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Abstract

An engineering process that exhibits a response in the form of a univariate (or
one-dimensional) curve whenever new experimental conditions are tried is said
to have a profile, or functional response. Likewise, a manufacturing process or
engineering system where the response of interest is the geometry of a product or
part is said to have a shape response. A shape response can relate to a planar
(two-dimensional) geometrical feature, or to a three-dimensional one. The overall
theme of this dissertation is the modeling and optimization of engineering processes
that have either a profile or a shape response. The models and methods described
in this dissertation have application mainly in manufacturing, engineering design,
and computer experiments.

Statistical Shape Analysis (SSA) is a relatively new area within Statistics.
Traditionally the realm of biological applications, it has been recently applied
to manufacturing problems. D.G. Kendall, in pioneering work conducted in the
1980’s, defined the shape of an object as the geometrical information that remains
once certain similarity transformations, namely, rotations excluding reflections,
translations, and dilatations (or dilations) are filtered out. His work is based on
a landmark representation of an object, where a landmark consists of the coordi-
nates of a point measured on the object together with a label, with labels that
correspond from object to object. This representation turns out to be relevant
in manufacturing, since data obtained using a coordinate measuring machine will
typically have this appearance. Over the last 20 years, several SSA tests have
been proposed to detect differences in the mean shape between objects, but little
work exists on the relative merits of these methods. The first part of this disser-
tation consists of a comprehensive performance analysis of landmark-based tests
for mean shape differences. Since the performance of these tests depends on the
types of shapes being tested, we consider both shapes that have been studied in the
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scarce extant literature on the subject, namely triangles and arbitrary polygons
with few landmarks, and also consider shapes of specific interest in manufacturing
applications, such as circular and cylindrical geometries with tens to hundreds of
landmarks.

An additional problem studied in this dissertation is that of shape optimization,
that is, find the best operating conditions that lead to the most desirable shape
of the product under fabrication. Previous tests for shape differences are based
on Kendall’s definition of shape, which neglects differences in size between objects
since it removes dilation (scale) effects, and make up for this deficiency by testing
separately for differences in size. As an alternative, we present statistical tests for
differences in form between the objects, where we define the form of an object as
the geometrical information that remains once the effect of rotations and transla-
tions, but not dilations, is filtered out. We further develop a form optimization
method when noise factors are present, proposing in effect a method for the Robust
Parameter Design problem for shape (form) responses. Noise factors are factors
that for the purpose of a carefully designed experiment are controllable, but that
during normal operation of a production process or during use of a product vary
randomly. The goal is to find the controllable factor conditions of the process that
achieve a desired part form in the presence of noise factor variability.

The second part of this dissertation deals with profile response processes, their
modeling, and subsequent optimization. Methods for this type of processes are
mainly based on frequentist model estimation techniques, where the uncertainty
in the parameter estimates is not considered during the optimization phase. As
shown by J. Peterson, neglecting the uncertainty in the parameter estimates may
lead to solutions that will very unlikely achieve the desired process performance.
While there exist recent work in profile response systems where a Bayesian point of
view is taken for model fitting that does incorporate the uncertainty of the model
parameters into the subsequent optimization phase, those models are not flexible
enough as they depend on a parametric regression model that is required to fit
the mean profile well. As a more flexible alternative to these prior approaches, we
present new modeling and optimization methodology for profile response processes
based on a spatio-temporal Gaussian Random Function (GRF) model. In this
model, the space of the controllable factors corresponds to the “space” dimension,
and the space of the locations over which the profile responses are observed corre-
sponds to the “temporal” dimension. The temporal dimension may or may not be
actually time in some applications since in general it is equivalent to the “signal” in
Taguchi’s signal response models. Similarly as in the first part of this dissertation,
the goal here is to find controllable factor operating conditions that will lead to a
desirable profile response with highest probability in the presence of noise factor
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variability. The approach is fully Bayesian, incorporating the uncertainty of all
process parameters present in the model which leads to more reliable predictive
posterior probabilities to conformance to specifications for a given optimal solution.
A discussion of robustness to the underlying assumptions and tools for checking
model assumptions are provided. An adaptive Markov Chain Monte Carlo method
for the fitting of the GRF model is presented that shows good convergence behav-
ior.
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Chapter 1
Introduction

In many areas of manufacturing or during the operation of numerous industrial

processes, the response of interest in an experiment does not consist simply of a

single observation measured at each of the experimental conditions. Instead, a

continuous response variable is observed over a given space, and the goal is to

model this response. The dimension of the space where the response lies can be

one-, two-, or three-dimensional. The case of a one-dimensional (1D) response

variable is known as a “profile response” in the Statistical Process Control (SPC)

literature (Kim et al., 2003) or a “functional response” in Statistics (Ramsay and

Silverman, 2005). Two- and three-dimensional (2D/3D) responses typically refer to

the geometry or shape of manufactured parts. The overall goal of this dissertation

is to study the analysis and optimization methods for profile and shape responses

in manufacturing and engineering design experiments.

An example of a one-dimensional (1D) profile response experiment is given by

Nair et al. (2002) who studied the design of an electric alternator. The response

of interest in the experiment was the electric current generated at different rota-

tional speeds (in RPMs) at which the alternator operates. The electric current

was measured at seven RPM values {1375, 1500, 1750, 2000, 2500, 3500, 5000}. A

designed experiment was run that consisted of 8 controllable factors (x1 = turns

per coil, x2 = material thickness, x3 = power, x4 = width pitch ratio 1, x5 =

width pitch ratio 2, x6 = diameter ratio, x7 = diameter length ratio, and x8 =

outer diameter), all varied at three levels, except x1, which was only varied at two

levels. The experiment also considered two noise factors: x9 = air gap variation
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(two levels), and x10 = temperature (three levels). The experimental design used

was a Taguchi L18 orthogonal array replicated six times (108 factor combinations in

total). At each of the 108 factor combinations seven measurements were obtained,

each at a given RPM value. Figure 1.1 shows the observed profiles at each of

the 18 control factor combinations in the experiment. Based on the data from this

experiment, the goal was to find the best controllable factor settings (and therefore,

the best alternator design) that lead to a specified shape of the electric current

profile with maximum probability. We note here that the data structure of this

type of response function is similar to the spatio-temporal data structure found in

the Spatial Statistics literature (Cressie, 1993). In a spatio-temporal model applied

to the alternator design problem, the design factor space represents the “spatial”

space and the measurement locations (RPM values in this example) represent the

“time” dimension.

An example of a two-dimensional (2D) shape response was considered by Del

Castillo and Colosimo (2011). They reported an experiment in lathe turning of

Titanium alloy parts in which the depth of cut and cutting speed were varied

according to a 32 factorial design. A set of 90 Titanium alloy (Ti-6Al-4V) specimens

were machined by lathe-turning. Lathe-turning of the external surface of these

specimens was performed for each of the 9 treatments each replicated 10 times.

The 2D response of interest is made of the (x, y)-coordinates of the machined

Titanium shaft cross-section measured over a series of locations on the surface of

the manufactured part. Figure 1.2(a) shows the cross-section of interest in the

experimental study, whereas Figure 1.2(b) shows an instance of the response of

interest in this lathe-turning experiment measured over a set of 64 points along

that cross-section. The goal of the experiment was to determine the effect of depth

and cutting speed on the circularity of the parts and to determine the best settings

of these factors to achieve the most circular parts.

Finally, a typical three-dimensional (3D) response experiment occurs when ma-

chining an engine piston to its final diameter after the forging process. Since pistons

have to fit tightly in their cylinders their geometry is crucial. Piston geometry can

be expressed by a set of three dimensional points (x, y, z) taken along the surface

of the piston. Cutting speed, feed rate, material characteristics, etc., might have

an effect on the geometry of the piston. An experiment can be conducted to test
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the effect of these factors on the 3D geometry of the piston.
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Figure 1.1. Observed profiles at each of the 18 considered control factor combinations
(H=high, M=medium, L=low). The specification limits L and U are shown in dashed
lines.

(a) A sketch of the machined part with the cross-section
of interest shown as a dashed line.
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(b) An instance of the response
of interest measured over a set of
64 points along the circular cross-
section.

Figure 1.2. An example of a 2D shape response experiment.

The overall problem under consideration in this dissertation can be stated as

follows: a response of interest in a manufacturing process or in an engineering
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design problem is either a profile or a geometric shape. The profile or shape of

this response over the underlying m-dimensional space (m ∈ {1, 2, 3}) defines the
performance or quality of a given product or process under study. The profile or

shape of the response is assumed to be modifiable through a set of controllable

factors (i.e., factors that are modifiable while the process is running) and is also

affected by some noise factors (i.e., factors that are hard or costly to control).

The goal is to find the best control factor settings that lead to the desired target

response shape or profile in the presence of variation or uncertainty in the noise

factors. Problems when noise factors are present and the response is univariate

are well-known and receive the name Robust Parameter Design (or RPD) in the

Design of Experiments (DOE) literature (Myers and Montgomery, 1995).

Two problems are usually of interest when analyzing designed experiments in

manufacturing. The first is to identify the significant factors and the nature of their

effects. The second is to optimize the process under study. Designed experiments

where the response of interest is the shape of an object have been studied in fields

other than manufacturing (Snee and Andrews, 1971). Statistical tests to analyze

designed experiments with shape responses for manufacturing applications have

been recently introduced by Del Castillo and Colosimo (2011). There has been

no study thus far that addresses the performance of these tests for manufacturing

applications. Thus, a part of this dissertation is devoted to study the performance

of these tests.

Furthermore, Del Castillo and Colosimo (2011) provided an optimization al-

gorithm that finds the best factor settings with the closest mean shape to the

target. However, their method does not consider the existence of noise factors and

filters size information from that of the shape of the object, testing separately for

differences in shape and size. A methodology to solve the RPD problem for shape

responses that does not filters scale or size information is therefore needed.

The second theme of this dissertation refers to 1D (profile) response modeling

and optimization. In engineering, profile responses are usually sampled at high

frequency. Thus, it is natural that response values sampled at nearby locations

will tend to be correlated. If the within-profile correlation is strong and neglected,

model parameter estimates will be inefficient and will yield less precise predictions

(Del Castillo et al., 2011). Inefficient estimators will provide misleading “optimal”
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solutions when used to solve an optimization or RPD problem. Hence, the within-

profile correlation needs to be modeled.

Current approaches to solve the RPD problem of profile responses include that

of Nair et al. (2002). In their model, profiles are modeled using a two-stage para-

metric model, with the first stage parameters assumed to be modifiable through the

control factors. This allows to change the form of the profile response. The model

parameters are estimated through frequentist methods, and thus the uncertainties

in their estimates are not considered, and this may lead to non-optimal solutions.

Furthermore, their method assumes a small number of measurements per profile to

be able to estimate the model parameters. A more recent approach is that of Del

Castillo et al. (2011). They use a full Bayesian two-stage mixed effects regression

model. This approach considers all sources of uncertainty present and provides a

probability measure of how well the process will perform, but has some limitations.

First, it assumes no profile-to-profile correlation. This assumption might not al-

ways be true, specially if profiles are observed at nearby design factor settings.

Second, it requires a parametric model for the mean structure. This parametric

model must provide an excellent fit for the mean profile shape, otherwise, model

predictions will not be accurate. Hence, this approach is not flexible enough to

handle arbitrarily shaped profile responses which can not be modeled adequately

with a linear statistical model. Therefore, a more flexible modeling approach to

model such profile response systems is needed.

Three areas in Engineering and Statistics are impacted by this research, namely:

(a) Robust Parameter Design, (b) Spatio-Temporal modeling, and (c) Statistical

Shape Analysis of manufacturing data. In the reminder of this chapter, sections

1.1 through 1.3 provide a brief background for each of these three topics. Section

1.4 provides a brief introduction to Bayesian analysis that is required for some of

the work considered in this dissertation. Finally, sections 1.5 and 1.6 state the

objectives of this dissertation and provide an outline respectively.

1.1 Robust Parameter Design

The origin of Robust Parameter Design (RPD) dates back to the 1980’s when

Taguchi and Wu (1980) introduced the concept of robustness to “noise factors” in
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experimental design. Although the idea of robustness with respect to variations in

the model assumptions existed in the Statistics literature for a long time (Box and

Wilson, 1951), it was Taguchi who introduced and popularized the idea of finding

process settings that are robust or insensitive with respect to uncontrollable sources

of variation.

Taguchi divided the factors affecting the process into two types, control factors

and noise factors. Control factors are variables that can always be manipulated

during the experiment or while the process is running. For example, the cutting

speed or the feed rate can be changed easily to get the desired surface finish

during a metal cutting operation. Noise factors are factors affecting the process

that are difficult or costly to control once the experiment is completed and the

process or product needs to be kept operating or needs to be used, respectively.

For example, coolant temperature may also have an effect on the surface finish

of a machined part, but coolant temperature is usually beyond the control of the

operator. Thus, changes in coolant temperature will lead to variations in the

surface finish, but such variations are undesirable. However, for the purpose of a

carefully designed experiment, the coolant temperature could be regulated with

adequate equipment, not typically available when the machine tool is normally

used. In such an experimental setting, coolant temperature is therefore an instance

of a noise factor.

Figure 1.3 illustrates a prototypical RPD problem, which can be stated as

follows: a response of interest is affected by a set of control factors xc =

{xc1, xc2, · · · , xck} and a set of noise factors xn = {xn1, xn2, · · · , xnl}. The goal

is to find the best settings of xc that make the process achieve a desired target

response that is insensitive to random variation in xn. Following Taguchi, signifi-

cant control-noise interactions, xci × xnj , are assumed present, and hence process

variation can be controlled by changing control factor settings.

Although the original RPD problem assumes a single (univariate) response, it

can be applied to multiple response systems such as profile or geometric shape

responses. For example, consider the electric alternator design example described

in the introduction to this chapter. In that example we have xc = (x1, x2, ..., x8)
′

and xn = (x9, x10)
′. The experimental goal is to find the best settings of xc

that lead to a desired profile response with maximum probability regardless of the
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Figure 1.3. Prototypical RPD problem showing the inputs (controllable and noise
factors) and the corresponding outputs of a process that acts on certain experimental
units (i.e., parts in a manufacturing application). This figure is adapted from Del Castillo
(2007).

variability due to the noise factors.

1.2 Spatio-Temporal Models

Spatio-temporal models arise when data is collected across both time and space.

An example is a monitoring network of an atmospheric pollutant where data is col-

lected at regular time intervals across certain geographical area. Since the observa-

tions at each monitoring site typically form a dependent time series, data analysis

has to take into account not only the spatial dependence among the monitoring

sites, but also the temporal correlation. Many data sets have a spatio-temporal

structure, especially in Geographical applications, and spatio-temporal modeling

and analysis have received increased attention in recent years (see Cressie, 1993;

Banerjee et al., 2004).
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Let d be an actual physical location and t be a time location (instant or epoch).

Then a spatio-temporal response y(d, t) can be seen in two different ways:

• y(d, t) = yd(t): spatially varying time series data.

• y(d, t) = yt(d): a dynamic spatial model that evolves over time.

It is necessary to distinguish between the two models, as one may be interested

in the time dependence structure, allowing for spatial dependence between time

series (first model), or in the space dependence structure, allowing for evolution

over time (second model).

Spatio-temporal data are not found only in Geographical applications; they

also appear in manufacturing applications. Here, the “time” dimension is not

necessarily a temporal one but refers simply to the locations of another variable

over which a functional response is observed. For example, Govaerts and Noel

(2005) reported an experiment where the elastic modulus of “green” parts (prod-

ucts before the sintering operation) in a metal injection moulding process was

studied. The elastic modulus was measured for 25 parts at 701 values of the de-

binding temperature ranging from 10 to 80oC, and this constitutes the “temporal”

dimension in this example. The experiment consisted of two controllable factors

in the ingredients of the binder, namely, x1=Xanthan concentration (varied at 5

levels from 1 to 5) and x2=Chromium/Xanthan concentration ratio (varied at 4

levels from 1:1 to 4:1). If we let the design factor space be the “spatial” space

and the temperature locations be the “temporal” space, then this is an instance

of a spatio-temporal process. Figure 1.4 shows a plot of the temporal process at

three different locations in the “spatial” space constructed by the design factors

space, the “x-space”. Points at nearby temperature values along the same profile

may be correlated, in what constitutes temporal correlation. Points at the same

temperature value but at different design factor settings might be correlated, and

this constitutes spatial correlation.

The most common approach for modeling spatio-temporal data is the Gaussian

Process (or Gaussian Random Function) model (Banerjee et al., 2004; Fang et al.,

2005). In Gaussian Process modeling, the process that generates the observed data

is assumed to follow an infinite dimensional normal distribution. Hence, any finite
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Figure 1.4. Illustration of three realizations od a “temporal” process (e.g., observed
elastic modulus profiles) at four different controllable factor combinations, i.e., four lo-
cations in the “x-space”.

set of the observed data will also be normally distributed, that is

y(d, t) = Np (µ(d, t),Σ(d, t))

For an inference based on a single sample of this process to be a valid general-

ization of the observed process, a regularity condition must hold. This regularity

condition is the process ergodicity, which broadly means that statistics computed

over space and time tend to their “ensemble” quantities if the sample size increases.

The ergodicity conditions are very technical, but it turns out they are achieved

for a Gaussian stationary process with a spatio-temporal correlation function that

decays over space and time (Cressie, 1993). This is the main reason behind the

wide use of stationary Gaussian Processes in Spatial Statistics. Chapter 5 of

this dissertation presents new methodology based on Gaussian Processes for the

solution of the RPD problem for profile responses.
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1.3 Statistical Shape Analysis of Manufacturing

Data

The statistical analysis of shapes is a relatively new field within the history of

Statistics. Only in the 1980s did important work appear on “shape theory” due

to Kendall (1984) and Bookstein (1986). The shape of an object is defined by

Kendall as all the information of the object that is invariant with respect to simi-

larity transformations (rotations -excluding reflections-, translations, and dilations

or changes of scale) on the Euclidean space (Kendall, 1984). In manufacturing

experiments where the response of interest is the shape of a part, the usual goal

is to determine if any of the factors varied in the experiment affect the resulting

shape of the parts. This is a similar goal as in classic experimental design, with the

additional feature that the response of the process is the complete part geometry.

For example, consider the 2D circular parts example by Del Castillo and Colosimo

(2011) mentioned at the introduction of this chapter. The 2D shape was measured

using a Coordinate Measuring Machine (CMM) that acquired a set of 64 equally

spaced points on each part. The goal of the experiment was to determine the

effect of depth and cutting speed on the circularity of the parts and to determine

the best settings of these factors to achieve the most circular parts. The effect

of these factors on the circularity (or cylindricity) of the parts can be studied

by conducting an analysis of variance (ANOVA) of the form error for roundness

(or cylindricity) of each part. The circularity form error is frequently calculated

in tolerancing practice as the smallest difference between the radii of two coaxial

circles (or cylinders) that enclose all the measurements in a part (Henzold, 2006;

Krulikowski, 1996; see also Figure 1.5). A standard ANOVA (Montgomery, 2009)

can then be conducted on the observed form errors to analyze the impact the two

factors have on these deviations from circularity.

As an alternative to the use of the form errors and a standard ANOVA test,

or for parts with complex geometry for which no standard form error definition

exists (i.e., “free-form” manufactured parts), we can use SSA techniques to perform

the analysis of the experiment. This was suggested by Del Castillo and Colosimo

(2011).

SSA techniques have been widely used over the past two decades in applica-
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Figure 1.5. Circularity form error calculation.

tions other than manufacturing, for example, in the analysis of shapes of objects

of palaeontological, biological, or geological interest, or for text recognition in

computer vision. Dryden and Mardia (1998) give an introduction to SSA with

emphasis on these non-manufacturing applications.

The general problem in SSA can be stated as follows. Suppose we wish to

compare the mean shapes of a groups of n parts each. The groups of parts can

correspond to different levels of a factor varied in a manufacturing experiment,

e.g., different cut depths. Let Xij be a k ×m matrix of coordinate measurements

(m=2 or 3) representing each part j in group i (in the SSA literature, matrix X is

referred to as the configuration matrix -in analogy to mechanics-, and sometimes

simply as “the object”). In practice, these coordinates are usually gathered via

a CMM or laser scanners (Barcenas and Griffin, 2001) and are assumed to cor-

respond from part to part. In SSA these corresponding points receive the name

“landmarks”, which we adopt herein. Landmarks are points of special interest or
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unique characteristics, given by the 2- or 3-dimensional Cartesian coordinates of

a point on the object surface and a given label for the point, usually a sequential

number 1, 2, ..., k which corresponds from object to object.

Suppose each observed configuration matrix can be modeled as a function of

the levels of a single controllable factor as follows:

Xij = µi +Eij i = 1, 2, ..., a j = 1, 2, ..., n (1.1)

where µi = µ+τi, with dimension k×m, represents the mean shape of the object

obtained under the ith level or treatment and Eij is a k ×m matrix of errors such

that vec(Eij) ∼ N(0,Σ) where Σ is a km × km covariance matrix and vec(·) is
the operator that concatenates the columns of a matrix into one vector. This is

just a one-way ANOVA on a matrix response. We wish to test the significance of

the factor levels effect, i.e.:

Ho : τ1 = τ2 = ... = τa = 0

versus the alternative

H1 : at least a τi 6= 0.

If Ho is true, all the a groups have the same mean shape µ. We point out that

a MANOVA test cannot be applied, given that in manufacturing applications the

number of measurements k is typically very large compared to the sample size n.

A test for the hypothesis above was given by Goodall (1991), and later extended to

the two-way (interaction) case by Del Castillo and Colosimo (2011). The power of

these tests to detect deviations with respect to a target shape, particularly those

of interest in manufacturing, is not well understood and its study is the subject of

chapter 3 in this dissertation.

1.4 Bayesian Analysis

Since the work on profile response optimization presented in chapter 5 in this

dissertation follows a Bayesian approach, we provide here few basic notation and

definitions from Bayesian statistics that are used in the sequel. Statistical methods
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known as frequentist (or classical) assume that unknown parameters are fixed

constants, and define probabilities by using limits of event frequencies. Bayesian

methods on the other side treat parameters (and any other unknown quantity) as

random variables and define probability as the degree to which it is believed an

event to be true. The “Bayesian” term comes from the usage of Bayes’ theorem,

named after Reverend Thomas Bayes (1702-1761).

Suppose we observe a random variable y and wish to make inferences about

another random variable θ, where θ is drawn from some distribution π(θ). From

the definition of conditional probability,

π(θ | y) = π(y, θ)

π(y)

but also

π(y | θ) = π(y, θ)

π(θ)

which implies

π(y, θ) = π(y | θ)π(θ)

putting these together gives the Bayes theorem

π(θ | y) = π(y | θ)π(θ)
π(y)

(1.2)

with p possible outcomes Θ = (θ1, · · · , θp),

π(θj | y) =
π(y | θj)π(θj)

π(y)
=

π(y | θj)π(θj)∑p
i=1 π(y | θi)π(θi)

(1.3)

The term π(θ) is called the prior distribution of the possible θ values, while π(θ | y)
is called the posterior distribution of θ given the observed data y (see, e.g., Carlin

and Louis, 2008).

In Bayesian analysis we start with some initial knowledge/guess about the
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distribution of the unknown parameter(s), the prior distribution of Θ, π(Θ). From

Bayes theorem, the data (likelihood) is combined with the prior distribution to

produce a posterior distribution,

π(Θ | y) =
1

π(y)
π(y | Θ)π(Θ)

= constant · π(y | Θ)π(Θ)

where y = (y1, · · · , yn) is the set of n observations of the random variable y,

π(y | Θ) = l(Θ | y) is just the likelihood function, and 1/π(y) is a constant (with

respect to Θ). Because of this, the posterior distribution is often written as

π(Θ | y) ∝ π(y | Θ)π(Θ) (1.4)

where the symbol “∝” means “proportional to” (equal up to a constant). Note that

the constant π(y) normalizes π(y | Θ) · π(Θ) to one, and hence can be obtained

by integration,

π(y) =

∫

Θ

π(y | Θ) · π(Θ)dΘ

The dependence of the posterior on the prior provides an indication of how much

information on the unknown parameter values is contained in the data. If the

posterior is highly dependent on the prior, then the data likely has little signal,

while if the posterior is largely unaffected under different priors, the data are likely

highly informative.

In Engineering problems and especially in process optimization applications, it

is usually of interest to make predictions of new observations based on the observed

data. The probability distribution of a new observation ỹ is defined as

π(ỹ | y) =
∫

Θ

π(ỹ | y,Θ)π(Θ | y)dΘ (1.5)

where π(ỹ | y) is the posterior predictive density (see, e.g., Gelman et al., 2004).

The integration in (1.5) needs to done by first generating samples from the pos-

terior distribution π(Θ | y). For complicated probability models the posterior
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distribution π(Θ | y) ∝ π(y | Θ) · π(Θ) is usually not identified with a stan-

dard probability distribution. Hence, to sample from it Monte Carlo simulations,

especially, Markov Chain Monte Carlo methods are used (Gelman et al., 2004).

1.5 Dissertation Objectives

This research focuses on developing new and efficient techniques to solve the RPD

problem for profile and shape response experiments. Specific goals of this research

include:

A. 1D profile response systems

1. Develop and study a spatio-temporal Gaussian Process model for profile

response experiments where noise factors are present. In this model, a full

Bayesian analysis will be used to consider all the uncertainties in the model

parameters and in the noise factors.

2. Implement an adaptive, robust and efficient Markov Chain Monte Carlo

(MCMC) algorithm that estimates all the model parameters of the spatio-

temporal Gaussian Process model. This will allow the Bayesian optimiza-

tion of the profile response of goal number 1. We will develop Bayesian

methodology for finding operating conditions of a process xc that maximizes

the posterior probability a profile response lies between certain tolerance

“bands”.

B. 2D and 3D shape responses

There is considerable debate about the merits of the different SSA techniques

used to analyze designed experiments, and it is not clear which one to use in a

given situation (Dryden and Mardia, 1998). It is the objective of this research to

extend the preliminary results of the SSA methods developed by Del Castillo and

Colosimo (2011) into several directions:

1. We will investigate the power performance of four different SSA tests (the

F-test in Goodall (1991), the ANOVA Permutation test in Del Castillo and

Colosimo (2011) and the EDMA-I and the EDMA-II methods in Lele and

Richtsmeier (1991) and Lele and Cole (1996) for detecting shape differences in
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2D and 3D objects. For cases of interest in manufacturing where a definition

of form error exists (such as circularity and cylindricity), the SSA tests will

be compared also to the standard approach (ANOVA on the form errors).

The performance of the SSA tests will also be investigated under different

variations of the error structure.

2. We will extend Del Castillo and Colosimo’s (2011) method for shape opti-

mization to allow for noise factors and to account for size separately from

shape information. An RPD technique will be developed that finds the op-

timal mean shape with the minimum variability.

1.6 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we review the literature on

the two main themes this dissertation touches: analysis and optimization of profile

response experiments and Statistical Shape Analysis of manufacturing data.

There are several statistical tests found in the literature to analyze designed

experiments when the geometry of the parts is of interest. In chapter 3, we study

the statistical performance of these tests under several variations of their under-

lying assumptions. The performance studies are based on simulated data sets as

well as real shape data examples found in the literature.

Existing optimization tools for shape responses do not consider variability in-

duced by noise factors. These methods do not separate the size information from

the shape information, since the classical definition of shape, according to Kendall

(1984), filters dilation effects. In chapter 4, the shape optimization technique

proposed by Del Castillo and Colosimo (2011) is extended to the optimization of

the forms of the parts, where by form we define all the geometric information that

remains once location and rotation effects (but not dilations) are filtered out. We

also consider the case in which noise factors are present and solve the RPD problem

for form responses. The extended method is illustrated through two examples in

manufacturing.

In chapter 5, we deal with profile response modeling and optimization. A

spatio-temporal Gaussian Process (GP) model is utilized for modeling a profile
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response in an experiment. The proposed approach is Bayesian and allows solving

RPD scenarios where noise factors exist. The robustness of the methodology with

respect to its underlying assumptions is presented. The GP model is illustrated

with three real manufacturing profile data examples taken from the literature.

Chapter 6 concludes the dissertation with a discussion about the contributions

of this work and about areas for further research.



Chapter 2
Overview of Previous and Related

Research

Two main themes are explored in this dissertation. The first is the statistical anal-

ysis of 2D and 3D geometries (shapes). The second is the modeling and analysis of

1D profile responses. This chapter presents an overview of existing work in these

two topics. Section 2.1 presents related work that has been done in the Statistical

Shape Analysis field. Section 2.2 reviews the work that has been done towards

modeling and Robust Parameter Design of profile responses.

2.1 Statistical Shape Analysis of Manufacturing

Data

Shape analysis dates back to 1917 when D’Arcy Thompson published his famous

book On Growth and Form in which he studied shape transformations of organ-

isms. This was the beginning of the Morphometrics field in Biology, which evolved

through the XX century. However, no work was conducted in the design and anal-

ysis of experiments for the shape of an object, until about 50 years after Thompson

when Snee and Andrew (1971) studied shape analysis in a designed experimental

framework. They developed statistical techniques to analyze agricultural experi-

ments where the shape of carrots and sweet potatoes were of interest. Their work

focuses on testing the effect of the experimental factors on the shape of 2D or
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3D objects through several diameter to length ratios measured on each object.

Statistical shape analysis techniques have been developed and applied in many

areas of the natural sciences over the past 30 years, e.g., biology, paleontology and

geology. In particular, SSA is known as geometric morphometrics in biology, a field

in which some authors refer to a “morphometrics revolution” (Adams et al., 2004)

given the success SSA had over previous techniques used to analyzed shapes.

Statistical Shape Analysis (SSA) has three origins. The first is that of Kendall

(1984) who developed the concepts of pre-shape and shape space, which we will

review in section 2.1.1 (see also Appendix A for a review of mathematical notations

used in Kendall’s theory). At about the same time Bookstein (1986) began to study

shape theoretical problems in zoology. He developed one of the most used shape

coordinate systems for planar data, where the shape of the object is preserved

by removing translation, rotation and scale effects. Figure 2.1 shows an example

of a three-landmark object and its representation in the Bookstein coordinate

system. A third early contribution to SSA is the work of Ziezold (1994) who studied

the equality of shape distributions. In 1998, Dryden and Mardia summarized

developments up to that date in their book Statistical Shape Analysis.
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Figure 2.1. A three landmark object (i.e, a triangle) represented in the Cartesian
coordinate system (left plot) and its preserved shape as presented in the Bookstein
coordinate system (right plot).
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An area where shape analysis has received increased attention in recent years

is computer vision. In computer vision, the most common problem of interest

regarding shape analysis is the classification problem, where a predefined set of

shape classes is available and the goal is to assign a newly observed object to one

of these classes. Another problem considered in computer vision is shape retrieval,

where a certain object is of interest (the query shape) and the goal is to find the

set of objects that have similar shapes in a shape database. We point out here

that the kind of shape analysis we consider in this work is different from what

is being done in computer vision. In this dissertation, a designed experimental

framework is assumed where the object shape is of interest and the goal is to

study the effect of the experimental factors on the object shape (hence the shapes

of objects under study are assumed modifiable). Furthermore, we study shape

optimization to improve manufacturing processes performance. For example, recall

the 2D circularity designed experiment example by Del Castillo and Colosimo

(2011) mentioned in the introduction of chapter 1. The response of interest in that

example is the 2D circular cross-section of the machined Titanium shaft represented

by a set of 64 points measured along that cross-section. The goal of the experiment

was to study the effect of depth of cut and cutting speed on the circularity of the

shaft. The goal was also, to find the best settings of these two factors that provide

the most circular shafts.

Shape representation and description found in the literature can be classified

into four categories (Dryden and Mardia, 1998):

1. Landmark-based objects: in this case each object is represented by k × m

configuration matrix where k is the number of landmarks measured on the

object and m is the dimension of the landmark measurements.

2. Outline-based objects: in this case the object is viewed as a closed curve

and this curve is represented by a set of k measurements in m− dimensional

space.

3. Solid objects: in this case the object is viewed as a region in m−diemsional

space and a binary function that is equal 1 if and only if a point is within

that region.
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4. Grey-level objects: in this case the texture of the object is also important

and objects are treated as images.

In this dissertation we deal with the first type of shape representation methods,

namely the landmark-based objects given that it is very common in manufacturing

data obtained via coordinate measuring machines (CMMs).

To better understand statistical shape inference from the designed experimental

point of view, we first review some necessary geometric notation in section 2.1.1.

Then in sections 2.1.2 through 2.1.4 we review existing Statistical Shape Analysis

techniques found in the literature.

2.1.1 Pre-shape and Shape Space

Kendall (1984) defines the shape of an object as all the geometrical information

that remains after removing the translation, rotation and scale (size) information

from the object. Let X be a k × m matrix that contains the k landmark co-

ordinates of an object in m (2 or 3) dimensions, i.e., the configuration matrix.

Define the Helmert submatrix H of size (k − 1) × k such that the jth row is

equal to [hj , hj , ..., hj︸ ︷︷ ︸
j times

,−jhj , 0, ..., 0︸ ︷︷ ︸
k−j−1 times

] where hj = −(j(j + 1))−1/2. Notice that

HH ′ = Ik−1 and the rows of H are contrasts, since they add up to zero. The pre-

shape, Z, of an object X is all the information remaining after removing location

and scale effects. Using the above notation, Z is defined as

Z =
HX

‖HX‖ (2.1)

where ‖ · ‖ is the Frobenius norm of a matrix such that ‖A‖ =
√∑

i

∑
j a

2
ij .

The location effect is removed by the multiplication with H in the numerator of

(A.1). The denominator in (A.1) is the centroid size measure of X, and hence the

preshape Z has a unite centroid size. Kendall (1984) has shown that the pre-shape

space (the space of all possible pre-shapes, denoted by Skm) is a hypersphere of unit

radius in (k − 1)m real dimensional space.

The term “pre-shape” was coined by Kendall (1984). To get the shape of X
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(denoted by [X]), rotation is filtered out from the pre-shape Z, that is:

[X] = {ZΓ : Γ ∈ SO(m)} (2.2)

where [·] is an equivalence class defined over all orthogonal rotation matrices Γ of

size m×m, and SO(m) is the special orthogonal group of Γ such that ΓΓ′ = Γ′Γ =

Im and det(Γ)=+1, see Appendix A for more information about this and other

mathematical notions used in Kendall’s SSA. Notice that a shape is a set defined

over all values of Γ ∈ SO(m). The shape space is defined as all the possible shapes

a k landmark object in m dimensional space can have. Generally, this shape space

is a non-Euclidean M-dimensional manifold which results from mapping the set of

pre-shapes that are equivalent under non-reflective rotations into a single point in

the shape space. The dimension of the shape space is

M = km−m− 1− m(m− 1)

2
, (2.3)

because we lose m degrees of freedom to remove the location effect, one degree of

freedom to remove the size effect, and m(m−1)
2

degrees of freedom to remove the

rotation effect given that we initially start with km degrees of freedom.

For example, consider the case where k = 3 in m = 2 dimensional Cartesian

space, i.e., a triangle. The pre-shape space of a triangle is a 4-dimensional hy-

persphere, since (k − 1)m = (3 − 1)2 = 4 and its shape space is a 3-dimensional

sphere, since M = km−m− 1−m(m− 1)/2 = 3 ∗ 2− 2− 1− 2(2− 1)/2 = 3.

The size on an object is sometimes of interest and needs not to be filtered

always, depending on the application. The remaining information of an object

after removing translation and rotation effects but not dilation effects receives the

name shape-and-size in SSA literature (Dryden and Mardia, 1998). In chapter 4

of this dissertation we deal with the shape-and-size information of objects which

we will refer to as the form of the objects.

In the analysis of shapes, the observed objects may be oriented or located in

space differently, and some type of alignment or “registration” is necessary before

conducting a test for mean shape differences. It is precisely this registration what

filters the effects of similarity transformations. In the next section we discuss one

of the commonly used registration algorithms, namely the Generalized Procrustes
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Algorithm. We point out that all SSA methods considered in this dissertation

require corresponding (or labeled) landmarks between the different objects, i.e.,

landmarks that “match”. The landmark matching problem has received attention

in the Pattern Recognition and computer vision literature in recent years, where

it is called the point matching or shape matching problem. For a discussion of

landmark matching algorithms, see Appendix B.

2.1.2 Distances Used in Shape Analysis

In this section, we review three different types of distances that are commonly used

in the SSA literature to describe how “close” the shapes of two objects, X1 and

X2, are to each other. These distances are performed in the pre-shape space and

they are:

1. The full Procrustes distance: the shortest linear distance between one pre-

shape and the other along a tangent plane to the pre-shape space at one of

these two pre-shapes. This distance is denoted by dF (X1,X2) and is defined

mathematically as:

dF (X1,X2) = min
Γ∈SO(m),β∈R

||Z2 − βZ1Γ|| (2.4)

Notice here that the minimization is carried over the rotation and scaling of

pre-shapes.

2. The partial Procrustes distance: the shortest Euclidean distance between the

two objects, that is:

dp(X1,X2) = min
Γ∈SO(m)

||Z2 −Z1Γ|| (2.5)

where minimization is performed over the rotations only. The solution of

this problem is well-known in statistics and computer science (Jackson, 2003;

Horn et al., 1988) and equals Γ̂ = UV ′ where U and V are obtained through

Singular Value Decomposition (SVD) such that Z ′
2Z1 = V ΛU .

3. Procrustes distance: this is the shortest distance between two pre-shapes

along the surface of the pre-shape space. Hence, this distance is not linear
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and is defined as:

ρ(X1,X2) = 2 arcsin(dp(X1,X2)/2) (2.6)

The geometric interpretation of these three distances is shown in Figure 2.2.

Notice that both dF and dp are linear measures but ρ is not linear. It can be shown

that df ≈ dp ≈ ρ if the two objects are similar, i.e., they are close to each other

in the pre-shape space. These three distances are extrinsic to the shape space. A

statistic is said to be intrinsic if it is performed on the shape space and extrinsic

if it is performed on a mapping (or projection) of that shape space (see Appendix

A for more information about these measures).

dF

dF

dp

Z1
Z2

 

Figure 2.2. Distances between two shapes in preshape space. ρ is the Procrustes
distance along the pre-shape surface, dF is the full Procrustes distance along the tangent
plane, and dp is the partial Procrustes distance (adopted from Del Castillo and Colosimo
(2011)).
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In SSA, it is assumed that the observed measurements result from the mean

shape µ by applying similarity transformations (rotations -excluding reflections-

, translations and dilations). If β,Γ, and γ are a scaling factor, an orthogonal

transformation matrix, and a translation vector, respectively, then the usual model

that is assumed to generate the configurations is (Dryden and Mardia, 1998):

X = β(µ+E)Γ+ 1kγ
′ (2.7)

where 1k is a k × 1 identity vector.

The Procrustes method in (2.5) is used for shape registration of two objects. A

generalization of the Procrustes method for the case of n objects is the Generalized

Procrustes Algorithm (GPA) developed by Gower (1975) and Ten Berge (1977).

GPA estimates the mean shape µ from a sample of n objects that may have

different scales, orientations, and locations in space and as a by-product registers

(aligns) the objects in the sample. GPA minimizes the sum of squared distances

between every pair of objects in the sample:

G(X1,X2, ..,Xn) = min
βi,Γi, γi

1

n

n∑

i=1

n∑

j=i+1

||βiXiΓi + 1kγ
′
i − (βjXjΓj + 1kγ

′
j)||2 (2.8)

Once the parameters βi, Γi and γi in (2.8) have been estimated, the registered

shapes are found such that

X
p
i = β̂iXiΓ̂i + 1kγ̂

′
i, i = 1, ..., n. (2.9)

These registered shapes are called the full Procrustes fits in the literature (Dryden

and Mardia, 1998) as opposed to partial Procrustes of (2.5) since dilation effect is

included. Notice that the minimization in (2.8) is carried over the scaling factors

βi’s. But these scaling factors could be set to zeros and a minimum of zero is

achieved for G(X1,X2, ..,Xn). To avoid this trivial solution, the minimization in

(2.8) should be performed over some constraint on the βi’s. One common constraint

is to keep the same average size of objects before and after registration, that is

1

n

n∑

i=1

S2(Xp
i ) =

1

n

n∑

i=1

S2(Xi). (2.10)
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where the size of a configuration, S(X), is defined as S(X) =√∑k
i=1

∑m
j=1(Xij −Xj)2. Here Xij is the ij

th element of the configuration matrix

X and Xj is the average of the jth column of X.

The GPA algorithm used to solve (2.8) subjected to (2.10) as developed by Del

Castillo and Colosimo (2011)is as follows:

1. Center (but do not scale) the configurations X1, ...,Xn by initially defining

X
p
i = HXi, i = 1, ..., n

2. Let X(i) = 1
n−1

∑
j 6=iX

p
j , i = 1, ..., n. These are the averaged shapes

excluding object i.

3. Do a Procrustes fit (rotation only) of the current X
p
i ’s on to X(i). This

yields rotation matrices Γ̂i from which we let

X
p
i ← Γ̂iX

p
i , i = 1, ...n.

We repeat steps 2 and 3 for all i.

4. Compute the n× n correlation matrix Φ = corr(Xv) where

Xv = [vec(Xp
1 )vec(X

p
2 )...vec(X

p
n)].

Note we stack all the m dimensions together.

5. Let φ = (φ1, ..., φn)
′ be the eigenvector of Φ corresponding to its largest

eigenvalue. Then set

β̂i =

√∑n
j=1 ||Xp

j ||2
||Xp

i ||2
φi, i = 1, ..., n

and let Xp
i ← β̂iX

p
i . The algorithm repeats steps 2 to 5 until convergence.

This registration method assumes isotropic errors, i.e., the variance of the coor-

dinate data is the same at each landmark over each dimension for all objects. The

assumption of isotropic errors guarantees the convergence of the GPA algorithm
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(Dryden and Mardia, 1998). In many cases this assumption does not hold, and

a non-isotropic error structure (i.e., the diagonal elements of Σ are not all the

same) is needed. A non-isotropic structure contains different variances in different

landmarks or in different dimensions. A modified GPA algorithm called GPA(Σ)

(Goodall, 1991) has been suggested to find the mean shape when the error structure

is non-isotropic. GPA(Σ) uses a weighted least squares (WLS) method to account

for the different variances in minimizing the Procrustes distance in (2.8). Unfor-

tunately, there is no known registration algorithm which guarantees convergence

in the non-isotropic case.

2.1.3 Principle Component Analysis of Shapes

A usually performed statistical analysis on shape responses is the Principle Compo-

nent Analysis (PCA). Performing PCA on shape responses helps to better under-

stand the directions at which the shape landmarks varying the most. If we consider

a set of shapes from the same object, but with slight variation, we expect little

variation in the distribution of their landmarks. The PCA analysis is performed

on the covariance matrix S of the registered shapes defined as:

S =
N∑

i=1

vec(Xp
i −X)vec(Xp

i −X)′ (2.11)

where X
p
i is the ith registered shape i = 1, · · · , N , N is the total number of ob-

served objects, X is the average shape obtained by GPA and vec(·) is the operator
that concatenates the columns of a matrix into one vector.

The eigenvectors of S represent the basis vectors, while the eigenvalues are

a measurement of the amount of variance in these directions. We not here that

since GPA is used here to register shapes, then this PCA analysis is extrinsic to

the shape space. If large shape variability is present, GPA estimates will not be

efficient and an intrinsic shape registration methods must be used.

2.1.4 Statistical Inference on Shapes

The general problem in SSA is to test the significance of the effects of each factor

levels. In the one-way case (one factor case) the hypothesis of interest related to
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the effects of the a levels of the factor, just as in ordinary one-way ANOVA:

Ho : τ1 = τ2 = ... = τa = 0

(or equivalently, Ho : µ1 = µ2 = ... = µa = µ ) where τi is the factor effect at

level i and a is the number of the factor levels. The alternative hypothesis is then

H1 : at least one τi 6= 0.

If Ho is true, then all the a groups have the same mean shape µ. Ho shall be tested

after registering all configuration matrices using the GPA algorithm.

A one-way ANOVA F-test for shape differences based on the distribution of

the minimized Procrustes distance in (2.8) was proposed by Goodall (1991). For

the one-way ANOVA model

Xij = µi +Eij i = 1, 2, ..., a j = 1, 2, ..., n (2.12)

the expectation of Xij is

E[Xij ] = µ+ τi, i = 1, ..., a j = 1, ..., n (2.13)

where n is the sample size. Let X i• be the sample mean of the registered profiles

of the ith group, and let X•• be the grand sample mean of all registered profiles.

Goodall (1991) showed that the statistic:

F0 = n(n− 1)a

∑a
i=1 d

2
F (X i•,X••)

(a− 1)
∑a

i=1

∑n
j=1 d

2
F (Xij ,X i•)

(2.14)

follows approximately an F distribution with (a − 1)M and a(n − 1)M degrees

of freedom for a small standard deviation σ. As we will show in chapter 3, the

assumption of small σ is crucial for the distributional results above to hold, other-

wise the ANOVA identity breaks down. The corresponding one-way ANOVA table

(Table 2.1) is then
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Table 2.1. One-way ANOVA F test for difference in mean shape.

Effect SS dof MS F

A (between groups) n
∑a

i=1 d
2
F (X i•,X••) (a− 1)M SSA

(a−1)M
F0 =MSA/MSerror

Error (within groups)
∑a

i=1

∑n
j=1 d

2
F (Xij ,X i•) a(n− 1)M SSerror

a(n−1)M

Total
∑a

i=1

∑n
j=1 d

2
F (Xij ,X••)

where

SSTotal ≈ SSA + SSError (2.15)

for small σ.

A more robust method is to test Ho using a permutation test, this was proposed

by Del Castillo and Colosimo (2011). Permutation tests are robust with respect

to the distribution assumptions made in standard statistical tests, and do not

depend on the isotropic variance assumption. Following recommended practice in

permutation tests (Edgington, 1995; Klingenberg and McIntyre, 1998), the N = an

objects need to be rearranged at random in different groups through resampling.

We form several arrangements of a groups (each with N/a objects) to test for the

hypothesis of no difference in mean shapes across the levels of the factor. For

each random arrangement we compute the test statistic F0 using equation (2.14).

The observed statistic F obs
0 is then compared to the distribution of the F statistic

obtained through resampling. If r samples result in F0 > F obs
0 , then the p-value

of the test is given by r/P , where P denotes the number of random permutations

generated.

Del Castillo and Colosimo (2011) extended Goodall’s one-way ANOVA to the

two-way case. Similar to the two-factor designed experiments, suppose we are

interested in testing the significance of the two factors A and B and their interaction

on the response of interest (part geometry in our case). Let Xijl be the l
th observed

configuration at level i of factor A and level j of factor B. The following interaction

model is assumed:

E[Xijl] = µ+ τi + βj + (τβ)ij , i = 1, ..., a; j = 1, ..., b; l = 1, ..., n (2.16)
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Let X i•• be the average shape at the ith level of factor A, X•j• be the average

shape at the jth level of factor B and X••• be the grand average shape, then the

corresponding two-way ANOVA table (Table 2.2) is

Table 2.2. Two-way ANOVA table for differences in mean shape (Del Castillo and

Colosimo, 2011).

Effect SS dof MS F

A SSA (a− 1)M SSA/(a− 1)M F
(1)
0 =MSA/MSError

B SSB (b− 1)M SSB/(b− 1)M F
(2)
0 =MSB/MSError

AB SSAB (a− 1)(b− 1)M SSAB/(a− 1)(b− 1)M F
(3)
0 =MSAB/MSError

Error SSError ab(n− 1)M SSError/ab(n− 1)M

Total SSTotal (abn− 1)M

such that

SSTotal ≈ SSA + SSB + SSAB + SSError (2.17)

SSTotal =
a∑

i=1

b∑

j=1

n∑

l=1

d2F (X
p
ijl,X•••),

SSA = bn

a∑

i=1

d2F (X i••,X•••),

SSB = an

b∑

j=1

d2F (X•j•,X•••),

SSAB = n

a∑

i=1

b∑

j=1

d2F (X ij• − (X i•• −X•••)− (X•j• −X•••),X•••)

SSError =

a∑

i=1

b∑

j=1

n∑

l=1

d2F (X
p
ijl,X ij•).

Del Castillo and Colosimo (2011) showed that the F statistics in Table 2.2 follow

F
(1)
0 ∼ F(a−1)M,ab(n−1)M

F
(2)
0 ∼ F(b−1)M,ab(n−1)M
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F
(3)
0 ∼ F(a−1)(b−1)M,ab(n−1)M

Del Castillo and Colosimo (2011) also proposed a two-way ANOVA Permuta-

tion test for the two-way interaction case to test for factor and interaction effects.

All of the previously mentioned SSA test (one-way ANOVA, two-way ANOVA

and Permutation tests) utilize Kendall’s definition of shape where rotations, loca-

tions and dilation effects are filtered out. But, dilation effects might be of interest if

one is interested in studying the effect of the experimental factors on the object size.

To address this issue, Del Castillo and Colosimo (2011) proposed a separate test of

the size effect. Their test is based on summarizing the object size information into

a univariate response and then run a standard ANOVA test (Montgomery, 2009)

on these univariate responses. The summary statistic they suggested is the object

size defined as S(X) =
√∑k

i=1

∑m
j=1(Xij −Xj)2 where Xij is the ij

th element of

the configuration matrix X and Xj is the average of the jth column of X.

The ANOVA F-tests in Goodall (1991) and Del Castillo and Colosimo (2011)

assume:

1. Normal errors,

2. Isotropic variances, and

3. Small error variances.

The Permutation test eliminates dependency on the first two assumptions, but not

the third one. If the third assumption is violated, the ANOVA identities in (2.15)

and (2.17) do not hold. Shape similarity is expressed by the extrinsic measure

dF . Distances along the non-Euclidean shape space can be approximated with this

extrinsic measure only for the case of small shape variability (small σ). Otherwise,

shape space non-linearity must be accounted for by using intrinsic distance mea-

sures. The case of large shape variability has been studied recently by Huckemann

et al. (2010a). They proposed a Multivariate Analysis of Variance (MANOVA)

for mean shape differences that uses an intrinsic mean shape measure. Current

shape PCA techniques also assume small shape variability and use the extrinsic

GPA registration algorithm to align shapes. Again, this analysis provides accurate

results for small shape variability only, otherwise, shape space non-linearity must
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be considered. Huckemann et al. (2010b) studied shape PCA analysis for the case

of large shape variability where they introduce some intrinsic shape variability

measures. Fortunately, the small error variance assumption holds for most man-

ufacturing data, due to the advances in manufacturing process and precision of

measuring tools used. Hence, the simpler approximation SSA techniques can be

used to analyze manufacturing shape data.

As mentioned before objects can be represented by other methods other that

the landmark-based representation. In the reminder of this subsection we review

two main tests that are based on the outline-based shape representation where the

shape outline is a set of k measurements (also called landmarks) along the surface

of the object. Lele and Richtsmeier (1991) suggested a considerably different type

of test for the two sample case called EDMA-I (for Euclidean Distance Matrix

Analysis) for determining differences in mean shape. They define the form matrix

F (X) as the symmetric Euclidean distance matrix between each pair of landmarks

in a configuration X. They also define the average form difference matrix of two

configurations X and Y to be:

Dij(E(X),E(Y )) = Fij(E(X))/Fij(E(Y )) (2.18)

where Dij denotes the ij-entry of the average form distance matrix D and E(·) is
the expectation operator. Given n configurations X1,X2, ...,Xn in a first sample

and another n configurations Y1,Y2, ...,Yn in a second sample, the EDMA-I test

statistic is computed as follows:

Step 1: Estimate the mean shapes E(X) and E(Y ) . In their first paper about

EDMA-I, Lele and Richtsmeier (1991) suggested to use GPA to estimate the mean

shapes but later Lele (1993) suggested to use instead Multidimensional Scaling

(MDS) for mean shape estimation.

Step 2: Calculate the mean form matrices F (E(X)) and F (E(Y )) which are

simply the Euclidean distance matrices between the landmarks of the estimated

mean shapes.

Step 3: Find the average form difference matrix D using (2.18). Finally, calculate
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the EDMA-I test statistic defined by:

T = maxDij(E(X),E(Y ))/minDij(E(X),E(Y )). (2.19)

Step 4: Generate the null distribution of T by permuting the two samples P times

and repeating steps 1 through 3 at each permutation. If r permutations result in

T > T obs, then the p-value of the test is r/P .

The EDMA-I test requires that the variance-covariance matrices be equal for

both samples. However, to relax this assumption Lele and Cole (1996) later pro-

posed an alternative test, EDMA-II, for shape differences that does not require

equal variance-covariance matrices. The details of the EDMA-II test procedure

are as follows:

Step 1: Given two configuration samples X1,X2, ...,Xn and Y1,Y2, ...,Yn calculate

the mean form estimates F1 and F2 as described in steps 1 and 2 above. Use Lele’s

(Lele and Cole, 1996) proposed MDS method to estimate for mean forms.

Step 2: Propose a scaling factor (e.g., any edge length or any continuous function

of the edge lengths). Standardize F1 and F2 through dividing them by the scaling

factor to obtain the mean shape matrices S1 and S2:

S1 = F1/C1 (2.20)

S2 = F2/C2,

where C1 and C2 are the chosen scaling factors obtained from samples X and Y

respectively.

Step 3: Calculate the EDMA-II test statistic, Z, given by:

Z = min(S1 − S2) or max(S1 − S2) (2.21)

whichever is most different from zero.

Step 4: Generate the null distribution of Z by permuting the two samples P times

and repeating steps 1 through 3 at each permutation. If r permutations result in

Z > Zobs, then the p-value of the test is r/P .

It is important to point out that all distance-based methods apply only to the

one-way (one factor) two-levels (a = 2) case and this, in itself, is rather restrictive.
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It is unclear how this type of tests can be extended to the case of more than one

factor.

2.2 Modeling and Robust Parameter Optimiza-

tion of Profile Response Experiments

Consider an experiment where the response of interest y is a function of another

variable, s, which we will call the “locations” at which the response is measured. In

this dissertation, the locations can denote time, an actual physical location along

a one dimensional axis (the more general case of higher dimensional locations will

not be considered here), or, more generally, some physical scalar variable (such

as rotational speed, see Figure 1.1, or temperature, see Figure 1.4). The shape

or profile of the continuous function y = f(s) determines the performance of the

system or process under study. This profile is in turn assumed to be modifiable

by manipulating controllable factors xc, and is also affected by noise factors xn.

Similarly to traditional RPD for scalar responses, the goal is to find the optimal

values of xc that make the process robust or insensitive to variations in xn. Op-

timality in this case means achieving a specific target shape or profile for y(s|xc)
with minimum variability due to the existence of noise factors.

In engineering, profile responses are usually sampled at high frequency. Hence,

response values sampled at nearby locations tend to be correlated. If the within-

profile correlation is strong and neglected, model parameter estimates will be inef-

ficient and will yield less precise predictions (Del Castillo et al., 2011). Inefficient

estimators will in turn provide misleading “optimal” solutions when used to solve

the RPD problem.

Many authors have considered profile responses when monitoring the quality in

a production process (statistical process control) under the name “profile monitor-

ing” (see, e.g., Kang and Albin, 2000; Kim et al., 2003). A more related work to

the problem we consider in this dissertation has been done in the “Signal-Response

Systems” (sometimes called Dynamic-Response Systems) literature (Miller, 2002;

Miller and Wu, 1996; Box, 1988; Nair et al., 2002; Gupta et al., 2010). In signal-

response systems literature, the measurement locations s receive the name “signal”
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or “signal-factor”.

Two approaches to analyze signal-response systems were proposed by Miller and

Wu (1996). These two methods are: the performance measure modeling (PMM)

and the response function modeling (RFM). The PMM method is based on summa-

rizing the signal-responses into univariate metrics and then analyzing these metrics.

Box (1988) has shown how the PMM method can provide similar results for very

different processes, and hence it is not recommended. The RFM method on the

other hand is based on modeling the relationship between the signal (measuring

locations) and the response in a parametric modeling framework. This approach

makes intuitive sense, but should be implemented with care especially when the

model parameters are correlated. Furthermore, it requires a linear statistical model

for the mean that provides a good fit.

Other existing methodologies to analyze signal-response systems involve a two-

stage modeling procedure:

1. Fitting a parametric model for the response as a function of the signal (the

locations);

2. Modeling the parameters in the first step as a parametric model in design

factors, both noise and control factors.

This type of methodology was followed by Nair et al. (2002) who use a location-

dispersion model evaluated at the signal-factor levels such that at each controllable

factor settings xci and signal level sj the location µ is

µ(xci, sj) = x′
ciβ(sj) (2.22)

and the log of the dispersion, σ2, is

log σ2(xci, sj) = x′
ciφ(sj) (2.23)

where β and φ are the model coefficients for the mean and the variance as a

function of the signal, respectively. If noise factors xn are present, the following

model is used

yij = µ(xci,xni, sj) + σ(sj)ǫij (2.24)
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such that the location model is

µ(xci,xni, sj) = x′
ciβ(sj) + x′

niγ(sj) + xciΛxni (2.25)

where γ are the effects of the noise factors and Λ the control-noise interaction

effects. The dispersion effect is determined through the control-noise interactions.

A more recent approach to model signal-response systems is that of Gupta et

al. (2010). Their approach is based on modeling the signal-response mean using

a Generalized Linear Mixed Model (GLMM). The use of GLMM overcomes the

normality assumption of the errors, usually assumed in previous models. Just as

for the models above, parametric (regression) models for the mean are needed for

GLMM models.

We point out here that all of the previously mentioned approaches assume a

small number of signal-factor levels since the estimation methods are frequentist.

Hence, model parameters uncertainties are not included which may lead to non-

optimal solutions. A more recent approach that considers both a large number

of levels for the signal factor and the uncertainty in the model parameters is that

of Del Castillo et al. (2011). They proposed a two-stage hierarchal mixed effects

model to solve the RPD problem for profile response systems. The proposed ap-

proach considers the uncertainty in the model parameters by adopting a Bayesian

point of view. Their proposed model is as follows:

yi = Sθi + εi, vec(εi) ∼ NJ (0,Σ), (2.26)

θi = Bf (xi) +wi, vec(wi) ∼ Np(0,Σw) (2.27)

where yi is the i
th observed profile, S is a matrix of regressors in the locations sj ,

θi and B are regression coefficients, f (xi) is a function of design factor settings

xi, and εi and wi are error terms. Substituting (2.27) into (2.26) we get

yi = S(Bf (xi) +wi) + εi (2.28)

= SBf (xi) + Swi + εi (2.29)

Here, SBf (xi) is a vector of size J × 1. For three conformable matrices Z1, Z2

and Z3 we have vec(Z1Z2Z3) = (Z ′
3 ⊗ Z1)vec(Z2) (Henderson and Searle, 1979)
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where vec(·) is the operator that concatenates the matrix columns into a vector

and ⊗ is the Kronecker product. Applying this property to (2.29) we get

yi = (f (xi)
′S)vec(B) + Swi + εi. (2.30)

Letting Fi = f (xi)
′S and β = vec(B), this model can be written as:

yi = Fiβ + Swi + εi (2.31)

where Fiβ is the fixed effect term and Swi is a random effects term. Lange et al.

(1992) and Chib and Carlin (1999) provide the full conditionals of the Bayesian

posterior density of this model in closed form. However, as discussed by Ware

(1985), model (2.31) is unnecessarily restricted, since the design matrices for the

fixed effect and the random effect terms are linked (they both depend on S). The

random effects term Swi induces a within-profile correlation structure that may

not be what the data shows. To better estimate the within-profile correlation, the

use of different matrices S and S∗ was suggested (Del Castillo et al., 2011). In

their paper, Del Castillo et al. (2011) suggested to use the first p columns of Fi

to construct S∗. A model selection criterion such as Akaike Information Criterion

(AIC) or Bayesian Information Criterion (BIC) is then used to select the best value

for p.

As a more flexible alternative to the optimization of profile response processes,

a Gaussian Random Function model is presented in chapter 5 of this dissertation.



Chapter 3
Statistical Performance of Tests for

Mean Shape Difference with

Application in Manufacturing

This chapter considers experiments in manufacturing where the response of interest

is the geometrical shape of a part and the goal is to determine whether and how the

experimental factors affect the resulting shape. The usual approach in practice is

to estimate the form error of the part and conduct an ANOVA on the form errors.

Instead, we study the performance of several SSA techniques to analyze this class

of experiments.

This chapter extends the preliminary results found in Del Castillo and Colosimo

(2011) for performance analysis of SSA tests (described in section 2.1.2) in several

directions. The performance of the different SSA tests for shape difference are

analyzed for 2D and 3D objects. For cases of interest in manufacturing where

a definition of form error exists (circularity and cylindricity), the SSA tests are

compared to the standard approach (ANOVA based on the form errors). There

exists considerable debate about the merits of the different SSA techniques, and

it is not clear which one to use in a given situation (Dryden and Mardia, 1998,

section 12.2.5). One of the goals of this chapter is to elucidate this debate.

The chapter is organized as follows. In section 3.1 we study the performance of

the shape difference tests for data sets of arbitrary geometries previously considered

in the literature. Section 3.2, instead, extends these results to shapes frequently oc-
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curring in manufactured parts, namely, 2D circular and 3D cylindrical shapes. The

performance comparisons in sections 3.1 and 3.2 deal with the so-called isotropic

case, i.e., the case where the variances at each landmark and along each dimension

are the same. Section 3.3 studies the performance of mean shape difference tests in

the anisotropic (or non-isotropic) case, including cases where different covariance

structures are present. The performance of these tests under non normal errors is

investigated in section 3.4. Summary and conclusions are provided in section 3.5.

3.1 Performance Analysis of Tests for

Non-manufacturing Shapes of Arbitrary Ge-

ometry, Isotropic Errors

The tests for detecting differences in mean shape studied in the past SSA literature

consist mainly of instances of arbitrary polygons. These are not shapes commonly

occurring in manufacturing but are included here to allow comparison between the

SSA tests described in section 2.1.2 for the cases in the extant literature on SSA.

3.1.1 Triangles

The simplest non-trivial geometrical shape that has been studied in shape tests

is the case of k = 3 landmarks in m = 2 dimensions, i.e., a triangle whose shape

space is a 2-sphere (see section 2.1.1 and Appendix A), shown in Figure 3.1. This is

the Σ3
2 shape space, first studied by Kendall (1984). For two-dimensional (planar)

data, Kendall coordinates are homogeneous coordinates in C (the complex plane),

given that a complex representation of each landmark coordinates simplifies the

algebraic computations, especially the rotations (see Appendix A for more infor-

mation about the mathematical notation and terminology used in shape theory).

For k landmarks on the plane, the Kendall coordinates are:

uj + ivj =
zj − 1

z1
, j = 3, · · · , k (3.1)
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In the case of triangles (k = 3) each triangle is parameterized by a single Kendall

coordinate:

z3 = u3 + iv3. (3.2)

Since if k = 3, Σ3
2 = CP 1 = S2(1

2
) (Hopf’s submersion, see Appendix A), the shape

space of triangles can be defined in terms of the coordinates:

x =
1− r2

2(1 + r2)
y =

u3
1 + r2

z =
v3

1 + r2
(3.3)

where r2 = |z3|2 = u23 + v23 so that x2 + y2 + z2 = 1
4
which implies these points are

on a sphere of radius 1
2
(S2(1

2
)).

The coordinates above are extrinsic to the sphere S2(1
2
), since they refer to the

ambient R3 space where S2 is embedded in. Kendall’s spherical coordinates are

instead intrinsic (see Appendix A) to the shape space:

1

2
sin θ cos φ =

1− r2
2(1 + r2)

(3.4)

1

2
sin θ sin φ =

u3
(1 + r2)

(3.5)

1

2
cos θ =

v3
(1 + r2)

(3.6)

where the two angles correspond to the ‘latitude’ θ ∈ [0, π] and the ‘longitude’

φ ∈ [0, 2π].

The circular plot in Rohlf (2000) (see Figure 3.2 below) is called the Schmidt

net or Lambert projection of the 2-sphere (see Dryden and Mardia, 1998, page

37). This projection from S2(1
2
) to R3 preserves areas and is defined by the angles

(ξ, ψ) such that

ξ = 2 sin

(
θ

2

)
, 0 ≤ ξ ≤

√
2 (3.7)

ψ = φ, 0 ≤ ψ ≤ 2π (3.8)

which result in a circle whose center is an equilateral triangle (i.e., the projection

is on a plane on the ’north pole’ of S2(1
2
)). The Schmidt-Lambert projection,

shown in Figure 3.2, is useful to study the power of a statistical test for detecting
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Figure 3.1. Kendall’s shape space for triangles in m = 2 dimensions. This is S2(12 ), a
2-sphere with radius 1

2 . The shape coordinates are the latitude θ and the longitude φ in
equations (3.4-3.6). Adapted from Dryden and Mardia (1998).

significant deviations from an equilateral triangle, as done by Rohlf (2000) and by

us in what follows.

Since the shape space for triangles (Figure 3.1) ‘repeats’ itself 6 times over

S2(1
2
), forming six ‘lunes’, it is customary to show the Schmidt projection of S2(1

2
)

only for one of these lunes ((see figure 28 in Dryden and Mardia, 1998)). Also

since points with θ > π/2 are reflections of points for θ < π/2, it is customary to

display the Schmidt projection only for the upper hemisphere.

Figure 3.2 shows the Schmidt projection (Dryden and Mardia, 1998) of the

shape space of triangles (S2(1
2
)) for the upper “hemisphere” of Figure 3.1, to avoid

reflections. In the figure, When θ = 0, we have an equilateral triangle; when

θ = π/2 the triangle degenerates into a line, which corresponds to points on the
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θ=π/6

φ=π/6

φ=π/2

φ=π/3φ=2π/3

φ=5π/6

φ=π

φ=7π/6

φ=4π/3
φ=3π/2

φ=5π/3

φ=11π/6

φ=0
θ=π/3

θ=π/2

Figure 3.2. A representation of different equilateral triangles projected on the tangent
plane shown in Figure 3.1 as a function of the rotational angles ξ and ψ, given by
equations (3.7 and 3.8).

equator of Figure 3.1. When φ = π/2, we have an isosceles triangle; when φ = π

the isosceles triangle becomes right-angled, when θ > π/2 the triangles are simply

reflected, a case we do not consider here.

The power surface of the ANOVA Permutation test under different possible

values of (θ, φ) was computed. For each point on the power surface, two (a = 2)

samples were compared: one with parameters θ = φ = 0 (equilateral triangle) and

a second sample whose (θ,φ) values were taken within the ranges (−π/2, π/2) and
(0, 2π) respectively. The simulation setup was chosen to be the same as in Rohlf

(2000) in order to have comparable surfaces. Our results are shown in Figure 3.3,

which displays also the ANOVA F-test power surface previously obtained by Rohlf.

It can be seen that the ANOVA Permutation test behaves for this case very closely

to the ANOVA F-test in terms of power and type-I error rate.
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equilateral triangle as a function of rotational angles θ and φ.
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(b) Power surface of the ANOVA F-test for detecting deviations from an equilateral
triangle as a function of rotational angles θ and φ (see Rohlf, 2000).

Figure 3.3. Power surface for detecting differences in shape between triangles using
the ANOVA Permutation test and Goodall’s ANOVA F-test, isotropic variance. The
simulation parameters were: error standard deviation σ was set at 0.15, the test size α
was set at 0.1, twenty (= n) configurations per sample were used, each test was replicated
one hundred times, and one hundred permutations were performed. θ is restricted to
[−π/2, π/2] to exclude reflections. On the right, the marginal power plots for fixed φ.
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3.1.2 Performance of Tests for Arbitrary Polygons (Rohlf,

2000; Coward and McConathy, 1996)

Rohlf (2000) gives one landmark data set, depicted in Figure 3.4(a), used to com-

pare the power of tests for shape differences for the case of a = 2 samples. The

ANOVA F-test (eq. 2.14), the ANOVA Permutation test and the distance-based

tests developed by Lele (EDMA-I and EDMA-II, eqs. (2.19) and (2.21)) were

compared using simulation for the shapes in this figure. The simulation setup was

as follows: the test size α was set to 0.05, one hundred (= n) configurations per

sample were used, each test was replicated 1000 times, and 150 permutations for

each test that requires permutation were performed. N(0, σ2) i.i.d errors were

added to each coordinate at each landmark and both σ2 = 1 and σ2 = 1.52 = 2.25

were tested. To estimate the type-I error rate, the mean shape under the null

hypothesis was equal to the shape labeled sample 1 in Figure 3.4(a). The scaling

factor for EDMA-II was chosen to be the total sum of distances between consecu-

tive landmarks. As summarized in Table 3.1, no test failed to detect the difference

in mean shape when σ = 1, but as expected, the power decreases as σ increases

without affecting the type-I error rate.

Table 3.1. Performance of tests for shape difference for the data set provided by
Rohlf (Figure 3.4(a)). Results were obtained using a test size α of 0.05, one hundred
configurations (= n) per sample. Each test was replicated one thousand times, and 150
permutations for the ANOVA Permutation and EDMA tests. Numbers in parentheses
are the standard errors of the corresponding simulation estimates.

Test Type-I error Power when σ = 1 Power when σ = 1.5
ANOVA F-test 0.04(0.04) 1(0) 0.92(0.0271)

ANOVA Permutation test 0.042(0.0063) 1(0) 0.99(0.0099)
EDMA-I 0.042(0.0063) 1(0) 0.93(0.0255)
EDMA-II 0.042(0.0063) 1(0) 0.93(0.0255)

Another data set published by Rohlf (2000) for 3-dimensional shapes can also

be used to study the performance of the different tests. The data set consists of

two samples with configurations of four landmarks in 3D space. The two mean

shapes are depicted in Figure 3.4(b). Simulations were carried out using the same

parameter settings as in Rohlf (2000), namely: a test size α of 0.05, one hundred
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Figure 3.4. (a) The two mean shapes of the 2D data set used by Rohlf (2000). (b) The
two mean shapes of the 3D data set used by Rohlf (2000). (c) The two mean shapes of
the 2D data set used by Coward and McConathy (1996).

configurations per sample (= n), each test was replicated one thousand times, and

one hundred permutations for the ANOVA Permutation and EDMA tests were

performed. The simulations were performed at two values of the σ parameter,

namely, σ = {1, 1.5}. The results are summarized in Table 3.2 and show that

the ANOVA Permutation test is the most powerful while providing the closest to

advertised type-I error probability.

Notice that in Tables 3.1 and 3.2 the ratio of the standard deviation of the type-

I error rate for the ANOVA F-test to the type-I error rate itself is large compared

to the same ratio for other tests. As seen in Figures 3.4(a) and 3.4(b), the two

mean shapes in this case differ largely from each other and from the grand mean
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Table 3.2. Performance of tests for shape difference for the data set of Table 3 in
Rohlf (2000) (3-dimensional shape). Results were obtained using: the test size α was
set at 0.05, one hundred configurations per sample (= n) were used. Each test was
replicated one thousand times, and 150 permutations were performed for the ANOVA
permutation test and the EDMA tests. Numbers in parentheses are the standard errors
of the corresponding simulation estimates.

Test Type-I error Power when σ = 1 Power when σ = 1.5
ANOVA F-test 0.003(0.0017) 0.704(0.0144) 0.22(0.0414)

ANOVA Permutation test 0.05(0.0069) 0.937(0.0077) 0.55(0.0497)
EDMA-I 0.048(0.0068) 0.401(0.0155) 0.04(0.0196)
EDMA-II 0.048(0.0068) 0.401(0.0155) 0.04(0.0196)

shape (X••). Large differences between the mean shapes and the grand mean

shape affect the distribution of the sum of squares in Table 2.1 making them not

follow the assumed χ2 distributions (see section 3.1.3 for more details) and hence,

this affects the type-I error rate.

Coward and McConathy (1996) studied the effect of the sample size n on the

power and type-I error rates of the EDMA-I and Goodall’s F-test. Figure 3.4(c)

shows the 2D mean shapes they considered. For these shapes the authors reported

that the EDMA-I test has an inflated type-I error rate which decreases by increas-

ing the sample size. We observed a similar behavior when applying the ANOVA

Permutation test. Our results, shown in Figure 3.5, indicate that increasing the

sample size decreases the type-I error rate until it converges to the nominal value.
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Figure 3.5. Simulated type-I error rate of the ANOVA Permutation test using the
data set in Coward and McConathy (1996).

3.1.3 The Assumption of a Small Error Variance (σ2) in

the F-test

Goodall’s F-test requires that the magnitude of the standard deviation of the error

σ be small. Otherwise, the distribution of the test statistic in (2.14) is not an F,

since the Procrustes sums of squares are approximately distributed as a χ2 only

when σ is small, and as was mentioned in section 2.1.1, the ANOVA identity breaks

down when σ is large. This is because the analysis on the tangent space of the pre-

shape space becomes a worse linear approximation of the nonlinear pre-shape space

when σ is large, i.e., when shapes differ considerably. Dryden and Mardia (1998)

indicate that a value of σ ≤ 0.1 is small enough for this approximation to hold

well but do not provide any empirical evidence behind this assertion. Therefore,

to understand how the distribution of the scaled procrustes G statistic deviates

from a χ2
M as σ increases, a simulation study was conducted. In the simulation,

n = 100 parts each with k = 20 landmarks following a circular mean shape were

generated to which i.i.d. N(0, σ2) noise was added at each coordinate. It was

found (see Figure 3.6) that as σ increases beyond 0.1 (for unit size scaled objects,

that is, Xscaled = X

‖X‖
where ‖X‖ =

√
trace(XTX)) the distribution begins to

deviate noticeably from a χ2
M , the assumed distribution in the ANOVA F-test.
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Specifically, the distribution of G thins at the tails and begins to move to the left

of a χ2
M distribution. This confirms Dryden and Mardia’s suggestion.
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Figure 3.6. The distribution of the scaled G statistic as σ changes.

To show numerically how the ANOVA identity breaks down when σ is large, a

simulation was conducted for one factor at two-levels. The mean shape for each of

the two samples is shown in Figure 3.7 below. Each of these two mean shapes has

64 landmarks. Ten configurations were simulated for each sample where normal

i.i.d errors with standard deviation σ were added at each of the 64 landmarks.

Table 3.3 below shows the sum of squares values at different values of σ. This

table clearly shows that when σ is large SSTotal 6= SSFactor + SSError.
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Figure 3.7. The two mean shapes used in the ANOVA identity calculations simulation
study.

Table 3.3. Sum of squares for the two-sample simulation study of the ANOVA identity.
As σ increases, the identity breaks down.

σ SSFactor SSError SSFactor + SSError SSTotal

0.1 0.0018 0.0144 0.0162 0.0162
0.3 0.0083 0.1305 0.1388 0.1387
0.5 0.0211 0.333 0.3541 0.3538
1 0.0794 1.2133 1.2927 1.2878
1.5 0.1701 2.6265 2.7966 2.7739
2 0.2898 4.0218 4.3116 4.2526
2.5 0.6198 6.2539 6.8737 6.6772
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3.2 Performance Analysis for Shapes with a

Geometry of Interest in Manufacturing,

Isotropic Errors

The triangles and arbitrary polygons studied in section 3.1 are not common shapes

found in manufacturing. In this section we consider the performance of shape anal-

ysis tests for two types of shapes widely found in many manufacturing processes,

namely, 2D circles and 3D cylinders, under the assumption of isotropic errors.

3.2.1 Detection of Differences in Mean for 2D Circular

Parts

Circular shapes are common in manufacturing, specially in parts that are produced

using lathe or drill machine tools. Recent applications in micro-machining require

analysis of circular shapes, too. Factors such as cutting speed, feed rate, etc.

can affect the circularity of these parts. Due to the employment of CMMs in

manufacturing, hundreds of measurements (landmarks) can be taken from a single

part. A simulation study was conducted to determine the performance of the tests

considered in the previous section for determining differences in mean shape for

circular shapes. In this case, the usual ANOVA on the (circularity) form error is

available, and was included in the comparisons as well. International standards

(ANSI Y14.5M-1982) exist for measuring form errors in circular (or cylindrical)

geometries. These are frequently calculated in tolerancing practice as the smallest

difference between the radii of two coaxial circles (or cylinders) that enclose all

the measurements in a part (Henzold, 2006; Krulikowski, 1996, see Figure 1.5). A

standard one-way ANOVA is then used to test for equal means of form errors for

the two samples.

Circular shape data that are less circular as the level of a single factor increases

was simulated. As the value of the controllable factor changes from low to high, a

second harmonic with amplitude δ was added to the circular profiles to simulate

bilobed shapes (a common problem in lathe machining, see Figure 3.8). Amplitude

values were chosen such that δ = wσ/r, where σ is the noise (error) standard

deviation, r is the radius of the true circle (set equal to 5) and w is the “non-
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circularity” parameter w = {0, 0.5, 1, 1.5, 2, 2.5, 3} we desire the tests to detect.

Figure 3.8 shows the mean shapes for two values of δ. The simulation setup

was as follows: 20 configurations per sample were simulated each having k =

64 landmarks. One hundred replications and 100 permutations (for tests that

require them) were conducted. The test size α = 0.05, and N(0, 0.052) iid errors

were added at each coordinate and at each landmark and a fixed radius r =

5. The scaling factor for EDMA-II was chosen to be the circumference of the

circle, which is the total sum of the distances between the consecutive landmarks.

The simulation results are shown in Figure 3.9. The power curves for the F-test,

ANOVA form error and ANOVA Permutation tests for this specific case were found

previously by Del Castillo and Colosimo (2011). Comparing the curves, it is seen

that the ANOVA Permutation test possesses as good power as the ANOVA F-test,

while the EDMA-I test has very low power for this type of shapes. The ANOVA

on the form errors performed considerably worse than the ANOVA F-test and the

ANOVA Permutation test.
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Figure 3.8. Circular and bilobed profiles with parameters σ = 0.05 and r = 5.



52

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w, non−circularity parameter

P
ow

er

 

 

ANOVA F−test
ANOVA form error
ANOVA permutation test
EDMA−I
EDMA−II

Figure 3.9. Power curves using 2D Circular profiles.

3.2.2 Detection of Differences in Mean Shape for 3D Cylin-

drical Parts

Since manufactured parts are of three dimensions, it is of interest to study the

power of the statistical shape tests described earlier in the case m = 3. A common

instance of a 3D shape of interest in manufacturing is a cylinder (see e.g., Traband

et al., 2004). For example, in lathe machining, different problems in the process

can result in non-cylindrical shapes in the form of a “barrel”, a “banana”, etc. (see

Colosimo et al., 2007).

We consider a cylinder that can degenerate into a “barrel” shape in our perfor-

mance study of 3D tests for shape difference (see Figure 3.10). The study consisted

of two samples: the first sample contains parts with a cylindrical mean shape of

radius r and height h; the parts in the second sample have a barrel mean shape

with radius r1 = r at both the top and the bottom and radius r2 > r1 at the middle

of the cylinder, which has height h. In analogy to the circularity case, we refer

to the difference δ = r2 − r1 as the “amplitude”. The change from r1 to r2 along

the height was considered to be a sine wave with amplitude δ and a period of 2h.

The amplitude δ can be calculated as δ = wσ/r1 where w is a “non-cylindricity”

parameter, in analogy to the non-circularity parameter described in 3.2.1. Figure

3.10 shows the mean shape of the two samples when δ = {0, 1}.
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Twenty (n = 20) parts were generated at each value of the non-cylindricity

parameter w = {0, 0.5, 1, 1.5, 2, 2.5, 3}. A total of 320 landmarks were simulated at

five levels of the cylinder height {0, h/4, h/2, 3h/4, h}. Independent and identically

distributed N(0, 0.052) errors were added at each coordinate and at each landmark.

To estimate the power of the EDMA-II test the scaling factor was chosen to be the

sum of the five circumferences of the five circular cross sections along the height of

the cylinder. The power results are shown in Figure 3.11. Comparing the power

curves it can be said that the ANOVA F-test and the ANOVA Permutation test

are the most powerful and control type-I error well, while the EDMA-I, EDMA-

II and the ANOVA on the cylindricity form error (computed analogously to the

circularity error by using two concentrical cylinders, see Krulikowski (1996) and

Figure 1.5) all have very low power.
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Figure 3.10. Sketch of two different mean shapes of cylindrical parts with r = 5 and
h = 10. Left: perfect cylinder (δ = 0), right: “barrel” (δ = 1).
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Figure 3.11. Statistical power for detecting mean shape difference in cylinders for the
F-test, the Permutation ANOVA test, the ANOVA form error method, the EDMA-I and
the EDMA-II tests. Simulation parameters were: 320 landmarks (= k) per configuration,
test size α of 0.05, error standard deviation σ of 0.05, each test was replicated one
thousand times, and 150 permutations for each test requires permutation.

3.2.3 Two Way ANOVA Tests for Shapes; Test for Inter-

action Effect

Del Castillo and Colosimo (2011) extended Goodall’s ANOVA F-test to a two-way

ANOVA test with interaction, see section 2.1.4. They also provided a two-way

ANOVA permutation test as a more robust alternative when the distributional

assumptions required by the ANOVA F-test do not hold. In this test, main effects

permutations are performed based on the suggestions by Edgington (1995) and

the interaction effect is computed following recommendations given by Jung et al.

(2006). In this section, we compare the power of the ANOVA Permutation test and

the ANOVA F-test (only tests that have been extended to the two-way case) for

detecting an interaction effect. Suppose there are two factors, A and B, each varied

at two levels {−1, 1} that affect the circularity of a 2D circle. Let δ = wσ/r be the

non-circularity parameter as described in subsection 3.1. Let δ change according

to the following model:

δ = δ1A + δ2B + δ3AB (3.9)
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where A and B represent the levels of the two factors, either -1 or 1. Then to

simulate an interaction effect on the mean shape, we changed the value of δ3 while

fixing the values of both δ1 and δ2.

The parameter δ at each of the four cells of the two-way ANOVA table is

shown in Table 3.4. Parameters δ1 and δ2 were fixed at σ/r and −σ/r respectively
with r equal to the radius of the true circle (5). The parameter δ3 was changed

according to δ3 = wσ/r over the set of values w = {0, 0.5, 1, 1.5, 2, 2.5, 3} with

w = 0 indicating no AB interaction effect.

Table 3.4. Circularity parameter δ at the four possible combinations of A and B.

A

B
-1 1

-1 δ = −δ1 − δ2 + δ3 δ = δ1 − δ2 − δ3
1 δ = −δ1 + δ2 − δ3 δ = δ1 + δ2 + δ3

The EDMA-I and EDMA-II tests were not considered here since they are de-

fined for one factor (two-levels) problems only. One hundred replications were

performed for each test, and 100 permutations were used in the ANOVA Permu-

tation test. Ten configurations per combination were allocated and the size of the

tests (α) was set to 0.05. The error variance was set to 0.052. The simulation

results are shown in Figure 3.12. As it can be seen, under the ideal case of normal

i.i.d. errors the ANOVA Permutation test and the ANOVA F-test provide the

same type-I error rate. They also have very similar power for detecting a two-

factor interaction effect on the mean shape of circular data.

3.3 Performance of Tests for Difference in Shape

Under Non-isotropic Variance (2D and 3D)

Recall from section 2.1 that the usual assumed model in SSA is:

X = β(µ+E)Γ+ 1kγ
T , E ∼ N(0,Σ) (3.10)
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Figure 3.12. Power results for detecting an interaction effect in a two-way shape
ANOVA for circular data.

Goodall (1991) suggested to decompose the variance-covariance matrix of the

errors Σ into two parts, the (k × k) landmarks covariance matrix ΣK , and the

(m×m) covariance matrix ΣD. Then Σ is the Kronecker product of ΣK and ΣD:

Σ = ΣK ⊗ΣD. (3.11)

This is a plausible model in manufacturing data, where it is reasonable to assume

that ΣD = Im since the measurements acquired with a CMM can be consid-

ered to have independent errors in each direction (axis) and to have about the

same variance. Furthermore, Procrustes methods do not provide an explicit mean

shape when ΣD 6= I (Goodall, 1991; Lele, 1993). For this reason, we confine our

simulations in this section only to the case when ΣD = I.

In this section, three different models for the covariance matrix ΣK are con-

sidered. The first model simply assumes that the landmarks are divided into g

groups with g ≤ k. Each group has a different variance which is constant within
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the group and no correlation is assumed. Then ΣK can be written as:

ΣK = σ2I +C (3.12)

where C is a k×k diagonal matrix with diagonal elements that vary giving different

variances to the g groups. Note that for the isotropic case C = 0.

In the second covariance model, the variance between landmarks is constant

but some covariance is allowed. An exponential covariance structure is a common

model in the Spatial Statistics literature (Banerjee et al., 2004, section 2.1.3). It

considers the covariance between every two landmarks i and j as a function of the

distance between them. Then ΣK can be written as:

(ΣK)ij = σ2exp(−φdij) + τ 2I(i = j), σ2 > 0, φ > 0, τ 2 > 0 (3.13)

where (ΣK)ij is the ij entry in matrix ΣK , dij is the Euclidean distance between

landmark i and landmark j, I(i = j) is an indicator function which equals 1

whenever i = j and 0 otherwise and σ2, φ and τ 2 are the sill, range and nugget

parameters of the covariance function (notice that when dij = 0 then (ΣK)ij =

σ2+τ 2 and that is the variance at that point since i = j). We note how this model

is isotropic, since the variances are the same at each landmark.

In the third and last covariance model geometric anisotropy is considered. This

model is used in the Spatial Statistics literature (Ecker and Gelfand, 1999). The

model uses an m×m positive definite matrix B to account for the unequal corre-

lations, and can be written as:

(ΣK)ij = σ2exp(−φ(d′
ijBdij)

1/2) + τ 2I(i = j), σ2 > 0, φ > 0, τ 2 > 0 (3.14)

where dij is an m×1 vector of Euclidean distances along each of the m dimensions

between landmarks i and j. This model provides geometric anisotropy since the

correlation between any two landmarks depends on the separation vector dij rather

than merely on its length. As an example, consider three landmarks x,y and z

in a two dimensional space, with x = (0, 0), y = (0, 5) and z = (5, 0). The

Euclidian distance dxy = 5 = dxz. Assuming σ2 = 1, φ = 1, τ 2 = 0.5 and B =
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(
1 0.5

0.5 1.5

)
we get cov(x, y) = 0.5+ exp(−37.5) and cov(x, z) = 0.5+ exp(−25).

This example illustrates how in this model a pair of points equally distanced from

a third reference point can have different correlations with that reference point.

An iterative weighted least squares (WLS) procedure to estimate the mean

shape when ΣK 6= I and ΣD = I was suggested by Goodall (1991). Although no

theoretical guarantee of convergence exists for this algorithm, our tests indicate

that GPA(Σ) is able to correctly register the shapes for all the non-isotropic error

models considered herein (an instance of this can be seen in Figure 3.13). We

noticed that GPA(Σ) converges in all cases we tested but in a larger number of

iterations than ordinary GPA.

Under the first covariance model described by equation (3.12), we set g = 3

with group variances of Clow, Cmed and Chigh. Two dimensional circular shapes

and three dimensional cylindrical shapes were generated as described in previous

sections. Normal random errors were added to each landmark according to the

diagonal values of σ2I + C. Power results for all five tests of interest are shown

in Figures 3.14 and 3.15. Comparing to Figures 3.9 and 3.11, it can be seen

that there is a dramatic loss in power for the ANOVA Permutation test and the

ANOVA F-test once the equal landmark variance assumption is violated, but the

power increases as more landmarks per configuration are considered.
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Figure 3.13. Mean shape estimated by the iterative GPA(Σ) algorithm applied to 2D
circular shapes with non-isotropic error structure (model 1 in equation (3.12) with g = 2
groups were used). Left: before GPA(Σ) alignment, right: after GPA(Σ) alignment.
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Figure 3.14. Statistical power for detecting changes in 2D circular shapes for the
F-test, the ANOVA Permutation test, the ANOVA form error method, and the EDMA-I
and EDMA-II tests under non-isotropic error structure described by equation (3.12).
Simulation parameters were: 64 landmarks (= k) per configuration, test size α of 0.05,
parameters {Clow, Cmed, Chigh} were set to 0.001,0.005 and 0.01 respectively, each test
was replicated one hundred times, and 100 permutations for each test that requires
permutations were performed.

Under the second covariance model described by equation (3.13) we set σ, φ

and τ to be 0.05, 0.05 and 0.05 respectively. Two dimensional circular shapes and

three dimensional cylindrical shapes were generated. Correlated N(0,Σ) errors

with covariance matrixΣ = ΣK⊗ΣD were generated and added to each landmark.

Power results for all five tests of interest are shown in Figures 3.16 and 3.17. It can

be seen that adding correlations reduces the power of the ANOVA Permutation

test and the ANOVA F-test, but their power apparently increases as we move from

the 2D to the 3D case. In reality, there are more landmarks per configuration in

the 3D case than in the 2D case, and this explaines the increase in power.

Finally, under the third covariance model described by equation (3.14) we

set σ, φ and τ to be 0.05, 0.05 and 0.05 respectively. Matrix B was chosen to

include non-isotropic correlations (see Ecker and Gelfand, 1999). For the 2D

circular shapes and the 3D cylindrical shapes, B was set at

(
1 0.5

0.5 1.5

)
and
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Figure 3.15. Statistical power for detecting changes in 3D cylindrical shapes for the
F-test, the ANOVA Permutation test, the ANOVA form error method, and the EDMA-I
and EDMA-II tests under non-isotropic error structure described by equation (3.12).
Simulation parameters were: 320 landmarks (= k) per configuration, test size α of 0.05,
parameters {Clow, Cmed, Chigh} were set to 0.001,0.005 and 0.01 respectively, each test
was replicated one hundred times, and 100 permutations for each test that requires
permutations were performed.
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 respectively. Correlated N(0,Σ) errors with covariance matrix

Σ = ΣK ⊗ΣD with ΣD = I were generated and added to each landmark. Power

results for all five tests of interest are shown in Figures 3.18 and 3.19.

Figures 3.14 through 3.19 show that whenever unequal variances or correlations

are present in the error structure, the ANOVA F-test and the ANOVA Permutation

test lose some of their power with more loss due to unequal variances than to the

presence of correlations. However, the F-test and the ANOVA Permutation test

always have higher power than the distance-based and ANOVA form error tests

under all covariance models tested. It is also noticeable that under the different

covariance models these two tests appear to possess higher power for the 3D case

than the 2D case. Since it was thought this might be due to the larger number of

landmarks considered in the 3D cylinders relative to the 2D circles, we repeated

the same simulation for the 2D case except that the number of landmarks was
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Figure 3.16. Statistical power for detecting changes in 2D circular shapes for the
F-test, the Permutation ANOVA test, the ANOVA form error method, and the EDMA-I
and EDMA-II tests under exponential isotropic errors as described by equation (3.13).
Simulation parameters were: 64 landmarks (= k) per configuration, test size α of 0.05,
10 configurations (= n) per sample, the parameters {τ, σ, φ, r} were set to 0.05, 0.05, 0.05
and 5 respectively, each test was replicated one hundred times, and 100 permutations
for tests that require them were performed.

increased to 320. Results are shown in Figure 3.20. Comparing with the results in

Figure 3.16 (where k = 64), it can be said that as the number of landmarks

increases the power of the F-test and the ANOVA Permutation test increases

indeed, although for model (3.13) the F-test provides a higher than advertised

type-I error rate. This is due to the larger number of landmarks per configuration

than in Figure 3.16 (320 compared to 64). Increasing the number of landmarks

reduces the inter-landmark distances, and for correlation models (3.13) and (3.14)

this makes the between landmarks correlation more evident. This in turn affects

the ANOVA F-test since it assumes independence. On the other side, the ANOVA

Permutation test assumes exchangeability between configuration matrices. But it

does not assume independent landmarks, hence it is not affected by the between

landmarks correlation (i.e., when k is large).
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Figure 3.17. Statistical power for detecting changes in 3D cylindrical shapes for
the F-test, the Permutation ANOVA test, the ANOVA form error method, and the
EDMA-I and EDMA-II tests under exponential isotropic errors as described by equation
(3.13). Simulation parameters were: 320 landmarks (= k) per configuration, test size
α of 0.05, 10 configurations (= n) per sample, the parameters {τ, σ, φ, r, h} were set to
0.05, 0.05, 0.05, 5 and 10 respectively, each test was replicated one hundred times, and
100 permutations for tests that require them were performed.

3.4 Performance of Tests Under Non-normal Er-

rors

It has been shown how the two SSA ANOVA tests for shapes provide higher

power than all other tests discussed in section 3. Together with the ANOVA

test on the form errors, the ANOVA F-test is based on the assumption of nor-

mally distributed errors. Here we consider the robustness of all the ANOVA tests

described in section 2.2 (ANOVA F-test, ANOVA Permutation test, and ANOVA

on the form errors) under two cases of non-normal errors: a uniform distribution,

and a t-distribution with 5 degrees of freedom. A simulation study similar to

the one in section 5.1 was run except that the added errors were distributed as

Uniform(a, b) or t5(0, σ
2). The values of a and b were chosen such that the mean

is zero and the variance is σ2. This yields b = −a, a = −
√
3σ and b =

√
3σ.

The fitted kernel density functions for the distributions of form errors under the

ideal case of normal errors (vec(E) ∼ N(0, 0.052Ikm)), the case of uniform errors
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Figure 3.18. Statistical power for detecting changes in 2D circular shapes for the F-test,
the ANOVA Permutation test, the ANOVA form error method, and the EDMA-I and
EDMA-II tests under exponential non-isotropic errors as described by equation (3.14).
Simulation parameters were: 64 landmarks (= k) per configuration, 10 configurations
(= n) per sample, test size α of 0.05, the parameter {τ, σ, φ, r} were set to 0.05, 0.05,
0.05 and 5 respectively, the matrix B was set to (1 0.5; 0.5 1.5), each test was replicated
one hundred times, and 100 permutations were performed for each test that requires
permutation.

(vec(E) ∼Uniform((−0.05
√
3)1km, (0.05

√
3)1km)) and the case of t-distributed

errors (vec(E) ∼ t5(0, 0.05
2Ikm)) are shown in Figure 3.21. This figure shows

how the variance of the distribution of the form errors increases as the tails in the

distribution of the errors become thicker.

The estimated power curves for this case are shown in Figures 3.22 and 3.23.

It is seen that the ANOVA F-test and the ANOVA Permutation test still show

the best relative performance. However, the ANOVA F-test does not have the

advertised type-I error rate. The ANOVA on the circularity form errors has a good

power performance under uniform errors but shows a poor performance under t-

distributed errors. This is not a surprising result since the form error is a range

statistic and hence it will be more sensitive to a distribution with “outlier” errors

than to a bounded distribution of the errors.
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Figure 3.19. Statistical power for detecting changes in 3D cylindrical shapes for
the F-test, the ANOVA Permutation test, the ANOVA form error method, and the
EDMA-I and EDMA-II tests under exponential non-isotropic errors as described by
equation (3.14). Simulation parameters were: 320 landmarks (= k) per configuration,
10 configurations (= n) per sample, test size α of 0.05, the parameter {τ, σ, φ, r, h} were
set to 0.05, 0.05, 0.05, 5 and 10 respectively, the matrix B was set to (1 0.5 0.5; 0.5 1.5
0.5; 0.5 0.5 2), each test was replicated one hundred times, and 100 permutations were
performed for each test that requires permutation.

Table 3.5. Means and standard deviations of the simulated form error density functions
used in Figure 3.21.

N(0, 0.052Ikm) Uniform((−0.05
√
3)1km, (0.05

√
3)1km) t5(0, 0.05

2Ikm)
Mean 0.2343 0.1945 0.3528

Standard deviation 0.0316 0.0137 0.0939

3.5 Conclusions and Summary of Results of This

Chapter

The performance analyses conducted in this chapter were classified according to

the types of mean shapes utilized: first, the performance of tests for detecting

differences in mean shape was studied for shapes with arbitrary geometry that are

not commonly found in manufacturing, such as triangles and arbitrary polygons.

These types of shapes have been considered by previous SSA authors, and hence
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Figure 3.20. Effect of increasing the number of landmarks: Statistical power for
detecting changes in 2D circular shapes for the F-test, the ANOVA Permutation test
and the ANOVA on form errors under exponential isotropic errors as described by equa-
tion (3.13). Simulation parameters were: 320 landmarks (= k) per configuration, 10
configurations (= n) per sample, test size α of 0.05, the parameter {τ, σ, φ, r} were set
to 0.05, 0.05, 0.05 and 5 respectively, each test was replicated one hundred times, and
100 permutations were performed for each test that requires permutation (compare to
Figure 3.16).
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Figure 3.21. The fitted kernel density functions from 100,000 simulated circularity
form errors (k = 64, isotropic errors).
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Figure 3.22. Statistical power for detecting changes in 2D circular shapes for the F-
test, the ANOVA Permutation test and the ANOVA form error method under Uniform
errors. Simulation parameters were: 320 landmarks (= k) per configuration, 20 config-
urations (= n) per sample, test size α of 0.05, the parameters {a, b} were set to -0.0866
and 0.0866 respectively, each test was replicated 100 times, and 100 permutations were
performed for each test that requires them.
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Figure 3.23. Statistical power for detecting changes in 2D circular shapes for the
F-test, the ANOVA Permutation test and the ANOVA form error method under error
terms simulated from t5(0, 0.05

2). Simulation parameters were: 320 landmarks (= k)
per configuration, 20 configurations (= n) per sample, test size α of 0.05, each test was
replicated 100 times, and 100 permutations were performed for each test that requires
them.
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the reason for their inclusion in the present study. Second, we studied the per-

formance of these tests for shapes more commonly found in manufacturing, such

as circles and cylinders. In the first case, the data sets all have a small number

of landmarks per configuration, 5 at the maximum. The second type of shapes,

those of interest in manufacturing, have not been studied from an SSA point of

view before, and hence, simulated data sets were used, with considerably more

landmarks per configuration.

The best-known test found in the SSA literature, the ANOVA F-test by Goodall

(1991), extended to the two-way case by Del Castillo and Colosimo (2011), assumes

the following:

1. Normal i.i.d. errors;

2. Constant error variances across all landmarks and dimensions;

3. Small error variance.

Fortunately, the third condition usually holds in advanced manufacturing pro-

cesses, where SSA techniques are likely to be used. Related to this, we found

that the rule of thumb in Dryden and Mardia (1998) used to determine when the

variance is “small” (namely, σ ≤ 0.1 is considered “small”) is appropriate. The

robustness of the different SSA tests with respect to assumptions 1 and 2 above

was studied in sections 3.2 and 3.3.

A summary of the results we found related to the statistical power and type-I

error rate of each test is as follows:

• Mean shapes of arbitrary geometry under isotropic errors : the ANOVA Per-

mutation test and the ANOVA F-test showed the highest power performance.

The ANOVA F-test showed slightly lower than nominal type-I error rate.

• Circles (2D) and cylinders (3D) under isotropic errors : both the ANOVA

F-test and the ANOVA Permutation test showed the best power performance

with type-I error rates close to nominal.

• Circles (2D) and cylinders (3D) under non-isotropic errors : again, we found

the ANOVA F-test and the ANOVA Permutation test to give best power

performance among all considered tests with higher power for the ANOVA



68

F-test in some cases, but also with higher type-I error rate than assumed.

We observed that the power of these two tests improves as the number of

landmarks per configuration increases.

• Circles under non-normal errors : the ANOVA Permutation test showed the

best power performance and type-I error rate control. The ANOVA F-test

showed similar power to the ANOVA Permutation test but with a higher

than nominal type-I error rate. In contrast, the ANOVA on the form errors

provides good power performance only in cases where the distribution of the

errors is bounded since it is based on a range statistic.

From these results, the following conclusions and recommendations can be

made:

• Based on the simulation results it can be concluded that Goodall’s ANOVA

F-test and the ANOVA Permutation test are the most powerful tests for the

types of shapes tested under isotropic and non-isotropic error structures. In

particular, simulation evidence presented shows that the ANOVA Permuta-

tion test has better control of the type-I error rate, and hence it is the test

we recommend.

• The EDMA-I and EDMA-II tests exhibited very low power in three dimen-

sions under both isotropic and non-isotropic errors. We can not generalize

our results to all three dimensional shapes since some other studies have

shown that these tests do have good power in detecting shape differences for

some geometrical shapes (however, this seems to be true only for shapes with

very few landmarks). This raises the point that these tests depend on the

shape being tested. This behavior is obvious for EDMA-II since its power

depends also on the chosen baseline for scaling.

• Neither the ANOVA on the form errors nor the EDMA-I test is recommended

since they exhibited very low power in most of the cases considered. Our re-

sults show that EDMA-I has the true designed type-I error under isotropic

errors, but exhibits low power. Our results related to the ANOVA on the

circularity and cylindricity form errors are relevant in manufacturing (toler-

ancing) practice. Practitioners should utilize the ANOVA Permutation test
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to detect lack of circularity/cylindricity and for the estimation of factors

effects on the resulting shape (for more on the later, see Del Castillo and

Colosimo, 2011).

• A non-isotropic covariance worsens notably the performance of all tests con-

sidered. In particular, the power of the ANOVA Permutation test is reduced

with respect to the isotropic case, but this test still performs relatively well

if the number of landmarks per configuration is large. Fortunately, large

numbers of landmarks per configuration are common in manufacturing data.

Areas of future research related to this chapter are given in chapter 6.



Chapter 4
Robust Parameter Optimization of

Shape Responses

In this chapter, we extend the landmark-based shape optimization methods pro-

posed by Del Castillo and Colosimo (2011) to allow for the inclusion of noise factors

and for the case when objects of different sizes are considered different, i.e., when

dilation effects should not be filtered out, and interest is in ‘shape-and-size’ or the

form of the objects rather than their shape.

This chapter is organized as follows. In section 4.1, we introduce the problem

of shape optimization, review the existing optimization method proposed by Del

Castillo and Colosimo (2011) and extend it to the case of noise factors as well

as the case when shape sizes differ. Section 4.2 provide two real manufacturing

data examples where the extended method can be applied. Finally, we provide

summary and conclusions of this chapter in section 4.3.

4.1 Shape Optimization

Let {A,B, · · · , L} be controllable factors varied in a designed experiment. These

factors might have an effect on the geometry of some manufactured part. We wish

to find the settings of these L factors that provide a mean shape as close as possible

to the target geometry of the part. At the same time we would like to minimize

the variability of manufactured parts from the mean part geometry. One useful

measure to determine optimal design factor settings is the Generalized Procrustes
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distance G

G(X1,X2, ..,Xn) = min
βi,Γi, γi

1

n

n∑

i=1

n∑

j=i+1

||βiXiΓi + 1kγ
′
i − (βjXjΓj + 1kγ

′
j)||2 (4.1)

found by the Generalized Procrustes Algorithm (GPA). We note here that the

GPA provides reliable mean shape estimates when the errors variance σ2 is small,

attainable assumption in manufacturing applications. If σ2 is large, intrinsic mean

shape estimation techniques (Huckemann et al., 2010a,b) should be used instead.

Let X(ab···l) be k × m matrix of measurements representing an observed configu-

ration at treatment combination ab · · · l of design factors where a is the level of

factor A, b is the level of factor B, etc. In their paper, Del Castillo and Colosimo

(2011) solve the following problem to optimize manufactured parts geometry:

min
ab···l

{
GMean = G(X(ab···l),T )

}
(4.2)

where T is the desired target shape and X(ab···l) is the mean shape at treatment

ab · · · l. In other words, they choose treatment ab · · · l that attains the statistic

GMean a minimum as the optimal settings. This method considers the mean shape

at each treatment and the target in the comparison. Hence, the variability of

objects at each treatment combination is not considered.

The classical definition of shape, according to Kendall, filters dilations, ro-

tations (excluding reflections) and location. If objects of different size are to

be deemed different, then dilation should not be filtered out. Del Castillo and

Colosimo (2011) provide an analysis of variance (ANOVA) test for differences in

size, since it is common in tolerancing practice to separate size and shape.

To preserve size information and avoid a separate test for differences in size,

we first assume that the measurements result from the mean form µ by applying

rotations and translations only, that is:

X = (µ+E)γ + 1kγ
′ (4.3)

where γ is an m×m rotation matrix, γ is a translation vector and E is a k ×m
matrix of errors. This model is called ‘size-and-shape’ by which we will refer from
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now on simply as a model for the ’form’ of objects, rather than their shape (Dryden

and Mardia, 1998). The form of an object is therefore defined as all the information

remaining after removing rotation and location effects from an object.

Consider the following form Procrustes statistic

Gsize(X1,X2, ..,Xn) = min
Γi,γi

1

n

n∑

i=1

n∑

j=i+1

||XiΓi + 1kγ
′
i − (XjΓj + 1kγ

′
j)||2 (4.4)

This is similar to the G statistic in (4.1) but with scale minimization omitted. This

optimization problem can be solved by following the same procedure provided in

section 2.1.2 to solve for GPA in (4.1), but skipping steps 4 and 5 where size

optimization is performed.

To find the best treatment combination ab · · · l that minimizes variation around

a target form in addition to the within-treatment variability, we solve the following

optimization problem:

min
ab···l

{
GTotal = Gsize(X(ab···l),T ) +

1

n− 1
Gsize(X(ab···l1), · · · ,X(ab···ln))

}
(4.5)

where X(ab···li) represents the i
th object observed at treatment ab · · · l, i = 1, · · · , n

where n is the sample size. The first part of the objective function to be minimized

in (4.5) accounts for the distance between the mean form and the target, whereas

the second term accounts for form variability at that treatment. This is similar to

minimizing the mean squared error (MSE) in classical statistics.

Following common convention in Robust Parameter Design (RPD) (Myers and

Montgomery, 1995), noise factors are assumed to be modifiable during a carefully

controlled experiment, but in actual use of the process or product they are not

controllable and vary randomly. Similar to traditional RPD for scalar responses,

the goal is to find the optimal settings of the controllable factors that make the

process robust, or insensitive, to variations in the noise factors. Optimality in the

case we are concerned with means achieving a specific target form with minimum

variability.

To extend our method to the case of noise factors, we adapt the usual assump-

tion in RPD literature that a significant interaction between control and noise

factors is present. Hence, variability can be controlled by adjusting control factors

only. Assume that additional R noise factors are considered in the experiment.
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Define X(ab···l)(R) to be a k ×m matrix of measurements representing an observed

configuration at combination ab · · · l of the controllable factors and combination R

of the noise factors, where we assume n configurations have been observed at each

experimental run in the controllable factors. We solve :

min
ab···l
{GTotal = Gsize(X(ab···l)(·),T )

+
1

n− 1
Gsize(X(ab···l1)(·), · · · ,X(ab···ln)(·))} (4.6)

where X(ab···li)(·) is the i
th observed configuration at combination ab · · · l of control

factors and any combination of noise factors, i = 1, · · · , n, and X(ab···l)(·) is the

average form of these n configurations observed at treatment (ab · · · l)(·) obtained
by solving (4.1). We choose combination ab · · · l which yields a minimum GTotal as

the optimal factor settings. Consider the following example for illustration.

Example: Consider the 2-dimensional perfect circle of radius 5mm and a

notch of 1mm depth shown in Figure 4.1 as a target part geometry. Suppose

there are two design factors A and B each at two levels, low and high, that affect

the geometry of the manufactured parts. Factor A introduces ellipticity along the

y−axis (measured by the amplitude change δ from a perfect circle of radius 5mm)

as it changes from low to high while factor B controls the depth of the notch, d, in

mm. Two noise factors, namely C and D, were found to affect the resulted part

geometry. Factor C introduces ellipticity in an orthogonal direction as factor A

does. Factor D affects the variability of the manufactured part (variability within

each landmark). It also introduces ellipticity in the same direction as factor C does.

Both of these factors are costly to control. We would like to reduce the effect of

these two factors by controlling factors A and B. A 24 designed experiment was

simulated with sample size n = 20 configurations at each treatment combination.

Figure 4.2 shows all of the observed configurations while Figure 4.3 shows the mean

part geometry at all treatments. It can be seen how the variability increases as

factor D changes from high to low.

If noise factors were ignored, the experiment could be reduced to a 22 factorial

design in factors A and B. The mean forms are estimated as shown in Figure

4.4; they all look close to the target. Applying the GMean method in (4.2) results

in GMean statistic values shown in Table 4.1 with combination A = 1 and B = 1
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Figure 4.1. Target part geometry of example 2.
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Figure 4.2. Observed configurations of example 2 (low=-1 and high=1).

chosen as the optimal factor settings. Figure 4.5 shows the simulated configurations

at all combinations of control factors. As seen in Figure 4.5, treatment A = 1 and

B = 1 generates parts with higher variability and might result in a high rejection
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Figure 4.3. Mean part geometry at each treatment of control and noise factors of
example 2 (low=-1 and high=1).

rate. The results of the GTotal method are shown in Table 4.2. Table 4.2 shows

that A = −1 and B = 1 is a better combination since it provides the lowest GTotal

value.

Table 4.1. The GMean values for data in example 2.

Factor B
-1 1

Factor A
-1 2.33 1.87
1 1.44 0.50
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Figure 4.4. Mean part geometry (blue) overlayed by the target geometry (red) at all
control factor combinations.
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Figure 4.5. Observed configurations by ignoring noise factors (low = −1, high = 1).
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Table 4.2. GTotal values obtained using (4.6) for example 2 data.

Factor A Factor B Gsize(X(ab1)(·), · · · ,X(ab80)(·)) Gsize

(
X(ab)(·),T

)
GTotal

-1 -1 204.1379 2.327984 4.912008
-1 1 195.6328 1.866385 4.34275
1 -1 595.6815 1.436474 8.976746
1 1 601.7431 0.495439 8.112439

4.2 Real Manufacturing Process Examples

4.2.1 Titanium Lathe-turning

Consider the Titanium lathe-turning example mentioned in section 2.2 and dis-

cussed by Del Castillo and Colosimo (2011). A set of 90 titanium alloy (Ti-6Al-4V)

specimens was machined by lathe-turning. Two cutting steps were performed to

reduce the initial diameter of 20 mm to the final diameter of 16.8 mm (as shown

in Figure 4.6). The original specimens were obtained by vacuum arc remelting

followed by forging, rolling, hardening (1 hour at 780 C and then air cooling) and

a last phase of centerless grinding. Lathe-turning of the external surface was then

performed considering a full factorial 32 design, where each of the 9 treatments

was replicated 10 times. The two factors under study were A =depth of cut [mm]

and B =cutting speed [mm/rev] of the final (finishing) machining step. Values

assumed for these two parameters in each of the treatments are shown in Table

4.3. The machining feed [mm/rev] was selected at specific levels depending on the

cutting speed (specifically a feed equal to 0.07, 0.11 and 0.14 mm/rev corresponded

to a cutting speed of 80, 70 and 65 m/min, respectively). This type of dependency

between the feed and the speed was suggested by the tool supplier in order to keep

the tool life constant. For each specimen, the roundness profile was obtained at

a fixed distance of 5 mm from the left-hand side of the specimen (shown with a

dotted line in Figure 4.6). The profile was obtained using a CMM that measured

a set of 64 equally spaced points on each profile. The goal of the experiment is to

determine the best settings of the design factors to achieve the most circular parts.

Measured circular profiles are depicted in Figure 4.7. It can be seen from

Figure 4.7 that all factor combinations provide almost the same mean form, but
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Figure 4.6. The desired geometry of the final Titanium specimen obtained by lathe-
turning.

Table 4.3. Factors and levels in the Titanium machining experiment.

Treatment
A : depth of cut B : cutting speed

[mm] [m/min]
1 0.4 65
2 0.4 70
3 0.4 80
4 0.8 65
5 0.8 70
6 0.8 80
7 1.2 65
8 1.2 70
9 1.2 80

the variability decreases as both factor A and factor B increases. Applying the

GTotal method, we get the values shown in Table 4.4. These results suggest that

A = 1.2 and B = 80 is the optimal design setting at which a close mean form

to the target is achieved with minimized variability around that mean form. This

result is confirmed by engineering practices where it is usually suggested to cut at

high speed and low metal removal rate in order to gain better cut quality and size

control.

For illustration purpose, let us assume that factor B is a noise factor that

is hard or expensive to control. The observed data at all levels of factor A are

shown in Figure 4.8. As it is seen in Figure 4.8, we get the minimum variability

at A = 1.2. This is confirmed by the calculated GTotal values shown in Table 4.5.
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Figure 4.7. Observed shape data of the Titanium lathe-turning experiment.

Table 4.4. Calculated GTotal values for the Titanium lathe-turning data.

Treatment
A : depth of cut B : cutting speed

GTotal[mm] [m/min]
1 0.4 65 1.5429
2 0.4 70 1.5401
3 0.4 80 0.32001
4 0.8 65 1.6456
5 0.8 70 0.045513
6 0.8 80 0.020104
7 1.2 65 0.59855
8 1.2 70 0.11562
9 1.2 80 0.016857
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Figure 4.8. Observed shape data of the Titanium lathe-turning experiment assuming
factor B is noise factor.

Table 4.5. Calculated GTotal values for the Titanium lathe-turning data assuming factor
B is noise factor.

A : depth of cut
GTotal[mm]

0.4 3.7912
0.8 1.7519
1.2 0.39922

4.2.2 Aluminum Cylinders Lathe-turning

A set of 40 Aluminum alloy (6061) cylindrical specimens was machined by lathe-

turning in the FAME LAB at Penn State by the author. Each specimen was 4”

in length and was machined to reduce the diameter from 1” to 0.8” for the first

2.5” of its length. Three factors were considered in the experiment, A =spindle

rotational speed [RPM], B =depth of cut [in] and C =machine type. Both fac-

tors A and B were set at two levels each. Two different types of machines were

utilized: a 50-years-old LeBlond Regal GSA E800-25 lathe-turning machine and a

HAAS SL30 tail-stock computerized CNC machine. The machine type factor was

considered as a noise factor. This situation could happen in manufacturing where

large quantities of a certain part are needed but not enough computerized CNC

machines are available. Thus, old manual cutting machines can be used to prevent

time delays. Values assumed for the three factors in each of the eight treatments
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are shown in Table 4.6. The machining feed [in/rev] was set at 0.002 based on the

recommendations of the tool manufacturer to maximize tool life. The experiment

was replicated five times at each of the eight treatments. For each machined part, a

set of 179 landmarks was measured along the machined cylindrical surface using a

Ziess Vista C400 CMM and Calypso version 3.5 measurement software. All of the

observed 40 configurations are depicted in Figure 4.9. The goal of this experiment

is to find the optimal settings of design factors that generate the most cylindrical

shapes of diameter 0.8” with minimum shape variability.

Table 4.6. Factors and levels in the Aluminum machining experiment.

Treatment
A = cutting speed B = depth of cut

C = machine
[RPM] [in]

1 179 0.02 old
2 179 0.02 CNC
3 179 0.05 old
4 179 0.05 CNC
5 1800 0.02 old
6 1800 0.02 CNC
7 1800 0.05 old
8 1800 0.05 CNC

For form optimization, we first calculate the GTotal values using equation (4.6).

These values are shown in Table 4.7 and suggest choosing A = 179 and B = 0.02 as

the optimal design setting. As seen in Table 4.7 and Figure 4.10, this combination

provides the lowest variability. Lower cutting speed and lower depth of cut makes

the cutting operation more controllable and hence, less variability is generated.

4.3 Summary and Conclusions to This Chapter

In RPD problems, experimental factors are divided in two types, controllable and

noise factors, and the goal is to find the values of the controllable factors that yield

response values that are robust to variation in noise factors. In shape optimization,

the response to be optimized is the whole part geometry.

SSA has been recently introduced to manufacturing by Del Castillo and

Colosimo (2011). They have provided a statistical tool for shape optimization
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Figure 4.9. Observed shape data of the Aluminum lathe-turning experiment.

Table 4.7. Calculated GTotal values for the Aluminum lathe-turning data with control
factors only.

Treatment
A = cutting speed B = depth of cut

GTotal[RPM] [in]
1 179 0.02 0.011028
2 179 0.05 0.018547
3 1800 0.02 0.037036
4 1800 0.05 0.018381

where they compare the mean shape with the target and choose the treatment

combination with the minimum difference as the optimal one. In their optimiza-
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Figure 4.10. Observed shape data of the Aluminum lathe-turning experiment consid-
ering control factors only.

tion, they adopt the classical defection of shape where size information are filtered

out, and do provide a separate test for the size effect. Also, they consider the case

where all design factors are controllable.
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We propose a statistical tool for form optimization that considers both con-

trollable and noise factors. The proposed approach uses the object forms for

optimization, and hence size information is preserved and no separate test for

differences in size is required. The proposed approach is illustrated with several

simulated and real manufacturing shape data. The results obtained show that our

method provides good solutions in terms of close mean form to the target and

minimum variability.



Chapter 5
Spatio-Temporal Modeling and

Optimization of Profile Response

Experiments

This chapter discusses the third and last problem studied in this dissertation, the

robust parameter optimization of profile response experiments, considered in this

dissertation. In this chapter, a Gaussian Random Function (GRF) process model

is adopted to study and optimize profile responses. The chapter is organized as

follows. The proposed model is explained in section 5.1. Section 5.2 discusses

model robustness and validation. Finally, conclusion remarks are given in section

5.3. Some details about convergence assumptions and about the particular Markov

Chain Monte Carlo techniques utilized are shown in the Appendices.

5.1 A Spatio-Temporal Gaussian Random Func-

tion Process Model

Consider an experiment where the response of interest {yj}Jj=1 is observed at several

locations s = {s1, s2, ..., sJ}, after each experimental run. The locations sj can

refer to instances in time when the profile response is observed, or in general, they

can refer to some other variable the observed profiles depend on, so we have, in

effect, a functional response (Ramsay and Silverman, 2005). Assume the process
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performance depends on the shape of the sampled profile, where a given target

profile shape is desired. The shape of the sampled profile is modifiable through

a set of control factors xc and is also affected by noise factors xn. Similarly to

classical Robust Parameter Design (RPD) experiments, noise factors are assumed

to be controllable in a carefully designed experiment but are uncontrollable once

the product or process under study is optimized. The goal is to find the best

settings of xc that make the process achieve a desired target profile shape with

maximum probability.

Existing profile modeling techniques (Del Castillo et al., 2011; Nair et al., 2002)

assume that a profile response can be modeled, at a first stage, as a regression

in the sampling locations. Profile responses can have arbitrary functional forms

and it may be hard sometimes to model the shape of the mean profile with a

linear regression in the sj’s. A more flexible alternative is to model the within-

and between-profiles correlation using a GRF process and use these correlations

to improve the predictions. We will assume that the process that generates the

observed profiles follows an infinite dimensional normal distribution. Due to the

properties of the normal distribution, any finite set of observations will also be

normally distributed (Banerjee et al., 2004, section 2.4).

Assume that all N profiles each measured (sampled) at the same J locations.

Let yij be the observed response value of profile i at location j. Also, let x =

(xc,xn) and define f (xi, sj) to be a function of the design factor settings x under

which the jth location in the ith profile was observed. Then the observed response

values can be modeled as

yij = µ(xi, sj) + ǫij , ǫij ∼ N(0, σ2(xi, sj))

= f (xi, sj)
′β + ǫij (5.1)

Notice that both the mean and the variance are functions of the design factor

settings and measurement location. Let ǫi be the vector of errors ǫij observed

along the ith profile, that is:

ǫi = [ǫi1, ǫi2, ..., ǫiJ ]
′
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and let

Fi(xi, s) =




f (xi, s1)
′

f (xi, s2)
′

...

f (xi, sJ)
′



.

Then the ith profile, yi, can be expressed as

yi(xi) = Fiβ + ǫi, ǫi ∼ NJ(0,Σs(xi, s)) (5.2)

where Σs is the within-profile covariance matrix. If we define the matrices

Y =




y11 y12 · · · y1J

y21 y22 · · · y2J
...

...
...

...

yN1 yN2 · · · yNJ



, F =




F1

F2

...

FN



, and ǫ =




ǫ1

ǫ2
...

ǫN



, (5.3)

then Y , the matrix of all N profiles can be represented as:

vec(Y ′) = Fβ + ǫ, ǫ ∼ NNJ(0,Σ(x, s)) or

vec(Y ′) ∼ NNJ (Fβ,Σ) (5.4)

where F of size NJ×q, β is a q×1 vector of the regression parameters, and vec(·)
is the operator that concatenates matrix columns into one vector.

The covariance structure, Σ, must capture both the within- and the between-

profile correlations. In order to reduce the number of covariance parameters to

be estimated one could assume a spatial covariance model over both x and s.

However, the design factor space (x-space) and the measurement location space

(s-space) are usually measured in different scales (Wikle and Berliner, 2005), and a

single spatial covariance model would be inadequate. Therefore, we assume instead

two separate spatial covariance models, one for the x-space and another for the

s-space, in such a way that:

Σ = Σx ⊗Σs (5.5)
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where the N × N matrix Σx models the between-profiles correlations due to the

change in design factors, the J×J matrix Σs models the within-profile correlations

due to the proximity of any two locations in s, and ⊗ denotes the Kronecker prod-

uct. This assumption is referred to as separability in Spatial Statistics (Genton,

2007). The rationale is that if operating conditions x1 and x2 are close in x-space,

then they will tend to result in similar profile responses. Likewise, if responses

yij and yik are such that j and k are close in s-space, then they will tend to be

similar. For example, Figure 5.1 below shows a schematic representation of a profile

response experiment in a two dimensional x-space. The two points x1 and x2, that

are close to each other in the x-space, are expected to generate two profiles y1 and

y2 in the s-space that are correlated. In contrast, the point x3 that is farther away

(in the x-space) from x1 and x2 should generate a profile response y3 that is not

that correlated with y1 and y2. The Kronecker product decomposition of Σ makes

the model more attractive computationally for large size problems (Genton, 2007),

since one deals with separate N × N and J × J covariance matrices Σx and Σs

instead of a single NJ × NJ covariance matrix, Σ. Another reason behind the

wide use of separable covariance structures is that they provide an easy way for

generating positive definite covariance matrices (Genton, 2007; Gneiting, 2002).

We note that this Kronecker product decomposition is not unique since

Σx ⊗Σs = (cΣx)⊗ (
1

c
Σs). (5.6)

which results in a non-identifiability problem. To reduce the number of parame-

ters in the separable covariance structure and to eliminate the non-identifiability

problem, we assume the following exponential covariance functions:

Σs = exp{−Ds/φs} (5.7)

Σx = κ exp{−Dx/φx}+ ψxI. (5.8)

where Ds is a J × J matrix of Euclidean distances between measuring locations

and Dx is an N×N matrix of distances between the design factor settings. Notice

that we have only four parameters to determine, (φs, κ, φx, ψx). The covariance

functions (5.7-5.8) set the diagonal elements of Σs to ones, restricting the constant
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c to be one in (5.6). Additional notes on this Kronecker product decomposition of

covariance matrices are provided in Appendix C.
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y
1

y
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3
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2

Figure 5.1. A schematic representation of the spatio-temporal data structure. Points
x1 and x2 are close in the x-space and hence they are expected to generate similar
profiles, y1 and y2. In contrast, a point x3 in x-space that is farther away from x1 and
x2 is expected to generate a profile response y3 that is not that correlated with y1 and
y2.

Letting θ = (φs, ψx, φx, κ) and assuming the priors π(θ) and π(β) are available,

the joint posterior density is:

π(θ,β | Y ,F ) ∝ π(θ)π(β)|Σx ⊗Σs|−
1

2 (5.9)

exp{−1
2
(vec(Y ′)− Fβ)′(Σx ⊗Σs)

−1(vec(Y ′)− Fβ)}

For this model, full conditionals of the parameters are usually hard or even im-

possible to derive in a closed form (see Banerjee et al., 2004, section 5.1.1), and

hence Gibbs sampling is not possible in general. Therefore, a Metropolis-Hastings

Markov Chain Monte Carlo (MCMC) algorithm is required to draw samples from

the posterior distribution in (5.9). Full Bayesian estimation of a GRF model is

complicated due to convergence problems (Besag and Green, 1993). We have

achieved good convergence behavior with the parametrization (5.7-5.8) and the



90

adaptive Metropolis method of Appendix D.

If z is a new observed profile at factor settings x∗ then, due to the GRF process

assumption we have:

([
vec(Y ′)

z′

]
| θ,β,F ,x∗

)
∼ N(N+1)J

([
Fβ

Fz(x
∗, s)β

]
,

[
Σ11 Σ12

Σ21 Σ22

])

where Σ11 = Σx⊗Σs, Σ22 = (ψx+κ)Σs and Σ12 is an NJ×J matrix such that the

ith J × J block is [ψx + κ exp(−d(xi,x∗)/φx)]Σs for i = 1, ..., N . The distribution

of z | Y ,F ,x∗, θ,β is easily derived using basic results from Multivariate Normal

Theory (see, e.g., Johnson and Wichern, 2009) and is equal to:

z′ | Y ,F ,x∗, θ,β ∼ N
(
Fz(x

∗, s)β +Σ21Σ
−1
11 (vec(Y

′)− Fβ),

Σ22 −Σ21Σ
−1
11 Σ12

)
(5.10)

Using the composition rule (see, e.g., Gelman et al., 2004) we can integrate nu-

merically the posterior predictive density π(z | Y ,F ,x∗):

π(z | Y ,F ,x∗) ∝
∫ ∫

π(z|x∗,β, θ)π(β, θ | Y ,F )dβdθ (5.11)

The integration in (5.11) needs to be carried out by first generating samples for β

and θ from their joint posterior density (5.9). Appendix D provides an adaptive

MCMC algorithm to generate β and θ samples from the posterior distribution

in (5.9). In all examples shown in this chapter the prior distributions shown in

equations (D.1-D.5) in Appendix D were used for the model parameters. The

generated β and θ samples are then used to generate as many samples as needed

from the density π(z | Y ,F ,x∗, θ,β).

To find the optimal control factor settings that makes the process robust to

variability in the noise factors, we maximize the “probability of conformance” to

the given specification limits, p(xc)RPD, with respect to xc where

p(xc)RPD = Exn [P (z ∈ T | Y ,F ,xc,xn)]

=

∫
P (z ∈ T | Y ,F ,xc,xn)π(xn)dxn (5.12)
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with T being a given set of specifications (e.g., low and high values of y at each loca-

tion sj) for the desired values for the response, and π(xn) is the probability density

of the noise factors which we assume known following standard RPD assumptions.

This is the Bayesian predictive optimization approach of Peterson (2004) and Miro

et al. (2004) applied to functional or profile responses, where p(xc)RPD is estimated

by Monte Carlo integration. The Bayesian predictive approach has the advantage

of considering the correlation structure of the data, the variability of the noise

factors, and the uncertainty in the model parameters.

The GRF model in (5.4) assumes a zero mean and a stationary error ǫ. If

the observed data has a trend in the x-space, the s-space or both, then the data

need to be detrended in order to obtain stationarity. Furthermore, noise×control
interactions for the mean may be needed in a Robust Parameter Design problem

(Myers and Montgomery, 1995). Therefore, we suggest to use an additive mean

structure in both x and s to gain such a stationary error structure. Furthermore,

if a significant interaction between the x-space and the s-space is anticipated,

this interaction should also be included in the mean structure to enhance the

Kronecker product approximation to Σ. Finally, when noise factors are present,

it is recommended to include all two factor control×noise interaction terms in the

mean structure to allow for RPD optimization.

Example 1, no noise factors: metal injection moulding process. Gov-

aerts and Noel (2005) report an experiment where 25 profiles of the elastic modulus

(Y ) of green parts (products before a sintering operation) were observed in a metal

injection moulding process. The elastic modulus was measured for each of the 25

parts at 701 values (locations) of the debinding temperature ranging from 10 to 80o

C. The experiment consisted of two controllable factors in the ingredients of the

binder, namely, Xanthan concentration (denoted by x1 and varied at 5 levels from

1 to 5) and Chromium/Xanthan concentration ratio (denoted by x2 and varied at

4 levels from 1:1 to 4:1). To speed up computations, the number of locations was

reduced to 78 locations by sampling every 9th observed value. It was reported by

the authors that one of the profiles was a clear outlier, so it was excluded from

the analysis. The objective of the experiment as discussed by the authors is to

obtain a large elastic modulus at low temperature values while using low Chromium

concentration, given it is a pollutant. The specification limits were therefore set
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considering the range of the observed profiles and the conditions above. Figure

5.2 shows the observed 24 profiles (after removing the outlier profile) along the 14

distinct design factor settings.
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Figure 5.2. Observed elastic modulus profiles at each of the 14 control factor treatments
in the metal injection moulding process. The lower and upper specification limits are
shown by dashed lines.

We assume that the mean structure has a first order form in design factors and

locations, i.e., µ(xi, sj) = β0 + β1xi1 + β2xi2 + β3sj, i = 1, ..., 24 and j = 1, ..., 78.

1000,000 samples from the posterior distribution were generated and thinned by

keeping every 10th sample resulting in 100,000 samples. The thinned samples were

checked for convergence through five types of plots for each of the four covariance

parameters, a trace plot, an autocorrelation function plot (ACF), a plot for the

expected value vs. the sample number, a plot of the MCMC standard error of the

posterior mean estimate calculated using the batch means method (see e.g., Flegal

et al., 2008), and a plot for the posterior variance vs. the sample number. As

it can be seen from Figure 5.3, trace plots show steady behavior and ACF plots

all decay. In addition, the expected value and variance plots also converge to an

asymptote, and the MCMC standard error approaches zero as the sample number

increases. The generated MCMC samples were used in MATLAB’s ga genetic

optimization algorithm to maximize p(xc)RPD. The optimization was constrained
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to 1 ≤ x1 ≤ 5 and 1 ≤ x2 ≤ 4. The optimal solution found was at x∗1 = 4.995

and x∗2 = 2.006 with probability of conformance of 0.574 (SE = 0.0157) and can

be verified through the surface plot of p(xc)RPD shown in Figure 5.4(a). In more

general multi-factor experiments, either using an algorithm which attempts to find

a global optimum (like ga does) or using a local non-linear optimizer started from

a large number of initial points is necessary given p(xc)RPD is not concave.

Figure 5.4(b) shows the mean, 10th and 90th percentiles of the posterior predic-

tive density at the optimal solution found. Luckily, this optimal solution satisfies

the criteria for a low Chromium requirement otherwise the upper bound for x2

would need to be lowered. The optimal solution found coincides with that found

by Del Castillo et al. (2011), but they report higher conformance probability since

they used wider specification limits. It is important to mention that the fitted

model needs to be validated before it is used for process optimization, otherwise

optimization results may not be accurate. Model validation is discussed in section

5.2. We first present a second example where noise factors are considered in the

experiment.

Example 2, with noise factors: electric alternator design. In the electric

alternator design example by Nair et al. (2002), presented in the introduction, the

goal is to find the controllable factor settings that maximize the probability the

electric current profile lies within the specified limits U and L given in Table 5.1.

Table 5.1. Specification limits at each of the 7 RPM locations for the electric alternator
example.

s1 s2 s3 s4 s5 s6 s7
U(sj) 190 210 215 220 225 230 230
L(sj) 120 140 155 170 185 200 200

To fit model (5.4-5.8) we assume a mean model with an intercept, all main

effects and all two factor control×noise interaction terms, i.e., µ(xi, sj) = β0 +∑10
k=1 βkxik +

∑8
k=1 βik9xikxi9 +

∑8
k=1 βik10xikxi10 + β28sj, i = 1, ..., 108 and j =

1, ..., 7. 1000,000 samples from the posterior distribution were generated using the

MCMC algorithm in Appendix D and were thinned to 100,000 samples by keeping

every 10th sample. The posterior densities for the covariance parameters along

with the plots used to check for convergence of the MCMC algorithm are shown in
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Figure 5.3. MCMC convergence plots, metal injection example. From top to bottom:
posterior densities, trace plots, autocorrelation functions (ACF), expected value plots,
MCMC standard error of the estimated posterior mean, and posterior variance plots of
the generated covariance parameters (φx, ψx/κ, φx) (one column of plots per parameter).
In here, we show the plots of the ratio ψx/κ since it is known in the Spatial Statistics
literature (see e.g., Banerjee et al., 2004) that the ratio of these two parameters converges
to its true distribution but not each of the two parameters separately.

Figure 5.5. The MCMC samples were used in MATLAB’s ga optimization routine

to maximize p(xc)RPD. The optimization was constrained to −1 ≤ xk ≤ 1 for

k = 1, ..., 8 and the noise factors were assumed to be independent unif(−1, 1)
random variables. Joint and marginal probabilities of conformance of the optimal

solution found are shown in Table 5.2. The mean, 10th and 90th percentiles of the

posterior predictive density at the optimal solution found are shown in Figure 5.6.

The optimal solution found is different than the one given by Nair et al. (2002)

due to the inclusion of the uncertainty in the model parameters. It is noticeable

in Table 5.2 and Figure 5.6 that the specifications are violated mostly at the last

two locations. If the specification limits at these two locations can be widened, the

conformance probability evidently will improve.
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Figure 5.4. Metal injection example: (a) Probability of conformance to specifications as
a function of design factors. (b) Predicted profiles at the optimal design factor settings.
The mean of the posterior predictive density is shown with thick solid line. The other
two solid lines are the 10th and 90th percentiles of the posterior predictive density. Upper
and lower specification limits are shown in dashed lines.
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Figure 5.5. MCMC convergence plots, electric alternator example. From top to bottom:
posterior densities, trace plots, autocorrelation functions (ACF), expected value plots,
MCMC standard error plots and variance plots of the generated covariance parameters
(φx, ψx/κ, φx) (one column of plots per parameter).
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Table 5.2. Optimization results for the electric alternator example. Numbers in paren-
theses are the standard errors associated with probability estimation.

xopt
x1 x2 x3 x4 x5 x6 x7 x8

0.059 0.640 0.759 -0.966 0.558 0.846 -0.847 0.977
xopt rounded 0 1 1 -1 1 1 -1 1
p(L < y < U) 0.325(0.0148)

p(Li < yi < Ui)

y1 y2 y3 y4 y5 y6 y7
0.8 0.83 0.79 0.69 0.69 0.58 0.50

(0.0126) (0.0119) (0.0129) (0.0146) (0.0146) (0.0156) (0.0158)
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Figure 5.6. Predicted profiles at the optimal controllable factor settings for the electric
alternator example. The mean of the posterior predictive density is shown in solid thick
line. The other two solid lines are the 10th and the 90th percentiles of the posterior
predictive distribution. The upper and lower specification limits are shown by dashed
lines.

Example 3, with noise factors: plastic injection moulding process. Wu

and Hamada (2000) report an experiment where the amount of plastic injected in

a plastic injection process needs to be controlled. The response of interest was the

part weight measured at eight values of the injection pressure, namely, 650, 700,

750, 800, 850, 900, 950 and 1000. The experiment consisted of seven controllable

factors each at two levels, shown in Table 5.3, and four noise factors: melt index,

percent regrind, operator and resin moisture. To reduce the experiment cost, a

single compound noise factor at two levels was used instead (see Table 5.4). The

conducted experiment was a 27−4 replicated four times resulting in a 64 profiles

each of eight locations. The experimental goal is to achieve part weights between
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650 and 750 at different injection pressure values. The observed data profiles along

with the target limits are shown in Figure 5.7. This Figure shows clearly that the

data is not stationary and need to be detrended. The model was fitted assuming a

first order mean structure in design factors and locations and all two factor control-

noise interactions, that is µ(xi, sj) = β0+
∑8

k=1 βkxik+
∑7

k=1 βk8xikxi8+β17sj, i =

1, ..., 64 and j = 1, ..., 7. 100,000 MCMC samples were generated. The MATLAB’s

ga optimization routine was used to maximize p(xc)RPD. The optimization was

constrained to −1 ≤ xk ≤ 1 for k = 1, ..., 7 (codded units). Noise factor was

assumed to have uniform(−1, 1) distribution. The optimal solution found along

with the optimal conformance probability are shown in Table 5.5. Figure 5.8 shows

the mean, 10th and 90th percentiles of the posterior predictive density at the found

optimal solution. It can be seen in Table 5.5 that the first injection pressure

location (650) is the one drives the joint conformance probability. If a restriction

can be imposed on the injection pressure value to not get below 700, then a 100%

conformance probability can be achieved.

Table 5.3. Control factors in the plastic injection moulding experiment by Wu and
Hamada (2000).

Factor
Level

-1 1

x1: injection speed 0 2
x2: clamp time (seconds) 44 49
x3: high injection time (seconds) 6.3 6.8
x4: low injection time (seconds) 17 20
x5: clamp pressure (psi) 1700 1900
x6 water cooling (oF) 70 80
x7: low injection pressure (psi) 550 650

5.2 Model Robustness and Validation

The modeling approach discussed in section 5.1 has the following two main as-

sumptions:

1. The data is multivariate normally distributed with mean Fβ and covariance

matrix Σ.
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Table 5.4. Noise factors in the plastic injection moulding experiment by Wu and
Hamada (2000).

Label Noise factor Level

x8 = −1
melt index 18

percent regrind 5
operator new

resin moisture high

x8 = 1

melt index 22
percent regrind 0

operator experienced
resin moisture low
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Figure 5.7. Observed profiles at each of the 16 design factor treatments in the plastic
injection process example. The specifications L(sj) and U(sj) are shown by dashed lines.

2. The covariance matrix Σ can be decomposed into a Kronecker product of

Σx and Σs.

In this section, we discuss the robustness of the proposed methodology with

respect to these two assumptions, followed by a discussion on how to verify the

second assumption.
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Table 5.5. Optimal solution and point wise probabilities of conformance for the plastic
injection moulding data. Numbers in parentheses are the standard errors associated with
probability estimation.

xopt
x1 x2 x3 x4 x5 x6 x7
-1 -0.9997 0.9997 0.9997 1 0.9997 1

xopt rounded -1 -1 1 1 1 1 1
p(L < y < U) 0.544(0.0158)

p(Li < yi < Ui)

y1 y2 y3 y4 y5 y6 y7 y8
0.544 1 1 1 1 1 1 1

(0.0158) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
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Figure 5.8. Predicted profiles at the optimal controllable factor settings. The mean of
the posterior predictive density is shown in solid thick line. The other two solid lines are
the 10th and 90th percentiles of the posterior predictive density. The upper and lower
specification limits are shown in dashed lines.

5.2.1 Robustness to Normality Assumption

As usually performed in linear regression analysis (e.g., Bastos and O’Hagan, 2009;

Shen and Xu, 2007), the normality assumption can be verified through normal

probability plots of the residuals. Let R be an NJ × 1 vector of residuals such
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that

R = vec(Y ′)− F β̂ (5.13)

where β̂ is the mean of the posterior distribution of β. Then

var(R) = var(vec(Y ′)− F β̂)

= Σ+ F var(β̂)F ′. (5.14)

Under a non-informative (flat) prior for β we have that var(β̂) = (F ′Σ−1F )−1

(see Gelman et al., 2004, page 374), and therefore

var(R) = Σ+ F (F ′Σ−1F )−1F ′. (5.15)

Hence, if G is the standard deviation matrix such that var(R) = GG′, the ele-

ments of the vector RG = G−1R are standardized uncorrelated residuals with unit

variance. A normal probability plot can then be used to check the normality of

RG.

To check how robust model (5.4-5.8) is with respect to non-normal errors, we

simulated the following two stage model to generate data we then fit to our model:

yij = h(sj)θi + σeǫ

θi = Bg(xi) + σww, w ∼iid N(0, 1). (5.16)

Assume there are two factors x1 and x2 each at three levels {1, 2, 3} and the

response is measured at fifty locations, namely s = {1, 2, 3, · · · , 49, 50}. Let g(xi)
be a full quadratic model in x1 and x2 such that g(xi) = [1, xi1, xi2, xi1xi2, x

2
i1, x

2
i2]

and let h(sj) = [1, sin(0.1sj), sin(0.1sj)
2]. Two distributions were assumed for

ǫ, a N(0, 1) and a t with 5 degrees of freedom. The constant σe was changed

at four levels of {0, 0.5, 1, 1.5} while σw kept constant at 0.5. To fit our model,

an additive linear model in x and s was assumed for the mean structure, i.e.,

f (xi, sj) = {1, xi1, xi2, sj}. The MCMC algorithm was run for 100,000 iterations.

The mean, 10th and 90th percentiles of the posterior predictive density were esti-

mated based on 1000 simulated profiles at each of the design treatments. Residuals
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were then calculated as the difference between the profiles used for model fitting

and the mean of the posterior predictive density. Figures 5.9(a) and 5.9(b) show

the observed (simulated) and predicted profiles when σe = 1.5 for both cases of

errors distribution. These two figures show that model (5.4-5.8) provides a good

fit for the simulated data even under the case of t distributed errors. Figure 5.10

shows the normal probability plot of the residuals at the 8 combinations of σe and

error distribution. It can be seen in Figure 5.10 that the model provides acceptable

normal probability plots under normal and t distributed errors.

5.2.2 Robustness with Respect to Separability and Mean

Structure Misspecification

Since in the proposed methodology the fitted model is used for process optimiza-

tion, the reliability of the estimated optimal solutions is important. In this section,

we test the robustness of the proposed model for

1. Mean structure misspecification,

2. The separability assumption.

For the purposes of the robustness analyses conducted in this section, we assumed

there are two factors x1 and x2, each at five levels {1, 2, 3, 4, 5}, and each profile is

measured at 50 locations s = {1, 2, · · · , 50}. Three mean structures were assumed.

The first one is an intercept only, that is µ(xi, sj) = β0. The second mean structure

is an additive model in design factors and locations, that is µ(xi, sj) = β0+β1xi1+

β2xi2 + β3sj. The third mean model is an interaction mean structure, that is

µ(xi, sj) = β0 + β1sj + β2xi1 + β3xi1sj + β4xi2 + β5xi2sj .

To assess the proposed model performance under mean structure misspecifica-

tion, we assume an iid N(0, 0.2I) error structure. For each mean structure, the

simulated profiles were fit once to each of the three same mean models. Hence,

we have 9 model fit combinations (3 forms for the true mean structure used for

data generation and 3 forms for model fitting). The fitted and actual models were

then used to find the best design factor settings that maximizes the probability the

generated/predicted profiles fall between the specification limits. The specification
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Figure 5.9. Observed vs predicted profiles at (a) σe = 1.5 and ǫ ∼ N(0, 1), (b) σe = 1.5
and ǫ ∼ t5 used in the normality robustness analysis. Solid lines represent the observed
profiles used for model fitting, the mean, 10th and 90th percentiles of the posterior
predictive density are shown in dashed lines.
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Figure 5.10. Normal probability plots for the different error distributions considered
in the normality robustness analysis.

limits were set to ±2 of the mean profile at factor settings x1 = 2, x2 = 2.5. Spec-

ification limits were kept fixed for all simulations. Optimization results, shown in

Table 5.6 below, show that the proposed model is robust to misspecifications of

the mean structure since it provided low relative errors in the estimated optimal

solution. Here, the relative error is calculated as the norm of the difference between

the true and estimated optimal solutions divided by the norm of the true optimal

solution. They also show that the performance of the model is improved once the

data is detrended to obtain stationary residuals, i.e., when the true mean structure

has a trend, a first order model or an interaction model is needed rather than an

intercept term only model.
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Table 5.6. True vs. estimated optimal solutions for the 9 model combinations. Num-
bers in parentheses are the standard errors associated with the conformance probability
estimation. The relative error is calculated as ex = ‖x∗

true − x∗
estimated‖F /‖x∗

true‖F . In
case the optimizer returns multiple optimal solutions, only one of them is listed.

True Mean
True optimal solution

Fitted Mean
Estimated optimal solution

exx∗1 x∗2 p̂ x∗1 x∗2 p̂

Intercept 2.3104 1.000 1(0.0)
Additive 2.310 1.000 1(0.0) 0.000

Interaction 2.310 1.000 1(0.0) 0.000
Intercept 2.310 1.000 1(0.0) 0.000

additive 1.2803 2.819 1(0.0)
Additive 1.405 2.757 1(0.0) 0.002

Interaction 1.155 2.757 1(0.0) 0.002
Intercept 2.310 1.000 0(0.0) 0.456

interaction 1.187 2.827 1(0.0)
Additive 1.405 2.757 0.01(0.00031) 0.006

Interaction 1.155 2.757 1(0.0) 0.001
Intercept 3.666 2.827 0.01(0.00031) 0.654

To assess the proposed model robustness to the separability assumption, we

used the following model for data generation:

Y = Fβ + ǫ, ǫ ∼ NNJ(0,Σ)

where F is defined as in (5.3) and the ijth element of Σ has the following structure:

Σij =
σ2

(a(ds)2α + 1)δ+γd/2
exp

(
− cdx
(a(ds)2α + 1)γ/2

)
(5.17)

where dx is the distance in the x-space between the factor settings at which the ith

and jth elements of vec(Y ′) were observed, ds is the distance in the s-space between

the locations at which the ith and jth elements of vec(Y ′) were observed, d is the

dimension of the x−space, and a, c and α are constants define the smoothness

of this covariance function. Notice that Σ is the multiplication of two terms.

The first is σ2/(a(ds)
2α + 1)δ+γd/2 which is a function of ds only. The second is

exp
(
−c dx/(a(ds)2α + 1)γ/2

)
which is a function of both ds and dx. In this model

proposed by Genton (2007), if γ = 0 the second term reduces to exp(−c dx) which
depends on dx only, and hence Σ will be separable. Otherwise (γ > 0) the second

term is not separable, and then Σ has a non-separable structure. The covariance

structure parameters were set to σ2 = 0.2, a = 1, c = 1, d = 2, δ = 1 and α = 1.

Again, we assumed three mean structures as before and the generated profile data
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at each mean structure was fit once to the three same mean models. Three values

for the constant γ were assumed, {0.1, 0.5, 1}, resulting in nonseparable covariance

structures.

Table 5.7 shows the estimated optimal solutions for the 27 combinations (of the

true mean model, assumed mean model and the nonseparability parameter γ) tried

along with the true optimal solution for each case. Note that in all cases in the

table, a nonseparable covariance matrix was assumed, since γ > 0. As can be seen

when the correct mean structure model is fit (i.e., only the covariance structure

separability is assumed and no mean structure misspecification is present), the

relative error is smallest. More interestingly fitting a wrong mean structure model

(i.e., misspecified mean structure and nonseparable covariance structure) provides

optimal solutions with low relative error values. This shows that the fitted model

(5.4-5.8) is robust with respect to the assumed mean structure and is also robust

with respect to this nonseparable covariance structure.

5.2.3 Checking the Covariance Separability Assumption

If the stochastic process that generates the observed profile data is separable (i.e.,

no significant spatial-temporal interaction), then the covariance structure of that

process is separable (Genton, 2007). A separable process can be written as the

product of two independent processes, one purely spatial and a second purely

temporal. Let Y ∗ be the detrended observed data matrix. Then using singular

value decomposition (SVD), Y ∗ can be written as

Y ∗ = U∆V ′ =

min(N,J)∑

i=1

δiuiv
′
i

where δiuiv
′
i is called the ith Empirical Orthogonal Function (EOF) (Banerjee et

al., 2004, section 8.1.1). If Y ∗ can be approximated by its first EOF, δ1u1v
′
1, and u1

and v1 are independent, then Y ∗ is separable (Banerjee et al., 2004). Therefore,

the following three step procedure provides an easy and fast way to check how

reasonable the separability assumption is for the observed data:

1. Assume a mean function form and use Least Squares to detrend the data

such that vec(Y ∗) = vec(Y ) − F β̂. The mean structure might include an
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Table 5.7. True vs. estimated optimal solutions for the 9 model combinations each at
3 levels of the non-separability parameter γ. Numbers in parentheses are the standard
errors associated with the conformance probability estimation. The relative error is
calculated as ex = ‖x∗

true−x∗
estimated‖F /‖x∗

true‖F . In case the optimizer returns multiple
optimal solutions, only one of them is listed.

True Mean γ
True optimal solution

Fitted Mean
Estimated optimal solution

exx∗1 x∗2 p̂ x∗1 x∗2 p̂

Intercept

0.1 2.310 1.000 1(0.0)
Additive 2.310 1.000 1(0.0) 0.000

Interaction 2.310 1.000 1(0.0) 0.000
Intercept 2.310 1.000 1(0.0) 0.000

0.5 2.310 1.000 1(0.0)
Additive 2.310 1.000 1(0.0) 0.000

Interaction 2.310 1.000 1(0.0) 0.000
Intercept 2.310 1.000 1(0.0) 0.000

1 2.310 1.000 1(0.0)
Additive 2.310 1.000 1(0.0) 0.000

Interaction 2.310 1.000 1(0.0) 0.000
Intercept 2.310 1.000 1(0.0) 0.000

Additive

0.1 1.155 2.882 1(0.0)
Additive 1.405 2.757 1(0.0) 0.008

Interaction 1.405 2.757 1(0.0) 0.008
Intercept 1.280 2.507 0.05(0.0069) 0.016

0.5 1.155 2.882 1(0.0)
Additive 1.405 2.757 1(0.0) 0.008

Interaction 1.405 2.757 1(0.0) 0.008
Intercept 1.815 2.507 0.08(0.0086) 0.060

1 1.155 2.882 1(0.0)
Additive 1.405 2.757 1(0.0) 0.008

Interaction 1.405 2.757 1(0.0) 0.008
Intercept 4.201 4.868 0.02(0.0044) 1.372

Interaction

0.1 1.155 2.850 1(0.0)
Additive 1.405 2.757 0.1(0.0095) 0.008

Interaction 1.405 2.757 1(0.0) 0.008
Intercept 1.940 2.513 0.07(0.0081) 0.077

0.5 1.155 2.850 0.999(0.0010)
Additive 1.468 2.757 0.06(0.0075) 0.011

Interaction 1.405 2.757 1(0.0) 0.008
Intercept 1.437 2.694 0.05(0.0069) 0.011

1 1.187 2.835 0.999(0.0010)
Additive 1.155 2.757 0.03(0.0054) 0.001

Interaction 1.405 2.757 1(0.0) 0.006
Intercept 1.280 2.757 0.05(.0054) 0.002

intercept, main effects of design factors and locations, design factor location

interactions, etc.

2. Construct the singular value decomposition of Y ∗ and its approximation

Y ∗
approx = δ1u1v

′
1 where δ1 is the largest eigenvalue, and u1 and v1 are

the left and right singular vectors, respectively, corresponding to the largest

eigenvalue.

3. Graph both Y ∗ and Y ∗
approx vs. s. If the two plots look similar, then sep-
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arability is a reasonable assumption . A more precise metric is the relative

approximation error defined as:

eapprox =
‖Y ∗ − δ1u1v

′
1‖F

‖Y ∗‖F

where ‖ · ‖ is the Frobenius norm.

The construction of the normal probability plots depends on Σ, but Σ is ap-

proximated by a separable covariance structure. Hence, the normal probability

plots would be misleading if the covariance structure is significantly non-separable.

If the data is approximately normal and the predictions are acceptable, the model

is useful for optimization purposes. Here, we suggest to use cross validation tech-

niques (Hastie et al., 2009) for model assessment. In this chapter, we use two

cross validations, one based on leave-one-out predictions and a second one based

on leave-10%-out predictions. In leave-one-out predictions, one of the observed

profiles is left out for testing and the remaining N − 1 profiles are used for model

fitting. The fitted model is then used to predict the left out profile. In leave-10%-

out, we instead leave 10% of the observed profiles out and use the remaining 90%

for model fitting. Then the fitted model is used to predict the 10% profiles left

out. If the fitted model provides acceptable predictions for testing profiles, then it

would provide acceptable predictions at other locations in the x-space.

Example 1 (cont.). Recall the metal injection process example mentioned in

the previous section. To check the observed elastic modulus data for separability,

we assume three mean structures. The first is an intercept model only, that is

µ(xi, sj) = µ. The second assumes an additive mean structure in the design

factors and locations, that is µ(xi, sj) = β0 + β1xi1 + β2xi2 + β3sj. The third

mean structure assumes an interaction model, that is µ(xi, sj) = β0 + β1sj +

β2xi1 + β3xi1sj + β4xi2 + β5xi2sj. Figure 5.11 shows the plot of Y ∗ and Y ∗
approx

for the three assumed models. The relative error statistics were 0.48887 for the

intercept model, 0.28234 for the additive model and 0.28187 for the interaction

model. Looking at the plots and the relative error values, it can be seen that

an additive mean structure is acceptable, since it provides a simple model with a

relative error almost equal to the most complicated (interaction) model.
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The additive model fitted for this data was further checked by, leave-one-out

and leave-10%-out cross validations were performed. Cross validation results are

shown in Figures 5.12 and 5.13. Based on these figures it can be seen that the

model provides acceptable predictions. Hence, the fitted model can be used for

process optimization.
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Figure 5.11. Checking the separability assumption, metal injection example: plots of
Y ∗ and Y ∗

approx for (a) intercept mean structure (b) additive mean structure and (c)
interaction mean structure. The first row of the observed and approximated data matrix
is shown with thick line.

Example 2 (cont.). Recall the electric alternator design example mentioned

in section 5.1. To check the observed profile data of the electric current for sep-

arability, we assume three mean structures: an intercept model only, an additive
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Figure 5.12. Leave-one-out cross validation results for the metal injection example.
Solid lines are the observed profiles used for testing. The mean, 10th and 90th percentiles
of the posterior predictive density are shown in dashed lines. Typically, the would be 24
plots since there are 24 observed profiles, but we only show 12 of them here.
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Figure 5.13. An instance of leave-10%-out cross validation results (10%≈ 3 out of 24
observed profiles) for the metal injection example. Solid lines are the observed profiles
used for testing. The mean, 10th and 90th percentiles of the posterior predictive density
are shown in dashed lines.

mean structure in the design factors and locations, and an interaction model.

The relative error statistics were 0.85403 for the intercept model, 0.64357 for the

additive model and 0.63703 for the interaction model. These relative error values
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suggest that this data is significantly nonseparable, but if we were to choose a

model among these three, then an additive mean structure is acceptable, since it

provides a simple model with a relative error almost equal to the most complicated

(interaction) one. But since we have noise factors in this example, all two-factor

control×noise interaction terms are also need to be added to the mean structure

model to allow for RPD optimization, i.e., the used model has an intercept, main

effects and all control×noise interactions but not control×control or noise×noise
interactions.

To validate the fitted model, for the alternator data, in example 2 before,

leave-one-out and leave-10%-out cross validations were performed. Cross validation

results are shown in Figures 5.14 and 5.15. Based on cross validation results it can

be seen that the model provides acceptable predictions, and hence it can be used

for process optimization.
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Figure 5.14. Leave-one-out cross validation results for the electric alternator example.
Solid lines are the observed profiles used for testing. The mean, 10th and 90th percentiles
of the posterior predictive density are shown in dashed lines.
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Figure 5.15. An instance of leave-10%-out cross validation results for the electric
alternator example. Solid lines are the observed profiles used for testing. The mean,
10th and 90th percentiles of the posterior predictive density are shown in dashed lines.

Example 3 (cont.). Recall the plastic injection process example mentioned

in section 5.1. To check the observed profile data of the plastic injection process

for separability, we assume three mean structures: an intercept model, an additive

mean structure in the design factors and locations, and an interaction model.

The relative error statistics were 0.45636 for the intercept model, 0.37021 for the

additive model and 0.36061 for the interaction model. These relative error values

suggest that an additive mean structure is acceptable. Again, since we have noise

factors in this example, all two-factor control×noise interaction terms are also need

to be added to the mean structure model to allow for RPD optimization. Leave-

one-out and leave-10%-out cross validations were performed to validate the fitted

model for this data. Cross validation results are shown in Figures 5.16 and 5.17.

These figures show that the model provides an excellent fit to the data, and hence

it can be used for optimization purposes.



112

600 800 1000
600

650

700

750
x=(−1 −1  1 −1 −1 −1 −1 −1)

600 800 1000
600

650

700

750
x=(−1  1 −1 −1 −1  1  1  1)

600 800 1000
600

650

700

750
x=(−1  1 −1 −1 −1  1  1 −1)

600 800 1000
600

650

700

750
x=(1  1  1  1 −1 −1  1 −1)

600 800 1000
600

650

700

750
x=(−1  1 −1 −1 −1  1  1  1)

600 800 1000
600

650

700

750
x=(1  1  1  1 −1 −1  1 −1)

600 800 1000
600

650

700

750
x=(1 −1 −1 −1  1 −1  1  1)

600 800 1000
640

660

680

700

720
x=(−1 −1  1  1  1  1  1 −1)

600 800 1000
600

650

700

750
x=(−1  1 −1 −1 −1  1  1 −1)

600 800 1000
600

650

700

750
x=(1  1  1 −1  1  1 −1 −1)

600 800 1000
600

650

700

750
x=(−1  1 −1 −1 −1  1  1 −1)

600 800 1000
600

650

700

750
x=(−1  1 −1  1  1 −1 −1 −1)

Figure 5.16. Leave-one-out cross validation results for the plastic injection process
example. Solid lines are the observed profiles used for testing. The mean, 10th and 90th

percentiles of the posterior predictive density are shown in dashed lines.

5.3 Conclusions and Future Work of This Chap-

ter

Profile responses arise in a variety of applications where a continuous response is

sampled at some frequency or more generally over a specified set of locations. Cur-

rent approaches to solve RPD problems of profile responses include the frequentist

point of view modeling approach by Nair et al. (2002). This approach does not

consider model parameter uncertainties and assumes small number of locations. A

different approach is that by Del Castillo et al. (2011) where profiles are modeled

in a two stage hierarchial regression model. Their approach may not be flexible

enough since it requires a parametric model that provides a good fit for the mean.

Furthermore, it neglects the profile-to-profile correlations.

This chapter introduces a new approach to solve the RPD problem of profile
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Figure 5.17. An instance of leave-10%-out cross validation results for the plastic injec-
tion process example. Solid lines are the observed profiles used for testing. The mean,
10th and 90th percentiles of the posterior predictive density are shown in dashed lines.

response systems based on a spatio-temporal Gaussian Random Function. The

spatial and temporal spaces correspond to the design factor space and the location

measurement space, respectively. In this approach, the observed data is assumed

to have a multivariate normal distribution with mean structure µ and covariance

structure Σ. Like in Universal Kriging practice, the main purpose of the mean

structure is to detrend the data and obtain zero mean stationary residuals. How-

ever, to allow for a better Robust Parameter Design, we also suggest to include all

control×noise interaction terms (judged important by the experiment) in the mean

structure model if noise factors are present. The covariance structure is assumed to

be the Kronecker product of the between-profiles and the within-profile covariance

structures (i.e., we assume covariance separability). As usually done in Spatial

Statistics, a parametric model is assumed for both covariance structures.

The proposed model assumes data normality and separability of the covariance

matrix. The first assumption is justified by the continuity of the data and large

sample theory. Sensitivity to violations in the normality assumption was discussed

in section 5.2.1. It was found that the model is robust and can provide good data
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fit even for considerably non-normally distributed errors. Model performance to an

instance of non-separable covariance structure was performed in section 5.2.2. It

has been found that the model still provides a good data fit under that particular

covariance structure. Non-separable covariance structures can have many forms,

and hence it is impossible to study model performance for all of them. Instead,

we suggest to use cross validations to assess the model performance regardless of

covariance structure separability.

The proposed model has three main advantages over the currently available

approaches. First, the modeling approach is fully Bayesian, and hence incorpo-

rates all uncertainty sources present. It also provides a probability measure for

the process performance for a given factor settings. Second, no complicated para-

metric regression model is needed for the mean structure. The modeled covariance

structure can modify the assumed mean to provide good predictions. Finally,

the proposed model is more flexible, since no complicated mean structure form

is required. Hence, it can model a wider range of profile shapes than previous

approaches.

The proposed modeling approach assumes covariance structure separability to

speed up computations, but this assumption might not hold for some profile re-

sponse data. Hence, a non-separable covariance structure is an area where future

research is needed. For example, the electric current data used in example 2 is

clearly nonseparable. A non-separable covariance modeling approach that still has

computational attractiveness is the covariance tapering approach proposed by Fur-

rer et al. (2006). This approach has the advantage of generating sparse covariance

matrices. Sparse matrices are easy to deal with from the computational point of

view.

All GRF process modeling approaches assume a smooth stochastic processe. If

the observed process is not smooth, the GRF process assumption is not suitable.

Hence, other modeling approaches (other parametric covariance models) should be

considered.



Chapter 6
Research Contributions and Areas

for Further Research

In this dissertation we have studied the analysis and optimization of shape and

profile response systems. This chapter summarizes the results of the work presented

in chapters 3 through 5. Section 6.1 gives a summary of this dissertation main

contributions to the existing literature and section 6.2 discusses some possible

areas for further research in the topics covered.

6.1 Research Contributions

We considered three research problems in this dissertation:

1. The performance of Statistical Shape Analysis (SSA) tests used to determine

significance of factor effects in designed experiments where the response of

interest is the 2D or 3D shape of an object.

2. Robust parameter optimization of shape responses, i.e, experiments where

the response is the shape of an object but there are noise factors present in

the experiment.

3. Robust parameter optimization of profile response systems.

The contributions of our work to each of these three problems are discussed in

sections 6.1.1 through 6.1.3 respectively.
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6.1.1 Statistical Performance of Shape Analysis Tests

The power performance of the statistical tests studied in chapter 3 depends on

several factors, such as the response dimension, the sample size, the error as-

sumptions, etc. Statistical tests to analyze experiments with shape responses have

existed in fields other than manufacturing for the past two decades. Such tests

have been recently introduced to analyze designed experiments for shape responses

in manufacturing applications. There has been no study thus far that addresses the

performance of these tests in manufacturing, in which, unlike other applications,

a large number of measurements per shape is common.

Five tests found in the literature were considered in the statistical performance

studies. These tests can be classified into two types based on the test statistic

used:

1. Procrustes-based tests:

• The one-way ANOVA F-test (Goodall, 1991), and its two-way (interac-

tion) extension (Del Castillo and Colosimo, 2011).

• The ANOVA Permutation test (Del Castillo and Colosimo, 2011).

2. Distance-based tests:

• EDMA-I (Lele and Richtsmeier, 1991).

• EDMA-II (Lele and Cole, 1996).

• ANOVA on the form error.

The latter test is the most common in manufacturing practice and applicable only

when there exists a standard definition of form error for the geometrical feature of

interest. The EDMA tests are available only for the one-way, two levels case.

The performance analyses conducted were classified according to the type of

mean shapes utilized. First, the performance of tests for detecting differences in

mean shape were studied for shapes with arbitrary geometry that are not com-

monly found in manufacturing, such as triangles and arbitrary polygons. These

types of shapes were considered by previous SSA authors, and thus we included

them to allow for comparisons. Second, we studied the performance of SSA tests
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for shapes more commonly found in manufacturing, such as circles and cylinders.

In the published data sets with arbitrary geometry, there is only a small number

of landmarks per configuration, five at the maximum. The second type of shapes,

those of interest in manufacturing, have not been studied from a SSA point of view

before, and thus simulated data sets with considerably more landmarks per con-

figuration were studied, imitating manufacturing applications where it is common

to observe hundreds of measurements for each object.

We considered three variations of the error properties: isotropic and non-

isotropic variances and non-normal errors. For the case of non-isotropic errors,

three covariance structures that are found in the literature were utilized. Two

non-normal error distributions were used: a t-student distribution and a uniform

distribution.

The overall conclusion is that the most powerful and robust test is the ANOVA

Permutation test in Del Castillo and Colosimo (2011). The ANOVA F-test is

usually equally powerful, but suffers from higher than advertised type-I error rate

when the error distributions are not normal or the variances not isotropic. The

ANOVA on the circularity and cylindricity form errors showed little power overall,

and the EDMA tests showed worst performance.

A detailed summary of the results found under the four categories of mean

shapes and error properties considered is as follows:

1. Mean shapes of arbitrary geometry under isotropic errors : the ANOVA Per-

mutation test and the ANOVA F-test showed the highest power performance.

The ANOVA F-test showed a slightly lower than nominal type-I error rate.

2. Circles (2D) and cylinders (3D) under isotropic errors : both the ANOVA

F-test and the ANOVA Permutation test showed the best power performance

with type-I error rates close to nominal.

3. Circles (2D) and cylinders (3D) under non-isotropic errors : again, we found

the ANOVA F-test and the ANOVA Permutation test to give the best power

performance among all considered tests with higher power for the ANOVA

F-test in some cases, but also with a higher type-I error rate than assumed.

We observed that the power of these two tests improves as the number of

landmarks per configuration increases.
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4. Circles under non-normal errors : the ANOVA Permutation test showed the

best power performance and type-I error rate control. The ANOVA F-test

showed similar power to the ANOVA Permutation test but with a higher

than nominal type-I error rate. In contrast, the ANOVA on the form errors

provides good power performance only when the distribution of the errors is

bounded since it is based on a range statistic.

6.1.2 Robust Parameter Optimization of Shape Responses

Chapter 4 of this dissertation discusses the robust parameter optimization problem

for shape responses, i.e, the problem of achieving a desired shape in the presence of

noise factors. Statistical tools for shape optimization in Del Castillo and Colosimo

(2011) were extended to the Robust Parameter Design (RPD) case. Also, instead

of testing for differences in shape and size separately (as these authors do) we study

instead the form of the objects, defined as the geometrical information that remains

when rotation and location effects (but not changes of scale) are discounted.

We proposed a statistical tool for geometric shape optimization that consid-

ers both controllable and noise factors using a mean-square error-like objective.

The proposed approach uses the form of the object for optimization, and hence

size information is preserved. The proposed approach was illustrated with several

simulated and real manufacturing shape data. The results show that our method

provides good solutions in terms of a mean shape close to the target with minimum

variability.

6.1.3 Robust Parameter Optimization of Profile Responses

The third and last problem considered in this dissertation is the analysis and

optimization of profile response systems, studied in chapter 5. A new approach

based on a spatio-temporal Gaussian Random Function process was presented and

an adaptive Markov Chain Monte Carlo (MCMC) algorithm with good conver-

gence properties (for the assumed mode) was developed. The spatial and temporal

spaces correspond to the design factor space and the location measurement space,

respectively. In this methodology, the observed data is assumed to have a multi-

variate normal distribution with some mean and covariance structures. Similarly
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to Universal Kriging practices, the mean structure is used for data detrending to

obtain zero mean stationary residuals, but it is also used to allow the inclusion

of control×noise interaction effects, crucial in RPD. The covariance structure is

assumed to be the Kronecker product of the between-profiles and the within-profile

covariance structures. As usually done in Spatial Statistics, a parametric model

is assumed for both covariance structures, to reduce the number of parameters to

estimate.

The proposed model assumes data normality and covariance structure separa-

bility. The first assumption is justified by the continuity of the data and large

sample theory. It was found through simulations that the model is robust and can

provide good data fit even for non-normally distributed errors. We provided two

model assessment techniques. The first is to compare the observed data and the re-

constructed data assuming separability. The second is to assess model performance

through cross validation.

The proposed model was illustrated through three real profile data examples

taken from the literature. The three examples have different profile shapes, but the

same model form was used for all of them. It was shown through cross validations

that the model is able to provide good predictions for the three examples used.

The proposed model has three main advantages over the currently available

methodology for this problem. First, the modeling is fully Bayesian, and hence

incorporates all uncertainty sources present. It also provides a probability measure

of the process performance. Second, no complicated parametric regression model

is needed for the mean structure. The modeled covariance structure can modify

the assumed mean to provide good predictions. Finally, the proposed model is

more flexible, since no complicated mean structure form is required. Hence, it can

model a wider range of profile shapes.

6.2 Areas for Further Research

Possible extensions and modifications of some of the topics covered in this disser-

tation include the following:

1. In chapter 3 a modified Generalized Procrustes Algorithm GPA(Σ) was used

to register shapes when the error structure is non-isotropic. Although the
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method appears to converge to good solutions for the 2D cases studied in

chapter 3, no formal proof of convergence exists for this algorithm. Hence, an

area for further research is to study the convergence properties of GPA(Σ).

2. In the derivation of the one- and two-way analysis of variance (ANOVA) tests

it was assumed that the error variance is small. We stated in chapters 2 and

3 that the ANOVA identities break down when this assumption is not true.

A recently proposed multivariate analysis of variance (MANOVA) test that

does not require this assumption is that of Huckemann et al. (2010a). The

performance of this test for manufacturing applications where small error

assumption holds has not been studied yet, hence a future work possibility is

to compare the performance of the existing ANOVA tests and the proposed

MANOVA test by Huckemann et al. (2010a) for manufacturing applications.

The assumption of small error variance holds for traditional manufacturing

processes where advanced machines are used. For non-conventional manufac-

turing operations, such as nano- and micro-manufacturing, this assumption

might not hold. Hence, statistical tests that do not require the small error

variance assumption are required to study shape analysis for these appli-

cations. Given that Huckemann et al. (2010a) methods are based on the

intrinsic geometry of shape space, rather than on its extrinsic properties as

the methods in chapters 3 and 4 do, a first step in this direction is to adopt

those methods to manufacturing applications. It is unclear how or if these

methods can be applied with problems with many landmarks. Furthermore,

the intrinsic methods have been developed only for 2D shapes.

3. The existing statistical shape tests consider the cases of one- and two-factor

factorial designs only. An extension of the existing ANOVA tests to the case

of K-factor factorial designs is indeed needed. An additional matter is that

existing tests assume balanced designed experiments. The case of unbalanced

designed experiments has not been considered yet and it might be of interest.

Also, the performance of the tests considered for more shapes of interest in

manufacturing, other than circles and cylinders, could be undertaken.

4. All SSA techniques considered in this dissertation assume a landmark repre-
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sentation of shapes. Currently, other representation systems are present in

the literature, for instance, contour-based shape representations (Zhang and

Lu, 2004). A large unexplored area is the development of statistical tests for

shape (or form) differences based on these alternative representations.

5. In solving the RPD problem of shape response experiments (chapter 4), the

optimization is performed over the finite set of design factor treatments con-

sidered in the experimental design. To optimize over the whole design factors

space, one possible future work idea is to fit a model to the calculated GTotal

statistic in (4.6). The fitted model can then be used for interpolations at

treatment locations other than the design treatments, and then an optimiza-

tion algorithm can be used to solve the RPD problem over a continuous

space.

6. If objects are aligned differently when using a Coordinate Measuring Ma-

chine, the measurements obtained will tend to have a fixture alignment error,

i.e., measured points are not exactly the same in every object. This error

increases the calculated error sum of squares in the ANOVA table in Table

2.1, hence it reduces the power of the F-test. A research opportunity is to

decompose the total error term into an error term due to misalignment and

an error term due to shape differences. Then the latter error term can be

used to test for factor significance.

7. The spatio-temporal Gaussian Process model proposed in chapter 5 assumes

an isotropic exponential covariance structure for the between profiles cor-

relations, Σx. This assumption might not hold in practice (the computer

experiments literature usually assumes non-isotropy), hence a non-isotropic

covariance structure needs to be used. Development of methods for use of

non-isotropic covariance structures such as the one in (3.14) is needed. This

will require, first of all, development of new MCMC methods with reliable

convergence properties, a hard task in itself.

8. If the interaction between the design factor space and the measurement

locations space in a profile response system is significant (chapter 5), the

separability assumption will not be appropriate. Other techniques that do
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not require separability such as the variance tapering method of Furrer et

al. (2006) could be employed. This method assumes the correlation between

two points that distance more than d units to be zero. This will generate

sparse covariance matrices where advanced algebraic methods can be used

to speed up computations.

9. In chapter 5, we considered the case of one profile response observed at each

experimental run. An extension of the proposed modeling approach to the

case of multiple profile responses is an area for further research.

10. In chapter 5, it was assumed that the data is observed first and then the

model is built based on the observed data. Jones et al. (1998) proposed a

“sequential process optimization” approach where the observed data is used

sequentially to fit a model and at each iteration the fitted model thus far is

used to decide which design point to investigate next, until a local optimal so-

lution is reached. This approach receives the name Efficient Global Optimiza-

tion (EGO) in the literature (Jones et al., 1998). Their approach considers

univariate responses and a frequentist point of view, although considerable

discussion from a Bayesian point of view (although not a full Bayesian) is

given by Santner et al. (2003). The EGO approach could be extended to the

Bayesian case and applied to the profile response experiments considered in

this dissertation to provide a sequential “profile to profile” optimizer.



Appendix A
Mathematical Notions Used in the

Theory of Statistical Shape Analysis

This appendix reviews some of the key mathematical concepts used in the theory

of Statistical Shape Analysis (SSA) as developed mainly by Kendall (1984). This

appendix is based on a larger review by Del Castillo (2011) and is included here to

help readers not familiar with Differential Geometry concepts to understand the

mathematical notation and terminology used in SSA.

A.1 Relations, equivalence relations and equiva-

lence classes

Definition 1. A relation on a set A is a subset, R, of A2 = A × A. Usually,

relations are defined by providing a statement that singles out a collection of

elements of A× A for membership in the relation. A relation R on a set A is:

• reflexive if for all x ∈ A, xRx.

• symmetric if, for all x, y ∈ A, xRy implies yRx.

• transitive if, for all x, y, z ∈ A, xRy and yRz imply xRz.

• an equivalence relation if R is reflexive, symmetric and transitive.
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Equivalence relations are sometimes written with the symbol ∼; thus, x ∼ y is

read “x is equivalent to y”. Two elements of a set do not need to be equal to be

equivalent, they need only to share a specified property.

Definition 2. Let A be a set and let ∼ be an equivalence relation defined on this

set. For each a ∈ A, the equivalence class of a is a subset, denoted [a]∼, consisting

of all elements of A that are equivalent to a, i.e.,

[a]∼ = {x ∈ A : x ∼ a}

If there is no ambiguity about the equivalence relation one is talking about, the

corresponding equivalence class is written [a]. Here the word “class” has been used

historically to simply mean a set. Other names for equivalence class is an orbit,

and, in case the underlying set is a manifold (see A.3 below) they are also called

a fibre.

Theorem 1. Let ∼ be an equivalence relation on A and let x, y ∈ A. Then 1) if

x ∼ y, then [x] ∼ [y]; 2) if x ≁ y, then [x] ∩ [y] = ∅; 3) A =
⋃
x∈A[x].

Proof of 3): each equivalence class is a subset of A by definition. Each x ∈ A
is in the equivalence class [x]. Therefore, A is contained in the union of the equiv-

alence classes of all the elements of A. Since from part 2) distinct equivalence

classes do not intersect, this union is actually equal to set A.

Part 3) of the result above means that the set of all equivalence classes implied

by an equivalence relation ∼ forms a partition of A. Parts 1) and 2) say that if

two equivalence classes have an element in common, then they are identical, or, in

other words, that two distinct equivalence classes are always disjoint.

Definition 3. Let ∼ be an equivalence relation in A. The set of all equivalence

classes is called A modulo ∼ or the quotient of A by the equivalence relation ∼, and
is denoted A/ ∼. The projection map π : A→ A/ ∼ sends x ∈ A to its equivalence

class [x]. If the set A/ ∼ is closed under arbitrary unions and finite intersections

(properties that define a topology), this set is called the quotient space of A by the
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equivalence relation ∼.

Example 1. Quotient spaces A/ ∼ (and equivalence classes) are usually created

by identifying a subset of A to a point. For instance, let A = [0, 1] (unit interval on

R) and define the quotient space obtained from A by identifying the two endpoints

{0, 1} to be equivalent to the same point. Let S1 be the unit circle on the complex

plane C. The function f : A→ S1, f = exp(2πix) equals the same value (1) at 0

and at 1, and hence it induces a function

g : A/ ∼→ S1.

Geometrically, points on the unit interval A are being mapped into the points of

the unit circle on C, with the two endpoints in A mapping into the same point on

C, namely the point (1,0).

Definition 4. A homeomorphism is a mapping in Euclidean space from one object

onto another that is continuous and one to one, i.e., it establishes a one to one

correspondence between points in each figure. The inverse mapping has the same

properties. For example, a sphere in R3 and a cube are homeomorphic.

The concept of homeomorphism is used to define the properties of objects

(figures) that remain unchanged under continuous deformation (“rubber band de-

formations”). These properties are called the topological properties of the objects.

Topological properties stand in contradistinction with metrical properties, which

are associated with distances between points, angles between lines, and edges of a

figure, properties that are preserved under rigid body transformations only.

Definition 5. An n-sphere Sn is a set of points in (n + 1)-Euclidean space such

that Sn = {x ∈ Rn+1 : ||x|| = r} where the radius r is usually set to one (giving

the unit n-sphere). A similar definition exists in case the base space is complex:

a complex n-sphere is defined as Sn = {z ∈ Cn+1 : ||z|| = r}. The notation Sn

refers to the dimension of the surface of the sphere. The n-sphere can be described

as Sn = R
n ∪ {∞}, which is n-dimensional Euclidean space plus a single point
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representing infinity in all directions (this representation gives origin to the real

projective space). Alternatively, if a single point is removed from an n-sphere, it

becomes homeomorphic to Rn.

A.2 Groups and transformations

Definition 6. A group is a set G with a binary operation ∗ (sometimes called

“multiplication”) such that the operation: a) is associative, b) has an identity, and

c) has an inverse operation. If in addition, d) ∗ is commutative, then the group is

said to be Abelian, otherwise it is non-Abelian.

Example 2. An instance of an Abelian group is the integers with addition as the

∗ operation.

In Geometry, a transformation is a one-to-one correspondence P → P ′ among

all the points in the plane (or space), i.e., a rule for associating pairs of points,

where each pair has a first point belonging to P and a second point belonging to P ′.

The most trivial transformation is the identity transformation, which leaves each

point unchanged. A set of transformations is said to form a group if it contains the

inverse of each and the product of any two. For instance, the symmetry operations,

which leave a figure unchanged while permuting its parts, forms a group, the so-

called symmetry group (or group of symmetries) of the figure.

Example 3. An instance of a non-Abelian group of transformations is SO(n),

the special orthogonal group (also called rotation group), which consists of all n-

dimensional rotation matrices (orthogonal matrices with determinant equal to one)

under the “composition of rotations” operation. Performing a rotation defined by

matrix R1 in a given direction followed by a second one R2 and a third one R3

satisfies the associative condition since (R1 ∗R2) ∗R3 = (R1 ∗R2) ∗R3, we clearly

have an inverse rotation for every rotation: R−1
1 ∗ R1(= I) leaves an object in

its original position, and we have an identity matrix I which is the zero rotation

R0 = I, with R0∗R1 = R1. However, rotations do not commute: R1∗R2 6= R2∗R1
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as a 3-dimensional example can demonstrate.

SO(n) can be understood as the group of symmetries of a n-sphere Sn excluding

reflections. Note this is a continuous group, in contrast to Example 2, where the

group is clearly discrete. Continuous groups are called Lie groups, after Sofus Lie

(1842-1899). Thus, for instance, if n = 3, SO(3) is the set of all possible rotations

of a 3-dimensional sphere. SO(n) is a subgroup of O(n), the orthogonal group.

The elements of this set are all n×n orthogonal matrices, not only those that have

determinant one. Hence, SO(n) is a subgroup of O(n). The orthogonal group

contains not only the non-reflective symmetries SO(n) but also the reflective ones.

Both SO(n) and O(n) are in turn subgroups of GL(n), the general linear space of

all non-singular n× n matrices.

Quotient spaces (see Def. 3) can be defined by the action of a group on the

elements of some manifold M. If G is a group, then we define two points x, y

in M to be equivalent if there is a g ∈ G such that y = gx and this defines the

quotient space M/G. In this case, the left action of G on elements of M define

the equivalence relation and hence, the quotient space.

A.3 Projective geometry and Complex projec-

tive space

Contrary to the transformations in Euclidean space, Projective geometry deals

with transformations that do not preserve angles and lengths, namely, projections.

In addition, and as it was first known during the Renaissance with perspective

painting, there exist points at infinity (“vanishing points”) where parallels met.

Thus, projective geometry allows infinity to be put on the same footing as the

finite points of the plane (Stillwell, 2000). A natural question, first raised by

Alberti during the Renaissance in his study on perspective, is this: if projections

do not preserve angles and lengths, what is preserved? What is preserved under

projections is the cross ratio of four points A,B,C,D on a line, defined by
CA
CB
DA
DB

.
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Homogeneous coordinates (invented by Möbius) give a natural extension of the

Cartesian plane R2 by assigning new coordinates to the points already present and

creating new points including points at infinity. They are the coordinates used in

projective geometry.

Definition 7. The homogeneous coordinates of a point (X, Y ) ∈ R2 are all the

real triplets (Xz, Y z, z) with z 6= 0, i.e., all real triplets (x, y, z) with x/z = X ,

and y/z = Y . (Stillwell, 2000, page 134).

If we take X, Y to be the x, y coordinates in the plane z = 1, then the coor-

dinates (Xz, Y z, z) are just the coordinates of points on the line in R3 from the

origin to (X, Y ). Thus, homogeneous coordinates give a one-to-one correspondence

between points (X, Y ) ∈ R2 and nonhorizontal lines through the origin in R3. The

horizontal lines, those with coordinates (x, y, 0), correspond to the points at infin-

ity. In geometrical terms, we have enlarged the R2 Euclidean space to the Real

Projective Space RP
2 by “adding a point” to R2 to represent infinity.

One can consider either real projective spaces P
n = RP

n or complex ones

(Pn = CP
n.).

Example 4. One example of a complex projective space is the so-called Riemann

sphere (also called sometimes the Gauss sphere), which is CP
1. The Riemann

sphere arises as the space of ratios of complex numbers (w, z), not both zero,

which is the space of complex lines through the origin in C2. The Riemann sphere

can be thought as a one-to-one correspondence established between the points on

a sphere sitting on C and the points in C, obtained by stereographic projection of

the plane into the sphere. This is achieved by drawing lines from the “north pole”

N of the sphere into the plane C below. Any such nonhorizontal line pierces the

sphere and touches it in one point, which is then projected into the complex plane

into a single point. As the line becomes more horizontal, the point on the sphere

is closer to N and the point on the plane is farther away in C, with a horizontal

line at N not touching C and corresponding to infinity on the plane. We thus have
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enlarged C to CP
1 = C ∪ {∞}. The projective completion of C, CP1, is therefore

topologically (i.e., quantitatively) equivalent to a sphere.

More generally, any projective space can be assigned homogeneous coordinates

like those illustrated in Definition 7 for the case Pn. These are the n independent

ratios of the coordinates z0, z1, ..., zn for the n + 1-dimensional space from which

Pn arises:

z0 : z1 : z2 : ... : zn

(where the z’s are not all zero) rather than the values of the individual z’s them-

selves. If the z’s are all real, then these coordinates describe RP
n; if they are all

complex then they describe CP
n. Kendall’s coordinates (equation 3.1, chapter 3)

are an instance of this for the case n = 3.

A.3.1 Manifolds, tangent space, submersions and immer-

sions

Informally, a manifold is a space that can be thought as “curved” in various ways,

but where, locally, (i.e., in the vicinity of each of its points) it can be approximated

by ordinary Euclidean space. Manifolds can be thought of as a set of “points” tied

together continuously and differentially, so that the points in any sufficient small

region can be put into a one-to-one correspondence with an open set of Rn. This

correspondence furnishes a coordinate system for the neighborhood. The ideas

of manifolds, their charts and atlases, were developed by Gauss when working in

geodesy and cartography. In the same way that the curvilinear surface of the

Earth is approximately represented by planar maps that describe small regions

of the globe, which are then “glued” together to form a consistent Atlas, similar

concepts explain the structure of a general manifold. A formal definition refers to

the standard type of manifold, the Hausdorff space. A Hausdorff space has the

defining property that, for two distinct points on the space, there are open sets

containing each which do not intersect.

Example 5. The simplest example of a manifold is an open region in Euclidean

space, for instance, that described by sets of solutions of systems of equations in
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Rn. A more interesting example is the space of all n × n real matrices, GL(n),

defined as

GL(n) = {X ∈ R
n×n : det(X) 6= 0} = det−1(R− {0}).

Since the determinant function,

det : Rn×n → R

is continuous, GL(n) is an open subset of Rn×n, and is therefore an n-dimensional

manifold. Likewise, a subgroup of GL(n) such as the rotation group SO(n), whose

“points” (elements) are the n × n matrices {X : X ′X = I, det(X) = 1} also

constitutes an n-dimensional manifold.

Definition 8. If in the neighborhood of a given point a coordinate system x1, ..., xn

is fixed (note the convention of indexing coordinates with superscripts), then at

this point there naturally arise n linearly independent tangent vectors ei = ∂/∂xi

that correspond to differentiations along the coordinate lines passing through the

point x. The set of all tangent vectors to a point x in an n-dimensional manifold

M forms a linear space of dimension n. This space is called the tangent space to

the manifold at x, and is denoted TxM .

Definition 9. Let f be a function whose domain is a set A. The function f is

injective if for all a and b in A, if f(a) = f(b), then a = b; that is, f(a) = f(b)

implies a = b. Equivalently, if a 6= b, then f(a) 6= f(b). Thus, an injective function

preserves distinctness; it never maps distinct elements of its domain to the same

element of its codomain. A canonical injective function is the inclusion function

i : A → B defined, for every x ∈ A ⊂ B, as i(x) = x ∈ B. That is, A is a subset

of B and all elements of A are treated as elements of B as well.

Definition 10. A surjective function (or onto function) is a function whose image

is equal to its codomain. Equivalently, a function f with domain X and codomain

Y is surjective if for every y ∈ Y there exists at least one x ∈ X with f(x) = y.

A surjective function is called a surjection. In a surjective function every point in

the codomain is the value of f(x) for at least one point x in the domain.
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Recall that in vector calculus the Jacobian matrix is a matrix representation

of the differential (or total derivative) of a smooth map φ at a point x ∈ U ⊂ Rm

between subsets U ⊂ Rm and V ⊂ Rn, i.e.,

dφx : R
m → R

n.

This idea can be generalized to the case φ is a smooth function between two

manifoldsM and N .

Definition 11. Let φ :M → N . For some x ∈ M, the differential of φ at x is

the map

φ : TxM→ Tφ(x)N

from the tangent space ofM at x to the tangent space of N at φ(x). See Figure

1.

Definition 12. A smooth map between manifolds f : M → N is called an

immersion if the differential df : TxM → Tf(p)N is injective for every p ∈ M. If

an immersion is homeomorphic to its image it is said to be an embedding. The

map f is called a submersion if df is surjective for every p ∈M.

Example 6. The prototype of an immersion is the inclusion of Rm in a higher

dimensional Rn:

i(x1, ..., xm) = (x1, ..., xm, 0, 0, ...., 0).

The prototype of a submersion is the projection of Rm onto a lower dimensional

Rn:

π(x1, ..., xn, xn+1, ...., xm)→ (x1, ..., xn).

Example 7. An important submersion in shape analysis is the Hopf submersion

S3 → S2 where each distinct point of a 2-sphere comes from a distinct circle (a

fibre) on the 3-sphere. This can be explained in two different ways:

• Identify R
4 with C

2 and R
3 with C× R by writing

(x1, x2, x3, x4) as z0 = x1 + ix2, and z1 = x3 + ix4
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and

(x1, x2, x3) as z = x1 + ix2 and x = x3.

Thus,

S3 is identified with the subset (z0, z1) ∈ C2 such that |z1|2 + |z2|2 = 1

and

S2 is identified with the subset (z, x) ∈ C × R such that |z|2 + x2 = 1

(note: |z|2 = zz∗). The Hopf submersion p : S3 → S2 is then defined as

p(z0, z1) = (2z0z
∗
1 , |z0|2 − |z1|2)

where the first entry on the right hand side is a complex number and

the second one is real. Thus, p(z0, z1) ∈ C×R, and since p(z0, z1) = 11,

it actually lies on S2(1). Furthermore, since

p(z0, z1) = p(λz0, λz1)

for some λ ∈ C such that |λ|2 = 1, then different points in S3 map to

the same point on the 2-sphere. Since |λ|2 = 1 forms a circle on C, it

follows that for each point w ∈ S2, p−1(w) = S1 ( a circle) on S3. Thus,

the 3-sphere is a disjoint union of circular fibres (for this reason this is

also called the Hopf fibration).

• We can consider the complex projective space CP1 as equal to the quo-

tient space of C/{0} by the equivalence relation that identifies (z0, z1) with

(λz0, λz1) for z0, z1 and λ( 6= 0) ∈ C (set of equivalence classes under multipli-

cation by a non-zero complex number). Then, on any complex line in C
2 (a

one dimensional complex subspace that replicates the entire complex space

C) there is a unit circle, so the quotient maps circles to points. Alternatively,

(z0, z1) can be mapped to the point z0/z1 (using homogeneous coordinates)

on the Riemann sphere C ∪ {∞}.
1Proof: 2z0z

∗

1
· 2z0z∗1 + (|z0|2 − |z1|2)2 = 4|z0|2|z1|2 + |z0|4 − 2|z0|2|z1|2 + |z1|4 = 2|z0|2|z1|2 +

|z0|4 + |z1|4 = (|z0|2 + |z1|2)2 = (1)2 = 1.
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A.4 Intrinsic and extrinsic geometry and

geodesics

The concept of intrinsic geometrical properties of an object originated from the

work by Gauss, who, in 1827, conceived the idea of defining the curvature of a

surface by measurements that take place entirely on the surface and not based on

measurements on the ambient space where the surface is embedded, that is, he

found a way to detect the curvature of a surface intrinsically. For instance, in the

time of Gauss, the curvature of the earth was known on the basis of surveyors and

explorers, not by viewing it from space (Stillwell, 2000).

Definition 13. A property of surfaces in R3 is called intrinsic if it is preserved

by local isometries. Two surfaces S1 and S2 are locally isometric if any sufficiently

small portion of S1 can be mapped isometrically (i.e., preserving arc lengths) into

any part of S2 (thus the map takes any curve on S1 is to a curve in S2 of equal

length). Local isometries between S1 and S2 are obtained by a bending transfor-

mation that does not include stretching, compressing, or tearing.

Example 8. A plane can be bent into a cylinder, hence they are locally isometric,

and hence they have the same Gaussian curvature (zero). A sphere and a plane are

not locally isometric (and therefore have different Gaussian curvatures), a fact of

great importance in cartography: any planar map of the Earth induces necessarily

some distortion of distances.

Definition 14. A geodesic is a curve on a surface such that every sufficiently small

portion of it is the shortest path on the surface connecting the end-points of the

portion. It follows that the geodesic lines of a surface continue to be geodesic if

the surface is subject to bending. Hence geodesics are fundamental in the intrinsic

properties of a surface. In fact, all intrinsic properties of a surface (e.g., its Gaussian

curvature) can be determined by drawing geodesics and measuring its arc lengths.
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A.5 Kendall’s Preshape and Shape Spaces

Let X be a k×m matrix containing the k landmarks (coordinate pairs or triples)

of an object in m (2 or 3) dimensions. X is sometimes called a configuration

matrix (since it is an element of the configuration space, the space of all possible

arrangements of k landmarks in m dimensions). With this notation, the shape

of a configuration X is obtained, first, by removing location and scale effects by

computing the so-called pre-shape Z:

Z =
HX

||HX|| (A.1)

where H is a (k− 1)× k Helmert submatrix (Dryden and Mardia, 1998) and || · ||
denotes the Frobenius norm of a matrix. If we define hj = −[j(j + 1)]−1/2, then

H is a matrix whose jth row is: (hj, hj , ..., hj︸ ︷︷ ︸
j times

,−jhj , 0, ..., 0︸ ︷︷ ︸
k−j−1 times

) for j = 1, ...k− 1.

Note that HH ′ = Ik−1 and that the rows of H are contrasts. Alternatively, one

could start with the centered preshapes, defined by Zc = H ′Z (these are k × m
matrices), although the development below assumes Helmertized preshapes where

one of the k coordinates is eliminated.

Transformation (A.1) removes location effects via the numerator, and re-scales

the configurations to unit length via the denominator. Since we have not removed

rotations from Z it is not yet the shape of X, hence the name preshape. The cen-

tered preshapes are equivalent to centering each coordinate of each configuration

by its centroid and dividing each by its norm.

The shape of configuration X, denoted [X], is defined as the geometrical in-

formation that is invariant to similarity transformations except reflections. In the

work by Kendall (1984), reflections are not considered, thus, two objects, one the

mirror image of the other are considered to have different shapes. Therefore, once

location and scale effects are filtered as above, the shape is then defined as:

[X] = {ZΓ : Γ ∈ SO(m)} (A.2)

where Z is the preshape of X, Γ is a rotation matrix (i.e., a matrix such that

Γ′Γ = ΓΓ′ = Im with det(Γ) = +1) and SO(m) is the space of all m×m rotation
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matrices that exclude reflections, the special (or non-reflective) orthogonal group.

Multiplication by a suitable matrix Γ reorients (rotates) the object. Note that a

shape is therefore defined as a set.

The following geometrical interpretation of these transformations is due to

Kendall (1984 and 1989). Given that preshapes are scaled and centered objects,

they can be represented by vectors from the center to the surface of a unit sphere

of dimension (k− 1)m, because the numerator in (A.1) removes m degrees of free-

dom for location parameters and the denominator removes one additional degree

of freedom for the change of scale. The preshapes, having unit length, form a

space (denoted Skm), which has (k − 1)m − 1 dimensions by virtue of being on

the surface. As one rotates a pre-shape Z via (A.2), the vectors ZΓ describe an

orbit on Skm. All the vectors on an orbit correspond to the same shape, since by

definition the shape of an object is invariant to rotations. Thus, the orbits (also

called fibers) of the preshape space are mapped one to one into single points in

the shape space (denoted Σkm), the space of all possible shapes of k landmarks

in m dimensions. This space in general will be a non-Euclidean M-dimensional

manifold. Two objects have the same shape if and only if their preshapes lie on

the same fiber. The shape space has dimension M = (k − 1)m− 1−m(m− 1)/2

since in addition to losing location and dilation degrees of freedom we also lose

m(m − 1)/2 degrees of freedom in the specification of the (symmetric) m × m

rotation matrix Γ.

Example 9. Preshape space and shape space for lines. In order to explain

these ideas, consider one of the simplest possible cases, where we have 2 lines in

R2 (see Figure A.1). Thus, we have that m = 2 and k = 2, where the obvious

landmarks are the endpoints of the lines. After centering and scaling the two

lines using (A.1), one obtains the preshapes with matrices Z1 and Z2. Since the

original objects evidently have the same shape (that of a line in Euclidean space)

these two preshapes lie on the same fiber or orbit, generated as the preshapes are

rotated using (A.2). The preshape space S2
2 is of dimension (k − 1)m − 1 = 1,

namely, the circumference of a unit circle. As the preshapes rotate (they can rotate

clockwise or counterclockwise) they will eventually coincide, which corresponds to

the centered and scaled lines coinciding. Finally, since there is a single shape,
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the shape space Σ2
2 is the simplest possible, namely, a single point (dimension is

M = (k − 1)m− 1−m(m− 1)/2 = 0, i.e., a 0-manifold).

In general, the shape space Σkm will be a nonlinear space, the Riemannian M-

manifold formed by the landmarks modulo similarity transformations, of reduced

dimension than the always spherical preshape space. That is, the shape space

is defined as a quotient space, i.e., Σkm = Rkm/G =Skm/SO(m), where G is the

group of similarity transformations that exclude reflections. While the step of

going from configuration space (the km-manifold of all possible arrangements of

the landmarks) to preshape space is easy to understand, going from preshape space

to shape space is a non-trivial step. For instance, for planar shapes Kendall (1984)

showed that Σk2 = CP k−2(4), the complex projective space of sectional curvature

4 (thus in the previous example, Σ2
2 = CP 0(4), a one-point space). See Kendall et

al. (1999) for a detailed discussion of the geometry of shape spaces.

Example 10. Preshape and shape space for triangles. The map S3
2 → Σ3

2

is the Hopf submersion of Example 7, which is a map from each non-overlapping

circular fibre (the preshapes) to the points in shape space. Each fibre [x] in S3
2

(point in Σ3
2) corresponds to a particular triangular shape, the equivalence class

generated by the quotient space S3
2/SO(3).
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Figure A.1. One of the simplest illustrations of preshape and shape space. A)
two lines in the original 2-dimensional space; B), preshapes on 2-dimensional Euclidean
space, after centering and scaling; C) the corresponding pre-shape space is the (one-
dimensional) circumference of a unit circle. The two pre-shapes lie on the single fiber or
orbit generated as the preshapes are rotated, hence there is a single shape; D) the shape
space for the two lines (Σ2

2) is zero dimensional (a single point) and corresponds to the
only shape that exists in this example.



Appendix B
The Landmark Matching Problem

The Statistical Shape Analysis (SSA) techniques considered in this dissertation

assume corresponding landmark data. It might happen that similar parts measured

with a Coordinate Measuring Machine (CMM) do not contain corresponding or

labeled landmarks. This can be due to the difficulty of orienting the part when

mounting on the CMM. If the orientation is different between parts, the CMM

measurements will not correspond to each other. Therefore, a first problem that

needs to be addressed is how to “match” the landmarks between two shapes so

that we obtain corresponding shape data.

The landmark matching problem has been studied by Computer Vision re-

searchers where it receives the name “point matching problem”. The problem

under consideration is as follows: two objects are measured at the same locations,

but the labels of each of the measurements differ from one object to the other.

The goal is to relabel the landmarks of one of them so they match (correspond)

between objects.

The work by Chui and Ranngarajan (2000) is based on solving a highly non-

linear optimization problem where the objective is to minimize the sum of the

Euclidean distance between the points {i} in configuration 1 and the transformed

points {j} in configuration 2. A transformation is used since the second object

may be oriented differently than the first. Jointly determining the matching cor-

respondences and the transformation necessary for registering configuration 2 to

configuration 1 results in a hard optimization problem.

A completely different approach is that of Belongie et al. (2002), who proposed
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a method for matching 2D shapes. Their method separates the matching problem

from the problem of registering the configurations, that is, their matching method

is in principle invariant with respect to location, scaling and orientation of the two

configurations. The main idea is to measure the amount of data in the neighbor-

hood of each point of each shape using 2D histograms and use a distance metric

between histograms that corresponds to points in different objects as costs to be

minimized in a classical weighted matching problem, solvable via Linear Program-

ming. The histograms measure the angle and distance between each landmark

and all other landmarks in the object. If a similar 2D histogram can be found in

another object, this is an indication that the two landmarks should be matched.

The results of this method depend on the number of bins used in building the

histograms, thus the number of bins should be chosen carefully.

Due to the advances in manufacturing processes, manufactured parts tend to

have small variations from each other. Let X and Y be two k ×m configuration

matrices representing two objects. Assume both X and Y have the same mean

shape and are located at the origin, i.e., there no need to estimate and filter a

translation effect (see section 2.1.2). Following a common model in SSA with no

translation, we have

X = β1(µ+E1)Γ1

and

Y = β2(µ+E2)Γ2.

We then have

XX ′ = β1(µ+E1)Γ1 · Γ′
1(µ

′ +E′
1)β1

= β2
1(µµ

′ + 2µE′
1 +E1E

′
1)

since Γ1Γ
′
1 = I. Similarly, we have

Y Y ′ = β2
2(µµ

′ + 2µE′
2 +E2E

′
2)

When the errors variance σ2 is small, the two matrices XX ′ and Y Y ′ tend to have

similar eigenvectors since the matrices (2µE′
1+E1E

′
1) and (2µE′

2+E2E
′
2) will be
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close element-wise when σ2 is small (the scale parameters β1 and β2 do not matter

since eigenvectors are scale invariant). Hence, a simple three step procedure to

solve for the landmark matching problem for two planar configurations is to:

1. Align the first object, X, to the eigenvectors of XX ′.

2. Align the second object, Y , to the eigenvectors of Y Y ′.

3. Following Belongie et al. (2002), we solve the following optimization problem

min

k∑

i=1

k∑

j=1

Dijaij (B.1)

subject to:
k∑

j=1

aij = 1, i = 1, 2, ..., k

k∑

i=1

aij = 1, j = 1, 2, ..., k

aij = {0, 1} i = 1, 2, ..., k; j = 1, 2, ..., k

where aij is a binary variable equal to 1 if point j of object Y is assigned to

point i of object X and Dij is the Euclidean distance between landmarks i of

X and j of Y . The rationale is that the aligned objects after applying steps 1

and 2 above result in small distances between corresponding landmarks, and

hence there is a high chance that these landmarks will be matched together.

This optimization problem is in the form of the famous “set partitioning”

problem in the Operations Research literature. The solution of this problem

can be easily obtained via Linear Programming (Diaby, 2010).

Example: Suppose we have the two objects shown in Figure B.1. These are

two handwritten digit 3’s, each with 13 landmarks. Suppose the landmarks are

labeled as shown in the figure. We keep the same labels of the first shape and

we try to match the labels of the second shape to those of the first. Running the

proposed algorithm for these two objects, we get the “matched” objects shown in

Figure B.2 with matched labels shown in Table B.1.
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Figure B.1. Two handwritten digit 3’s, each with k = 13 landmarks. Note that the
labels of the landmarks do not correspond between the two shapes.

Table B.1. Matched landmark labels of Figure B.1

Shape 1 landmark Label Shape 2 landmark Label

1 1
2 11
3 4
4 5
5 8
6 2
7 3
8 13
9 9
10 6
11 7
12 12
13 10
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Figure B.2. Matched shapes of Figure B.1 using the proposed matching algorithm.
Matched landmark labels are shown in Table B.1.



Appendix C
Kronecker Product Decomposition

of Matrices

It was mentioned in chapter 5 that a separable covariance matrix was assumed to

speed up computations in spatio-temporal data modeling. This appendix reviews

some of the theoretical aspects related to the Kronecker product decomposition of

matrices. A characterization of the error incurred when modeling a non-separable

covariance matrix with a separable one is provided.

Let

Σ =




σ11 σ12 · · · σ1J

σ21 σ22 · · · σ2J
...

...
...

...

σN1 σN1 · · · σNJ




and let Σij be the ijth block of Σ such that (in MATLAB notation)

Σij = Σ((i− 1)J + 1 : iJ, (j − 1)J + 1 : jJ), i, j = 1, 2, · · · , N
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Define R(Σ) of size N2 × J2 to be

R(Σ) =




vec(Σ′
11)

vec(Σ′
12)

...

vec(Σ′
NN)




as defined in Genton (2007). For example for a 6 × 6 covariance matrix Σ with

N = 3 and J = 2 we have

Σ =




σ11 σ12 σ13 σ14 σ15 σ16

σ21 σ22 σ23 σ24 σ25 σ26

σ31 σ32 σ33 σ34 σ35 σ36

σ41 σ42 σ43 σ44 σ45 σ46

σ51 σ52 σ53 σ54 σ55 σ56

σ61 σ62 σ63 σ64 σ65 σ66




and

R(Σ) =




σ11 σ21 σ12 σ22

σ31 σ41 σ32 σ42

σ51 σ61 σ52 σ62

σ13 σ23 σ14 σ24

σ33 σ43 σ34 σ44

σ53 σ63 σ54 σ64

σ15 σ25 σ16 σ26

σ35 σ45 σ36 σ46

σ55 σ65 σ56 σ66




In order to find the nearest decomposition of Σ into the Kronecker product of Σx

and Σs, we need to solve the following optimization problem:

min
Σx,Σs

‖R(Σ)−Σx ⊗Σs‖F
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= min
Σx,Σs

‖R(Σ)− vec(Σx)vec(Σs)
′‖F (C.1)

where ‖ · ‖F is the Frobenius norm. This problem has been address form linear

algebra point of view and the optimal solution is well defined to be

vec(Σx) =
√
δ1u1

vec(Σs) =
√
δ1v1 (C.2)

where δ1 is the largest eigenvalue of R(Σ) and u1 and v1 are the vectors that

correspond to δ1 in the SVD decomposition such that R(Σ) = U∆V ′. If R(Σ) is

not decomposable, there will be an error associated with this approximation. This

error is usually reported (Genton, 2007) as the relative error which equals

e =
‖R(Σ)− vec(Σx)vec(Σs)

′‖F
‖R(Σ)‖F

. (C.3)

Proposition: The maximum value of the relative error e can have is
√
1− 1/r,

where r is the rank of R(Σ).

Proof: Assume R(Σ) has rank r, then ‖R(Σ)‖F =
√∑r

i=1 δ
2
i and R(Σ) =

r∑

i=1

δiuiv
′
i where δi’s are the sorted singular values of R(Σ) such that δ1 ≥ δ2 ≥

· · · ≥ δr > 0 and, ui and vi are the orthonormal vectors of the SVD decomposition

as above. Then

e =

‖
r∑

i=1

δiuiv
′
i −
√
δ1u1

√
δ1v

′
1‖F

√
r∑

i=1

δ2i

=

‖
r∑

i=2

δiuiv
′
i‖F

√
r∑

i=1

δ2i

=

trace

[(
r∑

i=2

δiuiv
′
i

)′( r∑

i=2

δiuiv
′
i

)]

√
r∑

i=1

δ2i

=

√∑r
i=2 δ

2
i∑r

i=1 δ
2
i

=

√
1− δ21∑r

i=1 δ
2
i
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since the ui’s are orthonormal vectors. To maximize e, we would need to minimize
δ2
1∑r

i=1
δ2i

under the constraints that
∑r

i=1 δi = r and δ1 ≥ δ2 ≥ · · · ≥ δr > 0. It is

obvious that the minimum will be achieved when δ1 = δ2 = · · · = δr = 1, hence,
δ2
1∑r

i=1
δ2i

= 1/r and the upper bound of e is
√

1− 1/r.

In order to have e = 0, we require that r = 1 (since
√
1− 1/r = 0 if and only

if r = 1) so we have

R(Σ) =
√
δ1u1

√
δ1v

′
1

= vec(Σx)vec(Σs)
′

= Σx ⊗Σs

A rank 1 matrix R(Σ) can be generated if and only if all rows/columns of R(Σ)

are linearly dependent which can happen only if:

Σij = CijΣ11, i, j = 2, 3, ...N

where Cij is a constant.



Appendix D
Adaptive MCMC Sampling

Algorithm

The posterior distribution for model (5.4-5.8) is:

π(φs, ψx, φx, κ,β | Y ,F ) ∝ π(φs)π(ψx)π(φx)π(κ)π(β)|Σx ⊗Σs|−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σx ⊗Σs)

−1(vec(Y ′)− Fβ)}

Assume the following noninformative priors for model parameters:

π(β) ∼ constant←− (flat prior) (D.1)

π(ψx) ∼ logN(µ = 7, σ2 = 1) (D.2)

π(φs) ∼ logN(µ = 7, σ2 = 1) (D.3)

π(φx) ∼ logN(µ = 7, σ2 = 1) (D.4)

π(κ) ∼∼ logN(µ = 7, σ2 = 1) (D.5)

and the following proposal distributions

q(ψnewx ) ∼ truncated N(µ = ψcurrentx , σ2
ψx , 0, inf)

q(φnews ) ∼ truncated N(µ = φcurrents , σ2
φs, 0, inf)

q(φnewx ) ∼ truncated N(µ = φcurrentx , σ2
φx , 0, inf)

q(κnew) ∼ truncated N(µ = κcurrent, σ2
κ, 0, inf)
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The following function is used to update the proposal distribution variances,

{σ2
ψx
, σ2

φs
, σ2

φx
, σ2

κ}:

σ2 =

{
σ2
0, k ≤ k0;

sd var(s
0, s1, · · · , sk−1) + sdǫ, k > k0.

(D.6)

where sk is the kth sample of that parameter and σ2
0,κ0, sd (the variance multiplier)

and ǫ are constants (see Haario et al., 2001).

Let (φks , ψ
k
x, φ

k
x, κ

k,βk) be the kth sample from the posterior distribution. To

get the k + 1 sample follow the steps:

1. Using the kth sample, calculate Σk
x and Σk

s such that

Σk
s = exp{−Ds/φ

k
s}

Σk
x = κ exp{−Dx/φ

k
x}+ ψkxI

2. Update φs: a. Evaluate the conditional distribution of φs and call it fkφs
such that

fkφs = π(φks)|Σk
x ⊗Σk

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σk

x ⊗Σk
s)

−1(vec(Y ′)− Fβ)}

b. Update σ2
φs

using (D.6), propose φnews from its proposal distribution,

and then update Σs such that

Σnew
s = exp{−Ds/φ

new
s }

c. Evaluate fnewφs
where

fnewφs = π(φnews )|Σk
x ⊗Σnew

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σk

x ⊗Σnew
s )−1(vec(Y ′)− Fβ)}

d. If u ∼ uniform(0,1) ≤ fnew
φs

q(φks ,φ
new
s )

fk
φs
q(φnews ,φks )

, then φk+1
s = φnews and Σk+1

s = Σnew
s
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otherwise φk+1
s = φks and Σk+1

s = Σk
s .

3. Update ψx: a. Evaluate the conditional distribution of ψx and call it fkψx
such that

fkψx = π(ψkx)|Σk
x ⊗Σk+1

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σk

x ⊗Σk+1
s )−1(vec(Y ′)− Fβ)}

b. Update σ2
ψx

using (D.6), propose ψnewx from its proposal distribution,

and then update Σx such that

Σnew
x = κk exp{−Dx/φ

k
x}+ ψnewx I

c. Evaluate fnewψx where

fnewψx = π(ψnewx )|Σnew
x ⊗Σk+1

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σnew

x ⊗Σk+1
s )−1(vec(Y ′)− Fβ)}

d. If u ∼ uniform(0,1) ≤ fnew
ψx

q(ψkx ,ψ
new
x )

fk
ψx
q(ψnewx ,ψkx)

, then ψk+1
x = ψnewx and Σk

x = Σnew
x

otherwise ψk+1
x = ψkx.

4. Update φx: a. Evaluate the conditional distribution of φx and call it fkφx
such that

fkφx = π(φkx)|Σk
x ⊗Σk+1

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σk

x ⊗Σk+1
s )−1(vec(Y ′)− Fβ)}

b. Update σ2
φx

using (D.6), propose φnewx from its proposal distribution,

and then update Σx such that

Σnew
x = κk exp{−Dx/φ

new
x }+ ψk+1

x I
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c. Evaluate fnewφx
where

fnewφx = π(φnewx )|Σnew
x ⊗Σk+1

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σnew

x ⊗Σk+1
s )−1(vec(Y ′)− Fβ)}

d. If u ∼ uniform(0,1) ≤ fnew
φx

q(φkx,φ
new
x )

fk
φx
q(φnewx ,φkx)

, then φk+1
x = φnewx and Σk

x = Σnew
x

otherwise φk+1
x = φkx.

5. Update κ: a. Evaluate the conditional distribution of κ and call it fkκ such

that

fkκ = π(κk)|Σk
x ⊗Σk+1

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σk

x ⊗Σk+1
s )−1(vec(Y ′)− Fβ)}

b. Update σ2
κ using (D.6), propose κnew from its proposal distribution, and

then update Σx such that

Σnew
x = κnew exp{−Dx/φ

k+1
x }+ ψk+1

x I

c. Evaluate fnewκ where

fnewκ = π(κnew)|Σnew
x ⊗Σk+1

s |−
1

2

exp{−1
2
(vec(Y ′)− Fβ)′(Σnew

x ⊗Σk+1
s )−1(vec(Y ′)− Fβ)}

d. If u ∼ uniform(0,1) ≤ fnewκ q(κk ,κnew)
fkκ q(κ

new,κk)
, then κk+1 = κnew and Σk+1

x = Σnew
x

otherwise κk+1 = κk and Σk+1
x = Σk

x.

6. Update β: Given Σk+1
x and Σk+1

s then

Σk+1 = Σk+1
x ⊗Σk+1

s

Sample βk+1 from π(β | Σk+1,Y ,F ), where the full conditional of β is

π(β | Σk+1,Y ,F ) ∼ N
(
(F ′(Σk+1)−1F )−1F ′(Σk+1)−1vec(Y ′), (F ′(Σk+1)−1F )−1

)



Appendix E
Computer implementation

E.1 Robust parameter optimization of shape re-

sponses

A MATLAB graphical user interface that performs several SSA tasks including ro-

bust parameter optimization was programmed. Figure E.1(a) shows the graphical

user interface main window. Three main tasks can be performed:

1. Mean shape estimation: it uses the GPA and the modified GPA algorithms

to estimate the mean shape of a given n objects. Users can choose to perform

scaling or not. Mean shape estimation graphical user interface is shown in

Figure E.1(b).

2. Analysis of Variance (ANOVA): One-way and two-way ANOVA of shape re-

sponses can be performed. This graphical user interface uses previously writ-

ten MATLAB code provided by Del Castillo and Colosimo (2011). ANOVA

graphical user interface is shown in Figure E.1(c).

3. Geometric shape RPD : GTotal statistic is used in this graphical user interface,

shown in Figure E.1(d). Users need to choose the number of noise factors

in their experiment. This graphical user interface can also be used when

all factors are controllable. All provided examples in chapter 4 have been

analyzed by this graphical user interface.
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Practitioners can analyze their data by a few clicks only, they do not need to

know many statistical details behind SSA.

E.2 Robust parameter optimization of profile re-

sponses

All computations reported in chapter 5 were implemented in MATLAB (version

2010a). A graphical user interface was developed for model building and optimiza-

tion. The program requires the Statistics and Global Optimization toolboxes. E.2

shows the interface of the build graphical user interface.
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(a) (b)

(c) (d)

Figure E.1. (a) The programmed SSA graphical user interface. (b) Mean shape esti-
mation graphical user interface. (c) ANOVA of shape responses graphical user interface.
(d) Geometric shape RPD graphical user interface.
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Figure E.2. Model building and optimization of profile response systems MATLAB
interface.
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