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Abstract
In space mission architectures, redundancy of subsystems mitigates the risk of isolated
malfunctions, but not the risk of the entire platform being targeted by hostile forces. This
dissertation explores the use of deception as a tactical defense mechanism. The scenario of
a satellite accomplishing an unknown mission while evading a dedicated ground sensor is
modeled as a two-player zero-sum game, which supports a robust performance assessment
based on both the satellite and the sensor optimizing against each other. Moreover, the
methodology determines the optimal strategies and associated performance based on
assumed constraints that can be varied parametrically, so the method can be adapted to
a range of specific scenarios as well as to advances in underlying technologies.

The two player game, which featured infinite strategy choices for both players, was
solved using a reinforcement learning/neural network approach, specifically proximal
policy optimization, capable of high-fidelity strategy tuning. Parametric sensitivity
analysis on the results, computationally impractical with proximal policy optimization,
was instead accomplished with coevolution, a genetic algorithm approach.

The primary result is that, under reasonable technological assumptions for both
players, an evading spacecraft can expect to avoid detection by an optimally tracking
optical sensor just under 60% of the time, and can accomplish this evasion expending,
on average, just under 16 m/s of ∆V every 5 days. Analysis also indicated that this
result is more sensitive to the sensor’s parameters than the satellite’s. Additional results
compare the computational methodologies employed. The impact of the research as a
methodological innovation is discussed and future direction is offered for applying the
methodology to other problems, as well as possible refinements in the context of this
application.
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Chapter 1 |
Introduction

1.1 Context: Spacecraft Detection Evasion
In space-based object behavior, the environment is typically unchanging, or at least
predictable to a certain degree. When optimizing spacecraft maneuvers, unless a high-
fidelity model of the space environment is desired, determining the maneuver is generally
straight forward and limited only by the computational resources available. This is not
the case for the sensor avoidance problem, though. When assuming that an optical
sensor is interested in maintaining custody (knowledge of the spacecraft’s state to a
required level of accuracy) of a specific spacecraft, and the spacecraft is trying to prevent
this custody by maneuvering, it can also be assumed that the sensor will adjust its
tasking strategy to optimize its own reward. This leads to a back-and-forth of strategy
adjustments that is generally unpredictable and non-trivial to optimize.

1.2 Game Theory Frames The Problem
The mathematical theory of games is perfectly suited to analyzing strategic interactions
such as the satellite/sensor interaction studied here. Indeed, such “wargames” were a
driving force behind much of the theory [1]. A mathematical game is defined by a set
of players (actors), a set of strategies (actions), and a payoff function that assigns a
valuation of any possible outcome that results from the collective strategy choices of the
players (called a strategy profile).

The class of games especially fitting the sensor-satellite interaction is that of two-
player zero-sum games. “Zero-sum” games model scenarios where the players’ objectives
are diametrically opposed, so that what is good for one is bad for the other. This means
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that the payoff of one player (conventionally player 1) can be regarded as “the payoff”
of the game, with player 1 striving to maximize this payoff and player 2 striving to
minimize it. In the present context, the payoff is the distance between the spacecraft
and the center of the sensor’s FOV, so the satellite is treated as player 1 and sensor as
player 2, striving to minimize successful evasion by the satellite.

Mathematical results from classical game theory summarized in Section 2.2 indicate
that optimal strategies exist for the sensor and the satellite, such that each guarantees a
certain level of performance, no matter what the other player does. These guarantees,
player 1’s lower bound on the payoff and player 2’s upper bound on the payoff, meet,
resulting in an expected payoff called the value of the game. This game theoretic approach
avoids the risk of optimizing against a fixed optimistic assumption about one’s opponent
that might prove false in a real mission. Instead, it develops robust strategies based on
an equally optimizing opponent.

Before introducing the player models of the sensor/pursuer and satellite/evader, the
overarching solution approach is introduced next so that it may be referenced when
discussing the players.

1.3 Reinforcement Learning Solves The Problem
Reinforcement learning (RL) is able to solve for the optimal strategies of the two players
simultaneously and provide the resulting strategies in the form of neural networks. The
RL approach is not mathematically proven to find the true optimum, but it has become
a best practice in engineering for problems whose direct mathematical solution presents
problems. For example, classical optimal control approaches require a fixed finite set of
actions for the two players to follow, whereas the true strategy sets of the sensor and
the satellite are both infinite. Quantizing them to a finite mesh would support a linear
programming solution, but a mesh fine enough to match the fidelity of the overall model
would render that approach computationally impractical if not intractable, and also less
desirable in other ways. For example, the neural networks can be sampled repetitively to
find the optimal strategies under different initial conditions. The networks can also be
easily adjusted to changes in the constraints of one or both players.

Proximal Policy Optimization (PPO) [2], a type of RL known for its ease of imple-
mentation and high performance, is used to continually update the strategies employed
by each player (discussed in the following sections). Within prescribed constraints, this
process will result in optimal strategies for both the satellite and the sensor as well as the
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value of game. This value can be compared to a mission specific threshold to determine
who “wins”; that is, whether the evasion success of the satellite is sufficient to enable it
to succeed in the larger context of its mission.

The following sections discuss the implementation of the two players in this game in
greater detail, as well as the use of competitive coevolution to further evolve the players’
strategies.

1.4 Player 1: Space/Evading Player
The success of the space/evading player, assumed to be a geosynchronous spacecraft,
is a function of a handful of inputs and constraints as well. The inputs include the
spacecraft’s own state (known perfectly) and the location where the sensor is assumed to
be pointing, while the constraints on the player include the maximum change in velocity
available for an instantaneous maneuver as well as the minimum and maximum duration
allowed between maneuvers. The position of the spacecraft is essentially unbounded, only
limited by the most effective application of the maximum change in velocity. Note that
the limit on the change in velocity is only considered for each individual maneuver, not
the total velocity change over an entire mission. Though this could affect the operational
lifetime of the spacecraft, that is not considered here.

In attempting to elude the pursuing player, the evading spacecraft player will perform
maneuvers constrained in size and the time between them (applied to sufficiently bound
the space and limit computation time). The maneuvers are allowed to be performed
anywhere along the orbit and in any direction (see Section 2.1). The RL procedure
employed (as described in Chapters 2 and 4) allows the spacecraft to learn from its
mistakes. Based on the effectiveness of its maneuvers with respect to the pursuing player’s
tasking strategy, the timing, size, and direction of the maneuvers required to optimize its
reward (the distance between the spacecraft and the sensor) can be determined.

1.5 Player 2: Ground/Pursuing Player
The success of the ground/pursuing player, assumed to be a single optical sensor, is a
function of just a handful of inputs and constraints. The inputs include the Cartesian
position where the sensor is pointed and the tracks of observation data for the spacecraft
being tracked, while the constraints on the player are the sensor’s field-of-view (FOV)
and the region in space the sensor can task within, called the field-of-regard (FOR).
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For the sake of simplicity and computational savings, the sensor is assumed to correctly
observe the spacecraft whenever it is located within the sensor’s FOV. This means that
the angular measurements of the spacecraft are automatically correlated (matching an
observation to previous ones) and associated (assigning observations to a specific object).
However, to ensure that the sensor is not unfairly advantaged in this game, it is assumed
that a sufficient volume of observations must be collected for the spacecraft’s state
to be known with enough certainty to initialize an extended Kalman filter (EKF). In
addition, the sensor can miss observations of the spacecraft for only so long before it
has to recollect observations for initialization. Though actual initialization and filtering
of the observations are not included in the simulation, they are accounted for in the
environment. This will be discussed in greater detail in Chapter 4.

Since observations made of the spacecraft are assumed to provide perfect estimates of
its state, there is no need to use an EKF to filter through the observations, which means
that an estimate of the covariance is not available. Though this would be ideal as an
objective function/value of the game, it was deemed unfeasible. Instead, the objective
function/value of the game was selected simply as the normalized distance between the
center of the sensor’s FOV and the spacecraft.

The tasking of the sensor is performed with respect to its previously known orbit of
the spacecraft (assuming that the spacecraft’s state is known at the beginning of each
simulation). The known (“nominal”) orbit is propagated forward and the sensor is tasked
to a state within a set distance, in kilometers, from the nominal orbit (the effective FOR).
When the spacecraft has been found again, and for long enough to effectively employ an
EKF, the nominal orbit known for the spacecraft is then set to be the spacecraft’s state.

Similar to with the space player, RL is used to optimize the actions of the sensor.
As more observations are collected, especially after the spacecraft has maneuvered, the
sensor becomes better at tasking to the correct location with respect to the spacecraft’s
previously known orbit. Ideally for the ground player, the sensor would become so adept
at proactively tasking that the spacecraft’s state would never need to be reinitialized.

1.6 Sensitivity Analysis / Competitive Coevolution Aug-
mentation
As a computational optimization methodology, the success of the PPO process depends
on the tuning of the hyperparameters and there is a possibility of the RL process getting
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trapped in a local optimum rather than finding the global optimum when optimized
under prescribed constraints. To guard against such a result, an alternative genetic
algorithm approach, competitive coevolution, is introduced that does not have the
fidelity or the continual learning capability of the RL method, but is efficient enough to
support parametric sensitivity analysis of the results. Still a computational approach
to optimization, competitive coevolution offers the benefit of quickly exploring a much
greater region of the strategy space (with or without constraints), enabling discovery
of any shortcomings, if they exist, in the RL solution. Furthermore, once the RL and
competitive coevolution solutions are mutually validated, competitive coevolution enables
efficient quantitative estimation of the impact of changes in the assumed constraints
placed on the two players. For example, if the evading spacecraft has been unsuccessful in
evading the pursuing sensor with a certain ∆V constraint, the constraint can be relaxed
further until the spacecraft is successful and a ∆V requirement can be determined for
such a mission. Conversely, if the pursuing sensor is unsuccessful in determining the
spacecraft’s position, the sensor’s FOV or effective FOR can be increased until the
threshold for the win condition is met. This has great applied value in prioritizing
changes in ground and space architectures, and is discussed further in Section 2.2.3.3.

Competitive coevolution, in this context, will involve the simultaneous evolution of
the strategies of the two players in the PE game in which the fitness of a maneuver
strategy of the evading spacecraft is in direct competition with a sensor tasking strategy
of the pursuing ground sensor(s), and vice versa. The key to avoiding a local optimum
and efficiently optimizing the game is to start out with a smaller search space. Knowing
the constraints on both players, the game is solved with tight constraints and the optimal
strategies of both players are determined. Competitive fitness sharing, shared sampling,
and/or hall of fame strategies (see Section 2.2.3.3) are then employed while relaxing
the constraints, thus expanding the search space, and re-solving the game repeatedly
until the desired constraints are met. This will result in a globally optimal strategy for
both players with respect to each other and a final winner of the game quantified by the
success of the pursuing player in predicting the spacecraft’s state at any moment in time.

1.7 Document Organization
This dissertation is divided into seven chapters and an appendix. Figure 1.1 provides a
visual description of how the information flows between the chapters in the main body of
the dissertation.
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Figure 1.1. Information Flowchart

Chapter 1 here introduced the two-player zero-sum game to be solved, the evading
spacecraft player and the pursuing ground sensor player, the PPO method that will be
used to solve the game, and the competitive coevolution approach that can be used to
perform additional analysis on these results. This information drives not just the theory
and background presented in the next chapter, but directly justifies the limitations and
capabilities explored in Chapter 3.

Chapter 2 explains in detail the theory employed in this dissertation. First, an overview
of the two-body problem is presented to demonstrate how a spacecraft performing a
maneuver affects its future orbital states. Then the game theory at play is reviewed,
including two-player zero-sum games, the theory of fictitious play that serves as the
foundation of this research, and the competitive coevolution methods explored. Next,
the elements of RL are reviewed, including a comparison of different methods and a
brief intro on the methods used in this dissertation. The next section presents a deeper
examination of these methods, called policy optimization. The theory behind Trust
Region Policy Optimization (TRPO), PPO, Generalized Advantage Estimation (GAE),
and the Adam optimizer are all described in detail. Finally, the previously published
work applying these theories is discussed.

Chapter 3 provides further foundation for this research by demonstrating the capabil-
ities and limitations of using an optical sensor for tracking a maneuvering spacecraft, of a
spacecraft attempting to simultaneously avoid detection while still meeting other mission
objectives, and of using PPO for such a problem compared to traditional optimal control
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methods. Though the theory presented in Chapter 2 is only necessary for the analysis of
the capability of PPO, the results from the entirety of Chapter 3 sufficiently justifies the
methodology applied in the next chapter.

Chapter 4 describes in detail the designed problem and how it is implemented in the
RL environment. The combination of the different policy optimization methods detailed
in Chapter 2 is then discussed. Finally, the contributions of this research are discussed
with respect to previous applications of RL.

Directly building off of the methodology presented in the previous chapter, Chapter
5 presents the results of applying the combined policy optimization methods to the
designed problem. Three different series of results are shown. First are the results
optimizing only the strategy of the evading spacecraft, assuming that the sensor follows
a prescribed tasking strategy. The next section shows the initial, non-converged, results
from when the sensor was first introduced into the optimization. The last section shows
the final results where lessons learned from the initial introduction of the sensor into the
optimization are implemented and the strategies are allowed to further converge.

Chapter 6 follows the results of Chapter 5, applying the same methodology as
was presented in Chapter 4, with the results found from implementing the competitive
coevolution methods described in Chapter 2. Again, multiple stages of results are provided.
First, competitive coevolution is used to optimize a continuous thrust trajectory that
simultaneously minimizes propellant cost and maximizes the spacecraft’s distance from a
sensor, auch as that optimized using PPO in Section 3.4. Then the results are presented
where competitive coevolution is used to determine the winner of the game, under set
constraints, with a specific win-condition. Finally, the win condition is removed and the
constraints are adjusted to perform sensitivity analysis on the RL results.

Chapter 7 summarizes the problem, methodology, and results presented in this
dissertation and draws conclusions. Then potential future contributions towards this
work are discussed.

Appendix A demonstrates the proof-of-convergence used to justify the application of
policy optimization to this two-player PE problem.
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Chapter 2 |
Theory and Background

This chapter covers the theory applied throughout the conducted research. Section 2.1
discusses the effects of maneuvers on a spacecraft’s orbit under Keplerian dynamics.
Section 2.2 introduces the game theory at play in this work. Section 2.3 begins the
discussion on the fundamentals of RL. Section 2.4 summarizes the details of neural
networks. Section 2.5 takes an in-depth look at the policy optimization methods used to
encourage convergence of the players’ strategies. Then Section 2.6 provides an overview
of the previous work in related areas.

2.1 Spacecraft Maneuver Dynamics
To understand the interaction between the spacecraft and the sensor, one must first
understand how the spacecraft behaves under Keplerian dynamics and the effects of
maneuvers on the spacecraft’s orbital path.

2.1.1 The Two-Body Problem

At its simplest, the motion of a spacecraft in orbit is known as the two-body problem,
which considers the motion of a small object under the gravitational force of a second,
much larger, object. Newton’s second law and his universal law of gravitation are the
starting points for constructing the required equations of motion (EOM). Newton’s
second law states that the time rate of change of linear momentum is proportional to the
force applied. For a fixed-mass system, this gives the equation

¸
~F � dpM~vq

dt
�M~a (2.1)
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So, assuming the mass is constant, this means that the sum of all forces, ~F on the body
are equal to the mass, M , multiplied by the acceleration of the body, ~a.

Newton’s law of gravitation allows for the components of the force to be found
assuming that gravity is the only force affecting the small object. Figure 2.1 shows the
geometry for a fixed-mass system in which a satellite of mass, m, is orbiting a body of
mass, M , located at the center of mass of the system.

Figure 2.1. Gravitational Forces Acting on a Satellite [3]

When deriving the EOM, the system is assumed to be fixed in inertial space, or has
a fixed orientation with an origin moving at a constant velocity. Figure 2.2 shows this
system consisting of the Earth, mC, and a satellite, msat. The coordinate system ÂB̂Ĉ,
from Figure 2.1, is defined as an ideal inertial system displaced from the geocentric Î ĴK̂
coordinate system.

In the Î ĴK̂ system, Newton’s law of gravitation for the force of gravity of the Earth
acting on a satellite can be expressed as

~Fg � �GmCmsat

||~r||2
�

~r

||~r||



(2.2)

The geometry in Figure 2.2 gives the vector from the Earth to the satellite

~r � ~rsat � ~rC (2.3)
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Figure 2.2. Geometry for Two Bodies in an Inertial Reference Frame [3]

where ~rsat is the position vector of the satellite and ~rC is the position vector of the Earth,
both with respect to the origin of the X̂Ŷ Ẑ coordinate system. Employing an inertial
coordinate system allows for this vector to be differentiated without needing to consider
the derivative of each axis of the coordinate system. Therefore, the second derivative of
Eq. (2.3) can be written simply as,

:~r � :~rsat � :~rC (2.4)

which is the acceleration of the satellite with respect to the center of the Earth. Combining
this with Newton’s second law and Eq. (2.2) gives

~Fgsat � msat
:~rsat � �GmCmsat

||~r||2
�

~r

||~r||



~FgC � mC:~rC � GmCmsat

||~r||2
�

~r

||~r||

 (2.5)

as the inertial forces. Note the difference between the two forces is only the sign,
confirming that the force of the Earth is opposite to the direction of the satellite’s
force. Solving for the individual accelerations and using the differentiated form of the
accelerations gives a solution for the relative acceleration:

:~r � �GpmC �msatq
||~r||2

�
~r

||~r||



(2.6)
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This can then be re-written as

:~r � � µ

||~r||2
�

~r

||~r||



(2.7)

where µ is the gravitational parameter equal to GmC when assuming that the satellite’s
mass is significantly smaller than that of the Earth. [3]

2.1.2 Satellite Maneuvering

To find the states at every point in a satellite’s orbit, Eq. (2.7) can be numerically
integrated using an ordinary differential equation solver, such as MATLAB’s ode45, given
an initial state. When considering only two-body dynamics, the propagation of the orbit
will return back to the same state after one orbital period and will infinitely traverse a
closed path (circle or ellipse) assuming no outside forces are introduced.

For this research, only planar orbits and planar maneuvers are considered. When
maneuvering between two orbits, the position at which the maneuver is applied remains
unchanged while the velocity is changed to reflect the desired effect of the maneuver on
the future orbit states. This change can be notated as

∆~vb � ~vfinal � ~vinitial (2.8)

where ~vinitial is the velocity at the instant before the maneuver is applied and ~vfinal is the
velocity at the instant after the maneuver is applied. For this research, it is assumed that
the maneuver is performed instantaneously such that the position is constant between
~vinitial and ~vfinal.

As the name implies, coplanar maneuvers don’t change the orbital plane, but do change
the orbit’s size, shape, and the orientation of the line of apsides (the line connecting the
orbit’s periapsis and apoapsis where its orientation is defined by the argument of perigee,
ω, as shown in Figure 2.3). The direction of applying a maneuver can be determined by
calculating the flight path angle, φtrans, or

φtrans � arctan e sin ν
1� e cos ν (2.9)

where ν is the angular position along the orbit with respect to perigee and e is the
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eccentricity of the orbit, defined as

e � ra � rp
ra � rp

(2.10)

where ra and rp are the radius of apogee and perigee, the points on the orbit closest to
the Earth (perigee) and farthest from the Earth (apogee). These, along with the rest of
the classical orbital elements (COEs), can be seen visually defined in Figure 2.3).

Figure 2.3. Classic Orbital Elements [3]

Mission planning and operations usually determines the location and direction of the
maneuvers. When attempting to minimize the required ∆V , especially in maneuvers
that change the size of the orbit, periapse and apoapse are the optimal locations to do
so - where tangential burns (a flight path angle of zero) can be performed. However,
in real missions, the objective is rarely that straightforward so most maneuvers are
non-tangential with a non-zero flight path angle, as seen in Figure 2.4.

Figure 2.4 shows the effect of a maneuver, ∆~va, applied tangentially at point a.
Though not always the case, and not in this research, a second maneuver, ∆~vb, can also
be performed (in this case at flight path angle, φtrans) to re-adjust the orbital path if a
transfer to a defined final orbit is desired. Otherwise, the spacecraft will remain in the
“transfer” orbit until another maneuver is applied.
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Figure 2.4. Nontangential Orbit Transfer [3]

2.2 Game Theory

2.2.1 Two-Player Zero-Sum Games

As discussed in the introduction, a mathematical game is defined by a set of players
(actors), a set of strategies (actions), and a function that assigns a valuation to each
player (called a payoff) of any possible outcome that results from the collective strategy
choices of all the players (called a strategy profile).

Notwithstanding many detailed solution concepts for many specialized classes of
interactions, the predominant solution concept for all games is known as the Nash
equilibrium (NE), which is a strategy profile in which no player can improve their payoff
through a unilateral change in strategy. The satellite-sensor interaction can be called
a pursuit/evasion (PE) game. More generally, it belongs to a class of games called
two-player zero-sum games, “zero-sum” referring to the diametrically opposed objectives
of the players, which can be modeled as defining, in every outcome, the payoff of one
player to be the negative of the other player’s payoff. The result is that the payoff of one
player (conventionally denoted as player 1) implicitly represents both players’ payoffs,
and is referred to as “the payoff,” with player 2 striving to minimize the payoff that
player 1 strives to maximize.

NE yields a much stronger solution concept in two-player zero-sum games than it
does in general-sum games, where the payoffs of the players need not be in any particular
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relation. If (x*,y*) and (x’,y’) are any two NE strategy profiles of a two-player zero-sum
game, then (x*,y’) and (x’,y*) are also NE and the payoff of every NE is the same and is
called the value of the game. The value of the game represents the best payoff player 1
can guarantee, as well as the best payoff player 2 can guarantee, and if both players play
optimally, the value will be the payoff of the game. Because any NE strategy of either
player guarantees the value of the game, which is the best payoff that can be attained
against an optimizing opponent, NE strategies in two-player zero-sum games are called
optimal strategies. These results are far stronger than in general-sum games, which might
have a multitude of Nash equilibria, all with different payoffs, and no clear way to decide
which, if any, is the best prediction. In a two-player zero-sum game, all predictions agree
and represent a worst-case payoff guarantee, within the assumptions of the model.

Nash proved that all finite games have at least one NE, provided “mixed strategies”
are allowed [4]. Mathematically speaking, mixed strategies are probability distributions
over actual strategies (distinguished as “pure strategies” when mixed strategies are also
considered) that can be used in a single play of the game. Nash’s strong mathematical
result has often led to people glossing over the fact that, in many games, mixed strategies
cannot be implemented. However, in the present context, mixed strategies can be
meaningfully interpreted/implemented as temporal distributions in the pursuit/evasion
process. Exactly as in the mathematical model of independent randomizations of pure
strategies by the two players, the uncertainty created by randomizing maneuvers yields
a probabilistic result on the likelihood of detection and tracking, so mixed strategy
solutions are considered in the present context with no compromise in realism.

The RL (specifically PPO) definition does not have the exact structure of the mixed
strategies that Nash introduced in 1949, but Nash’s existence proof remains valid for
infinite games as long as the space of strategy profiles is compact, which it is in the present
context. Both the sensor and satellite have closed and bounded real-valued choices in
finitely many dimensions. In other words, each player’s strategy set, and therefore the
set of strategy profiles, is a closed and bounded subset of n-dimensional Euclidean space,
and is therefore compact, so the game must have a Nash equilibrium, which in turn
implies the existence of optimal strategies for both players. The PPO strategies have
a similar element of randomness as Nash’s original mixed strategies, because they are
dynamically triggered by events that are inherently random, or at least unpredictable, in
nature. It is this unpredictable quality of the PPO strategies that prevents an opponent
from exploiting any exact sequences of maneuvers.
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2.2.2 Fictitious Play and Reinforcement Learning

There are deep connections between mixed strategies, NE, and reinforcement learning.
In 1949, George Brown and Julia Robinson [7] proposed the idea of fictitious play, an
iterative method for solving discrete zero-sum games. Fictitious play is, in essence,
the implicit dynamic process of which “Nash equilibrium” is an equilibrium. Players
repeatedly play the game and after (arbitrary) moves in the first round, each player
chooses a pure strategy best response to the averaged history of the opponent’s moves,
interpreted as a mixed strategy. Brown and Robinson proved that the averaged history
of both players’ (pure strategy) moves will always converge to a (mixed strategy) NE
and the averaged history of the payoffs will converge to the value of the game [6–8].
Brown and Robinson’s method of fictitious play could be regarded as the first modern
reinforcement learning algorithm.

Beyond the inherent randomization of the PPO strategies, the entire RL approach
used here employs Brown and Robinson’s repeated play learning paradigm, albeit with
a different learning algorithm suited to the infinite strategy spaces, and uses their
assumption that both players have perfect knowledge of their opponent’s strategy space
and move history. Although perfect knowledge of one another’s moves is not realistic
in the real-life space-based game modeled here, the assumption is used only to find the
optimal strategies, which, once found, do not require this perfect knowledge to implement.
The idea is not for the satellite or the ground sensor to actually carry out the complete
learning dynamic during its mission, but rather that once the optimal strategies have
been found under the harsh conditions of extreme information exposure, the resulting
strategies can be implemented by activating the fully trained neural network. The optimal
strategies would be determined in the mission design phase based on information and/or
assumptions about each player’s architectural and technological constraints.

2.2.3 Coevolutionary Algorithms

2.2.3.1 Introduction

Evolutionary algorithms are often used in place of more traditional gradient methods,
especially when search spaces are highly modal, discontinuous, or highly constrained. A
coevolutionary algorithm, specifically, is an evolutionary algorithm in which individuals
are evaluated based on their interactions with other individuals. Similar to traditional
evolutionary algorithms, coevolutionary algorithms attempt to model concepts seen in
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nature such as heredity and “survival of the fittest” for the purpose of solving computation
problems. As with organic genetics, the computational solutions are altered using genetic
variation like mutation and crossover to discover the optimal genetic compositions
for modeled entities. In the computational application, the genetic compositions, or
genotypes, are the independent variables being solved for in the optimization process.

Evolutionary algorithms typically begin with some defined fitness function, r : GÑ R,
that assigns a real value to every possible genotype in G. The fitness in this case is then
determined by comparing rpg1q and rpg2q to determine which genotype, where g1, g2 P G,
is the best fit. Coevolutionary algorithms are not able to use the same kind of direct
comparison, though. Instead, two individuals are compared on the basis of their outcomes
from interactions with other individuals [9].

How the individuals interact depends on the nature of the problem. Coevolutionary
algorithms fall into two main groups: competetive coevolutionary algorithms and cooper-
ative coevolutionary algorithms. In cooperative coevolution, individuals are rewarded
when they perform well working among other individuals, and likewise, punished when
they don’t work well together. Conversely, competitive coevolution rewards individuals
at the expense of others. This process is described in more detail in Section 2.2.3.3.

2.2.3.2 Elements of Evolutionary Algorithms

Before going into the specific details on how competitive coevolution is applied, this
section first discusses the components found in evolutionary algorithms.

Representation: In order to transition from the natural world to the computational
world, the representation - or encoding - of the system, a mapping from the phenotypes
(possible solutions) onto a set of genotypes (individuals within the solution) that represent
them, must be described. For instance, given an optimization problem where the possible
solutions are integers, the given set of integers would be the set of phenotypes and the
equivalent binary expression would be the genotype. The genotype space is where the
evolutionary search takes place, where the best phenotype is decoded to provide the best
solution upon completion of the search [10].

Fitness Function: The role of the fitness function is rather self-explanatory. It is a
function used to assign a quality measure to genotypes, most often referred to as the
objective in traditional optimization and the payoff in game theory. To continue with the
example in the previous paragraph, the fitness function could be simply the square of
the integer value. This would involve decoding the genotype from binary form to integer
form and then taking the square of the integer phenotype [10].
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Population: The population can be thought of as a set of possible solutions or, in
this context, a multiset of genotypes. Individuals change and adapt throughout evolution
as part of a greater population. Given a representation, defining a population may be
as easy as specifying the number of individuals in it (the population size). In most
evolutionary algorithms, the population size remains constant while the population itself
varies. The population is used to select the parents in the genetic mutations that seed
the next generation [10].

Selection: The goal of parent selection is to assess individuals given their quality
in comparison to others. The best performing individuals (with respect to the fitness
function) will be selected as parents and undergo variation (described in the following
paragraphs) in order to create children. This selection process ensures a continual
improvement in the fitness of the population [10].

Mutation: The goal of mutation and combination (discussed in the next paragraph)
is to create new individuals from old ones (candidate solutions in the phenotype space). A
mutation is a unary variation operator applied to slightly modify one individual genotype,
creating a child. Mutation is a stochastic process intended to apply a random, unbiased
change to the genotype. In the ongoing example, this would resemble a small probability
that a digit in the binary genotype will be flipped. The objective here is to gradually
explore the space so that the populations are able to represent the entire space with a
finite, constant size [10].

Recombination: Recombination is a binary variation operator where information
from two parent genotypes is merged to create one or two offspring genotypes. Like
mutation, this process is stochastic and should have no inherent bias. While a mutation
is intended to randomly search the space, recombination is intended to randomly combine
two high-performing genotypes in an attempt to produce a better or uniquely good
genotype. Applying this to the example problem would involve swapping randomly
selected digits between two binary genotype parents. Though this is not guaranteed to
produce desirable combinations of traits, some will have improved characteristics [10].

Replacement: As stated earlier in this section, the population sizes are assumed to
remain constant. This means that, as mutation and recombination occurs, a process must
be followed for replacing parents with their mutated offspring. This decision is usually
based on their relative fitness values, favoring the higher quality offspring. While parent
selection is usually stochastic, replacement is inherently deterministic. The remaining
population should be an improvement on the previous one and serves as the parents for
the next iteration of evolution [10].
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2.2.3.3 Competitive Coevolution

Competitive coevolution, also known as host/parasite or “arms race”, refers to the
simultaneous evolution of two or more populations in which the fitness of an individual
in one population is in direct competition with an individual from another population.
It has traditionally been used in two kinds of problems. First, it can be used to evolve
interactive behaviors that are difficult to evolve in terms of absolute fitness. Second,
and in line with this research, it can be used to gain insight into the dynamics of
game-theoretic problems. To this end, reference [11] details three techniques for use in
competitive coevolution:

1. Competitive fitness sharing: Competitive fitness sharing is used to ensure the
survival of important but poorly represented types. This is accomplished by
treating each parasite (a strategy of player 1) as an independent resource to be
shared by those hosts (a strategy of player 2) in the population that can defeat it.
This results in essentially having a separate sharing function for each parasite in
which the fitness assigned to the host defeating parasite with the set of indices J is
expressed as

ΣjPJ
1
Nj

(2.11)

where Nj is the total number of hosts in the population defeating parasite j. Even
though the rewarded host might not have defeated as many parasites as others can,
it is rewarded for defeating parasites that few others can.

2. Shared sampling: It is desirable to reduce the computational effort expanded in
competition by testing each individual in the host population against only a limited
sample of parasites from the other population. Between generations, this can mean
selecting parasites with the best fitness for use in the next generation. However, if
there are several niches in the parasite population, this would tend to pick similar
individuals from the niche that happened to have the highest fitness, rather than
making a diverse selection from all niches. Instead, new sample members are chosen
such that the competitive shared fitness is maximized within the sample. This
technique is called shared sampling, and is detailed further in Algorithm 1.
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Algorithm 1 Shared Sampling Algorithm [11]
1: Initialize current sample to be the empty set
2: For each opponent i from previous generation,
3: beati � 0 (# in current sample beating i)
4: while the current sample is not yet full do
5: For each parasite j not yet in sample,
6: fitj � 0 (fitness within sample)
7: For each opponent k beat by j last generation,
8: fitj � fitj � 1

1�beatk
9: Let j be such that fitj is maximal
10: Add individual j to current sample
11: For each opponent i from previous generation,
12: If j beat opponent i last generation,
13: Increment beati
14: end while

3. Hall of Fame: In a finite population (set of all strategies), a genotype (strategy)
must be successful almost every generation to stay in the population. In competitive
coevolution, a lost but previously successful genotype might have become successful
again. This could lead to less-than-optimal results. This is where Hall of Fame
comes into play, in which the best individual from each generation is retained for
future testing, as shown in Algorithm 2. In this setup, hosts are tested against
both current parasites and a sample of the hall of fame. This results in a more
optimal solution.
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Algorithm 2 Hall of Fame [12]
1: nCoev Ð 0; AÐ player1; B Ð player2; cÐ thresholdvalue;
2: HoFA ÐH; HoFB Ð InitialOpponent();
3: popÐ EVALUATE(HoFB); // Evaluate initial population
4: while nCoev  MaxCoevolutions ^ NOT(timeout) do
5: popÐ RandomSolutions(); // pop randomly initialized
6: iÐ 0;
7: while pi  MaxGenerationsq ^ (fitness(best(pop))   cq do
8: parentsÐ SELECT(pop);
9: childsÐ RECOMBINE(parents, pX);
10: childsÐ MUTATE(childs, pM);
11: popÐ REPLACE(childs);
12: popÐ EVALUATE(HoFB);

13: if fitness(best(pop)) ¥ c then // winner found!
14: nCoevolutionsÐ 0; // start new search
15: HoFA Ð HoFA Y bestppopq
16: tempÐ A; AÐ B; B Ð temp; // interchange player roles
17: else
18: nCoev Ð nCoev + 1; // continue search

19: end if
20: end while

Although such competitive techniques allow sustaining the competition for longer,
they do not directly encourage continual coevolution. With a fixed search space, a limit
to the optimality will eventually be reached. In addition, it is still possible to get stuck
in local optima. This can be fixed through complexification, a technique for elaborating
strategies by adding new dimensions to the search space rather than searching for a new
path through the original space. Even if a global optimum is reached in the search space
of solutions, new dimensions can be added, opening up a higher-dimensional space where
even better optima may exist [13]. Such a technique works well in applications of RL.
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2.3 Reinforcement Learning

2.3.1 Introduction

RL, as the name implies, is the process of learning how to maximize a numerical reward
by mapping situations to actions. The learner explores the state and action spaces,
noting the rewards granted after each action. Another name for this state-action-reward
connection is a Markov decision process (MDP), in which an agent visits a series of
states connected by actions and each action-state pair has an associated reward. The
state-action mapping is continually updated until the maximum reward is achieved.

Though most traditional machine learning is classified as either supervised learning
or unsupervised learning, RL is different. Supervised learning is learning from a training
set of labeled examples provided by a knowledgeable external supervisor. The objective
there is to extrapolate from the provided data so that the learner can act appropriately
in situations not covered in the training set. Unsupervised learning is different in that
its objective is to find structure hidden in unlabeled data. Though this might appear to
encompass RL, it does not. RL attempts to maximize a reward signal instead of trying
to find hidden structure. Though uncovering structure could be useful in RL, it does not
address the RL problem by itself.

Unlike supervised and unsupervised learning, RL has a unique challenge where it
must attempt to balance exploration with exploitation. To obtain a lot of reward, a
RL agent must prefer actions that it has tried in the past and found to be effective
(exploitation). However, in order to discover these actions, it has to try new actions that
have not been selected before (exploration). Neither can be pursued exclusively to be
effective - the agent must try a variety of actions while simultaneously favoring those
that produce the most reward.

RL also must, unlike other machine learning methods, consider the whole problem
of a goal-directed agent interacting with an uncertain environment. Many researchers
are able to plan with general goals without taking into account the planning’s role in
real-time decision making, or where the planning models come from. RL requires much
more consideration, employing a complete, interactive, goal-seeking agent. RL agents can
sense their environment and choose actions to influence that environment in pursuit of
an explicit goal. In planning, RL has to consider how the planning and real-time action
selection affect each other. This will produce results that can be assessed with real-world
models in mind [14].
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2.3.2 Elements of Reinforcement Learning

To use a RL algorithm, one must first understand the four major elements involved:
policies, reward signals, value functions, and a model of the environment [14].

2.3.2.1 Policies

A policy, or strategy, defines the learning agent’s behavior for a given state. As mentioned
earlier, this is the mapping from the agent’s state in the environment to an action to
be taken at that state. This alone is sufficient to determine the agent’s behavior. As
will be discussed in the following section, policies are often represented as deep neural
networks [14].

2.3.2.2 Reward Signals

A reward signal defines the goal (the objective function) of a RL problem. After an
action is enacted at a state, the agent is sent a single number, the reward. The objective
is to maximize the total reward that the agent receives over the entire simulation run,
called an episode. The reward signal is what the agent uses to justify altering the policy,
selecting similar states/actions in the future if the reward is desirable [14].

2.3.2.3 Value Functions

While the reward signal is used to provide feedback on the immediate quality of an
action, the value function is used to represent the quality of an action in the long term.
In other words, the value of a state is the total amount of reward an agent can expect to
accumulate in the future. This is useful in RL problems where an action might earn a
poor reward immediately, but prove to be highly rewarding as time goes on, or vice-versa.
Using value functions allows for the total earned reward to be properly maximized over
the entirety of an episode. Value functions will be discussed in greater detail in Section
2.5 [14].

2.3.2.4 Models

The final element of RL is the model of the environment. This is how, given a state, or
a state-action pair, the next state visited is predicted. The model is used for planning
a course of action for the agent given all possible future states before they are actually
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experienced. In space-based environments, the model is the application of the Keplerian
dynamics to determine future states, as described previously in Section 2.1 [14].

2.3.3 Reinforcement Learning Methods

Though the elements of RL are consistent between applications, the methods for solving
the problems can vary highly. RL is often used for tasks in which the state space is
combinatorial and large. In such cases, finding a truly optimal policy, or the optimal
value function, is nearly impossible. Instead, the goal is to find a good approximate
solution using limited computational resources. Examples of such approximate methods
include on-policy, off-policy, or policy gradient optimization methods [14].

2.3.3.1 On-Policy vs Off-Policy Methods

There are two primary methods of RL: on-policy methods and off-policy methods. On-
policy methods attempt to evaluate or improve the policy that is used to make decisions,
whereas off-policy methods evaluate or improve a policy different from that used to
generate the data. On-policy methods, like Monte Carlo control with Exploring Starts,
are generally simpler to implement so they are considered first. Off-policy methods, on
the other hand, are more complex since they require two policies, one that is learned
about and becomes the optimal policy, and one that is more exploratory and is used to
generate behavior. This usually creates greater variance in the results and requires more
time to converge than on-policy methods, but is also more powerful [14].

2.3.3.2 Policy Gradient Methods

Though, similar in some ways to both on-policy and off-policy methods, policy gradient
methods are unique in that they learn a parameterized policy that can select actions
without consulting a value function. Though a value function may still be used to learn
the policy parameter, it is not required for action selection like in on-policy and off-policy
methods. Methods that learn approximations to both the policy and value functions are
often called actor-critic methods, in which “actor” refers to the learned policy and “critic”
to the learned state-value function.

Policy gradient methods are usually chosen over more traditional methods for a
number of reasons:

1. The approximate policy can approach a deterministic policy. The action-value
estimates will converge to their corresponding true values.
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2. It allows for the selection of actions with arbitrary probabilities. This means it is
possible to find stochastic optimal policies as well.

3. Policies may be easier to approximate than the action-value function.

4. Policy parameterization allows for prior knowledge about the desired form of the
policy to be incorporated.

In addition, policy-based methods offer practical ways of dealing with large, continuous
action spaces. Instead of computing learned probabilities for each of the many actions, it
is possible to learn the statistics of a probability distribution that represents all possible
actions. To produce a policy parameterization, the policy can be defined as the normal
probability density over a real-value scalar action, with mean and standard deviation
given by parametric function approximators that depend on the state. In this case, the
mean is generally approximated as a linear function while the standard deviation must
be positive and is usually approximated as the exponential of a linear function. These
policy parameters are then learned by following the policy optimization process detailed
in the following sections [14].

2.4 Neural Networks
The term “neural network” is based on its use in attempting to find mathematical
representations of information processing in biological systems. Similar to biological
systems, artificial neural networks are primarily used for statistical pattern recognition.
In RL, neural networks are used to represent the policy and value functions and are
trained during the update steps.

Neural networks are based on linear combinations ofM fixed nonlinear basis functions,
Ψjpxq and take the form

ypx,wq � z

�
M̧

j�1
wjΨjpxq

�
(2.12)

where x is the input(s) to the network, wj are the weighting coefficients and zp�q is the
nonlinear activation function, which will be discussed in more detail later in this section.
The basis functions are functions of a set number of parameters which are updated during
the training steps. Neural networks use basis functions that resemble Eq. (2.12) such
that each basis function is itself a nonlinear function of a linear combination of inputs.
Thus, neural networks are simply a series of functional transformations.

24



To compose a neural network, M linear combinations of the input variables x1, ..., xD

are first constructed as

oj �
Ḑ

i�1
w
p1q
ji xi � w

p1q
j0 (2.13)

where wp1q
ji are the weights, wp1q

j0 are the biases, and j � 1, ...,M . The superscript (1) is
used to indicate the first “layer” in the network [15].

2.4.1 Activation Functions

The value oj in Eq. (2.13) resulting from each layer is transformed using a differentiable,
nonlinear activation function, hp�q:

yj � zpojq (2.14)

where yj corresponds to the outputs of the basis functions is Eq. (2.12).
The possible activation functions include:

1. Sigmoid Function: The sigmoid function is a smooth, gradual progression from
0 to 1 and is one of the most common activation functions, especially for linear
regression. The equation takes the form [16]

zpxq � 1
1� e�x

(2.15)

and resembles the curve shown in Figure 2.5.
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Figure 2.5. Sigmoid Activation Function

2. Hyperbolic Tangent Function: The hyperbolic tangent function resembles the
sigmoid function but instead ranges from -1 to 1. This is generally more common
than the sigmoid activation function and takes the form

zpxq � tanhpxq � 2
1� e�2x � 1 (2.16)

as the name suggests [16].

3. ReLU Activation Function: The ReLU (Rectified Linear Unit) activation function
can be simply represented as

zpxq � 0 if x   0

� x if x ¡� 0
(2.17)

The ReLU activation function is the most popular activation function in neural
networks because it is efficient and easy to optimize since it doesn’t require any
complicated calculations. The primary downside of using a ReLU function is
that once a neuron becomes zero, it is unlikely it will ever go back to a non-zero
value [15].
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2.4.2 Layers

The selected activation function can be linearly combined with Eq. (2.13) to give

ok �
M̧

j�1
w
p2q
kj zj � w

p2q
k0 (2.18)

where k � 1, ..., K and K is the total number of outputs. This equation corresponds to
the second layer of the network. Neural networks can have as many layers (called hidden
layers) as necessary to achieve a robust model for the desired relationship it is defining.
After each layer is processed, a final activation layer is used to generate the outputs

yk � zpokq (2.19)

The inputs, hidden layers, and outputs can be seen visualized in Figure 2.6. Here, each
input x is applied its respective weights for each desired hidden layer. Between layers,
the activation functions are applied. Then, finally, a last activation function is applied to
generate the outputs.

Assuming only the two hidden layers as previously described, the overall network
function becomes

ykpx,wq � z

�
M̧

j�1
w
p2q
kj h

�
Ḑ

i�1
w
p1q
ji xi � w

p1q
j0

�
� w

p2q
k0

�
(2.20)

where the set of all weights and bias parameters have been grouped together into a vector,
w, which are the learned parameters [15].
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Figure 2.6. Neural Network Diagram - Two Hidden Layers [15]

2.5 Policy Optimization
Building onto the RL foundations, this section goes into greater detail on the policy
optimization theory that will be required.

2.5.1 Trust Region Policy Optimization

TRPO, at its simplest, is an iterative process for optimizing policies while guaranteeing
a monotonic improvement in the policies. Similar to natural policy gradient methods,
TRPO is effective for optimizing large nonlinear policies such as neural networks (where
the weights and biases are the search variables). The original work, Reference [17],
demonstrated the robust performance of this method and its tendencies to give monotonic
improvements with minimal tuning of the hyperparameters.
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2.5.1.1 Preliminaries

Policy optimization methods like TRPO can be framed as discounted MDP, defined by
the tuple pS,A, P, r, ρ0, γq where S is a finite set of states, A is a finite set of actions,
P : S � A � S Ñ R is the transition probability distribution, r : S Ñ R is the
reward function, ρ0 : S Ñ R is the distribution of the initial state s0, and γ P p0, 1q is
the discount factor.

With each state/action pair, there is an associated stochastic policy, π : S � A Ñ
r0, 1s to connect the two as well as an expected discount reward,

ηpπq � Es0,a0,...

� 8̧

t�0
γtrpstq

�
(2.21)

where s0 � ρ0ps0q, at � πpat|stq, st�1 � P pst�1|st, atq.
Moving forward, the value function, Vπ, will be defined as

Vπpstq � Eat,st�1,...

� 8̧

t�0
γlrpst�1q

�
(2.22)

the state-action value function, Qπ, as

Qπpst, atq � Est�1,at�1,...

� 8̧

t�0
γlrpst�1q

�
(2.23)

and the advantage function, Aπ, as

Aπps, aq � Qπps, aq � Vπpsq (2.24)

where t ¥ 0.
The policy update step can then be expressed in terms of the advantage with the

actions sampled using at � π̃p�|stq,

ηpπ̃q � ηpπq � Es0,a0,...�π̃

� 8̧

t�0
γtAπpst, atq

�
(2.25)

Meanwhile, the discounted visitation frequencies can be expressed as

ρπpsq � P ps0 � sq � γP ps1 � sq � γ2P ps2 � sq � ... (2.26)

29



where s0 � ρ0 and the actions are chosen according to π. Equation 2.25 can then be
rewritten as a sum over states instead of over timesteps:

ηpπ̃q � ηpπq �
¸
s

ρπ̃psq
¸
a

π̃pa|sqAπps, aq (2.27)

This can be used to demonstrate that any policy update with a non-negative expected
advantage at every state, s, is guaranteed to increase the policy performance, η (or remain
constant when the advantage is zero everywhere). However, having some states for which
the expected advantage is negative is usually unavoidable. Since the dependency of ρπ̃psq
on π̃ makes the previous equation hard to optimize, a local approximation, Lπpπ̃q, to η
can be used instead

Lπpπ̃q � ηpπq �
¸
s

ρπpsq
¸
a

π̃pa|sqAπps, aq (2.28)

with the only difference being that changes in the state visitation density due to changes
in the policy are ignored. In most cases, though, the interest will be in optimizing a
parameterized policy, πθ (where πθpa|sq is a differential function of the parameter vector,
θ) which means that Lπ will match η to the first order. That is, for any parameter value
θ0,

Lπθ0
pπθ0q � ηpπθ0q,

5θLπθ0
pπθq|θ�θ0 � 5θηpπθq|θ�θ0

(2.29)

This implies that a small enough step πθ0 Ñ π̃ that improves upon Lπθold will also improve
η. It does not, however, suggest an appropriate step size. Reference [18] explored this
issue further and found a policy updating scheme that allowed for specific lower bounds
on the improvement of η to be provided. The policy update step was defined as

πnewpa|sq � p1� αqπoldpa|sq � απ1pa|sq (2.30)

with the lower bound
ηpπnewq ¥ Lπoldpπnewq �

2εγ
p1� γq2α

2 (2.31)

where α is a constant and ε = max
s
|Eα�π1pa|sq rAπps|aqs |. However, this policy update

scheme is not applicable to all general stochastic policy classes.
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2.5.1.2 Monotonic Improvement Guarantee for General Stochastic Policies

Equation 2.31 provides a basis for expanding the policy update to all stochastic policy
classes, rather than just mixture policies, by replacing α with a measure of the distance
between π and π̃, and changing ε accordingly. In this case, the distance measure is the
total variation divergence, defined as DTV pp||qq � 1

2
°
i |pi � qi| for discrete probability

distributions p and q [19]. For simplicity moving forward, max
s
DTV pπp�|sq||π̃p�|sqq will

be written as Dmax
TV pπ, π̃q. So if α � Dmax

TV pπold, πnewq, then the bound can be written as

ηpπnewq ¥ Lπoldpπnewq �
4εγ

p1� γq2α
2 (2.32)

where ε = max
s,a

|Aπps, aq|. This theorem can then be applied directly to represent the
bound in terms of Dmax

KL when applying the known relationship between the total variation
divergence and the KL divergence, DTV pp||qq2 ¤ DKLpp||qq, giving

ηpπ̃q ¥ Lπpπ̃q � CDmax
KL pπ, π̃q (2.33)

where C � 4εγ
p1�γq2 . This then provides an approximate policy iteration scheme as described

in Algorithm 3 with the guarantee of monotonically improving sequences of policies such
that ηπ0 ¤ ηπ1 ¤ ηπ2 ¤ .... To see this, let Mipπq � Lπiπ � CDmax

KL pπi, πq. Then

ηpπi�1q ¥Mipπi�1q by Eq.2.33

ηpπiq �Mipπiq, therefore,
ηpπi�1q � ηpπiq ¥Mipπi�1q �Mpπiq

(2.34)

Maximizing Mi at each iteration guarantees that the true objective η is non-decreasing.
TRPO, discussed more in the following subsection, is an approximation to Algorithm 3,
which uses a constraint on the KL divergence rather than a penalty to allow for large
updates.
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Algorithm 3 Policy Iteration Algorithm Guaranteeing Non-Decreasing Ex-
pected Return η [17]
1: Initialize π0

2: for i = 0,1,2,...until convergence do
3: Compute all advantage values Aπps, aq,
4: Solve the constrained optimization problem
5: πi�1 � argmax

π
rLπipπq � CDmax

KL pπi, πqs
6: where C � 4εγ

p1�γq2

7: and Lπipπq � ηpπiq �
°
s ρπipsq

°
a πpa|sqAπips, aq

8: end for

2.5.1.3 Optimization of Parameterized Policies

The last step is to derive a practical algorithm based on the foundations built in the
previous subsections. Moving forward, since all policies, π, will be parameterized by θ,
the notation will be overloaded to express functions in terms of θ (such as ηpθq :� ηpπθq).

In the previous subsection, it was shown that ηpθq ¥ Lθoldpθq � CDmax
KL pθold, θq when

assuming θ � θold. Thus, a maximization of the latter terms provides a guarantee to
improve the objective η:

max
θ
rLθoldpθq � CDmax

KL pθold, θqs (2.35)

Instead of using the penalty coefficient, C, which usually would result in very small step
sizes, larger steps can be taken by placing a constraint on the KL divergence between
the new policy and the old policy instead. This is called a trust region constraint and is
formulated as

max
θ
Lθoldpθq

subject to Dmax
KL pθold, θq ¤ δ

(2.36)

In this form, a constraint would be placed on the KL divergence at every point in space.
This large number of constraints is impractical to satisfy so the same idea can be applied
by instead considering the average KL divergence:

max
θ
rLθoldpθq � CDmax

KL pθold, θqs (2.37)
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This then leads to optimizing as such,

max
θ
Lθoldpθq

subject to Dρθold
KL pθold, θq ¤ δ

(2.38)

2.5.1.4 Practical Algorithm

The theory described in the previous subsections justifies optimizing a surrogate objective
with a penalty on the KL divergence. The large penalty coefficient, C, leads to small steps,
though, so it would be better to decrease the coefficient. This is where the hard constraint,
the bound on the KL divergence, comes into play. Since the constraint on Dmax

KL pθold, θq
is difficult to meet using numerical optimization, Dρθold

KL pθold, θq is constrained instead.
With this in mind, the optimization is performed in distinct steps:

1. Collect a set of state-action pairs along with estimates of their Q-values

2. Averaging over samples, construct the estimated objective and constraint

3. Solve the constrained optimization problem to update the policy’s parameter vector
θ

The original paper on TRPO by Schulmann et. al. [17] demonstrated the robustness of
this method with a number of designed experiments.

2.5.2 Proximal Policy Optimization

TRPO, considered easy to tune, serves as the foundation of the RL applied in this
research. PPO has some of the benefits of same performance benefits of TRPO, but
is even simpler to implement, can be applied more generically, and has better sample
complexity. Unlike TRPO which performs one gradient update per data sample, PPO
employs multiple epochs of minibatch updates, alternating between sampling data from
the policy and optimizing from minibatches of the sample, to ensure quick convergence.
PPO, though it uses only first-order optimization, has been shown to attain similar
reliable performance and data efficiency as TRPO.

2.5.2.1 Policy Gradient Methods

In order to better understand how PPO works, it is necessary to first understand policy
gradient methods in general. Policy gradient methods work by computing an estimator
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of the policy gradient and plugging it into a stochastic gradient ascent algorithm. The
most popular gradient estimator has the form

ĝ � Êtr∇θ log πθpat|stqÂts (2.39)

where Êt is the expectation over the batch of samples, πθ is a stochastic policy (θ
representing the policy parameters), and Ât is an estimator of the advantage function at
time t. An objective function is then constructed whose gradient is the policy gradient
estimator, ĝ, obtained by differentiating the objective, or loss. [2],

LPGpθq � Êtrlog πθpat|stqÂts (2.40)

Differentiation of this loss equation implies that it is the focal point of the optimization.
PPO aims to optimize a set of NE strategies such that they result in the lowest possible
loss values.

2.5.2.2 Clipped Objective

Trust Region Methods, like TRPO, can be applied within PPO to constrain the policy
update based on the KL divergence. This gives the objective function

max
θ

Êt
�
πθpat|stq
πθoldpat|stq

Ât

�
subject to Êt rDKL rπθoldp�|stq, πθp�|stqss ¤ δ

(2.41)

Without the constraint, maximization of the above equation would result in an
excessively large polcy update. PPO looks to restrict the change in the objective/loss,
function LCLIPpθq, by clipping the value at every update step,

LCLIPpθq � ÊtrminpltpθqÂt, clippltpθq, 1� ε, 1� εqÂts (2.42)

in which lt is the probability ratio

ltpθq � πθpat|stq
πθoldpat|stq

(2.43)

where ε is a hyperparameter, which is usually selected to be around 0.2 since this
results in the policy changing by no more than 20% in each update. The second term,
clippltpθq, 1� ε, 1� εqÂt, modifies the surrogate objective by clipping the probability ratio.
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This essentially removes the incentive for moving rt outside of the interval r1� ε, 1� εs.
Finally, the minimum of the clipped and un-clipped objective is taken so that the final
objective is a lower bound on the un-clipped objective, effectively ignoring the change in
probability ratio when it would make the objective improve. [2]

2.5.2.3 Adaptive KL Penalty Coefficient

In addition to clipping the surrogate objective, or alternatively to it, an adaptive penalty
on the KL divergence can be used such that a target value for the divergence, dtarg, is
achieved each policy update. In general, this performs worse than the clipped surrogate
objective when applied individually, but both can be applied simultaneously to further
encourage proper optimization of the policies.

Still implemented over several epochs of mini-batches, the objective is penalized as

LKLPENpθq � Êt

�
πθpat|stq
πθoldpat|stq

Ât � βDKL rπθoldp�|stq, πθp�|stqs
�

(2.44)

The divergence can then be calculated using

D � Êt rDKL rπθoldp�|stq, πθp�|stqss (2.45)

If D   Dtarg{1.5 then β is set to β{2. If D ¡ Dtarg � 1.5 then β is set to β � 2. Dtarg

here is a hyperparameter provided as an ideal value for the KL divergence. This updated
β value is then used in the next policy update.

2.5.2.4 Algorithm

The surrogate loss from the previous section can be computed and differentiated, using
LCLIP instead of LPG. Multiple steps of stochastic gradient ascent are then performed on
this objective.

If using a neural network architecture that shares parameters between the policy and
value function, then a loss function must be used that combines the policy surrogate and
a value function error term. In addition, an entropy bonus can be added to encourage
exploration of the state and action spaces (as suggested in References [20] and [21]).
Combined together, the objective to maximize becomes

LCLIP�V F�St pθq � Êt
�
LCLIPt pθq � c1L

V F
t pθq � c2S rπθs pstq

�
(2.46)

35



where S is the entropy bonus, c1 and c2 are coefficients, and LV Ft is the squared-error
loss term pVθpstq � V targ

t q2.
One implementation of PPO demonstrating how it is well-suited for use with recurrent

neural networks, as seen in Reference 12, runs the policy for T time-steps (where T is
much less than the episode length), and uses the collected samples for an update. This
style requires an advantage estimator that does not look beyond time-step T

Ât � �V pstq � rt � γrt�1 � ...� γT�t�1rT�1 � γT�tV psT q (2.47)

in which t specifies the time index in r0, T s, within a given length-T trajectory segment,
and where V is the learned state-value function included to reduce the variance. [2]

A PPO algorithm [2] that uses fixed-length trajectory segments is shown below. Each
iteration, each of N (parallel) actors collect T time-steps of data. Then the surrogate
loss on these NT time-steps of data is constructed and optimized for K epochs using the
Adam optimizer [22], explained further in Section 2.5.4.

Algorithm 4 PPO, Actor-Critic Style [2]
1: for iteration=1,2...do
2: for actor=1,2...,N do
3: Run policy πθold in environment for T time steps
4: Compute advantage estimates Â1, ..., ÂT

5: end for
6: Optimize surrogate L wrt θ, withK epochs and mini-batch sizeM ¤ NT

7: θold Ð θ

8: end for

The original authors demonstrated PPO’s advantages over other algorithms and
showed that the clipped objective was most effective at optimizing the policy.

2.5.3 Generalized Advantage Estimation

One primary hindrance in optimizing the objective in policy optimization is the long time
delay between actions and their positive - or negative - effects on the reward, otherwise
known as the credit assignment problem. This is where the value function, as mentioned
in the previous subsection, comes into play. Value functions, which help to estimate how
a policy should be improved, can effectively represent the quality of an action before the
delayed reward is given.
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The GAE was proposed as a method for optimizing the value function in a way that
reduces variance while maintaining a tolerable level of bias, effects that are usually traded
in related optimization approaches [23].

2.5.3.1 Preliminaries

Inspecting Eq. (2.39), it can be surmised that the policy gradient is not just a function
of the policy parameters, but the advantage as well. The advantage function measures
whether or not the action is better or worse than the policy’s default behavior. This
means that, in order to ensure that the policy is being improved upon, the gradient term
should point in the direction of increasing πθpat|stq if and only if Aπpst, atq is greater
than zero.

The discount factor, γ, introduced in Section 2.5.1.1, is used to reduce the variance
by downweighting any reward that correspond to delayed effects. This, however, will
result in added bias. The discounted approximation to the policy gradient can then be
defined as [23]

gγ :� Es0:8,a0:8

� 8̧

t�0
Aπ,γpst, atq5θ log πθpat|stq

�
(2.48)

2.5.3.2 Advantage Function Estimation

To better understand the advantage estimator, specifically as presented in Eq. (2.47),
one can start by formulating the TD residual of the discounted value function as

δVt � rt � γV pst�1q � V pstq (2.49)

This is essentially an estimate of the advantage of the action, at. So, by definition, Âpkq
t

is just the sum of k of thse δ terms:

Â
p1q
t :� δVt � �V pstq � rt � γV pst�1q (2.50)

Â
p2q
t :� δVt � γδVt�1 � �V pstq � rt � γrt�1γ

2V pst�2q (2.51)

Â
p3q
t :� δVt � γδVt�1 � γ2δVt�1 � �V pstq � rt � γrt�1 � γ2rt�2 � γ3V pst�3q (2.52)

which leads to

Â
pkq
t :�

k�1̧

l�0
γlδVt�1 � �V pstq � rt � γrt�1 � ...� γk�1rt�k�1 � γkV pst�kq (2.53)
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Â
pkq
t here involves a k-step estimate of the returns, minus a baseline term �V pstq. This

suggests that, as k Ñ 8, the bias becomes smaller since the term γkV pst�kq becomes
more heavily discounted, and the term �V pstq does not affect the bias. Taking k Ñ 8
gives

Â
p8q
t �

8̧

l�0
γlδVt�1 � �V pstq �

8̧

l�0
γlrt�1 (2.54)

which is simply the empirical returns minus the value function baseline.
From this, the GAE (GAEq pγ, λq is defined as the exponentially-weighted average of

these k-step estimators

Â
GAEpγ,λq
t :� p1� λq

�
Â
p1q
t � λÂ

p2q
t � λ2Â

p3q
t � ...

	
� p1� λqpδVt � λpδVt � γδVt�1q � λ2pδVt � γδVt�1 � γ2δVt�1q � ...q

� p1� λqpδVt p1� λ� λ2 � ...q � γδVt�1pλ� λ2 � λ3 � ...q � γ2δVt�2pλ2 � λ3 � λ4 � ...q � ...q

� p1� λq
�
δVt

�
1

1� λ



� γδVt�1

�
λ

1� λ



� γ2δVt�2

�
λ2

1� λ



� ...




�
8̧

l�0
pγλqlδVt�1

(2.55)
There are two notable special cases of this formula, obtained by setting λ � 0 and λ � 1:

GAEpγ, 0q : Ât :� δt � rt � γV pst�1q � V pstq (2.56)

GAEpγ, 1q : Ât :�
8̧

l�0
γlδt�1 �

8̧

l�0
γlrt�1 � V pstq (2.57)

GAEpγ, 0q usually induces bias but has a low variance, while GAEpγ, 1q has less bias
but a high variance due to the sum of the terms. Setting λ between zero and one for
the GAE makes a compromise between bias and variance, controlled by λ. γ, while it
most importantly determines the scale of the value function, also contributes to this
bias/variance trade-off. While setting λ   1 introduces bias only when the value function
is inaccurate, setting γ   1 introduces bias regardless. Due to this, the original authors
found that the best value for λ is much lower than the best value for γ. Using the GAE,
the discounted policy gradient can now be written as [23]

gγ � E

� 8̧

t�0
5θ log πθpat|stq

8̧

l�0
pγλqlδVt�1

�
(2.58)

38



2.5.3.3 Interpretation As Reward Shaping

Inspecting Eq. (2.58), it can be seen that both γ and λ are effectively implemented as
discount factors after performing a reward shaping transformation on the MDP.

Reward shaping [24], refers to the transformation of the reward function of an MDP
as

r̃ps, a, s1q � rps, a, s1q � γΨps1q �Ψpsq (2.59)

where r̃ is the transformed reward function and Ψ is an arbitrary scalar-valued function
on the state space, S Ñ R. This transformation results in the discounted advantage
function remaining unchanged for any policy. This can be proven by manipulating the
discounted sum of the rewards of a trajectory originating from state, st, as

8̧

l�0
γlr̃pst�l, at, st�l�1q �

8̧

l�0
γlrpst�l, at�l, st�l�1q �Ψpstq (2.60)

The value and advantage functions of the transformed MDP can then be defined as

Q̃π,γps, aq � Qπ,γps, aq �Ψpsq
Ṽ π,γps, aq � V π,γps, aq �Ψpsq

Ãπ,γps, aq � pQπ,γps, aq �Ψpsqq � pV π,γps, aq �Ψpsqq � Aπ,γps, aq
(2.61)

Reward shaping can then be used to get a policy gradient estimate by constructing the
policy gradient estimators that use discounted sums of the shaped rewards, r̃. Applying λ
as, essentially, a second discount factor results in a “steeper” discount γλ when 0 ¤ λ ¤ 1.
In doing so, it’s easy to see that the shaped reward from Eq. (2.60) is equal to the
Bellman residual term δV from Eq. (2.49) when Ψ � V [23]. Doing so gives

8̧

l�0
pλγqlr̃pst�l, at, st�l�1q �

8̧

l�0
pλγqlδVt�1 � Â

GAEpγ,λq
t (2.62)

Hence, by considering the γλ-discounted sum of shaped rewards, the GAE from the
previous section is obtained exactly [23].

Exploring the effect of the shaping transformation in more detail, a response function,
χ can be introduced and defined as

χpl; st, atq � E rrt�l|st, ats � E rrt�1|sts (2.63)
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Note that Aπ,γps, aq � °8
l�0 γ

lχpl; s, aq so the response function decomposes the advantage
function across timesteps. This allows for the temporal credit assignment problem to
be properly quantified such that long range dependencies between actions and rewards
correspond to non-zero values of the response function when l ¥ 0. The discounted policy
gradient estimator can then be expressed as

5θ logπθpat|stqAπ,γpst, atq � 5θ logπθpat|stq
8̧

l�0
γlχpl; st, atq (2.64)

in which the error will be small if χ decays as l increases, as in the effect of an action is
“forgotten” after about 1{p1� γq time steps.

If the reward function, r̃, were obtained using Ψ � V π,γ, then E rr̃t�l|st, ats �
E rr̃t�1|sts � 0 for l ¡ 0. Essentially, the response function would only be non-zero at
l � 0 so the shaping transformation would turn a temporally extended response into an
immediate response. This suggests that the rewards can be reshaped using V to shrink
the temporal extent of the response function while the “steeper” discount γλ cuts off the
noise resulting from long delays [23].

2.5.3.4 Value Function Estimation

The final step is applying GAE to the estimation of the value function. When employing
a nonlinear function approximator to represent the value function, the easiest method
for estimating it is to approach it as a nonlinear regression problem:

min
θ

Ņ

n�1
||Vθpsnq � V̂n||2 (2.65)

where V̂t �
°8
l�0 γ

lrt�1 is the discounted sum of the rewards indexed by n over all
timesteps in a batch of trajectories. When applying this to the trust region problem, the
standard deviation is defined as σ2 � 1

N

°N
n�1 ||Vθoutpsnq � V̂n||2. Then the optimization

problem can be defined instead as

min
θ

Ņ

n�1
||Vθpsnq � V̂n||2

subject to 1
N

Ņ

n�1

||Vθpsnq � Vθoldpsnq||2
2σ2 ¤ C

(2.66)
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Thus, like when updating the policy, the value function can be updated by applying a
similar KL divergence constraint. [23]

2.5.4 Adam Optimizer

When training the policy and value functions, often represented as neural networks in
policy optimization, the Adam optimizer is the most common method for doing so. Adam
is an algorithm for first-order gradient-based optimization of stochastic objective functions
based on adaptive estimates of lower-order moments. The method is straightforward to
implement, has low memory requirements, is computationally efficient, is well suited for
large problems, and is invariant to diagonal re-scaling of the gradients [22].

2.5.4.1 Algorithm

Algorithm 5 shows the pseudo-code for the Adam optimizer. The algorithm starts with
fpθq, a noisy objective function differentiable with respect to θ, the policy parameters.
The goal is to minimize the expected value of f , Erfpθqs. With gt � 5θftpθq as shown in
line 10, the gradient of f is defined at time step t. The algorithm then presents the steps
to update the exponential moving averages (mt) and the squared gradient (vt) where
the hyperparemters β1, β2 P r0, 1q control the exponential decay rates of the averages.
These estimate the 1st moment (mean) and 2nd raw moment (variance) of the gradient,
respectively. Because, by initializing the averages at zero, they become biased towards
zero, m̂ and v̂ are used to represent the necessary bias-corrected values. The last step in
the algorithm then uses these bias-corrected averages to update the policy parameters.
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Algorithm 5 Adam Pseudo Code. Good default settings are α � 0.001, β1 � 0.9,
β2 � 0.999, and ε � 10�8. [22]
1: Require: α: Stepsize
2: Require: β1,β2 P r0, 1q: Exponential decay rates for the moment estimates
3: Require: fpθq: Stochastic objective function with parameters θ
4: Require: θ0: Initial parameter vector
5: m0 Ð 0 (Initialize 1st moment vector)
6: v0 Ð 0 (Initialize 2nd moment vector)
7: tÐ 0 (Initialize time step)
8: while θt not converged do
9: tÐ t� 1

10: gt Ð 5θftpθt�1q (Get gradients w.r.t. stochastic objective at time step t)
11: mt Ð β1 �mt�1 � p1� β1q � gt (Update biased first moment estimate)
12: vt Ð β2 � vt�1�p1�β2q � g2

t (Update biased second raw moment estimate)
13: m̂t Ð mt{p1� βt1q (Compute bias-corrected first moment estimate)
14: v̂t Ð vt{p1� βt2q (Compute bias-corrected second raw moment estimate)
15: θt Ð θt�1 � α � m̂t{p

?
v̂t � εq (Update parameters)

16: end while
17: θt (Resulting parameters)

2.5.4.2 Update Rule

An important consideration in the update step of the Adam algorithm is the choice of
step sizes. Assuming ε � 0, the most effective step in parameter space, at time step t, is
4t � α � m̂t{

?
v̂t with upper bound |4t | ¤ α � p1�β1q{

?
1� β2 when p1�β1q ¡

?
1� β2

and |4t | ¤ α otherwise. This is the equivalent of establishing a trust region around the
current parameter value, beyond which the current gradient estimate does not provide
sufficient information. This allows for α to be set in advance since the viable parameter
space is often known.

2.5.4.3 Initializing Bias Correction

As discussed in Section 2.5.4.1, bias correction terms are required since initializing the
moving averages to zero inherently induces bias. The approach that is taken to accomplish
this is unclear, though, as of yet. This section will show the derivation of the second
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moment estimate (the derivation of the first moment estimate is completely analogous)
in an effort to show how the bias correction term is calculated.

As used in Algorithm 5, let g be the gradient of the stochastic objective f with
its second raw moment estimated using an exponential moving average of the squared
gradient, with decay rate β2. Then g1, ..., gT are the gradients at subsequent time steps,
each drawn from the underlying gradient distribution gt � ppgtq. As mentioned, the
initialization of the exponential moving average as v0 � 0 is what necessitates the
bias correction. The update to this initialization, at time step t, is then performed by
vt � β2 � vt�1 � p1� β2q � g2

t where g2
t indicates the element-wise square gt d gt. This can

be written as a function of the gradients at all previous time steps:

vt � p1� β2q
ţ

i�1
βt�i2 � g2

i (2.67)

From this, the relationship between Ervts and the true second moment Erg2
t s will give

the resulting bias correction term:

Ervts � E

�
p1� β2q

ţ

i�1
βt�i2 � g2

i

�

� Erg2
t s � p1� β2q

ţ

i�1
βt�i2 � ζ

� Erg2
t s � p1� βt2q � ζ

(2.68)

where ζ � 0 if the true second moment, Erg2
i s, is stationary. Otherwise ζ is chosen as a

small value since β1 can be chosen such that the moving average selects small weights for
gradients too far in the past. This leaves the term p1� βt2q as the bias correction.

2.5.4.4 Convergence Analysis

To properly analyze the convergence of the Adam optimizer, a prediction will be made
for the parameter θt which will then be evaluated using the previously unknown cost
function ft. Since the nature of the sequence of cost functions f1pθq, f2pθq, ..., fT pθq is
unknown in advance, the algorithm is instead evaluated using the regret (the sum of the
difference between the online prediction ftpθtq and the best fixed point parameter ftpθ�q
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from a feasible set χ for all previous steps). This regret is formulated as

RpT q �
Ţ

t�1
rftpθtq � ftpθ�qs (2.69)

where θ� � minθPχ
°T
t�1 ftpθq. The original authors [22] showed that Adam has Op?T q

regret bound, which is comparable to the best known bound for general convex online
learning problems.

To simplify notation moving forward, gt � 5ftpθtq and gt,i is the ith element. g1:t,i P Rt

is defined as a vector that contains the ith dimension of the gradients over all iterations
until t, gt:t,i � rg1,i, g2,i, ..., gt,is. In addition, γ �

β2
1?
β2

is also defined. Using these
definitions, the following theorem holds when the learning rate, αt, is decaying at a rate
of t�1{2 and first moment running average coefficient, β1,t, decays exponentially with λ,
which is typically close to 1.

Theorem 1 [22] Assume that the function ft has bounded gradients, || 5 ftpθq||2 ¤
G, ||5 ftpθq||8 ¤ G8 for all θ P Rd and distance between any θt generated by Adam is
bounded, ||θn � θm||2 ¤ D, ||θm � θn||8 ¤ D8 for any m,n P t1, ..., T u, and β1, β2 P r0, 1q
satisfy β2

1?
β2
  1. Let αt � α?

t
and β1,t � β1λ

t�1, λ P p0, 1q. Adam achieves the following
guarantee for all T ¥ 1.

RpT q ¤ D2

2αp1� β1q
ḑ

i�1

a
T v̂T,i� αp1� β1qG8

p1� β1q
?

1� β2p1� γq2
ḑ

i�1
||g1:T,i||2�

ḑ

i�1

D2
8G8

?
1� β2

2αp1� β1qp1� λq2

The above theorem implies that when the data features are sparse and bounded gradients,
the summation term can be much smaller than its upper bound

°d
i�1 ||g1:T,i||2    dG8

?
T .

From this, the Adam optimization method can achieve Oplog d
?
T q, an improvement over

Op?dT q for the non-adaptive method. The fact that β1,t decays towards zero matches
previous empirical findings and suggest that reducing the momentum coefficient towards
the end of the training can help to improve convergence. Finally, the corollary below
shows that the average regret of Adam converges properly.

Corollary 1.1 [22] Assume that the function ft has bounded gradients, ||5 ftpθq||2 ¤
G, ||5 ftpθq||8 ¤ G8 for all θ P Rd and distance between any θt generated by Adam is
bounded, ||θn � θm||2 ¤ D, ||θm � θn||8 ¤ D8 for any m,n P t1, ..., T u. Adam achieves
the following guarantee, for all T ¥ 1.

RpT q
T

� O

�
1?
T
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This result can be achieved by using the Theorem above and
°d
i�1 ||g1:T,i||2 ¤ dG8

?
T .

Thus, limTÑ8
RpT q
T

� 0.

2.6 Previous Work
This section summarizes the previous work in astronautics related to the proposed
research. The literature reviewed helped to determine the approach that proved to be
most useful in this research.

2.6.1 Sensor Tasking

Sensor tasking is a subject that is discussed often and researched constantly, but has
only recently come close to being truly optimized. Reference [25] does a good job of
summarizing the Air Force’s Space Surveillance Network’s (SSN) sensor tasking strategy
as of 1992, but no research has been published with public access on the matter since
then. However, a number of papers have been published detailing new and improved
strategies that the Air Force could implement.

For instance, in 2010, Erwin et al. published their work [26] on dynamic sensor tasking
that establishes a simple benchmark problem for use to frame future research efforts in
estimation and resource management for SSA applications. An extended Kalman filter
(EKF) was used to provide state estimates of all tracked objects. These estimates and
their associated covariances were used to execute a closed-loop sensor tasking approach
to determine which sensors would track which objects.

Williams et. al published their work [27] on coupling estimation and sensor tasking.
The purpose of the paper was to examine how this coupling can amplify performance
differences between estimator types. This effect was investigated by modeling a simplified
satellite-tracking scenario, in which the number of objects to track greatly outnumbers
the sensor resources available to track them. The estimators used were an EKF and an
unscented Kalman filter (UKF), while the tasking methods were based on an information-
theoretic approach using Fisher information gain (FIG) [28] and a new stability approach
using largest Lyapunov exponent estimation (LLE) [29]. They found that, for both filters,
the LLE-based tasking provided more accurate estimates of both the satellite state and
uncertainty.

Adurthi et al. [30] expanded upon Williams et al’s work to apply Fisher Information
and Mutual Information [31] to sensor tasking through the use of the Conjugate Unscented
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Transformation (CUT) [32]. This method proved to be accurate as well at optimally
tasking sensors, especially in the presence of non-Gaussian covariances of the spacecraft
state estimates. Similarly, Gualdoni and DeMars found success [33] in utilizing information
statistics [34] for handling multiple observations.

While each of the above methods have proven useful in their specific applications, no
research has been published on their applicability to tracking maneuvering objects. This
objective was solved, however, by Goff et al. in reference [35]. This paper demonstrates
an information-based tasking strategy to track non-cooperative satellites using ground-
based radars in which the sensors are tasked based on the Shannon information [36]
of the state estimate. The maneuvers of the spacecraft to be tracked were estimated
by using a covariance inflation filter-through approach within an Interacting Multiple
Model framework, or IMM, for both continuous and instantaneous maneuvers. Figure 2.7
demonstrates this idea in the form of a flowchart where the red boxes represent propagation
steps, the yellow boxes represent decisions within the strategy, and the green boxes are
the options for each decision.
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Figure 2.7. Dynamic Tasking Strategy Flowchart [35]

It was found that adaptive information-based tasking was successful in maintaining
accurate state knowledge of maneuvering spacecraft. However, IMM approaches are less
than ideal because of the required a priori information. This leaves room for additional
improvements in the area of sensor tasking for tracking uncooperative maneuvering
spacecraft.

2.6.1.1 Search Theory

Search theory is the study of an individual’s optimal strategy for locating an opponent
when choosing from a set of potential moves of random quality under the assumption
that a delay in making a decision is costly. The result is an optimal strategy balancing
the cost of delay with the value of trying again. Benkoski et al. [37] survey the field of
search theory literature, which has not changed much since its publication in 1991. More
recently, Chen et al. [38] describe the application of search theory to sensor management

47



for tracking evasive UAVs. This application translates well to the use of search theory in
tracking uncooperative satellites.

As in PE game theory, search allocation games model two adversarial players. At the
initial time, the searcher has a total energy constraint E. Using this total energy, the
searcher has to allocate resources in the search space to detect the evader, which has an
initial energy e0. The flow of the subsequent game follows these steps:

1. At time k, the searcher obtains the information about the evader’s position and
their residual energy. At the same time, the evader is informed of the searcher’s
residual budget.

2. The evader then makes a decision to move from its current cell i to cell j in its
neighborhood of cells Npiq in a probabilistic manner, spending epi, jq energy to do
so.

3. The searcher hypothesizes the evader’s next cell and allocates resources accordingly,
taking their own residual energy into account.

(a) If n amount of resource is allocated to search cell i, then the searcher can detect
the evader with probability 1 � qipnq, with qipnq being the miss probability
modeled by

qipnq � e�ψin (2.70)

where ψi is an indicator of how effective it is to spend resources to search in
the i-th cell.

4. This process is then repeated until the evader is found.

The actions of the evader are determined slightly differently. Let pi be the probability
that the evader chooses cell i for its hiding location with cost ci to get to there. With
search resources allocated to cell i

ψi � 1
ψi
rlog ri

ρ
s� (2.71)

where ζi is the value of the game when the evader is located in cell i and the searcher
allocates ξi resource on it with miss probability criterion. For a single stage of the game,
it can be modeled as a minmax problem

minξimaxpi
¸
iPA

pirie
�ψiξi (2.72)
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subject to
pi ¥ 0,

¸
iPA

pi � 1 (2.73)

ξi ¥ 0,
¸
iPA

ciξi � E (2.74)

This results in a unique solution given by Eq. (2.71) and

pi �
$&
%

ci{ψi°
j,p¤zj

cj{ψj if ρ ¤ ζi

0 if ρ ¡ ζi
(2.75)

where rxs� � maxtx, 0u and ρ is found from

¸
iPA

ci
ψi
rlog ζi

ρ
s� � E (2.76)

This result can then be applied to similar multi-stage games. However, adaptations
would need to be made to apply this to the proposed research. Most importantly, neither
player will have knowledge about the resource availability of their opponent. The same
search theory ideas and approach could prove useful, though, in weighing the cost of
delay with resource utilization.

2.6.2 Game Theory Applied to Space Surveillance

Game theoretical methods have been applied for over a century, all starting with the
prisoner’s dilemma problem. Game theory is now applied to a wide range of behavioral
relationships and has found a niche within the space situational awareness field. Most of
this work has been published in joint papers from the Air Force Research Lab (AFRL)
and Intelligent Fusion Technology, Inc (I-Fusion). Their work, like the vast majority of
research in game theory applications for SSA including this dissertation, has focused on
PE. Early work on problems of this type modeled the environment geometrically [40].
More recently, AFRL and I-Fusion have published a number of papers [41–43] on applying
PE to sensor management. In each paper, the pursuer is represented by a space-based
observer/sensor (SBSS) while the evader is represented by a low-thrust geosynchronous
satellite being tracked.

The presented PE approach provides a method to solve the realistic SSA problem with
imperfect state information, where the evader will exploit the sensing and tracking model
to confuse their opponents by corrupting their tracking estimates, while the pursuer
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wants to decrease the tracking uncertainties. In solving the game, fictitious play [6–8], as
discussed in Section 2.2.2, was employed. In the papers by Shen et al. [41–43], the payoff
takes the form of entropy, a function of the pursuers certainty in the evaders position. In
the PE game, the evading spacecraft will try to increase the entropy by maneuvering
while the evader will minimize the tracking uncertainties using a sensor-resource-efficient
way. Since the pursuing spacecraft is assumed to not perform any maneuvers, this results
in a sensor tasking schedule, as displayed in Figure 2.8. In the figure, SBSS can be
seen simulated in a low-Earth polar orbit tracking a GEO spacecraft where the purple
lines represent the pointing vector of the sensor when tasked. Though the sensor is not
actively tasked to point in an optimal direction, the application of fictitious play to sensor
management is useful beyond this application.

Figure 2.8. The Orbits of SBSS and GEO Under the Game Theoretic Sensor Management
and Maneuver Strategies [43]

2.6.3 Machine Learning Applied to Space Surveillance

The application of machine learning to space surveillance has been even less explored
than that of game theory, as described in the previous section. The work that has been
done has focused primarily on supervised machine learning methods, such as neural
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networks [47]. Neural networks have proven useful in adaptive estimation for tracking
maneuvering targets, as in Reference [48], but require training that is not conducive for
use in a catch-all tool.

Unsupervised machine learning would prove more useful in such a tool, but has only
recently been considered for space surveillance applications. Starting in 2016, Shabarekh
et al. published two papers [49, 50] on an unsupervised machine learning approach to
probabilistically characterize Patterns of Life (PoL) for GEO satellites. Inspired by
similarity-based clustering [51], an Interval Similarity Model (ISM) was used to predict
future maneuvers learned from repeating intervals of unlabeled historical observations.
Using this method, the authors were able to probabilistically predict maneuvers of the
Galaxy 15 satellite with high confidence eight days in advance of the actual maneuver
and detect deviations from its expected PoL within hours of the predicted maneuver.
However, they also demonstrated that ISM is unable to predict future maneuvers for a
spacecraft with an irregular PoL.

Linares and Furfaro [52] present a solution to sensor management formulated as
a MDP, a mathematical framework for modeling decision making in situations where
outcomes are partly random and partly under the control of a decision maker. The
problem is then solved with RL using the actor-critic policy gradient approach and
modeled using deep neural networks. However, as discussed above, neural networks
aren’t conducive to the research being proposed here. Fortunately, the authors followed
this work with a second paper [53] and approached the same problem using inverse
RL instead. As in reference [52], the problem is formulated as an MDP, but assume
instead that a reward function is not explicitly provided. Rather, Feature Mapping [54]
is employed to accurately estimate the reward function that the spacecraft is using while
maneuvering by assuming that the observed trajectories are optimal with respect to the
spacecraft’s reward function. This approach allows for the determination of the reward
function without the use of neural networks.

2.6.4 Proximal Policy Optimization in SSA

At the conception of this dissertation concept, some previous research had been done
in applying RL to spacecraft dynamics problems, such as in References [52,53,61], but
only References [85, 86], this researcher’s own work, so far have focused on the detection
avoidance problem and implemented PPO as the policy update algorithm. While other
RL algorithms - like deep Q-learning [55], “vanilla” policy gradient methods [56], and trust
region / natural policy gradient methods [17] - have their benefits, PPO has shown to be
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the most promising with regards to data efficiency, scalability, and robustness. Q-learning
(with function approximation) fails on many simple problems and is poorly understood
while vanilla policy gradient methods have poor data efficiency and robustness. [2].

In the last few years, since the conception of this dissertation, a number of additional
advancements have been made as well. In 2017, Reference [57] showed how Q-Learning
can be used in conjunction with accessible regions to compute initial guesses for low-
thrust transfers in the circular-restricted three-body problem. Then, in 2019, the
authors continued with their work and used supervised learning to influence the resulting
solution geometry [58]. Following that, they applied the same framework to contingency
planning [59].

Besides applications in the circular-restricted three-body problem, PPO has been
used for rendezvous in a cluttered environment [60], Martian landing guidance [61], multi-
body station keeping [62], and lunar lander guidance [63]. In 2019, Miller and Linares
demonstrated the use of PPO for low-thrust trajectory optimization in a multi-body
regime [64] and then showed how PPO can be used in the decision-making process for
interplanetary low-thrust transfers [65]. Miller and Linares then contributed to LaFarge
et al’s paper published in 2020 on applying PPO to Libration point orbits [66]. In
addition, Gaudet et al moved on from their work with Martian landing guidance by
applying PPO to asteroid proximity operations [67].

2.6.5 Spacecraft Maneuver Strategies

Spacecraft maneuver strategies have traditionally been predictable, repetitive, and
designed to meet requirements of specific missions. For most missions this takes the form
of drag makeup maneuvers (DMUs), risk mitigation maneuvers (RMMs), and inclination
adjust maneuvers (IAMs) [69]. These maneuvers are designed anywhere from days to
months in advance and are optimized to minimize the associated fuel costs while meeting
mission specifications, such as ground track control requirements [70]. As of yet, no
work has been made publicly available involving maneuver strategies for tracking evasion,
which is a primary focus of this research.
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Chapter 3 |
Capabilities and Limitations

The sensor avoidance problem, especially the application of policy optimization to such
a real-world two-player game, is brand new territory in astrodynamics. Therefore, a
preliminary assessment of the capabilities and limitations of both players, as well as the
policy optimization method, must be performed to ensure that 1) the problem is worth
pursuing, 2) the selected approach is the best way to go about solving the problem, and
3) as much realism is included in the sensor-satellite dynamic as possible.

3.1 State Estimation Capability
In state estimation using optical sensors, the visual magnitude of the tracked object,
the inherent noise in the observations, and other environmental factors can effect the
capability of the sensor to maintain custody of a spacecraft. Though it is mathematically
true that only three angles-only optical observations is required to estimate a complete
orbital state, this is not at all the case when including accepted values of noise in the
observations. Once a sufficient number of observations are collected to get an estimate
of the state, this is then used to initialize a batch least squares (BLS) estimator, which
provides the covariance to initialize an extended Kalman filter (EKF). The EKF, though,
is limited in its ability to process observations through a maneuver. This section aims to
determine 1) the number of angle-only observations required to get an accurate estimate
of the spacecraft’s state, 2) how an EKF usually responds when a spacecraft is observed
maneuvering, and 3) the maneuver magnitude required to confuse an EKF.
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3.1.1 Gooding’s Method for Initial Orbit Determination

As first discussed in Reference [71], Gooding’s method is considered to be the most
accurate angles-only Initial Orbit Determination (IOD) method for the majority of
applications. Like all IOD techniques, Gooding’s method is used to estimate the orbit of
a spacecraft based on a set of measurements with no a priori information. However, the
angles-only observations adds additional complexity to the problem due to the absence of
range data. While other IOD methods can determine the orbit estimate from just one set
of observation data with range, angles-only methods required three sets of observation
data, each at different times.

Gooding’s method requires three inputs:

1. Position vectors, ~Rj, for the sites the measurements are taken from,

2. Unit vectors, υ̂j, calculated from the angular measurement data, which are line-of-
sight vectors from the site to the orbiting spacecraft,

3. Measurement times, tj for each observation.

The algorithm computes the spacecraft position at t2 using Lambert’s problem (a method
for solving the full state of an object given its position at two points in time) [3]
while iterating on the assumed position vectors at t1 and t3 using the Newton-Raphson
method [72]. The pseudo-code for this process can be found in Algorithm 6.

Depending on the level of noise in the measurement data, angles-only IOD algorithms
can produce very poor estimates of the spacecraft’s state if the results from a set of three
observations converge at all. To ensure an accurate estimate of the spacecraft’s state,
practitioners employ a scheme which investigates all of the possible combinations of three
measurements given the data set of N measurements. Running Gooding’s algorithm on
each combination results in a set of estimates for the spacecraft state from which the
output can be chosen. If an accurate estimate of the range magnitude is known, this
can be used to choose the output from the set of estimated states, otherwise the state
corresponding to either the mean or maximum semimajor axis [3] is chosen. The result
is an estimate of the position vector at t2 that can be subsequently iterated upon using
BLS and KF methods.

3.1.2 Batch Least Squares

The BLS method is used to improve upon the estimate produced from the IOD run(s)
through the use of differential correction. Given the estimate of the state from the IOD
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Algorithm 6 Gooding’s Algorithm Pseudo-code [71]
1: Given values: R̂j, tj, and υ̂j, for j = 1,2,3
2: Assume a value for Υ1 and Υ3
3: while Not Maximum Iterations or Tolerance Reached do
4: Estimate the orbit by solving Lambert’s problem using Υ1, Υ3, and t31
5: Compute the error in the position of the spacecraft at t2
6: Iterate Υ1 and Υ3 using the Newton-Raphson method
7: end while

and a batch of observation data, the BLS processor continues to iterate on the state
estimate and produces the covariance that quantifies its certainty in the state.

First, the state estimate and state transition matrix (STM), Φ, are propagated to
coincide in time with the second observation in the batch. At this time, the Earth
Centered Inertial (ECI) state is converted to angular coordinates and compared to the
observations angles at that time to determine the residual

∆yi � ~yi � ~Y px�i , tiq (3.1)

where ~yi is the vector of angular observations and ~Y px�i , tiq is the vector of angles
calculated from the state estimate. In addition, the Jacobian, Hi, is found from the
state estimate for use in linearizing about the state at the time of the observation. Along
with the variance of the measurement noise, Ri, these values are used to calculate the
state update variables, Λ and Ξ as such

Ti � HiΦpppti, t0qqq (3.2)

Λ � Λ� pT T
i R�1

i Tiq (3.3)

Ξ � Ξ� T T
i R�1

i ∆yi (3.4)

This process is repeated for each set of observation data and the variables Λ and Ξ are
compounded at each step. Once the entire batch of observation data is processed, the
new state estimate and its corresponding covariance are calculated from

P�
i � Λ�1 (3.5)

and
x̂�i � x̂�i � P�

i Ξ (3.6)
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where x̂�i is initial orbit estimate at the first observation time and x̂�i becomes the new
x̂�i . This process is then repeated, iterating on x̂�i , until it converges within a suitable
tolerance or the maximum number of iterations is hit. The result is an improved estimate
of the spacecraft’s state and its covariance [73]. This process is detailed in Algorithm 7.

Algorithm 7 Batch Least Squares Filter [73]
1: Propagate state and covariance (if known) to an epoch t0 resulting in P�

0 , x̂�
0

2: Set Λ = 1{P�
0 and Ξ = 0; if P�

0 unknown then Λ = 0
3: Read in the next observation: ti, ~yi, Ri

4: Propagate reference trajectory x�
i to ti and calculate new x�

i and Φpti, t0q
5: Initial conditions: x�

i , Φpti, t0q
6: Differential Equations: 9xi = fpx, tq, 9Φ = [fpx,tqBx s Φpti, t0q
7: Accumulate observations:
8: Hi = |B~Y px�i ,tiqBx |
9: ∆yi � ~yi � ~Y pxref,i, tiq
10: Ti � HiΦpti, t0q
11: Λ � Λ�TT

i R�1
i Ti

12: Ξ = Ξ + TT
i R�1

i ∆yi
13: Return to step 3 and increment i � i� 1, continue until last observation (N)
14: Solve: P�

i � Λ�1, δx̂ � P�
i Ξ

15: if converged then set epoch state and covariance estimate:
16: x̂�i � x̂�i � δx̂, P�

i � P�
i

17: else update x̂�i � x̂�i � δx̂ and P�
i � P�

i and return to step 1

3.1.3 Extended Kalman Filter

While BLS is accurate enough for state estimation that it is used for standard catalog
maintenance, the generated covariance is known to be an under-estimate and BLS cannot
be used to process new measurements without restarting from the first observation.
The EKF has become the industry standard for the continual processing of spacecraft
observation data and for covariance generation. Its linearization process is similar to that
of the BLS algorithm, but sequentially updates the state estimate instead of processing
the observations as a batch [73]. At each observation step, the state and covariance are
propagated, the residual and Jacobian are found, and then the Kalman gain is calculated
from those values as

Ki � P�
i HT

i pHiP
�
i HT

i �Riq�1 (3.7)
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The state and covariance can then be updated from

x̂�i � x̂�i �Ki∆yi (3.8)

P�
i � pI �KiHiqP�

i (3.9)

The updated state and covariance are then propagated to the next time observation
time and the process is repeated. As more observations are processed, the state estimate
continues to evolve and the covariance steadily decreases as the confidence in the state
estimate grows [73]. This process is detailed in Algorithm 8.

Algorithm 8 Extended Kalman Filter [73]
1: Define or update previous reference: P�

i , x̂�i
2: Read in the next observation: ti, ~yi, Ri

3: Propagate state from ti�1 to ti to get x̂�i and Φpti, t0q
4: Initial conditions: x̂�i�1, Φpti�1, ti�1q � I
5: Differential Equations: 9̂x = fpx, tq, 9Φ = [fpx,tq

Bx
] Φpt, ti�1q

6: Update covariance:
7: P�

i � Φpti, t0qP�
i Φpti, t0qT �Qi

8: Accumulate observations:
9: Hi = |BGpx�i,tq

Bx |
10: ∆yi � ~yi � ~Y px�

i , tiq
11: Calculate observation covariance
12: Si � HiP�

i HT
i �Ri

13: Calculate the Kalman gain and estimate the state and covariance
14: Ki � P�

i HT
i pSiq�1, x̂�i � x̂�i �Ki∆yi, P�

i � pI�KiHiqP�
i

15: Return to step 1 and process the next observation

3.1.4 Results

A proof-of-concept study was performed to demonstrate the validity of this research and
characteristics of the state estimation process. The inputs for this study can be found
summarized in Table 3.1.
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Table 3.1. Inputs for Proof-of-Concept Study
Input Value
Semimajor Axis, a 42164.137 km
Eccentricity, e 0
Inclination, i 50°
Right Ascension of Ascending Node, Ω 28°
Argument of Perigee, ω 0°
True Anomaly, ν 270°
Propulsion Type Chemical
Sensor Latitude, φ 40° North
Sensor Longitude, λ 110° West
Sensor Altitude, h 2 km
Field-of-View 3.5°
Right Ascension Observation Noise 0.002 229°
Declination Observation Noise 0.002 229°

As stated in the preceding sections, the first step for the ground player is to initialize
the spacecraft state and corresponding covariance for the orbit determination routine.
To this end, Gooding’s angles-only algorithm was used to perform the IOD. Using a
10-observation moving window for iterating through two passes (as the satellite crosses
the equatorial plane) of 19 observations each, a file was created that lists the outputted
orbital elements from each iteration of Gooding’s method performed. Note that the
required number of observations for a sufficiently accurate estimate of the state using
Gooding’s method was determined through trial and error. A portion of the file can
be seen in Figure 3.2 in which the columns correspond to the measurement 1 index,
measurement 2 index, measurement 3 index, semimajor axis, eccentricity, inclination
(in radians), right ascension of the ascending node (in radians), argument of perigee (in
radians), true anomaly (in radians), and the modified Julian date, in that order.
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Table 3.2. IOD Output Data

Each row shows the orbital elements resulting from a single iteration of Gooding’s
algorithm, where the first three columns identify the observation indexes used for that
iteration. Given the relatively short arcs between each set of three points, some of the
resulting orbital elements are either physically impossible or correspond to hyperbolic
orbits. Luckily, these are relatively uncommon and can be ignored when determining the
correct state estimate. From this file, the output is selected by finding the semimajor
axis value closest to 42,164 kilometers (assumed for any geosynchronous orbit), which, if
only the iterations displayed were considered, would be the highlighted row. This result
is then converted to Cartesian coordinates and propagated back to the time of the first
observation, giving

~r � r�37124.9261,�19359.9490, 411.1446s km (3.10)

~v � r0.9629,�1.7216,�2.3326s km{s (3.11)
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This state is then used to kickoff the BLS routine. The same set of 38 observations
is used in the BLS routine to differentially correct the state estimate and produce a
covariance for the first time. Over the course of just five iterations, the root mean square
(RMS) of the measurement residual (see Figure 3.1) falls below 10�4 radians and the
norm of the correction to the state estimate (see Figure 3.2) falls below 1 kilometer, the
two requirements for convergence. The new state estimate is found to be

~r � r�37702.5028,�18831.1362, 1278.4266s km (3.12)

~v � r0.81612,�1.8028,�2.3533s km{s (3.13)

with a corresponding covariance matrix of
�
����������

587.618418 238.540693 57.689866 �0.806995 �0.333112 �0.085022
238.540693 97.1337094 23.404550 �0.326088 �0.134922 �0.034236
57.689866 23.404550 5.902464 �0.077588 �0.031910 �0.008384
�0.806995 �0.326088 �0.077588 0.001155 0.000475 0.000120
�0.333113 �0.134922 �0.031910 0.000475 0.000196 0.000049
�0.085022 �0.034236 �0.008384 0.000120 0.000049 0.000013

�
����������

(3.14)

where the units of the top left quadrant are km2, the units of the top right and bottom
left quadrants are km2{s, and the units of the bottom left quadrant are km2{s2.
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Figure 3.1. RMS of the Measurement Residual

Figure 3.2. Norm of the Correction the State Estimate

From here, the state and covariance are used as inputs for the EKF and additional
data can be processed beyond the batch of observations used for the IOD and BLS
initialization. For this exercise, an additional two passes are used. The evolution of
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the estimation errors bounded by the 3σ standard deviations can be seen in Figure 3.3
for the position and in Figure 3.4 for the velocity. After processing the four passes of
observations, the state is now estimated to be

~r � r�36717.972560,�2000.073030,�1236.465823s km (3.15)

~v � r1.027604,�1.690442,�2.353272s km{s (3.16)

with a corresponding covariance matrix of
�
����������

12754.136377 5725.211339 1870.267444 1.023778 �0.196015 �0.738406
5725.211339 2590.695829 842.007653 0.458828 �0.087082 �0.333317
1870.267444 842.007653 291.904264 0.149749 �0.030360 �0.107549
1.0237778 0.458828 0.149749 0.000101 �0.000011 �0.000056
�0.196015 �0.087082 �0.030360 �0.000011 0.000014 0.000007
�0.738406 �0.333317 �0.107549 �0.000056 0.000007 0.000050

�
����������

(3.17)
where the units of the top left quadrant are km2, the units of the top right and bottom
left quadrants are km2{s, and the units of the bottom left quadrant are km2{s2.

Due to the limitations of processing angles-only observations without range data, the
state estimate does not improve from the EKF compared to the BLS, and can actually
be less accurate if the EKF is not tuned perfectly. However, the BLS is known to
under-estimate the covariance so the covariance output from the EKF is considered to be
much more accurate. The measurement and process noises can be used to tune how the
covariance changes over time to account for the presence, or lack, of new observations, as
seen in Figures 3.3 and 3.4.
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Figure 3.3. Position Estimation Error with 3σ Standard Deviation (�3σ � yellow,�3σ �
red)

Figure 3.4. Velocity Estimation Error with 3σ Standard Deviation (�3σ � yellow,�3σ � red)

63



With the EKF ready to process additional data, the maneuvers of the evading
spacecraft can be included. For this demonstration, both planar (change in semimajor
axis) and plane change (change in right ascension of the ascending node, or RAAN)
maneuvers are tested. These orbital elements were first introduced in Figure 2.3 back
in Chapter 2. In order to demonstrate the validity of the sensor avoidance concept,
there should exist a maneuver magnitude of each type that cannot be processed by the
EKF alone and that has a reasonable ∆V cost such that it can be performed regularly
through-out a mission. To test this, the maneuver magnitudes were gradually increased
until the EKF failed to effectively process observations after the maneuver. In this
scenario, the maneuvers are assumed to have occurred between observation passes, which
is more likely than an impulsive maneuver occurring during the small 3.5° window.

To test the maneuver processing capability, semimajor axis changing maneuvers will
be applied first. It was found that the EKF could successfully process through a change
in semimajor axis of 200 kilometers. Figs. 3.5 and 3.6, the state and velocity estimates
respectively, show that the estimated values stay well within the 3σ covariance values,
meaning that the filter was able to successfully process observations and maintain an
accurate estimate of the state after the maneuver was performed.

Figure 3.5. Position Estimation Error with a 200 km Semimajor Axis Change (�3σ �
yellow,�3σ � red)

64



Figure 3.6. Velocity Estimation Error with a 200 km Semimajor Axis Change (�3σ �
yellow,�3σ � red)

If the semimajor axis is instead changed by 300 kilometers, a grey area is found in
which the estimation error begins to exceed the 3σ standard deviation even though the
standard deviation again remains similar to as if no maneuver had been performed (see
Figs. 3.7 and 3.8). With no change in the EKF, the pursuing player would have no idea
that a maneuver, of 10.88 m/s magnitude, had occurred and that their state estimate
was off by over 150 kilometers.
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Figure 3.7. Position Estimation Error with a 300 km Semimajor Axis Change (�3σ �
yellow,�3σ � red)
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Figure 3.8. Velocity Estimation Error with a 300 km Semimajor Axis Change (�3σ �
yellow,�3σ � red)

Next, an identical approach is taken for maneuvers that change the RAAN of the
orbit. It was found that the EKF could successfully process through a change in RAAN
of 0.2° (see Figs. 3.9 and 3.10). Like with the semimajor axis changing maneuver, the
estimation error ended up being slightly greater at the conclusion of the data processing
while the 3σ standard deviation mimicked the values found when no maneuver was
performed.
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Figure 3.9. Position Estimation Error with a 0.2° RAAN Change (�3σ � yellow,�3σ � red)

Figure 3.10. Velocity Estimation Error with a 0.2° RAAN Change (�3σ � yellow,�3σ � red)

If the RAAN change is increased to 0.3°, a similar result is found as when the
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semimajor axis was increased - the estimation error begins to exceed the 3σ standard
deviation and the standard deviation remains similar to as if no maneuver had been
performed (see Figs. 3.11 and 3.12). Similar to the semimajor axis changing maneuver,
the RAAN change cost 12.26 m/s in ∆V . This suggests that the maneuver magnitude,
not type, is the primary cause for divergence in the processing of the observations through
an EKF, allowing the evading player to prioritize the result of the maneuver over the
maneuver selection itself.

Figure 3.11. Position Estimation Error with a 0.3° RAAN Change (�3σ � yellow,�3σ � red)
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Figure 3.12. Velocity Estimation Error with a 0.3° RAAN Change (�3σ � yellow,�3σ � red)

Both the planar and plane change maneuvers were found to have been successful in
deceiving the orbit determination system. This demonstrates that, with maneuvers about
10 m/s in magnitude, a spacecraft is able to successfully deceive an EKF. In addition,
it takes about 30 minutes, at one observation a minute, for the state estimate error to
exceed the filter’s uncertainty in the state.

3.2 Maneuver Strategy Optimization Using Reachability
Sets
The limitations and capabilities of the maneuvering spacecraft must be explored as
well. Though the analysis in the previous section showed that a 10 m{s maneuver can
successfully fool an EKF, the proposed research required optimizing an entire maneuver
strategy. It is therefore prudent to demonstrate that optimizing the strategy as a whole
is more effective than optimizing individual evasive maneuvers. This is accomplished by
optimizing a series of maneuvers, with respect to the ∆V and the effect of the maneuver
on the spacecraft’s ground track, using reachability sets.
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3.2.1 Reachability Sets for Ground Track Manipulation

A reachability set is the group of trajectories from a given initial condition that are
possible under a specified range of control actions. Currently, exploration of a problem’s
state space is done heuristically, based on previously identified solutions, but this could
result in designers completely missing improved mission design solutions that are not
close to previous approaches. Reachability sets instead allow for regions to be identified
in the system’s state space where small maneuvers have large effects or, vice versa [74].

Reference [75] goes into greater detail on the reachable domain when applying single
impulse maneuvers of arbitrary magnitudes at arbitrary locations. After the impulse is
applied, the resulting trajectory can be described in the ECI frame by

~r �

�
��

cos ν0 cos θ � sin ν0 cos ∆i sin θ
sin ν0 cos θ � cos ν0 cos ∆i sin θ

sin ∆i sin θ

�
�� j1

1� e1 cos θ � ν1
(3.18)

where ν0 is the departure true anomaly, θ is the angle between the vectors for a point on
the trajectory and the point of application, ∆i is the angle between the planes of the
trajectory and the initial orbit, j1 is the semilatus rectum of the trajectory, and e1 is the
eccentricity of the trajectory.

In reachability, the boundary of the reachable domain for planar orbital maneuvers,
as modeled with the above equation, is defined by the intersection of a plane and an
ellipsoid of revolution. The equation for the ellipsoid containing the trajectory can be
described in terms of the angular momentum, h, and eccentricity vectors as

~e � ~R � h2

µ
� ||~r|| (3.19)

In ECI coordinates, this gives

R � fpk, l, ν0, α, βq � j1

1� e1i cos k cos l � e1,j cos k sin l � e1,k sin k (3.20)

where k is the position elevation (angle between the position vector, ~R, on the ellipsoid
of revolution and its projection on the x-y plane), l is the position azimuth (the angle
between the projection and the x axis), and e1i, e1j, e1k are the components of the
eccentricity vector (see Figure 3.13).
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Figure 3.13. Definition of the Ellipsoid-of-Revolution Vector [75]

The equation of the orbital plane can be written as

~h � ~r � 0 (3.21)

giving

gp~r, ν0, α, βq � sin ν0 sin β~r1i � cos ν0 sin β~r1j��c µ

p0

1� e0 cos ν0

V
� sinα cos β

	
~r1k � 0

(3.22)

where ~r1i, ~r1j, ~r1k are the components of ~r in the ECI frame, α and β are the body-centric
angles that define the impulse vector (see Figure 3.14), and V is the magnitude of the
impulse vector. The reachable domain for the spacecraft is contained in the torus formed
by the intersection of these two envelopes.

Figure 3.14. Initial Velocity and Impulse Vectors [75]

The ellipsoid-of-revolution envelope is defined by satisfaction of these equations
$'''&
'''%
pC1 � A1qs2 � 2B1s� C1 � A1 � 0

pC2 � A2qs2 � 2B2s� C2 � A2 � 0

pC3 � A3qs2 � 2B3s� C3 � A3 � 0

(3.23)
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where s � tan l{2 and
A1 �

�Bj1

Bν0
e1i � j1

Be1i

Bν0

	
cos k (3.24)

B1 �
�Bj1

Bν0
e1j � j1

Be1j

Bν0

	
cos k (3.25)

C1 �
�Bj1

Bν0
e1k � j1

Be1k

Bν0

	
sin k � Bj1

Bν0
(3.26)

A2 �
�Bj1

Bα e1i � j1
Be1i

Bα
	

cos k (3.27)

B2 �
�Bj1

Bα e1j � j1
Be1j

Bα
	

cos k (3.28)

C2 �
�Bj1

Bα e1k � j1
Be1k

Bα
	

sin k � Bj1

Bα (3.29)

A3 �
�Bj1

Bβ e1i � j1
Be1i

Bβ
	

cos k (3.30)

B3 �
�Bj1

Bβ e1j � j1
Be1j

Bβ
	

cos k (3.31)

C3 �
�Bj1

Bβ e1k � j1
Be1k

Bβ
	

sin k � Bj1

Bβ (3.32)

The partials in the above equations are found by taking the derivative of these equations

j1 � ||~r||20V 2 sin2 β � ph0 � ||~r||0V sinα cos βq2
µ

(3.33)

e1i � h0 � ||~r||0V sinα cos β
µ

rν0 cos pγ � ν0q � V cos β sin pα � ν0qs

�||~r||0V
2 sin2 β cos ν0

µ
� cos ν0

(3.34)

e1j � �h0 � ||~r||0V cos β sinα
µ

rν0 sin pγ � ν0q � V cos β cos pα � ν0qs

�||~r||0V
2 sin2 β sin ν0

µ
� sin ν0

(3.35)

e1k � �r0V sin β
µ

pν0 sin γ � V cos β cosαq (3.36)

with respect to ν0, α, and β. The full partials can be found in reference [75].
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The plane-family envelope is defined by satisfaction of these equations
$'''&
'''%

sin βpe0 � cos ν0q~r1i � sin β sin ν0~r1j � e0 sin ν0 sinα cos β~r1k � 0

cosα cos β~r1k � 0

sin ν0 cos β~r1i � cos ν0 cos β~r1j � sinα sin β~r1k � 0

(3.37)

The condition for the plane-family envelope is that the impulse is perpendicular to the
initial orbit plane, so these equations simplify to

$&
%
pe0 � cos ν0q~r1i � sin ν0~r1j � 0

sin βpsin ν0~r1i � cos ν0~r1jq �
b

µ
p0

1�e0 cos ν0
V

~r1k � 0
(3.38)

These equations are solved by transforming the trigonometric forms into parametric forms
to obtain the envelope of the family of the planes containing the trajectories generated
after an arbitrary impulse is applied at any point on the initial orbit

$'''''''&
'''''''%

o1 �
b

p0
µ

V rp1�n2
1q~r1j�2n1~r1is

1�n2
1�p1�n2

1qe0

o2 � �
b

p0
µ

V rp1�n2
1q~r1j�2n1~r1is

1�n2
1�p1�n2

1qe0

o3 �
b

p0
µ

V rp1�n2
2q~r1j�2n2~r1is

1�n2
2�p1�n2

2qe0

o4 � �
b

p0
µ

V rp1�n2
2q~r1j�2n2~r1is

1�n2
2�p1�n2

2qe0

(3.39)

where $&
%n1 � ~r1j�

?
~r2

1j�pe2
0�1q~r2

1i
p1�e0q~r1i

n2 � ~r1j�
?
~r2

1j�pe2
0�1q~r2

1i
p1�e0q~r1i

(3.40)

Together, the two envelopes define the reachable domain. An example of a resulting
torus can be found in Figure 3.15. Here, the four surfaces represent the boundaries of
the reachable space. From any arbitrary point on the nominal orbit, an arbitrary single
impulse can result in the spacecraft accessing any point that lies between these four
boundaries.
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Figure 3.15. Intersection of the plane-family envelope and the ellipsoid-of-revolution envelope
for arbitrary point of application and impulse direction [75]

In this demonstration, the interest lies in applying the above reachability theory to
ground track manipulation based on the techniques presented in reference [76]. The
authors demonstrated that significant ground track changes are possible without large
expenditures of fuel. For example, Figure 3.16 demonstrates the capability of an electric
propulsion (EP) system in a HEO orbit inclined at 85 degrees with a period of 2.7 hours.
In this configuration, the system could change its time-over-target (TOT) by three hours
after four days of thrusting and six hours after seven days. Given seven days of lead time,
an EP system could change the TOT by six hours, ahead or behind, at two opposing
locations in the orbit and would cover a total TOT change of 24 hours, which is equivalent
to global reach.
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Figure 3.16. TOT Performance Based on Lead Time [76]

Terrestrial distance, the arc length between two points on Earth, was chosen as the
metric to quantify the effects of a satellite maneuver:

D � 2RC arcsin
�c

sin2
�φ2 � φ1

2

	
� cosφ1 cosφ2 sin2

� |V2 � V1|
2

	�
(3.41)

where φ1 is the latitude of point 1, φ2 is the latitude of point 2, λ1 is the longitude of
point 1, and λ2 is the longitude of point 2. These longitude values can be converted to
an Earth-Centered-Earth-Fixed (ECEF), a coordinate frame with its origin at the center
of the Earth and its axis aligned with the international reference pole and meridian that
are fixed with respect to the Earth’s surface, position vector using

~r1i � ||~r|| cosλ cosφ (3.42)

~r1j � ||~r|| cosλ sinφ (3.43)

~r1k � ||~r|| sin λ (3.44)

From there, the ECI position vector can be found by applying a rotation about the z-axis
through the location of the Prime Meridian. This gives a translation between a ground
track target and ECI coordinates and a metric for quantifying the effects of a maneuver
for use with the reachability domain theory above. Though reference [76] focuses on
targeting specific ground locations in LEO and HEO orbits, the same theory can be
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applied to achieve the opposite in GEO.

3.2.2 Computing Reachability Sets Using the Conjugate Unscented
Transform

The core premise of the applied reachability set computation method is to include higher
order terms of the Taylor series expansion for the final state, and use a non-product
quadrature scheme known as CUT to compute the least squares coefficient corresponding
to the expansion. The polynomial approximation method, as presented in Reference [77],
solves the problem as visualized in Figure 3.17.

Figure 3.17. Polynomial Approximation Method Summary [77]

First, CUT points are sampled from the joint PDF [30,32,78,79]. The CUT approach
can be considered an extension of the conventional UT method [80] that satisfies additional
higher order moment constraints. Rather than using tensor products as in Gauss
quadrature, the CUT approach judiciously selects special structures to extract symmetric
quadrature points constrained to lie on specially defined axes as shown in Figure 3.18,
allowing non-Gaussian distributions to be represented.

For each cubature point, two unknown variables, a weight wi and a scaling parameter
ri are assigned. The moment constraints equations for the desired order are derived in
terms of unknown variables ri and wi. Because of the symmetries of cubature points, the
odd-order moment constraints equations are automatically satisfied, so the wi and ri are
found by solving just the even-order equations. The order of these moment constraint
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Figure 3.18. Diagram of CUT Axes

equations dictates the set of cubature points. These new sets of so-called sigma points
are guaranteed to exactly evaluate expectation integrals involving polynomial functions
with significantly fewer points. With the application of the CUT approach, higher-order
statistical equivalent transition matrices can be generated in a computationally efficient
manner [77].

These points are then used to solve Lambert’s problem. As described in detail in
Reference 2, the nonlinear dynamics of the system can represented as

ȳ � Θpx�q (3.45)

where x� and ȳ denote the pn� 1q nominal input (position and velocity at point 1) and
pm � 1q nominal output (position and velocity at point 2) vectors respectively, and f
represents the function mapping the inputs to the outputs, as illustrated in Figure 3.19.
In this diagram, the mean positions and velocities are denoted by r� and v� while r and
v denote the states that fall within the distribution, in which the subscripts 1 and 2
denote the time steps.

It is desirable to find the solution for the same dynamics by substituting x into the
mapping function where x is a continuous random variable with the pdf P pxq such that,

y � Θpxq (3.46)

The relationship between x and x� is described by the pn x 1q continuous random vector
η with standardized pdf P pηq

x � x� � Tη � x� � δx (3.47)
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Figure 3.19. Reachability Problem Diagram

where x� is defined as the pn x 1q mean vector of x, and T is a pnxnq scaling matrix
dependent on the type of input uncertainty in a given problem. The term δx represents
the scaled deviation in input due to uncertainty. In general, the function ypxq � fpx̄�δxq
can be approximated as a qth order Taylor series expansion, with the partial derivative
terms grouped into constant matrices pCiq

y � C0 � C1δx1 � C2δx2 � C3δx3 � ...Cqδxq (3.48)

The coefficients can be rearranged into the full pnxMq coefficient matrix C and the
deviation vectors pδxpiqq into pM x 1q polynomial basis functions Π in which M is the
total number of basis functions

y � CΠpnq (3.49)

which can be rewritten in index notation as the approximation for the jth element in
terms of constant coefficients and arbitrary polynomial basis functions Π of maximum
degree q as

yjpxq � cj,kΠk for k � 1, 2, ...M (3.50)

In order to solve for the coefficients, it is necessary to calculate the cost function, J ,
formulated as the error, ε, between the nonlinear output and the approximated output
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squared, integrated over the domain of the PDF, P.

J � 1
2

»
εjεjP pηqdη (3.51)

This cost function is minimized with respect to cj,l, and the result can be written in
compact form as

S � CR (3.52)

where Sj,p � 〈yjpxq, bl〉P and Rk,p � 〈Πk, bl〉P . For a standard zero mean, unit variance
Gaussian distribution the orthogonal polynomials will be the Hermite polynomials, and for
a standard Uniform distribution in [-1,1] the orthogonal polynomials will be the Legendre
Polynomials. The main difficulty in this method is computing the multi-dimensional
integrals which appear in the expression for Sj,p. Generally these integrals are evaluated
numerically by summing the arguments evaluated at p total points and multiplied by a
weighting factor wi, simplifying the inner product as

Sj,p �  yjpxq, bl ¡P� wiyjpxiqbppδxiq for i � 1, 2, ...N (3.53)

These coefficients provide a quick numerical method for calculating a reachability
set. Given an initial position and velocity, the CUT points are distributed around this
coordinate using the desired maximum ∆V as the standard deviation in the velocity
(the deviation in the position is set to zero). Lambert’s problem is then solved at each
CUT point and the inner products are found. The polynomial coefficients can now be
calculated as described above and, for any number of desired Monte Carlo points, can be
used to determine the reachable space after a pre-determined amount of time as passed.

Figure 3.20 shows a demonstration of this method for a maneuvering geosynchronous
spacecraft with a ∆t of one orbital period and a maximum ∆V of 10 m/s. The color-bar
on the right shows the ∆V cost of each point in the set. Creating reachable sets for the
same spacecraft with varying ∆t values would create somewhat of a torus surrounding
the nominal orbit.

3.2.3 Ground Track Manipulation

In applying this reachability set calculation method to detection avoidance, it is useful
to explore how the reachable space behaves in topographic coordinates [3]. Converting
the reachable set in Figure 3.20 into a ground track (ECEF coordinates bounded to the
surface of the Earth) creates a series of “figure-8” patterns on the surface of the Earth, as
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Figure 3.20. Reachable Set, in ECI, After 24 Hours with Max ∆V of 10 m/s

shown in Figure 3.21. These ECEF states can be readily converted into latitude/longitude
and provide meaningful information about the location of the spacecraft with respect to
the ground station of interest. Both will be useful for the multi-objective optimization of
the spacecraft’s detection avoidance maneuvers.

3.2.4 Multi-Objective Cost Function

With the computational burden of calculating reachability sets no longer an issue, this
allows the problem to be extended further into multi-objective optimization. Spacecraft
maneuver planning for detection avoidance is unique in that all objectives may not be
met by moving some minimum distance from the nominal orbit. Analyzing the reachable
sets in topographic coordinates instead presents a unique metric for quantifying detection
avoidance.

For this study, three metrics are being considered:
1. Propellant usage, in the form of ∆V ,
2. Ability to meet the nominal mission requirements, represented by the mean angle

between the spacecraft and the ground station of interest,
3. Avoidance of the ground station’s sensor, represented by the mean longitudinal

change resulting from the maneuver.
The ideal end result is a maneuver that changes the spacecraft’s orbit enough to
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Figure 3.21. All Reachable Ground Tracks

confuse the ground station’s sensor while simultaneously maintaining a proximity to the
ground station and still sufficiently minimizing the ∆V cost. Through trial and error, a
cost function that accomplishes this goal was found:

J � 2� 10�4
� ∆V
minp∆V q

	4
� 60

� θ2

minpθ2q
	
� 30 ln

� ∆λ�1

maxp∆λ�1q
	

(3.54)

where θ is the mean angle in radians between the spacecraft and the ground station
and ∆λ is the mean longitudinal change in radians resulting from the maneuver. The
θ is squared in the function due to the loss that occurs as the angle increases between
a spacecraft and its pointing location on the Earth’s surface. In fact, if the angle is
found to exceed the FOR of the spacecraft’s sensor, the term is squared again. The
entire ∆V term is set to the power of four to ensure that the cost is highly sensitive
to the propellant usage. The inverse of the longitudinal change is used in the cost
to ensure that the cost decreases as ∆λ increases. Lastly, the natural log is taken
of the λ term to better distribute the values about the mean. Notice as well that
each of the terms is normalized by either the maximum value or the minimum value
according to their individual objectives. This is done to simultaneously guarantee that
the minimum/maximum for each is equivalent to one, leaving the cost value unitless. The
resulting cost function creates a wide distribution of values among the Monte Carlo points
and results in a minimum cost that simultaneously meets each of the three objectives.
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3.2.5 Maneuver Strategy Optimization

Though the method presented above allows for a much quicker calculation of a reachability
set than previously thought possible, the computation time increases exponentially as
more maneuvers are added in series. In order to consider all possible paths, each point
in the reachable space must seed a reachability set of its own. For just three maneuvers,
this would require 108 reachability set calculations with the current method formulation,
something not feasible for a personal computer. To save on computation time without a
significant loss in accuracy, a method was devised in which only a pre-defined percentage
of the resulting solutions, close in cost to the optimal solution (for the single maneuver),
is considered. A pre-defined number of points (say, 30, for example) is then sampled
from within this space to seed the next calculation of reachability sets. Repeating this
process for three maneuvers requires only 900 reachability set calculations to produce a
30� 30� 30 space of possible optimal solutions. Though this does not guarantee global
optimality for the three-maneuver series, the relative accuracy of the solution can be
verified by repeating the calculation and collecting statistical data on the results, as
presented in the next section.

3.2.6 Results and Analysis

The goal of this study is to prove that making use of a maneuver strategy could be
more cost effective than optimizing a single maneuver in sensor detection avoidance.
It is important to note that the purpose is to minimize the overall cost, calculated
using Eq. (3.54), for the entire maneuver set. This method is different than minimizing
the cost of each individual maneuver. Minimizing the cost per strategy may result
in a reduced total cost, but there may be circumstances in which increasing the cost
of a single maneuver may lower the overall strategy cost. This difference can be seen
in Figures 3.22 and 3.23. Figure 3.22 is an example of three consecutively (“locally”)
optimized maneuvers where as Figure 3.23 is an optimized set (“globally”) of three
maneuvers. In both plots, the blue line is the initial ground track, the red line is the new
ground track after the first maneuver, the yellow line is the new ground track after the
second maneuver, and the purple line is the final ground track after the last maneuver.
The global optimization of the maneuvers allows for larger changes and ultimately, more
meaningful maneuvers.

Optimizing a set of maneuvers using the same reachability set method as done in prior
research will rapidly lead to computational issues since a reachability set contains all of
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Figure 3.22. Local Optimization of Three Maneuvers

Figure 3.23. Global Optimization of Three Maneuvers
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Table 3.3. Single Maneuver vs. Strategy Optimal Parameters
Single Optima Strategy Optima

Maneuver # 1 2 3 Avg 1 2 3 Avg
∆V (m/s) 3.089 3.089 3.091 3.090 3.079 3.084 3.080 3.081
Longitude (degs) 0.709 0.586 0.710 0.668 0.677 0.827 0.919 0.808
Sat-Sensor (degs) 4.703 4.844 4.721 4.746 4.746 4.725 4.734 4.735

a spacecraft’s accessible locations given its initial conditions. To find the full reachable
space after the second maneuver, new reachability sets must be found for each original
ending location. Even using the CUT method, this process would grow computationally
taxing at an increasing rate. In order to mitigate this issue, a small number of samples
were collected from a percentage of the points close in cost to the optimal solution for the
single maneuver. These randomly sampled points would then seed the next maneuver
and the process is repeated for each consecutive maneuver, converting an exponential
growth to a relatively linear one. This percentage of area will be referred to as the
“percent considered” and will be variable. Selecting a percentage which is too low has
the potential to cut off the actual optimal location with respect to the entire series and
create false optimal points. Selecting too high of a percentage, however, could cause the
too much variation in the samples taken, leading to inaccuracies. Similar to the percent
considered, the number of samples is also variable.

After these parameters are implemented, it is necessary to create a test to compare
relative costs of a single maneuver as opposed to a set of maneuvers. Through pre-testing
it was determined that the minimum number of Monte Carlo points needed to ensure
repeatable results is 10, 000. The test is then designed to allow for variability in the
number of sample taken and the percentage of points considered. These variables range
from 5 to 30 and 5 to 20 in steps of 5, respectively. Every permutation of the data points
are considered and simulated to optimize the maneuver set by minimizing the overall
cost. It is expected that with less samples taken and a higher percentage considered, the
data will display a much higher rate of variability. Once the tests are run, it is possible
to compare the single maneuver optimization (three individually optimized maneuvers)
results to the new strategy optimization results. Overall the cost of running a strategy
optimization, as opposed to the previously standard single maneuver, reduced the cost
by 6.5%. These results are detailed in Figure 3.24 where the cost of each individual
run is plotted with a linear fit to show the difference in the average values of the two
approaches.

Table 3.3 shows three metrics: propellant (modelled as a change in velocity), longitude,
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Figure 3.24. Optimized Cost of Single Maneuver Series vs Maneuver Strategy

and the angle of the satellite to the sensor. These metrics are the basis of the cost
function and give meaning to further testing. The table displays the data of a simulation
with 20 samples and 15 percent considered. The reasoning for this decision is discussed
below. Although minimal, the global optima displayed a lower ∆V for each of the three
maneuvers. The longitude of the maneuvers displayed a more apparent trend, where on
average, the strategy optima’s longitude was larger. However, the satellite angle seemed
to have little trend. These patterns may be a result of random behavior because of the
small sample size so further testing is needed to draw a significant conclusion.

By expressing the results in a whisker plot (Figure 3.25), a slight variation of the
results with respect to cost from each of the six numbers of samples can be seen. Although
each whisker plot only includes 12 individual data points, a trend appears to be forming.
With 20 samples reaching a minimum cost, higher samples seem to keep a lower variability
but with a higher cost. With a number of samples lower than 20, costs remain low but
there is a large variance. This seems to agree with earlier expectations that a higher
sampling will reduce the total variability in the data, removing some of the randomness
or “luck”. By adding more data points, this theory could be verified further and cut out
some of the seemingly random deviations that are seen. The current results lead to the
belief that a sampling of 20 would be sufficient to determine the minimized cost without

86



a large computational burden.

Figure 3.25. Variability of Cost (Eq. (3.54)) by Number of Samples

To narrow down a considered percentage, a similar plot is made to relate the percent
considered to its resulting variation in cost. This new diagram (Figure 3.26) illustrates a
similar but less obvious trend. That is, away from the center of the figure, somewhere
between 10 and 15%, the variation increases. Although 5% considered does boast an
overall lower mean cost, this cannot be proven to be a repeatable result because of its
higher than usual standard deviation. Each of these plots contain 18 individual data
points, which could be increased further to decrease noise.
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Figure 3.26. Variability of Cost (Eq. (3.54)) by Percent Considered

It can be concluded, at the very least, that the results presented in Table 3.3 (the
20 samples and 15 percent considered scenario), are signs of a larger trend: maneuvers
performed in series must be optimized as a strategy to truly optimize their combined
effectiveness in sensor avoidance optimization.

3.3 Proximal Policy Optimization vs Optimal Control
Now that the limitations and capabilities of the pursuing ground player and the evading
space player have been determined, it is important to be able to justify the use of PPO
in comparison to traditional optimal control methods.

3.3.1 Methodology

Though the PPO theory was presented in Section 2.5.2, traditional optimal control
approaches have yet to be discussed. In this case, direct transcription was selected for
the comparison.

88



3.3.1.1 Optimal Control

Direct transcription [81] methods allow for the discretization of a continuous space
with the Keplerian dynamics serving as the constraints on the state. The maneuvering
spacecraft’s objective and gradient are a function of both the control vector at every
time step and the distance between the spacecraft and the center of the sensor’s FOV.

The objective and constraints are applied to the optimization problem using MAT-
LAB’s fmincon [82] with its Sequential Quadratic Programming (SQP) algorithm [83,84].
In doing so, the objective is formulated using the standard additive-cost optimal control
objective

J~up�qp~x0q �
» tf
t0

gp~xptq, ~uptqqdt (3.55)

where ~x0 is the initial condition and ~ut is the input defined over a finite interval rt0, tf s.
This allows the trajectory optimization problem to be written as

minimize~up�q
» tf
t0

gp~xptq, ~uptqqdt (3.56)

subject to @t, 9~xptq � fp~xptq, ~uptqq, (3.57)

~xpt0q � ~x0 (3.58)

in which fp�q is the state equation and gp�q is the running cost equation.
This is an optimization over continuous trajectories. In order to formulate this as

a numerical optimization, it must then be parameterized with a finite set of numbers.
Though there are many different ways to write down this parameterization, direct
transcription was chosen for this application.

In direct transcription, the finite-time trajectories, ~xptq and ~uptq@t P rt0, tf s are
represented by their values at a series of break points, t0,t1,t2,t3, and denoting the
values at those points ~x0, ..., ~xN and ~u0, ..., ~uN , respectively. A simple mapping of the
optimization problem onto a nonlinear program is to fix the break points at even intervals,
dt, and use Euler integration to get

minimize~x0,...,~xN ,~u0,...,~uN�1

N�1̧

n�0
gp~xn, ~unqdt (3.59)

~xn�1 � ~xn � fp~xn, ~unqdt, @n P r0, N � 1s (3.60)

By satisfying the dynamic constraints, the optimization is effectively solving the dif-
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ferential equation. However, instead of moving forward through time, it is minimizing
the inconsistency at each of the break points simultaneously. This provides the optimal
solution to the objective that meets all prescribed constraints. [81]

3.3.1.2 The Problem

In the devised dimensionless toy problem, the optimizer is setup with one of the three
following terminal constraint scenarios:

1. Return to the initial orbit after some fixed time,
2. Arrive at a specified state (position and velocity) after some fixed time. Figure 3.27

shows an example of this where the spacecraft starts at the point r1, 0s on the blue
orbit and transfers to the red orbit by way of the black orbit, ending around the
coordinate r�1,�0.3s.

3. No terminal constraint provided.
Note that non-dimensional units, scaled such that the initial orbit has a radius of one,
are used to improve the accuracy and speed of the optimization and that the maneuver
is assumed to be planar.

Figure 3.27. Arrival at a Specified Point After Some Fixed Time

Though minimizing the control input (propellant usage) is important, the primary
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objective is to maximize the distance between the spacecraft and the sensor. The sensor
itself is assumed to be optical with a defined FOV. By default the sensor will follow along
the trajectory that the spacecraft, propagated from its previous point with no additional
input, is assumed to be following. If at any point the spacecraft is not found within the
sensor’s FOV, then the sensor will move in a sinusoidal pattern of gradually increasing
amplitude along the nominal path until the spacecraft is found again. Figure 3.28 shows
this pattern, as zoomed-in on the orbital transfer (green line) just after departing from
the initial orbit (red line).

Figure 3.28. Example of the Sinusoidal Tasking Strategy

The end result will be a trajectory that diverges slightly from the minimum-fuel
trajectory (like in Figure 3.27) as the sensor continues to lose and regain custody of the
spacecraft over the specified time interval.

3.3.2 Results and Analysis

The outputs for both the optimal control solution and the RL solution is an optimal
policy that the spacecraft can follow to ensure it avoids detection by the optical sensor
while simultaneously minimizing propellant use.
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3.3.2.1 Optimal Control

In implementing the toy problem in MATLAB as described above, the function tolerance
was set to 1x10�4, the step tolerance was set to 1x10�6, and the constraint tolerance was
set to 1x10�3. These ensured timely convergence while still satisfying the dynamical and
terminal constraints.

Scenario 1, a terminal constraint requiring that the spacecraft return back to the
initial orbit after some fixed time (known as station keeping), produced the trajectory
found in Figure 3.29. The initial and final orbits are identical, but the transfer orbit can
be seen in green. The dots overlaying the transfer orbit show the time periods where the
spacecraft is found (in cyan) and not found (in magenta). It was determined that the
spacecraft is found by the sensor about half of the time.

Figure 3.29. Optimal Trajectory for Scenario 1 - Optimal Control

Scenario 2, a terminal constraint requiring that the spacecraft arrive at a specified
state (position and velocity) after some fixed time, produced the trajectory found in
Figure 3.30. Again, the success of the avoidance maneuver/sensor tasking is seen in cyan
and magenta colors. In this scenario, the spacecraft is found with more frequency but
is able to evade the sensor more as it approaches the terminal constraint. The tasking
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strategy is robust enough that the sensor maintains custody through-out most of the
maneuver, likely due to the lack of curvature in the transfer. The sensor losing custody
towards the end of the transfer, however, suggests that with more time, or slightly greater
propellant use, the spacecraft could successfully maneuver such that the sensor could not
find it without a more adaptable tasking strategy.

Figure 3.30. Optimal Trajectory for Scenario 2 - Optimal Control

Scenario 3, the scenario without a terminal constraint, produced the trajectory found
in Figure 3.31. Without a specified final state, the spacecraft is free to maneuver in
whichever direction most effectively avoids the tasked sensor. However, it appears that
the optimal control approach chosen limits deviation of the spacecraft from the nominal
orbit. Unsurprisingly, however, the spacecraft manages to continually lose the sensor
throughout the maneuver given the lack of constraints on its final position (as is evident
by the decrease in cyan color on the plot).

Though more scenarios could be tested with this toy problem, the capability of a
maneuvering spacecraft to avoid a tasked sensor has been demonstrated. These results
now serve as a basis for comparison with the PPO results when optimizing the same
scenarios.
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Figure 3.31. Optimal Trajectory for Scenario 3 - Optimal Control

3.3.2.2 Proximal Policy Optimization

The PPO methodology described in Chapter 2 was implemented with the goal of
optimizing the same three scenarios.

Scenario 1, the station keeping test case, produced the trajectory found in Figure 3.32.
This resulting trajectory looks very similar to the one produced using the optimal control
method, but notice that the colors are different. Since a control strategy is sampled
to produce this trajectory, though the overall transfer is optimal with respect to the
objective function, the input at each time step is not. Therefore, a pattern develops in
the transfer in which the spacecraft is overall successful in evading the sensor for varying
time periods.

Unfortunately, PPO was unable to produce a converged solution for Scenario 2 (a
terminal constraint requiring that the spacecraft arrive at a specified state (position and
velocity) after some fixed time). This is almost certainly due to the fact that PPO can
not take into account hard constraints. Instead, the terminal constraint is applied as a
soft constraint in the objective function. No weight applied to the soft constraint was
found to be sufficient enough to overcome to minimization of the propellant usage and
maximization of the distance between the spacecraft and the sensor.
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Figure 3.32. Optimal Trajectory for Scenario 1 - PPO

Scenario 3, the scenario without a terminal constraint, produced the trajectory found
in Figure 3.33 when using PPO. Originally, PPO was producing an intuitive result where
a trajectory was produced that varied greatly from the nominal orbit - as would be
expected when a primary objective is to avoid detection by a sensor. However, in the
interest of comparison with the optimal control solution, the objective function was
changed to put additional emphasis on the propellant usage. This resulted in a plot
similar to that of the station keeping scenario.
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Figure 3.33. Optimal Trajectory for Scenario 3 - PPO

3.3.2.3 Comparison

In the course of implementing PPO for optimizing the same scenarios, it was discovered
that, as expected, PPO has some drawbacks compared to direct transcription. Though the
Keplerian dynamics are seamlessly maintained in the environment, terminal constraints
on the dynamics can only be implemented as soft constraints in the objective function. It
is also relevant that the optimization is stochastic so the learning does not converge every
time. In addition, though the solution runs very fast on a trained policy, the training
itself takes about twice as long than when using the optimal control approach. However,
it is also true that PPO is global over the theatre of operations, meaning that similarly
accurate results can be expected when the problem is expanded.

Most significantly, PPO was successfully used to optimize the trajectories in two
of the three scenarios. The question that remains is how the PPO results look when
compared to the optimal control solutions. To compare the results of Scenario 1, the two
plots can be overlapped, with the PPO solution in black, as seen in Figure 3.34. The
plots look to overlap completely, but can’t say for certain without zooming in. Taking a
look at the very end of the trajectory (around r�0.7,�0.7s) in Figure 3.35, its obvious
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that the two solutions are exactly the same (the error is essentially zero). Note that the
multiple lines in red are from multiple revolutions of the initial trajectory, the black line
is the transfer orbit found using PPO, and the green line is the transfer orbit found using
SQP.

Figure 3.34. Solution Comparison for Scenario 1
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Figure 3.35. Solution Comparison for Scenario 1 (Zoomed)

A similar comparison was performed for Scenario 3, skipping Scenario 2 since PPO was
unable to produce meaningful results. Again, the two solutions can be seen overlapped
in Figure 3.36 and, again, the end of the trajectory is zoomed in on (Figure 3.35). In
this scenario, there is a slight deviation in the two solutions, but the maximum error was
found to be less than 0.5% at the final time.

This justifies the use of PPO over traditional optimal control methods for optimizing
the two-player sensor avoidance problem as long as no terminal conditions are required.

Now that the capabilities and limitations of both players as well as the selected
policy optimization method have been explored and defined, the decision process and
methodology employed can be describe in more detail before presenting the results.
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Figure 3.36. Solution Comparison for Scenario 2

Figure 3.37. Solution Comparison for Scenario 2 (Zoomed)
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Chapter 4 |
Methodology

This chapter goes into greater detail on the two-player game that is being solved. First,
the specifics of the problem and the general approach to determining the optimal solution
are discussed in Section 4.1. Then, the implementation of the problem specifics into the
RL environment is described in Section 4.2. Section 4.3 follows this by showing how
the policy optimization methods first introduced in Section 2.5 are combined together.
Finally, Section 4.4 goes into the contributions of this research with respect to previous
work performed in related areas.

4.1 The Designed Problem
In the devised problem, the primary objective is for a geosynchronous spacecraft to
continually avoid detection by a sensor with no attention paid to the final spacecraft
state. Though minimizing the control input (propellant usage) is usually important,
the sole objective in this case is to minimize the number of succesful observations of
the spacecraft. The sensor itself is assumed to be optical, meaning it is constrained by
the position of the sun. Since spacecraft in geosynchronous orbit can be viewed only
at night, the sensors are constrained to a 12-hour window to take observations, with a
defined FOV. In previous work by the author [85,86], presented in Section 6.1, the sensor
followed along the trajectory that the spacecraft, propagated from its previous point
with no additional input, was assumed to be following. If at any point the spacecraft was
not found within the sensor’s FOV, then the sensor would move in a sinusoidal pattern
of gradually increasing amplitude along the nominal path until the spacecraft was found
again. Figure 4.1 shows this pattern, as zoomed-in on the orbital transfer (green line)
just after departing from the initial orbit (red line).

For the final iterations (the results can be seen in Sections 6.2 and 6.3), like presented
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Figure 4.1. Example of the Sinusoidal Tasking Strategy - Non-dimensionalized

in Reference [87], the sensor is no longer assumed to follow a prescribed pattern. Instead,
RL is used to optimize the strategies representing the state-actions pairs for both the
spacecraft and the sensor simultaneously.

The spacecraft is prescribed a maximum ∆V of 20 m/s in each direction. An infinite
time-horizon is assumed, but the time between each maneuver is bounded between 12
minutes and 10 days. With the number of maneuvers capped at 30, this places an
upper limit on the time-horizon at 300 days. Each maneuver is applied instantaneously
and is represented as a change in the velocity in the x̂ and ŷ directions in the ECI
frame. Meanwhile, the sensor collects observations every 12 minutes during the 12-hour
observation window and is assumed to have a FOV of 4°. Since there are no Keplerian
dynamics to constrain the sensor’s path, each action is performed with respect to the
previous known orbital path of the spacecraft. These actions are bounded between 0
and 4, 216 km (10% of the initial orbital radius) in the x̂ and ŷ directions. Similar to
the described previous work, the sensor is assumed to follow along the spacecraft’s path
until it is not found within the sensor’s FOV. At this point, it is assumed that the sensor
has lost custody of the spacecraft and searches the nearby space according to the learned
strategy. If the spacecraft is successfully found in the sensor’s FOV for 15 consecutive
observations (to simulate angles-only IOD initialization), custody is regained and the
sensor can begin to follow the spacecraft along its new path without applying the search
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strategy. In an attempt to simulate the nuances of state estimation, the sensor is afforded
some flexibility in the search process. If the spacecraft has been successfully found for 7
consecutive observations after custody is lost, a missed observation does not restart the
count unless the spacecraft is not located for 3 observations in a row, in which case the
count to 15 must restart in order to regain custody.

The strategies for both the spacecraft and sensor are represented as state-action
pairs. The inputs for both strategies are identical 5x1 vectors containing the spacecraft’s
position, the sensor’s position, and the simulation time. Both strategies utilize a deep
neural network with 4 layers, each employing a sigmoid activation function, to find the
desired output action. The spacecraft’s strategy outputs a 3x1 vector containing the
change in velocity in the x̂ and ŷ directions and the time until the next maneuver. The
sensor’s strategy outputs a 2x1 vector containing the variation of the search state in
the x̂ and ŷ directions with respect to the suspected location of the spacecraft based
on its previously known state. After each strategy is applied, both players are given
a reward, opposite in value from each other (as required for a zero-sum game). Since
the reward must directly relate to the apparent success of the applied strategies, the
normalized distance between the center of the sensor’s FOV and the spacecraft’s position
was selected, represented as

r � ||~xS{C � ~xS|| (4.1)

where ~xS{C is the spacecraft’s state and ~xS is the sensor’s state. PPO is then applied on
batches of these state-action-reward sets in order to update the strategies. As more and
more updates are performed, the strategies will converge to a NE for the given state and
action spaces and constraints.

Since these spaces and constraints are highly subjective, competitive coevolution
is then applied to investigate how the strategies can be adapted, free of bounds and
constraints, to achieve specific goals (the percentage of successful observations). For
this research, the population size was set to 20, the maximum number of generations
was set to 3, and the maximum number of coevolutions was set to 10. Though these
are arbitrary and slight adjustments could result in smoother convergence, these values
appear to be acceptable.

In applying the competitive coevolution in Chapter 6, as discussed in Section 2.2.3.3,
competitive fitness sharing, shared sampling, and Hall of Fame are all valid strategies
for ensuring global optimality in competitive coevolution. However, it was found in the
authors’ previous work applying competitive coevolution [88] that, given the inherent
continuity in the search space, competitive fitness sharing was found to be unnecessary.
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In addition, poorly represented types was not an issue with this specific game as parasites
were never found that could only be defeated by specific hosts. Similarly, shared sampling
was also found to be an unnecessary burden on the optimization. With a relatively
small number of iterations required to reach convergence, the Halls of Fame for the
two players remained rather small. Instead of speeding up convergence, sampling from
the opponents Hall of Fame each iteration greatly slowed down the convergence since
less optimal strategies were being added to the current player’s Hall of Fame. However,
applying the Hall of Fame technique alone was found to be more than sufficient. With
a win condition set based on the percentage of observations that successfully find the
spacecraft, the Hall of Fame approach collects a mixture of the most uniquely successful
strategies of both players and evolves this mixture free of constraints until one of the
players can no longer evolve its mixed strategy in such a way that allows it to meet the
win condition.

In Section 6.2, the win condition is a pre-defined threshold with respect to the value
of the game and each players’ sole objective is to meet this condition. The winning
player, and the NE optimal strategies, can be determined when one player can no longer
evolve to pass the threshold value. In Section 6.3, the win condition is no longer fixed
and is instead based on the other player’s current best value of the game. The players
will continue to evolve until the value of the game converges to a single point and the
winner will be declared based on subjective factors.

4.2 Reinforcement Learning Environment
The designed problem described in the previous section is implemented primarily in the
RL environment. The pseudo-code for this implementation can be found in Algorithm 9.
In the algorithm,

• δt is both the time step taken by the spacecraft propagator and the time between
observations collected by the sensor,

• FOV is the field-of-view in kilometers,

• max�man is the maximum number of maneuvers the spacecraft is allowed to
take,

• ~Xs{c is the spacecraft state,

• ~Xref is the spacecraft orbit previously known by the sensor,
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• ~Xs is the position of the center of the sensor’s FOV,

• numman is the number of maneuvers previously applied by the spacecraft,

• found is the logical flag for if the spacecraft was most recently found within the
sensor’s FOV,

• countfound is the number of observations that the spacecraft has been found in
the sensor’s FOV in a row,

• countnot�found is the number of observations that the spacecraft was not found in
the sensor’s FOV in a row,

• ∆~V is the change in the spacecraft’s velocity vector applied as a maneuver,

• δ~xs is the change in the sensor’s position with respect to the ~Xref ,

• apply �man is the logical switch for whether or not the spacecraft is applying a
maneuver this step through the environment, and,

• lighting is the logical check for if the spacecraft is located inside the Earth’s
shadow such that the sensor can observe it.

This environment is run through once every time step and the outputs are returned
to the main function that is performing the policy optimization as described in the next
section.
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Algorithm 9 Reinforcement Learning Environment
1: Given constants δt, FOV , max�man

2: Initialize ~xs{c � r1, 0, 0, 1s, ~xref � ~xs{c, numman � 0, found � 1, countfound � 30,
countnot�found � 0

3: Variables from Main Function: ∆V , δ~xs, apply �man, lighting
4: if apply �man then numman� � 1
5: if lighting then δt � δt else δt � δt� 10
6: Propagate ~xs{c � δV for δt
7: Propagate ~xref for δt
8: ~xs � ~xref � δ~xs

9: if lighting then
10: d � normp~xs{c � ~xsq
11: if d ¤ FOV then
12: if d �� 0 then
13: countfound � 0, ~xref � ~xs{c
14: else
15: countfound� � 1
16: if countfound ¥ 15 then ~xref � ~xs{c
17: found � 1, countnot�found � 0
18: else
19: found � 0
20: if countfound ¥ 7 then
21: countnot�found� � 1
22: if countnot�found ¥ 3 then countfound � 0
23: else
24: countfound � 0
25: else
26: found � 0
27: if countfound ¥ 7 then
28: countnot�found� � 1
29: if countnot�found ¥ 3 then countfound � 0
30: else
31: countfound � 0
32: costs{c � normp~xs{c � ~xsq
33: costs � costs{c
34: if numman� � 1 ¥ max�man then done
35: return costs{c, costs, done 105



4.3 Combining Policy Optimization Methods
In most policy optimization uses, PPO is employed on its own with the Adam optimizer
used to train the policy and value functions. In some cases, TRPO is implemented
alongside PPO to improve the optimization process. Reference [89], however, implemented
the combined PPO and TRPO optimization algorithm while using GAE to improve
the advantage and value function estimation. This unique combination of these three
methods proved useful in optimizing the strategies for this two-player game.

As discussed earlier in this chapter, the policies for both the spacecraft and sensor are
represented as state-action pairs. The inputs for both policies are identical 5x1 vectors
containing the spacecraft’s position, the sensor’s position, and the simulation time. Both
policies utilize a deep neural network with 4 layers, each employing a sigmoid activation
function at the final layer, to find the desired output action. The spacecraft’s policy
outputs a 3x1 vector containing the change in velocity in the x̂ and ŷ directions and
the time until the next maneuver. The sensor’s policy outputs a 2x1 vector containing
the variation of the search state in the x̂ and ŷ directions with respect to the suspected
location of the spacecraft based on its previously known state. The values produced
by both networks resemble the expected values (means) of the outputs where their
respective standard deviations continually decrease as the optimization progresses and
the confidence in the means improves. The means and standard deviations are then
used to produce a normal distribution from which the actions (the outputs) are sampled.
These neural networks can be seen visualized in Figures 4.2 and 4.3, respectively. Note
that the output layer employs a sigmoid activation function while the hidden layers all
use tanh activation functions.
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Figure 4.2. Spacecraft Policy Neural Network
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Figure 4.3. Sensor Policy Neural Network

As discussed in Section 2.5.2.3, the policies are updated by minimizing their respective
loss values. Using the combined PPO/TRPO approach, the loss values are formulated as

LKLPENpθq � Êt

�
πθpat|stq
πθoldpat|stq

Ât � βKL rπθoldp�|stq, πθp�|stqs
�

(4.2)

where the advantage, At, is calculated using the GAE method as

Â
GAEpγ,λq
t �

8̧

l�0
pγλqlδVt�1 (4.3)

and the divergence can then be calculated using

D � Êt rKL rπθoldp�|stq, πθp�|stqss (4.4)

Then, if D   Dtarg{1.5 then β is set to β{2. If D ¡ Dtarg � 1.5 then β is set to β � 2.
This updated β value is then used in the next policy update. The loss values are then
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minimized using the Adam optimizer, as explained in Section 2.5.4. The learning rate of
the optimizer is initialized to be 2.37�10�5 for the spacecraft optimization and 2.9�10�5

for the sensor optimization, determined somewhat subjectively based on the size of the
neural network layers. The learning rate is then continually adjusted based on the value
for β such that if D ¡ Dtarg � 2, β ¡ 30 and the learning rate multiplier is currently
¡ 0.1, then the multiplier is divided by 1.5. Otherwise, if D   Dtarg{2, β   1{30, and
the learning rate multiplier is currently   10, then the multiplier is multiplied by 1.5.
This ensures that the learning rate moves in the opposite direction of β and encourages
slower updates when the loss is making larger changes based on the KL divergence value.

The value function neural networks are designed similarly to the policies except the
output layers are both linear. The neural networks for the two player look identical and
can be seen in Figure 4.4.

Figure 4.4. Value Function Neural Network

The value functions are optimized using the GAE process explained in Section 2.5.3.
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Using this method, the value function is updated using

min
θ

Ņ

n�1
||Vθpsnq � V̂n||2

subject to 1
N

Ņ

n�1

||Vθpsnq � Vθoldpsnq||2
2σ2 ¤ ε

(4.5)

where a similar KL divergence constraint is applied as is used in the policy optimization.
Prescribing values for discount factor, γ, the reward steepness, λ, the KL divergence

target, and the batch size provides the required inputs to begin the optimization process.
As the policies and value functions are continually updated, the spacecraft and sensor
learn from their identical reward value and their policies converge toward their respective
NE.

4.4 Variations From Previous Application
This research is original in a number of distinct ways. First, as of the conception of
this dissertation, no other research had been published applying PPO to astrodynamics
problems. Since then, a handful of papers have been published doing just that while
this research was being performed. Applying PPO to environments constrained by
Keplerian dynamics has some inherent benefits and drawbacks. On the negative side, the
application of a change in velocity at one point can have unpredictable consequences at
much later times in the simulation so the value function neural network has to attempt to
estimate this. Notably, this results in much smaller values of γ being used to ensure that
a longer time frame of data is included when updating the policy and value functions. On
the positive side, as long as the value function can learn to approximate the Keplerian
propagation, having constraints on the spacecraft’s state limits its state space at any
moment in time.

The unique contribution of this work primarily lies in the application to sensor
avoidance. All other applications of PPO within astrodynamics as of yet involve a
single player optimizing a trajectory with a defined time or location to trigger the end
of an episode, usually on the order of less than an hour to a couple of months. In
these scenarios, continuous thrust transfers are generally considered with reasonable
step sizes. Unfortunately, none of those assumptions could be made for this research.
Most significantly, this problem requires simultaneously optimizing the strategies of two
players. So instead of optimizing an objective like propellant use or time-of-flight, both of
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which depending only on the actions of the spacecraft and its interaction with the natural
environment, both players are attempting to optimize their strategies with respect to an
objective that is dependent on the other player’s actions, creating an environment that
is constantly changing unpredictably. Even in non-astrodynamics applications, applying
PPO to multi-player games has only gotten so far as to optimize board, card, and video
games - nothing so far in the real-world environment.

A secondary effect of optimizing this two-player game is that the speed at which
the two players make decisions is different. While the sensor is constantly being tasked
in search of the spacecraft and has a largely finite number of moves, the spacecraft is
limited to a finitely small number of moves (30 in this case). This means that, though
the two players will be updating their strategies at the same rate, the pursuing player
will have much more information to update its strategy based off of. However, given
the fact that the spacecraft is only maneuvering 30 times, the amount of effectively new
information provided to the sensor every update will be equally small.

Furthermore, most astrodynamics applications of PPO have had maximum simulation
times multiple orders of magnitude less than what is required for this type of application.
Given the sheer number of orbit propagation calls required, a larger step size must be
chosen to achieve a barely-even-close-to-reasonable computation time. With a step size
on the order of 6 to 12 minutes selected for these simulations, this results in rather sparse
observations of the spacecraft’s state. With maneuvers being performed on the order of
days, meaningful observations are even more sparse. This requires extremely large batch
sizes and small KL divergence targets to ensure that the Adam optimizer has enough
meaningful information to perform an effective update.

Along these same lines, basing the length of each episode off of the number of
maneuvers rather than fuel expenditure or time-of-flight required an alteration to the
policy optimization approach. The original publications on PPO and similar policy
optimization methods dictate that the reward signal be the sum of each individual reward
provided to the player throughout the entire episode. While this may be effective when
optimizing the total ∆V , it is counter-productive when optimizing the distance between
the center of the spacecraft and the sensor’s FOV. Doing so would mean that, while the
spacecraft is trying to maximize the objective, it could do so by increasing the length of
the variable-length episode. Conversely, the sensor would be interested in decreasing the
episode length to decrease the total value. Therefore, instead of using the total reward
for each episode, the average reward is used for the optimization.

Finally, no open source PPO code, including the code published by the original authors,
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has found an effective way of applying bounds on the selected actions to be performed by
the two players. Most implementations simply apply an arctangent activation function
to bound the outputs of the neural networks modeling the mean to between �1 and 1,
scale the outputs by a scalar value, and then clip the resulting values to meet the desired
bounds. Doing this, however, can potentially result in statistically significant portions
of the probability distribution being ignored since the neural network determines only
the mean, not its corresponding standard deviation, which is added in later. While this
may not negatively affect the results in other applications of PPO with smaller standard
deviations, that was not the case here. The results from this approach, tested on a
simpler problem presented in the Appendix, often “converged” to the extremes of the
action space instead of to the actual optimal values. Instead, the arctangent activation
function was first changed to a sigmoid activation function to bound the outputs of the
mean to between 0 and 1 (as seen in Figures 4.2 and 4.3). Then the resulting probability
distribution (the neural network) is combined with the standard deviation to produce a
truncated normal distribution with ranges specified individually for each output. This
allows for the entirety of the distribution to be represented in the outputted values.
The results with this adjustment were much closer to the expected optimal values and
sufficiently converged without approaching the extremes of the action space.

The results of the contributions and variations from previous applications of PPO
can be seen applied to this problem in the following chapter.
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Chapter 5 |
Reinforcement Learning Results

Section 4.1 detailed the designed problem in all steps of implementation while the
Appendix demonstrated that a simplified version of this two-player zero-sum game will
converge using PPO. This chapter presents the results through three different iterations
of the problem. First, the results are explained when only the spacecraft maneuvers are
being optimized by PPO and the sensor follows a prescribed tasking pattern. Next, the
sensor tasking is added to the optimization process and the initial results are presented.
Finally, lessons learned from the previous iterations are applied to the final iteration and
the nearly fully converged strategies are discussed.

5.1 Avoiding A Sensor Using A Prescribed Sensor Task-
ing Pattern

5.1.1 Problem Description

The first iteration when applying PPO attempts to optimize only the spacecraft’s
maneuvers while assuming that the sensor tasking pattern is pre-defined and unchanging.

The spacecraft player is attempting to simultaneously minimize the total ∆V applied
while maximizing the distance between it and the center of the sensor’s FOV. Because the
sensor is not yet included in the optimization, the ∆V can be included in the objective
function. This is primarily implemented in these results to demonstrate how it affects
the maneuver decisions with respect to the sensor avoidance goals.

The sensor itself is assumed to be optical with a defined FOV. By default the sensor
will follow along the trajectory that the spacecraft, propagated from its previous point
with no additional input, is assumed to be following. If at any point the spacecraft is
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not found within the sensor’s FOV, then the sensor will move in a sinusoidal pattern
of gradually increasing amplitude along the nominal path until the spacecraft is found
again. Figure 5.1 shows this pattern, as zoomed-in on the orbital transfer (green line)
just after departing from the initial orbit(red line).

Figure 5.1. Example of the Sinusoidal Tasking Strategy

Meanwhile, the spacecraft is attempting to avoid detection by the tasked sensor.
The spacecraft is allowed to perform a set number of impulsive maneuvers, applied
instantaneously and represented as a change in the velocity in the x̂ and ŷ directions,
each with a maximum time allowed before the next maneuver and a maximum ∆V .
This ensures that propellant is used most efficiently and allows for the entire maneuver
strategy to be optimized. For this exercise, the numbers of maneuvers was set at 30,
each with a maximum ∆V of 12 m/s and a maximum time between maneuver of 8 days.

The hyper-parameters used for this optimization, based on those used in Reference [89]
and altered through trial and error, can be found in Table 5.1.
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Table 5.1. Hyperparameters Used in PPO Training
Parameter Value
Discount Factor, γ 0.8
Batch Size 320
Reward Steepness, λ 0.98
KL Divergence Target, Dtarg 0.003

5.1.2 Results

Given the lack of eccentricity in the nominal orbit, the impulsive maneuvers are not
expected to be performed at a specific location along the orbital path. Instead, the timing
of the maneuvers should depend purely on the relative weighting placed on the propellant
use and the distance between the spacecraft and the sensor FOV in the objective function.
If more emphasis is placed on the propellant use, the time between maneuvers should
remain close to the maximum time allowed. If more emphasis is placed on the distance
between the spacecraft and the sensor FOV, then the maneuvers should be relatively
close together in time. The opposite would be true for the ∆V applied for each maneuver.
The lesser the weighting on propellant, the smaller the ∆V , and vice versa. Ideally, the
objective function weightings would be selected such that a balance is struck with respect
to both the time between maneuvers and the maneuver magnitude. For these results,
the objective function is formulated as

J � ||d|| � 1
100 ||∆V ||

2 (5.1)

where d is set to 100 if ||Vs{c � Vs|| is less than the FOV, expressed in kilometers, and set
to 1

d
otherwise. The units of the objective are irrelevant for the optimization since the

relative magnitude of the two values is the only concern.
From the resulting NE, the strategies are sampled for one episode to produce a single

set of actions for both players. Figure 5.2 shows the specific locations in the orbit that
each maneuver was performed, where each star is an individual impulsive maneuver. As
expected, no pattern emerges here. However, Figure 5.3 depicts the resulting time placed
between each maneuver is performed. It is obvious here that a pattern has developed.
Though not consistently at the maximum, the ∆V appears to have been given too large
of a weighting in the objective function as the time between maneuvers remains close to
the maximum 8 days. Interestingly, it appears that the times decrease as the simulation
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nears its end. This will be explored further below.

Figure 5.2. Maneuver Locations

Figure 5.3. Time Between Maneuvers

The ∆V in the x̂ and ŷ directions (in the Earth Centered Inertial frame) can also be
seen in Figure 5.4. Like the time between maneuvers, these also decrease as the total
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time increases, starting out near the maximum allowed 12 m/s and decreasing down to
�2 m/s in either direction. Looking at the ∆V magnitudes and directions (represented
as the angle between the ∆V vector and the ECI x-axis) separately in Figures 5.5 and
5.6, it is clear that this change over time occurs in both the maneuver magnitude and
maneuver direction, not just the magnitude as one might expect.

Figure 5.4. Maneuver Magnitude in the x̂ and ŷ Directions
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Figure 5.5. Maneuver Magnitudes

Figure 5.6. Maneuver Angle From the ECI X-Axis

Though both the time between maneuvers and the ∆V decrease together, this is not
meaningful without more information. Larger ∆V s at larger intervals can be equivalent
to smaller ∆V s at smaller intervals. To get an idea for the true tendency over time, these
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values are divided into each other (Figure 5.7). Though it can’t be known exactly given
the non-linearity of the dynamics, the resulting curved line suggests that the decrease
in the time between the maneuvers does not do so enough to offset the simultaneous
decrease in the ∆V - the maneuvers are actually tapering off. This suggests that, when
avoiding a sensor with a fixed search pattern, it is possible to successfully avoid being
tracked after enough maneuvers of a sufficient magnitude have been performed.

It turns out that a 10.3 m/s maneuver every 7.6 days is most effective at avoiding
detection by the sensor with the selected objective function weights. In addition, the
results suggest that the most effective maneuver direction for avoiding a sensor is 45°
from the horizontal.

Figure 5.7. Ratio Between The Maneuver Times and ∆V

Figure 5.8 shows the resulting trajectory from the 30 maneuvers. Here, the green
markers denote when the spacecraft was found by the sensor, while the red markers
denote when the spacecraft successfully evaded detection. Overall, the sensor was
successful 72% of the total duration, meaning that the spacecraft went undetected for
over 61 days. Looking more closely at these results, it was discovered that the periods
of successful evasion occurred primarily in large chunks spread evenly throughout the
transfer (Figure 5.9).
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Figure 5.8. Spacecraft Path With Sensor Success

Figure 5.9. Time History of the Sensor’s Success

The reason a predictable pattern emerged in the maneuver strategy is because the
sensor tasking was programmed with a fixed search strategy. Because of this, the RL
is able to find an optimal interval and magnitude at which to perform the maneuvers
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that the sensor is not well suited to track. Though this was expected, it is likely that
real-world sensors would not share the same flaws and would react and adapt when the
spacecraft maneuvers. Including the sensor tasking in the RL is the most logical way to
realistically model the interaction between the two players.

Playing with the objective function weightings would likely result in a similar but
different pattern emerging, likely with different time between maneuver and ∆V values.
Unfortunately, there is no obvious way to select the desired objective function weightings
prior to performing the optimization.

5.2 Preliminary Results of Two-Player Optimization

5.2.1 Problem Description

The primary change implemented in this iteration is that the policy optimization now
includes the sensor as well, simultaneously updating the policies and value functions
of both players. While assuming a pre-defined tasking strategy was effective, it does
not challenge the spacecraft to learn to predict changes in the search strategy and is
not representative of tasking performed by a human-in-the-loop or autonomous sensor.
Thus, the next step was taken to incorporate the sensor tasking into the RL process.
Assuming the initial state of the spacecraft is known, the sensor will learn to predict
maneuvers performed by the evasive spacecraft, given only a maximum position variation
(or, effective FOR) and FOV.

The objective function was changed as well so that the two players are attempting to
optimize the normalized distance between the spacecraft and the center of the sensor’s
FOV. Though most trajectory optimization aims to minimize ∆V , it was elected to
remove that consideration from this research and the ∆V is only included as a constraint.
This is because, not only is the sensor avoidance the primary concern and the focus of
this research, but optimizing the problem as a zero-sum game is a required premise to
assume that the strategies will converge to a NE. The sensor player, though potentially
interested in the spacecraft exhausting its resources, is not directly involved in the ∆V
application.

Additionally, the position of the spacecraft with respect to the Earth’s shadow is
considered to determine when the optical observations can be collected. To stress test
how this affects the sensor’s capability, 2-hour windows after sunset and before sunrise
are set where the sensor is allowed to collect observations.
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For this iteration of results, the spacecraft is prescribed a maximum ∆V of 20 m/s in
each direction. An infinite time-horizon is assumed, but the time between each maneuver
is bounded between 6 minutes and 6 days. With the number of maneuvers capped
at 30, this places an upper limit on the time-horizon at 180 days. These values were
adjusted based on the results from the previous iteration in an effort to simultaneously
include a more meaningful action space (the increase in the maximum ∆V ) and decrease
the computation time (the decrease in the maximum time between maneuvers). Each
maneuver is applied instantaneously and is represented as a change in the velocity in
the x̂ and ŷ directions. Meanwhile, the sensor collects observations every 6 minutes
during the 2-hour windows after sunset and before sunrise and is assumed to have a
FOV of 4°. Since there are no Keplerian dynamics to constrain the sensor’s path, each
action is performed with respect to the previous known orbital path of the spacecraft.
These actions are bounded between 0 and 4, 216 km (10% of the initial orbital radius)
in the x̂ and ŷ directions. Similar to the previous iteration where the tasking strategy
is prescribed, the sensor is assumed to follow along the spacecraft’s path until it is not
found within the sensor’s FOV. At this point, it is assumed that the sensor has lost
custody of the spacecraft and searches the nearby space according to the learned strategy.
If the spacecraft is successfully found in the sensor’s FOV for 10 consecutive observations,
custody is regained and the sensor can begin to follow the spacecraft along it’s new
path without applying the search strategy. In an attempt to simulate the nuances of
state estimation, the sensor is afforded some flexibility in the search process. If the
spacecraft has been successfully found for 5 consecutive observations after custody is lost,
a missed observation does not restart the count unless the spacecraft is not located for
3 observations in a row, in which case the count to 10 must restart in order to regain
custody.

The hyper-parameters used for this optimization can be found in Table 5.2.

Table 5.2. Hyperparameters Used in PPO Training
Parameter Value
Discount Factor, γ 0.8
Batch Size 320
Reward Steepness, λ 0.98
KL Divergence Target, Dtarg 0.003
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5.2.2 Results

Initialized from random normal distributions, the strategies employed by the two players
were iterated upon using PPO for just over 100, 000 iterations. More iterations would
be ideal, though, as the great computation time involved did not allow for a complete
convergence of the strategies to their NE. The lack of convergence is also because the
strategies are superficially clipped to meet the constraints rather than using the truncated
normal distributions, as discussed in Section 4.4. This was done so that the strategies
could be easily used to initialize the competitive coevolution optimization process (results
presented in the following Chapter). It was not discovered until after the fact that
this could bring about difficulties with the convergence. To inspect the quality of the
convergence, the loss (normalized by the largest magnitude value) through all updates for
the sensor value function, spacecraft policy, and sensor policy can be seen in Figure 5.10 .

Figure 5.10. Moving Average of the Loss Values Through 100, 000 Iterations

As expected, the spacecraft and sensor policy losses follow opposite patterns - as the
sensor policy loss decreases, the spacecraft policy loss increases. With this, the value
function loss follows a similar pattern to that of the sensor loss, just with the changes
slightly delayed. Inspecting the variation in the plots, it is obvious that the loss values
have not converged. In fact, the current policies will likely favor the spacecraft over
the sensor since the spacecraft loss most recently decreased. It is likely that the two
policies will continue to drive each other to increase and decrease in succession until both
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players reach steady state loss values after another likely 500, 000 iterations or more (if
at all given the superficial clipping implemented). However, the resulting strategies after
100, 000 iterations can still shed light on this unique space-based game and the inherent
limitations and advantages of both players.

From the resulting NE, the strategies are sampled for one episode to produce a single
set of actions for both players. A simulation of these actions is shown in Figure 5.11. In
this plot, the spacecraft can be seen in black while the sensor is green at observations
where it successfully found the spacecraft and red at observations where it did not. In
applying these two strategies, the sensor was determined to have successfully found the
spacecraft 68.8% of the observations taken.

Figure 5.11. Spacecraft and Sensor States Through One Simulation

Though not necessarily optimal, the fact that this is likely close to the optimal result
is encouraging. Successfully evading the sensor for even 31.2% of the observations taken
is no small feat. The question is, though, how expensive is it for the spacecraft to be
this successful? With the maximum ∆V per maneuver bounded at 20 m/s in each
direction (28.28 in magnitude), the total for all 30 maneuvers could not possibly exceed
approximately 848 m/s over the maximum 180 day simulation. In addition, the time
between maneuvers could not exceed 6 days. Figures 5.12 and 5.13 show the ∆V values
and times between maneuvers, respectively.
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Figure 5.12. ∆V Applied for Each Maneuver

Figure 5.13. Time Between Each Maneuver

As expected, the ∆V values were close to the maximum allowed in order to achieve
this result since the objective function selected was a function solely of the distance
from the spacecraft to the center of the sensor’s FOV. In the end, it took 580 m/s and
an average of 3.12 days between each maneuver to attempt to win the game with this
condition. It can also be noticed that a pattern is forming in these plots. Though 30
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data points are not conclusive, it appears that the most effective ∆V values for sensor
avoidance average out to about 19 m/s. Interestingly, after the first 10 maneuvers, the
values drop from about 25 m/s to below 20 m/s and continue to decrease and vary further.
This is to be expected since the sensor has a much more difficult time regaining custody
of the spacecraft once it is initially lost. In addition, the time between maneuver values
were not minimized to near-zero as one might expect when attempting to avoid detection
by a sensor. This could be because of the 20 hours each day when the spacecraft is free
to maneuver or coast without fear of being observed. Therefore, the spacecraft would
optimize its objective by maneuvering between observation periods. Like seen with the
∆V values, the time between maneuver values start out at the extrema at the beginning
of the simulation. These large, successive maneuvers ensure that the spacecraft can
quickly gain separation from the tasked sensor. As the spacecraft becomes successful in
doing so, the time between maneuvers starts to increase towards the upper bounds as the
simulation progresses and less proximity between maneuvers is required to be successful
in avoiding the sensor.

When conducting further analysis on the time between maneuver values, it was
determined that the most likely cause for this is actually the fact that, as incorporated in
other PPO applications, the reward provided to both players at the end of each episode
is the sum of each individual reward rather than the average over all values. This means
that the reward is also affected by the resulting simulation time, which is not at all
desired. Using the average reward over each episode instead should encourage the optimal
time between maneuver values to decrease. This is implemented in the next iteration of
results.

Additional analysis can be performed by inspecting the ∆V magnitudes along its x̂
and ŷ components, shown in Figure 5.14. The opposite signs in the magnitudes here
suggest that the optimal thrust angle for sensor avoidance is around 0° consistently.
Looking closely at the angles of each maneuver, as seen in Figure 5.15, this can be
confirmed to be true. Though the average maneuver angle falls around �17°, the values
seem to follow a similar pattern to that of the ∆V and time between maneuvers, changing
from around �45° maneuvers to 0° as the maneuver magnitudes decrease.
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Figure 5.14. ∆V Components

Figure 5.15. ∆V Angle

It’s also useful to examine the pattern by which the sensor successfully finds the
spacecraft. Looking closely at Figure 5.16, the spacecraft quickly evades detection, as
is expected given the large, successive maneuvers at the beginning of the simulation.
It takes almost 15 days for the sensor to regain custody of the spacecraft. Over the
next 64 days, though, the sensor successfully finds the spacecraft at least once every
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5 days. From there, another 66 days pass where the spacecraft goes undetected. The
sensor then regains custody and continues to successfully observe the spacecraft without
significant gaps for the remainder of the simulation. Zooming in on days 0 to 50, as
shown in Figure 5.17, it can be seen that, even when no weeks-long gaps in observations
exist, multiple observations periods can pass in a row with no successful observations.
With days, and sometimes even months without the sensor regaining custody, this gives
the spacecraft plenty of confidence in its evasive capabilities.

Figure 5.16. Time History of Succesful and Unsuccesful Observations
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Figure 5.17. Time History of Succesful and Unsuccessful Observations - Days 0 to 50

5.3 Final Results of Two-Player Optimization

5.3.1 Problem Description

The final iteration of results primarily implements changes based on lessons learned from
the first two iterations. To begin with, the observation window is expanded to account for
modern optical sensing capabilities. For simplicity, the window is set at 12-hours per day.
In addition, some of the contributions discussed in Section 4.4 are implemented. Most
importantly, the truncated normal distribution is implemented to ensure that the entirety
of the policy distribution is represented in the selected actions. This helps to improve the
convergence of the solution. Additionally, as discussed in the previous section, the reward
provided at the end of each episode is changed to be the average of all instantaneous
rewards rather than the sum. This ensures that the spacecraft is not favoring longer
episode lengths to increase its payout (and the opposite for the sensor). These changes
make for a much more realistic solution which is able to fully converge to the optimal
strategies for both players.

For this iteration of results, the spacecraft is prescribed a maximum ∆V of 20 m/s in
each direction. An infinite time-horizon is assumed, but the time between each maneuver
is bounded between 12 minutes and 10 days, increased from the last iteration because the
previous 6-day upper bound was assumed to be too low since it was commonly selected in
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the strategy. With the number of maneuvers capped at 30, this places an upper limit on
the time-horizon at 300 days. These actions are again bounded between 0 and 4, 216 km
in the x̂ and ŷ directions. In order to help ease some of the computational burden, the
time step is doubled from 6 minutes to 12 minutes compared to the previous iterations.

If the spacecraft is successfully found in the sensor’s FOV for 15 consecutive observa-
tions, custody is regained and the sensor can begin to follow the spacecraft along it’s
new path without applying the search strategy. In an attempt to simulate the nuances
of state estimation, the sensor is afforded some flexibility in the search process. If the
spacecraft has been successfully found for 7 consecutive observations after custody is
lost, a missed observation does not restart the count unless the spacecraft is not located
for 3 observations in a row, in which case the count to 15 must restart in order to
regain custody. These values were changed from the previous iterations to attempt to
better model real-world limitations of the sensor. As discussed in Section 3.1, Gooding’s
algorithm requires two “passes”, or 38 observations, to properly initialize the BLS process.
To replicate this, 15 observations is subjectively set as the minimum for an initialization
of the filtering process. Since the time between maneuvers is significantly higher in this
analysis, 15 was selected as an approximation of the same statistical significance. It
is assumed that 7 observations, or about 84 minutes of observations, is sufficient for
the filter to obtain a low-uncertainty estimate of the state assuming no maneuvers are
performed in that time. In addition, it was determined in Section 3.1 that it takes about
30 minutes for the filter’s state error to exceed the 3σ uncertainty after a maneuver, or
just over 3 observations. Hence the change in the implementation.

The hyper-parameters used for this optimization can be found in Table 5.3.

Table 5.3. Hyperparameters Used in PPO Training
Input Value
Discount Factor, γ 0.85
Batch Size 3200
Reward Steepness, λ 0.98
KL Divergence Target, Dtarg 0.0003

5.3.2 Results

Now that a solution has been obtained that was able to nearly fully converge to a NE, a
proper analysis can be conducted on the resulting strategies and their implications.
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First, to verify convergence, the loss values for the spacecraft’s and sensor’s policies
can be seen plotted together in Figure 5.18, normalized by their highest magnitude values.
As expected, both are converging to steady state values, but are slightly offset from zero
which is not ideal. This can be explained by the inherent unpredictability of the actions
of the two players. The non-zero loss suggests that, while the strategies have converged,
the confidence that the strategies are globally optimal is low. However, the presence of
convergence at the very least allows for further analysis of the resulting strategies.

Figure 5.18. Loss Values for Spacecraft and Sensor Policies

From the resulting NE, the strategies are again sampled for one episode to produce a
single set of actions for both players. As was presented in the previous two sections, the
resulting ∆V and time between maneuver values are a good place to start for a proper
analysis. Figure 5.19 shows the ∆V components in the ECI x̂ and ŷ axes and Figure
5.20 shows the magnitude of the maneuvers. Interestingly, very little pattern appears
to emerge here other than that the components of the maneuvers appear to favor the
positive direction and that the largest maneuvers are performed near the beginning of
the episode. The lack of a distinct pattern is likely because the spacecraft has succeeded
in randomizing its maneuvers such that it cannot be easily predicted by the sensor. It is
noteworthy, though, that the ∆V magnitudes rarely approach the maximum allowed.
This means that the maximum ∆V could be constrained further without a significant
loss in capability. Altogether, the spacecraft expends a total of 474 m/s of ∆V over the
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course of about 160 days in its attempt to evade the sensor, an average of 15.8 m/s per
maneuver.

Figure 5.19. ∆V Components
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Figure 5.20. ∆V Magnitudes

The time between maneuver values can be seen in Figure 5.21. Unlike in the previous
results, the values do not approach the upper bound as much. This is because of the
change in the reward implementation such that the value provided at the end of each
episode is the average of the individual rewards as opposed to the total. Again, there
appears to be no obvious pattern in the data, even less so than the ∆V plot, though
30 points may not be enough to identify one. The large variation in the times between
the maneuvers suggests that the spacecraft player found unpredictability to be more
important than placing maneuvers consistently close together or far apart, and that
even large successive maneuvers would not avoid detection for long enough to make the
large propellant expenditure worth the cost. Over the entire episode, the maneuvers are
performed on average every 5.3 days.

It is noteworthy too when the maneuvers are performed. Looking at Figure 5.22
the same plot is produced but with each maneuver colored according to the lighting
condition at the time. Though it would be expected for each maneuver to be performed
when the spacecraft is not visible, this is not the case. This implies that the spacecraft is
indifferent to the lighting condition when the maneuver is performed, likely because the
maneuvers are large enough in magnitude that locating it immediately after a maneuver
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is performed is nearly impossible no matter its visibility.

Figure 5.21. Time Between Each Maneuver
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Figure 5.22. Time Between Each Maneuver - With Lighting Condition

It is also useful to inspect the direction of each of the maneuvers. Figure 5.15 shows
the angular values between the ∆V vectors and the horizontal in the ECI frame. Unlike
in the previous iterations of results, an optimal angle cannot be easily determined, at
least not by visual inspection. The only clear interpretation is that maneuvers applied
at positive angles are better for sensor avoidance than those applied at negative angles.
More analysis would be required to determine why this is the case, though. However,
the average angle was actually found to be close to 45°, same as the optimal angle found
in the previous results. So, though the strategy prefers unpredictability over a specific
pattern, the average is still meaningful.
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Figure 5.23. ∆V Angle

One data set that was not discussed in the previous sections is the sensor tasking
pattern. While attempting to track the satellite, the sensor’s position with respect to
the last known orbit of the satellite, in the x̂ and ŷ directions, can be seen in Figure
5.24 for one observation period, with the magnitude values of the change presented in
Figure 5.25. Given the seemingly random strategy employed by the spacecraft, it is not
surprising that the sensor’s strategy similarly follows no obvious pattern as well. The
only noteworthy observation is that the components rarely fall between �0.5 and �1.0.
It is noteworthy, though, that it explores the entire space, including near both extremes.
This means that the constraint on the sensor’s position may be a major factor in it’s
ability to track the spacecraft.
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Figure 5.24. Sensor Distance From the Nominal Spacecraft Orbit for One Observation Period
- In Components
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Figure 5.25. Sensor Distance Magnitude From the Nominal Spacecraft Orbit for One Obser-
vation Period

Implementing the strategies of the two players together, a single simulation of the game
is performed. Figure 5.26 shows the states of the spacecraft and the sensor throughout
one episdoe, in which the spacecraft can be seen in black, the sensor is shown in green at
observations where it successfully found the spacecraft, and the sensor is shown in red at
observations where it did not. Though, a vast majority of the points are red, note that
this is somewhat misleading since it overlaps a large number of green and black points.
Still, the spacecraft was successful at evading detection more than half of the time. In
applying these two strategies, the sensor was determined to have successfully found the
spacecraft 41.4% of the observations taken.

From Figure 5.26, it is not obvious whether a pattern develops in the timing of
when the spacecraft is and is not successfully located by the sensor. Figure 5.27 shows
the logical values for this analysis, where a value of 1 means that the spacecraft was
successfully found. Inspecting this plot, it can be seen that the sensor successfully
located the spacecraft for the majority of the 25 days but soon lost custody for over 90
days. Custody was then regained for most of the remaining 45 days. It would take a
longer simulation to determine if a pattern has formed, but it does appear that when
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Figure 5.26. Spacecraft and Sensor States Through One Simulation

the spacecraft avoids detection by the sensor it does so for long periods of time. It’s
also interesting to note that, even when the sensor manages to maintain custody of
the spacecraft, the longest time period of uninterrupted observations is just 9 days.
Additionally, whether a correlation exists between the timing and size of the spacecraft’s
maneuvers and its success at evading detection should be investigated. Figure 5.28
shows the logical values for whether the spacecraft is found overlaid with the maneuver
magnitudes on the same time scale. Interestingly, it does appear that there is a slight
correlation. It is only after a series of five up to 25 m/s maneuvers is performed that the
spacecraft starts to fully avoid detection. It then requires less than 20 m/s per maneuver
to maintain this custody avoidance for the 90 day period. This suggests that at least
some maneuvers above 20 m/s would be required for the spacecraft to fully prevent
custody though additional analysis would be required to verify this.
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Figure 5.27. Time History of Succesful and Unsuccessful Observations

Figure 5.28. Time History of Observations w/ Maneuvers Performed
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Overall, it was determined that the spacecraft could expend 15.8 m/s of ∆V every 5.3
days on average to successfully evade the sensor for 58.6% of the simulation, or 94 out of
the total 160 days. This resulted in up to 90 days where the spacecraft went completely
undetected. Though this is a rather significant amount of fuel, it is worthwhile to note
that the objective function used does not take ∆V into account at all, so this is not the
most ∆V -conscious solution possible. In addition, evading the sensor for 58.6% of time
is a rather lofty, and potentially unnecessary goal. Significantly less ∆V could be used
and still obtain a reasonable amount of time outside of the sensor’s FOV. Furthermore,
evading detection by the sensor is much harder than evading custody of the sensor. Using
the sensor’s uncertainty in its estimate of the spacecraft’s state, rather than the current
distance objective, would lend itself well to a custody evasion analysis and would likely
require much less propellant to accomplish.
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Chapter 6 |
Sensitivity Analysis Using Com-
petitive Coevolution

The competitive coevolution research was conducted alongside the policy optimization
research. These sections mirror the applications of PPO in Sections 3.3, 5.2, and 5.3.
First, the results are provided when competitive coevolution is applied to continuous
thrust sensor avoidance trajectories as a proof-of-concept. Next, the same methodology
is applied as an augmentation to Section 5.2 in which the strategies of both players are
evolved to meet a defined win condition. Finally, the same scenario used in Section 5.3
is applied in competitive coevolution to demonstrate how the approach can be used to
perform sensitivity analysis on the results.

6.1 Preliminary Results: Continuous Thrust Trajectories

6.1.1 Problem Description

In the devised toy problem first optimized in Section 3.3, the spacecraft is instructed to
arrive at a specified state (position and velocity) after some fixed time. For this exercise,
a 10% orbit raise is optimized with the arrival occurring in just under two-thirds of
an orbital period, as in Figure 6.1 Here the spacecraft starts at the point r1, 0s on the
blue orbit and transfers to the red orbit by way of the black orbit, ending around the
coordinate r�1,�0.3s. Note that non-dimensional units, normalized to the initial orbit
radius, are used to improve the accuracy and speed of the optimization and that the
maneuver is assumed to be planar.
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Figure 6.1. Arrival at a Specified Point After Some Fixed Time - Minimum Propellant

Though minimizing the control input (propellant usage) is important, the primary
objective is to maximize the distance between the spacecraft and the sensor. The sensor
itself is assumed to be optical with a defined FOV. By default, the sensor will follow
along the trajectory that the spacecraft, propagated from its previous point with no
additional input, is assumed to be following. If at any point the spacecraft is not found
within the sensor’s FOV, then the sensor will move in a sinusoidal pattern of gradually
increasing amplitude along the nominal path until the spacecraft is found again (like
presented in Sections 3.3 and 5.1).

The end result will be a trajectory that diverges slightly from the minimum-propellant
trajectory (like in Figure 6.1) as the sensor continues to lose and regain custody of the
spacecraft over the specified time interval.

In an effort to optimize the PE game, competitive coevolution is applied to continually
adjust two inputs for each of the players. For the space player, the weights applied to the
∆V and d, the distance between the spacecraft and the sensor, in the objective function,
are adjusted between runs. For the ground player, the frequency and amplitude of the
sinusoidal search pattern are adjusted between runs. The result is a NE of sets of these
four inputs in which neither player can unilaterally change their inputs to increase their
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payoff (fitness).

6.1.2 Results

As discussed previously, competitive fitness sharing, shared sampling, and Hall of Fame
are all valid strategies for ensuring global optimality in competitive coevolution. However,
given the inherent continuity in the selected search space, competitive fitness sharing was
found to be unnecessary. Poorly represented types was not an issue with this specific game
as parasites were never found that could only be defeated by specific hosts. Similarly,
shared sampling was also found to be an unnecessary burden on the optimization. With
a relatively small number of iterations required to reach convergence, the Halls of Fame
for the two players remained rather small. Instead of speeding up convergence, sampling
from the opponents Hall of Fame each iteration greatly slowed down the convergence since
less optimal strategies were being added to the current player’s Hall of Fame. However,
applying the Hall of Fame technique alone was found to be more than sufficient.

Due to the computation time required to solve each iteration, the maximum number
of generations and coevolutions (applied in Algorithm 2) were set to three and five, re-
spectively. It was found that, in general, re-sampling the population between coevolutions
was more effective at producing better fitness values than recombining and mutating
the population between generations. In addition, it typically only took a coevolution or
two to successfully sample a population with a better fitness prior to convergence being
reached.

The fitness itself, a single value in a zero-sum game, was simply calculated as the
fraction of the transfer time that the spacecraft was successfully located by the tasked
sensor. The closer to 1, the better the result for the pursuing sensor. The closer to 0,
the better the result for the evading spacecraft. For this exercise, the fitness threshold,
φ, was chosen to be 0.5 so as not to induce any bias. If the strategies converge such that
the sensor is successful in locating the spacecraft more often than it is not, the sensor
wins. Otherwise, the spacecraft wins.

Figure 6.2 shows the progression of the fitness by iteration as the competitive co-
evolution was performed. The red points are when the sensor is finding a new strategy
to beat the spacecraft’s Hall of Fame, while the blue points are when the spacecraft is
finding a new strategy to beat the sensor’s Hall of Fame. After nearly 100 iterations,
the strategies converged to a NE and the spacecraft is declared the winner. Though the
spacecraft is usually considered to be the disadvantaged of the two in a PE game, this
result is to be expected in this case considering that the spacecraft’s trajectory is being
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optimized at each time step, while the sensor is not allowed to adapt and has to follow a
pre-defined search pattern when custody is lost. In addition, no constraints were placed
on the spacecraft’s propellant use, usually considered to be the greatest limiting factor
in space-based games.

Looking closely at Figure 6.2, the competitive coevolution is performing as expected.
At first both players are able to find strategies that dominate the other since the Halls of
Fame are small and sub-optimal. However, as more capable strategies are added to the
Halls of Fame, the players have a harder and harder time finding new strategies that can
improve their payoff. As is expected, the payoff of one player eventually drops below the
0.5 fitness threshold and the evolution of the strategies begins. Eventually, a successful
strategy is found and the fitness once again exceeds the threshold. This process repeats
over and over again until the Halls of Fame are filled with the most capable strategies
possible, the fitness converges to a steady state value, and a winner is declared.

Figure 6.2. Fitness At Each Competitive Coevolution Iteration

Now, the converged solution can be compared with the pre-coevolution baseline.
Figure 6.3 shows the resulting transfer when the converged strategies are applied. The
location of the magenta points (when the spacecrft is not found) suggest that the sensor
often has to search large areas of the space in order to find the spacecraft. Despite this, it
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was still successful at relocating the spacecraft and maintaining custody for the latter part
of the simulation (the cyan points). As expected given the converged fitness value, the
spacecraft is found by the sensor less than 30 percent of the transfer. However, this was
only accomplished by performing a propellant-cost-prohibitive maneuver. Constraining
the propellant use of the spacecraft would likely result in a converged fitness value more
in favor of the sensor.

Figure 6.3. Optimal Sensor Avoidance Path at Convergence

6.2 Secondary Results: Initial Two-Player Optimization

6.2.1 Problem Description

The scenario solved in this section is the same as was presented in Section 5.2. The
difference here is that, instead of optimizing the distance between the spacecraft and the
center of the sensor, the competitive coevolution approach considers only the percentage
of the time that the spacecraft is successfully found by the sensor (called the fitness)
since it is easier to conceptualize and set a win condition.

Like in the PPO approach, the spacecraft is prescribed a maximum ∆V of 20 m/s in
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each direction. An infinite time-horizon is assumed, but the time between each maneuver
is bounded between 6 minutes and 6 days. With the number of maneuvers capped at 30,
this places an upper limit on the time-horizon at 180 days. Each maneuver is applied
instantaneously and is represented as a change in the velocity in the x̂ and ŷ directions.
Meanwhile, the sensor collects observations every 6 minutes during the 2-hour windows
after sunset and before sunrise and is assumed to have a FOV of 4°. Since there are no
Keplerian dynamics to constrain the sensor’s path, each action is performed with respect
to the previous known orbital path of the spacecraft. These actions are bounded between
0 and 4, 216 km (10% of the initial orbital radius) in the x̂ and ŷ directions. Similar to
the previous iteration where the tasking strategy is prescribed, the sensor is assumed
to follow along the spacecraft’s path until it is not found within the sensor’s FOV. At
this point, it is assumed that the sensor has lost custody of the spacecraft and searches
the nearby space according to the learned strategy. If the spacecraft is successfully
found in the sensor’s FOV for 10 consecutive observations, custody is regained and the
sensor can begin to follow the spacecraft along it’s new path without applying the search
strategy. In an attempt to simulate the nuances of state estimation, the sensor is afforded
some flexibility in the search process. If the spacecraft has been successfully found for 5
consecutive observations after custody is lost, a missed observation does not restart the
count unless the spacecraft is not located for 3 observations in a row, in which case the
count to 10 must restart in order to regain custody.

Since the state/action spaces and constraints are highly subjective, competitive
coevolution is then applied to investigate how the strategies can be adapted, free of bounds
and constraints, to achieve specific goals (the percentage of successful observations). For
this analysis, the population size was set to 10, the maximum number of generations was
set to three, the maximum number of coevolutions was set to 10, and the maximum Hall
of Fame size was set to 50. Though these are arbitrary and slight adjustments could
result in smoother convergence, these values appear to be acceptable.

As discussed in the previous section, it was again found that applying the Hall of
Fame technique alone was found to be more than sufficient. With a win condition set
based on the percentage of observations that successfully find the spacecraft, the Hall
of Fame approach collects a mixture of the most uniquely successful strategies of both
players and evolves this mixture free of constraints until one of the players can no longer
evolve its mixed strategy in such a way that allows it to meet the win condition. Thus, a
winner, and both player’s optimal strategies, can be found for the specified win condition.
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6.2.2 Results

Ideally, the results in Section 5.2 would be used to initialize the strategies to be evolved
here. Unfortunately, due to the computation time required to run the RL process to
completion, a truly optimal NE of strategies was not available at the time to use as an
input to the competitive coevolution algorithm. Instead, non-optimal strategies were
collected towards the beginning of the PPO simulation. Though not ideal, competitive
coevolution was found to be robust enough to still optimize these strategies for a given
win condition, all be it in greater computation time.

For this demonstration, a win condition of 0.5 was selected. That is, in order to be
deemed the winner, the spacecraft must successfully evade detection by the sensor for
greater than 50% of the observations taken. Conversely, the sensor must successfully find
the spacecraft within its FOV greater than 50% of the observations to be considered the
winner. The resulting plot of the fitness values can be seen in Figure 6.4.

Figure 6.4. Fitness Value Throughout The Coevolution Process

Here, the red points are when the sensor’s strategy is coevolving while the blue points
are when the spacecraft’s strategy is coevolving. Since the initialized strategies are no
where near optimal, it was easy for the first round of coevolution to find significantly
superior strategies. This is why the first two points are so close to the extrema. The
strategies in the set of 10 populations that led to these fitness values are added to their
respective Halls of Fame and the process continues. It can be seen early in the evolution
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that the spacecraft is having difficulty achieving a fitness of less than 0.5. By the 20th

iteration, it takes three generations each with three coevolutions for the spacecraft to
find a strategy that can beat all of the sensor’s six Hall of Fame strategies. As the sensor
adds more strategies to its Hall of Fame, it becomes increasingly harder for the spacecraft
to find a winning strategy. After about 250 iterations, the spacecraft can no longer find
a winning strategy and the sensor is declared the winner. Though the sensor’s fitness
values were driven below 0.6 twice, it never once fell below the 0.5 threshold. Given the
inherent imbalance in the sensor avoidance game, this is not at all surprising. More so,
this does not mean that the sensor could not further improve upon its own strategy and
best the spacecraft by an even larger margin. Still, a lot can be learned from this.

Applying the optimal mixed strategies, a single simulation is performed, as seen in
Figure 6.5. In this plot, the spacecraft can be seen in black while the sensor is green at
observations where it successfully found the spacecraft and red at observations where it
did not. By inspection, the win condition of a 50% success rate can be confirmed and
the sensor is determined to be the winner.

Figure 6.5. Spacecraft and Sensor States Through One Simulation

Successfully evading the sensor for even 50% of the observations taken is no small
feat. The question is, though, how expensive is it for the spacecraft to be this successful?
In the PPO approach, the maximum ∆V per maneuver is bounded so the total for all
30 maneuvers could not possibly exceed approximately 636 m/s over the approximately
180 day simulation. In addition, the time between maneuvers could not exceed 6 days.
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When applying competitive coevolution, though, this is no longer the case. Figures 6.6
and 6.7 show the ∆V values and times between maneuvers, respectively.

Figure 6.6. ∆V Applied for Each Maneuver

Figure 6.7. Time Between Each Maneuver

As expected, in an attempt to meet the 50% win condition, the ∆V values broke
their original constraints. Originally constrained to maneuver magnitudes of 28.28 m/s,
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competitive coevolution encouraged the values to increase to almost 40 m/s. In the
end, it took 566 m/s and an average of 4.72 days between each maneuver to attempt
to win the game with this condition. It can also be noticed that a pattern is forming
in these plots. Though 30 data points are not conclusive, it appears that the most
effective ∆V values for sensor avoidance fall between 10 and 25 m/s, with an average
of 18.87 m/s. In addition, the time between maneuver values were not minimized to
near-zero as one might expect when attempting to avoid detection by a sensor. This
is likely because of the 20 hours each day when the spacecraft is free to maneuver or
coast without fear of being observed. Therefore, the spacecraft optimizes its objective
by maneuvering between observation periods. Interestingly, though, the bounds on the
time between maneuvers was also broken in the coevolution. The previous maximum
of six days between maneuvers was exceeded to allow up to almost 12 days at times.
This suggests that it took the sensor more than 6 days at times to regain custody of the
spacecraft.

On this note, additional analysis can be performed by inspecting the pattern by which
the sensor successfully finds the spacecraft. Looking closely at Figure 6.8, the sensor seems
to have no difficulty in maintaining custody of the spacecraft for most of the simulation.
However, the spacecraft does meet the 0.5 success rate threshold by evading observation
by the sensor for 38 days in a row towards the end of the simulation. Depending on
whether it is preferred that the spacecraft evades the sensor for consistent short periods
or a singular large period, this could be desirable. Exploring further its capability to
achieve the former, Figure 6.9 shows the first ten days of observations zoomed in on the
x-axis. Though the sensor maintains custody of the spacecraft throughout this period,
it appears that the spacecraft successfully evades the sensor at least twice a day (not
shown are the observations where the spacecraft is found), preventing perfect confidence
in the sensor’s custody of the spacecraft at the very least.
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Figure 6.8. Time History of Succesful and Unsuccesful Observations

Figure 6.9. Time History of Succesful and Unsuccesful Observations - Days 0 to 10
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6.3 Final Results: Final Two-Player Optimization

6.3.1 Problem Description

The scenario optimized in this section very closely mirrors that of Section 5.3 for the
first part. Ideally, the resulting strategies from the PPO optimization would be used
to initialize the strategies for the competitive coevolution optimization. However, the
transformation of the strategies to truncated normalized distributions does not allow
for them to be easily re-purposed. Instead, the strategies will be randomly initialized
and fully optimized using the competitive coevolution approach. This has the secondary
benefit of allowing the results of the PPO and competitive coevolution approaches to be
directly compared. Therefore, instead of using the percentage of the observations where
the spacecraft is found in the sensor’s FOV as the fitness function, the distance between
the sensor and the spacecraft will be used just as it serves as the objective function in
the PPO optimization.

In the previous section, the competitive coevolution process requires a defined win
condition that the two players are attempting to meet. In order to optimize the strategies
such that the process resembles PPO, though, the approach must be adapted. Instead
of using a constant win condition through-out the optimization, the win condition is
allowed to vary as the evolution occurs and is defined as the previous best value achieved
by the other player. This allows the players to evolve their strategies only with respect
to each other.

Like in Section 5.3, the spacecraft is prescribed a maximum ∆V of 20 m/s in each
direction. An infinite time-horizon is assumed, but the time between each maneuver is
bounded between 12 minutes and 10 days. With the number of maneuvers capped at
30, this places an upper limit on the time-horizon at 300 days. These actions are again
bounded between 0 and 4, 216 km in the x̂ and ŷ directions. In order to help ease some
of the computational burden, the time step is doubled from six minutes to 12 minutes
compared to the previous iterations.

If the spacecraft is successfully found in the sensor’s FOV for 15 consecutive observa-
tions, custody is regained and the sensor can begin to follow the spacecraft along it’s
new path without applying the search strategy. In an attempt to simulate the nuances
of state estimation, the sensor is afforded some flexibility in the search process. If the
spacecraft has been successfully found for 7 consecutive observations after custody is lost,
a missed observation does not restart the count unless the spacecraft is not located for
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3 observations in a row, in which case the count to 15 must restart in order to regain
custody.

Once the optimal strategies are found, competitive coevolution can be applied again
to perform sensitivity analysis. To do this, individual constraints are relaxed/tightened as
desired and the competitive coevolution process picks up where it left off. The strategies
will then continue to evolve until a new NE is found.

6.3.2 Results

The strategies for both the sensor and the spacecraft take the same form as the 4-layer
neural networks used by the policy optimization. For this analysis, all values are randomly
initialized on a normal distribution. Besides the change in the implementation of a win
condition compared to the previous sections, the population and Hall of Fame sizes
were changed as well. It was found that increasing the population size helps to improve
continuity in the optimization so a value of 20 was selected this time. In addition,
some trial and error showed the setting the maximum Hall of Fame size to 30 was no
less beneficial than setting it to 50 and provided significant computational cost savings.
It would take significantly larger, computationally prohibitive, Hall of Fame sizes to
perfectly represent the fully converged results for minimal improvement.

From the initialization, the strategies of the two players were allowed to co-evolve using
the Hall of Fame method. As previously discussed, the fitness value in this optimization is
the magnitude of the distance between the spacecraft and the center of the sensor’s FOV,
where the spacecraft is attempting to maximize the fitness while the sensor simultaneously
tries to minimize it. Each iteration, the players are provided an updated win condition
of the fitness based on the success of the opposite player in its previous iteration. This
results in the win condition fitness becoming increasingly more difficult to achieve as the
strategies evolve, eventually converging to the optimal value of the game. This process
can be seen in Figure 6.10.

In Figure 6.10, the top figure shows the evolution of the fitness, normalized by the
radius of the nominal orbit, and the bottom figure shows the resulting evolution of the
fraction of the observations that the spacecraft is successfully found by the sensor (called
“fraction found” here). Though the selected fitness function allows for a more continuous
convergence of the strategies, the fraction found presents a value that is much easier
to conceptualize. Inspecting these two plots, it can first be verified that the fitness
and fraction found values move in the opposite direction for each player. This is to be
expected since the spacecraft is attempting to maximize the distance from the sensor
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while minimizing the frequency with which it is found by the sensor, and vice versa for
the sensor. Additionally, since the two dependent variables are related, they generally
follow the same pattern as the strategies evolve. The fitness plot just progresses more
smoothly overall. Though there is still a fair amount of variation in the values at the
end of the optimization, the variation is consistent and the mean of the values appears
to be well defined. In the end, the fitness converges to a value of 0.72 while the fraction
found converges to a value of 0.37 This means that the sensor is unsuccessful at locating
the spacecraft in its FOV 63% of each episode.

Figure 6.10. Fitness and Fraction Found At Each Competitive Coevolution Iteration

Since this scenario is identical to the one optimized using PPO and presented in
the Section 5.3, the results can be compared rather easily. Earlier, the PPO approach
found that the spacecraft was successful at evading the sensor 58.6% of each episode.
These values vary between the two methods by less than 5%, close enough to verify a
consistency between the two methods. The strategies themselves can be compared as
well.

Inspecting the ∆V values, the components and magnitudes are plotted in Figures 6.11
and 6.12, respectively. While the fraction found values match that of the PPO closely,
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the strategies vary highly. Competitive coevolution appears to have a difficult time
optimizing the relative successes of the two players while still maintaining the desired
randomization in their strategies. Therefore, the spacecraft’s strategy favors consistently
large maneuvers - in both Cartesian directions - over randomization. In fact, only a
single maneuver fell below 20 m/s in magnitude. Altogether, the spacecraft expends a
total of 765 m/s of ∆V over the course of 163 days in its attempt to evade the sensor,
an average of 25.5 m/s per maneuver.

Figure 6.11. ∆V Components
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Figure 6.12. ∆V Magnitudes

The time between maneuver values can be seen in Figure 6.13. Similarly to the ∆V
values, a pattern emerges where the times between maneuvers favors the bounds, in this
case both the lower and upper. This suggests that most maneuvers will be placed in
clusters of successive maneuvers, with the clusters spaced 10 days apart. Over the entire
episode, the maneuvers are performed on average every once every 5.5 days.
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Figure 6.13. Time Between Each Maneuver

It is useful, again, to inspect the direction of each of the maneuvers. Figure 6.14
shows the angular values between the ∆V vectors and the horizontal in the ECI frame.
Unlike when using PPO, a pattern is obvious in the angular values. Interestingly, two
optimal angles for performing sensor avoidance maneuvers have been identified: �45°
and �135°. These two values are not surprising, though. The negative sign suggests, as
is verified by 6.11, that all maneuvers are performed in the negative ŷ direction. The
magnitudes of these values place both angles 45° from the horizontal, just in different
quadrants. This means that there is a single optimal angle to perform sensor avoidance
maneuvers, just with the reference axis varying.
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Figure 6.14. ∆V Angle

While attempting to track the satellite, the sensor’s position with respect to the last
known orbit of the satellite, in the x̂ and ŷ directions, over the course of half of a day
can be seen in Figure 6.15, with the magnitude values of the change are presented in
Figure 6.16. From these plots, it can be seen that, while the sensor does search most of
the state space, it does spend most of its time near the maximum distance allowed by
its constraint. Given the spacecraft’s pattern of performing large maneuvers, this is not
surprising. It also means that relaxing this constraint would likely help the sensor to
improve the percentage of the episode in which it successfully locates the spacecraft.
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Figure 6.15. Sensor Distance From the Nominal Spacecraft Orbit for One Observation Period
- In Components
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Figure 6.16. Sensor Distance Magnitude From the Nominal Spacecraft Orbit for One Obser-
vation Period

Sampling from the Hall of Fame, a single simulation of the game is performed. Figure
6.17 shows the states of the spacecraft and the sensor throughout one episdoe, in which
the spacecraft can be seen in black, the sensor is shown in green at observations where it
successfully found the spacecraft, and the sensor is shown in red at observations where it
did not. As mentioned earlier, the sensor was determined to have successfully found the
spacecraft 37% of the observations taken.
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Figure 6.17. Spacecraft and Sensor States Through One Simulation

From Figure 6.17, it is not obvious whether a pattern develops in the timing of
when the spacecraft is and is not successfully located by the sensor. Figure 6.18 shows
the logical values for this analysis, where a value of 1 means that the spacecraft was
successfully found. Similar to the results when applying PPO to the problem, the periods
where the sensor does and does not find the spacecraft are both long in duration. However,
there are still times within the period that the sensor maintains custody of the spacecraft
in which it successfully avoids detection.
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Figure 6.18. Time History of Succesful and Unsuccesful Observations

Overall, it was determined that the spacecraft could expend 25.5 m/s of ∆V every 5.5
days to successfully evade the sensor for 63% of the simulation, or 103 out of the total 163
days. This resulted in up to 44 days where the spacecraft went completely undetected.
Though this is a possible strategy set for the two players to employ, it is unlikely to be the
optimal NE. The PPO solution presented in Section 5.3 found a maneuver strategy for
the spacecraft requiring almost half the amount of ∆V to be nearly just as successful in
evading the sensor. In addition, the resulting competitive coevolution strategies lack the
randomness that would be expected for a spacecraft that desires to remain un-trackable.
However, the two methods do manage to produce similar “percent found” values, which
mirrors the value of the game. Altering the constraints on the problem, irrespective of
the solution method, should then affect the “percent found” value in a similar way.

The next step, and the primary motivation behind using competitive coevolution to
begin with, is to perform sensitivity analysis on the presented results. The required size
and timing of the maneuvers has been determined, but it is unknown how changing the
constraints on both players affects their relative successes and the result of the game.
To begin with, the constraint on the maximum ∆V is decreased by 25% from 20m{s to
15 m/s in each direction. To accomplish this, the competitive coevolution optimization
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is re-initialized using the previously determined optimal strategies and picks up right
where it left off under the new constraints.

After an additional 75 iterations, the solutions re-converged to a new NE, as seen in
Figure 6.19, where the cyan and magenta points represent the spacecraft and sensor’s
attempts at improving their fitness after the constraint was tightened. In this analysis,
the goal is not to compare the resulting strategies, but to simply compare the effects
of this change on the fitness and fraction found values. Here, the fitness converges to
a value of 0.65 while the fraction found converges to a value of 0.44 Compared to the
previous values, this is a change by 8.7% in the fitness and 9% in the fraction found. So
a 25% decrease in the maximum ∆V increases the percentage the spacecraft is found by
9%. This suggests that continuing to constrain the spacecraft’s ∆V may not have an
equally adverse effect on the spacecraft’s relative success in evading the sensor. In fact,
producing more runs of varying ∆V constraints may result in a Pareto front of ∆V and
fraction found values from which an “optimal” result could be chosen.

Figure 6.19. Fitness and Fraction Found At Each Competitive Coevolution Iteration

It is also beneficial to determine if altering the constraints on the sensor’s strategy
leads to a similar relationship between the constraint and the fraction found values for
the sensor. To that end, the sensor’s FOV is expanded from 4° to 5° while maintaining
the spacecraft’s constraints at their original values. After an additional 70 iterations,
the solutions re-converged to a new NE, as seen in Figure 6.20. In this run, the fitness
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converges to a value of 0.57 while the fraction found converges to a value of 0.47.
Compared to the previous values, this is a change by 20% in the fitness and 21% in
the fraction found. Interestingly, a 25% change in the sensor’s constraint leads to over
twice as large of a change in the fitness and fraction found values as an equally large
change in the spacecraft’s constraint. This suggests that the results are significantly
more sensitive to the sensor’s constraints than the spacecraft’s. In addition, this shows
how important technology advances are to the ground player. While the constraints
of Keplerian dynamics and the laws of gravity will never make it more feasible for
a spacecraft to expend large amounts of propellant in orbit (barring a major leap in
propulsion technology), the sensor technology employed by the ground player continues
to improve. This suggests that this game will favor the ground player more and more as
technology advances. In addition, the results of this research could be used to justify a
necessity for such advances.

Figure 6.20. Fitness and Fraction Found At Each Competitive Coevolution Iteration
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Chapter 7 |
Conclusions and Potential Future
Directions

This chapter summarizes the main motivations, contributions, and results presented in
this dissertation and draws conclusions from them. Suggestions for future work are also
presented.

7.1 Conclusions
This dissertation explored, through the use of reinforcement learning, the process for
optimizing a maneuver strategy for a satellite such that it is essentially un-trackable by
an actor that may wish to disable it, tackled with a pursuit/evade game theory approach.
The theory of fictitious play, discussed in Chapter 2, proves that a two-player game in
which both players have perfect knowledge of the other player’s move history will always
converge to a single optimal value of the game. This means that, for a two-player game
between an evasive spacecraft and a tasked sensor in pursuit, the game will converge to
an optimal value where one player can be declared the winner, if given enough time.

To further validate the problem and the selected approach, Chapter 3 presented a
series of experiments that were conducted to explore the capabilities and limitations
of the two players and the reinforcement learning approach. First, industry accepted
state estimation techniques were used to determine how a state estimation filter responds
when it encounters a maneuvering spacecraft. Second, it was demonstrated using
reachability sets that optimizing a series of maneuvers for multi-objective sensor avoidance
produces better results than optimizing individual maneuvers. Finally, a continuous-
thrust transfer while avoiding detection was optimized using both reinforcement learning
and optimal control to demonstrate the capability of the proposed methodology compared
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to traditional methods.
Chapter 4 then discussed the designed sensor avoidance problem in greater detail,

how it is implemented in the reinforcement learning environment, and how the policy
optimization methods detailed in Chapter 2 are combined to produce the best approach
for optimizing the two players’ strategies. This chapter concluded by discussing the
contributions of this research with respect to previous work performed in related areas.
Most notably, this included the first application of PPO to a large, real-world two-player
game, adjusting the reward signal to account for the mean of each individual reward
earned rather than the total, and adjusting the structure of the neural networks that
represent the policies of the two players to ensure better convergence. These contributions,
in the context of space object tracking, are summarized in Table 7.1.

Table 7.1. Summary of Contributions
These contributions include:
 First application of RL to sensor avoidance
 First application of PPO to a real-world two-player game
 Solved a non-trivial, long time-duration, sparse data problem with RL
 Unique use of mean reward objective function in PPO
 First documented use of truncated normal distribution to bound actions in PPO

Implementing these advances, Chapter 5 presented the results for applying reinforce-
ment learning to three different iterations of the designed problem. The first iteration
demonstrated the effectiveness of PPO in optimizing the spacecraft’s maneuvers without
the sensor tasking included in the optimization and discovered that, without the sensor’s
strategy optimized alongside the spacecraft’s, the spacecraft is able to identify an optimal
interval and magnitude at which to perform the avoidance maneuvers. The second
iteration presented initial results when the sensor is optimized in the PPO algorithm as
well. Between these two iterations, the latter especially, the importance of the advances
presented in Chapter 4 were discovered and emphasized. It was only once the reward
signal was adjusted to account for the mean instead of the total reward, and the neural
networks were modeled using truncated normal distributions, that the loss values were
found to be properly converging. The third and final iteration presented converged
solutions with these advancements incorporated. In a single simulation of the strategies,
it was determined that the spacecraft could expend 15.8 m/s of ∆V every 5.3 days on
average (with no discernable pattern) to successfully evade the sensor for 58.6% of the
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simulation, or 94 out of the total 160 days using seemingly random maneuvers. This
resulted in up to 90 days where the spacecraft went completely undetected with a strategy
likely to not be predicted accurately by the sensor. Though this is a rather significant
amount of fuel, it is worthwhile to note that the objective function used does not take ∆V
into account at all, so this is not the most ∆V -conscious solution possible. In addition,
evading the sensor for 58.6% of time is a rather lofty, and potentially unnecessary goal.
Significantly less ∆V could be used and still obtain a reasonable amount of time outside
of the sensor’s FOV. Furthermore, evading detection by the sensor is much harder than
evading custody of the sensor. Using the sensor’s uncertainty in its estimate of the
spacecraft’s state, rather than the current distance objective, would lend itself well to a
custody evasion analysis and would likely require much less propellant to accomplish.
This is discussed further in the next section.

Chapter 6 summarized the results from applying competitive coevolution to solve
the same problem. Unlike the PPO results, the competitive coevolution strategies did
not favor randomization and instead opted to perform large, successive maneuvers in
an attempt to brute force a favorable result. Despite the variation between the optimal
strategies produced from the PPO and competitive coevolution methods, they do produce
similar “percent found” values, which suggests that the sensitivity analysis performed
using competitive coevolution would translate directly to the PPO results. Performing
the sensitivity analysis, it was determined that a 25% decrease in the maximum ∆V
constraint on the spacecraft increases the percentage of observations that the spacecraft
is found by 9%. This suggests that continuing to constrain the spacecraft’s ∆V may
not have an equally adverse effect on the spacecraft’s relative success in evading the
sensor. In fact, producing more runs of varying ∆V constraints may result in a Pareto
front of ∆V and fraction found values from which an “optimal” result could be chosen.
Conversely, expanding the constraint on the sensor’s FOV by 25% had over twice the
effect on the percentage of observations that the spacecraft is found. This suggests that
the results are significantly more sensitive to the sensor’s constraints than the spacecraft’s.
In addition, this shows how important technology advances are to the ground player.
While the constraints of Keplerian dynamics and the laws of gravity will never make it
more feasible for a spacecraft to expend large amounts of propellant in orbit (barring
a major leap in propulsion technology), the sensor technology employed by the ground
player continues to improve. This suggests that this game will favor the ground player
more and more as technology advances. In addition, the results of this research could be
used to justify a necessity for such advances.
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The results presented in Chapters 5 and 6 can be seen summarized in Table 7.2. Note,
though, that these are known only to be true for the considered test cases.

Table 7.2. Summary of Results
Notable results include:
 PPO can simultaneously optimize both strategies and achieve convergence
 Spacecraft meets its objective by evading sensor months at a time
 PPO is superior to competitive coevolution in optimizing unpredictability
 PPO and competitive coevolution produce varied strategies but similar values
 Results are twice as sensitive to the sensor’s constraints than the spacecraft’s

7.2 Potential Future Directions
Given the significant computing time required to produce the results presented in this
dissertation, there are many possible extensions of this work that simply could have
feasibly been included.

Most importantly, it can be argued that solving the sensor avoidance problem is not
as practical as solving the custody avoidance problem, the difference in implementation
being the objective function selection. While using the distance between the sensor and
the spacecraft as the objective proved useful, it could be more beneficial to instead use
the uncertainty of the sensor’s estimate of the state of the spacecraft. Unfortunately, this
requires a filter to be constantly running to provide updates to the uncertainty every time
an observation is collected. This would add significantly to the computation time which
could not be afforded for this research. Implementing this would likely result in much
more realistic ∆V values for the spacecraft since evading custody can be accomplished
with much smaller maneuvers than evading detection.

In addition, the ∆V could be decreased further by incorporating it into the objective
function. A combination of the current distance metric and ∆V would allow for mission
designers to subjectively weight the two variables to produce mission-specific results
that would likely be more reasonable to implement in real missions. One potential issue
with this, though, is that the fundamental theory that proves the problem will converge
requires that a zero-sum game be modeled. Therefore, incorporating ∆V in the objective
function requires that the sensor operator has an equally vested interest in increasing the
spacecraft’s propellant expenditure. Though this is not an unreasonable assumption, it
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could be mission dependent. With this in mind, the objective function could be expanded
further to include the sensor’s resource use (most likely time) as well.

Improvements could also be made to the realism of the scenario as well. While using
a filter to track the sensor’s uncertainty in the spacecraft’s state, it would also be prudent
to include both track association and track correlation steps. This would result in the
spacecraft potentially determining unique strategies for taking advantage of inherent
gaps in the sensing and state estimation capability.

An alternative approach, that may provide computational savings if approached
correctly, would be to separate out the optimization of the best response strategies from
the fictitious play convergence process. A more traditional optimal method could be used
to optimize the strategy of one player while keeping the other player’s strategy constant.
This process would be repeated, alternating which player is optimizing their strategy
each iteration, using fictitious play to optimize with respect to the strategy histories of
both players. Though this approach would not lend itself well to the same sensitivity
analysis process explored in this dissertation, it could prove useful in optimizing the
strategies if the constraints on both players are known.

Along these lines, if the use of orbital perturbations or continuous control actions are
not desired, propagating with numerical integration could be replaced with an analytic
approximation, which would provide significant computation time savings.

Expanding the problem even further, it would be helpful to incorporate additional
spacecraft or sensors into the scenario. With additional sensors especially, leveraging dif-
ferent types (optical vs radar) and different theaters (ground, space-based, stratospheric)
could result in optimal architectures being determined for tracking an evasive spacecraft.
Similarly, multiple spacecraft could be used to simulate space architectures involving
either cooperative and/or competitive spacecraft, or using multiple spacecraft to hide
the identity of a singular one.

Lastly, the potential applications for competitive coevolution in simulating similar
two-player games have barely been touched. Not only could competitive coevolution be
used to perform simple sensitivity analysis, but it could also be applied to design entire
ground or space architectures. The possibilities are endless.
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Appendix |
Proof of Convergence

1 Justification
Given the computational requirements when optimizing the final version of the reinforce-
ment learning approach, it was not expected to be able to reach convergence. When
running the code on a personal laptop, the memory capacity was exhausted given the
large batch size necessary to ensure quality updates of the policies. When running the
code on the MIT Supercloud cluster, the limitation is simply time. Running thousands
of integration calls per episode, necessary to simulate an episode length on the order
of hundreds of days, takes over a month even on a 64-core node. In addition, given
the convergence time for the full scenario, it was difficult to determine sufficient batch
sizes and KL divergence target values. Conducting this proof-of-convergence helped to
determine the values used in the final iteration of results presented in Section 5.3.

2 Simulated Problem
The primary cause of the extreme computational requirements is the necessity to propagate
the spacecraft’s state under Keplerian dynamics. To avoid this, a proof-of-convergence
problem is simulated in which the change in both the sensor and the spacecraft’s states are
presented with respect to nominal Cartesian states along a 2-D circle with a normalized
radius of one (no continuity between states is enforced). With 120 points traversed per
revolution and a prescribed episode length of 600 steps, the pursuit evasion game between
the two players is simulated for five complete orbits. Like the bounds placed on the
sensor in the Keplerian-based simulations, both players are allowed to move only within
10% of the nominal orbit radius in each direction (14% in magnitude). Similarly, the
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objective function for both players is set as simply the distance between their positions
at any given point.

2.1 Results

With the hyperparameters, based on the values used in Reference [89] and adjusted
though trial and error, set according to Table A.1, the convergence of this simplified
problem can be demonstrated.

Table A.1. Proof-of-Convergence Hyperparameters
Parameter Value
Discount Factor, γ 0.9
Batch Size 3200
Reward Steepness, λ 0.98
KL Divergence Target, dtarg 0.0003

Though most applications of PPO involving one player require at most 100, 000
episodes to converge, it was found that a simple version of this two-player game took
over 1, 000, 000 episodes to converge. As discussed in the main chapters, this is likely
because of the back-and-forth process required to optimize the strategies of both players
simultaneously. In addition, most applications require batch sizes on the order of 32 to 64
episodes to ensure that enough data points are collected to encourage proper convergence.
However, for this game, it was determined that even 320 episodes per batch was too
small. This resulted in the strategies converging quickly to unrealistic distributions.
Instead, a batch size of 3200 is used for this proof-of-convergence, and subsequently, for
the final iterations of the full, real-world scenario. In addition, the default value for the
KL divergence target of 0.003, as used in Reference [89], was found to be insufficient
as well. Though the strategies appeared to head towards convergence overall, they had
difficulty taking small enough step sizes when required. Instead, a value of 0.0003 for
the KL divergence target was selected. Meanwhile the discount factor was set to 0.9,
smaller than most applications but slightly larger than what was used in the real scenario.
This is because the lack of Keplerian dynamics in this study requires less consideration
of points further in the future. Combined with a reward steepness of 0.98 (unchanged
through-out this research), these hyper-parameters resulted in a fully converged solution.

To verify that convergence has indeed occurred, the moving average of the loss values
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for the policies of the two players, normalized by their largest magnitude values, are
plotted together in Figure A.1. Though the losses do not steadily decrease, they do both
converge to values very close to zero. This is the desired result and demonstrates that
PPO is capable of solving for a Nash Equilibrium in complex two-player zero-sum games.

Figure A.1. Loss Values for Spacecraft and Sensor Policies

Beyond the losses, it’s also valuable to inspect the resulting optimal strategies for the
two players. A plot of the positions of the two players, normalized to one, in the final
episode of the optimization can be seen in Figure A.2. Interestingly, the sensor’s states
appear to converge to a ring within a couple percent of the nominal orbit, while the
spacecraft continues to explore the entire state space. This is likely because both players
are equally advantaged in this scenario. Therefore, the objective function (a function
of only the distance between the two players) is bound to converge to a mean distance
value somewhere close to half of the max distance. This is accomplished if one of the two
players, the spacecraft in this case, explores the entire space while the other, the sensor,
remains close to the nominal orbit. In this scenario, if the spacecraft were to attempt
to learn from its relative success and adapt to only travel near the maximum distance
allowed by the constraints, then the sensor would react accordingly and search a larger
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region of the space. That is the beauty of PPO and Nash Equilibria.

Figure A.2. Simulation of the Spacecraft and Sensor States for One Episode

Figures A.3 and A.4 verifies these analysis by inspection. Figure A.3 shows the
magnitude of the states selected for the sensor, expressed in percentage of the radius
of the nominal orbit. These values lie exclusively within 1.25% of the nominal orbit
magnitude. The spacecraft, shown in Figure A.4, meanwhile, covers the entire space
available within 14% of the nominal orbit. Figure A.5 shows how the states of the two
players overlap in this space, with the sensor shown in red and the spacecraft shown in
blue.
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Figure A.3. Magnitude of Sensor State in Percentage Variation from Nominal

175



Figure A.4. Magnitude of Spacecraft State in Percentage Variation from Nominal
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Figure A.5. Magnitude of Spacecraft and Sensor States in Percentage Variation from Nominal

It’s not obvious from this plot, though, that the game converged to strategies as
equally matched as the problem formulation would suggest. Figure A.6 shows the times
where the spacecraft is found, and not found, by the sensor, where a value of 1 signifies
that the spacecraft was found in the sensor’s FOV. Though not necessarily obvious
from this plot, the points are evenly distributed between the two logical values. It was
determined that a FOV of 0.08 in the normalized Cartesian coordinates results in the
spacecraft being located in the sensor’s FOV around 50% of the episode. This corresponds
to about 4.5° if the orbital radius were set to that of a geosynchronous spacecraft - close
to the 4° FOV used in the actual real-world scenario. This suggests that, not only should
the real-world strategies converge to realistic distributions using PPO, but that the
relationship between the two players is fairly represented as well.
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Figure A.6. Found History for One Episode
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