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Abstract

This dissertation considers the development of computational schemes for a class of
operational problems in power systems, complicated by uncertainty, discreteness,
and nonconvexity.

In Chapter 2, we consider a class of risk-based two-stage economic dispatch
problems, a class of problems that can be captured by stochastic convex programs
where the integrands are nonsmooth convex functions and each function evalua-
tion requires solving a convex optimization problem. We proceed to show that the
risk of the second-stage cost satisfies smoothability requirements under suitable
assumptions. This allows for adapting a variable sample-size accelerated proximal
scheme (VS-APM) for such problems. Notably, this scheme is a stochastic approx-
imation scheme that combines smoothing, acceleration, and variance reduction.
The resulting expected sub-optimality diminishes to zero at the rate of O(1/k).
We observe that the scheme performs well in comparison with standard stochastic
gradient as well as stochastic cutting-plane schemes on a range of IEEE test prob-
lem sets.

In Chapter 3, we consider a class of stochastic integer programs that arise from
a two-stage stochastic unit commitment problem. We present a computational
framework for addressing such a problem by combining the VS-APM scheme with
a branching scheme. Such a framework is fairly adaptable and can allow for a
broad range of risk-based convex models. Preliminary testing suggests that the
scheme competes well with CPLEX when the problem has first-stage integers and
the number of second-stage scenarios grows to be large. In more general problems
with second-stage problems, the scheme can obtain global solutions for modest
sized problems.

Finally in Chapter 4, we consider the optimal power flow problem with AC
power flow constraints. The resulting problem is known to be a highly nonconvex
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problem and the solution of such problems is generally challenging. We consider an
avenue for resolving such problems that relies on an alternating direction method
of multipliers (ADMM) scheme. This scheme can be implemented in a networked
setting and its performance is seen to scale with the number of scenarios when
stochastic variants are considered.
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Chapter 1 |
Introduction

This dissertation considers the development of computational schemes for contend-
ing with stochastic, discrete, and nonconvex optimization problems arising in the
context of power systems operations. In this chapter, we provide a brief introduc-
tion to each of the subsequent chapters where the emphasis will be on providing
background and motivation and a brief formulation of the problem of interest.

1.1 Two-stage risk-based economic dispatch
Chapter 2 of this dissertation focuses on developing an algorithm for two-stage
economic dispatch in either risk-averse (with conditional value-at-risk measures)
or risk-neutral settings.

1.1.1 Introduction to two-stage stochastic programs

We begin by considering the class of two-stage programs with following form:

min f(x) + E [Q(x, ω)]

subject to x ∈ X,
(P-S1)

where X ⊆ Rn, x ∈ Rn, ω ∈ Ω, and Q(x, ω) denotes the optimal value of the
following program:

max − 1
2π

T
ωQωπω + (hω − Tωx)Tπω

subject to W Tπω ≤ qω,
(LP-S2)
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where Qω ∈ Rm2×m2 , πω ∈ Rm2 , Tω ∈ Rm×n, hω ∈ Rm, W ∈ Rm2×n2 , and
qω ∈ Rn2 . Before proceeding, we briefly review some techniques for resolving two-
stage stochastic convex programs. We describe two broad avenues for contending
with two-stage stochastic convex programs based on whether the sample-space is
finite or infinite.

(i). Decomposition schemes. Decomposition techniques [1] essentially repre-
sent a class of techniques whose effort grows slowly with problem size (which is
proportional to |Ω|). These techniques include primal decomposition techniques as
well as dual decomposition techniques, such as Benders decomposition [2] which
provided the inspiration for the celebrated L-shaped method [3].
(ii). Monte-Carlo sampling schemes. Often the size of the scenario space
may be large or even infinite. In such settings, Monte-Carlo sampling techniques
assume relevance. Several avenues have gained in popularity over the last several
decades. Amongst the earliest of these was the stochastic quasigradient methods by
Ermoliev (see [4]) which was essentially a stochastic approximation scheme. An al-
ternate avenue utilizes a sampling-based generalization of the L-shaped method [3]
and is known as stochastic decomposition [5,6]. Finally, a third approach, referred
to as sample average approximation, replaces the expectation by a sample-average
and constructs estimators by computing a solution of this sampled problem [7].

1.1.2 Risk-based two-stage stochastic programs

The earlier model is a risk-neutral framework that employs an expectation-based
framework. This can be generalized to allow for risk preferences by using the CVaR
measure that captures the risk of sub-hourly dispatch cost. For a fixed level τ , the
conditional value-at-risk of economic dispatch is defined as:

CV aRτ (Q(x, ω)) = min
m

{
m+ 1

1− τ E [Q(x, ω)−m]+
}

Then the objective of risk-averse sub-hour stochastic dispatch is:

fobj = min
x
{f0(x) + CVaRτ (Q(x, ω))}

= min
x,m

{
f0(x) +m+ 1

1− τ E [Q(x, ω)−m]+
}

2



= min
x,m
{f0(x) + E [h(Q(x, ω),m)]}

where
h(Q(x, ω),m) = m+ 1

1− τ [Q(x, ω)−m]+

In this dissertation, we discuss a smoothed accelerated gradient scheme for the
two-stage stochastic convex problem:

min
z∈Z

[c(z) + E [r(z, ω)]] , (r-ED)

where z , (x,m), c(z) is a convex differentiable function, r(z, ω) is a convex and
nonsmooth function, and Z is a polyhedral set.

1.1.3 Economic Dispatch and Optimal Power Flow

The optimal power flow (OPF) problem is amongst the most fundamental decision-
making problems in power systems. There are many variations and generaliza-
tions of this problem including unit commitment, reserve scheduling, economic
dispatch, security-constrained, DC approximations, and full AC power-flow formu-
lations [8–12]. Our focus in this chapter lies in contending with uncertainty. One
approach to address the presence of uncertainty lies in developing robust optimiza-
tion models [13–17] where uncertainty sets are assumed and feasibility is ensured
for every realization from such uncertainty sets. For instance, a robust formulation
for AC power flow problems was provided in [18]. Uncertainty in power systems
also can be dealt by adding chance constraints [12,19] which are approximated by
finite sampling of uncertain parameters from an assumed statistical model. Simu-
lation based studies on real time dispatch are also been conducted. For instance,
in [20], a simulation based framework is used in a power system with renewable re-
sources. Our interest lies in adaptive two-stage models for such problems possibly
complicated by the presence of risk measures. Such avenues have been considered
in [21] and revisited in [22], where computable closed-form expressions were de-
rived. In [23], a model for risk-limiting dispatch with generation limitation and
network constraint was provided with networked variants were examined in [24].
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1.1.4 Outline of Chapter 2

We consider a two-stage economic dispatch model with a conditional value-at-
risk (CVaR) measure. The resulting problem is a stochastic convex program with
possibly nonsmooth integrands. We make several contributions in this context.

(i) First, the conditional value-at-risk measure is a composition of two nons-
mooth functions, both of which are convex. Our first set of contributions
lies in showing that by smoothing each of the functions, the overall function
satisfies suitable smoothness requirements.

(ii) Second, we show that a previously developed stochastic approximation (SA)
scheme that combined smoothing, Nesterov acceleration, and variance reduc-
tion can be applied. As a consequence, the expected sub-optimality dimin-
ishes at a rate of O(1/k) while the oracle complexity to compute an ε-optimal
solution is shown to be O(1/ε2).

(iii) Third, we compare this scheme with comparable cutting-plane schemes and
observe that the presented scheme has significant computational benefits on
a class of IEEE test systems.

1.2 Two-stage Stochastic Integer Programs
Chapter 3 of this dissertation focuses on extending VS-APM for two-stage stochas-
tic integer programs in power system like unit-commitment problems.

1.2.1 Introduction to two-stage stochastic integer programs

Stochastic integer programming models are very important in practice with dis-
crete decisions under uncertainty, especially in power system with unit commitment
constraints and decisions. Although such models can be difficult to solve in prac-
tice, an extension of VS-APM could lead to an alternative direction of stochastic
integer programs study. In this dissertation, we consider the class of two-stage
programs of the following form:

min cTx+ E[Q(x, ω)]

4



subject to x ∈ X ∩X

where X denotes a convex polyhedron and X denotes either the set of binary
vectors B, or integer Z or mixed-integer vectors M , {x|x ≥ 0, xj ∈ Z, j ∈ J}.
Q(x, ω) refers to a second stage problem that dealing with am realization of random
variables ω with the following formulation:

Q(x, ω) = min gTω y

subject to Wωy ≥ rω − Tωx

y ≥ 0, yj ∈ Z, j ∈ J2

where J2 in an index set that represents integer part of second stage variable.
When J2 is empty, then there is only integer variable in first stage, i.e prior to
the realization of the random variables. In [25], a combination of sample-based
function evaluations and branch and bound algorithm is proposed for such prob-
lems. In the case with non empty J2, second stage linear programs can not be
approximated via standard techniques directly. Due to its size, decomposition is
a natural avenue for such large problems. One direction is also applying the idea
of Benders decomposition and Cutting plane method, Caroe [26] discusses an al-
gorithm that is motivated by deterministic cutting plane methods. Sherali and
Fraticelli [27] develop cutting plane methods when all variables (first and second
stage) are binary. Another direction is to use dual decomposition. In [28], an
algorithm based on a dual decomposition scheme and Lagrangian relaxation was
proposed to solve general linear two-stage stochastic programs with integrality re-
quirement. By relaxing non-anticipativity constraints via Lagrangian relaxation,
a separate subproblem for each scenario is formulated.

1.2.2 Outline of Chapter 3

We consider a two-stage model with integer variables. The resulting problem is a
stochastic integer program. We make several contributions in this context.

(i) First, we extend our algorithm to stochastic integer programs by introduc-
ing branching techniques. We also demonstrate that this framework can be
applied for more general stochastic integer programs.

5



(ii) Second, we enhance our framework by introducing more sophisticated integer
programming techniques like cutting plane and branching rules, which lead
to improvement on performance of stochastic integer framework.

(iii) Third, we compare this scheme with state-of-art integer programs solver
and observe that this framework is potential to provide good quality integer
solution in reasonable time.

1.3 Distributed framework for AC-OPF
Chapter 4 of this dissertation focuses on extending distributed algorithm to non-
convex regime in dealing with more general power system problems.

1.3.1 Introduction to AC-OPF

With increasing penetration of distributed energy resources, centralized model and
algorithm in power system can suffer from lack of information to scalability, espe-
cially for more practical Alternating current optimal flow (AC-OPF) model. An
alternative approach to traditional centralized methods is to consider distributed
algorithms. Rather than collecting all problem parameters and performing a cen-
tral calculation, distributed algorithms are computed by many agents that obtain
certain problem parameters via communication with a limited set of neighbors.

1.3.2 Distributed schemes for AC-OPF

Several distributed optimization techniques have been applied to power system
optimization. Adopting from the exposition in [29], the first set of distributed op-
timization techniques are based on augmented Lagrangian decomposition. These
include Dual Decomposition, the Alternating Direction Method of Multipliers with
Proximal Message Passing, Analytical Target Cascading, and the Auxiliary Prob-
lem Principle. The second set of techniques are based on decentralized solution of
the Karush-Kuhn-Tucker (KKT) necessary conditions for local optimality. These
include Optimality Condition Decomposition and Consensus+Innovation. Two
other approaches, Gradient Dynamics and Dynamic Programming with Message
Passing. A detailed review can be found in [30].

6



Among those distributed methods, the Alternating Direction Method of Mul-
tipliers (ADMM) is a very commonly used distributed technique. The standard
ADMM problem form is as follows:

min f(x) + g(y)

subject to Ax+By = c

The augmented Lagrange function is as:

Lρ(x, y, λ) = f(x) + g(y) + λT (Ax+By − c) + ρ

2‖Ax+By − c‖2
2

The standard ADMM updating rule is as:

xk+1 := arg min
x
Lρ(x, yk, λk) (1.1)

yk+1 := arg min
y
Lρ(xk+1, y, λk) (1.2)

λk+1 := λk + ρ(Axk+1 +Byk+1 − c) (1.3)

(1.4)

where x, y are two sets of variables with separable objective. By doing so, the
problem is split into problem with x and problem with y.

1.3.3 Outline of Chapter 4

We consider a distributed scheme for a more general AC constrained optimal power
flow problem. The resulting problem is a large-scale nonconvex problem. We make
several contributions in this context.

(i) First, we reformulate the original AC-OPF model to a component-based
distributable form with relatively simpler coupling constraints which leaves
possibility for distributed scheme.

(ii) Second, we apply component based Alternative Direction Method of Multi-
plier (ADMM) framework for AC-OPF model in a distributed approach.

(iii) Third, we compare result from this scheme with centralized scheme and also
observe the behavior of ADMM on different parameters.

7



Chapter 2 |
Risk-based economic dispatch

2.1 Introduction
The optimal power flow (OPF) problem is one of the most fundamental decision-
making problems in power systems operations. There are a host of variants of such
problems that include the modeling of reserves [10], allow for modeling security
constraints [31], utilizing either DC approximations [32] or full AC formulations [33]
of the power flow equations, amongst others [12]. In this chapter, we focus on the
economic dispatch (ED) problem with a DC approximation of the power flow
equations. With operating reserves and other regulation capacities determined in
the day-ahead market [10, 11], economic dispatch decision are usually specified in
a short amount of time at real time, with reserves and other regulation capacities
are established. The economic dispatch of conventional generation is completed 20
minutes before the hour of delivery [9]. In power system operations, uncertainty
plays a key role. Diverse formulations of stochastic optimal power flow along with
different uncertainties in power system have been discussed in [8].

Most prior OPF formulations have only dealt with uncertainty in a rather
rudimentary manner by choosing fixed reserve margins without using other known
or estimated probabilistic information about forecast errors. Recently, one major
approach to deal with such uncertainty has been through robust optimization
techniques [13–17] where the uncertain parameters are assumed lie in a suitable
uncertainty set and network constraints are enforced for every possible realization
of uncertainty. In fact such avenues have been adopted for modeling AC power
flow problems (cf. [18]).

8



Paper Problem Model Algorithm

[34] DC-OPF Stochastic cplex
[35] UC Robust cplex
[36] ED Robust cplex
[37] ED Robust Alternative Direction
[38] UC Robust cplex
[39] UC Robust Cutting plane
[40] UC Stochastic Review
[41] UC Stochastic Benders Decomposition / Lagrangian Relaxation
[42] UC Stochastic Lagrangian relaxation
[43] UC Stochastic Benders Decomposition
[44] UC Stochastic Dynamic Programming
[45] UC Stochastic cplex
[46] UC Stochastic cplex
[47] UC Stochastic Importance Sampling
[48] DC-OPF Stochastic Stochastic Decomposition
[33] AC-OPF Stochastic Scenario reduction by clustering
[49] DC-OPF Stochastic Benders Decomposition
[50] ED Deterministic Gurobi
[51] ED Deterministic cplex
[52] ED Deterministic FESTIV

Table 2.1. Stochastic OPF models

Uncertainty in power systems also can be dealt with by adding chance con-
straints. In general, such avenues lead to possibly nonconvex problems [53] and
more recently integer programming approaches have proven useful when contend-
ing with a sampled approximation [12,19].

The authors considered power flow problems subject to chance constraints as-
suming that the uncertainties are Gaussian. The chance constraint can be ex-
pressed as a second-order cone constraint, which turn out to be a convex approx-
imation. Simulation based studies on real time dispatch are also been conducted
recently. In [20], a simulation based framework is used in a power system with
renewable resources, with system iterates in multiple timescales.

A variety of literatures consider two-stage model in economic dispatch problem,
with different sources of uncertainty. Single contingencies is taken into consider-
ation and objective also includes cost from not meeting demand in [34], where in
second stage a contingency parameter is added to transmission capacity in power
flow constraint. In [54], model can be extended to muti-stage with unit commit-
ment. A general stochastic dispatch model considering real time regulation in the
presence of uncertainties in the offers was proposed in [55]. Constrain on second
stage generation was in a form of a random convex set with several different forms,
depending on the kind of offer involved. A two-stage economic dispatch model
with stochastic producers was proposed in [56], where stochastic producer capac-

9



ity constraints gets its realization in second stage. In [24], the network risk limiting
dispatch problem (N-RLD) was introduced under ε = 0, which is a two stage op-
timization problem under stochastic demand. On second stage, we observe the
realization of random demand and balance system based on real demand. In [9], a
two-stage model is built for sub-hourly dispatch decisions making. Ramping limits
depending on time was also considered in [9]. In general, a two-stage stochastic
model can represent the different types of uncertainty with realizations of uncertain
factors reveal in second stage.

We make the following contributions in this paper. Our focus lies in solving the
two-stage program in which a firm makes first-stage dispatch decisions based on
forecast demand. Recourse decisions are made in the second-stage and are adapted
to the realizations of uncertainty in demand and are guided by selecting first-stage
decisions to minimize the sum of first-stage costs and risk-adjusted second-stage
costs, where we utilize the CVaR measure to capture risk.
(I). Smoothing-based framework for CVaR-based two-stage problems.
We develop a rigorous foundation for smoothing for the two-stage nonsmooth
CVaR-based program that relies on providing the required regularity requirements.
Notably, this allows for claiming that the CVaR-based risk-measure of second-stage
satisfies (α, β) smoothability.
(II). Smoothed accelerated variance-reduced scheme for CVaR-based
two-stage problems. To facilitate the application of smoothed accelerated vari-
ance reduced schemes, we analyze the bias and moment requirements of the sam-
pled gradient of the smoothed risk-adjusted recourse function. This paves the
way for formally applying the smoothed accelerated variance-reduced scheme for
risk-adjusted two-stage programs. Importantly, this allows for claiming that this
scheme admits a rate of convergence of O(1/k) while characterized by an optimal
oracle complexity of O(1/ε2).
(III). Scenario generation and numerical studies. Finally, we apply the
scheme on an IEEE 118 bus system. We utilize an autoregressive moving average
model that allows for generating scenarios. Comparisons with competing schemes
such as stochastic decomposition suggest the following. The proposed variance-
reduced scheme provides solutions in a fraction of the time of similar accuracy.
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2.2 Overview of economic dispatch problems
The basic economic dispatch problem requires satisfying load at minimal cost [57],
as formulated next.

min
∑
i∈I

cgi gi

subject to
∑
i∈I

gi = d

gmin
i ≤ gi ≤ gmax

i , ∀i ∈ I

(EDisp)

where gi, gmini , gmaxi denote the generation level and the minimum, and maximum
capacity level associated with generator i housed at bus i, cgi represents the unit
cost of generation at bus i, d is the total demand, and I denotes the set of all
buses in network. Notice that the economic dispatch problem requires specify-
ing the minimal generation decisions while meeting demand and capacity bounds.
In [57], power flow constraints are also taken into consideration together with dis-
patch decisions. When these power flow constraints are modeled via DC load flow
approximations, the resulting bus-specific phase angles need to be considered to-
gether with transmission constraints. The resulting model is specified as follows.
actual power production and transmission.

min
∑
i∈I

cgi gi

subject to gi − di −
∑
j∈I

Bi,j(θi − θj) = 0, ∀i ∈ I

Bi,j(θi − θj) ≤ fmaxi,j , ∀i, j ∈ I

gmini ≤ gi ≤ gmaxi , ∀i ∈ I

θmini ≤ θi ≤ θmaxi , ∀i ∈ I

(2.1)

Where θi denotes the phase angle at bus i, fmax
i,j represents the transmission line

capacity constraint of transmission line between bus i, j, Bi,j is the susceptance of
transmission line between bus i, j, and di is the demand at bus i. Single contin-
gencies may be taken into consideration the cost of unserved demand may also be

11



modeled [34], leading to the following model.

min E
[∑
i∈I

(
cgi g

ω
i + cri r

ω
i − cdi qωi

)]

subject to gωi − qωi −
∑

Bi,j(θωi − θωj ) = 0, ∀i ∈ I,∀ω ∈ Ω

Bi,j(θωi − θωj ) ≤ fmax
i,j , ∀i ∈ I,∀ω ∈ Ω

gωi + rωi − χωi gmax
i = 0, ∀i ∈ I,∀ω ∈ Ω

λidi ≤ qωi ≤ di, ∀i ∈ I,∀ω ∈ Ω

(2.2)

where rωi and cr denote reserve levels and the cost of reserves at bus i, qωi and cdi
represents unserved demand and the cost of unserved demand at bus i, Ω represents
the scenario space, χωi denotes the proportion that generator i under outage would
reduce in capacity by (i.e. the capacity of outage generator would be χωi gmax

i where
χωi ∈ [0, 1]), di represents the forecast demand, and λidi denotes a critical level of
demand that needs to be satisfied. In [54], this model is further extended to a
multi-stage problems with unit commitment. A more general stochastic dispatch
model was proposed in [55]

min
∑
i∈I

(cigi + E[c+
i (gωi − gi)+ − c−i (gωi − gi)−])

subject to gi −
∑
j∈I

fi,j − di = 0, ∀i ∈ I

gωi −
∑
j∈I

fωi,j − di = 0, ∀i ∈ I,∀ω ∈ Ω

(gi, gωi ) ∈ Cω
i , ∀ω ∈ Ω,∀i ∈ I

fi,j ≤ fmax
i,j , ∀i ∈ I,

fωi,j ≤ fmax
i,j , ∀i ∈ I,∀ω ∈ Ω.

In this model, gωi denotes the second-stage (“real time”) decision fi,j and fωi,j rep-
resents the first and scenario-specific second-stage power flow on the transmission
line, and Cω

i represents a random convex set that may take several different forms,
depending on the kind of offer involved.

• Completely inflexible generation: First-stage dispatched quantity, denoted by

12



gi cannot be varied in the second stage.

gωi = gi ∈ [0, gmax
i ], ∀ω ∈ Ω,∀i ∈ I.

• Completely flexible generation: First-stage dispatched quantity, denoted by
gi, may be varied in the second stage.

gi ∈ [0, gmax
i ], gωi ∈ [0, gmaxi ], ∀ω ∈ Ω,∀i ∈ I.

• Unpredictable or intermittent generation: A generator with maximum capac-
ity gmax

i offers a random quantity Si.

gi ∈ [0, gmax
i ], gωi ∈ [0, Sωi ], ∀ω ∈ Ω,∀i ∈ I

• Demand-side bid: A quantity −qi ≥ 0 is bid for in the first stage while in the
second-stage, this can be modified.

gi ∈ [qi, 0], gωi ∈ [qi, 0], ∀ω ∈ Ω,∀i ∈ I

• Unpredictable load: The second-stage demand-side bid gωi has to be feasible
with regard to a random load of size dωi ≥ 0.

gi ≤ 0, gωi ∈ [−dωi , 0], ∀ω ∈ Ω,∀i ∈ I.

In [21], a risk-limiting dispatch framework is introduced and this was subsequently
extended in [22], where a computable closed-form formulas was derived. In [23],
a related model for risk-limiting dispatch with generation limitation and network
constraint was represented. In [24], a two-stage network risk limiting dispatch
problem (N-RLD) was introduced under ε = 0, where the first-stage represents
the day-ahead scheduling while the second-stage captures real-time decisions. The
overall problem requires minimizes expected cost of operation as captured by the
following problem.
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2.3 Two-stage stochastic economic dispatch
In the two-stage model for stochastic economic dispatch, first-stage decisions are
given by slow-response generation decisions while second-stage decisions adapt to
the realization of uncertainty and are tied to first-stage decisions. The nature
of the uncertainty in the second-stage pertains to the randomness in real-time
cost, randomness in real-time demand, line contingencies, and uncertainty in the
availability of renewable The goal of two-stage model is to have determine a set of
first decisions that minimize the sum of two costs: (i) the first-stage cost; and (ii)
the risk-adjusted second-stage expected cost of contending with uncertainty.

We consider the stochastic economic dispatch problem faced over T hours while
sub-hourly decisions associated with fast-response generators are made between
hours (i.e. in a sub-hourly sense) to contend with uncertainty. We view the first-
stage decisions as the hourly decisions from t = 1, . . . , T while the sub-hourly
decisions are viewed as the recourse second-stage decisions Let gt denote the first
stage decisions at period t with a convex differentiable generation cost denoted by
f0(gt) while the cost of recourse decisions under realization ω in the sub-hourly
period after t is denoted by h(gωt , ω).

2.3.1 Risk-neutral stochastic economic dispatch

In a power system network, there are several types of constraints that need con-
sideration.

Flow balance equations

In both stages, flow balance needs to be maintained at each bus for every period.
In the first stage, flow balance would be based on forecasted demand as follows:

gt −B1θt − d̂t = 0, t = 1, . . . , T, (2.3)

where θt denotes the phase angle of each bus at period t, B = (bi,j)n×n represents
the susceptance matrix,

B1 , B − diag
∑

j

bi,j

 ,
14



and d̂t denotes a forecast demand in period t in first stage. During the sub-
hourly dispatch after period t, the recourse decisions have to satisfy the following
requirement.

gt + grt,ω −B1θt,ω − dt,ω − dut,ω − dwt,ω ≥ 0, (2.4)

where grt,ω denotes the recourse generation adjustment in period t, θt,ω represents
the second-stage phase angle for period t, and dt,ω denotes the observed demand
in period t under realization ω. Suppose dut,ω represents undispatchable generation
while dwt,ω denotes unavailable wind power generation for period t.

Line flow constraints

In both stages, transmission capacity constraints need to be satisfied while line
contingencies are considered in the second stage. The first stage line constraints
can be expressed as follows:

−fmax ≤ B2θt ≤ fmax, t = 1, . . . , T (2.5)

where fmax denotes flow bounds while B2 is defined as follows.

B2 =



(
b1,• 0 · · · 0

)
− diag(b1,•)(

0 b2,• · · · 0
)
− diag(b2,•)

...(
0 0 · · · bn,•

)
− diag(bn,•)

 .

In the second stage, line contingencies are addressed as follows:

−χt,ωfmax ≤ B2θt,ω ≤ χt,ωfmax, ∀t, (2.6)

where χt,ω is a vector represents the realization of stochastic line contingency of
all transmission lines for period t with all of its elements value in [0, 1].
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Generation capacity constraints

Both conventional and renewable generators we have to abide by capacity con-
straints.

gmin ≤ gt ≤ gmax∀t (2.7)

gmin
t,ω ≤ gt + grt,ω ≤ gmax

t,ω , (2.8)

where gmin
t,ω and gmax

t,ω denote second-stage capacity bounds at period t based on
renewable availability.

Ramping constraints

Both conventional and renewable generators need to satisfy ramping requirements,
as specified next.

rmin
t ≤ gt − gt−1 ≤ rmax

t , ∀t (2.9)

rmin
t,ω ≤ gt + grt,ω − gt−1 − grt−1,ω ≤ rmax

t,ω , (2.10)

where rmin and rmax denote the minimum and maximum ramp limit, g0 = 0, and
rmin
t,ω and rmax

t,ω denote second-stage down and up ramping limits for period t and
gr0,ω = 0.

Phase angle bounds

In both stages, phase angles bound are imposed in the following fashion.

θmin ≤ θt ≤ θmax, ∀t (2.11)

θmin ≤ θt,ω ≤ θmax. (2.12)

To summarize, the two-stage stochastic economic dispatch model is defined as
follow:

min
x

T∑
t=1

[f0(xt) + E[Q(xt, ω)]]

subject to (2.3), (2.5), . . . , (2.11).
(s-ED)
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where x , (g, θ), Q(xt, ω) is defined as follows.

Q(xt, ω) = min
grt,ω ,θt,ω

f(grt,ω, ω)

subject to (2.4), (2.6), . . . , (2.12),
(s-EDω

2 )

f(gωt , ω) denotes the random second-stage generation cost and grt,ω denotes second
stage decision variable at period t under random variable realization ω.

Deterministic equivalent

Suppose the ω takes on a finite number of realizations given by ω1, . . . , ωK with
probabilities p1, . . . , pK . The resulting deterministic equivalent optimization prob-
lem is given by the following.

min
xt,yt,ω

T∑
t=1

f0(xt) +
K∑
j=1

pωj [f(yt,ω, ωj)]


subject to (2.3), (2.5), . . . , (2.11)

(2.4), (2.6), . . . , (2.12), ∀t, ω ∈ Ω.

(DE-ED)

where yω , (grω, θω). Generally, (DE-ED) is not solved directly since Ω can have
a large cardinality, necessitating the development of decomposition and sampling
schemes.

2.3.2 Risk-averse economic Dispatch

While the prior model employs a risk-neutral framework, this can be generalized to
allow for risk preferences; a commonly employed approach utilizes the conditional
value-at-risk (CVaR). Recall for a fixed level τ , the conditional value-at-risk of a
random loss function Z(ω) is defined as [58]:

CVaRτ (Z(ω)) , min
m

{
m+ 1

1− τ E [Z(ω)−m]+
}
. (2.13)

17



In this setting, we choose Z(ω) , Q(xt, ω). It may be recalled that the minimiza-
tion of a CVaR-based objective can be recast as follows:

min
x
{f0(x) + CVaRτ (Q(x, ω))}

= min
x

{
f0(x) + min

m

{
m + 1

1− τ
E [Q(x, ω)−m]+

}}

= min
x,m

f0(x) + m︸ ︷︷ ︸
,c(z)

+ 1
1− τ E [Q(x, ω)−m]+


= min

z
{c(z) + E [r(z, ω)]} , where r(z, ω) , 1

1− τ [Q(x, ω)−m]+ . (2.14)

In the next section, we discuss a smoothed accelerated gradient scheme for the
two-stage stochastic convex problem:

min
z∈Z

[c(z) + E [r(z, ω)]] , (r-ED)

where z , (x,m), c(z) is a convex differentiable function, r(z, ω) is a convex and
nonsmooth function defined as (2.14), and Z is a polyhedral set defined by the
constraints (2.3), (2.5), . . ., (2.11).

2.4 Smoothing
Consider the function r(z, ω), defined in (2.14). This function has two sources of
nonsmoothness: (i) The function Q(•, ω) is a convex nonsmooth function of (•);
and (ii) The function [u]+ = max{u, 0} is a nonsmooth function of u. We intend
to develop algorithms in which the gradient of a smoothed counterpart of r(z, ω),
denoted by rµ(z, ω), is employed. Before proceeding, we recap the definition of
smoothability of a convex function.

Definition 2.4.1 (Smoothable function [59]). A convex function d : Rn → R
is called (α, β)-smoothable if for any µ > 0 there exists a convex differentiable
function dµ : Rn → R such that the following holds for some α, β > 0:

(i) dµ(x) ≤ d(x) ≤ dµ(x) + βµ for all x ∈ Rn.

(ii) dµ is α
µ
-smooth.
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Then the function dµ is called a 1
µ
-smooth approximation of h with parameters

(α, β).

2.4.1 Smoothing the recourse function Q(g, ω).

Consider the recourse function Q(x, ω) whose evaluation requires solving the fol-
lowing parametrized convex problem.

min
y∈Y ω

d(y, ω)

subject to Wωy ≤ qω − Tωx, (π)
(P-Q(x, ω))

We make the following assumptions on (P-Q(x, ω)).

Assumption 2.4.1. Consider the recourse problem (P-Q(x, ω)).
(i) For every ω ∈ Ω, the function d : Rm × Rd → R is convex and Y ω is a closed,
convex, and bounded polyhedron with a nonempty interior.
(ii) For every ω ∈ Ω and every x ∈ X0, there exists a ȳ(ω) such that Wωyω =
qω − Tωx and ȳω ∈ int(Y ω).

The dual of (P-Q(x, ω)) is given by the following.

max
π≥0

(qω − T ωx)Tπ − d̄∗(W T
ω π;ω)︸ ︷︷ ︸

,ε(π;x,ω)

, (D-Q(x, ω))

where d̄∗(y;ω) is the convex conjugate of d̄(y;ω), defined as follows.

d̄(y;ω) ,

d(y;ω), y ∈ Y ω

+∞, otherwise.
(2.15)

By convex duality, the optimal values of (P-Q(x, ω)) and (D-Q(x, ω)) are equal
for a given x.

Lemma 2.4.1. Suppose d(y, ω) is a convex function in y for every ω ∈ Ω. If for
some x, (P-Q(x, ω)) has an optimal solution. Then the dual problem (D-Q(x, ω))
has an optimal solution and the optimal values of both problems are equal.

From the theory of stochastic programming, it is known that the recourse
function Q(x, ω) is a convex function in x for every ω [60, Prop. 2.21]. Consider a
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modified function Qµ(x, ω), defined as the optimal value of this µ-regularized dual
problem (D-Qµ(x, ω)).

max
π≥0

(ε(π; x, ω)− µ‖π‖2), (D-Qµ(x, ω))

Lemma 2.4.2. Suppose vω and vµ,ω denote the optimal values of (D-Q(x;ω)) and
(D-Qµ(x;ω)), respectively. In addition, suppose πω denotes an optimal solution of
(D-Q(x;ω)). Then vµ,ω ≥ vω − µ‖πω‖2.

Proof. The result can be concluded as follows.

vµ,ω , max
π≥0
{(ε(π; x, ω)− µ‖π‖2)}

≥
{

(ε(π∗ω; x, ω)− µ‖π∗ω‖2)
}

(where π∗ω ∈ argmaxπ≥0{ε(π; x, ω)})

=
{

max
π≥0

ε(π; x, ω)
}
− µ‖π∗ω‖2

= vω − µ‖π∗ω‖2.

Before proceeding, we show that the solution of (D-Qµ(x, ω)) is bounded under
the Slater regularity condition. This requires defining the Lagrangian function
L(y, π, ω) and the dual function D(π, ω) associated with the primal problem, which
we proceed to do next.

L(y, π, ω) ,
(
d(y, ω) + (Wωy− qω + Tωx)Tπ

)
(2.16)

D(π, ω) , min
y
L(y, π, ω). (2.17)

Lemma 2.4.3. Consider the problem (P-Q(x, ω)) and suppose it has optimal value
vω. Then the following hold.

(i) Suppose for given x and ω ∈ Ω, there exists a ȳ ∈ Y ω such that c(ȳ,x) < 0
where c(ȳ,x) , Wωȳ − qω + Tωx. Then the solution set of (D-Q(x, ω)) lies in a
compact set.

(ii) In addition, if ȳ ∈ ∩ω∈ΩY
ω, −c(ȳ, ω) ≥ −c̄ and d(ȳ, ω) − vω ≤ d̄ for

every ω ∈ Ω, then the solution set of (D-Q(x, ω)) is uniformly bounded in ω, i.e.
‖πω‖ ≤ d̄

c̄
for any ω ∈ Ω and for any πω ∈ SOL(D-Q(x, ω)).
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(iii) If πµ,ω denotes the optimal dual solution to (D-Qµ(x, ω)), then we have
that

‖πµ,ω‖ ≤
d(ȳ, ω)− vω

−max1≤j≤m cj(ȳ;ω) + µ

(
d(ȳ, ω)− vω

−max1≤j≤m cj(ȳ;ω)

)2

.

(iv) In addition, if ȳ ∈ ∩ω∈ΩY
ω, −cj(ȳ, ω) ≥ −c̄ for j = 1, . . . ,m and d(ȳ, ω) −

vω ≤ d̄ for every ω ∈ Ω, then the solution set of (D-Qµ(x, ω) is uniformly bounded
in ω and µ when µ ≤ µ̄, i.e. ‖πµ,ω‖ ≤ d̄

c̄
+ µ̄

(
d̄
c̄

)2
for any ω ∈ Ω, where πµ,ω =

argmaxπ≥0(D-Qµ(x, ω)).

Proof. (i) For any optimal dual solution π∗ω, we have from strong duality,

vω = D(π∗ω, ω) = inf
y∈Y ω

{d(y, ω) + (π∗ω)T cω(y; x)}

≤ d(ȳ, ω) + (π∗ω)T cω(ȳ; x)

≤ d(ȳ, ω) + max
1≤j≤m

cω,j(ȳ; x)
m∑
j=1

π∗ω,i.

Consequently, we have the following relationship.

−( max
1≤j≤m

cω,j(ȳ; x))
m∑
j=1

π∗ω,i ≤ d(ȳ, ω)− vω (2.18)

=⇒ ‖π∗ω‖ ≤
m∑
j=1

π∗ω,i ≤
d(ȳ, ω)− vω

−max1≤j≤m(cω,j(ȳ; x)) . (2.19)

(ii) By hypothesis, we have that −max1≤j≤m(cω,j(ȳ; x)) > c̄ and d(ȳ, ω)− vω ≤ d̄

for every ω ∈ Ω. Consequently, ‖π∗ω‖ ≤ d̄
c̄
for all ω ∈ Ω.

(iii) Consider the regularized dual function Dµ(π) and suppose its optimal value
is vµ,ω. Then the following sequence of inequalities hold.

vµ,ω = Dµ(π∗ω,µ)

= inf
y∈Y ω

{d(y, ω) + (π∗µ,ω)T cω(y; x)− µ‖π∗µ,ω‖2}

≤ {d(y, ω) + (π∗µ,ω)T cω(y; x)− µ‖π∗µ,ω‖2}

≤ d(y, ω) + (π∗µ,ω)T cω(ȳ; x)

≤ d(y, ω) + max
1≤j≤m

cω,j(ȳ; x)
m∑
j=1

π∗µ,ω,i.
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It follows that

‖π∗µ,ω‖ ≤
d(ȳ, ω)− vµ,ω

−max1≤j≤m cj(ȳ;ω)
Lemma 2.4.1
≤ d(ȳ, ω)− vω + µ‖π∗ω‖2

−max1≤j≤m cj(ȳ;ω)
(2.19)
≤ d(ȳ, ω)− vω
−max1≤j≤m cj(ȳ;ω) + µ

(
d(ȳ, ω)− vω

−max1≤j≤m cj(ȳ;ω)

)2

.

(iv) By hypothesis, we have that min1≤j≤m(−cω,j(ȳ; x)) > c̄ and d(ȳ, ω)− vω ≤ d̄

for every ω ∈ Ω. Consequently, ‖π∗µ,ω‖ ≤ d̄
c̄

+ µ̄
(
d̄
c̄

)2
for all ω ∈ Ω and for every

µ ≤ µ̄.

We proceed to show that Qµ(x, ω) is an (α, β)-smoothing of Q(x, ω), where
Qµ(x, ω) which is defined as the optimal value of (D-Qµ(x, ω)).

Lemma 2.4.4. Suppose Q(x, ω) is defined by the optimal value of (P-Q(x, ω)).
Then the following hold:
(i) The function Q(x, ω) is a convex function in x for every ω ∈ Ω.
(ii) The function Qµ(x, ω) is a differentiable in x at every ω and ∇xQµ(x, ω) =
−T Tω π∗(x, ω), where π∗(x, ω) denotes the optimal solution of (D-Qµ(x, ω)).

Proof. [60, Prop. 2.22].

Proposition 2.4.1 (Qµ(x, ω) satisfies (α(ω), β(ω))-smoothability of Q(x, ω)).
Consider the function Qµ(x, ω) defined by (D-Qµ(x, ω)). Then this function sat-
isfies the following:
(i) The function Qµ(x, ω) is ‖Tω‖

2

µ
-smooth, i.e.

‖∇xQµ(x1, ω)−∇xQµ(x2, ω)‖ ≤ ‖Tω‖
2

µ
‖x1 − x2‖, ∀x1,x2.

(ii) There exists a β(ω) such that for all x, we have that for all x,

Qµ(x, ω) ≤ Q(x, ω) ≤ Qµ + µβ(ω).
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Proof. (i) Consider an x1,x2 ∈ X and let π(x1) and π(x2) denote the maximizers
of (D-Qµ(x1, ω)) and (D-Qµ(x2, ω)), respectively. By the strong concavity of the
objective, we have that

((−qω + Tωx1 + a(π(x1), ω))− (−qω + Tωx2 + a(π(x2), ω)))T (π(x1)− π(x2))

+ µ(π(x1)− π(x2)))T (π(x1)− π(x2))

≥ µ‖π(x1)− π(x2)‖2, (2.20)

where a(π(x), ω) ∈ ∂π(d̄∗ω(W T
ω π;ω)). In addition, by definition, we have that

(Tωx1 − qω + a(π(x1), ω) + µπ(x1))T (π(x2)− π(x1)) ≥ 0. (2.21)

Adding (2.20) and (2.21), we obtain that

(Tωx2 − qω + a(π(x2), ω) + µπ(x2))T (π(x1)− π(x2))

≥ µ‖π(x1)− π(x2)‖2. (2.22)

Consequently, by adding and subtracting (Tωx1 − qω + a(π(x1, ω) + µπ(x1))T

(π(x1)− π(x2)),

(Tωx1 + a(π(x1, ω) + µπ(x1))T (π(x1)− π(x2))︸ ︷︷ ︸
≤0

+ (Tωx2 − Tωx1)T (π(x1)− π(x2)) + (a(π(x2), ω)− a(π(x1), ω))T (π(x1)− π(x2))︸ ︷︷ ︸
≤ 0

+ µ (π(x2)− µπ(x1))T (π(x1)− π(x2))︸ ︷︷ ︸
≤ 0

≥ µ‖π(x1)− π(x2)‖2.

This implies that

µ‖π(x1)− π(x2)‖2 ≤ (Tωx1 − Tωx2)T (π(x1)− π(x2))

≤ ‖Tω‖‖x1 − x2‖‖π(x1)− π(x2)‖

=⇒ ‖π(x1)− π(x2)‖ ≤ ‖Tω‖
µ
‖x1 − x2‖.
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Finally, we note that ∇xQµ(x, ω) = −T Tω πω, where πω is a maximizer of (D-
Q(x, ω)), implying that

‖∇xQµ(x1, ω)−∇xQµ(x2, ω)‖ ≤ ‖Tω‖‖π(x1)− π(x2)‖

≤ ‖Tω‖
2

µ
‖x1 − x2‖.

(ii) We begin by noting that Q(x, ω) = (qω − Tωx)Tπ − d̄∗(W Tπ, ω) where π is a
maximizer of (D-Q(x, ω)) while Qµ(x, ω) = (qω−Tωx)Tπµ− d̄∗(W Tπµ, ω)− 1

2‖πµ‖
2

where πµ is a maximizer of (D-Qµ(x, ω)). Consequently, we have that

Q(x, ω) = (qω − Tωx)Tπ − d̄∗(W Tπ, ω)

≥ (qω − Tωx)Tπµ − d̄∗(W Tπµ, ω)

≥ (qω − Tωx)Tπµ − d̄∗(W Tπµ, ω)− 1
2µ‖πµ‖

2

= Qµ(x, ω).

In addition, it is easily seen that

Qµ(x, ω) = (qω − Tωx)Tπµ − d̄∗(W Tπµ, ω)− 1
2µ‖πµ‖

2

≥ (qω − Tωx)Tπ − d̄∗(W Tπ, ω)− 1
2µ‖π‖

2 = Q(x, ω)− 1
2µ‖π‖

2.

As a result, we have that

Q(x, ω) ≤ Qµ(x, ω) + 1
2µ‖π‖

2 ≤ Qµ(x, ω) + µβ(ω),

where ‖π‖2 ≤ β(ω) for all π, where the boundedness of π follows from the Slater
regularity condition on (P-Q(x, ω)).

2.4.2 Smoothing the max. function

From [59], recall that the smoothing of the max. function, defined as t(u) , [u]+,
is given by tµ(x) , µ(log(e

u
µ + 1) − log(2)) and tµ is (1, log(2))-smoothable. We

prove the relatively simple result that t′µ(u) ≤ t̄ for all u and for any µ > 0.

Lemma 2.4.5. Consider the function tµ(x) , µ(log(e
u
µ + 1) − log(2)). Then for

any u ∈ R and any µ > 0, we have that t′µ(u) ≤ 1.
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Proof. It can be seen for that any u and any µ > 0,

t′µ(x) =
exp

(
u
µ

)
exp

(
u
µ

)
+ 1
≤ 1.

2.4.3 Smoothing a composition of two smoothable functions

We note that [Q(x, ω)−m]+ denotes a composition of a nonsmooth function h(w)
where h(w) = max{w, 0} with another nonsmooth function t(z) where t(z) =
z1 − z2 and z = (z1, z2). Our intent lies in showing that under if h is (α1, β1)
smoothable and t is (α2, β2) smoothable, then p = h(t) is (α3, β3) smoothable,
where the smoothability of this composite function is defined as follows.

Definition 2.4.2. Given two convex functions h : Rm → R and g : Rn → Rm.
Then the function p(z) = h(t(z)) is said to be (α, β) smoothable if the following
two conditions hold and pµ(z) , hµ(gµ(z)).
(i) There exists a constant α such that for any µ > 0,

‖∇zpµ(z1)−∇zpµ(z2)‖ ≤ α
µ
‖z1 − z2‖, ∀z1, z2.

(ii) There exists a constant β such that for any µ > 0,

pµ(z) ≤ p(z) ≤ pµ(z) + βµ.

Under suitable conditions, we now prove that p = h(t) is a smoothable function
when h and t are smoothable.

Lemma 2.4.6. Suppose h : R → R is a non-decreasing nonnegative convex func-
tion and is (α1, β1)-smoothable. In addition, if hµ denotes an (α1, β1) smoothing
of h, then hµ is assumed to be a non-increasing and nonnegative function. Sup-
pose t : Rn → Rm is (α2, β2)-smoothable convex function. In addition, suppose
‖∇wh(w)‖ ≤ C1 for all w and ‖∇xt(x)‖ ≤ C2 for all x. Then p(z) = h(t(z)) is
(α, β)-smoothable.

Proof. Since ∇z(hµ(gµ(z)) = h′µ(tµ(z))∇ztµ(z), we have the following by adding
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and subtracting terms and invoking the triangle inequality.

‖∇hµ(tµ(z1))−∇hµ(tµ(z2)‖ = ‖h′µ(tµ(x1))∇ztµ(z1)− h′µ(tµ(z2))∇ztµ(z2)‖

≤ ‖h′µ(tµ(z1))∇ztµ(z1)− h′µ(tµ(z1))∇ztµ(z2)‖

+ ‖h′µ(tµ(z1))∇ztµ(z2)− h′µ(tµ(z2))∇ztµ(z2)‖

≤ ‖h′µ(tµ(x1))‖‖∇ztµ(z1)−∇ztµ(z2)‖

+ ‖∇ztµ(x2)‖ ‖h′µ(tµ(z1))− h′µ(tµ(z2))‖︸ ︷︷ ︸
Term b

. (2.23)

Since h : R → R is (α1, β1)-smoothable and t : Rn → R is (α2, β2)-smoothable, it
follows that for all z1, z2,

‖h′µ(tµ(z1))− h′µ(tµ(z2))‖ ≤ α1

µ
‖tµ(z1)− tµ(z2)‖

‖∇tµ(z1)−∇tµ(z2)‖ ≤ α2

µ
‖z1 − z2‖.

Recall that by the differentiability of tµ(z) and the mean-value theorem, for some
γ ∈ [0, 1],

tµ(z2) = tµ(z1) +∇ztµ(z1 + γ(z2 − z1))T (z2 − z1)

⇒ ‖tµ(z2)− gµ(z1)‖ ≤ ‖∇ztµ(z1 + γ(z2 − z1))‖‖z1 − z2‖

≤ C2‖z1 − z2‖. (by assumption). (2.24)

By (α1, β1)-smoothability of h and (2.24), Term b can be bounded as follows.

Term b ≤ α2
µ
‖tµ(z1)− tµ(z2)‖ ≤ α2C2

µ
‖z1 − z2‖. (2.25)

From (2.23), we have that for any z1, z2,

‖∇hµtµ(z1)−∇hµ(tµ(z2)‖ ≤ C1α2

µ
‖z1 − z2‖+ C2α1

µ
‖z1 − z2‖

≤ α
µ
‖z1 − z2‖, where α , (C1α2 + C2α1). (2.26)

Since h : R→ R is (α1, β1)-smoothable and t : Rn → R is (α2, β2)-smoothable,
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we have for any z, µ > 0,

hµ(t(z)) ≤ h(t(z)) ≤ hµ(t(z)) + β1µ (2.27)

tµ(z) ≤ t(z) ≤ tµ(z) + β2µ. (2.28)

Since h(•) is a nondecreasing function,

hµ(tµ(z)) ≤ hµ(t(z)) ≤ hµ(tµ(z) + β2µ) (hµ non-dec., (2.28))

h(t(z)) ≤ h(tµ(z) + β2µ) ((2.28), h nondec.)

hµ(tµ(z)) ≤ hµ(t(z))

≤ h(t(z)) (From (2.27))

≤ hµ(t(z)) + β1µ (From (2.27))

≤ hµ(tµ(z) + β2µ) + β1µ. (From (2.28))

Since hµ is a convex and positive function, for κ ∈ [0, 1], we have the following by
the mean-value theorem.

hµ(tµ(z) + β2µ) = hµ(tµ(z)) + h′µ(tµ(z) + κβ2µ)β2µ.

Since h′µ(tµ(z) + κβµ) ≤ C1, it follows that

hµ(tµ(z) + β2µ) ≤ hµ(tµ(z)) + C1βµ,

implying that

hµ(tµ(z)) ≤ h(t(z)) ≤ hµ(tµ(x)) + (β1 + C1β2)︸ ︷︷ ︸
,β

µ. (2.29)

From (2.26) and (2.29), h(t(z)) is (α, β)-smoothable.

2.4.4 Smoothing r(z, ω)

Since r(z, ω) is a consequence of a composition of a nonsmooth function (specif-
ically the max function) on an affine translation of another nonsmooth function
(specifically the recourse function Q(•, ω)), we may utilize the results from the
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prior subsection. Specifically, let t(z, ω) , Q(x, ω) − m, where z = (g, θ,m).
Furthermore, suppose h(u) = [u]+.

Lemma 2.4.7. Consider the functions t(z, ω) = Q(x, ω) and h(u) = [u]+. Then
the following hold.
(i) The function hµ(u) = µ log(e

u
µ + 1) represents a (1, log(2)) smoothing of h and

0 ≤ h′(u) ≤ 1 for all u.
(ii) The function t(z, ω) = Q(x, ω) −m is a convex (α2, β2)-smoothable function
and ‖∇zt(z, ω)‖ ≤ C2 for all ω.

Proof. (i) Follows immediately from [59] and Lemma 2.4.5.

(ii) SinceQµ(x, ω) is (α2(ω), β2(ω))-smoothable, we have thatQµ(x, ω)−m satisfies
the following for any x.

Qµ(x, ω)−m ≤ Q(x, ω)−m ≤ Qµ(x, ω)−m+ β2(ω)µ. (2.30)

In addition, we have that

‖∇zr(z1, ω)−∇zr(z2, ω)‖ =

∥∥∥∥∥∥∥∥∥


∇g(Qµ(x1, ω)−m)−∇g(Qµ(x2, ω)−m)
∇θ(Qµ(x1, ω)−m)−∇θ(Qµ(x2, ω)−m)
∇m(Qµ(x1, ω)−m)−∇m(Qµ(x2, ω)−m)


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥


∇gQµ(x1, ω)−∇gQµ(x2, ω)

0
0


∥∥∥∥∥∥∥∥∥

≤ α2(ω)
µ
‖g1 − g2‖ ≤

α2(ω)
µ
‖z1 − z2‖.

Finally, it is relatively easy to see that

‖∇zt(z, ω)‖ =

∥∥∥∥∥∥
∇xQµ(x, ω)

−1

∥∥∥∥∥∥ ≤ ‖∇xQµ(x, ω)‖+ 1 ≤ C(ω) + 1,

for all x where the last inequality follows from observing that

‖∇xQµ(x, ω)‖ = ‖ − T Tω πω‖ ≤ ‖Tω‖
 d̄
c̄

+ µ̄

(
d̄

c̄

)2 .
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We may now claim the smoothability of r(z, ω).

Proposition 2.4.2. Suppose Assumption 2.4.1 holds. Consider function r(z, ω)
defined in (2.14). Then r(z, ω) is a convex and (α, β)-smoothable function.

Proof. From Lemma 2.4.7, we have that h(u),t(z, ω) satisfy the requirement of
Lemma 2.4.6. Following Lemma 2.4.6 we have that r(z, ω) = h(t(z, ω)) is (α, β)-
smoothable.

We may then define the smoothed approximation of r(z, ω) as follows.

rµ(z, ω) , m+
µ log

(
exp

(
Qµ(x,ω)−m

µ

)
+1
)
−µ log(2)

1−τ . (2.31)

As a consequence, we have that

∇zrµ(z, ω) =



1
1−τ

(
e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ +1

)
∇Qµ(x, ω)

0

1− 1
1−τ

(
e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ +1

)

 . (2.32)

We know Qµ(x, ω) is (α, β)-smooth approximation of Q(x, ω). Thus, rµ(z,m)
is a smooth approximation of r(z,m) with its gradients Lipschitz constant µ.

2.5 A variance-reduced smoothed accelerated scheme
for two-stage risk-averse problems
While the prior section has analyzed the smoothing of the risk-adjusted recourse
function, in this section, we utilize a variance-reduced smoothed accelerated scheme
for such a class of problems. In Section 2.5.1, we provide a brief review of decom-
position and Monte-Carlo sampling techniques for resolving two-stage stochastic
convex problems, possibly complicated by risk-aversion. In Section 2.5.2, we in-
troduce a recently developed variance-reduced smoothed accelerated scheme and
show how it may be extended to contend with risk-averse regimes. Finally, in
Section 2.5.3, we review the convergence statements inherited from this scheme.
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2.5.1 A review of Monte-Carlo sampling schemes for 2-stage
programs

Traditionally, schemes for resolving two-stage stochastic programs have differed
based on whether the sample-space of the second-stage problem is finite or infi-
nite. In the case of the former, decomposition techniques have proven useful in
developing techniques that scale with the cardinality of Ω. Amongst the earli-
est of these was the L-shaped method [61] while augmented Lagrangian [62] and
splitting methods [63] have also been utilized. A more comprehensive review of
decomposition schemes can be found in [64]. When the sample-space is infinite,
these avenues cannot be adopted and one has to resort to Monte-Carlo sampling
schemes. We review three avenues for resolving such problems.

2.5.1.1 Stochastic cutting plane methods

Stochastic decomposition (SD) techniques decompose the stochastic elements of
a problem from deterministic data, combining successive approximation methods
from mathematical programming with sampling approaches. Unlike other sam-
pling methods, SD leverages the special structure of linear programming problems.
When the second-stage problems are linear, this implies that the second-stage re-
course function is a piece-wise linear function. Cutting-plane techniques originate
from the work by Kelley [65] in which the following algorithm was proposed to
solve the following convex problem.

min
x∈X

cTx+Q(x), (2.33)

where Q(·) is a convex function and X is a compact, convex, and nonempty
set. The basic idea of cutting plane algorithm is as below: Such avenues have
been extended to accommodate two-stage stochastic linear programs by Van Slyke
and Wets [61] but only allow for finite sample-spaces . To accommodate general
sample-spaces, the stochastic decomposition (SD) scheme was proposed by Higle
and Sen [5] in 1991. Consider the problem (2.33) where Q(x) , E[Q(x, ω)], where
Q(x, ω) is an optimal value of

max
π

{
(hω − Tωx)Tπ | W Tπ ≤ qω

}
. (LP-S2D)
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Algorithm 1 Cutting-plane scheme
1: initialization: x1, k = 0, `0(x) = −∞, u0 = cTx1 + f(x1) and l0 = −∞;
2: while uk − lk > 0 do
3: k = k + 1. Find (αk, βk) such that

Q(xk) = αk + βkx
k

Q(x) ≥ αk + βkx ∀x ∈ X

4: Update uk = min{uk−1, c
Txk +Q(xk)}, `k(x) = max{`k−1(x), αk + βkx}.

5: Update lk = minx∈X{cTx+ `k(x)} where xk+1 is a solution to (2.33).
6: end while
7: x∗ = xk+1
8: return x∗

This scheme approximates the recourse function E [Q(x, ω)] through a sequence of
piecewise linear approximations. Within any given major iteration, each piece of
the piecewise linear approximation is derived from a conditionally independent set
of observations. As part of the scheme [5], a set Vk is constructed by solving one
subproblem per iteration and dual vector obtained is added to this set. Formally,
the update of Vk is defined as follows.

Vk := Vk−1 ∪ πkωk ,

where πkωk is a solution to the following problem:

max [hωk − Tωkxk]Tπ

subject to W Tπ ≤ qωk .

Akin to the cutting plane scheme, we may obtain the piecewise linear outer-
approximation ηk(x) for the recourse function with the following form:

ηk(x) := max{αkt + βkt x | t = 1, . . ., k}.

The stochastic decomposition (SD) algorithm is formally defined in Algorithm 3
and further details can be found from [5].
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Algorithm 2 Stochastic Decomposition Algorithm
1: initialization: k = 0, V0 = ∅, η0(x) = −∞, x1 ∈ X L is given;
2: while iteration k < Kmax do
3: k = k+ 1. Randomly generate an observation of ω, ωk, independent of any

previously generated observations;
4: Solve subproblem to get solution πkωk

max [hωk − Tωkxk]Tπ
subject to W Tπ ≤ qωk .

5: Update Vk = Vk−1 ∪ πkωk
6: Determine the coefficients of the kth piecewise linear approximation of re-

course function (αk, βk) such that

αkk + βkkx = 1
k

k∑
t=1

πkt (hωt − Tωtx)

where πkt ∈ arg max{πT (hωt − Tωtxk)|π ∈ Vk}
7: Update the coefficients of all previously generated cuts.

αkt = k − 1
k

αk−1
t + 1

k
L , βkt = k − 1

k
βk−1
t .

8: Update ηk(x) = max{αkt + βkt x | t = 1, . . ., k}.
9: Solve minx∈X{cTx+ ηk(x)} where xk+1 is the solution to this problem.
10: end while
11: x∗ = xk+1
12: return x∗

2.5.1.2 Sample-average approximation

In sample-average approximation theory (also referred to as exterior sampling),
samples are generated outside of an optimization procedure. Consequently, the re-
sulting sample average approximation (SAA) problems are solved by deterministic
optimization algorithms. One of the advantages of SAA is that this method sep-
arates sampling procedures and optimization techniques. Consider the following
stochastic programming problem:

min
x∈X

f(x), where f(x) , E [F (x, ξ(ω))] , (2.34)
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X ⊆ Rn is a closed and convex set, ξ : Ω → Rd is a random vector, and the
associated probability space is denoted by (Ω,F ,P). Unless stated otherwise, the
expectation is assumed to be well-defined and finite valued for all x ∈ X, which
implies for every x ∈ X the value of F (x, ω) for every ω ∈ Ω is finite. Suppose we
have a sample ω1, . . . , ωN of N realizations of the random vector ω. This sample is
generated by Monte Carlo sampling and for any x ∈ X, we estimate the expected
value f(x) by the sample-average fN(x) , 1

N

∑N
j=1 F (x, ωj) by averaging values

F (x, ωj), j = 1, . . . , N . The resulting sample average approximation (SAA) of the
true problem is defined as follows.

min
x∈X

f̂N(x), where f̂N(x) , 1
N

N∑
j=1

F (x, ωj).

Note that f̂N(x) can be viewed as the expectation taken with respect to the empir-
ical measure associated with a probability mass function { 1

N
, . . . , 1

N
}. By the law

of large numbers (LLN), under suitable regularity conditions f̂N(x) converges to
f(x) pointwise with probability one as N → ∞. Moreover, by the classical LLN,
this convergence holds if the sample is independent and identically distributed.
Much of the research on SAA theory focuses on proving that the estimator for the
optimal value converges to the true value as N →∞ with probability one. Related
statements can be developed for the solution set. In addition, rates of convergence
can also be derived for such schemes.

Consistency of SAA estimators was investigated by tools of epi-convergence
analysis by King and Wets [66] and Robinson [67] while asymptotic of SAA es-
timators of optimal solutions of stochastic programs were discussed by King and
Rockefeller [68] and Shapiro [69]. A detailed exposition of recent theoretical find-
ings can be found in [60]. It is worth emphasizing that this avenue is not an
algorithm in the conventional sense but represents an avenue for approximation.

2.5.1.3 Stochastic approximation methods

Stochastic approximation schemes originate from the seminal paper by Robbins
and Monro [70] while asymptotics can be found in the research by Kushner and
Clark [71] and Nevelson and Hasminskii [72]. Longer step averaging schemes
was developed in Polyak [73] and these ideas were presented in a different form
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by Nemirovski and Yudin [74]. Stochastic quasi-gradient techniques are closely
related to stochastic approximation and early work focused on the solution of
two-stage stochastic linear programs [75]. This avenue saw significant subsequent
study by Gaivoronski [76], Wets [77], amongst others. For a given stochastic
convex optimization (2.34) where f is a differentiable function, given an x0 ∈ X,
a standard SA scheme would be based on the following update rule:

xk+1 := ΠX (xk − ηk(∇xf(xk) + wk)) , k ≥ 0

where wk := ∇xf(xk;ωk) − ∇xf(xk) and ∇xf(x, ξω) is referred to as ∇xf(x, ω).
An variable sample-size stochastic approximation scheme (VSSA) was proposed
in [78,79] in which the sequence {xk+1} would have the following update rule:

xk+1 := ΠX

xk − ηk∑Nk
j=1∇xf(xk, ξj,k)

Nk

 , k ≥ 0.

In such a scheme, an increasingly unbiased estimate of the gradient is employed,
leading to improved iteration complexity of the scheme. Following the idea in
[78–80], we introduce a variant of this scheme for solving two-stage stochastic
programs in the next section.

Specifically, in this chapter, we revisit stochastic quasigradient methods which
has traditionally been plagued by the same challenges as stochastic approximation.
In particular, the convergence rate was O( 1√

k
) and the empirical behavior varies

significantly with the choice of step length sequence. In [81], we introduce three
key modifications to the standard stochastic approximation framework by (i) uti-
lizing a two-step accelerated scheme, (ii) incorporating a smoothing of the recourse
function by regularizing the second-stage dual; (iii) and leveraging variance reduc-
tion. We develop a foundation to allow for applying this framework to risk-averse
two-stage problems which allows for recovering the optimal rate of O(1/k). Next,
we describe this scheme.

2.5.2 Variance-reduced smoothed accelerated scheme

We now introduce the variable sample-size accelerated proximal method (VS-
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APM) first presented in [81] and apply it to (r-ED).

min
z∈Z

E[h(z, ω)], where h(z, ω) , (c(z) + r(z, ω)). (r-ED)

This framework incorporates three aspects in extending standard stochastic ap-
proximation schemes.

(i) Smoothing. The first change from standard stochastic approximation schemes
lies in utilizing the gradient of a smoothed objective, where the smoothing
parameter sequence is driven to zero. The resulting scheme can be formalized
as follows, given a z0 ∈ Z.

zk+1 := ΠZ [zk − γk(∇zhµk(zk) + wk)] , k ≥ 0. (2.35)

In contrast with standard stochastic approximation, we employ the sampled
gradient ∇zhµk(zk) + wk where ∇zhµk(zk) + wk = ∇zc(zk) +∇zrµk(zk, ωk).

(ii) Variance-reduction. In traditional stochastic approximation schemes, a single
sample ∇zrµk(zk, ωk) or a fixed batch-size of samples is utilized. However,
such avenues lead to biased gradients (where the conditional bias does not
diminish to zero). Instead, we propose a variance-reduced scheme given by
the following.

zk+1 := ΠZ [zk − γk(∇zhµk(zk) + w̄k)] , k ≥ 0 (2.36)

where ∇zhµk(zk) + w̄k =
∑Nk

j=1∇zc(zk)+∇zrµk (zk,ωj,k):
Nk

. In fact, the conditional
bias of the gradients diminishes to zero and this scheme starts mimicking an
inexact gradient scheme.

(iii) Acceleration. Finally, we introduce an accelerated scheme by utilizing the
following two-step rule.

ζk+1 := ΠZ [zk − γk(∇zhµk(zk) + w̄k)] , k ≥ 0 (2.37)

zk+1 := (1 + αk)ζk+1 − αkζk, k ≥ 0. (2.38)

Note that αk are prescribed sequences and this avenue was first suggested
for solving convex programs with differentiable objectives by Nesterov [82].
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The resulting accelerated scheme improved the convergence rate from O(1/k)
to O(1/k2). Similar benefits are expected to accrue here when step length
sequences, smoothing sequences, and sample-size sequences are chosen ap-
propriately. Collectively, this scheme is referred to as a variable sample-size
accelerated proximal scheme (VSAPM) [81].

The scheme is formally stated in Algorithm 3. It may be recalled that

Algorithm 3 VS-APM for two-stage risk-based ED
1: initialization: λ1 = 1, γ0,y0 = z1,M0 = 0, Nk = 1, k = 1;
2: while k < K do
3: Generate Nk samples and compute ∇µkh(zk, ω1,k), . . . ,∇µkh(zk, ωNk,k).
4: Update

yk+1 := ΠZ

xk − ηk
∑Nk
j=1∇µkh(zk, ωj,k)

Nk

 . (2.39)

5: λk+1 := 1+
√

1+4λ2
k

2 ; γk := λk−1
λk+1

,
6: Update

zk+1 := (1 + γk)yk+1 − γkyk). (2.40)

7: Update k := k + 1, Nk and µk.
8: end while
9: return zK .

rµ(z, ω) = m+ 1
1− τ µ

[
log

(
e
Qµ(x,ω)−m

µ + 1
)]
, (2.41)

where z = (z,m). Furthermore, the gradient ∇zrµ(z, ω) is defined as follows.

∇xrµ(z, ω) =
( 1

1− τ

) e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ + 1

∇Qµ(x, ω),

∇mrµ(z, ω) = 1−
( 1

1− τ

) e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ + 1

 , (2.42)

where∇xQµk(xk, ωk) = −T (ωk)Tπ(xk, ωk) and π(xk, ωk) is a solution of the smoothed
second-stage dual problem (D-Qµ(x, ωj,k)).
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2.5.3 Convergence theory

We now recall the two main assumptions for claiming convergence from (VS-APM)
from [81]. Of these, the first requires that the objective of the original problem
is indeed smoothable and the distance of the initial iterate to an optimal solution
can be bounded.

Assumption 2.5.1. (i) The function E[r(z, ω)] is (α, β) smoothable; (ii) There
exists a C such that ‖z1 − z∗‖2 where z∗ is a solution to the original problem.

Next, we require that the noise sequence w̄k, defined as follows.

w̄k , ∇zr̂µk(zk)−∇zr̄µk(zk), where ∇zr̂µk(zk) ,
∑Nk
j=1∇zrµk(zk, ωj,k)

Nk

. (2.43)

Assumption 2.5.2. Consider the sequence {w̄k} where w̄k is defined as (2.43).
Then there exists a scalar ν > 0, such that E[‖w̄k‖2 | Fk] ≤ ν2

Nk
and E[w̄k | Fk] = 0

holds almost surely for all k, where Fk , σ{z0, z1, ..., zk−1}.

We may now formally state the convergence statement from [81].

Proposition 2.5.1. Consider the sequence {zk} generated from (sVS-APM) where
µk = 1/k, ηk = 1/2k, and Nk = bkac, where a > 1. Suppose Assumption 2.5.1 and
2.5.2 hold. Then the following hold.

(i) If C̄ , 2ν2a
a−1 + 4C2 +B2, then the following holds for K ≥ 1.

E[h(zk, ωk)]− E[h(z∗, ω)] ≤ C̄

K
. (2.44)

(ii) Let ε ≤ C̄/2 and K is such that E[h(zk, ωk)] − E[h(z∗, ω)] ≤ ε. Then∑K
k=1Nk ≤ O( 1

ε1+a ).

We now provide some results that allows us to claim that such Prop. 2.5.1 can
be invoked.

Lemma 2.5.1. Consider the noise sequence w̄k defined in (2.43). Then this se-
quence satisfies the following: (i) E[w̄k | Fk] = 0 a.s. for every k ≥ 1; (ii)
E[w̄k | Fk] ≤ ν2

Nk
a.s. for every k ≥ 1.
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Proof. (i) Recall that rµ(z) = E[rµ(z, ω)]. Since rµ(z, ω) is a continuously differen-
tiable convex function in z for every ω, it follows that we may interchange deriva-
tives and expectations in claiming that ∇zrµ(z) = E[∇zrµ(z, ω)] (cf. [60, Theorem
7.44]). Consequently, if zk is adapted to Fk and w̄k is defined as (2.43), it follows
that E[w̄k | Fk] = 0 in an a.s. sense.
(ii) Next, we note that w̄k is a sample-average of a set of i.i.d random variables
with mean zero. Consequently, if E[‖wi‖2 | Fk] ≤ ν2 for i = 1, . . . , Nk in an a.s.
fashion, it follows that E[‖w̄k‖2 | Fk] ≤ ν2

Nk
in a.s. sense. It remains to show that

E[‖wi‖2 | Fk] ≤ ν2 a.s. .

E
[
‖∇zrµk(zk, ωk)− E[∇zrµk(zk, ω)]‖2

]
≤ E

[
‖∇zrµk(zk, ωk)‖

2
]

= E
[
‖∇xrµk(zk, ωk)‖

2
]

+ E
[
‖∇mrµk(zk, ωk)‖

2
]

= E


∥∥∥∥∥∥∥

1
1− τ

e
Qµk (xk,ωj,k)−mk

µk ∇Qµk(xk, ωj,k)

e
Qµk (xk,ωj,k)−mk

µk + 1


∥∥∥∥∥∥∥

2

+ E


∥∥∥∥∥∥∥
1− 1

1− τ

 e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1



∥∥∥∥∥∥∥

2 .
We observe that the first term can be bounded as follows.

E


∥∥∥∥∥∥∥

1
1− τ

e
Qµk (xk,ωj,k)−mk

µk ∇Qµk(xk, ωj,k)

e
Qµk (xk,ωj,k)−mk

µk + 1


∥∥∥∥∥∥∥

2

= E

( 1
(1−τ)

)2

∥∥∥∥∥∥∥
e

Qµk (xk,ωj,k)−mk
µk ∇Qµk(xk, ωj,k)

e
Qµk (xk,ωj,k)−mk

µk + 1


∥∥∥∥∥∥∥

2

≤ E

( 1
(1−τ)

)2

∥∥∥∥∥∥∥
e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1
∇Qµk(xk, ωj,k)

∥∥∥∥∥∥∥
2

≤ E
[(

1
(1−τ)

)2
‖∇Qµk(xk, ωj,k)‖

2
]

= E
[(

1
(1−τ)

)2
‖ − T Tωj,kπωj,k‖

2
]

≤ E
[(

π̄
(1−τ)

)2
‖Tωj,k‖2

]
≤ ν2

1 .
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The second term can be similarly bounded.

E


∥∥∥∥∥∥∥
1− 1

1− τ

 e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1



∥∥∥∥∥∥∥

2

≤ E


∥∥∥∥∥∥∥
1− 1

1− τ

 e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1



∥∥∥∥∥∥∥

2
≤ (2 + 2

(1− τ)2 ) , ν2
2 .

It follows that E[‖wi‖2 | Fk] ≤ ν2 = ν2
1 + ν2

2 .

2.6 Numerical Studies
In this section, we apply our scheme to the resolution of two-stage stochastic eco-
nomic dispatch problems to two sets of problems. In Section 2.6.1, we review the
model for generation of wind realizations and compare our scheme with the stochas-
tic decomposition and stochastic quasi-gradient counterparts in Section 2.6.2 based
on an IEEE 118-busy system which contains 19 generators, 35 synchronous con-
densers, 177 lines, 9 transformers, and 91 loads. The impact of risk is examined
in Section 2.6.3. Finally, we conclude the section by examining the performance
of this scheme on test problems sourced from ARPA-E’s Grid Optimization com-
petition.

2.6.1 Autoregressive Moving Average Model

In this subsection, we review the statistical model employed for developing wind
forecasts and generating demand scenarios. A review of multi area wind speed and
wind power scenario generation methods has been provided in [83]. It is worth
noting that ARMA techniques have been used in developing stochastic optimiza-
tion schemes for power system dispatch [84]. Our focus is on autoregressive moving
average (ARMA) models and use data from ERCOT’s hourly wind generation dur-
ing 2009, 2010, and 2011 to test the resulting models. In an ARMA model [85],
wind speed yt in period t consists of the weighted sum of past observations and a
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Figure 2.1. ARMA: Test data v.s. prediction

weighted sum of independent shocks defined as follows:

ARMA(p, q) : yt = µ0 +
p∑
j=1

φjyt−j +
q∑

k=1
θkεt−k + εt.

where yt−1, . . . , yt−p represent past observations (AR) while εt−1, . . . , εt−q are past
innovations (MA). All of εts are identical and independent centered Gaussian vari-
ables (white noise processes). By solving the Yule-Walker equations, the coeffi-
cients φjs and θks can be estimated. As wind speed over large geographical area
is generally believed to follow a Weibull distribution [86], there is a need of a
normalization transformation given by y = N−1 [F (w)] , where w denotes the time
series representing the wind generation data, F denotes the cumulative distribution
function (CDF) of the Weibull distribution associated with the stochastic process,
and N denotes the standard normal CDF. Our preliminary tests are captured in
Figure 2.1 where six sets of predictions are provided with 95% confidence intervals.

2.6.2 Performance comparison for stochastic economic dispatch

We now compare the performance of the proposed VS-APM scheme with stochastic
decomposition and standard stochastic quasi-gradient on an IEEE 118-bus system
with 19 generators, 35 synchronous condensers, 177 lines, 9 transformers, and 91
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loads. All experiments were implemented in Matlab R2017a with cplex employed
for solving LPs and QPs.

We begin by comparing VS-APM with stochastic decomposition in a setting
where the simulation budget is 1000. In Table 2.2, we compare the behavior of
(VS-APM) with SD on 10 problem instances. We observe that (VS-APM) takes
less than 1% of the time taken by SD while producing similar objective values.
This difference is because (SD) is contending with increasingly larger first-stage
problems with (VS-APM) does not have this challenge. Note that the objective
value is generated by re-sampling with 20 scenarios. A comparison with standard

|Ω| Iter_SD SD_mean Time_SD Iter_VSAPM VSAPM_mean ObjDiff Time_VSAPM TimeDiff

1000 1000 1.24E+04 4.14E+03 136 1.22E+04 -1.46% 3.06E+01 0.74%
1000 1000 3.49E+04 3.84E+03 136 3.55E+04 1.83% 2.75E+01 0.71%
1000 1000 7.12E+04 3.90E+03 136 7.16E+04 0.61% 2.89E+01 0.74%
1000 1000 1.11E+04 4.10E+03 136 1.10E+04 -0.50% 2.95E+01 0.72%
1000 1000 3.39E+04 4.35E+03 136 3.42E+04 0.88% 2.78E+01 0.64%
1000 1000 7.15E+04 4.25E+03 136 6.99E+04 -2.22% 2.79E+01 0.66%
1000 1000 1.05E+04 3.83E+03 136 1.02E+04 -1.94% 2.88E+01 0.75%
1000 1000 3.32E+04 3.82E+03 136 3.32E+04 0.07% 2.78E+01 0.73%
1000 1000 6.83E+04 3.82E+03 136 6.83E+04 -0.06% 2.86E+01 0.75%
1000 1000 1.04E+04 3.83E+03 136 1.02E+04 -2.38% 2.82E+01 0.74%

Table 2.2. VS-APM and SD

stochastic gradient provided in Table 2.3 reveals similar benefits in terms of com-
putational time. In this instance, the key benefit lies in taking far less first-stage
projection steps, a consequence of utilizing variance reduced schemes.

Iter SA_mean Iter V_mean Diff Iter V_mean Diff

1000 1.24E+04 65 1.22E+04 -1.54% 136 1.22E+04 -1.58%
1000 3.51E+04 65 3.64E+04 3.67% 136 3.55E+04 1.19%
1000 7.16E+04 65 7.36E+04 2.77% 136 7.16E+04 -0.05%
1000 1.12E+04 65 1.10E+04 -1.73% 136 1.10E+04 -1.73%
1000 3.39E+04 65 3.50E+04 3.19% 136 3.42E+04 0.98%
1000 6.99E+04 65 7.16E+04 2.48% 136 6.99E+04 -0.03%
1000 1.04E+04 65 1.02E+04 -1.61% 136 1.02E+04 -1.56%
1000 3.31E+04 65 3.39E+04 2.40% 136 3.32E+04 0.44%
1000 6.83E+04 65 7.00E+04 2.48% 136 6.83E+04 -0.03%
1000 1.03E+04 65 1.02E+04 -1.52% 136 1.02E+04 -1.49%
1000 3.27E+04 65 3.33E+04 1.76% 136 3.28E+04 0.30%
1000 6.69E+04 65 6.86E+04 2.45% 136 6.70E+04 0.09%
1000 1.21E+04 65 1.21E+04 -0.09% 136 1.21E+04 -0.54%
1000 3.26E+04 65 3.33E+04 2.04% 136 3.28E+04 0.63%

Table 2.3. VS-APM and SA

2.6.3 Risk-based Economic Dispatch
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We now consider the risk-based model in settings where the variance of demand
is raised from 10 to 50 in steps of 10 while wind penetration is raised from 10%
to 30%. We compare the risk-neutral solution with the risk-averse solution in
Table 2.4 where τ = 0.2. It is observed that the conditional value of risk increases
as variance in demand grows. In addition, we note that the CVaR associated with
the risk-neutral solution (CVaR_Mean) is significantly higher than that with the
risk-averse solution (CVAR_rED). In effect, solving a risk-neutral model leads to
higher risk exposure. We also observe that the value of the stochastic solution
(VSS_CVaR) increases as σ and wind penetration levels grow. We conduct

omega_av wind_per sigma fv_Mean fv_sED VSS CVaR_Mean CVaR_rED VSS_CVaR

1000 0.2 1 5.68E+04 3.51E+04 2.18E+04 8.09E+04 5.31E+04 2.78E+04
1000 0.3 1 1.03E+05 7.08E+04 3.19E+04 1.45E+05 1.06E+05 3.86E+04
1000 0.4 1 1.58E+05 1.09E+05 4.84E+04 2.17E+05 1.63E+05 5.41E+04
1000 0.2 10 5.70E+04 3.54E+04 2.16E+04 8.45E+04 5.74E+04 2.71E+04
1000 0.3 10 1.03E+05 7.08E+04 3.20E+04 1.49E+05 1.08E+05 4.10E+04
1000 0.4 10 1.58E+05 1.09E+05 4.83E+04 2.20E+05 1.65E+05 5.46E+04
1000 0.2 20 5.77E+04 3.63E+04 2.14E+04 9.62E+04 7.05E+04 2.58E+04
1000 0.3 20 1.03E+05 7.09E+04 3.25E+04 1.61E+05 1.20E+05 4.03E+04
1000 0.4 20 1.58E+05 1.09E+05 4.84E+04 2.35E+05 1.77E+05 5.81E+04
1000 0.2 30 5.90E+04 3.75E+04 2.15E+04 1.14E+05 8.54E+04 2.86E+04
1000 0.3 30 1.04E+05 7.12E+04 3.31E+04 1.79E+05 1.35E+05 4.36E+04
1000 0.4 30 1.58E+05 1.09E+05 4.86E+04 2.52E+05 1.92E+05 6.04E+04
1000 0.2 50 6.33E+04 4.08E+04 2.24E+04 1.51E+05 1.18E+05 3.26E+04
1000 0.3 50 1.07E+05 7.28E+04 3.45E+04 2.20E+05 1.73E+05 4.68E+04
1000 0.4 50 1.60E+05 1.10E+05 4.94E+04 2.94E+05 2.28E+05 6.63E+04

Table 2.4. Value of Stochastic Solution

further tests on IEEE test networks from MATPOWER and find that risk-neutral
solutions lead to higher risk exposure than risk-averse solutions (see Table 2.5).
We further examine the impact of variance for the IEEE 300 bus system where

Mean Cost Two-stage Cost Risk Cost Mean worst 20% Two-stage worst 20% Risk worst 20%

IEEE118B 59533.26729 44793.66107 59530.76254 268179.7149 268179.1903 198998.0665
IEEE145 46916705.35 46851098.4 46853310.19 212284415.2 212077890.7 212070666.7
IEEE300A 47577079.24 39356294.75 39689745.57 64922699.66 56087603.98 55719991.89
IEEE300B 87018479.75 70139581.54 70877282.34 97323306.35 79622883.48 78862567.52
IEEE300C 86642730.74 69798253.99 70560254.99 89515610.86 73364330.13 72596519.46

Table 2.5. Result on different networks

demand is assumed to follow a non-normal (beta) distribution. We note that the
risk exposure grows as the variance increases and risk-averse models are able to
better manage this exposure.
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Mean Cost Two Stage Cost Risk Cost Mean worst 20% Two Stage worst 20% Risk worst 20% Variance

86644497.45 69773646.04 70537357.47 89044111.67 72892328.35 72123658.01 0.00507185
86886563.58 70095760.05 70834083.12 92983380.85 76200148.71 75475844.68 0.01984127
87601203.2 70675269.16 71397447.66 98226025.94 80316099.73 79545661.2 0.0375
90436594.28 73754429.32 74431960.72 111269137.4 93425043.78 92685828.32 0.06857143

Table 2.6. Result on different variance for IEEE 300 system

2.6.4 Case study: ARPA-E Network

ARPA-E networks are networks that been put in use of Grid Optimization (GO)
Competition. The goal is have a real-time matching of instantaneous electricity
generation and demand, which requires utilities, grid operators, and other stake-
holders to use a variety of sophisticated software operating across a wide range of
timescales.

One test network among those was chosen and modified to be tested on. The
numeric test is conducted on ARPA-E "Original Dataset Real-Time Network_01-
10R". This network contains 500 buses, with 90 generators, 468 branches, 262
transformers and 371 contingencies with each contingency represents one generator
failure or an branch or transformer failure. The original network is for ACOPF
Some necessary modifications are made to conduct DCOPF experiment. DCOPF
is an relaxation to original thus in order to tighten constraints to introduce recourse
to second stage, loads are modified to double loads.

Mean Cost Risk Cost Two-stage Cost Mean Risk Risk Risk Two-stage Risk Samples

187878.701 187878.701 187878.701 245966.5256 245966.5256 245966.5256 0
187878.701 176647.6331 173831.485 245966.5256 200140.8446 205645.2917 7967
187878.701 176645.5224 173831.4252 245966.5256 200140.6522 205635.3819 7968
187878.701 176486.4437 173829.7477 245966.5256 200132.5389 205285.9083 15934
187878.701 176487.8997 173829.7249 245966.5256 200132.4342 205294.8453 15935
187878.701 176747.7048 173828.9865 245966.5256 200128.5912 207123.1018 23901
187878.701 176778.0333 173828.9672 245966.5256 200128.5051 207307.6371 23902
187878.701 176723.3841 173828.4069 245966.5256 200125.7028 206871.7545 31868
187878.701 176723.4163 173828.3928 245966.5256 200125.6382 206871.9366 31869
187878.701 176735.4956 173828.1031 245966.5256 200124.0864 206818.1594 39835
187878.701 176735.5698 173828.0869 245966.5256 200124.0095 206818.7758 39836

Table 2.7. Result on ARPA-E network

Comparing against mean value solution, we can find stochastic solution provides
better average performance in terms of overall cost of both pre-contingency and
post contingency. With mean value solution gets final average cost of 187878.70,
risk-based model get 176735.57 and standard two-stage model gets 173828.09, it
shows that both risk-based model and standard two-stage model can reduce ex-
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pected cost but in terms of average cost standard two-stage model perform best.
However, when considering worst 20% scenarios, with mean value solution gets
final risk of 245966.53, risk-based model get 200124.01 and standard two-stage
model gets 206818.78, it shows that both risk-based model and standard two-stage
model can reduce risk but risk-based model perform best.
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Chapter 3 |
Two-stage stochastic integer
programming via Stochastic
Approximation

3.1 Introduction
In the prior chapter, we focused on risk-based two-stage problems in which a CVaR-
based risk-measure is employed. In this chapter, we consider the development
of a framework for resolving two-stage stochastic integer programming problems
defined as follows.

min f(x) + E[Q(x, ω)]

subject to x ∈ X ⊆ Rn, xI1 ∈ Z+,
(SIP)

where X is a closed and convex set, f is a convex and continuously differentiable
function, I1 ⊆ {1, . . . , n} denotes an index set that specifies the integer variables,
while Q(x, ω) is defined as follows:

min
y

dTωy

subject to Wωy = hω − Tωx

y ≥ 0, yI2 ∈ Z+.

(SIP-rec(ω))

Finally, we assume that the sample-space is finite in that ω takes on a finite number
of realizations. Consequently, the deterministic equivalent is a finite dimensional
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mixed-integer program.

Such problems have tremendous applicability and arise in a range of applica-
tions in transportation, supply-chain modeling, and energy systems [87–92]. Our
research is motivated by the commitment of generation resources in a two-period
setting, a class of problems referred to as stochastic unit commitment. These
problems represent a generalization of economic dispatch problems in which the
commitment decisions can be 0/1 decisions.

A key challenge that arises in two-stage stochastic integer problems of the form
(SIP) is the observation that the recourse function Q(x) , E[Q(x, ω)] is discontin-
uous (and nonconvex) in first-stage variables. This precludes a direct application
of the schemes from the previous chapter. To address this challenge, there have
been a host of schemes that have been developed to address various subclasses
of two-stage stochastic integer programs including cut-based schemes [26, 93, 94],
Lagrangian relaxation schemes [28,95–97], progressive hedging techniques [98,99],
amongst others. Unfortunately such schemes are often complicated by a key short-
coming in that such techniques are often customized for mixed-integer linear pro-
grams in the second-stage. Consequently, they cannot contend with nonlinearity
and risk-aversion (which leads to nonsmooth relaxations). This represents a sig-
nificant gap and motivates the current research.

In this chapter, we develop a novel scheme in which we employ a branching
scheme which draws inspiration from standard techniques for deterministic mixed-
integer programs. Specifically, branching is carried out on integer variables in both
the first and second-stage at each node of this tree. The resulting problems at each
node are essentially two-stage convex programs (under the caveat that a continu-
ous relaxation of the original problem is a two-stage convex program) and these
are processed by the VS-APM scheme presented in the previous chapter. The key
advantage of such an avenue is that it allows for far broader models in that the
first-stage and second-stage problems may be both nonsmooth and nonlinear.

The remainder of the chapter is partitioned into three sections. In Section 3.2,
we survey the literature on mixed-integer programming and its stochastic variants

46



as well as some motivating applications from power systems operations. We present
the algorithm in Section 3.3 and provide a detailed set of numerics on a class of
power systems operations problems in Section 3.4.

3.2 Literature review
In this section, we summarize prior work for the solution of deterministic and
stochastic integer programming as well as on motivating applications from power
systems operation.

3.2.1 Deterministic mixed-integer programs

One of the most successful approaches for solving mixed-integer programming prob-
lems is the branch-and-bound scheme [100] (cf. [101] for a more general survey).
Applications to nonlinear integer programming with convex relaxations have also
been studied [102–104]. The branch-and-cut variant [101, 105–107] significantly
tighten the problem by adding polyhedral cutting planes after branching that al-
low for better use of fathomed nodes. We provide a brief description of branching
schemes in the context of a mixed-binary quadratic program (MBQP) where Q is
assumed to be positive semidefinite for the present. In order to start the branch-
and-bound scheme, we first relax all integrality constraints in (MBQP) to obtain
a relaxed problem (MBQP0).

min 1
2x

TQx+ cTx

subject to Ax = b,

x ≥ 0, for i ∈ I.

(MBQP0)

Since (MBQP0) is a relaxation (with x0 as an optimal solution), the optimal value
of (MBQP0) is a lower bound of the optimal value of (MBQP). Further, if x0

satisfies all integrality requirements in (MBQP), it is a feasible solution to (MBQP)
and also the optimal solution. Otherwise, there must be a variable xj ∈ x0 which is
not integer. Then we may form two subproblems from (MBQP0) by adding bound
xj ≤ [xj] to one and xj ≥ [xj + 1] to the other, where [xj] represent the largest
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integer not greater than xj. The subproblem (MBQP1) is as shown below:

min 1
2x

TQx+ cTx

subject to Ax = b,

xj ≤ [xj],

x ≥ 0.

(MBQP1)

Similarly, (MBQP2) may be defined as follows:

min 1
2x

TQx+ cTx

subject to Ax = b,

xj ≥ [xj + 1],

x ≥ 0.

(MBQP2)

The process of forming subproblems by utilizing constraints of the form xj ≤ [xj]
and xj ≥ [xj] + 1 is referred to as branching. The convex programming subprob-
lems are continuous problems and may be solved via standard schemes and this
process may be repeated for each integer variable. The entire algorithm continues
as a tree search is performed with each node representing a continuous subprob-
lem. In most cases, it is not necessary to search the entire tree. Once we obtain
a feasible integer solution to one of the continuous problems, the corresponding
value of the objective function represents an upper bound to the original problem.
The subproblems with continuous solutions with objective value higher than the
upper bound may be excluded from further consideration (a process referred to
as fathoming). In addition, if it is recognized that a node leads to infeasibility,
then it will also be fathomed since further branching from that node cannot lead
to feasibility. The branching and fathoming continues as the upper bound keeps
reducing (as one finds improved feasible integer solutions) while the lower bounds
keep increasing through the addition of constraints. Thus, the gap between upper
bound and lower bound keeps decreasing and scheme may be terminated when this
gap is sufficiently small.

Another popular method for solving mixed-integer programming problems is
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Lagrangian relaxation [108]. In 1970 [109, 110], a Lagrangian relaxation approach
based on minimum spanning tree was used to devise a algorithm for the traveling
salesman problem. In [111, 112], such techniques were applied to mixed-integer
programming (cf. [113]). Consider the problem (MBQP) and suppose the linear
constraint is relaxed using the Lagrange multiplier λ, leading to the relaxed prob-
lem LR(u).

L(u) = min 1
2x

TQx+ cTx+ uT (Ax− b)

subject to x ≥ 0.
(LR(u))

where u denotes the Lagrange multiplier. In many cases, the relaxation (LRu)
may either have a special structure (and consequently be easier to solve com-
pared to (MBQP)). In addition, the relaxation may allow for decomposition of
this problem into smaller (and possibly) structured problems that are amenable
to faster solutions. Suppose we denote z as the origin optimal objective value
and x∗ as the optimal solution to the original problem. Then we may show that
L(u) ≤ 1

2(x∗)TQx∗+ cTx∗+uT (Ax∗− b) = z. The solution to the Lagrangian sub-
problem allows for updating the multiplier estimate u which in turn will provide
a new primal solution. In the limit, it may be shown that the sequence of primal
solutions is the solution to (P) while the sequence of dual solutions converges to
the true Lagrange multiplier.

We now briefly discuss how one may contend with a mixed-binary nonlinear
program (MINLP) of the following form:

Z = min cTy + f(x)

subject to By + g(x) ≤ 0,

x ∈ X , y ∈ {0, 1},

(MINLP)

where X is a polyhedral set and f and g are convex functions in their arguments.
The generalized Benders decomposition in [114] algorithm divides variables into
sets of complicating and non complicating variables. Using a sequence of nonlinear
programming (NLP) subproblems and mixed-integer linear programming (MILP)
master problems to solve the original MINLP. The master problem, a MILP, can
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be stated as below:

z = min α

subject to α ≥ cTy + f(xk) + (λk)T [By + g(xk)], k = 1, . . . , Kfeasible,

(λk)T [By + g(xk)] ≤ 0, k = 1, . . . , Kinfeasible,

x ∈ X , y ∈ {0, 1},

where z denotes the lower bound, (xk, λk) are the optimal primal and dual vari-
ables of the NLP subproblems, andKfeasible, Kinfeasible refer to feasible and infeasible
subproblems. The solution of the master problem specifies the values of the bi-
nary variables that are then parameters in the subsequent NLP subproblem. The
NLP subproblem provide a decreasing sequence of upper bounds while the master
problems provides an increasing sequence of lower bounds. When these bounds
lie within a suitable tolerance, the scheme terminates. In [115–117], related outer-
approximation schemes for solving MINLPs are also presented.

3.2.2 Stochastic mixed-integer programming

Early efforts to resolve stochastic integer programs were restricted to first-stage
integers which was easily addressed by extending cutting-plane schemes [61] to
account for mixed-integer master problems (rather than purely linear programs).
In this subsection, we discuss the process of adding first and second-stage cuts.

3.2.2.1 First stage cuts

For SMIP problems with binary first stage and arbitrary second stage, many al-
gorithm are based on generating first stage cuts. The inequalities of Laporte and
Louveaux [93] are used follows the idea of Benders’ decomposition (or L-shaped
method). That is, at each iteration k, we solve one master program, and as many
subproblems as there are outcomes of the random variable. Despite the non-
convexity of value functions of general optimization problems (including MIPs),
the valid inequality provided by Laporte and Louveaux [93] is linear. Thus, the
linearity derives from a property of the binary first-stage variables.

At iteration k, let first-stage decision xk be given, and have the following two
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index sets:
Ik = {i|xki = 1}, Zk = {1, ..., n1} − Ik

Then we can define the linear function:

δk(x) = |Ik| −
∑
i∈Ik

xi −
∑
i∈Zk

xi


When x = xk, it is easy to verify that δk(x) = 0, for x 6= xk, there is δk(x) ≥ 1.
For a well-defined recourse function with lower bound Ql, we have:

θ ≥ Q(xk)− δk(x)
[
Q(xk)−Ql

]
This is the optimality cut of Laporte and Louveaux [93]. Thus, the algorithm can
be state as follows:

Algorithm 4 First stage cut
1: initialization: k = 0, ε ≥ 0, x1 and Ql be given. Define δ0(x) = Ql, fu0∞;
2: while fu − fl > ε do
3: Obtain a cut: Solve a second stage problem and define a cut α + βx =

Q(xk)− δk(x)
[
Q(xk)−Ql

]
.

4: Update approximation:

1. Define δk(x) = max{δk−1(x), α + βx} and fk(x) = cx + δk(x).

2. Update the upper bound: fu = min{fu, fk(xk)}.

5: Solve master problem: solve min{fk(x)|x ∈ X ∩ B} to get xk+1 and fl =
fk(xk+1).

6: end while
7: Return xk as an ε-optimal solution

This algorithm is very close to Kelley cutting plane method and L-shape
method, with Branch and Bound involve in generating cut and solving master
problem.
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3.2.2.2 Cuts in both stages

For binary variables in both stage, a sequential convexification of the integer re-
course problem is applied. Such sequential convexification can avoid the need
to solve every subproblem from scratch in each iteration. Ntaimo and Sen [118]
derived such cuts via disjunctive programming. Sherali and Fraticelli [27] also
generated such cuts using Reformulation-Linearization Technique (RLT). In terms
of theory of sequentially constructing approximation, one important result known
as Common Cut Coefficients (C3) Theorem is introduced by Higle and Sen [119] ,
which allows convex approximation built recursively.

Theorem 3.2.1 (The C3 Theorem). Consider the stochastic program with fixed
recourse as stated. Given (x, ω), let Y (x, ω) = {y = (u, z)|Wy ≥ rω − Tωx, u ∈
Rn1

+ , z ∈ Zn2
+ }, the set of mixed-integer feasible solutions for the second stage MILP.

Suppose that {Ch, dh}h∈H , is a finite collection of appropriately dimensioned ma-
trices and vectors such that for all (x, ω) ∈ X × Ω,

Y (x, ω) ⊆ ∪h∈H{y ∈ Rn2
+ |Chy ≥ dh}

Let
Sh(x, ω) = {y ∈ Rn2

+ |Wy ≥ rω − Tωx,Chy ≥ dh}

and let
S(x, ω) = ∪h∈HSh(x, ω)

Let (x̄, ω̄) be given, and suppose that Sh(x̄, ω̄) is nonempty for all h ∈ H and
πTy ≥ π0(x̄, ω̄) is a valid inequality for S(x̄, ω̄). Then there exists a function,
π0 : X × Ω → R such that for all (x, ω) ∈ X × Ω, πTy ≥ π0(x, ω) is a valid
inequality for S(x, ω).

This theorem ensures that with a simple translation, valid inequalities derived
for one pair (x̄, ω̄) may be used to derive valid inequalities for any other pair (x, ω).
Thus, a Disjunctive Decomposition, or D2, algorithm for SMIP is introduced in
[119].
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Algorithm 5 D2 Algorithm
1: initialization: k = 0, ε ≥ 0, x1 and Ql be given. Define δ0(x) = Ql, fu0∞;
2: while fu − fl > ε do
3: Solve one LP Subproblem for each ω ∈ Ω: Solve a second stage problem

and define a cut α + βx = Q(xk)− δk(x)
[
Q(xk)−Ql

]
.

4: Solve Multiplier/Cut Generation LP:

1. Define δk(x) = max{δk−1(x), α + βx} and fk(x) = cx + δk(x).

2. Update the upper bound: fu = min{fu, fk(xk)}.

5: Update and Solve one LP Subproblem each ω ∈ Ω:
6: Update and Solve master problem: solve min{fk(x)|x ∈ X∩B} to get xk+1

and fl = fk(xk+1).
7: end while
8: Return xk as an ε-optimal solution

Besides the primal methods that work with subproblems assigned to time
stages, another type of decomposition methods are dual methods in which sub-
problems are assigned to scenarios. A dual decomposition method was proposed
in [28]. For a SMIP, the deterministic equivalent can be written as:

min cTx+
r∑
j=1

pjqjyj

subject to (x, yj) ∈ Sj, ∀j = 1, ..., r

where Sj is the feasible region for scenario j. Then the idea of scenario decomposi-
tion is to introduce copies x1, x2, ..., xr of the first-stage variable x and the problem
becomes:

min
r∑
j=1

(cTxj + pjqjyj)

subject to (xj, yj) ∈ Sj, ∀j = 1, ..., r

x1 = ... = xr

where the constraint x1 = ... = xr often referred as non-anticipativity constraint
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which state that the first-stage decision are independent from scenarios. Then
the Lagrangian relaxation with respect to the non-anticipativity constraint is the
problem of finding xj, yj solves:

D(λ) = min
r∑
j=1

Lj(xj, yj, λ)

subject to (xj, yj) ∈ Sj, ∀j = 1, ..., r

where λ is the Lagrangian multiplier of non-anticipativity constraint and

Lj(xj, yj, λ) = pj(cTxj + qjyj) + λ(xr − x1)

is the Lagrangian function. So the original problem becomes

max
λ

D(λ) =
r∑
j=1

Dj(λ)

where

Dj(λ) = min Lj(xj, yj, λ)

subject to (xj, yj) ∈ Sj

Each of these r subproblems is a mixed-integer problem and subgradient method
was used in [28]. Under this Lagrangian relaxation, Lulli and Sen [120] propose
branch-and-price (BP) algorithm using column generation procedure. A detailed
comparison and computational behavior study can be found in [121].

3.2.3 Stochastic unit commitment problems

The unit commitment problem considers the determination of the optimal produc-
tion schedule of power generating units, so that in a certain amount of time the op-
erational cost may be minimized while meeting demand requirements and physical
constraints. Basically, binary variables represent the status of unit. An overview of
unit commitment problem in literature was provided in [87]. In [122,123], branch
and bound schemes were used to solve the unit commitment problem while the
Lagrangian relaxation is also widely used in solving the unit commitment prob-
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lem [88–92].
Unit commitment problems consider the scheduling of power production over a

certain period of time. Define the planning horizon as T and a time step t ∈ T ,

1, . . . , T while the set of generators is denoted by I = 1, . . . , I. For any generator,
once it is switched on, it cannot be turned off immediately. Similarly, it cannot be
turn on immediately after it is switched off. Each generator must follow a minimum
up and down times rule. As stated in [124,125], for any t ∈ T and generator i ∈ I,
we denote the generator state (on or off), start-up, and production decisions by
yit, zit, and gi,t respectively. In a two-stage decision process, we note that yit and
zit are day-ahead first-stage decisions made before real-time production while git,ω
represents production decisions made during real-time during scenario ω.

Objective function The objective of unit commitment problem is to minimize
the operation cost. Every time a generator is turned on, a startup cost need
to be considered due to the fuel and electrical power consumed. We denote the
startup cost by f yit as determined by yit. During the running time of a generator,
a running cost needs to be considered. We denote the running cost by f zit which
is determined by zit. The cost of generation may be presented as ∑i∈I

∑
t∈T f

g
it

which is determined by git. The objective function is defined as follows:

f(y, z, g) =
∑
i∈I

∑
t∈T

f yit(yit) +
∑
i∈I

∑
t∈T

f zit(zit) +
∑
i∈I

∑
t∈T

E[f git,ω(git,ω)]. (3.1)

Startup and shutdown constraints We adopt the linear formulation of [124,
125]. We observe that the startup decision y and the operational decision z are
related. The variable yi,t+1 will be 1 only when a unit is off at time t but on at
time t+ 1. Also we have yit ≥ 0, we can represent it as the following constraint

yit ≥ zit − zi,t−1, yit ≥ 0, ∀i ∈ I, ∀t ∈ T . (3.2)

Each unit has a minimum up and down time constraint and denote these times by
Li and li corresponding to generator i ∈ I. Then the constraint can be written as:

zit − zi,t−1 ≤ zi,γ, 2 ≤ t ≤ T,∀γ ∈ {t+ 1, . . .min(t+ Li − 1, T )},∀i ∈ I,

zi,t−1 − zit ≤ 1− zi,γ, 2 ≤ t ≤ T,∀γ ∈ {t+ 1, . . . ,min(t+ li − 1, T )},∀i ∈ I.
(3.3)
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Once generator i has been switched on at time t, the unit continues to be on for
at least Li − 1 time units. Using zit − zi,t−1 to represent yit we get the above
constraint. The down time constraint goes the same.

Generation constraints For each generator, there must be a minimum and
a maximum generations bound. Let Qi and qi be the maximum and minimum
generation level for generator i. We have the following constraints:

qω
i
zit ≤ git,ω ≤ q̄ωi , ∀i ∈ I, ∀t ∈ T ,∀ω. (3.4)

Meanwhile, the predicted demand need to be satisfied.
∑
i∈I

git,ω ≥ dωt , ∀t ∈ T , ∀ω. (3.5)

General Form By combining objective function (1.1) and constraints (1.2) -
(1.5), we can get the following model of unit commitment problem:

min f(y, z, g) =
∑
i∈I

∑
t∈T

f yit(yit) +
∑
i∈I

∑
t∈T

f zit(zit) +
∑
i∈I

∑
t∈T

E[Q(yit, zit, ω)]

subject to (3.1) . . . (3.3),

where Q(yit, zit, ω) is defined as

min
∑
i∈I

∑
t∈T

f git,ω(git,ω)

subject to (3.4) . . . (3.5).

In this setting, the second-stage problem does not allow for starting up or shutting
down generation assets. As a consequence, one can directly employ more standard
cutting-plane schemes for resolving such problems with the caveat that the master-
problem is complicated by the presence of integrality requirements. Instead, one
could always extend this model to accommodate second-stage binary decisions.
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3.3 VS-APM in SMIP
A natural extension on branch-and-bound is to introduce VS-APM on solving
resulting continuous relaxation. Consider a standard SMIP as follows:

min f(x) + E[Q(x, ω)]

subject to x ∈ X ∩X

where Q(x, ω) can be represent as:

Q(x, ω) = min gTω y

subject to Wωy ≥ rω − Tωx

y ≥ 0, yj ∈ Z, j ∈ J2

Then its corresponding continuous relaxation can be represented as:

min f(x) + E[Q(x, ω)]

subject to x ∈ X

where Q(x, ω) can be represent as:

Q(x, ω) = min gTω y

subject to Wωy ≥ rω − Tωx

y ≥ 0

which results in a standard stochastic programs. Apply VS-APM will result in a
set of solution (x, y), which serves as a foundation of integer program framework.

3.3.1 Cuts

In theory, MIP is an NP-hard problem. In order to solve it in reasonable time,
special technique like adding cut can be helpful. Cutting planes were proposed by
Ralph Gomory in 1958 [126] for solving integer programming and mixed-integer
programming problems. Later by Padberg and Rinaldi in 1987 [105] branch-and-
cut was proposed for more general use of cut in integer problems. The idea behind
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Gomory’s method is to initially neglect the integrality requirements and solve the
corresponding linear programming problem then add corresponding cuts to reduce
feasible. In [126], finite cutting plane algorithm for pure IPs was developed and it
is extended to MIPs with integer objective in [127]. For a integer set as follows:

Q = {x ∈ Z : x ≤ b1, x ≥ b2}

Then there is a valid inequalities for such set as follow:

x ≤ bb1c, x ≥ db2e

Thus, the following set contains all feasible integer point in Q:

Q0 = {x ∈ R : x ≤ bb1c, x ≥ db2e}

After solving corresponding relaxation, Q0 can be construct expression like ax ≤ b

with all of coefficients of a are integer for integer variable x. Then the corresponding
Gomory cuts are ax ≤ bbc. Since Simplex could provide pure integer coefficient,
like identity for basic variables, Gomory cut can be easily and often related to
Simplex method.

For same principles as Gomory cut, Mixed integer rounding cuts (MIP) were
derived and are also among the most effective cutting plane methods. The basic
mixed-integer rounding idea can be found in [128]. For a mixed integer set

Q = {x ∈ R, y ∈ Z : x+ y ≥ b, x ≥ 0}

There is a MIR inequality:
x ≥ b̂(dbe − y)

where b̂ = b− bbc, is valid for Q. In general for a multiple constraints set like:

P =
{
x ∈ R|C|, y ∈ Z|I| : Ax+By ≥ d, x, y ≥ 0

}
where A ∈ Rm×|C|, B ∈ Rm×|I|, d ∈ Rm. The MIR inequalities can be obtain by
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multiply original constraint by λ ∈ Rm, then follow the idea of MIR we can get:

∑
i∈C

(λAi)+ + b̂
∑
i∈I
bλBicy +

∑
i∈I

min
{
λAi − bλAic, b̂

}
y ≥ b̂dλde

where b̂ = b− bbc.

3.3.2 Branching

After adding cut, if the resulting solution of relaxation lies in feasible integer
set of the original problem then we get the optimal solution. Otherwise, there
must be an x /∈ X ∩ X or an yj /∈ Z for some j ∈ J2 in some scenario. Then
we can separate the feasible region X or Y into two based on infeasible integer
variables. In implementation, the separation is conducted via bound on variables.
The branch-and-bound tree structure is implemented through recursive functions.
The algorithm can be summarized as follows:
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Algorithm 6 VS-APM branch-and-bound
1: initialization: k = 0, ε ≥ 0, fu = ∞, fl = −∞, set bound for x, y as
lbx, ubx, lby, uby;

2: while fu − fl > ε do
3: Solve a relaxation using VS-APM:

1. If the relaxation is infeasible; Return with fu, fl;

2. Otherwise, get a solution x, y with relaxed optimal value f0.

4: Examine feasibility of current solution:

1. If (x, y) is feasible; Return with fu = min{fu, f0} and fl =
min{fl, f0};

2. Otherwise, branch on the first element of (x, y) that violates integral-
ity and set fl = min{fl, f0};

5: Gather information from branches:

1. If a branch is infeasible or with relaxation objective value f1 > fu,
then prune this branch and return.

2. Otherwise, denote results from two branches are fu1, fl1 and fu2, fl2.
Then return with fu = min{fu1, fu2, fu} and fl = min{fl1, fl2, fl};

6: end while
7: Return x as an ε-optimal solution

In terms of branching, branch rules can be important to performance. In worst
case, a branch process may need to travel all nodes in the tree. Several branch rules
like breadth-first search (BFS), depth-first search (DFS) and best-first branch.
Here we use a combination of both DFS and best-first by choosing the closest
integer as branch direction and always branch to a leave to get a feasible solution
as soon as possible.
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3.4 Numerics

3.4.1 First stage integer

We tested on SSN problem from [129] which is a telecommunications network
planning problem. The first stage decision variables are defined as capacity to be
added to a certain link. The original problem has 89 first stage variables and 706
second stage variables. The scenarios are generated from a discrete distribution
with total 571 values for 86 random variables. To test on integer performance, we
set some of the first stage variables to be binary and compare against Cplex with
it solving deterministic equivalent. The result is as follows:

Scenario# int_size f_op time_cplex bb time_bb diff
10 10 2.42E+02 7.03E-01 2.43E+02 1.61E+01 0.570%
20 10 2.32E+02 2.36E+00 2.32E+02 3.44E+01 0.173%
100 10 2.27E+02 6.02E+00 2.27E+02 1.75E+02 0.053%
500 10 2.40E+02 5.45E+01 2.40E+02 1.06E+03 0.100%
1000 10 2.39E+02 1.64E+02 2.39E+02 1.81E+03 0.021%
5000 10 2.36E+02 3.44E+03 2.36E+02 8.60E+03 0.004%
10000 10 2.38E+02 1.57E+04 2.38E+02 1.70E+04 0.004%
12000 10 2.36E+02 2.14E+04 2.36E+02 1.95E+04 0.004%

Table 3.1. Result on SMIP with first stage integer

From this result we can find that, as the number of scenario increases, the differ-
ence between Cplex result and VS-APM result is decreasing. Also, the computation
time of Cplex is increasing near exponentially as the corresponding dimension of
matrix grows, while the computation time of VS-APM increases in a steady near
linear rate and out perform Cplex at 12000 scenarios.

3.4.2 Second stage integer

For integer variables on both stage, we modified the original problem to a problem
with integer variables on both stage and with multiple feasible integer solutions.
We tested on both pure branch-and-bound and branch-and-bound with cut. Also
tested on different number of integer variables.

For pure branch and bound, we set the time limit to be 50 mins for each
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Figure 3.1. Computation time comparison

Scenario# Nodes LB UB Gap Cplex Solution difference
100 7581 -180.2646 -172.558 4.47% -179.7069 3.98%
200 4185 -179.4568 -170.933 4.99% -178.9130 4.46%
300 2818 -179.1501 -171.417 4.51% -178.4725 3.95%
400 1975 -178.9119 -171.554 4.29% -178.2710 3.77%
500 1726 -178.7943 -170.976 4.57% -178.0647 3.98%

Table 3.2. Pure BnB for 2 stage integer

problem, and each problem has 5 first stage integer (binary) variables and 1 second
stage integer (binary) variables for each scenario. From results in 3.2 we can find
pure branch and bound can give a feasible solution but the optimality gap is not
small enough to stop. Thus, it still needs to travel through many nodes which
can be extremely time consuming as number of scenarios and number of integer
variables grows.

Hence, we introduced MIP cuts and best first and DFS branching rule into
branch and bound. For the same 5 problems, we have the result as 3.3. From
this table we can find with cut and branching rule, branch and bound with VS-
APM could provide good enough solution as cplex within few nodes. With the
introduction of integer programs techniques, VS-APM can be extended to much
complicated stochastic mixed integer programs.
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Scenario# Nodes LB UB Gap Cplex Solution difference
100 39 -180.2646 -179.7069 0.31% -179.7069 0.00%
200 84 -179.4568 -178.9130 0.30% -178.9130 0.00%
300 124 -179.1501 -178.4729 0.38% -178.4725 0.00%
400 167 -178.9119 -178.2711 0.36% -178.2710 0.00%
500 166 -178.7943 -178.0649 0.41% -178.0647 0.00%

Table 3.3. Bnb with cut and branching rule for 2 stage integer

Integer# Nodes LB UB Gap Cplex Solution difference
105 39 -180.265 -179.7069 0.31% -179.7069213 0.00%
205 41 -178.882 -178.166 0.40% -178.1649934 0.00%
305 45 -178.055 -177.424 0.36% -177.4231244 0.00%
405 1904 -176.717 -164.16 7.65% -170.8388657 3.91%
505 1929 -177.754 -162.103 9.65% -172.1984897 5.86%

Table 3.4. Result on different number of integer variables

For same 100 scenarios problem, we also tested its sensitivity on different level
of integrality, with result shown in 3.4. From this table we can find as number of
integer grows, the complexity of the problem grows and simple cut and branch rule
may not always be as impactive as it is for smaller problem which is a common
complexity for all integer related problems. But within certain range, current
algorithm can be very efficient.

For two-stage model, these results show VS-APM with integer programing tech-
niques like cutting plane and branch and bound can also provide good enough
solution for problems with integer variables in both stages and have the potential
to be utilized in more general problems.
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Chapter 4 |
A distributed framework for
economic dispatch problems
with AC power flow constraints

4.1 Introduction
In the prior chapters, we focused primarily on problems motivated by optimal
flow under DC power flow approximation, which leads to convex programming
problems. Such an approximation is widely used in power systems modeling but
reliant on the following four approximations:

• All voltage magnitudes are close to one per unit (p.u.).

• Conductances are negligible relative to susceptances.

• Voltage angle difference are small enough in magnitude that they occupy the
nearly linear region of the sine function (i.e. sin(x) ≈ x).

• Reactive power flows are negligible relative to real power flows.

However, these assumptions may not always hold in practice and this necessitates
extending our DC power flow model to the case of AC power flow constraints.
However, the resulting ACOPF problem can be highly nonconvex. We consider
the development of distributed schemes in this chapter with a view towards ad-
dressing large-scale instances in a scalable fashion as well as from the standpoint
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of developing networked schemes. In fact, networked schemes respect privacy re-
quirements.

The remainder of this chapter is organized as follows. In Section 4.2, we present
a literature review on optimal power flow problems with AC power flow constraints.
A model of optimal power flow problems with AC power flow constraints is intro-
duced in Section 4.3. An alternating direction method of multipliers (ADMM)
scheme is presented in Section 4.4 as well as an accelerated variant. We conclude
the chapter with a set of numerics in Section 4.5.

4.2 Literature review

4.2.1 AC power flow problems

The optimal power flow problem for managing real and reactive power dispatch
(referred to as ACOPF) to promote reliable operation was first introduced in [130].
The classical ACOPF formulation used in early research may be cast as a nonlin-
ear program [131]. Such models capture power system behavior to a reasonable
level of accuracy. However, experimentation conducted with standard nonlinear
programming solvers suggest that there may be convergence issues in certain set-
tings [132]. Recent related work on diverse formulations and schemes can be
found in [133–136]. These challenges have motivated the development of con-
vexification techniques where it was shown that a suitable convex relaxation is
known to be tight [137].Recently, convexification techniques have been applied to
ACOPF [138–143]. For example, in [140,142,143], the authors propose a semidefi-
nite programming relaxation approach for which it has been shown by Lavaei and
Low [137] that a globally optimal solution for the ACOPF problem (under certain
conditions) can be obtained by a suitable semidefinite programs. A shortcoming
of these convexifications is that there is no mechanism to recover an ACOPF fea-
sible solution when the sufficient condition is not satisfied. As a generalization
of semidefinite relaxation, moment relaxation methods [144, 145] were proposed
to obtain tighter lower bounds which however become intractable to compute for
large scale networks. There has been some effort to develop second-order conic
relaxation (SOCR) formulations for the ACOPF with radial (tree) networks (see

65



e.g. [141, 146, 147]). The SOCR solutions are often inexact but with a finite opti-
mality gap; closing the gap may require stronger bounds (which could guarantee
a globally optimal outcome when exact) or a local solution method in order to
achieve ACOPF feasibility.

4.2.2 Distributed schemes

When faced with structured optimization problems, there has been a tremendous
amount of effort in developing decomposition schemes that have allowed for de-
composing the problem into smaller tractable problems. For instance, in [148], a
distributed approach for solving a DCOPF problem employed a dual decomposi-
tion technique reliant on adding fictitious buses at the interconnections between
independently coordinated areas. In [149]. two decompositions for the SDP relax-
ation were developed from the primal and dual formulations was proposed. For the
more general ACOPF model, distributed approaches have been to be capable of
solving a range of nonconvex problems. Amongst these, the Alternating Direction
Method of Multipliers (ADMM) is a commonly used distributed technique.

ADMM schemes, originating from the seminal work by Eckstein [63,150], have
been recently employed for addressing problems complicated by uncertainty [151–
153] and nonconvexity [154,155]. Past work has considered accelerated stochastic
ADMM schemes for stochastic convex optimization [156] as well as a tractable
ADMM framework for `0-regularized problems [157] (i.e. nonconvex). In [158],
coupling constraints on the rectangular voltage components are relaxed while dual
variable updates are computed locally by each agent. In [159], auxiliary variables
that represent the sums and differences of voltage phasors between the terminals of
lines that are shared by multiple regions are used for decomposition. An extensive
numerical study to a variety of test cases on ADMM can be found in [160].

4.3 Model
In this section, we present both a simple AC power flow model and then extend it
to a more general model with transformers.
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4.3.1 A simple AC power flow model

In a general AC optimal power flow model, the voltage is specified as complex.
Consequently, if vi denotes voltage at node (bus) i and I denotes set of buses as
well, then the magnitude of the voltage must satisfy the following limits.

vmini ≤ |vi| ≤ vmaxi , ∀i ∈ I.

If there is a transmission line between bus i and j, the real and reactive power
flows across this line are denoted by pi,j and qi,j, respectively. As a result, the
magnitude of the power on a transmission lines must satisfy the capacity limits:

p2
i,j + q2

i,j ≤ s2
i,j, ∀i, j ∈ I,

which leads to a convex quadratic constraint for each line. The real and reac-
tive power balance needs to be maintained at each bus, as specified by the next
requirement.

∑
j

pi,j = gi − di, and
∑
j

qi,j = gqi − d
q
i , ∀i ∈ I.

In addition, bound constraints are imposed at each bus as well.

gmin
i ≤ gi ≤ gmax

i , and gqmin
i ≤ gqi ≤ gqmax

i , ∀i ∈ I.

For each transmission line, the impedance zi,j is complex-valued and is the recip-
rocal of the admittance yi,j. Furthermore, these parameters determine the rela-
tionship between power flow and voltage.

pi,j + iqi,j = vi(v∗i − v∗j )y∗i,j, ∀i, j ∈ I,

where ∗ denotes the complex conjugate. In fact, these equality constraints repre-
sent one of the sources of nonconvexity in the AC optimal power flow problem.
When employing a linear cost of real-power generation, the resulting AC power
flow problem can be cast as the following nonconvex quadratically constrained
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optimization problem.

min
g,p,q,v

cTg g

subject to pi,j + iqi,j = vi(v∗i − v∗j )y∗i,j, ∀i, j ∈ I∑
j

pi,j = gi − di, ∀i ∈ I

∑
j

qi,j = gqi − d
q
i , ∀i ∈ I

gmin
i ≤ gi ≤ gmax

i , ∀i ∈ I

gqmin
i ≤ gqi ≤ gqmax

i , ∀i ∈ I

p2
i,j + q2

i,j ≤ s2
i,j, ∀i, j ∈ I

vmin
i ≤ |vi| ≤ vmax

i , ∀i ∈ I.

4.3.2 Security-constrained OPF models

We now consider a more general security-constrained ACOPF problem articu-
lated as a two-stage stochastic optimization problem. In the first-stage, a pre-
contingency decision is made while second stage represents a re-balancing process
under a contingency (post-contingency). The goal is to determining the optimal
dispatch and control settings for power generation and grid control equipment in
order to minimize the cost of operation, subject to pre- and post-contingency con-
straints. The underline subproblem of this model is a nonconvex AC-OPF problem,
for which we use distributed scheme to dealt with.

Objective The objective c is a sum of generator real power output costs in the
base case, and a weighted sum of soft constraint violation penalties in the base
case and contingencies and is defined as

c = c0 + δcσ + (1− δ)/|K|
∑
k∈K

cδk

with c0 represent base case and ck denote for contingency k and for either case the
cost ci can be written as:

ci =
∑
g∈G

cg + cσ, where cg =
∑
h∈Hg

cghtgh,
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pg =
∑
h∈Hg

pghtgh,

tgh ≥ 0, ∀g ∈ G,∀h ∈ Hg,∑
h∈Hg

tgh = 1, ∀g ∈ G.

Note that cg represents a piecewise linear generation cost and cσ denotes a violation
cost. The piecewise linear generation cost is modeled as a pure linear objective by
adding interpolation coefficient variables tgh with h ∈ Hg. Similarly, the violation
penalty is also given by a piecewise linear cost function for the violation cost terms
where a small penalty is applied to minor violations followed by a more stringent
penalty for moderate violations and a severe penalty for remaining violations.
Similarly, similarly λn represents different levels of penalty cost.

cσ =
∑
n∈N

λPn ∑
i∈I

(
σP+
in + σP−in

)
+ λQn

∑
i∈I

(
σQ+
in + σQ−in

)
+ λSn

∑
e∈E

σSen + λSn
∑
f∈F

σSfn

 .
cσk =

∑
n∈N

λPn ∑
i∈I,k∈K

(
σP+
ikn + σP−ikn

)
+
∑
n∈N

λQn ∑
i∈I,k∈K

(
σQ+
ikn + σQ−ikn

)
+ λSn

∑
e∈E,k∈K

σSekn + λSn
∑

f∈F,k∈K
σSfkn

 , ∀k ∈ K

Note that I, E, and F denote the set of buses, branches and transformers while
λP , λQ are penalties for real and reactive power, λS represent penalties for overloads
on branches and transformers, while n represents the index for the set of kinks
in the piecewise linear formulation. For both pre-contingency state and every
contingency k, similar operation constraints as follows apply.

Line flow constraints There are two type of transmission lines in this model:
branches and transformers. The flow equations are modeled in polar form with a
few differences. Real and reactive power flows into line e at the origin buses are
defined by the following equations.

poe = gev
2
ioe

+
(
−ge cos(θioe − θide)− be sin(θioe − θide))

)
vioevide , ∀e ∈ E

qoe = −
(
be + bCHe /2

)
v2
ioe

+
(
be cos(θioe − θide)− ge sin(θioe − θide))

)
vioevide , ∀e ∈ E
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Similarly real and reactive power flows into line e at the destination buses are
defined as follows.

pde = gev
2
ide

+
(
−ge cos(θide − θioe)− be sin(θide − θioe))

)
vioevide , ∀e ∈ E

qde = −
(
be + bCHe /2

)
v2
ide

+
(
be cos(θide − θioe)− ge sin(θide − θioe))

)
vioevide , ∀e ∈ E,

where bCHe denotes the total charging susceptance for line e. In the case of trans-
formers, the phase angle deviation is different in the flow equations. Specifically,
the real and reactive power flows into transformer f at the origin buses are defined
by the following.

pof =
(
gf/τ

2
f + gMf

)
v2
io
f

+
(
−gf/τf cos(θio

f
− θid

f
− θf )− bf/τf sin(θio

f
− θid

f
− θf ))

)
vio
f
vid
f
, ∀e ∈ E

qof = −
(
bf/τ

2
f + bMf

)
v2
io
f

+
(
bf/τf cos(θio

f
− θid

f
− θf )− gf/τf sin(θio

f
− θid

f
)− θf )

)
vio
f
vid
f
, ∀e ∈ E.

Similarly, real and reactive power flows into transformer f line at the destination
buses are defined as follows.

pdf = gfv
2
id
f

+
(
−gf/τf cos(θid

f
− θio

f
+ θf )− bf/τf sin(θid

f
− θio

f
+ θf ))

)
vio
f
vid
f
, ∀f ∈ F

qdf = −bfv2
id
f

+
(
bf/τf cos(θid

f
− θio

f
+ θf )− gf/τf sin(θid

f
− θio

f
+ θf ))

)
vio
f
vid
f
, ∀f ∈ F,

where τf is tap ratio of transformer f , gMf represents the magnetizing conductance
of transformer f , and θf denotes the phase angle of transformer f .

Bus balance constraints The bus balance constraints differ because of the in-
troduction of shunt susceptance. Consequently, the bus real power balance equa-
tion are defined as follows.

∑
g∈Gi

pg − pLi − gFSi v2
i
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−
∑
e∈Eoi

poe −
∑
e∈Edi

pde −
∑
f∈F oi

pof −
∑
f∈F oi

pof = σP+ − σP−, ∀i ∈ I

Similarly, the reactive power balance at bus i is defined as follows.

∑
g∈Gi

qg − qLi − (−bFSi − bCSi )v2
i

−
∑
e∈Eoi

qoe −
∑
e∈Edi

qde −
∑
f∈F oi

qof −
∑
f∈F oi

qof = σQ+ − σQ−,∀i ∈ I

where gFSi is fixed shunt conductance of bus i, bFSi is fixed shunt susceptance of
bus i and bCSi is the controllable shunt susceptance of bus i.

4.4 A Distributed ADMM framework
In this section, we provide a brief introduction to ADMM schemes and then de-
scribe how one may apply such a scheme to the security-constrained OPF problem.

4.4.1 An introduction to ADMM schemes

Consider a structured optimization problem of the form:

min
x,y

f(x) + g(y)

subject to Ax+By = c

x ∈ X , y ∈ Y .

One may then define the augmented Lagrangian function as follows.

Lρ(x, y, λ) = f(x) + g(y) + λT (Ax+By − c) + ρ

2‖Ax+By − c‖2
2,

where λ denotes the Lagrange multiplier associated with Ax + By = c and ρ

represents a fixed penalty parameter. The ADMM update rule requires minimizing
the augmented Lagrangian function in a step-wise fashion, given an initial iterate
(x0, y0, λ0).

xk+1 := arg min
x∈X
Lρ(x, yk, λk) (4.1)

71



yk+1 := arg min
y∈Y
Lρ(xk+1, y, λk) (4.2)

λk+1 := λk + ρ(Axk+1 +Byk+1 − c), (4.3)

where x and y denote two sets of variables with separable objective. By doing so,
the problem is split into problem with x and problem with y. In a power network,
there are multiple choices of which constraints may be relaxed. We relax the
flow balance constraints from which we may easily decompose the entire problem
network into components such as the generators, branches, and transformers. The
detailed framework is introduced in the next section.

4.4.2 A distributed ADMM framework for SC-OPF

The decision variables fall into 3 category: generator related, branch related and
transformer related. Thus, we have original decision variables x represented as:

x , [xG, xE, xF ],

where

xG , (tgh, pg, qg, cg)G,

xE , (peo, ped, qeo, qed, σen, veo, ved, θeo, θed)E,

xF , (pfo, pfd, qfo, qfd, σfn, vfo, vfd, θfo, θfd)F .

Similarly, we may also generate partition the added variable z into three similar
classes as well as an additional class pertaining to buses.

z , [zG, zE, zF , zI ],

where

zG , (pg(i), qg(i))G,

zE , (peo(i), ped(i), qeo(i), qed(i))E,

zF , (pfo(i), pfd(i), qfo(i), qfd(i))F ,

zI , (v, θ, bcs, σp+, σp−, σq+, σq−)I ,

72



where subscript i represents a copy of the original, i.e. pg(i) is a copy of pg. Thus,
the dimension of variables are as follow:

Nx , (3 + |H|)|G|+ (8 + |N |)|E|+ (8 + |N |)|F |

Nz , 2|G|+ 4|E|+ 4|F |+ 5|I|,

where |H| denotes number of different levels of piecewise generation cost, |N | de-
notes number of different levels of over load penalty on branches and transformers.
|G|, |E|, |F |, |I| represents number of generators, branches, transformers and buses.
Finally the coupling constraints are given by

Ax−Bz = 0.

Consequently, the augmented Lagrange function is

Lρ(x, z, λ) = f(x) + g(z) + λT (Ax−Bz) + ρ

2‖Ax−Bz‖
2,

where ρ > 0 and

λ , [(λpg, λqg)G, (λpeo, λped, λqeo, λqed, λveo, λved, λθeo, λθed)E,

(λpfo, λpfd, λqfo, λqfd, λvfo, λvfd, λθfo, λθfd)F ]

denotes the vector of dual variable associated with coupling constraints with di-
mension Nλ = 2|G|+ 8|E|+ 8|F |.

4.4.3 Algorithm

Recall ADMM generates new iterates (xk, zk, λk) as follows:

xk+1 := arg min
x
Lρ(x, zk, λk) (4.4)

zk+1 := arg min
z
Lρ(xk+1, z, λk) (4.5)

λk+1 := λk + ρ(Axk+1 −Bzk+1) (4.6)
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Specifically, for generator g, we have the objective for generator subproblem as
follows:

fg =
∑
g∈G

{
fg(xg) + 〈λkg , x′g〉+ ρ

2

[(
pg − pkg(i)

)2
+
(
qg − qkg(i)

)2
]}

With generators subproblem as follow:

min
xg

fg

subject to p
g
≤ pg ≤ p̄g ∀g ∈ G,

q
g
≤ qg ≤ q̄g ∀g ∈ G,

cg =
∑
∀h∈H

cghtgh ∀g ∈ G,
∑
∀h∈H

pghtgh = pg ∀g ∈ G,

0 ≤ tgh ∀g ∈ G, ∀h ∈ H∑
∀h∈H

tgh = 1 ∀g ∈ G. (Generator subproblem)

where
xg := [tgh, pg, qg, cg]

are variables for generator g,
x′g := [pg, qg]

are parts of xg in coupling constraints and

λg := [λpg, λqg]

are parts of λ corresponds to coupling constraints with generators.
For branch line e from bus i to j, we have branch subproblem as follows:

fe :=
∑
e∈E

fe(σen) + 〈λke , x′e〉

+ ρ

2
(
peo − pkeo(i)

)2
+ ρ

2
(
ped − pked(i)

)2
+ ρ

2
(
qeo − qkeo(i)

)2
+ ρ

2
(
qed − qked(i)

)2

+ ρ

2
(
veo − vki

)2
+ ρ

2
(
θeo − θki

)2
+ ρ

2
(
ved − vkj

)2
+ ρ

2
(
θed − θkj

)2
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The branch subproblem is as follows:

min
xe

fe,

subject to ved ≤ ved ≤ v̄ed ∀e ∈ E ,

peo = gev
2
eo + (−ge cos(θeo − θed)− be sin(θeo − θed))veoved

qeo = −(be + bCHe /2)v2
eo + (be cos(θeo − θed)− ge sin(θeo − θed))veoved

ped = gev
2
ed + (−ge cos(θed − θeo)− be sin(θed − θeo))veoved

qed = −(be + bCHe /2)v2
ed + (be cos(θed − θeo)− ge sin(θed − θeo))veoved√

p2
eo + q2

eo ≤ Reveo + σe ∀e ∈ E√
p2
ed + q2

ed ≤ Reved + σe ∀e ∈ E

σe =
∑
∀n∈N

σen ∀e ∈ E ,

0 ≤ σen ≤ σen ∀e ∈ E ,∀n ∈ N . (Branch subproblem)

where
xe := [peo, ped, qeo, qed, σen, veo, ved, θeo, θed]

are variables for branch e,

x′e := [peo, ped, qeo, qed, veo, ved, θeo, θed]

are parts of xe in coupling constraints and

λe := [λpeo, λped, λqeo, λqed, λveo, λved, λθeo, λθed]

are parts of λ corresponds to coupling constraints with branch.
Similarly, for transformer f from bus i to j, we have the subproblem objective:

ff :=
∑
f∈E

ff (σfn) + 〈λkf , x′f〉

+ ρ

2
(
pfo − pkfo(i)

)2
+ ρ

2
(
pfd − pkfd(i)

)2
+ ρ

2
(
qfo − qkfo(i)

)2
+ ρ

2
(
qfd − qkfd(i)

)2

+ ρ

2
(
vfo − vki

)2
+ ρ

2
(
θfo − θki

)2
+ ρ

2
(
vfd − vkj

)2
+ ρ

2
(
θfd − θkj

)2
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The corresponding subproblem

min
xf

ff ,

subject to vfd ≤ vfd ≤ v̄fd ∀f ∈ F ,

pfo = (gf/τ 2
f + gMf )v2

fo

+ (−gf/τf cos(θfo − θfd − θf )− bf/τf sin(θfo − θfd − θf ))vfovfd
qfo = −(bf/τ 2

f + bMf )v2
fo

+ (bf/τf cos(θfo − θfd − θf )− gf/τf sin(θfo − θfd − θf ))vfovfd
pfd = gfv

2
fd

+ (−gf/τf cos(θfd − θfo + θf )− bf sin(θfd − θfo + θf ))vfovfd
qfd = −bfv2

fd

+ (bf/τf cos(θfd − θfo + θf )− gf sin(θfd − θfo + θf ))vfovfd√
p2
fo + q2

fo ≤ sf + σf ∀f ∈ F√
p2
fd + q2

fd ≤ sf + σf ∀f ∈ F

σf =
∑
∀n∈N

σfn ∀f ∈ F ,

0 ≤ σfn ≤ σfn ∀f ∈ F ,∀n ∈ N . (Transformer subproblem)

where
xf := [pfo, pfd, qfo, qfd, σfn, vfo, vfd, θfo, θfd]

are variables for transformer f ,

x′f := [pfo, pfd, qfo, qfd, vfo, vfd, θfo, θfd]

are parts of xf in coupling constraints and

λf := [λpfo, λpfd, λqfo, λqfd, λvfo, λvfd, λθfo, λθfd]

are parts of λ corresponds to coupling constraints with transformer.
Thu bus subproblem is about bus flow balance with the following objective:

fb :=
∑
g∈G

f ′g +
∑
e∈E

f ′e +
∑
f∈F

f ′f +
∑
i∈I

fi(σp+, σp−, σq+, σq−)
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where

f ′g = −〈λkg , zg〉+ ρ

2

((
pk+1
g − pg(i)

)2
+
(
qk+1
g − qg(i)

)2
)

f ′e = −〈λke , ze〉+ ρ

2
(
pk+1
eo − peo(i)

)2
+ ρ

2
(
pk+1
ed − ped(i)

)2

+ ρ

2
(
qk+1
eo − qeo(i)

)2
+ ρ

2
(
qk+1
ed − qed(i)

)2
+ ρ

2
(
vk+1
eo − vi

)2
+ ρ

2
(
θk+1
eo − θi

)2

+ ρ

2
(
vk+1
ed − vj

)2
+ ρ

2
(
θk+1
ed − θj

)2

f ′f = −〈λkf , zf〉+ ρ

2
(
pk+1
fo − pfo(i)

)2
+ ρ

2
(
pk+1
fd − pfd(i)

)2

+ ρ

2
(
qk+1
fo − qfo(i)

)2
+ ρ

2
(
qk+1
fd − qfd(i)

)2
+ ρ

2
(
vk+1
fo − vi

)2
+ ρ

2
(
θk+1
fo − θi

)2

+ ρ

2
(
vk+1
fd − vj

)2
+ ρ

2
(
θk+1
fd − θj

)2

The subproblem is as follows:

zk+1 := arg min
z
fb

s.t.
∑
g∈G

pg(i) − pLi − gFSi v2
i

−
∑
e∈Eio

peo(i) −
∑
e∈Eid

ped(i) −
∑
f∈Fio

pfo(i) −
∑
f∈Fid

pfd(i) = σp+ − σp− ∀i ∈ I

∑
g∈G

qg(i) − qLi − (−bFSi − bCSi )v2
i

−
∑
e∈Eio

qeo(i) −
∑
e∈Eid

qed(i) −
∑
f∈Fio

qfo(i) −
∑
f∈Fid

qfd(i) = σq+ − σq− ∀i ∈ I

σp+ =
∑
∀n∈N

σpn+ ∀i ∈ I,

0 ≤ σpn+ ≤ σpn+ ∀i ∈ I,∀n ∈ N ,

σp− =
∑
∀n∈N

σpn− ∀i ∈ I,

0 ≤ σpn− ≤ σpn− ∀i ∈ I,∀n ∈ N ,

σq+ =
∑
∀n∈N

σqn+ ∀i ∈ I,

0 ≤ σqn+ ≤ σqn+ ∀i ∈ I,∀n ∈ N ,
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σq− =
∑
∀n∈N

σqn− ∀i ∈ I,

0 ≤ σqn− ≤ σqn− ∀i ∈ I,∀n ∈ N . (Bus subproblem)

where
zg := [pg(i), qg(i)]

ze := [peo(i), ped(i), qeo(i), qed(i), veo, ved, θeo, θed]

zf := [pfo(i), pfd(i), qfo(i), qfd(i), vfo, vfd, θfo, θfd]

Finally, after solving all subproblems we can update Lagrangian multiplier λ
following (4.6). A common stopping criterion is the feasibility of coupling con-
straints which is also the updating step of λ. As updating process of λ stops, we
get a feasible solution in terms of coupling condition. Since all variables are solved
in subproblem solver, the resulting solution is a KKT conditions satisfied solution.

4.4.4 Stochastic ADMM

The overall security constraints model can be represented in a general form as
follows:

min f(x) +
∑
i∈K

fi(yi)

subject to x ∈ X,

yi ∈ Yi, ∀i ∈ K

Ax+Biyi = bi, ∀i ∈ K

with X and Yi represents pre- and post- contingency feasible region as a set of
nonconvex constraints as Section 4.3. The resulting problem is a natural form for
a stochastic ADMM framework. As the augmented Lagrangian function associated
is defined as

L(xk, yk, λk, ρk, Nk) , f(xk) + 1
Nk

Nk∑
j=1
Lj(xk, yj,k, λj,k, ρk)
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where

Lj(xk, yj,k, λj,k, ρk) ,(
gj(yj,k)− λTj (Ajxk +Bjyj,k − bj) + ρ2

k‖Ajxk +Bjyj,k − bj‖2
)

The stochastic ADMM framework can be stated as follows for sequences {ρk, Nk}:

xk+1 ∈ argmin
x∈X
L(x, yk, λk, ρk, Nk) (x-update)

yj,k+1 ∈

argminyj∈Yj Lj(xk, yj, λj,k, ρk), j ∈ Nk ⊆ N

{yj,k}, j ∈ N\Nk
(y-update)

λj,k+1 := λj,k + ρk(Ajxk +Bjyj,k − bj), j ∈ N . (λ-update)

We develop a stochastic ADMM scheme in which the possibility of large N is
addressed by utilizing an increasing sequence {Nk} of contingency scenarios (sam-
pled without replacement). Consequently, the x decision relies on an average over
Nk terms while Nk of the N scenario-based y problems are solved while recourse
decisions yj corresponding to unsampled scenarios are kept invariant.

4.5 Numerics

4.5.1 Distributed ADMM

We reformulated ARPA-E model into distributed ADMM (DADMM) computable
model. Numerical test was conducted on ARPA-E "Original Dataset Real-Time
Network_01-10R". This network contains 500 buses, with 90 generators, 468
branches, 262 transformers. We applied DADMM algorithm with component
subproblem solved in Ipopt while a centralized problem also solved in Ipopt for
comparison As we can find from this result, since DADMM relaxed coupling con-
straints, it could yield better solution in terms of original objective. The infeasib-
lity represents the violation of coupling constraints. DADMM is steadily reducing
infeasiblity along iterations and stopped at a level of 2e-2.

We also compared behaviors of different penalty parameters. As we can observe
from this plot, the behavior of ADMM is very sensitive to the selection of penalty
parameters.
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Case Ipopt cost DADMM_cost DADMM_inf DADMM_rho time
1 27525.81236 15573.86761 0.021402498 2.273736754 4030.185
2 39355.71734 23139.50358 0.018151319 2.273736754 3927.135
3 28303.43332 15606.93508 0.021434079 2.273736754 4426.232
4 32027.2072 16742.80309 0.021661662 1.818989404 4237.188
5 33982.43563 23231.74579 0.026799315 2.273736754 4417.986
6 34190.90127 22033.42446 0.019681965 2.273736754 2249.481
7 40963.65905 22656.06014 0.020325284 2.273736754 3700.074
8 37080.89701 21875.25697 0.031438247 2.273736754 3855.665
9 51854.69583 28675.80271 0.024224493 2.273736754 3796.785
10 50987.64473 25070.04499 0.024336965 2.273736754 3862.696

Table 4.1. Result of DADMM on ARPA-E network

Figure 4.1. Different penalty value comparison

4.5.2 Stochastic ADMM

To examine the compatibility of ADMM to two stage stochastic programs, we also
conducted numerical test of stochastic ADMM on two-stage stochastic AC-OPF
model with randomly generated real power demand. Test network is IEEE 9 bus
system with two-stage AC-OPF problem. The test is conducted under MATLAB
R2016a with MATLAB Optimization Toolbox as nonlinear subproblem solver and
BARON as deterministic equivalent solver.

Feasibility residual represents the feasibility of coupling constraint between
stages, while KKT residual represents the optimality of subproblems. As we can
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K iter time_admm Feasibility KKT_residual obj_admm obj_det diff
50 34 1.11E+03 9.49E-05 8.53E-04 2.44E+04 2.44E+04 0.12%
70 35 1.62E+03 7.85E-05 8.39E-04 2.45E+04 2.45E+04 0.21%
90 34 2.04E+03 9.30E-05 7.04E-04 2.46E+04 2.45E+04 0.28%
100 34 1.45E+03 9.09E-05 2.93E-03 2.47E+04 2.47E+04 0.04%
110 35 2.55E+03 8.67E-05 6.30E-04 2.47E+04 2.47E+04 0.11%
130 37 3.17E+03 8.73E-05 3.10E-04 2.49E+04 2.48E+04 0.41%
150 36 3.62E+03 6.44E-05 6.28E-04 2.49E+04 2.48E+04 0.22%
170 42 4.63E+03 9.85E-05 1.08E-03 2.50E+04 2.49E+04 0.02%
190 38 4.71E+03 9.76E-05 6.63E-04 2.48E+04 2.48E+04 0.18%
200 41 3.88E+03 6.85E-05 5.11E-04 2.47E+04 2.47E+04 0.00%
210 39 5.21E+03 9.46E-05 7.34E-04 2.47E+04 2.46E+04 0.13%
230 55 7.79E+03 9.78E-05 1.36E-02 2.47E+04 2.47E+04 0.00%
500 500 9.98E+04 1.80E-04 1.31E-03 2.46E+04 2.46E+04 0.07%

Table 4.2. Result of ADMM on stochastic ACOPF

observe from Table 4.2, with relatively low feasibility and KKT residual, ADMM
could yield reasonable result comparing with centralized result. And from Fig-
ure 4.2 we can find ADMM computational time grows near linearly as number
of scenarios grows, which also presents its potential to be applied to large scale
problems.

When taking updating step, similar acceleration technique as chapter 2 can be
applied to updating process. Instead of using the endpoint, we can take a extrap-
olation of the sequence to accelerate the convergence process. The acceleration of
ADMM can be found in [161] in which Nesterov’s smoothing technique [82] is ap-
plied to ADMM with rate of convergence O(1/N). The comparison of accelerated
ADMM and standard ADMM is shown in Figure 4.3.
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Figure 4.2. ADMM computation time

Figure 4.3. Accelerate ADMM
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Chapter 5 |
Concluding remarks and future
work

In this section, we provide some concluding remarks regarding each chapter and
discuss some furture work in this regard.

5.1 Risk-based economic dispatch
In Chapter 2, we consider the problem of two-stage risk-based economic dispatch
when employing a conditional value-at-risk (CVaR) measure. In this setting, we
develop a stochastic approximation scheme reliant on smoothing, acceleration, and
variance reduction (by utilizing an increasing batch-size of gradients). The result-
ing sequence of iterates. As a consequence, the expected sub-optimality diminishes
at a rate of O(1/k) while the oracle complexity to compute an ε-optimal solution
is shown to be O(1/ε2). We compare this scheme with comparable cutting-plane
schemes and observe that the presented scheme has significant computational ben-
efits on a class of IEEE test systems.

Current risk-based economic dispatch is modeled under DC-OPF. Future works
consider more general optimal flow models. Among a variety of convex relaxation
of OPF model, Semidefinite programming (SDP) [162] or a secondorder cone pro-
gramming (SOCP) [163] relaxation are two major convex approximations that are
promising in solving large scale AC-OPF models. The resulting two-stage convex
programs are nature extension of VS-APM. These relaxation often provide signif-
icantly more accurate solutions than previous linear approximations, which could
lead to more general practical use.
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5.2 Two-stage stochastic integer programming
via Stochastic Approximation
In Chapter 3, we discuss an extension of VS-APM to integer programs. With
introduction of integer programming techniques like branch and bound, VS-APM
can be applied to more general stochastic programs which lead to broader area of
piratical problems such as unit commitment problems in power system operation.
With more cut and branching rules, this framework is shown to provide comparable
solution with state of art integer solver with potential to be applied to large scale
problems.

Current two-stage stochastic integer framework utilizes limited integer pro-
grams techniques. Future works consider introducing more sophisticated cutting
plane procedure like introducing Gomory cut [126, 127] associated with Simplex
basis, and branch and cut process [105] with more suitable cuts for each node to
reduces the time spend on searching. Numerical study for more general practi-
cal problems like unit commitment problem can be conducted along with other
uncertainties in power system operation introduced in previous chapter.

5.3 A distributed framework for economic dispatch
problems with AC power flow constraints
In Chapter 4, we consider dealing with large scale nonconvex power flow model
in a distributed fashion. By reformulating AC-OPF model into component based
decomposable model, a component based distributed ADMM scheme is applied
to ARPA-E power system model. For security constrained optimal power flow
problem, a stochastic ADMM is developed for this two-stage nonconvex program.
Numerical results show that ADMM provide possibility for solving large-scale non-
convex stochastic AC-OPF.

Present study demonstrate the relation between performance of ADMM al-
gorithm with corresponding penalty parameters. Future study consider further
investigation of penalty parameter ρ and its updating rule. The acceleration of
ADMM from [161] in which Nesterov’s smoothing technique [82] can be also ap-
plied to distributed ADMM. For higher precision required problems, further study
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on coordinating subproblem agents could lead to a larger variety of practical ap-
plication of this framework.
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