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Abstract
Breast cancer is a prevalent disease that undermines the quality of patients’ lives

and significantly impacts psychosocial wellness. Moreover, breast cancer has the highest

occurrence and second-highest mortality probability among all types of cancer in American

women. Different treatment methods, such as mastectomy, radiation, chemotherapy, and

targeted therapy, vary in the perspective of cost, curability, and side effects. Advanced

sensing provides unprecedented opportunities to develop smart cancer care. The available

sensing data captured from individuals enable the extraction of information pertinent

to the breast cancer conditions to construct efficient and personalized intervention and

treatment strategies.

This research is aimed at improving the outcomes of treatments based on a data-

driven Markov Chain model for breast cancer. We first used the conditional probability

to estimate the transition dynamics, then deployed a novel Hierarchical Gaussian Distri-

bution (HGP) to impute the missing elements in the estimated transition matrices. The

patient’s state space is defined by the patient’s age, health status, and prior treatments.

The data used in this research is derived from the Surveillance, Epidemiology, and

End Results Program(SEER) dataset. The dataset contains the treatment record and

diagnosis record of breast cancer patients from 1975 to 2016.

With the completed transition matrices, we designed a sequential decision-making

framework to determine the optimal treatment strategy for breast cancer patients. We

used a Markov decision process (MDP) model for both the objectives of cost and quality-
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adjusted life-years (QALYs) with the data-driven and state-dependent treatment actions.

The state space is defined as a vector of age, health status, prior treatments, as defined

previously. Also, the action space includes wait, prophylactic surgery, radiation therapy,

chemotherapy, and their combinations.

Experimental results demonstrate that prophylactic mastectomy or chemotherapy is

more effective in minimizing the expected cancer cost of 25 to 65 years-old patients with

in situ stage of cancer. However, the wait action is the optimal policy for a patient with

the same condition when we change the objective function from cost to quality adjusted

of lifetime. The proposed MDP framework can also be generally applicable to a variety

of medical domains that entail evidence-based decision making.
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Chapter 1 |

Introduction

1.1 Breast Cancer Overview

Female breast cancer constitutes the highest proportion, 15.2%, of new cancer cases

in the United States for 2019. Furthermore, 12.8% of women in the United States will

be diagnosed with breast cancer in their whole lifetime. As shown in Fig. 1.1, female

breast cancer also contributes to the second-highest estimated deaths in 2019 due to its

high prevalence [1]. Moreover, based on the National Cancer Institute report, medical

expenditures for breast cancer care in the United States surges from $21.6 billion to

$25.1 billion between 2010 to 2017 [2]. Preventive surgeries and diagnosis techniques are

effective in reducing the risk of cancer among patients. Also, treatment strategies (e.g.,

Chemotherapy and radiation therapy) can control the progression of breast cancer and

return a patient to a healthy life.

However, most of intervention and treatment strategies are usually costly and cause

severe side effects. For example, prophylactic mastectomy as an intervention strategy may
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Figure 1.1. Estimated Cancer Cases and Deaths in 2019

be considered medically necessary in a patient at high risk of breast cancer. However,

this strategy is in conflict with the desire of women for natural body image, and it

surges the loss of sexuality and gender identity, and also enlarges the risk of osteoporosis.

Furthermore, physical and psychological differences (e.g., age, stage of cancer, and

personal treatment history) impacts breast cancer progression and thereby leads to

significant uncertainty on patients’ health status and treatment planning.

The current breast cancer study focuses on different perspectives. Besides biological

perspectives such as research on the development of cancer cells [3], studies on breast

cancer are mostly related to the effects of different factors. For example, there are studies

about how cancer-related genes affect the occurrence and curability, like breast cancer

(BRCA) gene [4], Human epidermal growth factor receptor 2 (HER2) gene [5]. There are

also research efforts about the effects of the behavioral factors on breast cancer, such as
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alcohol use, tobacco use [6].

Other than making treatment choices based on the specification of treatments,

patients and doctors tend to rely upon patients’ specific conditions, and medicines revolve

around the standard of care to make decisions. The biology of the tumor, cancer stage,

overall health, and age are all considered when making decisions. Also, advancements

in medical sensing technology provide an unprecedented opportunity for smart health

management in breast cancer [1], which enables a detailed treatment plan for breast

cancer patients.

The data generated in breast cancer consists of various intervention and treatment

decisions from a heterogeneous population (i.e., patients of different ages and stages of

cancer and various treatment histories). Additionally, there is a vast amount of data

in the healthcare system related to disease status and patients’ decision-making on

treatment selection. While datasets contain a significant amount of information and

many features, those datasets may not be well-organized, and some features are trivial or

not directly related to the purpose of breast cancer research. Consequently, how to take

advantage of the available big data to improve the wellness of breast cancer patients is a

challenge for many researchers.

1.2 Overview of Thesis

In this thesis, first, we applied a Markov Chain model on data from the Surveillance,

Epidemiology, and End Results Program (SEER) dataset. Based on features in the
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SEER dataset, we defined the state in the Markov Chain model by age, health status,

and prior treatments. The stage of cancer in health status and the age of the patient

are two vital factors impacting the transition dynamics of breast cancer. Considering

the availability of data, we only consider the general type of Mastectomy, Radiation,

and Chemotherapy in prior treatments. Treatments for breast cancer can affect patients’

health status and then transition. However, on the other hand, treatments also increase

the incidence of other diseases or even result in death from other causes.

With defined states and models, we estimated transition probabilities between

different states with conditional probability. Although the SEER dataset contains over

one billion data, some specific breast cancer cases are still inadequate for the estimation.

In order to impute the missing elements in transition matrices, we deployed an HGP

methodology. The HGP method can impute missing values based on adjacent values in

the transition matrices layer by layer, which enables a higher accuracy.

Further, We developed a novel MDP framework to derive the optimal treatment

strategies (i.e., wait, prophylactic surgery, radiation therapy, Chemotherapy, and their

combinations) for any state defined previously. In the MDP model, we derived the

optimal strategies by maximizing the total reward measured in terms of quality-adjusted

life-years (QALYs) and the expected cost of treatment.
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1.3 The SEER Data

In this thesis, we utilized the Surveillance, Epidemiology, and End Results (SEER)

data from the year 1973 to 2016 to estimate the state-action transition dynamics in

breast cancer.The SEER program, supported by the U.S. National Cancer Institute

(NCI), collects data from tumor registries and covers 14% to 25% of the U.S. population.

These registries’ data are vital to analyze and report the evolving burden of breast cancer

in the population.

In the dataset, we first extracted data from all regions in the United States and

deleted the male cases. There are a total of 1,667,890 entries in the extracted data. Each

entry has the same size with coded cancer-related variables such as year of diagnosis, the

month of diagnosis, grade, and stage.

Figure 1.2. An example of state-action transition dynamics of breast cancer over lifespan of a
patient in the database.

The total extracted data have 397 ASCII positions for each data entry. The 397

positions in the dataset contain information like Patient ID, Race, Sequence Number,
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Table 1.1. Data Structure

Patient ID Registry ID Marital
Status Race . . . M value Total # of

in situ/malignant
Total # of

Benign/ Borderline ...

07000002 0000001502 2 01 ... 0 02 00 ...
07000057 0000001502 5 01 ... 0 02 00 ...
07000067 0000001502 5 01 ... 0 02 00 ...
07000082 0000001502 2 02 ... N/A 02 00 ...
07000100 0000001502 5 02 ... N/A 02 00 ...

... ... ... ... ... ... ... ... ...

and et al. As shown in Table 1.1, positions 1-8 indicate Patient ID; positions 9-18

indicate registry ID, which contains information which hospital system the patient

entered; position 19 indicates Marital Status. Note that the patient ID is utilized to

identify a patient in the SEER database uniquely. Based on the patient ID, we created

a tensor structure (i.e., 3-dimensional data structure of patient, variables, and breast

cancer entries) for all patients with re-retry records. Note that in each layer, we store

data of all records of the same patient. As shown in Fig. 1.2, there are six entries for

this patient in the database, and the breast cancer state has evolved over her lifespan as

a function of age, stage of cancer, and treatment history (i.e., she has multiple records).

We decoded each feature by the reference table. For the first and fourth patients

in Table 1.2, the marital status is married, represented by 2, and other patients in

Table 1.1 are widowed, represented by 5, as shown in Table 1.2. However, there are a

large number of missing values in the dataset, like the M value in Table 1.1. In the next

step, we selected features from the dataset based on the data availability and the model

we defined.

This thesis is organized as follows. Chapter. 2 introduces the research background for
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Table 1.2. Code Description

Code Description
1 Single (never married)
2 Married (including common law)
3 Separated
4 Divorced
5 Widowed

6 Unmarried or domestic partner
(same sex or opposite sex or unregistered)

9 Unknown

breast cancer progression and missing value imputation. Chapter. 3 presents the transition

probability estimation and Hierarchical Gaussian Process for missing value imputation.

Chapter. 4 shows experimental results and benchmarking study, and Chapter. 5 concludes

this thesis.
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Chapter 2 |

Literature Review

Due to the prevalence of breast cancer and the rich data environment, many studies

have been done to research breast cancer and improve the survival chance of breast

cancer patients. Some studies are from biology and medical perspective. Gupta et al. [3]

researched the dynamics of phenotypic proportions in human breast cancer cell lines

with a Markov model; they also showed how subpopulation of cells return to equilibrium

phenotypic proportions over time and how non-stem-like cells transit to stem-like cells.

On the other hand, some studies are focusing on the patients’ perspective. Kurian and

Das [4] built a Monte Carlo model for BRCA mutation carriers to simulate screening

methodology, prophylactic mastectomy (PM) and/or prophylactic oophorectomy (PO) at

various ages to guide patients with complex choices. In this chapter, we provide a view

of previous works on how researchers estimate the transition probability and develop

intervention and treatment strategies for breast cancer patients.
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2.1 Estimation of Transition Dynamics

Transition dynamics estimate the progression of tumors based on patients’ evolving

data of health status. A deep understanding of transition dynamics can help patients

with their decision making on treatments. With estimated transition dynamics, we can

move forward to the next step to develop a treatment policy.

2.1.1 Calculation of Risk Reduction Strategy with Big Data

Generally, there are three ways to estimate the risk reduction of breast cancer.

The first methodology is to do an estimation based on collected data from a designed

experiment like a cohort study. Perez et al. [7] analyzed data collected from a cohort

of 300 women with breast cancer with a non-homogeneous Markov process. The states

are defined as no relapse, relapse, and death, and the survival probability functions

for different treatments are estimated from the data. In order to analyze the effect

of various factors, such as pregnancy history, alcohol use, tobacco intake, Barnett et

al. [6] analyzed data from 4,560 women with invasive breast cancer. Early Breast Cancer

Trialists’ Collaborative Group [8] implemented meta-analysis on individual data from

10801 women patients. They applied the data on 17 randomized trials to estimate the

factor that affects the effectiveness of radiation on preventing cancer recurrence. The

advantage of designing an experiment is that the collected data can directly serve the

research purpose. On the other hand, the weakness of this method is that the data

collecting process may last for several years or even several decades, and the cost is high.
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The second method is to use available data to do simulation. In the 1990s, There are

researches about using computer simulation on breast cancer to find better intervention

strategies for patients. On the one hand, Boer et al. [9] simulated based on a given

strategy and modified strategies to study how different intervention strategies affect the

number of deaths and the number of life-years saved. On the other hand, Michaelson

et al. [10] research on the course of breast cancer growth and metastasis based on the

rate of tumor growth and spread model. Subsequently, the Monte Carlo simulation is

widely used. Plevritis et al. [11] used the Cancer Intervention and Surveillance Network

base case inputs, which describe breast cancer risk, treatment and screening pattern,

and non-cancer caused deaths. They used information generated from the Monte Carlo

simulation to estimate the impact of mammography and adjuvant therapy. What is

more, Monte Carlo simulation can also be used to estimate transition probability, which

can further be used to estimate the risk reduction strategy. Kurian et al. [12] simulated

a Monte Carlo model for BRCA1/2 gene carriers with screening options, prophylactic

mastectomy(PM), and/or prophylactic oophorectomy. Based on the generated survival

probability and causes of death, they provide a reference for BRCA1/2 mutation carriers

on their choices between screening or PM. Le et al. [13] used a Monte Carlo simulation

to apply lapatinib in the treatment for HER-2-positive patients. They estimated the

incremental cost-effectiveness ratio based on the estimated transition probabilities.

Furthermore, the third method uses available data to defined models, then directly

estimate transition probabilities; this method typically requires a large amount of data.

Yen et al. [14] used data from the Swedish Two-County Trial and service screening
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programs in several countries. They estimated the incidence of progressive and non-

progressive ductal carcinoma in situ and the detection rates of screening based on the

Markov process model.

However, due to the complexity of breast cancer-related problems, researchers use

different parameters when estimating transition probabilities. Abdollahian et al. [15]

focused on BRCA gene carriers’ prevention problem based on screening and preventive

actions. Le et al. [13] studied HER gene’s effects to understand more about the effect

on progression and new lapatinib use on the treatment of HER-2-positive breast cancer.

Most researchers concentrate on a preventive strategy for breast cancer. However, very

little has been done to estimate post-treatment state-action transition dynamics for breast

cancer patients. With a vast amount of data about post-treatment states, we choose to

build a Markov Chain model to estimate the post-treatment transition dynamics.

2.1.2 Modeling and Analysis of Incomplete Data

Even in transition matrices estimated from big data, there are some missing elements

in our transition matrices because of unbalanced data. The missing element is a common

problem that occurs in all kinds of data related research. In the literature, researchers

generally deal with missing data in two ways. The first one is the case analysis, including

complete-case analysis and available-case analysis, which is removing the cases or variables

with missing elements, then analyzing the data with full information. The second method

is missing data imputation, which estimates the missing elements with predicted values

from single imputation or multiple imputation [16, 17]. Single imputation includes
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mean imputation, regression imputation deck imputation, etc. On the other hand,

multiple imputation is a more sophisticated and valid method in dealing with missing

elements. Zhang [18] implemented regression imputation on 150 elements of data,

which is generated from simulation. Shrive et al. [19] intentionally remove some values

from 1580 questionnaires with 20 questions, then use multiple imputation methods,

including multiple imputations, single regression, mean method to estimate the missing

values. Myrtveit [20] implemented listwise deletion, mean imputation, similar response

pattern imputation, and full information maximum likelihood to impute the missing

values. Moreover, machine learning algorithms are used on missing value imputation.

Pantanowitz and Marwala [21] used data from HIV seroprevalence data, then implemented

random forest and neural network-related methodologies to impute the missing values.

There are also complicated methodologies introduced to capture the missing values. Li

et al. [22] applied the clustering method combined with soft computing together, and the

fuzzy clustering algorithm to impute the missing values. In this chapter, we implemented

a Hierarchical Gaussian Process to impute the missing elements.

2.2 Markov Decision Making Process

Markov decision process (MDP) modeling is an effective way to determine policies

for sequential stochastic decision problems according to patients’ specific conditions [23].

The multi-stage decision processes have been previously implemented in medical domains

such as optimal timing of living-donor liver transplantation and treatment of ischemic
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heart disease [24]. In the breast cancer domain, Anderson et al. [25] developed Markov

modeling with Monte Carlo simulations to evaluate the cost-effectiveness of the preventive

strategies that are available to unaffected women carrying a single BRCA1 or BRCA2

mutation with high breast cancer penetrance. Abdollahian and Tapas [26] studied an

MDP model that incorporates yearly state transitions for the mutation carriers and

state-dependent intervention actions. They considered to separate reward function and

determine the best policies under each of them.

However, most of previous decision models focused on optimization of intervention

strategies for patients with BRCA1 or BRCA2 mutation careers, which only limited just

to the intervention strategy for the small portion of the population that has a higher risk

of having breast cancer (i.e., 5% to 10%). Also, their calculations for the state-action

dynamics were based on the simulation studies, which may not be accurate due to the

high level of uncertainty in complex and human-based systems. There is an urgent

need to utilize available big data and design inclusive decision-making frameworks for

personalized and multi-stage intervention and treatment planning in breast cancer.
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Chapter 3 |

Estimation of State-action Tran-

sition Dynamics

3.1 Introduction

In this chapter, we first research the data structure and look insight the data.

Through data mining, we discovered a clear trend in treatment options, cancer stage,

and the likelihood of mortality as age changes. For example, among treatment options,

Chemotherapy is more likely to be utilized in the regional and the distant cancer stage

compared with in situ and local stage. In contrast, less than 25% of patients at in situ

stage choose to use Chemotherapy. Afterward, we defined a Markov Chain model to

estimate the patients’ multi-age transitions to predict breast cancer progression. The

patient state is defined by the patient’s age, health status, and prior treatments. However,

due to the imbalance in the SEER dataset, we need to deal with missing elements in the

transition matrices. We deployed a novel Hierarchical Gaussian Distribution (HGP) to
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impute the missing elements in the transition matrices.

In order to show the effectiveness of the HGPs methodology, we implemented a

benchmarking study to validate our methodology. In benchmarking study, The Root

Mean Square Error (RMSE) of HGP imputation is 35% lower than Gaussian Process and

40% lower than Linear Regression. Moreover, the transition matrices reveal astoundingly

elderly distant cancer patients have even higher survival chances than young age distant

breast cancer patients.

3.2 Research Methodology

3.2.1 Data Processing

In the feature selection process, we retrieved Patient ID, patients’ status including

age, cancer stage, and available treatment records. The dataset we used only contains

information for Mastectomy, Radiation, and Chemotherapy, which we further used to

define our model. Since the standards for treatments and cancer stage definition varies

over time, we processed data from different standards to keep the information. For

missing values in raw data, we chose to eliminate them in order to avoid artificial bias.

Moreover, more detailed treatment information is not considered due to multiple data

standards and unbalanced problem; we treated the treatment values as binary variables.

For some patients, they entered the system more than once due to health examination

or status deterioration. We added the previous record to new entries to keep track of

their treatment history. However, we have no information about the health condition
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between and after their entry, so that we can only approximate the cancer progression

with those re-entry data. On the other hand, when estimating mortality probability, we

can take advantage of all data due to the completed record of death time.

3.2.2 Model Definition and State Transition Dynamics

Based on the features retrieved from the previous step, we defined a Markov Chain

model to formulate the transition dynamics [23]. The state of a patient is defined as

follows:

S = {a+ c+ t} (3.1)

where a denotes patients’ age, where we only consider the age between 25 to 65

years; c denotes cancer stage of the patient, which includes in situ, Local, Regional and

Distant; and t denotes the patients’ treatment history, which contains information about

mastectomy, radiation, and Chemotherapy.

Moreover, we assume that patients can only transit from "good" state to "worse" state

because the data only contains information for one entry, which results in inadequate

information about how patients progress after the entry. As in Fig. 3.1, we defined that

patients in ci0 can transit to all other stages, but patients at stage ci3 can only stay in

the current stage state or transit to death state. Note that the de in Fig. 3.1 represents

the death state, which is an absorbing state in our model.

Further, we estimated the mortality probability for patients based on the "Survival
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Figure 3.1. Markov Chain Model Transition at tk0

Month" feature. With the massive amount of data, we can estimate mortality probability

based on individual state and age. On the other hand, we need re-entry data to keep track

of the cancer condition for patients, which is unavailable for most patients. Therefore,

the transition probability we estimated is not a function of age.

In this Markov chain model, we use the following transition probability function to

calculate the transition probabilities:

Pmn(a) = Pr{X(a+ 1) = n | X(a) = m},m, n ∈ S, 25 6 a 6 65 (3.2)

where m,n is the state at age a and a+ 1 respectively; X(a) denotes the state at

age a; Pmn(a) means the transition probability at age a from state m to state n.
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3.2.3 Hierarchical Gaussian Process

However, the transition probabilities estimated from conditional probability are

incomplete; many stage-to-stage probabilities are missing because of the limited amount

of re-entry data. Nevertheless, the transition probabilities in the transition matrix are

correlated with each other due to cor relationship between different states. As a result,

adjacent values inside a matrix and values at the same position across matrices can be

utilized to impute the missing value. As shown in Fig. 3.2, the transition probability at

position A can be estimated from three dimensions [27], age, cancer stage, and treatment

history. First, the transition probabilities are correlated through cancer stage and age.

On the other hand, the effect of treatment gives a correlation between different treatment

histories. Based on the correlation, we can approximate the missing value in the transition

matrix based on Gaussian Process on different dimensions.

Fig. 3.3 shows how we utilized the hierarchical structure of the HGP method to

estimate the missing values in our transition matrices.

First, Xc(tk, aj) denotes the value of transition probability at cancer stage c for

patients with treatment history tk at age aj . We construct a level I Gaussian process(GP)

model as:

Xc(tk, aj) ∼ GP(µc, Kc) (3.3)

where µc is the mean function, and Kc is the covariance function. The order of stage,

treatment history, and age is derived from the correlation of transition probability with
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Figure 3.2. 3D Tensor Structure of BC patients data

Figure 3.3. The Hierarchical structure of Gaussian Process
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those factors. We use covariance function Kc as:

cov(Xcm, Xcn)|tk, aj = σ2
cexp[−

(cm − cn)2

l2c(tk, aj)
] (3.4)

Eq. 3.4 is based on squared exponential covariance function. σ2
c is the signal variance

in the dimension of stage, and lc(tk, aj) is the length scale of the exponential covariance

function. Note that Xcm and Xcn should be similar if sm and sn are close to each other.

Second, we model µc in Eq. 3.1 using a level II GP model as:

µc ∼ GP(µt, Kt) (3.5)

where µt is the mean function for transition probability, and Kt is the covariance

function between treatment histories. The hierarchical design is to incorporate nonsta-

tionary in the underlying stochastic process through the GP model of mean functions.

We ordered treatment histories based on their impact on mortality probability. If two

patients have similar treatment histories, their transition probability should be close to

each other. The covariance function Kt is defined as:

cov(Xtm, Xtn)|ci, aj = σ2
t exp[−

(tm − tn)2

l2t (ci, aj)
] (3.6)

Then we model the mean function µt in Eq. 3.5 as the level III GP:

µt ∼ GP(µa, Ka) (3.7)
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where the Ka is the covariance between different ages, as shown in Eq. 3.8.

cov(Xam, Xan)|ci, tk = σ2
aexp[−

(am − an)2

l2a(ci, tk) ] (3.8)

Also, the mean function µa is the average of transition probability for specific age

across the treatment history and stage:

µa =
∑

c

∑
t Xa(ci, tk)∑

c ci

(3.9)

With the HGP, we can estimate transition probability for the patient at age a∗, with

stage c∗ breast cancer and with t∗ treatment history. The posterior mean of level I GP is

given as:

Xc∗(t∗, a∗) = Xc(t∗, a∗) +Kc∗c[Kcc + σ2
ncI]−1[Xc(t∗, a∗)− µc(t, a∗)] (3.10)

where Kc∗c is the temporal covariance, σ2
nc is the noise variance in temporal domain

and Xc(t∗, a∗) can be calculated from:

Xc(t∗, a∗) =
∑

c Xc(t∗, a∗)
Ct∗a∗

(3.11)

Ct∗a∗ is the number of stages at age a∗ with treatment history t∗. Then the mean

function, Eq. 3.10, can be estimated from level II GP:
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µc(t, a∗) = X t∗(c, a∗) +Kt∗t[Ktt + σ2
ntI]−1[X t(c, a∗)− µt(c, a∗)] (3.12)

where Kt∗t is the covariance between treatment histories, σ2
nt is the noise variance in

treatment history and X t(c, a∗) is the mean function for transition probability across all

treatment histories. Then we estimate µc(t, a∗) use level III GP:

µt(c, a∗) = Xa∗(c, t) +Ka∗a[Kaa + σ2
naI]−1[Xa(c, t)− µa] (3.13)

whereKa∗a is the covariance between ages, σ2
na is the noise variance in the perspective

of age and Xa(c, t) is the prior of age a for all stages and treatment histories.

3.3 Experimental Design And Results

3.3.1 Descriptive data analysis

Before estimating transition matrices, we investigated processed data to understand

the relationship between patients’ age and the cancer stage. In Fig. 3.4, the population

of breast cancer patients for each stage is displayed in a different color, and the height

of the bar represents the total population of breast cancer patients. From Fig. 3.4, the

population of patients increase by age and start to decrease after around 70 years old.

Moreover, patients at the local stage consist of the highest proportion almost all the

time. Notably, there is an apparent difference between age 39 and age 40; the reason is

that most researches and instructions indicate that the female population should apply

22



Figure 3.4. Population of breast cancer stage among different ages

screening every year after 40 years old [28].

Besides the stage proportion, the processed data also contains information about the

treatment selection among different ages. Fig. 3.5(a) to Fig. 3.5(d) shows the treatment

selection proportion at stage in situ, local, regional, distant respectively. In Fig. 3.5(a),

due to the benign type of cancer, data shows more patients choose mastectomy at a

younger age and radiation at a higher age. However, few patients use Chemotherapy at

in situ stage. Fig. 3.5(b) shows that patients at local stage might use all those three

methods depending on case to case situations; Nevertheless, for elderly patients, radiation

is more likely to be used. Starting with Regional cancer in Fig. 3.5(c), most patients

undergo Chemotherapy other than Mastectomy and Radiation. Distant cancer patients

in Fig. 3.5(d) use less radiation and mastectomy compared to the Regional stage because

those two treatments would introduce a high risk.
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Figure 3.5. Distribution of treatment selections among patients at different ages and stages
of cancer

3.3.2 Transition Probability Estimation

The estimated transition matrices consist of 33× 33 matrices for each age, where

33 represents the number of the combination of treatment history and stage, with a

death state. Table 3.1 is one part of the 39-year-old transition matrix; it shows how the

cancer stage of a 39-year-old patient with no treatment history would progress. As shown

in the table 3.1, in situ stage cancer has a 0.71% probability to transit to local stage

at age 40. Also, patient with distant cancer has 7.21% death probability, which is the

highest compared with other stages. Note death can only transit to death state, which

we consider as an absorbing state.
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Table 3.1. STATE-ACTION TRANSITION MATRIX FOR A PATIENT AT AGE 39 WITH
NO TREATMENT HISTORY

In Situ Local Regional Distant Death
In Situ 0.9818 0.0071 0.0023 0.0003 0.0086
Local 0 0.9746 0.0016 0.0003 0.0236

Regional 0 0 0.9859 0.0007 0.0134
Distant 0 0 0 0.9279 0.0721
Death 0 0 0 0 1

Fig. 3.5 presents the mortality probability at different stages among all defined

ages. Generally, the mortality probability increases as age increases. Moreover, the dark

blue represents the low mortality probability for breast cancer patients. However, the

mortality probability around age 33 for Distant stage cancer is higher than in middle

ages, as shown in red in the figure. We believe the reason is that patients would do more

examinations like screening at an older age, which results in a late diagnosis. Besides,

elderly patients have higher risk both from breast cancer and other causes. While the

patients in middle ages are healthier than elderly patients, and they tend to do more

health tests.

3.3.3 Hierarchical Gaussian Process

To evaluate the HGP and compare it with other methods, we simulate by removing

some values from transition matrices, then utilized HGP, GP, and Linear Regression(LR)

to estimate the removed values, respectively. We implemented three methods for 100

replications, each for three different percentages of removed values, 25%, 50%, and 75%,

and then implemented HGP, GP, and LR to impute the missing values we removed.
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Figure 3.6. The Mortality Probability for different ages and stages

The Root Mean Square Error(RMSE) is used to compare the imputation errors, which

can reflect the error between the predicted values and actual values. As shown in

Fig. 3.7, the RMSE for HGP is 40% less than LR, 35% less than GP for all three

percentages, which reflects the effectiveness of HGP compared with other two methods.

Furthermore, the range of RMSE increases with the removed percentage, which indicates

the uncertainty increases with the removed percentage increase. However, the range for

HGP increases much less than the other two methods. Even with less training data, the

HGP methodology has stable performance.
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Figure 3.7. RMSE for different removed data percentages

3.4 Conclusions

In this chapter, we developed transition probability matrices for female breast cancer

patients for different ages, treatment histories, and cancer stages. We defined a Markov

Chain model based on available features on the retrieved SEER dataset. With information

derived from the SEER dataset, we conduct data mining to get a closer look into the data

structure and learn more insight about the data. Further, basic conditional probability

is applied to the estimation of transition probabilities, and a novel Hierarchical Gaussian

Process is utilized as a complement to missing parts in the matrices. In order to validate

the methodology we utilized in missing value imputation, a benchmarking study is

conducted, linear regression, simple Gaussian process, and proposed HGP model are

compared. The result shows that HGP is more effective than the other two methods in

imputing the missing values in our model.
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The result of this chapter can provide insightful information on the progression of

breast cancer associated with age, stage, and treatment history. In the next chapter, the

estimated transition matrices will be implemented on Markov Decision Making process

models.
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Chapter 4 |

Markov Decision Making Process

for Multi-stage Optimization

4.1 Introduction

In this chapter, we utilized transition matrices estimated from Chapter. 3 to design

an MDP model. The MDP framework is designed to derive the optimal treatment

strategies (i.e., wait, prophylactic surgery, radiation therapy, Chemotherapy, and their

combinations) for any state that is composed of age, health, and prior treatments. The

objective function is to maximize the total reward measured in terms of quality-adjusted

life-years (QALYs) and to minimize expected cost of treatments.

The remainder of this chapter is organized as follows: Section. 4.2 introduces the

research methodology of the proposed MDP. Section. 4.3 presents the experimental results

for the real-world case study.
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4.2 Research Methodology

In this chapter, a data-driven decision-making platform is developed. We focused

on individuals who are already diagnosed with breast cancer, making this a retrospective

study. As shown in Fig. 4.1, the proposed methodology consists of the following steps:

1)state-action transition dynamics and 2) MDP modeling of optimal and sequential

decision making for breast cancer patients. We first integrated different SEER data files

and then organized them based on patients’ ID in the tensor structure. Next, we utilized

the state-action transition dynamics that estimated from previous chapter for breast

cancer patients between 25 to 65 years old. Finally, we deployed an MDP framework

with cost and QALYs as reward functions, which yields the optimal treatment strategies

over lifespan based on patients’ specific states.

4.2.1 MDP Modeling of Breast Cancer

The proposed MDP framework is defined by age, health status, and prior treatments.

Components of the finite MDP are decision epoch, state space, decision space, state

transition, and reward function, additional reward function, and probability mass function

are defined over state space.

• Decision epoch: The decision epoch is assumed to be initiated from age 25 to

age 65.

• State space: The state space for a patient p is defined using a three-tuples as
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Figure 4.1. Flow diagram of the research methodology.

s = (a, c, t), where a denotes age of patient, a ∈ {Amin = 25, 26, ..., Amax = 65},

c represents health status based on the stage of the cancer (i.e., in situ, local,

regional, and distant). t is the treatment history of a patient, which is defined

as three-tuple as prophylactic mastectomy, radiation therapy, Chemotherapy. We

denote Xa, a ∈ {25, 26, ..., 65} the state random variable at the age a. Also, the

state process X = {Xa : a = 25, ..., 65}. The probability of being at a particular

stage at the age a+ 1 relies on the health status and treatment history. Therefore,

P (Xa+u = k|Xq,∀q ≤ a; a+ u ≤ 65) = P (Xa+u = k|Xq = v); as a result, X has a

Markov chain property.
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• Action space: The action space is defined as D, and d shows a possible decision

from the action space. The decision are wait, prophylactic mastectomy, radiation

therapy, Chemotherapy, and their combinations (i.e., prophylactic mastectomy,

radiation therapy, and Chemotherapy) based on patient’s age, health status and

prior treatments.

• Decision space: The decision rule is denoted by Q(sa; d), which is the probability

of selecting action d ∈ D given the state s and at age index a.

• State transition: Let Pa(s′|s) be the transition probability from state s in age

a to state s′ in age a + 1 under the action d ∈ D. The transition probabilities

are estimated from previous Chapter, based on the action space, we developed a

state-action transition dynamics.

As shown in Fig 4.2, a 35 years old patient with in situ stages of cancer and no

treatment history can transit to various states between ages 36–37 and 37–38 under the

decisions of wait and Chemotherapy, respectively.

4.2.2 MDP Solution

We leveraged the finite-horizon dynamic programming algorithm for solving our

MDP model. Let Vk(s) represents the value of state s in the iteration k. Also, α is

the discounting factor. In addition, r(s, a) and p(s′|s, a) are the immediate reward of

selecting decision a at state s and the one-step transition probability from state s to

s′ under decision a, respectively. Note that the value of the state is updated in each

32



Figure 4.2. An example of two-step state-action transitions dynamics in the MDP framework.

iteration as follows:

1. Put V ∗Amax
(s) = rAmax(s) if a = Amax∀s ∈ S

2. Let a = k for k = Amax − 1, ..., Amin, update the value for each state:

V ∗k (s) = max
d∈Dk

{rk(s, d) + α
∑

s′∈Sk+1

pk(s′|s, d), V ∗k+1(s′)} (4.1)

3. Choose optimal policy:

π∗k(s) = arg max
d∈Dk

{rk(s, d) + α
∑

s′∈Sk+1

pk(s′|s, d)V ∗k+1(s′)} (4.2)

In Eq. (4.2), π∗k(s) is the optimal policy in the state s at the age k. Note that the
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Table 4.1. Cost values and utility for QALYs
Health Condition
and Treatment Cost Within a Year Mean Utility Weights

Health
Conditions

BC in situ 60,637 0.965
BC Local 82,121 0.86

BC Regional 129,387 0.675
BC Distant 134,682 0.38
Healthy 0 1
Death 1,000,000 0

Treatments
Prophylactic Mastectomy 686,980 0.76

Radiation Therapy 91,335 0.76
Chemotherapy 115,006 0.81

above solution assumes that the decision horizon is finite.

4.2.3 Reward functions

Cost and QALYs are two reward functions investigated in this chapter. The cost

function includes expenses of health state and cancer treatment. Therefore, the total

cost depends on the health state of patients. Table 4.1 shows the expected mean utility

weights (also called preference rating), the cost of health state and treatments, which are

adopted from [29] and [30], respectively.

4.3 Experimental Results

4.3.1 Optimal Treatment Strategies

As shown in Table 4.2, the optimal policies (i.e., wait (w), prophylactic mastectomy

(p), radiation therapy (r), Chemotherapy (c), and/or their combinations (i.e., p+r, p+c,

r+c, and p+r+c)) vary based on patient’s age, health status, and prior treatments as well
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Table 4.2. Cost-Optimal Treatment Strategies for Breast Cancer Patients of Ages 25 to 65
Stage and History

In Situ Local Regional Distant
Age (0, 0, 0) (0, 1, 0) (1, 1, 1) (0, 0, 0) (0, 1, 0) (1, 1, 1) (0, 0, 0) (0, 1, 0) (1, 1, 1) (0, 0, 0) (0, 1, 0) (1, 1, 1)
25 w p w w w w w w w w p w
35 w c w p w w c w w p p w
45 w c w p w w c w w p+r p w
55 w c w p w w p w w p+r p w
65 w c w p w w w w w c c w

Table 4.3. QALYs-Optimal Treatment Strategies for Breast Cancer Patients of Ages 25 to 65
Stage and History

In Situ Local Regional Distant
Age (0, 0, 0) (0, 1, 0) (1, 1, 1) (0, 0, 0) (0, 1, 0) (1, 1, 1) (0, 0, 0) (0, 1, 0) (1, 1, 1) (0, 0, 0) (0, 1, 0) (1, 1, 1)
25 w p w w w w w w w w w w
35 w p+c w p+c w w c c w p+c c w
45 w c w p w w c w w c c w
55 w w w p w w w w w c c w
65 w w w w w w w w w w w w

as the reward function. Note the optimal policy for a patient at the age of 25 and with

no treatment history (i.e., (p, r, c) = (0, 0, 0)), and in situ stage is to wait. However, for

the patient with the same stage of cancer with radiation therapy history, prophylactic

mastectomy in this age is the optimal policy when the cost is our objective function.

It is worth mentioning that for a patient at the age of 65, and when the stage of the

cancer is in situ, the proposed model recommends prophylactic mastectomy. However, as

the cancer stage progresses, Chemotherapy is the optimal solution. Also, for middle-aged

patients with the regional and distant stage of cancer, the combination of prophylactic

mastectomy and radiations decreases the chance of death. The result also shows that as

patients with in situ or distant types of cancer get aged, the optimal treatment strategies

change from prophylactic mastectomy to Chemotherapy.

As shown in Table 4.3, the optimal treatment strategies when QALYs are the reward

function are different from the results in Table 4.2. Note for patients with in situ stages

of cancer with radiation history; the optimal action is prophylactic mastectomy. However,
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as age increases, the Chemotherapy becomes more effective than prophylactic mastectomy

to keep the QALYs high. Also, for a patient with a more invasive stage of cancer (i.e.,

distant), Chemotherapy is more effective than prophylactic for higher QALYs.
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Chapter 5 |

Conclusions

Breast cancer is the most common type of cancer and leads to the death of a woman

approximately every 13 minutes. Intervention and treatment strategies are the common

actions that may reduce and prevent the risk of breast cancer occurrence and progression;

the strategies also help patients to return to their healthy life. The important challenge for

breast cancer individuals is to find the best timing and type of effective intervention and

treatment actions. The available historical data provides an unprecedented opportunity

to revolutionize cancer care delivery. In this study, we used the SEER dataset to define

a Markov Decision Making Process model to derive the optimal breast cancer treatment

strategy.

We first processed SEER data based on the availability and research purposes and

conducted data mining on the processed data to learn more about the breast cancer data.

Then we estimated the transition probability matrices based on conditional probability

and defined the Markov Chain model. The Markov Chain is defined with patients’ age,

health status, prior treatments. In order to complete the matrices, the Hierarchical
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Gaussian Process is developed to impute the missing parts in the matrices.

Further, we developed an multi-stage MDP model as a dynamical approach to

address this problem and obtain a robust sequential decision making for QALY and cost

as reward functions. The results show that as age increases from 25 to 65, chemotherapy

becomes more effective than prophylactic mastectomy to keep the QALYs high. The

proposed evidence-based decision support tool has the potential to improve treatment

planning in different healthcare domains such as prostate cancer and cardiac diseases.
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