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ABSTRACT 

 

This thesis presents the major findings in the development of the hydrology and 

hydraulics modules of a first principle, physics-based watershed model (WASH123D 

Version 1.5).  The numerical model simulates water movement in watersheds with 

individual water flow components of one-dimensional stream/channel network flow, two-

dimensional overland flow and three-dimensional variably saturated subsurface flow and 

their interactions.   

Firstly, the complete Saint Venant equations/2-D shallow water equations 

(dynamic wave equations) and the kinematic wave or diffusion wave approximations 

were implemented as three solution options for 1-D channel network and 2-D overland 

flow. Different solution techniques are considered for the governing equations based on 

physical reasoning and their mathematical property. A characteristic based finite element 

method is chosen for the hyperbolic-type dynamic wave model. And the Galerkin finite 

element method is used to solve the diffusion wave model.  Careful choice of numerical 

methods is needed even for the simple kinematic wave model. Since the kinematic wave 

equation is of pure advection, the backward method of characteristics is used for 

kinematic wave model. Diffusion wave and kinematic wave approximations are found in 

many surface runoff routing models. The error in these models has been characterized for 

some cases of overland flow over simple geometry. However, the nature and propagation 

of these approximation errors under more complex 2-D flow conditions are not well 

known. These issues are evaluated within WASH123D with comparison of simulation 
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results of several example problems. The accuracy of the three wave models for 1-D 

channel flow was evaluated with several non-trivial (trans-critical flow; varied bottom 

slopes with frictions and non-prismatic cross-section) benchmark problems (MacDonnell 

et al., 1997). The test examples for 2-D overland flow include: (1) a simple rainfall-

runoff process on a single plane with constant rainfall excess that has a kinematic 

analytical solution under steep slope condition. A range of bottom slopes (mild, average 

and steep slope) are numerically solved with the three wave models and compared; (2) 

Iwagaki (1955) overland flow experiments on a cascade of three planes with shock 

waves; (3) overland flow in a hypothetical wetland. The applicability of dynamic-wave, 

diffusion-wave and kinematic-wave models to real watershed modeling is discussed with 

simulation results from these numerical experiments.  It was concluded that kinematic 

wave model could lead to significant errors in most applications. On the other hand, 

diffusion wave model is adequate for modeling overland flow in most natural watersheds. 

The complete dynamic wave equations are required in low-terrain areas such as flood 

plains or wetlands and many transient fast flow situations.    

Secondly, issues about the coupling between surface water and subsurface flow 

are investigated. In the core of an integrated watershed model is the coupling among 

surface water and subsurface water flows. Recently, there is a tendency of claiming the 

fully coupled approach for surface water and groundwater interactions in the hydrology 

literature. One example is the assumption of a gradient type flux equation based on 

Darcy’s Law (linkage term) and the numerical solution of all governing equations in a 

single global matrix. We argue that this is only a special case of all possible coupling 
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combinations and if not applied with caution, the non-physical interface parameter 

becomes a calibration tool.   Generally, there are two cases based on physical nature of 

the interface: continuous or discontinuous assumption, when a sediment layer exists at 

the interface, the discontinuous assumption may be justified. As for numerical schemes, 

there are three cases: time-lagged, iterative and simultaneous solutions.  Since modelers 

often resort to the simplest, fastest schemes in practical applications, it is desirable to 

quantify the potential error and performance of different coupling schemes. We evaluate 

these coupling schemes in a finite element watershed model, WASH123D. Numerical 

experiments are used to compare the performance of each coupling approach for different 

types of surface water and groundwater interactions. These are in terms of surface water 

and subsurface water solutions and exchange fluxes (e.g. infiltration/seepage rate). It is 

concluded that different coupling approaches are justified for flow problems of different 

spatial and temporal scales and the physical setting of the interface.      

Thirdly, The Method of Characteristics (MOC) in the context of finite element 

method was applied to the complete 2-D shallow water equations for 2-D overland flow. 

For two-dimensional overland flow, finite element or finite volume methods are more 

flexible in dealing with complex boundary. Recently, finite volume methods have been 

very popular in numerical solution of the shallow water equations. Some have pointed out 

that finite volume methods for 2-D flow are fundamentally one-dimensional (normal to 

the cell interface). The results may rely on the grid orientation.  The search for genuinely 

multidimensional numerical schemes for 2-D flow is an active topic.  We consider the 

Method of Characteristics (MOC) in the context of finite element method as a good 
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alternative. Many researchers have pointed out the advantage of MOC in solving 2-D 

shallow water equations that are of the hyperbolic type that has wave-like solutions and at 

the same time, considered MOC for 2-D overland flow being non-tractable on complex 

topography. The intrinsic difficulty in implementing MOC for 2-D overland flow is that 

there are infinite numbers of wave characteristics in the 2-D context, although only three 

independent wave directions are needed for a well-posed solution to the characteristic 

equations. We have implemented a numerical scheme that attempts to diagonalize the 

characteristic equations based on pressure and velocity gradient relationship. This new 

scheme was evaluated by comparison with other choice of wave characteristic directions 

in the literature.  Example problems of mixed sub-critical flow/super-critical flow in a 

channel with approximate analytical solution was used to verify the numerical algorithm. 

Then experiments of overland flow on a cascade of three planes (Iwagaki 1955) were 

solved by the new method. The circular dam break problem was solved with different 

selections of wave characteristic directions and the performance of each selection was 

evaluated based on accuracy and numerical stability. Finally, 2-D overland flow over 

complex topography in a wetland setting with very mild slope was solved by the new 

numerical method to demonstrate its applicability. 

  Finally, the physics-based, integrated watershed model was tested and validated 

with the hydrologic simulation of a pilot constructed wetland in South Florida. For this 

field problem strong surface water and groundwater interactions are a key component of 

the hydrologic processes. The site has extensive field measurement and monitoring that 

provide point scale and distributed data on surface water levels, groundwater levels and 
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physical range of hydraulic parameters and hydrologic fluxes.  The uniqueness of this 

modeling study includes (1) the point scale and distributed comparison of model results 

with observed data, for example, the spatial distribution of measured vertical flux in the 

wetland is available; (2) model parameters are based on available field test data; and (3) 

water flows in the study area consist of 2-D overland flow, hydraulic structures/levees, 3-

D subsurface flow and 1-D canal flow and their interactions.  This study demonstrates the 

need and the utility of a physics-based modeling approach for strong surface water and 

groundwater interactions.  
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Chapter 1 

 

Introduction 

1.1 Overview of the Mathematical Modeling of Watersheds  

A watershed model is an integrated representation of nearly any hydrological 

process of the hydrologic cycle; major processes within a watershed include precipitation, 

interception, evapotransiration, infiltration, overland flow, channel/stream flow, and 

subsurface flow.  

 

Watershed models are essential tools used to address various water resources and 

environmental protection problems (Singh and Frevert, 2006). The mathematical 

modeling of watersheds has been extensive since the creation of modern digital 

computers in the 1950s (Singh and Woolhiser, 2002). There is a plethora of all kinds of 

watershed models, ranging from purely empirical, black box type models to physics 

based, integrated models.  

 

Many lumped or semi-distributed watershed models are similar in model structure 

and principle. The well-known conceptual Stanford watershed model (Crawford and 

Linsley, 1966) and its successor, HSPF (Donigian and Imhoff, 2006), are representative 
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of these watershed model types. The model structure is based on water balance in 

predefined conceptual storage zones, and model parameters are often without clear 

physical meaning.  The limitation of lumped watershed models is well known - model 

parameters must be calibrated with historic data; estimated parameters are not 

transferable and distributed information on flow velocity and water depth cannot be 

provided for water quality modeling.    

 

The development of watershed models is often guided by an intentional application and 

modeling objective. When information on the total quantity and timing of surface runoff 

at the watershed outlet (such as in flood control) is enough for the modeling objective, the 

traditional lumped watershed models can be used if historic data is available, in order to 

calibrate the model. But in other cases, such as non-point source pollution, soil erosion, 

land use effect, climate change, etc., users need information about the flow field (water 

velocity and depth distribution) or the timing of any extensive alterations to the 

watershed system from land use or deforestation; from here, a physics based, distributed 

hydrologic model is necessary. There are also great needs in real-world water 

management for such integrated models. For example, the importance of surface water 

and groundwater interaction has led to integrated models developed by local government 

agencies in South Florida (Lal et al., 2005) and California (LaBolle et al., 2003).   

 

Since Freeze and Harlan published their blueprint for a three-dimensional model 

of watersheds (Freeze and Harlan, 1969) more than three decades ago, there has been 

much progress in this field.   The SHE and its derivatives MIKE SHE are very popular in 
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Europe (Abbott et al., 1986).  In the United States, the CASC2D and its newest version 

GSSHA (Downer, 2004) is a finite difference code that can do integrated modeling in a 

less rigorous approach. There are some model codes developed around the popular 

MODFLOW groundwater model [for example, MODBRANCH (Swain and Wexler 

(1996), MOD-HMS (Panday and Huyakorn (2004)].   

 

There has been much debate and controversy on physics based, distributed 

watershed models (e.g., Grayson et al., 1992; Woolhiser, 1996; Beven, 2002 and Loague 

and VanderKwaak, 2004). Beven (2002) concluded that a radical change in paradigm is 

needed for watershed models.  The Freeze and Harlan (1969) blueprint is however, 

flawed, and will eventually be abandoned. For instance, a major flaw is related to both 

scale (the point-scale mechanistic partial differential equations may not be valid at model 

grid scale) and equifinality (model over-parameterization).       

 

Reggiani et al. (1998, 1999, 2000 and 2005) offer an alternative watershed model 

structure based on the discretization of a watershed into spatial units, termed 

‘representative elementary watersheds’ (REWs). The point-scale conservation equations 

for mass, momentum, and energy is integrated over a sub-watershed. This flux-based 

formulation approach can be traced back to earlier research by Duffy (1996).  The 

difficulties in determining hydrological fluxes are a major problem and, if the size of 

REWs is very small, it will run into the same scale problem as the point-scale, physics 

based models. On the other hand, if the size of REWs is large, the physical meaning of 
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state variables, such as flow velocity, pressure head, and water depth, are only nominal at 

best.    

 

Young (2003) offers another alternative, termed the ‘data based mechanistic 

approach’; its use is intended for hydrologic models. It is said to be a stochastic model 

with a top-down approach that can incorporate physical reasoning into the statistical 

model. This approach is better suited for practical application (e.g., real-time flood 

forecasting) and not for what-if type explanation-oriented modeling.         

 

In the proceeding chapters, the Freeze and Harlan (1969) blueprint of a physics 

based, three-dimensional watershed model (as a viable modeling approach for integrated 

watershed models) will be explored. The increasing availability of spatially distributed 

hydrological data through remote sensing, radar rainfall, GIS, and new measurement 

techniques also support such physics-based distributed models.               

1.2 Physics-based, integrated watershed models 

The mechanistic, process-oriented modeling of fluid flow in watersheds can be 

conveniently divided into flow component models and coupling mechanism. There have 

been extensive studies on component models (for example, overland flow models, 

channel network flow models, and subsurface flow models) and among them; the flow 

component coupling is another important issue.   
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Water flow components in a watershed are essentially comprised of surface water 

and subsurface flow, where ‘surface water flows’ include overland and channel flow. 

There are at least three distinct runoff generation mechanisms. The first one is the 

Hortonian overland flow mechanism’, usually called ‘infiltration excess mechanism’.  

This has been the dominant concept in the current generation of surface hydrologic 

models.  Under this paradigm, overland flow was extensively modeled, but the 

infiltration and subsurface flow components are treated empirically, as a water sink/loss. 

Field observation and further research have demonstrated that Hortonian overland flow is 

rare and of little impact in humid, forested regions, while the subsurface storm flow 

mechanism is the major contribution to runoff.  In this case, most rainfall is to be 

absorbed by the soil, and subsurface flow becomes an important contribution to stream 

flow. Another runoff generation mechanism is called saturated excess, which represents 

the runoff process in place such as wetlands where the soil is saturated most of the time. 

Only a physics-based, integrated watershed models can simulate all these runoff 

generation mechanisms in a single model.  

1.3 Motivation and Objectives  

The watershed modeling in the past 30 years has been focused on individual flow 

components, e.g., overland flow, channel flow, groundwater flow, etc. Most overland 

flow modeling studies did not couple with subsurface flow and, in subsurface hydrology, 

the surface water processes were often only considered as a simple source/sink. When 
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coupling is considered, weak coupling or artificially created linkage terms are often used 

for flux-exchange calculations. 

 

Freeze and Harlan (1969) were the first to develop a blueprint of the physically 

based watershed model. Smith and Woolhiser (1972) were one of the first to apply the 

one-dimensional Richards' equation for unsaturated flow in their overland model with a 

1-D kinematic wave equation. Akan and Yen (1981) coupled a two-dimensional 

subsurface flow component with overland flow. One of the first attempts to build a 

comprehensive numerical model of a watershed based on the Freeze and Harlan blueprint 

is the SHE model in Europe (Abbott et al., 1986). In the SHE watershed model, the 

unsaturated zone is represented with one-dimensional Richards' equation. In USA, the 

focus has been toward a practical engineering application, so most of the watershed 

models are lumped.  Among the few physically based models developed are CASC2D by 

Julien et al. (1995) and KINEROS by Woolhiser et al. (1990). CASC2D included the 

diffusion wave approximation of overland flow and channel flow; infiltration is based on 

the Green and Ampt model and the explicit finite difference method is used. KINEROS is 

based on the kinematic wave model for overland flow routing with empirical infiltration 

equations. 

 

This thesis research concerns with the physics based, integrated mathematical 

modeling of watershed hydrology and hydraulics. The computational aspect of physics-

based, integrated watershed models is investigated in term of proper selection of 

governing equations, coupling approaches, and numerical methods, etc. The hydrology 
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and hydraulics modules of the watershed model are particularly designed as the basis for 

modeling transport of sediments and pollutant at watershed scales. 

Some recently developed physics-based, integrated watershed models are briefly 

compared in Table 1-1. All of these models apply Richards’ equation for subsurface flow; 

however, the governing equations for surface flow, numerical methods and coupling 

approach are quite different. Therefore, several critical issues are still in need of further 

study, even though the Freeze and Harlan (1969) blueprint was proposed more than three 

decades ago.   
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Table 1-1: Comparison of watershed models 

Code Channel 

flow 

Overland flow Coupling between Surface and 

Subsurface Flows 

Reference 

GSSHA 

 

DIW 

(FDM) 

DIW (FDM) Time-lagged Downer and Orgden 

(2004) 

INHM 

 

 DIW ( 

CVFEM) 

Discontinuous with linear 

Linkage-terms 

 

 

VanderKwaak(1999) 

 

MODHMS DIW 

(FDM) 

 

DIW (FDM) 

 

Discontinuous with linear 

Linkage-terms 

 

Panday and 

Huyakorn 

(2004) 

Morita and 

Yen    

 

 

DIW(FDM) Continuous  Morita and Yen 

(2002) 

WASH123D DYW 

(MOC) 

DIW (FEM, 

ELM) 

KIW (ELM) 

DYW (MOC) 

DIW (FEM, 

ELM) 

KIW (ELM) 

Continuous or 

Discontinuous with general 

linkage terms (linear or 

nonlinear)  

Yeh et al. (2006) 

Note: DIW: diffusion wave; DYW: dynamic wave; KIW: kinematic wave; ELM: Eulerian-Lagragian 

method; CVFEM: control volume finite element; FDM: finite difference method;  MOC: method of 

characteristics. 

1.4 Format 

Chapter 1 is an introduction and review of state-of-the art physics based, 

integrated watershed modeling.  The major findings from this thesis research are 

presented in the form of four journal articles, self titled as Chapters 2 through 5. Chapter 

2 regards the accuracy and applicability of dynamic, diffusion, and kinematic wave 

models for surface runoff; it is based on a paper prepared for Journal of Hydrologic 

Engineering, ASCE. Chapter 3 regards dynamic wave modeling of overland flow, with a 

characteristics-based finite element method; it is based a paper prepared for the 

International Journal of Numerical Methods in Fluids. Chapter 4 is a comparative study 

of coupling approaches for surface water and groundwater interactions based on a paper 
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intended for submission to the Journal of Hydrology.  Chapter 5 is an application on 

surface water and groundwater interactions in a constructed wetland, based on a paper 

prepared for possible publication on Journal of Hydrologic Engineering, ASCE.   The last 

chapter, Chapter 6, is summary of work presented and a presentation of suggested 

research and future applications. 
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Chapter 2 

 

On simulating surface water flows with dynamic, diffusion and kinematic waves 

Abstract 

 

The complete Saint Venant equations/two-dimensional shallow water equations 

(dynamic wave equations) and the kinematic wave or diffusion wave approximations 

were implemented for one-dimensional channel network flow and two-dimensional 

overland flow in a watershed model, WASH123D.  Careful choice of numerical methods 

is needed even for the simple kinematic wave model. Since the kinematic wave equation 

is of pure advection, the backward method of characteristics is used for the kinematic 

wave model. A characteristics based finite element method is chosen for the hyperbolic-

type dynamic wave model. The Galerkin finite element method is used to solve the 

diffusion wave model.  Diffusion wave and kinematic wave approximations are found in 

many surface runoff routing models. The error in these models has been characterized as 

overland/channel flow over simple geometry in some cases. However, the nature and 

propagation of these approximation errors under complex two-dimensional flow 

conditions are not well known. These issues are evaluated within WASH123D by 

comparison of simulation results for several example problems. The accuracy of the three 

wave models for one-dimensional channel flow was evaluated with several non-trivial 

(trans-critical flow; varied bottom slopes with frictions and non-prismatic cross-section) 
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benchmark problems, and for two-dimensional overland flow with dam-break problems 

and a wetland example. The applicability of dynamic-wave, diffusion-wave and 

kinematic-wave models to real watershed modeling is discussed with simulation results 

from these numerical experiments.  It was concluded that kinematic wave model could 

lead to significant errors in most applications. On the other hand, the diffusion wave 

model is adequate for modeling overland flow in most natural watersheds. The complete 

dynamic wave equations are more accurate in low-terrain areas, such as flood plains, are 

more suitable for river flow at river bends and transient fast flow situations.    

2.1 Introduction 

Diffusion wave and kinematic wave approximations are found in many surface runoff 

flow routing models. The error in these models has been characterized for some cases of 

overland flow over simple, often one-dimensional geometry. Ponce et al. (1978) 

presented a criterion for the applicability of kinematic and diffusion waves models in 

surface flow derived from theoretical analysis on the linearized Saint Venant equations. 

Govindaraju et al. (1988, 1990) studied diffusion wave models for steady overland flow 

and approximate analytical solutions. Parlange et al. (1990) derived and estimated errors 

in kinematic and diffusion wave models for steady state overland flow on a single plane 

by comparing numerical simulations with numerical solutions of the full Saint Venant 

equations; they demonstrated that, in case where a kinematic wave is not accurate, use of 

a diffusion wave would not produce a noticeable difference. Through the analysis of 

relative magnitude of the acceleration terms in the governing equations, Richardson and 
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Julien (1994) concluded that diffusion wave approximation of overland flow is not 

suitable for supercritical flow condition. Singh and coworkers (e.g., Singh et al., 2005 

Moramarco and Singh; 2002 and Singh and Aravamuthan, 1995) published a series of 

papers on the accuracy and error estimation of diffusion and kinematic waves overland 

flow on a plane by numerical experiments and concluded that diffusion wave 

approximation is fairly accurate for most overland flow conditions. Tayfur et al. (1993) 

compared numerical solutions of dynamic, diffusive and kinematic wave models for two-

dimensional overland flow on rough surfaces with an average steep slope of 0.086; the 

results are essentially the same due to the steep slope. However, the nature and 

propagation of these approximation errors under more complex two-dimensional surface 

water flow conditions are not well known. 

 

While diffusion wave approximation is a widely applied model in many current 

watershed models, kinematic wave approximation is prevailing in many current 

watershed models in research and practice (for example, HEC-HMS [Hydrologic 

Engineering Center(HEC), 2000], HSPF[Donigian and Imhoff, 2006], SWMM[Metcalf 

and Eddy et al. 1971] and some new GIS-based watershed models [e.g., Fortin and 

Turcotte et al., 2001; Olivera and Maidment, 1999]). This is attributed to its simplicity 

and ease of numerical solutions for kinematic wave models. However, significant error 

could be possible for kinematic wave models. 

 

For one-dimensional channel flow, the fully dynamic wave approach has been 

implemented in many well-established stand-alone stream network flow models.   These 
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dynamic wave channel network flow models are usually externally linked to traditional 

lumped watershed models for practical application of flow routing.  Again, diffusion 

wave and kinematic wave approximations are popular in channel network flow module of 

most integrated watershed models. 

 

The complete Saint Venant equations/two-dimensional shallow water equations 

(dynamic wave equations) and the kinematic wave or diffusion wave approximations 

were all implemented for one-dimensional channel network flow and two-dimensional 

overland flow in a watershed model, WASH123D. We will present some numerical 

experiments on these three options for overland flow and channel flow and demonstrate 

the potential errors in using one single wave model for all flow situations.   

 

The research objectives include: 

1. Apply accurate and stable numerical solutions of dynamic, kinematic and 

diffusion wave models; 

2. Demonstrate applicability and limitations of kinematic and diffusion wave 

models by comparison with fully dynamic wave model through numerical 

experiments.  

2.2 Governing Equations 

The governing equations for surface water flows in a watershed can be derived 

from the conservation of water mass and momentum. The depth-averaged two-
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dimensional shallow water equations and the cross-section-averaged one-dimensional 

Saint Venant equations are considered accurate representations of two-dimensional 

overland flow and one-dimensional channel network flow, respectively. Only equations 

for two-dimensional overland flow are described in detail, as follows.  

2.2.1 Dynamic wave equations 

The depth-averaged 2D shallow water equations for overland flow in matrix form 

are: 
 

G
y

F
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U yx =
∂
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+
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∂
+

∂

∂
 (1) 

 

The conservative variables are U=(h, uh, vh); h is water depth; u is the velocity 

component in the x-direction; v is the velocity component in the y-direction, respectively. 

The flux vector F has two components Fx and Fy: 
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 (2) 

 

 

where SSIERS +−−= ,  is the source/Sink term as a result of rainfall (R), 

evapotranspiration (E) and infiltration (I), and human-induced source/sink (SS), etc. The 

eddy turbulent term, momentum exchange flux, surface shear stress (wind effect), etc. 

have been omitted from the momentum equations for the sake of simplicity of 

presentation.  
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The bed slopes are defined as:  
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0

0 ,  (3) 

 

where g is gravitational acceleration and Z0 is the bed elevation above a datum.  

 

The friction slopes can be approximated by the Manning’s equation as:  
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S fyfx

+
=

+
=  (4) 

 

where n is the Manning’s roughness coefficient. 

 

Boundary conditions for two-dimensional dynamic wave models (DYW) of 

overland flow are based on physical flow conditions at the boundary; there can be zero, 

one or two boundary conditions at the inflow and outflow boundaries based on 

supercritical, subcritical flow or critical flow conditions.  

 

For one-dimensional channel network flow, Equations (1) through (4) can be 

applied with all variables in the y-direction being null for prismatic, rectangular cross-

section channels.  For channels with arbitrary shape cross-sections, the water depth (h) is 

replaced with the cross-sectional area (A) and some terms need to be adjusted.  
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2.2.2 Diffusion wave equation 

The diffusion wave approximation (DIW) is based on simplified forms of the 

momentum equations that ignore the inertial terms but keep the pressure gradient term in 

Equation (1): 
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 (5) 

 

It can be easily demonstrated that by combining the continuity equation with the 

simplified momentum equations, the diffusion wave equation is a partial differential 

equation of parabolic type with only one unknown variable (water stage, H=h+Z0):  

For two-dimensional overland flow:  
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and for one-dimensional channel flow: 
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(7) 

 

where A is the cross-sectional area and R is the hydraulic radius, B (x, h) is the top-width 

of the cross-section area. The variable a is a unit conversion factor (a=1.0 for SI unit and 
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a=1.486 for US Customary units). The term: 

2

01 



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



∂

∂
+

x

Z
can be considered as a factor that 

accounts for increased shear stress caused by a sloping land surface. 

 

Both upstream (inflow) and downstream (outflow) boundary conditions are 

needed for the diffusion wave model.  For two-dimensional overland flow, usually, no-

flow condition is applied at the upstream watershed boundary and at the watershed outlet, 

a specified water stage or a stage-discharge rating curve (e.g., critical flow or zero-depth 

gradient condition) are imposed. 

2.2.3 Kinematic wave equation  

The pressure gradients are also dropped for the kinematic wave (KIW) and the 

momentum equations are further simplified as: 

 

fSS =0  (8) 

 

Equation (8) combined with the continuity equation lead to the kinematic wave 

equation that represents the pure advection of water depth with source/sink terms.  

 

The two-dimensional kinematic wave equation for overland flow can be written 

as: 
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By replacing the velocity (u,v) with the velocity formula, the kinematic wave 

equation is in a form of pure advection of water depth (h) with source term. Since 

kinematic wave contain only one characteristic in the downstream direction, no 

downstream boundary is needed. Therefore, backwater effect cannot be considered.  

   

2.3 Numerical Methods 

2.3.1 Dynamic wave model 

The widespread application of diffusion and kinematic wave approximation of 

surface water flow routing in physics-based watershed models can be attributed to the 

fact that, numerical solutions of the full shallow water equations, under complex 

topography and transient, distributed forcing (e.g., rainfall and infiltration), are 

computationally intensive; furthermore, it suffers from numerical stability and 

convergence problems. Indeed, in rainfall-runoff/overland flow simulations, the full 

dynamic wave equations are rarely applied and, when applied, they are limited to small-

scale geometry (experiment plots or single hillslopes) (for an example, see Chow and 

Ben-Zvi, 1973; Zhang and Cundy, 1989; Fielder and Ramirez, 2000). Therefore, making 

a careful and judicious choice regarding the numerical method for a dynamic wave model 

is critical. We consider the characteristics-based finite element method to be a natural 

choice based on flow physics of the full shallow water equations. 
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Comparing to the conservative form [Equation (1)], the primitive form is more 

revealing for the intrinsic physical property of the shallow water equations and 

amendable to advective schemes.  The governing equations written in the primitive form: 
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Equations (10) through (12) can be written in matrix form as 
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For an arbitrary wave propagation direction k  =(kx, ky) =(cos θ, sin θ); θ is the 

angle of the wave direction from x-direction, let the matrix B be the linear combination of 

the matrices Ax and Ay as follows 
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The three eigenvalues of matrix B are  
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1 2 3cos sin ,   cos sin ,   and  cos sinu v u v c u v cλ θ θ λ θ θ λ θ θ= + = + + = + −  (15) 

 
 

The wave celerity is defined as ghc = .   Accordingly, the primitive form can be 

recast in the characteristic form by using the eigenvectors associated with matrix B 

 

1

2

3

0        0 0       0

0 cos   0 0 sin   0
t x y

0 0 cos 0 0 sin

Su v

u c v c S

u c v c S

θ θ

θ θ

−

    
∂ ∂ ∂     + + + + = − +    ∂ ∂ ∂  − −        

1W W W
L R  (16) 

 
 


















































∂

∂
+

∂

∂
−

∂

∂
+

∂

∂−


















∂

∂
+

∂

∂
−

∂

∂
+

∂

∂










∂

∂
−

∂

∂

=
















θθθθ

θθθθ

θθ

sincoscossin

sincoscossin

cossin

22

22

3

2

1

x

v

y

u

y

v

x

u

g

c

x

v

y

u

y

v

x

u

g

c

y

h

x

h
g

S

S

S

 (17) 

 
 

The characteristic variable vector W is defined as 
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where W1 is a characteristic variable associated with a shear wave, which has no 

equivalent in one-dimensional flow (θ=0). W2 and W3 are characteristic variables 

associated with the positive and negative gravity waves, respectively. 

 



 

 

25

 

 

 

 This is the characteristic form of two-dimensional shallow water equations with 

an arbitrary wave direction K = (cosθ, sinθ). The left-hand terms represent water wave 

propagation in the characteristic wave directions and can be written with the total 

derivative along the characteristics:  
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The coupling terms (S1, S2, S3) cannot be simultaneously eliminated and, as in the 

case of the Euler equations, this results in the non-unique selection of upwind directions 

for two-dimensional flows. It is noteworthy that the above characteristic equations in 

Lagrangian form (19) are identical to both the original conservative and primitive forms 

of the shallow water equations. No numerical approximations have been introduced.    

 

 The governing equations must be supplemented with initial condition and 

appropriate boundary conditions for a well-posed two-dimensional overland flow 

problem. Wave characteristic directions at the boundary determine the required boundary 

conditions.        

 

Equation (19) is the basis of the characteristics-based finite element scheme. At 

the interior nodes, backward tracking along the three characteristics is performed by a 
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sub-element tracking scheme. The solution values at the foot of the characteristic curve 

are interpolated by a linear finite element method. At the boundary nodes, characteristic 

directions and flow directions are used to determine the needed boundary conditions (Yeh 

et al., 2006).  

 

After the selection of two specific characteristic directions with the propagation 

angles, θ1 and θ2, the new characteristic equations are defined as: 
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where ω = cosθ1 cosθ2 + sin θ1 sin θ2. Since ω should not be zero, the two wave directions 

cannot be orthogonal. 

 

Choosing the two wave characteristic directions (θ1 and θ2) is the most critical 

part of the characteristics-based finite element method for two-dimensional dynamic 

wave models. It can be seen that the first characteristic speed (u, v) is along the 

streamlines and only the two characteristic directions associated with the gravity waves 

need to be chosen. Detail on implementation of the characteristics-based finite element 

method for dynamic wave models can be found in (Yeh et al. 2006).  
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2.3.2 Diffusion wave model 

The Galerkin finite element method is used to solve the diffusion wave model. 

Alternatively, the semi-Lagrangian method can be applied for the same results. 

 

Galerkin Finite Element Method.  

Applying the Galerkin finite element method to Equation (6), we obtain the 

following matrix equation. 

 

}{}{}]{[
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][ BS QQHS
dt

Hd
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∫ ∫

∫ ∫

 (23) 

 

where Ni and Nj are the base functions of nodes at i and j, respectively; n is the outward 

normal unit vector; [M] is the mass matrix, [S] is the stiff matrix, {H} is the solution 

vector of H, {QB} is the flow rate through the boundary nodes, {QS} is the flow rate from 

source/sink terms. 

 

From our experience in solving various example problems, mass lumping is 

necessary for numerical stability and wetting/drying treatment (upstream weighting of the 

K value for dry nodes) is needed to avoid the occurrence of unphysical negative water 

depth in the numerical solution obtained with the Galerkin finite element method.    
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Semi-Lagrangian Method. 

The Semi-Lagrangian method for diffusion wave model takes the advective form 

of the continuity equation and applies a backward particle-tracking scheme to solve for 

the unknown variable (water depth). This is described in the following kinematic wave 

model section. 

For the Semi-Lagrangian approach, wetting/drying can be naturally treated while 

mass error control is a major concern.   

2.3.3 Kinematic wave model 

Since a kinematic wave is purely advective, there is no physical diffusion in the 

model. As a result, in the numerical solution of kinematic waves, the numerical diffusion 

is a major concern (Ponce, 1989). We apply the semi-Lagrangian method, which is a 

natural choice based on the form of the kinematic governing equation.  In the hydrologic 

modeling literature, the Galerkin finite element methods are used for some kinematic 

wave models (for example, Jaber and Mohtar, 2003; Garg and Sen, 2001), although some 

stability control was proposed, it is inherently numerically unstable and oscillatory. 

  

For the semi-Lagrangian method, a backward tracking scheme is applied to 

solving the kinematic wave equation: 

 

Dh u v
S h h

D x yτ

∂ ∂
= − −

∂ ∂
 (24) 
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Integrating Equation (24) along its characteristic line (u,v) from a new time level 

to the foot of characteristics at the previous time level or reaching on the boundary.  

2.4 Comparative examples 

We will focus on how the incorporation of all three waves - optional dynamic 

wave (DYW), diffusion wave (DIW) and kinematic wave (KIW) models can be used to 

investigate the applicability and potential errors of simplified DIW and KIW approaches. 

 

From previous studies, it is well known that the accuracy of diffusion and 

kinematic wave approximation does not solely depend on bottom slopes, but also rainfall 

intensity and duration, boundary conditions, etc. Generalized formal theoretical analyses 

are not tractable for two-dimensional flow; numerical experiments are the only way to 

investigate the different results obtained by different wave models. 

 

Several numerical tests were conducted to demonstrate the applicability and 

accuracy of diffusion or kinematic wave approximation in comparison to the full dynamic 

wave solutions. The test examples encompass one-dimensional channel flows with exact 

solutions, dam break-type flow, rainfall-induced overland flow and structure flow driven 

wetland flow, and two-dimensional river bend flow.  
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2.4.1 Verification and comparison of steady flow in one-dimensional channels 

Three channel flow benchmark problems provided by (MacDonald et al., 1997) 

were used to verify the numerical schemes implemented for the DYW, DIW, and KIW 

and the error of DIW and KIW solutions were discussed.  

 

The one-dimensional channel flow is pure subcritical, subcritical at 

inflow/supercritical at outflow, and mixed flow with hydraulic jump, respectively for 

Test Problem 1, 2 and 3. The bed slope is given by an analytical function of the pre-

selected water depths. Details on these test problem set-up and the derived exact 

analytical solutions can be found in the aforementioned reference.  

 

Test Problem 1: pure subcritical flow 

The channel is rectangular with a width of 10 m. The total length is 1,000 m. A 

constant flow of 20 m
3
/s is applied at the upstream end. The flow is pure subcritical. A 

water depth of 0.748409 m is specified at the downstream outlet. The Manning’s n value 

is 0.03.  The bottom slope is given by:   
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which is depicted in Figure 2-4.  For this test problem, the analytical solution of the fully 

dynamic wave model at steady state is given by MacDonald et al. (1997) as 
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This problem was simulated numerically with one-dimensional DYW, DIW and 

KIW.  The computed steady state water depth profiles (Figure 2-1) were compared to the 

exact solution, Eq. (26). The numerical solution obtained by the characteristics-based 

finite element method was accurate. On the other hand, the DIW solution still contains an 

absolute relative error of less than 4%. And even though the kinematic wave (KIW) 

solution can be obtained analytically for this simple problem, the computed water depth 

is underestimated by up to 12%. Also, the downstream boundary cannot be applied for 

KIW and the water depth is computed by KIW at the outlet. The large error of KIW can 

be attributed to the boundary conditions, since the bottom slopes are not very small. 

 

Figure 2-1:  Water Depth Profiles for Test problem 1 

 

 



 

 

32

 

 

 

Test problem 2:  Mixed Subcritical/Supercritical Flow: 

A rectangular channel of 1,000 m, with a width of 10 m, is given a constant flow rate of 

20 m
3
/s (for the entire channel). The bottom slope is variable and is given as function of x 

as 
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The bottom slope given in Eq. (27) would render the flow conditions subcritical at the 

inflow boundary and supercritical at the outlet (Figure 2-3). The Manning’s n value is 

0.02.   This test problem has an exact solution (MacDonald et al. 1997)  
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For numerical simulations, there is one inflow boundary condition and no 

downstream boundary for the dynamic wave model. For diffusive wave model, two 

boundary conditions must be given. In this case, the known water depth at outlet was 

specified as downstream boundary based on the exact water depth solution given in Eq. 

(28). 

The dynamic wave model was able to solve this mixed flow problem with good 

accuracy.  No numerical instabilities have been encountered. The diffusive wave model 

also provides satisfactory results (4% error in water depth). The kinematic wave solution 

underestimated the water depth by 4% to 6% (Figure 2-2).  The Froude number profile 
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plot in Figure 2-3 confirms the mixed flow condition. The bottom slopes range from 

0.2% to 0.8%. 

 

Figure 2-2: Water Depth Profiles for Test Problem 2 
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Figure 2-3:  Froude Number and bottom slope (%) profiles for Test Problem 2 

 

Figure 2-4: Bottom slope (-) profiles for Test Problems 1 and 3  
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It is interesting to note that even though the dynamic wave model requires less 

input data than the diffusive wave model (one boundary condition versus two), it yields 

more accurate simulations.   

 

Test problem 3:  Mixed Subcritical/Supercritical Flow with Hydraulic Jump 

This test problem is described in MacDonald et al. (1997). The channel is 

trapezoidal, with a total length of 1,000 m. The upstream inflow is a constant discharge of 

20 m
3
/s. At the downstream outlet, a specified water depth of 1.349963 m was applied.  

The side slope of the trapezoidal cross-section is 1:1. The Manning’s n value is 0.02.  The 

bottom slope is given as function of x as: 
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which is depicted in Figure 2-4.  The exact solution for this problem is (MacDonald et al. 

1997) 

 
















≤<







−+
















−−+

≤≤
























−−

≤≤
























−−

=

∑
=

3

1

10006001
1000

exp
5

3

5

3

1000
20exp

4

3

600300
10

3

1000
6tanh

6

1
1723449.0

3000
10

3

1000
tanh1723449.0

)(

k

k x
xx

ka

x
x

x
x

xh  (30) 

 

The abrupt change in bed slope (Figure 2-4) causes a hydraulic jump. Both inflow and 

outflow boundaries are subcritical.   
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The bed slope of the channel has an abrupt change at x = 500 m (cf. Eq. (29) and 

this causes the occurrence of a hydraulic jump. The dynamic and diffusion wave 

solutions were computed and compared (Figure 2-5). As expected, the accuracy of 

diffusive wave approximation for this mixed flow case is not satisfactory.  At the zone of 

supercritical flow, the error induced by diffusive wave approximation is high at the 

supercritical zone.   

 

Figure 2-5:  Water Depth Profile for Test Problem 3 

 

The dynamic wave solutions obtained with the characteristics-based finite 

element method are very accurate and the hydraulic jump in Test Problem 3 was 

captured. On the other hand, the diffusion wave approximation generated significant 

errors for the hydraulic jump and an absolute error of less than 5% still exists for the two 

simpler problems (Figure 2-6). 
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Figure 2-6: Summary of error in the Diffusion wave solutions 

 

2.4.2 Rainfall-runoff over a plane    

This simple example is used to test and verify that the implementation of the 

numerical schemes for two-dimensional DYW, DIW and KIW for rainfall-driven 

overland flow. The relatively steep slope in this example is expected to produce close 

results for all wave models. 
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Overland flow on a sloping plane was simulated. The impervious plane is 800 m x 

1000 m.  The bottom slope is 0.5% and the Manning’s roughness coefficient value is 

0.015. A constant rainfall intensity of 10.8 mm/hour and duration of 1.5 hours was 

applied uniformly on the surface.  

 

The flow domain was discretized into 100 rectangular elements of 80 m x 100 m.  

At the downstream outlet, a zero depth gradient boundary was applied. A time step of l20 

s was applied during the simulation run of 170 minutes.  

 

Since the slope is relatively steep (0.5%), both the diffusion and kinematic wave 

approximations are relatively accurate. The computed water depth and velocity 

magnitude profiles at peak steady state level (time =5,000 seconds) were compared for 

solutions of the three DYW, DIW, and KIW wave models in Figures 2-7 and 2-8.  As 

expected, the numerical solutions for both water depth and velocity are very close.  



 

 

39

 

 

 

 

Figure 2-7: Water depth profiles at time=5000s (numerical solutions by two-dimensional 

DYW, DIW and KIW)  
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Figure 2-8:  Velocity magnitude profiles at time =5000s (numerical solutions by two-

dimensional DYW, DIW and KIW) 

 

2.4.3 Two-dimensional partial dam break with friction 

This example demonstrates the effect of strong inertial terms on significantly 

different results by diffusion wave and dynamic wave.  

 

This a two-dimensional partial dam break problem similar to the example in 

(Fennema and Chaudhry, 1990). But the downstream water depth was set to 0.05 m, so 

this is a dry bed simulation, very difficult to be solved numerically by conventional finite 

difference or finite element methods. The rectangular channel is horizontal with a 
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dimension of 200 x 200 m in length and width, respectively. The initial water depth is 10 

m in the reservoir, and 0.05 m in the downstream. A Manning’s n value of 0.02 was 

applied. The breach or opening of sluice gates is 75 m, between x = 95 and 170 m. The 

domain was divided into 40 x 40 rectangular elements and the elements at the location of 

the dam are excluded. 

 

At the beginning of the simulation, the dam has partially collapsed 

instantaneously.  At time t = 0, the water depth in the dam is 10.0 m, and a water depth of 

0.05 m is presented elsewhere (Figure 2-9). Since the bottom slope is zero, KIW cannot 

be used. DIW and DYW were applied to simulate the dam break flow process. The 

simulation results were compared for water depth distribution in the domain and 

computed depth hydrographs for the point inside the reservoir (B) and downstream of the 

dam location (A) (Figures 2-10 and 2-11). It can be seen that without consideration of 

inertial terms, the diffusion wave (DIW) results are incorrect and highly distorted. DIW 

solution spreads water quickly within the domain while dynamic wave solution predicts 

the correct advance of the wave front. 
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Figure 2-9: Finite element mesh and initial condition for the dam break problem 
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(a) DYW Solution at Time =16.0 sec and Location of Point A and B 

 

(b) DIW Solution at Time = 2.0 sec 

Figure 2-10: Water Depth profiles for Dam Break Problem  
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Figure 2-11: Comparison of Computed water depth hydrographs for Dam Break Problem 

2.4.4 Two-dimensional unsteady flow in a treatment wetland 

One important application of the full two-dimensional shallow water equations is 

water movement in low terrain areas (e.g., flood plains, wetlands, irrigated farmlands and 

tidal flats) where simplified diffusion wave approximation may not be appropriate. The 

numerical simulation of overland flow in a treatment cell in a constructed wetland was 

made to test model performance of diffusion wave approximation under such a mild 

slope condition.   

 

The flow domain is about 4.18 km
2
. The slope of land surface elevations ranges 

from 0.0003 to 0.007. The boundary is closed by a perimeter levee, except flow through 
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the inflow and outflow culverts in the levee (Figures 2-12 and 2-13). There are observed 

flow and stage data for this treatment cell and a stage monitoring station is located at the 

center of the cell. 

 

Flow during a time period of 240 hours (10 days) was simulated with time-varied 

historic flow and stage data (Figure 2-14) and the simulation results of DYW and DIW 

were compared. Identical finite element mesh, model parameters and boundary 

conditions were used. Both the DYW and DIW solutions were plotted for the water levels 

at the observed point with the observed data. Close match (less 0.01 m with water levels 

range between 3.80 m to 3.95 m) among the observed, DYW and DIW values were 

obtained (Figure 2-15).  This example demonstrates that DIW can be applicable to slow 

flow on a very mild slope.  

 

For sediment and contaminant transport, accurate velocity calculation is also very 

important. There are concerns that flow dynamics cannot be adequately captured by 

diffusion wave or kinematic wave approximations.  The velocity magnitude and vector 

plots also show similar pattern (Figure 2- 16). 
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Figure 2-12: Finite Element mesh and Topography 
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Figure 2-13: Boundary Conditions and Vegetation, Observation point. 
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Figure 2-14:  Boundary Condition data applied in the wetland example 
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Figure 2-15: Comparison of Observed and Computed Stages. 
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Figure 2-16: Velocity Magnitude and Vector plots (DIW and DYW solutions) 
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2.4.5 Two-dimensional river flow at a river bend 

This example is designed to estimate the error of diffusion wave approximation 

when flow vorticity and eddies may play an important role. The steady flow at a segment 

of a river bend was simulated (Figure 2-17). The river reach is about 800 m long and 50 

m wide.  The bottom is horizontal. A constant inflow of 500 m
3
/s is applied at one end 

and a specified river stage of 3.0 m is applied as the downstream boundary. The 

Manning’s n value is 0.025. 

 

Figure 2-17: Layout of the River bend example 

 

The dynamic wave and diffusion wave models were applied to solve this example 

problem. The DYW solution is shown in Figure 2-18. 
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Figure 2-18: Computed water depth and velocity magnitude (DYW) 
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The computed water depth and velocity magnitude obtained with DIW are 

compared to the DYW solution and the differences are plotted in Figures 2-19 and 2-20. 

It can be seen that the errors in water depth and velocity magnitude computed with the 

diffusion wave approximation are significant at the bending segment, even though eddies 

do not occur. Under this flow condition and geometry, the diffusion wave approximation 

is not appropriate.  

 

 

Figure 2-19: Difference in computed water depth (DIW – DYW) 
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Figure 2-20: Difference in computed velocity magnitude (DIW – DYW) 

  

2.5 Discussions 

 

The dynamic wave model should be mandated for strong dynamic flow cases 

(e.g., dam break type flow), or momentum fluxes are important compared to gravity force 

(e.g., when the slope is very small, cf. Section 2.4.5). The diffusion wave model is 

usually adequate for overland flow on hill-slopes. The accuracy of diffusion wave under 

very mild slope is not guaranteed as flow dynamics and downstream boundary may play 

a key role.   
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The kinematic wave model is still popular in many watershed models. It should be 

limited though, specifically to steep-slope mountainous watersheds and where 

downstream conditions are not important. Instead of this method, an adaptive scheme for 

applying DYW, DIW, or KIW in different sub-domains of a watershed may prove to be 

more efficient and therefore advantageous.     

2.6 Summary and Conclusions 

The implementation of dynamic wave, diffusion wave, and kinematic wave 

models in a single watershed model is an advantage in order to strongly validate the 

derived approximations.  This is illustrated by some numerical examples that demonstrate 

the potential errors in diffusion wave and kinematic wave models for overland flow.   
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Chapter 3 

 

Dynamic Wave Modeling of Two-dimensional Overland Flow using Characteristics-

based Finite Element Method  

Abstract 

The Method of Characteristics (MOC), within the context of the finite element 

method, was applied to the complete two-dimensional shallow water equations for two-

dimensional overland flow. For two-dimensional overland flow, finite element or finite 

volume methods are more flexible in dealing with complex boundary. Recently, finite 

volume methods have been very popular in numerical solution of the shallow water 

equations. Some (e.g., Hirsch et al, 1987; Garcia-Navarro et al., 1995 and Guinot, 2004) 

have pointed out that finite volume methods for two-dimensional flow are fundamentally 

one-dimensional (normal to the cell interface). The results may rely on the grid 

orientation.  The search for genuinely multidimensional numerical schemes for two-

dimensional flow is an active topic.  We consider the Method of Characteristics (MOC) 

in the context of finite element method as a good alternative. Many researchers (e.g., 

Zhang and Cundy, 1989; Chow and Ben-Zvi, 1973 and Katopodes and Strelkoff, 1979) 

have pointed out the advantage of MOC in solving two-dimensional shallow water 

hyperbolic equations having wave-like solutions. At the same time, they considered 

MOC for two-dimensional overland flow being non-tractable on complex topography. 

The intrinsic difficulty in implementing MOC for two-dimensional overland flow is that 

there are infinite numbers of wave characteristics in the two-dimensional context, 
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although only three independent wave directions are needed for a well-posed solution to 

the characteristic equations. We have implemented a numerical scheme that attempts to 

diagonalize the characteristic equations based on a pressure and velocity-gradient 

relationship. This new scheme was evaluated by comparison with other choices of wave 

characteristic directions, given in the literature.  Example problems of mixed sub-critical 

flow/super-critical flow in a channel, with approximate analytical solutions, were used to 

verify the numerical algorithm. Then experiments of overland flow on a cascade of three 

planes (Iwagaki, 1955) were solved with the new method. The circular dam break 

problem was solved with different selections of wave characteristic directions, and the 

performance of each selection was evaluated based on accuracy and numerical stability. 

Finally, two-dimensional overland flow over complex topography in a wetland setting, 

with very mild slope, was solved with the new numerical method to demonstrate its 

applicability. 

3.1 Introduction 

The simplified form of the two-dimensional shallow water equations (e.g. the 

diffusion wave or kinematic wave approximation) has been frequently used in modeling 

the two-dimensional shallow overland flow originated from the rainfall/runoff process, 

surface flow in irrigation and wetlands, and flooding in floodplains. On the other hand, 

the full two-dimensional shallow water equations have been extensively studied for fast 

transient flow processes (dam break type flood propagation and hydraulic jumps) or deep 

surface water flows in estuary and ocean.     
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The characteristics of overland flow in comparison to deep surface water flow can 

be summarized as (e.g. Zhang  and Cundy, 1989): (1) very small water depth; (2) large 

bed shear stress; (3) impact of grid scale micro-topography; (4) stiff source term induced 

by rainfall and infiltration; and, (5) dynamically wetting and drying boundary.    The full 

two-dimensional shallow water equations are the most appropriate for capturing all these 

complex overland flow features.  

 

Chow and Ben-Zvi (1973) reported the first two-dimensional hydrodynamic 

model for overland flow using the Lax-Wendroff scheme. Zhang and Cundy (1989) 

applied the explicit MaCormack finite difference scheme for two-dimensional overland 

flow.  Fielder and Ramirez (2000) also applied the explicit MaCormack scheme with 

some special treatment of the advection and source terms for two-dimensional overland 

shallow water equations. Simulation of overland flow at plot size at the scale of 1 ~ 10 m
2 

was reported in these studies. These classical methods and some other central difference 

schemes are prone to numerical instabilities and special treatments are required to 

achieve a stable and convergent numerical solution.   Zhao et al. (1994) developed a 

finite volume model for two-dimensional surface water flow. Finite volume methods 

combined with shock capturing scheme have been very popular and seem successful for 

the homogeneous shallow water equations. However, finite volume methods are 

intrinsically one-dimensional (normal to the cell interfaces) and the manipulation of 

source terms is difficult and complicated for higher order schemes.   In the finite 
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difference context, the classical method of characteristics has been considered to be 

advantageous in solving the two-dimensional shallow water equations for overland flow, 

but it is also thought to be extremely difficult and not tractable for the general overland 

flow case of complex topography and variability (Chow and Ben-Zvi, 1973; Zhang and 

Cundy, 1989). Katopodes and Strelkoff (1978; 1979) developed a numerical scheme 

based on the method of characteristics in the framework of finite difference method for 

two-dimensional dam break simulations.   

 

In the finite element framework, it is well known that Galerkin finite element 

methods perform very poorly for advection-dominant shallow water flows.  The 

streamline upwind finite element methods (SUPG) apply selective dissipation to dampen 

numerical oscillation (Katopodes, 1984).  Lately, the discontinuous Galerkin finite 

element method has also been applied for trans-critical shallow water flows 

(Schwanenberg and harms, 2004).   

 

All above-mentioned methods are Eulerian with some stabilization schemes. 

Since the shallow water equations are partial differential equations of hyperbolic type, 

characteristics-based or Eulerian-Largragian methods are more appropriate. The 

characteristic Galerkin method (Zienkiewicz et al., 1999) was developed for the scalar 

advection equation, but is not directly applicable to the shallow water equations because 

more than one characteristic speeds are involved. The characteristic-based split (CBS) 

scheme was proposed to resolve this difficulty.  Paillere et al. (1998), Brufau and Garcia-
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Navarro (2003) and Garcia-Navarro et al. (1995) studied genuinely multidimensional 

upwinding schemes for the 2D shallow water equations based on a residual distribution 

scheme with wave models. Guinot (2005) studied approximate two-dimensional Riemann 

solver for hyperbolic systems of conservation laws in the framework of finite volume 

methods. They applied the new scheme for dam break problems and demonstrated the 

improvement in the numerical solutions by a two-dimensional approach for computing 

the numerical flux in finite volume methods.    

 

In this paper, we present the classical Method of Characteristics (MOC) in the 

context of finite element methods in the Eulerian-Lagrangian framework; the intrinsic 

difficulty in two-dimensional MOC methods for two-dimensional shallow water 

equations is that there are infinite characteristic wave directions to choose from, although 

there are only three independent wave directions. Hirsch et al. (1987) proposed a 

diagonalization approach for the multidimensional Euler equations. It is well known that 

the shallow water equations are analogous to the Euler equations for gas dynamics. Thus, 

a similar diagonlalization was implemented for the shallow water equations in the 

framework of finite element in the current study. The characteristic decomposition model 

used by Paillere et al. (1998) was also tested for better stability for sub-critical flow. 

Numerical schemes based on different combinations of characteristic wave directions 

were evaluated using typical overland flow examples. The numerical experiments on 

frictionless circular dam break problem, rainfall-runoff over complex surface, wetland 
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hydraulics and mixed sub-critical/super-critical flow regime   were presented to 

demonstrate the advantage and limitation of the new method.  

3.2 Governing Equations 

The governing equations for two-dimensional overland flow are the shallow water 

equations based on the conservation law of mass and momentum.  The two-dimensional 

shallow water equations in the conservative form are written as follows (Zhao et al., 

1994). 
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The conservative variables are 
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where h is water depth; u is the velocity component in the x-direction; v is the velocity 

component in the y-velocity, respectively. The flux vector F has two components Fx and 

Fy: 
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The source term is: 
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where R is the source/Sink term as a result of rainfall, evapotranspiration and infiltration, 

etc. Without losing generality, the eddy turbulent term, momentum exchange flux, 

surface shear stress (wind effect), etc. have been omitted. When these terms are included, 

the readers are referred to Yeh, et al. (2006). 

 

The bed slopes are defined as: 
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where g is the gravitational acceleration and Z0 is the bed elevation above a datum. The 

friction slopes can be approximated by the Manning’s equation as  
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where n is the Manning’s roughness coefficient. 

 

The conservative form is preferred for some conservative schemes such as finite 

volume methods, and is considered advantageous in dealing with discontinuities in 

solutions.  

 

On the other hand, the primitive form is more revealing for the intrinsic physical 

property of the shallow water equations and amendable to advective schemes.  With 
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mathematical manipulations, Equations (1) can be written in the primitive form using (h, 

u, v) as dependent variables: 
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which can be written in matrix form as 
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For an arbitrary wave propagation direction k  =(kx, ky) =(cos θ, sin θ); θ is the 

angle of the wave direction from x-direction, let the matrix B be the linear combination of 

the matrices Ax and Ay as follows 
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The three eigenvalues of matrix B are 
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where c is the wave  celerity, defined as: 
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The right eigenvector of B is 
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and the inverse matrix of L: 
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By definition,  
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The diagonal matrix Λ is the matrix of the eigenvalues of (Ax cos θ+ Ay sin θ). It is 

noteworthy that these eigenvalues are unique for both the Jacobian matrices of the 

conservative variables and the primitive variables. Let us define a characteristic variable 

vector W as 
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where W1 is a characteristic variable associated with a shear wave, which has no 

equivalent in one-dimensional flow (θ = 0). W2 and W3 are characteristic variables 

associated with the positive and negative gravity waves, respectively. 
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It is noted that the coefficient matrices L
-1

AxL and L
-1

AyL of (∂W/∂x) and 

(∂W/∂y), respectively, cannot be simultaneously diagonalized by the same matrix L.  

Rearranging Equation (20), we obtain 
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This is the characteristic form of two-dimensional shallow water equations with 

an arbitrary wave direction K = (cosθ, sinθ). The left hand side terms represent water 

wave propagation in the characteristic wave directions and can be written with the total 

derivative along the characteristics:  
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The coupling terms (S1, S2, S3) cannot be simultaneously eliminated and, as in the 

case of the Euler equations (Hirsh et al., 1987), this results in the non-unique selection of 

upwind directions for two-dimensional flows.  

 



71

 

  

It is noteworthy that the above characteristic equations in Lagrangian form, 

Equation (23), are identical to both the original conservative and primitive forms of the 

shallow water equations. No numerical approximations have been introduced.  

 

The governing equations must be supplemented with initial condition and 

appropriate boundary conditions for a well-posed two-dimensional overland flow 

problem.  Wave characteristic directions at the boundary determine the required boundary 

conditions. For example, at an inflow boundary, if flow is subcritical, both shear wave 

traveling along the streamline and the positive gravity wave along the normal into the 

flow domain, so two boundary conditions have to be imposed.     

3.3 Numerical Methods 

The Eulerian-Lagrangian method (ELM) is a popular framework for the 

numerical solution of the scalar advection-diffusion transport equation. This can be 

extended to the solution of advection dominant flow equations. In the case of two-

dimensional shallow water equations, the advection of shear wave and gravity wave 

properties in the space-time domain can be decoupled into three convective equations 

with source terms, as shown in Equation (23).   

 

 After the selection of two specific characteristic directions with the propagation 

angles, θ1 and θ2, new characteristic variables are defined as  
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where ω = cosθ1 cosθ2 + sin θ1 sin θ2.  Since ω should not be zero, the two wave 

directions cannot be orthogonal. By replacing the new characteristic variables and matrix 

L
*
 into Equation (19), we obtain the following equations: 
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A numerical scheme is designed to solve Equation (26): 

(1) From a new time step, the intermediate values of the unknowns (h, u, 

v) at a global node (h*, u*, v*) are obtained by backward tracking 
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along the characteristics until the foot of the characteristics at the old 

time step is reached or a boundary is hit.  

(2) The final numerical solutions are obtained by integrating the RHS 

terms along the characteristic lines with a simple trapezoidal 

integration rule.     

3.3.1 Backward Tracking approach 

In the finite element context, the backward tracking scheme is a sub-element-

tracking scheme developed by Cheng et al. (1996) and improved by Suk (2003).  The 

solution values at the foot of the characteristic curve are interpolated by linear finite 

elements.    

3.3.2 Characteristic wave directions 

Choosing the two wave characteristic directions (θ1 and θ2) is the most critical 

part of the characteristics-based finite element method. It can be seen that the first 

characteristic speed (u, v) is along the streamlines and only the two characteristic 

directions associated with the gravity waves need to be chosen.   

The first approach is the wave directions based on maximum diagonalization:  The first 

choice is based on the minimization of the coupling term (Equation (27)).  This follows 

the diagonalization approach for the Euler equations suggested by Hirsh et al. (1987). By 

setting the coupling terms to zero, we have the following relationships.   
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From the above algebraic equations, we observe that the first characteristic direction is 

related to the shear wave and the two gravity waves share the same second characteristic 

direction.  

 The first characteristic direction is determined by 
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/
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tan 1θ  (29) 

 

which is in the pressure gradient direction.  

 

 The second characteristic direction, if one exists, is based on the solution of the 

following equation: 
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Equation (30) can have two, one, or no solutions. If no solutions can be found, the 

following particular characteristic direction as suggested in Roe (1986) for the treatment 

of the Euler equations will be used 
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∂∂+∂∂
=

//

//
tan 2θ  (31) 
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If one solution can be found, it is used in computing θ2. If two real solution can be found, 

the one that maximizes ω = cosθ1 cosθ2 + sin θ1 sin θ2 will be used.  

 

It is noteworthy that by choosing wave decomposition following the flow gradients 

(depth and velocity), it may be possible to minimize the coupling terms and obtain 

diagonalization of the shallow water equations. However, numerical experiments show 

that this approach often suffer from convergence problem (e.g., Paillere et al., 1998). The 

characteristic directions are dependent on the numerical solution and sensitive to the 

accurate evaluation of the gradients of water depth and velocity components. Numerical 

stability and convergence are the major concern. 

 

The second approach is the characteristic decomposition: Proposed by Paillere et al., 

1998, when the flow is supercritical, the angle θ2 is taken to be along the Froude line as 

 

2

1
sin

Fr
θ =  (32) 

 

where Fr is the Froude number defined as (Fr
2
 = (u

2
+v

2
)/c

2
).  If the flow is subcritical, the 

propagation angle is taken as 

 

2
2

1

1
tan

Fr−
=θ  (33) 

 

The first characteristic direction θ1 is chosen to be equal to the angle θ2 in order to 

maximize the determinant of the transformation (ω = 1.0). 
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The coupling terms will not be zero with this selection of characteristic directions. 

On the other hand, numerical experiments show that this approach is more stable.   

 

The last approach is the ad-hoc wave directions based on some geometric parameters: 

The first characteristic direction can always be selected in the depth gradient direction. 

The second characteristic directions can be chosen arbitrary, for example, along the x-

direction, the y-direction or the steepest elevation gradients.  This approach is less 

accurate and grid orientation of the numerical solutions may occur.    

3.4 Verification and Validation Examples 

3.4.1 Example 1: non-uniform steady flow in a straight channel 

This is a nontrivial channel flow benchmark problem reported by (MacDonald et 

al., 1997) to verify and test the performance of numerical methods for open channel 

flows. 

A steady flow of 20 m
3
/s is maintained in a 1000 m of rectangular channel with a 

constant width of 10 m. the Manning’s roughness coefficient for the channel is 0.02 and 

the bottom slope is given as a function of desired water depth profile. The flow is 

subcritical at the upstream boundary and supercritical at the downstream boundary and 

critical flow at 500 m from upstream end. The exact analytical solution was provided by 

(MacDonald et al., 1997). 
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 The bottom slope is variable and is given as function of x as 
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The bottom slope given in Eq. (34) would render the flow conditions subcritical at the 

inflow boundary and supercritical at the outlet. The Manning’s n value is 0.02.   This test 

problem has an exact solution (MacDonald et al. 1997)  
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The bed slope is plotted in Figure 3-1. For simulation, 500 rectangular element 

size of 2 m x 10 m is used and specified inflow of 20 m
3
/s is applied at the upstream end 

and since the flow is supercritical at the outflow end, no boundary conditions were used 

at that location. A transient simulation was conducted with the constant boundary 

conditions until the solution approached steady state.   
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Figure 3-1: Bottom Slope for Example 1 
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Figure 3-2: Computed and Exact Water Depth along the Channel    

 

 

As shown in Figure 3-2, the good match between computed and exact solutions 

demonstrates that the characteristics based finite element method is correctly 

implemented and can solve mixed subcritical and supercritical flow regimes with 

adequate accuracy and numerical stability.   

3.4.2 Example 2: Rainfall-runoff on a sloping plane   

This simple example is used to test and verify that the implementation of the 

characteristics-based numerical scheme is correct and accurate for overland flow.  
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Overland flow on a sloping plane was simulated and compared with the analytical 

solution. The impervious plane is 800 m x 1,000 m, the bottom slope is 0.05, and the 

Manning’s roughness coefficient value is 0.015. A constant rainfall intensity of 10.8 

mm/hour over the duration of 1.5 hours was applied uniformly on the surface.  

 

The flow domain was discretized into 100 rectangular elements of 80 m x 100 m.  

At the downstream outlet, a zero depth gradient boundary was applied. A time step of 20 

s was applied during the simulation run of 170 minutes. Since the slope is steep (5%), the 

kinematic wave approximation is relatively accurate and there is a kinematic analytical 

solution for the outlet discharge (Singh, 1996).   

 

 The computed outlet discharge hydrograph was compared with the kinematic 

analytical solution in Figure 3-3.  The numerical solution is very close to the analytical 

solution and the mass error is very small.  

 

The characteristics-based method is stable and no numerical oscillation occurred.  

For this example, the flow is one-dimensional, so the down slope direction was selected 

as the wave characteristic direction.  

 

Since the characteristics-based method is not inherently conservative, significant 

mass error may occur when coarse meshes and large time steps are used.  
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Figure 3-3: Outflow Hydrograph (Analytical vs. numerical solutions)  

  

3.4.3 Example 3:  Two-dimensional Circular dam break problem 

This is an academic test problem. A circular dam with a radius of 11 m is located 

in the center of a 50 m x 50 m computational domain. The bed is horizontal and 

frictionless. The initial water depth in the dam is 10 m and 1 m outside the dam (Figure 

3-4). The dam is instantaneously removed at time = 0.      

It has been widely used in hydraulics literature to test performance of different 

numerical methods (e.g., Schwanenberg and harms, 2004; Tseng and Chu, 2000 and 

Alcrudo and Garcia-Navarro, 1993, among others). 
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The dominant wave propagation direction is known a priori.  It is along the radial 

directions. So it is a good example to test impact of chosen wave directions on numerical 

solutions.    

 

Figure 3-4:  Initial Water Depth of Circular Dam-break Problem  
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Figure 3-5: Water depth at time = 0.69 sec 

 

As pointed out by Schwanenberg and harms (2004), the solution between the 

shock wave and the rarefaction wave is not flat as in the corresponding one-dimensional 

dam break. This difference arises from the two-dimensional nature of the flow and is a 

good test for the correctness of a numerical solution. As shown in Figure 3-5, the solution 

solved by the characteristics based finite element method was able to capture this aspect 

of the solution quite well. The radial symmetry of water depth is also preserved well 

considering the use of triangular elements and a perfect symmetry could not be set at the 

beginning of the simulation. The solution shown in Figure 3-5 was obtained by the wave 

directions based on maximum diagonalization.   
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The grid orientation effect of selected arbitrary wave directions was demonstrated in a 

solution that used the x-direction (θ2 = 0) as the second characteristic direction. As can be 

seen in Figure 3-6, a pre-specified characteristic direction cannot capture the two-

dimensional nature as well as by a dynamically computed wave direction, significant 

spatial bias in the y-direction is revealed.  
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Figure 3-6: Impact of Selected Characteristic Direction on Computed Water Depth 
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3.4.4 Example 4: rainfall-runoff process over a three-plane cascade surface 

This example is simulated to partially validate the appropriateness of the 

governing equations for modeling the physical phenomena of overland flow by 

comparison with experimental data. Furthermore, kinematic shock waves were generated 

by the changes in bed slopes for the case of short rainfall duration (10 s) and it is a good 

test of the capability of the numerical scheme in dealing with this.    

 

Overland flow on a three-plane cascade surface was experimented by Iwagaki 

(1955).  A series of artificial rainfall was applied on a smooth aluminum laboratory flume 

surface.  The flume is 24 m in length and is divided into three planes with constant slopes 

of 0.020, 0.015, and 0.010, respectively from upstream to downstream. The constant 

rainfall intensities of 389, 230, and 288 cm/hour were applied to upper, middle and lower 

plane, respectively, for the durations of 10 s, 20 s, and 30 s in three experiments. 

 

The model simulations of the three-plane cascade example were made with a 

uniform finite element mesh size of 0.25 m by 0.25 m.  The whole plane surface 

consisted of 768 elements and 873 nodes.   A Manning’s roughness coefficient of 0.007 

was used. No-flow boundary condition was applied except a critical flow condition was 

used at the outlet.   This is a one-dimensional flow problem, so the wave directions are 

known a priori, and they are along the direction of the plane slopes.  
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The computed outflow hydrograph compares Iwagaki’s 1955 experimental data  

for the three cases are shown in Figures 3-7 through  3-9. The difficult case with shock 

wave (rainfall duration of 10 s) was simulated successfully as well.  This example has 

been simulated with a kinematic shock-fitting model (Borah et al., 1980) and the shallow 

water equations with the MacCormack finite difference scheme (Zhang and Cundy, 1989) 

or upwind finite element method (Tisdale et al., 1998). Numerical instabilities and 

oscillations were reported in most of these previous studies. On the other hand, the 

numerical solutions by the characteristics-based finite element method did not encounter 

similar difficulties.     

 

 

Figure 3-7: Computed and Observed Discharge Hydrograph for the three-plane cascade 

with rainfall duration of 30 s 
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Figure 3-8: Computed and Observed Discharge Hydrograph for the three-plane cascade 

with rainfall duration of 20 s 
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Figure 3-9:  Computed and Observed Discharge Hydrograph for the three-plane cascade 

with rainfall duration of 10 s 

3.4.5 Example 5: Overland flow in a hypothetical wetland 

One important application of the full two-dimensional shallow water equations is 

water movement in low terrain areas (e.g., flood plains, wetlands irrigated farmlands and 

tidal flats) where simplified diffusion wave approximation is not appropriate. A 

numerical experiment was designed to test model performance under such conditions.   

 

The overland domain is a rectangular area of 500 m x 400 m. No-flow boundary 

was applied except there was an opening of 100 m at the center of the downstream 

boundary (Figure 3-10).  This partial outlet and the micro-topography produced the two-
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dimensional nature of overland flow.    Micro-topography was added to the horizontal 

land surface elevations (200.0 m). The land surface elevations range from 199.98 m to 

200.02 m (Figure 3-11).  

 

Figure 3-10:  Model Domain Layout 
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Figure 3-11:  Variation of Land Surface Elevations (cm) 

   

 A constant rainfall intensity of 4.0x10
-6

 m/s was applied to the whole surface area 

for 64,000 seconds and critical flow boundary condition was used at the outlet.  The 

model domain was discretized into 640 identical triangular elements. A Manning’s 

roughness coefficient of 0.20 was used. Model simulations were conducted with a time 

step of 10 seconds.  

 

The computed discharge hydrograph at the outlet and water depth and velocity 

magnitude distribution at the end of rainfall were plotted in Figures 3-12 through 3-14, 

respectively.  These results demonstrate that the model can be applied to real field 

problem with complex topography.  
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The aforementioned simulation results were obtained by applying the diagonized 

wave characteristic directions (the first approach in Section 3.3.2). Several other wave 

characteristic directions were also tested for this example problem. These other wave 

characteristic directions include: (1) the Froude line directions (the second approach); (2) 

in the computed velocity direction; (3) fixed in the y-directions.  

 

The computed water depth and velocity magnitude at the center of the domain 

(x,y) = (250, 200) are compared in Figures 3-15 and 3-16.  From the simulation results, 

the use of the diagonized wave directions and computed velocity directions produce very 

close water depth and velocity. On the other hand, the Froude line approach obtained 

lowest computed water depth and highest velocity magnitude. The use of fixed y-

direction as wave characteristic directions results in computed water depth and velocity 

between the ranges of results obtained with the other two approaches.  This means that 

selected wave directions have impact on simulation results.   

 

Since the approaches using the diagonalization wave direction and computed 

velocity direction yield very close simulations, we surmise that these simulations are the 

correct solutions.  On the other hand, we suspect that the simulations with the Froude line 

approach or the fixed y-direction approach may have produced inaccurate solutions. 
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Figure 3-12: Discharge Hydrograph at the Outlet 
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Figure 3-13: Water Depth Distribution at time =64,000 sec (m) 
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Figure 3-14:  Velocity Magnitude at time = 64,000 sec 
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Figure 3-15: Computed water depth at (250,200) obtained by using different wave 

directions 
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Figure 3-16: Computed velocity magnitude at (250,200) obtained by using different wave 

directions 

 

3.5 Discussions 

 We have demonstrated that it is feasible to apply the finite element method for 

two-dimensional shallow water equations used to measure overland flow. The advantages 

in such a numerical scheme include:  (a) straightforward and physics-based treatment of 

boundary conditions; (b) source terms are easily handled; and (c) numerical instabilities 

and oscillation in Galerkin or simple upwind finite element methods are avoided.   
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 By implementing the numerical schemes with linear finite elements, the accuracy 

is first-order in space and time. Numerical diffusion is a major concern, however, the 

maximum and minimum water depth were preserved satisfactory in the circular dam 

break problem. A further work is to compare the performance of the current scheme with 

the characteristic-based split (CBS) scheme (Zienkiewicz et al., 1999).       

3.6 Summary and Conclusions  

A characteristics based finite element method was applied to solve the two-

dimensional shallow water equations for overland flow. Implementation details, 

especially the selection of characteristic wave directions, were discussed. In the selection 

of wave characteristic directions, numerical simulations of the circular dam break and 

overland flow in a hypothetical wetland, computed water depth, and velocity are affected.  

Arbitrarily selected wave directions (e.g., x or y directions) result in less accurate results 

in the circular dam break example. Further examination of this issue, with more test 

examples having observed or exact solutions, is warranted.   

 

 It is concluded that this numerical method is very suitable for numerical solutions 

of two-dimensional overland flow with thoughtful selection of wave characteristic 

directions.  One of this method’s advantages is that the treatment of the source term and 

boundary conditions; they are straightforward and physically based. Further study is 

needed to make it more stable for real watersheds with complex topography. Since the 
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Lagragian approach is not inherently mass conservative, careful checking of mass error is 

a must for the model’s successful application.  
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Chapter 4 

 

A Comparative Study of coupling Approaches for Surface water and groundwater 

interactions 

Abstract 

In the core of an integrated watershed model exists the coupling among surface 

water and subsurface water flows. Recently, interest displayed in hydrology literature, 

regarding fully coupled approach for surface water and groundwater interactions, has 

increased. For example, the assumption of a gradient-type flux equation, based on 

Darcy’s law (linkage term) and the numerical solution of all governing equations in a 

single global matrix (VanderKwaak, 1999; Panday and Huyakorn, 2004 and Gunduz and 

Aral, 2005) has been reported. However, this trend is unfounded. This paper argues that 

this “fully coupled approach” is only a special case of all possible coupling combinations 

and, if not applied with caution, the non-physics interface parameter becomes a 

calibration tool.  Generally, there are two cases of surface/subsurface coupling based on 

the physical nature of the interface: continuous or discontinuous assumption; when a 

sediment layer exists at the interface, the discontinuous assumption may be justified. As 

for numerical schemes, there are three cases: time-lagged, iterative, and simultaneous 

solutions.  Since modelers often resort to the simplest, fastest schemes in practical 

applications, it is desirable to quantify potential errors and the performance specific to 

each coupling scheme. This paper evaluates these coupling schemes in a watershed 

model, WASH123D. Numerical experiments are used to compare the performance of 



 105

each coupling approach for different types of surface water and groundwater interactions. 

These experiments are done in terms of surface water and subsurface water solutions, 

along with exchange flux (e.g. infiltration/seepage rate). It is concluded that different 

coupling approaches are justified for flow problems of different spatial and temporal 

scales and the physical setting of interfaces; however, the time-lagged approach should 

be avoided since it is the least accurate approach.        

4.1 Introduction   

In the core of an integrated, physics-based watershed model is a study of coupling 

among surface water and subsurface water flows. In this study, we focus on physics-

based coupling approaches that utilize partial differential equations both in surface water 

flow (Saint Venant equations) and variably saturated subsurface flow models (Richards 

equation).  For simpler watershed models, the infiltration term is treated by an empirical 

algebraic equation; accordingly, the surface water/groundwater interaction computation is 

straightforward and independent of water flow solutions. Although the numerical solution 

of the Richards equation is computationally intensive and difficult at watershed scales, it 

is essential for a complete, physics-based representation of the subsurface flow.   

 

The consideration of surface water/subsurface water interactions consists of two 

parts: stream-aquifer interaction and overland-subsurface interaction. The stream-aquifer 

interaction has been extensively studied by coupling saturated groundwater flow with 

one-dimensional channel flow (for example, Pinder and Sauer, 1971; Swain and Wexler, 
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1996, and Hunt, 1990, among others). The role of unsaturated zone on stream-aquifer 

interaction is rarely considered. The overland-subsurface interaction is usually studied in 

the context of runoff generation at the watershed scales (for example, Freeze, 1972; 

Smith and Woolhiser, 1971; Akan and Yen, 1981 and Abbott et al., 1986).  

 

Recently, the physics-based coupling of surface and subsurface flows has been an 

active research topic. Panday and Huyakorn (2004) discussed the utility of different 

coupling schemes in a new watershed model and seemed to favor the conductance-type, 

linkage term approach. Morita and Yen (2002) classified coupling approaches as fully 

coupled (simultaneous solution), alternating iterative coupling and externally coupling 

(decoupled). In their model, the concept of infiltrability was introduced. This term refers 

to the variable boundary conditions in numerical solution of Richards equation; however, 

a leakage term was used in the coupling process.  

 

With the assumption of a linkage term at the interface, the full implicit coupling 

approach has been tested in some recent models: InHM (VanderKwaak, 1999), 

MODHMS (Panday and Huyakorn, 2004), and Gunduz and Aral (2005). Enhanced 

numerical stability and accuracy were reported on some test examples as a result of 

solving the coupled governing equations in a single global matrix.  However, this 

approach also has intrinsic limitations: an assumption has to be made that there exists a 

discontinuous layer at the interface, and usually, identical time steps have to be used for 

both surface water and subsurface flow.  
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Kollet and Maxwell (2005) pointed out the limitation of the linkage-term 

approach, based on the interface conductance concept, and considered overland flow as 

part of a subsurface flow boundary condition in their coupled model. The continuity of 

pressure head at the interface was imposed. However, in their coupled model, the same 

time step must be used for both overland and subsurface flow. 

 

The time-lagged, decoupled approach is still very popular in some loosely 

coupled models that consist of an existing surface water model and a subsurface flow 

counterpart. Earlier studies make use of this approach to reduce computation effort. 

Smith and Woolhiser (1971) coupled a one-dimensional Richards equation with one-

dimensional kinematic wave overland flow to simulate rainfall-runoff on a plane. Singh 

and Bhallamudi (1998) developed a coupled overland flow model with one-dimensional 

dynamic wave equations and two-dimensional Richards equation. The time-lagged, 

decoupled approach was used for surface water/groundwater interaction.  Langevin et al. 

(2005) simulated the integrated surface water/groundwater interaction in coastal wetlands 

in south Florida by coupling the two-dimensional hydrodynamic model (SWIFT2D) with 

the SEWAT density-dependent groundwater model in a time-lagged, decoupled manner.  

 

Although all the coupling approaches are conceptually simple, there seems to be no 

consensus regarding the best approach in hydrology literature. The so-called ‘fully 

coupled approach’ has a different definition and meaning for different people in current 



 108

hydrologic modeling research and practice; some refer to the inclusion of hydrological 

processes while others refer to the coupling schemes. 

 

It is also interesting to see how different coupling approaches can reach similar 

results for the example problem of Smith and Woolhiser (1971). In their original paper, a 

kinematic wave approximation was applied for overland flow and a time-lagged, 

decoupled approach was used. Singh and Bhallamudi (1998) applied the full St. Venant 

equations for overland flow with a decoupled scheme. Morita and Yen (2002) applied the 

iterative coupling approach and VanderKwaak (1999) applied a linkage-term based 

simultaneous coupling approach to the same problem. All models reported a close match 

with the experiment data. A possible explanation is that the example is a typical 

Hortonian runoff problem and subsurface flow contribution to surface runoff is not 

important, so the surface/subsurface interaction is weak. 

 

In this paper, the pros and cons of several combinations of coupling schemes, 

including continuous or discontinuous interfaces, time-lagged, iterative, and simultaneous 

solutions, will be discussed.  The implementation of coupling schemes in a physics-

based, integrated watershed model (WASH123D), will be described; in addition, results 

of numerical experiments will be compared in term of exchange flux (infiltration rate), 

outlet discharge hydrograph, groundwater table, and soil moisture and computation time, 

etc. The major motivation for such an analysis is that, in watershed and regional scale 

practical applications, many simplifications and assumptions may have to be made on 

surface water and groundwater interactions.  The widely used weakly coupled, or 
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decoupled approaches were taken for the sole purpose of alleviating the computation 

burden regardless if these approaches were adequate or not.   In fact, examples shall 

demonstrate that the decoupled approaches generally yield inadequate simulations. We 

should fully understand the implication on the choice of coupling approaches on 

simulation results. 

4.2 Governing equations and Interface Conditions 

Without losing generality, we will present the diffusion wave approximation to 

the Saint Venant equations for surface water flows. And the three-dimensional Richards 

equation is applied for subsurface flow. The interface conditions in connection to 

source/sink terms and boundary conditions of the governing equations will be discussed. 

4.2.1 Channel Network Flow 

The governing equations of water flow in one-dimensional river/stream/canal can 

be derived based on the conservation law of water mass and linear momentum. The 

diffusion wave approximation is based on the continuity equation and a simplified form 

of the momentum equation.  

The continuity equation is: 
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where t is time [T]; x is the axis along the channel direction [L]; A is cross-sectional area 

of the river/stream [L
2
]; Q is flow rate of the channel [L

3
/T]; SS is the man-induced source 

[L
3
/T/L]; SR is the source of direct rainfall [L

3
/T/L]; SE is the sink due to 

evapotranspiration [L
3
/T/L]; SI is the sink due to infiltration [L

3
//T/L]; SO  are the source 

terms contributed from overland flow [L
3
/T/L]. 

 

In a diffusion wave approximation, the inertia terms in the momentum equation is 

assumed negligible and the following velocity formula is applied:    
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(2) 

 

where n is Manning’s roughness [TL
-1/3

], a is a unit-dependent factor (a = 1 for SI units 

and a = 1.49 for U.S. Customary units) to make the Manning’s roughness unit-

independent, R is the hydraulic radius [L], Zo is channel bottom elevation above a datum 

[L] and H = h + Zo is the water stage [L]. 

 

Using the definition Q = VA and substituting Eq. (2) into Eq. (1), we obtain 
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(4) 

 

Equation (3) contains only one unknown variable (water stage). The initial 

condition water depth or stage must be given for transient simulation. In addition, 

appropriate boundary conditions need to be specified for the channel network. These 

include internal boundary conditions at natural junctions, hydraulic structures (weirs, 

gated spillways, culverts and pump stations, etc.), and external boundary conditions 

(specified stage or flux boundaries or depth-dependent rating curves).  

 

The interface condition for one-dimensional channel flow is the lateral inflow 

from overland (So) and subsurface (SI) as source/sink terms.  In a coupled model, these 

source/sink terms are not known a priori, and they are dependent not only on channel 

flow but also overland and subsurface flow.   

4.2.2 Overland Flow 

The governing equations for two-dimensional overland flow can be derived based 

on the conservation law of water mass and momentum.  The governing equations of a 

diffusion wave model can be written as follows. 

 

The continuity equation for two-dimensional overland flow is: 
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where h is the water depth [L]; u is the velocity component in the x-direction [L/T]; v is 

the velocity component in the y-velocity [L/T]; S is the man-induced source [L
3
/T/L

2
]; R 

is the source due to rainfall [L
3
/T/L

2
]; E is the sink due to evapotranspiration [L

3
/T/L

2
]; I 

is the sink due to infiltration [L/T].   

 

 In the diffusion wave approximation, the momentum equations are simplified into 

a velocity formula by neglecting all inertia terms:  
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where Ζ0 is land surface elevation above a datum, Η=η+Ζ0 is water surface elevation 

(stage), n is the Manning’s roughness coefficient, a  is unit factor ( a =1 for SI unit 

and a =1.486 for US custom units).  

 

Using Equation (5) and (6), we obtain 

 

( )[ ] IERSH
t

H
−−+=∇⋅∇−

∂

∂
K  

(7) 

 

in which 

 



 113

( )[ ] HZn

hak
∇∇+

=
1

1

1
3/22

0

3/5

 (8) 

 

Equations (7) and (8) are the governing equations of diffusion wave 

approximation for two-dimensional overland flow. 

 

For transient simulations, either water depth or stage must be given as the initial 

condition. In addition, appropriate boundary conditions need to be specified to match the 

corresponding physical system.  For a two-dimensional overland flow model, usually, no-

flow condition is applied at the upstream watershed boundary and at the watershed outlet; 

instead, a specified water stage or a stage-discharge rating curve (e.g., critical flow or 

zero-depth gradient condition) is imposed. 

 

For overland flow, the interface conditions are: (1) one-dimensional channel flow 

as part of its interfacial boundary; (2) A source/sink term from infiltration/exfiltration 

to/from subsurface ( I ) - this term is implicitly dependent on both overland and 

subsurface flow solutions. 

4.2.3 Subsurface Flow 

The governing equation of subsurface flow through saturated-unsaturated porous 

media can be derived based on the conservation law of water mass (Yeh et al, 2006).  It is 

written as follows. 
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where hs is the referenced pressure head [L]; t is the time [T]; K is the hydraulic 

conductivity tensor [L/T]; z is the potential head [L];  q is the source and/or sink 

[L
3
/L

3
/T]; and F is the water capacity [1/L] given by 
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where 'a  is the modified compressibility of the medium [1/L], θe is the effective moisture 

content [L
3
/L

3
], ne is the effective porosity [L

3
/L

3
], 'β  is the compressibility of water 

[1/L], and S is the degree of saturation.  The Darcy’s velocity is given by 

 

( )zhs ∇+∇⋅−= KV  
(11) 

 

It is worth noting that one-dimensional channel network and two-dimensional 

overland domains are part of the top boundary of three-dimensional subsurface flow that 

interfaces with them. In a coupled system, this part of the land surface boundary cannot 

be considered as global boundary and pressure head at this location is part of the 

numerical solution.  
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4.2.4 Interface Conditions 

We argue that physics-based coupling should be imposed at the interface 

boundary. From spatial dimensionality point of view, one-dimensional and two-

dimensional surface flows are part of a three-dimensional subsurface boundary. An 

independent subsurface flow model would consider these boundaries  simply as the 

specified head or flux boundaries. However, surface flow becomes part of the numerical 

solutions in a coupled model, not specified as a priori. 

 

For overland flow, the discontinuity at the interface is not justified for most 

watersheds when there is no present of any less permeable layer between overland flow 

and subsurface flow (Figure 4-1a) and both the continuity of pressure and exchange flux 

should be applied:  
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where o
h  and s

h  are the water depth in overland flow and pressure head in subsurface 

flow, respectively, at the interface; oQ  and sQ  are the volumetric flow rates of overland 

flow and subsurface flow, respectively, through the interface. 
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Water table
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Figure 4-1: Flow interactions between overland regime and subsurface media. 

 

 Where there exists a less permeable layer separating overland flow and subsurface 

flow (Figure 4-1b), two coupling approaches can be taken.  One is the rigorous continuity 

approach, with continuous pressure and fluxes.  The other is the discontinuity approach, 

with a linkage term.  If the less permeable layer is not removed (thus considered part of 

the subsurface media) (Figure 4-1b), the rigorous continuity approach still has to be 

taken; however, for this approach, numerical discretization would require excessive 

number of grid points. 

 

 To alleviate the problem of excessive discretization, a discontinuity approach of 

coupling can be taken by removing the less permeable layer from consideration (Figure 

4-1c) and the ad hoc linkage term can be used  
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where κ  is the conductance or the exchange coefficient which is equal to K/B (where K 

and B are the hydraulic conductivity and thickness of the less permeable layer removed, 

respectively).  This approach is justifiable because κ  is a physical parameter representing 

the material property of the layer removed.  This linkage term would be a good 

approximation as long as the storage effect of the layer is negligible. 

 

Similarly, the explicit linkage term can be applied to stream-aquifer interaction if 

field evidence shows that a thin sediment layer exists at the streambed and the subsurface 

flow domain will not include this sediment layer.  

4.3 Numerical Schemes for Surface and Subsurface Flow Coupling 

We will use a simple overland/subsurface flow-coupling example for the 

illustration of rigorous, physics-based coupling approach. As shown in Figure 4-2, in this 

simple example, there are 12 overland nodes and six elements in the two-dimensional 

overland domain. The three-dimensional subsurface medium consists of 36 subsurface 

nodes and 12 elements. 
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Figure 4-2: 2D overland and 3D subsurface finite element mesh for the coupling example 

 

For decoupled flow simulations, there are 12 surface-flow equations for 12 

overland unknowns (water depth) with 12 Q
o
(i), i =1, 2,.., 12 considered external 

sources/sinks under diffusion wave approximation; and 36 subsurface-flow equations for 

36 subsurface unknowns (pressure head) with 12 Q
s
(j), j = 1, 2,.., 12 considered external 

boundary fluxes.  However, for a coupled flow simulation, there are 12 additional 

unknown overland source/sink terms Q
o
(i), i=1,12 and 12 unknown boundary fluxes for 

subsurface, Q
s
(j), j=1,12. In total, there are 24 new unknowns that need 24 new equations 

to close the mathematical formulation.  These 24 equations are obtained from the 

interface conditions.  
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 Obviously, the continuity of interface fluxes: ( ) ( ),   1,2,..,12o sQ i Q i i= =  provide 

12 equations.  The additional 12 equations are based on the physical condition of the 

interface.  For a continuous interface: ( ) ( ),   1,2,..,12s oh i h i i= = . Or if a discontinuous 

interface exists: ( ) ( ) [ ( ) ( )],   1,2,..,12o s o sQ i Q i k h i h i i= = − = .   

 

In summary, there are 72 equations for 72 unknowns (12 overland water depths, 

h
o
, 36 subsurface pressure head, h

s
, and 24 exchange fluxes which compose of 12 

overland source/sink terms, Q
o
 and 12 subsurface boundary fluxes Q

s
). 

 

Nominally, solving the coupled flow problem can be considered as the 

simultaneous solution of these 72 algebraic equations. The time step size of both overland 

and subsurface flow simulation has been assumed to be identical in the above discussion. 

If k sub-time steps (e.g., seconds or minutes) are used in overland flow simulation within 

a single subsurface flow time step (e.g., hours or days), the number of overland 

unknowns (water depth) will be 12k and the channel sources/sinks for each sub-time step 

are linearly interpolated in time from the sources/sink values at the beginning and end of 

the subsurface time steps. This will provide additional interface equations for the 

overland sub-time steps.  Thus the total unknowns for the simultaneously coupled system 

would be 12k of h
o
’s + 36 h

s
’s + 12 Q

o
’s + 12 Q

s
’s. 

(1) Time-lagged, decoupled approach  

When a time lagged, decoupled approach is used; the infiltration rate is computed 

by using surface water flow solutions from a previous time step. In this way, it can say 
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that the 24 interface equations become identity equations (the right-hand side terms are 

known).   The twelve overland algebraic equations and the 36 subsurface algebraic 

equations can be solved sequentially. Under this case, sub-time steps for overland flow 

can be easily implemented. However, the interface conditions are not strictly satisfied; 

therefore, the accuracy of the coupled solution is not guaranteed. The time-lagged 

approach can be applied to both discontinuous and continuous cases.   

 

(2) Iterative implicit coupling approach  

When the iterative coupling approach is adopted, the implicit nature is maintained 

by iterative updating of the exchange flux and subsurface boundary: 

 

For the case of discontinuous interface and a linkage-term coupling is used,  

where k is the number of nonlinear coupling iteration for subsurface flow. Surface flow 

solutions can take many sub-time steps within a single subsurface time step and it will be 

solved within the subsurface nonlinear loop. Both continuous and discontinuous cases 

can be tackled with iterative implicit approach. 

 

(3) Fully implicit coupling approach 
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The so-called fully implicit coupling approach is implemented in such a way that 

the interface equations are literally solved with other equations simultaneously within a 

single global matrix. The following conditions are imposed: 

 

For continuous interface: 

 

 

For discontinuous interface:  

 

The simultaneous solution by a single global matrix is to make use of equations 

(16) or (17) to eliminate the exchange flux terms by rearranging the exchange flux terms 

in the algebraic equations.  

 

In case of applying Equation (17), the flux terms in the subsurface equations and 

the surface equations are replaced by the explicit linkage terms, the unknown water depth 

of the surface water in the subsurface equations and the unknown pressure head of the 

subsurface in the surface equations are solved together in a single global matrix.   

 

For the continuous case (Equation (16)), by using the interface equations, the 

surface equations can be added to the subsurface equations and the modified subsurface 
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equations are solved for the final solution. Kollet and Maxwell (2005) implemented 

overland flow as part of subsurface boundary and this can be considered as an example 

for this case.  Not specifically enforcing the continuity of both pressure and fluxes, the 

substitution approach may yield mass errors due to numerical non-exactness.   A more 

rigorous approach is to consider Equation (16) along with the discretized overland 

(surface water) flow equations (with unknowns h
o
 and Q

o
) and the disscretized subsurface 

flow equations (with unknowns h
s
 and Qs) as a system of simultaneous algebraic 

equations [i.e., a single global matrix is consisting of discretized overland flow equations, 

discretized subsurface flow equations, and Eq. (16)].  This rigorous approach numerically 

ensure mass conservation across the interface.    

 

Therefore, both cases of interface conditions can be tackled with this coupling 

approach; the ad-hoc assumption of discontinuous interface to apply this coupling 

approach seems unnecessary.  However, this coupling approach is only convenient when 

the time steps for both surface and subsurface water flows are identical. If sub-time steps 

for surface flow are used, the implementation will involve more simultaneous unknowns, 

which can be computationally very cumbersome and involved. 

4.3.1 Coupling between overland flow and subsurface flow 

For two-dimensional overland flow, if the finite element method is applied to 

solve both subsurface and surface flow, each overland node will correspond to one 

subsurface node. In this case, it is obvious that infiltration is acting as a source/sink term 
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for overland flow, while overland regime is part of subsurface internal interfacial 

boundary.  The detail of coupling between overland and subsurface flow has been 

discussed. 

4.3.2 Coupling between channel flow and subsurface flow 

For stream-aquifer interaction, the most accurate representation would be that the 

physical streambed geometry (true shape of cross-sections) is part of the subsurface top 

boundary. Under this condition, several subsurface nodes are connected to a single cross-

section location of a stream reach (one node for stream flow). However, this is not 

practical for most field problems. If such a fine-scale resolution were needed, then the 

channel flow would be better simulated as two-dimensional overland flow. For a large-

scale problem, the grid size for the subsurface domain can be several orders greater than 

that of channel flow; so, in a finite element model, there is only one subsurface node 

connected to a cross-section of a stream reach. This is similar to the case of a finite 

difference model, wherein a stream reach is connected to a grid cell of subsurface flow. 

Therefore, there is already geometry mapping approximation for stream-aquifer 

interaction. This means that the subsurface mesh/grid size at the stream location can have 

a significant impact on the coupled simulation results.  With this in mind, it is not 

surprising that the use of a linkage term is a convenient way to compute the exchange 

flux for stream-aquifer interactions and, in fact, current stream-aquifer interaction 

modeling studies exclusively apply this approach. 
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In many occasions, the subsurface medium (in contact with the riverbed is 

continuous or the thin sediment layer at the streambed) does not extend to most part of 

the wetted perimeter. The leakage term is not justified. This continuous case is equivalent 

to imposing a changing hydraulic head at the subsurface node in direct contact with 

stream water. The exchange flux cannot be explicitly described as a function of stream 

water depth and subsurface pressure head.  

  

4.3.3 Coupling Procedure 

The Picard method or the Newton-Raphson method is usually applied for the nonlinear 

iteration in numerical solution of the Richards equation. A direct or iterative matrix 

solver can be used to solve the linearized algebraic equations. The fully implicit coupled 

approach is implemented in such a way to make use of the nonlinear iteration as a global 

coupling iteration loop. If the computation time for surface flows is only a fraction of 

three-dimensional subsurface flow, this is justified.  

 

During a nonlinear iteration for subsurface flow, the numerical solution of surface 

flow domains are obtained with sub-time steps and boundary conditions along with 

computed infiltration rate (exchange flux) provided by updated subsurface flow solutions, 

as illustrated in Figure 4-3 for coupled overland and subsurface flow and the coupling 

procedure implemented in WASH123D is shown in Figure 4-4. 
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The calculation of infiltration rate is based on rainfall rate and water depth as 

potential water supply (water available for infiltration); for the time-lagged approach, 

overland water depth at the end of previous time step (h
n
) is applied during subsurface 

flow computation to determine the possible infiltration rate.  Then this computed 

infiltration rate is used in two-dimensional overland flow computation of all two-

dimensional overland flow time steps within a three-dimensional time step.  No feedback 

mechanism is provided. For iterative coupling approach, the convergence of exchange 

flux (infiltration rate) is checked with the updated pressure head and water depth. The 

fully implicit coupling approach is such that the exchange-flux terms are eliminated from 

the governing equations and the primary unknown variables - pressure head and water 

depth, are literally solved in a single global matrix.  
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Figure 4-3: Iterative coupling loop between overland and subsurface flow 
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Figure 4-4:  Flow coupling procedure of WASH123D 

 

4.4 Numerical Examples 

Numerical experiments for a series of coupling scheme combinations were 

conducted to systematically quantify the differences in simulation results. Three example 

problems with some preliminary simulation results are presented.  One overland flow 

example was designed to demonstrate the inappropriate use of linkage term when there is 

no physical discontinuity at the interface.  The field application of wetland flow shows 

the potential error in the time-lagged approach.  The stream-aquifer interaction example 

demonstrates that both continuous and discontinuous coupling approaches can be applied 

when there is a sediment layer at the streambed.    
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4.4.1 Coupled overland and subsurface flow: rainfall-runoff process 

The first example is a simple case of rainfall-runoff process on a horizontal 

surface of 500 m x 400 m. closed boundary was applied except a 100 m-outlet is located 

at the center of a 500 m-side (critical flow) (Figure 4-5). The Manning’s n value is 0.02. 

A rainfall intensity of 4.0E-5 m/s was applied for 600 minutes. The underlying porous 

medium has a vertical saturated hydraulic conductivity of 5.5E-5 m/s and an effective 

porosity of 0.41. There is no physical discontinuity of subsurface media at the interface. 

Initially, the water table is 10 m below the land surface. No flow boundary was applied to 

subsurface domain except the top boundary, which is the interface between overland and 

subsurface domains. Constant time steps of 20 s and 180 s were applied for two-

dimensional overland flow and three-dimensional subsurface flow, respectively. The 900-

minute simulations were performed with the continuous coupling approach and the 

linkage-term coupling approach and the outflow discharge hydrographs were compared 

(Figure 4-6).   

 

The computed outflow discharge hydrograph represents the integrated results of 

rainfall, surface runoff and infiltration processes.  It can be seen from Figure 4-6 that the 

linkage-term and continuous coupling approaches resulted in different rising part of the 

flow hydrograph.  After the subsurface domain is fully saturated and the runoff became 

steady, the simulation results are essentially the same. Since physically, there is no 

discontinuous interface, the conductance values (k) were tested for three cases (k = 5.5E-

6, 5.5E-4 and 3.0E-3). A small k value constrains exchange fluxes; therefore, land surface 
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saturation leads to surface runoff, at which point the whole unsaturated zone gradually 

becomes saturated (Figure 4-6). As for enough big k values, the simulation results are 

very close to those of continuous coupling.       

 

This demonstrates that the use of linkage-term coupling for this example can 

produce different results depending on the chosen k values. In Figure 4-7, the computed 

time series of total exchange fluxes were compared for all simulation cases; this is 

consistent with the pattern shown in the discharge hydrograph. 

 

Figure 4-5: Layout of Example 1 
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Figure 4-6: Comparison of Outflow Hydrographs 
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Figure 4-7: Comparison of Total Exchange Fluxes   

 

4.4.2 Surface water-groundwater interaction in a constructed wetland 

The second test example is the surface water and groundwater interaction in a 

constructed wetland simulated by coupled two-dimensional overland and three-

dimensional subsurface flows. Both continuity of pressure and exchange flux are imposed 

for this example, since there is no physical discontinuous interface at the land surface.  

 

Hydrologic processes in a treatment wetland with a total surface area of about 16 

square kilometers were simulated. It consists of four treatment cells separated by interior 
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levees and hydraulically connected by culverts. Stormwater inflow and outflow is 

delivered through inflow and outflow pumping stations. Since it overlies a highly 

conductive surface aquifer, surface water and groundwater interaction is significant. A 

schematic of the model setup is shown in Figure 4-8. The subsurface flow domain 

vertically extends from land surface to the subsurface location of about 36.5 m deep, 

where vertical flow is negligible.  The subsurface flow is featured with a recharge from a 

big surface water body at the eastern boundary and discharge into a seepage collection 

canal at the western boundary. The three-dimensional subsurface flow domain consists of 

9,415 elements and 5,968 nodes. The peat soil made up the top three layers; the next two 

layers are for sandy limestone, while the bottom two, coarser layers are sand. The 

saturated vertical hydraulic conductivity values range from 0.09 to 20 cm/day for 

different subsurface materials. The two-dimensional overland flow is simulated with 

1,345 linear triangular elements and 746 nodes. The Manning’s n values for vegetated 

land surface is 0.5 ~ 1.3 based on water depth and type of vegetation. 

 

A time period of one calendar year was selected as the simulation period. 

Observed historic flow and stage time series data were used. Besides structure inflow and 

outflow, infiltration/exfiltration, direct rainfall and evapotranspiration were the 

source/sinks for overland flow.    
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Figure 4-8: Schematic layout of the wetland example  

 

The time step for two-dimensional overland flow is 0.25 hours and in three-

dimensional subsurface flow, the time step of 24 hours was applied. And the simulation 

results at two surface stage-monitoring stations located at the interior of the treatment 

cells were compared with available observed data.   

 

The time-lagged approach produced less accurate results, while the fully coupled 

approach better captured the flow dynamics and local variations at the two surface water 

locations (Figure 4-9). These simulation results demonstrate that the time-lagged 
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approach could cause significant errors.    

 

Figure 4-9: Comparison of computed water levels. 
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4.4.3 Stream-aquifer interaction 

This hypothetical example is designed to simulate a losing stream passing through 

an underlying unconfined aquifer at a mountain valley (Figure 4-10). A constant total 

head of 20 m is applied to the aquifer in the direction of the stream and impermeable 

boundaries are applied to other boundary faces, except the top surface.  No rainfall is 

applied during the simulation. The subsurface medium is homogeneous, with a domain of 

800 m x 900 x 50 m. The three-dimensional finite element of the subsurface domain is 

shown in Figure 4-10.  The saturated hydraulic conductivity is Kxx = 1.0E-2 m/s, Kyy = 

1.0E-2 m/s and Kzz = 1.0E-3 m/s and the effective porosity is 0.30.  

 

The stream bottom elevations range from 31.0 m to 26.50 along the total reach 

length of 900 m. The cross-sections are prismatic, rectangular with a width of 10 m. The 

Manning’s n is 0.03. The stream is initially dry.  At the beginning of the simulation, a 

flood discharge hydrograph is applied at the upstream end: the inflow increases linearly 

from 0.0 to 40.0 m
3
/s in 3,600 seconds, then reduces linearly to 0.0 in the next 3,600 

seconds.  

 

Weak permeable sediment exists at the streambed, with a hydraulic 

conductivity of 1.0E-4 m/s and a thickness of 1.0 m. Two simulations were made to 

compare the simulation results of continuous and discontinuous coupling approaches. For 

the first model run, both continuity of pressure head and exchange flux were imposed for 

the coupled simulation (14,200 seconds), the streambed sediment layer was considered 
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as part of subsurface media. The coupled simulation applies different time steps of 100 

seconds for subsurface flow and 10 seconds for channel flow. For the second simulation, 

the streambed sediment layer was removed from subsurface domain, and the leakage 

term was applied to compute exchange rate. Figures 4-11 and 4-12 show impact of 

stream seepage on subsurface pressure head distribution and only saturated zones are 

plotted for the simulation results with continuous interface assumption. Figure 4-12 is the 

computed river discharge hydrograph at two different locations under coupled flow and 

solved with different coupling approaches.  As expected, the flood peak water levels are 

attenuated by stream-aquifer interaction.    

 

For this specific example, similar results were obtained with both coupling 

approaches; however, the differences are visible since the sediment layer was represented 

by only one subsurface element in the vertical direction when both continuity of state 

variables and exchange fluxes are imposed. Another reason for the difference is that the 

storage effect of the sediment layer is not considered in the discontinuity approach of a 

linkage term.  As a result, infiltration will start earlier and the magnitude of infiltration 

rate will increase for the case of discontinuity approach (Figure 4-14).  This would delay 

and decrease the magnitude of the surface runoff, i.e., the river discharge will be delayed 

and its magnitude will decrease.  The differences also increase as the flood wave moves 

to the downstream boundary.  Mesh refinement for the sediment layer will improve the 

accuracy of computed exchange fluxes.  When the hydraulic conductivity of the 

streambed sediment is of several orders of magnitude smaller than that of the underlying 
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subsurface media, difficulty in obtaining convergent solutions, coupled with longer 

computer run-times, are the major disadvantages of using the continuous approach. 
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Figure 4-10: Three-dimensional finite element mesh 
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Figure 4-11:  Pressure head distribution at x=500 m (time=14200 seconds) 
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Figure 4-12: Pressure head distribution at y=430 m (time=14200 seconds) 
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4.5 Discussion and Conclusions 

By imposing both continuity of state variables and exchange flux, an iterative or 

fully implicit scheme can also be similarly implemented; such is evident in the case of the 

linkage term approach during the coupling process. The error incurred by applying the 

time-lagged, decoupled approach can be significant, as demonstrated in the test examples.  

 

There may be some numerical advantage on the simultaneous solution of a single 

global matrix in the linkage term-based approach; however, for practical applications, 

 

Figure 4-13: Computed Discharge hydrographs (coupled flow with different approaches) 
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identical time steps have to be used for both surface and subsurface flow; this paper has 

also demonstrated this simultaneous coupling approach can also be implemented with 

continuous interface conditions.    

 

When discontinuous interface coupling is used, evidence and parameters from 

field observation should be able to support such an assumption. For real-world 

applications, many options must be provided; specifically, those that can be justified for 

coupled flow problems of different spatial and temporal scales and the physical setting of 

the interface.     
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Chapter 5 

 

 Integrated Modeling of Groundwater and Surface Water interactions in a 

constructed wetland 

Abstract 

As a man-made pilot wetland in south Florida, USA, the Everglades Nutrient 

Removal (ENR) project was modeled with a physics-based integrated approach using 

WASH123D. Stormwater is routed into the treatment wetland for phosphorus removal by 

plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. 

Strong surface water and groundwater interactions are a key component of the hydrologic 

processes. The site has extensive field measurement and monitoring tools that provide 

point scale and distributed data on surface water levels, groundwater levels, and the 

physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and 

hydrodynamic modeling studies have treated seepage losses empirically by some simple 

regression equations and, only surface water flows are modeled in detail.  Several years 

of operational data are available and were used in model calibration and validation. The 

validity of a diffusion wave approximation for 2-D overland flow (in the region with very 

flat topography) was also tested. The uniqueness of this modeling study includes (1) the 

point scale and distributed comparison of model results with observed data; for example, 

the spatial distribution of measured vertical flux in the wetland is available; (2) model 

parameters are based on available field test data; (3) water flows in the study area consist 

of 2-D overland flow, hydraulic structures/levees, 3-D subsurface flow and 1-D canal 
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flow and their interactions.  This study demonstrates the need and the utility of a physics-

based modeling approach for strong surface water and groundwater interactions.  

5.1 Introduction 

Man-made treatment wetlands have been extensively used for wastewater 

treatment or stormwater nutrient removal in the USA. Typically, these surface water 

impoundments are built for flow-through treatment of stormwater by plant and sediment 

uptakes of both nutrients and pollutants. In South Florida, the Everglades restoration 

effort has led to the design and construction of a series of constructed wetlands, called 

Stormwater Treatment Areas (STAs), to reduce phosphorus levels in stormwater runoff 

before they can enter the Everglades protection areas. These constructed wetlands were 

located on former natural wetlands or farmland. The Everglades Nutrient Removal (ENR) 

project is a pilot constructed wetland for STAs (SFWMD, 2000).  

 

In south Florida, the regional hydrogeology was characterized by the surficial 

aquifer (Fish, 1988). Wetlands in the region have strong hydraulic connections with the 

underlying, highly conductive surficial aquifer. Harvey et al. (2002) studied the surface 

and groundwater interactions in the ENR and surrounding wetlands with field 

investigations. 

 

Guardo studied water budgeting in the ENR with a simple water mass balance 

approach (Guardo, 1999).  Regression models were used to estimate groundwater 
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seepages in ENR and the whole ENR was treated as a point for water budget.  Guardo 

and Tomasello (1995) simulated overland flow in ENR using a steady hydrodynamic 

model. Until recently, the hydraulic models applied to the design and management of 

constructed wetlands are quite limited in scope and detail. Most models are two-

dimensional, for steady-state flow.  They are good for both design purposes or as a 

screening tool, but lack important details [incorporating hydraulic structures, calibrated 

model parameters and surface/groundwater interaction]. More detailed two-dimensional 

hydraulic models, used in the existing treatment of wetlands, are being built for 

management and operation needs. They are calibrated and validated with historic time 

series data, considering only the two-dimensional surface flow.  

 

Some popular hydrodynamic computer codes currently used for modeling wetland 

hydraulics are originally developed for coastal hydrodynamic modeling. Some limitations 

need to be addressed before they can be applied for wetland simulation. For instance, the 

incorporation of hydraulic structures, explicit representation of rainfall, and evaporation 

and treatment of wetting and drying are very important in a wetland hydrologic model.  

 

Swain et al. (2004) has described their experience in adapting and modifying the 

USGS SWIFT2D, originally developed for coastal tidal flow, to simulate the southern 

Everglades wetland hydrology.  A watershed model code, such as WASH123D (Yeh et 

al., 2006) does not have these limitations. This WASH123D application is an example of 

coupled surface/subsurface water flows in a constructed wetland for stormwater treatment 

in south Florida. Current two-dimensional hydraulic models cannot handle seepage loss 
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properly; therefore, an integrated surface/groundwater model is needed to study the 

dynamic interaction of surface flow within the treatment area and seepage loss through 

bottom and perimeter levees. A one-dimensional canal flow is also needed to simulate 

inflow/outflow and seepage collection. The impact of neglecting seepage loss is a likely 

distorted hydraulic model. 

 

 Wetland hydrological modeling studies have been increasingly reported in the 

hydrology literature.  Feng and Molz (Feng and Molz, 1997) developed a surface water 

flow model for wetlands with the diffusion wave approximation of the 2-D shallow water 

equations.  The model was tested with a field application. However, model calibration 

and history matching were not reported.  Few integrated wetland hydrologic modeling 

studies have been reported. MIKE SHE was applied to a natural wetland in England 

(Thompson et al., 2004), while Langevin used a coastal natural wetland by coupling 

SWIFT2D and MODFLOW (Langevin et al., 2005).   

 

 The purpose of a hydraulic model for a constructed wetland is to evaluate the 

hydraulic performance under different flow conditions. If the transport and fate of 

phosphorus can be described as biogeochemical reactive transport equations, then the 

hydrodynamic component is also the base of the reactive transport computation. All these 

modeling objectives are likely to be more effectively modeled in an integrated model 

code such as WASH123D. 
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 The objective of this paper, is to present a modeling study that demonstrates and 

validates the applicability of a physics-based, integrated modeling approach for surface 

water and groundwater interactions in wetlands; in addition, it seeks to show how field 

data from previous field studies can be used in building the integrated model with 

minimum model calibration. Historical time series data and field test results were applied 

in evaluating the model performance.  

5.2 Site Description 

The Everglades Nutrient Removal (ENR) project (Figures 5-1 and 5-2) was built 

as a prototype treatment wetland in south Florida, USA, for the Everglades restoration 

(SFWMD, 2000).  It was operated for five years (1994 to 1999) and is now incorporated 

into the Stormwater Treatment Area 1 west (STA-1W).  

 

The total surface area of the ENR is about 16 square kilometers. The land surface 

elevations were based on previous field survey data. Marsh area elevations range from 

2.0 m NGVD29 (National Geodetic Vertical Datum of 1929) to 4.0 m NGVD29. The 

average land surface gradient is 0.001. The ENR basin topography is very flat that is 

typical in South Florida.      

 

The vegetations in the ENR were spatially varied and changed over time. The 

main treatment plants were emergent cattail and submerged aquatic vegetation (SAV). 
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There were also some local distribution canals and remnant farm ditches in the marsh 

areas.    

 

The ENR basin has been extensively monitored and studied by the South Florida 

Water Management District (SFWMD) and USGS (SFWMD, 2000; Harvey et al., 2002).  

The measured time series data were recorded in the SFWMD corporate database 

DBHYDRO (SFWMD, 2005).     
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Figure 5-1: Location Map of ENR (SFWMD, 2000) 
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Figure 5-2 Schematic Map of ENR (Modified after SFWMD, 2000) 

 

 

Subsurface Flow: 

As can be seen in Figure 5-2, the ENR basin is separated from the surrounding 

areas by a perimeter levee. The eastern boundary of subsurface flow is controlled by 

water levels in the Water Conservation Area 1 (WCA-1). The Seepage Canal, running 
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along the western and northern boundary, controls the remaining boundaries.  The bottom 

boundary can be considered impermeable, since the field studies have found that 

groundwater flow in the surficial aquifer is predominantly horizontal. Generally, 

groundwater received a recharge from the WCA-1, where the water levels were normally 

regulated between 4.88 m NGVD to 5.18 m NGVD (16 –17 ft NGVD), while discharge 

was mainly through the seepage canal. Subsurface flow also received recharge through 

overland flow infiltration.   

 

Surface water flow in the ENR basin is controlled by a series of pump stations 

and gated culverts. The ENR consists of a buffer cell and four treatment cells 1-4 (Figure 

5-1).  Stormwater runoff was pumped into the buffer cell and distributed to the eastern 

flow way (Cell 1 and Cell 3) and the western flow way (Cell 2 and Cell 4). Interior levees 

separated each treatment cell from one another and a series of culverts with risers were 

built in the interior levees to control flows among cells. Treated water from the western 

flow way was directed to Cell 3 by the gated culverts G-256 and eventually, was 

discharged from ENR into WCA-1 through the outflow pump station G-251.   

 

 The major surface water inflow and outflow are through pumping stations G-250 

and G-251. Structure inflows consisted of inflow pump station G-250 and seepage return 

pump G-250S. Structure outflow was through outflow pump station G-251.  Discharge 

into the seepage canal could be made through gated structures G-258 and G-259. Current 

modeling study simulated the whole calendar year of 1998. During this time period, 

outflow from G-258 and G-259 was zero.  
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5.3 Model Tool: WASH123D 

This is a generic, integrated surface water/groundwater interaction model code 

(Yeh et al., 2006).  It can simulate a one-dimensional channel network, two-dimensional 

overland flows, and three-dimensional variably saturated subsurface flow, separately. 

When needed, it can also simulate different combinations of coupled surface water and 

subsurface water flows.  

 

Some adaptations and modifications were easily implemented into the source 

code for this modeling effort. The original WASH123D code apply constant friction 

coefficient (Manning’s n value) for bottom shear stresses.  But the dense vegetation in the 

marsh area requires a water depth dependent Manning’s n relationship.  Different depth 

dependent relationships can be easily applied by a tabular (depth-n) profile input in 

WASH123D. 

 

The calibrated flow rating equations for various hydraulic structures can also be 

coded in WASH123D that control the water transfer between different canal locations or 

from/to canal to overland (marsh area).   

5.4 Input Data 

Time series data of rainfall, evapotranspiration, structure flow, and surface and 

ground water levels were retrieved from the public accessible DBHYDRO database 

(SFWMD, 2005).   
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Daily rainfall was measured at a network of rain gauges throughout the ENR area 

and a spatially averaged daily rainfall time series was directly obtained from 

DBHYDRO. Daily potential evapotranspiration data was based on a regression equation 

derived from three lysimeters measurement (Abtew and Obeysekera, 1995; Abtew, 1996) 

and was also available in the database. 

 

Structure flow data was computed by SFWMD using calibrated flow rating 

equations. Normally, these flow data were not as accurate as data from measured water 

levels.    

5.5 Model Setup 

The conceptualization of the study area leads to a relatively closed flow system. 

Stormwater runoff was pumped into the buffer cell and flow into the treatment cells 

through control structures. The treated water is discharged at the downstream by the 

outflow pump station G251 and eventually entered the Water Conservation Area 1. 

 

The surface water flows were simulated as two-dimensional overland flow. 

Current model simulations applied the diffusion wave approximation of the full shallow 

water equations for overland flow. The entire overland flow domain was discretized into 

1,345 linear triangular elements and 746 nodes. The average length of a triangular side 

was about 160 m.  The interior levee was represented by inactive elements and water 
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could go only through it by structure flows. The known Inflow pumping rate was applied 

by a water source term in the overland domain.  A specified stage boundary condition 

was applied at the downstream outflow location (G-251 headwater).   

 

Vegetations were built into the treatment cells (Figure 5-3). They are categorized 

as emergent cattails and submerged aquatic vegetation (SAV). Previous studies have 

demonstrated that a water depth dependent friction coefficient is appropriate for 

vegetation (Yen, 1992; Wu et al., 1999). Field study at ENR showed that the Manning’s n 

values range from 0.5 to 1.3 depending on water depth and submergence level of the 

plants (SFWMD, 2000).  
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Figure 5-3: Vegetation types as simulated in the model 

 

For subsurface flow, the surficial aquifer system was simulated with the three-

dimensional Richards equation governing the variably saturated subsurface flow.  The 

underlying surficial aquifer was vertically divided into several layers, the top layers, 

extending from land surface to a few feet in thickness, is the poor permeable peat; the 

next lower layers are composed of sand or sandy lime rock. Figure 5-4 shows the three-

dimensional finite element mesh for subsurface flow. For this preliminary simulation, the 
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model domain was selected up to the location of the seepage canal to the west, and the L-

7 canal to the east. These canals are hydraulic divides for subsurface flow.  

 

The hydrogeology was obtained from some relevant reference sources (Fish, 

1988; Harvey et al, 2002).  Harvey et al. (2002) described detailed local hydro-geological 

data for the ENR area. The value of saturated hydraulic conductivity and effective 

porosity used in the model runs are listed in Table 1.  

 

Table 5-1. Hydraulic properties for Subsurface Flow   

 

Hydraulic Conductivity 
Porosity 

Horizontal Vertical 

              Soil type 

(-) (cm/day) (cm/day) 

Peat 0.21 9.14 0.09 

Sandy limestone 0.31 271.39 2.72 

Sand 0.41 2070.20 20.7 

 

The Van Genucheten equations were used to derive the nonlinear relationships for 

soil hydraulic property.     

 

The subsurface flow domain consisted of 9,415 elements and 5,968 nodes. The 

peat soil made up the top three layers; the next two layers were for sandy limestone and 

the bottom two coarser layers with the maximum depth of 36.5 m (120 ft) from land 
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surface.  This subsurface element resolution was designed to maintain a balance between 

run time requirements for long-term model runs and model accuracy.       

  

Specified head boundary conditions were applied for the WCA-1 and the seepage 

canal for current model simulations. The seepage canal could be simulated by the one-

dimensional channel flow and coupled with subsurface flow. However, the water levels 

in the canal were kept below 2.4 m NGVD (8 ft NGVD) to protect farmlands adjacent to 

the ENR; canal flow was quite static. Therefore it was considered as a specified head 

boundary for subsurface flow and it had no hydraulic connection with the overland flow 

during model simulations. No interface sediment layers were assumed to exist between 

subsurface and overland or canal. So both continuity of pressure head and exchange flux 

were imposed for surface water and groundwater interactions.      
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Figure 5-4:  Finite Element Meshes for ENR Basin with Soil Types 

5.6 Model Calibration and Validation 

The integrated model was calibrated and validated with both historic stage and 

groundwater level data. Theoretically, most model parameters in a physics-based model  

are measurable physical properties and can be estimated through field studies. The ENR 

field studies (e.g. Harvey et al., 2002 and SFWMD, 2000) provided the physical range for 

saturated hydraulic conductivity and the Manning’s roughness coefficient. However, due 

to spatial heterogeneity and limited sampling sites, minimum model calibration is still 
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needed to better capture historic trends and this represent the averaging and upscale 

uncertainty from point sampling to element level.   

 

   The split sample approach was used to calibrate and validate the ENR model. 

The time period from 7/1/1998 to 12/31/1998 was used for model calibration and the 

period from 1/1/1998 to 6/30/1998 was used in model validation. The model parameters 

used in model calibration were the Manning’s roughness coefficient for overland flow 

and the hydraulic conductivity for subsurface flow.  The initial conditions for model 

calibration and validation were estimated from observed surface water levels, flow rate 

and groundwater levels.  

 

The model performance was judged by mean error, absolute mean error, and root 

mean square error, R
2 

and U
2
, between observed and computed time-series stages and 

groundwater levels.     

5.7 Model Simulation Results 

The preliminary model simulation results (from 1/1/1998 to 12/31/1998) are 

presented and discussed as follows. The average hydraulic conductivity values from field 

studies (Table 5-1) were used for subsurface flow and no adjustment has been made. The 

adjusted Manning’s roughness coefficients ranged from 0.3 to 0.9 for different 

vegetations.       
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5.7.1 Surface water flow 

G250 inflow pumping mainly controlled two-dimensional overland flow 

conditions. Rainfall and evapotranspiration were a small part of the water budget. The 

spatial distribution of vegetation and the flow distribution among treatment cells are 

important factors.  

 

The comparison of computed and observed surface water levels at the center of 

each treatment cell was shown in Figures 5-5 to 5-8.  The variation in water levels in both 

flow ways was captured quite well for Cell 1 (ENR101), Cell 2 (ENR203), Cell 

3(ENR301) and Cell 4 (ENR401). The R
2
 values for these four locations were between 

0.48 and 0.86.  The mean absolute error and mean error values were relatively small for 

the simulation period (Table 5-2). Water levels at ENR301 are underestimated by 0.1 m. 

This can be attributed to the combined impact of seepage loss and downstream boundary 

over-drain (G251 pumping).  

 

In Table 5-2, U
2
 is Theil’s inequality coefficient is defined by  
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where )(tMΦ  and )(tFΦ denote the model’s prediction and field data as functions of 

time t, respectively. If the coefficient is equal to 0 it means that the model is perfect in its 

prediction and if the coefficient is equal to 1 it means that the model is not reliable. 

 

 Table 5-2.  Summary of Simulation errors in Surface Water Levels  

 

Location Mean error (cm) 
Mean absolute 

error (cm) 

RMSE 
(cm) 

R
2
 U

2
 

ENR101 2.93 3.82 0.48 0.88 1.78E-4 

ENR203 4.03 6.30 0.86 0.50 5.72E-4 

ENR301 -11.11 11.16 1.37 0.59 1.54E-3 

ENR401 4.59 6.87 0.85 0.58 5.59E-4 
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Figure 5-5: Simulated and Observed Surface Water Levels at ENR101 
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Figure 5-6: Simulated and Observed Surface Water Levels at ENR301 
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Figure 5-7: Simulated and Observed Surface Water Levels at ENR203 
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Figure 5-8:  Simulated and Observed Surface Water Levels at ENR401 

5.7.2 Subsurface Flow 

The observed and computed groundwater levels at ENR102GW, ENR204GW, 

ENR401GW and ENR303GW are compared in Figures 5-9 through 5-12. The simulation 

results are similar to those of surface water levels. The average absolute error was less 

than 8.5 cm.  The simulation errors are summarized in Table 5-3. 
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Table 5-3.  Summary of Simulation errors in Groundwater Levels  

 

Location Mean  error (cm) 
Mean absolute 

error (cm) 

RMSE 
(cm) 

R
2
 U

2
 

ENR102GW 7.30 7.60 0.85 0.84 5.69E-4 

ENR203GW 2.74 6.33 0.80 0.51 4.92E-4 

ENR303GW 1.30 6.5 0.66 0.52 5.70E-4 

ENR401GW 6.40 8.20 1.01 0.49 7.89E-4 

 

 The unsaturated zone was thin and localized during the simulation period. During 

the dry season, a large portion of the surface area could dry up and soil moisture could be 

less than saturated; under this flow condition, use of the Richards equation for variably 

saturated subsurface flow in the model is justified. As a matter of fact, previous SFWMD 

STA water budget studies (Huebner, 2001) applied a regression equation to account for 

soil water storage during dry seasons.  

 

  The total head distribution on 2/4/1998 was plotted in Figures 5-13 through 5-15. 

The simulated flow pattern of subsurface flow is consistent with field studies.  
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Figure 5-9: Simulated and Observed Groundwater Levels at ENR102GW 
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Figure 5-10: Simulated and Observed Groundwater Levels at ENR303GW 
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Figure 5-11: Simulated and Observed Groundwater Levels at ENR203GW 
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Figure 5-12: Simulated and Observed Groundwater Levels at ENR401GW 
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Figure 5-13:  Simulated Total Head Distribution (ft NGVD) on 2/4/1998. 
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Figure 5-14: Location of Transects and Lithology of ENR (after Harvey et al., 2002)  
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Figure 5-15: Total Head Distribution (2/4/1998) for two transects of ENR (ft NGVD). 

5.7.3 Exchange Fluxes 

The vertical exchange fluxes between surface water and subsurface water flows 

were obtained as part of the model simulation (Figure 5-16).  The spatial distribution of 

the vertical fluxes was generally consistent with field observations of vertical hydraulic 

gradients distribution (Harvey et al., 2002). Groundwater discharge occurred only in the 

areas along the eastern boundary (L-7 canal) and groundwater recharge (infiltration of 

overland water) was significant along the seepage canal. Furthermore, the computed 
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vertical flux values ranged from –0.75 cm/day to 2.0 cm day. These values are within the 

range of seepage-meter measurements during 1997-1998 at the ENR site that is 

documented by Harvey et al. (2002).      

 

 
Figure 5-16: Distribution of Computed Vertical Flux (cm/day) (7/10/1998)  

5.8 Discussions 

Unlike some other similar integrated models, the coupling and exchange fluxes 

were not based on the assumption of interface discontinuity and leakage coefficient.  

Both continuity of pressure head and exchange flux were imposed; this avoided the 

calibration of the empirical leakage coefficients for overland/subsurface and 

canal/subsurface interfaces necessary in other models. The weak permeable peat that 
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restricts vertical subsurface flow was part of the subsurface domain. The model 

simulation results in term of surface water levels, groundwater table, exchange fluxes, 

etc. demonstrate that this coupling approach is aligned to the physical processes of the 

ENR hydrology.  

 

Details, in terms of variables such as vegetation type, local remnant ditches in the 

marsh, culvert flow computation, etc., could more accurately model two-dimensional 

overland flow. A dynamic wave model of overland flow, to replace the diffusion wave 

approximation and the use of high-resolution time series data (e.g. 15 minute observed 

data instead of daily average data used in current model simulations), may better simulate 

the high-frequency dynamic variation. Although the simulation results show that 

diffusion wave approximation is sufficient for overland flow.   

5.9 Summary and Conclusions 

A physics-based, integrated model was developed to simulate complex hydrologic 

processes in a constructed wetland. The surface water and groundwater interactions were 

simulated by coupled two-dimensional overland flow and three-dimensional subsurface 

flow.  Minimum model calibrations, combined with model parameters estimated from 

field studies were able to reproduce major trends in historic surface and groundwater 

levels.  And the model provides details spatial distribution of state variables and fluxes.    
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Chapter 6 

 

Summary and Conclusions 

Several critical issues in the development of a first principle, physics-based 

watershed model are presented in this thesis.  

 

Firstly, the implementation of all options of dynamic wave, diffusive and 

kinematic wave models for surface flow in a single model code are used to investigate the 

applicability and accuracy of diffusion and kinematic wave approximation and from 

numerical experiments, it is concluded that the use of kinematic wave model should be 

limited to steep-slope mountainous watersheds and where downstream conditions are not 

important; The accuracy of diffusion wave under very mild slope is not guaranteed as 

flow dynamics and downstream boundary may play a key role; The dynamic wave model 

should be mandated for strong dynamic flow cases (e.g., dam break type flow), and when 

momentum fluxes are important compared to gravity force.  

 

Secondly, the numerical solution of the fully dynamic wave model of two-

dimensional overland flow is difficult. The detail and capability of a characteristics-based 

finite element method is discussed and demonstrated with several typical examples. 

Numerical simulation of a dam break problem demonstrates the numerical solution is 

sensitive to the choice of wave characteristic directions. 
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Thirdly, physics based coupling of surface water and subsurface flow is at the 

core of a physics-based, integrated watershed model; different combinations of coupling 

schemes are discussed and compared, and physics-based coupling approaches are 

favored. The inaccuracy and error of time-lagged, decoupled approach are demonstrated 

in several test examples.  

 

Finally, the performance of the watershed model in the integrated modeling of a 

local-scale, field application was demonstrated through the study of surface water and 

groundwater interactions in a constructed wetland in south Florida.  

 

Further work includes (1) a thorough, formal theoretical analysis of diffusive and 

kinematic wave approximations under two-dimensional overland flow condition; (2) full 

scale, rigorous test of the new integrated watershed model for hydrologic processes in a 

natural experiment watershed with research quality field data; (3) expand the subsurface 

flow module to include preferential flow in macro-pores and discrete fractures; (4) fully 

couple with the mechanistic based water quality and sediment transport module. 
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