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Abstract 

            Gravity-driven counter-current flow occurs in reservoir processes such as gas 

storage in an aquifer and certain secondary and tertiary recovery processes. In order to 

operate these processes effectively, it is important to understand and to be able to model 

the flow process. Both drainage and imbibition processes exist simultaneously when 

counter-current flow occurs. It has been difficult to model this type of flow process 

because of the impossibility of assigning a single capillary pressure curve applicable over 

the entire sample in this situation. The focus of this study is to find a method for 

accurately representing capillary pressure in counter-current flow. 

Gravity-driven counter-current flow experiments have been done in glass bead 

packs and the spatial and temporal saturation distributions of the core sample obtained 

with X-ray computed tomography (CT). With the aid of a deterministic reservoir 

simulator, capillary pressure and relative permeabilities were extracted by matching the 

saturation distribution with optimization methods (history-matching). This work applies a 

saturation-history-dependent approach to simulating counter-current flow. From the 

capillary hysteresis loop, a family of curves (called scanning curves) is constructed 

connecting the two branches. Each grid block of the sample is assigned a different 

scanning curve according to its current saturation and saturation history.  

This technique was used to simulate previous laboratory experiments in glass 

bead packs. The simulation reproduced two-dimensional saturation distributions over 

time with good accuracy. Similar simulations of experiments described in the literature 

were equally successful. In particular the simulation captured the fluid banks observed in 

counter-current flow experiments, which cannot be obtained through other methods.  
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CHAPTER 1 

INTRODUCTION 

 

Petroleum engineers design and optimize hydrocarbon recovery processes. The 

production of petroleum reservoirs by primary, secondary, or tertiary processes involves 

the simultaneous flow of two or more fluids. Multiphase flow occurs during water or gas 

drive and some enhanced oil recovery (EOR) processes such as in-situ combustion and 

carbon dioxide flooding. Reservoir engineering designs, oil recovery predictions, and 

evaluation of enhanced oil recovery processes require knowledge of relative 

permeabilities, and capillary pressure. With the development of new recovery techniques, 

the interest in determining relative permeabilities and capillary pressures has intensified.     

Gravitational, capillary, and viscous forces play an important role in hydrocarbon 

recovery processes. When the gravitational force is much larger than viscous force, 

counter-current flow may occur (Walsh and Moon, 1991). The possible occasions for 

counter-current flow include primary and secondary migration of hydrocarbons, gas 

storage in an aquifer, steam-assisted gravity drainage processes, and some enhanced oil 

recovery processes. Many researchers (Briggs and Katz 1966, Templeton et al. 1962, 

Barbu et al. 1999, Karpyn 2001, Al-Wadahi et al. 2000) have done some experiments and 

simulation of gravity driven counter-current flow.  

In a closed system, both drainage and imbibition occur at the same time in 

different locations during counter-current flow. The question that arises is: which 

capillary pressure curve should be used in the simulation of such a process?  If both 
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capillary pressure curves are used, there will be a saturation and capillary discontinuity in 

the transition zone. The goal of this work is to find an answer to this question faced in 

modeling counter-current flow and hence to provide a mechanistic understanding of 

counter-current flow. The factors that favor the formation of fluid banks during counter-

current flow are also studied.  
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1.1 Fluid Flow in Porous Media 

Hydrocarbons are generated, migrated and stored in porous and permeable media. 

Several mechanisms of fluid flow through porous media govern migration and production 

processes. The primary mechanism is the flow under pressure gradient. Darcy equation is 

used to describe the laminar viscous flow driven by this mechanism. Ignoring the gravity 

effect, the equation is represented as, 

                                               
dx
dpkv

µ
−=                                                         (1.1) 

where k is absolute permeability representing the conductivity of the porous medium, µ is 

the fluid viscosity.  The velocity v is proportional to the pressure gradient dxdp . The 

negative sign is because the flow direction is opposite to the increasing pressure 

direction. 

If multiple fluids flow simultaneously in the porous medium, a modified Darcy 

equation is applied to each fluid in the following form: 

                                               
dx
dp

µ
kkv i

i

ri
i −=                                                     (1.2) 

where kri is the relative permeability, which can be viewed as a modification factor for 

multiphase flow.   

The combination of Darcy equation, which represents the momentum 

conservation, and the mass continuum equation in porous media form the basis of 

reservoir simulation and other reservoir engineering problems.   

Multiple fluids co-exist in reservoir rocks, so multiphase flow is of great 

importance for oil recovery processes including primary, secondary and tertiary recovery 
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stages. In secondary and tertiary recovery processes, injection of another fluid is often 

implemented to produce the remaining hydrocarbons in the reservoir left by the previous 

recovery stage. The base for the displacement calculation with two phases is the frontal 

displacement theory introduced by Buckley-Leverret (1942) and expanded by Welge 

(1950).  This theory has been extended to three-phase problems by Grader and O’Meara 

(1988). 

In the past, the investigation of multiphase flow was mainly done in laboratories 

with the assumption that the core samples are homogeneous.  With the development of 

some advanced visualization techniques, such as X-ray CT, experiments in multiphase 

flow have been greatly improved. The above assumption either can be confirmed or be 

eliminated with the aid of high quality images and information obtained from the image 

analysis.  

The recent multiphase flow study has been extended to the micro-scale or pore 

scale modeling and experiments. The interactions between fluids and pore structures can 

be observed in experiments and many macro-scale phenomena have been successfully 

modeled at the pore scale. The pore scale modeling and experiments will yield a better 

understanding of the physical aspect of multiphase flow. 
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1.2 Relative Permeability  

The standard description of multiphase flow in porous media is based on the 

generalization of Darcy equation, which is rigorous for the flow of a single fluid in 

porous media. Wyckoff and Botset (1936) introduced a permeability reduction factor for 

each fluid, called relative permeability in multiphase flow conditions. The heuristic 

interpretation for the reduction of permeability is that the available channel of a fluid is 

reduced with introducing another fluid in the porous medium. The interactions such as 

viscous drag between fluids also contribute to this reduction. Knowledge of relative 

permeability is important in predicting flow behavior of different fluids in porous media. 

Two categories of methods have been widely used for measuring relative permeabilities 

in laboratory: the steady-state method and the unsteady-state method. A third method is 

the centrifuge technique, which is not commonly used. In the steady-state method, fluids 

are injected into the core sample at a fixed fractional flow until steady-state conditions 

are obtained. The relative permeabilities are calculated with the generalized Darcy 

equation if the pressure drop, flow rate and other properties of the core (such as absolute 

permeability) and fluids (such as viscosity) are known. The unsteady-state method was 

developed by Welge (1952) and Johnson et al. (1959), often called Welge-JBN method. 

In this method, the Buckley-Leverett (B-L) theory (Buckley and Leverett 1942) is applied 

to calculate the relative permeability. In order to accurately determine relative 

permeability from experimental data, many empirical or theoretical models or 

correlations were proposed, such as Corey model (Corey, 1956) and stone model (Stone, 

1973).  Grader and O’Meara (1988) extended Welge-JBN method from two-phase to 

three-phase flow and Siddiqui et al. (1996) verified this method experimentally. 
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Nowadays, with the development of numerical simulators, automatic history matching 

has been widely used for determining relative permeabilities from experimental data. 
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1.3 Capillary Pressure 

In dealing with multiphase processes, it is necessary to consider the effect of the 

forces acting at the interface when two immiscible fluids are in contact. In this case, the 

fluids are separated by a well-defined interface with a few molecular diameters in 

thickness. At the interface, molecules are surrounded by different type of molecules, so 

the forces acting on it are not balanced. The unbalanced forces create a membrane-like 

surface (Amyx 1960). The free surface energy may be defined as the work necessary to 

create a unit area of new surface. The origin of this work is that, when the surface is 

extended, molecules must be brought from the interior to the surface against the inward 

attractive forces. This free energy in the surface is of fundamental importance to many 

problems relating to the equilibrium of surface. Surface tension is just a simplified 

mathematical representation of free surface energy (Adam 1941). Interfacial tension is 

used for the interactions between two general fluids instead of surface tension, which 

specifically refers to the interface of air and another fluid.  

An important consequence of the existence of free surface energy is capillarity. If 

a liquid surface were curved, the pressure is greater on the concave side than on the 

convex side by an amount, which depends on the interfacial tension and on the curvature 

(R). This is because the displacement of a curved surface results in an increase in area as 

the surface moves towards the convex side, and work has to be done to increase the area. 

This work is supplied by the pressure difference (capillary pressure) moving the surface 

(Adam 1941).   

Capillary rise phenomenon has been known for a long time, but the physical 

explanation was not on the right track until 1743 when Clairaut explained it with the 
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attractions between particles of fluids and solid. The mathematical representation of 

capillary pressure was derived in 1800s by Young, Laplace, Gauss, and Poisson, which is 

known as Young or Laplace equation: 









+=

21

11
RR

pc σ  

where pc =p1- p2, is the capillary pressure, defined as the pressure difference between the 

non-wetting phase and the wetting phase; σ is the interfacial tension; R1 and R2 are the 

radii of the two principle curvatures.  The capillary pressure in a capillary tube is reduced 

as follows:  

c
c r

θσp cos2
=  

where θ is the contact angle and rc is the inner radius of the capillary tube.  

The study of capillary phenomena in porous media was initiated by Washburn 

(1921). The pioneering work in measuring the capillary pressure in petroleum 

engineering was done by Leverett (1941). Capillary pressure in a reservoir is a function 

of properties of rocks and fluids, the saturation of each fluid, the pore size distribution, 

and even the saturation history. In his study, Leverett determined the capillary curve from 

height-saturation experiments with a clean unconsolidated sand pack in a tube. He also 

proposed a method of correlating capillary pressure data for a reservoir, called the J-

Leverett function. Other commonly used methods for measuring capillary pressure 

include mercury injection and centrifuge methods. 

The saturation dependence of capillary pressure (capillary hysteresis) has been 

observed for a long time. Morrow and Harris (1965) studied the characteristics of 
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capillary hysteresis with a modified suction potential technique, which is consistent with 

Everett’s independent domain theory of permanent hysteresis (Morrow 1970). In many 

oil recovery processes such as water alternating gas (WAG) process, only the drainage 

and imbibition capillary pressure curves are not enough to describe the process and the 

intermediate scanning curves are required to correctly model them. However, it is 

difficult to routinely measure capillary pressure loops and their intermediate scanning 

curves. Many investigators (Killough 1976, Tan 1990, and Kleppe et al. 1997) came up 

with some mathematical representations of capillary scanning curves, which can be 

conveniently applied in reservoir modeling.  
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1.4 Gravity-Driven Counter-Current Flow 

Counter-current flow, which is different from co-current in that fluids flow in 

opposite directions, might occur in many reservoir processes, such as primary and 

secondary migration of hydrocarbons, gas storage in an aquifer, steam-assisted gravity  

(SAGD) drainage process and some secondary and tertiary recovery processes. Counter-

current flow driven by spontaneous imbibition has been of interest in fractured systems 

during water flooding. Several investigators studied this subject (Mattax and Kyte 1962, 

Blair 1964, Bourblaux and Kalaydjian 1990, and Babadagli 2000). The focus of this work 

is gravity-driven counter-current flow.  

Gravity drainage is a recovery process, in which gravity is the dominating driving 

force. It is an effective oil recovery process under favorable conditions: high vertical 

permeability, an favorable oil relative permeability, high vertical continuity, a large 

density deference, low oil viscosity, and long oil drainage times after the region has been 

invaded (Richardson 1989). The importance of the gravity force in oil recovery has been 

recognized since the 1940s. The first theoretical treatment of vertical oil segregation was 

presented by Cardwell and Parsons (1949) using Darcy equation and the continuity 

equation. In their calculation, capillary pressure is ignored. Terwilliger et al. (1951) 

implemented Buckley-Leverett immiscible displacement theory on gravity drainage, 

which showed a close match to the experiments with steady-state relative permeability 

and static capillary pressure. Their experiments showed that the recovery is inversely 

proportional to rate. King and Stiles (1970) reported a very high displacement efficiency 

(87%) and Dumore and Schols (1974) discovered a very low residual oil saturation (5%) 

by gravity drainage. Hagoort (1980) studied the recovery performance by gravity 
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drainage. He found that gravity drainage in water wet reservoirs at connate water 

saturation can be a very effective oil-recovery process and the oil relative permeabilities 

are the key factors in this process.     

Gravity driven counter-current flow in a closed system was first theoretically 

studied by Fayers and Sheldon (1959) and Sheldon et al. (1959). They extended the 

Buckley-Leverret theory for this special case, which has a zero total flow rate and infinite 

fractional flow. The actual flow rate was used instead of the fractional flow. Templeton et 

al. (1962) did an experimental study and attempted to predict saturation changes with the 

above-mentioned extended Buckley-Leverret theory using final saturation profile as the 

capillary pressure curve. They encountered difficulties in the calculation because of the 

lack of knowledge of drainage and imbibition capillary pressures and relative 

permeabilities. Briggs et al. (1966) conducted gravity driven counter-current flow 

experiments in a closed system in an attempt to describe gas storage in aquifers and they 

also numerically simulated this process. In the development of a gas storage aquifer field, 

gas preferentially moves into high permeability layers after it is injected into a reservoir 

through injection wells. Later on, water above the gas layer moves down due to the 

gravity force and gas counter-currently moves up. Figure 1.1 shows the development of 

gas bubbles in an aquifer (from Briggs et al. 1966). The mechanistic understanding of this 

counter-current flow process will help reservoir engineers to estimate how long it takes to 

form gas bubble, which, in turn, help plan efficient gas storage operations. A more recent 

study by Walsh and Moon (1991) investigated counter-current flow in dipping reservoirs 

during water or gas injection. Several authors have noticed counter-current flow process 

in steam-assisted-gravity drainage (SAGD) process (Mokrys and Butler 1993, Das and 
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Butler 1996, Nasr et al. 2000) and the corresponding improved method - VAPEX process 

(Mokrys and Butler, 1993). Both are effective methods to improve the heavy oil 

recovery.  

            Recently, several experiments in counter-current flow have been done by Barbu et 

al. (1999) and Karpyn (2001). Al-Wadahi et al. (2000) extracted relative permeabilities 

and capillary pressure from Barbu’s experiments using neuro-simulation modeling. He 

concluded that the relative permeabilities counter-current flow are smaller than that of the 

co-current flow and the capillary pressure is similar to the final saturation profile, which 

is an S-shaped curve.   

            Figure 1.2 shows the schematic saturation profiles in the vertical position of a 

counter-current flow process started from an evenly distributed saturation. Initially, the 

heavy wetting phase is at the top and the light non-wetting phase is at the bottom. 

Because of the density difference, the upper part undergoes a drainage process with 

decreasing wetting phase saturation and lower part undergoes an imbibition process with 

increasing wetting phase saturation. If both imbibition and drainage capillary pressure 

curves are used for the lower and the upper parts respectively, there will be a 

discontinuity in the transition zone. This research provides an approach based on 

saturation history to eliminate this discontinuity.   

            In Briggs and Katz (1966) and Karpyn (2001) experiments, the formation of fluid 

banks was reported. Figure 1.3 shows a typical fluid bank in a schematic counter-current 

flow process. The mechanism of the formation of these banks and the influence of these 

banks on the counter-current flow process is discussed in this work. 
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Figure 1.1: Development of gas bubbles in an aquifer (from Briggs et al. 1966).
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Figure 1.2:  The schematic of saturation changing path  

      in a counter-current flow process. 
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Figure 1.3:  The schematic of the formation of a fluid bank  

in a counter-current flow process. 
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CHAPTER 2 

OBJECTIVES AND APPROACH 

Objectives 

            The main objectives of this work are:  

1. To provide a mechanistic approach for modeling counter-current flow in porous 

media with and without fluid banks. 

2. To gain physical understanding of counter-current flow in porous media including 

the formation of fluid banks. 

3. To provide a methodology for extracting capillary pressures and relative 

permeabilities from counter-current fluid flow experiments.  

 

Approach 

            The approach for obtaining the objectives consists of conceptual and numerical 

inverse modeling of counter-current fluid flow experimental observations. The main 

variables of interest are capillary pressure and relative permeabilities. The inverse 

modeling procedure consists of forward simulation and multi-variable parameter 

optimization. 
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CHAPTER 3 

METHODOLOGY 

 
In this research, the saturation maps of porous media samples obtained by an X-

ray Computed Tomography (CT) scanner constitute the experimental data. Numerical 

reservoir simulation coupled with automatic-history matching was used to obtain relative 

permeabilities and capillary pressures. Several optimization methods have been tested for 

this purpose. Because of the complexity of counter-current flow, saturation history 

dependent modeling was implemented based on capillary hysteresis.   

 

3.1 Computed Tomography (CT) 

X-ray CT is a non-destructive imaging technique that provides three-dimensional 

distribution of properties such as density and nuclear atomic number. In 1972, Housfield 

designed the first medical X-ray CT scanner based on Radon’s tomography theory, which 

can be used to derive the analytical equations relating projections to parameters of the 

investigated object. This technique was introduced into petroleum industry in the late 70s, 

with the primary purpose of rock characterization.  

The application of X-ray CT in investigating enhanced oil recovery processes was 

introduced by Wang and Avral (1984). After that, many other researchers (Cromwell et 

al. 1984, Hove et al. 1985, Wellington and Vinegar 1985&1987, Withjack and Akervoll 

1988, Chatzis et al. 1989, Hove et al. 1990, Lenormand et al. 1990, Liu et al. 1990, 

Ganapathy 1993, Hicks et al. 1994, Yamamoto et al 1997) investigated its feasibility and 

applications in water flooding, CO2 displacement, water alternating gas (WAG) process 



 17
and other enhanced oil recovery processes. Effects of heterogeneity of the core, fingering, 

dispersion of flood fronts and end-effects were observed and studied with its help.   

An X-ray CT scanner mainly consists of four parts: X-ray source, detector, 

sample translation system, and data processor. The X-rays are attenuated as they 

penetrate the sample. The degree of the X-ray attenuation is captured by the detector. 

From projections at different angles, the data processor can generate a cross-sectional 

image of the sample by using a backward algorithm based on Radon transformation. A 

series of cross-sectional images can be obtained by changing the position of the sample 

thus generating three-dimensional data sets describing the sample such as porosity and 

fluid saturation. Wellington and Vinegar (1987) and Hunt et al. (1988) presented a 

detailed description about different generations of scanners.  

Jasti et al. (1993) presented a non-traditional X-ray CT scanner (microfocal X-ray 

CT scanner) where a cone-shaped, diverging X-ray beam was used to generate 2D 

transmission images. Unlike traditional X-ray CT scanner, a 3D reconstruction is created 

directly instead of creating a series of 2D slices. This allows direct measurement of 3D 

geometric and topological properties of porous media on a microscale. The source-to-

object distance is adjusted to achieve the necessary balance between spatial resolution 

and maximum object size.  

Attenuation intensity is the unique property measured by an X-ray CT scanner. 

From Beer's Law, the attenuation intensity before and after going through the sample is: 

( )( )∫−= dLyxII ,exp0 µ                                                (3.1) 
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where I0 is the incident X-ray intensity and I is the intensity remaining after it passes the 

sample. µ(x,y) is 2D distribution of attenuation coefficients. The projection value of CT 

scanning can also be expressed as: 

( ) ( )∫−= dLyxII ,ln 0 µ                                             (3.2) 

According to the Radon transformation, CT images can be reconstructed after 

getting projection values at different angles.  

For one pixel,  

( )LyxeII ,
0

µ−=                                                  (3.3) 

where µ is the linear attenuation coefficient. This coefficient is a function of bulk density 

and atomic number: 

tricphotoecleccomptonbb EZba µµρρµ +=+= 2.38.3                        (3.4) 

where a is an energy independent constant and b is a constant. The first term of the above 

equation mainly represents the Compton scattering effect and the second term accounts 

for the photoelectric effect. These two effects occur at different energy level, the former 

at above 100kv and the latter below 100kv. Based on this phenomenon, the dual-energy 

X-ray CT was developed for co-determination of density and nuclear atomic number. 

Kantzas (1990) presented a detailed discussion on the physical principles of X-ray CT 

and its applications. 

The porosity can be derived from the linear attenuation coefficient of a rock 

saturated with fluid using a bulk volume model. 

 ( ) φµφµµ fmb +−= 1                                                  (3.5) 
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where µm is the linear attenuation coefficient of the rock matrix and µf is the linear 

attenuation coefficient of the fluid. Then,  

mf

mb

µµ
µµφ

−
−

=                                                           (3.6) 

The above method is called single-scanning method, but it requires an estimate of 

µf and µm. The implementation is completed by saturating the sample with a single fluid 

and taking one scan. Another method to obtain porosity is a double-scanning method, in 

which the CT scanner scans the core sample twice and each time the sample is saturated 

with different fluids. 

( ) φµφµµ 11 1 fmb +−=                                                 (3.7) 

( ) φµφµµ 22 1 fmb +−=                                                  (3.8) 

Solving for φ gives:  

21

21

ff

bb

µµ
µµφ

−
−

=                                                                 (3.9) 

The porosity of each pixel can be calculated by: 

( )avgvacuumwet

vacuumwet
avgpixel CTCT

CTCT
−
−

×= φφ                                    (3.10) 

where φavg is the average porosity of the core; CTwet is the CT number when the core is 

saturated with a fluid and CTvacuum is the CT number after the core is place under vacuum. 

The porosity distribution can be obtained thereafter.  

When the rock is fully saturated with two phases, the bulk attenuation coefficient 

can be calculated with Equations (3.7) and (3.8), respectively. Suppose these two phases 
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coexist in the pore space with saturation S1 and S2 for each phase, the attenuation 

coefficient is: 

2211 SS bbb µµµ +=                                                     (3.11) 

Substituting Equations (3.7) and (3.8) into Equation (3.10) yields: 

( ) 22111 SS ffmb φµφµφµµ ++−=                                          (3.12) 

Based on the above equations, there are a couple of methods to calculate fluid 

saturation. If the attenuation coefficients are known, the saturation is easy to calculate by 

combining equation (3.11) with S1+ S2=1.0. 

12

1
1

bb

bbS
µµ
µµ

−
−

=                                                        (3.13) 

Another method is subtracting the CT number of 100% saturated core sample 

(Equation 3.7) from that of the partially saturated core sample (Equation 3.11) and then 

combining with S1+ S2=1.0. The result is:  

( )12

1
1

ff

bbS
µµφ
µµ
−
−

=                                                      (3.14) 

If the attenuation coefficients of the matrix and two fluids are known, the 

saturation can be calculated from Equation (3.11): 

( ) ( )
( )21

2
1

ff

fbmbS
µµφ

µµφµµ
−

−−−
=                                           (3.15) 

The saturation distribution can be obtained by: 

( ) ( ) ( )avg
avg

avgfwet

fwet
pixel S

CTCT
CTCT

S 1
1

1
1 ××

−

−
=

φ
φ

                                  (3.16) 

where CTf1 is the CT number when the core is saturated with fluid 1.  
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3.2 History Matching 

History matching is a procedure in which reservoir parameters such as 

permeability, porosity, relative permeabilities and capillary pressure are modified in a 

forward model (reservoir simulator) to obtain a reservoir representation that matches the 

observed reservoir performance. 

The first report on history matching was from Kruger (1961). From then on, this 

technique has been extensively used in reservoir characterization and description.            

Archer et al. (1973) introduced this technique to determine relative permeabilities from 

coreflood experiments. Chavent et al. (1980) extracted relative permeabilities as well as 

capillary pressures with automatic history matching. With the development of computers, 

the application of automatic history matching in coreflood analysis has been studied by 

many researchers (Kerig et al. 1987, Watson et al. 1986, Richmond et al. 1988, Jennings 

et al. 1988, Yang and Watson 1991, Nordtvedt et al. 1993, Akin and Demiral 1997, Akin 

and Kovscek 1999).  

In this study, the observed data are temporal and spatial saturations determined 

with a CT scanner and the model parameters are relative permeabilities and capillary 

pressure. The absolute permeability was measured from the pressure drop and flow rate 

by using Darcy equation and the porosity distribution was obtained from the CT scanner. 

The forward model is a commercial reservoir simulator Eclipse 100, which is a black 

oil simulator. Appendix A gives a typical data file for this simulator.  

Figure 3.1 is a schematic representation of history matching method. The forward 

model used in this method is a commercial reservoir simulator (Eclipse). The initial 

conditions, the fluids properties such as capillary pressure, relative permeabilities, 
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absolute permeability and porosity are input in the numerical simulator and the saturation 

profiles are extracted. These profiles are compared with the experimental data. If the 

profiles match satisfactorily, the parameters used in the forward model are the ones that 

can accurately describe the system. If not, relative permeabilities and capillary pressures 

are modified with an optimization method (Levenburg-Marquardt method) and put back 

into the forward model. The parameters are repeatedly optimized until the simulated 

saturation profiles match the experimental ones.  

In the implementation of this method, C-shell programming is applied to extract 

saturation data from the simulator output files. Then the generated saturation data files 

are put into an optimizer programmed with C language to generate a new set of 

parameters. These new parameters are written into files in a format that the simulator can 

read. The C-shell codes, as well as the C language optimizer codes, are given in appendix 

B 

Mathematically, the comparison between experimental data and model data is 

described with an objective function, expressed in the following form: 

                                         ( )( )∑
Ω

−=
),,,(

2exp
,,,,,, ,

tzyx
tzyxcr

cal
tzyx SpkSJ                                        (3.17) 

where Sx,y,z,t is the saturation distribution in the core sample, which is a function of 

relative permeability kr and capillary pressure pc. Relative permeabilities and capillary 

pressure are automatically adjusted to minimize the objective function J until the process 

converges.  
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Model parameters (relative permeabilities and capillary pressure) are functions of 

saturation. There are different representations for relative permeability curves and the 

most commonly used is the power law form as in Equation (3.18).   

                                                               kri=ai(Si-Sir)bi                                                 (3.18) 

where Si is the saturation of phase i and Sir is the residual saturation of phase i, ai and bi 

are parameters to be determined. 

Al-Wadahi et al. (2000) expressed the capillary pressure as follows 

                                                           pc=apc(p*c+bpc)                                                 (3.19) 

where p*c is a function of final fluid saturation distribution obtained from experiments. 

apc and bpc are parameters to be determined. 

According to Darcy equation, the velocity of phase i is: 

                                                       ( )gzp
k

v ii
i

i
i ρ

µ
−∇=                                              (3.20) 

The pressure in Equation (3.20) is in a differential form, so parameter bpc in Equation 

(3.19) does not affect the results from the forward model. Equation (3.19) can be 

simplified: 

                                                              pc=apcp*c                                                        (3.21) 

The relative permeability and capillary pressure curves can also be represented as 

spline function or piecewise function. If the capillary pressure curve cannot be 

constructed with magnitude scaling of the final saturation profile, it needs to be 

represented as a spline function or piecewise function. Interested readers on the spline 

function representation are referenced to Kerig et al. (1987). 
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 Figure 3.1:  Schematic of the history matching method.  
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3.3 Optimization Methods 

There are three categories of optimization algorithms (Wu, 2000): gradient based 

methods, sensitivity coefficient-based methods, and global optimization methods.  

3.3.1 Gradient Methods 

3.3.1.1 Steepest Descent Method 

Consider the first-order Taylor series expansion of the objective function J(X) at 

Xk: 

                                       J(Xk+1)= J(Xk+∆Xk) ≈ J(Xk)+Dk
T ∆Xk                           (3.22) 

where Dk is the gradient of the objective function evaluated at Xk: 

                                                    Dk≡∇ J(X)| X= Xk                                                                        (3.23) 

For J(Xk+1) to be less than J(Xk),  the second term of the right-hand side of the 

Equation (3.22) must be negative: 

                                                   Dk
T ∆Xk<0                                                         (3.24) 

To get the fastest convergence, this has to be most negative, i.e. its absolute value has 

the largest value. This condition is satisfied when: 

                                                    ∆Xk= -Dk                                                        (3.25) 

Therefore: 

                                                   Xk+1= Xk -Dk                                                    (3.26) 

To avoid oscillations, a step size constant α is normally used to limit the 

searching process. The range for α in this research is 0.1∼0.5. The parameter 

updating equation is modified as follows: 

                                                  Xk+1= Xk -αDk                                                 (3.27) 
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The Steepest Descent method works well when the gradient is large, or far away 

from the minimum. However, it progresses very slowly in the vicinity of the 

minimum. The rate of convergence for this method is linear at best (Yang and Watson 

1987). 

 

3.3.1.2 Conjugate Gradient Method 

The Steepest Descent method is a linear search algorithm. The search directions 

are orthogonal. For quadratic functions with elliptical contours, this produces a 

zigzag trajectory of short steps with slow convergence. The Conjugate Gradient 

method uses conjugate directions instead of negative gradient directions to speed up 

the convergence rate. For quadratic functions, this method guarantees quadratic 

termination, which means that it minimizes a quadratic function exactly in a finite 

number of iterations. The Conjugate Gradient method starts with Steepest Descent 

method: 

                                            X1= X0 -αD0                                                     (3.28) 

Then, in the next steps, it uses the conjugate directions 

                                                    Xk+1= Xk -αPk                                                   (3.29) 

where Pk is the conjugate search direction defined by: 

                                                      Pk= -Dk+-βkPk-1                                              (3.30) 

where  

βk=(∆Dk-1
TDk )/(∆Dk-1

TPk-1) due to Hestenes and Steifel, and  

βk=(Dk
TDk )/(Dk-1

TPk-1) due to Fletcher and Reeves, and  
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βk=(∆Dk-1

TDk )/(Dk-1
TPk-1) due to Polak and Ribiere, and 

∆Dk-1= Dk -Dk-1 

 

3.3.1.3 Variable Metric Method (Quasi-Newton method) 

The search direction of Steepest Descent method and Conjugate Gradient 

method is based on the first-order approximation to the objective function, so the 

convergence rate is slow. In order to get a better convergence rate, the second-order 

approximation is made in Newton’s method.  

                   J(Xk+1)= J(Xk+∆Xk) ≈ J(Xk)+Dk
T ∆Xk +1/2 ∆Xk

T Hk ∆Xk             (3.31) 

where Hk is the Hessian matrix (or second derivative) of the objective function. The 

search direction is as follows: 

                                           Xk+1= Xk - Hk
-1Dk                                                   (3.32) 

The rate of the convergence for this method is quadratic, currently the highest sought 

in practice.  

The problem with Newton’s method is that the computation of Hessian matrix is 

very expensive for history matching. The Variable Metric method was introduced in 

order to avoid direct computing of Hessian matrix. In this method, only the first-

order derivative is needed and the Hessian matrix is approximated from previous 

steps. This method is a multivariable secant method. Therefore, in the Variable 

Metric method, the search direction is given by: 

                                                Xk+1= Xk - BkDk                                                   (3.33) 
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where Bk is the approximation of the inverse of the Hessian matrix Hk

-1. While the 

Hessian matrix is computed at each iteration in Newton’s method, Variable Metric 

method updates Bk at each iteration: 

                                                Bk+1= Bk+ Uk                                                      (3.34) 

There are several methods to calculate the updating matrix Uk. The most 

commonly used method is Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Gill 

et al. 1981). 
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3.3.2 Sensitivity Coefficient-Based Methods 

3.3.2.1 Gauss-Newton Method 

The first order derivative of the objective function J (note: the objective 

function used in the sensitivity coefficient-based methods is defined as half of that in 

Equation 3.17 to avoid the appearance of a factor of two in the derivatives) is:  

         ∇J(X) = GT[Scal(X)-Sexp]                                                   (3.37) 

where G is sensitivity coefficient matrix defined as the derivative of the matching 

data Scal with respect to model parameters X.  

Then the Hessian matrix is: 

                        ∇(∇J(X)) = GT G-∇(GT) [Scal(X)-Sexp]                                 (3.38) 
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The second term of the right-hand side of the above equation is small enough to 

be neglected, so the Hessian matrix can be approximated with: 

                                                 H(X) ≈ GT G                                                        (3.39) 

The Gauss-Newton algorithm solves  

                                                H(Xk) ∆Xk= -∇J(Xk)                                            (3.40) 

Model parameters are updated with: 

                                              Xk+1 = Xk + ∆Xk                                                   (3.41a) 

The Gauss-Newton method can produce an increase in the sum of squares when 

the requested increment extends beyond the region where the approximation of 

Hessian matrix is valid. Even in these circumstances, however, this approximation 

will be a close approximation to the actual Hessian matrix for a sufficiently small 

region around Xk. Thus a small step in the direction ∆Xk should produce a decrease 

in the sum of squares. Therefore a step factor α is introduced into Equation (3.41a) 

yields 

                                              Xk+1 = Xk +α ∆Xk                                                (3.41b) 

where α is the step size.  

The attractiveness of the Gauss-Newton method is that second order 

convergence may be achieved using only first order derivatives. 

 

3.3.2.2 Levenberg-Marquardt Method 

Levenberg-Marquardt method is a modified Gauss-Newton algorithm. Equation 

(3.40) is modified to the following form: 
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                                            (H(Xk)+λI )∆Xk= -∇J(Xk)                                       (3.42) 

Model parameters are updated in the same way as in the Gauss-Newton method. 

The Levenberg-Marquardt method is a compromise of the Gauss-Newton method 

and the Steepest Descent method. When λ=0, it is the Gauss-Newton method and 

when λ→∝ it is the Steepest Descent method. When Hessian is singular, the 

Levenberg-Marquardt method makes sure that there is a solution to the problem. 

 

3.3.3 Global Optimization Methods 

3.3.3.1 Simulated Annealing Method 

Simulated Annealing method is based on the analogy between the simulation of 

the annealing of solids and solving large combinatorial optimization problems. 

Simulated Annealing method can be viewed as a sequence of metropolis algorithms 

evaluated at a sequence of decreasing values of the control parameter. Initially, the 

control parameter is given a high value and then a sequence of configuration of the 

combinatorial optimization problem is generated as follows. As in the iterative 

improvement algorithm, a generation mechanism is defined, so that, given a 

configuration i, another configuration j can be obtained by choosing at random an 

element from the neighborhood of i (van Laarhoven and Aarts 1987, and Akin and 

Demiral 1997).  

 

3.3.3.2 Genetic Algorithm 

Genetic Algorithms (GAs) were invented by John Holland (Romero et al. 

2000). GAs are randomized search techniques based on the mechanics of natural 
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selection according to Darwinian evolutionary theory and the “survival of the fittest” 

principle. They also draw ideas from genetics to describe solutions to the problem 

under consideration as individuals. To mimic a natural evolution process, GAs start 

with an initial population of feasible solutions to the problem. Individual solutions 

are then selected from the population according a stochastic process that favors the 

individuals with better performance, and their genetic information is recombined and 

modified following probabilistic transition rules such as the genetic operators, to 

form a new population. The process is repeated until a convergence is detected, or a 

specified maximum number of function evaluations or generations is reached 

(Romero et al. 2000). 

 

3.3.3.3 Tunneling method 

The basic idea of this method is to tunnel from one valley of the objective 

function to another, to be able to find a sequence of local minima with decreasing 

function values and then ignore all the local minima with larger objective function 

values than the ones already found. This “ignoring” minima makes the algorithm 

faster and more efficient than other global optimization algorithms like Genetic 

Algorithm and Simulated Annealing. The commonly used optimization methods can 

be used for finding the local minima (Gomez et al. 1999). 
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3.4 Capillary Hysteresis 

Hysteresis phenomena occur in many fields of the nature. Some examples 

include magnetic hysteresis, electric polarization hysteresis, and capillary hysteresis. A 

general description of hysteresis is given in Figure 3.2.  Suppose there are two physical 

properties x – independent variable and y – dependent variable.  When x increases from 

point 1 to point 2 (x1<x2), the dependent variable y follows path 1 (y1→y2), and when x 

decreases from point 2 to point 1, the dependent variable y follows path 2 (y2→y1).  If 

path 1 is different from path 2, it is said the relationship between x and y is hysteretic. 

Sometimes, if infinitesimally small increments are used and enough experimental time is 

allowed, the hysteresis can be eliminated. This hysteresis is time-dependent hysteresis. If 

the hysteresis exists no matter how small the increment is and how long the experimental 

time is, it is called permanent hysteresis. Capillary hysteresis is permanent.  

A complete description of capillary pressure for a porous medium consists of 

bounding capillary pressure curves and intermediate scanning curves, which include 

primary scanning curves and subsidiary scanning curves. Figure 3.3 shows a family of 

capillary pressure curves for a porous medium. D0 is the primary drainage capillary 

pressure curve. D1 and I1 are the secondary drainage and imbibition capillary pressure 

curves, respectively. These two curves form a closed loop, called the capillary hysteresis 

loop. The curves inside the hysteresis loop are scanning curves. These scanning curves 

are the capillary pressure paths that occur when there is a reversal of direction during a 

drainage or an imbibition process. For example, during the secondary drainage process, it 

follows drainage capillary curve D1. The process stops at point G and an imbibition 

process is initiated. This imbibition process cannot follow the imbibition capillary 
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pressure curve I1, simply because of the discontinuity between the starting point (on 

drainage capillary pressure curve D1) and the imibibition capillary pressure curve I1. The 

process will follow an imbibition-scanning curve GH to asymptotically approach curve 

I1. A similar process occurs when there is a direction reversal at point D during an 

imbibition process and it follows a drainage-scanning curve starting at point D. If there is 

another direction reversal after the first one, the process is going to follow the subsidiary 

drainage or imbibition scanning curves, such as EC, HJ and JK.  

To study this complex capillary hysteresis, Poulovassilis (1962) applied the 

independent domain theory developed by Everett and coworkers (1952, 1954a, 1954b, 

1955) for sorption hysteresis. From Poulavassilis’ method, the drainage-scanning curves 

can be constructed if the imibibition-scanning curves are known from experiments and 

vice versa. Philip (1964) reexamined the independent domain theory with similarity 

hypothesis. In his method, the scanning curves can be constructed with only the 

hysteresis loop (the secondary drainage and imibibition capillary pressure curves). With a 

predetermined normalized density distribution function, the hysteresis loop can be 

completed from only one branch (drainage or imbibition) and hence the family of 

scanning curves can be approximated. Everett’s independent domain theorems are 

summarized according to experimentally observed capillary pressure behavior following 

Morrow (1970) and Rojas et al. (2001):  

1. The secondary drainage curve, D1, and the imbibition curve, I1, form a closed 

loop, with all the subsequent capillary pressure data points lying on or within this loop.  

2. The primary drainage scanning curves, which begin at the imibibition curve, I1, 

either meet at the upper intersection of the loop, or asymptotically approach the 
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secondary drainage curve, D1, in a region close to the intersection. The primary 

imbibition scanning curves start from the drainage curve, I1, and follow the similar 

behavior. 

3. Any point within the hysteresis loop can be reached by many paths. Complete 

specification of the system at a given pressure-saturation coordinate must include the path 

by which the point was attained, since the path determines the microscopic distribution of 

the fluid and future behavior of the system. Figure 3.3 shows two paths (two imbibition 

scanning curves) that can reach point O.  

4. If the system were taken through a series of pressure oscillation, after the nth 

pressure reversal, the system moves toward the point at which the (n-1)th reversal 

occurred, and if the system carried through this point, it moves toward the (n-3)th 

reversal point, and so on. For example, JK is the nth reversal, and it moves towards point 

H, where the (n-1)th reversal occurred. After it passes this point, it will approach the (n-

3)th reversal point D. 

            The base assumption of the independent domain theory is that a porous medium 

can be viewed as an assembly of independent pore domains, similar to the concept of a 

representative volume. Each pore domain has its own hysteretic phenomenon and this 

hysteretic behavior of each pore domain is independent to other pore domains. The 

hysteresis of the system is an overall effect of these pore domains. However, pore 

domains are not independent from each other, and the change of each pore domain may 

affect its neighbors. The independent domain model was expanded by Enderby (1956) 

with cooperative pore domains. With the dual site-bond model (DSBM) (Rojas et al. 
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2001) examined the validity of Everett’s theorems. Most of them are valid even when the 

dependence of pore domains is considered.   

           Figure 3.4 shows the general behavior of capillary hysteresis with the loop of 

drainage and imbibition capillary curves and the scanning curves for both drainage and 

imbibition processes (Morrow and Harris 1965). Figure 3.4a shows the imbibition 

scanning curves. These curves depart abruptly from the drainage capillary pressure curve 

at the end of a drainage process, and then descend toward the imbibition curve 

approaching it asymptotically.  Figure 3.4b shows the drainage scanning curves. These 

curves start at some specific points on the imbibition capillary pressure curve and 

asymptotically approach the drainage capillary pressure curve. The behaviors of drainage 

and imbibition capillary curves and the corresponding scanning curves are consistent 

with Everett’s independent domain theory, which requires the scanning curves converge 

tangentially onto the bounding curves. The shape of the scanning curves and their 

behavior at the point of change between types of displacement impact the formation of 

the fluid banks.  

            From Poulavassilis’ study (1962), the drainage-scanning curves can be 

constructed if the primary imbibition-scanning curves are known from experiments and 

vice versa. Philip (1964) reexamined the independent domain theory with a similarity 

hypothesis. In his method, the scanning curves can be constructed with only the 

hysteresis loop (the secondary drainage and imbibition capillary pressure curves). With a 

predetermined normalized density distribution function, the hysteresis loop can be 

completed from only one branch (drainage or imbibition) and hence the family of 

capillary scanning curves can be approximated. 
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           Although the above methods for constructing scanning curves are based on 

fundamental physical models, they are not convenient to apply to reservoir modeling.  

Killough (1976) and Kleppe et al. (1997) have proposed some mathematical 

representation methods for capillary pressure scanning curves, and these representations 

can be readily incorporated into reservoir modeling. In the following, Killough and 

Kleppe methods are briefly stated.  

           The method presented by Killough (1976) predicts capillary scanning curves by 

using weighted average of the complete drainage and imbibition loop. For an oil-gas 

system, his formula for an imbibition-scanning curve initiated from the drainage curve 

may be written as: 
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where the weighting factor F is defined as: 
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The function F depends only on the point where pc left the bounding curve and on 

a predetermined interpolative parameter for the curvature ε. The normal range for ε is 

0.05-0.1 according to Killough (1976). Sg1 is where the hysteresis occurred and Sgr is the 

maximum residual gas saturation. A similar expression is used for drainage-scanning 

curves.  

            The Kleppe method (1997) is based on the strong similarity between the scanning 

curves and the corresponding drainage and imbibition capillary pressure curves of the 
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hysteresis loop. An imbibition-scanning curve initiated on the drainage capillary pressure 

curve at Sg=Sg1 and ending at Sg=Sg2 may be defined as: 
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applicable in the saturation range: 21 ggg SSS ≥≥ . A similar process can be applied to 

drainage-scanning curves initiated on the imbibition capillary pressure curve. 

Figure 3.5 shows the comparison of the scanning curves constructed by these two 

methods and the match with the experiment from Morrow and Harris (1965).  There is a 

good match between constructed imbibition-scanning curves from both methods and the 

experimental data shown in Figure 3.5a. In Figure 3.5b, the drainage-scanning curves 

from the Killough method have a better match than that from the Kleppe method. The 

interpolative parameter ε in Killough method is 0.1. 
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Figure 3.2: General behavior of hysteresis. 
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Figure 3.3: Capillary hysteresis loop and scanning curves.  
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Figure 3.4: Capillary pressure hysteresis loop (from Morrow and Harris 1965). 

0 25 50 75 100 
0 

10 

20 

30 

40 

50 

Water saturation

Su
ct

io
n 

w
at

er
 h

ei
gh

t (
cm

) 

0 25 50 75 100
0 

10 

20 

30 

40 

50 

Water saturation

Experiment 
Killough (0.1) 
Kleppe Kleppe  

Killough (0.1)  
Experiment  

Imbibition-scanning curves Drainage-scanning curves  

a b

 

Figure 3.5: Comparison of constructed capillary scanning curves 
                                       from Kleppe and Killough methods. 
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3.5 History Dependent Modeling 

            Early attempts (Briggs 1963, Briggs and Katz 1966, Al-Wadahi et al. 2000) to 

simulate counter-current flow experiments were using one capillary pressure curve and 

one pair of relative permeability curves. Simulation attempts using either drainage or 

imbibition capillary pressure curve failed to reproduce the characteristics of counter-

current experiments. Al-Wadahi et al. (2000) successfully simulated Barbu et al.’s (1999) 

experiments with a capillary pressure curve constructed based on the final saturation 

profile, which is an S-shaped curve. The same approach has been tried to simulate 

Karpyn’s (2001) experiments. The simulation can generate the general characteristic of 

the experiments, but it cannot capture the fluid banks formed at the top of the core 

sample.  A more general approach is required to model the counter-current flow process.  

            According to Everett’s independent domain theory, any point within a hysteresis 

loop can be reached by many paths. The path by which the point was attained has to be 

specified to get a complete description of the status of the system (Morrow 1970). Figure 

3.3 shows some paths by which point O can be reached. The future behavior of the 

system starting at point O would be not be unique, even for cases that undergo the same 

type of process. For example, if a drainage process is initiated from point O, capillary 

pressure can follow path OCA, or OFA to approach the drainage capillary pressure 

curve, depending on the saturation history. These different paths will result in different 

fluid flow behavior. Therefore, to properly model oil recovery processes, capillary 

pressure hysteresis has to be taken into account.  

In the following part, a counter-current flow scenario is stated to explain how 

history dependent modeling works. The heavy fluid is the wetting phase in this scenario, 
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which is consistent with the actual experiments. The core is first drained by the non-

wetting phase until an evenly distributed saturation in the core (two phase injection). In 

the family of the capillary pressure curves, it is located on the drainage capillary pressure 

curve - point O in Figure 3.6 corresponding to the saturation. In the first stage, the 

system is closed and fluids segregate because of the density difference. Because the 

heavy phase is the wetting phase, the upper part of the core undergoes drainage process. 

Among the capillary pressure curves, it follows the drainage capillary pressure curve with 

increasing non-wetting phase saturation. However, in the lower part, wetting phase 

saturation increases, which is an imbibition process. Among the capillary pressure curves, 

it follows an imbibition-scanning curve initiated from point O. At the end of this stage, 

the fluids are segregated in the system with a high saturation of heavy fluid at the bottom 

and light fluid at the top. The final saturation profile is shown in Figure 3.6 (stage 1). In 

the second stage, the core is rotated by 180º after segregation. Now the upper part is 

undergoing drainage process. Because this part was located on the imbibition-scanning 

curve AO before rotation, it will follow drainage-scanning curves starting from this 

imbibition-scanning curve. In the meantime, the lower part follows the imbibition-

scanning curves starting from the drainage capillary pressure curve OB. Figure 3.6 also 

shows the process of the second stage on the right half of the graph. Points D’ and E’ in 

the upper part of the profile follow the drainage-scanning curves initiating from D and E 

in the capillary pressure loop. Points C’ and F’ in the lower part of the profile follow the 

imbibition-scanning curves initiating from C and F. The ending points of the saturation 

profile A’ and B’ follow the bounding drainage and imbibition capillary curves 

respectively. 



 42
            In counter-current flow, drainage and imbibition flow regimes are present and two 

pairs of relative permeability curves are used in modeling. 
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Figure 3.6: Schematic of history dependent modeling method. 
 

 


