546,826-179,550,207) in T47D overlaps an 

HMEC specific enhancer. Hi-C data from HMEC indicates that there is an interaction 

between the deleted enhancer and the promoter of gene GNB4. This enhancer-promoter 

linkage is also reported in GM12878 cells by the Capture Hi-C data. According to WGS 

data, the local region is amplified and has 6 copies in T47D cells, but the enhancer is 

deleted in 5 of the 6 copies. c. Compared with HMEC, all the genes in this region in T47D 

are up-regulated potentially due to the local amplification, except for GNB4, whose 

expression is reduced by ~50%. d. Functional pathway analysis of deleted enhancers 

(n=1859) by GREAT tool (P-value from two-sided Binomial test). e. Genes with deleted 

enhancers show reduced expression levels (two-sided Wilcoxon rank-sum test). Genes with 

exon deletions or copy number loss are excluded. 534 genes are linked by Capture Hi-C 

data to at least one deleted enhancer (green), and 10,677 genes are linked to enhancers that 

show no deletions (gray). For boxplots, the box represents the interquartile range (IQR), 

and the whiskers extend to 1.5 times the IQR or to the maximum/minimum if less than 1.5x 

IQR. 

 

 

 

 These results suggest that our integrated method can accurately capture changes in gene dosage 

in cancer genomes. As we extended the CNV analysis onto eight cancer cell lines, we noticed 

widespread amplification of known oncogenes (such as MYC) and loss of cell cycle checkpoint genes 

(such as CDKN2A/B, Figure 2-S 12). In addition, we found over 100 genes that are highly amplified (≥5 

copies) or deleted in cancer cells but were not reported in COSMIC, suggesting their potential roles in 

cancer (Figure 2-S 13). 

 Interestingly, we found that deletions in cancer cell lines and normal cells differed in their 

likelihood of disrupting repetitive elements or functional elements in the genome. GM12878 cells are 

more enriched for deletions in repetitive elements when compared with cancer cell lines (70% vs 50%, 

the expected value of genome background is ~ 50%), which may be a reflection of different DNA repair 

mechanisms that are active in germline versus somatic tissue [149] (Table 2-S 6). Moreover, deletions 

of genes and enhancers are depleted in GM12878 cells relative to the genomic background (Table 2-S 
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7), as we found 246 instances of enhancer disruption in K562 cells versus 12 in GM12878 cells. This is 

not simply due to a greater loss of DNA content in cancer cells.  By performing simulations that 

randomly distribute deletions in the genome, we found that the deletions in GM12878 overlap with 

significantly fewer enhancers than expectation (12 vs 60, p<0.001). In contrast, the cancer cell lines 

show no such selection against enhancer deletions and instead the number of disrupted enhancers is 

around the values observed by random shuffling (Figure 2-S 14a).  

 To further investigate which deletions are specific to cancer genomes, we compared the deletions 

detected by both WGS and Irys with the Database of Genomic Variants (DGV), which contains known 

polymorphic SVs identified by previous studies in healthy individuals, including the three phases of the 

1000 Genomes Project. The majority (95%) of deletions identified in GM12878 cells have been 

previously identified in the DGV, representing polymorphisms in the population. The fraction of 

polymorphic deletions is lower in cancer cells at 90% (Figure 2-S 11f, Figure 2-5a), likely due to the 

presence of somatic mutations in addition to polymorphic germline variants.  In total, cancer cells suffer 

a greater loss of genetic material compared with normal cells, mainly resulting from novel deletions 

(Figure 2-5b). Further analysis showed that the previously identified polymorphic deletions differ 

substantially from the novel deletions (somatic mutations).  Specifically, polymorphic deletions are 

enriched for repetitive elements (70% vs 50% genomic background) and depleted of exons (1.5% vs 4% 

genomic background) (Figure 2-5 c-d). For 6 cell lines where we can find control cells lines with 

enhancer annotation, we found that the polymorphic deletions are also resistant to enhancer loss 

(empirical P < 0.005 in all cell lines tested, Figure 2-S 14b). In contrast, the novel deletions are not 

enriched in repeats or depleted of enhancers or exons (Figure 2-S 14c and Figure 2-5) Instead, they are 

enriched in COSMIC tumor related genes (Figure 2-S 11f)[150], suggesting that a subset of the 

deletions are potentially pathogenic.  
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Figure 2- 5.  Characterization of known polymorphic deletions and novel deletions.  

 

We stratified the deletions into two categories by comparing with DGV database: polymorphic deletions and 

novel deletions. a. Only 5% of deletions in GM12878 cells are novel variants, whereas on average 10% of 

deletions found in cancer cells are novel variants. b. In cancer genomes, the loss of DNA content due to novel 

deletions is more than ten times of those induced by polymorphic deletions. c. Polymorphic deletions show higher 

enrichment of repetitive elements (70%) than genome background (50%), whereas novel deletions in cancer cells 

are not enriched for repeats. d. In general, polymorphic deletions are resistant to exon deletions, compared with 

novel deletions and genomic background. 
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 We also compared the ability of WGS and optical mapping to detect global patterns of copy 

number variations.  Individual fragments generated by optical mapping can be used to detect changes in 

depth of coverage over given regions, similar to WGS or microarray-based approaches for CNVs 

detections (Figure 2-S 12, 2-S 13).  By analyzing chromosome-wide patterns of copy number changes, 

we detect strong concordance between the results of optical mapping and WGS (Figure 2-S 15). 

 Next, we investigated whether structural variants affecting non-coding regulatory elements can 

impact gene expression and potentially play a role in oncogenesis.  For this analysis, we focused on 

comparing the enhancer landscape in T47D breast cancer cells and HMEC human mammary epithelial 

cells. We downloaded histone modification data from both cell types from the Encyclopedia of DNA 

Elements (ENCODE) Consortium and then predicted candidate enhancers based on H3K27ac signals. 

By comparing the enhancer annotations in HMEC and the deleted regions in T47D, we identified 

potential deleted enhancers in T47D cancer cells.  We show an example in Figure 2-4b of a 3400bp 

deletion on chr3 about 100Kb downstream of the gene GNB4 (G protein subunit Beta 4) that partially 

overlap with a breast-tissue specific enhancer. This region has six copies, five of which carry this 

deletion and only one copy of the enhancer remains undisrupted. GNB4 is likely regulated by this 

enhancer, as we found strong Hi-C interactions between this enhancer and the GNB4 gene in HMEC 

cells.  Recently published capture Hi-C data[151] also indicates a strong interaction between these loci. 

While expression of genes nearby are highly upregulated comparing to that in HMEC, possibly due to 

the increase in copy number of the surrounding locus, GNB4 expression is downregulated (Figure 2-

4c). The enhancer deletion may be altering GNB4 expression in cis, as we found strong imbalanced gene 

expression between alleles. To investigate whether candidate enhancer elements deleted in T47D cells 

are broadly associated with cell growth control, specifically whether they affect any known signaling 

pathways, we performed Gene Ontology analysis with the GREAT tool. We found that these deleted 
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enhancers of T47D are located near breast cancer relevant genes, with enrichment for ontology terms 

such as genes downregulated in luminal like breast cancer, and genes involved in DNA repair (Figure 2-

4d). Furthermore, we observed that genes linked to these deleted enhancers by capture Hi-C in HMEC 

cells show a reduced level of expression in T47D breast cancer cells (Figure 2-4e). Overall, these results 

suggest that deletions in cancer genomes may frequently remove enhancers and thereby contribute to 

oncogenesis. Whether these enhancer deletions represent recurrent alterations to cancer genomes 

remains to be further investigated in patient samples and validated by additional functional experiments. 

 The impact of structural variations on 3D genome organization 

 Having high confidence SV profiles and Hi-C data in the same set of cancer cell lines, we 

explored how SVs can impact 3D genome organization in cancer genomes.  Our previous work in 

karyotypically normal cells and tissues has suggested that topologically associating domains (TADs) are 

fundamental features of 3D genome structure that are conserved in diverse cell types and species. 

Several recent reports have shown that genetic mutations can disrupt TADs and create “neo-TADs”[99, 

152] that in turn can lead to mis-regulated gene expression in developmental disorders[99, 152]. Further, 

recent reports have also indicated that alterations that affect TAD boundaries or CTCF binding sites at 

specific loci can create new chromatin structural domains leading to mis-regulation of nearby oncogenes 

through “enhancer hijacking”[91, 100, 153].  However, the extent to which SVs alter 3D genome 

structures such as TADs genome-wide in cancer cells remains unclear.   
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Figure 2- 6. Rearrangements and TAD fusions.  

 

a. Fusion TAD formation as a result of a translocation in Panc-1 cells. The left box shows the rearranged region 

on chromosome 9, while the right box shows the rearranged region on chromosome 18. The breakpoint fusion 

lies in the middle. Triangle Hi-C heat maps show intra-chromosomal interactions.  The diamond heat map 

shows the breakpoint crossing Hi-C signal, indicating the presence of a TAD fusion. b. Aggregate analysis of 

TAD fusions. Breakpoint crossing Hi-C signals were averaged and centered on bins between the nearest TAD 

boundaries (left) or shuffled TAD boundaries (right).  The average signal shows a marked enrichment within 

the regions demarcated by the nearest TAD boundary for true TADs compared to random (randomization 

performed 1000 times). c. Model for neo-TAD formation. TADs are rearranged due to breaks and fusions, 

juxtaposing regulatory sequences with non-target genes. d. Violin plots showing the distribution of allelic 

expression bias for genes within rearranged (n=1004) or non-rearranged (n=74184) TADs.  Vertical bars 

represent the median (p-value is from two-sided Wilcoxon rank-sum test). e. RNA-seq for MYCN/N-Myc 

(green) and MYC/c-Myc in neuroblastoma cell lines. Cell lines with TAD fusions at the MYC locus show high 

levels of MYC expression (marked in red), and the cell line that lacks a TAD fusion at the MYC locus lacks 

MYC expression (yellow).  f. Hi-C data from SK-N-SH cells showing a TAD fusion at the MYC locus.  g. Hi-C 

data in SK-N-AS cells showing a TAD fusion at the MYC locus 
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 Having identified structural variants in 20 cancer cell lines with Hi-C data, we systematically 

investigated the consequences of structural variation on TAD structure in cancer genomes.  We observed 

that neo-TADs are formed as the result of large-scale genomic re-arrangements in cancer cells. An 

example is shown in Figure 2-6a, where the fusion between chromosome 9 and 18 forms a neo-TAD in 

PANC1 cells.  Furthermore, we can find evidence of neo-TAD formation as the result of known, 

recurrent structural variants in many of the cancer cell lines we profiled, including rearrangements that 

appear to create neo-TADs surrounding the MYC, TERT, ETV1, ETV4, and ERBB2 genes. To assess 

whether such events may be altering gene expression in cis, we tested whether genes within rearranged 

TADs were more likely to show imbalances in gene expression between alleles.  We analyzed gene 

expression profiles of 8 cancer cell lines in which we have both WGS and RNA-seq .  Controlling for 

differences in copy number between alleles, we observed that genes within TADs containing a re-

arrangement show greater allelic bias than genes within non-rearranged TADs, suggesting that at least a 

subset of these events are likely leading to altered gene expression in cis (Figure 2-6b).   

 To address whether neo-TAD formation is the general consequence of SV rearrangements in 

cancer genomes, we performed an aggregate analysis of all breakpoint crossing Hi-C signals in each cell 

line.  We reasoned that if breakpoint crossing Hi-C interactions were largely random, they should 

mainly reflect the distance dependent decay properties of Hi-C data.  Alternatively, if breakpoint 

crossing interactions were non-random and were resulting in fused TADs, we would expect to see the 

“peak” of a TAD-like “triangle” in aggregated Hi-C interaction plots.  When we aggregate breakpoint 

crossing Hi-C signal, we see a “triangle peak” that is limited by the nearest TAD boundaries (Figure 2-

6c), indicating that, in general, the nearest TAD boundaries are being fused together into a fusion-TAD 

as a result of the rearrangement (see supplemental methods for details). This pattern was not observed 

when performing the same analysis of breakpoint crossing Hi-C interactions using randomized TAD 
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calls.  Under this randomized scenario, interaction frequencies primarily reflect distance dependent 

decay of interactions from the breakpoint (Figure 2-6c – “shuffled TAD calls”).  This suggests that, on 

average, the nearest “normal” TAD boundaries appear to be fused together on each side of the 

breakpoint creating neo-TADs.  These results indicate that structural variations in cancers can re-wire 

TAD structure to create novel domains in cancer genomes and potentially lead to altered regulatory 

environments within the domain (Figure 2-6d). 

 We explored one of these neo-TADs which occurred near the MYC gene in neuroblastoma cell 

lines in greater detail.  We obtained Hi-C data for 3 neuroblastoma cell lines as part of this study.  While 

most neuroblastoma cell lines express high levels of the MYCN/N-myc gene, a subset do not express 

MYCN, but instead express high levels of MYC/c-Myc, a pattern of largely mutually exclusive 

expression that has been described in the literature before[154].  In our study, we profiled one cell line 

with high MYCN/N-myc expression (SK-N-DZ) and two cell lines with high MYC/c-Myc expression 

(SK-N-SH and SK-N-AS) (Figure 2-6e).  Copy number segmentation from the Cancer Cell Line 

Encyclopedia indicates that both of these cells lines lack any MYC amplification, indicating that the 

expression changes are not the product of local copy number alterations[155]. Remarkably, in both of 

the two neuroblastoma cell lines that had high MYC expression (SK-N-AS and SK-N-SH), we identified 

the presence of balanced translocations in the vicinity of the MYC gene.  In examining the 3D genome 

structure near this re-arrangement, we observe the formation of neo-TADs that encompass the MYC 

gene in both cases (Figure 2-6f,g).  Notably, the rearrangement breakpoint occurs 300kb downstream 

from MYC in the SK-N-SH cells, and nearly 1Mb away from MYC in SK-N-AS.  These results suggest 

that neo-TAD formation can result in activation of oncogenes even at great linear genomic distances 

from the precise breakpoint. Determining whether any individual neo-TAD represents a re-current 

alteration in a given cancer cell type, or how neo-TADs may ultimately contribute to oncogenesis, 
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remains to be elucidated.  However, our analysis suggests that creation of neo-TADs is a common 

consequence of re-arrangements in cancer genomes.   

Discussion 

Detecting structural variations in cancer genomes remains a challenge for geneticists and cancer 

biologists.  Here, we developed an integrative approach that employs a combination of WGS, optical 

mapping, and Hi-C to detect structural variations.  We have developed tools for identifying different 

types SVs from Hi-C data on a genome-wide level for the first time.  We tested a selected subset of them 

by PCR and FISH in three cancer genomes and the results show a high success rate for our integrative 

approach.  No single method identifies all structural variants, and each approach has its own strengths 

and weaknesses.  Hi-C is sensitive for detecting inter-chromosomal translocations and intra-

chromosomal rearrangements greater than 1Mb in size.  Furthermore, the algorithm we developed can 

successfully detect rearrangements with as little as ~1X coverage of the genome. However, our 

algorithm currently has limited power in detecting alterations less than 1Mb in size.  On the other hand, 

optical mapping can readily detect both intra-chromosomal and inter-chromosomal alterations, including 

rearrangements less than 1Mb in size.  Furthermore, optical mapping can be used to detect CNVs, 

similar to what is commonly done with WGS- or microarray-based approaches.  However, compared 

with WGS, optical mapping cannot identify small deletions and insertions (< 1kb). Finally, WGS has the 

highest resolution in detecting structural variation. However, WGS is less successful in detecting SVs in 

poorly mappable regions of the genome or in resolving complex structural variants.  One interesting 

implications of our findings is that tools such as Hi-C can have a dual utility in interrogating cancer 

genomes, providing information on both genetic and cell biological alterations to cancer genomes.   
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In examining regions affected by structural variants identified in this study, we observed well-

characterized functional consequences, such as the creation of gene fusions and changes in gene dosage 

in cancer genomes.  In addition, we detected extensive deletions of distal enhancer elements.  These 

deletions are enriched for proximity to genes known to be mutated in cancer and important for pathways 

in cancer biology, including DNA repair and signal transduction.  To what extent such distal non-coding 

mutations are re-current in cancer genomes remains unclear, but this represents an important largely 

unexplored aspect of cancer genomics.  Lastly, by analyzing the 3D genome structure surrounding the 

structural variants, we observed the creation of new TADs as a result of genomic rearrangements in 

cancer genomes. We have developed a web-based tool for users to visualize neo-TADs as well as upload 

their own Hi-C data to evaluate the presence of neo-TADs (available at 3D Genome Browser).  TADs 

appear to be an invariant organizational principle of metazoan genomes, and alterations that disrupt 

TAD structure have already been shown to underlie certain rare disorders of limb development.  There is 

ample evidence that the juxtaposition of active regulatory sequences to known oncogenes can contribute 

to tumorigenesis.  These results indicate that at least part of this effect may result from the creation of 

novel structural domains in cancer genomes.  Whether all SVs generate fusion TADs, and the extent to 

which TAD fusion events are recurrent and act as driver mutations in cancer genomes will be an 

important question for future studies to address. 
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Supplementary Figures and Tables 

Table 2-S 1. List of cell/tissue types with performed experiments and analysis 
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CML K562 ●● ● ● ● ● ● ●

Kidney cancer Caki2 ● ● ● ● ● ●

Breast cancer T47D ● ● ● ● ●● ● ●

Lung caner NCI-H460 ● ● ● ● ● ●

Askin's tumor SK-N-MC ● ● ● ● ●● ●

Prostate cancer LNCaP ● ● ● ● ● ●

Lung cancer A549 ● ● ● ● ● ●

Pancreatic cancer Panc1 ● ● ● ● ●

Wilms’ tumor G401 ● ● ●

Melonoma RPMI-7951 ● ●

Neuroblastoma SK-N-DZ ● ●

Neuroblastoma SK-N-AS ●

Rhabdomyosarcoma SJCRH30 ●

Melonoma SK-MEL-5 ●

Breast cancer MCF7 ● ● ● ●●

Prostate cancer PC3 ● ●

Neuroblastoma SK-N-SH ● ● ●

CML KBM7 ●

ALL MHH-CALL-4 ●

Lymphoma RL ●

Glioblastomas AA86 ●

Glioblastomas GB176 ●

Glioblastomas GB180 ●

Glioblastomas GB182 ●

Glioblastomas GB183 ●

Glioblastomas GB238 ●

Leukemia B-ALL_2 ●

hESC H1 ●

Breast epithelial HMEC ● ●

Endothelial HUVEC ●

Lung IMR90 ●

mESC MES ●

Mesenchymal stem cell MSC ●

Neural progenitor NPC ●

Trophectoderm Troph ●

Lymphoblastoid 3078entB ●

Lymphoblastoid 3045entB ●

Lymphoblastoid 3391entB ●

Lymphoblastoid NA12878 ● ● ●

Primary kidney Kid_1 ●

● We performed the experiments and analysis

● We downloaded the raw data from public resources for analysis
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Table 2-S 2. Validated translocations and deletions in K562, CAKI2 and T47D cells 

Hi-C source Region I Region II Known/novel Validation Result 

Validating translocations detected  by Hi-C in K562 cells 

Rao et al. Dixon et al. chr13 + 107854000 108009000 chr9 + 131176000 131280000 Known* 
  

Rao et al. Dixon et al. chr13 - 19000000 47000000 chr9 - 27000000 39000000 Known 
  

Rao et al. Dixon et al. chr13 + 107800000 108000000 chr22 + 22000000 23300000 Known 
  

 
Dixon et al. chr17 - 27000000 29000000 chr9 + 0 21000000 Known 

  

Rao et al. Dixon et al. chr17 - 51000000 57000000 chr9 + 0 21000000 Known 
  

Rao et al. Dixon et al. chr17 + 19000000 23000000 chr10 - 43000000 51000000 Known 
  

Rao et al. Dixon et al. chr9 - 130731000 131000000 chr22 + 22958000 23291000 Known 
  

Rao et al. Dixon et al. chr3 + 48147000 48186000 chr10 + 86065000 86089000 Known 
  

Rao et al. Dixon et al. chr5 - 51084000 51094000 chr6 + 37789000 37856000 Known 
  

Rao et al. Dixon et al. chr22 - 22500000 22700000 chr2 + 150400000 150900000 Known 
  

Rao et al. Dixon et al. chr12 - 22621000 22633000 chr21 - 24258000 24281000 Known 
  

Rao et al. Dixon et al. chr3 - 138000000 162000000 chr18 - 26000000 27000000 Novel FISH Confirmed 

Rao et al. Dixon et al. chr3 + 138000000 150000000 chr18 + 4000000 8000000 Novel FISH Confirmed 

Rao et al. Dixon et al. chr1 - 107000000 112000000 chr20 - 30000000 35000000 Novel FISH Confirmed 

Rao et al. Dixon et al. chr1 + 54500000 54800000 chr18 + 24400000 25900000 Novel FISH Not Confirmed 

Rao et al. Dixon et al. chr1 + 106780000 106820000 chr18 - 27260000 27450000 Novel FISH Confirmed  
Dixon et al. chr1 + 115000000 120000000 chr6 - 135000000 140000000 Novel FISH Confirmed 

Rao et al. Dixon et al. chr16 - 85528000 85548000 chr6 - 16766000 16770000 Novel FISH Confirmed 

Rao et al. Dixon et al. chr18 - 27000000 27300000 chr6 - 135400000 136200000 Novel FISH Confirmed 

Validating translocations in T47D   
chr3 - 136170000 137100000 chr5 + 171830000 171430000 Known 

  

  
chr3 - 169130000 170110000 chr10 + 73240000 73280000 Known 

  

  
chr3 - 193000000 193620000 chr12 - 15100000 15580000 Known 

  

  
chr6 + 46000000 58000000 chrX + 36000000 64000000 Known 

  

  
chr7 + 86890000 87700000 chr15 - 29660000 30080000 Known 

  

  
chr8 + 36770000 38090000 chr14 - 24870000 25550000 Known 
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chr9 - 68000000 101000000 chr17 - 19000000 36000000 Known 

  

  
chr10 + 53650000 56020000 chr20 - 56170000 56580000 Known 

  

  
chr10 - 56020000 58280000 chr20 + 54080000 56170000 Known 

  

  
chr12 - 21300000 22100000 chr13 - 78800000 79300000 Known 

  

  
chr12 - 15150000 15860000 chr16 - 67060000 67360000 Known 

  

Hillmer et al. chr4 + 6590000 6800000 chr5 + 900000 1380000 Reported PCR Confirmed 

Hillmer et al. chr6 + 71240000 72130000 chr22 + 16920000 17230000 Reported PCR Confirmed 

Hillmer et al. chr9 + 15500000 17340000 chr15 - 27200000 28140000 Reported PCR Confirmed 

Hillmer et al. chr5 + 1640000 1750000 chr5 - 40600000 40870000 Reported PCR Confirmed 

Hillmer et al. chr9 + 75040000 75340000 chr9 - 103600000 104790000 Reported PCR Confirmed   
chr3 + 45740000 46390000 chr9 + 89250000 89420000 novel PCR Confirmed   
chr3 - 169130000 170110000 chr10 + 79230000 79650000 novel PCR Confirmed 

  
 

chr10 + 18080000 18280000 chr10 + 36210000 36880000 novel PCR Confirmed 

Validated translocations in Caki2   
chr12 

 
66571831 

 
chr4 

 
64330748 

 
  PCR Confirmed   

chr9 
 

85978709 
 

chr19 
 

45733773 
 

  PCR Confirmed   
chr6 

 
56750050 

 
chr8 

 
58550779 

 
  PCR Confirmed 

Validating deletions detected by optical mapping in T47D cells 

  chrX  42652746  chrX  42656304    PCR Not confirmed 

  chr2  212590110  chr2  212720073    PCR Confirmed 

  chr2  97188517  chr2  97190465    PCR Confirmed 

  chr14  104948976  chr14  104951429    PCR Confirmed 

  chr3  58586154  chr3  58586217    PCR Confirmed 

  chr4  165081464  chr4  165083902    PCR Confirmed 

  chr2  28466613  chr2  28469693    PCR Confirmed 

  chr7  6861596  chr7  6887316    PCR Confirmed 

  chr1  207523594  chr1  207546536    PCR Confirmed 

  chr12  58325913  chr12  58339245    PCR Confirmed 

  chr11  107361838  chr11  107374676    PCR Confirmed 

  chr7  97762466  chr7  97773481    PCR Confirmed 



55 

 

  chr7  70969523  chr7  70979773    PCR Confirmed 

  chr6  85998091  chr6  86007304    PCR Confirmed 

  chr1  53126296  chr1  53129986    PCR Not confirmed 

    chr13   69400712   chr13   69404714     PCR Confirmed 

  

  



 

 

Table 2-S 3. Contribution by each method and their overlapping percentage with high-confidence SVs 

 

All large SVs (inter-chromosomal TL and intra-chromosomal SVs ≥1Mb) 

SV detection methods Average 

contribution 

Average overlap with high confidence 

SVs 

Hi-C 48% 66% 

Irys 40% 43% 

WGS 64% 22% 

3 Methods 90% 23% 

Karyotype 23% 88% 

Transcript fusion 18% NA 

PET-seq 73% 12% 

 

 
 

 

Inter-chromosomal translocations 

SV detection methods Average contribution 

Average overlap with high 

confidence SVs 

Hi-C 53% 66% 

Irys 24% 28% 

WGS 56% 15% 

3 Methods 88% 18% 

Karyotype 56% 88% 

Transcript fusion 24% NA 

PET-seq 61% 7% 

 

 

 

  

Intra-chromosomal large SVs (≥1Mb) 

SV detection methods Average contribution 
Average overlap with high 

confidence SVs 

Hi-C 43% 71% 

Irys 59% 62% 

WGS 74% 42% 

3 Methods 92% 36% 

Karyotype 2% 50% 

Transcript fusion 12% NA 

PET-seq 88% 23% 
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Table 2-S 4. Optical mapping predicts the size of unresolved genome gap in hg19 

GAP location in hg19 Gap type 
hg19 size 

(Kb) 

Optical mapping 

prediction (Kb) 

hg38 size 

(Kb) 

Prediction consistent with GRCH38 

chr1 3845268 3995268 contig 150 6.68 6.51 

chr1 29878082 30028082 contig 150 3.43 3.67 

chr1 103863906 103913906 clone 50 -27.22* -27.07* 

chr1 144710724 144810724 clone 100 -101.17 -128.94 

chr1 223747846 223797846 clone 50 37.76 35.64 

chr1 235192211 235242211 clone 50 23.99 22.43 

chr1 248908210 249058210 contig 150 -33.48 -48.49 

chr10 47792476 47892476 contig 100 74.46 72.30 

chr10 128616069 128766069 contig 150 47.60 40.31 

chr10 133381404 133431404 clone 50 11.34 15.93 

chr11 69089801 69139801 clone 50 2.65 2.70 

chr11 69724695 69774695 clone 50 19.02 18.63 

chr11 96287584 96437584 contig 150 12.73 12.16 

chr12 7189876 7239876 contig 50 4.15 4.71 

chr12 109373470 109423470 contig 50 5.99 5.97 

chr12 122530623 122580623 contig 50 3.43 3.36 

chr12 132706992 132806992 contig 100 14.96 13.70 

chr13 114639948 114739948 contig 100 33.98 33.56 

chr15 29159443 29209443 contig 50 3.59 2.94 

chr16 8636921 8686921 clone 50 7.07 6.15 

chr16 88389383 88439383 contig 50 18.27 17.20 

chr18 52059136 52209136 contig 150 5.36 9.14 

chr18 72283353 72333353 clone 50 6.45 5.28 

chr18 75721820 75771820 clone 50 2.76 1.95 

chr19 7346004 7396004 contig 50 0.74 0.00 

chr19 8687198 8737198 contig 50 12.60 -0.10 

chr19 20523415 20573415 clone 50 -20.00 -22.00 

chr2 3529312 3579312 contig 50 6.73 6.18 

chr2 5018788 5118788 contig 100 7.94 7.46 

chr2 16279724 16329724 contig 50 8.37 8.85 

chr2 21153113 21178113 contig 25 1.51 1.89 

chr2 110109337 110251337 contig 142 0.85 0.88 

chr2 149690582 149790582 contig 100 1.14 1.06 

chr2 239801978 239831978 contig 30 19.72 16.95 

chr2 240784132 240809132 contig 25 8.59 7.28 

chr20 34897085 34947085 clone 50 11.02 9.52 

chr20 61091437 61141437 clone 50 29.94 27.85 

chr20 61213369 61263369 contig 50 16.36 15.86 
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chr21 42955559 43005559 contig 50 1.68 1.77 

chr22 50364777 50414777 contig 50 6.15 5.22 

chr3 66170270 66270270 contig 100 34.86 35.25 

chr4 1423146 1478646 contig 55.5 50.73 47.56 

chr5 91636128 91686128 contig 50 9.78 10.11 

chr5 138787073 138837073 contig 50 5.28 6.10 

chr5 155138727 155188727 contig 50 1.52 2.55 

chr7 232484 282484 clone 50 12.84 10.03 

chr7 50370631 50410631 contig 40 12.01 11.90 

chr7 74715724 74765724 clone 50 -164.41 -165.17 

chr7 130154523 130254523 clone 100 55.32 55.57 

chr7 139379377 139404377 contig 25 9.55 9.95 

chr7 154270634 154370634 contig 100 5.44 5.38 

chr8 142766515 142816515 clone 50 -15.38 -21.26 

chr8 145332588 145432588 contig 100 -57.90 -68.78 

chr9 133073060 133223060 contig 150 37.47 36.89 

chr9 137041193 137091193 contig 50 22.58 23.25 

chr9 139166997 139216997 contig 50 47.92 47.39 

chrX 7623882 7673882 clone 50 0.20 0.00 

chrX 10738674 10788674 clone 50 -0.22 -0.08 

chrX 76653692 76703692 contig 50 15.08 14.97 

chrX 148906424 148956424 clone 50 3.00 2.85 

chrX 149032062 149082062 contig 50 12.05 10.56 

chrX 152277099 152327099 clone 50 -45.33 -59.07 

chrY 20143885 20193885 clone 50 -1.15 -0.01 

Inconsistent regions 

chr1 205922707 206072707 contig 150 -47.82 445.77 

chr1 206332221 206482221 contig 150 -47.82 445.78 

chr11 87688378 87738378 clone 50 4.28 27.59 

chr13 86760324 86910324 contig 150 24.45 -0.10 

chr13 114325993 114425993 contig 100 1.86 51.34 

chr15 22212114 22262114 contig 50 -32.44 402.90 

chr17 34675848 34725848 contig 50 9.02 21.59 

chr17 79709049 79759049 contig 50 9.50 59.15 

chr4 8799203 8818203 contig 19 0.52 19.00 

chr4 9274642 9324642 clone 50 2.03 50.00 

chr4 31820917 31837417 contig 16.5 3.96 16.50 

chr4 59739333 59789333 contig 50 8.90 50.49 

chr4 75427379 75452279 contig 24.9 -32.77 -0.10 

chr5 17530657 17580657 clone 50 29.50 50.00 

chr6 157559467 157609467 clone 50 -18.18 -49.90 

chr6 157641300 157691300 clone 50 -18.18 -49.90 

chr6 167942073 168042073 clone 100 65.45 111.51 

chr7 100556043 100606043 clone 50 37.13 -0.12 
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chr7 143347897 143397897 clone 50 -25.73 50.00 

chr8 86576451 86726451 contig 150 137.60 50.00 

chr9 92343416 92443416 clone 100 -44.61 13.47 

chr9 92528796 92678796 clone 150 5.39 89.17 

chrX 37098256 37148256 contig 50 16.56 208.82 

chrX 49242997 49292997 contig 50 -42.53 141.86 

chrX 49974173 50024173 contig 50 24.49 71.65 

chrX 115682290 115732290 contig 50 13.89 47.19 

chrX 120013235 120063235 clone 50 -26.06 50.00 

chrX 143507324 143557324 contig 50 4.98 51.63 

chrY 8914955 8964955 contig 50 30.15 80.43 

chrY 9241322 9291322 contig 50 22.29 50.00 

 

 

 

 

 

 

 
 

 Table 2-S 5. Optical mapping predicts the size of unresolved genome gap in hg38 verified by literature 

Gaps in GRCh38 Predicated gap size from this 

study 

Pendleto

n et al. 
Seo et al. Genes 

overlap 

with gaps 

  

chrome start end size median 

range of variation 

across individuals 

assembly 

size 
Status 

added 

sequence 

chr5 155760324 155761324 1000 0 0 44 1 Span 0 . 

chrX 37099262 37285837 186575 0 0 0 1 Span 8,498 . 

chr4 32833016 32839016 6000 0 0 290 125 Span 0 . 

chr5 139452659 139453659 1000 356 314 356 264 Span 263 ECSCR 

chr12 7083650 7084650 1000 250 211 289 563 Span 231 C1R 

chr13 113673020 113723020 50000 342 342 342 658 Span 1,206 GRK1 

chr4 8797477 8816477 19000 334 177 803 745 Span 750 . 

chr1 223558935 223608935 50000 1285 439 1789 837 Span 832 CAPN8 

chr11 87978202 88002896 24694 1355 889 1538 1299 Span 705 . 

chr7 237846 240242 2396 1864 1864 1864 2398 Span 1,992 FAM20C 

chr2 16145119 16146119 1000 899 899 899 2541 Span 2,563 . 

chr6 95020790 95070790 50000 3588 3423 5719 3347 Span 1,730 . 

chr11 70955696 71055696 100000 4014 3522 4176 3642 Span 3,647 SHANK2 

chr4 1435794 1441552 10606 *3386 *1965 *6926 NA Span 197 . 

chr4 1429358 1434206 10606 *3386 *1965 *6926 NA Span 21 . 

chr1 16799163 16849163 50000 0 0 0 NA Span 0 CROCC 

chr10 133690466 133740466 50000 250878 0 40471 NA Span 84,551 . 

chr13 86202979 86252979 50000 3348 3267 3429 NA Span 16,222 . 
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chr17 81742542 81792542 50000 338 293 383 NA Span 359 . 

chr21 43212462 43262462 50000 6244 4841 11841 NA Span 5,790 . 

chr4 31819295 31832569 13274 192 0 794 NA Span 0 . 

chr4 58878793 58921381 42588 1092 681 1515 NA Span 630 . 

chr6 167591393 167641393 50000 2110 1738 5242 NA Span 686 . 

chrX 50228964 50278964 50000 3866 3708 4114 NA Span 3,646 CCNB3 

chrX 114281198 114331198 50000 5857 5627 6162 NA Span 5,703 . 

chrX 116557779 116595566 37787 5326 5206 5709 NA Span 4,456 . 

chrX 144425606 144475606 50000 3775 3472 3956 NA Span 3,379 . 

chrY 9057608 9107608 50000 0 0 0 NA Span 4,965 . 

chr14 19511713 19611713 100000 0 0 0 NA right 168 . 

chr16 33392411 33442411 50000 0 0 36390 NA right 18267 . 

chr2 97439618 97489618 50000 1143 1017 1270 NA right 3450 . 

chr22 18659564 18709564 50000 0 0 0 NA right 4860 . 

chr7 143650804 143700804 50000 0 0 0 NA right 483 TCAF2 

chrX 115738949 115838949 100000 82287 80843 83730 NA right 3571 . 

chr22 18239129 18339129 100000 0 0 0 NA left 749 . 

chrX 120879381 120929381 50000 0 0 0 NA left 1557 CT47A8 

chr2 89685992 89753992 68000 57497 53450 59960 NA Extension 7,215 . 

chr18 46969912 47019912 50000 32390 8358 49997 
NA 

Both 2850 

TCEB3CL, 

KATNAL2 

chr22 18433513 18483513 50000 0 0 0 NA Both 2338 . 

chrY 9403713 9453713 50000 1945 1945 1945 NA Both 4105 . 

chr12 37185252 37235252 50000 1768 1768 1768 NA . . . 

chr17 26735204 26735774 570 13 9 17 NA . . . 

chr20 29412507 29413577 1070 0 0 0 NA . . . 

chr6 61357029 61363066 6037 0 0 0 NA . . . 

chrX 49348394 49528394 180000 91174 91174 91174 NA . . . 

       
 

   

* The summed size of two gaps next to each other, when they are too close and the reduced size of gap cannot be 

resolved for each single one  
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Table 2-S 6. Summary of genes, repetitive elements and insulators overlapping with high-confidence deletions 

 

Deletions of genes and repetitive elements 

Cell lines 
No. of confident 

deletion 

No. of genes disrupted by 

confident deletions 

Percentage of repetitive 

elements (basepair 

enrichment) 

CAKI2 404 586 54.38% 

T47D 454 1097 50.98% 

K562 435 398 48.99% 

A549 237 624 52.16% 

NCI-H460 405 414 52.58% 

PANC-1 320 558 53.26% 

LNCAP 281 658 51.07% 

SK-N-MC 487 965 51.34% 

NA12878 535 273 69.02% 

 

 

Deletions of insulators 

Cell lines 
Tissue for enhancer 

annotation 

No. of all 

confident 

deletion 

No. of deleted insulator annotated 

by CTCF binding sites (Tissue for 

annotation) 

T47D HMEC 454 1019 (HMEC) 

K562 
Primary blood 

mononuclear cells 
435 228 (NA12878) 

A549 NHLF 237 2125 (NHLF) 

NCI-H460 NHLF 405 663 (NHLF) 

PANC-1 Primary pancreatic tissue 320 457 (Primary pancreatic tissue) 

  



 

 

Table 2-S 7. Frequency of enhancer deletions versus simulated expectation in cancer cells and normal cells 

Cancer cell lines 

Number 

of 

deletions 

Total 

deleted 

base pairs 

Control tissue 

Number of 

enhancers in 

control tissue 

Number of 

enhancers deleted 

in cancer cells VS 

expectation (P 

value) 

Number of 

deleted 

enhancers per 

100 Kb deletion 

Number of deleted 

enhancers per 100 Kb 

deletion, normalized to 

100,000 total enhancers 

T47D 

454 91,072,914 

HMEC 

66,066 

1859 : 1928 

2.04 3.09 
(breast cancer) 

(human mammary 

epithelium cells) 
(p = 0.440) 

K562 
435 29,756,292 

Primary blood 

mononuclear cells 
51,862 

246 : 484 
0.83 1.6 

(chronic leukemia) (p = 0.099) 

A549 
237 48,725,609 

NHLF 
91,440 

1643 : 1398 
3.37 3.68 

(lung carcinoma) (lung fibroblast) (p = 0.696) 

NCI-H460 
405 18,082,136 

NHLF 
91,440 

467 : 556 
2.58 2.82 

(lung carcinoma) (lung fibroblast) (p = 0.373) 

PANC-1 
320 49,875,753 

Primary pancreatic 

tissue 
78,896 

931 : 1237 
1.86 2.35 

(pancreatic cancer) (p = 0.213) 

NA12878 
535 3,359,296 

Primary blood 

mononuclear cells 
51862 

0.541666667 
0.36 0.69 

(lympho-blastoid) (p < 0.001)* 

        

        
* From left to right, the second and third columns show the total number of deletion incidence and the sum of deleted DNA content (basepair). 

The fourth column shows the control tissue/cell lines that are in close developmental relationship to the tested cell lines, and we use the H3K27ac 

marks in the control cell line to annotate the enhancers for that tissue type. The fifth column indicates the total number of annotated enhancers 

from each control tissue. The sixth column shows the number of deleted enhancer in each cell line, and we also include the result of simulation to 

approximate how many deletions of enhancers are likely to occur if the deletions are stochastically distributed in the genome. In the seventh and 

eighth columns we calculate the number of enhancer deletion per 100Kb deletion, and that value normalized to the total number of enhancers 

from that tissue type. 



 

 

 

 
Figure 2-S 1. Pipeline of structural variants detection and filtration by WGS. 
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Figure 2-S 2. Pipeline of structural variants detection and filtration by optical mapping. 
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Figure 2-S 3. Hi-C identifies inversions, deletions and tandem duplications.  

a. Example of an inversion identified by Hi-C.  The left hand cartoon shows the example of the genetic structure 

of an inversion, juxtaposing regions A and C as well as B and D.  The cartoon in the middle depicts the expected 

alteration to chromatin interaction frequencies by such an event, showing increased interaction frequencies 

between regions A and C or between B and D as a result of the altered linear proximity of these regions (a 

“butterfly pattern”).  The right-hand panel shows an example of an inversion identified in SK-N-MC cells by Hi-

C, optical mapping, and WGS. b. Example of a deletion and its effects on Hi-C data.  The deleted region (left 

panel), removes the B-to-C region in the diagram, and results in the juxtaposition of the A and D regions, which 

would result in an increase in the interactions between regions flanking the deleted region (middle panel).  The 

right panel shows a deletion in K562 identified by Hi-C, optical mapping, and WGS. c-e. Examples of tandem 

duplications in Hi-C data, with different orientations of the duplicated region (left-hand diagram), and their 

expected changes in interaction frequencies (middle panel). The right-hand examples in panel c shows tandem 

duplications identified in A549 cells by Hi-C, optical mapping, and WGS. The right-hand panel in d shows a 

tandem duplication in Panc1 cells identified by Hi-C and WGS. Panel e shows a tandem duplication identified in 

T47D cells by Hi-C and WGS. 
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Figure 2-S 4. Cancer genomes possess extensive CNVs and translocations.   

a-f. Genome profiles of 6 cancer cell lines. All SVs are detected by at least two out the three methods 

(Hi-C, optical mapping and WGS). Tracks from outer to inner circles are chromosome coordinates, 

CNVs, deletions (blue) and duplications (red), and positional rearrangements including inversions, 

unclassified rearrangements and inter-chromosomal translocations. Outward red bars in CNV track 

indicate gain of copies (>2), and inward blue loss of copies (<2).  CNVs are profiled based on WGS 

data binned at 50-kb resolution. g-kl. Large intra-chromosomal rearrangements and inter-chromosomal 

translocations detected by Hi-C in 6 cancer cell lines. 
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Figure 2-S 5. Sensitivity and internal reproducibility of rearrangements identified by Hi-C.  

a. Hi-C data from human chromosome 21 Tc1 cells.  Dotted lines indicate regions shown in panels e 

and f. b. Sensitivity of Hi-C to detect gold standard SV calls at different sequencing depths.  SVs were 

considered as matched if within 10kb with identical strandedness (purple line), within 10kb (pink), 

within 50kb (green), and within 50kb or internal to the rearrangement region (light blue).   

c, d. Internal consistency of sub-sampled calls at a resolution of 100kb (c) and 10kb (d).  The number 

of reads sub-sampled reads is shown on the axes. e. Example of an SV where the breakpoint site (*) 

matches but the strandedness does not.  Hi-C strandedness is “+/-”, while gold standard is “-/-“ (red 

arrows).f. Example of a region where Hi-C merged multiple rearrangements together.   

g. Example of an SV with strand discrepancy between Hi-C and WGS in Panc-1 cells (breakpoint 

marked with an asterisk).  Hi-C indicates strandedness as +/+ (red arrows), while WGS indicates -/+ 

(black arrows). h. Diagram of the breakpoint shown in panel g.  WGS identifies a small inversion (8kb) 

on chromosome 11 near the translocation breakpoint, such that the breakpoint lies within the inverted 

region.  As a result, the global structure of the translocation is “+/+” (consistent with Hi-C), while the 

exact fusion is “-/+”. i. Sensitivity to detect SVs using K562 (tumor) and GM12878 (normal) Hi-C data 

mixed at various fractions.  j. Histogram of SV sizes detected by Hi-C. 
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Figure 2-S 6. Comparison and integration of inter-chromosomal translocations and large intra-chromosomal SVs 

(≥1Mb).  

 
We compared the SV calls by Hi-C, optical mapping and WGS, and we also included SV calls from additional methods, 

including karyotyping, fusion transcripts, and paired-end tag sequencing (PET-seq) when available from the same cell line. 

For the comparison, we first converted the strand orientation for SVs detected from different methods to a unified system, in 

which “+” indicates the breakpoint locates at the 3’ end of the joined arm, and “-” indicates the breakpoint at the 5’ end of the 

joined arm. For WGS data, this dictates that SV originally classified as deletions are given the strand orientation of “+-, 

inversions as “++ and - -“, duplications as “-+” and unclassified intra-chromosomal rearrangement as “++” or “- -“. Optical 

mapping originally reports deletions, which are assigned a strand orientation of “+-“, inversions as “++” or “- -“, and also 

intra-chromosomal rearrangements >5Mb as “unclassified intra-chromosomal rearrangements” for which the software reports 

the strand orientation. The same SV from distinct methods is considered a match when they have the same orientation and 

loci for both ends of breakpoint. The confidence level for each SV is represented by the times that the SV is independently 

reported by different methods. Further, the breakpoint/boundary of each SV is sharpened by choosing loci determined by the 

highest-resolution method. Finally, unclassified intra-chromosomal variants from WGS or optical mapping can be re-

classified if resolved by an alternative method. 
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Figure 2-S 7. Deletions predicted by Irys overlap with multiple smaller WGS predicted deletions.  

a. Optical mapping detects a 6,921 bp deletion within chr4: 12,140,782-12,169,591 in Caki2 cells. In the same region, there 

are two deletions reported by WGS (Del1: 12152,224-12,155,550, Del2: 12,157,718-12,161,255). The sum of their sizes is 

6,863 bp, which is similar to that of the Irys predicted deletion. b. Similar as in a, optical mapping detected a shared 

polymorphic deletion of 7,713bp within chr17:12,432,762-12,457,176 in K562, GM12878 and PANC-1 cells. Again, this 

deletion can be supported by two smaller deletions detected by WGS (Del1: 12,442,344-12,443,887, Del2:12,449,829-

12,455,936), whose summed size is 7,650bp. c. An Irys-detected 4,389bp deletion within chr7:1113898-1151045 in Caki2 

cells overlaps with three WGS-detected deletions (Del1:1,115,577-1,116,112, Del2:1,127,730-1,129,400, Del3:1,145,442-

1,148,018), whose summed size is 4,781 bp. d. Deletions detected by Irys have overall lower mappability compared to 

deletions detected by WGS (by two sided Wilcoxon rank-sum test). For WGS deletions, we computed the average of 

mappability scores for the 500bp regions upstream and downstream of the deletions (immediately outside the two 

breakpoints, n=26,255). For Irys-detected deletions, we computed the average mappability score between the two nicking 

enzymes (labels). We also require the size of deletions to count for at least 80% of the genomic distance between the two 

labels (n=103). For boxplots, the box represents the interquartile range (IQR), and the whiskers extend to 1.5 times the IQR 

or to the maximum/minimum if less than 1.5x IQR.  
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c. NCI-H460 

 

d. SK-N-MC 

 
e. GM12878 

 
 

Figure 2-S 8. Overlap of large SVs detected by Hi-C, optical mapping, and WGS.  

 

Number of inter-chromosomal translocations (left panel) and large intra-chromosomal rearrangements 

(≥1Mb, right panel) detected by optical mapping, Hi-C, and WGS in T47D (a), K562 (b), NCI-H460 

(c), SK-N-MC (d), and GM12878 (e).  
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Figure 2-S 9. Hi-C and optical mapping detect translocations with unalignable junctions.  

 

a. An example of a simple translocation detected by WGS, Hi-C, and optical mapping. The predicted breakpoint 

is located between the two labels (nicking enzymes) and there is no unalignable region between them.  

b. Two examples of complex translocations with unalignable junctions detected by Hi-C and Irys but missed by 

WGS. In both scenarios, the large DNA fragments (> 40kb) between the two translocated arms were not mapped 

to human reference genome.  
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Figure 2-S 10. Examples of using Hi-C and optical mapping to reconstruct the overall structure of complex 

translocations.  

 

Similar to Figure 2-3d, Arrow (->) indicates directly jointed translocation and asterisk (*) marks the linked 

adjacent SV.  a. Schematic of the local chromosome structure in T47D cells, which consist of 3 translocated 

regions: A (chr10:73.5-73.5M), B (chr10:80.4M-81.1M), and C (103-103.1M).  

b. Another example of locally resolved SV in LNCaP cell line. A ~8mb region on chr 7 (A) is inversely inserted 

between regions B and C on chr14.   
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Figure 2-S 11. Impact of exon deletion and copy loss on gene expression. 

 

 a. Compared with HMEC cells, expressed genes (FPKM>1 in HMEC cells) with homozygous deletions (n=10) 

and LOH (n=325) in T47D cells show reduced expression compared to copy-neutral genes (n=5113, P = 0.009 

and 0.003 respectively, two-sided Wilcoxon rank sum test), and compared to gain of copy genes (n=6413, 
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p=4×10
-79

, two sided Wilcoxon rank sum test). For all boxplots in the Figure the box represents the interquartile 

range (IQR), and the whiskers extend to 1.5 times the IQR or to the maximum/minimum if less than 1.5x IQR. b. 

Expressed genes (FPKM>1 in primary kidney epithelium cells) with homozygous deletions (n=5) or LOH (n=28) 

in Caki2 show reduced expression relative to non-copy number reduced genes (n=13859). c. A 28Mb deletion 

(chr9:75,335,996-103,526,867) in T47D cells causing LOH of over 400 genes. d. Deleted genes in T47D show 

reduced transcription. e. 25 COSMIC tumor-related genes have deletions overlapping with exons and the majority 

show reduced transcription. f. Cancer-specific novel deletions are enriched in COSMIC cancer-related genes. 

High-confidence deletions are classified as either known polymorphisms (from DGV database) or novel variants. 

In karyotypically normal cells (GM12878), 95% of deletions are polymorphic and 5% are novel, while in cancer 

genomes, over 10% of the deletions are novel. Novel deletions in cancer genomes are enriched for tumor related 

genes annotated by COSMIC database (red bars in the heat map). 
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Figure 2-S 12. Copy number alterations of COSMIC tumor-related genes, which are computed based on its 

surrounding 50 kb regions by optical mapping.  

 a. COSMIC tumor-related genes with extensive gain of copies in cancer cell lines. b. COSMIC tumor-related 

genes with significant loss of copies in cancer cell lines. 
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Figure 2-S 13. List of non-COSMIC tumor-related genes that have significant copy number changes.  

Copy number is computed based on the surrounding 50Kb regions by optical mapping. a. 58 Genes with most 

significant amplifications. b. 37 genes with most significant loss of copies.  
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Figure 2-S 14. Comparison of the frequency of enhancer disruptions versus expectation.  

 

a. Overall, we found that deletions in normal cell types (GM12878) are less likely to delete enhancer that would 

be expected at random, while the enrichment level of deletions in enhancers in cancer cells are close to the values 

expected at random. For this analysis, we matched each cancer cell line with a control normal cell type that is 

developmentally from the same/similar tissue type: T47D vs. HMEC, K562 vs. mononuclear cells, PANC-1 vs. 

primary pancreatic tissues, A549 and NCI-H460 vs. NHLF cells. We used the H3K27ac peaks in the normal 
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cell/tissue type as enhancer set. Then, we randomly shuffled the deletions in the cancer genomes 1,000 times and 

overlapped them with the enhancer set to compute the expected value (number of deletions: A549=237, 

K562=435, NCI-H460=405, PANC-1=320, T47D=454, NA12878=535). The curve shows the distribution of 

simulated results and the vertical line shows the observed value. The empirical P value is then calculated based on 

how many times the simulated number is smaller than the observed value (P<0.001 means no such incidence was 

observed in the 1000 simulations). b,c. We stratified the deletions into two categories by comparing them with 

DGV database: polymorphic deletions (A549=223, K562=392, NCI-H460=372, PANC-1=289, T47D=411, 

NA12878=513) and novel deletions (A549=14, K562=43, NCI-dH460=33, PANC-1=31, T47D=43, 

NA12878=22). We found that polymorphic deletions are less likely to delete enhancer, while novel deletions are 

reflect the genome wide distribution of enhancers.  

 

 

 
Figure 2-S 15. Genome-wide CNVs predicted by optical mapping and WGS are consistent.  
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Materials and Methods 

Materials and Experiments  

Cell culture 

 K562 cells (ATCC CCL-243) were cultured in Iscove’s Modified Dulbecco’s Medium 

supplemented with 10% FBS and antibiotics.  T47D cells (ATCC HTB-133), NCI-H460 cells (ATCC 

HTB-177), A549 cells (ATCC CCL-185), LNCaP (ATCC CRL-1740), and GM12878 cells (Coriell) 

were cultured in RPMI-1640 supplemented with 10% FBS and antibiotics, or 15% FBS and antibiotics 

(GM12878). Caki2 cells (ATCC HTB-47), G-401 cells (ATCC CRL-1441) were cultured in McCoy’s 

5a Medium Modified supplemented with 10% FBS and antibiotics. PANC-1 cells (ATCC CRL-1469) 

were cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% FBS and antibiotics. 

SK-N-MC (ATCC HTB-10), RPMI-7951 (ATCC HTB-66) cells were cultured in Eagle’s Minimum 

Essential Medium supplemented with 10% FBS and antibiotics.  SK-N-AS cells (ATCC CRL-2137) 

were cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% FBS, 0.1mM Non-

Essential Amino Acids (Gibco) and antibiotics  All cell lines cultured as part of ENCODE data 

generation (A549, Caki2, G401, LNCaP, NCI-H460, Panc1, RPMI-7951, SJCRH30, SK-MEL-5, SK-N-

DZ, SK-N-MC,T47D) were cultured using standardized protocols, the details of which can be  found 

through the ENCODE consortium website (https://www.encodeproject.org/). 

Optical mapping experiments  

10 million cells of T47D, Caki2, K562, SK-N-MC, A549, NCI-H460, PANC-1, and LNCaP 

were pelleted and then washed three times with PBS. Cells equivalent to 600ng of DNA were embedded 

in 2% Agarose (Bio-rad), solidified at 4℃ for 45 minutes. Cells within plugs are lysed in 2ml cell lysis 

https://www.encodeproject.org/
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buffer (BioNano Genomics) containing 167ul proteinase K (Qiagen) for 48 hours, and washed twice 

with Tris-EDTA, pH 8 (TE) for 15 minutes per wash. DNA plugs were purified with 2ml 5% RNAase 

(Qiagen) for two hours, washed in TE for 15 minutes × 6 times, melted and equilibrated on 43℃ for 45 

minutes with 2ul of GELase (Epicentre). DNA was transferred onto a membrane floating in TE and 

concentrated by dialysis for 135 minutes. DNA was then equilibrated at room temperature overnight. 

900ng DNA was digested by 30U nicking enzyme BspQ1 (New England Biolabs) in 1× buffer 3 

(BioNano Genomic), 37 ℃ for 4 hours, and labeled with 1× labeling mix (BioNano Genomics) and 15U 

Taq polymerase (New England Biolabs) in 1× labeling buffer (BioNano Genomics) at 72℃ for 60 

minutes. Nick-labeled DNA was repaired in 1X repair mix (BioNano Genomics), 1× Thermo 

polymerase buffer (NEB), 50uM NAD+ (New England Biolabs), and 3ul 120U Taq DNA ligase (New 

England Biolabs) at 37℃ for 30 minutes. DNA staining was finally performed with the final solution 

containing 1× flow buffer, 1× DTT (BioNano Genomics), and 3ul DNA stain (BioNano Genomics), in 

room temperature overnight. Optical mapping data collection: Each sample underwent in average 7 

rounds of data collection on BioNano Irys platform to reach 100X reference coverage. For each round, 

160ng prepared DNA was loaded to a BioNano Irys chip that contains two flow-cells, and each r. Hi-C 

experiments and sequence read alignment 

Whole genome sequencing  

1ug DNA was respectively collected and purified from each sequenced samples using DNeasy 

Blood & Tissue kit (Qiagen), including T47D, Caki2, K562, NCI-H460, SK-N-MC, and PANC-1. The 

DNA library was further prepared according to the Illumina TruSeq DNA PCR-free library preparation 

guide. DNA was fragmented by covaris system into 300-400bp dsDNA with 3’ or 5’ overhangs, 

repaired to blunt end and selected by size. DNA was then adenylated at the 3’ end, indexed by adapters 
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ligation, and validated by quality control. 150bp Paired-end sequencing was performed to reach in 

average 30X of genome coverage on platform HiSeq XTen. 

Hi-C 

Hi-C in K562 and SK-N-AS cells was performed using the in situ Hi-C protocol [78] from 5 

million cells using the MboI enzyme.  Hi-C experiments in all ENCODE cells lines was performed 

using the original Hi-C protocol using the HindIII enzyme [79].  Hi-C experiments were performed as 

biological replicates to ensure experimental reproducibility.  Hi-C libraries were sequenced using 

Illumina HiSeq 2000 and HiSeq 2500 sequencing machines and processed to FASTQ files using 

standard processing pipelines.  Read pairs were aligned independently using BWA-MEM to a custom 

GRCh38 genome assembly.  The base for this assembly is available through the 1000 genomes 

consortium ound contains 30 cycles of data collection. 

Breakpoint PCR  

PCR across predicted breakpoints was performed using the Qiagen Long-Range PCR kit.  PCR 

products amplified from K562 template were cloned into TOPO-XL cloning vectors and sequenced 

using conventional Sanger sequencing.  In the event that the breakpoint did not fall within the Sanger 

sequenced regions, primers were re-designed and the process was repeated. Primers are as below: 

Cell SV type Name Sequence 

K562 Translocation K_chr9_22_F AAAGAGCCTTTTGTTGGCTATGTTGTT 

K562 Translocation K_chr9_22_R CAGAAGGAAGAGCTATGCTTGTTAGGG 

K562 Translocation K_chr3_10_F CTGCCATAAAGAGTTCACAAACACACC 

K562 Translocation K_chr3_10_R CTGAGACCTGGAAAACAGAGCAAGAC 

K562 Translocation K_chr5_6_F AGCAATTTTAGAGGCACTTCTCCTTGT 

K562 Translocation K_chr5_6_R AGGCATTTGGGATCTTGCTGGATTATG 

K562 Translocation K_chr9_13_F TTGAGATGTCTGTTTCATTTCCCGACT 

K562 Translocation K_chr9_13_R GAACCACTGCTCCTGGACTTCATCTT 

T47D Translocation T_[chr6_chr22]_F CACATAACCAAGGGAGAGTT 

T47D Translocation T_[chr6_chr22]_R GTGAGGTGAATTCAAATGTT 
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T47D Translocation T_chr4]_chr5]_F TTGCACACCGGCTCCATGAG 

T47D Translocation T_chr4]_chr5]_R GATCTCTACTTAATCTGCAT 

T47D Translocation T_9]_[15_F TAAAAGATAAAGGCATCTGT 

T47D Translocation T_9]_[15_R ACCAACCAAAAAAAGCCCAG 

T47D Translocation T_5]_[5_F CTTCCCGTCTAAGCAGACCT 

T47D Translocation T_5]_[5_R CTTTCATCATGTTAGTCATG 

T47D Translocation T_9]_[9_F GGTTTGGGCATTCTATTTTC 

T47D Translocation T_9]_[9_R GCCTTCAGAAAGTTCTCAGT 

T47D Translocation T_chr10]_[chr10_F ATATAAATGCGATGCTTTTTCCT 

T47D Translocation T_chr10]_[chr10_R GAGTTGTTTTGAGTTCCTTGGAG 

T47D Translocation T_chr10]_[chr3_F GCAAAGTTCTTCTTAAGAATGT 

T47D Translocation T_chr10]_[chr3_R ACAGATTAATTGACTCCCTTC 

T47D Translocation T_chr3]_[chr9_F GTGCTAGGATTACAGGAATGAGC 

T47D Translocation T_chr3]_[chr9_R GGAAACCCTTGTACACTATTGGT 

Caki2 Translocation C_chr12]_[chr4_F TTCCCTTTAAAAGCACAATGCCC 

Caki2 Translocation C_chr12]_[chr4_R ATTTCCTATAATTGGGTTTTCCT 

Caki2 Translocation C_chr9]_[chr19_F AGTCAGTCTTGTACCTTGGGATG 

Caki2 Translocation C_chr9]_[chr19_R AGAAAGCTTCCAGTCACAAAACT 

Caki2 Translocation C_ [chr6_[chr8_F GGTATGGAGATGATCAACCCAAG 

Caki2 Translocation C_ [chr6_[chr8_R TTGACAAAAGAATAAACAAATAGAT 

T47D Deletion T_chr2_212590110_F GTGGGATAAACAAGTGACTAACC 

T47D Deletion T_chr2_212720073_R ACCACGAAGCCACCAGAAGGAAG 

T47D Deletion T_chr2_97188517_F AATTAACTCCTAAAATGGTAATT 

T47D Deletion T_chr2_97190465_R ATCAATGTGGATATGCCGAGTGA 

T47D Deletion T_chr14_104948976_F GCATCTGCAGCTTGGGCAGGTGC 

T47D Deletion T_chr14_104951429_R AAAGTGGACCTCAAGGGCCCCCA 

T47D Deletion T_chr3_58586154_F TTTCCTGAATAGAAAAGAAACAC 

T47D Deletion T_chr3_58586217_R CAATCCTCACGTCATTCTTTTTA 

T47D Deletion T_chr4_165081464_F CCACCTAGGAACCTCCCACTCTT 

T47D Deletion T_chr4_165083902_R GAAAAAAACATGACTGGGCGCGG 

T47D Deletion T_chrX_42652746_F CCACTGCAAAAACATGCCAA 

T47D Deletion T_chrX_42656304_R AGTTTTCAAAGGGAATGCTT 

T47D Deletion T_chr2_28466613_F AATTATAAAAGTATCATGGG 

T47D Deletion T_chr2_28469693_R CCAGGCAAATCAGAGGTGTC 

T47D Deletion T_chr7_6861596_F CTTTACTGGTGTTGGACTCG 

T47D Deletion T_chr7_6887316_R ATTAAAGCAGTTGGATTTTT 

T47D Deletion T_chr1_207523594_F AAAAGCAATAGGACAAAGGC 

T47D Deletion T_chr1_207546536_R GCTCATCTCCTTTCAAGTCT 

T47D Deletion T_chr12_58325913_F TGAGTTCCCTTAGTATTTAT 

T47D Deletion T_chr12_58339245_R ATAGGTGGGGATTATGGGAG 

T47D Deletion T_chr11_107361838_F GAAGCCTCAGGAGCTGATGA 

T47D Deletion T_chr11_107374676_R GTCACCAATCTTGTCTTCCT 

T47D Deletion T_chr7_97762466_F ACTGGATCCCTTCCTTACAG 

T47D Deletion T_chr7_97773481_R GGCAAGCTGCTGAATTGCCT 

T47D Deletion T_chr7_70969523_F TGAGCCAATTAAACCTCTAT 

T47D Deletion T_chr7_70979773_R GTATTCATGCTTCAAAGAAG 

T47D Deletion T_chr6_85998091_F TGCAGTGTTTGGTTTTCTAT 

T47D Deletion T_chr6_86007304_R AAAAAGTGGGCAAAGGATAT 
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T47D Deletion T_chr1_53126296_F GGACTACAGGTGCCCACCAT 

T47D Deletion T_chr1_53129986_R CCAGTGGTGGCTTCATCTGT 

T47D Deletion T_chr13_69400712_F CTACAGAAAGACTGAATAGC 

T47D Deletion T_chr13_69404714_R ATTATATTTGGGGAATCTAC 

Informatics analysis 

Detection of structural variants based on optical mapping 

de novo assembly and SV detections 

Cell line or sample-specific genomic maps are generated through de novo assembly of DNA 

optical reads using BioNano Refaligner 6119 and pipeline 6498. We require that DNA reads be no 

shorter than 150Kb with at least 9 labels per molecule, and the signal to noise ratio no less than 2.75, 

while the maximum backbone intensity is 0.6. The assembly pipeline was applied with the following 

parameters: iterations: 5; initial assembly P value threshold: 1e-11; extension and refinement P value 

threshold: 1e-11. De novo assembly noise are specifically: False positive density/100Kb:1.0; False 

negative rate:0.1; SiteSD:0.15; ScalingSD:0; RelativeSD: 0.03; ResolutionSD: 0.25.   

SV detection is performed after the completion of de novo assembly by comparing assembled 

contigs to the GRCh38 reference genome GRCh38 using the built-in module runSV. All centromere 

regions are skipped during SV identification. Deletions, insertions and inversions are detected with the 

default settings using a p-value threshold of 1e-12. In the default output, any intra-chromosomal SVs 

larger than 5Mb are defined as “unclassified” intra-chromosomal rearrangements.  Unclassified intra-

chromosomal rearrangements and inter-chromosomal translocations are detected using a less stringent 

P-value threshold of 1e-8.  

Filtration of detected SVs 
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Duplicates of SVs can be generated during SV detection from different contigs mapping to the 

same region, and such duplicate SV calls are merged into a single SV call. For deletions and insertions, 

we further remove small indels with a size smaller than 50bp. Many of the deletions we detect overlap 

with genomic gaps.  This is most likely the result of overestimation of gap sizes.  In this sense, these are 

not true deletions but instead assembly errors (or regions with polymorphic gap sizes). We classify 

deletions as gap errors if the deletion recurrently appears in different cell lines and at least 30% of the 

deletion overlaps with gaps, and at least 80% of the gap overlaps with the deletion. We remove these 

“gap errors” from the list of deletions and use them for gap size re-estimation analysis.  

We also developed strategies to filter SVs in close proximity to the centromere.  In peri-

centromeric regions, we noticed that contigs can have ambiguous alignments to multiple regions due to 

redundant labeling patterns, which result in the appearance of deletions that cross the centromere. We 

therefore remove recurrent large deletions (80% reciprocal overlap, >1Mb) crossing centromeres.  We 

further stratify deletions larger than 100kb into two categories, one where sequences within the deleted 

region show reduced mappability and one where the sequences are mappable. We then filter deletions 

over mappable regions that are not supported by a loss of coverage in WGS data. Deletions that are 

supported by valley of WGS coverage are annotated as “High confidence”.  

Defining inversions by Irys 

 A simple inversion involves two breakpoints and each breakpoint is represented by a pair of 

loci. Figure A below shows an example: the left breakpoint of this inversion occurs between nicking 

sites a-1 and a, and the right breakpoint occurs between nicking sites b and b+1. The orange sequence in 

the middle is inverted and forms two breakpoint junctions: the left junction between (a-1 and b) and the 

right junction between (a and b+1). We use the distance between sites a and b to approximate the size of 

this inversion (distance=b-a). To compare with inversions detected by other methods such as WGS and 
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Hi-C, we used the junction of breakpoints (a-1, b) and (a, b+1). Such inversions with both junction of 

breakpoints resolved and four loci available are called “paired inversions”.  

 

 

 

Due to technical limitations, Irys may also detect an incomplete inversion in cancer genomes. As 

shown below, at the left end, Irys detects the junction of breakpoints (a-1, b) in the cancer genome, but at 

the other end, its contig stops at loci c and cannot reveal the real junction of other breakpoint. Such 

inversions with only one junction of breakpoint resolved are named “partial inversions” by Bionano Iry. 

In this scenario, we use the distance between loci b and c (b-c) to calculate the minimal size of this 

inversion. To compare with WGS and Hi-C, we only use the resolved breakpoint junction (a-1, b). 

Therefore, the two columns of positions reported Supplementary Table 8 only represent the breakpoint 

junctions and cannot be used to estimate the size of inversion.  
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According to a recent study from Pendleton et al. [103], some inversions detected against hg19 

were no longer detected against hg38, and they turned out to be inverted assembly of contigs in 

reference genome hg19, which were corrected in hg38. Those inversions have a unique feature that they 

are flanked by genomic gaps at each side. We scanned through inversions detected by our pipeline 

against hg38 and also found inversions flanked by gaps, which could represent inverted assembly of 

genome contig in hg38, or variations across populations that could be in both orientations in human 

genome. We thus remove such inversions to ensure we focus on genomic rearrangements and not 

genome assembly anomalies.      

We observed that regions of the reference genome that harbor similar sequences distributed 

across multiple regions appear to harbor recurrent translocations in many samples. This is most likely 

due to misalignment of optical DNA reads leading to fixed false detection of translocations. A list of 

recurrent false-positive translocations was hence generated by comparing translocations detected across 

ten samples (with difference less than 1Mb away for both breakpoints), and the calls matching the list 

were removed. This list of recurrent translocation did not match any translocations detected by Hi-C or 

WGS, confirming that these are likely false positives.  
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Structural variant detection and filtration from whole genome sequencing 

SV detection 

Structural variants were detected by three independent pipelines. In the first pipeline, paired-end 

sequencing reads were first aligned by BWA-MEM (v0.7.15-r1140) to a GRCh38 human reference 

genome (version GCA000001405.015) with alternate haplotypes removed. Duplicate reads were 

removed by Picard. Reads with a mapping quality of at least 20 were retained for SV detection. SV calls 

were generated from this mapped data using Delly (v0.7.7) with default parameters (-q 20). Delly 

detects deletions, inversions, tandem duplications, insertions, and inter-chromosomal translocations.  

In the second pipeline, paired-end reads were processed by the Speedseq framework. Paired-end 

reads were aligned to the GRCh38 reference genome using BWA-MEM in the same manner as the first 

pipeline. Duplicated reads are removed by SAMBLASTER (v0.1.24). Discordant and split reads were 

extracted by SAMBLASTER for SV detection. SV calls were generated using Lumpy (v0.2.13) with 

default parameters (speedseq sv -g -t 64 -x). Lumpy reports SVs as deletions, inversions, duplications, 

inter-chromosomal translocations, and unresolved break ends. In both pipelines, telomeric, centromeric, 

and 12 heterochromatic regions are masked for SV detection using blacklisted regions provided by the 

Delly software. 

Copy number profiles were generated using Control-FREEC [61](v11.0). For all cell lines, we 

used a set of common parameters (ploidy = 2 for normal cells NA12878, pseudodiploid cells SK-N-MC, 

and hypotriploid cells T47D, A549, LNCaP, NCI-H460 and Caki2; ploidy = 3 for triploid cells K562 

and hypertriploid cells PANC-1), breakPointThreshold = 0.8, coefficientOfVariation=0.062, 

mateOrientation = FR). For A549, Caki2, LNCAP, NCI-H460, and PANC-1, sex was set to “XY”; for 

K562, NA12878, SK-N-MC, and T47D, sex was set to “XX”. Predicted copy number for each 50,000bp 

bin was used for making Circos plots. Regions with copy loss (copy number equal to 0 or 1) that are not 
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captured by SV detection using Delly or Lumpy (by exclusion of those reciprocally overlap by at least 

50% with deletions called by Delly and Lumpy) were included in the set of detected deletions.  

 SV filtration 

To reduce false positive calls, the following filtration steps were applied for Delly and Lumpy 

SV calls. First, we require all SV calls to be supported by at least three split reads (SR) or three spanning 

paired-end reads (PE). Insertions or deletions less than 50 bp are removed, as are SV that map to 

chromosome Y or to the mitochondrial genome.  SV calls from Delly and Lumpy are then merged, and 

only SVs that are identified by both methods are retained.  We used separate criteria to call SVs 

overlapping between the two methods depending on the type of SV. For deletions, calls were merged 

between the two pipelines if they had an reciprocal overlap (RO) ≥ 50%.  We used the coordinates 

provided by Lumpy for this merged deletion set. For inversions, calls identified by both Lumpy and 

Delly were merged if they had an RO ≥ 0.9.  The final merged coordinates were based on the 

coordinates from the Lumpy calls. Translocations were merged between the two pipelines if the paired 

break ends mapped within +/- 50 bp of each other and if the strand of the break ends matched. The final 

coordinates were based on the calls from Lumpy. Regions annotated as insertions were identified by 

Delly alone, since Lumpy does does not annotate SVs as insertions. No specific filtration for insertion 

was applied. 

Additional filtration was applied to specific types of SVs. For deletions, we removed deletions 

that have at least 50% reciprocal overlap (RO ≥ 50%) with known gap regions (+- 50bp), or at least 1bp 

overlap with centromere regions (+/- 1kb). Recurrent deletions that are larger than 1Mb and present in 

more than one cell line with an RO ≥ 99.9% are removed. Large deletions (≥100kb) that do not show 

consistent decrease of read depth compared with adjacent regions are also removed (less than one 

difference of read depth between deletions and flanking 10Kb regions). For inversions, recurrent 
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inversions that are longer than 100Kb and are present in more than one cell line (defined by RO 

≥99.9%) are removed. For translocations, recurrent translocations that are present in more than one cell 

line (defined by both break ends being within +/- 50pb) are filtered out.  

We required a minimal number of supporting reads (SR+PE) for translocation calls that we 

varied according to the sequencing depth and the ploidy of the WGS sample. (Cells with polyploidy can 

harbor an SV in only one copy of the DNA so that the SV is only present in a small fraction WGS 

reads.) Due to high sequencing coverage (~80X) in LNCAP sample, we only keep translocations with at 

least 15 supporting reads (PE+SR). For GM12878 cells (coverage of 50X), since they are diploid, we 

use a more stringent filter of 20 supporting reads, with at least two being split reads. For all other cell 

lines, which have similar read depth and ploidy, we require at least five supporting reads to call a 

translocation. We further compiled a list of high-coverage regions (coverage > 500X) in NA12878 

which are largely characterized by repetitive genomic elements.  In our initial analysis, we observed that 

such regions have high rates of translocation calls.  However, given their extreme outlier coverage and 

association with repetitive elements, these are most likely simply anomalous alignments. We filtered out 

translocations whose breakpoint ends are located in those regions. In addition, for unclassified intra-

chromosomal rearrangements called by Lumpy, we removed calls with a quality score less than 100. 

Finally, for tandem duplications, we require 10 supporting reads for LNCAP and 5 for GM12878 and 3 

supporting reads for all other samples. 

Cross-method comparison and integration of structural variants  

The methods that we use to identify SVs appear to have different sensitivity for detecting SVs of 

different sizes.  Specifically, Hi-C only rarely identifies SVs smaller than 1Mb. Therefore, we perform 

comparisons of SVs by dividing SVs into three different categories, namely, 1) inter-chromosomal 
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translocations identified by Hi-C, WGS and optical mapping, 2) large intra-chromosomal SVs (≥1Mb) 

identified by Hi-C, WGS, and optical mapping 3) and intra-chromosomal SVs < 1Mb that involves 

WGS and optical mapping. For the first two groups, we also included SV calls from additional methods, 

including karyotyping [127, 139-146],  fusion transcripts, and paired-end tag sequencing (PET-seq)[147, 

148]. Data from all six methods are available only for the T47D and K562 cell lines, we hence perform 

the cross-six-method comparisons in these samples. For six cell lines (Caki2, A549, NCI-H460, PANC-

1, LNCaP and SK-N-MC), we have data from Hi-C, WGS, optical mapping, karyotyping, and RNA-seq, 

therefore we perfom a five-method comparison. For MCF7 cells, we have Hi-C, PET-seq (from two 

separate studies), and RNA-seq data, so we compared between these three methods in MCF7 cells. 

Finally, we have Hi-C data and fusion transcript data for PC3, SK-N-SH, SK-N-DZ, RPMI-7951 and 

G401 cells lines. Finally, we have Hi-C, optical mapping, and WGS data for the karyotypically normal 

cell line NA12878 that we use as a non-cancer cell line control.  

We converted the strand orientation for SVs detected from different methods to a unified system, 

in which “+” indicates the breakpoint locates at the 3’ end of the joined arm, and “-” indicates the 

breakpoint at the 5’ end of the joined arm. For WGS data, this dictates that SV originally classified as 

deletions are given the strand orientation of “+-”, inversions as “++ and - -”, duplications as “-+” and 

unclassified intra-chromosomal rearrangement as “++” or “- -”. Optical mapping originally reports 

deletions, which are assigned a strand orientation of “+-”, inversions, which are assigned as “++” or “- -

”.  Optical mapping also reports intra-chromosomal rearrangements >5Mb as “unclassified intra-

chromosomal rearrangements” for which the software reports the strand orientation.  

To determine whether the SVs detected by different methods reflect the same event, we set 

criteria for SV matching when comparing inter-chromosomal translocations and large intra-

chromosomal SVs: 1) They have the same loci for both ends of the breakpoint. 2) They have the same 
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strand orientation. Because the different methods have very different resolutions for SV detection, we 

use variable criteria for determining whether two methods identify SVs at the “same loci”. This overlap 

is set such that break ends within +/- 500Kb are considered as overlapping when comparing Hi-C, WGS, 

optical mapping, fusion transcripts and PET-seq. For karyotyping, an overlap of +/- 10Mb was set to 

accommodate for its low resolution. For specifically comparing deletions smaller than 1Mb, for calling 

to deletions as overlapping, we require that at least 50% of deletion defined by WGS must overlap with 

the deletion defined by optical mapping, and the size of the deletion detect by optical mapping must be 

within 80-120% of total length detected by WGS.  

After identifying matched SVs between methods, we can resolve some unclassified SV types. 

Since we require SVs to have the same orientation, we can confirm certain Hi-C-detected intra-

chromosomal SVs to be deletions, insertions or inversions if the same event was specified by optical 

mapping or WGS. Likewise, we can resolve unclassified intra-chromosomal variants from WGS to be 

inversions detected by optical mapping or Hi-C, and we can determine the SV type for unclassified large 

intra-chromosomal SVs identified by optical mapping as deletions, inversions and duplications if the 

orientation and SV type are determined by WGS or Hi-C. In addition, in our comparison of smaller scale 

of SVs, we found that insertions detected by optical mapping may be resolved as duplications in WGS, 

which we annotate as duplications.  

We then calculated confidence levels for each SV and refine the SV coordinates based on the 

integration of different methods. Confidence levels are presented as the number methods by which each 

SV is detected. For refining the SV breakpoint coordinates, we choose loci determined by the highest 

resolution method for final breakpoint refinement. We consider WGS as the highest resolution method, 

followed by optical mapping, fusion transcripts, PET-seq, Hi-C, and then karyotyping.  
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Circos genome profiling  

Genome profiles of cancer cell lines and GM12878 were generated using Circos [71]. Copy 

number is plotted according to the normalized CNV predicted by Control-freec for each 50Kb region. 

Duplications and deletions plotted if identified as high-confidence calls detected by at least two methods 

between Hi-C, WGS and optical mapping. Plotted rearrangements includes inter-chromosomal 

translocations, intra-chromosomal inversions and unclassified intra-chromosomal rearrangements, all of 

which are high-confidence calls that are identified at least twice between Hi-C, WGS, optical mapping, 

karyotyping, fusion transcripts, or PET-seq. 

Size distribution of deletions and un-mappable translocations transitions: 

 Deletions 

The size of deletion detected by WGS is simply the distance between the start and end of a 

deletion event. The size of deletion detected by optical mapping is calculated as: 𝑆𝑖𝑧𝑒𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛 =

𝑆𝑖𝑧𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑆𝑖𝑧𝑒𝑠𝑎𝑚𝑝𝑙𝑒 = (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑒𝑛𝑑 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑡𝑎𝑟𝑡) − (𝐶𝑜𝑛𝑡𝑖𝑔𝑒𝑛𝑑 − 𝐶𝑜𝑛𝑡𝑖𝑔𝑠𝑡𝑎𝑟𝑡). The 

size of final merged deletions detected by both WGS and optical mapping was defined by the size from 

WGS. Then we performed Wilcoxon rank sum test to examine the difference of deletion size detected 

by WGS and optical mapping.  

 Translocation un-mappable transition 

In the detection of translocations, certain SVs will include a “transition” region between the two 

resolved portions of the rearrangement.  The size of the un-mappable transition of a translocation 

detected by WGS is the number of basepairs that fail to align to either of the two rearranged regions. For 

a translocation detected by optical mapping between two chromosomes, chrA and chrB, is the distance 

between the closest two labels (LA, LB) that map to chrA and chrB respectively. There may be multiple 
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un-mappable labels between LA, LB, which are LA+1, LA+2, LA+3…LA+M, LB-N … LB-3,LB-2, LB-1. To provide 

minimum size estimation of un-mappable transitions, we assume that the DNA from the last mappable 

labels to their nearest un-mappable labels (LA to LA+1, LB to LB-1) are all mappable. Therefore, the size of 

an un-mappable transition in a translocation with no or one un-mappable label will be calculated as zero 

basepairs. For translocations with at least two un-mappable lables, the minimal size of the unmappable 

transition will be |LB-1- LA+1|. If an un-mappable region is detected by in a translocation by both WGS 

and optical mapping, we defined the size of the un-mappable regions as the size defined by WGS.  

Genome-wide DNA replication timing  

Genome-wide replication timing was measured in A549, Caki2, G401, NCI-H460, SK-N-MC, 

T47D and LNCaP using the Repli-seq method [156]. Briefly, asynchronously cycling cells were pulse 

labeled with the nucleotide analog 5-bromo-2-deoxyuridine (BrdU). The cells were then sorted into 

early and late S-phase fractions on the basis of DNA content using flow cytometry. BrdU-labeled DNA 

from each fraction was immunoprecipitated (BrdU IP), amplified and sequenced using Illumina HiSeq 

2500. Replication timing was then measured as log2 ratio of early over late reads in 5kb bins. For K562, 

MCF7 and SK-N-SH cell lines, raw data for 6-fraction Repli-seq was downloaded from the ENCODE 

portal. The data was transformed to match the early/late repli-seq by combining G1, S1 and S2 fractions 

to represent early S phase and S3, S4 and G2 fractions to represent the late S phase. Smoothed 

replication timing profiles around the breakpoints were produced by loess smoothing replication timing 

data separately for the upstream and the downstream segments from the breakpoints predicted by Hi-C 

(Figure 2-1b, Figure 2-2e). 
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Classification of human genome into constitutive/switching regions  

48 human replication timing datasets (ENCODE, www.replicationdomain.com) were used for 

the annotation of the human genome into constitutive/switching regions. The datasets were windowed 

into 50 Kb bins. Then the following criteria were used for the annotation. A threshold of above 0.15 was 

used to identify an  early replicating bins and below -0.15 was used to identify a late replicating bin for 

each dataset. If a bin was early in 2 or more cell types and late in 2 or more cell types, those bins were 

classified as “Switching” (S). The remaining bins were then evaluated as being either “Constitutive 

Early” (CE), “Constitutive Late” (CL) or left un-classified (N/A). If a bin was early in at least 46 out of 

48 cell types, it was classified as CE. If a bin was late in at least 46 out of 48 cell types, it was classified 

as CL.   

Quantifying abrupt shifts in RT  

Genome-wide replication timing profiles in cancer genomes show several abrupt shifts in 

replication timing associated with translocations. We sought to quantify the frequency of these abrupt 

shifts. To this end we made a pipeline to detect abrupt shifts next to translocations identified by Hi-C.  

For each predicted translocation, un-smoothed RT data in 5kb bins from +/-  200kb of the breakpoint 

was used to scan for abrupt shifts. A span of +/- 200kb was chosen because the resolution of Hi-C 

translocation calls started at 100kb. Then for every 5kb bin, the difference between the median of the 

preceding 20 bins and succeeding 20 bins were calculated. Outliers were removed from this metric by a 

median filter (span=5). Then a threshold of 0.6 was used to determine the presence/absence of an abrupt 

shift. While the threshold was chosen empirically, the results showed the same trend across a wide range 

of thresholds. 
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 Characterization of deletions 

Overall disruption of genes, repeats, enhancers and insulators 

We evaluated the disruption of number genes, repeats, enhancers, and insulators that were 

deleted by high confidence deletions.  High confidence deletions are defined as those that are detected 

by at least two methods out of WGS, Hi-C and optical mapping from in each cell lines: A549, T47D, 

Caki2, K562, LnCAP, PANC-1, SK-N-MC, NCI-H460, and NA12878. The number deleted genes or 

repetitive elements are simply calculated by intersecting the positions of deletions with gene annotations 

(NCBI RefSeq) and repeat annotations (UCSC repeatMasker) in the hg38 reference genome in each cell 

line.  

In contrast to genes and repetitive elements, enhancers and insulators can potentially have cell 

type specific annotations. Therefore, to identify the number of deleted enhancers in each cell line, we 

first match each cancer cell line with a control normal cell type from the same or similar tissue type. We 

use H3K27ac as a mark for enhancers and CTCF binding sites as insulators.  Specifically, we use human 

normal mammary epithelial (HMEC) cells as a control for T47D cells, blood mononuclear cells as a 

control for K562 and NA12878 cells, primary pancreatic tissue as a control for PANC-1 cells, and 

Normal human lung fibroblasts (NHLF) as a control for NCI-H460 and A549 cells. The only exception 

is that we use CTCF binding sites from NA12878 to annotate insulators in K562 cells, as no CTCF is 

available in mononuclear cells. By intersecting high confidence deletions in cancer cell lines with 

enhancers or insulators in matched control cell lines or tissues, we can evaluate how many enhancers or 

insulators are disrupted in the cancer cell line by deletions. Further, since the  overall abundance of 

deletions can vary in each cancer cell line, we calculate the number of lost enhancers per 100Kb of 

deleted genome, and then normalize this number to a constant value of 100,000 enhancers per genome.  

Estimates of enhancer deletion enrichment relative to random controls 
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To estimate whether enhancers were preferentially deleted or retain, we performed simulation by 

randomly distributing the high confidence deletions each cancer genome 1000 times and then examining 

their overlap with enhancers. The distribution of the overlap between deletions and enhancers can then 

be summarized and plotted. The empirical P value is calculated based on how many times the simulated 

number of deleted enhancer is smaller than that number in fact observed from a given cell line.  

Identifying polymorphic and novel deletions 

High confidence deletions are stratified into two categories: known polymorphc deletions and 

novel variants.  This is accomplished by intersecting deletions with variants reported in DGV SVs 

annotated as “deletion”, “loss”, and “loss and gain” using bedtools [75]. A detected deletion must have 

at least 90% reciprocal overlap between the detected deletion and deletions documented in DGV dataset 

to be considered as polymorphic. Some deletions reported in DGV are overlapping with each other.  In 

such cases, if these deletions overlapped with exactly same region across the nine cell lines, these were 

treated as a single deletion event. Deletions that do not overlap with variants reported in DGV are 

defined as novel variants.   

Enrichment analysis of polymorphic deletions and novel deletions 

 To evaluate the enrichment of various genomic featurs with polymorphic or novel 

deletions, we first began by sorting and merging all polymorphic and novel deletions detected by both 

WGS and optical mapping in K562, T47D, Caki2, and GM12878 cells. The number of polymorphic and 

novel deletions were then counted in each cells, and the proportion of polymorphic vs. novel deletions 

was then compared between cancer cell lines and NA12878 cells. The overall loss of DNA content 

caused by polymorphic deletions or novel deletions was also calculated by summing the length of all 

non-redundant deletions identified in each cell. To determine if there is an enrichment of either class of 

deletion with genes, polymorphic and novel deletions from the nine cell lines were intersected with 
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RefSeq genes. Genes were further annotated using the list of COSMIC-tumor related genes, considering 

only genes with clear annotations as oncogenes or tumor suppressors. The overlap of different classes of 

deletions with exons was evaluated by comparing polymorphic and novel deletions with non-redundant 

exons from refFlat records of GENCODE24. The overlap of different classes of deletions with repetitive 

elements was evaluate by comparing deletions with non-redundant repetitive elements obtained from the 

UCSC repeatMasker. For example, for polymorphic deletions in K562 cells containing i events, if the 

size of each deletion is DELi, and if the size of overlap with repeats from each deletion is Repi, the 

enrichment of repeats (Enrichrepeats)was calculated as: 

𝐸𝑛𝑟𝑖𝑐ℎ𝑟𝑒𝑝𝑒𝑎𝑡𝑠 =
∑𝑅𝑒𝑝𝑖
∑𝐷𝐸𝐿𝑖

 

We also determined whether there was an enrichment for deletion of enhancers by polymorphic 

or novel enhancers.  This was accomplished by randomly permuting deletions 1000 times in each cell 

type, and calculating the overlap with H3K27ac defined enhancers in the same control normal cell lines 

listed above. The empirical P-value was calculated based the random shuffling. The results from the two 

classes of deletions was then compared across each cell type to test whether the enhancer loss is 

preferentially associated with novel or polymorphic deletions. 

Gene ontology analysis of deleted enhancers  

To perform ontology analysis of enhancer deletions, the locations of high confidence deletions in 

T47D cells was intersected with H3K27ac defined enhancers in HMEC cells. After removal of 

duplicates, the loci of deleted enhancer were lifted-over from hg38 to hg19 and gene ontology analysis 

was performed by GREAT using the hg19 reference as background [76] (GREAT requires the use of the 

hg19 reference). Association rule was set as “Basal plus extension”, with “proximal 5.0kb upstream”, 

“1.0 kb downstream”, and “plus Distal: up to 1000.0kb”. 
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Fusion of transcripts  

We downloaded paired-end RNA-seq data for 14 cell lines from the ENCODE project, European 

Nucleotide Archive (ENA), or Sequence Read Archive (SRA) databases (Table 2-S 1). We used three 

different pipelines (Tophat-Fusion [v2.1.0][157], Star-Fusion [v1.1.0][158], and EricScript [v0.5.5][159] 

to identify fusion transcripts. For Tophat-Fusion, paired-end reads were aligned to a GRCh38 reference 

genome (version GCA000001405.015) to identify fusion events. Tophat-Fusion was run on the 

following parameters: “--no-coverage-search -r 50 --mate-std-dev 80 --max-intron-length 100000 --

fusion-min-dist 1000 --fusion-anchor-length 13”. Tophat-Fusion outputs a list of potential fusion events, 

which were then processed by Tophat-fusion-post to filter out false positives by aligning sequences 

flanking fusion junctions against BLAST databases. Fusion events were further filtered requiring at least 

three split reads or three spanning read pairs. In Star-Fusion, a built-in GRCh38 reference genome with 

Gencode v26 annotation was used. Fusion transcripts were detected by Star-Fusion with default 

parameters. To reduce false positives, fusion events with a Fusion Fragment Per Million total reads 

(FFPM) less than 0.1 were removed. EricScript detects fusion transcripts by aligning the reads to a pre-

built reference transcriptome (Ensembl Version 84) provided by the authors. Candidate fusions are 

further required to be supported by at least three spanning read pairs and three split-reads. We also 

included a fourth set of fusion transcripts from Kljin et al[160]. The final set of fusion transcripts was 

obtained by considering the union of fusion calls from the three pipelines and the fourth set of fusion 

events identified by Kljin et al. 

 

Identification of allelic imbalance in expression: To evaluate the effects of TAD fusion events 

on altered gene expression in cis, we tested whether TADs containing rearrangements showed different 

patterns of allele specific gene expression compared to TADs that lack rearrangements.  For each cell 
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line where we had WGS (T47D, Caki2, K562, A549, NCI-H460, PANC-1, LNCaP, SK-N-MC), we 

aligned RNA-seq data to the genome using STAR.  We then implemented the WASP pipeline (PMID: 

26366987) for filtering and re-aligning reads to identify reads that show inherent allelic mapping biases.  

We then computed the number of reads that aligned to each allele at each single nucleotide variant 

within an exon of any GENCODE gene using samtools mpileup.  The number of reads aligning to each 

allele was normalized by the total number of reads (RPM), to account for sequencing depth differences 

between cell lines.  To compute the degree of bias in expression between alleles, we used a simple chi-

squared statistic.  To account for potential differences in copy number between alleles, the expected 

value of the chi-squared statistic for each SNV was derived from the observed ratio of coverage between 

alleles from WGS.  Specifically, the expected value for each allele was calculated as the fraction of 

reads from WGS aligning to that allele multiplied by the sum of the RNA-seq RPM values across both 

alleles.   

Re-prediction of gap sizes 

To gain a list of candidate unresolved gap regions, recurrent deletions detected by optical 

mapping at least twice in cancer cells lines and at least once in normal cells were collected from 12 

samples, including 8 cancer cell lines (T47D, Caki2, K562, A549, NCI-H460, PANC-1, LNCaP, SK-N-

MC) and 4 normal cells (GM12878, 3078entB, 3045entB, and 3391entB). Recurrent deletions were then 

intersected with hg19 gaps using bedtools. Only gaps where at least 80% of the gap overlap with a 

deletion and the gap accounts for at least 30% of the deletion are retained for gap size re-estimation. 

When using hg19 as the reference genome, the gap size was predicted by subtracting the deletion size 

from gap size in hg19. To evaluate the predictions, the gap regions were lifted over to GRCh38, and the 

sizes of the same regions in GRCh38 were compared with our prediction and the size in hg19. Some 
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gaps will ultimately have a negative value, meaning that the size of the deletion is shorter than annotated 

gap in the reference genome, potentially due to the variation across populations.  

To predict the size of unresolved gaps in GRCh38, we repeated our analysis of deletions 

overlapping gap regions using GRCh38 as the reference genome as described above.  In some cases, the 

re-estimated size of the same gap could vary among different cell lines, and the degree of variation is 

relatively small with respect to the overall change of perceived scale of gap size. Therefore, we report 

the median, the maximum, and minimal gap size of each gap from our estimation, as this variation can 

represent polymorphisms of gap sizes in the population. We then annotate what genes are spanned by 

those adjusted gaps and could be affected by intersecting re-estimated gaps with gene list in GRCh38. 

We further compare our gap size predictions in GRCh38 with results from previous publications [40, 

103]. 

Profiling of gene copies using optical mapping  

 In order to identify genes that had undergone copy number alterations, we compared copy 

number profiles from optical mapping in the 4 primary normal tissues and 8 cancer cell lines with gene 

lists from RefSeq Gene annotation.  The longest isoform was used for characterization of copy number 

changes. For each gene, the average copy number profiles of each 50kb bin spanned by the gene was 

considered as the copy number of that gene. The CNV of genes were also profiled by WGS normalized 

coverage (Control-FREEC) in T47D and Caki2 for differential gene expression analysis.  

Differential gene expression from gene dosage or enhancer deletion  

To evaluate the effects of gene dosage and enhancer deletions on gene expression, we evaluated 

the expression of genes in T47D or Caki2 cell lines where we detected copy number alterations of the 

gene itself or of linked enhancers.  For T47D, we used RNA-seq data from HMEC cells as a normal 



102 

 

control, and for Caki2, we used RNA-seq data from primary kidney tissue as a normal control.  We 

downloaded FASTQ files of paired-end RNA-seq data from T47D, HMEC, Caki2, and primary kidney 

from the SRA database or ENCODE.  Each sample contained two replicates. The raw reads were 

aligned, and differential expression analysis was performed using Tophat and cufflinks [161]. For 

analyzing the impact of gene dosage on expression, we grouped genes into 4 classes: homozygous 

deletions (0 copy), genes with LOH (1 copy), normal genes (2 copies), and amplified genes (≥3 copies) 

according to CNV profiles from WGS. We calculated the expression (FPKM) fold change of all genes in 

each category relative to the control sample.  

For analyzing the impact of enhancer deletion of gene expression, we first filtered genes and 

removed those with deletions of exons or entire genes to control for deletions that the impact of gene 

dosage on expression. We further filter genes and focus only on the 9672 genes with evidence of 

expression in HMEC cells (FPKM ≥ 1). Enhancers were annotated enhancers as homozygous deletion or 

LOH based on WGS coverage, and were examined for linkage to filtered genes from significant 

interactions identified by capture Hi-C in GM12878 cells. The expression fold change in expression 

between T47D and HMEC cells was then computed for the 530 genes with a copy number loss of linked 

enhancers was compared with 9142 unaffected genes using the Wilcoxon test. 

TAD fusions 

To evaluate the effects of SVs on TAD structure, we analyzed breakpoint crossing Hi-C signal.  

Our initial observations identified cases where the nearest TAD boundaries to the breakpoint were being 

“fused” together to create a new TAD.  To evaluate whether such TAD fusion events were generally the 

case, we analyzed whether the breakpoint crossing Hi-C signal between the nearest TAD boundaries 

showed a local enrichment, which is characteristic of “normal” TADs.   
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We begin this analysis with a list of breakpoints within each cell type.  For each breakpoint, we 

identified the nearest breakpoint proximal TAD boundary based on TAD calls from H1 hESCs. We 

chose TAD calls from H1 hESCs as we wanted to use TAD calls from an independent, non-rearranged 

cell type, in case the rearrangement was altering TAD calls within the rearranged cell line.  We should 

note that TAD calls are highly stable between cell types, such that these results are similar regardless of 

the source of the TAD calls.  We then identified the predicted “peak” of the TAD “triangle” by 

identifying the bin representing the interaction between each of the nearest breakpoint proximal TAD 

boundaries. The bin representing the interaction between each of the breakpoint proximal TAD 

boundaries was then considered as the center of a sub-matrix.  We calculated the average interaction 

frequency of all bins within the 41x41 bin sub-matrix centered on the TAD boundary interacting bin.  

Each bin was then normalized to this average interaction frequency, such that the new sub-matrix would 

represent a fold change above the average value in the sub-matrix.  This was then log-transformed (with 

a pseudocount of 1 added to avoid taking the log of zero and to minimize the effects of noisy low 

frequency interactions).  The reason for normalizing to mean of the submatrix is to account for the 

differences in interaction frequencies that would be expected due to genomic distance alone.  In other 

words, without normalizing to the central bin, the aggregated Hi-C data would be dominated by short 

distance interactions. The log-fold change sub-matrix was then averaged for all breakpoints in all cell 

types, yielding a single aggregate log fold-change sub-matrix.  For display purposes, this was then 

exponentiated to represent these values again as a fold change.  This process was also applied to a 

random set of TAD boundaries.  Random TAD boundaries analysis was performed by first randomly 

permuting the TAD boundaries from H1 hESCs, using the following the following approach: for TADs 

on chromosomes affected by SVs, we generate a random number between 1 and the size of the 

chromosome where it is located.  This number is then added to the start and end coordinates of the every 
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TAD on the chromosome.  If the randomly generated TAD is larger than the size of the chromosome, 

the size of the chromosome in base-pairs is then subtracted. This is done to preserve to observed size 

and spacing of TADs in the random dataset to limit any artifacts or bias of randomization.  This set of 

permuted TADs was then used for the input into the same process as described to evaluate the chromatin 

interactions across the breakpoints. We want to point out that the only data that is being randomized are 

the positions of TADs, and the SVs and chromatin interaction maps used for the plot are both from the 

true cancer cell lines in this study. This randomization was repeated 1,000 times. 

 

 

 

 



 

 

Chapter 3 

 

Whole genome optical mapping reveals previously unrecognizable structural variants in leukemia 

patients’ samples 

Abstract 

While genomic analysis of tumors has stimulated major advances in cancer diagnosis, prognosis 

and treatment, current methods fail to identify a large fraction of somatic structural variants in tumors. 

We have applied optical genome mapping in conjunction with whole genome sequencing to twelve adult 

and pediatric leukemia samples, which revealed on average over five thousand structural variants per 

sample. Our computational methods determined that 5-10% of the variants, including insertions, 

deletions, translocations and inversions, likely arose as somatic mutations. These somatic structural 

variants affected 37 leukemia associated genes as well as 209 cancer driver genes not previously 

associated with leukemia and at least 109 recurrently disrupted genes not previously associated with 

cancer. Fifteen of the genes not previously associated with AML but mutated in multiple patients’ 

samples significantly affects survival of AML patients. In addition, many variants (42%) resided 

exclusively in intergenic regions and a significant fraction of these caused cis-acting alterations in 

expression of neighboring cancer-associated genes.  Our results suggest that current genomic analysis 

methods fail to identify a majority of structural variants in leukemia samples and this shortcoming may 

hamper diagnostic and prognostic efforts. 
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Introduction 

Genomic analysis of tumors has stimulated major advances in cancer diagnosis, prognosis and 

treatment, shifting the focus from morphological and histochemical characterization to consideration of 

the landscape of driver mutations in the tumor [15, 162, 163]. This has been particularly true for 

leukemia, and especially so for acute myeloid leukemia (AML), in which the spectrum of driver 

mutations provides a much more rigorous classification of disease subtypes, with a correspondingly 

more robust prognostic power, than previous histological characterization [164, 165].   

Somatic driver events in a tumor – point mutations, small indels copy number changes and 

structural variants (SVs) including insertions, deletions, inversions, translocation and copy number 

change – are currently identified by some combination of karyotyping, comparative genome 

hybridization, fluorescence in situ hybridization (FISH), RNA sequencing and genome sequencing of 

either targeted gene panels, whole exomes or whole genomes [14-16, 21, 162]. However, our recent 

study interrogating a variety of cancer cell lines using an integrative framework for detecting SVs, 

consisting essentially of whole genome sequencing, optical genome mapping and chromosome 

conformation capture, identified a large number of variants that were undetectable by the standard tools 

for cancer genome analysis [166]. Moreover, some of these previously undetected SVs affected cancer 

relevant genes through their gain or loss or through alteration in expression. In the latter case, gene 

expression could be reduced by deletion of an associated regulatory domain or activated by fusion of 

topologically associated domains, bringing an otherwise inactive oncogene in functional proximity to an 

active enhancer region. This study strongly suggested that non-coding SVs are underappreciated drivers 

in cancer genomes. However, since this study investigated only cell lines, it could not differentiate 

between cancer promoting variants versus variants that arose during establishment and propagation of 

the cell line itself nor could it identify somatic versus germ line variants.  
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Today, our understanding of the SV landscape in AML remains a limited group of well-known 

translocations and inversions, such as t(8;21) and inv(16), beyond which the rest majority of patients’ 

SVs are less uncovered and non-interpretable. Here we present this pilot study that adopts long-molecule 

strategy to profile and interrogate novel SVs genome-wide on leukemia clinical settings, and for the first 

time an exploration to assess the genome-wide impact of non-coding SVs.  We have applied optical 

mapping in conjunction with whole genome sequencing (WGS) to obtain a significantly enhanced view 

of somatic SVs in a dozen different adult and pediatric leukemia samples. To distinguish somatic 

variants from the much larger fraction of germline variants we developed a computational pipeline, 

which, in contrast to our previous study with cell lines, we were able to test by access to patients’ 

germline samples. In almost all cases, our analysis identified all the structural rearrangements previously 

determined by standard karyotype analysis. However, our analysis also revealed hundreds of additional 

SVs, particularly insertions and deletions but also inversions and translocations, which were not evident 

from standard genomic analyses. A number (304) of these variants affected tumor associated genes, 

whose role in prognosis and treatment in the individual cases could not otherwise have been considered. 

Our work further confirms that the extent of somatic SVs have not been fully recognized nor effectively 

integrated into disease assessment.  The methods described here may offer a remedy for that 

shortcoming. 

Results 

Identification of somatic structural variants in leukemia samples.   

We used optical mapping in conjunction with whole genome sequencing to identify structural 

variants in blood samples from leukemia patients. Patients included seven adult AML cases, two 

pediatric AML cases, one pediatric T-cell ALL case, one pediatric B-cell ALL case and one adult B-cell 
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lymphoma (Table 3-S1).  We performed whole genome sequencing on all samples at an average depth 

of 50X and optical mapping at 100X coverage on a Bionano Genomics Irys or Saphyr optical mapping 

instrument. For optical mapping, large genomic fragments (>250 kb) are extracted from cells, 

fluorescently labeled with a site-specific DNA binding protein and then passed through nanochannels of 

an Irys or Saphyr chip that force the molecules into a strictly linear conformation. After they are 

linearized and migrate through the nanochannels, DNA molecules are imaged, with the fluorescent tags 

providing a bar code that allows subsequent assembly of individual molecules into larger contiguous 

maps, which are compared to a reference genome to identify insertions, deletions and rearrangements. 

 
Figure 3- 1. Computational Workflow for Detection of Structural Variants. 

The computational workflow for extracting structural variants from a combination of whole genome 

sequencing and optical mapping is diagrammed in the upper left hand figure with details of each of the 

subroutines provided in the numbered figures.  See Materials and Methods for a detailed explanation.  

Note that step 3 removes likely germ line polymorphisms from the SV calls, reducing the number of 

original SVs by 95-97% on average.  



109 

 

Data processing to identify structural variants in individual samples is outlined in Figure 3-1. 

Whole genome sequence data was mapped to human genome reference hg38 using BWA and then 

filtered for structural variants by two independent software pipelines, LUMPY and DELLY. Those 

variants identified by both programs were retained and sorted into subtypes: deletions, insertions, 

duplications, inversions and intra- and inter-chromosome translocations. Copy number variants were 

determined by Control FREEC. Structural variants were extracted from optical mapping data using 

Bionano Genomics Access software. The non-redundant union of the variants determined by each of the 

methods yielded in each sample 1500-3000 deletions, more than 2000 insertions, hundreds of inversions 

and copy number variants and tens of translocations (Table 3-S2).   

Determining which of the structural variants arose as somatic mutations versus those that were 

preexistent in the patient’s germ line would require comparing those present in the leukemia sample to 

those in the patient’s normal genome. However, since normal tissue is not readily available from most 

leukemia patients, we developed a computational pipeline to distinguish somatic mutations from 

germline polymorphisms by filtering the list of variants against various databases of known genomic 

polymorphisms. We first compared the position and extent of each variant against the Database of 

Genomic Variants [167] and removed any variant that significantly overlapped a previously identified 

variant. We then removed any variant whose start and end point were identical in two or more of our 

patient samples. Finally, since many of the variants identified by optical mapping could not have been 

previously revealed by other technologies, we compared our remaining variant list against that obtained 

from optical mapping of 154 normal individuals in a study recently conducted by Kwok and colleagues 

[168], as well as that in Bionano Genomics’ dataset of variants found in normal individuals.  As noted in 

Figure 3-1 and Table 3-S2, this filtering process significantly reduced the number of variants such that 

on average only 13% of the initially identified copy number gains and only 5% of initially identified 
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deletions, insertions and inversions were retained as likely somatic variants. In contrast, all of the 

interchromosomal translocations initially identified were retained as likely somatic events. 

 
Figure 3- 2. Figure 2.  Detection of Structural Variants by WGS+OM versus Karyotyping 
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(A) Workflow for isolating normal T cells from a B lymphoma sample for validating somatic SVs 

predicted by our bioinformatics pipeline. (B) Circos plots for B lymphoma sample 1160 and the 

corresponding T cell demonstrate the euploid genome and the absence of interchromosomal 

translocations in the T cells population. Chromosomes are arrayed in clockwise order from 1 to X, with 

inversions and translocation shown in the center and copy number variations arising from deletion 

(blue) or duplication (red) shown on the inner ring.  (C) Workflow for determining the false discovery 

rate for somatic SV prediction by comparison to the T cell control. (D) The average number of different 

types of somatic SVs over twelve patient samples detected by whole genome sequencing plus optical 

mapping. Gains include any duplication of genomic sequences greater than 50 bp and losses refer to 

local or extended elimination of genomic sequences. (E) The average number of SVs detected by 

karyotype analysis of the twelve patient samples. (F) For each patient sample, the percent of SVs 

previously identified by karyotyping that were confirmed by WGS+OM, subdivided into those that 

were only confirmed (light blue) and those that were confirmed and the source of added material was 

resolved (dark blue). (G) The karyotype image of sample 936. Arrows indicate translocation fusion 

points. (H) The circos plot of the structural variants derived from optical mapping and whole genome 

sequencing of sample 936. (I) Determination of variant allele fraction (VAF) from WGS data.  VAF 

was calculated as the total number of read spanning the translocation breakpoint divided by the total 

number of reads spanning the breakpoint plus the total number of read mapping to the intact 

chromosome at the same site of either one of the participating chromatids.  Two translocations 

identified by karyotyping are indicated by blue dots, corresponding to t(8;21) in sample 784, which was 

observed in 20/20 karyotype images, and t(4;5) in sample 936, which was observed in 2/20 karyotype 

images. Lower panels show that VAF separates translocations in each sample into homogenous 

mutations (upper circle) and sub-clonal mutations (lower circle). 

 
 

We tested the validity of our filtering algorithm in identifying somatic variants in one case in 

which we were able to obtain normal tissue for the patients. We amplified the small subset of normal T 

cells from the leukemic blood sample by selective application of growth factors as described in 

Materials and Methods (Figure 3-2A-C). We performed optical mapping and whole genome sequencing 

on these germ line samples and compared those profiles to those of the corresponding leukemia sample 

to identify somatic variants. We then compared the collection of somatic variants identified by direct 

comparison to germ line sequences to that obtained by the computational filtering process described 

above. As evident from Figure 3-2C, >86% of the somatic variants identified by our filtering process 

were not observed in the T cell genome, providing a false discovery rate of <0.14. The majority of the 

false positives were short private SVs –germline but individual specific— which are impossible to 

eliminate computationally by using public databased but comprise only a small fraction of the total 
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variants. These results support our filtering pipeline as a convenient, cost effective and accurate method 

for pinpointing somatic variants in leukemia genomes. 

Comparison of karyotyping, optical mapping and whole genome sequencing.   

All of the leukemia samples we examined had been previously analyzed by cytological 

karyotyping as part of the patients’ standard clinical evaluation. Figure 3-2D and E and Table 3-S3 

presents a comparison of the somatic SVs identified by each of these methods alone or in combination. 

As evident, karyotyping revealed only a small fraction of the SVs present in the sample. Optical 

mapping identified essentially all the variants noted by karyotyping, missing only those in low-

abundance subclones, and was effective in identifying inversions (84%), insertions (86%) and larger 

deletions (67%). On the other hand, whole genome sequencing was adequate for identifying most copy 

number gains (91%) and interchromosomal translocations (91%) but failed to identify the majority of 

insertions and deletions.   

As evident from Figure 3-2D, Table 3-S3 and from previous work [166], WGS and optical 

mapping provide synergistic data on SVs. For insertions and deletions, optical mapping picked up larger 

variants while WGS identified smaller events. In 39% of cases in which WGS failed to flag a variant 

detected by optical mapping, one or both endpoints lie in a low mappability region of the genome. On 

the other hand, for 57% of the translocations detected by WGS but unreported by optical mapping, one 

side of the variant was too short to encompass at least nine labeling sites, which is the minimum for the 

mapping software to provide statistically reliable calls (Figure 3-S1). This was particularly evident in 

cases of chromothripsis. Nonetheless, for many of the variants identified by only one of the two 

methods, the second method does provide confirmation of the validity of the call (Figure 3-S1), either 
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by confirming one half of the variant or its reciprocal event. In sum, WGS confirmed 75% of the 

translocations identified by optical mapping while optical mapping confirmed 67% of the translocations 

identified by WGS or involved fragments too small to be detected. Finally, we verified by PCR 

amplification ten out of ten tested of the translocations uniquely identified by WGS. Accordingly, we 

are confident that our integrated method reveals a large fraction of SVs previously unrecognizable.  

The combination of optical mapping and whole genome sequencing identified 157 

interchromosomal translocations in twelve samples, the majority of which were missed by karyotyping. 

These included all but one of 36 genome rearrangement reported by karyotyping (Figure 3-2F), the 

missing event being present in only a very small fraction of the patient’s sample. Optical mapping plus 

sequencing provided a more detailed characterization of translocations than was available from 

karyotyping.  Figure 3-2G and 2H shows the karyotype image from sample 936 and the corresponding 

circular genome structure (circos) plot derived from optical mapping and whole genome sequencing. As 

evident from the circos plot, chromosome 12 had undergone chromothrypsis in this patient’s sample 

with the majority of the residual fragmented chromosome transposed to chromosome 1. This was not 

apparent from the karyotype analysis.  In a second case, 1021, our analysis documented a three-way 

reciprocal rearrangement among three separate chromosomes (Figure 3-S2), suggesting that the triple 

rearrangement occurred as a concerted event. In nine other cases, karyotyping reported that unidentified 

genetic material had been added to a chromosome without specifying the source of that additional 

material. In all such cases, our methodology was able not only to identify the source of the exogenous 

DNA but also to pinpoint the precise junction of the added material (Table 3-S4 and Figure 3-3).  For 

example, karyotyping indicated additional material on chromosome 12 in patient 1160.  Optical 

mapping identified the extra sequence as arising from chromosome 12 itself, involving an internal 

inverted duplication of ca. 50 Mb in the middle of the chromosome (Figure 3-3). This analysis also 
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accounted for the duplicated segment of chromosome 12 identified from our copy number 

determinations. Circos plots for all the samples analyzed in this study are shown in Figure S3. 

 
Figure 3- 3. Identification of previously undetermined added chromosomal sequences. 

 (A) Diagram of chromosome 12 derived by optical mapping of patient sample 1160, which had been 

identified by karyotyping only as chromosome 12 with additional material.  Optical mapping indicates that 

the additional material is a 50 Mb inverted duplication starting at position 91.23 Mb and reconnecting to 

the remainder of the chromosome at position 40.65 Mb.  Below are genome maps showing the hg38 

reference chromosome in green with in silico determined labeling sites indicated as dark blue vertical lines, 

aligned with the chromosomal assemblies around the inversion initiation site at 91.2 Mb (C) and the 

inversion termination (D) obtained from optical mapping.  (B) Genome assembly map in light blue of a 

chromosome 8/12 fusion obtained by optical mapping of patient sample 936. Detailed mapping of the 

sample indicates that the chromosome 12 fragment derived from chromothrypsis of one of the chromosome 

12 chromatids. 
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 Our method provides information on the relative abundance of a SVs in a leukemia sample.  For 

instance, calculating the number of reads from WGS that span a translocation breakpoint in relation to 

the number of reads spanning the intact chromosome at the same site retrieves the allele fraction of that 

translocation in that sample. For a heterozygous translocation present in 100% of the cells, the allele 

fraction would be 0.5 for a diploid local region. As shown in Figure 3-2I, that is the case for the t(8;21) 

in patient 784, consistent with the karyotype data indicating that the translocation is present in 20 of 20 

images. However, in line with the fact that most somatic SVs and single nucleotide variations (SNVs) 

are present in subclonal populations in AML cases, we find that the allele fraction of the translocation in 

most cases is less than 0.5. For instance, we calculated that the allele fraction of t(4;5) in patient 936 is 

0.18, consistent with the karyotype report identifying the translocation in 2 of 20 images. Further, in 

applying this analysis to individual samples, we observe evidence of distinct subclones within the 

population. As evident in Figure 3-2I for samples 868 and 784, several translocation cluster at an allele 

fraction of 0.2-0.3 while other translocations cluster around an allele fraction of 0.5. In sum, our method 

provides not only the identification of SVs in patient samples, but also the relative abundance of each 

variant and evidence of subclones within a sample. 

Functional significance of somatic structural variants.   

The somatic SVs identified in our leukemia patient samples overlap those previously associated 

with leukemia but also affect additional cancer genes. Whole genome sequence analysis revealed SNVs 

or small insertions or deletions in each sample that were previously recognized as driver mutations.  Our 

combined analysis further identified in many samples structural rearrangements in genes previously 

linked to leukemia. In sum, over all twelve patients we identified SVs in thirty-six genes and SNVs in an 
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overlapping set of fifteen genes that were previously implicated as genetic drivers in leukemia, twenty-

two of which were mutated in two or more patients (Figure 3-4A). Only one patient carried an FLTITD 

mutation (FLT-internal tandem duplication), one of the most common mutations in all the AML cohorts 

analyzed to date. This was noted in their clinical reports and confirmed in our hands by WGS and 

targeted PCR.  

In several cases, we were able to identify loss of tumor suppressor genes that could not be readily 

detected by conventional methods. In one example shown in Figure 3-5A and B, a somatic inversion 

disrupted the PTEN gene on chromosome 10 and a somatic deletion removed the terminal exon of PTEN 

on its homolog. Neither of these SVs were present in the patient’s clinical report nor identifiable with 

whole genome sequencing alone. As a second example in Figure 3-5C and D, BCL6 is disrupted by an 

inversion on chromosome 3 while its homolog is disrupted by a deletion.  As above, neither of these 

were reported for the patient nor readily evident in the absence of optical mapping.   

We also identified SVs associated with genes previously identified as cancer-associated but not 

frequently with leukemia (Figure 3-4B). We found CRLF2 altered in eight patients, twice by insertion, 

once by amplification and five times by point mutation. CRLF2 encodes a type I cytokine receptor, 

which along with the IL7 receptor activates the JAK2-STAT pathway, and has been found rearranged in 

B-cell ALL but not previously in AML [169-171]. We also observed alteration in three patients of 

RSPO2, a gene encoding a member of the R-spondin family of proteins that activate WNT signaling. 

Mutations in RSP02 has been seen in a gastric, liver and colorectal cancer and neuroblastoma but not 

previously reported in leukemia [172-174]. As a final example, NUMA1, an essential component in the 

formation and organization of the mitotic spindle, is altered variously by point mutations, insertion, 

deletion and amplification. A chromosomal translocation of this gene has been associated with acute 

promyelocytic leukemia [175, 176]. 
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Figure 3- 4. Genes 

disrupted by structural 

variants in our cohort. 

The number and type of 

structural variants 

identified in our cohort 

of leukemia patients 

affecting genes (A) 

previously associated 

with AML, (B) 

previously associated 

with cancer but not 

AML, and (C) not 

previously associated 

with cancer. The left 

column of each panel 

represents adult AML 

patients whereas the 

right column represents 

pediatric AML patients, 

ALL or lymphoma. 
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Figure 3- 5. Biallelic disruption of tumor suppressor genes by distinct structural variants 

(A) Gene map of the region around PTEN scaled and aligned to the in silico generated optical hg38 reference map (light 

green with blue tic marks indicating the sites of labeling for optical mapping) under which is shown the optical map of 

patient sample 1160, indicating the position of a 3 Mb inversion, one endpoint of which lies in the PTEN gene.  (B) Whole 

genome sequence read depth over the PTEN region from patient sample 1160 over the scaled and aligned gene map of the 

region.  Dashed red line indicates the start site of a deletion on the chromosome homolog of that in A. (C) Optical map and 

whole genome sequence coverage (D) from patient sample 1160 positioned over a gene map of the BCL6 locus on which 

are indicated (dashed red lines) the 35 Mb inversion break point on one homolog and the deletion breakpoint on the other.  

The reference genome is shown in the top bar, which, due to compression of the tic marks representing labeling sites is 

solid blue. WGS coverage level of the BCL6 gene indicates deletion of the last two exons of BCL6 in the second homolog. 

The current contig contains only one breakpoint of the inversion but does not cover the other breakpoint due to the limited 

length of the contig.  Blue dashed lines represent virtual extension of the contig that is likely the extent of the actual 

inversion. 
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Finally, we observed that 109 genes previously unassociated with cancer were affected by SVs in 

three or more patient samples and 1040 genes affected in two or more patients (Figure 3-4C).  The 

AFAP1 gene is repeatedly mutated in our patient samples. The protein encoded by this gene is a Src 

binding partner that may function as an adaptor protein by linking Src family members and/or other 

signaling proteins to actin filaments and by mediating Src activation of TGF-β [177-179]. By extracting 

copy number values from SNP array data in a TCGA AML cohort of 142 samples, we observed that the 

AFAP1 coding region is specifically amplified in the AML cohort, while the immediate surrounding 

region is unamplified (Figure 3-6B). Moreover, using the TCGA data we found that stratifying the 

patient population on the basis of AFAP1 expression level provides a statistically significant indicator of 

patient outcome (Figure 3-6A). We observed three different types of SVs affecting AFAP1 in our 

cohort, so we cannot determine whether loss or gain of function of the gene is driving oncogenesis.  

However, the TCGA data corroborates that alterations in AFAP1 have an impact on AML onset and/or 

progression.   

As a second example, the ENPP2 gene, which encodes the phospholipase autotaxin that 

catalyzes production of lysophosphatidic acid [180], was altered in three patients. Autotaxin is 

overexpressed in breast and ovarian cancers but has not been associated with clinicopathologic 

parameters in those or any other cancers [181]. In examining the TCGA AML database, we observed 

that the ENPP2 gene but not the surrounding region is amplified in the cohort and that increased gene 

expression is significantly associated with worse outcomes (Figure 3-6A).   

As a further example, the zinc finger protein multitype 2 (ZFPM2) gene, also known as friend of 

GATA2 (FOG2), encodes a transcriptional cofactor of members of the GATA-binding family that 

regulates expression of key genes essential for the development of multiple organs [182]. By interacting 

with GATA factors, ZFPM2 modulates this regulatory activity, and is known to play important roles in 
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cardiac, gonadal, and pulmonary development. We find that ZFPM2 was affected variously by deletion, 

duplication and point mutation in four different patients. As above, we interrogated the TCGA AML 

database, using the genome wide SNP data to determine copy number levels over and around the 

ZFPM2 gene. We found that the coding region but not the surrounding genome was specifically 

amplified in patient samples and that high expression of the gene was associated with poor outcomes 

(Figure 3-6A). Since ZFPM2 is a transcriptional cofactor, we extracted from TCGA AML data those 

genes whose expression is correlated with that of ZFPM2 (Figure 3-6C-D) and showed that those genes 

significantly overlapped with those bound by GATA2 and were enriched in proto-oncogenes and those 

associated with transcriptional misregulation in cancer (Figure 3-6E). As shown in Figure 3-6F, GATA2 

binds to the promoter of one such gene, TAL1, an erythroid differentiation factor [183], which suggests 

that TAL1 expression may be regulated by ZFPM2. 

Finally, 15 genes frequently altered in our cohort but not previously associated with cancer, such 

as CPQ, COG5, TPD52, AIFM1, RAB33A, ZNF275, TBP and others, provide prognostic information in 

the TCGA cohort on the basis of their expression levels (Figure 3-S4). In sum, this study has revealed 

ca. 300 previously unrecognized SVs affecting leukemia associated genes and other cancer associated 

genes as well as 1040 genes not previously associated with cancer. Outcomes data suggest that some of 

these newly identified genes could have significant prognostic value. 

Structural variants in non-coding regions affect expression of cancer associated genes.   

In addition to structural variants that affect the coding region of suspect genes, we observed SVs 

residing within 1 Mb of genes but not affecting their coding region. Such SVs could alter the expression 

of the adjacent gene by deleting a cis-acting regulatory element such as an enhancer, by duplicating an 
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enhancer element or by fusing the gene to a novel enhancer [99, 152]. The cancer genes lying within 1 

Mb of an SV in each patient sample are listed in Table 3-1. 



123 

 

 
Figure 3- 6. Some genes frequently altered by somatic structural variants affect AML outcomes.   
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(A) Kaplan Meier survival plots of patients in the TCGA cohort stratified on the basis of gene expression for 

the indicated gene at the thresholds listed for each gene. (B) Genomic copy number alterations of TCGA AML 

cohorts.  Plotted is the z-score for the variation in average copy number in the AML cohort over each 10 kb bin 

across the gene of interest (orange line) and the adjacent genomic regions (black line).  Dotted line indicated 

the p<0.05 significance threshold. n1 and n2 indicate the number of samples in the cohort in which copy 

number over the gene was increased or decreased, respectively. (C) ZFPM2 regulated genes overlap those 

bound by GATA2.  Expression of ZFPM2 exhibits positive correlation with that of 249 genes, 84 of which 

display binding by GATA2 within the gene body or within 10 kb of the gene in the K562 leukemia cell line.  

(D) Expression heatmap of a subset of the genes whose expression is correlated and bound by GATA2 for the 

50 patients in the AML cohort with the highest ZFPM2 and the 50 with the lowest, sorted by ZFPM2 

expression levels.  (E) The top four David GO term categories of the 84 genes highlighted in (C). (F) GATA2 

binds to the TAL1 promoter.  Shown are the genome map of TAL1, the H3K27ac and GATA2 abundance and 

the DNase hypersensitive sites (DHS) over that region in the K562 leukemia cell line.  H3K27ac marks 

promoter domains.   
 

To test whether SVs alter cancer gene expression in our cohort, we performed whole 

transcriptome analysis of our leukemia samples by RNA sequencing. We then merged our raw 

expression data with that from the TCGA study, quantile normalized the merged data set and then 

determined the average gene expression of all genes. We then assessed whether the expression of a 

cancer related gene lying within 1 Mb of an SV endpoint in our cohort differed significantly from the 

average expression of that gene over all samples. As evident from the data in Table 3-1, 34% of cancer 

genes lying near somatic SVs exhibited significantly altered expression relative to the combined TCGA 

cohort or were the highest or lowest expressed sample in our cohort. We predominantly observed 

overexpression of the cancer gene suggesting that the SV relocated the gene to a new, stronger enhancer 

or duplicated a preexisting enhancer. In a few cases, we observed reduced expression of the target gene, 

an unexpected outcome given the expected heterozygosity of the SVs. However, in only one of these 

cases was the structural genes altered in copy number (Figure 3-S5), indicating that for all other genes, 

altered expression was a consequence of perturbation to a cis or trans-acting regulatory element.   
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Figure 3- 7. Intergenic SVs affect expression of genes in cis.   

(A) Schema for determining allelic imbalance of expression of genes lying near intergenic structural variants.  

(B) Plotted for the indicated genes in the indicated samples are the allelic fractions for heterozygous SNPs 

across the gene in that sample as determined by whole genome sequencing (lower panel, ordered by increasing 

ratios) and by RNA sequencing (upper panel).  Each column in orange and blue represents a SNV with 

significant biased expression, by Chi-square test of RNA read counts and WGS read counts of two alleles.  

Panels in green are the same data for a patient in which a structural variant does not lie near the gene. 

 
To test more directly whether the altered expression of these cancer genes was a consequence of 

altered cis-regulatory elements, we calculated the allelic bias of the transcripts from that gene in the 

affected patient. For each gene in question, we identified from whole genome sequencing single 

nucleotide polymorphisms in the transcribed region that were heterozygous in the relevant patient’s 

sample and then determined the allelic ratio of those polymorphisms in the RNA transcript sequences in 

the affected patient sample. If the altered expression were a consequence of the intergenic SVs acting in 

cis, then we would expect to observe a significant bias in the RNA transcripts, since the variant should 

affect only one of the two alleles (Figure 3-7A). Representative results of that analysis are shown in 

Figure 3-7D and summarized in Table 3-1 and Table 3-S5. For some of the genes allelic expression 

could not be determined but for 43% of the genes one allele was predominantly expressed. None of 

these genes showed biased expression in those samples in which they were not adjacent to an intergenic 
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SV (Figure 3-7B). For instance, the increased expression of the BRCA1 gene in patient 1936 comes 

almost exclusively (3:1 allelic bias) from one allele but the gene exhibits equal expression from both 

alleles in other patient samples. Similarly, the reduced expression of KIF5B in patient 1953 results from 

attenuation of expression from only one allele. In sum, more than one-third of the cancer genes adjacent 

to intergenic SVs exhibited significantly altered expression and of those for which allelic bias could be 

assessed, 85% were expressed predominantly from one allele (Table 3-S5). None of these gene with 

imbalanced expression are naturally imprinted genes. These data demonstrate that intergenic SVs, which 

are not captured by gene panel or exome sequencing, could play a role in cancer gene expression and 

their associated role in cancer onset or progression. 

Discussion 

This report examining leukemia patient samples documents that application of optical mapping 

in conjunction with whole genome sequencing reveals a large number of SVs unrecognized, and 

essentially unrecognizable, by conventional genomic analysis, including whole genome sequencing 

alone.  While whole genome sequencing has been extensively applied to cancer genomics and optical 

mapping has been sporadically applied to a few individual samples or cell lines [184, 185], our study 

suggests that the combination of the two methods recovers twice as many SVs as revealed by whole 

genome sequencing alone and our evaluation of the previous cell line study suggest that this 

combination is adequate to recover the vast majority of SVs [166]. By comparison to datasets of known 

polymorphic SVs, we could pinpoint those variants that likely arose as somatic alterations. In one case, 

we were able to confirm the validity of this computational approach by comparing variants identified in 

the leukemia sample with those of in the patients’ normal genomes. Thus, our procedure provides a 
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facile means to identify somatic SVs in leukemia samples. Moreover, our application of this method to a 

cohort of leukemia patients revealed reoccurring alterations whose relevance would not be evident from 

evaluation of single samples. 

Table 3- 1. Cancer Genes Adjacent to Structural Variants 

 
Listed for each patient sample are the cancer genes located near each class of structural variants. Those in colored boxes 

are statistical outliers in the context of the TCGA cohort or the highest or lowest value in our patient cohort. Gray boxes 

indicate samples for which RNA sequencing could not be performed. The box adjacent to the gene name indicates whether 

gene expression exhibited allelic imbalance (green), balanced expression (red) or could not be determined (gray). 

Our study identified somatic SVs in 37 genes, mutations of which have been previously 

associated with leukemia. The study also revealed hundreds of genes each affected in multiple patient 
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samples, some of which had been implicated in cancers other than leukemia and some of which had not 

been previously associated with any cancers. The role variants in these genes play in leukemia onset and 

progression certainly warrants further investigation. In particular, we are quite interested in determining 

the therapeutic value of targeting those genes altered in various leukemia samples. For instance, ENPP2 

overexpression is associated with poor outcomes of AML patients, suggesting that inhibition of the 

autotaxin phospholipase activity might improve outcomes in a subset of patients.  

The previous study on SVs in cancer cell lines documented that deletions led to elimination of 

enhancers or topologically associating domain boundaries, resulting in altered transcription of associated 

genes [99, 152]. We have observed similar loss of cis-acting elements in the primary leukemia samples 

from our patients and have determined that these variants can alter expression of the associated gene. 

Clearly, determining whether down regulation of expression of these genes attenuates proliferative 

capacity of the associated leukemia cells would be warranted. For instance, we find that SMAD2, an 

intermediary in TGF-β signaling [186], is upregulated by an intragenic translocation in one of our 

leukemia samples. SMAD2 has been shown to be upregulated and over activated in CD34+ BM 

progenitors from MDS patients. Moreover, pharmacologic inhibition of the TGF-β pathway in vivo, 

using a small-molecule inhibitor of the TGF-β receptor, ALK5, alleviates anemia in a mouse model of 

MDS [187, 188]. Accordingly, determining whether such pharmacologic inhibitors alter the proliferative 

behavior of those cells could suggest a novel therapeutic approach for select patients with the disease. 

Recent studies characterizing the genomic alterations in AML have generated relative consistent 

classification systems based on the particular spectrum of driver mutations in a sample [164, 165]. These 

classifications provide fairly robust prognostic power in predicting the likely outcome of individual 

patients. Our documentation of SVs provides additional information on the genetic alterations in patients 

and can refine their classification. Whether this additional information enhances the prognostic 
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capability of the existing classification schemes will require additional correlation of our SV data with 

clinical outcomes. However, we reported here that stratification of patients on the basis of expression or 

copy number of fifteen genes we found repeatedly mutated in our cohort provided a statistically 

significant difference in outcomes. This suggests that additional studies of previously underappreciated 

SVs may identify additional useful prognostic markers. Furthermore, these studies offer the potential for 

providing novel targets for therapeutic intervention.  

 

  



130 

 

Supplementary Figures and Tables 

Table 3-S 1. Patient Moleucular Diagnosis and Outcome 

ID Patient Cytogenetics 
Other Analysis 
(FISH, PCR, etc) 

*Outcome/ 
days 

784 
55yo M with 
AML  

46,XY,t(8;21)(q22;q22)[20]   L/2207 

798 
63yoF with 
AML 

46,XX, 
der(7)t(7;11)(q35;q12),inv(16) 

+11q23(MLLx3) 
inv(16); 
MYH11/CBFB 
fusion 

L/1784 

868 
29yo M with 
AML 

46,XY,t(9;22)(q34;q11.2)[20] 
BCR-ABL p210 
mRNA transcript 
level elevated 

L/1636 

936 
55yo M with 
AML 

44,XY,del(1)(q42),  -7,   
add(8)(p23),                                                     
-12[18]/44,idem, 
t(4;5)(p14;q13)[2] 

 D/246 

990 
65yo M with 
AML 

46,XY,del(13)(q12q14)[2]/46, 
XY[18] 

  L/1417 

1021 
58yo M with 
AML 

46,XY,t(6;9)(p23;q34), 
t(8;13;11)(q22;q12;q23)[20] 

DEK/NUP214 
fusion 

L/1374 

1160 

71yo F with B-
cell lymphoma 

49,X,der(X)t(X;1)(q13;q11), 
del(3)(q21),add(4)(q31.3), 
add(6)(q23),-8, 
add(9)(p11),add(12)(q22), 
del(13)(q12q14),add(14)(q32), 
add(15)(p11.1),  -18, 
+5mar[11]/46,XX[9] 

MYC 
rearrangement, 
BCL2/IGH fusion 

D/39 

  

Mayo: 13q14/-13, t(11;14), 
t(14;18), del (17p), MYC 
(8q24) and t(8;14) 
MYC/IGH/CEN8 

    

1361 
58yo F with 
AML 

46,XX[20] 
FLT3-ITD ASXL1 
WT1 mutations 

L/437 

1907 
2yo F with T-
cell ALL 

46,XX, 
add(9)(p13)[7]/46,XX[13] 

STIL gene 
deletion with 
retention of TAL1 
(1p32); CDKN2A 
deletion 9(p21) 

L/1342 

1916 
10yo F with 
AML 

47,XX,+8[16]/46,XX[4] Trisomy 8 D/397 
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1936 
5yo M with B-
cell ALL 

46,XY,del(6)(q13q23), 
add(12)(p11.2)[17]/46,XY[3] 

ETV6-RUNX1- 
positive [fusion]; 
CNKN2a (9p21) 
[deletion] 

L/976 

1953 
19yo M with 
AML 

46,XY,t(4;19)(q12;q13.3)[20]   L/800 

*Outcome is represented by L(alive) or D (deceased) / survival days post diagnosis 
 

 

 

 

Table 3-S 2. Number of polymorphic and somatic SVs by combination of OM and WGS 

  

Gain/Dup. Deletion/loss Insertion Inversion Inter-chr TLs 

  Somatic polymor. Somatic polymor. Somatic polymor. Somatic polymor. Somatic polymor. 

1021 36 202 188 2591 94 2535 4 116 11 0 

1160-L 58 187 101 2522 57 2102 11 97 49 0 

1360 30 136 82 1768 175 2055 14 138 2 0 

1907 11 201 150 2365 100 2367 1 102 5 0 

1916 37 174 266 2574 164 2450 2 91 10 0 

1936 36 211 235 2632 150 2287 3 114 11 0 

1953 27 213 205 2563 105 2259 6 85 10 0 

784 26 196 88 2404 78 2340 4 117 9 0 

798 10 182 109 2519 90 2205 8 89 7 0 

868 29 194 58 2426 48 2203 2 110 8 0 

936 30 221 152 2719 87 2298 4 130 24 0 

990 30 268 120 2915 73 2195 5 135 21 0 

Average 30 199 146 2500 102 2275 5 110 14 0 

Percent 13% 87% 6% 94% 4% 96% 5% 95% 100% 0% 

  



 

 

Table 3-S 3. Effectiveness of Different Methods to Detect Different Classes of Somatic Structure Variations. 

SAMPLES   1021 1160-L 1361 1907 1916 1936 1953 784 798 868 936 990 Average Percent 

Copy gain 

and 

tandem 

duplication 

OM+WGS 36 59 30 11 37 36 27 26 10 29 30 30 30.1 100.0% 

WGS only 36 55 29 5 32 30 25 26 9 22 22 28 26.6 88.4% 

OM only 0 2 0 5 4 6 2 0 1 5 5 1 2.6 8.6% 

both 0 1 1 1 1 0 0 0 0 2 3 1 0.8 2.8% 

KA+ 0 4 0 2 1 2 0 0 0 0 3 0 1.0 3.3% 

Deletion 

and copy 

loss 

OM+WGS 191 103 82 150 266 235 205 88 109 56 152 120 146.4 100.0% 

WGS only 35 71 9 26 58 48 59 35 39 23 85 77 47.1 32.2% 

OM only 147 24 70 117 201 182 143 48 68 34 62 37 94.4 64.5% 

both 6 6 3 7 7 5 3 5 2 1 5 6 4.7 3.2% 

KA+ 0 2 0 2 0 2 0 0 0 0 1 1 0.7 0.5% 

Insertion 

OM+WGS 97 59 176 101 168 152 104 79 90 50 90 74 103.3 100.0% 

WGS only 10 13 14 13 15 9 13 14 13 15 18 22 14.1 13.6% 

OM only 84 44 161 87 149 141 92 64 77 33 69 51 87.7 84.8% 

both 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0% 

KA+ 0 6 0 1 0 1 0 0 0 0 1 0 0.8 0.7% 

Inversion 

OM+WGS 4 11 14 1 2 3 6 4 8 2 4 5 5.3 100.0% 

WGS only 0 2 0 1 0 0 1 0 2 1 0 1 0.7 12.5% 

OM only 4 8 14 0 2 3 5 4 5 1 4 4 4.5 84.4% 

both 0 1 0 0 0 0 0 0 1 0 0 0 0.2 3.1% 

KA+ 0 0 0 0 0 0 0 0 1 0 0 0 0.1 1.6% 

Inter-chr 

TL 

OM+WGS 11 49 2 5 10 11 10 9 7 8 24 21 13.9 99.4% 

WGS only 7 34 2 4 7 8 5 7 6 6 17 20 10.3 73.2% 

OM only 1 9 0 1 3 2 4 0 1 0 7 1 2.4 17.3% 

both 3 6 0 0 0 1 1 2 0 2 0 0 1.3 8.9% 

KA+ 4 1 0 0 0 1 0 1 1 1 1 0 0.8 6.0% 



 

 

Table 3-S 4. Resolution of "Added" Sequences 

Sample Cytogenetics OP+WGS Results 

BN936 add(8)(p23), TL chr8-chr12-2,769,428-96,778,624 

BN1160 add(4)(q31.3)  TL chr3-chr4-148,259,617-156,883,828  

 add(6)(q23) chromothripsis chr6-chr8-chr18 

 add(9)(p11), chromothripsis chr9-chr6-chr8 

 add(12)(q22), Inv chr12-chr12-40,647,772-91,231,824 

 add(14)(q32), TL chr14-chr18-105,864,250-63,104,165  

 add(15)(p11.1), TL chr15-chr18-28,135,947-2,823,424 

Peds 1907 add(9)(p13)[7] TL chr6-chr9-43,687,796-33,130,539 

Peds 1936 add(12)(p13.2)[17]  TL chr12-chr21-11,885,827-34,910,564 

 

 

Karyotyping of the listed samples documented that extra material was added to a chromosome, specified 

as "add(chr)(location)," without determining the source of the added material. The mapping results obtained in 

this study by OP + WGS clarified the source of the added material and the specific junction site on each of the 

participating chromosomes. 
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Table 3-S 5. Allelic Imbalanced Expression of Cancer Genes Adjacent to Structure Variations 

Gene Patient SV 
z-score across TCGA 

samples 

Z-score across our 

samples 

RNA fraction of the predominant 

allele (number of significant SNPs, 

p<0.05) 

Significantly higher or lower across TCGA samples and same trend in our cohorts 

BCR 1021 TL 2.18 1.51 0.79 (6) 

CHIC2 1021 TL -2.10 -0.34 0.93 (2) 

NUP214 868 TL 3.43 1.40 NA 

SMARCB1 868 TL -3.53 -2.10 1 (7) 

DAXX 936 TL -1.92 -1.45 NA 

BCL2 1160 TL 3.16 2.06 0.89 (30) 

FUS 1160 TL 2.91 0.86 0.61 

NFIB 1160 TL 2.38 1.92 1(8)* 

BRCA1 1936 TL 2.18 1.56 0.81 (4) 

SMAD2 1936 TL 4.92 1.20 0.76 (3) 

STAT3 1936 TL -2.34 -2.49 0.51 

USP6 1936 TL -1.95 -1.35  NA 

NUMA1 1021 DEL 3.31 1.76 0.82 (1) 

CRLF2 1160 DEL -2.50 -1.87 NA 

RAP1GDS1 1907 DEL 3.43 1.91 0.84 (3) 

ELF4 1907 DEL -4.16 -2.08 NA 

ARHGEF12 1936 DEL 2.57 1.93 NA 

TSC2 1021 DUP 2.60 2.03 1 (1) 

RNF43 868 DUP -3.38 -2.13 1 (1) 

MTCP1 1936 INV 2.47 0.76 NA 

RPL10 1936 INV 2.15 1.20 0.75 (2) 

SDHA 1936 INV 3.52 0.84 1 (2) 

HIST1H4I 1361 INV -2.32 -1.10 NA 

Highest or lowest expression across our samples 

BRCA2 1021 TL -0.99 -1.81 NA 

BRIP1 1021 TL -1.39 -1.61 NA 

GPC3 1021 TL -0.91 -1.96 NA 

PDGFRA 1021 TL 0.96 1.00 NA 

BCR 1160 TL -0.27 -1.30 0.54 

KDSR 1160 TL 0.06 -1.10 0.53 

KIF5B 1953 TL -1.77 -0.88 1 (5) 

NCKIPSD 1953 TL -0.09 1.24 NA 

FNBP1 990 TL 1.56 1.34 0.77 (3) 

JAZF1 1361 TL -1.54 -1.31 NA 

WHSC1 1361 TL 0.51 -1.33 NA 

U2AF1   1021 DEL 2.07 -2.12 NA 

SDHC 1953 DEL 1.49 -2.30 1 (3) 

STAT6 1021 DEL 1.02 1.52 0.82 (2) 

H3F3A 1021 DEL 2.14 -1.39 0.52 

CLTCL1 1021 DEL -0.70 -1.32 NA 
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SF3A1 1160 DEL -1.03 1.32 0.90 (3) 

FEV 1160 DEL 0.80 1.41 NA 

BCORL1 1907 DEL -1.15 -1.31 NA 

CRLF2 1907 DEL 0.99 1.35 NA 

BCL3 990 DEL -0.66 1.04 NA 

TCF7L2 1361 DUP -0.56 -1.20 1 (2) 

FLT4 1021 INV -0.58 -1.12 NA 

BTG1 1160 INV 1.18 2.00 0.72  (1) 

EIF4A2 1160 INV 1.69 1.72 0.721533258 

FEV 1160 INV 0.81 1.42 NA 

LPP 1160 INV 0.78 -1.62 1 (1) 

TFRC 1936 INV -0.55 -1.69 1 (1) 

TAF15 990 INV 2.21 1.32 NA 

ATP2B3 1361 INV 1.57 1.55 NA 

NA no heterozygous genomic SNPs available or too few RNA reads  

X Balanced expression    

* Remarkable imbalanced expression but statistically not significant due to limited RNA reads 
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Figure 3-S 1. . Overlap of inter-chr translocation calls between WGS and OM at different levels. 

A. Three models that WGS- and OM-specific calls provide evidence for mutual confirmation. I. WGS and OM 

detects TLs with similar positions but inconsistent orientations, representing the possible existence of reciprocal 
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TLs, each component detected by one method, exemplified by sample 1953. Fused RNA transcripts of both 

orientations are detected. II. WGS and OM detects TLs with one end similar and the other end distinct, also with 

varied orientations. This is prevalent in two samples 936 and 1160 that harbor chromothripsis, where many small 

DNA fragments shattered from a local region join into various chromosomes and regions across the whole 

genome. III. One end of the WGS-specific TL is consistent with the breakpoint identified by OM, but OM is not 

able to resolve the other part of TL, because of insufficient length of the contig. OM requires at least nine labels 

(>80Kb) to uniquely map one arm of a TL. B. An example of WGS detects TLs of small DNA fragment 

(<100Kb) that are undetectable to optical mapping, indicated by a pair of TL breakpoints. C and D. Overlap of 

inter-chr TL calls between the two methods. Same TLs refer two SVs with consistent loci of both ends and 

concordant orientations. Reciprocal TLs, single end match and single end resolved by OM refer to models I, II 

and III in A. Fusion of transcripts from RNA-seq data are also used to validate additional TLs that are not 

confirmed by any other situations. TLs of smaller fragment refers to the situation described in B. 
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Figure 3-S 2. Three-way translocation identified by OM/WGS  

Diagram of the organization of an unusual three way reciprocal translocation identified in sample 1021 (upper 

left). The breakpoints of all three junctions are precise: one junction (chr8-chr11) exactly joins two chromosomes 

without loss or gain of sequences, one with a 2 bp duplication (chr11-chr13), and the other with a 55 bp 

duplication (chr13-chr8). Pileups of paired-end short read sequences around the breakpoints are shown the other 

three panels, with each horizontal line representing a fragment on which the dark grey lines represent the 

sequenced ends of the fragment and the intervening light grey line the inferred unsequenced segment separating 

them. Reads crossing the boundary are indicated either by dual red/purple colored bars in which the paired ends of 

a single fragment map to different chromosomes or by tricolored bars in which the green region represents a 

sequenced segment spanning the junction.  
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Figure 3-S 3. Comparison of karyotyping and structure variation determination in the samples of this study. 
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Figure 3-S 4. Survival data stratified by expression levels of genes identified in our cohort. 
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Figure 3-S 5. Copy number of cancer related genes within 1Mb to SVs in this study.  
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Materials and Methods 

Materials and Experiments 

Patient Samples 

Bone Marrow (BM) aspirates or Peripheral Blood (PB) samples were obtained from AML 

patients, after informed consent using protocols under the Penn State Hershey IRB-approved protocol 

PRAMS Y00-186 or protocol PRAMS 40532. Mononuclear cells (MNCs) were isolated by density 

gradient separation (Ficol-Paque, GE Healthcare Life Sciences, Pittsburgh, PA) and frozen for later use. 

Anonymized adult leukemia samples were obtained from the Penn State Hematology/Oncology 

Biobank. Anonymized pediatric leukemia samples were obtained from the Pediatric 

Hematology/Oncology Biobank. Patient clinical and demographic data are summarized in Table 3-S1. 

Cell culturing 

T-cell Expansion from Patient PBMCs. T-cell expansion was performed using the Miltenyi T 

Cell/Activation Expansion Kit (130-091-441) according to the manufacturer’s instructions. T-cell 

activation beads were prepared prior to thawing patient cells and stored at 4°C until use. 100µl of CD2-

Biotin, CD3-Biotin, and CD28-Biotin were added to 500µl of anti-Biotin MACSiBead particles. 

MACSiBead buffer (0.5% human serum albumin and 2mM EDTA in PBS, PH 7.2, 200µl) was added to 

the mixture and the beads rotated slowly at 4°C for two hours. PBMCs from the patient were thawed in 

TEXMACs media with 1% Pen/Strep and counted using an automated cell counter. T-cell activation 

beads were added to the PBMCs at 25µl/5x106 cells. IL-2 was added 96 hours later at 0.8µl IL-2/ml of 

media. Cell cultures were monitored and IL-2 media was added as needed. On day 14 post-thaw, 

additional T-cell activation beads were added to the culture.  
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T-cell Sorting. Cultured cells 3.0x107 were harvested by centrifugation and resuspended in 2ml 

PBS to which was added 5µl of CD3-APC (BD Biosciences - 340661) and 20µl of CD33-PerCPCy5.5 

(BD Biosciences - 341640) followed by incubation in the dark for 15 minutes at room temperature. CD3 

positive/CD33 negative cells were recovered by sorting on a BD FACS Aria Sorter II. 

Optical Mapping  

DNA extraction and nickase labeling were performed as described previously [166]. For direct 

labeling of genomic DNA, 750ng of gDNA was mixed with DLE-1 Buffer (Bionano Genomics, 

Part#20350), DL-Green (Bionano Genomics, Part#20352), and DLE-1 Enzyme (Bionano Genomics, 

Part#20351) and incubated for 2 hours at 37℃ in a thermocycler. Proteinase K solution was then added 

to the reaction and incubated for 30 minutes at 50℃. Finally, a DLS-membrane (Bionano Genomics, 

Part#20358) was placed upon 60 L of DLE-1 buffer in one well of a DLS-microplate (Bionano 

Genomics, Part#20357). DNA was transferred onto this membrane, incubated at room temperature for 

one hour, transferred onto another membrane with DLE-1 buffer and incubated for 30 minutes at room 

temperature. DTT (Bionano Genomics, Part#20354), Flow Buffer (Bionano Genomics, Part#20353), 

and DNA stain (Bionano Genomics, Part#20356) were added to the DNA in an amber tube and the tube 

was mixed at 5rpm for 1 hour at room temperature and then stored in the dark overnight at room 

temperature. Each labeled sample was added to a BioNano Saphyr Chip (Bionano Genomics, 

Part#20319) and run on the Bionano Saphyr instrument, targeting 100X human genome coverage.  

Library Preparation and DNA Sequencing 

DNA libraries were prepared from DNA extracted from PBMC or blood using according to the 

KAPA HyperPrep PCR-free Kit (Roche). Illumina NovaSeq S2 150 bp paired-end sequencing was 

performed to achieve 40X genome coverage. RNA libraries were prepared from total RNA following 
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rRNA depletion with KAPA RNA HyperPrep Kit RiboErase according to manufacturer’s instructions 

(Roche). Illumina NovaSeq 50 bp paired-end sequencing was performed to obtain 50 million raw reads 

per library. 

Data Analysis 

Variant detection and filtration from WGS results  

SV and SNV detection: We used two pipelines to independently identify SVs. The first pipeline 

uses BWA-MEM (v0.7.15-r1140) [189] to align the paired-end reads to human reference genome 

GRCh38 (version GCA000001405.015). Duplicated reads were removed by Sambamba (v0.6.6) [190]. 

Reads with mapping quality ≥ 20 were retained for downstream SV calling by Delly (v0.7.7) [116], 

which reports SVs as deletion, inversion, insertion, tandem duplication or inter-chromosomal 

translocation. SVs were also independently detected by the Speedseq pipeline (v0.1.2) [191], in which 

paired-end reads were aligned to the same GRCh38 reference genome with BWA-MEM. Duplicated 

reads were removed by SAMBLASTER (v0.1.24) [192]. SAMBLASTER then extracted discordant read 

pairs and split reads for downstream SV detection, which was accomplished by Lumpy (v0.2.13) [115] 

with default parameters. During the SV detection, Delly and Lumpy exclude a list of telomeric, 

centromeric, and 12 heterochromatic regions provided by the Delly software 

(https://raw.githubusercontent.com/dellytools/delly/master/excludeTemplates/human.hg38.excl.tsv). 

Copy number variants (CNV) detection:  were detected by Control-FREEC (v11.0) [117] with 

the following parameters “breakPointThreshold = 0.8, coefficientOfVariation = 0.062, ploidy = 2”. 

Control-FREEC normalizes copy numbers for genome GC contents, mappability, and ploidy. Copy 

number profile for each 50 kb bin of the genome was used for making Circos plots. 

https://raw.githubusercontent.com/dellytools/delly/master/excludeTemplates/human.hg38.excl.tsv
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SNV detection: SNVs were detected using FreeBayes (version: v0.9.21-19-gc003c1e, included 

in SpeedSeq pipeline (version: 0.1.2)) (https://arxiv.org/abs/1207.3907) with the following parameters “—

min-repeat-entropy 1”.  Low-quality SNVs (QUAL field < 20) were removed for downstream analysis. 

SNVs were annotated with SnpEff (version 4.3) [193] using default parameters and filtered for potential 

protein altering variants (annotated as high/moderate putative impact). This filtered SNV set was then 

compared against common SNPs (dbSNP150 with allele > 0.01) to keep only potential somatic SNVs. 

SV filtration and classification: We employed the following criteria to filter SVs detected by 

WGS: SVs had to be 50 bp or greater, could not map to chromosome Y or the mitochondrial genome 

and had to be supported by at least 10 reads combining spanning paired-end reads (PE) and split reads 

(SR) and an additional 2 split reads. SVs calls from Delly and Lumpy were merged to form a consensus 

call. Merging criteria differed depending on the type of SVs.  A deletion or duplication was merged if 

the overlap of the size and location of the SV as determined by the two methods was greater than 50% of 

that as determined by either method alone. Deletion coordinates determined by Lumpy were used for the 

merged call set. An inversion was merged if the overlap of the size and location of the SV as determined 

by the two methods was greater than 90% that as determined by either method alone and Lumpy 

coordinates were used. Translocations were merged if both break-point ends mapped within 50bp of 

each other and if the strand of the break-point ends matched. Final translocation coordinates were based 

on Lumpy calls. Coordinates for insertions were obtained from Delly since Lumpy does not detect 

insertions.  

We merged deletions detected by LUMPY/DELLY and loss of copies detected by Control-

FREEC to form a non-redundant list of “deletions”. Similarly, we merged duplications detected by 

LUMPY/DELLY and gain of copies detected by Control-FREEC, removed redundant ones, and defined 

https://arxiv.org/abs/1207.3907
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the overlapped ones as “duplications.” For SVs detected by both LUMPY/DELLY and Control-FREEC, 

we use the breakpoints provided LUMPY/DELLY. 

We excluded inter-chromosomal translocations that were also found in a human normal cell line 

(GM12878) in order to remove likely polymorphisms. WGS data for GM12878 were downloaded from 

European Nucleotide Archive (Accession number: ERR194147) and analyzed from SVs by the same 

aforementioned pipelines. We also removed inversions in each patient sample that share a RO ≥ 99.9% 

with inversions detected in GM12878. We removed inter-chromosomal translocations whose both 

break-point ends are within 50 bp in any two individuals, since intra-chromosomal translocations that 

are shared between two individuals at the nearly same location are likely to be polymorphisms or false 

positive. 

SV detection and filtration from optical mapping results. 

De novo assembly, SV detection and SV classification. We performed de novo assembly of 

cancer genomes using long optical mapping molecules, from which we identified SVs by comparing the 

generated cancer genome to the reference genome GRCh38, using software BioNano solve 3.1.1 with 

RefAligner and pipeline 7196/7224. DNA molecules used for assembly met the following criteria: 

length >150Kb and spanning at least nine labels, with a signal to noise ratio higher than 2.75 and 

backbone intensity lower than 0.6. Parameters used for de novo assembly and SV detection are the same 

as described in the method section in our previous work [166].  

Raw SV output comprises deletions, insertions, inversion, duplications and translocations, which 

include interchromosomal translocations and any intra-chromosomal translocations that are larger than 

5Mb. We ran software smap2vcf to convert SV output to VCF format to determine orientation and then 
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separated intra-chromosomal translocations into deletions (5’->3’) and inversions (5’->5’ and/or 3’->3’) 

according to their orientation.   

Filtration of detected SVs.  We removed all SVs that were smaller than 50bp and all intra-

chromosomal SVs with confidence score smaller than 0. We further removed false positive SVs 

generated due to technical bias such as similar labeling pattern of distinct genomic regions, which results 

in misalignment and misidentifications of SVs. We also removed large identical SVs (defined as 

>99.99% overlap) that were found in more than one sample, since identical somatic SVs are unlikely to 

repeatedly occur in a small collection of samples. We removed deletions overlapping genomic gaps, 

which represent correction of gap size of the reference genome rather than true deletions.  Finally, we 

generated a list of false-positive translocations and inversions from our previous work and we removed 

SVs whose breakpoints that are within 500Kb to these previously identified SVs.  

Integration of SVs from optical mapping and WGS. 

We integrated SV calls to combine SVs independently identified by both methods into a single 

call and to represent each SV with breakpoints of highest resolution available. WGS provides SVs 

breakpoints with base pair resolution, while optical mapping provides only the nearest labeling site to 

the left and right of the SV (SV interval) instead of its start and end. We therefore set the following 

criteria for determining whether SVs independently detected by optical mapping and WGS refer to the 

same event: 1) Deletions, insertions and duplications detected by WGS must overlap at least 50% with 

the SV interval demarcated by optical mapping and the difference in size predicted by the two methods 

must be less than 30%. 2) For translocations and inversions, the breakpoint detected by WGS must lie 

within 500Kb to that detected by optical mapping and the orientation of the SV determined by the two 

methods should be consistent. If a copy number gain matches duplications found by optical mapping, we 
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specified the SV to be a duplication. 3) A duplication detected by WGS can also be an insertion detected 

by optical mapping if the duplication is completely within the insertion range and both share similar 

sizes, with a difference of size smaller than 30%. All SVs detected by both methods are represented by 

the breakpoints obtained by WGS. Finally, we combine the SVs detected by both methods and those 

only detected by one method, to generate a union of SV calls without redundancy. 

Determination of somatic SV mutations 

We used several filtering strategies to distinguish between polymorphic SVs and somatic 

mutations. First, we compared our deletions, duplications, copy gain and inversion with corresponding 

SV type in the database of genomic variations (DGV, hg38 updated on 09-06-2016) [167] with the 

stipulation that an SV that appeared in at least five individuals in the DGV is a polymorphism. We 

removed from our somatic mutation list any SV that overlapped at least 50% with a DGV polymorphic 

SV with less than 30% difference in size. Second, we removed SVs with identical sizes and positions in 

any two or more of our samples or in the NA12878 cell line [166]. Third, we removed SV calls 

matching any identified in the UCSF optical mapping dataset of polymorphisms [168].  We interpreted 

an SV detected by optical mapping in three of the 150 normal individuals in the study to be a 

polymorphism. Fourth, we removed SV calls that match any observed in the BioNano Genomics control 

dataset, which is publically available within the Bionano Access software download 

(https://bionanogenomics.com/support/software-downloads/) at 

/pipeline/Solve3.3_10252018/VariantAnnotation/10252018/config. 

Circos profiling of leukemia genome 

Leukemia genome profiles of each samples were generated using Circos [194], which includes 

three tracks: copy number variation genome-wide, deletions and duplications, and inversions and 

https://urldefense.proofpoint.com/v2/url?u=https-3A__bionanogenomics.com_support_software-2Ddownloads_&d=DwMFAg&c=_FmMnDvUH5queZcSmOuBzHZMbp7E7EwtGwv5cxxnTj0&r=eVCQSWoEKYl88ufj3TSZLXHET4S9tXTQjWev1JBRe3FF9Qkku0Oaxmn_0HK9NgTa&m=o76Wu03FP5Hghguq42wK0xrSP2QO_AZRaIb_6W21gqw&s=NXTjKrHY9fJfDvgN1z8ZcWNvPp0vrjy4roJVFDMaYzY&e=
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translocations. We used copy number at 50Kb bin size measured by Control-FREEC. The SVs we 

plotted were the integrated union from WGS and optical mapping. We display genes that are directly 

overlapping with deletions and copy gains in the outer track. For inversions and translocations, we set a 

buffer zone of 50Kb to represent to possible position of SV breakpoint detected by optical mapping. We 

display genes that are overlapping with the possible position of breakpoints of translocations and 

inversions in the inner track.  

Comparing SVs to Karyotype 

We defined an SV detected by our method as identical to that identified by karyotyping if 1) the 

position of the SV detected by optical mapping or WGS corresponds to that provided by karyotyping, 

demarcated by chromosome and the band on the p or q arm; 2) the SV detected by our method is larger 

than 1Mb, which would be of sufficient size to be detected by karyotyping; and 3) the type of SV is 

consistent between methods: deletion or copy loss in our method corresponds to “del” or “-” in 

cytogenetics; inversions correspond to “inv()”; translocations or insertions correspond to “t()”, “der()” or 

“ins()”;  gain of copies or polyploidy correspond to “+”. Complex forms of copy gain such as fragment 

duplication, inverted duplication or translocated duplications are generally identified as “add” in 

karyotyping.  

Identification of frequently disrupted genes  

We intersected RefSeq gene exons (GRCh38) with somatic SVs we detected and considered a 

gene disrupted if 1) part or all of one or more exons overlaps any part of a deletion, loss or gain of 

copies, or duplications; 2) the breakpoint of an inversion or inter-chromosome translocations lies within 

the gene; 3) the coding region carries an indel or SNV resulting in nonsense, frameshift or missense 

mutation or a splicing sequence alteration.  Genes inside of an inversion but not interrupted by the 
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breakpoint are not considered disrupted. We divided genes into three exclusive groups based on data 

from COSMIC (https://cancer.sanger.ac.uk/census): 86 AML driver genes, 534 other general cancer-

related genes, and 23631 other genes without clear evidence for association to cancer.  

Outcomes analysis 

For each novel gene frequently disrupted by somatic mutations, we examined whether its copy 

number or gene expression correlated with disease outcome. Kaplan Meier survival plots were 

constructed from clinical outcomes data from GDC AML patient cohorts 

(https://xenabrowser.net/datapages/; https://portal.gdc.cancer.gov/projects/TCGA-LAML). Patients were 

stratified on the basis of gene expression or gene copy number evenly into two groups, one containing 

half of the cohorts with above the average expression/copy number of the gene and the other group 

containing the half of cohorts with below average expression/copy number of gene.  

Copy number linkage analysis 

We obtained copy number variation of TCGA AML cohort (n=142) profiled by SNP array from 

GDC (https://portal.gdc.cancer.gov/projects/TCGA-LAML) , segmented the genome into 10Kb bins and 

use an in-house pipeline to calculate the average CNV from all patient for each 10Kb bin. We calculated 

the Z score and the corresponding P value for each bin genome-wide and used that to set thresholds 

above or below which represents significant gain or loss across the AML cohort.  

Simulating distances between SVs and cancer-related genes 

Using 86 previously defined AML-driver gene [164, 165] and 535 additional cancer-related 

genes from COSMIC (https://cancer.sanger.ac.uk/census), we calculated the number of such genes 

within a specific distance interval to the nearest SV for each SV subtype in patient samples as well as 

https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/projects/TCGA-LAML
https://portal.gdc.cancer.gov/projects/TCGA-LAML
https://cancer.sanger.ac.uk/census
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gene density (genes per Mb) . Genes that directly overlap an SV were excluded. We then permuted the 

distance distribution by fixing the positions of the SVs and randomly distributing the positions of the list 

of genes and then calculated the number of genes within specific distance intervals to the nearest SV 

after each individual permutation. In detail, the entire gene body is moved in the permutation, so the 

gene size affects the result. We measure the shortest distance between a closest SV to the nearer end of 

the gene.  The simulations were run one thousand times to generate a distribution of expected number of 

genes and gene density for each distance interval. We then calculated the Z-score and P value of the 

actual gene density by comparing to the distribution of expected gene density for each interval.  

RNA-seq data processing 

RNA-seq reads were processed using the ENCODE standard RNA-seq processing pipeline 

(https://github.com/ENCODE-DCC/long-rna-seq-pipeline). Briefly, raw RNA-seq reads were mapped to 

human genome reference GRCh38 (version: GRCh38_no_alt_GCA_000001405.15) with STAR 

(v2.5.3a_modified) [195]. Mapped reads were quantified and aggregated at gene level by RSEM 

(v1.2.31) [196]. FPKM values for each gene were used for downstream analysis. To investigate the level 

of gene expression of our patient samples in general AML populations, we downloaded gene expression 

for two AML cohorts from TCGA (https://portal.gdc.cancer.gov/projects/TCGA-LAML, 

https://portal.gdc.cancer.gov/projects/TARGET-AML). We then performed quantile normalization for 

FPKM values across patient sample in this study and TCGA cohorts to eliminate batch effects. To 

quantify the level of gene expression in this study in general AML population, we calculated the Z-score 

for each gene on the log-transformed FPKM values relative to the average FPKM value for that gene in 

all samples both across only our leukemia and across our samples plus the TCGA cohort.  

https://github.com/ENCODE-DCC/long-rna-seq-pipeline
https://portal.gdc.cancer.gov/projects/TCGA-LAML
https://portal.gdc.cancer.gov/projects/TARGET-AML
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Allelic gene expression analysis 

We processed the bam files generated from RNA-seq with the WASP pipeline [197] to correct 

bias towards certain SNV alleles, which can be introduced during mapping. In running WASP, we input 

SNVs detected from WGS, and WASP outputs a new bam file with bias removed.  We then identify 

SNV on the newly generated bam file using samtools mpileup.  

We then pick all the heterozygous SNVs that appeared in WGS data, by the criteria that the allele 

ratio between reference and alternative alleles should be between 0.333 and 3.  We examine the allele 

fraction of the same loci in RNA-seq data and performed chi-square test on the basis of the allele 

fraction from WGS and RNA-seq. For each gene, we counted the number of significant SNVs, and we 

calculated the expression percentage contributed by the dominant allele, normalized by the allele 

fraction in WGS. 

Data Access 

Raw and aligned next generation sequencing files have been submitted to the European Genome-

Phenome Archive (EGA; https://www.ebi.ac.uk/ega) within study accession EGAS00001003431. 

Bionano variant calls and mapped reads for our samples can be downloaded from 

https://research.med.psu.edu/departments/personalized-medicine/publications/.

https://www.ebi.ac.uk/ega
https://research.med.psu.edu/departments/personalized-medicine/publications/


 

 

Chapter 4 

 

Subtype-specific and structure variation-induced chromatin spatial reorganization in 

acute myeloid leukemia 

Abstract 

Acute myeloid leukemia (AML) is a set of heterogeneous myeloid malignancies hallmarked by 

mutations in epigenetic modifiers, transcription factors and kinases that can cause epigenetic reshaping. 

It is unclear whether those mutations drive chromatin 3D structure alteration and contribute to oncogenic 

dysregulation in AML. By performing Hi-C and whole genome sequencing in 21 primary AML and 

healthy donors’ samples, we identified recurrent AML- or subtype-specific alteration of compartments, 

TADs, and chromatin loops. To study the impact on gene regulation, we performed RNA-Seq, ATAC-

Seq and CUT&TAG for CTCF, H3K27ac, and H3K27me3 in the same samples. We observed 

dysregulation of many AML-related genes, represented by MYCN, MEIS1, WT1, ERG, MYC GATA3, 

BCL11B and IKZF2, intimately linked to the recurrent gain of loops and switch of compartment or TAD, 

alongside acquisition of AML-specific enhancer or repressor. Further, we profiled structure variations 

using WGS and Hi-C data to reconstruct the cancer 3D genome, by which we identified structure 

variation-induced neo-loops and enhancer-hijacking events. Furthermore, through conducting whole 

genome bisulfite sequencing in patient samples, we found altered methylation correlated with A/B 

compartment switch, and loss of CTCF insulation due to hypermethylation, leading to extensive gain of 

loops in AML. By treating the AML cells with DNA hypomethylation agent 5-azacytidine, the altered 

chromatin structure and gene expression can be restored, with switched compartment reverted and 
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gained loops dissociated, alongside compromised AML cell proliferation, overall providing insights into 

AML treatment through therapeutic restoration of chromatin structure. 

Introduction 

Acute myeloid leukemia (AML) is a heterogeneous and complex set of myeloid malignancies 

characterized by differentiation blockade and clonal proliferation of abnormal myoblasts in the bone 

marrow, at the expense of normal hematopoiesis. The National Cancer Institute of the National Institutes 

of Health estimates that 21,450 new cases of AML occurred in United States during 2019, taking 10,920 

lives and leaving a five-year survival rate around 28.3%. Based on how mature the cancer cells are at 

diagnosis and the key genomic mutations, the different subtypes of AML have distinct prognosis and 

strategy of treatment[198, 199]. The World Health Organization (WHO) classifies AML into several 

groups according to some highly recurrent and outcome-associated genetic abnormalities, including but 

not limited to NPM1 mutations, biallelic CEBPA mutations, inversion 16, RUNX1 mutations including 

t(8;21) and other mutations, t(9;22) (BCR-ABL1 fusion), t(15;17) (PML-RARA fusion), t(1;22), inversion 

3 and MLL mutation[7]. AML patients also harbor many additional mutations that tend to be co-

occurred with certain driver mutations, such as FLT3-ITD (internal tandem duplication), TET2 with 

NPM1 mutation, aneuploidy with TP53 mutation, and GATA2 with CEBPA[165]. Driver mutations 

disrupt functions of genes that encode histone or DNA modifiers such as EZH2, MLL family, DNMT2A, 

TET2 and IDH1/2, transcription factors (TF) like MYC, GATA1/2, RUNX1 and CEBPA, chromatin 

structure proteins like STAG2 and RAD21, or kinases like KRAS, NRAS, FLT3, KIT and ABL1, driving 

the epigenetic reshaping of chromatin[7, 164, 200]. Therefore, AML subtypes adopt unique chromatin 

landscapes of DNase hypersensitive sites and binding of TFs, forming subtype-specific regulatory 
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networks[201]. However, little is known about the physical structural basis that accommodates the AML 

regulation network. It has been appreciated that chromatin folding and spatial organization plays a 

critical role in cis-regulation in normal development and diseases, and aberration in epigenetic 

modification is also known to disrupt chromatin 3D structure[55, 57].  Therefore, we ask whether AML 

manifests recurrent and subtype-unique change of chromatin conformation, and whether and how they 

contribute to the oncogenic transcriptional misregulation. 

A hallmark of AML is large structural variations (SVs), including inversions, deletions, 

duplications, and translocations. Large SVs have been linked to alterations in chromatin architecture and 

domains, including the formation of “neo-TADs”[32, 90]. SVs also bring originally distant genes and 

cis-regulatory elements in proximity by interactions to form the so-called “neo-loops”[100], opening the 

avenue for “enhancer hijacking” to take place when an ectopic enhancer activates the transcription of the 

gene[91]. While previous studies revealed specific incidents of such events in driving glioma, T-ALL 

and developmental diseases[97-100, 202, 203], it is unclear whether “enhancer hijacking” rarely or 

frequently occur in cancer or AML. Genome-wide assessment of its frequency is challenging, because it 

requires thorough interrogation of chromatin interactions formed across SVs and assignment of an 

ectopic enhancer to a gene that have not been paired before in reference genome. However, current 

analytic tools tackling Hi-C data are not adapted to rearranged genome. To resolve the whole picture of 

AML chromatin reconfiguration and not to miss those that rise from SVs, a tool that can map Hi-C 

matrix to the rearranged cancer genome is needed to identify neo-loops genome-wide. 

Given extensive chromatin structure change in AML that underlies the transcriptional 

misregulation, an important question is whether there are means of AML treatment through 

therapeutically restoring the chromatin structure. Previous studies showed that cancer genomes are 

frequently hypermethylated at CpG island and CTCF binding sites, leading to CTCF displacement and 
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disruption of genomic insulation[97, 98, 204]. Also, altered methylation can reconfigure  the chromatin 

structures by recruiting proteins[205]. Therefore it is crucial to understand the association between DNA 

methylation and chromatin 3D structure in AML, and to test whether DNA hypomethylation agents like 

5-azacytidine (5-AZA) are able to restore chromatin structures, as a potential therapeutic pathway [206-

208].  

In this study we performed in-situ Hi-C and RNA-seq in 21 primary samples to identify change 

of chromatin structure and transcription dysregulation, including peripheral blood mononuclear cells 

(PBMC) from 3 healthy donors and 18 leukemia patients of various WHO subtypes,. We adopted PCR-

free whole genome sequencing (WGS) on all leukemia samples to more accurately profile mutations and 

SVs (Figure 4-1A). We found subtype-specific alteration of 3D genome structure, including 

compartment, TAD and loops (Figure 4-1B). By conducting ATAC-seq and CUT&TAG of H3K27ac 

and H3K27me3, we identified AML-specific enhancers and repressors that co-occurred with gain of 

chromatin loops (Figure 4-1C). We further applied our newly developed computational method Neo-

loop Finder to detect SV-induced neo-loops and enhancer hijacking events genome-wide. Next, we 

associated DNA methylation with change of chromatin structure, through performing whole genome 

bisulfite sequencing (WGBS) on 2 controls and 10 AML samples at 30X coverage (Figure 4-1D). We 

integrated our CUT&TAG of CTCF to show disruption of CTCF insulation by hypermethylation as a 

cause of gain of loops. We proceeded to verify that methylation inhibitor 5-AZA can restore the altered 

chromatin structure and gene dysregulation, by performing Hi-C, WGBS, CUT&TAG of CTCF and 

RNA-seq on two AML cell lines. We showed that DNA methylation can be targeted as a pathway to the 

restoration of chromatin structure and transcription cis-regulation in leukemia treatment.  
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Figure 4- 1. Figure 1. Identification of chromatin reorganization and related cis-regulatory 

dysregulation in primary AML samples.  
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A. Overall design and workflow of this study. 18 Primary leukemia samples and 3 control PBMC 

from healthy donors are included. B. Representative identification of subtype-specific differential 

compartment (left) switch and gain of chromatin loops (right) at gene MYCN and its interacting 

regions. The arrow points to the stripe of interaction hotspots that demarcate a cluster of loops 

gained for the MYCN. N1, N2, T1, T2, etc. are the ID of each patient with the subtype-defining 

mutations stated in the left box. C. Activated gene transcription, active promoter and enhancer co-

occur with gain of chromatin loop for MYCN.  Shown are the representative RNA-seq, ATAC-seq, 

and CUT&TAG data of H3K27ac, H3K27me3, and CTCF from one sample of each subtype and 

control. Sample ID with bold font are the ones with gain of loops. The purple arc links the loop 

anchors, with gene promoter highlighted in light purple and distal regions labeled in gray. D. 

Representative DNA methylation profiled by WGBS. 

 

Results 

AML of same subtypes share similar alteration of chromatin compartmentalization 

In-situ Hi-C was performed in three normal PBMC, 17 AML samples known for mutations of 

t(6;9), t(8;21); t(9;22), inv(16), NPM1, DNMT3A, TET2, FLT3-ITD, CEBPA, RUNX1 and MLL 

family point mutation, etc. (Figure 4-2A). Each sample generated in average around 600 million paired-

end raw Hi-C reads. We also included one lymphoma sample to test if Hi-C distinguishes between 

different blood malignancies. PCR-free WGS was conducted with in average 40× coverage to facilitate 

mutation subtyping, in addition to the results acquired from clinical diagnosis.  

First, we tested whether AML subtype is related to chromatin 3D structures. The unsupervised 

hierarchical clustering based on first principle component of the Hi-C matrix is able to distinguish 

between AML samples of different WHO subtypes with highly consensus mutation and separates them 

apart from the lymphoma (Figure 4-2A). Noticeably a group of samples are clustered together by 

commonly sharing mutations in KMT2B gene (MLL2), which has long been known as a hotspot of 

AML but has not been used as a dominant subtyping classifier. Compartment analysis shows that A-to-B 
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compartment switch is more prevalent than B-to-A switch (6.1% VS 3.2%) in AML, defined by a region 

consistently A or B in three controls but turning into B or A in AML samples (Figure 4-2B). 

Intriguingly we found certain regions show recurrent or subtype-specific compartment alteration 

(Figure 4-2C), in which reside many cancer related gene (Figure 4-S1).  The A-to-B compartment 

switch at the promoter of all genes or cancer-related genes is highly correlated with decreased 

transcription, while B-to-A with increased transcription (Figure 4-2D and Sup Figure 4-2A).  As 

exemplified in Figure 4-2E and Sup Figure 4-2A, GATA3, BIRC3, BCL11B, ATM and RAD21 that are 

known for being frequently mutated in various blood malignancies are found recurrently turning their 

promoter from A to B compartment[164, 209], with the expression of the gene either repressed or kept 

silenced. Meanwhile, B-to-A switch affects genes related to promoting tumor growth, such as WT1, 

FGF13, POU2AF1 and IGF1R, which are also associated with transcription activation (Figure 4-2D, 

Figure 4-S1C). WT1 specifically show B-to-A switch in samples with TET2 or FLT3-ITD mutations. 

The compartment switch of WT1 is also associated with gain of ATAC-seq and H3K27ac peaks and loss 

of H3K27me3 at the gene promoter in the same samples, as shown by Figure 4-S2B. This finding is 

consistent to previous studies showing the potential association between WT1 activation and FLT3-ITD 

mutation[210]. 
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Figure 4- 2. AML of same subtypes share similar alteration of chromatin compartmentalization. 
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A. Unsupervised hierarchical clustering of leukemia samples and controls based on the top 10% most variable 

first principle component of Hi-C matrix (left). The right panel shows the patient ID with profiled mutations of 

the AML-relevant genes. The consensus mutations are not pre-selected but summarized from clustering result. 

B. Number and proportion of compartment switch in each AML samples. C. Hierarchical clustering of the top 

10% most variable regions in A based on first principle component. D. Differential gene expression in samples 

with compartment switch compared to the expression of the same genes in the samples without compartment 

switch. P value is calculated from Wilcoxon rank sum test. Selected AML-related genes are demarcated. E. 

Correlation between compartment switch and gene transcription (marked by green bars). A compartments are 

marked red and B compartments marked blue. The most differential regions between the controls and altered 

samples that overlap with the gene promoters are highlighted in blue or orange. 

 

Recurrent TAD disruption 

To test the structural variation of AML chromatin domains, topological associating domain 

(TAD) was called at 40Kb resolution using DomainCaller in all the samples[61]. We depict the 

alteration of TAD by comparing the span of each TAD in AML samples to that in the three controls, and 

inferred three forms of TAD alteration: shrink, expand and shift while the three controls have to be 

consistent, illustrated in Figure 4-S3A. Surprisingly, we found extensive TAD alteration for samples 

with similar sequencing depth, with many cancer-related genes involved in altered TADs (Figure 4-

S3B). However, unlike compartment switches, most TAD alteration does not seem to perturb the 

expression of genes inside. This is consistent with recent finding from analyzing the consequences of 

mutation at TAD boundaries in hundreds of tumor samples covering various tumor types [55, 211]. We 

found a few exceptions of genes ERG, MYC and GATA3 with TAD alteration correlated to expression ( 

Figure 4-3C), featured by co-occurring with gaining or losing cross-TAD interactions averaged from all 

AML samples (Figure 4-3A, B). For example, a TAD is left-expanded in some samples and it 

incorporates ERG into it. ERG gains increased interaction with a distal region 0.88Mb apart coming 

from the expanded TAD (Figure 4-3C). MYC resides in a highly self-constrained TAD in control 

PBMC, but in some AML samples the TAD is right-expanded and incorporates a cluster of previously 
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discovered super enhancers 1.7Mb downstream of MYC [212]. For these two genes, TAD expansion 

either engages the gene or engages a super enhancer, both associated with transcription upregulation. 

GATA3, in contrary, have reduced interaction frequency with nearby regions while the TAD is 

expanded/shifted in AML samples.  

 
Figure 4- 3. Recurrent TAD disruption associated with cross-boundary interactions. 

A. TAD shift in regions containing gene ERG (left), GATA3 (middle), and MYC (right). The TAD 

boundaries are marked in dashed black lines, or pointed out by the black arrow. The red and blue track below 

each heat map is directionality index. The shift of TAD boundary is highlighted by the vertical grey line. The 

track below the bottom Hi-C heatmap marks the location of all coding genes, with the affected gene 

highlighted in red. The box in the bottom shows the insulation score for the same region. B. Differential 
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chromatin contacts of the same region from the above to show change of interaction associated with TAD 

boundary shift, calculated by average Hi-C contacts in AML minus that in controls. C. Virtual 4C showing 

the averaged differential interaction of gene ERG, GATA3 and MYC between AML samples and PBMC 

controls, marked by asterisk. AT is short for the shifted TAD boundary in altered AML, and PT stands for the 

original TAD boundary in the PBMC samples. Boundary movement from PT to AT are for showing the 

incorporation of affected gene promoter or a distal region in the altered TAD in AML. 

 

Gain of loops and stripes links genes to co-occurred AML-specific enhancer or repressor 

We call loops at 10kb resolution using our machine-learning based loop caller Peakachu[213], 

which outputs probability score of each loop and we use it to identify differential loops between AML 

samples and controls. For each AML sample, we define gain of loops as loops specifically exist in this 

AML sample but absent in all three controls, and loss of loops as loops exist in all three controls but 

absent in this sample (Figure 4-4A). At comparable sequencing depth of each sample, we found 

hundreds of gain of loops and tens of loss of loops each samples. In average, gain of loops are five to ten 

times more prevalent than loss in AML samples (Figure 4-4B). To distinguish chromatin looping or an 

artifact of copy number alteration, which is frequent seen in cancer, we examined the copy number of all 

loop anchors. We ensured that overall less than 1.3% of gain of loops are confounded by gain of copy 

number, and less than 3% of loss of loops are confounded by loss of copy number, except one sample 

K2 that has extensive loss of copy genome-wide (Figure 4-S4 A-C). Comparing between AML samples 

we see a strong pattern of subtype-specific shared gain of loops (Figure 4-4C), with generally cancer-

related genes involved, and globally correlated with transcription upregulation (Figure 4-4D). For 

recurrent loss of loops, however, we see comparable number of genes with upregulated or 

downregulated transcription (Figure 4-S4D). Gene set enrichment analysis of genes that recurrently 

gain loops demonstrate enrichment for cellular status including hematopoietic stem cell, chronic 

meylogeneous leukemia, and acute promyelocytic leukemia, as well as an enrichment in genes that are 

regulated by c-Myc (Figure 4-S4E). 
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Figure 4- 4. Gain of loops and stripes link genes to co-occurred AML-specific enhancer or repressor 
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A. APA plot illustrating the definition of differential gain of loops (upper panel) or loss of loops (lower 

panel) in AML, exemplified by AML samples T3 and C3, respectively. Differential loops are calculated 

based on the Gaussian mixture model of the fold change of Peakachu probability with FDR lower than 

5%.  B. Number of gain of loops and loss of loops in each AML samples. C. Subtype-specific loops, 

presented by hierarchical clustering of all loops merged from 17 AML samples, based on Peakachu 

probability score. Each row is a loop and each column is a patient sample. Selected genes that are 

involved in gained loops are labeled in the right. D. Differential transcription of genes in samples with 

gain of loops compared to transcription of the same gene in controls. Selected AML-relevant genes are 

demarcated. P value is calculated by t test. E and F. Heatmap showing the gain of loops in the form of 

FIRE (E) and stripe (F) in AML samples (left lower panels) in contrast to that in PBMC controls (upper 

right panel). Zoomed-out heat map in the left for showing equivalent presentation of heat maps from 

AML and controls. G. Heatmap of ATAC-seq peaks and CTCF peaks separately (upper panel), and 

H3K27ac and H3K27me3 peaks together (lower panel) at gained chromatin loops in AML sample R1. 

 
 

As exemplified in Figure 4-1B and Figure 4-4D-F, AML proto-oncogenes including MYCN, 

WT1, ERG, MEIS1, MYC, MYB, FLT3 and IGF recurrently gain loops, correlated with transcription 

activation (Figure 4-4D). Those genes show subtype-specific pattern (Figure 4-4C). Specifically, 

MYCN forms interaction with a region around 650Kb downstream, in the samples with TET2/FLT3-ITD, 

CEBPA or KRAS/NRAS mutations, but not in samples with RUNX1 or MLL2 mutations (Figure 4-1B). 

The acquisition of loop for gene MYCN, MEIS1 and WT1 are also associated with B-to-A compartment 

switch on the gene promoter or the distal end of the loop (Figure 4-1B, Figure 4-2E and Figure 4-

S2B). For WT1 and MEIS1, multiple gained loops reside in some AML-specific domains with heavy 

intra contacts (Figure 4-4E), which represents the frequent interacting regions (FIRE) identified in 

previous studies[86]. Intriguingly, as we performed CUT & TAG of H3K27ac and H3K27me3 in AML 

samples, we found that the distal loop anchor or the entire FIRE of all the exemplified genes show 

simultaneous gain of enhancers, and loss of repressive marks (Figure 4-S5 A-C). Inversely, we also 

observed loss of loop for tumor suppressor BCL11B in five samples, all co-occurring with loss of 

enhancer and silencing of gene transcription, as shown in Figure 4-S5D. The above observations let us 

ask whether loops are always gained alongside formation of AML-specific novel enhancers. By 

mapping our ATAC-seq and CUT & TAG data, we saw indeed two types of loops acquisition (Figure 
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4-4G): The majority co-occur with acquirement of open chromatin status and novel enhancers, whereas 

a small proportion of loops build structural basis for linking pre-established enhancer to genes.  

In addition to gain of enhancers, we identified many loops absent of enhancer marks but gain of 

repressive marks (Figure 4-4G), which we suspect are “repressive loops” that mediates gene 

downregulation[214]. As we analyzed the composition of gained loops, we found 36.8% of gained loops 

involves a gene promoter with a cis-regulatory element, 5.9% are between two promoters (P-P), 24.6% 

between promoter and enhancers (P-E), and 9.6% between promoters and repressors (P-R), with very 

few overlap between enhancer and repressors (Figure 4-S6 A-C). We then stratified the transcription 

analysis separately for gain of P-E loops and P-R loops. As shown in Figure 4-S6D, genes with gain of 

P-E loops show greatly increased expression in AML, and genes that gain P-R loops show significant 

decreased expression. IKZF2, a known tumor suppressor in lymphoblastic leukemia, simultaneously 

gains loops and novel repressors at the distal end of those loops, in our samples specifically with TET2 

and FLT3-ITD mutation (Figure 4-S6E and Figure 4-4C). The acquirement of these loops correlates 

with dramatically reduced to near-silenced transcription of IKZF2 (Figure 4-S6F), which is also 

associated with significantly poorer prognosis in TCGA’s AML cohort (Figure 4-S6G).  Overall, we 

showed that both enhancer loops and repressor loops can be acquired in AML. 

 Noticeably, genes like MYCN, ERG and MYC gain a cluster of interactions between its promoter 

and a continuous trunk of distal regions, forming the stripe structure previously described as a result of 

loop extrusion (Figure 4-1B and Figure 4-4F)[215]. To more comprehensively identify gain of stripes, 

we developed a stripe caller by implementing a previously proposed conceptualized method[215]. As 

shown in Figure 4-S7, we were able to find in average 587 gained or stronger stripes (>200kb) in AML 

samples, which in APA plot manifests an anchor interacting with a sliding zone (Figure 4-S7A). 

Previous work demonstrated that stripes are enriched of super enhancers. While we have consistent 
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findings for promoter-super enhancer stripe involving genes like MYC, we also found a considerable 

number of promoter-repressor stripe recurrent in our samples, as exemplified by HOXD family and 

KLF4 (Figure 4-S7 B-C). In fact, when comparing to loops (Figure 4-S6A), stripes contains more 

abundant cis-regulation, especially P-R interactions that increased to 23.7% (VS 9.6% in loops), 

whereas P-E stripes also increased to 32.4% (VS 24.6% in loops) (Figure 4-S7D). Genes engaged in the 

gained P-E stripes have globally higher expression than those engaged in the gained P-R loops (Figure 

4-S7E). Our result indicate that gain of stripes in AML represents hubs for chromatin structure change 

that are more functionally relevant to cis-regulation. 

SV-mediated neo-loop with enhancer or repressor hijacking 

In addition to regular gain of loops, our previous work suggested that SVs can induce formation 

of neo-TAD and neo-loop[32]. SV profiling by WGS and Hi-C Breakfinder show that our AML samples 

harbor abundant large SVs. In average each samples has 6 del, 2 inversion and 21 translocations that are 

larger than 1Mb, which in Hi-C map results in aberrant contacts and interactions between originally 

distant regions (Figure 4-S8A). Interestingly, we found more SVs than expectation within 1Mb to 

AML-related genes but are not overlapping with the gene body (Figure 4-S8B). We hypothesized that 

those SVs might be able to affect transcription of genes across the SVs through the “enhancer-hijacking” 

mechanism, so we applied our newly developed tool Neo-loop finder to comprehensive identify SV-

induced neo-loops. It first reconstructs the Hi-C map along the SV breakpoints (Figure 4-5A), guided 

by locus, orientation, copy number, and signature of complex SVs, and then detects loops adaptive to 

reconstructed Hi-C map. We performed this analysis on all of our samples and AML cell lines HL60, 

Kasumi-1, THP-1 and CML cell line K562[216]. As a result, we found 328 cancer related genes wired 
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into neo-loops mediated by SVs, among which 56 recurrently form neo-loops, with the other end of the 

loop vary in different regions caused by different SVs (Figure 4-5B). These include AML-related proto-

oncogenes: CDK5, CBL, MYC, ETS1, LMO3, and FLT3 (Figure 4-5 C-E), all of which are highly 

expressed in the affected samples and interacting with distal enhnacers[217] (Figure 4-5 F-G). Also, all 

of those exemplified genes have no copy number change that could lead to high expression. Therefore, 

the activated transcription might be a reflection of the “enhancer-hijacking” events. To check if this is 

widely happening in AML than a few samples, we annotated all the loop anchors for gene, enhancers 

and suppressors, using our CUT&TAG data. As shown by Figure 4-5H, we found that 33.7% of neo-

loops involve one promoter, 20.5%  links a promoter with an enhancer and 8.3% links a gene with 

repressor. Genes that loop with enhancer show a significant increase of gene expression. (Figure 4-5I).  

Aberrant DNA methylation associated with alteration of chromatin structure in AML 

DNA methylation is known for extensive change in cancer and leukemia, which can alter the 

chromatin status and interfere with binding of CTCF[218, 219]. To understand its role in driving AML-

specific chromatin structure change, we performed WGBS in 10 AML samples and 2 controls. As a 

result, we saw overall higher global methylation at AML samples, except samples with MLL2 mutation 

(Figure 4-S9A), consistent with previous findings[220]. One AML sample C1 exhibits extremely high 

methylation, because it has an SDH mutation, which was known to cause demethylation defects and 

typically high methylation in cancers[98]. Specifically, while globally both CpG island and CTCF 

binding sites show depletion of DNA methylation in the center (Figure 4-S9B), we see by comparison 

higher methylation in CpG island and CTCF binding sites in AML samples, at the binding sites profiled 

from normal controls, with exception of samples carrying MLL2 mutation (Figure 4-6A). Our CUT & 
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TAG of CTCF shows that the hypermethylation of CTCF motifs in AML substantially displaces their 

CTCF binding (Figure 4-6B). Comparing between AML samples, we found a strong subtype-specific 

pattern for the distribution of the DNA hypermethylation (Figure 4-6C).   

We then tested the association between DNA methylation and the chromatin structure, by first 

looking at the A/B compartment. We found lower methylation at transcription starting site (TSS) but 

higher methylation at gene bodies for genes in A compartment, comparing to genes in the B 

compartment (Figure 4-S9C). This is consistent with previous knowledge about the distinct roles of 

methylations at different parts of genes: It prevents transcription firing in the TSS but it also stabilizes 

transcription elongation in the gene body by preventing spurious transcription initiation[221]. Then we 

tested whether A-to-B or B-to-A compartment switch, as we observed in AML samples, is associated 

with differential methylation between AML samples and controls. As shown in Figure 4-6D, we see a 

strong correlation showing that the compartment switch accompanies concordant change of methylation. 

Next, we ask if topological change is related to DNA methylation. We examine the methylation levels 

between two types TAD boundaries: the conserved ones between the control and the AML samples, and 

the variant ones. To our surprise, while there is clear a depletion of methylation at the conserved TAD 

boundary, the variant TAD boundaries do not seem to exhibit much depletion pattern, both in AML and 

control samples (Figure 4-S10).  From what we observed, it seems that DNA hypo-methylation protects 

the steadiness of TAD boundaries, and those without hypo-methylation are more easily altered. Further, 

at loop levels, we observed that subtype-specific loop anchors are also enriched for differential 

methylation (Figure 4-S9D). 
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Figure 4- 5. SV-mediated neo-loop with enhancer or repressor hijacking. 

A. Model of neo-loop detection. Hi-C map of chr6 and chr9 are concatenated along an SV detected in the sample in the 

right panel. The identified neo-loop is circled. The same regions for normal controls are shown in the left panel. B.  A list 

of cancer-related genes that are recurrently involved in SV-induced neo-loops across AML samples and AML/CML cell 
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lines. Genes with 3 recurrences are labeled dark red. C-E. Examples of gain of neo-loops (marked by the circle) induced 

by SVs in different samples. The anchor of each neo-loop is shaded, involving gene CDK5 in sample M2, CBL in sample 

M2 and cell line THP-1, and MYC in sample F1 and cell line HL-60. The bottom track below each heatmap shows the 

H3K27ac signals from the same samples. The regions used for concatenating the Hi-C map from C to E are as below: 

chr7:150990919-151740919(-) and chr11:117734283-118484283(+) for CDK5, chr7:148490916-150990916(+) and 

chr11:118484298-120984298(-) for CBL in M2, chr9:13460000-15460000(+) and chr11:118480000-120480000(-) for 

CBL in THP-1, chr8:127000000-129700000(+) and chr14:96630000-99330000(+) for MYC in 1360, and 

chr8:127000000-129000000(-) and chr11:94600000-96600000(+) for MYC in HL-60. (+) and (-) indicate the orientation 

of SVs. The map is reversely placed with 3’-to-5’ direction under (-) mark in the left or (+) in the right.  F-G. The mRNA 

expression of the corresponding gene in all samples. H. Percentage of neo-loops formed between the indicated genomic 

elements. P: promoter, E: enhancer marked by H3K27ac excluding promoters, R: repressor marked by H3K27me3 

excluding promoters. I. mRNA expression of genes in SV-induced neo-loops between promoter and enhancers, or 

promoter and repressors. 

 
 

Next, as we see hyper-methylation displaces CTCF binding in AML, we ask whether it leads to 

loss of insulation and gain of interactions across the lost CTCF binding site. To test that, we picked the 

100 loss-of-CTCF sites due to most significant hypermethylation, and for control we randomly collected 

100 normal CTCF sites, both from AML samples. Aggregating the AML Hi-C heatmaps that put the 

CTCF sites in the middle, we saw a clear loss of insulation and increased interactions across the lost 

CTCF, as shown by the upper panel of Figure 4-6F. The aggregated Hi-C map of PBMC using the same 

CTCF sites, in contrast, did not show this pattern, confirming that the loss of insulation and gain of 

interaction is caused by hypermethylation-induced loss of CTCF (Figure 4-6F). We then ask whether 

any observed gain of loops are caused by this mechanism. For such cases, the frequency of chromatin 

loops should be inversely correlated with the intensity of CTCF that bind in the between of the two loop 

anchors, across our samples. As shown by Figure 4-6G, we found many aforementioned gain of loops 

that contain genes show this pattern, including AML master regulators and oncogenes MEIS1, MYCN, 

MLLT3, RARB, and WDR66[222]. For example, the highlighted CTCF in Figure 4-6H, is lost in a few 

AML samples due to hypermethylation. This is correlated with gain of many loops across this site, 

including a loop involving WDR66 promoter [Figure 4-6H]. Overall, DNA hypermethylation-induced 

loss of CTCF binding can be a cause for extensive gain of chromatin loops in AML. 
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Figure 4- 6. Aberrant DNA methylation associated with alteration of chromatin structure in AML. 
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A. Distribution of CG methylation levels for the top 10,000 most-variably methylated CpG islands (upper) and 

the top 10,000 CTCF sites with the most variable methylation (lower) across AML samples and controls. B. 

Hypermethylation displaces CTCF binding. Differential CTCF binding sites between AML samples and 

controls (blue dots). Fold change and P-value of CTCF binding are derived from DiffBind. CTCF sites with 

hypermethylation in AML are marked in orange. Hypermethylation is defined as at least 1.5 fold increase of 

methylation in AML samples and the basal methylation in PBMC greater than 0.1. C. Hierarchical clustering of 

differential methylated regions (DMRs) across subtypes of AML samples and controls based on normalized 

methylation levels. D. Fold change of CG methylation levels at TSS regions within altered compartments or 

conserved compartments between AML and controls. A to B: regions that are A compartment in controls but B 

in AML samples. Common A: regions that are A compartment in both controls and AML samples. B to A: 

regions that are B compartment in controls but A in AML samples. Common B: regions that are B 

compartment in both controls and AML samples. E. A model illustrating gain of chromatin loops induced by 

loss of CTCF binding as a result of hypermethylation at CTCF binding sites. F. Aggregated Hi-C maps 

centered at 100 random CTCF sites (left) or 100 loss-of-CTCF-binding sites (right) due to hypermethylation in 

AML. The upper panel aggregates the Hi-C map of AML samples, whereas the lower panels aggregates the Hi-

C of the control samples centered at the same sites. The arrow points to the insulation boundary or stripes that 

are lost in the right panel. The asterisk demarcates the region with increased contacts, which are interactions 

across the lost CTCF sites. G. Correlation between CTCF binding intensity and the probability score of the 

gained loops formed across the CTCF site. Only loops involving genes are plotted, and the orange dots mark all 

the cancer-related gene. Selected AML-related genes are named. H. Gain of WDR66 loop correlated to loss of 

CTCF binding due to hypermethylation. 

 

Inhibition of DNA methylation restores chromatin structure and gene expression 

We then ask whether it is possible to restore the normal chromatin structure and gene regulation 

through modulating DNA methylation using hypomethylation agent like 5-AZA. As expected, 5-AZA 

significantly suppresses the growth of two AML cell lines Kasumi-1 and HL60 in a dosage-dependent 

manner, eventually completely blocks the cell proliferation and resulted in cell death (Figure 4-S11A). 

With 48-hour treatment of 1uM 5-AZA in HL-60 cells and 2uM in Kasumi-1 cells, global DNA 

methylation quickly decreased by 14% (Figure 4-S11B), similar to the observation from previous 

clinical trials with 2 to 4 days’ treatment[223]. CpG island and CTCF binding sites profiled from control 

PBMC also showed demethylation (Figure 4-S11C).  We also applied longer treatment of 5-AZA with 

lower dosage to Kasumi-1 cells (0.5uM for 12 days), to mimic a drug delivery that is more 

physiologically tolerable. We then tested the impact of this treatment on chromatin conformation by 
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performing in-situ Hi-C, using cells treated with DMSO as control. The treatment rapidly switched over 

1000 bins of B compartment to A at 48 hours, with fewer A compartment regions turning to B (Figure 

4-7 A-B). With 12-day treatment, compartment swap is further increased, especially in A-to-B manner, 

which we hypothesized are related to removal of active chromatin loops. Transcription of genes that 

reside in the B-to-A switch regions are significantly upregulated (Figure 4-7C). Those altered regions 

are highly representative of the patient samples as shown by Figure 4-S11D: 6% of genomic regions in 

Kasumi-1 are B compartment but A in PBMC, 87% of which are also B compartment in our AML 

samples. A short-term 48-hour exposure to 5-AZA restored 11.8% to A compartment, which was 

increased to 49.8% with 12-day treatment. Specifically with 12 days’ treatment, compartment was 

reverted for genes GATA3 and BCL11B that recurrently turn to B compartment in patient samples, and 

WT1 that recurrently switched to A compartment (Figure 4-7D). 

 Since we identified global gain of loops correlated to hypermethylations in AML, we 

investigated whether it is possible to dissociate gained loops by using 5-AZA. As shown in Figure 4-7E, 

we found 107 differentially gained loops in Kasumi-1 comparing to PBMC. Intriguingly, a significant 

part was dissociated upon 12-day treatment of 5-AZA, and further, the 12-day treatment even restores a 

small portions of lost loops in Kasumi-1. We hence ask whether this is due to reduced methylation 

through rebuilding the CTCF insulation. We therefore picked the most differentially hypermethylated 

CTCF motifs in Kasumi-1 and HL60 cells, and checked their aggregated Hi-C maps with DMSO or 5-

AZA treatment. As shown by Figure 4-7F, we saw a stronger pattern of insulation and decreased 

interactions across those CTCF sites upon 5-AZA treatment. Intriguingly, 12-day treatment completely 

erased the gained stripe anchored at MYCN, which was recurrently identified in both patients and in 

Kasumi-1 cells as correlated to CTCF loss (Figure 4-7G). We also observed hollow in the FIRE 

corresponding to the position of WT1 interactions after 12 days. RNA-seq at 48 hour already show 
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significant decrease of MYCN and WT1 expression (Figure 4-7H), suggesting that controlling the DNA 

methylation level is able to diminish the activation of some oncogenes through dissociating chromatin 

loops. 

Discussion 

AML is known for extensive heterogeneity in disease development and presentation. Patient can 

have onset of disease not rarely at all ages, facing highly distinct treatment and prognosis, with the 

myeloidblast cells originated from one of many differentiation stages and lineages[224]. We now know 

that the ultimate diverse disease phenotype is related to a variety of driver mutations, but how the 

genomic mutations distinctly contribute to this process at transcription level is understudied. Our work 

focusing on the chromatin spatial organization in AML demonstrated that AML samples not only 

extensively share recurrent alteration of chromatin structure, different subtypes also adopt distinct local 

conformation. We observed recurrent and subtype-specific compartment switch, shift of TAD 

boundaries, and massive gain of chromatin loops. All of those events are globally associated to 

dysregulation of gene transcription, including many leukemia and cancer-related genes. Moreover, the 

conformational change at different scales are highly consistent. For examples, gain of active chromatin 

loops accompanies B-to-A compartment switch for genes MYCN and WT1, or co-occur with TAD 

boundary shift for gene ERG and MYC. Inversely, loss of enhancer loop for gene BCL11B and GATA3 

co-occur with A-to-B compartment switch or shift of TAD boundary. We further identified hundreds of 

SV-induced neo-loops, and some genes are recurrently forming neo-loops although the SVs are 

different. This result indicates that neo-loops are more than rare or anecdotal events in AML, and 
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potentially are prevalent in all other cancers. We also found evidence of “enhancer-hijacking” as some 

genes interact with enhancers across the SVs, and globally correlated with transcription upregulation.   

Our CUT&TAG for histone mark H3K27ac and H3K27me3 and ATAC-seq reveals a large 

number of AML-specific enhancers and repressor that are formed alongside gain of loops. Specifically, 

the finding of repressive loops is consistent with a previous study that showed a single risk element 

repressing transcription of HOXA13 and HOTTIP in prostate cancer through a chromatin loop[225]. Our 

results further indicate that acquirement of repressive loops are widespread in the AML genome, 

mediating genome-wide transcription downregulation. Furthermore, we found that for a set of essential 

AML oncogenes, clusters of loops are gained in the form of FIRE or stripe. Comparing to regular loops, 

stripes are more enriched in gene promoters and cis-regulatory elements, particularly super enhancers 

and repressors. Overall, on AML context, we showed that gain of stripe or FIRE might represent 

misregulatory hubs for interacting de novo enhancers or repressor, which is usually adopted by the 

essential cancer-related genes for drastic transcription activation of suppression to take place.  

Next, we identified that aberrant DNA methylation associated with AML change of chromatin 

structure. We have seen global and subtype-specific hypermethylation in the AML genome, correlated 

with prevalent A-to-B compartment switch, and loss and CTCF insulation that potentially drives 

excessive gain of chromatin loops. 5-AZA application was able to partially restore the chromatin 

structure including reverting switched compartment and dissociating gained loops, through rebuilding 

the genomic insulation. Understanding this mechanism of 5-AZA in leukemia is crucial, as the patient 

responsiveness can be better predicted based on the gene expression or 3D genome profile from the 

patient. For example, according to our data, patient with MYCN, WT1 activation or BCL11, GATA3 

silencing are likely benefit from 5-AZA treatment. 
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Figure 4- 7. Inhibition of DNA methylation restores chromatin structure and gene expression. 
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A. The heatmap of Hi-C interactions between A and B compartment under different drug treatmenet. Regions 

are ranked by the first principle component of Hi-C matrix, from top to bottom along the Y axis and from left 

to right along the X axis. The left upper corner indicates A-A interaction, the right lower corner indicates B-B 

interaction, whereas the right upper corner and left lower corner represent A-B interactions. B. Number of 

40Kb genomic bins that show the corresponding compartment switch. C. mRNA expression for genes that are 

at B compartment in Kasumi-1 cells (treated with DMSO) and turned into A compartment upon 5-AZA 

treatment (2uM) for 48 hours. D. Examples of patient-representative restoration of compartment in Kasumi-1 

cells upon 5-AZA treatment (0.5uM) for 12 days. Red and blue bars mark A and B compartment separately. E. 

Aggregated peak analysis plot for regions of Kasumi-1 specific loops, drawn from Hi-C in PBMC, Kasumi-1 

cells treated with DMSO and Kasumi-1 cells treated with 5AZA (0.5uM) for 12 days. F. Restoration of 

insulation. Aggregated Hi-C maps centered at the most differentially hypermethylated CTCF sites in HL60 

cells treated with DMSO (upper panel) and treated with 5-AZA (1uM) for 48 hours (middle panel). The bottom 

panel shows the difference between the two maps, calculated by the middle panel minus the upper panel. The 

arrow points to the restored insulation stripe and the asterisk marks the majorly reduced interactions across the 

centered CTCF sites. G. Complete erasion of MYCN strips (pointed by the arrow) and the weakening of the 

FIRE containing WT1 (pointed by the vertical line) with 12-day treatment of 5-AZA (0.5uM) in Kasumi-1 

cells. H. The mRNA expression of gene MYCN and WT1 with DMSO treatment or 48-hour 5AZA treatment 

(2uM) in Kasumi-1 cells. 

 
In summary, we showed that subtype-specific chromatin conformational change and SV-induced 

neo-loop formation provides structure basis underlying the heterogeneity of transcriptional 

misregulation in AML. The 3D structure change is related to global and subtype-specific aberrant DNA 

methylation, which can be pharmaceutically targeted to restore the chromatin structure. A few thoughts 

rises as related to our findings. For example, as we observed enhancers gained along the chromatin 

loops, it will be crucial to uncover targetable master TFs. Also, 5-AZA was known for remarkable 

responsiveness at clinical trials, but its application is hindered by less satisfactory improvement of 

survival due to high relapse when using the drug alone. This might represent the epigenetic plasticity 

and redundancy in chromatin spatial organization, suggesting the importance of combined inhibition of 

other master regulator TFs. Last, the SV-induced neo-loops might be an important mechanism for 

disease onset, and how those events might inspire the disease intervention is question to be answered. 

Further exploration to the related questions will provides insight specifically into epigenetic therapies 

for AML. 
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Supplementary Figures  
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Figure 4-S 1. Recurrent compartment switch of COSMIC cancer-related genes. 

 
A and B. Cancer related genes that recurrently switch promoters to B compartment (A) or to A compartment (B) 

in AML samples. Y axis indicates the percentage of recurrence across all AML samples. C. Example of genes 

with recurrent or subtype-specific compartment switch. The differential regions that overlap with the gene 

promoters are highlighted. 

 

Figure 4-S 2. Compartment switch is correlated with gene expression and open chromatin. 

A. Hierarchical clustering of the first principle component from Hi-C matrix for regions in Figure 2C, averaged 

within the same subtype (left panel), in parallel to the average mRNA expression (TPM) of the genes from the 

same region (middle panel) and average ATAC-seq normalized read count of distal regions (RPM) from the same 

region (right). B. B-to-A compartment switch (samples with bold font) at gene WT1 is correlated with open 

chromatin, active promoter and loss of repressive marks. The highlighted regions represents the FIRE with dense 

loop formation. 
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Figure 4-S 3. TAD boundary alteration and association with transcription. 

A. Illustration for how to define alteration of TAD boundary. B. COSMIC cancer-related genes that are located in 

TADs with recurrent change of boundary. Y axis indicates the number of incidence across patient samples. C. 

Differential mRNA expression analysis for genes involved in recurrently changed TAD showing transcription of 

most genes are not much affected by boundary change.  
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Figure 4-S 4. Differential loop analysis. 

A-C. Excluding the confounding effect of CNV in calling differential loops. A shows number of genomic 10Kb 

bins with neutral, gain, or loss of copies. B shows number of anchors for gained loops in each sample (bar height) 

and the proportion for detecting gain of copy (orange) or loss of copy (green) in the anchor. C shows the same 

thing for loss of loops.  D. Differential mRNA expression analysis for genes involved in recurrently lost loops in 

AML. E. GSEA analysis for differential expressed genes from the gained loops.    



183 

 

 
Figure 4-S 5. Correlation of differential loops with gene expression, open and repressive promoter, and distal 

enhancer. 

A-C. Gain of loops correlated with activated expression, ATAC-seq and H3K27ac peaks at the gene (A, B, C) and the distal 

region (B, C). For each gain of loop, two representative AML samples are plotted, both with gain of loops whereas the 

demarcated loop is absent in three controls (only one is plotted). The purple arch points to the two loop anchors, with the 

purple shadow highlighting the affected gene promoter or the entire highly-interacting FIRE, and the grey shadow 

highlighting the distal regions. For C, the grey region represents the stretch of the whole stripe while the darker grey 

represents a region with especially high interaction frequency to its promoter.  D. Loss of a loop (marked by the black arrow) 

between BCL11B and a distal region (highlighted by the blue shade) in AML samples correlate with loss of active promoter 

and enhancer mark on the distal region. The lower panels shows that the samples with loss of this loops (marked by orange 

color and an asterisk on top of the bar) also show dramatic loss of expression.  
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Figure 4-S 6. Component analysis of gained loops showing enhancer loops and repressor loops. 

A-B. Percentage for each class of the gained loops across all AML samples (A) and each sample (B). Enhancer and repressor 

annotation are derived from our CUT&TAG of H3K27ac and H3K27me3 for the samples where loops are counted. 

Promoters are excluded from enhancer or repressor annotation. If both marks are present in a 10Kb bin, the distal region is 

defined as enhancer if the peak –log10(P) value of H3K27ac is at least three time higher than that of H3K27me3 peak, and 

the same for defining repressor. C. Number of loops with only enhancer mark, only repressive mark, or both at the distal 

region. D. Transcription fold change for genes that are in gained P-E loops or P-R loops versus the expression of the same 

gene in control PBMC without the loop. E-G. An example for gain of repressive loop (grey-shaded in E) involving a potential 

tumor suppressor IKZF2 correlated to lower expression (F) and poorer prognosis in TCGA AML GDC cohort (G). Sample 

marked with black and bold font in E are those with gained loops.   
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Figure 4-S 7. Stripe identification and characterization.  
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A. APA plot for regions with detected gain of stripes in AML samples and the same regions in control samples. B 

and C. Gain of repressive stripes for HOXD family and KLF4. The two AML samples in B have gain of stripes 

whereas only the AML samples with bold font in C have gain of stripe. D. Classification of stripes based on the 

anchored promoter and the histone marks on the stripe zones, annotated by CUT&TAG data from the same 

sample where stripes are detected. E. Genes with enhancer stripes have in average higher expression than genes 

with repressor stripes. 

 
Figure 4-S 8. Sup Figure 8. SVs in AML samples are enriched nearby cancer or AML related genes. 

A. Detection of SVs in AML samples from Hi-C data, marked by the black arrow in Hi-C maps. The aberrant 

signals shows the impact of SVs on chromatin structure.B. Higher density of translocations (upper) and other SVs 

(lower) than expectation nearby the cancer genes. Expectation is calculated by permutation of the cancer related 

genes in the genome 1000 times, and the number of permutated genes at each distance to the real translocations 

are counted. Genes are not overlapping with SVs when counted and the distance refers to the shortest distance. 

The enrichment score is the z-score for assessing the position of the actual number of genes in the distribution of 

the number of permutated genes. Enrichment larger than 1.96 indicates significant enrichment with 95% 

confidence.  
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Figure 4-S 9. Association between DNA methylation and chromatin structure 

A. Global higher methylation in AML samples (blue) than control (yellow). B. DNA methylation per 50bp bins 

centered at TSS (left panel) or CTCF sites profiled from control samples (right panel). The lighter ribbon shows 

the 95% confidence interval across all AML or control samples respectively. C. Methylation levels at TSS regions 

(upper) and gene body regions (lower panel) at A and B compartment. D. Anchors of differential loops in Figure 

4-4C are enriched at DMR. The distribution of overlap is calculated by permutation of differential loop anchors 

for 1000 times in the genome.  
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Figure 4-S 10. 

Conserved TAD 

boundary exhibits 

DNA hypo-

methylation. 

Each row represents 

one AML sample. The 

consensus TAD 

boundary from the 

three PBMC samples 

are classified by 

whether they are 

consistent with the 

TAD boundaries 

profiled from the AML 

sample, with the 

conserved TAD 

boundary in the left 

panel and the variant 

ones in the right. The 

averaged DNA 

methylation levels in 

the PBMC samples at 

their TAD boundaries 

are plotted with blue 

color, while the 

methylation at the 

same regions in the 

AML samples are 

plotted in orange color. 

 



189 

 

 
Figure 4-S 11. Results of 5-AZA treatment. 

A. HL60 (left) and Kasumi-1 (right) proliferation restrained by 5-AZA treatment. Fold change is calculated by 

number of viable cells every 24 hour. MTT assay and CCK-8 assay had very similar results (data not shown). B. 

Global DNA methylation levels after 48-hour treatment of 5AZA (1uM for HL60 and 2uM for Kasumi-1). C. 

DNA methylation at top 10,000 most variable CpG sites (left) and top 10,000 CTCF sites with most variable 

methylation across the indicated four conditions, with the same treatment in B. D. Compartment switch and 

restoration in Kasumi-1 cells with comparison to patient data.  
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Materials and Methods 

Materials and Experiments: 

Primary sample collection 

Human blood samples were obtained with consent from the AML patient or healthy donors, 

under the Penn State Hershey IRB-approved protocol. AML peripheral blood or bone marrow aspirates 

and peripheral blood from healthy donors were collected and immediately subjected to selection of 

mononuclear cells using Ficoll-Paque PLUS density gradient media (GE Healthcare, 17-1440-02) 

following manufacturer’s instruction. 

Cell culture 

HL60 (ATCC CCL-240) and Kasumi-1 (ATCC CRL-2724) cells were given to us as a gift from 

Dr Sinisa Dovat lab, which are new vials purchased from ATCC. Cells are cultured following the 

manufacturer’s culture method. Kasumi is cultured with RPMI-1640 (Gibco, 11875093) with 20% FBS. 

HL60 is cultured with Iscove's Modified Dulbecco's Medium (IMDM) (ATCC® 30-2005).  

In-situ Hi-C 

One to two million cryopreserved primary samples or cell lines in cell culture were spinned 

down with 500g and resuspended in 1ml/million RPMI 1640 medium with 10% fetal bovine serum, 

immediately crosslinked with 37% formaldehyde (MilliporeSigma 252549) to a final concentration of 

2%, and incubated at room temperature for 10 minutes on a tube revolver at 16 rpm to mix, quenched by 

2.5M glycine solution with a final concentration of 0.2M and incubated in room temperature for 5 

minutes on revolvor. Cells were pelleted by centrifuge at 500g at 4°C for five minutes and washed once 

with 1ml cold 1X PBS by centrifuge at 500g at 4°C for five minutes and the supernatant was discarded. 
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Cells were lysed to extract nuclei with 250ul lysis buffer (10mM Tris-HCl pH8.0, 10mM NaCl, 0.2% 

Igepal CA630) mixed with 50ul 50x protease inhibitor (Sigma, P8340) and incubated on ice for 15 

minutes, centrifuge to pellet at 2500g, 4°C for five minutes and washed with 500ul lysis buffer. Cell 

pellets were resuspended in 50ul 0.5% sodium dodecyl sulfate (SDS) and incubated at 62°C for 10 

minutes, quenched by 145ul water and 25ul 10% Triton X-100 (Sigma, 93443), and incubated at 37°C 

for 15 minutes. 25μl of 10X NEBuffer2 (NEB B7207) and 100 unit of MboI restriction enzyme (NEB, 

R0147) was then added to the reaction for overnight DNA digestion at 37°C on the tube revolver. The 

digestion was then quenched by incubation at 62°C for 20 minutes. DNA was then end repaired and 

Biotin labeled with 50ul fill-in master mix (37.5μl of 0.4mM biotin-14-dATP (Life Technologies, 

19524-016), 1.5μl of 10mM dCTP, 1.5μl of 10mM dGTP, 1.5μl of 10mM dTTP, 8μl of 5U/μl DNA 

Polymerase I, Large (Klenow) Fragment (NEB, M0210) and incubated at 37°C for 1.5 hours.Then DNA 

was ligated with 900ul of ligration master mix (669ul water, 120μl of 10X NEB T4 DNA ligase buffer 

(NEB, B0202), 100μl of 10% Triton X-100, 6μl of 20mg/ml Bovine Serum Albumin (MilliporeSigma 

B8667), 5μl of 400 U/ μl T4 DNA Ligase (NEB, M0202) ), incubated at room temperature for 4 hours 

with slow rotation. Decrosslink DNA by adding 50ul of 20mg/ml proteinase K (QIAGEN 19133) and 

120ul of 10% SDS, incubated at 55°C for 30 minutes. Quench the reaction by adding 130μl of 5M 

sodium chloride and incubate at 68°C overnight. Precipitate DNA by adding 1.6X volume of pure 

ethanol and 0.1X volume of 3M sodium acetate, pH 5.2 (MilliporeSigma S7899), incubate at  -80°C for 

at least half hour, and centrifuge at max speed, 2°C for 15 minutes to discard supernatant. Wash DNA 

once with 700ul 80% ethanol. Dissolve dried DNA pellet in 130ul 10 mM Tris-HCl, pH 8. Sonicate the 

solution to shear DNA to average size of 300-500bp with Covaris sonicator, with parameters set as 

followings: PIP 140, duty factor 10, burst 200, and duration 58s-80s. Run 4ul sheared DNA in 16ul 

water on a 2% agarose to verify the size.  
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Pull down biotin-labeled DNA by washing 150μl of 10mg/ml Dynabeads MyOne Streptavidin 

T1 beads (Life technologies, 65602) with 400μl of 1X Tween Washing Buffer (TWB: 5mM Tris-HCl 

(pH 7.5); 0.5mM EDTA; 1M NaCl; 0.05% Tween 20), discard the solution. Resuspend the beads in 

300μl of 2X Binding Buffer (10mM Tris-HCl (pH 7.5); 1mM EDTA; 2M NaCl) and add to the sheared 

DNA. Incubate at room temperature for 15 minutes with rotation. Separate beads and discard the 

supernatant with a magnetic rack. Wash beads with 600ul TWB buffer twice. End repair of sheared 

DNA by resuspending beads in 100ul 1X NEB T4 DNA ligase buffer (NEB, B0202), separating the 

beads, and resuspending in end repair master mix (88μl of 1X NEB T4 DNA ligase buffer with 10mM 

ATP (NEB B0202S), 2μl of 25mM dNTP mix, 5μl of 10U/μl NEB T4 PNK (NEB, M0201), 4μl of 

3U/μl NEB T4 DNA polymerase I (NEB, M0203) , 1μl of 5U/μl NEB DNA polymerase I, Large 

(Klenow) Fragment (NEB, M0210) ), and incubation at room temperature for half hour. Beads were 

washed twice with 500ul TWB buffer and resuspended in 100μl 1X Quick ligation reaction buffer 

(NEB, B6058), recollected, and proceeded with dATP attachment by resuspended in 100μl master mix 

(90μl of 1X NEBuffer 2, 5μl of 10mM dATP, 5μl of 5U/μl NEB Klenow exo minus (NEB, M0212)), 

incubated at 37°C for 30 minutes. Beads were washed twice with 500ul TWB buffer and resuspended in 

100μl 1X Quick ligation reaction buffer (NEB, B6058), recollected, proceeded with adaptor ligation 

through resuspension in  50μl of 1X NEB Quick ligation reaction buffer, 2μl of NEB DNA Quick ligase 

(NEB, M2200), and 3ul of Illumina adaptor of choice, incubated in room temperature for 15 minutes. 

Beads were washed by 600ul TWB buffer and 100ul 1X Tris buffer, resuspended in 50ul 1X Tris buffer, 

heated on 98°C for 10 minutes to elute the DNA off the beads. Beads were discarded. Size selection was 

performed to remove small DNA fragments by adding 0.8X-0.9X KAPA beads to the DNA elution, 

incubation at room temperature for 5 minutes, and beads were collected with supernatant discarded. 

Wash beads twice with 500ul 80% ethanol and elute beads in 50ul 1X Tris buffer. Library amplification 
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was performed with 4-12 cycles of PCR with KAPA 2X library mix. Size selection was performed to 

remove small and large fragments using KAPA beads and maintain DNA fragments of 150bp-

500bp.  Libraries were sequenced as 150 bp paired-end reads with a raw sequencing depth between 300 

million to 700 million read pairs per sample on platform Hiseq Xten or Novaseq.  

CUT&TAG 

The CUT&TAG experiments were performed exactly following the online protocol[226] 

[citation]: https://www.protocols.io/view/bench-top-cut-amp-tag-z6hf9b6?version_warning=no. For 

each targeted protein we use 0.1 million. We use the following primary antibodies: CTCF (Active motif 

2899), H3K27ac (Active motif 39133), H3K27me3 (Cell signaling C36B11), Rabbit IgG (Cell signaling 

2729), and the Guinea Pig anti-Rabbit IgG (H+L) secondary antibody (NBP1-72763). The pA-Tn5 

fusion protein was kindly provided as a gift from Dr Steven Henikoff Lab. Final libraries were 

sequenced as 150 bp paired-end reads on platform Novaseq or Hiseq Xten, with a raw sequencing depth 

between 10 to 20 million read pairs.  

ATAC-seq 

 ATAC-seq was performed following the published protocol with minimal modification[227]. 

Briefly, we also centrifuge down 50,000 cells, wash the cells with PBS, and perform nuclei extraction 

with cold lysis buffer.  We added an extra step of washing the nuclei with another 500ul of lysis buffer 

to further remove mitochondrial DNA. We then proceed with the transposition reaction (Illumina 

Tagment DNA Enzyme and Buffer Large Kit 20034198) and purification steps (QIAGEN MinElute 

PCR Purification Kit Cat No./ID: 28004) . We elute the DNA in 20ul elution buffer instead of 10ul 

elution buffer to increase recovery rate. Then we proceed with the PCR amplification step, where we use 

20ul transposed DNA, 2.5ul of Nextera PCR primer 1 and 2.5ul of Nexteral primer 2, and 25ul KAPA 

https://www.protocols.io/view/bench-top-cut-amp-tag-z6hf9b6?version_warning=no


194 

 

HiFi HotStart Ready Mix master mix (KAPA KR0370). We use the PCR parameters indicated by the 

standard protocol with 11 cycles. We then perform size selection to remove small fragments using 

KAPA pure beads. We add 45ul KAPA beads to 50ul PCR solution, incubate for 15 minutes in room 

temperature, and use a magnet to capture the beads and discard the supernatant. We wash the beads with 

200ul of 80% ethanol twice and remove the ethanol. We resuspend the beads in 20-50ul of prewarmed 

10mM Tris-HCl, pH 8.0, incubate at 37 for 10 minutes, and use a magnet to recollect the supernatant as 

the final library. We use 1ul of the library to run on a 2% agarose gel to verify the footprint nucleosomes 

for successful assay. Libraries were sequenced as 150bp paired-end reads on platform Hiseq 4000 with 

20 million raw read pairs per sample. 

PCR-free whole genome sequencing: 

Genomic DNA was isolated by QIAGEN DNeasy Blood & Tissue Kits (69504) using 0.5 

million cells. Concentration was detected by fluorometer or Microplate Reader (e.g. Qubit Fluorometer, 

Invitrogen). Sample integrity and purity were detected by Agarose Gel Electrophoresis. 1μg genomic 

DNA was fragmented by Covaris. KAPA pure Magnetic beads (KK8000) was used to select DNA 

fragments with an average size of 300-400bp. DNA was quantified by Qubit fluorometer. The 

Fragments were subjected to end-repair and then was 3’ adenylated. Adaptors were ligated to the ends of 

these 3’ adenylated fragments.The double stranded products were heat denatured and circularized by the 

splint oligo sequence. The single strand circle DNA were formatted as the final library.Library was 

qualified by the Agilent Technologies 2100 bioanalyzer. The library was amplified to make DNA 

nanoball (DNB) which have more than 300 copies of each molecule. The DNBs were loaded into the 

patterned nanoarray and sequenced as 150bp  paired-end reads by combinatorial Probe-Anchor 

Synthesis (cPAS). 
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Whole genome bisulfite sequencing 

DNA bisulfite treatment was performed using the EZ DNA Methylation-Gold Kit (catalog 

D5005, Zymo Research Corporation) according to the manufacturer's instructions. The recovered 

bisulfite-converted single-stranded DNA was processed for library construction using the Accel-

NGS@Methyl-seq DNA Library kit (catalog 30024, Swift BioSciences) as per manufacturer 

instructions. Briefly, using the Adaptase module, truncated adapter sequences were incorporated to the 

single-stranded DNA in a template-independent reaction through sequential steps. DNA was then 

enriched using 6 cycles of PCR with primers compatible with Illumina sequencing. The quantity and 

molecular size of the library was confirmed by Qubit HS DNA assay (ThermoFisher) and Tapestation 

2200 system coupled with High Sensitivity D1000 ScreenTapes (Agilent). Illumina 8-nt dual-indices 

were used for multiplexing. Samples were pooled and sequenced on Illumina NovaSeq S4 sequencer for 

150 bp read length in paired-end mode, with an output of 580 million reads per sample. 

RNA-seq 

RNA was extracted using QIAGEN Rneasy Plus kit (74034). RNA quality was assessed by 

Agilent RNA ScreenTape on Agilent 2200 Tapestation and quantified by Qubit. The mRNA was 

enriched by poly-A selection and the second strand synthesis was performed with NEBNext Ultra II 

Non-Directional RNA Second Strand Synthesis Module following manufacturer’s instructions 

(E6111S). Average final library size is between 380-400 bp. Illumina 8-nt dual-indices were used for 

multiplexing. Samples were pooled and sequenced on Illumina HiSeq X sequencer as 150 bp paired-end 

reads, with an output of 40 million reads per sample. 
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5-AZA treatment 

5-azacytidine (MilliporeSigma A2385-100MG) was dissolved in DMSO to make 100mM stock 

solution, aliquoted and stored in -80°C. Working solutions (0.5uM-10uM) was made from further 

dilution of stock solution using complete cell culture media. Media was changed every 24 hours with 

freshly made 5AZA. Dead cells are removed by Ficoll-Paque PLUS density gradient media at the end of 

cell culture before cells are further processed for any profiling experiments. 

Proliferation assay 

Cell proliferation was independently performed and replicated by viable cell count with trypan-

blue staining, MTT assay (abcam ab211091) and CCK-8 assay (ApexBio K1018) every 24 hours 

following the manufacturer’s instruction. 

Informatics analysis 

Point mutation and structural variants analysis 

WGS reads were first aligned to human genome reference GRCh38 with BWA MEM (v0.7.17-

r1198). PCR duplicates were removed by Sambamba (v0.7.0) [190]. Uniquely mapped (MAPQ > 20) 

reads were retained for downstream variant detection. Point mutations including single nucleotide 

mutations and small indels were detected by Freebayes (v1.2.0-17-ga78ffc0) with parameters “--min-

alternate-count 2 --min-alternate-fraction 0.05 --min-repeat-entropy 1”, and minimal quality score of 20 

was used to reduce false positive calls. To minimize the number of germline calls,  point mutations that 

overlap with dbSNP150 mutations were removed. The functional effects of the filtered variants were 

annotated with SnpEff (v4.3T) [228]. Only variants annotated as high or moderate impact by SnpEff 

were used for downstream analysis. This final set of point mutations further confirm the clinical 
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molecular diagnosis of our AML samples, and both results were used for optimizing the subtyping of the 

AML samples.  

Structural variants (SVs) were detected using WGS and Hi-C data as previously described[32]. 

Delly (v0.7.7) [116] and Speedseq (v0.1.2) [191] were used for detecting SVs in WGS data. 

Centromere, telomere and heterochromatin regions were excluded for SV detection. SV calls from Delly 

and Speedseq were merged and only SVs detected by both methods were kept to reduce false positives. 

Furthermore, the detected SVs were compared against the DGV database (version.2016-05-15) to reduce 

germline SV calls. For SV detection in Hi-C data, HiC Breakfinder [32] was used with default 

parameters. In this work, only large deletion, inversion (> 1Mb) and inter-chromosomal translocations 

were considered for Neo-loop analysis.  

Hi-C data analysis 

Paired-end reads were first trimmed by Trim_Galore! (v0.6.0) to remove adapters and low 

quality bases with parameter “--paired”. Trimmed reads were then mapped to human genome GRCh38 

by BWA MEM (v0.7.17-r1198) with parameter “-SP5M”, and deduplicated with “pairtools dedup” 

(v0.3.0). Reads mapped to the same MboI restriction fragment or in outward direction are not 

informative to chromatin interactions and thus are removed for downstream analysis. Hi-C matrices and 

cooler files were generated with Cooler (v0.8.6.post0) [229]. Iterative correction and eigenvector 

decomposition (ICE) method was used for Hi-C normalization with “cooler balance” option. Higlass, 

Juicerbox, and 3D Genome Browser (http://3dgenome.org/) were used for visualization of Hi-C 

matrices[230-232]. 

HiC compartments were identified at 40kb resolution using a “sliding window” strategy as 

previously described [85]. First, the “exp” (expected) matrix was obtained by averaging Hi-C contacts at 
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the same distance. Then the “obs/exp” matrix was calculated by summing the observed Hi-C contacts 

within a window of 400kb centered at each bin divided by the sum of expected Hi-C contacts in the 

same window. A step size of 40kb was used to calculate the “obs/exp” value for all elements in the 

matrix. The “obs/exp” matrix was then converted to a Pearson Correlation matrix. The principal 

components were derived by calculating the covariance matrix of the Pearson Correlation matrix 

followed by eigenvector decomposition with ‘eigen’ function in R. The first principal component (PC1) 

was used to assign the A and B compartment where regions with positive PC1 values correspond to A 

compartment and negative to B compartment based on their association with gene density. 

Topologically associating domains (TADs) were identified at 40kb resolution by 

DomainCaller[61]. Specifically, a Directionality Index (DI) was calculated for each genomic bins at a 

window size of 2Mb. Then a Hidden Markov model was used to determine the up-or-downstream biased 

status for each genomic bin based on the DI scores. TADs were defined as continuous genomic regions 

starting from the first bin of a series of consecutive downstream biased bins to the last bin of the next 

series of consecutive upstream biased bins. 

Loop domains were identified at 10kb resolution using Peakachu, a machine-learning based 

method recently developed in our lab[213]. Peakachu reports a probability score associated with each 

loop which demarcates the likelihood of the loop being real. The probability score is also associated 

with the loop intensity, making it convenient for differential loop analysis. Peakachu detects loops as 

CTCF or H3K27ac loops depending on a pre-trained CTCF model or H3K27ac model. In this work, 

loops were first detected using both models and only those detected by both models were reported to 

decrease the false positive loops.  
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SV-induced neo-loop identification 

Neo-loop formation induced by SVs were identified using npcaller developed by our lab (method 

not published yet). 

CUT & Tag data analysis 

CUT & Tag sequencing reads were processed using ENCODE ChIP-seq pipeline 

(https://github.com/ENCODE-DCC/chip-seq-pipeline2). Specifically, reads were first trimmed by 

Trim_Galore! with “--paired” option, and then aligned to human genome reference GRCh38 with 

Bowtie2 (v2.3.5.1)[233]. PCR duplicates were removed by Picard MarkDuplicates tool with 

“VALIDATION_STRINGENCY=LENIENT” option. MACS2 was used for peak calling for histone 

marks and TFs with “-p 1e-2 --nomodel --shift 0 --keep-dup all -B --SPMR” options. Peaks in the 

ENCODE hg38 blacklist regions (http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-

human/hg38.blacklist.bed.gz) were filtered out. Peaks with MACS2-reported p value < 10e-5 were 

retained for downstream analyses. Log transformed p values (-log10 p-value) were used for track 

visualization in University of California Santa Cruz (UCSC) genome browser and Integrative Genomics 

Viewer (IGV).  

Whole genome bisulfite sequencing data analysis 

WGBS reads were processed using the Bismark pipeline[234]. Reads were first trimmed by 10 

base pairs on the 5’ end of both forward and reverse reads using Trim_Galore! with “--paired --clip_R1 

10 --clip_R2 10” options. Trimmed reads were then mapped with “bismark” command and deduplicated 

using Bismark’s “deduplicate_bismark” tool with default parameters. Per-cytosine methylation level 

was obtained using methylpy[235] “call-methylation-state” tool with “--binom-test True --paired-end 

True” options. The average CpG methylation level for a genomic region was calculated as the 
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accumulation of methylated reads over all CpG sites divided by the total reads in the region. Region-

level methylation levels were normalized by global methylation levels of each sample. 

ATAC-seq data analysis 

ATAC-seq sequencing reads were processed using ENCODE ATAC-seq pipeline 

(https://github.com/ENCODE-DCC/atac-seq-pipeline). Specifically, reads were first trimmed by 

Cutadapt (v2.4) with “-m 5 -e 0.2” options. Trimmed reads were then aligned to human genome 

reference GRCh38 with “bowtie2 -X2000 --mm” and deduplicated using Picard MarkDuplicates tool 

with “VALIDATION_STRINGENCY=LENIENT” option. Read alignments were shifted +4bp on “+” 

strand and -5bp on “-” strand to account for Tn5 insertion before peak calling. Peaks were called by 

MACS2 with “--shift -75  --extsize 150 --nomodel -B --SPMR --keep-dup all --call-summits” options, 

and filtered against the ENCODE hg38 blacklist 

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed.gz). Peaks 

were then filtered by MACS2-reported p value (p < 10e-5). Peak summits were extended by 250bp on 

both sides to a final width of 500bp for all downstream analyses. Overlapped peaks were handled using 

an iterative-removal approach similarly as previously described[236]. The most significant peak was 

examined, and any peaks directly overlapping with it were removed. Then this process iterates to the 

next most significant peak until all peaks are not overlapped. We performed a “score per million” 

normalization of MACS2 peak scores (-log10 p-value) by dividing each individual peak score by the 

sum of all peak scores in the sample divided by 1 million. 

RNA-seq data analysis 

RNA-seq sequencing reads were analyzed following the ENCODE standard pipeline. Raw 

sequencing reads were first adapter-trimmed by Trimm_Galore! with “--paired” option, and aligned to 
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human genome reference GRCh38 with STAR (v2.5.3a_modified)[195] with “--outSAMunmapped 

Within --outFilterType BySJout --outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --

outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 --

alignMatesGapMax 1000000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --sjdbScore 1” 

options. RSEM (v1.2.31)[196] was used for transcript quantification with GENCODE v24 annotation 

and “--paired-end --estimate-rspd --calc-ci” options. TPM for all transcripts were quantile-normalized 

across all samples using the “normalize.quantiles” function in the “preprocessCore” library in R.  

Hi-C based clustering of AML samples 

The first principal component (PC1) of the Hi-C matrix was used for unsupervised clustering of 

AML samples. PC1 was calculated at 40kb resolution from the ICE-normalized Hi-C data. Then 

coefficients of variation of PC1 across all AML samples and PBMC controls was calculated for each 

40kb genomic bins. The top 10% bins (n = 7013) with the largest variation of PC1 were selected for 

deriving a correlation matrix of PC1 across all samples. Hierarchical clustering was performed on the 

correlation matrix using “complete” linkage and “euclidean” distance metrics. The top 10% most 

variable bins were further clustered by hierarchical clustering to show sub-type specific A/B 

compartment patterns. 

Identification of TAD alteration in AML 

To identify TAD alteration in AML, a list of 898 TADs that are conserved (reciprocal overlap > 

0.9) all three PBMC was first compiled. Then this list of conserved TADs were compared against the 

TADs in each AML sample to generate a per-sample altered TADs list. TADs that are altered in more 

than one AML samples were defined as recurrent altered TADs. Expression of genes in samples with 

altered TADs was compared with the same genes in samples without altered TADs to identify up- and 
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down-regulation of gene expression due to recurrent TAD alteration. The contacts between the promoter 

of representative deregulated genes and near regions were closely examined with virtual 4C plot. In 

virtual 4C plot, contacts were first averaged across AML samples and PBMC samples respectively, and 

then normalized as a proportion to the contacts within the anchor itself. 

Identification of differential loops in AML 

AML gained or lost loops specific to PBMCs were identified based on the loop probability from 

Peakachu with a Gaussian mixture model. First, Peakachu loops for each pair of AML and PBMC 

individuals were merged and deduplicated. Then for each of the merged list of loops, fold change of 

Peakchu probability between AML and PBMC, and its reciprocal were used as input for a Gaussian 

mixture model to determine significantly differential loops at a FDR of 0.05. Each AMl individual was 

compared to all three PBMC controls independently, and then the consensus from all three lists of 

differential loops were deemed as AML-specific gain or loss of loops. Differential loops specific to 

more than two AML individuals were defined as recurrent gain or loss of AML loops. Expression of 

genes in AML samples with recurrently differential loops were compared with the same genes in PBMC 

samples to identify dysregulation of gene expression due to differential loop formation. 

Identification of AML subtype-specific loops 

Peakachu loops from all AML and PBMC samples were first merged and deduplicated to form 

an ensembl list of 113,632 loops. Then a loop probability matrix was constructed for the ensembl loops 

across 13 AML samples and three PBMC samples. Four AML samples (M3, C2, R3, and F1) were 

excluded for this analysis due to significantly fewer loops detected compared with other samples. Loops 

that did not overlap with any gene promoter were removed, which left a total of 69,389 loops for 

downstream analyses. We then applied additional filters such that we required the maximum subtype-
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wise average of loop probability is two-fold greater than the minimum subtype-wise average of loop 

probability. Then rows (loops) of the probability matrix were clustered by hierarchical clustering with 

“complete” linkage and “euclidean” distance.  

Identification of most variable methylation CpG islands and CTCF sites  

CpG island (n = 31,144) coordinates for hg38 were downloaded from UCSC Table Browser. We 

estimated mCG levels for each CpG island in 10 AML individuals and two PBMC controls. We then 

calculated the standard variation of mCG levels for each individual CpG island across all twelve 

individuals. We chose the top 10,000 CpG islands with highest variation among all sites. For CTCF 

sites, we first merged CTCF peaks from the same twelve individuals through the dba.count() function in 

the DiffBind R package. We further restricted CTCF peaks to those overlapped with CTCF motifs, 

resulting in 21,532 CTCF peaks. Similar to CpG islands, the mCG levels for each CTCF peak was 

generated and then top 10,000 most variable CTCF sites were selected. 

Analysis of differentially methylated regions 

Differentially methylated regions (DMRs) were identified by methylpy DMRfind. Samples 

within the same subtype were treated as replicates for DMR identification. A mCG matrix of all DMRs 

across AML and PBMC samples was constructed and row-wise scaled to be centered at 0, followed by 

hierarchical clustering on all DMRs. 

Analysis of mCG at differential CTCF binding sites 

Differential CTCF binding sites between AML and PBMC samples were identified by DiffBind. 

Additional filter was applied such that differential CTCF binding sites are overlapped with CTCF 
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motifs. We required hypermethylated CTCF sites to have at least 1.5 fold higher mCG levels in AML 

than in PBMC, as well as mCG in PBMC greater than 0.1. 

Correlation of loss of CTCF binding with gain of loops in AML 

We first identified AML-specific loss of CTCF binding compared with PBMC by DiffBind such 

that the normalized CTCF peak signal is at least two folds greater in PBMC than in AML. Next, within 

the AML-specific gain of loops that we previously defined, we searched for loops whose two anchors 

are at the opposite sides of the AML-specific loss of CTCF sites. This gives us a list of loop-CTCF 

pairs. We then calculated the Pearson correlation of loop intensity (measured by Peakachu probability) 

with CTCF peak signals for each loop-CTCF pair. 

Saddle plot of Hi-C data with DMSO and 5-AZA treatment 

We generated HiC saddle plots following guides from cooltools 

(https://github.com/mirnylab/cooltools). Specifically, the first eigenvector (E1) calculated at 25kb 

resolution was ranked ascendingly and then equally binned into 38 groups. Next, each genomic bin was 

assigned to these groups based on its E1 value. We then calculated the average of “obs/exp” contacts for 

bins in each group with bins in all other groups.



 

 

Chapter 5 

 

Overall discussion 

Summary and innovation 

SV Identification has been challenging due to the many limitations we discussed about in the 

introduction, and so is the downstream analysis that aims to characterize and interpret the SVs. 

Therefore, one focus of our work is to develop advantageous new method, with the overall goal to 

improve SV detection and to better understand the functional impact of SVs.  

 In Chapter 2, we showed that we are the first effort that uses BioNano optical mapping to 

identify SVs in cancer genome, and it exhibit great advantage in identifying large SVs or complex SVs. 

Moreover, we were able to correct the sizes of gaps in human reference genome, and we revealed 

previously unrecognized polymorphism in gap sizes in human genome. For large gaps (>50Kb), this is 

unlikely achievable by any other technologies except BAC scaffolding. We were also able to pinpoint 

the contigs in human reference genome that are mis-position or inversely placed, benefitted from the 

megabase-scale long reads from BioNano. This findings could greatly improve the accuracy of the 

human reference genome. Second, we are also the first work that developed the algorithm and software 

for using Hi-C to detect SVs. We showed its robustness in detection of translocations or large intra-

chromosomal SVs, since its performance will not be interfered by complex genomic sequences around 

the SV breakpoints. We also took an unprecedented trial to integrate WGS, Hi-C and BioNano for SV 

detection, and quantitatively and systematically compared their performance, with extension to PET-seq, 

karyotyping and fusion of transcription. One by one we revealed their advantages and limitations with 

regard to resolution, mappability, SV size and complex SVs. Based on the integration, we demonstrated 
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how to reconstruct the haplotype-resolved local genome with a series of chained SVs. We accomplished 

this tough mission for a very complicated region in K562 cells as a proof of concept.  Importantly, all 

previous genomic phasing-related work has been focusing on SNVs due to the challenge of SV phasing.  

With the successful experience of the integrative detection of SVs on the model ENCODE 

cancer cell lines, we then applied BioNano optical mapping onto primary leukemia samples, as shown in 

Chapter 3. We showed that we were able to capture thousands of SVs missed by routinely used methods 

in clinical setting. A realistic challenge for somatic SV characterization in leukemia is the lack of normal 

blood controls, so we developed a pipeline to filter germline SVs, which is also the first solution to SV 

stratification for BioNano data. We revealed novel genes that are frequently mutated by SVs, which 

were either previously known as generally related to cancer but not specifically related to AML or not 

recognized for any association to cancer. Nevertheless we uncovered that the expression of 15 such 

genes are significantly associated with survival of AML patients.  

From these two projects, we demonstrated the importance of SVs at non-coding regions in the 

cancer genome by disrupting cis-regulatory elements like enhancers or insulator. This is also an 

innovative endeavor in characterizing non-coding SVs genome-wide in many cancer genomes. We 

found SVs on enhancers are functionally highly associated with the specific cancer type. We for the first 

time showed that the cancer-related genes that are located nearby the SVs often have extremely high or 

low expression in leukemia, and further analysis revealed the allelic unbalanced expression, indicating 

the heterogenous SVs are disrupting cis-regulation of the nearby genes. Further, we presented a new 

finding that SVs will alter the replication timing. Last, we created a way of reconstructing Hi-C maps 

according to information of the SVs, in order to analyze and visualize impact of SVs on 3D genome 

structure. We illustrated that SV can cause fusion of TADs and activation of tumor-related oncogene.   
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In chapter 4, we presented a first investigation of chromatin spatial reorganization in primary 

acute myeloid leukemia in a subtype-specific manner. We also identified and revealed the intriguing co-

occurrence of sub-type specific cis-regulatory elements, specifically enhancer, repressors, and CTCF 

bindings sites, with the gained or lost chromatin loops in AML, providing evidences that the physical 

chromatin structure accommodates the subtype-specific cis-regulation. Importantly, repressive loops is 

understudied and less appreciated for their function before. This is the first time that genome-wide gain 

of pathogenic repressive loops have been identified, which is associated with global transcription 

downregulation. This is also the first study that identifies gain of stripes genome-wide, and in addition to 

the initial work that demonstrated the enrichment of super enhancers at stripes, we also showed that 

stripes can be a hub for associating repressive loops.  

This work also for the first time systematically identified the SV-induced neo-loops and 

enhancer hijacking genome-wide using our newly developed method. We investigated the association 

between aberrant DNA methylation and altered chromatin structure in depth. We revealed how the 

methylation abolishes chromatin insulation and causes the excessive gain of chromatin loops. We also 

uncovered the unexplored mechanism of the chemical 5-AZA in AML treatment. While 5-AZA can 

activate gene expression through demethylating promoters, why 5AZA can suppress oncogenes and 

when it will be useful is understudied. Now we showed that through restoring compartment switch and 

dissociating active chromatin loops, it can also silence oncogenes. This provides a new angle to 

determine other targets and to develop similar treatment.  
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Significance and contribution to the field 

First, the work presented in Chapter 2 has great resource value to the whole community. We 

generated 14 Hi-C, 8 optical mapping, 7 WGS, 7 replication timing and 2 karyotyping for ENCODE 

cancer cell line that are fully accessible to any future work. The comprehensive SV list we generated has 

become an important reference for researchers to check the genomic background for the cell lines of 

interest. For example, in design of a CRIPSR experiment, it is critical know the copy number, the SNVs 

and SVs in the targeted region, to avoid off-target consequence. Also, as SVs extensively drive 

transcriptional alteration, without knowing the genomic background a lot of data will be hardly 

interpretable.  

Different technologies read SVs differently and many times their outputs are not readily 

comparable, due inconsistent SV definition or resolution. We provided to the community a detailed 

standardized pipeline for platform integration. Also, as we revealed the advantage and limitation of each 

technologies, researchers can more easily make a decision for what technique is the best fit for their 

purpose. Moreover, our findings and the strategy we applied might also inspire the field that commits to 

genome assembly in various species. Essentially, SV detection and genome assembly share many 

common challenges like the existence of large genomic repeats and the unresolved gaps that demand for 

contig scaffolding. We showed that Hi-C in combination with BioNano can thread large genomic 

regions with longer contiguity to improve the accuracy in decrypting any genome. The corrected gap 

sizes we generated will also contribute to the next version of human reference genome. 

Further, our work presented a model of applying the advanced technology to improve the clinical 

diagnosis. The novel genes we identified that are frequently mutated in AML, which are associated to 

the disease survival, might provide new targets for disease treatment to the cancer field. We also showed 

the functional importance of SVs located in the non-coding regions. We noticed that a recent set of 
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publications from TCGA that investigated the SVs in 38 primary cancer types have a substantial part of 

work focusing on non-coding variants in driving cancers and driving chromatin reorganization, showing 

the filed’s growing interest and comprehension in the role of inter-genic SVs in cancer. 

In Chapter 4, we revealed the chromatin structural basis underlying the subtype-specific 

disruption of cis-regulation in AML. It suggests that similar chromatin reorganization might also take 

place in other types of cancers and associate with subtypes defined by different classification system. 

Moreover, we revealed a previously understudied mechanism, which is restoring chromatin structure 

and cis-regulation, of the well-known drug 5-AZA. Understanding this mechanism of 5-AZA in 

leukemia is crucial, as the patient responsiveness can be better predicted based on the gene expression or 

3D genome profile from the patient. For example, according to our data, patient with MYCN and WT1 

activation, or BCL11 and GATA3 silencing are likely benefit from 5-AZA treatment. We believe this 

work can trigger more interesting findings that are related to oncogenic mechanism and treatment of a 

variety of cancer types. 

Future questions and perspectives 

 Our development of Hi-C breakfinder turned out highly innovative and useful in identifying 

SVs, but its application could be hindered by the cost. The sequencing is affordable but still not ideally 

cheap, and right now this method needs around 100 million sequencing reads for approaching optimal 

performance. It will be useful to improve the algorithm in order to sensitize the SV detection with lower 

sequencing depth. One interesting idea is to apply HiCPlus, a machine-learning based Hi-C imputation 

method that only needs shallow sequencing data to predict the map generated with deep 

sequencing[237]. An alternative resolution is to incorporate region selection into the protocol so only the 
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SVs on genes of interest will be detected with very shallow sequencing depth. This can enable the SV 

screening for hundreds to thousands of targets each time across many samples in parallel, which could 

greatly increase the detection efficiency while lowering the cost. 

 In chapter 1, we also showcased reconstruction of a local map containing complex SVs with the 

integrative method, which is done manually. An algorithm that automatically recognize the existence of 

chained SVs in a haplotype-resolved manner, or even thread them with SNVs to realize genome-wide 

phasing, will be very useful to picture the cancer genome. This also applies to our detection of neo-TAD 

events induced SVs. Instead of manually reconstructing the rearranged Hi-C maps and visually looking 

for neo-TAD, the field needs an algorithm that can automatically construct all SV-related Hi-C maps 

and systematically and statistically detect neo-TAD and neo-loops.  Indeed, we later resolved this task 

taking into account SV information like locus, orientation, complex SV and copy number, and we also 

streamlined TAD and loop detection on such genomes all at once.  

In chapter 2, we carried out a pilot study for advancing SV detection in clinical diagnosis and we 

revealed many novel genes potentially related to leukemia. Due to the small scale of sample size, our 

result might provide some representative snapshot of the whole picture in leukemia SVs. Efforts based 

on large sample size is needed in the future to reveal the overall landscape of SVs in AML. 

 A few thoughts also rises as related to our findings in Chapter 4. For example, as we observed 

enhancers gained along the chromatin loops, it will be crucial to uncover targetable master TFs. Also, 5-

AZA was known for remarkable responsiveness at clinical trials, but its application is hindered by less 

satisfactory improvement of survival due to high relapse when using the drug alone. In fact, 5-AZA and 

its deoxy derivative, decitabine, have been applied clinically in combination with other chemicals to 

improve the treatment effect in recent years, such as vorinostat, valproic acid, all-trans retinoic acid and 

sodium phenylbutyrate[206-208]. This might represent the epigenetic plasticity and redundancy in 
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chromatin spatial organization, suggesting the importance of recognition of other master regulator TFs 

and combined inhibition with 5-AZA. Further, the SV-induced neo-loops might be an important 

mechanism for disease onset, and how those events might inspire the disease intervention is question to 

be answered. Last, as we saw highly distinct chromatin structure, cis-regulation, and gene expression in 

different subtypes in AML, we felt that there are two directions for exploring epigenetic therapies, 

which could facilitate each other: One is to find and target the most recurrent alteration across all 

subtypes for ensuring high responsiveness, and the other is to identify the highly subtype-specific but 

essential altercations for sub-type specific treatment.    
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