The Pennsylvania State University
The Graduate School
College of Engineering

HIGH DIMENSIONAL STATISTICAL LEARNING AND DECISION

MAKING

A Dissertation in
Industrial Engineering
by
Xue Wang

© 2019 Xue Wang

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2019



The dissertation of Xue Wang was reviewed and approved® by the following:

Tao Yao
Associate Professor of Industrial Engineering

Dissertation Advisor, Chair of Committee

Uday V. Shanbhag
Gary and Sheila Chaired Professor of Industrial Engineering

Ethan Xingyuan Fang

Assistant Professor of Industrial Engineering and Professor of Statistics

Runze Li

Verne M. Willaman Professor of Statistics

Janis Terpenny
Peter and Angela Dal Pezzo Department Head of IME and Professor

*Signatures are on file in the Graduate School.

ii



Abstract

This dissertation concerns three problems in learning and decision-making with
high-dimensional information. The formulations of these problems are featured
with limit sample size requirements and/or efficient computation schemes.

We first study a regularized version of the sample average approximation
(SAA). The theory on the traditional SAA scheme for stochastic programming
(SP) dictates that the number of samples should be polynomial in the number of
problem dimensions in order to ensure proper optimization accuracy. We study a
modification to the SAA in the scenario where the global minimizer is either sparse
or can be approximated by a sparse solution. By making use of a regularization
penalty referred to as the folded concave penalty (FCP), we show that, if an FCP-
regularized SAA formulation is solved locally, then the required number of samples
can be significantly reduced in approximating the global solution of a convex SP:
the sample size is only required to be poly-logarithmic in the number of dimensions.
The efficacy of the FCP regularizer for nonconvex SPs is also discussed. As an
immediate implication of our result, a flexible class of folded concave penalized
sparse M-estimators in high-dimensional statistical learning may yield a sound
performance even when the problem dimension cannot be upper-bounded by any
polynomial function of the sample size.

In the second problem, we consider the linear constrained nonconvex program-
ming problem. A broad class of learning problems can be formulated as the
nonconvex optimization with linear constraints. It is believed that the second
order optimal solution yields better out of sample performance since it can avoid
part of the saddle points. The classic algorithms require matrix inversion to en-
sure the second order optimality for constrained optimization problems, which
is computationally intensive when high-dimensional issue presents. We propose
a novel accelerated interior-point gradient method (AIP-GM). A unique feature
of the proposed AIP-GM is the total absence of the need for matrix inversion.
As a consequence, the per-iteration cost is significantly lower than the canonical
second-order methods. For general smooth non-convex objective function, we show
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the new algorithm gives 0(6’7/ 1) iteration complexity dependences in perturbation
€ on optimal condition.

For the third problem, we study a minimax concave penalized multi-armed
bandit algorithm under generalized linear model (G-MCP-Bandit) for a decision-
maker facing high-dimensional data in online learning and decision-making process.
We demonstrate that the G-MCP-Bandit algorithm asymptotically achieves the
optimal cumulative regret in the sample size dimension 7', O(log T'), and further
attains a tight bound in the covariate dimension d, O(logd). In addition, we
develop a linear approximation method, the 2-step weighted Lasso procedure, to
identify the MCP estimator for the G-MCP-Bandit algorithm under non-iid samples.
Under this procedure, the MCP estimator matches the oracle estimator with high
probability and converges to the true parameters with the optimal convergence
rate. Finally, through experiments based on synthetic data and two real datasets
(warfarin dosing dataset and Tencent search advertising dataset), we show that
the G-MCP-Bandit algorithm outperforms other benchmark algorithms, especially
when there is a high level of data sparsity or the decision set is large.
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Chapter 1
Introduction

In the internet era, one of the most significant features in learning and decision-
making problems is the involvement of high dimensional data. The high dimensional
data may include more information, and it enables better modeling ability po-
tentially. However, the high-dimensionality issue also poses challenges in both
computation cost and statistical efficiency. Using classic approaches, we may need
to solve ultra large scale problems with massive samples, which then yields very
complicated models. In many real-world applications, the sample collection is ex-
pensive (e.g., healthcare) and/or the computation efficiency requirement is intense
(e.g., ads recommendation). Therefore, it is necessary to study the settings with
the limit sample size and/or computation cost. In this dissertation, we consider
three particular problems that cover the topics in sample size requirement and
efficient computation algorithm for learning and decision-making problems. More

specifically, the following problems are discussed:

1. A regularized sample average approximation scheme for high-dimensional

stochastic programming

2. An accelerated interior point gradient method for large scale linear constrained

nonconvex programming

3. A contextual bandit algorithm for online learning and decision making with

high-dimensional features

The rest of this chapter aims to provide some general backgrounds.



1.1 Statistical Learning and Sample Average Approx-
imation

Statistical learning refers to the tools for understanding data [41]. Broadly speaking,
those tools can be classified as supervised, unsupervised or semi-supervised. In this
dissertation, we focus on the supervised statistical learning model, which involve
building a statistical learning model for estimating the response based on input
variables. The problem of this nature can be found in various domains, such as
operation management, stock price prediction and personalized medicine.

Let {x;,y;}, 7 =1,2,...,n be the sample set whose samples are randomly drawn
from a population with density function f(x,y,3), where z € RP*!, 8 € RP*! and
y € R. We denote £(8) as the negative logarithm likelihood function:

£(B) = = Y10 [f(a 15, B)]. (1.1.1)

The B with smaller objective function value £(8) will have higher likelihood. The

minimizer of £(f) is also referred as the maximum likelihood estimator (MLE)

ﬁ]\/ILE:
Bure = argmin L(3). (1.1.2)

In this dissertation, we mainly concentrate on two MLE models: linear least square
regression and logistic regression. We also want to point out that our results in
chapter 2 to 4 can also work on more general settings.

Linear least square regression is defined as:

Bleast = arg min Z(mfﬁ - yj>2- (113)
j=1

If we denote the residual of a:f,B — y; as €;, one may show that the linear least
squared estimator .. iS the estimator with smallest sum squared of squared
residual (e.g., >°; e?) As one of the most popular statistical learning model, the
applications of linear least squared regression can be found in many areas (e.g.,
geodesy [64] and finance [67]).



Different from linear least squared regression, logistic regression is designed for the
case that the response is binary. We have y; € {0,1}, ; € RP*! and we want to

fit an approximated model to use x; to predict y;:

. 1
where §; is the estimator of binary response y;. When a:;f,@ — 400, we will have

9; - 0and g; — 1if :BJTB — —o0. The log-loss function of logistic regression is
defined as:

n
Blogistic = argmin » [(yj — 1):1:?[3 + log(e*w.iTB + 1)} . (1.1.5)
j=1
Many problems in operations research and management science involve logistic
regression. In dynamic pricing and assortment problem, the manager usually can
only observe the binary purchase response and a common approach is to use logistic
regression to fit a demand model and make decision based on it. More details can
be found in [81]. In healthcare research area, we could also use logistic regression
to identify the biomarkers [47].

From the view of stochastic programming (SP), we can also treat those problems
as the instances of the sample average approximation (SAA). Denote by W a
random vector with probability distribution P and support YW C R9. Define by
f(+,+): X xW — R a deterministic mapping, where X C R’ for some integer
p > 0is a compact and convex feasible region. Let E[f(x, W)] = [, f(x, w)P(dw).
Assume that, for every x € X, the function f(x, -) is measurable and integrable

on W. Then, the SP formulation of consideration is given as:
gg}{F(x) = E[f(x, W)]}. (1.1.6)
When distribution P is unknown and only finite sample can be collected, people may
use the sample average approximation (SAA) instead. The optimization problem

of SAA can be formulated as follow:

n

min{ F,(x) := ;Zf(x,W])]} (1.1.7)

xeX =



When sample are iid draw from P, we will have %Z?Zl f(x,W;) converge to
E[f(x,W)]. Thus if we collect enough data, it is expected the solution of SAA
will be very close to the true solution of the original SP problem. Although the
philosophy of SAA is not exactly the same to MLE, they both consider making the
best use of the finite sample to infer the population information. It worths to think

about solving the statistical learning problem from the view of SAA.

1.2 Sparse Inducing Penalties

In modern data science, the high-dimensional problem (p > n) becomes more and
more important. It is well known that most traditional statistical procedures may
fail to work when the dimension of parameters is much greater than the sample
size (e.g., overparameteric setting). A typical example is the genetic data analysis.
In neuroblastoma data set ([65]), we have gene expression profiles with 10707 genes
from 251 patients. One common technique to tackle the overparameteric problem is
to assume sparsity. Although a huge number of variables are collected, we believe
that only a small portion of them are relevant to the problem. Screening out
the nuisance variables is the key to improve model interpretability and prediction
power. From the statistical view, an ideal model would be directly penalizing on

the number of non-zero parameters:

min £(8) + AllB]o, (1.2.8)

where £(f3) is the MLE function in (1.1.2), A is the tuning parameter to control the
sparse level and || 8|y is the cardinality of 8. Problem (1.2.8) involves minimizing a
non-convex non-lipschitz function. The complexity to find a global optimal solution
can be NP-hard [16]. From the view of computation, its computation cost can be
intense when the parameter dimension p is very large.

As an alternative method to Ly penalty, the LASSO introduced in [83] is a
popular tool for the high-dimensional learning problem. The LASSO is formulated

as follow:

min L£(8) + |81, (1.2.9)
where ||B]1 = 3¢, |8 and B = (B, ..., 87). Since (1.2.9) is a convex problem,

4



its global optimal solution can be efficiently computed by many standard convex
optimization packages (e.g. cvx [38]). However, theoretical studies reveal that the
LASSO requires a critical irrepresentable condition [97] to guarantee statistical
performance and the solution could be biased. To solve this defect, folded concave
penalties (FCP) were proposed. Two famous instances are smoothly clipped absolute
deviation (SCAD) penalty [29] and minimax concave penalty (MCP) [94]. The
motivation of these penalties is to connect the LASSO with [y penalty. SCAD uses
spline function that begins with LASSO at around 0 and turns to constant function
value when the input becomes large enough. The function form of SCAD penalty,
Pscap is defined as:

’ CL)\ —
Pocap(@) = Aly<x + (a}_fhﬂ

(x> N), (1.2.10)
where Py 4p (1) is the first order derivative of Pscap(z), 1 is the indicator function,
(1)« = max{-,0}, A is the tuning parameter to control the sparsity level and a > 1.
In [29], the authors suggests a = 3.7. If the spline function begins with lasso only
at = 0 and then goes towards to the [y penalty, SCAD penalty becomes MCP.
We may define the penalty function of MCP as follow:

Ploop(z) = ()\ _ Z)+ (1.2.11)

Unlike the LASSO, these two penalty functions do not require the irrepresentable
condition [97] to reach the variable selection and correct the system bias of LASSO
method. But the price to pay is its computational intractability due to the non-
convexity. Various local algorithms [29, 30, 33, 47] have been proposed to lessen
computational burden. Recent progress made by [49] is to introduce the modern
mixed integer program for obtaining global optimality with higher computational

cost.



1.3 Linear Constrained Nonconvex Programming Prob-

lem

The linear constrained nonconvex programming problem refers to problem in the

following structure:

st. Ar=b (1.3.12)
x>0,

where A € R™*" and F': R} — R is a continuous function on R’} and smooth on
R, . Many real world problem can be formulated into this formulation or their
solutions can be approximately got from it (e.g., [39, 47, 48, 49, 51]). In machine
learning and statistical learning area, many interesting problems can be formulated

min L(x) + P(x), (1.3.13)

where L is loss function and P is regularization function. When P is absent, (1.3.12)
reduces the classic machine/statistical learning problem, such as, regressions, SVM,
neural network and so on. To overcome the overfitting or induce the sparsity solution,
usually we need to add the extra regularization function which are commonly chosen
as I, norm (¢ € (0,2]), SCAD [29] and MCP [94]. In this case, the problem we
want to minimize can be non-smooth, non-differentiable and/or non-convex. In
various instances of (1.3.13), we can transform them into (1.3.12) using variable
substitution technique [21, 43, 45]. Moreover, many problems in management science
field are naturally represented in (1.3.12), such as, portfolio selection [22, 54], risk
management [70], network optimization[6]. In game theory, it is also known that
the solution to Nash equilibrium is one to one corresponding to the solution of
linear complementarity problem, which can be solved by (1.3.12)[53, 100].

In general, (1.3.12) has better modeling power than the simple unconstrained
problem. However, the linear constraints may introduce extra difficulty on al-
gorithm design. Many algorithms are proposed in the last two decades, such as
the alternating direction method of multipliers (ADMM) [12], stochastic gradient



descent (SGD) and their variants are proposed. Particularly, [29, 94] argue that the

non-convex objective function of (1.3.12) may ensure better statistical performance.

1.4 Online Learning and Decision Making Models

Online decision making models contain two parts, the learning part and the decision
making part. To motivate the necessity of online decision making models, we will

start with the classic decision making model, which can be formulated as:

min  D(z,8) (1.4.14)

z

st gu(z,B8) v=1,2, .., (1.4.15)

where D is the loss function or negative utility function, ¢, are the constraints,
z is the vector of the decision variables and B is the vector of model parameters.
In classic decision making models, we usually assume (3 is known or can be well
estimated from enough existing data. Those models have several drawbacks. First,
in real-world applications, we only collect the customers/users/patients data instead
of B, and the amount and the quality of the data may not allow us to get a good
estimation of 8. Second, after making new decisions, we will be able to collect more
data. The classic models don’t allow us to use new data to improve decision making.

Those drawbacks can be addressed by incorporating with an online learning module:

p

B' =argmin L,(8)+ > P(|5']), (1.4.16)
i=1

where L; is the statistical loss function with the sample up to time ¢ and P is the
sparse inducing penalty (e.g., LASSO, SCAD, and MCP). B! changes with time
and we expect B! will converge to the true 8 with sample size increasing. Based
on evolving B¢, the quality of decision making will also get better and better. In
this dissertation, we will focus on a special case of online decision making model:

multi-armed bandit model with the generalized linear structure.
Let us consider a sequential arrival process t € {1,2,...,T}. At each time step
t, a single user, prescribed by a vector of user covariates, x; € R'*? arrives. All
covariate vector {@; };>0 are observable to a decision-maker and are i.i.d. distributed

according to an unknown distribution. The decision-maker has access to a decision



set K =1{1,2,..., K}, and the reward for decision i € KL on a user with a covariates
vector x is defined as:
E[R;(x)] = fi(x"B{"™), (1.4.17)

where f;(+) is the utility function with decision i and B¢ € R*? is the unknown
coefficient vector for decision ¢ € K. The decision maker needs to make the
decision under the environment with uncertainty due to the absence of true decision
parameter vector B¢ . We denote the decision-maker’s policy as 7 = {m };>0,
where 7; € K is the decision prescribed by policy 7 at time ¢. To benchmark the
performance of policy 7, we introduce an oracle policy 7* = {n} }+>¢ under which
the decision-maker knows the true values of the covariates vector B¢ for all i € K

and chooses the best decision to maximize its expected reward:
7y = argmax E[R;(x;)]. (1.4.18)

Obviously, the decision-maker’s reward is upper-bounded by the oracle policy. We
then define the expected regret at time ¢ for the observed user covariates x; under

policy 7 as:
r=E |max R;(x;) — Rx, (). (1.4.19)

It is the expected reward difference between the optimal oracle policy 7* and
the decision-maker’s policy 7 at time ¢. Our goal is to explore the policy 7 that
minimizes the cumulative regret up to time T, Ry= Z;il re. Many real-world
problems can be solved by the linear multi-armed bandit model, such as online news
recommendation, personal medicine, and adaptive clinic trial. More interesting
details can be found in [9, 37].

1.5 Potential Contributions of the Dissertation Re-

search

When facing high-dimensionality data, classic statistical learning approaches may
fail to work. The sparse inducing penalty is very necessary to ensure the good
quality solution. Convex sparse inducing penalized models (e.g., LASSO) can

be efficiently calculated by convex solver, but the solution quality may have an



extra bias. Non-convex sparse inducing penalized (e.g., SCAD and MCP) models
potentially have better statistical performance, but from the view of computation, it
could be challenging. Globally solving the non-convex penalized models is NP-hard.
The alternative way is to consider the computation efficient local algorithm with
desirable statistical performance. We also explore online learning and decision
making problem with high-dimensional data.

The rest of the dissertation is organized as follows. In Chapter 2 we study a
modification to the SAA by incorporating the FCP regularization. This modification
targets the high-dimensional SP problems with sparsity. We show that when the
solution is sparse or can be approximated by a sparse solution, the regularization
can significantly reduce the required number of samples in some high-dimensional
SP applications: Compared to the conventional SAA approach that requires the
sample size to grow polynomially in the number of dimensions, the RSAA stipulates
number of samples that is only poly-logarithmic in the dimensionality. In Chapter
3, we discuss a fast algorithm for non-convex optimization problem with linear
constraints. We propose an accelerated interior point gradient method and prove a
better convergence rate than the classic O(1/¢?) result. In Chapter 4, we consider
the minimax concave penalized multi-armed bandit algorithm for the online decision
making problem with high-dimensional covariates. We prove our approach can
match the optimal regret bound theoretically. Numerical tests on both simulated
and real-world data validate it. In Chapter 5, we summarize the dissertation studies
and present future research directions.

We would like to alert the reader that notations in this dissertation are defined

locally within a chapter, and do not apply to other chapters unless declared.



Chapter 2

Sample Average Approximation
with Sparsity-Inducing Penalty
for High-Dimensional Stochas-
tic Programming

2.1 Introduction

We are interested in solving stochastic programming (SP) when the problem
dimension is high but the global solution is approximately sparse. Denote by
W a random vector with probability distribution P and support W C R4 for
some ¢ > 0. Define by f(-, ) : X x W — R a deterministic mapping, where
X C RE for some integer p > 0 is a compact and convex feasible region. Let
E[f(x,W)] = | f(x,w)P(dw). Assume that, for every x € X, the function f(x, -)
is measurable and integrable on W. Then, the SP formulation of consideration is
given as:

min{ F'(x) := E[f(x, W)]}. (2.1.1)

xXeX

Throughout the chapter, we assume that X is defined only by coordinate-wise
constraints, that is, X := {x = (2;) : =; € X;, i =1, ...,p} for some X; C R, for
all ¢ =1, ...,p. Notice that the non-negativity constraints are not restrictive, in that
we may always represent a negative variable by the difference of two non-negative

variables.

10



In addition, we will restrict our discussions to the cases where the solution to
the original SP, denoted x™" € arg min,,, F(x), can be well approximated by a

sparse solution. More precisely, we assume that there exists ™™ that satisfies
F(x™™) — P(x™™) < & (2.1.2)

for some £ > 0. We denote that S := {i : 2 > 0} and §¢ := {i : 2" = 0}.
Here S can be understood as the index set for the most contributing dimensions
with |S| assumed small and satisfying |S| << p and |S| < n. In the special case
when & = 0, we know that ™" is an exact solution to (2.1.1).

Under the above setting, one of the most commonly used techniques to solve
the SP, the sample average approximation (SAA), is undesirably restrictive on the
sample size in some scenarios. The SAA approximates the objective function of
(2.1.1) by

F,(x) = if@%@, (2.1.3)

where {7 : 1,... ,n} is a sequence of independently and identically distributed

(i.i.d.) random samples of W. Denote that x544

literature has discussed the efficacy of x¥44 in approximating x™* (see [60, 77]).
It has been shown in the celebrated work by Shapiro and co-authors [44, 77, 77]

that to ensure the optimization accuracy, the required number of samples should

€ argmingey Fy,(x). Much

be larger than the number of dimensions and should grow polynomially with the

increase of dimensionality. In specific, to ensure:
P[F(x) — F(x™) <] > 1 —q, (2.1.4)

for any € € (0,1] and a € (0, 1], the sample size n should satisfy

p. 1 1 1
n2> —=In-+ —In—, 2.1.5
~Me e €« ( )
where 2> y for any =,y € R means x > ¢y, for some constant ¢ > 0 that are
independent of o, €, p, and |S|, but may depend polynomially on some other problem
quantities. Consider (2.1.5) in a problem with perhaps hundreds of thousands of

dimensions, which is not rare in actual applications of SP. The SAA then likely
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requires more than millions or even tens of millions of samples for the SAA to
perform properly. The overhead in generating these samples, before conducting any
optimization-related computation, may have already become prohibitive. Especially
considering the case where the most contributing dimensions are in tens or hundreds,
such a sample size requirement seems unreasonably demanding.!

Seeking to address the above issue, this work studies a modification to (2.1.3)
by adding a regularization term to encourage sparsity. This term is in the form
of a folded concave penalty (FCP) as first introduced by [29] and [94] to some
statistical learning problems. We refer to this modification the regularized SAA
(RSAA), which is formulated as:

p
mei}vl {Fn’k(x) = F(x)+ ) P,\(xi)} : (2.1.6)
* i=1

where Py with parameters a > 0 and A > 0 is a special form of FCP called the
minimax concave penalty (MCP)[94]:

*at = 2a (2.1.7)

a %a)\Q if 7> al.

/T(a)\—t) M =T if0< 7 < a);
0

We show in this chapter that the RSAA allows the dimension to be (much) more
than the sample size. In specific, when £ = 0, to achieve the same optimization

quality in (2.1.4), the sample size requirement for the global minimizer to RSAA is

15
n> g' (m%) +6121n;, (2.1.8)
under no assumption of convexity. Compared to (2.1.5), the required sample size
of RSAA only depends polynomially on |S| and Inp, instead of p. Although, as
a tradeoff, the dependency on € becomes worse after regularization, we believe
that such a tradeoff can be well compensated by the efficiency in handling high
dimensionality at least for some applications.

Perhaps more importantly, we further consider stationary points that satisfy

the significant subspace second-order necessary condition (S*ONC) [49], which is

I This is because, if only we would know which dimensions are nonzero, we may equivalently
reduce the problem to one that has only tens or hundreds of dimensions. Then, according to
(2.1.5), the required sample size would likely be only in thousands.
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weaker than the second-order KKT condition. When & = 0, we show that, if an
S30ONC solution is achieved by a(n arbitrary) descent local algorithm starting at

an all-zero vector, then the sample size is required to be

|S’2'5 D 2 1 1
> —— (In= —In— 2.1.
AT (n€> Tety (2.1.9)

if f(-,W) is convex for almost every W € W. Furthermore, assume in addition
that F' is differentiable and strongly convex. Then a smaller sample size is allowed,
that is:

n> "i’; <ln f)w + ;lni. (2.1.10)
Both bounds are worse than (2.1.8) in terms of |S| and/or €, but present simi-
lar levels of efficacy in addressing high dimensionality as in (2.1.8). Meanwhile,
the computational overhead in solving for an S*ONC solution is largely reduced
compared to that in solving for a global solution.

Furthermore, it is worthwhile to mention a special case to demonstrate RSAA’s
efficacy. Assume again that f(-, ) is convex for almost every W € W, function
F' is differentiable and strongly convex, and & = 0. If all of the most contributing
dimensions have a reasonably large magnitude that differentiates them from zero,
that is, the value of min;es |z™"| is above a certain threshold dependent only on
|S| and the modulus of strong convexity, then the required sample size becomes as

small as:
n—+ —In— (2.1.11)

for an S3ONC solution. In contrast, under the same set of assumptions, the best
known bound on the performance of traditional SAA is still (2.1.5), this means
that, at least for some scenarios, the proposed RSAA may achieve a non-trivial
improvement to SAA in handling high dimensionality without any compromise in
terms of dependencies on |S|, €, and a. A summary of comparisons between RSAA
and SAA is provided in Table 2.1 given & = 0.

When the exact global solution to the SP is not sparse but can be approximated
by a sparse solution, i.e., £ > 0, it turns out that the sample size should grow

polynomially in £ and that there can also be a residual suboptimality gap linear in
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Table 2.1: A summary of sample size requirement to guarantee optimization quality
of (2.1.4) when & = 0 as defined in (2.1.2). The “Global” column indicates whether
the approximation formulation being solved globally (v) or locally (x) is one of
the conditions for the bounds on “n” of the same row; the “f(-, W) convex” and
the “min;es 2™ > threshold” columns indicate whether (v') or not (x) Function
f(-,W) being convex for a.e. W € W and min;es 2"™ being above a certain
threshold are conditions for the corresponding bounds on “n”, respectively.

F strongly
n> Global f(-, W) | convex min;egs &
convex | & differen | > threshold
-tiable

SAA 5 In % + }2 In é v X X X

() "+ dng < | x -
2.5 2

RSAA ‘8!4 (lng) +€%1H§ X v X X
.5 1.

T we)"adma| < | v | 4 -

E—Z‘ In? + }2 In i X v v v

€. However, the poly-logarithmic dependency of sample size requirement on the
dimensionality is maintained.

Since second-order KKT condition implies S*ONC, all numerical algorithms
that ensure the second-order KKT condition (e.g., [10, 19, 63, 92, 93]) guarantee
SPONC. Some of these algorithms such as the interior point methods in [10] are
fully polynomial-time approximation schemes (FPTAS). Meanwhile, as we will
illustrate later, computing the global minimizer may also be possible via a mixed
integer programming reformulation.

Regularizing the SP solution schemes with a sparsity-inducing penalty for an
important class of SP formulations has been discussed by some literature, such as
[3], which focuses on the computational complexity when a stochastic optimization
algorithm incorporates an ¢;-norm penalty. To our knowledge, no theoretical
analysis has been established to qualify the performance of the sparsity-inducing
penalties in terms of approximating the true SP problem by the sample average
approximation.

Our results may also have implications to the understanding of a flexible class
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of high-dimensional sparse learning problems for M-estimation with the FCP.
In fact, the SAA (2.1.3) can be considered as a formulation of an M-estimator
with f representing a statistical loss function, and the SP problem (2.1.1) is the
corresponding population version of the learning problem with F' measuring the
generalization error. Such a correspondence is also noted by [60]. Following this
correspondence, the RSAA (2.1.6) is then the formulation of the sparse learning
problem that incorporates the FCP as a regularizer. Our findings imply that
high-dimensional M-estimation is possible through the regularization of the FCP,
even if the problem dimension cannot be bounded by any polynomial function of
the sample size.

While most existing literature on high-dimensional learning such as [11, 15, 29,
49, 52, 61, 87, 89, 94, 95, 96] either focuses on linear regression models or relies
on additional conditions such as the (restricted) strong convexity, our analyses
do not rely on those assumptions and may apply to a more general M-estimation
problem. We would also like to comment that much literature has been devoted to
studying an alternative regularizer, the ¢;-norm regularizer, or a.k.a., the Lasso.
For many reported simulated experiments, numerical comparisons between Lasso
and FCP have been reported by [29, 33, 49, 49, 87, 89] in supportive of relative
outperformance of the latter. Some theoretical explanations of such outperformance
are also provided by [29, 33, 49] in some special cases of high-dimensional learning.

The rest of this chapter is organized as following: Section 2.2 presents our
assumptions and the necessary optimality conditions. Section 2.3 summarizes our
major results. Proofs for those results are presented in Section 2.4. Section 2.5
discusses different approaches in solving for a desired local/global solution. Section
2.6 presents some preliminary numerical results. Finally, Section 2.7 concludes the
work. Throughout the chapter we will denote by || - ||, |- |, and || - [[p (1 <p < o0)
for a vector the (s, ¢, and ¢, norm, while |- | for a finite set denotes the cardinality
of the set. For any scalars x and y, we denote by x\/y (and by x A y) the larger
(smaller, resp.) number between the two. We will also use “a.s.” as an abbreviation

for “almost surely”, and “a.e” for “almost every”.
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2.2 Settings and Necessary Conditions

2.2.1 Assumptions

Our analysis relies on the following assumptions.
Assumption A.

A.1 For any x € X, the following inequality holds

o?t?

Efexp (¢ [/ (x, W)—F(X)])]SeXP( ) ViR,

for some o > 0.

A.2 There exists a measurable and deterministic function L : YW — R such that

242

Efexp (t[L(W) — L,])] < exp ("L; ) vieR,

for some o7, > 0 and L, := E[L(W)] > 1 and that

sup {|f(x1, W) — f(x2, W)| = L(W)||x1 — %2]|} <0, a.e. WeW.

X1,X2€X

A.3 For almost every W € W, function f(x, W) is twice differentiable in x and
satisfies

02 f(x, W)
(Ox;)?

for some Ly > 0.

< Ly, Vie {L '-'ap}a X = (Iz) €X

A.4 Assume that X is defined by coordinate-wise constraints with X' := {x =
(x;) : = € Xi, i =1,...,p} for some X; C R, for all i = 1,...,p, and that
there exist two hypercubes H(0, R) := {x € RY : x < R}, for some R > 1,
and H(0,1) := {x € RE : x <1} such that H(0,1) C X C H(0, R).

A.5 Function f(-,W) is convex for almost every W € W.

We will also make stipulations on the choices of the penalty parameters a and
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Condition B. Let the penalty parameters (a, A) of the MCP as in (2.1.7) satisfy
thata<L7_{1,a§1and)\>0.

Assumption A.1 and A.2 are essentially subgaussian. The same set of assump-
tions are standard for sample complexity analyses of the conventional SAA as in
[77]. Meanwhile, A.3 and A.5 are verifiable regularities of the objective function.
More specifically, Assumption A.3 essentially assumes that the largest eigenvalue
of the Hessian matrix of the SAA formulation is bounded from above almost surely
and Assumption A.5 requires that the SAA formulation is almost surely convex.
Assumption A.4 requires that the constraints are component-wise rectangle con-
straints. In addition, it is also required that the feasible region contain an inner
hypercube and is compact. For some of our theoretical results (as in Theorem
2.3.5), Assumption A.5 is not required. Condition B is non-restrictive, since the
parameters a and A are user-specified.

Under Assumption A.2; there exists another measurable and deterministic
function, denoted by Lisj : W — R, and a constant, denoted by L, : 1< L, <
L,,, such that

Elexp (¢ [Lisi (W) — L,.] )] < exp <a%2t2> : (2.2.12)

forallz € R, and that supy, ,e v z,=0, jesey {1/ (X1, W)—=f(x2, W)= Lis| (W) |[x1—
Xs||} < 0 for almost every W € W. In some cases, such as when F, is quadratic,

L, s may be nontrivially smaller than L, especially if p is large.

2.2.2 Necessary Conditions for Local Optimality

We focus on local solutions to (2.1.6) that satisfy some necessary conditions for local
minimality. Telling from (2.1.7), Py(t) is twice differentiable in ¢ for all ¢ € [0, al).
In the meantime, F,,(x) is almost surely twice differentiable under Assumption A.3

for any x € X. We consider the following necessary conditions:

First-order necessary condition (FONC): The solution x* € X satisfies that

(VE,(x)+ (P\(z): 1<i<p),x—x")>0, VxeX. (2.2.13)

Significant subspace second-order mecessary condition (S> ONC): The solution x* :=
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(xf : 1 < i < p) € X satisfies FONC. Furthermore, for all i € {i : z} €
2 p .
(0, min{1, aA})}, it holds that Z1mCIt2ay BEI 5

2
(0z4) -

The S?0ONC is derived from the observation that a local minimal solution to
the original problem must be a local minimizer in the subspace that considers
only a single nonzero variable (See also [23, 49]). One may easily check that any
second-order KKT point satisfies the SPONC.

2.3 Major Results

Our major results concern two propositions and four theorems. Propositions 2.3.1
and 2.3.2 provide sample size estimates for all SSONC solutions within the set
{x: F(x) — F(x™) < T} for some prescribed I' > 0. Those bounds vary with
different regularities on f or F'. Then Theorems 2.3.5, 2.3.7, and 2.3.8 discuss some
special S*ONC solutions: the global solutions or the local solutions generated with
some naive initialization. Finally, Theorem 2.3.9 presents the special case where

the RSAA improves over the conventional SAA nearly without any compromise.

2.3.1 Sample Size Estimation for All S’ONC Solutions

We will use the following short-hand notation:

o2 - In % (2.3.14)

i

N*(¢y) ::—l 24

(0% €

|2‘S’ caRL,p +
€

where ¢; > 0.

Proposition 2.3.1. Suppose that Assumptions A.1-A.3, and Condition B hold.
Let S| > 1, 4p*> > n, A = %forarbitmryé: 0<do<1/2andp: 0<p<1/2.
Consider an S* ONC' solution x* to (2.1.6) that satisfies F,, y(x*) < F,\(X™") +T
almost surely for some ' > 0. Foranya: 0<a<1l,e: 0<e<1andé>0:

1. if it holds that, for some problem-independent constant co > 0,

n > Nl\/CQ *(e2) (2.3.15)

1
2p —
_ 25 2 55 14T4¢ coRL,p 1—28 %
where Ny == o < ) |S |S|T-25 <02 2o In min{w‘;%}) , then F(x*)—

F(x™n) < 2¢ + &+ T with probabilz’ty lower bounded by 1 — «;
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2. if Assumption A.5 is satisfied and it holds that, for some problem-independent

constant cg > 0,

n 2 N2 \/Cg . N*(CQ), (2316)

1 1
1p 5 2 3 RL -2
where Ny = o2 - |S| (%) Vo?|S|== - <021+F+E In —2=eb )1 * . then

a?e? min{e, 029}

F(x*) — F(x™") < 2¢ + £ with probability lower bounded by 1 — a.

Proof. The proof is postponed till Section 2.4.2.3. O

We assume in the following proposition that F' is differentiable and strongly

convex with constant Uy such that, for any x;, xo € X,
U
F(xi) = F(x2) 2 (VF(x2), x1 = X2) + 731 = xa, (2.3.17)

for some Uy > 0, where VF(x3) is a gradient of F' at xo. Due to the increased

regularity, we may have a different sample size requirement.

Proposition 2.3.2. Consider an S*ONC' solution x* to (2.1.6) that satisfies
Foa(x*) < Fu\(X™") + T almost surely for some T' > 0. Suppose that Assumption
A and Condition B hold. Let 4p*> > n, |S| > 1 and \ = #286‘,) for arbitrary
d:0<d<1/2andp: 0<p<1/2. Assume, in addition, that F' is differentiable
and strongly convex to satisfy (2.3.17). Foranya: 0 <a<1,e: 0<e<1, and

€ >0, if it holds that, for some problem-independent constant cz > 0,

n Z C3 - N*(Cg) \/N3 (2318)

1—2p 1 1 1
. o?|5| 25 c3 )28 c3é\ 28 o2 14+T4€ csRL,p \1-25
where N3 := Y (73> + (632 ) v 22 (CS a2e? In min{e,gz‘;}) , then

b € =
uﬁé |S|25-1

F(x*) — F(x™") < 3(e + &) with probability lower bounded by 1 — .

Proof. The proof is postponed till Section 2.4.2.4. m

Remark 2.3.3. The assumption of 4p*> > n can be easily relazed but is imposed for
notational simplification in our derivations. Meanwhile, it is possible that (2.3.17)

is satisfied but F,,(-) = %Zgzl (-, W9) is not strongly convex. For an example,
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we may consider the case of linear regression, which is often solved with the SAA in
the form of the least squares problem. When n < p, the least squares problem may
not be strongly convex, but the population version of the linear regression problem

(which is the corresponding SP problem) usually have a strongly convex objective.

Remark 2.3.4. Consider the global minimizer, denoted x344, to the conventional
SAA formulation in (2.1.3) within the feasible region X. In [77], it is shown (after
some immediate conversion of notations from Theorem 5.18 therein) that to achieve
an optimization accuracy of F(x544) — F(x™n) < e with lower-bounded probability
1 — «, the stipulated sample size follows

Co0?

n > In
> -5 |p

coL, R

€

C C
1 —“] 2. In =2 =: Ngaa. 2.3.19
+ In o \/UL n o SAA ( )

for some constants ¢, > 0. In contrast, Propositions 2.53.1 and 2.5.2 indicate that,
in monconvex, convex, and strongly convex cases, RSAA requires the sample sizes to
be at least N1\ caN*(c2) in (2.3.15), Ny \/ caN*(c2) in (2.3.16), or N3V csN*(c3)
in (2.3.18), respectively. For all the three cases, it is easily verifiable that N* is
always dominantly better than Nsaa in terms of dependency, while as a tradeoff, Ny,
Ny, and N3 may become more sensitive to the reduction in € than the conventional

SAA. A detailed comparison will be made in the next subsection.

2.3.2 Sample Size Estimates for Some Special S’ONC Solutions

We consider, in Theorem 2.3.5, the performance of a global minimal solution x*, in
the sense that F, \(x*) = infyex Fy,\(x) almost surely. Then in Theorems 2.3.7,
2.3.8, and 2.3.9, we study the S3ONC solutions with a better objective value than
an all-zero vector, denoted by 0. In particular, Theorem 2.3.9 identifies the best
performing case for RSAA.

Recalling the definition of N* in (2.3.14), we have the following results on the

global solution.

Theorem 2.3.5. Suppose that Assumptions A.1-A.3, and Condition B hold. Let

4> >n, [S| > 1, and X = ol/?

TS Consider a global solution x* to (2.1.6). For
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anya: 0<a<l,e: 0<e<1,andé >0, if

2 25 :
s acls {H (1+8) (ln c1RL,p ) Ve No(er),  (2.3.20)

€’ a’ min{e, o/3}

is satisfied for some problem-independent constant cy > 0, then F(x*) — F(x™1) <

2¢e + & with probability lower bounded by 1 — a.

Proof. Since the global solution is also a local minimal solution, x* also satisfies
the SPONC almost surely. In addition, since F/(x*) < F(x™") < F(Xx™"), we may
invoke Part 1 of Proposition 2.3.1 with I' =0, § = é, and p = % to obtain the
desired results. O
Remark 2.3.6. Theorem 2.5.5 stipulates the minimal assumptions on F,,, but, as
a tradeoff, it requires the global optimization of (2.1.6). Computing (2.1.6) globally
is challenging, because the MCP is nonconvex. [35] showed that (2.1.6) in some
special cases is strongly NP-hard. This motivates us to further consider a class of

solutions that only satisfy certain necessary conditions for local minimality.

Theorem 2.3.7. Suppose that Assumption A and Condition B hold. Let 4p* > n,
|S| > 1, and A = #f;\”s Consider an S* ONC solution x* to (2.1.6) that satisfies

Fox(x*) < F,A(0) almost surely. Foranya: 0<a<2i e¢:0<e<1andé>0,

27
if

cs02|S|3
5U|| R4+

et a

(1 +Lu,sR+é)2 csRL,p 2 )
* n min{e, o1/2} \ esN*(c5) (2.3.21)

is satisfied for some problem-independent constants cs > 0, then F(x*) — F(x™") <

2€ + € with probability lower bounded by 1 — 2av.
Proof. The proof is postponed till Section 2.4.2.5. O

Theorem 2.3.8. Suppose that Assumption A and Condition B hold. Let 4p> > n,
IS| > 1, and X\ = % Also assume that F is differentiable and strongly
convez as in (2.3.17). Consider an SPONC solution x* to (2.1.6) that satisfies
Foa(x*) < E,(0) almost surely. Foranya: 0<a<2i e:0<e<1,andé>0,

27
if
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3
- cso?|S|E | 1 8 (1+L,R+8):> L CRLp 2
- | = n
- €3 U, Ue’ a? min{e, o1/3}

\ c6N*(cq), (2.3.22)

is satisfied for some problem-independent constant cg > 0, then F(x*) — F(x™") <
3(e + &) with probability lower bounded by 1 — 2.

Proof. The proof is postponed till Section 2.4.2.6. m

Theorem 2.3.9. Consider an S ONC solution x* to (2.1.6). Suppose that the same

set of assumptions hold as in Theorem 2.3.8. Let A = W Assume additionally
. Vag /IS[/

€ = 0 and min;eg |20 > S+ L‘{ill iy

XM For any o : O<a§%ande: 0<e<l,if

Amin

, where T is the i-th dimension of

- c702|S| (1 + I;MR

L
i CoftLup ) \/ ezN*(c7), (2.3.23)

- €2 €

a

for some problem-independent constant c; > 0, then F(x*) — F(x™") < ¢ with

probability lower bounded by 1 — 2.
Proof. The proof is postponed till Section 2.4.2.7. O

Remark 2.3.10. We notice that the choices of \ are different among the above
theorems. At the minimum, the above theorems ensure the existence of proper \’s
that ensure the sound performance of the RSAA in all the scenarios discussed above.
In practice, A can also be determined by a simple cross-validation procedure, which
is a commonly adopted scheme in penalized statistical learning to tune the parameter

of the sparsity-inducing penalties.

Remark 2.3.11. We would like to compare the sample size requirement of the
RSAA as presented in the results above with that of the conventional SAA.

o We see that Ngaa as in (2.3.19) depends polynomially in the problem dimen-
ston p. In contrast, Theorems 2.5.5, 2.3.7, 2.3.8, and 2.3.9 reveal that the
global solutions and some computable local solutions to RSAA require the
sample size to be polynomial in Inp and |S|. We regard it as a demonstration
of the RSAA’s capability in handling high dimensionality, as now exponentially

increased p can be compensated by polynomially increasing n.
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e As a tradeoff to the potential advantage mentioned above, the RSAA’s perfor-
mance has a worse dependency on € than the conventional SAA in general.
More specifically, Nsaa increases at a rate of O(}2 In %) In contrast, RSAA
follows a rate of O(% - (In %)3/2) if minimized globally (under Assumptions
A.1-A.3), or O(% - (In1)?) if solved locally with a naive initialization (ad-
ditionally under Assumption A.5). Furthermore, under some assumption
of differentiability and strong convezity, if € < O(1) - € for some problem-
independent constant O(1), then a local solution with a naive initialization
retains the rate of O(% - (In 1)*2), which is the same as the global minimizer.
We think that compromising the dependency on € to achieve a non-trivial
reduction in the dependency on p can be worthwhile in many high dimensional
SP applications, where p can be redundantly very large but the suboptimality

gap € is not required to be very small.

e Theorem 2.3.9 identifies a case where RSAA non-trivially reduces the depen-
dency on p while the growth of the required sample size maintains at the same

rate as the conventional SAA in terms of €.

e The RSAA’s dependencies on o and oy are almost the same as those of
the SAA. Meanwhile, RSAA becomes dependent on some other quantities
that originally do not influence the SAA’s performance: a, |S|, and Uy.
Moreover, in some cases, the RSAA may be more sensitive to the increase
in the Lipschitz-like constant L, s as defined in (2.2.12) and the radius of
the feasible region, R. Nonetheless, those dependencies all maintain to be

polynomial.

Remark 2.3.12. By allowing € > 0, our results apply to the cases where the exact
solution to the SP is dense, but can be approrimated by a sparse solution. We can
see that, when € > 0, RSAA will require more samples and may incur a residual

suboptimality gap no greater than O(1) - &.

Remark 2.3.13. Our results may also have potentially important implications to
high-dimensional M-estimation. One may consider the following correspondence
between our setting and the setting for a high-dimensional learning problem: (i)
Eq. (2.1.3) can be thought of as an in-sample statistical loss function; (ii) the
(global/local) solution to RSAA formulation (2.1.6) can be considered as a folded
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concave penalized sparse estimator; (iii) the SP formulation (2.1.1) can be considered
as the population version of the (unpenalized) learning problem (a.k.a., expected risk

1s then

or generalization error); and (iv) The suboptimality gap F(x*) — F(x™")
a performance measure® of the estimator x*. The above conversion is also noted
by [60]. Under this conversion, we can easily tell from Theorems 2.5.5, 2.8.7, and
2.3.8 that a global solution or an S*ONC solution initialized at an all-zero vector can
achieve a reasonable upper bound on the F(x*) — F(x™™) even in the undesirable
scenarios where the dimension p cannot be upper bounded by any polynomial of
n. The same setting has been discussed by [32] for the linear regression model,
by [33] for several M-estimation models, and by [52, 89] under restricted strong
convexity (RSC, which is some variation of strong convezity in certain subset of
the feasible region). In contrast, our results may be applicable to a wider class
of M-estimators without the RSC assumption. In particular, if we consider the
estimator that globally minimizes the RSAA, nonconvexity in the statistical loss

function is also allowed.

Remark 2.3.14. We would also like to remark that the sparsity of an SSONC
solution is dependent on X and I'. The correlations between those quantities and the
sparsity level are in fact characterized by Lemma 2.4.4 in the subsequent section.
Although the formula seem nontrivial, we think that the general trend is clear; that
is, larger X, and smaller T' may result in fewer nonzeros in the S*ONC solution.
Our numerical experiments in Section 2.6 also show that the number of nonzero

dimensions can be well constrained at an SPONC' solution.

2.4 Technical Proofs

We will first present a set of preliminary results in Subsection 2.4.1 and then provide
the proofs for the claimed results in Subsection 2.4.2. A sketch of proof is provided
in Subsection 2.4.2.1.

2F(x*) — F(x™) is also referred to as the “excess risk” in a learning problem. See for example

8].
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2.4.1 Some Preliminary Results

In this subsection, we present a couple of observations that are useful to our proofs.

Firstly, we observe that MCP as in (2.1.7) has the following properties:

(i) P.(t) is non-decreasing and concave in t € $; with P,(0) = 0 and Py (t) > 0 if
t>0;

(ii) Py(t) is differentiable for all ¢ € R, and twice differentiable for any ¢ €
0, aX) U (), o0);

(iii) The first derivative P{(¢) = 0 for any t > a);
(iv) 0 < P{(t) < Mand 0 < Py\(t) < Pi(a)) = % for any t > 0;

(v) The second derivative P{(t) = —% for any ¢ € [0, aX) and P{(t) = 0 for any
t>al.

Secondly, consider an S?0ONC solution x* € X under Assumption A.5. Recall
that S*ONC implies FONC. Then, from the definition of FONC in Eq. (2.2.13)
and Assumption A.5, we know that, if x* satisfies the FONC, then it holds that

-G-ZP/\ Jxi < Fu( —I—ZPA N, Vx = () € X, a.s., (2.4.24)

which immediately yields that

p
F, (X*)—l-ZP/((:vf)xz* < F,(x™m) 4—2:]3A )& s,

=1

Together with (a) 2" = 0 for all i € 8¢, (b) x* > 0, and (c) Property (iv) of P,

it is then Stralghtforward to obtain:

Fn<X*) o Amln < Z P/ "mln _ x;")

<ZP/ Amln _ ’ + Z Pl Amln _ I;k)
€S eS¢

(a) Amln * * *
ZP,\ —%Hzpﬁ(%)(—%)
i€S 1€S¢

OXC I,
< A Ern -], as. (2.4.25)
€8
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Similarly, with (a) 2" = 0 for all i € §¢, (b) x* > 0, and (c¢) Property (iv) of P,

again,

i=1
<D P @M —ap) + Y P(a) @™ - aj)
€S €8¢
(a) * Amm *
SR @" — ) + X Ba) - ()
€S eS¢
(b) (c)
<SP @) < AR, as. (2.4.26)
€S €S

Thirdly, consider an S*ONC solution x* € X again. One has that
x; ¢ (0, min{aX, 1}) for any ¢ = {1,...,p}, almost surely. (2.4.27)

To see this, suppose that for an arbitrary dimension ¢ € {1, ...,p}, it holds that

xf € (0, min{aA, 1}). Since 8(2£’;§’2‘) < Ly for all x € X almost surely as an

immediate result of Assumption A.3, combined with a < Lz;' under Condition
B and Property (v) of Py, we have that 92 Fy 2 (%) [32Fn(x) 1 <0,

(0z;)? ‘x:x* B Ca

(6131')2 ai| xX=X*
almost surely. The satisfaction of this inequality contradicts with the S*ONC, that

is, for all 1 =1, ..., p,

P [{82(22(;) < LH} N {x* satisifies SSONC} N {z} € (0, min{a), 1})}] =

Notice that
P K{(W < LH} N {x* satisfies S3ONC}> U {z] € (0, min{aA, 1})}}
Phn(x7)

(0x;)?

_Pp Haizfﬁ) < LH} N {x* satisfies SSONC} N {z} € (0, min{a), 1})}}

=P[{z} € (0, min{a), 1})}] +P H < LH} N {x* satisfies S3ONC}}

which means that

=P[{z; € (0, min{a, 1})}]+1—-0, Vi=1,...p
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—P[{z] € (0, min{aX, 1})}] =0, Vi=1,...,p
=P [{z] ¢ (0, min{aX, 1}),Vi=1,...,p} =1

Combined with Properties (i) and (iii) of Py, it further implies that

p
Py(a))[x"[lo = D> Pa(x) = Py(min{ad, 1})[x[lo

i=1

in{a?)?, 1
- ()\min{a)\, 1} - mm{c; : }> Ix[lo,  a.s. (2.4.28)
a

Fourthly, the following two useful lemmas are some quick results from Assump-

tion A.2 and are taken from [77] after some slight changes.

Lemma 2.4.1. (a). Under Assumption A.2, for anyt > 0,

n

S F W) — 3 (o, W)/

Jj=1 Jj=1

sup { — (Ly+1t)||x1 — XQH} <0,
X1,X2€X

with probability at least 1 — 2 exp (—%)
L
(b). Under Assumption A.2, for anyt > 0,

J

S~ et W)= 3 s, W)

Jj=1

sup { = (Lps +0)[Ix1 — X2||} <0,
X1,X2€XN
{x:2;=0,1€S°}

with probability at least 1 — 2 exp (—;j;)
L

Proof. To show (a): Firstly, by Assumption A.2, one has sup,, ,cx{|f(x1, W7)—
f(xo, WH)| — L(W7)||x; — x3||} <0 forall j = 1,...,n almost surely. Combining

the inequalities for all j = 1,...,n, we obtain

sup { If(Xl,Wj)—f(Xz,Wj)l—iL(Wj)HXrXaH}S 0, as.
1

x1,X2€X j= j=1
By triangular inequality and dividing both sides by n, we have

S F e W) n— 3 o, W)/

j=1 j=1

sup
X1, X2€X
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— > nT'L(WY)||xa _XQH} <0 a.s.

Jj=1

By the second part of Assumption A.2, we can invoke the well-known large deviation

theorem on subgaussian i.i.d. random variables and obtain

nt?

n! f: L(W7) — L,

Jj=1

for any ¢ > 0. Combining the above,

n

S Fc W) n = 3 flxa, W)/

j=1 j=1

sup { = (Lu+)[lx1 = XzH} <0,
x1,Xx2€X
with probability at least 1 — 2exp <—;j§)7 as claimed.
L
To show (b): Under Assumption A.2, it obtains that (2.2.12) holds. Then,

the same argument to prove Part (a) immediately leads to the desired result in
Part (b). O

Lemma 2.4.2. (a). Under Assumption A.2, for any fixed x1, Xo € X, it holds
that |F(x1) — F(x2)| < L,||x1 — Xal|.

(b). Under Assumption A.2, for any fized X1, X9 € X N{x: x; =0, 1 € S}, it
holds that |F(x1) — F(x2)| < L, s||x1 — Xal|.

Proof. To show (a): By Assumption A.2, we have,

Lyullx1 = xa|| = E[L(W) - |lx1 — xal] > E[[f(x1, W) — f(x2, W)]
> |E[f(x1, W)] = E[f(x2, W)]| = [F(x1) — F(x2)],

which is immediately the claimed result.

To show (b): Under Assumption A.2, Inequality (2.2.12) holds. Then, with
the same argument to prove Part (a), we immediately obtain the desired result in
Part (b). O
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2.4.2 Proof of Major Results

This section presents the proofs for our claimed theoretical results. We first present
a sketch of the proof in Subsection 2.4.2.1. Then, two useful lemmas that serve
as the pillar of our analysis are presented in Subsection 2.4.2.2. The proofs for
the aforementioned propositions and theorems as our major results are provided

subsequently in Subsections from 2.4.2.3 to 2.4.2.7.

2.4.2.1 Sketch of Proof

Our proof is organized as following:

Step 1: In Lemma 2.4.3, we show how well the objective function of the SP
problem F' can be approximated by the objective function of the SAA problem
F,, at a feasible solution that satisfies the sparsity assumption in addition to the
standard assumptions for the SAA (Assumptions A.1 and A.2). More specifically,
we derive a bound on the probability for the point-wise difference between F'(x)
and F,,(x) to be contained within a prescribed level € > 0 when |x|o < p for
any p: 1 < p < p. It turns out that, if sparsity holds (i.e., if p is small), the
approximation quality is less sensitive to the problem dimension p compared to the
conventional SAA by [77, 77, 78].

Step 2: To exploit the results from Step 1, Lemma 2.4.4 then shows that,
once Assumption A.3 holds (i.e., the diagonals of the Hessian matrix of the SAA
formulation is bounded from the above), we can guarantee that any S*ONC solution
is sparse. Furthermore, the number of nonzeros can be controlled by tuning the
penalty parameters a and . As a result, through properly choosing the values for
a and )\, we ensure that p can indeed be a small number at the SSONC solution.
Lemma 2.4.4 also explicates the number of nonzeros at an S*ONC solution as a
function in parameterization of a, A, and the global suboptimality of that S*ONC
solution.

Step 3: Combining results from Steps 1 and 2, we may obtain the claimed results
for Propositions 2.3.1 and 2.3.2 in Subsection 2.4.2.3 by choosing the proper pair of
parameters (a, A). The bounds derived in both propositions are in parameterization
of the suboptimality gap I" in solving the RSAA. Note that Proposition 2.3.2 makes
use of additional inequalities from strong convexity and thus provides a sharper

bound than Proposition 2.3.1.
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Step 4: Employing bounds on the approximation quality from Propositions
2.3.1 and 2.3.2, which are in parameterization of I', we then consider the S*ONC
solutions where I" can be explicated. In particular, we focus on two cases. (i) We
first consider the global solutions where I' = 0. By employing the propositions
shown in Step 3, we can immediately derive Theorem 2.3.5 by properly choosing
a and A. (ii) Under Assumption A.5 (i.e., the unpenalized SAA formulation is
convex) we then look at those solutions that have a better objective value than an

all-zero solution. This immediately leads to all our results in Theorems 2.3.7-2.3.9.

2.4.2.2 Two Pillar Lemmas

This section provide two pillar lemmas that lay the foundation of our analyses and

constitutes Step 1 of our proof sketch in Subsection 2.4.2.1.

Lemma 2.4.3. Suppose that Assumptions A.1 and A.2 hold. For any scalart > 0
and any integer p: p > p > 0, the following inequality holds:

P sup <t

x€X: ||x[lo<p | TV

ixW] — F(x)

(2 )] ol 25) -2l 5)

Proof. We can divide the feasible region X’ by a net of finitely many grids V(t) :=
{x*k = 1,2,..} C X, such that for any x € X N {x : |x[[o < p}, there
always exists an x* € V(¢) that satisfies ||x* — x| < ﬁ. Since X C H(0, R),
it is easily verifiable that one can always find such a net of grids if |V ()| =

{( 12v/pRL, )ﬁ (p)
! P

region A} := {x eX: |x—xF|| < ﬁ} As per our construction, we know that
XN{x: |x|lo < p} = (kaeV(t)Xk) N{x: ||x|jo < p}. Therefore, it holds surely
that

. Corresponding to every grid x*, there is a subset of the feasible

zn:xWJ — F(x)

Jj=1

sup
xeXN{x: [|x]o< p}

zn: fx, W) — F(x)| (2.4.30)

" j=1

< max
k=1,.. 7|V(t)‘ XE./Y}c
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Now, consider the following events:

W 2T 1) Fly)

YEV(H) N

& (t) = { max

gw%

> fxa, W) /n — Zn:f(xz,Wj)/n = 2Lullx1 = x| < 0}

j=1 =1

S F (%1 W)/

j=1

=3 S W)

X1,X2€X

E(k) = { sup

— 2L,||x1 —x2|| < 0} . k=1, V().

It is easily verifiable that & C &;(k) for any k = 1,...,|V(¢)|. Conditioning on &,
we have that for any k= 1,..., [V (t)]:

sup | 3 flx, W) — F(x)

xeX, |1 ;5
1 RS

gy By - s o -

+3iﬂﬁwm—ﬂﬂ)
ni
&C?(k)fg}?% Hx—xH%—’F ‘ iz; x*, W) — F(x")
Lemm§'42.4.2 fél)g 2L HX—X H"‘L HX_X H+ :Li F(Xk)

71@2:: xF WJ - F(x ) a.s

Therefore, conditioning on the simultaneous occurrence of both & (t) and &, we
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have

fx, W) — F(x)

S|

sup
x€XN{x: [|x[lo< 5}

<
Il
-

f(Xv W]) - F(X)

SHES
1t-

< max sup
k=1,...|V(t)| xex,

F8, W) = F(x")

1
max —
k LolVOL N

L\’J\H~
=
—

Now it suffices to bound the probability for & (t) and &,.
(i). To consider & (t), we know by union bound that

1i fly, W) = F(y)

Jj=1

max
yeV ()

n

S
2

< ) P|-

yGV(t)

Due to Assumption A.1, we may invoke the large deviation theorem on sub-
gaussian i.i.d. random variables to obtain that, for any ¢ > 0, it holds that
P H%Z?:lf(y, Wiy — F(y)‘ > t} < 2exp( ) for any y € V(t). Therefore,

we may continue as

1 & -
P ) =P — - F <t/2
0] = P | e |3 iy, W)~ Fly) <1/
2 12\/pRL,\’ 2
SV exp [~ 25 ) 5 1o | (2VERE T (PY ] (272 2.431)
802 t P 802
(ii). To consider &, we invoke Lemma 2.4.1 (in which we let t := L, only
within that lemma), we know that
LQ
P[] >1— 2exp (—ng) (2.4.32)
207

Now, invoking both the De Morgan’s Law and the union bound to combine all

the above, we obtain the desired result. O
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Lemma 2.4.4. Suppose that Assumptions A.1-A.3 and Condition B hold. Let
€ > 0 and x* € X be an SPONC solution. For any integer p: p > |S| and any
scalars t > 0, € > 0, and T > 0, if FoA(x*) < F,\(X™") + T almost surely,
% >1In (%), al < 1 and

D+2/pF+1+4¢
Py(a)) > : 2.4.33

then ||x*|lo < p with probability at least

P*(t,p) == 1 — 2exp <_ (p+ 1)7”2) 1

nlL? ~ nt? 12pRL
— 2pexp (—ﬁ) — 2exp (—(p—l—l) {w—ln( ; “)})
L
1

e[ ()

Proof. 1f p > p, then ||x*[|o < p < p with probability 1, while P*(¢,p) < 1 for any
t > 0 and p > |S|. Thus the desired result holds if p > p. The rest of the proof

then considers only the case where p < p.

(2.4.34)

For arbitrary integers p: p > p > |S| and k: 1 < k < p — p, consider the

events
EF+k) = {IIxllo= 5+ k) &= {F&™) ~ F,(x7) < 20/p+ k + &)

and

i { s R~ O < 0y k.

x€X: |[x|lo<p+k

Firstly, we want to show that P[&,(p + k) N&] = 0. To this end, consider

another two events

A:={Vi: zI ¢ (0, a)\)}

B = {F\(X") < Fua(3™) +T}.
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If we recall Property (iv) of Py and the assumption that aA < 1, it holds that

Vi:af ¢ (0, a\) = Y1 P\(zf) = ||x*|loPr(aX
i (0, a) . Yic1 Pa(a) =[x lloPa(ar) (2.4.35)
Fn,)\(X*) < Fn,)\(&mm) +T
= F,(x*) + ||[x*|loPr(a)) < F,(x™") + |S|Py(a)) + T (2.4.36)
Meanwhile,
(2.4.36)
[x*[lo = p+ K (2.4.37)
Fp(x™0) — Fo(x*) < 2t/p+ k+ €
—(p+k—|S))P\(a)) < 2t\/p+k+E+T (2.4.38)

However, (2.4.38) contradicts with the assumed inequality (2.4.33), that is, the event
{(2.4.38)} is a sub-event of the complement of the event {(2.4.33)}. Further noticing
that {(2.4.33)} holds surely as per our assumption, therefore, {(2.4.38)} = 0.
Combining this with the observations that (2.4.35) = (2.4.36), and (2.4.37) =
(2.4.38) as well as the definitions of A, B, &,(p + k) and &,, we know that ANB N
E(p+k)NE = 0. Since P(ANB) = 1 by assumption and by (2.4.28) with a\ < 1,

it therefore obtains that

1=P[(ANB)U(E(p+ k)N &)
=PANB]+PED+E)NE]—PANBNE(H+k)NE)]
=1+P[E(P+E)NE]+0

= P[&(p+ k)N &) =0. (2.4.39)

Secondly, we want to show that P[E.] > P[E.(p+k)], where £, is the complement
of &.. To this end, consider one more event C := { F(x™") < F(x*)}, which satisfies
that P[C] = 1 by the definition of x™. We observe that, since [|x™"[|, = |S],

SUDxex: [x|o<ptk [ Fn(X) — F(X)| < tV/p+ k
F(Xmin> S F(X*)
el = 5+ &

34



—F,(x*) < —F(x*")+tvD+ k

F,(x™m) < F(X™) +t/p+ k< F(x™) +t/p+k+¢é
[x*llo=p+k

F(xmi) < F(x*)

which immediately leads to the simultaneous satisfaction of both F,(Xx™") —
F(x*) < 2t\/p + k+€ and ||x*||o = p+k. Therefore, CNENE,(p+k) C ENE,(p+k)
and thus P[CNE.NE,(p+ k)] < P[ENE(p+ k)]. Since we have shown above
that P[&, N E,(p + k)] = 0, we know that P[CNE. N E,(p+ k)] = 0. Further recall
that we have also known that P(C) = 1. Therefore, by both the De Morgan’s Law

and the union bound, under the assumption of (2.4.33),
0> 1—-PlE(p+k)]—PlE]— (1 -P(C)) = P[E] > P[E,(p+ k)], (2.4.40)

where &,(p + k) and &, are complements of &,(j + k) and &,.

Lastly, using the upper bound on P[£,] provided by Lemma 2.4.3, we obtain

PE.(p+ k)]
~—\ P+k ~ 2 LZ
<2 12RL#~—p+k p - exp _M + 2exp _L;
D+ Fk p+ k 80 207,
~ 2
<2exp (_n(p+2k)t +(~+kz)ln<12RL“) +(]3+k).1np>
8o t
(p+ k)t? nL?
2 — 2 —— 2.4.41
+ 2exp ( 2 + 2exp 202 ( )
B _n(p+ ky* <12pRLH)
=2 Xp( o2 +(p+k)In ;
(p+ k)t? nL?
+ 2exp ( 2 + 2exp 207 |- (2.4.42)

p

To get (2.4.41) we make use of the facts that (~ N k:) < pP** and that [2] <z +1
p

for any x > 0.
Notice that if ||x*||o > p, it must hold that ||x*||o € {p + 1, ..., p} and that by



the union bound:

P{lx"lo e {p+1, ... p}}] < Z {Ix[lo = o+ k}]. (2.4.43)

—_

We therefore can find an upper bound to P[{||x*||o € {p + 1, ..., p}}] by invoking
(2.4.42). That upper bound writes as

P{[x*lo e {p+1, ... p}}] < Z[ o(D+F)]

< ZiQexp( Hﬂﬁ-(ﬁ—k/ﬁ)ln(%))
n(

28 o (U gy (25)

— 2exp (—(m 1) [gz i (mpr”)D
e gy 2o (5

(p + 1)nt? 1—exp( %)
+2exp(_ 802 ) 1—exp (—25)

<1 —P*(t,p), (2.4.45)

(2.4.44)

where to achieve (2.4.44) we invoke the sum of a geometric series and to obtain
(2.4.45) we make use of the assumptions that "t > In (HPfL“) and p < p. The

desired result then follows immediately. ]

2.4.2.3 Proof of Proposition 2.3.1

For an arbitrary € : 0 < e < 1, denote that

&= {IFx) = Fux) < S} &= { [P = i

< 6} . (24.46)
2
We examine the two parts of the proposition:

(i). For Part 1, according to (2.3.15), 0 < e <1, and |S| > 1, as well as a < 1,
weobtalnnlezo—(1)§2( ).Comb1nedw1th0§p§§
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know that a\ = 5\3\0 < 1. Conditioning on the event £4 N Ep, under the
assumption that F, \(x*) < F,\(X™") + I' almost surely, it holds almost

surely that

F(x*) — F(x™") — e - < F(x*) — F(X™") — e < F,(x*) — F,(x™")

)\2
< |S|- Py(a)) +T = |S| - “—+r
ac® 1-2p
= SIS+ T (2.4.47)

Since a < 1,ifn > N, >0 ( )26 ( )25 |S|"%”, then (2.4.47)
implies that F(x*) — F(x™") < 2e + & +T. Therefore, to show the first part
of the proposition, it suffices to prove that there exists a problem-independent
constant ¢ > 0 such that, if n > N;\ coN*(c2) as in (2.3.15), then the event

E4 N Ep occurs with probability at least 1 — «, which will be shown soon

afterwards.

(ii). For Part 2, according to (2.3.16), 0 < ¢ < 1, and R > 1, combined with |S| > 1
and 0 < p < ,WeknOWthathN220'2Z( - )1 :>a)\—n5|3|p <1
Conditioning on the event £4 N g, under Assumption A.5, we obtain from
(2.4.26) that

F(X*) _ F(Xmin) S — < F(X*) _ F(/\mln) €< F ( ) Fn()/\(min)
26
smin| __ g 1—
< AR = ISR (2.4.48)

Hence, if n > Ny > (M)é then (2.4.48) implies that F(x*) —
F(x™in) < 2¢ + . Therefore, to show the second part of the proposition, it
also suffices to show that there exists a problem-independent constant ¢, > 0
such that, if n > Ny caN*(cq) as in (2.3.16), then the event £4 N Ep occurs
with probability at least 1 — .

The following provides probability lower bound for the occurrence of £4 N Ep.
Such a bound applies to both (i) and (ii) above.

We have shown above that aA < 1 for both (i) and (ii), and we also have
let Assumptions A.1-A.3 and Condition B hold. Under the assumption that
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wa(x*) < F,a(%x™") + T almost surely, we may invoke Lemma 2.4.4, where we

assume for now that

2
" (120

a2 —

(2.4.49)

which will be shown soon afterwards. It then follows that, for any integer p > |S|

such that p > [S] + 2R 1 = VFHT > 5los + e + 1S+ piay:
it holds that ||x*||o < p with probability at least P*(¢,p) as defined in (2.4.34).

Further notice that, since ||x™"||q = |S|, for any p > |S] it holds that £4 N Ep D
(WP o pp | £ 0y £, W) = F)| < ¢/2)0{1x"]lo < 5} Hence we may
combine Lemma 2.4.3 (in which we let ¢ = £ and rescale ]5 only within that lemma
into p Ap), and Lemma 2. 4 4 (in which we let p = L[P e T4IS|+ ;L,(F(JF?J here
and we will also let ¢t = 5| S‘ = soon afterwards) through both the De Morgan’s Law

and the union bound to obtain that £4 N g occurs with probability at least

N (e A\ D)
(38 1

ne2 nLi
OXP | Taos | 72O | T 2 s
1) dp=| e s

ne? nL?
> 1—2exp <—3202> —2(p+1)exp <_%f£

ne 16t>  8(T' + &) 24RL,p*?
—9 _ 4 In | Z===2R2
P ( 3202 + [p/\ Lﬁ)\‘l * al? +4ISl| | In €

P =

2esp (- [| 85+ 52+ 445]| +1] 25— (2]
T e o)

(|25 + G2 + 48| + 1) nt? 1
— 2exp (— 2 . g (_g%) ,

(2.4.50)

where we may plug in t = in the next.

20
n’|SlP
Now we want to show the satisfaction of (2.4.49). Observe that, with t = X\ =

38



g 5<7p_2,4p2>nandp>|8|>1Weknowthat

12 12pRL
n ln( R u)

802 t
_ooatr In 12n°|S|*pRL,,
- 802—45]8]2P 026
Lo 24p°2RL,,
= 802 U|S| —n 526
1-26 1-26 24152 R],
= +— i (2L (2.4.51)
1602_45‘3’2p 160’2_45’8‘29 g20

1/(1-26)
Observe that, if n > {1202_45|S|2P V 160%%|S|% In <Mp50/22fL“>} , then % >

1-26

In % V 2. Therefore, we know that (2.4.51) > 602152 = 2 >n2

This inequahty implies (2.4.49).
The above provides a lower bound on the probability for the event of interest.
The rest of the proof seeks to simplify this bound. We have shovvn above that

1-26

2.4.51) > —P—~—— > In2. This inequality implies both exp(— < 1/2 and
160 |S|2°p

nt2 12pRL, 1
exp(‘{sgz‘ln( ; )DSQ'

26'8‘2[)

n

Further observing i—i = , we may combine the above with (2.4.50) to obtain

P >1-2exp (—ig\z : [fét; 4 17;:2 1 <12]97§RLH)}>
1
e (<[ - ()
(a5 + Bf*f +4[S]| + 1) nt? 1
— 2exp (— A A 2o . - (_%)

ne 1662 8(T' + &) 24RL,p*?
— — +4 il o
2exp ( 3202 + Lﬁ/\4 + al? +4IS]| 1 €

2

ne nLi
— 2exp (—3202> —2(p+1)exp <—%‘%)

162  nt? 1 162 nt? 1
> 1 =2exp T2\ 1602) 1-1 —2exp TN 802) 11—

2
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ne 16t2  8(T'+ &) 24RLup3/2
—20xp <_3202 * LLQX* T aN? + 48[ €

ne’ nL?
— 2exp (—3202> —2(p+1)exp <—%‘§)
n nl?, ne?
>1 - ~ ) opri ) g
Sexp< aa> b+ )exp( 20L> exp( 3202>
2 1 26 2p T S 20,20 24RL 3/2
—2exp<— ne +{ 6n*|S| +8( +&)|S|*"n +4’S‘J ln( RL,p ))
€

3202 a204% ac®

Combined with the above, it is easily verifiable that, if n is large enough to satisfy

9 1/(1-26)
both n > o [12/8V 16} n (22285 ) [T and

2 2 1 2 24RL,p3/?
n > a’o? ln3 200y, (S DY o g 1n§+256 S|In [ 2A2LuP™"
L2 « 62 €

1
16\S|2P 8(I +2)[S|%\, 24RL,p**] "%
\/ o In ,
62 a? a €
then P* > 1 — . Therefore, recalling that <1, L, >1,p>|S|>1and e <1,
there exists a problem-independent constant ¢o > 0 such that the above stipulation

of n is satisfied if

n > 02 25 2’8‘1

14+T+2  24RL,p
a’e? min{e, 02}

)12\/02 - N*(cp). (2.4.52)

Combining the above with (i) Eq. (2.4.47) and (ii) Eq. (2.4.48) yields the desired
results for part 1 and part 2 of the proposition, respectively. ]
2.4.2.4 Proof of Proposition 2.3.2

For an arbitrary € : 0 < e <1, let us consider the events that

< E} (2.4.53)

4= {|F(x*) _ R (x)| < ;} £y = {]F(fcmin) R < S

Conditioning on the event £4 N Ep, under Assumption A.5, we obtain from (2.4.25)

that, almost surely,
F(x*) — F(x™®) —e — & <F(x*) — F(x™") — €
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:A¢Eﬂ¢§:ﬂfmn—x|P (2.4.54)

€S

Further invoking (2.3.17), which immediately leads to F(x) — F(x™") > 4t |x —
x™in|2 for all x € X', we may continue the above as, almost surely (conditioning on

EaNEp),

F(x*) — F(x™") —e—¢&

9\/|8|\/2||xmm w2 < AVIS] - [[xt — %
1IES

SWERES mmumf [ [Rm x|
IS ) = Flonm) 4 28T [ 2 (o) — o)

<)\\/7¢ F(xmin)) + Ay/]S] - \/g

Solving the inequality for \/ F(x*) — F(x™n), we have, almost surely (conditioning
on & AN E B),

\ 2|$ \/2/\2|S\ +ae +4/\\/* \/E

2

VF(x*) — F(xmin) < (2.4.55)

26
n‘sglisl‘” we know that

2
. o3| 5|2 o3| S|t -2 25102[S[1-20
F(x*) — F(x™n) < A
(x*) (x™) < |4/ Uy + $ Loy +4/ 20, +(E+¢€)

almost surely (conditioning on €4 N Ep).

1 oo L
Notice that if n > o2 (M) '\ o? (w) **\/ 02, then the following three

Uy e Uy e2

. oy . s 46 1-2 468 1-2
inequalities hold: (a) a\ = a#ﬁs‘p < 1; (b) % < 5; and (c) ,/% <:.

Therefore, combined with A =
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Thus,

2

o9 S[1=20 74| S[1-2p 205402[S)1=2
\' 2Uyn2 * Uy n?d * V' 20Uy, +(E+e)

2
< £_|_ &—Fé _%_Fé_‘_ £62+€7<§
—\ 4 16 16 64 4

26 25€2 e &2

<= o
=16 TV e T4 T 25
% 5 1 9 6
(222 14+ - )é=2e4+ =2 2.4.56
(16+8)6+( +5)5 167 5° (2:4.56)

1 L
Hence, if n > 02|S| =" (uge)% + (uiig)%} V ¢?, then (2.4.55) implies that
F(x*) = F(x™") < 3¢ 4 3¢ almost surely (conditioning on €4 N Ep). Therefore, to

achieve the desired result of the proposition, it suffices to show that, if n additionally

satisfies

1
20 1+I'+¢ 24RL,p \™2*
n>0125.281—26. 1 H ca N
s a’e? min{e, 02} Ves
for some universal constant cs > 0, then the event £4 N Ep occurs with probability
at least 1 — a, which can be shown by the same argument as in the proof for
Proposition 2.3.1 as in Section 2.4.2.3 in showing (2.4.52). Further noticing that
we can let ¢3 > 2 to further satisfy that c3N*(c3) > 2” ln > 02 (since a < 1 and

€ < 1), we then have the desired result. g

2.4.2.5 Proof of Theorem 2.3.7

We first want to show that, if A = 5|S|p, then £, \(0) — F,\(x™™) < 2L,R\/|S

m1n|| —

with a lower bounded probability. To this end, we observe that ||0 — X
|x™2|] < R4/|S|. This combined with Lemma 2.4.1 (where we let t = L, s in that

lemma) in Section 2.4.1, we know that

|F,(0) — F,(3™™)] < 2L, R\/|S], (2.4.57)
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with probability at least 1 — 2exp(— M) Furthermore, since F},(0) = F, ,(0)
9L
and F,, \(x™") = F,(X™") + P | Py(2"), we have that

Fn,)\(o) _ Fn)\(f{min) — Fn(O) Amln ZP /\mll’l

< F,(0) — F, (™) < 2L, ,R\/|S (2.4.58)

with a lower bounded probability 1 — 2 exp(— L‘2‘ *).
Then, we may invoke both the De Morgan s Law and the union bound to

combine the above with Part 2 of Proposition 2.3.1, where we let § = 1 and

4
I'=2L, R\/|S|. As a result, there exists a problem-independent constant ¢ > 0

such that, if

n> o |S|* 4p< ) \/ & - N*(cs)
2
1+ 2L, R\IS|+¢  &RLp

- 2104
\ & - a?|S[* - ( o2 In min{e, 01/2}> (2.4.59)

then F(x*) — F(x™") < 2¢ + & with probability lower bounded by 1 — a —
2exp(— M) Recall again that a < 1. Then, inequality (2.4.59) holds with
oL

< a, if p = 3/8 and if n is large enough to satisfy both of the

2 exp(— 7"(;‘;’2;) )

following inequalities

2 2% 2
n>22-In- > L"TL In = (2.4.60)
« ne o @

where the last inequality is due to L, s > 1.

1+2L,,R+¢. &RLyp |\
a’e? min{e, 01/2}

n ‘8‘5/2< )\/CS 0'2’5’5/2 (

\/05 *(c5). (2.4.61)

The above immediately leads to the desired result by observing that é;N*(é5) >
202 . ln if ¢5 > 2. U
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2.4.2.6 Proof of Theorem 2.3.8

Following the same argument as in the proof for Theorem 2.3.7, we have F,, ,(0) <
Foa(X™0) + QLWR\/E with lower-bounded probability 1 —2exp(— nQLU ‘2%3 ). We may
invoke both the De Morgan’s Law and the union bound to combine the above with
Proposition 2.3.2, where we let § = 3, p=1/4 and ' = 2L, ,R\/|S|. As a result,

F(x*)—F(x™") < 3(e+£) with probability lower bounded by 1 —a—2 exp( "L ),

B 20%
for n satisfying
s o [( 1) RNV
n > &l|S|V o (Z/IHE> +<UH€2> \/ &N*(ce)

3

, 1+ 2L, R\IS|+2  &RL ’
- 21 Q3/4 K 6LvL,p
\/ ¢0?|S| ( oy In min{c, o1/} (2.4.62)

Therefore, since a < 1 and L, > 1, if one stipulates both

2 _ 207 2 %
n > 207 ln—>%ln—z>2€xp( U’;’S)S
yS L

and, for some problem-independent ¢g > 0,

1?3 Y\’
<M’H€) + (Z/{’H62>
) 1420, ,R+é  &RLp
21 Q[3/2 18 6Lily,
S| - 1
Vo8| ( a?e? min{e, o1/3}

n 2 660'2|S|3/2

)g \V & N* (),

we know that F(x*) — F(x™") < 3(e + &) with probability lower bounded by
1 — 2a. This immediately leads to the desired result by further noticing that
GeN*(Cs) > 20% -In 2 if ¢g > 2. O

2.4.2.7 Proof of Theorem 2.3.9

Consider again

Eq = {yF(x*) — F,(x")| < ;} and Ep = {\F(&mm> — F,(x™")

€
<sh
-2
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Following the same steps as in the proof for Proposition 2.3.2, it obtains that
0.26

(2.4.55) holds almost surely conditioning on €4 N Ep. When & = 0 and A = [f=5
with p =1 and 6 = 0, (2.4.55) immediately yields:

F * F min F * F smin < |S|1/2 ‘S|1/2
() = PO) = ) — Fam) < (0 [ e
almost surely conditioning on £4 N Ep. Since it is assumed that F' is differentiable
and strongly convex as in (2.3.17) with constant U3, we know that F'(x)— F(x™") >

Un |Ix — xmin||12 for all x € X and that X™* = x™ (hecause we have let € = 0).
2

Therefore,
Ui oo ST ST\
e s s( Sl %h{+e)
0<est ( S[1/2 . KEE +1)2
= Wk, Wk,

: * < * A1’[1111 < ’8‘1/2 |‘9|1/2 1
= mip 2" —mina] < [lx* - %" uH o, \ s, T

almost surely conditioning on £4 N £g, where we have made use of the assumption
that x*, ™ € X C RE. Therefore, if

(S + IS|? + 2y
min ;""" > )

i€S UH

it holds that min;cs 27 > 0 almost surely conditioning on £4 NEp. Further invoking
(2.4.27) with a\ = g < 1, we know that min;es xf > a), and thus Pi(z}) =0
for all i € S and Pj{(2}) > 0 for all i = 1, ..., p due to Properties (iii) and (iv) of
MCP in Section 2.4.1. If we recall (2.4.25) and the fact that 2™ =0 for all i ¢ S,

conditioning on £4 N &g,

. p
Fnfx) = B (&) < 3 BED@E™ = 2) < 3 P

_ Zg Pl(a)am 4+ ; PLa)E™ =0, a.s.
S €S
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The above inequality yields that F/(x*) — F(X™") < ¢ almost surely conditioning
on & A n& B-
Now, to achieve the desired result of the theorem, it suffices to show that, if n

satisfies

14+ L SR 24RL
n2070_2‘5|< + s #p>

a?e?

\/ ¢z - N*(er) (2.4.63)

for some universal constant c; > 0, then the event £4 N Ep occurs with probability
at least 1 — 2. To this end, notice that £ = 0. We may use the same argument as
in the proof for Proposition 2.3.1 in Section 2.4.2.3 in showing (2.4.52) and obtain
that P[E4N&p] > 1 — aif

a? 62

1 F 24RL
n>ér- o282 ( + “p>\/ - N*(&7) (2.4.64)

for some universal constant ¢é; > 0.

Recall the assumption that F,, ,(x*) < F, ,(0) almost surely. Since F,.(0) <
Fo\(x™n) + 2L, SR\/i S| with lower-bounded probability 1 — 2exp(—"2%*) (to see
this, we can repeat the steps in showing (2.4.57) in Subsection 2.4.2. 5), we may
let I' = 2LuysR\/]S>|. It is then easily verifiable from (2.4.64) that there exists
such a problem—independent constant ¢; > 0 such that, if (2.4.63) holds, then
2 exp(—"~ “ S) < « and the desired result holds. g

2.5 Some Discussions on Solution Schemes for RSAA

This section discusses two classes of solution techniques to ensure the desired
SPONC solutions: local schemes (in Subsection 2.5.1) and a global technique (in
Subsection 2.5.2).

2.5.1 Local Optimization for RSAA

The S?ONC is weaker than the second-order KKT condition. Therefore, any algo-
rithm that guarantees the second-order KKT condition can satisfy the stipulations
made by Part 2 of Proposition 2.3.1 and those by Proposition 2.3.2. Furthermore,

among those algorithms, any descent algorithm that guarantees the second-order
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KKT condition can ensure the conditions as in Theorems 2.3.7 to 2.3.9, if initialized
with an all-zero solution.

Algorithms that ensure the second-order KKT condition have been discussed by
much literature. For instance, [10, 19, 63, 92, 93] provide algorithms with different
convergence and complexity results. In particular, one of these algorithms, the
interior point algorithm (IPA) presented by [10], is a descent, and fully polynomial-
time approximation scheme (FPTAS) for a local solution that satisfies the desired
second-order necessary condition, when X’ consists of a set of box constraints. In the
special case where (2.1.6) is a quadratic program, [93] proposes a potential reduction
(PR) algorithm and shows its convergence to a second-order KKT solution.

To facilitate the solution schemes we may reformulate the objective function
into a twice continuously differentiable function. Specifically, according to [49], we

have the following equivalence

1 1
Pi(z) = min —n%— —nz+ A
) = in, 50 = G

for which the optimizer admits a closed form:

. r if0<zx<a\
™ (x) == (2.5.65)
aX if x > al.

Therefore, we have the equivalence between the original regularized problem
minyey F(x) + X7, Py(x;) and an optimization problem with additional dummy

variables:

L 1
xex,n:n(%?e[o,aw Gn(x) i= Fulx) + ; (2(177’2 T o + Ami) (2:5.66)
where 7 is the vector of dummy variables. Notice that Problem (2.5.66) is convex
in 7.

One can show that the second-order KKT condition to the reformulated program
(2.5.66) implies the S*ONC of (2.1.6). To see this, observe that, at a second-order
KKT point (x*, n*) the first-order KKT condition also holds. Due to the convexity
of (2.5.66) in 7, it holds that n* = p™"(z*). Also by the definition of the second-
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order KKT condition, we know that

V2F,(z*) =11
d’ d > 0, for all d in the critical set. (2.5.67)

To check if SSONC is satisfied, we only need to consider the case where
z; € (0, min{1,a\}). According to (2.5.65), it holds that 7 € (0, min{1,a\}).

PFu@) /4
As an immediate result, (2.5.67) implies that the submatrix o /
—1/a 1/a
is positive semi-definite. Invoking Schur complement condition, it obtains that
0 < 2Fa(x*) 1 _ OP[Fa(x)+) 7 | Pa(xi)]
= 2

ox

k3

.= G K where the last identity is immediate
from the definition of Py for z; € (0, rﬁr?{l,a)\}). By its definition, the S*ONC
holds.

The reformulated problem (2.5.66) then satisfies all the assumptions for some
existing FPTASs that guarantee a second-order KKT point, such as the interior

point method by [10].

2.5.2 Global Optimization for RSAA

The global minimizer is a local minimizer, and, thus, also satisfies the SSONC. To
compute this solution, the RSAA formulation can be equivalently formulated as
a mixed integer program. Let Assumption A.3 hold and a\ < 1. This inequality
is not restrictive as a and A\ are user-specified parameters for Py. Then, as per

(2.4.27), one can immediately rewrite the RSAA formulation into the following

min F,(x) + Py(a)) - (1TZ1 + 1Tzz>
st. x> a2y — Mz, x< M- 2y
—X> aX 21 —Mzy;, x> —-M-27¢
x € X; z,29 € {0, 1}7.

where M is a big-M and can be any scaler greater than R + aA in our case and
where Py(a)) = % In particular, if Assumption A.5 holds, F, is convex almost
surely and the above formulation falls into the category of mixed integer convex

programming, which admits numerical solvers to ensure global optimality. [49]
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presents MILP reformulations when F,, is a quadratic but not necessarily convex

function.

2.6 Preliminary Numerical Results

This section presents a preliminary set of numerical experiments following similar

setups with [337 |. Specifically, we consider the following SP problem
min{E[(ex — 3)?] : x € [0, 5]"}, (2.6.68)

where the relationship between g and S is governed by 3 = ox™® 4+ w with
x™n = [3; 1.5; 0; 0; 2; 0,_5). Let the w be a standard normally distributed random
variable; that is w ~ N(0, 1). Also assume that o ~ N,(0,%), which is a p-
variate normally distributed random variable with covariance matrix defined by
Y = (s;;) € RPP and ¢;; = 0.5\, It is easily verifiable that the optimal solution
to the SP problem in (2.6.68) is x™".

We compare the following approaches to solving (2.6.68) in problems with

different choices of sample sizes and dimensions:

SAA: A global minimal solution to SAA in (2.1.3) computed using Mosek.

RSAA-local: An S*0ONC solution to RSAA in (2.1.6) generated by the PR algorithm
as discussed in Section 2.5.1. The PR is initialized with an (approximate)
all-zero solution. Our theories in Section 2.3 have predicted that such a local

solution can approximate (2.6.68) globally.

RSAA-global: A global solution to RSAA in (2.1.6) solved with Mosek through the

reformulation given in Section 2.5.2.

All experiments are conducted in Matlab on a computer with 2.2 GHz Intel
Core i7 processor and 16GB memory. Mosek is invoked via Matlab to generate
solutions for SAA and RSAA-global. For both RSAA-local and RSAA-global, the
parameters for FCP are fixed as A = 0.5 and a = 0.9. We would also like to remark
that, since the PR algorithm requires the starting point to be an interior point, we
approximate the all-zero solution by 10~* - 1 for the PR’s initialization.

For every (n, p) combination, we replicate each solution scheme five times

with independently generated samples for each repetition. We report the average,
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maximal, and minimal suboptimality gaps as measured by F(-) — F(x™") in
Tables 2.2 and 2.5. In Tables 2.2, we fix the number of samples n = 100 and
gradually increase p from 10 to 1500. From this table, we can observe a clear
trend that the solution quality of SAA deteriorates dramatically. In contrast, the
suboptimality gaps are well contained by the proposed RSAA, even if the RSAA
is only solved locally (as shown in the “RSAA-local” column). When p = 1400,
RSAA-global is noticeably better than RSAA-local, as the former has a smaller
maximal suboptimality gap than the latter. Nonetheless, the two different types of
solutions yield almost the same quality in approximating (2.6.68). Note that our
theories in fact provide a sharper performance bound for RSAA-global than RSAA-
local. Therefore, the closely similar numerical performance between RSAA-global
and RSAA-local is an indication that our bounds for RSAA-local may not be tight
enough for at least the special case in the numerical experiments.

Figure 2.1 shows the dependence between the suboptimality gap and p. Particu-
larly, in Figure 2.1.(a), the suboptimality gaps of SAA increase faster than linearly
in p. In contrast, the suboptimality gaps for both RSAA-local and RSAA-global
increase very slowly when p grows, as shown in both Figures 2.1.(a) and 1.(b).

Table 2.2 reports the computational time of the three different approaches.
We notice that SAA is the most efficient among the three. RSAA-local incurs a
noticeable increase in the computational efforts than SAA. Nonetheless, considering
the substantial improvement generated by the RSAA-local in solution quality, we
argue that the additional amount of computational cost is reasonable. RSAA-global
is significantly slower than RSAA-local, even though the two have almost the same
solution quality in our experiments.

Table 2.3 shows the sparsity of the solutions generated by the three different
schemes. We can see from this table that SAA generates dense solutions in all the
test instances, while both RSAA-local and RSAA-global can maintain sparsity in
the output solutions.

We further compare the three approaches in problems that have different sample
sizes n and a fixed number of dimensions p = 100. The comparison is presented in
Table 2.4 and Figure 2.2. By comparison, we see that the solution quality of both
RSAA-local and RSAA-global increase rapidly with the growth of n. Their rates
are significantly faster than SAA.

In summary, our numerical results verify our theoretical predictions that the
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Table 2.2: Comparison in solution quality measured by the suboptimality gaps for
problems with different numbers of dimensions p and a fixed sample size n = 100.

D SAA RSAA-local RSAA-global
Mean Max Min | Mean Max Min | Mean Max Min

10 0.13 0.22 4.79 0.04 0.11 0.00 | 0.04 0.11 0.00
30 0.466 0.617  0.31 0.04 0.06 0.02| 0.04 0.06 0.02
20 1.05 1.25 0.76 0.05  0.09 0.00 | 0.05 0.09 0.00
70 2.42 4.09 1.55 0.03 0.05 0.01| 0.03 0.05 0.01
90 11.8 174 8.91 0.04 0.06 0.02] 0.04 0.06 0.02
200 | 366.56 488.31 279.27 | 0.02 0.06 0.01 | 0.02 0.06 0.01
300 | 1.25e3 1.57e3 1.04e3 | 0.02 0.04 0.00 | 0.02 0.04 0.00
400 | 2.48e3 2.74e3 2.183 | 0.03 0.07 0.01 | 0.03 0.07 0.01
500 | 3.40e3 3.75e3 3.00e3 | 0.03 0.06 0.00 | 0.03 0.06 0.00
600 | 4.89e3 5.18e3 4.35¢3 | 0.02 0.04 0.01| 0.02 0.04 0.01
700 | 6.21e3 6.41e3 5.75e3 | 0.02 0.04 0.00 | 0.02 0.04 0.00
800 | 7.96e3 8.54e3 T7.34e3 | 0.02 0.03 0.01| 0.02 0.03 0.01
900 | 9.92e3 1.06e4 9.44e3 | 0.04 0.10 0.01 | 0.04 0.10 0.01
1000 | 1.17e4 1.31e4 1.04e4 | 0.03 0.08 0.01 | 0.03 0.08 0.01
1100 | 1.32e4 1.43e4 1.19¢4 | 0.03 0.08 0.01 | 0.03 0.08 0.01
1200 | 1.51e4 1.58e4 1.35e¢4 | 0.04 0.09 0.01| 0.04 0.09 0.01
1300 | 1.73e4 1.85e4 1.59e4 | 0.01 0.03 0.00 | 0.01 0.03 0.00
1400 | 1.88¢4 1.97e4 1.81e4 | 0.07 0.15 0.03 | 0.07 0.14 0.03
1500 | 2.18e4 2.34e4 2.10e4 | 0.03 0.08 0.01 | 0.03 0.08 0.01

RSAA is particularly effective when n is much smaller than than p. In such a case,

RSAA may significantly improve solution quality over SAA.

2.7 Conclusion

We propose the RSAA, a modification to the SAA by incorporating a regularization
scheme called the FCP. This modification targets the high-dimensional SP problems
with sparsity. We show that when the solution is sparse or can be approximated by
a sparse solution, the regularization can significantly reduce the required number of
samples in some high-dimensional SP applications: Compared to the conventional
SAA approach that requires the sample size to grow polynomially in the number of
dimensions, the RSAA stipulates number of samples that is only poly-logarithmic

in the dimensionality.
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Figure 2.1: Comparison of suboptimality gaps of solutions generated by SAA, local
optimization of RSAA, and global optimization of RSAA when n = 100 and p
increases from 10 to 1500. “SAA-mean”, “SAA-max”, and “SAA-min” are the
average, maximal, and minimal suboptimality gaps of SAA out of the five repli-
cations, “RSAA-local-mean”, “RSAA-local-max”, and “RSAA-local-min” are the
average, maximal, and minimal suboptimality gaps of RSAA-local, “RSAA-global-
mean”, “RSAA-global-max”, and “RSAA-global-min” are the average, maximal,
and minimal suboptimality gaps of RSAA-global.
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Figure 2.2: Comparison of suboptimality gaps of solutions generated by SAA,
local optimization of RSAA, and global optimization of RSAA when p = 100 and
n increases from 15 to 110. “SAA-mean”, “SAA-max”, and “SAA-min” are the
average, maximal, and minimal suboptimality gaps of SAA out of the five repli-
cations, “RSAA-local-mean”, “RSAA-local-max”, and “RSAA-local-min” are the
average, maximal, and minimal suboptimality gaps of RSAA-local, “RSAA-global-
mean”, “RSAA-global-max”, and “RSAA-global-min” are the average, maximal,
and minimal suboptimality gaps of RSAA-global.
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Table 2.3: The numbers of nonzeros in the solutions generated by SAA, RSAA-local,
and RSAA-global, when n = 100.

D SAA RSAA-local RSAA-global
Mean Max Min | Mean Max Min | Mean Max Min

10 10 10 10 3 3 3 3 3 3
30 30 30 30 3 3 3 3 3 3
50 50 50 50 3 3 3 3 3 3
70 70 70 70 3 3 3 3 3 3
90 90 90 90 3 3 3 3 3 3
200 200 200 200 3 3 3 3 3 3
300 300 300 300 3 3 3 3 3 3
400 400 400 400 3 3 3 3 3 3
500 500 500 500 3 3 3 3 3 3
600 600 600 600 3 3 3 3 3 3
700 700 700 700 3 3 3 3 3 3
800 800 800 800 3 3 3 3 3 3
900 900 900 900 3 3 3 3 3 3
1000 | 1000 1000 1000 3 3 3 3 3 3
1100 | 1100 1100 1100 3 3 3 3 3 3
1200 | 1200 1200 1200 3 3 3 3 3 3
1300 | 1300 1300 1300 3 3 3 3 3 3
1400 | 1400 1400 1400 | 3.8 6 3 3 3 3
1500 | 1500 1500 1500 3 3 3 3 3 3

Table 2.4: Comparison of the average computational time out of the five replications
for problems with different dimensionality p and fixed sample size n = 100.

D SAA RSAA-local RSAA-global || p SAA RSAA-local RSAA-global
(s) (s) (s) (s) (s) (s)
10 | 3.19 1.71 9.77 700 | 3.42 20.92 241.68
30 3.21 4.08 13.22 800 3.38 34.13 1220.89
50 | 3.20 3.86 17.31 900 | 3.42 40.34 1425.75
70 | 3.17 4.46 30.28 1000 | 3.42 34.59 2693.44
90 | 3.13 8.55 27.31 1100 | 3.38 33.50 4014.09
200 | 3.06 19.03 7.21 1200 | 3.66 37.62 3686.88
300 | 3.13 15.82 45.60 1300 | 3.89 39.30 11658.30
400 | 3.35 14.02 157.64 1400 | 3.38 54.65 16927.54
500 | 3.33 19.34 134.08 1500 | 3.37 63.68 13463.53
600 | 3.40 20.92 240.10
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Table 2.5: Comparison in solution quality measured by the suboptimality gaps for
problems with different sample sizes n and a fixed number of dimensions p = 100.

n SAA RSAA-local RSAA-global
Mean Max Min | Mean Max Min | Mean Max Min

15 | 608.79 746.59 470.60 | 3.80 14.39 0.03 | 0.38 1.17 0.03
20 | 536.58 660.87 423.64 | 0.69 225 0.03| 022 0.70 0.03
25 | 540.28 746.75 403.39 | 0.57 1.04 0.23| 0.37 0.85 0.09
30 | 422.14 523.62 331.26 | 0.31 055 0.13| 026 0.35 0.13
35 | 387.38 472,50 265.12 | 0.12 021 0.06 | 0.12 0.21 0.06
40 | 261.00 323.83 17691 | 0.09 0.15 0.01| 0.09 0.15 0.01
45 | 268.50 343.60 141.38 | 0.10 0.31 0.01 | 0.05 0.08 0.01
50 | 149.85 188.51 11281 | 0.08 0.20 0.02 | 0.08 0.20 0.02
55 | 122,59 17212 96.07 | 0.06 0.15 0.01 | 0.06 0.15 0.01
60 | 142.53 159.97 110.20 | 0.03 0.05 0.02] 0.03 0.05 0.02
65 | 122.31 130.33 110.29 | 0.04 0.07 0.01| 0.04 0.07 0.01
70 69.64 92.05 32.02 | 0.05 0.13 0.01| 0.05 0.13 0.01
75 80.03 127.81 45.62 | 0.07 0.11 0.02 | 0.07 0.11 0.02
80 | 42.01 53.67 29.14 | 0.04 0.07 0.02] 0.04 0.07 0.02
85 | 46.52 84.56 31.37 | 0.07 0.16 0.02] 0.07 0.16 0.02
90 2421 36.26 14.04 | 0.03 0.09 0.01| 0.03 0.09 0.01
95 32.96 4893  8.22 0.03 0.07 0.00| 0.03 0.07 0.00
100 | 116.52 201.05 42.98 | 0.02 0.03 0.01| 0.02 0.03 0.01
105 | 17.20 1994 13.04 | 0.03 0.06 0.01| 0.03 0.06 0.01
110 | 10.48 13.88  6.41 0.02 0.06 0.01| 0.02 0.06 0.01

Although the incorporation of FCP renders the RSAA formulation nonconvex,
we argue that any S*0ONC solution achieved by a decent algorithm starting at the
all-zero vector is good enough to ensure the optimization performance of the local
solution. The S*ONC is a necessary condition (for local minimality) weaker than
the second-order KKT condition. Numerical algorithms to ensure the second-order
KKT condition are known from the literature. Furthermore, under some conditions
on the feasible region, the S*ONC solutions admit an FPTAS. We also discuss a
mixed integer convex reformulation to the RSAA formulation that allows for exact,
though exponential-time in the worst case, computation of the global solution. Our

preliminary numerical experiments have verified our theoretical predictions.
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Chapter 3
Fast Algorithm for Non-convex
Optimization

3.1 Introduction

In this chapter we are interested in the problem with the following structure:

min  F(z)
st. Ar =0 (3.1.1)
x>0,

where A € R™*" and F : R} — R is a continuous function on R’ and smooth
on R . In the constrained non-convex optimization literature, one of the major
research directions is the first order methods , such as, the gradient project method
[71], the alternating direction method of multipliers (ADMM) approach [12, 42, 88]
and the first order interior method [10, 34, 39]. They can only ensure the first
order optimal condition and the iteration complexity is O(1/€?). Furthermore, the
first order interior point method can even handle the problem without Lipschitz
derivatives (e.g. [, penalized problem with 0 < ¢ < 1). Beside the first order
methods, the second order methods (e.g., the cubic regularization method and the
second order interior point method) are also discussed in many literature. The cubic
regularization method (e.g. [4, 18, 63]) are designed for the smooth optimization,
which iteration complexity is O(e=%/2), where O(-) means the complexity is O()

complexity up to some log(1/e) terms. The second order interior point method
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[10, 39] also has O(e=3/?) complexity and can also address the non-Lipschitz problem.
However, those second order methods require matrix inversion at each iteration,
which can be very time consuming for large scale optimization. Recently, based on
the power method and accelerated gradient decent, [4, 18] discuss the approximated
the second order algorithms which have the O(¢~7/*) iteration complexity and
don’t require inversing hessian matrix. In [4], the algorithm is based on the cubic
regularization method for the unconstrained problem. They leverage the accelerated
gradient descent (AGD) for matrix inversion and Lanczos method to solve the
sub-problem efficiently. The method in [18] contains two parts: first use the Lanczos
method to approximate the negative curvature direction and then use the AGD to
refine the direction. Those literature give us an idea that the approximated second
order method can be even faster than vanilla first order methods (e.g. gradient
descent). But they can only be applied to the unconstrained, smooth problem with
Lipschitz hessian matrix. Even the simple [1 penalized regression fails to satisfy
the above requirements.

One natural direction to address non-smoothness and/or non-Lipschitz hessian
matrix limitations is to add extra linear constraints, and directly handle the
constrained problem. However, the linear constraints may introduce extra difficulty
on algorithm design and analysis. The analysis of [4, 18] depends on the good
convergence rate of AGD. If we directly immigrate their methods to the constrained
case, the original good complexity result of AGD fails and we may not have 0(6_7/ 4
result. In order to utilize the good complexity of AGD, we need to use special
techniques to “unconstrain' the constrained problem. Here we borrow the spirit of
the interior point method to conduct such unconstraining job.

Our contributions are as follows:

1. We construct an accelerated interior point gradient method (AIP-GM) for
linear constrained non-convex programming optimization. The complexity
is bounded by O(e~7/*), which will lead to an e-KKT solution or an e-global
minimizer with high probability. Our complexity result is better than the
classic first order method O(e7?) (e.g.[42]).

2. Our method can also guarantee the second order necessary condition at the
limit point. When algorithm terminates, the reduced Hessian H,cgyce Will
satisfy Hyequee = O(—+/€l). Furthermore, when the objective function has
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the strictly saddle property[36], the second order necessary condition can

further ensure that we reach an approximated local minimizer.

3. Our method can handle the Non-Lipschitz objective function (e.g. [, mini-
mization problem with 0 < ¢ < 1). We only require weaker conditions than

classic Lipschitz gradient and Lipschitz hessian.

4. Our method only needs the gradient calculation and matrix-vector mul-
tiplication. Thus our method is Hessian-free and suitable for large scale

optimization.

The rest of this chapter is structured as follows. Section 3.2 introduces the
preliminaries and the main theorem. In section 3.3, we present and explain the
sub-routines to replace the matrix inversion in the traditional second order interior

point method. The detail of proof will be found in section 3.4.

3.2 Preliminaries and Main theorem

We use || - || to denote the Euclidean norm of a vector and the spectral norm of a
matrix. |||« denotes the element of a vector which has the largest absolute value.
For a symmetric matrix A, we denote A\yax(A) and Apin(A) as the maximum and
minimum eigenvalue of A respectively. We denote A > B as A — B is positive

semidefinite. We also introduce the following definitions.

Definition 3.2.1. A function f : R" — R is Li-scaled Lipschitz if || XV f(z +
Xdy) = XV f(x+Xds)|| < Li|dy —dal| for all dy,dy such that x+ Xd; and x+ X ds
are in the strictly interior of the feasible region. ||di|| < 7, ||d2|| < 7 for some r < 1.
X = diag(z).

Definition 3.2.2. A function f : R™ — R is Ls-scaled Lipschitz Hessian if
| X (V2f(x+Xd)—V2f(x+Xdo))X|| < Lo||dy —ds]| for all dy, dy such that x+ Xd,
and x + Xdy are in the strictly interior of the feasible region. ||di|| < r,||daf < r
for somer < 1. X = diag(z).

The Definition 3.2.1 and 3.2.2 is a scaled version of the traditional definitions
for smoothness. It generalizes the traditional definition of Lipschitz and Lipschitz
Hessian. Denote G(d) = F(x + Xd) = VG(d) = XVF(z + Xd), V*G(d) =
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XV2F(x + Xd)X. If F(z) is [;-Lipschitz and/or ly-Lipschitz hessian, G(d) will
also be ;]| X ||eo-Lipschitz and/or I5||X||% -Lipschitz hessian. If we further assume
Xl < R, we can conclude that [;-Lipschitz and/or lo-Lipschitz hessian implies
Rli-scaled Lipschitz and/or R?l,- scaled Lipschitz hessian. Some non-Lipschitz
functions can still be scaled-Lipschitz. For example, let F'(z) =27, 0 <x < R, 0 <
q<1= VF(z)=qz? " and we will have F(z) is not Lipschitz when z is close to
0. XVF(z+ Xd) = zq(z+zd)"™ ' = qz?(1+e)7 ! = | XVF(z+ Xd,) — XVF(x +
Xdo)|| = qz?||(1 4+ d)T™! = (1 +d2)?7 Y| < q2[(q — 1)(1 + d)**(dy — da)|| <
qlg — D)RY(1 — r)72||d; — da|. Tt leads that F(x) is a q(¢ — 1)RY(1 — r)?2-
scaled Lipchitz function. As we will take the non-Lipschitz objective function into
consideration, throughout this project we will only assume scaled Lipschitz and

scaled Lipschitz hessian hold without further mentioned.

Assumption A. The feasible region of (3.1.1) is bounded, non-empty and has
strictly interior. Furthermore, we assume there is a 0 < R < 400 such that ||z||e <
R for all feasible point. The objective function F(x) in (3.1.1) is Li-scaled Lipschitz

and Lo-scaled Lipschitz Hessian.

Definition 3.2.3. A function f : R" — R is py-strongly convex if 5t ||z — y|| <
fly) = f(@) = V(@) (y —2) for all z,y.

The Definition 3.2.3 are standard in the literature to characterize the convex

level of the function.

Definition 3.2.4. Given € > 0, x € R" is an ¢,-KKT point for (3.1.1) if there
exists A € R™ such that:

1. Az =b,2 >0

2. Vf(x)+ ATA > —e

8. | X(Vf(x)+ATN)|| < e, X = diag(x)
Definition 3.2.5. Given e1,e5 > 0, we say x € R™ satisfies €s, €o-KKT2 condition
if:

1. x is a e KKT point.

2. dV(XV2f(2)X + exl)d > 0 for all d such that AXd = 0.
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The Definition 3.2.4 and 3.2.5 describe the first and second order optimality
condition that we will use in this project. Notice that they are not the same as
the traditional e-KKT point’s definition. The reason why we need them is that the
classic definition of e-KKT point may not suitable to handle the objective function
with the non-Lipschitz gradient. The new definitions work the non-Lipschitz
gradient case and are also sufficient to imply the classic e-KKT point’s definitions
when the objective function is Lipschitz. Reader can refer the Definition 2 and
Proposition 2 in [39] for more details.

When measuring the complexity of the total running time, we may need to count
the computation costs for many different type s of operations, such as evaluation of
the V f(z) and matrix vector multiplication. To simplify our analysis, we make the

following assumption:

Assumption B. 1. The following operations’ computation costs are bounded

(a) evaluate V f(x) at any x.
(b) evaluate V2 f(x)v at any x and v

(¢) up to n x n matriz and n dimension vector multiplication.

2. The vector vector multiplication up to n dimension takes up to O(Ty) compu-

tation cost.

3. Other vector vector operations (addition and subtraction) take O(0) computa-

tion cost.

Assumption B is a mild assumption. For L,- scaled Lipschitz hessian f(x),
(b) can be approximated evaluated with Hessian-free technique, which costs 2
gradient evolutions and 4 vector-vector multiplications. Thus the total cost of (b)
is bounded by O(21; + 473). And as vector-vector multiplication is a special case
of matrix-vector multiplication, O(27} + 475) < O(6T1) = O(T}). The details of
Hessian-free technique will be discussed later. Since the computation cost for vector
multiplication usually dominates the vector addition and subtraction’s cost, here

we won’t count the addition and subtraction’s computation cost.
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3.2.1 Technique Lemmas

With the basic definition and assumptions in place, we now introduce the conver-
gence results for two accelerated methods, Nestervo’ accelerated gradient descent
method [62] for strongly convex function and Lanczos method [46] for the approxi-

mated minimum eigenvector.

Lemma 3.2.6. Let f : R* — R be u > 0-strongly convex function and L -
Lipschitz. Let Ay = f(xo) — f(z*), where z* is the optimal solution. For any

412N
k>1+ %log(iﬁe Ly:

floe) = f(z7) < 3L,

It tells that in order to achieve an €/2L;i-approximated minimizer, the iteration
dependence on p and € are k = O(\/g log(i)). Compared the non-accelerated
gradient decent method (e.g [13]) for p-strongly convex function (k = O(i log( i))),
the accelerated gradient decent (AGD) has better dependence p. Next show the

classic result of Lanczos method

Lemma 3.2.7. Let H € R™" by a symmetric and H > 0. Lanczos method will
return unit vectorv in k = O(\/glog(%)) step, such that

VT Hv > Apax (H) (1 — €)

With probability 1 — §. Where Anax(H) denotes the leading enginvalue of H.

The above Lemma shows that Lanczos method is efficient on approximated
the leading (maximum) eigenvector. Supposing we know that the maximum
eigenvalue is upper bounded by some L; > 0, it is easy to verify that L] — H >
(L1 — Amax(H))I = 0 for any H. The leading eigenvalue for LI — H is L1 — A\yin(H),
where A\yin(H) is the minimum eigenvalue of H. Thus if we apply Lanczos for
LI — H, we will be able to find a v such that vT (LI — H)v > (L1 — Amin) (1 — €).
Rearrange and we will have vI Hv < Lie + A\uin(H)(1 — ¢€). Hence v is an Lye-
approximated minimum eigenvector of H. We may also use the Lanczos method to

approximate the minimum eigenvector. We summarize it in the following corollary.

Corollary 3.2.8. Let H € R™" by a symmetric and LI = H = —Li1. Applying
Lanczos method to LI — H will return unit vectorv in k = O(,/2 log(%)) step,
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such that
VT Ho < Auin(H) + €

With probability 1 — 6. Where Apin(H) denotes the minimum eigenvalue of H.

We substitute the € in Lemma 3.2.7 by €/(2L;). As we apply the Lanczos
method to L] — H, vTHv < Li€e/(2L1) 4+ Amin(H)(1 — €/(2L1)) < Auin(H) +
L=gan e < N (H) +e.

3.2.2 Main Results

The main theorem is shown as follows. Our method can be described in two levels.
The upper level (Algorithm 1) construct the subproblem of second order interior
point method and lower level (Algorithm 2) solve it approximately. We first show

our result on the upper-level algorithm.

Theorem 3.2.9. Suppose Assumption A holds. Let Fy be a lower bound on
the optimal objective function value, xq is an approrimated analytic center x. of
the feasible region and 37 log(x)) — i, log(xf) < 8(F(2°) — Fy). Set ny,ms =

1 _ Ly _ 0y _ 2 / / _
60./p’ 2 1— 369\/EL§(2+Amax)’ Amax - 2<F($ ) FO)Ll/E_'_LQ L1/6+ 6/Lla p=
24+ =

+L271,1}, B = min{% 1/p%} and Ly > 1/2. Then at least one of the
2

max{ - 5

following events will happen:
1. Algorithm 1 will generate a point satisfies €, /e—KKT2 condition

2. Algorithm 1 will generate a e-minimizer, i.e. F(z') — F(z*) <€, where z* is

a global minimizer

before
3/2
8Ly(F(z0) — Fy) (2+ 2)

€3/2

t=0

Furthermore, if the objective function is strictly saddle and Ax = b absence, at least
one of the following events will happens:

1. Algorithm 1 will generate a e-approximated local minimizer.

2. Algorithm 1 will generate a e- approrimated global minimizer
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Algorithm 1 Approximated second order interior
Input f(z); A, b; 2°, Fy, 6, pand n; i = 1,2, 3
Let 6(z) = p(F(z) — Fy) + X1y log(x:), where p > 0

For t = 1,2,... until convergence

Use lanczos method to get an 7; /2-minimum eigenvalue a of X V2¢(x!~1) X
Set fimin = @
Set fimax = 2700 + L3+ L
d = fast_trust_region(¢, A, 271, B, tmin, fmax, i, ¢ = 1,2, 3)
't =2t 4+ Xd
EndFor

Return zt.

Theorem 3.2.9 implies that with the sub-routine fast_ trust_region instead of
exact solution, the second order interior point will also converge within O(e=3/?)
iterations. And in the following theorem, we will show that this sub-routine is very

cheap:

Theorem 3.2.10. Suppose settings in Theorem 3.2.9 hold. The computation
cost of Algorithms 2 is upper bounded by:

. 2
(@] <n2T2 + log (,umax,umln> max {1 / L log (Ll) , 2 log (nz) } Tl)
m m mmne 3 4

(3.2.2)

And its dependence on € is O(z log(1/€)?).
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Algorithm 2 fast_trust_region

Input ¢(x); A; Z, 5, fimax, fmins 0, € and 1;, ¢ =1,2,3
Generate N which contains the orthonormal basis spanning the null space of AX,
where X = diag(Z) and set ftmino = fmin-
While fimax — fimin = M
If 1o > 31+ fmingo
Let pt = £ (ftmax + Hmin)

Solve d from min fd(NXV?¢(2)XN + pl)d + V()X Nd via AGD

1
2
with tolerance ny
Else
Use lanczos method to get an ns-minimum eigenvector v of NXV?¢(2)X N
with probability 1 — ¢
Set d = — x v * sign(v' Vé(Z) X N)
EndIf
If |d] < 6
Hmax = M
Else
Hmin = H
EndIf
EndWhile

Return d = Nd

Combining the results in Theorem 3.2.9 and Theorem 3.2.10 together, we

are ready to show our main results:

Theorem 3.2.11. Suppose Assumption A and B and settings in Theorem
3.2.9 hold. The total computation cost for Algorithm 1 is upper bounded by:

O <L2(F(€$30/)2 ) (n2T2 n \/Zlog (Ama)\(/g L1>
3/2 242
max {log (L1€L22 ) ,log <n(5;f> }) T1> (3.2.3)

Where Apax and t is same as in Theorem 2.4.
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If we ignored the logarithm part, the complezity is bounded by

~ LQ\/L_l(F(Q?O) - F()) le 1
© ( €3/2 <\/L_1T2 * 61/4T1>>

For the problem only with non-negative constraints, box constraints or low rank

(3.2.4)

constraints, the complexity bound can be further improved to:

O (LZ\/L_l(I;(/fO) — o) ( ! Tl)) ~0 (LZ\/L_l(i(ZO) - FO)T1> (3.2.5)

el/4

3.3 Interpretation on AIP-GM

Here we consider the problem (3.1.1). Per Assumption A, we can build an local

upper bound for F'(z) at some feasible point x:
Lo o2 — Loy ois
F(x+ Xd) < F(x)+ VF(2)Xd+ §d XV*F(z7)Xd+ EHdHQ (3.3.6)
Where ||d|| < r and X = diag(z). It can also be expressed by:
L or 2 - Ly 3
F(z+ Xd)— F(z) < VF(x)Xd+ id XV F(z7)Xd+ EHalH2 (3.3.7)
An direct way is to minimize the right hand side iteratively:

1 L

min  VF(2)Xd + 5d" XV*F(2)Xd + Egndug

st. AXd=0 (3.3.8)
ld|| <

It means that we need to optimization a cubic function over some convex set.
In general, it is hard to solve globally. Even if the problem has a special structure
and can ensure the global minimizer, we still may not guarantee iteratively solving
(3.3.8) will generate a sequence that converges to the desired solution. Instead of
solving (3.3.8), in the remaining part of this section, we will show that a properly
designed second order interior can overcome those issues.

To utilized the interior point method, the first step is to relax the non-negative
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constraints and build the potential function ¢(z):

x) = p(F () — ) — 3 loa) (33.9)

Where p > 0 and Fj is a lower bound of optimal objective function value for (3.1.1).

Denote A¢(z) as ¢(z) — ¢(z) and we will have:

Ap(x) = ¢(x + Xd) — ¢(x)

—MF@+X@—FM—§;%uHﬂwn—@@mﬂ—ﬂﬂ—ﬁn%um

0}

= plF(e+ Xd) - +Zlog ($Z+xd)

For the term @, we will have:
1
O = p(Fz+ Xd) — F(z)) < p <F(x) +VF(@)Xd+ Sd XV () Xd + —HdH?’
1 L
—p (VF(x)Xd + S XV ()Xd + 2P )

For the term @, if ||d|| < 5 < 1, X = diag(z), then via Lemma 1 in [91]:

52
Q= 1 < —eld4+ -
Z o8l ) S~ 5
Where e is the one vector. Therefore we will have:
1 _ 1 pLo : 52
A < F(2)Xd+ =d"XV?*F(z7)Xd — —e'd | + == ||d||> + ———
o10) < o (VFX 0+ G XT P Xa - L) + Pl + 5
(3.3.10)

To achieve a reduction for potential function ¢(x), we minimize a quadratic function

subject to an ellipsoid constraint.

1 1
min ¢(d) = (VF(x)X — €T> d+ ideVZF(:v)Xd
p

st. AXd=0 (3.3.11)
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la])* < 6

If we denote N as the matrix contains the orthonormal basis span the null space of

AX, the above problem will reduce to:

min ;UT(NXVQ f(@)XN)v+ Vf(r)XNv

st ||| <p (3.3.12)

We will use the Algorithm 2 to search for a proper approximated solution to
(3.3.12). Algorithm 2 contains two stages : binary search the dual variable p and

approximate v. At the optimal solution pair p* and v* of (3.3.12), we will have

(NXVF(@)XN + @ 1"+ V(#)XN =0 (3.3.13)
(NXVF@XN+ 1) =0, 1" > {0, ~Aan(NXVF(@)XN + p* 1)} (3.3.14)

As (NXVf(z)XN + p*I) = 0, we can say that v* is the optimal solution to the

following convex problem:
min ;UT(NXVf(i)XNJru*])v+Vf(i*)XNv (3.3.15)
Supposing that we have an approximated i, v will satisfy:
v° = arg min ;vT(NXV f(@)XN + pl)v+ Vf(#)XNv (3.3.16)

Since (3.4.30) allow a close form solution v = —(NXV f(Z)XN +il) 'V f(Z)XN.
It is not hard to show that 1I(ji) = ||v°||? is monotonic decreasing in p. As ll(u*) =
B2, 1(jn) < B% for i > p*. Therefore by binary search on p, we will eventually
come to an fi such that max{u*, n — Anin(NTXV2f(2)NX)} < p < p* + 1 from
AGD step in Algorithm 2. It ensures that the AGD will only work on at least
m-strongly convex function. When u* is very close to —Apin(NTXV2f(2)NX)
(the hard case in trust region problem), we will switch to the lanczos method,
which is not depends on the degree of convexity. With proper accurate levels, the
approximated scheme Algorithm 2 will also work as good as we exactly solve the

sub-problem and we summarize it in the following lemma.

Lemma 3.3.1. Suppose u* corresponding to optimal solution v* of (3.3.12). If

67



we set ny,m3 = = % If sp||v*||* > —A—, Algorithm 2

1

605’ "2 = 36071202 5v/p7L2’

will return a d = Nv* such that q(d) < -5 53L2, Otherwise, d will lead to an
poLa

approximated KKT2 solution in the next step.

This lemma tells us that with a suitable accuracy the approximated solution
5
124/ p3 L2
an approximated KKT2 point. The total number that we call Algorithm 2 will

from Algorithm 2 will remain sufficient descent by amount before reaching
be O(p*/?). The outer loop of Algorithm 2 is a binary search with fixed upper
and lower bounds. Therefore the iteration of is O(1). For inner loop, we will
either use AGD or Lanczos method. For AGD case, the problem we consider will
always be at least O(p~'/?)—strongly convex and the complexity would be O(p'/%)
due to Lemma 3.2.6. For the Lanczos case, as 73 = O(p~'/?), via Corollary
3.2.8 the complexity will be O(p*/*1og(1/6%)) with probability 1 — 6. If we merge
them up and choose § = O(dy/p*/?), we will have the total complexity would be
O(p*? -1 - (pM* + p/*1og(1/6%))) = O(p™/*) with probability 1 — O(dy). From
Theorem 3.2.9, we have p = ma}({%7 1.1}. Hence the total complexity for
Algorithm 1 would be O(e~7/4).

3.4 Technical Proofs

3.4.1 Hessian Free Technique

Our method can be implemented hessian-free. In both AGD and Lanczos method we
only require gradient calculation and the matrix vector multiplying, i.e. NXV?F(x)XN
multiplying some vector d. As we do not require F' to be Lo-Lipschitz hessian but
only Ls-scaled Lipschitz hessian. The hessian free techniques introduced in [4, 18]
can’t not be directly applied.

As we have Ls-scaled Lipschitz hessian:

1
(3.4.17)

We want to approximate N7 XV?F(#)X Nd by only evaluating the VF(x). Set
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r=1,dy=0,d; =hdin (3.4.17) with 0 < h < 1

h2
IVF(@ +hXd)X = VE@)X ~ XV?F()Xhdi | < = Lolld |

|IVF(Z 4+ hXd)X — VF(E)X — XV2F(2)Xhd,|| _ h )
N < §L2Hd1\|

Thus we could approximated N” XV?F(#)X Nd in three step:

1. pp =Nd
2. po = VF(ﬂthl}zX*VF(@X, which small enough h.
3. ps=N'p,

(3.4.18)

As when h is small enough, we will have p, close enough to X V2F(z)X Nd and

finally ps will well approximate N” XV2F ()X Nd. In this procedure, we do not

need to compute and store the hessian direct, which can significantly reduce the time

and space cost. It make our method be able to handle the large scale optimization

problem.

3.4.2 Proof of Theorem 3.2.9

Proof. To achieve a reduction for potential function ¢(x), we minimize a quadratic

function subject to linear and ellipsoid constraints.

1 1
min  ¢(d) = (VF(x)X - peT> d + 5alTXV‘ZF(x)Xd

st. AXd=0
1d||I” < B°

Let

1
Q=XV*F(2)X, ¢=VF(@@ )X —-~-¢ and A=AX,d= Xd
P

Then the above problem becomes:

1 L
min  gg(d) = iciTQd—f— cd
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st. Ad=0 (3.4.21)
Id|l3 < 5

The optimal condition is:

(Q+pld+c+ A"\ =0, p>max{0, —eig,;, (H)} (3.4.22)
ldl: <8, Ad=0, p(lld]z—B)=0

H = NTQN,g= NTc, where N is an orthonormal basis spanning the null space

of A. We can further reduce the above problem to:

1
min gy (v) = §UHU +g'v

st vz < B° (3.4.23)
The sufficient and necessary conditions are

(H+pl)v=—g, p(llv] —=B)=0, p>max{0, —eigy,(H)},[lv] <8
(3.4.24)

Based on the optimality condition, we will be able to build an upper bound on the

objective function and summarized as follows:

Lemma 3.4.1. (3.4.22) and (3.4.24) share the same optimal dual variable p*,
which is associated with ||d|| < B and ||v|| < 5. Let d* and v* be the optimal
solution to (3.4.22) and (3.4.24). Then we will have:

() = ao(d") = (&) Qd" + " = qH (")

1 * * * :u* Tx /U“* *
= 5(1} VYT Ho* + gTo* < —?Hd I? = —?Hv & (3.4.25)

Furthermore, for any feasible v, we will have qQ(J) =qu(v) if d = Nv.

From above Lemma, we know that it is equivalent to solve (3.4.22) and (3.4.22)
and the optimal objective is upper bounded to be non-positive. When this upper

bound is small enough, we will able to make sure that A¢(x) is also negative. Plug
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d*||* back to (3.3.10):

Hd)TQd* + Td*le — &

Py g2 pPLa s B
A < —= [ —
© P e pL2f B2
< —Z|d
2 Bl (25 4 5
Py a2 pLo 1 2
= —= 4.2
g+ (2526 + 5t ) 9 (3.4.20
@ is because ||d|| < . Here we pick
11 1
= 1 _ _ 1
Put 3 back into (3.4.26) and we will have
s pos Lf+1
2o(a) & =Bl + (2250 2

P32 Ve+1Y 1
—_ —— d —_—
S

S (P T
=P s

@isfromﬁg%:ﬁg%and@canbegetfromp>1:\/ﬁ§p:

(vp+1)/6p <1/3,/p. If we want the A¢(x) is sufficient decent, we may impose
the condition that

1, - 2
“\\dll5p > 3.4.27
2” HQ:M = 3\/[7511% ( )

That is:

1, - 1 1 1
ole) <o (=310Pn+ 3z ) < 03z = —5
11412 2 . 1 .
If we have 3||d||zp > T for all step, then we will come to a ENIE approximated

global minimizer. The next step is to show that if we pick p to be large enough,
we will have the z is a €, eo-KKT2 solution when the A¢(x) fails to be sufficient

decent.
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Lemma 3.4.2. Set p = %7 B = min %, \/1?} If Ly > 2, we will reach a
pLa

€\ ami7E, KKT2 solution when 3||d||3p > ,013L§ fails.

The above Lemma shows that by carefully choosing p, we can ensure that the
when algorithm fail to find a sufficient decent, we will already reach an approximated
KKT?2 point.

The next step is to show the iteration complexity. As during the procedure,

we always have Ag(x) < . It will lead to two facts. First, ¢(x!) is upper

53
bounded by ¢(0); Second at each iteration ¢(z) will sufficiently decrease by ﬁ
if we have exact solution to the trust region sub-problem.

Here supposing we can not solve the trust region sub-problem exactly but only
can derive an approximated solution. We need to figure out suitable accuracy for
the approximated solution to make sure Algorithm 1 converge to the correct

solution. To achieve this goal, two things need to happen:

1. If %M*HJ*H% < ; 23L2, we must be able to ensure the next step converge to
p

2
an approximated KKT2 point.
Lo 7412 > 2
2 16 Lt 2 A

solution will also lead to a sufficient decent, i.e. Ap(z*) = O(%)

we must be able to show that the approximated

Where p* and d* is the optimal solution to (3.4.21). Per Lemma 3.4.2, we

know that if 1p[|d*[|3 < \//%Lg, we will terminate with an approximated KKT2

point. Therefore the approximated solution must satisfy qo(d) < qo(d*)+ ; \/1—3L2 =
priy

N< 2 7 ; : 1% %2 2
go(d) < /T Here d is the approximated solution. If 5p*(|d*[|3 > N and

the approximated solution satisfies:

1o - = 5
= “dHd+gd < —————

1 1
= Ag(zF) < <
A= (QH(”) ' :WL%) ~12ypL

. . . < _ 5 .
If we can solve for an approximated solution with go(d) < W/ I we will also

have sufficient descent of Ag(z*1) = O(#).

In summary, for case 1, we will focus on solving for an approximated solution

: 7 7 1 1117 2 :
with go(d) — qo(d*) < T Lhld|? < 3\/FL%.]?or case 2, we require gy (v) <
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-5 5p3L% and we will be able to be able to remain sufficient decent before reaching
an approximated KKT2 solution.

In Algorithm 2, we approximately solve the trust region sub-problem (3.3.12)
via a two stage framework: binary search the dual variable p and approximate d.
Let first consider the scenario that we can have exact solution d® for a given .

At the optimal solution pair p* and v*, we will have
(NTXV (@) XN+ p* D" + VF(E)XN =0 (3.4.28)

As (NXVf(z)XN + p*I) = 0, we can say that v* is the optimal solution to the

following convex problem:
min ;UT(NTXV F(@)XN + p v+ Vf(#)XNv (3.4.29)
For a given fi, v¢ will satisfy:
v = arg min ; T(NTXVf(Z)XN + il)v + Vf(Z) X Nov (3.4.30)

Since (3.4.30) allow a close form solution v* = —(NXV f(Z) XN+ il) "'V f(Z) XN
It is not hard to show that lI(1) = [|V¢||? is monotonic decreasing in u. As
U(p*) = B2, (i) < B% if @ > p*. Therefore by binary search on u, we will
eventually come to an fi such that min{u*,n;} < p < p* +n; from Algorithm 2.
If we switch to the lanczos method branch in Algorithm 2, we denote d° = d.

We characterize necessary searching accuracy on g in the following Lemma.

Lemma 3.4.3. Suppose for a given p in algorithm 2 and we can solve d from

AGD step with infinite precision:
IO
1. [max S 2(F( ) FO)L LQ\/i + / Mmm >

2. If pw* < 6\[, we will have an approzimated KKT2 solution with i =

1
6"

3. If pt > g5 and it < i — pt < g, we will have g (v°) < _2\/%2 or

sufficiently determine an approzimated KKT2 solution.

From Lemma 3.4.3, we show that the smallest i we need to consider is ;== f’
And we can set the minimum difference between iy and g, being W to make

sure i — p* < It is because that iy, < p* and fi = ppax. Therefore we could

\f
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set m1,n3 = = and 1, = 0 in Algorithm 2 to reach the results in Lemma 3.4.3.

60./p
However, we only want to find an approximated solution v to (3.4.30) instead of

exactly solving it. Incorporating with the statements in Lemma 3.2.6, we will

have at each iteration of Algorithm 1, we will either find a feasible direction which
5

12¢/p3L2

KKT?2 point in the next step. It is equivalent to claim that the difference potential

will lead to objective function decreasing by or declare an approximated

function will decrease at least by

t 1 !
Ag(a') < p <Q(d) + m) = T2yl

before converging to an approximated KKT2 point. As we will require to initialize

with an approximated analytic center, which is the maximizer of:

p
max Y _log(z;)
i=1

st. Ar=b (3.4.31)
z >0

An approximated analytic center leads to a feasible solution such that -7, log(zo) >

P log(zf) — €. If we initial with such approximated analytic center, we will

have:
p p
> log(z) <> log(xy) + € (3.4.32)
i=1 i=1
From the definition for ¢(x), we will have:
p
$(x) > p(F(a") — Fo) — > _log(a7) — €0 1= fioor (3.4.33)
i—1

Therefore the number of iteration would be bounded by:

. [gb(O) — ¢fzoor‘

N
12,/pL2

4



_ [ (o) = Fo) = £ log(at) — (p(F(a") ~ 1) ~ £, 1og<x:>>‘
2L,
p(F (o) — F(a)) — p(0-, log(a?) — S0, 1og<x;f>>‘

1
12./pLs

Since we assume Y_7_; log(2)) — Y0_ log(x})) < 3 (F(a*) — Fy):

)

| pF () = F(a*) = p(S2y log(a?) lelog(x;*))‘

IN
w

= [822y/7 0 - P

As we set p = max{%, 1.1}, for small enough €, we will have:

t < {SLQ\/E(F(O) — F(x*))J

_ | 8L (F(0) = F(a*)) 2+ 2/L2)3/2‘

3/2

8Ly (F(0) — F(a")) (2 +2/Ly)*?
=0 3/2
€
If the objective function is strictly saddle and Az = b is absent, an approximated
second order necessary solution will also be an approximated local minimizer [36].

The last two statements in Theorem 3.2.9 follow. ]

3.4.3 Proof of Theorem 3.2.10

Proof. From Algorithm 2, we know that the outer loop is a binary search with

upper bound pimax and lower bound piyi,. Thus it will terminate in log(W)

iterations. In each iteration, we will either meet a AGD step or Lanczos step.
For AGD step, we will always have pt > pimino + 3171/2. Since we set fimino >

~Amin(NTV2F (2)N)—n1 /2, pn will always greater than Ayin(NT XV2F(2) X N)+n;.

)



From the optimality condition (15):

(NXV2F(Z)XN + pul) = (NXV?F(Z) XN + (= Ain(NXV2F(2) X N) + ) 1) = m 1
(3.4.34)

Therefore for AGD step, we will always work on an at least n;— strongly
convex function. Via the Lemma 3.2.6, the complexity for a single AGD step
will be O( \/LT log (£ ) If we face the Lanczos step, the complexity will be

\/T log(%z)) via bf Corollary 2.3. Combine those observations, we will have for
the loop part, the total number of iteration would be upper bounded by:

Hmax — Hmin Ll 2Ll (nQ > )
Ollo a —log | — 3.4.35
( & ( ) o X{ M (771772> 13 s 2 } ( )

Before the beginning of the loop, we will need to calculate N matrix, which contains

the orthonormal basis spanning AX and it can be done by QR factorization on
AX, which requires O(n?) times matrix vector multiplication. In cooperate with

Assumption B, we will have the total computation cost for Algorithm 2 will

be:
max — Mmin L L 2L 2
(@) <n2Tg + log <H> max{ = log <1> A ! log <n2> T1}>
Ui T mmn2 13 0

(3.4.36)

From Algorithm 1, we know that jip., is upper bounded by O(e™') and gy
is lower bounded by 0 globally. 7;, 75 is on the order of O(p~'/?) = O(¢'/?) and
n2 = O(%/?). Plug them into (3.4.36) we will have the computation cost is bounded

by
[T Ao — L L L2? n2?
0] (n2T2 + 716 log <\/El> max {log ( 16 2 ) , log <62> Ty

Its dependence on € is O(e~/4log(1/¢)?). O
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3.4.4 Proof of Theorem 3.2.11

Proof. Follow the last statement in Theorem 3.2.10, we will have the computation

cost for Algorithm 2 is bounded by:

[T Apas — L L L3? 242
@) (n2T2 + 716 log <\/El> max {log ( 1622 ) ,log <n§2> } Tl)

(3.4.38)

Combine the iteration upper bound in Theorem 3.2.9, (4) and (5) follow im-
mediately. To show (6), we will need to introduce special techniques for find N
when A has special structure. Without exploring the special structure of AX, the
computation cost of projecting a vector on to the AXd = 0 is almost the same as
OR factorization on AX. For general AX case, our method could be as efficient as
than any algorithm involving the step-wise projection on to AXd = 0. When AX
has special structure (e.g. low-rank, box constraints), the projection operation can
work very efficiently and can reach O(nT3). In this scenario, we design the special
procedure to derive N which computation cost is also O(nT3). We summarize them

in the following Lemma.

Lemma 3.4.4. 1. If we only have box constraints, i.e. A= (I I), N has closed

form solution

_xn/2+1/\/$i/2+1 + 33%
—Znjay2/\/Tnjas2/? + T3

N— —xn/,/xi—f—xiﬂ
:L‘l/,/xfl/%l + 22
To/\)Tnjasa/? + 23

Tnya/ )22 +xfl/2

2. If A is row independent, rank(A) = s < n and A is element-wise non-zero.

7




There exist a upper s bands matrix M such that

miq O 0
' 0
Mms1 Mess 0 0
M =
0 0
0
0 e 0 Mpn—2s -+ Mpp-2

M contains the basis span the null space of A. N can be calculated in
O(2snTy) ~ O(sTy) with M.

Based on the above Lemma, we can see that if A has some special structures,
we do not need to reply on RQ factorization to find N but can only require O(nT5)
computation cost, which almost match the cost like special case in projection
operation. We can replace the computation cost for N in Theorem 3.2.10
(O(n?Ty)) by O(T}) and the (6) follows.

]
3.4.5 Proof of Lemma 3.4.1
Proof. Let
p=Qd +c— AT\
Then from the optimality condition (3.4.22):
) 7
T (3439

And
S@VTQE + T = () (Qd+ o) — (@) Qi

= (d)(Qd" + ¢ — AX) = (d)" Qd"

1
2
S (d)Tp— (@) Qd
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lle

7% 1 7% 7%
gl — ()@
7% * 1 7% e
—ldll5p" = 5(d)" Q)
—|ld*||3u — 1UTNTQNU
2l 5

lle

llo

7% * 1
< "B — A NTQN) o]

Amin(H) 7% 7%
e (O

lle

—[ld* |50 +

@ /1’* R
< _?Hd 12 (3.4.40)

The above equations provide an upper bound of the function value of (3.4.21). @ is
because we have Ad* = 0 in (3.4.22). In @ we replace p by Qd+ ¢ — ATX\. @ and @
are from (3.4.39). As N is the orthonormal basis of the null space of A, we will
have Nv = d. ® and ® follow. And the @ is because p < —Apin(H) in (3.4.24).

Furthermore, as Nv = d, we will have ||v||> = vTv = d" NTNd = ||d||*> and
1 1 _ B
§UTHU + gv = §JT NTNQNTNd+ ¢cNTNd = §JT Qd + cd (3.4.41)

And it is easy to verify that v* = N7d*, p* also satisfy the optimal condition
(3.4.24). And we will have

* Ix /‘L* Ik M* *
(1) = dg(d) < || = 12 o

The last statement is because X 'd = d = q(d) = q,(d). O

3.4.6 Proof of Lemma 3.4.2

Proof. Here we consider two cases: case 1. If ||d|| < 3, then we will have y = 0.

From the optimal condition for (3.4.21):

Qd—AX+c¢=0
Ad=0, NTQN =0
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It leads to

. 1
XV?F(z7)Xd - AX\+ XVF(z7)=~e>0
p

case 2. If ||d|| = j:

L =t s <2
NI L LN P

From the optimal condition:

(Q+pl)d—AN+c=0
Ad=0,|d|| =5
N(Q+pI)N = 0

We will have:
_ -1
XV2F(27)Xd— AXA+ XVF(z7) = —pd + ~e
P

1
< plldlle + —e
p

2
= <W6L%

(2 +1>1
— —e
Ly P

INe

®is due to B < —~—. And similarly:

VL3
_ _ 1
XV?F(27)Xd— AXA+ XVF(z7) = —pud + e
p

- 1
> —plldlle + ~o
P
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p

)e
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If we assume Ly, > 2 = = < 1:

2
Lo

2 1 - 2 1 2
0< (—L—|— 1> e < XV?F(27)Xd— AX\+ XVF(z7) < (_L —l—l) —e< —e
2 P 2

Thus for both cases, we will have:

0< XV2F(z7)Xd— AXA+ XVF(z")

VAN
)

DI |
o

0 < XV?F(z7)Xd— AXA = X (VF(x) = VF(z7)) + XVF(x)
®
0< XV2F(27)Xd — AX)A = X V2F(re + (1 —7)z7)(x — 27 ) + XV F(x)

IN

(VAN
)

IN
)

0< XV?F(x7)Xd— AX\— XV?F(rz + (1 — )27 )Xd + XVF(x)
0< X(V*F(27) = F(rz+ (1 — 7)z7))Xd — AX\ + XVF(z)

(3.4.

IA
DINODT IO W

gy

w
o
.
.

)

® is from Taylor expansion, where 7 € (0,1). Since we have lipschitz hessian:
[V2F(z7) — F(rz + (1 —7)a7)|| < La7|lz — 27| < Ly7RB (3.4.45)
It will lead to:

o> X(V2F(z ) = F(ra + (1 — 7)o ))Xd — AXA + XVF(z)
P
> _LyrPe — AXA+ XVF(z)

2

= —AX\+ XVF(z)<e ( + L2752>
P
2

= —AX\+ XVF(z)<e ( + LQT/B2>
p

Similarly:

0< X(V2F(z7) = F(re + (1 —7)z7))Xd — AX\+ XVF(x)
< RPLotB% — AXA+ XVF(z)
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= —AX\+ XVF(z)>e (2 - LQT,BQ)
p

As we have g < 1/p%:
2

1 1
L N< Ly =
LT < *pL3 ~ pLs
Therefore:
2 2 2 2
el —— Ly —AXy+ XVF(x — 4+ Lo7f3
p p
e 1 e
¢ 2——) _AXy+ XVF gf< )
P< L y (@) p L,
1
If we assume that Ly > 2 and pick p = —=2
€ ( 1) >0
P Ly
1 (2 1 )
- S ) —¢
P Ly

=0< —-AXy+ XVF(z) <ee

(3.4.46)

(3.4.47)

(3.4.48)

Since we always have AXd = 0 and 2~ is a strictly interior point, z = Xd + 2~

will also be a feasible interior point, which means Ax = b is satisfied. Till now,

we show that the solution z is an first order e-KKT point. The next step is to

prove it also satisfied the second order necessary condition. Here we involve the

linear constraints, the second order necessary will become the reduced hessian to be

positive definite instead of the original hessian. The reduced hessian is defined as:

Hyeguee = NTV2F(2)N

If we reconsider the case 1 and case 2, we will have

NTXHQ + ul)XIN = 0
N(V?F(z) + pl)N =0
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(Hreduce + ,U/I) >__ 0

As we will stop at 1{|d|3u < 3\//23—%2 < \//%LQ. If > 0, we will have
2 2

ld|| = 5
= < 1
"L
< r €

= b \2+ %

Thus we must have:
Hyeduce = € (3.4.50)

reduce 2+ % A

Now the second order necessary condition is satisfied. ]

3.4.7 Proof of Lemma 3.4.3

Proof. For part 1, from the optimality condition (3.4.24), we know that p* > 0,

therefore we only need to search ;, > 0. For piyay, combine Lemma 3.4.2 and

(3.4.20):

1 = 1, - - 1. -
SIS < =5 (@) XVPF ()X d" = (VF (@)X = —)d"
1%

As F'is Lo-scaled Lipschitz hessian:

|F( + Xd*) — F(a") — VF(2')Xd" — ;(d*)TXVQF(xt)Xd*H géLQHd*H?’
(3.4.51)

Thus

1 - . _ I
S@TXVPP@)XA < Pa' + X&) = F(a') = VE@")Xd" + < Lo||d|
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And
]' K || 7% 1 T\ T 2 t T* t ]‘ 7%
3 I < = SV XVPPa) X~ (VF@)X - 2)d
_ _ 1-
<F(2'+ Xd*) — F(z") + Ly||d*||* + ~d*
P

Ik 1 7%
<F(2°) — Fy + Lo||d*|)3 + ;Hd |
As ||d|| <
1 *|| 7% 0 3 1
S| <F(27) — Fo + Lafs +;5

If ||d*|| < 3, we will have p* = 0. And supposing x* > 0, we must have ||d*[| = 8 > 0

and we upper bounded the non-zero u* by

F(ZL‘O)—FO 3 1
<t T L LR+ —
a B 3 o8

F(m

Thus our search space on y is upper bound by 2———2 0 | LyR3p —l— = and we only
need to set fimax = 9P @) =Fo )2 o 4 1.R33 + pﬁ.

For part 2, as,u<6f

SRR B
=367 " VPR~ VoAl

Via Lemma 3.4.2, we know it i will lead to an approximated KKT2 solution.

For part 3, we consider two cases p* + A\pin(H) < 10m; and p* + Apin(H) > 101;.
For the first case, we will switch to lanczos method. Since F' is Ls-scaled

Lipschitz, we will have I4I > H > —L{I. Per Corollary 2.3, we will be able to

solve for a unit vector ¥ such that:

5 Hdll2 (3.4.52)

0T HD < Amin(H) + 13 (3.4.53)

And we choose the v = —3sign(gv):

—p* + 101 + 13
2

1 1 1
—vTHo+g"v < ivTHv < iﬂQ()\min(H) +13) <

5 B*  (3.4.54)
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If 1p*||d*||* > —A—, we will have

ST

2 1
5Vo7 L, | 2APLE |

It means that v will lead to a sufficient decent.

1
2VpPL3

1
—vTHv +g'v < — 7735 <

2

On the other hand, if 1p*||d*||? < 3\/2— —, we will have $allv||* < $(p* + 12{ +

n3)3* < \/— 5+ Via Lemma 3.4.2 we can conclude that the new solution will also
be an KKT2 solut1on

For the second case, we first consider the difference between ||d*||> and ||d||*:

12113 — lld]l3
=[d*[1; = I(H + &I)~"gl3
=13 = I(H + )" (H + " D)(H + 1" 1) g3
=[|d*|5 = [I(H + 2I)""(H + p*D)d"[|3
=d*"(I — (H 4 p*1)(H + al)"(H + p*I))d*

The main idea of above proof utilize the fact that (H + p*)d* = (H + fi)d = —g
and (H + p*) = 0. Next we want to leverage the condition pu* < fi < p* + ny:

d*(I — (H + p*I)(H + pI)"*(H + pI))d*
=d"(I = (H + I + " = p)(H + o) (H + il + p* — 1)) d*
=d"(I =1 — (0" = p)°(H + l)™* = 2(u* = p)(H + pl)~h)d"
=d*(—(u" — p)°(H + A1) = 2(u" = p)(H + l)™)d"

Via holder inequality, we will have:

A (= (" = F(H + Bl) ™ = 200" = f)(H + i)~ )d"
<3 (Il = (" — @) (H + )~ = 200" — p)(H + )]

As (H+/NJ’I) t /1+>‘m1n(H) > 0:

I = (" = A)*(H + Al)™ = 2(p" — @) (H + i)~
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<(N+)\mm(H))2 i+ Awin (H)
:< (u* — 1) +2(u*—ﬂ)(ﬂ—u*+u*+kmin(H))>
(

(w = i) p— )

(o + Amin(H))?
(=) 20— p )(M*+)\min(H))>
(1 + Amin (H))?
—(1— (M*+)\min(H))2)
(ﬂ + )‘min(H))z

As p* + Apin () > 10m; and i < p* +my

(1" + Ain(H))? (1" + Amin(H))? 1 1
(1 (B Anin(H))? ) : (1 (et Amm(H»?) - (1 S+ wﬁim(m)z) : <1 S+

Therefore ||d*||> — ||d|| < }[|d*||. The next job is to show that if ||d*|| is not far away

from ||d||, the function value ¢(d*) will also not be far away from ¢(d):

1 1
15 = s 1o, - _
= = d(ad+ g) + gd+ Sd (wd" + g) — gd'
1 1 1 1
__7~d2 **d*Q *d—*d*
LI+ L1 + 2o~ Lg
1~ 7112 1 x| 7%(|2 1 7 JrI7 7% JI7 7% 1 T
:—§M||d||2+§ﬂ Id ||2+§(9d+de —dHd") — 794
L5 1 * || 7k 1 7\ T 1 7 7%
= LA S+ Lo+ B - Lo+ H)a
T E R BT (o
:—*~d2 **d* 2—**d*d *"dd*
S+ SN - Lrdd e L

* Tx 7 1 ~ * 7 Tx 7
=5#(lld 15— Nldl3) + S —n )(—ld|l5 + d*d)

‘2’1 9, 1 2 2
W +§760\/_6 +5%)

1 2 2

=t I+ =0

@ uses (H+ pul)d = —g and (H +u*])cz* = —¢g. @ uses ||cz*||2 — ||JH < %HJ*H and
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-t <= If | d|)* > —2

Gof - 3\/,3ng
LaHd 4 gd < Lamd +gar + “N\d*||1* + ! Ch
2 90=73 A Tile 60/7
As Id*Hd* — gd* < —Lp¥||d*||%,
1 2, 1
“dHd + gd < —Zpf||d*|]? + ——p2
gAHd +gd < — 47| H+60\/ﬁﬁ
8 1
15\/_L2 NN
1
60\/_L2_ " 2V/pPL3
1, % * 2 2 : .
If 1| < e will have:
LaHd + gd— L Ha d*<i Hd*HQJr—BQ L
2 9073 9= 10" 605 12vp°L3

In conclusion, if we combine the results for case 1 and case 2 together, we will

have
ald) = 50" Ho+ 670 < max{—5 oy ot (0T HY g7 4 )
2 a 2Vp3L3" 24/p3L3 2 1203 L3
1 f 1
< - d)+ —
<ty O ey
O

3.4.8 Proof of Lemma 3.3.1

Proof. 1f we are using the lanczos method, we will have v = v¢ by definition. Now
we only need to consider the AGD method branch. The problem we solve in AGD

branch is:

min ; T(NXV () XN + il)o + V()X Nv
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Denote the above function as Fj(v), we will have Fj;(v) is at least n;-strongly

convex:
T e e e e
o llv—v 17 < Fa(v) = Fa(v®) = VF(v®) (v — v°)

As VF;(v¢) = 0, we will have:

Falv) = Fa(o®) _

T e e el2 2
—lv =% < Fz(v) — F(v°) = |[v°]]" — ||[v]|” < <
Dl =l < Falw) = Fle?) = o] = o] - o

Where the last inequality use the fact that Fj(v) — Fz(v¢) < # if we adopt the
AGD method. Since Fj;(v) = ¢(v) + %ﬂHyH{ combine it with Fy(v) — Fj(v°) < %21:

772(2 =+ ﬁ) < 2 + Amax

e 12 1. el2 2
— < 4 - <
q(v) —q(v°) < It AU = loll”) < 2L =" oL

. . . ~ _ 1 %], |2 2 3
The last inequality is because fi < fimax = Amax- If 507V | > VAT we will
1

therefore we could set
124/ p3L3

require gy (v) — qu(v®) <

< L1771 _ Ly
=6 PLA2 1 M) 360p2L3(2 + Aar)

(3.4.55)

to fulfill this requirement.

If %/J,*HJ*HQ <3 23L , as we know qg(V) > qu(V*®). Therefore if gy(v°) can
p3La

determine an approximated KKT2 solution, ¢g(v) will also remain insufficient

descent and stop at an approximated KKT2 solution. Combine with ¢(d) = ¢y (v),
the final result follows.
L]

3.4.9 Proof of Lemma 3.4.4
Proof. We first consider the case 1, where A = (I I). Denote the diag matrix X as

(90 ) where © = diag(x1, ..., %,2) and s = diag(z, 241, ..., ») and we will have:
s

Ax = (1 1) (”7 s) =(z ). (3.4.56)



We can find one the null space is

x i

X2

Tn

Since N is column orthogonal, we only need to normalized it into:

—s1/\/83 + a3
—52/\/ s+ 73

>
I

_ 2 2
N sfysi b (3.4.57)
x1/4/8% + 23
To/\/S3 + 13

Tn/\/S2 + a2

The result related to the box constraints in Lemma 3.4.4 follows. Next we focus

on the case 2. By solve the following linear programming problem:
min0 s.t.Ad =0

we will be able to seperate A in to basis part B and non-basis part C'. One can verify

_B-'C N N
N = ( ; ) contains basis that span the null space of A. (AN = (B C)N =

—C + C = 0 and rank(N) = n —rank(A4)). N has a special structure. Except
the first s rows, the remaining part is an identity matrix. Therefore with column
operations we will be able to have a M matrix described in the Lemma 3.4.4. N
can be transfer into M. Note that M only need to be calculate once and it has
sparse structure. The computation cost and store cost can be very small.

Based on M, we only need to calculate the orthonormal matrix N. As AM = 0,
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we will have AXX'M = 0, which means X ' M is a matrix that contains the
basis spanning the null space of AX. Since X! is diagonal, sparse structure of
X'M is the same as M. If we use gram schmidt orthogonalization procedure to
find N from X~'M, the computation cost for find every orthonormal vector would
be bounded by O(sT3). It is because the the ¢ — th column is naturally orthogonal
to the (i + s) — th column and the column after that. Hence to computation
such N could only require O(snT5) cost. As O(T5) is the time for vector-vector
multiplication and O(T}) is the upper bound for matrix-vector multiplication. We
will have O(snT) = O(sTh). O

3.5 Conclusion

We discuss an accelerated interior point gradient method for nonconvex program-
ming with linear constraints. We integrate the accelerated gradient descent method
with Lanczos method and show that the worst case complexity of gradient based
algorithm will be approximately upper bounded by O(e~7/4) with high probability.
Our method doesn’t involve matrix inversion calculation that can be very time
consuming for large scale optimization. Compared with classic first-order methods,

our method breaks the O(e~?) barriers.
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Chapter 4
MCP Multi-Armed Bandit Model

with High-Dimensional Covari-
ates

4.1 Introduction

Individual-level data have become increasingly accessible in the Internet era, and
decision-makers have accelerated data accumulation with extraordinary speed in
a variety of industries, including health care, retail, advertising, etc. The grow-
ing availability of user-specific data, such as demographics, geographics, medical
records, and searching/browsing history, provides decision-makers with unprece-
dented opportunities to tailor decisions to individual users. For example, doctors
can personalize treatments for patients based on their medical history, clinical tests,
and biomarkers; search engines can offer personalized advertisements for users based
on their queries, demographics, and geographics. These user-specific data are often
collected sequentially over time, during which decision-makers adaptively learn to
predict the expected rewards based on users’ responses to each available decision
as a function of the user-specific data (i.e., the user’s covariates) and optimally
adjust decisions to maximize their rewards — an online learning and decision-making
process.

This online learning and decision-making process requires a thoughtful balance
between exploration and exploitation. Consider a decision-maker who selects

decisions for incoming users and obtains rewards based on users’ responses to these
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decisions. To maximize his expected rewards, the decision-maker first needs an
accurate predictive model for users’ responses, which is typically uncertain at the
beginning but can be partially learned through collecting samples of users’ responses.
On the one hand, the decision-maker could select a decision that yields the “highest”,
based on his best knowledge so far, expected reward (i.e., exploitation). Yet, this
decision can be suboptimal, as the selection is based on the rough prediction of
users’ responses due to limited samples. Even worse, the decision-maker could
incorrectly estimate the expected reward of the true optimal decision to be low and
never have a chance to correct such a mistake (as the decision-maker will not select
the true optimal decision due to the current low reward prediction, he will not
generate additional samples to be able to learn and correct his incorrect estimation).
On the other hand, the decision-maker can improve his predictive ability and learn
users’ responses by collecting more response samples, which often are obtained
through random clinical trials and/or user experiments and are typically costly
(i.e., exploration). The exploration and exploitation dilemma has been extensively
studied in the multi-armed bandit model ([69]), but the growing dimensionality and
availability of data have added another layer of complexity to the bandit model.
In practice, individual-level data are typically presented in a high-dimensional
fashion, which poses significant computational and statistical challenges in the
online learning and decision-making process. Traditional statistical methods, such as
Ordinary Least Squares (OLS), require a large number of samples (e.g., the sample
size must be larger than the covariate dimension) to be deemed computationally
feasible. Under high-dimensional settings, learning the accurate predictive models
requires a substantial amount of samples, which are obtained, if possible, through
costly trials or experiments. Take the search advertising industry for example.
Search advertising occurs when an Internet user searches certain keyword(s) (i.e., a
query) in an online search engine and then the search engine displays both search
results, in response to the user’s query, and some sponsored ads, in response to
the query and user-specific information. In order to select the ad that maximizes
its revenue, the search engine must have accurate estimations on users’ clicking
probabilities in response to the displayed ads — Click-Through Rate (CTR).
However, the search engine’s ability to accurately predict CTR is often crippled
by the high-dimensional search advertising data coupled with limited samples.

Counting more than three quarters of a million distinct words and their combinations
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([66]), there are nearly infinite possible queries the user can submit to the search
engine. For example, from 2003 to 2012, Google answered 450 billion unique queries,
and it has estimated that 16% to 20% of queries submitted every day have never
been used before ([58]). Hence, to accurately estimate a single ad’s CTR to these
queries, the search engine requires billions, if not trillions, of samples. The craving
for samples will be further intensified if the search engine practices personalized
advertising by taking users’ individual information (such as demographics and
geographics) into consideration. However, the available samples for the search
engine to learn and predict CTR are greatly limited. Consider a 45 days new
marketing campaign promoting a sales event or merchandise, during which time
an average ad is expected to reach approximately one third of a million users
([79, 90]). Among these users, a very small portion can be selected to perform
costly experiments to learn CTR, and that number is much smaller comparing to
the size of queries and individual data.

In this work, we propose a new algorithm, the G-MCP-Bandit algorithm, for
online learning and decision-making processes in high-dimensional settings. Our
algorithm follows the ideas of the bandit model and develops a e-decay random
sampling method to balance the exploration-and-exploitation trade-off. We allow
the decision-maker’s reward function to follow the generalized linear model ([55]),
which is a large class of models including the linear model, the logistic model,
the Poisson regression model, etc., and we adopt the Minimax Concave Penalized
(MCP) method ([94]) to improve the parameter estimations and predict the expected
rewards in high-dimensional settings.

In the high-dimensional statistics literature, MCP is developed to explore and
recover the latent sparse data structure for high-dimensional data. Compared
to traditional statistical methods (e.g., OLS), MCP uses significantly fewer data
samples and delivers better performance in high-dimensional settings ([94]). Al-
though it is statistically favorable to adopt MCP, solving the MCP estimator (an
NP-complete problem) could be computationally challenging. We propose a linear
approximation method, the 2-step weighted Lasso procedure (2sWL), under the
bandit setting as an efficient approach to tackle this challenge. We show that the
MCP estimator solved by the 2sWL procedure matches the oracle estimator with
high probability and converges to the true parameter with the optimal convergence

rate. Since the bandit model mixes the exploitation and exploration phases, sam-
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ples generated under the exploitation phase may be non-iid. Therefore, we adopt
a matrix perturbation technique to derive new oracle inequalities for the MCP
estimator under non-iid samples. To the best of our knowledge, this work is the
first one that applies MCP to handle non-iid samples.

We theoretically demonstrate that the G-MCP-Bandit algorithm can signifi-
cantly improve the cumulative regret bound in high-dimensional settings comparing
to existing bandit algorithms. In particular, we benchmark the G-MCP-Bandit
algorithm to an oracle policy, in which all parameter vectors are common knowledge,
and adopt the expected cumulative regret (i.e., the difference in rewards achieved
by the oracle policy and the G-MCP-Bandit algorithm) as the performance measure.
We show that the cumulative regret of the G-MCP-Bandit algorithm over 7" users
(i.e., a sample size of T) is at most O(logT’), which is the optimal/lowest theoretical
bound for all possible algorithms ([37]). Further, we show that the G-MCP-Bandit
algorithm also attains a tight bound in the covariate dimension d, O(logd). We
believe that our work is the first one in high-dimensional settings that attains
the logarithmic dependence on both the sample size dimension and the covariate
dimension, which are of particular importance in high-dimensional data with limited
samples and suggest that the G-MCP-Bandit algorithm can bring substantial regret
reduction comparing to existing bandit algorithms.

Through two synthetic-data-based experiments, we benchmark the G-MCP-
Bandit algorithm’s performance to other state-of-the-art bandit algorithms designed
both in low-dimensional settings, OLS-Bandit by [37] and OFUL by [1], and in
high-dimensional settings, Lasso-Bandit by [9]. We find that the G-MCP-Bandit
algorithm performs favorably in both experiments. In particular, when the sample
size is not extremely small!, the G-MCP-Bandit algorithm appears to be able to
accurately learn the parameter estimations with limited samples and therefore have
the lowest cumulative regret. Furthermore, we observe that the benefits of the
G-MCP-Bandit algorithm over other benchmark algorithms seems to increase with
the data’s sparsity level and the size of the decision set.

Finally, we evaluate the G-MCP-Bandit algorithm’s performance through two
real-data-based experiments, warfarin dosing data and Tencent search advertising

data, where the technical assumptions specified for the theoretical analysis of the G-

"'When the sample size is extremely small, the decision-maker has little information to learn.
Therefore, all algorithms perform equally poorly.
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MCP-Bandit algorithm’s expected cumulative regret may not hold. We observe that
the G-MCP-Bandit algorithm continues to perform favorably in both experiments.
In particular, in the warfarin dosing experiment (formulated as a 3-armed bandit
problem with 93 covariates), the G-MCP-Bandit algorithm needs the fewest patient
samples (i.e., merely 50 patients) to provide better dosing decisions than actual
physicians. Similarly, in the Tencent search advertising experiment (formulated as
a 3-armed bandit problem with hundreds of thousands of covariates), the G-MCP-
Bandit algorithm, after observing 140 users, can consistently generate better average
revenue than other benchmark algorithms under the linear model. Further, we
observe that the choice of the underlying reward model can significantly influence
the G-MCP-Bandit algorithm’s performance. In particular, under the logistic
model, which is a special case of the generalized linear model, the G-MCP-Bandit
algorithm merely needs 20 users to outperform other benchmark algorithms. This
observation suggests that understanding the context of the underlying managerial
problem and identifying the appropriate model for the G-MCP-Bandit algorithm

can be critical and bring the decision-maker substantial revenue improvement.

4.2 Literature Review

This research is closely related to the exploration-exploitation trade off in the
multi-armed bandit literature. [68, 80] follow the non-parametric approach and
consider that the arm reward can be any smooth non-parametric function. Under
this approach, the expected cumulative regret has an exponential dependence on the
covariate dimension d, which is undesirable under high-dimensional settings where d
can be extremely large. Such exponential dependence can be improved by following
the parametric approach. [7] proposes the UCB algorithm for a linear bandit
model, where the arm reward can be approximated by a linear combinations of
covariates. Since [7], other UCB-type algorithms(e.g., [2, 25, 26, 73]) and Bayesian-
type algorithms (e.g., [5, 74]) have been proposed and shown to improve on the
expected cumulative regret. Yet, allowing the adversary and without regulating
the sample generating process, the statistical performance of the parameter vector
estimation in the learning process may suffer. As a result, the expected cumulative
regret bound typically has a sublinear dependence on the sample size dimension T’

(e.g., O(V/T)) and a polynomial dependence on the covariate dimension d. However,
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in high-dimensional settings, where the covariate dimension and the sample size
dimension can be exceedingly large, these algorithms can perform poorly.

By introducing a forced sampling approach to the linear bandit model, [37] ensure
that enough samples generated in their algorithm possess desired iid property and
show that their proposed OLS-Bandit algorithm can achieve O(logT") dependence
on the sample size dimension 7T in low-dimensional settings. Following a similar
approach, [9] propose the Lasso-Bandit algorithm, which attains a poly-logarithmic
dependence on the sample size dimension O(log2 T) and the covariate dimension
O(log® d) in high-dimensional settings. In this work, we allow the reward function
to follow the generalized linear model, which contains a wide family of models that
includes the linear bandit model. We propose a e-decay random sampling method
and show that our proposed G-MCP-Bandit algorithm continues to achieve the
optimal cumulative regret bound on the sample size dimension O(logT") and attain
a tight bound in the covariate dimension O(logd) in high-dimensional settings. We
believe that our work is the first one that attains the logarithmic dependence on
both the sample size dimension and the covariate dimension in high-dimensional
settings.

Our research is also connected to the statistical learning literature. In high-
dimensional statistics, Lasso type methods ([83]) have become the golden standard
for high-dimensional learning ([56, 57, 86, 95]). Yet, Lasso-type regularizations
may lead to estimation bias, and strong conditions are needed for analyzing its
theoretical performance guarantee ([28]). Recently, [94] proposes MCP, a non-
convex penalty method, which entails better statistical properties, such as the
unbiasedness and a strong oracle property for high-dimensional sparse estimation,
and requires weaker conditions than Lasso ([33, 56, 101]). Although it is statistically
favorable to adopt MCP, solving the MCP estimator (an NP-complete problem)
could be computationally challenging ([49, Liu et al.]). Various approximation
methods have been developed in the literature. For example, [29] use the local
quadratic approximation, [31, 33, 98, 101] adopt the local linear approximation,
[94] choose the path following algorithm, and [Liu et al.] propose the second-order
approximation. Our proposed solution procedure (the 2sWL procedure) is analogous
to the local linear approximation and guarantees that the solution has desirable
statistical properties for theoretical analysis and can be efficiently solved. In the

literature, the theoretical analysis of MCP’s statistical properties relies on the
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assumption that all samples are iid, which is hardly the case under bandit models.
This work also contribute to the statistical learning literature by deriving new

oracle inequalities for MCP under non-iid samples.

4.3 Model Settings

Consider a sequential arrival process t € {1,2,...,T}. At each time step ¢, a single
user (e.g., consumer or patient), described by a high-dimensional feature covariate
vector @; € R4 arrives. The covariate vector combines all available (but not
necessarily valuable for the decision-maker to base his decision on) user-specific
data, such as demographics, geographics, browsing/shopping history, and medical
records. Upon arrival, users’ covariate vectors {x;};>o become observable to the
decision-maker and are iid distributed according to an unknown distribution P,.

Based on the user’s covariate vector x, the decision-maker will select a decision
from a decision set K = {1,2, ..., K} to maximize his expected reward. The user
will respond to the chosen decision k € K, and such response will generate a reward
for the decision-maker. Take the search advertising for example. The search engine
can recommend one of K different ads to the user; the user can respond to the
recommended ad by clicking, which generates revenue for the search engine. We
denote this reward under the chosen decision k as Ry, which follows a distribution
P(Ry|xT Bir ), where x is the user’s covariate vector and B¢ is the unknown
parameter vector corresponding to decision k.

We present the reward function in terms of the generalized linear model ([55]),
which is a large class of models including the linear model, the logistic model, the
Poisson regression model, etc. For example, if we assume that R; is a o-gaussian

random variable with mean =7 817“¢, then we can define the density function of the

distribution P(R.|z” 81 as g(Ry = r|lz’ Be) = (1/v2r0?) exp(— 2 F),
which is the standard setting for the classic linear multi-armed bandit model where
the reward takes a linear form: Ry(xz) = x? B + ¢ ([5, 7]). The cumulative
regret performance of the linear bandit algorithms has been extensively studied by
25] and [37], among others, under low-dimensional settings and by [9] under high-
dimensional settings. The generalized linear model adopted in this work facilitates us
to go beyond the classic linear bandit model, as the reward may take a nonlinear form

in practice. For instance, the search engine collects revenue only when a user has
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clicked the recommended ad; otherwise, the search engine earns nothing — a logistic
model by nature. By specifying Ry as a binary random variable (e.g., Ry € {0,1}),
we can define the mass function of the distribution P(Ry|x?Bi¢) as g(Ry, =
Lz’ By ) = 1/(1 + exp(—a’ B;)) and g(Ry, = Olz” B} ) = exp(—x By™)/(1 +
exp(—x! Birue)), which is a logistic bandit model with the binary reward ([27, 75,
76]).

The parameter vector B¢ is high-dimensional with latent sparse structure,
and we denote Sy = {j : B} # 0} as the index set for significant covariates,
which have non-zero Coefﬁment parameters and therefore are important for the
decision-maker to predict the user’s response. This index set is also unknown to
the decision-maker. We define the number of significant covariates as |Sy|, which is
typically much smaller than the dimension of the covariate vector.

The decision-maker’s objective is to maximize his expected cumulative reward.
Denote the decision-maker’s current policy as m = {m}i>0, where m; € K is the
decision prescribed by policy 7 at time ¢. To benchmark the performance of policy
7, we first introduce an oracle policy 7 = {7} };>0 under which the decision-maker
knows the true parameter vector values B} for all k € K and chooses the best

decision to maximize his expected reward:

+o00
T = arg 1%16?1]%({ [Rpe |, tr“e]} = argmax {/OO redG (ry| ] t”‘e)},

true) is the cumulative distribution function for R;. Note that

where G(ry|z!
in practice, the parameter vector B¢ is unknown to the decision-maker, and
therefore the construction and definition of the oracle policy directly imply that
the decision-maker’s reward under policy 7 is upper-bounded by that of the oracle
policy. We therefore define the decision-maker’s expected cumulative regret up to

time 1" under the policy 7 as follows:
T
= Z E R — R},
t=
which is the expected reward difference between the optimal policy 7* and the
decision-maker’s alternative policy w. To maximize his expected cumulative reward,

the decision-maker is equivalent to explore for the policy 7 that minimizes the

cumulative regret up to time 7.
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Before presenting the proposed G-MCP-Bandit algorithm, we will first state five
technical assumptions necessary for the theoretical analysis of the decision-maker’s
expected cumulative regret. The first three assumptions are adopted directly
from the multi-armed bandit literature, and the last two assumptions from the
high-dimensional statistics literature.

A. 1 (Parameter set) There exist positive constants Timax, S, Rmax,; Smin and b
such that for any ¢ and k € K, we have ||@]|cc < Tmax, |Sk| < 8, |Ri| < Rumax,
Bmin < minjes, rex [B5¢], 1B “lli < b and all feasible 3 satisfies || 8|1 < b.

The first assumption is a standard assumption in the bandit literature ([73])
and ensures that both the covariate vector  and the coefficient vector 8 are upper
bounded so that the maximum regret at every time step will also be upper bounded
to avoid trivial decisions. Most real world applications, including two real data
experiments in §4.6.2 and §4.6.3, satisfy this assumption.

A. 2 (Margin condition) There exists a C' > 0 such that P(0 < |E[R;|z, BI"¢] —
B[R, |z, 8] <) < CRuayy for i # j and i, j € K.

The second assumption is first introduced in the classification literature by

[85]. [37] and [9] adopt this assumption to the linear bandit model, under which
the Margin Condition ensures only a fraction of covariates can be drawn near the
boundary hyperplane z”(8;™¢ — 85*“) = 0 in which rewards for both arms are
nearly equal. Clearly, if a large proportion of covariates are drawn from the vicinity
of the boundary hyperplane, then for any bandit algorithm, a small estimation
error in the decision parameter vectors may lead the decision-maker to choose the
suboptimal decision and perform poorly ([9]). Therefore, this margin condition
ensures that given a user’s covariate vector, decisions can be properly separated
from each other and ordered based on their rewards.
A. 3 (Arm optimality) There exists a partition &, and Ky for K. For k; € Ky, we
will have E[Ry, |z, 8]/*] + h < maxyz, E[Ry|x, 81 "] for a positive constant h for
every . For ky € KC,, these exists another positive constant p* such that min P(x €
Uk,) > p*, where Uy,= {33|E[Rk2|a:,,8£’;“e] > maxyp, E[Ry|x, B + h, k € /C}.

The arm optimality condition ([9, 37]) ensures that as the sample size increases,
the parameter vectors for optimal decisions can eventually be learned. In particular,
this condition separates decisions to an optimal decision subset K, and a suboptimal
decision subset IC,. Decision 7 in K, is strictly optimal for some users’ covariate

vectors (denoted by set U;); otherwise, decision j in Ky must be strictly suboptimal
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for all users’ covariate vectors. Therefore, even if there is a small estimation error
for decision ¢ in K,, the decision-maker will be more likely to choose decision ¢
for a user with a covariate vector draw from the set U;. Accordingly, as sample
size T increases, decision-makers can improve their estimations for optimal arms’
parameter vectors.

These first three assumptions are directly adopted from the multi-armed bandit
literature and have been shown to be satisfied for all discrete distributions with
finite support and a very large class of continuous distributions (see [9] for detailed
examples and discussions).

A. 4 (Restricted eigenvalue condition) There exists £ > 0 such that for all feasi-
ble & satisfying ||£[]; < b and w such that ||ug |1 < 3|lus,[|1, we have £|ug,[|7 <
uE[V2L(§)|u, where L is the log likelihood function, £(8) = £ °7_, —log g(r;|x] B),
and {x;,j =1,2,...,n} are iid random samples with x; € Uy, k € K.

The restricted eigenvalue condition assumption is a standard assumption in

high-dimensional statistics and is necessary for the identifiability and consistency
of high-dimensional estimators ([31, 33]). This assumption considers the local
geometry of the log likelihood function £ with iid samples in Uy. To intuit, note
that under low-dimensional settings, the literature ([59]) requires that £ is strongly
convex around the true parameter vector 8¢ (e.g., the Hessian matrix in OLS
estimator is positive-definite and invertible) in order to achieve identifiability of the
parameter vector. However, the strong convexity assumption is typically violated
in high-dimensional settings, as the sample size can be much smaller than the
covariate dimension. Therefore, a weaker condition is adopted: The L exhibits local
strongly convex behavior only in some restricted subspace of u. In high-dimensional
linear models, the restricted eigenvalue condition assumption is analogous to the
compatibility condition ([9, 14]), restrict strongly convexity condition ([52, 61]),
and sparse eigenvalue condition ( [31, 96]).
A. 5 (Density function) The negative logarithm of the reward density function
f(rly)=—logg(rly) is (i) convex with smooth gradient and hessian in y, and (ii)
there exists positive constants o, o, and o3 such that |f (r|y)| < o, f" (r|y) < o2
and | " (rly)| < o.

The density function assumption enables us to use the estimated expected
reward to statistically infer the true expected reward. Specifically, under this

assumption, when the parameter estimator 3 is close enough to the underlying
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true parameter vector 8“¢, the negative logarithm of the reward density function
under the estimator 8, g(x” ), will converge to that under the true parameter
vector Brue, g(x? B"u¢). The density function assumption is a fairly weak technical
assumption. Many common distributions, such as sub-Gaussian distribution and

Bernoulli distribution, satisfy this density function assumption.

4.4 G-MCP-Bandit Algorithm

One of the major challenges for online learning and decision-making problems is
discovering the underlying sparse data structure and estimating the parameter
vector for high-dimensional data with limited samples. Lasso ([83]) has been
proposed as an efficient statistical learning method and adopted in the multi-armed
bandit literature ([9]) to hurdle this challenge. However, the Lasso estimator
can be biased and performs inadequately, especially when the magnitude of true
parameters is not too small ([29]). One way to address this performance issue is to
construct new penalty functions that could render unbiased estimators and improve
the sparse structure discovery under high-dimensional data with limited samples.

In this research, we will adopt the novel MCP method.

4.4.1 Parameter Vector Estimation

For notation convenience, we will omit parameters’ subscripts corresponding to the
choice of arms, as long as doing so will not cause any misinterpretation. Consider
an oracle estimator for an arbitrary arm, 8°7“**, which is the parameter estimator
when the decision-maker has perfect knowledge of the index set for significant
covariates §. In other words, the oracle estimator can be determined by setting

B = 0 for j € 8¢ and solving

Borecte( X, r) = arg ﬁr%iilo {‘ju g‘lf(rﬂmjrﬁ)} ) (4.4.1)

where A is the available historical data samples and f(:|-) is the negative logarithm
of the reward density function defined early. When solving for the oracle estimator,
the decision-maker can directly ignore insignificant covariates by forcing their

corresponding coefficients to be zero and essentially reduce the high-dimensional
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problem to a low-dimensional counterpart. The statistical performance of the oracle

estimator is provided in the following lemma.

Lemma 4.4.1. Let n be the sample size. Under assumption A.1, A.4, and A.5,
the following inequality for the oracle estimator holds

852022

P (HIBoracle o ﬁtrueHQ < 'u nmax) > 1 — 61(n)7 (442)
0

where 61(n) = 2exp(— C’;”“O ) + sexp(—g %), and Cy, and pgy are positive con-

stants.

Since there are only |S| significant covariates, which is upper-bounded by s,
are free to change in Equation (4.4.1), the optimal statistical performance of the
likelihood estimation is commonly recognized as O(\/s/in) in the literature ([31, 99]),
which doesn’t include the dependence of the largest eigenvalue in the objective
function’s Hessian matrix. In Equation (4.4.2), we explicitly include its influence
and can directly verify that the largest eigenvalue in the objective function’s Hessian
. and therefore Equation (4.4.2)
reduces to O(\/%) dependence. In other words, the oracle estimator attains the

optimal statistical performance.

matrix is universally upper bounded by oysz?

However, the significant covariates index set S is typically unknown to the
decision-maker in practice, and we will rely on the MCP method to recover this
latent sparse structure. To better understand the rationale behind the MCP method,

we start with the following weighted Lasso estimator:

BY (X, y, w )—argmln {|A] Zf rj|mT13 —|—§:wl|ﬁZ }, (4.4.3)

jeEA

where w = (wy, wy, ..., wy) is a positive weights vector chosen by the decision-maker.
Note that when we set w; = X for all 4, B (X, y, w) reduces to the standard
Lasso estimator, which can be biased when the magnitude of true parameters is
not too small. To recover the sparse structure and provide an unbiased parameter
estimator, an ideal way to select {w;} is to set w; = A > 0 for all ¢ € S§¢ and
w; = 0 for all j € S. By doing so, when the weight X is large enough, the weighted
Lasso estimator converges to the oracle estimator 8°7*¢( X, r). The benefits of the

weighted Lasso method have attracted considerable attention recently, and various
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mechanisms have been proposed in the literature aiming to improve the weight
selection process ([17, 40, 101]). The MCP method, adopted in our work, reflect
such a process.

In particular, we define the following MCP penalty function:

|| 1
Py o(z) = /0 max (O, A — Elﬂ) dt,

where a and ) are positive parameters selected by the decision-maker, and the

MCP estimator can be presented as follows:

d
BMEP (X, r,A) = argmin £ 4,(B) = argmin {1 S flrileiB)+> ] PA,a(Bi)} :
A 5 M= ! =

(4.4.4)

Denote the index set for non-zero coefficients solutions in Equation (4.4.4) as
J={j: Bj # 0}. If the absolute value of the MCP estimator in J is greater than
aX, then P, ,(8;) become constant parameters for all j € J. Therefore, we will
have Py ,(8;) = $aX? for j € J and Py,(f;) = 0 otherwise. In other words, the
statistical performance of solving the MCP estimator is equivalent to solving the
following problem: arg minﬂjczoﬁj{ﬁ Yjea f(rjlx] B)*}. Hence, if 7 = S, then
the MCP estimator converges to the oracle estimator.

Solving the MCP estimator can be challenging. [Liu et al.] have shown that it
is an NP-complete problem to find the MCP estimator by globally solving Equation
(4.4.4). In the next subsection, we propose a local linear approximation method,
the 2-step Weighted Lasso (2sWL) procedure, to tackle this challenge, and we
demonstrate that the estimator solved by the 2sWL procedure will match the oracle

estimator B°7%? with high probability.

4.4.2 2-Step Weighted Lasso Procedure

The 2sWL procedure consists of two steps. We first solve a standard Lasso problem
by setting all positive weights in Equation (4.4.3) to a given parameter \o. Then,
we use the Lasso estimator obtained in the first step to update the weights vector
w by taking the first-order derivatives of the MCP penalty function, and applying

this updated weight vector, we re-solve the weighted Lasso problem in Equation

103



(4.4.3) to obtain the MCP estimator. The procedures of 2sWL at time ¢ can be

described as follows:

2-Step Weighted Lasso (2sWL) Procedure:

Require: input parameters a and A

Step 1: solve a standard Lasso problem
B =BY(X,y,)\);
Poa(IBry]) s for Bi; #0
A ,for 81, =0
and solve a weighted Lasso Problem
BZSWL = BW(X; Y, w).

Step 2: update w; =

As the 2sWL procedure is equivalent to solving the Lasso problem twice, the
worst-case computation complexity for 2sWL is on same order as for the standard
Lasso problem. In practice, we can initialize the second step procedure with a
warm start from the first step of the Lasso solution, which further reduces the
computation time.

The following proposition shows that the MCP estimator identified by the 2sWL

procedure can recover the oracle estimator with high probability.

Proposition 4.4.2. Under assumptions A.1, A.4, and A.5, if min{|3;™|, g #
0,j=12,...,d} > (9—25 + a) A, a > 25 the MCP estimator solved under the 2sWL

K

procedure, BMCET satisfies the following inequality
Q520272
P (”BMCP o Btrue||2 < S J2$max> >1 — (51(”) - 52(”, n, )\) — (53(”), (445)
Hom

where do(n, 1, \) = dexp ( n\? ((i — 2dns) min{l 10 })2>, d3(n) = exp (—C1n),

T o2 ) 2
2T5 ¢ niKka 8N18TE ax

io and Cy are positive constants.

Comparing to the oracle estimator 37 in Lemma 4.4.1, the probability bound
on the MCP estimator under the 2sWL procedure has two extra terms dy(n,n, \)
and 03(n), which depend on the covariate dimension d and the sample size n. Note
that as the sample size increases, these two extra terms decrease to 0 at exponential

BMEP matches the oracle

rates. In other words, as the sample size increases,
parameters with high probability and converges to the true parameters at the

optimal convergence rate.
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4.4.3 e-decay Random Sampling Method

As bandit models involve exploitation and exploration, samples generated under
exploitation typically are not iid. These non-iid samples pose challenges to the
existing MCP literature, which relies on the assumption that samples are iid in
establishing the convergence rate and regret bounds (see the proof of Proposition
4.4.2 in §4.4.2).

In this research, to ensure that there are some iid samples generated in the
online learning and decision-making process, we propose a e-decay random sampling
method, in which the decision-maker draws random samples, with decreasing
probability, by randomly selecting decisions from the decision set with equal
probability. In particular, the e-decay random sampling method can be described
as follows:
e-decay Random Sampling Method: At time t, the decision-maker will draw a
random sample, with probability min{1,¢y/t}, where t, is a pre-determined positive
constant. If the seller has decided to draw a random sample at time ¢, then the
decision-maker will randomly select a decision from his decision set with equal
probability. Otherwise, the decision-maker will follow a bi-level decision structure,
which will be specified later, to determine the optimal decision to maximize his
expected reward.

The e-decay random sampling method can balance the exploitation and explo-
ration trade-off by ensuring that the decision-maker does not explore too much to
significantly sacrifice his revenue performance (as the number of random samples
decays in time) but has sufficient random samples to guarantee the quality of the
parameter vector estimation. In particular, we can bound the random sample size

in the following proposition.

Proposition 4.4.3. Let Cy > 10, T > @0:721)2, and ty = 2Cy|KC|. Under the e-decay
random sampling method, the random sample size ny for arm k € K up to time T

s bounded by
Co(T+1og(T +1) —log(te+ 1)) < ny < 3Co(1 + log(T') — log(to))

with probability at least 1 —2/(T + 1).
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4.4.4 G-MCP-Bandit Algorithm

After establishing the MCP estimator’s statistical property and the e-decay random
sampling method, we are ready to present the proposed G-MCP-Bandit algorithm.

The execution of the G-MCP-Bandit algorithm can be summarized as follows:

G-MCP-Bandit Algorithm

Require: Input parameters g, h, A1 g, A2 0, a.
Initialize B7"4m(0) = Brhole(0) = 0, and Ry, = Wy, = ¢ for all i € K.

Fort=1,2,.... do

Observe x;.
Draw a binary random variable D;, where D, = 1 with probability min{1, ¢,/t}.

If D, =1
Assign 7 to a random decision k € K with probability P(m = k) = 1/|K].
Play decision 7; and observe r;
Update R, = Rax,_, U{xs, i} and Wy, =W, U {xs, 1}

Else
Construct the optimal decision set:

M, = {i : B[R |2, Byemtom (t — 1)] > max;ex B[R;|@;, B9 (t — 1)] — 3h, i € K}.
If 11, is a singleton

Set m, = I1,.
Else
Set m; = arg maxyen, E[Ry|x;, B (t — 1)].
End If
Play decision 7, observe ry, and update W,, = Wy, , U{x;,r}.
End If

For all k € K, set M(t) = M oy/1+ gy and Ag(f) = Mg g/ EEHES,
Update parameters £5"%™(t) via the 2sWL procedure with (R,, A (t)).
Update parameters B°"'(t) via the 2sWL procedure with (W;,, Xa(1)).

End for

Specifically, the decision-maker will start by assigning values for system param-
eters (tg, K, Smax, and h), which can be optimized through tuning, and initialing
two parameter vector estimators (874%™ and B*") and two sample datasets

(R, and W,,, which represent the random sample set and the whole sample set,
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respectively). Then, for an incoming user at time ¢, the decision-maker will draw a

random sample with probability min{1,¢,/t}. There are two possibilities:

o If the decision-maker decides to draw a random sample, then he will randomly
choose a decision k from his decision set IC with equal probability of 1/|K|;
then, he will implement the chosen decision (i.e., m; = k), observe the user’s
response, and claim the corresponding reward; finally, the decision-maker will
include the user’s covariate vector and the corresponding reward {x;, r;} in
both sample datasets, R,, and W;,.

o If the decision-maker decides not to draw a random sample on this incoming
user, then he will use the bi-level decision structure to determine his decision.
In the upper-level decision-making process, the decision-maker will first
construct an optimal decision set II;. Specifically, all decisions in the optimal
decision set II; are estimated, based on the random sample MCP estimator
Brandem to yield expected rewards within /2 of the maximum possible reward.
If there is only one decision in the optimal decision set II;, then the decision-
maker will implement this decision as the optimal decision; otherwise, the
decision-maker will perform the lower-level decision-making process, in which
the decision-maker will estimate, by using the whole sample MCP estimator
Bvhee the rewards for all decisions in the optimal decision set IT; and select
the decision that generates the highest expected reward. Then, observing
the user’s response to the optimal decision and collecting the corresponding
reward, the decision-maker will only update the whole sample dataset W,, by

appending the user’s covariate vector and the corresponding reward {ax;, r,}.

Finally, the decision-maker will reset two parameters, A\; and Ag, and use the
2sWL procedure to update the random sample parameter vector estimator @rendom
and the whole sample parameter vector estimator B*"* based on sample data
sets R, and W,,, respectively.

The expected cumulative regret upper bound for the G-MCP-Bandit algorithm

can be established in the following theorem.

Theorem 4.4.4. Under assumptions A.1-A.5, let to = 2Co|K|, T > Tp, Ao =
ﬁminp*ﬂ )\2 — \/ﬁx?nax
(2304s+ap*kK) \/l-Hog d’ 0 192 1hin{1,

p*ra

m—, and a > 2% The cumulative
} Kp

1_
1

* g2
P”STmax
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regret of the G-MCP-Bandit algorithm up to time T is upper bounded:

RY(T) < (6 Runax| K|Co + 31 Rppa | KC| + 26277 m=bOR3 |22, Cas®) log(T + 1)
+ Riax (To + |K|) = O(|K|s*(s + log d) log T),

where Ty, Cy, C, 1o and Cy are constants independent of T'.

Theorem 4.4.4 shows that the expected cumulative regret of the G-MCP-Bandit
algorithm over 7" users is upper-bounded by O(log T'). [37] have shown that under
low-dimensional settings, the expected cumulative regret for a linear bandit model
is lower-bounded by O(logT'), which is directly applicable to the high-dimensional
settings. Further, note that the linear model is a special case of the generalized
linear model. Therefore, the expected cumulative regret of the G-MCP-Bandit
algorithm is also lower-bounded by O(logT’). In other words, the G-MCP-Bandit
algorithm achieves the optimal expected cumulative regret in the sample size
dimension. This result comes from the facts that we can ensure O(logT') random
samples at time 7" via the e-decay random sampling method (Proposition 4.4.3)
and that the MCP estimator is able to match the oracle estimator with high
probability (Proposition 4.4.2). Further, when compared to the Lasso-Bandit
algorithm proposed by [9] for the linear model under high-dimensional settings, the
G-MCP-Bandit algorithm reduces the dependence of the expected cumulative regret
on the sample size dimension from O(log> T) to O(log T). As the G-MCP-Bandit
algorithm achieves the optimal expected cumulative regret and improves on the
cumulative regret performance from existing high-dimensional bandit algorithms
in the sample size dimension, we expect that the G-MCP-Bandit algorithm will
be able to improve the learning process of the parameter vector estimation with
limited samples and perform favorably in the cumulative regret performance even
in sample-poor regions.

Theorem 4.4.4 also demonstrates that the cumulative regret of the G-MCP-
Bandit algorithm in the high-dimensional covariate vector d is upper-bounded
by O(logd). This bound presents a significant improvement over other classic
bandit algorithms ([2, 25, 37]), which yield polynomial dependence on d, and is
also a tighter bound than the Lasso-type algorithm (i.e., O(log®d) in [9]). This
improvement is of particular importance in high-dimensional settings, in which

the covariate dimension can be extremely large, and it suggests that the G-MCP-
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Bandit algorithm can bring substantial regret reduction comparing to existing

bandit algorithms, which we will illustrate through experiments in §4.6.

4.5 Key Steps of Regret Analysis for the G-MCP-
Bandit Algorithm

In this section, we provide the abridged technical proofs for Theorem 4.4.4 — the
main theorem in this work. Specifically, we briefly lay out four key steps in
establishing the expected cumulative regret upper bound for the G-MCP-Bandit
algorithm. In the first step, we highlight the influence of non-iid data, inherited from
the multi-armed bandit model, and provide the statistical convergence property
for the MCP estimator under partially iid samples. Applying these results to
the G-MCP-Bandit algorithm, in the second and third steps, we establish the
convergence properties for both the random sample estimator, which is based on
samples generated only through the e-decay random sampling method, and the
whole sample estimator, which uses all available samples. Finally, in the last step,
we establish the total expected cumulative regret by separating the regret up to
time T into three segments and providing a bound for each segment. The main
structure and sequence of our proving steps described above are first introduced
by [9], which presents their expected regret analysis for a linear bandit model
(i.e., LASSO-Bandit algorithm) in a similar sequence. We will largely follow their
presentation structure, but with different steps, proving techniques, and convergence

properties, to illustrate the key steps in analyzing the G-MCP-Bandit algorithm.

4.5.1 General Non-iid Sample Estimator

Note that the restricted eigenvalue condition (A.4 in §4.3) for high-dimensional
statistics is typically established for iid samples in the literature. Yet, in this
research, we consider the G-MCP-Bandit algorithm, under which only part of the
samples are iid, so we first show that the restricted eigenvalue condition continues
to hold for partially iid samples (Lemma A.0.6 in E-Companion). Then, we can
establish some general results for the MCP estimator under non-iid data.

We denote W as the whole sample set that contains all users’ covariate vectors

X and the corresponding rewards r for an arbitrary decision k£ € K up to time
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T, and BMCP as the MCP estimator for the parameter vector corresponding to
decision k. Note that as samples in W are not iid, standard MCP convergence
results ([31, 33]) cannot be directly applied. Recall that we proposed the e-decay
random sampling method and that samples generated under this method are iid.
Therefore, there exists a subset A C W such that all samples in this subset are iid
from the distribution Px. The next step is to show that when the cardinality of A

/BMCP

(i.e., |A|) is large enough, will converge to the true parameters B¢,

Proposition 4.5.1. Denote the whole sample size as n and the sub-sample set,
containing only iid random samples, as A. Under assumptions A.1, A.4, and A.5,
if Bmin > (Z?ZT +a)\ and a > 96&3‘ then for ¢ < %ﬁ@, the following inequality
hold for the MCP estimator under the 2sWL procedure BMCT

2n(

P MCP true
(h8er = gl <

) > 1= 8y, |, A) = 81 AJ) — Sa(m, | A O).
(4.5.6)

Moreover, if |A| > 252;”%, then we have the following result

rue 8820 xrznaxn
P (IIﬂMCP — B2 < W) > 1= 061(|Al) = 02(n, | A, ) — d5(|A]),

(4.5.7)

where Cy and iy are positive constants and d4(n,|Al, () = sexp( M) +

8028T2 5
ne?
S exp ( 59222 52 .

max

Proposition 4.5.1 describes the statistical properties of the non-iid MCP estima-
tors under the 2sWL procedure. First, if we don’t require the iid sample size |A| to
be sufficiently large, then the MCP estimator’s statistical performance is given by
Equation (4.5.6). If we set ¢ to be on the order of O(s/y/n), then ||BM¢F — girue||
is on the order of O(y/s?n/|A|?), which matches the result of Equation (4.5.7).
Meanwhile, however, d4(n, |A], () in Equation (4.5.6) becomes a positive constant
asymptotically, which implies that when |.A| is not large enough, the MCP estimator
may not warrant good statistical performance. Yet, when we have sufficient iid

samples (i.e., |A| > %) Equation (4.5.7) suggests that the MCP estimator not
only guarantees a better statistical convergence (O(y/s*n/|.A|?)) but also attains
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probability 1 when the whole sample size n and the iid sample size |.A| go to infinity.

Moreover, Proposition 4.5.1 shows the necessity of generating iid random samples
in high-dimension bandit settings. Non-iid samples are inevitable in online learning
and decision-making process, so ensuring desired asymptotical performance of the
parameter vector estimation in high-dimensional settings can only be achieved
through generating sufficient number of iid samples, as shown in Proposition 4.5.1.
We will show in next two subsections that the size of iid samples generated under
the e-decay random sampling method is on the order of O(logT') and that the size
can be further improved to the order of O(7") under the bi-level decision structure
in the G-MCP-Bandit algorithm.

4.5.2 Estimator from Random Samples up to Time T

In Proposition 4.5.1, we show that the MCP estimator will converge to the oracle
parameter as long as the sample set contains a sufficient number of iid samples.
Recall that in our proposed G-MCP-Bandit algorithm, samples generated by the
e-decay random sampling method are iid, and the size of these iid samples is
on the order of O(log(T)); see Proposition 4.4.3. Combining these observations,
we can establish the statistical performance of the MCP estimator under the

G-MCP-Bandit algorithm in the following proposition.

Proposition 4.5.2. Let ty = 2Co|K|, T > max{(ty+1)*/e*—1,e}, a > 2304s/p*k
and A = 05\/1 +logd/log(T +1). If assumptions A.1, A.3, A.4, and A.5 hold,
then the MCP estimator under the G-MCP-Bandit algorithm MY will satisfy the

following inequality

P (HIBMCP . Btrue“l S mln{ 1 h }) Z 1 7

) - 77
OTmax  4€0 Ripax Tmax T+1

where Cy and C5 are positive constants.

4.5.3 Estimator from Whole Samples up to Time T

In addition to the iid samples generated by the e-decay random sampling method,
other samples can also be iid and used to improve the statistical performance of
the MCP estimator. To intuit, recall that in the G-MCP-Bandit algorithm, when
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the user is not selected to perform a random sampling, the decision-maker will use
the bi-level structure to determine the optimal decision to maximize his expected
reward. In the upper-level decision-making process, only iid samples will be used
(as Brandem js the MCP estimator based on samples generated only by the e-decay
random sampling method) to determine the candidate(s) for the optimal decision
set. From Proposition 4.5.2, we know that this random sample MCP estimator will
not be far away from its true parameter values. In other words, if we define the
event that the random sample MCP estimator at time ¢ is within a given distance

from its true parameter as event &g:

h

)
OTmax 40 RmaxTmax

Ee= {H,Bzandom(t) — B, < min{ } , ke IC} . (4.5.8)
then event & will happen with high probability. Further, conditioning on event &,
we can directly verify that for any @ € Uy, k € IC, the following inequality holds:

h
E(Ryla, B (t)) = max E(R;|e, 87" (t)) + 5 (4.5.9)

Therefore, if using Equation (4.5.9) as the selecting criterion, the decision-maker
will be able to choose the optimal decision k for any x € Uy, k € K with high
probability. Formally, we can bound the total number of times under which
event x € U and event & happen simultaneously. In particular, we define
M ()= [S75 U(z; € Uk, &, 25 ¢ Ry)|F| for i € {0,1,2,.,T + 1}, where F; =
{(xj,r;) for j <i} and Ry, is the set containing iid samples generated through the
e-decay random sampling method for arm k. Then, {M (i)} is a martingale with
bounded difference |M (i) — M(i+1)| <1 fori=0,1,2,...,T, and we can bound
the value of M (T + 1) in the following proposition:

Proposition 4.5.3. If ' > max{14,4Cy|K|}, then P (M(T+ 1)< p*(€+1)) <
exp (LT

Intuitively, Proposition 4.5.3 suggests that with high probability, the actual iid
sample size in Uy, for decision k& will be on the order of O(T") instead of O(logT).
This improvement is the reason why the whole sample MCP estimator 8" used
in the lower-level decision-making process has a better statistical performance,

/Brandom

compared to the random sample MCP estimator used in the upper-level
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decision-making process. Specifically, we can establish the convergence property

for the whole sample MCP estimator in the following proposition.

Proposition 4.5.4. Let tg = 2Co|K|, T > Ty, A = Cy/ IR g g >
2304s - If assumptions A.1, A.3, A.4, and A.5 hold, then at time T the whole sample

PR °

MCP estimator under the G-MCP-Bandit algorithm B*"' will satisfy the following

inequality:
2 12
P whole T) — true < S >1—
(HB (1)~ Bl < \[Cor” 5 ) 2 1= v

where Cy, Ty, Cy, and Cgare positive constants.

4.5.4 Cumulated Regret Up To Time T

Finally, to bound the cumulative regret for the G-MCP-Bandit algorithm, we need
to divide the time, up to time 7', into three groups and provide a upper bound for
each group.

The first group contains all samples before time Ty and all random samples
up to time 7. Note that before time Tj (the explicit expression for Ty is given
in the proof of Theorem 4.4.4 in E-Companion), the decision-maker does not
have sufficient samples to accurately estimate covariate parameter vectors. Hence,
the reward under the G-MCP-Bandit algorithm will suffer and be sub-optimal
compared to that of the oracle case. We can bound the cumulative regret by the
worst case performance: Ry.xTy + Rumax|K|(2 + 6Cylog T'), where the first part of
this cumulative regret is for all samples before time Ty and the second part is for
all random samples up to time T

Next, we will segment the ¢t > Tj case into two groups, depending on whether
we can accurately estimate covariate parameter vectors by using only random
samples. In particular, the second group includes cases where t > Ty and the
random-sample-based estimators are not accurate (i.e., event & doesn’t hold).
Under those scenarios, inevitably, the decision-maker’s decisions will be suboptimal
with high probability. However, note that as the size of iid samples increases in ¢,
the probability of event & not occurring decreases. We can bound the cumulative
regret for the second group by 7Ry |K|log(T + 1).

The last group includes scenarios where t > T and the random sample estimators
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are accurate enough. Benefiting from the improved estimation accuracy (Proposition
4.5.4), we can bound the cumulative regret for the last group by (24Ru.«|K| +
4et mab OR3 (|22, Css®) log(T). Combining the cumulative regret for all three

max

groups, Theorem 4.4.4 directly follows.

4.6 Empirical Experiments

In this section, we will benchmark the G-MCP-Bandit algorithm to OFUL ([1]),
OLS-Bandit ([37]), and Lasso-Bandit ([9]). In particular, we seek answers to the
following two questions: How does the performance of the G-MCP-Bandit algorithm
compare to other bandit algorithms? And how is the performance of the G-MCP-
Bandit algorithm influenced by the data availability (T"), the data dimensions (s
and d), and the size of the decision set (K)?

To this end, we start with two synthetic-data-based experiments in §4.6.1 and
conduct two additional experiments based on real datasets, the warfarin dosing
patient data in §4.6.2 and the Tencent search advertising data in §4.6.3, respectively.
Note that the algorithms and theoretical bounds of OFUL, OLS-Bandit, and Lasso-
Bandit are developed under the assumption that the reward function follows the
linear model, which is a special case in the G-MCP-Bandit algorithm. Therefore, for
fair comparison, we specify the underlying reward function for the G-MCP-Bandit
algorithm to follow the same linear model (i.e., the reward under decision k for a
user with covariate vector x takes the form of Ry(x) = T Bi"¢ + ¢, where € is a o-
gaussian random variable) in all experiments, except the Tencent search advertising
data experiment, in which we explore the performance of the G-MCP-Bandit model

under both the linear model and the logistic model.

4.6.1 Synthetic Data (Linear Model)

In the first synthetic data experiment, we fix the size of the decision set K and
focus on the impacts of the data dimensions, s and d, and the data availability, T,
on learning algorithms’ cumulative regret performance. In particular, we consider
a two-arm bandit setting (i.e., K = 2). To simulate different sparsity levels, we
vary the covariate dimension d = {10,10% 103,10} and keep the dimension for

significant covariates unchanged at s = 5. Therefore, as the covariate dimension
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d increases, the data become sparser. The underlying true parameter vectors for
covariates are arbitrarily set to be 8; = (1,2,3,4,5,0,0,...) for the first arm and
B> = 1.1- B, for the second arm. For each incoming user, we randomly draw her
covariate vector from N(0, I;x4) and the error term in the linear model € from
N(0,1). Finally, we use the same parameter A value in both the Lasso-Bandit
algorithm and the G-MCP-Bandit algorithm and select the unique parameter for
the G-MCP-Bandit algorithm a at 2. For each algorithm, we perform 100 trials
and report the average cumulative regret for OFUL, OLS-Bandit, Lasso-Bandit,
and G-MCP-Bandit (under the linear model) in Figure 4.1.
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Figure 4.1: Synthetic study 1: The impact of T" and d on the cumulative regret,
where K = 2 and s = 5.

Overall, we observe that the G-MCP-Bandit algorithm significantly outperforms
OFUL, OLS-Bandit, and Lasso-Bandit and achieves the lowest cumulative regret.
Facing only two decisions/arms, the decision-maker can easily identify the optimal
arm, and therefore OFUL and OLS-Bandit, both of which are not specifically de-
signed for high-dimensional settings, perform nearly identically. Lasso-Bandit and
G-MCP-Bandit could benefit from their abilities to recover the sparse structure and
identify the significant covariates. Therefore, compared to OFUL and OLS-Bandit,
Lasso-Bandit and G-MCP-Bandit can improve their parameters estimations, espe-
cially under high-dimensional settings, and perform substantially better. Further,
the improvement of the cumulative regret performance of G-MCP-Bandit over
Lasso-Bandit follows from the facts that the MCP estimator is unbiased and could
improve the sparse structure discovery. Next, we will discuss the influence of
sample size T' and the covariate dimension d on these algorithms’ cumulative regret
performance.

Figure 4.1(a) and 4.1(b) illustrate the influence of the sample size T on the
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cumulative regret for the cases where d = 10 and d = 100 (other cases exhibit
a similar pattern and are therefore omitted)?. As we have proven that G-MCP-
Bandit provides the optimal time dependence under both low-dimensional and
high-dimensional settings (Theorem 4.4.4), G-MCP-bandit strictly improves on the
cumulative regret performance from Lasso-Bandit, especially when T is not too
small. Note that facing insufficient samples, all algorithms fail to accurately learn
parameter vectors and therefore perform poorly. As the sample size increases, the
G-MCP-bandit algorithm is able to, in an expeditious fashion, unveil the underlying
sparse data structure, accurately estimate parameter vectors, and outperform all
other benchmarks. For example, in Figure 4.1(b), we observe that the regret
reduction of G-MCP-Bandit over all other algorithms is larger than 10% when the
sample size T is larger than 350. This observation echoes our theoretical findings
that the G-MCP-Bandit algorithm attains the optimal regret bound in sample size
dimension O(logT').

We also observe that the benefits of G-MCP-Bandit over other three algorithms
appear to increase in the data sparsity level. Figure 4.1(c) presents the influence of
the covariate dimension d on the cumulative regret for the case where T" = 1000.
Recall that we fixed the dimension for significant covariates s = 5. Therefore, as
the covariate dimension d increases, the data become sparser (i.e., d/s increases).
As expected, the cumulative regret for all four algorithms increases in the covariate
dimension d, but at different rates. On the one hand, both OLS-Bandit and
OFUL lack the ability to recover the sparse data structure and are ill suited for
high-dimensional problems. On the other hand, Lasso-Bandit and G-MCP-Bandit,
which adopt different statistical learning methods for the sparse structure discovery
and are designed for high-dimensional problems, have lower cumulative regret that
increases in d at a slower rate. Further, we notice that the G-MCP-Bandit algorithm
has the least increase in cumulative regret among all four algorithms, which confirms
our theoretical finding in Theorem 4.4.4: The G-MCP-Bandit algorithm has a
better dependence on the covariate dimension O(log d) than Lasso-Bandit O(log® d),
OFUL, and OLS-Bandit (the last two algorithms have polynomial bounds in d).

In the second synthetic data experiment, we study the influence of the size of

decision set by varying K = {2,5, 10, 20, 50,100} and keeping the data dimensions

2In all four experiments where d € {10,102%,10%,10*}, we simulated the sample size up to
10,000 and observe that the G-MCP-Bandit algorithm’s cumulative regret seems to be stabilized
before T' = 2000. Therefore, we only plot for the first 2000 samples to avoid duplications.
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unchanged (s = 5 and d = 100). For each decision, we randomly draw the parameter
vector for the significant covariates from a uniform distribution, U(0,1). Finally, we
keep other parameters the same as in the first synthetic data experiment. Figure
4.2 plots the average cumulative regret for OFUL, OLS-Bandit, Lasso-Bandit, and
G-MCP-Bandit (under the linear model).
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Figure 4.2: Synthetic study 2: The impact of 7" and K on the cumulative regret,
where d = 100 and s = 5.

We observe that the benefits of adopting G-MCP-Bandit over the other three
algorithms increases with the size of the decision set. In particular, as K increases,
the cumulative regret gap between G-MCP-Bandit and any other algorithm grows;
see Figure 4.2(c). This observation is as expected. To intuit, note that as we add
more possible decisions into the decision set, the complexity and difficulty for the
decision-maker to select the optimal decision grow for two main reasons. First,
the decision-maker will need more samples to identify the significant covariates
and estimate the parameter vectors. Second, as the number of decisions increases,
the process of comparing the expected rewards among all decisions and selecting
the optimal decision becomes more vulnerable to estimation errors. Therefore,
we should expect that as the number of arms increases, the amount of samples
required for these algorithms to accurately learn the parameter vectors and select
the optimal decision will increase as well.

Figure 4.2(a) and Figure 4.2(b) plot the cumulative regret for the case of two
arms and twenty arms, respectively. Clearly, the decision-maker needs far more
samples before his cumulative regret can be stabilized in the case of twenty arms
than in the case of two arms. Therefore, the cumulative regret performance under
all algorithms suffers from the increasing size of the decision set. As discussed

earlier, the G-MCP-Bandit algorithm attains the optimal bound in the sample

117



size dimension and is able to learn the sparse data structure and provide accurate
unbiased estimators for parameter vectors. Hence, we observe that the benefits of
adopting the G-MCP-Bandit algorithm over other algorithms are amplified as the

number of arms increases, as illustrated in Figure 4.2(c).

4.6.2 Warfarin Dosing Patient Data (Linear Model)

In the first real-data-based experiment, we considers a health care problem in
which physicians determine the optimal personalized warfarin dosage for incoming
patients ([24]). Using the same dataset, [9] demonstrate that the Lasso-Bandit
algorithm outperforms other existing bandit algorithms, including OFUL-LS ([1]),
OFUL-EG ([2]), and OLS-Bandit ([37]). The warfarin dosing patient data contains
detailed covariates (the size of covariates used in our experiment is 93) for 5,700
patients, including demographic, diagnosis, and genetic information that can be
used to predict the optimal warfarin dosage.

We apply the G-MCP-Bandit algorithm to the warfarin dosing patient dataset to
evaluate its performance in practical decision-making contexts where the technical
assumptions specified early in §4.3 may not hold. Following [9], we formulate this
problem as a 3-armed bandit with covariates under the linear model.

Figure 4.3 compares the average fraction of optimal/correct dosing decisions
under G-MCP-Bandit (under the linear model) to those under OFUL, OLS-Bandit,
Lasso-Bandit, actual physicians’ decisions, and the oracle policy. We observe that
as long as the sample size is not too small (e.g., the number of patients exceeds
40), the G-MCP-Bandit algorithm will outperform physicians’ decisions, OLS-
Bandit, Lasso-Bandit, and OFUL. However, when there are very limited samples
(< 40 patients), the physicians’ static decisions (i.e., always recommend medium
dose) perform the best, with a stable optimal percentage of 54%. This is because
that without sufficient samples, all learning algorithms are unable to accurately
learn the parameter vectors for patients’ covariates, and consequently they behave
suboptimally.

As the sample size increases, all learning algorithms are able to update their
estimation of parameter vectors and eventually outperform the physicians’ static
decisions. Among all learning algorithms, the G-MCP-Bandit algorithm requires
the fewest samples (i.e., T" > 40 for G-MCP-Bandit, 7" > 90 for Lasso-Bandit,
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Figure 4.3: Warfarin dosing experiment: The percentage of optimal warfarin dosing
decisions.

T > 180 for OFUL, T' > 220 for OLS-Bandit) to provide better dosing decisions

than physicians.

4.6.3 Tencent Search Advertising Data (Linear & Logistic Mod-

els)

In the last experiment, we scale up the dataset’s dimensionality to consider a
search advertising problem at Tencent. The Tencent search advertising dataset
is collected by Tencent’s proprietary search engine, soso.com, and it documents
the interaction sessions between users and the search engine ([82]). In the dataset,
each session contains a user’s demographic information (age and gender), the query
issued by the user (combinations of keywords), ads information (title, URL address,
and advertiser ID), the user’s response (click or not), etc. This dataset is high-
dimensional with sparse data structure and contains millions of observations and
covariates. To put the size of the dataset into perspective, it contains 149, 639, 105
session entries, more than half a million ads, more than one million unique keywords,

and more than 26 million unique queries.
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For illustration purposes, we focus on a three-ad experiment?® (with ad IDs
21162526, 3065545, and 3827183). Each of these three ads has an average CTR
higher than 2% and more than 100, 000 session entries, which provide reasonably
accurate estimation for parameter vectors (see next paragraph for more discussions).
In total, there are 849,338 session entries with 169,744 unique queries and 8
covariates for users’ demographic information. As the search engine receives
payment from advertisers only when the user has clicked the sponsored ad, we
arbitrarily assume that advertisers will award the search engine $1, $5, and $10 for
each clicked ad, respectively.

Figure 4.4 plots the the average revenue performance under OFUL, OLS-Bandit,
Lasso-Bandit, a random policy, the oracle policy, and G-MCP-Bandit (under both
linear and logistic models). It is worth noting that the “true” oracle policy is
impossible to implement, as the true parameter vectors are unknown, or at least
have considerable variance even when all session entries in the dataset are used for
estimation. Therefore, the oracle policy in the experiment represents the scenario
when the search engine has access to all data to estimate these parameter vectors
and make ad selection decisions. In addition, we introduce the random policy
as another benchmark to simulate the scenario in which the search engine will
randomly recommend an ad with equal probability to an incoming user. Finally,
note that the CTR prediction is binary in nature (i.e., click or not). We therefore
include the G-MCP-Bandit algorithm under the logistic model and compare it to
the G-MCP-Bandit algorithm under the linear model to study the influence of
the underlying model choice. In the experiment, we simulate incoming users by
permuting their covariate vectors randomly. For each algorithm, we perform 100
trials and report the average revenue with 5000 users, which seems to be sufficient
for the G-MCP-Bandit algorithm to converge.

We can show that all learning algorithms generate higher average revenue than
the random policy for any number of users and that the G-MCP-Bandit algorithm
outperforms other algorithms under most scenarios. Specifically, when comparing
all algorithms under the same linear model, we observe that the G-MCP-Bandit
algorithm (under the linear model) has better average revenue performance than
OFUL, OLS-Bandit, and Lasso-Bandit as soon as there are more than 140 users.

3We have extended the experiment to include more ads, but we find that doing so will not
qualitatively change our observations and insights but considerably increases the computation
time. Therefore, we decide to focus on this three-ad experiment in the work.
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Figure 4.4: Tencent search advertising experiment: The average revenue under
different algorithms.

This observation is consistent with that in warfarin dosing experiment in §4.6.2
and suggests that compared to other benchmark algorithms, the G-MCP-Bandit
algorithm can improve the parameter vector estimation under high-dimensional
data with limited samples and achieve better revenue performance.

Further, we find the choice of underlying models can significantly influence
the G-MCP-Bandit algorithm’s average revenue performance. Note that the ad-
vertisers award the search engine only when users have clicked the recommended
ads. Therefore, the search engine’s reward function is binary in nature. When
comparing the G-MCP-Bandit algorithm under the logistic model to that under
the linear model, both of which are special cases of the G-MCP-Bandit algorithm,
we observe that the former always dominates the latter for any number of users.
In addition, the G-MCP-Bandit algorithm under the logistic model merely needs
20 users to outperform the other three algorithms. This observation suggests that
understanding the underlying managerial problem and identifying the appropri-
ate model for the G-MCP-Bandit algorithm can be critical and bring substantial

revenue improvement for the decision-maker.
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4.7 Technical proofs

To simplify the notations, we denote V4F(x) as the vector with (V4F(x)); =
(VF(x));, i € A, where (+); is the i-th element in the vector. Similarly we denote
V2 sF(x) as the matrix with (V% zF(x)); = (V2F(x))y;, i € A,j € B, where
(+)i; is the element in i-th column and j-th row. We denote Apin(X)/Amax(X) as

the smallest /largest eigenvalue of matrix X.

4.7.1 Proof of Lemma 4.4.1

Proof. Lemma 4.4.1 directly follows Lemma A.0.2 in Appendix: A by setting
|A| = n. O

4.7.2 Proof of Proposition 4.4.2

Proof. Proposition 4.4.2 follows Proposition 4.5.1 by setting |A| = n. ]

4.7.3 Proof of Proposition 4.4.3

Proof. Under the e-decay random sampling method, the probability of randomly
drawing arm k at time ¢ is min{1, ¢, /t} /||, where |K| is the number of arms. Hence,
at time 7', the expected total number of times at which arm k£ were randomly drawn

is
1 & to
E[ng) = — min{l,}.
PR

When T' > tg,

E[ng] = K (t0+ > t) |/C|< + Z ) (4.7.10)

t=to+1 t=to+1

Since the function f(¢) = 1/t is decreasing in ¢ , it can be bounded as follows.

t+1 1 ]_ t 1
/ fdt<f</ Sdt > 2.
Jt t t t—1 1
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As tqg > 1, for any t from tq + 1 to T, we have

T
1
log(T + 1) —log(to + 1) < > — <log(T) — log(to). (4.7.11)
t=to+1

Combining (4.7.10) and (4.7.11), we can bound E[ny] as follows.

L 41+ Tog(T) — log(to)).

1
—to(1 4+ log(T + 1) —log(to + 1)) < E[ng] < X

K|
(4.7.12)

Since ny = Y1, 1{random sampling for arm k at t}, we can view ny, as the sum-
marization of bounded iid random variables. Via Chernoff bound, we can build the

connect between ny and E[ng].
1
Bfmi] ) > 1 - 2exp (— 15 Elm] ) (47.13)

We then relax the E[n] in (4.7.13) with the upper and lower bounds provided in
(4.7.12) and the following result is attained.

p to(1 +log(T + 1) — log(to + 1)) <y < 3to(1 + log(T) — log(to))
2|K] 2|K|
fo+1 \ ™%
>1 -2 ———+ . 4.7.14
=12 ) e

When ty = 2Cy|K|, Cy > 10, and T > (25(’:721)2, we can simplify the right-hand size
of (4.7.14).

to Co/5
to+1 ) OK VT +1 2
o ottt SR >1— . (4.7.15)
e(T'+1) e(T'+1) T+1
O

4.7.4 Proof of Proposition 4.5.1

Proof. In the first step of 2sWL procedure, we are essentially solving the Lasso

problem. From Lemma A.0.7, we have |glass — girue|l; < gl%‘:\ which high
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probability. As we assume [, > (?ﬁ?j + a) A and ||Blasse — girue|| < ||Blasso —

B"¢||; we have the follow statements hold.

96msA
7
|Alk

18%559) > ), i € S and |Bl%) < s (4.7.16)

where we ignore the subscript in S to simplify the notation. Combining (4.7.16)

and P, (|z|) = max{0, A — |z|/a}, we have the following two results.

P(|g*)) =0 i€, (4.7.17)
/ ;[ 96nsA 96nsA\
;asso > U o . c. 471
P(15%°]) = Py ( Al ) (A MW) i€S (4.7.18)

Define the event &, as follows

(4.7.19)

96nsA
_ oracle o
52 = {HVyL(B )Hoo <A 7|A’/{a } .

From the convexity of £(f), we can build a lower bound on the optimal objective

function value in the second step of 2sWL.

E(,B*) + ZP)/\qB]l'assoD . |B]*’ Z E(ﬁoracle)
T Vﬁ(ﬁorude)T(ﬁ* . ﬁtrue) + ZP)/\(’ﬁ]l'asso‘) . ‘Bj|>
(4.7.20)

where 8* is the optimal solution of the second step of the 2sWL procedures. From

the definition of oracle solution, we have

Beracle — arg Jnin £(8) = 1) VsL(B7*!) = 0 and 2) Bs. = 0. (4.7.21)
sc¢=

Combining (4.7.17), (4.7.18), (4.7.20), and (4.7.21), we have

LB+ > P - 151

jES®

> ﬁ(ﬁoracle) + VSCﬁ(IBoracle)T(ﬁ;C o g?;acle) + Z P)/\(|B;asso|) . |5]*|

jES®
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= L(B7) + 3 (V,L(877°) (55— 0) + B (161]) - 155])

jeS®
_ £(IBoracle) + Z P)/\(‘ﬁ]l'assoD . |ﬁ;racle|
jES®
+ X (VLB )sign(3;) + P(85)) 551 (1.7.22)

jese

Using &, defined in (4.7.19), (4.7.22) can be simplified as follows.

E(I@*) + Z P)/\(’ﬁ][qsso‘) X ‘6]*’ 2 E([@oracle) + Z Pﬁ(‘ﬁéasso‘) . ‘B;Tacle‘ +CO Z |6]*’7

JES® jeSe jese

(4.7.23)

where ¢( is a positive constant. Since 8* is the optimal solution of the second
step in 2sWL, per (4.7.23) we must have B; =0 for all j € 8. Together with the
uniqueness of the solution of (4.4.1), B is also the unique optimal solution to
the second step in 2sWL, i.e, BMCF = goracle  Therefore once event £ happens,
with high probability 8" becomes the oracle solution, which enjoy the optimal
statistical performance. We then need to consider the chance that & happens and
the result is summarized in Lemma A.0.11. Per Lemma A.0.11, the following &3, &y

and & implies &s.

_ true _ 96ns i
o= {1vsci8m e < (1- o) 31

96ms \ ol Al
_ true < —
&4 {Hvsdﬂ Moo < (1 | Alm) 8snal,,,

55 — {Hﬁoracle o Igtrue”2 S CQ/\} ’

where C5 is a positive constant. Now, we can bound the probability of events &,
&4, and &5 happen simultaneously. From Assumption A.5 and Hoeffding bound we
have the following inequality for ¢; > 0

1 & ’ t2
P (||V3£(ﬁtrue)||w > t1) =P (n fosf <rj|m}j$/3tme>”oo > t1> < sexp (_ nty ) .

2,2
7=1 20 Imax

(4.7.24)
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Similarly for ¢5 > 0, we have the following result.

T 92,2
20%72

P (VL8 > 1) < (0= o (~5 50 ). (@7s)

By setting ¢, = t» = (3 — 2"%) min {1, 85’29‘;” })\, we have

212

max

nA2 (L — 2tns )y i {1 solAl 2
P ((€)° U (£4)°) < dexp ( (G = g min {1 558 ) . (4.7.26)

We can further bound event &5 via Lemma A.0.2. We can have the following

result by setting ¢ in Lemma A.0.2 satisfying ¢ < ’%%.
Al nt?
P oracle _ Qtrue < C )\) >1— _ /.L0| _ - .
(H B B = VERA) 2 o exP 850922 . o exp 2s02a2, .
(4.7.27)

Moreover, from (A.0.5) in Lemma A.0.2, the following result hold for |A4] > %

8s202x2 n ol Al ChlAlpo
P oracle __ Aatrue < max > 1 — S S R, )] - .
(H'B BN < pi| A2 ) - 5 exp ( 850912 xp 2512

max max

(4.7.28)

Combining Lemma A.0.7, (4.7.26) and (4.7.27) , we have the following inequality
fOl" C < /LOl.A‘\/CQ/\
— 2n :

P <||ﬂMCP — Bl < %)) > 1= 0y(n, | A, A) = 33(|A[) — da(n, |Al, O).

(4.7.29)

Similarly, by |A| > %, the following result comes directly from Lemma A.0.7,
(4.7.26) and (4.7.28).

8520222 n
POWW”—HWMS ;w$X>zerAwwmmmAwwwm>

(4.7.30)
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4.7.5 Proof of Proposition 4.5.2

Proof. Directly from Lemma A.0.9.

4.7.6 Proof of Proposition 4.5.3

Proof. Since {M (i)} is a martingale with bounded difference 1, we can use M (0)
to bound the value of M (7T + 1) with Azuma’s inequality as follow:

P (\M(T +1) — M(0)] > ;M(O)) < exp <—2(J\§(0+)22/;1>
= P (M(T +1) < ;M(0)> < exp (M) _

The term M (0) can be expressed as follows

M) =E {Ti:l Wzx; € Uy, &,z ¢ Rk))}
_ TZHIP(;BZ. € Uy, €1 ¢ Ra). (4.7.31)

i=1

As {x € U} is independent of {&,x ¢ Ri} and {x ¢ Ry} is independent on {&},
(4.7.31) implies the following inequality

MO)= 3 Pla, € GIPENP(@ ¢ Re)
T+1
> Y (- o0 - 2, (47.32)

where (4.7.32) uses assumption A.3, Proposition 4.5.2 and Proposition 4.4.3.
When T' > max{14,4Cy|K|}, we have

7 1
< = 4.7.
T+17"2 (4.7.33)
200|K] 1
< - 4.7.34
T+1 — 2 (4.7.34)



which implies that
Moy >y B 2T (4.7.35)

Therefore, the following inequalities hold

p(T+1)
8

IP<M(T+1) <

) =F (M (T+1) < §M<o>) < exp <—<p*>2<T + 1)%‘4)

2(T +2)

M(T+ 1) T+1 < oxp 2(T+2*+1-2(T+2))
128(T + 2)
T+1 p*
<
= <M T+1) ) = o ( 128 T 128(T + 2))
< .
:>IP<MT+1 )_exp( 98 ) (4.7.36)

4.7.7 Proof of Proposition 4.5.4

Proof. According to Lemma A.0.10, when event & defined by (4.5.8) happens, the
following inequality must hold for any x € Uy,

h

E(Rk‘ﬂf, ﬂ;andom(t)> 2 mj}g{ E(RJ‘ZL" ﬂ;andom(t)) + 5
j

Therefore, the lower-level decision-making process of the algorithm, in which the

decision-maker will successfully select arm i for x by using the random sample

estimator, will maintain the iid property of @ since it can be viewed as rejection

sampling. From Proposition 4.5.3, we have

p (M(T +1) < MT;U) < exp (— (p;);T> . (4.7.37)

Since M(T+1) {ZTJrl (Cl!j € Uk,g(;,wj ¢ Rk)|fT+1} ZTJrl (a:j S Uk,ge, Z; ¢
Ri), the amount of iid samples among the whole sample for arm & up to time 7"+ 1
will be lower bounded by M(T + 1). Denote A and n as the set of iid samples

belonging to Uk in the whole sample set and size of the whole sample respectively.
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The follow inequality holds.

P <|A| > p*(T8+1)> >1—exp <—<p*)2T) ,n<T+1. (4.7.38)

128

Consider |A| > w, n<(T+1),x=C,4 w, and T > Tj, where

2565222 645202zt (14logs)?
Cy = V2 and T; :maX{14 4C, K], A28 64 max max }
4 (i—ﬁ%)mln{17p*si% } 0 4G "(p*)Q’Clp*)Q’ (Chp*)? (pop*)? )
a:

the following results can be obtained:

25212 96n.s 96n.s
A > maX7 > d min >
A= = @2 a2 e = G

+a)A.

We then have the following result via Proposition 4.5.1.

pg(p)A(T + 1)

<o (PEED) o, (10 PN ) 4 (PO )

oracte rue 512830‘21‘?1121){
P (Ilﬂ i e[ J)

Combining 7' > Ty, A = Cyy/ B2 anq the fact T+ 1 > /T + 1log(T + 1)
for T' > 0, we have

5, (P(T8+1)> 5, (T+ 1,1’*(T8+1),A) I <p*(T8+ 1>> < Til (4.7.40)

(T +1) 1
P (|A| < ) < g (4741

8

Set Cg = 5155;3*73,]2”7 and Proposition 4.5.4 directly follows by combining (4.7.40),
0

(4.7.39), (4.7.41) and P(&5) < 75 from Lemma A.0.10.

]

4.7.8 Proof of Theorem 4.4.4

Proof. We divide the time, up to time 7', into three groups and derive the cumulative

regret bound for each group separately. Consider the following three groups:

1. z; e R, ke Kand T < Tj.

2. 2, ¢ R,k € K, T > Ty and & doesn’t hold,
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3. z; ¢ Ry, k € KT > Ty and & holds.

Before going to the detail proof, we first state the choice of Ty and Cj such that

the requirements of Proposition 4-6 are satisfied.

to+ 1)? 128 64 2565zt 64s%0%xt (1 +1 2
Ty = max{(oi) —1,14,4Co|K], 3, J, 2 Tax 2700 T ma 2+ 0g s) }
e (p*)?" Cip*)?" (Chp*) (top*)

16 4 4z2 1 576s Lop* -
Co = 10,2, = Mmax (2 ind1, For__
0 = max { TprlprCyT C2 <(4 p*/ia) mm{ 7192522 ’

3209522, (1 +logs) 4o?z2, (1 +logs) }
P*ho ’ t2 ’

: pop*y/CaX * hp* 5 *
where t < mm{ P* o P* o }7 Cy = [op

48 ’ 480’\/g37max ) 192@0’\/§Rmax$max 2035x§nax(lu'0p*+4gszlgnax) ’

— 3 2 2 2 — Bminp*k
Ci = min {1, K/ (19250’2xmax(3 + 2«/021:max)) and C5 = TNy e

Regret in part 1: Denote the regret for the first part as Ry(T).

T
Rl(T) < Riax (Z ]l(l‘z € Ry, k € IC) + T()) < Riax (Z ng + To) . (4742)

1=Tp ke

From Proposition 4.4.3, we know that

3to(1 + log(T) — log(to)) 2
P < >1——=—. 4.7.43
<n’“ = 2IK]| =TTt (4.7.43)
If we require to = 2Co|K|, Cop > 10, and T' > max{(to + 1)?/e? — 1,14}, then the

above equation can be simplified to

2 2

which implies

2IK
P[> ny>6Co|KllogT | <P (Upec(ng > 6CologT)) < > P (ny, > 6ChlogT) < 7’,
ke ek T+].

(4.7.45)
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and

kex ke keK kex

Ri(T) < Ruax (Z ny, +TO) = Ruax (Z ng| > ng > 6Co| K| logT) P (Z ng > 6Cy|K| logT>
+ Ruax (Z | Z ng < 6CyH|K| logT) P (Z ng < 6Cy|K| 1ogT)

ke ke kel
+ RmaxTO
2|K| 2|K|
< e I
< RmaXTT 1 + Ruax6Co| K| log T’ (1 T+l + RuaxTo
< 2Rpmax| K| + 6 RinaxCo| K| log T + RiaxTo
< Ruax K|(2 + 6Co log T) + RuaxTo. (4.7.46)

Regret in part 2: Denote the regret for the second part as Ro(T").From
Lemma A.0.9, we know that

1 h 7
random _ @Atrue < : >1_
7IK]
P(&(T) >1— —-. 4.74
SPE(M) 2 1- 0 (4.7.47)
Therefore, Ro(7T") can be bounded as follows
T
R2(T) < E[Z H(EG(Z.)C)RmaX}
i=1
T
=D E[1(E5(i))] Rmax
i=1
T
- Z P(SG(i)C)Rmax
i=1
< TRuax|K| log(T + 1). (4.7.48)

Regret in part 3: Denote the regret for the third part as R3(7"). Without
loss of generality, we assume that arm ¢ is true optimal arm at time ¢. Then, the

regret at time ¢ can be bounded as follows

rn=E <11 (j = arg max B[Ry|x,, }:hol@(t)]) (E[R;|z,, B — ]E[Rj|wt7’3§7‘ue])>
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E (Z 1 (E[R; |z, By ()] > E[Ri|w:, B (t)]) (E[Rila;, B — B[R; |, ﬁ;me])) .
J#i

(4.7.49)
Denote £(t,d)sr = {E[Ri|z:, Bi] > E[Ry|xt, B ¢] + 6}, k #4,k € K. Then we

have the following bound.

<E ( E[R|a;, B;"(t)] > E[Rilz:, B ()]} NE(t, 6)s,)

J#

x (B[R, B — E[R; |z, B7)))

HE( 1 ({EIR; |, B2 (1)) > B[R, B (1)]} N (L, 5)5,)

\)

x (BR;|z;, BI"] — B[R, |z, B7]))

<E ( > 1 ({ElR; |, 8" (0)] > BlRile, B"(0)]} N E(t, 0)s,) <2Rmax>)
! (4.7.50)
+E ( > 1 ({BR; e, 7" ()] > BlRil,, B"(0)] } N E(t, 0)5 ) <6>) .
]Z (4.7.51)

The term in (4.7.51) can be bounded as follows

(z 1({BIR) |, 7" (0)] > B[Rilw., B ()]} NE(E 0)5 ) <6>)

JF

<E (Zn( (t,0)5,) (5))

J#i

=Y P (Et,0)5,) 0

J#i
=(|K| = 1)C Rpax6* < CRpmax|K|6%, (4.7.52)

where the last inequality comes from assumption A.2. Now we consider the term
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(4.7.50), which can be bounded as follows

E BRj|a,, By"(1)] > B[Ri|a:, B (1))} N E(t,0)s,) 2Rmax>

]E R ’wt’Bwhole( )} o E[Rj|wt”8§rue]

ﬁé
J#
E[Ri|a;, B"(t)] — B[R;|@1, B 4 6) 2 Rimax)

]1 ’E R |wt”3whole( )] o E[Rj|$t,,3§Tue]

> — ‘E R ’wt’Bwhole< )] o E[R”wt’ﬁfrue]

+ 6) (2Rmax))

<E

7
%

maXO_eQUI n aXbImax Hﬁtrue o ;Cuhole (t) H 1
)

]E (
JFi
(]#
> Rmaxo_€20mnlaxbxmaxHﬁtrue I@;uhole (t) H L+ 5) (2Rmax))

)
<E ]1 true whole true whole t > 2R max
> ||/3 Ol + 187 = B Olh 25— ey — ) )]

(4.7.53)

where the second last inequality comes from the first part of the Lemma A.0.10

and ||B||; < b in assumption A.1. From Proposition 4.5.4, we have the following

whole rue 52 12
P (H/Bkhl () = B2 = ‘/C‘*T) <7 (4.7.54)

As || BEhele(t) — Bire]|, > \/Hﬂwhde( ) — B, (4.7.54) implies

3 12
P wholet _ @Atrue > \/78 < ) 47,
(H:Bk &) =B =\ Coqpq | < 707 (4.7.55)

Denote event &y as follows

inequality.

4]

1 =
h = 2Raxoeommasby

= {lIBE""(t) — By ke K} (4.7.56)
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Combining (4.7.53) and (4.7.55), we have:

0

rue whole rue whole

I (]; 1 <H'B§ - 18]' (t>H1HBf - 137, (t)Hl > Rmax0'€2gmma)(b$max> (2Rmax))
)

rue whole rue whole

—E (m (Hﬂt = B Ol + 18I = B 2 éb) ﬂ<eg><2Rmax>)
whole 0 c c
E ( 1 (nﬂm B Ol + 18I = B Ol 2 59> ﬂ<59><2Rmax>)
J#i max

IN
=

11
S 1(s6+ 2020
(J 2020 =

Z

&) 1(8) <2Rmax>> +0

E (1 (E(t)) (2Rmax)) < 2RunaxP(Eo). (4.7.57)

Furthermore, by setting 6 = 2R paxoe2?@maxby o/ C’/;TS—;, we have the following
result:
24Rmax|}C’ AR?  g2elormaxb ?naXCbS - CRg

T+1 + Clmax|K| T+1 CT+1
(4.7.58)

Tt S 2Rmaxlp(59) + C(‘Rmax|lc|52 S

where Cgr, = 24R .| K| + 4eto2@maxbCR3 |22 Cgs®. Hence, the third part of

the regret can be bounded as follows:

T T
S TR o / 053 dt < Cp,log(T) (4.7.59)
1

i=1,ieR(T) o T

M=

Rs(T) =

Finally, the total regret bound can be obtained by combining the bounds for
these three parts:

Ri(T) + Ro(T) + R3(T)

< Ruax[|K|(2 4+ 6Colog T) + T] + 7Ruax| K| log(T + 1) + Cg, log(T)

< Ruax (To + |K|) + (6 Rinax [K|Co + 31 Rpax | K| + 402>t O R3 |K|a2, Cps®) log(T + 1)
= O(|K|s*(s + logd) log T).
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4.8 Conclusion

In this research, we develop the G-MCP-Bandit algorithm for online learning and
decision-making processes in high-dimensional settings under limited samples. We
adopt the matrix perturbation technique to derive new oracle inequality for the MCP
estimator under non-iid samples and further propose a linear approximation method,
the 2sWL procedure, to overcome the computational and statistical challenges
associated with solving the MCP estimator (an NP-complete problem) under the
bandit setting. We demonstrate that the MCP estimator solved by the 2sWL
procedure matches the oracle estimator with high probability and converges to the
true parameters with the optimal convergence rate. Further, we show that the
cumulative regret of the G-MCP-Bandit algorithm over the sample size T" is bounded
by O(logT"), which is the lowest theoretical bound for all possible algorithms under
both low-dimensional and high-dimensional settings. In the covariate dimension
d, the cumulative regret of the G-MCP-Bandit algorithm is bounded by O(logd),
which is also a tighter bound than existing bandit algorithms. Finally, we illustrate
that compared to other benchmark algorithms, the G-MCP-Bandit algorithm
performs favorably in synthetic-data-based and real-data-based experiments.
Implementing the G-MCP-Bandit algorithm under high-dimensional data with a
large decision set in an online setting can be challenging in practice, and addressing
these challenges can extend this research to several directions. One of the major
challenges is the computation time, especially when the covariate dimension and
the decision set are extremely large. In particular, during a collaboration with a
leading online marketplace, we adopted the G-MCP-Bandit algorithm, aiming to
improve its product recommendation system. Using its datasets (with 5 million
covariates and 30 million products), we showed that the G-MCP-Bandit algorithm
improved the prediction of the conversion rate by 15% and the expected revenue
by 5% on average, but a single server could take hours to execute the algorithm.
We can implement the G-MCP-Bandit algorithm in a hybrid online-offline setting,

where we recommend products by following the bi-level decision structure for every

IB'r‘andom Bwhole

user but update the parameter vector estimation and in batches
every a couple of hours. Yet, in order to implement the G-MCP-Bandit algorithm
in online settings, where we also update the parameter vector estimation for every

incoming user, parallel computation techniques must be developed to tremendously
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reduce the computation time. Other challenges for the G-MCP-Bandit algorithm
are how to simultaneously recommend multiple products and how to dynamically
update the recommendation if the user did not click the recommended products
but kept refreshing the recommendation page. Tackling these challenges requires

an integration of the assortment optimization and Bayesian learning into the
G-MCP-Bandit algorithm.
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Chapter 5
Conclusions and Future Research

This dissertation consists of three problems in high-dimensional learning and

decision making:

1. A sample average approximation with the folded concave penalty for high-

dimensional stochastic programming

2. An accelerated interior point gradient method for large scale linear constrained

nonconvex programming

3. A contextual bandit algorithm for online learning and decision making with

high-dimensional features

The first work is presented in Chapter 2. We propose the RSAA, a modifica-
tion to the SAA by incorporating a regularization scheme called the FCP. This
modification targets the high-dimensional SP problems with sparsity. We show
that when the solution is sparse or can be approximated by a sparse solution, the
regularization can significantly reduce the required number of samples in some
high-dimensional SP applications. Compared to the conventional SAA approach
that requires the sample size to grow polynomially in the number of dimensions,
the RSAA requires the number of samples that is only poly-logarithmic in the

dimensionality. Future direction includes:

1. (Development of new solution scheme) In our current work, we directly
adopt the second order interior point algorithm in [92; 93], of which compu-
tation complexity is O(p®/elog(1/¢)). Although the dependence on error € is

promising, the dependence on dimensionality p is not good enough, especially
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for the high-dimensional problem. We will explore the solution scheme with
better dimensionality and error trade-off, such as coordinate descent method

and accelerated gradient descent with eigenvalue checking.

2. (The possibility of distributed setting) Our current work focuses on the
sample size requirement. In practice, due to storage limitation or data privacy,
the dataset needs to be separately stored at different locations. It poses a
new challenge on how to design an efficient distributed algorithm to solve the

RSAA problem. The communication efficient framework will be considered.

3. (Perishable data) In our current setting, we assume that the true model is
static and the whole dataset could be stored. But in real world application
(e.g. online advertising), the true model might evolve with time and we can
only efficiently keep and process the very limit amount of active data, i.e. the
historical data is perishing. We will extend our current work with the stochas-
tic approximation (e.g. stochastic gradient descent (SGD) and Stochastic
Variance Reduction gradient (SVRG)) to develop a new computational and

statistical friendly framework.

In Chapter 3 we discuss the second work. We design an accelerated interior point
gradient method (AIP-GM) for non-convex programming with linear constraints.
Many important problems (e.g., [;-minimization, regularized neural network) can
be formulated into this form. AIP-GM is guaranteed to reach a e approximated
second order solution in O(e~"/*1log(1/¢)?) iteration. It improves upon the O(e~?2)
complexity of the gradient descent methods and provides additional second order
guarantee. In each iteration, only gradient calculation and matrix-vector multipli-
cation are required, which makes AIP-GM being suitable for large scale problem
arising in machining learning as well as other areas. Future research directions

include:

1. (ADMM with eigenvalue checking) Our current framework can be sum-
marized as accelerating the first order interior point method with eigenvalue
checking. We will research boosting ADMM type of algorithm with the similar

technique.

2. (Statistical property) Different from the vanilla first order methods, our

approach can even attain the second necessary solution. In [47] authors show
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that the higher order necessary solution can ensure statistical property for
FCP least squared regression problem. We will study whether our approach
can attain the solution with the statistical guarantee for general convex loss

functions in machine learning or statistical learning.

3. (Numerical studies) We will conduct comprehensive numerical examples

presentation, solution comparison and discussions on findings/performances.

The last work is shown in Chapter 4. we develop the MCP-Bandit algorithm for
online learning and decision-making processes in high-dimensional data settings. To
further tackle the computational and statistical challenges associated with solving
the MCP estimator under non-i.i.d. samples, we propose a linear approximation
method, 2sWL procedure, under the bandit setting and show that the MCP es-
timator solved by the 2sWL procedure matches the oracle estimator with high
probability. We demonstrate that the cumulative regret of the MCP-Bandit algo-
rithm over sample size T is bounded by O(logT'), which is the lowest theoretical
bound for all possible algorithms. In covariate dimension d and the number of sig-
nificant covariate dimension s, the cumulative regret of the MCP-Bandit algorithm
is bounded by O(s?(s +logd)), which is also a tighter bound than the Lasso-Bandit
algorithm. We show that the MCP-Bandit algorithm performs favorably in all our
experiments, especially when the data sparsity level is high or when the sample

size is not too large. We will consider the following future research direction:

1. (Contextual arm) We now only focus on the setting that the user has
covariates. A more realistic situation would be that arms are also described
by covariates and we need to make a decision based on both covariates. We
will consider adding arm covariates module into our model to address this

issue.

2. (Perishable data) The real world problem may involve time-evolving effects.

We will combine our current model with the methods in time-series analysis.
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Appendix A
Supplement material for Chap-
ter 4

Lemma A.0.1. Let A be the set of id samples. Under assumption A.1 and A.5,
there exists a constant jig > 0 such that for all feasible & defined in assumption A.4

we have

2
850972

P(Amm<v§,sﬁ<s>>z‘;fl’uo) s1—sexp( Ao ) (A0.1)

Proof. Proof of Lemma A.0.1 Note that f(+|-) is convex and has smooth gradient.

We denote 25 = x;s\/f" (1;|x] s&s). Combine with f(-|-) = —logg(-|]-) and we

have

1
V%,sﬁ Z LiST; sf (Tl‘mz s€s) =

z:z > Amin (i Z z}(z})T) 1.

jeA

: \

Then, we bound Ay, (f e Z ’-(z;)T) via Theorem 5.1.1 in [84] with e = 1/2:

Amin(]E[% Z]E.A 27(ZJ)T

D

(A.0.2)

_1/2)) 502Tr2nax/"

- og(e nminﬂ 2 (2T
:’P(Amin@Zzﬂz})%LAmm<m[z;<z;->ﬁ>) < se (—1 Ble/ 2 i Bl )"

2
25092 .«

(A.0.3)
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where (A.0.2) uses 0 < Apin(225(25)7) < Amax(£25(2)7) < 2(2hae)? = L0020,
and the last inequality comes from the assumption A.1. As we only consider
the significant dimensions, under assumption A.4, we can verify that there ex-

ists a o > 0 such that E[2}(2})"] = E[VzsLa(€)] = wol. Then, we have

1 (Ain(E S04 2(2))7) < 'A‘Amm@[z;(z;)ﬁ))zﬂ( win (L S0 25(2)7) < Blo ).

Thus (A.0.3) implies

P (Amin(i i 2i(z)7) < WMO) < sexp (_1og(e/2)!A|Amm( [2](2}) ])) |

2n 250912

max

Combining with the fact log(e/2)/2 > 1/8, Lemma A.0.1 follows immediately. [

Lemma A.0.2. Let the whole sample size be n and iid random sample set be A. If
assumptions A.1,A.4 and A.5 hold, there exist g > 0 such that for t > 0 we have

.A|,U() nt2

P MCP true < | )

(HB = ].A| = SXp SSUQwIQHaX tsexp 25(72333nax
(A.0.4)

. 2,2
Furthermore, if |A| > 235% we have

8 2 2
P (HIBJWCP o IBtrueH2 Z so Z'maxn) S sexp ( M0|A’ ) + 2€Xp ( h‘A|:u0

pgl Al 850207 ax 2509 o
(A.0.5)
where Cy, is a positive constant.
Proof. Proof of Lemma A.0.2
From the definition of oracle solution, we know
VsL(Boree) = 0. (A.0.6)

Expanding (A.0.6) at 8¢ we will have the following result for some & € {737 +
(1—7)Be, 7 € [0,1]}.

Vsﬁ(ﬁtrue) 4 V?975£<£)(,80Ta016 I@true) —
v?sysﬁ(é-)(ﬁoracle _ Btrue) — _vsﬁ(ﬁtrue)
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(ﬁoracle . /Btrue)Tv‘QS,SE(f)(IBoracle o IBtrue) _(ﬁoracle . ﬂtrue)Tvsﬁ(Btrue)
Amin(V5 s LB = B3 < 187" = B2/ VSLB™)]2
Aumin(V5 s L) (B = B™) |2 < [VsL(B™)]2. (A.0.7)

The Amin(Vzs£(£)) term on the left hand side of (A.0.7) can be lower bounded
away 0 via Lemma A.0.1 with high probability. Thus we only need to construct
the upper bound for right-hand side of (A.0.7) that can be expanded as follows

IVSL(B™)l2 —H ngsf (rjl@jsB"™) (A.0.8)

2

Under assumption A.5, we have | f'(r;|asB"¢)| < . Combining with E[f (r;|a! ¢8')] =
0, we can verify that f'(r;|@sB) is a o-subgaussian random variable. From

Hoeftding inequality, there exists a t > 0 such that

1 n
Pll=
ni4

Z x?;fl(rj |mfﬁtrue)

2
> t) < exp ( nt) Vi € S. (A.0.9)

20212
Hence, we have
S t)
2

P (HVSE(IBtTUG)HQ > t) =P (H:L Zn:ijz (T]‘mT/Btrue)
=1

1 = rue
<P ( Ezwﬁ rj|:cT,Bt ) 2t>
J= 00
nt?
< —_ A.0.10
<o (g ). (A.0.10)

where the inequality in (A.0.10) follows from |S| < s. Combining (A.0.10), (A.0.7)
and Lemma A.0.1, the statement in (A.0.4) follows.

Now, the first half of Lemma A.0.2 has been proven, and we switch to the second
half. Denote € = [e1, €2, ..., €,] Where €; = f/(rj|:c;€5,8”“€), j=1,2,..,n. Then
VsL(B¢) can be rewritten as VsL(B7"¢) = 1 Xse with Xs = [xys, ..., Tns].
Using the Hanson-Wright inequality (Theorem 1.1 in [72]), we have

1 1 1
P{le"(XE Xs)e — E[e’ (- XTXs)el| > Ecle” (XL Xs)el}
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<2exp | —C}, min {

Ec[e"(; X5 Xs)e] (Ecle”(; X5 Xs)e])’ })
o5 X§Xs!|z Lot XS Xl

min XEXS) EE[GTE] )\min(%X‘Z‘jX‘S)Q ]Ee[GTE]Z
§2exp< Chnnn{ maX Xs) o ’)\max(ngXs)z sot
mm( Xng) n* Ain(;; X Xs)?
§2exp< Chmm{ Anax(1XTX5) 5 man(E XL Xs5)?
Ch)\min(XgXS)>
<2exp|—n E ’ Ao
<Zexp ( Amax (2 XE Xs) ( |

where C}, is a positive constant and [, denote the expectation with respect to e.

The last inequality, (A.0.11), holds when n > o dmax (5 XE Xs)

Fem(LX1Xs) " Define the event &; as
follows

& = {!eT(ixgxs)e - IEe[ET(TlngXs)eH < EE[eT(ixgxs)e]} . (A0.12)

Under event &, we have

1 1 1 2 1
HngeHQ < \/n€T<nX§XS)6 < \/n]EE[eT(nXgXS)e]. (A.0.13)
Let P; = XI(XsX%)™'Xs. We have (Pie)' (L XIXs)(Pe) = €' (1 XL X5)e,
and (A.0.13) implies the following result.

12 Xels < 2BdP o XEX0) (o)

2 1
<\ XEX OB Pel

230’2

1
< \/)\max( XEXS) (A014)

where the last inequality comes the facts that E[||Pjel3] = so? in which P;

can be viewed as a projection matrix from n dimension to s dimension and

€; is a o-subguassian random variable. Therefore, from VsL(B7*¢) = 1 Xge,
n
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Amax (2 XE Xs) < sa2,, and (A.0.11)-(A.0.14), we have the following inequalities.

2520232 Crdmin(2 XEX
P (Hvsﬁ(ﬂtrue)HZ < So—nxmax) > 1— 2eXp <_n h S;Q S))

(A.0.15)

" T
. 1 %T _ 1y T 1 v T ['rileis€) 1 oo
Since - XgXs = ;Y11 ®jsTis = 5 25 TjsTis L = ?ZVS,SE(E)

o2

then may apply the Lemma A.0.1 to further lower bound )\min(%XgX ) by |A“‘°

2noo

for some 19 > 0 with high probability and then (A.0.5) follows. ]

Lemma A.0.3. If there exists K and oq such that K (E[exp(zzi/KQ) — 1}) < o2,
then the following probability bound will hold for allt > 0:

K
{IIZz; 2T~ Blz;2")|w > 2K% + 2K09/21 + 2K 00\ ( Al (g)>} =eplon

0o

(A.0.16)
where )\( ., (g)) _ \/W+ K log(d(d—1))
Proof. Proof of A.0.3 From the exercise 14.3 in [14]. u

Lemma A.0.4. If there exist ko, S, and zj, j = 1,2,..,n such that |Jug||? <
@ u'Blz; 2] Ju holds for allu € U = {u : |Juge |y < 3|lug||} and H% Y zz) — E[zjzf]H <
o S‘ then for all w € U, the follow inequality holds:

ISI
lus]li <

o1 as]. o

Proof. Proof of A.0.4 From Corollary 6.8 in [14]. O

Lemma A.0.5. Let x;, j = 1,2,...,n, be random iid samples. Under assumptions
A.4 and A.5, the follow inequality holds for all w such that ||use||1 < 3||us||::

P (- llusl < u"VPL(B)u) 2 1 - exp(~Cun), (A.0.18)

where C; = min {1, K%/ (192502151211%(3 + 2\/0_2xmax))2}.

Proof. Proof of A.0.5 From the definition of £(8), we have V2L(€) = £ 7 @] Ty "(rj, xTE€).

Under assumption A. 5, we know that f is convex with smooth gradient. We may
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denote z; = x;,/ f"(r;, T &) and then get V2L() = _, 2;z] . Furthermore, un-
der assumption A.1 and A.5, we have |f" (r]]a:;rﬁﬂ § o) and H:cHoo < Zmax, Which
implies that z; is element-wise bounded by Zmax = [|2j/lcc = ij f”(rﬂw?é)“w <
V02Tmax. Since z; is bounded, it will satisfy the definition of the subguassian
random variable. We can use the Lemma A.0.3 as a bridge to connect the sample
matrix % i zjij to its population counterpart E|[z; JT] Let K = zpa, and
00 = V/22Zmax and we will have K2 (E[exp(zfﬂ-/Kz) — 1]) <22 (e—1) <o for all
t>0andi=1,2,...,d. Therefore, under Lemma A.0.3, for ¢ > 0, we have

2
> 222 t4422 V4 V822 <\/_, n, (g)) } < exp (—nt),

2
(A.0.19)
where \ (\[ n, (g)) =/ 2loaldld=)) |y malogldld=1) (A 0.19) indicates that when

the sample size is large enough, %2?21 zjij will not be far away from E[zjij]

P{H ZZJ ZJZJT]

o0

element-wise with high probability.

Now we only need to show that if X L1 %) ]T is close enough to E[z;z; T, vic
satisfies (A.0.18). To this end, we need Lemma A.0.4. We set n > logd/C; and
t = C} in (A.0.19). Then the following inequalities hold.

(A.0.20)
V2 d 2log(d?)  zmax log(d?)
2 v- < 2 max < 2
\/gzmaxA ( 2 ) 12, ) — \/gzmax n + n — 8\/§Zmax(1 + Zmax)\/aa
(A.0.21)

where (A.0.20) and (A.0.21) use logd/n < C; < 1. Combining (A.0.20) and
(A.0.21), we have

2 d [~
2’Zr2naxt + Z‘inlax\/z + \/gzrznaxA (é_? n, <2>> S 2Zr2nax (3 + 4\/§<1 + Zmax)) Cl

<
= 325’
(A.0.22)

< 62max (3 + 22max)) y/C1 <

where (A.0.22) uses v2 < 2 and C) < w?/ (192302xfnax (34—2\/@:6,%}()))2 <

2 —
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K2/ (192522, (34 22max)))’. Then, (A.0.19) can satisfy the following inequality.

o

L2757 — Elziz]]

j=1

K
< — V>1— _
< 325} >1—exp(—Cin). (A.0.23)

[ee]

The statement of Lemma A.0.5 follows by combining (A.0.23) with Lemma A.0.4.
0

Lemma A.0.6. Let Aii? be the index set such that for all i € A, x; are ran-
dom, iid samples. If for all w such that |Jugse|1 < 3|lus|li, we have £|jug|i <
uTV2£A;:-d (&)u, then the follow inequality holds:

‘A”d‘ K
2ns

|us|i < u'VEL(E)u, (A.0.24)

where L4(B) denotes the likelihood function with samples only in A",

Proof. proof of A.0.6 We can rewrite VL(€) with z; = @;/f"(r;|z] €) as follow.

1
u' V2L(E)u Z zJ (D zjij
]G.A”d JG(AZLd)c
AT 1 .
> ZiZ;
A 2
AiidT
> | T’: | VLAE)
’And’ K )
o llusli
|And|/{
A.0.25
s . (A.0.25)

O

Lemma A.0.7. Let the whole sample size be n and the set for iid random sample
in Uy be A, k€ K. If assumptions A.4 and A.5 hold, then the follow result holds.

96n.s\ 2

P <H,3la550 — B, < Al ) >1—exp(—Ci|A|) — exp (

n
2
8z Lnax

+ log d) ,
(A.0.26)
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where C; = min {1, K2/ (192502:Eilax(3 + 2\/0_2xmax))2}.

Proof. Proof of lemma A.0.7 Let £4(58) be the loss function only includes samples

in A. Under assumption A.4, we have
K
g||u$||% < uTE[V2L4(8)]u, (A.0.27)

for all u such that [|usc||; < 3||us||;. The following result follows from (A.0.27)
and Lemma A.0.5:

P (Sllusl < uVPLa©)u) 2 1 - exp(—CilA). (A.0.28)

Moreover, via Lemma A.0.6, for all w such that ||usc||y < 3||us||y the follow

inequality holds.

P (’;4““||us||§ < uTVZE(E)u> > 1—exp(=Ci|A]). (A.0-29)

ns -

Since B'%** is the optimal solution to the Lasso problem, we can ensure the following

inequality:

L(B%) + A8 < £(B”) + M8
E(ﬁlasso) . £(6true) + )\HﬂlassaHl < )\H/Btrueul (A.0.30)
vL(/@true)T(ﬁlasso . Btrue) + )\HIBlassoHl < /\HﬁtrueHl (A.O.Sl)
—IVEBT el 8 = 87+ NI S NI (A032)

where (A.0.31) uses the convexity of £(8!%*5°). Denote event & as follows.
1
£ = {HVE(ﬂ“”“e)HOO < 2)\}. (A.0.33)
Under &, (A.0.32) can be further simplified into

1 asso rue asso rue
=SB — BT + A < A8

1
_§||13lasso o IBtrueHl + Hﬁlasso”l S H/gtrueul
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,Hﬁlasso _ true”l _ HIBlasso _ true BlassoHl + HﬂlassoHl < Hﬁtrueul + Hﬂ)ﬁrue”l.

(A.0.34)

As Bike = 0 by definition, we then have

||16lasso o t'rue”l o 7||[3lasso tTueHl + H/Blasso”l + ||6la880 0||1 < ||IBtTue||1 +0

,Hﬂlasso _ true”l _ ||IBlasso _ true”l + HﬁlassoHl + Hﬁlasso _ true”l < ||Btrue||1 +0
(A.0.35)

Rearrange (A.0.35) and we may have
||13lasso trueHl < 3||16lasso trueH (A036)
Denote u = Bla5%° — Birue. Then, we have ||uge||; < 3||us||;. Connecting (A.0.29),

we can obtain

!A\

P ((ﬁlasso . I3true)Tv2£(£) (IBlasso Btrue) ||ﬁlasso o twue||1> > 1— exp (—C1|A|) )

(A.0.37)

Now, we turn back to (A.0.30) and use the Taylor expansion on £(B'%°) at, Btrue
the following inequality holds for some &.

vﬁ(ﬁtrue)T(ﬂlasso _ Btrue) + ;(ﬂlasso _ Btrue)Tsz(E) (Blasso _ /Btrue) + )\HIBlasso“l S )\“/Btrueul'
(A.0.38)

Combining (A.0.32) and (A.0.38), we know that with probability 1 — exp(—Cin),
the follow results hold.

A
_ ||V£(ﬁtrue)”oo”<ﬁlasso_IBtrue)Hl+| ’ Hﬁlasso_ true|‘1+>\HIBlassoH1 <>\Hﬁtrue”
rue asso rue A asso rue rue asso
~ IVL(B™) (8 — gy, + FA i E 8 — B < A8 — 18 )
IA!

Hﬁlasso o true”l < )\”Btrue ﬁlasso”l
(A.0.39)

= IVLB" )l (8 = Bl + =
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Under event &, we have

1 asso rue |"4‘ asso rue rue asso
= AB =BT 1+ Hﬁl — BT < AT — B

|A”% asso rue rue asso
= e — B < 2A|\ﬁt -
|A’ lasso __ true < B\ true _ glasso A.0.40
S 1Bs It < 6AlIBS 57l (A.0.40)
24ns
:>||16lasso o true”
A’
96
s (A.0.41)

:>H18lasso Btrue”
|Alx
“uell; in (A.0.36).

true

where (A.0.40) and (A.0.41) use |85 — < 3||Blasso —
Now, we assess the probability of event 50. The i-th element of VL(B™"¢) is
‘ .n. Under

myxjif (rilxl B). Denote Xj; = ajif (rixl Be) for j = 1,2

1
X; are xyac0-subguassian random variables with mean

assumptlons A.1and A.5,
0. We can use Hoeffding inequality to build the following probability bound

t2
- ; . T qtrue >t < n
P(l; ;wgf (T 87)| > 1) < exp 5y =
1& /
) 2 1—ZIP <|n Yowpf (rile] 7)) Zt)
=1

=P (max| Z:Uﬂf (ri|] B) < t
nz 1 j=1
(A.0.42)

t2
> 1—dexp( 222>
X

Set t = 1), and we will have event & defined in (A.0.33) holds with at least
). The desirable result follows by (A.0.37) and

probability 1 — exp(—

(A.0.42).
0

Lemma A.0.8. Let to = 2Cy|K|, Cy = max{10,16/p*}, and T > max{(ty +
1)?/e* — 1,e}. Under assumptions A.3 and A.4, the following statements hold.

T+1

1. IP{n < 3Co(T +1) orn> GC’Olog(T+1)} <

1

2. P {|_A| < 3p*Colog(T + 1)} <

3. 1P{|A|/n < 4P } <7
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Proof. Proof of A.0.8 To show statement 1. From Proposition 4.4.3, we have

P (Co(1 +log(T + 1) —log(to)) < n < 3Co(1 +1log(T) — log(t))) > 1 — ——.

As we have T' > e, the following result holds.

3CH(1 +log(T") —log(ty)) < 3Ch(log(T") + log(T") — 0) < 6Cy log(T) < 6Cylog(T + 1).
(A.0.44)

From T > (to +1)%/e* +1 = L log(T + 1) — log(to + 1) > —1, we have

1 1
Co(1 +log(T + 1) —log(to + 1)) = Co(1 + 5 log(T + 1) + 5 log(T 4 1) —log(to + 1))
1
> Co(1+ ilog(TJr 1)—1)
1
= 500 log(T"+ 1). (A.0.45)
The statement 1 is obtained by combining (A.0.44),(A.0.45) and (A.0.43).
To show statement 2. In assumption A.4, we assume that for x € Uy, k € IC,
the restricted eigenvalue condition is held. And under Assumption A.3, we have

P(x € Uy) > p*. Thus, among all n samples, the expected number of samples

belong to Uy will be lower bounded by:
E[l(x € Uy)] > p*Co(1 + log(T + 1) — log(to + 1)). (A.0.46)

Since T' > (to + 1)?/e? — 1 implies $ log(T + 1) > log(to + 1) — 1. (A.0.46) can be
simplified into the following inequality.

" 1

IE[Z 1(x; € Ug)] > §p*C’0 log(T + 1). (A.0.47)
i=1

We apply the Chernoff inequality on Y1 | 1(z; € U):

P (Z 1(z; € Uy) < ;E[an 1(x; € Uk)]> < exp (—;E[an 1(z; € Um)

i=1 i=1 i=1
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i 1 1
=P (Z I(x; € Uy) < ip*Co log(T" + 1)) < exp (—16])*00 log(T" + 1)) :

=1

(A.0.48)

where (A.0.48) uses (A.0.47). The statement 2 of Lemma A.0.8 can be proved by
(A.0.48) with Cy > 16/p".
To show statement 3. Notice that the follow result hold.

1 1
{l/n = o} 2 {1412 S og(T + 1)} 1 {n < 6Colog(T + 1)}

= ({14 < 10013* log(T+ 1)} U {n > 6Cy log(T" + 1)})6.
(A.0.49)

Hence we can obtain

P {|A|/n > 2141)*} > p {<{|Ak| < icop* log (T + 1)} U{n > 6Cylog(T + 1)})0}
=1-P {{]A\ < leCop* log(T + 1)} U {n > 6C,log(T + 1)}}
=1-P {|.A| < leCgp* log(T + 1)} —P{n>6Cylog(T+1)}.

(A.0.50)

The remaining part follows by combining the statement 1 and statement 2 with
(A.0.50).
O

Lemma A.0.9. Let tg = 2Co|K|, T > max{(to+1)%/e*~1,e}, A = Cs5,/1 + 10;?%11),
and a > 2% If assumptions A.1,A.3,A.4 and A.5 hold, we have

P*K

1 h 7
P oracle __ atrue < mi >1 - — A.0.51
(Hﬂ Bl < mln{amma)(’ 4GURmax9€max}> > Tr1 (A.0.51)

where

16 4 422 1 576s Lop* -
Co = 10, =2, Hhmax (2 ind1, HoP
0= max { TprlprCy C3 <(4 p*/sa) mm{ 7192522 ’

max

3209522 (1 +1logs) 4o%z2, (1 +logs) }

P* o 7 ¢

151



. pop™ CQA P* 1o hp* 1o _ pop* —
t< mln{ 48 ? 480 +/sTmax ' 192€0v/sRmaxTmax [’ 02 T 203573, (Lop* 148572 ,,) and 05 -

Bminp* K
(2304s+ap*k) \/1+log d

Proof. Proof of Lemma A.0.9 Using Lemma A.0.8, to = 2Co|K|, T' > max{(to +
1)?/e? — 1,e}, and Cy > max{10,16/p*}, we have

1
Pin>-Colog(T+1)p <1— A.0.52
{n_QCoog( +)} Tl (A.0.52)
1 1
P > —p*Colog(T+1)p >1— —— A.0.
{\AI 2 P Colog(T + )} Tl (A.0.53)
|.A| 1 3
Pi=—2>_p'r>_— A.0.54
{ n St (2T (A.0.54)
Thus with probability 1 — TTA we have
2304 2304
6m1n:<308+a)C5m2(3*08+a))\2(%ﬁ+a)/\
PR PR K| A
2304s _ 96ns
' KA
G = o < ol Al = Cy (A.0.55)

203573, (pop* + 48522, ) ~ 203813, (po| A| +n2sx2 )

If we require ¢ < ‘”"A‘ v C2A < uolA\\/@

, from (4.5.6) in Proposition 4.5.1 , we can

obtain the following mequahty.

2nt

P BMCP Btrue
(i o>

) < Ga(n, |Al,X) 4+ 03(|A]) + 04(n, |A],t). (A.0.56)
Since da(n, |A[, A), 05(.A|) and d4(n, |A|,t) decrease when we have larger |A| and n,

we may pick proper Cy such that at given time 7" we will have enough | A| and n
according to (A.0.52)-(A.0.54). As we require

4 4g2 1 576s Lop* -
C, = o max - . Ll
0= Hax {p*C’1 TP ((4 p*ﬁa) i { 192572 ’

3209522, (1 +logs) 4o?z?, (1+logs) }
P*ho ’ t2

and \ = 05\/ 1 +logd/log(T + 1) one may verify the the follow result hold with
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probability 1 — -3

T+1
4
Ba(n, JAJL A + G3(A)) + Ga(m, | AL #) < ——— (A.0.57)
T+1
Hence, we have
2nt 7
P MCP __ Agtrue < > 1 —
(1877 - el < ) 21 1
2nt\/s 7
= P MepP _ gtrue|| < >1— — A.0.58
(1807 — g < TV 20 (A0.58)

where (A.0.58) uses BMCEF being the oracle solution with BMCF = ghue = 0.

; ; P* o hp* o
Moreover, combine ¢t < min { VT TR T Py — }, (A.0.54) and we have the

following results.

2nt\/s < 2nhp* poy/s _ h npr < h
|Alpo — 192e0\/S RmaxTmax|Altlo 4€0 RmaxTmax A 24 ~ 4e0 RyaxTmax
(A.0.59)
2nty/s . prpeys 1 onoopt 1
|Alpo — 480/ S$Tmax| Al 02%Tmax  |A] 24 T 0Zmax
(A.0.60)
Desirable result follows immediately. O

Lemma A.0.10. Under assumptions A.3 and A.5, for any x € Ui € K, the

following two statements hold.

1. ‘E(Rz‘m”@frue) o E(le‘, BZMCP)) S Rmaxegmmaxuﬂiv[cp_ﬂfmeHlO’CL’maX||,B@MCP _
ﬁfrue“l

2. Moreover, if ||[BMCF — Blrue||; < min{ L h }, k e K, we have

O0Tmax ’ 4€0 RmaxTmax

]E(RA.’B, B;VICP) Z max,-«; E(R]|CC, 5;»\/[0])) + %

Proof. Proof of Lemma A.0.10 To show the part 1. We first expand the
left-hand-side as follows.
E(Ri[z, ) — E(Ri|z, 87|

+o00 +oo
- ’/ ridF(ri]ccT,Bfme) — / r,-dF(ri]mT,BlMCP)

—0o0
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+ +
_ / X e fElT B g / ”rieﬂmﬂﬂy”)dri‘
—00 —0oQ
+
_ / . (e T8 ) _ =Sl BT dn’.
—00
o0 (12T B
— / —7r; (6 f(ri|e ﬂz)) ‘ wT(BZZWCP . Bfrue)dri 7
—00 Bizﬁzrue‘ké

(A.0.61)

(A.0.62)

where (A.0.61) uses f being the negative log density function and & is between 0

and BMCEF — glrue We then pull 27 (BMCF — Biree) out of the integral.
/+OO —r; (e—f(rinﬂi))l’ 33T<B£WCP o I@frue)dri
—0 Bizﬁﬁrue_;'_&

= :BT(I@Z{WCP o /Bfrue) /+OO

—0o0

e (e—f(nlmTﬁi)) ' dr;
Bi=B" e+

IN

+oo true ’
| e GO £ T (817 4 6)

—00

Tanax 187" = B -

(A.0.63)

As we assume |f (-|-)| is bounded by ¢ in assumption A.5, (A.0.63) is upper

bounded by

+w rue ’
‘/ rieff(rile(ﬂlt +5))f (Tile(,Bfrue + 5))d7“l J:,maXHIBZ{MCP . 627‘1&6”1
-0

+o0 _ AT true
< ‘/ rie T BN ) 00 | BT — B
—0oQ

(A.0.64)

We then expand term f(r;|x” (81" + §)) in (A.0.64), and there exists a & between

0 and B“¢ + § such that

/ T e TlaT (B 8) g

—0oQ

0max|1B7" = B

_ / T e Tl Br )~ (rleT )8 g

—0oQ

meaX||:3£WCP - B;meHl

+oo _ T Qtrue ! AT

< / rie~ OB il Ol 011 g | gy 1 BMCP _ glrue)
—o0
+oo _ T Qtrue MCP __gtrue

< / rie f(ri|zt Bt )dm eaxmaxllﬁi By ||1meax|’ﬁ£\/[C’P - /Bfruenl

ﬁz{\/ICPiﬁzrue‘ll

9]
:|E(Rz|x> ﬁgrue)‘eaa@maxu Ul’max“ﬁfwcp - ,th-rueHl

(A.0.65)

(A.0.66)

where (A.0.65) uses that & is between 0 and BMCF — Birue which implies ||8]|; <
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|BMCP — Blrue||; and (A.0.66) comes from the definition of E(R;|z, Bf"¢). Com-
bining |r;| < Ruax, (A.0.66), and (A.0.62), we have:

[B(Rilr, ) — E(Rifr, BYC7)| < Ry om0 W g, | BHCP — iroe
(A.0.67)

To show the part 2. Note that the assumption ||BM¢F — girve||, < L ke K

OTmax’

implies the following inequality:

HB;‘MCP . B;ﬁruenl < = eaﬂcmaxﬂﬁlMCP*ﬂfmeHl <e (A068)

O-xmax

Combining (A.0.68) and (A.0.67), we obtain

MCP __gtr
B, ) = Blrila, BHCT)| < R8BI g, | HOP — gire]

< Rinax €0 Tmax || BT — B (A.0.69)
Under assumption A.3, for any = € Uy, the following inequalities hold:

E(Rile, 8]") = max E(R;|z, B) + h
j#i
= E(ri|®, B]") — E(ri|lz, }"") > max [E(rjlz, B7) — E(ryla, B17°F)]
+max E(rj|x, BYCF) — E(ri|e, B}*F) + h
j#
= E(rilz, 8'°") — max E(r;|w, 8'°") > — [B(rilz, 8°") — E(rile, 8))|
jF#i

—max (|, 87) = B(rjl, B'7)| + h.

(A.0.70)
As we assume ||BMET — girue||; < 4eoRmwamax’ k € IC, we have
H/BMCP . /Bﬁru5||1 < h N HR eox (,BMCP _ /Bz?rue)Hl < E
! ! - 460Rmaxxmax e T ‘ 4
(A.0.71)

Combining (A.0.69),(A.0.71) and (A.0.70), we will have

h
Th

h
E(Tﬂw’BZZWCP) - maxE(rj’w7IBMOP) > ——
j#i J 4
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=E(ril, 8) > max E(r;|z, 8;") + Z (A.0.72)
JF#
O
Lemma A.0.11. Denote events Es,E,4, and &5 as follows
96ns \ A
_ . true - < 1— - A .
53 {HVS E(IB )H — < ‘A’Ii@) 4} ( 073)
96ns \ pol AN
_ truey) < (1 — A.0.74
54 {Hvsﬁ(ﬂ )H = ( |A]/<ea> 88”1}2][1aX ( 0 )

& = {1 — ey < \/CA} (A.0.75)

- polAl :
where Cy = SoasiE ol Al T Under assumption A.1 and A.5, events E3,&,

and & implies & defined in (4.7.19).

Proof. Proof of Lemma A.0.11 We first expend V.£(3°7%) at Birue.

vﬁ(ﬁorucle) — vﬁ(ﬂtrue) + v?ﬁ(&-)(ﬁorucle _ Btrue) (A076)
— vﬁ(lgtrue) 4 v2£(18true)(/60racle _ Btrue)
+ (VQE(E) o V2£(5true))(ﬂoracle . Btrue)’ (AO??)

where € = 78" 4 (1 — 1)B°"%!¢ 7 € [0,1]. The last term in (A.0.77) can be

further expanded as follows

V2£(£) _ vZﬁ(ﬁtrue))(ﬁoracle _ Btrue)

—

]. n " "
:E; {f (rj|wf€) _ f (Tj‘w'fﬁt?"ue)} ij?(ﬁoracle _ IBtrue)
:; Z {_f/// (r]|a:JT7])iBJT(§ N ,Btrue)} xjw]T(Boracle . Btrue)’ (A078)
i=1

where (A.0.78) comes from the mean value theorem and the fact that 7 is on the
line of of & and B"“¢. Hence, assumption A.5 and (A.0.78) imply

||(v2£(£) _ v2£(6true))(ﬂo7’acle _ BtTue)Hoo

Z {_f/” (T]’w;FTI)w;F(& o /Btrue)} wjxjr(ﬁoracle o IBtrue)
j=1

S|

o0
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1

S E Z 03T max € ﬂtrue)mj (ﬁomcle IBtrue)
j=1 N

1

S E g 3wmax I@oracle Btrue) x;T (ﬂoracle /Btrue)
00

< T oracle true||2
> 0'3-Tmax)\max<ﬁXsXs)H/3 _16 H2
< 0352 |B7 = B3 (A.0.79)

Combining (A.0.77), (A.0.79), and the fact B2 = B4 = (), we have

[VseL(B7 ) oo < Ve LB loo + IV 5 sL(BT) (BT — BE) oo
+ Ugsxmax“/BOTaCle _ 6t7’ue||2. (AOSO)

In addition, from Vs£(B°7¢) = 0 and (A.0.77), we have

( gracle _ gue) —_ _(v?gsﬁ(ﬁtrue))—l(vsﬁ(ﬁtrue)
+ (V?S‘,SE(E) _ v%,sﬁ(ﬁt'f’ue))( gracle o gue)). (A081)

Under events &, &4, and (A.0.81), the inequality (A.0.80) can be upper bounded

as follows.

96ns
CE oracle - <|1=—
1952087 < (1= Syt

+ IV sLB™) (Ve sL(B™)) T (VSL(B™)
+ (V5 sL(E) = Vs sL(B™))(BF*" — B5"))ll

96ns \ A
<[1—-—=—=1= 3 oracle _ atrue||2
< ( |A\/fa> + 03525,/ B B s

1

A
) + Oy Tmax Amax (X Xg) | BT = B

4
+ V2 LB ) (V3 sL(B™)) 7| (IVSLB™ )l + Ta5t BT — B 3)
< <1 _ ’96713) i + U3SI?113,XHIBOTGCIE o I@true”%

Alka ) 4
B 96ns AlA
+ Hv‘%‘gsﬁ(ﬂtrue)(v§78£(BtTue)) 1H ((1 — |A|/€a> MO’ |

4 Jgsx?naxnﬁoracle . ﬂtrue||2) )

(A.0.82)

Ssnx?

max
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Note that the maximum value of HV‘%C’SE(,B”“@)(V%}sﬁ(ﬂ”ue))‘l H can be bounded.

| V3 s £(B™) (Va5 £(8™)) | < max [V s L(B™) (V3 s£(8”)) 0.

flvll=1

(A.0.83)

From (A.0.83) and Lemma A.0.1, the following inequality holds with probability
1 —2sexp (—M).

2
45025,

— 2 rue
o [ V5. s £(8) (VESL(8™) o] < s max [ Va5 £(8)e]
2n s 2snx?

< ST = = (A.0.84
= ol ol (A0

Thus, (A.0.82) can be simplified to:

oracite 96”5 )\ oracite rue
195208 < (1 S0 ) 3 + ousa | g
2sna? 96ns \ 1ol Al 5 . ruen2
max 1 _ oracte rue
f1o] Al (( \A]H@) 8sna2, . T 055001 N
=11—- 96ns é U35$§naX(NO‘A| + 2S"uvgnax ||I@oracle _ BtrueHQ
Afna) 2 ol A 4

(A.0.85)

Further, conditioning on event & defined in (A.0.75), we have:

96ns \ A ozsxd . (ol Al + 2sna? (a2
HVSCE(IBOMdG>||oo < (1_ )+ 3 (MO‘ | < 02)\>

|Alra) 2 piol Al
96ns
<(1- A A.0.86
<(1- ) (050
where (A.0.86) uses Cy = 397553 (5 ;)I‘:j\l e The inequality (A.0.86) directly

implies event &,.
L]
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