The Pennsylvania State University
The Graduate School

College of the Liberal Arts

SEMI-NONPARAMETRIC DISCRETE EVENT FORECASTING IN

ECONOMICS AND FINANCE

A Thesis in

Economics

by

Guang Guo

[J 2001 Guang Guo

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2004



Thethesis of Guang Guo was reviewed and approved* by the following:

Herman J. Bierens
Professor of Economics
Thesis Advisor

Chair of Committee

N. Edward Coulson
Professor of Economics

Philip A. Klein
Professor Emeritus of Economics

Coenraad Pinkse
Associate Professor of Economics

Timothy Simin
Assistant Professor of Finance
Robert C. Marshall

Professor of Economics
Head of the Department of Economics

*Signatures are on file in the Graduate School



ABSTRACT

Probabilistic forecasts play a significant role in a wide variety of economics
activities. However, established econometric modeling approaches for probabilistic
forecasts may yield unsatisfactory forecasting performance due to model
misspecification. In my dissertation, | try to minimize such a risk by introducing a semi-
nonparametric modeling approach for probabilistic forecasting. The new approach
combines the ARMA memory index modeling approach of Bierens (1988) with the semi-
nonparametric estimation method that uses wavelet basis to construct a flexible
functional form. With this combination, we are able to avoid imposing restrictive
constraints on the specification of critical components of conditional probability
functions, i.e., the lag structure and distribution functions of error terms. As a result, it is
possible that the new modeling approach will lead to improved forecasting performance
if the reduction of modeling bias is significant. To test the usefulness of the new
approach, we compare the relative performance between the new modeling approach and
traditional forecasting models in both Monte Carlo experiments and real-world
applications including business cycle regime forecasting and the forecast of rank
performance of stock returns. The experimental and empirical results suggest that the
new modeling approach can outperform traditional modeling approaches due to the
flexibility of the model specification and the way various nonlinearities in the
dependence of conditional probabilities on information variables are captured by ARMA

memory indices.
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Chapter 1

PROBABLISTIC FORECASTING
IN ECONOMICS

1.1 Probabilistic Forecasting and Its Link with Moment Fore-

casting

In terms of forecasting outcomes, economic forecasts can be classified into two types, moment
forecasting and distribution forecasting. In moment forecasting, forecasters predict a particular
moment of a random variable. A typical example is level forecast, i.e., E(Y|F;—1), where
E(e|F;—1) is the conditional mean and F;_;is the information set up to the period ¢t — 1. In
distribution forecast, forecasters predict the whole probability distribution function of a random
variable, i.e., Pr(Y; < y|Fi—1) for y € R (see Tay&Wallis 2000). Probabilistic forecast is a
special case of distribution forecast, in which forecasters predict the probability of outcomes of
a particular random event variable.

In certain cases, moment forecast can be used to do probabilistic forecast of a random event
if the underlying data generating process of the event has a simple structure. For example, the

random event variable X; is defined as

=1 ifY; >wv
Xt

=0 otherwise



where the stationary process Y; "N (u,, 0¢). Conditional mean forecasting and conditional volatil-
ity forecasting of Y; will provide sufficient information to do probabilistic forecast of X;. In some
other cases, probabilistic forecast is needed to complement moment forecast if the forecaster
wants to give a better description of potential uncertainty. However, if the underlying data
generating process for the random event has non-standard stochastic regularities, the above
connections between moment forecast and probabilistic forecast will be weakened. In that case,

we need to choose specific forecasting models and methods for each type of forecasting.

1.2 Probabilistic Forecasting in Economic Studies

Probabilistic forecasting are particularly important if the outcomes of the target random event
variables have significant impacts on a variety of economic activities. We provide 3 examples.
First, regime switches of business cycles have deep influences on all aspects of the economy
(see Niemira & Klein 1994 ;| Lahiri & Moore 1991). Consequently, probabilistic forecasting of
business cycle turning points is of tremendous interest to various parties. Second, the outcome
of the Federal Reserve Bank’s policy decision draws wide public attention due to its strong im-
plication on the future economy. Improved probabilistic forecasting of those outcomes will help
investors and business managers make better investing decisions (see Hamilton & Jorda 2002).
Third, in the financial market, the event that a stock falls into a particular performance category
will change the follow-up performance of this stock dramatically (see Jagadeesh and Titman
1993). Accurate probabilistic forecasting on such an event will provide portfolio management
with substantive benefits.

When the forecasted discrete events mainly concern the behavior of individual economic
agents, we have, in econometric literature, well-established methods to set up econometric
models, i.e., the discrete-choice model. But if the event we are studying concerns more compli-
cated components such as the dynamic of the whole economy or the state shift of the financial
markets, the theoretic backup for the appropriate econometric modeling approach is seriously
lacking. We should take great caution in choosing the analysis tools that will serve our forecast-
ing purpose best. In the next section, we will introduce the main methodologies for probabilistic

forecasting in the economics literature.



1.3 Key Methodologies in Probabilistic Forecasting

The econometric methodologies in probabilistic forecasting can be divided into two groups,

those belonging to the Bayes approach and those to the time series approach.

1.3.1 Bayes Approach

The Bayes approach assumes that before a particular event takes place, there is a structural
change in the stochastic behavior of some observable information variables, known as leading
indicator series. In order to do probabilistic forecasting of the target event, we need to find a

way to detect the structural change of the leading indicator series.

Classic Composite Leading Indicator Method

In the classic Composite Leading Indicator method, we first choose a leading indicator series.
After combining them into a composite leading indicator, we adopt rules of the thumb to predict
the onset of a particular event. (see Hymans 1973) For example, in business cycle turning point
forecasting, we have the ‘3CD’ forecasting rule. When the composite leading indicator declines
in three consecutive quarters, a recession is considered imminent and an alarm of downturn is
triggered.

This method implicitly assumes that the distribution of the Composite Leading Indicator
series has the following regularity. When the state of the economy is good, it is impossible
to observe 3CD pattern on this series. Only when the state of the economy gets “bad”, 3CD

becomes a feasible event. More exactly,

PI‘(Xt == 1|St == 1) =0

and

Pr(X, = 1|5, = 0) > 0

where S; is the state variable for the whole economy and the event variable X; = 1 if 3CD

happens and X; = 0 otherwise. As a result,



PI'(St == 0|Xt == 1)
PI'(Xt = 1"91‘/ = 0) PI'(St = 0)
PI'(Xt = HSt = 0) PI‘(St = 0) + PI'(Xt = 1’515 = 1) PI’(St = 1)
=1

. That is, if we observe 3CD, we will infer that the state of economy has become bad (S; = 0)
and trigger the downturn alert.

One peculiar strength of such a method is its flexibility. The rule of thumb can be con-
structed based on various hypotheses. This is important when there is no established theoretic
work to explain the cause to the target event and the event is rare. One obvious weakness of

this method is that subjective factors often play a role.

‘Sequential Probability Recursion’ Scheme

The Sequential Probability Recursion scheme was first proposed in Neftici (1982). In this
method, an explicit Bayes inference method replaces the rule of the thumb. In addition, a
regime switch structure is formally imposed on the data-generating-process of the composite
leading indicator.

The main content of the regime switch framework is that the distribution of the composite
leading indicator will shift between two different settings. For example, let {Y;}7°; be the first

difference of the composite leading indicator.
Yy = po + €0, it Sp = 0;

Yi=p +e1if Sp =1

with constant py << p; and € €1, are i.i.d sequences that follows a Gaussian process. The
density distribution of go; and e1; are fO(e) and fl(e), respectively. The shift cannot be
observed at the time it occurs; however, we can use the Bayes rule to detect it. The probability
to estimate is 7, = Pr(Z < k| Yj, Yi—1,...) where Z is the random variable indicating the date

of the regime switches .



The dynamic Bayes inference scheme is

[, + (1 — 7)) f (Yk41)
Tk + Dr(1 = 7))l (k1) + (1= 7)1 = Tr] fO(Yk11)

where I'y, = Pr(z = k + 1|z > k).

(1.1)

Te+1 = {

Compared with the classic composite leading indicator method, this forecasting scheme
yields a probabilistic forecast with more rich quantitative content. In addition, this scheme is
able to accumulate information under the optimal stopping rule. Such a feature makes it a
breakthrough in the Bayes approach of probabilistic forecasting.

Though the ‘Sequential Probability Recursion’ scheme adds more scientific rigor to prob-
abilistic forecasting, there are some serious problems with this method. Although the regime
switch model assumes that the regime switch is unobservable at the time it occurs, these regime
changes have to be observable ex post in order for the forecasting scheme (1.1) to be imple-
mented. In his paper, Neftici groups observations according to the decision of the NBER dating
committee and estimates 'y, f°(e) and f!(e) using an empirical frequency method. The ad hoc
grouping of the composite leading indicator series will trigger some problems. First, it intro-
duces judgmental factors from the dating committee. Second, there is a potential goodness-of-fit
bias in the dating process. The regime dating of the composite leading indicator always needs
to be consistent with the regime dating of business cycles. Under this circumstance, there is an

upward bias for the goodness of the model fit.

Hidden Markov Chain Model

The hidden Markov chain model (see Hamilton 1989) falls into the category of the Bayes ap-
proach since we rely on the Bayes rule to infer the likelihood of latent regimes from the behavior
of observable variables. Unlike the ‘Sequential Probability Recursion’ Scheme, however, in the
hidden Markov chain model, the law of motion for the latent regime variable and the distrib-
ution function of error terms are not ad hoc. Rather they are specified as part of the model.
For example, let {Y;}$2; be the first difference of the composite leading indicator and S be the

latent binary event variable. Y; is specified as

Yi = pg + Y (L)Yio1 ey if Sp = 1



Yy = pg +o(L)Yi—1 +eos if Sy =0

where constant 1y << p1 and €o4, €1+ are normally distributed i.i.d sequences.

The latent regime process, S, follows a first-order Markov chain with the transition matrix

where p¥ = Pr(S; = j | S;_1 = i). A time-varying transitional probability can be added for a
more realistic framework (see Filardo 1994). Because the distribution of Y; is jointly determined
by Sy and the history of Y}, we can infer the value of S; and construct the conditional likelihood

function of Y; using the historic information of Y; through the Bayes rules.

The Model Misspecification Problem in the Bayes Approach

In each of these three methods which use the Bayes approach, there is improvement on the
statistic rigor. From the classic method to ‘Sequential Probability Recursion’ Scheme, people
add a regime switch structure. From ‘Sequential Probability Recursion’ Scheme to the hidden
Markov chain model, a latent dynamic structure is added. However, in terms of the event
forecasting performance, the new model is not necessarily better. Diebold and Rudebusch (1989)
attempted to compare the classic composite leading indicator method with the ‘Sequential
Probability Recursion’ scheme. Though the new model can provide more refined information
on the event probability, it does not improve the number of correct predictions of turning
points. As to the benefit of using the hidden Markov chain model, studies such as Filardo(1994),
Hamilton and Perez-Quiros (1996) show that the predictive power of the leading indicator series
is limited to only one or two months. One potential problem with the Bayes approach is the
model misspecification of the structure of the latent event series. Such a mistake, however,
will affect forecasting performance most because the dynamics of the event process plays a
central role in determining the odds of each event outcome. A more flexible setting of the
interdependence between the history of information variables and a future event’s likelihood

would help to alleviate this problem.



1.3.2 Time Series Approach

The time series approach does not impose a regime switch structure. The basic rationale for this
approach is that past shocks to information variables have a persistent impact on the likelihood
of the target event. If such an impact is stationary, then a time series model can be used to

capture it.

Stochastic Simulation Method

In this method, each forecasted event is inherently associated with a continuous-distributed

random variable. An example of this type of event is the variable E; where F; = 1 if a series

drops by more than 5% in the next period and rises by more than 5% in the period after next.

Normally, a series can be modeled as covariance-stationery process, e.g., an ARMA process and

the forecasting procedure always starts with the estimation of the underlying time series model.
Now we give an example for illustration, which is adopted from Wecker (1979).

Let {Y;}$2, be a time series that follow an AR(1) process, i.e.

th = Ozth_1 + & (1.2)

where g; ~ N(0,02?).

Let X; be

Xy =1,ifY;>0,Y1>0,Y;2<0,Y;3<0,

= 0, otherwise.

Finally, define a target event Z; as

Zt:ki

if we wait k periods before the next time X = 1.

To do the probabilistic forecasting, we need carry out a two-step procedure.

1. Estimate the data-generating-process, Y; according to the specification as in (1.2), ac-
quiring the estimator of o and o.

2. With the estimator of a and ¢, we do simulation to compute the probability of the



events of interest as follows. First, conditioning on observations of Y; up to time ¢, we generate

a series of artificial future values y,gi)l,yﬁ)z,yt(%,yt(ﬂ, ..,according to (1.2). Then, we obtain

the sequence xgi)l, 331(51)2’ l‘gi)?), :Ugi)@ ... according to (1.3). Finally, we acquire the realization of

zgn). After repeating this for N times, we can compute the empirical distribution of the event
variable Z;. We use a simulation method instead of analytic results because the latter involve

a high dimensional integration, which might be infeasible in certain cases. For example,

PI‘(Zt = 2) = /I<€t+2 > Oz2Y;§ + €41, 8141 > OzY%)dF(Et+1)dF(€t+2)

Simulation will be a much faster way to obtain a probability estimator. It certainly lead to
efficiency loss since a simulation procedure will involve sampling errors. As long as the sample
size N is large enough, however, the variance of sampling error will approach zero and the
accuracy is acceptable.

The major shortcoming of this approach is that in this approach we assume that we can
correctly specify the underlying data-generating-process of the event variable. One crucial
component of the model specification is the conditional distribution function of error items in
the stochastic process. In order to implement probabilistic forecast, such specification should
be as precise as possible. However, in standard econometric practices, the restriction on error
items is always required to be as small as possible due to insufficient knowledge. As a result, we

are subject to a great danger of model misspecification in the stochastic simulation approach.

Probit and Logit Model

The probit and Logit model also belong to the time series approach (see Estrella, A, & Mishkin
F.S. (1998) ). Unlike the stochastic simulation method, these two models require an direct
functional relationship between the conditioning variables and forecasted event variables. In

the Probit model case,

Pr(X;=1) = ®(a+ (Y1) (1.4)
where ®(e) is an accumulative standard normal distribution function. In the Logit model case

1

PI“(Xt = 1) = 14+ exp(—a — BY},*l)

(1.5)



Both Probit and Logit models were originally developed to study discrete-choice behavior in
microeconomics. The functional forms of (1.4) and (1.5) are derived based on the specification of
latent utility or profit function. If we apply them to other economic studies, i.e., macroeconomics
studies, however, the modeling foundation will not be as strong . In those cases, great caution

should be taken in model selections.

The Model Misspecification Problem in Time Series Approach

Like in the Bayes approach, the model misspecification constitutes a serious problem for the
time series approach. Unlike in the Bayes approach, however, it is the specification of the error
terms that cause the most concern. The impact of misspecification problems is the most serious
in the stochastic simulation method because the link between model estimation and forecasting
purpose is indirect. Using Probit and Logit models to do event forecasting can help alleviate
this problem to some extent because both models construct the conditional probability function
in a direct way. But if the departure from the true model is considerable, the impact of model

misspecification will be substantial.

1.3.3 Comparison Between Two Basic Approaches and Potential Ways of

Improvement

In the Bayes approach, the predictability of target events comes from the assumption that the
data-generating-process of the leading indicator variables will switch between different stochas-
tic settings before these events take place. The logic of this assumption is natural. It is not until
abnormal events occur that a shift in the current state is suspected. In the Bayes approach,
however, there is no specification on the time lag between the target event and the structural
change of the leading indicator variables. In addition, the likelihood of the structural change
of the leading indicators depends on the entire history of the conditioning variables due to the
nonlinear inference scheme. Such a forecasting approach fits the situation in which the events
to forecast have a significant influence but occur at a low frequency.

Models in the time series approach, however, impose a stationary correlation between the
likelihood of the forecasted event and the conditioning variables. This approach is appropriate

if it is obvious that the inter-dependence between the event variable and conditioning variables



can be characterized explicitly in a lead-lag fashion.

The common problem shared by these two approaches is the vulnerability to model misspec-
ification. In the Bayes approach, the existence and characteristics of the law of motion of the
latent regime process is the most fragile part. For example, in the business cycle turning points
forecasting literature, studies demonstrate that although a regime switch structure is significant
for the key macro variables like GNP, it is not obvious that the leading indicator series also pos-
sess such a structure (see Filardo 1994, Layton 1996). In the time series approach, the weakest
link is error term specification. When the forecasted event is associated with extreme behavior
of future shocks and the high-order moment of the distribution of shocks varies significantly
with the history of information variables, the standard model specification for moment forecast
will fare poorly.

We consider a new approach which combines the features of these two approaches and
tries to make improvement. Following the time series approach, we model the conditional
probability explicitly and estimate the model in such a manner that helps to minimize the
forecasting errors. To avoid serious misspecification, we construct the conditional probability
function without specifying the particular distribution function. Following the Bayes approach,
we allow the conditional probability to vary with the entire history of the information variables
in an extremely flexible way. As a result, the dependence between conditioning variables and
the target events can be highly nonlinear and the impact of past shocks can be spread over a

considerably long timespan.
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Chapter 2

DISCRETE-EVENT-
FORECASTING
MODEL

2.1 Basic Requirements for the New Model

2.1.1 A Direct Probability Estimator

In our new approach, we require that the forecasting model yield the probability forecast of the
future events directly. By doing so, we can set up a direct link between the model estimation
and the optimization of the probabilistic forecasting performance. Such a requirement adds
obvious improvement to the forecast when the target event covers multi-period situations. More
often that not, in multi-period forecasting, the model is estimated to optimize one-period-ahead
forecast but is used to do multi-period forecast in practice. The impact of model misspecification
will then become more remarkable since the error will be accumulated over time. Among all

the methods discussed above, only the probit and logit model meet this requirement.

2.1.2 A Flexible Conditioning Structure

Most studies using the probit and logit models adopt functional forms that combine a linear

model with a standard normal distribution function as in (1.4) or a logit function as in (1.5).
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Such a structure is appropriate if we apply probabilistic forecasting in the study of discrete
choice behavior. Seldom do we add dynamic consideration in those studies. Also specification
of the error terms usually plays a minor role in determining the forecasting performance. In
macro economy or financial market forecasting, however, a simple structure may not able to
characterize the underlying data generating process as well as in microeconomics studies.

In our new approach, we would like to adopt a flexible way of modeling. First, we do not
want to set stringent restrictions on the covariance structure in order to avoid serious model
misspecification. Special events such as regime switches or extraordinarily strong performance
of a stock cannot be attributable to a single sudden exogenous shock. The trigger is likely
to have developed over a long horizon. Cutting off on the lag without sufficient justification
will induce severe bias in the model estimation. Second, we do not want to set restrictions on
the distribution function of error terms. For extreme events in macro economies and financial
markets, the shocks that lead to these events usually do not behave regularly. For example,
high frequency shocks in the stock market have fat tails and may be highly skewed (see Cootner
1964).

2.2 Setup of the Discrete-Event-Forecasting Model

The core part of our new forecasting model is to set up a direct and flexible link between
the history of conditioning variables and the forecasted events. We use the following four-step
procedure to implement such a setup. We denote the new modeling approach as Discrete-Event-
Forecasting model.

a) Conditioning variables are clipped so that they become rationally-valued. For example,
let {Y;}72, be the original information variable that we want to condition. We clip the data to

acquire a new series {Y/}$°; through the following procedure.

Y/ =a; if Y; € [bbit1),

1=1,2,...,N.
b) The entire history information of the discrete-valued new variable is mapped onto the real

line to obtain a new variable. We call this variable an ARMA memory index of {Y/, Y/ |, Y/ ,..., }.
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For example, we define the ARMA memory index M;(«) as

oo

M) = (1—a) a7y, (2.1)

i=1
c) A conditional probability function is set up to map the ARMA memory index into a
probability measure for a specific event. For example, let {Y;}§°; be a series of binary event

variable . The forecasting model is

Pr(X; = 1Y/ 4,...) =Pr(X; = 1|M(c)) (2.2)
= [(Mi(e),©)
where f(M;(a), ©) is a flexible functional form on [0, 1] and © is the parameter set. In order to

achieve the flexibility, we adopt a semi-nonparametric estimation method with a wavelet basis,

ie.,

K
F(My(e),©) = > cjopjo(Mi(e)) + Z > 05k (Mi(a))
k=Ko Jj=jo k

where @ = {Cjo,k7 k= K(), ceey Kl,(gj’k,j = j(), ...jl, k= Kl, veey KQ}.
d) We use Maximum Likelihood Method to estimate ©i.e.,

0 = mgxf(@) (2.3)
= max ] [log [X;f(Mi(a), ©) + (1 = X4) (1 = f (Mi(a), ©))] (2.4)
t=1

In the following we will briefly address the main purpose of each step in our new approach.

First, the main goal of the data clipping procedure is to transform the conditioning infor-
mation set F; into a countable set. Intuitively, this procedure bundles some elements of the
original information set together, condenses them into a single element and puts it into a new
set. By doing this, we shrink the size of the conditioning information set.

Second, the shrinking of the original conditioning information set makes it possible for us

to find a one-to-one mapping between the historic information of the conditioning variable
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and a real-valued random variable. With such a mapping, we can construct a one-dimension
information variable, M;(«), that contains all the information embedded in a high-dimensional
information vector, {Y/, Y/ ;,...}.

Third, setting up the conditional probability function as in (2.2) is such that our new fore-
casting model possess all the above mentioned desirable properties. We have a direct probability
estimator for the event we want to predict, i.e., f(Mi(a),©) = Pr(X; = 1]Y} 4, ...). The func-
tional form is flexibly structured due to a semi-nonparametric estimation approach. Moreover,
we adopt a wavelet basis to make the function estimation be sensitive to a local change in the

functional shape.

2.3 Main Trade-off between the Discrete-Event-Forecasting Model

and Traditional Modelling Approaches

The Discrete-Event-Forecasting model can help avoid major misspecification in the model struc-
ture of the conditional probability functions. This is particularly important when we choose
events that are difficult to predict due to the complexity of the driving force. More often than
not, the occurrence of these events is driven by shocks whose impacts diffuse slowly initially.
Once these impacts become a public knowledge, the speed of diffusion will pick up and induce
dramatic changes. For this reason, the dependence structure for the conditional probability
function will cover a long horizon and the marginal impact of the changes in conditioning vari-
able will be non-constant. Our new modelling approach can pick up these irregularities and
improve probabilistic forecasting.

We must pay a price for these potential improvements. In the Discrete-Event-Forecasting
model, we clip data to implement the ARMA memory index model. By doing so, we shrink
the conditioning information set and increase the variance of forecasting error. Moreover, when
the learning sample is small, we can not model our conditional probability function to such
an extent that all the variation in the functional form can be captured. For that reason, the
forecasting error may be enlarged further.

More formally, we defineF;_; as the o—algebra generated by {Y;_1, Y;_o...} and F}" ;as the
o— algebra generated by the clipped version, {Y; ;,Y/ ,...}. Note that F;_1 C F;;
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When the conditional function E(X¢|F—1) = Z}, E(Y:|F; ) = Z} are both correctly

specified, we have

MSE, = E[Y;— B(Yi|Fi_1)]

= Blvi-7)
and by the law of iterated expectation,

MSE, = E|Y;— Z]?

= BV~ +E[2; - 4]

When the conditional function E(Y;|F;_1) is misspecified, say, ZY # E(X;|F;_1) but Z7 is

still F;_1 measurable, by the law of iterated expectations,

MSE,, = E[Y;—Z]]

We define Dify ; as follows.

Difs; = MSE,, — MSE,

- B2} -2 -E[2} - 7]

E [Ztl — Z;f] ? is the variance increase due to the information set shrinkage while [Ztl — Z?] 2

is the variance increase due to model misspecification. The sign of Dify y will determine which

is a better forecasting method.
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2.4 Two Important Econometrics Issues for the Discrete-Event-

Forecasting Model

2.4.1 ARMA Memory Index Model
Basic Content

One core methodology for the discrete events forecasting model is the ARMA memory index
model developed in Bierens (1988). A distinctive feature of this modelling approach is that it
allows a flexible way of modelling the covariance structure in a conditional expectation function.
As shown by Bierens (1988) , under mild regularity conditions, conditioning on the entire history
of a rational-valued time series process is equivalent to conditioning on a single random variable
which captures all the information contained in the past of the process. This random variable
is called ARMA memory index since it can be formed as an autoregressive moving average of
past observations. For example, let Y/ be a univariate rational-valued process. Under mild

conditions, using the ARMA memory index approach, we have

B(Xi|Y/ 1, Y 5 .y) = E(X¢| My()) (2.5)

where E(e]e) is a conditional expectation function and M;(«) follows (2.1) with a € (—=1,1)\ S,
where S is a countable subset of (—1,1). The conditional expectation function, which conditions
on the entire past of the time series involved, now becomes a Borel measurable function of a
single ARMA memory index. Modelling the original function is impossible due to the ‘curse of
dimensionality’ problem. Modelling the transformed function, E(X;|M;(«)), however, can be
implemented given that we can choose a flexible nonlinear functional form.

The proof of these theorems on ARMA memory index model is complicated (see Bierens
1988). But the main idea is intuitive. The key is the existence of a one-to-one mapping
between the real line and a infinite-dimensional rational-valued vector. Due to such a mapping,
the conditional probability can be transformed into a function of the index without information
loss. Next, we give an example of such a mapping.

Let Y}-’,j = 0,1,2...be a sequence of variables taking values in the set {0,1,2,...k}. Let for
a € (0,1),
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oo

M(a) = (l—oz)Zoijj'

=0
and let M, be the set of all possible values of M («).
If Yy =se€{0,1,2,..k}, then

M) = (1-a)s+a(l —a)Zanj' >(1—a)s
=0

M(a) < (1—a)5—|—a(1—a)§:ajk:
j=0

= (1—a)(s+1=—=h)

If
1

2.6
SEr1 (2:6)

(07

then the intervals [(1 — a)s, (1 — a)(s + 72 k)] are disjoint, hence for every M € Mg, we can

determine the value of YO’ as follows:

Yy =sift M € [(1—-a)s, (1 —a)(s+ 125k)]
Once the value of Y has been established, define

M—(1-a)Yj
a

MO =

Then

yy:sﬁnﬁeK1_ap41—ax&+T%am]

More generally, for Y/, ¢ > 1

W:sﬁmwuqu—®&u—@@+la k)]

—

where
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_ MUY (1 -0y,
B o

M®

With the above algorithm, it is easy to show that the mapping between M and {Y/}?°, is
one-to-one.

We should keep in mind that (2.6) is a sufficient but not necessary condition. In general,
this can be done for any a € (—1,1) \ S where S is a subset of (—1,1) with Lebesgue measure
0.

Strength of ARMA Memory Index Approach in Economics

The ARMA memory index model will be particularly useful when the following situation exists.
First, there is nonlinearity in the dependence structure for the underlying data-generating
process. Only when we combine the historic observations of information variables together can
we find a significant impact from the past. Second, the shock that promotes the chance of
target events diffuse its influence slowly. Therefore, movements of information variables in the
distant past will still have a significant impact on the likelihood of the target event.

The above situations will take place when the target event is not driven by a simple ex-
ogenous shock. Extreme events in Macro-economies and financial markets usually fall into this
category. The main cause of these events is a combination of both human factors and tech-
nology factors. A simple dependence structure between conditioning variables and events to
be forecasted does not exist. Hints towards the likelihood of target events are scattered in the
history of conditioning variables. Those hints will have little predictive power if we consider
them separately. The ARMA memory index approach makes it possible to find useful patterns

by allowing conditioning on the whole history of information variables in a flexible way

2.4.2 Semi-Nonparametric Estimation with Wavelet Basis

A crucial factor in the success of ARMA memory index model is modelling a flexible functional
form for the transformed conditional probability function of the ARMA memory index, i.e.,
(2.5). The latter can be fulfilled through the second core methodology for the discrete-events-

forecasting model, the semi-nonparametric estimation method. In semi-nonparametric estima-
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tion, an unknown functional form with little prior knowledge imposed is estimated. Therefore,
the object to be estimated is the entire structure of a functional form rather than an unknown
scalar or vector as we see in standard parametric estimation.

The basic rationale behind semi-nonparametric estimation can be summarized by the follow-
ing observation. Due to the isomorphic property of Hilbert Space (see appendix for definition)
to 2 space, any infinite dimensional real vector can be decomposed as the ‘sum’ of its projection
on the basis vectors; any functional form in a separable inner product space can be decomposed
as ‘sum’ of orthogonal basis component (Fourier Series). Therefore, estimating a functional
form becomes equivalent to finding a coefficient vector (Fourier Coefficients) for components
of an orthogonal basis. As a result, it is possible to apply the standard parametric estimation

methods into functional estimation (see appendix Al).

Fourier Analysis The main purpose of the Fourier analysis is to find a simple way to repre-
sent an arbitrary functional form. The following theorem sets up a natural link between Fourier

analysis and basic properties of an orthonormal basis (see more in the appendix).

Theorem 1 An inner product space is separable if and only if it has a complete orthonormal
sequence (xy).Furthermore, in a separable inner product space, any x € X can be written

uniquely in the form x = Y (x,x,) xy for any orthonormal basis (zy,).
neN

Under certain conditions, Fourier series will have good convergence properties for piecewise
smooth functions and bounded-variation functions (see appendix A). Due to these properties,
we can approximate any functional form in a large class of functional space through a linear

combination of functional components in a Fourier series.

Wavelet Analysis In Fourier analysis, a functional form is broken into frequency compo-
nents. Each frequency component in Fourier analysis is a periodic function. If a functional
form has a cyclical curve pattern, then it only takes a small number of Fourier coefficients to
obtain a good estimator of this pattern. The efficiency is due to the global property of Fourier
analysis. But the global property also brings a fatal shortcoming. If a curve pattern is a local
phenomenon for a functional form, then we must use a lot of components of Fourier series to

cover it. The Fourier analysis will become extremely inefficient under such circumstances. A
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way to overcome this problem is to find a functional basis, whose components are localized in
its time domain. That is, the function value of each component is far away from zero only on a
small region of the component’s domain. As a result, Fourier coefficients of this basis will give
only local frequency information of a functional form. If such a basis can be constructed, then
coefficients of this basis will give the local ‘content’ of a functional form in the time domain
and frequency domain simultaneously, which is known as time-frequency analysis.

The wavelet analysis is introduced in order to implement this idea. The strength of wavelet
basis in functional analysis relies on the time-frequency analysis. The ability of carrying out
time-frequency analysis improves the sensitivity of functional estimation to drastic local behav-
ior of a functional form. It ensures detection of an anomaly in a functional shape with a small
number of parameters. If we consider such a feature in a dynamic way, the estimation method

could absorb new information in the functional form much more quickly than a regular one.

Brief History of Wavelets

The general form of wavelet is sequence {1, ;(7) j,k € Z},s.t. 9. = 2_%1#(2*133 — k) consti-

tutes an orthonormal basis for the space L?(R),i.e.,

=0ifi#Ajork
/ ;1 (@)0;  (x)d i#jork#m

=1 otherwise

Such a formation contains two types of operation, the dilation such as ¢;(z) = ¥(277z) and
the translation such as ¥ (z) = ¢ (z + k).

The first wavelet to be discussed in the literature is Haar Wavelet, which is a compactly
supported wavelet. It was worked out by Haar in 1909. He tried to find an orthonormal base
which can uniformly approximate any continuous function on a compact support. Opposite
to the Haar wavelets, the Littlewood-Paley wavelets have compact supports in Fourier trans-
forms. The first wavelet with excellent analytic properties in the time-frequency domain is due
to Stromberg(1982). The wavelet is C* with an exponential decaying speed in its functional
form. Later, Meyer built up a wavelet with a compact support (see Meyer(1985)). He found the
wavelet while he was trying to establish a proof of nonexistence of such a basis. Immediately

after that, the first example of biorthogonal basis was constructed by Tchamitchian (1987). In
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the following year, Battle (1987) and Lemeir (1988) independently constructed the wavelets
with the same structure, which is called Battle&Lemeir wavelets. Due to the lack of systematic
theoretic foundation behind the constructions, these results seem more like miraculous inci-
dences. Finally, Multi-resolution Analysis (MRA), first introduced by Mallat (1988) based on
his knowledge of image processing, offered a unified framework to explain the success of all
these cases. It is MRA that demonstrates that the wavelet is a synthesis of ideas originated in

recent development in physics, engineering and pure mathematics.

Multi-resolution Analysis and General Approach of Constructing Wavelets

The Multi-resolution analysis has its root in the subband coding and quadrature mirror filter-
ing(see Meyer 1993, Chapter 3), which are popular in image processing. The image of each
object can be analyzed in a hierarchical way. It can be first decomposed into two orthogonal
parts, a trend component Wy and a fluctuation component V4. The trend component shows a
smooth and regular sketch of an original image, while the fluctuation component is the devi-
ation from the regular sketch. After that, the trend component is left intact. The fluctuation
component, however, is further analyzed into another pair of a trend component and fluctua-
tion component, W7 and Vi. With such a decomposition procedure, the images remaining in
trend components will be increasingly volatile. The size of fluctuation components V;, however,
shrink to be negligible. Since trend components in the later stages are capable of characterizing
more volatile variation of a functional form, such analysis is called a high resolution analysis.
Correspondingly, the analysis in early stages is low resolution analysis. Multi-Resolution Analy-
sis (MRA) is the mixed usage of them. According to the construction, the two components in
each step are orthogonal to each other, i.e.,W; L V; . Since each trend component in a stage
is a part of the fluctuation component of the previous stage, trend components are themselves
orthogonal to each other i.e., W; L Wy j # j'. Therefore, in the end, an image is decomposed
into an infinite number of trend components which are orthogonal to one another.

The link between wavelet basis {¢; () j,k € Z} and Multi-Resolution Analysis (MRA)
is as follows. To construct a wavelet basis, we need to find a sequence of subspaces V; such
that such that V;_; D V; D Vji1, UjezV; = L*(R) and NjezV; = {0}. For each Vj, we have an

orthognormal basis, {¢; (x), k € Z}. From {g; (x)}, we can construct an orthognormal basis

21



{1/1]»7k(x) k € Z} for each subspace W;, which is the orthogonal complement to Vj, i.e.,,V;_1 =
Vi @ W;. Due to the properties of V; and Wj, the system {%;(x) };1 will constitute an
orthogonormal basis for L2(R). Normally, we denote ©; () as the scaling function and 1; ()
the mother wavelet function.

In constructing {¢, x(z) k € Z} from p(z), we use two properties of v, (). First, ¢, ()

belongs to Vj_1 and we can have a Fourier representation of it as

U=

%’Jc(w) =2z

1 i
an(p(Q 0Nz —n)

where ¢(27U~Dz — o) is the orthogonal basis for V;_;. Second, ¥, ,(z) is orthogonal to each

basis function belonging to V;_1, .i.e.,

(€

5 /wj,k(a:)@(f(j_l)x —n) =0 for all n.

From those two conditions, we obtain one possible approach of constructing wavelet basis, that

is,

Y(w) =22 Y (=1)" " hopo19(28 —n) (2.7)
&) = ol + m)6(5) (28)
where

mo(€) = % > hpemmt

is called low pass filter because of the following property

2(6) = mo(3)(3) (29)

or
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p(2) =28 Y hup(2z —n) (2.10)

The function mg(e) is able to filter out the high frequency information of a function form
from its low frequency counterpart directly or it can construct a function with a large scale
from its small scale counterpart through its Fourier coefficients h,. Note that the method of

construction is not unique. The equation (2.7) can also be replaced with
¥() = 3 (1" nap(2r — ) (211)
n

We refer readers to the appendix for more formal illustration and related literature.

Example of Wavelets

Haar This is the simplest case of wavelets basis.

1.The scaling function ¢(-) of Haar wavelet is

plx) = 1if0<z<1

= 0 otherwise.

2. Define Vp = {f(z) : f is constant on the interval [k — 1,k), k € Z }, of which the above
function is an orthonormal basis.

3. Using (2.10), mg is

hn = V2 [ @(z)p(2z — n)dz :% if n=0,1

=0 otherwise

4. Finally, using (2.11), we obtain

B@) = S ho1p(2r —n) (2.12)

n

—Z50(20) = (22 =1

The Haar wavelet is compactly supported. but it is discontinuous. The consequence is that
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it has bad frequency localization. It is inappropriate to use such a function basis to approximate

a function with reasonable smoothness, even though it converges everywhere.

Meyer Wavelet 1.The Fourier transform of the scaling function is

(z) = Vor ¢| < 2n/3
= VEreosSu(os fe] 1), 26/3 < [¢] < dn/3

S

=0 otherwise

where v is a smooth function satisfying

(a)

v(iz) = lifz>0

= 0 otherwise

v(z)+v(l—z)=1

2. Define Vj as the space spanned by this set. Then V; is a closed subspace spanned by the
Pik = 27%@(2_%7 — k).
3. The myg is

mo(€) = V21 Y $(2(€ + 2n))

lez

4. Finally, the wavelet basis is defined using (2.8)
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€) = €% mo(€/2+ )] @(£/2) (2.13)
= Va2 (€ + 2m(20 + 1)) p(E/2)

lez

= V212 [p(€ + 2m) + @€ — 2m)] p(£/2)

<>

Spline Wavelet This class of wavelet is also called the Battle-Lemarie family wavelet. It is
also called spline wavelet, because the scaling function for is B-spline of degree n, n € N'. In
fact, Haar wavelet is a special case of the spline wavelet with degree 0. The spline wavelet with
degree 1 is called Franklin Wavelet.

1. The scaling function is piecewise linear function

p(z) = 1—|z/,0<z<1
= 0 otherwise
The Fourier transform of it is
sin&/2

By normalizing, we get

1+2cos?¢/2

) 20(9)

7 (&) = (

2. By (2.9), the corresponding m#({) is then

_ 9729
(3]

3. Fourier transform of the mother wavelets then is

mi (€)

1 +2cosQ(§/2)]1/2

= COSQ(£/2) [ 14+ 2cos?(§)

!B-spline function
The B-spline funtion of order n is the set of function f,such that the restriction of f to (n,n+ 1] if polynomial
of degree n.
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<>

€ = 2 mfe2+m| o*E/2) (2.14)

1+ 2sin?(£/4)

1/2 Y
H—Tsz(ﬁ/Q)] o7 (£/2)

= &/2gin?(£/4) [

Using the same logic, we can construct the B-spline wavelet with degree n for any n € N.The
procedure is as follows:

1.The scaling function satisfies

efim£/2(5i2/§2/2 )n

an(f) = (Fm(e,ig»l/g
where _—
Fn(z) = Y Nom(m+k)a*
—m—+1

Nom(m + k) can be calculated using following iterative algorithm

No(k) = 0
k —k+1
Nagi(k) = =Na(k) + “——=No(k— 1)
n n
2. The mother wavelet is computed as
~n 4., . Fo.(—z)
— _(Z\np—i€/2 4)2" n 2.1
U6 = ~() e e/ [ (215)

where z = e™/2 We refer interested readers for more detailed description of the above con-

struction to Chui (1992).

Compactly Supported Wavelet (Daubechies Wavelets) All the above wavelets were
constructed before the discovery of Multi-Resolution Analysis. MRA offers a unified framework
to them. Daubechies Wavelets, however, rely heavily on Multi-Resolution Analysis and are good

examples to demonstrate the strength of MRA. However, the compactly supported wavelet does
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not have an explicit expression form as the above examples. In order to plot the Daubechies
wavelets, we need to use some special algorithm. Even so, the usage of Daubechies Wavelets
in engineering fields has been overwhelming since it was invented. The major attraction comes
from the compactness of its support. When we fix the level of resolution, as long as the estimated
function has compact support, the number of wavelet components we use to approximate the
functional form is always finite. This makes computation extremely fast. Since the way to
construct Daubechies Wavelets is too complicated and is of little help for our later discussion,

we skip this part. Interested readers could refer to Daubechies(1992) for detail.

Wavelets and Statistics

Functional estimation It is also called signal estimation. The main advantage of wavelet
analysis in functional estimation comes from its capability to carry out localized multiscale
decomposition. Although multiscale analysis is not new, the localization property distinguishes
wavelet analysis from many traditional statistical analysis tools.

The main task of functional estimation is to effectively extract the functional form of a sig-
nal from contaminated observations. Usually, the signal has a structure that can be represented
by a smooth function. Since a function may have a different level of smoothness on different
scales, multiscale decomposition can help filter out the smoother structure. The main work-
ing mechanism of wavelet analysis on functional estimation can be explained by the following
example due to Dohono et al (1995).

1. The regression model is

yi = f(zi) +ogi,i =1,2,..n

where z; are equally spaced points and ¢; are i.i.d Gaussian noise.

2. Given that f(z;) satisfies some regularity conditions, it can be represented as

Fla) = anpop(@i) + Y 05x; (i)
k .k

where ¢ () is a scaling function and 1, () is a wavelet function. The coefficient are
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computed as

G =Y f@)Po(e) (216)

and

000 = D F(@i)hjul(w2) (2.17)

Now, we cannot observe f(x;) directly. To get an estimator of the above coefficients, we

rely on its noised version ;. Then the coefficients will be

ap = Y (f (@) + 620)@o () = i, + &,

and

05 = Z(f(fﬂi) + 581‘)%,1@(%) =0+ &k

The &, &\, are i.i.d Gaussian noise with distribution N (0, o%) and N(0, O'?’ i) respectively.
3. Using a thresholding method, we screen out a wavelet coefficient estimator which has
very small value, that is,

~(t o o
B\ = 0,1(0; > M),

where I(-) is the indicator function.

. A ~(t .
4. After that, we use the estimator &; and 95,1 to reconstruct the function f(-) by

Zak%k T +29],k%k ;)

It should be noted that the threshold A is a function of sample size n and variance factor
0. Since the latter is unobservable, we need to estimate it as we estimate the functional form
for which an iterative algorithm can be used in many cases. Since coefficients will be shrunk if

they are below thresholds, this method is called wavelet shrinkage method.

Density Estimation The second major area of statistical application of wavelet is density
estimation. Again, using orthonormal series expansion to estimate a density function is by no
means a new practice. There are two main approaches to implement the estimation technique.

(1) The first approach uses a representation theorem to carry out the semi-nonparametric
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estimation This looks like a parametric estimation. An econometric application is Gallant and
Tauchen (1987).

(2) The 2nd approach uses the idea of kernel estimation to carry out nonparametric esti-
mation. The kernel is generated with a orthogonal series. As is shown in the appendix, the
Dirischlet kernel function is the key to the good convergence properties of Fourier series. In

particular,

/f(w)Dn(y —z)dzr — f(y) asn — o0

The D, (y — ) is called § — sequence because its limit behaves like a § function?.

In wavelet density estimation, several approaches have been explored. A typical one has
inherited the same idea as approach (2). Wavelet series are used to create a § — sequence. We
set the reproducing kernel function of subspace Vj in Multi-resolution Analysis as the starting

point for the construction of a kernel function. A general formula is

g(z,y) = > (e —k)p(y — k)
k

and

gm(,y) = 2™ (2" — k)p(2™y — k)
k

As m — 00, gm(x,y) — 0 function.
Such a method is also called linear wavelet density estimator(see Gilbert 2001) Another
group of estimator, nonlinear estimator, gains more interest.

The general form is

’Dyadic-Delta Function:
Dirac Delta Function is a function J, satisfying:

0-(t) = 0ift #x

/ Su(t)dt = 1

Therefore, [ f(¢)d(t)dt = f(z) if f(t) is well defined at point .

and
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Ji
) = Z%,Wo,k(ﬂﬁ) + Z Zgj,k¢j,k<$)
k

J=jo J;k

where
1 n
Ciok == D Pio.k(Xi) (2.18)
i=1

_ % S (@) (2.19)
i=1

As in Donoho et al.(1996), a simple non-linear wavelet estimator can be defined via thresh-

olding

Z%,k% k() + Z 29] KT (2.20)

Jj=jo k
where
fa h
O =0"(0jk, N
For more information on wavelet and statistics and time series analysis, we refer interested

readers to Antoniadis & Oppenheim(1995) and Percival (2000).

Combining the Semi-Nonparametric Estimation with Wavelet Analysis

Wavelet analysis is applied in a similar way as in Gallant and Nychka (1987) in this study.
We adopt the series expansion procedure to represent the functional form for estimation. We
then use Maximum Likelihood Estimation to estimate wavelet coefficients cj, x, %, in the

representation form as

Ky
F(My(e),©) = > cjopjo(Mi(e)) + Z > 05111 (Mi(a))
k=Ko Jj=jo k

where © = {cjo.r,k = Ko, ..., K1,0;1,5 = jo,---j1,k = Ki,..., K2}. In order to obtain a con-
sistent estimator of the functional form, we apply the method of sieve (see Grenander 1979,
Geman & Hwang 1982 ). In this method, the number of the components chosen to construct

the functional form is always a small fraction of data size. As a result, the variance of coefficient

30



estimators can be kept small although we may face the bias in the functional form in a small
sample case. As the sample size grows large, the bias of the functional form also shrinks due to
series expansion. As long as wavelet coefficients of a functional form dampen quickly enough,
an estimator will get arbitrarily close to the true functional form quickly.

The combination of wavelet basis and semi-nonparametric estimation makes it possible
to combine the strength of both parametric estimation and non-parametric estimation. Non-
parametric estimation is pure local analysis while parametric estimation is global. Local analysis
can avoid serious bias in model estimation while global analysis can improve estimation efficiency
if the local departure is minor. Applying semi-nonparametric estimation to the wavelet basis is

a way to balance the bias and the variance in functional estimation.
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Chapter 3

MONTE CARLO EXPERIMENT
FOR DISCRETE-EVENT-
FORECASTING

MODEL

In this chapter, Monte Carlo experiments are designed to study the performance of the new

forecasting model.

3.1 Experiment Design

3.1.1 Target Event

The Discrete-Event-Forecasting model is designed to do probabilistic forecasting of special
economic events. The accuracy of such forecasts is sensitive to the model specification on the
conditioning structure and the specification of error terms. In our experiment design, we will
examine the potential improvement provided by the Discrete-Event-Forecasting model when
the underlying process departs from a standard ARMA process significantly.

Let Y; be a univariate stationary time series. We choose the following events to forecast.

(1) Single-period event.
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(a) Mild Gain Event: the time series under study, Y;, is higher than a value that is a

little higher than the average at the period ¢.
Xigt=1(Y; >Y,)

where Y, is the mild gain value. In our experiment, we choose Y, such that 30% of the observed
data is higher.
(b) Severe Loss Event: Y; drops sharply at period t.

Xl,l,t - I(n < Yf)

where Y_ is the severe loss value. In our experiment, we choose Y_ such that 5% of the observed
data is lower.
(2) Multi-period event.
(a) Mild Gain Event: The time series under study, Y;, is higher than a 1-period mild
gain value at the period t, or higher than a 2-period mild gain value for the period ¢ and ¢ + 1,
or higher than a 3-period mild gain value for the period ¢, £ + 1 and t + 2.

Xmgt =1(Y;>Yi 1 or Y+ Y1 > Yo or Y+ Y1 + Yo > Y3 4)

In our experiment, Y7+ =Y, , Yo =2 x Y, Y3 =3 xY,.

(b)Severe Loss Event: Y; drops heavily at ¢, or t and ¢t + 1, or ¢, t + 1 and ¢ + 2.

Xngp =I(Ys <Y_or Yy + Y <Y_ or Yy + Yiq1 4 Yigo < Y)

If we consider Y; to be investment gain, the probabilities of type (a) events indicate the odds
of breaking even. The probabilities of type (b) events show the chance of heavy loss during the
forecast period. We choose these types of events to forecast for several reasons.

First, we choose mild gain values so that the mild gain event will not be a big surprise if
it takes place. Normally, the likelihood of this event is mainly affected by the position of the

conditional mean. We choose severe loss values such that their happenings will be a bad surprise.
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Both conditional mean and higher-order conditional moments determine the likelihood of such
events. As a result, model misspecification problems may affect the forecasting performance of
these two events in different ways.

Second, we compare single-period events forecasts and multi-period events forecasts be-
cause forecasts of events covering longer time horizons are likely to be more sensitive to model
misspecification. The error due to misspecification will be accumulated in multi-period fore-
cast. In real-world practice, events like multi-period severe loss events play a significant role in

determining the risk of a multi-period investment plan.

3.1.2 Data

We generate an original time series Y; using two approaches.

ARMA Approach.

In this approach, a process is generated using an explicit difference equation. We adopt four
types of specification, specified in such a way that the deviation from a standard AR process
grows.
(1) AR(3) process
Y, = ¢(L)Y},4 + &¢

where £, N(0,1).
(2) ARMA(3,3) process

Yy = o(L)Yi1 + 9 (L)e

where £, N(0,1).
(3)ARMA(3,3) process with mixed distribution with fixed weight

Y; = o(L)Yi—1 + ¥(L)ey
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where

er = €1, with probability p

= &9 with probability 1 —p

where 1 N(0,1) and g2, N(0,0%), 0 > 1.

(4) ARMA(3,3) process with mixed distribution with time-varying weight

Yi=o(L)Yim1 +(L)es

and

1
1+ exp(—p(L)Yi-1)
exp(—p(L)Yi—1)
1+exp(—p(L)Y—1)

e¢ = €14 with probability

= &9 with probability

£14 N(0,1) and e3: " N(0,0?), o > 1.
For each setting , 1000 data points are generated. We use 600 data points to estimate the
conditional probability function, 200 to cross validate and 200 to do out-of-sample forecasting.

50 samples for each type of specification are generated.

Non-Equation Approach.

In this approach, we do not follow an explicit difference equation to generate the data. There-
fore, we ourselves do not have a clear idea of the exact description of the law of motion for the
underlying data-generating process. We first generate a i.i.d series Z; which follows a standard

normal distribution, i.e., Z;"N(0,1) and cov(Z,, Z,) = 0,t1 # to. Then we generate Y; as

follows.
Let V; = Y'_, Z,,
Ift=1,

(1) if (1 — a)Z; > Z,then Y; = Z; and C; = 1;otherwise, Y; = aZ;, Cy = 0.P; = Y7;
Ift>1,
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(1) if |V; = (Pre1+ Z1)| > Z and [V; — (Po1 + Z1)] Z > 0, then Y; = [V — (P14 Zy)] (14
By) and Cy = 1;

(2)if |Vi = (P_1+ Z)| > Z,Ci—1 =1 and [(Pr—1 + Z;) — Vi) Z; > 0, then Y; = Z,(1 + f35)
and C; = 0;

(3) if Vs — (P—1 + Zt)| < Z, then Y; = aZ; and C; = 0.

P = Xt: Yz

We c;?consider Zy as original shocks for an asset’s price. V; is the intrinsic value of the
asset at period ¢ and P; is the price of the asset at the period .

The price P; evolves in the following way. If Z; is small, its value will be reflected on P,
partially, i.e., aZ;. When such under-valuation persists too long and |V; — (P—1 + Z;)| becomes
too large, the price needs correction. However, there will be overcorrection each time, i.e.,
Vi — (Pi—1 + Z)] (1 + ;). Moreover, if Z; has the same sign as (P—1 + Z;) — V; immediately
after the correction is overdone, the overcorrection will be extended even further, i.e., Z;(14f5).

The data created through this non-equation approach will behave in a way that is more
difficult for standard time series models to capture. As a result, the forecasting performance
will be deteriorated more severely if model misspecification occurs. By doing so, we reduce bias

in the model comparison.

3.1.3 Model Setup
Discrete-Event-Forecasting model

The conditional probability function is set up through the Discrete-Event-Forecasting model.

Pr(Xl,g,t = 1|Y;‘,/7171/t/727 ) = F(My(a)|a)

where X7 4, is the mild gain event variable and Y is a clipping version of Y; ,e.g.,

p
Y =) al(Yi € A)
=1

where UleA,- =Rand A;NAj =® and
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o
Mi(a) = (1 —a) Zajytl—l—ja
=0

We specify F'(z|a) such that F(x|a) € [0,1] for all x € R. It is constructed by letting

1
F(z|la) = .
) = @)
where
h(z) = In(+——),z € (0, 1).
and g(z|a) is
K1 J1 K
Gioir () = D CiokPjor@) + D D> Ot x(x)
k=Ko j=Jo k=Ko

where ¢; () is scaling function and 1; () is the mother wavelet function. In our model, we
choose spline wavelets (see chapter 2) with degree 1 for our estimation.

When the data sample is not large, we must choose an appropriate dilation truncation Jy, Ji
and translation truncation Ko, K1, Kjo, Kj for the scaling function, cpj’k(:z), and the mother
wavelet function , ¥(), respectively.

In our model, we choose the following specification:

(1) For the scaling function: Jy = 0,and Ko = —1. So we have three scaling function with
0 resolution level (see Figure 3.1).

(2) For the wavelet function: J; =1 and

a) K190=—-2,K11 =1 (see Figure 3.1)
b) Kog = —5,K21 =,4 (see Figure 3.1)

As a result, we have three basic models:

Model (1) only has scaling functions and the number of functions is 3.

Model (2) combines scaling functions (scale 0) with mother wavelet functions (scale 0) and
the number of functions is 7.

Model (3) combines scaling function (scale 0), mother wavelet (scale 0) and mother wavelet

(scale 1), and the number of functions is 17.
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For each data process, we have 30 different Discrete-Event-Forecasting models (10 values for
a and three resolution level). We do model selection through cross validation; that is, we com-
pare the model performance all the Discrete-Event-Forecasting models using cross-validation
samples. We then choose the model with the best performance for the final-round out-of-sample

forecast.

AR model.

We estimate each simulated data process with an AR(p) model. Based on the estimation result,
we compute the conditional probability using either an explicit formula (single-period event) or
the stochastic simulation method (multi-period event) (see Chapter 1). We do model selection
through cross validation, that is, we estimate the AR(p) process using the learning sample with
various lag specifications. We then choose the model which has the best mean square error

performance in the cross-validation sample.
3.1.4 Model Evaluation
We compare the model performance in terms of the Quadratic Probability Score (QPS), i.e.,

T
QPS=T" Z[Xl,b,tﬂ — Pr(Xy 41 = 1Y, Yioa, ., Y1)]? (3.1)
=1

This is the standard performance measure for probabilistic forecast in economics literature (see
Diebold and Rudebusch 1989). It gives a measure of the accuracy of the probabilistic forecast

which is analogous to the Mean Square Error for level forecasting.

3.2 Experiment Result Analysis

3.2.1 Single-Period Forecast

In Table 3.1, statistics are presented comparing probabilistic forecast performance on a single-
period event between the AR(p) model and the Discrete-Event-Forecast (DEF) model. The
statistics include (1) the absolute and relative Quadratic Probability Score performance be-

tween the AR model and the Discrete-Event-Forecast model, (2) Wilcox statistics for relative
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performance, (3) the number of cases in which Discrete Event Forecast model outperforms (4)
the average Mean-square error for the AR(p) models and (5) the average Quadratic Probability
Score for the Discrete Event Forecast model. In Panel A, probabilistic forecast on a single-
period mild gain event are compared. In Panel B, probabilistic forecast are compared for a
single-period severe loss event.

For data generated by the ARMA approach, i.e., the first four types of process, the AR(p)
outperforms Discrete-Event-Forecast (DEF hereafter) model significantly in both cases, con-
firmed by t-statistics (Col 3) and Wilcox statistics (Col 4). Moreover, across the four types of
simulated processes, for both the AR(p) model and DEF model, there is little difference in the
absolute and relative forecasting performance in terms of Quardratic Probability Score. The
relative advantage of AR(p) model still maintains even if its model fit deteriorates (Col 6) when
bias due to model misspecification increases.

There are two main reasons for the inferior performance of the new model in this case. First,
although we try to generate deviation from standard ARMA process, we still have symmetric
error terms in all four cases. Under this circumstance, the approximation from the AR(p)
model with symmetric normal errors is very good assuming that the lag long enough. Such a
good approximation assures satisfactory performance for the short-run forecast. Second, there
is an overfitting problem for the new approach. Comparing Col (7) and Col (2), we can easily
find large discrepancies between in-sample and out-of-sample forecasting performance. This
problem may disadvantage the new forecasting model significantly.

With respect to the data generated by the non-equation approach, however, we get en-
couraging results. In particular, in mild gain event cases, the out-performance of our new
forecasting model is dominant though for severe loss event the AR(p) model still does better.
This outcomes shows that when the series under study demonstrates non-standard regulari-
ties, the standard forecasting model cannot easily capture these features adequately. In this

situation, the competitive advantage of our new model will surface.

3.2.2 Multi-Period Forecast

In Table 3.2, we present statistics comparing probabilistic forecasting performance on a multi-

period event between the AR(p) model and the Discrete-Event-Forecast (DEF) model. The
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statistics contained in this table are exactly the same as above. For this type of forecast, the
advantage of DEF model starts to show off .

For data generated by the ARMA approach, we emphasize two main features. First, an
obvious change is that probabilistic forecasting performance deteriorates for AR(p) model (col
1) when the deviation from AR process increases. In mild gain multi-period event forecast, the
Quadratic Probability Score of the AR model is 0.21947 for ARMA process with time-varying
non-normal error and 0.14174 for the AR process with a standard normal error. For the
DEF model, however, the impact of the deviation is almost negligible (col 2). The Quadratic
Probability Score changes little across the four types of model, e.g., for the mild gain case,
0.21001, 0.2005, 0.20441, 0.20685. Such a difference leads to improved relative performance for
the DEF model when the model misspecification problem becomes more severe.

Second, the advantage of our new forecasting model is more significant in the severe loss
event forecast, where higher order moments play an important role in determining the outcome.
For the process with time-varying mixed normal error terms, the DEF becomes dominant in
both Quadratic Probability Score (col 3) and the number of winning cases (col 5).

For the data generated by the non-equation approach, the advantage of our new forecasting
model is further enhanced. The new model does significantly better in terms of Quadratic
Probability Score in both mild gain event forecasts and severe loss event forecasts. In addition,
it beats the AR model in the number of winning cases with significant margins in mild gain
event forecasts and show strong competence in severe loss event forecasts.

From these results, we can draw the following conclusion. In the multi-period forecasts, our
new model provides strong competition to the traditional forecasting model. The cost of model
misspecification for the AR(p) model becomes significant in forecasting multi-period events
while our new model demonstrates an obvious advantage in its robustness to this problem.
Such robustness demonstrates the advantage that our new model has in certain cases, verifying
our original conjecture. Further research is under way to examine the relative advantage of our

new forecasting model in different situations.
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