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Abstract

The growth of big data analytics and the volatility/diversity of pricing across public
cloud services have presented many opportunities for optimization tailored to the
need of an application. We focus our optimization on key-value storage systems in
the public cloud. Such systems are widely popular due to their simplified semantics
that allows applications to scale rapidly in multi-user environments, producing
challenges on resource management and fairness guarantees. Since public cloud
providers grant tenants to place their resources in specific regions (or datacenters),
we divide our work into two settings of optimizations. First, we consider an
optimization of a system within a single datacenter. Specifically, we deal with
the caching layer that is often placed along with the database. We conduct our
work by considering an object sharing framework to minimize storage cost. Second,
we consider an optimization of a geographically distributed storage system that
guarantees linearizability while meeting Service-Level Agreement (SLA). We rely
on collected data for public cloud pricing models and performance measurements
in our optimization formulation. In addition, we consider an optimistic approach
and heuristic based optimizations.
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Chapter 1 |
Introduction

The pricing volatility and diversity across public cloud services have presented
many opportunities to provide better Quality of Service (QoS) while minimizing
operational costs. As many businesses today are looking for better ways to migrate
their applications to the public cloud, our focus is in the interest of applications
that rely on key-value (KV) storage systems [1]. Essentially, such applications
grant users to write into the database through PUT/SET commands or read from
the database through GET commands while abstracting the managed resources.
Similarly, such abstraction is provided to tenants when providing storage in the
form of Software as a Service (SaaS) (e.g., S3 [2] and ElastiCache by AWS [3]).
When unfolding the abstraction, performance, and fairness related guarantees are
a challenging aspects of such systems [4–7].
In this thesis, we examine two standard settings for key-value store systems in the
public cloud. The first setting considers optimization at the level of a single region
(or a datacenter). In such a setting, we consider a KV storage system that consists of
a single database, in-memory caching servers, and web servers (often referred to as
proxy servers or edge servers). Our goal is to provide high caching performance (i.e.,
hit rates) in a multi-user caching system while maximizing memory utilization. Here,
we consider object sharing as our main framework to achieve such objectives [8].
An example of such applications is a Content Distribution Network (CDN). CDNs
use proxy servers to minimize the latency of retrieving data from a centralized
database. Each server can serve a large population of end-users. We consider a
system with J proxies that services database requests from users. Also, we consider
a database with a size of N data objects and a caching unit with a size of B
data objects (where B � N). A proxy server allocates a cache size of b objects,
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where b ≤ B. When an object is stored in the cache, read requests from proxy
can be fulfilled by simply reading the data immediately from the cache storage;
without sending a request to the centralized database. On a cache miss, the proxy
sends a read request to the centralized database and updates the cache table to
include the new object. In cases where the cache allocated for the proxy is full, the
proxy performs an eviction to include the new object according to the policy upon
agreement. Hence, eviction policies have a significant role in request latencies. One
of the conventional policies used in caching systems is the Least-Recently-Used
(LRU). In general, it allows for content with higher popularity to experience fewer
evictions. Therefore, minimizing the number of cache misses. Given the setting
described above, we implement such caching system with a modification on the
LRU policy to minimize cost while preserving high performance.
Secondly, public providers often grant tenants to choose the regions in which they
would allocate their resources. We consider a KV storage system that is geograph-
ically distributed. Such systems are naturally geo-distributed due to the need
for tolerating failures while preserving strong consistency. Given such constraint,
the goal is to construct a system that places replicated/erasure coded data across
regions that minimizes the operational cost while preserving Service-Level Objective
(SLO). We rely on the diversified pricing of services in the public cloud and the
different workload properties to produce an adaptive system framework.
The thesis is constructed as the following. Chapter 2 focuses on the single region
optimization; Chapter 3 on the multi-region optimization. The problem definition,
background, related work, and evaluation are discussed separately for each system
in their respective chapters.
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Chapter 2 |
Optimization Within a Single
Region

We consider a simple caching system model in the public cloud illustrated in
Figure 2.1. The database and caching unit are, typically, located in the same
datacenter. On the contrary, web servers can be on different sites (often referred to
as proxy/edge servers). A web server sends a GET request for a key to the caching
unit. Consequently, the caching unit responds with the value if found. Otherwise, it
responds with a read miss. In case of a read miss, the web server forwards the GET
request to the database. We focus our efforts to enhance the performance of such
system (i.e., higher hit rates and resource utilization) for a multi-user environment;
sharing the cache while respecting their individual Service-Level Agreement (SLA).
Specifically, we consider a system with “paying” users for their amount of cache
allocated. We implement our prototype by modifying Memcached [9] and employ
object sharing to meet our objectives. We implement our prototype for object
sharing based on [8] and evaluate its performance.
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Figure 2.1: Simple model illustrating a caching system for a key-value store.

2.1 Background and Related Work
This section describes some elements of Memcached that are highly relevant to
our work. Specifically, it describes the different data structures that Memcached
utilizes to effectively store objects in-memory. In addition, it describes two forms of
an LRU replacement policy that Memcached provides. Finally, it briefly describes
the object sharing framework that we include in this work [8].

2.1.1 Memcached

Memcached (MCD) is an open source in-memory key-value store system that is
used to improve the performance of database driven applications. Using MCD’s
API, clients can interact with the server to read and write from memory. On a
read miss, the application layer is responsible for retrieving the value from the
database and updating the caches accordingly. In distributed MCD servers, the
system appears to end users as a single MCD instance. To implement such notion,
each key is mapped to a single physical server using consistent hashing which is
performed by the client at the application layer [10]. Accordingly, the MCD server
updates its state before responding to the client. Updating the state of an MCD
instance consists of updating LRUs and the value of the key for write requests.

2.1.1.1 Slab Allocation

MCD uses slab allocation as its primary scheme to store different objects with
different sizes. Figure 2.2 illustrates the different units of storage in MCD. By
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Figure 2.2: A description of Memcached’s data structures to store objects.

default, the size of each slab is set to 1MB. Each slab consists of chunks (or items)
in which the value of a key is stored along with metadata. Hence, MCD limits the
size of an item to be at most the size of a slab. To allow for different value sizes,
each slab is assigned with a specific class based on the maximum size of each of its
items. Hence, upon an incoming write request, the size of the object to be written
is used to identify the best fit item size. Upon a read request, the key is used to
find (from a hashtable, described next in section 2.1.1.2) the mapping to the object
and, effectively, the slab in which the object is current. Each slab maintains an
LRU data structure implemented as a list. Each element in the list is a pointer to
an allocated item in the slab. Consequently, an eviction on the LRU list (i.e., from
the tail) removes the item from its slab.

2.1.1.2 Flat vs. Segmented LRU in MCD

As mentioned in the previous section, each slab maintains its own LRU list. Each
of the LRUs is protected by a lock. Hence, a thread is required to hold the lock
prior to accessing a slab. Upon a received request, a worker thread (from a pool) is
for assigned to process the request. Referring to figure 2.3, Worker threads use the
hashtable to find the slab in which the object resides. Upon finding the slab, the
worker thread holds the lock, performs the request and, consequently, updates the
state of the LRU. For write requests, the size of the value is used to determine the
appropriate slab to be allocated in, along with updating the LRU.
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There are two different types of LRU lists in which a MCD server can operate
on: Flat-LRU and Segmented-LRU. When operating under Flat-LRU, the worker
thread simply evicts the element at the tail of the list when the slab is full to
accomedate for the new item. Consequently, The evicted item is then freed from
the hashtable as well. On a cache hit, the item is placed at the head of the list.
Referring to figure 2.3, as each slab has an LRU list, a hashtable is used to serve
read hits (i.e. the hashtable consists of pointers to items). Conflicting items in the
hashtable are stored as a linked list. Note that, typically, there are multiple slabs
with the same slabclass to allow parallelism within items of the same size.

Figure 2.3: An overall diagram that describes the internals of MCD.

The segmented-LRU list consist of four main segments (queues) in which an item
can be placed. Figure 2.4 1 illustrates the transitions between states of an item
in a slab which corresponds to its position in the list. In practice, the transitions
occur periodically and is maintained by a maintainer thread (explained in Section
2.1.1.3). As illustrated in figure 2.4, when a new item is created with a short
Time-to-Live (TTL), it is placed in TEMP queue; TTLs are usually defined in
seconds (transition 2). Otherwise, the new item is placed in the HOT queue
(transition 1). Items in the HOT queue are never promoted to the head. On the
other hand, active items that are the tail of the HOT queue are moved to the head
of the WARM queue (transition 3); none active items are moved to the head of
the COLD queue(transition 5). An item is considered to be active if it has been

1Figure borrowed from memcached.org/blog/modern-lru/
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accessed at least twice. Similarly, non-active items that are at the tail of WARM
queue are also moved to the COLD queue (transition 7). However, active items
that are at the tail of the WARM queue are promoted to the head of the WARM
queue (transition 4), the same transiton occurs with active items in the COLD
queue (transition 6). An eviction in the COLD queue occurs when the slab is full
and a new item is needed to be inserted.

Figure 2.4: A state machine representation of an object in the system from creation
to eviction

2.1.1.3 LRU Maintainer

The state transitions of items in the Segmented-LRU setting are maintained by a
background thread; referred to as the maintainer. MCD operates under Segmented
LRU when the maintainer thread is enabled. The first job of the maintainer is
to iterate through every LRU buffer (i.e., the TEMP, HOT, WARM and COLD
buffers) and observe the tail. The maintainer performs the transition of tailed
element as mentioned in 2.1.1.2. Second, expired items are also removed by the
maintainer (expired items were set with a time-to-live with a SET command).
Lastly, the maintainer moves items across buffers to respect limits such as space
allocation for each of the queues.
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2.1.2 Caching with Object Sharing

A naive way to allow for object sharing is to allow requests from all proxy servers
to be processed by a single cache (i.e., with a single LRU). However, such naive
design does not provide guarantees on isolation between the sharing proxies (i.e.,
no proxy server should recive less cache space than what it is paid for) [4,6]. There
are many prior work such as [11–13] have introduced object sharing. In [6], for
example, they consider a single LRU list with head pointers for each proxy are
totally ordered; such that higher priority proxies are at earlier elementes of the
list. In this work, we consider the object sharing framework as described in [8].
Consider a system with the set J proxies that services database requests from users.
Also, consider a database with the size of N data objects and a cache of size B
data objects (where B � N). For each proxy i in the system, an allocation of bi

is set such that ∑|J |
i=1 bi ≤ B. Let P(n) ⊂ J be the set of proxies for which object

n currently appears in their LRU-list, where P(n) = ∅ if and only if object n is
not physically cached. In other words, the object is not in any of the LRU-lists in
the system. Let ln be the size of the object n. Upon a request by a proxy i for
object n, it is inserted at the head of the LRU-list for proxy i. If the request was a
hit, then no further actions is needed. Otherwise, the object is added to the set
P(n). Furthermore, we subtract ln/|P(n)| from the available cache size of proxy i.
as mentioned in [4], we prevent clients from “playing" the system into their favor
by performing the following on a read miss:

• if the object is not stored in the physical cache then it is fetched from the
database, stored in the cache and forwarded to proxy i;

• otherwise, the object is produced for proxy i after an equivalent delay.

2.2 System Design and Implementation
We implement MCD-OS by modifying the original code of MCD Version 1.5.16.
All changes were made on the server side code. We use the same data structure
that MCD uses to store the objects (or items). We use the inherent hashtable
data structure in MCD mapping keys to items. In order to distinguish between
clients, requests from a single client is handled solely by a dedicated worker thread.
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Consequently, the thread is responsible for updating the state of all LRUs, along
with metadata about proxy servers allocations. The number of threads in the
system is predefined with the amount of cache allocated for each proxy server. Each
of the LRU lists on the left of Figure 2.5 depicts the LRU state for a proxy (e.g.,
LRU list 1 is attributed to proxy server 1).

Figure 2.5: MemCacheD with Object Sharing (MCD-OS)

2.2.1 LRUs with Object Sharing

We replace the doubly linked list of pointers in the item data structure to an array
of double linked list. The indices to the array is equivalent to proxies ids. If the
item does not exist in proxy i’s LRU, then the ith is set to NULL.

2.2.1.1 Flat-LRU

When processing a read request from client i under the Flat-LRU, under a LRU
hit, the LRU list for client i is updated by simply promoting the item to the head.
Such updates does not affect the state of the other LRUs in the system (for every
LRU j where i 6= j); similar to evicted items that are not shared across different
clients. We use the term ripple effect to describe the phenomena when an eviction
in one LRU list causes an eviction at others. ripple effect length is the number
of LRUs that have been touched when an eviction occurs (more details presented
later in section 2.3).
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2.2.1.2 Segmented-LRU

Similar to MCD, we implement Segmented-LRU with object sharing. The Segmented-
LRU in MCD-OS consist of the four main queues: HOT, WARM, COLD and
TEMPORARY (TEMP). Note that, unlike in MCD, a Segmented-LRU is allocated
for each proxy in the system. For a single LRU, the size of each queue is set to be
proportional to its allocated proxy cache size. By default, the size of each of the
HOT and WARM queues are set to 32% of the memory allocated to the proxy. The rest
is used to allocate the COLD queue. For implementation simplicity, the size of the
TEMP queue is set to be unlimited for each proxy since they have very short TTL,
usually defined by the application. Changing the state of items are handled by the
LRU maintainer as described in section 2.1.1.3. Note that with object sharing in
play, an item can inflate in the virtual size and violate the size of a segment. Such
violation is eventually corrected by the LRU maintainer.

2.2.2 Server Modification on GETs/SETs

The entire set of LRUs is protected by a global lock. Upon receiving a request,
a worker thread (dedicated to the proxy sending the request) holds the lock
and updates the set of LRUs accordingly (mainly, LRUs in which the object is
simultaneously appearing). It is important to note that, unlike MCD, the lock is
global and only one thread at a time can access the set of LRU-lists since updates
on LRUs are required to be done atomically. In order to implement object sharing
using MCD’s native API, we modify the two main methods that update LRUs
states. Algorithm 1 describes our modification on the MCD native method evict.
This method is invoked to evict an item from a specific LRU. An important thing
to note is that when there are no longer proxies that share the object, the item is
freed from the physical cache and the hashtable. Otherwise, Algorithm 2 is invoked
which increases the virtual size of the object.

10



Algorithm 1 evict (item *it, libevent_thread *k)
//unlink item it from proxy-LRU k
k → attrib_size -= it → virtual_len
k → avail_size += it → virtual_len
P = {proxies sharing item it}

if P == ∅ then
remove item it from hashtable; free item it in physical cache

else
inflate (it, P)

end

Algorithm 2 inflate (item *it, libevent_thread *k)
N = |P| // P contains all proxies sharing item it
diff = it→actual_len

N
- it → virtual_len it → virtual_len = it→actual_len

N

for i in P do
i → attrib_size += diff i → avail_size -= diff

end
for i in P do

// check whether proxy i has enough space after inflation, may
// evict more than one item in proxy-LRU i
while i → attrib_size > i → alloc_size do

evict(tails[i], i) // evict the tail item of proxy-LRU i if
// it’s full

end
end

Algorithm 3 is another MCD native method that we have modified to enable object
sharing. For LRU k, the method is invoked to either insert a new item or promote
an existing item to the head of the LRU. Updating the state of other LRUs (that
are not k) only occur when the virtual size of an item has changed. Otherwise,
only one LRU is updated. Algorithms 2 and 4 are methods that enforce allocation
limits across proxies. We can observe that algorithm 1 is also invoked in algorithm
2 causing the ripple effect (further discussion in section 2.3).
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Algorithm 3 insert (item *it, libevent_thread *k, bool new)
// insert item it to head of proxy-LRU k; insert item it in
// hashtable
/* update statuses of proxies sharing item it */
P = {proxies sharing item it}

N = |P| // at least 1 since item it is inserted to k
old_virtual_len = it→virtual_len
new_virtual_len = it→actual_len

N

diff = old_virtual_len - new_virtual_len
if new then

// item it is new to proxy-LRU k
k→attrib_size += old_virtual_len
k→avail_size -= old_virtual_len

end
switch diff do

case diff == 0 do
// virtual length doesn’t change, check whether insertion
// causes eviction in LRU k, no effect on other LRUs
while k→attrib_size > k→alloc_size do

evict(tails[k], k) // evict the tail item if LRU k is full
end

end
case diff > 0 do

deflate(it, k, P) // decreased virtual length causes deflation
end
case diff < 0 do

inflate(it, P) // increased virtual length causes inflation
end

end

12



Algorithm 4 deflate (item *it, libevent_thread *k, libevent_thread ** P)
N = |P| // P contains all proxies sharing item it
diff = it → virtual_len - it→actual_len

N
it → virtual_len = it→actual_len

N
for i in P

do
i → attrib_size -= diff i → avail_size += diff

end
while k → attrib_size > k → alloc_size do

// check whether proxy k has enough space for the new item, may
evict more than one object in proxy-LRU k

evict(tails[k], k) // evict the tail item of proxy-LRU k if it’s full

end

Table 2.1 summarizes the different behavior in response to SET/GET requests
from a proxy. Here, we consider multiple scenarios in terms of the presence of an
object (wither the object is present in the physical cache, LRU list or both.) and
the command received.

2.2.3 Handling Objects with Different Sizes

As described in section 2.2.1, there are two different sets of LRU lists when running
an MCD-OS instance. The first set of LRUs map to proxy servers (hence, referred
to as proxy LRUs). These LRUs are provisioned based on the amount of cache
allocated per proxy. Different objects with different physical lengths can co-exist
in the same proxy LRU. On the other hand, there exist another set of LRU lists
that are mapped to slabs (referred to as slab LRUs); only objects with the same
physical length can co-exist in the same slab LRU. Slab LRUs is used to implement
an eviction policy that is based on slab accesses. Promoting items in the slab LRUs
does not affect the state of proxy LRUs. However, when an item is evicted from
a slab LRU, then the object is removed of all proxy LRUs that share the object
(remitting the virtual size to every proxy LRU sharing the object). Such evictions
only occur when a new item is needed to be allocated with no existing available
space on a slab with the same class.
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proxy i issues get(k); hits in LRU i
• promote item with key k to the head of LRU i
proxy i issues get(k); misses in LRU i but hits in cache
• insert the item with key k into the head of LRU i
• update the status of all other LRUs sharing this item (deflation)
proxy i issues get(k); misses in both LRU i and cache
• return cache miss to client
// client is expected to fetch the item from database and issue set(k, v)

proxy i issues set(k, v); key k doesn’t exist in cache
• package the key-value pair (k,v) into an item, store in cache
• set virtual length of the item to its actual length
• insert the item to head of LRU i
proxy i issues set(k, v); key k already exists in cache
• update the item with key k to reflect the new value v
• promote the item to head of LRU i
• update the status of all other LRUs sharing this item (may involve a
combination of inflation and deflation)

Table 2.1: A Summary of MCD-OS response behavior.

2.3 Overheads of Object Sharing in MCD-OS
This section describes the overheads of MCD-OS. Specifically, the change of virtual
sizes of objects can violate LRU allocations resulting in a series of evictions, which
we refer to as the ripple effect. With object sharing, the virtual size of an object
is affected by the number of proxy servers that are effectively sharing the object.
Ripple length is the number of eviction occurred due to a ripple effect. Inflation
is an increase in the virtual size of an object due to an eviction (i.e., the decrease
in the degree of sharing). Figure 2.6 describes an example of an object inflating
causing a ripple effect with length of 3. On the other hand, deflation (figure 2.7)
is the decrease in the virtual size of an object due the increase in the degree of
sharing.
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LRU 3

LRU 2

LRU 1

object 1 object 2 object 3

other available space limit

evict

(a) Assume we have three equal sized LRUs. Object 2 is shared by LRU 1, 2, and 3. Object 3 is
shared by LRU 2 and 3. A new item, object 1, is inserted to the head of LRU 1.

LRU 3

LRU 2

LRU 1

object 1 object 2 object 3

other available space limit

evict

(b) LRU 1 evicts object 2. So, the virtual length of object 2 inflates in LRUs 2 and 3. So, LRU 2
exceeds its limit and needs to evict object 3.

LRU 3

LRU 2

LRU 1

object 1 object 2 object 3

other available space limit

evict

(c) The increased virtual length of object 3 similarly requires LRU 3 to evict.

LRU 3

LRU 2

LRU 1

object 1 object 2 other

available space limit

(d) LRU 3 evicts object 3. Now no LRU exceeds its limit and processing of the insertion of object
1 into LRU 1 in (a) is completed.

Figure 2.6: Series of proxies LRUs states describing an object inflating causing a
ripple effect.
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LRU 2

LRU 1

object 1 other available space limit

(a) Assume we have three equal sized LRUs. Object 1 is shared among LRU 2 and 3 only.

LRU 3

LRU 2

LRU 1

object 1 other available space limit

(b) LRU 1 inserts object 1 into it LRU. Hence, the virtual length of object 1 deflates.

Figure 2.7: Searies of proxies LRUs states describing an object deflating.

2.4 Evaluation
We use our prototype of MCD-OS to evaluate the hit rates and the ripple effect
when enabling object sharing. The workload is generated by specifying the Zipfian
parameter α to describe the key popularity skew. We model each proxy as a
thread/process that sends it requests to MCD-OS based on its assigned Zipfian α
parameter. In terms of server side of MCD-OS, each proxy is mapped to a single
worker thread that is responsible to process the request and maintain the states
of the LRU-lists. In this section, we first validate our prototype (section 2.4.1) by
comparing our results to [8]. We validate our prototype under both LRU settings
(Flat and Segmented). Second, we evaluate the extensiveness of the MCD-OS
overheads in section 2.4.2.
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cli alpha mem h_1 h_10 h_100 h_1000
0 0.75 8 0.3651 0.0740 0.0129 0.0021
1 0.5 8 0.1256 0.0376 0.0130 0.0040
2 1 8 0.6491 0.1090 0.0116 0.0011
0 0.75 8 0.3819 0.0814 0.0145 0.0026
1 0.5 8 0.1276 0.0424 0.0134 0.0042
2 1 64 0.9267 0.7172 0.1270 0.0137
0 0.75 8 0.3781 0.0749 0.0139 0.0027
1 0.5 64 0.6654 0.2872 0.0964 0.0335
2 1 8 0.6720 0.1181 0.0120 0.0014
0 0.75 8 0.4040 0.0897 0.0163 0.0027
1 0.5 64 0.6923 0.2985 0.1120 0.0342
2 1 64 0.9331 0.7336 0.1321 0.0147
0 0.75 64 0.9728 0.4909 0.1102 0.0218
1 0.5 8 0.1249 0.0427 0.0126 0.0042
2 1 8 0.7246 0.1357 0.0142 0.0016
0 0.75 64 0.9839 0.5356 0.1312 0.0240
1 0.5 8 0.1302 0.0474 0.0136 0.0043
2 1 64 0.9543 0.7914 0.1317 0.0133
0 0.75 64 0.9025 0.5103 0.1173 0.0220
1 0.5 64 0.6802 0.2987 0.1074 0.0357
2 1 8 0.7241 0.1397 0.0143 0.0014
0 0.75 64 0.9721 0.5381 0.1413 0.0259
1 0.5 64 0.7044 0.3068 0.1119 0.0374
2 1 64 0.9313 0.8188 0.1504 0.0129

Table 2.2: Flat LRU hit rates under MCD-OS

2.4.1 Prototype Validation

We run our validation experiments on Amazon Web Services (AWS). We run each
of the server and clients on two separate VMs on a single region. We construct our
workload to emulate a system with three proxies where clients are characterized by
a zipfian distribution. We compare our prototype results with [8].
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cli alpha mem h_1 h_10 h_100 h_1000
0 0.75 8 0.3799 0.0909 0.0331 0.0157
1 0.5 8 0.1504 0.0611 0.0320 0.0335
2 1 8 0.6706 0.1175 0.0396 0.0171
0 0.75 8 0.4034 0.1039 0.0381 0.0050
1 0.5 8 0.1333 0.0545 0.0330 0.0217
2 1 64 0.9530 0.7443 0.1459 0.0287
0 0.75 8 0.3920 0.0837 0.0210 0.0304
1 0.5 64 0.6823 0.3151 0.1206 0.0532
2 1 8 0.6965 0.1331 0.0280 0.0219
0 0.75 8 0.4200 0.1195 0.0222 0.0098
1 0.5 64 0.7129 0.2997 0.1240 0.0461
2 1 64 0.9566 0.7487 0.1422 0.0269
0 0.75 64 0.9931 0.4994 0.1368 0.0269
1 0.5 8 0.1271 0.0513 0.0157 0.0133
2 1 8 0.7282 0.1417 0.0144 0.0278
0 0.75 64 0.9923 0.5418 0.1581 0.0353
1 0.5 8 0.1385 0.0514 0.0253 0.0056
2 1 64 0.9803 0.8039 0.1504 0.0222
0 0.75 64 0.9249 0.5222 0.1253 0.0334
1 0.5 64 0.6830 0.3199 0.1113 0.0525
2 1 8 0.7441 0.1493 0.0316 0.0301
0 0.75 64 0.9944 0.5590 0.1709 0.0551
1 0.5 64 0.7261 0.3246 0.1176 0.0569
2 1 64 0.9448 0.8447 0.1718 0.0320

Table 2.3: Segmented LRU hit rates under MCD-OS

2.4.2 Ripple Effect

We measure the overhead of a ripple by counting the number of evictions in a ripple.
We refer to the number of evictions as the length of the ripple. Note that a ripple
effect with length of 1 means that only a single LRU has evicted an item. Another
thing to note is that it is possible for a ripple length to exceed the total number of
LRU-list in the system caused by an object inflation, as mentioned in section 2.3.
We run our experiment to evaluate the ripple effect overhead on AWS EC2 [14].
We launched two VMs (a server and client instances) of type m5.xlarge in a single
datacenter. On the client side, we used J = 9 proxies with N = 106 items, where
each item was 100kB. The total cache memory was 3 GB. For each proxy i ⊂ [J ],
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its zipf parameter is set to 0.5 + 0.5(i− 1) and memory allocation: b=100 MB for
proxies 1,2,3; b=200 MB for proxies 4,5,6; and b=700 MB for proxies 7,8,9. The
clients issue 3× 106 GET commands in total, after the cold misses have abated.
On read misses, clients perform a SET command to update the cache with the
value. We record the ripple effect caused by an eviction when a SET command is
issued 2.8. The horizontal axis represents the number of evictions that occured
in the ripple; we refer to it also as the length of the ripple. We can see that only
16% of the SET commands experience a ripple length that is greater than one. In
addition, we record the latencies of SET requests and evaluate the overhead of
updating the LRU lists due to ripple effects, as shown in figure 2.9.

Figure 2.8: Ripple effect evaluation using MCD-OS.
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Figure 2.9: CDF of the set requests in MCD vs. MCD-OS
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Chapter 3 |
Optimization Across Multiple Re-
gions

In this thesis, we are interested in geographically distributed key-value storage
system that guarantees strong consistency (linearizability) [15]. Such systems are
naturally geographically distributed in order to tolerate datacenter failures [16, 17].
Hence, accessing other datacenters is necessitated in order to enforce linearizability.
While the simplest form of tolerating failure is through replication, erasure coding
is yet another form of distributed storage scheme in which a failure can be tolerated.
Erasure coding has been proven to be an effective scheme to provide a KV storage
system that guarantees linearizability while minimizing storage and communication
cost and meeting SLO [5, 7, 18]. For this work, we implement our prototype to
include optimistic protocols in order to minimize cost (described in section 3.2.1).
The challenge of such optimization is to navigate a complex space of trade-offs
due to the inherent diversity in latency and costs that are inevitable for the public
cloud, as well as a wide range of parameters of workload characteristics and SLO
requirements. For this, we use the optimization formulation mentioned in [18] with
a modification on the heuristic in order to minimize cost. Specifically, we use a
network price based cost heuristic (i.e., quorum selection decisions are based of
data centers that are cheapest in network cost; described in section 3.2.2).
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3.1 Background and Related Work

3.1.1 Erasure Coding

Erasure coding is a form of data resiliency in which data is fragmented into k
segments. In addition, there arem parity fragments formed from linear combinations
of the k data fragments. In maximum distance separable (MDS) codes, the data
can be recovered as long as there are any k available fragments among the k +m.
Similar to replication based protocols, erasure coding is used to tolerate failure
while preserving strong consistency [19–22]. Clearly, erasure coding promotes
storage savings when splitting data into smaller chunks. For the same reason,
we can minimize the cost attributed to network, as mentioned in 3.2.2. There is
a substantial prior work on using erasure coding for storage efficiency. We find
that [23] to be the most relevant to our work.

3.1.2 Linearizability

Linearizabilty is a protocol property in which all operations are seen by all processors
in the same order [15]. In this section, we describe the two protocols that we use
to implement a strongly consistent geo-distributed storage system. Hence, we
describe both of the protocols in the semantics of GET/PUT requests. For this work,
it is important to note the following properties when describing the protocols:
number of rounds in which the protocol executes requests and identifying the
source/destination of the datagrams. These properties used in our optimization
formulation; also mentioned in the optimization of [18]. In addition, note that
both protocols explored in this thesis are non-blocking. In other words, operations
terminate in fixed number of rounds (2~3 rounds) even in the face of concurrent
reads or writes. We associate each version of a key with a tag (also refer to as
timestamp). The timestamp is an element of a totally ordered set. In practice, the
timestamp consist of two parts: an integer component (referred to as the logical
time) and client id.
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3.1.2.1 ABD Protocol

ABD1 is a replication and quorum based protocol that ensures strong consistency
while tolerating crash failures of nodes. A quorum in ABD is simply defined as a
majority of the servers. In our work, however, a quorum is going to be selected
based on the network cost associated to the phase (described in section 3.2.2).

PUT(key, value):

get-timestamp: Send get-timestamp message to all server and wait for a ma-
jority to respond with timestamp. After receiving responses, select the largest
timestamp and let its integer component be t.

put-value: Create a new timestamp timestamp-new as (t + 1, client-id) where
client-id is an unique id associated with each client. Send put-value message
with (timestamp-new, value) to all servers and wait for a majority to respond.
Upon receiving all responses from the write quorum, return to client.

Figure 3.1: Client Side PUT Protocol for ABD

GET(key):

get-timestamp-value: Send get-timestamp-value message to all servers and wait
for a majority to respond with (tag, value). After receiving responses, select
the largest timestamp and its corresponding value (max-tag, max-value).

put-value: Send put-value message with (max-tag, max-value) to all servers and
wait for a majority to respond. Return max-value to client.

Figure 3.2: Client Side GET Protocol for ABD
1Acronym driven from the authors’ name of [24]. We use the term to refer to a multi-writer

variant of the algorithm of [24], which can be found in [25].
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Server Side Protocol:
Initial State: Stores the (timestamp, value) pair for each key.

On receiving get-timestamp: Respond back with highest locally available times-
tamp.

On receiving get-timestamp-value: Respond back with highest locally available
timestamp and its value.

On receiving put-value: If received timestamp is greater than locally available
timestamp, store new (timestamp, value). Respond back with acknowledgement
in any case.

Figure 3.3: Server Side Protocol for ABD

3.1.2.2 CAS Protocol

CAS2 [23, 26] is a quorum based protocol that utilizes erasure coding to minimize
storage cost while guaranteeing SLO. We describe the protocols using the following
notation. We denote the encoding parameter as (n, k), where n is the number and
k is the number of coded elements needed to retrieve the data. In addition, we use
Qi for 1 ≤ i ≤ 4 to indicate the quorum size needed to receive response from. A
configuration with (n, k) is linearizable if the following constraints are met:

• Q1 +Q3 > n

• Q2 +Q4 ≥ n+ k

• Q1 +Q4 > n

• Q4 ≥ k

Lastly, when using the CAS protocol, we include an additional state bit S to every
data chunk such that S ∈ {’pre’, ’fin’}

2The acronym stands for CAS Coded Atomic Storage
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PUT(key, value):

get-timestamp: Send get-timestamp message to all servers and wait for Q1 of
them to respond with timestamp. After receiving responses, select the largest
timestamp. Let t be the integer component of the highest timestamp recived.
Apply the MDS coding (from section 3.1.1) using (n, k) on the value; creating
data chunk of C1, ..., Cn.

put-code: Create a new timestamp timestamp-new as (t+ 1, client-id). Send
put-code message with (timestamp-new, Ci, ‘pre’) to ith server) for 1 ≤ i ≤ n.
Await responses from Q2.

put-fin: Send put-fin message all servers with timestamp-new. Await for Q3 to
respond.

Figure 3.4: Client Side PUT Protocol for CAS

GET(key):
get-timestamp: Send get-timestamp message to the Q1 quorum servers and wait
for all of them to respond with timestamp. On receiving response, select the
largest timestamp, lets call it timestamp-max.
get-code: Send get-code message with timestamp-max to the Q4 quorum and
wait for all of them to respond with their corresponding codes. Decode the
value from collected codes.

Figure 3.5: Client Side GET Protocol for CAS
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Server Side Protocol for CAS:
Initial State: For each key, it stores (timestamp, V , S) where V ∈ {Ci, ‘null’},
Ci is the coded element for server i. S ∈ {‘fin’, ‘pre’}.
On receiving get-timestamp: Respond with locally known most recent times-
tamp for the key with the ‘fin’ tag.
On receiving get-code: If the (timestamp, Ci, *) exits for the key where * could
be ‘pre’ or ‘fin’ then send this code else add (timestamp,‘null’ , ‘fin’) and send
‘pre’.
On receiving put-code: If the timestamp doesn’t exits for the key then update
(timestamp, Ci, ’pre’) else ignore. Send acknowledgement in any case.
On receiving put-fin: If (timestamp, Ci, ‘pre’) exists for the key then update it to
(timestamp, Ci, ’fin’) else insert (timestamp, ‘null’, ’fin’). Send acknowledgement
in any case.

Figure 3.6: Server Side Protocol for CAS

3.2 System Design

3.2.1 Optimistic Reads

As described in section 3.1.2.1, ABD reads consist of two phases. In both phases,
the value is sent via the network incurring twice the cost. Specifically, on the first
phase, the client receives a set of responses that consist of the timestamps and
their values from the read quorum. On the second phase, the client sends the
value with the highest timestamp to the write quorum. In this work, we optimize
ABD reads to return after the first phase when all values received , from the read
quorum, are for the same version (i.e., they all have the same timestamp). We argue
that our optimization does not violate strong consistency due to the read/write
quorum construction, where Qread and Qwrite are the sets for each quorum and
|Qread ∩Qwrite| ≥ 1. Figure 3.7 describes the client side for ABD’s GET request
optimization.
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OPT-GET(key):

get-timestamp-value: Send get-timestamp-value message to the read quorum
and wait for all of them to respond with (tag, value). On receiving response,
if all the responses are for the same version, then return to client the value.
Otherwise, select the largest timestamp and its corresponding value (max-tag,
max-value).

put-value: Send put-value message with (max-tag, max-value) to the write
quorum and wait for all of them to respond. Return max-value to client.

Figure 3.7: Client side optimistic GET requests for ABD

Similarly, CAS reads consist of two phases (as describe in section 3.1.2.2). The
second phase of CAS is optimized such we optimistically only contact k servers
that are the cheapest in terms of network. However, unlike ABD, we implement
CAS such that terminates in two phases in any case.

3.2.2 Network Cost Heuristic Optimization

We use the formulation mentioned in [18] and modify our heuristic such that
it would select data centers that are cheaper in terms of their bandwidth cost.
We argue that such heuristic can be more cost-effective to utilized in the public
cloud; while certainly meeting SLOs. Figure 3.8 and 3.9 illustrates two scenarios
in which the nearest data center heuristic mentioned in [18] is costlier than the
configuration given by our optimizer. Figure 3.8 illustrates a scenario where both
configurations uses ABD. However, the data was placed in different data centers
across configuration. In this scenario, we consider a workload with a skewed
popularity of clients (90 percent of the request are generated from japan) and
90 percent of the requests are reads. Similarly, Figure 3.9 considers a workload
where 30 percent of the requests are originating from Japan, and 60 percent are
originating from São Paulo. Using the configuration provided by the optimizer, we
note that despite of having a larger set of data centers that participate in storing
the data, erasure coding effectively minimizes the cost of network and storage cost.
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Figure 3.8: Selecting nearest DCs using ABD

Figure 3.9: Selecting nearest DCs with CAS

3.2.3 Workload Characterization

Similar to the optimization formulation mentioned in [18], we consider dividing the
keys into multiple groups. Keys that are in the same group theoretically observe
the same behavior. Such simplification allows us to optimize a group of keys
separately (optimization mentioned in section 3.2.2) instead of per key-based. Each
group is defined by the number of keys, object size, arrival rate of requests, client
distribution and read to write ratio.
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3.3 System Overheads

3.3.1 Garbage Collection

In CAS, the server does not replace its codeword with an older version, instead it
stores a list of all codewords which the server has received. Such action is crucial
to refrain from failures due to inconsistent codewords received by the client. A
crucial component of this work is to develop a garbage collector (GC) that deletes
older versions to keep the storage cost in check. Theory shows a close connection
between the storage cost incurred and the amount of concurrency that a system
allows; specifically, an algorithm that allows ν concurrent write operations requires
to store, in the worst-case, ν + 1 versions at each server (See CASGC of [23,26]).
If the concurrency exceeds ν, then a read operation that is concurrent with these
writes may not terminate. An important task is to examine the impact of the
results of [23, 27, 28] in our implementation. An aggressive GC strategy that keeps
very few older versions at the servers would reduce storage cost; however, the result
of [27,28] implies that it can affect performance by preventing the termination of
operations. While it might be tempting to tune the number of versions to the extent
of concurrency, there are two problems with this approach. First, the worst-case
concurrency of a group is difficult to characterize, as it is an implied quantity based
on the arrival process of the reads and writes. Second, even if the concurrency v
is measured perfectly, the strategy of storing v + 1 number of versions can be too
conservative and leave money on the table; this is because operation termination is
theoretically affected only under a worst-case scenario, and its impact in a practical
system is not clear. Finally, we also aim to build a garbage collector that does
not consume too many system resources and affect performance. We propose the
following heuristics to garbage collect older versions:

• Number of versions based: only keeps up to an operator-specified threshold
on number of versions of an object.

• Periodic: simply scans old versions periodically (once every 5 minutes in our
prototype) and removes them.
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3.3.2 Reconfiguration

Significant changes in workload properties may render the current configuration
expensive or cause SLO violations or both. We exploit predictable patterns in
workloads to identify when such changes are likely to occur and invokes its optimizer
with revised estimates of workload properties (over the foreseeable near-term period
of relative workload stationarity), thereby starting a new epoch. In addition to such
predictive mechanisms, a new epoch may also be started by in a “reactive” manner
upon detecting unsatisfactory system behavior (SLO violations or higher-than
predicted costs); similar combinations of predictive and reactive control comprise a
well-studied area [29,30].

3.4 Evaluation

0 200 400 600 800 1000 1200
Latencies(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GET Requests
PUT Requests

0 200 400 600 800 1000 1200
Latencies(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GET Requests
PUT Requests

0 200 400 600 800 1000 1200
Latencies(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GET Requests
PUT Requests

Figure 3.10: GET/PUT latency distributions observed for baseline 1 (left), baseline
2 (middle), and our prototype (right).

Group
g=1 g=2 g=3

Baseline 1 ABD(5,1) ABD(5,1) ABD(5,1)
Baseline 2 CAS(6,2) CAS(5,1) CAS(5,1)

Our Prototype CAS(6,2) CAS(5,1) ABD(5,1)

Table 3.1: Group characterization on workload evaluated.

We conduct our experiments on AWS using data collected from [31,32]. We present
3 sample results, each comparing the estimates for the following vs. observations on
our prototype: baseline 1, baseline 2, and our prototype. The workload comprised
three groups (table 3.1), one of which was write-heavy and the remaining read-
heavy. The workloads had skewed spatial distributions of users and contains object
sizes in the range of 1-50KB. Baseline 1 is constructed such that our optimization
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Cost (USD/hour) Performance (ms)
VM Network GET PUT

Est. Obs. Est. Obs. Est. Obs. Est. Obs.
Baseline 1 1.32 1.32 1.54 1.24 548 322 548 572
Baseline 2 1.32 1.32 0.85 0.94 548 500 792 868

Our Prototype 1.32 1.32 0.83 0.72 548 502 792 864

Table 3.2: Cost and performance for baseline 1, baseline 2 and our prototype

framework only picks ABD as the protocol along with the best placement policy for
each group. Similarly, Baseline 2 only looks at possible configurations using CAS
protocol. Lastly, using our prototype, we optimize the placement of each group to
select any of the protocols. Table 3.2 depicts the cost breakdown for each of the
experiments and its comparison with (approximate) costs incurred as reported by
AWS billing and cost management dashboard. We find that both cost and SLO
are well-estimated for baselines as well as our prototype. The observed cost and
tail latency for baseline 1 are noticeably better than the optimizer’s estimate due
to cases when the ABD protocol [33] performs its read operation in one phase -
clearly our modeling of this phenomenon is on the conservative side. The table also
compares a high (98th) percentile of observed request latency and that predicted by
the optimizer. Figure 3.10 illustrates the GET/PUT latency distributions observed
with configurations chosen by the optimizer. In each case a high percentile of
latency is in agreement with the SLO targets specified to the optimizer.
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Chapter 4 |
Conclusion

The attractiveness of migrating all variants of applications to the public cloud
have promoted providers to create extensive number of services; allowing tenants
to tailor their system design to their needs. In this work, we have focused on
minimizing the cost of key-value storage systems in two different scales: single
region and across regions. In the former, a key-value system typically consists
of a caching unit along with the database. Here, we consider a caching system
where different remote proxies accessing the database “pay” for their allocation.
We implemented a caching system that enables object sharing to minimize storage
cost while respecting their SLAs. We evaluated our system by comparing the
performance of the prototype against results provided theory. In addition, we
evaluate the extensiveness of the overheads by comparing the results from our
prototype to a system without object sharing. Second, we considered KV store
systems that are naturally geographically distributed due to the need for tolerating
failures. Here, we considered two protocols that guarantees strong consistency:
ABD and CAS. The latter employs erasure coding techniques to minimize storage
and communication cost. We modified both protocols to perform in an optimistic
approach on failure tolerance, while preserving strong consistency. In addition, we
considered an optimization formulation that uses network cost as the heuristic in
selecting quorums.
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