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Abstract
Learned sequential behaviors are fascinating brain phenomena, but their underlying
neural mechanisms are not well understood. Birdsong is a great model to investigate
such behavior, since it is stereotyped and is learned gradually by juvenile songbirds from
their tutors. Songbird premotor nucleus HVC (proper name) produces precise bursts
of projection neurons during singing and is thought to encode timing in the song. We
develop a detailed computational model of zebra finch HVC neural microcircuit, which
incorporates all experimentally known features of HVC, including realistic number of
neurons, connectivity patterns and axonal conduction delays. We show that a popular
model for songbird HVC, a synfire chain, produces strong oscillations in neural dynamics,
which is inconsistent with experimental observations. We propose an alternative model, a
polychronous network, in which all inputs arrive synchronously to postsynaptic neurons.
The proposed network naturally exploits distributed axonal conduction delays and
produces neural activity with no significant oscillations and silent gaps, i.e., smooth
dynamics. We further explore the role of axonal conduction delays in polychronous
network and demonstrate that width of the axonal delay distribution controls the
oscillations in network dynamics. Narrow distributions produce networks with prominent
oscillations, while wide distributions result in networks with smooth dynamics. The results
suggest that distributed axonal delays alone can explain the smoothness of HVC dynamics.
Next we develop a biologically realistic model that explains the formation of microcircuit
for precise timing in HVC. The model is built on the idea that immature neurons,
provided by neurogenesis in HVC during development, are more spontaneously active
and become prime targets of self-organizing process via synaptic plasticity. The model
predicts that birth order of neurons positively correlates with their burst timing in the
formed network. We show that with incorporation of realistic axonal conduction delays,
our model produces long polychronous sequences. In contrast, ignoring delays leads to
the emergence of synfire chains. The model also reproduces the experimentally observed
spatial connectivity profile between projection neurons in HVC. Finally, the model
predicts that inhibition plays an important role during formation of HVC microcircuit.
Neurons that receive less inhibition are more likely to get incorporated into the network.
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Chapter 1 |
Introduction

Complex and precise sequential behavior patterns are ubiquitously observed in animals.
Activities such as playing a musical instrument, performing dance moves and making a
tennis serve are some examples of sequential human behaviors that require an impressive
accurate muscle coordination and memory. While these behaviors are driven by the
activity of neuronal circuits in the brain, the exact organization of these circuits remains
largely unknown. In particular, the connectivity patterns between neurons (i.e., network
topology) responsible for the observed behaviors are not well understood and are an
active area of research in neuroscience.

In addition, an ability to produce the above mentioned activities is not innate. It is
gained through a rather complex trial-and-error learning process. At the start of learning,
there is a highly variable repertoire of movements with a poor outcome. Gradually, the
produced behavior becomes more accurate, which is accompanied by more stereotyped
movements. How the process of learning happens remains poorly understood [1–3].
Better understanding of neuronal mechanisms behind learning may help us to improve
the learning experience and may potentially lead to the creation of self-learning artificial
intelligence agents.

Unfortunately, neuronal mechanisms are hard to investigate in humans, since the
most accurate recording techniques are invasive and dangerous for subjects. Animals
also demonstrate a rich repertoire of learned sequential behaviors and are easier to study.
Therefore, animal models of sequential behavior can provide highly relevant insights into
the corresponding mechanisms used by human brain.

One prominent example of the precise temporal activity observed in animals is singing.
Singing is a complex vocalization usually used for mating and territory protection. Only a
small number of animal species produce songs including humpback whales [4,5], mice [6],
bats [7] and songbirds [8].
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Figure 1.1. Song structure. An example of a sound spectrogram of a zebra finch song.
Typically, a song is preceded by one or several introductory notes (i). Sequences of syllables,
that are continuous sounds separated by brief intervals of silence, form motifs. One or several
motifs are usually produced per song rendition. Reprinted from [9] with permission from
Elsevier

In this dissertation, we use computational modeling to explore the neural circuit
responsible for song production in songbirds. We also investigate how this circuit
emerges during learning and development, when there is an intensive addition of new
neurons (i.e., neurogenesis) to the song related nuclei. The remainder of this introductory
chapter provides an overview of songbirds as a model for song production, learning and
neurogenesis; and introduces synfire chain and polychronous models of feedforward neural
networks producing precise temporal sequences.

1.1 Songbird as a model for song production, learning
and neurogenesis
Songbirds are similar to humans in many aspects of their behavior and brain organization.
Some avian species, like canary and zebra finch, have been domesticated and are easy to
handle and breed in captivity. Therefore, songbirds became one of the most well-studied
systems in neuroscience. One of the intriguing and relatively easy to study behaviors of
songbirds is vocalization. The vocalization of songbirds can be readily recorded, analyzed
and quantified.

Songs are acoustically complex vocalizations that emerge in juvenile birds trying to
mimic the song of their tutors. They are usually used by males for proclaiming vigor
and dominance, and advertisement of sexual availability. Below we will introduce some

2



Figure 1.2. Avian brain nuclei associated with song production and learning. Nucleus
uvaeformis (Uva), HVC (proper name), robust nucleus of arcopallium (RA) and nucleus of the
twelfth nerve (nXIIts) form a motor pathway, which is responsible for the song production.
Medial portion of the dorsolateral thalamus (DLM), lateral magnocellular nucleus of the anterior
nidopallium (LMAN) and Area X are parts of the anterior forebrain pathway, needed for song
learning. Reprinted from [11] with permission from Oxford University Press

terminology commonly used among songbird researchers. The simplest individual sounds
produced by songbirds are called notes. A series of one or more notes, which is separated
by brief silent intervals, is referred to as a syllable. A sequence of one or more syllables is
called a motif. In many songbirds, the order of the syllables in the motifs corresponding
to the same song does not change from one song rendition to another. The ordering of
syllables in a given song is referred to as a song syntax. The syntax of many songbird
species is complex allowing transitions between multiple syllable types. Fig. 1.1 illustrates
the song structure terminology using an example of a zebra finch song.

Juvenile songbirds typically do not sing. They acquire an ability to sing through
listening to their tutors and attempting to repeat the sounds heard. In the next section,
we will describe the songbird brain circuitry responsible for song production and learning.

1.1.1 Songbird brain

Songbirds have developed sophisticated brain structure to allow for a song production
and learning (see Fig. 1.2). Brain nuclei and major neural pathways related to song
control have been identified in the past [10].

Song related neural circuitry can be roughly divided into two parts. The first
part, called the motor pathway, is responsible for the song production. The output
of the motor pathway feeds directly into the muscles controlling the songbird vocal

3



organ syrinx through the tracheosyringeal portion of the nucleus of the twelfth nerve,
nXIIts [12,13]. Motor neurons in nXIIts receive their main input from the robust nucleus
of the arcopallium (RA), structure analogous to the mammalian layer V motor cortex [14].
Nucleus RA also projects to brainstem motor centers regulating respiration, therefore
providing coordination between vocalization and breathing. RA receives the input from
the caudal nidopallium nucleus HVC (proper name), which in turn is innervated by the
thalamic nucleus uvaeformis (Uva) [15] and the nucleus interfacialis (NIf, not shown).
HVC is also considered analogous to the mammalian motor cortex and is the main focus
of this dissertation. Lesions in the motor pathway disrupt singing or strongly decrease its
quality [16], showing that motor pathway is essential for the successful song production.

The second part of song related neural circuitry is called anterior forebrain pathway
(AFP). AFP forms a loop of interconnected nuclei, that feeds back to RA, thus affecting
the song production. Area X, which is homologous to basal ganglia [17], receives the
input from HVC and projects to the medial nucleus of the dorsolateral thalamus (DLM).
DLM in turn is connected to the lateral magnocellular nucleus of the anterior nidopallium
(LMAN). LMAN completes the loop by sending connections to Area X and at the
same time projects to motor nucleus RA. The importance of AFP for song learning
was thoroughly investigated in lesion studies [18–20]. Almost no effect on the song is
produced by lesions in any AFP nucleus in adult birds. In other words, AFP is not
needed for song production after the song learning stage is over. However, lesions of
AFP in juvenile birds lead to a drastic decrease in their ability to mimic the tutor’s
song. Lesions of LMAN in young birds decrease the observed song variability. Both the
syllable structure and the song syntax stabilize and are often more simplified compared
to the pre-lesion songs. Lesions of Area X prevent the song from crystallization. The
song remains highly variable and fails to develop the stereotypy of the songs of normally
raised birds.

1.1.2 Song development in zebra finches

In this dissertation, we will mostly focus on investigating one particular bird species -
zebra finches. Zebra finches are closed-ended learners, which means that they have a
limited period of sensitivity to vocal experience, called a critical period. They typically
learn to sing a single song during their life. Zebra finches are opportunistic breeders and
do not experience seasonal changes in song control brain circuitry. Therefore, zebra finch
is one of the simplest available models to study song learning.

Song learning starts with juvenile zebra finches listening to and memorizing the
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song of their adult tutors, typically their fathers. By the age between 28 and 35 days,
juveniles begin to produce soft sounds, trying to mimic the memorized song template [21].
Gradually, soft sounds become louder and at the age of about 40 days, juveniles enter the
subsong stage of their vocal development [21]. In the subsong stage, the produced song
has a highly variable structure and is akin to human babbling [22]. Syllable durations are
random and follow an exponential distribution [23,24]. Between 50 to 60 days, referred
to as a protosyllable stage, the birds start to incorporate syllables of a characteristic
duration ∼ 100 ms [25,26]. It is then followed by a multi-syllable stage, with multiple
syllables showing distinctive acoustic features [27]. Finally, by the age of ∼ 70 days,
juveniles enter the "motif" stage with syllables produced in a reliable sequence [28]. By
90 days of age, the song acquires stereotyped structure and remains almost unchanged
afterwards [28].

If juvenile zebra finches are raised in isolation from tutors, they develop a distinct,
isolate song, which can easily be distinguished from the songs of normally raised birds.
Surprisingly, the song of the colonies founded by isolates gradually converges to a
wild-type song in 3-4 generations [29]. Therefore, the zebra finch song develops as a
combination of social interactions and genetic innate factors.

1.1.3 Neurogenesis in HVC

While HVC is not needed for subsong production, which is driven by neurons in LMAN [30],
it is required at all later stages of song development. HVC contains three main types
of neurons: excitatory RA-projecting neurons (HVC-RA), excitatory Area X projecting
neurons (HVC-X), and inhibitory interneurons that do not project outside HVC (HVC-I).
Majority of HVC-RA neurons are added to HVC after hatch [31–34]. The number of
HVC-RA neurons of zebra finches almost doubles between 20 and 50 days post-hatch [35].
Thus, vocal development is accompanied by an intensive addition of new RA-projecting
neurons to HVC (see Fig. 1.3). When zebra finches develop a stable, crystallized song,
neurogenesis rate sharply decreases.

New neurons are constantly added to HVC of zebra finches throughout the bird’s
life [37]. The adult-born neurons in canaries develop similar morphology to the existing
HVC-RA neurons and get fully incorporated into song control circuits [38, 39]. The
functions of adult-born HVC-RA neurons might be different from the post-hatch-born
HVC-RA and are not well understood. One popular idea is that adult born neurons
participate in song maintenance and replace mature neurons that die due to over-excitation
and/or DNA-damage [40–42].
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Figure 1.3. Neurogenesis rate correlates with learning. Number of newly generated neurons
versus bird’s age for zebra finch. Neurogenesis rate sharply decreases after song crystallization.
Adapted from [36] with permission from JNeurosci. Copyright 2002 Society for Neuroscience.

Proliferative cells that produce new neurons are located in "hotspots" in the walls
of the lateral ventricle of the songbird brain [39, 43, 44]. Neurogenesis timeline was
revealed through studies of adult-born neurons in canaries. After 1 to 4 days, newly
formed neuroblasts start to migrate from the place of birth [45, 46]. Migration of new
HVC neurons takes about 1-2 weeks and is either guided by radial glia or shows more
random wandering pattern [45,47]. At the end of the migration, new neurons form cell
clusters by making somatal contact with mature HVC interneurons and HVC-X projection
neurons [47, 48]. It was hypothesized that the contact with mature HVC-X neurons
provides "training" for newly added cells and facilitates their functional incorporation
into existing circuits. Most of the new HVC neurons start to make synapses on RA
neurons by 2 weeks of age and by the age of 8 months have traceable targets in RA [48].

1.1.4 Song related neuron activity of premotor nuclei

We start by describing neurons in the pre-motor nucleus HVC. Inside HVC, HVC-RA
neurons send sparse and distal connections to other HVC-RA and HVC-X neurons,
and make local connections to interneurons [50, 51]. HVC-X neurons also connect to
interneurons, but connections to other HVC-X or HVC-RA are not common. Interneurons
project to both HVC-RA and HVC-X neurons, but little is known about the spatial
profile of these connections. The study performing systematic ablation of HVC-X neurons
in adult zebra finches [52] showed no decrease in song quality even for near complete
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Figure 1.4. Neuron activity in pre-motor nucleus HVC of adult zebra finch. Top: spectrogram
of a song motif. Middle: song-aligned activity of RA projecting neurons in HVC. Bottom:
song-aligned activity of inhibitory interneurons in HVC. Reprinted from [49] with permission
from Springer Nature.

death of HVC-X neurons. Taken together with the lack of HVC-X projections to other
excitatory neuron populations in HVC, it suggests that activity of HVC-X neurons is not
important for the song production.

In the influential study [49], the authors have recorded a single unit activity of neurons
in pre-motor nucleus HVC of singing zebra finches (see Fig. 1.4). HVC-RA neurons
demonstrated a very sparse activity, usually producing a single burst of 4-5 spikes per
song motif. When aligned to different renditions of the song-bouts, activity of HVC-RA
neurons was extremely precise, showing a sub-millisecond jitter in burst onset times.
Such precision was unprecedented in neuroscience at that time, since researchers were
familiar with irregular, almost chaotic activity of cortical neurons. Contrary to the sparse
activity of HVC-RA neurons, inhibitory interneurons spiked frequently during the song.
Their activity was less stereotypical, but still showed significant correlations of firing rate
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across song renditions.
Recordings in the pre-motor nucleus RA show that individual RA neurons produce a

series of high frequency bursts [53]. On average, RA neurons produce around 12 bursts
per song motif with an average duration of 10 ms [54]. The burst shapes and location
in the song are highly repeatable across the song renditions, resembling the accuracy of
projection neurons in HVC [54,55].

Due to the high precision and sparse activity, HVC-RA neurons were hypothesized
to encode the timing in a bird song. According to this idea, bursts of synchronously
spiking neurons serve as a biological clock tick, which transmits the information of what
to do and when to a downstream nucleus RA [54]. In this case, neurons in RA serve
as individual "piano keys", "pressed" by the neurons in HVC. Since RA neurons can
receive connections from different neurons in HVC, they can be "pressed" at multiple
time instances during the song. High precision of HVC neurons ensures that RA neurons
also produce repeatable burst shapes.

1.2 Neural networks for encoding time sequences
Many competing theories exist that describe possible networks producing the observed
activity of HVC-RA neurons. In fact, any network that is able to generate time sequences
should be considered as a possible candidate. In this section, we will briefly review
the popular networks used for modeling time sequences and point out the networks
compatible with observed activity of HVC-RA neurons.

Sequence encoding networks can be roughly split into two categories. Generic
networks start with connectivity not tuned for sequence generation. It is then adapted
through learning algorithms to achieve a task-specific goal. Usually, generic network
approach starts with a random interconnected network with both excitatory and inhibitory
connections. Connection strengths are chosen to keep the network in so called balanced
state, in which inhibition and excitation balance each other. The balanced network state
produces irregular chaotic activity of the neurons, which is thought to be present in
cortical neurons [56–58].

Several learning algorithms exist that are able to modify the synaptic weights in
balanced recurrent networks to achieve the desired output and/or network activity [59–61].
Sequences as long as 5s were successfully produced by recurrent networks with tuned
connections [60,62]. However, tunable recurrent network approaches use limited firing
rate neuron models, and to our knowledge there is no successful implementation of a
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recurrent network based on spiking neurons. Moreover, no model was previously reported
to generate sequences with sub-millisecond temporal precision of individual neurons,
which is the precision observed in the real songbird HVC. Taken together, approaches
based on generic recurrent network have not been able to produce the precise and sparse
neuronal activity of HVC-RA neurons.

In contrast, highly structured networks rely on the pre-built connectivity to produce
sequences [63]. Recurrent networks with global dominant inhibition are capable of
producing precise spike sequences [64]. However, before converging to the spike sequence
attractor, the network generates transient spikes, which depend on the initial network
state. Such transient state is not observed in real songbird HVC.

So far, different approaches to construct recurrent neural networks that produce
precise and sparse sequence of spikes did not succeed. In fact, there is another reason
why recurrent neural network is not likely to exist in HVC. Most recurrent network
models assume dense connectivity between the neurons, with some models connecting
neurons in all-to-all manner. The recurrent networks are called sparsely connected when
probability of connecting another neuron is ∼ 0.1. While such connectivity is reasonable
for cortical circuits, HVC-RA neurons are much more sparsely connected with connection
probability ∼ 0.008 [50]. Such extremely sparse connectivity requires very strong synapses
or highly convergent inputs to allow robust sequence propagation. Since exceptionally
strong synapses are not observed in HVC [65], it is likely that the HVC-RA neurons
receive convergent inputs, pointing out to feedforward network topology. Indeed, a simple
feedforward network with sparse connectivity - synfire chain, is able to produce precise
and sparse temporal activity and remains the most popular model for songbird HVC [66].

1.2.1 Synfire chain

The idea of synfire chain dates back to the work of Abeles [67, 68]. Synfire chain is a
feedforward network that consists of groups (or layers) of neurons connected sequentially
in all-to-all manner to the neurons in the subsequent group in the chain (see Fig. 1.5A).
When neurons in the first group, i.e., starter neurons, are excited, they transmit the
excitation to the neurons in the second group. They, in turn, excite the neurons
in the third group and the process repeats, resembling the falling chain of dominos.
During signal propagation along the chain, activity of the neurons in the same group
is highly synchronous. It was shown that synfire chains are able to self-correct a
perturbation in spike times of the starter neurons, converging to a synchronous group
activity [69]. Such robustness of the synfire chain makes it an attractive biological
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Figure 1.5. Single synfire chain and branching chain network. (A) Single synfire chain that
consists of 3 groups of neurons with 3 neurons per each group. Lines show excitatory connections
between the neurons. Neurons in the first group of the synfire chain are called starter neurons.
If starter neurons are excited, activity propagates robustly along the chain. (B) Branching
chain network that is made of 3 synfire chains connected at the branching point. Each synfire
chain represents a distinct syllable in the song marked by a greek letter. Branching points
represent transitions between different syllables in the song. With this approach, the entire
songbird syntax can be modeled as a collection of synfire chains and branching points.

model for sequential behaviors. Computational HVC models based on synfire chains
demonstrate sub-millisecond precision in neuronal spike times, which is consistent with
experimental observations [66].

Typically, one synfire chain represents a single syllable in the songbird song. To
model a complex songbird syntax with many transitions between syllables, such as the
syntax of Bengalese finch, synfire chains can be connected together to form branching
chain network [70] (see Fig. 1.5B). When neural activity reaches the branching point,
one syllable is selected through a winner-take-all probabilistic mechanism.

Synfire chain is an idealistic network topology which maps a synchronous presynaptic
activity to a synchronous postsynaptic activity. However, real neural circuits possess
inhomogeneities, which can make synfire chain not optimal network for signal propagation.
Common source of inhomogeneity is a distribution of axonal conduction delays. If axonal
conduction delays are not the same, synchronous presynaptic activity will no longer
result in the synchronous input to postsynaptic neurons. Another type of feedforward
network, called a polychronous network, uses distributed axonal conduction delays to
convert non-synchronous presynaptic activity into synchronous input.
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Figure 1.6. Significance of axonal conduction delays. (A) A small network of 5 excitatory
neurons wired with different axonal conduction delays. Delay values in milliseconds are indicated
near the arrows that represent excitatory connections. (B-C) Raster plots with spikes of the
network neurons under different spike times of starter neurons A, B and C. (B) Starter neurons
fire synchronously. Due to different axonal conduction delays, inputs to neuron D do not arrive
synchronously, do not sum up efficiently and produce weak depolarization not enough to elicit
a spike. Neuron E receives a single input from neuron D and also remains silent. (C) Starter
neurons spike at different times to compensate inhomogeneous axonal conduction delays. Inputs
to neuron D arrive synchronously and make it fire. As a result, neuron E receives synchronous
inputs from neurons A and D and also fires.

1.2.2 Polychronous network

The idea of a feedforward network with axonal conduction delays such that inputs arrive
synchronously to postsynaptic neurons goes back to the work of Bienenstock [71]. In
the paper, Bienenstock calls such network a synfire braid and provides some theoretical
estimations of synfire braid memory capacity without a computational implementation.
The same idea was re-discovered later in the studies of Izhikevich, where short time-locked
neuronal sequences with synchronous inputs emerged spontaneously through spike-timing
dependent plasticity (STDP) rules [72,73]. Izhikevich named the sequences polychronous,
where poly means many and chronous means time or clock in Greek. Such choice of
terminology reflects that neural activity in the polychronous sequence is time-locked,
repeatable, but not synchronous.

Let’s consider a simple example of a small network with axonal conduction delays
for illustration purposes (see Fig. 1.6). Five neurons A, B, C, D, and E, are wired with
different axonal conduction delays. If neurons A, B and C spike synchronously at time
t = 0 ms, neuron D receives three non-synchronous inputs at times 4 ms, 3 ms and
2 ms correspondingly. Since the inputs are not synchronous, they may not sum up
efficiently and neuron D may fail to spike. In this case, neuron E will receive a single
input from neuron A at 7 ms and again may not spike due to the input being too weak.
If instead neuron C fires at 2 ms, neuron B at 1 ms, and neuron A at 0 ms, all inputs
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will arrive synchronously at neuron D at time t = 4 ms, and it should spike reliably. If
the integration time of neuron D is 1 ms, it will spike at time t = 5 ms and neuron E
will receive synchronous inputs from neurons C and D at time t = 7 ms. Again, such
synchronous input should be enough to produce robust spiking of neuron E.

Therefore, distributed axonal conduction delays provide additional degrees of freedom
for the neural system. Moreover, infinite resolution of axonal conduction delays effectively
converts neural network into infinite dimensional dynamic system [73]. Built with
distributed axonal conduction delays, polychronous networks can provide synchronous
inputs to all network neurons, and therefore use synapses in the most efficient way. Up
to date, only short and non-stable polychronous sequences emerging through STDP rules
were explored. In this dissertation, we develop two models to produce large polychronous
networks and explore the properties of temporal sequences generated by these networks.

1.3 Outline
A brief outline of the remaining chapters of the dissertation is the following:

• Chapter 2: This chapter presents original computational neuron models used
in subsequent simulations, and discusses approaches to minimize the associated
computational cost.

• Chapter 3: This chapter constructs a detailed computational model of the mi-
crocircuit of songbird nucleus HVC for zebra finch. The model contains realistic
number of neurons and incorporates all experimentally known features of HVC,
including spatial distributions of neurons and distributed axonal conduction delays.
It compares the neural dynamics produced by networks with different connectivity
patterns between HVC-RA neurons.

• Chapter 4: This chapter presents a model for temporal sequence formation in HVC
during songbird vocal development. The model is built on the hypothesis that
immature neurons, provided by neurogenesis, are more spontaneously active and
become prime targets of self-organizing process via synaptic plasticity.
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Chapter 2 |
Computational models

Our goal is get a complete understanding of neural circuits and therefore we follow a
bottom-up approach for simulating dynamics of neural networks. We start with modeling
dynamics of individual neurons. The neurons are subsequently connected with each other
via synapses to form neural networks, whose dynamics is our main focus of interest.

Over the years, many computational neuron models have been developed to gain
insights into neural systems. Neurons have been treated as simple binary state systems [74],
more complex integrate-and-fire capacitor-like elements [75], non-linear oscillators [76],
two dimensional dynamic systems with attractors (e.g., Izhikevich model [77]), and
biologically driven electrical circuit representations [78]. Simple models are usually fast
to simulate on computers, which gives an opportunity to investigate the behavior of large
neural networks. However, simple models provide poor approximation to dynamics of
individual neurons. In contrast, complex models generate more realistic neural responses,
but are more computationally demanding. We chose Hodgkin-Huxley type neuron models,
since they are biologically-motivated and produce realistic-looking action potentials.

In this chapter, we describe the original computational neuron models for interneurons
and RA-projection neurons in songbird HVC [66, 70]. To better suit the needs of our
simulations, the neuron models are modified in the subsequent chapters of this dissertation.
We also describe models for synaptic connections between neurons and noise fluctuations
in membrane potentials. Finally, we compare different numerical methods for simulating
dynamics of single neurons and discuss the advantage of parallel computing for large
scale network simulations.
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2.1 HVC-RA neuron model
As described in Introduction, HVC-RA neurons typically produce a single high frequency
burst of spikes per song motif. Electrophysiological experiments show no bursting
behavior of HVC-RA neurons when current is injected into the soma [79–81]. Recent
study provides a strong evidence that the burst is generated intrinsically by L-type
calcium current (where "L" stands for long-lasting, referring to the length of activation)
and resembles a dendritic calcium spike observed in many neurons [66].

To account for the experimental observations, HVC-RA neurons are modeled as
two-compartmental Hodgkin-Huxley neurons with soma and dendrite (see Fig. 2.1A).
When external current is injected to the dendritic compartment, it generates a strong
calcium spike that drives robust and stereotyped burst in somatic compartment (see
Fig. 2.1B). In contrast, when current is injected to the soma, there is no calcium spike in
the dendrite. Instead, the soma fires a sequence of spikes that depends on the current
magnitude, which is consistent with electrophysiological studies (see Fig. 2.1C).

Stereotyped dendritic calcium spike is produced by the interplay of two currents
in the dendrite: the high-voltage activated calcium current (with voltage-dependent
conductance GCa and reversal potential ECa) and calcium-dependent potassium current
(with voltage and calcium concentration dependent conductance GCa,K and reversal
potential EK) (see Fig. 2.1D). When dendritic membrane potential is sufficiently high,
calcium current gets activated and leads to a rapid and prolonged depolarization of
the dendritic compartment - the dendritic spike. During dendritic spike, there is a
build up of calcium concentration inside the dendrite, which results in the activation
of calcium-dependent potassium current. This current hyperpolarizes the dendrite and
serves as a stopping mechanism for dendritic spike.

Somatic compartment is equipped with almost classical sodium (with voltage-dependent
conductance GNa and reversal potential ENa) and potassium (with voltage-dependent
conductance GK and reversal potential EK) channels for spike generation. During stereo-
typed dendritic spike, the soma receives a steady influx of current from the dendrite.
It depolarizes the somatic membrane potential high enough to activate the voltage-
dependent sodium current. Sodium current provides a rapid depolarization of the soma,
which in turn activates a delay-rectified potassium current responsible for bringing the
membrane potential down and stopping the spike. Dendritic spike duration of ∼ 10 ms
allows soma to produce 4-5 spikes, which is consistent with experimental observations.
Fig. 2.1E illustrates the interplay between spike-generating currents in the somatic
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Figure 2.1. Computational model of HVC-RA neuron. (A) Equivalent electrical circuit
representation of HVC-RA neuron, showing both dendritic and somatic compartments, and
ionic membrane channels. (B) Response of the model to the pulsed current of 20 ms duration
injected to dendrite. Left: 3 examples of neuronal responses to different current amplitudes.
Right: Cumulative graph showing number of somatic spikes versus current amplitude. (C)
Response of the model to the pulsed current of 20 ms duration injected to soma. Left: 3
examples of neuronal responses to different current amplitudes. Right: Cumulative graph
showing number of somatic spikes versus current amplitude. (D) Top: Dendritic membrane
potential during dendritic spike. Bottom: Calcium and calcium-dependent currents during
dendritic spike. (E) Top: Somatic membrane potential during dendritic spike. Bottom: Sodium
and potassium currents during dendritic spike.
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Reversal
potentials

(mV)

Conductances
(mS/cm2)

Gating time constants (ms) Gating limit values

EL = -80

ENa = 55

EK = -90

ECa = 120

GL = 0.1

GNa = 60

GK = 8

GCa = 55

GCaK = 150

τn = 0.1 +
0.5

1+exp((V+27 )/15)

τh = 0.1 +
0.75

1+exp((V+40.5 )/6)

τr = 1.0

τc = 10

n∞ =
1

1+exp( (V+35 )/10)

h∞ =
1

1+exp((V+45 )/7)

m∞ =
1

1+exp( (V+30 )/9.5)

r∞ =
1

1+exp( (V+5)/10)

c∞ =
1

1+exp( (V - 10)/7)

Miscellaneous:
Ad = 10000 µm2 Rc = 55 M�

As = 5000 µm2 Cm = 1 µF/cm2

E = -80I

E = 0E

Table 2.1. Parameters of HVC-RA neuron model

compartment during the dendritic spike.
The membrane potentials of somatic (Vs) and dendritic compartments (Vd) evolve

according to the following equations:

CmAs
dVs

dt
= As(Is,L + Is,K + Is,Na) + Is,ext + Vd − Vs

Rc

CmAd
dVd

dt
= Ad(Id,L + Id,Ca + Id,CaK + Id,exc + Id,inh) + Id,ext + Vs − Vd

Rc

where Cm - membrane capacitance per unit area, Rc - resistance of the coupling link
connecting soma and dendrite; As and Ad - somatic and dendritic compartment surface
areas; Is,L = −Gs,L(Vs − EL) and Id,L = −Gd,L(Vd − EL) - somatic and dendritic leak
currents; Is,ext and Id,ext - somatic and dendritic external currents; Is,K = −GKn

4(Vs −
EK) - somatic potassium current; Is,Na = −GNam

3
∞h(Vs − ENa) - somatic sodium

current; Id,Ca = −GCar
2(Vd − ECa) - dendritic calcium current; Id,CaK = −GCaKc/(1 +

6/[Ca])(Vd−EK) - dendritic calcium-dependent potassium current; Id,exc = −GE(Vd−EE)
- dendritic synaptic excitatory current; Id,inh = −GI(Vd − EI) - dendritic synaptic
inhibitory current. Leak conductance in somatic and dendritic compartments have the
same value Gs,L = Gd,L = GL.

Gating variables n, h, r, c obey the following differential equation: τxdx/dt = x∞(V )−
x, where x = n, h, r, c.
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Figure 2.2. Computational model of HVC-I neuron. (A) Equivalent electrical circuit repre-
sentation of HVC-I neuron, showing ionic membrane channels. (B) Top: Membrane potential
during spike. Bottom: Sodium, potassium delay-rectified and high threshold potassium currents
during spike. (C) Response of the model to the external pulsed current injection of 150 ms
duration. Left: 3 examples of neuronal responses to different current amplitudes. Right:
Cumulative graph showing number of spikes versus current amplitude.

Concentration of calcium ions inside dendritic compartment increases with the influx
of calcium current and is buffered away by the internal ionic pumps responsible for
maintaining the homeostatic calcium concentration:

d[Ca]
dt

= 0.1Id,Ca − 0.02[Ca]

.
Numerical values for all parameters of HVC-RA computational neuron model are

given in Table 2.1.

2.2 HVC-I neuron model
HVC-I neurons spike frequently during the song motif. Therefore, we use a fast-spiking
Hodgkin-Huxley type neuron model with a single compartment (see Fig. 2.2A). To
generate a spike, the membrane is equipped with sodium (with voltage-dependent
conductance GNa and reversal potential ENa), delay-rectified potassium (with voltage-
dependent conductance GKdr and reversal potential EK) and high threshold potassium
channels (with voltage-dependent conductance GKHT and reversal potential EK). As in

17



Reversal
potentials (mV)

Conductances
(mS/cm2)

Gating voltage dependence

EL = -65

ENa = 55

EK = -80

EI = -75

EE = 0

GL = 0.1

GNa = 100

GKdr = 20

GKHT = 500

an =
0.15 (V+15)

1 exp( (V+15 )/10)
bn = 0.2 exp(-(V+25)/80)

am =
V+22

1 exp( (V+22 )/10)
bm = 40 exp(-(V+47)/18)

ah = 0.7 exp(-(V+34)/20) bh =
10

1+exp( (V+4)/10)

w� =
1

1+exp( V/5)

τw = 1.0 ms

Miscellaneous: A = 6000 µm2 Cm = 1 µF/cm2

Table 2.2. Parameters of HVC-I neuron model

the classical Hodgkin-Huxley model, the spike is initiated by the activation of sodium
current. High-threshold potassium current only activates at high voltage and is responsible
for a quick membrane potential reset. It decreases the refractory period of the neuron
model, so that the neuron can sustain high frequency firing. Fig. 2.2B shows the interplay
between spike-generating currents during the spike. Neuron model responses to a pulsed
current injections of 150 ms duration are shown in Fig. 2.2C. Frequency of generated
spike train increases almost linearly with the increase in current amplitude, confirming
that the model is able to maintain a high frequency firing regime.

The membrane potentials V evolves according to the following equation:

CmA
dV

dt
= A(IL + IKdr + IKHT + INa + Iexc + Iinh) + Iext

where Cm - membrane capacitance per unit area, A - membrane surface area; IL =
−GL(V − EL) - leak current; Iext - external current; IKdr = −GKn

4(V − EK) - delay-
rectified potassium current; IKHT = −GKw(V −EK) - high threshold potassium current;
INa = −GNam

3h(V −ENa) - sodium current; Iexc = −GE(V −EE) - synaptic excitatory
current; Iinh = −GI(V − EI) - synaptic inhibitory current.

Gating variables n,m, h obey the following differential equation: τxdx/dt = αx(V )(1−
x)− βx(V )x, where x = n,m, h, and αx(V ), βx(V ) - corresponding opening and closing
voltage dependent rates.

Gating variable w follows the following equation: τwdw/dt = w∞(V )− w.
Numerical values for all parameters of HVC-I computational neuron model are given
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in Table 2.2.

2.3 Synaptic model
We model connections to HVC-RA and HVC-I neurons as conductance-based "kick-and-
decay" synapses. When a presynaptic neuron fires an action potential, the excitation
travels along its axon to reach the presynaptic terminal. After receiving a depolarization,
the vesicles in the presynaptic terminal fuse with the membrane and release the trapped
neurotrasmitter into the synaptic cleft. The neurotransmitter binds to the receptors on
the postsynaptic terminal and leads to their opening. Depending on the type of open
receptor, positive or negative ions enter the postsynaptic cell and affect its membrane
potential. Gradually, the concentration of neurotransmitter in synaptic cleft is buffered
away by the enzymes in the subsynaptic membrane and/or reuptake pumps in presynaptic
terminal. During that time, permiability of the receptors on the postsynaptic terminal
decreases. Eventually the receptors close completely, ending the synaptic transmission.
"Kick-and-decay" synapses assume instantaneous neurotransmitter release and binding to
the receptors in the postsynaptic terminal. It is modeled as an instantaneous increase
in the synaptic conductance: gexc,inh → gexc,inh + ∆g, where ∆g is the strength of the
synapse. Then, the gradual closing of the receptors is modeled as an exponential decay
with time constant representing the neurotransmitter decay dynamics:

τexc,inh
dgexc,inh

dt
= −gexc,inh

For HVC-RA neuron, we make synapses only on the dendritic compartment. Numeri-
cal values of conductance decay times for HVC-RA and HVC-I computational neuron
models are given in Table 2.3.

HVC-RA HVC-I

τexc = 5 ms

τinh = 5 ms

τexc = 2 ms

τinh = 5 ms

Table 2.3. Synaptic parameters of neuron models
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2.4 Noise model
When recorded, membrane potential of all neurons demonstrates random fluctuations -
noise. There are multiple sources of neuronal noise: thermal noise, ionic channel noise
and synaptic noise. Thermal noise, also known as Johnson-Nyquist noise, is caused by
the thermal agitation of the charge carriers - ions. It represents a fundamental lower
limit of the membrane potential fluctuations and can only be reduced by decreasing the
temperature. Ionic channel noise originates from the stochastic nature of ionic channel.
Random openings and closings of ionic channels produce fluctuations in the number
of active channels and lead to the membrane potential fluctuations. Finally, synaptic
noise is caused by the external inputs from randomly spiking neurons. Typical cortical
neuron receives ∼ 30000 inputs from other neurons [82], and experiences a constant
bombardment of synaptic activity. Thermal noise is much smaller than other noise
types [83] and can safely be ignored for our purposes. Membrane potential fluctuations
are usually dominated by the synaptic noise.

We hypothesize that random dynamics of HVC-I neurons is dominated by the
synaptic noise. Thus, we model noise in HVC-I neurons as random external excitatory
and inhibitory spike trains. Both spike trains are generated by Poisson processes with
an average firing rate of 250 Hz. When excitatory (inhibitory) random external spike
arrives, excitatory (inhibitory) conductance of the neuron is increased by a random value
sampled from a uniform distribution between 0 and 0.45 mS/cm2. With this level of
noise, HVC-I neuron spikes spontaneously with firing rate ∼ 10 Hz, which is consistent

<V> = -80.1 mV; std V = 4.3 mV

spont. firing rate = 9.4 Hz

0.2s

40 mV

A

B

Figure 2.3. Membrane potential fluctuations of HVC-I and HVC-RA neurons. (A) Spontaneous
activity of HVC-I neuron. HVC-I neuron receives external random excitatory and inhibitory
spike trains generated by Poisson process with frequency 250 Hz. The input causes HVC-I
neuron to spike with an average frequency ∼ 10 Hz. (B) Membrane potential fluctuations of
HVC-RA neuron under white noise current injections with amplitude 0.14 nA to somatic and
0.2 nA to dendritic compartments. HVC-RA neuron does not spontaneously spike.

20



with experimental observations in HVC [66]. An example of HVC-I membrane potential
fluctuations is shown in Fig. 2.3A.

Since in Chapter 4 we are going to model the neurogenesis process, according to
which new HVC-RA neurons are added to songbird HVC, we need a different approach
to simulate noise in HVC-RA neurons. New neurons take some time to incorporate into
existing networks and typically do not receive many synaptic inputs. Thus, synaptic
noise is unlikely to dominate membrane potential fluctuations in new neurons. We model
noise in both new and mature HVC-RA neurons as white noise current injections to both
somatic and dendritic compartments. White noise amplitude of 0.14 nA and 0.2 nA
in somatic and dendritic compartments correspondingly, generates membrane potential
fluctuations with standard deviation ∼ 4.3mV, which is similar to noise in real HVC-RA
neurons (see Fig. 2.3B).

2.5 Simulation of neuron dynamics
Hodgkin-Huxley type neuron models are more computationally expensive than alternative
simpler models, for example, integrate-and-fire or Izhikevich neuron model. This is due
to the existence of a small time scale in the neuron dynamics - the spike. Neuronal
spikes typically last less than a millisecond, so the models that explicitly simulate spike
shapes have to resolve to fine sub-millisecond scale time grid. Popular integrate-and-fire
and Izhikevich neuron models do not fully simulate the spike shape. According to
integrate-and-fire neuron model, the spike is drawn artificially at the time point when
neuron membrane potential crosses a threshold. Then the membrane potential is reset
to some hyperpolarized value, representing the end of the spike. In addition to the
membrane potential, Izhikevich neuron model uses recovery variable and is able to model
an action potential upstroke. However, similarly to the integrate-and-fire model, the
downstroke of the action potential is created artificially by the membrane potential
reset. Hodgkin-Huxley neuron model does not have a threshold nor the reset of the
voltage. Instead, it produces the spikes explicitly and therefore suffers from the increased
computational costs.

2.5.1 Simulation of HVC-RA neuron model

Two-compartment Hodgkin-Huxley model that we use to model HVC-RA neurons,
contains 10 variables: 5 gating variables n, h, r, c,m with non-linear voltage-dependence;
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Figure 2.4. Comparison of numerical methods for simulating neuron dynamics. Execution
time of 1 second of neural dynamics (model time) on a single Intel(R) Xeon(R) Gold 6148 CPU
@ 2.40GHz using different numerical methods for (A) HVC-RA neuron and (B) HVC-I neuron.
The following explicit numerical methods are compared: Euler - 1st order; RK2 - midpoint
Runge-Kutta method of order 2; RK4 - 3/8 Runge-Kutta method of order 4; RK6 - seven stage
Runge-Kutta method of order 6; DP8 - Dormand–Prince method of order 8

concentration of calcium ions inside dendritic compartment [Ca]; somatic and dendritic
membrane potentials Vs and Vd; and dendritic excitatory and inhibitory conductance.
Somatic spike width is ∼ 0.3 ms, which requires a high-resolution time grid to simulate
the dynamics. Together, it makes HVC-RA neurons computationally expensive and
motivates us to find an optimal approach to simulate their dynamics. Below we compare
different numerical methods for simulating HVC-RA neurons.

First, we focus on simulating dynamics of HVC-RA neuron receiving no noise. In this
case, the problem reduces to solving a system of ordinary differential equations (ODEs).
Two broad categories of methods for solving ODEs are implicit and explicit. Both types
of methods create a time grid and update variable values step-by-step, starting from the
leftmost time point where initial conditions are defined (Cauchy’s problem). Implicit
methods do not provide a direct formula for the variable update. Instead, they define the
update implicitly through a system of non-linear equations, which needs to be solved. In
contrast, explicit methods provide a direct update expression. While implicit methods are
typically more stable, the cost associated with solving a system of non-linear equations
is too big in our case. Therefore, in our comparisons we will only work with explicit
methods for solving ODEs.

To compare different numerical methods, we simulate 100 seconds of HVC-RA neural
dynamics. Then, we estimate an execution time as a real CPU time needed to simulate
1 second of neural dynamics. Since CPU load is constantly changing due to operating
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system tasks, we repeat simulations 5 times and compute an average. To verify that
numerical method produces correct results, we compare frequency-current tuning curves
with the etalon curves obtained with high accuracy Runge Kutta order 4 method with
small time step 0.001 ms (see Fig. 2.1B-C). The simulations are performed on a single
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz using custom C++ code compiled with gcc
7.4.0 on Ubuntu 18.04 LTS. The following numerical methods are compared: Euler’s 1st
order method; midpoint Runge-Kutta method of order 2; 3/8-rule Runge-Kutta method
of order 4; seven stage Runge-Kutta method of order 6 [84].

Fig. 2.4A shows the CPU execution time of 1 second of HVC-RA neural dynamics
for explicit Runge-Kutta methods of different order. Low-order methods, such as Euler’s
method, need small number of function evaluations and are faster to simulate at small
time steps of dynamics. However, these methods are not accurate enough at large time
steps, which leads to their divergence. High-order methods, such Runge Kutta order 4,
are more computationally expensive, but they can work at larger time steps. In our case,
cheap Euler’s method can only be used for time steps <= 0.005 ms, while expensive
Runge Kutta order 4 provides accurate results for time steps up to 0.03 ms. At time
step 0.03 ms, the execution time for Runge Kutta order 4 (∼ 0.041 s) is actually smaller
than the execution time of low-order methods at the largest valid time steps. For Euler’s
method, the smallest execution time is ∼ 0.069 s for time step 0.005 ms. For Runge Kutta
order 2, the smallest execution time is ∼ 0.064 s for time step 0.01 ms. More accurate
Runge Kutta order 6 method has the same upper bound of 0.03 ms for the largest valid
time step, and is almost two times slower (∼ 0.071 s). We attribute the saturation of
the largest valid time step size to the existence of short time scales in the system of
ODEs. No matter how accurate the numerical method is, it is not possible to simulate
fast spike dynamics on a grid with large time steps. We conclude that Runge Kutta
order 4 method with time step 0.03 ms is the optimal approach to simulate dynamics of
HVC-RA neuron model in the absence of noise.

To simulate dynamics of HVC-RA neuron receiving white noise current stimulus, we
use the Itô interpretation of stochastic differential equations (SDEs). To solve a system
of SDEs, we apply 3rd order weak AN3D1 method [85], which shows the same upper
bound on time steps as Runge Kutta order 4. Its execution time of 0.047 s at time step
0.03 ms is similar to the execution time of Runge Kutta order 4 method.
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2.5.2 Simulation of HVC-I neuron model

The model of HVC-I neuron is one compartment model containing 7 variables: 4 gating
variables n,m, h, w; membrane potential V ; and excitatory and inhibitory conductances.
Thus, it is less computationally expensive than HVC-RA model. However, due to high-
frequency fast spiking and short spike width, HVC-I neurons require smaller time steps
for dynamics simulations. Using similar procedure as for HVC-RA neurons, we estimate
a CPU execution time needed to simulate 1 second time of HVC-I neuron dynamics
(see Fig. 2.4B). Euler’s method fails to converge for time steps >= 0.0005 ms, so we
don’t report it here. Runge Kutta order 4 and order 6 methods work for time steps up
to 0.01 ms, with order 4 method being the optimal for this range of time steps, with
execution time 0.093 ms. More accurate order 8 Dormand-Prince method [84] extends
the valid time step to 0.02 ms, but has larger execution time of 0.145 ms. We conclude
that Runge Kutta order 4 method with time step 0.01 ms is the optimal approach to
simulate dynamics of HVC-I neuron model.

2.6 Simulation of network dynamics
Songbird HVC of adult zebra finch contains roughly 20,000 song-related HVC-RA and
5,500 HVC-I neurons (see Chapter 3). Therefore, full scale simulations of HVC are
computationally expensive and require a careful choice of the time step size. With this
ratio of excitatory to inhibitory neurons, it is advantageous to optimize the simulation
costs for HVC-RA neurons even if it leads to non-optimal costs for HVC-I neurons. Since
simulation costs decrease with the time step size, we set the largest time step valid for
both HVC-RA and HVC-I neurons. It corresponds to the time step of 0.02 ms. Thus, for
network simulations, dynamics of HVC-RA neurons with noise is simulated with AN3D1
method and dynamics of HVC-I neurons is simulated with order 8 Dormand-Prince
method. Simulation of 1 second of neural network dynamics with 20,000 HVC-RA and
5,500 HVC-I non-connected neurons takes 20000 ∗ 0.071 + 5500 ∗ 0.145 ∼ 2218 CPU
seconds.

Serial simulations of non-connected neural network already take a significant amount
of time. However, simulations of connected neural networks differ qualitatively from non-
connected networks and pose additional challenges. Outside of spiking events, neurons do
not interact with each other and can be simulated in completely independent way. When
spikes occur, they need to be transmitted to the corresponding postsynaptic neurons.
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Figure 2.5. Scaling of network dynamics simulation time with number of MPI processes.
Simulated network is a synfire chain with 100 groups (200 neurons per group) of HVC-RA
neurons and 5,500 HVC-I neurons. See text for the details on the connection probabilities
between neurons and synaptic weight strength.

Therefore, the neurons have to synchronize and the frequency of synchronization depends
on the network activity. If neurons spike frequently, many synchronizations are needed
which can significantly slow down the execution time.

To reduce the simulation time, we apply parallelization. Two major parallelization
methods are threads and processes. Thread parallelization is supported by hardware
CPU architecture by duplicating transistor elements for arithmetic operations. Threads
are run on the same machine and use the same memory. Thus, this type of parallelization
is called shared memory. Shared memory parallelization is limited by the the number of
threads that are supported by a single CPU. Unless CPU supports hypethreading, the
number of threads matches the number of CPU cores.

Another type of parallelization, called distributed memory, uses processes to speed
up the execution time. Each process has its own memory and runs independently, except
for the need of data exchange with other processes. The data exchange is managed by
sending messages between processes and is supported by an operating system. The usage
of processes allows to run a program on a computational cluster with different machines,
potentially providing unlimited computational power.

For our purposes, we need a scalable solution that could be run on Penn State
computational clusters and therefore we choose parallelization with distributed memory.
To implement the parallelization, we use a popular C++ library openMPI. To illustrate
how network simulation time scales with the number of processes used, we create a
synfire chain network with 100 groups (200 neurons per group) of HVC-RA neurons and
5,500 HVC-I neurons. Excitatory synaptic weight strength for HVC-RA to HVC-RA
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connections is sampled randomly between 0 and 0.05 mS/cm2. There is 0.05 probability
for an HVC-RA neuron to contact an interneuron and an excitatory synaptic weight
strength is sampled randomly between 0 and 0.075 mS/cm2. Similarly, there is 0.1
probability for an HVC-I neuron to contact an HVC-RA neuron and an inhibitory
synaptic weight strength is sampled randomly between 0 and 0.03 mS/cm2. Simulations
are run on a machine with two Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz CPUs
(2x20 cores) and 128 GB RAM. We use a custom C++ code compiled with gcc 7.4.0
on Ubuntu 18.04 LTS. Fig. 2.5 shows how network simulation time depends on the
number of MPI processes used. There is ∼ 25 times speed up when using 40 MPI
processes compared to a single MPI process. The speed up doesn’t reach the ideal value
of 40 because of the required non-parallelizable serial work and synchronization between
the processes to transmit spiking events. We conclude that the usage of openMPI to
parallelize simulations of neural networks significantly decreases the simulation time.

2.7 Conclusions
In this section, we used a bottom-up approach to construct a neural network model.
We started by describing neuron computational models, then added noise to produce
membrane potential fluctuations and spontaneous activity, and finally connected neurons
by synapses to create neural networks. Described Hodgkin-Huxley models for HVC-RA
and HVC-I neurons produce responses similar to the neurons in real HVC. HVC-I neuron
is capable to operate in a fast-spiking regime and produces spontaneous activity at
frequency ∼ 10 Hz. Due to a strong calcium spike in dendritic compartment, HVC-RA
neuron operates in a binary mode: it is silent when the synaptic input is weak, or
elicits a stereotypical tight burst of somatic spikes otherwise. Such all-or-none behavior
of HVC-RA neuron makes it more robust to perturbations. Comparison of different
numerical methods of solving differential equations showed that a careful choice of the
time resolution and an appropriate numerical method significantly improves the network
simulation speed. Parallelization technique which uses MPI processes further reduces the
execution time of simulations.
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Chapter 3 |
Modeling HVC microcircuit

Until recently, songbird HVC was characterized by recorded activity of a handful of
neurons and not much was known about the spatial organization of connections between
the neurons. Using state-of-the art calcium-imaging [86], neural morphology reconstruc-
tions [50], and axonal delay measurements [87], new studies shed more light on the HVC
circuitry and allow testing the existing microcircuit models.

In this chapter, we develop a biological computational model for sequence generation
in songbird zebra finch HVC, which includes all experimentally known facts about HVC
organization. In particular, we model HVC as an ellipsoid with the spatial dimensions
corresponding to the real HVC; use realistic number of HVC-RA and HVC-I neurons;
make connections between HVC-RA and HVC-I neurons probabilistically, based on
the distances between the neurons; and incorporate experimentally measured axonal
conduction delays. We discover that if a synfire chain connectivity between HVC-RA
neurons is assumed, it leads to a highly synchronous activity of HVC-RA neurons, which
is not consistent with experimental observations. Incorporated axonal conduction delays
between neurons do not make the activity smoother and introduce an additional problem
of late inputs.

Based on that, we propose a different network topology, a polychronous network,
which uses distributed axonal conduction delays to produce synchronous inputs to the
network neurons. We develop a mechanistic algorithm that wires a polychronous network
given a distribution of axonal conduction delays and spatial synaptic distribution. We
find that polychronous networks created with experimental axonal delay distribution
shows a continuous neuron activity, which agrees with experimental observations. We
further simplify the model by getting rid of space and interneurons, and explore how the
width of axonal delay distribution affects the continuity of polychronous network activity.
Wide axonal delay distributions result in polychronous networks with continuous activity,
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Figure 3.1. Neuronal spatial arrangement and dendritic tree. (A) 20,000 HVC-RA (red balls)
and 5,500 HVC-I (blue balls) neurons are distributed randomly in ellipsoid with dimensions
1607 µm x 816 µm x 454 µm without overlap (only 1.5% of neurons are shown). Dendritic
trees of (B) HVC-RA and (C) HVC-I neurons are modeled as 45 branches with extent 80 µm
emanating from the somatas’ center. Each figure (B) and (C) shows 10 examples of dendritic
trees (white tubes) with blue balls representing synapses on the dendrites.

which covers the song almost uniformly. In contrast, narrow distributions produce synfire
chains with synchronous activity.

3.1 Neuronal spatial arrangement
We start by setting up spatial distributions of neurons. HVC of an adult zebra finch on
average contains 40,000 HVC-RA neurons and 10,000 HVC-X neurons [37]. However,
only half of HVC-RA neurons are song-related. Since interneurons make up around 10%
of the entire neuronal population in HVC [88], we estimate an average population of
interneurons as 5,500 neurons. Ablation studies show that HVC-X neurons are unlikely
to participate in the sequence generation of HVC-RA neurons, and we exclude them
from the model (see Introduction for more details).

Neuronal somatas vary in diameter from 7 to 10 µm for HVC-RA neurons [89], and
from 10 µm to 20 µm for HVC-I neurons [51]. Based on that, we model somatas of
HVC-RA and HVC-I neurons as solid spheres with diameter 10 µm. Nucleus HVC has a
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Figure 3.2. Connections between HVC-RA and HVC-I neurons. (A) Connections from HVC-
RA to HVC-I neurons are created using a pruning procedure. First, each HVC-RA neuron is
connected to all HVC-I neurons with the synapse placed on the nearest dendrite of postsynaptic
HVC-I neuron relative to the soma of the presynaptic HVC-RA. Resulting spatial synaptic
distribution (green) is biased toward long-distance connections. Next, connections are pruned in
the synaptic distance-dependent manner (see text for details) and spatial synaptic distribution
after pruning (blue) matches the experimental (red). (B) Connections from HVC-I to HVC-RA
neurons are local and created probabilistically based on the distances between neuronal somatas
(see text).

roughly ellipsoidal shape with average axial dimensions 1600 µm (medial-lateral direction,
or M-L) x 800 µm (anterior-posterior or A-P) x 450 µm (dorsal-ventral or D-V), based
on the estimates for 30 adult zebra finches (by Robert Egger, private communication).
Thus, we randomly distribute 20,000 HVC-RA and 5,500 HVC-I neurons inside a three-
dimensional ellipsoid of axial dimensions 1607 µm x 816 µm x 454 µm (see Fig. 3.1A). We
do not allow overlap between somatas of the neurons. In other words, distance between
the centers of neuronal cell bodies is larger or equal to 10 µm.

3.2 Neuronal connectivity
Next, we set up connections between the neurons. To better approximate the experimental
data, we place synapses on the dendrites of HVC-RA and HVC-I neurons. Recent studies
have reconstructed the detailed morphology of the dendrite of HVC-RA neurons [50,89].
Dendrite of an HVC-RA neuron has roughly spherical shape with diameter 161 µm [89].
On average it has 5 primary branches with 9 nodes per primary branch (branching
points). Based on that, we model a dendrite of an HVC-RA neuron as 45 branches
with extent 80 µm emanating in random directions from the soma (see Fig. 3.1B). The
branches are cut at the ellipsoid boundaries to prevent them from going beyond the HVC
structure. Dendrite of HVC-I neuron was not thoroughly characterized so far. Therefore,
we model it in the same way as the dendrite of HVC-RA neuron (see Fig. 3.1C).
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Average HVC-RA neuron makes 170 connections to other HVC-RA neurons [89],
and 688 connections to HVC-I neurons [50]. In the same study, Kornfeld et al. have
determined a spatial distribution of synapse locations along the axon and the axonal
morphology of HVC-RA neurons [50]. With this information, our collaborators at NYU
have evaluated the average spatial distribution of synapses from HVC-RA neurons onto
other HVC-RA and HVC-I neurons relative to the soma of the presynaptic neuron. This
allows us to create a similar spatial synaptic distributions in the model.

To make connections from HVC-RA to HVC-I neurons with the spatial synaptic
distribution matching the experimental, we use a pruning approach. First, we oversample
synapses by connecting each HVC-RA neuron randomly to the nearest dendrites of
all HVC-I neurons. The connection strength is sampled randomly between 0 and Gei,
with Gei = 0.15 mS/cm2. Next, we estimate a spatial distribution of HVC-RA →
HVC-I synapses relative to the soma of the presynaptic HVC-RA neuron with 10 µm
resolution. The distribution shows a strong bias toward distal connections and does not
agree well with the experimental data (see Fig. 3.2A). Then, we prune connections in
the network (i.e., the model distribution) to match the soma-synapse distance (later
referred to as synapse distance) distribution derived from experimental observations
(i.e., the target distribution). For pruning, we determine the mode bin of the target
distribution imax. To prevent HVC-RA neurons from making more connections than
in the target distribution, we define a common downscale factor s, which is set to 1
if the model(imax) < target(imax), and to model(imax)/target(imax) otherwise (where
model(imax) and target(imax) denote model and target distributions at bin imax). Then,
for each bin i in the model and target distributions, we compute a down-scaling factor
d(i):

d(i) = s
target(i) model(imax)
target(imax) model(i)

Next, we normalize the scaling factors so that they do not exceed 1: d(i) = d(i)/maxi d(i)
and re-scale the target distribution: target(i) = d(i) target(i). Finally, we randomly
remove connections in proportion to the remaining difference between the model and
target distributions. After pruning procedure, remaining synapses have the spatial
distribution which agrees well with the experimental data (see Fig. 3.2A).

Much less is known about the connections of HVC-I neurons. Limited data is available
only for local output connections of HVC-I neurons [90]. According to Koshe et al.,
HVC-I neurons on average contact 67% of HVC-RA neurons within 100 µm distance
from their soma.
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Based on that, connections from HVC-I to HVC-RA neurons in the model are made
randomly according to a radial probability distribution: p = exp [−(d− 10.0)2/σ2], where
d is the distance between HVC-I and HVC-RA neuron somata in µm, and σ = 105
µm is determined such that the cumulative probability of finding a connection within
100 µm is 0.67 as in [90]. If a connection from an HVC-I to an HVC-RA neuron is
made, the corresponding synapse is placed randomly on one of the dendritic branches
of HVC-RA neuron. The connection strength is sampled randomly between 0 and Gie,
with Gie = 0.050 mS/cm2, unless stated otherwise. Established HVC-I → HVC-RA
connections (see Fig. 3.2B) are more local compared to connections from HVC-RA to
HVC-I neurons.

3.3 Axonal conduction delays
In addition to the spatial synaptic distributions for efferent HVC-RA connections, our
collaborators have also estimated the corresponding axonal conduction time delays. The
delay distributions are long-tail with the shape similar to log-normal distribution (see
Fig. 3.3C and Fig. 3.4F). The delays for local connections in HVC were not measured
directly, but calculated used the procedure described below. Briefly, time propagation
of signal between HVC and RA was recorded as the difference between the start of
antidromic stimulation in RA and the action potential onset in HVC. Using the path
length of the unmyelinated axons connecting HVC and RA, the axonal conduction
velocity was estimated as the ratio between the path length and the signal propagation
time. For local efferent connections of HVC-RA neurons, axonal conduction velocity was
adjusted by taking into account the difference between cross-sectional areas of local and
downstream axons. Finally, the axonal conduction delays were calculated by taking a
product of axonal conduction velocity and the path length along the axon. Even though
the delays were not measured directly, the resulting distributions provide a reasonable
estimate, which we use in the modeling.

To assign the values of axonal conduction time delays for efferent HVC-RA connections
in the model, we need to know how the delays change with the distance from the soma
of presynaptic HVC-RA neurons. Because an axon of HVC-RA neurons is very irregular
making many twists and turns on its way, it may travel different path length to reach
the same distance relative to the soma. To account for that, we split the distances from
soma into non-overlapping 50 µm bin intervals and estimate axonal conduction delay
distributions for each such interval (see Fig. 3.3A-B). As expected, synapses located
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Figure 3.3. Axonal conduction delays between HVC-RA and HVC-I neurons. (A) Axonal
conduction delays for HVC-RA to HVC-I connections are sampled based on the synaptic
distances from the soma of the presynaptic HVC-RA. The distances are binned using 50 µm
resolution and a separate axonal conduction delay distribution is assign for each bin, based
on experimental data. (B) Two examples of axonal conduction delay distributions for bin
200-250 µm (1) and bin 500-550 µm (2). Synapses located at larger distances from the soma
of presynaptic neuron tend to have longer axonal conduction delays. Delays for HVC-I to
HVC-RA connections are sampled from Gaussian distribution with synaptic distance-dependent
mean and variance, estimated by fitting delays for HVC-RA to HVC-I connections. (C) Overall
axonal conduction delay distributions for HVC-I to HVC-RA connections (red) and for HVC-RA
to HVC-I connections (blue).

further away from the presynaptic soma on average have longer axonal delays. However,
the delay distributions have a large spread, which is created by the irregularities of
the axons. To assign delay for each connection from HVC-RA to HVC-I neuron, we
find the bin interval that corresponds to its synapse distance, and sample delay from
the distribution for that bin. Resulting axonal delays (see Fig. 3.3C) have a long-tail
distribution and range from 0 ms up to ∼ 12 ms.

Since there is currently not much data available on the axonal conduction time delays
for HVC-I→ HVC-RA connections, we set them up using the data on delays for HVC-RA
→ HVC-I connections. For a synapse from HVC-I onto HVC-RA neuron located at
distance r µm from the soma of HVC-I neuron, we sample axonal conduction delay from
a Gaussian distribution with distance-dependent mean µ(r) and standard deviation σ(r):
µ(r) = 0.0083 ∗ r − 0.0463 ms and σ(r) = 0.0017 ∗ r + 0.0152 ms. The coefficients in
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these equations are constrained in two ways. First, the slopes of the two relationships
are determined by fitting the axonal conduction time distributions for synapses from
HVC-RA neurons onto HVC-I in 50 µm intervals with Gaussian distributions. We then fit
a linear relationship to the mean and standard deviation of these Gaussian distributions.
Second, to determine the intercept of the two functions, we require that at a of distance
50 µm, the delays should be 0.37 ± 0.10 ms, consistent with [90]. Resulting axonal delays
(see Fig. 3.3C, red) are much smaller than the delays for HVC-RA to HVC-I connections,
emphasizing a local range of inhibitory connections.

3.4 Neuron model and simulations
For HVC-I neurons, we use the model identical to the one described in Chapter 2. For
HVC-RA neurons, we use a model similar to the one described in Chapter 2 with the
following differences: RC = 130 MΩ, Gs,L = 0.05 mS/cm2, τc = 15 ms. The changes are
introduced to better match the observed ∼ 5 ms integration time of HVC-RA neurons
during singing [66]. Dynamics of HVC-I neurons is simulated with Dormand-Prince
8th order numerical method and dynamics of HVC-RA neurons with AN3D1 3rd weak
order method with time resolution 0.02 ms (see Chapter 2 for more details). HVC-RA
neurons receive white noise injections with amplitude 0.1 nA to soma compartment and
amplitude 0.2 nA to dendrite (which produces somatic membrane potential fluctuations
∼ 4 mV), unless otherwise stated. HVC-I neurons receive noise via Poisson spike trains
with parameters identical to Chapter 2 and spike spontaneously with frequency ∼ 10 Hz.

3.5 Pruned synfire chain

3.5.1 Pruned chain construction

We start the analysis of HVC microcircuit dynamics by testing one of the most popular
models for precise temporal sequences - a synfire chain. We assemble a synfire chain by
randomly assigning neurons to 117 groups with 170 neurons per group. The assignment
is performed without replacement, so that each neuron is assigned to a single unique
group. Random assignment of neurons to groups is motivated by the observations that
activity in HVC does not have any obvious spatio-temporal pattern. Thus, our synfire
chain produces random spatio-temporal activity by the network construction. Next, we
connect the groups sequentially by making all-to-all connections from the neurons in
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one group to the neurons in the next group (see Fig. 3.4A). The connections are placed
randomly on the nearest dendrite of the postsynaptic neuron relative to the soma of the
presynaptic neuron. The connection strength is sampled randomly between 0 and Gee,
with Gee = 0.050 mS/cm2, unless otherwise stated. Last synfire chain group does not
send output connections. Overall, the synfire chain contains 117*170 = 19890 neurons,
and the remaining 110 neurons are left unconnected.

Since during the synfire chain construction we assign neurons randomly to the
groups, spatial distribution for HVC-RA → HVC-RA connections does not agree with
the experimental distribution (see Fig. 3.4C). It is biased towards distal connections,
similarly to the HVC-RA → HVC-I connections before pruning. Corresponding axonal
conduction delay distribution is also shifted right, resulting in longer delays than observed
in the experiment (see Fig. 3.4E). To obtain spatial and axonal conduction delays as
in the experiment, we use a pruning procedure similar to the one described above for
HVC-RA → HVC-I connections. After pruning, the spatial distribution is in a good
agreement with the experimental one (see Fig. 3.4D). Pruning procedure automatically
guarantees that axonal delay distribution matches the data (see Fig. 3.4F), since delays
are sampled based on synapse distances.

Since pruning procedure removes some of the connections, neurons in synfire chain no
longer make all-to-all connections to the neurons in the next group, i.e., synfire chain is
not perfect (see Fig. 3.4B). We refer to such synfire chain as a pruned chain. On average,
each neuron in the pruned chain makes 45 connections. The estimated probability for a
neuron in one group to connect a neuron in the next group is ∼ 0.26. The difference
between the number of connections in the pruned chain and the number of connections in
the experiment can be explained by synaptic multiplicity. Morphological reconstructions
show that in the cortex, often several synaptic connections are found between presynaptic
axons and postsynaptic dendrites of connected neurons [91–93]. For instance, in the
barrel cortex, the average number of synapses per connection, i.e., synaptic multiplicity, is
estimated to be around 10 [94]. Synaptic multiplicity in the pruned chain is 1/0.26 u 3.8.
Up to date, synaptic multiplicity for neurons in HVC has not been estimated.

In addition to the decreased number of output connections, HVC-RA neurons in
the pruned chain have inhomogeneous number of input and output synapses. While all
neurons in the perfect synfire chain (excluding first and last layers) send and receive 170
connections (see Fig. 3.4G), neurons in the pruned chain have smaller and distributed
number of inputs and outputs (see Fig. 3.4H). But what is the source of this variability
in the number of connections?
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Figure 3.4. Comparison of synfire chain before and after pruning. Schematic of network
connectivity for perfect synfire chain (A) and pruned synfire chain (B). Synaptic spatial
distribution for perfect synfire chain (C, green) shows a bias toward long distance connections,
while the distribution for pruned synfire chain (D, green) matches the experimental one (red).
Corresponding axonal conduction delay distributions for perfect synfire chain (E) and pruned
synfire chain (F). In and out degree distributions for pruned chain (H) show variance and are
shifted left to smaller values compared to the distributions for perfect synfire chain.
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Figure 3.5. Comparison of edge and center neurons. (A) 3-D picture showing location of
edge (with absolute value of M-L coordinate > 700 µm, blue balls) and center neurons (with
absolute values of coordinates M-L < 150 µm, A-P coordinates < 75 µm and D-V coordinates
< 50 µm, red balls). Edge neurons have smaller in degree (B) and out degree (C) compared
to center neurons. Center neurons send more outputs to other HVC-RA neurons (D) and to
HVC-I neurons, and the outputs are more local. In the experimental data (F), there is some
evidence that edge neurons make less outputs and they are more distal.
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Interestingly, the pruning procedure introduces bias for the edge HVC-RA neurons,
i.e. the neurons near the boundaries of HVC (defined as the neurons with absolute value
of M-L coordinate > 700 µm, see Fig. 3.5A). Compared to the HVC-RA neurons near
the center of HVC (defined as the neurons with absolute values of M-L coordinate <
150 µm, A-P < 75 µm, and D-V < 50 µm), edge neurons receive smaller number of
inputs (see Fig. 3.5B), send less number of outputs (see Fig. 3.5C), and make contacts
with more distal HVC-RA neurons (see Fig. 3.5D). Similar trend is also observed for
connections from HVC-RA neurons to HVC-I neurons (see Fig. 3.5E). Such connectivity
bias of edge neurons is caused by the geometry of HVC. Indeed, the edge neurons are
located far from the majority of other HVC-RA and HVC-I neurons. Therefore, if they
contact other neurons, the corresponding connections tend to be long. In contrast,
HVC-RA neurons at the center of HVC are located relatively close to other HVC-RA
and HVC-I neurons. They are not able to send long connections. Instead, they establish
numerous local connections. Thus, the pruning procedure, which is applied to the average
spatial distribution of synapses, targets edge neurons more aggressively and removes
more of their inputs and outputs. Moreover, the pruning is not able to match the
individual distributions for single neurons. We observe similar trends in spatial synaptic
distributions for edge and center neurons in the data provided by our collaborators (see
Fig. 3.5F). Edge neurons have less number of connections and they are more distal, while
center neurons send more connections, but they are more local. Thus, the bias created
by our pruning procedure agrees with the experimental data.

3.5.2 Burst onset density oscillations in pruned chain

To generate activity in the pruned chain, we excite the first synfire chain group by a
strong synchronous conductance pulse of 300 nS. Dynamics of HVC-RA neurons in the
pruned chain contains synchronously spiking synfire groups as revealed by the spike
raster plot (see Fig. 3.6A). Interneurons produce dense spike patterns with occasional
gaps in activity (see Fig. 3.6B), similar to observations in [90]. We define a burst of
HVC-RA neurons as a continuous groups of spikes with interspike intervals less than
30 ms. Burst onset time is then defined as the first spike in the burst. Analysis of the
HVC-RA burst onset times reveals prominent oscillations and silent gaps in activity
between synchronous bursts of adjacent synfire groups (see Fig. 3.6C). Spectral power
analysis of burst onset density confirms the presence of a strong oscillation at around
150 Hz. (see Fig. 3.6D).

HVC-RA neurons control timing in the song. Thus, the presence of silent intervals in
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Figure 3.6. Pruned synfire chain shows prominent oscillations. (A-D) Pruned synfire chain
with Gie = Gee = 0.050 mS/cm2. (A) Spike raster plots of the first 150 ms of HVC-RA (A,
only 10% of neurons shown) and HVC-I (B, 200 interneuron shown) neuronal dynamics. HVC-I
activity demonstrates occasional gaps in interneuron spiking, similar to [90]. (C) Burst onset
density reveals synchronous activity in synfire groups. (D) Spectral power analysis shows
a prominent oscillation at ∼ 150 Hz. Dynamics of pruned synfire chain contains significant
oscillations revealed by spectral power (E) and coefficient of variation of burst density (F) for
different strengths of inhibitory (vertical axes) and excitatory connections (horizontal axes).
Red squares represent regions where no signal propagation is observed.
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the burst activity of HVC-RA neurons limits the flexibility of the song control system,
since no motor command can be encoded during the silence. This makes a pruned
synfire chain less advantageous model as a sequence generator in HVC. Moreover, recent
experimental study shows that the burst activity of HVC-RA neurons in adult zebra
finch during singing does not contain significant oscillations [87]. This makes the pruned
synfire chain model, which generates prominent oscillations in burst density, inconsistent
with experimental observations.

We next wonder if oscillations in the burst activity of HVC-RA neurons can be
smoothed by adjusting the excitatory weights between HVC-RA, or inhibitory weights
from HVC-I to HVC-RA neurons. Intuitively, since neurons in the pruned chain differ
in the number of input and output connections, they receive different excitation and
inhibition, which spreads out burst onset times in synfire groups. This may cause burst
onset times in adjacent synfire groups to overlap and create a continuous smooth sequence.
To address the question, we systematically vary the strength of excitation and inhibition
in pruned synfire chain. We find that oscillations in neural activity of pruned chain could
not be significantly smoothed by adjusting the strength of excitatory and/or inhibitory
connections. Both the spectral power analysis (see Fig. 3.6E) and the analysis of the
coefficient of variation of burst onset density (defined as standard deviation of burst
onset density divided by the mean, see Fig. 3.6F) do not reveal big changes in oscillation
prominence. The oscillations are most suppressed in the limit of weak excitation and
strong inhibition, since it results in the largest spread of burst onset times in synfire
groups.

According to experimental recordings, HVC-RA neurons produce precise bursts of
activity. Typical precision of an HVC-RA neuron is in a sub-millisecond range. In the
model, we characterize neuronal precision as a standard deviation in burst onset times
(i.e., jitter) computed over 20 runs of the network dynamics. For sufficiently strong
excitation, the pruned chain generates precise bursting times of HVC-RA neurons with
jitter similar to the one observed experimentally (see Fig. 3.7A). Pruned chains with
weak excitation and strong inhibition demonstrate large jitter (see Fig. 3.7B), which is
not consistent with the data. Therefore, pruned synfire chains with weights adjusted
to produce smoother activity are not precise. These observations again suggest that
the burst activity of the pruned synfire chain cannot be smoothened by adjusting the
strength of synaptic weights.
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Figure 3.7. Precision in pruned synfire chain. (A) Histogram of jitter in burst onset times of
HVC-RA neurons in pruned chain with Gie = Gee = 0.050 mS/cm2 based on dynamics of 20
test runs. All neurons demonstrate sub-millisecond precision. (B) Phase diagram of mean jitter
for different strengths of inhibitory and excitatory connections. Red squares represent regions
where no signal propagation is observed. Jitter is low for strong excitation and weak inhibition.

3.5.3 Late inputs in pruned chain

We first thought that distributed axonal conduction delays would help to spread out the
burst times of neurons in synfire groups. However, it is not the case, as illustrated by
our analysis above. Indeed, since neurons receive multiple convergent connections with
different axonal delay values from the neurons in the previous synfire group, it effectively
acts as a single excitatory input with the average axonal delay. When this input is
transferred from one synfire group to another, neuronal response is additionally delayed
by the average axonal delay time. Therefore, the presence of axonal delays does not
produce a smoother neural activity, and instead enhances the silent intervals in neural
activity.

But what if excitatory connection strength is so large that neurons integrate almost
instantaneously and connections with the smallest delays are driving the activity? Would
it be possible to bring burst times of adjacent synfire groups so close together that they
almost overlap and create a continuous sequence? We argue that this is unlikely. First,
the integration time of HVC-RA neurons during singing was estimated experimentally
to be ∼ 5 ms [66]. Second, fast integration time produces another problem of some
inputs arriving after the burst onset time of postsynaptic neurons, i.e., late inputs.
Here we define an input time as a presynaptic burst onset arrival time relative to a
postsynaptic burst onset time (see Fig. 3.8A). We observe significant amount of late
inputs in our simulations of pruned chain even at the moderate level of excitation (see
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Figure 3.8. Late inputs in pruned synfire chain. (A) Input time for an HVC-RA neuron is
defined as a presynaptic burst onset arrival time relative to a postsynaptic burst onset time.
(B-C) Analysis of input times in pruned chain with Gie = Gee = 0.050 mS/cm2. (B) Input time
histogram for a single test run. Inputs that arrive after the postsynaptic burst onset time are
defined as late inputs, since they do not influence spiking of a postsynaptic neuron. (C) Axonal
time delays for connections corresponding to all inputs (blue) and late inputs (orange). Late
inputs show significantly longer axonal delays. (D) Phase diagram of percent of late inputs
for different strengths of inhibitory and excitatory connections. Red squares represent regions
where no signal propagation is observed. Fraction of late inputs is high for strong excitation
and weak inhibition, and remains significant across the entire phase diagram.

Fig. 3.8B). Late inputs are unavoidable in synfire chains with synchronous activity in
synfire groups. Indeed, if neurons in one group fire synchronously but connect to the
next group with distributed axonal conduction delays, neurons in this next group do not
receive synchronous input. Following this argument, the late inputs should correspond to
input connections with long axonal conduction delays, which is exactly what we observe
(see Fig. 3.8C).

The amount of late inputs in the pruned synfire chain depends on the strength of
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Figure 3.9. Membrane potential rise time for pruned synfire chain with Gie = Gee =
0.050 mS/cm2. (A) Average membrane potential traces of 10 neurons before burst onset, based
on 25 test runs of the network dynamics. A membrane potential rise time is defined as the
distance from the burst onset time to the first time when the membrane potential exceeds 5
standard deviations of the baseline (estimated in 100 ms time window, starting 20 ms before
the burst onset time) (B) Histogram of membrane potential rise times shows a peak at ∼ 4 ms.

excitation and inhibition. It is easy to understand if we think in terms of neuronal
integration times. If excitation is weak or if inhibition is strong, a neuron has to integrate
many inputs before it produces a burst. Thus, its integration time becomes longer and
almost all inputs can arrive before the burst onset of postsynaptic neurons, i.e., be on
time. In our case, the distribution of axonal conduction delays has a long tail, therefore
even in the limit of weak excitation and strong inhibition there is still a considerable
amount of late inputs (see Fig. 3.8D).

Late inputs are not useful because they are not driving postsynaptic neurons, and
they are also not biologically plausible. A classical Hebbian synaptic plasticity rule
dictates that synapses corresponding to late inputs should be weakened and eventually
pruned away. Therefore, it is unlikely that there is a significant fraction of late inputs
in HVC. This, together with a 5 ms estimate of HVC-RA integration time, rules out
a possibility of exceptionally strong excitatory connections that create smooth burst
activity of HVC-RA neurons.

3.5.4 Membrane potential rise time

It is a challenge to experimentally measure input times to neurons. Instead, Long et
al. [66] recorded membrane potential traces of HVC-RA neurons during singing and
estimated a membrane potential rise time before the onset of the burst. The obtained
rise times are ∼ 5 ms. We wonder if HVC-RA neurons in our pruned chain have similar
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membrane potential rise time. To estimate the membrane potential rise time, we track
membrane potentials of 100 randomly selected HVC-RA neurons for 25 testing runs of the
pruned chain with moderate inhibition and excitation (see Fig. 3.9A-B). For each neuron
we compute an average membrane potential relative to the burst onset time. Fig. 3.9A
shows average membrane potential traces of 10 HVC-RA neurons. Next, we estimate the
baseline membrane potential before the burst by calculating the mean voltage in 100 ms
time window starting 20 ms prior to the burst onset time. Membrane potential rise time
is defined as the distance from the burst onset time to the first time when membrane
potential exceeds 5 standard deviations from the baseline. Resulting membrane rise
time for simulation with Gie = 0.05 mS/cm2 and Gee = 0.05 mS/cm2 is 4.0 ± 1.0 ms,
which consistent with experimental observations. Therefore, HVC-RA neurons in our
simulations have reasonable integration times, which suggests that our modeling results
are relevant to the real songbird HVC.

Based on the results of our simulations, we conclude that pruned synfire chain model,
which satisfies all experimentally known constrains of songbird HVC, produces prominent
oscillations in neural activity, which is inconsistent with experimental observations. The
oscillations arise due to the synchronous spiking of neurons in synfire groups. This
synchronous spiking of synfire chains is, in fact, promoting the network resilience to the
changes in parameters and noise, and is a well-known property of synfire chains [69].
Moreover, due to widely distributed axonal delays, the amount of un-biological late
inputs is large, which motivates the search for another network topology.

3.6 Parallel pruned synfire chains
Dynamics of single synfire chain contains significant silent gaps due to axonal conduction
delays and finite neuronal integration times. Thus, a logical way to smooth the dynamics
is to somehow fill these silent gaps. A natural extension of a single synfire chain is a
model with multiple parallel synfire chains. The idea is that due to variations in axonal
conduction delays and neuronal integration times, neural activity in different synfire
chains will have silent gaps of different size. The misalignment of the silent gaps of
different synfire chains may produce a smooth neural activity of the entire network. We
refer to this model as parallel pruned synfire chains.

To test this idea, we embed multiple synfire chains with smaller group width. To create
parallel pruned synfire chains, we first sample independent perfect synfire chains (with
each neuron only participating in one synfire chain). Then, we prune each perfect synfire
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Figure 3.10. Parallel pruned synfire chains. Spike raster plots of the first 150 ms of HVC-RA
dynamics (only 10% of neurons shown) in the network with 5 (A) and 10 (B) parallel pruned
synfire chains. Corresponding burst onset density graphs show noticeable oscillation in dynamics
of 5 parallel pruned synfire chains (C), and smooth dynamics for 10 chains (D). (E) Cumulative
graph showing maximal log of spectral power between 50 and 250 Hz for different number of
parallel synfire chains. (F) Precision in burst onset times of HVC-RA neurons for different
number of parallel synfire chains. The jitter of the network with 10 parallel chains is higher
than experimentally observed sub-millisecond precision.
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chain to match the experimental spatial synaptic distribution for HVC-RA connections.
Since the group width of individual chains is smaller compared to the case of a single
pruned chain, the excitatory connections have to be scaled up to ensure the signal
propagation. We maintain the average strength of excitatory input by keeping the
product w ∗Gee constant, where w is the width of individual pruned chain, Gee is the
maximal strength of excitatory connections between HVC-RA neurons. Five different
network configurations are tested: 1 chain (width = 170), 2 chains (width = 85), 3 chains
(width = 42), 5 chains (width = 34) and 10 chains (width = 17).

To generate activity in parallel pruned synfire chains, we excite the first synfire chain
group of each chain by a strong synchronous conductance pulse of 300 nS. All chains are
ignited at the same time. Incorporation of a small number of parallel chains (up to 5)
does not completely erase the oscillations, which are still visible in spike raster plots and
burst onset density histograms (see Fig. 3.10A,C). However, the amplitude of oscillations
is significantly reduced as revealed by spectral power analysis (see Fig. 3.10E). Upon
further increasing the number of parallel chains to 10, the activity becomes smooth and
oscillations are no longer distinguishable (see Fig. 3.10B,D,E). Therefore, incorporation
of a large enough number of parallel pruned synfire chains can produce smooth neural
dynamics.

This, however, comes at a cost. Since the overall number of HVC-RA neurons in the
network is kept the same, the increase in the number of parallel chains leads to a smaller
synfire group width. Neurons receive less inputs and outputs, and the variability in input
strength goes up. As a result, networks with many parallel synfire chains demonstrate
poor precision of the burst onset times (see Fig. 3.10F). The network with 10 parallel
chains that has a smooth dynamics with no oscillations, shows 1.1 ± 0.5 ms jitter in
burst onset times, which exceeds the experimentally observed sub-millisecond jitter level.
Therefore, while parallel pruned synfire chains produce smooth neural dynamics and
satisfy all experimentally known HVC constrains, they have a disadvantage of being
imprecise.

It is important to note that in our simulations, parallel chains are ignited at the same
time by externally provided excitation. The most likely source of the external input to
HVC at the syllable onset times is the thalamic nucleus Uvaeformis (Uva). Multiunit
neural activity in Uva shows a single ∼ 10 ms wide peak shortly before the syllable
onset times [95]. Therefore, it is unlikely that parallel chains, if exist, are ignited at
different times, which can potentially decrease the number of parallel chains needed to
smooth dynamics and achieve a reasonable jitter level. In addition, as in the case of a
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single pruned chain, there is still a problem of a significant amount of non-functional late
inputs.

3.7 Polychronous network
In synfire chain with distributed axonal conduction delays, synchronous activity is
converted to asynchronous inputs, which leads to some inputs arriving late. Motivated by
this issue, we create a network where all inputs arrive synchronously and efficiently drive
the postsynaptic neuron to fire. The network with such property is called a polychronous
network (see [73] and Introduction).

3.7.1 Mechanistic wiring algorithm

To the best of our knowledge, there is no algorithm available that is able to wire long
polychronous sequences. Izhikevich [73] showed that short polychronous sequences (with
average length ∼ 70 ms and size 50 neurons) can self-assemble via Hebbian synaptic
plasticity in the balanced networks of randomly spiking neurons. However, these sequences
were short and unstable that prevents their use in practice. Therefore, we develop our
own mechanistic algorithm which allows to wire a long polychronous sequence with given
spatial synaptic and axonal delay distributions (see Fig. 3.11A).

The algorithm is iterative and starts with selection of Nstart neurons (’starter neurons’),
that form a starting seed for the network growth. Wiring iterations are run until all
20,000 HVC-RA neurons are incorporated into the network.

Each iteration of the wiring algorithm consists of two main and one optional steps. In
the first step (i) (see Fig. 3.11B), network dynamics is simulated and burst onset times of
all neurons that produced bursts are recorded. Network dynamics simulation is performed
by exciting the starter neurons by a synchronous excitatory kick delivered at time 50 ms.
To save computational time, the dynamics is simulated until time tsim = tlast + 20 (ms),
where tlast - is the largest burst onset time of any neuron in the previous iteration. For
the first iteration of the algorithm, dynamics is simulated until time tsim = 70 ms.

In the second step (ii) (see Fig. 3.11C), feedforward connections are added between
’source neurons’ (presynaptic neurons) and ’target neurons’ (potential postsynaptic
partners, defined as neurons that receive at least one input and are not among ’source
neurons’). The step starts by moving Nnew source neurons from the set of ’target neurons’
to the set of ’source neurons’. These Nnew source neurons are selected as ’target neurons’
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Figure 3.11. Mechanistic algorithm for wiring a polychronous network. (A) Schematic of the
algorithm. (B) Step (i). After network dynamics is simulated, burst onset times of network
neurons are determined. New source neurons are selected from the set of target neurons (i.e.,
neurons that don’t have output connections) with burst onset times within 2 ms time window
from the earliest burst onset time of all target neurons. (C) Step (ii). (Top) Connections
are made between source and target neurons respecting spatial synaptic distribution and
polychronicity principle. (Middle and Bottom): Connection can only be established if input
(grey bar) arrives within a window of size τsync relative to the putative burst onset time of the
target neuron adjusted by its integration time. (D) Step (iii) (Top) New target neuron is sampled
to the network. (Middle and Bottom) The putative target burst onset time is determined by
the burst onset time of the presynaptic source neuron, axonal delay, and integration time.
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with burst onset times within 2 ms window from the earliest burst onset time of all
’target neurons’ (see Fig. 3.11B). Next, a synaptic pool of Nnew source * Nout connections
is generated, where Nout is the average number of output connections per neuron. Each
connection in the pool is a triple of synaptic distance from the presynaptic soma, axonal
delay and synaptic weight: (lsyn, τsyn, wsyn). The pool is created by first sampling from a
synaptic spatial distribution for HVC-RA to HVC-RA connections, and then sampling
axonal conduction delays based on the obtained synaptic distances. Synaptic weight is
sampled randomly between 0 and Gee. Next, the algorithm iterates over ’target neurons’
sorted according to their number of input connections, starting from the smallest. Such
iteration order makes the input convergence more even and helps to achieve precise
bursting of all HVC-RA neurons. For each ’target neuron’, a random ’source neuron’ is
selected that is able to satisfy spatial and time constrains using a connection from the
synaptic pool. Spatial constrain is a geometrical one and requires a presynaptic neuron
to be able to contact the dendritic tree of the postsynaptic neuron. The requirement
is fulfilled if a sphere centered at the soma of the presynaptic neuron with radius equal
to the synaptic distance intersects one of the dendrites of the postsynaptic neuron.
Time constrain ensures that all inputs arrive within a synchronous time window to a
postsynaptic neuron, fulfilling the polychronicity principle. The constrain is satisfied
if |ttarget − τint − τsyn − tsource| ≤ τsync, where 2 ∗ τsync is the size of the synchronous
time window, tsource is the burst onset time of the ’source neuron’, τint is the average
integration time constant of HVC premotor neurons from onset of the synaptic inputs to
burst threshold, and ttarget is the putative burst onset time of the ’target neuron’. When
multiple connections satisfy both the spatial and the time constrains, the one that has
the smallest |ttarget − τint − τsyn − tsource| is selected, corresponding to the input arriving
on time. The connection is placed at the intersection point on the dendrite of the ’target
neuron’ and is removed from the synaptic pool. ’Target neuron’ is removed from the set
of target neurons in two cases: if the number of inputs to the ’target neuron’ reaches
Nmax, and if the ’target neuron’ cannot be contacted by any of the source neurons with
any of the connections from the synaptic pool.

If after the second step the synaptic pool is not empty, new Nnew target ’target neurons’
are sampled in the third step (iii) to increase the network size (see Fig. 3.11D). A new
’target neuron’, which does not have any input or output connections, is added into the
network by randomly selecting one ’source neuron’ and placing one of the remaining
connections from the synaptic pool onto a neuron satisfying spatial constrain. The
putative burst onset time of the new ’target neuron’ is defined as: ttarget = tsource + τsyn +
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Figure 3.12. Behavior of the wiring algorithm. (A) In and out degrees of the neurons for the
first 100 ms of dynamics. In degrees of neurons with burst onset times within first 20-30 ms
demonstrate a transient state, in which the neurons have lower in degree. It is caused by the
influence of synchronously firing starter neurons (see text). (B) The difference between actual
burst onset times and the putative burst onset times assigned to target neurons during wiring.
Most neurons have a slightly negative difference ∼ -1 ms, meaning that the neurons integrate 1
ms faster than the integration time in the algorithm.

τint. Then, the set of ’target neurons’ is restored back to its original state in the beginning
of the second step, and new sampled targets are added to the set. All connections made
between neurons in step (ii) are removed and put back to the synaptic pool. Next, steps
(ii) and (iii) are repeated until synaptic pool is exhausted. This procedure ensures that
new sampled ’target neurons’ get enough connections from the ’source neurons’ and
increases robustness of the algorithm.

The wiring algorithm described above is computationally expensive in case of many
output connections. Indeed, step (ii) of the algorithm involves checking both if connection
can be geometrically placed on one of the dendrites of a target neuron and if connection
satisfies polychronicity principle. Both checks often fail, which results in long search of
an appropriate presynaptic source neuron and slow algorithm performance.

3.7.2 Polychronous network with satisfied HVC constrains

To compare the network directly with pruned synfire chain, we wire a polychronous
network with spatial synaptic distribution and axonal delays matching the experimental
data in HVC, 45 output connections per neuron (50 inputs at most) and moderate
excitation and inhibition Gee = Gee = 0.050 mS/cm2. We use a synchronous time
window of 4 ms and set integration time to 5 ms. The noise inputs to HVC-RA and
HVC-I neurons are turned off during polychronous network wiring to ensure deterministic
behavior of the wiring algorithm.

During initial iterations, the network goes through a transient state, in which the
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number of input and output connections have not yet reached a stable value (see
Fig. 3.12A). Neurons with burst onset times within first 20-30 ms of dynamics, have
smaller number of inputs. This transient is caused by the influence of synchronous
starter neurons. Since axonal delays have a wide distribution, synchronously firing starter
neurons are not able to provide high convergence to initially recruited targets. With
more iterations of the algorithm, burst onset times of neurons spread, which allows the
efficient use of all delays and leads to a larger convergence of inputs.

The algorithm establishes new connections to the target neurons using their putative
burst onset times, assigned at the time when the targets are recruited. The use of putative
burst onset times ensures that connections arrive within a synchronous time window. The
actual burst onset times of target neurons change a lot during iterations of the algorithm
due to the gradual increase in the number of their input connections. Therefore, if we
used the actual burst onset times, connections would not arrive synchronously. That
raises a question of how different putative burst onset times are from the actual ones.
The majority of neurons have a slightly negative ∼ -1 ms difference between actual burst
onset times and the putative burst onset times (see Fig. 3.12B). This difference suggests
that our predictions on the integration times of the neurons are off and the neurons
integrate 1 ms faster than the integration time in the algorithm. The magnitude of the
difference depends on the strength of excitation and inhibition used in the algorithm.
With strong excitatory connections, the neurons will integrate even faster, while the
use of stronger inhibition will increase the integration time. In practice, having a small
difference about 1 ms does not create any problems with the algorithm’s performance.
Larger differences need to be adjusted by the corresponding change in the strength of
connections or integration time to ensure the proper synchronous arrival of inputs.

The wired polychronous network does not have any apparent structure that could be
revealed by visualizing the network using synaptic weights between HVC-RA neurons.
Fig. 3.13A shows network topology plotted with Kamada-Kawai algorithm in Pajek
software program for network analysis [113]. The spatial synaptic distribution agrees well
with experimental one, confirming the correct algorithm performance (see Fig. 3.13B).
Since axonal delays are sampled based on synaptic distances, the axonal delay distribution
automatically matches the experimental. The neurons have a tight distribution of in-
degrees with a prominent peak at 50 inputs - the maximal allowed number of input
connections (see Fig. 3.13C). Tight distribution of in-degrees ensures that during signal
propagation all neurons receive similar excitatory input and can spike robustly. The
out-degree distribution is wider with out-degrees ranging between 0 and almost 200 (see
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Figure 3.13. Polychronous network embedded in space. (A) Plot of network topology based
on synaptic weights (see text) does not show any apparent network structure. (B) Synaptic
spatial distribution matches the experimental. (C) In (left) and out (right) degree distributions.
In degree distribution is tight with a prominent peak at the maximal allowed number of inputs
(50). Out degree distribution is much wider, with center neurons having numerous outputs,
and edge neurons having a few. (D) Burst onset density histogram shows continuous and
smooth network dynamics. (E) Spectral power analysis does not show any distinguishable
oscillations in activity. (F) Input time histogram shows the absence of late inputs, those with
positive input times. (G) Jitter in burst onset times is below 1 ms, consistent with experimental
sub-millisecond range precision.
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Fig. 3.13C). Large difference in the shape between in and out degree distributions is
created by step (ii) of the wiring algorithm, in which target neurons are connected in
the order of the number of inputs they receive, starting from the smallest. Therefore,
the algorithm pushes the in-degree distribution to the right, as close as possible to the
maximal number of allowed inputs. At the same time, it does not control the out degree,
turning some neurons into the hub neurons with numerous output connections. The hub
neurons correspond to the neurons near the center of HVC, while neurons with small
number of outputs are located at the edge of HVC. This is not surprising, since center
neurons have more local candidates to connect and therefore they more often satisfy the
spatial constrain of the algorithm.

Dynamics of the network is continuous and smooth, with no silent gaps in burst
density (see Fig. 3.13D). Spectral power analysis also does not reveal any distinguishable
oscillations (see Fig. 3.13E). Thus, the wired polychronous network does not have a
disadvantage of synchronously firing neurons, as in the case of pruned synfire chain. What
about the late inputs, which are numerous for pruned chain due to the presence of widely
distributed axonal delays? The wired polychronous network contains only a negligible
amount of late inputs (∼ 0.03%, see Fig. 3.13F) with majority of inputs arriving within
time window of 4.5 ms (5-th percentile is -6.8 ms, 95-th percentile is -2.2 ms). This is
close to the synchronous time window size of 4 ms used in the algorithm. The average
input time is -4.3 ms, which roughly corresponds to the average neuronal integration
time of ∼ 4 ms. So far, the wired polychronous network demonstrates properties superior
to the pruned synfire chain and fully compatible with the experimental observations. But
is this network precise? The estimated jitter in burst onset times, based on 25 testing
trials, is 0.41± 0.12 ms (see Fig. 3.13G), the value well in sub-millisecond range, which is
consistent with experimental data. Therefore, we conclude that the wired polychronous
network satisfies all HVC constrains and produces smooth and continuous dynamics with
no dis-functional late inputs.

3.7.3 Investigation of polychronous networks

We next wonder how the distribution of axonal conduction delays affects wiring of
polychronous networks. To address this questions, we simplify the model to the most
basic components by eliminating space and interneurons. The simplified model consists
of 20,000 HVC-RA neurons. Connections between the neurons does not contain the
spatial aspect and are characterized by delay-weight pairs. We use a modified version of
our wiring algorithm, that ignores the synaptic spatial distribution and spatial constrain.
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We use 170 output connections per HVC-RA neuron (with the maximal number of inputs
set to 180), as in the experimental data. Since the interneuron population is absent and
the number of inputs is higher than in the pruned chain case, we set a smaller maximal
strength of excitatory connections Gee = 0.004 mS/cm2. We also set a synchronous time
window size to 1 ms, to achieve more synchronous arrival of inputs.

When we wire a polychronous network using axonal conduction velocity as in real
HVC (i.e., normal velocity), the network produces smooth activity with no obvious
oscillations in burst density (see Fig. 3.14A). However, when we down-scale all delays
by using ten times faster (i.e., 10x) axonal conduction velocity, dynamics of the wired
polychronous network contains synchronously firing groups of neurons separated by silent
intervals ∼ 6-7 ms (see Fig. 3.14B). Our collaborators at NYU compared model burst
density with the burst density of extracellularly recorded HVC-RA neurons in adult
zebra finch during singing (see Fig. 3.14C). Briefly, for each syllable, burst onset times of
recorded HVC-RA neurons were extracted and aligned to syllable onset times. Then,
synthetic data was created by sampling burst onset times randomly from the model
distribution of burst density, preserving the syllable length and the number of recorded
neurons. , the mean spectral power between 155-180 Hz was computed for each syllable
and averaged. By repeating this procedure 10,000 times, confidence intervals of the
mean spectral power were estimated as ± 3 standard deviations from the mean. The
comparison confirmed that the network with normal conduction velocity did not contain
distinguishable oscillations in burst density, while the oscillations in the network with
10x velocity were significant. Next, we systematically vary the axonal conduction velocity
between 0.5x and 10x (see Fig. 3.14D) and estimate the mean spectral power between
155-180 Hz (see Fig. 3.14D). The oscillations in burst density develop gradually, and are
significant for velocity larger than 2x.

Why do oscillations in neural activity emerge for fast axonal conduction delays? To
understand this, let’s consider a simple extreme case of infinitely fast axonal conduction
velocity, which corresponds to zero delays. In our wiring algorithm, at each iteration
neurons in the starter seed receive synchronous external input and therefore burst
synchronously. When a first target neuron is recruited, it is assigned a burst onset time
based on the burst time of a presynaptic starter neuron and the integration time, which is
identical to all neurons. Since there is only a single value for the axonal delays, all starter
neurons will establish convergent connections to this target neuron. When its number of
inputs reaches the maximal allowed value, the second target neuron is recruited with
an identical burst onset time. Similar convergent connections will emerge to the second
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Figure 3.14. Polychronous networks with different axonal conduction velocity. Spike raster
plot and burst onset density histogram of a polychronous network with axonal conduction
velocity observed in HVC (i.e., normal) (A) and ten times faster (B). The network with
faster conduction velocity shows prominent oscillations and silent gaps in burst density. (C)
Comparison with burst activity of extracellularly recorded HVC-RA neurons in adult zebra
finch, performed by our collaborators in NYU (see text), shows that the network with normal
conduction velocity does not have distinguishable oscillations in burst density, while the network
with 10x faster velocity contains strong peak in spectral power at ∼ 180 Hz. (D) Cumulative
density plots for different scales of axonal conduction velocity. (E) Spectral power of burst
onset density for different values of axonal conduction velocity. (F) Mean spectral power in
frequency band 155 - 180 Hz versus axonal conduction velocity. Transition from smooth to
oscillatory neural activity happens with increase in conduction velocity. (G) Fits of mean
spectral power in frequency band 155 - 180 Hz versus axonal conduction velocity for different
values for synchronous window size. Larger size of synchronous window smooths the transition.

target from the starter neurons and the procedure will repeat until synaptic pool is
exhausted. As a result, the first iteration of the algorithm creates a perfect synfire chain
group, receiving all-to-all connections from starter neurons. Then, the second iteration
of the algorithm creates the second synfire group and so on, until all HVC-RA neurons
are incorporated into the network. Thus, identical axonal delays lead to the emergence
of perfect synfire chain. These results hold when delays are not exactly identical but
sufficiently similar, as happens in the case of fast axonal conduction velocity 10x.

Our previous argument is based on the assumption that starter neurons burst syn-
chronously. What happens if this assumption is violated? To address this question, we
run our wiring algorithm with starter neurons receiving external inputs with arrival
times sampled randomly within 7 ms. The network wired using axonal delay distribution
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Figure 3.15. Two parallel chains emerge when wiring a polychronous network with narrow
axonal delay distribution and starter neurons with a fixed spread in burst onset times (here, 7
ms). (A) Axonal delay distribution used in wiring is log-normal distribution with mean 3.4
ms and variance 0.05 ms2 (B) Burst density of the wired network shows two distinct peaks,
meaning that the network contains two separate parallel chains.

with mean 3.4 ms and variance 0.05 ms2 (see Fig. 3.15A) contains two parallel synfire
chains, as revealed by a double peak in burst density (see Fig. 3.15B). Note, that due
to the spread in burst times of starter neurons there is no peak in burst density near
time t = 0 ms. Why 2 parallel chains emerge instead of a single chain, as in the case of
synchronous starter neurons? The reason is again in almost identical axonal delays. In
the first iteration of the wiring algorithm, starter neurons recruit new targets. But now
starter neurons do not burst synchronously and therefore targets are assigned different
burst onset times. In ideal case of an infinitely narrow synchronous time window of input
arrivals, each starter neurons connects to a single separate target neuron. In subsequent
iterations, target neurons become new source neurons and also send output connections
only to a single neuron. Thus, numerous parallel chains of width 1 emerge. In practice,
synchronous time window has a finite size and therefore there is a cross-talk between the
chains. In simulation that produces 2 parallel chains, we use a synchronous window of
size 1 ms, which is big enough to result in significant convergence of connections.

If our reasoning is correct, then we should obtain oscillatory dynamics in the case
of narrow axonal delay distribution, and smooth dynamics for the wide distribution.
To test this prediction, we first notice than the experimental axonal delay distribution
in HVC can be well approximated by a log-normal distribution with mean 3.4 ms and
standard deviation 2.27 ms. Based on that, we create a two-dimensional parameter
grid with different values for the mean (between 0.5 ms and 4.5 ms) and standard
deviation (between 0.25 ms and 2.75 ms) of log-normal distribution and use these
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Figure 3.16. Polychronous network with different parameters of log-normal axonal conduc-
tion delay distribution. Cumulative density for three examples of log-normal axonal delay
distributions with different mean and fixed standard deviation (i.e. std, here 1.25 ms, A),
and different std and fixed mean (here 3.5 ms, B). (C-D) Corresponding spectral power shows
prominent peak for small mean and small standard deviation of axonal delay distribution. (E-F)
Correspoding mean spectral power in 75-200 Hz frequency band. Error bars: 5th and 95th
percentiles (bootstrap). (G) Mean spectral power for a two-dimensional parameter grid of mean
and std of axonal delay distribution. Black line separates region with significant oscillations in
burst density (bright region with yellow and green color) from the region with smooth neural
activity (dark region with blue color). White cross denotes the parameter region where HVC
resides. It lies comfortably inside the region with smooth neural activity.

distributions to wire polychronous networks. For a fixed value of the standard deviation
(see Fig. 3.16A,C,E for std 1.25 ms), prominent peak in spectral power emerges for a
small mean. Log-normal distribution with small mean and large standard deviation
looks very similar to exponential distribution, and most of the density is concentrated
near zero. Thus, majority of delays have similar values, which leads to the emergence
of oscillations. For a fixed value of the mean (see Fig. 3.16B,D,F for mean 3.5 ms),
prominent peak in spectral power emerges for a small standard deviation. For a large
mean and small standard deviation, log-normal distribution resembles a Gaussian, and
most of the density is concentrated near the mean. Again, the majority of delays have
similar values, which results in the emergence of synfire chain with oscillatory dynamics.
Spectral power analysis of all polychronous networks in two-dimensional parameter space
(see Fig. 3.16G) shows two distinct regions: one with highly oscillatory activity, and
another one with smooth activity. The parameter region corresponding to axonal delays
in HVC (see white cross in Fig. 3.16G) is comfortably inside the smooth activity region.

3.7.4 Polychronous network with uniform delay distribution

Log-normal distribution used in wiring polychronous networks is a long-tail distribution
with a small number of particularly long delays. Are these long delays important to
achieve smooth neural dynamics, or is it just the width of axonal distribution that
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Figure 3.17. Polychronous network with wide uniform axonal delay distribution (mean =
3.5 ms and std = 1.75 ms) produces smooth and precise neuronal activity. (A) Pdf of the
axonal delay distribution used in wiring. (B) Burst density of the wired network shows smooth
neuronal activity. (C) Jitter in burst onset times is in sub-millisecond range.

controls the smoothness? To address this question, we wire polychronous networks with
uniform axonal delay distribution. Axonal distribution with mean 3.5 ms and standard
deviation 1.75 ms (close to HVC values, see Fig. 3.17A) produces a polychronous network
with smooth network dynamics (see Fig. 3.17B). The network is also precise as other
polychronous networks reported above (see Fig. 3.17C). Therefore, we conclude that
the width of axonal delay distribution controls the smoothness of neural activity in
polychronous networks. Distributed delays alone are enough to produce continuous
dynamics with no silent intervals.

3.7.5 Randomly rewired polychronous network

During the construction of a polychronous network, we make connections between
neurons to achieve synchronous arrival of inputs. It results in the emergence of a pristine
feedforward network, i.e. the network with no recurrent connections or loops. Is this
perfect alignment of all inputs necessary to achieve continuous network dynamics? Can
we have a more random feedforward network with some recurrent connections that
explains the data? To address these issues, we explore how random rewiring of the grown
polychronous network affects its dynamics.

Starting from the polychronous network wired with log-normal axonal delay distribu-
tion with mean 3.5 ms and std 2.25 ms, we rewire a fraction of all synapses randomly,
creating recurrent neural networks. Networks with both moderate (fraction rewired = 0.2)
and large (fraction rewired = 0.65) rewiring of synapses produce smooth neural dynamics
(see Fig. 3.18A,B). As expected, the jitter in burst onset times goes up with the increase
in the fraction of rewired connections (see Fig. 3.18C). Rewiring of more than 65% of
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Figure 3.18. Randomly rewired polychronous network demonstrates smooth dynamics and
supports sequence propagation until up to 65% of rewired synapses. Burst density of the
network with 20% (A) and 65% (B) of rewired synapses does not reveal oscillations. (C)
Jitter in burst onset times goes up with increase in the fraction of rewired synapses, until
the network breaks completely. Example of additional EPSPs (top) and conductance traces
(bottom) throughout the sequnce, created by the random connections in the network with
20% (D) and 65% (E) of rewired synapses. Blue lines show one trial traces, while black lines
represent the average traces. EPSPs are larger for higher fraction of rewired connections.

the network connections produces networks that are not able to support propagation
of the signal. Interestingly, rewired synapses create additional excitatory postsynaptic
potentials (EPSP) in the neurons throughout the sequence, and the EPSPs are more
pronounced at larger rewiring fractions (see Fig. 3.18D,E). These EPSPs are very similar
to the stereotypical EPSPs observed in the experiment with singing zebra finches [65].
We conclude, that neural networks with polychronous feedforward sequences containing
some random recurrent connections also produce continuous and precise neural activity.

3.8 Alternative ways to achieve smooth neural activity

3.8.1 Random network

If a polychronous network with a large amount of 65% randomly rewired synapses is able
to support robust propagation of a continuous sequence, we wonder whether a completely
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Figure 3.19. Random network cannot support propagation of long smooth sequences. (A)
Average number of active neurons increases with the strength of excitatory synaptic weight,
eventually incorporating the entire network. (B) Average temporal sequence length shows
a non-monotonic dependence on synaptic weight. First, sequence becomes longer due to
incorporation of more active neurons. For larger weights, the entire network spikes almost
synchronously with a rapid response, reflecting the presence of divergent recurrent connections.
(C) Distribution of the number of convergent inputs from 170 random presynaptic neurons to a
randomly chosen HVC-RA. Due to the random network topology, convergence is low and a
strong excitatory synaptic weight is needed to support signal propagation. Example of network
dynamics with maximal synaptic weight Gee = 0.02 mS/cm2 (D), producing a short sequence,
and Gee = 0.04 mS/cm2 (E), producing a synchronous spiking of the entire network (only 3000
neurons shown)

random recurrent network can do the same. To address this question, we create a random
network of 20,000 HVC-RA neurons with 170 connections per neuron. Only a single
connection between a pair of neurons is allowed and we prohibit any self-connections.
All axonal delays are set to zero and we assume no spatial structure.

We randomly sample 170 starter neurons and excite them by a synchronous excitatory
conductance kick of 300 nS. Produced network dynamics is characterized by the number of
active neurons (i.e. those that produced bursts) and the sequence length (time difference
between the last burst onset time and the first burst onset time of all neurons). We
repeat the procedure 100 times by randomly sampling different starter neurons and
estimate the mean number of active neurons (see Fig. 3.19A) and the mean sequence
length (see Fig. 3.19B) for systematically varied strength of excitatory synaptic weights.
For a small strength of excitatory synaptic weight, the sequence fails to activate and only
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Figure 3.20. Synfire chain with large noise fails to produce smooth neural sequence. (A)
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starter neurons produce bursts. For larger synaptic weights, there is a short sequence
produced that does not span more than 100 ms and incorporates only a small fraction
of the network (less than 1000 neurons, see Fig. 3.19D). Finally, in the case of strong
excitatory synapses, the network responds rapidly with almost synchronous spiking event
that incorporats the entire network, thus producing run-away excitation (see Fig. 3.19E).

The network behavior is caused by the highly divergent nature of connections in the
random network. For example, randomly chosen set of 170 neurons sends at most ∼ 5
convergent inputs to postsynaptic neurons (see Fig. 3.19C). That requires exceptionally
strong synapses to drive the activity of the network. Due to the numerous recurrent
connections and no mechanism to control the activity level (for example, inhibition), the
network easily falls into run-away excitation regime.

Thus, we conclude that random networks without inhibition fail to produce long
sequences due to the lack of convergent connections.
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3.8.2 Synfire chain with strong noise

The next simple model having a high convergence of inputs is a synfire chain. It produces
prominent oscillations in burst density due to synchronous activity in synfire groups.
Using a pruned chain model, we have already demonstrated that the changes in the
strength of excitation and inhibition do not significantly affect the smoothness of neural
activity. Another idea is to make neurons very noisy in the hope to spread burst times
of the neurons and smooth the oscillations.

We assemble a synfire chain model with 117 groups and 170 HVC-RA neurons per
each group (19790 neurons in total). The groups are connected sequentially in all-to-all
manner, with the last group sending no outputs. There is no spatial structure in the
model, nor the interneuron population, similar to model where we explored polychronous
network with different axonal delay distributions. We set all axonal delays to zero and use
maximal synaptic weight Gee = 0.004 mS/cm2 as in the polychronous network model.

We systematically vary the membrane potential fluctuations in the neurons by
changing the amplitude of white noise current injected to somatic compartment (see
Fig. 3.20A). White noise input to dendrite is set to zero in order to prevent neurons
from producing spontaneous dendritic spikes and as a result somatic bursts. For strong
current injections with white noise amplitude larger than 0.2 nA, the neurons spike
spontaneously, reflecting large voltage fluctuations. We define a burst as a sequence of
more than 1 spike with interspike intervals less than or equal to 10 ms. In this case,
spontaneous bursts are sometimes produced at a high noise level. To make the burst
density plots, we run 50 simulations of synfire chain dynamics at a given noise level and
generate an average time histogram for all elicited bursts in the simulations. Neurons
in the starter synfire groups are ignited by a strong synchronous conductance pulse of
300 nS at time 100 ms. For small noise amplitude 0.1 nA, burst density contains strong
oscillations, similar to the pruned chain (see Fig. 3.20B). For large noise amplitude 0.26
nA, neurons are spontaneously active, which is seen as non-zero burst density before
the ignition of the starter synfire group (see Fig. 3.20C). Strong noise, however, does
not significantly smooth the oscillations in burst density. White noise with amplitude
larger than 0.26 nA, leads to spontaneous reactivations of the synfire chain, representing
a noise limit in the model (see Fig. 3.20D). Therefore, we conclude that neural activity
of synfire chain cannot be made smooth with the increase in noise fluctuations.
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Figure 3.21. Dendritic membrane time constant affects both the integration time and
membrane potential fluctuations in HVC-RA neurons. (A) Integration time increases almost
linearly with dendritic membrane time constant. (B) Same strength of white noise current
stimulation (0.1 nA in soma and 0.2 nA in dendrite) produces smaller membrane potential
fluctuations for a neuron with larger membrane time constant. (C) Adjusted strength of
white noise stimulus to dendritic compartment, which produces the same membrane potential
fluctuations.

3.8.3 Synfire chain with distributed neuronal integration times

In the previous simulations, all neurons were modeled by the same set of differential
equations and therefore had the same physiological properties. Real biological neurons are
never identical and can differ a lot in terms of their shape, input resistance, capacitance
etc. We therefore wonder whether distributed physiological parameters of the neurons
can smooth the neural dynamics of a synfire chain network. Neurons in synfire groups
receive synchronous excitatory input. Thus, in order to spread their burst times, we
need the neurons to have a distribution of response times, i.e., we need different neuronal
integration times. The integration time depends on the strength of input that the neuron
receives and the membrane time constant, which is proportional to the leak resistance
and membrane capacitance. Below we explore how distributed dendritic membrane time
constants affect the smoothness of synfire chain dynamics.

To investigate how dendritic membrane time constant affects the neuronal integration
time, we perform a simulation in which one HVC-RA neuron (i.e. postsynaptic neuron)
receives 170 synchronous inputs from other HVC-RA neurons (i.e. presynaptic neurons)
with synaptic strength of each input sampled randomly between 0 and 0.004 mS/cm2.
Presynaptic neurons are ignited by a delivery of excitatory conductance kicks of strength
300 nS. The delivery times of excitatory kicks are sampled randomly within 1 ms time
window to create a spread in presynaptic burst times and, as a result, a spread in input
arrival times to the postsynaptic neuron. We also tested that the results do not change
significantly with a larger window size of 6 ms. In the simulation, we systematically
vary the dendritic membrane time constant and estimate the integration time of the
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Figure 3.22. Synfire chain with widely distributed membrane time constants produces smooth
activity. Examples of two synfire chains with uniform membrane time constant distributions
between 5 ms and 25 ms (A-C) and between 5 ms and 50 ms (D-G). (A,D) Histograms showing
membrane time constant distributions. Burst density plots show oscillations in the case of
narrow distribution (B) and smooth activity for a wide distribution (E) of membrane time
constants. (C,F) Jitter in burst onset times. The jitter increases for neurons with longer
integration times (F). (G) Histogram of input times shows a wide distribution. (H) Log of
maximal spectral power of burst density between 50 Hz and 250 Hz shows a transition from
oscillatory to smooth activity.

neuron, defined as the difference between postsynaptic burst onset time and the mean
input arrival time. The integration time changes almost linearly with the membrane
time constant and varies in a large range between 2.5 ms and 20 ms for membrane time
constants between 5 ms and 100 ms (see Fig. 3.21A).

We notice, that the same strength of white noise current stimulation (0.1 nA in soma
and 0.2 nA in dendrite) produces different membrane potential fluctuations depending
on the membrane time constant (see Fig. 3.21B). This is expected behavior, since large
membrane time constant effectively weakens the strength of received input. To account
for that, we adjust the white noise current stimulus to dendritic compartment, so that
an HVC-RA neuron has the same level of membrane potential fluctuations regardless of
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its membrane time constant (see Fig. 3.21C).
Next, we assemble a synfire chain with parameters identical to the ones in the previous

section. We sample dendritic membrane time constants from uniform distribution. We
set the smallest dendritic membrane time constant to 5 ms and systematically vary the
upper range of the uniform distribution. For a uniform distribution of dendritic time
constants between 5 ms and 25 ms (see Fig. 3.22A), the dynamics still contains prominent
oscillations (see Fig. 3.22B) and is precise with sub-millisecond jitter in burst onset times
(see Fig. 3.22C). Wider distribution with membrane time constants between 5 ms and 50
ms (see Fig. 3.22D), produces a smooth burst density with no distinguishable oscillations
(see Fig. 3.22E). However, due to long integration times, neurons are more affected by
noise and their burst onset times become less precise (see Fig. 3.22F). The distribution of
input times relative to postsynaptic burst onsets is wide and shifted to the left, compared
to original synfire chain, reflecting both the spread in integration times and the spread
in presynaptic burst times. Almost no inputs are arriving late, making an efficient use of
all synapses. Overall, we observe a disappearance of oscillation in burst density for wide
dendritic membrane time constant distributions (see Fig. 3.22H).

In the original model, dendritic membrane time constant is τ = Ad ∗ Cm/Gd,L = 10
ms which results in neuronal integration times 4-5 ms. Given the experimentally observed
∼ 5 ms integration time of HVC-RA neurons [66], it is unlikely that real neurons in HVC
have wide enough distribution of membrane time constants in order to achieve smooth
dynamics assuming synfire chain connectivity.

3.8.4 Polychronous network with distributed neuronal integration
times

Finally, we wonder whether we can achieve smooth network dynamics if we wire a
polychronous network using distributed integration times, rather than distributed con-
duction delays. In the investigation of synfire chains with distributed membrane time
constants, we sampled from a uniform distribution, which gives equal weights to both
the central and edge values of the distribution. Provided that both spatial synaptic
distributions and axonal delay distributions for efferent HVC-RA connections follow
log-normal rather than the uniform distribution, we switch to a more realistic log-normal
distribution for integration times. However, log-normal distribution has an unbounded
support which extends from 0 all the way to infinity, which would generate unrealistic
values for integration times. Therefore, we truncate a log-normal distribution on both
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Figure 3.23. Polychronous network with wide log-normal distribution of integration times
produces smooth dynamics. Results for polychronous networks wired with mean 5.5 ms and std
0.25 ms (A-C), and std 2.25 ms (D-F). (A,D) Pdf of integration time distributions. Burst density
of network dynamics shows prominent oscillations (B) and smooth sequence (E). (C,F) Jitter
in burst onset times. (G) Spectral analysis of burst density for polychronous networks wired
with different mean (vertical axis) and standard deviation (horizontal axis) of integration time
distribution shows smooth dynamics only for the largest standard deviation. Burst density plots
with rescaled synaptic weights for a polychronous network wired with distributed integration
times (mean = 5.5 ms, std = 2.25 ms, H) and those with distributed axonal delays (mean = 3.5
ms, std = 2.25 ms, I) shows prominent transient oscillations for distributed integration times.

the lower range (at 4 ms) and on the upper range (at 21 ms).
We systematically vary the mean and the standard deviation of the log-normal distri-

bution of integration times and wire polychronous networks with 170 output connections
per neuron with a maximal synaptic strength Gee = 0.004 mS/cm2 and a single axonal
delay value of 3.4 ms, which corresponds to the mean axonal delay in HVC. Integration
times of starter neurons are set to 4.0 ms to ensure synchronous spiking. The wiring
algorithm proceeds in the same way as before, with the only difference that neurons
have different integration times. The algorithm fails for small size of synchronous time
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windows and we use a larger window of 6 ms.
Narrow integration time distribution with mean 5.5 ms and std 0.25 ms (see Fig. 3.23A)

produces network with prominent oscillations in burst density (see Fig. 3.23B). The
distribution with the same mean and large std 2.25 ms (see Fig. 3.23D) results in network
with no distinguishable oscillations (see Fig. 3.23E). The wired networks are on average
precise. Jitter distribution has a longer tail for larger standard deviation of integration
times, due to noisy neurons with long integration times (see Fig. 3.23C,F). Overall,
continuous dynamics is achieved only for the largest standard deviation used (2.25 ms,
see Fig. 3.23G).

Do these polychronous networks wired with distributed integration times have different
properties compared to the polychronous networks wired with distributed conduction
delays? Neuronal integration time depends on the strength of excitatory connections,
which may fluctuate in the real biological network. On the other side, axonal delays are
determined by the geometry of connections (length and width) and are not assumed to
change. Thus, the network wired with distributed integration times may be more resilient
to the changes in synaptic weight strength. To test this hypothesis, we systematically
rescale the synaptic weights of two grown polychronous networks and compare their
dynamics. Polychronous network wired with distributed integration times (see Fig. 3.23H)
shows strong transient oscillations, which are further enhanced by larger synaptic weights.
Polychronous network wired with distributed axonal delays also shows some transient
oscillations, but they are much less prominent. Why transient oscillations are so strong
in the case of distributed integration times? This is because initial layers of this network
are similar to synfire groups. To see this, let’s consider the first iteration of the wiring
algorithm, during which synchronous starter neurons recruit new targets into the network.
Since there is only a single delay value, starter neurons converge perfectly on all recruited
targets, forming a perfect synfire group. The targets in this group, however, have
distributed integration times and do not fire synchronously. Thus, when they become
new source neurons and recruit new targets, they are not able to converge perfectly and
do not form a new perfect synfire group. Gradually, the burst onset times of target
neurons spread more and shift the network topology away from a synfire chain.

We did not observe any other significant differences between these networks. Therefore,
we conclude that distributed neuronal integration times can also be used to produce
a smooth network dynamics. Whether real HVC-RA neurons have a wide enough
distribution of integration times remains unclear and needs further experimental studies.
Potentially, both distributed axonal conductions delays and integration times work
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together to create a continuous neural sequence. However, our study provides a strong
evidence that axonal delays alone can achieve this goal.

3.9 Conclusions
In this section, we developed a detailed model of HVC microcircuit for zebra finch. The
model incorporates all known experimental features of HVC, including realistic neuron
numbers, spatial distributions and distributed axonal delays. We showed that a single
synfire chain model produces strong oscillations in neural activity, inconsistent with
experimental observations. Extension of the synfire chain model, several parallel synfire
chains, were able to produce a smooth neural dynamics, however, with a loss in precision.
In addition, due to distributed axonal conduction delays, synfire chain model contained
a significant amount of late inputs, inefficient connections that do not drive postsynaptic
neurons. Motivated by these observations, we created a polychronous network, the model
in which all inputs arrive synchronously to postsynaptic neurons. We showed that the
polychronous network with experimental axonal delay distribution was able to satisfy
all experimentally known HVC constrains, including the smooth network dynamics.
We further explored the role of axonal conduction delays in polychronous network and
demonstrated that width of the axonal delay distribution controls the smoothness of
network dynamics. Narrow distributions produced networks with prominent oscillations,
while wide distributions resulted in networks with smooth dynamics. Therefore, axonal
delays may play an important role in shaping neural dynamics and should not be ignored
in neural network models.
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Chapter 4 |
Sequence development in HVC

Development of neural circuits is an intricate process that involves many well-orchestrated
steps. The newborn neurons commonly have to migrate long distances to their destina-
tions, where they settle down, extend the dendrites and the axon, establish connectivity
with other existing neurons and finally reach adult-like mature state. The birth order
of neurons plays a critical role in the development of neural networks. In mammalian
cortex, neurons that are destined to the deep cortical layers are born earlier than those
to the superficial layers and this process is regulated by cell-intrinsic and environmental
factors [96,97]. Depending on the order of birth, cortical neurons have to migrate different
distances and get incorporated into local microcircuits with unique properties. In rodent
hippocampus, earlier born neurons and late born neurons form distinctive parallel circuits
through the hippocampal pathway [98]. However, the role of birth order in constructing
microcircuits in local brain areas is unknown [99]. The premotor nucleus HVC of the
zebra finch provides an excellent opportunity to investigate this issue.

Majority of HVC-RA neurons are born and added to HVC after hatch. The most
active period of HVC-RA neurogenesis happens from 20 to 50 days after hatch [35],
which coincides with the period of song learning. The other two major neuron types:
interneurons and area X projecting neurons are get incorporated into HVC before
hatch and are presumably mature during song learning [32]. Therefore, throughout
vocal development, HVC-RA neurons have a wide range of birthdates, which provides
an opportunity to investigate the HVC-RA birth order role in the formation of HVC
microcircuit for song production.

Previous theoretical [100, 101] and experimental [102] studies of HVC have proposed
the gradual growth of a feedforward synaptic chain of HVC-RA neurons. However, the
role of neurogenesis, happening actively during this process, has not been explored in any
of these studies. Indeed, although neurogenesis in HVC has been observed for decades,
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its role for song learning in zebra finch has remained a mystery [34,103].
We start this Chapter by re-analyzing the publicly available data set of extracellular

recordings of HVC projection neurons in singing juvenile zebra finches [104]. We find
that in early stages of vocal development, HVC-RA neurons have less tight bursting
patterns, presumably due to their immaturity. We also find that less tight bursts are
the features of the neurons that burst later in the syllables, supporting the hypothesis
that the network in HVC grows by recruiting new immature neurons to the end of the
existing sequence.

Next, we develop a computational model of sequence growth in songbird HVC, which
relies on a constant supply of newborn immature HVC-RA neurons. The model assumes
that immature neurons are more spontaneously active and therefore they become prime
targets of a self-organized growth process via synaptic plasticity. Once recruited, the
new neurons fire readily at precise times, and they become mature. Neurons that are
not recruited become silent and replaced by new immature neurons. The model predicts
that the neurons get incorporated into the growing sequence based on their birth order,
creating a correlation between birth date and firing time. Thus, the model can be tested
directly by checking if earlier born neurons fire before the neurons that are born later.

The model also incorporates biologically realistic features of HVC, such as explicit
population of interneurons, spatial distributions of HVC-I and HVC-RA, and distributed
axonal conduction delays. These features provide novel insights into the formation of
feedforward sequences with precise timing, such as the dependence of emerged network
topology on axonal delay distribution, and the role of inhibition during sequence growth.

Significant portions of this Chapter are parts of the Tupikov and Jin, 2019 paper
(unpublished).

4.1 Re-analysis of spike patterns of HVC projection neu-
rons in juvenile zebra finches
In recent study [102], Okubo et al. reported extracellular recordings of single neurons
in HVC of juvenile zebra finches during vocal development. The authors observed a
gradual increase in the fraction of projection neurons that were active during singing,
and a gradual spread of the latency of their burst times relative to the syllable onsets.
These observations are supporting the hypothesis that there is a gradual sequence growth
in HVC during vocal development. Provided that during this period there is an active
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Figure 4.1. Projection neurons show two distinct spike shapes. (A) One spike shape has
a strong hyperpolarizing dip in the membrane potential traces prior to the spike peak and
another, much smaller, hyperpolarization after the peak. (B) Another spike shape does not
contain the dip prior to spike peak, the membrane potential just stays flat until the action
potential upstroke

5 ms

* * * *

N
o
rm

. 
v
o

lt
a
g

e
 (

a
.u

.)

Figure 4.2. Examples of missed spikes in the data set. Spikes that were labeled in the data
are marked with asterisk. Un-labeled spikes usually have smaller amplitude.

addition of new HVC-RA neurons, we wonder if immature neurons are involved in
sequence formation. To address this question, we re-analyze the data set provided in the
above mentioned study [104].

The dataset is organized into four stages of song development [102]: subsong, which is
highly variable (∼48 days post hatch (dph)); protosyllable song, which contains syllables
with definable durations around 100 ms (∼58 dph); multi-syllable song, which contains
syllables with distinctive spectral characteristics (∼62 dph); and motif song, which
consists of a reliable sequence of syllables like adult song (∼73 dph). The following
neuron types are reported: HVC-RA neurons (identified by antidromic stimulations in
RA), HVC-X neurons (identified by antidromic stimulations in area X) and HVC-p -
putative projection neurons. The dataset contains audio and neural recordings with
useful metadata: onset and offset syllable times; spike times of neurons; types of syllables,
quality of single unit recording etc. The data is split based on the neuron identity.
The spikes are also classified into artifacts and signal. In our analysis, we consider
only recordings with high quality of single unit isolation ≥ 2, and ignore un-classified
population of neurons (HVC-p).
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Figure 4.3. Distributions of interspike intervals (ISIs) of HVC-RA and HVC-X neurons in
different stages of vocal development. At all stages, distributions are bimodal. One mode (with
small ISIs) corresponds to spikes within individual bursts (i.e., "burst mode"). Another mode
(with large ISIs) corresponds to interburst intervals due to repetition of the same sound in
the song and determines the song rhythm (i.e., "rhythmic mode"). Both modes progressively
tighten during song learning.

4.1.1 Data set exploration

During the exploration of the data set, we notice that projection neurons produce two
different spike shapes. One spike shape has a strong hyperpolarizing dip in the membrane
potential traces prior to the spike peak and another, much smaller, hyperpolarization
after the peak (see Fig. 4.1A). Another shape does not contain the dip prior to spike
peak, the membrane potential just stays flat until the action potential upstroke (see
Fig. 4.1B). It also shows a more pronounced after-spike hyperpolarization. It is not clear
if these differences in spike shapes are some artifacts in the recordings, or they actually
represent populations of neurons with distinct physiological properties.

We also observe features in membrane potential traces that look like spikes, but
were not labeled as spikes in the data set (see Fig. 4.2). These features often occur
next to other groups of spikes, presumably forming bursts. We hypothesize that these
features represent the actual spikes, which were missed in the data set due to their small
amplitude. Indeed, many of the spike sequences start with high amplitude spikes and
show a gradual decrease in the spike amplitude. Most of the observed features occur at
the end of the spike sequences, when the amplitude is small.
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Figure 4.4. First interspike interval. (A) Example of spike patterns of two HVC-RA neurons
in the protosyllable stage aligned to a syllable onset. First interspike interval is defined as
the temporal distance between first two spikes in burst. (B) Two examples of first interspike
distributions for individual HVC-RA neurons in protosyllable stage. Each distribution contains
outliers, therefore a median of the distribution is used to estimate the first interspike interval
of the neuron.

4.1.2 Interspike intervals

We start the analysis by looking into interspike intervals (ISIs) of different neuron types
at different stages of vocal development. Throughout all song stages, distributions of
ISIs contain two distinct modes (see Fig. 4.3). One mode (i.e., "burst mode"), with
small interspike intervals, corresponds to spikes inside individual bursts. Another mode
(i.e., "rhythmic mode"), with large interspike intervals, corresponds to spikes produced
in different repetitions of the same sound, reflecting a song rhythm. All neuron types
gradually develop tight distribution modes, which reflects more stable spike patterns.
In subsong stage, the rhythmic mode does not have any noticeable peak, meaning that
projection neurons do not burst rhythmically. The peak is visible in the protosyllable
stage, and for later song learning stages it is gradually shifting right toward larger
values of interspike intervals. That reflects the increasing complexity of the song, which
incorporates new syllable types and therefore decreases the frequency of the repetition of
the same sound. Based on bimodal nature of ISIs distributions, it is natural to define
a burst using a maximal ISI of the burst mode. Thus, we follow the procedure in the
original paper, and define a burst as a continuous group of spikes separated by interspike
intervals of no more than 30 ms (since log10(30) ∼ 1.5).

4.1.3 Burst tightness

Spike patterns of projection neurons during song development vary significantly in the
number of spikes produced per burst and in the burst duration. We therefore use
first interspike interval in the burst as a measure of burst tightness (see Fig. 4.4A).
First interspike intervals of individual neurons across many bursts demonstrate wide
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Figure 4.5. Maturation of spike properties of HVC-RA neurons. Cumulative density functions
for first interspike interval (A), number of spikes in burst (B), and burst duration (C) of
HVC-RA neurons at different stages of song learning. First interspike intervals progressively
tighten during vocal development. Burst durations slightly decrease, but the decrease is not
statistically significant (p = 0.08). Number of spikes in burst does not change.

distributions with some outliers (see Fig. 4.4B). Therefore, we use a median first interspike
interval, rather than the mean, to get a more robust estimate of first interspike interval.
In addition to the burst tightness, we also estimate other spike properties: number
of spikes in a burst and burst duration. For both of these measures, we again use a
median value to get a robust estimate. We observe that bursts in the HVC-RA neuron
population gradually tighten as the song progresses through the protosyllable, multi-
syllable and motif stages (see Fig. 4.5, multi-syllable versus protosyllable, p = 0.023,
one-sided Wilcoxon rank sum test; motif versus multi-syllable, p < 0.0001, one-sided
Wilcoxon rank sum test), supporting that burst tightness is positively linked to song
development and presumably to HVC-RA neuron maturation. Neither the number of
spikes in a burst, nor the burst duration changes significantly (though burst duration
in multi-syllable stage is slightly smaller than in the protosyllable stage with statistical
significance of p = 0.08, one-sided Wilcoxon rank sum test).

4.1.4 Syllable locking

We next wonder if burst tightness of HVC-RA neurons depends on the time when they
fire in syllables. We follow the procedure in the original paper, and define syllable locked
HVC-RA neurons, i.e., those that tend to burst at fixed latency relative to the syllable
onset time. To find syllable locking time, spikes of the neurons in each recording are
aligned to the syllable onset times (between -500 ms and 500 ms) (see Fig. 4.6A). Then,
the largest peak in firing rate between -50 ms to 200 ms from syllable onsets is selected as
a candidate locking time. Significance of the locking time is determined by bootstrapping
1,000 samples of spike trains, which is done by shifting spikes in the individual recordings
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Figure 4.6. Syllable locking and peak width in syllable locking firing rate. (A) Top: An
example of spikes of one HVC-RA neuron in protosyllable stage aligned to onset times of
different syllables. Bottom: Corresponding raw firing rate (blue) and smoothed firing rate
(orange). To find syllable locking time, the peak in smoothed firing rate is selected between
-50 ms and 200 ms (green cross). Peak significance and width are shown with red vertical and
horizontal lines correspondingly. (B) An example of bootstrap spike sample for spikes in (A),
used to estimate the significance of syllable locking. (C) Cumulative density function for peak
width at different stages of song learning shows progressive peak width tightening.

randomly, preserving inter-spike intervals (see Fig. 4.6B). The neuron is defined as syllable
locked if the peak in original firing rate is larger than the peaks in 95% of bootstrapped
samples (i.e. p-value 0.05).

We also estimate the peak width in syllable locking firing rate. The peak width is
evaluated at the half height of the peak’s prominence, which we will define later. At the
evaluation height, a horizontal line is drawn to both sides, starting at the peak’s current
horizontal position, until it crosses the signal, and the distance between the endpoints is
defined as the peak’s width. To calculate the peak prominence, first, a horizontal line
from the peak is extended to the left and right until the line intersects the signal again
at the slope of a higher peak or the line reaches the time boundaries. On each side, the
minimal signal value is found within the interval defined above. These points are the
peak’s bases. The higher one of the two bases marks the peak’s lowest contour line. The
prominence is then calculated as the vertical difference between the peak’s height and its
lowest contour line.

The peak width provides an estimate of both the neuron precision and the burst
duration. Indeed, a wide peak in syllable locking firing rate may arise either due to poor
alignment of spikes produced in different repetitions of the same syllable, or due to long
bursts. We observe that peak width in the HVC-RA neuron population gradually tightens
as the song progresses through the protosyllable, multi-syllable and motif stages (see
Fig. 4.6C, multi-syllable versus protosyllable, p = 0.004, one-sided Wilcoxon rank sum
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development. In the protosyllable stage, bursts are tighter for neurons with small burst latency,
those that fire near the syllable onset time. The same trend is visible in the multi-syllable stage,
but disappears in the motif stage.

test; motif versus multi-syllable, p < 0.006, one-sided Wilcoxon rank sum test). Since
the burst duration of HVC-RA neurons doesn’t change much during vocal development,
we treat this observation as an evidence for the increasing neuronal precision in spike
times. The peak width is also correlated with first interspike interval, suggesting that
both measures can be used to evaluate neuron immaturity (p < 10−16, two-tailed t-test).

In the protosyllable stage (see Fig. 4.7), the first interspike interval significantly
increases with the burst latency (p = 0.012, two-tailed t-test), suggesting that bursts are
tighter for neurons bursting at the start of the syllables than those at the end. Thus,
the maturity of HVC-RA neurons is heterogeneous in this stage, and immature neurons
tend to burst towards the end of the syllables. This trend is less pronounced but still
significant in the multi-syllable stage (p = 0.017, two-tailed t-test). It disappears in the
motif stage (p = 0.14, two-tailed t-test).

4.1.5 Spike width

We next wonder if there are any changes in spike width during development. Immature
neurons throughout multiple brain regions commonly show wider spikes due to smaller
sodium and potassium conductance. The spikes become narrower during development,
when additional ionic channels are added into the membrane. To find spike width of
a neuron, for each recording we extract membrane potential traces in time window
extending from 1 ms before to 1 ms after labeled spike times. Next, we find the maximal
voltage in this time interval and define a spike half-height as the difference between the
maximal voltage and the mean voltage of the neuron in this recording. Finally, we extend
a horizontal line to the left and right at the half-spike height starting from the position
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of the maximal voltage, and define a spike width as the temporal difference between
intersection points with the voltage trace. If the maximal voltage occurs at the distance
of more than 0.5 ms from the spike time, or one of the intersections does not occur within
the extracted time interval, the spike is ignored. A spike width of a neuron is estimated
as the median spike width of all its valid spikes.

We observe that spike width of HVC-RA neurons does not change significantly during
development (see Fig. 4.8A). In addition, spike width does not show significant correlation
with syllable locking time at all stages of song learning (see Fig. 4.8B). This may reflect
that recorded immature neurons already have well-developed sodium and potassium ionic
channels to produce spikes.

4.1.6 HVC-X neurons

What about spike properties of HVC-X neurons? As in the case of HVC-RA neurons, first
interspike intervals of HVC-X show gradual tightening during song learning (see Fig. 4.9,
multi-syllable versus protosyllable, p < 10−6, one-sided Wilcoxon rank sum test; motif
versus multi-syllable, p < 10−11, one-sided Wilcoxon rank sum test). Burst duration
decreases slightly in multi-syllable stage compared to protosyllable stage (p = 0.016,
one-sided Wilcoxon rank sum test). Peak width also shows progressive tightening during
vocal development (multi-syllable versus protosyllable, p < 10−5, one-sided Wilcoxon
rank sum test; motif versus multi-syllable, p < 10−4, one-sided Wilcoxon rank sum test).
Number of spikes in a burst does not change significantly.

Like HVC-RA neurons, HVC-X in the protosyllable stage demonstrate a significant
increase of the first interspike interval with the burst latency (see Fig. 4.10, p < 10−4,
two-tailed t-test). In the multi syllable stage, the first spike interval does not change
(p = 0.94), and in the motif stage it even shows a small, but statistically significant
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decrease (p = 0.03). We believe that the latter trend is an artifact created by the outliers
that have large first interspike interval, but burst close to the syllable onset time.

Spike width of HVC-X neurons also does not change significantly during development
(see Fig. 4.11A) and there is no correlation between syllable locking time and spike width
at any vocal development stage (see Fig. 4.11B).
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Overall, we observe that spike properties of HVC-X neurons during song learning
demonstrate similar trends to spike properties of HVC-RA neurons. It is unclear if
these observations reflect the possible progressive maturation of HVC-X neurons. One
hypothesis is that HVC-RA neurons, known to send numerous connections to HVC-X,
shape the spike pattern of HVC-X neurons during the song. Thus, the tightening of
the spike pattern of HVC-RA neurons leads to the tightnening of the spike pattern in
HVC-X neurons.

4.1.7 Spike patterns during and outside song bouts

To address this question, we compare spike patterns of HVC-X neurons during song bouts,
when they are presumably driven by activity of HVC-RA neurons, with spike patterns
outside song bouts, which should reflect the intrinsic properties of HVC-X. Following
Okubo et al., we define a song bout as a continuous syllable sequence separated by silent
gaps of more than 300 ms. Note, that calls and introductory notes are not considered to
be syllables. For each HVC-X neuron we classify its bursts into two categories: during
song bout; and outside song bout. A burst during song bout has all its spikes between
100 ms before song bout onset and 100 ms after song bout offset time. Bursts that do
not occur during song bout were treated as bursts outside song bout. At all stages of
vocal development, first interspike intervals of the bursts produced outside song bouts
are larger than those of the bursts during the song (see Fig. 4.12). It suggests that spike
patterns of HVC-X neurons are indeed affected by HVC activity.
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Figure 4.12. Comparison of first interspike intervals of the bursts of HVC-X neurons produced
during and outside song bouts at protosyllable, multi syllable and motif stages. At all stages,
bursts produced outside the song are less tight, suggesting that burst tightening of HVC-X
neurons is a network driven phenomena.

4.1.8 Conclusions

To conclude, we interpret the less tightness of bursts of HVC-RA neurons as a reflection
of immature intrinsic bursting mechanism. An alternative possibility is that the burst
tightness is a network phenomenon. It is possible that neurons that burst earlier in the
sequence are better connected and get stronger inputs, leading to tight bursts, whereas
those that burst later are still in process of getting incorporated and hence are loosely
connected. Another possible is that feedback inhibition controls the burst tightness [105].
There is some evidence in the data that supports the intrinsic mechanism of burst
tightness. We found one HVC-RA neuron in the subsong stage that was not locked
to vocalization but still showed tight bursts usually observed in the motif stage (see
Fig. 4.13). Since the network is unlikely formed in this stage, the observation favors
intrinsic mechanism for burst tightness. Due to limited number of HVC-RA neurons
recorded in subsong stage and subsequent protosyllable stage, we could not gather more
evidence. Future experiments with more data on HVC-RA neurons in early song learning
stages, perhaps also including intracellular recordings in vivo and in slices, should be
able to address whether burst tightness is intrinsically controlled.

4.2 Computational model for sequence formation
In this section we describe a computational model that explores the role of immature
neurons in the sequence formation in HVC. Inspired by the results outlined in the previous
section, we create a maturation model of HVC-RA neurons, according to which burst
tightness is an intrinsic neuronal property that emerges through development. Immature
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Figure 4.13. Example HVC-RA neuron recorded in the subsong stage showing tight burst
without being locked to the song. (Left) Firing rate of the neuron aligned to syllable onset
times does not show significant peak, meaning that the neuron is not locked to the syllables.
(Right) Example membrane potential traces of the same neuron demonstrate tight bursting
pattern

HVC-RA produce wide bursts, which gradually become tighter due to spontaneous
activity and reliable spiking. In addition, immature HVC-RA neurons have a higher
resting potential which makes them more spontaneously active.

We build upon the gradual sequence formation model [100, 101] and use similar
synaptic plasticity rules to grow the network of connected HVC-RA neurons. Higher
spontaneous activity of immature neurons makes them prime targets for recruitment and
they are incorporated to the end of the growing feedforward sequence. After incorporation
into the network, these neurons are more consistently active and mature fast, forming a
new edge of growth that leads to recruitment of a new cohort of immature neurons. Thus,
the network growth, organized in separate trials, progresses gradually by neuron-by-
neuron recruitment. The network also assembles according to the birth order of neurons,
with earlier born neurons having smaller burst times.

4.2.1 Neuronal spatial arrangement

We start by setting up spatial distributions of neurons. As in the previous chapter, we
model two main populations of neurons: HVC-RA and HVC-I (interneurons). While real
HVC contains around 20,000 HVC-RA and 5,500 interneurons, due to the limitation of
computational power we could not include this many neurons in our model. Instead, we
use 2000 HVC-RA and 550 HVC-I neurons.

Since number of neurons is small, distributing them in 3D space becomes problematic
because a large portion of them will be at the edge. Later we set up connections between
the neurons based on the distances between them, thus the edge neurons will receive
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Figure 4.14. Schematic of a network arrangement and connectivity. (A) HVC-RA (dark
green circles) and HVC-I (red circles) neurons are distributed over the surface of a sphere.
HVC-I neurons form a lattice-like pattern, while HVC-RA neurons are distributed uniformly.
Examples of connections from one HVC-RA neuron to HVC-I neurons and from one HVC-I to
HVC-RA neurons are shown. (B) Distribution of axonal conduction lengths for connections
between HVC-RA and HVC-I neurons.

less inhibition and will be preferentially recruited by the network growth algorithm.
To avoid this boundary effect, we place neurons on a 2D sphere of radius 260 µm (see
Fig. 4.14A). Each neuron occupies a volume of a sphere with diameter 10 µm and we
do not allow overlaps between any neurons. HVC-I neurons are first placed evenly on
the sphere using the Fibonacci lattice [106]. The distance between nearest neighbors on
sphere is approximately ∆rin = 40 µm , which matches the average distance between
HVC-I in real HVC (∆rin = 3

√
VHV C/NI , where VHV C = 0.26 mm3 is the volume of

HVC and NI = 5, 500 is the number of HVC-I neurons). To create randomness in the
positions of HVC-I neurons, their latitude and longitude are shifted by a small amount
randomly sampled between 0 and ∆θ and between 0 and ∆φ correspondingly, with
∆θ = 0.0006 ∆rin and ∆φ = 0.0006 ∆rin/sin(θ). It corresponds to a random shift of a
neuron between 0 and ∼ 2 µm along the surface of the sphere. Next, HVC-RA neurons
are placed randomly over the sphere surface, with the constraint that they do not overlap
with other HVC-RA and HVC-I neurons.

4.2.2 Neuronal connectivity

We create connections between HVC-RA and HVC-I neurons probabilistically according
to the Gaussian distributions based on the distance between the neurons on the sphere
(see Fig. 4.14B). Specifically, pRA→I = exp(−d2/σ2

RA→I) and pI→RA = exp(−d2/σ2
I→RA),

where pRA→I is a probability for a given HVC-RA neuron to contact a given HVC-I
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neuron, pI→RA is a probability for a given HVC-I neuron to contact a given HVC-RA
neuron, d is a distance between given HVC-RA and HVC-I neurons on the sphere,
σRA→I = 130 µm, and σI→RA = 90 µm. Only a single connection between a pair of
neurons is allowed. Parameter σRA→I is chosen to match the upper bound on the number
of postsynaptic HVC-I partners for an HVC-RA neuron [50,89]. On average an HVC-RA
neuron contacts 11.6% of HVC-I neurons, which corresponds to 65 HVC-I, with mean
distance 155 µm. HVC-I neurons has a smaller spatial connectivity scale to influence
nearby HVC-RA neurons. A single HVC-I neuron contacts 5.8% of HVC-RA neurons,
which corresponds to 115 HVC-RA neurons, with mean distance 110 µm. The spatial
synaptic distributions are similar to those observed in experiments [50] (also see Chapter
3). Initially, all HVC-RA neurons are immature and there are no connections between
them.

We also create axonal time delays between all neurons by setting a conduction velocity
to 100 µm/ms, unless otherwise stated, and using distances between neurons on the
sphere. This value of conduction velocity creates realistic axonal delays between neurons.

4.2.3 Neuron model

Dynamics of HVC-I neurons is simulated with Dormand-Prince 8th order numerical
method and dynamics of HVC-RA neurons with AN3D1 3rd weak order method with
time resolution 0.02 ms (see Chapter 2 for more details). For HVC-I neurons, we use the
model identical to the one described in Chapter 2.

For HVC-RA neurons, we create a maturation model to account for the changes
in burst tightness during development. We start with a model for mature neurons
and take a 2-compartmental Hodgkin-Huxley neuron model with soma and dendrite
described in Chapter 2. We hypothesize that dendrites of immature HVC-RA neurons
are not fully developed and cannot support a strong calcium spike. To reflect ’weak’
dendritic compartment of immature neurons, we set their calcium dendritic conductance
to zero. Thus, immature neurons are not able to generate tight bursts (see Fig. 4.15B,D).
In addition, we set both somatic and dendritic leak reversal potential for immature
neurons 15 mV higher, since it is universally observed that resting membrane potential
of immature neurons is elevated compared to those of mature neurons. This leads to
increased excitability of immature neurons, i.e., smaller input could make them fire
action potential (see Fig. 4.15A). To make a transition from immature neuron model
to mature, we introduce a time-dependent maturation. Both the resting membrane
potential and the calcium conductance exponentially approach their mature values with
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Figure 4.15. Comparison of maturation models with (A-D) and without (E-H) low-threshold
potassium current (KLT) for HVC-RA neurons of different age. The model with KLT is
selected as the most consistent with experimental observations. Neurons of age 0 days are
called immature. Neurons of age 58 days are called mature. Immature neurons in both models
have no dendritic calcium channels. Resting potential of immature neurons with KLT (without
KLT) is 15 mV (25 mV) higher than for corresponding mature neurons. Both the resting
potential and the dendritic calcium conductance approach mature values exponentially in
age-dependent manner with time scale 50,000 s. Number of somatic spikes produced under
external current pulse of 150 ms duration injected to soma (A,E) and dendrite (B,F). Model with
KLT produces less somatic spikes and shows the same excitability of dendritic compartment for
both immature and mature neuron models. (C,G) First interspike intervals of bursts elicited by
an external excitatory conductance kick delivered to dendritic compartment. The difference in
burst tightness between mature and immature models is more pronounced for the model with
KLT (G). (D,H) Examples of membrane potential traces for neurons of different age produced
by the same strength of excitatory conductance kick (Gkick = 15 GL). During maturation,
bursts in model with KLT (H) become tighter and acquire more somatic spikes.

time constant 50,000 s. Due to maturation, newborn immature neurons gradually become
less excitable (see Fig. 4.15A) and develop strong calcium burst (see Fig. 4.15B). The
model, however, suffers from biasing immature neurons to produce considerably more
somatic spikes compared to mature neurons under the same strength of input (see
Fig. 4.15D). Burst tightness, measured by the first interspike interval in burst, also does
not change significantly during development (see Fig. 4.15C).

These issues motivate us to modify the neuron model. We first reason that we
need a stronger hyperpolarizing current to decrease the number of spikes produced by
immature neurons. The simplest way to achieve that is to increase the strength of leak
conductance. Thus, we systematically vary the leak conductance in somatic and dendritic
compartments (see Fig. 4.16). Strong leak conductance is successful in reducing the
number of somatic spikes produced by immature neurons (see Fig. 4.16A,B). However, it
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also decreases the number of spikes produced in bursts of mature HVC-RA and require
a much stronger input to elicit the burst (see Fig. 4.16F). Moreover, while larger leak
conductance increases the first interspike intervals for immature neurons (see Fig. 4.16C),
it affects mature neurons in the similar way (see Fig. 4.16G). Therefore, we conclude that
adjusting the strength of leak conductance affects both mature and immature neuron
models similarly, and is not able to produce the desired differences between them.

Delay-rectified potassium current is the last remaining hyperpolarizing current in
the somatic compartment. However, this current is responsible for the action potential
shape and changes in its strength affect the spike width. Since the spike width stays the
same during development according to our results in the previous section, developmental
changes in delay-rectified potassium current are inconsistent with experimental obser-
vations. Moreover, this current has a small sub-millisecond scale activation time and
cannot significantly affect the size of interspike intervals.

Therefore, we incorporate an additional hyperpolarizing current with large activation
time scale: IKLT = Gs,KLT l (Vs − EK) with conductance Gs,KLT , potassium reversal
potential EK = −90 mV and gating variable l. Gating variable obeys the following
dynamics: τl dl/dt = l∞(V ) − l, where τl = 10 ms, l∞(V ) = 1/(1 + exp−(V + 40)/5).
Introduction of KLT current also allows us to use more elevated resting potential for
immature neurons (25 mV higher than for mature neurons), which further increases
their excitability. Similar current was used by Jin et al. [107] to achieve strong spike
frequency adaptation. In our case, it serves a different role. Large conductance of
KLT current decreases the number of somatic spikes produced in both immature and
mature HVC-RA neuron models (see Fig. 4.17A,B,D,E,F,H). However, the input needed
to produce a dendritic burst in mature neurons is not affected by this current (see
Fig. 4.17F). Moreover, while larger KLT current increases the first interspike intervals
in immature neurons (see Fig. 4.17C), it does not change the burst tightness of mature
neurons (see Fig. 4.17G). This is because KLT current has a relatively large activation
time scale of 10 ms, and is not able to affect first spikes of mature neurons driven by
a strong calcium spike in dendritic compartment. It is, however, affecting the overall
number of spikes produced in burst, since the burst duration is similar to the activation
time scale. In contrast, immature neurons have a weak dendritic compartment, and KLT
current is strong enough to influence both the first and the last spikes in the burst.

The response and spike properties of the final model with GKLT = 3.5 mS/cm2 are
shown in Fig. 4.15E-H. Compared to the model without KLT, the number of produced
somatic spikes (see Fig. 4.15A,B,D,E,F,H) is reduced and difference in burst tightness
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Figure 4.16. Maturation model with adjusted leak membrane conductance for immature
(A-D, day 0) and mature (E-H, day 58) neuron models (no KLT conductance). Number of
somatic spikes produced under external current pulse of 150 ms duration injected to soma (A,E)
and dendrite (B,F). Excitability of dendritic and somatic compartments of both immature and
mature neurons is decreased for large leak conductance. (C,G) First interspike intervals of
bursts elicited by an external excitatory conductance kick delivered to dendritic compartment.
Bursts of both immature and mature neuron models become less tight when leak conductance
increases. (D,H) Examples of membrane potential traces for neurons of different age produced
by the same strength of excitatory conductance kick (Gkick = 15 GL). Large leak conductance
reduces the number of somatic spikes produced and spreads them out, creating bigger interspike
intervals. Overall, adjusting the strength of leak conductance affects both mature and immature
neuron models similarly, and is not able to produce the desired differences between them.

between immature and mature neuron models is more pronounced (see Fig. 4.15C,G).
Thus, incorporation of an additional KLT current makes neuron maturation model

more consistent with experimental observations. KLT conductance has been observed in
many neuron types and may also be present in HVC-RA neurons. Further experiments
with intracellular recordings of HVC projection neurons are needed to test this hypothesis.

In the simulation, both mature and immature HVC-RA neurons receive white noise
injections with amplitude 0.1 nA to soma compartment and amplitude 0.2 nA to dendrite.
It results in immature HVC-RA neurons firing spontaneously at frequency ∼ 0.6 Hz.
Spontaneous activity decreases with age, practically disappearing in mature neurons (see
Fig. 4.18). Noise model for HVC-I neurons is identical to the one described in Chapter 2.
HVC-I neuron spikes spontaneously with frequency ∼ 10 Hz.

4.2.4 Maturation dynamics

As described in the previous section, maturation of HVC-RA neurons is modeled as a
gradual increase of dendritic calcium conductance, and a gradual decrease in the somatic
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Figure 4.17. Maturation model with different strength of low-threshold potassium (KLT)
current for immature (A-D, day 0) and mature (E-H, day 58) neuron models. Number of
somatic spikes produced under external current pulse of 150 ms duration injected to soma
(A,E) and dendrite (B,F). Excitability of dendritic compartment of mature neurons does not
depend on the KLT conductance. (C,G) First interspike intervals of bursts elicited by an
external excitatory conductance kick delivered to dendritic compartment. Bursts of immature
neurons become less tight for strong KLT current, while burst tightness of mature neurons is
not affected by the strength of KLT. (D,H) Examples of membrane potential traces for neurons
of different age produced by the same strength of excitatory conductance kick (Gkick = 15GL).
Large KLT conductance reduces the number of somatic spikes produced and spreads out the
spikes of immature neurons, creating bigger interspike intervals. Thus, incorporation of an
additional KLT current makes neuron maturation model more consistent with experimental
observations.

and dendritic leak reversal potential (see Fig. 4.19A,B):

τmat
dGCa

dt
= Gmat −GCa,

τmat
dEL

dt
= Emat − EL,

where τmat is the maturation time constant; Gmat = 55 mS/cm2 is the mature value of
calcium conductance; and Emat = −80 mV is the mature value of leak reversal potential.
Values of GCa and EL are updated at the end of each trial.

In addition to the age-dependent maturation with time constant τmat = 50, 000 s, we
incorporate activity-driven maturation (see Fig. 4.19C). The neuron is called reliably
spiking if it spiked in more than half of the trials in the past 1,000 trials. Neurons become
reliably spiking after recruitment into the network and their maturation progresses with
a smaller time constant τmat = 500 s. This acceleration protects the grown network
from spontaneous activation and hence from formation of loops. The activity-dependent
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Figure 4.19. Computational model of HVC-RA neurons and the maturation process. (A) An
HVC-RA neuron is modeled as two-compartmental Hodgkin-Huxley with soma and dendrite.
(B) HVC-RA responses to the current injection to the dendritical compartment at different
maturation stages. (C) Two pathways for neuronal maturation: scheduled maturation under
spontaneous activity, and accelerated maturation driven by activity when neuron spikes reliably.

maturation dynamics is inspired by the observation in rodent hippocampus that adult-
born neurons mature faster with enhanced activity and mature more slowly with reduced
activity [108]. The exact value of the activity-driven maturation time scale is not
important, as long as it is much smaller than the spontaneous one.

4.2.5 Neuronal turnover

Due to maturation dynamics, spontaneous activity of neurons gradually decreases with
time. Therefore, the neurons that do not get incorporated into the network become silent
and lose any opportunity to get recruited. Specifically, neuron is assigned as silent if
it spiked in less than 80 trials in the past 4,000 trials. To model the neurogenesis in
HVC, silent neurons are replaced at the end of each trial with immature neurons. New
immature neurons are placed randomly on the surface of the sphere representing HVC,
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avoiding overlaps with all HVC-RA and HVC-I neurons. Therefore, the neurogenesis
in the model provides a continuous supply of immature neurons with high chances for
recruitment, while removing silent "useless" neurons.

4.2.6 Synaptic plasticity rules

To grow a network of connected HVC-RA neurons, we use a combination of a Hebbian-like
burst-timing dependent plasticity (BTDP) (Fig. 4.20A) and two additional plasticity
rules for HVC-RA neurons - axon remodeling and potentiation decay, which are similar
to those used in the previous models for growth of synaptic chain networks [100,101].

To update weights between HVC-RA neurons, we use a BTDP rule based on burst
onset timing between presynaptic and postsynaptic neurons (Fig. 4.20A). We define a
"burst" as a continuous group of spikes with duration 30 ms or less. Burst onset time
is defined as the first spike in a burst. Each time a neuron produces a new burst, all
afferent synapses onto the neuron and all efferent synapses are updated. For a pair
of a presynaptic neuron i with burst onset time ti and a postsynaptic neuron j with
burst onset time tj, an additive LTP would occur for the synapse with weight Gij if
∆t = tj − ti > T0:

Gij → Gij +

AP (∆t− T0)/TP , if ∆t < T0 + TP ,

AP exp (−(∆t− T0 − TP )/τP ), if ∆t ≥ T0 + TP .

If ∆t ≤ T0, the synapse undergoes depression through multiplicative LTD:

Gij → Gij −

ADGij(T0 −∆t)/TD, if ∆t > T0 − TD,

ADGij exp ((∆t− T0 + TD)/τD), if ∆t ≤ T0 − TD,

The following parameters are used in simulations unless specified: AP = 0.25 nS, AD

= 0.02, T0 = 2 ms, TP = 3 ms, TD = 3 ms, τP = 30 ms, τD = 30 ms. All weights are
clipped below Gmin = 0 nS and above Gmax = 4 nS.

This simple rule sidesteps the complex interaction of multiple spikes within the
bursting pre- and post-synaptic neurons [109], and is guided by the observation that
in cortical neurons, the timings of the first spikes in bursts are most important for
determining the timing-dependent LTP and LTD [110]. In addition, we apply a small
2 ms shift of BTDP curve to the region of positive times, so that there is an LTD for
synchronously bursting neurons. This prevents the emergence of connections between
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Figure 4.20. Mechanism of network growth. (A) Burst-timing dependent plasticity (BTDP)
rule is based on the timing between burst onsets of HVC-RA neurons. (B-E) Schematic of
recruitment mechanism. (B) Network growth begins with the starter neurons (dark green
circles) activated each simulation trial and other HVC-RA neurons being immature (yellow
circles). Silent connections (dashed lines) emerge from starter neurons to spontaneously active
immature HVC-RA (red circles) according to the BTDP rule. (C) Some silent connections
randomly become active (black lines), undergo further strengthening and become strong super
connections (thick green lines). (D) When the starter neurons acquire certain number of strong
super connections, other weak connections are pruned (red crosses). (E) The recruited neurons
(dark green circles) spike reliably after the starter neurons and begin to recruit new neurons to
the network. (F) Network growth is a gradual process in which immature HVC-RA neurons
are added to the end of the sequence. Network topology (on the right), spike raster plots (top
row) and first interspike intervals (bottom row) at different trials of the simulation.

neurons that fire synchronously. Such a shift was used to stabilize weight distributions
in random networks of spiking neurons in another modeling study [111]. Whether these
rules apply to synaptic plasticity for HVC-RA neurons remains to be seen. To date,
there is no systematic study of synaptic plasticity in HVC, and further experiments are
needed.

We distinguish three types of connections between HVC-RA neurons, depending
on their strength. Silent synapses are weak, nonfunctional connections, with synaptic
conductance smaller than a threshold value Wa. They correspond to the synapses
containing only NMDA receptors [112] and do not elicit response in the postsynaptic
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neuron. When synaptic strength exceeds Wa, the synapse becomes active and produces
depolarization in the postsynaptic neuron. Strong connections with weight above Ws

are considered as supersynaptic connections. The following parameters are used in
simulations unless specified: Wa = 0.2 nS, Ws = 1.0 nS. Regardless of their state, all
synapses participate in BTDP update rules.

All synapses experience a depression at the end of each trial, i.e., undergo a potenti-
ation decay: G→ G− δ, where δ = 0.01 nS. This depression is needed to prevent the
emergence of too many active synapses that may lead to uncontrolled network growth.
The role of potentiation decay in sequence formation was previously explored in great
details by Miller and Jin [101].

The axon remodeling rule is similar to the one in [100]. When the number of
efferent supersynaptic connections of a neuron reaches Ns = 10, the neuron is saturated
and all other active efferent connections of the neuron are withdrawn. Withdrawn
connections do not elicit effect on postsynaptic neurons and do not participate in BTDP
updates. However, they still undergo potentiation decay. Withdrawn connections will be
re-connected if the neuron loses one or more of its supersynapses. Limitations on the
number of strong outputs prevents neurons from forming too many unspecific connections.

4.2.7 Network growth

We randomly select a set of 10 HVC-RA neurons as the training neurons, which form a
seed for the network growth. The training neurons are made fully mature with adult
values for the resting potential and calcium dendritic conductance. HVC-RA neurons
that are not in the training set, called pool neurons, start as immature neurons with
high resting potential and devoid of dendritic calcium channels.

The growth consists of separate simulation trials with duration of 500 ms in network
dynamics. At each trial, the training neurons are stimulated with a synchronous kick of
strong excitatory conductance 300 nS. Due to the elevated resting potential and noise
fluctuations in membrane potential, immature pool neurons are spontaneously active
during the trials. When pool neurons spike after training neurons, silent connections
from training neurons to the pool neurons emerge according to BTDP rules (Fig. 4.20B).
During repeating trials, silent synapses stochastically change their strength via LTP
and LTD, and randomly become active (Fig. 4.20C). Depolarization of pool neurons
provided by the active synapses from the training set biases these neurons to be more
active during subsequent trials. Thus, a positive feedback emerges, since activity of pool
neurons facilitates strengthening of synapses via LTP, eventually forming supersynaptic
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connections. To enforce sparse output connections, we only allow each HVC-RA neuron
to make a limited number of supersynaptic connections, which is set to 10 in the model.
When a neuron acquires maximal number of supersynaptic outputs, the neuron undergoes
axon remodeling where other weak outgoing connections are pruned and do not affect
their postsynaptic targets anymore [100,101] (Fig. 4.20D,E). Limitation on the number
of strong outputs creates a competition between pool neurons for the convergent inputs
from the training set. When training neurons form the allowed number of supersynaptic
connections, their postsynaptic targets are spiking reliably each iteration. The training
neurons do not subsequently recruit any more targets. The recruited neurons then act as
a new seed for the network growth.

In the model, network grows gradually and neurons are added to the end of the
sequence (Fig. 4.20F). Added neurons are initially immature and have less tight burst
compared to the neurons already in the sequence. With time and reliable activation,
the added neurons mature and develop a tight burst. Thus, we always have immature
neurons at the end of the sequence. Sequence keeps growing until all HVC-RA neurons
are recruited into the network or its length becomes close to the length of the simulation
trial.

4.2.8 Axonal conduction velocity and network topology

In our model, the axonal conduction velocity controls the axonal time delays between
neurons. With the conduction velocity set to 100 µm/ms, which creates the realistic
axonal time delays observed in HVC [87], the emerged network shows continuous dynamics
and nearly uniform temporal distribution of burst onset times (Fig. 4.21A). Established
connections between HVC-RA neurons (red curve Fig. 4.21B) are biased towards short
delay connections, but are on average longer than the preset connections to HVC-I
neurons. Jitter in burst onset times, estimated based on 200 test runs of the grown
network, is in sub-millisecond range, reflecting the network precision (Fig. 4.21C). We
also explore the network topology of the grown network using supersynaptic weights
between neurons and Kamada-Kawai algorithm in Pajek software program for network
analysis [113]. The plot of the network topology does not reveal any grouping structure
(Fig. 4.21D). These are the characteristics of polychronous chain network proposed as
the connectivity of HVC-RA neurons within HVC (see [87] and Chapter 3).

When we repeat the growth with a 10 times faster conduction velocity (1000 µm/ms),
the emerged network shows a strongly synchronous activity pattern (Fig. 4.21E). The
distribution of axonal delays between HVC-RA neurons in the formed network is similar to
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Figure 4.21. Example of two grown networks with different axonal conduction velocity. (A-D)
Results for a network with conduction velocity 100 µm/ms, which corresponds to the realistic
axonal delays in HVC. (A) Raster plot of the first 150 ms of dynamics shows continuous
coverage of burst onset times. (B) Axonal time delay distributions for efferent HVC-RA neuron
connections to HVC-I neurons (blue), formed connections to other HVC-RA neurons (red), and
random connections to HVC-RA neurons (grey). Emerged connections show decrease in the
number of long delay connections compared to the random connections. (C) Jitter in burst
onset times of a grown network. (D) Network topology based on the weights between HVC-RA
neurons has no apparent groups of neurons (only neurons with burst onset times within first 150
ms are shown). (E-G) Results for a network with 10x faster conduction velocity 1000 µm/ms,
which leads to near zero axonal delays. (E) Network dynamics has prominent synchronous
oscillatory activity. (F) No bias towards shorter delay connections is observed in the grown
network. (G) Network precision is in sub-millisecond range. (H) Network topology reveals
groups of neurons with similar input and output connections, i.e., synfire chain layers.

the delay distribution between randomly selected pairs of HVC-RA neurons (Fig. 4.21F).
The network is also temporally precise with the jitter level similar to the polychronous
chain network (Fig. 4.21G). Network topology is highly structured, showing groups of
neurons with similar input and output connections. In other words, the grown network
has a synfire chain topology with prominent oscillatory activity coming from the identical
chain layers of neurons.

We systematically vary conduction velocity from 0.5 to 10 times of the value measured
in HVC, and observe a sharp transition in burst density oscillations at 1.5, measured
as a coefficient of variation in burst density (Fig. 4.22A). Networks with the velocity
smaller than this value have a flat burst density, while networks with velocity exceeding
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Figure 4.22. Conduction velocity shapes network topology. (A) Coefficient of variation of
burst onset density shows transition from continuous to discrete activity pattern with change
in axonal conduction velocity. (B) Similarity of inputs for neurons bursting within synchronous
activity window has plateaus for synfire chain networks and is smooth for continuous networks.
(C) Distributions of excitatory input times relative to burst onset time of postsynaptic neurons
for different conduction velocities. All networks demonstrate nearly synchronous arrival of
inputs.

this value show prominent oscillations.
We further compare the network structures using similarity of input connections for

the neurons bursting synchronously in the time window of variable size (Fig. 4.22B). For a
time window of size Tw and a neuron i that bursts at ti, the synchronously spiking neurons
have their burst onset times within a time interval (ti − Tw/2, ti + Tw/2). The similarity
of inputs to neuron i and a synchronously spiking neuron is computed as the fraction
of the presynaptic neurons common to the two neurons among all presynaptic neurons
to the two neurons (the Jaccard index). The mean Jaccard index of all synchronously
spiking neurons at ti represents the similarity of inputs at this time. The mean Jaccard
index for all burst times is defined as the similarity of inputs for a given time window Tw.

Networks with prominent oscillations in burst density (vel. 2 and 10 times) show a
stair-like decay in the similarity of inputs, which is expected for synfire chain topology
with defined groups and all-to-all connections from neurons in one group to the next;
whereas networks with weak activity oscillations (vel. 0.5, 1 and 1.33 times) have a
smooth decreasing curve, which is expected for polychronous chain networks with no
definable groups. All grown networks, regardless synfire chains or polychronous chains,
possess a property of nearly synchronous excitatory inputs to the postsynaptic neurons
(Fig. 4.22C).

To understand how conduction velocity influences the network topology, we examine
the case of slow conduction velocity, for which the potential connections between neurons
have a wide range of axonal delays. We monitor the burst onset latency of the recruited
neurons relative to their presynaptic neurons (parents) (Fig. 4.23A). In the beginning of
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Figure 4.23. Decrease in burst onset latency of recruited neurons leads to pruning of long
delay connections. (A) Burst onset latency between parent and recruited neurons decreases
during recruitment. (B-C) Mechanism for pruning long delay connections. (B) A neuron being
recruited initially spikes at a large latency, which allows long delay connections to emerge. (C)
After recruitment, the neuron spikes at a shorter latency, which makes long delay connections
to arrive late and be pruned via LTD.

recruitment, connections to the recruited neurons are still weak and these neurons have
a large range of burst onset latency. This permitted connections with a large range of
delays to target the recruited neurons via LTP (Fig. 4.23B). Subsequently, however, the
burst onset latency is gradually decreasing due to strengthening of the connections from
the parent neurons (Fig. 4.23A, inset). This results in pruning of some of the inputs with
long axonal delays via LTD (Fig. 4.23C). Therefore, the grown network has a prominent
bias towards forming short delay connections while keeping a few long delay connections,
characteristic of the delay distribution for the polychronous chain topology. In contrast,
when the conduction velocity is high, all possible connections have short delays, and
there is no bias towards short distance connections. In this case, synfire chain topology
emerges.

4.2.9 The role of inhibition in network growth

Inhibition should play an important role in network growth since it impacts the sponta-
neous activity of immature neurons. Due to the randomness of the connections between
HVC-RA neurons and HVC-I neurons, feedback inhibition to individual HVC-RA neurons
is inhomogeneous in time. To see if this affects which neurons get recruited into the
network, we track the inhibitory conductance of all HVC-RA neurons in the network.
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Figure 4.24. The role of inhibition in network growth. (A-C) Comparison of inhibitory
weights onto recruited and non-recruited neurons. (A) Recruited neurons (green circles) receive
strong excitation and weak inhibition. Non-recruited neurons (blue circles) receive strong
inhibition. (B) Histogram of inhibitory weights shows stronger connections onto non-recruited
(blue bars), compared to recruited (green bars) neurons. (C) Distribution of total inhibitory
weights for non-recruited neurons (blue) is shifted towards stronger inhibition, compared to
recruited neurons (green).

We consider a simulation with conduction velocity 100 µm/ms (the value observed in
HVC [87]) and switch off the replacement of silent non-recruited neurons to allow a
direct comparison between recruited and non-recruited neurons. A neuron is designated
as recruited if it spiked consistently during the testing trials of the grown network in
more than 95 out of 100 trials. The time of its recruitment is estimated using its spike
history during the growth. At each trial, the number of the neuron’s spikes averaged
over a window of the past 25 trials is computed, and when the average first reaches 1,
which signals the start of reliable spiking, the trial is defined as the trial at which the
neuron is recruited.

The inhibition is tracked for 30,000 trials, by the end of which, the number of
supersynaptic and active connections have reached stable values and the network growth
stopped. We observe that in the grown network, individual inhibitory connections to non-
recruited neurons are stronger compared to inhibition to recruited neurons (Fig. 4.24A-B).
Total inhibitory input, computed as a sum of all inhibitory input conductance, is also
significantly larger for non-recruited neurons (P < 10−42, one-sided t-test, see Fig. 4.24C).

We then compare temporal dynamics of inhibitory conductance of recruited and
non-recruited HVC-RA neurons during recruitment (Fig. 4.25A-D). We first wonder if
there is any difference in inhibition received by recruited and non-recruited neurons in
LTP window, i.e., time interval which is critical for the selection of postsynaptic targets.
For a recruited neuron i, an LTP window is defined relative to the burst time of its
presynaptic neuron j, during which the synaptic strength from neuron j to neuron i

can be strengthened according to the BTDP synaptic plasticity rule. Specifically, the
window is the time interval (tj + dji + T0, tj + dji + T0 + τP ), where dji is the axonal

95



recr.

p1

p2

p3

burst time
t2 t1 t3

one trial during recruitment

Time (ms)
0 30

0

10

Figure 4.25. The role of inhibition in network growth (Continued). (A-D) Comparison of
inhibitory conductance aligned to presynaptic neurons during recruitment. (A) Inhibitory
conductance is aligned to the burst onset times of presynaptic parent neurons. (B) Inhibitory
conductance in the LTP window is averaged across all parent neurons at each trial during
recruitment and compared between recruited and non-recruited neurons using the area under
the conductance curve. (C) Difference in the area under the conductance curve for a single
recruited neuron. (D) Difference in the area under the conductance curve for all recruited
neurons. (E-H) Comparison of inhibitory conductance aligned to postsynaptic neurons during
recruitment. (E) Burst times of a neuron being recruited at different simulation trials. (F)
Inhibitory conductance is aligned to the burst onset times of recruited neurons. Difference in
inhibitory conductance after and before burst is calculated using area under the conductance
curve. Inhibitory conductance before burst is also compared to the mean inhibitory conductance
during the trial. (G) Difference in inhibitory conductance after and before burst for all recruited
neurons. (H) Difference in inhibitory conductance before burst and mean inhibitory conductance
for all recruited neurons.

delay; T0 = 2 ms is the time shift in BTDP synaptic plasticity rule; and τP = 30 ms is
the time scale of the LTP part of BTDP. At each trial before the recruitment, a set of
inhibitory conductance traces on neuron i is extracted in the LTP windows relative to
all its presynaptic neurons (Fig. 4.25B). The average of this set represents an inhibitory
conductance of the recruited neuron at trial T aligned to its presynaptic neurons. For
comparison, an average inhibitory conductance of non-recruited neurons is extracted in
the same time intervals, and is defined as the inhibitory conductance of non-recruited
neurons. Difference in the area under conductance curves is computed numerically using
a trapezoid method (Fig. 4.25B(right) and Fig. 4.25C). The median difference in the area
computed for all trials before the recruitment represents the difference in the inhibitory
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conductance between the recruited neuron and the non-recruited neurons Fig. 4.25D).
Recruited neurons show significantly smaller inhibitory conductance (P < 10−46, one-
sided paired t-test) in LTP window. This observation shows that neurons that receive
less inhibition from the parent neurons are preferentially recruited into the growing edge
of the network.

We next wonder if there is any temporal inhibitory structure in traces aligned
postsynaptically. For analysis of inhibition on a recruited neuron i relative to its burst
onset times before the recruitment, only trials in which neuron i produced bursts are
considered (Fig. 4.25E). For each such trial, the area under the inhibitory conductance
curve is calculated for 10 ms before and 10 ms after the burst onset time (Fig. 4.25F).
The median difference in area for all trials represents the difference in the inhibitory
conductance before and after bursting of neuron i. Recruited neurons during the
recruitment show an increase in inhibitory conductance right after the burst onset time
(P < 10−176, one-sided paired t-test, Fig. 4.25G). We attribute this observation to the
self-inhibition of the neurons due to the prevalence of local connections between HVC-RA
neurons and HVC-I neurons. By bursting, HVC-RA neuron activate a subset of nearby
interneurons, which in turn provides a feedback inhibition.

We also compute the difference of the inhibitory conductance before burst relative to
the average, defined as median of the differences between the mean inhibitory conductance
10 ms before the burst and the mean during the trial for all trials before the recruitment.
We find that the inhibitory conductance on the recruited neurons right before the burst
onset time is smaller than the mean computed over the simulation trials (Fig. 4.25H,
P < 10−170, one-sided paired t-test). This further supports that HVC-RA neurons require
less inhibition on average to be recruited. Since initial excitatory inputs to HVC-RA
neurons are weak, the recruitment favors HVC-RA neurons which receive less inhibition
to ensure they can be activated by the parent neurons at the growing edge.

To investigate the inhibition after recruitment, similar procedure is applied to 100 test
trials of the grown network. Alignment to presynaptic parent neurons (Fig. 4.26A) also
shows significantly smaller inhibitory conductance for recruited neurons in LTP window
(P < 10−30, one-sided paired t-test). Postsynaptic alignment, however, does not show the
effect of self-inhibition in the grown network. We attribute it to the high network driven
activity of HVC-I neuron population (Fig. 4.26B). Finally, the inhibitory conductance
before the burst is larger than the mean conductance for the trial (P < 10−113, one-sided
paired t-test). That again reflects the high network activity of HVC-I neurons and also
demonstrates that activation of mature HVC-RA neurons relies on strong excitatory
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Figure 4.26. Comparison of inhibitory conductance for a grown network based on 100 test
trials. (A) Difference in the area under the conductance curve in the LTP window for all
recruited neurons aligned to presynaptic parents. (B-C) Analysis of inhibitory conductance of
recruited neurons aligned postsynaptically. (B) Difference in inhibitory conductance after and
before burst for all recruited neurons. (C) Difference in inhibitory conductance before burst
and mean inhibitory conductance for all recruited neurons.
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Figure 4.27. Loop formation in the network with noisy mature HVC-RA neurons. When
we use a single population of mature spontaneously active HVC-RA neurons receiving a large
white noise stimulus of amplitude 0.25 nA to soma and 0.5 nA to dendrite, loop sequences form.
Here we use a fast conduction velocity 1000 µm/ms, which leads to the emergence of a synfire
chain. (A) Raster plot of network dynamics. (B) Network topology based on synaptic weights
between neurons.

inputs, rather than on weak inhibition (Fig. 4.26C).

4.2.10 Role of immature neurons

Inclusion of immature neurons has an important effect on the growth process of synaptic
chain networks. In the model, spontaneous activity plays a critical role. The distinction
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Figure 4.28. Prevalence of long delays in network with weak synaptic connections. When we
use a small value Gmax = 1.5 nS for the maximal strength of connections between HVC-RA
and a conduction velocity 100 µm/ms, a synfire chain forms with many short delays pruned.
This is expected, since weak synaptic input results in HVC-RA neurons having long integration
times. Thus, inputs corresponding to connections with long delays (i.e., long delay inputs) do
not arrive late and are strengthened via LTP part of BTDP, while short delay inputs arrive too
early, are not strengthened as much, and lose competition to long delay inputs. (A) Raster plot
of network dynamics. (B) Axonal time delay distributions for efferent HVC-RA connections.

between immature and mature neurons allows different levels of spontaneous activity in
these two populations. Immature neurons are more spontaneously active due to higher
intrinsic excitability, and they are the targets of recruitments by the neurons at the
growth edge. In contrast, mature neurons in the network are not spontaneously active,
hence are not targets of recruitments. This allows continued growth of the network, as
long as there is a supply of immature neurons in the pool. This was not the case in the
previous models, in which there was a single neuron population [100,101,107]. There,
all neurons had similar level of spontaneous activity and consequently, the chain growth
usually stopped by formation of loops after neurons already into the chain were recruited.
We confirm that loops emerge in our model as well when using a single population of
mature and spontaneously active HVC-RA neurons (see Fig. 4.27).

4.2.11 Resilience to changes in model parameters

Our growth algorithm is robust with respect to the changes in the model parameter
values. The use of different strength of inhibitory connections (varied between Gie =
0.015 mS/cm2 and Gie = 0.060 mS/cm2), different number of efferent supersynaptic
connections (Ns = 10 and Ns = 20), and different maximal strength of excitatory
connections between HVC-RA neurons (between Gmax = 1.5 nS and Gmax = 4 nS)
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leads to the emergence of precisely timed neural sequences. In certain cases, qualitative
differences in the distribution of axonal conduction delays of the grown connections
between HVC-RA neurons and changes in the network topology are observed. For
instance, when small excitatory synaptic weight Gmax = 1.5 nS is used with conduction
velocity 100 µm/ms (producing realistic axonal delays), a synfire chain, rather than a
polychronous network, emerges (see Fig. 4.28A). The axonal delay distribution for formed
connections between HVC-RA neurons shows bias toward long delay connections (see
Fig. 4.28B), with many short delays pruned. This is expected, since weak synaptic input
results in HVC-RA neurons having long integration times. Thus, inputs corresponding
to connections with long delays (i.e., long delay inputs) do not arrive late and are
strengthened via LTP part of BTDP, while short delay inputs arrive too early, are not
strengthened as much, and lose competition to long delay inputs.

4.2.12 Spatio-temporal activity pattern

According to the recent study [87], there is no structure in the spatio-temporal pattern
of activity in HVC. In other words, it is random. Since the network growth in our model
does not rely on any assumptions regarding the spatio-temporal activity pattern (except
for the random choice of training neurons), its randomness is not guaranteed. To test the
activity pattern in the model, we analyze results of the network with conduction velocity
100 µm/ms. Snapshots of locations of the active neurons on the sphere, taken at different
times of the network dynamics, reveal no apparent structure (see Fig. 4.29A). Latitude
and longitude of the active neurons look random (see Fig. 4.29B,C). Finally, we test if
distance between active neurons on the sphere is related to the difference in their burst
times. In the case of spatially clustered activity propagating on the surface of the sphere,
there will be a strong correlation between space and time because nearby neurons will
have similar burst times. The grown network does not show any significant correlation
between space and time (see Fig. 4.29D), suggesting that activity is not spatially clustered.
Together these observations provide strong evidence that spatio-temporal activity pattern
in the model is random, which is consistent with experimental data.

4.2.13 Sequence splitting

In addition to sequence growth, extracellular recordings in juvenile zebra finches also
revealed sequence splitting during the syllable development [102]. At the protosyllable
stage, majority of the projection neurons fired in a single protosequence. When several
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Figure 4.29. Spatio-temporal activity pattern of HVC-RA neurons in the polychronous
network with conduction velocity 100 µm/ms shows no structure. (A) Snapshots showing
location of active neurons on 2d Mollweide projection of the sphere at different times of neural
dynamics. Latitude (B) and longitude (C) of active neurons versus their burst time. (D) Spatial
distance between active neurons on the sphere is uncorrelated with the temporal distance
between their burst times (1,000 random neuronal pairs shown).

syllable types emerged from a common protosyllable, the corresponding protosequence
split. While there were still neurons firing at all syllables with the same latencies
relative to syllable onsets (“shared neurons"), more neurons fired specifically to a single
syllable type. Gradually, the shared neurons disappeared. The authors proposed a
model, according to which a protosequence grown from a common seed of synchronously
activated neurons is split by dividing the seed into several groups activated at different
times, and also by increasing local inhibition. In our study, the splitting does not
happen during the network growth. We hypothesized that a combination of large set of
training neurons and widely distributed axonal delays may lead to the sequence splitting.
However, our simulation with 100 training neurons (10 times the original number) and
conduction velocity 100 µm/ms still leads to the emergence of a single sequence (see
Fig. 4.30). Activation of seed neurons at different times and increase in inhibition may
induce protosequence splitting in our model, but we haven’t explored these possibilities.
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Figure 4.30. Network growth with large training set of 100 neurons and conduction velocity
100 µm/ms does not result in sequence splitting. Network topology based on supersynaptic
weights shows that all training neurons (shown as light green circles) converge on similar targets
(dark green circles) and a single polychronous sequence emerges.
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Figure 4.31. GABA response of immature (A) and mature (B) HVC-RA neurons. Immature
HVC-RA is depolarized by inhibitory input, while mature HVC-RA shows hyperpolarizing
response.

4.2.14 Depolarizing GABA during development

Immature neurons in many neural circuits across multiple species go through a period of
depolarizing inhibition before switching to hyperpolarizing inhibition, which is caused by
an elevated GABA reversal potential on immature neurons. Thus, we wonder whether
maturation of the GABA reversal potential affects the sequence growth mechanism.

To address this question, we modify the HVC-RA neuron model and the maturation
model. We simplify both of them by getting rid of the developmental change in burst
tightness and excitability. Specifically, we set low-threshold potassium conductance to
zero and use adult values for calcium conductance in dendrite and rest potential. In
other words, we use HVC-RA neuron model described in Chapter 2. To account for the
developmental changes in inhibition, we set GABA reversal potential of immature neurons
to -56 mV. Therefore, membrane potential of immature neurons is depolarized upon
receiving inhibitory input (see Fig. 4.31A). Mature neurons have GABA reversal potential
of -80 mV and inhibitory input elicits a hyperpolarizing response (see Fig. 4.31B). GABA
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Figure 4.32. Recruitment is guided by inhibition. (A,C,E) Left: Development of HVC-RA
→ HVC-I → HVC-RA network motif that leads to recruitment of pool neurons into the
network. Right: Inputs received by recruited HVC-RA at different stages of maturation.
(B,D,F) Probability to produce a burst for an HVC-RA neuron receiving synchronous inhibitory
and excitatory input at different maturation stages. (A) Immature HVC-RA neuron bursts
spontaneously due to depolarizing GABA potential and noise. (B) Spontaneous activity
increases with inhibition strength. (C) Excitatory connections develop from mature HVC-RA
to spontaneously active pool neurons. These pool neurons are gradually maturing and receive
weaker GABA depolarization. (D) Moderate inhibition increases probability to burst, while
large inhibition produces a shunting effect. (E) Recruited neurons mature and receive strong
excitatory input and hyperpolarizing inhibition. (F) Probability to burst decreases sharply
with increase in inhibitory input.

potential is changing in age and activity dependent manner with the same time scales of
50,000 s and 500 s as in the original maturation model. We also increase the noise in
both mature and immature HVC-RA neurons by setting white noise amplitude in soma
to 0.15 nA and in dendrite to 0.35 nA. Additionally, we decrease the LTP constant in
BTDP rule to 0.2 nS.

With depolarizing GABA effect on immature neurons, the network growth is guided
by inhibition (see Fig. 4.32). Active mature HVC-RA neurons drive activity of in-
terneurons, that in turn provide depolarizing inhibition to immature pool neurons (see
Fig. 4.32A(Left)). This inhibition alone is not enough to make immature neurons spike.
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Figure 4.34. Moderate inhibition Gie = 0.06 mS/cm2 results in emergence of a loop. This
happens due to immature neurons spiking spontaneously throughout the entire sequence, which
leads to the emergence of recurrent connections. The mechanism is similar to the case of a
single population of noisy mature neurons described previously (Fig. 4.27)

However, the combination of noise and depolarizing inhibition leads to spontaneous
activity in immature neurons, and probability to spike increases with the strength of
inhibitory input (see Fig. 4.32A(Right) and Fig. 4.32B). According to BTDP rules,
connections emerge from mature HVC-RA neurons to spontaneously active pool neurons
(see Fig. 4.32C(Left)). Due to maturation, these pool neurons have lower GABA reversal
potential and their spontaneous activity depends on both inhibitory and excitatory inputs
(Fig. 4.32C(Right) and Fig. 4.32D). Eventually, excitatory connections become strong
and GABA exerts a hyperpolarizing effect on the recruited neurons (Fig. 4.32E). In
mature state, the spiking of HVC-RA neurons relies completely on the excitatory input
(Fig. 4.32F).

The sequence growth in this model depends on the strength of inhibition. We
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Figure 4.35. Spatio-temporal activity of HVC-RA neurons with depolarizing GABA reveals
clustered activity patterns. Shown are snapshots with locations of active neurons on 2d
Mollweide projection of the sphere at different times of neural dynamics.

systematically vary the strength of inhibitory connections to grow sequences in the
network with fast axonal conduction velocity 1000 µm/ms. Inhibition Gie = 0.03 mS/cm2

and smaller is not large enough to drive spontaneous activity of pool neurons and therefore
no sequence emerges. Inhibition Gie = 0.24 mS/cm2 and larger is effective in recruiting
initial cohort of HVC-RA neurons. However, upon maturing the recruited neurons
receive too strong inhibition and are unable to spike. Therefore, large inhibition prevents
sequence formation, since recruited neurons become silent and are replaced by new
immature neurons (see Fig. 4.33).

Sequence growth with moderate inhibition also has significant issues. During the
growth, HVC-RA neurons in the sequence drive activity of interneurons. Therefore,
immature pool HVC-RA neurons are likely to spike throughout the entire sequence, not
just at the end of it. It leads to the formation of a loop, similarly to the case of a single
population of noisy mature neurons described previously (see Fig. 4.34 and Fig. 4.27).
Therefore, in this model it is problematic to grow long sequences. Another problem is
the short spatial range of formed connections between HVC-RA neurons. Since large
inhibition increases probability of immature neurons to burst, it facilitates the emergence
of clustered spatio-temporal activity pattern (see Fig. 4.35). This is inconsistent with
experimental observations that spatio-temporal activity pattern in HVC is unstructured
and random.

Therefore, we conclude that while the model with developmental change in inhibition
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does result in sequence formation, it is less robust to the changes in model parameters
and produces results incompatible with HVC. It may, however, be suitable as a model
for development of other neural circuits, for instance, hippocampus.

4.2.15 Conclusions

In this section, we developed a detailed computational model for sequence formation
in HVC. The model includes more biologically realistic features that lacked in previous
models, including explicit modeling of HVC-I neurons, spatial distributions of HVC
neurons, and realistic axonal delays in HVC [87]. We showed that immature neurons,
which are more excitable hence have higher spontaneous activity rates compared to
mature neurons, are preferentially recruited at the growth edge. The inclusion of the
axonal delays leads to a long polychronous chain network, a structure favored by a
recent analysis of HVC network and dynamics [87]. In contrast, neglecting axonal
delays leads to synfire chains [67, 68], previously thought to be the topology of the
HVC network [100,101,107]. Explicit modeling of HVC-I also predicts that the wiring
process favors a path of less inhibition, such that neurons that are recruited receive less
forward inhibition from the recruiting neurons, highlighting the importance of inhibition
in HVC [90]. Our model also reproduces the observation that HVC-RA neurons connect
to more distal HVC-RA neurons, unlike their tendency to connect to nearby HVC-I
neurons [50].
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