
The Pennsylvania State University
The Graduate School
College of Engineering

HIGH DIMENSIONAL STATISTICAL LEARNING AND DECISION

MAKING

A Dissertation in
Industrial Engineering

by
Xue Wang

© 2019 Xue Wang

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2019

The dissertation of Xue Wang was reviewed and approvedú by the following:

Tao Yao
Associate Professor of Industrial Engineering
Dissertation Advisor, Chair of Committee

Uday V. Shanbhag
Gary and Sheila Chaired Professor of Industrial Engineering

Ethan Xingyuan Fang
Assistant Professor of Industrial Engineering and Professor of Statistics

Runze Li
Verne M. Willaman Professor of Statistics

Janis Terpenny
Peter and Angela Dal Pezzo Department Head of IME and Professor

úSignatures are on file in the Graduate School.

ii

Abstract

This dissertation concerns three problems in learning and decision-making with
high-dimensional information. The formulations of these problems are featured
with limit sample size requirements and/or e�cient computation schemes.

We first study a regularized version of the sample average approximation
(SAA). The theory on the traditional SAA scheme for stochastic programming
(SP) dictates that the number of samples should be polynomial in the number of
problem dimensions in order to ensure proper optimization accuracy. We study a
modification to the SAA in the scenario where the global minimizer is either sparse
or can be approximated by a sparse solution. By making use of a regularization
penalty referred to as the folded concave penalty (FCP), we show that, if an FCP-
regularized SAA formulation is solved locally, then the required number of samples
can be significantly reduced in approximating the global solution of a convex SP:
the sample size is only required to be poly-logarithmic in the number of dimensions.
The e�cacy of the FCP regularizer for nonconvex SPs is also discussed. As an
immediate implication of our result, a flexible class of folded concave penalized
sparse M-estimators in high-dimensional statistical learning may yield a sound
performance even when the problem dimension cannot be upper-bounded by any
polynomial function of the sample size.

In the second problem, we consider the linear constrained nonconvex program-
ming problem. A broad class of learning problems can be formulated as the
nonconvex optimization with linear constraints. It is believed that the second
order optimal solution yields better out of sample performance since it can avoid
part of the saddle points. The classic algorithms require matrix inversion to en-
sure the second order optimality for constrained optimization problems, which
is computationally intensive when high-dimensional issue presents. We propose
a novel accelerated interior-point gradient method (AIP-GM). A unique feature
of the proposed AIP-GM is the total absence of the need for matrix inversion.
As a consequence, the per-iteration cost is significantly lower than the canonical
second-order methods. For general smooth non-convex objective function, we show

iii

the new algorithm gives Õ(‘≠7/4) iteration complexity dependences in perturbation
‘ on optimal condition.

For the third problem, we study a minimax concave penalized multi-armed
bandit algorithm under generalized linear model (G-MCP-Bandit) for a decision-
maker facing high-dimensional data in online learning and decision-making process.
We demonstrate that the G-MCP-Bandit algorithm asymptotically achieves the
optimal cumulative regret in the sample size dimension T , O(log T), and further
attains a tight bound in the covariate dimension d, O(log d). In addition, we
develop a linear approximation method, the 2-step weighted Lasso procedure, to
identify the MCP estimator for the G-MCP-Bandit algorithm under non-iid samples.
Under this procedure, the MCP estimator matches the oracle estimator with high
probability and converges to the true parameters with the optimal convergence
rate. Finally, through experiments based on synthetic data and two real datasets
(warfarin dosing dataset and Tencent search advertising dataset), we show that
the G-MCP-Bandit algorithm outperforms other benchmark algorithms, especially
when there is a high level of data sparsity or the decision set is large.

iv

Table of Contents

List of Figures viii

List of Tables x

Chapter 1
Introduction 1
1.1 Statistical Learning and Sample Average Approximation 2
1.2 Sparse Inducing Penalties . 4
1.3 Linear Constrained Nonconvex Programming Problem 6
1.4 Online Learning and Decision Making Models 7
1.5 Potential Contributions of the Dissertation Research 8

Chapter 2
Sample Average Approximation with Sparsity-Inducing Penalty

for High-Dimensional Stochastic Programming 10
2.1 Introduction . 10
2.2 Settings and Necessary Conditions 16

2.2.1 Assumptions . 16
2.2.2 Necessary Conditions for Local Optimality 17

2.3 Major Results . 18
2.3.1 Sample Size Estimation for All S3ONC Solutions 18
2.3.2 Sample Size Estimates for Some Special S3ONC Solutions . 20

2.4 Technical Proofs . 24
2.4.1 Some Preliminary Results 25
2.4.2 Proof of Major Results . 29

2.4.2.1 Sketch of Proof . 29
2.4.2.2 Two Pillar Lemmas 30
2.4.2.3 Proof of Proposition 2.3.1 36
2.4.2.4 Proof of Proposition 2.3.2 40
2.4.2.5 Proof of Theorem 2.3.7 42

v

2.4.2.6 Proof of Theorem 2.3.8 44
2.4.2.7 Proof of Theorem 2.3.9 44

2.5 Some Discussions on Solution Schemes for RSAA 46
2.5.1 Local Optimization for RSAA 46
2.5.2 Global Optimization for RSAA 48

2.6 Preliminary Numerical Results . 49
2.7 Conclusion . 51

Chapter 3
Fast Algorithm for Non-convex Optimization 55
3.1 Introduction . 55
3.2 Preliminaries and Main theorem . 58

3.2.1 Technique Lemmas . 61
3.2.2 Main Results . 62

3.3 Interpretation on AIP-GM . 65
3.4 Technical Proofs . 68

3.4.1 Hessian Free Technique . 68
3.4.2 Proof of Theorem 3.2.9 . 69
3.4.3 Proof of Theorem 3.2.10 . 75
3.4.4 Proof of Theorem 3.2.11 . 77
3.4.5 Proof of Lemma 3.4.1 . 78
3.4.6 Proof of Lemma 3.4.2 . 79
3.4.7 Proof of Lemma 3.4.3 . 83
3.4.8 Proof of Lemma 3.3.1 . 87
3.4.9 Proof of Lemma 3.4.4 . 88

3.5 Conclusion . 90

Chapter 4
MCP Multi-Armed Bandit Model with High-Dimensional Co-

variates 91
4.1 Introduction . 91
4.2 Literature Review . 95
4.3 Model Settings . 97
4.4 G-MCP-Bandit Algorithm . 101

4.4.1 Parameter Vector Estimation 101
4.4.2 2-Step Weighted Lasso Procedure 103
4.4.3 ‘-decay Random Sampling Method 105
4.4.4 G-MCP-Bandit Algorithm 106

4.5 Key Steps of Regret Analysis for the G-MCP-Bandit Algorithm . . 109
4.5.1 General Non-iid Sample Estimator 109

vi

4.5.2 Estimator from Random Samples up to Time T 111
4.5.3 Estimator from Whole Samples up to Time T 111
4.5.4 Cumulated Regret Up To Time T 113

4.6 Empirical Experiments . 114
4.6.1 Synthetic Data (Linear Model) 114
4.6.2 Warfarin Dosing Patient Data (Linear Model) 118
4.6.3 Tencent Search Advertising Data (Linear & Logistic Models) 119

4.7 Technical proofs . 122
4.7.1 Proof of Lemma 4.4.1 . 122
4.7.2 Proof of Proposition 4.4.2 122
4.7.3 Proof of Proposition 4.4.3 122
4.7.4 Proof of Proposition 4.5.1 123
4.7.5 Proof of Proposition 4.5.2 127
4.7.6 Proof of Proposition 4.5.3 127
4.7.7 Proof of Proposition 4.5.4 128
4.7.8 Proof of Theorem 4.4.4 . 129

4.8 Conclusion . 135

Chapter 5
Conclusions and Future Research 137

Appendix A
Supplement material for Chapter 4 140

Bibliography 159

vii

List of Figures

2.1 Comparison of suboptimality gaps of solutions generated by SAA,
local optimization of RSAA, and global optimization of RSAA when
n = 100 and p increases from 10 to 1500. “SAA-mean”, “SAA-
max”, and “SAA-min” are the average, maximal, and minimal
suboptimality gaps of SAA out of the five replications, “RSAA-local-
mean”, “RSAA-local-max”, and “RSAA-local-min” are the average,
maximal, and minimal suboptimality gaps of RSAA-local, “RSAA-
global-mean”, “RSAA-global-max”, and “RSAA-global-min” are the
average, maximal, and minimal suboptimality gaps of RSAA-global. 52

2.2 Comparison of suboptimality gaps of solutions generated by SAA,
local optimization of RSAA, and global optimization of RSAA when
p = 100 and n increases from 15 to 110. “SAA-mean”, “SAA-
max”, and “SAA-min” are the average, maximal, and minimal
suboptimality gaps of SAA out of the five replications, “RSAA-local-
mean”, “RSAA-local-max”, and “RSAA-local-min” are the average,
maximal, and minimal suboptimality gaps of RSAA-local, “RSAA-
global-mean”, “RSAA-global-max”, and “RSAA-global-min” are the
average, maximal, and minimal suboptimality gaps of RSAA-global. 52

4.1 Synthetic study 1: The impact of T and d on the cumulative regret,
where K = 2 and s = 5. 115
(a) d=10 . 115
(b) d=100 . 115
(c) d=1000 . 115

4.2 Synthetic study 2: The impact of T and K on the cumulative regret,
where d = 100 and s = 5. 117
(a) K=2 . 117
(b) K=20 . 117
(c) T=6000 . 117

viii

4.3 Warfarin dosing experiment: The percentage of optimal warfarin
dosing decisions. 119

4.4 Tencent search advertising experiment: The average revenue under
di�erent algorithms. 121

ix

List of Tables

2.1 A summary of sample size requirement to guarantee optimization
quality of (2.1.4) when Á̂ = 0 as defined in (2.1.2). The “Global”
column indicates whether the approximation formulation being
solved globally (X) or locally (◊) is one of the conditions for the
bounds on “n” of the same row; the “f(· , W) convex” and the
“miniœS x̂min

i
Ø threshold” columns indicate whether (X) or not (◊)

Function f(· , W) being convex for a.e. W œ W and miniœS x̂min
i

being above a certain threshold are conditions for the corresponding
bounds on “n”, respectively. 14

2.2 Comparison in solution quality measured by the suboptimality gaps
for problems with di�erent numbers of dimensions p and a fixed
sample size n = 100. 51

2.3 The numbers of nonzeros in the solutions generated by SAA, RSAA-
local, and RSAA-global, when n = 100. 53

2.4 Comparison of the average computational time out of the five repli-
cations for problems with di�erent dimensionality p and fixed sample
size n = 100. 53

2.5 Comparison in solution quality measured by the suboptimality gaps
for problems with di�erent sample sizes n and a fixed number of
dimensions p = 100. 54

3.1 Runtime comparison for non-convex optimization 57

x

Chapter 1 |
Introduction

In the internet era, one of the most significant features in learning and decision-
making problems is the involvement of high dimensional data. The high dimensional
data may include more information, and it enables better modeling ability po-
tentially. However, the high-dimensionality issue also poses challenges in both
computation cost and statistical e�ciency. Using classic approaches, we may need
to solve ultra large scale problems with massive samples, which then yields very
complicated models. In many real-world applications, the sample collection is ex-
pensive (e.g., healthcare) and/or the computation e�ciency requirement is intense
(e.g., ads recommendation). Therefore, it is necessary to study the settings with
the limit sample size and/or computation cost. In this dissertation, we consider
three particular problems that cover the topics in sample size requirement and
e�cient computation algorithm for learning and decision-making problems. More
specifically, the following problems are discussed:

1. A regularized sample average approximation scheme for high-dimensional
stochastic programming

2. An accelerated interior point gradient method for large scale linear constrained
nonconvex programming

3. A contextual bandit algorithm for online learning and decision making with
high-dimensional features

The rest of this chapter aims to provide some general backgrounds.

1

1.1 Statistical Learning and Sample Average Approx-
imation
Statistical learning refers to the tools for understanding data [41]. Broadly speaking,
those tools can be classified as supervised, unsupervised or semi-supervised. In this
dissertation, we focus on the supervised statistical learning model, which involve
building a statistical learning model for estimating the response based on input
variables. The problem of this nature can be found in various domains, such as
operation management, stock price prediction and personalized medicine.

Let {xj, yj}, j = 1, 2, ..., n be the sample set whose samples are randomly drawn
from a population with density function f(x, y, —), where x œ p◊1, — œ p◊1 and
y œ . We denote L(—) as the negative logarithm likelihood function:

L(—) = ≠
nÿ

j=1
log [f(xj, yj, —)] . (1.1.1)

The — with smaller objective function value L(—) will have higher likelihood. The
minimizer of L(—) is also referred as the maximum likelihood estimator (MLE)
—MLE:

—MLE = arg min L(—). (1.1.2)

In this dissertation, we mainly concentrate on two MLE models: linear least square
regression and logistic regression. We also want to point out that our results in
chapter 2 to 4 can also work on more general settings.
Linear least square regression is defined as:

—least = arg min
nÿ

j=1
(xT

j
— ≠ yj)2. (1.1.3)

If we denote the residual of xT

j
— ≠ yj as ‘j, one may show that the linear least

squared estimator —least is the estimator with smallest sum squared of squared
residual (e.g., q

j ‘2
j
). As one of the most popular statistical learning model, the

applications of linear least squared regression can be found in many areas (e.g.,
geodesy [64] and finance [67]).

2

Di�erent from linear least squared regression, logistic regression is designed for the
case that the response is binary. We have yj œ {0, 1}, xj œ p◊1 and we want to
fit an approximated model to use xj to predict yj:

ŷj = 1
e≠xT

j — + 1
, (1.1.4)

where ŷj is the estimator of binary response yj. When xT

j
— æ +Œ, we will have

ŷj æ 0 and ŷj æ 1 if xT

j
— æ ≠Œ. The log-loss function of logistic regression is

defined as:

—logistic = arg min
nÿ

j=1

Ë
(yj ≠ 1)xT

j
— + log(e≠xT

j — + 1)
È

. (1.1.5)

Many problems in operations research and management science involve logistic
regression. In dynamic pricing and assortment problem, the manager usually can
only observe the binary purchase response and a common approach is to use logistic
regression to fit a demand model and make decision based on it. More details can
be found in [81]. In healthcare research area, we could also use logistic regression
to identify the biomarkers [47].

From the view of stochastic programming (SP), we can also treat those problems
as the instances of the sample average approximation (SAA). Denote by W a
random vector with probability distribution P and support W ™ q. Define by
f(· , ·) : X ◊ W æ a deterministic mapping, where X ™ p

+ for some integer
p > 0 is a compact and convex feasible region. Let E[f(x, W)] =

s
W

f(x, w)P(dw).
Assume that, for every x œ X , the function f(x, ·) is measurable and integrable
on W . Then, the SP formulation of consideration is given as:

min
xœX

{F (x) := [f(x, W)]}. (1.1.6)

When distribution P is unknown and only finite sample can be collected, people may
use the sample average approximation (SAA) instead. The optimization problem
of SAA can be formulated as follow:

min
xœX

{Fn(x) := 1
n

nÿ

j=1
f(x, Wj)]}. (1.1.7)

3

When sample are iid draw from P, we will have 1
n

q
n

j=1 f(x, Wj) converge to
[f(x, W)]. Thus if we collect enough data, it is expected the solution of SAA

will be very close to the true solution of the original SP problem. Although the
philosophy of SAA is not exactly the same to MLE, they both consider making the
best use of the finite sample to infer the population information. It worths to think
about solving the statistical learning problem from the view of SAA.

1.2 Sparse Inducing Penalties
In modern data science, the high-dimensional problem (p ∫ n) becomes more and
more important. It is well known that most traditional statistical procedures may
fail to work when the dimension of parameters is much greater than the sample
size (e.g., overparameteric setting). A typical example is the genetic data analysis.
In neuroblastoma data set ([65]), we have gene expression profiles with 10707 genes
from 251 patients. One common technique to tackle the overparameteric problem is
to assume sparsity. Although a huge number of variables are collected, we believe
that only a small portion of them are relevant to the problem. Screening out
the nuisance variables is the key to improve model interpretability and prediction
power. From the statistical view, an ideal model would be directly penalizing on
the number of non-zero parameters:

min L(—) + ⁄Î—Î0, (1.2.8)

where L(—) is the MLE function in (1.1.2), ⁄ is the tuning parameter to control the
sparse level and Î—Î0 is the cardinality of —. Problem (1.2.8) involves minimizing a
non-convex non-lipschitz function. The complexity to find a global optimal solution
can be NP-hard [16]. From the view of computation, its computation cost can be
intense when the parameter dimension p is very large.

As an alternative method to L0 penalty, the LASSO introduced in [83] is a
popular tool for the high-dimensional learning problem. The LASSO is formulated
as follow:

min L(—) + ⁄Î—Î1, (1.2.9)

where Î—Î1 = qp

i=1 |—i| and — = (—1, ..., —p). Since (1.2.9) is a convex problem,

4

its global optimal solution can be e�ciently computed by many standard convex
optimization packages (e.g. cvx [38]). However, theoretical studies reveal that the
LASSO requires a critical irrepresentable condition [97] to guarantee statistical
performance and the solution could be biased. To solve this defect, folded concave
penalties (FCP) were proposed. Two famous instances are smoothly clipped absolute
deviation (SCAD) penalty [29] and minimax concave penalty (MCP) [94]. The
motivation of these penalties is to connect the LASSO with l0 penalty. SCAD uses
spline function that begins with LASSO at around 0 and turns to constant function
value when the input becomes large enough. The function form of SCAD penalty,
PSCAD is defined as:

P
Õ

SCAD
(x) = ⁄ xÆ⁄ + (a⁄ ≠ —)+

a ≠ 1 (x > ⁄), (1.2.10)

where P
Õ

SCAD
(x) is the first order derivative of PSCAD(x), is the indicator function,

(·)+ = max{·, 0}, ⁄ is the tuning parameter to control the sparsity level and a > 1.
In [29], the authors suggests a = 3.7. If the spline function begins with lasso only
at x = 0 and then goes towards to the l0 penalty, SCAD penalty becomes MCP.
We may define the penalty function of MCP as follow:

P
Õ

MCP
(x) =

3
⁄ ≠ t

a

4

+
. (1.2.11)

Unlike the LASSO, these two penalty functions do not require the irrepresentable
condition [97] to reach the variable selection and correct the system bias of LASSO
method. But the price to pay is its computational intractability due to the non-
convexity. Various local algorithms [29, 30, 33, 47] have been proposed to lessen
computational burden. Recent progress made by [49] is to introduce the modern
mixed integer program for obtaining global optimality with higher computational
cost.

5

1.3 Linear Constrained Nonconvex Programming Prob-
lem
The linear constrained nonconvex programming problem refers to problem in the
following structure:

min
x

F (x)

s.t. Ax = b (1.3.12)

x Ø 0,

where A œ m◊n and F : n

+ æ is a continuous function on n

+ and smooth on
n

++. Many real world problem can be formulated into this formulation or their
solutions can be approximately got from it (e.g., [39, 47, 48, 49, 51]). In machine
learning and statistical learning area, many interesting problems can be formulated
as:

min L(x) + P (x), (1.3.13)

where L is loss function and P is regularization function. When P is absent, (1.3.12)
reduces the classic machine/statistical learning problem, such as, regressions, SVM,
neural network and so on. To overcome the overfitting or induce the sparsity solution,
usually we need to add the extra regularization function which are commonly chosen
as lq norm (q œ (0, 2]), SCAD [29] and MCP [94]. In this case, the problem we
want to minimize can be non-smooth, non-di�erentiable and/or non-convex. In
various instances of (1.3.13), we can transform them into (1.3.12) using variable
substitution technique [21, 43, 45]. Moreover, many problems in management science
field are naturally represented in (1.3.12), such as, portfolio selection [22, 54], risk
management [70], network optimization[6]. In game theory, it is also known that
the solution to Nash equilibrium is one to one corresponding to the solution of
linear complementarity problem, which can be solved by (1.3.12)[53, 100].

In general, (1.3.12) has better modeling power than the simple unconstrained
problem. However, the linear constraints may introduce extra di�culty on al-
gorithm design. Many algorithms are proposed in the last two decades, such as
the alternating direction method of multipliers (ADMM) [12], stochastic gradient

6

descent (SGD) and their variants are proposed. Particularly, [29, 94] argue that the
non-convex objective function of (1.3.12) may ensure better statistical performance.

1.4 Online Learning and Decision Making Models
Online decision making models contain two parts, the learning part and the decision
making part. To motivate the necessity of online decision making models, we will
start with the classic decision making model, which can be formulated as:

min
z

D(z, —) (1.4.14)

s.t. gv(z, —) v = 1, 2, ..., (1.4.15)

where D is the loss function or negative utility function, gv are the constraints,
z is the vector of the decision variables and — is the vector of model parameters.
In classic decision making models, we usually assume — is known or can be well
estimated from enough existing data. Those models have several drawbacks. First,
in real-world applications, we only collect the customers/users/patients data instead
of —, and the amount and the quality of the data may not allow us to get a good
estimation of —. Second, after making new decisions, we will be able to collect more
data. The classic models don’t allow us to use new data to improve decision making.
Those drawbacks can be addressed by incorporating with an online learning module:

—t = arg min Lt(—) +
pÿ

i=1
P (|—i|), (1.4.16)

where Lt is the statistical loss function with the sample up to time t and P is the
sparse inducing penalty (e.g., LASSO, SCAD, and MCP). —t changes with time
and we expect —t will converge to the true — with sample size increasing. Based
on evolving —t, the quality of decision making will also get better and better. In
this dissertation, we will focus on a special case of online decision making model:
multi-armed bandit model with the generalized linear structure.

Let us consider a sequential arrival process t œ {1, 2, ..., T}. At each time step
t, a single user, prescribed by a vector of user covariates, xt œ R

1◊d, arrives. All
covariate vector {xt}tØ0 are observable to a decision-maker and are i.i.d. distributed
according to an unknown distribution. The decision-maker has access to a decision

7

set K = {1, 2, ..., K}, and the reward for decision i œ K on a user with a covariates
vector x is defined as:

[Ri(x)] = fi(xT —true

i
), (1.4.17)

where fi(·) is the utility function with decision i and —true

i
œ R

1◊d is the unknown
coe�cient vector for decision i œ K. The decision maker needs to make the
decision under the environment with uncertainty due to the absence of true decision
parameter vector —true

i
. We denote the decision-maker’s policy as fi = {fit}tØ0,

where fit œ K is the decision prescribed by policy fi at time t. To benchmark the
performance of policy fi, we introduce an oracle policy fiú = {fiú

t
}tØ0 under which

the decision-maker knows the true values of the covariates vector —true

i
for all i œ K

and chooses the best decision to maximize its expected reward:

fiú

t

.= arg max
i

[Ri(xt)]. (1.4.18)

Obviously, the decision-maker’s reward is upper-bounded by the oracle policy. We
then define the expected regret at time t for the observed user covariates xt under
policy fi as:

rt=̇
5
max

i

Ri(xt) ≠ Rfit(xt).
6

(1.4.19)

It is the expected reward di�erence between the optimal oracle policy fiú and
the decision-maker’s policy fi at time t. Our goal is to explore the policy fi that
minimizes the cumulative regret up to time T , RT =̇ q

T

i=1 rt. Many real-world
problems can be solved by the linear multi-armed bandit model, such as online news
recommendation, personal medicine, and adaptive clinic trial. More interesting
details can be found in [9, 37].

1.5 Potential Contributions of the Dissertation Re-
search
When facing high-dimensionality data, classic statistical learning approaches may
fail to work. The sparse inducing penalty is very necessary to ensure the good
quality solution. Convex sparse inducing penalized models (e.g., LASSO) can
be e�ciently calculated by convex solver, but the solution quality may have an

8

extra bias. Non-convex sparse inducing penalized (e.g., SCAD and MCP) models
potentially have better statistical performance, but from the view of computation, it
could be challenging. Globally solving the non-convex penalized models is NP-hard.
The alternative way is to consider the computation e�cient local algorithm with
desirable statistical performance. We also explore online learning and decision
making problem with high-dimensional data.

The rest of the dissertation is organized as follows. In Chapter 2 we study a
modification to the SAA by incorporating the FCP regularization. This modification
targets the high-dimensional SP problems with sparsity. We show that when the
solution is sparse or can be approximated by a sparse solution, the regularization
can significantly reduce the required number of samples in some high-dimensional
SP applications: Compared to the conventional SAA approach that requires the
sample size to grow polynomially in the number of dimensions, the RSAA stipulates
number of samples that is only poly-logarithmic in the dimensionality. In Chapter
3, we discuss a fast algorithm for non-convex optimization problem with linear
constraints. We propose an accelerated interior point gradient method and prove a
better convergence rate than the classic O(1/‘2) result. In Chapter 4, we consider
the minimax concave penalized multi-armed bandit algorithm for the online decision
making problem with high-dimensional covariates. We prove our approach can
match the optimal regret bound theoretically. Numerical tests on both simulated
and real-world data validate it. In Chapter 5, we summarize the dissertation studies
and present future research directions.

We would like to alert the reader that notations in this dissertation are defined
locally within a chapter, and do not apply to other chapters unless declared.

9

Chapter 2 |
Sample Average Approximation
with Sparsity-Inducing Penalty
for High-Dimensional Stochas-
tic Programming

2.1 Introduction
We are interested in solving stochastic programming (SP) when the problem
dimension is high but the global solution is approximately sparse. Denote by
W a random vector with probability distribution P and support W ™ q for
some q > 0. Define by f(· , ·) : X ◊ W æ a deterministic mapping, where
X ™ p

+ for some integer p > 0 is a compact and convex feasible region. Let
E[f(x, W)] =

s
W

f(x, w)P(dw). Assume that, for every x œ X , the function f(x, ·)
is measurable and integrable on W. Then, the SP formulation of consideration is
given as:

min
xœX

{F (x) := E[f(x, W)]}. (2.1.1)

Throughout the chapter, we assume that X is defined only by coordinate-wise
constraints, that is, X := {x = (xi) : xi œ Xi, i = 1, ..., p} for some Xi ™ + for
all i = 1, ..., p. Notice that the non-negativity constraints are not restrictive, in that
we may always represent a negative variable by the di�erence of two non-negative
variables.

10

In addition, we will restrict our discussions to the cases where the solution to
the original SP, denoted xmin œ arg minxœX

F (x), can be well approximated by a
sparse solution. More precisely, we assume that there exists x̂min that satisfies

F (x̂min) ≠ F (xmin) Æ Á̂ (2.1.2)

for some Á̂ Ø 0. We denote that S := {i : x̂min
i

> 0} and Sc := {i : x̂min
i

= 0}.
Here S can be understood as the index set for the most contributing dimensions
with |S| assumed small and satisfying |S| << p and |S| < n. In the special case
when Á̂ = 0, we know that x̂min is an exact solution to (2.1.1).

Under the above setting, one of the most commonly used techniques to solve
the SP, the sample average approximation (SAA), is undesirably restrictive on the
sample size in some scenarios. The SAA approximates the objective function of
(2.1.1) by

Fn(x) := 1
n

nÿ

j= 1
f(x, W j), (2.1.3)

where {W j : 1, . . . , n} is a sequence of independently and identically distributed
(i.i.d.) random samples of W . Denote that xSAA œ arg minxœX Fn(x). Much
literature has discussed the e�cacy of xSAA in approximating xmin (see [60, 77]).
It has been shown in the celebrated work by Shapiro and co-authors [44, 77, 77]
that to ensure the optimization accuracy, the required number of samples should
be larger than the number of dimensions and should grow polynomially with the
increase of dimensionality. In specific, to ensure:

P[F (xSAA) ≠ F (xmin) Æ ‘] Ø 1 ≠ –, (2.1.4)

for any ‘ œ (0, 1] and – œ (0, 1], the sample size n should satisfy

n & p

‘2 ln 1
‘

+ 1
‘2 ln 1

–
, (2.1.5)

where x & y for any x, y œ means x Ø c̃y, for some constant c̃ > 0 that are
independent of –, ‘, p, and |S|, but may depend polynomially on some other problem
quantities. Consider (2.1.5) in a problem with perhaps hundreds of thousands of
dimensions, which is not rare in actual applications of SP. The SAA then likely

11

requires more than millions or even tens of millions of samples for the SAA to
perform properly. The overhead in generating these samples, before conducting any
optimization-related computation, may have already become prohibitive. Especially
considering the case where the most contributing dimensions are in tens or hundreds,
such a sample size requirement seems unreasonably demanding.1

Seeking to address the above issue, this work studies a modification to (2.1.3)
by adding a regularization term to encourage sparsity. This term is in the form
of a folded concave penalty (FCP) as first introduced by [29] and [94] to some
statistical learning problems. We refer to this modification the regularized SAA
(RSAA), which is formulated as:

min
xœX

I

Fn,⁄(x) := Fn(x) +
pÿ

i= 1
P⁄(xi)

J

, (2.1.6)

where P⁄ with parameters a > 0 and ⁄ > 0 is a special form of FCP called the
minimax concave penalty (MCP)[94]:

P⁄(·) :=
⁄

·

0

(a⁄ ≠ t)+
a

dt =

Y
_]

_[

⁄· ≠ ·
2

2a
if 0 Æ · Æ a⁄;

1
2a⁄2 if · > a⁄.

(2.1.7)

We show in this chapter that the RSAA allows the dimension to be (much) more
than the sample size. In specific, when Á̂ = 0, to achieve the same optimization
quality in (2.1.4), the sample size requirement for the global minimizer to RSAA is

n & |S|
‘3

3
ln p

‘

41.5
+ 1

‘2 ln 1
–

, (2.1.8)

under no assumption of convexity. Compared to (2.1.5), the required sample size
of RSAA only depends polynomially on |S| and ln p, instead of p. Although, as
a tradeo�, the dependency on ‘ becomes worse after regularization, we believe
that such a tradeo� can be well compensated by the e�ciency in handling high
dimensionality at least for some applications.

Perhaps more importantly, we further consider stationary points that satisfy
the significant subspace second-order necessary condition (S3ONC) [49], which is

1This is because, if only we would know which dimensions are nonzero, we may equivalently
reduce the problem to one that has only tens or hundreds of dimensions. Then, according to
(2.1.5), the required sample size would likely be only in thousands.

12

weaker than the second-order KKT condition. When Á̂ = 0, we show that, if an
S3ONC solution is achieved by a(n arbitrary) descent local algorithm starting at
an all-zero vector, then the sample size is required to be

n & |S|2.5

‘4

3
ln p

‘

42
+ 1

‘2 ln 1
–

, (2.1.9)

if f(· , W) is convex for almost every W œ W. Furthermore, assume in addition
that F is di�erentiable and strongly convex. Then a smaller sample size is allowed,
that is:

n & |S|1.5

‘3

3
ln p

‘

41.5
+ 1

‘2 ln 1
–

. (2.1.10)

Both bounds are worse than (2.1.8) in terms of |S| and/or ‘, but present simi-
lar levels of e�cacy in addressing high dimensionality as in (2.1.8). Meanwhile,
the computational overhead in solving for an S3ONC solution is largely reduced
compared to that in solving for a global solution.

Furthermore, it is worthwhile to mention a special case to demonstrate RSAA’s
e�cacy. Assume again that f(· , W) is convex for almost every W œ W, function
F is di�erentiable and strongly convex, and Á̂ = 0. If all of the most contributing
dimensions have a reasonably large magnitude that di�erentiates them from zero,
that is, the value of miniœS |xmin

i
| is above a certain threshold dependent only on

|S| and the modulus of strong convexity, then the required sample size becomes as
small as:

n & |S|
‘2 ln p

‘
+ 1

‘2 ln 1
–

(2.1.11)

for an S3ONC solution. In contrast, under the same set of assumptions, the best
known bound on the performance of traditional SAA is still (2.1.5), this means
that, at least for some scenarios, the proposed RSAA may achieve a non-trivial
improvement to SAA in handling high dimensionality without any compromise in
terms of dependencies on |S|, ‘, and –. A summary of comparisons between RSAA
and SAA is provided in Table 2.1 given Á̂ = 0.

When the exact global solution to the SP is not sparse but can be approximated
by a sparse solution, i.e., Á̂ > 0, it turns out that the sample size should grow
polynomially in Á̂ and that there can also be a residual suboptimality gap linear in

13

Table 2.1: A summary of sample size requirement to guarantee optimization quality
of (2.1.4) when Á̂ = 0 as defined in (2.1.2). The “Global” column indicates whether
the approximation formulation being solved globally (X) or locally (◊) is one of
the conditions for the bounds on “n” of the same row; the “f(· , W) convex” and
the “miniœS x̂min

i
Ø threshold” columns indicate whether (X) or not (◊) Function

f(· , W) being convex for a.e. W œ W and miniœS x̂min
i

being above a certain
threshold are conditions for the corresponding bounds on “n”, respectively.

n & Global f(· , W)
convex

F strongly
convex

& di�eren
-tiable

miniœS x̂min
i

Ø threshold

SAA p

‘2 ln 1
‘

+ 1
‘2 ln 1

–
X ◊ ◊ ◊

RSAA

|S|

‘3

1
ln p

‘

21.5
+ 1

‘2 ln 1
–

X ◊ ◊ ◊
|S|

2.5

‘4

1
ln p

‘

22
+ 1

‘2 ln 1
–

◊ X ◊ ◊
|S|

1.5

‘3

1
ln p

‘

21.5
+ 1

‘2 ln 1
–

◊ X X ◊
|S|

‘2 ln p

‘
+ 1

‘2 ln 1
–

◊ X X X

Á̂. However, the poly-logarithmic dependency of sample size requirement on the
dimensionality is maintained.

Since second-order KKT condition implies S3ONC, all numerical algorithms
that ensure the second-order KKT condition (e.g., [10, 19, 63, 92, 93]) guarantee
S3ONC. Some of these algorithms such as the interior point methods in [10] are
fully polynomial-time approximation schemes (FPTAS). Meanwhile, as we will
illustrate later, computing the global minimizer may also be possible via a mixed
integer programming reformulation.

Regularizing the SP solution schemes with a sparsity-inducing penalty for an
important class of SP formulations has been discussed by some literature, such as
[3], which focuses on the computational complexity when a stochastic optimization
algorithm incorporates an ¸1-norm penalty. To our knowledge, no theoretical
analysis has been established to qualify the performance of the sparsity-inducing
penalties in terms of approximating the true SP problem by the sample average
approximation.

Our results may also have implications to the understanding of a flexible class

14

of high-dimensional sparse learning problems for M-estimation with the FCP.
In fact, the SAA (2.1.3) can be considered as a formulation of an M-estimator
with f representing a statistical loss function, and the SP problem (2.1.1) is the
corresponding population version of the learning problem with F measuring the
generalization error. Such a correspondence is also noted by [60]. Following this
correspondence, the RSAA (2.1.6) is then the formulation of the sparse learning
problem that incorporates the FCP as a regularizer. Our findings imply that
high-dimensional M-estimation is possible through the regularization of the FCP,
even if the problem dimension cannot be bounded by any polynomial function of
the sample size.

While most existing literature on high-dimensional learning such as [11, 15, 29,
49, 52, 61, 87, 89, 94, 95, 96] either focuses on linear regression models or relies
on additional conditions such as the (restricted) strong convexity, our analyses
do not rely on those assumptions and may apply to a more general M-estimation
problem. We would also like to comment that much literature has been devoted to
studying an alternative regularizer, the ¸1-norm regularizer, or a.k.a., the Lasso.
For many reported simulated experiments, numerical comparisons between Lasso
and FCP have been reported by [29, 33, 49, 49, 87, 89] in supportive of relative
outperformance of the latter. Some theoretical explanations of such outperformance
are also provided by [29, 33, 49] in some special cases of high-dimensional learning.

The rest of this chapter is organized as following: Section 2.2 presents our
assumptions and the necessary optimality conditions. Section 2.3 summarizes our
major results. Proofs for those results are presented in Section 2.4. Section 2.5
discusses di�erent approaches in solving for a desired local/global solution. Section
2.6 presents some preliminary numerical results. Finally, Section 2.7 concludes the
work. Throughout the chapter we will denote by Î · Î, | · |, and Î · Îp (1 Æ p Æ Œ)
for a vector the ¸2, ¸1, and ¸p norm, while | · | for a finite set denotes the cardinality
of the set. For any scalars x and y, we denote by x

x
y (and by x

w
y) the larger

(smaller, resp.) number between the two. We will also use “a.s.” as an abbreviation
for “almost surely”, and “a.e.” for “almost every”.

15

2.2 Settings and Necessary Conditions

2.2.1 Assumptions

Our analysis relies on the following assumptions.

Assumption A.

A.1 For any x œ X , the following inequality holds

E[exp (t [f(x, W) ≠ F (x)])] Æ exp
A

‡2t2

2

B

, ’t œ ,

for some ‡ > 0.

A.2 There exists a measurable and deterministic function L : W æ such that

E[exp (t [L(W) ≠ Lµ])] Æ exp
A

‡2
L
t2

2

B

, ’t œ ,

for some ‡L > 0 and Lµ := E[L(W)] Ø 1 and that

sup
x1, x2œX

{|f(x1, W) ≠ f(x2, W)| ≠ L(W)Îx1 ≠ x2Î} Æ 0, a.e. W œ W .

A.3 For almost every W œ W, function f(x, W) is twice di�erentiable in x and
satisfies

ˆ2f(x, W)
(ˆxi)2 Æ LH, ’i œ {1, ..., p}, x = (xi) œ X

for some LH > 0.

A.4 Assume that X is defined by coordinate-wise constraints with X := {x =
(xi) : xi œ Xi, i = 1, ..., p} for some Xi ™ + for all i = 1, ..., p, and that
there exist two hypercubes H(0, R) := {x œ p

+ : x Æ R}, for some R Ø 1,
and H(0, 1) := {x œ p

+ : x Æ 1} such that H(0, 1) ™ X ™ H(0, R).

A.5 Function f(· , W) is convex for almost every W œ W .

We will also make stipulations on the choices of the penalty parameters a and
⁄.

16

Condition B. Let the penalty parameters (a, ⁄) of the MCP as in (2.1.7) satisfy
that a < L≠1

H
, a Æ 1 and ⁄ > 0.

Assumption A.1 and A.2 are essentially subgaussian. The same set of assump-
tions are standard for sample complexity analyses of the conventional SAA as in
[77]. Meanwhile, A.3 and A.5 are verifiable regularities of the objective function.
More specifically, Assumption A.3 essentially assumes that the largest eigenvalue
of the Hessian matrix of the SAA formulation is bounded from above almost surely
and Assumption A.5 requires that the SAA formulation is almost surely convex.
Assumption A.4 requires that the constraints are component-wise rectangle con-
straints. In addition, it is also required that the feasible region contain an inner
hypercube and is compact. For some of our theoretical results (as in Theorem
2.3.5), Assumption A.5 is not required. Condition B is non-restrictive, since the
parameters a and ⁄ are user-specified.

Under Assumption A.2, there exists another measurable and deterministic
function, denoted by L|S| : W æ , and a constant, denoted by Lµ,s : 1 Æ Lµ,s Æ
Lµ, such that

E[exp
1
t

Ë
L|S|(W) ≠ Lµ,s

È2
] Æ exp

A
‡2

L
t2

2

B

, (2.2.12)

for all t œ , and that supx1, x2œX fl{x: xi=0, jœSc}
{|f(x1, W)≠f(x2, W)|≠ L|S|(W)Îx1≠

x2Î} Æ 0 for almost every W œ W. In some cases, such as when Fn is quadratic,
Lµ,s may be nontrivially smaller than Lµ especially if p is large.

2.2.2 Necessary Conditions for Local Optimality

We focus on local solutions to (2.1.6) that satisfy some necessary conditions for local
minimality. Telling from (2.1.7), P⁄(t) is twice di�erentiable in t for all t œ [0, a⁄).
In the meantime, Fn(x) is almost surely twice di�erentiable under Assumption A.3
for any x œ X . We consider the following necessary conditions:

First-order necessary condition (FONC): The solution xú œ X satisfies that

ÈÒFn(xú) + (P Õ

⁄
(xú

i
) : 1 Æ i Æ p), x ≠ xúÍ Ø 0, ’x œ X . (2.2.13)

Significant subspace second-order necessary condition (S3 ONC): The solution xú :=

17

(xú

i
: 1 Æ i Æ p) œ X satisfies FONC. Furthermore, for all i œ {i : xú

i
œ

(0, min{1, a⁄})}, it holds that ˆ
2[Fn(x)+

qp

i=1 P⁄(xi)]
(ˆxi)2

x= xú

Ø 0.

The S3ONC is derived from the observation that a local minimal solution to
the original problem must be a local minimizer in the subspace that considers
only a single nonzero variable (See also [23, 49]). One may easily check that any
second-order KKT point satisfies the S3ONC.

2.3 Major Results
Our major results concern two propositions and four theorems. Propositions 2.3.1
and 2.3.2 provide sample size estimates for all S3ONC solutions within the set
{x : F (x) ≠ F (x̂min) Æ �} for some prescribed � Ø 0. Those bounds vary with
di�erent regularities on f or F . Then Theorems 2.3.5, 2.3.7, and 2.3.8 discuss some
special S3ONC solutions: the global solutions or the local solutions generated with
some naive initialization. Finally, Theorem 2.3.9 presents the special case where
the RSAA improves over the conventional SAA nearly without any compromise.

2.3.1 Sample Size Estimation for All S3ONC Solutions

We will use the following short-hand notation:

Nú(c1) := ‡2

‘2 ln c1
–

+ ‡2|S|
‘2 ln c1RLµp

‘
+ ‡2

L
· ln c1p

–
, (2.3.14)

where c1 > 0.

Proposition 2.3.1. Suppose that Assumptions A.1-A.3, and Condition B hold.
Let |S| Ø 1, 4p2 Ø n, ⁄ = ‡

2”

n” |S|fl
for arbitrary ” : 0 < ” < 1/2 and fl : 0 Æ fl Æ 1/2.

Consider an S3ONC solution xú to (2.1.6) that satisfies Fn,⁄(xú) Æ Fn,⁄(x̂min) + �
almost surely for some � Ø 0. For any – : 0 < – Æ 1, ‘ : 0 < ‘ Æ 1 and Á̂ Ø 0:

1. if it holds that, for some problem-independent constant c2 > 0,

n Ø N1
fl

c2 · Nú(c2) (2.3.15)

where N1 := ‡2
1

1
‘

2 1
2” |S| 1≠2fl

2”
x

‡2|S|
2fl

1≠2”

1
c2

1+�+Á̂

a2‘2 ln c2RLµp

min{‘, ‡2”}

2 1
1≠2” , then F (xú)≠

F (xmin) Æ 2‘ + Á̂ + � with probability lower bounded by 1 ≠ –;

18

2. if Assumption A.5 is satisfied and it holds that, for some problem-independent
constant c2 > 0,

n Ø N2
fl

c2 · Nú(c2), (2.3.16)

where N2 := ‡2 · |S| 1≠fl
”

1
R

‘

2 1
” x

‡2|S|
2fl

1≠2” ·
1
c2

1+�+Á̂

a2‘2 ln c2RLµp

min{‘, ‡2”}

2 1
1≠2” , then

F (xú) ≠ F (xmin) Æ 2‘ + Á̂ with probability lower bounded by 1 ≠ –.

Proof. The proof is postponed till Section 2.4.2.3.

We assume in the following proposition that F is di�erentiable and strongly
convex with constant UH such that, for any x1, x2 œ X ,

F (x1) ≠ F (x2) Ø ÈÒF (x2), x1 ≠ x2Í + UH

2 Îx1 ≠ x2Î2, (2.3.17)

for some UH > 0, where ÒF (x2) is a gradient of F at x2. Due to the increased
regularity, we may have a di�erent sample size requirement.

Proposition 2.3.2. Consider an S3ONC solution xú to (2.1.6) that satisfies
Fn,⁄(xú) Æ Fn,⁄(x̂min) + � almost surely for some � Ø 0. Suppose that Assumption
A and Condition B hold. Let 4p2 Ø n, |S| Ø 1 and ⁄ = ‡

2”

n” |S|fl
for arbitrary

” : 0 < ” < 1/2 and fl : 0 Æ fl Æ 1/2. Assume, in addition, that F is di�erentiable
and strongly convex to satisfy (2.3.17). For any – : 0 < – Æ 1, ‘ : 0 < ‘ Æ 1, and
Á̂ Ø 0, if it holds that, for some problem-independent constant c3 > 0,

n Ø c3 · Nú(c3)
fl

N3 (2.3.18)

where N3 := ‡
2
|S|

1≠2fl
2”

U

1
2”

H

51
c3
‘

2 1
2” +

1
c3Á̂

‘2

2 1
2”

6 x
‡

2

|S|

2fl
2”≠1

1
c3

1+�+Á̂

a2‘2 ln c3RLµp

min{‘, ‡2”}

2 1
1≠2” , then

F (xú) ≠ F (xmin) Æ 3(‘ + Á̂) with probability lower bounded by 1 ≠ –.

Proof. The proof is postponed till Section 2.4.2.4.

Remark 2.3.3. The assumption of 4p2 Ø n can be easily relaxed but is imposed for
notational simplification in our derivations. Meanwhile, it is possible that (2.3.17)
is satisfied but Fn(·) = 1

n

qj

i=1 f(· , W j) is not strongly convex. For an example,

19

we may consider the case of linear regression, which is often solved with the SAA in
the form of the least squares problem. When n < p, the least squares problem may
not be strongly convex, but the population version of the linear regression problem
(which is the corresponding SP problem) usually have a strongly convex objective.

Remark 2.3.4. Consider the global minimizer, denoted xSAA, to the conventional
SAA formulation in (2.1.3) within the feasible region X . In [77], it is shown (after
some immediate conversion of notations from Theorem 5.18 therein) that to achieve
an optimization accuracy of F (xSAA) ≠ F (xmin) Æ ‘ with lower-bounded probability
1 ≠ –, the stipulated sample size follows

n Ø ca‡2

‘2

5
p ln caLµR

‘
+ ln ca

–

6 fl
‡2

L
· ln ca

–
=: NSAA. (2.3.19)

for some constants ca > 0. In contrast, Propositions 2.3.1 and 2.3.2 indicate that,
in nonconvex, convex, and strongly convex cases, RSAA requires the sample sizes to
be at least N1

x
c2Nú(c2) in (2.3.15), N2

x
c2Nú(c2) in (2.3.16), or N3

x
c3Nú(c3)

in (2.3.18), respectively. For all the three cases, it is easily verifiable that Nú is
always dominantly better than NSAA in terms of dependency, while as a tradeo�, N1,
N2, and N3 may become more sensitive to the reduction in ‘ than the conventional
SAA. A detailed comparison will be made in the next subsection.

2.3.2 Sample Size Estimates for Some Special S3ONC Solutions

We consider, in Theorem 2.3.5, the performance of a global minimal solution xú, in
the sense that Fn,⁄(xú) = infxœX Fn,⁄(x) almost surely. Then in Theorems 2.3.7,
2.3.8, and 2.3.9, we study the S3ONC solutions with a better objective value than
an all-zero vector, denoted by 0. In particular, Theorem 2.3.9 identifies the best
performing case for RSAA.

Recalling the definition of Nú in (2.3.14), we have the following results on the
global solution.

Theorem 2.3.5. Suppose that Assumptions A.1-A.3, and Condition B hold. Let
4p2 Ø n, |S| Ø 1, and ⁄ = ‡

1/3

n1/6|S|1/4 . Consider a global solution xú to (2.1.6). For

20

any – : 0 < – Æ 1, ‘ : 0 < ‘ Æ 1, and Á̂ Ø 0, if

n Ø c4‡2|S|
‘3

S

U1 + (1 + Á̂) 3
2

a3

A

ln c4RLµp

min{‘, ‡1/3}

B 3
2
T

V
fl

c4 · Nú(c4), (2.3.20)

is satisfied for some problem-independent constant c4 > 0, then F (xú) ≠ F (xmin) Æ
2‘ + Á̂ with probability lower bounded by 1 ≠ –.

Proof. Since the global solution is also a local minimal solution, xú also satisfies
the S3ONC almost surely. In addition, since F (xú) Æ F (xmin) Æ F (x̂min), we may
invoke Part 1 of Proposition 2.3.1 with � = 0, ” = 1

6 , and fl = 1
3 to obtain the

desired results.

Remark 2.3.6. Theorem 2.3.5 stipulates the minimal assumptions on Fn, but, as
a tradeo�, it requires the global optimization of (2.1.6). Computing (2.1.6) globally
is challenging, because the MCP is nonconvex. [35] showed that (2.1.6) in some
special cases is strongly NP-hard. This motivates us to further consider a class of
solutions that only satisfy certain necessary conditions for local minimality.

Theorem 2.3.7. Suppose that Assumption A and Condition B hold. Let 4p2 Ø n,
|S| Ø 1, and ⁄ = ‡

1/2

n1/4|S|3/8 . Consider an S3ONC solution xú to (2.1.6) that satisfies
Fn,⁄(xú) Æ Fn,⁄(0) almost surely. For any – : 0 < – Æ 1

2 , ‘ : 0 < ‘ Æ 1 and Á̂ Ø 0,
if

n Ø c5‡2|S| 5
2

‘4

S

UR4 + (1 + Lµ,sR + Á̂)2

a4

A

ln c5RLµp

min{‘, ‡1/2}

B2T

V
fl

c5N
ú(c5) (2.3.21)

is satisfied for some problem-independent constants c5 > 0, then F (xú) ≠ F (xmin) Æ
2‘ + Á̂ with probability lower bounded by 1 ≠ 2–.

Proof. The proof is postponed till Section 2.4.2.5.

Theorem 2.3.8. Suppose that Assumption A and Condition B hold. Let 4p2 Ø n,
|S| Ø 1, and ⁄ = ‡

1/3

n1/6|S|1/4 . Also assume that F is di�erentiable and strongly
convex as in (2.3.17). Consider an S3ONC solution xú to (2.1.6) that satisfies
Fn,⁄(xú) Æ Fn,⁄(0) almost surely. For any – : 0 < – Æ 1

2 , ‘ : 0 < ‘ Æ 1, and Á̂ Ø 0,
if

21

n Ø c6‡2|S| 3
2

‘3

S

U 1
U3

H

+ Á̂3

U3
H

‘3 + (1 + Lµ,sR + Á̂) 3
2

a3

A

ln c6RLµp

min{‘, ‡1/3}

B 3
2
T

V

fl
c6N

ú(c6), (2.3.22)

is satisfied for some problem-independent constant c6 > 0, then F (xú) ≠ F (xmin) Æ
3(‘ + Á̂) with probability lower bounded by 1 ≠ 2–.

Proof. The proof is postponed till Section 2.4.2.6.

Theorem 2.3.9. Consider an S3ONC solution xú to (2.1.6). Suppose that the same
set of assumptions hold as in Theorem 2.3.8. Let ⁄ = 1

|S|1/4 . Assume additionally

Á̂ = 0 and miniœS |x̂min
i

| >
|S|

1/4+
Ô

|S|1/2+2UH

UH

, where x̂min
i

is the i-th dimension of
x̂min. For any – : 0 < – Æ 1

2 and ‘ : 0 < ‘ Æ 1, if

n Ø c7‡2|S|
‘2

31 + Lµ,sR

a2 ln c6RLµp

‘

4 fl
c7N

ú(c7), (2.3.23)

for some problem-independent constant c7 > 0, then F (xú) ≠ F (xmin) Æ ‘ with
probability lower bounded by 1 ≠ 2–.

Proof. The proof is postponed till Section 2.4.2.7.

Remark 2.3.10. We notice that the choices of ⁄ are di�erent among the above
theorems. At the minimum, the above theorems ensure the existence of proper ⁄’s
that ensure the sound performance of the RSAA in all the scenarios discussed above.
In practice, ⁄ can also be determined by a simple cross-validation procedure, which
is a commonly adopted scheme in penalized statistical learning to tune the parameter
of the sparsity-inducing penalties.

Remark 2.3.11. We would like to compare the sample size requirement of the
RSAA as presented in the results above with that of the conventional SAA.

• We see that NSAA as in (2.3.19) depends polynomially in the problem dimen-
sion p. In contrast, Theorems 2.3.5, 2.3.7, 2.3.8, and 2.3.9 reveal that the
global solutions and some computable local solutions to RSAA require the
sample size to be polynomial in ln p and |S|. We regard it as a demonstration
of the RSAA’s capability in handling high dimensionality, as now exponentially
increased p can be compensated by polynomially increasing n.

22

• As a tradeo� to the potential advantage mentioned above, the RSAA’s perfor-
mance has a worse dependency on ‘ than the conventional SAA in general.
More specifically, NSAA increases at a rate of O(1

‘2 ln 1
‘
). In contrast, RSAA

follows a rate of O(1
‘3 · (ln 1

‘
)3/2) if minimized globally (under Assumptions

A.1-A.3), or O(1
‘4 · (ln 1

‘
)2) if solved locally with a naive initialization (ad-

ditionally under Assumption A.5). Furthermore, under some assumption
of di�erentiability and strong convexity, if Á̂ Æ O(1) · ‘ for some problem-
independent constant O(1), then a local solution with a naive initialization
retains the rate of O(1

‘3 · (ln 1
‘
)3/2), which is the same as the global minimizer.

We think that compromising the dependency on ‘ to achieve a non-trivial
reduction in the dependency on p can be worthwhile in many high dimensional
SP applications, where p can be redundantly very large but the suboptimality
gap ‘ is not required to be very small.

• Theorem 2.3.9 identifies a case where RSAA non-trivially reduces the depen-
dency on p while the growth of the required sample size maintains at the same
rate as the conventional SAA in terms of ‘.

• The RSAA’s dependencies on ‡ and ‡L are almost the same as those of
the SAA. Meanwhile, RSAA becomes dependent on some other quantities
that originally do not influence the SAA’s performance: a, |S|, and UH.
Moreover, in some cases, the RSAA may be more sensitive to the increase
in the Lipschitz-like constant Lµ,s as defined in (2.2.12) and the radius of
the feasible region, R. Nonetheless, those dependencies all maintain to be
polynomial.

Remark 2.3.12. By allowing Á̂ Ø 0, our results apply to the cases where the exact
solution to the SP is dense, but can be approximated by a sparse solution. We can
see that, when Á̂ > 0, RSAA will require more samples and may incur a residual
suboptimality gap no greater than O(1) · Á̂.

Remark 2.3.13. Our results may also have potentially important implications to
high-dimensional M-estimation. One may consider the following correspondence
between our setting and the setting for a high-dimensional learning problem: (i)
Eq. (2.1.3) can be thought of as an in-sample statistical loss function; (ii) the
(global/local) solution to RSAA formulation (2.1.6) can be considered as a folded

23

concave penalized sparse estimator; (iii) the SP formulation (2.1.1) can be considered
as the population version of the (unpenalized) learning problem (a.k.a., expected risk
or generalization error); and (iv) The suboptimality gap F (xú) ≠ F (xmin) is then
a performance measure2 of the estimator xú. The above conversion is also noted
by [60]. Under this conversion, we can easily tell from Theorems 2.3.5, 2.3.7, and
2.3.8 that a global solution or an S3ONC solution initialized at an all-zero vector can
achieve a reasonable upper bound on the F (xú) ≠ F (xmin) even in the undesirable
scenarios where the dimension p cannot be upper bounded by any polynomial of
n. The same setting has been discussed by [32] for the linear regression model,
by [33] for several M-estimation models, and by [52, 89] under restricted strong
convexity (RSC, which is some variation of strong convexity in certain subset of
the feasible region). In contrast, our results may be applicable to a wider class
of M-estimators without the RSC assumption. In particular, if we consider the
estimator that globally minimizes the RSAA, nonconvexity in the statistical loss
function is also allowed.

Remark 2.3.14. We would also like to remark that the sparsity of an S3ONC
solution is dependent on ⁄ and �. The correlations between those quantities and the
sparsity level are in fact characterized by Lemma 2.4.4 in the subsequent section.
Although the formula seem nontrivial, we think that the general trend is clear; that
is, larger ⁄, and smaller � may result in fewer nonzeros in the S3ONC solution.
Our numerical experiments in Section 2.6 also show that the number of nonzero
dimensions can be well constrained at an S3ONC solution.

2.4 Technical Proofs
We will first present a set of preliminary results in Subsection 2.4.1 and then provide
the proofs for the claimed results in Subsection 2.4.2. A sketch of proof is provided
in Subsection 2.4.2.1.

2F (xú) ≠F (xmin) is also referred to as the “excess risk” in a learning problem. See for example
[8].

24

2.4.1 Some Preliminary Results

In this subsection, we present a couple of observations that are useful to our proofs.
Firstly, we observe that MCP as in (2.1.7) has the following properties:

(i) P⁄(t) is non-decreasing and concave in t œ Ÿ+ with P⁄(0) = 0 and P⁄(t) > 0 if
t > 0;

(ii) P⁄(t) is di�erentiable for all t œ Ÿ+ and twice di�erentiable for any t œ
[0, a⁄) fi (a⁄, Œ);

(iii) The first derivative P Õ

⁄
(t) = 0 for any t Ø a⁄;

(iv) 0 Æ P Õ

⁄
(t) Æ ⁄ and 0 Æ P⁄(t) Æ P⁄(a⁄) = a⁄

2

2 for any t Ø 0;

(v) The second derivative P ÕÕ

⁄
(t) = ≠ 1

a
for any t œ [0, a⁄) and P ÕÕ

⁄
(t) = 0 for any

t > a⁄.

Secondly, consider an S3ONC solution xú œ X under Assumption A.5. Recall
that S3ONC implies FONC. Then, from the definition of FONC in Eq. (2.2.13)
and Assumption A.5, we know that, if xú satisfies the FONC, then it holds that

Fn(xú) +
pÿ

i=1
P Õ

⁄
(xú

i
)xú

i
Æ Fn(x) +

pÿ

i=1
P Õ

⁄
(xú

i
)xi, ’x = (xi) œ X , a.s., (2.4.24)

which immediately yields that

Fn(xú) +
pÿ

i=1
P Õ

⁄
(xú

i
)xú

i
Æ Fn(x̂min) +

pÿ

i=1
P Õ

⁄
(xú

i
)x̂min

i
, a.s.

Together with (a) x̂min
i

= 0 for all i œ Sc, (b) xú Ø 0, and (c) Property (iv) of P⁄,
it is then straightforward to obtain:

Fn(xú) ≠ Fn(x̂min) Æ
pÿ

i= 1
P Õ

⁄
(xú

i
)(x̂min

i
≠ xú

i
)

Æ
ÿ

iœS

P Õ

⁄
(xú

i
)|x̂min

i
≠ xú

i
| +

ÿ

iœSc

P Õ

⁄
(xú

i
)(x̂min

i
≠ xú

i
)

(a)=
ÿ

iœS

P Õ

⁄
(xú

i
)|x̂min

i
≠ xú

i
| +

ÿ

iœSc

P Õ

⁄
(xú

i
) · (≠xú

i
)

(b),(c)
Æ ⁄

ÿ

iœS

|x̂min
i

≠ xú

i
|, a.s. (2.4.25)

25

Similarly, with (a) x̂min
i

= 0 for all i œ Sc, (b) xú Ø 0, and (c) Property (iv) of P⁄,
again,

Fn(xú) ≠ Fn(x̂min) Æ
pÿ

i= 1
P Õ

⁄
(xú

i
)(x̂min

i
≠ xú

i
)

Æ
ÿ

iœS

P Õ

⁄
(xú

i
)(x̂min

i
≠ xú

i
) +

ÿ

iœSc

P Õ

⁄
(xú

i
)(x̂min

i
≠ xú

i
)

(a)=
ÿ

iœS

P Õ

⁄
(xú

i
)(x̂min

i
≠ xú

i
) +

ÿ

iœSc

P Õ

⁄
(xú

i
) · (≠xú

i
)

(b)
Æ

ÿ

iœS

P Õ

⁄
(xú

i
)(x̂min

i
)

(c)
Æ ⁄

ÿ

iœS

|x̂min
i

|, a.s. (2.4.26)

Thirdly, consider an S3ONC solution xú œ X again. One has that

xú

i
/œ (0, min{a⁄, 1}) for any i = {1, ..., p}, almost surely. (2.4.27)

To see this, suppose that for an arbitrary dimension i œ {1, ..., p}, it holds that
xú

i
œ (0, min{a⁄, 1}). Since ˆ

2
Fn(x)

(ˆxi)2 Æ LH for all x œ X almost surely as an
immediate result of Assumption A.3, combined with a < L≠1

H
under Condition

B and Property (v) of P⁄, we have that ˆ
2
Fn,⁄(x)
(ˆxi)2

x= xú

=
Ë

ˆ
2
Fn(x)

(ˆxi)2 ≠ 1
a

È

x= xú
< 0,

almost surely. The satisfaction of this inequality contradicts with the S3ONC, that
is, for all i = 1, ..., p,

P

CI
ˆ2Fn(xú)

(ˆxi)2 Æ LH

J

fl {xú satisifies S3ONC} fl {xú

i
œ (0, min{a⁄, 1})}

D

= 0.

Notice that

P

CAI
ˆ2Fn(xú)

(ˆxi)2 Æ LH

J

fl {xú satisfies S3ONC}
B

fi {xú

i
œ (0, min{a⁄, 1})}

D

=P [{xú

i
œ (0, min{a⁄, 1})}] + P

CI
ˆ2Fn(xú)

(ˆxi)2 Æ LH

J

fl {xú satisfies S3ONC}
D

≠ P

CI
ˆ2Fn(xú)

(ˆxi)2 Æ LH

J

fl {xú satisfies S3ONC} fl {xú

i
œ (0, min{a⁄, 1})}

D

which means that

1 = P [{xú

i
œ (0, min{a⁄, 1})}] + 1 ≠ 0, ’i = 1, ..., p

26

=∆P [{xú

i
œ (0, min{a⁄, 1})}] = 0, ’i = 1, ..., p

=∆P [{xú

i
/œ (0, min{a⁄, 1}), ’i = 1, ..., p}] = 1

Combined with Properties (i) and (iii) of P⁄, it further implies that

P⁄(a⁄)ÎxúÎ0 Ø
pÿ

i= 1
P⁄(xú

i
) Ø P⁄(min{a⁄, 1})ÎxúÎ0

=
A

⁄ min{a⁄, 1} ≠ min{a2⁄2, 1}
2a

B

ÎxúÎ0, a.s. (2.4.28)

Fourthly, the following two useful lemmas are some quick results from Assump-
tion A.2 and are taken from [77] after some slight changes.

Lemma 2.4.1. (a). Under Assumption A.2, for any t > 0,

sup
x1, x2œX

Y
]

[

nÿ

j= 1
f(x1, W j)/n ≠

nÿ

j= 1
f(x2, W j)/n

≠ (Lµ + t)Îx1 ≠ x2Î

Z
^

\ Æ 0,

with probability at least 1 ≠ 2 exp
3

≠ nt
2

2‡
2
L

4
.

(b). Under Assumption A.2, for any t > 0,

sup
x1, x2œX fl

{x: xi=0, iœS
c
}

Y
]

[

nÿ

j= 1
f(x1, W j)/n ≠

nÿ

j= 1
f(x2, W j)/n

≠ (Lµ,s + t)Îx1 ≠ x2Î

Z
^

\ Æ 0,

with probability at least 1 ≠ 2 exp
3

≠ nt
2

2‡
2
L

4
.

Proof. To show (a): Firstly, by Assumption A.2, one has supx1, x2œX
{|f(x1, W j)≠

f(x2, W j)| ≠ L(W j)Îx1 ≠ x2Î} Æ 0 for all j = 1, ..., n almost surely. Combining
the inequalities for all j = 1, ..., n, we obtain

sup
x1, x2œX

Y
]

[

nÿ

j= 1
|f(x1, W j) ≠ f(x2, W j)| ≠

nÿ

j= 1
L(W j)Îx1 ≠ x2Î

Z
^

\ Æ 0, a.s.

By triangular inequality and dividing both sides by n, we have

sup
x1, x2œX

Y
]

[

nÿ

j= 1
f(x1, W j)/n ≠

nÿ

j= 1
f(x2, W j)/n

27

≠
nÿ

j= 1
n≠1L(W j)Îx1 ≠ x2Î

Z
^

\ Æ 0 a.s.

By the second part of Assumption A.2, we can invoke the well-known large deviation
theorem on subgaussian i.i.d. random variables and obtain

P

S

U

n≠1

nÿ

j= 1
L(W j) ≠ Lµ

Ø t

T

V Æ 2 exp
A

≠ nt2

2‡2
L

B

(2.4.29)

for any t > 0. Combining the above,

sup
x1, x2œX

Y
]

[

nÿ

j= 1
f(x1, W j)/n ≠

nÿ

j= 1
f(x2, W j)/n

≠ (Lµ + t)Îx1 ≠ x2Î

Z
^

\ Æ 0,

with probability at least 1 ≠ 2 exp
3

≠ nt
2

2‡
2
L

4
, as claimed.

To show (b): Under Assumption A.2, it obtains that (2.2.12) holds. Then,
the same argument to prove Part (a) immediately leads to the desired result in
Part (b).

Lemma 2.4.2. (a). Under Assumption A.2, for any fixed x1, x2 œ X , it holds
that |F (x1) ≠ F (x2)| Æ LµÎx1 ≠ x2Î.

(b). Under Assumption A.2, for any fixed x1, x2 œ X fl {x : xi = 0, i œ Sc}, it
holds that |F (x1) ≠ F (x2)| Æ Lµ,sÎx1 ≠ x2Î.

Proof. To show (a): By Assumption A.2, we have,

LµÎx1 ≠ x2Î = E[L(W) · Îx1 ≠ x2Î] Ø E[|f(x1, W) ≠ f(x2, W)|]

Ø |E[f(x1, W)] ≠ E[f(x2, W)]| = |F (x1) ≠ F (x2)|,

which is immediately the claimed result.
To show (b): Under Assumption A.2, Inequality (2.2.12) holds. Then, with

the same argument to prove Part (a), we immediately obtain the desired result in
Part (b).

28

2.4.2 Proof of Major Results

This section presents the proofs for our claimed theoretical results. We first present
a sketch of the proof in Subsection 2.4.2.1. Then, two useful lemmas that serve
as the pillar of our analysis are presented in Subsection 2.4.2.2. The proofs for
the aforementioned propositions and theorems as our major results are provided
subsequently in Subsections from 2.4.2.3 to 2.4.2.7.

2.4.2.1 Sketch of Proof

Our proof is organized as following:
Step 1: In Lemma 2.4.3, we show how well the objective function of the SP

problem F can be approximated by the objective function of the SAA problem
Fn at a feasible solution that satisfies the sparsity assumption in addition to the
standard assumptions for the SAA (Assumptions A.1 and A.2). More specifically,
we derive a bound on the probability for the point-wise di�erence between F (x)
and Fn(x) to be contained within a prescribed level ‘ > 0 when ÎxÎ0 Æ p̃ for
any p̃ : 1 Æ p̃ Æ p. It turns out that, if sparsity holds (i.e., if p̃ is small), the
approximation quality is less sensitive to the problem dimension p compared to the
conventional SAA by [77, 77, 78].

Step 2: To exploit the results from Step 1, Lemma 2.4.4 then shows that,
once Assumption A.3 holds (i.e., the diagonals of the Hessian matrix of the SAA
formulation is bounded from the above), we can guarantee that any S3ONC solution
is sparse. Furthermore, the number of nonzeros can be controlled by tuning the
penalty parameters a and ⁄. As a result, through properly choosing the values for
a and ⁄, we ensure that p̃ can indeed be a small number at the S3ONC solution.
Lemma 2.4.4 also explicates the number of nonzeros at an S3ONC solution as a
function in parameterization of a, ⁄, and the global suboptimality of that S3ONC
solution.

Step 3: Combining results from Steps 1 and 2, we may obtain the claimed results
for Propositions 2.3.1 and 2.3.2 in Subsection 2.4.2.3 by choosing the proper pair of
parameters (a, ⁄). The bounds derived in both propositions are in parameterization
of the suboptimality gap � in solving the RSAA. Note that Proposition 2.3.2 makes
use of additional inequalities from strong convexity and thus provides a sharper
bound than Proposition 2.3.1.

29

Step 4: Employing bounds on the approximation quality from Propositions
2.3.1 and 2.3.2, which are in parameterization of �, we then consider the S3ONC
solutions where � can be explicated. In particular, we focus on two cases. (i) We
first consider the global solutions where � = 0. By employing the propositions
shown in Step 3, we can immediately derive Theorem 2.3.5 by properly choosing
a and ⁄. (ii) Under Assumption A.5 (i.e., the unpenalized SAA formulation is
convex) we then look at those solutions that have a better objective value than an
all-zero solution. This immediately leads to all our results in Theorems 2.3.7-2.3.9.

2.4.2.2 Two Pillar Lemmas

This section provide two pillar lemmas that lay the foundation of our analyses and
constitutes Step 1 of our proof sketch in Subsection 2.4.2.1.

Lemma 2.4.3. Suppose that Assumptions A.1 and A.2 hold. For any scalar t > 0
and any integer p̃ : p Ø p̃ > 0, the following inequality holds:

P
S

U sup
xœX : ÎxÎ0Æ p̃

1
n

nÿ

j= 1
f(x, W j) ≠ F (x)

Æ t

T

V

Ø 1 ≠ 2
S

WWW

A
12

Ô
p̃RLµ

t

B
p̃

Q

ap

p̃

R

b

T

XXX
· exp

A

≠ nt2

8‡2

B

≠ 2 exp
A

≠
nL2

µ

2‡2
L

B

.

Proof. We can divide the feasible region X by a net of finitely many grids V (t) :=
{xk, k = 1, 2, ...} ™ X , such that for any x œ X fl {x : ÎxÎ0 Æ p̃}, there
always exists an xk œ V (t) that satisfies Îxk ≠ xÎ Æ t

6Lµ
. Since X ™ H(0, R),

it is easily verifiable that one can always find such a net of grids if |V (t)| =S

WWW
(12Ô

p̃RLµ

t
)p̃

Q

ap

p̃

R

b

T

XXX
. Corresponding to every grid xk, there is a subset of the feasible

region Xk :=
Ó
x œ X : Îx ≠ xkÎ Æ t

6Lµ

Ô
. As per our construction, we know that

X fl {x : ÎxÎ0 Æ p̃} =
1
fixkœV (t)Xk

2
fl {x : ÎxÎ0 Æ p̃}. Therefore, it holds surely

that

sup
xœX fl{x: ÎxÎ0Æ p̃}

1
n

nÿ

j= 1
f(x, W j) ≠ F (x)

Æ max
k=1,...,|V (t)|

sup
xœXk

1
n

nÿ

j= 1
f(x, W j) ≠ F (x)

(2.4.30)

30

Now, consider the following events:

E1(t) :=

Y
]

[max
yœV (t)

1
n

nÿ

j= 1
f(y, W j) ≠ F (y)

Æ t/2

Z
^

\

E2 :=

Y
]

[sup
x1, x2œX

nÿ

j= 1
f(x1, W j)/n ≠

nÿ

j= 1
f(x2, W j)/n

≠ 2LµÎx1 ≠ x2Î Æ 0

Z
^

\

E3(k) :=

Y
]

[sup
x1, x2œXk

nÿ

j= 1
f(x1, W j)/n

≠
nÿ

j= 1
f(x2, W j)/n

≠ 2LµÎx1 ≠ x2Î Æ 0

Z
^

\ , k = 1, ..., |V (t)|.

It is easily verifiable that E2 ™ E3(k) for any k = 1, ..., |V (t)|. Conditioning on E2,
we have that for any k = 1, ..., |V (t)|:

sup
xœXk

1
n

nÿ

j= 1
f(x, W j) ≠ F (x)

Æ sup
xœXk

1
n

nÿ

j= 1
f(x, W j) ≠ 1

n

nÿ

j= 1
f(xk, W j)

+

---F (x) ≠ F (xk)

+

1
n

nÿ

j= 1
f(xk, W j) ≠ F (xk)

E2™E3(k)
Æ sup

xœXk

2Lµ

...x ≠ xk

... +
---F (x) ≠ F (xk)

--- +

1
n

nÿ

j= 1
f(xk, W j) ≠ F (xk)

Lemma 2.4.2
Æ sup

xœXk

2Lµ

...x ≠ xk

... + Lµ

...x ≠ xk

... +

1
n

nÿ

j= 1
f(xk, W j) ≠ F (xk)

= t

2 +

1
n

nÿ

j= 1
f(xk, W j) ≠ F (xk)

, a.s.

Therefore, conditioning on the simultaneous occurrence of both E1(t) and E2, we

31

have

sup
xœX fl{x: ÎxÎ0Æ p̃}

1
n

nÿ

j= 1
f(x, W j) ≠ F (x)

Æ max
k=1,...,|V (t)|

sup
xœXk

1
n

nÿ

j= 1
f(x, W j) ≠ F (x)

Æ t

2 + max
k=1,...,|V (t)|

1
n

nÿ

j= 1
f(xk, W j) ≠ F (xk)

Æ t

2 + t

2 = t, a.s.

Now it su�ces to bound the probability for E1(t) and E2.
(i). To consider E1(t), we know by union bound that

P
S

U max
yœV (t)

1
n

nÿ

j= 1
f(y, W j) ≠ F (y)

>

t

2

T

V

Æ
ÿ

yœV (t)
P

S

U

1
n

nÿ

j= 1
f(y, W j) ≠ F (y)

>

t

2

T

V

Due to Assumption A.1, we may invoke the large deviation theorem on sub-
gaussian i.i.d. random variables to obtain that, for any t > 0, it holds that
P

Ë--- 1
n

q
n

j= 1 f(y, W j) ≠ F (y)
--- Ø t

È
Æ 2 exp

1
≠ nt

2

2‡2

2
for any y œ V (t). Therefore,

we may continue as

P[E1(t)] = P
S

U max
yœV (t)

1
n

nÿ

j= 1
f(y, W j) ≠ F (y)

Æ t/2

T

V

Ø 1 ≠ 2|V (t)| · exp
A

≠ nt2

8‡2

B

Ø 1 ≠ 2
S

WWW

A
12

Ô
p̃RLµ

t

B
p̃

Q

ap

p̃

R

b

T

XXX
exp

A

≠ nt2

8‡2

B

(2.4.31)

(ii). To consider E2, we invoke Lemma 2.4.1 (in which we let t := Lµ only
within that lemma), we know that

P [E2] Ø 1 ≠ 2 exp
A

≠
nL2

µ

2‡2
L

B

(2.4.32)

Now, invoking both the De Morgan’s Law and the union bound to combine all
the above, we obtain the desired result.

32

Lemma 2.4.4. Suppose that Assumptions A.1-A.3 and Condition B hold. Let
Á̂ Ø 0 and xú œ X be an S3ONC solution. For any integer p̃ : p̃ Ø |S| and any
scalars t > 0, Á̂ Ø 0, and � Ø 0, if Fn,⁄(xú) Æ Fn,⁄(x̂min) + � almost surely,
nt

2

8‡2 Ø ln
112pRLµ

t

2
, a⁄ Æ 1 and

P⁄(a⁄) >
� + 2t

Ô
p̃ + 1 + Á̂

p̃ ≠ |S| + 1 , (2.4.33)

then ÎxúÎ0 Æ p̃ with probability at least

Pú(t, p̃) := 1 ≠ 2 exp
A

≠(p̃ + 1)nt2

8‡2

B

· 1
1 ≠ exp

1
≠ nt2

8‡2

2

≠ 2p exp
A

≠
nL2

µ

2‡2
L

B

≠ 2 exp
A

≠(p̃ + 1)
C

nt2

8‡2 ≠ ln
312pRLµ

t

4DB

· 1
1 ≠ exp

1
≠

Ë
nt2

8‡2 ≠ ln
112pRLµ

t

2È2 (2.4.34)

Proof. If p̃ > p, then ÎxúÎ0 Æ p < p̃ with probability 1, while Pú(t, p̃) Æ 1 for any
t > 0 and p̃ Ø |S|. Thus the desired result holds if p̃ > p. The rest of the proof
then considers only the case where p̃ Æ p.

For arbitrary integers p̃ : p Ø p̃ Ø |S| and k : 1 Æ k Æ p ≠ p̃, consider the
events

Ea(p̃ + k) := {ÎxúÎ0 = p̃ + k}; Eb := {Fn(x̂min) ≠ Fn(xú) Æ 2t
Ò

p̃ + k + Á̂}

and
Ec :=

I

sup
xœX : ÎxÎ0Æp̃+k

|Fn(x) ≠ F (x)| Æ t
Ò

p̃ + k

J

.

Firstly, we want to show that P[Ea(p̃ + k) fl Eb] = 0. To this end, consider
another two events

A := {’i : xú

i
/œ (0, a⁄)}

B :=
Ó
Fn,⁄(xú) Æ Fn,⁄(x̂min) + �

Ô
.

33

If we recall Property (iv) of P⁄ and the assumption that a⁄ Æ 1, it holds that

’i : xú

i
/œ (0, a⁄) =∆ qp

i= 1 P⁄(xú

i
) = ÎxúÎ0P⁄(a⁄)

Fn,⁄(xú) Æ Fn,⁄(x̂min) + �

Z
^

\ (2.4.35)

=∆Fn(xú) + ÎxúÎ0P⁄(a⁄) Æ Fn(x̂min) + |S|P⁄(a⁄) + � (2.4.36)

Meanwhile,

(2.4.36)

ÎxúÎ0 = p̃ + k

Fn(x̂min) ≠ Fn(xú) Æ 2t
Ô

p̃ + k + Á̂

Z
____̂

____\

(2.4.37)

=∆(p̃ + k ≠ |S|)P⁄(a⁄) Æ 2t
Ò

p̃ + k + Á̂ + � (2.4.38)

However, (2.4.38) contradicts with the assumed inequality (2.4.33), that is, the event
{(2.4.38)} is a sub-event of the complement of the event {(2.4.33)}. Further noticing
that {(2.4.33)} holds surely as per our assumption, therefore, {(2.4.38)} = ÿ.
Combining this with the observations that (2.4.35) ∆ (2.4.36), and (2.4.37) ∆
(2.4.38) as well as the definitions of A, B, Ea(p̃ + k) and Eb, we know that A fl B fl
Ea(p̃ + k) fl Eb = ÿ. Since P(AflB) = 1 by assumption and by (2.4.28) with a⁄ Æ 1,
it therefore obtains that

1 =P[(A fl B) fi (Ea(p̃ + k) fl Eb)]

=P[A fl B] + P[Ea(p̃ + k) fl Eb] ≠ P[A fl B fl Ea(p̃ + k) fl Eb]

=1 + P[Ea(p̃ + k) fl Eb] + 0

=∆ P[Ea(p̃ + k) fl Eb] = 0. (2.4.39)

Secondly, we want to show that P[Ēc] Ø P[Ec(p̃+k)], where Ēc is the complement
of Ec. To this end, consider one more event C := {F (xmin) Æ F (xú)}, which satisfies
that P[C] = 1 by the definition of xmin. We observe that, since Îx̂minÎ0 = |S|,

supxœX : ÎxÎ0Æp̃+k
|Fn(x) ≠ F (x)| Æ t

Ô
p̃ + k

F (xmin) Æ F (xú)

ÎxúÎ0 = p̃ + k

Z
____̂

____\

34

=∆

Y
________]

________[

≠Fn(xú) Æ ≠F (xú) + t
Ô

p̃ + k

Fn(x̂min) Æ F (x̂min) + t
Ô

p̃ + k Æ F (xmin) + t
Ô

p̃ + k + Á̂

ÎxúÎ0 = p̃ + k

F (xmin) Æ F (xú)

which immediately leads to the simultaneous satisfaction of both Fn(x̂min) ≠
Fn(xú) Æ 2t

Ô
p̃ + k+Á̂ and ÎxúÎ0 = p̃+k. Therefore, CflEcflEa(p̃+k) ™ EbflEa(p̃+k)

and thus P[C fl Ec fl Ea(p̃ + k)] Æ P[Eb fl Ea(p̃ + k)]. Since we have shown above
that P[Eb fl Ea(p̃ + k)] = 0, we know that P[C fl Ec fl Ea(p̃ + k)] = 0. Further recall
that we have also known that P(C) = 1. Therefore, by both the De Morgan’s Law
and the union bound, under the assumption of (2.4.33),

0 Ø 1 ≠ P[Ēa(p̃ + k)] ≠ P[Ēc] ≠ (1 ≠ P(C)) =∆ P[Ēc] Ø P[Ea(p̃ + k)], (2.4.40)

where Ēa(p̃ + k) and Ēc are complements of Ea(p̃ + k) and Ec.
Lastly, using the upper bound on P[Ēc] provided by Lemma 2.4.3, we obtain

P[Ea(p̃ + k)]

Æ 2
S

WWW

A
12RLµ

Ô
p̃ + k

t
Ô

p̃ + k

Bp̃+k
Q

a p

p̃ + k

R

b

T

XXX
· exp

A

≠n(p̃ + k)t2

8‡2

B

+ 2 exp
A

≠
nL2

µ

2‡2
L

B

Æ 2 exp
A

≠n(p̃ + k)t2

8‡2 + (p̃ + k) ln
312RLµ

t

4
+ (p̃ + k) · ln p

B

+ 2 exp
A

≠n(p̃ + k)t2

8‡2

B

+ 2 exp
A

≠
nL2

µ

2‡2
L

B

(2.4.41)

= 2 exp
A

≠n(p̃ + k)t2

8‡2 + (p̃ + k) ln
312pRLµ

t

4B

+ 2 exp
A

≠n(p̃ + k)t2

8‡2

B

+ 2 exp
A

≠
nL2

µ

2‡2
L

B

. (2.4.42)

To get (2.4.41) we make use of the facts that
Q

a p

p̃ + k

R

b Æ pp̃+k and that ÁxË Æ x + 1

for any x Ø 0.
Notice that if ÎxúÎ0 > p̃, it must hold that ÎxúÎ0 œ {p̃ + 1, ..., p} and that by

35

the union bound:

P[{ÎxúÎ0 œ {p̃ + 1, ..., p}}] Æ
p≠p̃ÿ

k= 1
P[{ÎxúÎ0 = p̃ + k}]. (2.4.43)

We therefore can find an upper bound to P[{ÎxúÎ0 œ {p̃ + 1, ..., p}}] by invoking
(2.4.42). That upper bound writes as

P[{ÎxúÎ0 œ {p̃ + 1, ..., p}}] Æ
p≠p̃ÿ

k= 1
[Ea(p̃ + k)]

Æ
p≠p̃ÿ

k= 1
2 exp

A

≠(p̃ + k)nt2

8‡2 + (p̃ + k) ln
312pRLµ

t

4B

+ 2
p≠p̃ÿ

k= 1
exp

A

≠n(p̃ + k)t2

8‡2

B

+ 2(p ≠ p̃) exp
A

≠
nL2

µ

2‡2
L

B

= 2 exp
A

≠(p̃ + 1)
C

nt2

8‡2 ≠ ln
312pRLµ

t

4DB

·
1 ≠ exp

1
≠(p ≠ p̃)

Ë
nt

2

8‡2 ≠ ln
112pRLµ

t

2È2

1 ≠ exp
1
≠

Ë
nt2

8‡2 ≠ ln
112pRLµ

t

2È2 + 2(p ≠ p̃) exp
A

≠
nL2

µ

2‡2
L

B

+ 2 exp
A

≠(p̃ + 1)nt2

8‡2

B

·
1 ≠ exp

1
≠ (p≠p̃)nt

2

8‡2

2

1 ≠ exp
1
≠ nt2

8‡2

2 (2.4.44)

Æ1 ≠ Pú(t, p̃), (2.4.45)

where to achieve (2.4.44) we invoke the sum of a geometric series and to obtain
(2.4.45) we make use of the assumptions that nt

2

8‡2 Ø ln
112pRLµ

t

2
and p̃ Æ p. The

desired result then follows immediately.

2.4.2.3 Proof of Proposition 2.3.1

For an arbitrary ‘ : 0 < ‘ Æ 1, denote that

EA :=
;

|F (xú) ≠ Fn(xú)| Æ ‘

2

<
; EB :=

;---F (x̂min) ≠ Fn(x̂min)
--- Æ ‘

2

<
. (2.4.46)

We examine the two parts of the proposition:

(i). For Part 1, according to (2.3.15), 0 < ‘ Æ 1, and |S| Ø 1, as well as a Æ 1,
we obtain n Ø N1 Ø ‡2 = (‡

2”

1) 1
” Ø (a‡

2”

1) 1
” . Combined with 0 Æ fl Æ 1

2 , we

36

know that a⁄ = a‡
2”

n” |S|fl
Æ 1. Conditioning on the event EA fl EB, under the

assumption that Fn,⁄(xú) Æ Fn,⁄(x̂min) + � almost surely, it holds almost
surely that

F (xú) ≠ F (xmin) ≠ ‘ ≠ Á̂ Æ F (xú) ≠ F (x̂min) ≠ ‘ Æ Fn(xú) ≠ Fn(x̂min)

Æ |S| · P⁄(a⁄) + � = |S| · a⁄2

2 + �

= a‡4”

2n2”
|S|1≠2fl + �. (2.4.47)

Since a Æ 1, if n Ø N1 Ø ‡2
1

1
‘

2 1
2” |S| 1≠2fl

2” Ø ‡2
1

a

‘

2 1
2” |S| 1≠2fl

2” , then (2.4.47)
implies that F (xú) ≠ F (xmin) Æ 2‘ + Á̂ + �. Therefore, to show the first part
of the proposition, it su�ces to prove that there exists a problem-independent
constant c2 > 0 such that, if n Ø N1

x
c2Nú(c2) as in (2.3.15), then the event

EA fl EB occurs with probability at least 1 ≠ –, which will be shown soon
afterwards.

(ii). For Part 2, according to (2.3.16), 0 < ‘ Æ 1, and R Ø 1, combined with |S| Ø 1
and 0 Æ fl Æ 1

2 , we know that n Ø N2 Ø ‡2 Ø
1

a‡
2”

1

2 1
” =∆ a⁄ = a‡

2”

n” |S|fl
Æ 1.

Conditioning on the event EA fl EB, under Assumption A.5, we obtain from
(2.4.26) that

F (xú) ≠ F (xmin) ≠ ‘ ≠ Á̂ Æ F (xú) ≠ F (x̂min) ≠ ‘ Æ Fn(xú) ≠ Fn(x̂min)

Æ ⁄|x̂min| = ‡2”

n”
|S|1≠flR (2.4.48)

Hence, if n Ø N2 Ø
1

|S|
1≠fl

R‡
2”

‘

2 1
” , then (2.4.48) implies that F (xú) ≠

F (xmin) Æ 2‘ + Á̂. Therefore, to show the second part of the proposition, it
also su�ces to show that there exists a problem-independent constant c2 > 0
such that, if n Ø N2

x
c2Nú(c2) as in (2.3.16), then the event EA fl EB occurs

with probability at least 1 ≠ –.

The following provides probability lower bound for the occurrence of EA fl EB.
Such a bound applies to both (i) and (ii) above.

We have shown above that a⁄ Æ 1 for both (i) and (ii), and we also have
let Assumptions A.1-A.3 and Condition B hold. Under the assumption that

37

Fn,⁄(xú) Æ Fn,⁄(x̂min) + � almost surely, we may invoke Lemma 2.4.4, where we
assume for now that

nt2

8‡2 Ø ln
312pRLµ

t

4
(2.4.49)

which will be shown soon afterwards. It then follows that, for any integer p̃ Ø |S|
such that p̃ > |S| + 2t

Ô
p̃+1+�+Á̂

P⁄(a⁄) ≠ 1 ≈∆
Ô

p̃ + 1 > t

P⁄(a⁄) +
Ò

t2

[P⁄(a⁄)]2 + |S| + �+Á̂

P⁄(a⁄) ,
it holds that ÎxúÎ0 Æ p̃ with probability at least Pú(t, p̃) as defined in (2.4.34).
Further notice that, since Îx̂minÎ0 = |S|, for any p̃ Ø |S| it holds that EA fl EB ´Ó
supxœX : ÎxÎ0Æ p̃

w
p

--- 1
n

q
n

j= 1 f(x, W j) ≠ F (x)
--- Æ ‘/2

Ô
fl{ÎxúÎ0 Æ p̃}. Hence we may

combine Lemma 2.4.3 (in which we let t = ‘

2 and rescale p̃ only within that lemma
into p

w
p̃), and Lemma 2.4.4 (in which we let p̃ =

Í
4t

2

[P⁄(a⁄)]2 + 4|S| + 4(�+Á̂)
P⁄(a⁄)

Î
here

and we will also let t = ‡
2”

n” |S|fl
soon afterwards) through both the De Morgan’s Law

and the union bound to obtain that EA fl EB occurs with probability at least

Pú :=
S

UPú (t, p̃) ≠ 2
S

WWW

A
24

Ô
p̃RLµ

‘

B(p
w

p̃) Q

a p

p
w

p̃

R

b

T

XXX

· exp
A

≠ n‘2

32‡2

B

≠ 2 exp
A

≠
nL2

µ

2‡2
L

BD

p̃=
Í

16t2
a2⁄4 + 8(�+Á̂)

a⁄2 +4|S|

Î

Ø 1 ≠ 2 exp
A

≠ n‘2

32‡2

B

≠ 2(p + 1) exp
A

≠
nL2

µ

2‡2
L

B

≠ 2 exp
A

≠ n‘2

32‡2 +
C

p
fi

E
16t2

a2⁄4 + 8(� + Á̂)
a⁄2 + 4|S|

FD

ln
A

24RLµp3/2

‘

BB

≠
2 exp

1
≠

ËÍ
16t

2

a2⁄4 + 8(�+Á̂)
a⁄2 + 4|S|

Î
+ 1

È Ë
nt

2

8‡2 ≠ ln
112pRLµ

t

2È2

1 ≠ exp
1
≠

Ë
nt2

8‡2 ≠ ln
112pRLµ

t

2È2

≠ 2 exp
Q

a≠

1Í
16t

2

a2⁄4 + 8(�+Á̂)
a⁄2 + 4|S|

Î
+ 1

2
nt2

8‡2

R

b · 1
1 ≠ exp

1
≠ nt2

8‡2

2 , (2.4.50)

where we may plug in t = ‡
2”

n” |S|fl
in the next.

Now we want to show the satisfaction of (2.4.49). Observe that, with t = ⁄ =

38

‡
2”

n” |S|fl
, ” < 1

2 , fl Æ 1
2 , 4p2 Ø n and p Ø |S| Ø 1, we know that

nt2

8‡2 ≠ ln
312pRLµ

t

4

= n1≠2”

8‡2≠4”|S|2fl
≠ ln

A
12n”|S|flpRLµ

‡2”

B

Ø n1≠2”

8‡2≠4”|S|2fl
≠ ln

A
24p5/2RLµ

‡2”

B

= n1≠2”

16‡2≠4”|S|2fl
+ n1≠2”

16‡2≠4”|S|2fl
≠ ln

A
24p5/2RLµ

‡2”

B

(2.4.51)

Observe that, if n Ø
5
12‡2≠4”|S|2fl

x 16‡2≠4”|S|2fl ln
3

24p
5/2

RLµ

‡2”

461/(1≠2”)
, then n

1≠2”

16‡2≠4” |S|2fl Ø

ln
3

24p
5/2

RLµ

‡2”

4 x 12
16 . Therefore, we know that (2.4.51) Ø n

1≠2”

16‡2≠4” |S|2fl Ø 12
16 Ø ln 2.

This inequality implies (2.4.49).
The above provides a lower bound on the probability for the event of interest.

The rest of the proof seeks to simplify this bound. We have shown above that
(2.4.51) Ø n

1≠2”

16‡2≠4” |S|2fl Ø ln 2. This inequality implies both exp(≠ nt
2

8‡2) Æ 1/2 and

exp
A

≠
C

nt2

8‡2 ≠ ln
312pRLµ

t

4DB

Æ 1
2 .

Further observing t
2

⁄4 = n
2”

|S|
2fl

‡4” , we may combine the above with (2.4.50) to obtain

Pú Ø 1 ≠ 2 exp
A

≠ 16t2

a2⁄4 ·
C

nt2

16‡2 + nt2

16‡2 ≠ ln
312pRLµ

t

4DB

· 1
1 ≠ exp

1
≠

Ë
nt2

16‡2 + nt2

16‡2 ≠ ln
112pRLµ

t

2È2

≠ 2 exp
Q

a≠

1Í
16t

2

a2⁄4 + 8(�+Á̂)
a⁄2 + 4|S|

Î
+ 1

2
nt2

8‡2

R

b · 1
1 ≠ exp

1
≠ nt2

8‡2

2

≠ 2 exp
A

≠ n‘2

32‡2 +
E

16t2

a2⁄4 + 8(� + Á̂)
a⁄2 + 4|S|

F

ln
A

24RLµp3/2

‘

BB

≠ 2 exp
A

≠ n‘2

32‡2

B

≠ 2(p + 1) exp
A

≠
nL2

µ

2‡2
L

B

Ø 1 ≠ 2 exp
A

≠ 16t2

a2⁄4 · nt2

16‡2

B

· 1
1 ≠ 1

2
≠ 2 exp

A

≠ 16t2

a2⁄4 · nt2

8‡2

B

· 1
1 ≠ 1

2

39

≠ 2 exp
A

≠ n‘2

32‡2 +
E

16t2

a2⁄4 + 8(� + Á̂)
a⁄2 + 4|S|

F

ln
A

24RLµp3/2

‘

BB

≠ 2 exp
A

≠ n‘2

32‡2

B

≠ 2(p + 1) exp
A

≠
nL2

µ

2‡2
L

B

Ø1 ≠ 8 exp
3

≠ n

a2‡2

4
≠ 2(p + 1) exp

A

≠
nL2

µ

2‡2
L

B

≠ 2 exp
A

≠ n‘2

32‡2

B

≠ 2 exp
A

≠ n‘2

32‡2 +
E

16n2”|S|2fl

a2‡4”
+ 8(� + Á̂)|S|2fln2”

a‡4”
+ 4|S|

F

ln
A

24RLµp3/2

‘

BB

Combined with the above, it is easily verifiable that, if n is large enough to satisfy

both n Ø ‡2
5
12|S|2fl

x 16|S|2fl ln
3

24p
5/2

RLµ

‡2”

461/(1≠2”)
and

n Ø a2‡2 ln 32
–

+ 2‡2
L

L2
µ

ln
A

8(p + 1)
–

B

+ ‡2

‘2

A

64 · ln 8
–

+ 256 · |S| ln
A

24RLµp3/2

‘

BB

fl
‡2

C
64
‘2

A
16|S|2fl

a2 + 8(� + Á̂)|S|2fl

a

B

ln 24RLµp5/2

‘

D 1
1≠2”

,

then Pú Ø 1 ≠ –. Therefore, recalling that a Æ 1, Lµ Ø 1, p Ø |S| Ø 1 and ‘ Æ 1,
there exists a problem-independent constant c2 > 0 such that the above stipulation
of n is satisfied if

n Ø c
1

1≠2”
2 ‡2|S|

2fl
1≠2” ·

A
1 + � + Á̂

a2‘2 ln 24RLµp

min{‘, ‡2”}

B 1
1≠2” fl

c2 · Nú(c2). (2.4.52)

Combining the above with (i) Eq. (2.4.47) and (ii) Eq. (2.4.48) yields the desired
results for part 1 and part 2 of the proposition, respectively. ⇤

2.4.2.4 Proof of Proposition 2.3.2

For an arbitrary ‘ : 0 < ‘ Æ 1, let us consider the events that

EA :=
;

|F (xú) ≠ Fn(xú)| Æ ‘

2

<
; EB :=

;---F (x̂min) ≠ Fn(x̂min)
--- Æ ‘

2

<
(2.4.53)

Conditioning on the event EA fl EB, under Assumption A.5, we obtain from (2.4.25)
that, almost surely,

F (xú) ≠ F (xmin) ≠ ‘ ≠ Á̂ ÆF (xú) ≠ F (x̂min) ≠ ‘

40

ÆFn(xú) ≠ Fn(x̂min) Æ ⁄
ÿ

iœS

|x̂min
i

≠ xú

i
|

=⁄
Ò

|S|
Ûÿ

iœS

Îx̂min
i

≠ xú

i
Î2 (2.4.54)

Further invoking (2.3.17), which immediately leads to F (x) ≠ F (xmin) Ø UH

2 Îx ≠
xminÎ2 for all x œ X , we may continue the above as, almost surely (conditioning on
EA fl EB),

F (xú) ≠ F (xmin) ≠ ‘ ≠ Á̂

Æ⁄
Ò

|S|
Ûÿ

iœS

Îx̂min
i

≠ xú

i
Î2 Æ ⁄

Ò
|S| · Îxú ≠ x̂minÎ

Æ⁄
Ò

|S| · Îxú ≠ xminÎ + ⁄
Ò

|S| · Îx̂min ≠ xminÎ

Æ⁄
Ò

|S| ·
Û

2
UH

(F (xú) ≠ F (xmin)) + ⁄
Ò

|S| ·
Û

2
UH

(F (x̂min) ≠ F (xmin))

Æ⁄
Ò

|S| ·
Û

2
UH

(F (xú) ≠ F (xmin)) + ⁄
Ò

|S| ·
Û

2Á̂

UH

.

Solving the inequality for
Ò

F (xú) ≠ F (xmin), we have, almost surely (conditioning
on EA fl EB),

Ò
F (xú) ≠ F (xmin) Æ

⁄
Ò

2|S|

UH

+
Ú

2⁄2|S|

UH

+ 4(Á̂ + ‘) + 4⁄
Ò

|S| ·
Ò

2Á̂

UH

2 (2.4.55)

Therefore, combined with ⁄ = ‡
2”

n” |S|fl
, we know that

F (xú) ≠ F (xmin) Æ

Q

ca

Û
‡4”|S|1≠2fl

2UHn2”
+

ı̂ıÙ‡4”|S|1≠2fl

2UHn2”
+

Û
2‡4”Á̂|S|1≠2fl

n2”UH

+ (Á̂ + ‘)

R

db

2

almost surely (conditioning on EA fl EB).
Notice that if n Ø ‡2

1
8|S|

1≠2fl

UH‘

2 1
2” x

‡2
1

8Á̂|S|
1≠2fl

UH‘2

2 1
2” x

‡2, then the following three

inequalities hold: (a) a⁄ = a ‡
2”

n” |S|fl
Æ 1; (b) ‡

4”
|S|

1≠2fl

2UHn2” Æ ‘

16 ; and (c)
Ú

2‡4” Á̂|S|1≠2fl

n2”UH

Æ Á

2 .

41

Thus,

Q

ca

Û
‡4”|S|1≠2fl

2UHn2”
+

ı̂ıÙ‡4”|S|1≠2fl

2UHn2”
+

Û
2‡4”Á̂|S|1≠2fl

n2”UH

+ (Á̂ + ‘)

R

db

2

Æ
Q

a
Ô

‘

4 +
Û

25‘

16 + Á̂

R

b
2

= 26‘

16 + Á̂ +
Û

25‘2

64 + ‘Á̂

4

Æ26‘

16 + Á̂ +
Û

25‘2

64 + ‘Á̂

4 + Á̂2

25

=
326

16 + 5
8

4
‘ +

3
1 + 1

5

4
Á̂ = 9

4‘ + 6
5 Á̂ (2.4.56)

Hence, if n Ø ‡2|S| 1≠2fl
2”

51
8

UH‘

2 1
2” +

1
8Á̂

UH‘2

2 1
2”

6 x
‡2, then (2.4.55) implies that

F (xú) ≠ F (xmin) Æ 3‘ + 3Á̂ almost surely (conditioning on EA fl EB). Therefore, to
achieve the desired result of the proposition, it su�ces to show that, if n additionally
satisfies

n Ø c
1

1≠2”
3 · ‡2|S|

2fl
1≠2” ·

A
1 + � + Á̂

a2‘2 ln 24RLµp

min{‘, ‡2”}

B 1
1≠2” fl

c3 · Nú(c3)

for some universal constant c3 > 0, then the event EA fl EB occurs with probability
at least 1 ≠ –, which can be shown by the same argument as in the proof for
Proposition 2.3.1 as in Section 2.4.2.3 in showing (2.4.52). Further noticing that
we can let c3 Ø 2 to further satisfy that c3Nú(c3) Ø 2‡

2

‘2 ln 2
–

Ø ‡2 (since – Æ 1 and
‘ Æ 1), we then have the desired result. ⇤

2.4.2.5 Proof of Theorem 2.3.7

We first want to show that, if ⁄ = ‡
2”

n” |S|fl
, then Fn,⁄(0) ≠ Fn,⁄(x̂min) Æ 2LµR

Ò
|S|

with a lower bounded probability. To this end, we observe that Î0 ≠ x̂minÎ =
Îx̂minÎ Æ R

Ò
|S|. This combined with Lemma 2.4.1 (where we let t = Lµ,s in that

lemma) in Section 2.4.1, we know that

|Fn(0) ≠ Fn(x̂min)| Æ 2Lµ,sR
Ò

|S|, (2.4.57)

42

with probability at least 1 ≠ 2 exp(≠n(Lµ,s)2

2‡
2
L

). Furthermore, since Fn(0) = Fn,⁄(0)
and Fn,⁄(x̂min) = Fn(x̂min) + qp

i= 1 P⁄(x̂min
i

), we have that

Fn,⁄(0) ≠ Fn,⁄(x̂min) = Fn(0) ≠ Fn(x̂min) ≠
pÿ

i=1
P⁄(x̂min

i
)

Æ Fn(0) ≠ Fn(x̂min) Æ 2Lµ,sR
Ò

|S| (2.4.58)

with a lower bounded probability 1 ≠ 2 exp(≠nL
2
µ,s

2‡
2
L

).
Then, we may invoke both the De Morgan’s Law and the union bound to

combine the above with Part 2 of Proposition 2.3.1, where we let ” = 1
4 and

� = 2Lµ,sR
Ò

|S|. As a result, there exists a problem-independent constant c̃5 > 0
such that, if

n Ø ‡2 · |S|4≠4fl

3
R

‘

44 fl
c̃5 · Nú(c5)

fl
c̃5 · ‡2|S|4fl ·

Q

a
1 + 2Lµ,sR

Ò
|S| + Á̂

a2‘2 ln c̃5RLµp

min{‘, ‡1/2}

R

b
2

(2.4.59)

then F (xú) ≠ F (xmin) Æ 2‘ + Á̂ with probability lower bounded by 1 ≠ – ≠
2 exp(≠n(Lµ,s)2

2‡
2
L

). Recall again that a Æ 1. Then, inequality (2.4.59) holds with
2 exp(≠n(Lµ,s)2

2‡
2
L

) Æ –, if fl = 3/8 and if n is large enough to satisfy both of the
following inequalities

n Ø 2‡2
L

· ln 2
–

Ø 2‡2
L

L2
µ,s

ln 2
–

(2.4.60)

where the last inequality is due to Lµ,s Ø 1.

n Ø ‡2 · |S|5/2
3

R

‘

44 fl
c̃5 · ‡2|S|5/2 ·

A
1 + 2Lµ,sR + Á̂

a2‘2 ln c̃5RLµp

min{‘, ‡1/2}

B2

fl
c̃5 · Nú(c5). (2.4.61)

The above immediately leads to the desired result by observing that c̃5Nú(c̃5) Ø
2‡2

L
· ln 2

–
if c̃5 Ø 2. ⇤

43

2.4.2.6 Proof of Theorem 2.3.8

Following the same argument as in the proof for Theorem 2.3.7, we have Fn,⁄(0) Æ
Fn,⁄(x̂min)+2Lµ,sR

Ò
|S| with lower-bounded probability 1≠2 exp(≠nL

2
µ,s

2‡
2
L

). We may
invoke both the De Morgan’s Law and the union bound to combine the above with
Proposition 2.3.2, where we let ” = 1

6 , fl = 1/4 and � = 2Lµ,sR
Ò

|S|. As a result,
F (xú)≠F (xmin) Æ 3(‘+ Á̂) with probability lower bounded by 1≠–≠2 exp(≠nL

2
µ,s

2‡
2
L

),
for n satisfying

n Ø c̃6|S|3/2‡2

S

U
3 1

UH‘

43
+

A
Á̂

UH‘2

B3T

V
fl

c̃6N
ú(c6)

fl
c̃6‡

2|S|3/4 ·
Q

a
1 + 2Lµ,sR

Ò
|S| + Á̂

a2‘2 ln c̃6RLµp

min{‘, ‡1/3}

R

b

3
2

(2.4.62)

Therefore, since a Æ 1 and Lµ,s Ø 1, if one stipulates both

n Ø 2‡2
L

· ln 2
–

Ø 2‡2
L

L2
µ,s

ln 2
–

=∆ 2 exp(≠
nL2

µ,s

2‡2
L

) Æ –

and, for some problem-independent c̃6 > 0,

n Ø c̃6‡
2|S|3/2

S

U
3 1

UH‘

43
+

A
Á̂

UH‘2

B3T

V

fl
c̃6‡

2|S|3/2 ·
A

1 + 2Lµ,sR + Á̂

a2‘2 ln c̃6RLµp

min{‘, ‡1/3}

B 3
2 fl

c̃6N
ú(c̃6),

we know that F (xú) ≠ F (xmin) Æ 3(‘ + Á̂) with probability lower bounded by
1 ≠ 2–. This immediately leads to the desired result by further noticing that
c̃6Nú(c̃6) Ø 2‡2

L
· ln 2

–
if c̃6 Ø 2. ⇤

2.4.2.7 Proof of Theorem 2.3.9

Consider again

EA :=
;

|F (xú) ≠ Fn(xú)| Æ ‘

2

<
; and EB :=

;---F (x̂min) ≠ Fn(x̂min)
--- Æ ‘

2

<
.

44

Following the same steps as in the proof for Proposition 2.3.2, it obtains that
(2.4.55) holds almost surely conditioning on EA fl EB. When Á̂ = 0 and ⁄ = ‡

2”

n” |S|fl

with fl = 1
4 and ” = 0, (2.4.55) immediately yields:

F (xú) ≠ F (xmin) = F (xú) ≠ F (x̂min) Æ
Q

a
Û

|S|1/2

2UH

+
Û

|S|1/2

2UH

+ ‘

R

b
2

almost surely conditioning on EA fl EB. Since it is assumed that F is di�erentiable
and strongly convex as in (2.3.17) with constant UH, we know that F (x)≠F (xmin) Ø
UH

2 Îx ≠ xminÎ2 for all x œ X and that x̂min = xmin (because we have let Á̂ = 0).
Therefore,

UH

2 Îxú ≠ x̂minÎ2 Æ
Q

a
Û

|S|1/2

2UH

+
Û

|S|1/2

2UH

+ ‘

R

b
2

0<‘Æ1
Æ

Q

a
Û

|S|1/2

2UH

+
Û

|S|1/2

2UH

+ 1
R

b
2

=∆ min
iœS

x̂min
i

≠ min
iœS

xú

i
Æ Îxú ≠ x̂minÎ Æ

Û
2

UH

·
Q

a
Û

|S|1/2

2UH

+
Û

|S|1/2

2UH

+ 1
R

b

almost surely conditioning on EA fl EB, where we have made use of the assumption
that xú, x̂min œ X ™ Ÿp

+. Therefore, if

min
iœS

x̂min
i

>
|S|1/4 +

Ò
|S|1/2 + 2UH

UH

,

it holds that miniœS xú

i
> 0 almost surely conditioning on EA flEB. Further invoking

(2.4.27) with a⁄ = a

|S|1/4 Æ 1, we know that miniœS xú

i
Ø a⁄, and thus P Õ

⁄
(xú

i
) = 0

for all i œ S and P Õ

⁄
(xú

i
) Ø 0 for all i = 1, ..., p due to Properties (iii) and (iv) of

MCP in Section 2.4.1. If we recall (2.4.25) and the fact that x̂min
i

= 0 for all i /œ S,
conditioning on EA fl EB,

Fn(xú) ≠ Fn(x̂min) Æ
pÿ

i= 1
P Õ

⁄
(xú

i
)(x̂min

i
≠ xú

i
) Æ

pÿ

i= 1
P Õ

⁄
(xú

i
)x̂min

i

=
ÿ

iœS

P Õ

⁄
(xú

i
)x̂min

i
+

ÿ

i/œS

P Õ

⁄
(xú

i
)x̂min

i
= 0, a.s.

45

The above inequality yields that F (xú) ≠ F (x̂min) Æ ‘ almost surely conditioning
on EA fl EB.

Now, to achieve the desired result of the theorem, it su�ces to show that, if n

satisfies

n Ø c7 · ‡2|S| ·
31 + Lµ,sR

a2‘2 ln 24RLµp

‘

4 fl
c7 · Nú(c7) (2.4.63)

for some universal constant c7 > 0, then the event EA fl EB occurs with probability
at least 1 ≠ 2–. To this end, notice that Á̂ = 0. We may use the same argument as
in the proof for Proposition 2.3.1 in Section 2.4.2.3 in showing (2.4.52) and obtain
that P[EA fl EB] Ø 1 ≠ – if

n Ø ĉ7 · ‡2|S|1/2 ·
A

1 + �
a2‘2 ln 24RLµp

‘

B
fl

ĉ7 · Nú(ĉ7) (2.4.64)

for some universal constant ĉ7 > 0.
Recall the assumption that Fn,⁄(xú) Æ Fn,⁄(0) almost surely. Since Fn,⁄(0) Æ

Fn,⁄(x̂min) + 2Lµ,sR
Ò

|S| with lower-bounded probability 1 ≠ 2 exp(≠nL
2
µ,s

2‡
2
L

) (to see
this, we can repeat the steps in showing (2.4.57) in Subsection 2.4.2.5), we may
let � = 2Lµ,sR

Ò
|S|. It is then easily verifiable from (2.4.64) that there exists

such a problem-independent constant c7 > 0 such that, if (2.4.63) holds, then
2 exp(≠nL

2
µ,s

2‡
2
L

) Æ – and the desired result holds. ⇤

2.5 Some Discussions on Solution Schemes for RSAA
This section discusses two classes of solution techniques to ensure the desired
S3ONC solutions: local schemes (in Subsection 2.5.1) and a global technique (in
Subsection 2.5.2).

2.5.1 Local Optimization for RSAA

The S3ONC is weaker than the second-order KKT condition. Therefore, any algo-
rithm that guarantees the second-order KKT condition can satisfy the stipulations
made by Part 2 of Proposition 2.3.1 and those by Proposition 2.3.2. Furthermore,
among those algorithms, any descent algorithm that guarantees the second-order

46

KKT condition can ensure the conditions as in Theorems 2.3.7 to 2.3.9, if initialized
with an all-zero solution.

Algorithms that ensure the second-order KKT condition have been discussed by
much literature. For instance, [10, 19, 63, 92, 93] provide algorithms with di�erent
convergence and complexity results. In particular, one of these algorithms, the
interior point algorithm (IPA) presented by [10], is a descent, and fully polynomial-
time approximation scheme (FPTAS) for a local solution that satisfies the desired
second-order necessary condition, when X consists of a set of box constraints. In the
special case where (2.1.6) is a quadratic program, [93] proposes a potential reduction
(PR) algorithm and shows its convergence to a second-order KKT solution.

To facilitate the solution schemes we may reformulate the objective function
into a twice continuously di�erentiable function. Specifically, according to [49], we
have the following equivalence

P⁄(x) = min
÷œ[0,a⁄]

1
2a

÷2 ≠ 1
a

÷x + ⁄x,

for which the optimizer admits a closed form:

÷min(x) :=

Y
_]

_[

x if 0 Æ x Æ a⁄;

a⁄ if x > a⁄.
(2.5.65)

Therefore, we have the equivalence between the original regularized problem
minxœX Fn(x) + qp

i=1 P⁄(xi) and an optimization problem with additional dummy
variables:

min
xœX ,÷=(÷i)œ[0,a⁄]p

Gn(x) := Fn(x) +
pÿ

i=1

3 1
2a

÷2
i

≠ 1
a

÷ixi + ⁄xi

4
(2.5.66)

where ÷ is the vector of dummy variables. Notice that Problem (2.5.66) is convex
in ÷.

One can show that the second-order KKT condition to the reformulated program
(2.5.66) implies the S3ONC of (2.1.6). To see this, observe that, at a second-order
KKT point (xú, ÷ú) the first-order KKT condition also holds. Due to the convexity
of (2.5.66) in ÷, it holds that ÷ú = ÷min(xú). Also by the definition of the second-

47

order KKT condition, we know that

d€

S

WWWU

Ò2Fn(xú) ≠ 1
a
I

≠ 1
a
I 1

a
I

T

XXXV d Ø 0, for all d in the critical set. (2.5.67)

To check if S3ONC is satisfied, we only need to consider the case where
xi œ (0, min{1, a⁄}). According to (2.5.65), it holds that ÷ú

i
œ (0, min{1, a⁄}).

As an immediate result, (2.5.67) implies that the submatrix
S

U
ˆ

2
Fn(xú)
ˆx

2
i

≠1/a

≠1/a 1/a

T

V

is positive semi-definite. Invoking Schur complement condition, it obtains that
0 Æ ˆ

2
Fn(xú)
ˆx

2
i

≠ 1
a

= ˆ
2[Fn(x)+

qp

i=1 P⁄(xi)]
(ˆxi)2

x= xú

, where the last identity is immediate
from the definition of P⁄ for xi œ (0, min{1, a⁄}). By its definition, the S3ONC
holds.

The reformulated problem (2.5.66) then satisfies all the assumptions for some
existing FPTASs that guarantee a second-order KKT point, such as the interior
point method by [10].

2.5.2 Global Optimization for RSAA

The global minimizer is a local minimizer, and, thus, also satisfies the S3ONC. To
compute this solution, the RSAA formulation can be equivalently formulated as
a mixed integer program. Let Assumption A.3 hold and a⁄ Æ 1. This inequality
is not restrictive as a and ⁄ are user-specified parameters for P⁄. Then, as per
(2.4.27), one can immediately rewrite the RSAA formulation into the following

min Fn(x) + P⁄(a⁄) ·
1
1€z1 + 1€z2

2

s.t. x Ø a⁄ · z2 ≠ Mz1; x Æ M · z2

≠x Ø a⁄ · z1 ≠ Mz2; x Ø ≠M · z1

x œ X ; z1, z2 œ {0, 1}p.

where M is a big-M and can be any scaler greater than R + a⁄ in our case and
where P⁄(a⁄) = a⁄

2

2 . In particular, if Assumption A.5 holds, Fn is convex almost
surely and the above formulation falls into the category of mixed integer convex
programming, which admits numerical solvers to ensure global optimality. [49]

48

presents MILP reformulations when Fn is a quadratic but not necessarily convex
function.

2.6 Preliminary Numerical Results
This section presents a preliminary set of numerical experiments following similar
setups with [33?]. Specifically, we consider the following SP problem

min{E[(Íx ≠ —)2] : x œ [0, 5]p}, (2.6.68)

where the relationship between Í and — is governed by — = Íxmin + Ê with
xmin = [3; 1.5; 0; 0; 2; 0p≠5]. Let the Ê be a standard normally distributed random
variable; that is Ê ≥ N (0, 1). Also assume that Í ≥ Np(0, �), which is a p-
variate normally distributed random variable with covariance matrix defined by
� = (Îij) œ Ÿp◊p and Îij = 0.5|i≠j|. It is easily verifiable that the optimal solution
to the SP problem in (2.6.68) is xmin.

We compare the following approaches to solving (2.6.68) in problems with
di�erent choices of sample sizes and dimensions:

SAA: A global minimal solution to SAA in (2.1.3) computed using Mosek.

RSAA-local: An S3ONC solution to RSAA in (2.1.6) generated by the PR algorithm
as discussed in Section 2.5.1. The PR is initialized with an (approximate)
all-zero solution. Our theories in Section 2.3 have predicted that such a local
solution can approximate (2.6.68) globally.

RSAA-global: A global solution to RSAA in (2.1.6) solved with Mosek through the
reformulation given in Section 2.5.2.

All experiments are conducted in Matlab on a computer with 2.2 GHz Intel
Core i7 processor and 16GB memory. Mosek is invoked via Matlab to generate
solutions for SAA and RSAA-global. For both RSAA-local and RSAA-global, the
parameters for FCP are fixed as ⁄ = 0.5 and a = 0.9. We would also like to remark
that, since the PR algorithm requires the starting point to be an interior point, we
approximate the all-zero solution by 10≠4 · 1 for the PR’s initialization.

For every (n, p) combination, we replicate each solution scheme five times
with independently generated samples for each repetition. We report the average,

49

maximal, and minimal suboptimality gaps as measured by F (·) ≠ F (xmin) in
Tables 2.2 and 2.5. In Tables 2.2, we fix the number of samples n = 100 and
gradually increase p from 10 to 1500. From this table, we can observe a clear
trend that the solution quality of SAA deteriorates dramatically. In contrast, the
suboptimality gaps are well contained by the proposed RSAA, even if the RSAA
is only solved locally (as shown in the “RSAA-local” column). When p = 1400,
RSAA-global is noticeably better than RSAA-local, as the former has a smaller
maximal suboptimality gap than the latter. Nonetheless, the two di�erent types of
solutions yield almost the same quality in approximating (2.6.68). Note that our
theories in fact provide a sharper performance bound for RSAA-global than RSAA-
local. Therefore, the closely similar numerical performance between RSAA-global
and RSAA-local is an indication that our bounds for RSAA-local may not be tight
enough for at least the special case in the numerical experiments.

Figure 2.1 shows the dependence between the suboptimality gap and p. Particu-
larly, in Figure 2.1.(a), the suboptimality gaps of SAA increase faster than linearly
in p. In contrast, the suboptimality gaps for both RSAA-local and RSAA-global
increase very slowly when p grows, as shown in both Figures 2.1.(a) and 1.(b).

Table 2.2 reports the computational time of the three di�erent approaches.
We notice that SAA is the most e�cient among the three. RSAA-local incurs a
noticeable increase in the computational e�orts than SAA. Nonetheless, considering
the substantial improvement generated by the RSAA-local in solution quality, we
argue that the additional amount of computational cost is reasonable. RSAA-global
is significantly slower than RSAA-local, even though the two have almost the same
solution quality in our experiments.

Table 2.3 shows the sparsity of the solutions generated by the three di�erent
schemes. We can see from this table that SAA generates dense solutions in all the
test instances, while both RSAA-local and RSAA-global can maintain sparsity in
the output solutions.

We further compare the three approaches in problems that have di�erent sample
sizes n and a fixed number of dimensions p = 100. The comparison is presented in
Table 2.4 and Figure 2.2. By comparison, we see that the solution quality of both
RSAA-local and RSAA-global increase rapidly with the growth of n. Their rates
are significantly faster than SAA.

In summary, our numerical results verify our theoretical predictions that the

50

Table 2.2: Comparison in solution quality measured by the suboptimality gaps for
problems with di�erent numbers of dimensions p and a fixed sample size n = 100.

p SAA RSAA-local RSAA-global
Mean Max Min Mean Max Min Mean Max Min

10 0.13 0.22 4.79 0.04 0.11 0.00 0.04 0.11 0.00
30 0.466 0.617 0.31 0.04 0.06 0.02 0.04 0.06 0.02
50 1.05 1.25 0.76 0.05 0.09 0.00 0.05 0.09 0.00
70 2.42 4.09 1.55 0.03 0.05 0.01 0.03 0.05 0.01
90 11.8 17.4 8.91 0.04 0.06 0.02 0.04 0.06 0.02
200 366.56 488.31 279.27 0.02 0.06 0.01 0.02 0.06 0.01
300 1.25e3 1.57e3 1.04e3 0.02 0.04 0.00 0.02 0.04 0.00
400 2.48e3 2.74e3 2.18e3 0.03 0.07 0.01 0.03 0.07 0.01
500 3.40e3 3.75e3 3.00e3 0.03 0.06 0.00 0.03 0.06 0.00
600 4.89e3 5.18e3 4.35e3 0.02 0.04 0.01 0.02 0.04 0.01
700 6.21e3 6.41e3 5.75e3 0.02 0.04 0.00 0.02 0.04 0.00
800 7.96e3 8.54e3 7.34e3 0.02 0.03 0.01 0.02 0.03 0.01
900 9.92e3 1.06e4 9.44e3 0.04 0.10 0.01 0.04 0.10 0.01
1000 1.17e4 1.31e4 1.04e4 0.03 0.08 0.01 0.03 0.08 0.01
1100 1.32e4 1.43e4 1.19e4 0.03 0.08 0.01 0.03 0.08 0.01
1200 1.51e4 1.58e4 1.35e4 0.04 0.09 0.01 0.04 0.09 0.01
1300 1.73e4 1.85e4 1.59e4 0.01 0.03 0.00 0.01 0.03 0.00
1400 1.88e4 1.97e4 1.81e4 0.07 0.15 0.03 0.07 0.14 0.03
1500 2.18e4 2.34e4 2.10e4 0.03 0.08 0.01 0.03 0.08 0.01

RSAA is particularly e�ective when n is much smaller than than p. In such a case,
RSAA may significantly improve solution quality over SAA.

2.7 Conclusion
We propose the RSAA, a modification to the SAA by incorporating a regularization
scheme called the FCP. This modification targets the high-dimensional SP problems
with sparsity. We show that when the solution is sparse or can be approximated by
a sparse solution, the regularization can significantly reduce the required number of
samples in some high-dimensional SP applications: Compared to the conventional
SAA approach that requires the sample size to grow polynomially in the number of
dimensions, the RSAA stipulates number of samples that is only poly-logarithmic
in the dimensionality.

51

Dimension p
0 500 1000 1500

S
u

b
o

p
tim

a
lit

y
g

a
p

×104

0

0.5

1

1.5

2

2.5

SAA-mean
SAA-max
SAA-min
RSAA-local-mean
RSAA-local-max
RSAA-local-min
RSAA-global-mean
RSAA-global-max
RSAA-global-min

(a)
Dimension p

0 500 1000 1500

S
u

b
o

p
tim

a
lit

y
g

a
p

0

0.05

0.1

0.15

0.2
RSAA-local-mean
RSAA-local-max
RSAA-local-min
RSAA-global-mean
RSAA-global-max
RSAA-global-min

(b)

Figure 2.1: Comparison of suboptimality gaps of solutions generated by SAA, local
optimization of RSAA, and global optimization of RSAA when n = 100 and p
increases from 10 to 1500. “SAA-mean”, “SAA-max”, and “SAA-min” are the
average, maximal, and minimal suboptimality gaps of SAA out of the five repli-
cations, “RSAA-local-mean”, “RSAA-local-max”, and “RSAA-local-min” are the
average, maximal, and minimal suboptimality gaps of RSAA-local, “RSAA-global-
mean”, “RSAA-global-max”, and “RSAA-global-min” are the average, maximal,
and minimal suboptimality gaps of RSAA-global.

Sample size n
20 40 60 80 100

S
u

b
o

p
tim

a
lit

y
g

a
p

0

100

200

300

400

500

600

700

800
SAA-mean
SAA-max
SAA-min
RSAA-local-mean
RSAA-local-max
RSAA-local-min
RSAA-global-mean
RSAA-global-max
RSAA-global-min

(a)
Sample size n

20 40 60 80 100

S
u

b
o

p
tim

a
lit

y
g

a
p

0

5

10

15

RSAA-local-mean
RSAA-local-max
RSAA-local-min
RSAA-global-mean
RSAA-global-max
RSAA-global-min

(b)

Figure 2.2: Comparison of suboptimality gaps of solutions generated by SAA,
local optimization of RSAA, and global optimization of RSAA when p = 100 and
n increases from 15 to 110. “SAA-mean”, “SAA-max”, and “SAA-min” are the
average, maximal, and minimal suboptimality gaps of SAA out of the five repli-
cations, “RSAA-local-mean”, “RSAA-local-max”, and “RSAA-local-min” are the
average, maximal, and minimal suboptimality gaps of RSAA-local, “RSAA-global-
mean”, “RSAA-global-max”, and “RSAA-global-min” are the average, maximal,
and minimal suboptimality gaps of RSAA-global.

52

Table 2.3: The numbers of nonzeros in the solutions generated by SAA, RSAA-local,
and RSAA-global, when n = 100.

p SAA RSAA-local RSAA-global
Mean Max Min Mean Max Min Mean Max Min

10 10 10 10 3 3 3 3 3 3
30 30 30 30 3 3 3 3 3 3
50 50 50 50 3 3 3 3 3 3
70 70 70 70 3 3 3 3 3 3
90 90 90 90 3 3 3 3 3 3
200 200 200 200 3 3 3 3 3 3
300 300 300 300 3 3 3 3 3 3
400 400 400 400 3 3 3 3 3 3
500 500 500 500 3 3 3 3 3 3
600 600 600 600 3 3 3 3 3 3
700 700 700 700 3 3 3 3 3 3
800 800 800 800 3 3 3 3 3 3
900 900 900 900 3 3 3 3 3 3
1000 1000 1000 1000 3 3 3 3 3 3
1100 1100 1100 1100 3 3 3 3 3 3
1200 1200 1200 1200 3 3 3 3 3 3
1300 1300 1300 1300 3 3 3 3 3 3
1400 1400 1400 1400 3.8 6 3 3 3 3
1500 1500 1500 1500 3 3 3 3 3 3

Table 2.4: Comparison of the average computational time out of the five replications
for problems with di�erent dimensionality p and fixed sample size n = 100.

p SAA RSAA-local RSAA-global p SAA RSAA-local RSAA-global
(s) (s) (s) (s) (s) (s)

10 3.19 1.71 9.77 700 3.42 20.92 241.68
30 3.21 4.08 13.22 800 3.38 34.13 1220.89
50 3.20 3.86 17.31 900 3.42 40.34 1425.75
70 3.17 4.46 30.28 1000 3.42 34.59 2693.44
90 3.13 8.55 27.31 1100 3.38 33.50 4014.09
200 3.06 19.03 7.21 1200 3.66 37.62 3686.88
300 3.13 15.82 45.60 1300 3.89 39.30 11658.30
400 3.35 14.02 157.64 1400 3.38 54.65 16927.54
500 3.33 19.34 134.08 1500 3.37 63.68 13463.53
600 3.40 20.92 240.10

53

Table 2.5: Comparison in solution quality measured by the suboptimality gaps for
problems with di�erent sample sizes n and a fixed number of dimensions p = 100.

n SAA RSAA-local RSAA-global
Mean Max Min Mean Max Min Mean Max Min

15 608.79 746.59 470.60 3.80 14.39 0.03 0.38 1.17 0.03
20 536.58 660.87 423.64 0.69 2.25 0.03 0.22 0.70 0.03
25 540.28 746.75 403.39 0.57 1.04 0.23 0.37 0.85 0.09
30 422.14 523.62 331.26 0.31 0.55 0.13 0.26 0.35 0.13
35 387.38 472.50 265.12 0.12 0.21 0.06 0.12 0.21 0.06
40 261.00 323.83 176.91 0.09 0.15 0.01 0.09 0.15 0.01
45 268.50 343.60 141.38 0.10 0.31 0.01 0.05 0.08 0.01
50 149.85 188.51 112.81 0.08 0.20 0.02 0.08 0.20 0.02
55 122.59 172.12 96.07 0.06 0.15 0.01 0.06 0.15 0.01
60 142.53 159.97 110.20 0.03 0.05 0.02 0.03 0.05 0.02
65 122.31 130.33 110.29 0.04 0.07 0.01 0.04 0.07 0.01
70 69.64 92.05 32.02 0.05 0.13 0.01 0.05 0.13 0.01
75 80.03 127.81 45.62 0.07 0.11 0.02 0.07 0.11 0.02
80 42.01 53.67 29.14 0.04 0.07 0.02 0.04 0.07 0.02
85 46.52 84.56 31.37 0.07 0.16 0.02 0.07 0.16 0.02
90 24.21 36.26 14.04 0.03 0.09 0.01 0.03 0.09 0.01
95 32.96 48.93 8.22 0.03 0.07 0.00 0.03 0.07 0.00
100 116.52 201.05 42.98 0.02 0.03 0.01 0.02 0.03 0.01
105 17.20 19.94 13.04 0.03 0.06 0.01 0.03 0.06 0.01
110 10.48 13.88 6.41 0.02 0.06 0.01 0.02 0.06 0.01

Although the incorporation of FCP renders the RSAA formulation nonconvex,
we argue that any S3ONC solution achieved by a decent algorithm starting at the
all-zero vector is good enough to ensure the optimization performance of the local
solution. The S3ONC is a necessary condition (for local minimality) weaker than
the second-order KKT condition. Numerical algorithms to ensure the second-order
KKT condition are known from the literature. Furthermore, under some conditions
on the feasible region, the S3ONC solutions admit an FPTAS. We also discuss a
mixed integer convex reformulation to the RSAA formulation that allows for exact,
though exponential-time in the worst case, computation of the global solution. Our
preliminary numerical experiments have verified our theoretical predictions.

54

Chapter 3 |
Fast Algorithm for Non-convex
Optimization

3.1 Introduction
In this chapter we are interested in the problem with the following structure:

min F (x)

s.t. Ax = b (3.1.1)

x Ø 0,

where A œ R
m◊n and F : Rn

+ æ R is a continuous function on R
n

+ and smooth
on R

n

++. In the constrained non-convex optimization literature, one of the major
research directions is the first order methods , such as, the gradient project method
[71], the alternating direction method of multipliers (ADMM) approach [12, 42, 88]
and the first order interior method [10, 34, 39]. They can only ensure the first
order optimal condition and the iteration complexity is O(1/‘2). Furthermore, the
first order interior point method can even handle the problem without Lipschitz
derivatives (e.g. lq penalized problem with 0 < q < 1). Beside the first order
methods, the second order methods (e.g., the cubic regularization method and the
second order interior point method) are also discussed in many literature. The cubic
regularization method (e.g. [4, 18, 63]) are designed for the smooth optimization,
which iteration complexity is Õ(‘≠3/2), where Õ(·) means the complexity is O(·)
complexity up to some log(1/‘) terms. The second order interior point method

55

[10, 39] also has Õ(‘≠3/2) complexity and can also address the non-Lipschitz problem.
However, those second order methods require matrix inversion at each iteration,
which can be very time consuming for large scale optimization. Recently, based on
the power method and accelerated gradient decent, [4, 18] discuss the approximated
the second order algorithms which have the Õ(‘≠7/4) iteration complexity and
don’t require inversing hessian matrix. In [4], the algorithm is based on the cubic
regularization method for the unconstrained problem. They leverage the accelerated
gradient descent (AGD) for matrix inversion and Lanczos method to solve the
sub-problem e�ciently. The method in [18] contains two parts: first use the Lanczos
method to approximate the negative curvature direction and then use the AGD to
refine the direction. Those literature give us an idea that the approximated second
order method can be even faster than vanilla first order methods (e.g. gradient
descent). But they can only be applied to the unconstrained, smooth problem with
Lipschitz hessian matrix. Even the simple l1 penalized regression fails to satisfy
the above requirements.

One natural direction to address non-smoothness and/or non-Lipschitz hessian
matrix limitations is to add extra linear constraints, and directly handle the
constrained problem. However, the linear constraints may introduce extra di�culty
on algorithm design and analysis. The analysis of [4, 18] depends on the good
convergence rate of AGD. If we directly immigrate their methods to the constrained
case, the original good complexity result of AGD fails and we may not have Õ(‘≠7/4)
result. In order to utilize the good complexity of AGD, we need to use special
techniques to “unconstrain" the constrained problem. Here we borrow the spirit of
the interior point method to conduct such unconstraining job.

Our contributions are as follows:

1. We construct an accelerated interior point gradient method (AIP-GM) for
linear constrained non-convex programming optimization. The complexity
is bounded by Õ(‘≠7/4), which will lead to an ‘-KKT solution or an ‘-global
minimizer with high probability. Our complexity result is better than the
classic first order method O(‘≠2) (e.g.[42]).

2. Our method can also guarantee the second order necessary condition at the
limit point. When algorithm terminates, the reduced Hessian Hreduce will
satisfy Hreduce ≤ O(≠

Ô
‘I). Furthermore, when the objective function has

56

Ta
bl

e
3.

1:
R

un
tim

e
co

m
pa

ris
on

fo
r

no
n-

co
nv

ex
op

tim
iz

at
io

n

ite
ra

tio
n

he
ss

ia
n

co
ns

tr
ai

nt
se

co
nd

or
de

r
Li

ps
ch

itz
Li

ps
ch

itz
fre

e
gu

ar
an

te
e

G
ra

di
en

t
H

es
sia

n
G

ra
di

en
t

O
(‘

≠
2)

X
X

◊
X

X
Pr

oj
ec

tio
n

A
D

M
M

[4
2]

O
(‘

≠
2)

X
X

◊
X

X
Fi

rs
t

or
de

r
O

(‘
≠

2)
X

X
◊

◊
◊

In
te

rio
r

po
in

t[3
9]

C
ub

ic
O

(‘
≠

3/
2)

◊
X

X
X

X
re

gu
la

riz
at

io
n[

20
,6

3]
Se

co
nd

or
de

r
O

(‘
≠

3/
2)

◊
X

X
◊

◊
In

te
rio

r
po

in
t[3

9]
A

cc
el

er
at

ed
Õ

(‘
≠

7/
4)

X
◊

X
X

X
M

et
ho

d[
18

]
Li

ne
ar

C
ub

ic
Õ

(‘
≠

7/
4)

X
◊

X
X

X
re

gu
la

riz
at

io
n[

4]
A

IP
-G

M
Õ

(‘
≠

7/
4)

X
X

X
◊

◊
(T

he
or

em
3.

2.
11

)

57

the strictly saddle property[36], the second order necessary condition can
further ensure that we reach an approximated local minimizer.

3. Our method can handle the Non-Lipschitz objective function (e.g. lq mini-
mization problem with 0 < q < 1). We only require weaker conditions than
classic Lipschitz gradient and Lipschitz hessian.

4. Our method only needs the gradient calculation and matrix-vector mul-
tiplication. Thus our method is Hessian-free and suitable for large scale
optimization.

The rest of this chapter is structured as follows. Section 3.2 introduces the
preliminaries and the main theorem. In section 3.3, we present and explain the
sub-routines to replace the matrix inversion in the traditional second order interior
point method. The detail of proof will be found in section 3.4.

3.2 Preliminaries and Main theorem
We use Î · Î to denote the Euclidean norm of a vector and the spectral norm of a
matrix. ÎÎŒ denotes the element of a vector which has the largest absolute value.
For a symmetric matrix A, we denote ⁄max(A) and ⁄min(A) as the maximum and
minimum eigenvalue of A respectively. We denote A ≤ B as A ≠ B is positive
semidefinite. We also introduce the following definitions.

Definition 3.2.1. A function f : R
n æ R is L1-scaled Lipschitz if ÎXÒf(x +

Xd1)≠XÒf(x+Xd2)Î Æ L1Îd1 ≠d2Î for all d1, d2 such that x+Xd1 and x+Xd2

are in the strictly interior of the feasible region. Îd1Î Æ r, Îd2Î Æ r for some r < 1.
X = diag(x).

Definition 3.2.2. A function f : R
n æ R is L2-scaled Lipschitz Hessian if

ÎX(Ò2f(x+Xd1)≠Ò2f(x+Xd2))XÎ Æ L2Îd1≠d2Î for all d1, d2 such that x+Xd1

and x + Xd2 are in the strictly interior of the feasible region. Îd1Î Æ r, Îd2Î Æ r

for some r < 1. X = diag(x).

The Definition 3.2.1 and 3.2.2 is a scaled version of the traditional definitions
for smoothness. It generalizes the traditional definition of Lipschitz and Lipschitz
Hessian. Denote G(d) = F (x + Xd) ∆ ÒG(d) = XÒF (x + Xd), Ò2G(d) =

58

XÒ2F (x + Xd)X. If F (x) is l1-Lipschitz and/or l2-Lipschitz hessian, G(d) will
also be l1ÎXÎŒ-Lipschitz and/or l2ÎXÎ2

Œ
-Lipschitz hessian. If we further assume

ÎXÎŒ < R, we can conclude that l1-Lipschitz and/or l2-Lipschitz hessian implies
Rl1-scaled Lipschitz and/or R2l2- scaled Lipschitz hessian. Some non-Lipschitz
functions can still be scaled-Lipschitz. For example, let F (x) = xq, 0 Æ x Æ R, 0 <

q < 1 ∆ ÒF (x) = qxq≠1 and we will have F (x) is not Lipschitz when x is close to
0. XÒF (x+Xd) = xq(x+xd)q≠1 = qxq(1+ e)q≠1 ∆ ÎXÒF (x+Xd1)≠XÒF (x+
Xd2)Î = qxqÎ(1 + d1)q≠1 ≠ (1 + d2)q≠1Î Æ qxqÎ(q ≠ 1)(1 + d)q≠2(d1 ≠ d2)Î Æ
q(q ≠ 1)Rq(1 ≠ r)q≠2Îd1 ≠ d2Î. It leads that F (x) is a q(q ≠ 1)Rq(1 ≠ r)q≠2-
scaled Lipchitz function. As we will take the non-Lipschitz objective function into
consideration, throughout this project we will only assume scaled Lipschitz and
scaled Lipschitz hessian hold without further mentioned.

Assumption A. The feasible region of (3.1.1) is bounded, non-empty and has
strictly interior. Furthermore, we assume there is a 0 < R < +Œ such that ÎxÎŒ <

R for all feasible point. The objective function F (x) in (3.1.1) is L1-scaled Lipschitz
and L2-scaled Lipschitz Hessian.

Definition 3.2.3. A function f : Rn æ R is µ1-strongly convex if µ1
2 Îx ≠ yÎ Æ

f(y) ≠ f(x) ≠ Òf(x)T (y ≠ x) for all x, y.

The Definition 3.2.3 are standard in the literature to characterize the convex
level of the function.

Definition 3.2.4. Given ‘ > 0, x œ R
n is an ‘1-KKT point for (3.1.1) if there

exists ⁄ œ R
m such that:

1. Ax = b, x Ø 0

2. Òf(x) + AT ⁄ Ø ≠‘

3. ÎX(Òf(x) + AT ⁄)Î Æ ‘, X = diag(x)

Definition 3.2.5. Given ‘1, ‘2 > 0, we say x œ R
n satisfies ‘2, ‘2-KKT2 condition

if:

1. x is a ‘1 KKT point.

2. dT (XÒ2f(x)X + ‘2I)d Ø 0 for all d such that AXd = 0.

59

The Definition 3.2.4 and 3.2.5 describe the first and second order optimality
condition that we will use in this project. Notice that they are not the same as
the traditional ‘-KKT point’s definition. The reason why we need them is that the
classic definition of ‘-KKT point may not suitable to handle the objective function
with the non-Lipschitz gradient. The new definitions work the non-Lipschitz
gradient case and are also su�cient to imply the classic ‘-KKT point’s definitions
when the objective function is Lipschitz. Reader can refer the Definition 2 and
Proposition 2 in [39] for more details.

When measuring the complexity of the total running time, we may need to count
the computation costs for many di�erent type s of operations, such as evaluation of
the Òf(x) and matrix vector multiplication. To simplify our analysis, we make the
following assumption:

Assumption B. 1. The following operations’ computation costs are bounded
by O(T1):

(a) evaluate Òf(x) at any x.

(b) evaluate Ò2f(x)v at any x and v

(c) up to n ◊ n matrix and n dimension vector multiplication.

2. The vector vector multiplication up to n dimension takes up to O(T2) compu-
tation cost.

3. Other vector vector operations (addition and subtraction) take O(0) computa-
tion cost.

Assumption B is a mild assumption. For L2- scaled Lipschitz hessian f(x),
(b) can be approximated evaluated with Hessian-free technique, which costs 2
gradient evolutions and 4 vector-vector multiplications. Thus the total cost of (b)
is bounded by O(2T1 + 4T2). And as vector-vector multiplication is a special case
of matrix-vector multiplication, O(2T1 + 4T2) < O(6T1) = O(T1). The details of
Hessian-free technique will be discussed later. Since the computation cost for vector
multiplication usually dominates the vector addition and subtraction’s cost, here
we won’t count the addition and subtraction’s computation cost.

60

3.2.1 Technique Lemmas

With the basic definition and assumptions in place, we now introduce the conver-
gence results for two accelerated methods, Nestervo’ accelerated gradient descent
method [62] for strongly convex function and Lanczos method [46] for the approxi-
mated minimum eigenvector.

Lemma 3.2.6. Let f : n æ be µ > 0-strongly convex function and L1-
Lipschitz. Let �f = f(x0) ≠ f(xú), where xú is the optimal solution. For any
k Ø 1 +

Ò
L1
µ

log(4L
2
1�f

µ‘
):

f(xk) ≠ f(xú) Æ ‘

2L1

It tells that in order to achieve an ‘/2L1-approximated minimizer, the iteration
dependence on µ and ‘ are k = O(

Ò
1
µ

log(1
µ‘

)). Compared the non-accelerated
gradient decent method (e.g [13]) for µ-strongly convex function (k = O(1

µ
log(1

µ‘
))),

the accelerated gradient decent (AGD) has better dependence µ. Next show the
classic result of Lanczos method

Lemma 3.2.7. Let H œ n◊n by a symmetric and H ≤ 0. Lanczos method will
return unit vectorv in k = O(

Ò
1
‘

log(n

”
)) step, such that

vT Hv Ø ⁄max(H)(1 ≠ ‘)

With probability 1 ≠ ”. Where ⁄max(H) denotes the leading enginvalue of H.

The above Lemma shows that Lanczos method is e�cient on approximated
the leading (maximum) eigenvector. Supposing we know that the maximum
eigenvalue is upper bounded by some L1 Ø 0, it is easy to verify that L1I ≠ H ≤
(L1 ≠⁄max(H))I ≤ 0 for any H. The leading eigenvalue for L1I ≠H is L1 ≠⁄min(H),
where ⁄min(H) is the minimum eigenvalue of H. Thus if we apply Lanczos for
L1I ≠ H, we will be able to find a v such that vT (L1I ≠ H)v Ø (L1 ≠ ⁄min)(1 ≠ ‘).
Rearrange and we will have vT Hv Æ L1‘ + ⁄min(H)(1 ≠ ‘). Hence v is an L1‘-
approximated minimum eigenvector of H. We may also use the Lanczos method to
approximate the minimum eigenvector. We summarize it in the following corollary.

Corollary 3.2.8. Let H œ n◊n by a symmetric and L1I ≤ H ≤ ≠L1I. Applying
Lanczos method to L1I ≠ H will return unit vectorv in k = O(

Ò
2L1

‘
log(n

”
)) step,

61

such that
vT Hv Æ ⁄min(H) + ‘

With probability 1 ≠ ”. Where ⁄min(H) denotes the minimum eigenvalue of H.

We substitute the ‘ in Lemma 3.2.7 by ‘/(2L1). As we apply the Lanczos
method to L1I ≠ H, vT Hv Æ L1‘/(2L1) + ⁄min(H)(1 ≠ ‘/(2L1)) Æ ⁄min(H) +
L1≠⁄min(H)

2L1
‘ Æ ⁄min(H) + ‘.

3.2.2 Main Results

The main theorem is shown as follows. Our method can be described in two levels.
The upper level (Algorithm 1) construct the subproblem of second order interior
point method and lower level (Algorithm 2) solve it approximately. We first show
our result on the upper-level algorithm.

Theorem 3.2.9. Suppose Assumption A holds. Let F0 be a lower bound on
the optimal objective function value, x0 is an approximated analytic center xc of
the feasible region and q

n

i=1 log(x0
i
) ≠ q

n

i=1 log(xc

i
) Æ fl

3(F (x0) ≠ F0). Set ÷1, ÷3 =
1

60Ô
fl
, ÷2 = L1

369
Ô

fl3L
2
2(2+�max)

, �max = 2(F (x0) ≠ F0)L2
1/‘ + L2

Ò
L1/‘ +

Ò
‘/L1, fl =

max{
2+ 1

L2
‘

, 1.1}, — = min{11
12 ,

Ò 1
flL

2
2
} and L2 > 1/2. Then at least one of the

following events will happen:

1. Algorithm 1 will generate a point satisfies ‘,
Ô

‘≠KKT2 condition

2. Algorithm 1 will generate a ‘-minimizer, i.e. F (xt) ≠ F (xú) Æ ‘, where xú is
a global minimizer

before

t = O

Q

ca
8L2(F (x0) ≠ F0)

1
2 + 2

L2

23/2

‘3/2

R

db

Furthermore, if the objective function is strictly saddle and Ax = b absence, at least
one of the following events will happens:

1. Algorithm 1 will generate a ‘-approximated local minimizer.

2. Algorithm 1 will generate a ‘- approximated global minimizer

62

Algorithm 1 Approximated second order interior
Input f(x); A, b; x0, F0, ”, fland ÷i i = 1, 2, 3
Let „(x) = fl(F (x) ≠ F0) + q

n

i=1 log(xi), where fl > 0
For t = 1,2,... until convergence

Use lanczos method to get an ÷1/2-minimum eigenvalue – of XÒ2„(xt≠1)X
Set µmin = –

Set µmax = 2F (x0)≠F0
—2 + L2— + 1

fl—

d = fast_trust_region(„, A, xt≠1, —, µmin, µmax, ÷i, i = 1, 2, 3)
xt+1 = xt + Xd

EndFor
Return xt.

Theorem 3.2.9 implies that with the sub-routine fast_trust_region instead of
exact solution, the second order interior point will also converge within O(‘≠3/2)
iterations. And in the following theorem, we will show that this sub-routine is very
cheap:

Theorem 3.2.10. Suppose settings in Theorem 3.2.9 hold. The computation
cost of Algorithms 2 is upper bounded by:

O

A

n2T2 + log
A

µmax ≠ µmin
÷1

B

max
IÛ

L1
÷1

log
A

L1
÷1÷2

B

,

Û
2L1
÷3

log
A

n2

”2

BJ

T1

B

(3.2.2)

And its dependence on ‘ is O(1
‘1/4 log(1/‘)2).

63

Algorithm 2 fast_trust_region
Input „(x); A; x̃, —, µmax, µmin, ”, ‘ and ÷i, i = 1, 2, 3
Generate N which contains the orthonormal basis spanning the null space of AX,
where X = diag(x̃) and set µmin,0 = µmin.
While µmax ≠ µmin Ø ÷1

If µ > 3÷1 + µmin,0

Let µ = 1
2(µmax + µmin)

Solve d̄ from min 1
2 d̄(NXÒ2„(x̃)XN + µI)d̄ + Ò„(x̃)XNd̄ via AGD

with tolerance ÷2

Else
Use lanczos method to get an ÷3-minimum eigenvector v of NXÒ2„(x̃)XN

with probability 1 ≠ ”

Set d̄ = ≠— ú v ú sign(vT Ò„(x̃)XN)
EndIf
If Îd̄Î < —

µmax = µ

Else
µmin = µ

EndIf
EndWhile
Return d = Nd̄

Combining the results in Theorem 3.2.9 and Theorem 3.2.10 together, we
are ready to show our main results:

Theorem 3.2.11. Suppose Assumption A and B and settings in Theorem
3.2.9 hold. The total computation cost for Algorithm 1 is upper bounded by:

O

A
L2(F (x0) ≠ F0)

‘3/2

A

n2T2 +
Û

L1Ô
‘

log
A

�max ≠ L1Ô
‘

B

max

Y
]

[log
Q

aL1L
3/2
2

‘2

R

b , log
A

n2t2

”2

BZ
^

\

R

b T1

R

b (3.2.3)

Where �max and t is same as in Theorem 2.4.

64

If we ignored the logarithm part, the complexity is bounded by

Õ

A
L2

Ô
L1(F (x0) ≠ F0)

‘3/2

A
n2

Ô
L1

T2 + 1
‘1/4 T1

BB

(3.2.4)

For the problem only with non-negative constraints, box constraints or low rank
constraints, the complexity bound can be further improved to:

Õ

A
L2

Ô
L1(F (x0) ≠ F0)

‘3/2

3 1
‘1/4 T1

4B

= Õ

A
L2

Ô
L1(F (x0) ≠ F0)

‘7/4 T1

B

(3.2.5)

3.3 Interpretation on AIP-GM
Here we consider the problem (3.1.1). Per Assumption A, we can build an local
upper bound for F (x) at some feasible point x:

F (x + Xd) Æ F (x) + ÒF (x)Xd + 1
2dT XÒ2F (x≠)Xd + L2

6 ÎdÎ3
2 (3.3.6)

Where ÎdÎ Æ r and X = diag(x). It can also be expressed by:

F (x + Xd) ≠ F (x) Æ ÒF (x)Xd + 1
2dT XÒ2F (x≠)Xd + L2

6 ÎdÎ3
2 (3.3.7)

An direct way is to minimize the right hand side iteratively:

min ÒF (x)Xd + 1
2dT XÒ2F (x)Xd + L2

6 ÎdÎ3
2

s.t. AXd = 0 (3.3.8)

ÎdÎ Æ r

It means that we need to optimization a cubic function over some convex set.
In general, it is hard to solve globally. Even if the problem has a special structure
and can ensure the global minimizer, we still may not guarantee iteratively solving
(3.3.8) will generate a sequence that converges to the desired solution. Instead of
solving (3.3.8), in the remaining part of this section, we will show that a properly
designed second order interior can overcome those issues.

To utilized the interior point method, the first step is to relax the non-negative

65

constraints and build the potential function „(x):

„(x) = fl(F (x) ≠ F0) ≠
pÿ

i=1
log(xi) (3.3.9)

Where fl > 0 and F0 is a lower bound of optimal objective function value for (3.1.1).
Denote �„(x) as „(x) ≠ „(x) and we will have:

�„(x) = „(x + Xd) ≠ „(x)

= fl(F (x + Xd) ≠ F0) ≠
pÿ

i=1
log(xi + xidi) ≠ (fl(F (x) ≠ F0) ≠

pÿ

i=1
log(xi))

=
1�˙ ˝¸ ˚

fl(F (x + Xd) ≠ F (x)) +

2�˙ ˝¸ ˚
pÿ

i=1
log

3
xi

xi + xidi

4

For the term 1�, we will have:

1� = fl(F (x + Xd) ≠ F (x)) Æ fl
3

F (x) + ÒF (x)Xd + 1
2dT XÒ2F (x≠)Xd + L2

6 ÎdÎ3 ≠ F (x)
4

= fl
3

ÒF (x)Xd + 1
2dT XÒ2F (x≠)Xd + L2

6 ÎdÎ3
4

For the term 2�, if ÎdÎ Æ — < 1, X = diag(x), then via Lemma 1 in [91]:

2� =
pÿ

i=1
log(xi

xi + xidi

) Æ ≠eT d + —2

2(1 ≠ —)

Where e is the one vector. Therefore we will have:

�„(x) Æ fl

A

ÒF (x)Xd + 1
2dT XÒ2F (x≠)Xd ≠ 1

fl
eT d

B

+ flL2
6 ÎdÎ3

2 + —2

2(1 ≠ —)
(3.3.10)

To achieve a reduction for potential function „(x), we minimize a quadratic function
subject to an ellipsoid constraint.

min q(d) =
A

ÒF (x)X ≠ 1
fl

eT

B

d + 1
2dT xÒ2F (x)Xd

s.t. AXd = 0 (3.3.11)

66

ÎdÎ2 Æ —2

If we denote N as the matrix contains the orthonormal basis span the null space of
AX, the above problem will reduce to:

min
v

1
2vT (NXÒ2f(x)XN)v + Òf(x)XNv

s.t ÎvÎ Æ — (3.3.12)

We will use the Algorithm 2 to search for a proper approximated solution to
(3.3.12). Algorithm 2 contains two stages : binary search the dual variable µ and
approximate v. At the optimal solution pair µú and vú of (3.3.12), we will have

(NXÒf(x̃)XN + µúI)vú + Òf(x̃)XN = 0 (3.3.13)

(NXÒf(x̃)XN + µúI) ≤ 0, µú Ø {0, ≠⁄min(NXÒf(x̃)XN + µúI)} (3.3.14)

As (NXÒf(x̃)XN + µúI) ≤ 0, we can say that vú is the optimal solution to the
following convex problem:

min 1
2vT (NXÒf(x̃)XN + µúI)v + Òf(x̃)XNv (3.3.15)

Supposing that we have an approximated µ̃, ve will satisfy:

ve = arg min 1
2vT (NXÒf(x̃)XN + µ̃I)v + Òf(x̃)XNv (3.3.16)

Since (3.4.30) allow a close form solution ve = ≠(NXÒf(x̃)XN + µ̃I)≠1Òf(x̃)XN .
It is not hard to show that ll(µ̃) = ÎveÎ2 is monotonic decreasing in µ. As ll(µú) =
—2, ll(µ̃) < —2 for µ̃ > µú. Therefore by binary search on µ, we will eventually
come to an µ̃ such that max{µú, ÷1 ≠ ⁄min(NT XÒ2f(x)NX)} < µ Æ µú + ÷1 from
AGD step in Algorithm 2. It ensures that the AGD will only work on at least
÷1-strongly convex function. When µú is very close to ≠⁄min(NT XÒ2f(x)NX)
(the hard case in trust region problem), we will switch to the lanczos method,
which is not depends on the degree of convexity. With proper accurate levels, the
approximated scheme Algorithm 2 will also work as good as we exactly solve the
sub-problem and we summarize it in the following lemma.

Lemma 3.3.1. Suppose µú corresponding to optimal solution vú of (3.3.12). If

67

we set ÷1, ÷3 = 1
60Ô

fl
, ÷2 = L1

360fl2L
2
2(2+�max) . If 1

2µúÎvúÎ2 Ø 2
3
Ô

fl3L
2
2
, Algorithm 2

will return a d = Nvú such that q(d) Æ ≠ 5
12

Ô
fl3L

2
2
. Otherwise, d will lead to an

approximated KKT2 solution in the next step.

This lemma tells us that with a suitable accuracy the approximated solution
from Algorithm 2 will remain su�cient descent by 5

12
Ô

fl3L
2
2

amount before reaching
an approximated KKT2 point. The total number that we call Algorithm 2 will
be O(fl3/2). The outer loop of Algorithm 2 is a binary search with fixed upper
and lower bounds. Therefore the iteration of is Õ(1). For inner loop, we will
either use AGD or Lanczos method. For AGD case, the problem we consider will
always be at least O(fl≠1/2)≠strongly convex and the complexity would be Õ(fl1/4)
due to Lemma 3.2.6. For the Lanczos case, as ÷3 = O(fl≠1/2), via Corollary
3.2.8 the complexity will be Õ(fl1/4 log(1/”2)) with probability 1 ≠ ”. If we merge
them up and choose ” = O(”0/fl3/2), we will have the total complexity would be
Õ(fl3/2 · 1 · (fl1/4 + fl1/4 log(1/”2))) = Õ(fl7/4) with probability 1 ≠ O(”0). From
Theorem 3.2.9, we have fl = max{2+1/L2

‘
, 1.1}. Hence the total complexity for

Algorithm 1 would be Õ(‘≠7/4).

3.4 Technical Proofs

3.4.1 Hessian Free Technique

Our method can be implemented hessian-free. In both AGD and Lanczos method we
only require gradient calculation and the matrix vector multiplying, i.e. NXÒ2F (x)XN

multiplying some vector d. As we do not require F to be L2-Lipschitz hessian but
only L2-scaled Lipschitz hessian. The hessian free techniques introduced in [4, 18]
can’t not be directly applied.

As we have L2-scaled Lipschitz hessian:

ÎÒF (x + Xd1)X ≠ ÒF (x + Xd2)X ≠ XÒ2F (x + Xd2)X(d1 ≠ d2)Î Æ 1
2L2Îd1 ≠ d2Î2

(3.4.17)

We want to approximate NT XÒ2F (x̃)XNd̄ by only evaluating the ÒF (x). Set

68

x = x̃, d2 = 0, d1 = hd̄ in (3.4.17) with 0 < h < 1:

ÎÒF (x̃ + hXd1)X ≠ ÒF (x̃)X ≠ XÒ2F (x)Xhd1Î Æ h2

2 L2Îd1Î2

ÎÒF (x̃ + hXd1)X ≠ ÒF (x̃)X ≠ XÒ2F (x)Xhd1Î
h

Æ h

2L2Îd1Î2 (3.4.18)

Thus we could approximated NT XÒ2F (x̃)XNd̄ in three step:

1. p1 = Nd̄

2. p2 = ÒF (x̃+hXp1)X≠ÒF (x̃)X
h

, which small enough h.

3. p3 = NT p2

As when h is small enough, we will have p2 close enough to XÒ2F (x)XNd̄ and
finally p3 will well approximate NT XÒ2F (x̃)XNd̄. In this procedure, we do not
need to compute and store the hessian direct, which can significantly reduce the time
and space cost. It make our method be able to handle the large scale optimization
problem.

3.4.2 Proof of Theorem 3.2.9

Proof. To achieve a reduction for potential function „(x), we minimize a quadratic
function subject to linear and ellipsoid constraints.

min q(d) =
A

ÒF (x)X ≠ 1
fl

eT

B

d + 1
2dT XÒ2F (x)Xd

s.t. AXd = 0 (3.4.19)

ÎdÎ2 Æ —2

Let

Q = XÒ2F (x)X, c = ÒF (x≠)X ≠ 1
fl

e and Ā = AX, d̄ = Xd (3.4.20)

Then the above problem becomes:

min qQ(d̄) = 1
2 d̄T Qd̄ + cd̄

69

s.t. Ād̄ = 0 (3.4.21)

Îd̄Î2
2 Æ —2

The optimal condition is:

(Q + µI)d̄ + c + ĀT ⁄ = 0, µ Ø max{0, ≠eigmin(H)} (3.4.22)

Îd̄Î2 Æ —, Ād = 0, µ(Îd̄Î2 ≠ —) = 0

H = NT QN, g = NT c, where N is an orthonormal basis spanning the null space
of Ā. We can further reduce the above problem to:

min qH(v) = 1
2vHv + gT v

s.t. ÎvÎ2
2 Æ —2 (3.4.23)

The su�cient and necessary conditions are

(H + µI)v = ≠g, µ(ÎvÎ ≠ —) = 0, µ Ø max{0, ≠eigmin(H)}, ÎvÎ Æ —

(3.4.24)

Based on the optimality condition, we will be able to build an upper bound on the
objective function and summarized as follows:

Lemma 3.4.1. (3.4.22) and (3.4.24) share the same optimal dual variable µú,
which is associated with Îd̄Î Æ — and ÎvÎ Æ —. Let d̄ú and vú be the optimal
solution to (3.4.22) and (3.4.24). Then we will have:

q(dú) = qQ(d̄ú) = 1
2(d̄ú)T Qd̄ú + cT d̄ú = qH(vú)

= 1
2(vú)T Hvú + gT vú Æ ≠µú

2 Îd̄úÎ2 = ≠µú

2 ÎvúÎ2 (3.4.25)

Furthermore, for any feasible v, we will have qQ(d̄) = qH(v) if d̄ = Nv.

From above Lemma, we know that it is equivalent to solve (3.4.22) and (3.4.22)
and the optimal objective is upper bounded to be non-positive. When this upper
bound is small enough, we will able to make sure that �„(x) is also negative. Plug

70

1
2(d̄ú)T Qd̄ú + cT d̄úle ≠ µ

ú

2 Îd̄úÎ2 back to (3.3.10):

�„(x) Æ ≠fl

2Îd̄Î2
2µ + flL2

6 ÎdÎ3
2 + —2

2(1 ≠ —)
1�
Æ ≠fl

2Îd̄Î2
2µ +

A
flL2—3

6 + —2

2(1 ≠ —)

B

= ≠fl

2Îd̄Î2
2µ +

A
flL2
6 — + 1

2(1 ≠ —)

B

—2 (3.4.26)

1� is because ÎdÎ Æ —. Here we pick

— = min{11
12 ,

Û
1

flL2
2
}, fl > 1

Put — back into (3.4.26) and we will have

�„(x)
1�
Æ ≠fl

2Îd̄Î2
2µ +

A
flL2— + 1

6

B

—2

= ≠fl

2Îd̄Î2
2µ +

AÔ
fl + 1
6

B
1

flL2
2

2�
Æ fl

A

≠1
2Îd̄Î2

2µ + 1
3
Ô

fl3L2
2

B

1� is from — Æ 11
12 ∆ 1

2(1≠—) Æ 1
6 and 2� can be get from fl > 1 ∆ Ô

fl Æ fl ∆
(Ôfl + 1)/6fl Æ 1/3Ô

fl. If we want the �„(x) is su�cient decent, we may impose
the condition that

1
2Îd̄Î2

2µ Ø 2
3
Ô

fl3L2
2

(3.4.27)

That is:

�„(x) Æ fl

A

≠1
2Îd̄Î2µ + 1

3
Ô

fl3L2
2

B

Æ ≠fl
1

3
Ô

fl3L2
2

= ≠ 1
3Ô

flL2
2

If we have 1
2Îd̄Î2

2µ Ø 2
3
Ô

fl3L
2
2

for all step, then we will come to a 1
3Ô

flL
2
2

approximated
global minimizer. The next step is to show that if we pick fl to be large enough,
we will have the x is a ‘1, ‘2-KKT2 solution when the �„(x) fails to be su�cient
decent.

71

Lemma 3.4.2. Set fl = 2+1/L2
‘

, — = min{11
12 , 1Ô

flL
2
2
}. If L2 Ø 2, we will reach a

‘,
Ò

‘

2+1/L2
-KKT2 solution when 1

2Îd̄Î2
2µ Ø 1Ô

fl3L
2
2

fails.

The above Lemma shows that by carefully choosing fl, we can ensure that the
when algorithm fail to find a su�cient decent, we will already reach an approximated
KKT2 point.

The next step is to show the iteration complexity. As during the procedure,
we always have �„(x) Æ ≠ 1

3Ô
flL

2
2
. It will lead to two facts. First, „(xt) is upper

bounded by „(0); Second at each iteration „(x) will su�ciently decrease by 1
3Ô

flL
2
2

if we have exact solution to the trust region sub-problem.
Here supposing we can not solve the trust region sub-problem exactly but only

can derive an approximated solution. We need to figure out suitable accuracy for
the approximated solution to make sure Algorithm 1 converge to the correct
solution. To achieve this goal, two things need to happen:

1. If 1
2µúÎd̄úÎ2

2 Æ 2
3
Ô

fl3L
2
2
, we must be able to ensure the next step converge to

an approximated KKT2 point.

2. If 1
2µúÎd̄úÎ2

2 Ø 2
3
Ô

fl3L
2
2
, we must be able to show that the approximated

solution will also lead to a su�cient decent, i.e. �„(xk) = O(1
Ô

fl
)

Where µú and d̄ú is the optimal solution to (3.4.21). Per Lemma 3.4.2, we
know that if 1

2µúÎd̄úÎ2
2 Æ 1Ô

fl3L
2
2
, we will terminate with an approximated KKT2

point. Therefore the approximated solution must satisfy qQ(d̄) Æ qQ(d̄ú)+ 1
3
Ô

fl3L
2
2

∆

qQ(d̄) Æ ≠ 2
3
Ô

fl3L
2
2
. Here d̄ is the approximated solution. If 1

2µúÎd̄úÎ2
2 Ø 2

3
Ô

fl3L
2
2

and
the approximated solution satisfies:

qH(v) = 1
2 d̄Hd̄ + gd̄ Æ ≠ 5

12
Ô

fl3L2
2

∆ �„(xk) Æ fl

A

qH(v) + 1
3
Ô

fl3L2
2

B

Æ ≠ 1
12Ô

flL2
2

If we can solve for an approximated solution with qQ(d̄) Æ ≠ 5
12

Ô
fl3L

2
2
, we will also

have su�cient descent of �„(xk+1) = O(1
Ô

fl
).

In summary, for case 1, we will focus on solving for an approximated solution
with qQ(d̄) ≠ qQ(d̄ú) Æ 1

3
Ô

fl3L
2
2

or 1
2 µ̃Îd̄Î2 Æ 2

3
Ô

fl3L
2
2
.For case 2, we require qH(v) Æ

72

≠ 5
12

Ô
fl3L

2
2

and we will be able to be able to remain su�cient decent before reaching
an approximated KKT2 solution.

In Algorithm 2, we approximately solve the trust region sub-problem (3.3.12)
via a two stage framework: binary search the dual variable µ and approximate d̄.
Let first consider the scenario that we can have exact solution d̄e for a given µ.

At the optimal solution pair µú and vú, we will have

(NT XÒf(x̃)XN + µúI)vú + Òf(x̃)XN = 0 (3.4.28)

As (NXÒf(x̃)XN + µúI) ≤ 0, we can say that vú is the optimal solution to the
following convex problem:

min 1
2vT (NT XÒf(x̃)XN + µúI)v + Òf(x̃)XNv (3.4.29)

For a given µ̃, ve will satisfy:

ve = arg min 1
2vT (NT XÒf(x̃)XN + µ̃I)v + Òf(x̃)XNv (3.4.30)

Since (3.4.30) allow a close form solution ve = ≠(NXÒf(x̃)XN + µ̃I)≠1Òf(x̃)XN .
It is not hard to show that ll(µ̃) = ÎV eÎ2 is monotonic decreasing in µ. As
ll(µú) = —2, ll(µ̃) < —2, if µ̃ > µú. Therefore by binary search on µ, we will
eventually come to an µ̃ such that min{µú, ÷1} < µ Æ µú + ÷1 from Algorithm 2.
If we switch to the lanczos method branch in Algorithm 2, we denote d̄e = d̄.

We characterize necessary searching accuracy on µ in the following Lemma.

Lemma 3.4.3. Suppose for a given µ in algorithm 2 and we can solve d from
AGD step with infinite precision:

1. µmax Æ 2(F (x0)≠F0)L2
1

‘
+ L2

Ô
L1Ô
‘

+
Ò

‘

L1
, µmin Ø 0

2. If µú Æ 1
6Ô

fl
, we will have an approximated KKT2 solution with µ̃ = 1

6Ô
fl
.

3. If µú > 1
6Ô

fl
and µú Æ µ̃ ≠ µú Æ 1

60Ô
fl
, we will have qH(ve) Æ ≠ 1

2
Ô

fl3L2
or

su�ciently determine an approximated KKT2 solution.

From Lemma 3.4.3, we show that the smallest µ̃ we need to consider is 1
6Ô

fl
.

And we can set the minimum di�erence between µmax and µmin being 1
60Ô

fl
to make

sure µ̃ ≠ µú Æ 1
60Ô

fl
. It is because that µmin Æ µú and µ̃ = µmax. Therefore we could

73

set ÷1, ÷3 = 1
60Ô

fl
and ÷2 = 0 in Algorithm 2 to reach the results in Lemma 3.4.3.

However, we only want to find an approximated solution v to (3.4.30) instead of
exactly solving it. Incorporating with the statements in Lemma 3.2.6, we will
have at each iteration of Algorithm 1, we will either find a feasible direction which
will lead to objective function decreasing by 5

12
Ô

fl3L2
or declare an approximated

KKT2 point in the next step. It is equivalent to claim that the di�erence potential
function will decrease at least by

�„(xt) Æ fl

A

q(d) + 1
3
Ô

fl3L2

B

Æ ≠ 1
12Ô

flL2

before converging to an approximated KKT2 point. As we will require to initialize
with an approximated analytic center, which is the maximizer of:

max
pÿ

i=1
log(xi)

s.t. Ax = b (3.4.31)

x Ø 0

An approximated analytic center leads to a feasible solution such that qp

i=1 log(x0) Ø
qp

i=1 log(xú

i
) ≠ ‘0. If we initial with such approximated analytic center, we will

have:
pÿ

i=1
log(xt

i
) Æ

pÿ

i=1
log(x0

i
) + ‘0 (3.4.32)

From the definition for „(x), we will have:

„(x) Ø fl(F (xú) ≠ F0) ≠
pÿ

i≠1
log(x0

i
) ≠ ‘0 := „floor (3.4.33)

Therefore the number of iteration would be bounded by:

t =

WWWU„(0) ≠ „floor

1
12Ô

flL2

XXXV

74

=

WWWUfl(F (x0) ≠ F0) ≠ qp

i=1 log(x0
i
) ≠ (fl(F (xú) ≠ F0) ≠ qp

i=1 log(xú

i
))

1
12Ô

flL2

XXXV

=

WWWUfl(F (x0) ≠ F (xú)) ≠ fl(qp

i=1 log(x0
i
) ≠ qp

i=1 log(xú

i
))

1
12Ô

flL2

XXXV

Since we assume qp

i=1 log(x0
i
) ≠ qp

i=1 log(xú

i
)) Æ 1

3(F (xú) ≠ F0):

t =

WWWUfl(F (x0) ≠ F (xú)) ≠ fl(qp

i=1 log(x0
i
) ≠ qp

i=1 log(xú

i
))

1
12Ô

flL2

XXXV

Æ

WWWU
2
3fl(F (x0) ≠ F (xú))

1
12Ô

flL2

XXXV

=
7
8L2

Ò
fl3 (F (0) ≠ F (xú))

8

As we set fl = max{2+2/L2
‘

, 1.1}, for small enough ‘, we will have:

t Æ
7
8L2

Ò
fl3 (F (0) ≠ F (xú))

8

Æ

WWWU8L2 (F (0) ≠ F (xú)) (2 + 2/L2)3/2

‘3/2

XXXV

= O

Q

a8L2 (F (0) ≠ F (xú)) (2 + 2/L2)3/2

‘3/2

R

b

If the objective function is strictly saddle and Ax = b is absent, an approximated
second order necessary solution will also be an approximated local minimizer [36].
The last two statements in Theorem 3.2.9 follow.

3.4.3 Proof of Theorem 3.2.10

Proof. From Algorithm 2, we know that the outer loop is a binary search with
upper bound µmax and lower bound µmin. Thus it will terminate in log(µmax≠µmin

÷1
)

iterations. In each iteration, we will either meet a AGD step or Lanczos step.
For AGD step, we will always have µ Ø µmin,0 + 3÷1/2. Since we set µmin,0 >

≠⁄min(NT Ò2F (x)N)≠÷1/2, µ will always greater than ⁄min(NT XÒ2F (x)XN)+÷1.

75

From the optimality condition (15):

(NXÒ2F (x̃)XN + µI) ≤ (NXÒ2F (x̃)XN + (≠⁄min(NXÒ2F (x̃)XN) + ÷1)I) ≤ ÷1I

(3.4.34)

Therefore for AGD step, we will always work on an at least ÷1≠ strongly
convex function. Via the Lemma 3.2.6, the complexity for a single AGD step
will be O(

Ò
L1
÷1

log(L1
÷1÷2

)). If we face the Lanczos step, the complexity will be
O(

Ò
2L1
÷3

log(n
2

”2)) via bf Corollary 2.3. Combine those observations, we will have for
the loop part, the total number of iteration would be upper bounded by:

O

A

log
A

µmax ≠ µmin
÷1

B

max{
Û

L1
÷1

log
A

L1
÷1÷2

B

,

Û
2L1
÷3

log
A

n2

”2

B

}
B

(3.4.35)

Before the beginning of the loop, we will need to calculate N matrix, which contains
the orthonormal basis spanning AX and it can be done by QR factorization on
AX, which requires O(n2) times matrix vector multiplication. In cooperate with
Assumption B, we will have the total computation cost for Algorithm 2 will
be:

O

A

n2T2 + log
A

µmax ≠ µmin
÷1

B

max{
Û

L1
÷1

log
A

L1
÷1÷2

B

,

Û
2L1
÷3

log
A

n2

”2

B

T1}
B

(3.4.36)

From Algorithm 1, we know that µmax is upper bounded by O(‘≠1) and µmin

is lower bounded by 0 globally. ÷1, ÷3 is on the order of O(fl≠1/2) = O(‘1/2) and
÷2 = O(‘5/2). Plug them into (3.4.36) we will have the computation cost is bounded
by

O

Q

an2T2 +
Û

L1Ô
‘

log
A

�max ≠ L1Ô
‘

B

max

Y
]

[log
Q

aL1L
3/2
2

‘2

R

b , log
A

n2t2

”2

BZ
^

\ T1

R

b

(3.4.37)

Its dependence on ‘ is O(‘≠1/4 log(1/‘)2).

76

3.4.4 Proof of Theorem 3.2.11

Proof. Follow the last statement in Theorem 3.2.10, we will have the computation
cost for Algorithm 2 is bounded by:

O

Q

an2T2 +
Û

L1Ô
‘

log
A

�max ≠ L1Ô
‘

B

max

Y
]

[log
Q

aL1L
3/2
2

‘2

R

b , log
A

n2t2

”2

BZ
^

\ T1

R

b

(3.4.38)

Combine the iteration upper bound in Theorem 3.2.9, (4) and (5) follow im-
mediately. To show (6), we will need to introduce special techniques for find N

when A has special structure. Without exploring the special structure of AX, the
computation cost of projecting a vector on to the AXd = 0 is almost the same as
OR factorization on AX. For general AX case, our method could be as e�cient as
than any algorithm involving the step-wise projection on to AXd = 0. When AX

has special structure (e.g. low-rank, box constraints), the projection operation can
work very e�ciently and can reach O(nT2). In this scenario, we design the special
procedure to derive N which computation cost is also O(nT2). We summarize them
in the following Lemma.

Lemma 3.4.4. 1. If we only have box constraints, i.e. A = (I I) , N has closed
form solution

N =

Q

ccccccccccccccccccca

≠xn/2+1/
Ò

x2
n/2+1 + x2

1

≠xn/2+2/
Ò

xn/2+2/2 + x2
2

. . .

≠xn/
Ò

x2
n

+ x2
n/2

x1/
Ò

x2
n/2+1 + x2

1

x2/
Ò

xn/2+2/2 + x2
2

. . .

xn/2/
Ò

x2
n

+ x2
n/2

R

dddddddddddddddddddb

2. If A is row independent, rank(A) = s π n and A is element-wise non-zero.

77

There exist a upper s bands matrix M such that

M =

Q

ccccccccccccca

m11 0 0
... 0

ms1 . . . mss 0 . . . 0
0 0
... 0
0 . . . 0 mn,n≠2s . . . mn,n≠2

R

dddddddddddddb

M contains the basis span the null space of A. N can be calculated in
O(2snT2) ¥ O(sT1) with M .

Based on the above Lemma, we can see that if A has some special structures,
we do not need to reply on RQ factorization to find N but can only require O(nT2)
computation cost, which almost match the cost like special case in projection
operation. We can replace the computation cost for N in Theorem 3.2.10
(O(n2T2)) by O(T1) and the (6) follows.

3.4.5 Proof of Lemma 3.4.1

Proof. Let

p = Qd̄ú + c ≠ ĀT ⁄

Then from the optimality condition (3.4.22):

µú = ÎpÎ
Îd̄úÎ

, d̄ú = ≠Îd̄úÎp

ÎpÎ (3.4.39)

And

1
2(d̄ú)T Qd̄ú + cT d̄ú = (d̄ú)T (Qd̄ + c) ≠ 1

2(d̄ú)T Qd̄ú

1�= (d̄ú)T (Qd̄ú + c ≠ Ā⁄) ≠ 1
2(d̄ú)T Qd̄ú

2�= (d̄ú)T p ≠ 1
2(d̄ú)T Qd̄ú

78

3�= ≠Îd̄úÎÎpÎ ≠ 1
2(d̄ú)T Qd̄ú

4�= ≠Îd̄úÎ2
2µ

ú ≠ 1
2(d̄ú)T Q(d̄ú)

5�= ≠Îd̄úÎ2
2µ

ú ≠ 1
2vT NT QNv

Æ ≠Îd̄úÎ2
2µ

ú ≠ 1
2⁄min(NT QN)ÎvÎ2

6�= ≠Îd̄úÎ2
2µ

ú + ⁄min(H)
2 Î(d̄ú)T NT Nd̄úÎ2

2

7�
Æ ≠µú

2 Îd̄úÎ2
2 (3.4.40)

The above equations provide an upper bound of the function value of (3.4.21). 1� is
because we have Ād̄ú = 0 in (3.4.22). In 2� we replace p by Qd̄ + c ≠ ĀT ⁄. 3� and 4�
are from (3.4.39). As N is the orthonormal basis of the null space of A, we will
have Nv = d̄. 5� and 6� follow. And the 7� is because µ Æ ≠⁄min(H) in (3.4.24).

Furthermore, as Nv = d̄, we will have ÎvÎ2 = vT v = d̄T NT Nd̄ = Îd̄Î2 and

1
2vT Hv + gv = 1

2 d̄T NT NQNT Nd̄ + cNT Nd̄ = 1
2 d̄T Qd̄ + cd̄ (3.4.41)

And it is easy to verify that vú = NT d̄ú, µú also satisfy the optimal condition
(3.4.24). And we will have

qH(vú) = qQ(d̄ú) Æ ≠µú

2 Îd̄úÎ2 = ≠µú

2 ÎvúÎ2

The last statement is because X≠1d = d̄ ∆ q(d) = qq(d̄).

3.4.6 Proof of Lemma 3.4.2

Proof. Here we consider two cases: case 1. If Îd̄Î < —, then we will have µ = 0.
From the optimal condition for (3.4.21):

Qd̄ ≠ Ā⁄ + c = 0

Ād̄ = 0, NT QN ≤ 0

79

It leads to

XÒ2F (x≠)Xd̄ ≠ AX⁄ + XÒF (x≠) = 1
fl

e Ø 0 (3.4.42)

case 2. If Îd̄Î = —:

1Ô
fl3L2

2
>

1
2Îd̄Î2

2µ = 1
2µ—2 ∆ µ Æ 2Ô

fl3—2L2
2

From the optimal condition:

(Q + µI)d̄ ≠ Ā⁄ + c = 0

Ād̄ = 0, Îd̄Î = —

NT (Q + µI)N ≤ 0

We will have:

XÒ2F (x≠)Xd̄ ≠ AX⁄ + XÒF (x≠) = ≠µd̄ + 1
fl

e

Æ µÎd̄Îe + 1
fl

e

Æ
A

2Ô
fl3—L2

2
+ 1

fl

B

e

1�
Æ

3 2
L2

+ 1
4 1

fl
e

1� is due to — Æ 1Ô
flL

2
2
. And similarly:

XÒ2F (x≠)Xd̄ ≠ AX⁄ + XÒF (x≠) = ≠µd̄ + 1
fl

e

Ø ≠µÎd̄Îe + 1
fl

e

Ø
A

≠ 2Ô
fl3—2L2

2
+ 1

fl

B

e

Ø
3

≠ 2
L2

+ 1
4 1

fl
e

80

If we assume L2 Ø 2 ∆ 2
L2

Æ 1:

0 Æ
3

≠ 2
L2

+ 1
4 1

fl
e Æ XÒ2F (x≠)Xd̄ ≠ AX⁄ + XÒF (x≠) Æ

3
≠ 2

L2
+ 1

4 1
fl

e Æ 2
fl

e

(3.4.43)

Thus for both cases, we will have:

0 Æ XÒ2F (x≠)Xd̄ ≠ AX⁄ + XÒF (x≠) Æ 2
fl

e

0 Æ XÒ2F (x≠)Xd̄ ≠ AX⁄ ≠ X
1
ÒF (x) ≠ ÒF (x≠)

2
+ XÒF (x) Æ 2

fl
e

0 Æ XÒ2F (x≠)Xd̄ ≠ AX⁄ ≠ X

1�˙ ˝¸ ˚
Ò2F (·x + (1 ≠ ·)x≠)(x ≠ x≠) +XÒF (x) Æ 2

fl
e

0 Æ XÒ2F (x≠)Xd̄ ≠ AX⁄ ≠ XÒ2F (·x + (1 ≠ ·)x≠)Xd̄ + XÒF (x) Æ 2
fl

e

0 Æ X(Ò2F (x≠) ≠ F (·x + (1 ≠ ·)x≠))Xd̄ ≠ AX⁄ + XÒF (x) Æ 2
fl

e

(3.4.44)

1� is from Taylor expansion, where · œ (0, 1). Since we have lipschitz hessian:

ÎÒ2F (x≠) ≠ F (·x + (1 ≠ ·)x≠)Î Æ L2·Îx ≠ x≠Î Æ L2·R— (3.4.45)

It will lead to:

2
fl

e Ø X(Ò2F (x≠) ≠ F (·x + (1 ≠ ·)x≠))Xd̄ ≠ AX⁄ + XÒF (x)

Ø ≠L2·—2e ≠ AX⁄ + XÒF (x)

∆ ≠AX⁄ + XÒF (x) Æ e

A
2
fl

+ L2·—2
B

∆ ≠AX⁄ + XÒF (x) Æ e

A
2
fl

+ L2·—2
B

Similarly:

0 Æ X(Ò2F (x≠) ≠ F (·x + (1 ≠ ·)x≠))Xd̄ ≠ AX⁄ + XÒF (x)

Æ R3L2·—2e ≠ AX⁄ + XÒF (x)

81

∆ ≠AX⁄ + XÒF (x) Ø e

A
2
fl

≠ L2·—2
B

(3.4.46)

As we have — Æ
Ò 1

flL
2
2
:

|L2·—2| Æ L2
1

flL2
2

= 1
flL2

(3.4.47)

Therefore:

e

A
2
fl

≠ L2·—2
B

Æ ≠AXy + XÒF (x) Æ e

A
2
fl

+ L2·—2
B

e

fl

3
2 ≠ 1

L2

4
Æ ≠AXy + XÒF (x) Æ e

fl

3
2 + 1

L2

4

If we assume that L2 Ø 2 and pick fl =
2+ 1

L2
‘

:

e

fl

3
2 ≠ 1

L2

4
Ø 0

1
fl

3
2 + 1

L2

4
= ‘

∆ 0 Æ ≠AXy + XÒF (x) Æ ‘e

(3.4.48)

Since we always have AXd̄ = 0 and x≠ is a strictly interior point, x = Xd̄ + x≠

will also be a feasible interior point, which means Ax = b is satisfied. Till now,
we show that the solution x is an first order ‘-KKT point. The next step is to
prove it also satisfied the second order necessary condition. Here we involve the
linear constraints, the second order necessary will become the reduced hessian to be
positive definite instead of the original hessian. The reduced hessian is defined as:

Hreduce = NT Ò2F (x)N (3.4.49)

If we reconsider the case 1 and case 2, we will have

NT X≠1(Q + µI)X≠1N ≤ 0

N(Ò2F (x) + µI)N ≤ 0

82

(Hreduce + µI) ≤ 0

As we will stop at 1
2Îd̄Î2

2µ Æ 2
3
Ô

fl3L
2
2

Æ 1Ô
fl3L

2
2
. If µ > 0, we will have

Îd̄Î = —

∆µ Æ 1Ô
fl3L2

2—2

µ Æ 1
Ô

fl
=

Û
‘

2 + 1
L2

Thus we must have:

Hreduce ≤ ≠
Û

‘

2 + 1
L2

(3.4.50)

Now the second order necessary condition is satisfied.

3.4.7 Proof of Lemma 3.4.3

Proof. For part 1, from the optimality condition (3.4.24), we know that µú Ø 0,
therefore we only need to search xmin Ø 0. For µmax, combine Lemma 3.4.2 and
(3.4.20):

1
2µúÎd̄úÎ2

2 Æ ≠1
2(d̄ú)T XÒ2F (xt)Xd̄ú ≠ (ÒF (xt)X ≠ 1

fl
)d̄ú

As F is L2-scaled Lipschitz hessian:

ÎF (xt + Xd̄ú) ≠ F (xt) ≠ ÒF (xt)Xd̄ú ≠ 1
2(d̄ú)T XÒ2F (xt)Xd̄úÎ Æ1

6L2Îd̄úÎ3

(3.4.51)

Thus

1
2(d̄ú)T XÒ2F (xt)Xd̄ú Æ F (xt + Xd̄ú) ≠ F (xt) ≠ ÒF (xt)Xd̄ú + 1

6L2Îd̄úÎ3

83

And

1
2µúÎd̄úÎ Æ ≠ 1

2(d̄ú)T XÒ2F (xt)Xd̄ú ≠ (ÒF (xt)X ≠ 1
fl

)d̄ú

ÆF (xt + Xd̄ú) ≠ F (xt) + L2Îd̄úÎ3 + 1
fl

d̄ú

ÆF (x0) ≠ F0 + L2Îd̄úÎ3
2 + 1

fl
Îd̄úÎ

As Îd̄úÎ Æ —

1
2µúÎd̄úÎ ÆF (x0) ≠ F0 + L2—

3 + 1
fl

—

If Îd̄úÎ < —, we will have µú = 0. And supposing µú > 0, we must have Îd̄úÎ = — > 0
and we upper bounded the non-zero µú by

µú Æ 2F (x0) ≠ F0
—2 + L3R

3— + 1
fl—

Thus our search space on µ is upper bound by 2F (x0)≠F0
—2 + L3R3— + 1

fl—
and we only

need to set µmax = 2F (x0)≠F0
—2 + L3R3— + 1

fl—
.

For part 2, as µ̃ Æ 1
6Ô

fl
:

1
2 µ̃Îd̄Î2 Æ 1

2
1

6Ô
fl

—2 = 1
12

Ô
fl3L2

2
<

1Ô
fl3L2

2
(3.4.52)

Via Lemma 3.4.2, we know it µ̃ will lead to an approximated KKT2 solution.
For part 3, we consider two cases µú + ⁄min(H) Æ 10÷1 and µú + ⁄min(H) Ø 10÷1.

For the first case, we will switch to lanczos method. Since F is L2-scaled
Lipschitz, we will have L1I ≤ H ≤ ≠L1I. Per Corollary 2.3, we will be able to
solve for a unit vector ṽ such that:

ṽT Hṽ Æ ⁄min(H) + ÷3 (3.4.53)

And we choose the v = ≠ṽ—sign(gT v):

1
2vT Hv + gT v Æ 1

2vT Hv Æ 1
2—2(⁄min(H) + ÷3) Æ ≠µú + 10÷1 + ÷3

2 —2 (3.4.54)

84

If 1
2µúÎd̄úÎ2 Ø 2

3
Ô

fl3L
3
2
, we will have

1
2vT Hv + gT v Æ ≠ 2

3
Ô

fl3L2
+ 1

24
Ô

fl3L2
2

+ ÷3
2 —2 Æ ≠ 1

2
Ô

fl3L2
2

It means that v will lead to a su�cient decent.
On the other hand, if 1

2µúÎd̄úÎ2 < 2
3
Ô

fl3L
3
2
, we will have 1

2 µ̃ÎvÎ2 Æ 1
2(µú + 1

12Ô
fl

+

÷3)—2 Æ 1Ô
fl3L

2
2
. Via Lemma 3.4.2 we can conclude that the new solution will also

be an KKT2 solution.
For the second case, we first consider the di�erence between Îd̄úÎ2 and Îd̄Î2:

Îd̄úÎ2
2 ≠ Îd̃Î2

2

=Îd̄úÎ2
2 ≠ Î(H + µ̃I)≠1gÎ2

2

=Îd̄úÎ2
2 ≠ Î(H + µ̃I)≠1(H + µúI)(H + µúI)≠1gÎ2

2

=Îd̄úÎ2
2 ≠ Î(H + µ̃I)≠1(H + µúI)d̄úÎ2

2

=d̄ú(I ≠ (H + µúI)(H + µ̃I)≠2(H + µúI))d̄ú

The main idea of above proof utilize the fact that (H + µú)d̄ú = (H + µ̃)d̄ = ≠g

and (H + µú) º 0. Next we want to leverage the condition µú < µ̃ < µú + ÷1:

d̄ú(I ≠ (H + µúI)(H + µ̃I)≠2(H + µúI))d̄ú

=d̄ú(I ≠ (H + µ̃I + µú ≠ µ̃)(H + µ̃I)≠2(H + µ̃I + µú ≠ µ̃))d̄ú

=d̄ú(I ≠ I ≠ (µú ≠ µ̃)2(H + µ̃I)≠2 ≠ 2(µú ≠ µ̃)(H + µ̃I)≠1)d̄ú

=d̄ú(≠(µú ≠ µ̃)2(H + µ̃I)≠2 ≠ 2(µú ≠ µ̃)(H + µ̃I)≠1)d̄ú

Via holder inequality, we will have:

d̄ú(≠(µú ≠ µ̃)2(H + µ̃I)≠2 ≠ 2(µú ≠ µ̃)(H + µ̃I)≠1)d̄ú

ÆÎd̄úÎ2
2

1
Î ≠ (µú ≠ µ̃)2(H + µ̃I)≠2 ≠ 2(µú ≠ µ̃)(H + µ̃I)≠1Î

2

As (H + µ̃I) ≤ µ̃ + ⁄min(H) > 0:

Î ≠ (µú ≠ µ̃)2(H + µ̃I)≠2 ≠ 2(µú ≠ µ̃)(H + µ̃I)≠1Î

85

Æ
A

≠ (µú ≠ µ̃)2

(µ̃ + ⁄min(H))2 ≠ 2 µú ≠ µ̃

µ̃ + ⁄min(H)

B

=
A

≠(µú ≠ µ̃)2 + 2(µú ≠ µ̃)(µ̃ ≠ µú + µú + ⁄min(H))
(µ̃ + ⁄min(H))2

B

=
A

(µú ≠ µ̃)2 + 2(µ̃ ≠ µú)(µú + ⁄min(H))
(µ̃ + ⁄min(H))2

B

=
A

1 ≠ (µú + ⁄min(H))2

(µ̃ + ⁄min(H))2

B

As µú + ⁄min(H) Ø 10÷1 and µ̃ Æ µú + ÷1

A

1 ≠ (µú + ⁄min(H))2

(µ̃ + ⁄min(H))2

B

Æ
A

1 ≠ (µú + ⁄min(H))2

(µú + ÷1 + ⁄min(H))2

B

Æ
Q

a1 ≠ 1
(1 + ÷1

µú+⁄min(H))2

R

b Æ
A

1 ≠ 1
(1 + 1

10)2

B

Æ 1
5

Therefore Îd̄úÎ2 ≠ Îd̄Î Æ 1
5Îd̄úÎ. The next job is to show that if Îd̄úÎ is not far away

from Îd̃Î, the function value q(d̄ú) will also not be far away from q(d̃):

1
2dHd + gd ≠ 1

2dúHdú ≠ gdú

1�= ≠ 1
2 d̃(µ̃d̃ + g) + gd̃ + 1

2 d̄ú(µúd̄ú + g) ≠ gd̄ú

= ≠ 1
2 µ̃ÎdÎ2

2 + 1
2µúÎdúÎ2

2 + 1
2gd ≠ 1

2gdú

= ≠ 1
2 µ̃Îd̃Î2

2 + 1
2µúÎd̄úÎ2

2 + 1
2(gd̃ + d̃Hd̄ú ≠ d̃Hd̄ú) ≠ 1

2gd̄ú

= ≠ 1
2 µ̃Îd̃Î2

2 + 1
2µúÎd̄úÎ2

2 + 1
2(g + Hd̄ú)d̃ ≠ 1

2(g + Hd̃)d̄ú

= ≠ 1
2 µ̃Îd̃Î2

2 + 1
2µúÎd̄úÎ2

2 ≠ 1
2µúd̄úd̃ + 1

2 µ̃d̃d̄ú

=1
2µú(Îd̄úÎ2

2 ≠ Îd̃Î2
2) + 1

2(µ̃ ≠ µú)(≠Îd̃Î2
2 + d̃úd̄)

2�
Æ 1

10µú—2 + 1
2

1
60Ô

fl
(—2 + —2)

= 1
10µúÎd̄úÎ2 + 1

60Ô
fl

—2

1� uses (H + µ̃I)d̃ = ≠g and (H + µúI)d̄ú = ≠g. 2� uses Îd̄úÎ2 ≠ Îd̄Î Æ 1
5Îd̄úÎ and

86

µ̃ ≠ µú Æ ÷1 = 1
60Ô

fl
. If 1

2µúÎd̄úÎ2 Ø 2
3
Ô

fl3L
2
2
:

1
2dHd + gd Æ 1

2dúHdú + gdú + 1
10µúÎd̄úÎ2 + 1

60Ô
fl

—2

As 1
2dúHdú ≠ gdú Æ ≠1

2µúÎd̄úÎ2,

1
2dHd + gd Æ ≠2

5µúÎd̄úÎ2 + 1
60Ô

fl
—2

Æ ≠ 8
15

Ô
fl3L2

2
+ 1

60
Ô

fl3L2
2

Æ ≠ 31
60

Ô
fl3L2

2
Æ ≠ 1

2
Ô

fl3L2
2

If 1
2µúÎd̄úÎ2 < 2

3
Ô

fl3L
2
2
, we will have:

1
2dHd + gd ≠ 1

2dúHdú ≠ gdú Æ 1
10µúÎd̄úÎ2 + 1

60Ô
fl

—2 Æ 1
12

Ô
fl3L2

2

In conclusion, if we combine the results for case 1 and case 2 together, we will
have

q(d̄) = 1
2vT Hv + gT v Æ max{≠ 1

2
Ô

fl3L2
2
, ≠ 1

2
Ô

fl3L2
2
,
1
2(vú)T Hvú + gT vú + 1

12
Ô

fl3L3
2
}

Æ max{≠ 1
2
Ô

fl3L2
2
, q(d̄ú) + 1

12
Ô

fl3L3
2
}

3.4.8 Proof of Lemma 3.3.1

Proof. If we are using the lanczos method, we will have v = ve by definition. Now
we only need to consider the AGD method branch. The problem we solve in AGD
branch is:

min 1
2vT (NXÒf(x̃)XN + µ̃I)v + Òf(x̃)XNv

87

Denote the above function as Fµ̃(v), we will have Fµ̃(v) is at least ÷1-strongly
convex:

÷1
2 Îv ≠ veÎ2 Æ Fµ̃(v) ≠ Fµ̃(ve) ≠ ÒFµ̃(ve)(v ≠ ve)

As ÒFµ̃(ve) = 0, we will have:

÷1
2 Îv ≠ veÎ Æ Fµ̃(v) ≠ Fµ̃(ve) ∆ ÎveÎ2 ≠ ÎvÎ2 Æ Fµ̃(v) ≠ Fµ̃(ve)

÷1
Æ ÷2

L1÷1

Where the last inequality use the fact that Fµ̃(v) ≠ Fµ̃(ve) Æ ÷2
L1

if we adopt the
AGD method. Since Fµ̃(v) = q(v) + 1

2 µ̃ÎvÎ2, combine it with Fµ̃(v) ≠ Fµ̃(ve) Æ ÷2
L1

:

q(v) ≠ q(ve) Æ ÷2
L1

+ 1
2 µ̃(ÎveÎ2 ≠ ÎvÎ2) Æ ÷2(2 + µ̃)

2L1÷1
Æ ÷2

2 + �max
2L1÷1

The last inequality is because µ̃ < µmax = �max. If 1
2µúÎvúÎ2 Ø 2

3
Ô

fl3L2
, we will

require qH(v) ≠ qH(ve) Æ 1
12

Ô
fl3L

2
2

therefore we could set

÷2 Æ L1÷1

6
Ô

fl3L2
2(2 + �max)

= L1
360fl2L2

2(2 + �max) (3.4.55)

to fulfill this requirement.
If 1

2µúÎd̄úÎ2 < 2
3
Ô

fl3L2
, as we know qH(V) > qH(V e). Therefore if qH(ve) can

determine an approximated KKT2 solution, qH(v) will also remain insu�cient
descent and stop at an approximated KKT2 solution. Combine with q(d) = qH(v),
the final result follows.

3.4.9 Proof of Lemma 3.4.4

Proof. We first consider the case 1, where A = (I I). Denote the diag matrix X asQ

ax

s

R

b where x = diag(x1, ..., xn/2) and s = diag(xn/2+1, ..., xn) and we will have:

AX =
1
I I

2
Q

ax

s

R

b =
1
x s

2
. (3.4.56)

88

We can find one the null space is

N =
Q

a≠s

x

R

b =

Q

cccccccccccccccccca

≠s1

≠s2

. . .

≠sn

x1

x2

. . .

xn

R

ddddddddddddddddddb

.

Since N is column orthogonal, we only need to normalized it into:

Ñ =

Q

cccccccccccccccccca

≠s1/
Ò

s2
1 + x2

1

≠s2/
Ò

s2
2 + x2

2

. . .

≠sn/
Ò

s2
n

+ x2
n

x1/
Ò

s2
1 + x2

1

x2/
Ò

s2
2 + x2

2

. . .

xn/
Ò

s2
n

+ x2
n

R

ddddddddddddddddddb

. (3.4.57)

The result related to the box constraints in Lemma 3.4.4 follows. Next we focus
on the case 2. By solve the following linear programming problem:

min 0 s.t.Ad = 0

we will be able to seperate A in to basis part B and non-basis part C. One can verify

Ñ =
Q

a≠B≠1C

I

R

b contains basis that span the null space of A. (AÑ = (B C)Ñ =

≠C + C = 0 and rank(Ñ) = n ≠ rank(A)). N has a special structure. Except
the first s rows, the remaining part is an identity matrix. Therefore with column
operations we will be able to have a M matrix described in the Lemma 3.4.4. N

can be transfer into M . Note that M only need to be calculate once and it has
sparse structure. The computation cost and store cost can be very small.

Based on M , we only need to calculate the orthonormal matrix N . As AM = 0,

89

we will have AXX≠1M = 0, which means X≠1M is a matrix that contains the
basis spanning the null space of AX. Since X≠1 is diagonal, sparse structure of
X≠1M is the same as M . If we use gram schmidt orthogonalization procedure to
find N from X≠1M , the computation cost for find every orthonormal vector would
be bounded by O(sT2). It is because the the i ≠ th column is naturally orthogonal
to the (i + s) ≠ th column and the column after that. Hence to computation
such N could only require O(snT2) cost. As O(T2) is the time for vector-vector
multiplication and O(T1) is the upper bound for matrix-vector multiplication. We
will have O(snT2) = O(sT1).

3.5 Conclusion
We discuss an accelerated interior point gradient method for nonconvex program-
ming with linear constraints. We integrate the accelerated gradient descent method
with Lanczos method and show that the worst case complexity of gradient based
algorithm will be approximately upper bounded by Õ(‘≠7/4) with high probability.
Our method doesn’t involve matrix inversion calculation that can be very time
consuming for large scale optimization. Compared with classic first-order methods,
our method breaks the O(‘≠2) barriers.

90

Chapter 4 |
MCP Multi-Armed Bandit Model
with High-Dimensional Covari-
ates

4.1 Introduction
Individual-level data have become increasingly accessible in the Internet era, and
decision-makers have accelerated data accumulation with extraordinary speed in
a variety of industries, including health care, retail, advertising, etc. The grow-
ing availability of user-specific data, such as demographics, geographics, medical
records, and searching/browsing history, provides decision-makers with unprece-
dented opportunities to tailor decisions to individual users. For example, doctors
can personalize treatments for patients based on their medical history, clinical tests,
and biomarkers; search engines can o�er personalized advertisements for users based
on their queries, demographics, and geographics. These user-specific data are often
collected sequentially over time, during which decision-makers adaptively learn to
predict the expected rewards based on users’ responses to each available decision
as a function of the user-specific data (i.e., the user’s covariates) and optimally
adjust decisions to maximize their rewards – an online learning and decision-making
process.

This online learning and decision-making process requires a thoughtful balance
between exploration and exploitation. Consider a decision-maker who selects
decisions for incoming users and obtains rewards based on users’ responses to these

91

decisions. To maximize his expected rewards, the decision-maker first needs an
accurate predictive model for users’ responses, which is typically uncertain at the
beginning but can be partially learned through collecting samples of users’ responses.
On the one hand, the decision-maker could select a decision that yields the “highest”,
based on his best knowledge so far, expected reward (i.e., exploitation). Yet, this
decision can be suboptimal, as the selection is based on the rough prediction of
users’ responses due to limited samples. Even worse, the decision-maker could
incorrectly estimate the expected reward of the true optimal decision to be low and
never have a chance to correct such a mistake (as the decision-maker will not select
the true optimal decision due to the current low reward prediction, he will not
generate additional samples to be able to learn and correct his incorrect estimation).
On the other hand, the decision-maker can improve his predictive ability and learn
users’ responses by collecting more response samples, which often are obtained
through random clinical trials and/or user experiments and are typically costly
(i.e., exploration). The exploration and exploitation dilemma has been extensively
studied in the multi-armed bandit model ([69]), but the growing dimensionality and
availability of data have added another layer of complexity to the bandit model.

In practice, individual-level data are typically presented in a high-dimensional
fashion, which poses significant computational and statistical challenges in the
online learning and decision-making process. Traditional statistical methods, such as
Ordinary Least Squares (OLS), require a large number of samples (e.g., the sample
size must be larger than the covariate dimension) to be deemed computationally
feasible. Under high-dimensional settings, learning the accurate predictive models
requires a substantial amount of samples, which are obtained, if possible, through
costly trials or experiments. Take the search advertising industry for example.
Search advertising occurs when an Internet user searches certain keyword(s) (i.e., a
query) in an online search engine and then the search engine displays both search
results, in response to the user’s query, and some sponsored ads, in response to
the query and user-specific information. In order to select the ad that maximizes
its revenue, the search engine must have accurate estimations on users’ clicking
probabilities in response to the displayed ads – Click-Through Rate (CTR).

However, the search engine’s ability to accurately predict CTR is often crippled
by the high-dimensional search advertising data coupled with limited samples.
Counting more than three quarters of a million distinct words and their combinations

92

([66]), there are nearly infinite possible queries the user can submit to the search
engine. For example, from 2003 to 2012, Google answered 450 billion unique queries,
and it has estimated that 16% to 20% of queries submitted every day have never
been used before ([58]). Hence, to accurately estimate a single ad’s CTR to these
queries, the search engine requires billions, if not trillions, of samples. The craving
for samples will be further intensified if the search engine practices personalized
advertising by taking users’ individual information (such as demographics and
geographics) into consideration. However, the available samples for the search
engine to learn and predict CTR are greatly limited. Consider a 45 days new
marketing campaign promoting a sales event or merchandise, during which time
an average ad is expected to reach approximately one third of a million users
([79, 90]). Among these users, a very small portion can be selected to perform
costly experiments to learn CTR, and that number is much smaller comparing to
the size of queries and individual data.

In this work, we propose a new algorithm, the G-MCP-Bandit algorithm, for
online learning and decision-making processes in high-dimensional settings. Our
algorithm follows the ideas of the bandit model and develops a ‘-decay random
sampling method to balance the exploration-and-exploitation trade-o�. We allow
the decision-maker’s reward function to follow the generalized linear model ([55]),
which is a large class of models including the linear model, the logistic model,
the Poisson regression model, etc., and we adopt the Minimax Concave Penalized
(MCP) method ([94]) to improve the parameter estimations and predict the expected
rewards in high-dimensional settings.

In the high-dimensional statistics literature, MCP is developed to explore and
recover the latent sparse data structure for high-dimensional data. Compared
to traditional statistical methods (e.g., OLS), MCP uses significantly fewer data
samples and delivers better performance in high-dimensional settings ([94]). Al-
though it is statistically favorable to adopt MCP, solving the MCP estimator (an
NP-complete problem) could be computationally challenging. We propose a linear
approximation method, the 2-step weighted Lasso procedure (2sWL), under the
bandit setting as an e�cient approach to tackle this challenge. We show that the
MCP estimator solved by the 2sWL procedure matches the oracle estimator with
high probability and converges to the true parameter with the optimal convergence
rate. Since the bandit model mixes the exploitation and exploration phases, sam-

93

ples generated under the exploitation phase may be non-iid. Therefore, we adopt
a matrix perturbation technique to derive new oracle inequalities for the MCP
estimator under non-iid samples. To the best of our knowledge, this work is the
first one that applies MCP to handle non-iid samples.

We theoretically demonstrate that the G-MCP-Bandit algorithm can signifi-
cantly improve the cumulative regret bound in high-dimensional settings comparing
to existing bandit algorithms. In particular, we benchmark the G-MCP-Bandit
algorithm to an oracle policy, in which all parameter vectors are common knowledge,
and adopt the expected cumulative regret (i.e., the di�erence in rewards achieved
by the oracle policy and the G-MCP-Bandit algorithm) as the performance measure.
We show that the cumulative regret of the G-MCP-Bandit algorithm over T users
(i.e., a sample size of T) is at most O(log T), which is the optimal/lowest theoretical
bound for all possible algorithms ([37]). Further, we show that the G-MCP-Bandit
algorithm also attains a tight bound in the covariate dimension d, O(log d). We
believe that our work is the first one in high-dimensional settings that attains
the logarithmic dependence on both the sample size dimension and the covariate
dimension, which are of particular importance in high-dimensional data with limited
samples and suggest that the G-MCP-Bandit algorithm can bring substantial regret
reduction comparing to existing bandit algorithms.

Through two synthetic-data-based experiments, we benchmark the G-MCP-
Bandit algorithm’s performance to other state-of-the-art bandit algorithms designed
both in low-dimensional settings, OLS-Bandit by [37] and OFUL by [1], and in
high-dimensional settings, Lasso-Bandit by [9]. We find that the G-MCP-Bandit
algorithm performs favorably in both experiments. In particular, when the sample
size is not extremely small1, the G-MCP-Bandit algorithm appears to be able to
accurately learn the parameter estimations with limited samples and therefore have
the lowest cumulative regret. Furthermore, we observe that the benefits of the
G-MCP-Bandit algorithm over other benchmark algorithms seems to increase with
the data’s sparsity level and the size of the decision set.

Finally, we evaluate the G-MCP-Bandit algorithm’s performance through two
real-data-based experiments, warfarin dosing data and Tencent search advertising
data, where the technical assumptions specified for the theoretical analysis of the G-

1When the sample size is extremely small, the decision-maker has little information to learn.
Therefore, all algorithms perform equally poorly.

94

MCP-Bandit algorithm’s expected cumulative regret may not hold. We observe that
the G-MCP-Bandit algorithm continues to perform favorably in both experiments.
In particular, in the warfarin dosing experiment (formulated as a 3-armed bandit
problem with 93 covariates), the G-MCP-Bandit algorithm needs the fewest patient
samples (i.e., merely 50 patients) to provide better dosing decisions than actual
physicians. Similarly, in the Tencent search advertising experiment (formulated as
a 3-armed bandit problem with hundreds of thousands of covariates), the G-MCP-
Bandit algorithm, after observing 140 users, can consistently generate better average
revenue than other benchmark algorithms under the linear model. Further, we
observe that the choice of the underlying reward model can significantly influence
the G-MCP-Bandit algorithm’s performance. In particular, under the logistic
model, which is a special case of the generalized linear model, the G-MCP-Bandit
algorithm merely needs 20 users to outperform other benchmark algorithms. This
observation suggests that understanding the context of the underlying managerial
problem and identifying the appropriate model for the G-MCP-Bandit algorithm
can be critical and bring the decision-maker substantial revenue improvement.

4.2 Literature Review
This research is closely related to the exploration-exploitation trade o� in the
multi-armed bandit literature. [68, 80] follow the non-parametric approach and
consider that the arm reward can be any smooth non-parametric function. Under
this approach, the expected cumulative regret has an exponential dependence on the
covariate dimension d, which is undesirable under high-dimensional settings where d

can be extremely large. Such exponential dependence can be improved by following
the parametric approach. [7] proposes the UCB algorithm for a linear bandit
model, where the arm reward can be approximated by a linear combinations of
covariates. Since [7], other UCB-type algorithms(e.g., [2, 25, 26, 73]) and Bayesian-
type algorithms (e.g., [5, 74]) have been proposed and shown to improve on the
expected cumulative regret. Yet, allowing the adversary and without regulating
the sample generating process, the statistical performance of the parameter vector
estimation in the learning process may su�er. As a result, the expected cumulative
regret bound typically has a sublinear dependence on the sample size dimension T

(e.g., O(
Ô

T)) and a polynomial dependence on the covariate dimension d. However,

95

in high-dimensional settings, where the covariate dimension and the sample size
dimension can be exceedingly large, these algorithms can perform poorly.

By introducing a forced sampling approach to the linear bandit model, [37] ensure
that enough samples generated in their algorithm possess desired iid property and
show that their proposed OLS-Bandit algorithm can achieve O(log T) dependence
on the sample size dimension T in low-dimensional settings. Following a similar
approach, [9] propose the Lasso-Bandit algorithm, which attains a poly-logarithmic
dependence on the sample size dimension O(log2 T) and the covariate dimension
O(log2 d) in high-dimensional settings. In this work, we allow the reward function
to follow the generalized linear model, which contains a wide family of models that
includes the linear bandit model. We propose a ‘-decay random sampling method
and show that our proposed G-MCP-Bandit algorithm continues to achieve the
optimal cumulative regret bound on the sample size dimension O(log T) and attain
a tight bound in the covariate dimension O(log d) in high-dimensional settings. We
believe that our work is the first one that attains the logarithmic dependence on
both the sample size dimension and the covariate dimension in high-dimensional
settings.

Our research is also connected to the statistical learning literature. In high-
dimensional statistics, Lasso type methods ([83]) have become the golden standard
for high-dimensional learning ([56, 57, 86, 95]). Yet, Lasso-type regularizations
may lead to estimation bias, and strong conditions are needed for analyzing its
theoretical performance guarantee ([28]). Recently, [94] proposes MCP, a non-
convex penalty method, which entails better statistical properties, such as the
unbiasedness and a strong oracle property for high-dimensional sparse estimation,
and requires weaker conditions than Lasso ([33, 56, 101]). Although it is statistically
favorable to adopt MCP, solving the MCP estimator (an NP-complete problem)
could be computationally challenging ([49, Liu et al.]). Various approximation
methods have been developed in the literature. For example, [29] use the local
quadratic approximation, [31, 33, 98, 101] adopt the local linear approximation,
[94] choose the path following algorithm, and [Liu et al.] propose the second-order
approximation. Our proposed solution procedure (the 2sWL procedure) is analogous
to the local linear approximation and guarantees that the solution has desirable
statistical properties for theoretical analysis and can be e�ciently solved. In the
literature, the theoretical analysis of MCP’s statistical properties relies on the

96

assumption that all samples are iid, which is hardly the case under bandit models.
This work also contribute to the statistical learning literature by deriving new
oracle inequalities for MCP under non-iid samples.

4.3 Model Settings
Consider a sequential arrival process t œ {1, 2, ..., T}. At each time step t, a single
user (e.g., consumer or patient), described by a high-dimensional feature covariate
vector xt œ R

1◊d, arrives. The covariate vector combines all available (but not
necessarily valuable for the decision-maker to base his decision on) user-specific
data, such as demographics, geographics, browsing/shopping history, and medical
records. Upon arrival, users’ covariate vectors {xt}tØ0 become observable to the
decision-maker and are iid distributed according to an unknown distribution Px.

Based on the user’s covariate vector x, the decision-maker will select a decision
from a decision set K = {1, 2, ..., K} to maximize his expected reward. The user
will respond to the chosen decision k œ K, and such response will generate a reward
for the decision-maker. Take the search advertising for example. The search engine
can recommend one of K di�erent ads to the user; the user can respond to the
recommended ad by clicking, which generates revenue for the search engine. We
denote this reward under the chosen decision k as Rk, which follows a distribution

(Rk|xT —true

k
), where x is the user’s covariate vector and —true

k
is the unknown

parameter vector corresponding to decision k.
We present the reward function in terms of the generalized linear model ([55]),

which is a large class of models including the linear model, the logistic model, the
Poisson regression model, etc. For example, if we assume that Rk is a ‡-gaussian
random variable with mean xT —true

k
, then we can define the density function of the

distribution (Rk|xT —true

k
) as g(Rk = r|xT —true

k
) = (1/

Ô
2fi‡2) exp(≠ (r≠xT —true

k)2

2‡2),
which is the standard setting for the classic linear multi-armed bandit model where
the reward takes a linear form: Rk(x) = xT —true

k
+ ‘ ([5, 7]). The cumulative

regret performance of the linear bandit algorithms has been extensively studied by
[25] and [37], among others, under low-dimensional settings and by [9] under high-
dimensional settings. The generalized linear model adopted in this work facilitates us
to go beyond the classic linear bandit model, as the reward may take a nonlinear form
in practice. For instance, the search engine collects revenue only when a user has

97

clicked the recommended ad; otherwise, the search engine earns nothing – a logistic
model by nature. By specifying Rk as a binary random variable (e.g., Rk œ {0, 1}),
we can define the mass function of the distribution (Rk|xT —true

k
) as g(Rk =

1|xT —true

k
) = 1/(1 + exp(≠xT —true

k
)) and g(Rk = 0|xT —true

k
) = exp(≠xT —true

k
)/(1 +

exp(≠xT —true

k
)), which is a logistic bandit model with the binary reward ([27, 75,

76]).
The parameter vector —true

k
is high-dimensional with latent sparse structure,

and we denote Sk = {j : —true

k,j
”= 0} as the index set for significant covariates,

which have non-zero coe�cient parameters and therefore are important for the
decision-maker to predict the user’s response. This index set is also unknown to
the decision-maker. We define the number of significant covariates as |Sk|, which is
typically much smaller than the dimension of the covariate vector.

The decision-maker’s objective is to maximize his expected cumulative reward.
Denote the decision-maker’s current policy as fi = {fit}tØ0, where fit œ K is the
decision prescribed by policy fi at time t. To benchmark the performance of policy
fi, we first introduce an oracle policy fiú = {fiú

t
}tØ0 under which the decision-maker

knows the true parameter vector values —true

k
for all k œ K and chooses the best

decision to maximize his expected reward:

fiú

t
= arg max

kœK

Ó
[Rk|xt, —true

k
]
Ô

= arg max
kœK

;⁄ +Œ

≠Œ

rkdG(rk|xT

t
—true

k
)
<

,

where G(rk|xT

t
—true

k
) is the cumulative distribution function for Rk. Note that

in practice, the parameter vector —true

k
is unknown to the decision-maker, and

therefore the construction and definition of the oracle policy directly imply that
the decision-maker’s reward under policy fi is upper-bounded by that of the oracle
policy. We therefore define the decision-maker’s expected cumulative regret up to
time T under the policy fi as follows:

RC(T) =
Tÿ

t=1
[Rfi

ú

t
t ≠ Rfit

t
],

which is the expected reward di�erence between the optimal policy fiú and the
decision-maker’s alternative policy fi. To maximize his expected cumulative reward,
the decision-maker is equivalent to explore for the policy fi that minimizes the
cumulative regret up to time T .

98

Before presenting the proposed G-MCP-Bandit algorithm, we will first state five
technical assumptions necessary for the theoretical analysis of the decision-maker’s
expected cumulative regret. The first three assumptions are adopted directly
from the multi-armed bandit literature, and the last two assumptions from the
high-dimensional statistics literature.
A. 1 (Parameter set) There exist positive constants xmax, s, Rmax, —min and b

such that for any t and k œ K, we have ÎxtÎŒ Æ xmax, |Sk| Æ s, |Rk| Æ Rmax,
—min Æ minjœSk,kœK |—true

k,j
|, Î—true

k
Î1 Æ b and all feasible — satisfies Î—Î1 Æ b.

The first assumption is a standard assumption in the bandit literature ([73])
and ensures that both the covariate vector x and the coe�cient vector —k are upper
bounded so that the maximum regret at every time step will also be upper bounded
to avoid trivial decisions. Most real world applications, including two real data
experiments in §4.6.2 and §4.6.3, satisfy this assumption.
A. 2 (Margin condition) There exists a C > 0 such that P(0 < | [Ri|x, —true

i
] ≠

[Rj|x, —true

j
]| Æ “) Æ CRmax“ for i ”= j and i, j œ K.

The second assumption is first introduced in the classification literature by
[85]. [37] and [9] adopt this assumption to the linear bandit model, under which
the Margin Condition ensures only a fraction of covariates can be drawn near the
boundary hyperplane xT (—true

i
≠ —true

j
) = 0 in which rewards for both arms are

nearly equal. Clearly, if a large proportion of covariates are drawn from the vicinity
of the boundary hyperplane, then for any bandit algorithm, a small estimation
error in the decision parameter vectors may lead the decision-maker to choose the
suboptimal decision and perform poorly ([9]). Therefore, this margin condition
ensures that given a user’s covariate vector, decisions can be properly separated
from each other and ordered based on their rewards.
A. 3 (Arm optimality) There exists a partition Ko and Ks for K. For k1 œ Ks, we
will have [Rk1|x, —true

k1] + h < maxk ”=k1 [Rk|x, —true

k
] for a positive constant h for

every x. For k2 œ Ko, these exists another positive constant pú such that minP(x œ
Uk2) Ø pú, where Uk2=̇

Ó
x| [Rk2 |x, —true

k2] > maxk ”=k2 [Rk|x, —true

k
] + h, k œ K

Ô
.

The arm optimality condition ([9, 37]) ensures that as the sample size increases,
the parameter vectors for optimal decisions can eventually be learned. In particular,
this condition separates decisions to an optimal decision subset Ko and a suboptimal
decision subset Ks. Decision i in Ko is strictly optimal for some users’ covariate
vectors (denoted by set Ui); otherwise, decision j in Ks must be strictly suboptimal

99

for all users’ covariate vectors. Therefore, even if there is a small estimation error
for decision i in Ko, the decision-maker will be more likely to choose decision i

for a user with a covariate vector draw from the set Ui. Accordingly, as sample
size T increases, decision-makers can improve their estimations for optimal arms’
parameter vectors.

These first three assumptions are directly adopted from the multi-armed bandit
literature and have been shown to be satisfied for all discrete distributions with
finite support and a very large class of continuous distributions (see [9] for detailed
examples and discussions).
A. 4 (Restricted eigenvalue condition) There exists Ÿ > 0 such that for all feasi-
ble › satisfying Î›Î1 Æ b and u such that Îuc

Sk
Î1 Æ 3ÎuSk

Î1, we have Ÿ

s
ÎuSk

Î2
1 Æ

uT [Ò2L(›)]u, where L is the log likelihood function, L(—) = 1
n

q
n

j=1 ≠ log g(rj|xT

j
—),

and {xj, j = 1, 2, ..., n} are iid random samples with xj œ Uk, k œ K.
The restricted eigenvalue condition assumption is a standard assumption in

high-dimensional statistics and is necessary for the identifiability and consistency
of high-dimensional estimators ([31, 33]). This assumption considers the local
geometry of the log likelihood function L with iid samples in Uk. To intuit, note
that under low-dimensional settings, the literature ([59]) requires that L is strongly
convex around the true parameter vector —true (e.g., the Hessian matrix in OLS
estimator is positive-definite and invertible) in order to achieve identifiability of the
parameter vector. However, the strong convexity assumption is typically violated
in high-dimensional settings, as the sample size can be much smaller than the
covariate dimension. Therefore, a weaker condition is adopted: The L exhibits local
strongly convex behavior only in some restricted subspace of u. In high-dimensional
linear models, the restricted eigenvalue condition assumption is analogous to the
compatibility condition ([9, 14]), restrict strongly convexity condition ([52, 61]),
and sparse eigenvalue condition ([31, 96]).
A. 5 (Density function) The negative logarithm of the reward density function
f(r|y)=̇ ≠ log g(r|y) is (i) convex with smooth gradient and hessian in y, and (ii)
there exists positive constants ‡, ‡2 and ‡3 such that |f Õ(r|y)| Æ ‡, f

ÕÕ(r|y) < ‡2

and |f ÕÕÕ(r|y)| Æ ‡3.
The density function assumption enables us to use the estimated expected

reward to statistically infer the true expected reward. Specifically, under this
assumption, when the parameter estimator — is close enough to the underlying

100

true parameter vector —true, the negative logarithm of the reward density function
under the estimator —, g(xT —), will converge to that under the true parameter
vector —true, g(xT —true). The density function assumption is a fairly weak technical
assumption. Many common distributions, such as sub-Gaussian distribution and
Bernoulli distribution, satisfy this density function assumption.

4.4 G-MCP-Bandit Algorithm
One of the major challenges for online learning and decision-making problems is
discovering the underlying sparse data structure and estimating the parameter
vector for high-dimensional data with limited samples. Lasso ([83]) has been
proposed as an e�cient statistical learning method and adopted in the multi-armed
bandit literature ([9]) to hurdle this challenge. However, the Lasso estimator
can be biased and performs inadequately, especially when the magnitude of true
parameters is not too small ([29]). One way to address this performance issue is to
construct new penalty functions that could render unbiased estimators and improve
the sparse structure discovery under high-dimensional data with limited samples.
In this research, we will adopt the novel MCP method.

4.4.1 Parameter Vector Estimation

For notation convenience, we will omit parameters’ subscripts corresponding to the
choice of arms, as long as doing so will not cause any misinterpretation. Consider
an oracle estimator for an arbitrary arm, —oracle, which is the parameter estimator
when the decision-maker has perfect knowledge of the index set for significant
covariates S. In other words, the oracle estimator can be determined by setting
—j = 0 for j œ Sc and solving

—oracle(X, r) .= arg min
—Sc =0

—S

Y
]

[
1

|A|
ÿ

jœA

f(rj|xT

j
—)

Z
^

\ , (4.4.1)

where A is the available historical data samples and f(·|·) is the negative logarithm
of the reward density function defined early. When solving for the oracle estimator,
the decision-maker can directly ignore insignificant covariates by forcing their
corresponding coe�cients to be zero and essentially reduce the high-dimensional

101

problem to a low-dimensional counterpart. The statistical performance of the oracle
estimator is provided in the following lemma.

Lemma 4.4.1. Let n be the sample size. Under assumption A.1, A.4, and A.5,
the following inequality for the oracle estimator holds

A

Î—oracle ≠ —trueÎ2 Æ
Û

8s2‡2x2
max

µ2
0n

B

Ø 1 ≠ ”1(n), (4.4.2)

where ”1(n) .= 2 exp(≠ Chnµ0
2sx2max

) + s exp(≠ µ0n

8s‡2x2max
), and Ch and µ0 are positive con-

stants.

Since there are only |S| significant covariates, which is upper-bounded by s,
are free to change in Equation (4.4.1), the optimal statistical performance of the
likelihood estimation is commonly recognized as O(

Ò
s/n) in the literature ([31, 99]),

which doesn’t include the dependence of the largest eigenvalue in the objective
function’s Hessian matrix. In Equation (4.4.2), we explicitly include its influence
and can directly verify that the largest eigenvalue in the objective function’s Hessian
matrix is universally upper bounded by ‡2sx2

max and therefore Equation (4.4.2)
reduces to O(

Ò
s/n) dependence. In other words, the oracle estimator attains the

optimal statistical performance.
However, the significant covariates index set S is typically unknown to the

decision-maker in practice, and we will rely on the MCP method to recover this
latent sparse structure. To better understand the rationale behind the MCP method,
we start with the following weighted Lasso estimator:

—W (X, y, w) .= arg min
—

Y
]

[
1

|A|
ÿ

jœA

f(rj|xT

j
—) +

dÿ

i=1
wi|—i|

Z
^

\ , (4.4.3)

where w = (w1, w2, ..., wd) is a positive weights vector chosen by the decision-maker.
Note that when we set wi = ⁄ for all i, —W (X, y, w) reduces to the standard
Lasso estimator, which can be biased when the magnitude of true parameters is
not too small. To recover the sparse structure and provide an unbiased parameter
estimator, an ideal way to select {wi} is to set wi = ⁄ > 0 for all i œ Sc and
wj = 0 for all j œ S. By doing so, when the weight ⁄ is large enough, the weighted
Lasso estimator converges to the oracle estimator —oracle(X, r). The benefits of the
weighted Lasso method have attracted considerable attention recently, and various

102

mechanisms have been proposed in the literature aiming to improve the weight
selection process ([17, 40, 101]). The MCP method, adopted in our work, reflect
such a process.

In particular, we define the following MCP penalty function:

P⁄,a(x) .=
⁄

|x|

0
max

3
0, ⁄ ≠ 1

a
|t|

4
dt,

where a and ⁄ are positive parameters selected by the decision-maker, and the
MCP estimator can be presented as follows:

—MCP (X, r, ⁄) .= arg min
—

LAk
(—) = arg min

—

Y
]

[
1

|A|
ÿ

jœA

f(rj|xT

j
—) +

dÿ

i=1
P⁄,a(—i)

Z
^

\ .

(4.4.4)

Denote the index set for non-zero coe�cients solutions in Equation (4.4.4) as
J .= {j : —̂j ”= 0}. If the absolute value of the MCP estimator in J is greater than
a⁄, then P⁄,a(—j) become constant parameters for all j œ J . Therefore, we will
have P⁄,a(—j) = 1

2a⁄2 for j œ J and P⁄,a(—j) = 0 otherwise. In other words, the
statistical performance of solving the MCP estimator is equivalent to solving the
following problem: arg min—J c =0,—J

{ 1
|A|

q
jœA f(rj|xT

j
—)2}. Hence, if J = S, then

the MCP estimator converges to the oracle estimator.
Solving the MCP estimator can be challenging. [Liu et al.] have shown that it

is an NP-complete problem to find the MCP estimator by globally solving Equation
(4.4.4). In the next subsection, we propose a local linear approximation method,
the 2-step Weighted Lasso (2sWL) procedure, to tackle this challenge, and we
demonstrate that the estimator solved by the 2sWL procedure will match the oracle
estimator —oracle with high probability.

4.4.2 2-Step Weighted Lasso Procedure

The 2sWL procedure consists of two steps. We first solve a standard Lasso problem
by setting all positive weights in Equation (4.4.3) to a given parameter ⁄0. Then,
we use the Lasso estimator obtained in the first step to update the weights vector
w by taking the first-order derivatives of the MCP penalty function, and applying
this updated weight vector, we re-solve the weighted Lasso problem in Equation

103

(4.4.3) to obtain the MCP estimator. The procedures of 2sWL at time t can be
described as follows:

2-Step Weighted Lasso (2sWL) Procedure:
Require: input parameters a and ⁄

Step 1: solve a standard Lasso problem
—1 = —W (X, y, ⁄);

Step 2: update wj =

Y
_]

_[

P
Õ

a,⁄
(|—1,j|) , for —1,j ”= 0

⁄ , for —1,j = 0
and solve a weighted Lasso Problem

—̂2sW L = —W (X, y, w).

As the 2sWL procedure is equivalent to solving the Lasso problem twice, the
worst-case computation complexity for 2sWL is on same order as for the standard
Lasso problem. In practice, we can initialize the second step procedure with a
warm start from the first step of the Lasso solution, which further reduces the
computation time.

The following proposition shows that the MCP estimator identified by the 2sWL
procedure can recover the oracle estimator with high probability.

Proposition 4.4.2. Under assumptions A.1, A.4, and A.5, if min{|—true

j
|, —true ”=

0, j = 1, 2, ..., d} Ø
1

96s

Ÿ
+ a

2
⁄, a > 96s

Ÿ
, the MCP estimator solved under the 2sWL

procedure, —MCP satisfies the following inequality
A

Î—MCP ≠ —trueÎ2 Æ
Û

8s2‡2x2
max

µ2
0n

B

Ø1 ≠ ”1(n) ≠ ”2(n, n, ⁄) ≠ ”3(n), (4.4.5)

where ”2(n, n1, ⁄) .= d exp
3

≠ n⁄
2

2x2max

1
(1

4 ≠ 24ns

n1Ÿa
) min

Ó
1, nµ0

8n1sx2max

Ô224
, ”3(n) .= exp (≠C1n),

µ0 and C1 are positive constants.

Comparing to the oracle estimator —oracle in Lemma 4.4.1, the probability bound
on the MCP estimator under the 2sWL procedure has two extra terms ”2(n, n, ⁄)
and ”3(n), which depend on the covariate dimension d and the sample size n. Note
that as the sample size increases, these two extra terms decrease to 0 at exponential
rates. In other words, as the sample size increases, —MCP matches the oracle
parameters with high probability and converges to the true parameters at the
optimal convergence rate.

104

4.4.3 ‘-decay Random Sampling Method

As bandit models involve exploitation and exploration, samples generated under
exploitation typically are not iid. These non-iid samples pose challenges to the
existing MCP literature, which relies on the assumption that samples are iid in
establishing the convergence rate and regret bounds (see the proof of Proposition
4.4.2 in §4.4.2).

In this research, to ensure that there are some iid samples generated in the
online learning and decision-making process, we propose a ‘-decay random sampling
method, in which the decision-maker draws random samples, with decreasing
probability, by randomly selecting decisions from the decision set with equal
probability. In particular, the ‘-decay random sampling method can be described
as follows:
‘-decay Random Sampling Method: At time t, the decision-maker will draw a
random sample, with probability min{1, t0/t}, where t0 is a pre-determined positive
constant. If the seller has decided to draw a random sample at time t, then the
decision-maker will randomly select a decision from his decision set with equal
probability. Otherwise, the decision-maker will follow a bi-level decision structure,
which will be specified later, to determine the optimal decision to maximize his
expected reward.

The ‘-decay random sampling method can balance the exploitation and explo-
ration trade-o� by ensuring that the decision-maker does not explore too much to
significantly sacrifice his revenue performance (as the number of random samples
decays in time) but has su�cient random samples to guarantee the quality of the
parameter vector estimation. In particular, we can bound the random sample size
in the following proposition.

Proposition 4.4.3. Let C0 Ø 10, T > (t0+1)2

e2 , and t0 = 2C0|K|. Under the ‘-decay
random sampling method, the random sample size nk for arm k œ K up to time T

is bounded by

C0(1 + log(T + 1) ≠ log(t0 + 1)) Æ nk Æ 3C0(1 + log(T) ≠ log(t0))

with probability at least 1 ≠ 2/(T + 1).

105

4.4.4 G-MCP-Bandit Algorithm

After establishing the MCP estimator’s statistical property and the ‘-decay random
sampling method, we are ready to present the proposed G-MCP-Bandit algorithm.
The execution of the G-MCP-Bandit algorithm can be summarized as follows:

G-MCP-Bandit Algorithm
Require: Input parameters t0, h, ⁄1,0, ⁄2,0, a.

Initialize —random

i
(0) = —whole

i
(0) = 0, and Rfi0 = Wfi0 = „ for all i œ K.

For t = 1, 2, do
Observe xt.
Draw a binary random variable Dt, where Dt = 1 with probability min{1, t0/t}.
If Dt = 1

Assign fit to a random decision k œ K with probability (fit = k) = 1/|K|.
Play decision fit and observe rt

Update Rfit = Rfit≠1 fi {xt, rt} and Wfit = Wfit≠1 fi {xt, rt}.
Else

Construct the optimal decision set:
�t =

Ó
i : [Ri|xt, —random

i
(t ≠ 1)] Ø maxjœK [Rj|xt, —random

j
(t ≠ 1)] ≠ 1

2h, i œ K
Ô
.

If �t is a singleton
Set fit = �t.

Else
Set fit = arg maxkœ�t [Rk|xt, —whole

k
(t ≠ 1)].

End If
Play decision fit, observe rt, and update Wfit = Wfit≠1 fi {xt, rt}.

End If
For all k œ K, set ⁄1(t) = ⁄1,0

Ò
1 + log d

log(t+1) and ⁄2(t) = ⁄2,0
Ò

log(t+1)+log d

t+1 .
Update parameters —random

k
(t) via the 2sWL procedure with (Rfit , ⁄1(t)).

Update parameters —whole

k
(t) via the 2sWL procedure with (Wfit , ⁄2(t)).

End for

Specifically, the decision-maker will start by assigning values for system param-
eters (t0, K, smax, and h), which can be optimized through tuning, and initialing
two parameter vector estimators (—random and —whole) and two sample datasets
(Rfi0 and Wfi0 , which represent the random sample set and the whole sample set,

106

respectively). Then, for an incoming user at time t, the decision-maker will draw a
random sample with probability min{1, t0/t}. There are two possibilities:

• If the decision-maker decides to draw a random sample, then he will randomly
choose a decision k from his decision set K with equal probability of 1/|K|;
then, he will implement the chosen decision (i.e., fit = k), observe the user’s
response, and claim the corresponding reward; finally, the decision-maker will
include the user’s covariate vector and the corresponding reward {xt, rt} in
both sample datasets, Rfit and Wfit .

• If the decision-maker decides not to draw a random sample on this incoming
user, then he will use the bi-level decision structure to determine his decision.
In the upper-level decision-making process, the decision-maker will first
construct an optimal decision set �t. Specifically, all decisions in the optimal
decision set �t are estimated, based on the random sample MCP estimator
—random, to yield expected rewards within h/2 of the maximum possible reward.
If there is only one decision in the optimal decision set �t, then the decision-
maker will implement this decision as the optimal decision; otherwise, the
decision-maker will perform the lower-level decision-making process, in which
the decision-maker will estimate, by using the whole sample MCP estimator
—whole, the rewards for all decisions in the optimal decision set �t and select
the decision that generates the highest expected reward. Then, observing
the user’s response to the optimal decision and collecting the corresponding
reward, the decision-maker will only update the whole sample dataset Wfit by
appending the user’s covariate vector and the corresponding reward {xt, rt}.

Finally, the decision-maker will reset two parameters, ⁄1 and ⁄2, and use the
2sWL procedure to update the random sample parameter vector estimator —random

and the whole sample parameter vector estimator —whole, based on sample data
sets Rfit and Wfit , respectively.

The expected cumulative regret upper bound for the G-MCP-Bandit algorithm
can be established in the following theorem.

Theorem 4.4.4. Under assumptions A.1-A.5, let t0 = 2C0|K|, T Ø T0, ⁄1,0 =
—minp

ú
Ÿ

(2304s+apúŸ)
Ô

1+log d
, ⁄2,0 =

Ô
2x

2
max

1
4 ≠

192
púŸa min{1,

µ0
púsx2max

}
, and a Ø 2304s

Ÿpú . The cumulative

107

regret of the G-MCP-Bandit algorithm up to time T is upper bounded:

RC(T) Æ (6Rmax|K|C0 + 31Rmax|K| + 2e4‡xmaxbCR3
max|K|x2

maxC—s3) log(T + 1)

+ Rmax(T0 + |K|) = O(|K|s2(s + log d) log T),

where T0, C0, Ch, µ0 and C— are constants independent of T .

Theorem 4.4.4 shows that the expected cumulative regret of the G-MCP-Bandit
algorithm over T users is upper-bounded by O(log T). [37] have shown that under
low-dimensional settings, the expected cumulative regret for a linear bandit model
is lower-bounded by O(log T), which is directly applicable to the high-dimensional
settings. Further, note that the linear model is a special case of the generalized
linear model. Therefore, the expected cumulative regret of the G-MCP-Bandit
algorithm is also lower-bounded by O(log T). In other words, the G-MCP-Bandit
algorithm achieves the optimal expected cumulative regret in the sample size
dimension. This result comes from the facts that we can ensure O(log T) random
samples at time T via the ‘-decay random sampling method (Proposition 4.4.3)
and that the MCP estimator is able to match the oracle estimator with high
probability (Proposition 4.4.2). Further, when compared to the Lasso-Bandit
algorithm proposed by [9] for the linear model under high-dimensional settings, the
G-MCP-Bandit algorithm reduces the dependence of the expected cumulative regret
on the sample size dimension from O(log2 T) to O(log T). As the G-MCP-Bandit
algorithm achieves the optimal expected cumulative regret and improves on the
cumulative regret performance from existing high-dimensional bandit algorithms
in the sample size dimension, we expect that the G-MCP-Bandit algorithm will
be able to improve the learning process of the parameter vector estimation with
limited samples and perform favorably in the cumulative regret performance even
in sample-poor regions.

Theorem 4.4.4 also demonstrates that the cumulative regret of the G-MCP-
Bandit algorithm in the high-dimensional covariate vector d is upper-bounded
by O(log d). This bound presents a significant improvement over other classic
bandit algorithms ([2, 25, 37]), which yield polynomial dependence on d, and is
also a tighter bound than the Lasso-type algorithm (i.e., O(log2 d) in [9]). This
improvement is of particular importance in high-dimensional settings, in which
the covariate dimension can be extremely large, and it suggests that the G-MCP-

108

Bandit algorithm can bring substantial regret reduction comparing to existing
bandit algorithms, which we will illustrate through experiments in §4.6.

4.5 Key Steps of Regret Analysis for the G-MCP-
Bandit Algorithm
In this section, we provide the abridged technical proofs for Theorem 4.4.4 – the
main theorem in this work. Specifically, we briefly lay out four key steps in
establishing the expected cumulative regret upper bound for the G-MCP-Bandit
algorithm. In the first step, we highlight the influence of non-iid data, inherited from
the multi-armed bandit model, and provide the statistical convergence property
for the MCP estimator under partially iid samples. Applying these results to
the G-MCP-Bandit algorithm, in the second and third steps, we establish the
convergence properties for both the random sample estimator, which is based on
samples generated only through the ‘-decay random sampling method, and the
whole sample estimator, which uses all available samples. Finally, in the last step,
we establish the total expected cumulative regret by separating the regret up to
time T into three segments and providing a bound for each segment. The main
structure and sequence of our proving steps described above are first introduced
by [9], which presents their expected regret analysis for a linear bandit model
(i.e., LASSO-Bandit algorithm) in a similar sequence. We will largely follow their
presentation structure, but with di�erent steps, proving techniques, and convergence
properties, to illustrate the key steps in analyzing the G-MCP-Bandit algorithm.

4.5.1 General Non-iid Sample Estimator

Note that the restricted eigenvalue condition (A.4 in §4.3) for high-dimensional
statistics is typically established for iid samples in the literature. Yet, in this
research, we consider the G-MCP-Bandit algorithm, under which only part of the
samples are iid, so we first show that the restricted eigenvalue condition continues
to hold for partially iid samples (Lemma A.0.6 in E-Companion). Then, we can
establish some general results for the MCP estimator under non-iid data.

We denote W as the whole sample set that contains all users’ covariate vectors
X and the corresponding rewards r for an arbitrary decision k œ K up to time

109

T , and —MCP as the MCP estimator for the parameter vector corresponding to
decision k. Note that as samples in W are not iid, standard MCP convergence
results ([31, 33]) cannot be directly applied. Recall that we proposed the ‘-decay
random sampling method and that samples generated under this method are iid.
Therefore, there exists a subset A ™ W such that all samples in this subset are iid
from the distribution PX . The next step is to show that when the cardinality of A
(i.e., |A|) is large enough, —MCP will converge to the true parameters —true.

Proposition 4.5.1. Denote the whole sample size as n and the sub-sample set,
containing only iid random samples, as A. Under assumptions A.1, A.4, and A.5,
if —min Ø (96ns

Ÿ|A|
+ a)⁄ and a > 96ns

Ÿ|A|
, then for ’ Æ µ0|A|

Ô
C2⁄

2n
, the following inequality

hold for the MCP estimator under the 2sWL procedure —MCP

A

Î—MCP ≠ —trueÎ2 Æ 2n’

|A|µ0

B

Ø 1 ≠ ”2(n, |A|, ⁄) ≠ ”3(|A|) ≠ ”4(n, |A|, ’).

(4.5.6)

Moreover, if |A| Ø 2s
2
x

2
max

µ0
, then we have the following result

Q

aÎ—MCP ≠ —trueÎ2 Æ
ı̂ıÙ8s2‡2x2

maxn

µ2
0|A|2

R

b Ø 1 ≠ ”1(|A|) ≠ ”2(n, |A|, ⁄) ≠ ”3(|A|),

(4.5.7)

where C2 and µ0 are positive constants and ”4(n, |A|, ’) .= s exp
1
≠ |A|µ0

8‡2sx2max

2
+

s exp
1
≠ n’

2

2‡2x2max

2
.

Proposition 4.5.1 describes the statistical properties of the non-iid MCP estima-
tors under the 2sWL procedure. First, if we don’t require the iid sample size |A| to
be su�ciently large, then the MCP estimator’s statistical performance is given by
Equation (4.5.6). If we set ’ to be on the order of O(s/

Ô
n), then Î—MCP ≠ —trueÎ

is on the order of O(
Ò

s2n/|A|2), which matches the result of Equation (4.5.7).
Meanwhile, however, ”4(n, |A|, ’) in Equation (4.5.6) becomes a positive constant
asymptotically, which implies that when |A| is not large enough, the MCP estimator
may not warrant good statistical performance. Yet, when we have su�cient iid
samples (i.e., |A| Ø 2s

2
x

2
max

µ0
), Equation (4.5.7) suggests that the MCP estimator not

only guarantees a better statistical convergence (O(
Ò

s2n/|A|2)) but also attains

110

probability 1 when the whole sample size n and the iid sample size |A| go to infinity.
Moreover, Proposition 4.5.1 shows the necessity of generating iid random samples

in high-dimension bandit settings. Non-iid samples are inevitable in online learning
and decision-making process, so ensuring desired asymptotical performance of the
parameter vector estimation in high-dimensional settings can only be achieved
through generating su�cient number of iid samples, as shown in Proposition 4.5.1.
We will show in next two subsections that the size of iid samples generated under
the ‘-decay random sampling method is on the order of O(log T) and that the size
can be further improved to the order of O(T) under the bi-level decision structure
in the G-MCP-Bandit algorithm.

4.5.2 Estimator from Random Samples up to Time T

In Proposition 4.5.1, we show that the MCP estimator will converge to the oracle
parameter as long as the sample set contains a su�cient number of iid samples.
Recall that in our proposed G-MCP-Bandit algorithm, samples generated by the
‘-decay random sampling method are iid, and the size of these iid samples is
on the order of O(log(T)); see Proposition 4.4.3. Combining these observations,
we can establish the statistical performance of the MCP estimator under the
G-MCP-Bandit algorithm in the following proposition.

Proposition 4.5.2. Let t0 = 2C0|K|, T Ø max{(t0 +1)2/e2 ≠1, e}, a > 2304s/púŸ

and ⁄ = C5
Ò

1 + log d/ log(T + 1). If assumptions A.1, A.3, A.4, and A.5 hold,
then the MCP estimator under the G-MCP-Bandit algorithm —MCP will satisfy the
following inequality

A

Î—MCP ≠ —trueÎ1 Æ min
I

1
‡xmax

,
h

4e‡Rmaxxmax

JB

Ø 1 ≠ 7
T + 1 ,

where C0 and C5 are positive constants.

4.5.3 Estimator from Whole Samples up to Time T

In addition to the iid samples generated by the ‘-decay random sampling method,
other samples can also be iid and used to improve the statistical performance of
the MCP estimator. To intuit, recall that in the G-MCP-Bandit algorithm, when

111

the user is not selected to perform a random sampling, the decision-maker will use
the bi-level structure to determine the optimal decision to maximize his expected
reward. In the upper-level decision-making process, only iid samples will be used
(as —random is the MCP estimator based on samples generated only by the ‘-decay
random sampling method) to determine the candidate(s) for the optimal decision
set. From Proposition 4.5.2, we know that this random sample MCP estimator will
not be far away from its true parameter values. In other words, if we define the
event that the random sample MCP estimator at time t is within a given distance
from its true parameter as event E6:

E6=̇
I

Î—random

k
(t) ≠ —true

k
Î1 Æ min

I
1

‡xmax
,

h

4e‡Rmaxxmax

J

, k œ K
J

, (4.5.8)

then event E6 will happen with high probability. Further, conditioning on event E6,
we can directly verify that for any x œ Uk, k œ K, the following inequality holds:

(Rk|x, —random

k
(t)) Ø max

j ”=k

(Rj|x, —random

j
(t)) + h

2 . (4.5.9)

Therefore, if using Equation (4.5.9) as the selecting criterion, the decision-maker
will be able to choose the optimal decision k for any x œ Uk, k œ K with high
probability. Formally, we can bound the total number of times under which
event x œ Uk and event E6 happen simultaneously. In particular, we define
M(i)=̇

Ëq
T +1
j=1 (xj œ Uk, E6, xj /œ Rk)|Fi

È
for i œ {0, 1, 2, .., T + 1}, where Fi =

{(xj, rj) for j Æ i} and Rk is the set containing iid samples generated through the
‘-decay random sampling method for arm k. Then, {M(i)} is a martingale with
bounded di�erence |M(i) ≠ M(i + 1)| Æ 1 for i = 0, 1, 2, ..., T , and we can bound
the value of M(T + 1) in the following proposition:

Proposition 4.5.3. If T Ø max{14, 4C0|K|}, then
1
M(T + 1) Æ p

ú(T +1)
8

2
Æ

exp
1
≠ (pú)2

T

128

2
.

Intuitively, Proposition 4.5.3 suggests that with high probability, the actual iid
sample size in Uk for decision k will be on the order of O(T) instead of O(log T).
This improvement is the reason why the whole sample MCP estimator —whole used
in the lower-level decision-making process has a better statistical performance,
compared to the random sample MCP estimator —random used in the upper-level

112

decision-making process. Specifically, we can establish the convergence property
for the whole sample MCP estimator in the following proposition.

Proposition 4.5.4. Let t0 = 2C0|K|, T > T0, ⁄ = C4
Ò

log(T +1)+1+log d

T +1 , and a >
2304s

púŸ
. If assumptions A.1, A.3, A.4, and A.5 hold, then at time T the whole sample

MCP estimator under the G-MCP-Bandit algorithm —whole will satisfy the following
inequality:

Q

aÎ—whole(T) ≠ —trueÎ2 Æ
Û

C—
s2

T + 1

R

b Ø 1 ≠ 12
T + 1 ,

where C0, T0, C4, and C—are positive constants.

4.5.4 Cumulated Regret Up To Time T

Finally, to bound the cumulative regret for the G-MCP-Bandit algorithm, we need
to divide the time, up to time T , into three groups and provide a upper bound for
each group.

The first group contains all samples before time T0 and all random samples
up to time T . Note that before time T0 (the explicit expression for T0 is given
in the proof of Theorem 4.4.4 in E-Companion), the decision-maker does not
have su�cient samples to accurately estimate covariate parameter vectors. Hence,
the reward under the G-MCP-Bandit algorithm will su�er and be sub-optimal
compared to that of the oracle case. We can bound the cumulative regret by the
worst case performance: RmaxT0 + Rmax|K|(2 + 6C0 log T), where the first part of
this cumulative regret is for all samples before time T0 and the second part is for
all random samples up to time T .

Next, we will segment the t > T0 case into two groups, depending on whether
we can accurately estimate covariate parameter vectors by using only random
samples. In particular, the second group includes cases where t > T0 and the
random-sample-based estimators are not accurate (i.e., event E6 doesn’t hold).
Under those scenarios, inevitably, the decision-maker’s decisions will be suboptimal
with high probability. However, note that as the size of iid samples increases in t,
the probability of event E6 not occurring decreases. We can bound the cumulative
regret for the second group by 7Rmax|K| log(T + 1).

The last group includes scenarios where t > T0 and the random sample estimators

113

are accurate enough. Benefiting from the improved estimation accuracy (Proposition
4.5.4), we can bound the cumulative regret for the last group by (24Rmax|K| +
4e4‡

2
xmaxbCR3

max|K|x2
maxC—s3) log(T). Combining the cumulative regret for all three

groups, Theorem 4.4.4 directly follows.

4.6 Empirical Experiments
In this section, we will benchmark the G-MCP-Bandit algorithm to OFUL ([1]),
OLS-Bandit ([37]), and Lasso-Bandit ([9]). In particular, we seek answers to the
following two questions: How does the performance of the G-MCP-Bandit algorithm
compare to other bandit algorithms? And how is the performance of the G-MCP-
Bandit algorithm influenced by the data availability (T), the data dimensions (s
and d), and the size of the decision set (K)?

To this end, we start with two synthetic-data-based experiments in §4.6.1 and
conduct two additional experiments based on real datasets, the warfarin dosing
patient data in §4.6.2 and the Tencent search advertising data in §4.6.3, respectively.
Note that the algorithms and theoretical bounds of OFUL, OLS-Bandit, and Lasso-
Bandit are developed under the assumption that the reward function follows the
linear model, which is a special case in the G-MCP-Bandit algorithm. Therefore, for
fair comparison, we specify the underlying reward function for the G-MCP-Bandit
algorithm to follow the same linear model (i.e., the reward under decision k for a
user with covariate vector x takes the form of Rk(x) = xT —true

k
+ ‘, where ‘ is a ‡-

gaussian random variable) in all experiments, except the Tencent search advertising
data experiment, in which we explore the performance of the G-MCP-Bandit model
under both the linear model and the logistic model.

4.6.1 Synthetic Data (Linear Model)

In the first synthetic data experiment, we fix the size of the decision set K and
focus on the impacts of the data dimensions, s and d, and the data availability, T ,
on learning algorithms’ cumulative regret performance. In particular, we consider
a two-arm bandit setting (i.e., K = 2). To simulate di�erent sparsity levels, we
vary the covariate dimension d = {10, 102, 103, 104} and keep the dimension for
significant covariates unchanged at s = 5. Therefore, as the covariate dimension

114

d increases, the data become sparser. The underlying true parameter vectors for
covariates are arbitrarily set to be —1 = (1, 2, 3, 4, 5, 0, 0, ...) for the first arm and
—2 = 1.1 · —1 for the second arm. For each incoming user, we randomly draw her
covariate vector from N(0, Id◊d) and the error term in the linear model ‘ from
N(0, 1). Finally, we use the same parameter ⁄ value in both the Lasso-Bandit
algorithm and the G-MCP-Bandit algorithm and select the unique parameter for
the G-MCP-Bandit algorithm a at 2. For each algorithm, we perform 100 trials
and report the average cumulative regret for OFUL, OLS-Bandit, Lasso-Bandit,
and G-MCP-Bandit (under the linear model) in Figure 4.1.

0 500 1000 1500 2000

of Users

0

50

100

150

200

250

300

350

400

450

C
u

m
u

la
ti

v
e

 R
e

g
re

t

G-MCP-Bandit (Linear)

LASSO-Bandit

OLS-Bandit

OFUL

(a) d=10

0 500 1000 1500 2000

of Users

0

50

100

150

200

250

300

350

400

450

C
u

m
u

la
ti

v
e

 R
e

g
re

t

G-MCP-Bandit (Linear)

LASSO-Bandit

OLS-Bandit

OFUL

(b) d=100

10 100 1000 10000

Dimension d

100

150

200

250

300

350

400

450

C
u

m
u

la
ti

v
e

 R
e

g
re

t

G-MCP-Bandit (Linear)

LASSO-Bandit

OLS-Bandit

OFUL

(c) d=1000

Figure 4.1: Synthetic study 1: The impact of T and d on the cumulative regret,
where K = 2 and s = 5.

Overall, we observe that the G-MCP-Bandit algorithm significantly outperforms
OFUL, OLS-Bandit, and Lasso-Bandit and achieves the lowest cumulative regret.
Facing only two decisions/arms, the decision-maker can easily identify the optimal
arm, and therefore OFUL and OLS-Bandit, both of which are not specifically de-
signed for high-dimensional settings, perform nearly identically. Lasso-Bandit and
G-MCP-Bandit could benefit from their abilities to recover the sparse structure and
identify the significant covariates. Therefore, compared to OFUL and OLS-Bandit,
Lasso-Bandit and G-MCP-Bandit can improve their parameters estimations, espe-
cially under high-dimensional settings, and perform substantially better. Further,
the improvement of the cumulative regret performance of G-MCP-Bandit over
Lasso-Bandit follows from the facts that the MCP estimator is unbiased and could
improve the sparse structure discovery. Next, we will discuss the influence of
sample size T and the covariate dimension d on these algorithms’ cumulative regret
performance.

Figure 4.1(a) and 4.1(b) illustrate the influence of the sample size T on the

115

cumulative regret for the cases where d = 10 and d = 100 (other cases exhibit
a similar pattern and are therefore omitted)2. As we have proven that G-MCP-
Bandit provides the optimal time dependence under both low-dimensional and
high-dimensional settings (Theorem 4.4.4), G-MCP-bandit strictly improves on the
cumulative regret performance from Lasso-Bandit, especially when T is not too
small. Note that facing insu�cient samples, all algorithms fail to accurately learn
parameter vectors and therefore perform poorly. As the sample size increases, the
G-MCP-bandit algorithm is able to, in an expeditious fashion, unveil the underlying
sparse data structure, accurately estimate parameter vectors, and outperform all
other benchmarks. For example, in Figure 4.1(b), we observe that the regret
reduction of G-MCP-Bandit over all other algorithms is larger than 10% when the
sample size T is larger than 350. This observation echoes our theoretical findings
that the G-MCP-Bandit algorithm attains the optimal regret bound in sample size
dimension O(log T).

We also observe that the benefits of G-MCP-Bandit over other three algorithms
appear to increase in the data sparsity level. Figure 4.1(c) presents the influence of
the covariate dimension d on the cumulative regret for the case where T = 1000.
Recall that we fixed the dimension for significant covariates s = 5. Therefore, as
the covariate dimension d increases, the data become sparser (i.e., d/s increases).
As expected, the cumulative regret for all four algorithms increases in the covariate
dimension d, but at di�erent rates. On the one hand, both OLS-Bandit and
OFUL lack the ability to recover the sparse data structure and are ill suited for
high-dimensional problems. On the other hand, Lasso-Bandit and G-MCP-Bandit,
which adopt di�erent statistical learning methods for the sparse structure discovery
and are designed for high-dimensional problems, have lower cumulative regret that
increases in d at a slower rate. Further, we notice that the G-MCP-Bandit algorithm
has the least increase in cumulative regret among all four algorithms, which confirms
our theoretical finding in Theorem 4.4.4: The G-MCP-Bandit algorithm has a
better dependence on the covariate dimension O(log d) than Lasso-Bandit O(log2 d),
OFUL, and OLS-Bandit (the last two algorithms have polynomial bounds in d).

In the second synthetic data experiment, we study the influence of the size of
decision set by varying K = {2, 5, 10, 20, 50, 100} and keeping the data dimensions

2In all four experiments where d œ {10, 102, 103, 104}, we simulated the sample size up to
10, 000 and observe that the G-MCP-Bandit algorithm’s cumulative regret seems to be stabilized
before T = 2000. Therefore, we only plot for the first 2000 samples to avoid duplications.

116

unchanged (s = 5 and d = 100). For each decision, we randomly draw the parameter
vector for the significant covariates from a uniform distribution, U(0, 1). Finally, we
keep other parameters the same as in the first synthetic data experiment. Figure
4.2 plots the average cumulative regret for OFUL, OLS-Bandit, Lasso-Bandit, and
G-MCP-Bandit (under the linear model).

0 1000 2000 3000 4000 5000 6000

of Users

0

5

10

15

20

25

30

C
u

m
u

la
ti

v
e

 R
e

g
re

t

G-MCP-Bandit (Linear)

LASSO-Bandit

OLS-Bandit

OFUL

(a) K=2

0 1000 2000 3000 4000 5000 6000

of Users

0

200

400

600

800

1000

C
u

m
u

la
ti

v
e

 R
e

g
re

t

G-MCP-Bandit (Linear)

LASSO-Bandit

OLS-Bandit

OFUL

(b) K=20

2 5 10 20 50 100

Number of Decisions/Arms K

0

1000

2000

3000

4000

5000

6000

C
u

m
u

la
ti

v
e

 R
e

g
re

t

G-MCP-Bandit (Linear)

LASSO-Bandit

OLS-Bandit

OFUL

(c) T=6000

Figure 4.2: Synthetic study 2: The impact of T and K on the cumulative regret,
where d = 100 and s = 5.

We observe that the benefits of adopting G-MCP-Bandit over the other three
algorithms increases with the size of the decision set. In particular, as K increases,
the cumulative regret gap between G-MCP-Bandit and any other algorithm grows;
see Figure 4.2(c). This observation is as expected. To intuit, note that as we add
more possible decisions into the decision set, the complexity and di�culty for the
decision-maker to select the optimal decision grow for two main reasons. First,
the decision-maker will need more samples to identify the significant covariates
and estimate the parameter vectors. Second, as the number of decisions increases,
the process of comparing the expected rewards among all decisions and selecting
the optimal decision becomes more vulnerable to estimation errors. Therefore,
we should expect that as the number of arms increases, the amount of samples
required for these algorithms to accurately learn the parameter vectors and select
the optimal decision will increase as well.

Figure 4.2(a) and Figure 4.2(b) plot the cumulative regret for the case of two
arms and twenty arms, respectively. Clearly, the decision-maker needs far more
samples before his cumulative regret can be stabilized in the case of twenty arms
than in the case of two arms. Therefore, the cumulative regret performance under
all algorithms su�ers from the increasing size of the decision set. As discussed
earlier, the G-MCP-Bandit algorithm attains the optimal bound in the sample

117

size dimension and is able to learn the sparse data structure and provide accurate
unbiased estimators for parameter vectors. Hence, we observe that the benefits of
adopting the G-MCP-Bandit algorithm over other algorithms are amplified as the
number of arms increases, as illustrated in Figure 4.2(c).

4.6.2 Warfarin Dosing Patient Data (Linear Model)

In the first real-data-based experiment, we considers a health care problem in
which physicians determine the optimal personalized warfarin dosage for incoming
patients ([24]). Using the same dataset, [9] demonstrate that the Lasso-Bandit
algorithm outperforms other existing bandit algorithms, including OFUL-LS ([1]),
OFUL-EG ([2]), and OLS-Bandit ([37]). The warfarin dosing patient data contains
detailed covariates (the size of covariates used in our experiment is 93) for 5, 700
patients, including demographic, diagnosis, and genetic information that can be
used to predict the optimal warfarin dosage.

We apply the G-MCP-Bandit algorithm to the warfarin dosing patient dataset to
evaluate its performance in practical decision-making contexts where the technical
assumptions specified early in §4.3 may not hold. Following [9], we formulate this
problem as a 3-armed bandit with covariates under the linear model.

Figure 4.3 compares the average fraction of optimal/correct dosing decisions
under G-MCP-Bandit (under the linear model) to those under OFUL, OLS-Bandit,
Lasso-Bandit, actual physicians’ decisions, and the oracle policy. We observe that
as long as the sample size is not too small (e.g., the number of patients exceeds
40), the G-MCP-Bandit algorithm will outperform physicians’ decisions, OLS-
Bandit, Lasso-Bandit, and OFUL. However, when there are very limited samples
(< 40 patients), the physicians’ static decisions (i.e., always recommend medium
dose) perform the best, with a stable optimal percentage of 54%. This is because
that without su�cient samples, all learning algorithms are unable to accurately
learn the parameter vectors for patients’ covariates, and consequently they behave
suboptimally.

As the sample size increases, all learning algorithms are able to update their
estimation of parameter vectors and eventually outperform the physicians’ static
decisions. Among all learning algorithms, the G-MCP-Bandit algorithm requires
the fewest samples (i.e., T > 40 for G-MCP-Bandit, T > 90 for Lasso-Bandit,

118

0 500 1000 1500 2000 2500 3000

of Patients

50%

52%

54%

56%

58%

60%

62%

64%

66%

P
e

rc
e

n
ta

g
e

 o
f

O
p

ti
m

a
l

D
o

s
in

g
 D

e
c

is
io

n
s

Oracle Policy

G-MCP-Bandit (Linear)

Lasso-Bandit

OLS-Bandit

OFUL

Physicians' Decisions

Figure 4.3: Warfarin dosing experiment: The percentage of optimal warfarin dosing
decisions.

T > 180 for OFUL, T > 220 for OLS-Bandit) to provide better dosing decisions
than physicians.

4.6.3 Tencent Search Advertising Data (Linear & Logistic Mod-
els)

In the last experiment, we scale up the dataset’s dimensionality to consider a
search advertising problem at Tencent. The Tencent search advertising dataset
is collected by Tencent’s proprietary search engine, soso.com, and it documents
the interaction sessions between users and the search engine ([82]). In the dataset,
each session contains a user’s demographic information (age and gender), the query
issued by the user (combinations of keywords), ads information (title, URL address,
and advertiser ID), the user’s response (click or not), etc. This dataset is high-
dimensional with sparse data structure and contains millions of observations and
covariates. To put the size of the dataset into perspective, it contains 149, 639, 105
session entries, more than half a million ads, more than one million unique keywords,
and more than 26 million unique queries.

119

For illustration purposes, we focus on a three-ad experiment3 (with ad IDs
21162526, 3065545, and 3827183). Each of these three ads has an average CTR
higher than 2% and more than 100, 000 session entries, which provide reasonably
accurate estimation for parameter vectors (see next paragraph for more discussions).
In total, there are 849, 338 session entries with 169, 744 unique queries and 8
covariates for users’ demographic information. As the search engine receives
payment from advertisers only when the user has clicked the sponsored ad, we
arbitrarily assume that advertisers will award the search engine $1, $5, and $10 for
each clicked ad, respectively.

Figure 4.4 plots the the average revenue performance under OFUL, OLS-Bandit,
Lasso-Bandit, a random policy, the oracle policy, and G-MCP-Bandit (under both
linear and logistic models). It is worth noting that the “true” oracle policy is
impossible to implement, as the true parameter vectors are unknown, or at least
have considerable variance even when all session entries in the dataset are used for
estimation. Therefore, the oracle policy in the experiment represents the scenario
when the search engine has access to all data to estimate these parameter vectors
and make ad selection decisions. In addition, we introduce the random policy
as another benchmark to simulate the scenario in which the search engine will
randomly recommend an ad with equal probability to an incoming user. Finally,
note that the CTR prediction is binary in nature (i.e., click or not). We therefore
include the G-MCP-Bandit algorithm under the logistic model and compare it to
the G-MCP-Bandit algorithm under the linear model to study the influence of
the underlying model choice. In the experiment, we simulate incoming users by
permuting their covariate vectors randomly. For each algorithm, we perform 100
trials and report the average revenue with 5000 users, which seems to be su�cient
for the G-MCP-Bandit algorithm to converge.

We can show that all learning algorithms generate higher average revenue than
the random policy for any number of users and that the G-MCP-Bandit algorithm
outperforms other algorithms under most scenarios. Specifically, when comparing
all algorithms under the same linear model, we observe that the G-MCP-Bandit
algorithm (under the linear model) has better average revenue performance than
OFUL, OLS-Bandit, and Lasso-Bandit as soon as there are more than 140 users.

3We have extended the experiment to include more ads, but we find that doing so will not
qualitatively change our observations and insights but considerably increases the computation
time. Therefore, we decide to focus on this three-ad experiment in the work.

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

of Users

$1.8

$2.0

$2.2

$2.4

$2.6

$2.8

$3.0

$3.2

$3.4

$3.6

$3.8

A
v

e
ra

g
e

 R
e

v
e

n
u

e
 p

e
r

U
s

e
r

Oracle Policy

G-MCP-Bandit (Logistic)

G-MCP-Bandit (Linear)

LASSO-Bandit

OLS-Bandit

OFUL

Random Policy

Figure 4.4: Tencent search advertising experiment: The average revenue under
di�erent algorithms.

This observation is consistent with that in warfarin dosing experiment in §4.6.2
and suggests that compared to other benchmark algorithms, the G-MCP-Bandit
algorithm can improve the parameter vector estimation under high-dimensional
data with limited samples and achieve better revenue performance.

Further, we find the choice of underlying models can significantly influence
the G-MCP-Bandit algorithm’s average revenue performance. Note that the ad-
vertisers award the search engine only when users have clicked the recommended
ads. Therefore, the search engine’s reward function is binary in nature. When
comparing the G-MCP-Bandit algorithm under the logistic model to that under
the linear model, both of which are special cases of the G-MCP-Bandit algorithm,
we observe that the former always dominates the latter for any number of users.
In addition, the G-MCP-Bandit algorithm under the logistic model merely needs
20 users to outperform the other three algorithms. This observation suggests that
understanding the underlying managerial problem and identifying the appropri-
ate model for the G-MCP-Bandit algorithm can be critical and bring substantial
revenue improvement for the decision-maker.

121

4.7 Technical proofs
To simplify the notations, we denote ÒAF (x) as the vector with (ÒAF (x))i =
(ÒF (x))i, i œ A, where (·)i is the i-th element in the vector. Similarly we denote
Ò2

A,B
F (x) as the matrix with (Ò2

A,B
F (x))ij = (Ò2F (x))ij, i œ A, j œ B, where

(·)ij is the element in i-th column and j-th row. We denote ⁄min(X)/⁄max(X) as
the smallest/largest eigenvalue of matrix X.

4.7.1 Proof of Lemma 4.4.1

Proof. Lemma 4.4.1 directly follows Lemma A.0.2 in Appendix: A by setting
|A| = n.

4.7.2 Proof of Proposition 4.4.2

Proof. Proposition 4.4.2 follows Proposition 4.5.1 by setting |A| = n.

4.7.3 Proof of Proposition 4.4.3

Proof. Under the ‘-decay random sampling method, the probability of randomly
drawing arm k at time t is min{1, t0/t}/|K|, where |K| is the number of arms. Hence,
at time T , the expected total number of times at which arm k were randomly drawn
is

[nk] = 1
|K|

Tÿ

t=1
min

;
1,

t0
t

<
.

When T > t0,

E[nk] = 1
|K|

Q

at0 +
Tÿ

t=t0+1

t0
t

R

b = t0
|K|

Q

a1 +
Tÿ

t=t0+1

1
t

R

b . (4.7.10)

Since the function f(t) = 1/t is decreasing in t , it can be bounded as follows.

⁄
t+1

t

1
t
dt <

1
t

<
⁄

t

t≠1

1
t
dt, t Ø 2.

122

As t0 Ø 1, for any t from t0 + 1 to T , we have

log(T + 1) ≠ log(t0 + 1) <
Tÿ

t=t0+1

1
t

< log(T) ≠ log(t0). (4.7.11)

Combining (4.7.10) and (4.7.11), we can bound [nk] as follows.

1
|K|t0(1 + log(T + 1) ≠ log(t0 + 1)) < [nk] <

1
|K|t0(1 + log(T) ≠ log(t0)).

(4.7.12)

Since nk = q
T

t=1 {random sampling for arm k at t}, we can view nk as the sum-
marization of bounded iid random variables. Via Cherno� bound, we can build the
connect between nk and E[nk].

P

31
2E[nk] Æ nk Æ 3

2E[nk]
4

> 1 ≠ 2 exp
3

≠ 1
10 [nk]

4
. (4.7.13)

We then relax the E[nk] in (4.7.13) with the upper and lower bounds provided in
(4.7.12) and the following result is attained.

A
t0(1 + log(T + 1) ≠ log(t0 + 1))

2|K| Æ nk Æ 3t0(1 + log(T) ≠ log(t0))
2|K|

B

Ø 1 ≠ 2
A

t0 + 1
e(T + 1)

B t0
10|K|

. (4.7.14)

When t0 = 2C0|K|, C0 Ø 10, and T > (t0+1)2

e2 , we can simplify the right-hand size
of (4.7.14).

1 ≠ 2
A

t0 + 1
e(T + 1)

B t0
10|K|

Ø 1 ≠ 2
A

e
Ô

T + 1
e(T + 1)

BC0/5

Ø 1 ≠ 2
T + 1 . (4.7.15)

4.7.4 Proof of Proposition 4.5.1

Proof. In the first step of 2sWL procedure, we are essentially solving the Lasso
problem. From Lemma A.0.7, we have Î—lasso ≠ —trueÎ1 Æ 96ns⁄

|A|Ÿ
which high

123

probability. As we assume —min Ø
1

96ns

|A|Ÿ
+ a

2
⁄ and Î—lasso ≠ —trueÎŒ Æ Î—lasso ≠

—trueÎ1 we have the follow statements hold.

|—lasso

i
| Ø a⁄, i œ S and |—lasso

i
| Æ 96ns⁄

|A|Ÿ , i œ Sc, (4.7.16)

where we ignore the subscript in Sk to simplify the notation. Combining (4.7.16)
and P

Õ

⁄
(|x|) = max{0, ⁄ ≠ |x|/a}, we have the following two results.

P
Õ

⁄
(|—lasso

i
|) = 0 i œ S, (4.7.17)

P
Õ

⁄
(|—lasso

i
|) Ø P

Õ

⁄

A
96ns⁄

|A|Ÿ

B

=
A

⁄ ≠ 96ns⁄

|A|Ÿa

B

i œ Sc. (4.7.18)

Define the event E2 as follows

E2 =
I

ÎÒScL(—oracle)ÎŒ < ⁄ ≠ 96ns⁄

|A|Ÿa

J

. (4.7.19)

From the convexity of L(—), we can build a lower bound on the optimal objective
function value in the second step of 2sWL.

L(—ú) +
ÿ

j

P Õ

⁄
(|—lasso

j
|) · |—ú

j
| Ø L(—oracle)

+ ÒL(—oracle)T (—ú ≠ —true) +
ÿ

j

P Õ

⁄
(|—lasso

j
|) · |—ú

j
|,

(4.7.20)

where —ú is the optimal solution of the second step of the 2sWL procedures. From
the definition of oracle solution, we have

—oracle = arg min
—Sc =0

L(—) ∆ 1) ÒSL(—oracle) = 0 and 2) —Sc = 0. (4.7.21)

Combining (4.7.17), (4.7.18), (4.7.20), and (4.7.21), we have

L(—ú) +
ÿ

jœSc

P Õ

⁄
(|—lasso

j
|) · |—ú

j
|

Ø L(—oracle) + ÒScL(—oracle)T (—ú

Sc ≠ —oracle

Sc) +
ÿ

jœSc

P Õ

⁄
(|—lasso

j
|) · |—ú

j
|

124

= L(—oracle) +
ÿ

jœSc

1
ÒjL(—oracle)(—ú

j
≠ 0) + P Õ

⁄
(|—lasso

j
|) · |—ú

j
|
2

= L(—oracle) +
ÿ

jœSc

P Õ

⁄
(|—lasso

j
|) · |—oracle

j
|

+
ÿ

jœSc

1
ÒjL(—oracle)sign(—ú

j
) + P Õ

⁄
(|—lasso

j
|)

2
|—ú

j
|. (4.7.22)

Using E2 defined in (4.7.19), (4.7.22) can be simplified as follows.

L(—ú) +
ÿ

jœSc

P Õ

⁄
(|—lasso

j
|) · |—ú

j
| Ø L(—oracle) +

ÿ

jœSc

P Õ

⁄
(|—lasso

j
|) · |—oracle

j
| + c0

ÿ

jœSc

|—ú

j
|,

(4.7.23)

where c0 is a positive constant. Since —ú is the optimal solution of the second
step in 2sWL, per (4.7.23) we must have —ú

j
= 0 for all j œ Sc. Together with the

uniqueness of the solution of (4.4.1), —oracle is also the unique optimal solution to
the second step in 2sWL, i.e, —MCP = —oracle. Therefore once event E2 happens,
with high probability —MCP becomes the oracle solution, which enjoy the optimal
statistical performance. We then need to consider the chance that E2 happens and
the result is summarized in Lemma A.0.11. Per Lemma A.0.11, the following E3, E4

and E5 implies E2.

E3 =
I

ÎÒScL(—true)ÎŒ Æ
A

1 ≠ 96ns

|A|Ÿa

B
⁄

4

J

,

E4 =
I

ÎÒSL(—true)ÎŒ Æ
A

1 ≠ 96ns

|A|Ÿa

B
µ0|A|⁄
8snx2

max

J

,

E5 =
;

Î—oracle ≠ —trueÎ2 Æ
Ò

C2⁄
<

,

where C2 is a positive constant. Now, we can bound the probability of events E3,
E4, and E5 happen simultaneously. From Assumption A.5 and Hoe�ding bound we
have the following inequality for t1 > 0

1
ÎÒSL(—true)ÎŒ Ø t1

2
=

Q

a 1
n

nÿ

j=1
xT

jS
f

Õ(rj|xT

j,S
—true)ÎŒ Ø t1

R

b Æ s exp
A

≠ nt2
1

2‡2x2
max

B

.

(4.7.24)

125

Similarly for t2 > 0, we have the following result.

1
ÎÒScL(—true)ÎŒ Ø t2

2
Æ (d ≠ s) exp

A

≠ nt2
2

2‡2x2
max

B

. (4.7.25)

By setting t1 = t2 = (1
4 ≠ 24ns

|A|Ÿa
) min

Ó
1, µ0|A|

8snx2max

Ô
⁄, we have

((E Õ

4)c fi (E Õ

5)c) Æ d exp

Q

ca≠
n⁄2

1
(1

4 ≠ 24ns

|A|Ÿa
) min

Ó
1, µ0|A|

8snx2max

Ô22

2x2
max

R

db . (4.7.26)

We can further bound event E5 via Lemma A.0.2. We can have the following
result by setting t in Lemma A.0.2 satisfying t Æ µ0|A|

Ô
C2⁄

2n
.

3
Î—oracle ≠ —trueÎ2 Æ

Ò
C2⁄

4
Ø 1 ≠ s exp

A

≠ µ0|A|
8s‡2x2

max

B

≠ s exp
A

≠ nt2

2s‡2x2
max

B

.

(4.7.27)

Moreover, from (A.0.5) in Lemma A.0.2, the following result hold for |A| Ø 2s
2
x

2
max

µ0
:

Q

aÎ—oracle ≠ —trueÎ2 Æ
ı̂ıÙ8s2‡2x2

maxn

µ2
0|A|2

R

b Ø 1 ≠ s exp
A

≠ µ0|A|
8s‡2x2

max

B

≠ 2 exp
A

≠Ch|A|µ0
2sx2

max

B

.

(4.7.28)

Combining Lemma A.0.7, (4.7.26) and (4.7.27) , we have the following inequality
for ’ Æ µ0|A|

Ô
C2⁄

2n
.

A

Î—MCP ≠ —trueÎ2 Æ 2n’

|A|µ0

B

Ø 1 ≠ ”2(n, |A|, ⁄) ≠ ”3(|A|) ≠ ”4(n, |A|, ’).

(4.7.29)

Similarly, by |A| Ø 2s
2
x

2
max

µ0
, the following result comes directly from Lemma A.0.7,

(4.7.26) and (4.7.28).
Q

aÎ—MCP ≠ —trueÎ2 Æ
ı̂ıÙ8s2‡2x2

maxn

µ2
0|A|2

R

b Ø 1 ≠ ”1(|A|) ≠ ”2(n, |A|, ⁄) ≠ ”3(|A|).

(4.7.30)

126

4.7.5 Proof of Proposition 4.5.2

Proof. Directly from Lemma A.0.9.

4.7.6 Proof of Proposition 4.5.3

Proof. Since {M(i)} is a martingale with bounded di�erence 1, we can use M(0)
to bound the value of M(T + 1) with Azuma’s inequality as follow:

3
|M(T + 1) ≠ M(0)| Ø 1

2M(0)
4

Æ exp
A

≠M(0)2/4
2(T + 2)

B

∆
3

M(T + 1) Æ 1
2M(0)

4
Æ exp

A
≠M(0)2/4
2(T + 2)

B

.

The term M(0) can be expressed as follows

M(0) =
C

T +1ÿ

i=1
(xi œ Uk, E6, x /œ Rk))

D

=
T +1ÿ

i=1
(xi œ Uk, E6, x /œ Rk). (4.7.31)

As {x œ Uk} is independent of {E6, x /œ Rk} and {x /œ Rk} is independent on {E6},
(4.7.31) implies the following inequality

M(0) =
T +1ÿ

i=1
(xi œ Uk) (E6) (x /œ Rk)

Ø
T +1ÿ

i=1
pú(1 ≠ 7

T + 1)(1 ≠ 2C0|K|
T + 1), (4.7.32)

where (4.7.32) uses assumption A.3, Proposition 4.5.2 and Proposition 4.4.3.
When T Ø max{14, 4C0|K|}, we have

7
T + 1 Æ 1

2 (4.7.33)

2C0|K|
T + 1 Æ 1

2 , (4.7.34)

127

which implies that

M(0) Ø
T +1ÿ

i=1

pú

4 = pú(T + 1)
4 . (4.7.35)

Therefore, the following inequalities hold
A

M(T + 1) Æ pú(T + 1)
8

B

Æ
3

M(T + 1) Æ 1
2M(0)

4
Æ exp

A
≠(pú)2(T + 1)2/64

2(T + 2)

B

∆
A

M(T + 1) Æ pú(T + 1)
8

B

Æ exp
A

≠(pú)2((T + 2)2 + 1 ≠ 2(T + 2))
128(T + 2)

B

∆
A

M(T + 1) Æ pú(T + 1)
8

B

Æ exp
A

≠(pú)2T

128 ≠ pú

128(T + 2)

B

∆
A

M(T + 1) Æ pú(T + 1)
8

B

Æ exp
A

≠(pú)2T

128

B

(4.7.36)

4.7.7 Proof of Proposition 4.5.4

Proof. According to Lemma A.0.10, when event E6 defined by (4.5.8) happens, the
following inequality must hold for any x œ Uk,

(Rk|x, —random

k
(t)) Ø max

j ”=k

(Rj|x, —random

j
(t)) + h

2 .

Therefore, the lower-level decision-making process of the algorithm, in which the
decision-maker will successfully select arm i for x by using the random sample
estimator, will maintain the iid property of x since it can be viewed as rejection
sampling. From Proposition 4.5.3, we have

A

M(T + 1) Æ pú(T + 1)
8

B

Æ exp
A

≠(pú)2T

128

B

. (4.7.37)

Since M(T+1) =
Ëq

T +1
j=1 (xj œ Uk, E6, xj /œ Rk)|FT +1

È
= q

T +1
j=1 (xj œ Uk, E6, xj /œ

Rk), the amount of iid samples among the whole sample for arm k up to time T + 1
will be lower bounded by M(T + 1). Denote A and n as the set of iid samples
belonging to UK in the whole sample set and size of the whole sample respectively.

128

The follow inequality holds.
A

|A| Ø pú(T + 1)
8

B

Ø 1 ≠ exp
A

≠(pú)2T

128

B

, n Æ T + 1. (4.7.38)

Consider |A| Ø p
ú(T +1)

8 , n Æ (T + 1), ⁄ = C4
Ò

log(T +1)+log d

T +1 , and T Ø T0, where
C4 =

Ô
2xmax

(1
4 ≠

192s
púŸa) min{1,

µ0
púsx2max

}
and T0 = max

Ó
14, 4C0|K|, 128

(pú)2 , 64
C1pú)2 , 256s

2
x

4
max

(Chpú)2 , 64s
2
‡

2
x

4
max(1+log s)2

(µ0pú)2

Ô
,

the following results can be obtained:

|A| Ø 2s2x2
max

µ0
, a >

96ns

Ÿ|A| and —min Ø (96ns

Ÿ|A| + a)⁄.

We then have the following result via Proposition 4.5.1.
Q

aÎ—oracle ≠ —trueÎ Ø
ı̂ıÙ 512s3‡2x2

max
µ2

0(pú)2(T + 1)

R

b

Æ ”1

A
pú(T + 1)

8

B

+ ”2

A

T + 1,
pú(T + 1)

8 , ⁄

B

+ ”3

A
pú(T + 1)

8

B

(4.7.39)

Combining T > T0, ⁄ = C4
Ò

log(T +1)+log d

T +1 and the fact T + 1 Ø
Ô

T + 1 log(T + 1)
for T > 0, we have

”1

A
pú(T + 1)

8

B

+ ”2

A

T + 1,
pú(T + 1)

8 , ⁄

B

+ ”3

A
pú(T + 1)

8

B

Æ 4
T + 1 (4.7.40)

A

|A| Æ pú(T + 1)
8

B

Æ 1
T + 1 . (4.7.41)

Set C— = 512‡
2
xmax

µ
2
0(pú)2 , and Proposition 4.5.4 directly follows by combining (4.7.40),

(4.7.39), (4.7.41) and (Ec

6) Æ 7
T +1 from Lemma A.0.10.

4.7.8 Proof of Theorem 4.4.4

Proof. We divide the time, up to time T , into three groups and derive the cumulative
regret bound for each group separately. Consider the following three groups:

1. xi œ Rk, k œ K and T Æ T0.

2. xi /œ Rk, k œ K, T > T0 and E6 doesn’t hold,

129

3. xi /œ Rk, k œ K T > T0 and E6 holds.

Before going to the detail proof, we first state the choice of T0 and C0 such that
the requirements of Proposition 4-6 are satisfied.

T0 = max
I

(t0 + 1)2

e2 ≠ 1, 14, 4C0|K|, 128
(pú)2 ,

64
C1pú)2 ,

256s2x4
max

(Chpú)2 ,
64s2‡2x4

max(1 + log s)2

(µ0pú)2

J

C0 = max

Y
]

[10,
16
pú

,
4

púC1
,
4x2

max
C2

5

A

(1
4 ≠ 576s

púŸa
) min

I

1,
µ0pú

192sx2
max

JB
≠2

,

32‡2sx2
max(1 + log s)
púµ0

,
4‡2x2

max(1 + log s)
t2

J

,

where t Æ min
;

µ0p
ú

Ô
C̃2⁄

48 , p
ú
µ0

48‡
Ô

sxmax
, hp

ú
µ0

192e‡
Ô

sRmaxxmax

<
, C̃2 = µ0p

ú

2‡3sx3max(µ0pú+48sx2max) ,

C1 = min
;

1, Ÿ2/
1
192s‡2x2

max(3 + 2Ô
‡2xmax)

22<
and C5 = —minp

ú
Ÿ

(2304s+apúŸ)
Ô

1+log d
.

Regret in part 1: Denote the regret for the first part as R1(T).

R1(T) Æ Rmax

Q

a
Tÿ

i=T0

(xi œ Rk, k œ K) + T0

R

b Æ Rmax

Q

a
ÿ

kœK

nk + T0

R

b . (4.7.42)

From Proposition 4.4.3, we know that
A

nk Æ 3t0(1 + log(T) ≠ log(t0))
2|K|

B

Ø 1 ≠ 2
T + 1 . (4.7.43)

If we require t0 = 2C0|K|, C0 Ø 10, and T Ø max{(t0 + 1)2/e2 ≠ 1, 14}, then the
above equation can be simplified to

(nk Æ 6C0 log T) Ø 1 ≠ 2
T + 1 ∆ (nk > 6C0 log T) Æ 2

T + 1 (4.7.44)

which implies
Q

a
ÿ

kœK

nk > 6C0|K| log T

R

b Æ (fikœK(nk > 6C0 log T)) Æ
ÿ

kœK

(nk > 6C0 log T) Æ 2|K|
T + 1 ,

(4.7.45)

130

and

R1(T) Æ Rmax

Q

a
ÿ

kœK

nk + T0

R

b = Rmax

Q

a
ÿ

kœK

nk|
ÿ

kœK

nk > 6C0|K| log T

R

b

Q

a
ÿ

kœK

nk > 6C0|K| log T

R

b

+ Rmax

Q

a
ÿ

kœK

nk|
ÿ

kœK

nk Æ 6C0|K| log T

R

b

Q

a
ÿ

kœK

nk Æ 6C0|K| log T

R

b

+ RmaxT0

Æ RmaxT
2|K|

T + 1 + Rmax6C0|K| log T

A

1 ≠ 2|K|
T + 1

B

+ RmaxT0

Æ 2Rmax|K| + 6RmaxC0|K| log T + RmaxT0

Æ Rmax|K|(2 + 6C0 log T) + RmaxT0. (4.7.46)

Regret in part 2: Denote the regret for the second part as R2(T).From
Lemma A.0.9, we know that

A

Î—random(t) ≠ —trueÎ1 Æ min
I

1
‡xmax

,
h

4e‡Rmaxxmax

JB

Ø 1 ≠ 7
T + 1 , k œ K

∆ (E6(T)) Ø 1 ≠ 7|K|
T + 1 . (4.7.47)

Therefore, R2(T) can be bounded as follows

R2(T) Æ [
Tÿ

i=1
(E6(i)c)Rmax]

=
Tÿ

i=1
[(E6(i)c)]Rmax

=
Tÿ

i=1
(E6(i)c)Rmax

Æ 7Rmax|K| log(T + 1). (4.7.48)

Regret in part 3: Denote the regret for the third part as R3(T). Without
loss of generality, we assume that arm i is true optimal arm at time t. Then, the
regret at time t can be bounded as follows

rt =
3 3

j = arg max
kœK

[Rk|xt, —whole

k
(t)]

4
([Ri|xt, —true

i
] ≠ [Rj|xt, —true

j
])

4

131

Æ
Q

a
ÿ

j ”=i

1
[Rj|xt, —whole

j
(t)] > [Ri|xt, —whole

i
(t)]

2
([Ri|xt, —true

i
] ≠ [Rj|xt, —true

j
])

R

b .

(4.7.49)

Denote E(t, ”)8,k = { [Ri|xt, —true

i
] > [Rk|xt, —true

k
] + ”}, k ”= i, k œ K. Then we

have the following bound.

rt

Æ
Q

a
ÿ

j ”=i

1Ó
[Rj|xt, —whole

j
(t)] > [Ri|xt, —whole

i
(t)]

Ô
fl E(t, ”)8,j

2

◊ ([Ri|xt, —true

i
] ≠ [Rj|xt, —true

j
])

2

+
Q

a
ÿ

j ”=i

1Ó
[Rj|xt, —whole

j
(t)] > [Ri|xt, —whole

i
(t)]

Ô
fl E(t, ”)c

8,j

2

◊ ([Ri|xt, —true

i
] ≠ [Rj|xt, —true

j
])

2

Æ
Q

a
ÿ

j ”=i

1Ó
[Rj|xt, —whole

j
(t)] > [Ri|xt, —whole

i
(t)]

Ô
fl E(t, ”)8,j

2
(2Rmax)

R

b

(4.7.50)

+
Q

a
ÿ

j ”=i

1Ó
[Rj|xt, —whole

j
(t)] > [Ri|xt, —whole

i
(t)]

Ô
fl E(t, ”)c

8,j

2
(”)

R

b .

(4.7.51)

The term in (4.7.51) can be bounded as follows
Q

a
ÿ

j ”=i

1Ó
[Rj|xt, —whole

j
(t)] > [Ri|xt, —whole

i
(t)]

Ô
fl E(t, ”)c

8,j

2
(”)

R

b

Æ
Q

a
ÿ

j ”=i

1
E(t, ”)c

8,j

2
(”)

R

b

=
ÿ

j ”=i

1
E(t, ”)c

8,j

2
”

=(|K| ≠ 1)CRmax”2 Æ CRmax|K|”2, (4.7.52)

where the last inequality comes from assumption A.2. Now we consider the term

132

in (4.7.50), which can be bounded as follows
Q

a
ÿ

j ”=i

1Ó
[Rj|xt, —whole

j
(t)] > [Ri|xt, —whole

i
(t)]

Ô
fl E(t, ”)8,j

2
2Rmax

R

b

Æ
Q

a
ÿ

j ”=i

1
[Rj|xt, —whole

j
(t)] ≠ [Rj|xt, —true

j
]

> [Ri|xt, —whole

i
(t)] ≠ [Ri|xt, —true

i
] + ”

2
2Rmax

2

Æ
Q

a
ÿ

j ”=i

1--- [Rj|xt, —whole

j
(t)] ≠ [Rj|xt, —true

j
]

> ≠
--- [Ri|xt, —whole

i
(t)] ≠ [Ri|xt, —true

i
]
--- + ”

2
(2Rmax)

2

Æ
Q

a
ÿ

j ”=i

1
Rmax‡e2‡xmaxbxmaxÎ—true

k
≠ —whole

k
(t)Î1

> ≠Rmax‡e2‡xmaxbxmaxÎ—true

i
≠ —whole

i
(t)Î1 + ”

2
(2Rmax)

2

Æ
Q

a
ÿ

j ”=i

A

Î—true

k
≠ —whole

k
(t)Î1 + Î—true

i
≠ —whole

i
(t)Î1 Ø ”

Rmax‡e2‡xmaxbxmax

B

(2Rmax)
R

b ,

(4.7.53)

where the second last inequality comes from the first part of the Lemma A.0.10
and Î—Î1 Æ b in assumption A.1. From Proposition 4.5.4, we have the following
inequality.

Q

aÎ—whole

k
(t) ≠ —true

k
Î2 Ø

Û

C—
s2

T

R

b Æ 12
T + 1 . (4.7.54)

As Î—whole

k
(t) ≠ —true

k
Î2 Ø 1

Ô
s
Î—whole

k
(t) ≠ —true

k
Î1, (4.7.54) implies

Q

aÎ—whole

k
(t) ≠ —true

k
Î1 Ø

Û

C—
s3

T + 1

R

b Æ 12
T + 1 . (4.7.55)

Denote event E9 as follows

E9 = {Î—whole

k
(t) ≠ —true

k
Î1 Ø ”

2Rmax‡e2‡xmaxbxmax
, k œ K}. (4.7.56)

133

Combining (4.7.53) and (4.7.55), we have:
Q

a
ÿ

j ”=i

A

Î—true

j
≠ —whole

j
(t)Î1Î—true

i
≠ —whole

i
(t)Î1 Ø ”

Rmax‡e2‡xmaxbxmax

B

(2Rmax)
R

b

=
Q

a
ÿ

j ”=i

A

Î—true

j
≠ —whole

j
(t)Î1 + Î—true

i
≠ —whole

i
(t)Î1 Ø ”

Rmax‡e2‡xmaxbxmax

----- E9

R

b (E9)(2Rmax)
R

b

+
Q

a
ÿ

j ”=i

A

Î—true

j
≠ —whole

j
(t)Î1 + Î—true

i
≠ —whole

i
(t)Î1 Ø ”

Rmax‡e2‡xmaxbxmax

----- Ec

9

R

b (Ec

9)(2Rmax)
R

b

Æ
Q

a
ÿ

j ”=i

3 1
2” + 1

2” Ø ”
---- E9

4
(E9) (2Rmax)

R

b + 0

= ((E9(t)) (2Rmax)) Æ 2Rmax (E9). (4.7.57)

Furthermore, by setting ” = 2Rmax‡e2‡xmaxbxmax
Ò

C—
s3

T +1 , we have the following
result:

rt Æ 2Rmax (E9) + CRmax|K|”2 Æ 24Rmax|K|
T + 1 + CRmax|K|4R2

max‡2e4‡xmaxbx2
maxC—s3

T + 1 = CR3

T + 1
(4.7.58)

where CR3 = 24Rmax|K| + 4e4‡2xmaxbCR3
max|K|x2

maxC—s3. Hence, the third part of
the regret can be bounded as follows:

R3(T) =
Tÿ

i=1,iœR(T)
rt Æ

Tÿ

i=1

CR3

T
Æ

⁄
T

1

CR3

t
dt Æ CR3 log(T) (4.7.59)

Finally, the total regret bound can be obtained by combining the bounds for
these three parts:

R1(T) + R2(T) + R3(T)

Æ Rmax[|K|(2 + 6C0 log T) + T0] + 7Rmax|K| log(T + 1) + CR3 log(T)

Æ Rmax(T0 + |K|) + (6Rmax|K|C0 + 31Rmax|K| + 4‡2e4‡2xmaxbCR3
max|K|x2

maxC—s3) log(T + 1)

= O(|K|s2(s + log d) log T).

134

4.8 Conclusion
In this research, we develop the G-MCP-Bandit algorithm for online learning and
decision-making processes in high-dimensional settings under limited samples. We
adopt the matrix perturbation technique to derive new oracle inequality for the MCP
estimator under non-iid samples and further propose a linear approximation method,
the 2sWL procedure, to overcome the computational and statistical challenges
associated with solving the MCP estimator (an NP-complete problem) under the
bandit setting. We demonstrate that the MCP estimator solved by the 2sWL
procedure matches the oracle estimator with high probability and converges to the
true parameters with the optimal convergence rate. Further, we show that the
cumulative regret of the G-MCP-Bandit algorithm over the sample size T is bounded
by O(log T), which is the lowest theoretical bound for all possible algorithms under
both low-dimensional and high-dimensional settings. In the covariate dimension
d, the cumulative regret of the G-MCP-Bandit algorithm is bounded by O(log d),
which is also a tighter bound than existing bandit algorithms. Finally, we illustrate
that compared to other benchmark algorithms, the G-MCP-Bandit algorithm
performs favorably in synthetic-data-based and real-data-based experiments.

Implementing the G-MCP-Bandit algorithm under high-dimensional data with a
large decision set in an online setting can be challenging in practice, and addressing
these challenges can extend this research to several directions. One of the major
challenges is the computation time, especially when the covariate dimension and
the decision set are extremely large. In particular, during a collaboration with a
leading online marketplace, we adopted the G-MCP-Bandit algorithm, aiming to
improve its product recommendation system. Using its datasets (with 5 million
covariates and 30 million products), we showed that the G-MCP-Bandit algorithm
improved the prediction of the conversion rate by 15% and the expected revenue
by 5% on average, but a single server could take hours to execute the algorithm.
We can implement the G-MCP-Bandit algorithm in a hybrid online-o�ine setting,
where we recommend products by following the bi-level decision structure for every
user but update the parameter vector estimation —random and —whole in batches
every a couple of hours. Yet, in order to implement the G-MCP-Bandit algorithm
in online settings, where we also update the parameter vector estimation for every
incoming user, parallel computation techniques must be developed to tremendously

135

reduce the computation time. Other challenges for the G-MCP-Bandit algorithm
are how to simultaneously recommend multiple products and how to dynamically
update the recommendation if the user did not click the recommended products
but kept refreshing the recommendation page. Tackling these challenges requires
an integration of the assortment optimization and Bayesian learning into the
G-MCP-Bandit algorithm.

136

Chapter 5 |
Conclusions and Future Research

This dissertation consists of three problems in high-dimensional learning and
decision making:

1. A sample average approximation with the folded concave penalty for high-
dimensional stochastic programming

2. An accelerated interior point gradient method for large scale linear constrained
nonconvex programming

3. A contextual bandit algorithm for online learning and decision making with
high-dimensional features

The first work is presented in Chapter 2. We propose the RSAA, a modifica-
tion to the SAA by incorporating a regularization scheme called the FCP. This
modification targets the high-dimensional SP problems with sparsity. We show
that when the solution is sparse or can be approximated by a sparse solution, the
regularization can significantly reduce the required number of samples in some
high-dimensional SP applications. Compared to the conventional SAA approach
that requires the sample size to grow polynomially in the number of dimensions,
the RSAA requires the number of samples that is only poly-logarithmic in the
dimensionality. Future direction includes:

1. (Development of new solution scheme) In our current work, we directly
adopt the second order interior point algorithm in [92, 93], of which compu-
tation complexity is O(p6/‘ log(1/‘)). Although the dependence on error ‘ is
promising, the dependence on dimensionality p is not good enough, especially

137

for the high-dimensional problem. We will explore the solution scheme with
better dimensionality and error trade-o�, such as coordinate descent method
and accelerated gradient descent with eigenvalue checking.

2. (The possibility of distributed setting) Our current work focuses on the
sample size requirement. In practice, due to storage limitation or data privacy,
the dataset needs to be separately stored at di�erent locations. It poses a
new challenge on how to design an e�cient distributed algorithm to solve the
RSAA problem. The communication e�cient framework will be considered.

3. (Perishable data) In our current setting, we assume that the true model is
static and the whole dataset could be stored. But in real world application
(e.g. online advertising), the true model might evolve with time and we can
only e�ciently keep and process the very limit amount of active data, i.e. the
historical data is perishing. We will extend our current work with the stochas-
tic approximation (e.g. stochastic gradient descent (SGD) and Stochastic
Variance Reduction gradient (SVRG)) to develop a new computational and
statistical friendly framework.

In Chapter 3 we discuss the second work. We design an accelerated interior point
gradient method (AIP-GM) for non-convex programming with linear constraints.
Many important problems (e.g., l1-minimization, regularized neural network) can
be formulated into this form. AIP-GM is guaranteed to reach a ‘ approximated
second order solution in O(‘≠7/4 log(1/‘)2) iteration. It improves upon the O(‘≠2)
complexity of the gradient descent methods and provides additional second order
guarantee. In each iteration, only gradient calculation and matrix-vector multipli-
cation are required, which makes AIP-GM being suitable for large scale problem
arising in machining learning as well as other areas. Future research directions
include:

1. (ADMM with eigenvalue checking) Our current framework can be sum-
marized as accelerating the first order interior point method with eigenvalue
checking. We will research boosting ADMM type of algorithm with the similar
technique.

2. (Statistical property) Di�erent from the vanilla first order methods, our
approach can even attain the second necessary solution. In [47] authors show

138

that the higher order necessary solution can ensure statistical property for
FCP least squared regression problem. We will study whether our approach
can attain the solution with the statistical guarantee for general convex loss
functions in machine learning or statistical learning.

3. (Numerical studies) We will conduct comprehensive numerical examples
presentation, solution comparison and discussions on findings/performances.

The last work is shown in Chapter 4. we develop the MCP-Bandit algorithm for
online learning and decision-making processes in high-dimensional data settings. To
further tackle the computational and statistical challenges associated with solving
the MCP estimator under non-i.i.d. samples, we propose a linear approximation
method, 2sWL procedure, under the bandit setting and show that the MCP es-
timator solved by the 2sWL procedure matches the oracle estimator with high
probability. We demonstrate that the cumulative regret of the MCP-Bandit algo-
rithm over sample size T is bounded by O(log T), which is the lowest theoretical
bound for all possible algorithms. In covariate dimension d and the number of sig-
nificant covariate dimension s, the cumulative regret of the MCP-Bandit algorithm
is bounded by O(s2(s + log d)), which is also a tighter bound than the Lasso-Bandit
algorithm. We show that the MCP-Bandit algorithm performs favorably in all our
experiments, especially when the data sparsity level is high or when the sample
size is not too large. We will consider the following future research direction:

1. (Contextual arm) We now only focus on the setting that the user has
covariates. A more realistic situation would be that arms are also described
by covariates and we need to make a decision based on both covariates. We
will consider adding arm covariates module into our model to address this
issue.

2. (Perishable data) The real world problem may involve time-evolving e�ects.
We will combine our current model with the methods in time-series analysis.

139

Appendix A|
Supplement material for Chap-
ter 4

Lemma A.0.1. Let A be the set of iid samples. Under assumption A.1 and A.5,
there exists a constant µ0 > 0 such that for all feasible › defined in assumption A.4
we have

A

⁄min(Ò2
S,S

L(›)) Ø |A|
2n

µ0

B

Æ 1 ≠ s exp
A

≠ |A|µ0
8s‡2x2

max

B

. (A.0.1)

Proof. Proof of Lemma A.0.1 Note that f(·|·) is convex and has smooth gradient.
We denote zÕ

j
= xj,S

Ò
f ÕÕ(rj|xT

j,S
›S). Combine with f(·|·) = ≠ log g(·|·) and we

have

Ò2
S,S

L(›) = 1
n

nÿ

i=1
xi,SxT

i,S
f

ÕÕ(ri|xT

i,S
›S) = 1

n

nÿ

i=1
zÕ

i
(zÕ

i
)T ≤ ⁄min

Q

a 1
n

ÿ

jœA

zÕ

j
(zÕ

j
)T

R

b I.

Then, we bound ⁄min
1

1
n

q
jœAc zÕ

j
(zÕ

j
)T

2
via Theorem 5.1.1 in [84] with ‘ = 1/2:

Q

a⁄min(1
n

ÿ

jœA

zÕ

j
(zÕ

j
)T) Æ 1

2⁄min([1
n

ÿ

jœA

zÕ

j
(zÕ

j
)T])

R

b Æ s

Q

aexp(≠1/2)
Ò

1/2

R

b

⁄min([1
n

q
jœA

zÕ

j (zÕ

j)T])

s‡2x2max/n

(A.0.2)

∆
Q

a⁄min(1
n

nÿ

jœA

zÕ

j
(zÕ

j
)T) Æ |A|

2n
⁄min([zÕ

j
(zÕ

j
)T])

R

b Æ s exp
Q

a≠
log(e/2)n⁄min(|A|

n
[zÕ

j
(zÕ

j
)T])

2s‡2x2
max

R

b ,

(A.0.3)

140

where (A.0.2) uses 0 Æ ⁄min(1
n
zÕ

j
(zÕ

j
)T) Æ ⁄max(1

n
zÕ

j
(zÕ

j
)T) Æ s

n
(zÕ

max)2 = s

n
‡2x2

max

and the last inequality comes from the assumption A.1. As we only consider
the significant dimensions, under assumption A.4, we can verify that there ex-
ists a µ0 > 0 such that [zÕ

j
(zÕ

j
)T] = [Ò2

S,S
LA(›)] ≤ µ0I. Then, we have1

⁄min(1
n

q
n

jœA
zÕ

j
(zÕ

j
)T) Æ |A|

2n
⁄min([zÕ

j
(zÕ

j
)T])

2
Ø

1
⁄min(1

n

q
n

jœA
zÕ

j
(zÕ

j
)T) Æ |A|

2n
µ0

2
.

Thus (A.0.3) implies
Q

a⁄min(1
n

nÿ

jœA

zÕ

j
(zÕ

j
)T) Æ |A|

2n
µ0

R

b Æ s exp
A

≠
log(e/2)|A|⁄min([zÕ

j
(zÕ

j
)T])

2s‡2x2
max

B

.

Combining with the fact log(e/2)/2 Ø 1/8, Lemma A.0.1 follows immediately.

Lemma A.0.2. Let the whole sample size be n and iid random sample set be A. If
assumptions A.1,A.4 and A.5 hold, there exist µ0 > 0 such that for t > 0 we have

A

Î—MCP ≠ —trueÎ Ø 2nt

|A|µ0

B

Æ s exp
A

≠ |A|µ0
8s‡2x2

max

B

+ s exp
A

≠ nt2

2s‡2x2
max

B

.

(A.0.4)

Furthermore, if |A| Ø 2s
2
x

2
max

µ0
we have

Q

aÎ—MCP ≠ —trueÎ2 Ø
ı̂ıÙ8s2‡2x2

maxn

µ2
0|A|2

R

b Æ s exp
A

≠ µ0|A|
8s‡2x2

max

B

+ 2 exp
A

≠ Ch|A|µ0
2s‡2x2

max

B

,

(A.0.5)

where Ch is a positive constant.

Proof. Proof of Lemma A.0.2
From the definition of oracle solution, we know

ÒSL(—oracle) = 0. (A.0.6)

Expanding (A.0.6) at —true we will have the following result for some › œ {·—oracle +
(1 ≠ ·)—true, · œ [0, 1]}.

ÒSL(—true) + Ò2
S,S

L(›)(—oracle ≠ —true) = 0

Ò2
S,S

L(›)(—oracle ≠ —true) = ≠ÒSL(—true)

141

(—oracle ≠ —true)T Ò2
S,S

L(›)(—oracle ≠ —true) = ≠(—oracle ≠ —true)T ÒSL(—true)

⁄min(Ò2
S,S

L(›))Î(—oracle ≠ —true)Î2
2 Æ Î(—oracle ≠ —true)Î2ÎÒSL(—true)Î2

⁄min(Ò2
S,S

L(›))Î(—oracle ≠ —true)Î2 Æ ÎÒSL(—true)Î2. (A.0.7)

The ⁄min(Ò2
S,S

L(›)) term on the left hand side of (A.0.7) can be lower bounded
away 0 via Lemma A.0.1 with high probability. Thus we only need to construct
the upper bound for right-hand side of (A.0.7) that can be expanded as follows

ÎÒSL(—true)Î2 =

......
1
n

nÿ

j=1
xT

jS
f

Õ(rj|xT

j,S
—true)

......
2

. (A.0.8)

Under assumption A.5, we have |f Õ(rj|xT

j,S
—true)| Æ ‡. Combining with [f Õ(rj|xT

j,S
—true)] =

0, we can verify that f
Õ(rj|xT

j,S
—true) is a ‡-subgaussian random variable. From

Hoe�ding inequality, there exists a t > 0 such that
Q

a

1
n

nÿ

j=1
xT

ji
f

Õ(rj|xT

j
—true)

Ø t

R

b Æ exp
A

≠ nt2

2‡2x2
max

B

’i œ S. (A.0.9)

Hence, we have

1
ÎÒSL(—true)Î2 Ø t

2
=

Q

a

......
1
n

nÿ

j=1
xT

ji
f

Õ(rj|xT

j
—true)

......
2

Ø t

R

b

Æ
Q

a
Ò

|S|

......
1
n

nÿ

j=1
xT

ji
f

Õ(rj|xT

j
—true)

......
Œ

Ø t

R

b

Æ s exp
A

≠ nt2

2s‡2x2
max

B

, (A.0.10)

where the inequality in (A.0.10) follows from |S| Æ s. Combining (A.0.10), (A.0.7)
and Lemma A.0.1, the statement in (A.0.4) follows.

Now, the first half of Lemma A.0.2 has been proven, and we switch to the second
half. Denote ‘ = [‘1, ‘2, ..., ‘n] where ‘j = f

Õ(rj|xT

j,S
—true), j = 1, 2, .., n. Then

ÒSL(—true) can be rewritten as ÒSL(—true) = 1
n
XS‘ with XS = [x1,S , ..., xn,S].

Using the Hanson-Wright inequality (Theorem 1.1 in [72]), we have

{|‘T (1
n

XT

S
XS)‘ ≠ ‘[‘T (1

n
XT

S
XS)‘]| > ‘[‘T (1

n
XT

S
XS)‘]}

142

Æ2 exp
A

≠Ch min
I

‘[‘T (1
n
XT

S
XS)‘]

‡2Î 1
n
XT

S
XSÎ2

,
(‘[‘T (1

n
XT

S
XS)‘])2

‡4Î 1
n
XT

S
XSÎ2

F

JB

Æ2 exp
A

≠Ch min
I

⁄min(1
n
XT

S
XS)

⁄max(1
n
XT

S
XS)

‘[‘T ‘]
‡2 ,

⁄min(1
n
XT

S
XS)2

⁄max(1
n
XT

S
XS)2

‘[‘T ‘]2
s‡4

JB

Æ2 exp
A

≠Ch min
I

n
⁄min(1

n
XT

S
XS)

⁄max(1
n
XT

S
XS) ,

n2

s

⁄min(1
n
XT

S
XS)2

⁄max(1
n
XT

S
XS)2

JB

Æ2 exp
A

≠n
Ch⁄min(1

n
XT

S
XS)

⁄max(1
n
XT

S
XS)

B

, (A.0.11)

where Ch is a positive constant and ‘ denote the expectation with respect to ‘.
The last inequality, (A.0.11), holds when n Ø s

⁄max(1
n XT

S
XS)

⁄min(1
n XT

S
XS) . Define the event E1 as

follows

E1 =
;

|‘T (1
n

XT

S
XS)‘ ≠ ‘[‘T (1

n
XT

S
XS)‘]| Æ ‘[‘T (1

n
XT

S
XS)‘]

<
. (A.0.12)

Under event E1, we have

Î 1
n

XS‘Î2 Æ
Û

1
n

‘T (1
n

XT

S
XS)‘ Æ

Û
2
n

‘[‘T (1
n

XT

S
XS)‘]. (A.0.13)

Let Pj = XT

S
(XSXT

S
)≠1XS . We have (Pj‘)T (1

n
XT

S
XS)(Pj‘) = ‘T (1

n
XT

S
XS)‘,

and (A.0.13) implies the following result.

Î 1
n

XS‘Î2 Æ
Û

2
n

‘[(Pj‘)T (1
n

XT

S
XS)(Pj‘)]

Æ
Û

2
n

⁄max(1
n

XT

S
XS) ‘[ÎPj‘Î2

2]

Æ
Û

⁄max(1
n

XT

S
XS)2s‡2

n
, (A.0.14)

where the last inequality comes the facts that ‘[ÎPj‘Î2
2] = s‡2 in which Pj

can be viewed as a projection matrix from n dimension to s dimension and
‘j is a ‡-subguassian random variable. Therefore, from ÒSL(—true) = 1

n
XS‘,

143

⁄max(1
n
XT

S
XS) Æ sx2

max and (A.0.11)-(A.0.14), we have the following inequalities.
Q

aÎÒSL(—true)Î2 Æ
Û

2s2‡2x2
max

n

R

b Ø 1 ≠ 2 exp
A

≠n
Ch⁄min(1

n
XT

S
XS)

sx2
max

B

.

(A.0.15)

Since 1
n
XT

S
XS = 1

n

q
n

j=1 xj,SxT

j,S
≤ 1

n

q
n

j=1 xj,SxT

j,S

f
ÕÕ(rj |xT

j,S›)
‡2

= 1
‡2

Ò2
S,S

L(›). We
then may apply the Lemma A.0.1 to further lower bound ⁄min(1

n
XT

S
XS) by |A|µ0

2n‡2

for some µ0 > 0 with high probability and then (A.0.5) follows.

Lemma A.0.3. If there exists K and ‡0 such that K2
1
E[exp(z2

t,i
/K2) ≠ 1]

2
Æ ‡2

0,

then the following probability bound will hold for all t > 0:

P

Y
]

[Î 1
n

nÿ

j=1
zjz

T

j
≠ E[zjz

T

j
]ÎŒ Ø 2K2t + 2K‡0

Ô
2t + 2K‡0⁄

A
K

‡0
, n,

A
d

2

BBZ
^

\ Æ exp (≠nt)

(A.0.16)
where ⁄

1
K

‡0
, n,

1
d

2

22
=

Ò
2 log(d(d≠1))

n
+ K log(d(d≠1))

n
.

Proof. Proof of A.0.3 From the exercise 14.3 in [14].

Lemma A.0.4. If there exist Ÿ0, S, and zj, j = 1, 2, .., n such that ÎuSÎ2
1 Æ

|S|

Ÿ0
uT [zjzT

j
]u holds for all u œ U .= {u : ÎuScÎ1 Æ 3ÎuSÎ} and

... 1
n

q
n

j=1 zjzT

j
≠ [zjzT

j
]
... Æ

Ÿ

32|S|
, then for all u œ U , the follow inequality holds:

ÎuSÎ2
1 Æ |S|

Ÿ0/2uT

S

U 1
n

nÿ

j=1
zjz

T

j

T

V u (A.0.17)

Proof. Proof of A.0.4 From Corollary 6.8 in [14].

Lemma A.0.5. Let xj, j = 1, 2, ..., n, be random iid samples. Under assumptions
A.4 and A.5, the follow inequality holds for all u such that ÎuScÎ1 Æ 3ÎuSÎ1:

3
Ÿ

2s
ÎuSÎ2

1 Æ uT Ò2L(—)u
4

Ø 1 ≠ exp(≠C1n), (A.0.18)

where C1 = min
;

1, Ÿ2/
1
192s‡2x2

max(3 + 2Ô
‡2xmax)

22<
.

Proof. Proof of A.0.5 From the definition of L(—), we have Ò2L(›) = 1
n

q
n

j=1 xjxT

j
f

ÕÕ(rj, xT

j
›).

Under assumption A. 5, we know that f is convex with smooth gradient. We may

144

denote zj = xj

Ò
f ÕÕ(rj, xT

j
›) and then get Ò2L(›) = 1

n

q
n

j=1 zjzT

j
. Furthermore, un-

der assumption A.1 and A.5, we have |f ÕÕ(rj|xT

j
›)| Æ ‡2 and ÎxÎŒ Æ xmax, which

implies that zj is element-wise bounded by zmax = ÎzjÎŒ =
...xj

Ò
f ÕÕ(rj|xT

j
›)

...
Œ

Æ
Ô

‡2xmax. Since zj is bounded, it will satisfy the definition of the subguassian
random variable. We can use the Lemma A.0.3 as a bridge to connect the sample
matrix 1

n

q
n

j=1 zjzT

j
to its population counterpart [zjzT

j
]. Let K = zmax and

‡0 =
Ô

2zmax and we will have K2
1
E[exp(z2

t,i
/K2) ≠ 1]

2
Æ z2

max(e ≠ 1) Æ ‡2
0 for all

t Ø 0 and i = 1, 2, ..., d. Therefore, under Lemma A.0.3, for t > 0, we have

P

Y
]

[

......
1
n

nÿ

j=1
zjz

T

j
≠ E[zjz

T

j
]

......
Œ

Ø 2z2
maxt + 4z2

max
Ô

t +
Ô

8z2
max⁄

AÔ
2

2 , n,

A
d

2

BBZ
^

\ Æ exp (≠nt) ,

(A.0.19)
where ⁄

1Ô
2

2 , n,
1

d

2

22
=

Ò
2 log(d(d≠1))

n
+ zmax log(d(d≠1))

n
. (A.0.19) indicates that when

the sample size is large enough, 1
n

q
n

j=1 zjzT

j
will not be far away from [zjzT

j
]

element-wise with high probability.
Now we only need to show that if 1

n

q
n

j=1 zjzT

j
is close enough to [zjzT

j
], Ò2L

satisfies (A.0.18). To this end, we need Lemma A.0.4. We set n Ø log d/C1 and
t = C1 in (A.0.19). Then the following inequalities hold.

2z2
maxt + 4z2

max
Ô

t Æ 2z2
max

Ò
C1 + 4z2

max

Ò
C1 = 6z2

max

Ò
C1

(A.0.20)
Ô

8z2
max⁄

AÔ
2

2 , n,

A
d

2

BB

Æ
Ô

8z2
max

Q

a

Û
2 log(d2)

n
+ zmax log(d2)

n

R

b Æ 8
Ô

2z2
max(1 + zmax)

Ò
C1,

(A.0.21)

where (A.0.20) and (A.0.21) use log d/n Æ C1 Æ 1. Combining (A.0.20) and
(A.0.21), we have

2z2
maxt + 4z2

max
Ô

t +
Ô

8z2
max⁄

AÔ
2

2 , n,

A
d

2

BB

Æ 2z2
max

1
3 + 4

Ô
2(1 + zmax)

2 Ò
C1

Æ 6z2
max (3 + 2zmax))

Ò
C1 Æ Ÿ

32s
,

(A.0.22)

where (A.0.22) uses
Ô

2 Æ 3
2 and C1 Æ Ÿ2/

1
192s‡2x2

max
1
3 + 2Ô

‡2xmax)
222

Æ

145

Ÿ2/ (192sz2
max (3 + 2zmax)))2. Then, (A.0.19) can satisfy the following inequality.
Y
]

[

......
1
n

nÿ

j=1
zjz

T

j
≠ E[zjz

T

j
]

......
Œ

Æ Ÿ

32s

Z
^

\ Ø 1 ≠ exp (≠C1n) . (A.0.23)

The statement of Lemma A.0.5 follows by combining (A.0.23) with Lemma A.0.4.

Lemma A.0.6. Let Aiid

k
be the index set such that for all i œ Aiid

k
, xi are ran-

dom iid samples. If for all u such that ÎuScÎ1 Æ 3ÎuSÎ1, we have Ÿ

2s
ÎuSÎ2

1 Æ
uT Ò2L

A
iid
k

(›)u, then the follow inequality holds:

|Aiid|Ÿ
2ns

ÎuSÎ2
1 Æ uT Ò2L(›)u, (A.0.24)

where LA(—) denotes the likelihood function with samples only in Aiid.

Proof. proof of A.0.6 We can rewrite ÒL(›) with zj = xj

Ò
f ÕÕ(rj|xT

j
›) as follow.

uT Ò2L(›)u = uT

S

WU
1
n

ÿ

jœA
iid
k

zjz
T

j

T

XV u + uT

S

WU
1
n

ÿ

jœ(Aiid
k)c

zjz
T

j

T

XV

Ø |Aiid

k
|

n

T

S

WU
1

|Aiid

k
|

ÿ

jœA
iid
k

zjz
T

j

T

XV

Ø |Aiid

k
|

n

T

ÒLA(›)

Ø |Aiid

k
|

n

Ÿ

2s
ÎuSÎ2

1

= |Aiid

k
|Ÿ

2ns
ÎuSÎ2

1. (A.0.25)

Lemma A.0.7. Let the whole sample size be n and the set for iid random sample
in Uk be A, k œ K. If assumptions A.4 and A.5 hold, then the follow result holds.

A

Î—lasso ≠ —trueÎ1 Æ 96ns⁄

|A|Ÿ

B

Ø 1 ≠ exp (≠C1|A|) ≠ exp
A

≠ n⁄2

8x2
max

+ log d

B

,

(A.0.26)

146

where C1 = min
;

1, Ÿ2/
1
192s‡2x2

max(3 + 2Ô
‡2xmax)

22<
.

Proof. Proof of lemma A.0.7 Let LA(—) be the loss function only includes samples
in A. Under assumption A.4, we have

Ÿ

s
ÎuSÎ2

1 Æ uT [Ò2LA(›)]u, (A.0.27)

for all u such that ÎuScÎ1 Æ 3ÎuSÎ1. The following result follows from (A.0.27)
and Lemma A.0.5:

3
Ÿ

2s
ÎuSÎ2

1 Æ uT Ò2LA(›)u
4

Ø 1 ≠ exp(≠C1|A|). (A.0.28)

Moreover, via Lemma A.0.6, for all u such that ÎuScÎ1 Æ 3ÎuSÎ1 the follow
inequality holds.

A
|A|Ÿ
2ns

ÎuSÎ2
1 Æ uT Ò2L(›)u

B

Ø 1 ≠ exp (≠C1|A|) . (A.0.29)

Since —lasso is the optimal solution to the Lasso problem, we can ensure the following
inequality:

L(—lasso) + ⁄Î—lassoÎ1 Æ L(—true) + ⁄Î—trueÎ1

L(—lasso) ≠ L(—true) + ⁄Î—lassoÎ1 Æ ⁄Î—trueÎ1 (A.0.30)

ÒL(—true)T (—lasso ≠ —true) + ⁄Î—lassoÎ1 Æ ⁄Î—trueÎ1 (A.0.31)

≠ÎÒL(—true)ÎŒÎ—lasso ≠ —trueÎ1 + ⁄Î—lassoÎ1 Æ ⁄Î—trueÎ1, (A.0.32)

where (A.0.31) uses the convexity of L(—lasso). Denote event E0 as follows.

E0 =
;

ÎÒL(—true)ÎŒ <
1
2⁄

<
. (A.0.33)

Under E0, (A.0.32) can be further simplified into

≠1
2⁄Î—lasso ≠ —trueÎ1 + ⁄Î—lassoÎ1 Æ ⁄Î—trueÎ1

≠1
2Î—lasso ≠ —trueÎ1 + Î—lassoÎ1 Æ Î—trueÎ1

147

≠1
2Î—lasso

S
≠ —true

S
Î1 ≠ 1

2Î—lasso

Sc ≠ —true

Sc Î1 + Î—lasso

S
Î1 + Î—lasso

Sc Î1 Æ Î—true

S
Î1 + Î—true

Sc Î1.

(A.0.34)

As —true

Sc = 0 by definition, we then have

≠1
2Î—lasso

S
≠ —true

S
Î1 ≠ 1

2Î—lasso

Sc ≠ —true

Sc Î1 + Î—lasso

S
Î1 + Î—lasso

Sc ≠ 0Î1 Æ Î—true

S
Î1 + 0

≠1
2Î—lasso

S
≠ —true

S
Î1 ≠ 1

2Î—lasso

Sc ≠ —true

Sc Î1 + Î—lasso

S
Î1 + Î—lasso

Sc ≠ —true

Sc Î1 Æ Î—true

S
Î1 + 0

(A.0.35)

Rearrange (A.0.35) and we may have

Î—lasso

Sc ≠ —true

Sc Î1 Æ 3Î—lasso

S
≠ —true

S
Î1 (A.0.36)

Denote u = —lasso ≠ —true. Then, we have ÎuScÎ1 Æ 3ÎuSÎ1. Connecting (A.0.29),
we can obtain

A

(—lasso ≠ —true)T Ò2L(›)(—lasso ≠ —true) Ø |A|Ÿ
2ns

Î—lasso

S
≠ —true

S
Î2

1

B

Ø 1 ≠ exp (≠C1|A|) .

(A.0.37)

Now, we turn back to (A.0.30) and use the Taylor expansion on L(—lasso) at —true

the following inequality holds for some ›.

ÒL(—true)T (—lasso ≠ —true) + 1
2(—lasso ≠ —true)T Ò2L(›)(—lasso ≠ —true) + ⁄Î—lassoÎ1 Æ ⁄Î—trueÎ1.

(A.0.38)

Combining (A.0.32) and (A.0.38), we know that with probability 1 ≠ exp(≠C1n),
the follow results hold.

≠ ÎÒL(—true)ÎŒÎ(—lasso ≠ —true)Î1 + |A|Ÿ
4ns

Î—lasso

S
≠ —true

S
Î2

1 + ⁄Î—lassoÎ1 Æ ⁄Î—trueÎ1

∆ ≠ ÎÒL(—true)ÎŒÎ(—lasso ≠ —true)Î1 + |A|Ÿ
4ns

Î—lasso

S
≠ —true

S
Î2

1 Æ ⁄(Î—trueÎ1 ≠ Î—lassoÎ1)

∆ ≠ ÎÒL(—true)ÎŒÎ(—lasso ≠ —true)Î1 + |A|Ÿ
4ns

Î—lasso

S
≠ —true

S
Î2

1 Æ ⁄Î—true ≠ —lassoÎ1

(A.0.39)

148

Under event E0, we have

≠ 1
2⁄Î(—lasso ≠ —true)Î1 + |A|Ÿ

4ns
Î—lasso

S
≠ —true

S
Î2

1 Æ ⁄Î—true ≠ —lassoÎ1

∆ |A|Ÿ
4ns

Î—lasso

S
≠ —true

S
Î2

1 Æ 3
2⁄Î—true ≠ —lassoÎ1

∆ |A|Ÿ
4ns

Î—lasso

S
≠ —true

S
Î2

1 Æ 6⁄Î—true

S
≠ —lasso

S
Î1 (A.0.40)

∆Î—lasso

S
≠ —true

S
Î1 Æ 24ns

|A|Ÿ ⁄

∆Î—lasso ≠ —trueÎ1 Æ 96ns

|A|Ÿ ⁄, (A.0.41)

where (A.0.40) and (A.0.41) use Î—lasso

Sc ≠ —true

Sc Î1 Æ 3Î—lasso

S
≠ —true

S
Î1 in (A.0.36).

Now, we assess the probability of event E0. The i-th element of ÒL(—ture) is
1
n

q
n

i=1 xjif
Õ(ri|xT

j
—true). Denote Xji = xjif

Õ(ri|xT

j
—true) for j = 1, 2, ...n. Under

assumptions A.1 and A.5 , Xji are xmax‡-subguassian random variables with mean
0. We can use Hoe�ding inequality to build the following probability bound.

(| 1
n

nÿ

i=1
xjif

Õ(ri|xT

j
—true)| Ø t) Æ exp

A

≠ nt2

2‡2x2
max

B

∆
A

max
j

| 1
n

nÿ

i=1
xjif

Õ(ri|xT

j
—true)| Æ t

B

Ø 1 ≠
pÿ

j=1

A

| 1
n

nÿ

i=1
xjif

Õ(ri|xT

j
—true)| Ø t

B

Ø 1 ≠ d exp
A

≠ nt2

2‡2x2
max

B

(A.0.42)

Set t = 1
2⁄, and we will have event E0 defined in (A.0.33) holds with at least

probability 1 ≠ exp(≠ n⁄
2

8x2max
+ log d). The desirable result follows by (A.0.37) and

(A.0.42).

Lemma A.0.8. Let t0 = 2C0|K|, C0 = max{10, 16/pú}, and T Ø max{(t0 +
1)2/e2 ≠ 1, e}. Under assumptions A.3 and A.4, the following statements hold.

1.
Ó
n < 1

2C0(T + 1) or n > 6C0 log(T + 1)
Ô

Æ 2
T +1

2.
Ó
|A| < 1

4púC0 log(T + 1)
Ô

Æ 1
T +1

3.
Ó
|A|/n < 1

24pú

Ô
Æ 3

T +1

149

Proof. Proof of A.0.8 To show statement 1. From Proposition 4.4.3, we have

(C0(1 + log(T + 1) ≠ log(t0)) Æ n Æ 3C0(1 + log(T) ≠ log(t0))) Ø 1 ≠ 2
T + 1 .

(A.0.43)

As we have T Ø e, the following result holds.

3C0(1 + log(T) ≠ log(t0)) Æ 3C0(log(T) + log(T) ≠ 0) Æ 6C0 log(T) < 6C0 log(T + 1).
(A.0.44)

From T Ø (t0 + 1)2/e2 + 1 ∆ 1
2 log(T + 1) ≠ log(t0 + 1) Ø ≠1, we have

C0(1 + log(T + 1) ≠ log(t0 + 1)) = C0(1 + 1
2 log(T + 1) + 1

2 log(T + 1) ≠ log(t0 + 1))

Ø C0(1 + 1
2 log(T + 1) ≠ 1)

= 1
2C0 log(T + 1). (A.0.45)

The statement 1 is obtained by combining (A.0.44),(A.0.45) and (A.0.43).
To show statement 2. In assumption A.4, we assume that for x œ Uk, k œ K,

the restricted eigenvalue condition is held. And under Assumption A.3, we have
(x œ Uk) Ø pú. Thus, among all n samples, the expected number of samples

belong to Uk will be lower bounded by:

[(x œ Uk)] Ø púC0(1 + log(T + 1) ≠ log(t0 + 1)). (A.0.46)

Since T > (t0 + 1)2/e2 ≠ 1 implies 1
2 log(T + 1) > log(t0 + 1) ≠ 1. (A.0.46) can be

simplified into the following inequality.

[
nÿ

i=1
(xi œ Uk)] Ø 1

2púC0 log(T + 1). (A.0.47)

We apply the Cherno� inequality on q
n

i=1 (xi œ U):
A

nÿ

i=1
(xi œ Uk) <

1
2 [

nÿ

i=1
(xi œ Uk)]

B

Æ exp
A

≠1
8 [

nÿ

i=1
(xi œ Uk)]

B

150

∆
A

nÿ

i=1
(xi œ Uk) <

1
4púC0 log(T + 1)

B

Æ exp
3

≠ 1
16púC0 log(T + 1)

4
,

(A.0.48)

where (A.0.48) uses (A.0.47). The statement 2 of Lemma A.0.8 can be proved by
(A.0.48) with C0 Ø 16/pú.

To show statement 3. Notice that the follow result hold.
;

|A|/n Ø 1
24pú

<
´

;
|A| Ø 1

4C0p
ú log(T + 1)

<
fl {n Æ 6C0 log(T + 1)}

=
3;

|A| <
1
4C0p

ú log(T + 1)
<

fi {n > 6C0 log(T + 1)}
4c

.

(A.0.49)

Hence we can obtain
;

|A|/n Ø 1
24pú

<
Ø

;3;
|Ak| <

1
4C0p

ú log(T + 1)
<

fi {n > 6C0 log(T + 1)}
4c<

= 1 ≠
;;

|A| <
1
4C0p

ú log(T + 1)
<

fi {n > 6C0 log(T + 1)}
<

= 1 ≠
;

|A| <
1
4C0p

ú log(T + 1)
<

≠ {n > 6C0 log(T + 1)} .

(A.0.50)

The remaining part follows by combining the statement 1 and statement 2 with
(A.0.50).

Lemma A.0.9. Let t0 = 2C0|K|, T Ø max{(t0+1)2/e2≠1, e}, ⁄ = C5
Ò

1 + log d

log(T +1) ,
and a > 2304s

púŸ
. If assumptions A.1,A.3,A.4 and A.5 hold, we have

A

Î—oracle ≠ —trueÎ1 Æ min
I

1
‡xmax

,
h

4e‡Rmaxxmax

JB

Ø 1 ≠ 7
T + 1 , (A.0.51)

where

C0 = max

Y
]

[10,
16
pú

,
4

púC1
,
4x2

max
C2

5

A

(1
4 ≠ 576s

púŸa
) min

I

1,
µ0pú

192sx2
max

JB
≠2

,

32‡2sx2
max(1 + log s)
púµ0

,
4‡2x2

max(1 + log s)
t2

J

,

151

t Æ min
;

µ0p
ú

Ô
C̃2⁄

48 , p
ú
µ0

48‡
Ô

sxmax
, hp

ú
µ0

192e‡
Ô

sRmaxxmax

<
, C̃2 = µ0p

ú

2‡3sx3max(µ0pú+48sx2max) and C5 =
—minp

ú
Ÿ

(2304s+apúŸ)
Ô

1+log d

Proof. Proof of Lemma A.0.9 Using Lemma A.0.8, t0 = 2C0|K|, T Ø max{(t0 +
1)2/e2 ≠ 1, e}, and C0 Ø max{10, 16/pú}, we have

;
n Ø 1

2C0 log(T + 1)
<

Æ 1 ≠ 2
T + 1 (A.0.52)

;
|A| Ø 1

4púC0 log(T + 1)
<

Ø 1 ≠ 1
T + 1 (A.0.53)

I
|A|
n

Ø 1
24pú

J

Ø 3
T + 1 . (A.0.54)

Thus with probability 1 ≠ 3
T +1 we have

—min = (2304s

púŸ
+ a)C5

Ò
1 + log d Ø (2304s

púŸ
+ a)⁄ Ø (96ns

Ÿ|A| + a)⁄

a >
2304s

púŸ
Ø 96ns

Ÿ|A|

C̃2 = µ0pú

2‡3sx3
max(µ0pú + 48sx2

max) Æ µ0|A|
2‡3sx3

max(µ0|A| + n2sx2
max) = C2 (A.0.55)

If we require t Æ µ0|A|

Ô
C̃2⁄

2n
Æ µ0|A|

Ô
C2⁄

2n
, from (4.5.6) in Proposition 4.5.1 , we can

obtain the following inequality.
A

Î—MCP ≠ —trueÎ2 Ø 2nt

|A|µ0

B

Æ ”2(n, |A|, ⁄) + ”3(|A|) + ”4(n, |A|, t). (A.0.56)

Since ”2(n, |A|, ⁄), ”3(|A|) and ”4(n, |A|, t) decrease when we have larger |A| and n,
we may pick proper C0 such that at given time T we will have enough |A| and n

according to (A.0.52)-(A.0.54). As we require

C0 = max

Y
]

[
4

púC1
,
4x2

max
C2

5

A

(1
4 ≠ 576s

púŸa
) min

I

1,
µ0pú

192sx2
max

JB
≠2

,

32‡2sx2
max(1 + log s)
púµ0

,
4‡2x2

max(1 + log s)
t2

J

and ⁄ = C5
Ò

1 + log d/ log(T + 1) one may verify the the follow result hold with

152

probability 1 ≠ 3
T +1 .

”2(n, |A|, ⁄) + ”3(|A|) + ”4(n, |A|, t) Æ 4
T + 1 . (A.0.57)

Hence, we have
A

Î—MCP ≠ —trueÎ2 Æ 2nt

|A|µ0

B

Ø 1 ≠ 7
T + 1

∆
A

Î—MCP ≠ —trueÎ1 Æ 2nt
Ô

s

|A|µ0

B

Ø 1 ≠ 7
T + 1 , (A.0.58)

where (A.0.58) uses —MCP being the oracle solution with —MCP

Sc = —true

Sc = 0.
Moreover, combine t Æ min

Ó
p

ú
µ0

48‡
Ô

sxmax
, hp

ú
µ0

192e‡
Ô

sRmaxxmax

Ô
, (A.0.54) and we have the

following results.

2nt
Ô

s

|A|µ0
Æ 2nhpúµ0

Ô
s

192e‡
Ô

sRmaxxmax|A|µ0
= h

4e‡Rmaxxmax
· n

|A| · pú

24 Æ h

4e‡Rmaxxmax
(A.0.59)

2nt
Ô

s

|A|µ0
Æ púµ0

Ô
s

48‡
Ô

sxmax|A|µ0
= 1

‡2xmax
· n

|A| · pú

24 Æ 1
‡xmax
(A.0.60)

Desirable result follows immediately.

Lemma A.0.10. Under assumptions A.3 and A.5, for any x œ Uk, i œ K, the
following two statements hold.

1.
--- (Ri|x, —true

i
) ≠ (Ri|x, —MCP

i
)
--- Æ Rmaxe‡xmaxÎ—MCP

i ≠—true
i Î1‡xmaxÎ—MCP

i
≠

—true

i
Î1

2. Moreover, if Î—MCP

i
≠ —true

i
Î1 Æ min

Ó
1

‡xmax
, h

4e‡Rmaxxmax

Ô
, k œ K, we have

(Ri|x, —MCP

i
) Ø maxj ”=i (Rj|x, —MCP

j
) + h

2 .

Proof. Proof of Lemma A.0.10 To show the part 1. We first expand the
left-hand-side as follows.

--- (Ri|x, —true

i
) ≠ (Ri|x, —MCP

i
)

=

⁄ +Œ

≠Œ

ridF (ri|xT —true

i
) ≠

⁄ +Œ

≠Œ

ridF (ri|xT —MCP

i
)

153

=

⁄ +Œ

≠Œ

rie
≠f(ri|xT —true

i)dri ≠
⁄ +Œ

≠Œ

rie
≠f(ri|xT —MCP

i)dri

---- (A.0.61)

=

⁄ +Œ

≠Œ

ri

1
e≠f(ri|xT —true

i) ≠ e≠f(ri|xT —MCP
i)

2
dri

---- .

=

⁄ +Œ

≠Œ

≠ri

1
e≠f(ri|xT —i)

2Õ

—i=—true

i +”
xT (—MCP

i
≠ —true

i
)dri

----- , (A.0.62)

where (A.0.61) uses f being the negative log density function and ” is between 0
and —MCP

i
≠ —true

i
. We then pull xT (—MCP

i
≠ —true

i
) out of the integral.

⁄ +Œ

≠Œ

≠ri

1
e≠f(ri|xT —i)

2Õ

—i=—true

i +”

xT (—MCP

i
≠ —true

i
)dri

=
-----x

T (—MCP

i
≠ —true

i
)

⁄ +Œ

≠Œ

≠ri

1
e≠f(ri|xT —i)

2Õ

—i=—true

i +”
dri

Æ

⁄ +Œ

≠Œ

rie
≠f(ri|xT (—true

i +”))f
Õ(ri|xT (—true

i
+ ”))dri

---- xmaxÎ—MCP

i
≠ —true

i
Î1.

(A.0.63)

As we assume |f Õ(·|·)| is bounded by ‡ in assumption A.5, (A.0.63) is upper
bounded by

⁄ +Œ

≠Œ

rie
≠f(ri|xT (—true

i +”))f
Õ(ri|xT (—true

i
+ ”))dri

---- xmaxÎ—MCP

i
≠ —true

i
Î1

Æ

⁄ +Œ

≠Œ

rie
≠f(ri|xT (—true

i +”))dri

---- ‡xmaxÎ—MCP

i
≠ —true

i
Î1. (A.0.64)

We then expand term f(ri|xT (—true

i
+ ”)) in (A.0.64), and there exists a › between

0 and —true + ” such that

⁄ +Œ

≠Œ

rie
≠f(ri|xT (—true

i +”))dri

---- ‡xmaxÎ—MCP

i
≠ —true

i
Î1

=

⁄ +Œ

≠Œ

rie
≠f(ri|xT —true

i)≠f
Õ (ri|xT ›)xT ”dri

---- ‡xmaxÎ—MCP

i
≠ —true

j
Î1

Æ

⁄ +Œ

≠Œ

rie
≠f(ri|xT —true

i)+|f
Õ (ri|xT ›)|ÎxÎŒÎ”Î1dri

---- ‡xmaxÎ—MCP

i
≠ —true

i
Î1

Æ

⁄ +Œ

≠Œ

rie
≠f(ri|xT —true

i)dri

---- e‡xmaxÎ—MCP
i ≠—true

i Î1‡xmaxÎ—MCP

i
≠ —true

i
Î1 (A.0.65)

=| (Ri|x, —true

i
)|e‡xmaxÎ—MCP

i ≠—true
i Î1‡xmaxÎ—MCP

i
≠ —true

i
Î1 (A.0.66)

where (A.0.65) uses that ” is between 0 and —MCP

i
≠ —true

i
, which implies Î”Î1 Æ

154

Î—MCP

i
≠ —true

i
Î1, and (A.0.66) comes from the definition of (Ri|x, —true

i
). Com-

bining |ri| Æ Rmax, (A.0.66), and (A.0.62), we have:

--- (Ri|x, —true

i
) ≠ (Ri|x, —MCP

i
)
--- Æ Rmaxe‡xmaxÎ—MCP

i ≠—true
i Î1‡xmaxÎ—MCP

i
≠ —true

i
Î1.

(A.0.67)

To show the part 2. Note that the assumption Î—MCP

i
≠ —true

i
Î1 Æ 1

‡xmax
, k œ K

implies the following inequality:

Î—MCP

i
≠ —true

i
Î1 Æ 1

‡xmax
∆ e‡xmaxÎ—MCP

i ≠—true
i Î1 Æ e (A.0.68)

Combining (A.0.68) and (A.0.67), we obtain

--- (ri|x, —true

i
) ≠ (ri|x, —MCP

i
)
--- ÆRmaxe‡xmaxÎ—MCP

i ≠—true
i Î1‡xmaxÎ—MCP

i
≠ —true

i
Î1

ÆRmaxe‡xmaxÎ—MCP

i
≠ —true

i
Î1 (A.0.69)

Under assumption A.3, for any x œ Uk, the following inequalities hold:

(Ri|x, —true

i
) Ø max

j ”=i

(Rj|x, —true

j
) + h

∆ (ri|x, —true

i
) ≠ (ri|x, —MCP

i
) Ø max

j ”=i

Ë
(rj|x, —true

j
) ≠ (rj|x, —MCP

j
)
È

+ max
j ”=i

(rj|x, —MCP

j
) ≠ (ri|x, —MCP

i
) + h

∆ (ri|x, —MCP

i
) ≠ max

j ”=i

(rj|x, —MCP

j
) Ø ≠

--- (ri|x, —MCP

i
) ≠ (ri|x, —true

i
))

≠ max
j ”=i

--- (rj|x, —true

j
) ≠ (rj|x, —MCP

j
)
--- + h.

(A.0.70)

As we assume Î—MCP

k
≠ —true

k
Î1 Æ h

4e‡Rmaxxmax
, k œ K, we have

Î—MCP

i
≠ —true

i
Î1 Æ h

4e‡Rmaxxmax
∆ ÎRmaxe‡xmax(—MCP

i
≠ —true

i
)Î1 Æ h

4
(A.0.71)

Combining (A.0.69),(A.0.71) and (A.0.70), we will have

(ri|x, —MCP

i
) ≠ max

j ”=i

(rj|x, —MCP

j
) Ø ≠h

4 ≠ h

4 + h

155

∆ (ri|x, —MCP

i
) Ø max

j ”=i

(rj|x, —MCP

j
) + h

2 . (A.0.72)

Lemma A.0.11. Denote events E3, E4, and E5 as follows

E3 =
I

ÎÒScL(—true)ÎŒ Æ
A

1 ≠ 96ns

|A|Ÿa

B
⁄

4

J

(A.0.73)

E4 =
I

ÎÒSL(—true)ÎŒ Æ
A

1 ≠ 96ns

|A|Ÿa

B
µ0|A|⁄
8snx2

max

J

(A.0.74)

E5 =
;

Î—oracle ≠ —trueÎ2 Æ
Ò

C2⁄
<

, (A.0.75)

where C2
.= µ0|A|

2‡3sx3max(µ0|A|+2snx2max) . Under assumption A.1 and A.5, events E3, E4

and E5 implies E2 defined in (4.7.19).

Proof. Proof of Lemma A.0.11 We first expend ÒL(—oracle) at —true.

ÒL(—oracle) = ÒL(—true) + Ò2L(›)(—oracle ≠ —true) (A.0.76)

= ÒL(—true) + Ò2L(—true)(—oracle ≠ —true)

+ (Ò2L(›) ≠ Ò2L(—true))(—oracle ≠ —true), (A.0.77)

where › = ·—true + (1 ≠ ·)—oracle, · œ [0, 1]. The last term in (A.0.77) can be
further expanded as follows

(Ò2L(›) ≠ Ò2L(—true))(—oracle ≠ —true)

= 1
n

nÿ

j=1

Ë
f

ÕÕ(rj|xT

j
›) ≠ f

ÕÕ(rj|xT

j
—true)

È
xjx

T

j
(—oracle ≠ —true)

= 1
n

nÿ

j=1

Ë
≠f

ÕÕÕ(rj|xT

j
÷)xT

j
(› ≠ —true)

È
xjx

T

j
(—oracle ≠ —true), (A.0.78)

where (A.0.78) comes from the mean value theorem and the fact that ÷ is on the
line of of › and —true. Hence, assumption A.5 and (A.0.78) imply

Î(Ò2L(›) ≠ Ò2L(—true))(—oracle ≠ —true)ÎŒ

=

......
1
n

nÿ

j=1

Ë
≠f

ÕÕÕ(rj|xT

j
÷)xT

j
(› ≠ —true)

È
xjx

T

j
(—oracle ≠ —true)

......
Œ

156

Æ

......
1
n

nÿ

j=1
‡3xmax(› ≠ —true)xjx

T

j
(—oracle ≠ —true)

......
Œ

Æ

......
1
n

nÿ

j=1
‡3xmax(—oracle ≠ —true)T xjx

T

j
(—oracle ≠ —true)

......
Œ

Æ ‡3xmax⁄max(1
n

XSXT

S
)Î—oracle ≠ —trueÎ2

2

Æ ‡3sx3
maxÎ—oracle ≠ —trueÎ2

2. (A.0.79)

Combining (A.0.77), (A.0.79), and the fact —oracle

Sc = —true

Sc = 0, we have

ÎÒScL(—oracle)ÎŒ Æ ÎÒScL(—true)ÎŒ + ÎÒ2
Sc,S

L(—true)(—oracle

S
≠ —true

S
)ÎŒ

+ ‡3sx3
maxÎ—oracle ≠ —trueÎ2

2. (A.0.80)

In addition, from ÒSL(—oracle) = 0 and (A.0.77), we have

(—oracle

S
≠ —true

S
) = ≠(Ò2

S,S
L(—true))≠1(ÒSL(—true)

+ (Ò2
S,S

L(›) ≠ Ò2
S,S

L(—true))(—oracle

S
≠ —true

S
)). (A.0.81)

Under events E3, E4, and (A.0.81), the inequality (A.0.80) can be upper bounded
as follows.

ÎÒScL(—oracle)ÎŒ Æ
A

1 ≠ 96ns

|A|Ÿa

B
⁄

4 + ‡3xmax⁄max(1
n

XSXT

S
)Î—oracle ≠ —trueÎ2

2

+ ÎÒ2
Sc,S

L(—true)(Ò2
S,S

L(—true))≠1(ÒSL(—true)

+ (Ò2
S,S

L(›) ≠ Ò2
S,S

L(—true))(—oracle

S
≠ —true

S
))ÎŒ

Æ
A

1 ≠ 96ns

|A|Ÿa

B
⁄

4 + ‡3sx3
maxÎ—oracle ≠ —trueÎ2

2

+
...Ò2

Sc,S
L(—true)(Ò2

S,S
L(—true))≠1

...
1
ÎÒSL(—true)ÎŒ + ‡3sx3

maxÎ—oracle ≠ —trueÎ2
2
2

Æ
A

1 ≠ 96ns

|A|Ÿa

B
⁄

4 + ‡3sx3
maxÎ—oracle ≠ —trueÎ2

2

+
...Ò2

Sc,S
L(—true)(Ò2

S,S
L(—true))≠1

...

AA

1 ≠ 96ns

|A|Ÿa

B
µ0|A|⁄
8snx2

max
+ ‡3sx3

maxÎ—oracle ≠ —trueÎ2
B

.

(A.0.82)

157

Note that the maximum value of
...Ò2

Sc,S
L(—true)(Ò2

S,S
L(—true))≠1

... can be bounded.

...Ò2
Sc,S

L(—true)(Ò2
S,S

L(—true))≠1
... Æ max

ÎvÎ=1

...Ò2
Sc,S

L(—true)(Ò2
S,S

L(—true))≠1v
... .

(A.0.83)

From (A.0.83) and Lemma A.0.1, the following inequality holds with probability
1 ≠ 2s exp

1
≠ |A|µ0

4s‡2x2max

2
.

max
ÎvÎ=1

...Ò2
Sc,S

L(—true)(Ò2
S,S

L(—true))≠1v
... Æ 2n

µ0|A| max
ÎvÎ=1

...Ò2
Sc,S

L(—true)v
...

Æ 2n

µ0|A| · sx2
max = 2snx2

max
µ0|A| . (A.0.84)

Thus, (A.0.82) can be simplified to:

ÎÒScL(—oracle)ÎŒ Æ
A

1 ≠ 96ns

|A|Ÿa

B
⁄

4 + ‡3sx3
maxÎ—oracle ≠ —trueÎ2

+ 2snx2
max

µ0|A|

AA

1 ≠ 96ns

|A|Ÿa

B
µ0|A|⁄
8snx2

max
+ ‡3sx3

maxÎ—oracle ≠ —trueÎ2
B

=
A

1 ≠ 96ns

|A|Ÿa

B
⁄

2 + ‡3sx3
max(µ0|A| + 2snx2

max
µ0|A| Î—oracle ≠ —trueÎ2

2.

(A.0.85)

Further, conditioning on event E5 defined in (A.0.75), we have:

ÎÒScL(—oracle)ÎŒ Æ
A

1 ≠ 96ns

|A|Ÿa

B
⁄

2 + ‡3sx3
max(µ0|A| + 2snx2

max
µ0|A|

3Ò
C2⁄

42

Æ
A

1 ≠ 96ns

|A|Ÿa

B

⁄, (A.0.86)

where (A.0.86) uses C2 = µ0|A|

2‡3sx3max(µ0|A|+2snx2max) . The inequality (A.0.86) directly
implies event E2.

158

Bibliography

[1] Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for
linear stochastic bandits. In Advances in Neural Information Processing Systems,
pages 2312–2320.

[2] Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. (2012). Online-to-confidence-set
conversions and application to sparse stochastic bandits. In AISTATS, volume 22,
pages 1–9.

[3] Agarwal, A., Negahban, S., and Wainwright, M. J. (2012). Stochastic optimiza-
tion and sparse statistical recovery: Optimal algorithms for high dimensions. In
Advances in Neural Information Processing Systems, pages 1538–1546.

[4] Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and Ma, T. (2016). Finding
approximate local minima for nonconvex optimization in linear time. arXiv
preprint arXiv:1611.01146.

[5] Agrawal, S. and Goyal, N. (2013). Thompson sampling for contextual bandits
with linear payo�s. In ICML (3), pages 127–135.

[6] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: theory,
algorithms, and applications.

[7] Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-o�s.
Journal of Machine Learning Research, 3(Nov):397–422.

[8] Bartlett, P. L., Jordan, M. I., and McAuli�e, J. D. (2006). Convexity, clas-
sification, and risk bounds. Journal of the American Statistical Association,
101(473):138–156.

[9] Bastani, H. and Bayati, M. (2015). Online decision-making with high-
dimensional covariates.

[10] Bian, W., Chen, X., and Ye, Y. (2015). Complexity analysis of interior
point algorithms for non-lipschitz and nonconvex minimization. Mathematical
Programming, 149(1-2):301–327.

159

[11] Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009). Simultaneous analysis of
lasso and dantzig selector. The Annals of Statistics, pages 1705–1732.

[12] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed
optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122.

[13] Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge
university press.

[14] Bühlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional
data: methods, theory and applications. Springer Science & Business Media.

[15] Candes, E. and Tao, T. (2007). The dantzig selector: Statistical estimation
when p is much larger than n. The Annals of Statistics, pages 2313–2351.

[16] Candes, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE
transactions on information theory, 51(12):4203–4215.

[17] Candes, E. J., Wakin, M. B., and Boyd, S. P. (2008). Enhancing sparsity by
reweighted â��1 minimization. Journal of Fourier analysis and applications,
14(5-6):877–905.

[18] Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2016). Accelerated
methods for non-convex optimization. arXiv preprint arXiv:1611.00756.

[19] Cartis, C., Gould, N. I., and Toint, P. L. (2011a). Adaptive cubic regularisation
methods for unconstrained optimization. part i: motivation, convergence and
numerical results. Mathematical Programming, 127(2):245–295.

[20] Cartis, C., Gould, N. I., and Toint, P. L. (2011b). On the evaluation complexity
of composite function minimization with applications to nonconvex nonlinear
programming. SIAM Journal on Optimization, 21(4):1721–1739.

[21] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27.

[22] Chen, C., Li, X., Tolman, C., Wang, S., and Ye, Y. (2013). Sparse portfolio
selection via quasi-norm regularization. arXiv preprint arXiv:1312.6350.

[23] Chen, X., Ge, D., Wang, Z., and Ye, Y. (2014). Complexity of unconstrained
l_2-l_p minimization. Mathematical Programming, 143(1-2):371–383.

[24] Consortium, I. W. P. et al. (2009). Estimation of the warfarin dose with
clinical and pharmacogenetic data. N Engl J Med, 2009(360):753–764.

160

[25] Dani, V., Hayes, T. P., and Kakade, S. M. (2008). Stochastic linear optimization
under bandit feedback. In COLT, pages 355–366.

[26] Deshpande, Y. and Montanari, A. (2012). Linear bandits in high dimension
and recommendation systems. In 2012 50th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 1750–1754. IEEE.

[27] Elmachtoub, A. N., McNellis, R., Oh, S., and Petrik, M. (2017). A practical
method for solving contextual bandit problems using decision trees. In Proceedings
of the Thirty-third Conference on Uncertainty in Artificial Intelligence (UAI).
AUAI Press.

[28] Fan, J., Han, F., and Liu, H. (2014a). Challenges of big data analysis. National
science review, 1(2):293–314.

[29] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likeli-
hood and its oracle properties. Journal of the American statistical Association,
96(456):1348–1360.

[30] Fan, J., Liu, H., Sun, Q., and Zhang, T. (2015). Tac for sparse learning:
Simultaneous control of algorithmic complexity and statistical error. arXiv
preprint arXiv:1507.01037.

[31] Fan, J., Liu, H., Sun, Q., and Zhang, T. (2018). I-lamm for sparse learning:
Simultaneous control of algorithmic complexity and statistical error. Annals of
statistics, 46(2):814.

[32] Fan, J. and Lv, J. (2011). Nonconcave penalized likelihood with np-
dimensionality. IEEE Transactions on Information Theory, 57(8):5467–5484.

[33] Fan, J., Xue, L., and Zou, H. (2014b). Strong oracle optimality of folded
concave penalized estimation. Annals of statistics, 42(3):819.

[34] Ge, D., Jiang, X., and Ye, Y. (2011). A note on the complexity of l p
minimization. Mathematical programming, 129(2):285–299.

[35] Ge, D., Wang, Z., Ye, Y., and Yin, H. (2015a). Strong np-hardness result for
regularized l_q-minimization problems with concave penalty functions. arXiv
preprint arXiv:1501.00622.

[36] Ge, R., Huang, F., Jin, C., and Yuan, Y. (2015b). Escaping from saddle
points-online stochastic gradient for tensor decomposition. In COLT, pages
797–842.

[37] Goldenshluger, A., Zeevi, A., et al. (2013). A linear response bandit problem.
Stochastic Systems, 3(1):230–261.

161

[38] Grant, M., Boyd, S., and Ye, Y. (2008). Cvx: Matlab software for disciplined
convex programming.

[39] Haeser, G., Liu, H., and Ye, Y. (2017). Optimality condition and complexity
analysis for linearly-constrained optimization without di�erentiability on the
boundary. arXiv preprint arXiv:1702.04300.

[40] Huang, J., Ma, S., and Zhang, C.-H. (2008). Adaptive lasso for sparse high-
dimensional regression models. Statistica Sinica, pages 1603–1618.

[41] James, G., Witten, D., and Hastie, T. (2014). An introduction to statistical
learning: With applications in r.

[42] Jiang, B., Lin, T., Ma, S., and Zhang, S. (2016). Structured nonconvex and
nonsmooth optimization: Algorithms and iteration complexity analysis. arXiv
preprint arXiv:1605.02408.

[43] Kim, S.-J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D. (2007). An
interior-point method for large-scale \ell_1-regularized least squares. IEEE
journal of selected topics in signal processing, 1(4):606–617.

[44] Kleywegt, A. J., Shapiro, A., and Homem-de Mello, T. (2002). The sample
average approximation method for stochastic discrete optimization. SIAM
Journal on Optimization, 12(2):479–502.

[45] Koenker, R. (2005). Quantile regression. Number 38. Cambridge university
press.

[46] KuczyÒski, J. and Woüniakowski, H. (1992). Estimating the largest eigenvalue
by the power and lanczos algorithms with a random start. SIAM journal on
matrix analysis and applications, 13(4):1094–1122.

[47] Liu, H., Du, G., Zhang, L., Lewis, M. M., Wang, X., Yao, T., Li, R., and
Huang, X. (2016a). Folded concave penalized learning in identifying multimodal
mri marker for parkinsonâ�ès disease. Journal of neuroscience methods, 268:1–6.

[48] Liu, H., Wang, X., Yao, T., Li, R., and Ye, Y. (2018). Sample average
approximation with sparsity-inducing penalty for high-dimensional stochastic
programming. Mathematical Programming, pages 1–40.

[49] Liu, H., Yao, T., Li, R., et al. (2016b). Global solutions to folded concave
penalized nonconvex learning. The Annals of Statistics, 44(2):629–659.

[Liu et al.] Liu, H., Yao, T., Li, R., and Ye, Y. Folded concave penalized sparse
linear regression: Sparsity, statistical performance, and algorithmic theory for
local solutions. Mathematical Programming, pages 1â��–34.

162

[51] Liu, H. and Ye, Y. (2019). High-dimensional learning under approximate
sparsity: A unifying framework for nonsmooth learning and regularized neural
networks. arXiv preprint arXiv:1903.00616.

[52] Loh, P.-L. and Wainwright, M. J. (2013). Regularized m-estimators with
nonconvexity: Statistical and algorithmic theory for local optima. In Advances
in Neural Information Processing Systems, pages 476–484.

[53] Luo, Z.-Q., Pang, J.-S., and Ralph, D. (1996). Mathematical programs with
equilibrium constraints. Cambridge University Press.

[54] Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1):77–91.

[55] McCullagh, P. and Nelder, J. (1989). Generalized linear models. Chapman
and Hall/CRC.

[56] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and
variable selection with the lasso. The annals of statistics, pages 1436–1462.

[57] Meinshausen, N., Yu, B., et al. (2009). Lasso-type recovery of sparse represen-
tations for high-dimensional data. The Annals of Statistics, 37(1):246–270.

[58] Mitchell, J. (2012). How google search really works. https:
//readwrite.com/2012/02/29/interview_changing_engines_mid-flight_
qa_with_goog/#awesm=~oiNkM4tAX3xhbP. Accessed: Oct 22nd, 2018.

[59] Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to
linear regression analysis, volume 821. John Wiley & Sons.

[60] Moulines, E. and Bach, F. R. (2011). Non-asymptotic analysis of stochastic ap-
proximation algorithms for machine learning. In Advances in Neural Information
Processing Systems, pages 451–459.

[61] Negahban, S., Yu, B., Wainwright, M. J., and Ravikumar, P. K. (2009). A
unified framework for high-dimensional analysis of m-estimators with decompos-
able regularizers. In Advances in Neural Information Processing Systems, pages
1348–1356.

[62] Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media.

[63] Nesterov, Y. and Polyak, B. T. (2006). Cubic regularization of newton method
and its global performance. Mathematical Programming, 108(1):177–205.

[64] Nievergelt, Y. (2000). A tutorial history of least squares with applications to
astronomy and geodesy. Journal of Computational and Applied Mathematics,
121(1):37–72.

163

[65] Oberthuer, A., Berthold, F., Warnat, P., Hero, B., Kahlert, Y., Spitz, R.,
Ernestus, K., Konig, R., Haas, S., Eils, R., et al. (2006). Customized oligonu-
cleotide microarray gene expression–based classification of neuroblastoma pa-
tients outperforms current clinical risk stratification. Journal of clinical oncology,
24(31):5070–5078.

[66] OxfordDictionaries (2018). How many words are there in the
english language? https://en.oxforddictionaries.com/explore/
how-many-words-are-there-in-the-english-language/. Accessed: Oct
22nd, 2018.

[67] Qiang, S. and Bayati, M. (2016). Dynamic pricing with demand covariates.
Browser Download This Paper.

[68] Rigollet, P. and Zeevi, A. (2010). Nonparametric bandits with covariates.
arXiv preprint arXiv:1003.1630.

[69] Robbins, H. (1952). Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5):527–535.

[70] Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-
at-risk. Journal of risk, 2:21–42.

[71] Rosen, J. B. (1960). The gradient projection method for nonlinear programming.
part i. linear constraints. Journal of the Society for Industrial and Applied
Mathematics, 8(1):181–217.

[72] Rudelson, M., Vershynin, R., et al. (2013). Hanson-wright inequality and
sub-gaussian concentration. Electron. Commun. Probab, 18(82):1–9.

[73] Rusmevichientong, P. and Tsitsiklis, J. N. (2010). Linearly parameterized
bandits. Mathematics of Operations Research, 35(2):395–411.

[74] Russo, D. and Van Roy, B. (2014). Learning to optimize via posterior sampling.
Mathematics of Operations Research, 39(4):1221–1243.

[75] Scott, S. L. (2010). A modern bayesian look at the multi-armed bandit. Applied
Stochastic Models in Business and Industry, 26(6):639–658.

[76] Scott, S. L. (2015). Multi-armed bandit experiments in the online service
economy. Applied Stochastic Models in Business and Industry, 31(1):37–45.

[77] Shapiro, A., Dentcheva, D., and RuszczyÒski, A. (2009). Lectures on stochastic
programming: modeling and theory. SIAM.

164

[78] Shapiro, A. and Xu, H. (2008). Stochastic mathematical programs with equi-
librium constraints, modelling and sample average approximation. Optimization,
57(3):395–418.

[79] Shewan, D. (2017). The comprehensive guide to online advertising costs. https:
//www.wordstream.com/blog/ws/2017/07/05/online-advertising-costs.
Accessed: Oct 22nd, 2018.

[80] Slivkins, A. (2014). Contextual bandits with similarity information. The
Journal of Machine Learning Research, 15(1):2533–2568.

[81] Talluri, K. T. and Van Ryzin, G. J. (2006). The theory and practice of revenue
management, volume 68. Springer Science & Business Media.

[82] Tencent (2012). Predict the click-through rate of ads given the query and user
information. https://www.kaggle.com/c/kddcup2012-track2. Accessed: Oct
22nd, 2018.

[83] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288.

[84] Tropp, J. A. et al. (2015). An introduction to matrix concentration inequalities.
Foundations and Trends® in Machine Learning, 8(1-2):1–230.

[85] Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning.
Annals of Statistics, pages 135–166.

[86] Van de Geer, S. A. et al. (2008). High-dimensional generalized linear models
and the lasso. The Annals of Statistics, 36(2):614–645.

[87] Wang, L., Kim, Y., and Li, R. (2013). Calibrating non-convex penalized
regression in ultra-high dimension. Annals of statistics, 41(5):2505.

[88] Wang, Y., Yin, W., and Zeng, J. (2015). Global convergence of admm in
nonconvex nonsmooth optimization. arXiv preprint arXiv:1511.06324.

[89] Wang, Z., Liu, H., and Zhang, T. (2014). Optimal computational and statistical
rates of convergence for sparse nonconvex learning problems. Annals of statistics,
42(6):2164.

[90] WordStream (2017). Average ctr (click-through rate): Learn how your ctr
compares. https://www.wordstream.com/average-ctr. Accessed: Oct 22nd,
2018.

[91] Ye, Y. (1991). An o (n 3 l) potential reduction algorithm for linear programming.
Mathematical programming, 50(1):239–258.

165

[92] Ye, Y. (1992). On a�ne scaling algorithms for nonconvex quadratic program-
ming. Mathematical Programming, 56(1-3):285–300.

[93] Ye, Y. (1998). On the complexity of approximating a kkt point of quadratic
programming. Mathematical programming, 80(2):195–211.

[94] Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave
penalty. The Annals of statistics, pages 894–942.

[95] Zhang, C.-H. and Huang, J. (2008). The sparsity and bias of the lasso selection
in high-dimensional linear regression. The Annals of Statistics, pages 1567–1594.

[96] Zhang, C.-H. and Zhang, T. (2012). A general theory of concave regularization
for high-dimensional sparse estimation problems. Statistical Science, pages
576–593.

[97] Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. Journal
of Machine learning research, 7(Nov):2541–2563.

[98] Zhao, T., Liu, H., and Zhang, T. (2014). Pathwise coordinate optimization for
sparse learning: Algorithm and theory. arXiv preprint arXiv:1412.7477.

[99] Zhao, T., Liu, H., Zhang, T., et al. (2018). Pathwise coordinate optimization for
sparse learning: Algorithm and theory. The Annals of Statistics, 46(1):180–218.

[100] Zhu, Z., Dang, C., and Ye, Y. (2012). A fptas for computing a symmetric
leontief competitive economy equilibrium. Mathematical programming, 131(1):113–
129.

[101] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American statistical association, 101(476):1418–1429.

166

Vita
Xue Wang

Xue Wang received a B.S. degree in Industrial Engineering from Tsinghua
University, Beijing, China, in 2013. He is currently pursuing the Ph.D. degree in
Industrial Engineering with a dual title in Operations Research at Pennsylvania
State University in University Park, Pennsylvania. His research interests include
nonconvex optimization as well as high dimensional statistical learning problems
with application interests in online decision making.

