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Abstract

User interactive applications are hugely popular today with millions of applications to download
from various app stores. These growing number of applications with billions of active users all
around the world, simultaneously leverage both a wimpy, battery powered edge device, typically
a mobile phone or a tablet, as well as the high end cloud servers for their computation needs.
Although prior works have optimized different parts of the high end servers such as CPU, mem-
ory, GPU, etc., it is not clear whether the same set of optimizations is sufficient for optimizing
such simultaneous executions in both high end servers and the wimpy edge devices. In fact, an
end-to-end characterization and optimization of bottlenecks for these emerging workloads have
not been given sufficient importance till date. Our preliminary characterization reveals that the
user-interactive applications exploit both edge devices and cloud servers for their computations
and also use very different compute components for their executions. As an indication of the
work done, the time spent by the execution in edge device is close to 66% and the spends 27% of
execution time for computations in the cloud servers, and the rest 6% time on the communication
between edge and cloud. Within the edge device, the same app uses CPU and IO dominantly
while it uses memory and GPU in the cloud servers. This Ph D thesis leverages this characteriza-
tion knowledge to apply the a set of optimizations for the interactive workload executions using a
four pronged approach spanning all of edge and cloud executions. First, the thesis addresses the
inefficiency in edge CPUs by moving the most common and frequent parts of the execution to
a novel, lightweight, generic hardware accelerator. Second, it fixes the front end bottleneck suf-
fered by the critical instruction chains at the software side by identifying and representing them
in a reduced bit width ISA. Third, it exploits the opportunities for short-circuiting the entire
computation from user-input till output-generation at the edge execution by learning the redun-
dant event processing (stemming from user-interactions) through machine learning. Finally, at
the cloud servers, this thesis addresses the data access inefficiencies at the GPU execution, by
a novel compiler and runtime assisted relayout at the host that computes and transfers only the
useful data for the GPU execution.

With these optimizations, our experimental evaluations show that we can achieve 32% en-
ergy savings at the edge device and 34% performance benefits at the cloud server execution for
these class of workloads.
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Chapter 1
Introduction

The proliferation of mobile devices over the past decade has been fueled by not just hardware

advancements, but also by the numerous and diverse applications (apps) that these devices can

support. The number of such devices far exceeds the desktop and server markets, with nearly

2.6 billion mobile devices serving more than 35% of the world population today. Fueled by this

widespread adoption of mobile phones, various mobile apps belonging to very diverse domains

such as video streaming, gaming, messengers, office productivity, healthcare, creativity, etc.

have been developed, published, downloaded and installed by over 25 billion times [271, 272].

While the hardware inside a phone is largely based on the lessons learnt from decades of server

and desktop computing domains with workloads such as SPEC [131], PARSEC [45], Parboil

[274], etc., that mainly target the raw computation power of the CPUs, the data delivery from

storage/memory, etc., mobile apps do much further than just computations. We next take an

example execution of a very popular and ubiquitiosly used mobile app, Google Maps to illustrate

the high level difference between a mobile app executing in a phone and a server app execution.

At a high-level a mobile phone is constantly near a human user, and has the following con-

trasts when compared to server platforms:

1. Differences in User Interaction: The user constantly “interacts” with the phone with var-

ious types of inputs such as searching for a destination in the Maps (text input using touch),

using voice commands (audio feed through microphone) while driving (GPS feed), tilting
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and walking with it (gyro and gravity sensors), pinching/zooming/swiping, etc., that are

interpretted inside the phone as triggers for performing computations like understanding

the voice to text, route computations, etc.

2. Differences in energy budgets: Mobile phones are typically powered by a small battery

and so, if Maps app is used in navigation, even a fully charged battery of 3300mAh capac-

ity drains within a few hours. In contrast, server executions do not suffer from such tight

energy budgets.

3. Differences in compute capability: The compute capability in a phone is much wimpy

[24–26] when compared to a server. This naturally limits the phone from performing

heavy computations. For example, to find the optimal route to a destination, the Maps

app cannot process the terabytes of road network data that is typically used in finding the

optimal route. It has very limited memory and storage and can only process limited data.

In contrast, servers potentially can host terabytes of main memory today [31], and can

easily process the road network with seemingly heavy computations such as finding the

shortest path using graph traversal algorithms to get the shortest path, live traffic feed, etc.

4. Differences in compute paradigm: To perform heavy computations, mobile executions

use two options: (i) either the computation is performed in one of the compute units

inside the mobile hardware; or (ii) the computation is offloaded to the cloud servers and

seamlessley get the results back from the cloud to the user. For example, when the Maps

application executes in the phone, it locally performs certain computations such as reading

the inputs from various sensors (e.g., GPS location), process the user inputs to get the

source and destination for the user to find route, and then offload the route-finding process

to the cloud and subsequently get the route from the cloud, locally process the route data

to display to the user.

The above set of differences is summarized as the underlying architecture used for a mobile app

execution (Google Maps in this example) in Fig. 1.1 and the hardware is detailed below:
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Figure 1.1: A user interacts with a mobile (edge) device that performs some computations on the
rich inputs using CPUs and ASICs and offloads the rest of the computations to powerful cloud
servers where CPUs and GPUs perform heavy computations

1.0.1 An edge device

To enable user interactions the edge device (typically a smart phone or tablet) precisely captures

information about the user behavior in realtime such as touch, swipe, tilt, images of the sur-

roundings, audio feed, geo location, etc. in the Google Maps example, using many input sensors

like camera, microphone, touch, accelerometers, gyroscopes, GPS, etc., and processes them in-

side the phone. For example, the user may type the source/destination information with a series

of touch inputs or using dictations (microphone), or it automatically picks the geographic locale

of the user from GPS, etc., and process the information using a relatively small compute power

consisting of a lightweight ARM CPU [7, 26], some domain specific accelerator IPs for specific

functionalities like image processing [100], audio/video codec [136], display controller [7], etc.

Subsequently, it offloads the data-intensive chunk of the computation, i.e., finding the route

from source to destination in the maps app, to the server backend using the underlying wireless

network such as LTE/WiFi etc., and receives the output to display back to the user.

1.0.2 Cloud servers

At the cloud, the offloaded task to find the route between a source and destination uses the hard-

ware consisting of multiple high-end general purpose CPU cores, GPU accelerators and FPGAs,

or even domain specific accelerators such as TPUs, etc., each with their own local or shared

memory hierarchies (as shown in Figure 1.1) and computes the route. Once the computation is

complete, the response is sent back to the querying edge device from the cloud.
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the work that is done by the application execution, and the breakdown between the different
components is normalized individually for the whole mobile and server.

1.1 What to optimize?

With three different high level hardware used by a mobile app execution namely (i) edge de-

vice, (ii) server backend and (iii) underlying network, we first need to understand where user

interactive workloads spend their most time and optimize them to improve their execution ineffi-

ciencies [12,202,315,316]. Fig. 1.2 shows the % of time spent by the app execution (a measure

of the work done the app in these hardwares) in these three components and also further splits

the energy consumption inside each of the high-level hardware among the constituent hardware.

• Edge device consumes 66% of the time: Since the user interactive workloads start ex-

ecution with listening to the user at the edge device, most of the preliminary processing,

from performing various IO, and other tasks explained above, the mobile/edge execution

consumes about 66% of the total time. Among the hardware components of the edge

device, CPU (35%) and IO (30%) consumes the most time, followed by ASICs (18%)

and memory (17%) – reiterating the fact that user interactions (IO) and processing them

(CPU) are the obvious points of optimizations in an edge device. ASICs such as display

controller, SD card controller, codecs etc., also consume a 18% chunk of execution time

to show that the user-interactive workloads also spend a sizeable chunk of their execution

in these components.

• Cloud server consumes 27% of the time: At the cloud servers, CPU does not consume

much time in processing and accounts just for 6% of the execution time. However a major
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chunk of execution time is spent on GPGPUs (52%) followed by the memory accesses

in both host and GPU (41%). Thus, in stark contrast to the mobile/edge execution where

CPU and IO are dominant, cloud spends its time on memory and GPGPUs.

• Network consumes only 6%: Network is not a major part of the whole application ex-

ecution as it only consumes 6% of the whole execution. This is primarily because of

the fact that network is already optimized for a huge data rate/bandwidth (e.g., HD video

streaming, tele-conferencing, etc.) and interactive applications such as Google Maps just

send and receive texts and images from the cloud, with relatively lower bandwidth require-

ments. Therefore, it is not as important to optimize for network traffic for these categories

of workloads.

Thus we need to explore different optimization strategies for edge device execution where CPU

and IO are important, and cloud execution where GPU and memory are important, in order to

optimize for the execution of user interactive workloads. In fact, this proposal targets specific

optimizations to increase the CPU execution and IO efficiency at the edge device and memory

optimizations at the cloud device.

1.2 Proposed Solutions in this Thesis

This thesis tackles the computation and memory requirements of user interactive workloads in

four parts that targets specific components in both edge and cloud and optimizes their execution.

To understand the optimizations, consider the same Google Maps app execution example:

Hardware Optimization for mobile/edge CPU: As mentioned above, the maps app starts

with user interaction to input the application regarding the source and destination for which the

route is to be found. When the cloud gets the route information back to the mobile device, again

the mobile CPU processes the result from cloud to display them back to the user. Therefore the

CPU at the edge device is responsible for processing both the user input and the resulting output

from cloud (to be visualized as output by the user at the display/speakers). This translates to IO
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and CPU consuming 65% of the total execution time within the mobile device. This functionality

of user input and output processing at the mobile CPU is rather a common characteristic of all

app executions.

In order to optimize this functionality among app executions at the CPU, this research iden-

tifies the repeated high-level functionalities in app executions as data dependent sequence of

operations in the app code. Since the CPU already has a function unit pool (execution unit pool

in superscalar CPUs), this optimization leverages these resources to fuse them along a certain

path to represent the high level functionalities such as user event processing, XML parsing of

data from cloud, etc., that occur frequently in app execution.

In this way, any repeated high level functionality for any app execution (and even common

occurences across apps) can be optimized by just identifying and configuring the CPU datapath

to fuse the function units to follow the specific high level functionality. By fusing the datapath

between functional units, these configurable acceleration sequences can still be integrated into

the superscalar datapath itself and by thus accelerating the data movement between functional

units, mobile executions can potentially save 25% of CPU execution time.

Software Optimization for mobile/edge CPU: Customizing hardware is an expensive propo-

sition and it may not be conducive for realizing the above optimization. Instead, the second

part of this thesis focuses on achieving similar optimizations with off-the-shelf hardware itself,

with a purely software approach. Towards optimizing CPU execution at the software, this part

optimizes the instructions that are critical for application performance (referred to as critical

instructions [52, 102, 267, 268, 276, 283]). Specifically, this proposal characterizes that exist-

ing critical instruction optimizations proposed in the context of desktop and server class work-

loads [60, 164, 172, 185, 197, 200, 230, 231, 285, 314] are not helpful for mobile app executions.

Compared to desktop/server workloads, the critical instructions in mobile app executions occur

in larger volumes in the form of Critical Instruction Chains or CritICs, which are a set of data

dependent sequence of critical instructions with some non-critical instructions interspersed in

the data flow. For example, in Google Maps app, when it needs to find the orientation/direction
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in which the user is walking/driving, it needs to compare two successive position values from

GPS/gyro. Both these values are critical for the execution and it is useless if only one of the

values are loaded and the execution still waits for the other.

Further analysis on their execution characteristics point that these CritICs are bottlenecked

in the front end of the superscalar pipeline. Hence, to optimize CritICs, we propose a software

framework to profile, identify and represent the CritICs in the already existing 16-bit thumb ISA

format and halve the fetch-side bottleneck for these executions at the software that results in

12.6% CPU energy savings.

Short circuiting the entire execution in the edge: While the CritIC optimization is generi-

cally applicable for any CPU execution, this third research takes a step further to investigate what

is the unique trait of edge workload executions that can be exploited? This research exploits the

highly user interactive nature of mobile app executions and that the computation is driven by

the user inputs. And if this is the case, why restrict the optimization to short sequences of in-

structions and why not short circuit the whole computation itself? To focus on leveraging the

user-interaction to the most, this optimization specifically applies for a domain of apps execut-

ing in the edge devices – user-interactive gaming, where many different user inputs such as tilt,

swipe etc., will result in a frequently occurring limited set of outputs. Characterizations of event

processing activities in several popular games show that (i) some of the user events are exactly

repetitive in their inputs, not requiring any processing at all; or (ii) a significant number of user

events are redundant in that even if the inputs for these events are different, the output matches

events already processed. Memoization is one of the obvious choices to optimize such behavior,

however the problem is a lot more challenging in this context because the computation can span

even functional/OS boundaries, and the input space required for tables can takes gigabytes of

storage. Instead, this research proposes Selecting Necessary InPuts (SNIP) software solution to

use machine learning to isolate the input features that we really need to track in order to consid-

erably shrink memoization tables. We show that SNIP can save up to 32% of the energy in these

games without requiring any hardware modifications.
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Memory optimizations on CPU-GPU executions in the cloud: To optimize for the huge

memory/GPU execution time in the cloud, this final part of the thesis identifies that due to the

limited GPU memory capacity, when many of the pages are migrated to the GPU memory on

demand during execution, it leads to a thrashing behavior where pages get kicked out before they

are fully used by the GPU execution. To overcome this problem, this optimization exploits the

uniqueness of the GPU workload executions – where the CPU execution invokes a GPU kernel

and waits for the kernel to finish execution at the GPU before continuing its execution. So,

effectively, there is cycles available at the CPU side to waste. This proposal leverages this wasted

CPU time to compute the addresses that will be accessed by the next GPU kernel execution

at the CPU host, to opportunistically ”pick and pack” only the useful data in a page and only

transfer the packed data to the GPU memory from the host. By doing this Opportunistic Relayout

or OppoRel, we observe that we can save 34% of the application execution time in the GPU,

translating to corresponding cloud energy benefits as well.

The rest of the thesis is organized as follows: In the next chapter, the thesis presents a sum-

marized view of the related works spanning the different optimizations proposed across the edge

and cloud server executions. The third chapter presents the motivation and underlying ineffi-

ciencies in the mobile CPU execution and explore the best approach in terms of performance an

energy efficiency to short-circuit frequently occurring load-to-store sequences of instructions at

the hardware. The fourth chapter addresses the software execution inefficiencies in the mobile

edge CPU execution and points out that mobile app executions have contrasting characteristics

when compared to the traditional CPU benchmarks such as SPEC, PARSEC, etc. Such differ-

ences also manifest in short-circuiting executions of a mobile app in the fifth chapter. In this

chapter, we discuss that existing approaches to short-ciruit a function call or a sequence of in-

structions or data flow graphs using lookup tables are not feasible and becomes prohibitively

expensive to short-circuit an end-to-end mobile app execution in the edge – that starts from sen-

sor event occurence and ends in displaying some outputs to the user. Therefore, this chapter

exploits the unique characteristics of mobile games to leverage a machine learning technique

and short-circuit end to end executions. While the above three chapters from two to five focus
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on optimizing the mobile execution, the sixth chapter tackles the severe memory inefficiencies

in the cloud execution for user interactive apps’ backend.



Chapter 2
Related Work

2.1 Moving computations from CPU to accelerators

Domain specific coarse grained hardware customizations such as [66, 83, 133, 221, 308] move

the computations out of the CPU to a specialized circuitry off the CPU for performance/energy

benefits. A somewhat fine grained accelerator design such as [118, 122, 128, 154, 204, 298]

integrate a reconfigurable execution unit into the CPU pipeline. These works accelerate in-

struction sequences in the ranges of thousands of instructions, while general purpose acceler-

ation extensions to the main CPU such as [205, 242, 265] and ISA extensions like SIMD and

VLIW [54, 91, 93, 159, 186, 247, 280] accelerate tens of instructions by exploiting spatially and

temporally proximate computations occurring in various regular code executions and compile

them into special instructions in the ISA. In the next chapter, we will show how mobile ex-

ceutions already leverage many of these optimizations for CPU executions and yet remain bot-

tlenecked. Further, we will also demonstrate how our proposed LOST acceleration can help

alleviate the CPU execution inefficiencies.
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2.2 Criticality and Front end optimizations

Instruction criticality has been shown to be an important criterion in selectively optimizing the

instruction stream. Prior work has revolved around both (i) identifying critical instructions [89,

172, 267, 268, 283, 285] using metrics such as fanout, tautness, execution latencies, slack, and

execution graph representations, as well as (ii) optimizing for those identified using techniques

such as critical load optimizations [52, 102, 267, 268, 276] or even backend optimizations for

critical instructions such as [60, 164, 172, 185, 197, 200, 230, 231, 285, 314].

Fetch stage bottlenecks have been extensively addressed in high end processors through

numerous techniques - smart i-cache management (e.g. [132,156,219,264,273,299]) prefetching

(e.g. [55, 142, 147, 189, 309]), branch prediction (e.g [5, 258, 306, 313]), instruction compression

[57] SIMD [91, 280], VLIW [93], vector processing [77], etc. However, many of these require

extensive hardware that mobile platforms may not be conducive for.

In Chapter 4, we will investigate why these optimizations studied in high-end systems are

not sufficient for mobile app execution optimization and how to adapt these optimizations for an

important class of workloads namely, user interactive workloads in mobile devices.

2.3 Short circuiting executions

Short circuiting executions by looking up the previous history and predicting the output has

been studied in the past for high end CPU executions [5, 70, 230, 231, 250, 265, 305], with the

lookup/prediction logic built either into the hardware [176] or the software [181, 252]. While

lookup table based mechanisms generally are used for correct outcomes, approximation is also

used in many domain specific executions such as image processing [86, 192, 193, 224], that are

inherently tolerant to erroneous executions. In particular, [224] presents motivating results that

humans generally are tolerant to 26% errors in audio outputs.

In chapter ??, this thesis demonstrates why these prior works need revisiting in the context

of mobile app executions – especially the highly user interacitve games – and how machine

learning can help in successfully short-circuiting redundant executions.
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2.4 Data transfer Optimizations in CPU-GPU systems

Data transfer optimizations such as page migrations [1, 163, 168], granularity decisions [4, 40,

81, 101, 161, 222, 256] have been studied in the context of CMPs, between memory and disks in

the past. In the context of GPUs, works such as [43, 148] optimize data transfers between host

memory and GPU memory for regular applications, prefetch pages corresponding to multiple

concurrent contexts [28, 29, 292], remove translation overheads [44, 222, 304], using specific

software [261] and hardware additions to the memory layer [6, 165, 255]. Also, works such

as [153] leverage compiler and runtime support, to insert hints for data prefetching [28, 29],

group threads in different warps for better locality [157, 170, 257, 307] in GPUs.

In chapter 6, this thesis leverages a missed opportunity in these prior works that there are

ample idle compute/memory resources at the host when it offloads a kernel to the GPUs that

can be used to precisely understand what the GPU execution requires in terms of data, and

subsequently re-arrange them too. Doing so results in a better management of GPU resources

with no extra hardware costs.

2.5 Novelty of this thesis

Overall, this thesis defines the goal of optimizing the execution of user-interactive workloads –

both at the mobile/edge device as well as the cloud servers, by contributing to several key miss-

ing pieces of the goal. Although there are many prior works optimizing parts of the system, this

thesis specifically addresses the most bottlenecked components in each device, by leveraging the

innate domain-specific property of these systems. First, in the area of mobile CPU execution, it

identifies the otherwise “LOST” opportunities to arrive at a generic, and useful hardware accel-

erator that benefit diverse apps ranging from office suites like PDF reader, mail client, etc., to

mainstream apps such as video streaming, messenger, games etc. Second, the proposal identifies

and fixes the front end bottlenecks posed by the critical instruction chains by using a software

compiler pass to halve their fetch bandwidth consumption using 16-bit thumb ISA to represent

them. Third, the proposal explores machine learning approaches to learn a user behavior and use
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that knowledge to cut-down on the lookup table costs for short-circuiting user input behavior to

output generation and not execute the computation in the middle, whenever possible. Finally, it

leverages the CPU idle time seen in CPU-GPU based high end servers to relayout the data to be

useful for GPU execution and increase the data access efficiency for the GPU workloads.



Chapter 3
LOST: Hardware Optimization for

mobile/edge CPU

In order to tackle the computation and memory requirements of user interactive workloads in

contemporary hardware, as discussed in Chapter 1, one need to focus on solving individual

requirements of workload executions in two extreme scenarios namely, (i) the user-interaction

rich mobile phone/edge device executions and (ii) its high-end counter part in the server backend.

Of these two components, this chapter first explores techniques towards optimizing the for-

mer, i.e., the mobile phone/edge device execution. Drilling down into the mobile execution,

the largest consumer of energy in mobile execution in Fig. 1.2 is the CPU execution. Towards

optimizing CPU execution, a lot of past research have proposed to accelerate CPU execution by

offloading hot code to specialized hardware [66, 83, 118, 128, 133], custom hardware units from

DFGs [122,205,242], µOps [54,140], etc. These optimizations target throughput-oriented apps

in scientific domain such as SPEC [131]. In contrast, handheld apps are user-oriented wherein

there is a great deal of user interactions based on which events are processed. Note that, these

events also repeat over time, giving rise to frequently executed and common functionalities. So,

this thesis first validate whether the existing methods such as hot function offloading is applicable

for this handheld domain or not.
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Figure 3.1: Execution Time and energy breakdown of Maps(CPU Dominant), Youtube(IP Dom-
inant) and Overall characteristics.

3.1 Coarse Grain Customization

In this section, we analyze a spectrum of ten diverse and popular Android apps, listed in Ta-

ble 3.5, to understand which are the dominant contributors in hardware and software to sub-

sequently optimize for performance and/or power. These apps have been ported to run on

Gem5 [46] with IP models [68] framework. The configuration used is discussed in Sec. 3.4.

3.1.0.1 Hardware Characterization

Fig. 3.1 shows a breakdown of execution time and energy expended in different hardware com-

ponents. We find that, while current IPs (e.g., codecs, GFX) are extremely useful in some apps

(e.g., Youtube), they are not universally applicable to others (such as Maps) because of their

coarse grain customization. This is evident from the overall breakdown where CPUs are still the

dominant contributor of both execution time (48%) and energy (35%).

3.1.0.2 Software Characterization

We next present characterization results from the software perspective to examine which are

the dominant software portions in the execution? and how common/frequent are these domi-
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1.App 2.Most executed 3.Top two most 4: 2nd most executed 5: #inst. 6: # Fix 7: % 8: %
APIs/Libs invoked methods APIs/Libs in APIs from 2008 CF1 CF2

Browser Landroid 25% Handler.enqueueMessage 10.8% libc/timekeeping 11% 30.6M 3657 5% 4.5%
TextView.setText 8.5% 21k 107

Angry Lcom/android/ 23% SensorEventListenerImp 21% libc/timekeeping 10% 226k 0 4.6% 5%
birds internal/policy PrintWriter.Write 0.4% 21k 107
Photo Lcom/android/ 23% createBitmap 21.6% libc/timekeeping 10% 150k 136 4.3% 5.3%
Gallery graphics irq exit 0.7% 21k 107
Youtube Landroid/ 21% Message.sendToTarget 12% Lcom/android/ 8.7% 30.6M 3657 5% 4.7%

getSqlStatementType 3.6% graphics 150k 136
Maps Landroid/content 14% XMLBlock.parse 13% Landroid 10% 399k 308 5.6% 5%

raise softirq irqoff 0.2% 30.6M 3657
Music Landroid/ 13% LocalSocket.getOutputStream 6.6% libc/timekeeping 9% 30.6M 3657 4.4% 4%
Player LoadedApk.ReceiverDispatched 2% 21k 107
Acrobat Landroid/ 11% UserHandle.getUserId 6.5% libc/pthread 5% 30.6M 3657 5.7% 5.8%
Reader FrameDisplayEventReceive 2.5% 101k 107
Email Landroid/ 11% UserHandle.getUserId 5.3% Lcom/android/ 5% 30.6M 3657 4.5% 4%

ComponentName.equals 3.7% email 885k 34
PPT Landroid/ 7% getInterpolation 5% Lcom/microsoft/ 5% 612k 3657 5% 4.8%
Office view printRatio 0.6% NA NA
Face- libc/sys 8% core sys select 4% Lcom/facebook 3% 91k 107 3% 3%
bookIM sock mmap 2% NA NA
Across libc/timekeeping 9% CF1:ktime get ts 4.4% libc/pthread 4.5% 21k 107
all apps CF2:getnstimeofday 4.2% 101k 107

Table 3.1: Top 2 APIs by coverage for each app is shown in 2nd and 4th columns. 3rd column
shows the 2 most invoked functions from APIs in 2nd column with their respective coverage. API
Size (5th) and #Changes (6th) for both the top APIs is shown in order. The 7th and 8th columns
denote the coverage from the 2 most common functions.

nant portions not just within one app, but across apps? Prior studies have looked at profiling

these APIs and/or individual methods during a single (or a group of related) app’s execution

(e.g., [138, 152, 316]) in order to develop app/domain specific hardware [69, 316], whereas be-

low we examine the execution characteristics at two granularities of the software namely, APIs

and methods, in the ten selected apps. Beyond studying their contribution to each app, we are

also interested in their importance across apps. We discuss these questions with the results in

Table 3.1, that shows top APIs and methods by execution coverage for each app and the top

APIs and methods common across apps (last row). In this paper, we use coverage to denote the

percentage of total dynamic instructions executed by the app.

APIs: As can be seen, the top two APIs in Columns 2 and 4 has up to 36% (25% + 11%) cover-

age (in Browser). But entire Android APIs , albeit with reasonable coverage, are not amenable

to ready hardware customization due to high code size (Column 5) and frequent changes to the

repo (Column 6).

Methods: Even if a drill-down to individual methods is much more tractable (Column 3), with-
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Label Dyn. Instruction Seq. LOST.1 LOST.2 LOST.3 LOST.4
I1 x = load [mem1] F F
I2 z = add x,y F F
I3 a = add z,c F
I4 [mem3] = store a F
I5 [mem4] = store z F
I6 a = load [mem2] F F
I7 c = add a,b F F
I8 [mem5] = store c F F
I9 z = load [mem5] F
I10 [mem6] = store z F

Table 3.2: Example to illustrate the properties of LOST. The F indicates the dynamic instruc-
tion is present in the corresponding sequence. LOST.2 and LOST.3 are identical sequences
(load→add→store) as per our definition.

out significant loss in coverage, there is no commonality in the most-executed set of methods

and the most common set of methods (Columns 7 and 8) only offer 3-5% coverage (in addition

to the periodic software revisions) making this alternative also un-attractive.

This motivates us to study the feasibility of identifying ”smaller” functionalities (code blocks

or even instruction sequences) in CPU execution with good coverage, and low cost of realizing

a offload-hardware for them. On the surface, it may appear that the coverage offered by such

small granularities, being parts of the methods studied above, would only be lower than their con-

stituent methods. However, below we introduce a different paradigm of looking at ”instruction

sequences” that are identified purely on the basis of op-codes rather than the code segment/PC

addresses, where these sequences reside. So, such sequences could occur at multiple places in the

code, with a hardware realization offering a boost in coverage in all these occurrences, beyond

that offered by the same sequence occurring at a specified code address within one method.

3.2 Load-to-Store (LOST) Sequences

Rather than set granularities for hardware customization based on pre-determined software bound-

aries (APIs/methods), we start afresh to find out what exactly the CPU cores perform with the

data (coming from memory) given to them, before they produce some output (which again per-
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colates into memory). Understanding this functionality from the input to the output stages can

better help determine granularities, rather than be governed by pre-defined software-boundaries,

that are intended for other purposes. Towards this goal, we define a Load-to-Store (LOST) se-

quence that a core performs, starting with a LOAD from memory, until it produces output in the

form of a STORE into memory, with all the intermediate functional operations performed between

them (in the data flow) becoming part of this sequence. Such a sequence offers the opportunity

for offloading those functionalities between the LOAD and the STORE to an accelerator. However,

the number of such sequences and the size/length of these sequences can become inordinately

large to be implemented in hardware. To address this concern, we pick the ones that yields the

most benefit at low realization costs.

More formally, a LOST sequence starts with a LOAD instruction, and ends with a STORE

instruction that is on the dependence chain of the LOAD. In between, it includes all the instruc-

tions1 on this dependence chain, in the same order of dependence. For instance, Table 3.2 gives

4 LOST sequences for the dynamic instruction sequence I1 to I10. The salient characteristics of

a LOST chain are discussed below:

• Each subsequent instruction of a LOST chain (after the first Load) is dependent on the prior

instruction of that chain.

•Adjacent instructions of a LOST chain do not need to be spatially adjacent either in the code

segment or temporally adjacent in the dynamic execution sequence (e.g. I3 and I4 are not part

of LOST.2). Hence, a single sequence (or even adjacent instructions of a sequence) can cross

basic block and/or method/function boundaries.

•An instruction can simultaneously belong to multiple LOST chains (e.g. I2 belongs to both

LOST.1 and LOST.2), i.e. sequences can intersect. In fact, one can even be a subset of another

(e.g. LOST.3 is a subset of LOST.4).

• The same sequence of CPU functionality (i.e. add, eor, mov/shift [22], etc.) can occur in

multiple places in the code segment, even if the source of the operands (and not just the data)
1Note that an instruction, in our discussions, refers to the operation (i.e. opcode) performed by the CPU, and not

the PC value of that instruction, or even the operands used. E.g., add r3, r2, r1 and add r4, r5, r6 are treated as the
same instruction for our purposes since we are only interested in accelerating the functionality once the input data is
made available.
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are different. Due to our definition of an instruction (see Footnote 1), our approach will tag all

these occurrences as belonging to the same LOST sequence. (e.g. LOST.2 and LOST.3 are the

same sequence). Such flexibility allows greater coverage without requiring additional hardware

cost.

While there has been prior work [105, 122, 260, 265] on tracking dependence chains for

different optimization, to our knowledge, we are unique in discounting the PC, data and operand

sources for our intended purposes. Our LOST sequence concept allows the tracking of arbitrarily

long data flow amongst the computations within the CPU without regard to software boundaries.
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Further, without attaching PC values, data values, or even operand sources, we can identify

more commonality for re-use of such functionalities across disparate pieces of code - not just

within/across basic blocks, but also across methods of an app, or even across apps.

3.2.1 Methodology for Extracting LOSTs

We collect instruction traces of the app run (for roughly 2-3 minutes of execution time) in An-

droid using the Android emulator [41]. Even an offline analysis of this execution trace is non-

trivial due to the following reasons: (i) There are typically more than 109 LOST sequences in

each app’s trace (the number of sequences can be higher than the number of dynamic instruc-

tions); and (ii) Storage structures become voluminous in order to track not just registers, but also

memory addresses, that can cause dependencies across instructions.

In the interest of space, we are not detailing all the techniques and optimizations used to

address these challenges. Fig. 3.2 summarizes the overall Map-Reduce framework that we

use to parallelize the LOST extraction process. We divide the execution trace into equal ”snip-

pets” that are farmed out to Mapper threads. Each Mapper locally finds and accumulates the

LOST sequences for its portion. A subsequent Reduce phase histograms the sequences from

different Mappers (similar to the well-known word count Map-Reduce app) to accumulate the

frequency of LOST occurrences across the entire execution trace. We should point out that there

is a possibility of a LOST sequence not being tracked when it spans multiple mappers (as in the

first instruction of Fig 3.2 which does not find its matching Store in the same mapper). How-

ever, we have verified that this is a reasonable trade-off since it only misses out on catching less
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than 0.0015% sequences (the mappers are relatively coarse grained working with around 200K

instructions each), and such sequences do not occur frequently either. Further, the hardware sup-

ports ARMv7 ISA, which encompasses ≈2k opcodes with T1ARM, T2, T2EE, NeonSIMD and

VFP instruction formats. So at the mappers, we build an instruction parser supporting ARMv7

ISA to process all the opcodes seen in the execution traces.

3.2.2 Characteristics of LOST Sequences

With an offline analysis of the apps’ dynamic execution, we observe several interesting insights

on LOST sequences:

• Fig. 3.3 plots the number of occurrences and the corresponding coverage of LOST sequences

of different lengths in the Music Player app. In the interest of clarity, the x-axis only shows

sequences of powers of 2, though there are sequences of all lengths in-between. We show

contributions of the top 3 sequences for each length, along with the contribution of all other

sequences of that length. As can be seen, we do find a wide spectrum of sequence lengths,

ranging from the small single digits to as high 200k, though lengths up to 2K are shown in the

Figure. There are many more sequences of smaller lengths compared to those of larger lengths,

and the former has cumulatively higher contribution to the overall coverage because of their

much more frequent occurrences.

• Fig. 3.4 shows the difference between our definition of an instruction in a sequence (i.e. without

regard to PC values) compared to the traditional way [116, 118, 122, 260] of associating an

address with an instruction. In the latter, the same opcode sequence appearing in different

places/functions would get counted as separate sequences (shown as stacked bars for each of

these sequences), and the benefits of a hardware realization for that sequence may not be as

apparent. Our approach on the other hand exploits much more commonality across the entire

code segment.

•Note that because of the property that one LOST sequence can be a proper subset of another,

there is a trade-off in the benefits vs. costs in realizing a superset sequence vs. a subset se-

quence in hardware. The former may incur a higher hardware realization cost, but may not
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Category LOST Details of Instruction Mnemonics Description Apps benefited
Net.1 17% ld-st Common action: All apps,Top LOST for Youtube
Net.2 3% ld-mv-ld-st All apps

Net Net.3 4% ld-mv-st Found mainly in net, FB,Maps
Net.4 43% ld-mv-st-ld-mv-ld-st process creation etc FB
NetReceive 13% ld-mv-st-sub-ld-mv-ld-st Processes a net-queue Acro,Angry,Music,Office,Photo
DataTx(kernel)1 26% ld-mveq-ld-mv-st-sub-ld-mv-ld-st Transfers data All apps except Maps and FB

Data- DataTx(kernel)2 5% ld-mveq-mv-ld-mvs-mv-ld-mv-ld-st between kernel Acro,Email,Music,Office,
Transfer DataTx(kernel)3 17% ld-mveq-mv-ld-mv-st and user space All apps
(Kernel) DataTx(kernel)4 12% ld-mveq-mv-ld-mv-st-mv-ld-eor-st-ld-st Browser,Email,FB,Music,Office,Photo

DataTx(kernel)5 4% ld-mveq-mv-mvs-mv-ld-mv-ld-st Email
DataTx(kernel)6 4% ld-mveq-ld-mv-st All apps
DataTx(kernel)7 3% ld-mveq-ld-mv-st-sub-ld-st FB
EventListener1 33% ld-asr-smlal-st Part of reading All apps
EventListener2 34% ld-asr-smlal-st-ld-sub-mveq-ld-st input from a Acro,Angry,Music,Office,Youtube

Event- EventListener3 45% ld-smlal-st-ld-sub-mveq-mv-ld-st selected IO file Angry,FB,Photo
Listener EventListener4 11% ld-mv-ld-mv-mvs-ld-st including sensors Maps

EventListener5 3% ld-mv-mvs-mv-ld-mv-ld-st Maps
Orient.Listn.1 53% ld-st-ld-st-ld-st Listens to orientation Angry

Orientation Orient.Listn.2 7% ld-add-mv-add-ld-blx-add-ld-add-ld-add-mv-ld-st sensors and reads Angry
Listener Orient.Listn.3 8% ld-mv-ld-mv-ld-st-ld-st an integer value FB

Orient.Listn.4 7% ld-mv-ld-mv-st All apps
Orient.Listn.5 4% ld-mv-ld-mv-ld-mv-st-ld-st FB,Photo
Iterator 5% ld-add-st Common action: All apps

Iterator Iterator.2 3% ld-eor-st e.g. locking,iterator Angry,Browser

Table 3.3: Top 5 LOST sequence across all apps: The names are based on the function in which
the LOST commonly occurs. The numbers appended to names are just to distinguish between
the LOSTs of the same group. The descriptions are derived from their respective function doc-
umentations. Common action indicates that the same LOST is found in many functions. The
LOST sequences which have blue-text are the specific ones that we will use in the subsequent
evaluations, and the percentages indicated next to them is the coverage of these sequences across
all 10 apps. In others, it is the coverage in those apps given in the last column; Underlined = Top
LOSTs for app.

benefit as much from the effort. In Fig. 3.5, we plot the number of occurrences, and the corre-

sponding coverage, for the most common LOST sequence and its supersets (i.e. the sequences

get larger as we move to the right) for Music player. There are two counter-acting factors af-

fecting the coverage - the number of occurrences decreases as we move to supersets, but since

each sequence is longer, each invocation would contribute to a larger coverage. Consequently,

we see a sweet spot in each of these LOST sequences, and we have used this optimal point in

our hardware realizations as will be explained next.

3.2.3 Top 5 LOST Sequences from All Apps

In Table 3.3, we list the top 5 LOST (by coverage) sequences in the apps. We identify 5 cat-

egories of LOST sequences (segregated by rows) and describe their functionality in their re-

spective app source codes in the fourth column. Recall that, one LOST may occur at different
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PCs or functions in the source code (Fig. 3.4). So, we identify the functionality of LOSTs as

the most commonly occurring ones in this table. They are network-based (Net), data-transfer

between kernel and user spaces (DataTransfer), event listeners (EventListener), orientation lis-

teners (OrientationListener), and iterators (Iterator). The instruction mnemonics for each of the

above LOSTs (in third column), range from 2 to 15 instructions. But, by considering instruc-

tions as opcodes, we are able to find several LOST sequences with high coverage in many apps,

with values reaching as high as 54%, making even each of them an individually attractive design

choice. Note that, all these LOSTs such as Net, EventListener, etc., map to the hot functions

such as SensorEventListenerImp, ReceiverDispatched, in Table 3.1, as well as other functions

with similar instruction sequences. Table 3.3 also lists overlapping LOST chains from the same

functionality. For example, DataTransfer(Kernel) has 7 frequently executed paths (or DFG),

along with their respective coverages. This detail allows us the flexibility to optimize for only

the most relevant LOSTs for all the apps and not the infrequent paths of a DFG. In the interest of

space, we concentrate on our goal towards a generic acceleration unit for all apps by picking the

5 LOST sequences that are common across all the 10 apps (and are not overlapping with each

other in the same DFG) in our training set shown in Table 3.3 with blue-text . We validate their

generality by observing their coverage in a different set of 5 popular apps as listed in Fig. 3.6a.

Note that, the average coverage by these ”generic” LOST sequences varies between 4% to 45%

and vary in length between 2 to 5 instructions only. So, any acceleration mechanism targeting

these relatively small sequence of instructions can derive substantial performance benefits. We

next explore the mechanisms to accelerate these LOSTs and their impacts on app performance.

3.3 LOST Hardware Customization

The LOST instruction sequences, which each individually constitute as much as 54% of the dy-

namic instruction stream of these apps, are simple enough for hardware implementation, while

simultaneously being generic enough to be useful in several popular apps. In this context, we ad-

dress five pertinent questions: (i)What are the bottlenecks in the execution of a LOST sequence?
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This would suggest us which stage should be targeted. (ii) What is the most suitable solution for

a LOST hardware acceleration? (iii) What other issues such as interspersed non-LOST instruc-

tions in a LOST sequence and control divergence are addressed? (iv) How to supply required

operands for executing a LOST sequence? and (v) How to invoke the proposed LOST hardware

during runtime?

3.3.1 Execution Time Breakdown

To better understand what needs to be accelerated (for LOST sequences), we show the profile

of LOST instructions on the baseline CPU in Fig. 3.6b. As can be seen, no one stage is overly

dominant, making us simultaneously consider several issues for speedup. An instruction spends

around 15% and 16% time in the Fetch and Decode stages respectively, reiterating the well-

known observation that a von-Neumann architecture is highly inefficient for executing repetitive

code. Further, we see that (i) stalling for availability of functional units, and (ii) stalling for data

produced from other instructions (whether in the same LOST or not), contribute to as much as

20% and 32%, respectively. Consequently, a good acceleration option should consider all these

4 aspects - fetch, decode, availability of functional units, and data dependencies - for extracting

the maximum performance from LOSTs.
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3.3.2 Exploring Existing Acceleration Solutions

Below, we discuss the suitability of four alternatives from traditional solutions for accelerating

LOSTs:

SIMD: Having separate SIMD units [91, 280] with many functional units can be one way

to address the corresponding functional unit bottlenecks. Also, with one SIMD instruction

fetch/decode, one could perform multiple parallel operations to avoid the fetch/decode bottle-

neck. However, our LOSTs are at best a few instructions long, with dependencies flowing from

one to the next (otherwise they would be part of the same LOST). Hence, there is no data paral-

lelism for SIMD to exploit; consequently, we discard this alternative.

Configurable/programmable offload hardware: In order to avoid explicit instruction fetch/decode,

Coarse Grained Reconfigurable/programmable Arrays have been proposed [116, 118, 140, 260],

where simple functional units get connected together based on the data flow by runtime con-

figuration. In order to accommodate the overheads of such configuration (conservatively 64

cycles [118]), and also the explicit data transfers between the main core and the programmable

hardware, the offloaded functionality needs to be relatively coarse grained and repetitive. How-

ever, any one execution of a LOST is only a few instructions long, and though repetitive in the

overall app execution, the separation between successive invocations is temporally disparate and

the corresponding control flow graph (CFG) for each such invocation may not be the same either.

Hence, we discard this alternative as well.

IPs: IP cores/accelerators [100, 136], are instead the ideal mechanism to allow direct data flow

between these successive LOST instructions, without the bottleneck of instruction fetch and de-

code. However, we need these to get integrated into the processor datapath, since the overheads

would be very high to interface with a coprocessor-like entity with explicit calls and data trans-

fers just to accelerate a few (≤ 15) instructions.

On-core Customized Execution Units: We would thus like to integrate the hardware entity that

performs LOST acceleration as close to the CPU datapath as possible. This will allow us to (i)

invoke the hardware with minimal overhead, and (ii) reduce any data transfer back-and-forth,

by facilitating resource sharing (e.g. registers) between the two. Such on-core Customized Ex-
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ecution Units like BERET [122] have been proposed, though for very restrictive/specific func-

tionalities such as add+shift. We propose to use such capability for additional, but simplified

functionalities that mandates to execute the LOST sequences. Further, the prior proposals lever-

age such specialized units only when the instructions requiring them were spatially/temporally

contiguous. In our case, as already noted, even successive instructions of a LOST sequence can

be separated temporally/spatially.

3.3.3 Addressing Spatial Separation of LOST Instructions

Although we use spatially separated generic LOST sequences to obtain substantial app execution

coverage, we need them to be spatially contiguous for a compiler to easily replace them with an

offload command. To this end, we now employ hoisting instructions between LOSTs, a well

known technique employed by compilers for various other optimizations [177]. In detail, the

spatial separation of the instructions in a LOST sequence can cause four types of dependence

scenarios between the LOST sequence and the non-LOST instructions surrounding them as dis-

cussed below:

InBound (non-LOST→ LOST): Fig. 3.7(a) shows an example scenario for InBound, where a

non-LOST instruction (I2) only inputs value to a LOST instruction (I3). In this case, the com-

piler can safely hoist the InBound instruction (I2) before the beginning of the LOST sequence

(before I1) making the LOST sequence spatially contiguous. After hoisting, the compiler also

inserts a hint before the LOST sequence to make sure that all inputs to the LOST are ready. On

the hardware side, the CPU will issue instructions as usual until that hint, then wait till all the

issued instructions are ready to commit, and finally invokes the LOST hardware.

Performance Impact: As I2 is hoisted, its output is available earlier; I1’s start is also delayed.

So, the execution of subsequent instructions may be affected based on these hoists.

OutBound (LOST→ non-LOST): Fig. 3.7(b) shows an example scenario for OutBound, where

a LOST instruction (I1) only inputs value to a non-LOST instruction (I2). In this case, the com-

piler can safely move the OutBound instruction (I2) after the last LOST instruction (after I4)

making the LOST sequence spatially contiguous. Also, the compiler needs to insert a hint after
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Figure 3.7: Dependence Scenarios between LOST Instructions and Normal Execution

the LOST sequence to guarantee that the LOST sequence’s results are ready. On the hardware

side, the CPU will only issue I2 when the LOST is ready to commit.

Performance Impact: As I1, I3, I4 are hoisted, their outputs are available earlier; I2’s start is also

delayed. So, the execution of subsequent instructions may be affected based on these hoists.

Bulge: Fig. 3.7(c) shows a scenario for Bulge, where a LOST instruction (I1) inputs value to

a non-LOST instruction (I2), and I2 inputs value to a subsequent LOST instruction (I3). Here,

I2 cannot be hoisted, and so we do not accelerate such scenarios.We will also show later, that

the occurrence of these cases are relatively small resulting in negligible gains from acceleration.

Thus, we decide not to accelerate such cases.

Branch: There are three types of control divergence scenarios. First, there could be a branch

from outside the LOST sequence, wherein existing CPU mechanisms like ROB squashes handle

the correct path execution. Second, a branch in the LOST sequence also is acceleratable because

the acceleration logic will take the required decision and change the control flow. For our five

generic LOST sequences, this does not occur. The third case is where a non-LOST branch occurs

between two instructions in a LOST sequence as depicted in Fig. 3.7(d), where there is Branch,

between two LOST instructions (I1 and I3). In this case, we use compiler support to profile the

most frequent path in runtime, and convert the control-flow to assert-style data-flow as proposed

in [227] and used by [122, 260] and apply the above steps as applicable.

The LOST sequence may now become contiguous in most cases and thus enables, one-shot

execution in these scenarios. This implies that the LOST sequence can be merged as a macro

instruction that can be invoked at runtime. But to facilitate this one-shot acceleration, we need

the required operands for all the instructions which is described next.
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#1 #2 #3 #4 #5

R13, [R3] R5, R3 R7, [R5] R8, R7 SP!, R8

Operand-List Table Entry of DAT_TX_K6DataTransfer(Kernel6)
Original LOST Insts.

1 LDR R13, [R3]
2 MOVEQ R5, R13

3 LDR R7, [R5]

4 MOV R8, R7

5 STR SP!, R8

1

2

3

OPCODE LOSTID Operand-list-ID

13bits 3bits 6bits

CDP2 DAT_TX_K6 #54

LOST  Invocation(10b reserved, 32b in total)

Figure 3.9: Incorporating the LOST Accelerators in Datapath (shown in yellow)

3.3.4 Encoding and Supplying Operands for LOST Execution

Recall that, LOST sequences are obtained by accounting for only the instruction opcodes without

considering their operands. Although this helped us cover more instructions using a LOST

sequence, to execute them, we need the corresponding LOST hardware unit to know the exact

order of operands (both input/output of registers or memory addresses or immediate values)

needed by each of its constituent instructions. We term this as operand-list in this work. To

encode (and subsequently supply) the operands for LOST executions, there are two issues: (i)

Diversity: There may be multiple variants of operand-lists for a LOST sequence. For example,

I1: add r1, r2, r3 and I2: add r3, r4, r1 have the operands 〈r1, r2, r3〉 and 〈r3,

r4, r1〉, respectively. We count both ld→I1→st and ld→I2→st as occurrences of ld→add→st,

irrespective of their differences in operand-lists namely 〈...〈r1, r2, r3〉...〉 and 〈...〈r3, r4,

r1〉...〉. (ii) Efficient encoding: Given that there could be many such operand-lists for the same

LOST hardware, we need an efficient way of supplying the operand-list to a LOST hardware for

each of its invocation.
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To understand operand-list diversity, we profile the operand-lists across multiple apps and

present our insights in handling their diversity using an example app (MusicPlayer). We show

the top 100 operand-lists sorted by their respective LOST coverage for all the generic LOST

sequences in Fig. 3.8. As can be seen, there could be potentially up to 5k different varieties

of operand-lists for each of the LOST sequences and thus, we need an efficient mechanism of

encoding/supplying the operand-list for the entire LOST sequence. A naive way of doing this

is by using the original list of instructions themselves. Although this method supplies all the

required operand-list to the hardware, it is highly inefficient because it needs fetch and decode

for each of such instructions.

Alternatively, we construct a simple hardware lookup table and populate it with the most

commonly used operand-lists and use the table entries to supply inputs to LOST invocations (as

shown in Fig. 3.9, steps 1 and 2). Consequently, the compiler can replace the spatially contigu-

ous set of LOST instructions with one simple ARM co-processor invocation instruction namely,

CDP2 [22] with an index to this lookup table that holds the operand-list for that corresponding

invocation. Note that, the compiler will not synthesize the CDP2 call for the operand-lists other

than the entries in the lookup table. We will quantify this lost opportunity in Sec. 3.4.1.

In Step 3, Fig. 3.9 shows that the compiler can generate the CDP2 instruction by replacing an

example sequence of our generic LOST DataTransfer(Kernel)6 sequence, which is subsequently

used in looking up the hardware operand-list table for supplying the appropriate operand-list for

LOST acceleration. Using this approach, we can make CDP2 call to invoke LOSTs of any length

in one instruction, with a caveat that the operand-list table will increase by 10 bits per entry for

encoding one instruction. We observe that 64 entries to be a sufficient operand-list table size for

all the apps to capitalize on their respective LOST coverages and accelerate them.

3.3.5 Proposed Hardware Integration

LOST Execution Support: Fig. 3.9 shows the micro-architecture enhancements to the baseline

Out-of-Order (OoO) CPU design to support LOST execution. They are: a) Operand-List Table

with 64 entries (400 bytes per LOST); b) Execution Units attached to the Common Data Bus.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
I1 F D R I X C
I2 (LOST1) F D R I X C
I3 (InBound) F D R I X C
I4 (LOST2) F D R I X C
I5 (LOST3) F D R I X C
I6 (LOST4) F D R I X C
I7 (OutBound) F D R I X C
I8 (LOST5) F D R I X C
I9 F D R I X C

I1 F D R I X C
I3 (InBound) F D R I X C
CDP2 (LOST) F D R I X C
I7 (OutBound) F D R I X C
I9 F D R I X C

F=Fetch; D=Decode; R=Rename; I=Issue; X=Execution; C=Commit.
F:D:R:I:X:C=1:1:1:1:1:1

Instructions/Cycles
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Figure 3.10: LOST execution example: CDP takes 1 cycle for simplicity.

Whenever there is a LOST invocation (e.g. CDP2 LOST.id, LOST.operand-list-index),

the instruction decoder will use the LOST.id (DATA TX k6) and LOST.operand-list-index

(54) fields (as a normal ARM instruction) to lookup the corresponding operand-list entry in the

LOST Operand-list Table. The operand-lists will supply operands to the ROB in the same way

other instructions are inserted. The only difference is that these accelerator instructions have

m input and n output registers, as opposed to 2 input registers and 1 output register in most of

the conventional instructions (even in the current ARM ISA there are instructions such as STM

and LDM which take multiple inputs/outputs). When all the input registers in the operand-list are

ready (i.e., InBound instructions are ready to commit), the LOST instruction will be issued to the

corresponding LOST Execution Unit. After that, it will execute and commit/squash as a normal

CPU instruction.

Example of a LOST Sequence Execution We now illustrate the difference between a CPU

execution and a LOST hardware execution using the timing diagram shown in Fig. 3.10. The

upper part shows a list of nine CPU instructions, where there is an InBound scenario between

I3 (non-LOST) to I5 (LOST), and a similar OutBound scenario between I5 (LOST) to I7 (non-

LOST). If executed in a normal OoO CPU, it finishes in 14 cycles. The bottom part shows the

code transformed (by the compiler) into five instructions, including hoisting the InBound (I3)

above and moving the OutBound (I7) below the LOST instructions, and subsequently replacing

LOST instruction by a single CDP2 instruction. In this setup, I1 and I3 are executed in the normal

CPU pipeline. Next, the LOST invocation instruction (CDP2) is fetched as usual at 3rd cycle and

waits for I3′s result. When the InBound (I3) is ready to commit, the CDP2 is issued at the
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Android 4.4.4 r2 KitKat with Dalvik and ART Runtimes in Nexus 7
CPU ARM v7a OoO CPU 1 GHz; 8Fetch:8Decode:8Commit; 4K entry BPU
Memory 2-way 32KB iCache, 64KB dCache; 8-way 2MB L2; 1 Ch; 2 Ranks/channel;
System 8 Banks per rank; open-page; Vdd = 1.2V; tCL,tRP,tRCD = 13, 13, 13 ns
LOST Xilinx HLS synthesis using ZYNQ XZ7Z020; Execution time: min=3 cycles;
Units max=7 cycles; mean=4.1 cycles; Operand table lookup = 1 cycle;

Table 3.4: Simulation Configuration

App Activities Performed Users PopularityDomain # Insts
FBMessengerRT-texting 25M 3.9F Instant messengers 160M
Browser Search and load pages 4.2M 4.2F Web interfaces 60M
OfficePPT Slide edit, present 455k 4F Interactive displays 70M
MailClient Send,receive mail 2.4M 4.3F Email clients 98M
Youtube HQ video stream 9.2M 4.1F Video streaming 72M
Music 2 minutes song 67k 4.3F Music/audio players34M
Angrybirds 1 Level of game 4.7M 4.4F Physics games 151M
Maps Search directions 5.6M 4.3F Navigation 65M
PhotoGallery Browse Images 3.6M 4.4F Image browsing 85M
Acrobat PDF View, add comment 2.3M 4.3F Document readers 75M
PlayStore Search and install apps 72M 4.1F Installer 120M
Deskclock Reset a timer 100M 4.2F Time/Alarm 27M
Instagram Load, comment pictures 40M 4.5F Picture chat 150M
Contacts Create a new contact 1M 4.4F Contacts list storage130M
Calculator Perform simple arithmetic 1M 3.9F Calculating tool 134M

Table 3.5: Popular Handheld Apps Used for Evaluation

7th cycle. It subsequently finishes its execution and commits at the 9th cycle. I7 (OutBound)

subsequently gets fetched at 4th cycle, and again waits for the LOST′s result to proceed and

execute to commit at 12th cycle. Although the LOST acceleration helps the execution to finish 2

cycles ahead of the baseline CPU execution in this example, the performance impacts may vary

depending on the extra waiting-time introduced between InBound/OutBound and LOSTs.

3.4 Experimental Evaluation

Mobile Apps Used: We start our LOST study using 10 popular Android apps and find 5 generic

LOSTs in their execution. To validate their generality, (i) we use 5 more popular apps that

were NOT used in the characterization effort towards generic LOSTs, and (ii) we test with two
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available android compilers viz., Dalvik and ART compilers with up to 22 optimization passes

to rule out any compiler level artifacts. Table 3.5 details all 15 apps in terms of number of

downloads, popularity (rated by users out of 5F), and app domains. Also, to ensure that we

capture the app behavior, we perform general tasks described for an app for a certain period

of time, and its corresponding instruction footprint in Table 3.5. More details can be found in

http://csl.cse.psu.edu/lost.

Traces and Simulation Platform: For each app, we supply the LOST and CPU traces to the

Gem5 simulator (version 5.4 [46]) to model the CPU behavior for LOST execution and normal

OoO CPU execution. Since Gem5 only models conventional ARM CPU, we use Vivado HLS

and Synthesis tools [301] to model LOST units’ timing and power. We use HLS synthesis of

LOST units as a conservative approach to model the timing of LOST units (also stated by [259]).

We also simulate memory using DRAMsim2 [246] that comes bundled with Gem5. The details

of evaluation are listed in Table 3.4.

Schemes Evaluated: For understanding the impact of LOST acceleration mechanism in opti-

mizing the fetch, decode and execution stages of the CPU, we compare the CPU performance

improvements through LOST acceleration with that of a baseline CPU execution and an ideal

scheme, where the fetch, decode and execution stall times are set to zero. The ideal scheme also

does not incur any of the overhead such as InBound/OutBound, bulges and branches.

We present our evaluation of the proposed LOST acceleration hardware by comparing it

against a) baseline CPU execution and b) 0-stall (ideal) execution. All the results are normalized

with respect to the baseline OoO execution.

3.4.1 Performance benefits from LOST

Fig. 3.11 plots the CPU speedup for all 15 apps. The results show that all apps benefit from

LOST sequence acceleration and the benefits vary between 12% (Maps) and 44% (as seen in

PlayStore). The results also show the individual contributions of the 5 LOST sequences across

different app domains. For example, user-intensive apps such as Angrybirds and Facebook Mes-

senger make good use of the EventListener1 acceleration (up to 9% speedup), while passive
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Figure 3.11: Performance speedup with LOST hardware acceleration
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Figure 3.12: (a) shows LOST sequence benefits across all the CPU execution stages; (b) Unfa-
vorable branches, bulges and operand-list based coverage limitations cannot be accelerated by
LOST, shown as ”unacceleratable”.

apps like Clock and Calculator achieve considerable performance gains from Iterator (10.3%)

and Net1 (19%). With the ideal (0-stall) case, we see an average CPU speedup of 30% w.r.t the

baseline OoO CPU execution with a maximum speedup of 52%. Our LOST acceleration, on the

other hand, provides on an average 25% speedup, thus lagging behind the 0-stall setup by only

5%. We can see that CPU intensive apps such as Acrobat, Browser, Email and Office perform

within 3% of the ideal case. But, the gap widens when the coverage becomes higher in cases

such as calculator when the latency to fetch/decode becomes dominant before invoking LOST

(discussed later in Fig. 3.12a).

3.4.2 Trade-offs with LOST acceleration

Where does it gain? We next analyze the reasoning behind the LOST acceleration gains by

breaking down the performance benefits across various CPU execution stages. Fig. 3.12a shows

the LOST execution speedup breakdown across the Fetch, Decode, execution of LOST sequence,

execution of CPU instructions, and OutBound scenarios. We do not show stalls due to InBounds

because of its negligible contribution to the speedup. We gain performance speedup from all 4
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stages, especially, from the CPU speedup(8%), because we offload 5 LOST sequence to LOST

hardware (as high as 54% of the dynamic instructions). The performance of LOST sequence

execution also boosts because we accelerate these LOST instructions. We observe 8% gain from

fetch and decode stages due to reducing the LOST sequence into a single instruction.

Where does it lose? The LOST acceleration has its limitations due to the following aspects:

InBound stalls, OutBound stalls, Branches that are not favorable (infrequent), Bulges and the

coverage limitations of a fixed 64 entry operand-list table. Fig. 3.12b shows the average oc-

currence of all these aspects on LOST acceleration. We see that, InBound stalls occur ≈1%

of the total LOST coverage and hence, is not a major factor for performance loss. OutBound

stalls on the other hand are more frequent (78%) and their effect on the app performance is still

hidden by the gains from other execution stages (as explained above). The other contributing

factors such as bulges, infrequent branch paths and operand-list based coverage limitation are

not overly dominant and thus, can be addressed by more complex solutions to accelerate another

20% of LOST execution in future extensions to this work.

In summary, we systematically quantify the LOST acceleration benefits and in turn present

an analysis of where and when LOST acceleration can gain the most as well places where it

cannot gain much. The average 25% CPU performance acceleration translate to 12% system-

wide performance improvement based on CPU utilization reported in Fig. 3.1. To complete our

LOST acceleration hardware study, we also do a conservative energy estimation from our HLS

models for the generic LOST sequences (average of 5.9nJ per invocation) and a CACTI [296]

based energy estimation (0.0049nJ per read) for the Operand-list tables. Our estimations show

that the LOST acceleration hardware can conservatively save up to 20% in terms of CPU energy,

translating to 7% system energy savings.

3.5 Related Work

Recently, different flavors of hardware acceleration have been explored for performance and

energy optimizations in several app domains such as machine learning [66, 83], computer vi-

sion [133], speech recognition [308] and health care [221]. However, the basic concepts of
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hardware customization has been proposed much before that [104, 128, 297, 298]. Unlike our

work, most of these designs are at a coarse-grain granularity targeted for a specific function.

A body of work like BERET [122], Chimaera [128], OneChip [298], and others [154, 204]

integrates a reconfigurable execution unit into the CPU pipeline. These accelerate instruction

sequences in the ranges of thousands of instructions. Works like programmable functional units

(PFU) [242], specialization-engines for data-flows [205], work at the granularity of tens of in-

structions. During runtime, they track the instructions executed and dynamically reconfigure

the execution unit. This unit is triggered with a customized/extended instruction set, where a

commonly used sequence of instructions are replaced by one instruction. There are other works,

which optimize the ISA for specific apps and domains, e.g. MMX, NEON, SSE, RISC-V [54]

etc. This approach (adopted by [186, 251]) uses a SIMD architecture for accelerating regular

code such as a loop-based computations. Thus, they are limited in scope for general purpose

apps. Similarly, chained vector units (e.g. [159, 247]) exploit the strategy of optimizing instruc-

tion sequences based on data flow. They are beneficial for code, where dependencies are not just

statically identifiable, but are also spatially/temporally proximate. However, as we observe, our

LOST sequences have much larger spatial and temporal spans, than those exploited by chained

vector units.

Compiler optimizations [65,317] in the mobile space focus on reducing the amount of com-

pute to achieve the same result or provide hints to the run-time for better memory/compute

scheduling [3, 228]. Dalvik, a VM framework in Android OS, is one such framework which not

only interprets the source code at runtime, but also identifies and compiles the hot-spot trace [65].

Our proposal can complement these proposals in finding more opportunities for hardware accel-

eration.

The most related to ours is DySER [118], which uses dynamically synthesized data-paths

based on opportunities identified by the compiler. These paths are configured statically into

CGRA cores at runtime. However, the offloaded functionality is restricted (i.e. cannot perform

memory operations), thus requiring all memory data to be explicitly passed (no shared registers

either) through FIFOs. While this may work in apps from SPEC, PARSEC, etc., we find mobile
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apps have many more data-dependent interspersed loads, making it difficult to pre-load all the

required data needed for a reasonable amount of off-loaded computation. As shown, many of

the frequently occurring LOST sequences (Table 3.3) do contain such data dependent loads. To

our knowledge, this is the first effort to analyze a wide variety of mobile apps and propose a

fine-grain accelerator design that is more universally beneficial.

3.6 Chapter Summary

We present a fine-grain hardware acceleration mechanism for alleviating CPU involvement,

thereby improving app performance in handhelds. In this context, we have developed a com-

prehensive framework to effectively identify and extract all LOST sequences of instructions

from an app and pick the commonly occurring sequences within and across apps. Unlike prior

approaches that identify instruction sequences based on PC addresses or operands, the LOST

sequences are defined based on a sequence of opcodes that can even span method boundaries,

effectively increasing coverage and the potential for finding opportunities for hardware accelera-

tion. We also discuss solutions for handling critical dependence issues in hardware acceleration

such as control flow divergence and operand supply to a LOST hardware unit and design a micro-

architecture that integrates these customized hardware sequences as macro functional units into

the CPU datapath. Experimental evaluations with fifteen mobile apps indicate that the proposed

techniques can provide on an average 25% CPU speedup (12% overall system performance im-

provement). These improvements are significant considering the broad coverage across apps

from different domains, as well as requiring just five very small LOST sequences.



Chapter 4
CritIC: Software only optimization

for CPU Execution in the edge

While the above LOST optimization extends the CPU hardware to add new acceleratability of

common/frequently executed functionalities in the edge, it is still expensive to perform a hard-

ware level change in the highly resource constrained edge device. Therefore, the second part of

this thesis instead focuses on achieving similar optimizations with off-the-shelf hardware itself,

with a purely software approach. To a large extent, the evolution of the edge devices has drawn

from lessons learned over the years from their desktop/server counterparts and adapted them

for different resource constraints – energy/power, form-factor, etc. However, many of the app

executions in the edge have very different characteristics, and are used in very different ways

compared to desktop/server workloads (e.g., high amount of user-interaction, handling sensors,

etc.). And so, it is not clear whether the same high-end device optimizations are effective for

the mobile platforms. Thus, this chapter starts with a fundamental question: can we borrow the

optimizations from the server counterparts to optimize edge CPUs?
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Figure 4.1: (a) Despite having frequent Critical Instructions, mobile apps do not benefit as much.
(b) Reason: Critical instructions in SPEC do not depend much on other critical instructions. But,
Android apps have two successive high-fanout instructions in a dependence chain, with 0(direct-
dependence) to 5 low fanout instructions between them.

4.1 Critiquing Criticality

Within the confines of the given resources of a superscalar processor, one of the most important

issues is deploying and assigning these resources to the incoming stream of instructions. This

is essentially determined by the priority order (scheduling) for fetching and executing these

instructions. When there are adequate resources, we would give all instructions the resources

that they need. However, when resources are constrained, priority has to be given to “critical

instructions” [89, 172, 267, 268, 283, 285]. In this work, we use a simple definition of criticality,

similar to those in some prior works [89, 283] - an instruction is critical if its execution time

becomes visible (i.e., does not get hidden) in the overall app execution.

4.1.1 Conventional criticality identification

As per the above definition, an instruction can be marked critical, only after its execution - by

which time it is too late to assign resources for it. Hence, prior works propose different ways

of estimating criticality of an instruction before it is even fetched. Two common heuristics

for marking an instruction as critical are by using thresholds for (i) execution latency of an

instruction (a long latency instruction implies instructions depending on it have to be delayed,

thus making it more critical) [94, 267, 283] and (ii) number of dependent instructions (referred

to as fanout in this paper), particularly in the ROB at the time the instruction is being executed
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Ins Fanout
I0 10
I1 1

I10 10
I20 1
I22 10
I11 2
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Others 1

Fanout Data

(a) Example DFG

High Fanout Instruction Optimization: (Conventional)

IC-Based Optimization: (Our Scheme)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 Num Issues 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2
Inst. [1] I0 I10 I11 I3 I5 I7 I9 I14 I16 I1 I19 I20 I22 I23 I25 I27 I29 I31
Inst. [2] I2 I12 I4 I6 I8 I13 I15 I17 I18 I21 I24 I26 I28 I30 I32

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Num Issues 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Inst. [1] I0 I10 I20 I22 I4 I6 I8 I11 I13 I15 I17 I19 I23 I25 I27 I29 I31
Inst. [2] I1 I2 I3 I5 I7 I9 I12 I14 I16 I18 I21 I24 I26 I28 I30 I32

(b) Timing in superscalar processor with issue width 2

Figure 4.2: Illustrating why high-fanout prioritization may not help.

(as many instructions require its output before they can begin). A table is maintained for those

instructions exceeding the threshold based on prior execution (similar to branch predictors), and

upon an instruction fetch, this table is looked up with the PC to find whether that instruction is

critical or not.

4.1.2 Do these criticality schemes work for mobile apps?

Different optimizations can be employed upon fetching a critical instruction - prioritizing CPU

resources [150, 253, 283], caches [94, 267, 276], memory requests [102], predicting instruc-

tion results [60, 70, 97, 197], issuing prefetches [276], etc. Until now, these optimizations

have been primarily proposed and evaluated for server/desktop workloads and not for mobile

apps/platforms. Without loss in generality, we have taken two representative, well-studied and

well-proven criticality optimizations in prioritizing two important resources - one for memory

which issues prefetches for critical loads [276] and another for ALU resources in instruction

scheduling [89, 90, 236]. These proposals identify high-fanout loads to mark them as critical to

issue prefetch [276] and prioritize the critical instructions for ALU resource allocations [90,236].



40

These techniques have shown significant benefits for server workloads. The high-fanout based

optimization has also been shown to outperform the latency based ways of identifying and ex-

ploiting criticality [276,284]. We next evaluate the usefulness of both these criticality optimiza-

tions (depicted as bars) in mobile apps and compare the mean speedup obtained from employing

both these techniques for SPEC.int, SPEC.float and Android apps in Fig. 4.1a (experimental

details are in Sec. 4.3.2).

As can be seen, the performance gains from prefetching high-fanout loads and prioritizing

them at ALU resource scheduling are both quite significant for SPEC.int (15% from prefetch-

ing, 9% from prioritizing) and SPEC.float (34% from prefetching, 25% from prioritizing), re-

affirming prior results [236, 276]. Interestingly, the gains from these two optimizations are a

relatively measly 0.7% from prefetching and 5% from prioritizing in the mobile apps. Based on

this, one may think that perhaps mobile apps do not have a significant number of high fanout

loads/ALU instructions to benefit from these optimizations. On the contrary, we observe that (in

right y-axis of Fig. 4.1a) the mobile apps have a much higher percentage of critical instructions

than their SPEC counterparts. This should have, in turn, resulted in more opportunities for opti-

mizing the execution. To understand why this is not the case, we next identify scenarios where

these optimizations may not work and point out that such scenarios are common in mobile apps.

4.1.3 Why do they not work?

Fig. 4.2a shows an example DFG (Directed Flow Graph) where, executing the first instruction

I0, triggers ten following instructions (I1 to I10) to become ready for execution. Any high fanout

optimization will obviously execute I0 first. After this step, let us say I10 again has a fanout of

10 (i.e., instructions I11 to I20 become ready), which would cause I10 to be prioritized in the

execution over say I1. If, subsequently, I11 and I12 each have 2 fanouts and each of I13 to I20

has a fanout of just 1, I11 and I12 will get scheduled before I13 to I20. But since each of I13

to I20 instructions has a fanout of 1, a high-fanout instruction prioritization will not differentiate

between them. Note that, I20 in turn has a dependent high fanout instruction, I22, that cannot

be scheduled till I20 is completed. So, as seen in Fig. 4.2b, by not doing this optimization
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of prioritizing I20 over its siblings, single a instruction criticality optimization scheme as de-

scribed previously, stalls 2 cycles (12, 13) in the execution. This scenario occurs commonly in

mobile executions (explained below), where an instruction despite having a low fanout, requires

high-priority since there is a subsequently dependent high-fanout instruction. Consequently, it

is insufficient to optimize individual high-fanout instructions independently. Instead, the whole

sequence of dependent instructions from 〈I0, I10, I20 to I22〉 should be scheduled as early as

possible, even though I20 is a low-fanout instruction.

We find evidence of this scenario occurring much more in mobile apps compared to their SPEC

counterparts as shown in Fig. 4.1b, which breaks down the dependence chains containing high-

fanout instructions in terms of the number of low-fanout instructions between two successive

high fanout instructions in a dependence chain. We find that the dependence chains can have

between 1(22%) to 5(7%) low-fanout instructions in the dependence chain between two high

fanout critical instructions, for cumulatively 52% of the time in Android apps. On the other

hand, the SPEC.float and SPEC.int apps have no dependent high-fanout instructions for around

60% and 35% of the time. Compare that to Android apps, where this hardly ever happens, i.e.,

there is at least 1 low fanout instruction between 2 successive high fanout, and thereby critical

ones. It is no surprise that SPEC apps benefited from optimizing each critical instruction indi-

vidually as opposed to Android ones, where such dependent chains reduce the effectiveness of

individual optimizations. These mobile app results also suggest that: (a)prioritizing/optimizing

each critical instruction individually as it comes (i.e., for the “present”) would not be as effective

in rightfully apportioning the given resources; and (b)we need to consider these temporally prox-

imate and dependent critical instructions (chains/sequences) together for possible optimizations,

i.e., look into the future as well. Traditional criticality based optimizations [102, 267, 268, 276]

have targeted one critical instruction at a time, rather than groups or chains.

4.1.4 What do these instructions need?

Before optimizing for these closely occurring and dependent critical instructions in Android

apps, it is important to understand where they spend their time amongst the different superscalar
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pipeline stages. Towards this, we present a breakdown of their execution profiles amongst these

stages in Fig. 4.3(a). In the same graph, we provide a similar profile for critical instructions

identified by the same ”high fanout” metric in the SPEC.float and SPEC.int apps. From these

results, we observe the following: (i) unlike SPEC apps, where the Execute stage, and conse-

quently the back-pressure in ROB queue residencies, are quite dominant, the Android apps have

a much lower Execution stage latency (and consequently the ROB residency). The mix of critical

instructions in Android apps do not take as much execution time (fewer long latency instructions

compared to their SPEC counterparts as shown in Fig. 4.3(c)). (ii) However, the fetch stage,

and the decode stage to some extent, are much more dominant in Android apps, compared to the

SPEC ones (due to the drop in contribution from the Execute stage). As much as 40% of the

time goes in the Fetch stage, while similar critical instructions in SPEC spend less than 5% of

their time in this stage.

This shift in the profile from the rear to the front Fetch stage (consumes 40%) of the pipeline

in Android, warrants us to take a closer look into this stage. Fig. 4.3(b) breaks down the Fetch

execution time in these apps into two parts - F.StallForI, which is responsible for supplying

the instruction stream into this stage, and the F.StallForR+D which pulls out the instruction

from this stage for subsequent decoding. The former depends on the I-cache latency, miss costs,

and branch mis-prediction costs, while the latter is largely determined by the back-pressure
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exerted by the subsequent pipeline stages (i.e., wait for decode to commit time for the prior

instructions).

The relative contributions of the F.StallForI and F.StallForR+D (2:3) to the overall

Fetch side overheads are quite comparable across the SPEC and Android apps. However, the

actual values are quite different. While F.StallForI contributes to 3% of the overall exe-

cution in SPEC, Android apps execute from a much larger code base with a diverse set of li-

braries (>7k APIs [27, 110, 235]) with more frequent function calls, which causes i-cache stalls

for 15% of the execution and branch prediction stalls for another 2% from the F.StallForI.

At F.StallForR+D, SPEC apps execute many high-latency instructions that creates a back-

pressure on the fetch stage by 3.6% (out of the 5.4% in SPEC.float) and 13% (out of 21% in

SPEC.int). In Android apps, as shown in Fig. 4.3(c), majority of the high-fanout instructions are

low-latency instructions, not imposing much back-pressure from the execute stage itself (6% out

of 40%). Instead, the dependence resolutions between various instructions (as discussed in Fig.

4.1b) causes the most stall (11%) for the F.StallForR+D in these apps. Thus, any optimization

for these critical instructions should try to reduce both F.StallForI and F.StallForR+D la-

tencies, i.e., a simple i-cache/branch- prediction optimization, or a back-end optimization alone

may not suffice as we will show later on.

Key Insights on Android Apps (a) With high fanout, and thereby ”critical” instructions oc-

curring in close temporal proximity with one or more non-critical/low-fanout instructions in the

dependence chain between them, we should consider optimizing groups/sequences of these in-

structions concurrently, rather than one at a time; (b) Fetch stage is much more important for

these instructions, and optimizations for this stage are likely to yield more rewards than throw-

ing more hardware for the conventionally bottlenecked execute-to-commit stages; (c) We need

to accelerate not just the rate of bringing in the instructions to the Fetch stage, but also accelerate

the rate of pushing out instructions into the rest of the pipeline.
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4.2 CritICs: Critical Instruction Chains

Having identified the requirements, we now explore (i) how to identify these ”critical” instruc-

tions occurring in a dependence chain/sequence in close temporal proximity, and (ii) how to

optimize for these sequences to provide the minimal F.StallForI and F.StallForR+D laten-

cies in the fetch stage with minimal hardware extensions.

4.2.1 Identifying CritICs

4.2.1.1 CritIC Sequences

As was shown in the example in Fig. 4.2a, identifying and optimizing for individual high fan-out,

and thereby critical, instructions can only provide limited options. Instead, we need to look into

the future, and find other possible future critical instructions which are in its forward dependence

chain/graph. Consequently, the entire chain should be prioritized/optimized even if intermediate

instructions in the forward dependence chain (such as I20 in the forward dependence chain of

〈I10, I20, I22〉) may not traditionally have been marked as critical because of their low fan-outs.

Towards identifying such “Critical Instruction Chains (CritIC)”, we first introduce the following

metric and definitions.

Instruction Chain (IC) An instruction chain is any acyclic path of a Data Flow Graph (DFG)

that is independently schedulable at that instant in the execution. In our previous example DFG

of Fig. 4.2a:

• The paths 〈I0, I10, I20, I22〉 and 〈I0, I10, I11〉 are independent of the other paths in the DFG.

So, they are independently schedulable, and both qualify as ICs.

• The path 〈I0, I1, I21〉 does not qualify as an IC as it depends on another path, 〈I0, I10, I11, I21〉

and is thus not independently schedulable.

• Still, the sub-path 〈I0, I1〉 qualifies as an IC as it does not depend on any other paths of this

DFG, i.e., any sub-path of an IC is also an IC.

An IC is thus a self-contained sequence of instructions, and is executable as an atomic entity
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Figure 4.4: Example: Need to optimize CritICs

(e.g., a macro instruction [54, 77, 91, 93, 105, 140, 280] consisting of several micro-instructions

in the sequence) without any dependencies into its individual instructions. We will exploit this

property later when optimizing critical ICs.

Crit At any instant, a DFG has several individual ICs. The goal is then to find the right order

for executing these ICs - to prioritize based on their relative criticalities. For example, in Fig.

4.4b, the execution at the top (high-fanout optimization) shows that prioritizing an IC with low-

fanout instructions, 〈I1, I6, I7, I8, I9, I10, I11, I12〉 is inefficient - as observed in cycles 10, 11,

the execution becomes serialized and there is no ILP for 2 cycles.

However, identifying the relative criticalities of ICs is non-trivial, since each instruction in

an IC can have a different fan-out/criticality. Simply adding up the fan-out of all its constituent

instructions may not paint an accurate measure of an IC’s criticality since there could be high

variance amongst its instructions - a cumulatively high-fanout IC may have a very high fanout

instruction at the beginning, with all subsequent instructions ending up with very low fanout, or
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vice-versa. While one could consider higher order representations for capturing such variances

in future work, in this paper, we use a simple average fanout per instruction of an IC to capture

the criticality of an IC. ICs whose average fanout per instruction exceed a certain threshold

(e.g. 8) are marked as CritIC sequences in this work. Fig. 4.4 gives an example DFG, where

a conventional instruction-level fanout based prioritization would give an execution as in the top

part of (b) taking 14 cycles on a 2-way issue superscalar processor, while our CritIC approach

would identify two ICs 〈I1, I6, I7, I8, I9, I10, I11, I12〉 and 〈I0, I5, I18〉 and prioritize the latter

over the former because of its higher average fanout per instruction (4 vs. 2). This results in a

schedule as in the lower part of (b), taking only 13 cycles.

4.2.1.2 How to find them?

There are two broad strategies for identifying CritICs: (a) using hardware predictor tables as

used in many prior works [89,94,268,285] and/or (b) using software profile-driven compilation.

As explained, we would like to minimize hardware requirements as much as possible, especially

since mobile devices can become highly resource constrained. So we opt for the latter approach,

which raises additional issues that we address as discussed below:

• Ability to do this without User Intervention: Unlike desktop environments where users

may write their own apps, many of the mobile apps are published a priori (on the Play

store, iTunes, etc.). It is not unreasonable for many of these popular apps to have under-

gone a profile-driven compiler optimization phase, which many of them already do (for
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quality, revisions, performance, bugs, etc. [9, 20]) before they get published. Our solution

can be integrated into such phases for appropriate code generation.

• Dealing with diverse inputs (user-interactivity): Even if apps are available a priori, their

execution can depend a lot on the input data - this is especially true for mobile apps which

have high user interactivity. Conveniently, common cases of user inputs are readily pro-

vided for many of these apps in standard formats [11,227], that we avail for our approach.

• Ability to track long ICs and their spread: Software based approaches are often criticized

because of their restricted scope in analyzing large segments of code concurrently. This

would pose a problem if the ICs were long and spread out considerably in the dynamic

instruction stream. For instance, if we were to apply our approach for SPEC apps, Fig.

4.5a shows that we would need to track ICs of lengths up to 1.3K, which are spread over

up to 6.3K instructions in the dynamic stream. On the other hand, in our favor, ICs for the

mobile apps (as shown in the Fig. 4.5a), are at the maximum 20 instructions long, and are

at most spread over 540 instructions to make them conducive to our approach.

• Tractability of tracking all ICs: Even when tracking 5 to 10 instruction long ICs, an app

execution can generate a huge volume of profile data (100s of GB of CritIC sequences),

with numerous sequences at any given instant. So, instead of tracking and optimizing for

every possible CritIC sequence in an app, we track the top few CritIC sequences based

on their coverage in the dynamic execution stream. This substantially reduces the profile

size to a few kBs.

We have built this profile-driven compilation framework to automatically identify and op-

timize the CritIC sequences in a large number of Android apps. The app execution is profiled

using AOSP emulation [111, 237] and GEM5 hardware simulator [46] to get the instruction

stream from which we identify the CritIC sequences. The on-device Android Runtime Com-

piler (ART compiler) then generates optimized ARM binary using various compiler optimization

passes [10]. After these passes, we have implemented an additional instrumentation pass in the
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compiler which visits every CritIC in the optimized DFG generated, to generate the optimization

that is discussed next.

4.2.2 Optimizing CritIC Sequences

Our solution to optimizing these sequences is motivated by the two important observations: (i)

CritIC sequence instructions spend nearly 40% of their execution in their fetch stage, with both

F.StallForI and F.StallForR+D contributions becoming equally important; and (ii) Each

CritIC sequence’s instructions are ”self-contained” and can execute in sequence without be-

ing influenced by any other sequence. Ideally, each CritIC sequence could, thus, be made a

macro-instruction whose functionality is equivalent to executing each of its constituent instruc-

tions one after another. If our compiler could replace this entire sequence by the corresponding

macro-instruction, we would avoid individual fetches for each of the constituents, and incur

only 1 fetch operation - this would reduce the F.StallForI contribution. Further, by hoisting

up this entire dependent chain of critical instructions into a single macro-instruction, we have

reduced/eliminated any unnecessary gap between them, thus shortening the data flow from one

to the other - this would reduce the F.StallForR+D contribution waiting for the later stages of

the pipeline to flush out.

Creating Macro-Instructions One obvious choice for implementing such macro-instructions

is by extending the ISA with either (i) multiple mnemonics - one for each CritIC sequence, or
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(ii) having a new mnemonic with a passed argument that indexes a structure to find the CritIC

sequence. In either case, the new macro-instruction has to know the exact sequence of micro-

instructions that it needs to execute. This may be a reasonable option if the CritIC sequences

are somewhat limited, i.e., there are a few common sequences which are widely prevalent across

several apps as was the case in solutions such as [105, 122, 140, 277]. However, Fig. 4.5b shows

that the number of unique CritIC sequences (opcode+operands of all constituent instructions)

is large - even each app can have 106 unique CritIC sequences - making it impossible to extend

the ISA for this purpose, or building dedicated hardware for each unique CritIC sequence.

Exploiting ARM ISA Instead, we need a mechanism for dynamically creating/mimic-ing such

macro instructions based on the CritICs at hand, and we propose a novel way of achieving this

in the ARM ISA. Fig. 4.6(a) shows the contemporary ARM ISA format [22] that uses 32 bits

to represent an instruction - containing 12 to 20 bits for opcodes, 12 bits for representing 2

source and 1 destination operand registers. It also supports a concise format using 16-bits called

”Thumb extension” (Fig. 4.6(b)). In this mode, the opcode is represented in 6 bits while the

operands are represented in 3-4 bits each. The 16 bit format [22] is used in embedded controllers

for optimizing binary size. The existing ARM decoders can decode any of these formats based

on simple flags and pending queue structures [302].

We propose to represent each instruction of a CritIC sequence, that we would like to op-

timize, in the 16-bit format (Fig. 4.6(d)). Even though past studies [22, 73, 302] report that the

16-bit format produces≈ 1.6×more instructions to execute (and causes slowdown) because (i) it

cannot have predicated executions, and (ii) it cuts the number of architected registers as operands

from 16 to 11, we point out that the 16-bit format is very amenable for CritIC instructions 1.

We illustrate this by plotting the CDF of coverage of the dynamic instruction stream by the in-

structions in all identified CritIC sequences of the original code (in 32 bit format) in Fig. 4.5b.

In the same figure, we also plot the CDF of coverage by the CritIC instructions that can be

represented in the 16-bit format without any change, i.e., they have neither predications nor use

1If any instruction of a CritIC sequence cannot be represented in the 16-bit format as is, then the entire sequence
is left as is (in the original format) and is not optimized, i.e., all or nothing property (quantified in Fig. 4.5b).
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more than the allowed 11 registers. As we can see, there are very few CritIC instructions that

cannot be represented (4.5% of the unique CritIC sequences), referred to as CritIC.Ideal in

Sec. 4.3.5, which demonstrates the promise of our proposal.

Additionally, the ARM Decoder has to be informed of the instruction format, to switch

back-and-forth between 32 and 16 bit representations. There are two possible ways to inform the

decoder of the format switch: (i) in the current ARM hardware, this is done using explicit Branch

instructions [22]. But, as we will show in Sec. 4.3.1, this incurs additional overheads especially

for relatively short (< 10) CritIC instruction sequences; and (ii) our proposed alternative to

extend an already existing instruction mnemonic to support CritIC thumb format switch in the

decoder hardware (evaluated in Sec. 4.3.2).

4.2.3 Summarizing our Methodology

Fig. 4.7 summarizes the software framework for performing and implementing the CritIC

optimizations:

• Trace Collection: We run the Android apps in QEMU [237] emulator with Android OS,

where all the hardware components (CPU, GPU, touch, GPS, network, accelerometer,

gyro, display, speakers, etc.) are modeled. We instrument its disassembler (with 1.6k

lines of code or LOC) to output the trace of instructions executed and data accessed by the

isolated process (app in consideration), for offline profiling.

• Identifying CritICs: This trace is used for detailed micro-architectural simulation in

Gem5 [46], with modifications to identify critical instructions based on their fanouts across

ROB entries (3.3k LOC). To get CritICs from the critical instructions, we implement ad-

ditional tracking logic to dump all the independently schedulable ICs (whose lengths vary



51

as discussed in Fig. 4.5) which results in 100s of GBs of ICs. These are processed offline

with a distributed hash-table using Spark PairRDD [19] to sort and get the top CritICs (ICs

with average fanout threshold > 8) with the most coverage (3.8k LOC). We fix 8 as the

most beneficial average fanout threshold and also observe that other values result in slight

performance degradations. The resulting CritICs is relatively concise (≈10KB) to account

for ≈30% of dynamic coverage.

• Compilation: Next, we modify the open-source ART compiler to add a final pass (CritIC

instrumentation pass) that applies CritIC optimizations on the apk binary (.oat genera-

tion). Note that, the ART compiler already comes with different optimization passes such

as constant folding, dead code elimination, etc., which work on DEX intermedi-

ate representation, as well as load store elimination, register allocation, etc.,

which work on the destination ARM assembly code before binary generation. Our CritIC

pass works on ARM assembly code (similar to instruction simplifier pass) to take

each CritIC (from the profile), checks whether each of its instructions are convertible

into a 16-bit Thumb format, and if so, it lays down the entire CritIC sequence instruc-

tions one after another in this 16-bit format with appropriate two approaches explained

next for switching the instruction format (1.8k LOC). Note that, other than hoisting and

Thumb-converting the CritICs encountered, this pass does not affect the existing instruc-

tion scheduling.

• Off the Shelf Apps: Our framework can be readily applied to any off-the-shelf app (apk

file) from the PlayStore [109]. Table 4.2 shows the ten mobile apps we use for evalua-

tions. These apps belong to a diverse set of domains ranging from texting to gaming and

video/audio streaming. These apps are also top rated and have millions of downloads in

PlayStore.

• Net Benefits: We have roughly doubled the instruction fetch rate (halving F.StallForI)

of the critical instruction sequences by switching formats, and reduced the F.StallForR+D

delays by making this self-contained dependent chain contiguous in time. We will also
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demonstrate that our proposed solution has very little hardware overhead to interpret the

format switch. In fact, our first approach can be readily done on current hardware, albeit

with some inefficiencies as shown next. The second approach uses an existing mnemonic

to switch format, which is a very small extension to the switch supported in existing ARM

decoders.

4.3 Evaluations

4.3.1 Switching Approach 1: On Actual Hardware

We use the conventional approach present in ARM decoders for switching between the two

instruction formats, where two unconditional branch instructions are added at the beginning and

end of each CritIC instruction sequence. The purpose of these branch instructions is to inform the

decoder of the impending format switch and so both their target branch addresses are statically

encoded to point to the subsequent instruction. As shown in Fig. 4.6, (i) the branch before the

CritIC sequence, is in 32 bit format (that sets the Thumb flag at decode), and jumps to the first

instruction of the CritIC; (ii) the subsequent 5 CritIC instructions are decoded in 16 bit Thumb

format at the decoder; (iii) the branch after the CritIC sequence is also in 16 bit format, with

its target set to the next instruction after the CritIC, that resets the format flag to 32-bit at the

decoder. Note that the costs of these branches would mandate long CritIC sequences in order to

amortize them.

We have implemented this on a Google Tablet hardware having 4 ARM cores and 2 GB

LPDDR3 memory. Fig. 4.8 shows the gains on this hardware from our CritIC optimization for

all 10 apps. Along with the actual speedup gains (of a measly 3% on the average), we also show

the lost potential which we could have got if there were no branches before and after the CritICs

for the format switches. We are getting only 1
5 th of the possible gains since the CritIC sequences

are not long enough (typically of length 5) to amortize the branch overheads. Motivated by this,

we next propose an alternative, which does a very slight enhancement to the hardware, to address

this problem to win back those gains.
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Seq Thumb Flag 1st half word 2nd half word Description

1 32 bits Inst 0 Normal Inst

2 32 bits Inst 1 Normal Inst

3 32 bits [CDP.a, length(5)], CritIC.a A0 Set flag; Enqueue A0 for 
decoding; Decode A0-A4 

as Thumb; Reset Flag.
4 16 bits CritIC.a A1 CritIC.a A2

5 16 bits CritIC.a A3 CritIC.a A4

6 32 bits Inst 2 Normal Inst

7 32 bits Inst 3 Normal Inst

8 32 bits Inst 4 Normal Inst

9 32 bits [CDP.b, length(5)], CritIC.b B0 Set flag; Enqueue B0 for 
decoding; Decode B0-B4 

as Thumb; Reset Flag.
10 16 bits CritIC.b B1 CritIC.b B2

11 16 bits CritIC.b B3 CritIC.b B4

12 32 bits Inst 5 Normal Inst

13 32 bits Inst 6 Normal Inst

14 32 bits Inst 7 Normal Inst

15 32 bits Inst 8 Normal Inst

CritIC A1

Inst 2

CritIC A2

Figure 4.9: Code Generation after CritICs have been identified. There are 2 CritICs, A and
B, in this original instruction sequence.

4.3.2 Switching Approach 2: Extending Existing ARM Instruction

To avoid the aforementioned overheads, we propose to use an already existing instruction mnemonic,

CDP (Co-processor Data Processing call), and the 3-bit argument with it to denote that the next

l +1 instructions would be 16-bit format to inform the decoder accordingly. Fig. 4.9 illustrates

this translation by our compiler pass for a CritIC sequence. In the first 32-bit word, the first

half contains the CDP command, together with the l argument (Fig. 4.6(d)). The second half of

this word contains the first instruction of the CritIC sequence in 16-bit format. The next dl/2e

32-bit words contain the next l instructions of the CritIC sequence in 16-bit format. Upon

encountering the CDP command, the decoder puts the subsequent l + 1 (1 coming in the latter

half of the CDP word itself, and the other l coming from the remaining dl/2e words) CritIC
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CPU 4 wide Fetch/Decode/Rename/ROB/Issue/Execute/Commit superscalar pipeline;
128 ROB entries, 4k Entry 2 level BPU [7, 25]

Memory2-way 32KB i-cache, 64KB d-cache, 2 cycle hit latency; 8-way 2MB L2 with
System CLPT prefetcher (1024×7bits entries) [276]; hit=10 cycles; 1 Ch;2 Ranks/Ch;

8 Banks per rank; open-page; Vdd = 1.2V; tCL,tRP,tRCD = 13, 13, 13 ns

Table 4.1: Baseline Simulation configuration.

instructions for 16-bit decoding. With the CDP argument having 3 bits, this allows us to translate

up to 1+23 = 9 CritIC instructions into the 16-bit format using a single CDP command. Note

that we can also allow longer sequences by simply issuing more CDP commands subsequently,

though we find that CritIC sequences up to 5 instructions suffice to provide the bulk of the

savings (detailed in Sec. 4.3.8). After the last 16-bit instruction of this sequence passes through,

the subsequent words get switched to the 32-bit decoding format. We also implemented and

laid out the logic for the mode switch on CDP call on Synopsys Design Compiler(H-2013.03-

SP5-2) [278] with 45 nm technology library and find that the extra logic only consumes 80µm2

area, dynamic and leakage power consumptions as 58µW and 414nW respectively. Although

the timing for this logic is only 160ps, we conservatively assume a 1 cycle extra decoding stage

delay when processing the CDP command.

Even though we have not cut the entire CritIC sequence down to one instruction fetch as

in the above “macro-instruction” approach, our compiler-based ARM 16-bit translation roughly

doubles the instruction fetch rate (halving F.StallForI) compared to the original alternative.

Further, since these instructions are next to each other in the dynamic stream, the dataflow gap

is reduced, thereby helping in the F.StallForR+D as well.

4.3.3 Simulation Results

We next describe the evaluation platform used for conducting our experiments on different de-

sign scenarios and conduct an in-depth evaluation of the proposed CritIC optimizations on

performance and energy consumption.

Hardware: We evaluate the app executions using the hardware configuration of a Google Tablet

in GEM5 [46]. As shown in Table 4.1, this hardware consists of 4 CPUs, each with a 4-issue
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Domain App Activities Performed Domain
Acrobat View, add comment Document readers
Angrybirds 1 Level of game Physics games
Browser Search and load pages Web interfaces
Facebook RT-texting Instant messengers
Email Send,receive mail Email clients

Mobile Maps Search directions Navigation
Music 2 minutes song Music/audio players
Office Slide edit, present Interactive displays
PhotoGallery Browse Images Image browsing
Youtube HQ video stream Video streaming

SPEC.int bzip2, hmmer, libquantum, mcf, gcc, gobmk, sjeng, h264ref
SPEC.float sperand, namd, gromacs, calculix, lbm, milc, dealII, leslie3d

Table 4.2: Popular Mobile and SPEC apps used in evaluation.

wide superscalar core, 32KB i-cache and a 64KB d-cache [139]. Further, we also simulate a

detailed memory model for a 2GB LPDDR3 using DRAMSim2 [190, 246]. This setup enables

us to execute apps in a cycle-level hardware simulation and obtain performance and power con-

sumption for CPU, caches, and memory of the SoC.

App Execution: During the profiling phase (Sec. 4.2.1.2), these apps are emulated for an aver-

age of five minutes and execute, on average, around 100M instructions. This translates to ≈90

seconds of app execution time without the emulator overheads. For our evaluations, we pick 100

samples at random, each containing≈500k contiguous instructions of app executions tallying to

a total of ≈50 million instructions (same parts for all the optimizations evaluated).

4.3.4 Design Space

To quantify the performance effects of the proposed CritIC design on mobile apps, we evaluate

three design choices, and compare them to the baseline configuration in Table 4.1.

• Hoist: Since our solution employs two mechanisms - one hoisting all instructions of a

CritIC sequence and another replacing them with 16-bit Thumb formats - we would like

to study their effectiveness individually. Towards this, we implement a scheme which only

does the former (i.e., identifies CritIC sequences, and hoists each sequences’ instruc-

tions), but leaves them in 32-bit ARM format. We call this as Hoist in our evaluations.
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Figure 4.10: Speedup over baseline with CritIC optimization
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Figure 4.11: Fetch stage savings of CritIC instructions

• CritIC: This is our proposed CritIC design that aims to tackle the fetch side bottle-

necks for high-fanout instructions as well as the F.StallForR+D bottlenecks by hoist-

ing/aggregating the constituent instructions together and also translating these instructions

to 16-bit Thumb format.

• CritIC.Ideal: As was noted earlier in Fig. 4.5b, we choose to leverage only a subset of the

total number of CritIC sequences - (i) those that are at most length 5, and (ii) those whose

instructions can be translated directly to the 16-bit Thumb format. In order to find out the

lost opportunity, we also evaluate a scheme called CritIC.Ideal which hypothetically

aggregates and Thumb-translates for all CritIC instructions (i.e., the black CDF of Fig.

4.5b).
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4.3.5 Performance Results

Fig. 4.10 plots the CPU execution speedup of each app for the three scenarios discussed above to

study the individual as well as combined effects of the two components of CritIC optimizations.

We discuss app level speedups of each of these optimizations normalized with respect to the

baseline design. When we consider the individual optimizations evaluated in Fig. 4.10, we see

that the CritIC optimizations consistently perform well in all apps with 9% (Music) to 15% (Ac-

robat) speedup. However, Hoist (which only targets StallforRD) by itself, only gives marginal

improvements (average gain of 2.5%) compared to CritIC which combines both F.StallForI

and F.StallForR+D optimizations, suggesting that just moving instructions does not suffice.

Since this scheme only reduces the dataflow gap across critical instructions, without boosting

the fetch efficiency, the impact of just a F.StallForR+D optimization is not felt across these

apps, reiterating the need for fetch side improvements. Of the apps, Maps and Youtube are more

bottlenecked in the F.StallForR+D (26.7% in Youtube in baseline of Fig. 4.11) and this in turn

translates to the most benefits when it comes to optimizations for F.StallForR+D (3.1%). All

the other apps have even less improvements from hoisting the CritIC instructions, with Browser

and Photogallery showing the least benefits of 1.7%. CritIC, which implements both 16-bit

conversions to boost the fetch bandwidth, as well as the Hoist improvements, gives 12.6%

speedup improvements on the average. In fact, we see that the differences between CritIC and

CritIC.Ideal, to be quite small (e.g. only 1% gap in Acrobat, Browser and Office). Limiting

ourselves to CritIC lengths of 5 or to those that can be directly translated to 16-bit Thumb for-

mat, does not seem to hurt. This is because, a majority of CritIC instructions are amenable to

16-bit Thumb representation, leaving <1% room for any further improvement on the average.

As discussed in Sec. 4.2, the volume of CritIC instructions representable with the 16-bit format

is within 5% of the entire CritIC instruction volume. We note that the average 12.6% speedup

with CritIC significantly outperforms the previously proposed single instruction criticality opti-

mizations - load prefetching and ALU prioritization - for which we showed speedups of 0.7%

and 4.1% respectively.
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4.3.6 System-Wide Energy Gains

The effect of our CritIC optimizations in terms of the energy gains from various components

of the mobile SoC is plotted in Fig. 4.12. Recall that CritIC optimizations decrease the number

of accesses to the i-cache by 40% (Fig. 4.6) for each IC execution by representing 5 × 32-bit

instructions as 3 × 32-bit instructions. This translates to energy gains from i-cache by 0.8% for

the whole SoC. The CPU speedup discussed above also results in additional energy gains for

both CPU and memory. On an average, CPU contributes to 2.2% of the energy savings and the

memory side of the execution contributes an additional 1.5%. Overall, we observe 4.6% energy

saving for the whole system on the average, with the maximum energy savings of 6.3% (in

Photogallery). Specifically, the CPU execution alone (excluding peripherals, ASIC accelerators,

etc.) realizes an average energy saving of 15%.

4.3.7 Comparing with Conventional Hardware Fetch Optimizations

One may note that numerous prior hardware enhancements proposed to address the Fetch stage

problems, including larger and more intelligently managed i-caches [156,273,299], better branch

predictors [5,258,306,313], and/or instruction prefetchers [55,142,147,189,309]. While adding

sophisticated hardware for high end CPUs may be acceptable, the resource constraints of mobile

platforms may not warrant such sophisticated hardware. Still, we have implemented a number of

hardware solutions for addressing the Fetch bottleneck (described below), and compared them

to the speedup obtained with our software-only solution – CritIC:

• 2×FD: Since CritIC uses a 16-bit format to put 2 instructions into each fetched word

(selectively doubling fetch bandwidth for critical instructions), we consider a hypothetical

hardware where the Fetch and Decode stage bandwidths are doubled (for all instructions -

not just critical ones), with no change to other stages. In this scheme (2×FD), we simulate

a hardware with half the i-cache latency and double the resources (hardware units/queues)

in the fetch and decode stages.

• 4×i-cache: Though unreasonable, we compare with a hardware that has 4× the i-cache
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Figure 4.13: Comparison with Hardware Mechanisms (a) Speedup and (b) Impact on
F.StallForIand F.StallForR+D.

capacity (128KB vs. 32KB) to reduce instruction misses.

• EFetch [55]: We implemented a recently proposed instruction prefetcher [55] that is

specifically useful for user-event driven applications, as in our mobile apps. This prefetcher

[55] tracks history of user-event call stack, and uses it to predict the next functions and

prefetch its instructions. It needs a 39KB lookup table for maintaining the call stacks.

• PerfectBr: This is a hypothetical system where we assume there is no branch mispredic-

tion in the entire execution.

Since CritIC addresses both (i) F.StallForIwhich the above 3 address; and (ii) F.StallForR+D,

which is somewhat addressed by prior criticality optimizations such as [60, 164, 172, 185, 197,

200, 230, 231, 314], which prioritize the back-end resources for those instructions, we addition-

ally consider the following configurations:

• BackendPrio [236]: This platform implements the prioritization hardware for the back-

end resources proposed in [236], using the tracking hardware proposed in [90], which

requires 1.5KB SRAM for maintaining the tokens.

• AllHW: This consists of hardwares for both front and backends, i.e., 4×i-cache + EFetch

+ PerfectBr + BackendPrio.

• With CritIC: In addition to comparing with vanilla CritIC, which has no additional hard-

ware needs, we also study CritIC in combinations with every above hardware mechanisms.
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Figure 4.14: Sensitivity Analysis: (a) Fetch savings and speedup w.r.t CritIC length; and (b)
Speedup w.r.t CritIC Profile Coverage.

Results: We observe in Fig. 4.13a that previously proposed hardware mechanisms yield≈4% to

12% speedup. However, it is important to optimize for both F.StallForI and F.StallForR+D.

These hardware mechanisms only benefit one of these two stalls (Fig. 4.13b). For exam-

ple, 2×FD, 4× larger i-cache and EFetch lower miss penalties to reduce the F.StallForI

by ≈7%, while PerfectBr completely eliminates branch penalties to reduce fetch stalls by 12%.

These mechanisms have no effect on F.StallForR+D. Similarly, BackendPrio only addresses

the F.StallForR+D problem, reducing it by 3% and does not tackle the F.StallForI.

While one could throw all this hardware to tackle both these stalls, as in AllHW, to get the

overall speedup benefits of 23.2%, such extensive hardware may be unacceptable for a mobile

platform. CritIC, by itself, which does need any additional hardware, does significantly better

than each of these individual hardware mechanisms. If future mobile platforms are to incorporate

one or more of these F.StallForI and F.StallForR+D hardware mechanisms, our results in

Fig. 4.13a show that CritIC can synergistically boost the benefits further. In fact, even with a

system that incorporates all of the above hardware (AllHW) which gives a speedup of 23.2%,

can be boosted to give a speedup of 31% with CritIC on top.

4.3.8 Sensitivity to CritIC length

The speedup and energy gains reported above are for a small CritIC size of 5 instructions. We

next investigate the impact of CritIC length on application performance.
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Even though CritIC.Ideal showed not much difference compared to the realistic CritIC

(which uses lengths of up to 5 instructions), it is interesting to see which CritIC length gives

the most rewards individually, i.e., not just all CritICs up to length n, but for each individual

n. Note that as n increases, we are saving more on the fetch costs - both F.StallForI and

F.StallForR+D latencies. However, the probability of finding a CritIC of exactly length n,

where all its n instructions can be directly translated to the 16-bit Thumb format, decreases as n

increases. To study these trade-offs, in Fig. 4.14a we study the impact of a given n (x-axis) on

the fetch cost savings (right y-axis) and the consequent speedup (left y-axis). As expected, fetch

costs keep dropping with larger n, though with diminishing returns. The speedup increases up to

a point (n = 5), beyond which it starts dropping since the probability of finding such sequences

diminishes. In fact, we observe a drop in coverage of CritICs executed from 16% to 15% as we

move for a longer CritIC.

4.3.9 Sensitivity to Profiling

Since our technique uses offline profiling to identify and modify critical chains, we also study

the sensitivity of results to the extent of profiling, i.e. the percentage of the app execution that is

profiled. Fig. 4.14b shows the speedup (y-axis) as a function of the percentage of the execution

that is profiled (x-axis), averaged across all apps. The results presented so far use profiling that

covers 72% of the execution. While a lower coverage does reduce the speedup obtained, we

see that even when only a third of the execution is profiled and transformed into CritIC thumb

sequences, we still get 10% speedup across these apps. If we further the profiling, and transform

the entire application, we can get up to 15% speedup on the average.

4.4 Why even bother with criticality?

While we have proposed the use of Thumb 16-bit format to nearly double the fetch bandwidth

of the CritIC instructions, one may use this approach opportunistically for all instructions

amenable to such modification in the instruction stream. If so, one could question why we
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Figure 4.15: Opportunistically transforming to 16-bit Thumb format. (a) Speedup and (b) Per-
centage of Dynamic Instructions converted to 16-bit format.

bothered to identify CritICs in the first place. To justify the need, in Fig. 4.15a, we plot the

speedup obtained with the following schemes:

• OPP16: In this approach, we opportunistically convert any amenable sequence of consec-

utive dynamic instructions (sequence has to be of at least length 3) to the 16-bit Thumb

format, regardless of whether they are critical or not. Note that if there is an instruction

which is not amenable to such format conversion between two other instructions which

are amenable, OPP16 will NOT move the instructions around for the conversion. Also,

as explained earlier, if the dynamic sequence exceeds 9 contiguous instructions that can

be converted, we use another CDP instruction to accommodate longer sequences for such

conversion.

• Compress: This is a state-of-the-art thumb compression technique, implementing the

Fine-Grained Thumb Conversion heuristic from [160], that first converts a whole function

to Thumb, then replaces frequently occurring “slower thumb instructions” back to 32 bit

ARM instructions.

• CritIC: This implements our CritIC mechanism described earlier, moving/hoisting iden-

tified CritIC sequence instructions and converting them to 16-bit format as long as they

are amenable to such conversion and they are of length ≤ 5.

• OPP16+CritIC: We combine CritIC (for CritIC sequence instructions) and OPP16 (for

others) in this approach.
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As seen, just opportunistically leveraging the 16-bit Thumb format (in OPP16) only provides 6%

benefit on the average over the baseline. Even smartly employing the Thumb format (Compress),

as in [160], only yields a 8% speedup. Since both OPP16 and Compress are agnostic to critical

instruction chains, they can only save on fetch costs (F.StallForI) whenever possible without

hoisting the dependent instructions in the chain. Hence, both these techniques provide less

than 40% of the benefits provided by our CritIC optimization, even though as shown in Fig.

4.15b, CritIC converts around 37% and 50% fewer instructions in the dynamic stream to the

16-bit format compared to OPP16 and Compress respectively. This clearly points out the need

to identify the critical instruction sequences for such optimization, instead of blindly doing this

for all instructions. In fact, nothing precludes adding on the optimization for other instructions

on top of CritIC, as is shown for OPP16+CritIC schemes, furthering the speedup by 25% over

doing CritIC alone.

4.5 Related Work

Criticality: Instruction criticality has been shown to be an important criterion in selectively

optimizing the instruction stream. Prior work has revolved around both (i) identifying critical

instructions [89, 172, 267, 268, 283, 285] using metrics such as fanout, tautness, execution laten-

cies, slack, and execution graph representations, as well as (ii) optimizing for those identified

using techniques such as critical load optimizations [52,102, 267, 268,276] or even backend op-

timizations for critical instructions such as [60,164,172,185,197,200,230,231,285,314]. While

one can potentially employ these optimizations for mobile apps, as we showed (in Fig. 4.1b),

mobile apps have close data-dependent, clustered occurrences of critical instructions, requiring

their ensemble optimization rather than their consideration individually.

Optimizing Instruction Chains/Ensembles: There are prior works, specifically for high-end

processors, in identifying and extracting dependence chains [50, 223, 281]. However, such tech-

niques require fairly extensive hardware to identify these chains, and optimizing for them, e.g.

techniques such as [230, 231, 276] require 16KB SRAM, and [52] incurs 22% additional power,

making them less suitable for resource-constrained mobile SoCs. In contrast, our solution is an
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entirely software approach for identifying dependence chains, and a software approach in op-

timizing for them by intelligently employing the ARM 16-bit thumb compression [24–26, 302]

mechanism.

Front-end Optimizations for Mobile Platforms: There has been significant recent interest to

optimize mobile CPU execution [48,123–125,199,293,295]. Some of these optimizations target

specific domains (e.g. web-browsers [56,134,316,317]), while others address overall efficiency

[23,47,235,303]. Unlike our approach, many of these optimizations either provision more CPU

hardware [23, 47, 316], or optimize for only specific app domains [56, 316, 317]. This work is

amongst the first to show that mobile apps are bottlenecked in the Fetch stage of the pipeline,

suggesting that there can be considerable rewards in targeting this stage. Fetch stage bottlenecks

have been extensively addressed in high end processors through numerous techniques - smart i-

cache management (e.g. [132,156,219,264,273,299]) prefetching (e.g. [55,142,147,189,309]),

branch prediction (e.g [5, 258, 306, 313]), instruction compression [57] SIMD [91, 280], VLIW

[93], vector processing [77], etc. However, many of these require extensive hardware that mobile

platforms may not be conducive for. As we showed, our software solution employs a simple trick

of hoisting and Thumb conversion on critical instructions to extract the same performance that

many of these high-end hardware mechanisms provide. Further, as mobile processors evolve

to incorporate more hardware for optimizing the fetch stage, as shown, our CritIC software

approach can synergistically integrate with them to significantly boost the improvements. While

similar in spirit to some of the prior work on instruction stream compression [166,167,245], we

quantitatively showed the need to identify critical chains and hoisting the instructions selectively

before doing the compression.

Software Profiling for Mobile Platforms: A number of software profiling frameworks have

been proposed [27, 129, 282, 291, 294] - studying library usage [27, 282], app-market level

changes to the source/advertisement models, [291, 294], dynamic instrumentation mechanisms

[129], developer side debugging/optimizations [112, 312] etc. Some of these tools can also be

extended for the profiling and compilation phases described in this work. We have built on top

of the AOSP emulation [111, 237] and Gem5 hardware simulator [46] for profiling, and ART
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compiler for code transformation.

4.6 Chapter Summary

The optimizations proposed in this chapter, CritIC, targets to enhance the performance a grow-

ing class of applications - mobile apps – that are more prevalent and user driven than traditional

server/scientific workloads. In this context, we show that mobile apps have unique characteristics

such as high volume of critical instructions occurring as short sequences of dependent instruc-

tions that makes them less attractive for exploiting well-known criticality-based optimization

techniques. We instead introduce the concept of CritICs as a granularity for tracking and ex-

ploiting criticality in these apps. We present a novel profiler-driven approach to identify these

CritICs, and hoist and aggregate them by exploiting existing ARM ISA’s Thumb instruction

format in a compiler pass to boost the front-end fetch bandwidth. The end-to-end design starting

from application profiling, identification of CritICs, hoisting those instructions and transforma-

tion them to the 16-bit Thumb format has been evaluated for a Google Tablet using the GEM5

simulator to estimate the performance and energy benefits. Evaluations with ten popular mo-

bile apps indicate that the proposed solution results in an average 12.6% speedup and 4.6%

reduction in system-wide energy consumption compared to the baseline design, requiring lit-

tle to no hardware support. The proposed technique can also be synergistically integrated with

other optimizations such as hardware prefetching, or even opportunistically converting as many

instructions as possible to the Thumb format, to further the benefits.



Chapter 5
Short circuiting the entire execution

in the edge

Both the above optimizations, LOST hardware acceleration and CritIC compiler based front-end

optimization of critical instruction chains target only the CPU part of the app execution in the

edge (Fig. 1.2). Although this captures 35% of the execution time, the other component that

is the unique trait of user interactive workloads – IO has not been optimized yet at all. This

research exploits the repetitive nature of user interaction in mobile apps and short-circuits the

execution from end-to-end, i.e., from the sensors reading the inputs to outputs getting displayed

on the screen on a hugely popular sub-domain of mobile apps, gaming, that is known for its

intense user interactions. This research looks to develop a holistic solution to reduce end-to-end

energy consumption of the entire mobile device rather than a piece-meal solution for any single

component.

The main idea of this optimization is selective event processing, rather than reacting to ev-

ery event. As discussed earlier in general for all edge executions, gaming applications are also

inherently event driven, with user input continuously (generated by numerous sensors) driving

the computation. The applications need to prepare and react to each such event, which can result

in significant energy consumption. Instead, if we are selective about which event will really

impact the game behavior, we could avoid unnecessarily (re-)processing thousands of events.
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Such redundant processing can happen due to two classes of events: (i) Repeated Events: When

the exact same events keep recurring, the consequent actions/impact are also usually repetitive.

For instance, if a game registers for a screen swipe or a button press event (with the OS), and

during execution, the user keeps pressing the same button again and again, the application may

not need to react to every subsequent press. Since user inputs are highly complex, one may

expect we do find a significant number of repeated events. However, our study shows that there

were only around 2-5% of such repeated event executions across a spectrum of 7 games. Upon

closer examination, we find that “exact” repetition has a lower probability, as opposed to close

enough inputs/events that eventually result in the exact/same game behavior. This leads to the

next category of (ii) Redundant Events: These events, though they may not exactly match to

prior occurrences, they still do not impact the application execution when they occur. For in-

stance, a game that reacts to rotation/gyroscope events for some windows of execution (say for

switching from portrait to landscape), may need to react only for significant movement of the

device as opposed to minor movements (which can be largely ignored). Our characterization of

7 different top chart games from the Play Store show that, anywhere from 17% to 43% of the

events processed fall in the latter redundant category, not needing any processing at all. Our so-

lution is intended to avoid processing both kinds of events, which can result in multiple hardware

component energy savings.

One of the previously proposed techniques for dealing with redundancy/repetition is mem-

oization. Essentially, we identify frequently executing computations for which the input values

repeat, and maintain a table mapping these input values to the corresponding output produced

by the computation. Subsequently, when the same input occurs for this computation, the en-

tire processing can be ”snipped” by simply substituting it with the output from the table. This

popular technique has drawn applicability at the instruction level (to ease functional unit pres-

sure) [223,265,266], or even at functional levels [86,191,196] to reduce computation. Our SNIP

– Selecting Necessary InPuts – solution is similar to this strategy with the following key differ-

ences: (i) We do not stop at single Instructions or even functional granularity for memoization.

Instead, our solution tries to snip the entire sequence of instructions, which could potentially
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Figure 5.1: Example game execution in a smart phone. The user generated events are captured
at sensors, to be processed at both CPUs and IPs and finally produces the outputs back to the
user.

span multiple functions and even application-OS boundaries, that are driven by the event we

are targeting to avoid processing; (ii) Apart from reducing the overhead of fetching and execut-

ing these instructions, SNIP also avoids the overheads when certain parts of the computation

(in event processing) are offloaded to accelerators/IPs on the mobile SoC; and (iii) As pointed

above, if we are to stick to exactly matching inputs, the scope for optimization is relatively small.

Instead, we also include the Redundant Events in our memoization, where even if the inputs do

not exactly match, we can still snip those computation to produce an output that is no differ-

ent than performing the entire computation. SNIP, thus, goes well beyond prior techniques to

identify and cut-short computations for redundant events.

We next analyze the various challenges in achieving this goal and propose the heuristics and

methodology of SNIP that achieves this goal.

5.1 Overview of Gaming Workloads

Gaming workloads perform event-driven computations to react to various user actions, gestures,

etc., and render the resulting output to the user. For example, Fig. 5.1 shows a user playing a

typical Augmented Reality (AR) game [202] on a phone, where the user swipes, tilts and walks

with the device. The objective of the user in this game is to capture the various objects that

are augmented into the scene that is captured continuously in the phone’s camera (and simulta-

neously processed and displayed on its screen). To achieve this, the game uses the input data

(walking, tilting, swiping, camera feeds, etc.) to process and respond back to the user. Under

the hood, the gaming device captures the three events below continuously: (i) swipe action is

captured using a series of touch events on the screen; (ii) tilt is captured using a series of gyro
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events; and (iii) walk is captured using a series of both the camera feed and the GPS position. To

understand the implications of such events in the hardware, we next walk through the example

in Fig. 5.1 and illustrate what happens in the hardware.

5.1.1 What happens in the hardware?

Towards better performance and energy efficient executions, the apps running on contemporary

System on Chip (SoC) designs leverage a combination of compute units (such as general pur-

pose CPU, GPU cores) and domain-specific accelerators/IPs (such as encoders, decoders, neural

networks, image processors), to take advantage of the spectrum of performance and energy ef-

ficiency tradeoffs offered by them. To understand how these components get orchestrated and

work together during execution, we next delve into what happens in the underlying hardware

during application execution. As depicted in Fig. 5.1, the event generation begins with the user

interacting with the device. As the user interacts (e.g., swipes, walks with the phone, etc.), the

corresponding sensors are read by the sensor hub (step 2 in Fig. 5.1), and the values of the sen-

sors are subsequently passed on to the CPU as interrupts. The OS framework for these interrupts

(e.g., SensorManager in Android [13]) processes these raw sensor values into high-level events

(e.g., swipe, tilt, etc.) – that are further passed onto the game execution at the CPU through

shared memory between the sensor hub’s runtime and the game workload execution (step 3 in

Fig. 5.1). This is accomplished using the Binder framework in Android [115]. The workload

execution at the CPU subsequently processes these events using a sequence of event handler

functions in CPU as well as accelerator/IPs and after processing, renders the outputs back to the

user (e.g., display “pokemon is captured” on the screen).

In short, the CPU cores initiate and manage all the event handling and initial processing, and

it subsequently offloads the heavier tasks such as frame/audio rendering, storing and batching

events etc., to domain-specific microphone, display controller, codecs, GPUs and sensor hubs.
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Figure 5.3: Both CPU and IPs consume more or less equal amount of energy in these executions.

5.1.2 Characterizing the game executions

Since there are multiple components that interact closely during the execution, we first need to

understand where these workload executions expend energy. Towards this, we first look at their

typical energy consumption in a modern Pixel XL class phone hardware in Fig. 5.2, comparing

the time taken to drain a fully charged battery (y-axis) while having an idle phone vs. playing

various games (x-axis). We discuss the details of the methodology in Sec. 5.5. As seen, when

the phone is idle, most of the components in the SoC are unused/idle and hence, the phone

battery can last for≈ 20 hours. On the other hand, even when playing lightweight games such as

Colorphun [270], where the user has to touch the lighter color of the two displayed colors (with

an occasional touch event), the continuous use of power-hungry components such as display,

CPU, speakers, etc., makes the battery drain in ≈ 8.5 hours (< half the time of the idle phone).

As the game play gets more heavy such as AR (Chase Whisply [286]), 3D graphics games (Race

Kings [99]), etc. the battery drains from a 100% charge to 0% in ≈ 3 hours (6× faster than the

idle phone).

To understand what causes this rampant battery drain problem, Fig. 5.3 plots the normalized
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breakdown of the energy consumption across the CPUs, IPs, and sensors in these game execu-

tions. As seen, the sensors and memory consume very small portion of the total energy (¡ 10%),

while the rest is split more or less equally between the CPU and IPs. The major components

of energy consumption are from the CPU and IP executions, where the CPU consumes 40% to

60% of the total energy, and the IPs also consuming 34% to 51% of the total energy. Therefore,

in contrast to Fig. 5.2, where the heavy applications (e.g., RacesKings) drain the battery faster

than light-weight applications (e.g., Colorphun), Fig. 5.3 shows that both CPU and IPs drain the

battery more or less equally for all the applications. Thus, to optimize for energy efficiency in

these workloads, in this paper, we look into the ”whole” SoC execution rather than optimizing

for one or more individual components.

5.1.3 Opportunities, drawbacks, and challenges

Since the SoC hardware is used for many app executions in general, a particular game execution

may or may not need all of the features exposed by the hardware. And, in turn, we can use this

application-level domain knowledge to optimize execution and improve energy efficiency. In

the example shown in Fig. 5.1, the hardware execution starts from the sensors generating raw

values, to the output generation at the display/speakers, etc. Below, we describe the different

opportunities for exploiting this domain knowledge in this example:

At the sensors: Each of the sensors have a range of values it can generate for an external user

interaction. For example, a gravity/rotation sensor has value limits from 0◦ to 360◦ its x (α), y

(β ) and z(γ) rotation angles, that captures the accurate way in which the device is currently held

by the user. However, the execution may only require whether the device is held in landscape

(β ¿ 90◦) or portrait mode (β ¡ 90◦), and not care about the rest of the details at all. In such

scenarios, as discussed in [135, 158, 173], one could employ a low fidelity mode for the sensors

to save energy.

However, the drawback of such an optimization is that our workloads do not consume much

energy at the sensors itself (Fig. 5.3). Optimizing at this level could result in very small energy
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Figure 5.4: % of user events captured in mobile games that resulted in the exact same output as
current state after processing.

benefits overall.

When processing an event and generating output: After the sensor values are obtained at

the OS, the app event handler is invoked with the corresponding sensor data packed into an

event object as arguments. To leverage the limited use of the sensor values by the application

executions, we first need to understand when the sensor values are useful and when they will not

be useful before the the event processing at the CPU. For example, a swipe-up in Fig. 5.1 may

only be relevant when the game has a pokemon displayed for the user to swipe up and has no

effect otherwise. To understand whether there is scope for such “wasted processing” in the game

execution, we present the % of events that resulted in no change in the game state at all in Fig.

5.4. We observe that, in all the workloads, anywhere from 17% to 43% of event processing result

in no output change at all, and that in turn wastes about 34% of energy in processing these events.

For example, in AB Evolution game, the game play involves stretching a catapult to release an

object aimed towards a target. But, when the catapult is stretched to the maximum, no matter

what the user swipe action is, it has no effect on the game. Thus, it leads to the highest useless

events (43%). If we can successfully identify the event to not affect the execution at all before we

process the event, we can save energy from the CPU side execution – and further not invoke the

accelerators as well. To do so, we can potentially leverage the prior occurrences of event values

in knowing whether the event resulted in any output change or not and use it for short-circuiting

subsequent occurrences. Such history based lookup table approaches have been studied in the

past [36, 265, 266] in the context of scientific computations. However, in the context of mobile
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Figure 5.5: To short-circuit a computation, it should ideally exhibit the properties of (a) where
all input/output locations are pre-determined and only the values in the input/output change with
instances of computation. Whereas (b) has many dynamic input/output loaded and stored from
memory, and it will be difficult to implement a variable length input/output based lookup table.

game executions that are already draining battery, we need to be careful in employing such

an approach. Specifically, there are three main questions that collectively determine whether

such approach is feasible or not: (i) are the inputs and outputs reasonably small to fit a naive

lookup table approach?, (ii) are all the input/output locations known apriori?, and (iii) is there

any dynamism involved in loading inputs or generating outputs among instances of repeating

execution? We next analyze the workload behavior and answer these design aspects for a naive

lookup table approach.

5.2 Impracticality of Lookup Table Approach

Towards short-circuiting redundant executions, we first explore whether the most common method

for skipping redundant executions using a lookup table could be beneficial in this context or not.

Lookup tables store constant size inputs and outputs per record with the record itself consisting

of the input/output values seen in prior executions. Using this history, future executions can in-

dex into a particular record based on the current input values, and get the outputs directly without

actually executing the computations. For such an approach to be feasible, all the locations from

where the inputs are loaded and outputs are stored should be known apriori (see the example

in Fig. 5.5(a)). However, the various hardware components involved in the compute black box

(CPU cores and IPs) in a mobile SoC often involve dynamic memory accesses during execution,

as shown in Fig. 5.5(b) – where two instances of the computation (shown as different shades),



74

1

2

4

8

16

32

64

0% 10% 20% 30% 40%

N
a

ïv
e

 L
o

o
k

u
p

 T
a

b
le

 S
iz

e
 (

G
B

)

% Execution Coverage

Input Only Input + Output

Exceeds Typical SD card capacity

Exceeds Typical memory capacity
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consume varying number of inputs from varying locations, and also produce outputs to store into

different locations. To overcome the variability and still use a lookup mechanism, we consider

the lookup table to contain the input values from all the possible input locations, i.e., union of

all the input locations and short-circuit the execution for all the possible outputs, i.e., union of

all output locations (both shades in Fig. 5.5(b)).

We study the impact of this approach for a sample game execution, AB Evolution [75],

by plotting the size of the lookup table necessary for short-circuiting varying portions of the

game execution in Fig. 5.6. Here, the x-axis plots the execution coverage in terms of the % of

events weighted by the number of dynamic instructions each instance of the event processing

executed – to account for the dynamism in context-sensitive processing. As seen, even for short

circuiting 1% of the execution, the lookup table grows to 5GB in size, while consuming the

entire memory capacity (6GB) to short circuit only 3%, and the entire SD card capacity (64GB)

for short-circuiting 39% of the execution. The reasons for this bloat are:

• Since this approach includes the union of all the input/output locations in each record, the

sizes of the records are huge.

• In addition, the input values used by each event are not common and can have a wide

range of values – resulting in millions of records in the lookup table. This is further

exacerbated by the fact that games execute a large number of events, causing the lookup

table to explode in volume.

• Not utilizing the output redundancy: As illustrated earlier in Fig. 5.4, up to 43% of
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outputs are exactly the same as prior executions. While even a one byte difference in the

input record can potentially create a new entry in this lookup table approach, the outputs

are still going to be the same for up to 43% of the events.

While prior works identify lookup tables as an efficient way for optimizing redundant output

generations in other workload domains [36, 265], there is a clear difference in game executions,

where the inputs can grow in both size and number to become prohibitively large for lookup

tables and still result in huge volume of redundant outputs. Thus, we next look into reducing the

lookup table size by exploiting the innate characteristics of input-outputs observed in game exe-

cutions to identify the best heuristics to detect and short-circuit redundant output computations,

albeit having vastly varying inputs for processing them.
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5.3 Input-Output Behavior of Event Processing

Though the lookup table approach is impractical, it captures all the inputs used by the execution

and produces all the exact outputs of the computation. In order to overcome its drawbacks, we

need to answer the following questions: what constitutes the huge input/output records?, are all

these records necessary to capture the redundant event outputs in Fig. 5.4?, if not, what parts

of input/output to keep? and what to trim down? To answer these questions, we first define the

categories of input fields the lookup table should contain, and subsequently use the definition to

explore the size and feasibility of trimming the input-output records used in event processing,

while ensuring that it will not result in erroneous executions.

5.3.1 Inputs Characteristics

At any instance of event processing, the execution not only takes the sensor events as input,

but also the internal application state data from memory/storage, and external data from net-

work/cloud. Specifically, there are three categories of input data, with each of them residing in

different locations, namely, Event Objects (In.Event), Previous Execution Output (In.History),

and External Sources (In.Extern). To understand whether they are amenable for memoization or

not, we next study their size/location characteristics in detail for an example execution of AB

Evolution game in Fig. 5.7a by plotting the size spread of each of these categories in the x-axis

and their cumulative % occurrences among various events processed during the game execution

in y-axis.

Event Objects (In.Event): These contain the sensor values from user interactions and are

passed as arguments to event handlers and OS queues in binder [115]. Fig. 5.7a (x-axis) shows

that the size of In.Events are relatively small and varies from 2 to 640 bytes (different event

types have different sizes). While all event processing consume In.Event data, these inputs are

also easily located using their object handles, and have fixed size for the same event type. For

example, the event handler for detecting a change of swipes, always gets a MotionEvent object

of a fixed size passed as argument to the handler – making the handler know its location in
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memory.

Previous Execution Output (In.History): While In.Event data are instantaneous user inter-

actions captured from sensors, the game needs the context involved in the execution progress.

We term this as In.History.

To understand the huge spread of sizes for In.History in Fig. 5.7a (600 bytes to 119 kB), we

next use the example in Fig. 5.7c. Here, a user playing some AR game has two options to walk

in. If it is an empty room, processing the camera feed will result in a plain surface to render the

AR objects on top. Owing to the simplicity, the input data is also relatively small. On the other

hand, if the room is cluttered with a lot of physical objects, the camera feed generates many

options for rendering the AR objects, making the input size larger. This user input-based data

size variation illustrates that this input cannot be found in static memory locations and, as seen

in Fig. 5.7a, In.History is consumed as input in 47% of the event processing.

External Sources (In.Extern): This is the data received from outside the scope of an appli-

cation execution. For example, data from the cloud, network, etc., are not within the scope of

the application executing inside the phone. We observe from Fig. 5.7a that In.Extern input is

only used in the ¡ 0.05% of the events, as most of the images/audio, etc. are read from external

sources only a limited number of times during execution and are stored in memory for future

(becomes In.History). Note that, the audio, images etc. are also huge in size and thus consume

1MB size of inputs in those instances of event processing.

To summarize, In.Event can be used to index into the lookup table because of their ubiquitous

occurrence (53%) in event processing and their fixed-size and fixed-location property. On the

other hand, In.History and In.Extern do not have a fixed size and also are not statically located

in the memory. Therefore, it is impractical for using them in lookup tables.

5.3.2 Shrinking the table using event data to lookup

Stemming from the previous characterization, we next study the effects of trimming the naive

lookup table by using only the input fields from In.Event categories for indexing the table. Since



78

0%

5%

10%

15%

20%

25%

30%

% Size
w.r.t.
naïve

Lookup
table

%
Execution
Coverage

%
Coverage

with
erroneous

outputs

N
o

rm
a

li
z
e

d
 V

a
lu

e
s

Out.Temp

Out.History

Out.Extern

(a)
(b)Only 5% correct outputs

Figure 5.8: (a) Using only In.Event objects for input records, the AB Evolution game’s lookup
table characteristics show better size but has erroneous outputs; (b) The breakdown of erroneous
outputs.

this scheme only uses In.Event data to index into the lookup table, there is a chance that it can

lead to wrong outputs. For example, if a swipe up event is generated in the example in Fig. 5.1,

it may lead to increase in a user’s game score output only when the Pokemon object is displayed

(In.History category). When the object is not displayed, the swipe up event will not result in any

change. By considering only the swipe event (In.Event data) to index into the lookup table, and

not using the knowledge of whether a pokemon is being displayed or not (no In.History data),

the memoization may sometime lead to correct outputs and erroneous outputs some other times

as well.

To understand the impact of such a scheme on both execution coverage and erroneous out-

puts, we present the differences in employing In.Event based memoization with respect to the

naive lookup table approach in Fig. 5.8(a).

As seen, this scheme is clearly advantageous in terms of size of lookup table when compared

to the naive approach explored in Sec. 5.2, with just 1.5% (290 MB) of the original size (19GB

in Fig. 5.6) for short-circuiting 27% of the execution. This lookup table can easily fit in the

memory, and to short circuit the execution, we can just perform the lookup table indexing at the

software [289] to get all the outputs whenever an entry is found in the memoization table.

While this can help in improving the overall energy efficiency, this scheme can match more

than one possible outputs for 22% of the total execution. Since there is no way of knowing

which of these possible outputs is correct without additional input data, namely the In.History

and In.Extern inputs that are not known prior to execution, this scheme cannot be realized for
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short-circuiting redundant events. Thus, the clear advantage of implementing a much smaller

lookup table by only indexing the In.Event data is not possible as it can result in erroneous

outputs.

Note that, similar to different input categories, outputs also belong to the categories below.

Fig. 5.7b shows that there are three categories of outputs:

• Out.Temp: Temporary responses from a game to the user such as a displayed frame

block, vibrate/haptic feedback etc., are categorized as Out.Temp. Even if this category of

outputs is short-circuited to a wrong output value, the execution itself does not get affected

except for the particular user reaction. This could still go unnoticed by the user and can

result in expected correct execution progress. Note in Fig. 5.7b that, these outputs are

usually ¡ 64 bytes in size. For example, there may be a tile in the displayed frame for the

user that is wrong due to an erroneous output from this In.Event based lookup table. Since

60 frames or higher [215, 216] are displayed per second in these devices, one frame’s tile

being wrong will have little to no impact on the user as well (displayed for ¡ 16ms – while

the user’s reaction time is ≈ 10×−20× slower [141]).

• The other two categories, Out.History and Out.Extern compliment the In.History and

In.Extern respectively, i.e., Out.History outputs are used as inputs in subsequent event

processing and Out.Extern are outputs sent to the cloud/network, etc. Therefore, if we

short-circuit either of the Out.History or Out.Extern outputs wrong, the execution it-

self risks becoming erroneous as these outputs are used subsequently as inputs to future

executions. Thus, as long as the erroneous results of this approach is not in these two out-

put categories, it could still be a useful tool for identifying and short-circuiting redundant

executions, albeit with wrong Out.Temp outputs.

Fig. 5.8(b) shows the breakdown of erroneous outputs produced as a result of this scheme and as

seen, 44% of the erroneous executions are Out.Temp, and so, even if it has errors, it will only lead

to minimal quality degradation to the user. On the other hand, the remaining 56% of erroneous

executions fall into the other two output categories (Out.History and Out.Extern) being wrong,
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and so, the scheme cannot be realized as a viable approach to short-circuit redundant event

processing.

We next analyze how such erroneous executions can be avoided by augmenting this mecha-

nism to still take advantage of a relatively small lookup table.

5.4 Selecting Necessary InPuts (SNIP)

Motivated by the fact that ≈ 600 bytes of In.Event fields of the 1MB input data are enough

to short-circuit 14% of the execution, we further investigate whether there are other “influ-

ential” input fields from In.History and In.Extern categories that can help avoid erroneous

outputs or not?. Since there is no specific fixed location or fixed size known for these most-

influential/necessary input fields to identify, we actually need to search the mega bytes of inputs

that determine the correct outputs when short-circuiting executions. Therefore, finding neces-

sary input fields could involve much complex techniques such as scouring through gigabytes of

profile data. We next address this problem with our proposed SNIP approach.

5.4.1 Identifying necessary inputs

While dataflow analysis techniques such as [52, 118, 223, 260] traverse through the dataflow

graphs within a function or basic blocks and find the necessary inputs for every output, such

schemes do not scale well to analyze executions spanning multiple function calls, OS, and IP

invocations, that are a common occurrence in mobile game executions. Fortunately, scouring big

data to identify necessary fields are well known in the machine learning domain, where mature

techniques such as Permutation Feature Importance (PFI [49, 92]) have already been employed.

In the context of identifying necessary input fields, the PFI takes the lookup table described

in Sec. 5.2, and trims it down by identifying a subset of input fields that is most influential

in accurately short-circuiting the output fields. Towards achieving this, PFI searches through

different random permutations of input fields and measure the % output fields that resulted in

erroneous values. By repeating this process for different permutations of input fields, it identifies



81

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 O

u
tp

u
t 

fi
e

ld
s

 t
h

a
t 

a
re

 1
0

0
%

 
a

c
c

u
ra

te

Combination of input fields in lookup table (bytes 
decreasing from left to right) 

In.Event In.History In.Extern

A
ll 

th
e
 o

th
e
r 

in
p

u
t
fi
e

ld
s

Figure 5.9: An example instance of Permutation Feature Importance [49] employed to identify
the most influential input fields from different input categories.

the permutation of input fields (usually a small subset of the input fields), that results in the least

erroneous outputs.

Our goal is to trim down the number of input fields to the bare minimum, while being able

to short-circuit without errors. Towards this, Fig. 5.9 demonstrates an example execution of the

PFI approach to identify necessary input fields for AB Evolution game, where it starts with the

complete set of input fields (left most bar in the x-axis = 1MB size) to short-circuit all the output

fields with 100% accuracy, akin to the naive lookup table approach. Moving from left to right in

x-axis, PFI iteratively trims the input fields further and further with not much loss of accuracy

among the outputs short-circuited (y-axis) at first – where just 1% of output fields are erroneous

even with the input fields getting trimmed down to 1200 bytes. After 1200 bytes however, the

error rate rapidly increases – approximately 1% for every ≈50 bytes of trimming. These 1.2kB

constitute the most necessary input fields for this application.

To understand what category of inputs constitute these necessary input fields, we also color-

code the category of inputs that got trimmed down from the previous input permutation to the left,

that resulted in the corresponding decrease in the % of outputs that can be short-circuited with

100% accuracy. The right most bar belongs to In.Event category, indicating that just 50 bytes

in In.Event category can short-circuit 12% of the output fields with 100% accuracy. Similarly,

PFI also automatically identifies around 1kB of input fields from In.History category at various

points of x-axis to be necessary for short-circuiting the execution. It also identifies some of
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the fields from In.Extern category as necessary. In total, these fields only represent ≈ 1.2kB of

data (approximately 0.2% of the total input fields), and can predict 99% all of the outputs in the

event processing with 100% accuracy. On the other end of the spectrum, using PFI approach can

disregard all of the remaining 99.8% of the input fields with only 1% of the output fields with

erroneous values. And, in order to short-circuit the 1% of output fields with 100% accuracy, we

also need all the remaining input fields in the lookup table. As mentioned earlier, we can still

tolerate erroneous executions if all the 1% of the erroneous output fields belong to the Out.Temp

category.

Towards leveraging PFI for picking all necessary inputs, we need to ensure that SNIP to

address the challenges below:

• Minimizing overheads at the mobile phone : PFI trains on profile data that typically

exceeds the total storage capacity of a mobile phone (Fig. 5.6). Thus, we need to employ

mechanisms that result in minimal overheads to transfer the profile data to an offline cloud

and only get the necessary input fields back from the cloud in order to maximize the energy

benefits.

• Dealing with correctness from profile: Since the necessary input combination produced

by PFI can also have certain a % of erroneous output fields (for just 1% of the outputs), if

those fields belong to Out.History category, it can subsequently cause the whole execution

to be erroneous.

• Dealing with correctness at runtime: Since PFI operates on profiled data, it is not clear

if the profile captures all the scenarios/input variations that can occur during execution. In

case of an insufficient profile, PFI can miss learning some of the necessary input fields,

which can result in a higher % of erroneous outputs.

We next elaborate the steps involved in Selecting Necessary InPuts SNIP, that address all these

challenges.
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Figure 5.10: Overall flow of the proposed methodology

5.4.2 Methodology

Fig. 5.10 shows the overall flow of the proposed methodology with the following steps:

Record and send events to cloud: The first step in SNIP is to record the different inputs and

outputs of event processing observed when the user is playing a game. This can be done either

during the rigorous testing phases involved in app development [9,11,20] or continuously when

users play the game. We describe the latter approach in Fig. 5.10. As recording the input-output

of event processing is data intensive (Fig. 5.6), SNIP records only the event inputs and send them

to the cloud. To do so, we instrument the Android HAL framework [114] to log all event data

sent to the app execution from the Binder threads [115], and dump them into a profile, which is

subsequently transferred to the cloud.

Run app on AOSP Emulator and build the profile: At the cloud, we use an offline profiler

based on the AOSP emulator setup [111, 112, 237] running the game app with input events from

the previous step in Fig. 5.10. In order to capture the input-output behavior accurately, the

recorded events are fed in the same manner as if the user is playing the game once again in

the emulator using additional tools such as [11, 112, 227]. During this emulation, we dump the

input and outputs consumed by the event processing (across various game execution threads) by

instrumenting the emulator to record memory traces [68,227] along with additional information

about the source of the data accesses (e.g., CPU instruction, IP, sensor hub, etc.).
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PFI gets necessary inputs: Once the input-output data is available from the previous step,

SNIP runs the PFI technique on the profiled data to get the necessary input fields. To ensure

correctness during execution, SNIP allows two options:

Option 1: Developer intervention: This option is useful when PFI is applied on the testing

phase of app development, where the necessary input fields from PFI, can be fed back to the

app developers for further corrections as shown in Fig. 5.10. As seen, the necessary input fields

are mapped to the source code’s variables using the additional information tracked during the

above profile phase, and the app developers can fine tune the necessary inputs by adding more

necessary inputs and/or marking Out.Temp variables that can tolerate errors.

Option 2: Continuous learning: Instead of statically fixing the necessary inputs for an app

during the development stage, SNIP also facilitates continuous learning by just looping through

the initial steps (without developer intervention stage) by recording events, building the profile

and developing a PFI based lookup approach repeatedly when the user is playing the game. This

option is more generic than the developer intervention, as it allows to fix any short comings due

to insufficient profile data. We will demonstrate in Sec. 5.6 that this continuous learning can

effectively adapt and control the erroneous executions based on user behaviors.

Using the lookup table during execution: After the PFI based lookup table is built as men-

tioned above, it contains only the necessary inputs and is subsequently sent to the device as an

over-the-air update, along with additional code instrumentation as shown in Fig. 5.10. As seen,

the lookup table is loaded when the app is initialized as a hash table, that is indexed using the

event data. During execution, on any event, the lookup table is indexed with the event hash-code

and if hit, all the other necessary inputs are loaded and compared against the corresponding im-

portant input entries in the lookup table. If the comparisons lead to a match, the execution is

directly short-circuited. Else, the execution proceeds as usual with the event processing.

Thus, we can have a minimal overhead profile driven system in place that can adapt an

execution to tune towards a user’s game play and can potentially short-circuit all the redundant
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event processing in turn. We next evaluate the benefits and overheads of SNIP, and compare the

benefits to the state of the art optimization strategies.

5.5 Experimental Setup

We next describe the experimental setup we use to study the different aspects of SNIP approach

in detail.

5.5.1 Game Workloads

We consider a mix of both open source and off the shelf games from Play store with a mix of

input data characteristics as described below, to study the effects of SNIP on a wide spectrum of

game workload execution behaviors. All these apps are consistently ranked as top games in Play

Store top charts [17].

Simple Touch based games: Simple In.Event based games such as Colorphun [270] and

Memory Game [162] involve the user to touch specific places on the display to score and make

forward progress. These games are also light on graphics and compute components, and mainly

use CPU and display for most of their execution.

Swipe based games: Games such as Candy Crush [21] and Greenwall [188] (open source

version Fruit Ninja [275] game) involve swipe as the major In.Event input, and also have more

animations in the game outputs compared to the simple touch based games. These games also

display more components on the screen compared to touch based games, with which the users

can interact, performs animated reactions, and more computations in each event processing as

well.

Multi In.Event games: AB Evolution or Angrybirds Evolution [75], Chase Whisply [286] and

Race Kings [99] games have much more complex In.Event objects involving drag, tilt, and multi-

touch events. Unlike the above four games, these games also use 3D rendering in the screen
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with the GPU heavily involved to process the events, that involve heavy physics computations

[53, 85, 287]. In addition to other IPs, ChaseWhisply also uses the camera feed continuously to

render AR objects in it and display them to the user.

5.5.2 System Setup

All our studies and experiments are conducted in a Pixel XL class mobile device, that has a Qual-

comm Snapdragon 821 SoC [238] containing Quad-core Kryo CPUs, a 4 GB LPDDR4 memory

and a 32 GB internal storage, and is powered by a 3450 mAh battery. Using this hardware for

our experiments has two specific objectives, namely, (i) measure the energy consumption of the

different hardware components in the app execution; and (ii) record the event data during app

execution to subsequently send to cloud to follow the steps in Sec. 5.4. We next describe the

system setup to achieve the objectives.

Measuring the energy at hardware components: While there are multiple ways of measur-

ing energy at the hardware [14, 16, 239], we use Qualcomm’s Trepn power monitor app [239]

installed in the phone, that can tap into any process or the whole system execution to collect de-

tailed stats on battery consumption, CPU, memory, GPU, and other hardware usage. To record

individual components’ energy consumption, we deploy specific microbenchmark apps to use

only specific components, namely, CPU, CPU+memory, display, sensors, camera, audio and

video codecs and measure their power consumption using the Trepn app. With this system, any

game execution’s events recorded (using the process described next) can be plugged-in with the

power consumption of the different components to get a detailed time series view of what the

component consumed how much energy in the course of execution.

To compute the duration taken to drain a 100% charged battery, we also make use of the

above system to measure the game play’s power consumption behavior over a duration of ≈ 5-

10 minutes, to calculate how long the execution will take to consume 3450 mAh (100% battery

capacity).
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Example Code Max CPU [86, 265, 266] Max IP [198] SNIP
Event
CPUFunc1() Yes No Short-circuit
CPUFunc2() Yes No the whole
CPUFunck() Yes No execution
IP1() No Yes
CPUFunck+1() Yes No
IP2() No Yes

Output

Table 5.1: Example Code in Games and what parts can be optimized by the prior works.

Recording the events in game execution: In order to record all the events occurring during

execution (as described in Sec. 5.4.2), we customize the Android OS to log all the event data

occurring in the execution. In our experiments, we connect the phone to an Android Debugger

[18] client and collect the event logs directly and use it for building the profile with the setup

described earlier. However, we envision that the system will be able to transfer the event logs to

cloud from any smartphone in the future. While capturing all the sensor activities and events are

straightforward (by instrumenting binder threads), capturing the camera feed is a special case

because of how the underlying hardware is built in modern SoCs [238]. For tracking camera

events, we run a screen record process that simultaneously record the camera feed into a video

file that are sent to the cloud for building the PFI. In the future, the screen record feature in

upcoming Android versions [30] can be leveraged to accomplish this across all apps. We next

use this experimental setup to study the effectiveness and drawbacks of SNIP.

5.6 Results

To evaluate the benefits from SNIP, we next list comparison points from prior works and best

case scenarios, that specifically test the different aspects of our proposal namely, optimizing only

the CPU part [86, 266, 289], optimizing only the IP part [198] and the lookup table overheads.

The schemes are:

•Max CPU: To study the effects of short-circuiting the CPU computations alone using prior

approaches such as [86,266] for game executions, and also understand the energy gap between

optimizing just for CPU execution (example in Table 5.1) vs optimizing the whole SoC in SNIP,

we present the Max CPU scheme. Note that, this scheme also assumes quantifies the maximum
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Figure 5.11: (a) Energy benefits using various schemes; (b) The % execution that can leverage
each of the optimizations; (c) The overheads in SNIP are due to the extra energy spent at the
CPU and memory for looking up the table before each event processing.

benefits from techniques such as [86] which assumes all data to be known apriori (recall from

Fig. 5.5(a)), whereas the game execution needs our proposed lookup table solution to find all

inputs apriori.

•Max IP: Prior approaches such as [198] show that IPs can be switched to sleep states when

they are idle. This scheme studies the impact of such techniques in game executions (example

in Table 5.1) and also quantifies the gap between short-circuiting just the IP calls vs the whole

event processing in SNIP.

• SNIP: This is our proposed technique, where both the CPU and IPs can benefit from not

executing redundant event processing and hence both IPs and CPUs can save their energy.

•No Overheads: This scheme follows the exact same optimization steps of SNIP. In addition,

it does not incur any overheads in terms of lookup table costs and comparisons on each input

event processing and shows the scope for future optimizations in this domain.
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5.6.1 Energy benefits and overheads of SNIP approach

We next discuss the energy benefits from the schemes described earlier and the reason for these

benefits in Fig. 5.11. First, Fig. 5.11a shows the energy benefits for all the schemes w.r.t

baseline execution, where we observe that both Max CPU and Max IP have limited energy

benefits in games, where Max CPU can save 0.5% (Chase Whisply) to 13% (Race Kings), and

Max IP saves 0.7% (Memory Game) to 9% (Candy Crush) in terms of energy. In contrast, by

taking both SNIP can benefit anywhere between 24% (Race Kings) to 37% (AB Evolution) of

the event processing energy, translating to an extra battery life of 1.6 hours on an average and a

maximum of 2.6 hours in Colorphun game. This benefit is mainly from the better opportunity

to short-circuit the event processing end-to-end instead of optimizing only certain parts of the

execution as shown in the example code in Table 5.1. For example, Max CPU can only optimize

repeated CPUFunci and not the IPi calls and Max IP can optimize for only the IPi invocations.

Quantitatively, Fig. 5.11b shows the % of executions that can be short-circuited by each of

the above schemes. As seen, Max CPU and Max IP could potentially short-circuit a maximum

of 26% and 15 % of the execution for Colorphun but the energy gains from Colorphun is just

0.6% and 5% respectively. This is primarily because Colorphun game is already a light weight

application, and even the overheads for looking up the necessary inputs (Fig. 5.11c) compares

7.5kB of data on every event. On the other hand, SNIP can potentially short-circuit anywhere

between 40% (Race Kings) to 61% (Candy Crush) of the execution with an average scope for

short-circuiting 52% of the execution – that translates to 32% average energy savings (or 1.6

hours of extra battery life).

Note that, SNIP approach also has additional overheads as seen in Fig. 5.11c, where it needs

to load a lookup table (memory operations) and compare against each and every necessary input

for that event (Comparisons × PFI Input Size) in the table in order to find when to short-circuit

the execution. In order to measure this overhead, we also present SNIP scheme without any

overheads from these comparisons to save additional energy of anywhere from 1% (Colorphun,

Greenwall, and AB Evolution) to 3% (Race Kings) with the exception of 12% in Memory Game

– due to the high amount of comparisons for each event processing. On an average, the overheads
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Figure 5.12: Avoiding developer intervention is possible with adaptive, continuous learning of
user behavior.

in SNIP approach can consume 3% of the execution energy – indicating the PFI based Selecting

Necessary InPuts scheme to be viable, software based alternative compared to the traditional

memoization approaches.

5.6.2 Continuous learning to avoid developer intervention

The above analysis assume the profile and the developer instrumentation to accurately capture

all necessary input fields for the execution to result in correct execution. However, in practical

purposes prior studies such as [15, 113] show that users generate vastly different events/inputs

and it is important for any event learning approach such as PFI in SNIP to fine tune the learning

continuously (Option 2 in Sec. 5.4.2).

Fig. 5.12 shows the PFI detection can adaptively recover itself from erroneous short-circuits

by re-learning the user behavior continuously. We plot the different instances of the same user

playing a sample game in x-axis, and plot the % erroneous output fields in y-axis as a result

of short-circuiting using SNIP without developer intervention for AB Evolution game. In this

experiment, we artificially keep the initial few iterations of the profile to be insufficient for PFI to

not capture all the necessary input fields of the subsequent execution. Therefore, we also observe

the initial few iterations of short-circuiting using PFI to be approximately 40% erroneous for the

first few instances of execution. However, as more and more instances of user events get to the

cloud, a more accurate lookup table is built. Thus, after a few initial bad runs, the % of erroneous



91

output fields get to ¡ 0.1% in just 40 training epochs.

Thus, to avoid developer intervention (option 1), the profiler at the cloud can train the PFI

model and test on subsequent event records from the user till a confidence threshold is reached.

By doing so, the user will only start experiencing PFI based short-circuiting when the % of

erroneous output fields is negligible. As a future extension, the profiler can also direct the mobile

phone to “clear” the PFI lookup table if it detects the error rate to worsen (although not observed

in our experiments).

5.7 Related Work

We next discuss the related works to SNIP in three categories:

5.7.1 Memoization

Prior works such as [36, 72, 117, 180, 265, 266, 311] have built look up tables (both in hardware

and software) for short-circuiting such repeated computations in the CPU execution contexts for

scientific workloads. For example, [36,96,223,265] use hardware table to short circuit data flow

graphs based on register information, [51, 82, 289] uses a software based compiler and runtime

memoization engine, [86] replaces frequently executed hot codes with a trained CNN engine to

approximately short circuit the execution. However, as the example code in Table 5.1 illustrates,

these prior works cannot be directly adopted to fully exploit short-circuit the end to end execution

from event generation and all the nested function calls crossing app/OS/IP invocations occurring

in a mobile game execution.

5.7.2 Mobile SoC Optimizations

In mobile SoC, many prior works such as [48, 55, 125, 173, 198, 199, 226, 316, 317] target op-

timizations towards a single component such as CPU [47, 134, 140, 235, 316], video codecs

[124, 136, 138], sensors [221], interconnects [199], memory [123], neural/vision processing

[58, 66, 71, 84, 133, 174, 225] and battery [8, 12, 33, 169, 175], and while considering the whole
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SoC, works such as [168] aim to meet the QoS requirements of frame based apps by reorganiz-

ing the IP scheduling. The most related work to our proposal is [198] where individual IPs are

aggressively switched to sleep states when they are idle, to save energy. While SNIP also aims

to conserve energy of the whole SoC, it creates more opportunities by exploiting the significant

occurrences of redundant event processing in game workloads and snips the computation to get

the outputs directly.

5.7.3 ML based Optimizations

ML is emerging as a useful tool to optimize different parts of the system such as prefetchers

[35, 42, 127, 229], branch predictors [145], approximating executions [86], resource allocation

[194], and scheduling [8, 12] in the recent years. Particularly techniques such as [8, 12, 15, 113]

are already implemented in mobile phones, and they focus on better user interactions, manage

the battery as per user behavior, etc. by training appropriate ML models for them. However,

Android battery optimization techniques such as [8, 12] are not domain specific and just learn

to suspend/kill idle threads in the whole system. SNIP exploits the huge volume of redundant

events in these games to bring additional gains on top of the existing energy savings from the

Android battery optimization techniques.

5.8 Chapter Summary

Although gaming is a widely popular domain of applications in mobile phones, these applica-

tions drain the battery much faster than many other classes of applications. This is primarily

because of the user-driven interactive mode of operation, where the generated events continu-

ously stress the SoC. In this paper, we propose a software solution, called SNIP, to minimize

the energy consumption by exploiting the repetitive nature of inputs and outputs. While mem-

oization can identify and short-circuit redundant events, the event processing involves multiple

function calls spanning to even OS and IP invocations and hence, the lookup table size becomes

prohibitively large. Our proposed solution SNIP uses a machine learning technique on the execu-
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tion profile, to trim down the lookup table size by keeping only a small subset of necessary inputs

needed to generate correct outputs. The complete SNIP design consists of a lightweight event

tracker at the smartphone, a cloud based offline profiler, a Permutation Feature Importance (PFI)

module to trim down the lookup table size, and subsequent compiler based code instrumentation

to leverage the PFI lookup table during execution. We have implemented and evaluated SNIP

approach on a Pixel XL phone and observe that we can save 32% energy in 7 popular games

while being almost completely error free.



Chapter 6
OppoRel: Opportunistic Relayout for

data exchanges between CPU and

GPU in the cloud

Recall from Chapter 1 that user-interactive applications exploit the compute power from both

mobile/edge devices and cloud servers. While the prior chapters optimized both the CPU and

IO in the edge side execution, this chapter aims to optimize for the same user interactive app

execution’s cloud counterpart. For example, a Google Maps execution at the edge frequently

requests the cloud servers for finding new routes, traffic updates, etc., that triggers applications

such as BFS, k-nearest neighbors, single source shortest path, etc. As this execution also account

for a significant portion of the user-interactive app execution’s time (Fig. 1.2), we optimize for

the server side execution next.

At the cloud servers processing user interactive applications Data accesses and transfers

constitute a significant overhead in parallel systems where computing engines have to share data.

This is a long recognized problem [1, 163, 168] in the context of homogeneous multiprocessors

[143,149] where similar processors access shared data under a data parallel programming model

[120, 121, 217] with relatively similar access patterns. Such a model partitions the work and the



95

corresponding data assuming a homogeneous set of compute engines. However, as we evolve

into the accelerator era, where compute engines have specialized capabilities, it is important to

re-visit the same problem in the heterogeneous context - data accesses and transfers between the

main CPU and the specialized accelerator. These two heterogeneous entities may fundamentally

differ, using a functional parallelism model, in what data they access and how they access it.

This can result in inefficient data transfers between the two and ineffective use of the available

memory space. Focusing on the growingly popular CPU-GPU heterogeneous systems, this work

looks to architect how data should be re-laid out for the latter to access what is provided by the

former, to efficiently transfer and make maximal use of the limited GPU memory. To tackle this

problem, we propose OppoRel, a purely software-based solution, that opportunistically uses any

available spare CPU cycles to relayout the data in host memory so that only data that is actually

used by the GPU will be transferred and stored in its memory.

It is relatively easy today to plug in one or more high-end GPU cards into server PCI slots

to build accelerator-based heterogeneous systems. Such CPU-GPU systems are becoming om-

nipresent in numerous personal and datacenter environments - gaming, finance, graphics, visu-

alization, big data analytics and other HPC applications. The main CPU, despite having several

cores, offloads GPU-conducive kernels to the GPU to avail the thousands of cores on the lat-

ter. It uses interfaces like CUDA [213], OpenCL [121], etc., with the main (host) memory

serving as the conduit to pass along the data to be processed by the GPU. Unlike conventional

multiprocessors, despite sharing memory through mechanisms such as Unified Virtual Memory

(UVM) [248], there is no cache coherence across these diverse engines in today’s hardware. Fur-

ther, in current systems, GPUs typically need to DMA-in the data to their local memory, from

the host, before they can work on it. These hardware inefficiencies, can eat into the speedups

offered by the high degrees of parallelism offered by the GPUs.

Apart from these hardware differences from their multiprocessor counterparts, there are soft-

ware inefficiencies arising due to the differential access patterns for the same data on CPU-GPU

systems. For instance, Figure 6.1 shows the accesses to the same page in the QTClustering ap-

plication by both the CPU and the GPU before it gets evicted. Such access pattern differences
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Figure 6.1: Differences in access to the same page from CPU and GPU cores before eviction
in QTClustering [80] benchmark. Despite sparsity in the page access by GPU, all its bytes get
transferred and stored in GPU memory.

can lead to redundant data transfers (not the entire page may be useful). Equally important is the

precious space in GPU memory - we need to ensure that we retain only the useful data in each

page and avoid any wastage.

Such differences in how the data is laid out in host memory and how the GPU threads access

this data can lead to significant overheads in data transfers and subsequent data accesses. There

is no fall-back hardware cache-coherent data transfer mechanism (available on homogeneous

multiprocessors) whose finer granularity of transfers can hide this software mismatch. While

there is a considerable amount of prior work on dealing with memory organizations and data

layouts within GPU memory itself (e.g. [62, 87, 151, 203, 256]), optimizing data transfers and

accesses between host and GPU memory, which can lead to as much as 85% slowdown, is still

very much in its infancy. This problem is likely to become even more important as thread counts

on GPUs increase, and the number of GPUs on a single server grows.

Recognizing the importance of supporting sharing between the host and GPU memories,

there have been recent efforts on a shared Unified Virtual Memory model (UVM) [248] between

the two, with pages migrated between them for locality. It does adhere to page granularity access

control, allowing conventional TLB and address translation mechanisms for data accesses. How-

ever, UVM does not preclude non-useful data in the pages being moved, still wasting transfer

bandwidth and valuable GPU memory space. Recent proposals (e.g. [126,233]), more generally
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in the context of accelerators, have argued for completely doing away with address translation

(i.e. virtual and physical address are the same) and having cache level transfers between the two.

Another recent study [28] has proposed hardware-based dynamic adjustment of the granularity

of data transfer between the two. While finer granularity of transfers (on demand) can save trans-

fer bandwidth, it still needs sophisticated address translation mechanisms to not devote space for

“non-useful data” within the pages brought to GPU memory. Further, the higher set up costs to

initiate the data transfer (say by programming a DMA engine) in the context of current CPU-

GPU systems may mandate a higher granularity of data transfer to amortize these set up costs.

Finally, all these proposals require additional hardware and cannot be directly implemented on

existing off-the-shelf GPU cards.

Based on these observations, we identify the following motivation-derived requirements

from our system:

•Motivation: CPU and GPU may have very different access patterns, where even if the data that

is useful to the former is laid out contiguously, it may be interspersed with useless data for the

latter.

Requirement: We need to selectively transfer only useful data, avoiding useless data, to save on

transfer bandwidth and GPU memory capacity;

•Motivation: Hardware selectivity in data transfer typically only optimizes for the data transfer

cost, and not necessarily for the GPU memory capacity. Optimizing for the latter requires

sophisticated access control and address translation mechanisms (not necessarily at page level).

We look for solutions readily implementable on current hardware.

Requirement: We need software solutions that examine data access patterns of both CPU and

GPU to pick and pack the data in host memory to move only useful data on subsequent demand

(page) misses from the GPU. The existing hardware mechanisms would then suffice to avoid

useless transfers and ensuring full utilization of GPU memory.

•Motivation: Such software relayout should not burden programming complexity. Also, the

associated overheads can overwhelm the savings we provide in data transfer costs and lower

capacity misses.
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Requirement: We require automated code insertion by the compiler to avoid burdening the

programmer. We need opportunities for finding spare bandwidth (main CPU cycles) when such

relayout can be done so that it does not get into the critical path of the execution.

With these requirements, we propose OppoRel, an opportunistic software-based data relay-

out mechanism for current and future CPU-GPU systems. OppoRel implements a compiler pass

in LLVM [177] and Clang++ [178] version 7 with CUDA support [300] for off-the-shelf CPU-

GPU applications that examines the memory accesses of the main CPU cores and the offloaded

GPU kernels to pick-and-pack data into contiguous segments that will be needed by the latter

after the last access to them from the main CPU is done. The addresses for the GPU kernels are

also fixed to ensure resolution to offsets within these new segments so that existing hardware

based page level address translation mechanisms suffice to bring them to GPU memory. As a

result, only useful data is transferred and resides in GPU memory.

A key feature of OppoRel is in doing the relayout only when there is ”opportunistic” spare

bandwidth on the host CPU. When offloading computation, the host CPU core is often waiting

for results from the GPU. We try to leverage such waiting periods of prior kernels to perform

data layout of future kernels, with the ability to stretch even into the execution of the required

kernel until its data is actually required. Further, servers today have several main CPU cores,

not all of which may be serving this (or other) applications(s) (the data center under-utilization

problem has been often pointed out [38, 119, 206]). The relayout option is also well suited to

be performed in parallel by all these cores to further reduce the overhead. Since this is a pure

software technique, one could always turn this feature off, if the overheads start overwhelming

the intended savings - hence termed opportunistic.

Using several CPU-GPU applications from Rodinia [61], SHOC [79] and Polybench [234]

suites that capture a spectrum of GPU capacity misses and opportunities for hiding the relayout

costs, we show the following results on real hardware (and simulations where we study sensitiv-

ity):

• In applications where there is significant GPU capacity misses, and opportunities for hiding

nearly all of the overheads, OppoRel provides as much as 61% speedup over the baseline. On
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Figure 6.2: % Slowdown in baseline execution w.r.t infinite GPU memory
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Figure 6.3: Capacity misses in GPU memory

the average, across 15 benchmarks, OppoRel gives 34% speedup over the baseline.

• For a NVIDIA Volta GPU with 16 GB memory, OppoRel boosts its performance to that of a

GPU with 4 times as much memory by reducing capacity misses.

• The importance of such data relayout, despite the overheads, becomes even more important

in multi-GPU systems where the data (and consequently the useless data items) get moved

between the GPU cards themselves in addition to movement between CPU and GPU.
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•Our software-only approach provides even better speedup than the recently proposed [28]

hardware-based dynamic data granularity adjustment for data transfers.

• Even though relayout overheads can be substantial, being conducive to parallelism, one could

leverage spare CPU cycles on the host to hide much of this in the execution. Most high end

servers containing high performance GPU cards, provision plenty of CPU cores (on one or

more sockets) and not all of these are always utilized - either by these applications or other co-

hosted applications. This work introduces a new way of utilizing those cores (similar in spirit

to run-ahead threads for prefetching [240, 241, 288] for performance, redundant threading for

soft-errors [223]) to speedup the GPU execution, and is not meant to be a panacea for speeding

up GPU executions in all (especially highly loaded server cores) scenarios.

•Our software will be made available in the public domain for ready use in NVIDIA CUDA

supported GPUs.

6.1 Background and Motivation

6.1.1 Current CPU-GPU Architecture

Much of the work on data transfers in shared memory systems (e.g. UMA, NUMA, etc.) have

primarily targeted homogeneous systems, where access patterns are likely to be similar between

processors (at the software level) and fine-grain cache level transfers/coherence (at the hardware

level) reduce false-sharing/wasted transfers compared to page level transfers/migrations. In-

creasingly, as heterogeneity grows within even a single server – especially with GPUs and other

accelerators, shared memory is becoming the de facto standard for communication and data ex-

change. Nearly all accelerator platforms today, allow the main CPU as well as the GPU to access

each other’s memory, even if there is a differential cost (NUMA). A standard for such seamless

addressing and data transfer is also evolving, e.g. Unified Virtual Memory [248] (UVM) which

allows the two entities to share virtual memory and migrate physical pages.

Even though UVM tries to abstract away physical implementation details, current CPU-GPU

systems still have physically disjoint memories that belong to the respective CPU/GPU as shown
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Figure 6.5: Architecture of contemporary CPU-GPU systems.

in Figure 6.5. The host CPU and the GPU (usually on a peripheral card residing on the PCI bus)

have separate memories, but both can still physically access the memory of the counterpart using

UVM without involving the other processing entity. However, current GPUs migrate [248] the

required memory page(s) of 4KB granularity to the GPU memory before accessing it. This can

be achieved either through a demand paging system upon a page fault or explicit page migra-

tions before execution on GPU begins. At the end of such migration, the respective virtual page

(accessed either from main CPU or the GPU) will point to a physical frame in GPU memory.

Current hardware does not support fine-grain cache level transfer/coherence that could poten-

tially fix the software inefficiencies of sparse usage within a page.

6.1.2 Granularity of Data Sharing

GPU executions fetch pages from the host to their local memory at the granularity of 4kB pages.

Note that the capacity of GPU memory, at least today, is much smaller compared to the host

memory (of the order of 16 GB on Volta GPU cards to a few tera bytes in modern hosts [31]).

Thus, when GPU cores access many random memory locations in a short span, it can result in

a large number of different pages being accessed in close temporal proximity, and transferred

to GPU memory. With limited GPU memory, capacity based evictions can become a serious

problem, especially if these evicted pages are needed again. We show the severity of this problem
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by plotting the performance degradation of a number of GPU workloads with a finite 16GB

memory normalized to their execution on a hypothetical system that has infinite GPU memory

capacity in Figure 6.2. We see that the limited memory capacity leads to a very significant

performance degradation - as high as 85% in CFD, with an average degradation of 48% across

these 15 GPU applications. This is because, as Figure 6.3 shows, the capacity misses (due to

subsequent reuse), overshadows the cold misses for initial transfer of data to GPU memory.

This makes it imperative to derive the maximum utilization out of what is resident in GPU

memory. When a page is fetched, there is a presumption that every byte of this page will be

accessed - which we call as the percentage utilization of the page. However, as Figure 6.4 shows,

in all these applications, only a small fraction is used - 27% on the average. In fact, in some apps

such as GAUSSIAN, BFS, etc., the utilization is as low as 3-5% (see the bars for Finite capacity)

even if a lot higher fraction is accessed across the entire execution (Infinite Capacity bars). As a

result, despite the limited GPU memory capacity, we are not efficiently utilizing this space.

6.1.3 Can this be fixed by modulating the transfer granularity?

One way of addressing this utilization problem is by selectively transferring only bytes that

will be accessed by the GPU cores. We could make transfer sizes as small as single words (on

demand) to ensure 100% utilization. However, we will not be exploiting any spatial locality and

the cost of setting up the transfer (e.g. DMA set up, address translation costs) will dominate

the execution. At the other extreme, setting page sizes to several MBs (e.g. superpaging) will

worsen memory space utilization. To evaluate the trade-offs, we vary transfer granularities from

as small as single cache blocks (128 bytes) to as large as 1MB, and plot the resulting performance

(normalized to the current 4K page size default transfer granularity) in Figure 6.6 - averaged

across all applications.

The results confirm our intuitive rationale that at small transfer granularities - smaller than

the default 4K page - even though most of the transfers (and space in GPU memory) is for

useful data, the overheads of frequently performing transfers - costs for figuring out the physical

location on the host memory (address translation), costs for setting up DMA, etc. - dominate
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Figure 6.6: Performance impact of changing the granularity of transfers.

and outweigh the benefits of filtering out the useful data. We are not effectively utilizing spatial

locality in such cases. Beyond 4K, these overheads get amortized over larger chunks, but a lot

of data that is transferred becomes useless.

Problem Statement: Given these trade-offs, the interesting question is: can we still use transfer

sizes of 4K or larger (which can amortize the overheads of transfer) while ensuring that all of

this data will in fact be used by the GPU cores before being evicted? And we want this done

without significant hardware and/or software overheads.

6.2 Why revisit this problem?

This is a relatively well studied problem in several contexts where the granularity of data transfer

needs fine tuning - shared memory in NUMA architectures, movement between layers of the

memory hierarchy (disk to main memory to caches), etc. - based on access latencies, set up

costs, access patterns and spatial locality. However, the need for revisiting this problem in the

context of current and next generation CPU-GPU systems arises from some marked differences

from prior domains as explained below.
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6.2.1 Hardware differences

Whether it be data movement between secondary storage and processor caches or between mul-

tiple processors, even if access control and translation mechanisms are done at large granularity

(such as a 4K page), they still allow fine grain of movement within this large granularity to avoid

some of the problems. For instance, multiprocessors on NUMA systems employ cache-coherent

transfers, where only those cache blocks that miss are fetched on demand. Hence, if some blocks

within a page are not needed, they will not be unnecessarily moved. So also when fetching data

from disk - though the page itself is brought into main memory at a 4K granularity, only selective

cache blocks within this page are placed in processor caches on demand.

However, contemporary CPU-GPU systems, owing to heterogeneity in terms of their com-

putational capabilities, do not support cache coherence between the main CPU cores and the

GPU cores even if mechanisms such as UVM support a shared address space at page granularity.

When any location within a page misses on the GPU, the entire page has to be copied from host

memory even if not all of it will be accessed. This requires careful analysis to identify what

exactly will be needed before performing transfers. This problem is exacerbated with GPUs run-

ning thousands of threads in SIMT fashion. If one thread misses, it is quite likely that another

thread will also miss (because of the data parallel programming model and the high degrees of

parallelism would automatically spread out the accesses across multiple pages). This creates a

burst of transfers being requested from GPU cores at the same time, rather than being evenly

spaced out during execution, resulting in high contention for the shared transfer fabric (buses,

DMAs, memory controllers, etc.) As a result, it is all the more important to ensure that what is

being transferred during this high burst period is useful, and possibly combine multiple transfers

initiated by different GPU cores as a single coalesced transfer for better efficiency.

6.2.2 Application differences

Access patterns of many GPU kernels are different from conventional spatial locality found in

several conventional parallel applications. Consider the piece of GPU code from the QTClus-

tering application in the SHOC benchmark suite [79] in Figure 6.7. This code is executed in
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runTest(...) {
QTC_device<<<THREADS>>>(_indr_mtrx...);

}
void QTC_device(int *_indr_mtrx, ...) {

tid = ...;
FETCH_POINT(tid*(random_seed + 
cand_pnt_0));
//fetch eleven more random points
do {

COMPUTE_(/*above_points*/);
...
//regroup the clusters
//closest point reduction

...
}while(CONDITION)

...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 6.7: Example code snippet from QTClustering benchmark

parallel by the threads, with each thread fetching 12 random points and subsequently clustering

them. The step is repeated by threads till a certain overall quality threshold is met by the clusters

formed across all the threads. The Figure 6.1 that we showed earlier illustrates the differences

between the CPU and GPU access patterns for this application to cache blocks of a page in the

2 cases side by side - the main CPU tends to sweep the entire page, but the GPU accesses only

portions of it (only 4%) before it is evicted. It is possible that the same page revisits GPU mem-

ory several times, with the other bytes/blocks being referenced. However, with the highly data

parallel SIMT nature, the 1000s of threads tend to refer to hundreds of different pages at the

same time - instead of concentrating their efforts on a select few - resulting in this sparse access

pattern for any one of those pages. Hence, it is important to carefully pick what data it needed

by GPU threads, and possibly even pack them so that for the same overall memory capacity we

are able to sustain the access patterns of all those threads within a few physical frames.

6.2.3 Programming paradigm differences

Unlike conventional multiprocessors where each processor is treated symmetrically and assigned

a portion of the data (data parallel) to process, CPU-GPU systems work differently. Even if data

parallelism is employed within the GPU itself, the interaction between the CPU and GPU uses an

offload (functional parallelism) mechanism, i.e. whenever the CPU feels that the GPU is better
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to perform a certain functionality, it offloads the work to the latter and waits for the results. In

many applications, such offload is not only done once, but repeatedly. This offers an opportunity

when there are periods where the main CPU - whether single or multiple cores - is idle, waiting

for the work to be done by the GPU, rather than being employed 100% of the time. Such idle

periods could potentially be employed for identifying/picking the data that will be needed by

the GPU cores for the next kernel that will be offloaded, i.e. we could possibly tolerate high

overheads for picking and packing useful data for subsequent transfers which we may not have

the luxury of doing in traditional multiprocessors. Further, it is not just the main core on the host

that offloaded the computation to the GPU that may be employable for such relayout - so may

other idle cores on the host side to perform this picking and packing in parallel for lowering the

induced overheads. This may be one productive option for exploiting idle/low utilization cores

(opportunistic usage) rather than always expect computational load as the only work for server

cores.

6.3 Motivating our solution

6.3.1 Software rather than Hardware

There are numerous hardware enhancements to explore for identifying and facilitating smart

data transfers. For instance, we could develop adaptive mechanisms that move cache blocks of

a page on demand till a certain threshold and then bringing in the rest as a single chunk. This

requires smart translation and access control mechanisms. We could also develop collective

thread prefetchers - a combination of hardware and software - to tackle this problem. Finally,

there are smarter data transfer hardware such as ”scatter-gather DMAs” (as in [254]) to move

data without requiring it to be contiguous. While these options could be explorations for future

work, in this paper, we focus on a purely software based approach that can be readily used in

current applications and on current and near future hardware. In fact, our software approach has

been already implemented and evaluated on actual hardware, and is to be released for public

distribution.
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Figure 6.8: Addresses generated by GPU Kernels can be dynamic and complex

6.3.2 Automated vs. Programmer initiated?

If we are to perform transfers in software, the natural question is regarding who should insert

such explicit code - the programmer or an automated mechanism in say the compiler? This code

should know what addresses will be referenced subsequently in the GPU kernel, wait till the

data gets filled in by the main CPU into any of these addresses, allocate a contiguous (virtually)

chunk/segment of memory in the UVM on the host, and copy all of the data into the contiguous

chunk. We call this the Relayout operation. Further, the addresses generated by the GPU subse-

quently should be modified/redirected to these new addresses, so that pages will then be brought

on demand to the GPU memory using conventional hardware. Relayout is a fairly extensive

piece of code that needs to be inserted and we examine the requirements for doing so.

In Figure 6.8, we plot the CDF of the GPU kernels studied in terms of two characteristics.

The first line plots the number of pointers that a GPU kernel uses in accessing data. Since the

de-referenced pointer address is known only at runtime, and can possibly point to anywhere

in the shared address space, address calculations needed to perform the transfers become more

cumbersome to track and optimize for by the programmer. It would be better if the compiler

could emit code to perform such actions. As we can see, every kernel studied has at least 1

such pointer-based reference, with over 40% of the kernels having multiple pointer references.

Similarly, the second line in this figure shows how many different variables are involved in

calculating an address. As we can see, most kernels use multiple variables when calculating an

effective address. In fact, some address calculations take as many as 8 different variables.
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While it is not infeasible for the programmer to deal with these issues in writing explicit code

to perform relayout before the kernel execution on the latter starts, it is a rather cumbersome

task. Instead, we opt for a pass in the compiler to insert this explicit code, without requiring any

explicit support from the programmer.

6.3.3 Can we reduce the Relayout overhead?

Depending on how much data needs to be relaid out, the overhead for this operation can become

substantial. Over the 15 applications we study, this overhead (averaged) turns out to be 73%

(of the execution time) which makes this completely not worth it. However, this operation is

inherently parallel - as long as we can partition the data to be relaid amongst the main server

cores, each can independently perform its operation with appropriate offsets. In Figure 6.9, we

show (averaged across all GPU kernels), the overhead for relayout as a function of the number of

CPU cores employed to perform this operation. As we can see, this operation scales reasonably

well up to 24 cores - the total number of cores on our server hardware. Most server systems with

high end GPU cards, do have multi-socket and multiple cores within each socket for the host.

Even a single socket Xeon E5 has 12 cores, and more recent v7 CPUs have 48 cores. Further,

the GPU applications, are more reliant on the GPU cores rather than on CPU cores, making

the latter less utilized. Even in cloud offerings, as in Amazon AWS [31], a user procuring a

Tesla/Volta GPU automatically gets between 16-64 main CPU cores, and very often such cores

are under/un-utilized in GPU intensive applications. Hence, one could “opportunistically” use
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these main CPU cores to perform the re-layout, in this era of multi-cores where memory becomes

more of a bottleneck than raw computing power. One could always avoid, since we are doing this

in software anyway, the relayout and default to the baseline if the cost overwhelms the benefits.

6.3.4 Can we hide the (remaining) overhead?

Despite reducing relayout overheads, it could still delay the start/execution of the GPU kernel

beyond the baseline case. We explain this by defining a term called slack, which is the gap that
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is available between the availability of the last CPU memory address that needs to be re-laid out

to the first subsequent use of any of the relaid data by the GPU kernel. For instance, in Figure

6.10, the main CPU performs some computation which accesses data in its memory. At some

point T 1 , all such data access is done, with the CPU invoking the GPU to work on it. The

GPU begins execution and at some point T 2, starts accessing this data. The time gap between

T 1 and T 2 is the slack, since any delay introduced may extend the execution. Normally the

GPU would have fetched into GPU memory the original pages filled in the main CPU. In our

relayout mechanism, we will copy all of the data, after time T 1 into a separate segment (shown

pictorially as A’s relaid segment). The GPU will generate UVM addresses pointing to this relaid

data, and bring in pages on demand by its default mechanism - our compiler will change those

address generations to point to the relaid segment. In order to hide the overhead of relayout,

this operation which can start any time after T 1 should finish before T 2. We note that this slack

between T 1 and T 2 has 2 components - SlackCPU which is the slack before the GPU kernel even

launches, and SlackGPU which is the slack from its launch till T 2

In Figure 6.11, we plot the CDF (x-axis) of the GPU kernel relayout functions in terms of

increasing ovhd
SlackCPU

(y-axis), where ovhd is the overhead of the corresponding relayout function.

As can be seen, whenever this fraction is lower than 1.0, it denotes that there is sufficient slack

even before the GPU kernel is launched. For instance, in Figure 6.10, GPU Kernel ”A” is an

example of this category since A relayout gets done before T 1+ SlackCPU . Note that this does

not necessarily imply that this potential is always realizable since the main CPU core may still be

executing some other computations (not related to the relaid addresses) in the application code.

However, even if the main CPU core is busy with subsequent application code, there could be

other idle cores on the host to perform the re-layout. As we can see from this figure, nearly 83%

of the kernels have a ratio lower than 1.0, suggesting that even the host side slack (i.e. before

launching the GPU kernel) is sufficient to hide the relayout overheads in a majority of cases. In

fact, up to 34% of the kernels have a ratio as small as 0.6%, showing even more promise in terms

of having their overheads completely hidden. On the other hand, only 17% of the kernels have

an overhead larger than 1.0, and we next focus on those.
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Note that it is not necessary for the relayout function to complete before the GPU kernel

starts. In fact, we could allow the overlap until the first reference (we conservatively allow until

the first reference and not for each of the references) to the relaid data from the GPU core, i.e. the

SlackGPU component. To facilitate this we introduce additional sync mechanisms to ensure that

the GPU executes those address references only after the relayout function completes. Hence, as

long as the relayout completes before this sync operation, we could potentially hide all of its

overhead. This is illustrated in Figure 6.10 for Kernel B, where the sync is used to ensure data

accesses are complete to the relaid segment. We show the potential for allowing slack to grow

in the GPU execution in Figure 6.12 for the tail 17% of the kernels that exceeded 1.0 in Figure

6.11. The x-axis is similar to 6.11 except that we only consider the tail 17% of the kernels.

The y-axis now extends the slack window to SlackCPU +SlackGPU . We now see that 40% of the

relayout functions whose ovhd
SlackCPU

exceeded 1.0 can still be overlapped with the GPU execution

because of the extra SlackGPU . Despite this, 60% of the 13% of the total kernels (i.e. 8% of all

kernels considered) exceed both components of the slack put together, and Kernel C in Figure

6.10 illustrates this category (relayout goes beyond its slack). We will consider applications

containing all 3 categories of kernels in our evaluation.

Apart from relayout when the CPU hands over the computation to the GPU, the reverse

relayout also needs to be done when the GPU returns the control back to the CPU. We call this

the undo relayout() function which could again have a slack component with the potential to hide
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some or all of the reverse relayout overheads. The Undo relayout() functions are also shown in

Figure 6.10.

6.4 OppoRel

Based on the observations from our prior section, we now present our OppoRel mechanism,

which opportunistically (based on spare main CPU utilization) picks and packs the data that will

be useful to the GPU for a future kernel. Our compiler enhancements introduces code on the

host side for such picking and packing, and also modifies the addresses that will be generated

by the GPU cores, and subsequently the normal runtime mechanism will transfer the pages on

demand which will likely only contain useful data.

6.4.1 OppoRel Compiler Pass

We have implemented a LLVM [177] and clang++ [178] based compiler pass that takes off-the-

shelf CUDA workloads and transforms them as follows:

Identifies all GPU address generations: It scans through all GPU kernels, and finds the address

generation codes. For example, this pass identifies lines 6 and 7 in Fig. 6.7 where each thread

accesses specific offsets in the indr mtrx array.

Insert a mem relayout function: For each such identified memory access, it inserts code in a

mem relayout() function that will copy data from these addresses at runtime using the operand

variables to calculate the addresses. This way, only the data that will be used by GPU cores will

be picked-and-packed. This function will be called by the main CPU to copy the data before the

GPU kernel starts. Since there may be a considerable amount of data that needs to be copied, we

exploit both “idleness” and “parallelism” (using OpenMP [217] calls) in the host CPU cores for

performing this operation as described in previous section. In our example, the FETCH POINT

uses four operands, namely tid, random seed, cand pnt i, and indr mtrx[]. Note that both

indr mtrx and random seed are passed as arguments to the kernel in line 3 of Fig. 6.13a, and

cand pnt i is a local variable declared inside the kernel. The consequent mem relayout() code is
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shown in Fig. 6.13b.

Rewrite the address generation at the GPU: Since the original GPU addresses are no longer

valid, we need to recalculate the addresses to the new relaid data. While the relaid segment

may contain any GPU thread’s data at any location, this may complicate the subsequent address

generation at each GPU thread to access the new location. To simplify this process, we use a

relatively standardized template across all applications for relaying the data. This can be ex-

plained (and is shown in Fig. 6.13a for our above example) using the following parameters:

thread id (tid), per thread data size (s), offset per thread (o). Essentially the relaid segment uses

a contiguous chunk of s bytes for each thread tid, and within this chunk, the successive accesses

of the original chronological order are laid out spatially contiguous (e.g. indx mtrx[0..11] and

indx mtrx[1 ∗ 12+0..11] are accessed by thread 0 and 1 respectively. With such a template, it

becomes relatively easier to go back and modify the addresses generated by each GPU thread to

the corresponding offset within its respective chunk. Note that if two threads do reference the

same memory location, then our relayout function would create two copies of this data, one in

each of the thread’s chunks. This will not create a coherence issue since CUDA does not en-

courage any other thread to read or write when one thread is a writer to this location. For codes

which do such read-write sharing across threads, we simply do not relay such memory locations

and default to their original memory accesseses.

Insert a undo relayout function: While the main CPU could live with the relaid data after the

GPU execution, it becomes quite messy to redo the addresses on the CPU, especially since there

is considerable spatial locality on the CPU. Further, it is not clear if the next GPU kernel has

the same access pattern/sparsity as the prior (we will investigate this in future work). Instead,

in this paper, we revert back to the original layout after the GPU execution, where we need this

undo relayout() to undo the operation of the relayout function. In this example, to get the original

data back, the undo function has a similar function body as the relayout function – except for

lines 8 and 9 in Fig. 6.13c where the source and destination are switched (lines 13 and 14 in Fig.

6.13b.

Leveraging Parallelism for relayout executions: To reduce the overheads due to relayout (as
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discussed in Sec 6.3), we also leverage the available CPU cores to execute the for loop in line

8 of Fig. 6.13b in parallel using the OpenMP construct # pragma omp for [217] in line 7.

Note that it is also possible for multiple relayouts/undo relayouts to be simultaneously ready for

execution (across multiple kernels). To enable this, we also use omp parallel blocks to execute

these multiple relayouts, undo relayouts and kernel launches in parallel as and when applicable.

6.4.2 Limitations, challenges and boundary conditions

Non-universal: The above compiler transformations are feasible only for those where the

compiler can insert code to calculate the effective address at runtime - the addresses themselves

are not necessarily known at compile time, just the knowledge of how to compute them using

values/variables available at the main CPU is needed before offloading to the GPU. However,

there could be situations where this may not be possible, e.g. an address is known only based

on a value/variable that is itself calculated at the GPU end, and not the CPU. Except in 5 of the

176 GPU kernels across our 15 applications, we did not encounter such cases, emphasizing the

usefulness of our simple solution.

Handling races: This relayout mechanism works on the assumption that the CUDA kernels

obey the cardinal rule that no two concurrent warps can access (with at least one writing to it) the

same cache block during execution [209]. So, if the kernel is already doing this, it means it has

some race condition issues. While the race condition detection tools such as NVIDIA NSight

Compute [208, 211, 214], can warn about this during execution in debug mode, our relayout

avoids the race condition totally, and will go undetected. If undetected, the relayout based code

may potentially create copies of the same data - one for each accessing thread to which the

warps can individually write their copy of data. When calling undo relayout() call at the end of

the kernel execution, the two copies will be merged in parallel (due to omp parallel for) to get

unforeseen consequences. To avoid this, we suggest users first run their code using the NVIDIA

NSight Compute tool and then run it through our compiler passes for the transformed version.
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Handling atomics: One way current kernels share data during execution is by using atomic

constructs. To be safe, we do not relayout the data structures used inside atomics.

Handling syncs: sync constructs provide a barrier mechanism within warps, block and

grids to share data between the threads in the corresponding level. The SM’s scheduler en-

gine makes a context switch on executing syncthreads(), and waits for the sync condition to

get satisfied, for the context to again be marked as ready. The reason we need to be concerned

when this occurs is because subsequent to a sync, a GPU thread may access some other thread’s

data/locations - making it insufficient to simply offset within a thread’s chunk in the relaid seg-

ment. There are several ways to address this. We could recalculate addresses and index into

other thread’s chunks in during address generation. However, this can become very complicated

and difficult to do in a compiler pass. Another option, is to break the computation across syncs

into separate GPU kernels with a relayout function performed at the main CPU in-between as

before. We found that despite the higher overhead of the latter, this is still a better option since

the number of such cases is relatively low across the applications considered.

Launching dynamic child kernels: CUDA constructs such as dynamic parallelism APIs [210],

allows potential nested kernel launches from inside the GPU execution. While we can look into

extending our compiler framework to support the relayout features for such extensions, none of

the existing workload suites have this in them. We leave this exploration as a future extension.

6.4.3 Protection Issues:

Implicit in the CUDA model is that any GPU thread can access any other thread’s data, and so

can any CPU thread - i.e. they are all within one protection domain determined by the operating

system for that process. Our solution does not deviate - either amplify or restrict this model.

We are only moving data within this protection domain, and any thread even if devious, can

only access or corrupt its (or another thread’s) data in this protection domain and cannot access

outside this domain. The cross-domain protection is still enforced by the underlying page tables
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Workloads Input % Capacity Ovhd
SlackCPU

Ovhd
SlackGPU+SlackCPU(# Kernels) Size Miss

C
at

eg
or

y
A HOTSPOT (1) 4k2 11% 0.33 0.29

RED (8) 26G items 16% 0.42 0.31
3DCONV (1) 5123 28% 0.81 0.55
COVAR (4) 32k2 44% 0.61 0.15
CORR (3) 32k2 48% 0.69 0.23

C
at

eg
or

y
B QT (5) 65k points 23% 1.01 0.74

MD (1) 3G points 25% 1.03 0.99
HUFFMAN (42) 1G file 27% 1.12 0.66
SRAD (9) 50k2 29% 1.11 0.90
PARTICLE (3) 1k×8k frames 53% 1.24 0.97

C
at

eg
or

y
C HEARTWALL (1) 1k×8k frames 55% 1.17 1.01

S3D (56) 1G points 19% 1.30 1.02
GAUSSIAN (2) 32k2 25% 1.25 1.23
CFD (38) 1G file 61% 1.65 1.27
BFS (2) 1G nodes 75% 1.34 1.20

Table 6.1: Workload Characteristics. Numbers in brackets give the number of GPU kernels in
each benchmark.

whose protection bits are put in by the operating system. We are not in any way changing

the OS/hardware mechanisms of how physical addresses are generated and accessed - they go

through TLBs/pages tables/page-walk caches etc. We are only changing logical/virtual addresses

within the address space, so as to not affect any protection issues.

6.5 Experimental Evaluation

6.5.1 Workloads

To analyze the benefits and shortcomings of our proposed OppoRel approach, we pick numerous

off-the-shelf CUDA benchmarks from Rodinia, SHOC and Polybench workload suites. In the

interest of clarity, in this paper, we present results for 5 applications in each category as is shown

in Table 6.1 that are representative of different overheads vs. inherent slack ratios - (i) category

A with slack in the main CPU core itself to not delay the initiation of the GPU kernel (column 5

of the Table with ratios less than 1.0; (ii) category B with not enough slack in the CPU core itself

(column 5 of Table with ratio greater than 1.0) but the first reference to the relaid data by the
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Host Intel Xeon E5-2620 12 cores × 2 threads
64 GB DDR4 Memory

GPU NVIDIA K20m, 2496 cores, 32 threads per warp
5GB GDDR5 memory

Table 6.2: Hardware Configuration

GPU is far enough for additional slack to hide the overhead (column 6 of Table with ratio less

than 1.0); and (iii) category C where the slack on the main CPU and the GPU even when added

up are not sufficient to hide the overheads (column 6 of Table with ratio greater than 1.0). These

categories of workloads also capture a wide spectrum of capacity misses (column 4) in the GPU

memory that OppoRel intends to optimize. By capturing these representative benchmarks from

the 3 categories, we can evaluate the trade-offs between overheads and the benefits of OppoRel

for a wide spectrum of application characteristics.

The public domain versions of these workloads use relatively old CUDA interfaces, and we

had to modify them for availing the Unified Virtual Memory [248] between the CPU and GPU.

Specifically, we have to modify all old cudaMalloc() and cudaMemcpy() calls in the source

code to cudaMallocManaged() and use these unified memory regions in both kernel and host

executions. We also generated larger input data as shown in Table 6.1 (column 3) so that the

kernel executions represent contemporary big data applications [95].

6.5.2 Speedup on Actual Hardware

As discussed earlier, our solution is purely software based and can be readily employed in off-

the-shelf GPU hardware. We have done so for the above workloads, whose source codes pass

through our compiler phases implemented on LLVM and Clang++ version 7 with CUDA support

[177, 178, 300]. We evaluate the benefits on the following server hardware in our laboratory: (i)

the host CPU being a Xeon E5-2620 with 12 cores and 2 threads per core, with a memory of

64 GB, and peak throughput of ≈ 250GFlops; and (ii) a NVIDIA k20m GPU card with 2496

compute cores, running 32 threads per warp and a 5GB GPU GDDR5 memory on the PCIe slot,

with a peak throughput of ≈ 3.5TFlops.
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H
os

t 16 core superscalar CPU, 32 kB 4-way L1-D cache (2 cycle hit);
256 kB L2 (12 cycle hit), 8MB LLC (42 cycle hit);
64-entry L1 D TLB (1 cycle hit); 12 way 1.5k-entry L2 TLB (9 cycle hit);
128 MB L4 eDRAM; 2 TB DDR4 memory, tRAS, tCAS, tACT = 12ns;

G
PU 84 SMs, 32 threads/warp, 64 warps/SM, 256 kB registers/SM;

64 kB L1, 128-entry L1 TLB; 512-entry shared page walk cache;
6MB shared L2; 8 × 2GB HBM2 memory

Table 6.3: Simulation Parameters

Figure 6.14 shows the performance benefits of OppoRel normalized with respect to the con-

ventional baseline execution for the 3 categories of workloads in Table 6.1. Additionally, we also

show a scheme (No Overheads) where the relayout does not incur any overheads. Figure 6.15

shows the capacity misses incurred/reduced in GPU memory as a result of OppoRel compared

to the baseline.

First, let us consider the ”No Overheads” execution which depicts the potential of OppoRel

if we are to hide all its overheads. As is to be expected, the benefits of this approach will increase

with the greater impact of capacity misses in a finite GPU memory. We see that applications such

as CFD and BFS show speedups higher than 80% with this approach since the capacity misses

in these applications are significantly higher - 61% and 75% respectively. OppoRel is able to

reduce these misses to 44% and 64% respectively, to provide the higher speedup. On the other

hand, in applications such as RED, and 3DCONV, the capacity misses even in the baseline are

only 11% and 28% respectively, that the speedups with “No Overhead” OppoRel are only 8%

and 18% respectively.

The ”No Overheads” bars depict the potential, but the realistic speedups for OppoRel will

clearly depend on the overheads for the relayout and the characteristics (slack) of the applications

to hide it. This ability will determine how close the OppoRel bar is to the ”No Overhead” bar

in each application. This is the reason why applications in Category C, such as CFD, despite

showing a very high potential for speedup (85%) only resulted in an actual speedup of 26%,

which is much lower. The 6th column of Table 6.1 shows that the overhead is 0.27× larger than

the slack available in this application, making this visible in the execution. Despite this overhead

being larger, the consequence of a lower capacity miss rate still results in a 26% speedup, which
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is non-trivial. Of all the applications, only in GAUSSIAN of Category C, do the overheads

outweigh the benefits of lower capacity misses to result in a slowdown.

At the other end, applications such as COVAR have high capacity misses (44%) for the ”No

Overhead” scheme to show a potential of 63% speedup, and at the same time have a overhead to

slack ratio of 0.15, making the actual OppoRel come very close to the potential (61% speedup).

These are example applications which are ideally suited for OppoRel.

Finally, there are cases such as 3DCONV and RED, where even though OppoRel overheads

can be completely hidden - overhead to slack ratios of 0.55 and 0.31 respectively - the capacity

misses in the baseline are not severe (16% and 28%) enough to have any meaningful speedups

with OppoRel (overheads or otherwise).

Across these 3 very different categories of applications, we see an average speedup of 34%

with OppoRel (including its overheads) compared to a theoretical potential of 48%. This sug-

gests that OppoRel can provide benefits across numerous applications even if its overheads can-

not be fully hidden. Given that it is only a software optimization to take opportunistic advantage

of low utilization periods in the main CPU cores, one could always turn this feature off if and

when the overheads start dominating as observed in GAUSSIAN.

6.5.3 Sensitivity Experiments with Simulation

Simulation Framework Since we cannot change several parameters on an actual platform, we

next simulate sensitivity to different parameters by building an integrated simulation framework

consisting of three off-the-shelf simulation tools - GPGPUSim [34] for GPU execution, Gem5

[46] for CPU execution and DRAMSim [246] for the memory accesses. The experiments get the

binary execution started on the CPU side (using Gem5). After performing some initializations

(e.g., file reads, input parsing, etc.) in the memory (using DRAMSim), the CPU offloads the

GPU kernels to execute on the GPU side (using GPGPUSim). The benchmark execution begins

with a Gem5+DRAMSim instance (simulating a CPU system along with its memory hierarchy).

Note that, the Gem5 simulator does not understand CUDA invocations. So, we instrument the

benchmark binary with m5op (magic instruction) calls before every GPU kernel invocation to
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make Gem5 hand off the execution to GPGPUSim where the subsequent GPU kernels run. For

simulating multiple GPU cards, Gem5 hands off the execution to more than one GPGPUSim

instance.

Upon a GPU kernel invocation from the CPU side, the appropriate GPGPUSim instance is

invoked. We have extended this simulator to support address translations to support UVM-like

demand paging, (GPGPUSim currently does not support address translations) with per SM TLB

and a shared page walk cache. We integrated GPGPUSim, with a DRAMSim instance to capture

the GPU’s HBM memory controller behavior as well. We have also implemented a PCIe inter-

face between the GPGPUSim and Gem5 to capture kernel invocations, sync constructs, paging

and translation requests between their executions. In the multiple GPU executions, any data

transfers between the GPU cards themselves is done through a dedicated NVLink-like interface

model.

All the costs for relayout which runs on the main CPU before the kernels are offloaded

are also simulated in detail using Gem5. As explained earlier, rather than put this operation in

the critical path, we try to perform such re-layouts concurrent with the GPU execution of the

previous kernel, thus fully or partially hiding the overheads. Further, as pointed out in Sec. 6.3,

multiple main CPU cores are used to speedup this operation. While most of the experiments

assume these main CPU cores are idle (to perform this operation), we study the impact of them

being busy with other workloads in Sec. 6.5.3.3. We use the hardware configuration for the CPU

and GPUs as shown in Table 6.3 for our experiments.

6.5.3.1 GPU Memory/Data Capacity

Since OppoRel makes sense only when the capacity miss reduction in GPU memory outweighs

the cost of relayout overheads, we next study the impact of varying GPU memory capacities.

Fig. 6.16 presents three lines - the Baseline System, and the two schemes (”No Overheads” and

OppoRel discussed earlier in Section 6.5.2) - with increasing GPU memory size on x-axis. All

the results are normalized with respect on the Baseline GPU memory configuration of 16 GB.

OppoRel essentially gives an impression of higher memory capacity by reducing capacity
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misses. As seen, it roughly increases the effective capacity of the GPU by 4× without actu-

ally adding that much physical capacity – i.e, the performance benefits from OppoRel at 16GB

GPU memory is roughly the same as the baseline execution at 64GB GPU memory. As is to

be expected, OppoRel also saturates early at 64 GB of GPU memory for the workloads in con-

sideration, while the baseline continues benefiting from increase in GPU memory till 256 GB

memory suggesting its importance when physical resources are tight. Even if GPU memory

capacities grow in the future, workloads will continue to impose considerable demands in the

emerging big data era, continuing to stress the importance of mechanisms such as OppoRel. The

continuing disparity between OppoRel and the ”No Overheads” approach suggests the need for

future work to develop solutions (possibly even in hardware) to reduce/speedup the overheads

associated with the relayout of OppoRel.

6.5.3.2 Multiple GPU cards

With the trend towards moving more compute into accelerators, dozens of GPU cards are already

offered by cloud vendors on a single server that can share the UVM memory space to collaborate

and execute the same workload with a higher degree of parallelism than a single GPU. We study

the effect of OppoRel in such systems by extending our simulations to support two concurrent

GPUs. In such environments, the baseline performance not only has overheads from host to GPU

memory transfers, but also transfers between GPU memories. The performance impact is shown

in Fig. 6.17, with two speedup bars – OppoRel and ”No Overheads” approach as described

earlier with respect to a 2 GPU baseline.

As seen, the benefits from OppoRel as well as the No Overheads schemes are consistently

greater than that of the single GPU setup (3% more for OppoRel scheme and 7% more for No

Overheads). In fact, even in applications such as Gaussian, where OppoRel overheads were

impacting negatively on the single GPU execution setup, the two GPU setup actually provides

rewards by employing OppoRel (3%). Overall, the performance of the 2GPU executions are

improved by 40% with OppoRel compared to the average of 34% with the single GPU executions

shown earlier.
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6.5.3.3 Less Opportunity - Non-idle CPU cores

Fig. 6.18 shows the effect of not having all the CPU cores available for performing our proposed

relayout optimizations. We make other cores busy, and give lower opportunity for our GPU

application to utilize those cores. The x-axis shows the % of CPU utilization that is being devoted

to serving other applications on the server, with only the remaining utilization available for our

GPU application. The y-axis plots the resulting speedup for OppoRel over the baseline. For

instance, 0% CPU utilization for other applications implies all 24 cores are available to OppoRel

for performing the relayout. As we move to the right, there is lower opportunity for OppoRel

to leverage host resources for performing the relayout, thereby diminishing the speedup. We

still see speedup until the remaining cores are available for 100-66=34% of the time for the

GPU application. Beyond this, the overheads from OppoRel outweigh the gains. As pointed out

earlier, our software based opportunistic relayout can be selectively turned off in such situations -

the CUDA runtime can be instrumented to track the current CPU utilization and make a decision

on whether to execute the baseline flavor or leverage the spare CPU utilization for relayout.

6.5.4 Comparison to prior solutions

Prior works have tried to address the CPU-GPU data transfer problem (and the transfer granular-

ity problem) with a hardware prefetcher to dynamically adjust the granularity of the data being

moved based on workload execution characteristics. We have implemented this previously pro-

posed hardware scheme, MOSAIC [28] on our simulation platform, and compare it with our

OppoRel approach in Fig. 6.19. As seen, OppoRel provides better speedups than MOSAIC in

11 out of the 15 workloads. This is specifically in applications where the usefulness within a

page is low - compare with Fig. 6.4 shown earlier. On the other hand, when there is regular

access patterns as in CFD, GAUSSIAN and HUFFMAN, MOSAIC outperforms OppoRel, but

OppoRel is not far behind. Note that MOSAIC requires extra hardware to address this problem,

while the proposed OppoRel is a purely software approach that can work on existing hardware

too.
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6.6 Related Work

Multiprocessor/Homogeneous data accesses: As pointed out, the problem faced in current

CPU-GPU systems is similar to optimizing for data accesses between communicating compute

engines of multiprocessors [1, 149, 163, 168] and between their corresponding memory sub-

systems [98, 137, 243]. There are many hardware enhancements on NoCs [74, 78, 143, 179],

prefetchers [67, 201, 218, 290], DMAs [103, 254], coherence protocols [76, 106–108, 244], soft-

ware system enhancements [2, 182, 183], etc., to optimize them. Recent CMPs communicate

through high speed on-chip network [74,149] with cache coherence [76,107]. Some works such

as [40, 98] adaptively vary the granularity of data sharing between a few cache block sizes to

full page sizes based on application access behaviors [220, 279]. On the other hand, modern

workloads exploit heterogenous CPU-GPU architectures that do not have such integrated cache

block level coherence and communicate through relatively slower interfaces such as PCIe at the

page granularities [207, 248]. As discussed in Sec. 6.1, CPU-GPU systems have marked dif-

ferences in hardware, programming paradigms and parallelism warranting a revisit of this topic,

and exploration of techniques as suggested in this paper.

Data accesses for heterogenous systems In the context of heterogenous systems, early works

on data transfer between memory hierarchies such as disks to caches propose various transfer

granularity policies [4,81,101], and page replacement [40,161,183], that are adapted to modern

heterogenous data transfers as well. Recent works such as [126, 233] validate the effectiveness

of these techniques and build additional heursitics such as reducing address translation costs

[28, 29, 37, 126, 232, 233, 262, 263], varying the granularities of data [28], application behavior

sensitive granularity decisions [220], and prefetching pages [64]. Data layout optimizations are

studied in both CMP and GPU contexts [310] where a compiler analysis is used to identify and

rearrange accesses in the code statically. Note that, these techniques fail to capture the input data

dependent access behaviors as opposed to OppoRel that inserts code to dynamically understand

and relayout the data to suit kernel executions. Further, to our knowledge, OppoRel is the first

to explore software mechanisms that opportunistically takes advantage of spare host CPU cycles

that get traded-off for subsequent memory system performance in the context of CPU-GPU



124

heterogeneous systems.

GPGPU workload execution optimizations In the context of GPU execution, prior works

identify memory access bottlenecks [62, 130, 151, 171], control and memory divergence is-

sues [59, 87, 151, 249], and interference between co-scheduled kernels [28, 29] as reasons for

their inefficiencies and fix them using combinations of compiler optimizations, runtime support

and hardware extensions [39,63,146,155,184,203]. With the ever growing demand for process-

ing large volumes of data [95], modern GPUs also incorporate many of these techniques like

assistive prefetching [212], better memory capacity and bandwidth, larger thread count, buffer

sizes, [144,207,248]. While the above optimizations are helpful, this work proposes a fully soft-

ware approach that can be adopted in existing CPU-GPU systems as well. Software approaches

such as [155, 195] have looked at partitioning the GPU application to run simultaneously across

multiple CPUs and GPUs. Note that, this methodology still suffers from the drawbacks we ob-

serve in terms of page utilization. So, whenever a workload exhibits such sparse page utilizations

as discussed in Sec. 6.1, utilizing the CPU cycles for OppoRel mechanism is beneficial over the

workload partitioning approach.

6.7 Chapter Summary

This work has presented a pure software based mechanism to address the mismatch between the

access patterns of the CPU and GPU to the same shared pages that can result in poor utilization

of the data transfer bandwidth and limited GPU memory capacity. Our solution, OppoRel, takes

opportunistic advantage of any spare host CPU cycles to relay the data in a fashion that will

avoid redundant bytes from being transferred. Despite having significant overheads, by trading

off any spare compute parallelism on the host side, there are significant gains to be attained

subsequently with lower GPU memory capacity misses. Most servers running GPU applications,

do provision multiple sockets and multiple cores per socket, and not all of these are always

utilized. Even in cloud environments, despite virtualization and consolidation, several reports of

under-utilization have been noted [38, 119, 206] and there is always a need to utilize any spare
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capacity in innovative ways. OppoRel is a step in that direction similar to creating extra threads

for run-ahead optimizations, prefetchers, etc., that have been proposed in prior work. Further,

since we are a fully software mechanism, it is relatively easy to turn this off at runtime when

there are no such spare cycles.

The differences between the “No Overhead” vs the realistic OppoRel provides sufficient

motivation for future work to bridge this gap. We are looking to develop hardware mechanisms

to transfer data that may be non-contiguous (as in Scatter-gather DMAs), address translation

mechanisms to provider finer granularity of access control, etc. On the software side, we only

looked at the immediate next GPU kernel for relayout. Given that most applications have several

kernels being called one after another, we could investigate global mechanisms for better layout

across the sequence to avoid/amortize undo relayout().
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runTest(...){
int*_relaid_indr_mtrx = 
mem_relayout(_indr_mtrx, random_seed, 0, THREADS);
QTC_device<<<THREADS>>>(_relaid_indr_mtrx...);
undo_relayout(indr_mtrx, relaid_indr_mtrx,...);

}
Void QTC_device(_relaid_indr_mtrx, ...){

tid = ...; s=12; o = 0..11;
points = _relaid_indr_mtrx[tid*s + o];

}

1
2
3
4
5
6
7
8
9
10

(a) QT Clustering code instrumented with relayout calls

void* mem_relayout(int *_indr_mtrx, int random_seed,
int tidStart, int tidEnd) {

int *new_relaid_memory = (int *)cudaMalloc-
Managed((tidEnd - tidStart)  * 12 * sizeof(int));
int cand_pnt_0 = ..., cand_pnt_11 = ..;
//copy local constants too
#pragma omp for num_threads(MAX_CPU_THREADS)
for(tid = tidStart; tid < tidEnd; tid ++) {

//exact FETCH_POINT code
int old_location_data = _indr_mtrx[tid*
(random_seed + cand_pnt_0)];
int new_address = tid*12 + 0;
*(new_relaid_memory + new_address) =
old_location_data;
//same for cand_pnt_1 to 11

}
return (void *)new_relaid_memory;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

(b) mem relayout function for indr mtrx

void undo_relayout(int *_indr_mtrx, int *relaid_memory, 
int random_seed,  int tidStart, int tidEnd) {
/** Same as relayout – Swap source and destination **/
...

int old_location = tid*
(random_seed + cand_pnt_0);
int new_address = *new_tid*12 + 0;
_indr_mtrx[old_location] = 
*(new_relaid_memory + new_address);

...
}

1
2
3
4
5
6
7
8
9
10
11

(c) undo relayout function for indr mtrx

Figure 6.13: The same code snippet in Fig. 6.7 is modified with our proposed mem relayout and
mem undo relayout calls.
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Figure 6.14: Performance Speedup with OppoRel on actual hardware
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Figure 6.15: Capacity misses on the GPU
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Figure 6.16: Effect of increasing GPU memory capacity
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Figure 6.17: Effect of OppoRel on 2 GPU setup
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Figure 6.18: Effect of varying CPU utilization
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Figure 6.19: Comparison with prior page-granularity aware prefetching approach



Chapter 7
Conclusions and Future Work

In the widely popular domain of user-interactive workloads, this proposal identifies that the

workloads expend different amount of energy/work on different components in the edge and

cloud server devices. The first two optimizations, LOST and CritIC conclusively show that one

can reduce the edge CPU work by up to 25% by offloading many parts of the CPU execution to

our novel LOST accelerators and an addition 12.6% by recompiling the binary using our pro-

posed CritIC compiler pass – that halves the front end bottleneck for critical instruction chains.

These target the single biggest component of work done during user-interactive app executions

and demonstrate that we can automatically identify LOST acceleration opportunities, and Crit-

ical Instruction Chains by thorough offline analysis of execution traces and also propose the

frameworks for achieving these gains in the future for other emerging workloads and translating

the speedups to significant energy savings.

The third optimization, SNIP targets the entire execution pipeline in an edge device specif-

ically for the intense user-interaction based hugely popular domain of gaming and shows that

we can extend the battery for playing games by 32% on an average by just selectively short-

circuiting the redundant event processing.

When the user-interactive applications offload computations such as finding the shortest

route, etc. to the cloud, our fourth OppoRel optimization addresses the data access inefficiency

of GPU executions found in the CPU-GPU based servers, by opportunistically picking and pack-
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ing only the useful data needed by GPU executions at the host, before transferring them to the

GPU memory, and speeds up the execution by 34%.

Overall, LOST + CritIC + SNIP + OppoRel can holistically optimize the entire user-interactive

workload execution stack at different parts to tackle both their compute and memory require-

ments.

In the future, user-interactive workloads and their optimizations are going to involve much

more data processing, reliance on AI and approximations.

7.1 Addressing Frontend bottlenecks in cloud with CritIC

A significant problem faced in the recent times by cloud applications is severe front end bott-

lencks [32, 269]. The CritIC approach proposed for optimizing mobile workload execution in

Chapter 4 is a software based approach that can easily be extended to cloud systems using a

similar profiling-compiling approach, to alleviate the front end bottlenecks at the cloud.

7.2 AI based system optimizations

We have already shown the potential that AI can offer to optimize the execution of an user

interactive workload. With the cloud growing closer to the devices, techniques such as federated

ML, where the indivdual devices can actively profile their respective user characteristics send

the inputs to the cloud at a much finer granularity (cycle level, memory request level, etc.).

At the cloud, due to the emergence of ubiquitous TPU like architectures, the learning can also

speedup and can detect/react to erroneous short-circuits faster – and even avoid error propagation

reactively to many other users [187].

7.3 Approximations on user-interactions

User interactions captured using sensors are already approximated to certain extents. While the

ML approach in SNIP leverages this to favor execution efficiency, the potential of erroneous out-
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puts limits its use in other domains than games as of now. In the future, with further knowledge

on user interactions to specific domains such as productivity, banking, etc., we can actually make

cautious decisions on whether we can approximate or not – and still leverage the energy savings

from short-circuiting redundant event processing.

7.4 System optimizations using data relayout

Our OppoRel optimizations throws light on the problems posed by plain adaptations of generic

CPU based systems towards the emerging heterogenous compute systems. We show the poten-

tial for a well-managed memory system to achieve up to 60% execution speedup with a pure

software approach that makes use of the otherwise idle CPU cores. In the future, with the ever-

increasing amount of data captured from various edge/cloud devices, processing them needs as

much compute power as possible. While this challenge for processing very large volumes of

data is being addressed today with many new and old compute hardwares such as multiproces-

sor CPUs, GPUs, FPGAs, TPUs, ASICs and other devices such as wafer scale systems [88], etc.,

the interface to communicate and share work amongst these different devices is nascent. While

new heterogenity enabling interfaces such as a smart DMA, processing in memory based relay-

out techniques, smart address translation engines, etc. can play a vital role at the hardware side,

techniques such as OppoRel in Chapter 6 demonstrated significant performance gains by en-

abling the heterogenous data processing completely at the software – while exploiting spare/idle

cycles of the available resources for making the interface efficient. In the future, one can sim-

ply extend the ideas demonstrated between a CPU-GPU heterogenous computing platform to a

more sophisticated CPU - GPU - TPU - FPGA - ASIC - etc., for improving the interaction and

co-processing efficiencies.
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