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ABSTRACT 

 Probabilistic forecasts play a significant role in a wide variety of economics 

activities. However, established econometric modeling approaches for probabilistic 

forecasts may yield unsatisfactory forecasting performance due to model 

misspecification. In my dissertation, I try to minimize such a risk by introducing a semi-

nonparametric modeling approach for probabilistic forecasting. The new approach 

combines the ARMA memory index modeling approach of Bierens (1988) with the semi-

nonparametric estimation method that uses wavelet basis to construct a flexible 

functional form. With this combination, we are able to avoid imposing restrictive 

constraints on the specification of critical components of conditional probability 

functions, i.e., the lag structure and distribution functions of error terms. As a result, it is 

possible that the new modeling approach will lead to improved forecasting performance 

if the reduction of modeling bias is significant. To test the usefulness of the new 

approach, we compare the relative performance between the new modeling approach and 

traditional forecasting models in both Monte Carlo experiments and real-world 

applications including business cycle regime forecasting and the forecast of rank 

performance of stock returns. The experimental and empirical results suggest that the 

new modeling approach can outperform traditional modeling approaches due to the 

flexibility of the model specification and the way various nonlinearities in the 

dependence of conditional probabilities on information variables are captured by ARMA 

memory indices.  
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Chapter 1

PROBABLISTIC FORECASTING

IN ECONOMICS

1.1 Probabilistic Forecasting and Its Link with Moment Fore-

casting

In terms of forecasting outcomes, economic forecasts can be classified into two types, moment

forecasting and distribution forecasting. In moment forecasting, forecasters predict a particular

moment of a random variable. A typical example is level forecast, i.e., E(Yt|Ft−1), where

E(•|Ft−1) is the conditional mean and Ft−1is the information set up to the period t − 1. In
distribution forecast, forecasters predict the whole probability distribution function of a random

variable, i.e., Pr(Yt < y|Ft−1) for y ∈ R (see Tay&Wallis 2000). Probabilistic forecast is a

special case of distribution forecast, in which forecasters predict the probability of outcomes of

a particular random event variable.

In certain cases, moment forecast can be used to do probabilistic forecast of a random event

if the underlying data generating process of the event has a simple structure. For example, the

random event variable Xt is defined as

Xt

⎧⎨⎩ = 1 if Yt > v

= 0 otherwise
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where the stationary process Yt ˜N(µt, σt). Conditional mean forecasting and conditional volatil-

ity forecasting of Yt will provide sufficient information to do probabilistic forecast of Xt. In some

other cases, probabilistic forecast is needed to complement moment forecast if the forecaster

wants to give a better description of potential uncertainty. However, if the underlying data

generating process for the random event has non-standard stochastic regularities, the above

connections between moment forecast and probabilistic forecast will be weakened. In that case,

we need to choose specific forecasting models and methods for each type of forecasting.

1.2 Probabilistic Forecasting in Economic Studies

Probabilistic forecasting are particularly important if the outcomes of the target random event

variables have significant impacts on a variety of economic activities. We provide 3 examples.

First, regime switches of business cycles have deep influences on all aspects of the economy

(see Niemira & Klein 1994 , Lahiri & Moore 1991). Consequently, probabilistic forecasting of

business cycle turning points is of tremendous interest to various parties. Second, the outcome

of the Federal Reserve Bank’s policy decision draws wide public attention due to its strong im-

plication on the future economy. Improved probabilistic forecasting of those outcomes will help

investors and business managers make better investing decisions (see Hamilton & Jorda 2002).

Third, in the financial market, the event that a stock falls into a particular performance category

will change the follow-up performance of this stock dramatically (see Jagadeesh and Titman

1993). Accurate probabilistic forecasting on such an event will provide portfolio management

with substantive benefits.

When the forecasted discrete events mainly concern the behavior of individual economic

agents, we have, in econometric literature, well-established methods to set up econometric

models, i.e., the discrete-choice model. But if the event we are studying concerns more compli-

cated components such as the dynamic of the whole economy or the state shift of the financial

markets, the theoretic backup for the appropriate econometric modeling approach is seriously

lacking. We should take great caution in choosing the analysis tools that will serve our forecast-

ing purpose best. In the next section, we will introduce the main methodologies for probabilistic

forecasting in the economics literature.
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1.3 Key Methodologies in Probabilistic Forecasting

The econometric methodologies in probabilistic forecasting can be divided into two groups,

those belonging to the Bayes approach and those to the time series approach.

1.3.1 Bayes Approach

The Bayes approach assumes that before a particular event takes place, there is a structural

change in the stochastic behavior of some observable information variables, known as leading

indicator series. In order to do probabilistic forecasting of the target event, we need to find a

way to detect the structural change of the leading indicator series.

Classic Composite Leading Indicator Method

In the classic Composite Leading Indicator method, we first choose a leading indicator series.

After combining them into a composite leading indicator, we adopt rules of the thumb to predict

the onset of a particular event. (see Hymans 1973) For example, in business cycle turning point

forecasting, we have the ‘3CD’ forecasting rule. When the composite leading indicator declines

in three consecutive quarters, a recession is considered imminent and an alarm of downturn is

triggered.

This method implicitly assumes that the distribution of the Composite Leading Indicator

series has the following regularity. When the state of the economy is good, it is impossible

to observe 3CD pattern on this series. Only when the state of the economy gets “bad”, 3CD

becomes a feasible event. More exactly,

Pr(Xt = 1|St = 1) = 0

and

Pr(Xt = 1|St = 0) > 0

where St is the state variable for the whole economy and the event variable Xt = 1 if 3CD

happens and Xt = 0 otherwise. As a result,
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Pr(St = 0|Xt = 1)

=
Pr(Xt = 1|St = 0)Pr(St = 0)

Pr(Xt = 1|St = 0)Pr(St = 0) + Pr(Xt = 1|St = 1)Pr(St = 1)
= 1

. That is, if we observe 3CD, we will infer that the state of economy has become bad (St = 0)

and trigger the downturn alert.

One peculiar strength of such a method is its flexibility. The rule of thumb can be con-

structed based on various hypotheses. This is important when there is no established theoretic

work to explain the cause to the target event and the event is rare. One obvious weakness of

this method is that subjective factors often play a role.

‘Sequential Probability Recursion’ Scheme

The Sequential Probability Recursion scheme was first proposed in Neftici (1982). In this

method, an explicit Bayes inference method replaces the rule of the thumb. In addition, a

regime switch structure is formally imposed on the data-generating-process of the composite

leading indicator.

The main content of the regime switch framework is that the distribution of the composite

leading indicator will shift between two different settings. For example, let {Yt}∞t=1 be the first
difference of the composite leading indicator.

Yt = µ0 + ε0,t if St = 0;

Yt = µ1 + ε1,t if St = 1

with constant µ0 << µ1 and ε0,t ε1,t are i.i.d sequences that follows a Gaussian process. The

density distribution of ε0,t and ε1,t are f0(•) and f1(•), respectively. The shift cannot be

observed at the time it occurs; however, we can use the Bayes rule to detect it. The probability

to estimate is πk = Pr(Z ≤ k | Yk,Yk−1, ...) where Z is the random variable indicating the date

of the regime switches .
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The dynamic Bayes inference scheme is

πk+1 =
[πk + Γk(1− πk)]f

1(yk+1)

[πk + Γk(1− πk)]f1(yk+1) + (1− πk)[1− Γk]f0(yk+1) (1.1)

where Γk = Pr(z = k + 1|z > k).

Compared with the classic composite leading indicator method, this forecasting scheme

yields a probabilistic forecast with more rich quantitative content. In addition, this scheme is

able to accumulate information under the optimal stopping rule. Such a feature makes it a

breakthrough in the Bayes approach of probabilistic forecasting.

Though the ‘Sequential Probability Recursion’ scheme adds more scientific rigor to prob-

abilistic forecasting, there are some serious problems with this method. Although the regime

switch model assumes that the regime switch is unobservable at the time it occurs, these regime

changes have to be observable ex post in order for the forecasting scheme (1.1) to be imple-

mented. In his paper, Neftici groups observations according to the decision of the NBER dating

committee and estimates Γk, f0(•) and f1(•) using an empirical frequency method. The ad hoc
grouping of the composite leading indicator series will trigger some problems. First, it intro-

duces judgmental factors from the dating committee. Second, there is a potential goodness-of-fit

bias in the dating process. The regime dating of the composite leading indicator always needs

to be consistent with the regime dating of business cycles. Under this circumstance, there is an

upward bias for the goodness of the model fit.

Hidden Markov Chain Model

The hidden Markov chain model (see Hamilton 1989) falls into the category of the Bayes ap-

proach since we rely on the Bayes rule to infer the likelihood of latent regimes from the behavior

of observable variables. Unlike the ‘Sequential Probability Recursion’ Scheme, however, in the

hidden Markov chain model, the law of motion for the latent regime variable and the distrib-

ution function of error terms are not ad hoc. Rather they are specified as part of the model.

For example, let {Yt}∞t=1 be the first difference of the composite leading indicator and St be the
latent binary event variable. Yt is specified as

Yt = µ1 + ψ1(L)Yt−1 + ε1,t if St = 1;

5



Yt = µ0 + ψ0(L)Yt−1 + ε0,t if St = 0

where constant µ0 << µ1 and ε0,t, ε1,t are normally distributed i.i.d sequences.

The latent regime process, St, follows a first-order Markov chain with the transition matrix

Π =

⎡⎣ p00 p01

p10 p11

⎤⎦
where pij = Pr(St = j | St−1 = i). A time-varying transitional probability can be added for a

more realistic framework (see Filardo 1994). Because the distribution of Yt is jointly determined

by St and the history of Yt, we can infer the value of St and construct the conditional likelihood

function of Yt using the historic information of Yt through the Bayes rules.

The Model Misspecification Problem in the Bayes Approach

In each of these three methods which use the Bayes approach, there is improvement on the

statistic rigor. From the classic method to ‘Sequential Probability Recursion’ Scheme, people

add a regime switch structure. From ‘Sequential Probability Recursion’ Scheme to the hidden

Markov chain model, a latent dynamic structure is added. However, in terms of the event

forecasting performance, the new model is not necessarily better. Diebold and Rudebusch (1989)

attempted to compare the classic composite leading indicator method with the ‘Sequential

Probability Recursion’ scheme. Though the new model can provide more refined information

on the event probability, it does not improve the number of correct predictions of turning

points. As to the benefit of using the hidden Markov chain model, studies such as Filardo(1994),

Hamilton and Perez-Quiros (1996) show that the predictive power of the leading indicator series

is limited to only one or two months. One potential problem with the Bayes approach is the

model misspecification of the structure of the latent event series. Such a mistake, however,

will affect forecasting performance most because the dynamics of the event process plays a

central role in determining the odds of each event outcome. A more flexible setting of the

interdependence between the history of information variables and a future event’s likelihood

would help to alleviate this problem.
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1.3.2 Time Series Approach

The time series approach does not impose a regime switch structure. The basic rationale for this

approach is that past shocks to information variables have a persistent impact on the likelihood

of the target event. If such an impact is stationary, then a time series model can be used to

capture it.

Stochastic Simulation Method

In this method, each forecasted event is inherently associated with a continuous-distributed

random variable. An example of this type of event is the variable Et where Et = 1 if a series

drops by more than 5% in the next period and rises by more than 5% in the period after next.

Normally, a series can be modeled as covariance-stationery process, e.g., an ARMA process and

the forecasting procedure always starts with the estimation of the underlying time series model.

Now we give an example for illustration, which is adopted from Wecker (1979).

Let {Yt}∞t=1 be a time series that follow an AR(1) process, i.e.

Yt = αYt−1 + εt (1.2)

where εt ∼ N(0, σ2).

Let Xt be

Xt = 1, if Yt > 0, Yt−1 > 0, Yt−2 < 0, Yt−3 < 0,

= 0, otherwise.
(1.3)

Finally, define a target event Zt as

Zt = k

if we wait k periods before the next time X = 1.

To do the probabilistic forecasting, we need carry out a two-step procedure.

1. Estimate the data-generating-process, Yt according to the specification as in (1.2), ac-

quiring the estimator of α and σ.

2. With the estimator of α and σ, we do simulation to compute the probability of the

7



events of interest as follows. First, conditioning on observations of Yt up to time t, we generate

a series of artificial future values y(n)t+1, y
(n)
t+2, y

(n)
t+3, y

(n)
t+4, ...,according to (1.2). Then, we obtain

the sequence x(n)t+1, x
(n)
t+2, x

(n)
t+3, x

(n)
t+4, ... according to (1.3). Finally, we acquire the realization of

z
(n)
t . After repeating this for N times, we can compute the empirical distribution of the event

variable Zt. We use a simulation method instead of analytic results because the latter involve

a high dimensional integration, which might be infeasible in certain cases. For example,

Pr(Zt = 2) =

Z
I(εt+2 > α2Yt + αεt+1, εt+1 > αYt)dF (εt+1)dF (εt+2)

Simulation will be a much faster way to obtain a probability estimator. It certainly lead to

efficiency loss since a simulation procedure will involve sampling errors. As long as the sample

size N is large enough, however, the variance of sampling error will approach zero and the

accuracy is acceptable.

The major shortcoming of this approach is that in this approach we assume that we can

correctly specify the underlying data-generating-process of the event variable. One crucial

component of the model specification is the conditional distribution function of error items in

the stochastic process. In order to implement probabilistic forecast, such specification should

be as precise as possible. However, in standard econometric practices, the restriction on error

items is always required to be as small as possible due to insufficient knowledge. As a result, we

are subject to a great danger of model misspecification in the stochastic simulation approach.

Probit and Logit Model

The probit and Logit model also belong to the time series approach (see Estrella, A, & Mishkin

F.S. (1998) ). Unlike the stochastic simulation method, these two models require an direct

functional relationship between the conditioning variables and forecasted event variables. In

the Probit model case,

Pr(Xt = 1) = Φ(α+ βYt−1) (1.4)

where Φ(•) is an accumulative standard normal distribution function. In the Logit model case

Pr(Xt = 1) =
1

1 + exp(−α− βYt−1)
(1.5)

8



Both Probit and Logit models were originally developed to study discrete-choice behavior in

microeconomics. The functional forms of (1.4) and (1.5) are derived based on the specification of

latent utility or profit function. If we apply them to other economic studies, i.e., macroeconomics

studies, however, the modeling foundation will not be as strong . In those cases, great caution

should be taken in model selections.

The Model Misspecification Problem in Time Series Approach

Like in the Bayes approach, the model misspecification constitutes a serious problem for the

time series approach. Unlike in the Bayes approach, however, it is the specification of the error

terms that cause the most concern. The impact of misspecification problems is the most serious

in the stochastic simulation method because the link between model estimation and forecasting

purpose is indirect. Using Probit and Logit models to do event forecasting can help alleviate

this problem to some extent because both models construct the conditional probability function

in a direct way. But if the departure from the true model is considerable, the impact of model

misspecification will be substantial.

1.3.3 Comparison Between Two Basic Approaches and Potential Ways of

Improvement

In the Bayes approach, the predictability of target events comes from the assumption that the

data-generating-process of the leading indicator variables will switch between different stochas-

tic settings before these events take place. The logic of this assumption is natural. It is not until

abnormal events occur that a shift in the current state is suspected. In the Bayes approach,

however, there is no specification on the time lag between the target event and the structural

change of the leading indicator variables. In addition, the likelihood of the structural change

of the leading indicators depends on the entire history of the conditioning variables due to the

nonlinear inference scheme. Such a forecasting approach fits the situation in which the events

to forecast have a significant influence but occur at a low frequency.

Models in the time series approach, however, impose a stationary correlation between the

likelihood of the forecasted event and the conditioning variables. This approach is appropriate

if it is obvious that the inter-dependence between the event variable and conditioning variables

9



can be characterized explicitly in a lead-lag fashion.

The common problem shared by these two approaches is the vulnerability to model misspec-

ification. In the Bayes approach, the existence and characteristics of the law of motion of the

latent regime process is the most fragile part. For example, in the business cycle turning points

forecasting literature, studies demonstrate that although a regime switch structure is significant

for the key macro variables like GNP, it is not obvious that the leading indicator series also pos-

sess such a structure (see Filardo 1994, Layton 1996). In the time series approach, the weakest

link is error term specification. When the forecasted event is associated with extreme behavior

of future shocks and the high-order moment of the distribution of shocks varies significantly

with the history of information variables, the standard model specification for moment forecast

will fare poorly.

We consider a new approach which combines the features of these two approaches and

tries to make improvement. Following the time series approach, we model the conditional

probability explicitly and estimate the model in such a manner that helps to minimize the

forecasting errors. To avoid serious misspecification, we construct the conditional probability

function without specifying the particular distribution function. Following the Bayes approach,

we allow the conditional probability to vary with the entire history of the information variables

in an extremely flexible way. As a result, the dependence between conditioning variables and

the target events can be highly nonlinear and the impact of past shocks can be spread over a

considerably long timespan.
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Chapter 2

DISCRETE-EVENT-

FORECASTING

MODEL

2.1 Basic Requirements for the New Model

2.1.1 A Direct Probability Estimator

In our new approach, we require that the forecasting model yield the probability forecast of the

future events directly. By doing so, we can set up a direct link between the model estimation

and the optimization of the probabilistic forecasting performance. Such a requirement adds

obvious improvement to the forecast when the target event covers multi-period situations. More

often that not, in multi-period forecasting, the model is estimated to optimize one-period-ahead

forecast but is used to do multi-period forecast in practice. The impact of model misspecification

will then become more remarkable since the error will be accumulated over time. Among all

the methods discussed above, only the probit and logit model meet this requirement.

2.1.2 A Flexible Conditioning Structure

Most studies using the probit and logit models adopt functional forms that combine a linear

model with a standard normal distribution function as in (1.4) or a logit function as in (1.5).
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Such a structure is appropriate if we apply probabilistic forecasting in the study of discrete

choice behavior. Seldom do we add dynamic consideration in those studies. Also specification

of the error terms usually plays a minor role in determining the forecasting performance. In

macro economy or financial market forecasting, however, a simple structure may not able to

characterize the underlying data generating process as well as in microeconomics studies.

In our new approach, we would like to adopt a flexible way of modeling. First, we do not

want to set stringent restrictions on the covariance structure in order to avoid serious model

misspecification. Special events such as regime switches or extraordinarily strong performance

of a stock cannot be attributable to a single sudden exogenous shock. The trigger is likely

to have developed over a long horizon. Cutting off on the lag without sufficient justification

will induce severe bias in the model estimation. Second, we do not want to set restrictions on

the distribution function of error terms. For extreme events in macro economies and financial

markets, the shocks that lead to these events usually do not behave regularly. For example,

high frequency shocks in the stock market have fat tails and may be highly skewed (see Cootner

1964).

2.2 Setup of the Discrete-Event-Forecasting Model

The core part of our new forecasting model is to set up a direct and flexible link between

the history of conditioning variables and the forecasted events. We use the following four-step

procedure to implement such a setup. We denote the new modeling approach as Discrete-Event-

Forecasting model.

a) Conditioning variables are clipped so that they become rationally-valued. For example,

let {Yt}∞t=1 be the original information variable that we want to condition. We clip the data to
acquire a new series {Y 0t }∞t=1 through the following procedure.

Y 0t = ai if Yt ∈ [bi,bi+1),

i = 1, 2, ..., N.

b) The entire history information of the discrete-valued new variable is mapped onto the real

line to obtain a new variable. We call this variable an ARMAmemory index of {Y 0t , Y 0t−1, Y 0t−2..., }.
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For example, we define the ARMA memory index Mt(α) as

Mt(α) = (1− α)
∞X
i=1

αi−1Y 0t−i (2.1)

c) A conditional probability function is set up to map the ARMA memory index into a

probability measure for a specific event. For example, let {Yt}∞t=1 be a series of binary event
variable . The forecasting model is

Pr(Xt = 1|Y 0t−1, ...) = Pr(Xt = 1|Mt(α)) (2.2)

= f(Mt(α),Θ)

where f(Mt(α),Θ) is a flexible functional form on [0, 1] and Θ is the parameter set. In order to

achieve the flexibility, we adopt a semi-nonparametric estimation method with a wavelet basis,

i.e.,

f(Mt(α),Θ) =

K1X
k=K0

cj0,kϕj0,k(Mt(α)) +

j1X
j=j0

X
k

θj,kψj,k(Mt(α))

where Θ = {cj0,k, k = K0, ...,K1, θj,k, j = j0, ...j1, k = K1, ...,K2}.
d) We use Maximum Likelihood Method to estimate Θ,i.e.,

Θ̂ = max
Θ
bL(Θ) (2.3)

= max
Θ

nY
t=1

log [Xtf(Mt(α),Θ) + (1−Xt) (1− f (Mt(α),Θ))] (2.4)

In the following we will briefly address the main purpose of each step in our new approach.

First, the main goal of the data clipping procedure is to transform the conditioning infor-

mation set Ft into a countable set. Intuitively, this procedure bundles some elements of the

original information set together, condenses them into a single element and puts it into a new

set. By doing this, we shrink the size of the conditioning information set.

Second, the shrinking of the original conditioning information set makes it possible for us

to find a one-to-one mapping between the historic information of the conditioning variable
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and a real-valued random variable. With such a mapping, we can construct a one-dimension

information variable, Mt(α), that contains all the information embedded in a high-dimensional

information vector, {Y 0t , Y 0t−1, ...}.
Third, setting up the conditional probability function as in (2.2) is such that our new fore-

casting model possess all the above mentioned desirable properties. We have a direct probability

estimator for the event we want to predict, i.e., f(Mt(α),Θ) = Pr(Xt = 1|Y 0t−1, ...). The func-
tional form is flexibly structured due to a semi-nonparametric estimation approach. Moreover,

we adopt a wavelet basis to make the function estimation be sensitive to a local change in the

functional shape.

2.3 Main Trade-off between the Discrete-Event-ForecastingModel

and Traditional Modelling Approaches

The Discrete-Event-Forecasting model can help avoid major misspecification in the model struc-

ture of the conditional probability functions. This is particularly important when we choose

events that are difficult to predict due to the complexity of the driving force. More often than

not, the occurrence of these events is driven by shocks whose impacts diffuse slowly initially.

Once these impacts become a public knowledge, the speed of diffusion will pick up and induce

dramatic changes. For this reason, the dependence structure for the conditional probability

function will cover a long horizon and the marginal impact of the changes in conditioning vari-

able will be non-constant. Our new modelling approach can pick up these irregularities and

improve probabilistic forecasting.

We must pay a price for these potential improvements. In the Discrete-Event-Forecasting

model, we clip data to implement the ARMA memory index model. By doing so, we shrink

the conditioning information set and increase the variance of forecasting error. Moreover, when

the learning sample is small, we can not model our conditional probability function to such

an extent that all the variation in the functional form can be captured. For that reason, the

forecasting error may be enlarged further.

More formally, we defineFt−1 as the σ−algebra generated by {Yt−1, Yt−2...} and F∗t−1as the
σ− algebra generated by the clipped version, {Y 0t−1, Y 0t−2...}. Note that Ft−1 ⊂ F∗t−1
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When the conditional function E(Xt|Ft−1) = Z1t , E(Yt|F∗t−1) = Z∗t are both correctly

specified, we have

MSEo = E [Yt −E(Yt|Ft−1)]2

= E
£
Yt − Z1t

¤2
and by the law of iterated expectation,

MSEc = E [Yt − Z∗t ]
2

= E
£
Yt − Z1t

¤2
+E

£
Z∗t − Z1t

¤2
When the conditional function E(Yt|Ft−1) is misspecified, say, Z0t 6= E(Xt|Ft−1) but Z0t is

still Ft−1 measurable, by the law of iterated expectations,

MSEm = E
£
Yt − Z0t

¤2
= E

£
Yt − Z1t

¤2
+E

£
Z1t − Z0t

¤2
We define Difd,f as follows.

Difd,f = MSEm −MSEc

= E
£
Z1t − Z0t

¤2 −E
£
Z1t − Z∗t

¤2
E
£
Z1t − Z∗t

¤2 is the variance increase due to the information set shrinkage whileE £Z1t − Z0t
¤2

is the variance increase due to model misspecification. The sign of Difd,f will determine which

is a better forecasting method.
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2.4 Two Important Econometrics Issues for the Discrete-Event-

Forecasting Model

2.4.1 ARMA Memory Index Model

Basic Content

One core methodology for the discrete events forecasting model is the ARMA memory index

model developed in Bierens (1988). A distinctive feature of this modelling approach is that it

allows a flexible way of modelling the covariance structure in a conditional expectation function.

As shown by Bierens (1988) , under mild regularity conditions, conditioning on the entire history

of a rational-valued time series process is equivalent to conditioning on a single random variable

which captures all the information contained in the past of the process. This random variable

is called ARMA memory index since it can be formed as an autoregressive moving average of

past observations. For example, let Y 0t be a univariate rational-valued process. Under mild

conditions, using the ARMA memory index approach, we have

E(Xt|Y 0t−1, Y 0t−2,...., ) = E(Xt|Mt(α)) (2.5)

where E(•|•) is a conditional expectation function andMt(α) follows (2.1) with α ∈ (−1, 1)\S ,
where S is a countable subset of (−1, 1). The conditional expectation function, which conditions
on the entire past of the time series involved, now becomes a Borel measurable function of a

single ARMA memory index. Modelling the original function is impossible due to the ‘curse of

dimensionality’ problem. Modelling the transformed function, E(Xt|Mt(α)), however, can be

implemented given that we can choose a flexible nonlinear functional form.

The proof of these theorems on ARMA memory index model is complicated (see Bierens

1988). But the main idea is intuitive. The key is the existence of a one-to-one mapping

between the real line and a infinite-dimensional rational-valued vector. Due to such a mapping,

the conditional probability can be transformed into a function of the index without information

loss. Next, we give an example of such a mapping.

Let Y 0j , j = 0, 1, 2...be a sequence of variables taking values in the set {0, 1, 2, ...k}. Let for
α ∈ (0, 1),
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M(α) = (1− α)
∞X
j=0

αjY 0j

and letMα be the set of all possible values of M(α).

If Y 00 = s ∈ {0, 1, 2, ...k}, then

M(α) = (1− α)s+ α(1− α)
∞X
j=0

αjY 0j ≥ (1− α)s

M(α) ≤ (1− α)s+ α(1− α)
∞X
j=0

αjk

= (1− α)(s+
α

1− α
k)

If

α <
1

k + 1
(2.6)

then the intervals [(1 − α)s, (1 − α)(s + α
1−αk)] are disjoint, hence for every M ∈Mα,we can

determine the value of Y 00 as follows:

Y 00 = s iff M ∈ [(1− α)s, (1− α)(s+ α
1−αk)]

Once the value of Y 00 has been established, define

M (1) =
M − (1− α)Y 00

α

Then

Y 01 = s iff M1 ∈ [(1− α)s, (1− α)(s+
α

1− α
k)]

More generally, for Y 0t , t > 1

Y 0t = s iff M (t) ∈ [(1− α)s, (1− α)(s+
α

1− α
k)]

where
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M (t) =
M (t−1) − (1− α)Y 0t−1

α

With the above algorithm, it is easy to show that the mapping between M and {Y 0t }∞t=0 is
one-to-one.

We should keep in mind that (2.6) is a sufficient but not necessary condition. In general,

this can be done for any α ∈ (−1, 1) \ S where S is a subset of (−1, 1) with Lebesgue measure
0.

Strength of ARMA Memory Index Approach in Economics

The ARMA memory index model will be particularly useful when the following situation exists.

First, there is nonlinearity in the dependence structure for the underlying data-generating

process. Only when we combine the historic observations of information variables together can

we find a significant impact from the past. Second, the shock that promotes the chance of

target events diffuse its influence slowly. Therefore, movements of information variables in the

distant past will still have a significant impact on the likelihood of the target event.

The above situations will take place when the target event is not driven by a simple ex-

ogenous shock. Extreme events in Macro-economies and financial markets usually fall into this

category. The main cause of these events is a combination of both human factors and tech-

nology factors. A simple dependence structure between conditioning variables and events to

be forecasted does not exist. Hints towards the likelihood of target events are scattered in the

history of conditioning variables. Those hints will have little predictive power if we consider

them separately. The ARMA memory index approach makes it possible to find useful patterns

by allowing conditioning on the whole history of information variables in a flexible way

2.4.2 Semi-Nonparametric Estimation with Wavelet Basis

A crucial factor in the success of ARMA memory index model is modelling a flexible functional

form for the transformed conditional probability function of the ARMA memory index, i.e.,

(2.5). The latter can be fulfilled through the second core methodology for the discrete-events-

forecasting model, the semi-nonparametric estimation method. In semi-nonparametric estima-
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tion, an unknown functional form with little prior knowledge imposed is estimated. Therefore,

the object to be estimated is the entire structure of a functional form rather than an unknown

scalar or vector as we see in standard parametric estimation.

The basic rationale behind semi-nonparametric estimation can be summarized by the follow-

ing observation. Due to the isomorphic property of Hilbert Space (see appendix for definition)

to l2 space, any infinite dimensional real vector can be decomposed as the ‘sum’ of its projection

on the basis vectors; any functional form in a separable inner product space can be decomposed

as ’sum’ of orthogonal basis component (Fourier Series). Therefore, estimating a functional

form becomes equivalent to finding a coefficient vector (Fourier Coefficients) for components

of an orthogonal basis. As a result, it is possible to apply the standard parametric estimation

methods into functional estimation (see appendix Al).

Fourier Analysis The main purpose of the Fourier analysis is to find a simple way to repre-

sent an arbitrary functional form. The following theorem sets up a natural link between Fourier

analysis and basic properties of an orthonormal basis (see more in the appendix).

Theorem 1 An inner product space is separable if and only if it has a complete orthonormal

sequence (xn).Furthermore, in a separable inner product space, any x ∈ X can be written

uniquely in the form x =
P
n∈N

hx, xnixn for any orthonormal basis (xn).

Under certain conditions, Fourier series will have good convergence properties for piecewise

smooth functions and bounded-variation functions (see appendix A). Due to these properties,

we can approximate any functional form in a large class of functional space through a linear

combination of functional components in a Fourier series.

Wavelet Analysis In Fourier analysis, a functional form is broken into frequency compo-

nents. Each frequency component in Fourier analysis is a periodic function. If a functional

form has a cyclical curve pattern, then it only takes a small number of Fourier coefficients to

obtain a good estimator of this pattern. The efficiency is due to the global property of Fourier

analysis. But the global property also brings a fatal shortcoming. If a curve pattern is a local

phenomenon for a functional form, then we must use a lot of components of Fourier series to

cover it. The Fourier analysis will become extremely inefficient under such circumstances. A
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way to overcome this problem is to find a functional basis, whose components are localized in

its time domain. That is, the function value of each component is far away from zero only on a

small region of the component’s domain. As a result, Fourier coefficients of this basis will give

only local frequency information of a functional form. If such a basis can be constructed, then

coefficients of this basis will give the local ‘content’ of a functional form in the time domain

and frequency domain simultaneously, which is known as time-frequency analysis.

The wavelet analysis is introduced in order to implement this idea. The strength of wavelet

basis in functional analysis relies on the time-frequency analysis. The ability of carrying out

time-frequency analysis improves the sensitivity of functional estimation to drastic local behav-

ior of a functional form. It ensures detection of an anomaly in a functional shape with a small

number of parameters. If we consider such a feature in a dynamic way, the estimation method

could absorb new information in the functional form much more quickly than a regular one.

Brief History of Wavelets

The general form of wavelet is sequence {ψj,k(x) j, k ∈ Z},s.t. ψj,k; = 2
− j
2ψ(2−jx− k) consti-

tutes an orthonormal basis for the space L2(R),i.e.,

Z
ψj,k(x)ψi,m(x)dx

⎧⎨⎩ = 0 if i 6= j or k 6= m

= 1 otherwise

Such a formation contains two types of operation, the dilation such as ψj(x) = ψ(2−jx) and

the translation such as ψk(x) = ψ(x+ k).

The first wavelet to be discussed in the literature is Haar Wavelet, which is a compactly

supported wavelet. It was worked out by Haar in 1909. He tried to find an orthonormal base

which can uniformly approximate any continuous function on a compact support. Opposite

to the Haar wavelets, the Littlewood-Paley wavelets have compact supports in Fourier trans-

forms. The first wavelet with excellent analytic properties in the time-frequency domain is due

to Stromberg(1982). The wavelet is Ck with an exponential decaying speed in its functional

form. Later, Meyer built up a wavelet with a compact support (see Meyer(1985)). He found the

wavelet while he was trying to establish a proof of nonexistence of such a basis. Immediately

after that, the first example of biorthogonal basis was constructed by Tchamitchian (1987). In
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the following year, Battle (1987) and Lemeir (1988) independently constructed the wavelets

with the same structure, which is called Battle&Lemeir wavelets. Due to the lack of systematic

theoretic foundation behind the constructions, these results seem more like miraculous inci-

dences. Finally, Multi-resolution Analysis (MRA), first introduced by Mallat (1988) based on

his knowledge of image processing, offered a unified framework to explain the success of all

these cases. It is MRA that demonstrates that the wavelet is a synthesis of ideas originated in

recent development in physics, engineering and pure mathematics.

Multi-resolution Analysis and General Approach of Constructing Wavelets

The Multi-resolution analysis has its root in the subband coding and quadrature mirror filter-

ing(see Meyer 1993, Chapter 3), which are popular in image processing. The image of each

object can be analyzed in a hierarchical way. It can be first decomposed into two orthogonal

parts, a trend component W0 and a fluctuation component V0. The trend component shows a

smooth and regular sketch of an original image, while the fluctuation component is the devi-

ation from the regular sketch. After that, the trend component is left intact. The fluctuation

component, however, is further analyzed into another pair of a trend component and fluctua-

tion component, W1 and V1. With such a decomposition procedure, the images remaining in

trend components will be increasingly volatile. The size of fluctuation components Vj , however,

shrink to be negligible. Since trend components in the later stages are capable of characterizing

more volatile variation of a functional form, such analysis is called a high resolution analysis.

Correspondingly, the analysis in early stages is low resolution analysis. Multi-Resolution Analy-

sis (MRA) is the mixed usage of them. According to the construction, the two components in

each step are orthogonal to each other, i.e.,Wj ⊥ Vj . Since each trend component in a stage

is a part of the fluctuation component of the previous stage, trend components are themselves

orthogonal to each other i.e., Wj ⊥ Wj0, j 6= j0. Therefore, in the end, an image is decomposed

into an infinite number of trend components which are orthogonal to one another.

The link between wavelet basis {ψj,k(x) j, k ∈ Z} and Multi-Resolution Analysis (MRA)
is as follows. To construct a wavelet basis, we need to find a sequence of subspaces Vj such

that such that Vj−1 ⊃ Vj ⊃ Vj+1, ∪j∈ZVj = L2(R) and ∩j∈ZVj = {0}. For each Vj , we have an

orthognormal basis, {ϕj,k(x), k ∈ Z}. From {ϕj,k(x)}, we can construct an orthognormal basis
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{ψj,k(x) k ∈ Z} for each subspace Wj , which is the orthogonal complement to Vj , i.e.,Vj−1 =

Vj
L

Wj . Due to the properties of Vj and Wj , the system {ψj,k(x) }j,k will constitute an
orthogonormal basis for L2(R). Normally, we denote ϕj,k(x) as the scaling function and ψj,k(x)

the mother wavelet function.

In constructing {ψj,k(x) k ∈ Z} from ϕ(x), we use two properties of ψj,k(x). First, ψj,k(x)

belongs to Vj−1 and we can have a Fourier representation of it as

ψj,k(x) = 2
− (j−1)

2

X
n

fnϕ(2
−(j−1)x− n)

where ϕ(2−(j−1)x − •) is the orthogonal basis for Vj−1. Second, ψj,k(x) is orthogonal to each

basis function belonging to Vj−1, .i.e.,

2−
(j−1)
2

Z
ψj,k(x)ϕ(2

−(j−1)x− n) = 0 for all n.

From those two conditions, we obtain one possible approach of constructing wavelet basis, that

is,

ψ(x) = 2
1
2

X
n

(−1)n−1h−n−1ϕ(2x− n) (2.7)

or

ψ̂(ξ) = eiξ/2m0(
ξ

2
+ π)ϕ̂(

ξ

2
) (2.8)

where

m0(ξ) =
1√
2

X
n

hne
−inξ

is called low pass filter because of the following property

ϕ̂(ξ) = m0(
ξ

2
)ϕ̂(

ξ

2
) (2.9)

or
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ϕ(x) = 2
1
2

X
n

hnϕ(2x− n) (2.10)

The function m0(•) is able to filter out the high frequency information of a function form
from its low frequency counterpart directly or it can construct a function with a large scale

from its small scale counterpart through its Fourier coefficients hn. Note that the method of

construction is not unique. The equation (2.7) can also be replaced with

ψ(x) =
X
n

(−1)nh−n+1ϕ(2x− n) (2.11)

We refer readers to the appendix for more formal illustration and related literature.

Example of Wavelets

Haar This is the simplest case of wavelets basis.

1.The scaling function ϕ(·) of Haar wavelet is

ϕ(x) = 1 if 0 ≤ x < 1

= 0 otherwise.

2. Define V0 = {f(x) : f is constant on the interval [k − 1, k), k ∈ Z }, of which the above
function is an orthonormal basis.

3. Using (2.10), m0 is

hn =
√
2
R
ϕ(x)ϕ(2x− n)dx = 1√

2
if n = 0, 1

= 0 otherwise

4. Finally, using (2.11), we obtain

ψ(x) =
X
n

(−1)n−1h−n−1ϕ(2x− n) (2.12)

=
1√
2
ϕ(2x)− 1√

2
ϕ(2x− 1)

The Haar wavelet is compactly supported. but it is discontinuous. The consequence is that
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it has bad frequency localization. It is inappropriate to use such a function basis to approximate

a function with reasonable smoothness, even though it converges everywhere.

Meyer Wavelet 1.The Fourier transform of the scaling function is

ϕ̂(x) =
√
2π |ξ| ≤ 2π/3

=
√
2π cos[

π

2
v(
3

4π
|ξ|− 1)], 2π/3 ≤ |ξ| ≤ 4π/3

= 0 otherwise

where v is a smooth function satisfying

(a)

v(x) = 1 if x > 0

= 0 otherwise

(b)

v(x) + v(1− x) = 1

2. Define V0 as the space spanned by this set. Then Vj is a closed subspace spanned by the

ϕj,k = 2
− j
2ϕ(2−jx− k).

3. The m0 is

m0(ξ) =
√
2π
X
l∈Z

ϕ̂(2(ξ + 2πl))

4. Finally, the wavelet basis is defined using (2.8)
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ψ̂(ξ) = eiξ/2 [m0(ξ/2 + π)] ϕ̂(ξ/2) (2.13)

=
√
2πeiξ/2

X
l∈Z

ϕ̂(ξ + 2π(2l + 1))ϕ̂(ξ/2)

=
√
2πeiξ/2 [ϕ̂(ξ + 2π) + ϕ̂(ξ − 2π)] ϕ̂(ξ/2)

Spline Wavelet This class of wavelet is also called the Battle-Lemarie family wavelet. It is

also called spline wavelet, because the scaling function for is B-spline of degree n, n ∈ N1. In
fact, Haar wavelet is a special case of the spline wavelet with degree 0. The spline wavelet with

degree 1 is called Franklin Wavelet.

1. The scaling function is piecewise linear function

φ(x) = 1− |x| , 0 ≤ x ≤ 1
= 0 otherwise

The Fourier transform of it is

ϕ̂(ξ) = (2π)−1/2(
sin ξ/2

ξ/2
)2

By normalizing, we get

ϕ̂#(ξ) = (
1 + 2 cos2 ξ/2

3
)−1/2ϕ̂(ξ)

2. By (2.9), the corresponding m#
0 (ξ) is then

m#
0 (ξ) =

ϕ̂#(2ξ)

ϕ̂#(ξ)
= cos2(ξ/2)

∙
1 + 2 cos2(ξ/2)

1 + 2 cos2(ξ)

¸1/2
3. Fourier transform of the mother wavelets then is

1B-spline function
The B-spline funtion of order n is the set of function f,such that the restriction of f to (n, n+1] if polynomial

of degree n.
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ψ̂(ξ) = eiξ/2
h
m#
0 (ξ/2 + π)

i∗
ϕ̂#(ξ/2) (2.14)

= eiξ/2 sin2(ξ/4)

∙
1 + 2 sin2(ξ/4)

1 + 2 cos2(ξ/2)

¸1/2
ϕ̂#(ξ/2)

Using the same logic, we can construct the B-spline wavelet with degree n for any n ∈ N.The
procedure is as follows:

1.The scaling function satisfies

ϕ̂n(ξ) =
e−imξ/2( sin ξ/2ξ/2 )

n

(Fm(e−iξ))1/2

where

Fm(x) =
m−1X
−m+1

N2m(m+ k)xk

N2m(m+ k) can be calculated using following iterative algorithm

N2(k) = δk,1

Nn+1(k) =
k

n
Nn(k) +

n− k + 1

n
Nn(k − 1)

2. The mother wavelet is computed as

ψ̂
n
(ξ) = −( 4

iξ
)ne−iξ/2 (sin ξ/4)2n

s
Fn(−z)

Fn(z)Fn(z)
(2.15)

where z = e−iw/2. We refer interested readers for more detailed description of the above con-

struction to Chui (1992).

Compactly Supported Wavelet (Daubechies Wavelets) All the above wavelets were

constructed before the discovery of Multi-Resolution Analysis. MRA offers a unified framework

to them. Daubechies Wavelets, however, rely heavily on Multi-Resolution Analysis and are good

examples to demonstrate the strength of MRA. However, the compactly supported wavelet does
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not have an explicit expression form as the above examples. In order to plot the Daubechies

wavelets, we need to use some special algorithm. Even so, the usage of Daubechies Wavelets

in engineering fields has been overwhelming since it was invented. The major attraction comes

from the compactness of its support. When we fix the level of resolution, as long as the estimated

function has compact support, the number of wavelet components we use to approximate the

functional form is always finite. This makes computation extremely fast. Since the way to

construct Daubechies Wavelets is too complicated and is of little help for our later discussion,

we skip this part. Interested readers could refer to Daubechies(1992) for detail.

Wavelets and Statistics

Functional estimation It is also called signal estimation. The main advantage of wavelet

analysis in functional estimation comes from its capability to carry out localized multiscale

decomposition. Although multiscale analysis is not new, the localization property distinguishes

wavelet analysis from many traditional statistical analysis tools.

The main task of functional estimation is to effectively extract the functional form of a sig-

nal from contaminated observations. Usually, the signal has a structure that can be represented

by a smooth function. Since a function may have a different level of smoothness on different

scales, multiscale decomposition can help filter out the smoother structure. The main work-

ing mechanism of wavelet analysis on functional estimation can be explained by the following

example due to Dohono et al (1995).

1. The regression model is

yi = f(xi) + σεi, i = 1, 2, ...n

where xi are equally spaced points and εi are i.i.d Gaussian noise.

2. Given that f(xi) satisfies some regularity conditions, it can be represented as

f(xi) =
X
k

αkϕ0,k(xi) +
X
j,k

θj,kψj,k(xi)

where ϕ0,k(·) is a scaling function and ψj,k(·) is a wavelet function. The coefficient are
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computed as

α̃k =
X
i

f(xi)ϕ̃0,k(xi) (2.16)

and

θ̃j,k =
X
i

f(xi)ψ̃j,k(xi) (2.17)

Now, we cannot observe f(xi) directly. To get an estimator of the above coefficients, we

rely on its noised version yi. Then the coefficients will be

α̂k =
X
(f(xi) + δεi)ϕ̃0,k(xi) = α̃k + ξk

and

θ̂j,k =
X
(f(xi) + δεi)ψ̃j,k(xi) = θ̃j,k + ξj,k

The ξk, ξj,k are i.i.d Gaussian noise with distribution N(0, σ2k) and N(0, σ2j,k) respectively.

3. Using a thresholding method, we screen out a wavelet coefficient estimator which has

very small value, that is,

θ̂
(t)
j,k = θ̂j,kI(θ̂j,k > λ),

where I(·) is the indicator function.
4. After that, we use the estimator α̂k and θ̂

(t)
j,k to reconstruct the function f(·) by

f(xi) =
X
k

α̂kϕ0,k(xi) +
X
j,k

θ̂
(t)
j,kψj,k(xi)

It should be noted that the threshold λ is a function of sample size n and variance factor

σ. Since the latter is unobservable, we need to estimate it as we estimate the functional form

for which an iterative algorithm can be used in many cases. Since coefficients will be shrunk if

they are below thresholds, this method is called wavelet shrinkage method.

Density Estimation The second major area of statistical application of wavelet is density

estimation. Again, using orthonormal series expansion to estimate a density function is by no

means a new practice. There are two main approaches to implement the estimation technique.

(1) The first approach uses a representation theorem to carry out the semi-nonparametric
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estimation This looks like a parametric estimation. An econometric application is Gallant and

Tauchen (1987).

(2) The 2nd approach uses the idea of kernel estimation to carry out nonparametric esti-

mation. The kernel is generated with a orthogonal series. As is shown in the appendix, the

Dirischlet kernel function is the key to the good convergence properties of Fourier series. In

particular,

Z
f(x)Dn(y − x)dx→ f(y) as n→∞

The Dn(y − x) is called δ − sequence because its limit behaves like a δ function2.

In wavelet density estimation, several approaches have been explored. A typical one has

inherited the same idea as approach (2). Wavelet series are used to create a δ− sequence. We

set the reproducing kernel function of subspace V0 in Multi-resolution Analysis as the starting

point for the construction of a kernel function. A general formula is

q(x, y) =
X
k

ϕ(x− k)ϕ(y − k)

and

qm(x, y) = 2
2m
X
k

ϕ(2mx− k)ϕ(2my − k)

As m→∞, qm(x, y)→ δ function.

Such a method is also called linear wavelet density estimator(see Gilbert 2001) Another

group of estimator, nonlinear estimator, gains more interest.

The general form is

2Dyadic-Delta Function:
Dirac Delta Function is a function δx satisfying:

δx(t) = 0ift 6= x

and

δx(t)dt = 1

Therefore, f(t)δx(t)dt = f(x) if f(t) is well defined at point x.
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f(x) =
X
k

cj0,kϕ0,k(x) +

j1X
j=j0

X
j,k

θj,kψj,k(x)

where

cj0,k =
1

n

nX
i=1

ϕj0,k(Xi) (2.18)

θ̃j,k =
1

n

nX
i=1

ψj,k(xi) (2.19)

As in Donoho et al.(1996), a simple non-linear wavelet estimator can be defined via thresh-

olding

f̂(x) =
X
k

cj0,kϕ0,k(x) +

j1X
j=j0

X
k

θ̂j,kψj,k(x) (2.20)

where

θ̂j,k = δh(θj,k, λ)

For more information on wavelet and statistics and time series analysis, we refer interested

readers to Antoniadis & Oppenheim(1995) and Percival (2000).

Combining the Semi-Nonparametric Estimation with Wavelet Analysis

Wavelet analysis is applied in a similar way as in Gallant and Nychka (1987) in this study.

We adopt the series expansion procedure to represent the functional form for estimation. We

then use Maximum Likelihood Estimation to estimate wavelet coefficients cj0,k, ψj,k in the

representation form as

f(Mt(α),Θ) =

K1X
k=K0

cj0,kϕj0,k(Mt(α)) +

j1X
j=j0

X
k

θj,kψj,k(Mt(α))

where Θ = {cj0,k, k = K0, ...,K1, θj,k, j = j0, ...j1, k = K1, ...,K2}. In order to obtain a con-
sistent estimator of the functional form, we apply the method of sieve (see Grenander 1979,

Geman & Hwang 1982 ). In this method, the number of the components chosen to construct

the functional form is always a small fraction of data size. As a result, the variance of coefficient
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estimators can be kept small although we may face the bias in the functional form in a small

sample case. As the sample size grows large, the bias of the functional form also shrinks due to

series expansion. As long as wavelet coefficients of a functional form dampen quickly enough,

an estimator will get arbitrarily close to the true functional form quickly.

The combination of wavelet basis and semi-nonparametric estimation makes it possible

to combine the strength of both parametric estimation and non-parametric estimation. Non-

parametric estimation is pure local analysis while parametric estimation is global. Local analysis

can avoid serious bias in model estimation while global analysis can improve estimation efficiency

if the local departure is minor. Applying semi-nonparametric estimation to the wavelet basis is

a way to balance the bias and the variance in functional estimation.
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Chapter 3

MONTE CARLO EXPERIMENT

FOR DISCRETE-EVENT-

FORECASTING

MODEL

In this chapter, Monte Carlo experiments are designed to study the performance of the new

forecasting model.

3.1 Experiment Design

3.1.1 Target Event

The Discrete-Event-Forecasting model is designed to do probabilistic forecasting of special

economic events. The accuracy of such forecasts is sensitive to the model specification on the

conditioning structure and the specification of error terms. In our experiment design, we will

examine the potential improvement provided by the Discrete-Event-Forecasting model when

the underlying process departs from a standard ARMA process significantly.

Let Yt be a univariate stationary time series. We choose the following events to forecast.

(1) Single-period event.
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(a) Mild Gain Event: the time series under study, Yt, is higher than a value that is a

little higher than the average at the period t.

X1,g,t = I(Yt > Ȳ+)

where Ȳ+ is the mild gain value. In our experiment, we choose Ȳ+ such that 30% of the observed

data is higher.

(b) Severe Loss Event: Yt drops sharply at period t.

X1,l,t = I(Yt < Ȳ−)

where Ȳ− is the severe loss value. In our experiment, we choose Ȳ− such that 5% of the observed

data is lower.

(2) Multi-period event.

(a) Mild Gain Event: The time series under study, Yt, is higher than a 1-period mild

gain value at the period t, or higher than a 2-period mild gain value for the period t and t+1,

or higher than a 3-period mild gain value for the period t, t+ 1 and t+ 2.

Xm,g,t = I(Yt > Ȳ1,+ or Yt + Yt+1 > Ȳ2,+ or Yt + Yt+1 + Yt+2 > Ȳ3,+)

In our experiment, Ȳ1,+ = Ȳ+, Ȳ2,+ = 2× Ȳ+, Ȳ3,+ = 3× Ȳ+.

(b)Severe Loss Event: Yt drops heavily at t, or t and t+ 1, or t, t+ 1 and t+ 2.

Xm,l,t = I(Yt < Ȳ− or Yt + Yt+1 < Ȳ− or Yt + Yt+1 + Yt+2 < Ȳ−)

.

If we consider Yt to be investment gain, the probabilities of type (a) events indicate the odds

of breaking even. The probabilities of type (b) events show the chance of heavy loss during the

forecast period. We choose these types of events to forecast for several reasons.

First, we choose mild gain values so that the mild gain event will not be a big surprise if

it takes place. Normally, the likelihood of this event is mainly affected by the position of the

conditional mean. We choose severe loss values such that their happenings will be a bad surprise.
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Both conditional mean and higher-order conditional moments determine the likelihood of such

events. As a result, model misspecification problems may affect the forecasting performance of

these two events in different ways.

Second, we compare single-period events forecasts and multi-period events forecasts be-

cause forecasts of events covering longer time horizons are likely to be more sensitive to model

misspecification. The error due to misspecification will be accumulated in multi-period fore-

cast. In real-world practice, events like multi-period severe loss events play a significant role in

determining the risk of a multi-period investment plan.

3.1.2 Data

We generate an original time series Yt using two approaches.

ARMA Approach.

In this approach, a process is generated using an explicit difference equation. We adopt four

types of specification, specified in such a way that the deviation from a standard AR process

grows.

(1) AR(3) process

Yt = φ(L)Yt−1 + εt

where εt˜N(0, 1).

(2) ARMA(3,3) process

Yt = φ(L)Yt−1 + ψ(L)εt

where εt˜N(0, 1).

(3)ARMA(3,3) process with mixed distribution with fixed weight

Yt = φ(L)Yt−1 + ψ(L)εt
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where

εt = ε1,t with probability p

= ε2,t with probability 1− p

where ε1,t˜N(0, 1) and ε2,t˜N(0, σ
2), σ > 1.

(4) ARMA(3,3) process with mixed distribution with time-varying weight

Yt = φ(L)Yt−1 + ψ(L)εt

and

εt = ε1,t with probability
1

1 + exp(−ϕ(L)Yt−1)
= ε2,t with probability

exp(−ϕ(L)Yt−1)
1 + exp(−ϕ(L)Yt−1)

ε1,t˜N(0, 1) and ε2,t˜N(0, σ
2), σ > 1.

For each setting , 1000 data points are generated. We use 600 data points to estimate the

conditional probability function, 200 to cross validate and 200 to do out-of-sample forecasting.

50 samples for each type of specification are generated.

Non-Equation Approach.

In this approach, we do not follow an explicit difference equation to generate the data. There-

fore, we ourselves do not have a clear idea of the exact description of the law of motion for the

underlying data-generating process. We first generate a i.i.d series Zt which follows a standard

normal distribution, i.e., Zt˜N(0, 1) and cov(Zt1 , Zt2) = 0, t1 6= t2. Then we generate Yt as

follows.

Let Vt =
Pt

τ=1 Zt,

If t = 1,

(1) if (1− α)Zt > Z̄,then Yt = Zt and Ct = 1;otherwise, Yt = αZt, Ct = 0.P1 = Y1;

If t > 1,
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(1) if |Vt − (Pt−1 + Zt)| > Z̄ and [Vt − (Pt−1 + Zt)]Zt > 0, then Yt = [Vt − (Pt−1 + Zt)] (1+

β1) and Ct = 1;

(2) if |Vt − (Pt−1 + Zt)| > Z̄, Ct−1 = 1 and [(Pt−1 + Zt)− Vt]Zt > 0, then Yt = Zt(1 + β2)

and Ct = 0;

(3) if |Vt − (Pt−1 + Zt)| < Z̄, then Yt = αZt and Ct = 0.

Pt =
tP

τ=1
Yτ ;

We can consider Zt as original shocks for an asset’s price. Vt is the intrinsic value of the

asset at period t and Pt is the price of the asset at the period t.

The price Pt evolves in the following way. If Zt is small, its value will be reflected on Pt

partially, i.e., αZt.When such under-valuation persists too long and |Vt − (Pt−1 + Zt)| becomes
too large, the price needs correction. However, there will be overcorrection each time, i.e.,

[Vt − (Pt−1 + Zt)] (1 + β1). Moreover, if Zt has the same sign as (Pt−1 + Zt)− Vt immediately

after the correction is overdone, the overcorrection will be extended even further, i.e., Zt(1+β2).

The data created through this non-equation approach will behave in a way that is more

difficult for standard time series models to capture. As a result, the forecasting performance

will be deteriorated more severely if model misspecification occurs. By doing so, we reduce bias

in the model comparison.

3.1.3 Model Setup

Discrete-Event-Forecasting model

The conditional probability function is set up through the Discrete-Event-Forecasting model.

Pr(X1,g,t = 1|Y 0t−1, Y 0t−2, ....) = F (Mt(α)|α)

where X1,g,t is the mild gain event variable and Y 0t is a clipping version of Yt ,e.g.,

Y 0t =
pX

i=1

aiI(Yt ∈ Ai)

where ∪pi=1Ai = R and Ai ∩Aj = Φ and
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Mt(α) = (1− α)
∞X
j=0

αjY 0t−1−j ,

We specify F (x|α) such that F (x|α) ∈ [0, 1] for all x ∈ R. It is constructed by letting

F (x|α) = 1

1 + exp(−g(h(x))) .

where

h(x) = ln(
x

1− x
), x ∈ (0, 1).

and g(x|α) is

gj0,j1(x) =

K1X
k=K0

cj0,kϕj0,k(x) +

J1X
j=J0

Kj,1X
k=Kj,0

θj,kψj,k(x)

where ϕj,k(x) is scaling function and ψj,k(x) is the mother wavelet function. In our model, we

choose spline wavelets (see chapter 2) with degree 1 for our estimation.

When the data sample is not large, we must choose an appropriate dilation truncation J0, J1

and translation truncation K0, K1, Kj,0,Kj,1 for the scaling function, ϕj,k(x), and the mother

wavelet function , ψ(ξ), respectively.

In our model, we choose the following specification:

(1) For the scaling function: J0 = 0,and K0 = −1. So we have three scaling function with
0 resolution level (see Figure 3.1).

(2) For the wavelet function: J1 = 1 and

a) K1,0 = −2,K1,1 = 1 (see Figure 3.1)

b) K2,0 = −5,K2,1 =, 4 (see Figure 3.1)

As a result, we have three basic models:

Model (1) only has scaling functions and the number of functions is 3.

Model (2) combines scaling functions (scale 0) with mother wavelet functions (scale 0) and

the number of functions is 7.

Model (3) combines scaling function (scale 0), mother wavelet (scale 0) and mother wavelet

(scale 1), and the number of functions is 17.

37



For each data process, we have 30 different Discrete-Event-Forecasting models (10 values for

α and three resolution level). We do model selection through cross validation; that is, we com-

pare the model performance all the Discrete-Event-Forecasting models using cross-validation

samples. We then choose the model with the best performance for the final-round out-of-sample

forecast.

AR model.

We estimate each simulated data process with an AR(p) model. Based on the estimation result,

we compute the conditional probability using either an explicit formula (single-period event) or

the stochastic simulation method (multi-period event) (see Chapter 1). We do model selection

through cross validation, that is, we estimate the AR(p) process using the learning sample with

various lag specifications. We then choose the model which has the best mean square error

performance in the cross-validation sample.

3.1.4 Model Evaluation

We compare the model performance in terms of the Quadratic Probability Score (QPS), i.e.,

QPS = T−1
TX
t=1

[X1,b,t+1 − Pr(X1,b,t+1 = 1|Yt, Yt−1, ..., Y1)]2 (3.1)

This is the standard performance measure for probabilistic forecast in economics literature (see

Diebold and Rudebusch 1989). It gives a measure of the accuracy of the probabilistic forecast

which is analogous to the Mean Square Error for level forecasting.

3.2 Experiment Result Analysis

3.2.1 Single-Period Forecast

In Table 3.1, statistics are presented comparing probabilistic forecast performance on a single-

period event between the AR(p) model and the Discrete-Event-Forecast (DEF) model. The

statistics include (1) the absolute and relative Quadratic Probability Score performance be-

tween the AR model and the Discrete-Event-Forecast model, (2) Wilcox statistics for relative
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performance, (3) the number of cases in which Discrete Event Forecast model outperforms (4)

the average Mean-square error for the AR(p) models and (5) the average Quadratic Probability

Score for the Discrete Event Forecast model. In Panel A, probabilistic forecast on a single-

period mild gain event are compared. In Panel B, probabilistic forecast are compared for a

single-period severe loss event.

For data generated by the ARMA approach, i.e., the first four types of process, the AR(p)

outperforms Discrete-Event-Forecast (DEF hereafter) model significantly in both cases, con-

firmed by t-statistics (Col 3) and Wilcox statistics (Col 4). Moreover, across the four types of

simulated processes, for both the AR(p) model and DEF model, there is little difference in the

absolute and relative forecasting performance in terms of Quardratic Probability Score. The

relative advantage of AR(p) model still maintains even if its model fit deteriorates (Col 6) when

bias due to model misspecification increases.

There are two main reasons for the inferior performance of the new model in this case. First,

although we try to generate deviation from standard ARMA process, we still have symmetric

error terms in all four cases. Under this circumstance, the approximation from the AR(p)

model with symmetric normal errors is very good assuming that the lag long enough. Such a

good approximation assures satisfactory performance for the short-run forecast. Second, there

is an overfitting problem for the new approach. Comparing Col (7) and Col (2), we can easily

find large discrepancies between in-sample and out-of-sample forecasting performance. This

problem may disadvantage the new forecasting model significantly.

With respect to the data generated by the non-equation approach, however, we get en-

couraging results. In particular, in mild gain event cases, the out-performance of our new

forecasting model is dominant though for severe loss event the AR(p) model still does better.

This outcomes shows that when the series under study demonstrates non-standard regulari-

ties, the standard forecasting model cannot easily capture these features adequately. In this

situation, the competitive advantage of our new model will surface.

3.2.2 Multi-Period Forecast

In Table 3.2, we present statistics comparing probabilistic forecasting performance on a multi-

period event between the AR(p) model and the Discrete-Event-Forecast (DEF) model. The
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statistics contained in this table are exactly the same as above. For this type of forecast, the

advantage of DEF model starts to show off .

For data generated by the ARMA approach, we emphasize two main features. First, an

obvious change is that probabilistic forecasting performance deteriorates for AR(p) model (col

1) when the deviation from AR process increases. In mild gain multi-period event forecast, the

Quadratic Probability Score of the AR model is 0.21947 for ARMA process with time-varying

non-normal error and 0.14174 for the AR process with a standard normal error. For the

DEF model, however, the impact of the deviation is almost negligible (col 2). The Quadratic

Probability Score changes little across the four types of model, e.g., for the mild gain case,

0.21001, 0.2005, 0.20441, 0.20685. Such a difference leads to improved relative performance for

the DEF model when the model misspecification problem becomes more severe.

Second, the advantage of our new forecasting model is more significant in the severe loss

event forecast, where higher order moments play an important role in determining the outcome.

For the process with time-varying mixed normal error terms, the DEF becomes dominant in

both Quadratic Probability Score (col 3) and the number of winning cases (col 5).

For the data generated by the non-equation approach, the advantage of our new forecasting

model is further enhanced. The new model does significantly better in terms of Quadratic

Probability Score in both mild gain event forecasts and severe loss event forecasts. In addition,

it beats the AR model in the number of winning cases with significant margins in mild gain

event forecasts and show strong competence in severe loss event forecasts.

From these results, we can draw the following conclusion. In the multi-period forecasts, our

new model provides strong competition to the traditional forecasting model. The cost of model

misspecification for the AR(p) model becomes significant in forecasting multi-period events

while our new model demonstrates an obvious advantage in its robustness to this problem.

Such robustness demonstrates the advantage that our new model has in certain cases, verifying

our original conjecture. Further research is under way to examine the relative advantage of our

new forecasting model in different situations.
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Figure 3.1:  Plots of Scaling Functions and Mother Wavelets Functions for Franklin Wavelets 
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Table 3.1 Forecasting Performance Comparisons for Monte Carlo Experiments--
Single-Period Event Forecasts  

  
In this table, statistics are presented comparing the AR (p) model and the DEF model in their 

probabilistic forecast performance on a single-period event. The statistics includes (1) the absolute and 
relative QPS performance between the AR model and the Discrete-Event-Forecast model (2) Wilcox 
statistics for relative performance (3) The number of winning cases for Discrete-Event-Forecasting model 
(4) Average Mean-square error for AR(p) model, and (5) Average QPS for the Discrete-Event-Forecast ing 
model in Cross Validation sample.  

Panel A compares probabilistic forecast on a single-period break-even event.  
Panel B compares probabilistic forecast on a single-period throat-cutting loss event  

 
 
Panel A 

Model QPSAR QPSDEF
QPSAR-
QPSDEF

Wilcox-
Statistics 
P-value4 

# DEF 
win 

/Total 

Average 
MSE 
(AR) 

Average 
QPS (DEF) 

AR(3) 0.11957 0.18641 -0.06684 
(-8.6706)5 0 2/50 0.99559 0.16368 

ARMA(3,3)_A1 0.11109 0.18404 -0.07296 
(-10.8703) 0 1/50 1.3521 0.165 

ARMA(3,3)_B2 0.11551 0.18906 -0.07355 
(-11.7322) 0 0/50 1.724 0.16907 

ARMA(3,3)_C3 0.10912 0.17617 -0.06705 
(-9.6516) 0 0/50 3.0604 0.15398 

Non-Equation 0.23357 0.21556 0.0180120 
(7.6619) 0 40/50 4.2511 0.20736 

 
Panel B 

Model QPSAR QPSDEF
QPSAR-
QPSDEF

Wilcox-
Statistics 
P-value4 

# DEF 
win 

/Total 

Average 
MSE 
(AR) 

Average 
QPS (DEF) 

AR(3) 0.038525 0.069973 -0.03145 
(3.8931) 0 3/50 1.0008 0.050507 

ARMA(3,3)_A 0.030452 0.062416 -0.03196 
(3.4499) 0 3/50 1.3521 0.03823 

ARMA(3,3)_B 0.032143 0.067606 -0.03546 
(3.3619) 0 3/50 1.715 0.044463 

ARMA(3,3)_C 0.032938 0.061716 -0.02878 
(3.7739) 0 3/50 3.0604 0.038776 

Non-Equation  0.048459 0.059824 -0.01137 
(5.7277) 0.000162 15/50 4.2511 0.039043 

 
 
Note: 1. ARMA process with normal distributed error terms. 
          2. ARMA process with mixed normal distributed error terms. One normal distribution has variance 1 
and the other have variance 2.25.The mixed weight is fixed. The probability for a standard normal error is 
0.75 and the probability for the other one is 0.25. 
          3. ARMA process with mixed normal distributed error terms. One normal distribution has variance 1 
and the other has variance 2.25.The mixed weight is time varying.  
          4. Null hypothesis is that the two models yield equal forecasting performance. 
          5. Value in brackets is the t-statistics.  
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Table 3.2 Forecasting Performance Comparisons for Monte Carlo Experiments--
Multi-Period Event Forecasts  

  
In this table, statistics are presented comparing the AR (p) model and the DEF model in their 

probabilistic forecast performance on a multi-period event. The statistics includes (1) the absolute and 
relative QPS performance between the AR model and the Discrete-Event-Forecast model (2) Wilcox 
statistics for relative performance (3) The number of winning cases for Discrete-Event-Forecasting model 
(4) Average Mean-square error for AR(p) model, and (5) Average QPS for the Discrete-Event-Forecast ing 
model in Cross Validation sample.  

Panel A compares probabilistic forecast on a multi-period break-even event.  
Panel B compares probabilistic forecast on a multi-period throat-cutting loss event.  

 
Panel A 

Model QPSAR QPSDEF
QPSAR-
QPSDEF

Wilcox-
Statistics 
P-value4 

# DEF 
win 

/Total 

Average 
MSE 
(AR) 

Average 
QPS (DEF) 

AR(3) 0.14174 0.21001 -0.06827 
(4.7724) 0 2/50 0.99559 0.17947 

ARMA(3,3)_A1 0.14071 0.2005 -0.05979 
(4.9623) 0 1/50 1.3521 0.17969 

ARMA(3,3)_B2 0.16089 0.20441 -0.04352 
(5.5656) 0 0/50 1.724 0.18221 

ARMA(3,3)_C3 0.21947 0.20685 0.012625 
(7.5027) 0.29632 21/50 3.0604 0.16375 

Non-Equation 0.31824 0.24135 0.076893 
(9.3239) 0 39/50 4.2511 0.23511 

 
 
Panel B 

Model QPSAR QPSDEF
QPSAR-
QPSDEF

Wilcox-
Statistics 
P-value4 

# DEF 
win 

/Total 

Average 
MSE 
(AR) 

Average 
QPS (DEF) 

AR(3) 0.10704 0.14918 -0.04214 
(5.0737) 0 2/50 1.0008 0.12847 

ARMA(3,3)_A 0.11537 0.14342 -0.02806 
(5.6878) 0 10/50 1.3521 0.11667 

ARMA(3,3)_B 0.13049 0.13846 -0.00797 
(6.664) 0.034456 20/50 1.715 0.11776 

ARMA(3,3)_C 0.1874 0.124 0.063399 
(10.6864) 0 41/50 3.0604 0.10029 

Non-Equation  0.16139 0.13209 0.029304 
(8.6398) 0.3516 24/50 4.2511 0.11279 
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Chapter 4

APPLICATION OF DISCRETE-

EVENT-FORECASTING MODEL

IN BUSINESS CYCLE REGIME

FORECAST

In this section, we apply Discrete-Event-Forecasting model to carry out probabilistic forecast

on business cycle regimes. We compare the Discrete-Event-Forecasting model with the Probit

model in terms of both regime forecasting performance and turning points forecasting perfor-

mance.

4.1 Literature Review

There have been three major improvements in regime forecast techniques since the introduction

of the leading indicator approach in early 1940’s.

First, Neftici (1982) developed ’Sequential Probability Recursion’ scheme which provides a

dynamic statistical inference method to identify structural changes in a stochastic data gener-

ating process. This scheme is able to predict forthcoming regimes by analyzing moving patterns

of leading indicator series in a dynamic manner.
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Second, Hamilton’s latent regime switch model (Hamilton (1989)) solves the major defi-

ciency of Neftici’s algorithm. In Neftici’s approach, one has to assume that structural changes

of a composite leading indicator series can be observed ex post. In addition, one has to impose

the assumption that the dating of regime switches in leading indicator series is independent

from the dating of their counterparts in business cycles. Such an assumption is problematic

because of the interdependence between the dating of business cycle turning points and the

selection and dating of leading indicator series. Therefore, it is not surprising to have a sat-

isfactory forecasting performance when we adopt the dating decision of NBER committee on

both business cycles and leading indicator series. The latent regime switch model can avoid this

problem by identifying the latent regime variable through a data-driven approach. Application

of this model in dating turning points in leading indicator series for the purpose of business

cycle regime forecast is well documented (see Lahiri and Wang 1994, Layton 1996).

Third, Watson and Stock (1991) use the unobservable component model to set up a more

rigorous time series model framework for the selection of leading indicator series. This model

assumes the existence of a latent common factor, which proxies the state of the economy.

The dynamic structure of this factor is estimated using a Kalman Filter approach. Since the

recession is defined as a specific pattern of the time path of the latent factor series, we can

predict the recession by carrying out multi-period forecast of the latent factor. Unlike a regime

switch model, the unobserved component model is still a linear model. The regime variable is

not an exogenous variable. Its movement is highly dependent on the movement of the latent

factor series.

These three models constitute three major steps in the development of econometric mod-

elling techniques for business cycle regime forecasts. Variants of those models are numerous.

Kling (1987) extends the stochastic simulation method of Wecker (1979) to forecast turning

point on GDP within a VAR model framework. Koskinen and Oller (2000) develop a hidden-

Markov-model (HMM) that adopts a Bayesian classification approach to classify the observa-

tions in order to carry out regime forecast. Kim and Nelson (1998) combines the regime switch

model with the unobservable component model to create a more exquisite model structure that

explores the latent regime-switch co-movement among major macro variables. Camacho and

Perez-Quiros (2002) use a non-parametric time series approach to do regime forecast. Filardo
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(1994) extends Hamilton’s model with a time-varying transition matrix. Finally, Birchenhall, et

al (1999) and Estrella and Mishkin (1998) adopt the logit and probit models to forecast regimes

directly. For a comprehensive coverage on major techniques in business cycle regime and regime

switches forecasting, we refer interested readers to Camacho and Perez-Quiros (2002).

These above developments add more statistical sophistication and rigor to regime identifi-

cation and optimal prediction rules. They strengthened the scientific basis for regime forecasts.

However, a general observation of the performance of these forecasting models is that the pre-

dictive power of information variable is reliable only in a short horizon ( Estrella and Mishkin

(1998) is an exception) . The effective forecasting lead is restricted to only one or two months

ahead (see Filardo 1994, Hamilton and Perez-Quiros 1996).

4.2 Research Design

4.2.1 Basic Motivation

Our study is linked closely with Estrella and Mishkin (1998), which use a probit model to

examine the predictive power of various financial variables in business cycle regime forecasts.

The forecasted object in their study is the regime series created by NBER business cycle dating

committee. In our study, we choose the same target. In addition, we will also choose the

term spread of treasury bill interest rate, which is verified by Estrella and Mishkin as the most

informative indicator series, as the conditioning variable.

The major distinction between our study and Estrella and Mishkin (1998) is the modeling

approach. They adopt a standard probit model framework while we use the Dicrete-Event-

Forecast model. The motivation of our choice is as follows.

First, in order to apply the probit model framework, the modeler has to assume that the

regime process is determined by a latent variable Y ∗t . In addition, in most cases, forecasters will

combine a linear structure with normal errors due to the concern of the tractability of statistic

significance. Such a framework, which can be well justified in micro-economics studies might

introduce deficiency in macro-economics studies due to model misspecification. In the latter,

the existence of the latent variable Y ∗t is hard to be justified. Moreover, it is even harder to find

an appropriate way of modelling the latent process when established theories for the driving
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force of regime switches are lacking. If the simple structure mentioned above contains serious

bias in model specification, it will not be able to yield the optimal forecasting performance.

To conquer this problem, we use the Discrete-Event-Forecasting model instead to carry out

probabilistic forecasting. This new modelling approach does not impose overt constraints on

the specification of conditioning structures and error term distributions. The forecasting model

structure is estimated through a data-driven approach. In case the model misspecification in

standard models causes a large bias, the Discrete-Event-Forecasting model will bring forth a

competitive advantage in terms of forecasting performance.

Second, in Estrella and Mishkin (1998), they use the level of term spread of treasury bill

interest rate to predict future business cycle regimes. However, as to why the level of the term

spread can shed light on the state of the economy, there is no conclusive explanation yet. One

possible justification is that the level of the term spread actually indicates the trend of changes

in term spread in recent periods, which will give hints on the regime of future economy. More

specifically, a high level of term spread is usually accompanied with consecutive increase in the

spread. This tendency might be linked with shocks that lead to subsequent regime switches.

For this reason, we conjecture that if we use the change of the term spread as a conditioning

variable and allow the business cycle shocks to diffuse their impact slowly over a long period,

we might acquire a better forecasting performance. The Discrete-Event-Forecast model is an

effective approach to implement such an idea.

4.2.2 Data

We use the Business Cycle chronology from National Bureau of Economic Research as the

regime series to forecast. It is a monthly date series. For the conditioning variable, we created

it based on the data series “FYGM3” and “FYGT10” from DRI database available through

WRDS database from Wharton Business School of University of Pennsylvania. Both data series

are monthly data. The “FYGM3” series is the Interest Rate of 3-month US Treasury Bills in

Secondary Market. The interest rate is annualized rate and there is no seasonal adjustment.

The “FYGT10” series is the Interest Rate of 10 year US Treasury with Constant Maturities.

The interest rate is also annualized rate without seasonal adjustment. We transform these two

dataset into the “Spread” series by computing the contemporary difference of them.
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The data sample is divided into two parts: the in-sample learning part 1959.08-1996.12

(449 obs) which includes six peak turning points (1960.04, 1969.11, 1973.11, 1980.01, 1981.07,

1990.07) and out-of-sample part 1997.01-2001.12 (60 obs) which contains one peak turning point

(2001.3) .

4.2.3 Model

Define St as the indicator series that indicate the US business cycle regime such that St = 1 if

the economy expands and St = 0 if the economy takes a downturn.

Define Yt as the financial variable that we think contains leading information for business

cycle regimes.

Discrete-Event-Forecast Model

(1) We discretize the variable Yt as

Y 0t = i, if ti−1 < Y 0t ≤ ti, i > 0

where t0 = −∞, ti < ti+1 and tI = +∞, where I is the total number of partition on the real

line R.

(2) With

Y ∗t =
Y 0t
I

we restrict the variable into [0, 1]

(3) We create two ARMA memory indexes, that is,

ARMA memory index I :My,1,t = (1− α)
+∞X
i=1

αi−1Y ∗t−i, (4.1)

ARMA memory index II :My,2,t = (1− λ)
+∞X
i=1

λi−1(4Y ∗t−i), (4.2)

where 4Y ∗t is the clipped version of 4Yt = Yt − Yt−1.

(4) We model the conditional probability function as
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Pr(St+k = 0|Y ∗t , Y ∗t−1,...) (4.3)

= F [g(My,t)]

= F [g(h(θ1My,1,t + (1− θ1)My,2,t))]

where F (·) is modelled as

F (x) =
1

1 + exp(−g(h(x))
with

h(x) = ln(
x

1− x
), x ∈ (0, 1).

and

g(x) =

jX
k=−j

β1,ϕj0,k(x) +
3X

i=2

jiX
k=−ji

βi,kψ(x)

For the Dicrete-Event-Forecasting model, we choose different resolution level for the wavelet

basis. In this exercise, we choose three types, high(17 parameter) and medium (7 parameter)

and low (3 parameter) (see chapter 3 for reference).

Probit Model

Pr(St+k = 1| Yt, Yt−1, ...)
= Pr(εt+k > α0 + α1Yt)

= Φ(
α0 + α1Yt

σ
)

where Φ(•) is the accumulative distribution function of a standard normal distribution.

4.2.4 Model Evaluation

We set up two groups of performance measures to compare the probit model with the Discrete-

Event-Forecasting model.
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First, we use both the likelihood function (L) and Quadratic Probability Score (QPS) to

measure the goodness of fit of forecasting models. We examine the forecasting performance for

both in-sample and out-of-sample cases. The two measures are expressed as

L = T−1
TX
t=1

log [I(St+k = 1)Pr(St+k = 1|Yt) + I(St+k = 0)(1− Pr(St+k = 1|Yt))] (4.4)

and

QPS = T−1
TX
t=1

(St+k − Pr(St+k = 1|Yt−1))2 (4.5)

Second, we design a forecasting performance measure for the business cycle peaking point

forecast. One major utility of business cycle regime forecasts is to predict the business cycle

turning points, especially the peak turning points. In Estrella and Mishkin (1998), this issue

has not been stressed. Because the major benefit of introducing the Discrete-Event-Forecasting

model is to improve forecasting accuracy, we have to examine its performance in this aspect.

This measure is defined as follows.

First, we set up the alarm threshold, say, 0.4. Then we apply the estimated conditional

probability function Pr(St+k|Yt, Yt−1,...) to the data to carry out k-period-ahead forecasting.
Once the conditional probability exceeds the alarm threshold, we make a call for a turning

point. And we define four types of alarms.

1. Prompt correct alarm. The conditional probability exceeds the threshold before turning

points occur. The date it predicts the turning points to happen is prior to or equal to the exact

date of turning point. The alarm is maintained until the occurrence of the turning point.

More technically, we issue a correct prompt alarm at t∗ with a positive lead t0 − t∗ if

(1) t0 = min{t : st = 1, t∗ ≤ t ≤ t00}, and
(2) F (My,t∗−k−1) < Pthreshold, F (My,t−k) > Pthreshold, for t

∗ ≤ t ≤ t0;

2. Late correct alarm. The conditional probability exceeds the threshold before turning

points occur. But it indicates that a turning point will take place at a date later than the

actual date of turning point.

Formally, we issue a late correct alarm at t∗ with a negative lead t∗ − t0 if
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(1) st0−1 = 0,and st = 1 for t0 ≤ t ≤ t00, st00+1 = 0

(2) F (My,t0−k) < Pthreshold and t∗ = min{t : F (My,t−k) > Pthreshold, t
0 ≤ t < t00}

3. False alarm. The conditional probability exceeds the threshold but falls below it before

the actual arrival the turning point.

We issue a false alarm if

(1) F (My,t−k) > Pthreshold, for t∗ < t < t0, F (My,t0−k−1) < Pthreshold

(2) st = 0 for t∗ ≤ t ≤ t0.

4. Missed alarm. The conditional probability function does not issue a correct alarm for

the turning point.

The performance of a forecasting model is measured in terms of the number of correct

alarm, the number of false alarm, the number of missed alarm and the average lead or lag for

the correct alarm.

4.3 Result

4.3.1 Table

Performance statistics are presented in two tables, table 4.1 and table 4.2. The table 4.1 demon-

strates the in-sample performance while the table 4.2 shows the out-of-sample performance. The

out-of-sample performance is critical to examine the quality of forecasting. However, the regime

switches are rare incidents. In order to have a large learning sample to reduce the variance in

the semi-nonparametric estimation, we split the whole sample so that only one turning point

is contained in the out-of-sample sample. For this reason, we present the statistics of model

performance for both samples. In case the relative advantage of one model is maintained across

these two parts of samples, we can add confidence to our conclusion as to the competitive

advantage of the winning model.

In table 4.1, we compare the in-sample forecasting performance of the Discrete-Event-

Forecasting (DEF) model with that of the probit model. We choose different forecast leads,

i.e., 0, 1, 3, 6, 9, 12. For each lead, we pick out the DEF model that has the optimal likelihood

value. For each lead, we present two groups of statistics: (1) the goodness-of-fit measure which

include the value of likelihood function and Quadratic Probability Score and (2) the turning
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point forecast performance measure which consists of four parts as

[NPA(Average Lead), NLA(Average Lag),NFA, NMA]

where PA=Prompt Alarm, LA=Late Alarm, FA=False Alarm, MA=Missed Alarm. An exam-

ple, [1(-2),5(3.33),2,0], means that there is 1 prompt alarm which leads by 2 months, 5 late

alarms, which on average lag by 3.33 months, 2 false alarm and 0 missed alarm. For each alarm

threshold, we provide one set of such a measure. The threshold values we choose are 0.4, 0.5,

0.6, 0.7, 0.8, 0.9.

First of all, both the Discrete-Event-Forecasting model and the probit model does better in

long-horizon forecasts than in short-horizon forecasts. This observation confirms the previous

findings that the financial variable does have a significant predictive power of business cycle

regimes with a long lead.

Second, in short horizon forecasts, the Discrete-Event-Forecasting model does better if it

puts more weight on the ARMA memory index of the level of Spread, i.e., My,1,t as in (4.1). In

long horizon forecasts, the Discrete-Event-Forecasting model does better if it puts more weight

on the ARMA memory index of the change of Spread, i.e., My,2,t as in (4.2). This phenomenon

is consistent with the first observation. If we restrict the forecasting lead, k, to be short, the

Discrete-Event-Forecasting model will automatically choose to put more weight and on the

ARMA memory index of the level. In the mean time, it will select a large smoothing parameter

for the ARMA memory index of the level. By doing so, the information of distant periods’ term

spreads’ level can be used to predict the future regimes even if the lead is confined to be short.

Third, in terms of goodness-of-fit, the Discrete-Event-Forecasting model dominates the pro-

bit model when the forecasting lead is short or medium, i.e. shorter than 9. When the forecast

lead is lengthened, the Discrete-Event-Forecasting model with a high or medium resolution level

will do better than the probit model. This observation indicates that the flexibility of modelling

does contribute a lot to the better performance of the Discrete-Event-Forecasting model.

In terms of peak turning point forecasting, the Discrete-Event-Forecasting model does better

than the probit model, especially in the long horizon forecast. If we set the alarm threshold at 0.5

and set the horizon at 9 and 12, the Discrete-Event-Forecasting model will miss only 1 peaking

points while the probit model will miss 3 turning points and 4 turning points, respectively.
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The in-sample results in table 4.1 demonstrate that according to the in-sample perfor-

mance, the Discrete-Event-Forecasting model yields a better model fit and better turning point

forecasting performance. However, since we pick the best performer among all the Discrete-

Event-Forecasting models to make comparison, the risk of overfitting is obvious. Through the

out-of-sample study we try to examine whether this competitive advantage is robust.

In table 4.2, we compare the out-of-sample forecasting performance of the Discrete-Event-

Forecasting model with the probit model. We choose the Discrete-Event-Forecasting models

which yields the best in-sample performance to carry out the out-of-sample forecast.

In terms of goodness-of-fit, the Discrete-Event-Forecasting model dominates the probit

model in all horizons at all the resolution levels. In terms of peak turning point forecast-

ing, the Discrete-Event-Forecasting also does better than the Probit model in all horizons but

horizon 1. For example, when we set the alarm threshold at 0.5, the probit model will miss

the turning point in all horizons while Discrete-Event-Forecasting model will trigger the alarm

promptly at all horizon except horizon 1.

This result suggests that Discrete-Event-Forecasting model can be used as an effective al-

ternative method to the traditional probit model in predicting both business cycle regimes and

business cycle turning points.

4.3.2 Plot

In figure 4.1, we draw plots of the fitted probability function Pr(St+k = 1|My,t) and the fitted

probabilities in both in-sample and out-of-sample forecasting. These plots for Discrete-Event-

Forecasting model give evidence that the better performance of Discrete-Event-Forecasting

model is not due to over-fitting. First, even the low resolution function estimator yields good

probability fit for the recession regime switch. Second, for the out-of-sample forecasting, the

Discrete-Event-Forecasting model shows greater sensitivity and triggers alert more promptly

for turning point forecasts.
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4.4 Conclusion

In business cycle regime forecast, the traditional probit model adopts a simple linear structure.

It chooses the level of financial variables as information variables. In this section, we apply the

Discrete-Event-Forecasting model to business cycle regime and turning point forecasts. Our

study is motivated by the conjecture that it is not the level but the long-run trend of changes of

financial variables that shed light on future business cycle regimes. In addition, since the probit

model restricts the error terms of the latent variable to be normally distributed, deterioration

of the forecasting performance is possible due to potential misspecification.

Through comparing the probit model with the Discrete-Event-Forecasting model in both

in-sample and out-of-sample cases, we can see that the Discrete-Event-Forecasting model can do

better than the traditional probit model. With respect to the overall model-fit, the difference

between these two models will be obvious if we increase the flexibility of modeling. With

respect to the turning point forecasting performance, the Discrete-Event-Forecasting model

does much better. We can be released from the concern of the over-fitting problem since the

better performance in turning point forecasts apply to functions of all resolution levels. This

encouraging result shows the advantage of the new modeling approach in terms of the ability

of detecting useful hints of the future rare event. It demonstrates the utility of Discrete-Event-

Forecasting models in real-world practices.
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Table 4.1   In-Sample Forecasting Performance Compar ween the DEF model and the Probit Model 

 
In table 4.1, we compare the DEF model with probit model on their in-sample fo performance of regime forecasts.  For DEF model, we use 

different leads, e.g. 0, 1,3, 6, 9. For each lead, we pick out the model with the maxim od function value. The dataset we apply is the interest rate term 
spread between 3 month Treasury bill and 10 years Treasury bill for 1959.8-1996.12. 
Table Structure:  
 
 
 
 
 
 

 
α λ θ1 θ2  

0.4      0.6 0.7 0.8 0.9
-185.409204 
(0.126047)     

 

-190.941018 
(0.129665)     

 
1 0.3 0.3 0.25 0.75 

-193.190411 
(0.130885) [0(0.00),1(4.00),4    

 

Probit model  
    

 

Likelihood 
Value  
(QPS) 

Smoothing Parameter 
 

Composition Parameter Forecasting Lead 

Model 1(high resolution) 
 
Model 2 (medium resolution) 
 
Model 3 (low resolution) 
 
Probit Model  

Different Threshold to Trigger Alarm 
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0.5

 

 

,5] 
 

 

[no of early alarm (mean lead), no of late alarm(mean lag), 
 no of false alarm, no of missing alarm)] 
For example, 0 early alarm (0 months lead) , 1 late alarm (4 
months lag), 4 false alarm, 5 missing alarm.  



 
 
 
 

Para I Para II Performance 
Threshold Lead 

 α λ θ1 θ2
Likelihood 

(MSE) 0.4     0.5 0.6 0.7 0.8 0.9
-141.782915 
(0.100892) [3(-2.33),1(5.00),2,2]     [2(-3.00),1(6.00),1,3] [1(-2.00),2(3.50),2,3] [1(-2.00),2(6.00),0,3] [0(0.00),1(0.00),0,5] [0(0.00),1(3.00),0,5] 

-149.461711 
(0.102923) [3(-2.33),1(5.00),2,2]     [2(-3.00),1(6.00),1,3] [1(-2.00),2(3.50),2,3] [0(0.00),3(4.00),1,3] [0(0.00),1(0.00),0,5] [0(0.00),0(0.00),0,6] 0.9 0.9 0.75 0.25 

-156.507151 
(0.108458) [3(-2.33),1(5.00),2,2]     [0(0.00),1(0.00),0,5] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] 

1 

Probit  Model -178.235437 
(0.120819) [0(0.00),1(3.00),2,5]     [0(0.00),0(0.00),1,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] 

-133.563238 
(0.094059) [1(-7.00),3(0.33),2,2]     [1(-7.00),3(0.33),3,2] [1(-6.00),1(0.00),1,4] [1(-2.00),1(3.00),0,4] [0(0.00),0(0.00),0,5] [0(0.00),0(0.00),0,6] 

-136.535845 
(0.095508) [1(-7.00),3(0.33),3,2]     [1(-7.00),2(0.50),2,3] [1(-6.00),1(0.00),1,4] [1(-5.00),1(1.00),1,4] [1(-2.00),1(7.00),1,4] [0(0.00),0(0.00),0,6] 0.7 0.9 0.75 0.25 

-151.101546 
(0.106128) [1(-7.00),3(0.33),3,2]     [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] 

3 

Probit Model -161.087498 
(0.110613) [2(-1.00),1(1.00),2,3]     [0(0.00),3(0.33),2,3] [0(0.00),2(1.50),2,4] [0(0.00),2(3.00),1,4] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] 

-128.506549 
(0.090022) [1(-5.00),3(1.33),4,2]     [1(-5.00),3(1.33),3,2] [1(-4.00),3(3.33),2,2] [0(0.00),2(3.50),2,4] [0(0.00),1(2.00),1,5] [0(0.00),1(3.00),1,5] 

-131.638742 
(0.091976) [1(-5.00),3(1.67),3,2]     [1(-4.00),3(2.67),2,2] [1(-3.00),1(3.00),3,4] [1(-2.00),1(4.00),1,4] [0(0.00),2(3.50),2,4] [0(0.00),0(0.00),0,6] 0.7 0.9 0.75 0.25 

-137.861904 
(0.096629) [1(-5.00),3(1.33),4,2]     [1(-4.00),2(3.50),3,3] [0(0.00),2(3.00),1,4] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] [0(0.00),0(0.00),0,6] 

6 

Probit Model -142.598147 
(0.098059) [1(-2.00),2(0.50),5,3]     [1(-2.00),2(2.00),3,3] [1(-1.00),2(3.00),2,3] [1(-1.00),1(5.00),1,4] [0(0.00),0(0.00),1,5] [0(0.00),0(0.00),0,6] 

 56



-131.894700 
(0.090912) [1(-3.00),5(1.60),8,0]     [0(0.00),5(2.40),5,1] [0(0.00),4(2.75),1,2] [0(0.00),3(2.67),2,3] [0(0.00),1(0.00),0,5] [0(0.00),1(0.00),0,5] 

-136.670054 
(0.092295) [1(-3.00),5(1.60),5,0]     [0(0.00),5(2.40),5,1] [0(0.00),4(2.50),3,2] [0(0.00),4(2.75),1,2] [0(0.00),4(3.25),2,2] [0(0.00),2(3.00),2,4] 0.9 0.9 0.25 0.75 

-140.409353 
(0.094438) [1(-3.00),5(1.60),5,0]     [0(0.00),5(2.20),5,1] [0(0.00),4(2.25),3,2] [0(0.00),4(3.00),2,2] [0(0.00),3(4.00),1,3] [0(0.00),1(6.00),2,5] 

9 

Probit Model -133.678970 
(0.093155) [1(-3.00),3(3.33),4,2]     [0(0.00),3(3.67),4,3] [0(0.00),3(4.00),3,3] [0(0.00),2(4.00),3,4] [0(0.00),1(2.00),1,5] [0(0.00),1(2.00),1,5] 

-118.068435 
(0.086502) [2(-3.00),4(2.00),7,0]     [1(-2.00),5(2.00),5,0] [0(0.00),1(0.00),0,5] [0(0.00),1(0.00),0,5] [0(0.00),1(0.00),0,5] [0(0.00),1(0.00),0,5] 

-125.707404 
(0.088861) [1(-4.00),5(2.00),4,0]     [1(-1.00),4(3.25),4,1] [0(0.00),3(4.00),3,3] [0(0.00),3(4.33),1,3] [0(0.00),3(4.67),2,3] [0(0.00),1(0.00),0,5] 0.9 0.9 0.25 0.75 

-135.275474 
(0.095217) [1(-4.00),5(2.00),4,0]     [1(-1.00),4(5.25),4,1] [0(0.00),2(5.50),4,4] [0(0.00),2(6.00),1,4] [0(0.00),2(6.50),1,4] [0(0.00),1(9.00),2,5] 

12 

Probit Model -130.850679 
(0.095040) [0(0.00),4(4.75),4,2]     [0(0.00),2(6.00),4,4] [0(0.00),2(6.50),2,4] [0(0.00),1(5.00),3,5] [0(0.00),1(5.00),1,5] [0(0.00),1(5.00),1,5] 
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Table 4.2 Out-of-Sample Forecasting Performance Comparisons between the DEF model and the Probit Model 
 

In table 4.2, we compare the out- of- sample forecasting of DEF model with probit model.  The structure of the table is same as that of table 4.1. The dataset 
we apply is the interest rate term spread between 3 month Treasury bill and 10 years Treasury bill for 1997.01-2001.12. 
 

Forecasting Performance 
Threshold lead  

     
Model Likelihood 

(MSE) 0.4 0.5 0.6 0.7 0.8 0.9
26.784288 
(0.135945) [0(0.00),0(0.00),1,1]     [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] 

26.140758 
(0.133296) [0(0.00),0(0.00),1,1]     [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] DEF 
26.591100 
(0.135635) [0(0.00),0(0.00),1,1]     [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] 

1 

Probit 29.895752 
(0.143158) [0(0.00),0(0.00),0,1]     [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] 

25.641708 
(0.132571) [1(-4.00),0(0.00),0,0] [1(-3.00),0(0.00),0,0] [0(0.00),0(0.00),1,1]    [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]

26.105717 
(0.135790) [1(-3.00),0(0.00),0,0] [1(-3.00),0(0.00),0,0] [0(0.00),0(0.00),1,1]    [0(0.00),0(0.00),1,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]DEF 
27.689880 
(0.138181) [1(-3.00),0(0.00),0,0] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]    [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]

3 

Probit 29.905626 
(0.144667) [0(0.00),0(0.00),1,1]     [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] 

17.765227 
(0.079307) [1(-1.00),0(0.00),0,0] [1(-1.00),0(0.00),0,0] [0(0.00),1(0.00),0,0] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]  [0(0.00),0(0.00),0,1]

17.808814 
(0.079335) [1(-1.00),0(0.00),0,0] [0(0.00),1(0.00),0,0] [0(0.00),1(1.00),0,0] [0(0.00),1(2.00),0,0] [0(0.00),0(0.00),0,1]  [0(0.00),0(0.00),0,1]DEF 
19.593348 
(0.091829) [1(-1.00),0(0.00),0,0] [0(0.00),1(0.00),0,0] [0(0.00),1(2.00),0,0] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]  [0(0.00),0(0.00),0,1]

6 

Probit 23.908606 
(0.111860) [0(0.00),1(0.00),1,0]     [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] 

14.603846 
(0.070332) [0(0.00),1(0.00),2,0] [0(0.00),1(1.00),0,0] [0(0.00),1(5.00),0,0] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]  [0(0.00),0(0.00),0,1]

13.918791 
(0.065761) [0(0.00),1(1.00),0,0] [0(0.00),1(1.00),0,0] [0(0.00),1(4.00),0,0] [0(0.00),1(5.00),0,0] [0(0.00),0(0.00),0,1]  [0(0.00),0(0.00),0,1]

9 

DEF 
13.346295 
(0.063410) [0(0.00),1(1.00),0,0] [0(0.00),1(1.00),0,0] [0(0.00),1(3.00),0,0] [0(0.00),1(5.00),0,0] [0(0.00),0(0.00),0,1]  [0(0.00),0(0.00),0,1]
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Probit  17.015548 

(0.079311) [0(0.00),1(1.00),0,0] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]  [0(0.00),0(0.00),0,1]

15.473879 
(0.077876) [0(0.00),1(3.00),2,0] [0(0.00),1(4.00),0,0] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]   [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]

15.158209 
(0.072550) [0(0.00),1(4.00),0,0] [0(0.00),1(4.00),0,0] [0(0.00),1(7.00),0,0] [0(0.00),0(0.00),0,1]   [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]DEF 
14.085785 
(0.068270) [0(0.00),1(4.00),1,0] [0(0.00),1(4.00),0,0] [0(0.00),1(6.00),0,0] [0(0.00),1(8.00),0,0]   [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1]

12 

Probit 17.288476 
(0.082387) [0(0.00),1(4.00),0,0]     [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] [0(0.00),0(0.00),0,1] 
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Figure 4.1  Plots of Estimation and Forecasting Results of the Discrete-Event-Forecasting Model for Business Cycle Regime 

Forecasts, Forecasting Lead=1 
In figure 4.1-4.4, we plot (1) the fitted probability for in-sample data (2) the estimated conditional probability and (3) the probability forecasted for out-of-

sample. There are 4 sets of plots in total. And for each set, we have 9 plot with 3 for each model. 
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Figure 4.2  Plots of Estimation and Forecasting Results of the Discrete-Event-Forecasting Model for Business Cycle Regime 
Forecasts, Forecasting Lead=3 

 
 

0_0_FYGM3_0_FYGT10( 1959.08-1996.12, in sample, 1997.01-2001.12 out of sample) 
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Figure 4.3  Plots of Estimation and Forecasting Results of the Discrete-Event-Forecasting Model for Business Cycle Regime 
Forecasts, Forecasting Lead=6 

 
 

0_0_FYGM3_0_FYGT10( 1959.08-1996.12, in sample, 1997.01-2001.12 out of sample) 
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Figure 4.4  Plots of Estimation and Forecasting Results of the Discrete-Event-Forecasting Model for Business Cycle Regime 

Forecasts, Forecasting Lead=9   
 

0_0_FYGM3_0_FYGT10( 1959.08-1996.12, in sample, 1997.01-2001.12 out of sample) 
 

The Fitted Probability For In-Sample                                The Conditional Probability function                                Out-of-sample forecasting Result 
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Chapter 5

APPLICATION OF DISCRETE-

EVENT-FORECASTING MODEL

IN STOCK RETURN FORECAST

In the study of stock return forecast, there are two main branches. One focuses on the condi-

tional mean forecasting (see Cootner 1964, Lo 1997) and the other on the conditional variance

forecasting (see Bollerslev et al 1992 and Anderson et al 2003)1. The probabilistic forecasting

of individual stock return events such as a stock outperforming a benchmark index on monthly

returns or a stock return’s performance being ranked the lowest during the period t, however,

has received much less attention, even if it is of great importance to both investing practices

and academic researches.

First, accurate forecasts of discrete stock return events could benefit stock portfolio man-

agement greatly. The probabilistic forecasting of discrete stock return events will provide more

accurate information of the stochastic properties of stock returns than the moment forecasting

does, if the distribution function of return variables departs markedly from a normal one. A

1The literature to which we refer mainly focus on the predictability of individual stock returns when con-
ditioning information only includes price information. Studies in this aspect directly attack market efficiency.
There are abundant evidences of predictability of portfolios’ returns when we can condition on historic infor-
mation of dividend yields, interest term spreads and etc. (see Campbell 1987, Fama & French 1988, Ferson
& Campbell 1999). Such predictability can be rationalized via the intertemporal capital asset pricing model
(ICAPM) developed in Merton (1973).
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forecasting model that directly tackles the problem of probabilistic forecasting of stock return

events is appealing to investors due to its robustness against serious model misspecification on

the conditional moment functions of the underlying data-generating-process of stock returns.

Second, for academic researches, studies in the predictability of discrete stock return events

can help reveal the source of the predictability of certain moment functions and solve long

lasting puzzles in the asset pricing literature. In previous studies, price reversal and price con-

tinuation have been both discovered in the stock market (see De Bondt and Thaler 1985,1987,

Lehmann 1990, Jagadeesh 1990, Jagadeesh and Titman 1993). These findings indicate a no-

ticeable relationship between stock price histories and expected stock returns.2 Due to these

empirical results, behavioral finance, the area that studies market inefficiency, has grown into

a promising research field in the last decade (see Shleifer 2000 and Shefrin 2000). However,

the predictability of the conditional mean may not necessarily imply pricing inefficiency if it is

accompanied by the predictability of higher-order moments which are risk factors (see Ferson &

Harvey 1991,1999, Harvey and Siddique 2000). Studies in stock return events forecast will pro-

vide an effective way to exploit the predictability of various moment functions, thus improving

the understanding of the market efficiency.3

One main issue in the study of probabilistic forecasting is modeling consistency. Predictabil-

ity of stock return events reflects the dependence of a stock return’s distribution function on

its entire past. But we do not have good prior knowledge on the lag structure of such depen-

dence.4 Nor do we have established tests for the lag selection. Therefore, any lag truncation

could cause model misspecification. Moreover, various dynamic features of different moment

functions of a stock return will have a joint impact on the predictability of specific stock return

events, thus increasing the complexity of such dependence. Model misspecification could well

happen with parametric modeling methods that set restrictions on the functional form of the

conditional probability functions. Probabilistic forecasting of discrete stock return events will

2For example, the momentum effect in Jagadeesh and Titman (1993) indicates that a strong positive cor-
relation exists between historic price information and future stock returns. The fads phenomenon in Lehmann
(1990) shows that there is a significant negative serial auto-correlation for weekly stock return series.

3McQueen and Thorley (1991) use a Markov chain model to test the random walk hypothesis of stock prices.
The model is used to estimate the transitional probability between two types of events, a high return event and
a low return event. Their study shows that the movement of annual real returns exhibits a significant deviation
from the random walk hypothesis.

4As shown in Jagadeesh(1990), for monthly stock return series, even the 12th lag can have a significant impact.
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generally yield unsatisfactory performance due to inconsistent modeling.

In this section, we attempt to apply discrete events forecasting model to conduct proba-

bilistic forecast of interesting discrete stock return events. We try to examine the possibility of

improving the forecasts of stock return events and gaining a more accurate measurement of the

uncertainty embedded in stock return series.

5.1 Research Design

5.1.1 Data

The database that we use is the monthly stock price database provided by the Center for

Research in Security Prices(CRSP) with the time range from 12/31/1925 to 12/31/2002. We

choose monthly price data of stocks that are listed in NYSE+AMEX only. In addition, any

stock that is admissible into our samples must

(1) be an ordinary common stock which has not been or need not be further defined by the

database from the Centre of Research in Stock Price.5

(2) have a price above $5 at the period that we pick for data sampling.6

(3) have no less than 18 observations before the period that we pick for data sampling.

In addition to monthly stock price data, we use the monthly price of S&P 500 composite

index, ranging from 12/31/1925 to 12/31/2002, to construct our benchmark index return. The

data is also provided by CRSP.

5.1.2 Forecasting Events

At each time period t, we forecast the event that an individual stock’s return in the next period

will exceed that of the benchmark index, S&P 500 composite index. Formally, let {Ri,t}∞t=1 be
the series of the stock i’s holding return (excluding dividend) during the periods t. let {R0,t}∞t=1
be the holding return for the S&P 500 composite index (excluding dividend) during the period

t. We define the event variable Ei,t as

5 In database from CSRP, these stocks have share code 10 or 11. It excludes ADRs,SBIs,Units,certificates,
Foreign Stocks, American Trust Components, close-end funds and REIT’s.

6Stocks whose prices are lower than $5 are known as Penny Stocks. Dropping them will prevent the outcome
of empirical study from being overly affected by outliers.
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Ei,t

⎧⎨⎩ = 1 if Ri,t > R0,t

= 0 otherwise
(5.1)

Our aim is to estimate

Pr(Ei,t = 1|Ft−1) (5.2)

in order to do probabilistic forecasting of events Ri,t > R0,t conditional on information up to

time period t− 1, Ft−1.

We choose this event to forecast for the following reasons. First, knowing how likely a

stock’s return is to beat an benchmark index in the near future is important for fund portfolio

managers. One crucial indicator of fund managers’ capability is whether they could manage

their funds to yield returns that consistently exceed that of a benchmark index. Second, many

studies in stock return predictability attempt to find a trading strategy that has the ability to

distinguish stocks that will outperform benchmark indexes from those that will underperform.

In our study, we define a target event such as (5.1) so that we can directly investigate the

feasibility of implementing such a strategy.

5.1.3 Data Clipping

As discussed in section 1, in order to implement discrete event forecasting modelling, we need

to discretize the original conditioning random variables in the forecasting model.

First, we pick a universe of stocks to formulate a stock base S, i.e., domestic stocks listed

in NYSE and AMEX during 12/31/1925-12/31/2002. For each month during 12/31/1925-

12/31/2002, we rank all of the stocks available during that month according to Ri,t. A new

discrete-valued return series {Rr
i,t}Tit=1 is defined according to the monthly return rank group to

which Ri,t belongs. More precisely,

R
r

i,t =
10X
j=1

jI(Ri,t ∈ [dj−1,t, dj,t)), i ∈ S (5.3)

where ∪10j=1[dj−1,t, dj,t) = R, and dj−1,t < dj,t, j = 1, ..., 10.

Through this data transformation procedure, the history of stock returns becomes the his-

tory of a stock return’s rankings. We consider the ranking information as informative about
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the future stock returns due to the findings in Jagadeesh and Titman (1993).

5.1.4 Modelling Wavelet-Based Conditional Probability Functions

Using a discrete-valued return series {Rr
i,t}Tit=1, we construct the ARMA memory index Mt(α)

as follows

Mi,t(α) =
∞X
j=1

αj−1Rr
i,t−j and α ∈ (0, 1) (5.4)

Then we transform the conditional probability function of the event (5.1) from (5.2) into

Pr(Ei,t = 1|Rr
i,t−1, R

r
i,t−2, ...) (5.5)

= Pr(Ei,t = 1|Mi,t(α))

= F [Mi,t(α)|α]

where F (x) takes the form of a logit function

F (x) =
1

1 + exp(−g(h(x))) (5.6)

with

h(x) = ln(
x

1− x
), x ∈ (0, 1).

In (5.6), g(x) is a real-valued function with the domain R, which has a wavelet representation

such as

g(x) =

k0X
k=−k0

βJ0,kϕJ0,k(x) +

J1X
j=J0

k2,jX
k=−k1,j

βj,kψj,k(x) (5.7)

where ϕj,k(x) is the scaling function and ψj,k(x) is the mother wavelet function of a particular

wavelet basis. In this paper, we use Franklin Wavelets, also known as Spline Wavelet with

polynomial degree 1, as the basis for the functional space (see the appendix for detail on

wavelets construction). We choose three combinations of wavelet components to construct the

function in (5.7). The detail is the same as in the chapter 3.
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5.1.5 Sampling Data

We use three different methods to draw learning samples for model estimation and do out-of-

sample forecasting. We do random sampling for all of the three methods in order to avoid

the problem of data mining. Unlike previous studies which need to use new data to verify

their findings, it is easy to check the robustness of our results by just doing another round of

sampling.

1) Time Series Method–Among all of the admissible stocks,7 we randomly pick 200 stocks.

For each stock, we use the first two thirds of its total observations to estimate the conditional

probability function (5.5). The remaining observations are used for out-of-sample forecasting.

2) Time Varying Cross Sectional Method–We select 200 samples of data in the following

way. To construct each sample d, we randomly pick a month td from 01/1946 to 12/2002. We

use historic return data on all of the admissible stocks that have valid return data up to the

month td + 1 to formulate the dth sample. That is, we use all of the historic monthly return

data up to the month td to construct the ARMA memory index Mi,td(α) and we use the return

data of the month td+1 to formulate the event variable, Ei,td+1. Then we use this sample data

to estimate the conditional probability function (5.5). We use the same way to formulate the

first round and second round dth out-of-sample forecasting sample by using all of the historic

monthly return data up to the month td + 2 and td + 3 respectively.

3) Time Invariant Cross Sectional Method–Unlike the time varying cross sectional method,

in this sampling method, we do not require that the data observations of the same sample be

from the same time period. The drawing procedure is as follows. For the dth sample, we first

randomly draw a month ti,d during 01/1946-12/2002 Nd times. Therefore, i = 1, ..., Nd for the

dth sample.For each picked month ti,d, we randomly choose a stock ji,d that has valid price

data during the month ti,d and ti,d + 1. Then we formulate the dth learning sample in the

same manner as in the time varying cross sectional method. We do this repeatedly for the

other samples until we get 200 samples in total. We control the size of each sample in the

following way. For the dth sample in the time invariant cross sectional method, we draw the

7Apart from those general selection rules in section 2.1, we require that the number of observations for each
stock picked is no less than 500 during 12/31/1925-12/31/2002. There are 571 stocks in the stock base satisifying
this requirement.
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same number of observations as we do for the dth sample in the time varying cross sectional

method. In addition, the dth sample in the time invariant cross sectional method shares the

same out-of-sample forecasting sample with the dth sample in the time varying cross sectional

method.

For the time invariant cross sectional sampling method, we can easily expand the learning

samples for each out-of-sample forecasting sample. In case we want a larger learning sample,

we just need to combine several learning samples together to do model estimation. However,

in order to avoid spurious forecasting results, we put 30 as the limit of expansion.8

We draw sample data using these three different methods for the purpose of making compar-

isons and gaining a better understanding of the characteristics of the predictability of discrete

events.

If data samples are drawn using the time series method, the data observations within the

same sample belong to the same stock. Predictability of stock return events, if found, is

considered a stationary time series property of the underlying data generating process of the

specific return series involved. Therefore, positive findings using this method give the strongest

support to the claim that the probabilities of stock return events depend on a stock’s historic

price information.

If data samples are drawn using the cross sectional methods, the data observations within

each sample belong to different stocks. Predictability of stock return events, if found, can be

due to either the time series properties of each individual stock or the cross sectional difference

in expected returns among stocks.

The time varying cross sectional method uses local information to construct a conditional

probability function while the time invariant cross sectional method uses global information to

estimate the forecasting model. If the strength of the predictability is locally persistent, models

that are estimated using the time varying method will yield better forecasting performance. If

the strength and content of the predictability changes dramatically over time, we have to turn

to global information to capture such predictability. Under that circumstance, models that are

estimated using the time invariant method tend to provide a better forecast.

8Since the data is drawn globally, with 1 samples for model learning, on average, we will have 2 pairs of
observations shared by the out-of-sample forecasting sample and in-sample learning. The regular size of a out-
of-sampl forecasting sample is around 1000-1200.
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5.1.6 Out-of-Sample Forecasting

First, for the cross-sectional sampling methods, due to the easy control on the data availability,

we design a two-round out-of-sample forecasting scheme. After we estimate the 30 conditional

probability function models, we do first round out-of-sample forecasting. Based on the first

round out-of-sample forecasting performance, we pick a sampling method between the time

varying cross sectional method and the time invariant cross sectional method. In the meantime,

we select the optimal forecasting model from all of the 30 models. Then we do the second round

out—of-sample forecasting to verify the consistency between the two rounds of out-of-sample

forecasting. For the time series method, due to the limitation in the data size, we only carry

out one round out-of-sample evaluation.

Second, we choose different regions in the functional domain of the conditional probability

function (5.5) to do out-of-sample forecasting. That is, we want to check whether the discrete

events forecasting models will have different forecasting performance against the reference model

when the ARMA memory index falls into a different regions of the functional domain. The

strength and content of predictability of stock return events may not be uniform across regions.

As a result, the relative model performance of forecasting models may not be uniform across

regions, either. To find the optimal way of using our forecasting models, we need check the

variation of model performance across different regions of the functional domain.

The choice of the regions is not arbitrary. Intuitively, the more impressive a stock’s historic

return is, the more likely it is that the past return contains some useful information about the

future return event. Therefore, we choose different end regions of the functional domain to

check the existence of predictability. For example, after we estimate the functional form and do

out-of-sample forecasting, we choose the a% end regions to do forecasting. That is, we choose

stocks whose ARMA memory index’s value falls into the bottom a% group or the top a% group

among all of the admissible stocks in each forecasting period.

5.1.7 Evaluation Method

We use a standard forecasting evaluation approach which consists of three part, model learning,

model selection and out-of-sample evaluation.

First, we estimate the conditional probability function by adopting a standard Maximum
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Likelihood Estimation method. After we obtain the functional estimator, we then do the first

round out-of-sample forecasting. The performance measure used in our forecast evaluation is

Quadratic Probabilities Score (QPS), a standard measure for event forecasting evaluation. It

can be expressed as

QPSd =

PId
i=1(Ei,td − Pr(Ei,td = 1|Ft−1))2

Id
(5.8)

where Id is the total number of stocks in the dth sample, Pr(Ei,td = 1|Ft−1) is forecasted value
of conditional probabilities for event Ei,td .

Since this is a small sample case and we do not have good knowledge of the optimal expansion

size for wavelet components, we use different combinations between wavelets components and

ARMA memory index coefficients, α inMi,t(α), to construct different models. We use 10 values

for α, i.e., 0.1, ..., 0.9, 0.95.,and 3 choices of wavelets components (see section 1.2). Consequently,

we have 30 sets of out-of-sample forecasting results from discrete events forecasting models.

In the meantime, we set up different reference models corresponding to the three different

sampling methods to check whether the conditional probability model using discrete events

forecasting modeling approach could outperform a naive probability model which adopts a

random walk hypothesis.

• For the time series method, we use a stock-specific constant probability to construct the
stock specific random walk model as the reference model. For each stock i in the sample d, we

use historic data observations of this stock up to the forecasting period to compute the fraction

of observations for which Ri,t > R0,t, t = 1, ..., td. We use this fraction as the estimator of the

unconditional probability, Pri(Ri,t > R0,t),for each stock i for sample d.

• For the time varying cross sectional method, we use a period-specific constant probability
to construct the period specific random walk model as the reference model. For each sample d

, we use all of the stock data observations of the month td to compute the fraction of stocks for

which Ri,td > R0,td , i = 1, ..., Id, where Id is the total number of stocks in the dth sample. We

use this fraction as the estimator of Prtd(Ri,t > R0,t) for each sample d.

• For the time invariant cross sectional method, we use a time-invariant constant probability
to construct the time invariant random walk model. For each sample d, the reference model is

estimated using the same procedure as in the time varying cross sectional case. However, since
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samples are drawn globally, the probability estimators contain few time-specific factors.

Second, we do the first round out-of-sample evaluation. This step allows us to examine

whether our new models have a potential to beat the reference model in out-of-sample fore-

casting. It also gives us the chance of selecting the optimal model among all of the competing

models. In the meantime, we apply the Superior Predictive Ability test developed in Hansen

(2001) to examine whether a reference model has better expected forecasting performance than

all of the competing models. This test will be particularly useful if we cannot apply second-

round out-of-sample forecast due to the limited sample size.

Formally, we define T ∗max as

T ∗max = maxm

E (∇MSm)

σmm

where ∇MSi,m = QPSi,m−QPSi,0 is the performance difference between the mth compet-
ing model and the reference model and σmm is the standard deviation of the sampling error for

the mth model. The null hypothesis of SPA test is

H0 : T
∗
max ≤ 0 (5.9)

The main purpose of this test is to minimize the risk of spurious good performance of

alternative models (see Sullivan et al 2001 for an alternative approach). It adopts the standard

stationary bootstrap technique developed in Politis & Romano(1994) to obtain the p-value of

the null hypothesis. Since we have constructed a system of forecasting models using the discrete

events forecasting modelling approach, the Superior Predictive Ability test is a natural choice.

We refer interested readers to Hansen (2001) for more detail and in the appendix we give an

example of the statistics construction for one of our sampling methods.

For the different sampling methods, we will apply the Superior Predictive Ability test in a

different way. For the two cross sectional methods, we compare forecasting models based on

the overall performance on all of the 200 samples. This is because the forecasting model is

not stock-specific and the overall performance on all of the 200 samples gives an appropriate

indicator of long run performance of each forecasting model. For the time series method,

however, we compare forecasting models sample by sample because the optimal forecasting
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model is obviously stock specific.

Given that a positive testing result is obtained in the first round evaluation, we will continue

with the second round out-of-sample evaluation. As mentioned above, due to the limitation in

the sample size, we will not do the second round out-of-sample evaluation for the time series

sampling method.

Third, for the cross sectional sampling methods, based on the evaluation results in the

first round out-of-sample forecasting, we choose the optimal forecasting model and do the

second round out-of-sample forecasting. We use the outcome of the second round out-of-sample

forecasting to examine the informativeness of the evaluation results for the first round out-of-

sample forecasting.

5.2 Result

5.2.1 Time Series Method

In table 5.1, we compare the one-month-ahead out-of-sample forecasting performance between

the stock-specific random walk model and the 30 discrete events forecasting models.

As mentioned above, we conduct the Superior Predictive Ability test stock by stock. That

is, for each stock, we test the null hypothesis that the reference model performs better than all

of the competing models. In table 5.1, we provide information on the frequency that we reject

the null hypothesis out of 200 samples. We also provide the performance statistics to show the

average improvement made by competing models when the null hypothesis is rejected. In the

same table, we provide the same statistics for each sub sample. The sub samples differ from

each other in the basic attributes of the stocks, i.e., market size, beta, and standard deviations

of stock returns.

The results for the whole sample analysis show that the competing models outperform the

reference model significantly for 40% of all of the sampled stocks. The average improvement in

Quadratic Probability Score is 0.00378 with standard error 0.00014. It should be noted that

due to the requirement of the minimal history length, there might be a survivorship bias in the

above results. Most stocks with a long history have at least above-average ranks in the market

size, beta and standard deviation of returns. The average ranking in size, beta, and standard
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deviation of the stocks we pick in our samples are 7.86, 5.87, 7.26, out of 10 respectively.

Consequently, stocks with a long history, on average, will be less risky. Trading on such stocks

is usually more liquid and pricing is believed to be more efficient, which decreases the likelihood

of finding evidence of predictability.9

When the samples are sorted according to different attributes of the stocks, we find an

interesting pattern that the discrete events forecasting models are more likely to perform better

among less risky stocks, e.g., using 5% as the significance level, our new models will beat the

naive forecasting model significantly among 50% of largest stocks, 44% of stocks with lowest

beta and 48% of stocks with lowest standard deviation. Such a finding indicates that the

predictability of stock return events may not always be associated with more risky stocks or

more illiquid stocks.

In a non-rigorous exercise,10 for which we do not report the statistics, we find the following

tendency in the functional form of the conditional probability function of (5.5). When we

choose ARMA memory index coefficients in the range 0.2 to 0.4, the function form of (5.5)

has relatively large function values in both end regions of the function domain and there is a

slightly negative slope in the middle region.

5.2.2 Cross Sectional Method

In this part, the results are classified according to the round of out-of-sample forecasting and

the size of learning samples.

First Round Out-of-Sample Forecasting with Small Sample Estimation

We present the forecasting evaluation results of first round out-of-sample forecasting in tabl5.2.

In table 5.2 panel A, we provide the statistics of the relative forecasting performance

between the 30 competing models and the period-specific random walk model, i.e., ∆QPSi,m =

QPSi,0−QPSi,m. Positive value of ∆QPSi,m implies a better performance for our new models.

9The illiquidity in stock trading is a common arguement to explain the existence of predictability in finance
literature.
10For each sample, we group the ARMA memory index of all the admissible stocks into 10 groups according

to their value with an ascending order. We compute the average functional value of each group and investigate
noticeable patterns on these group average values.
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The data sample is drawn through the time varying cross sectional method. The probability

function is estimated using one learning sample. We carry out both whole sample analysis

(Panel A1) and sub sample analysis (Panel A2). The sub samples are sorted based on the

market conditions prior to the forecasting periods.

For Panel A1,

(a) In the column 1-3, we present the p-value of the null hypothesis as in (5.9). Following

the standard procedure in Hansen (2001), we provide the following information for each test

result: the lower bound of the p-value, the consistent estimator of the p-value and the upper

bound of the p-value.

(b) In the column 4-10, we present the average Quadratic Probability Score margin of the

competing models. We group these statistics by both the resolution levels of wavelet models,

i.e., low,medium and high and ARMA memory index coefficients, i.e., 0.1, 0.4, 0.7, 0.95.

(c) In the column 11-12, we present the best Quadratic Probability Score margin ∆QPSi,m

among all of the 30 competing models and the number of models that beat the reference model.

As discussed in the section 2.6, we have four options for the regions of the function domain

when we carry out out-of-sample forecasting. We present all of the results for different regions

in the table.

For Panel A2, we provide same statistics for sub sample analysis for the comparison between

the discrete event forecasting models and the reference model.

In table 5.2 Panel B, we presents the similar statistics to the Panel A for the comparison

between the 30 discrete events forecasting models and the time invariant random walk model.

The data sample is drawn through the time invariant cross sectional method. Again, whole

sample analysis and sub sample analysis are carried out with sub samples classified according

to the market condition prior to the forecasting periods.

In table Panel C, we presents the statistics for whole sample analysis when we compare

the competing models with two reference models, a stock-specific random walk model and a

period-specific random walk model. The data sample is drawn through the time invariant cross

sectional method.

From Panels A and B, in both whole sample and sub sample analysis, there is little evidence

that discrete events forecasting models will outperform the reference model. In most cases,
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Quadratic Probability Score (QPS) measures have negative value and the number of models

that beat the reference model, if nonzero, is very small. The maximal number is 6 out of 30

models. The statistics of Superior Predictive Ability test further confirm the superiority of the

reference model in each case.

From these two panels, we find that the performance of alternative models which are esti-

mated using the time-varying sampling method is worse than those using time-invariant sam-

pling method. In both sub sample and whole sample cases, on average, the models using the

time-invariant sampling method has better relative performance in terms of the Quadratic Prob-

ability Score (QPS) and the number of models that beat the reference model. More convincing

evidence comes from the Panel C. The models estimated using time-invariant sampling method

outperform the reference model which corresponds to the time-varying case significantly. The

p-value of the null hypothesis is 0, 0, 0 and all of the discrete events forecasting models have

positive relative performance against that reference model.11

Based on the above observations, we draw the following conclusion. First, when the learning

sample is relatively small, 1000 or so for each estimation, the forecasting performance of new

alternative models are unsatisfactory. Second, the models estimated using the time-invariant

sampling method is better than those using the time-varying sampling method in their compe-

tition with the reference model. One possible reason for inferior forecasting performance is a

large estimation error due to the sampling error. As a way to reduce such errors, we expand

the learning samples to check potential improvement. The results will be presented in the next

section.

As we carry out the informal exercise to check the average functional form of the conditional

probability function, we found some interesting regularities. For time varying cases, on average,

when ARMA memory indexes have small coefficients, the conditional probability function is ’U’

shaped. This shape implies that in a given month, if a stock has a relatively high or a relatively

low value in ARMA memory indexes, the probability that it outperforms the market index in

the next quarter increases. For time invariant cases, we find that when the ARMA memory

index coefficients are small, there is a strong negative dependence between the value of ARMA

11Such outperformance does not happen to the models estimated using time-varying cross sectional methods
when we compete them with the time invariant random walk models.

78



memory index and the conditional probability of a stock’s outperforming index return. When

the coefficients grow much bigger, i.e., 0.9 or 0.95, the dependence becomes positive.

First Round Out-of-Sample Forecasting with Large Sample Estimation

In this section, we will expand the learning samples for the estimation of the discrete events

forecasting models. For each out-of-sample forecasting, we use 20 samples which are drawn

through the time-invariant cross-sectional sampling method to estimate the conditional proba-

bility function (5.5).

In table 5.3 panel A and B, we provide the same statistics as in the table 5.2 panel A and

panel B to show the relative forecasting performance between the 30 competing models and the

time invariant random walk model.

The improvement of the performance is drastic. The evidence of predictability now becomes

overwhelming through both sub sample and whole sample analysis. In the whole sample analy-

sis, the p-value is uniformly 0 in all of the regions of the functional domain. For each region, the

number of models that beat the reference model is 15,28,30,30 respectively. In addition, there

is an interesting pattern for the optimal model in each forecasting region. For the forecasting

regions that are close to the two ends, e.g., 10% end , 20% end, the models with larger ARMA

memory index coefficients, i.e., 0.9 or 0.95, tend to outperform the reference model most. As the

forecasting region expands to the whole domain, e.g., total, however, the models with medium

ARMA memory index coefficients, i.e., 0.4, do the best forecasting job in comparison with

the reference model. For the total region case, the relative performances of models are not

monotone with the index coefficients. The models with the medium or extremely large indexes

coefficients tend to be the better ones.

In the sub sample analysis, given that the market condition is strong bullish or strong

bearish, the predictability of stock return events tends to be stronger. Both p-value statistics

and the Quadratic Probability Score (QPS) measures lead to the same conclusion on such

a pattern. Between the bull and bear market, the latter provides the stronger evidence of

predictability.

As we draw the plot of the conditional probability functions in unreported exercises, we find

that the models with a medium value in index coefficients, α, are downward sloped in most
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of the regions of the functional domain, which implies a price reversal phenomenon. As the

ARMA memory index goes too large or too small, however, there is a reversal in the shape

of the conditional probability function. The models with an extremely large value in index

coefficients, i.e., 0.9 and 0.95, however, have an upward slope. This implies a momentum

phenomenon. In previous studies, a momentum effect is hardly detectable using an explicit

modeling approach. Within the framework of linear models, only negative serial correlation is

unveiled. (see Lewellen 2002).

All of the above observations strongly suggest that nonlinearity happens to both the lag

structure and the functional form of the conditional probability function (5.5). For the lag

structure, when we condition on the combined past return performance of a stock, the momen-

tum effect becomes unambiguous. This implies the significant impact from interaction items.

For the functional form, the dependence between the conditional probabilities and the ARMA

memory index is not always monotone. When the ARMA memory index comes to the end

region, some reversal in the functional shape tends to happen. Such observation could be used

to explain why models with small index coefficients are outperformed by the models with large

index coefficients when we only choose the end regions to do forecasting.

Second Round Out-of-Sample Forecasting with Large Sample Estimation

In this section, we provide the statistics of the second round out-of-sample forecasting perfor-

mance. The results are presented in the table 5.3 panel C. We do both whole sample analysis

and sub sample analysis. The content of statistics is almost the same as in the panel B. The

model we used to do forecasting for each sample is chosen based on the outcome of the first

round out-of-sample forecasting (Table 5.3 Panel B).

For the whole sample analysis, all of the models yield positive relative performance. All but

one regions show a significantly better performance for the discrete events forecasting models

as compared with the time invariant random walk model.

For the sub sample analysis, all of the models still yield positive relative performance, which

implies that, on average, the alternative models still perform better than the random walk model

. However, except in the bearish market cases, the statistic significance becomes weak.

These results demonstrate that using an appropriate model evaluation approach, we are able
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to find a model that outperforms the random walk model significantly in both in-sample and

out-of-sample cases, although caution needs to be taken due to the time variation in the strength

of predictability. Moreover, the fact that the predictability is stronger under the bearish market

condition is robust across different samples.

5.2.3 Summary

On the whole, based on the two-round out-of-sample forecasting evaluation scheme, we obtain

persuasive evidence of the predictability of discrete stock events. Finding the source of such

predictability is beyond the scope of this paper. However, based on the plot information, we

find that the impact from price reversal and price momentum both play an evident role in

determining such a predictability. The model estimation results and forecasting results give a

clear idea about the complexity of the dependence between historical stock price information

and the conditional probability functions. They also provide unambiguous evidences on the

potential of the new forecasting modeling approach in handling complex modeling problems in

probabilistic forecasting.

5.3 Conclusion

In this section, we propose a new econometric modelling approach to conduct probabilistic

forecasting of discrete stock return events. This approach combines the ARMA memory index

model with a semi-nonparametric estimation method, which adopts a wavelet basis as the basic

building blocks for the functional form. Using the ARMA memory index approach, we do not

need to truncate on conditioning variables in the modelling procedure. Using a wavelet-based

semi-nonparametric estimation method, we do not have to set overly restrictive constraints

on the form of the conditional expectation functions. Such combined flexibility allows us to

capture the complex dependence between the conditional probability of the specific stock return

event and the entire history of stock prices, which might be ignored in a standard parametric

modelling approach due to model misspecification.

We test the potential of this new approach by applying it to study the predictability of stock

return events such as an individual stock outperforming a benchmark stock index in monthly
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returns. We obtain the following interesting results .

(1) Using pure time series data, we find the evidence of predictability among individual

stocks that have a long history.

(2) Using cross sectional data, we find that our conditional forecasting models can outper-

form the corresponding random walk model significantly when we use a two-round out-of-sample

forecasting evaluation scheme.

(3) Both price reversal and price momentum phenomena are shown to exist explicitly us-

ing our modeling approach. The nonlinearity in both the lag structure and the conditional

functional form is evident.

(4) The predictability of stock return events varies over time, in particular when the market

conditions change.

Findings in this paper make contributions to the literature on stock return predictability

and market efficiency in two aspects.

(1) With respect to the research methodology, our paper show that the discrete event

forecasting modelling approach offers a convenient research tool to measure and investigate the

predictability of stock returns. Not only does this method provide adequate modeling flexibility

to detect various interesting predictable patterns in stock return series, but it also help reduce

the concern about data mining due to the convenience of carrying out out-of-sample verification.

Since both price reversal and price momentum phenomena are discovered convincingly using

this modeling approach, it can be applied to analyze the cause of such predictability in a

straightforward way.

(2) With respect to the empirical findings, this paper shows that the predictability of stock

return events does exist. Past findings of price reversal and price momentum in individual stocks

return are by no means spurious. In addition, the predictability can not be fully explained by

the static risk factors since the discrete events forecasting models can easily outperform a stock

specific random walk model. Finally, we find evidence of the time variation in such predictability,

which is linked with the change of market conditions. Such a finding could also pave the way

to a better understanding of the cause of the predictability in stock returns.
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Table 5.1 Out-of-Sample Forecasting Performance  

for the Time Series Sampling Method 
 

In table 5.1, we provide statistics of the out-of-sample forecasting performance of the Discrete-

Event-Forecasting models in comparison with the reference model1. The data sample is drawn using 

the time series method.  

The statistics include (a) the frequency of rejection of null hypothesis that the naïve model is the 

best model among the competing models. The p-value in use is consistent p_value estimator (See 

Hansen 2001).  (b) mean (standard deviation) of the best QPS margin among all the samples that reject 

the null hypothesis. We also do sub sample analysis by classifying samples according to the rank in 

size, beta and standard deviation.  

 ( Note: 1.  Random Walk 1 model: use a stock specific probability. ) 

 

Fraction of samples in which the null hypothesis is 
rejected Best QPS Margin  

Significance Level  

                    
                    

Sample 
5% 10% 15% 

Mean  
(Standard Deviation) 

Total Sample 0.405 0.46 0.535 0.00378 
(0.002077) 

1 (Lowest) 0.44 0.5 0.58 0.00436 
(0.002111) 

2 0.36 0.42 0.56 0.004405 
(0.002051) 

3 0.32 0.4 0.44 0.002916 
(0.001795) 

Sub Samples 
Rank By Size 

4 (Highest) 0.5 0.52 0.56 0.003408 
(0.002062) 

1 (Lowest) 0.4 0.42 0.54 0.003969 
(0.001938) 

2 0.4 0.5 0.56 0.003458 
(0.001933) 

3 0.38 0.44 0.52 0.004754 
(0.002134) 

Sub Samples 
Rank By Beta 

4 (Highest) 0.44 0.48 0.52 0.003093 
(0.002061) 

1 (Lowest) 0.4 0.44 0.62 0.003744 
(0.00203) 

2 0.3 0.4 0.42 0.003957 
(0.002553) 

3 0.44 0.52 0.58 0.004293 
(0.002338) 

Sub Samples 
Rank By 
Standard 
Deviation  

4 (Highest) 0.48 0.48 0.52 0.003047 
(0.001742) 
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There are three groups of statistics. (a) The p-value of the null hypothesis that the reference model outperforms all the competing models with respect 
the expected forecasting error measure. There are three estimator for each p-value (1) Low: lower bound (2) Con: consistent estimator (3) Up: upper bound 
(see Hansen 2001)  (b) the average QPS margin of competing models for different groups.  (c) the best QPS margin and the best model among all the 
competing models and the total number of models that beat the reference model s.  

Panel A presents the statistics for whole sample and sub sample analysis when we compare the competing models with the random walk 2 model. The 
data sample is drawn through the time varying cross sectional method. The sub samples are sorted based on the market conditions prior to the forecasting 
periods in out-of-sample forecasting.  
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Table 5.2 Out-of-Sample Forecasting Performance  

for the Cross Sectional Sampling Method with Small Sample Estimation  
 

In table 5.2, we provide statistics of the one-round out-of-sample forecasting performance of discrete events forecasting models in comparison with that 
of the reference models1.  For each out-of-sample forecasting, we use one learning sample to estimate the conditional probability function. The data sample 
is drawn through the cross sectional method. We also choose different regions of the functional domain to do forecasting, e.g., a% end--the top and bottom 
a% value of ARMA memory index in each forecasting sample.  

( Note: 1.  Random Walk 1 model: use a stock specific probability; Random Walk 2 model: use a period-specific probability; Random Walk 3 model: 
use a time invariant probability)  

Panel C presents the statistics for whole sample analysis when we compare the competing models with the random walk 1 and random walk 2 model. 
Again, the data sample is drawn through the time invariant cross sectional method.  

Panel B presents the statistics for whole sample and sub sample analysis when we compare the competing models with the random walk 3 model. The 
data sample is drawn through the time invariant cross sectional method. The sub samples are sorted in the same way as above.  
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Panel A1   Out-of-Sample Forecasting Results for the Time-Varying Cross Sectional Sampling Method—Total Sample Analysis 

P_Value for SPA Average QPS Margin Grouped 
by Wavelets  

Average QPS Margin  
Grouped by α Forecasting 

Horizon Sub-Set 
Low Con      Up High  Mid Low 0.1 0.4 0.7 0.95

Best QPS 
Margin 
(Model) 

Number 
of  Better 
Models  

10% end 1 1 1 -0.00547        -0.00507 -0.00409 -0.00103 -0.0036 -0.00645 -0.00702 -0.00021 0/30 
20% end 1        1 1 -0.00405 -0.00371 -0.0031 -0.00131 -0.00233 -0.00431 -0.00567 -0.00108 0/30
30% end 1            1 1 -0.00352 -0.00326 -0.00276 -0.00124 -0.00213 -0.0037 -0.00516 -0.00098 0/30

Time-
Varying 

 
Total 1        1 1 -0.0036 -0.00328 -0.00279 -0.0016 -0.0024 -0.0041 -0.00388 -0.0014 0/30

 
 
 
 

 
Panel A2   Out-of-Sample Forecasting Results for the Time-Varying Cross Sectional Sampling Method—Sub Sample Analysis 

P-value 

Sub-Sample 1 (Bear) Sub-Sample 2 Sub-Sample 3 Sub-Sample 4(Bull) 
Forecast 
Horizon Sub-Set 

Low            Con Up Low Con Up Low Con Up Low Con Up
10% end 0.588            0.657 0.863 1 1 1 0.163 0.183 0.289 0.521 0.521 0.954
20% end 1            1 1 1 1 1 0.248 0.263 0.439 1 1 1
30% end 1            1 1 1 1 1 0.271 0.307 0.488 1 1 1One-month 

Total 1            1 1 1 1 1 1 1 1 0.347 0.42 0.665

Other Performance Statistics 

Sub-Sample 1 (Bear) Sub-Sample 2 Sub-Sample 3 Sub-Sample 4(Bull) Forecast 
Horizon Sub-Set 

Best QPS 
Margin 

Number of 
Better Models 

Best QPS 
Margin 

Number of 
Better Models 

Best QPS 
Margin 

Number of 
Better Models 

Best QPS 
Margin 

Number of 
Better Models 

10% end 0.000137  1/30 -0.00024  0/30 0.004492  14/30 0.000182  1/30
20% end -0.00083        0/30 -0.00035 0/30 0.002726 16/30 -0.00083 0/30
30% end -0.00078        0/30 -0.00113 0/30 0.001892 13/30 -0.00047 0/30One-month 

Total -0.00149        0/30 -0.00217 0/30 -0.00045 0/30 0.001751 2/30
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Panel B1   Out-of-Sample Forecasting Results for the Time-Invariant Cross Sectional Sampling Method—Total Sample Analysis 

P_Value Average QPS Margin Grouped 
by Wavelets  

Average QPS Margin  
Grouped by α Forecasting 

Horizon Sub-Set 
Low Con      Up High  Mid Low 0.1 0.4 0.7 0.95

Best QPS 
Margin 
(Model) 

Number 
of  Better 
Models 

10% end 0.226           0.327 0.574 -0.00282 -0.00105 3.55E-05 -0.0019 -0.00109 -0.00107 -0.00065 0.000592 5/30 
20% end 0.339           0.439 0.73 -0.00169 -0.00069 -3.35E-05 -0.00154 -0.00061 -0.00063 -0.00037 0.000272 4/30 
30% end 0.644           0.802 0.962 -0.00136 -0.00059 -0.00012 -0.00133 -0.00064 -0.00046 -0.00034 2.08E-05 2/30 

One-month 

Total 1           1 1 -0.00148 -0.00071 -0.00025 -0.00123 -0.00078 -0.00073 -0.00032 -0.00013 0/30 

 
 

Panel B2   Out-of-Sample Forecasting Results for the Time-Invariant Cross Sectional Sampling Method—Sub Sample Analysis 
P-value 

Sub-Sample 1 (Bear) Sub-Sample 2 Sub-Sample 3 Sub-Sample 4(Bull) 
Forecast 
Horizon Sub-Set 

Low            Con Up Low Con Up Low Con Up Low Con Up
10% end 0.503            0.597 0.82 0.252 0.286 0.541 0.738 0.76 0.922 0.373 0.519 0.743
20% end 0.55            0.673 0.885 0.21 0.267 0.509 0.409 0.435 0.727 0.507 0.637 0.764
30% end 0.551            0.619 0.929 0.485 0.526 0.878 0.454 0.551 0.875 0.613 0.636 0.819One-month 

Total 1            1 1 0.499 0.54 0.936 0.346 0.346 0.811 0.556 0.616 0.782

Other Performance Statistics 

Sub-Sample 1 (Bear) Sub-Sample 2 Sub-Sample 3 Sub-Sample 4(Bull) Forecast 
Horizon Sub-Set 

Best QPS 
Margin 

Number of 
Better 

Models 

Best QPS 
Margin 

Number of 
Better 

Models 

Best QPS 
Margin 

Number of 
Better 

Models 

Best QPS 
Margin 

Number of 
Better 

Models 
10% end 0.000834        6/30 0.001092 6/30 0.000192 3/30 0.000646 5/30
20% end 0.000287        5/30 0.000718 8/30 0.000381 3/30 0.000323 4/30
30% end 0.000136        4/30 0.000167 5/30 0.000254 3/30 0.000231 6/30One-month 

Total -0.00016        0/30 6.04E-05 3/30 0.000164 3/30 0.000201 5/30
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Panel C   Out-of-Sample Forecasting Results for the Time-Invariant Cross Sectional Sampling Method against Random Walk 1 ,2  

P_value Average QPS Margin Grouped 
by Wavelets  

Average QPS Margin  
Grouped by α  Reference   

Model 
Low Con      Up High  Mid Low 0.1 0.4 0.7 0.95

Best QPS 
Margin 

Number 
of Better 
Models 

 Random 
Walk 1 0.006           0.006 0.006 -0.00026 0.000518 0.000976 -1.01E-05 0.000442 0.000491 0.000904 0.001092 23/30 

One-Month 
Ahead Random 

Walk 2 0     0 0 0.00672 0.007494 0.007952 0.006966 0.007418 0.007467 0.00788 0.008068 30/30 
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Table 5.3  Out-of-Sample Forecasting Performance  

for the Time Invariant Cross Sectional Sampling Method with Large Sample Estimation 
 

In table 5.3, we provide statistics of the two-round out-of-sample forecasting performances of discrete events forecasting models in comparison with the  Random 
Walk 3 model1. The data sample is drawn through time invariant cross sectional method. For each out-of-sample forecasting, we use 20 learning samples to estimate the 
conditional probability function. Also, we chose different types of regions of the functional domain to do out-of-sample forecasting, e.g., a% end refers to the top and 
bottom a% value of ARMA memory index in each forecasting sample.  

There are three groups of statistics. (a) The p-value of the null hypothesis that the reference model outperforms all the competing models with respect to the expected 
forecasting error measure. There are three estimator for each p-value (1) Low: lower bound (2) Con: consistent estimator (3) Up: upper bound (see Hansen 2001) (b) the 
average QPS margin of competing models for each specific groups. (c) the best QPS margin and the best model among all the competing models and the total number of 
models that beat the reference model s.  

Panel A presents the statistics for whole sample analysis when we compare the competing models with the reference model in the first-round out-of-
sample forecasting.  

Panel B presents the statistics for sub sample analysis in first round out-of-sample forecasting. The sub samples are sorted based on the market 
conditions prior to the forecasting periods.  

Panel C presents the statistics for whole sample and sub sample analysis when we compare the competing models with the random walk 3 model in 
the second round out-of-sample forecasting.    

( Note:  The reference model uses a time invariant constant probability to make forecasting. ) 

 
Panel A   The First Round Out-of-Sample Forecasting Performance Against the Random Walk 3 model —Total Sample Analysis 

P_value Average QPS Margin Grouped 
by Wavelets  

Average QPS Margin  
Grouped by α Forecast 

Horizon Sub-Set 
Low          Con Up High Mid Low 0.1 0.4 0.7 0.95

Best 
QPS 

margin 
(Model) 

Number 
of  better 
Model 

10% end          0 0 0 -2.65E-05 0.000131 0.000188 -0.00091 -0.00031 0.000501 0.001109 0.001305 
(27) 15/30 

20% end         0 0 0 0.000333 0.000484 0.000537 -1.40E-05 0.000265 0.000604 0.00086 0.001007 
(27) 28/30 

30% end         0 0 0 0.000503 0.000642 0.000686 0.00038 0.000565 0.000693 0.000779 0.000847 
(30) 30/30 

One-month 
 

Total     0 0 0 0.000623 0.000769 0.000824 0.000648 0.00082 0.000686 0.000763 0.000916 
(12) 30/30 

 

 



P-value of Null Hypothesis  

Sub-Sample 1 (Bear) Sub-Sample 2 Sub-Sample 3 Sub-Sample 4(Bull) 
Forecast 
Horizon Sub-Set 

Low            Con Up Low Con Up Low Con Up Low Con Up
10% end 0            0 0 0.073 0.086 0.125 0.043 0.044 0.057 0 0 0
20% end 0            0 0 0.056 0.056 0.072 0.035 0.041 0.043 0.003 0.003 0.005
30% end 0            0 0 0.041 0.046 0.046 0.138 0.158 0.159 0.013 0.013 0.013One-month 

Total 0.001            0.001 0.001 0.096 0.096 0.096 0.187 0.22 0.223 0.001 0.001 0.001
Sub-Sample 1 (Bear) Sub-Sample 2 Sub-Sample 3 Sub-Sample 4(Bull) 

Sub Sample Performance Measure  

Sub-Sample 1 (Bear) Sub-Sample 2 Sub-Sample 3 Sub-Sample 4(Bull) Forecast 
Horizon Sub-Set 

QPS 
margin 

Std 
Error 

Model 
In Use 

QPS 
margin 

Std 
Error 

Model 
In Use 

QPS 
margin 

Std 
Error 

Model 
In Use 

QPS 
margin 

Std 
Error 

Model 
In Use 

10% end 0.001262     0.000721 27 0.000905 0.000536 27 0.000383 0.000591 27 0.000288 0.000540 30 
20% end 0.001119         0.000567 24 0.000428 0.00032 30 0.000484 0.000387 27 0.000325 0.000424 30
30% end 0.000694         0.00047 24 0.000575 0.000319 21 0.000432 0.000460 30 0.000372 0.000412 30

One-month 
 

Total 0.0003 0.000447        30 0.000466 0.000359 12 0.000355 0.000393 30 0.000588 0.000496 9

  Best 
QPS 

margin 

Best 
Model 

No of 
Better 
Model 

Best 
QPS 

margin 

Best 
Model 

No of 
Better 
Model 

Best 
QPS 

margin 

Best 
Model 

No of 
Better 
Model 

Best 
QPS 

margin 

Best 
Model 

No of 
Better 
Model 

10% end 0.002106           27 30/30 0.000965 27 7/30 0.000949 27 15/30 0.001921 30 11/30 
20% end 0.001806           24 30/30 0.000607 30 23/30 0.000794 27 21/30 0.001099 30 11/30 
30% end 0.001583           24 30/30 0.000595 21 27/30 0.000533 30 22/30 0.000949 30 30/30 One-Month 

Total 0.001443           30 30/30 0.000747 12 30/30 0.000399 30 14/30 0.001533 9 30/30 

Panel B   The First Round Out-of-Sample Forecasting Performance against the Random Walk 3 model—Sub Sample Analysis  

Panel C   The Second-Round Out-of-Sample Forecasting Performance against the Random Walk 3 Model  
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Total Sample 
  QPS 

Margin  
Std 

Error 
Model 
In Use 

10% end 0.0007 0.000314 27 
20% end 0.000527   0.000215 27
30% end 0.000372   0.000206 30

One-month 
 

Total 0.000551   0.000244 12
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Figure 5.1 Plots of Estimation and Forecasting Results of the Discrete-Event-Forecasting Model for 
Stock Return Forecasts   
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Appendix : Functional Analysis

Basics of Functional Analysis
Basic Definitions:

In the nonparametric and semi-nonparametric estimation, people try to estimate an un-

known functional form with minimal prior knowledge imposed. Therefore, the object under

estimation is the whole structure of functional form rather than an unknown scalar or vector in

the traditional parametric estimation. The first problem is how to quantitatively describe the

relationship between the structure estimator and the true structure. In parametric estimation,

we can simply adopt the distance formula for the Euclidean space to fulfill such a goal. In non-

parametric and semi-nonparametric cases, we need to set up new rules in order to implement

this task.

Normed Linear Space and Banach Space

Definition 2 Linear Vector Space

A linear vector space W over R is nonempty set W with a mapping: (x1,x2) → x1 ⊕ x2,

from W ×W into W,which we call addition and a mapping: (α, x) → αx,from F ×W into W

which we call scalar multiplication.

Briefly, the linear vector space is a set of elements that is closed under addition and scalar

multiplication. Note that Euclidean space Rn, n ∈ Z is just a special case of linear vector space.

It is desirable that space of functional form is closed under these two basic algebra operations.

This makes it possible to extend a lot important results developed in real analysis to functional

analysis.

Definition 3 Norm

A norm is a non-negative set function on a linear vector space, ‖·‖ :W → R+ such that

(1) ‖x‖ = 0, iff x = 0;
(2) ‖x⊕ y‖ � ‖x‖+ ‖y‖ , for x, y ∈W.(Triangle Property);
(3) ‖αx‖ = |α| ‖x‖ , for all x ∈W and α ∈ F .

It is apparent that the way to compute the distance between elements and origin in Rn

space just satisfies the definition of norm. Therefore, norm can be considered as a generalized

distance between elements in a linear vector space.
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Definition 4 Normed Linear Vector Space

A normed linear space is linear vector space X with a norm ‖·‖ on it and is denoted by (X,
‖·‖).

Definition 5 Complete Normed Linear Vector Space

A normed linear vector space is complete if any Cauchy sequence in the space converge to

element of this space. A complete normal linear vector space is also called Banach space.

( Note: the Cauchy Sequence is defined as follows.

Let {aj}∞j=1be a sequence of real (or complex) numbers. We say that the sequence satisfies

the Cauchy criterion (or simply is Cauchy) if for each ε > 0 there is an integer N > 0 such that

if j, k > N then

|aj − ak| < ε

)

In most semi-nonparametric estimation, we would like to use a complete space as the para-

meter space. The benefit of such an assumption will be seen in the later section.

Inner Product Space and Hilbert Space

In this part, we will introduce a special case of Banach space, which is extremely important

to semi-nonparametric estimation via orthogonal series expansion.

Definition 6 Inner Product

A inner product is a mapping 〈·, ·〉 : X ×X → R , satisfying that for x, y ∈ vector space X

(Conjugate symmetry) 〈x, y〉 = 〈y, x〉∗

(Positive definite) 〈x, x〉 � 0 and 〈x, x〉 = 0 iff x = 0.
(Linear in the first argument) 〈ax+ by, z〉 = a 〈x, z〉+ b 〈y, z〉
Here, X is vector space and R is the set of complex number.

An example of inner product space is L2[a, b] of measurable function on [a, b] with the inner

product 〈x, y〉 =
∫ b
a x(t)y(t)dt for x, y ∈ L2[a, b].

Definition 7 Inner Product Space

A vector space endowed with inner product is called inner product space.
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For an inner product space, the norm is usually defined as ‖x‖ =
√
〈x, x〉. An example

of inner product space is L2[a,b] of measurable functions on [a, b] with the inner product

〈x, y〉 =
∫ b
a x(t)y(t)

∗dt, for x, y ∈ L2[a,b]. For each x ∈ L2[a,b],
∫ b
a [x(t)]

2dt <∞.

Definition 8 Hilbert Space

A complete inner product space is called Hilbert Space.

Orthonormal Basis In Inner Product Space

Now we’ll introduce the core concepts concerning orthogonal series.

Definition 9 Orthogonality

x, y ∈ X, an inner product space, is orthogonal to each other if 〈x, y〉 = 0.We denote it as
x ⊥ y.

Definition 10 Orthogonal set/sequence and Orthonormal set

A subset S of an inner product space X is called an orthogonal set if x ⊥ y for distinct

x, y ∈ X.If S is denumerable, we say that S is an orthogonal sequence. Furthermore, if 〈x, x〉 = 1
for all x ∈ S,we call it orthonormal set.

Definition 11 Orthonormal base

An orthonormal set is called orthonormal base for inner product space X if the set isn’t

properly contained in any other orthonormal set. It is also called maximal orthonormal set or

complete orthonormal set.

Properties of Hilbert Space

Theorem 12 An orthonormal sequence (xn) in a Hilbert space X is an orthonormal base if

and only if any one of the equivalent conditions below is satisfied:

(a) cl[(xn)] = X;

(b) [(xn)]⊥ = {0}.
(c) ‖x‖2 =∑n∈N |〈x, xn〉|

2 holds for all x ∈ X.
(d)x =

∑
n∈N 〈x, xn〉xn for every x ∈ X.
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From the above theorem, we know that in order that Hilbert space X is norm isomorphic

to space l2, X must be the closure of space spanned by its orthonormal base. Another way to

find such a space is as follows:

Theorem 13 An inner product space is separable if and only if it has a complete orthonormal

sequence (xn).Furthermore, in a separable inner product space, any x ∈ X can be written

uniquely in the form x =
∑

n∈N
〈x, xn〉xn for any orthonormal basis (xn).

Fourier Analysis
Convergence Properties of Fourier Series

Convergence Mode

Definition 14 Mean Convergence

Let (xn) be a sequence in L2[a, b], xn converges to x in the mean if
∫ b
a (xn(t)− x(t))2dt→ 0

as n→∞.

Definition 15 Pointwise Convergence

A sequence (xn) of real or complex valued function with a common domain T converges

pointwise to the function x if xn(t)→ x(t) as n→∞ for all t ∈ T.

Definition 16 Uniform Convergence

Convergence with respect to sup norm ‖·‖∞ is called uniform convergence, where ‖·‖∞ is

expressed as ‖x‖∞ = sup
t∈T
{|x(t)| : t ∈ T}

From the results in last section, Fourier series sN =
∑
n≤N 〈x, xn〉xn will converge to x

in the mean for any x ∈ L2[a, b]. It is natural to ask under what condition Fourier series

could converge in a stronger sense, i.e. pointwise convergence or uniform convergence. In the

following part, several famous theorems are given in order to answer these questions.

Convergence Properties of Trigonometric Fourier Series

In last several sections, we define the Fourier series in a very general sense, that is, sN =
∑
n≤N 〈x, xn〉xn, where {xn} is orthonormal basis for inner product space with inner product

〈·, ·〉 . From now on, we’ll focus our discussion on the Fourier series with specific form:
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s1k(t) =
k∑

n=−k

cne
−int, (5.10)

and

s2k(t) = a0 +
k∑

n=1

an cosnt+
k∑

n=1

bn sinnt. (5.11)

The s1k(t) is called trigonometric polynomials and s2k(t) is called trigonometric series. In

order to be Fourier series, cn = 1
2π

∫ π
−π x(t)e

−intdt and an = 1
2π

∫ π
−π x(t) cos(nt)dt, bn =

1
2π

∫ π
−π x(t) sin(nt)dt.It is easy to verify that these two series are convertible to each other.

Therefore, if s1k(t)converges as k →∞, so does s2k(t).
Before we introduce the following theorems, we need to introduce several concepts.

Definition 17 Periodic Extension of Function

Function f is (b− a)-periodic extension of function g on [a, b] if

f(t) = g(t) if t ∈ [a, b]

= g(t′) if t = t′ + k(b− a)for some k ∈ Z and t′ ∈ [a, b]

Definition 18 One-Sided Derivatives

Let f be defined in an interval contain c. A right-handed derivative f ′r(c) of f at a point c

is

f
′

r(c) = lim
h→0+

f(c+ h)− f(c)
h

If point c is a discontinuous point with f(c+) = lim
h→0+

f(c+h) and f(c−) = lim
h→0−

f(c+h), then

right-handed derivative is expressed as

f
′

(c+) = lim
h→0+

f(c+ h)− f(c+)
h

Similarly, we can get definition of f ′(c−).

Definition 19 Piecewise Smooth Function
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Function f is called piecewise smooth function if f is composed of a finite differentiable

components and f ′(c+) and f ′(c−) exist at every point c ∈ [a, b],except the endpoints where

only f ′(a+) and f ′(b−) exist.

Definition 20 Bounded Variation

Let h be a complex-valued function defined on the (finite) closed interval [a, b] and let

P = {t0, t1, t2, ...tn}, t0 = a < t1 < ... < tn = b, be a partition of [a, b]. The variation of h with

respect to P is

V (h, a, b) =
n−1∑

i=0

|h(ti+1)− h(ti)|

The (Total) variation of h over [a, b] is

V (h, a, b) = V (h) = sup
p
Vp

as P ranges over all partition of [a, b].h is of bounded (or finite) variation (call BV later) on

[a, b] if V (h) <∞.
The next theorem concerns the pointwise convergence of Fourier series. It is first completed

by Dirichlet.

Theorem 21 Pointwise Convergence of Trigonometric series (Dirichlet )

Let f be the 2π−periodic extension of an integrable function on [−π, π].If f ′(t+) and f ′(t−)
exist everywhere-as happens for any piecewise smooth function f— then the Fourier series (equa-

tion 5.11) for f converges to 1
2(f(t

−) + f(t+)) at every t; at points t of continuity the series

there converge to f(t).

In this theorem, the function class under consideration is 2π−periodic extension of a piece-

wise smooth function. It may seems quite restrictive condition. However, as long as the function

f ∗∗under study is piecewise smooth function with a compact support [a, b], simple algebra ma-

nipulation can make it a function f∗defined on [−π, π].Then we can extend this function by

f∗∗(t+2π) = f∗(t) to get it into the function class we need. Also, it is noted that the class of
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piecewise smooth function on a compact support is sufficiently large to fit the demand of most

social science study. But still, restriction on piecewise smooth can be relaxed further.

Theorem 22 Pointwise Convergence of Trigonometric series (Jordan)

If f is the 2π − periodic extension of function of BV on [−π, π] which implies that f is
integrable on [−π, π] ), then for any t, its Fourier Series converges (equation 5.11)to 1

2(f(t
−)+

f(t+)).

The above two theorems not only give the sufficient condition for convergence of Fourier

series but also point out where each point converges. They offer a real breakthrough in Fourier

analysis. There are still a lot of other important theorems concerning the property of Fourier

Series. Here we won’t list them. Interested readers could refer to George Bachman, et al (2000)

for a brief summary on all these results.

Dirichlet Kernel and Kernel Estimation

In the last part, we give quite a few important results concerning the convergence prop-

erties of Fourier Series. All these efforts aim at justifying the possibility of using s∞(t) =
∑∞
n=−∞

1
2π

∫
−π πf(t)e

−inxdxe−int to represent the targeted function f . In this part, we would

like to look a little deeper to see why Fourier Series, especially the Trigonometric Series, possess

these convergence property (pointwise or uniformly). We will first introduce Dirichlet Kernel

which play a decisive role in Fourier Series.

The nth Dirichlet Kernel is computed as follows:

Dn(t) =
n∑

k=−n

eikt = 1 n = 0

= 1 + 2
∑n
k=1 cos kt n ∈N

(5.12)

By calculating the summation, we have much more compact expression form

Dn(t) = sin(n+1/2)t
sin(t/2) t �= 0,±2π,±4π, ... n ∈N ∪ {0}

= 2n+ 1 otherwise
(5.13)

It is easy to see

sN(t) =
N∑

n=−N

1

2π

∫ π

−π
f(t)e−inxdxe−int =

1

2π

∫ π

−π
f(t)Dn(t+ x)dx
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The following theorems concerns an extremely important property of Dirichlet Kernel which

has direct implication of the property of Fourier series SN .

Theorem 23 Riemann-Lebesgue Lemma For any f ∈ Lr1[a, b], −∞ ≤ a ≤ b ≤ ∞, and

any bounded measurable function h defined on R, it follows that

lim
c→±∞

1

c

∫ c

0
h(t)dt→ 0

then

lim
w→∞

∫ b

a
f(t)h(wt)dt = 0

Theorem 24 Riemann-Lebesgue Property of Dn

For any f ∈ Lr1[−π, π], and r ∈ (0, π],

lim
n

∫ π

r
f(t)Dn(t)dt = 0 (5.14)

where Dn is Dirichlet Kernel. (see 5.13)

Then combining the above result with the easy fact that

∫ π

0
Dn(t)dt = π for all n ∈ N∪{0}.

we will find that Dn(t) has such an interesting property: the total area under the curve Dn(t)

for [0, π] is fixed as π. But if we fix r ∈ (0, π] , given a sufficient large n, we have the total area

under the curve for [r, π] getting arbitrarily close to zero (see 5.14. Since r is arbitrary, it is

easy to visualize that as n→∞,Dn(t) serves like Dyadic-delta function δ0 which is defined as

follows.

Definition 25 Dyadic-Delta Function:

Dirac Delta Function is a function δx satisfying:

δx(t) = 0ift �= x
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and ∫
δx(t)dt = 1

If so, as long as f ∈ Lr1[−π, π] is well defined at point 0 and it is continuous from right, it

is always true that .

lim
n→∞

∫ π

0
f(t)Dn(t)dt = πf(0+) (5.15)

This result directly relate with convergence property of Fourier series12 .

From the above deposition, we now have a clear idea of how the size of series expansion

affects the goodness of approximation:

Under mild regularity conditions, for each point x ∈ supp(f), one can always find a small

neighborhood Ux such that the value of function won’t change too much within Ux. As a result,

the weighted average over Ux can well approximate f(x).On the other hand, due to localization

property, if the expansion size N is large enough,
∫
0 πf(t)Dn(t)dt just yield the weighted average

over Ux.Therefore, the size of expansion will determine how well the approximation can be.

12As long as we can formulate the Fouries Series in the following way

sn =

∫ π

0

f(t+ u)Dn(t)dt

then the pointwise convergence can be achieive in the spirit of equation 5.15. The derivation is as follows:

sn =
1

2π

∫ π

−π

f(x)dx+
1

π

[
n∑

k=1

cos(kt)

∫ π

−π

f(x) cos(kx)dx+ sin(kt)

∫ π

−π

f(x) sin(kx)dx

]

=
1

π

∫ π

−π

f(x)

[
1

2
+

n∑

k=1

(cos(kt) cos(kx) + sin(kt) sin(kx))

]

dx

=
1

π

∫ π

−π

f(x)

[
1

2
+

n∑

k=1

cos k(t− x)

]

dx

=
1

π

∫ π

−π

f(x)Dn(x− t)dx =
1

π

∫ π−t

−π−t

f(t+ x)Dn(x)dx

=
1

π

∫ π

−π

f(t+ x)Dn(x)dx =
1

π

∫ π

−π

f(t− x)Dn(x)dx (∗)

=
1

π

∫ 0

−π

f(t+ x)Dn(x)dx+

∫ π

0

f(t+ x)Dn(x)dx

=
1

2π

∫ π

0

(f(t− x) + f(t+ x))Dn(x)dx
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From this fact, we can deduce the following regularity as to the convergence of Fourier series:

the smoother the original function is,the fewer number of coefficients is required for a good

approximation by Fourier series and the more quickly the sequence Fourier coefficients will

dampen.

The method of using Kernel function like Dirichlet Kernel to approximate target function

f(·) is by no means exclusive attributes of Fourier analysis. It is a widely popular technique

in engineering and mathematics analysis. Since the kernel K(·)can be used to reproduce a

function in the sense

f(x) =

∫
f(t)K(t, x)dt

it is also called reproducing kernel.

Wavelet Analysis
Multi-Resoluation Anlysis (MRA)

Basic Definition

Multiresolution analysis consists of a sequence of subspace Vj , j ∈ Z , of L2(R) satisfying:

1. Vj ⊂ Vj+1, for j ∈ Z

2. f ∈ Vj, if and only if f(2(·)) ∈ Vj+1

3.
⋂

j∈Z

Vj = {0};

4. cl(
⋃

j∈Z
Vj) = L2(R);

5. There exist a function ϕ ∈ V0, such that {ϕ(·−k) : k ∈ Z} is orthonormal basis for V0.ϕ(·)
is called scaling function or father wavelet function.

With these five conditions satisfied, we can explicitly construct an orthonormal wavelet

basis {ψj,k;j, k ∈ Z} of L2(R), ψj,k; = 2−
j

2ψ(2−jx− k),such that for all f in L2(R),

Pj+1f = Pjf +
∑

k∈Z

〈f, ψj,k〉ψj,k (5.16)

where Pj is the orthogonal projection onto Vj .
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Before we show how to get wavelet basis under these five conditions, we want to point out

all the above conditions are not independent with each other and some relaxation can be made.

Theorem 26 Conditions (1) , (2) and (5) in definition of MRA imply (3). This is the case

even if in (5), we only assume that , {ϕ(· − k) : k ∈ Z} is a Riesz basis13.

Theorem 28 Let {Vj : j ∈ Z} be a sequence of closed subspaces of L2(R) satisfying (1) (2)
(5) ; assume that the scaling function ϕ of condition (5) is such that |ϕ̂|14 is continuous at 0.
Then, the following two conditions are equivalent:

(i) ϕ̂(0) �= 0 (ii) cl(
⋃

j∈Z

Vj) = L2(R);

Theorem 29 For a Riesz basis for V0, defined as above, we can then find γ ∈ V0, such that

{ϕ(· − k) : k ∈ Z} is an orthonormal basis for V0.

See Daubechiez[1992] Chapter 5 and Hernandez &Weiss[1996], Chapter 2 for the proof of

above theorems. From above three theorems, we’ll recognize that the conditions (1), (2) and

relaxed (5) in the definition of MRA are the fundamental ones. It is interesting to find that

the first two properties is consistent with our intuitive explanation of MRA in last section. The

increasing sequence Vj is just the sequence of fluctuation components. By condition (2), we find

the fluctuation component possess higher resolution as j increase. This is because the functions

in Vt+1can complete the same degree of variation in half-sized region as their counterpart in Vt.

As a result, function in this space can take on a more volatile pattern.

In the next section, we will give the expression of wavelet function in terms of ϕ(·).

13Riesz basis
For every f ∈ V0, there exists a unique sequence{αn}n∈Z ∈ l

2(Z) such that

f(x) =
∑

n∈Z

αnϕ(x− n)

with convergence in L2(R) and

A
∑

n∈Z

|αn|
2 ≤

∥∥∥∥∥

∑

n∈Z

αnϕ(x− n)

∥∥∥∥∥

2

2

≤ B
∑

n∈Z

|αn|
2

Definition 27 with 0 < A ≤ B < ∞ constants independent of f ∈ V0.Then ϕ(· − n) is Riesz Basis of space
L2(R). We can ϕ(·) as a scaling function.

14 ϕ̂(w) = π
2

∫ π
−π
ϕ(t)e−itwdt is fourier transform of original function ϕ(t) .
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General Procedure of Wavelets Construction

Since Vj ⊂ Vj+1, we can define a subspace Wj , such that Wj ⊥ Vj, and Vj+1 = {x : x =
y + z, y ∈ Wj , z ∈ Vj}, briefly Vj+1 = Wj ⊕ Vj.Wj can be called orthogonal complement of Vj

in Vj+1. It is easy to see Wj′ ⊂ Vj , if j > j′. So Wj′ ⊥Wj , if j �= j′.

Then, we can write Vj =Wj−1⊕ Vj−1into Vj =Wj−1⊕Wj−2⊕ Vj−2 =
j−1⊕

k=−∞

Wk. Then we

know

L2(R) =
∞⊕

k=−∞

Wk, (5.17)

since Vj ⊂ Vj+1 and limJ→∞
⋃

j≤J
Vj = L2(R)..

The result shown by 5.17 just show closely MRA relate with quadratic mirror filtering.

The condition (5) in definition of MRA seems odd. In fact, it is the key to derive the

expression form of wavelet function. We will skip all the technique part to show how we can

find the mother wavelet function, starting from the knowledge of orthonormal basis ϕ(· − k).

Interested reader can refer to Daubechies[1992], Chapter 5..

The following lemma, as a summary, directly gives the relation between mother wavelet

function and scaling function.

Lemma 30 Suppose ϕ(·) is a scaling function for an MRA {Vj}j∈Z , and m0 is the associated

low-pass filter, which satisfy

ϕ̂(2ξ) = ϕ̂(ξ)m0(ξ)

then a function ψ ∈W0 = V1 ∩ V ⊥0 is an orthonormal wavelet for L2(R) if and only if

ψ̂(2ξ) = eiξv(2ξ) [m0(ξ + π)]
∗ ϕ̂(ξ)

a.e. on R, for some 2π−periodic measurable function v s.t.

|v(ξ)| = 1 a.e. on R.

(see Hernandez & Weiss P57 for Proof)
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The above lemma formalizes the way to find the wavelet basis. In practice, the following

general procedure is always adopted:

(see Daubechies[1992] P145)

(1) We always start from scaling function by choosing the function satisfying

1. (a) ϕ and ϕ̂ have reasonable decay;

(b) the following two conditions is satisfied:

i. ϕ(x) =
∑
k∈Z ckϕ(2x+ k) where

∑
k |ck|

2 <∞ and

ii. 0 < A ≤∑k∈Z |ϕ̂(ξ + 2kπ)|
2 ≤ B <∞

(c) ϕ̂(0) �= 0

The purpose of imposing the above condition (a) (b) (c) is obvious. Condition (a) assures

the time and frequency localization of scaling function. Condition (i) of (b) is used to implement

the condition (1) and (2) in the definition of MRA. Condition (ii) of (b) makes it possible to

deploy the orthonormlization trick. Condition (c) is guarantee l(
⋃

j∈Z
Vj) = L2(R). Finally, with

these condition, sequence {Vj}, where Vj is spanned by ϕ(2j ·+k) constitute a multiresolution
analysis.

(2) If necessary, we need perform the ‘orthonormalization trick’

ϕ̂#(ξ) = ϕ̂(ξ)

[
∑

k∈Z

|ϕ̂(ξ + 2kπ)|2
]−1/2

(5.18)

in order to make sure
∑
k∈Z

∣∣ϕ̂#(ξ + 2kπ)
∣∣2 = 115.

(3) Finally, use the above lemma, we get

ψ̂(ξ) = eiξ/2
[
m#
0 (ξ/2 + π)

]∗
ϕ̂#(ξ/2) (5.19)

with

m#
0 (ξ) = m0(ξ)

[
∑

k∈Z

|ϕ̂(ξ + 2kπ)|2
]1/2 [∑

k∈Z

|ϕ̂(2ξ + 2kπ)|2
]−1/2

15This equation directly lead to the conclusion that ϕ#j,k is orthonormal set.
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or equivalently

ψ(x) =
∑

n

(−1)nh#−n+1ϕ#(x− n), (5.20)

with

m#
0 (ξ) =

1√
2

∑

n

h#n e
−inξ
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