
The Pennsylvania State University
The Graduate School

ACCELERATE THE DOCKING APPLICATION ON

HETEROGENEOUS COMPUTING SYSTEM

A Thesis in
Computer Science and Engineering

by
Mengran Fan

© 2020 Mengran Fan

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

May 2020

The thesis of Mengran Fan was reviewed and approved∗ by the following:

Mahmut Kandemir
Professor of Computer Science and Engineering
Thesis Co-Advisor

Kamesh Madduri
Associate Professor of Computer Science and Engineering
Thesis Co-Adviser

Mehrdad Mahdavi
Assistant Professor of Computer Science and Engineering

Chita R. Das
Distinguished Professor of Computer Science and Engineering
Department Head of Computer Science and Engineering

ii

Abstract

With the recent development of structural biology, the bottlenecks of drug discovery

have changed from the limited number of known protein structures to finding the stable

docked molecular for the target proteins. Compared to directly adopt molecular docking

chemical experiments, computational molecular docking offers a lower cost and less

time-consuming method. However, due to the sequential algorithm designs and large

memory consumption problem, most of the computational molecular docking applications

are not implemented with the high-performance computing techniques, thus not fully

take the benefits of computer cluster and graphics processing unit (GPU) architecture.

In this thesis, we proposed a generalized molecular docking parallel strategy for Message

Passing Interface (MPI) and GPU accelerating. Specifically, We maintain fault-tolerant

and loading balance inside the MPI version. The GPU version carefully optimizes the

main time-consuming parts targeting GPU architecture, including the reduction part,

energy calculation, and memory access part. To evaluate the effectiveness of the proposed

strategy, we select MedusaDock, one of the most famous computational molecular docking

software, as an example to accelerate molecular docking processes.

For original version MedusaDock, the docking process typically takes around a week to

process one iteration on the PDBBind dataset with nearly 3900 protein-ligand pairs. Even

worse, only a small portion of the protein-ligand pairs can find their docked orientation

and more pairs still need much more iterations to get converge.

By applying the parallel strategy on MedusaDock, our experiment result shows that

iii

both MPI and GPU version MedusaDock achieve superior performances than the original

MedusaDock. The MPI version MedusaDock running on 9 nodes with 20 processes is

83.9x times faster than the original MedusaDock. If running on multiple nodes on the

cluster the total time consumption can correspond reduced depending on the node number.

The GPU version achieves around 1.8x times improvement on overall performance.

iv

Table of Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Chapter 1
Introduction 1

Chapter 2
Background and Related Work 4
2.1 Computational Molecular Docking . 4
2.2 Acceleration of the Computational Docking Approaches 5
2.3 MPI and MPICH . 7
2.4 GPU architecture and CUDA . 7

Chapter 3
Motivation and Application Analysis 8
3.1 Motivation . 8
3.2 Application Analysis and Profiling . 9

3.2.1 Application Analysis . 9
3.2.2 Application Profiling . 11

Chapter 4
Parallel strategy and Optimization on GPU architecture 14
4.1 Parallel strategy . 14
4.2 Optimization methods on GPU architecture 18

4.2.1 Reduction . 18
4.2.2 Binding Pose Energy Calculation 19
4.2.3 Memory Access Optimization . 20

Chapter 5
MPI version and its parallel strategy 22

v

Chapter 6
Experimental Evaluation 24
6.1 Performance Result . 24
6.2 Accuracy evaluation . 26

Chapter 7
Conclusion and Future Work 29

Bibliography 31

vi

List of Figures

3.1 Time consuming of nearly 3900 protein-ligand pairs dataset. 9

3.2 Application performance analysis . 11

4.1 Energy profiling of the search algorithm. X-axis represents iterations of
the search steps; Y-axis represents the energy of binding pose. 15

4.2 Program flow diagram. 15

4.3 Coarse docking parallelzation flow diagram. 16

4.4 Thread map of the GPU kernel . 16

4.5 Parallel searching process . 17

4.6 Thread block and grid level synchronization 18

4.7 Atoms grid . 19

4.8 GPU architecture memory structure . 20

5.1 MPI parallel strategy . 23

6.1 Performance improvement of the total docking time 24

6.2 Performance improvement of the coarse docking time 25

6.3 Performance improvement of the GPU kernel 26

6.4 Venn diagram of Energy and RMSD value 27

vii

6.5 Venn diagram of RMSD value . 27

viii

List of Tables

3.1 Top four time consuming examples in different part. 11

ix

Acknowledgments

I would like to take this opportunity to express my sincere thanks and appreciation to

many people who have helped me throughout my graduate program study and research.

Firstly, I would like to sincerely thank my advisor Professor Mahmut Kandemir, for

providing this wonderful opportunity to work with him, for his professional, patient,

invaluable advice and encouragement throughout all my graduate studies.

I also want to express my gratitude to Professor Kamesh Madduri, for his detail

guidance, patient conducting and inspiration during my research.

Many thanks to Professor Nikolay Dokholyan, Dr. Jian Wang and Professor Mehrdad

Mahdavi, who spend lots of time discussing research with me, providing valuable feedback

and guidance.

I would also like to thank all the members of the MDL and HPCL lab for all the help

and encouragement.

Finally, I would like to thanks my family for the constant support during my studies.

x

Chapter 1 |
Introduction

Over the past two decades, finding out the biological active compound processes usually
suffer from long periods and intolerable high costs. Even with high-throughput screening
technologies, development of a typical small-molecule drug usually takes years and costs
millions of dollars thus not meet the requirements of the modern drug development. [1–3].
With the recent development of infrared spectroscopy, X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy and cryogenic electron microscopy (Cryo-EM)
technologies [4,5], more and more protein and ligand structure details have been discovered,
the bottlenecks of drug discovery have changed from the limited numbers of known protein
structures to finding the stable docked molecular for the target proteins [6–8]. The
computational molecular docking, which offers an efficient and low-cost method to find
out the target small molecular, has become a very important topic in the structure-based
drug discovery area recently. The discovery of the huge amounts of protein and ligand
structure provides more data candidates for the computational molecular docking. Given
the known protein and molecular structure, computational molecular docking predicts
the binding affinities for the complex to identify the active ingredients. In detail, it
simulates all the potential conformations of the small molecular ligands and protein side
chain, calculates the estimating the molecular complexes’ energy and outputs the binding
poses. After that, by virtual screen all the binding poses of different ligand candidates,
the active ingredients are identified.

Although computational molecular docking is far more efficient than the traditional
chemical experimental method, in the high-performance computation perspective, the
computational molecular docking software not fully take advantage of modern computer
architecture. The computational molecular docking algorithms are hard to be imple-
mented in modern computer architecture due to their sequential designed algorithm
and large memory consumption. For example, the Monte Carlo and genetic algorithm

1

searching algorithms are sequentially designed. After parallelization every generated pose
needs to save its conformation information and its energy array, memory consumption
will rise in response to the scale of the parallelization. Currently, most popular docking
software such as GOLD [9], DARWIN [10], MCDOCK [11] and MedusaDock [12, 13]
are implemented to target the normal CPU architecture and don’t taken the advantage
of the massive parallelization. Only Auto-Dock Vina has been published a multilevel
parallel version, which implemented by MPI and OpenMP. In this thesis, we propose a
general parallel strategy and optimization methods for docking software. The parallel
strategy breaks down the sequential of the algorithm while guarantees the correctness of
the algorithm. The optimization methods accelerate the memory access by leveraging
different levels of GPU memory device, accelerate reduction by fully using the synchro-
nization inside thread block and share memory, accelerate energy calculation by using
the grid data structure to localize traversing atoms.

To evaluate the effectiveness of the proposed strategy, we select MedusaDock, one of
the most famous computational molecular docking software, as an example to accelerate
molecular docking processes. Comparing with other docking software, it repacks the
side-chain of the protein during rand move the ligand and carefully considers all the
possible conformations of the whole complex. MedusaDock also has a more effective
energy function, which can predict the affinities of the docking complex more accurately.
MedusaDock targets to dock the ligand into protein to get protein-ligand complex with
the minimum total energy. To find out the best ligand, for different proteins, millions
of ligands need to do dock with every different protein. Currently, for nearly 3900
protein-ligand pairs of ligand and protein datasets, total time consuming is around 134
hours, which means need 5.6 days to get all the results. Even though, only a few data
pairs can find its docked conformation. Most data pairs need hundreds of and thousands
of more iterations to find its docked conformation. Moreover, when the number of pairs
goes up, the performance could drop dramatically. Considering the huge total time
consumption of dealing with thousands of or millions of protein and ligand pairs, parallel
the processing between the pairs can help the performance in this situation. We plan to
take the benefits of cluster and GPU architecture to optimize the MedusaDock by using
MPI and CUDA. We implement an MPI version of the MedusaDock, with loading balance
under consideration. The result shows, when running on 9 nodes with 20 processes, it has
83.9x speedup. When the number of nodes in the cluster goes up, the performance will
relatively improve. We have done a detail characterization of the MedusaDock software,
the analysis demonstrates that random moving the ligand rotamers is the bottleneck of

2

the software. We also redesign the searching algorithm to remove the data and control
dependency, for parallel the searching process on the GPU architecture. Furthermore, we
implement several GPU specific optimization methods to guarantee the software take full
benefits of the GPU resource and efficiently run on the GPU architecture. Our experiment
result shows, the GPU version overall performance improves 1.8x. Since the GPU version
performance different case by case, the highest speedup for one protein-ligand pair is
around 4x.

The rest of the thesis is organized as follows: Chapter 2 introduced the background
of Molecular docking software and GPU architecture, summarized all related works.
Chapter 3 characterized and analyzed the MedusaDock algorithm and proposed our
motivation. Chapter 4 explained the parallel strategy of the MPI version. Chapter
5 introduced the parallel strategy of the GPU version, explained all the optimization
methods implemented targeting on GPU architecture. Chapter 6 presents and analyzed
the experimental results of the GPU version. Chapter 7 draws the conclusion and future
research directions.

3

Chapter 2 |
Background and Related Work

2.1 Computational Molecular Docking
The computational molecular docking, which offers an efficient and low-cost method to
find out the target small molecular, has become a very important topic in structure-based
drug discovery area in recent years. It finds out the minimum energy binding pose and
predicts the best drug candidates among millions of small molecules.

All the energy-based computational docking approaches consist of searching algorithms
and score functions. These components make the energy-based docking approaches
conventionally feasible in structure-based Docking area [6]. One major part of the energy-
based docking approaches is the searching algorithms. The general step of energy-based
docking approaches always starts with sampling all the potential conformations of the
docking molecular. Then various searching algorithms are adopted to find out the best
conformation, by traversing the sample results as less as possible. Since the huge amount
of the sample result makes the searching step to be very time consuming, many searching
algorithms have been explored because of the purpose of stochastic global optimization,
by different well-known docking applications. Genetic algorithm is adopted by GOLD [9],
Auto-Dock Vina [14], DARWIN [10] etc. It is good at finding the region, where extremes
are located but difficult to find the precise location. Fragment-based methods is adopted
by FlexX [15] and Dock [16]. It could have more hydrophilic hits, but limited chemical
space and low structural diversity. Monte Carlo algorithm is adopted by ProDock [17],
MCDOCK [11] and MedusaDock [12,13].

Another major part of the energy-based docking approaches is energy evaluation, also
widely known as score function. It usually estimates the complex energy to predict the
affinity between the two docking molecules. The physics-based score function can be
divided into Force Fields, Solvent models. Force Fields based computes the interactions

4

between the atoms of protein and ligand. It is bad at large ligand, since the force field
errors would accumulate, and is very computationally expensive. Solvent models try
to estimate the torsion entropy of the ligand, but it is difficult to estimate potential
energy and locate the related parameters. Physics-based score function is implemented by
CHARMM [18], AMBER [19]. Empirical methods based on score function circumvents
the speed and sampling problems. It sums up the important energetic factors. Since its
parameter training using known protein-ligand binding structure, it could be overtrained
and it has low transfer-ability to structurally distinct targets. This method is adopted by
ChemScore [20] , GlideScore [21], AutoDock [22]. Knowledge-based methods based score
function is very similar to the empirical methods. It based on the Inverse Boltzmann
statistic principle. It derives the desired pairwise potentials from three-dimensional
structures. It assumes that the frequency of different atom pairs in different distances
is related to the interaction of two atoms and converts the frequency into the distance-
dependent potential of mean force. The limitation of this method is difficult to locate
the reference state. This method is implemented by PMF [23], Bleep [24], DrugScore [25].
MedusaDock uses physical interaction model. Its score function consists of Rosetta force
field, VDW interaction model and parameters, an explicit hydrogen-bonding model and
EEF1 pairwise implicit solvent model. To relieve the computation-intensive, MedusaDock
takes the grid-based calculation.

MedusaDock starts with a stochastic rotamer library of ligands generation, then
shifts and rotates the rotamer into different poses. Based on the Monte Carlo algorithm
and score function MedusaDock tries to search for the best-fit poses within the docking
boundary box. During the searching process, not only the ligand but also the protein
will repack its side-chain, to imitate the realistic protein-ligand docking procedure. Also
to optimize the searching algorithm and reduce the computation from score function,
MedusaDock separates the searching step into coarse docking and fine docking. In coarse
docking, it can quickly find out the near best poses and then carefully verify and search
around during the fine docking step. Which largely reduces the search and sampling
time.

2.2 Acceleration of the Computational Docking Approaches
Most popular computational docking software are only implemented target CPU archi-
tecture. Only a few of them have done parallel acceleration targeting normal CPU node,
cluster and GPU architecture.

5

Auto-Dock Vina is a popular open-source molecular docking software, and it keeps
updating its version to optimize the software as much as possible by paralleling various
aspects of the program [26]. By using OpenMP and MPI, its official version established a
multilevel parallelism mechanism. Auto-Dock Vina uses OpenMP to implement the multi-
thread Lamarckian Genetic Algorithm, which is used for searching ligand conformations.
Auto-Dock Vina uses OpenMP to accelerate the individual docking task. And it takes
the benefits of MPI to parallel doing virtual screens. The virtual screening process,
which runs Auto-Dock Vina on different protein-ligand data pairs to locate the leading
compound, is a computational way to find out the leading compound by searching the
ligand libraries. Since currently, auto-Dock is the most popular docking software, there
are multiple works leverage GPU architecture to accelerate Auto-Dock. Micevski D. et al
mapped GPU thread to ligand atoms directly [27], since the number of the ligand atoms
is limited, this method has a very low utilization of the GPU architecture. Kannan S.
et al paralleled genetic algorithm(GA), and for score function, they paralleled the atom
pairs level, they got 10x to 47x speedup [28]. But they did not have local search, which
meant less degree of freedom, and they did not evaluate the accuracy of the result. Their
result only based on the speedup kernel without including CPU host data prepare and
transfer time. Serkan A. et al paralleled GA and got around 14x speedup [29]. They only
test on three protein-ligand pairs. No GPU architecture relevant optimization methods
included.

There is some other docking software, which is less popular but did try to accelerate
the algorithm. VSDocker is similar to Auto-Dock Vina, it also utilizes the MPI to parallel
process virtual screening process on the cluster [30]. But VSDocker doesn’t have intra
level parallelism on one CPU node. Most popular docking software takes the benefits
of the MPI to accelerate the code. PIPER had paralleled the FFT correlation process
and the score function on GPU architecture, it can get around 4.8x speedup. Most
of its accelerations come from cuFFT [31]. There is also some other docking software
accelerated on FPGA [32,33]. Most such GPU accelerating work only tested on a very
small portion of picked out protein-ligand pairs, and their performance result only based
on the optimized kernel, not including the whole software execution time. Moreover,
because docking software implementation is quite different, for example, their searching
algorithm and score function are various largely. Therefore, it makes the GPU parallel
strategy and optimization method various case by case.

6

2.3 MPI and MPICH
Message Passing Interface (MPI) is a standardized and portable message-passing standard
to function on a wide variety of parallel computing architectures. The basic operation
of MPI is sending and receiving messages, automatically combined communication and
synchronization. MPI can be used to parallel on individual computer, cluster and
heterogeneous network. It is a very flexible interface to parallel the program on various
platforms. The method provided by MPI is very limited. Mainly consists of sending
messages, receiving messages, broadcast and Allreduce.

MPICH is open-source software and a portable implementation of MPI. It is a
very popular version of MPI, also used as the foundation for the vast majority of MPI
implementations

2.4 GPU architecture and CUDA
The graphics processing unit (GPU) has been becoming an integral part of today’s
mainstream computing systems. The modern GPU is not only a powerful graphics
engine but also a highly parallel programmable processor featuring peak arithmetic and
memory bandwidth that substantially outpaces its CPU counterpart. GPU has been
known to provide high performance and energy efficiency for a variety of applications in
different domain, for example computer vision [34,35], graphics [36], machine learning [37],
Biomedical [38] etc. CUDA and OpenCL are two different models for GPU programming
[39]. The OpenCL standard offers a common API for program execution on systems
composed of different types of computational devices such as multi-core CPUs, GPUs,
or other accelerators [40]. On the contrary, CUDA is a parallel computing platform
and application programming interface (API) model specific to NVIDIA GPUs. It also
includes cuBLAS, cuFFT, CUTLASS, and cuDNN these optimized algorithm libraries,
which help the program developer to easily take full benefits of the NVIDIA GPU
architecture resource.

7

Chapter 3 |
Motivation and Application Anal-
ysis

3.1 Motivation
MedusaDock is to dock the ligand into protein to get protein-ligand complex with the
minimum total energy. To find out the best ligand, for different proteins, millions
of ligands need to be docked with every different protein. Currently, for nearly 3900
protein-ligand pairs of ligand and protein datasets, the total time consuming is around
134 hours. The data show that it takes 5.6 days to get all the results. When the number
of pairs goes up, the performance might drop dramatically. Consider the huge total time
consumption of dealing with thousands of or millions of protein and ligand pairs, parallel
the processing between the pairs can help to improve the performance in this situation.

As Figure 3.1 shows below, for one ligand and protein docking, the time consuming
is from 7sec to 49min. There are 13.7% pairs of ligand-receptor and their docking time is
larger than 200sec. So improving the performance inside one pair processing is necessary.
We plan to implement one pair docking parallel on GPU, to reduce the one pair docking
time.

Therefore, based on the current results and analysis, improving the performance of
the MedusaDock is meaningful work. Not only to get the result from a huge dataset but
also to reduce the time for one pair of ligand-receptor docking from tens of minutes to
a few minutes. Based on the theory of the MedusaDock, MPI and GPU architecture
with its thousands of parallel threads can help to improve the performance largely.
Therefore, the progress can divide into two steps: 1) improve one pair docking time,
parallel MedusaDock on GPU; 2) parallel doing MedusaDock for virtual screen process.

8

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

se
co
n
d

ligands

87.3%
200

3384

Figure 3.1. Time consuming of nearly 3900 protein-ligand pairs dataset.

3.2 Application Analysis and Profiling

3.2.1 Application Analysis

From the theoretically perspective, MedusaDock mainly consists of a searching algorithm
and score function. The searching algorithm tries to efficiently explore the conforma-
tional space for docking. There are three main parts during searching the potential
conformations: stochastic rotamer library of ligands generation, repack the side chain
of the protein and rigid body docking. The first two steps are all preparing for the
rigid body docking. Rigid body docking process explores the protein-ligand complex
by keeping the structure of the molecules rigid. The purpose of the rigid body docking
is to rapidly explore all the potential complex. Since the first two steps already try
to consider all the flexibility of docking conformations. Comparing with other docking
software MedusaDock has more flexibility on docking conformations by repacking the
side chain of the protein. Although MedusaDock uses the Monte Carlo algorithm as the
search algorithm, which has severe data and branch dependency problems. But, due
to large amounts of the conformations, parallel processing the searching step on GPU
architecture still will be our basic parallel strategy. The parallel strategy will be fully
discussed in Chapter 5.

The score function is used to give a score based on the energy of the protein-ligand
complex. And screen out several minimum energy complexes to predict the docking
conformation. The lower energy complexes mean more stability of the protein-ligand
complex. Although it can not predict the affinity between the ligand and the protein, by
using this way, at least we can screen out the several highly possible potential ligand

9

candidate from millions of candidates for the chemical experiment verification. Since the
chemical experiment is very time consuming and money cost, the result of MedusaDock
shows that the energy function performs well for predicting the protein-ligand docking
conformation. It means the energy function has a positive correlation with the affinity of
the protein-ligand complex.

MedusaDock uses a physical interaction model as a score function. The model is
comprised of Rosetta force field [41], VDW interaction model and parameters, an empirical-
based explicit hydrogen-bonding model and a knowledge-based EEF1 pairwise implicit
solvent model. Its solvent model considering both hydrogen-bonding and desolvation
effects. Since the score function needs to work with the searching algorithm to screen
out the best conformation, this part needs to be paralleled processing with the searching
algorithm on GPU architecture.

From the program structure perspective, MedusaDock can divide into three main
steps: 1) prepare for coarse docking; 2) Coarse docking; 3) Fine docking.

Preparing for coarse docking mainly prepares STROLL(stochastic rotamer library
of ligands). Since the small molecular could have multiple rotatable bonds, the ligand
rotamers could be very flexible. To enumerate all possible rotamers of the ligand is
not practical. Thus, MedusaDock uses a stochastic manner to generate the ligand
rotamer library. And they use the same manner to repack the side chain of the protein, to
guarantee both flexibility and simultaneous of the ligand and protein conformations. They
proposed an efficient rotamer library, which sufficiently sampled the conformation space.
They computed the Kabsch algorithm and compute the root-mean-square deviation
(kRMSD) value for different STROLL generations and proved the kRMSD value < 2 Å
to verify the sufficient of the library.

To accelerate the searching step MedusaDock separates the searching step into coarse
docking and fine docking. MedusaDock uses Monte Carlo algorithm to do the search step.
In coarse docking, it searches for the best-fit poses within the docking boundary box. It
proposes Nc cluster centroids, which is used as typical initial ligand conformations, for
each Nc cluster centroids, coarse docking is performed. During each docking process, the
ligand and protein structure will keep rigid, so the complex does not need to be the lowest
energy pose. But during the whole coarse docking process, multiple docking processes
are performed, several low energy poses will be proposed. The lowest energy complex
should be among these low energy poses. For the Nc coarse-docked poses, MedusaDock
will sort and group similar poses. During this step, MedusaDock keeps calculating the
RMSD value of low energy poses and removing similar poses. Similar poses will cost

10

unnecessary expensive calculations of the next fine docking step. The coarse docking
step finally chooses the top Nf (10% Nc) groups of lower energy poses for the next fine
docking step. During the coarse docking step, the ligand rigid-body motion and the
receptor side-chain rotamers are iteratively sampled.

For the fine docking step, both the ligand and the receptor side-chain rotamers are
sampled simultaneously. In this step, they will change all the ligand conformations in
each Nf group within 2 Å to enrich the ligand conformations. After the enrichment step,
every Nf group will only keep the lowest energy complex. This step will finally get Nf

minimized poses. The fine docking step tries to carefully verify and search around the
conformation, which is proposed by coarse docking. This two-level searching strategy
can largely reduce the search and sampling time.

3.2.2 Application Profiling

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000

Se
co

n
d

s

Ligands

Prepare for coarse docking

(a) Prepare for coarse docking

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

Se
co

n
d

s

Ligands

coarse_docking

(b) Coarse docking time

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000

Se
co

n
d

s

Ligands

fine_docking

(c) fine docking time

Figure 3.2. Application performance analysis

Table 3.1. Top four time consuming examples in different part.
Prepare for coarse docking (s) coarse_docking (s) fine_docking (s) Total_time (s)

2.27809 1987.13 497.509 2471.873
2.38414 2017.74 503.152 2512.497
2.45547 2252.32 664.319 2724.924
2.46173 2488.09 846.462 2985.653

11

As figure 3.2 and table 3.1 shows, the time-consuming estimation of the MedusaDock
main steps lists below:
1) Prepare for coarse docking, mostly input cases spent less than 1sec. No pairs spent time
more than 3 seconds. Most cases spend less than 1s. This step is not a time-consuming
step.
2) Coarse docking, time-consuming is from 2sec to 41min. When the total time con-
sumption is less than 30s, usually fine docking consumes the most time. When the
total time consumption is more than 40s, usually coarse docking consumes 2x-5x time
comparing with fine docking. Therefore, coarse docking is the main bottleneck of the
performance. The time consumption reason of coarse docking comes from the complex
structure of the ligand or receptor. Since both ligand rotamer and different conformation
of the receptor side chain need to be explored in this step, when the searching space goes
up, the calculation cost will increase. Some time-consuming cases could have several
hundreds of ligand rotamers need to be explored, while some only have few.
3) Fine docking, time-consuming is from 3sec to 14min. Only 3.3% of docking pairs
consume time more than 3 min in this step. This step has fewer iterations comparing
with the coarse docking step, but it consumes more time for one iteration.

The time consuming of coarse docking and fine docking steps highly depends on the
structure of the ligand and the receptor (receptor represents the target protein). The
more complicated structure of the molecular means more ligand rotamers and more
side-chain conformations can be generated for coarse docking and fine docking. This
flexibility will largely increase the workload of exploring the searching space. These
two steps become the bottleneck of the MedusaDock performance. Coarse docking is
to search for the best-fit poses within the docking boundary box. At the end of the
coarse docking, it needs to sort and group coarse-docked poses to find out the top Nf

conformation groups with minimum energy first. In the fine docking step, both ligand
and receptor side-chain rotamers are sampled simultaneously [12] for each conformation.
And all the conformations will be carefully checked around during the fine docking. As
the number of conformations inside every group goes up, the total conformations which
need to be explored will exponentially grow. They consist of the time-consuming reasons.

Here, we explain the detailed causes of the time consumption inside these two steps.
One major cause in coarse docking is the large number of ligand rotamers and their
poses. Parallel processing of all the rotamers with different poses can help a lot with
the performance. However, MedusaDock uses Monte Carlo algorithm to generate poses
for each ligand rotamers. Which means data dependence exists between the poses.

12

Parallel Monte Carlo algorithm on GPU, has been studied in these [42–44] papers. For
MedusaDock, we need to find out the best way to parallel. So that we can improve the
performance as well, as improve the accuracy. Moreover, computing the kRMSD matrix
inside coarse docking can also run in parallel to save time. To not miss the best pose for
all rotamers, there is a step inside coarse docking, recursive checking previous rotamers’
energy under the current best pose, which is one of the most time-consuming parts of
the coarse docking. Moreover, this step has unavoidable data dependence. We plan to
change the program itself taking advantage of the GPU architecture. Generate enough
poses for each ligand rotamer without recursive check the previous one.

For the fine docking step, the whole step needs to repeat Nf times to find out the
best result. Nf is the top few low energy rotamer groups, gotten from coarse docking.
We can parallel this step to reduce the consumed time. Searching for similar poses is the
most time-consuming step inside fine docking. This step will involve the Monte Carlo
algorithm and reduction algorithm parallel on GPU.

13

Chapter 4 |
Parallel strategy and Optimization
on GPU architecture

4.1 Parallel strategy
Monte Carlo algorithm inside the MedusaDock is to search the parameter space. It
starts from a random or specific state, which includes the information of position,
orientation, and conformation of the ligand and protein side chain. Then it makes
random state changes, accepts up-hill moves with probability dictated by energy function.
The algorithm will stop when it reaches the local minimum energy. This is the crucial
time-consuming step in MedusaDock since it includes both rand move ligand rotamers
and energy calculation of the binding complex.

The figure below shows three representative energy profiling for each iteration of the
search algorithm. From the figure, we can find out all three cases have reached the global
minimum inside two thousand steps, and show repeat energy value distribution after
that. We profile around 50 random picked protein-ligand pairs in this experiment, except
1ec3 case, all the other cases have reached its global minimum and started to repeat the
energy distribution at around one thousand iterations. So we magnify the one thousand
iterations part to analyze more detail of the energy distribution. The second line of the
pictures shows the magnified partial result of the first line. 1c70 case represents the most
common distribution, since we do not need the lowest energy in the coarse docking step,
we only need relevant low energy poses. Therefore most cases at least need 300 iterations
to get its low energy pose. Some cases even need more iterations. Based on this result
and algorithm analysis in the previous chapter, We propose our parallel strategy on GPU
architecture below. The property of GPU architecture can accelerate this searching step.

The parallel processing search algorithm will include: parallel random starting the

14

-46

-45

-44

-43

-42

-41

-40
0 2000 4000 6000 8000 10000 12000

1c70

-38

-37

-36

-35

-34
0 2000 4000 6000 8000 10000 12000

1cgl

-46

-45

-44

-43

-42

-41

-40
0 200 400 600 800 1000 1200

1c70

-38

-37

-36

-35

-34
0 200 400 600 800 1000 1200

1cgl

-2

0

2

4

6

8

0 2000 4000 6000 8000 10000 12000

1ec3

0
1
2
3
4
5
6
7

0 200 400 600 800 1000 1200

1ec3

Figure 4.1. Energy profiling of the search algorithm. X-axis represents iterations of the search
steps; Y-axis represents the energy of binding pose.

pose searching, parallel calculate the energy for each case and using a reduction algorithm
to find out the minimum energy.

Min energy

Ligand rotamer 1

Protein repack

Parallel calculate ligand rotamers pair RMSD

Rand move ligand

Different ligand pose

Detail check different
ligand pose

Protein repack

Rand move ligand

Ligand rotamer 2

Protein repack

Rand move ligand

Different ligand pose

Detail check different
ligand pose

Protein repack

Rand move ligand

Find out all the best pose, check for all the other ligand rotamers

Ligand rotamer n

Protein repack

Rand move ligand

Different ligand pose

Detail check different
ligand pose

Protein repack

Rand move ligand

…….

Figure 4.2. Program flow diagram.

Figure4.2 shows the program flow diagram of the original MedusaDock. We separate
the coarse docking part and figure 4.3 shows the coarse docking parallelization flow
diagram. To reduce the data transfer between the CPU host and GPU processor, we
repack the side chain of the receptor first. Then parallel search the ligand poses for the
specific ligand rotamer.

15

Find out the best pose for every ligand rotamer

Rand move ligand

Ligand rotamer 1
pose 1 Tid 0

Ligand rotamer 1
pose 2 Tid 1

Ligand rotamer 1
pose n Tid n

……

Rand move ligand Rand move ligand

Reduction find out the best pose!

Calculate energy Calculate energy Calculate energy

Loop 5

Figure 4.3. Coarse docking parallelzation flow diagram.

We divide the search space into 8 x 8 x 8 small cubes. Then random initialize a
start searching position in every cube. We initialize 7 x 8 x 8 x 8 threads for GPU
implementation, the thread number is bounded by GPU architecture resources. Figure 4.4
shows the thread arrangement of the GPU kernel. We use Tesla P100 GPU architecture,
so there are 56 SM units available in total. We group the thread into two levels, 2D
gird level 8 x 7 and 2D block level 8 x 8. The reason why we only define 64 threads per
thread block, it is because of the memory limitation of the GPU architecture.

BlockDim.x

BlockDim.y

GridDim.x

Searching area
Coalesced data access, best data locality.

For searching area

…….
Block(0, 0) Block(1, 0) Block(7, 0)

…….
Block(0, 1) Block(1, 1) Block(7, 1)

…….
Block(0, 6) Block(1, 6) Block(7, 6)

…….
Block(0, 2) Block(1, 2) Block(7, 2)

…….

Figure 4.4. Thread map of the GPU kernel

We use 8 x 8 x 8 threads to map the small cube in the searching space, every thread
takes the responsibility of one cube, random shift the ligand conformations from each
start position. The thread mapping demonstrates in figure 4.4 is for best data locality
and coalesced data access during the searching process. Every shift position will be

16

rotated seven times to check different orientations of the conformation. Since 8 x 8 x
8 division of the searching space does not fine-grained enough. We still use the Monte
Carlo algorithm to search from every start position for a few more steps.

Figure 4.5 demonstrates the parallel shift and searching process demo in a 2D 4
x 4 diagram. All the shift start in every cube could go in any direction since it is a
3D model in realistic. As the figure shows after several steps of exploring, there are
several threads could reach the same local minimum points. Some other threads may
get stuck in their local minimum points. By comparing these local minimum points, we
try to get the global minimum points in the searching space. We test on 20 random
picked protein-ligand pairs, based on our experiment result, after five Monte Carlo search
steps, around 1/10 of total threads could reach the same local minimum point, and by
comparing all the local minimum points, the local minimum point of the 1/10 threads is
the minimum point. So we suppose that after five search steps, most cases could find its
global minimum point.

Figure 4.5. Parallel searching process

Since we need the energy of all the binding poses to find out the global minimum
point, so we divide the coarse docking running on GPU into three parts as the figure 4.3
shows before. In the first part, random shift and rotate the ligand conformation in the
searching space. In the second part, calculate the energy of the complex. In the third
part, do reductions on GPU to get the global minimum energy pose.

17

4.2 Optimization methods on GPU architecture

4.2.1 Reduction

On GPU architecture synchronization is a very time-consuming operation, especially grid
level synchronization. Therefore to minimize the grid level synchronization and even
block level synchronization, we design a multi-level synchronization mechanism.

The first level is thread level synchronization. In our parallel search algorithm, we
need to do five search steps for each initial point. To avoid grid synchronization af-
ter each search step, while keeping the lower energy pose. Every thread as figure 4.5
demonstrated will do its own search and keep the lower energy pose during the searching
process, every post searching step will base on the previous lower energy pose inside
the thread. By doing in this way, the five searching step only include random move the
ligand conformation and complex energy calculation, the reduction step can be excluded.
After all the searching steps, we only need one global synchronization, since the binding
poses owned by each thread is already the minimum energy pose for each thread’s local
exploring area.

0 1 2 3 4 5 6 7

0 1 2 3

0 1

0

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Global memory

Share memory Thread Block
reduction

0 0 0 0

Grid reduction

0 0 0 0

0 0

0

Figure 4.6. Thread block and grid level synchronization

Figure 4.6 shows the Second level synchronization, which consists of thread block
level and grid level synchronization. To reduce the synchronization consumption across
all the threads, we do thread block level synchronization first, to get the minimum energy
pose inside every thread block. Then synchronize all the thread blocks to get the global
minimum energy pose. The property of GPU architecture prohibits the register file from
sharing across the threads, therefore only memory can be used to do reduction. The
benefits of thread block level reduction are that we can take advantage of share memory
to do the reduction. Share memory access is much faster than global memory access, and

18

share memory can only be accessed by the thread inside one thread block. Therefore,
we first copy the data to share memory and then do thread block level reduction. Then
to synchronize across the grid, we need to copy the data back to global memory, since
thread blocks can only communicate through global memory. Then we still copy the data
back to share memory and use one thread block to do the final reduction. But before
this step, we need to maintain data consistency. We first tried the Cooperative Group
to synchronize across the grid for data consistency. Then we also tried to use one data
allocation in global memory as a lock to manually synchronize across thread block. The
experiment result shows that manual synchronization can have around 14% performance
improvement compared to cooperative groups. So we keep the manual synchronization
version.

4.2.2 Binding Pose Energy Calculation

Y

X0, 0

(0, 3) (1, 3) (2, 3) (3, 3)

Figure 4.7. Atoms grid

Binding pose energy calculation includes all the atom pairs and proton pairs Van Der
Waals force field calculation, solvent calculation and hydrogen bond energy calculation.
In this part, if traverse all the atoms and protons in the receptor for every ligand atom
and proton, there will be lots of unnecessary data access and such a huge amount of
global memory access will also decrease the performance. Therefore, we build a 3D
grid to accommodate the atoms and a 3D grid to accommodate the protons. Figure 4.7
demonstrates a atoms grid in 2D. Since the force field effect scope is limited, by the grid
structure we can easily isolate the atoms, which inside the effect scope. For every atom
inside ligand calculate its targeted grid area first, then by this coordinate information,

19

we can largely reduce the force field effect scope and the global memory access.
After using the grid data structure, we need to isolate the hydrogen bond energy

calculation out. Since the hydrogen bond needs to be established during the calculation,
which will trigger data insert and delete inside the grid. For the attributes of the GPU
architecture, before the GPU kernel launching, we need to copy data from CPU host to
GPU device, in this step vector structure which including pointer can not be supported.
So we transfer all the vector data structure to an array when copying to the GPU device,
including grid data structure, which is implemented by vector. The cost of delete and
insert for array is very expensive and every thread needs to have its own grid data
structure, which largely increases memory cost. And we analyze 100 random picked
cases, hydrogen bond part energy is only occupied less than 5% of the total binding pose
energy. This part of the energy is not a crucial energy reason, therefore we isolate this
part and put this part of the calculation to CPU host.

4.2.3 Memory Access Optimization

Thread
(0, 0)

Thread Block (0, 0)

Register
file

Thread
(1, 0)

Register
file

Share memory / L1 Cache

Thread
(0, 0)

Thread Block (1, 0)

Register
file

Thread
(1, 0)

Register
file

Share memory / L1 Cache

Thread
(0, 0)

Thread Block (n, 0)

Register
file

Thread
(1, 0)

Register
file

Share memory / L1 Cache

L2 Cache

Global memory

……

Figure 4.8. GPU architecture memory structure

During the implementation of the coarse docking GPU kernel, since the coarse docking
process is memory intensive process, we fully take the benefits of the shared memory,
register file and vectorized data access, to optimize the memory access performance.
Figure 4.8 demonstrates the four hierarchies of the GPU architecture memory. Register
file is private per thread and its size is limited per thread block. For Tesla P100

20

GPU architecture, there is 256 KB register file per SM. Register file is the fastest
memory storage, compared with share memory and global memory. These three memory
structures are the only programmable memory in GPU architecture, L1 and L2 cache
is not programmable. Therefore, we put protons of the ligand on register file, this part
of data same with atoms of the ligand will be frequently accessed during the random
move process and energy calculation. But limited by the size of register file per SM, only
proton data can be accommodated in register file. At first, we also tried to use share
memory to accommodate the atom data. But for some complicated ligand structure data,
the share memory will run out. Moreover, we still need to save partial share memory
to do the reduction, share memory is far less enough in this scenario. For grid data, it
needs to be shared across all the thread blocks, although this part of data needs to be
frequently accessed during energy calculation, it can only be accommodated in global
memory.

The share memory usage in reduction part has been explained in the reduction section.
Except for local memory usage, we also try to use vectorized memory access as much as
possible. This method can scalar loads data, when data access is aligned and consecutive,
it can largely relieve the memory bandwidth bound.

21

Chapter 5 |
MPI version and its parallel strat-
egy

After getting the optimal one pair docking performance on GPU, we aim to reduce the
virtual screen time, in the scenario of screening out the leading compound from multiple
ligand candidates. The ultimate goal is to combine the GPU implementation with MPI
to parallel different pairs at the same time of paralleling inside one pair, which can fully
use the CPU and GPU resources of the cluster.

To implement a totally parallel for multi-pair, our parallel strategy is to use MPI sent
input pairs to different nodes and dispatch the task to the GPU on a GPU node, or using
the CPU resource process directly. Figure 5.1 shows the parallel strategy of the MPI
version. A master processor will be created and will take charge of tasks dispatching
to the slave processors. The master processor also takes responsibility to manage load
balance. It keeps communicating with the slave processor, whenever there is a slave
processor available, the master processor will dispatch tasks to it. The master processor
will guarantee all the slave processors are working as far as it has enough waiting tasks.
To guarantee the slave processor doesn’t need to wait after its task finished, double-check
is required between the master and the slave processor. Every slave processor needs to
sent messages back to the master processor when its finished and request a new task.
In this way, the slave processor can get a new task immediately without waiting. Also
if there is a slave processor fail, the master processor will dispatch tasks to other slave
processors. When every slave processor finishes its job, the Master processor will be
notified and summaries the result data by using distributed Allreduce. Since the purpose
of the virtual screen is to find out the leading compound, after all the tasks finished
finding out the few top ligands with its minimum energy docking pose is the last step.
MPI Allreduce method works well in this scenario.

22

Master
Processor

Slave 0 Processor

Task 1

Task 3

Task n

Task 2

Task 4

...

Task 1

Task 3

Task m

Task 2

Task 4

...

Task 1

Task 3

Task k

Task 2

Task 4

...

Slave 1 Processor Slave x Processor……

Figure 5.1. MPI parallel strategy

We use MPICH to parallel processing pairs. It compiled with intel ICC 16.0.3, running
on Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 28 cores per node. When running on
9 nodes, 20 processors per node, total time consuming is 91 minutes, comparing with the
original version the performance improve around 83.9x times. So it means currently using
MPI version MedusaDock, we can finish the work in one or two hours for the PDBBind
dataset which includes nearly 3900 protein-ligand pairs, this process used to take around
a week. Moreover, if we increase the nodes and process numbers largely, the performance
can improve correspondingly.

23

Chapter 6 |
Experimental Evaluation

6.1 Performance Result
Running environment configuration:
Using CUDA 8.0 to parallel processing inside pairs. Compiled with NVCC.
Platform configuration:
GPU: NVIDIA Tesla P100 GPU.
Host: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.4GHz (Broadwell), 28 cores per node.
Datasets: PDBbind (3875)

Figure 6.1 shows the performance speedup for the total execution time of every input
case comparing with the original CPU version MedusaDock. For the whole datasets time
consumption the GPU version improves around 1.8x times comparing with the original
CPU version.

0
1
2
3
4
5

0 500 1000 1500 2000 2500 3000 3500 4000

Sp
ee

d
up

Time consuming per protein ligand pair (s)

3.99x3.6x

0.7x

Figure 6.1. Performance improvement of the total docking time

From figure 6.1 we can conclude that the more time the protein-ligand pair consumes,
the more likely it has higher speed up with GPU version. The Highest speedup as the

24

figure shows is 3.99x. That is because the coarse docking time spends at most 5/6 of
total docking time. So it means at most it can have 5x speedup at ideal situation. From
the figure, we can read that different pairs with similar total docking times can have quite
different speedup. The difference between these two cases comes from the different coarse
docking time consumption percentage of the total docking time. While the preparation
for coarse docking time is not a time-consuming step, the main difference comes from
the ratio of coarse docking and fine docking. If we isolate the coarse docking part, their
coarse docking time speed up is similar. Also, we still can find some cases slow down
under the GPU version. For the slow down cases, the coarse docking part is not the
bottleneck of the pair. At the profiling result from chapter 3 shows, the coarse docking
step is not always the bottleneck, it varies case by case. Moreover, the GPU version has
additional overhead, which includes data structure transfer, host to device memory copy,
kernel launch, etc. Therefore, if the coarse docking step is not the bottleneck of the case,
the performance drop is predictable. We use the Portable Batch System to get the CPU
version performance. We also run the CPU version with partial datasets on GPU node,
the result shows a little bit of performance drop. Hence, a less efficient CPU host could
also be one of the performance drop reasons.

0

2

4

6

0 500 1000 1500 2000 2500 3000

Sp
ee

d
up

Coarse docking time consumption

5.32x5.25x

1.34x

Figure 6.2. Performance improvement of the coarse docking time

Figure 6.2 shows the performance improvement of the coarse docking time. Coarse
docking part is the main part, which accelerates by GPU architecture. Coarse docking
part performance also shows positive correlation between execution time and speedup.
The highest speedup is 5.32x comparing with CPU version. The reason why we can
not get higher speedup is because of the repacking the side chain of the protein step.
After we move the random move ligand conformation onto GPU architecture repack the
side chain of the protein step instead coarse docking part becomes the bottleneck. The

25

performance of this step highly depends on the complexity and flexibility of the protein.
From figure 6.2, we can also find that similar coarse docking part time-consuming pairs
can have quite different speeds up. It shows that although the coarse docking time is
similar, the number of ligand rotamers is still quite different. Since our GPU version
generates different poses for specific ligand rotamer in parallel, if the coarse docking time
is similar, the less number of ligand rotamer, the more speedup that case can get.

0

20

40

60

0 1000 2000 3000 4000 5000

Sp
ee
du

p

Protein-ligand pairs

40x

Figure 6.3. Performance improvement of the GPU kernel

If only comparing the GPU kernel runtime with the corresponding original CPU part,
the performance improvement could be very huge. As the figure 6.3 shows, the GPU
kernel can get at most 40x speedup. Around 26% of the protein-ligand pairs can get at
least around 5x speedup. This data also verify the GPU architecture works efficiently on
the docking algorithm acceleration.

6.2 Accuracy evaluation
We verify the correctness of the program in two parts, the first part is to evaluate the
model energy, and the second part is to verify root-mean-square deviation (RMSD) value.

Our GPU version’s calculation is based on complex energy. Therefore, as far as we
can verify that for the PDBbind datasets our GPU version can get no lower energy
binding poses than the CPU version, then we can verify the correctness. From the figure
6.4, we can see for nearly 3900 protein-ligand pairs datasets CPU version can find 287
cases, which has lower energy binding pose comparing with GPU version. While the
GPU version can find 523 cases, which has lower energy binding pose comparing with the
CPU version. All the rest 3065 cases have similar energy binding poses. It shows that
if the energy difference is smaller than 10% of the MAX (CPU version, GPU version),

26

523287 3065

14321633

GPUCPU
Energy

(< 0.1*max(GPU version, CPU version))

413311
506

14181227

GPUCPU
RMSD

root-mean-square deviation (RMSD) < 2

2645

Positive correlation

Figure 6.4. Venn diagram of Energy and RMSD value

their energy binding pose can be recognized as similar. Around 79% percentage of the
cases are similar. To guarantee the fairness inside the similar result, we also compare
all the similar result. There are 1633 cases CPU version performing better and 1432
cases GPU version performing better. Therefore, we conclude that our GPU version has
similar accuracy compared to the CPU version.

508409 2958
GPUCPU

RMSD

Figure 6.5. Venn diagram of RMSD value

Since the original MedusaDock uses RMSD value to verify the correctness. We also
verify this parameter to guarantee the GPU version’s correctness. The RMSD verification
is separated into two parts: RMSD < 2, RMSD > 2. When RMSD < 2 the output pose
can be treated as a successfully docked pose, otherwise the proposed pose is not fully
docked. As figure 6.4 RMSD part shows, the CPU version could find 311 docked cases
that GPU version can not find, while the GPU version can find 413 docked cases that
CPU version can not find. There are 506 docked cases can be found by both CPU and
GPU version. To guarantee the fairness of the RMSD > 2 cases, we also compare 2645
not fully dock cases, The CPU version has 1227 better cases and the GPU version has

27

1418 better cases. However, this comparison method does not take the similarity of the
pose into consideration. In general, if RMSD value between two different poses is smaller
than 2 , we can treat these two poses as similar pose. Therefore, we show another Venn
diagram of RMSD value with similarity under consideration. The figure 6.5 shows that
2958 protein-ligand pairs can get similar binding pose, while the GPU version can find
508 significant better binding poses versus CPU version can only find 409.

In conclusion, the GPU version performs a little better than the CPU version. The
reason why the CPU version could find lower energy/better conformation in some pairs
which GPU version could not, is because of a perfect random seed for the CPU version.
Since the current GPU kernel only accelerate the coarse docking step, and this step
only tries to roughly find out the best pose candidate for fine docking step. For these
failed cases fine docking step is the critical step to find out the better binding pose, its
main step consists of enrichment and minimization, these steps closely associate with
the random seed, a perfect random seed in this step can lead to a better binding pose.
If we want to get a stable converged result we need to run MedusaDock hundreds of
thousands of times with different random seed as input, in that situation most of the
pairs (around 90%, based on 100 test cases) could find the docked conformation, which
means a binding pose with its RMSD value smaller than 2 can be founded. Therefore,
the accuracy of the GPU version is a little bit better than the CPU version, it means our
GPU version can get converged more quickly, this also could be treated as performance
improvement.

28

Chapter 7 |
Conclusion and Future Work

In this thesis, we propose a general computational molecular docking parallel strategy.
We maintain fault-tolerant and loading balance inside the MPI version. And the GPU
version carefully optimizes the main time-consuming parts targeting GPU architecture,
including reduction part, local energy calculation, and memory access part. To evaluate
the effectiveness of the proposed parallel strategy, we select MedusaDock as an example
to show the performance and verify the correctness. The result demonstrates that our
MPI version MedusaDock largely accelerates the virtual screen process, while the GPU
version MedusaDock improves both the performance and accuracy of the MedusaDock.

With applying the parallel strategy on MedusaDock, our experiment result shows that
both MPI and GPU version MedusaDock achieve superior performances than the original
MedusaDock. The MPI version MedusaDock running on 9 nodes with 20 processes is
83.9x times faster than the original MedusaDock. If running on multiple nodes on a
cluster the total time consuming can corresponding reduced depends on the node number.
The GPU version achieves around 1.8x times improvement on overall performance.

For future work, on the one hand, the MedusaDock still has space to be optimized.
After parallel processing, the coarse docking part on GPU, software bottleneck changes
from coarse docking to fine docking. Although fine docking is highly nested with protein
repacking side chain. It still can be moved onto GPU architecture. Repacking the
protein side-chain is also the bottleneck in the protein complex case in coarse docking.
The data structure convert and data transfer between CPU host and GPU device can
also be optimized, by overlapping with some computational processes. We also need to
combine the GPU version with the MPI version, so that we can fully use the resource
of the heterogeneous computer Cluster. Currently, our GPU version only tested on one
GPU device, if there are multiple GPU devices available, we can also parallel on ligand
rotamers level across multiple GPU devices.

29

On the other hand, the traditional computational molecular docking method can
combine with deep learning techniques. Currently, deep learning has dramatically
promoted the development of various domains such as computer vision, natural language
processing, and data mining. We also can consider leverage deep learning techniques on
the identification of protein-ligand binding sites, virtual screening process and proposing
docked pose. Before using deep learning techniques to directly solve the whole docking
problem, we can consider combining the traditional molecular docking software with deep
learning techniques by leveraging deep learning techniques on partial docking processes,
like predicting the complex energy or picking out docked poses from all the conformation
candidates. Currently, the score function which is used for calculating the complex energy
works poorly on predicting the affinity of the complex, deep learning algorithm may solve
this problem by training on large sums of known affinity information.

30

Bibliography

[1] Wang, J. and N. V. Dokholyan (2019) “MedusaDock 2.0: Efficient and Accurate
Protein–Ligand Docking With Constraints,” Journal of Chemical Information and
Modeling, 59(6), pp. 2509–2515.

[2] Bajorath, J. (2002) “Integration of virtual and high-throughput screening,” Nature
Reviews Drug Discovery, 1(11), pp. 882–894.

[3] Walters, W. P., M. T. Stahl, and M. A. Murcko (1998) “Virtual screen-
ing—an overview,” Drug discovery today, 3(4), pp. 160–178.

[4] Smith, M. T. and J. L. Rubinstein (2014) “Beyond blob-ology,” Science,
345(6197), pp. 617–619.

[5] Bai, X.-C., G. McMullan, and S. H. Scheres (2015) “How cryo-EM is revolu-
tionizing structural biology,” Trends in biochemical sciences, 40(1), pp. 49–57.

[6] Meng, X.-Y., H.-X. Zhang, M. Mezei, and M. Cui (2011) “Molecular docking:
a powerful approach for structure-based drug discovery,” Current computer-aided
drug design, 7(2), pp. 146–157.

[7] Jorgensen, W. L. (2004) “The many roles of computation in drug discovery,”
Science, 303(5665), pp. 1813–1818.

[8] Kitchen, D. B., H. Decornez, J. R. Furr, and J. Bajorath (2004) “Docking
and scoring in virtual screening for drug discovery: methods and applications,”
Nature reviews Drug discovery, 3(11), pp. 935–949.

[9] Jones, G., P. Willett, and R. C. Glen (1995) “Molecular recognition of
receptor sites using a genetic algorithm with a description of desolvation,” Journal
of molecular biology, 245(1), pp. 43–53.

[10] Taylor, J. S. and R. M. Burnett (2000) “DARWIN: a program for docking
flexible molecules,” Proteins: Structure, Function, and Bioinformatics, 41(2), pp.
173–191.

[11] Liu, M. and S. Wang (1999) “MCDOCK: a Monte Carlo simulation approach to
the molecular docking problem,” Journal of computer-aided molecular design, 13(5),
pp. 435–451.

31

[12] Ding, F., S. Yin, and N. V. Dokholyan (2010) “Rapid flexible docking using a
stochastic rotamer library of ligands,” Journal of chemical information and modeling,
50(9), pp. 1623–1632.

[13] Ding, F. and N. V. Dokholyan (2013) “Incorporating backbone flexibility in
MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking
benchmark,” Journal of chemical information and modeling, 53(8), pp. 1871–1879.

[14] Trott, O. and A. J. Olson (2010) “AutoDock Vina: improving the speed
and accuracy of docking with a new scoring function, efficient optimization, and
multithreading,” Journal of computational chemistry, 31(2), pp. 455–461.

[15] Rarey, M., B. Kramer, T. Lengauer, and G. Klebe (1996) “A fast flexible
docking method using an incremental construction algorithm,” Journal of molecular
biology, 261(3), pp. 470–489.

[16] Ewing, T. J. and I. D. Kuntz (1997) “Critical evaluation of search algorithms
for automated molecular docking and database screening,” Journal of computational
chemistry, 18(9), pp. 1175–1189.

[17] Trosset, J.-Y. and H. A. Scheraga (1999) “PRODOCK: software package
for protein modeling and docking,” Journal of computational chemistry, 20(4), pp.
412–427.

[18] Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. a.
Swaminathan, and M. Karplus (1983) “CHARMM: a program for macromolec-
ular energy, minimization, and dynamics calculations,” Journal of computational
chemistry, 4(2), pp. 187–217.

[19] Cornell, W. D., P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M.
Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman
(1996) “A second generation force field for the simulation of proteins, nucleic acids,
and organic molecules J. Am. Chem. Soc. 1995, 117, 5179- 5197,” Journal of the
American Chemical Society, 118(9), pp. 2309–2309.

[20] Eldridge, M. D., C. W. Murray, T. R. Auton, G. V. Paolini, and R. P.
Mee (1997) “Empirical scoring functions: I. The development of a fast empirical
scoring function to estimate the binding affinity of ligands in receptor complexes,”
Journal of computer-aided molecular design, 11(5), pp. 425–445.

[21] Friesner, R. A., J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic,
D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, et al.
(2004) “Glide: a new approach for rapid, accurate docking and scoring. 1. Method
and assessment of docking accuracy,” Journal of medicinal chemistry, 47(7), pp.
1739–1749.

32

[22] Morris, G. M., D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K.
Belew, and A. J. Olson (1998) “Automated docking using a Lamarckian genetic
algorithm and an empirical binding free energy function,” Journal of computational
chemistry, 19(14), pp. 1639–1662.

[23] Muegge, I. and Y. C. Martin (1999) “A general and fast scoring function for
protein- ligand interactions: a simplified potential approach,” Journal of medicinal
chemistry, 42(5), pp. 791–804.

[24] Mitchell, J. B., R. A. Laskowski, A. Alex, and J. M. Thornton (1999)
“BLEEP—potential of mean force describing protein–ligand interactions: I. Generat-
ing potential,” Journal of Computational Chemistry, 20(11), pp. 1165–1176.

[25] Velec, H. F., H. Gohlke, and G. Klebe (2005) “DrugScoreCSD knowledge-
based scoring function derived from small molecule crystal data with superior
recognition rate of near-native ligand poses and better affinity prediction,” Journal
of medicinal chemistry, 48(20), pp. 6296–6303.

[26] Norgan, A. P., P. K. Coffman, J.-P. A. Kocher, D. J. Katzmann, and
C. P. Sosa (2011) “Multilevel parallelization of AutoDock 4.2,” Journal of chemin-
formatics, 3(1), p. 12.

[27] Micevski, D. (2009) “Optimizing Autodock with CUDA,” Victorian Partnership
For Advanced Computing Ltd.

[28] Nowotny, T. (2010) “Parallel implementation of a spiking neuronal network model
of unsupervised olfactory learning on NVidia® CUDA™,” in The 2010 International
Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1–8.

[29] Altuntaş, S., Z. Bozkus, and B. B. Fraguela (2016) “GPU accelerated
molecular docking simulation with genetic algorithms,” in European Conference on
the Applications of Evolutionary Computation, Springer, pp. 134–146.

[30] Prakhov, N. D., A. L. Chernorudskiy, and M. R. Gainullin (2010) “VS-
Docker: a tool for parallel high-throughput virtual screening using AutoDock on
Windows-based computer clusters,” Bioinformatics, 26(10), pp. 1374–1375.

[31] Landaverde, R. and M. C. Herbordt (2014) “GPU optimizations for a produc-
tion molecular docking code,” in 2014 IEEE High Performance Extreme Computing
Conference (HPEC), IEEE, pp. 1–6.

[32] Sukhwani, B. and M. C. Herbordt (2008) “Acceleration of a production rigid
molecule docking code,” in 2008 International Conference on Field Programmable
Logic and Applications, IEEE, pp. 341–346.

[33] ——— (2010) “FPGA acceleration of rigid-molecule docking codes,” IET computers
& digital techniques, 4(3), pp. 184–195.

33

[34] Allusse, Y., P. Horain, A. Agarwal, and C. Saipriyadarshan (2008) “Gpucv:
an opensource gpu-accelerated framework forimage processing and computer vision,”
in Proceedings of the 16th ACM international conference on Multimedia, pp. 1089–
1092.

[35] Heymann, S., K. Müller, A. Smolic, B. Froehlich, and T. Wiegand (2007)
“SIFT implementation and optimization for general-purpose GPU,” .

[36] Fan, M., H. Jia, Y. Zhang, X. An, and T. Cao (2015) “Optimizing Image
Sharpening Algorithm on GPU,” in 2015 44th International Conference on Parallel
Processing, IEEE, pp. 230–239.

[37] Chetlur, S., C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer (2014) “cudnn: Efficient primitives for deep learning,”
arXiv preprint arXiv:1410.0759.

[38] Sukhwani, B. and M. C. Herbordt (2009) “GPU acceleration of a production
molecular docking code,” in Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, pp. 19–27.

[39] Karimi, K., N. G. Dickson, and F. Hamze (2010) “A performance comparison
of CUDA and OpenCL,” arXiv preprint arXiv:1005.2581.

[40] Stone, J. E., D. Gohara, and G. Shi (2010) “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in science & engineering,
12(3), pp. 66–73.

[41] Kuhlman, B., G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard,
and D. Baker (2003) “Design of a novel globular protein fold with atomic-level
accuracy,” science, 302(5649), pp. 1364–1368.

[42] Ren, N., J. Liang, X. Qu, J. Li, B. Lu, and J. Tian (2010) “GPU-based Monte
Carlo simulation for light propagation in complex heterogeneous tissues,” Optics
express, 18(7), pp. 6811–6823.

[43] Anderson, J. A., E. Jankowski, T. L. Grubb, M. Engel, and S. C. Glotzer
(2013) “Massively parallel Monte Carlo for many-particle simulations on GPUs,”
Journal of Computational Physics, 254, pp. 27–38.

[44] Preis, T., P. Virnau, W. Paul, and J. J. Schneider (2009) “GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model,” Journal of Computational
Physics, 228(12), pp. 4468–4477.

34

