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Abstract

Projection pursuit is a technique locating projections from high- to low-dimensional

space that reveal interesting non-linear features of a data set, such as clustering and out-

liers. The two key components of projection pursuit are the measure of interesting

features (projection index) and its algorithm. In this thesis, two projection matrix in-

dices based on Fisher information matrix are presented. Both matrix indices are easily

estimated by the kernel method. The eigenanalysis of the estimated matrix index pro-

vides all solution projections. The asymptotic distribution of the estimated index is

studied using the Von-Mises expansion and kernel-based quadratic distance theory. The

application to simulated data and real data sets shows that our algorithm successfully

reveals interesting features in fairly high dimensions with a practical sample size.
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Chapter 1

Introduction

Projection pursuit is a technique to explore interesting structures(such as clus-

tering, skewness or outliers) of multivariate data set by projecting the data onto some

low-dimensional spaces. The two basic components of projection pursuit are its index

and its algorithm.

A projection index is designed to measure “interesting” features. Usually it is

a distance between the marginal distribution of the data projection in a direction and

some “uninteresting distributions” for that marginal distribution. Based on both the-

oretical and empirical evidence, researchers have reached the consensus that normality

best represents the notion of “uninterestingness” (Diaconis and Freedman 1984, Huber

1985). Theoretically, any statistic minimized by the normal distribution, or a test statis-

tic for non-normality can be used as projection index. These indexes are thus optimized

to find projections showing departures form normality. Obviously different indexes pick

up different departures from normality. Another requirement is that projection index

for non-normality should be affinely invariant since linear transformations preserve nor-

mality.

A good projection index should be rapidly computable in practice. In current re-

searches, most projection indexes are scalar measures (e.g., determinant or trace of Fisher

information, standardized negative Shannon entropy, Hellinger metric). And only a few



2

projection indexes can be maximized algebraically. Most projection pursuit algorithms

have the drawback of a high computational cost. In order to find the optimal projection,

the projection index needs to be calculated or estimated for every possible projection.

When the dimension increases, the computation cost increases exponentially. After the

optimal one-dimensional projection is found, another search has to be done to obtain the

optimal two-dimensional projection. Friedman (1987) partially solved the computation

problem by expanding his projection index using orthogonal polynomials, and calculat-

ing its derivative. After an interesting projection has been found, a transformation is

performed to remove the most interesting projection, but still keep all other features

unchanged. Then the procedure can be restarted from the beginning to reveal more of

the structure of the data set.

This thesis presents two new projection pursuit algorithms based on the stan-

dardized Fisher information matrix Jf for a density. One projection index Jf2
is the

standardized Fisher information matrix for the density square transformed distribution.

The other one Qf is the second term of the Von-Mises expansion of the standardized

Fisher information. Both the two new projection indices are matrix measures of non-

normality. Compared to the classical standardized Fisher information matrix, the two

new indices have a big computation advantage. The least normal projection from the

new projection indices can be estimated algebraically just as in principal component

analysis, provided the data is standardized (i.e., linear effects are removed). One only

needs to estimate the matrix measures by the kernel method, and then do eigenanalysis

for the estimated matrices. From the eigenanalysis, we could find the most interesting

linear projections for future study, or from a converse point of view, we could find and
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discard the least interesting linear projections. We will call the first principal component

with the largest eigenvalue the least normal projection. If an eigenvalue reaches the lower

bound, the corresponding linear projection is white noise coordinate, where a white

noise coordinate is marginally normally distributed and is independent of all the other

solution projections. So white noise coordinates can be discarded in further study.

For our estimated projection indices, statistical performance highly depends on

sample size, dimensionality and a smoothing parameter. When the true distribution is

normal but sample size is small, the eigenvalues may be not close to the theoretical lower

bound 1
4 . We construct tests based on eigenvalues to detect the white noise coordinates

within the solution projections.

In order to find the asymptotic distributions of the two new projection indices,

we treat them as functions of distributions. For example, the Fisher information for

the density square transformed distribution is a measure of non-normality and reaches

the minimum at normal distribution. The asymptotic distribution of the estimation

is determined by the second order term of the Von-Mises expansion, which is itself

a kernel-based quadratic distance between the estimated distribution and the normal

distribution. The asymptotic distribution of a kernel-based quadratic distance can be

found using spectral decomposition of the distance kernel(Lindsay et al. 2006).

Chapter 2 introduces the framework of projection pursuit(Huber 1985) and some

popular projection indices. In Chapter 3, we introduce standardized Fisher information

matrix Jf and the eigenanalysis of Jf . The two new projection indices Jf2
and Qf are

developed in order to solve the computation problem of the classical standardized Fisher

information matrix. Chapter 4 studies the standardized Fisher information matrix Jf2
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after the density square transformation. We present the explicit form of Jf2
for mixture

normal models. The consistent estimator of Jf2
is constructed. The eigenanalysis of Jf2

is introduced to find the least normal projections and white noise coordinates. In Chapter

5, we investigate the projection index Qf from the Von-Mises expansion of Jf . Similar to

the study of Jf2
, we introduce the consistent estimator and the eigenanalysis. In Chapter

6, we introduce the kernel-based quadratic distance theory(Lindsay et al. 2006), and

extend the theory to multivariate version. In Chapter 7, the two new projection indices

are applied to simulated data sets and real data sets. The tests for detecting white noise

coordinates are presented. In Chapter 8, we will summarize the performance of the two

projection indices and present the future work. All proofs are listed in the appendix.
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Chapter 2

Projection Pursuit

2.1 Overview

When one maps a multidimensional space into a space of fewer dimensions, one is

performing dimension reduction. Dimension reduction allows us to visualize, categorize,

or simplify large data sets. Some information of the data is lost unless the data fall exactly

on the object subspace. Dimensionality reduction is effective if the loss of information

due to mapping to a lower-dimensional space is less than the gain due simplifying the

problem. Linear projection is the most widely used dimension reduction transformation

in theory and practice, because it is easy to construct and interpret. In this context, our

goal is to find the most interesting projections to study, and discard the least interesting

projections.

The first successful projection pursuit methodology was the contribution of Fried-

man and Tukey(1974). Their idea was to assign a certain objective function to every

projection, and then search the interesting lower dimensional projections by maximizing

the objective function. This method was first termed projection pursuit. The objec-

tive function was called the projection index. Projection pursuit consists of two basic

elements: projection index and the algorithm. Projection pursuit techniques were origi-

nally proposed by Kruskal(1969), but no successful implementation was given.
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A unified framework for projection pursuit was introduced by Huber(1985). It provided

a basis for further research of this subject.

In the following sections, we will introduce Huber’s framework on projection in-

dex,and reasons for our interest in non-normal projections. Some important projection

indices are also introduced.

2.2 The Framework of Projection Pursuit

Let X be a d-dimensional random variable and α be a d-dimensional vector.

The projection index Q(αTX) is a objective function that measures how interesting

the projection αX is. Usually the larger the projection index, the more interesting the

projection is. Huber(1985) distinguishes three classes of projection indices:

Class I Location-scale equivariant:

QI(sX + t) = sQI(X) + t;

Class II Location invariant, scale equivariant:

QII(sX + t) = |s|QII(X);

Class III Affine invariant:

QIII(sX + t) = QIII(X), s 6= 0,
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where s, t are real numbers. Generally, the class I indices are “kind of” location esti-

mators, and the class II indices estimate the dispersion of the data. See Huber(1985)

and Jee(1985) for details. When projection index is standard deviation, it is a class

II index. Then, projection pursuit becomes principal component analysis, which is the

most popular dimension reduction technique in practice.

Since many interesting structures, such as clustering and special shapes, can not

be detected by mean and deviation, a reasonable projection index should be affine in-

variant. Another reason for an affine invariant index is that we usually locate and scale

pictures at will(Huber 1985). The projection index in Friedman and Tukey (1974) is a

class III index, which is a product of two functions Q(X) = S(X)D(X), where S(X)

measures the spread of the data, and D(X) describes the local density. Huber(1985)

shows that the index in their framework is

Q(X) = σα(X)
∫
f2(x)dx,

where σα is the α trimmed standard deviation, and f is the density.

There is no universal agreement on what it means for a projection to be interest-

ing. But both theoretical and practical evidences show that a lack of marginal normality

for a chosen set of linear projections would make it interesting. (Diaconis and Freedman

1984, Huber 1985, Jee 1985). First, theoretically, a linear projection being sum of ran-

dom variables tends to be normal as dimensionality increases under conditions given in

Diaconis and Freedman 1984. Second, the multivariate normal distribution is elliptically

symmetric and has the least information (Fisher information, negative entropy) for a



8

fixed variance. Third, if the optimal projection from a algorithm is not significantly dif-

ferent form normal, then the whole data is believed to be normal. Finally, assuming that

the normal distribution defining uninteresting structures has a computation advantage.

Based on these reasons, researchers have given the heuristic agreement that a projection

is less interesting, the more nearly normal it is(Huber 1985, Friedman 1987 ).

2.3 Previous work

According to the above discussion, we believe that the least non-normal projec-

tions should contain interesting features of the multivariate data. A suitable projection

index essentially amounts to a test of non-normality in the projected data.

Huber (1985) recommended several indices:

Example 1 Standardized absolute cumulants:

Qc(X) = |cm(X)|/c2(X)m/2,m > 2,

where cm is mth cumulant of X.

Example 2 Standardized Fisher information:

QF (X) = σ2(X)
∫

(
f ′

f
)2fdx− 1.

Example 3 Standardized negative Shannon entropy

QS(X) =
∫
log(f)fdx+ log((2πe)

1
2σ(X)).
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All of three indices are non-negative, with equality if X is normal. The thesis of

Jee’(1985) studied the projection pursuit indices based on classic Fisher information

matrix and the standardized negative Shannon entropy. These are estimated using over-

smoothed histogram method. His algorithm is applied to particle physics data and

Minnesota forests data.

Friedman (1987) presented a new projection pursuit algorithm to find the least

normal projections. First a uniform transformation is performed

R = 2Φ(X)− 1,

where Φ is the standard normal cdf. If X is standard normal, R will be uniformly

distributed in [−1, 1]. And then Friedman defined an integrated squared error of densities

to measure the non-uniformity of R

Q(R) =
∫ 1

−1

(fR(r)− 1
2

)2dr,

where fR is the density of R, fR = 1
2 when R is uniform(X is normal). Q(R) is expanded

using Legendre polynomials, and the derivatives are calculated via chain rule and recur-

sion relation of Legendre polynomials. The optimal projection can be found relatively

quickly. The algorithm for two-dimensional projection pursuit is applied to three real

data sets: the states data, the cars data and the Boston neighborhood data, which we

will be examined in chapter 6.
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Theoretically, any normality test statistic can be used to construct a projection

index. However, in order to find optimal projections in a high dimensional space, com-

putational properties are crucial(Friedman 1987). The above three projection pursuit

methods have proved their usefulness in finding interesting projections in real data analy-

sis. Their biggest drawback remaining is the computation. The algorithms must search

the whole space to find an optimal projection(Friedman 1984, Jee 1985). The solution

projections usually are only local maxima of projection index, not the real largest max-

ima. Friedman (1987) partially solved the problem. His algorithm is rapidly computable,

after the derivatives are found. A transformation is provided to remove the structure

of the optimal projection and keep the structures not captured, but it is still not easy

to find the high dimensional projections. The derivative computation is very complex

for high dimensional projections. A sequential approach is usually needed in current

projection pursuit algorithms.

In order to find a faster and more reliable methodology, we borrow the eigenanaly-

sis idea from principal component analysis. In a principal component analysis(PCA), the

projection index is the covariance matrix. The optimization is solved by performing an

eigenanalysis of the sample covariance matrix. The eigenvectors with the largest eigen-

values correspond to the dimensions that have the strongest correlation in the data. The

ith principal component has largest variance in all vectors orthogonal to the previous

i− 1 principal components.

In the following chapters, we will introduce how to use standardized Fisher infor-

mation matrix to construct a new projection index. It is easy to estimate using kernel

method. The solution projections arise from the eigenanalysis of the estimated matrix
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measure provided the data is standardized. The projections with large eigenvalues reveal

the most interesting features of the data. Here an interesting set of linear combinations

might mean those that display nonlinear structural relationships, clustering, or other

forms of dependence that can occur despite zero correlation. If an eigenvalue reaches the

lower bound of eigenvalue, the corresponding projection is white noise. It is marginally

normal and independent of other projections. So it can be discarded. Thus in contrast

to classical projection pursuit, our methodology is projection pursuit plus white noise

detection.
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Chapter 3

Standardized Fisher Information Matrix

3.1 Overview

In this chapter we directly consider the standardized Fisher information matrix

as a matrix non-normality measure for multivariate data. We will show that, similar to

PCA, an eigenanalysis of standardized Fisher information matrix provides the optimal

solution projections.

This leaves the problem of how to estimate standardized Fisher information ma-

trix, which ordinarily require numerical integration for a kernel estimator of f(x). We

will show that the density square transformation f2(x) = f2(x)/
∫
f2(y)dy preserves the

most important structure of the data. The standardized Fisher information matrix for

f2 has an explicit form for normal mixture models, and so we can compute it without

numerical integration when using a normal kernel density estimator for f(x).

3.2 Standardized Fisher Information Matrix

Let X = (X1, X2, ..., Xd) be a d-dimensional random vector with the density

function f(x), mean µ and covariance matrix Vf .

Definition 1. V
1/2
f

(∫ ∇xf ·∇xfT
f dx

)
V

1/2
f := Jf is called Standardized Fisher Informa-

tion Matrix where ∇xf(x) = ( ∂
∂x1

f, ..., ∂
∂xd

f).
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Since the covariance matrix Vf is a nonnegative-definite symmetric matrix, by the finite-

dimensional case of the spectral theorem, the matrix square root V 1/2
f exists and is

nonnegative symmetric. The Fisher information matrix Jf is called standardized because

the mean µ and covariance matrix Vf do not affect the value. For fixed variance Vf , the

non-standardized Fisher Information
∫ ∇xf ·∇xfT

f dx has been studied in literature. In

the case d=1, it is called Fisher information number(Terrell 1995, Papaioannou 2005).

In the standardized Fisher information matrix, we consider the derivative with re-

spect to x rather than the parameters as done in ordinal Fisher information matrix. So it

measures the information in the density, not the parameters. Kagan(2001) demonstrated

the connection between the Fisher information for a density and Fisher information for

parameters as follows given. Create a location family of distributions by f(x+µf −Aθ),

for µf = Ef (X) and arbitrary matrix A, so that E(X) = Aθ, V (X) = Vf . Kagan (2001)

showed a matrix inequality for the Fisher information in parameter θ:

E(
∂logf(x+ µf −Aθ)

∂θ
)(
∂logf(x+ µf −Aθ)

∂θ
)T

=
∫ ∇θf(x+ µf −Aθ)∇θfT (x+ µf −Aθ)

f
dx

≥ ATV −1
f
A.

The normal distribution N(Aθ, Vf ) has the least Fisher information for θ because the

above inequality becomes equality. Applying the inequality for A = V
1
2
f giving the result

Jf = V 1/2
f

(∫ ∇xf · ∇xfT
f

dx
)
V 1/2
f
≥ Id.
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When f is normal, the equality holds. So the standardized Fisher information matrix

Jf measures the non-normality of X. And normal distribution has the smallest Stan-

dardized Fisher information matrix in the positive definite sense among all continuous

distributions.

Proposition 1. If f(x) is a differentiable density function, the following matrix in-

equality holds:

Jf = V 1/2
f

(∫ ∇xf · ∇xfT
f

dx
)
V 1/2
f
≥ Id. (3.1)

where, as always, A1 ≥ A2 means that A1 − A2 is positive semi-definite matrix. If and

only if f is a normal density function, 3.1 becomes equality.

We next make some remarks on the interpretation of Jf . The inequality may not hold

if the density f(x) is not differentiable for every point x. For example, consider the

bivariate distribution with the density

f(x1, x2) = 2φ
(

(x1, x2)T , (0, 0)T , I2

)
I(x1x2 > 0),

where φ is the normal density function. We can show that the matrix inequality does

not hold for this density f(x1, x2), because it is not differentiable at (0, 0). However,

the standardized Fisher information matrix for f(x1, x2) still exists. In section 6.3, we

will use it as an example to show that the projection pursuit using the standardized

Fisher information matrix index provides reasonable solution projections even though

the matrix inequality does not hold.
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Suppose X has been standardized: Vf = Id. So there are no linear relationships

left in the distribution, because the correlations are all zero. The ith diagonal term can

be expressed as

∫ ( ∂

∂xi
f(x1, ...xd)/f(x)

)2
f(x)dx

=
∫ ( ∂

∂xi
logf(x1, ...xd)

)2
f(x)dx

=
∫ (∫ ( ∂

∂xi
logf(xi|x−i)

)2
f(xi|x−i)dxi

)
f(x−i)dx−i

=
∫
JXi|x−if(x−i)dx−i, (3.2)

where x−i = (x1, ..., xi−1, xi+1, ..., xd), and JXi|X−i is the Fisher information for the con-

ditional distribution f(xi|x−i). That is, the ith diagonal term of Jf is not the Fisher

information of the marginal distribution of X, but the weighted average of Fisher infor-

mation of xi conditioned on the rest of the uncorrelated variables. The weight is the

density function f(x−i). Obviously the matrix inequality for Jf holds for the conditional

distribution f(xi|x−i):

JXi|x−i ≥ 1, ∀x−i.

We can conclude that, if the ith diagonal term of Jf reaches the lower bound 1, then

JXi|x−i = 1, ∀x−i,

That is Xi|x−i is standard normal for any x−i. We can conclude that Xi is marginally

normal and independent of all other variables. We will then call Xi a white noise
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coordinate. If the ith diagonal term of Jf is bigger than one, some combination of non-

normality and dependence exists. SinceX has been standardized, allXi are uncorrelated.

So any dependence must arise from a nonlinear structural relationship, clustering, or

other forms of dependence that can occur despite zero correlation.

3.3 Eigenanalysis of Jf

In the section, we present how to use an eigenanalysis of Jf to find solution

projections.

Proposition 2. Let A be a d× d nonsingular matrix and Y = AX. Then

Jg = V 1/2
g

A−TV −1/2
f

· Jf · V −1/2
f

A−1V 1/2
g

, (3.3)

where g(y) is the density of Y, Vg is the covariance matrix of g, f(x) is the density of

X, Vf is the covariance matrix of f.

We next apply this result. Let A = V
− 1

2
f , and Y = V

− 1
2

f X. Suppose g(y) is the density

of Y. Then

Vg = Cov(Y ) = V
− 1

2
f VfV

− 1
2

f = Id.

Thus, a principal components analysis yields no structure. From the above proposition,

we have

Jg = V 1/2
g

A−TV 1/2
f

JfV
1/2
f

A−1V 1/2
g

= Jf .

So, standardizing a vector leaves the Fisher information unchanged. Secondly, consider

an orthogonal transformation Z = ΓTY, where Γ = [γT
1
, γT

2
, ..., γT

d
]T is an orthogonal
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matrix. These transformations preserve the standardized structure,

Vh = Cov(Z) = ΓTVgΓ = Id,

and so do not create any new linear relationships. We can think of the new vector

Z = (γT
1
Y, ..., γT

d
Y ) as a vector of projections, as each coordinate Zj is the projection of

Y onto the linear space spanned by γj .

The density of the projection Z is h(z) = g(ΓT z). Then and

Jh = V 1/2
h

Γ−TV 1/2
g

JgV
1/2
g

Γ−1V 1/2
h

= ΓJfΓT

=
(
γT
i
Jfγj

)
.

Consider the ith diagonal term of Jh:

∫ ( ∂

∂zi
h(z1, ...zd)/h(z)

)2
h(z)dz

=
∫ ( ∂

∂zi
logh(z1, ..., zd)

)2
h(x)dx

=
∫ (∫ ( ∂

∂zi
logh(zi|z−i)

)2
h(zi|z−i)dzi

)
h(z−i)dz−i

=
∫
JZi|z−ih(z−i)dz−i, (3.4)

where JZi|z−i is the standardized Fisher information matrix for Zi|z−i. This leads to a

way to interpret the least normal directions. Let λ1 ≥ λ2, ... ≥ λd be the eigenvalues of

Jg(= Jf ) and γ1, ..., γd be the corresponding eigenvectors. Then Z1 = γT
1
Y is the optimal
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projection, in the sense of maximizing βTJfβ, where β is a d-component column vector

such that βTβ = 1. The maximal value of βTJfβ is equal to γT
1
IY γ1 = λ1γ

T
1
γ1 = λ1.

The Fisher information matrix of the orthogonal projection Z = ΓY can be expressed

diagonally by the eigenvalues of the Fisher information matrix of Y :

Jh =
∫ ∇zh(z)(∇zh(z))T

h(z)
dz

=
(
γT
i
JY γj

)

=
(
γT
i
λjγj

)

= Diag(λ1, λ2, ..., λd).

Note that Z1 is not the optimal projection for maximizing the marginal Fisher infor-

mation of βTY, because JβTY may not be equal to βTJY β. The projection Z1 = γT
1
Y

from the eigenanalysis of Jf has the least conditional normality conditioned on all

the other uncorrelated variables. The λ1 is the measure of its non-normality. By a sim-

ilar analysis, Zi = γT
i
Y has the least conditional normality in all projections which are

uncorrelated to Z1, ...Zi−1.

Because the normal distribution has the least Fisher Information: Jh ≥ Id, the

eigenvalues have the lower bound 1. The JZi|z−i also satisfies the Fisher information

inequality:JZi|z−i ≥ 1. When λi = 1,

JZi|z−i = 1,∀z−i.
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This equation implies that Zi|z−i is normal for any z−i. So Zi is not only marginally

normal, it is also independent of the other variables (Z1, ..., Zi−1). If λi = 1, then

λj = 1, j ≥ i, and the Zj are white noise coordinates, which can be discarded, as

they are not only marginally normal, but also independent of the remaining variables.

From the point of view of our interest in non-linear relationships, we consider the white

noise coordinates to be discardable. In other words, the projections (Z1, ..., Zi−1) are

sufficient for further analysis. The logic is that the white noise coordinates are not only

marginally uninteresting, but their independence implies that they have no interesting

relationships with (Z1, ..., Zi−1).

When the smallest eigenvalue λd > 1, the projection Zd = γT
d
Y is most similar

to white noise among all linear projections orthogonal to the white noise coordinates.

Generally, the eigenvector γk−1 should generate the linear projection most similar to

white noise in the subspace orthogonal to γk, ..., γd, and so forth, so that the projection

Z1 = γT
1
Y corresponding to the largest eigenvalue λ1 can be thought of as the most

interesting projection, in the sense of being least similar to white noise. Or, if we were

to use Z1 alone, then we can say that we have discarded a subspace of projections that

is most similar to white noise.

According to the above analysis, our projection pursuit procedure include two

steps:

1. Do standardization Y = V
− 1

2
f X.

2. Do eigenanalysis of Jg = Jf to find the solution projections Z = ΓTY.
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We use this standardization Y = V
− 1

2
f X because it can remove the linear effect and keep

the Fisher information unchanged.

We next verify that we can use any standardization Y = AX so that Vg =

AVfA
T = Id. Finally we will get the same solution projections from the eigenanalysis of

Jg. According to the above proposition, we have

Jg = A−TV −1/2
f

JfV
−1/2
f

A−1 := BTJfB,

where B = V
−1/2
f A−1 is a orthogonal matrix because

BTB = A−TV −1/2
f

V −1/2
f

A−1 = Id.

The new Fisher information matrix Jg has the same eigenvalues as Jf , because

|Jg − λId| = |BTJfB − λId|

= |BT ||Jf − λId||B|

= |Jf − λId|.

Suppose λi is an eigenvalue, γif is the corresponding eigenvector of Jf . Then, we have

JgB
Tγif = BTJfBB

Tγif

= BTJfγif

= λiB
Tγif ,
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so γig = BTγif is an eigenvector of Jg. The corresponding projection is Zi = γT
ig
Y =

γT
if
BAX = γT

if
V
−1/2
f X, which does not depend on the transformation matrix A. So the

method of standardization will not affect the final solution projections.

3.4 Computation Problem of Jf

In last section, we showed that an eigenanalysis provides all solution projections,

if the standardized Fisher information matrix Jf is explicit for some distribution, or it

is estimated by a numerical method. Unfortunately, in theory, usually Jf does not have

explicit form for most population models, even for a mixture of normals; in practice,

if we estimate the measures by replacing the density with kernel density estimate, the

integration will not have explicit form because of the denominator f . Monte Carlo

integration is required to calculate these measures. Jee(1985) employed the averaged

shifted histogram theory of Scott(1985) to estimate these measures. According to the

simulation study in Jee(1985), a large sample is required in order to find good estimate

even in a low dimensional space. Jee’s algorithm has another computational drawback:

it needs to search the whole subspace to find the optimal projection. For example, in

order to find the optimal projection in dimension 1, we need to project the data onto one

direction in R and then to perform a univariate density estimate. When the subspace

dimension increases, it takes long time to find the needle in a haystack.

We will present two ways to solve the computation problem: density square trans-

formation and Von-Mises expansion.
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3.4.1 Density Square Transformation

The first way is to transform X to T (X) so that the density function of T (X) is

equal to f2(x)R
f2(y)dy

:= f2(x). The density square transformation has some good properties:

1. The ordering of the density values is unchanged: f(x1) < f(x2) <=> f2(x1) <

f2(x2), and f(x1) = f(x2) <=> f2(x1) = f2(x2).

2. The number and locations of density modes is unchanged.

3. It accentuates the peaks of density, and decreases the variance by flatting the tails.

4. It preserves the normality: X is normal if and only if T (X) is normal,

X ∼ N(µ,Σ)⇔ T (X) ∼ N(µ,Σ/2).

Plugging f2 into (3.1) provides the inequality

Jf2
:=

V
1/2
f2

∫ ∇xf · ∇xfTdxV 1/2
f2∫

f2(x)dx
≥ 1

4
Id, (3.5)

where Vf2
is the covariance matrix of T (X):

Vf2
=
∫
xxT f2(x)dx∫
f2(x)dx

−
(∫ xf2(x)dx∫

f2(x)dx

)(∫ xf2(x)dx∫
f2(x)dx

)T
.

Jf2
is a non-normality matrix measure for T (X), and also a non-normality matrix mea-

sure of X since the density square transformation T preserves the normality. Compared

to Jf , Jf2
has at least two big advantages:
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1. it has explicit form for some distributions, for example, mixture of normals;

2. it is easy to estimate using the kernel method.

We will further investigate Jf2
in Chapter 4.

3.4.2 Von-Mises Expansion

In this subsection, We treat the Fisher information Jf as a functional T (F ) on

the space of distributions. We will introduce the idea of Von-Mises expansion and apply

it to Jf to solve the computation problem.

Suppose F0 is the distribution of interest. In order to expand the function T (F )

at F0, we first generate a path in the space of distributions from F0 to the distribution

F , by letting

Fε = (1− ε)F0 + εF.

For any ε, it generates an intermediate distribution. Assume that the ordinary derivative

with respect to ε exist at ε = 0. Then we have the following expansion at ε = 0 :

T (Fε)− T (F0) = εT
′

F0
(F ) +

1
2
ε2T

′′

F0
(F ) + o(ε2),

where

T
′

F0
(F ) =

∫
T
′

F0
(s)d(F (s)− F0(s)),

T
′

F0
(s) =

d

dε
T ((1− ε)F0 + εδs)|ε=0,

T
′′

F0
(F ) =

∫
T
′′

F0
(s, t)d(F (s)− F0(s))d(F (t)− F0(t)),
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T
′′

F0
(s, t) =

∂2

∂ε1∂ε2
T ((1− ε1 − ε2)F0 + ε1δs + ε2δt)|ε1=0,ε2=0.

We only expand it to the second order term because it is enough for our problem. T
′
F0

(s)

and T
′′
F0

(s, t) are known as influence functions. After evaluating the expansion at ε = 1,

we have

T (F )− T (F0) := T
′

F0
(F ) +

1
2
T
′′

F0
(F ) + error.

Handling the error term can be technically difficult, but the above expansion generally

leads to an asymptotically correct approximation (Serfling 1980).

In our problem, the distribution F0 is a normal distribution with the same mean

and variance as the distribution F. Let

fε = φ(x, µf , Vf ) + ε(f(x)− φ(x, µf , Vf )) := φ+ εδ,

where φ is the normal density function. Thus

Jfε = V 1/2
fε

(∫ ∇xfε · ∇xfTε
fε

dx
)
V 1/2
fε

.

Because
∫
xδdx = 0 and

∫
xxT δdx = 0d, we have

Vfε =
∫
xxT (φ+ εδ)dx− (

∫
x(φ+ εδ)dx)(

∫
x(φ+ εδ)dx)T

=
∫
xxTφdx− (

∫
xφdx)(

∫
xφdx)T

= Vf , ∀ε ∈ [0, 1].
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So we only need to consider
∫ ∇xfε·∇xfTε

fε
dx :

∫ ∇xfε · ∇xfTε
fε

dx

=
∫

(∇xφ+ ε∇xδ)(∇xφ+ ε∇xδ)T
φ+ εδ

dx

=
∫ (
∇xφ∇xφT + ε(∇xδ∇xφT +∇xδ∇xφT ) + ε2∇xδ∇xδT

)

·φ−1(1 + ε
δ

φ
)−1dx

=
∫ (
∇xφ∇xφT + ε(∇xδ∇xφT +∇xδ∇xφT ) + ε2∇xδ∇xδT

)

·φ−1(1− ε δ
φ

+ ε2
( δ
φ

)2
+ o(ε2))dx

=
∫
φ−1∇xφ∇xφTdx

+ε
∫
φ−1

(
∇xδ∇xφT +∇xδ∇xφT −∇xφ∇xφT

∇
φ

)
dx

+ε2
∫
φ−1[∇xφ∇xφT (

δ

φ
)2 +∇xφ∇xφT − (∇xδ∇xφT +∇xδ∇xφT )

δ

φ
]dx

+o(ε2)

= V −1
f

∫
(x− µf )(x− µf )TφdxV −1

f

−ε[
∫
∇xδ(x− µf )TdxV −1

f
+
∫
V −1
f

(x− µf )∇xδTdx+ 0]

+ε2
∫
φ−1(∇xφ

δ

φ
−∇xδ)(∇xφ

∇
φ
−∇xδ)Tdx

+o(ε2)

= V −1
f

+ ε2
∫
φ−1(V −1

f
(x− µf ) +∇xf)(V −1

f
(x− µf ) +∇xf)Tdx+ o(ε2). (3.6)



26

Evaluating the expansion at ε = 1 derives

Jf = Id + V
1
2
f

∫
φ−1(V −1

f
(x− µf ) +∇xf)(V −1

f
(x− µf ) +∇xf)TdxV

1
2
f + o(1)

:= Id +Qf + o(1). (3.7)

In order to use this as an approximation, the magnitude of the error term would need

to be checked. In our problem, it is not necessary because the statistic Qf is also a

non-normality measure of f that we can use it directly. The Qf is non-negative and

only when f is normal with the mean µf and variance Vf , V
−1(x − µf ) + ∇xf = 0.

Compared to the Fisher information matrix Jf , Qf can be easily estimated by the kernel

method, because the denominator becomes the normal density φ. We will investigate

the projection index Qf in Chapter 5. In Chapter 7, the new projection index will be

applied to the simulated and real data sets.



27

Chapter 4

Standardized Fisher Information for f2

4.1 Overview

In this chapter, we will present the explicit form of Jf2
for the normal mixture

model in Section 4.1. We study the explicit form of Jf2
for this model for at least

three reasons: first, finite mixture models have been widely used in a great variety of

fields, where it is common to assume there is a finite mixture structure. Also the normal

mixture model is the most important and popular of the mixture models because of the

flexibility of its density shape and usefulness in practice. Second, the normal mixture

model provides a simple example for the study of the power of non-normal projection

pursuit. For two-component normal mixture models, one can determine the least normal

direction without any computation. So normal mixture model can be used to check if

a projection pursuit method is effective. Finally, when we use the kernel method to

estimate f(x), and the normal kernel is employed, f̂ and f̂2 are, in effect, mixtures of

normal densities.

In section 4.2, kernel method is used to estimate the component piece of Jf2
.

Putting them together provides a consistent estimator Ĵf2
= Jf̂2

. The consistency re-

quires two conditions: n→∞ and that the smoothing parameter H decreases to zero at
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a suitable rate. The selection of the smoothing parameter H is not a easy job in prac-

tice. Our simulation study shows that the asymptotic distributions based on vanishing

H assumption does not provide a good result.

In fact, the kernel estimator Ĵf2
= Jf̂2

directly better measures the non-normality

of the kernel-smoothed distribution f∗
2

= (f∗(x))2(x)/(f∗(y))2dy, where

f∗(x) =
∫
f(y)

1
|H|Kd(H

−1(x− y))dy.

Note that Ĵf2
is also a consistent estimator of Jf∗2 without H going to zero. This

double-smoothing idea (smooth the model and the data with the same kernel) has big

theoretical advantage. By a Von-Mises expansion, Ĵf2
can be approximated by quadratic

distance between the empirical distribution and the corresponding normal distribution.

Asymptotic properties will be studied in the Chapter 6.

4.2 Jf2
for Normal Mixture Models

Suppose f(x) is the density function of normal mixture model:

f(x) = f(x1, ...xd) = Σm
i=1
πiφ(x, µi,Σi),

where φ is the probability density function of d-variate normal distribution with x, µi ∈

Rd and Σi is (d× d) covariance matrix. First we give the mean and variance for mixture

of normals:

Ef (X) = Σm
i=1
πiµi = (µ1, ..., µn)Tπ, (4.1)
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Vf = (Cov(Xi, Xj))

= Σm
i=1
πiΣi + Σm

i=1
πiµiµ

T
i

−(Σm
k=1

πkµk)(Σ
m
k=1

πkµk)
T . (4.2)

We will calculate all terms of (3.5). The following result will be used many times.

Proposition 3.

φ(x, µk,Σk)φ(x, µl,Σl) = φ(µk, µl,Σk + Σl)φ(x, µkl,Σkl), (4.3)

where

Σkl = Σk(Σk + Σl)
−1Σl = Σl(Σk + Σl)

−1Σk,

µkl = Σl(Σk + Σl)
−1µk + Σk(Σk + Σl)

−1µl.

Proposition 4.

∫
f2dx =

∑

k

∑

l

πkπlφ(µk, µl,Σk + Σl). (4.4)

Proposition 5.

∫
∇xf · ∇xfTdx

=
∑

k

∑

l

πkπlφ(µk, µl,Σk + Σl)[(Σk + Σl)
−1

+(Σk + Σl)
−1(µk − µl)(µk − µl)T (Σk + Σl)

−1] (4.5)
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Proposition 6. If f is the density of mixture model of m normals, then f2(x) =

f2(x)/
∫
f2(y)dy is the density of a mixture of normals with m2 uncombined compo-

nents.The component proportions {πkl} are proportional to

πkπlφ(µk, µl,Σk + Σl).

the component means and variances are µkl, and Σkl.

Using the forms (4.1) and (4.2) for f2, we can get the explicit form of the covariance

matrix Vf2
:

Vf2
=

∑

k

∑

l

πklΣkl +
∑

k

∑

l

πklµklµ
T
kl

−(
∑

k

∑

l

πklµkl)(
∑

k

∑

l

πklµkl)
T . (4.6)

Plugging (4.4), (4.5) and (4.6) into the left part of (3.5), we get an explicit form for Jf2
.

4.3 Kernel Estimator of Jf2

The kernel density estimator is a very popular non-parametric estimator of f(x).

Let

f̂H(x) =
∑ 1

n|H|Kd(H
−1(x−Xi)),

where Kd is the kernel function, which is usually a symmetric probability density function

and H is the bandwidth, also called the smoothing parameter. The kernel estimator is

a sum of “bumps” placed at the observations(Silverman 1986). The shape of bumps is

determined by kernel function and the bandwidth. The quality of a kernel estimator
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generally depends less on the shape of the K than on the value of its bandwidth H.

In this section, we use the normal density as the kernel because of its computational

advantage. Let

Kd(u) = (
1

2π
)
d
2 exp(−u

Tu

2
).

Substituting the kernel estimator f̂H(x) for f(x) in Jf2
, and applying equation (4.3), we

can get the explicit form of the estimator of Jf2
:

Ĵf2
= Jf̂2

=
V

1/2

f̂2

∫ ∇xf̂H(x) · ∇xf̂H(x)TdxV 1/2

f̂2∫
f̂2
H

(x)dx
,

where

f̂2(x) = f̂2
H

(x)/
∫
f̂2
H

(y)dy,

∫
f̂2
H

(x)dx =
1
n2

∑

i,j

φd(Xi, Xj , 2H
2),

∫
∇xf̂H(x) · ∇xf̂TH(x)dx

=
1
n2

∑

i,j

∫
(

1
2π

)d
1
|H|2 exp

(
−1

2
[(Xi − x)TH−2(Xi − x) + (Xj − x)TH−2(Xj − x)]

)

H−2(Xi − x)(Xj − x)TH−2

=
1
n2

∑

i,j

φ(Xi −Xj , 0, 2H
2)φ(x,

Xi +Xj

2
,
H2

2
)H−2(Xi − x)(Xj − x)TH−2

=
1
n2

∑

i,j

φ(Xi −Xj , 0, 2H
2)H−2(

H2

2
− 1

4
(Xi −Xj)(Xi −Xj)

T )H−2

=
1
n2

∑

i,j

φ(Xi −Xj , 0, 2H
2)
(H−2

2
− H−2

4
(Xi −Xj)(Xi −Xj)

TH−2
)
,
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Vf̂2
=

∫
xxT f̂2

H
(x)(x)dx∫

f̂2
H

(x)(x)dx
−
(∫ xf̂H(x)2(x)dx∫

f̂2
H

(x)(x)dx

)(∫ xf̂2
H

(x)(x)dx∫
f̂2
H

(x)(x)dx

)T
,

∫
xxT f̂2

H
(x)(x)dx =

1
n2

∑

i,j

φd(Xi, Xj , 2H
2)
(H2

2
+

(Xi +Xj)(Xi +Xj)
T

4

)
,

and
∫
xf̂2

H
(x)dx =

1
n2

∑

i,j

φd(Xi, Xj , 2H
2)
(Xi +Xj

2

)
.

All above pieces estimators are V-statistics, so consistent under some assumptions in-

volving a large sample size n, and a vanishing bandwidth H. In practice, it’s important

and very difficult to choose the most appropriate bandwidth as a value that is too small

or too large will not be informative. Small bandwidth leads to very spiky estimate, which

makes the estimated pieces unreliable, even when the sample is really from the true dis-

tribution. And large bandwidth leads to over-smoothing, which will make non-normal

data look more normal.

Bowman (1995) proposed a criteria to select an optimal bandwidth: mean inte-

grated squared error (MISE)

∫
E(f̂H(x)− f(x))2dx.

Usually it needs to be calculated by numerical integration. However, for the normal

density kernel, the following bandwidth is optimal for a normal density f according to

the MISE criteria:

Hop =
( 4
d+ 2

) 1
d+4 Σ1/2n−

1
d+4 ,

where Σ can be estimated by the sample covariance matrix.



33

The kernel density estimator f̂H is biased for any fixed bandwidth. The true mean

of f̂H(x) is f∗(x) :

f∗(x) =
∫
f(y) · 1

|H|Kd(H
−1(x− y))dy.

The density transformation f → f∗also preserves the normality of f(x), when the

Gaussian kernel K is used in the kernel density estimator.

Proposition 7. If f ∼ N(µf , Vf ), then

f∗(x) =
∫
f(y) · 1

|H|Kd(H
−1(x− y))dy ∼ N(µf , Vf +H2).

If we estimate all terms of Jf2
using the kernel method, the expectations of these terms

can be expressed by f∗ :

Ef

∫
f̂2
H

(x)dx =
∫
Ef

( 1
n|H|

∑

i

Kd(H
−1(x−Xi))

)2
dx

=
1
n2

∑

i,j

(
φ(x,Xi,H

2)φ(x,Xj ,H
2)
)
dx

=
1
n2

∑

i6=j

∫
Efφ(x,Xi,H

2)φ(x,Xj , H
2)dx+

1
n2

∑

i

∫
Efφ

2(x,Xi,H
2)dx

=
1
n2

∑

i6=j
Efφ(x,Xi, H

2)Eφd(x,Xj , H
2) +

1
n2

∑

i

∫
Efφ

2(x,Xi,H
2)dx

= (1− 1
n

)
∫

(f∗)2(x)dx+
1
n
Ef

∫
φ2(x, Y,H2)dx

= (1− 1
n

)
∫

(f∗)2(x)dx+
1

n|H|φ(0, 0, 2Id);



34

Ef

∫
∇xf̂H(x) · ∇xf̂TH(x)dx

=
1
n2

∑

i6=j

∫ (
Efφ(x,Xi,H

2)H−2(Xi − x)Efφ(x,Xj ,H
2)(Xj − x)TH−2

)
dx

+
1
n2

∑

i

∫ (
Efφ

2(x,Xi,H
2)H−2(Xi − x)(Xi − x)TH−2

)
dx

= (1− 1
n

)
∫
∇xf∗(x)(∇xf∗(x))Tdx+

1
n
Ef

∫ (
φ2(x,Xi,H

2)H−2(Xi − x)(Xi − x)TH−2
)
dx

= (1− 1
n

)
∫
∇xf∗(x)(∇xf∗(x))Tdx+

1
2n|H|φ(0, 0, 2Id)H

−2;

Ef

∫
xxT f̂2

H
(x)dx =

1
n2

∑

i,j

∫
xxTEf

(
φ(x,Xi,H

2)φ(x,Xj ,H
2)
)
dx

=
1
n2

∑

i 6=j

∫
xxTEfφ(x,Xi,H

2)Efφ(x,Xj ,H
2)dx

+
1
n2

∑

i

Ef

∫
xxTφ2(x,Xi, H

2)dx

= (1− 1
n

)
∫
xxT (f∗)2(x)dx+

1
n
Ef

∫
xxTφ(x, Y,H2/2)φ(0, 0, 2H2)dx

= (1− 1
n

)
∫
xxT (f∗)2(x)dx+

1
n
φ(0, 0, 2H2)Ef [H2/2 + Y Y T ]

(4.7)
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Ef

∫
xf̂2

H
(x)dx =

1
n2

∑

i,j

∫
xEf

(
φ(x,Xi,H

2)φ(x,Xj , H
2)
)
dx

=
1
n2

∑

i6=j

∫
xEfφ(x,Xi, H

2)Efφd(x,Xj ,H
2)dx+

1
n2

∑

i

∫
Efxφ

2(x,Xi,H
2)dx

= (1− 1
n

)
∫
x(f∗)2(x)dx+

1
n
Ef

∫
xφ2(x, Y,H2)dx

= (1− 1
n

)
∫
x(f∗)2(x)dx+

1
n|H|φ(0, 0, 2Id)EfY.

For fixed H, putting all these kernel estimators together and letting n → ∞ derives a

new standardized Fisher information matrix:

V
1/2
f∗2

∫ ∇xf∗ · (∇xf∗)TdxV 1/2
f∗2∫

(f∗)2(x)dx
, (4.8)

where

f∗
2

= (f∗)2/

∫
(f∗)2(x)dx,

Vf∗2 =
∫
yyT (f∗)2(y)dy∫

(f∗)2dx
−
(∫ y(f∗)2(y)dy∫

(f∗)2dx

)(∫ y(f∗)2(y)dy∫
(f∗)2dx

)T
.

The above matrix is just the standardized Fisher information matrix of f∗
2
. The matrix

inequality still holds since f∗ is also a density function:

V
1/2
f∗
2

∫ ∇xf∗ · (∇xf∗)TdxV 1/2
f∗
2∫

(f∗)2(x)dx
:= Jf∗2 ≥

1
4
Id. (4.9)

So, in order to measure the non-normality of the original density f(x), we first smooth

it using a normal kernel, and then transform the smoothed density f∗(x): f∗
2
(x) =
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(f∗)2(x)/
∫

(f∗)2(y)dy, finally construct the standardized Fisher information matrix for

f∗
2
.

In the following part, we use Jf∗2 to study the asymptotic property of the estimator

Ĵf2
. Compared to Jf2

, this new Fisher information matrix Jf∗2 has some good properties:

first, for any fixed H, f∗(x) is the mean of kernel density estimator f̂H(x). The estimator

Ĵf2
is closer to Jf∗2 than Jf2

. Second, it is easy to construct the unbiased estimators for

all pieces of Jf∗2 by U-statistics. Putting all corresponding V-statistics together derives

Ĵf2
. The consistency of the estimator Ĵf2

holds for every fixed H. Finally, the asymptotic

distribution of Ĵf2
can be found using the quadratic distance method in Lindsay et al.

(2006).

4.4 U-statistic Estimator of Jf∗2

In practice, if the distribution is known and Jf2
is known, we use Jf2

as our

measure of non-normality. For the real data set, we use Ĵf2
to estimate Jf2

. In order

to study asymptotic properties, we fix the smoothing parameter H and treat Ĵf2
as the

estimator of Jf∗2 . In this section, we will introduce how to estimate Jf∗2 using U-statistics.

First we rename all pieces of the matrix Jf∗2 to have a simple expression.

Definition 2.

Jf∗2 :=
V

1/2
f∗
2

∫ ∇xf∗ · (∇xf∗)TdxV 1/2
f∗
2∫

(f∗)2(x)dx
,

θ0 :=
∫

(f∗)2(x)dx,

θ1 :=
∫
∇xf∗ · (∇xf∗)Tdx,
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θ2 :=
∫
yyT (f∗)2(y)dy,

θ3 :=
∫
y(f∗)2(y)dy.

So

Jf∗2 =
V

1/2
f∗2

∫ ∇xf∗ · (∇xf∗)TdxV 1/2
f∗2∫

(f∗)2(x)dx
=
(θ2

θ0
−
(θ3

θ0

)(θ3

θ0

)T) 1
2
θ1

(θ2

θ0
−
(θ3

θ0

)(θ3

θ0

)T) 1
2

We will estimate all θi, i = 0, 1, 2, 3.

Proposition 8. Suppose {X1, ..., Xn}is a random sample from f , then the U-statistic

U0 =
1

n(n− 1)|H|2
∑

i6=j

∫
K(H−1(x−Xi))K(H−1(x−Xj))dx

=
1

n(n− 1)

∑

i 6=j
φ(Xi, Xj , 2H

2)

:=
1

n(n− 1)

∑

i 6=j
h0(Xi, Xj)

is an unbiased estimator of θ0, where h0 = φ(Xi, Xj , 2H
2) is the kernel function of the

U-statistic.

The projection of U0 is

P0 =
2
n

n∑

i=1

(h∗
0
(Xi)− θ0),

where h∗
0
(Xi) = Eh0(Xi, Xj |Xi) = φ(Xi, µf , A), A = Vf + 2H2.

When f is a normal density,

θ0 =
∫
φ(x, µf , A)φ(x, µf , Vf )dx = φ(0, 0, 2Vf + 2H2).
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Similarly, we can find the U-statistics for other pieces.

Proposition 9. Suppose {X1, ..., Xn}is a random sample from f , then the U-statistic

U1 =
1

n(n− 1)|H|2
∑

i6=j

∫
∂K(H−1(x−Xi))

∂x

∂K(H−1(x−Xj))
∂x

dx

=
1

n(n− 1)|H|2
∑

i6=j

∫
K(H−1(x−Xi))K(H−1(x−Xj))H

−2(x−Xi)(x−Xj)
TH−2dx

=
1

n(n− 1)

∑

i6=j
φ(Xi, Xj , 2H

2)
(H−2

2
− H−2

4
(Xi −Xj)(Xi −Xj)

TH−2
)

(4.10)

:=
1

n(n− 1)

∑

i6=j
h1(Xi, Xj)

is an unbiased estimator of θ1. The projection of U1 is

P1 =
2
n

n∑

i=1

(h∗
1
(Xi)− θ1),

where h∗
1
(Xi) = Eh1(Xi, Xj |Xi) = φ(Xi, µf , A)(A−1 − A−1(Xi − µf )(Xi − µf )TA−1).

When f is a normal density,

θ1 = θ0(2Vf + 2H2)−1.

Proposition 10. Suppose {X1, ..., Xn}is a random sample from f , then the U-statistic

U2 =
1

n(n− 1)|H|2
∑

i6=j

∫
xxTK(H−1(x−Xi))K(H−1(x−Xj))dx

=
1

n(n− 1)

∑

i6=j
φ(Xi, Xj , 2H

2)
(H2

2
+

(Xi +Xj)(Xi +Xj)
T

4

)

:=
1

n(n− 1)

∑

i6=j
h2(Xi, Xj)
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is an unbiased estimator of
∫
xxT (f∗(x))2dx.

The projection of U2 is

P2 =
2
n

n∑

i=1

(h∗
2
(Xi)− θ2),

where

h∗
2
(Xi) = Eh2(Xi, Xj |Xi)

= φ(Xi, 0, A)(
(2H2 + (Σ−1

f
+ (2H2)−1)−1)

4

+
(I + (Vf + 2H2)−1Vf )XiX

T
i

(I + (Vf + 2H2)−1Vf )
4

).

When f is a normal density,

θ2 = φ(0, 0, 2Vf + 2H2)[
2Vf + 2H2

4
+ µfµ

T
f

] = θ0

2Vf + 2H2

4
.

Proposition 11. Suppose {X1, ..., Xn}is a random sample from f , then the U-statistic

U3 =
1

n(n− 1)|H|2
∑

i6=j

∫
xK(H−1(x−Xi))K(H−1(x−Xj))dx

=
1

n(n− 1)

∑

i6=j
φ(Xi, Xj , 2H

2)
(Xi +Xj)

2

:=
1

n(n− 1)

∑

i6=j
h3(Xi, Xj)

is an unbiased estimator of
∫
x(f∗(x))2dx.

The projection of U3 is

P3 =
2
n

n∑

i=1

(h∗
3
(Xi)− θ3),
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where

h∗
3
(Xi) = Eh3(Xi, Xj |Xi) = φ(Xi, µf , A)

1
2

(Xi + VfA
−1Xi + 2H2A−1µf ).

When f is a normal density,

θ3 = θ0µf .

After combining the above four U-statistic estimators, we get the U-estimator of the

standardized Fisher information matrix Jf∗2 :

Û∗ =
(U2
U0
− (U3

U0
)(U3
U0

)T )
1
2U1(U2

U0
− (U3

U0
)(U3
U0

)T )
1
2

U0

= (U2U0 − U3U
T
3

)
1
2U1(U2U0 − U3U

T
3

)
1
2 /(U3

0
).

When X is standardized: µf = 0, Vf = Id, θ3 is zero. Thus, we have

Û∗ =
(U2
U0

)
1
2U1(U2

U0
)

1
2

U0

= (U2)
1
2U1(U2)

1
2 /(U2

0
).

When f is normal and n goes to infinity, the U-estimator converges in probability to 1
4Id.

Note that the matrix inequality Û∗ ≥ 1
4Id does not hold for this estimated matrix Û∗,

because the four U-statistic estimators are unbiased and Û∗ is not a Fisher information

matrix of some distribution. If we use the corresponding V-statistics to estimate the θi,

we get Ĵf2
= Jf̂2

. The inequality then holds because the estimated matrix is just the
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standardized Fisher information matrix of the empirical distribution of f∗
2
:

V̂ ∗ = Ĵf2
=

(V2
V0
− (V3

V0
)(V3
V0

)T )
1
2V1(V2

V0
− (V3

V0
)(V3
V0

)T )
1
2

V0

= (V2V0 − V3V
T

3
)

1
2V1(V2V0 − V3V

T
3

)
1
2 /(V 3

0
) ≥ 1

4
Id,

where Vi is the corresponding V-statistic of Ui, i = 0, 1, 2, 3. V̂ ∗ is still a consistent esti-

mate of Jf∗2 . In Chapter 6, we will study the asymptotic distribution of V̂ ∗ by expanding

it at a normal distribution with the same mean and covariance as f . The second order

of the expansion is a kernel-based quadratic distance(Lindsay et al. 2006).

4.5 Eigenanalysis of Jf2

In this section, by extending the results for Jf , we will study the transformation

property of Jf2
, and show how to use an eigenanalysis of Jf2

to find the least normal

projections.

Proposition 12. Let A be a d× d nonsingular matrix and Y = AX. Then

Jg2
= V 1/2

g2
A−TV −1/2

f2
Jf2

V −1/2
f2

A−1V 1/2
g2

, (4.11)

where g2(y) = g2(y)/
∫
g2(s)ds, g(y) is the density of Y, Vg2

is the covariance matrix of

the distribution with the density g2; f2(x) = f2(x)/
∫
f2(s)ds, f(x) is the density of X,

Vf2
is the covariance matrix of the distribution with the density f2.
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First we standardize the vector X. Let A = V
− 1

2
f2

, and Y = V
− 1

2
f2

X. This standardization

does not change the Fisher information. Suppose g(y) is the density of Y. Then

Vg2
= V

− 1
2

f2
Vf2

V
− 1

2
f2

= Id;

and

Jg2
= V 1/2

g2
A−TV −1/2

f2
Jf2

V −1/2
f2

A−1V 1/2
g2

= Jf2
.

Secondly, we consider the orthogonal transformation of Y . Let

Z = (Z1, ..., Zd)
T = (γT

1
Y, .., γT

d
Y )T := ΓY,

where Γ is an orthogonal matrix. So the density of Z is h(z) = g(ΓT z), and

Vh2
= ΓVg2

ΓT = Id.

Then, we have

Jh2
= V 1/2

h2
Γ−TV 1/2

g2
Jg2

V 1/2
g2

Γ−1V 1/2
h2

= ΓJf2
ΓT

=
(
γT
i
Jf2

γj

)
.

Let λ1 ≥ λ2, ... ≥ λd be the eigenvalues of the standardized Fisher information matrix of

Y and γ1, ..., γd be the corresponding eigenvectors. By the similar analysis of Jf in section
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3.3, we know that the projection Z1 = γT
1
Y has the least conditional normality and λ1 is

the measure of its non-normality. Moreover Zi = γT
i
Y has the least conditional normality

in all projections which are ”uncorrelated” to Z1, ...Zi−1. Note that here ”uncorrelated”

means that after the density square transformation, the transformed Zi are uncorrelated

because Vh2
= Id.

The Fisher information matrix of the optimal orthogonal projection Z = ΓY also

can be expressed diagonally by the eigenvalues of the Fisher information matrix of Y :

Jh2
=

∫ ∇zh(z)(∇zh(z))Tdz∫
h2(z)dz

=
(
γT
i
Jf2

γj

)

=
(
γT
i
λjγj

)

= Diag(λ1, λ2, ..., λd) ≥
1
4
Id.

When Z is normal, it becomes equality. So the eigenvalues of Jh2
have the lower bound

1
4 . Consider the ith diagonal term of JZ :

∫ (
∂
∂zi
h(z1, ...zd)

)2
hdz

∫
h2(z)dz

=
∫ (∫ ( ∂

∂zi
h(zi|z−i))2dzi∫
h2(zi|z−i)dzi

)
h2(z−i)

∫
h2(zi|z−i)dzi∫
h2(z)dz

dz−i

=
∫
J2
Zi|Z−ih

2(z−i)
∫
h2(zi|z−i)dzi∫
h2(z)dz

dz−i

≥
∫

1
4
h2(z−i)

∫
h2(zi|z−i)dzi∫
h2(z)dz

dz−i

=
1
4
,
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where J2
Zi|Z−i is the Fisher information matrix for Zi|Z−i.When λi = 1

4 , JZi|z−i = 1
4 , ∀z−i,

which implies that Zi|z−i is normal for any z−i. So Zi is a white noise variable, which is

not only marginally normal, but also independent of the remaining variables. If λi = 1
4 ,

then λj = 1
4 , j ≥ i, and Zj are white noise variables. So, by applying an eigenanalysis

of Jf2
, we thus not only can find the interesting projection using the largest eigenvalues

and the corresponding eigenvectors, but also can discard directions as white noise when

the eigenvalues are close to 1
4 .

The diagonal form of the Fisher information matrix Jh2
also provides a new test

statistic to test the normality of the whole X:

d∑

i=1

λi = trace(Jh2
) = trace(Jf2

).

The asymptotic distribution will be discussed in Chapter 6.
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Chapter 5

Von-Mises Approximation Qf

In Chapter 3, we showed that the eigenanalysis of the Fisher information matrix

Jf can provide all solution projections. We also found a new projection index Qf by

expanding the Fisher information matrix Jf :

Qf = V
1
2
f ·
∫
φ−1(V −1

f
(x− µf ) +∇xf)(V −1

f
(x− µf ) +∇xf)Tdx · V

1
2
f .

Compared to the Fisher information, the projection index Qf is easy to calculate and

estimate, because the denominator is a normal density function, not f. We still can get

the explicit form of Qf for the normal mixture model by the similar computation in

section 4.2. However, we do not list the results because the form is very complicated.

We can use the kernel method to estimate Qf by simulation.

5.1 Kernel Estimator for Qf

In Chapter 6, we will show that the standardization leaves the index Qf un-

changed. So, without losing generality, we assume the data has been standardized:
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µf = 0, Vf = Id. The standardization simplifies the index Qf :

Qf =
∫
φ−1(xf(x) +∇xf(x))(xf(x) +∇xf(x))Tdx

=
∫
xxT f2(x)φ−1(x, 0, 1)dx+

∫
xf(x)φ−1(x, 0, 1)∇xfT (x)dx

+
∫
∇xf(x) · xT f(x)φ−1(x, 0, 1)dx+

∫
∇xf(x)∇xf(x)Tφ−1(x, 0, 1)dx.

We replace the density function f(x) with the kernel estimator f̂H(x) to get the estimator

Qf̂ .

Proposition 13.

∫
xxT f̂2

H
(x)φ−1(x, 0, 1)dx =

1
N2

∑

i

∑

j

Aij(µijµ
T
ij

+ Σ)

∫
xf̂H(x)φ−1(x, 0, 1)∇xf̂TH(x)dx =

1
N2

∑

i

∑

j

Aij(µijµ
T
ij

+ Σ− µijXT
j

)H−2

∫
∇xf̂H(x) · xT f̂H(x)φ−1(x, 0, 1)dx =

1
N2

∑

i

∑

j

AijH
−2(µijµ

T
ij

+ Σ−Xiµ
T
ij

)

∫
∇xf̂H(x)∇xf̂H(x)Tφ−1(x, 0, 1)dx =

1
N2

∑

i

∑

j

AijH
−2((µij −Xi)(µij −Xj)

T + Σ)H−2,

where Aij = φ(Xi,Xj ,2H
2)

|Id−H2/2|·φ((Xi+Xj)/2,0,Id−H2/2)
, Σ = (2H2− Id)−1, µij = (2Id−H2)−1(Xi +

Xj)

The kernel estimator Qf̂ actually measures the non-normality of the smoothed density

f∗(x) =
∫
f(y) 1

HKd(H
−1(x − y))dy. We will show that the kernel estimator Qf̂ is the

V-statistic estimator of Qf∗ . It will help us to study the asymptotic properties of the

estimator Qf̂ .

First We will express the terms of Q(f∗) as the expectation form.
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Proposition 14. Suppose Y,Z are independent variables with the same density function

f, then the projection index Q(f∗) can be expressed as an expectation

Q(f∗) = |Id −
H2

2
|−1EY,Z

φ(Y,Z, 2H2)
φ((Y + Z)/2, 0, Id −H2/2)

·
(

(2Id −H2)−1(Y + Z)(Y + Z)T (2Id −H2)−1 + Σ

+((2Id −H2)−1(Y + Z)(Y + Z)T (2Id −H2)−1 + Σ− (2Id −H2)−1(Y + Z)ZT )H−2

+H−2((2Id −H2)−1(Y + Z)(Y + Z)T (2Id −H2)−1 + Σ− Y (Y + Z)T (2Id −H2)−1)

+H−2(Σ + ((2Id −H2)−1(Y + Z)− Y )((2Id −H2)−1(Y + Z)− Z)T )H−2
)

:= EY,Zh(Y, Z) (5.1)

where Σ = (2H−2 − Id)−1.

So the V-statistic estimator of Q(f∗) is

1
N2

n∑

i=1

n∑

j=1

h(Xi, Xj) = Qf̂ .

5.2 Eigenanalysis of Qf

In the section, we present how to use an eigenanalysis ofQf to find solution projec-

tions. The transformation equation for Qf still holds, which is the base of eigenanalysis

of Qf .

Proposition 15. Let A be a d× d nonsingular matrix and Y = AX. Then

Qg = V 1/2
g

A−TV −1/2
f

QfV
−1/2
f

A−1V 1/2
g

, (5.2)
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where g(y) is the density of Y, Vg is the covariance matrix of g, f(x) is the density of

X, Vf is the covariance matrix of f.

We first standardize the variable X : Y = V
− 1

2
f X. It leaves the index unchanged

Qg = V 1/2
g

A−TV 1/2
f

QfV
1/2
f

A−1V 1/2
g

= Qf .

Secondly, consider an orthogonal transformation Z = ΓTY.

Qh = V 1/2
h

Γ−TV 1/2
g

QgV
1/2
g

Γ−1V 1/2
h

= ΓQfΓT

=
(
γT
i
Qfγj

)
.

The projection index Z = ΓY still can be expressed diagonally by the eigenvalues of Qf :

Qh =
∫ ∇zh(z)(∇zh(z))T

h(z)
dz

=
(
γT
i
Qfγj

)

=
(
γT
i
λjγj

)

= Diag(λ1, λ2, ..., λd).

Similar to the analysis of Jf2
, the eigenanalysis of Qf can provide the least normal

projections. The projection Z1 = γT
1
Y has the least normality in all projections, and the

largest eigenvalue λ1 is the non-normality measure. Because the projection Qf is always
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non-negative, the eigenvalues have the lower bound 0. When λi = 0, the corresponding

projection Zi is a white noise coordinate, which can be discarded in future study.
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Chapter 6

Asymptotic Distribution of V̂ ∗

6.1 Overview

In Chapter 4, we constructed estimators for the four terms of Jf∗2 using U-statistics

or V-statistics, and put them together to get a consistent estimator of Jf∗2 . Applying

the U-statistic asymptotic theorem, we can get the limiting distribution for every term.

The convergence rate is
√
n. Unfortunately, the convergence rate of the whole estimator

V̂ ∗ (or Û∗ )is not
√
n but n. In Section 6.2, we will use the projection formulas for U-

statistics to show that the
√
n term of V̂ ∗ is exactly zero. In order to find the asymptotic

distribution of V̂ ∗, we need to expand all V-statistic estimators to the order n, and then

plug them into V̂ ∗ to find the n term. But this computation is really messy.

To find a more direct analysis, we look at the problem in another way. We may

think Jf∗2 as of a function of a distribution. Then V̂ ∗ is the value of the function at

the empirical distribution Fn. Because the empirical distribution converges to the true

distribution, we may find the limiting distribution by expanding the function around the

true distribution F0, which is normal under the null hypothesis. Because the function

reaches the minimum 1
4Id at the normal distribution, the first Von-Mises derivative

at the normal distribution is expected to be zero. So the second “derivative” should

determine the limiting distribution. In section, we will express all terms of Jf∗
2

as the

functions of true distribution, so the V-statistic estimated matrix V̂ ∗ is a function of true
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distribution. And then we will employ Von Mises expansion(Section 6.3) to show that

the second order term of V̂ ∗ is equivalent to a kernel-based matrix quadratic distance

between the empirical distribution and the true distribution. The Von Mises expansion

computation is much easier than U-statistic method, because it is very easy to find the

functions of all terms, and we only need to use the derivative chain rule to find the

expansion of V̂ ∗.

In sections 6.4, we introduce the kernel-based quadratic distance theory of Lindsay

et al.(2006) for d = 1. The limiting distribution of the scalar quadratic distance can

be determined from the spectral decomposition of the distance kernel(Lindsay et al.

2006). Lindsay et al.(2006) showed that many important statistical distances have the

kernel-based quadratic distance form. In the case d = 1, the limiting distribution is a

weighted sum of chi-squared variables. The important approximations will be checked

by simulation in Section 6.5. In Section 6.6, we apply the quadratic distance theory to

the sum of eigenvalues of V̂ ∗, which is equal to the trace of V̂ ∗. Section 6.7 presents how

to find the asymptotic distribution of the matrix V̂ ∗ by using the multivariate spectral

decomposition theorem and permutation invariant property of V̂ ∗.

6.2 The Zero
√
n-term

In this section, we will introduce the U-statistics projection method, and apply it

to show that the
√
n term of V̂ ∗ is exactly zero.

Let X1, ..., XN be a random sample from the distribution f . Suppose h(X1, ..., Xr)

is an unbiased estimator for the parameter of interest θ and permutation symmetric in
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its r arguments. A U-statistic with kernel h is defined as

U =
1
Cr
N

∑

β

h(Xβ1
, ..., Xβr),

where the sum is taken over the set of all unordered subsets β of r different integers

chosen from {1, ..., N}. The statistic U is also an unbiased estimator and has smaller

variance than h, because U is the conditional expectation of h on the order statistic

{X(1), ..., X(N)}. The U-statistic is asymptotically normal given Eh2 < ∞. But U-

statistic is not the sum of independent random vectors. To get the asymptotic normality

of a sequence of U-statistics, we can consider the projection of the U-statistic onto the

set of all statistics of the form
∑N

i=1
gi(Xi). The projection of U − θ is given by

P =
N∑

i=1

E(U − θ|Xi) =
r

N

N∑

i=1

(h∗(Xi)− θ),

where h∗(x) = Eh(x,X2, ...XN ).

The sequence of the projection P is asymptotically normal by the central limit theorem

provided E(h∗)2(X) < ∞. And the difference between U − θ and P is asymptotically

negligible.

Proposition 16. If Eh2(X1, ..., Xr) <∞, then
√
N(U − θ−P ) = op(1). Consequently,

the sequence
√
N(U − θ) → N(0, r2ζ1), where, with X1, ...Xr, X1′ , ..., Xr′ denoting i.i.d.

variables,

ζ1 = cov(h(X1, ..., Xr), h(X1′ , ..., Xr′)).

By applying the result, we get the expansion of the four piece U-statistics of Û∗.
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Proposition 17. Let Ui be the U-statistic estimator of θi, and Pi be the projection of

Ui for a sample size n. We have

Ui = θi + Pi + op

( 1√
n

)
;

Pi = Op

( 1√
n

)
,

and

PiPj = op

( 1√
n

)
, i, j = 0, 1, 2, 3.

Plugging the above expansions into the U-statistic estimator Û∗ derives the expansion

of Û∗ at
√
n. Because the difference between a U-statistic and corresponding V-statistic

is Op(1/n), it is easy to find the expansion of V̂ ∗.

Proposition 18. Let H = hId, h > 0. Then the
√
n term of Û∗ is zero.

Û∗ − 1
4
Id = op

(
1/
√
n
)

;

V̂ ∗ − 1
4
Id = op

(
1/
√
n
)
.

In the proof, we assume X is standardized: µf = 0, Vf = Id. The result is true for any

µf and Vf .

6.3 Von-Mises Expansion of V̂ ∗

In Section 3.4.2, we introduced the Von Mises expansion of Jf to get a easily

computable projection index Qf . The idea is to treat a statistic as a distribution function
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T (F ), and find the expansion at F0 by calculating the influence functions:

T (F )− T (F0) := T
′

F0
(F ) +

1
2
T
′′

F0
(F ) + error.

In our problem, F = F̂n and F0 is normal distribution. The function T (F ) = V̂ ∗ reaches

the minimum 1
4Id at F0. So we believe the first derivative T

′
F0

(F ) at F0 is zeros. Thus,

we need to expand T (F ) to the second order. We will find the distribution function and

influence function for every piece of V̂ ∗ and use the chain law to get the whole derivative.

Proposition 19.

θ0 =
∫
f∗

2

dx =
∫ ∫ (∫ 1

|H|K(H−1(x− y))
1
|H|K(H−1(x− z))dx)dF0(y)dF0(z)

:=
∫ ∫

K∗
0
(y, z)dF0(y)dF0(z)

:= K∗
0
(F0, F0) := T0(F0).

And then we can get the influence functions:

T0F0
(s) :=

∂

∂ε
T0((1− ε)F0 + εδs)|ε=0

= −2
∫ ∫

K∗
0
(y, z)dF0(y)dF0(z) + 2

∫
K∗

0
(y, s)dF0(y)

:= 2K∗
0
(F0, s)− 2K∗

0
(F0, F0),

T0F0
(s, t) :=

∂2

∂ε1∂ε2
T0((1− ε1 − ε2)F0 + ε1δs + ε2δt)|ε1=0,ε2=0

= −2
∫ ∫

K∗
0
(y, z)dF0(y)dF0(z) + 2

∫
K∗

0
(y, s)dF0(y)

:= 2K∗
0
(F0, F0) + 2K∗

0
(s, t)− 2(K∗

0
(s, F0) +K∗

0
(F0, t)).
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Finally we get the first and second order terms:

T
′

0F0
(F ) =

∫
T0F0

(s)d(F (s)− F0(s))

= 2
∫
K∗

0
(y, s)dF0(y)dF (s)− 2

∫ ∫
K∗

0
(y, z)dF0(y)dF0(z)

:= 2K∗
0
(F0, F )− 2K∗

0
(F0, F0),

T
′′

0F0
(F ) =

∫ ∫
T0F0

(s, t)d(F (s)− F0(s))d(F (t)− F0(t))

= 2
∫ ∫

K∗
0
(s, t)d(F (s)− F0(s))d(F (t)− F0(t))

:= 2K∗
0
(F0, F0) + 2K∗

0
(F, F )− 4K∗

0
(F0, F ).

Similarly, we can get the functions and derivatives for all other pieces:



56

Proposition 20.

θ1 =
∫
∇xf∗(∇xf∗)Tdx

=
∫ ∫ (∫ 1

|H|K(H−1(x− y))
1
|H|H

−2(x− y)(x− z)TH−2K(H−1(x− z))dx)dF0(y)dF0(z)

:=
∫ ∫

K∗
1
(y, z)dF0(y)dF0(z)

= K∗
1
(F0, F0) := T1(F0).

θ2 =
∫
xxT f∗

2

dx

=
∫ ∫ (∫ 1

|H|xx
TK(H−1(x− y))

1
|H|H

−2K(H−1(x− z))dx)dF0(y)dF0(z)

:=
∫ ∫

K∗
2
(y, z)dF0(y)dF0(z)

= K∗
2
(F0, F0) := T2(F0).

θ3 =
∫
xf∗

2

dx

=
∫ ∫ (∫ 1

|H|xK(H−1(x− y))
1
|H|H

−2K(H−1(x− z))dx)dF0(y)dF0(z)

:=
∫ ∫

K∗
3
(y, z)dF0(y)dF0(z)

= K∗
3
(F0, F0) := T3(F0).
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Proposition 21.

T
′

iF0
(F ) =

∫
TiF0

(s)d(F (s)− F0(s))

= 2
∫
K∗
i
(y, s)dF0(y)dF (s)− 2

∫ ∫
K∗
i
(y, z)dF0(y)dF0(z)

= 2K∗
i
(F0, F )− 2K∗

i
(F0, F0), i = 0, 1, 2, 3

T
′′

iF0
(F ) =

∫ ∫
TiF0

(s, t)d(F (s)− F0(s))d(F (t)− F0(t))

= 2
∫ ∫

K∗
i
(s, t)d(F (s)− F0(s))d(F (t)− F0(t))

= 2K∗
i
(F0, F0) + 2K∗

i
(F, F )− 4K∗

i
(F0, F ), i = 0, 1, 2, 3.

So the Fisher information matrix has the following form:

T (F ) = (T2T0 − T3T
T
3

)
1
2T1(T2T0 − T3T

T
3

)
1
2 /T 3

0
.

Using the above results and chain rule, we can find the first two orders of T (F ):

T
′

F0
(F ) = 0, (6.1)

T
′′

F0
(s, t) = − 2

θ2
0

(1
2
θ0K

∗
0
(s, t)Id − θ2K

∗
1
(s, t)− θ1K

∗
2
(s, t) +K∗

0
(s, F0)K∗

0
(t, F0)Id

−2(K∗
1
(s, F0)K∗

2
(t, F0) +K∗

1
(t, F0)K∗

2
(s, F0)) + 4K∗

3
(s, F0)K∗

3
(t, F0)

θ1

θ0

)
(6.2)

∆= 2K∗(s, t).
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Finally we have the expansion:

V̂ ∗ − 1
4
Id = T (F )− T (F0)

=
∫ ∫

K∗(s, t)d(F (s)− F0(s))d(F (t)− F0(t)) + op(1/n). (6.3)

Here we have assumed, not proved, that the remainder term is negligible. We will later

investigate the accuracy of the approximation by simulation because a proof of this

equivalence is beyond our main emphasis. The first term of the right side is called a

kernel-based quadratic distance with kernel K∗. In the univariate case d = 1, Lindsay

et al.(2006) discussed how to use the spectral decomposition of the kernel K∗ to find

the limiting distribution of the quadratic distance estimate. We introduce the quadratic

distance theory in Section 6.4, and apply it to find the limiting distribution of trace(V̂ ∗)

in Section 6.6. In Section 6.7, we extend the quadratic distance theory to the multivariate

case d > 1.

6.4 Kernel-based Quadratic Distance and Spectral Decomposition

We use the setting of Lindsay et al.(2006). Let S be a sample space with measur-

able sets B. Let K(s, t) be a bounded symmetric kernel function on S × S. The kernel

K(s, t) is called nonnegative definite(NND), if the quadratic form
∫ ∫

K(s, t)dσ(s)dσ(t)

is nonnegative for all bounded signed measures σ, and it is conditionally NND if non-

negativity holds for all σ satisfying the condition
∫
dσ(s) = 0.

Definition 3. Given a conditionally nonnegative definite KG(s, t), possibly depending

on G, the Kernel-based matrix quadratic distance between two probability measures F and
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G is defined as

dK(F,G) =
∫ ∫

KG(s, t)d(F −G)(s)d(F −G)(t)

:= KG(F, F )−KG(F,G)−KG(G,F ) +KG(G,G),

where, for example, KG(F,G) =
∫ ∫

KG(x, y)dF (x)dG(y). The conditional NND prop-

erty implies the non-negative definiteness of the kernel-based matrix quadratic distance.

Note that the kernel function may depend on the distribution G.

When F and G are continuous with densities f and g, one can write

dK(F,G) =
∫ ∫

KG(s, t)(f(s)− g(s))(f(t)− g(t))dsdt.

Many important scalar statistical distances can be written in this form, for example,Pearson-

Chisquared distance, Cramer-Von-Mises distance and L2 distances(see Lindsay et al.

2006). In several physics-related statistical articles, the kernel-based quadratic distance

is given another name: energy because of its relation to the energy of electric charge

distributions(Aslan and Zech 2006).

In a goodness-of-fit test problem, we can select a suitable kernel function R to

measure the distance between the estimated distribution F̂ and the null hypothesis

distribution F0:
∫ ∫

R(x, y)d(F̂ − F0)(x)d(F̂ − F0)(y).
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Usually the empirical distribution Fn is used as the estimated distribution F̂ . For exam-

ple, Bowman and Foster (1993) use the special kernel function

R(x, y) =
∫

1
h
K(

x− z
h

)
1
h
K(

y − z
h

)dz

for a test of multivariate normality. This kernel-based quadratic distance can be written

as the quadratic distance between the kernel smoothed densities of the estimated distri-

bution Fn and the null hypothesis distribution F0. The kernel K is not unique for any

given distance dK(F,G). The kernel K∗(s, t) = K(s, t) + a(s) + a(t) + b generates the

exactly same quadratic distance as K(s, t), for any function a(x) and constant b, since

F and G are probability measures. The problem can be fixed by centering the kernel K.

Definition 4. The G-Centered Kernel for kernel K is

Kcen(G)(s, t) = K(s, t)−K(s,G)−K(G, t) +K(G,G).

In our problem, the K∗(s, t) in (3.3) has been centered automatically: K∗(s, t) =

Kcen(F0)(s, t). When G is the hypothesized true distribution, the G-centered kernel

Kcen(G) simplifies the distance representation:

d(F,G) =
∫ ∫

Kcen(G)(x, y)dF (x)dF (y).

The empirical distance between the empirical distribution F̂ and the true distribution in

null hypothesis is of our interest. For the empirical distance, d(F̂ , G) = Kcen(G)(F̂ , F̂ ) =



61

1T K̂1/n2, where K̂(i, j) = Kcen(G)(xi, xj). This is a V-statistic, which is a biased esti-

mate of d(F,G). The corresponding U-statistic is

Un =
1

n(n− 1)

∑

i

∑

j 6=i
Kcen(xi, xj).

The only difference between d(F̂ , G) and Un is the diagonal terms Kcen(G)(xi, xj) missing

from Un. When G = F, EG(Un) = 0 = d(F,G), but EG(d(F̂ , G)) = E[Kcen(X,X)]/n.

A possible numerical problem arises when Kcen(G) does not have a explicit form. In

this case, numerical calculation may be needed, like Monte Carlo integration. Because

the centered kernel only depends on the kernel function K and the distribution G, we

can sometimes select suitable kernel K to get an explicit expression of distance. For

example, when F0 is normal distribution, Bowman and Foster (1993) use the normal

kernel to estimate density f , and then the quadratic distance is explicit:

∫ ∫
R(x, y)d(F̂ − F0)(x)d(F̂ − F0)(y)

= φ(0, 0, 2(1 + h2))− 2
n

∑

i

φ(xi, 0, (1 + 2h2)) +
1
n

∑

i,j

φ(xi, xj , 2h
2),

where φ is normal density and h is the bandwidth.

The asymptotic distribution of d(F̂ , G) is determined by the spectral decomposi-

tion of kernel.

Definition 5. Eigenfunction,Eigenvalue

A function φ(y) is an eigenfunction of K(x, y) under measure M if the following equation
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holds for eigenvalue λ:
∫
K(x, y)φ(y)dM(y) = λφ(x)

We assume that every eigenfunction φ is normalized:

∫
φ2(x)dM(x) = 1

and any two different eigenfunctions φ1 and φ2 are orthogonal:

∫
φ1(x)φ2(x)dM(x) = 0,

provided they are from different eigenvalues. The following spectral decomposition

theorem is summarized in Lindsay et al.(2006). The original form can be found in

Yosida(1980).

Theorem 1. A nonnegative definite kernel K can be written as

K(x, y) =
∞∑

j=1

λjφj(x)φj(y), (6.4)

if K satisfies
∫ ∫

K2(x, y)dM(x)dM(y) <∞,

where λj and φj are eigenvalues and corresponding normalized eigenfunctions of K under

the measure M. The series in (3.4) converges strongly to K:

limn→∞

∫ (∫
K(x, y)g(y)dM(y)−

n∑

j=1

∫
λjφj(x)φj(y)g(y)dM(y)

)2
dM(x) = 0, ∀g ∈ L2.
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The spectral decomposition theorem only ensures the existence of the decomposition of

any nonnegative kernel, but there is not a general easy way to find the explicit form

of eigenfunctions and eigenvalues. Even when the decomposition of K is available, it is

still not easy to find the decomposition of the centered kernel Kcen. Some examples of

spectral decomposition are listed in Lindsay et al.(2006). Fortunately, the most impor-

tant attributes of the asymptotic distribution of the estimated kernel-based quadratic

distance are summarized in the following two quantities, which can be estimated without

the explicit spectral decomposition.

Proposition 22. If Kcen(x, y) is continuous at (x, x) for almost all x with respect to

the measure M , and
∑∞

j=1
λj <∞, then

∞∑

j=1

λj =
∫
Kcen(x, x)dM(x) := traceM (Kcen), (6.5)

∞∑

j=1

λ2
j

=
∫ ∫

K2
cen

(x, y)dM(x)dM(y) := traceM (K2
cen

). (6.6)

The traceM (Kcen) can be unbiasedly estimated by traceF̂ (Kcen). Similarly, traceF̂ (K2
cen

)

is a consistent estimator of traceM (K2
cen

), but it is a V statistic, so biased. The unbiased

estimate is a U-statistic: 1
n(n−1)

∑
i

∑
j>iK

2
cen

(xi, xj). The two estimates do not need the

explicit decomposition of kernel and they will be used to approximate the asymptotic

distribution of the estimated kernel-based distance.
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Suppose we have the spectral decomposition of the centered kernelKcen(G): Kcen(G)(x, y) =

∑∞
j=1

λjφj(x)φj(y). The empirical distance can then be written as

d(F̂n, G) =
∫ ∫ ∞∑

j=1

λjφj(x)φj(y)dF̂n(x)dF̂n(y)

=
∞∑

j=1

λj

(∫
φj(x)dF̂n(x)

)2

=
∞∑

j=1

λj

( 1
n

n∑

i=1

φj(Xi)
)2

∆=
∞∑

j=1

λj(φj)
2.

The φj are uncorrelated over j because of the orthogonality of eigenfunctions and they

have zero mean and variance one because of the centered kernel and normalized eigen-

functions.When
∑∞

j=1
λj <∞, Lindsay et al.(2006) presents the asymptotic distribution

of nd(F̂n, G):

nd(F̂n, G) 7−→
∑

λjZ
2
j

:= χ∗(λ), λ = (λ1, λ2, ...) (6.7)

E(χ∗(λ)) =
∞∑

j=1

λj =
∫
Kcen(x, x)dG(x) (6.8)

V ar(χ∗(λ)) = 2
∞∑

j=1

λ2
j

= 2
∫ ∫

K2
cen

(x, y)dG(x)dG(y). (6.9)
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Under the condition
∑∞

j=1
λ2
j
<∞, Liu and Rao(1995) discussed the asymptotic distri-

bution of Un for quadratic entropy, which has the similar form.

√
n(n− 1)Un 7−→

∑
λj(Z

2
j
− 1) := χ∗

cen
(λ), (6.10)

E(χ∗
cen

(λ)) = 0, (6.11)

V ar(χ∗
cen

(λ)) = 2
∞∑

j=1

λ2
j

= 2
∫ ∫

K2(x, y)dG(x)dG(y). (6.12)

Liu and Rao(1995) also showed that under the fixed alternative G 6= F0, the asymptotic

distribution of Un is normal.

√
n[Un − d(F0, G)] 7−→ n(0, σ2

M), (6.13)

where σ2
M = 4V ar(M (X)), M (x) = K(x, F0) − K(x,G) − K(F0, F0) + K(F0, G). The

convergence rate is not continuous between null and alternative.

In the above discussion of asymptotic distributions, we only require the sample

size n going to infinity. This is not the end of the story because it is usually difficult

to get the eigenvalues and eigenfunctions. To get a simple distribution, we can use

Satterthwaite approximation or a normal approximation. Lindsay et al.(2006) showed

that Satterthwaite approximation is always better than normal approximation in sense

of having closer cumulants to the χ∗ distribution. The Satterthwaite approximation of

χ∗(λ) is

χ∗(λ)−∑∞
j=1

λj√
2
∑∞

j=1
λ2
j

≈ χ2
DOF

−DOF√
2DOF

, (6.14)
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where DOF = (
∑∞

j=1
λj)

2/
∑∞

j=1
λ2
j
. Lindsay et al.(2006) gave conditions that make the

approximation valid. In particular, a large value of DOF is required for the Satterthwaite

approximation to work well.

Now we go back to our problem: the limiting distribution of V̂ ∗. When d = 1 and

G is normal, the above results can be applied to K∗ directly. Note that we have used a

total of three approximations when we use the Satterthwaite distribution approximation:

Proposition 23.

V̂ ∗ − 1
4

=
∫ ∫

K∗(s, t)dFn(s)dFn(t) + op(1/n), (6.15)

n

∫ ∫
K∗(s, t)Fn(s)dFn(t)→ χ∗(λ), (6.16)

χ∗(λ)−∑∞
j=1

λj√
2
∑∞

j=1
λ2
j

≈ χ2
DOF

−DOF√
2DOF

, (6.17)

where DOF is the spectral degrees of freedom under G of centered kernel K∗. The

first two approximations only require a large sample size n and the third approximation

requires a large degrees of freedom. The degrees of freedom depends on the value of the

smoothing parameter h, when G and K∗ are fixed. We will use our simulation to show

that the degrees of freedom goes to infinity as the smoothing parameter h goes to zero.

So the third approximation needs a small h.

Substituting n(V̂ ∗ − 1
4) ≈ χ∗(λ) into the third approximation, we get:

n(V̂ ∗ − 1
4

)
∞∑

j=1

λj/
∞∑

j=1

λ2
j
≈ χ2

DOF
, (6.18)

where
∑∞

j=1
λj ,

∑∞
j=1

λ2
j

can be estimated using (6.5).
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6.5 Simulation

In this section, we assume d = 1. We will verify the asymptotic results by simu-

lation. First we consider the approximation:

n(V̂ ∗ − 1
4

) ≈ n
∫ ∫

K∗(s, t)dF0(s)dF0(t).

We use K∗(F̂ , F̂ ) to estimate
∫ ∫

K∗(s, t)dF0(s)dF0(t). For every fixed h, the difference

decreases to zero as n→∞. It verifies our guess that the error term of the Von-Mises ex-

pansion (6.3) is op(1/n). The convergence depends on the sample size n and the smooth-

ing parameter h (Table 6.1). When h is large, the data is heavily smoothed, so it

converges to zero faster for large h than small h. For fixed sample size n, the larger h is,

the better the approximation is. Suppose the critical value of the difference is 0.1, any

h > 0.533 is good for the sample size n = 500.

For the approximation

n

∫ ∫
K∗(s, t)Fn(s)dFn(t)→ χ∗(λ),

we check the mean and variance of n(V̂ ∗− 1
4) (Table 6.2). When n is large(n=500), the

sample mean and sample variance of n(V̂ ∗ − 1
4) are very close to the mean and variance

of χ∗(λ) for every fixed h. The degrees of freedom clearly depends monotonically on the

smoothing parameter h. A large h value means more smoothing. The DOF converges to

∞ as h→ 0, and 1 as h→∞.
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In order to examine the approximation

n(V̂ ∗ − 1
4

)
∞∑

j=1

λj/
∞∑

j=1

λ2
j
≈ χ2

DOF
,

for every h, we first estimate DOF , and then generate 1000 samples of the left term(every

sample contains n = 500 observations) to check if they are from χ2
DOF

using Kolmogorov-

Smirnov test. The p-values and the corresponding h and DOF are shown in Table 6.3.

When DOF > 3(h < 0.63), K-S test(p − value > 0.05) does not reject the hypothesis

that the samples are from the distribution of χ2
DOF

.

Another useful tool to examine the approximation is a quantile-quantile plot. For

h = 0.63, we generate 1000 samples from χ2
DOF

, and draw a quantile-quantile plot for the

simulated left term and the simulated data from χ2
DOF

. The points fall approximately

along the 45-degree reference line (See Figure 6.1), so we believe that the two data sets

come from the same distribution.

Combining all these simulation results, we can conclude that when n is large

enough, all approximations are very good; for a fixed sample size n, we can select a

suitable smoothing parameter h, which is good for all approximations. For example,

when n = 500, any h in the interval (0.533, 0.63) is fine for all these approximations.

Table 6.1 The mean of |n(V̂ ∗ − 1
4)− nK∗(F̂ , F̂ )| over B = 100 simulated data sets.

h=0.35 0.46 0.533 0.63 2 hop

n=500 0.9616 0.2196 0.0714 0.0093 0.0003 1.8634(h=0.31)
1000 0.6268 0.1897 0.0481 0.0075 0.0000 1.8539(h=0.27)
2000 0.0103 0.0093 0.0093 0.0014 0.0000 0.5593(h=0.23)
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Table 6.2 Moments comparisons for the approximation n(V̂ ∗− 1
4)→ χ∗(λ),n=500, based

on B = 1000 simulated data sets
h 0.05 0.35 0.63 1 2 5

E(n(V̂ ∗ − 1
4)) 1997.880 5.4601 0.7016 0.0988 0.0039 0.000002∑

λj 2005.582 5.4768 0.6925 0.1036 0.0037 0.000002
V (n(V̂ ∗ − 1

4)) 293738.6 10.23789 0.3373 0.0115 0.0000022 9.997116e-10
2
∑
λ2
j

214565.9 11.4889 0.3148 0.0106 0.0000019 9.477387e-10
DOF 37.49298 5.221545 3.0455 1.986791 1.4727232 1.020690

Table 6.3 Evaluating the approximation n(V̂ ∗ − 1
4)
∑∞

j=1
λj/

∑∞
j=1

λ2
j
≈ χ2

DOF
, n = 500

using Kolmogorov-Smirnov test based on B = 1000 samples
h 0.46 0.533 0.63 0.755 1

DOF 4 3.5 3 2.6 2
p-value 0.5361 0.3136 0.2193 0.0295 0.0053
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Fig. 6.1 Q-Q plot of randomly generated data from the two sides of (6.18)
Vertical axis: Estimated quantiles from n(V̂ ∗ − 1

4)
∑∞

j=1
λj/

∑∞
j=1

λ2
j

Horizontal axis: Estimated quantiles from χ∗(λ)
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6.6 Trace of Jf2

In Section 4.5, we showed that the eigenanalysis of Jf2
provides all solution pro-

jections, and the sum of eigenvalues
∑∞

i=1
λi is a test statistic for non-normality of X.

In this section, we assume µf = 0, Vf = Id, and H = hId, h > 0. We apply the quadratic

distance theory to find the asymptotic distribution of the trace of Jf2
, which is equal to

the sum of eigenvalues
∑∞

i=1
λi.

In Section 6.3, we found the Von-Mises expansion of V̂ ∗:

Ĵf2
− 1

4
Id = V̂ ∗ − 1

4
Id

=
∫ ∫

K∗(s, t)dFn(s)dFn(t) + op(1/n).

So we have

Trace(Ĵf2
)− d

4
=

∫ ∫
trace(K∗(s, t))dF̂n(s)dF̂n(t) + op(1/n), (6.19)
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where

trace(K∗(s, t))

= − 1
θ2

0

trace
(1

2
θ0K

∗
0
(s, t)Id − θ2K

∗
1
(s, t)− θ1K

∗
2
(s, t) +K∗

0
(s, F0)K∗

0
(t, F0)Id

−2(K∗
1
(s, F0)K∗

2
(t, F0) +K∗

1
(t, F0)K∗

2
(s, F0)) + 4K∗

3
(s, F0)K∗

3
(t, F0)

θ1

θ0

)

= − 1
θ2

0

(d
2
θ0φ(s, t, 2H2)− θ0φ(s, t, 2H2)

1 + h2

2
(
d

2h2 −
(s− t)T (s− t)

4h4 )

−θ0φ(s, t, 2H2)
1

2 + 2h2 (
dh2

2
+

(s+ t)T (s+ t)
4

) + dφ(s, 0, A)φ(t, 0, A)

−2φ(s, 0, A)φ(t, 0, A)[
2h2(1 + h2)
(1 + 2h2)2 +

1 + h2

(1 + 2h2)3 (tT t+ sT s)− 2(1 + h2)2

(1 + 2h2)4 (tT tsT s)]

+φ(s, 0, A)φ(t, 0, A)
2 + 2h2

(1 + 2h2)2 s
T t
)
,

θ0 = φ(0, 0, 2Id+2H2), and A = Id+2H2. The left term
∫ ∫

trace(K∗(s, t))dF̂n(s)dF̂n(t)

is still a kernel-based quadratic distance. Suppose the trace function has the spectral

decomposition

trace(K∗(s, t)) =
∞∑

j=1

tjφj(s)φj(t).

Under the null hypothesis X ∼ N(0, Id), by the quadratic distance theory, we have

n(Trace(Ĵf2
)− d

4
)→

∞∑

j=1

tjZ
2
j
, (6.20)

where Z ′
j
s are iid standard normal variables.
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6.7 Asymptotic Distribution of V̂ ∗

When d = 1, the limiting distribution of V̂ ∗ can be found by the spectral decom-

position of the kernel. The eigenfunctions are normalized and orthogonal:

∫
φ2
i
(x)dF0(x) = 1,

∫
φi(x)φj(x)dF0(x) = 0,

which makes the terms
∫
φi(x)dF̂n(x) are uncorrelated variables with mean zero and

variance one. So we have
∫
φi(x)dF̂n(x)→ Zi, and all Z ′

i
s are iid standard normal. When

d > 1, the spectral decomposition still holds. We will use the permutation invariant

property of V̂ ∗ to study the properties of the terms
∫
φi(x)dF̂n(x), and then get the

form of the limiting distribution of V̂ ∗.

Withers(1974) presented the multivariate version of the spectral decomposition.

Let K(x, y) be a matrix measurable d× d symmetric kernel function on S × S. A d× 1

function φ(y) is an eigenfunction of K(x, y) under measure M if the following equation

holds for eigenvalue λ:
∫
K(x, y)φ(y)dM(y) = λφ(x).

The eigenfunctions φi are normalized and orthogonal:

∫
φT
i

(x)φj(x)dM(x) =





1, i = j;

0, i 6= j.
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Theorem 2. Under the condition

0 ≤
∫ ∫ ∑

i,j

|Kij(x, y)|2dM(x)dM(y) ≤ ∞,

a symmetric kernel K(x, y) can be written as

K(x, y) =
∞∑

j=1

λjφj(x)φT
j

(y), (6.21)

where λj and φj are eigenvalues and corresponding eigenfunctions of K(x, y) under the

measure M . The series in (6.21) converges (elementwise) absolutely and uniformly to

K.

Suppose G is a hypothetical true model, we center the matrix kernel K(x, y) to get an

uniform decomposition:

Kcen(G)(x, y) = K(x, y)−K(x,G)−K(G, y) +K(G,G).

So any constant vector a = (a1, a2, ..., ad)
T in Rd is a eigenfunction of Kcen(G)(x, y) with

eigenvalue zero:
∫
Kcen(G)(x, y) · adG(y) = 0.

For any eigenfunction φi = (φi1, φi2, ..., φid) with non-zero eigenvalue, by the orthogo-

nality of eigenfunctions, we have

∫
φT
i

(x) · adG(x) =
d∑

j=1

aj

∫
φij(x)dG(x) = 0, ∀a ∈ Rd,
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and
∫
φT
i

(x)φi(x)dG(x) =
d∑

j=1

∫
φ2
ij

(x)dG(x) = 1.

Thus, we have
∫
φij(x)dG(x) = 0, ∀i, j, and

∑d
j=1

∫
φ2
ij

(x)dG(x) = 1. Now we consider

the decomposition of our kernel function K∗(s, t)

K∗(s, t) =
∞∑

j=1

λjφj(s)φ
′
j
(t), λj > 0.

Substituting it into the Von-Mises approximation of V̂ ∗:

n(V̂ ∗ − 1
4

)Id = n

∫ ∫
K∗(s, t)F̂ (s)dF̂ (t) + op(1)

= n

∫ ∫ ∞∑

j=1

λjφj(s)φ
′
j
(t)dF̂n(s)dF̂n(t) + op(1)

= n
∞∑

j=1

λj

(∫
φj(s)dF̂n(s)

)(∫
φj(t)dF̂n(t)

)′
+ op(1).

(6.22)

When the null hypothesis X = (X1, X2, ..., Xd) ∼ N(0, Id) is true, any permutation of

X: Xσ = (Xσ1, Xσ2, ..., Xσd) has the same distribution N(0, Id). We get the same Fisher

information matrix Jf2
for Xσ. Consider any two realizations Xi = (Xi1, Xi2, ..., Xid),

Xj = (Xj1, Xj2, ..., Xjd) from X, and any permutations Xσi = (Xσi1 , Xσi2 , ..., Xσid), and

Xσj = (Xσj1 , Xσj2 , ..., Xσjd). The two matrices have the same distribution:

K∗(Xi, Xj)
.= K∗(Xσi , Xσj ).
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So, for any eigenfunction φi(x), all elements have the same distribution

φik(Xi)
.= φil(Xi), ∀k, l.

Thus, we have

∫
φ2
ik

(x)dF0(x)

=
1
d

d∑

k=1

∫
φ2
ik

(x)dF0(x)

=
1
d
, ∀1 ≤ i ≤ ∞, 1 ≤ k ≤ d, (6.23)

∫
φik(x)φil(x)dF0(x)

=
∫
φik′(x)φil′(x)dF0(x)

:=
1
d
ρi, ∀1 ≤ i ≤ ∞, 1 ≤ k 6= l, k′ 6= l′ ≤ d, (6.24)

and

∫
φik(x)φjl(x)dF0(x)

=
∫
φik(x)φjk(x)dF0(x)

=
1
d

d∑

k=1

∫
φik(x)φjk(x)dF0(x)

=
1
d

∫
φT
i

(x)φj(x)dF0(x)

= 0,∀1 ≤ i 6= j ≤ ∞, 1 ≤ k, l ≤ d. (6.25)
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Let Σi be the covariance matrix of φi(X):

Σi =
1
d




1 ρi ... ρi

ρi 1 ρi ρi

... ... ... ...

ρi ρi ... 1




.

The covariance matrix Σi has the d eigenvalues ai1 = 1
d(1− (d− 1)ρi) and aik = 1

d(1−

ρi), k = 2, ..., d. Then we have

√
n

∫
φi(x)dF̂n(x)→ Σ

1
2
i Zi, i = 1, 2, ...d,

where Z ′
i
s are iid d-variate standard normal variables. Applying the above results to

( 6.22) derives

n(V̂ ∗ − 1
4
Id) = n

∞∑

j=1

λj

(∫
φj(s)dF̂n(s)

)(∫
φj(t)dF̂n(t)

)T
+ op(1)

→
∞∑

i=1

λiΣ
1
2
i ZiZ

T
i

Σ
1
2
i

:=
∞∑

i=1

λiWi, (6.26)

where Wi ∼ Wd(Σi, 1) are independent Wishart variables with one degree of freedom.

So the limiting distribution of n(V̂ ∗ − 1
4Id) is a infinite sum of weighted of independent

Wishart variables. Similar to Satterthwaite approximation of the sum of independent

chi-squared variables, we can find a Wishart variable W (γ,Σ) to approximate the sum

of independent Wishart variables by matching the first two moments(See details in Nel
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and Merwe 1986). However, we still do not know the correlation parameters ρi. More

investigation is needed to find the decomposition of the kernel matrix or an easy way to

estimate the correlation parameters. By using the limiting distribution of n(V̂ ∗ − 1
4Id),

we can find the limiting distribution of trace(V̂ ∗). Let D = diag(ai1, ai2, ..., aid). Then,

we have

n(trace(V̂ ∗)− d

4
) →

∞∑

i=1

λitrace(Σ
1
2
i ZiZ

T
i

Σ
1
2
i )

=
∞∑

i=1

λiZ
T
i

ΣiZi

=
∞∑

i=1

λiZ
T
i
DZi

=
∞∑

i=1

λi
d

(
(1− (d− 1)ρi)Z

2
i1

+ (1− ρi)
d∑

k=2

Z2
ik

)
, (6.27)

which is different from another form (6.20) we found by directly considering the trace

of the kernel function in Section 6.5, but it is still a weighted sum of independent chi-

squared variables. The two expressions for the same limiting distribution may help us

to find the values of parameters.
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Chapter 7

Non-normality Direction

7.1 Overview

Let X = (X1, X2, ..., Xd) be a d-dimensional random vector with the density

function f(x). Let a be a d-dimensional vector and Y = aTX be a linear projection

with the density g(y). Our aim is to find a subspace of projections that has the least

similarity to white noise coordinates. In Section 3.3, we showed that the eigenanalysis

of Jf provides all the solution projections. The projection’s similarity to white noise

depends on the corresponding eigenvalue. When the eigenvalue reaches the lower bound,

the corresponding projection is a white noise, which can be discarded in further study

because it is marginally normal and independent of the other projections. However, Jf

is not easy to estimate because of the denominator f . In order to solve the computation

problem of Jf , we applied the density square transformation to get the new Fisher

information matrix Jf2
; we also constructed a new projection index Qf by Von-Mises

expansion. Both of the two projection indices are easy to estimate by the kernel method.

And we can find all the solution projections only by the eigenanalysis of Jf2
or Qf .

In Section 7.2, we will apply the two new projection indices to the simulated data

sets to investigate their power in detecting known non-normal structures. In order to

assess whether a coordinate is white noise, we develop a simulation-based test procedure.

In Section 7.3, the projection pursuit methods will be applied to the real data sets to
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compare the performance with classical methods. We will summarize the advantages

and possible problems of the two projection pursuit methods in the next chapter.

7.2 Simulation Study

In this section, we apply our method to the artificially generated data sets, in

which the structures are known. Without other specification, the smoothing parameter

used will be

Hop =
( 4
d+ 2

) 1
d+4 Σ1/2n−

1
d+4 ,

where Σ can be estimated by the sample covariance matrix. See Chapter 4 Section 3 for

a discussion of its optimality properties.

7.2.1 Matrix Index vs Scalar Index

A scalar projection index measures the marginal non-normality of a projection.

Many projection pursuit algorithms based on scalar projection indices (e.g. Friedman

1984, Jee 1985) require searching the whole subspace to find interesting features within

a data set. As showed in Section 3.3, 4.5 and 5.2, the Fisher information matrix Jf2

and the Von-Mises approximation Qf measure the conditional non-normality of X. For

example, the ith diagonal term of Jf2
is the weighted average of the Fisher information

JXi|X−i of Xi conditioned on all other uncorrelated variables. In order to find the least

normal directions, we only need to calculate or estimate the Fisher information matrix

Jf2
, and do an eigenanalysis of the estimated matrix. Furthermore, we might hope that
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the least conditional normal projection from the eigenanalysis of Jf2
and Qf also has

the least marginal normality.

Consider the distribution

f(x1, x2) = 2φ
(

(x1, x2)T , (0, 0)T , I2

)
I(x1x2 > 0).

The center is the origin. The covariance matrix is

Vf =




1 2/π

2/π 1


 .

This distribution arises from a standard bivariate normal distribution by the transfor-

mation:

(x1, x2) =





(z1, z2), if z1 ∗ z2 ≥ 0

(z1,−z2), if z1 ∗ z2 < 0.

Both X1 and X2 are marginally normal, but the conditional distribution of X1|X2 or

X2|X1 are not. First, let Y = V
− 1

2
f X. So the density function of Y is

g(y) = f(V
1
2
x
y)I

V
1
2
x y>0

|V 1
2
x
|

∝ exp
(
−1

2
(y2

1
+ y2

2
+

4
π
y1y2)

)
Iy2

1+y2
2+πy1y2>0.

From the contour plot(Figure 7.1), we might guess that the projection 1√
2
y1 + 1√

2
y2 has

the least marginal normality. By the symmetry of y1 and y2, it is easy to show that all
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the three indices Jf , Jf2
and Qf have the form




a b

b a




Thus, the eigenvector with the largest eigenvalue is ( 1√
2
, 1√

2
) and the eigenvector with the

smallest eigenvalue is ( 1√
2
,− 1√

2
). So, on average, the projection 1√

2
y1 + 1√

2
y2 has least

normality conditioned on the uncorrelated variable 1√
2
y2− 1√

2
y1. The simulation results

are consistent with the theoretical analysis (See Table 7.1). A much bigger sample size is

needed to get a good estimator of Qf . When the sample size is only 500, the estimators

of Jf2
are more robust than those of Qf .

The result also verifies our conjecture that the least conditional normal projection

also has the least marginal normality in our problem. Note that the smaller eigenvalue

of Jf2
is less than the lower bound 1, because the density function f(x1, x2) is not

differentiable at the origin (0, 0), and so the matrix inequality does not hold for this

density function.

Table 7.1 eigenanalysis of Jf2
and Qf for f(y1, y2) ∝ exp

(
−1

2(y2
1

+ y2
2

+
4
πy1y2)

)
Iy2

1+y2
2+πy1y2>0 based on simulated samples

Projection Index Sample size Eigenvalue Eigenvector
Jf2

n=500 0.3455 (−0.6985, 0.7156)
0.6058 (0.7156, 0.6985)

Jf2
n=500 0.3488 (−0.6981, 0.7160)

0.5060 (0.7160, 0.6981)
Qf n=500 3.9131 (−0.9246,−0.3810)

6.2443 (0.3810,−0.9246)
Qf n=500 6.1705 (0.1922, 0.9813)

13.0338 (0.9813,−0.1922)
Qf n=2000 1.2001 (−0.7170, 0.6971)

2.0628 (0.6971, 0.7170)
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7.2.2 Normal Mixture Model

We used the density square transformation to get a rapidly computable Fisher

information matrix Jf2
. The density square transformation preserves the most important

structures of the original data, so we believe the optimal directions from the eigenanalysis

of Jf2
should be close to those from Qf . In order to verify our guess, we will compare the

results from Qf and Jf2
for the simplest case: projection from dimension 2 to dimension

1. The results are presented graphically.

The first model is two-component mixture of normals:

f(x1, x2) = 0.5φ(x1, 0, 1)φ(x2, 0, 1) + 0.5φ(x1, 3, 1)φ(x2, µ, 1), µ ≥ 0

Both components have unit covariance matrix I2. The center of the first component

is fixed at the origin. The second mean vector is (3, µ). So the two components are

well separated. In order to simplify the computation, we use the angle θ ∈ [0, π/2]

clockwise the positive axis as the parameter of the line. The projection Y on the line

X2 = tan(θ)X1 is Y = cos(θ)X1 + sin(θ)X2. Let α = arctan(µ2/3). Then the line

between two component centers is: X2 = tan(α)X1. From the contour plot of the density

(Figure 7.2), we think that the ideal solution should be the projection on the line between

the two centers. This projection Y = cos(α)X1 + sin(α)X2 is still a two-component

normal mixture, so it has least conditional normality.

We do the standardization XS = V
− 1

2
f X. It is easy to show that the transformed

model is still a two-component normal mixture model and the standardization will not

change the optimal direction. The least normal direction is the line between the two
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centers and the optimal direction is still (cos(α), sin(α)). In the eigenanalysis of Jf ,

Jf2
and Qf , we showed that the standardization preserves the non-normality measure.

So we do not need to compute the new density and the new projection index for the

standardized variable.

For every fixed θ ∈ [0, π], the exact form of Jf2
can be computed numerically

(see section 4.2 for formulas). An easy way is to use a random sample from f(x1, x2) to

estimate Jf2
. The asymptotically optimal H is used. The sample size is 1000. In order to

ensure good estimator of Qf , we use a bigger sample size n = 2000. The asymptotically

optimal H is also used to estimate Qf .

The simulation results (Table 7.3 and Table 7.2) agree with what we expected: for

two-component mixture of normals, the eigenanalysis of Qf and Jf2
provides the same

least normal projection Y = cos(α)X1 + sin(α)X2, which also has the least marginal

normality.
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Table 7.2 The least normal direction from the eigenanalysis of estimated Jf2
based on

1000 samples. The ideal solution direction is (cos(α), sin(α)).
µ α (cos(α), sin(α)) least normal direction
0 0 (1,0) (0.9995,-0.0301)√
3 π/6 (0.8660, 0.5000) (0.8659,0.5003)

3 π/4 ( 0.7071, 0.7071) (0.7089,0.7053)
3
√

3 π/3 (0.5000,0.8660) (0.5027,0.8643)
1000 π/2 (0,1) (0.0002,1.0000)

Table 7.3 The least normal direction from the eigenanalysis of estimated Qf based on
2000 samples. The ideal solution direction is (cos(α), sin(α)).

µ α (cos(α), sin(α)) least normal direction
0 0 (1,0) (1,0)√
3 π/6 (0.8660, 0.5000) (0.8659, 0.5002)

3 π/4 (0.7071, 0.7071) (0.7071, 0.7071)
3
√

3 π/3 (0.5000,0.8660) (0.5000,0.8660)
1000 π/2 (0,1) (0,1)

The second model is a three-component normal mixture model of equal propor-

tions. Each component has unit covariance matrix I2. The mean vectors are (5, 5),

(−5,−5) and(5,−5). According to the contour plot of the density (Figure 7.3), there

are three natural solution projections. The first one is the projection Y1 = cos(π4 )X1 +

sin(π4 )X2, which has three separated components. The second one is the projection

Y2 = X1, or Y2 = X2, which has two components. The density of this projection is

f(x) = 1
3φ(x,−5, 1)+ 2

3φ(x, 5, 1). A third possible solution projection is Y3 = cos(3π
4 )X1+

sin(3π
4 )X2, which has two components.

It is easy to show that, after the standardizationXS = V
− 1

2
f X, the transformed

model is still a three-component normal mixture model and the standardization will not
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change the possible optimal directions.

In this example, we do not need to find the exact value of Jf2
or Qf It is easy to show

that both of them have the form 


a b

b a


 .

For the above matrix, the eigenvectors must be ( 1√
2
, 1√

2
) for the largest eigenvalue

and ( 1√
2
,− 1√

2
) for the smallest eigenvalue. So both the projections indices Jf2

and

Qf favor the first projection Y1 = cos(π4 )X1 + sin(π4 )X2. Alternatively, the projection

Y3 = cos(3π
4 )X1 + sin(3π

4 )X2 is closest to white noise. We may get a different solu-

tion projection if a different projection index is used, for example, L1 metric index or

Hellinger metric index (See the similar model in Jee 1985).

This example reveals a possible drawback of our projection pursuit method based

on eigenanalysis. Some interesting non-normal projections(e.g. Y2) are not found, be-

cause they are not orthogonal to the least normal projection Y1. However, the solution

found does capture all the mixture components.
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Fig. 7.2 Contour plot for 0.5φ(x1, 0, 1)φ(x2, 0, 1) + 0.5φ(x1, 3, 1)φ(x2, 3, 1)
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Fig. 7.3 Contour plot for f(x1, x2) = 1
3φ(x1, 5, 1)φ(x2, 5, 1) + 1

3φ(x1, 5, 1)φ(x2,−5, 1) +
1
3φ(x1,−5, 1)φ(x2,−5, 1)



89

7.2.3 Needle in a Haystack

In this subsection, we will investigate the power of our projection pursuit meth-

ods in finding an interesting structure in high dimensional space. We also study the

effect of the selection of smoothing parameter h. The simulation results show that when

dimensionality d increases, the required sample size increases rapidly. For the Fisher

information matrix Jf2
, the rate of increase is less the exponential. The Von-Mises

approximation matrix Qf requires a very large sample size, compared to Jf2
.

In the example, we construct a spiral in the first two dimensional space(Figure

7.4), and fill the remaining coordinates with white noise. The standardization Y = V
− 1

2
f

preserves the spiral structure(Figure 7.5).

Our purpose is to find the two-dimensional needle in a high dimensional haystack.

This example was used in Posse(1995) for comparing the efficiency of projection pursuit

methods. It is a big challenge for an algorithm to find the spiral structure in high

dimensional space, because “the density of the spiral is nearly normal i.e., nearly radial

and decreasing when going away from the center”(Posse 1995).

First we use the same setting as Posse(1995): consider the spiral structure in

R8 and use the sample size of n = 400. The first two principal components from the

estimated Jf2
reveal the spiral structure very well (Figure 7.6). This structure from

the eigenanalysis of Jf2
is similar to the result of Posse’s method, which has been shown

better than Friedman’s algorithm in this example. However, the eigenanalysis of Qf does

not reveal the spiral structure (Figure 7.7). The reason is that the sample size n = 400

is too small for the dimensionality d = 8. When the dimensionality d increases to ten,
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the structure found by the eigenanalysis of Jf2
becomes vague (Figure 7.8). In order

to reveal the structure, we need a bigger sample size(n=800)(Figure 7.9). We conclude

that Jf2
was remarkably successful in finding a spiral buried in a haystack of white noise.

Now we use different smoothing parameters H = hId to estimate Qf , and then

reveal the spiral structure in R3 using the eigenanalysis of the estimated Qf . The sam-

ple size is n = 700. When h = hop = 0.3799, the eigenanalysis of Qf successfully

reveals the spiral structure(Figure 7.10). As h increases, the revealed structure becomes

vague(Figure 7.11, Figure 7.12). When h = 0.8, the eigenanalysis of Qf fails(Figure

7.13). When h is smaller than hop(h = 0.2), the revealed spiral structure becomes much

clearer(Figure 7.14). But if h is too small(h = 0.04), the revealed structure becomes

vague again(Figure 7.15).

This example reveals an important aspect of our problem, that the choice of

bandwidth can have a critical role in the success of our methods. We will not pursue

bandwidth selection further in this thesis, but leave it to future work. One immediate

practical solution is to try a range of bandwidths.
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Fig. 7.6 The structure found by the eigenanalysis of Jf̂2
, d = 8, n = 400
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Fig. 7.7 The structure found by the eigenanalysis of Qf , d = 8, n = 400
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Fig. 7.8 The structure found by the eigenanalysis of Jf̂2
, d = 10, n = 400
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Fig. 7.9 The structure found by the eigenanalysis of Jf̂2
, d = 10, n = 800
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Fig. 7.10 The structure found by the eigenanalysis of Qf , d = 3, n = 700, h = 0.3799
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Fig. 7.11 The structure found by the eigenanalysis of Qf , d = 3, n = 700, h = 0.5



95

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 7.12 The structure found by the eigenanalysis of Qf , d = 3, n = 700, h = 0.6
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Fig. 7.13 The structure found by the eigenanalysis of Qf , d = 3, n = 700, h = 0.8
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Fig. 7.14 The structure found by the eigenanalysis of Qf , d = 3, n = 700, h = 0.2
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Fig. 7.15 The structure found by the eigenanalysis of Qf , d = 3, n = 700, h = 0.04
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7.2.4 White Noise Detection

Suppose the eigenvalues of Jf2
are ordered: λ1 ≥ λ2 ≥ ... ≥ λd with corresponding

eigenvectors are γ1, γ2, ..., γd. Suppose the solution projection P has the density h. The

Fisher information Jh2
is a diagonal matrix Jh2

= diag(λ1, λ2, ...λd). The eigenvalue λi

is the measure of the non-normality of the corresponding projection Pi = γiX. In theory,

when the eigenvalue λk reach a lower bound 0.25, then the eigenvalues λi = 0.25, i ≥ k,

and the corresponding projections Pi = γiX are white noise coordinates, which are

standard normal and independent of the other projections. However, in practice, the

eigenvalues from white noise are much bigger than 0.25, unless the sample size is huge.

In this subsection, we will propose a sequential test to detect the white noise

coordinates within the solution projections from the eigenanalysis of Jf2
. First we test

the null hypothesis that all eigenvalues are equal to 0.25. The alternative hypothesis is

that the largest eigenvalue λ1 ≥ 0.25. If we reject the null hypothesis, we will consider

the next hypothesis:H0 : λ2 = λ3 = ... = λd = 0.25 vs Ha : λ2 ≥ 0.25. We propose to

continue in this fashion until we fail to reject.

For the general null hypothesis H0 : λk = λk+1 = ... = λd = 0.25 vs the al-

ternative hypothesis Ha : λk 6= 0.25, we propose two different test statistics: λ̂k and

Ŝk =
∑d

j=k
λ̂j . Under the null hypothesis, the projections (Pk, Pk+1, ..., Pd) are white

noise coordinates. Suppose Zk, Zk+1, ..., Zd are independent standard normal variables.

Then the variable vector P ∗ = (P1, P2, ..., Pk−1, Zk, Zk+1, ..., Zd) should have the same

distribution as the solution projection P = (P1, P2, ..., Pk, Pk+1, ..., Pd). For a fixed sample
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size n and dimensionality d, we draw 1000 random samples of size n from a d − k + 1-

dimensional standard normal distribution. For every sample (Zk, Zk+1, ..., Zd), we use

the data (P1, P2, ..., Pk−1, Zk, Zk+1, ..., Zd) to estimate the Fisher information matrix.

The jth eigenvalue is a sample of λj , k ≤ j ≤ d. We construct the empirical distributions

of λ̂k and Ŝk =
∑d

j=k
λ̂j using the 1000 samples, and then get the critical values F̂λk,0.05

and F̂Sk,0.05. If the estimated λk (Sk) is less than the critical value F̂λk,0.05 (F̂Sk,0.05), we

will fail to reject the null hypothesis: H0 : λk = λk+1 = ... = λd = 0.25, i.e., we think

that there are d− k + 1 white noise coordinates.

When we test the null hypothesis that all eigenvalues are equal to 0.25, another

way to find the critical value of the trace Ŝ1 =
∑d

j=1
λ̂j is the asymptotic distribution we

found in Chapter 6. The critical values from random samples and the asymptotic distri-

butions are listed in Table 7.4 for some n and d. The results show that the Satterthwaite

approximation provides good approximation for fairly big sample size.

After a dimension reduction that removes all white noise coordinates, all remain-

ing projections are significantly non-normal, then similar to principal component analy-

sis, one can use the cumulative proportion of eigenvalues
∑k

i=1
λi/
∑d

i=1
λi as an index

of how much of the non-normality of the data explained by the selected projections:

P1, ..., Pk.

We will use these tests and diagnostics on our examples in the next section.

Table 7.4 Critical values of S1: F̂S1,0.05 from 1000 random normal samples; F̂ ∗
S1,0.05

from
asymptotic distributions

(n, d) (50, 7) (100, 4) (150, 4) (392, 6) (500, 7)
F̂S1,0.05 6.4963 1.7884 1.9006 3.3830 4.6306

F̂ ∗
S1,0.05

9.1469 1.9072 1.7825 3.4430 4.9274
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7.3 Real Data Analysis

The following real data sets have been used to illustrate projection pursuit meth-

ods by Friedman and Tukey (1974), Friedman (1987), and Jee (1985). We will apply the

eigenanalysis of the estimated Fisher information matrix Jf̂2
and the Von-Mises approx-

imation Qf to these data sets, and compare the results with those from the above three

algorithms.

7.3.1 Particle Physics Data

This data set, having 500 observations, was derived from a high-energy particle

physics scattering experiment(Ballam 1974, Friedman 1974, and Jee 1985). In the nu-

clear reaction, a positively charged pi-meson becomes a proton, two positively charged

pi-mesons and a negatively charged pi-meson. Every observation consists of seven inde-

pendent measurements.

The results of the eigenanalysis of Jf̂2
are listed in Table 7.5. The results from

our two tests are contradictory. According to the test procedure based on λ̂k, all solution

projections are sequentially found to be significantly non-normal because all eigenvalues

are bigger than the corresponding critical values. However, the sum of all eigenvalues is

less than the critical value 4.6306, so on this basis we would not reject the hypothesis

that all solution projections are normal.

The first two largest classical principal components from the covariance matrix

are shown in Figure 7.16, which indicates the data may consist of three clusters, but

the structure is not very clear. The first two solution projections from Jf̂2
(Figure 7.18)
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shows a triangular shape with points concentrated around two of three corners, which

is obviously non-normal. So the test based on λ̂k seems to better detect non-normal

structure. The first two projections explains about 36.68% non-normality of the whole

data.

The scatter plot of the first two solution projections from the index Qf fails to

reveal interesting structure because of its high requirement of sample size (Figure 7.17).

Jee (1985) also found the similar triangular structures using the trace of Jf as pro-

jection index. It verifies our conjecture that the density square transformation preserves

the main structure of the original data.

Table 7.5 Eigenanalysis of Jf̂2
and critical values from 1000 samples for Particle Physics

Data
k 1 2 3 4 5 6 7
λk 0.7697 0.7053 0.6492 0.5196 0.5055 0.4453 0.3930

F̂λk,0.05 0.7170 0.6978 0.6685 0.4069 0.5069 0.4095 0.3420∑d
i=k

λi 3.9876 3.2179 2.5126 1.8634 1.3438 0.8383 0.3930
F̂Sk,0.05 4.6306 3.8902 3.1485 2.3925 1.4689 0.8001 0.3420∑k

i=1
λi/
∑d

i=1
λi 0.1930 0.3699 0.5327 0.6630 0.7898 0.9014 1.00
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Fig. 7.16 Particle Physics Data
The scatter plot of the first two largest principal components
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Fig. 7.17 Particle Physics Data
The scatter plot of the first two largest principal components from Qf
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Fig. 7.18 Particle Physics Data
The scatter plot of the two-dimensional solution projections from Ĵf2
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7.3.2 Iris Data

This well known data set was used by Fisher and many researchers. It contains

three classes of fifty observations each, where each class refers to a species of iris plant.

One class is quite different from the other two. Every observation consists of four inde-

pendent measurements: sepal length, sepal width, petal length, petal width.

First we consider the eigenanalysis of Qf . The plots of the solution projections

do not reveal the structure of the iris data (Figure 7.19, Figure 7.20).

For the Fisher information matrix Jf2
, the results of the eigenanalysis for the whole

iris data are listed in Table 7.6. According to the critical values from 1000 samples, both

tests agree that only the first solution projection is significantly non-normal. And the first

solution projection explains 48.69% of non-normality of the whole data. The histogram

of the one-dimensional solution projection and the scatter plot of the two-dimensional

solution projections are shown in Figure 7.21 and Figure 7.22. The projected data are

well separated into two clusters: the first 50 observations(one species) and the remaining

100 observations(two more species). The 100 observations are also separated into clusters

according to the true tags, but the boundary is not so apparent.

After deleting the first class data, we apply our eigenanalysis to the remaining

100 observations. The results of the eigenanalysis for the reduced iris data are listed

in Table 7.7. Because the largest eigenvalue λ1 = 0.6581 is bigger than the critical

value F̂λ1,0.05 = 0.5122, but the second largest eigenvalue λ2 = 0.5007 is less than

the critical value F̂λ2,0.05 = 0.5064, we think that only the first solution projection is
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significantly non-normal. The test based on Ŝk comes to the same conclusion. The non-

normal projection explains 32.31% of non-normality of the data. The scatter plot of the

two-dimensional projections from Ĵf̂∗2
is shown in Figure 7.23. The result is similar to

that of Friedman and Tukey(1974) and the two-dimensional Fisher linear discriminant

projections (see Figure 2e of Friedman 1974). Because these two species are overlapped

in the full four dimensional space(Sammon 1969, Zahn 1971, Friedman and Tukey 1974),

it is virtually impossible to separate the two classes perfectly.

Table 7.6 Eigenanalysis of Jf̂2
and critical values from 1000 samples for the whole Iris

Data
k 1 2 3 4
λk 1.2366 0.4766 0.4260 0.4006

F̂λk,0.05 0.5549 0.4871 0.4556 0.4160∑d
i=k

λi 2.5398 1.3032 0.8266 0.4006
F̂Sk,0.05 1.9006 1.3220 0.8572 0.4160∑k

i=1
λi/
∑d

i=1
λi 0.4869 0.6745 0.8423 1.00

Table 7.7 Eigenanalysis of Jf̂2
and critical values from 1000 samples for the remaining

100 observations
k 1 2 3 4
λk 0.6581 0.5007 0.4587 0.4192

F̂λk,0.05 0.5122 0.5064 0.4716 0.4423∑d
i=k

λi 2.0367 1.3786 0.8779 0.4192
F̂Sk,0.05 1.7884 1.3982 0.8942 0.4423∑k

i=1
λi/
∑d

i=1
λi 0.3231 0.5690 0.7942 1.00
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Fig. 7.19 Iris Data(150 points)
The histogram of the one-dimensional solution projection from Qf
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Fig. 7.20 Iris Data(150 points)
The scatter plot of the two-dimensional solution projections from Qf
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Fig. 7.21 Iris Data(150 points)
The histogram of the one-dimensional solution projection from Jf̂2
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Fig. 7.22 Iris Data(150 points)
The scatter plot of the two-dimensional solution projections from Jf̂2
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Fig. 7.23 Iris Data(100 points)
The scatter plot of the two-dimensional solution projections from Jf̂2
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7.3.3 States Data

This data set was used in Becker and Chambers (1984) and Friedman (1987). It

includes seven summary variables for 50 United States (from Table 1 of Friedman 1987):

1. Y1 population estimate as of July 1, 1975;

2. Y2 average income (1974);

3. Y3 illiteracy rate (1970);

4. Y4 life expectancy (1969-1971);

5. Y5 homicide rate (1976);

6. Y6 high-school graduation rate (1970);

7. Y7 average number of days below freezing temperature (1931-1960) in capital or

large city.

The sample size 50 is small for seven dimensions. We use the States data set to check

the performance of our algorithm for a small sample size. Before estimating the Fisher

information matrix Jf2
and Qf , we standardize the variables to remove the scale influ-

ence.

The ordered eigenvalues of Jf̂2
and the cumulative proportions are listed in Table

7.9. We can not reject the null hypothesis: the whole data is normal, because the largest

eigenvalue 0.9302 is less than the critical value 1.0600, and the sum of all eigenvalues

5.0858 is also less than the corresponding critical value 6.4963. Of course, the small

sample size gives small power.



109

The scatter plot of the two-dimensional solution projections from Jf2
is shown

in Figure 7.24. The 50 states are separated into two clusters, and two states are out-

liers. The 10 states in the smaller cluster are listed in Table 7.8. The first projection

mainly depends on three variables: homicide rate (negative), high school graduation

rate(positive), and illiteracy rate(negative):

P1 = 0.0753Y1 − 0.1080Y2 − 0.2070Y3 + 0.0003Y4 − 0.4410Y5 + 0.4383Y6 + 0.0995Y7.

Life expectancy is the least important index. The states in the larger cluster tend to

have higher high-school graduation rate, lower homicide rate, and lower illiteracy rate.

The means of these rates in the two clusters verify this conclusion (Table 7.10). The

two outlier states are Alaska and New Mexico. Alaska has high rate of high-school

graduation(0.67) and a high average income(6315). New Mexico does not have one

extreme variable. It is distant from most other states because of its whole performance.

The scatter plot of the two-dimensional solution projections from Qf is shown

in Figure 7.25. The four states are outliers: New York, California, Alaska and Nevada.

The solution projections do not separate the remaining states well.

Table 7.8 The ten states in the small cluster
Alabama Arkansas Georgia Kentucky Louisiana

Mississippi North Carolina South Carolina Tennessee Texas
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Table 7.9 Eigenanalysis of Ĵf2
and critical values from 1000 samples for State Data

k 1 2 3 4 5 6 7
λk 0.9302 0.7600 0.7300 0.7081 0.6863 0.6541 0.6171

F̂λk,0.05 1.0600 1.0017 0.9332 0.8694 0.8394 0.7605 0.6784∑d
i=k

λi 5.0858 4.1556 3.3956 2.6656 1.9575 1.2712 0.6171
F̂Sk,0.05 6.4963 5.4761 4.3595 3.3208 2.4081 1.4835 0.6784∑k

i=1
λi/
∑d

i=1
λi 0.1829 0.3323 0.4759 0.6151 0.7500 0.8787 1.00

Table 7.10 Means of important variables in the two clusters
Variables illiteracy rate homicide rate high-school graduation rate

Smaller Cluster 2.08 12.13 40.9
Bigger Cluster 0.89 5.96 55.91
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Fig. 7.24 State Data (d=7, n=50)
The scatter plot of the two-dimensional solution projections from Jf̂2
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Fig. 7.25 State Data (d=7, n=50)
The scatter plot of the two-dimensional solution projections from Qf
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Friedman and Tukey(1987) analyzed the State data using their projection pursuit

method. The results are similar, but the solution projections are different:

1. The 50 states were also separated into two clusters and two outliers. However, the

smaller cluster contained the 10 states of our smaller cluster plus New Mexico and

West Virginia. The two outliers were Alaska and Nevada.

2. The critical variables are different. In Friedman and Tukey(1987), the solution

projection mainly depends on population, life expectancy and homicide rate.

7.3.4 Cars Data

The cars data consists of 392 complete observations on the following 8 variables:

Y1 MPG (miles per gallon), Y2 number of cylinders, Y3 engine size, Y4 horsepower, Y5

vehicle weight (lbs.), Y6 time to accelerate from 0 to 60 mph (sec.), Y7 model year

(modulo 100), and Y8 origin of car (American, European, or Japanese). We only use the

first six variables because the last two variables are dummy variables. So we consider

392 points in a 6 dimensional space.

First we consider the eigenanalysis of Qf . The histogram of the one-dimensional

solution projection (Figure 7.26) and the scatter plot of the two-dimensional solution

projections (Figure 7.27) show that the data are roughly separated into two clusters.

One cluster mainly includes the European and Japanese cars. Most American cars are

included in the second cluster.

The eigenanalysis results of Jf2
are listed in Table 7.11. Only the first solution

projection is significantly non-normal according to the critical values. The first solution
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projection explains about 35.56% non-normality of the whole cars data. The histogram

and the scatter plot of the two-dimensional solution projections (Figure 7.28 ,Figure

7.29) show that the data are separated into three clusters. Most European and Japanese

cars are in one cluster with a few American cars. The second cluster mainly consists of

American cars, also includes several European cars and Japanese cars. The remaining

American cars form the third cluster. The largest solution projection is P1 = −0.1186Y1−

1.0449Y2 + 0.2076Y3 + 0.2135Y4 − 0.2922Y5 − 0.0107Y6, which mainly depends on the

number of cylinders in engine, and likely arises from the discreteness of this factor. Four

Japanese cars associated with larger projected values are outliers. The separation is

more clear in the plot of the three-dimensional solution projections (Figure 7.30). The

plot of the solution projection of Friedman and Tukey also shows the trimodal pattern,

but not as clear as ours (See Figure 7 in Friedman and Tukey 1987). The reason may

be that the dummy variables, model year and origin of car, are included in their method

and then data with the same values are randomly ordered.

Table 7.11 Eigenanalysis of Jf̂2
and critical values from 1000 samples for Cars Data

k 1 2 3 4 5 6
λk 1.3433 0.5825 0.5222 0.5008 0.4352 0.3936

F̂λk,0.05 0.6180 0.6046 0.5658 0.5280 0.4756 0.4232∑d
i=k

λi 3.7776 2.4343 1.8518 1.3296 0.8288 0.3936
F̂Sk,0.05 3.3830 2.7934 2.1496 1.5161 0.9201 0.4232∑k

i=1
λi/
∑d

i=1
λi 0.3556 0.5098 0.6480 0.7806 0.8958 1.00
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Fig. 7.26 Cars Data (d=7, n=50)
The histogram of the one-dimensional solution projection from Qf
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Fig. 7.28 Cars Data (d=7, n=50)
The histogram of the one-dimensional solution projection from Jf̂2
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Fig. 7.29 Cars Data (d=7, n=50)
The scatter plot of the two-dimensional solution projections from Jf̂2
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Fig. 7.30 Cars Data (d=7, n=50)
The scatter plot of the three-dimensional solution projections from Jf̂2
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Chapter 8

Conclusion and Future Work

8.1 Projection Index Jf2

In the simulated samples and real data analysis in Section 7.3 and 7.4, the projec-

tion pursuit method based on the eigenanalysis of Jf2
successfully revealed the interesting

non-linear structures in fairly high dimensions with a practical sample size. Compared

to current projection indices, the matrix Jf2
has been shown to be a rapidly computable

and effective projection matrix index. The aspects contributing to its good performance

include

1. An eigenanalysis of Fisher information matrix provides all solution projections; No

sequential procedure is needed.

2. The density square transformation makes Fisher information matrix easy to esti-

mate.

3. The density square transformation preserves important geometric structures in-

cluding normality, and decreases the variance. A standard bandwidth selection

method seems to provide good results.

4. After density square transformation, the new Fisher information matrix Jf2
mea-

sures non-normality in the main body of the distribution rather than in the tails.

In the simulation analysis(Section 7.3), we checked two conjectures:



118

1. The eigenvectors of Jf2
tend to be the same as those from the eigenanalysis of Jf ,

because density square transformation preserves most important structures.

2. The optimal projections from the matrix index Jf2
which have least conditional

normality, also tend to have poor marginal normality.

In these examples, these conjectures are true. However, it is just preliminary conclusion

due to the small number of population examples.

The efficiency of the algorithm in locating interesting structures in high dimen-

sional space depends on the sample size and the smoothing parameter H. For the

projection index Jf2
, we recommend the “optimal” bandwidth

Hop =
( 4
d+ 2

) 1
d+4 Σ1/2n−

1
d+4 ,

because of its stable performance in simulation study and real data analysis.

In the application to the real data sets, we have presented the low-(one-,two-,three-

) dimensional projections, and showed the improvement over competitors in revealing the

most interesting views of the whole data, like clustering, outliers. However, we should

be cautious about interpretation on the revealed structures, because projection pursuit

is only a part of exploratory data analysis, providing the most informative projections

for further study.
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8.2 Projection Index Qf

In theory, the eigenanalysis of projection index Qf provides all solution projec-

tions, but it is not a robust statistic because of the weight function φ−1. As a non-

normality measure, Qf puts more weight on tail departures, which may be good for a

normality test, but not so good for features detection. The requirement for a large sam-

ple size makes this projection pursuit not practically useful without further bandwidth

tuning, as shown in real data analysis.

We do think the index Qf needs further study, because it is not only the Von-

Mises approximation of Fisher information Jf , but also a direct non-normality measure

of f . The only problem is the denominator. To construct a goodness-of fit test, we could

use a different weight function, for example φ or any constant, to make the statistic more

robust. But the transformation equation (5.2) does not hold any more, so we may not

get useful projections from the eigenanalysis of the new matrix. More investigation is

required to find new robust and rapidly computable projection indices.

8.3 Tests based on Eigenvalues

We proposed two sequential tests to detect the white noise coordinates using

eigenvalues of the estimated matrix Ĵf2
. According to their performance in above exam-

ples, we think that the test based on ordered eigenvalues λk is more powerful than the

tests based on the sum of eigenvalues Sk. The possible reason is that the test based on

ordered eigenvalue λk only considers the largest eigenvalue for the tested projections,

but the latter measures a sum of eigenvalues.
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In Chapter 6, by Von-Mises expansion and spectral decomposition, we found the

asymptotic distribution of the trace
∑d

i=1
λi, and the form of asymptotic distribution

of Ĵf2
, which is a weighted sum of independent Wishart variables. However, there is

still no easy way to get the asymptotic distribution of eigenvalues from the asymptotic

distribution of Ĵf2
, for example, partial sum of eigenvalues

∑d
i=2

λi. We discussed how

to use simulation to get the critical values for our proposed test statistics. A rigorous

analysis is proposed for our future work.

8.4 Mixture Direction

We have successfully applied the eigenanalysis of matrix distances to projection

pursuit. The same eigenanalysis idea can also be used to find number of components in

a mixture model. We will present an example to illustrate it.

Consider a two-component normal mixture model:

f(x) = π1φ(x, µ1,Σ1) + π2φ(x, µ2,Σ2).

Suppose both components have the same covariance matrix:Σ1 = Σ2. Without losing

generality, we assume Σ1 = Σ2 = Id. Let µ = E(X). We define a matrix to find the

number of components:

Af =
∫ (∇xf(x) + xf(x)

f(x)
− µ

)(∇xf(x) + xf(x)
f(x)

− µ
)T
f(x)dx.
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When X is normal, Af ≡ 0. Under the hypothesis: the normal mixture model has two

components, we have

Af =
∫ (∇xf(x) + xf(x)

f(x)
− µ

)(∇xf(x) + xf(x)
f(x)

− µ
)T
f(x)dx

=
∫ (π1φ(x, µ1, Id)

f(x)
µ1 +

π2φ(x, µ2, Id)
f(x)

µ2 − µ
)

(π1φ(x, µ1, Id)
f(x)

µ1 +
(1− π1)φ(x, µ2, Id)

f(x)
µ2 − µ

)T
f(x)dx

:=
∫ (

α(x)µ1 + (1− α(x))µ2 − µ
)(
α(x)µ1 + (1− α(x))µ2 − µ

)T
f(x)dx.

Because E(α(X)µ1 + (1−α(X))µ2) = µ, the matrix AX is just the covariance matrix of

the variable α(X)µ1 + (1− α(X))µ2. And any realization of α(X)µ1 + (1− α(X))µ2 is

a convex combination of µ1 and µ2. So, the matrix Af has only one non-zero eigenvalue

and the corresponding eigenvector is (µ2 − µ1)/||µ2 − µ1||.

More generally, when the true model is a m-component normal mixture model

and all components have the identity covariance matrix, the matrix Af is the covariance

matrix of
∑m

k=1
αk(x)µk, which is a linear combination of µi, i = 1, ...,m. So the number

of non-zero eigenvalues of Af is equal to the dimensionality of the plane determined

by the mean points µi, i = 1, ...,m. Note that the dimensionality may be less than

m− 1, because some mean points could be in the plane determined by other points. For

example, µ3 is on the line between µ1 and µ2. From a converse point of view, suppose we

get k ≤ d non-zero eigenvalues from the eigenanalysis of Af , the normal mixture model

must have at least k + 1 components.

The matrix Af presents the same computation problem as the standard Fisher

information matrix Jf . We can not use the density square transformation here, because
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the number of components after transformation is changed. The Von-Mises method

may help us to find an approximation, which is easy to estimate. But the Von-Mises

approximation is not a covariance matrix of a convex combination of mean points. More

investigation is needed to solve the computation problem.
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Appendix

Proofs

Proof 1 (Proof of Proposition 1). First,

0d ≤ E(V
1
2
f ∇xlog(f) + V

− 1
2

f x)(V
1
2
f ∇xlog(f) + V

− 1
2

f x)T

= V 1/2
f

(∫ ∇xf · ∇xfT
f

dx
)
V 1/2
f

+ 2V
1
2
f

∫
∇xlog(f)xT f(x)dxV

− 1
2

f + V
− 1

2
f E(XXT )V

− 1
2

f ,

where 0d is a d× d zero matrix. Consider
∫ ∇xlog(f)xT f(x)dx =

(∫ ∂f(x)
∂xi

xjdx
)
.

∫
∂f(x)
∂xi

xidx

=
∫ (

f(x)xi|∞−∞ −
∫
fdxi

)
dx1...dxi−1dxi...dxd

= 0−
∫
f(x)dx

= −1∫
∂f(x)
∂xi

xjdx

=
∫ (∂f(x)

∂xi
dxi

)
xjdx1...dxi−1dxi...dxd

= 0, i 6= j.

Thus the second term of the right side is

2V
1
2
f

∫
∇xlog(f)xT f(x)dxV

− 1
2

f = −2Id.

By the definition of covariance matrix, the third term is equal to Id. Moving the second
and third term to another side yields

V 1/2
f

(∫ ∇xf · ∇xfT
f

dx
)
V 1/2
f
≥ Id.

�

Proof 2 (Proof of Proposition 2). Because Y = AX, we have

g(y) = f(A−1y)|A−1|,
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∇yg(y) = A−T∇xf(A−1y)|A−1|.
Thus, we can conclude that

Jg = V 1/2
g

∫ ∇yg(y)(∇yg(y))T

g(y)
dyV 1/2

g

= V 1/2
g

∫
A−T∇xf(A−1y)|A−1||A−1|(∇xf(A−1y))TA−1|

f(A−1y)|A−1| dyV 1/2
g

= V 1/2
g

A−T
∫
∇xf(x)(∇xf(x))TdxA−1V 1/2

g

= V 1/2
g

A−T
∫ ∇xf(x)(∇xf(x))T

f(x)
dyA−1V 1/2

g

= V 1/2
g

A−TV 1/2
f

JfV
1/2
f

A−1V 1/2
g

.

�

Proof 3 (Proof of Proposition 3). We expand the two densities and merge the x
terms:

φ(x, µk,Σk)φ(x, µl,Σl)

= (
1

2π
)d/2|Σk|−1/2exp(−1/2(x− µk)TΣ−1

k
(x− µk))

(
1

2π
)d/2|Σl|−1/2exp(−1/2(x− µl)TΣ−1

l
(x− µl))

= (
1

2π
)d|Σk|−1/2|Σl|−1/2

exp(−1/2(xT (Σ−1
k

+ Σ−1
l

)x− 2xT (Σ−1
k
µk + Σ−1

l
µl) + µT

k
Σ−1
k
µk + µT

l
Σ−1
l
µl)

= (
1

2π
)d/2

|Σkl|1/2
|Σk|1/2|Σl|1/2

exp(−1
2

(µT
k

Σ−1
k
µk + µT

l
Σ−1
l
µl − µTklΣklµkl))

(
1

2π
)d/2|Σkl|−1exp(−1/2(x− µkl)TΣ−1

kl
(x− µkl))

= (
1

2π
)d/2

1
|Σk + Σl|1/2

exp(−1
2

(µk − µl)T (Σk + Σl)
−1(µk − µl))φ(x, µkl,Σkl)

= φ(µk, µl,Σk + Σl)φ(x, µkl,Σkl).

�

Proof 4 (Proof of Proposition 4). Applying the above equation derives the result:
∫
f2dx =

(∫ ∑

k

πkφ(x, µk,Σk)
)(∫ ∑

l

πlφ(x, µl,Σl)
)

=
∑

k

∑

l

πkπlφ(µk, µl,Σk + Σl)
∫
φ(x, µkl,Σkl)

=
∑

k

∑

l

πkπlφ(µk, µl,Σk + Σl).
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�

Proof 5 (Proof of Proposition 5). First,

∇xf(x) =
∑

i

πiφ(x, µi,Σi)(−Σ−1
i

(x− µi)).

Thus,
∫
∇xf · ∇xfTdx

=
∑

k

∑

l

πkπlΣ
−1
k

∫
φ(x, µk,Σk)φ(x, µl,Σl)(x− µk)(x− µl)TdxΣ−1

l

=
∑

k

∑

l

πkπlΣ
−1
k
φ(µk, µl,Σk + Σl)[Σkl + (µkl − µk)(µkl − µl)T ]Σ−1

l

=
∑

k

∑

l

πkπlφ(µk, µl,Σk + Σl)[(Σk + Σl)
−1 + (Σk + Σl)

−1(µk − µl)(µk − µl)T (Σk + Σl)
−1].

�

Proof 6 (Proof of Proposition 8).

∫
(f∗)2(x)dx

=
∫ (∫

f(y)
1
|H|K(H−1(x− y))dy

)(∫
f(z)

1
|H|K(H−1(x− z))dz

)
dx

=
∫ ∫ (∫ 1

|H|K(H−1(x− y))
1
|H|K(H−1(x− z))dx

)
f(z)f(y)dydz

= EY,Z

(∫ 1
|H|K(H−1(x− Y ))

1
|H|K(H−1(x− Z))dx

)

:= EY,Zh0(Y,Z),

where h0(X1, X2) is an unbiased estimator for θ0, and permutation symmetric in the 2
arguments.
So U0

∆= 1
n(n−1)

∑
i6=j h0(Xi, Xj) is the U-statistic with the kernel h0 for θ0. �
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Proof 7 (Proof of Proposition 13). First, we consider

(U2U0 − U3U
T
3

)
1
2

=
[(
P0 + θ0 + op

( 1√
n

))(
P2 + θ2 + op

( 1√
n

))
−
(
P3 + θ3 + op

( 1√
n

))(
P3 + θ3 + op

( 1√
n

)T ] 1
2

=
(
θ0θ2 + θ0P2 + θ2P0 + op

( 1√
n

)) 1
2

=
(
θ0θ2

) 1
2 +

1
2

(
θ0θ2

)− 1
2
(
θ0P2 + θ2P0 + op

( 1√
n

))
+ op

( 1√
n

)

=
(
θ0θ2

) 1
2 +

1
2

(
θ0θ2

)− 1
2
(
θ0P2 + θ2P0

)
+ op

( 1√
n

)
,

thus, plugging it into (U2U0 − U3U
T
3

)
1
2U1(U2U0 − U3U

T
3

)
1
2 provides

(U2U0 − U3U
T
3

)
1
2U1(U2U0 − U3U

T
3

)
1
2

=
((
θ0θ2

) 1
2 +

1
2

(
θ0θ2

)− 1
2
(
θ0P2 + θ2P0

)
+ op

( 1√
n

))

·
(
P1 + θ1 + op

( 1√
n

))

·
((
θ0θ2

) 1
2 +

1
2

(
θ0θ2

)− 1
2
(
θ0P2 + θ2P0

)
+ op

( 1√
n

))

= θ0θ2P1 + θ0θ2θ1 +
(
θ0θ2

) 1
2
θ1

1
2

(
θ0θ2

)− 1
2
(
θ0P2 + θ2P0

)

+
1
2

(
θ0θ2

)− 1
2
(
θ0P2 + θ2P0

)
θ1

(
θ0θ2

) 1
2 + op

( 1√
n

)

= θ0θ1θ2 + θ1θ2P0 + θ0θ2P1 + θ0θ1P2 + op

( 1√
n

)
,
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then

(U2U0 − U3U
T
3

)
1
2U1(U2U0 − U3U

T
3

)
1
2 /(U3

0
)− 1

4
I

=
θ0θ1θ2 + θ1θ2P0 + θ0θ2P1 + θ0θ1P2 + op

(
1/
√
n
)

U3
0

− θ0θ1θ2

θ3
0

=
θ4

0
θ1θ2 + θ3

0
θ1θ2P0 + θ4

0
θ2P1 + θ4

0
θ1P2 − U3

0
θ0θ1θ2

U3
0
θ3

0

+ op

(
1/
√
n
)

=
θ3

0
θ1θ2P0 + θ4

0
θ2P1 + θ4

0
θ1P2 − (U3

0
− θ3

0
)θ0θ1θ2

U3
0
θ3

0

+ op

(
1/
√
n
)

=
θ3

0
θ1θ2P0 + θ4

0
θ2P1 + θ4

0
θ1P2 − (U0 − θ0)(U2

0
+ θ0U0 + θ2

0
)θ0θ1θ2

U3
0
θ3

0

+ op

(
1/
√
n
)

=
θ3

0
θ1θ2P0 + θ4

0
θ2P1 + θ4

0
θ1P2 − P0(U2

0
+ θ0U0 + θ2

0
)θ0θ1θ2

U3
0
θ3

0

+ op

(
1/
√
n
)

=
θ3

0
θ1θ2P0 + θ4

0
θ2P1 + θ4

0
θ1P2 − P0(θ2

0
+ θ0θ0 + θ2

0
)θ0θ1θ2

θ3
0
θ3

0

+ op

(
1/
√
n
)

=
θ1θ2P0 + θ0θ2P1 + θ0θ1P2 − 3θ1θ2P0

θ3
0

+ op

(
1/
√
n
)

=
θ0θ2P1 + θ0θ1P2 − 2θ1θ2P0

θ3
0

+ op

(
1/
√
n
)

However,

θ0θ2P1 + θ0θ1P2 − 2θ1θ2P0

= θ0θ2
2
n

∑

i

(
φ(Xi, 0, A)(A−1 −A−1XiX

T
i
A−1)− θ1

)

+θ0θ1
2
n

∑

i

(
φ(Xi, 0, A)(

H2B

2
+
BXiX

T
i
B

4
)− θ2

)

−2θ1θ2
2
n

∑

i

(
φ(Xi, 0, A)− θ0

)

= 0

as needed to finish the proof. �

Proof 8 (Proof of Proposition 19). First, because Y = AX,

Vg = AVfA
T ,

g(y) = f(A−1y)|A−1|,
∇yg(y) = A−T∇xf(A−1y)|A−1|.
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Thus, we can conclude that
∫
g2(y)dy =

∫
f2(A−1y)|A−2|dy

=
∫
f2(x)|A−1|dx

= |A−1|
∫
f2(x)dx,

∫
∇yg(y)(∇yg(y))Tdy

=
∫
A−T∇xf(A−1y)|A−1|(∇xf(A−1y))TA−1|A−1|dy

= |A−1|A−T
∫
∇xf(x)(∇xf(x))TdxA−1,

∫
yyT g2(y)dy

=
∫
AxxTAT f2(x)|A−2||A|dx

= |A−1|A
∫
xxT f2(x)dxAT ,

and
∫
yg2(y)dy

=
∫
Axf2(x)|A−2||A|dx

= |A−1|A
∫
xf2(x)dx.

Combining above equations, we have

Vg2
=

∫
yyT g2(y)dy∫
g2(y)dy

−
∫
yg2(y)dy∫
g2(y)dy

(∫ yg2(y)dy∫
g2(y)dy

)T

=
|A−1|A ∫ xxT f2(x)dxAT

|A−1| ∫ f2(x)dx
− |A

−1|A ∫ xf2(x)dx
|A−1| ∫ f2(x)dx

( |A−1|A ∫ xf2(x)dx
|A−1| ∫ f2(x)dx

)T

= A

∫
xxT f2(x)dx∫
f2(x)dx

AT −A
∫
xf2(x)dx∫
f2(x)dx

(∫ xf2(x)dx∫
f2(x)dx

)
AT

= AVf2
AT ,
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and
∫ ∇yg(y)(∇yg(y))Tdy∫

g2(y)dy

=
|A−1|A−T ∫ ∇xf(x)(∇xf(x))TdxA−1

|A−1| ∫ f2(x)dx

= A−T
∫ ∇xf(x)(∇xf(x))Tdx∫

f2(x)dx
A−1.

Finally, we have

Jg2
= V 1/2

g2

∫ ∇yg(y)(∇yg(y))Tdy∫
g2(y)dy

V 1/2
g2

= V 1/2
g2

A−T
∫ ∇xf(x)(∇xf(x))Tdx∫

f2(x)dx
A−1V 1/2

g2

= V 1/2
g2

A−TV 1/2
f2

Jf2
V 1/2
f2

A−1V 1/2
g2

.

�
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