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Abstract

Reinforcement learning is a machine learning method that can learn directly from the environ-
ments. Unlike supervised and unsupervised learning, reinforcement learning does not need an
explicit dataset so that it is widely used in control problems, where the amount of the data is
limited. With the thrive of neural networks, reinforcement learning shows more and more poten-
tials, as the neural network enables complex non-linear value function for reinforcement learning
algorithms. On the other hand, the training methodologies of reinforcement learning also aid the
power of neural networks, because the loss functions for many tasks can be designed by using
updating methods in reinforcement learning. Most reinforcement learning researches focus more
on playing video games and robotic controls, but the potential of reinforcement learning can be
extended to many other fields. There are two major challenges when applying reinforcement
learning algorithms to many fields: 1) limited environment simulation resources and 2) difficulty
to design reward function. This research presented two uncommon applications of reinforcement
learning with the challenges mentioned above: unfractionated heparin (UFH) dosing control and
stroke-based sketch generation. The goal of UFH dosing control is to aid the existing UFH dosing
protocol. The existing protocol is unable to provide suggestions frequently because the criterion,
activated partial thromboplastin time, is measured infrequently. A trained reinforcement learn-
ing agent can use other frequently logged criteria so that the suggestion could be updated often.
The goal of stroke-based sketch generation is to use standard pixel-based sketches as training
data to produce stroke-by-stroke sketches. In the UFH dosing control problem, the environment,
which is a human patient, cannot be explored fully due to ethical issues; whereas in the sketch
generation problem, it is hard to assign the reward, because evaluating the quality of a sketch
is challenging. These two applications indicate the potential of reinforcement learning could be
extended to many fields where the training process could be challenging.
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Chapter 1
Introduction and Background

1.1 The Power of Data-Driven Methods

In the past, engineering problems are solved mostly by rule-based methods. Rule-based methods

are easy to interpret, modify and justify. In many fields where reliability is the priority, rule-based

methods are dominating. However, in recent years, with the emergence of Big Data, data-driven

methods have become one of the most popular topics in the world. Rule-based methods are

designed by humans, and humans need to create the algorithms carefully to satisfy all the rules.

On the contrary, data-driven methods are designed to learn all the detailed rules from data,

so that humans only need to design the learning algorithms instead of cover all the details of

the problem that needs to be solved. The subject of designing and implementing these learning

algorithms is called machine learning. By using machine learning methods, people can 1) save the

time to design very complicated rule-based algorithms and 2) solve those problems that cannot

be tackled by rule-based methods.

1.1.1 Early Model of Classification, Regression and Clustering

Three most popular categories of early statistical learning are: classification, clustering, and

regression. Both classification and regression are supervised learning, whereas clustering and is

unsupervised learning.

Most of the early non-Bayesian machine learning models either use distance metrics as criteria

or use linear mapping. Many early methods perform very well for linear problems if the features

are well-selected and independent. However, whenever the problem is linear, it will be very hard

to solve. Support vector machine (SVM), which is one of the most popular traditional machine

learning methods, supports non-linear boundaries, but the selection of non-linear function (or

kernel) could be challenging because the amount of non-linearity is hard to determine.

Bayesian methods use the Bayesian rule to approximate posterior probability. Even nowa-

days, many Bayesian methods are still considered high performance. The advantage of Bayesian

methods is that the abstraction could be very general compare to non-Bayesian methods.
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1.1.2 Generative Models and Control Methods

Recently, with the development of modern deep neural networks, generative models and control

models become very popular. Essentially, a generative model can generate data that follows the

same distribution as the training data, given different distribution parameters. Different from

classification and regression, generative model is aiming to ”create”, so that there is no ”correct

answer”. In other words, the motivation of a generative model is to generate different outputs,

while they can achieve some criteria.

The relationship between a generative model and a control model could be very close because

action sequences proposed by control models can be considered as generated data. The action

sequence needs to meet some criteria that an environment or problem defined.

1.2 Reinforcement Learning

1.2.1 Overview

There are different kinds of machine learning methods. Categorized by learning mechanics, there

are three categories: supervised learning, unsupervised learning and reinforcement learning. Both

supervised and unsupervised learning models learn directly from the given data. Different from

supervised learning and unsupervised learning models, a reinforcement learning agent does not

directly use data to learn. Instead, a reinforcement learning agent learns from environments,

which will change according to the agent’s actions and give feedback to the agent. The data in

the context of reinforcement learning are called experiences, which are acquired by repeatedly

executing the environment. A reinforcement learning algorithm learns from the reward given

by the environment. Essentially, after the agent performs a good action, then the environment

should sooner or later give a positive reward to the agent; after the agent performs a bad action,

then the environment should give a negative reward (or punishment) to the agent. Compare to

a supervised learning algorithm, reinforcement learning is indirectly ”supervised”, as the agent

is not informed with the exact correct answer. As a result, reinforcement learning relies on a

very well-designed environment, if not already exist, and feedback. Such feedback is commonly

called reward, and the environment is usually a simulated environment. The learning mechanism

of reinforcement learning agent is somehow similar to how humans learn because humans also

learn from the environment and rewards. However, reinforcement learning is not the mechanism

that humans use, due to the fact that reinforcement learning agents require a significantly larger

amount of experience to learn a good policy than humans do.

Modern reinforcement learning can be dated back to the 1980s, but reinforcement learning

has not become a popular machine learning area until 2015 when Deep Q Network (DQN)[1] has

introduced. Before the introduction of the DQN, although many previous reinforcement learning

methods produced exciting results, they are not applicable to many real-world problems. For

example, Q-learning is a very successful method and has shown a strong ability to solve the grid

puzzles; but it cannot handle control problems such as playing video games. As an improvement,

the DQN combined deep neural network and the Q-learning, which showed the ability to play
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Figure 1.1: Difference between reinforcement learning and supervised/unsupervised learning

video games, only use the screen as the input. The difference between DQN and Q-learning is

that a Q-learning agent has an explicit mapping that saves ALL state-optimal action pairs; while

DQN uses a neural network to approximate the best action given an input state. As the number

of possible inputs increases, the memory needed for Q-learning mapping will increase. If there

are infinite numbers of possible input states, the memory will be infinitely large, which is not

realistic.

After DQN, there are increasing number of reinforcement learning methods have been pro-

posed. The state of the art methods can handle both inputs and actions with the infinite number

of possibilities. Therefore, reinforcement learning could be a very powerful tool. Reinforcement

learning is widely used in control problems, such as unmanned vehicle control and video game

playing, but it can also be used in many other fields, such as generative task and tutoring systems.

1.2.2 Markov Decision Process and Temporal-Difference Learning

One assumption for reinforcement learning is that the control (or any other) problem needs to

be solved could be modeled as Markov Decision Process (MDP). The major components of the

MDP are the states and actions. In an MDP, by taking an action in a certain state, there would

be probabilities to transit to other states. In real-world problems, the goal is usually to reach

one or some states, from an initial state in MDP. Reinforcement learning is therefore to find the

policy to complete the goal. In order to use reinforcement learning, algorithm designers need to

carefully define the reward of each action given a state. The reward should be defined based on

the problem and the environment where the MDP is formed.

The majority of reinforcement learning algorithms is so-called temporal-difference (TD) learn-

ing, which is a model-free method. In short, TD learning is to minimize the difference between

estimated value and sampled value from the environment at a certain time step. The estimated

value should be calculated from a value function, which takes states and actions as inputs. Note
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that estimated value will take the next state as input, and this is why it is named as temporal

difference. On the other hand, the sampled value should be acquired by summing up the rewards

at different time steps. In order to bound the sum of rewards, there should also be a time-step

discount factor.

One example of TD learning is Q-learning. When state space and action space are finite,

Q-learning performs very well. Instead of finding the optimal policy directly, Q-learning is to

estimate the Q-value (or discounted cumulative reward), which could be used to infer the optimal

policy. Q-learning and its variants are the most widely used algorithms in the reinforcement

learning community until 2014.

1.2.3 Monte Carlo Method and Policy Gradient Methods

Monte Carlo methods are to sample a combination of state, action, reward and next state each

time when the policy needs an update. Policy gradient, which is a very popular category of

reinforcement learning methods, is an example of Monte Carlo methods.

Policy gradient is referring to the computation of the gradient of the policy so that by updating

the value function following the gradient, the performance will be maximized. Different from Q-

learning, policy gradient methods are optimizing the policy directly.

Researchers did not pay much attention to policy gradient methods in the old days. The

reason for the poor performance of policy gradient methods is the high variance generated by

the Monte Carlo sampling process. Also, it is very hard to design the policy function before

the use of neural networks. However, compare to Q-learning, policy gradient has the following

advantages:

• Policy gradient directly update the policy function so that whenever Q-value is hard to

estimate, policy gradient will have a better performance.

• Since Q-values needs to be calculated for each action, native Q-learning cannot handle

continuous action space.

In conclusion, the development of reinforcement learning can be divided into following stages:

1. Early Monte Carlo methods

2. Q-learning and its variants

3. Policy gradient methods with Q-value (Deep Deterministic Policy Gradient)

4. Modified policy gradient methods (Trust-Region)

In the latter two stages, researchers are trying to reduce the variance of policy gradients calcu-

lated. Apparently, researchers are gradually shifting from Q-values to policy gradient. In essence,

policy gradient methods are better in all perspectives once the sample variance could be reduced.
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Figure 1.2: Neural network with 3 layers

1.2.4 Neural Network and Reinforcement Learning

The potential of reinforcement learning is not explored until the usage of neural networks. In the

community, reinforcement learning with neural networks is called deep reinforcement learning.

Neural networks have many different names and abbreviations, including artificial neural

network (ANN), deep neural network (DNN), multi-layer perceptron (MLP), etc. There are

many discussions and arguments regarding the differences between the names, but generally

speaking, all the names are referring to the same subject. Neural networks are often illustrated

in multiple layers, where each layer is a n to m dimensional linear mapping with a non-linear

function (activation function) applied after. Figure 1.2 shows the illustration of neural network

with 3 layers. However, the essence of a neural network is a recursive mapping. Let σ to be the

activation function and f to be the linear mapping, then a neural network with 3 layers is shown

in Equation 1.1:

y = σ3(f3(σ2(f2(σ1(f1(x)))))) (1.1)

Such recursive mapping is the reason why a neural network is so powerful and hard to op-

timize. Neural networks were not practical to use until 1970 when auto differentiation and

back-propagation are introduced. Auto differentiation and back-propagation provide a numeri-

cal way to compute gradients of the parameters in neural networks. Even with these approaches,

neural networks were not practical in production until 2010, when the computational power of

CPUs and GPUs was sufficient enough to optimize a large neural network in a reasonable time.

The idea of using neural networks in reinforcement learning was realized in 2014 in deep

Q network (DQN), where Q-values were approximated by a neural network instead of stored

explicitly for every pair of states and actions. Since the Q-values could be estimated by a neural

network, the state space could be continuous since then.

Later, neural networks are also used to represent the policy. Actor-critic structure is the most
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widely used and the best structure for reinforcement learning. There are two neural networks,

actor and critic, where the actor is the policy that can output action to maximize reward. Such

actor neural network can be optimized by computing the policy gradient.

1.3 Heparin Dosing Control

Drugs that can have serious overdose consequences usually require strict dosing control, for

example, insulin and heparin. Therefore, researchers and clinicians need to carefully design

dosing protocols for these drugs. Tradition rule-based protocols take one major measurement,

as the major criteria to decide the dose per unit weight for a patient. As an aid for traditional

protocols, reinforcement learning has the potential to provide an automated dosing recommender

system, which can reduce human errors and improve efficiency. One of the important goals of

this research study is to design a model that can suggest when and how much heparin to inject,

giving the vital sign and lab results of a patient.

Unfractionated heparin (UFH) is one drug that requires strict dosing control. UFH is usually

used during medical operations and other treatments, where patients can be exposed to some

medications or situations may help the formation of clots in the blood tube, to prevent blood

clots. Essentially, the more UFH injected to patient per unit time per unit body weight, the

long the clotting time. While having long clotting time can prevent the blood clots to form

unexpectedly, it may also lead to excessive bleeding. As a result, all hospital has a very strict

protocol to control the UFH injection rate. The majority of medical centers and clinics use

activated partial thromboplastin time (aPTT) as criteria for their dosing protocol.

1.4 Image Generation

Image generation is the most popular topic of generative models. The causes behind the pop-

ularity of image generation include: 1) images or grid data are in a representation that neural

networks handle really well; 2) the quality of generated data is very easy to verify; 3) the amount

of available image data is huge.

Two most popular generative models are variational autoencoder (VAE) [2] and generative

adversarial nets (GAN) [3].

1.4.1 Variational Autoencoder

Variational Autoencoder (VAE) is based on autoencoder, which is a very popular representation

learning architecture. Autoencoder has two neural networks: an encoder and a decoder. In

short, the data will be encoded to a latent vector by the encoder, and the latent vector will be

decoded back to the original data. The latent vector fed into the decoder is considered to contain

the parameters, or features, of the data distribution. The goal of an autoencoder is to train the

networks so that the input of the encoder and the output of the decoder could be the same, and
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then use the encoder to embed the data. However, in VAE, the goal is to use the decoder to

generate new data, given a random latent vector.

The difference of VAE and autoencoder is that, the latent vector will be explicitly represented

as parameter of a distribution (usually Gaussian). Therefore, the generated data from VAE will

be different from the original ones.

1.4.2 Generative Adversarial Nets

GAN also has two neural networks, a discriminator and a generator. A generator takes a latent

vector as input and output generated data, whereas discriminator takes the output data of

generator (fake data) and real data as input, then classify whether the inputs are real or fake.

One important characteristic of GAN is the discriminator will take the output of the generator

as input, and therefore, the main contribution of GAN is the dedicated loss function to optimize

the generator.

Although VAE can do generation tasks fairly well, GAN has one very important advantage

against VAE. As VAE requires an assumption of the underlying distribution of data (usually

Gaussian), GAN can fit the data without providing the detail of the distribution. This assumption

can be a very huge disadvantage for complex generation tasks, as most of the data are apparently

not normally distributed. As a result, all realistic image generation nowadays are all generated

by GAN.



Chapter 2
Literature Review

2.1 Reinforcement Learning

Although reinforcement learning has been studied for several decades, it did not become popular

until recently. The thrive of reinforcement learning recently is due to the implementation of

artificial neural networks.

2.1.1 Development of Reinforcement Learning

The concept of reinforcement learning is introduced to solve learning problems whose environment

can be modeled as Markov Decision Process (MDP), but the exact mathematical formulation

is infeasible to obtain[4, 5]. In the early stages, reinforcement learning can only solve problems

with discrete state space and action space[6, 7]. One of those early-stage popular reinforcement

learning techniques is Q-learning [6]. Q-learning evaluates the weighted accumulative reward,

also known as Q-value, of an action. In the machine learning community, Q-value is usually

estimated by a function approximator, as there will be an infinite number of mathematical

formulations if state space is continuous. With the advancement of neural networks, the Q-

value estimation can be quite accurate by implementing neural networks as the approximator.

However, Q-learning becomes extremely hard to train if the approximator is non-linear. This

problem was not solved until the emergence of Deep Q Network (DQN)[1] introduced by Mnih et

al as a variant of Q-learning. Although DQN uses the neural network as a Q-value approximator,

the training is fairly stable due to the implementation of the following techniques: target network

and experience replay. Both stabilizing techniques are widely used in the reinforcement learning

community today.

However, in DQN, the action space is still discrete. Focusing on breaking the limitation

of discrete action spaces in DQN, Timothy introduced Deep Deterministic Policy Gradients

(DDPG)[8] based on Deterministic Policy Gradients (DPG) by Silver [9]. DDPG is a hybrid of

policy gradient and Q-learning, where Q-value is used to calculate the policy gradient.
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DDPG reduced the variance of policy gradient by using Q-values, but it may suffer from many

drawbacks of Q-learning, including overestimation of Q-values, difficulty of calculating Q-values

in some situations, etc. Therefore, pure policy gradient methods could be still better choices.

Trust-region policy optimization (TRPO) [10] proposed an optimization method that has bounds

on the policy gradient computed. However, TRPO is not practical for large scale problems, as

optimizing objective function (loss function) with constraints is very hard and slow. However,

TRPO shows the potential of policy gradient methods, when the variance can be controlled.

Therefore, to accelerate and ease the training process of TRPO, proximal policy optimization

(PPO) [11] is introduced. PPO proposed a clipped policy gradient to relax the constraints of

TRPO.

Besides, recent advancement [12, 13, 14] on hierarchical reinforcement learning [15] shows

great potential. Essentially, since hierarchical reinforcement learning architecture breaks the task

into sub-tasks, it is ideal to perform complex tasks such as playing games [16] and controlling

robots [17]. Many designing problems can be formulated into sub-problems as well, promising

the possibility of implementing hierarchical structures.

2.1.2 Actor-Critic Structure

Most of the high-performance reinforcement learning algorithms use actor-critic structure, includ-

ing DDPG, TRPO, PPO. However, the most widely known actor-critic algorithm is Advantage

Actor Critic, which has two variants: Advantage Actor Critic (A2C) and Asynchronous Advan-

tage Actor Critic (A3C) [18]. Actor-critic algorithms contain two neural networks, an actor and

a critic. The actor is the policy, which outputs the actions; the critic output a value (Q-value or

value function) that can evaluate the goodness of the action.

The major differences between all these algorithms are: 1) different operators (Q-value or

advantage) to update policy, and 2) different strategies to reduce the variance of policy gradients.

Here, only DDPG uses Q-value to update policy, and all others use advantage, which is Q-value

subtracted by value function. TRPO and PPO enforce trust region and clipped loss to stabilize

the policy gradient, whereas DDPG, A3C and A2C have no explicit stabilization. Thus, TRPO

and PPO are essentially improved versions of A2C. For A3C, since it includes multiple workers

training in a separate environment, A3C has the potential of parallel training.

2.2 Heparin Dosing

Unfractionated heparin (UFH) is widely used to prevent blood clots during medical treatment

[19]. UFH is discovered by McLean [20] in 1916. In terms of pharmacokinetic, UFH interacts

with many coagulation enzymes [21, 19], among which the factor Xa and thrombin are the most

sensitive ones. Such interactions are the mechanics of the anti-coagulation effects caused by UFH.
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Figure 2.1: Example of a UFH dosing protocol.

2.2.1 Heparin Dosing Protocol in Practice

Most of the hospitals use activated partial thromboplastin time (aPTT) as major criteria to

control UFH dosing, as suggested by many researchers [19, 22, 23]. Although enzymes such as

factor Xa and thrombin could also be used as the criteria, it can cost less to measure aPPT.

Therefore, the UFH dosing protocols are to maintain the aPTT level. Figure 2.1 shows an

example of UFH protocol at a hospital 1.

2.3 Image Generative Model

2.3.1 Generative Sketching

Sketch generation can be divided into two categories, stroke-based and pixel-based. Although

generating sketches using pixels has several disadvantages, there are still some works using the

pixel-based method to generate sketches. One example is [24] proposed by Dering and Tucker in

2017, which is a GANs based model. Using the pixel-based method, [24] has impressive results,

but with the problem of low fidelity. Another example is proposed by Burnap et al. mentioned

before, which introduces a pixel-based model to generate product form design images based-on

VAE. [25].

In the field of visual generation, although the majority of the previous works are pixel-based

image generation [3, 2, 26], there are also some previous works focusing on sketch generation.

[27, 28, 29, 30]. Sketch-RNN [27] proposed by Ha and Eck can generate vector images. The model

1https://www.uwhealth.org/files/uwhealth/docs/pdf2/Heparin Infusion Guideline.pdf
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can be trained on vector images. Sketch-RNN is essentially a VAE[2] architecture, with RNN

decoder and encoder. What neural networks are learning is the temporal relative position of the

”pen” when a person is sketching. The advantage of Sketch-RNN is that the spacial features of

the training image are not important; instead, Sketch-RNN extracts temporal information of the

trajectory of the ”pen”. Other than Sketch-RNN, there are other methods focusing on generating

sketches from reference images [31, 30, 28, 29], which are not quite generative methods. Zhou

introduced a reinforcement learning technique named Doodle-SDQ [31] to doodle an image by

sketching. One advantage which Doodle-SDQ poses in comparison to Sketch-RNN is that the

training data can be the pixel-based image. However, Doodle-SDQ is not quite a generative

model, since it requires an input reference image for each of its generations. Some other works

such as [29, 30, 28] can also generate sketches using input image, but they are neither stroke-based

nor generative models.

2.3.2 Realistic Image Generation

The advancement of neural networks drives many researchers to study realistic image generation.

After the introduction of GAN [3] in 2014, high fidelity realistic image generation starts to

thrive. Wasserstein GAN (WGAN) [32] introduced Wasserstein distance as the distance measure

instead of Kullback-Leibler divergence in regular GAN, which could provide a stabler training

and lower variance in the loss function. Deep Convolutional GAN [33] developed a general GAN

architecture using deep convolutional neural networks. Style GAN [34] introduces a new concept,

style, to improve the training of the GAN. Self-Attention GAN [35] improves the detail fidelity

by incorporate spectral normalization to the generator.



Chapter 3
Reinforcement Learning in

Unfractionated Heparin Dosing

Control

In this chapter, the reinforcement learning application on dosing control is covered. The drug

selected is unfractionated heparin (UFH), which is a very commonly used drug to prevent blood

clots. UFH usually require strict dosing control, because the overdose of UFH can cause bleeding,

which may delay other treatments and cause dangerous situations. In practice, UFH dosing

protocols are based on the experience of the clinician and blood lab tests.

UFH is commonly used in the intensive care unit (ICU), where patients’ vital signs, lab test

results, and drug usage histories are very well recorded. Experiments in this chapter use the data

extracted from MIMIC III (Medical Information Mart for Intensive Care III)[36].

In ICU, the vital signs are recorded very frequently (usually every 30 minutes), but lab tests

are not frequently recorded. Therefore, the major challenge in applying reinforcement learning

in ICU UFH dosing control is the difference in frequency of records collection, which may lead to

null values in some attributes in some time steps. To reduce the number of null values, attribute

selection will be conducted before applying the reinforcement learning algorithm.

The difference in frequency of records collection is also one of the motivations of using rein-

forcement learning. In practice, most of the UFH dosing protocols rely on the value of activated

partial thromboplastin time (aPTT), which is an attribute with a low sample rate. Therefore, the

change in the injection rate can only be made at a low frequency. One the other hand, reinforce-

ment learning could also use attributes with high sample rates, and could provide suggestions of

injection rate more often. Another motivation for using reinforcement learning for UFH dosing

control is the fact that physician’s suggestions could be improper due to the low sample rate of

aPTT. This motivation will be explained in detail in Section 3.3.

The key challenges of this projects are:
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• No actually or virtual environment available for the agent.

• Unsatisfying data quality in UFH related aspects.

3.1 Background of Unfractionated Heparin

Unfractionated heparin (UFH), or simply heparin, is injected intravenously (IV) in ICU to prevent

blood clots during treatment. Due to the serious consequences caused by UFH overdose, UFH

dosing is well studied since the 1990s [23, 37, 38]. In practice, clinicians in ICU inject IV UFH

in a basal and bolus manner[39, 40]. Basal represent a continuous infusion, which is controlled

by an infusion rate; while bolus is a one-time injection of UFH in a large amount.

In this research, the reinforcement learning agent uses attributes, including the vital signs

and lab test results, as states, and output actions, which is the UFH injection. The reward

of the reinforcement learning agent is determined by activated partial thromboplastin times

(aPTT), which is a commonly used pharmacodynamic criterion for UFH dosing control. For

a reinforcement learning agent, it is not ideal to consider both bolus and basal injection data,

because: 1) bolus is usually not used for most of the patients and 2) basal has a dominating effect

compare to bolus. Specifically, if a patient’s aPTT is not too off the normal range, then bolus

will not be applied so that most of the UFH injections of a patient is decided by using basal.

3.2 State Construction and Attributes Selection

Before applying reinforcement learning, a statistical analysis of attributes is conducted to deter-

mine which attributes should be used to construct state. During the analysis, injections of bolus

and basal will both be considered. Bolus and basal are distinguished by whether a UFH injection

records contain the injection rate in the MIMIC III database.

Medical records of 3211 patients with 22 attributes extracted from the MIMIC III database

are used for the experiment. For reinforcement learning agents conducting UFH dosing control, in

order to ensure the performance, the inter-dependency between attributes should be minimized,

and the attributes should be highly related to the UFH injection. The following sections show

the detail of the methodology and the results.

3.2.1 Methodology

To see whether an attribute is suitable for constructing state, three questions need to be evaluated:

1. Whether the attribute will change responding to the UFH injection?

2. What is the time delay of the change responding to the UFH injection?

3. Whether the attribute is dependant to other attributes?

The first two questions can be evaluated by using correlation coefficient and mutual informa-

tion. Let an attribute forms a time series s = {st} , and an action is also a time series a = {at},
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Figure 3.1: A flow diagram of the methodology for attributes analysis

where t is the time step. Those attributes with high correlation and/or mutual information are

favored.

To address the third question, a mutual information matrix is constructed, where rows and

columns are attributes. Those attributes that have high mutual information are redundant.

The summary of the methodology is illustrated in Figure 3.1.

3.2.1.1 Correlation Coefficient

The correlation coefficient is a widely used method to investigate linear relationships between two

variables. Although not intended for time series analysis, the correlation coefficient can indicate

the relationship between time series properly if the time series is without trends. Since most

of the attribute time series are either vital signs or lab test measurements, there should not be

trends. Let the correlation coefficient between attribute series and action series to be ρa,s, then:

ρa,s =
E [(at − µat) (st − µst)]

σatσst
(3.1)

where µ is the mean, and σ is the standard deviation. Note that correlation coefficient can be

either positive or negative.

3.2.1.2 Mutual Information

In information theory, mutual information is a measure used to quantify the amount of infor-

mation of a variable that could be obtained giving another variable. The advantage of mutual
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Figure 3.2: An illustration of calculation of mutual information

information is that it could measure the nonlinear relation between two variables, and the un-

derlying transformation function between two variables will not cause a significant influence on

the result. Mutual information MIa,s between action and each attribute is:

MIa,s =
∑
at∈a

∑
st∈s

p (at, st) log

(
p (at, st)

p (at) p (st)

)
(3.2)

The log base in Eq. 3.2 is 2, resulting in the unit of mutual information to be bit. In practice,

the values of time series need to be binned to ensure finite number of unique values shown in the

time series in order to calculate p (at), p (st) and p (at, st). Fig 3.2 illustrates the calculation of

mutual information. The maximum number of unique values in a time series used in this study

is 16.

3.2.1.3 Optimal Time Delay

Mutual information with delayed attributes can be also used to determine the optimal time

delay. Specifically, the amount of time delay on attributes that can result in the highest mutual

information with the responses is desired. Let τ to be the number of time steps delayed, so that

s(τ) represent an attribute time series with τ steps delayed. The optimal time delay τ∗ is:

τ∗ = arg max
τ

MIs(τ),a (3.3)

3.2.2 Experiment Design

The three questions introduced in the previous section are addressed in the experiment. MIMIC

(Medical Information Mart for Intensive Care) III database [36], which is a popular ICU database



16

created by Beth Israel Deaconess Medical Center, is used in experiment. Medical records, includ-

ing at least 48 hours of patients’ vital signs, lab test results, injection events, are saved in the

MIMIC III database during patient’s stay in ICU. Attributes frequently used in the literature

related to UFH problems are selected in this study, including Albumin, Arterial CO2 Pressure,

Arterial O2 Saturation, Blood Urea Nitrogen (BUN), Creatinine, Glasgow Coma Scale (GCS),

Heart Rate, Hematocrit, Hemoglobin, Heparin Dose, International Normalized Ratio (INR), PH,

aPTT, Platelet Count, Prothrombin Time (PT), Respiratory Rate, Temperature, Total Biliru-

bin, Troponin-T, and White Blood Cell (WBC). In terms of the injection, basal is the injection

rate of heparin sodium, and the bolus is the injection amount of heparin sodium.

A total of 3211 patients who have UFH injected during the ICU stay have been selected.

In terms of data processing, time series are firstly formed at a time interval of 1 hour. The

time interval is decided based on the fact that the most frequently sampled lab measurements

are sampled hourly [41]. Missing values are imputed by the sample-and-hold (zero-order hold)

method. In case there is no initial value, average values are used.

It is very common to use sample-and-hold method in missing values for vital signs and lab

tests in dosing problems, because normally clinicians will assume the attributes to be in normal

range or not changed since last test.

All attributes will be delayed for 1 hour (1-time step) when they are used to calculate the

correlation and the mutual information with the injections because it is intuitive that the effect

will take place after the injection.

3.2.3 Results of Attributes Analysis

3.2.3.1 Relations between Attributes and Injections

Figure 3.3a shows the average correlations between 1-hour-delayed attributes and injections. The

table in Figure 3.3a is ranked based on correlation with bolus.

Only aPTT has significant dependency with bolus. It not surprising that aPTT (or PTT) has

negative correlations with the bolus, because the clinician will inject bolus UHF if the clotting

time is low. However, another clotting factor, INR, have a small correlation with the bolus. This

indicates that aPTT and INR/PT are fairly independent.

Different from bolus, the inter-dependencies between each attribute and basal injection are

more informative. aPPT has a high correlation with the basal but not dominant anymore. Vital

signs except for heart rate seems very not related to the basal injection. There are also many

other attributes seems quite important to the UFH basal injection. However, many attributes

that are negatively correlated with bolus become positively correlated with basal, or vice versa.

This observation may be because the basal protocol is delayed, which means, even the aPPT is

increasing after injection of the bolus, the basal may still be kept at a high level until later.

Figure 3.3b shows the mutual information of attributes with the basal and bolus. The table

is also ranked based on the mutual information with bolus. Ranking slightly changed, which

implies nonlinear relations exist.
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(a) Average correlation between attributes and
injections with descending order in the magni-
tude of correlation with bolus.

(b) Average mutual information between at-
tributes and injections with descending order
in the magnitude of mutual information with
bolus.

Figure 3.3: Results of relations between attributes and injections

Table 3.1 includes the ratings. Mutual information values are bold if they are greater than

the median.

3.2.3.2 Optimal Time Delay

Optimal time delay for each attributes are shown in Table A.1 in the Appendix A. The optimal

time delay is when the average correlation between bolus and injection is the greatest. Although

bolus is not quite useful for learning model, since bolus is one-time injection of large amount,

the effects of bolus will be less affected by other factors, and thus more suitable for time delay

analysis.

From the result, only GCS-Eye Opening attribute has a significant optimal time delay of 7

hours. Arterial O2 Saturation, Heart Rate have about 4 hours. For many modern reinforcement

learning methods, the policies can learn delayed reward. Therefore, as long as the optimal time

delay is not massive, the learning model will be able to handle slight time delay on attributes.

Notice that all the highly relevant attributes shown in Table 3.1 have minimal optimal time

delay. Therefore, the state for the reinforcement learning model could be high relevance attributes
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Table 3.1: Rating for each attributes

Categories Attributes MI with Basal MI with Bolus
High Relevance

Heart Rate 0.48786 0.00186
Temperature Fahrenheit 0.44538 0.00153

Respiratory Rate 0.41974 0.00204
Platelet Count 0.24784 0.0009

BUN 0.22495 0.00091
WBC 0.21558 0.00085

PH (Arterial) 0.14861 0.00081
Prothrombin time 0.16116 0.00066

PTT 0.32972 0.00068
Mid Relevance

INR 0.13351 0.00066
Hemoglobin 0.18612 0.00065

Hematocrit (serum) 0.15731 0.00058
Arterial CO2 Pressure 0.14231 0.0008

Low Relevance
Troponin-T 0.10896 0.00022
Creatinine 0.14807 0.00063

GCS - Eye Opening 0.09241 0.00028
GCS - Verbal Response 0.08136 0.00044
GCS - Motor Response 0.07104 0.00025
Arterial O2 Saturation 0.06362 0.00005

Total Bilirubin 0.06237 0.00036
Albumin 0.05306 0.00005

Heparin Dose (per hour) 0.00407 0
Medians of MI 0.14834 0.000655

and mid relevance attributes with small optimal time delay. The result in next section, inter-

attributes dependency, can indicate whether there is redundancies in the attributes.

3.2.3.3 Inter-attributes Mutual Information

Figure A.1 in Appendix A shows the inter-attribute mutual information. Most of the attributes

are independent, but few are fairly correlated. For example, INR and Prothrombin Time (PT)

are correlated, which both are used to measure one of the factors of clotting time. Since PT is

among the high relevance attributes, INR here will not be used for constructing the state of the

reinforcement learning agent. Another example is Hemoglobin and Hematocrit, and therefore

the one with higher mutual information will be used for the state construction.

3.2.3.4 Summary

From the results of three aspects, only attributes with following properties will be used to con-

struct the state:
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Figure 3.4: Illustration of reward function

• Among the categories of high relevance and mid relevance to UFH injection.

• Minimal (less than 4 hours) optimal time delay.

• Minimal inter-dependency

Therefore, the attributes selected for the state construction are: Heart Rate, Temperature

Fahrenheit, Respiratory Rate, Platelet Count, BUN, WBC, PH, Prothrombin Time, aPPT

(PTT), and Hemoglobin. Some of the lab tests are discarded because there are not enough

tests.

3.3 Reward and Architecture

3.3.1 Reward Function

The reward is the most important component in reinforcement learning and it will directly

influence the performance of the agent. In this UFH dosing control application, usage of the

reward is one of the most important motivations of using reinforcement learning rather than

supervised learning.

For a supervised learning model, the label is an important component. Labels in supervised

learning are essentially the targeted value to output, given a set of attributes as input. To solve

UFH dosing problem using supervised learning, the only information that can be used as a label

is the UFH injection administrated by the clinician. However, as stated at the beginning of this

chapter, some of the actions suggested by the clinician may not be proper. Specifically, because

the aPTT value is not available at every hour, the injection rates suggested by the clinician could

be unstable and conservative. As a result, if the actions suggested by the clinician are used as

labels, the supervised learning model could learn an improper dosing policy.
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Figure 3.5: Flow diagram of the training

On the other hand, reinforcement learning can potentially learn a better policy. An indirect

indication of the proneness of the injection rate is included in the data: aPTT value. Thus, a

reward function could be designed based on the aPTT value and provide the rewards for the

reinforcement learning agent to learn from.

The medical center where the MIMIC data collected from does not publish their protocol,

but from many previous works [42, 43, 44], it is very common to set the target range of aPTT

to be 60-100. Let the targe range of aPTT be 60-100 here for now. The reward function should

give positive value when the aPTT is within the range, and give negative value when the aPTT

is outside the range. Besides, the reward function should be a continuous and differentiable

function to make the training stable. Let rt to be the reward at time step t, then rt can be

calculated from aPTT value at time step t:

rt =
rmax + 1

1 + e−(aPTTt)−60
− rmax + 1

1 + e−(aPTTt)−100
− rmin (3.4)

where rmax and rmin are the upper and lower bounds for the reward value. Let the reward value

is between -1 and 1, then the reward function in Equation 3.4 can be illustrated in Figure 3.4.

3.3.2 Q Learning and Bellman Equation

Based on Q-learning and DQN, the reinforcement learning agent here uses a neural network to

approximate Q-value qa for each action a, which is the maximum expected cumulative reward

Rt given a state-action pair. A important assumption to bound the cumulative reward is to

have a discount factor γ, so that the cumulative reward at time t until terminate time T is:
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Rt =
∑T
i=t γ

i−tri.

A neural network f(s) will output a vector contains Q-values of each actions q:

q = f(s) (3.5)

Therefore, Q-values for each action qa ∈ q given state s is denote as Q(s, a) = qa. The agent is

to take the action with the highest Q-value qa, so that the optimal action q∗ at state s is:

q∗ = π∗(s) = arg max
a

qa (3.6)

The policy of Q-Learning is explicit. As shown in Equation 3.6, the optimal policy of Q-learning

π∗ is to select the action with the highest Q-value, and thus the approximation of Q-value needs

to be proper.

To approximate the Q-values given a state, the most used method is a temporal-difference

method, that can recursively estimate the Q-values of a state, given the optimal Q-value of the

next state. This methodology is also known as dynamic programming. Let s′ is next state, the

recursive equation is called the Bellman Equation:

Qπ(s, a) = r + γQπ(s′, π(s′)) (3.7)

and in here, the equation can be modified to:

Q(s, a) = r + γmax
a

(Q(s′, a)) (3.8)

by combining the explicit policy in Equation 3.6 and Bellman Equation shown in Equation 3.7.

Equation 3.8 can be used to estimate the Q-values and thus update the Q-value approxima-

tion. Since a neural network is used, Equation 3.8 is used to construct the loss function. By

minimizing the mean squared error between Q-values Q(s, a) estimated from Equation 3.8 and

Q-values estimated from the neural network f(s), the neural network can be trained. Formally,

the loss function L of the neural network is:

L = (r + γmax
a

(Q(s′, a))− f(s, a))2 (3.9)

where s′ is next state and Q(s′, a) is estimated by neural network: Q(s′, a) = f(s)′.

3.3.3 Q-Network

The neural network used is a fully-connect neural network. For all layers except for output

layer, a rectified linear unit (ReLU) activation function is used. ReLU is a very commonly used

activation function, which is defined as:

f(x) =

{
x, x ≥ 0

0, x < 0
(3.10)
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Layer Unit Activation Function
Dense 512 ReLU
Dense 512 ReLU
Dense 512 ReLU
Dense 128 ReLU
Dense 64 ReLU
Dense Action Dimension None

Table 3.2: Q-Network Architecture

Figure 3.6: Flow diagram of policy used in standard training process for Q-learning

The architecture of the neural network is presented in Table 3.2: Note that the last layer

output the Q-values of actions, so there is no activation function. The number of unit of output

layer is depending on the number of bins to create for the continuous action, which will be

discussed in Section 3.4.1.

3.3.4 Off-Policy Training

The off-policy training essentially means that the policies during training and executing are

different. The policy used in a standard training process of Q-learning and DQN is shown in

Figure 3.6. On the other hand, as shown in Equation 3.6, the policy of Q-learning should never

explore, but the policy during training include exploration. The intuition behind exploration is

to make sure all possible actions are tested, and the epsilon-greedy strategy is usually used for

exploration.

Although the motivations of using reinforcement learning to solve the UFH dosing problem
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Figure 3.7: A illustration of bins of actions

are sufficient, a huge challenge is that the environment is not available. Without an environment,

the agent will not able to execute the environment and gain their own experiences, which implies

the reinforcement learning agent needs to be trained off-policy. This is one very strong motivation

to use Q-learning and DQN here because Q-learning is an off-policy algorithm.

The agent will not execute the environment and thus the number of experiences is fixed. As

shown in Figure 3.5, a memory buffer will store all the experiences available from the MIMIC

database, and train the neural network using the loss function in Equation 3.9. The training time

will be short because 1) there are limited experiences and 2) there is no executable environment.

3.4 Experiments

Two experiments are conducted to test the performance of the reinforcement learning model. The

experiment results show that the clinician tends to use a relatively conservative dosage compare

to the agent, and the agent tends to use a stabler dosage. By changing the target aPTT range

and comparing the two experiments, the ability of agent understanding the relationship between

action and states is illustrated.

3.4.1 Action Binning

Deep Q-learning is a reinforcement learning algorithm that only supports discrete action space.

Therefore, it is necessary to bin the action into discrete values. The action is the amount of UFH

injected per hour per unit body weight (e.g. units/hour/lb), which is divided into 10 bins, as

shown in Figure 3.7. Note that the last bin is overflowed so that all values over 100 will be set

to 100. Essentially, all action values over 90 will be categorized in one bin.

The distribution of action is skewed left, with the majority of actions are very small, implying

the clinicians are giving conservative doses. The size of the bin and the distribution of the action

values are shown in Figure 3.8

The size of the bin is determined by balancing the difficulty in training and level of precision.

It is intuitive to have as many bins as possible to train an agent that can have precise control,

but by making the action discrete, the neural network will not assume numerical relationships

between bins, which can bring challenges in training. Introducing a large number of bins may

result in the agent will not learn the numerical relationship between bins effectively. After several

experiments, it comes out 10 bins is a good number to use.

Since the number of bins is 10, there are 10 Q-values need to be approximated. As a result,

the dimension of the output layer (units in the layer) of Q-network will be 10, which will output

10 Q-values.
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Figure 3.8: Histogram of action values with 10 bins.

Parameter Experiment 1 Experiment 2
Target aPTT 60-100 sec 30-70 sec

Batch Size 30 30
Learning Rate 0.001 0.001
Training Steps 50000 50000

Discount Factor 0.95 0.95

Table 3.3: Two experiment set-ups

3.4.2 Two Experimental Set-Ups

To illustrate whether the agent can learn the numerical relationship between action bins, ex-

periments are done in two different set-ups. The detail is shown in Table 3.3. Essentially, by

controlling the target range of aPTT, the agent is expected to put in a different amount of in-

jection. For example, if the target range of aPTT is low, then the agent should be putting less

UFH, as aPTT will increase as the injection amount increase.

The target range of aPTT is controlled by adjusting the reward function shown in Equation

3.4. Equation 3.4 is an example of the reward function when the target range is 60-100, which is

the range for Experiment 1. For Experiment 2, Equation 3.4 can be modified to:

rt =
rmax + 1

1 + e−(aPTTt)−30
− rmax + 1

1 + e−(aPTTt)−70
− rmin (3.11)

and the comparison is illustrated in Figure 3.9.

Essentially, the interpretation of two different experimental set-ups is that the agent trained

in Experiment 2 will be more conservative compared to the agent trained in Experiment 1.
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Figure 3.9: Comparison between reward functions

(a) Result of Experiment 1 (b) Result of Experiment 2

Figure 3.10: Comparisons between actions by agent and clinician on a patient

3.4.3 Results and Analysis

Since there is no executable environment, the trend of Q-value as the training steps increase

becomes less important. Figure A.2 and Figure A.3 in the Appendix A show the trend of Q-

values.

Figure 3.10 shows the comparison between the agent and clinicians. In Figure 3.10, a patient

is used as an example to illustrate the difference between actions by agents and clinicians. The

red line represents clinicians’ actions, and the blue line represents agent’s actions.

In Experiment 1, the agent suggested more injections than clinicians did. The aPTT values

of the patient are mostly around 30 to 40, meaning that if the target range is 60-100, the patient

will need more UFH injection. Essentially, the agent is trying to do so and adjust the aPTT value

higher. In Experiment 2, the agent suggested a similar amount of injections as the clinicians did,

which controls the aPTT at a low level.



26

Mean Absolute Error
Experiment 1 24.4 unit/hr/lb
Experiment 2 15.3 unit/hr/lb

Table 3.4: Mean absolute error between actions by clinicians and actions by agents

The mean absolute error (MAE) between actions by clinicians and actions by agents are

calculated for each experiment set-up, which is shown in Table 3.4. From the MAEs, it is

intuitive to infer that agents in Experiment 2 set-up are closer to clinicians, which is conservative

and trying to control the aPTT level at a low level. Also, from figure 3.10, clinicians tend to not

maintaining the injection rate so that the variation of clinicians’ actions is high.



Chapter 4
Reinforcement Learning in

Stroke-based Sketch Generation

Many engineering design tasks involve creating early conceptual sketches, which do not require

exact dimensions. Such sketches can be generated by computers today, and sketch generation

can be a great inspiration for creative design during the early stages.

When human designers create sketches, they usually consider strokes as basic elements, which

is very different from what computers consider. Despite the existence of vector images, the

majority of digital images are saved in form of pixels, or grid data. It is hard for human to

build intuition between images and pixels, especially in terms of sketches. Therefore, in order

to provide better inspiration for human designers, the process of generating strokes will also be

valuable.

The fact that most of the sketches are saved as a normal image (pixel-based grid data) creates

the motivation of using reinforcement learning. Usually, a unsupervised generative model require

the training data and generated data are in same form, because nearly all generative models

are essentially try to approximate the distribution of the training data. However, by encoding

the action space of reinforcement learning, the limitation mentioned above could be resolved.

However, there are still challenges of using reinforcement learning for sketch generations:

• Difficulty to assign rewards due to the challenge in evaluating the quality of generated

sketches.

• Lack of randomness may cause the generations to be tedious.

• Difficulty to ensure a smooth continuous action space.
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(a) Pixel-based sketch of a tree (b) Stroke-based sketch of a tree

Figure 4.1: Illustration of Stroke-based and Pixel-based

4.1 Stroke-based VS Pixel-based

A stroke-based sketch contains strokes such as lines and curves, and some areas on the canvas

are completely blank. On the other hand, a pixel-based sketch, or image, is hard to break down

into basic strokes, and most parts of the image are not blank. The key differences between a

sketch and an image are shown in Figure 4.1.

Pixel-based generation methods such as regular GANs[3] and regular VAEs[2] generate images

by assigning each of the pixels with its value, whereas stroke-based methods such as Sketch-

RNN[27] generate sketches by outputting strokes. Pixel-based generation is frequently used

to generate realistic color images such as photos, where the boundaries between subjects are

blurry and there are almost no blank areas. However, for sketches, generating on the pixel level

may cause reduced fidelity due to the noise that appears in blank areas. Besides, stroke-based

generation also has the ability to scale on dimension. Thus, there is no necessity to re-train the

model to generate larger sketches of the same class. The comparison of pixel-based generation

and stroke-based generation is summarized in Table 4.1.

Sketch generation usually provide more information of generation process. For humans,

stroke-based generation could be more intuitive, because pixel is more about a computer vi-

sion concept, where images need to be represented as 2-dimensional grid data. However, from

machine learning perspective, generation of stroke usually requires stroke data. Unfortunately,

many sketches, such as old engineering sketches, are saved as pixel images[45, 46]. This situation

creates a major motivation for using reinforcement learning to generate sketches instead of VAE

and GANs. One property of reinforcement learning is that an agent does not need to be directly

trained based data. Instead, reinforcement learning is trained on environment, which provide the

possibility of generate data that is different from the original data.
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Table 4.1: Comparison between pixel generation and stroke generation

Color Image Noisy Blank Area Dimension Scaling
Pixel Generation Yes No No

Stroke Generation No Yes Yes

Figure 4.2: Flow diagram of the architecture

4.2 Model Architecture

In this section, the basic architecture of the agent and training techniques will be introduced. The

process as a whole is illustrated in Figure 4.2. The architecture contains three major components:

the environment, the classifier and the agent.

4.2.1 The Environment

Reinforcement learning relies on the environment to train, which can be modeled as a Markov

Decision Process (MDP). The environment of the sketching agent consists of two components:

the canvas and the sketch designer.

The Canvas.

The canvas is used to save and output the current state S. Let the canvas be a N × N binary

matrix S that contains only zeros and ones. The dimension of the S is matching the dimension

of the dataset introduced in the case study, so that the classifier, denoted as V , that is trained

based on the dataset can be used to evaluate the current state St, where t denotes the time step.

Since this is a stroke-based method, the dimension can be extended with no limitation after the

agent is trained. Also, since the interested sketches are images with binary pixel values, so that

the matrix S is also binary.
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Table 4.2: The neural network classifier architecture

Type Unit Filter Size Activation
Conv2d 32 4x4 ReLu

MaxPool N/A 2x2 None
Conv2d 64 2x2 ReLu

FC 512 N/A ReLu
FC 256 N/A ReLu
FC 17 N/A SoftMax

The Sketch Designer.

The sketch designer is another component of the environment. The major purpose of the sketch

designer is to make the action noisy. The intuition behind this is that the environment for

reinforcement learning is assumed to be a (MDP), which is a stochastic process. Methods in

[16, 1, 47] show examples of playing games, whose environments are not predictable. In the

sketching scenario, there will be no randomness in the environment, as the starting state S will

always be a blank canvas, and the canvas varies only depending on the agent. Essentially, if

the environment is not stochastic, the agent will generate the exactly same image over and over,

which is against the purpose of generation.

x = x+ Normal(0, N/9)

y = y + Normal(0, N/9)

c = c+ Normal(0, N/27)

(4.1)

The Sketch Designer adds noise to the action a by making parameters noisy. The noisy action

a′ ensures that the stroke placed on the canvas is not identical but still similar to the one without

the noise. Such kind of noise is very similar to human error, which is assumed to be normally

distributed. Considering a person writing the alphabet repeatedly, none of the hand-written

alphabet will be exactly the same. Shown in Equation 4.1, for the canvas size of N × N , the

coordinates x, y and the curvature parameter for a curve c is noised by Gaussian Distribution.

The variance of the distribution is decided from multiple experiments. The detail of actions and

parameters will be explained in later sections.

4.2.2 The Classifier

Let the neural network classifier be V (S), which is pre-trained based on k classes. The archi-

tecture of the classifier is shown in Table 4.2. The classifier is a Convolutional Neural Network

(CNN) classifier, which can extract features more efficiently than a fully-connected network. Note

that there is only one pooling layer so that enough information is preserved. The output layer

of the neural network contains k units, as there are k classes. For this study, the classifier is

trained on 17 classes, so k = 17. The number of classes trained on the classifier is decided by
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experiments. The output layer of the classifier has a softmax activation function. The softmax

score for each class at time step t, vit = V (St), where i ∈ [1, k], representing the class, is used to

reward the agent. Shown in Figure 4.4, the rewarding process is explained in the next subsection.

The training data should be pixel-based images that contain only spacial features.

Shown in Figure 4.2, the classifier V (S) is the most important component in this architecture,

as it is playing the role of a judge for the agent. Unlike some real-world environment such as a

game, there is no clear criteria for a good sketch or a bad sketch. There are two challenges in

training the classifier. One challenge is that this pre-trained classifier should not only provide

correct feedback of the finished sketch, but also provide a partially doodled sketch. The classifier

also has to be very consistent on its evaluation.

Another challenge here is that human sketches normally contain large spacial variation, but

relatively smaller temporal variation. Figure 4.3 shows examples of spacial variation. Most people

sketch something by putting down strokes in a common order and relative position, but with a

large variation in terms of size, orientation, and completeness. For example, in Figure 4.3, lines

can be oriented in a different way, and the stop sign can either contain the rod support or not.

In order to train the classifier, the sketches have to be transferred into regular black-and-white

images. Then the neural network will be trained on the images with a large spacial variation,

causing difficulties in training.

In terms of the training of the classifier, these two challenges are against each other. The

number of classes should be maximized to ensure the correctness of the feedback, while the

number of classes should be minimized to reduce the variation. Therefore, after experiments, 17

classes are picked here.

(a) Line 1 (b) Line 2

(c) Stop sign 1 (d) Stop sign 2

Figure 4.3: Example of large spacial variations of sketches based on stroke inputs
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Figure 4.4: PROCESS OF ASSIGNING REWARDS

Figure 4.5: THE ARCHITECTURE OF ACTOR-CRITIC AGENT WITH SUB-GOAL

4.2.3 Reinforcement Learning Agent

A DDPG[8] actor-critic reinforcement learning architecture that is shown in Figure 4.5 is em-

ployed. This architecture enables a continuous action space so that the continuous parameters

of the lines and curves can be generated. Both actor and critic are neural networks, whose archi-

tecture is shown in Table 4.3 and Table 4.4, respectively. The output of the actor is the action

vector a with 14 elements, while the output of the critic is a scalar that is the Q-value. Note

that both networks do not have an activation function at the output layer.

First, as shown in Figure 4.6, the action vector a contains:

1. Binary indicator variables that control which category (stop drawing, draw line, draw curve)

of action should be taken. (δ1, δ2, δ3)
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Figure 4.6: DECOMPOSITION OF ACTION VECTOR

Table 4.3: The neural network architecture for the actor

Type Unit Filter Size Activation
Conv2d 32 7x7 ReLu

MaxPool N/A 2x2 None
Conv2d 64 4x4 ReLu

FC 512 N/A ReLu
FC 256 N/A ReLu
FC 14 N/A None

2. Coordinates of start point and end point of a line. (xline0 , yline0 , xline1 , yline1 )

3. Coordinates of start point, mid point, and end point of a curve.

(xcur0 , ycur0 , xcur1 , ycur1 , xcur2 , ycur2 )

4. Curvature parameter for the curve. c

The environment starts with a blank canvas S =
{

0
}

, and the actor will output actions a to

sketch. Both networks take the canvas image matrix as the state S.

Actor And Critic Networks

The actor network µ(S,g) outputs an action vector that is 14 in length with 3 action indicators

and 11 parameters of the actions, as shown in Figure 4.6. The indicator δj tells the environment

which action to take (stop drawing, line, curve) and the rest of the 11 parameters are used to

define a line and curve, as mentioned previously.

The agent shown at the bottom right part of Figure 4.2 consists of both actor network and

critic network. The neural network structures for actor and critic are demonstrated in Figure 4.5,

and the details of the layers of actor and critic are shown in Table 4.3 and Table 4.4, respectively.

Note that both of the neural networks use convolutional layers before fully-connected layers to

ensure the features are extracted correctly from the canvas.

The actor will take the state S as the input first. After the convolutional layers process the

image input S, the flattened tensor will be concatenated with the goal input g, which is one-hot

encoded; then the flattened tensor can be put into fully-connect layers. The fully-connected

layer is used to interpret the relationship between state S and sub-goals, and reshape the output

tensor to a desired shape. Then the action output a will be sent to the environment and the critic

network. Note that there is no activation function for the last layer of the network, because an
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Table 4.4: The neural network architecture for the critic

Type Unit Filter Size Activation
Conv2d 32 7x7 ReLu

MaxPool N/A 2x2 None
Conv2d 64 4x4 ReLu

FC 512 N/A ReLu
FC 256 N/A ReLu
FC 1 N/A None

activation function for action output can cause saturation, as the activation functions usually have

bounds. The parameters in Table 4.3 and Table 4.4 are tuned while conducting the experiments.

Also shown in Figure 4.5, the critic network Q takes image input S as the first step as well;

then the flattened tensor will be concatenated with the goal g and the action a from the actor

network. Note that the fully-connected layers in the critic network interpret the relationship

between action, goal, and state. The output of the critic network is a scalar, which is the Q-value

of an action a under an image input S. Since the Q-value is the cumulative reward, the output

layer for critic does not contain an activation function as well. The relationships described above

are shown in Equation 4.2,4.3,4.4:

a = µ(S,g) (4.2)

q = Q(S,g,a) (4.3)

v = V (S) (4.4)

In Equation 4.2,4.3,4.4, a is the action vector, q is the Q-value, S is the state/canvas, v is a

vector of softmax scores of different classes, g is the goal, Q is the critic network, µ is the actor

network, and V is the classifier.

To summarize, both critic and actor have the same network structures except the output

layer, so that the abilities of interpreting the states and goals are the same. The convolutional

layers are used to extract spacial features, and the fully-connected layers are used to interpret

the relation between goals, actions and states.

Training Process.

One challenge of training an actor network is that it is not possible to form a loss function without

the output of a critic network for an actor network to update the parameters of an actor network.

The authors employed the method introduced in DDPG [9]. Essentially, the update for an actor

network will be conducted by applying gradient ascent using:

5θµµ(S) = 5aQ(S,a|θQ)5θµ µ(S|θµ) (4.5)
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Figure 4.7: Process of assigning rewards

In Equation 4.5, S is the state, a is the action vector, θµ represents the parameters for actor

network, and θQ represents the parameters for critic network.

An important component of the training process in reinforcement learning is the exploration.

The authors develop a way to enforce exploration. The decision to explore is based on ε-greedy

algorithm[48], since there is no prior domain knowledge in the model. First, a category of the

action (stop drawing, draw line, draw curve) will be randomly selected; then the parameters

will be sampled from the uniform distribution. The reason for choosing uniform distribution

is because the upper bound and lower bound for the parameters are fixed, and all the points

on the canvas should have an even chance to be selected. Equation 4.6 shows the detail of the

exploration process. The bounds of the coordinates on the canvas x, y are determined from the

size of canvas, and the bound for curvature c is determined empirically.

If explore:


x, y ∼ Uniform(0, 27)

c ∼ Uniform(0, 6)

(4.6)

For critic network Q(S,g,a), the loss function can be formulated using Bellman’s equation

with the reward. The challenge here is the assignment of the reward. Given softmax score of the

goal class vit, the reward r can be assigned. The authors develop the assignment of the reward

that is shown in Equation 4.7. The whole process of assigning reward is shown in Figure 4.7.

rt ∈


1 + vit − vit−1 if vit − vit−1 > 0

−5 otherwise

(4.7)

The final step of updating the networks is to use learning rate adaptive gradient descent

methods such as ADAM[49] and RSMProp[50].

Stabilization.

The authors employ the stabilization techniques introduced in DQN, target networks and ex-

perience reply[1]. For DDPG, both actor and critic networks should have a separated target
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network.

Another unstable issue is that the action output can be outside of the bounds, which will inter-

rupt the training process. The authors employed an inverting gradient proposed by Hausknecht

and Stone [47] to bound the parameters. Essentially, given a parameter p and the bounds

[pmin, pmax], the gradient of p, 5p, the gradients are:

5p = 5p ∗


(pmax − p)/(pmax − pmin) if5p suggest increase p

(p− pmin)/(pmax − pmin) otherwise

(4.8)

To summarize, in order to train a reinforcement learning agent to sketch, the action space

has to be continuous and the environment has to be stochastic. The challenge is how the reward

is evaluated for each action. If the reward can be properly assigned, a reinforcement learning

algorithm can be conducted train the DDPG agent with all the stabilization techniques.

4.3 Experiment

In this section, an experiment is conducted to show the capability and limitation of the agent.

The agent is compared with the Sketch-RNN[27] for benchmarking. Both the Sketch-RNN and

the agent is trained on triangle class from QuickDraw dataset, which contains human sketches

across hundreds of classes.

4.3.1 Results

The experiment is implemented by Python using TensorFlow as the automatic differentiation

software. The dataset used to train classifier is Google Quick Draw, whose raw data contains

the information of the trajectory of the strokes with the time stamp. The processed data used

for training contains pixel-based 28x28 images. During the training, the batch size is 64 and the

learning rate for ADAM [49] optimizer is 0.0001. The experiments are conducted on an NVIDIA

GTX 1070 GPU on Ubuntu 16.04.

Figure 4.8: Random triangles generated by the agent
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Figure B.1 and Figure B.2 in the Appendix show the statistics of the training process, and

Figure 4.8 shows the samples of generating triangles. The generations are not quite recognizable,

but the generated images contain features of triangles. The statistics shows that the convergence

of both Q-value and cost function is very early at approximately 4000 steps, even though the

generation is not satisfying. This implies the improper reward assignment.

Figure 4.9: Random triangles generated by the Sketch-RNN

The Sketch-RNN is also trained on the same dataset. The configuration mostly follows the

recommended configuration1 from the authors, but with 512 units for decoder and 256 units

for encoder. The Sketch-RNN is unable to converge at 30K steps. Figure B.3 shows the trend

that the expected convergence of Sketch-RNN is most likely more than 45K steps. However, the

generations are impressive and recognizable, with very limited variation. Figure 4.9 shows the

generation of triangles by Sketch-RNN.

4.3.2 Analysis

Generally speaking, the generated samples are not quite satisfying. This section lists possible

reasons that may cause poor results.

4.3.2.1 Reason 1: Classifier is Incapable

The fact that the cumulative reward (Q-Value) is converging even though the generation is poor

quality implies problems in the process of assigning reward. Also, the increasing variation in the

Q-Value as the time step increases implies an unstable training process.

It is clear that there are issues regarding the reward, but the modifications of reward function

have very limited improvement. Taking a step back, the problem may occur before the reward

function. As shown in Figure 4.4, the issues may happen in the classifier, since the modifications

on the step after (changing reward function) seem not effective. The assumption of this reward

assignment to be correct is that the classifier can evaluate if a stroke is good or poor accurately.

1https://github.com/tensorflow/magenta/blob/master/magenta/models/sketch rnn
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In the experiment, the agent appears to have learned incorrectly. Therefore, it is most likely that

the classifier is unable to give a good evaluation of each stroke. Further improvements should be

conducted on the classifier, such as replacing it with other kinds of methods of evaluation.

Another issue is that the growth of the Q-value is not as stable as expected. The sketching

environment should be more stable than most of the tasks like playing video games, since there

is very limited randomness. Therefore, the inconsistency of the evaluation from the classifier is

also the reason for the unstable Q-values.

The issue with the classifier also causes the low fidelity of the generated images, shown in

Figure 4.8. The only way of punishing strokes that add random noises is by decreasing the score,

as shown in Figure 4.4 and Equation 4.7, and the classifier is not capable to do this.

4.3.2.2 Reason 2: Classifier is too Capable

The architecture introduced is very similar to the Generative Adversarial Nets (GAN) [3]. The

classifier is essentially a discriminator in GAN, and therefore, the training process proposed could

be suffered from the unbalanced capabilities of the classifier and the agent. In other words, the

classifier is so capable that the agent cannot learn from the feedback of the classifier.

In order to solve the problem, one way to overcome this problem is to train both the classifier

and the generator together. Specifically, the agent can be trained on policy gradients as normal,

and the classifier can be trained using the discriminator loss in GAN.

By training the classifier and the agent together, they can learn from each other better. The

agent will learn how the classifier determines whether a generated sample is similar to a real

sample, and the classifier will learn less trivial features.

4.3.2.3 Reason 3: Inconsistent Paint Engine

One of the common problems of stroke based generation will be the difference between paint

engines. Occasionally, it can be very hard to ensure that one paint engine could reconstruct a

sketch that is created by another paint engine.

The experiment above is not using a very powerful paint engine. In fact, the paint engine used

here is scikit-image, which is an open-source image library that can only draw simple strokes.

Therefore, some of the features in the original data could be never represented correctly.

4.4 Conclusion

This chapter introduced an architecture that can produce stroke-based sketches using pixel-

based training data. The architecture is based on DDPG reinforcement learning agent, which

can operate in an environment with continuous state space and continuous action space.

The results from the case study are very preliminary. Compare to the state of the art, the

major problem is the high variance in the generation. Future works can focus on improving the

classifier structure, change different training strategies, and improving the paint engine capability.



Appendix A
Additional Results for Reinforcement

Learning in Dosing Control

A.1 Additional Result in Attributes Analysis

Figure A.1: Heatmap of average inter-attributes mutual information matrix.

Figure A.1 shows that most of the attributes are fairly independent. Only GCS families,

INR-Prothrombin time, and Hematocrit-Hemoglobin correlated each other.

Table A.1 shows that most of the attributes has no delayed effect on injections.
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Table A.1: Optimal time delay of each attributes based on mutual information with bolus

Attributes Optimal time delay (hours) Basal MI at optimal
Albumin 1 0.05306

Arterial CO2 Pressure 1 0.14231
Arterial O2 Saturation 4 0.06362

BUN 1 0.22495
Creatinine 1 0.14807

GCS - Eye Opening 7 0.09241
GCS - Motor Response 1 0.07104
GCS - Verbal Response 1 0.08136

Heart Rate 4 0.48786
Hematocrit (serum) 1 0.15731

Hemoglobin 1 0.18612
Heparin Dose (per hour) 1 0.00407

INR 1 0.13351
PH (Arterial) 1 0.14861

PTT 1 0.38117
Platelet Count 1 0.24784

Prothrombin time 1 0.16116
Respiratory Rate 1 0.41974

Temperature Fahrenheit 2 0.44538
Total Bilirubin 1 0.06237

Troponin-T 1 0.10896
WBC 1 0.21558

A.2 Additional Results for Agent Training

Figure A.2 and Figure A.3 shows how Q-value changes as the training proceed. Both curves are

smoothed using exponential smoothing with α = 0.1 Since we do not have environment executing,

the experiment will not refresh. As a result, the graph is not very meaningful, but still worth to

look at. The slight trend of increasing implying the agent is learning.
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Figure A.2: Average batch Q-value VS. Training Steps for Experiment 1

Figure A.3: Average batch Q-value VS. Training Steps for Experiment 2



Appendix B
Training Process for Sketch

Generation Using Reinforcement

Learning

Figure B.1: Q-value VS time step
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Figure B.2: Loss function of critic VS time step

Figure B.3: Loss function of Sketch-RNN VS time step
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