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Abstract
This thesis serves as a mathematical and numerical exploration of Richards’ equation, a
quasilinear partial differential equation modeling the flow of nearly incompressible fluid
through unsaturated porous media, with degeneracies at full saturation. This physical model
can be seen as a reduction of a full two phase (wetting/air phase) flow model, where the air
phase is assumed to have constant atmospheric pressure. In this case, the air pressure only
affects the pressure of the wetting phase via the hydraulic conductivity of the porous matrix
through capillary action, which is in turn modeled as a function of saturation of the water
phase. We discuss various formulations of Richards’ equation, and popular models for the
water content θ and hydraulic conductivity K as functions of the pressure head. For the
ubiquitous VGM model, we describe some analytic properties of the physical parameters.

Due to the nonlinear nature of the problem, closed-form solutions do not exist, except
in some special cases. As such, numerical treatment is required to approximate solutions
for physically relevant problems. In this thesis we consider several linearization schemes
used to treat the nonlinearities, including the Picard, Newton-Raphson, modified Picard,
and the L-scheme. For a time-continuous Picard linerization, we were able to prove that
under a technical assumption on the behavior of the nonlinearities, the sequence of solutions
to the linearized problem is a contractive sequence, thus guaranteeing convergence of the
iterates to the solution of the nonlinear problem. The need for control of K and θ in the
analysis is confirmed by various numerical results reported in the literature in which the
Picard linearization of Richards’ equation fail to converge due to the nonlinearities.

For the resulting sequence of parabolic problems, we discretize with the implicit Euler
method in time, and a mixed finite element discretization in space (lowest order Raviart-
Thomas elements). For the efficient solution of the resulting linear systems during the
iterations we introduce a combined preconditioner: an inexact Uzawa iteration paired with an
auxiliary space preconditioner using the standard linear continuous Lagrange finite element
space. We prove that the preconditioned system has a uniformly bounded condition number.
The combined preconditioner for the symmetric linearizations is robust with respect to
discretization parameters, and jumps in the conductivity, though the convergence theory of
these linear schemes to a weak solution for problems with layered media is a more complicated
matter, and was not the focus of this work. We present several numerical tests veryfying the
theoretical results. Additionally, we present numerical results for the nonsymmetric linear
problems arising from the Newton-Raphson linearization, and in some cases we observe that
the preconditioners are robust with respect to discretization parameters and the nonlinear
physical parameters K and θ.
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Chapter 1 |
Introduction

Richards’ equation is one of many nonlinear models of the flow of an incompressible fluid
through a porous medium. This model, first introduced by Lorenzo Richards in 1931, is used
extensively in the physical sciences to model fluid flow through unsaturated porous materials.
The equations in their various forms were originally intended to be used for predicting
and analysing the flow of water through various soils, and while most applications are still
hydrology-related, such as modeling aquifer recharge rates due to rainwater [2], the effects
of carbon injection into deep groundwater aquifers [3], and the tracking of contaminants
flowing through soil [4], the model has also found use for more general purpose porous media
applications, such as enhanced oil recovery [5], the flow of groundwater through root-soil
systems [6], and even diaper mechanics [7].

This thesis consists of two parts, the first of which serves as an introduction to the
problem. In the first chapter, we discuss the derivation of Richards flow in groundwater as a
simplification of a two-phase flow model, and discuss the work of Forsyth [8], who investigated
the viability of the Richards simplification as opposed to the full two phase model. We
introduce the various forms of Richards’ equation, and discuss various parameter models for
the nonlinear hydraulic conductivity K and water content θ as functions of pressure head Ψ,
that have been used historically. We focus on the Van Genuchten-Mualem (VGM) model
for K and θ, and discuss some analytic properties of these nonlinear functions. The second
chapter serves as an introduction to the mathematical question of well-posedness of the
constitutive Cauchy problem, which has been shown to have a unique weak solution given
some mild assumptions on the initial and boundary data. In particular, Alt and Luckhaus [9]
employ a non-standard strategy to prove existence of weak solutions to a general quasilinear
elliptic-parabolic PDE that contains Richards’ equation, and chapter two serves as a brief
exposition of their method for the sake of completeness for the thesis. The question of
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uniqueness of weak solutions was resolved in [9] for a specific class of solutions, and for
specific forms of θ and K (after application of the Kirchoff transformation, as expanded upon
in section 2.1.2). In a later work, F. Otto [10] was able to prove uniqueness of weak solutions
without these restrictions, so we summarize some of these results as well.

In chapter three, we introduce various linearization schemes used in the literature to yield
a sequence of linear problems that can be discretized in time and space to be solved. One
of these linearization schemes is a time-continuous Picard iteration, for which we are able
to give sufficient conditions on K and θ in order to prove that the linearized operator is
contractive, with a time-independent rate, implying the convergence of this Picard iteration
to the weak solution of the fully nonlinear problem. We also focus on some of the experiments
of Paniconi and Putti [11], whose findings on robustness of the Picard linearization match
with the intuition that we developed in our proof, that low order linearizations will only
converge globally if K and θ are mild enough. We also survey various numerical papers
that work with two linearizations, the modified Picard [12] and L-scheme [13] methods; in
particular, Slodička [14] was able to show that after a Backward Euler discretization in
time, the L-scheme linearization for each resulting elliptic problem can be interpreted as
a contractive operator that yields the solution to the corresponding nonlinear variational
problem for large enough L-scheme iterations, with a rate dependent on the minimal value
of K, the relaxation parameter L, the timestep τ , and geometric properties of the domain,
and is able to show that a piecewise-linear-in-time interpolation of these nonlinear elliptic
problems converges weakly to the weak solution of the nonlinear problem.

Part two focuses on numerical implementation for the problem. In chapter four, we
first discretize the problem in time using Backward Euler, and discretize in space with the
finite element method. We focus on mixed finite element discretizations, which have some
prevalence in the numerical literature of Richards’ equation ( [15], [16], [15], [17], [18]). We
also consider a monotonicity-preserving, edge-based formulation of the standard P1-Lagrange
finite element discretization, known as Edge Averaged Finite Elements [19] (EAFE). We also
briefly mention results regarding the stability of these finite element discretizations, relying on
a proof by Radu et al [20] that guarantees stability of the mixed finite element discretization
for Holder continuous θ, with error estimates dependent on the Holder exponent α ∈ (0, 1]. In
a previous work [15], they also show that stability of the mixed finite element discretization
after applying an integration technique pioneered in [5] implies stability of the P1-Lagrange
formulation, with the solution converging with the same order of accuracy.

The rest of chapter four describes basic properties of two Krylov-subspace based iterative
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solvers, Generalized Min Res and Conjugate Gradient, and also discusses multigrid, which
we used as both preconditioner and solver in several parts of our numerical schemes. Finally,
chapter five focuses on the preconditioner for the saddle point systems that are generated
after fully discretizing with mixed finite elements. This preconditioner is composed of two
main steps: an algorithm for preconditioning the indefinite saddle point system which we
refer to as the Schur iteration, and an auxiliary space preconditioner for the approximate
Schur complement solve done in the pressure correction solve in the Schur iteration. For
symmetric linearizations (all the ones we consider but Newton-Raphson), we are able to prove
the uniformity of this combined preconditioner with respect to discretization parameters, and
are able to show this uniformity via numerical experiments. We also show some numerical
experiments where our scheme also uniformly preconditions Newton-Raphson linearized
problems, in situations where the nonsymmetric part is mild. This preconditioner is novel
for Richards’ equation, and its robustness with respect to K and θ for the more popular
symmetric linearizations makes it a viable addition to many black-box Richards simulators
used in various popular codes used to simulate unsaturated groundwater flow. Another
important feature of this preconditioner is its scalability, as the number of degrees of freedom
in the full saddle point system is much larger than that of the approximate Schur complement
solve in each Schur iteration, which is in turn has about d! times more unkowns than the
problem discretized in the nodal auxiliary space, with d being the spatial dimension of the
finite elements considered. As such, the auxiliary space preconditioner achieves a reduction
in problem size of 1

6 for the 3D simulations we consider, and for problems with more regular
initial data and K and θ, the theoretical result we prove also applies to space-time elements,
which would imply a problem-size reduction of 1

24 . We then close with some conclusions, and
directions for this work to be continued.

The rest of this chapter focuses on the derivation and formulation of Richards’ equation.
In section 1.1, we discuss the modeling of unsaturated groundwater flow as a full two phase
model, in which one can measure the changes in pressure of the air and water phase. We
show Richards’ equation as a simplification of the two phase model, where the air pressure
is taken as constant, and nonlinear effects on water compressibility and fluid viscosity are
ignored. The rest of that section is a review of the work of Forsyth et al [8], in comparing
the accuracy and performance of the one phase model versus the two phase model on various
simulations. Section 1.2 defines the various forms of Richards’ equation that are used when
modeling unsaturated groundwater flow, namely the pure pressure head formulation, the
mixed pressure head-water content formulation, and the pure saturation formulation. We
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focus on the mixed pressure head-water content formulation, as it is in conservation form,
which guarantees global mass conservation in linearization schemes used for simulations.
Section 1.3 gives a brief overview of some models used for the water content, θ(Ψ), and the
hydraulic conductivity, K(θ(Ψ)), as functions of pressure head Ψ. We formulate the VGM [21]
model, and discuss some analytic properties of these parameters. Finally, section 1.4 rounds
out the chapter by showing some figures of these parameters as functions of pressure head
from Ψ = −100cm to Ψ = 0cm for various materials.

1.1 Modeling unsaturated groundwater flow
The flow in unsaturated soils can be modeled as a two-phase flow of immiscible fluids, namely
the air and water phases. The physical processes that give rise to this kind of flow are
infiltration of surface water through the upper layers of soil which enriches the soil moisture,
and subsurface flow through soils which are partially filled with air. The interaction of roots of
plants with this flow, and the advection and dispersion of fertilizers and pesticides within the
unsaturated zone make this model of considerable interest to soil scientists, agronomists, and
irrigation engineers. Unsaturated flow also captures the interest of environmental engineers
whose main concern would be predicting the infiltration and subsequent distribution of
contaminants and pollutants from industrial processes, including seepage into underground
streams, and for petroleum engineers, in particular in the cases of underground reservoirs
where immiscible fluid flows are also encountered, with the fluids being water, oil, and gas.

Multiphase flow is governed by a system of coupled mass balance laws, one for each phase.
In the case of modeling the flow of water into unsaturated soil, we have two fluid phases:
air(which we denote with subscript a) and water(which we denote with subscript w). This
gives the following system of equations:

∂t(φθwρw) + div(ρwVw) = qw,

∂t(φθaρa) + div(ρaVa) = qa,

with Darcy velocity of each phase l being proportional to the pressure gradient, and negative
sign indicating the tendency of fluid to flow from higher pressure values to lower ones:

Vl = −κλl(∇Pl + ρlgez).

Here, θl is the saturation of phase l, Pl is its pressure, ρl is the mass density of phase l, κ is
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the permeability tensor, λl = kl
µl
, krl is the relative permeability of phase l, µl is the viscosity

of phase l, and gez is the gravitational acceleration vector in the positive z direction. ql are
the source terms for phase l.

To link the phase pressures, one can use an experimentally determined capillary pressure,
Pcaw:

Pa = Pw + Pcaw(Sw). (1.1)

If the air phase pressure is not assumed to be constant, we have

θw + θa = 1,

which allows us to eliminate the air saturation from the system.
Typically, the following models are assumed for the density of air and water phases, and

porosity of the medium:

ρa = ρa0Pa/Pa0

ρw = ρw0(1 + cw(Pw − Pw0))

φ = φ0(1 + cm(Pw − Pw0)),

where cm is the compressibility of the soil, cw is the compressibility of the water, and ρl0

is the mass density of phase l at base pressures Pw0 and Pa0, respectively. Typically, the
compressibility coefficients are very small (on the order of 10−7 kPa), and so we will ignore
their effects, so that all but the air density becomes constant. Then,

φρw∂tθw − div (Kw(θw)(∇Pw + ρwgez)) = qw,

φ
ρa0

Pa0
∂t [(1− θw)Pa]− div

(
Ka(θw)(∇Pa + ρa0

Pa0
Pagez)

)
= qa.

Here we have consolidated the phase permeabilities and viscosities into the conductivity
terms, Kl = κλl(θl).

In the full two phase formulation, the relative conductivities for both water and air are
determined from field experiments, as nonlinear functions of water saturation.

1.1.1 Constant air pressure (Richards) approximation

In the case of groundwater flow, it is usual to assume that the dynamics of air flow play an
insignificant role in determining water movement and storage in the unsaturated zone, i.e,
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for flows near the surface, one assumes the air pressure to be atmospheric (constant). This
eliminates the second equation entirely, and further simplifies the water pressure equation,
as one can use (1.1) to solve θw = θ(Pw), by inverting Pcwa. Typically, the water pressure is
replaced with the pressure head, which is a more direct experimental measure. To relate the
two, the standard relation is Ψ = Pw

ρwg
. Thus, the system of equations can be reduced to the

single equation,

C∂tθ(Ψ)− div (K(θ(Ψ))(∇Ψ + ez)) = qw.

In doing so, we have significantly reduced the number of unknowns to solve for, at the cost of
introducing harsher nonlinearities in the elliptic term.

1.1.1.1 Simplified example: linear flow in one dimension

The full two phase model has developed increasing popularity to model subsurface groundwater
flow for certain situations. Some authors have even questioned the assumption of a passive
air phase ( [22], [23]).

As was discussed in [22], by assuming one dimensional flow along an infinite depth column
with no gravity or source/sink terms, and that the pressure in air changes are small, then the
two phase system can be approximated by a nonlinear hyperbolic system in water saturation
θw, where the fluxes Vl are constant:

∂t(φθw) = K(Va + Vw)∂x(fw),

and the fractional flow curve fw is used to formulate a condition for physically admissable
solutions,

fw = krw(θw)/µrw
krw(θw)
µrw

+ kra(θw)
µra

.

When considering initial profiles for this simplified system of the form

θw =

1, x ≤ 0,

0, x ≥ 0,

an entropy condition can be formulated that requires physically admissable solutions to obey
a convexity constraint with respect to fw, namely that the line connecting the state on the
right to the state on the left must lie above fw. In cases of fw where this is valid, the shock
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of unit height at x = 0 propagates to the right. However, in one of the cases considered
(krl = θ4

l ), the chord intersects at a height less than one, hence the system forms a rarefaction
fan with values θs < θw < 1, follwed by a shock of height θs.

The simplified single phase flow model, on the other hand, cannot capture this rarefaction,
as it completely ignores the effects of air pressure, hence only unit height shocks would
propagate, with no rarefaction.

1.1.1.2 Behavior in higher dimensions

The model problem above, while indicative of potential discrepancies between two phase
flow and the one phase simplification, is only one-dimensional, which permits use of the
simplifying assumption of constant total fluid velocity due to the scalar nature of Va and Vw,
and hence requires solution of only one equation for both approaches. This simplification is
not possible in more than one dimension.

To consider the multidimensional case, Forsyth tested the validity and performance of two
phase flow versus the one phase simplification in various numerical experiments ( [8], [4], [24]).
We wish to highlight two multidimensional tests done in [8]: a standard dam seepage problem
(steady state), where the goal is to determine whether the height of the seepage point (the
highest point where the dam wall is fully saturated on the opposite side of the water front)
differs when using two phase flow versus one phase. In this test, a linear approximation of
the capillary pressure was used,

Pcaw(θw) = P ′c(1− θw).

In the two phase formulation, P ′c = 0. For the single phase formulation, P ′c = 1kpa was used,
and the simulations predict the same seepage height for both cases. As the nonlinearities for
the two phase formulation considered are much milder than the one phase formulation, the
number of linear iterations required to solve the two phase formulation are much fewer than
those of the one phase model.

The second problem considered is a time dependent variant of a similar problem to the
first, with constant air pressure boundary conditions for the two phase formulation on all
but one side with water, and for the one phase approximation, all sides exposed to air as
zero flow boundaries. In this case, the metric used to determine the accuracy of of either
phase model was the fraction of the available pore volume of the porous medium that is filled
with water after one day passes in the simulation, comparing with an exact analytic solution.
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See [8], figures 2 and 3 for pictures showing the problem set up for both of these examples.
Both simulations were run for one phase and two phase flow, using the relations krl = θnl ,

with n = 1, 2, 4. The simulations indicate that the fraction of water occupied pore volumes
are roughly the same for both for n = 1 and 2, (which match the condition of admissable
solutions as mentioned in the previous section), but for n = 4, the two vary significantly, as
was predicted in the heuristic analysis of the previous section, and both formulations are
equally difficult to solve.

What these examples show is that, in many practical situations, the assumption of a
passive air phase will give results very similar to a full two-phase formulation with far fewer
unknowns to solve for, at the cost of generating harder linear problems to solve. However,
if the air relative permeability is very flat near θa = 0, then the one-phase formulation
cannot accurately represent the full dynamics of the system, and the two-phase formulation
is recommended.

One potential difficulty in using the two phase model is that numerical schemes can have
problems with convergence to physically admissable solutions, as the basic analysis above
indicates. In particular, [25] and [26] show that upwind schemes must be aligned according
to saturation fronts, with proper time and space stepping procedures done to guarantee
convergence to the physically correct solution for the two-phase model. On the other hand,
as the one phase system is a parabolic approximation, numerical convergence to the wrong
physical solution has never been observed in practice; what one sees using central weighting
as opposed to upwind weighting is the appearance of non-physical oscillations instead, that
can be eliminated using smaller discretization in space, or using special upwinding schemes
proposed to develop monotone discretizations ( [27], [24], [25], [12]); this point will be
expanded upon in chapter 3.

1.2 Various forms of Richards’ equation
As shown above, Richards’ equation can be interpreted as a simplification of the standard
two-phase flow formulation for a gas and water phase in a porous medium where the pressure
gradient required to drive flow of the gas phase is ignored due to the large mobility contrast
between the water and gas phases.

Analytic closed form solutions for the one-dimensional Richards’ equation have been
derived for a few specialized forms of the constitutive relations describing the soil-water
retention and the unsaturated hydraulic conductivity functions ( [28], [29], [30]). However,
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these solutions are not generally applicable because either the functional forms are dissimilar
from widely used constitutive relations that represent real soils, and/or the solutions impose
strict requirements on the initial and boundary conditions, so most practical situations require
a numerical solution in two or three dimensions, depending on the problem and complexity of
the flow situation. Despite the fact that the first reasonably complete conservative numerical
solution method was published in the early 1990s [12], the numerical solution of Richards’
equation remains computationally expensive, and in certain circumstances, unreliable. A
universally robust and accurate solution methodology has not yet been identified that is
applicable across the full range of soils, initial and boundary conditions found in practice.
Existing solution codes have been modified over the years in an attempt to increase their
robustness; however, as the theoretical analysis regarding the existence of solutions given
sufficiently regular Cauchy data can only guarantee relatively low regularity of solutions
unless strong assumptions on θ and K are made, numerical methods can fail to demonstrate
reliable convergence behavior in practice, especially for higher order linearizations.

There are three standard forms of the equation that are considered, in which the primary
variable changes depending on the case being considered:

There is the purely pressure head-based form,


C(Ψ)∂tΨ− div(K(Ψ)∇(Ψ + z)) = f(Ψ), (x, t) ∈ Ω× (0, T ],

Ψ(x, 0) = Ψ0(x), (x, t) ∈ Ω× {0},

Ψ(x, t) = ΨD(x, t), (x, t) ∈ ΓD × (0, T ],

K(Ψ)∇(Ψ + z) · ν = 0, (x, t) ∈ ΓN × (0, T ].

(1.2)

The pure saturation-based form,


∂tθ − div(D(θ)∇θ) = f(θ), (x, t) ∈ Ω× (0, T ],

θ(x, 0) = θ0(x), (x, t) ∈ Ω× {0},

θ(x, t) = θD(x, t), (x, t) ∈ ΓD × (0, T ],

D(θ)∇(θ) · ν = 0, (x, t) ∈ ΓN × (0, T ].

(1.3)
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Finally, there is the mixed saturation-head form


∂tθ(Ψ)− div(K(θ(Ψ))∇(Ψ + z)) = f(θ(Ψ)), (x, t) ∈ Ω× (0, T ],

θ(Ψ(x, 0)) = θ(Ψ0(x)), (x, t) ∈ Ω× {0},

Ψ(x, t) = ΨD(x, t), (x, t) ∈ ΓD × (0, T ],

K(θ(Ψ))∇(Ψ + z) · ν = 0, (x, t) ∈ ΓN × (0, T ].

(1.4)

Both forms (1.2) and (1.4) are valid for the entire regime of possible saturation cases, while
the pure saturation-based form is only relevant for purely unsaturated problems. We note
here that these may be equivalent for classical solutions where appropriate use of the chain
rule and other simplifications can bring you from one formulation to another, but in the case
of weak solutions where those derivatives may not be defined, these formulations are not
equivalent. That being said, the head-based form, being an explicit chain rule calculation,
allows for simple expansion of the storage coefficient C(Ψ),

C(Ψ) = Ssθa(Ψ) + c(Ψ),

where Ss is the specific storage and θa is the saturation of the aqueous phase; this facilitates
models of contaminant transport or non-aqueous phase materials ( [4], [31]).

However, this extendability comes at a price: namely, the scheme is not mass conservative.
Celia et al. [12] show numerically that, due to the equation not being in conservation form,
discretizations of (1.2) with low order (Backward Euler) time discretizations suffer mass
discrepancies, as the strong nonlinearities of θ imply that low order discretizations in time of
the chain rule do not approximate the time derivative well. To combat this, higher order
time integration can be used. Tocci et al. [32] use a method of lines approach, in which
the problem is discretized in space using finite differences, and integrated in time using an
adaptive multistep method in time to deliver high fidelity-in-time solutions of (1.2).

The pure saturation form enjoys perfect mass conservation on the discrete level, and
the time derivative being linear significantly simplifies analysis. However, the diffusion
coefficient D(θ) ∼ K(θ)/C(θ)→∞ as θ → 1, since C(θ) = ∂θ

∂Ψ → 0. As such, the problem
fully degenerates in an asymptotically divergent manner near full saturation. Further, for
physically realistic formulations of K and θ, D(θ)→ 0 near fully dry media, thus degenerating
the problem for θ = 0 as well. There have been some methods proposed to deal with these
degeneracies. In [33], Pop derives error estimates for a time discretization method of the
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saturation form, which he allows to fully degenerate, by applying the Kirchoff transformation
θ(Ψ)→ b(u) (described in section 2.1.2 of this chapter), and considering a perturbed form of
D as follows:

Dε(θ) =


ε, 0 ≤ θ ≤ Cε1/(α−1),

1
εr
, 1− Cεr/β ≤ θ ≤ 1,

D′(θ), otherwise.

He is then able to prove stability of a Backward Euler discretization, and show numerical
convergence using the standard VGM model, with n ≥ 3 (described below). Another difficulty
with the primary variable being the water content is that the water content is a continuous
variable only in homogeneous soils, and soils are seldom homogeneous over significant length
scales in most practical applications. In the case of layered soils, the water content is
discontinuous across layer interfaces because of unique unsaturated capillary head relations
in the different soil layers [34]. Rather, the pressure head Ψ is continuous, and it is better to
write the Richards equation with pressure head as the dependent variable and evaluate the
moisture content in terms of Ψ.

The most popular of these three forms (and the one we focus on for this work) is the
mixed saturation-head form (1.4). This form enjoys perfect mass conservation on the discrete
level, without the extreme degeneracy of the diffusion coefficient near full saturation. The
problem is still degenerate, however, and switches type from parabolic to elliptic in the fully
saturated regime.

From the analytic point of view, a significant contributor to the difficulty of establishing
well-posedness of the problem is the presence of the nonlinear water content θ(Ψ) in the
parabolic term. This water content is in general a strongly nonlinear function of the pressure
head, and this nonlinearity makes proving existence and uniqueness of solutions to the problem
a considerable challenge [9], [10]. Furthermore, for certain physically realistic parametrizations,
the hydraulic conductivity K(θ) can develop steep spatial gradients near saturation fronts,
which can significantly impact convergence of nonlinear iterations near full saturation; this
point will be expanded upon in chapter 3. As such, a significant portion of the literature on
numerical methods is focused on finding linearizations for Richards’ equation that are robust
with respect to these poorly behaved parameters.
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1.3 Parameter models
Accurately modeling the change in hydraulic conductivity K as a function of pressure head
for unsaturated media has proven a difficult challenge for hydrologists to tackle. Some of the
many reasons for this are the lack of homogeneity in micropore structure, and that capillary
action effectively changes the macropore structure by obstructing pore networks and forming
air pockets that are hard for infiltrating fluids to penetrate [35], [36]. This is reflected by the
practical difficulty in measuring water retention as a function of pressure head, or the even
greater difficulty in measuring the effect of a change in pressure head on conductivity for test
media [37], [2], [38]. To tackle this issue, there have been many proposed models to represent
K as a function of Ψ, and the easier to measure relation of K as a function of water content
θ, with the water content dependent on Ψ.

In what follows, we discuss various K and θ models used in the literature, with a focus
on the Van Genuchten-Mualem model that is the most widely used.

1.3.1 K models

One popular group of parameter relations have K depending on Ψ or θ as some sort of power
law dependence, such as the models first proposed by Kozeny [39]:

Krel = K/Ksat = θαN .

Here θN is the normalized saturation level of a medium, whose water content varies from
a residual water content θR to a maximum water content θS,

θN(Ψ) = θ(Ψ)− θR
θS − θR

.

Ksat is the maximal conductivity at full saturation, and α is a parameter that can be tuned
to fit observed saturation curves of a given porous medium.

Averjanov [35], who derived a simplified model in which a pore could be modelled as a
capillary tube in which there is a concentric air tube restricting the flow of water to the
outer annulus of the tube, proposed α = 3.5 for most media. This particular formulation was
widely used in the past due to its ease of implementation.

The other popular group of relations couple K and θ using integral dependence. In the
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context of petroleum engineering, the Burdine equation [40] is widely used,

Krel(θ − θR) = θ2
N

[∫ θ−θR
θ=θR dθ/Ψ2

]
[∫ θS
θ=θR dθ/Ψ2

] ,
while for soil scientists, the initial choice was a simple quadrature of a more general form,
which is a variant of the model introduced by Childs and Collis-George [37]:

Krel(θ − θR) = θβN

[∫ θ−θR
θ=θR dθ/Ψ2

]
[∫ θS
θ=θR dθ/Ψ2

] . (1.5)

The coefficient β was suggested to be 0, 4/3, and 1 by various authors, but Mualem [41] was
one of the first to numerically verify using experimental data from 45 different soil samples
that a choice of β = 1/2 minimized the error between the model K and measured K, which
he verified using a deviation measure

D =
[
(1− θN min)−1

∫ 1

θN min
[ln(Kmeas(θN))− ln(Kmodel(θN))]2 dθN

]1/2
,

that can be interpreted as an average of the orders of magnitude difference of Kmeas and
Kmodel over the range of θN min values.

With this measure of error, Mualem found that the average D value across all 45 soils
with β = 1/2 was 0.97, with standard deviation 0.82, as opposed to 1.49 (std dev 1.64) for
Averjanov’s model, and 1.17 (std dev 0.88) for the CCG model with β = 4/3.

1.3.2 θ models

Models of the water content with respect to changes in pressure head proved to be a much more
tractable exercise, as measuring this experimentally was more direct. Among the different
models suggested, one of the most popular considered is the Brooks-Corey model [42]:

θ(Ψ) =
[

Ψb

Ψ

]λ
,

with Ψb being a threshold negative “bubblng pressure”, at which point there is a discontinuity
in the derivative of the water content- pressure head model. Brooks and Corey were able
to show using data from over 40 different materials that their model could predict the

13



measured soil-water retention curve to high accuracy, though near full saturation and near
this experimentally discovered minimal bubbling pressure, the predictions lose fidelity.

Another popular model is the Van Genuchten model [21],

θN = 1
(1 + (−αΨ)n)1−1/n ,

where α > 0 and n > 1 are physically determined parameters that can be determined using
a log-slope technique from the graph of the soil-water retention curves. The benefit of this
model is the smoothness of the functions involved, particularly at the initially dry (θN → 0)
and nearly saturated (θN → 1) regimes; this is expanded upon in the next section.

In [21], Van Genuchten verified his formulation of water content with experimental data
for many materials, with a focus on Hygiene sandstone, Touchet silt loam, silt loam, Beit
Netofa clay, and Guelph loam (wetting and drying phases). For all but the Beit Netofa clay,
the model proposed and the experimental data match closely; the discrepancy in the former
soil was explained as being due to the poor estimate on the residual water content for that
particular material.

1.3.3 VGM model

Van Genuchten incorporated his model for the water content with the Mualem model for
conductivity as function of water content, deriving the standard Van Genuchten-Mualem
(VGM) model for K and θ:

θ(Ψ) =

θR + (θS − θR) [1 + (−αΨ)n]
1
n
−1 , Ψ < 0,

θS, Ψ ≥ 0,
(1.6)

K(θ) =


KSθN(Ψ) 1

2

[
1−

(
1− θN(Ψ)

n
n−1
)n−1

n

]2
, Ψ < 0,

KS, Ψ ≥ 0.
(1.7)

θR is the residual water content, θS and KS are the maximal water content and hydraulic
conductivites, resp. at full saturation, and the parameters n and α are parameters that are
gleaned via a log-slope technique used on the saturation-head retention curves. n increases
as pore size distribution becomes more uniform, and α gives some measure of the slope of θ
at an inflection point in the S-curve that is generated by the model [21]. The function θN is
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the normalized water content,
θN(Ψ) = θ(Ψ)− θR

θS − θR
.

As the smoothness of both functions depends on n, we wanted to investigate the smoothness
of these functions with respect to this parameter.

Below are the first two derivatives of θN(Ψ):

θ′N(Ψ) = α(n− 1) (−αΨ)n−1

[1 + (−αΨ)n]2−
1
n

,

θ′′N(Ψ) = α2(n− 1) (−αΨ)n−2

[1 + (−αΨ)n]2−
1
n

[
(−αΨ)n

1 + (−αΨ)n (2n− 1)− (n− 1)
]
.

Thus, the function is strictly monotone increasing for Ψ < 0, and continuously differentiable
for all admissable n, with derivative asymptotics given by the following,

θ′N(ε) = O(εn−1), ε→ 0, (1.8)

θ′N(ε) = O(ε−n), ε→∞. (1.9)

The asymptotics for θ′′N show that θ′N is continuous at Ψ = 0 for n > 2:

θ′′N(ε) = O(εn−2), ε→ 0, (1.10)

θ′′N(ε) = O(ε−(n+1)), ε→∞. (1.11)

The bracketed term in θ′′N implies that there is an inflection point in the graph of the
function for some Ψ < 0, at which point θ′N attains a maximum. This inflection point is
used by Van Genuchten in his log-slope technique to determine n. Hence, θN is Lipschitz
continuous, with Lipschitz constant being the value of θ′N at that inflection point, implying
that Newton schemes should perform well for any admissable n and α, though for 1 < n < 2,
the unboundedness of the second derivative as Ψ → 0 can foreshadow potential problems
with a Newton linearization.

Elementary calculations show that the maximum value of θ′N (i.e, the Lipschitz constant
Lθ) happens when (−αΨ)n = n−1

n
, with value

Lθ = max
Ψ

θ′N(Ψ) = α
n(n− 1)
2n− 1

[
n− 1
2n− 1

]1− 1
n

. (1.12)
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Writing n = 1 + ε, its a straightforward matter to check that

Lθ <
αε

2 ,

which implies that as ε → 0, Lθ → 0. As n → ∞, clearly Lθ → αn
4 . In this sense, θ as

function of Ψ varies less rapidly as n→ 1, which is important when considering the properties
of K as a function of Ψ.

Given the more complex expression involving K, we only analyze the first derivative of K
with respect to θN :

K ′(θN) = ξ(θN)
θ−1/2

N

2 ξ(θN) + 2θ
1
2
Nξ
′(θN)

 ,

Where ξ(θN) =
[
1− (1− θ

n
n−1
N )n−1

n

]
, and ξ′(θN) = θ

1
n−1
N (1 − θ

n
n−1
N )−1/n. A chain of nested

inequalities can be used to show that, because 0 ≤ θN ≤ 1 and n > 1, ξ(θN) ≤ θ
n
n−1
N , and

ξ′(θN) ≥ θ
1

n−1
N

1− θ
1

n−1
N

.

Thus, we get the following bounding asymptotics for K ′ approaching relatively dry and
nearly saturated conditions:

K ′(ε) ≤ O(ε−
1
2 + 2n

n−1 ), ε→ 0 (1.13)

K ′(ε) ≥ O
 εmin(1, 1

n−1 )

1− εmin(1, 1
n−1 )

 , ε→ 1. (1.14)

Thus, the derivative K approaches the dry case smoothly, but approaches the fully saturated
case sharply, as ξ′(1)→∞, most notably for media with n approaching 1. However, if one
considers the full derivative,

dK
dΨ = K ′(θN(Ψ))θ′N(Ψ),

and the following property of θN ,

θ
n
n−1
N = 1

1 + (−(αΨ)n , (1.15)
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one can show the following:

Lemma 1.3.1 (Analytic properties of K(Ψ)). For the VGM model, if n > 2, then K(Ψ) is
Lipschitz throughout the entire domain of definition. If n = 2, the function is Lipschitz, but
has discontinuous derivative at Ψ = 0. For 1 < n < 2, the function has unbounded derivative
as Ψ→ 0 from the left.

Proof. Expanding the derivative of K as a function of Ψ and using the chain rule and (1.15)
to simplify, one can deduce

∂K

∂Ψ ≤ α(n− 1)
[1
2(−αΨ)n−1 + 2(−αΨ)n−2 (1 + (−αΨ)n)

1
2−

1
n

]
,

which clearly shows how n determines the analytic properties of K(Ψ).

This corroborates with the many observations in the literature on the numerical challenge
of modeling variably saturated-unsaturated media, as steep gradients in the conductivity near
saturation fronts with certain discretizations have been shown to lead to false convergence
when modeling both the water and air phase (i.e two phase flow) [4], [27] and the appearance
of non-physical oscillations (i.e, a lack of monotonicity) near saturation fronts for Richards’
equation [24], [27], [43], [12].

1.4 Plots of Kr and θ for different soils
The primary challenge for numerical considerations is that the conductivity of unsaturated
soils tends to vary by several orders of magnitude from being dry to being fully saturated;
particularly for initially dry soils, the conductivity approaches 0 for most media. In this
sense, the nonlinear effect of capillary action drives the behavior of numerical approximations.
This change from minimal to maximal relative conductivity is not only large, but occurs
very rapidly near full saturation. For certain soil compositions that we considered in our
numerical tests, the standard VGM models described below predicted that the relative
conductivity changes by as much as 10 orders of magnitude from fully saturated (Ψ = 0cm)
to Ψ = −100cm, which is a small change in pressure head compared to standard simulations
that feature the pressure head changing by 100s of cm in dry media [44,45], or even on the
order of 1000s of cm in the testing done by Mualem and Van Genuchten to validate their
models.
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To illustrate this, several graphs of VGM Kr and θN are presented. Note that in all but
the Beit Netofa clay example, Kr(Ψ) falls by at least four orders of magnitude from Ψ = 0 to
Ψ = −10, and fall from 7 to 10 orders of magnitude by Ψ = −100. Such high contrast K
tend to make simulations very computationally expensive.

Figure 1.1. VGM Kr(Ψ), Beit Netofa clay (α = 0.152, n = 1.17, KS = 8.2× 10−4).

Figure 1.2. VGM θN (Ψ), Beit Netofa clay (α = 0.152, n = 1.17, KS = 8.2× 10−4).
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Figure 1.3. VGM Kr(Ψ), silt loam (α = 0.423, n = 2.06, KS = 5× 10−2).

Figure 1.4. VGM θN (Ψ), silt loam (α = 0.423, n = 2.06, KS = 5× 10−2).

Figure 1.5. VGM Kr(Ψ), loam soil (α = 3.6, n = 1.56, KS = 2.5× 10−1).
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Figure 1.6. VGM θN (Ψ), loam soil (α = 3.6, n = 1.56, KS = 2.5× 10−1).

Figure 1.7. VGM Kr(Ψ), clay loam (α = 1.9, n = 1.31, KS = 6.2× 10−2).

Figure 1.8. VGM θN (Ψ), clay loam (α = 1.9, n = 1.31, KS = 6.2× 10−2).
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Chapter 2 |
Well-posedness of Richards’ equa-
tion

Here we survey the results on existence and uniqueness as described in the works [9] and [10].
Given the quasilinearity and degenerate nature of the mixed pressure head-water content form
of Richards equation, proving existence and uniqueness of weak solutions, even in the case of
a Lipschitz boundary and smooth initial data, is challenging. The main source of difficulty
lies in writing estimates for the time derivative term: θ, while weakly monotone increasing, is
also nonlinear, so because it is in the time derivative, the standard Gronwall approach for
existence of weak solutions must be adapted to accomodate this nonlinearity, and uniqueness
must be derived by other means. Due to this nonlinearity, stability in the sense of Hadamard
is also difficult to prove; as such, we rely on results regarding the stability of the finite element
approximations we consider as proved by Radu et al. [20] to imply stability of solutions of
the PDE to small changes of the initial and boundary data; see chapter 4 for a brief overview
of such results.

Another complication is that the parabolic term is also degenerate, as the water content
term becomes constant at full saturation. This happens for mixed unsaturated-saturated
scenarios, such as the infiltration of a saturation front into unsaturated media. The results
discussed here regarding existence and uniqueness of a weak solution to (1.4) described in
this chapter accomodate these scenarios.

The outline of this chapter is as follows: in section 2.1, we introduce the standard notation
that are used for energy estimates, and also define the Kirchoff transformation that is applied
to (1.4). Section 2.2 discusses the assumptions on the Cauchy data, and on the nonlinear
terms b(u) and K(b(u)); here we also define the Legendre transformation of b(u), B(u), and
motivate its role in the proofs of Alt and Luckhaus [9] and Otto [10]. Section 2.3 discusses
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the strategies employed by Alt and Luckhaus [9] used to prove the existence of weak solutions
to the PDE, and uniqueness of the weak solution as proved by Alt and Luckhaus for certain
classes of the nonlinearities K and θ, and in general by Otto [10] to the problem.

2.1 Preliminaries and definitions
To prove existence and uniqueness of solutions to (1.4), we first need to define the weak
formulation of the Cauchy problem.

2.1.1 Sobolev spaces and weak derivatives

Before establishing a priori estimates, we first define the spaces of functions that have finite
energy, in the Lebesgue sense. Given a domain Ω ⊂ Rd and a finite time interval [0, T ], we
define the reflexive Hilbert space L2(Ω) as the space of functions u(x) : Ω→ Rd2 (d2 = 1, 2, 3)
endowed with inner product

(u, v)L2(Ω) :=
∫

Ω
u · v dx.

This inner product induces the following norm and categorization of elements in the space:

L2(Ω) = {u(x) : Ω→ Rd2 : ||u||L2(Ω) :=
(∫

Ω
|u|2 dx

)1/2
<∞}.

Sobolev spaces are a natural generalization of L2 for functions with weak (distributional)
partial derivatives; as such, solutions of PDE fall quite naturally into these spaces of functions
defined almost everywhere, hence standard tools of functional analysis apply. For our purposes,
we define the particular self-adjoint Sobolev spaces

W k,2(Ω) = Hk(Ω) := {u ∈ L2(Ω) :
 ∑
|α|≤k
||Dαu||2

1/2

<∞},

where the differential operator Dα is written in the standard multi-index notation, and
these derivatives are to be interpreted in the sense of distributions. We refer to [46] for an
in-depth discussion of weak derivatives and Sobolev space theory.

Finally, to incorporate time dependence for parabolic problems, we consider the spaces of
functions in time taking values in a Banach space X, Lp(0, T ;X) as the the set of functions
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u : [0, T ]→ X with

||u||Lp(0,T ;X) :=


(∫ T

0 ||u(t)||pX
)1/p

dt <∞, 1 ≤ p <∞

ess sup0≤t≤T ||u(t)||X <∞, p =∞.

In this context, weak derivatives, and therefore Sobolev spaces, can be defined. We define the
Sobolev space H1(0, T ;X) to be the space of functions u ∈ L2(0, T ;X) such that u′ exists in
the weak sense and belongs to L2(0, T ;X). The norm of this space is given by

||u||H1(0,T ;X) :=


(∫ T

0 ||u(t)||pX + ||u′(t)||pX
)1/p

dt, 1 ≤ p <∞

ess sup0≤t≤T (||u(t)||X + ||u′(t)||X) , p =∞.

Typically, the spaces X that we concern ourselves with are themselves Sobolev spaces, of
functions that vary in the spatial variable. This perspective facilitates tracking the energy of
weak solutions in PDE that vary in space and time, and in particular, parabolic problems
such as Richards’ equation.

Some useful properties of spaces that vary in time are recorded below; their proof can be
found in [46].

Theorem 1 ( [46] Ch. 5.9, Thm 2). Let u ∈ H1(0, T ;V ) for some 1 ≤ n <∞. Then

1. u ∈ C([0, T ];V ), the space of continuous functions u : [0, T ]→ V with

max
0≤t≤T

||u(t)||V <∞

(after possibly being redefined on a set of measure zero), and

2. u(t) = u(r) +
∫ t
r u
′(s) ds for all 0 ≤ r ≤ t ≤ T .

3. Furthermore, the estimate

max
0≤t≤T

||u(t)||V ≤ C||u||H1(0,T ;V )

holds, with the constant C depending only on T .

Theorem 2 ( [46] Ch. 5.9, Thm 3). Suppose u ∈ L2(0, T ;H1
0 (Ω)), with u′ ∈ L2(0, T ;H−1(Ω)).

Then
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1. The norm ||u||L2(Ω) is continuous in time, i.e, u ∈ C([0, T ];L2(Ω)), (after possibly being
redefined on a set of measure zero).

2. The mapping
t→ ||u(t)||2L2(Ω)

is absolutely continuous, with

d

dt
||u(t)||2L2(Ω) = 2(u(t), u′(t))

for a.e. 0 ≤ t ≤ T .

3. Furthermore, the estimate

max
0≤t≤T

||u(t)||L2(Ω) ≤ C(||u||L2(0,T ;H1
0 (Ω)) + ||u′||L2(0,T ;H−1(Ω)))

holds, with the constant C only depending on T .

This second result is especially useful when deriving energy estimates for parabolic PDE
with a standard parabolic term, as the second item allows us to “pull out” the time derivative
from the integrand, which allows us to treat the parabolic part as a time derivative of the
energy of the solution. In our case however, the presence of the nonlinearity b(u) will not
allow us to do this so easily, hence the need to bound the energy in time via non-standard
methods. This also complicates the standard Gronwall inequality estimates used to prove
uniqueness of these weak solutions to the problem.

To properly describe the well-posedness of Richards’ equation, we must first describe
the notion of weak solutions to a boundary/initial value problem. To illustrate this, let us
define the weak formulation for the canonical example for parabolic PDEs, the heat equation.
We define some bounded domain Ω ⊂ Rd, for a fixed time interval [0, T ], with homogeneous
Dirichlet and Neumann data defined on the boundary of the domain ∂Ω = ΓD ∪ ΓN , and
an initial condition for t = 0. The heat equation with these conditions has solutions u that
satisfy the following:



∂tu−∆u = f, (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t)|ΓD = 0, (x, t) ∈ ΓD × (0, T ],
∂u
∂ν

= 0, (x, t) ∈ ΓN × (0, T ].

(2.1)
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In the particular case when ΓD = ∂Ω, one can define the space of solutions as

V = L2(0, T ;H1
0 (Ω)),

with
H1

0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}.

The weak formulation of this problem is derived by multiplying the PDE with a suitable
test function v ∈ V , and integrating in space and time to get the weak formulation, namely
u ∈ L2(0, T ;H1

0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω)) is a weak solution of the initial boundary
value problem (2.1) if the following variational equality is satisfied for any v ∈ V with
v(T ) = 0:

1. The following holds for all v ∈ L2(0, T ;H1
0 (Ω)) with v(T ) = 0:

∫ T

0
〈∂tu, v〉 dt+

∫ T

0

∫
Ω

(u− u0)∂tv dx dt = 0,

with 〈·, ·〉 being the duality pairing between H1
0 (Ω) and H−1(Ω).

2. u satisfies ∫ T

0
〈∂tu, v〉 dt+

∫ T

0

∫
Ω
∇u · ∇v dx dt =

∫ T

0

∫
Ω
fv dx dt

for each v ∈ L2(0, T ;H1
0 (Ω)).

In this sense, the weak formulation of a problem allows for a larger class of solutions
than exists in the classical sense, as the derivatives of admissable functions can be defined
almost everywhere in space, and in the sense of distributions in time, increasing the classes
of admissable solutions to the PDE.

2.1.2 Kirchoff transformation of Richards’ equation

To work with the nonlinearities present in (1.4), one common technique is to use the
Kirchoff integral transformation technique [47] applied to Richards’ equation, by defining the
transformed unknown,

u(Ψ) =
∫ Ψ

0
K(θ(s)) ds. (2.2)

This function has the following properties:
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1. u preserves the sign of Ψ, and is 0 when Ψ is 0.

2. u is strictly increasing in Ψ, hence it is invertible.

3. The Kirchoff transformation of θ(Ψ), which we denote as

b(u(Ψ)) = θ(Ψ(u)) = K−1
(
∂u

∂Ψ

)
,

is monotone and continuous, hence there exists some C1 convex function Φ with ∇Φ = b.
Note that we can assume b(0) = 0, by considering b(u) = b(u(Ψ))− 1, so that

ub(u) ≥ 0, u ∈ R.

4. The PDE after applying the Kirchoff transformation becomes

∂tb(u)− div(∇u+K(b(u))ez) = f(b(u)),

hence the ellipcit part becomes semi-linear, simplifying the analysis.

The full Kirchoff transformed problem becomes


∂tb(u)− div(∇u+K(b(u))ez) = f(b(u)), (x, t) ∈ Ω× (0, T ],

b(u(x, 0)) = b(u0(x)), t = 0,

u(x, t) = uD(x, t), (x, t) ∈ ΓD × (0, T ],

(∇u+K(b(u))ez) · ν = 0, (x, t) ∈ ΓN × (0, T ].

(2.3)

As the invertibility of the transform implies that any results proved for the Kirchoff transformed
problem should transfer back to the untransformed problem, (1.4), Alt and Luckhaus [9],
Otto [10], and Radu et al. [20] work with (2.3) for their analytic results. For our numerical
treatment, we will use (1.4), as transforming the equation, solving, then transforming back
numerically can be cumbersome, and due to the transform being invertible pointwise, we can
assume that any well-posedness results for (2.3) also apply to (1.4). Numerical work with
the Kirchoff-transformed problem has been developed, with promising results; see Berninger
et al. [48] for more details on this approach.
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2.2 Assumptions on the Data
We assume that Ω ⊂ Rn is open, bounded, and with Lipschitz boundary, 0 < T <∞.

Alt and Luckhaus [9] assume that b(u) is merely continuous and weakly monotone,
hence defines the gradient of a convex continuous function Φ, for their existence proof, and
uniqueness was proven by Otto [10] under these same conditions.

However, analysis of the VGM K and θ as expanded upon in section 1.3 show that θ(Ψ)
is Lipschitz continuous; i.e,

∃Lθ > 0 : θ(p1)− θ(p2) ≤ Lθ(p1 − p2), p1 ≥ p2. (2.4)

As such, it follows that b(u), the Kirchoff-transformed θ(Ψ), is also Lipschitz continuous,
with constant Lb. In the analysis of the Picard method introduced in chapter 3, we assume
that

0 < Kmin ≤ K(b(u)) ≤ Kmax, (2.5)

so that the Kirchoff transformation is invertible for all the domain, and n > 2 so that K
is Lipschitz with respect to Ψ with constant Kb; this greatly simplifies the analysis of our
scheme. In this sense, we trade the generality necessary for VGM formulations of K with
1 < n ≤ 2, and problems with b being discontinuous, such as Stefan problems [49] for greater
control on the nonlinearities, and hence, our energy estimates, though it should be noted
that for many practical examples, these conditions still apply [45].

We also assume that the boundary data is in L2(0, T ;H1/2(∂Ω)), where H1/2(∂Ω) is in
the trace of H1(Ω), and that the initial data is in L2(Ω).

2.2.1 Legendre Transformation of b(u)

In order to deal with the parabolic term, we consider the Legendre transform of b(u) as
introduced by [9], which due to the convexity of the primitive of b(u), has the following form:

B(u) =
∫ u

0
(b(u)− b(s)) ds. (2.6)

Some useful properties to note of B(u) are:

1. B(u) ≥ 0 for all u ∈ R, with equality only for u = 0.

2.
(b(u)− b(u0))u0 ≤ B(u)−B(u0) ≤ (b(u)− b(u0))u
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for all u, u0 ∈ R; in particular, for every u ∈ R,

B(u) ≤ ub(u).

3. |b(u)| ≤ δB(u) + sup|σ|≤ 1
δ
|b(σ)|, δ ∈ R+.

Arguably the most important feature of B(u) is motivated by the following formal
calculation. If we were to assume db

du
existed in the classical sense, then

d
dtB(u(t)) = d

dt

[∫ u(t)

0
b(u)− b(s) ds

]

= du
dt b(u) + u

db(u(t))
dt − b(u) dudt

= ∂t(b(u))u.

In other words, B(u) is the primitive in time of the product ∂t(b(u))u, which is the
parabolic term that needs to be controlled in energy estimates of the weak form of (2.3).

This motivates the following Lemma proved by Alt and Luckhaus (here we look at the
simplified version where uD(x, t) = 0).

Lemma 2.2.1 ( [9], Lemma 1.5). Assume a solution u fulfills the definition 1 of a weak
solution to (2.3). Then B(u) ∈ L∞(0, T ;L1(Ω)), and for almost all t ∈ [0, T ] the following
formula holds:

∫
Ω
B(u(t))−B(u0) dx =

∫ t

0

∫
Ω
∂tb(u)u dx dτ.

2.3 Existence and uniqueness of solutions
We can define the analogous weak formulation for (1.4), where for the sake of simplicity in
exposition, we assume the full Dirichlet problem ΓD = ∂Ω, though it should be noted that
Alt and Luckhaus [9] considered the general problem with mixed boundary conditions:

Definition 1 (Nonlinear Weak formulation). We call u ∈ L2(0, T ;H1
0 (Ω)) a weak solution

of the initial boundary value problem (2.3) if the following two properties are fulfilled:
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1. b(u) ∈ L∞(0, T ;L1(Ω)) and ∂tb(u) ∈ L2(0, T ;H−1(Ω)) with initial value b0 = b(u0); i.e,
the following holds for all v ∈ L2(0, T ;H1

0 (Ω)) ∩W 1,1(0, T ;L∞(Ω)) with v(T ) = 0:

∫ T

0
〈∂tb(u), v〉 dt+

∫ T

0

∫
Ω

(b(u)− b0)∂tv dx dt = 0,

with 〈·, ·〉 being the duality pairing between H1
0 (Ω) and H−1(Ω).

2. u satisfies
∫ T

0
〈∂tb(u), v〉 dt+

∫ T

0

∫
Ω

(∇u+K(b(u))eu) · ∇v dx dt =
∫ T

0

∫
Ω
f(b(u))v dx dt

for each v ∈ L2(0, T ;H1
0 (Ω)).

Theorem 3 ( [9], Thm 1.7). Suppose the data satisfy the assumptions above, and assume
that ∂tuD ∈ L1(0, T ;L∞(Ω)). Then there is a weak solution.

Proof. We wanted to give a rough sketch of the proof in Alt and Luckhaus [9] for the sake of
completeness, and because our proof of convergence for the time-continuous Picard iteration
we consider in chapter 3 uses some similar arguments. The strategy is as follows: discretize
the parabolic term in time using backward Euler,

∂−ht b(u) = 1
h

(b(u(t))− b(u(t− h))),

to arrive at elliptic problems, which can be discretized in space using the standard Galerkin
approach. For each time interval, this yields finite dimensional problems of the form for a.e
t ∈ (0, T ), where

uhm(x, t) =
m∑
k=1

αhmk(t)ek(x),

with h = T/(m+ 1), and the functions ek are the first m elements in a basis in L2(Ω) that
is also orthogonal in H1(Ω), Vm = span ({ek(x)}mk=1), with coefficients in time, αhmk ∈
L∞((0, T )). This fully discretized problem generates a finite dimensional system with
continuous coefficients,

φhm : Rm → Rm,

with unknowns α = (αhm1, αhm2, . . . , αhmm). By the convexity of B in u, one can show that
φhm(α) has a zero for small enough h, implying the existence of the fully discrete solution
uhm(t).
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Then, standard energy estimates for the elliptic part and source terms apply. One caveat,
though, is that because of the presence of b(u) in the parabolic term, the standard technique
of applying Theorem 2 to interchange the limits of the integral in space and derivative in
time of ut cannot be done, and so the sign of

∫ T
0
∫

Ω b(uhm)uhm dx dt cannot be established.
To compensate for this, Alt and Luckhaus use Lemma 2.2.1 to work with this integral, and
define an alternative energy:

sup
0≤t≤T

∫
Ω
B(uhm(t)) dx+ ||uhm||2L2(0,T ;H1

0 (Ω)) ≤ C.

This is sufficient to provide a uniform bound of the sequence of discrete solutions in a
precompact space, so that there exists some subsequence (hi,mi), i→∞ with uhi,mi ⇀ u ∈
L2(0, T ;H1

0 (Ω)).
All that remained to show was that this subsequent limit is actually a weak solution to

the problem. As the elliptic part can be dealt with via standard estimates, the only nontrivial
part of this step was showing that B(uhm)→ B(u) weakly. This is accomplished by using a
step function that is piecewise constant in time, and deriving an estimate of the form,

∫
Ω

∫ T−kh

0
(b(uhm(τ + kh))− b(uhm(τ))) (uhm(τ + kh)− uhm(τ)) dτ dx ≤ Ckh, (2.7)

With C being independent of h and m. Since uhm is piecewise constant in time, this estimate
is also satisfied if kh is replaced by any positive number. Given this bound, Alt and Luckhaus
then show that b and B converge pointwise a.e, via the following Lemmata:

Lemma 2.3.1 ( [9], Lemma 1.8). If two mappings v1 and v2 in H1(Ω) satisfy the estimates

||vi||H1(Ω) ≤M, ||B(vi)||L1(Ω) ≤M, i = 1, 2,

and ∫
Ω

(b(v2)− b(v1)) (v2 − v1) ≤ δ,

then ∫
Ω
|b(v2)− b(v1)| ≤ ωM(δ),

with continuous functions ωM satisfying ωM(0) = 0.

Lemma 2.3.2 ( [9], Lemma 1.9). Suppose uε converge weakly in L2(0, T ;H1(Ω)) to u with
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estimates

1
h

∫ T−h

0

∫
Ω

(b(uhm(t+ h))− b(uhm(t))) (uhm(t+ h)− uhm(t)) dx dt ≤ C,

and ∫
Ω
B(uε(t)) ≤ C for 0 < t < T.

Then b(uε)→ b(u) in L1((0, T )× Ω) and B(uε)→ B(u) a.e.

Using some estimates from the proof of Lemma 2.2.1, they then bound the parabolic term
of the energy estimate with test function v` → u from below in terms of differences of B(u)’s,
i.e,
∫ t

0
〈∂−ht b(uhm), uhm − vhm〉 dτ ≥

1
h

∫ t

t−h

∫
Ω
B(uhm) dx dτ −

∫
Ω
B(u0

h) dx

−
(1
h

∫ t

t−h

∫
Ω
B(u) dx dτ −

∫
Ω
B(u0) dx

)
= 1
h

∫ t

t−h

∫
Ω

(B(uhm)−B(u)) dx dτ −
∫

Ω
B(u0

hm)−B(u0) dx

= 1
h

∫ t

t−h

∫
Ω

(B(uhm)−B(u)) dx dτ.

Combining this estimate with the standard estimates for the elliptic and source terms,
they get a Gronwall inequality in B, i.e,

1
h

∫ t

t−h

∫
Ω

(B(uhm)−B(u)) dx dτ +
∫ t

0

∫
Ω
|∇(uhm − vhm)|2 dx dτ

≤
∫ t

0
〈∂−ht b(uhm), uhm − vhm〉 dτ +

∫ t

0

∫
Ω
|∇(uhm − vhm)|2 dx dτ

≤ C
∫ t

0

∫
Ω
B(uhm)−B(u) dx dτ + o(1),

with o(1) being the standard Landau notation of terms that go to 0 in the continuous
limit.

Then an application of Gronwall’s inequality applied to the function

φ = lim sup
h→0,m→∞

∫
Ω
B(uhm(t))−B(u(t)) dx

shows that it becomes non-negative in the limit, and yields

∇uhm → ∇u
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strongly in L2((0, t)× Ω), for t < T . This then gives the convergence of the elliptic part and
the source term almost everywhere, hence weakly in L2((0, t)× Ω), which proves that the
weak limit u is a weak solution.

To ensure that each linear problem solved on each step of the Picard linearization proposed
in section 3.2 was well-posed, all of these calculations were carefully checked and verified to
make sure the logic carried through, but for the sake of the reader, we do not include these
computations here.

Alt and Luckhaus [9] were able to prove uniqueness in the case of b being Lipchitz and a
semilinear elliptic part satisfying certain constraints:

Theorem 4 ( [9], Theorem 2.4). Suppose b is a Lipschits continuous monotone increasing
function, and the elliptic part

a(t, x, b(z), p) = A(t, x)p+ e(b(z)),

where A(t, x) is a symmetric matrix and measurable in t and x such that for some α > 0,

A− αI and A+ α∂tA

are positive definite. Moreover assume that

|e(b(z2))− e(b(z1))|2 + |f(b(z2))− f(b(z1))|2 ≤ C(b(z2)− b(z1))(z2 − z1).

Then there is at most one weak solution.

Clearly, the Kirchoff-transformed problem with Lipschitz K and b satisfies the conditions
required, giving the desired uniqueness.

Without these assumptions, Alt and Luckhaus are only able to prove uniqueness by
assuming the integrability of the time derivative of the difference of sub and super solutions
u1 and u2. Uniqueness was later proven without this assumption by Otto [10], who used the
theory of sub and super solutions of parabolic PDE to consider the difference of weak sub-
and super- solutions. His goal was to prove that the set on which this difference was greater
than 0 had 0 measure. The main idea of this proof of Otto is that, while the derivative of
b(u) doesn’t have to be a function, the monotonicity of b can be used to define a nonnegative
Borel measure with no atoms. This, combined with the clever use of a convex, two times
differentiable auxiliary function η with other properties that he specifies in the paper, gives
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the following approximate chain rule for any nonnegative test function γ ∈ C∞0 ((0, T )× Rn),
where v0 ∈ H1(Ω), with B(v0) ∈ L1(Ω):

〈∂tb(u), η′(u− v0)γ〉 = −
∫

Ω×[0,T )

∫ u

v0
η′(ζ − v0) b(dζ)∂tγ.

This allows the time derivative to be moved to the test function, so that one can start
estimating the differences b(u−)− b(u+).

Since the test functions γ are regular, Otto further estimates the differences in time
using a technique pioneered by Kružkov, introduced to estimate first order quasilinear
conservation laws [50], wherein mollifiers are convolved with the differences in question to
generate smoothness in time to estimate the differences of the sub and super solution b terms
in time only.

This essentially splits the differences into five pieces (two each for differences in the two
independent time variables, and one involving the difference a(∇u−, b(u+))− a(∇u+, b(u+)))
that can each be controlled using the various properties of the elliptic term a(∇u, b(u)). From
this and by assuming

f(w1)− f(w2) ≤ L(w2 − w1), w1 > w2,

Otto is able to get a contraction statement of the form

∫
Ω

(b(u−)− b(u+))+ ≤ eLt
∫

Ω
(b0
− − b0

+)+,

with (f)+ = f only when f ≥ 0, and 0 otherwise, and b0
−/+ being the initial values of

b(u−)/b(u+).
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Chapter 3 |
Linearization Schemes for Richards’
Equation

In Richards’ equation, the physical properties of the medium are represented as nonlinear
coefficients, which introduce a number of challenges. The most salient of these difficulties is
rapid changes in capillary head induced by the rapid change in K and θ, with the potential
of blow-up in the derivative for certain materials near full saturation, as was expanded
upon in Chapter 1. These coefficients can also be discontinuous for non-homogeneous
porous media. Such strong nonlinearities significantly impact the efficiency of most standard
nonlinear solvers, particularly when using low-order-in-time implicit schemes to solve the fully
discretized system. It is for this reason that a significant portion of the numerical literature
for Richards’ equation focuses on the effectiveness of specific linearization techniques for
solving (1.4) numerically.

Section 3.1 provides a brief overview of the most basic linearization algorithm that is
typically used to compute numerical solutions of nonlinear PDE. The rest of the chapter
surveys the effectiveness and features of several linearization schemes, namely the Picard
iteration in 3.2, Newton-Raphson in 3.3, modified Picard in 3.4, and L-scheme in 3.5. All
of these schemes can be interpreted as different combinations of zeroth and first order
linearizations of (1.4), with the exception of the L-scheme [14], which is a relaxation scheme
of the popular modified Picard [12] method. In section 3.2, we seek to understand the
convergence properties of zeroth order linearizations by analyzing a Picard-like iteration
scheme on the fully continuous problem, and we are able to prove that if both θ and K are
Lipschitz continuous, with small Lipschitz constant, the Picard iteration yields a contractive
sequence of solutions that converge to the unique weak solution proved to exist by Alt and
Luckhaus [9] and Otto [10].
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3.1 Common linearizations
In order to solve any nonlinear problem of the form

A(u) = f,

the typical procedure involves an iterative process,

1. Start with guess solution uj,

2. Compute residual Rj = f − A(uj),

3. Solve linear problem J(uj)uε = Rj , with J(uj) being an approximation of the derivative
of A(u) or the value of A at the previous iteration,

4. update: uj+1 = uj + uε.

This process is iterated until some criterion is reached, with this criterion typically being
related to the size of either the residual or the correction (in other words, either ||ujε|| < ε or
||Rj|| < ε in some norm || · ||).

The choice of approximation to the nonlinear A(u) can vary, but two of the most popular
are either J(uj) = A(uj) (Picard iteration), or J(uj) = A′(uj) (Newton-Raphson). Given the
presence of two nonlinearities in (1.4), and the problems associated with these as mentioned
above and in chapter 1, these two linearizations, and combinations of the two, have been
proposed and tested extensively in the literature. In this section, we will define some of the
more popular ones, and develop some insight into their strengths and weaknesses.

We first split the time interval [0, T ] into N equal size time intervals with length τ . The
index n indicates the value of a function at t = nτ , i.e,

fn = f(x, nτ), θn = θ(Ψ(x, nτ)),

etc.
Multiplying each term of the time discretized (1.4) by a test function v in a suitable

solution space V and integrating over Ω, we get the following nonlinear, implicit variational
problem in space for each time step tn:

(θn, v)− τ(div(Kn∇(Ψn + z)), v) = τ(fn, v) + (θn−1, v), v ∈ V. (3.1)
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For what follows, we drop the n time index, and introduce the j index for nonlinear iterations.
We also consolidate all terms on the right hand side of (3.1) into one term, F . Then for each
nonlinear iteration, we solve a variational problem

(θj+1, v)−τ
(
div(Kj+1∇(Ψj+1 + z)), v

)
= F−(θj, v)+τ(div(Kj∇(Ψj+z)), v) = Rj, v ∈ V0,

(3.2)
where θj+1 and Kj+1 are formed using Taylor approximations of K and θ of either zeroth or
first order centered at Ψj, multiplied by a correction Ψε, and V0 is a space that enforces 0
boundary conditions, i.e, in the case of discretizing in space with P1-Lagrange finite elements,

V0 = {v ∈ H1(Ω) : v|ΓD = 0, ∂v
∂n
|ΓN = 0} ⊂ H1

0 (Ω).

We then discretize the problem in space using a particular choice of V0, solve the subsequent
linear system for Ψε and update,

Ψj+1 = Ψj + Ψε.

3.2 Zeroth order (Picard) linearizations
The zeroth order linearization of (3.2) substitutes the nonlinear coefficients with their values
at the previous iteration:

(θjΨε, v)− τ(div(Kj∇Ψε), v) = Rj. (3.3)

The Picard iteration is the simplest linearization considered. It leads to a symmetric problem
being solved on each iteration, with computationally inexpensive stiffness and mass matrices
to be constructed; this leads to linear problems that are both easier to discretize and construct,
and to solve.

3.2.1 Continuous Picard linearization

We investigated the properties of the Picard linearization of (2.3) on the continuous level, as
estimates on when numerical schemes using the Picard iteration can converge appears to be
lacking in the literature. We were able to prove the convergence of the Picard iteration on
(2.3) in a way that gives insight into the nature of convergence of zeroth order linear schemes
for this problem.
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We first define the particular continuous level Picard iteration of (2.3) we considered.
We wanted to work with a Picard linearization that kept the parabolic term implicit, as the
proofs of Alt and Luckhaus and Otto as outlined in chapter 2 indicate that ignoring the time
derivative would over-simplify the dynamics of the Picard iteration.

For the sake of simplicity, we consider a bounded domain Ω with Lipschitz boundary, and
consider the homogeneous Kirchoff-transformed Dirichlet problem; i.e, ΓD = ∂Ω, uD(x, t) = 0,
and f = 0. We can define a weak formulation analogous to Definition 1, where the linearized
problem to solve for each iterate is as follows:

∫ T

0

〈
∂tb(uk), v

〉
dt+

∫ T

0

∫
Ω
∇uk · ∇v dx dt =

∫ T

0

∫
Ω
−K(b(uk−1))eu · ∇v dx dt, (3.4)

k = 1, 2, . . . For the sake of clarity in the following exposition, we drop the k superscript in
3.4 in the following discussion.

3.2.2 Contraction for the Picard iteration for VGM K, θ

Theorem 5 (Contraction of the continuous in time Picard iteration). Suppose K and θ are
Lipschitz continuous in their arguments, and their Lipschitz constants satisfy

LKLb < 1. (3.5)

Then the Picard iteration as defined in (3.4) is a contraction.

Proof. An immediate result of the Lipschitz continuity of b and K is that each problem in the
Picard linearization scheme defined above satisfies the conditions required for the uniqueness
result proven by Alt and Luckhaus, Theorem 4. The existence of weak solutions also follows
from their argument, hence each Picard iteration has a unique weak solution uk. The stability
results for FE discretizations proven by [20] also apply for each Picard iterate.

Guaranteed a well-posed problem on each iteration, we wanted to show that the iterates
{uk} form a global contraction by first proving it inductively from the first time step for small
enough time, with a convergence rate independent of timestep size. Due to this independence,
the same argument can then be bootstrapped on each interval, to get a global contraction. To
do this, we can use the uniform bound used in the existence proof in [9], namely we assume
inductively that for j ≤ k − 1,

||uj||L∞(0,T ;H1
0 (Ω)) ≤M,
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with M independent of j. Note that by definition of the nonlinear problem, this is true of u0.
Now, if both b and K are Lipschitz, then these conditions for j = k − 1 imply the same for
uk.

Now, we divide the interval [0, T ] = ∪Ni=1[ti−1, ti], t0 = 0, tN = T , each of length τ = T/N ,
and take ξ ∈ L2(0, T ;H1

0 (Ω)) to be piecewise constant in time on each interval, defined as
ξ(t) = uk(tn) − uk−1(tn) on [tn, tn+1). Then for the parabolic term, we can integrate the
difference of the Picard iterates, i.e,

∫ T

0
〈∂t

(
b(uk)− b(uk−1)

)
, ξ〉 dt =

N−1∑
j=0

∫ tj+1

tj
〈∂t

(
b(uk)− b(uk−1)

)
, ξ〉 dt

= −
N−1∑
j=0

∫ tj+1

tj
〈
(
b(uk)− b(uk−1)

)
, ∂tξ〉 dt

+
N−1∑
j=0

∫
Ω

(
b(uk(tj+1))− b(uk−1(tj+1))

) (
uk(tj+1)− uk(tj+1)

)
dx

−
N−1∑
j=0

∫
Ω

(
b(uk(tj))− b(uk−1(tj))

) (
uk(tj)− uk(tj)

)
dx

=
∫

Ω

(
b(uk(tj+1))− b(uk−1(tj+1))

) (
uk(tT )− uk(tT )

)
dx

−
∫

Ω

(
b(uk(tj+1))− b(uk−1(tj+1))

) (
uk(0)− uk(0)

)
dx,

due to the sum teloscoping for all j = 1, . . . , N − 1, and the piecewise constant nature of ξ
in time. Note also that as uj(0) = u0 for all j, the last term also vanishes, leaving only the
term in T . This same argument can be applied by replacing T with a.e t ∈ (0, T ), to give
∫ t

0
〈∂t

(
b(uk)(s)− b(uk−1)(s)

)
, ξ〉 ds =

∫
Ω

(
b(uk(tj+1))− b(uk−1(tj+1))

) (
uk(0)− uk(0)

)
dx,
(3.6)

for almost every t.
Introducing ξ as defined above into (3.4), and taking the difference of (3.4) for uk and

uk−1, we get for a.a. t,
∫ t

0
〈∂t

(
b(uk)− b(uk−1)

)
, ξ〉 ds+

∫ t

0

∫
Ω
∇
(
uk(s)− uk−1(s)

)
· ∇ξ dx ds

≤
∣∣∣∣∫ t

0

∫
Ω
∇
[
K(b(uk−1(s)))−K(b(uk−2(s)))

]
ez · ∇ξ dx ds

∣∣∣∣ .
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Using (3.6) and the definition of ξ, we get, for a.a. t,
∫

Ω

(
b(uk)− b(uk−1)

) (
uk(t)− uk−1(t)

)
dx

+
N−1∑
j=0

∫ tj+1

tj

∫
Ω

[
∇
(
uk(s)− uk−1(s)

)
· ∇

(
uk(tj)− uk−1(tj)

)]
dx ds

≤

∣∣∣∣∣∣
N−1∑
j=0

∫ tj+1

tj

∫
Ω
∇
[
K(b(uk−1(s)))−K(b(uk−2(s)))

]
ez · ∇

(
uk(tj)− uk−1(tj)

)
dx ds

∣∣∣∣∣∣ .
Note that, although uk may not be defined at tj, by density we can approximate it with
a simple function that is defined there. Given this, approximating ξ with some sequence
of simple functions vk` ∈ L2([0, T ], H1

0 (Ω)) that are piecewise constant on each (tj, tj+1),
repeating the same argument with vk` , and taking the difference of the two equations gives us
that for ` large enough, the elliptic term becomes

∫ t

0

∫
Ω
|∇uk(s)−∇uk−1(s)|2 dx ds+ o(1).

To control the K term, we first apply Cauchy inequality:
∣∣∣∣∫ t

0

∫
Ω
∇
[
K(b(uk−1(s)))−K(b(uk−2(s)))

]
ez · ∇vk` (s) dx ds

∣∣∣∣
≤ 1

2 ||v
k
` ||2L2(0,T ;H1

0 (Ω)) + 1
2

∫ t

0

∫
Ω
|∇K(b(uk−1(s)))−∇K(b(uk−2)(s))|2 dx ds.

We can absorb the first term into the elliptic term on the left hand side to yield
∫ t

0
〈∂t

(
b(uk)− b(uk−1)

)
, bk` (t)〉 ds+ 1

2

∫ t

0

∫
Ω
|∇uk(s)−∇uk−1(s)|2 dx ds+ o(1)

≤ L2
bL

2
K

2 ||uk−1 − uk−2||2L2(0,T ;H1
0 (Ω)).

Passing now to a subsequence `n that allows the convergence of vk` → uk − uk−1 pointwise
a.e, we get that, for large enough n, the o(1) terms become nonnegative, hence we can drop
them from the inequality. This gives us the contraction

||uk − uk−1||2L2(0,t;H1
0 (Ω)) ≤ (LKLb)2||uk−1 − uk−2||2L2(0,t;H1

0 (Ω)). (3.7)

In this sense, we must have that the contraction only holds if (3.5) holds. In this case, we get
a contraction on the interval [0, t0], with t0 being small enough that ||u1−u0||L2(0,T ;H1

0 (Ω)) < 1.
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As (3.5) is true independent of the time t, then we can bootstrap to the interval [t0, 2t0] and
repeat the argument, and continue in such a manner that we can cover the entire interval
[0, T ].

Remark 3.2.1. This proof gives an indication that the convergence of schemes that treat
both K and b with zeroth order linearizations are affected more by the analytic properties of
these functions than anything else. Indeed, the rather strong condition (3.5) implies such
simplistic treatment of both nonlinearities might lead to a failure of convergence in zeroth
order linearization scheme for certain problems, which corresponds well with the survey of
Paniconi and Putti’s [11] as described in what follows.

3.2.3 Picard iteration in the numerical literature

To analyze the effectiveness of the Picard iteration as compared to the Newton iteration,
Paniconi and Putti [11] considered eight different tests of solving the h-based Richards
equation (1.2) with second order (Crank-Nicolson) discretization in time with small time
steps to ensure global mass balance.

In the first test, they consider a fully 3D steady state problem in which the domain Ω is a
columns of soil with length Lz, for various choices of Lz. In this case Kr = eΨ, with zero flow
conditions on the sides, and the pressure being set to 0 at depth Lz.

The Picard scheme for this problem showed difficulty with convergence as Lz was increased;
indeed, at the highest value (Lz = 30 m), the Picard scheme failed to converge at all, and for
the second highest (Lz = 20 m), the error couldn’t breach 10−10. after over 140 iterations.
The Newton method showed no such sensitivity to Lz, consistently converging in 7 − 8
iterations. In this case, they surmised that the gravity effects were not being captured well
enough by 3.3, as the zeroth order approximation of the flux term wasn’t capturing the effect
gravity had on the change in values of K.

On the other hand, working with Picard was better for certain problems. Take for instance,
test 2T from the same paper. In this test, the authors considered two dimensional transient
flow in an unsaturated soil slab. The characteristic feature of this test case is the occurrence
of convergence difficulties several time steps into the simulation, in response to the buildup of
a sharp moisture front near the inflow boundary at x = 0, 6 ≤ z ≤ 10. The problem was run
to a simulated T of 5 days, at which point the problem reached steady state. They allowed
for variable time step sizes, where the step size could be increased or decreased depending on
how many iterations were needed to converge for the next time step. They also incorporated
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a back stepping procedure that would be used when a linear scheme failed to converge on
a certain time step; this was used more frequently for the Newton scheme than the Picard,
hence the total number of time steps needing to be solved being greater for Newton in general.
In this problem, a variant of the VGM formulation was used, with n = 4. The authors
consider the number of linear solves needed for each of 10 different strategies, including the
effect of mass lumping, simple Backward Euler time stepping, finer space approximations,
and fixing the time steps.

In the case of initially steep saturation fronts with strong nonlinearities, the Picard
iteration, though requiring more iterations per timestep in some cases, tended to require
less time steps to fully simulate the transient problem; this is due to the fact that the steep
saturation fronts present at the beginning of the simulation due to the relatively dry soil initial
condition generated linear problems for the Newton iterations that were difficult to solve
without restricting the timestep size. Paniconi and Putti [11] consider two other problems
with steep saturation fronts that feature similar behavior, though they do mention that near
the end of these iterations (i.e, approaching the equilibrium state), the Newton iterations
outperform the Picard iterations considerably, as the algorithm used to adjust time steps
increased the final time steps of the Newton iteration to several orders of magnitude larger
than the Picard final time steps.

3.3 First order (Newton-Raphson) linearization
The full Newton linearization of (3.2) can be seen as approximating both nonlinearities with
a first order expansion centered at Ψj:

θj+1 ≈ θj + ∂θjΨε,

Kj+1∇(Ψj+1 + z) ≈ Kj∇(Ψj + z) +
(
∂Kj∇(Ψj + z) +Kj∇(·)

)
Ψε.

Substituting these into (3.2), we get the variational problem

(∂θjΨε, v)− τ(div(∂Kj∇(Ψj + z)Ψε +Kj∇Ψε), v) = Rj. (3.8)

In particular, this method is desirable because, provided a good initial guess and locally
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Lipschitz nonlinearities, convergence of the Newton method is quadratic; i.e,

||uk+1 − uk|| ≤ C||uk − uk−1||2,

meaning that when the derivative of K and θ are bounded, the Newton iteration will
significantly reduce the number of linear solves needed to converge within a set tolerance.
This of course, tends to come at the increased cost of construction of the fully discrete
system, and in the particular case of this problem, the addition of a nonsymmetric term,
(∂Kj∇(Ψj+z)Ψε,∇v). Nonsymmetric problems are in general harder to solve than symmetric
problems, and the presence of the derivative of the conductivity in the nonsymmetric part
implies that for certain materials, on any given linear solve there will be portions of the
domain where the Jacobian of K will dominate K and vice versa, which will greatly increase
the computational cost of each linear solve.

The full Newton method for (1.4) has been tested extensively in the literature ( [17], [31],
[32], [24], [44]). In particular, much of the focus is on working with problems that feature
initially dry media on which a saturation front is imposed, typically as a boundary condition.
In this case, the VGM K relations dictate large spatial gradients in K near the saturation
front for materials with sufficiently non-homogeneous micropore structure (n < 2).

As an emblematic test of this type, consider example 1 in [44]. In this problem, Lehmann
and Ackerer consider a column of soil with length L = 30 cm, and impose initial and
boundary conditions Ψ(z, 0) = −1000 cm, Ψ(0, t) = −75 cm, Ψ(L, t) = −1000 cm. The
VGM parameters were Ks = 9.22 × 10−3 cm/s, θs = 0.368, θr = 0.102, α = 0.0335, n = 2.
The time-transient (1.4) was simulated until a final time T = 6 hours. The space and time
step discretization parameters were ∆z = 0.25cm, and an algorithm allowed varying ∆t that
could change adaptively depending on how many iterations were required to solve for the
previous time step. To compare the approximate solutions, a dense grid solution Ψ∗ with
uniform grid ∆z = 0.1cm, and fixed timestep of ∆t = 0.1s was computed.

In this test, the authors observe that the Newton scheme is superior to the Modified
Picard iteration in nearly every metric. This again makes sense, considering that the modified
Picard linearization doesn’t take the gradient of K into account.

The next test Lehmann and Ackerer [44] consider monitors the effect of heterogeneity in
the material. They consider a three-layered problem in one dimension, with relatively wet
initial conditions Ψ(z, 0) = −100cm, a flux condition at z = 0 that varied in time, relating to
rainfall and water evaporation, and a free drainage condition at the lower boundary. The
first and third layers had VGM parameters Ks = 541 cm/day, θs = 0.3658, θr = 0.0286,
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α = 0.0280, n = 2.239 (Berino loamy fine sand), and second layer Ks = 513.1 cm/day,
θs = 0.4686, θr = 0.1060, α = 0.0104, n = 1.3954 (Glendale clay loam). The simulation was
run for 60 days, with variable time steps.

As their simulations show, this is an example where the modified Picard iteration out-
performs the Newton iteration in certain aspects. However, when they changed the initial
condition (Ψ(z, 0) = −10000cm), the oppsite was true– the Newton method outperformed
the modified Picard iteration by as much as 8 times fewer number of timesteps and iterations,
with roughly the same solution accuracy.

One final thing the authors note is that in both the initially wet and dry problems, creating
a hybrid algorithm where one starts with modified Picard iterations, and then switches to
Newton after some criteria is reached (such as some combination of the residual and correction
norms being less than some tolerance) consistently leads to the lowest CPU time and number
of iterations.

Finally, as the examples of these two different papers shows, the effectiveness of the Newton
scheme appears to depend on whether one uses the head-based (1.2) or the mixed saturation-
head based (1.4) formulations. In [51], various numerical experiments into initially dry layered
media in one dimension show that Newton solves of the head based formulation (1.2) restricts
the time step size significantly (up to four orders of magnitude smaller than the water based
formulation) to ensure convergence for the initial modeling of saturation fronts in transient
problems, even for layered soils where the water content can be discontinuous across layers.
However, due to the degeneracy present for the water content based RE (1.3) at full saturation,
pure water content based formulations become singular for mixed saturated-unsaturated
problems. Kirkland et al. suggest a transformed RE that will change the primary unknown
dependent on which regime the soil is in at a point in space and time [52].

Forsyth et. al [24] further develop this idea by proposing a simple algorithm to switch
variables dependent on water saturation, where if the saturation at a point is over a set
tolerance tolf , the scheme uses the pressure head based form, while if the saturation is less
than another tolerance tolb, then the water content is used as primary variable. To avoid
complications in computing the Jacobian analytically with variable switching, they suggest
numerical computation of the Jacobian using finite differences. They combine this with
upstream weighting of physical parameters to obtain a monotone discretization and observe
fast convergence for several mixed unsaturated-saturated examples.
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3.4 Modified Picard linearization
The modified Picard iteration, introduced by Celia et al [43] and later refined in [12], modifies
the Newton iteration by taking the first order expansion of θ centered at θj , and zeroth order
expansion of K centered at j, yielding the problem

(∂θjΨε, v)− τ(div(Kj∇Ψε), v) = Rj. (3.9)

The reason for doing this is motivated by mass conservation: by doing a first order expansion
in the water content term, the source term automatically corrects water mass balance for each
iteration. This can be seen on the discrete level: summing up all of the water content source
terms of form θj−1 − θn−1 at each node in a first order lumped mass nodal finite element
discretization or a finite difference discretization will show that the mass balances cancel out
completely on the interior of the domain, with the only potential mass imbalances at the
boundary being dealt with by boundary conditions [12]. Further, without the nonsymmetric
Jacobian contribution for the conductivity, discretizations yield symmetric linear systems
that are much easier to solve than the Newton systems. The experiments of Paniconi and
Putti [11] and Lehmann and Ackerer [44] confirm that for any test where the total number
of linear solves for modified Picard is roughly the same as those for Newton, the Newton
scheme takes much more CPU time; this is partially due to the added cost of constructing the
Jacobian, but is mostly due to the added time required to solve the resulting nonsymmetric
linear system.

Due to the perfect discrete mass conservation and ease of solving the resulting linear
systems, modified Picard has become the standard numerical approach for Richards’ equation.
It is the method that is used in many production codes, including the USDA Hydrus-1D
Richards’ equation solver that is used to simulate large scale groundwater flow problems in
one dimension [53].

This is not to say that the modified Picard iteration is the best for all situations; as
explained in the previous section, when simulating scenarios featuring infiltration into dry soils,
the Newton method for the mixed form (1.4) that features the gradients of the conductivity
is superior in the number of iterations per timestep, so much so that the Newton scheme
consistently solved in less CPU time than modified Picard. However, due to the sensitivity
of Newton convergence to initial guess, robustness is a common issue that has arisen in
much of the work with Newton based approaches. In addition to the difficulties associated
with poor initial guesses, the addition of steep gradients may also lead to overcorrection of
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iterates that the less conductivity-sensitive modified Picard scheme doesn’t struggle with, as
was shown in the work of Lehmann and Ackerer [44]. Even worse, we showed in chapter 1
that for sufficiently irregular micropore structure (1 < n ≤ 2) the conductivity gradient is
either discontinuous at Ψ = 0, or even blows up. When this happens, Newton-Raphson is
no longer guaranteed to converge locally. Miller, et al. [45] attempt to tackle this issue by
approximating the nonlinearities near these points with various interpolations, concluding
that cubic spline interpolations near Ψ = 0 and using integral approximations of the Jacobian
with high order quadrature compensated for these problems to an extent. In light of these
issues, modified Picard, which features none of these added complications, is a desirable
alternative.

To deal with slow convergence of modified Picard in cases with steep conductivity gradients,
modified Picard with Anderson acceleration has been suggested [54]. This acceleration
technique can be regarded as a nonlinear version of the GMRES method for iterative solution
of linear systems [55]. The intuition of the authors was that, even with the additional cost of
solving the least squares problem in the previous iterates, the Newton method would still be
slower, due to the additional computational costs that come with solving a nonsymmetric
problem on each step. To test this hypothesis, they considered various tests, the first one
establishing the proper choice of the minimal residual tolerance and number of previous
solutions to store for a variety of VGM parameters, finding that m = 5 and tol = 1×10−3 were
the best choices. They then ran comparisons of Newton’s method with variable correction
step and line search optimization, and an optimized form of Anderson accelerated modified
Picard with m = 5 on a 2D steady state infiltration problem with 18 different sets of VGM
parameters, on a 1024× 1024 grid. The results showed that the modified Picard iteration was
by far the most robust with respect to different parameters, and while the Newton method
was fastest on about half of the problems, the accelerated modified Picard took no more than
350% as much CPU time to solve, and even beat out the Newton method in about 35% of
the test problems.

For a problem of infiltration into initially dry media simulated twice two different timescales,
Anderson accelerated modified Picard was clearly more robust, as it worked for both time
step sizes, while Newton didn’t converge at the 1024 mesh size for the larger time step.
When Newton did work, however, it tended to solve roughly as fast as Anderson accelerated
modified Picard.

Thus while modified Picard can have problems converging whenK gradients are large, there
are methods to help combat this, making modified Picard a strong choice for linearization.
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3.5 L-scheme linearization
Finally, the L-scheme is a relaxation method for the Modified Picard iteration, first introduced
in [14], which simplifies (3.9) even further by replacing the Jacobian term ∂θj with some
constant upper bound, ∞ > Lθ ≥ supΨ |θ′(Ψ)|:

(LθΨε, v)− τ(div(Kj∇Ψε), v) = Rj. (3.10)

The purpose of this modification of the modified Picard iteration is to add robustness to
the modified Picard iteration for saturated-unsaturated problems. In [14], Slodička was able
to show convergence of the L-scheme on each iteration from arbitrary initial guess data, by
assuming that θ and K are Lipschitz in their arguments, and 0 < Kmin ≤ K ≤ Kmax.

This is accomplished by showing that on each fixed timestep, the iterative solutions {Ψj}
yielded from solving (3.10) form a Cauchy sequence in L2(Ω), approaching the solution to
the nonlinear elliptic problem (3.1) for the current timestep, Ψn. The rate of convergence is
given by

||Ψj −Ψn||L2(Ω) ≤
(

1− τλ

L+ τλ

)j
||Ψ0 −Ψn||L2(Ω),

where 0 < λ = λ(Ω, Kmin) is the same for all of the nonlinear elliptic problems (3.1). This
implies that the the L-scheme linearizes the nonlinear elliptic system by forming a contractive
map that yields convergence for any τ > 0 on each timestep, though it should be noted that
the number of iterations to reach a desired tolerance is dependent on the choice of initial
guess Ψ0, on how large the time step is, and implicitly on Kmin and the geometry of the
domain Ω. Because of this, convergence, while guaranteed, has the potential to be very slow,
and tends to work better for larger time steps.

In order to circumvent this potential slow down, List and Radu suggest using the L-scheme
as a stabilizer for Newton-Raphson [13]; by using the L-scheme a few times and supplying the
result as the first guess for a Newton method, this would significantly increase the robustness
of Newton-Raphson and provide the speed up necessary for cases with steep K gradients.

More specifically, the nonlinear iteration described in [13] starts with L-scheme relaxation,
and then after a criterion of the form

||Ψj −Ψj−1|| ≤ δa + δr||Ψj||
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is reached for some specified δa, δr > 0 (or after some fixed number of L-scheme iterations),
would switch to Newton-Raphson.

The authors test their method on two problems that feature mixed saturated-unsaturated
conditions in two dimensions. In the first problem, they solve a two dimensional problem with
injection and extraction in the vadose zone Ωvad = (0, 1)× (−3/4, 0) above the groundwater
zone Ωgw = (0, 1)× (−1,−3/4]. For boundary conditions and initial conditions, they take a
fixed pressure Ψvad = −3 on the surface (0, 1)×{0}, and no flow conditions on the remaining
sides of the square. Initial pressure profile is given as Ψ0 = Ψvad on Ωvad, and a linear scaling
pressure, Ψ0 = −(z + 3/4) on Ωgw.

List and Radu [13] tested Newton, modified Picard, L-scheme for two choices of L, one
slightly larger than Lθ = supΨ |θ′(Ψ)|, and one closer to Lθ/2, mixed Picard/Newton (as done
in [44]), and mixed L-scheme/Newton with the two choices of L (with switching parameters
δa = 2, δr = 0) to solve the first time step. To discretize the system, they applied backward
Euler with various choices of τ , and discretize in space using P1-Lagrange finite elements,
with a uniform mesh with sizes ∆x = ∆z = 1

10 ,
1
20 ,

1
30 , · · · ,

1
80 .

The results of their tests showed that the two L-schemes always converged, though the
one with the undershot value did better for all time steps; this robustness was lacking for the
(modified) Picard iteration and especially the Newton method, which didn’t converge at all
by itself, except on the smallest time step size. However, whenever the Picard iteration or
Newton iteration converged, it converged in significantly fewer iterations than either L-scheme,
with those methods finishing in less time despite the decreased cost in not having to compute
the Jacobians for θ and K. However, the slow convergence of the L-scheme was overcome by
combining it with Newton’s method after a few iterations of the L-scheme as a relaxation.
This method always worked well, and led to much faster convergence, only barely being beat
by the Picard/Newton combination for the smallest timestep.

For the second problem in [13], they consider a time transient problem with a boundary
condition on the top that varies from being negative in time to becoming positive, and
groundwater pressure on the bottom third of the domain Ω = (0, 2)× (0, 3). They test with
the VGM parameters for silt loam and Beit netofa clay (see chapter 1), and show that for
the silt loam case, the L-scheme again perform the worst in terms of number of iterations,
but when combined with the Newton scheme (which performed the best wrt number of
iterations), they improve considerably, even beating out the Newton scheme on overall CPU
time, mostly due to the good condition of the L-scheme systems and the reduced cost in
construction. For the Beit Netofa clay parameters, due to steep gradients in K, the Newton
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method again has the least number of iterations, but also takes the most time to compute, as
the condition number of the systems being solved explode, mostly due to the discontinuity
of the K gradients at the saturation fronts. The L-schemes are insensitive to this, and thus
finish their computations in less time; indeed, this is the one case where the L-scheme without
Newton outperforms the combination of the two, mostly due to the poor conditioning of the
Newton linear systems.

One potential class of problems that the L-scheme may struggle with is in dealing with
heterogeneous problems, such as layered soil examples, as the water content is discontinuous
across the layers’ boundaries, implying its derivative could become unbounded, sending
appropriate L to infinity. There appears to be no mention of this in the literature involving
the L-scheme, though preliminary results with layered media with saturation fronts in initially
wet and dry layered as discussed in [44] indicate that the L-scheme may very well still
perform well, as modified Picard appears to work better than Newton for relatively wet initial
conditions.
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Chapter 4 |
Numerical implementation

In this chapter, we describe our discretization strategy for the linearizations discussed in the
previous chapter. In time, we always use fully implicit Backward Euler, and finite elements in
space. Section 4.1 defines the two finite element discretizations we employ, the mixed finite
element scheme [56] and the Edge Average Finite Element (EAFE) [19] scheme. Mixed finite
elements enjoy local mass conservation on the continuous level, and is the only finite element
scheme to guarantee perfect mass conservation without the need for post processing schemes.
EAFE is an alternate formulation of the standard first order Lagrange finite elements which
reorders the bilinear form from sums of products of values at vertices in a mesh to products
of differences of values along edges in a mesh. Due to this, discretizing with EAFE guarantees
monotonicity, in the sense of the resulting linear systems having positive diagonal entries and
negative off-diagonal entries, with the negative sum of the off diagonals being less than the
diagonal value; this property, known as the M -matrix property, guarantees that there will
be no non-physical oscillations in the solution. This is typically not possible to guarantee
without special techniques, such as mass-lumping [12] and upwinding [27], and that EAFE
provides this automatically, provided the mesh satisfy certain mild geometric constraints, is
very desirable. In our work we fully discretize with the mixed finite elements, and use the
EAFE formulation as an auxiliary discretization in the preconditioner we propose in Chapter
5. We give stability results in the form of error estimates for each discretization. Section
4.2 serves as a survey of two of the linear iterative solvers we use for the resulting systems
of linear equations, namely the conjugate Gradient method for symmetric positive definite
problems, and generalized minimal residual for nonsymmetric problems. Section 4.3 serves as
a survey of multigrid, which we use as both solver and preconditioner.
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4.1 Finite element discretizations
To discretize any of the linearized variational problems as described in chapter 3, we use
finite elements in space. Finite elements, as defined in Ciarlet [57] can be viewed as a triple
(Th,Vh,Σh), where Th is some polygonal approximation of Ω ⊂ Rd, Vh is a finite dimensional
space of functions defined on Th, and Σh is a basis for the dual of Vh; i.e, a set of functionals

{σi}|Vh|i=1 : Vh → R,

with the property that the map

p 3 Vh →
(
σ1(p), σ2(p), . . . , σ|Vh|(p)

)
∈ R|Vh|

is bijective. These functionals are typically called the nodal basis, or more generally, the
degrees of freedom of the system.

Using finite elements, one can then approximate (3.1) with a finite dimensional form,
namely, the problem of determining Ψn

h ∈ Vh such that, for all vh ∈ Vh,

(θn, vh)− τ(div(Kn∇(Ψn
h + z)), vh) = τ(fn, vh) + (θn, vh). (4.1)

For our model problems, we approximate Ω with a tesselation of d-dimensional simplices of
uniform size h, Th = ∪nTi=1Ti. For the finite dimensional subspaces Vh, we chose the standard
RT0-P0 mixed finite elements, and work with a particular variational form of the standard
P1-Lagrange finite elements that we use to precondition a part of the resulting saddle-point
problem.

In this section, we define these two different finite element discretizations of the form
(4.1) and discuss several pertinent aspects of these approximations, namely

1. Are the finite elements stable for the problem we consider? i.e, are the resulting finite
dimensional problems well-posed?

2. With what truncation order do our finite element solutions approximate the true
solution?

3. What is the number of degrees of freedom of the resulting finite dimensional problem?

4. What physical properties do the finite element bestow upon the approximate solutions

50



(i.e, do they conserve mass, can we ensure that the approximate solution is free of
non-physical osctillations)?

4.1.1 Edge average finite element discretization

Arguably the most popular finite element discretization of (4.1) uses the standard P1-Lagrange
finite elements, where

Vh = {vh ∈ H1
0 (Th) : vh|T∈Th ∈ P1},

with P1 being the space of linear polynomials, and the degrees of freedom are the values of
the function at the NV vertices {xi}NVi=1 of triangulation Th, with functional basis

σi(p) = p(xi).

The induced basis on Vh is then the set of linear tent shape functions {ϕi}NVi=1 , where

ϕi(x) =

1, x = xi

0, x = xj, j 6= i.

When combining this with the saturation-head based Richards equation (1.4), several authors
have confirmed that global mass balance is perfect for the system being considered ( [12],
[43], [44], [58]); indeed, this global mass conservation comes from the saturation-head based
Richards equation being in conservation form, and the mass conservation inherent in the
solution satisfying the discrete weak form, where for any vh ∈ Vh, the solution at each fixed
time tn, Ψn

h satisfies

(θn, vh) + τ(Kn∇(Ψn
h + z),∇vh) = τ(fn, vh) + (θn, vh). (4.2)

There are, however, potential problems inherent in using this approach. As pointed out
( [12], [27], [44], [14], [11]), in problems involving steep saturation fronts or any other problems
where the water content can deviate significantly, the discrete analog of the maximum
principle for the elliptic problem being solved on each timestep may be violated depending
on discretization parameters (specifically, based on the ratio of the time step size τ and the
characteristic mesh size h).

This is a problem that is inherent in the discretization of elliptic problems of the form (4.2),
and is a well-documented phenomenon in the literature. The authors of [59] illuminate some
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of the difficulties regarding this issue for P1-Lagrange discretizations of the Poisson problem.
The discrete maximum principle for the diffusion problem

(D(x)∇uh,∇vh) = (f, vh), vh ∈ Vh,

uh − ũh ∈ Vh,

with homogeneous data f = 0 and positive definite diffusion tensor D(x) can be stated as

||uh||∞,Th ≤ ||ũh||∞,∂Th ,

With || · ||∞ being the L∞(Th) norm. In particular, for the Poisson problem (D = I), Scott
et al. [59] showed that if certain geometry constraints on the mesh are not satisfied, then the
discrete Green’s operator Gh

y(x) that solves the problem above with f = δy, with δy being
the standard Kronecker delta distribution centered at y, attains negative values; this in itself
implies that there exists values uh ≥ ũh inside the domain, violating the discrete maximum
principle, hence allowing for non-physical solutions.

The geometry constraints in question involve the interior angles of elements of the the
mesh in question; in two dimensions, if the sum of angles opposite to an edge is greater than
π, then the discrete max principle will be violated, leading to nonphysical solutions. There
are many conditions that one can use to enforce the monotonicity of elliptic discretizations.
One of the simplest is to have a sequence of triangulations {Th}h→0 be shape-regular, which
implies that there exists a constant C > 0 such that

max
T∈Th

diam(T )d
|T |

≤ C,

uniformly in h. In two dimensions, this is equivalent to the existence of a uniform lower
bound with respect to h of the minimal angle of any element in the mesh.

An even weaker condition that can still guarantee monotonicity in two dimensions is
the notion of a Delaunay triangulation, which can be interpreted as the dual triangulation
induced by the Voronoi diagrams of a set of finite points in a bounded domain Ω ⊂ Rd. In
two dimensions, one can show that the (unique) Delaunay triangulation of a mesh maximizes
the smallest angle in any triangle of the mesh, and also minimizes the maximal diameter of
any triangle in the mesh. One can also show that P1-Lagrange interpolations of any function
f ∈ H1

0 obtain a minimal H1
0 semi-norm on Delaunay triangulations; in this sense, these

triangulations can be seen as an ideal choice to work with P1-conforming finite elements.
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Further, given a finite set of nodes in two or three dimensions, constructing their Voronoi
diagram is relatively inexpensive atO(N logN) operations. Refining the mesh is also relatively
simple, as one can use an alternate definition of a triangulation being Delaunay, namely,
that the Delaunay triangulation of a set of nodes is the unique triangulation in which the
circumsphere of each triangle contains no other point in the mesh, to choose new points, or
to switch edges as necessary. Such procedure can be done in O(n log n) operations as well,
implying that Delaunay triangulations in 2D are very amenable to unstructured meshes and
automatic mesh refinement procedures.

However, it should be noted that in three dimensions, the Delaunay triangulation no
longer guarantees a maximal minimum angle between faces, and in practice, going through
this Delaunay triangulation and then using a circumsphere criterion to edge swap also cannot
guarantee convergence to the actual mesh that maximizes the minimum angle, as the order in
which you proceed through the triangulation affects this process. What is true however is that
if a 3D triangulation has the property that the center of the circumsphere for a given simplex
in the triangulation lies inside the element, then that triangulation is automatically Delaunay,
and in more recent times, a randomized edge swapping method has been introduced that
guarantees convergence to the Delaunay triangulation with high probability. We refer to [60]
for more details on Delaunay triangulations.

Finally, given a positive definite diffusion tensor D(x), one can refine the circumsphere
property that a Delaunay triangulation must satisfy as one in which no node of the mesh lies
inside the circumsphere of a given element of the triangulation, with metric induced by the
diffusion coefficient D, i.e, using the norm

||x||2D := xTDx.

In practice, this metric transforms the circumspheres into ellipsoids, which imply the genera-
tion of mesh refinements that naturally adapt to any anisotropies that might be present in
the diffusion coefficient, as well as any sharp variations in D, for instance near discontinuities.

However, even with a grid that guarantees that a discrete maximum principle holds for
the elliptic part, non-physical oscillations may still exist for the discretization of the parabolic
problem (4.2). The reason for this can be best illustrated by considering the discretization of
the problem in one dimension for a uniform grid, as was done in [12].

Given a one dimensional domain split into equal length intervals of length h = L/NV ,
Ω = [0, L] = ∪NV−2

i=0 [xi, xi+1], with x0 = 0, xNV = L, the P1-Lagrange discretization of (4.2)
forms a linear system of equations with unknowns P = [P0, P1, . . . , PNV−1], where Pi is the
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value of Ψε at node xi.
For a node i in the interior, when using the modified Picard, L-scheme, or Picard

linearizations, the linear system to be solved is of the form

h

6Jθi−1Pi−1 + h

3JθiPi + h

6Jθi+1Pi+1 + τ

h
[−Ki−1Pi−1 + (Ki−1 +Ki)Pi −Ki+1Pi+1]

= Pi−1

(
h

6Jθi−1 −
τ

h
Ki−1

)
+ Pi

(
2h
3 Jθi + τ

h
(Ki−1 +Ki)

)
+ Pi+1

(
h

6Jθi −
τ

h
Ki

)
= Fi,

where the coefficients K and Jθ are taken to be piecewise constant on the intervals Ik =
[xk, xk+1], k = i−1, i., and Jθ is the approximation of θn used in each symmetric linearization.

Note that depending on the values of physical parameters Jθ and K, and the discretization
parameters h and τ , the coefficients of the off-diagonal terms corresponding to Pi−1 and Pi+1

can be made positive. This would result in a coefficient matrix that can (and in practice,
typically does) produce solutions that violate the discrete maximum principle. This violation
often manifests itself in the form of non-physical oscillations, particularly around points where
the physical parameters vary significantly, i.e, near infiltration fronts into dry media. In
particular, given fixed mesh size and timestep, and that the sign of both θ and its derivative
∂θ are positive, a condition for these off-diagonal terms to be negative for all i is

h <
(

6τ miniKi

maxi Jθi

)1/2
.

This dependence of mesh size to the timestep size, and the values of K and Jθ imply potential
violations of the discrete max principle when there are large changes in the Jacobian of the
water content or when K is small (i.e, dry media), which is consistent with findings in the
literature [44], [14], [43].

There have been many suggested remedies for this issue. The most popular suggestion is
also the simplest; namely, [12] suggest that instead of using the consistent (distributed) mass
discretization for the Jθ term, one can use a lumped mass discretization. This discretization
can be understood as a lower order quadrature of the mass bilinear form, in which one “lumps”
all of the distributed mass onto the central weight; i.e, set the coefficients in the off-diagonal
mass matrix as 0, and set the diagonal entry as the sum of the lumped masses. This entirely
removes positive contributions to the off-diagonal entries of the coefficient matrix, and hence
eliminates the potential for non-physical oscillations to occur. As such, we also use the
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lumped mass discretization for our P1-Lagrange formulation.
Another potential source of non-physical oscillations was described by Forsyth et al. [27].

In this work, the authors show that the choice of K used in constructing the stiffness matrix
is also influential in preventing non-physical oscillations from occuring at “homogeneous”
interior nodes (i.e, nodes where there are no sharp discontinuities in material properties). In
multiple dimensions, Forsyth et al. were able to show that for each nonlinear iteration, the
weights Ki should be chosen via an upwind algorithm. If one of the symmetric linearizations
in two dimensions for a uniform shape regular mesh are used, then on the jth nonlinear
iteration, the following system of linear equations must be solved for Pi:

Pi

(∫
Ω
Jθjiϕ

2
i dx

)
+
∑
k∈Ωi

PkK
j
i,kγi,k = Rj

i ,

where the weights
γi,k =

∫
Ω
∇ϕk · ∇ϕi dx,

and Ωi is the set of vertices xk with Supp(ϕk) ∩ Supp(ϕi) 6= {0}.
In this context, the upstream weighting suggested in [27] is of the form

Kj
i,k =

K
j
k = K(Ψj

h(xk)), γi,k(Ψj
k −Ψj

i ) > 0,

Kj
i = K(Ψj

h(xi)), γi,k(Ψj
k −Ψj

i ) ≤ 0.
(4.3)

The authors proceed to show that discretizations using this upwinding approach are un-
conditionally monotone, implying there will be no non-physical oscillations, while using
discretizations with average weighting and centroid weighting (where one approximates K
locally using the centroid of the simplices, and assembles the matrix using these terms) of
K can lead to non-physical oscillations, particularly for heterogeneous media where K may
become discontinuous. However, this choice can slow down the simulation, as this choice
needs to be made before every linear iteration.

A more attractive choice as suggested by Zaidel and Russo [61], is to use the arithmetic
mean saturation (KAMS):

Ki,k = K

(
θji + θjk

2

)
. (4.4)

C.T. Miller et al. [45] performed numerical solutions using P1-Lagrange finite elements with
high order time integration on the head-based RE (1.2) for various infiltration problems,
linearizing the problem with modified Picard, and interpolating K with either KAMS, an
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integration based interpolation, or the central weighting approach, which is just an arithmetric
average of K at the two points. What they found was that the KAMS K was the most robust
with respect to choice of material, in that the error ||Ψ∗−Ψh

Ψ∗ ||`2 for some solution Ψ∗ computed
on a dense grid was close to the smallest for all examples, and also led to convergence of
modified Picard for the most simulations.

For our work, we wanted to use a discretization of (4.2) that could yield a monotone
discretization for all linearizations, including for the full Newton linearization. This lineariza-
tion for P1-Lagrange finite elements yields the following sequence of nonsymmetric linear
problems: Find Ψh ∈ Vh such that, for all vh ∈ Vh,

(∂θjΨh,ε, vh) + τ(∂Kj∇(Ψj
h + z)Ψh,ε +Kj∇Ψhε,∇vh) = Rj. (4.5)

This can be interpreted as a time-transient convection-diffusion problem, with the conductivity
Jacobian term playing the role of the convection. As such, we decided to use an alternate
discretization of the problem that has been shown to produce monotone discretizations of
convection-diffusion problems with the milder restriction of the triangulation being Delaunay
with respect to the diffusion coefficient, Kj. This scheme is called the Edge Averaged Finite
Element scheme, or EAFE for short.

This scheme, formally introduced in [19], was partially based on the work of Markowich
and Zlamal [62] and Brezzi, Marini and Pietra [63], who each introduced discretizations of an
electron drift model of the form

− div(∇u+∇ψ) = f, x ∈ Ω.

The authors were able to generalize these works, and proposed a method for convection-
diffusion problems of the form,

Lu ≡ − div(α(x)∇u+ β(x)u) = f(x) x ∈ Ω,

u = 0 x ∈ ∂Ω,
(4.6)

with assumptions α ∈ C0(Ω̄) with 0 < αmin ≤ α(x) ≤ αmax for every x ∈ Ω, β ∈
(
C0(Ω̄)

)2
,

and f ∈ L2(Ω). This problem admits the following weak formulation:
Find u ∈ H1

0 (Ω) such that

a(u, v) = f(v), for every v ∈ H1
0 (Ω), (4.7)
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where
a(u, v) =

∫
Ω

(α(x)∇u+ β(x)u) · ∇vdx, f(v) =
∫

Ω
f(x)vdx. (4.8)

This problem is uniquely solvable, and has the monotonicity property, i.e,

If (Lu)(x) ≥ 0 for all x ∈ Ω then u(x) ≥ 0 for all x ∈ Ω. (4.9)

In this paper, they introduce their scheme, which they prove to have the discrete equivalent
to the monotonicity property, i.e, if one is using P1-Lagrange finite elements to approximate
(4.6), and Lh is the corresponding discretization for L, then

(L−1
h fh)(x) ≥ 0 for all x ∈ Ω, if f (i)

h = f(ϕi) ≥ 0 for all i = 1, . . . , NV . (4.10)

The core idea is to rewrite the standard P1-Lagrange bilinear form from a sum of values of
the interpolant u(vi) with various weights, into a product of differences along edges in the
mesh.

This can best be illustrated on the simplest case, that of Poisson’s equation (α = 1, β = 0).
Then, for uh, vh ∈ Vh, we have

∫
T
∇uh · ∇vhdx =

∑
i,j

aTijuh(xi)vh(xj),

With the weights
aTij =

∫
T
∇ϕj · ∇ϕi dx.

As aTii = −∑j 6=i a
T
ij, we can rearrange the sum to obtain the following simple, but

important identity
∫
T
∇uh · ∇vhdx = −

∑
i<j

aTij(uh(xi)− uh(xj))(vh(xi)− vh(xj)), uh, vh ∈ Vh. (4.11)

Using the relation (4.11) and defining δE(f) = f(xi)− f(xj) for an edge E = (xi, xj) with
direction τE = δE(x) = xi − xj, we can rewrite the bilinear form in the following way:

∫
Ω
∇uh · ∇vhdx =

∑
T∈Th

∑
E⊂T

ωTEδEuhδEvh. (4.12)

where ωTE = −aTij with E connecting the vertices xi and xj.
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For the weights ωTE the following simple identity holds

ωTE = 1
d(d− 1) |κ

T
E| cot ζTE , (4.13)

Figure 4.1. 3D element with vertices zi, zj .

where ζTE is the the angle between the faces not containing edge E (see Fig. 4.1.1), and
their intersection forms κTE (the n− 2 dimensional simplex opposite to the edge E), where
for our purposes we take the volume of a vertex (0-dimensional simplex), 1.

Using this edge-based formulation of (4.12) gives us a relatively simple criterion for the
triangulation, directly in terms of the weights in the bilinear form. Plugging in uh = ϕi and
vh = ϕj into (4.12) and summing up the local contributions, it’s a simple matter to check
that

Lemma 4.1.1 ( [19], lemma 2.1). The stiffness matrix for the Poisson equation is an
M-matrix if and only if, for any fixed edge E the following inequality holds:

ωE ≡
1

n(n− 1)
∑
T⊃E
|κTE| cot ζTE ≥ 0, (4.14)

where ∑T⊃E means summation that takes all simplexes T containing E.

This condition takes into account our discussion of earlier, namely that in two dimensions,
a sufficient condition for discrete monotonicity requires the sum of the two angles opposite
the same edge be less than or equal to π; indeed, Delaunay triangulations (with some possible
exceptions at the boundary) satisfy this criterion, which imply that Delaunay triangulations
can guarantee discrete monotonicity for the Poisson problem.
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If one were to construct the same bilinear form for (4.8) and rewrite it as a sum of edge
differences, one would get the following bilinear form:

∫
T
J(uh) · ∇vhdx =

∑
E

ωTEδE(J(uh))δEvh. (4.15)

To approximate the difference in flux J(u) ≡ α∇uh + βuh, the authors first introduce a
function ψE defined locally on E whose tangential derivative along E is given by

∂ψE
∂τE

= α−1β · τE
|τE|

. (4.16)

Using this auxiliary function, one can show the following, by solving the given edge-based
ODE using integrating factors,

Lemma 4.1.2 ( [19], lemma 3.1). Let u ∈ H1
0 (Ω)∩C0(Ω̄). Then the following identity holds:

δE(eψEu) = 1
|τE|

∫
E
α−1eψE(J(u) · τE) ds, (4.17)

where J(u) = α∇u+ βu.

If one approximates the flux J(u) on the edge E with a constant JE, then one can rewrite
the edge difference δEJ(u) = JE · τE using (4.17) by replacing it with the edge difference of
eψEu, by pulling out the constant JE · τE from the integral on the right and dividing both
sides of the equation above by the other terms:

JE · τE = α̃E(β)δE(eψEu),

where α̃E(β) is the harmonic average of αe−ψE ,

α̃E(β) = |τE|∫
E α
−1eψEds

. (4.18)

We can then use this to simplify (4.15) further:

∑
E⊂T

ωTEδE(J(uh))δEvh ≈
∑
E

ωTEδE(JE · τE)δEvh =
∑
E

ωTEδEα̃E(β)δE(eψEu)δEvh. (4.19)

Summing over all elements T ∈ Th, one gets an edge-based bilinear form with exponential
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weighting,

ah(uh, vh) =
∑
T∈Th

{∑
E⊂T

ωTEα̃E(β)δE(eψEuh)δEvh
}
. (4.20)

Given the continuity of J(u) · τE across edges of a mesh (which is guaranteed by the
interpolation using P1-Lagrange finite elements, as well as the continuity of the coefficients
α and β), one can further simplify (4.20) by reordering the sum over edges in the mesh:

ah(uh, vh) =
∑
E∈Th

ωEα̃E(β)δE(eψEuh)δEvh, (4.21)

with ωE defined in (4.14).
Showing that the stiffness matrix generated by (4.21) is an M-matrix is straightforward:

Lemma 4.1.3 ( [19], lemma 3.2). The stiffness matrix corresponding to the bilinear form
(4.20) is an M-matrix for any continuous functions α > 0 and β if and only if the stiffness
matrix for Poisson equation is an M -matrix, namely if and only if the condition (4.14) holds.

Proof. Given j ∈ {1, . . . , NV }, consider the corresponding node xj. Obviously, if xi is a
neighbor of xj,

Aij =
∑
E3xj

ωEα̃E(β)δE(eψEϕj)δEϕi = −ωEα̃E(β)(eψj,E) ≤ 0. (4.22)

Here E 3 xj means all the edges having xj as an endpoint and ψj,E = ψE(xj).
Now, if xj has no neighboring node on the boundary, then the j−th column sum of A is

zero:

∑
i

Aij =
∑
E3xj

ωEα̃E(β)δE(eψEϕj)δE
∑
i

ϕi =
∑
E3xj

ωEα̃E(β)δE(eψEϕj)δE1 = 0,

which means that Ajj = ∑
i 6=j |Aij|. And if xj has a neighboring node on the boundary, it is

easy to see ∑iAij > 0, or Ajj >
∑
i 6=j |Aij|. This completes the proof.

Remark 4.1.1. Note that the key to the M -matrix properties being satisfied lies in the
replacement of the flux term in each sum by the exponential weighting term, eψE , which fixes
the sign of the edge difference δE(eψEϕj) to be positive. This term essentially enforces an
automatic upwinding of the scheme that guarantees that the M -matrix property holds in the
case that the edge weights ωTE are positive, and hence upholds the discrete monotonicity of
the scheme provided the triangulation is Delaunay.
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In order to simplify (4.20) for implementation, the authors are able to show a more
computable form, where for β being constant,

Aij =
∑

E=(xi,xj)
ωEα̃E(0)

[
B(−β · τE

α̃E(0) )u(xi)−B(β · τE
α̃E(0))u(xj)

]
=
∑
T3xi

∫
T
fϕi, dx, (4.23)

with τE = xi − xj, the summation is over all xj 6= xi, such that (xi, xj) is an edge, and B is
the Bernoulli function,

B(s) =


s

es−1 s 6= 0
1 s = 0.

(4.24)

Xu and Zikatanov [19] also show that the discrete monotonicity holds, even for a more
general problem with piecewise continuous β and α, and a mass term γu (γ(x) ≥ 0) added
to the bilinear form defined in (4.6). The corresponding bilinear form with this added term
is written as

ah(uh, vh) =
∑
T∈Th

{∑
E⊂T

ωTEα̃E(β)δE(eψEuh)δEvh + γT (uhvh)
}
, (4.25)

where mass lumping quadrature is used for the mass term,

γT (uhvh) = |T |
n+ 1

n+1∑
i=1

γ(xi)uh(xi)vh(xi).

However, the discontinuity has to be aligned with the mesh, and the angles θE on the
discontinuity line have to satisfy the stricter condition on the angles, 0 < θTE ≤ π/2, for
all T ⊃ E. In this context, if one has a non-obtuse triangulation (where the property
above regarding sums of angles opposite an edge holds for all edges in the mesh), then the
monotonicity follows.

Finally, some mention has to be made on the way that β’s behavior affects the scheme.
In general, convection-dominated problems can be difficult to solve, which is a point that will
be expanded upon in the last section of this chapter. In this paper, the scheme reflects this,
in that the stability of the scheme depends directly on ||β||∞. This complication is in some
sense lessened by the asymptotic tendency of the Bernoulli function B to tend towards 0 as
β → ∞. However, in the case of negative β · τ , B approaches −∞; in this sense, the sign
of β · τE can cause significant changes in B values, leading to very strong upwinding, which
maintains the monotonicity of the scheme, but also can significantly impact the conditioning
of the system.
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Finally, it needs to be mentioned here that, as with most other monotone schemes, the
convergence is only first order; i.e, they prove the following result for a more general problem
including mass term γu and loosening the continuity constraints on α and β:

Theorem 6 ( [19], Theorem 6.3). Let u be the solution of the problem (4.6), with nodal
interpolant uI = ∑

xx∈Th ûiϕi. Assume that for all T ∈ Th α ∈ W 1,∞(T ), β ∈ [W 1,∞(T )]n,
J(u) ≡ α(x)∇u + β(x)u ∈ (W 1,p(T ))n, and γ(x) ∈ C(T̄ ) and γu ∈ W 1,r(T ). Then the
following estimate holds:

||uI − uh||1,Ω ≤ Ch

∑
T∈Th
|J(u)|21,p,T +

∑
T∈Th
|γu|21,r,T


1
2

(4.26)

for sufficiently small h.

One thing to note is that this “small enough h” condition is only required for the more
general Delaunay triangulation, and the minimal mesh size in this context depends on an
upper bound for the weak derivatives of α and β; in the case of non-obtuse triangulations
however, the monotonicity of the scheme holds independent of mesh size, due to the property
4.14 holding, independent of β and α.

4.1.1.1 EAFE discretization of Richards’ Equation

In the context of Richards’ equation, this method can be seen as a generalized version of
standard upwinding schemes such as those suggested in [27]; indeed, the authors of [19]
show that the EAFE discretization limits to a variant of the upwinding scheme suggested by
Forsyth in the case when K → 0, or large variations in K (i.e, |β| → ∞). To the authors’
knowledge, EAFE or any variant of it has not been previously considered for finite element
approximations of Richards’ equation.

The edge-based bilinear form of any of the linearizations described before for linearization
step κ is

ah(uh, vh) = τ
∑
T∈Th

{∑
E⊂T

ωTEα̃E(K̃κ)δE(eψEuh)δEvh + JθκT (uhvh)
}
, (4.27)

with the harmonic average of Ke−ψE on edge E = (i, j) defined as

α̃E(K̃κ) = |τE|∫
EK

−1,κeψEds
, (4.28)
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and a ψE whose tangential derivative is defined using ∂K:

∂ψE
∂τE

= K̃κ · τE
|τE|

, (4.29)

with K̃κ ≡ [∂K(∇Ψ + ez)]κ.
In the case of symmetric linearizations, ∂K = 0; then the function ψE defined on the edge

is a constant, so α̃E simplifies to the harmonic average of of K over the edge multiplied by a
constant:

α̃(0) = HE(Kκ) = e−ψE
|τE|∫

EK
−1,κ(s) ds. (4.30)

Plugging in HE(Kκ) into (4.27) cancels the exponential term, so that the edge-based bilinear
form simplifies to

ah(uh, vh) =
∑
T∈Th

{∑
E⊂T

τωTEHE(Kκ)δEuhδEvh + JθκT (uhvh)
}
, (4.31)

where we can now without loss of generality omit the exponential term in HE(Kκ) so that
it is just the harmonic average of Kκ over the edge. To compute the quadrature along the
edge, note that, if one assumes K = KE constant on each edge E, then H(Kκ) = Kκ

E. One
reasonable choice of approximating this quadrature in the case of constant KE would then
be using the midpoint rule along the edge, K

(
θ(Pi)+θ(Pj)

2

)
, which exactly corresponds to the

choice Zaidel and Russo suggest for the values at the edge [61], which C.T. Miller et al. [45]
showed had good robustness in the tests they worked with, and is cheap to compute. As
such, in our local stiffness matrix assembly, we evaluate

α̃(0) = HE(Kκ) ≈ Kκ
E = K

(
θ(P κ

i ) + θ(P κ
j )

2

)
,

i.e, the KAMS approach on each edge in our EAFE scheme.
In the case of ∂K 6= 0, one can estimate the term α̃E(K̃κ)eψE(K̃κ) using the same technique

to derive the analog of (4.23), which (fixing K̃κ constant on each edge) is

Aij = τ
∑

E=(xi,xj)
ωEK

κ
E

[
B
(
−
[
K−1K̃

]κ
E
· τE

)
u(xi)−B

([
K−1K̃

]κ
E
· τE

)
u(xj)

]
. (4.32)
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In scenarios when
[
K−1K̃

]
E
· τE >> KE,

KEB
([
K−1K̃

]
E
· τE

)
→ 0,

and
KEB

(
−
[
K−1K̃

]
E
· τE

)
→ K̃ · τE.

Let us consider the local contributions of an element T containing edge E = (xi, xj)
to (4.32) in this convection-dominated case. To compute these local contributions, one
must compute the local stiffness matrix MT . Plugging in PT = ∑

xi∈T Piϕi as uh and ϕj

as vh in (4.27), one can construct a local stiffness matrix MT whose off-diagonal entries
corresponding to edge E = (xi, xj) are

MT (i, j) = B
([
K−1K̃

]κ
E
· τE

) ∫
T
∇ϕj ·KE∇ϕi dx, (4.33)

with tangential direction given as τE = xi − xj.
To compute ∇Ψκ as required in K̃κ

E, we must use P κ
T ; i.e, ∇Ψκ

T = ∑
xi∈T P

κ
i ∇ϕi. Then,

as we dot the gradient with τE, the relevant change in P κ is in the direction of the edge, i.e,

∇Ψκ
E =

P κ
i − P κ

j

|xi − xj|2
τE.

We can thus give a more explicit form of (4.33):

MT (i, j) = B

([
K−1∂K

]κ
E

(
P κ
i − P κ

j

|xi − xj|2
τE + ez

)
· τE

)∫
T
∇ϕj ·KE∇ϕi dx. (4.34)

As the evaluations of K−1 and ∂K are the same for the same edge, the mirror term from xi

to xj is

MT (j, i) = B

(
−
[
K−1∂K

]κ
E

(
P κ
i − P κ

j

|xi − xj|2
τE + ez

)
· τE

)∫
T
∇ϕi ·KE∇ϕj dx. (4.35)

As K and ∂K are always nonnegative, then the Bernoulli function coefficients weight the
contributions to the global stiffness matrix A with smaller weights in the direction of increasing
PT ; e.g, if Pi > Pj , then the Bernoulli weight in (4.35) which contributes to the global matrix
entry Aji is larger in magnitude (and by construction, same sign) than that of (4.34) for the
local contribution to global matrix entry Aij. In the limit of small K or large ∂K, these
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weights smoothly go to 0 for the Aij contribution, or to ∂Kκ
E∇(Ψκ

E +z)
∫
T ∇ϕi ·∇ϕj dx for the

Aji contribution. This upwinding scheme is similar to the manual upwinding process (4.3) as
suggested in [27], but with distinct advantage of being automatically given when assembling
locally.

4.1.2 Mixed finite element method

There are several applications where local conservation of fluid flux is a highly desirable or
necessary trait for numerical simulations to have. In the context of Richards’ equation, one
of these applications involves modeling the transport of pollutants by groundwater flows; in
this scenario, Richards’ equation would be used to model the infiltration of water into the
porous material, and the result would feed into the contaminant transport model, predicting
the rate of propagation and distribution of the contaminant in the soil; such models are
relevant for many environmental simulations that involve potentially hazardous chemicals
infiltrating local water supplies, such as fracking surfactants, nuclear runoff, and tracking
the dissemination of pesticides used in agricultural processes. In this context, the use of
the standard P1-Lagrange elements may lead to inherently inaccurate contaminant fate
predictions.

To see this, consider the elliptic term in (4.1), after discretizing with P1-Lagrange finite
elements. The argument of this term corresponds to the discrete Darcy fluid flux, which we
label as

qh = K∇(Ψh + z). (4.36)

Note that with the P1-Lagrange basis, qh is piecewise constant on each element T , with
potential jumps across element faces (indeed, the shape functions always have discontinuities
in the normal component of their gradients). As such, div qh can only be defined weakly for
the entire domain:

∫
Ω
ϕi div qh dx =

∑
T∈Th

∫
∂T
ϕi(qT · n) dx−

∫
T
qT · ∇ϕi dx. (4.37)

Expanding the first sum of flux integrals over the boundary of each face f ∈ T

∑
T∈Th

∫
∂T
ϕi(qT · n) dx =

∑
T∈Th

∑
f∈T

∫
f
ϕi(qT · n) dx (4.38)

=
∑
f∈Th

∫
f
[[qh · n]]fϕi dx,
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where [[qh · n]]f is the difference of the values of qh · n from the two elements sharing face
f . As qT s are sums of the gradients of the shape functions ϕi, and the normal components
of these gradients are discontinuous across faces, so too are the qT s, meaning that the weak
derivative as defined above cannot be square-integrable, which implies that div cannot be
defined weakly.

This implies that solutions to the weak formulation (4.2) do not have to conserve mass
locally, as this lack of continuity of the normal component of qh across faces implies that for
certain functions Ψh ∈ Vh, the sum of the fluxes across a face need not be equal to 0. In fact,
since the tangential components of the gradients of the shape functions are continuous, it
turns out that the only function in Vh for which [[qh · n]]f = 0 everywhere locally and globally
is the constant function Ψh = C.

One way to overcome this problem is to properly exploit the local subdomains where the
mass conservation property of the finite element scheme is inherently satisfied. For example,
on two-dimensional Delaunay triangulations these subdomains can be defined as the Voronoi
(or Thiessen) polygons [64]. A local postprocessing procedure can then be used to yield
accurate and mass conserving velocity fields. However, this approach has the limitation of
not being directly applicable to three dimensions. Conversely, Integrated Finite Difference
(IFD) or Finite Volume (FV) schemes are inherently mass conservative, as the subdomain of
definition of the mass conservation principle coincides with the mesh element. However, the
applicability of IFD or FV to general domains and boundary conditions is often cumbersome,
and analysis of stability and error estimates are not straightforward to derive.

To this end, we seek to use a finite element formulation that can guarantee local mass
conservation. There are various formulations that allow for this; for instance, one method to
work with the weak divergence definition (4.37) consistent is to track the jump in fluxes (4.38)
and enforce their continuity as a Lagrange multiplier constraint; this results in the discontin-
uous Galerkin (DG) formulation, which has been used in modeling contaminant transport
problems [65].

However, as the Darcy velocity itself is a variable of interest in our context, we elect to
use mixed finite elements to discretize (4.1). This finite element approximation swaps the
minimization problem (4.2) posed in the previous section with a saddle point problem, find
(Ψ, q) ∈ S ×Q such that, for each (v, r) ∈ S ×Q,

τ(qn, r)− τ(K(Ψn)∇(Ψn + z), r) = τ(g, r)∂Ω,

−(θn, v) + τ(div qn, v) = −τ(f, v)− (θn−1, v). (4.39)
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The spaces S and Q need to be defined appropriately so that the resulting saddle point
problem is well-posed.

Omitting the timestep index, introducing the linearization index, and computing the resid-
uals for each equation as was done in the previous section, we get the following linearizations
for (4.39):

(Mixed Picard)

τ(K−1,jqε, r)− τ(∇Ψε, r) = τ(Gj, r), (4.40)

τ(div qε, v)− (θjΨε, v) = (F j, v),

(Full Newton)

(K−1,jqε, r)− τ(∇Ψε, r)− τ
([
K−1∂KK−1

]j
qjΨε, r

)
= τ(Gj, r) (4.41)

τ(div qε, v)− (∂θjΨε, v) = (F j, v),

(Modified Picard)

τ(K−1,jqε, r)− τ(∇Ψε, r) = τ(Gj, r) (4.42)

τ(div qε, v)− (∂θjΨε, v) = (F j, v),

(L-scheme)

τ(K−1,jqε, r)− τ(∇Ψε, r) = τ(Gj, r) (4.43)

τ(div qε, v)− (LΨε, v) = (F j, v).

Denoting the linear and bilinear forms with v ∈ S and r ∈ Q,

(J jθΨε, v)→ d(Ψε, v),

τ(K−1,jqε, r)→ a(qε, r),

τ(div qε, v)→ bdiv(qj, v),

τ
([
K−1∂KK−1

]j
qjΨε, r

)
→ bK′(Ψε, r),

(F j, v)→ F j(v),

τ(Gj, r)→ Gj(r),
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where J jθ = ∂θj, θj (depending on linearization). We can reformulate each of the linearizations
of (4.39) as a symmetric saddle point problem for (qε,Ψε) ∈ Q× S,

a(qε, r) + b∗div(Ψε, r) = Gj(r), r ∈ Q, (4.44)

bdiv(qε, v)− d(Ψε, v) = F j(v), v ∈ S,

or in the case of the Newton linearization, the non-symmetric saddle point problem

a(qε, r) + b∗div(Ψε, r)− bK′(Ψε, r) = Gj(r), r ∈ Q, (4.45)

bdiv(qε, v)− d(Ψε, v) = F j(v), v ∈ S,

with b∗div denoting the adjoint operator of bdiv. To motivate the definition of S and Q we
use, re-consider the weak div definition, (4.37). In order for the integrals involved to be
well-defined, one sufficient set of conditions are that the divergence of flux qh be square
integrable, and the test function ϕ to be square integrable; in other words, it will be sufficient
to have

qh ∈ Hdiv(Ω) = {vh : vh ∈ L2(Ω)d, div(vh) ∈ L2(Ω)}

and
ϕ ∈ L2(Ω).

Further, to ensure the local consistency of the right hand side of (4.37), it suffices to choose
a subspace Qh ⊂ Hdiv(Ω) whose basis functions {φf}f∈Th have continuous normal component
across each of the faces in the triangulation, and subspace Sh ⊂ L2(Ω) whose basis functions
{χT}T∈Th are piecewise constant on each of the elements.

Choosing then the degrees of freedom for the discrete flux qh as the value of the flux
across a face f ∈ Th,

σfi(qh) =
∫
f
qh · nf dx,

and the degrees of freedom for the discrete pressure Ψh as the value at the barycenter, x∗T :

σTi(Ψh) = Ψh(x∗Ti),

the lowest order induced shape functions for the discrete flux are the zeroth order Raviart-
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Thomas finite elements, whose definition restricted to a simplex T ∈ Th is

φf,T = sf,T
x− xf
d|T |

. (4.46)

Here xf is the sole vertex in T that is not in the face f , and the constant sf,T serves the
purpose of enforcing the continuity of the normal component of the flux across the face f . It
is defined as follows:

sf,T =

(nf,T · nf ) = ±1, f ∈ ∂T

0, f /∈ ∂T.

In what follows, for f ∈ ∂T , nf,T is the normal vector to f pointing outward with respect to
T , and nf is the globally oriented normal vector to f whose direction is chosen independently
of T and is fixed for every f . In practice, the typical way to choose this globally oriented
normal vector involves numbering all d-dimensional simplices as 1, . . . , |Th| = nT and for
T ∈ Th; i(T ) is the number of T in this sequence. Then,

nf = sign(i(T )− I(T ′))nf,T , iff f = T ∩ T ′.

To show the unisolvence of this finite element for the discrete fluxes, it suffices to show:

Lemma 4.1.4. For two faces f, f ′ ∈ Th,

∫
f ′
φf · nf ′ =

1, f = f ′,

0, otherwise.
(4.47)

Proof. We first note that for f ′ 6= f and x ∈ f ′ we have (x− xf) · nf ′ = 0 because xf ∈ f ′.
We then only need to to show the identity (4.47) for f = f ′. We recall the following identities

nf = − 1
|∇λf |

∇λf , |∇λf | =
|F |
d|T |

,

where λf is the barycentric coordinate function satisfying

λf (xf ′) =

1, f = f ′,

0, otherwise.
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Since λf is linear, the first order Taylor expansion of λf centered at xf yields for x ∈ f ,

0 = λf (x) = λf (xf ) +∇λf · (x− xf ) = 1 +∇λf · (x− xf ).

This shows that on f the quantity (φf · nf ) is a constant. Therefore, for x ∈ f we have

φf · nf = − 1
d|T | |∇λf |

(x− xf ) · ∇λf

= 1
|F |

,

which clearly implies (4.47).

For the piecewise constant pressure, the induced shape functions are the characteristic
functions

χTi(x) =

1, x ∈ Ti,

0 otherwise.
(4.48)

The unisolvence of these finite elements with their dual basis follow from the defintion, since
the map

p 3 Sh →
(
p(x∗T1), p(x∗T2), . . . , p(x∗TnT )

)
∈ RnT

is clearly bijective.
Now we can define the finite dimensional formulation of the linearizations of (4.39). On

the domain Th, we seek the solution (Ψn
h, q

n
h) ∈ Sh×Qh such that for every (vh, rh) ∈ Sh×Qh,

ah(qh,ε, rh) + b∗h,div(Ψh,ε, rh) = Gj(rh), rh ∈ Qh,

bh,div(qh,ε, vh)− dh(Ψh,ε, vh) = F j(vh), vh ∈ Sh,

Or in the case of the Newton linearization,

ah(qh,ε, rh) + b∗h,div(Ψε, rh)− bh,K′(Ψh,ε, rh) = Gj(rh), rh ∈ Qh,

bh,div(qh,ε, vh)− dh(Ψh,ε, vh) = F j(vh), vh ∈ Sh,

where the functionals defined in the above are the finite dimensional equivalents of the
continuous linear forms defined before.

One can guarantee the well-posedness of finite element discretizations of a continuous
variational problem by using stability estimates, which bound the energy of the solution to
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the variational problem on finite dimensional subspaces by that of the source and boundary
data, with a constant independent of the size of the subspaces. This implies that for zero
source data, the only solution can be 0, and one can use these to form error estimates that
can show the rate (in h and τ) at which the discrete solutions approach the continuous one.

The stability of mixed finite element discretizations of time discretized parabolic problems
of the form

Lun − τ div(K(x)∇un + β(x)un) = τfn + Lun−1, x ∈ Ω,

u(x, 0) = u0(x), Ω× {t = 0},

un|ΓD = uD(x, t),

∂νu
n|ΓN = g(x, t)

is well established for uniformly elliptic K and L > 0 (see, for instance, [66], chapter 7 for a
detailed discussion).

As each linear problem of form (4.44), (4.45) can be written as a problem of this type,
the well-posedness on each linear iteration for the mixed finite element discretization follows.
The error estimates are of the form

||qn − qnh ||L2(Ω) ≤ C(h+ τ)||qn||L2(Ω),

and for the pressure,
||Ψn −Ψn

h||L2(Ω) ≤ C(h+ τ)||Ψn||L2(Ω),

where (q,Ψ) are the continuous solutions of(4.39), with appropriate boundary conditions.
Establishing the stability and error estimates for the nonlinear problem is not straight-

forward; essentially, the well-posedness of the problems is dependent on the Jacobian of the
system, which can become singular for mixed saturated-unsaturated problems. One common
technique to circumvent this issue is to use the Kirchoff transformation as defined in chapter
1. However, one problem that persists is the low regularity of the solutions; particularly that
in time, [9] manage to show that (for the full Dirichlet problem, for simplicity) u and b(u)
are in the spaces

b(u) ∈ L∞(0, T ;L1(Ω)),

∂tb(u) ∈ L2(0, T ;H−1(Ω)), (4.49)

u ∈ L2(0, T ;H1
0 (Ω)),
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K(b(u))ez ∈ L2(Ω× (0, T )).

This implies that the Kirchoff flux,

qb = −(∇u+ k(b(u))ez) ∈ L2(0, T ; (L2(Ω))d).

However, due to the degeneracy of b near full saturation, the weak problem requires test
functions that are in H1(Ω), which are more restrictive than the test functions used for the
weak formulation. However, after redefinition on a set of measure zero, b(u) ∈ C(0, T ;H−1(Ω));
thus one can integrate in time as is done in [5], to get the continuous in time relation

b(u(t)) + div
∫ t

0
qb(s) ds = b(u0), t ∈ (0, T ]

defined in the H−1 sense. If one further assumes that b is Hölder continuous of exponential
order 0 < α < 1, then the regularity of u implies that

b(u) ∈ L2(0, T ;L2/α(Ω)) ⊂ L2(0, T ;L2(Ω)).

Thus, if we assume that initial data u0 ∈ L2(Ω), the Hölder continuity of b gives us that
∫ t

0
q ds ∈ H1(0, T ; (L2(Ω))d) ∩ L2(0, T ;Hdiv(Ω)),

giving us that div
∫ t

0 q ds ∈ L2(Ω) for a.e t. Then, the authors of [20], one consider the time
integrated form of (4.39), and then after discretizing in time using Backward Euler, prove
stability in the form

τ
N∑
n=1
||Ψn||21 + τ

N∑
n=1
||qn||2 ≤ C,

N∑
n=1

(b(pn)− b(pn−1), pn − pn−1) + τ max
n=1,...,N

||qn||2 + τ
N∑
n=1
||qn − qn−1||2 ≤ Cτ, (4.50)

τ
N∑
n=1
|| div qn||2 ≤ Cτ−

2(1−α)
α ,

and error estimates between the semidiscrete and fully discrete solutions of the form

N∑
n=1

∫ tn

tn−1
||b(Ψ(t))− b(Ψn

h)||1+ 1
α

L1+ 1
α (Ω)

dt+
∣∣∣∣∣
∣∣∣∣∣
N∑
n=1

∫ tn

tn−1
(Ψ(t)−Ψh(t)) dt

∣∣∣∣∣
∣∣∣∣∣
2

(4.51)
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+
∣∣∣∣∣
∣∣∣∣∣
N∑
n=1

∫ tn

tn−1
(q(t)− qnh) dt

∣∣∣∣∣
∣∣∣∣∣
2

≤ C
(
τ + h2τ−

2(1−α)
1+α

)
.

These estimates, when combined with the proof in [16] that solutions to the time integrated
variational problem are equivalent to solutions of the variational problem without time
integration, provide stability for both the P1-Lagrange formulation and the mixed RT0-P0
formulation, for small enough h, dependent on the Hölder exponent α of b.

4.2 Krylov subspace iterative solvers
Now that we have linearized and discretized our problem, we must discuss the particulars of
constructing and solving the linear systems that are generated.

As a precursor, one issue of particular relevance is the size N of the linear systems, which
increase exponentially as h→ 0. For instance, the system (4.2) discretized with P1-Lagrange
elements in d spatial dimensions has the number of DOF (unknowns) equal to the number of
vertices in the mesh, which scale as O(h−d). Even the best direct solvers scale unfavorably
with the size of the system, which can become very large (for instance, on a unit cube split
into equal size subcubes of size h = 1/128, the number of unknowns to solve exceeds 2 million
for the three dimensional problem). In these scenarios, even O(N2 log(N)) operations to
solve the given linear system could be prohibitively expensive.

To this end, solving linear systems with iterative methods that take an initial guess and
repeat some low cost approximate solve until some tolerance is reached is a much more
scalable alternative, as the simplest methods involve O(N) calculations, implying much
faster linear solve times. The caveat of working with iterative methods is that the amount
of iterations required for an iterative solver to converge within some given tolerance might
be rather large (so large in fact that in some cases, the use of a direct solver would have
solved the problem faster). One indicator that can predict how effectively an iterative solver
can converge to a solution is what is known as the condition number of the system. For an
invertible linear operator A, the condition number of A can be defined as

κ(A) = ||A−1||||A||,

where for A is a linear transformation from a finite dimensional Hilbert space V to itself with
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norm || · ||V , which is the standard operator norm ||A|| can be defined as

||A|| ≡ sup
v∈V

||Av||V
||v||V

.

In the case V = Rn, if we consider the matrix representation A, the operator norm becomes

||A|| = sup
v∈Rn

(
〈Av,Av〉
〈v, v〉

)1/2

,

with 〈x, x〉 being the standard Euclidean inner product. Then

κ(A) = sup
v=Aw∈Rn

(
〈w,w〉
〈Aw,Aw〉

)1/2

sup
v∈Rn

(
〈Av,Av〉
〈v, v〉

)1/2

= σmax

σmin
≥ 1,

with σmax /min denoting the maximum/minimum singular value of A.
When solving Ax = b with an iterative method, the conditioning of the system is very

important. All iterative solvers can be shown to form contractive sequences of iterates
{xi} → x, where the convergence has rate

||x− xi|| ≤ [1− f (κ(A))]i ||x− x0||, (4.52)

where 0 < f(s) < 1 is a decreasing function, so that the number of iterations required to
converge increases exponentially as κ increases. For instance, for the Gauss-Seidel iteration,
f(s) = s−1.

Discretizing either of the linearizations (4.31), (4.32) with P1-Lagrange finite elements
over a given triangulation Th gives a linear system of the form

(Dθ + τAE)Pε = rκ, (4.53)

to solve on each linearization step κ, with the vector Pε = [Ψ1
ε , . . . ,ΨNV

ε ]T representing the
DOF of the P1-Lagrange interpolant of the correction,

∑
T∈Th

∑
E⊂T

ωTEJθ
κ
T (ϕjϕi)→ Dij

θ ,
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∑
T∈Th

∑
E⊂T

ωTEα̃E(K̃κ)δE(eψEϕj)δEϕi → AijE ,

with α̃E, ψE, K̃κ as defined in section 4.1.1.1, and the weights ωTE as defined in (4.13).
Provided Jθκ(xj) > 0 for all j, the matrix Dθ is conditioned well, as the condition number

is just the ratio between the highest and lowest Jθκ values. Note that for the L-scheme, even
in saturated-unsaturated problems, Jθ ≡ L, and so this matrix is perfectly conditioned.

In the cases when K̃κ = 0, the stiffness matrix AE can be simplified to (4.31), which we
reproduce here: ∑

T∈Th

{∑
E⊂T

ωTEKEδE(uh)δEvh + JθκT (uhvh)
}
.

In the symmetric case, the conditioning of this system is of the same order in h as the
conditioning of the regular Laplace discretization, which is known to scale like O(τh−2), with
a constant related to the ratio of the max and min values of KE. As such, the contraction
coefficient (4.52) goes to 1 as h→ 0, implying that iterative techniques would require many
iterations to converge.

In the case of mixed finite elements, one gets the following saddle point system to solve,
after discretizing using RT0 elements for the Darcy flux, q = ∑

f∈Th q
RT
f φf , and P0 elements

for the pressure head, PRT = ∑
Ti∈Th P

RT
T χTi :Aqq BT

div −BK′

Bdiv −Dθ

 qRTε
PRT
ε

 =
 f̃
g̃

 , (4.54)

with
τ
∑
T3f ′

∑
f,f ′∈T

∫
T
φfK

−1,κ
T · φf ′ dx→ Af

′,f
qq ,

τ
∑
f∈Ti

∫
f
φf · nf dx→ BTi,f

div ,

τ
∫
Ti

[
K−1∂KK−1

]κ
qκ · φf dx→ Bf,Ti

K′ ,∫
Ti
Jκθ dx→ DTi,Ti

θ .

Here the total number of degrees of freedom is equal to the number of unique faces
f ∈ Th ≈ d

2d!h−d, plus the number of elements T ∈ Th ≈ d!h−d. As this linear system is
spectrally equivalent to (4.53), the conditioning of this system scales with the same order in
h.
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For the nonsymmetric linearization, the first order convection changes the scaling of the
condition number to a first order κ ∼ O(τh−1). This, coupled with the fact that nonsymmetric
problems are harder to precondition than nonsymmetric ones, implies that for problems
where the gradients of K become large, the number of iterations will increase immensely,
particularly for problems where the convection-dominated areas can change per linearization
step.

In this sense, solving (4.53) and (4.54) as h → 0 introduces challenges: every time one
halves the characteristic mesh size, the problem size N increases exponentially, and the
condition number of the system grows by a factor of roughly 4 for the symmetric case, and
by 2 for the nonsymmetric case. In this sense, scalable solvers coupled with preconditioners
are necessary to efficiently solve the system. We will discuss preconditioners in chapter 5; for
now, let us first define the iterative solvers that we use, and mention some of the properties
of these solvers.

Solving a linear system Ax = b can be seen as finding critical points of the quadratic
functional,

ϕ(x) = 1
2(Ax, x)− (b, x).

Projection methods do this by extracting an approximate solution xm from an affine subspace
x0 +Km of dimension m by imposing the Petrov-Galerkin condition,

b− Axm ⊥ Lm,

where Lm is another subspace of dimension m and x0 is an arbitrary initial guess to the
solution. A Krylov subspace method is a method for which the subspace Km is the Krylov
subspace

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0},

where r0 = b− Ax0. The different versions of Krylov subspace methods arise from different
choices of the subspace Lm and from the ways in which the system is preconditioned, a topic
that will be covered in the next chapter. Two broad choices for Lm give rise to the best-known
techniques. The first is simply Lm = Km and the minimum-residual variation Lm = AKm,
which minimize the residual ||ri||A−1 = ||b− Axi||A−1 and ||ri||2, respectively, for an SPD A.
In the case that A is not symmetric, one can define Lm to be a Krylov subspace method
associated with AT , namely, Lm = Km(AT , r0). This leads to methods like BiConjugate
Gradient.
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4.2.1 Conjugate Gradient method

In the case that A ∈ Rn×n is symmetric positive definite (SPD), the quadratic linear form
defined above has a unique minimum. One of the most powerful and popular iterative solvers
can be seen as a method of finding this minimum,

x∗ = arg min
x∈Rn

ϕ(x), ϕ(x) = 1
2(Ax, x)− (b, x), (4.55)

In this scenario, the linear form is convex, and it is clear that the unique minimizer is the
solution to the linear problem Ax = b.

A standard method of finding the minimizer x∗ is to use some line search method, all of
which can be written in the form

1. Find αj = arg minϕ(xj + αpj),

2. Set xj+1 = xj + αjpj.

The key to the successs of a line search method is in choosing a good set of search directions
{pj}. The CG method creates a sequence of search directions pj that are “conjugate” to
each other, i.e, orthogonal with respect to the inner product ||x||A = (Ax, x) by using a
Gram-Schmidt process known as the Arnoldi iteration; this A-orthogonality ensures that
each succesive residual rk = b−Axk is minimized in the subspace spanned by all prior search
directions, and also orthogonal to every other residual before it, which can be used to further
simplify the algorithm used to generate the new search path and iterative solution.

The algorithm in simplest form is as follows, as described in [67]:

Algorithm 4.2.1 (Conjugate Gradient). Result: Approximate solution x̃ to Ax = b. Let x0

be given initial guess. Compute initial residual r0 := b− Ax0, p0 := r0. For i = 0, . . . until
convergence,

1. Compute correction coefficient αi := (ri, ri)/(Apj, pj)

2. Compute corrected guess, xj+1 := xj + αjpj.

3. A-orthogonalize the residual, rj+1 := rj − αjApj.

4. A-orthogonalize the conjugate direction,

pj+1 := rj+1 + βjpj,
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where βj := (rj+1, rj+1)/(rj, rj).

As can be seen, this method is optimal in the sense that no matrix inverses are ever
computed, meaning that the running cost of this algorithm per iteration is on the order of a
few matrix vector multiplications, each of which are O(N) for the sparse systems (4.53) and
(4.54).

Note that, because A is positive definite, the iterative procedure will converge in at most
n iterations; however, the hope is that convergence will be reached for k << n. The number
of iterations to converge, however, can vary significantly depending on the conditioning of
the system. It can be shown that the convergence rate of this algorithm is dependent on the
condition number of A in the following sense:

‖x∗ − xl‖A ≤
2(√

κ+1√
κ−1

)l
+
(√

κ−1√
κ+1

)l‖x∗ − x0‖A ≤ 2
(√

κ− 1√
κ+ 1

)l
‖x∗ − x0‖A. (4.56)

One way to think of this is, the higher the condition number, the higher the spread of the
eigenvalues, and hence the worse this scheme does, which indicates that the performance of
PCG will suffer significantly for the problems we consider. Further, this method can only
work for symmetric systems, as for nonsymmetric problems, the norm || · ||A cannot be defined.
There are ways around this, i.e, by generating orthogonal bases in the Krylov subspaces

Km = span{r0, A
T r0, . . . , (AT )m−1r0},

one can define the Bi-Conjugate Gradient method. Combined with a stabilization procedure
to prevent failure of the algorithm in certain edge cases, this becomes the well-known
BiCG-STAB method.

4.2.2 Generalized Min Res method

Similar to CG, the Generalized Minimal Residual Method also uses an orthogonal basis of
the Krylov subspaces Km via the Arnoldi iteration to minimize some norm of the error ||rm||.
However, in this case, the norm is || · ||`2 , rather than the norm induced by A. In particular,
on iteration m, if the resulting orthogonal basis of Kj is written as

Qm = [p1, p2, . . . , pm],
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then the matrix A can be shown to satisfy

AQm = Qm+1H̄m,

where H̄m is an (m+ 1)×m upper Hessenberg matrix generated by the Arnoldi iteration.
In this case, the residual can be computed in terms of the orthonormal Q’s and H̄n:

||Axm − b||`2 = ||H̄mym −QT
m+1b||`2 = ||H̄mym − βe1||`2 ,

with e1 being the first column of the (m+ 1)× (m+ 1) identity matrix, and β = ||b− Ax0||,
with x0 being some initial guess. In this sense, the problem has been reduced to finding the
solution yn to the least-squares minimization problem,

arg min
y,
||H̄mym − βe1||`2 . (4.57)

Altogether, the algorithm in matrix form is

Algorithm 4.2.2 (GMRES). Let x0 be given initial guess.

Compute β = ||b− Ax0||`2

While ||b− Axm||`2 6= 0 do

Compute pm with the Arnoldi method;

Solve the least-squares problem (4.57);

xm = Qmym;

endWhile.

The main motivation and useful feature of this solver is its robustness; indeed, it was
proven that this method is guaranteed to converge in at most n iterations, even if the problem
is non-symmetric, with a symmetric part that is indefinite (i.e, the real part of the eigenvalues
of M = A+AT

2 can be negative) [68]. However, in practice, it is not desirable to use the full
GMRES, as this requires storing all of the previous pm’s, and computing the residual in (4.57)
will also increase the number of multiplications, as 1

2m
2n. In this sense, the standard way to

use GMRES is to keep only some maximal number (M) of previous pm, and to restart the
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algorithm with the initial guess being xM . In this case, however, the guaranteed convergence
is lost; in this case, the authors show that if the symmetric part of the matrix is not positive
definite and one does not run the entire algorithm, then the residual can stagnate.

In particular, for matrices A that have positive definite symmetric part M , the authors
get the following estimate on the error reduction:

||rm||2 ≤
[
1− λ2

min(M)
λmax(ATA)

]m
||r0||. (4.58)

For indefinite problems, the authors provide the following upper bound on the convergence
rate:

Theorem 7 ( [68], Theorem 5). Assume that A can be diagonalized as A = XDX−1, and let

εm = min
p∈Pm, p(0)=1

max
λi∈σ
|p(λi)|.

Assume that there are ν eigenvalues λ1, λ2, . . . , λν of A with nonpositive real parts and let
the other eigenvalues be enclosed in a ball of radius R < C centered at a point C > 0. Then

||rm+1|| ≤ κ(X)εm||r0||,

with an upper bound on εm,

εm ≤
[
R

C

]m−ν
max

j=ν+1,...,n

ν∏
i=1

|λi − λj|
|λi|

≤
[
R

C

]m−ν [D
d

]ν
,

where
D = max

i=1,...,ν;j=ν+1,...,n
|λi − λj|, d = min

i=1,...,ν
|λi|.

In this case, convergence of GMRES storing m previous iterates converges for any initial
vector x0 if

mν log
[
DC

dR
κ(X)1/ν

]
/ log

[
C

R

]
.

In the case of (4.53), the problem is positive definite, so that any number of previous
stored pj’s guarantees convergence, though the more that are stored, the better.

For the mixed discretization (4.54), the linear system, being of saddle point type, is
indefinite; however, its Schur complement is well-known to be positive definite [69], which
will be important for the preconditioners we use.
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4.3 Multigrid algorithms
In this section, we describe an advanced iterative technique used to both solve and precondition
linear systems that arrive from the discretization of elliptic PDE. It can be proven that
the complexity of the algorithm is O(n), which implies that the work done per unknown is
constant. The way that it manages this is that it relaxes errors by using standard relaxation
(averaging on nearest neighbors) techniques on succesively coarser spaces, thus propagating
information quickly through the mesh in a way that typical local relaxation techniques can’t.
Multigrid uses coarse grids to do divide-and-conquer in two related senses. First, it obtains
an initial solution for an n × n grid by using an (n/2) × (n/2) grid as an approximation,
which in turn takes an initial solution from an (n/4)× (n/4) grid, and so on, using simple
interpolation and restriction techniques to transmit information between grids. Second, this
smoothing and solving on coarser grids also divides the problem on the frequency domain, as
the error on elliptic problems can be decomposed into sinusoidal eigenfunctions with different
frequencies. In this sense, the problem on succesively coarser grids can efficiently divide
and solve some portion of the error frequencies per grid level, by using cheap relaxation
techniques.

To solve the system Ax = b, classical iterative solvers such as Jacobi, Gauss-Seidel, SOR
work by taking some initial guess, decomposing the matrix A into some combination of its
diagonal, lower triangular, or upper triangular parts, and iteratively inverting these simplified
systems to get a correction that is then added to the initial guess. For instance, the simplest
(Jacobi) iteration does the following:

Algorithm 4.3.1 (Jacobi method). Let x0 be given initial guess. Take D = diag(A).

While ||rk|| ≥ tol do

Compute rk = b− Axk.

Compute ek = D−1rk;

xk+1 = xk + ek;

Set k = k + 1;

endWhile.
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Such methods can be thought of as applications of operators that locally average values of
the previous iterate to give the next iterate. It can be shown that the error becomes smooth
after a few iterations of such a procedure, implying that the higher oscillatory modes of the
error diminish very quickly. However, due to this local averaging property, the lower oscillatory
modes of the error take considerably longer to diminish, resulting in slow convergence to the
solution.

The core idea of multigrid is to take advantage of this property of rapid convergence of
high frequency error modes by only performing a small number of one of these local averaging
iterative methods to relax the error, so that the problem can be restricted to a coarser space,
upon which the same relaxation can be performed, and restricted to an even coarser space.
This is repeated until the problem is restricted on a coarse enough space where some direct
solver can be used to solve for a coarse grid correction that can then be interpolated back
up. The fixed number of iterations of the smoother on each level, combined with a cheap
direct solve and cheap interpolation and restriction, can be shown to give a computational
complexity of O(n) to the entire method, resulting in one of the fastest and computationally
cheapest solvers for elliptic problems.

To define things more precisely, assume that we consider the problem on a grid with mesh
size h = 2−J . Let Vh be the corresponding finite element space. We consider the following
sequence of subspaces of VJ ≡ Vh:

V1 ⊂ V2 ⊂ . . . ⊂ VJ−1 ⊂ VJ ,

where Vk will be the finite element space corresponding to a grid with mesh size 2−k. Let Ak
denote the stiffness matrix corresponding to a discretization of the Poison equation on this
grid, the operators Rk, Pk to be the restriction and interpolation operators between grids,
and nk = dimVk. Then the multigrid method is as follows:

1. Set initial guess u(0) and put ` = 0, L = 1

2. Do

(a) Compute rJ = b− AJu(`)

#Loop down through the levels: \

(b) For k = J to 2 step −1 do

#Pre-smoothing (with 0 initial guess):
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(c) Set ek = Rkrk.

#Restrict the residual and keep it:

(d) Compute rk−1 = (P t
k−1,k)(rk − Akek).

(e) endFor

Solve on the coarse grid, (for example by Conjugate Gradient method):

(f) e1 = A−1
1 r1.

#Loop up: /

(g) For k = 2 to J step 1 do

#Correct:

(h) Compute ek ← ek + Pk−1,kek−1.

# Post smoothing:

(i) ek ← ek +Rt
k(rk − Ak).

(j) endFor

3. Update u(`+1) = u(`) + eJ ; `← `+ 1.

4. until convergence

The above iteration is performed until some stopping criteria is satisfied. Typically, the
restricion and interpolation operators can be taken as averaging operators. In the case
considered above, Pk : Vk−1 → Vk could work by averaging the degrees of freedom of nearest
neighboring functions on the coarse space Vk−1 to give the degree of freedom of a function on
the finer space Vk, and the restriction operator Rk could take the dual action, which would
take the value of a degree of freedom of a function on the coarse space Vk−1 to be the average
of its neighboring functions on the finer space Vk.

Given the explicit relationship of the coarse spaces and interpolation operators, this variant
is known as Geometric multigrid, and is the first multigrid algorithm that was introduced.
Such methods work well for sufficiently regular elliptic problems on geometrically regular
domains, but for less regular domains, or problems where the magnitude of the entries of A
in one row versus another vary greatly (i.e, in our case, where K and β can change by several
orders of magnitude throughout Ω), one should consider forming coarse spaces not by the
location of degrees of freedom in the domain, but by the relative weights and strength of
connection in the entries of the matrix A (in other words, on algebraic properties of A); this
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Figure 4.2. Fine and coarse grid

variant of multigrid is known as algebraic multigrid, which is what we use either to solve or
to precondition the linear systems we work with.

4.3.1 Algebraic Multigrid method

The most important conceptual difference between geometric and algebraic multigrid is that
geometric approaches employ fixed grid heirarchies and thus an efficient interplay between
smoothing and coarse-grid correction has to be ensured by selecting appropriate smoothing
processes. In contrast to this, AMG fixes the smoother to some simple relaxation scheme,
like the damped Jacobi iteration, and enforces an efficient interplay with the coarse-grid
correction by choosing the coarses levels and iterpolattion appropriately. This difference lends
AMG a great deal of versatility in the types of problems it can solve, particularly problems
in which a geometric grid heirarchy cannot be made a priori, or where the coefficients vary
greatly, leading to various anisotropies that affect the convergence rate of geometric multigrid;
for our problem in particular, K can vary by several orders of magnitude in different parts of
the domain at different times, hence the motivation to use AMG, which trades consistent
convergence for numerical work in developing the coarse spaces.

The overall procedure to solve the linear system with AMG is the same as the geometric
algorithm; one uses a simple iterative method to presmooth the error on a fine grid, then
restricts the problem to a coarser grid, and repeats until a coarsest grid is reached, where
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the correction is solved for, and then interpolated back up and post smoothed, to give the
solution on the finest grid. The key difference, and the bulk of the numerical work in using
AMG, is in the construction of these coarse spaces, and their corresponding interpolation
operators.

To define these notion of coarse and fine spaces, graph theory provides a natural language.
An undirected graph (or simply a graph) G is a pair (V , E), where V is a finite set of points
called vertices and E is a finite set of edges. As set of vertices we always consider subsets
of {1, . . . , n} for some fixed n. An edge e ∈ E is an unordered pair (j, k), where j, k ∈ V.
Similarly, a directed graph (or a digraph) G, is a pair (V , E), where V is the set of vertices as
we just defined, but an edge (j, k) ∈ E is an ordered pair; that is, it indicates that there is
a connection from j to k. We use the term graph to refer to both directed and undirected
graphs.

If (j, k) is an edge in an undirected graph G = (V , E), vertices j and k are said to be
adjacent. If the graph is directed, vertex v is said to be adjacent to vertex w. A path from a
vertex v to a vertex w is a sequence (j0, j1, j2, ..., jl) of vertices where j0 = j, jl = k, and
(ji, ji+1) ∈ E for all i = 0, 1, ..., l − 1. A vertex j is connected to a vertex k if there is a
path from j to k. We shall adopt the convention, that every vertex is connected to itself.
Two vertices, j and k, are said to be strongly connected if there is a path from j to k and a
path from k to j. An undirected graph G = (V , E) is connected if every pair of vertices is
connected by a path, otherwise it is said to be disconnected.

A =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 0 0 0 ∗



Figure 4.3. Sparsematrix (left) and the associated graph (right).

To relate graphs and sparse matrices, let us consider A ∈ Rn×n. The adjacency graph of
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A is a graph G = (V , E) with V = {1, 2, ..., n}. The edges E are defined as (j, k) ∈ E if and
only if ajk 6= 0. We denote this graph by G(A). An example of a matrix with symmetric
sparsity pattern and the corresponding graph is shown in Figure 4.3.

Let {Vk}nck=1 be a non-overlapping splitting of the set of vertices

V = ∪nck=1Vk, Vj ∪ Vk = ∅, for j 6= k.

We then define
Ek = {(l,m) ∈ E

∣∣∣ l ∈ Vk and m ∈ Vk} (4.59)

to be the set of edges associated with Vk.

4.3.2 Algebraic grid coarsening and interpolation

To describe a general two-level or multilevel multiplicative method, we denote V = Rn, and
also introduce a coarse space VH , VH ⊂ V , nH = dimVH , nH < n.

In order to transfer the correction up to the fine space, we need to define an operator
P : RnH 7→ Rn, such that range(P ) = VH . In this way, each column of P is formed by the
coefficients in the expansion of a basis element from VH via the finer basis in V :

ϕHj =
n∑
i=1

pijϕ
h
i , j = 1, 2, . . . , nH . (4.60)

Clearly P is full rank (because its columns are coefficients of a basis).
We would also like P to accurately interpolate smooth error back up to the fine space

accurately, i.e,

[esmooth]i ≈
nH∑
j=1

pij[esmooth]j, i = 1, 2, . . . , n. (4.61)

A matrix that satisfies (4.60) and (4.61) is called a prolongation or interpolation matrix.
The construction of P usually contains two steps:

1. Determine the sparsity of P : The sparsity of P is determined by the sets of
interpolatory vertices Pi. Pi is based on the connection between the F(ine)-vertex and
neighboring C(oarse)-vertices. For reasons of efficiency and computational complexity,
Pi should be a small subset of C vertices near i. This step is usually referred to
coarsening.

2. Compute pij: Computing pij follows the principle that the smooth error should be
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approximated well on the coarse level. It should be based on the characterization of the
algebraic smooth error. One goal is to define pij such that (4.61) yields a reasonable
approximation for any (algebraically) smooth error but does not require a large amount
of computational work. This step is usually referred to as construction of interpolation.

The classical AMG method introduced by Brandt, McCormick and Ruge [70,71], is based
on the observation that the algebraic smooth error varies less in the direction of relatively
large (negative) off-diagonal coefficients of the matrix. This gives us an algebraic way to
track the smooth error. In the classical formulation, the strength of connection between
two degrees of freedom plays an important role in the construction of P ; there are several
viable metrics of strength of connection, all of which feature the generation of a “strength”
adjacency graph that uses some measure of size of a non-zero off-diagonal entry aij in a row
i relative to other nonzero entries in the same row to measure the strength of connection
between i and j. This, combined with a ranking of new potential C-vertices generated via a
“measure of importance” that initially prefers vertices that strongly connect to many vertices
at the beginning of the coarsening, and then later prefers vertices that strongly connect to
many fine vertices, produces consistent uniform coarsening.

Once this splitting of the unknowns into coarse and fine has been completed, constructing
the interpolation operator then involves solving for the weights pij to minimize the error in
(4.61). This is accomplished by observing that for smooth error, the error on the fine space
should be orthogonal to the fine space in the Galerkin sense, i.e,

aiiei +
∑
j∈Ni

aijej ≈ 0, i ∈ F, (4.62)

where Ni is the total set of neighboring nodes connected to fine vertex i (not including i).
Using the relation (4.62), one can either use the nearest coarse neighbors to solve for the

weights pij in (4.61) (direct coarsening), or we can include the nearest fine neighbors indirectly
by using their respective coarse neighbors in the sum (indirect coarsening). Convergence
estimates and the choice of optimal coarse space can be proven, but we will not go into such
detail here. To read about these in more detail, a standard reference is [72].

4.3.3 Aggregation coarsening

In this section, we consider an alternate AMG algorithm based on aggregation coarsening.
We focus on unsmoothed aggregation, as we use this method to solve and precondition certain
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blocks of the saddle point system, or the primal system. The core idea is to first generate
a collection of mutually disconnected aggregates a of some subset of the adjacency graph
of SPD operator A, and then define a very simple interpolation matrix P0 (pij = 1 or 0)
that can be used to relate average errors on each aggregate with errors on other aggregates.
Applying this recursively with simple smoothers gives a numerically inexpensive algorithm
for which the construction of the prolongation operator is easy to construct.

For the sake of exposition, we consider an SPD matrix A ∈ Rn×n and the associated
undirected adjacency graph G = V , E with vertices |V| = {1, . . . , n} and set of edges nE = |E|
and nE h n.

The term aggregation refers to a splitting of the set {1, . . . , n} in non-overlapping subsets.
This can be done in many different and sophisticated ways, but since such algorithms are not
our focus we introduce one of the simplest examples of such an algorithm:

Figure 4.4. Graph of the matrix barth5 from the University of Florida Sparse Matrix Collection [1]
(left) and subgraphs formed by the greedy aggregation algorithm 4.3.2 (right). Courtesy of Ludmil.
labelfig:example-sparse

Algorithm 4.3.2 (Greedy aggregation algorithm). Input: Graph G with n vertices; Output:
V = ∪nck=1ak, and ak ∩ aj = ∅ when k 6= j.

1. Set nc = 0 and for k = 1 : n do:

(a) If k and all its neighbors have not been visited, then: (a) we set nc = nc + 1; (b)
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label with nc the subgraph whose vertices are k and the neighbors of k; and (c)
mark k and all its neighbors as visited.

(b) If at least one neighbor of k has been visited, we continue the loop over the vertices.

2. Since after this procedure there might be vertices which do not belong to any aggregate
(but definitely have a neighboring aggregate), we add each such vertex to a neighboring
aggregate and we pick the one which has minimal number of vertices in it.

3. The algorithm ends when all vertices are in a subset.

Such algorithm can be recursively applied and the resulting splitting is called an aggrega-
tion.

The splitting of the vertices in aggregates, naturally gives splitting of the adjacency graph
of A. With each aggregate we associate a graph Gak = (ak, Eak), where Eak is the subset of E
of edges connecting vertices only from ak. The following lemma is a corollary of Theorem 3.6
from [73], and is intuitive:

Lemma 4.3.1 (Corollary of [73]Thm 3.6 Kim, Xu, Zikatanov, 2003). If G is a connected
graph, then the graphs corresponding to the aggregates {Gak}

nc
k=1 obtained via Algorithm 4.3.2

are connected.

The splitting of the adjacency graph is in bijective correspondence with the “piece-wise”
constant vectors {δk}nck=1 defined as follows:

(δk)j =

 1, if j ∈ ak

0, if j /∈ ak,
, j ∈ V .

The matrix P0 = [δ1, . . . , δnc ] is called tentative (unsmoothed) prolongator. Clearly, range(P0)
has dimension nc (by construction). In addition [P t

0P0] ∈ Rnc×nc is a diagonal matrix and its
k-th diagonal entry equals |ak|.

We now consider the restriction of A on the space VH = Range(P0)

AH,0 = P t
0AP0,

If no cancellation is assumed in the triple product on the right side, the corresponding
adjacency graph GH(AH,0) = (VH , EH) is formed by setting VH = {1, . . . , nc} and (k, l) ∈ EH
if and only if a vertex from ak is connected to a vertex in al in G(A). A two-level and
multilevel method utilizing P0 is known as unsmoothed aggregation method.
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Figure 4.5. Graph of the coarse grid matrix corresponding to the unsmoothed aggregation (left) and
the “denser” graph for the coarse grid matrix obtained by smoothed aggregation (right). Courtesy
Ludmil.

An important property of this method is that it provides a sparse coarse matrix AH,0,
which neither smoothed aggregation nor classical AMG can guarantee; this is illustrated in
figure 4.5, where the comparison of the coarse grid matrix after unsmoothed aggregation
versus smoothed aggregation is plotted. However, it can be shown that due to the overly
simplistic representation of error on the aggregates (constant on each aggregate), more
iterations are typically required on the coarser levels, i.e, either W and F cycles must be used
or the number of smoothing iterations per refinement level must be successively increased to
guarantee convergence.

For the matrices that we use UA-AMG to precondition or solve, some (i.e, the mass
matrix Aqq) are sufficiently well-conditioned that only a few applications are necessary to
solve.
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Chapter 5 |
Preconditioning Discretizations of
the Linearized Richards equation

In this chapter, we focus on preconditioning the linear systems that result from discretizing
any of the linearization schemes using the mixed finite element method as detailed in chapter
4. Section 5.1 explains the need for developing preconditioners for iterative solvers that
are robust with respect to discretization parameters. In section 5.2, we first describe an
iterative scheme to solve the indefinite saddle point systems that need to be solved on
each iteration, which we call the Schur iteration. We prove that this iterative scheme can
be used to precondition a GMRES solve of the saddle point system, uniform with respect
to discretization parameters τ (timestep size), and h (characteristic mesh size), given a
spectrally equivalent, sparse approximate Schur complement S̃R that must be solved on each
Schur iteration, and tuning parameter ωR whose values are uniformly bounded due to the
spectral equivalence of the approximate Schur complement and full Schur complement. To
precondition the approximate Schur complement S̃R, we also introduce an auxiliary space
preconditioner in section 5.3 that uses the Edge Average Finite Element scheme as described
in the previous chapter as auxiliary space, an interpolation operator ΠV S that computes local
averages to transfer between element-based degrees of freedom and nodal degrees of freedom,
and a Jacobi smoother. By considering a representation of the bilinear form for S̃R that
considers differences across faces in the mesh as compared to the EAFE representation of the
auxiliary problem AE as differences of function values along edges of the mesh, we are able
to prove the uniformity of the proposed auxiliary space preconditioner with respect to time
and step size in arbitrary dimensions.

Finally, section 5.4 details some numerical experiments that verify the uniformity of
the preconditioner for the mixed finite element-modified Picard discretization, first for an
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exponential model of θN and K wherein the modified Picard iteration is used to linearize the
Richards equation, and then for the VGM model described in chapter 1, for various materials.
Finally, for mild K gradients, we show numerical tests that show both preconditioners also
work when using Newton-Raphson, i.e, when the saddle point system and auxiliary linear
systems are nonsymmetric. We finish with making some mention of potential future avenues
to refine these preconditioners further, particularly for the case of steeper K gradients with
Newton-Raphson.

For the sake of the reader, we reproduce the linear systems (4.53) and (4.54), introducing
a (−) to both sides of the P1-Lagrange system for consistency between the discretizations:

−(Dθ + τAE)Pε = −Rκ, (5.1)

Aqq BT
div −BK′

Bdiv −Dθ

 qε
Ψε

 =
 f̃
g̃

 . (5.2)

5.1 Preconditioning: a primer
As was mentioned in the previous chapter, the poor conditioning of these systems as the
mesh size h→ 0 require the use of preconditioners to solve these systems adequately. When
solving a system Ax = b with an iterative method, a preconditioner B on A acts to improve
the condition of the linear system A, thus significantly improving efficiency of the iterative
solver. More precisely, in the majority of cases, a preconditioner is an operator B that can
act on A in one of two ways:

1. Left preconditioners are operators zi ← B−1(Axi− b) that approximate A in some sense,
but are much simpler to solve. The output zi is then fed into the iterative algorithm as
the transformed iterate x̂i; this is repeated until convergence.

2. Right preconditioners are operators that perform two solves, the first being a solve of
yi ← AB−1yi = b, and then x̂i ← Bxi = yi. The transformed iterate x̂i is then fed into
the iterative algorithm.

In general, left preconditioners are simpler to implement, and are the most commonly used.
Roughly speaking, good preconditioners are operators that are “similar” to the original
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problem, and are easier to solve. The goal of a left preconditioner, for instance, is that

1 ≤ κ(BA) << κ(A),

where again the condition number of a system κ(M) = ||M−1||X ||M ||X . In the case of SPD
matrices, this can be interpreted by saying that B is spectrally equivalent to A : Vh → V ′h, i.e
there exist constants µ0, µ1 > 0 such that

µ0(Bx, x) ≤ (Ax, x) ≤ µ1(Bx, x), x ∈ Vh. (5.3)

The implication here is that the spectrum of the two operators should be close to each
other, with Br = z requiring less computational effort to solve. Some basic examples of
preconditioners include other iterative solvers that take B to be some part of A, like damped
Jacobi (diagonal of A) or Gauss-Seidel (Lower and Upper triangular parts of A). Multigrid is
more often used to precondition linear systems generated by discretizing elliptic PDE than
to solve them, to great effect in many cases.

5.2 Auxiliary space preconditioning
In chapter 3, we described two finite element discretizations for the same problem, with
their various discretizations. The standard P1-Lagrange finite element discretization with
EAFE discretization provides a discretization in finite dimensional subspaces of H1

0 (Th),
whose degrees of freedom are nodal. While this method is shown to be monotone and satisfy
a discrete maximum principle through automatic upwinding, local mass conservation is
lost. One way to retain local mass conservation is by using mixed finite elements, in which
continuity of the fluid flux through faces is enforced and monitored via the addition of more
degrees of freedom that track the flux; the price that is paid in doing this, however, is in
a severe increase in the number of DOF of the system, and the generation of a potentially
indefinite linear system. However, heuristically speaking, the solution of the two systems
should be “close” to each other, and any discrepancy should decrease as the mesh size goes
to 0.

A natural question then arises: can one solve the smaller (coarse) system for P1-Lagrange
pressures defined on the nodes of the mesh, and use the answer as a good initial guess for the
solution of the (larger) piecewise-constant pressure unknowns defined on each element? In
this chapter, we gain a positive result to the above question, which we state as Corollary 1,
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as an application of the Fictitious Space Lemma 8, and verify with numerical examples.
This section makes this idea rigorous by defining the notion of auxiliary spaces that, when
accompanied with a smoother, can allow for the preconditioning of one finer discretization of
a problem with a coarser discretization of the same problem.

5.2.1 Background

Auxiliary space preconditioning is an application of the theory of fictitious spaces, which
originated in the work of S.Nepomnyaschikh [74], who was working on robust preconditioners
for P1-Lagrange discretizations of elliptic boundary value problems over domains Ω with
complex geometry, such as non-convex polygons, or unstuctured grids. The core idea was the
construction of an auxiliary grid on a larger domain Ω̄ ⊃ Ω that had much simpler geometry
and quasi-uniform mesh size. By splitting the domain Ω into interior nodes that attain a value
of 0 on the boundary, and boundary nodes whose value could be interpolated from the trace
space H1/2(Ω) to H1(Ω) inside the domain. The idea was that, provided the interpolation
operator was extended in a way that preserves the norm, the problem could be discretized on
the auxiliary mesh with finite element approximation space V̄h, approximately solved there,
and then mapped back to the finite element space Vh on the original domain by using the
restriction operator Π : V̄ → V ,to yield a uniform preconditioner for the original problem.

To make this notion rigorous, given a variational problem

u ∈ V : a(u, v) = f(v) ∀v ∈ V, (5.4)

in some real Hilbert space V , if a is SPD, the bilinear form a(u, v) is an inner product which
induces a norm || · ||A on V . The building blocks of the fictitious space method are

1. a fictitious space V̄ , that is, another real Hilbert space equipped with another SPD
bilinear form ā(ū, v̄) with induced norm || · ||Ā, and

2. a continuous and surjective linear transfer operator Π : V̄ → V .

Indicating the dual of a space with ′, adjoint operators by ∗, and using angle brackets for
duality pairings, one can define the fictitious space preconditioner

B = Π · Ā−1 · Π∗ : V ′ → V, (5.5)

with the operators A : V → V ′ and Ā : V̄ → V̄ ′ denoting the isomorphisms associated with
bilinear forms a(·, ·) and ā(·, ·), resp. The operator Π : V̄ → V being surjective and the
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operator Ā being SPD yield that the preconditioner B is SPD, by the Banach open mapping
theorem. Given this, the uniformity of the preconditioner B for A is a result of the Fictitious
Space Lemma, first proven by [74]:

Theorem 8 ( [75], Thm 2.2). Assume that Π : V̄ → V is surjective and the following two
conditions hold:

∃c0 > 0 : ∀v ∈ V : ∃v̄ ∈ V̄ : v = Πv̄ and ||v̄||Ā ≤ c0||v||A, (5.6)

∃c1 > 0 : ||Πv̄||A ≤ c1||v̄||Ā ∀v̄ ∈ V̄ . (5.7)

Then
c−2

0 ||v||2A ≤ a(BAv, v) ≤ c2
1||v||A ∀v ∈ V. (5.8)

(5.8) immediately gives an estimate on the spectral condition number of the preconditioned
system,

κ(BA) ≡ λmax(BA)
λmin(BA) ≤ (c0c1)2. (5.9)

In essence, the key to this method working is the transfer operator Π : V̄ → V being
continuous, but especially, being surjective. In the context of Nepomnyaschikh’s choice of
fictitious space, surjectivity is essentially given trivially, as the fictitious domain Ω̄ ⊃ Ω. The
continuity along the boundary ∂Ω is what needed to be paid attention to, but with the right
choice of interpolation for the boundary data, t : H1/2(∂Ω)→ H1(Ω), Nepomnyaschikh was
able to preserve the continuity of the norm as required.

In the context of auxiliary spaces, the idea is actually the opposite– the idea was to be
able to precondition an SPD bilinear form A : V → V ′, with SPD bilinear forms defined on
an auxiliary space Āj : Wj → W ′

j , with Wj being smaller than V .
In this sense, the surjectivity would have to be imposed by enriching the lower dimension

spaces Wj with V itself, by introducing the following space as the fictitious space V̄ :

V̄ = V ×W1, (5.10)

where W1 is a Hilbert space endowed with inner product ā1(·, ·), and the inner product taken
on V is induced by some other SPD operator S : V → V ′, denoted the smoother. Then we
can define the fictitious inner product

ā(v̄, v̄) ≡ s(v0, v0) + ā1(w1, w1), ∀v̄ = (v0, w1) ∈ V̄ , with v0 ∈ V,w1 ∈ W1, (5.11)
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and the surjective operator

Π ≡
I

Π1

 : V̄ → V. (5.12)

Thus, the auxiliary space preconditioner can be formed:

B = S−1 + Π1 · Ā−1
1 · Π∗1. (5.13)

The verification of the assumptions of theorem 8 can be shown in three steps:

1. Find bound c1 > 0 for the norm of the transfer operator Π1:

||Π1w1||A ≤ c1ā(w1, w1)1/2, w1 ∈ W1.

2. Investigate the continuity of S−1:

∃cs > 0 : ||v||A ≤ css(v, v)1/2, ∀v∈V.

3. Establish that for every v ∈ V there are v0 ∈ V and w1 ∈ W1 such that v = v0 + Π1w1

and
s(v0, v0) + ā1(w1, w1) ≤ c2

0||v||2A,

where c0 > 0 should be small and independent of v.

In this context, theorem 8 holds, and the estimate on the condition number (5.9) is of
form

κ(BA) ≤ c2
0(c2

s + c2
1). (5.14)

This method was initially used in the context of domain decomposition and parallel subspace
correction, where multiple subspaces Wj were disjoint subspaces of Vh on subsets of Ω,
which could be solved on approximately and interpolated back up, or in the case of nodal
approximations with non-conforming elements, could be preconditioned by conforming nodal
approximations, ( [76], [77], [78]). However, Hiptmair and Xu [75] proposed a different
context, in particular for preconditioning div− div systems and curl− curl systems with
P1-Lagrange discretizations (i.e, nodal preconditionining). The core of this idea lies in
the fact that on a regular enough domain Ω, the spaces H0(curl,Ω) and H0(div,Ω) can
be decomposed into stable auxiliary spaces using potential theory. This stable splitting
allows the construction of preconditioners that, with the introduction of a “high-frequency”
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smoother, are uniform, with the only conditions being convexity of the boundary (so-called
“2-regularity”), and quasi-uniformity of the mesh, with the preconditioners being solves of
Laplacian-type operators discretized on nodal elements, which can be performed efficiently
using AMG and multigrid-like algorithms.

The theory of HX auxiliary space preconditioners has been extended to other problems
that can be discretized with mixed formulations, such as Darcy flow [79], flow in fractured
porous media [80], time-dependent Maxwell equations [81], and Biot’s equations [82]. Our
goal was to investigate the potential of auxiliary space preconditioners for Richards’ equation,
which can be interpreted as a Darcy solve per linear solve, with conductivity and water
content functions that are allowed to vary between solves.

5.3 Preconditioning the Saddle Point System
Before introducing the auxiliary space preconditioner, we first introduce our Schur iteration,
which is an inexact Uzawa method used to approximately solve the pressure Schur complement
of the system,

SR := −(Dθ +BdivA
−1
qq B

T
div). (5.15)

For a brief overview of inexact Uzawa algorithms for saddle point problems, see [83], [84], [85].
One such iteration for the indefinite problem (4.54) is given in Algorithm 5.3.1.

Algorithm 5.3.1 (Schur iteration). Given initial guess
(
q0
ε , Ψ0

ε

)
, we use the following

recurrence relation to define
(
qk+1
ε , Ψk+1

ε

)
in terms of the k-th iterates:

1. Solve Aqqu = f̃ −BT
divΨk

ε ;

2. Solve,
S̃Rv = g̃ +DθΨk

ε −Bdivu, (5.16)

where 0 < ωR is properly chosen in advance;

3. Update Ψε as Ψk+1
ε = Ψk

ε + ωRv and then solve again with Aqq, namely, solve

Aqqw = −BT
divv;

4. Update qε as qk+1
ε = u+ w.
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We note that while this method requires three linear solves in total (one of the approximate
Schur complement S̃R, and two of the much larger mass matrix Aqq), Aqq is already SPD
and well-conditioned, so this system can be solved very efficiently using standard iterative
techniques. We use Conjugate Gradient with unsmoothed aggregation AMG as preconditioner,
and this yields fast solves to small tolerances with little expense. The more difficult problem
is solving the S̃R system, which is where we use our proposed aux space preconditioner to
precondition a Conjugate Gradient (GMRES for nonsymmetric) solver.

In order for our iterative scheme to be uniformly convergent with respect to both dis-
cretization parameters, we need to choose S̃R that is spectrally equivalent to SR.

It is shown in [86] that Aqq and its diagonal Dqq are spectrally equivalent, i.e, ∃µ0, µ1 > 0
with

µ0(Dqqv, v) ≤ (Aqqv, v) ≤ µ1(Dqqv, v), v ∈ Sh.

As both Dqq and Aqq are SPD, their inverses are as well, and choosing v = D−1/2
qq A−1/2

qq w and
manipulating yields

µ0(A−1
qq w,w) ≤ (D−1

qq w,w) ≤ µ1(A−1
qq w,w), w ∈ Sh.

Then, taking w = BT
divv in the above yields

µ0(BdivA
−1
qq B

T
divv, v) ≤ (BdivD

−1
qq B

T
divv, v) ≤ µ1(BdivA

−1
qq B

T
divv, v), v ∈ Sh. (5.17)

Then adding in Dθ shows that S̃R defined as

S̃R := −
(
Dθ +BdivD

−1
qq B

T
div

)
. (5.18)

Is spectrally equivalent to the full Schur complement SR.
As the inverse of Aqq is generally a full matrix, this choice allows us to approximate

SR with a sparse, spectrally equivalent operator whose action can be formulated as sums
and products of differences of values across faces, which will be important in the proofs of
uniformity of our auxiliary space preconditioner.

We now show that Algorithm 5.3.1 converges for certain choices of ωR, independent of
discretization parameters; this proof is similar in approach to many standard approaches in
the literature on iterative methods (see, e.g. Young [87]).

Lemma 5.3.1. For sufficiently small ωR, Ψk
ε and qkε obtained by Algorithm 5.3.1 converge

to the solution of (4.54).
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Proof. We first consider Ψk+1
ε −Ψk

ε . Note that if
 qε

Ψε

 is a solution to (4.54), then Aqqqε +

BT
divΨε = f̃ and Bdivqε −DθΨε = g̃. We have,

Ψk+1
ε −Ψε = Ψk

ε + v −Ψε

= Ψk
ε + ωRS̃

−1
R

Bdivqε −DθΨε︸ ︷︷ ︸
g̃

+DθΨk
ε −BdivA

−1
qq (f̃ −BT

divΨk
ε )

−Ψε

= Ψk
ε −Ψε + ωRS̃

−1
R

Bdivqε +Dθ(Ψk
ε −Ψε)−BdivA

−1
qq (Aqqqε +BT

divΨε︸ ︷︷ ︸
f̃

−BT
divΨk

ε )


= Ψk

ε −Ψε + ωRS̃
−1
R

[
Dθ(Ψk

ε −Ψε) +BdivA
−1
qq B

T
div(Ψk

ε −Ψε)
]

= (I − ωRS̃−1
R SR)(Ψk

ε −Ψε).

Thus, in order for Ψk
ε → Ψε as k →∞, we need

ρ(I − ωRS̃−1
R SR) < 1.

Elementary manipulations yield a condition for ωR:

0 < ωR <
2

ρ(S̃−1
R SR)

. (5.19)

Hence, any choice of ωR satisfying (5.19) guarantees the convergence Ψk
ε → Ψε as k → ∞,

and due to the spectral equivalence of S̃R to SR, this bound is independent of discretization
parameters.

On the other hand, for qk+1
ε − qε we have

qk+1
ε = u+ w = A−1

qq (f̃ −BT
divΨk

ε )− A−1
qq B

T
divv

= A−1
qq (Aqqqε +BT

divΨε −BT
divΨk

ε )− A−1
qq B

T
divv

= qε + A−1
qq B

T
div(Ψε −Ψk

ε − v) = qε − A−1
qq B

T
div(Ψk+1

ε −Ψε).

As a result from this relation we get

qε − qk+1
ε = A−1

qq B
T
div(Ψk+1

ε −Ψε).

Thus, since Ψk
ε → Ψε and A−1

qq B
T
div is a bounded operator with our choice of finite-element
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spaces, qkε → qε as well.

We note here that while simply using the diagonal of Aqq in (5.18) suffices for our
purposes, this approximation can be improved on. We refer to [88] for mass lumping
techniques approximating Aqq by a diagonal matrix with higher order accuracy.

Remark 5.3.1 (On the sign of SR and S̃R). One should note that although S̃R and SR are
actually negative definite in their definitions above, one can simply negate them and their
corresponding right hand sides to arrive at positive definite problems, which is what we do
for the rest of this chapter.

5.4 Auxiliary space preconditioning the Schur complement
To motivate the auxiliary space preconditioner for (5.16), we note that the bilinear form
generated by our particular choice of S̃R can be interpreted on each element as sums of
differences of values of Ψ with neighboring elements across each face of the element, with
weighting given by values of K at each element. An analogous formulation of convection-
diffusion operators as sums of differences along edges can also be derived ( [19], [89]). Given
this similarity, we decided to adapt the methods of [75] to develop an auxiliary space
preconditioner, using the nodal discretization combined with a simple smoother and some
interpolation map to precondition the larger system (5.16).

Thus, we introduce an auxiliary space preconditioner for (5.16) and subsequently prove
its uniformity on a shape regular mesh for d = 2, 3 or 4 (for space-time finite elements).
This preconditioner offers two distinct advantages. First, we show that it is uniform with
respect to the mesh size and timestep τ . Second, the number of vertices of any triangulation
Th with no hanging nodes is significantly smaller than the number of simplices forming the
triangulation. This can be seen by considering the case of a uniform lattice of size h of the
unit square [0, 1]d with N = h−1 being an integer. The number of simplices in the mesh is
d!Nd, while the number of vertices is (N + 1)d. Thus, the number of degrees of freedom of
our auxiliary space is on the order of 1

d! the number of degrees of freedom of the S̃R system
that must be solved on each step of our Schur iteration 5.3.1. On the coarse space, multilevel
preconditioners can be further used to speed up the computations.

To define the auxiliary space preconditioner, we follow in the spirit of [75] and introduce
the following components.
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• The ficticious space V̄ = Sh × Vh, with Vh ⊂ H1
0 (Ω) being the space of piece-wise linear

and continuous functions with zero trace on the boundary, and Sh ⊂ L2(Ω) being the
space of functions that are piecewise constant on each element T ∈ Th.

• The map between the auxiliary space and Sh, Π =
(
I ΠV S

)
, with ΠV S : Vh → Sh.

The action of ΠV S amounts to taking the average per element T of the values of v on
its vertices j ∈ T , namely, given v ∈ Vh, v = ∑NV

i=1 viϕi, we define

[ΠV S(v)]T := pT = 1
d+ 1

∑
j∈T

vj, ΠV S(v) =
∑
T

pTχT , for all v ∈ Vh.

• Our smoother is the Jacobi smoother, which just uses the diagonal of S̃R (which may
be scaled if needed);

D
S̃

: Sh → S ′h = diag(S̃R).

The preconditioner B is then

B = Π
DS̃

0
0 ALgr

−1

Π∗ = D−1
S̃

+ ΠJA
−1
LgrΠ∗J , (5.20)

where ALgr denotes the P1-Lagrange discretization (5.1).
Given a right hand side r, an algorithm for the action of B is as follows.

Algorithm 5.4.1 (Auxiliary space preconditioner B: z ← Br). 1. Transfer the right hand
side r to the auxiliary space Vh: rVh ← Πr,

2. Solve the auxiliary problem on Vh: eVh ← A−1
LgrrVh ,

3. Transfer the corection eVh back to Sh: z ← Π∗eVh ,

4. Smooth the correction with Jacobi iteration: z ← z +D−1
S̃

(r − S̃Rz).

To discretize the problem on the auxiliary space, we wish to use a discretization on Vh
that formulates the diffusion operator on vertices as differences along edges of elements,
as that facilitates the analysis we use to prove the uniformity of our preconditioner. To
this effect, we elect to discretize using EAFE [19]. We do this for one reason, namely
that this discretization provides a monotone discretization on Vh for both symmetric and
non-symmetric (i.e, convection-diffusion) problems. Further, the relatively lax requirement
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of the triangulation being Delaunay is easy to satisfy if using certain mesh refinement
schemes ( [60], [90]).

The proof of uniformity of B requires that we use spectrally equivalent forms of ALgr and
S̃R:

(ALgrv, w) =
∑
E∈Th

ωEδEvδEw and (S̃Rp, s) =
∑
f∈Th

df (pT+ − pT−)(sT+ − sT−). (5.21)

where for an edge E connecting vertices i and j, where we assume i > j given some ordering
on the vertices of Th, we define δEf = f(i)− f(j), and for a face f ∈ Th, an assigned ordering
of Th, and a function f ∈ Sh, we take f+ and f− to be the value of f at the higher (resp.
lower) numbered simplex sharing the face. Direct computations yield

df = τ
[∫

Ω
K−1|φf |2 dx

]−1
.

For the symmetric problem the weight

ωE = τ

[
1
|τE|

∫
E
K−1 ds

]−1

ω̃E,

with |τE| = |δEx| being the length of edge E, and ω̃E being the weights defined as in (4.14),
which only uses geometric properties of the individual simplices, namely the angle between
faces across edges and lengths of edges opposite these angles. The scaling of both of these
coefficients with respect to mesh size is hd−2 and, as is immediately seen, the ratio of these
terms is only dependent on mesh geometry and harmonic average values of K over edges
versus over elements.

Taking s = p and v = w, we arrive at

(AEv, v) =
∑
E∈Th

ωE(δEv)2 and (S̃Rp, p) =
∑
f∈Th

df (pT+ − pT−)2. (5.22)

Next, we show that (5.20) is a uniform preconditioner for the problem (5.16). To this end,
we introduce the following notation,

• Ωi is the subdomain consisting of simplices sharing vertex i, Ωi = ∪T3iT ,

• Fi is the set of faces containing vertex i, Fi = {f 3 i},

• Ni is the number of simplices sharing vertex i,
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• N f
i is the number of faces in Fi,

• For an edge E with vertices i and j, Ni∪j is the number of simplices in Ωi ∪ Ωj, and
Ni∩j is the number of simplices in Ωi ∩ Ωj.

Corollary 1 (Uniformity of the preconditioner). The auxiliary space preconditioner defined
in (5.20) provides a uniform preconditioner for S̃R.

Proof. To prove that this auxiliary space preconditioner is uniform, it is sufficient to prove
the following three properties of the transfer operator ΠV S, the auxiliary problem ALgr, and
the smoother D

S̃
hold independent of h and τ .

Lemma 5.4.1 (Continuity of ΠV S). There exists cJ > 0 such that

(S̃RΠV Sv,ΠV Sv)2 ≤ c2
J(ALgrv, v), ∀v ∈ Vh. (5.23)

with cJ independent of mesh size.

Proof. Let v ∈ Vh. To show (5.23), we use the definition of ΠLgr and the relation (5.22),

(S̃RΠV Sv,ΠV Sv)2 =
∑
f∈Th

df

 1
d+ 1

∑
i∈T+

vi −
1

d+ 1
∑
j∈T−

vj

2

=
∑
f∈Th

df
(d+ 1)2 (vf,+ − vf,−)2,

where vf,+ and vf,− are the values of v at the vertices in T+ and T− opposite face f ,
respectively. These vertices are not connected by any edge in Th, but can be connected via
two edges E+ ∈ T+ and E− ∈ T−. Using this fact we can relate the two bilinear forms:

∑
f∈Th

df
(d+ 1)2 (vf,+ − vf,−)2 =

∑
f∈Th

df
(d+ 1)2 (δE+v + δE−v)2

≤
∑
f∈Th

2df
(d+ 1)2

[
(δE+v)2 + (δE−v)2

]
≤ 2DκE

(d+ 1)2

∑
E∈Th

ωe(δEv)2

= c2
J(ALgrv, v),

with D being a scaling constant changing from the weights df to ωe (since both weights scale
like τhd−2, this scaling is independent of h and τ) and κE being an upper bound on the
number of times an edge can be used on the sum over faces, κE = maxE∈Th 2Ni∩j . Thus, this
cJ is indeed independent of mesh size.
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Remark 5.4.1. Note that the estimate for κE is conservative. If d > 2, one can almost
always use different edges E+ and E− to connect the points opposite a face f , so that in
practice, κE can be made much smaller.

Lemma 5.4.2 (Continuity of the smoother).

∃ c
S̃R
> 0 : (S̃Rv, v) ≤ c2

S̃R
(D

S̃
v, v), ∀v ∈ Sh.

with c
S̃R

independent of mesh size.

Proof. Given S̃R is SPD, using the standard Euclidean basis {ei} we use the Cauchy-Schwarz
inequality to obtain

|S̃ijR | = |(S̃Rei, ej)| = |(ei, ej)S̃R | ≤ ‖ei‖S̃R‖ej‖S̃R =
√
S̃iiRS̃

jj
R .

Next, using this inequality we obtain

∣∣∣[D−1/2
S̃

S̃RD
−1/2
S̃

]ij
∣∣∣ = |aij|√

aiiajj
≤ 1. (5.24)

Therefore, we have

c
S̃R

= max
v∈Sh

(S̃Rv, v)
(D

S̃
v, v) = max

w=D1/2
S̃

v∈Sh

(D−1/2
S̃

S̃RD
−1/2
S̃

w,w)
(w,w)

= ρ
(
D
−1/2
S̃

S̃RD
−1/2
S̃

)
≤ ‖D−1/2

S̃
S̃RD

−1/2
S̃
‖∞.

From the inequality (5.24) it follows that ‖D−1/2
S̃

S̃RD
−1/2
S̃
‖∞ is bounded by the number of

nonzeroes per row in S̃R, which can be bounded by the number of faces an element has,
d+ 1.

Lemma 5.4.3 (Stable splitting). For every p ∈ Sh, there exist p0 ∈ Sh and wJ ∈ Vh such
that p = p0 + ΠV SwV S and

(D
S̃
p0, p0) + (ALgrwJ , wJ) ≤ c2

0||p||2S̃R , (5.25)

where c0 > 0 should be small and independent of mesh size.

Proof. To bound the first term on the left hand side of (5.25), we set the value of wV S ∈ Vh
at a vertex i to equal the average of the values of p ∈ Sh on the simplices T which surround
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the vertex i. More precisely,

Vh 3 wV S =
∑
i

[wV S]iϕi, [wV S]i = 1
Ni

∑
T∈Ωi

pT .

By the definition (5.22) and rearranging the decomposition of p, for each T ∈ Th

[p0]T = [p− ΠV SwV S]T = pT −
1

d+ 1
∑
i∈T

[wV S]i

= pT −
1

d+ 1
∑
i∈T

1
Ni

∑
T ′∈Ωi

pT ′

= 1
d+ 1

∑
i∈T

1
Ni

∑
T ′∈Ωi

(pT − pT ′).

We now make the following estimate for this fixed T , using two applications of Cauchy-
Schwarz: pT − 1

d+ 1
∑
i∈T

1
Ni

∑
T ′∈Ωi

pT ′

2

=
 1
d+ 1

∑
i∈T

1
Ni

∑
T ′∈Ωi

(pT − pT ′)
2

≤ 1
(d+ 1)2n2

T

∑
i∈T

∑
T ′∈Ωi

(pT − pT ′)
2

≤ 1
(d+ 1)nT

∑
i∈T

∑
T ′∈Ωi

(pT − pT ′)2.

with nT = mini∈T Ni. For each simplex T ′ ∈ Ωi, we expand the difference (pT − pT ′) as a
telescoping sum of differences across faces, ∑f∈Fi(T,T ′)(pT+ − pT−). To define this set of faces
Fi(T, T ′), we must first define a chain of pairwise–adjacent simplices {Tj}Jij=1 ⊂ Ωi of minimal
length, with T1 = T and TJi = T ′. Then for this chain,

Fi(T, T ′) = {f ∈ Fi|fj = Tj+1 ∩ Tj, j = 1, . . . , Ji − 1}.
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Denoting N f
Fi(T,T ′) as the number of faces in Fi(T, T ′), we get the following:

pT − 1
d+ 1

∑
i∈T

1
Ni

∑
T ′∈Ωi

pT ′

2

≤ 1
(d+ 1)nT

∑
i∈T

∑
T ′∈Ωi

(pT − pT ′)2 = 1
(d+ 1)nT

∑
i∈T

∑
T ′∈Ωi

 ∑
f∈Fi(T,T ′)

(pT+ − pT−)
2

≤ 1
(d+ 1)nT

∑
i∈T

∑
T ′∈Ωi

N f
Fi(T,T ′)

∑
f∈Fi(T,T ′)

(pT+ − pT−)2. (5.26)

Since {Tj}Jij=1 ⊂ Ωi, each simplex chain length Ji is bounded from above by Ni/2; otherwise
a shorter chain of simplices connecting T and T ′ must exist.

Given this observation, we can reorder the two innermost sums in the last inequality
above: ∑

T ′∈Ωi
N f
Fi(T,T ′)

∑
f∈Fi(T,T ′)

(pT+ − pT−)2 ≤
∑
f∈Fi

(pT+ − pT−)2 ∑
T ′∈Ωi

N f
Fi(T,T ′)

which gives us the bound

∑
T ′∈Ωi

N f
Fi(T,T ′)

∑
f∈Fi(T,T ′)

(pT+ − pT−)2 ≤ F (F + 1)
2

∑
f∈Fi

(pT+ − pT−)2, (5.27)

with F = maxi∈Th maxT, T ′∈Ωi N
f
Fi(T,T ′). As each N

f
Fi(T,T ′) = Ji − 1, taking J = maxi∈Th Ji it

follows that F ≤ maxi∈Th Ni2 − 1, which gives us a uniform estimate for F independent of
mesh size.

Combining (5.26) and (5.27) with the observation that any face f ∈ Fi, i ∈ T is shared
by at most d vertices in T , and that each face f is globally shared by at most 2 simplices in
the mesh, we get the final set of inequalities,

(D
S̃
p0, p0)2 =

∑
T∈Th

dT (p0)2
T =

∑
T∈Th

dT (p− ΠJwJ)2

≤ dF (F + 1)D∗
(d+ 1)n

∑
f∈Th

df (pT+ − pT−)2 = c2
D||p||2S̃R ,

with n = minT∈Th nT and D∗ = maxT,f∈T dT
df
, thus giving us a constant independent of mesh

size and τ due to the ratio of the weights dT and df being of the same order in h and τ .
Now we need to bound the second half of the left hand side of (5.25). Taking the same
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definition of wV S as above, our goal is to show (ALgrwV S, wV S) ≤ c2
A||p||2S̃. Since

(ALgrwV S, wV S) =
∑
E∈Th

wE

 1
Ni

∑
T∈Ωi

pT −
1
Nj

∑
T ′∈Ωj

pT ′

2

,

we will fix an edge E ∈ Th to estimate each term of the sum first.

Note that for any constant C,
 1
Ni

∑
T∈Ωi

C − 1
Nj

∑
T ′∈Ωj

C

2

= (C − C)2 = 0. Then we

have,
 1
Ni

∑
T∈Ωi

pT −
1
Nj

∑
T ′∈Ωj

pT ′

2

=
 ∑
T∈Ωi∪Ωj

(pT − C)
(
χΩi(T )
Ni

−
χΩj(T )
Nj

)2

≤
∑

T∈Ωi∪Ωj
(pT − C)2 ∑

T∈Ωi∪Ωj

(
χΩi(T )
Ni

−
χΩj(T )
Nj

)2

≤

 ∑
T∈Ωi∪Ωj

(
χΩi(T )
Ni

)2

+
∑

T∈Ωi∪Ωj

(
χΩj(T )
Nj

)2
 inf
C∈R
||pΩi∪Ωj − C1||2`2 ,

where the first inequality is the Cauchy-Schwarz inequality and the second is due to both the
Cauchy-Schwarz inequality and the non-negativity of the terms in the second summand. Here
χΩk(T ) is the characteristic function on set Ωk, the vector pΩi∪Ωj = (pT1 , . . . , pTNi∪j )

T denotes
the values of p on each simplex in Ωi ∪ Ωj, and 1 is the vector of the same size as pΩi∪Ωj

with ones on each entry. It is well known that the C that will minimize the `2–norm in this
scenario is the average of p over all the simplices in the union, p̄ = 1

Ni∪j
∑
T∈Ωi∪Ωj pT . Using

this fact and that both χΩk (T )
Nk

≤ 1 and ∑T∈Ωi∪Ωj
χΩk (T )
Nk

= 1 for k = i, j, we can continue our
estimates,  ∑

T∈Ωi∪Ωj

(
χΩi(T )
Ni

)2

+
∑

T∈Ωi∪Ωj

(
χΩj(T )
Nj

)2
 inf
C∈R
||pΩi∪Ωj − C1||2`2

≤ 2||pΩi∪Ωj − p̄1||2`2 ≤ 2Ni∪jDiam(Ωi ∪ Ωj)(Lp, p)Ωi∪Ωj

= γ2
P,E

∑
f∈Ωi∪Ωj

wf,L(pT+ − pT−)2.

The second inequality is due to the Poincaré inequality, with ||∇p||2`2 expressed as the bilinear
form (Lp, p)Ωi∪Ωj , which is the local action of the graph Laplacian. The weights wf,L are the
weights required to form the local Laplacian bilinear form across faces.
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Finally, we incorporate the sum over all edges,

(ALgrwJ , wJ) =
∑
E∈Th

wE(δEwJ)2

≤ γ2
P

∑
E∈Th

∑
f∈Ωi∪Ωj

wf,L(pT+ − pT−)2

≤ Dγ2
P

∑
f∈Th

df (pT+ − pT−)2 = c2
A||p||S̃,

where γP = maxE∈Th γP,E, D = dα D̃, with α = maxi∈Th{# vertices ∈ Ωi} and D̃ is a scaling
factor used to change from the weights wf,L to df , again independent of mesh size due to
both weights being of the same order in h.

Taking the max of cD and cA as c0 in (5.25) gives us the required uniform bound.

As shown in [75] and [76], the last three Lemmas guarantee that our preconditioner is
uniform, as Lemma 5.4.1 and 5.4.2 prove that our scheme fulfills the second assumption of
Theorem 8, and Lemma 5.4.3 shows that the first assumption is satisfied.

5.5 Numerical tests
To verify the robustness of the combined preconditioners for symmetric (5.2), we solved
the linear system (4.54) for the first modified Picard iteration as outlined in (4.42) with an
outer CG iteration that had a relative residual stopping criterion of less than 5× 10−8. We
precondition this full system solve by the operator whose action is defined in 5.3.1. The
inner solve of the S̃R system (5.16) are done using CG, preconditioned with auxiliary space
method described in the previous section. The inner iterations were stopped when the relative
residual was smaller than 10−9. To solve the auxiliary problem to machine precision, we used
unsmoothed aggregation AMG, with 20 5-level V -cycles.

For numerical illustration of the performance of the preconditioner, we used an analytic
solution Ψe(x, t), Ω = [0, 2]3, with the source term being determined analytically by plugging
in the solution into Richards’ equation. We used Dirichlet data for Ψ(x, t) for all t > 0,
Ψ(x, t)|∂Ω = Ψe(x, t), and initial condition Ψ0 = Ψe(x, 0).
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5.5.1 Example 1: Continuously varying K

For our first example, we chose Ψe(x, t) = −10t|x|2,

θ(Ψ) = exp(Ψ), K(θ) = (Kmax −Kmin)θ +Kmin,

with Kmin = 1× 10−6 and Kmax = 1. Thus, K varies continuously by several orders of
magnitude from the bottom of the cube to the top.

p 2 3 4 5 6
Outer/Inner 5/13 5/15 5/15 5/15 5/16

Table 5.1. Number of outer PCG/average inner PCG iterations (rounded to nearest integer) for
solving the linearization of the mixed form of RE, using the analytic K and θ as described in
example 1. Here the mesh size is h = 2−p and timestep τ = 1.

Table 5.5.1 lists the number of outer PCG and average inner PCG iterations for the
preconditioned linear solve of the first Modified Picard step for this problem. To give some
perspective on the size of the respective mesh sizes used to test, for h = 2−6, the size of
the full system is over 4.5 million DOF, with over 1.5 million pressure unknowns; the size
of the auxiliary system used to precondtion (5.16) in the Schur iteration is around 262,000
unknowns, which is a reduction in degrees of freedom of roughly 1/6. It should be noted
that since the auxiliary system is as poorly conditioned as (5.16), a preconditioner can (and
should in practice) be used to solve the auxiliary problem efficiently, as the performance of
the auxiliary space preconditioner depends on solving the auxiliary problem to low tolerance.

5.5.2 Example 2: Van Genuchten-Mualem (VGM) model

For the second test related to the VGM model, we considered the same problem setup, but
use the VGM K and θ as discussed in chapter 1. The test runs for values of α, n, and KS

for three different media: Beit Netofa clay (α = 0.152, n = 1.17, KS = 8.2× 10−4), silt loam
(α = 0.423, n = 2.06, KS = 5 × 10−2), and clay loam (α = 1.9, n = 1.31, KS = 6.2 × 10−2).
The Beit Netofa clay and the silt loam examples are from in [13], and the clay loam example
is from [45]. Due to the sharper gradients introduced by considering VGM parameters, we
needed to decrease the time step size to τ = 1/32 to ensure convergence of the linearization
procedure to the solution at the next timestep.

Note that K reduces roughly 4 orders of magnitude from the bottom of the cube to the
silt loam, roughly 8 orders for the Beit Netofa clay, and roughly 10 orders for the clay loam.
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Figure 5.1. 3D profiles of Ψ (left) and K (right) for homogeneous boundary condition, with source
term f = 1 for the layered VGM problem.

Due to the high contrast, we increased the number of V cycles to 60 for the coarse space
solve.

p 2 3 4 5 6
Beit Netofa clay 8 12 15 15 15

Silt Loam 11 14 15 15 15
Clay Loam 9 13 16 17 17

Table 5.2. Average inner PCG iterations for Stilde solve for each of three different media after
preconditioning with aux space preconditioner. Here the mesh size is h = 2−p and timestep τ = 1/32.

As table 5.5.2 shows, even for high contrast K, our preconditioner maintains its robustness.

5.5.3 Example 3: VGM Layered media test

Finally, to measure the effectiveness of this method for more complex simulations, we
wanted to run an unsaturated test with layered media, akin to the layered media example
of Lehmann and Ackerer [44]. Using the same setup and boundary/initial conditions and
same analytic solution, we split the domain into three layers, Ω1 = [0, 2] × [0, 2] × [0, 1

2 ],
Ω2 = [0, 2]× [0, 2]× [1

2 ,
3
2 ], Ω3 = [0, 2]× [0, 2]× [3

2 , 2] In Ω1∪Ω3, we used the VGM parameters
for silt loam, and in Ω2 we used that for Beit Netofa clay; see figures 5.1 and 5.2 for views of
the layered problem. A particular point of interest is how quickly the conductivity changes as
a function of pressure head. This combined with the discontinuity at the boundary interfaces
make this problem very difficult to solve numerically.

as the results show in table 5.5.3, despite discontinuities at both interfaces, the precondi-
tioner is still asymptotically uniform, as is typical for HX preconditioners. Note however, that
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Figure 5.2. Vertical slice (with normal ex) profiles of Ψ (left) and K (right) for homogeneous
boundary condition, with source term f = 1 for the layered VGM problem.

we do Not incorporate transmission conditions when solving these systems, as our focus in this
test was merely preconditioning the linear systems; such terms correspond to manipulations
of the right hand side, and should not affect the structure of the linear systems that need to
be solved; for some consideration of transmission conditions for layered media with Richards’
equation, see [51], and [52].

m 2 3 4 5 6
S̃R PCG iterations 10 13 16 17 18

Table 5.3. Average number of inner PCG iterations for exact solving of S̃R preconditioned by aux
space exact solve (first mod Picard iteration). Here the characteristic mesh size is h = 2−m.

5.5.4 Auxiliary space preconditioning on nonsymmetric linearizations

In this case of nonsymmetric linearizations, the standard theory of auxiliary spaces cannot
be applied, as the bilinear forms considered are no longer symmetric, i.e, they do not define
inner products on the spaces on which they are defined, and the ficititious space Lemma
can no longer be applied. Moreover, as noted above, when K gradients are steep, the linear
convection-diffusion problem that needs to be solved will have areas where the convection term
dominates the diffusion and vice-versa, which implies that Jacobi or Gauss-Seidel smoothers
will not be able to capture the high frequency errors. However, heuristically speaking, as
both (5.1) and (5.2) are nonsymmetric and are simply different finite element discretizations
of the same nonsymmetric weak problem (3.8), we wanted to investigate the performance of
a nonsymmetric variant of our Auxiliary space preconditioner combined with the nonlinear
variant of the Schur iteration 5.3.1 on the full Newton linearization, in which the BT

div term is
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replaced with BT
div −BK′ , for problems with mild convection terms (i.e, small K gradients).

To numerically test this, we used the same setup as our first example using the Newton-
Raphson linearization, with Kmin = 10−2, and a small timestep τ = 1/128 to ensure
convergence of the linear scheme. Due to the inner system being nonsymmetric, we switched
to GMRES for the S̃R solve.

m 2 3 4 5 6
S̃R GMRES iterations 14 16 17 18 18
Outer GMRES iters 10 9 11 10 8

Table 5.4. Average number of inner GMRES and outer GMRES iterations for the first full Newton
iteration, with exact solving of S̃R preconditioned by aux space exact solve. Here the characteristic
mesh size is h = 2−m.

Multigrid-based preconditioning techniques have been applied in the literature for Richards
equation; in particular, Woodward and Jones [91] compare two different multigrid algorithms,
with one using a pointwise red/black Gauss-Seidel algorithm, and another using a more
expensive plane-smoother that takes anisotropies into account, however both preconditioners
use a symmetric approximation by ignoring the nonsymmetric contributions to the Jacobian.
Jenkins et. al. [92] consider the full Newton linearization and solve each Newton step using
BiCG-stab, a nonsymmetric variant of Conjugate Gradient, preconditioned with a two-
level Schwarz domain decomposition method, in which they use aggregation based domain
decomposition to split the domain into subdomains with minimal overlap, transfer errors to
each subspace, restrict and solve and approximately solve the problem on each sumdomain
with BiCG-stab, and interpolate back. Their method scales mildly with mesh size, but isn’t
uniform.

As can be seen, for relatively small K gradients, the preconditioner still works, though we
verified experimentally that allowing Kmin to be any smaller would result in the number of
iterations increasing more sharply with mesh size decrease.
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Conclusions
In this thesis, we gave a comprehensive review and showed new results on the mathematical
and numerical study of Richards’ equation. On the analytic side, we were able to give a
set of conditions that guarantee the convergence of a Picard linearization on the continuous
level, which lends some insight into when similar linearization techniques may fail. We
also introduced a preconditioner for the linear systems resulting from a perfectly mass
conservative discretization that is adaptible to a wide class of meshes, with the intent being
application to domains with complex geometry and unstructured meshes. We were able
to prove the robustness of this preconditioner with respect to discretization parameters for
popular symmetric linearizations used in the field to simulate unsaturated groundwater flow,
and verified this uniformity for various models of the physical parameters K and θ, including
the popular VGM model. We were able to show numerically similar behavior for a particular
example using the nonsymmetric Newton-Raphson linearization.

There are many avenues for extension of the results in this work. The first is in extending
the class ofK in which our proposed preconditioner retains robustness for the Newton-Raphson
linearization. One of the main challenges that this preconditioner faces is in the choice of
smoother used for the auxiliary space preconditioner. In the context of convection-diffusion
equations, particularly if the Jacobian ∂K becomes zero in certain areas of the domain and
very large in others, a smoother that is capable of robustly smoothing out error is hard to
define. This is primarily due to the fact that in the regions of the domain where the diffusion
term dominates, a local averaging smoother like Jacobi will be effective in eliminating high
frequency errors, whereas in the parts of the domain where convection dominates, a sweeping
relaxation scheme in the direction of convection, such as Gauss-Seidel with cross-wind block
(Tarjan) ordering [93, 94], will effectively eliminate high frequency errors. This choice of
good smoother is made even more difficult by the fact that for the nonlinear problems, these
regions of convection versus diffusion dominance may change on each iteration. For linear
problems, Kim et al. [95] propose a robust multigrid preconditioner for the GMRES iterative
solver given the typical P1-Lagrange discretization of convection-diffusion problems of the
form

Au = f.

The action of multilevel preconditioner on operator Ak, Bk : r → z, is defined by first applying
an ordered Gauss-Seidel smoothing step some fixed (small) number of times using the normal
equation on the finest grid,

ATAu = ATf,
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Then inputting the smoothed output to a V -cycle that pre and post smooths using some
fixed small number of Gauss-Seidel iterations with special ordering of unknowns, and then
finally solving on the coarsest grid. Using this method, they were able to show numerically
that GMRES preconditioned with this special multigrid preconditioner is uniform and robust
with respect to the coarsest grid size for variably convection-dominated problems.

Additionally, the use of EAFE as a stand-alone discretization for Richards’ equation
is worth a more in-depth investigation, particularly due to the automatic upwinding it
provides. This in effect generalizes the results of manual upwinding schemes for finite element
discretizations, such as those in [27], and has been shown to be equivalent to special finite
volume discretizations [96]. In this perspective, EAFE can be seen as a good candidate
in the design of robust monotonicity-preserving numerical schemes, particularly for mixed
unsaturated-saturated simulations, as other monotonicity preserving schemes tend to use
special finite volume or finite difference approximations whose setup is highly dependent on
mesh configuration, and are also more difficult to analyze than EAFE.

Finally, another research direction is developing rigorous, consistent criteria under which
higher order linearizations of Richards’ equation are guaranteed to converge. In our work,
we showed some conditions under which convergence was guaranteed for the lowest order
linearization. This result, while true for specific forms ofK and θ, matches well with numerical
experiments in the literature [11], where one finds examples with divergent Picard iteration
and convergent higher order methods, like Newton-Raphson. This result can also lend credence
to the fact that the Picard iteration is seldom used due to its inability to converge for strongly
nonlinear K and θ, which are emblematic of most physically realistic standard models of
these parameters. A continuation of this analysis would focus on determining conditions on
K, θ and initial guesses under which the higher order modified Picard linearization would
converge, and more importantly, information on how these parameters affect the rate of
convergence. Such criteria remain elusive to the community in general [38], with the exception
of the works of [14] and [13], who themselves work with the L-scheme, which is a simplified
relaxation method. Such an investigation might lead to the development of reliable selection
and switching criteria for modern numerical codes used by federal and private entities to
simulate groundwater flow, which could increase the efficiency of these codes significantly.
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