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ABSTRACT 

Dipole-based active materials are a wide-ranging class of materials used in industries 

from aerospace to biomedicine. The advantages of these materials are their ability to be actuated 

while untethered via electric and/or magnetic fields, and that the interactions of the embedded 

dipoles can be manipulated on a micro- or even nano-scale. While dipole-based materials are 

becoming more widely used, there is a lack of rigorous modeling techniques that could help 

characterize, design, and implement them in applications. This work aims to address the 

challenges that arise when studying the materials at each length-scale: micro, meso, and macro.  

 

At the micro-scale, this work studied the effects of electric and magnetic fields on the alignment 

and ordering of electromagnetically susceptible particles suspended in an elastomeric fluid 

medium. While past studies have shown that multiple fields can assemble particles in a fluid in 

multiple directions, ferrohydrodynamic particle simulations in this study demonstrated that the 

simultaneous application of electric and magnetic fields on hard magnetic particles with 

geometric anisotropy can create a hierarchy of structures at different length scales, which can be 

used to achieve a wider range of structure and properties. The simulation methods included 

permanent magnetic dipoles and induced electric dipoles, yielding magneto- and dielectro-

phoretic effects, and electric and magnetic torques acting against hydrodynamic drag forces.  

 

At the meso-scale, the mechanics of a class of dipole-based semicrystalline electro-active 

polymers (EAPs) called relaxor ferroelectric polymers were modeled to understand how tailored 

dipole-based microstructures may affect bulk electromechanical response. To fill the gap in EAP 

modeling literature, this work developed a modeling framework for dipole-based EAPs by 

utilizing the micromechanics of semicrystalline polymer network model, ascribing dipole-dipole 

energies to crystalline regions and the eight-chain hyper-elastic model to amorphous regions. 

Finding the equilibrium of the network model yielded a relationship between the spatial 
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arrangements of dipolar regions and the electromechanical coupling of the bulk material. The 

findings revealed that the anisotropy of dipole-dipole interactions cause particle arrangements 

parallel to an external field to generate more electromechanical coupling than all other 

arrangements, implicating a microstructure that could maximize EAP performance. Results of an 

analysis of the energies also shows that adjusting particle arrangements with respect to the field 

can either promote or inhibit instabilities, which can either cause material failure or be harvested 

for larger deformations depending on boundary conditions.  

 

At the macro-scale, a numerical model was developed for arbitrarily segmented and multi-layered 

beams utilizing EAPs and MAEs. The model was employed in a multi-objective design 

optimization problem to minimize shape error and cost, while maximizing work output. 

Optimization results emphasized the importance of gaps between MAE patches and the 

uniformity and symmetry in their magnetization for matching symmetric shapes with ideal folds. 

Furthermore, for greatest work performance, some patches yielded greater sensitivity than others, 

offering a trade-off between work and shape approximation. While these results could be 

improved with a larger and more diverse initial population, the methodology demonstrated the 

ability to quickly achieve near-optimal designs with a wide selection of designs based on 

application priorities.    
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 CHAPTER 1 

Motivation, Goals, and Hypotheses 

 

The first chapter of this document provides context and motivation for this work, focusing 

on examples of how this work can impact the world through addressing grand challenges via 

applications. Various hypotheses are introduced, along with corresponding objectives, aiming to 

make progress towards potential impacts. The remaining chapters are associated with different 

objectives testing the hypotheses, each assigned a literature review chapter relevant to the 

hypothesis. Thus, the literature reviews for specific methodologies are not included in this chapter, 

and instead spared for other chapters.  

This chapter is divided into four subsections. The first subsection discusses the 

motivation, highlighting the significance of studying dipole-driven materials and self-actuated 

Origami-inspired devices. Specifically, it provides the impacts of studying active materials and 

structures on different industries, with a focus on electro-active polymers and other dipole-driven 

materials. The second subsection briefly summarizes the goals for advancing the field of dipole-

driven active materials and structures. The third subsection presents a set of hypotheses that can be 

tested by a set of objectives. Answering the hypotheses will expand our knowledge on the field of 

dipole-driven active materials and self-folding devices. The fourth subsection is a summary. 

1.1 Impacts of Dipole-Driven Materials 

Dipoles are found throughout nature as pairs of oppositely charged poles on various 

molecules and substances. Each pole exerts a field on their surroundings, and when observed from 

a far enough distance, the sum of the poles can be viewed as a single object (i.e. a dipole). One 

form of the field given by a dipole is 

𝚵 =
1

4𝜋𝐶Ξ𝑟3
[3(𝒎 ⋅ 𝒓̂)𝒓̂  −  𝒎],  (2-1) 
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where 𝒓̂ is the unit vector of a distance vector 𝒓 from the center of the dipole, 𝑟 is the magnitude 

of 𝒓, 𝒎 is the moment of a dipole, and 𝐶Ξ is the constant associated with the type of field and 

moment (e.g., electric or magnetic). The forces and torques a dipole experiences are based on the 

field it is experiencing. The forms of the force, 𝑭𝚵, and torque, 𝑻𝚵, are 

𝑭𝚵 = (𝒎 ⋅ 𝜵)𝚵,  
(2-2) 

𝑻𝚵 = 𝒎 × 𝚵. (2-3) 

Dipole-driven materials are active materials whose behaviors are driven by the 

interactions of dipoles resulting from (2-2) and (2-3). While this broad definition is not widely or 

explicitly used in literature, it is an important classification, because the similarities between the 

physics of different types of dipoles (e.g. electric versus magnetic dipoles) means that 

understanding one type of dipole-driven material can aid in the understanding of other dipole-

driven materials, lending broad applicability to results developed in this area. 

Another justification for this broad material classification is the substantial amount of 

research that has been invested into the development of various types of dipole-driven materials, 

whose applications range from actuators to energy harvesting devices, as shown in Figure 2-1. 

Due to the breadth of applications, studying dipole-driven materials can impact several grand 

challenges, such as producing renewable energy, enhancing virtual reality, improving 

infrastructure, and engineering better medicines (Choi et al. 2016; Erturk 2011; R. Zhao et al. 

2019; Alapan et al. 2019). Figure 2-1 highlights examples of how modeling dipole-driven 

materials such as electro-active polymers (EAPs) and magneto-active elastomers (MAEs) can aid 

in understanding of various material systems. Predicting each material system will provide insight 

into the various problems that will help us solve the related engineering challenges. For example, 

predicting the actuation force of EAPs can aid in controlling the “Wolverine” virtual reality 

grasping interface, which exerts a force based on the item the user is holding in virtual reality 

(Choi et al. 2016). Similarly, predicting the electromechanical response of EAPs can help 
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understand the data from damage sensing applications, where the relationship between the 

generated stress and the bending or vibration of EAPs must be precisely known (Erturk 2011). 

Additionally, magnetic dipole based models have contributed to our understanding of hard 

magnetic composite behavior, which have been controlled by external magnets to navigate 

through mice to deliver drugs to target regions (Alapan et al. 2019). 

 

Figure 2-1. Modeling dipole-driven materials can be viewed as modeling several types of 

materials that can be actuated based on electric or magnetic dipoles. Grand challenges of 

engineering, such as enhancing virtual reality, producing renewable energy, and improving 

infrastructure, can be addressed by modeling electro-active polymers (EAPs), magneto-active 

elastomers (MAEs) and other analogous systems with the same modeling tools utilizing dipole 

physics. Examples include the Wolverine virtual reality interface for grasping virtual objects, 

vibrating electro-active energy harvesters, 3D printed magnetic structures capable of delivering 

drugs, and magnetically controlled micro-robots able to perform targeted drug delivery in mice. 

The borrowed images are from the following references (in top to bottom order): (Choi et al. 

2016; Erturk 2011; R. Zhao et al. 2019; Alapan et al. 2019) 

Dipole-driven materials, particularly EAPs and MAEs, have shown promise specifically 

in the field of self-folded devices. Examples shown in Figure 2-2 include electric (EAP) and 

magnetic (MAE) dipole based materials, and utilize designs inspired by Origami and Kirigami 

patterns, which are part of an ancient Japanese tradition of folding paper. The placement and 



4 

 
orientations of MAEs (represented by the black rectangular patches) in the structure in Figure 

2-2.a influence the generated torques that lift the four arms (Ahmed et al. 2013). Likewise, the 

placement of the EAP in the Origami-inspired structure in Figure 2-2.b can generate the type of 

bending needed to close the annotated angle (Bowen et al. 2017). The example in Figure 2-2.c is 

bio- and Origami-inspired, utilizing an EAP to fold the segments of its body to generate 

locomotion (Okuzaki et al. 2008). Taking advantage of Origami patterns, as in the case of the 

electrically actuated biomorph in Figure 2-2 allows for efficient use of space and the ability to 

morph into a complex shape.  

 

Figure 2-2. Examples of self-folding active structures employing dipole-driven materials are 

shown. A magnetically actuated box-design is shown in (a) (Ahmed et al. 2013); an electrically 

actuated origami-inspired “barking dog” design is shown in (b) (Bowen et al. 2017); and an 

electrically actuated biomorphic origami-inspired device is shown in (c) (Okuzaki et al. 2008). 

The actuation mechanisms of the active materials used in these examples are all dipole-driven.  

1.2 Goals and Scope of Study 

This work aims to develop a modeling framework for dipole-driven materials that can be 

used for finding feasible designs employing dipole-driven materials for some of the applications 
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presented in Figure 2-1 in the direction of Origami-inspired self-folding designs (Figure 2-2). To 

test the methodologies, the modeling methods will be used to predict self-folding devices that can 

achieve a desired shape through actuation and generate work output.  

Achieving this goal requires understanding and controlling an active structure’s design 

process from material fabrication to structural testing. As a result, the steps between fabricating 

materials and testing a composite design must be identified. This study selects three links (Figure 

2-3) that can be understood with the current knowledge and technology available: The 

relationships between  

(I) Processing and Microstructure: During processing, small electromagnetically sensitive 

particulates are shown to develop order in the presence of an external field, forming 

aggregates with internal order, and varying degrees of order across aggregates. The 

relationship between how the external field contributes to the order and forming of 

aggregates is the studied link between processing and microstructure. Figure 2-3 

illustrates the link with a block containing particulates with direction, initially randomly 

oriented and dispersed, and a second block containing aggregates of particles aligned in 

the direction of the applied field.  

(II) Microstructure and Material Response: The ordering of aggregates effectively alters 

the properties of the composite and can be actuated via an external field. The actuation is 

a result of the interactions between particles within aggregates and interactions across 

aggregates, based on the fundamental dipole-based forces and torques provided by (2-1) 

and (2-2). The aggregates are shown as blue brick-like structures in Figure 2-3. The 

ordering of aggregates can form chain-like structures, which can be actuated by an 

external field to induce interactions between them. At this level, the medium is assumed to 

be a solid, elastic material, which can deform under the interactions of aggregates, 

yielding macro-scale deformation across the bulk material. 
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(III) Material Response and Structural Deformation: The active properties induced by 

aggregate ordering in a material can be harnessed in a composite structure. Link 3 seeks to 

learn how the the material response resulting from Link 2 can influence the behavior of a 

composite structure containing the aggregate-based material. Thus, Figure 2-3 contains an 

image of a composite for Link 3, containing the aggregate-based material, along with 

other possibly active or passive material layers. The flat, multi-layer composite is 

connected to images of a multi-layer bending device employing EAPs, as an example of 

the type of structure that can be studied. 

Since each link is dependent on numerous factors, the studies will be reduced to 

understanding the relationships between selected variables that are currently not understood and/or 

may provide a high level of control in the design process.  

 

Figure 2-3. The links connecting material processing techniques and structural actuation are 

shown explicitly. Link I relates a processing on a mixture of particles and elastomer substrate with 

an ordered microstructure. Link II relates an ordered microstructure with an actuation response. 

Link III relates material responses to structural deformation of an active composite. Note: 

Iconography in images change for consistency with the types of material studied in different 

chapters of this document. Image of unimorph bender is from (W. Zhang, Ahmed, et al. 2018). 

Since the goal of this study is to develop a framework for dipole-driven materials that 

spans processing to structural response, understanding the driving mechanism for actuation 
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comprises a large portion of this work. Specifically, it is crucial that the coupling behavior in a 

dipole-driven material, such as an EAP, is understood well enough to accurately predict its 

electromechanical response—its ability to produce mechanical strain from an applied electric 

field—given any feasible microstructure. In fact, the electromechanical response of EAPs has 

been the focus of numerous studies because it is directly utilized in sensors/actuators and energy 

harvesting devices. If EAPs can be modeled with physics-based approaches that can link 

microstructure to response, then researchers can gain significant insights into how the materials 

behave and how their performances can be improved. The details on the gaps and the proposed 

methods are in Sections 2.1 and 3.1.    

Microstructure-based modeling of the mechanics of EAPs is at the meso-scale, linking 

micro-scale information to macro-scale response. Thus, the remainder of this work is on 

understanding how processing conditions may influence the micro-scale properties of a 

composite/semicrystalline material, and how to find an optimal design of a structure employing 

active materials. The next subsection identifies hypotheses that can help reach these goals. 

1.3 Goals and Hypotheses 

The three links in this work serve as three goals: to find the relationships related to each 

length-scale, 

• MICRO (Processing to Microstructure) 

• MESO (Microstructure to Material Response) 

• MACRO (Material Response to Structural Response) 

Six hypotheses are formed and divided into groups based on which goal they are related 

to. Additionally, each hypothesis is accompanied by objectives that can be carried out with the 

aim of testing the hypothesis.  

 The first hypothesis aims to make progress toward the first goal (processing-structure 

relationship). The second, third, and fourth hypotheses are directed towards microstructure-based 



8 

 
modeling. The fifth and sixth hypotheses serve to answer questions about composite structure 

optimization.  

Hypothesis 1: Particle simulations utilizing ferrohydrodynamics could provide evidence for 

whether applying magnetic and electric fields to particles suspended in a fluidic polymer 

matrix yields a microstructure with multiple levels of hierarchy. 

Objective 1: Develop a dynamic particle simulation model that can accommodate 

particle motions and orientations under forces and torques induced by external electric 

and magnetic fields. For the analysis, identify an objective metric that can be used to 

assess and compare key aspects of the microstructure across different length-scales, 

and between the simulations and experimental results.  

Hypothesis 2: Network models of semicrystalline hyperelasticity accounting for 

microstructure by representing different relative locations of crystalline regions can form an 

effective framework for modeling electrostriction while incorporating microstructural features 

such that experimental data for electrostriction can be found within the range of model 

responses by varying characteristics of microstructure. 

Objective 2.1: Define a base network model that accommodates aspects of the 

microstructure such as semicrystallinity and spatial arrangements of dipolar (or 

crystalline) regions. The network model should be expandable to distributions of 

spatial arrangements of crystalline regions, offering higher fidelity modeling. 

Objective 2.2: Calculate the dipole-dipole interaction energy by randomly generating 

orientations based on a von Mises orientation distribution function.  

Objective 2.3: Extend the network model developed by addressing Objective 1 to 

allow for a probability density distribution (PDF) function to represent spatial 

arrangements of polar regions and compare each model’s response to data.  

Objective 2.4: Select spatial PDFs that are experimentally feasible and compare them 

to experimental data in terms of electrostrictive response. 
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Hypothesis 3: An analytical model for multi-layer, segmented composite beams incorporating 

the EAP constitutive model and magnetic torques can accurately predict multi-field device 

response, and can be used for the design optimization for a target shape containing ideal folds.  

Objective 3.1: Derive an analytical model for the bending of an arbitrarily 

segmented, multi-layered, multi-field actuating composite beam that accounts for 

large displacements, dipole-based electrostrictive constitutive relations of EAPs, and 

magnetic dipoles of MAEs.  

Objective 3.2: Define and execute a multi-objective design optimization problem on a 

case study with preset material types and fixed number of segments for work, shape, 

and cost. The shape function must contain ideal folds, and the parameters must 

include segment lengths and the Young’s modulus of at least one material. The results 

of the multi-objective optimization will determine how well folding can be achieved 

by segment length variation. 

 

1.4 Outline of Document 

The three hypotheses are associated with the three links shown in Figure 2-3, each 

corresponding to a chapter in this document in the same order. Chapter 2 answers hypothesis 1 by 

developing simulation methodologies to study the effects of multi-field processing on the 

microstructure of an embedded composite material, which is Link 1. The literature review for Link 

1 can be found in Chapter 2, Section 2.1. Chapter 3 answers hypothesis 2 by developing and 

validating a model for the electromechanical response of dipolar EAPs that is based on 

mechanisms found in the microstructure of the material (i.e. Link 2). The literature review for 

Link 2 can be found in Chapter 3, Section 3.1. Chapter 4 answers hypothesis 3 by modeling and 

optimizing multi-field actuated, multi-layered composites, which incorporate electrically and 

magnetically actuated materials, with the aim to build devices that can achieve complex shapes 

and folding to be implemented into Origami-inspired designs. By focusing on how dipole-based 
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materials such as EAPs can generate deformation in a structure, Chapter 4 is on Link 3. The 

literature review for Link 3 can be found in Chapter 4, Section 4.1.  

Additional content can be found in the Appendices, including scripts used to evaluate the 

models, intermediary calculations/derivations, and methodologies for extracting parameters from 

experiments. 
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 CHAPTER 2 

Link Between Processing Conditions and Microstructure 

 

This chapter is on studying the effects of multi-field processing on microstructural 

evolution of composites. The chapter begins with a review of the significance of multi-field 

processing by highlighting its impacts on developing a universal 3D printer, and a literature 

review on past works aimed to manipulate microstructures of composites with various 

processing methods. Next, a modeling technique based on dynamic particle simulations is 

selected and formulated for a generalized composite structure exposed to arbitrary fields. 

The model is reduced to a few specific cases for microstructure evolution simulations and 

the results are analyzed via image processing for comparison to experimental data. 

The first chapter aims to address Hypothesis 1 by comparing different network 

models and incorporating a distribution function for both the spatial and polarization-related 

orientations of dipole moments. Note: Portions of this document are borrowed from the 

author’s contributions to a 2019 SPIE Smart Structures and Non-destructive Evaluation 

conference proceeding (M. Al Masud et al. 2019). 

2.1 Background on Multi-Field Processing 

Composite materials have been extensively studied because their material properties can be 

manipulated by selecting different combinations of constituent sets, varying constituent ratios, and 

varying spatial arrangements of constituents (Stankovich et al. 2006; Chawla 2012). The advent of 

additive manufacturing has enabled more diverse designs and a convenient method of manipulating 

filler material (X. Wang et al. 2017). For instance, filler material such as carbon-fiber can be aligned 

and oriented within a geometry by utilizing the printing direction, which leads to a change in bulk 

material properties such as the Young’s modulus (Mahajan and Cormier 2015; Pierson et al. 2019).  
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In addition to print direction, particles can also be aligned using external fields. For 

example, magnetic fields can be used in multi-material 3D printers to align particles in a specific 

direction, achieving macroscopic arrangements inside a polymetric matrix for soft magnetic 

particles with anisotropic geometries and hard magnetic particles (Kokkinis, Schaffner, and Studart 

2015; R. Zhao et al. 2019). Electric fields have also been used in particle alignment or assembly due 

to dielectrophoretic interactions between particles and between particles and field (Velev and Bhatt 

2006). One study found that the combined effects of electric and magnetic fields on micro- and 

nano- dipolar particles can assemble particles in multiple directions due to the dipole-dipole 

interactions between micro- and nano-particles (Bharti et al. 2016). These methods rely on applying 

the field to the composite while the polymer matrix is in liquid phase such that the particles are free 

to move and rotate and possibly develop micro-archtectures.  

Manipulating particles in a composite material is technologically important because 

changes in microstructure can alter the properties of the bulk material. For example, the formation 

of chains via particle assembly under a magnetic field can yield anisotropy in the composite’s elastic 

modulus (Varga, Filipcsei, and Zrínyi 2006), electrical conductivity (Jin, Tiefel, and Wolfe 1992; 

Leng et al. 2008), and magnetic polarization (Breznak and Lockette 2019). Yet these examples are 

a small group of possible properties that can be varied. Ultimately, a universal 3D printer with the 

ability to program a wide range of properties such as high to low compliance or insulative to 

conductive is one of the goals of additive manufacturing. Currently, this is accomplished using 

multi-material printers having multiple dispensers or drawing from multiple reservoirs per material 

or phase. This work seeks to develop simulation methods aiding the additive manufacturing 

technologies capable of producing components with dichotomous properties solely by varying 

processing conditions on raw material drawn from reservoir having a single constituent set. Process 

variations are intended to lead to varying micro-architectures from which differentiation of 

properties is derived. Such a 3D printer could tailor multiple material properties to varying degrees 
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by manipulating the microstructure of a single constituent set, which can be optimized for the 

applications mentioned in Chapter 1.  

A recent experimental study made progress toward a universal 3D printer by demonstrating 

that the simultaneous application of electric and magnetic fields to a polymer matrix containing 

Barium Hexaferrite (BHF) particles can create a hierarchy of structure that could potentially 

influence multiple bulk properties of the composite (M. Al Masud et al. 2019). Barium hexaferrite 

particles are nominally hexagonal flat plates that are hard magnetic, exhibiting a permanent 

magnetic dipole moment 𝒎, as shown in Figure 3-1. When the particle experiences a magnetic field 

𝑯, the moment 𝒎 generates a torque to align with the field. Furthermore, while the particle does 

not exhibit a permanent electric dipole moment, an electric dipole moment can be induced with the 

application of an external field 𝑬 due to the geometry.  

 

Figure 3-1. Barium hexaferrite particles are typically in the shape of hexagonal platelets. The 

permanent magnetic moment follows the easy axis as shown in (a), and the approximate size of 

micro-BHF is 1000 nm by 150 nm as indicated. When a magnetic field 𝑯 is experienced, as 

shown in (b), the dipole moment 𝒎 generates a torque to align itself with the direction of the field. 

When an electric field 𝑬 is experienced, an electric dipole moment 𝒑𝒊𝒏𝒅 is induced in the plane, 

and subsequently transverse to 𝒎. Similarly, 𝒑𝒊𝒏𝒅 generates a torque to align itself with 𝑬. 

Since 𝒑𝒊𝒏𝒅 is orthogonal to 𝒎, electric and magnetic fields can be simultaneously applied 

to control particle orientations about two orthogonal axes. Herein, this type of manipulation is 

referred to as orthogonal control. In addition, the fields produced by particles also contribute to the 

local fields, which effectively produce interactions between particles. The local interactions of 

particles and the simultaneous application of fields can lead to a hierarchy of structural 

arrangements. For instance, Figure 3-2 shows two cases of processing fields for the same constituent 
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set: an elastomeric matrix (PDMS) and magnetic particles (BHF). The initial microstructure is 

assumed to contain randomly dispersed and oriented BHF particles1. When a magnetic field 𝑯𝟎 is 

applied, the particles align with the field, forming chains that also propagate in the direction of the 

field. When an electric field 𝑬𝟎 is applied in addition to 𝑯𝟎, BHF particles align their easy axes (out 

of plane) with 𝑯𝟎, while chains form in the direction of 𝑬𝟎 along a the induced electric dipole axes 

(an in-plane axis), as shown in Figure 3-2 (M. A. Al Masud, Ounaies, and von Lockette 2018; M. 

Al Masud et al. 2019). 

 

Figure 3-2. Randomly oriented hard magnetic particles are embedded in a polymer matrix. 

Applying 𝑯𝟎 while the matrix is a liquid during curing yields chain formations and particle 

orientations both in the direction of 𝑯𝟎. Applying 𝑯𝟎 and 𝑬𝟎 simultaneously in transverse 

directions yields chain formations in the direction of 𝑬𝟎 and particle orientations aligned with 𝑯𝟎. 

To tailor properties of composites, the relationship between starting properties and 

proportions of the constituents, processing conditions and the resulting filler micro-structure must 

be understood in terms of the underlying physics. While some studies have experimentally 

investigated aspects of microstructure control via processing conditions (Bharti and Velev 2015; 

Kokkinis, Schaffner, and Studart 2015; Faik et al. 2016), none have attempted to provide a thorough 

understanding of the relationship. Similarly, some studies have simulated microstructure evolution 

under single-field conditions, such as magnetic or electric fields only, but none have imposed 

                                                 
1 This assumption is made to simplify the example shown in Figure 3-2. In reality, the initial dispersion of particles 

may not be uniformly random.  
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simultaneous fields2. Therefore, it is appropriate to formulate a solution—in the context of this work, 

a numerical simulation—that can help understand how the governing physical principles such as 

fluid dynamics, dipole-dipole interactions drive the microstructure evolution of micro-composites. 

The details of the methodologies are given in Chapter 3.  

2.2 Dynamic Particle Simulation Methods 

The selected processing conditions, electric and/or magnetic fields, influence the 

arrangements and orientations of the particles, which are mobile during the curing process when the 

polymer matrix is not completely solid. Thus, the evolution of the microstructure of the composite 

during such processing conditions will be simulated via particle dynamics simulations under 

ferrohydrodynamic principles, following a procedure similar to a previous model (Rodriguez and 

von Lockette 2017).  

2.2.1 Magnetic force and torque 

The aim of this subsection is to provide forms of functions for the magnetic forces and 

torques acting on any particle, such that, for example, the magnetic force acting on a particle is in 

the form 𝑭𝒊
𝒎𝒂𝒈

= 𝑭𝒊
𝒎𝒂𝒈

(𝑯𝟎, {𝚳}), where 𝑯𝟎 is the external field and {𝚳} is the set of all particles’ 

magnetic moments. The derivation begins with a physical definition of 𝑭𝒊
𝒎𝒂𝒈

, which is 

𝑭𝒊
𝒎𝒂𝒈

= ∇𝑈𝑛, (3-1) 

where 𝑈𝑛 is the energy due to the Zeeman potential at a particle location, defined by 

𝑈𝑛 = −𝜇0𝑀𝑉(𝑯𝒊 ⋅ 𝒅). (3-2) 

The field 𝑯𝑖 is the local magnetic field, which is a summation of the external field and the 

fields induced by other dipoles, 𝑯𝒋, namely 

𝑯𝑖 = 𝑯𝟎 + ∑ 𝑯𝒋
𝑵−𝟏
𝑗=1 .  (3-3) 

                                                 
2 The assertions that these types of studies (i.e. experimental and numerical works on multi-field processing) are 

absent in the literature are to the best of the author’s knowledge.  
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The field induced by a magnetic dipole, given the form of (2-1), can be substituted into 

(3-3) to obtain an expression for the total local magnetic field at particle 𝑖, 

𝑯𝑖 = 𝑯𝟎 + ∑
1

4𝜋𝜇0𝑟𝑗
3 [3(𝒎𝒋 ⋅ 𝒓̂𝒋)𝒓̂𝒋  −  𝒎𝒋]

𝑁−1
𝑚=1 ,  (3-4) 

where  𝒎𝒋 is the magnetic dipole moment of particle 𝑗, and  𝒓̂𝒋 is the unit vector of 𝒓𝒋, which is the 

vector from particle 𝑗 to particle 𝑖. 

The magnetic torque acting on a particle can be found by the cross product,  

𝑻𝒊
𝒎𝒂𝒈

= (𝒎𝒊 × 𝑯𝒊),  (3-5) 

where 𝑯𝒊 is the field local to a dipole. 

2.2.2 Dielectrophoresis and electric torques 

The particles are also assumed to have a dielectric response, which yields dielectric forces 

and torques. The dielectrophoretic force experienced by particle 𝑖 is  

𝑭𝒊
𝑫𝑬𝑷 = (𝒑𝒊 ⋅ 𝜵)𝑬𝒊,  (3-6) 

where 𝑬𝒊, like 𝑯𝒊, is defined as the sum of all field contributions of other particles and the external 

field, 

𝑬𝒊 = 𝑬𝟎 + ∑
1

4𝜋𝜀0𝑟𝑗
3 [3(𝒑𝒋 ⋅ 𝒓̂𝒋)𝒓̂𝒋  − 𝒑𝒋]

𝑁
𝑚=1 .   (3-7) 

The electric torque 𝑻𝒊
𝒆 experienced by particle 𝑖 is defined as 

𝑻𝒊
𝒆 = 𝒑𝒊 × 𝑬𝒊  (3-8) 

2.2.3 Control Volume and Coordinates 

Consider an ensemble of 𝑁 ellipsoidal particles, existing in a volume of space 𝑉. The space 

containing the particles serves as the control volume of the representative volume element of the 

microstructure and is assumed to be a subset of Euclidean space ℝ3. A typical three-dimensional 

Cartesian coordinate system, {𝑥, 𝑦, 𝑧}, is adopted, and an orthonormal basis {𝒊̂, 𝒋̂, 𝒌̂} spanning ℝ3 is 
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chosen. Since the control volume does not deform and is described by an orthonormal basis, the 

same coordinate system and basis are used for both the initial and current configurations for 

convenience. The volume, basis, and coordinates are shown in Figure 3-3.  

 
Figure 3-3. The control volume is shown with N particles, along with a basis and coordinate 

system in both the reference and current configurations. Particle positions (𝑿, and x) and 

orientations (𝑫 and 𝒅) are also shown.  

The volume of the space, 𝑉, can be calculated based on the volume fraction of particles 𝑓, 

defined by 

𝑉 =
𝑁𝑉𝑝

𝑓
, 

(3-9) 

where 𝑉𝑝 is the volume of a single ellipsoidal particle.  

Particle positions and orientations in the current configuration are represented by 𝒙𝒊 =

𝒙𝒊(𝑡)  and 𝒅𝒊 = 𝒅𝒊(𝑡) , respectively, at any time 𝑡 . The initial states of particle positions and 

orientations in the reference configuration, 𝑿𝒊 = 𝒙𝒊(𝑡 = 0) and 𝑫𝒊 = 𝒅𝒊(𝑡 = 0), respectively, are 

assumed uniformly random. Any vector 𝒓𝒋 from particle 𝑗 to particle 𝑖 can be defined as 𝒓𝒋 = 𝒙𝒋 −

𝒙𝒊 and its magnitude 𝑟𝑗 = ‖𝒓𝒋‖.  The motions and rotations of particles are assumed to be only 

dependent on the following set of physical phenomena: magnetic and dielectrophoretic forces and 

torques; and linear and angular drag effects of the matrix fluid. The particles are assumed to have 
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both magnetic and dielectric properties, and as a result, their behaviors are driven by the interactions 

induced by an external magnetic field 𝑯𝟎 and electric field 𝑬 𝟎. 

2.2.4 Equations for Case of BHF Particles 

In Sections 2.2.1 and 2.2.2, the forces and torques experienced by particles are described as 

generally as possible without providing explicit forms of the dipole moments. Additionally, many 

of the equations in Sections 2.2.1 and 2.2.2 are written with minimal reliance on coordinates and 

basis vectors to emphasize the invariance of the forces and torques. In this section, the force and 

torque equations are restricted to a set of assumptions made for BHF particles.  

Ellipsoids are chosen for particle geometry because the analytical forms of their electric and 

magnetic interactions have been solved (Jones 1995), and can be used as reasonable approximations 

of hexagonal platelets with preserved volume and aspect ratios (see Appendix F for details on 

supporting study via finite element analysis). The ellipsoid dimensions are defined by the principal 

semi-axis lengths 𝑎, 𝑏, 𝑐 as shown in Figure 3-4 relative to the local basis. The shape of the ellipsoids 

can be restricted to a class of ellipsoids called oblate spheroids, defined by the geometric 

relationships 𝑐 ≪ 𝑎 = 𝑏.  
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Figure 3-4. An ellipsoidal particle’s dimensions and local bases are shown. 

The particles are assumed to have ideal hard magnetic behavior, with a constant, average 

permanent dipole moment of magnitude 𝑚 across all particles. Due to the constant, ideal dipole  

behavior, particles are assumed to not experience fields surpassing their coercive field in any given 

orientation. The orientation of the magnetic dipole moment of particle 𝑖 is given by 𝒎𝒊 = 𝑚𝒆̂𝒊
𝟑, 

where {𝒆̂𝒊
𝟏, 𝒆̂𝒊

𝟐, 𝒆̂𝒊
𝟑} is a basis local to the particle and relative to the global basis as shown in Figure 

3-4, and spans ℝ3. The magnetic moment 𝑚 can be determined from the magnetization, or magnetic 

dipole density, 𝑀, of the composite by the relation 𝑚 = 𝑀𝑉𝑝, where 𝑉𝑝 is the volume of a particle. 

While there are also induced dipole moments due to the anisotropic shapes of the particles, their 

effects are neglected under the assumption that the hard-magnetic response dominate the magnetic 

force of each particle.  

With the substitution of 𝑚 = 𝑀𝑉𝑝, the potential of a particle experiencing field 𝑯𝑖 is  

𝑈𝑖 = −𝑀𝑉(𝑯𝑖 ⋅ 𝒆̂𝒊
𝟑), (3-10) 

and the field 𝑯𝑖 is 

𝑯𝑖 = 𝑯𝟎 + ∑
𝑀𝑉𝑝

4𝜋𝜇0𝑟𝑗
3 [3(𝒆̂𝒋

𝟑 ⋅ 𝒓̂𝒋)𝒓̂𝒋  −  𝒆̂𝒋
𝟑]𝑁−1

𝑗=1 . (3-11) 

Substituting (3-10) and (3-11) into (3-1) yields 

𝑭𝒊
𝒎𝒂𝒈

= ∑
(𝑀𝑉𝑝)

2

4𝜋𝜇0𝑟𝑗
4 [𝒓̂𝒋(𝒆̂𝒋

𝟑 ⋅  𝒆̂𝒊
𝟑) − 5𝒓̂𝒋(𝒆̂𝒋

𝟑 ⋅ 𝒓̂𝒋)(𝒆̂𝒊
𝟑 ⋅ 𝒓̂𝒋) + 𝒆̂𝒊

𝟑(𝒆̂𝒊
𝟑 ⋅ 𝒓̂𝒋)

𝑁−1

𝑗=1

+ 𝒆̂𝒋
𝟑(𝒆̂𝒊

𝟑 ⋅ 𝒓̂𝒋)]. 

(3-12) 

The magnetic torque can be described by 

𝑻𝒊
𝒎𝒂𝒈

= −𝜇0𝑀𝑉(𝒆̂𝒊
𝟑 × 𝑯𝒊), (3-13) 

which can be expanded with the substitution of (3-11), 
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𝑻𝒊
𝒎𝒂𝒈

= −𝜇0𝑀𝑉((𝒆̂𝒊
𝟑 × 𝑯𝟎) + ∑

𝑀𝑉𝑝

4𝜋𝜇0𝑟𝑗
3 [3(𝒆̂𝒋

𝟑 ⋅ 𝒓̂𝒋)(𝒆̂𝒊
𝟑 × 𝒓̂𝒋) − (𝒆̂𝒊

𝟑 ×𝑁−1
𝑗=1

𝒆̂𝒋
𝟑)]). 

(3-14) 

While it may not be clear in the derivations (3-9)–(3-13), 𝒓̂𝒋 = 𝒓̂𝒋 (𝒙𝒊(𝑡), 𝒙𝒋(𝑡)), and 𝒆̂𝒊
𝟑 =

𝒆̂𝒊
𝟑 (𝒙𝒊(𝑡), 𝒙𝒋(𝑡)).  

The electric analogs of (3-12) and (3-13) can be derived similarly. The biggest difference 

is that BHF particles do not exhibit a permanent electric dipole. Instead, the external field induces 

an effective electric dipole moment 𝒑𝒊 for a particle 𝑖, which can be expressed by 

𝒑𝒊 = 𝑉𝑝(𝜀𝑝 − 𝜀𝑚) (
𝑬𝟎⋅𝒆̂𝒊

𝟏

1+(
𝜀𝑝−𝜀𝑚

𝜀𝑚
)𝐿1

𝒆̂𝒊
𝟏 +

𝑬𝟎⋅𝒆̂𝒊
𝟐

1+(
𝜀𝑝−𝜀𝑚

𝜀𝑚
)𝐿2

𝒆̂𝒊
𝟐 +

𝑬𝟎⋅𝒆̂𝒊
𝟑

1+(
𝜀𝑝−𝜀𝑚

𝜀𝑚
)𝐿3

𝒆̂𝒊
𝟑).  (3-15) 

The form of (3-15) is borrowed from literature (Jones 1995), and it is dependent on 

depolarization factors 𝐿𝑖 , the electric permittivities of the medium and particles, 𝜀𝑚  and 𝜀𝑝 , 

respectively, and the components of the external field 𝑬𝟎  with respect to orthonormal bases 

{𝒆̂𝒊
𝟏, 𝒆̂𝒊

𝟐, 𝒆̂𝒊
𝟑}  local to the particle (see Figure 3-4). Within the form of (3-15), the following 

assumptions are made: the particles are lossless (in electric conductivity), dielectric, isotropic (in 

polarizability), and homogeneous such that they experience uniform polarization. The 

depolarization factors 𝐿𝑖 also correspond to the directions of 𝒆̂𝒊
𝒌 (for 𝑘 = 1,2,3).  

With a change of bases, 𝒑𝒊 can be written as a function of the global coordinates3 {𝑥, 𝑦, 𝑧} 

based on the orthonormal basis vectors 𝒊̂, 𝒋̂, 𝒌̂. 

𝑝𝑖𝑥 = 𝒑𝒊 ⋅ 𝒊̂,  (3-16) 

𝑝𝑖𝑦 = 𝒑𝒊 ⋅ 𝒋,̂ (3-17) 

                                                 
3 Since the control volume does not deform, the formulation can be simplified by using a single set of 

coordinates for both the reference and current configurations.  
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𝑝𝑖𝑧 = 𝒑𝒊 ⋅ 𝒌̂. (3-18) 

The forms of 𝐿𝑘 (for 𝑘 = 1,2,3) are dependent on the shape of the polarizable body. In this 

case, ellipsoidal depolarization factors are used, assuming the form 

𝐿𝑘 =
𝑎𝑏𝑐

2
∫

𝑑𝑠

(𝑠+𝑖2)𝑅𝑠

∞

0
,               (for 𝑘 = 1,2,3) 

(3-19) 

𝑅𝑠 = √(𝑠 + 𝑎2)(𝑠 + 𝑏2)(𝑠 + 𝑐2). (3-20) 

A simpler form of (3-19) for oblate spheroids is  

𝐿1 = 𝐿2 =
𝑐

2𝑎
[
𝜋

2
−

𝑐

𝑎
],             

(3-21) 

and by substituting the definition, 𝐿1 + 𝐿2 + 𝐿3 = 1, 𝐿3 is obtained, 

𝐿3 = 1 −
𝑐

𝑎
[
𝜋

2
−

𝑐

𝑎
].             

(3-22) 

The next derivation is for expressing (3-15) in terms of the global basis. Let particles’ 

orientation 𝒆̂𝒊
𝟑 be described by spherical coordinates {1, 𝜃, 𝜙}4, related to {𝑥, 𝑦, 𝑧} through  

𝑥 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙,        (3-23) 

𝑦 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,        (3-24) 

𝑧 = 𝑐𝑜𝑠𝜙, (3-25) 

such that 𝒆̂𝒊
𝟑 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝒊̂ + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝒋̂ + 𝑐𝑜𝑠𝜙𝒌̂. 

Next, (3-16)–(3-25) are substituted into (3-15) for the following form of the induced electric 

moment’s z-component,  

(𝑝𝑖)𝒛 = 𝑉𝑝(𝜀𝑝 − 𝜀𝑚) (
𝐸0𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙+𝐸0𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐸0𝑧𝑐𝑜𝑠𝜙

1+(
𝜀𝑝−𝜀𝑚

𝜀𝑚
)(1−

𝑐

𝑎
[
𝜋

2
−

𝑐

𝑎
])

), (3-26) 

where 𝐸0𝑖 are components of 𝑬𝟎 in the x, y, and z-directions. Substituting (3-26) into (3-6) gives a 

form of the component of 𝐹𝑖
𝐷𝐸𝑃 on particle 𝑖 in the z-direction, 

                                                 
4 Radial coordinate, typically represented by 𝑟, is 1 since 𝒆̂𝒊

𝟑 is a unit vector. 
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(𝐹𝑖
𝐷𝐸𝑃)

𝑧
= 𝑉𝑝(𝜀𝑝 − 𝜀𝑚) (

𝐸0𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙+𝐸0𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐸0𝑧𝑐𝑜𝑠𝜙

1+(
𝜀𝑝−𝜀𝑚

𝜀𝑚
)(1−

𝑐

𝑎
[
𝜋

2
−

𝑐

𝑎
])

)∑
1

4𝜋𝜀0𝑟𝑗
4 [(𝒓̂𝒋 ⋅𝑁−1

𝑗=1

𝒌̂)(𝒆̂𝒋
𝟑 ⋅ 𝒆̂𝒊

𝟑) − 5(𝒓̂𝒋 ⋅ 𝒌̂)(𝒆̂𝒋
𝟑 ⋅ 𝒓̂𝒋)(𝒆̂𝒊

𝟑 ⋅ 𝒓̂𝒋) + (𝒆̂𝒊
𝟑 ⋅ 𝒌̂)(𝒆̂𝒊

𝟑 ⋅ 𝒓̂𝒋) + (𝒆̂𝒋
𝟑 ⋅ 𝒌̂)(𝒆̂𝒊

𝟑 ⋅

𝒓̂𝒋)].  

(3-27) 

Since the particles are assumed to be rigid bodies, 𝒆̂𝒊
𝟏 and 𝒆̂𝒊

𝟐 rotate by the same angles as 

𝒆̂𝒊
𝟑, meaning the remaining components of 𝒑𝒊 can be derived similarly with the use of Rodrigues’ 

rotation method (Palais and Palais 2007), which can be substituted into (3-6) to find the remaining 

components of 𝑭𝒊
𝑫𝑬𝑷 as done with the z-component in (3-27).  

The total field 𝑬𝑖 at any point 𝒙𝒊 (occupied by particle 𝑖) can be described by  

𝑬𝑖 = 𝑬𝟎 + ∑
𝑝𝑖

𝒓𝒊𝒋
𝟑 𝜀0

[3(𝒆̂𝒋
𝟑 ⋅ 𝒓̂𝒋)𝒓̂𝒋  − 𝒆̂𝒋

𝟑]𝑁−1
𝑗=1 , (3-28) 

where 𝑝𝑖 = |𝑝𝑖|.  

Note that while induced magnetic and permanent electric dipoles are not accounted for, 

these missing terms can be derived from their magnetic or electric counterparts through analogy. A 

permanent electric dipole moment 𝒑𝒊
𝑝𝑒𝑟  with constant magnitude 𝑝𝑖

𝑝𝑒𝑟  across all particles, 

assumed to behave ideally, can be added as 𝒑𝒊
𝑝𝑒𝑟 = 𝑝𝑝𝑒𝑟𝒅𝒊 , and an induced magnetic dipole 

moment 𝒎𝒊
𝑖𝑛𝑑 can be added in a similar form as (3-15). The ability to write these additional terms 

allows for a generality in the formulation such that any arbitrary combination of electric and 

magnetic properties of particles can be modeled, assuming spheroidal particles with homogeneous, 

lossless dielectric/magnetic properties.  

2.2.5 Hydrodynamic Forces and Torques 

In addition to the magnetic and DEP forces, there are also hydrodynamic forces and torques 

as a result of the fluid medium in which the particles are suspended. The drag force on particle 𝑖 is 

𝑭𝒊
𝒅𝒓𝒂𝒈

= −𝐷𝑠𝒙̇𝒊, (3-29) 
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where 𝐷𝑠 is the drag coeffcient, which is assumed 𝐷𝑠 = 6𝜋𝜂𝑅𝑒𝑞, with 𝑅𝑒𝑞 being the radius of a 

sphere of equivalent volume, and 𝜂 is the dynamic viscosity (Stokes 1901). The fluid also exerts a 

torque against the particles as they try to rotate, which is given by 

𝑻𝒊
𝒅𝒓𝒂𝒈

= 𝐶𝑠𝝎𝒊, (3-30) 

where 𝝎𝒊  is the angular velocity of a particle and 𝐶𝑠 = 8𝜋𝜂𝑅𝑒𝑞
3  (Guazzelli and Morris 2011). 

Again, it should be noted that the drag and repulsive terms are assumed spherical particles due to 

computational costs and the ease of implementation.  

Besides fluid forces and torques, a repulsive force proportional to the magnetic and electric 

forces is added to prevent overlapping of particles. The repulsive force is an exponential function 

used in hard sphere contact problems, and for the dynamic simulations in this study, takes the form 

of 

𝑭𝒊
𝒓𝒆𝒑

= ∑ (𝑒
−𝛽(

𝑟𝑚
2𝑅

−1)
)(

𝜇0(𝑀𝑉𝑝)
2
𝐻0

2

4𝜋
) 𝒓̂𝒋

𝑁
𝑗=1 , (3-31) 

in which, 𝑅 is an equivalent radius of the particles, and 𝛽 is a constant. Since a hard sphere repulsive 

term is used, the ellipsoidal particles are expected to not make contact when their magnetic dipole 

moments align (i.e. in the direction of their shortest axis), and possibly overlap when they are 

aligned along the in-plane direction. A repulsive force term for ellipsoids is not yet included in the 

formulation due to a much greater computational cost of implementing an algorithm that considers 

orientations of all neighboring particles to adjust the repulsive term in every calculation. Likewise, 

a more complex algorithm is necessary for implementing ellipsoidal forms of the drag terms.  

2.2.6 Equations of Motion 

The sum of forces and moments for each particle are given by 

𝑚𝒂𝒊 = 𝑭𝒊
𝒎𝒂𝒈

+ 𝑭𝒊
𝑫𝑬𝑷 + 𝑭𝒊

𝒓𝒆𝒑
+ 𝑭𝒊

𝒅𝒓𝒂𝒈
, (3-32) 
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𝐽(𝒅𝒊 × 𝜶𝒊) = 𝑻𝒊
𝒎𝒂𝒈

+ 𝑻𝒊
𝒆 + 𝑻𝒊

𝒅𝒓𝒂𝒈
, (3-33) 

where 𝒂𝒊 is the linear acceleration and 𝜶𝒊 is the angular acceleration of particle 𝑖. The equations can 

also be written in terms of state variables 𝒙𝒊 and 𝒅𝒊 by adopting the following relations: 𝒗𝒊 = 𝒙̇𝒊 

(velocity), 𝒂𝒊 = 𝒙̈𝒊 (acceleration), 𝝎𝒊 = 𝒅̇𝒊 (angular velocity), and 𝜶𝒊 = 𝒙̈𝒊 (angular acceleration). 

Thus, the forces and torques are summed by 

𝑚𝒙̈𝒊 = 𝑭𝒊
𝒎𝒂𝒈

+ 𝑭𝒊
𝑫𝑬𝑷 + 𝑭𝒊

𝒓𝒆𝒑
+ 𝑭𝒊

𝒅𝒓𝒂𝒈
, (3-34) 

𝐽(𝒅𝒊 × 𝒅̈𝒊) = 𝑻𝒊
𝒎𝒂𝒈

+ 𝑻𝒊
𝒆 + 𝑻𝒊

𝒅𝒓𝒂𝒈
. (3-35) 

With some algebraic manipulation, and substitution of (3-29) and (3-30),  

𝒙̈𝒊 =
1

𝑚
(𝑭𝒊

𝒎𝒂𝒈
+ 𝑭𝒊

𝑫𝑬𝑷 + 𝑭𝒊
𝒓𝒆𝒑

) −
𝐷𝑠

𝑚
𝒙̇𝒊, (3-36) 

𝒅̈𝒊 =
1

𝐽
(𝒎𝒊 × 𝑯𝒊 + 𝒑𝒊 × 𝑬𝒊) −

𝐶𝑠

𝐽
𝒅̇𝒊. (3-37) 

2.2.7 Temporal Discretization 

Since the system of equations presented in (3-36) and (3-37) are difficult to solve in their 

current forms, a few assumptions can be made to simplify them to approximate their solutions. For 

instance, assume that the system is quasi-equilibrium, 𝒙̈𝒊 ≈ 𝟎 and 𝒅̈𝒊 ≈ 𝟎, which yields 

𝒙̇𝒊 =
1

𝐷𝑠
(𝑭𝒊

𝒎𝒂𝒈
+ 𝑭𝒊

𝑫𝑬𝑷 + 𝑭𝒊
𝒓𝒆𝒑

), (3-38) 

𝒅̇𝒊 =
1

𝐶𝑠
[(𝒎𝒊 × 𝑯𝒊) + (𝒑𝒊 × 𝑬𝒊)]. (3-39) 

The time domain can be discretized such that the equations can be calculated at 𝑡 = 𝑡0 + ℎ 

for any initial time 𝑡0 and small time interval ℎ. This assumption allows for the substitution of the 

linear relations 𝒙̇𝒊 = (𝒙𝒊 − 𝒙𝟎𝒊)/ℎ and 𝒅̇𝒊 = (𝒅𝒊 − 𝒅𝟎𝒊)/ℎ, where 𝒙𝟎𝒊 = 𝒙𝒊(𝑡0) and 𝒅𝟎𝒊 = 𝒅𝒊(𝑡0), 

yielding 
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𝒙𝒊(𝑡0 + ℎ) = 𝒙𝟎𝒊 +
ℎ

𝐷𝑠
(𝑭𝒊

𝒎𝒂𝒈
+ 𝑭𝒊

𝑫𝑬𝑷 + 𝑭𝒊
𝒓𝒆𝒑

), (3-40) 

𝒅𝒊(𝑡0 + ℎ) = 𝒅𝟎𝒊 +
ℎ

𝐶𝑠
((𝒎𝒊 × 𝑯𝒊) + (𝒑𝒊 × 𝑬𝒊)). (3-41) 

The assumption that the linear and angular accelerations are zero implies that particles are 

moving slow enough that the inertial effects of changes in speed are neglected.  

2.2.8 Boundary Conditions 

A nearest-neighbor periodic distribution is assumed as the boundary condition, as shown 

in Figure 3-5. This boundary condition plays two significant roles in the simulations: (1) it 

maintains a constant number of particles in the control volume and (2) reduces edge effects of the 

control volume by introducing particle field effects from neighboring regions.  

 

Figure 3-5. Nearest neighbor periodic boundary condition presented in 2D. Control volume is 

highlighted in bolded rectangular outline in the center of the grid. Particles leaving the CV are 

assumed to enter a neighboring region as shown and enter the CV from the opposite edge due to 

the periodic boundary condition. 
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2.3 Multi-Field Processing Results and Conclusions 

This section utilizes the modeling techniques developed earlier to simulate microstructure 

evolution under different processing conditions based on combinations of electric and magnetic 

fields. Furthermore, the simulation results are compared with experimental results obtained by 

colleague M. Abdullah Masud at Penn State to validate model assumptions and verify Hypothesis 

1. As such, the simulations aid in advancing toward a universal printer by offering a method to 

predict formation of micro-architectures based on multiple processing conditions. The join work 

with experiments have been published in the SPIE conference proceeding (REF). A more 

generalized modeling formulation and its detailed results are in preparation for Journal submission. 

The set of all parameters used in the simulations is 

{𝑁,𝑀, 𝜀𝑚
∗ , 𝜀𝑝

∗ , 𝑓, 𝑯𝟎, 𝑬𝟎, 𝜂, 𝑎, 𝑏, 𝑐, 𝑅𝑒𝑞 , 𝛽}. Some parameters, such as 𝑯𝟎, 𝜂, 𝛽, and 𝑅𝑒𝑞  are chosen 

based on a previous study on a single-field simulation of BHF particles in a fluid medium 

(Rodriguez and von Lockette 2017). The external field 𝐻0 is chosen relative to 𝑀 such that 𝐻0 =

5𝑀, and 𝑀 = 380 𝑘𝐴/𝑚. The dynamic viscosity is 𝜂 = 3.5 𝑃𝑎 ∗ 𝑠, and the equivalent radius is 

𝑅𝑒𝑞 = 0.5 𝜇𝑚. The external field 𝐸0  is chosen to be 100 MV/m. The volume fraction 𝑓 is 1%, 

which matches the experimental value (M. A. Al Masud, Ounaies, and von Lockette 2018). The 

relative electric permittivities of the elastomeric matrix and the particles are 𝜀𝑚
∗ = 2, and 𝜀𝑝

∗ = 10, 

respectively, which also matches theoretical values reporting a ratio of 𝜀𝑝
∗/𝜀𝑚

∗ = 5. The particle 

shapes’ aspect ratios are known to be approximately 7, based on experimental imaging methods, for 

the hexagonal plates (M. Al Masud et al. 2019). The aspect ratio of a hexagonal plate is measured 

by the side length of the hexagon divided by the thickness of the plate. As a result, the ellipsoidal 

dimensions have a relation of 𝑐 = 𝑎/3.5 (𝑏 = 𝑎).  The initial positions and orientations of particles 

are assumed uniformly random (generated via MATLAB’s random number generator). An example 

of an initial starting point of the microstructure for 𝑁 = 100 particles is shown in Figure 3-6. The 

magnetic dipole moments of each particle are represented by the blue arrows. Electric dipole 
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moments are not shown since they depend on the direction of the applied field, whereas magnetic 

dipole moments are fixed to the local axes on each particle.  

 

Figure 3-6. Visual representation of starting positions of BHF particles in the control volume. 

Arrows indicate directions of magnetic dipole moments of each particle.  

To analyze simulation results, three types of aggregate structures are defined: stacks, micro-

chains, and macro-chains. Stacks are a short grouping of particles aligned in the same direction, 

yielding a net magnetization direction as shown in Figure 3-7.a. Micro-chains are groups of stacks 

that may or may not be ordered (shown randomly oriented in the micro-chain example in Figure 

3-7.b). Macro-chains are strings of micro-chains stretching across the material, as shown in Figure 

3-7.c.  These definitions are partly based on experimental results found in a join study (M. Al Masud 

et al. 2019).  
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Figure 3-7. Three possible levels of structure with the base unit of a BHF particle, represented by 

the ellipses. Net magnetization of stacks are indicated by the red arrows. The smallest structure is 

(a) a stack. The medium structure is (b) a micro-chain consisting of multiple stacks. The largest 

structure is (c) a macro-chain consisting of micro-chains. 

2.3.1 Five Cases of Processing Conditions 

Prior to comparing simulation results to experiments, five cases are simulated to test the 

simulation results versus expectations. The cases represent basic conditions utilizing a few of the 

different ways interactions between magnetic dipoles and electric dipoles can align particles and 

form stacks, micro-chains, and macro-chains. The expected outcomes of the cases are shown in 

Figure 3-8. Case 1 is the no-field case, in which there are no external fields present. Particles in 

Case 1, represented by the blue ellipses in Figure 3-8,  are expected to form local micro-chains of 

stacks, where some may contain randomly aligned stacks while others may contain macro-chains 

forming loops minimizing the local energy. However, macro-chains covering relatively significant 

portions of the control volume are not expected in Case 1 since the system is not receiving additional 

energy that could decrease the entropy of the system. In Case 2, particles are subjected to an electric 

field in the z-direction, 𝑬𝟎 = 𝐸0𝒌̂. The electric field is expected to induce an electric dipole moment 

in the z-direction for Case 2, such that micro-chains align with the field with stacks having no order 

as shown in Figure 3-8.b. In Case 3, particles are subjected to a magnetic field in the z-direction, 

𝑯𝟎 = 𝐻0𝒌̂. The magnetic dipoles in Case 3 are expected to form stacks that align with the direction 

of the field to reduce the Zeeman energy, and the resulting interactions should form macro-chains 

also in the z-direction. In Case 4, particles are subjected to both fields in transverse configuration 
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such that 𝑯𝟎 = 𝐻0𝒌̂ and 𝑬𝟎 = 𝐸0𝒊̂. The particles stacks’ magnetic moments are expected to align 

with 𝑯𝟎 but form macro-chains in the direction of 𝑬𝟎. In Case 5, the particles are subjected to both 

fields in parallel such that 𝑯𝟎 = 𝐻0𝒌̂ and 𝑬𝟎 = 𝐸0𝒊̂. The stacks are expected to align and form 

macro-chains in the direction of the fields, as shown in Figure 3-8.e. Similar to the stack, micro-

chains, and macro-chain definitions, the expectations of these cases are partly based on prior 

experimental results (M. A. Al Masud, Ounaies, and von Lockette 2018; M. Al Masud et al. 2019). 

 

Figure 3-8. The five cases are shown with simplified 2D schematics illustrating particles 

represented by ellipsoids and chains indicated by outlines of connected particles. 



30 

 
The differences between some of the cases indicate a hierarchy of structure across length 

scales. For instance, the differences between Cases 2, 4, and 5 are the internal structuring of stacks 

within chains. In Case 5, both stacks and chains are aligned in the same direction, which could yield 

bulk properties such as magnetic and elastic responses that are anisotropic in the same direction. 

Meanwhile, Case 4 also contains chains, but stack orientations are transverse to chain directions. A 

Case 4 microstructure may yield magnetic and elastic bulk properties that are transverse to each 

other, which is different from Case 5. Case 2, by contrast, does not have any order at the stack level, 

which would produce isotropic magnetic property. This kind of ability to manipulate hierarchical 

organization in a microstructure can allow for means of optimizing properties such as magnetic 

torque in a material used for actuator applications. Optimization of torque via hierarchical 

organization could lead to smaller and fewer actuators, which could reduce costs and increase the 

efficiency of the devices or systems utilizing the actuators 

Similarly, the difference between Cases 3 and 5 are subtle but yield equally different bulk 

properties. Case 5 is expected to form chains longer than those in Case 3 due to the combined effects 

of both fields in the same direction, which produce coinciding electric and magnetic dipole-dipole 

interactions. Even though both cases have chains and stacks aligned in the same directions, longer 

chains (increasing probability of percolation) in one case over another could be the difference 

needed for high electrical conductivity versus almost no electrical conductivity, assuming particles 

exhibit high electrical conductivity and the medium is nearly an ideal electrical insulator.  

The simulation results for each case are shown in Figure 3-9 through Figure 3-13. For each 

case, the simulations are run for at least 0.5 seconds of simulation time, which is adequate for 

convergence based on a past study that measured a convergence metric versus simulation time 

(Rodriguez and von Lockette 2017). The results of the cases are shown in Figure 3-13. Simulation 

results for cCse 1 show chains and stacks of particles of various lengths with no visible pattern in 

terms of chain orientations (i.e. chain orientations are random). These simulation results match with 

expected results shown in Figure 3-8 for Case 1, with the notable exception of a lack of a third level 
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of hierarchy in the simulations, which are micro-aggregates. That is, the simulations contain chains 

consisting of stacks of particles. This discrepancy may be a product of the various assumptions 

buried in the methodologies, primarily a lack of friction between particles, which could yield the 

development of aggregates composed of smaller stacks. Nonetheless, the particle positions and 

orientations from simulation results for Case 1 in Figure 3-9 do confirm the expected “random” 

orientations of chains with some ordering at the stack level.  

 
Figure 3-9. Simulation results for Case 1, the no-field case. Particles are represented by ellipsoids, 

with magnetic dipole moments signaled by the blue arrows. 

 

Simulation results for Case 2 are shown in Figure 3-10. The particles are oriented such 

that their long axes are aligned with 𝑬𝟎 while forming chains along the same direction. Induced 

electric dipole moments are indicated by red arrows, all aligned with 𝑬𝟎. However, on the y-z 

plane, particle orientations appear randomly distributed, as seen by the blue arrows indicating 

magnetic moments. Again, micro-aggregates do not form in simulations, but the particles can also 

be treated as aggregates whose geometric anisotropy induces electric dipole moments aligning 

them with the field.  

Case 1 
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Figure 3-10. Simulation results for Case 2, the electric field only case. Particles are represented by 

ellipsoids, with magnetic dipole moments signaled by the blue arrows. 

Simulation results for Case 3 are shown in Figure 3-11. The particles form stacks in the 

direction of 𝑯𝟎 some large enough to be classified as chains. There is a distribution of stack and 

chain lengths, which are likely due to the random nature of the initial starting positions. 

Nonetheless, these simulation results agree with expected results shown in Figure 3-8. 

 

Figure 3-11. Simulation results for Case 3, the magnetic field only case. Particles are represented 

by ellipsoids, with magnetic dipole moments signaled by the blue arrows. 

Case 2 

Case 3 
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Simulation results for Case 4 are shown in Figure 3-12. The particles form stacks in the 

direction of 𝑯𝟎, which coincides with 𝒌̂, and a combination for particles and stacks form macro-

chains in the direction 𝑬𝟎, which coincides with 𝒊̂. There is a distribution of stack sizes within the 

chains, but stay within the range of two to three particles per stack, which is likely due to the 

relatively small control volume of the simulations (i.e. small population size of 100). Nonetheless, 

these simulation results agree with expected results shown in Figure 3-8, as they show how two 

levels of hierarchy, micro-scale stacks in one direction and macro-chains in another direction, can 

be produced and controlled via the application of electric and magnetic fields.  

 

 

Figure 3-12. Simulation results for Case 4, the electric and magnetic fields in transverse case. 

Particles are represented by ellipsoids, with magnetic dipole moments signaled by the blue arrows 

and electric dipole moments by red arrows.  

Simulation results for Case 5 are shown in Figure 3-12. Stacks form in the direction of the 

fields, and comprise macro-chains in the same direction. Besides the distinct difference from Case 

4, i.e., stack-level alignments, Case 5 also differs from Case 3 with much longer chains. These 

results agree with expected results shown in Figure 3-8.  

Case 4 
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Figure 3-13. Simulation results for Case 5, the electric and magnetic fields in parallel case. 

Particles are represented by ellipsoids, with magnetic dipole moments signaled by the blue arrows 

and electric dipole moments by red arrows.  

The simulations are compared with experiments from a joint study (M. Al Masud et al. 

2019). The locations and orientations of particles from a set of simulation results having 𝑁 = 200 

are recorded and plotted as ellipsoids in Figure 3-14.a for the case with only magnetic field (Case 

3) and Figure 3-14.b for both fields in parallel (Case 5). Observations of the organizations of 

particles in Figure 3-14 indicate that all particles are aligned with the externally applied fields, and 

each case has significant chain formation. The case with both the magnetic and electric fields 

appears to have longer chain formation, but the exact differences are hard to distinguish by visual 

examination. Thus, the next section develops a basic quantitative metric that could aid in comparing 

simulation and experimental results, as well as learning more about the differences in structural 

hierarchy between the two cases. 

Case 5 
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Figure 3-14. The simulation results for N = 200 particles are shown under (a) magnetic field only, 

and (b) electric and magnetic fields. Each ellipsoid represents a BHF particle, and the arrows 

indicate their dipole moment orientations (blue is magnetic and red is electric). Scale of center 

images is 100 microns, with particles of 1 micron in length. Image is from (M. Al Masud et al. 

2019). 

 

2.3.1 Distance-Based Minimum Spanning Tree Analysis 

The simulation results are further analyzed by finding the minimum spanning forest of each 

graph. The graphs consist of edges between the particles, weighted by the distances between them. 

A minimum spanning tree is subset of all possible edges such that the chosen edges connect all 

vertices while minimizing the total edge weight without any circles forming. The final positions and 

orientations of particles from simulations are used to create a connectivity matrix with a maximum 

allowed distance 𝑑𝑡𝑟𝑒𝑒 . Based on the limit set by 𝑑𝑡𝑟𝑒𝑒 , MATLAB’s minspantree algorithm is 

utilized to find minimum spanning trees. The set of minimum spanning trees is referred to as the 

minimum spanning forest, where each tree is separated by at least a distance of 𝑑𝑡𝑟𝑒𝑒. Thus, varying 

𝑑𝑡𝑟𝑒𝑒 will change the number of trees, and consequently the number of particles per tree. In terms 

of the material microstructure, this could mean that a minimum spanning tree could represent a 

number of structures depending on the scale of 𝑑𝑡𝑟𝑒𝑒. At a low scale of 𝑑𝑡𝑟𝑒𝑒, stacks can be obtained; 

at a medium scale, aggregates can be obtained; and at a large scale, chains can be obtained. These 

scales are relative to the dimensions of the particles. Thus, the minimum spanning forest can help 

objectively identify these structures from a microstructure, whether simulated or experimentally 

acquired, such that other quantitative analyses can be conducted (e.g. comparing distribution of 
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orientations). Furthermore, if there are some ranges for which the number of trees does not change, 

then there may be a prominent level of structural hierarchy in that scale.  

Figure 3-15 shows the number of trees versus 𝑑𝑡𝑟𝑒𝑒/𝑅𝑒𝑞 , where 𝑅𝑒𝑞  is the equivalent 

spherical radius of a particle, for the microstructure simulated using both fields parallel (Case 5). At 

𝑑𝑡𝑟𝑒𝑒 

𝑅𝑒𝑞
< 2, spanning trees cannot form since the range is less than the size of a particle. Thus, the 

total number of trees for 
𝑑𝑡𝑟𝑒𝑒 

𝑅𝑒𝑞
< 2 is equivalent to the number of particles. However, at sufficiently 

large ranges where trees can form, the microstructure analysis reveals plateaus, such as at 2 <

𝑑𝑡𝑟𝑒𝑒

𝑅𝑒𝑞
< 6. Based on the images of the spanning trees associated with this region, highlighted in red 

in Figure 3-15, this range is associated with stacks. The next range, at approximately 7 <
𝑑𝑡𝑟𝑒𝑒

𝑅𝑒𝑞
<

10 , small chain formations exist, and at the range 10 <
𝑑𝑡𝑟𝑒𝑒

𝑅𝑒𝑞
< 14 , large chains exist which 

represents the micro-chains similar to experiment.  

          
Figure 3-15. The number of trees is plotted versus the range 𝑑𝑡𝑟𝑒𝑒/𝑅𝑒𝑞 used in calculating the 

minimum spanning trees for Case 5. The connections within the trees are shown inside the boxes, 

color coded with the plateau ranges.  



37 

 
Additionally, for the same range (stack-level), there are an average of 22 trees for Case 3 

(𝑯𝟎 only), and 17.5 for Case 5 (𝑯𝟎 and 𝑬𝟎 parallel), which is 20% less. The averages are calculated 

across three independent simulations per case. Fewer number of trees for the same 𝑁 is an indication 

of larger chains forming in Case 5. The longer chain formation may be explained by the effects of 

combined dipole-dipole interactions due to both electric and magnetic dipoles. When particles are 

oriented as shown in the simulation microstructure in Figure 3-13, their induced electric dipole 

moments are almost exactly in the same direction as the field, and thus, they exhibit very weak or 

no electric torque. Although a small perturbation can create an electric torque and destabilize the 

particle orientations, their equilibria are maintained by the relatively larger magnetic torques 

generated by 𝑯𝟎. Thus, in this orientation, the electric and magnetic fields induced by both electric 

and magnetic dipoles coincide, and as a result, so do the magnetic and DEP forces that promote 

chain formation. Consequently, Case 5 develops longer chains since electric and magnetic fields are 

applied in the same direction.  

2.3.2 Dispersions of Particle, Stack, and Chain Orientations for Distance-Based Spanning 

Trees 

For a quantitative analysis of the relative spatial alignments of particles, along with the 

orientation of each individual particle, the average angle (𝜙 ) of the connections inside each 

minimum spanning tree is calculated for two levels of hierarchy: stacks and chains. A distribution 

of angles for each level of hierarchy is obtained by assessing the average angle of the edges within 

each tree, and a von Mises distribution function is fitted to each distribution from the simulation and 

experimental results. The form of the distribution is 

𝑓VM(𝜙|𝜇, 𝑏) =
𝑒𝑏𝑐𝑜𝑠(𝜙−𝜇)

2𝜋𝐼0(𝑏)
 , (3-42) 

where 𝜇 is the mean of the distribution, and 𝑏 is a measure of the spread. The average angles are 

visually defined in Figure 3-16. The experimental results are borrowed from a related published 

work (M. Al Masud et al. 2019). The von Mises distribution function can also be analyzed by the 
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dispersion factor, 𝜅, a parameter ranging from 0 (singular point) to 1/3 (uniform distribution) at a 

mean of 𝜇, unlike 𝑏 which ranges from 0 to infinity. The form of 𝜅 is shown later in (4-109) along 

with a detailed explanation. A smaller 𝜅 indicates more alignment. The dispersion factors of the 

fitted von Mises distributions are listed in Table 3-1. At the particle level, both for simulation (𝜅 =

0) and experimental results (𝜅 = 0.093), dispersions of particle orientations are low, indicating high 

alignment of the particles with the field directions for both cases. At the stack level, experimental 

results ( 𝜅 = 0.26 ) show high dispersion compared to simulation results ( 𝜅 = 0.024 ). 

Microstructures from SEM results showed agglomeration of stacks in few instances which may be 

the reason for large stack dispersion from experimental results. At the chain level, both cases for 

experiments (𝜅 = 0.23) and simulations (𝜅 = 0.25 ) show large dispersions close to uniform 

distributions. This is because with the increase of 𝑑𝑡𝑟𝑒𝑒, side branching occurs perpendicular to the 

applied field.  

 

Figure 3-16. Angle of a particle and the angles in the edges within a tree are defined as shown.  

From Table 3-1, comparison of experimental dispersion factors between the two cases 

shows that the dispersion factor of particles ( 𝜅𝐻+𝐸 = 0.079, 𝜅𝐻 = 0.093 ), stacks ( 𝜅𝐻+𝐸 =

0.25, 𝜅𝐻 = 0.26) and chains (𝜅𝐻+𝐸 = 0.22, 𝜅𝐻 = 0.23)  is slightly lower for the electric and 

magnetic field processed (Case 5) composites compared to just magnetic field processed (Case 3) 

composites. This suggests slightly better orientation of BHF at all scales for Case 5 composites. 
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This experimental result validates the simulations, which had predicted that longer chains would 

form under simultaneously applied fields in the same direction due to coinciding electric and 

magnetic dipoles, which is unique to that specific case. However, simulation results show that the 

dispersion factors of BHF stacks (𝜅𝐻+𝐸 = 0.042, 𝜅𝐻 = 0.024) and chains (𝜅𝐻+𝐸 = 0.30, 𝜅𝐻 =

0.25) are slightly higher for Case 5 composites compared to Case 3 composites. The slight 

difference in the dispersion factors at the stack level may be an artifact of the methods used to 

determine the angles of a chain, since stacks in the simulations are already well aligned with respect 

to the field directions. When calculating the angles of a chain, the angles across stacks are included, 

which will increase the dispersion factor at the chain level for Case 5 due to longer chains running 

parallel to each other (i.e. some connections may appear to be side branches of trees), while in Case 

3 there are shorter chains or stacks, which can connect more in the direction of the fields than 

transversely.  

Table 3-1. Comparative degree of orientation of BHF stack and micro-chains. Dispersion factors, 

(𝜅) are provided for the stack range, small chain range, and large chain range for each case. 

 H ONLY H AND E 

 Exp (𝜅) Sim (𝜅) Exp (𝜅) Sim (𝜅) 

PARTICLE (ΦP) 0.093 0 0.079 0 

STACKS (ΦS) 0.26 0.024 0.25 0.042 

CHAINS (ΦCH) 0.23 0.25 0.22 0.30 

One of the challenges of the spanning tree analysis of the microstructure is that it starts to 

result in high dispersion at large range when the trees side-branch (e.g. two long chains parallel to 

each other can only be connected by an edge relatively perpendicular to the field direction). While 

dispersion factors from spanning tree analysis offer insights into the microstructural hierarchy as a 

direct result of processing conditions, there are other metrics that can be studied to understand 

different aspects of the microstructure besides spatial and particle alignments. For example, the 

study does not consider the moments of inertia of stacks and chains, the average distances between 
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stacks, and the number of stacks within chains, all of which provide extra layers of information 

regarding the structural properties. It should also be noted that the choice of 𝑑𝑇𝑟𝑒𝑒  strongly 

influences spanning tree results, and the fact that distance is chosen as the weighting function for 

the minimum spanning tree. In addition, the simulations can better match experimental conditions 

by considering contact mechanics, friction between particles, and the limitations of dipole field 

equations. 

2.3.3 Dipole-Dipole Energy-Based Minimum Spanning Tree Analysis 

So far, the definitions of stacks, micro-chains, and macro-chains have not been properly 

quantified, and instead, the comparisons relied on qualitative aspects of each structure. In this 

section, the goal is to quantitatively distinguish groups of particles as either stacks, micro-chains or 

macro-chains based on a set of metrics. To begin developing such metrics, the structures for each 

case are defined by the descriptions shown in Table 2-2. Based on these descriptions, it is notable 

that the same definition for a structure (e.g. stacks) may not be applicable to all cases. For example, 

the stacks in Case 2 (electric field only) are based on the anti-parallel alignments of magnetic dipole 

moments perpendicular to the electric field direction. This definition for stacks is exclusive to case 

2, while all other cases can use the two criteria, (1) short distances between particles, and (2) 

magnetic moments of particles are parallel. Consequently, this table provides a basis for determining 

the metrics to quantify each structure for all cases.  

 

Table 3-2. Qualitative descriptions of the structures at each length-scale are given for each 

processing case. 

CASE STACKS MICRO-CHAINS 
MACRO-

CHAINS 

1 - Short distances 

between particles 

- Particles’ 𝒎 in 

same direction 

- Stacks are close to 

each other 

- 𝒎𝒔𝒕𝒂𝒄𝒌 in different 

directions 

- Stacks form links  

- Limited 

percolation 
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2 - Short distances 

between particles 

- Parallel 𝒑 

- Anti-parallel m 

- 𝒎𝒔𝒕𝒂𝒄𝒌 varies within 

chain 

- Stacks are close 

together 

- Stack positions along 

a line 

- High 

percolation 

3 - Short distances 

between particles 

- Parallel 𝒎 

- Low percolation - Medium 

percolation 

4 - Short dist. 

Between 

particles 

- Parallel m 

- Short distances 

between stacks 

- 𝒎𝒔𝒕𝒂𝒄𝒌 in same 

direction 

- 𝒑𝒔𝒕𝒂𝒄𝒌 in same 

direction 

- High 

percolation 

5 - Short distances 

between particles 

- Medium percolation 

- Stacks in same 

direction 

- High 

Percolation 

While the qualitative definitions in Table 2-1 are a necessary step in the process of 

characterizing the microstructure observed in each processing case, they cannot be solely used to 

consistently identify stacks, micro-chains or macro-chains from any group of particles representing 

a microstructure. Furthermore, descriptions such as “short distances between particles,” and 

“parallel magnetic moments of particles” seem obvious when looking at the example 

microstructures provided in Figures 2-9 through 2-13, but reality can be more ambiguous due to the 

stochastic nature and numerical approximations of the simulations. There can be cases when 

particles do not exactly align, or the separation distances may vary in a way that fits a type of 

statistical distribution. To have a more robust and clear approach to distinguishing these structures, 

a quantitative approach is necessary.  

One method for quantification can be found in graph theory, known as spanning forests. If 

each microstructure is treated as a graph, with each particle represented by a node, then the nodes 

can be connected via edges that could be weighted by a function of our choosing. A minimum 

spanning tree is a subset of all possible edges such that the edges of the subset connect all nodes 

while minimizing the total edge weight without any circles forming. For this study, one natural 
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weight function to consider is the radial distances between the particles. However, distance-based 

weights cannot account for some of the most common definitions in Table 2-2, such as particle 

alignments. Consequently, a spanning tree algorithm using distance-based weights may group 

particles that may not make sense or represent the conventions proposed in Table 2-2. As an 

alternative, a weight function based on dipole-dipole interaction energy is proposed, in the form of 

𝑤𝑑𝑖𝑝 =
(𝑎𝑏𝑐)1/3

𝑟𝑗
[3(𝒎𝒋 ⋅ 𝒓̂𝒋)𝒓̂𝒋  −  𝒎𝒋]. (3-43) 

 The form of (3-43) is based on the dipole-dipole interaction energy between two magnetic 

dipoles, normalized by the volume of an ellipsoidal particle. This function can account for both 

distances between particles and their relative orientations, which can address the definitions in Table 

2-1.  

With the weights between all pairs of particles, a spanning tree can be constructed for the 

entire representative microstructure. However, to distinguish between stacks, micro-chains, and 

macro-chains, an additional parameter must be selected to limit the formations of trees, such that 

particles can be grouped into multiple trees instead of just one. This parameter can be a maximum 

allowed weight, 𝑑𝑡𝑟𝑒𝑒, which could be thought of as analogous to a maximum distance if distance-

based weights were used.  

Based on the limit set by 𝑑𝑡𝑟𝑒𝑒 , MATLAB’s minspantree algorithm is utilized to find 

minimum spanning trees for each case. The set of minimum spanning trees is referred to as the 

minimum spanning forest, where each tree is separated by at least a weight of 𝑑𝑡𝑟𝑒𝑒. Thus, varying 

𝑑𝑡𝑟𝑒𝑒 will change the number of trees, and consequently the number of particles per tree. In terms 

of the microstructure, this could mean that a minimum spanning tree could represent a number of 

structures depending on the scale of 𝑑𝑡𝑟𝑒𝑒. At a low value of 𝑑𝑡𝑟𝑒𝑒, stacks can be obtained; at a 

medium value, micro-chains can be obtained; and at a large value, macro-chains can be obtained. 

Thus, the minimum spanning forest can objectively identify these structures from a microstructure, 
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whether simulated or experimentally acquired, such that other quantitative analyses can be 

conducted (e.g. comparing distribution of orientations).  

Two properties are chosen for the analysis in determining 𝑑𝑡𝑟𝑒𝑒 for stacks, micro-chains, 

and macro-chains. The first is the rate of the amount of relative mass added to trees versus 𝑑𝑡𝑟𝑒𝑒. 

The relative change in mass can help eliminate gradual changes in the number of trees or particles 

per tree that are due to isolated, single particles slowly joining nearby trees. The second property is 

the average percolation of trees for a 𝑑𝑡𝑟𝑒𝑒, which is calculated as a percent of the dimension of the 

control volume.  

  Each case is simulated five times at N = 200 with the parameters listed in Table 2-2.  

Table 3-3. A list of all parameters used in the simulations. 

Parameter Name Description Value Unit 

M Magnetization of particles 381000 𝐴/𝑚 

𝜀𝑝𝑟 Relative electric permittivity of particles 10 N/A 

𝜀𝑚𝑟 Relative electric permittivity of fluid medium 2 N/A 

𝐻0 External magnetic field 5*M 𝐴/𝑚 

𝐸0 External electric field 100  𝑀𝑉/𝑚 

𝜂 Dynamic viscosity 3.5  𝑃𝑎 ∗ 𝑠 

(𝑎𝑏𝑐)1/3 Equivalent radius of a particle 0.5 𝜇𝑚 

𝑓 Volume fraction of particles 0.01 N/A 

a/c (a=b) Aspect ratio of particles 7 N/A 

 

Case 1 

The first case is the no-field processing condition, where particles are left to interact solely 

based on the field contributions from other particles. In this case, the best indicator of chain, micro-

chain, and macro-chain groupings is the change in mass with respect to 𝑑𝑡𝑟𝑒𝑒. Figure 3-17 plots the 

change in mass versus 𝑑𝑡𝑟𝑒𝑒, with important events annotated. Stack formations occur at 𝑑𝑡𝑟𝑒𝑒 =

0.03, micro-chains at 𝑑𝑡𝑟𝑒𝑒 = 0.1, and macro-chains at 𝑑𝑡𝑟𝑒𝑒 = 0.85. These values are validated 

by comparing the structures the spanning tree has formed, as shown in Figure 3-19, with the 

definitions in Table 2-2 . For example, the stacks for Case 1 should be groups of particles that are 

in close-proximity and well aligned with each other. Stacks that are close to each other can be 
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connected to make up the micro-chains, which can be connected to form macro-chains that have 

limited percolation.  

Figure 3-19 shows the trees formed within a Case 1 structure at 𝑑𝑡𝑟𝑒𝑒 = 0.03, which indeed 

mostly groups particles that are very close to each other, and stacks that form chains with moderate 

curvatures are separated (as shown in the red circle). The trees at 𝑑𝑡𝑟𝑒𝑒 = 0.11 are groups of stacks 

that are near each other, forming micro-chains that curve in various directions, with average 

percolation of about 10% (with respect to the control volume’s length). The trees at 𝑑𝑡𝑟𝑒𝑒 = 0.85 

are groups of micro-chains that are well-aligned, and have medium to high percolation of over 50%. 

At 𝑑𝑡𝑟𝑒𝑒 = 0.85, nearly all particles are grouped into one large tree.  

 

Figure 3-17. The rate of change in relative mass of trees (measured by the number of particles in a 

tree, Np) with respect to the dipole-energy-based weights for Case 1. 
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Figure 3-18. The average percent percolation of trees at different dtree values for Case 1.   

 

  

Figure 3-19. The trees generated by the spanning tree at different thresholds for the weights are 

plotted and shown for Case 1. Each dot represents the position of a particle. The blue lines 

indicate edges and the red arrows indicate magnetic dipole moments.  

Case 2 
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In Case 2, the external field induces electric dipoles in the particles, and forms chains in 

the same direction. In the plane perpendicular to the field, the magnetic moments do not have any 

order. From the spanning tree analysis, the micro-chains and macro-chains can be determined by 

both the change in mass and the level of percolation. The large change in mass around 𝑑𝑡𝑟𝑒𝑒 = 0.1 

can be attributed to the formation of micro-chains (Figure 3-20), which have an average 

percolation of 30% or higher (Figure 3-21). The large change in mass at 𝑑𝑡𝑟𝑒𝑒 = 1 can be 

attributed to the formation of macro-chains (See Figure 3-22), which have an average percolation 

of 80% (Figure 3-21).   

 

Figure 3-20. The rate of change in relative mass of trees (measured by the number of particles in a 

tree, Np) with respect to the dipole-energy-based weights for Case 2. 
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Figure 3-21. The average percent percolation of trees at different dtree values for Case 2. 

 The trees representing each structure are shown in Figure 3-22. The micro-chains are links 

of stacks (particles in anti-parallel arrangements) in close proximity, while macro-chains connect 

stacks that are farther in distance, but whose axes align (in the direction of chain formation).  

 

 

Figure 3-22. The trees generated by the spanning tree at different thresholds for the weights are 

plotted and shown for Case 2. Each dot represents the position of a particle. The blue lines 

indicate edges and the red arrows indicate magnetic dipole moments. 

Case 3 

The formations of stacks, micro-chains and macro-chains for Case 3 can be determined 

from a combination of percolation and change in mass. The stacks are associated with the first large 

changes in mass, up to 𝑑𝑡𝑟𝑒𝑒 = 0.11 , as shown in Figure 3-23. The stacks have about 15% 

percolation (Figure 3-24), and look like particles that are well aligned and close to each other, as 

shown in Figure X3-3. The micro-chains form at around 𝑑𝑡𝑟𝑒𝑒 = 0.85, which aligns with the first 
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change in mass of trees after 𝑑𝑡𝑟𝑒𝑒 = 0.11 (Figure 3-24). Furthermore, at 𝑑𝑡𝑟𝑒𝑒 = 0.85, percolation 

goes up to about 30%. Figure 2-28 shows that the trees consist of groups of stacks that are relatively 

well aligned. Macro-chains occur at the next step, at 𝑑𝑡𝑟𝑒𝑒 = 0.875, with a large change in mass 

(Figure 3-23), high percolation of 40% or higher (Figure 3-24), and group multiple micro-chains 

together (Figure 3-25).  

Due to the compactness of these events in the [0.85, 0.9] range and the stochastic nature of 

the simulations, slight shifts between simulation for the same case (i.e. processing condition) can 

add noise to the data, which is why there are large standard deviations in this range. Thus, while 

some simulations may have micro-chains occurring at 0.85 and macro-chains at 0.875, others have 

the same events occur at 0.875 and 0.9.  

 

Figure 3-23. The rate of change in relative mass of trees (measured by the number of particles in a 

tree, Np) with respect to the dipole-energy-based weights for Case 3. 
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Figure 3-24. The average percent percolation of trees at different dtree values for Case 3. 

 

 

 

Figure 3-25. The trees generated by the spanning tree at different thresholds for the weights are 

plotted and shown for Case 3. Each dot represents the position of a particle. The blue lines 

indicate edges and the orange arrows indicate magnetic dipole moments. 
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Case 4 

In Case 4, the microstructure is expected to contain stacks aligned in the direction of the 

magnetic field, and chains formed in the direction of the electric field (perpendicular to the magnetic 

field). From the dipole-energy-based spanning tree analysis, stacks can be associated with the first 

relatively large change in mass at 𝑑𝑡𝑟𝑒𝑒 = 0.3  (Figure 3-26), where short stacks of very low 

percolation (1%, Figure 3-27) consisting of two particles are formed (Figure 3-28). The next big 

changes in mass occur at 𝑑𝑡𝑟𝑒𝑒 = 0.8 and 𝑑𝑡𝑟𝑒𝑒 = 0.85, which indicate the formation of chains, 

where multiple stacks are grouped (Figure 3-28). This jump indicates the shift to micro-chains, 

which have a relatively low percolation of 5-10%. Macro-chains occur at 𝑑𝑡𝑟𝑒𝑒 = 0.875 at the next 

increase in mass (Figure 3-26) with much higher percolation of 30-60% (Figure 3-27), where micro-

chains are grouped into larger, macro-chains (Figure 3-28). However, the trees in Figure 3-28 for 

micro-chain and macro-chain groupings based on the dipole-energy-based spanning trees do not 

reflect the definitions in Table 2-2. For instance, the micro-chain trees do not connect particles that 

appear to form links resembling chains. Additionally, the macro-chains connect micro-chains in 

diagonal paths that follow the magnetic dipole moments of the particles. Since these types of 

groupings are artefacts of the dipole-energy-based weights, another type of weight for the spanning 

tree algorithm can be used for the micro-chains and macro-chains. The simplest approach is a 

distance-based weight function that can connect nearby particles in ways resembling the 

descriptions for Case 4 in Table 2-2.  
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Figure 3-26. The rate of change in relative mass of trees (measured by the number of particles in a 

tree, Np) with respect to the dipole-energy-based weights for Case 4. 

 

 

Figure 3-27. The average percent percolation of trees at different dtree values for Case 4. 
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Figure 3-28. The trees generated by the spanning tree at different thresholds for the weights are 

plotted and shown for Case 4. Each dot represents the position of a particle. The blue lines 

indicate edges and the orange arrows indicate magnetic dipole moments. 

 

 

 

 

Figure 3-29. The rate of change in relative mass of trees calculated by a distance-based spanning 

tree algorithm is potted in (a), with significant peaks circled in red. The average percolation in 

trees at different values of dtree relative to the size of a particle, (abc)1/3 is plotted in (b), with 

(a) 

(b) 

(c) 
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significant changes in percolation circled. The spanning forests corresponding to dtree =

2(abc)1/3 and dtree = 10(abc)1/3 are shown in (c), which show groupings that fit the definitions 

of micro-chains and macro-chains, respectively. 

The results from the distance-based spanning tree algorithm in Figure 3-29 can help 

quantitatively group particles into micro-chains and macro-chains. The rate of change of mass 

(Figure 3-29) for the distance-based spanning tree algorithm for Case 4 shows high changes at 

𝑑𝑡𝑟𝑒𝑒/(𝑎𝑏𝑐)1/3 = 2, 8, and several beyond 12. With this information alone, it is hard to 

determine which point can be attributed to the formation of micro-chains and macro-chains. Thus, 

the jumps in percolation (Figure 3-29.b) can help determine which one of these changes in mass is 

meaningful in terms of the definitions of the structures in Table 2-2. Namely, the micro-chains and 

macro-chains should be distinctive in terms of percolation. In Figure 3-29.b, there is a jump in 

percolation at  𝑑𝑡𝑟𝑒𝑒/(𝑎𝑏𝑐)1/3 = 2 to about 60% percolation, and a gradual increase in 

percolation within the range 𝑑𝑡𝑟𝑒𝑒/(𝑎𝑏𝑐)
1

3 = [5,10] as it plateaus at around 80%. Beyond 

𝑑𝑡𝑟𝑒𝑒/(𝑎𝑏𝑐)1/3 = 10, percolation goes up to almost 100%. Given these changes in mass and 

percolation at various values 𝑑𝑡𝑟𝑒𝑒, the spanning forests confirm that the micro-chains and macro-

chains occur at 𝑑𝑡𝑟𝑒𝑒/(𝑎𝑏𝑐)1/3 = 2 and 𝑑𝑡𝑟𝑒𝑒/(𝑎𝑏𝑐)1/3 = 10 (Figure 3-29.c).  

Case 5 

Case 5 is the case with both fields applied in the same direction. As a result, both particles 

and chains are expected to be oriented in the direction of the fields. The change in mass (Figure 

3-30) shows large changes up to 𝑑𝑟𝑎𝑛𝑔𝑒 = 0.1, and a few after 𝑑𝑟𝑎𝑛𝑔𝑒 = 0.8. The changes in mass 

up to 𝑑𝑟𝑎𝑛𝑔𝑒 = 0.1 can be associated with the formation of either stacks or micro-chains, since at 

𝑑𝑟𝑎𝑛𝑔𝑒 = 0.11 the trees contain highly-aligned particles in the same direction, with varying degrees 

of lengths (Figure 3-32). To determine whether these structures are stacks or micro-chains, the 

percolation is considered (Figure 3-31). After 𝑑𝑟𝑎𝑛𝑔𝑒 = 0.1, the percolation is at 30% or higher, 

which is relatively high for stacks, and thus, these structures would be considered as micro-chains. 
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The next changes in mass at 𝑑𝑟𝑎𝑛𝑔𝑒 = 0.8, 0.9 are a reflection of the formation of macro-

chains, as confirmed by Figure 3-32, which shows that micro-chains that are well aligned are 

grouped together into macro-chains at 𝑑𝑟𝑎𝑛𝑔𝑒 = 0.9 with a high percolation of 90%. 

 

Figure 3-30. The rate of change in relative mass of trees (measured by the number of particles in a 

tree, Np) with respect to the dipole-energy-based weights for Case 5. 

 

Figure 3-31. The average percent percolation of trees at different dtree values for Case 2. 
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Figure 3-32. The trees generated by the spanning tree at different thresholds for the weights are 

plotted and shown for Case 5. Each dot represents the position of a particle. The blue lines 

indicate edges and the orange arrows indicate magnetic dipole moments. 

2.3.4 Dispersions of Particle, Stack, and Chain Orientations for Distance-Based Spanning 

Trees 

Case 1 shows high dispersion across all levels of structure, with values of 𝜅 at 0.23 or 

higher. This quantitative assessment confirms its relatively random state at all length-scales, since 

there is no external field being applied. Case 2 also shows high dispersion at the particle level, at 

𝜅 = 0.32, but the micro-chains are highly aligned (𝜅 = 0.03) with a center at 𝜇 = 2.1 near the 

direction of the field 𝜙 = 1.57. Macro-chains are also highly aligned with 𝜅 = 0.05, and centered 

at 𝜇 = 1.77, which is even closer to the direction of the field than the micro-chains for Case 2. By 

contrast, Case 3 highly aligned at all levels of structure, with low dispersion and a center at 𝜇 = 0 

matching the direction of the magnetic field, 𝜙 = 0. Case 4, meanwhile, shows high particle in the 

direction of the magnetic field, which is to be expected. At the stack-level, there is greater 

dispersion but the center is still aligned with the magnetic field. However, at the micro-chain level, 

the dispersion is very low and orientations are aligned with the electric field, with a mean of 𝜇 =

1.5. The macro-chains for Case 4 are similar to the micro-chains. Finally, Case 5 has very low 

dispersion at all levels, with precise alignment of structures toward the direction of both fields in 

Case 5, which is 𝜙 = 0. 

Table 3-4. A summary of the results for all cases and the fitted distributions of the orientations of 

structures at each level. 

CASE PARTICLES STACKS MICRO-CHAINS MACRO-CHAINS 

1 𝜇 = 1.5 

𝜅 = 0.26 

𝑑𝑠𝑡𝑎𝑐𝑘 = 0.01  

𝜇 = 2.1 

𝜅 = 0.23 

𝑑𝑚𝑖𝑐𝑟𝑜−𝑐ℎ = 0.1 

𝜇 = 2.0 

𝜅 = 0.24 

𝑑𝑚𝑎𝑐𝑟𝑜−𝑐ℎ = 0.85  

𝜇 = 2.4 

𝜅 = 0.25 

2 𝜇 = 2.4 

𝜅 = 0.32 

𝑑𝑠𝑡𝑎𝑐𝑘 = N/A  𝑑𝑚𝑖𝑐𝑟𝑜−𝑐ℎ = 0.1 

𝜇 = 2.1 

𝜅 = 0.03 

𝑑𝑚𝑎𝑐𝑟𝑜−𝑐ℎ = 1 

𝜇 = 1.77 

𝜅 = 0.05 
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3 𝜇 = 0 

𝜅 = 0.01 

𝑑𝑠𝑡𝑎𝑐𝑘 = 0.125 

𝜇 = 0 

𝜅 = 0.02 

𝑑𝑚𝑖𝑐𝑟𝑜−𝑐ℎ = 0.88 

𝜇 = 0 

𝜅 = 0.03 

𝑑𝑚𝑎𝑐𝑟𝑜−𝑐ℎ = 0.91 

𝜇 = 0 

𝜅 = 0.08 

4 𝜇 = 0 

𝜅 = 0.03 

𝑑𝑠𝑡𝑎𝑐𝑘 = 0.4  

𝜇 = 0 

𝜅 = 0.09 

𝑑𝑚𝑖𝑐𝑟𝑜−𝑐ℎ = 

2*(𝑎𝑏𝑐)1/3  

(distance-based) 

𝜇 = 1.5 

𝜅 = 0.06 

𝑑𝑚𝑎𝑐𝑟𝑜−𝑐ℎ = 

10*(𝑎𝑏𝑐)1/3 (distance-

based) 

𝜇 = 1.5 

𝜅 = 0.09 

5 𝜇 =0 

𝜅 = 0.02 

𝑑𝑠𝑡𝑎𝑐𝑘 = N/A 

𝜇 = 𝑁/𝐴 

𝜅 = 𝑁/𝐴 

𝑑𝑚𝑖𝑐𝑟𝑜−𝑐ℎ = 0.1 

𝜇 = 0 

𝜅 = 0.02 

𝑑𝑚𝑎𝑐𝑟𝑜−𝑐ℎ = 0.95 

𝜇 = 0 

𝜅 = 0.05 

 

2.4. Conclusions 

In this chapter, the methodologies were aimed to answer Hypothesis 1 and complete the 

related objectives. Hypothesis 1 states that particle simulations utilizing ferrohydrodynamics could 

provide evidence for whether applying magnetic and electric fields to particles suspended in a 

fluidic polymer matrix yields a microstructure with multiple levels of hierarchy. To answer the 

hypothesis, the hierarchical microarchitecture formation of magnetic particles inside PDMS was 

computationally studied for five cases of processed composites: (1) no-field or control, (2) electric 

field only, (3) magnetic field only, (4) both fields in transverse and (5) both fields in parallel.  

The simulation results were compared to a set of expected results for the five cases based 

on experimental data from literature. For Case 1, chain formations were random; for Case 2, 

particles aligned geometrically with the electric field; for Case 3, particles aligned with the magnetic 

field forming short chains; for Case 4, particles aligned with the magnetic field but formed chains 

in the direction of the electric field; and for Case 5, particles aligned and formed chains in the 

directions of both fields. Thus, the ability of the simulations to replicate the expected trends partly 

validated the methodologies chosen to simulate the particles’ behaviors and interactions in the fluids 

for both fields (i.e., ferrohydrodynamic principles). Furthermore, the differences between the 

simulation results and expected microstructures also helped understand the behavior of particles and 

chain formations under ideal conditions. For instance, particles formed anti-parallel arrangements 

in simulations for Case 2 (under an electric field), which is likely due to both a random initial 
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microstructure and a lack of friction between particles. These differences are important because they 

demonstrate the kinds of microstructures that can be achieved with “perfect” dispersion of particles 

prior to processing, and minimal friction between particles. Better dispersion of particles can be 

achieved with methods through different stirring methods or additional processing such as probe 

sonification or hydrothermal synthesis, while friction experienced by particles could be aided by a 

polymer matrix with lower viscosity. Results also suggest that more realistic initial distributions 

produce results more in line could affect the final microstructures and possibly with experiments. 

Additionally, a spanning tree threshold analysis of the simulated microstructures 

quantitatively provided evidence for multiple levels of structure present in the microstructure, 

referred to as stacks, micro-chains, and micro-chains. These structures were measured by metrics 

such as percolation, defined by the percent length covered by a tree of the dimension of the control 

volume, as well as the change in mass as the threshold for the spanning tree is increased. The 

spanning tree algorithm incorporated a dipole-dipole interaction-based weight function, as opposed 

to distance-based weights. Based on comparisons between the two types of weight functions, the 

dipole-based weight function was found to be the best approach to analyze the microstructures since 

it helps with connecting particles whose dipole moments that naturally align.  

Changes in metrics such as percolation and change in mass helped determine define 

structures at each length scale (i.e., stacks, micro-chains, and macro-chains). For instance, for Case 

5, typical micro-chains exhibit 30% percolation, while macro-chains are over 70% percolation, 

while micro-chains in Case 3 are only at about 15% percolation, and macro-chains no more than 

30%. The level of percolation can directly influence the electrical conductivity of materials, and the 

change from 30% percolation to over 70% could make the difference between a near-perfect 

insulator to a highly conductive material.  

A von Mises distribution function fitted to the average angles of stacks, micro-chains and 

macrochains for each case quantified the orientations of these structures for more exact 

comparisons. For example, particles in Case 2 were almost randomly distributed in angle 
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distributions ( 𝜅 = 0.32 ) while micro-chains were highly ordered ( 𝜅 = 0.03 ). Thus, the 

microstructure in Case 2 could yield isotropic magnetic properties with high dielectric or electrically 

conductive properties in one direction. By contrast, the dispersion of magnetic moments in Cases 3, 

4, and 5 were very low in the direction of the magnetic field, which would yield highly anisotropic 

magnetic properties. However, due to the differences in hierarchical organization in those cases, 

such as the net magnetic moment of stacks in Case 4 being perpendicular to chain directions, the 

magnetic moment of the bulk material could be re-oriented with respect to macroscopic chains, 

which can influence other properties such as elasticity or conductivity. Additionally, the differences 

in chain percolation between Cases 3 and 5 could lead to two different materials with magnetic 

anisotropy: one with high electric conductivity and dielectric coefficient, and one with high electric 

insulation and low dielectric coefficient. These findings ultimately show that it is possible to 

manipulate microarchitectures on multiple length-scales by varying the processing conditions, and 

that the range of attainable microstructures is wide. As a result, the range of attainable material 

properties is also wide.  
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 CHAPTER 3 

Link Between Microstructure and Electrostrictive Material Response: 

Development and Validation of Nonlinear Electrostriction Model 

 

 

This chapter aims to address Hypothesis 2 by developing a microstructure-based model 

for electrostriction and comparing different network models incorporating a distribution function 

for both the spatial and polarization-related orientations of dipole moments.  

The beginning of Chapter 3 reviews previous modeling methods of polarization and 

electrostriction and hyperelastic models. Next, a constitutive modeling approach based on network 

models is developed, and specific cases of the model are compared to experimental data. 

Note: Parts of this document are borrowed from the author’s JMPS journal publication in 

2019 (Erol et al. 2019), and SMASIS 2017 conference proceeding (Erol et al. 2017). 

3.1 Literature Review on EAP Mechanics 

The aim of this chapter is to provide a background on Hypothesis 1 and the related 

objectives, which focus on understanding the link between microstructure and response of a 

dipole-based material. Hypothesis 1 states that network models accounting for microstructure by 

representing relative locations of dipolar regions in a hyperelastic medium can form an effective 

framework for modeling electrostriction. The first subsection discusses a new class of EAPs, 

relaxor ferroelectrics, that is driven by dipoles in its microstructure. The second section briefly 

covers hyperelastic models and identifies the various aspects of each model that could be 

beneficial for modeling dipole-based EAPs. The third subsection is a literature review on EAP 

modeling, from deformable linear dielectrics to nonlinear hyperelastic models incorporating 

aspects of microstructure. It is found that no single model contains a framework for dipole-based 

EAPs, but various aspects of different models can be adopted for a new framework that 

incorporates microstructural characteristics of interest.  
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3.1.1 Microstructure-property relationship in PVDF-based RFE polymers 

Electro-active polymers (EAPs) have gained significant attention over the years for their 

high electromechanical responses  (Q. M. Zhang 1998; Bar-Cohen and Bar-Cohen 2004). Among 

EAPs, polyvinylidine fluoride, P(VDF), and its copolymer polyvinylidine-fluoride 

trifluoroethyline, P(VDF-TrFE), are ferroelectric materials that derive their electromechanical 

properties from polarizable, ferroelectric domains (Nalwa 1995; Dang, Lin, and Nan 2003). More 

recently, a bulky third monomer was added to the copolymer to deliberately generate defects in 

the microstructure, breaking down crystalline phase into nano-polar domains (Xu et al. 2001; Ang 

and Yu 2004). As a result, new PVDF-based terpolymers with relaxor ferroelectric (RFE) 

properties were developed. Two types of PVDF-based terpolymers are poly (vinylidene-fluoride–

trifluoroethylene–chlorofluoroethylene), and poly (vinylidene-fluoride–trifluoroethylene–

chlorotrifluoroethylene), also known as P(VDF-TrFE-CFE) and P(VDF-TrFE-CTFE), 

respectively (Xu et al. 2001; Bauer et al. 2004; Chu, B. et al. 2006). The terpolymers mainly differ 

from ferroelectric materials by exhibiting a slim hysteresis loop in their polarization response, as 

shown in dashed line in Figure 4-1, (Xu et al. 2001; Klein et al. 2005), which was ascribed to the 

semicrystalline structure of PVDF-based RFE polymers containing mobile crystalline phases with 

dipolar responses within an amorphous phase (Xu et al. 2001; Lu et al. 2008). 
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Figure 4-1. Polarization curves for a ferroelectric material and a relaxor ferroelectric material.  

Electrostriction in the PVDF-based polymers is dependent on the presence of both 

crystalline and amorphous phases. Greater presence of the amorphous phase yields greater strains 

by reducing the stiffness of the material (Lu et al. 2006), while more crystalline phase content 

increases the polarization response. Thus, researchers studied the tradeoff between the two phases 

by varying the chemical composition of PVDF-based terpolymers, aiming to tailor the 

electromechanical properties in a precise fashion (Klein et al. 2005; Lu et al. 2006; Yang et al. 

2013).  Specifically, increasing the percentage of CTFE expanded the amorphous phase, and 

reduced the crystal domain sizes (Xu et al. 2001) and their separation distances (Yang et al. 2013), 

which provided more room between crystalline domains, allowing domains to rotate with less 

friction.  Moreover, an increase in crystallinity increased the stiffness of the materia (Lu et al. 

2006). These findings indicate that by varying just the chemical composition, researchers can 

affect the microstructure to modify the electrostrictive response of these PVDF-based RFE 

polymers. 

Several studies have shown that processing steps significantly affect the microstructure 

and thereby bulk material properties of RFE polymers. Studies performed by (Sencadas, Gregorio, 
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and Lanceros-Méndez 2009; Silva et al. 2010) explored how the crystallinity and microstructural 

variations of PVDF, the primary monomer of the RFE polymers, were affected by temperature, 

processing methods, and other variables. (Bao et al. 2007) observed that for the same composition 

of PVDF-based terpolymer, different processing conditions affected the amount of polar 

nanodomains in the material. Through SEM images, (Smith et al. 2014) discovered that thermal 

treatments with a slow quenching process allowed for larger crystal domain formation during the 

crystallization process, with fibrillary shape characteristics, and these changes in the 

microstructure increased the dielectric constant of the material. (Cho et al. 2016) confirmed these 

results by comparing fabrication methods with and without thermal treatments above the transition 

temperature of the terpolymer, which results in the dominance of different types of crystalline 

phases, such as the α-,  𝛽- and 𝛾- phases. The results of (Cho et al. 2016) also showed that thermal 

treatments produce largely α-phase dominant microstructures, while room temperature 

crystallization produces the larger β-phase crystallites; the crystallization process is important 

because the shifting of phases affects the electrostrictive response of the material. Ultimately, 

these findings imply that the shapes, sizes, and phase type of crystalline domains are all important 

factors in the overall electromechanical response mechanism of PVDF-based EAPs and, 

furthermore, may be controlled, providing an avenue to tailored electromechanical response. Thus, 

a predictive model of the mechanics of these EAPs should be able to incorporate as many of these 

features as possible for the highest level of efficacy.  

3.1.2 Background on Hyperelastic Modeling 

The first part of this subsection will consider previous modeling methods for the 

hyperelastic response of polymers, and the latter part will survey tools and methods for combining 

hyperelasticity theory with electrodynamics. Later, approaches to incorporate orientation and 

spatial distribution information will be discussed, leading to the focus of this work, which is to 

address the orientational polarization of the crystalline domains within a coupled hyperelastic 

framework.  
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Polymers can exhibit high strains that reach beyond the limits of classical Hookean 

mechanics, such that a linear model employing Young’s modulus as a constant is not sufficient in 

predicting the elastic response of the material (Mooney 1940). However, the only extant model 

that incorporates both non-polar amorphous and polar crystalline phases is based in linear 

elasticity (Capsal et al. 2012). In many works and herein, the mechanical deformation of polymers 

is assumed to be governed by a nonlinear model that captures experimentally observed response.  

Invariant-based modeling was a method adopted initially to characterize hyperelastic 

materials. (Rivlin 1948) developed a generalized infinite series to predict the behavior of elastic 

materials in the form of  

𝑊 = ∑∑𝐶𝑖𝑗(𝐼1 − 3)𝑖(𝐼2 − 3)𝑗

∞

𝑗=0

∞

𝑖=0

, 
(4-1) 

in which 𝐶𝑖𝑗 were constants, and 𝐼1 and 𝐼2 were the principle invariants, defined as functions of the 

principal invariants of the right Cauchy Green deformation tensor, 

𝐼1 = 𝑡𝑟(𝑭𝑇𝑭), 
(4-2) 

𝐼2 =
1

2
[(𝑡𝑟(𝑭𝑇𝑭))2 − 𝑡𝑟((𝑭𝑇𝑭)2)].  (4-3) 

The deformation gradient 𝑭 is defined in Section 2.  

The model that (Rivlin 1948) proposed was a first order approximation of the infinite 

series in (4-1). This first-order approximation is commonly known as the Neo-Hookean model, 

and with the form of 

𝑊 = 𝐶10(𝐼1 − 3). 
(4-4) 

To provide a better fit to experimental data, the Mooney-Rivlin model added the 𝑖 =

0, 𝑗 = 1 term of (4-1) to (4-4) (Rivlin 1948). Following this trend, later models added terms to 

(4-4). More recently, (Ogden 1997) developed a constitutive model utilizing an indefinite number 
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of stretch-based terms to obtain a widely adjustable fit to rubber elasticity response. However, the 

primary disadvantage to invariant-based and stretch-based modeling was that the coefficients 

scaling each term in the series did not represent physical quantities; attribution to physical 

quantities only came with additional assumptions of structure not presented in the original models. 

We seek a model in which adjustable parameters are tied directly to physical quantities, allowing 

the model to aid understanding of the relationship between microstructure and electrostrictive 

response.  

In contrast to invariant- and stretch-based hyperelastic modeling, (Treloar 1944) began 

building the framework for physics-based constitutive modeling by exploring the statistical 

mechanics of polymer chains for rubber. (Treloar 1943) constructed a strain energy function for 

the elastic response of rubber, the form of which is shown in (4-5). 

𝑊 =
1

2
𝑁𝑘𝑇(𝐼1 − 3). (4-5) 

In (4-5), 𝑁 is the chain-density, k is Boltzmann’s constant, 𝑇 is absolute temperature, and 

𝜆𝑖 are the principal stretches for 𝑖 = 1,2,3 in a principal coordinate space. This model's 

significance was its ability to capture the behavior of rubbers based on polymer chain mechanics. 

Furthermore, its form was similar to the Neo-Hookean model and thus offered a physical meaning 

to the coefficient 𝐶10 such that 𝐶10 =
1

2
𝑁𝑘𝑇 was proportional to the initial ‘rubbery’ modulus.  

Though the model was based on a statistical description of a physical chain (i.e. Gaussian chains), 

the model did not account for the locking stretch, and consequently did not provide a link to 

material structure. While the formulation in (4-5) is for a single polymer chain, the same 

theoretical methodology has been applied to more complex representations of polymer networks 

such as the three-chain network (M. C. Wang and Guth 1952) and the four chains (i.e. tetrahedral) 

network models (Flory and Rehner 1943). In addition to these models, an eight-chain model was 

developed by (Arruda and Boyce 1993), apportioning the energy of the network, still computed 

through random walk by statistics, to a deforming unit cube geometry under affine deformation in 



65 

 
the principal space. (Arruda and Boyce 1993) discovered that the additional chains provided a 

better fit to experimental data across multiple deformation states, arguably because the diagonal 

orientations of the chains provide wider spatial averaging of polymer network behavior. While the 

efficacy of wider averaging of the network has been shown for purely elastic behavior, it will be 

explored in this work with regards to electromechanical coupling, specifically concurrent 

averaging across spatial and orientation distributions of electric dipoles of the crystalline regions 

of a PVDF-based RFE polymer. 

3.1.3 Overview of Literature on EAP modeling 

Modeling electrostriction can be a powerful tool in improving electrically actuated 

materials by being able to predict actuation based on information about the microstructure of the 

material. Given enough data, a material can be tailored to fit specific purposes and actuation 

designs with the aid of a high-fidelity electrostriction model. However, electromechanical 

coupling is often implemented in a simple way to predict the macroscopic deformation of a 

material by the relation in (4-6). 

 𝑆33 = 𝑄33𝑃(𝐸)2 (4-6) 

The most frequently studied electromechanical strain is in the direction of the applied 

electric field, which is prescribed in the third principle direction, by convention. Thus, (4-6) 

focuses on strain in the 3-direction. The polarization 𝑃 is a function of E, and is therefore written 

as P(E), and it is in a quadratic relationship with the strain. The quadratic relationship is useful for 

an electrostrictive material that observes a nonlinear response between the electric field, and the 

strain and polarization responses it induces, because the coefficient 𝑄33 then becomes constant. 

Another relation that is commonly studied is 

 𝑆33 = 𝑀33𝐸
2 , (4-7) 

which is not linearly related like the one observed in (4-6). Instead, the coefficient 𝑀33 varies 

with the electric field as it directly relates the electric field and strain. The advantage of (4-7) is 
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that it only requires knowing the field strength to provide an output for the strain in the 3-

direction. However, in (4-6), one must know the relationship between electric field and 

polarization, and then determine the relationship between polarization and strain.  

Thus, the relationship found in (4-7) can be easily implemented into the kinematics of a 

multi-layered beam to determine the response of a composite by only knowing how 𝑀33 varies 

with electric field. For an electrostrictive material that exhibits a nonlinear electromechanical 

response, this relationship is often hard to determine.  

The electromechanical deformation of dielectric materials has been extensively studied since 

the 1950s. (Toupin 1956) first developed the field equations for deformable dielectric materials, 

where the energy density of the material, 𝑈, was determined to be a function of the relative 

electric permittivity, 𝜖𝑟, and quadratically related to the electric field 𝐸, such that 𝑈 =

(1/2)𝜖𝑟𝜖0𝐸
2; others improved on the field equations in the following years (Truesdell and Toupin 

1960; Eringen 1963). Recent additions have been made to the list of dielectric and other active 

material models that have each added new concepts or mechanisms, such as deformation 

dependent permittivities (X. Zhao and Suo 2008; Jiménez and McMeeking 2013); a free energy 

consisting of multiple components attributed to electrostrictive, elastic, dielectric, and residual 

dielectric energies (Richards and Odegard 2010); viscoelasticity (Hong 2011; Ask, Menzel, and 

Ristinmaa 2015); hysteresis of ferroelectrics (Lallart et al. 2016); multiplicative electro-elasticity 

(Skatulla, Sansour, and Arockiarajan 2012; Zah and Miehe 2015); electro-plasticity (Christian 

Miehe 1998); variational frameworks that model microstructural evolutions of domains in 

ferroelectric ceramics (C. Miehe, Zäh, and Rosato 2012); multi-scale methods that account for 

micro-scale dipole rotations  (Cohen and deBotton 2014); and homogenization methods that study 

the effects of particle sizes and distributions on active material properties  (Ponte Castañeda and 

Siboni 2012; Zäh and Miehe 2013). These models have sought to improve existing electro-elastic 

theories by adding methods that address various complexities of EAP modeling, but they have not 
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developed semicrystalline microstructure-based modeling of electrostriction that address micro-

scale spatial orientation, and none have specifically modeled the response of RFE polymers. 

Recent work has suggested that microscale spatial organization of polycrystalline polarizable 

regions within a PVDF-based RFE polymer affects its macroscale electromechanical coupling. 

(Guan et al. 2010) discussed the importance of interactions between ferroelectric domains within 

an amorphous matrix for PVDF-based polymers, and developed a rudimentary model to predict 

the depolarization fields for this type of microstructure. The authors pointed out that there was 

anisotropy in the interactions of polar domains, based on dipole-dipole interactions, and concluded 

that the relative locations of domains were an important factor in the polarization of 

semicrystalline EAPs. However, (Guan et al. 2010) did not analyze the electromechanical 

coupling of their semicrystalline model. The framework proposed herein will account for the 

anisotropic behavior of dipole-dipole interactions and their spatial organization when computing 

electrostriction.  

Only recently did models emerge in the field of EAPs that have incorporated physical 

elements of the microstructure of the material to the deformations observed in experiments, 

although note these works focused on dielectric elastomers, not RFE polymers (Cohen and 

deBotton 2014, 2015). (Cohen, Dayal, and deBotton 2016) introduced a method in which the 

polymer network is defined as a segment of a circular chain composed of rigid rods (unit 

elements) that represent dipoles—which is an interpretation of the microstructure of dielectric 

elastomers. The alignment of those dipoles under an electric field subsequently generates a 

deformation in the chain. This model shows promise due to its ability to consider various modes 

of deformation of individual unit elements within a network model that ties the mechanics of 

polymer chains to the electrostriction of the material, thus enabling the model to address 

information within the microstructure in an electrostriction modeling framework. However, since 

the model represents dielectric polymers with a single phase, it is not applicable to semicrystalline 

RFE polymers.  
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(Zah and Miehe 2015) proposed a model (for graft elastomers) with a semicrystalline physical 

basis. Their model assumed that graft elastomers generated electromechanical strain through the 

rotations of crystals that pull together neighboring chains via crosslinks. This mechanism, 

however, is less relevant for PVDF-based RFE polymers, which do not have crosslinks in their 

microstructure. Instead, dipole-dipole interactions will drive the electromechanical mechanism for 

RFE polymers, as discussed by Guan et al. (2010).   

(Capsal et al. 2012) developed a model that accounted for the biphasic constitution of RFE 

polymers by splitting the bulk polarization response of the material into separate contributions 

from the amorphous and crystalline phases. In addition, their model incorporated an averaging 

method for the orientational distribution of dipoles. However, the model did not address the spatial 

locations of the crystalline domains, a primary characteristic in determining their interaction. 

Further, the model calculated electromechanical strain using a linear elasticity. While we similarly 

propose the use of a biphasic model, our microstructural representation of dipole arrangements 

will account for spatial location and orientation; we further assume a hyperelastic material 

response. 

3.1.4 Classification of Selected Models 

For developing a framework for modeling the mechanics of dipole-based EAPs, the 

literature review focuses on a few models, which are classified into the following categories:  (a) 

dipole orientation models, (b) polarization models, (c) polarization-electrostriction models, and 

(d) only electrostriction models. Studying the models from the perspective of these categories can 

aid in finding solutions for addressing various physical phenomena in the proposed model.   

Type (a) models focus on the dipole orientations of materials and how these orientations 

are affected by an external electric field. Type (b) models describe the average polarization 

density (macroscopic polarization), while Type (c) models either borrow an already existing 

macroscopic polarization description or develop their own, and implement it into a constitutive 

relation with the macroscopic strain or deformation of the material (i.e., electromechanical 
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coupling). Lastly, Type (d) models forego describing polarization on its own, and instead develop 

an electromechanical constitutive model from other methods. Each of these types are listed in 

Table 4-1. 

Table 4-1. The model types and their definitions based on the parameters modeled. 

Type Definition 

(a) Dipole orientation models 

(b) Polarization models 

(c) Polarization based electrostriction models 

(d) Direct electrostriction models 

 

Additionally, the following criteria will be considered: (1) the material(s) modeled, (2) 

the modeled parameter(s), (3) parameter(s) with a physical meaning, (4) modeling methods, and 

(5) dielectric nonlinearity.  These criteria are selected based on their relevance or importance with 

respect to modeling dipole-based EAPs such as the PVDF-based terpolymer. 

3.1.4.1 Type (a) Modeling – Dipole Orientation Models 

An example of type (a) models is provided by Ref [23], in which first-principles total 

energy calculations are utilized to examine the effects of an electric field on dipole alignment at 

the nano-scale for the ferroelectric polymer P(VDF). The energy calculations incorporate a dipole-

dipole interaction energy model for an infinite dipole array of P(VDF) chains. From these 

calculations, the authors obtain simulation data for the total energy for both a mono- and bi-layer 

slab of P(VDF) as a function of the rotation of dipoles. This provides a strong foundation to build 

models that can predict macroscopic polarization—at least for P(VDF)—by deriving a 

relationship between the applied electric field and the orientation of dipoles with the 

implementation of the dipole-dipole interaction energy. 



70 

 
3.1.4.2 Type (b) Modeling – Polarization Models 

Reference [24] is an example of (b)-type modeling papers; a macroscopic polarization 

model is developed by performing Monte Carlo simulations of dipole-dipole interactions within 

P(VDF) crystals to study polarization hysteresis and ferroelectric-paraelectric phase transition. 

This study, along with others [25]-[27], emphasizes the importance of dipole-dipole interactions in 

the polarization of P(VDF)-based polymers.  

Reference [49] is another (b)-type modeling approach, which takes polymer chain 

structures into account. The paper examines the local behavior of a unit model that represents the 

structure of a dipole unit and considers multiple modes of deformation, such as uniaxial and 

transversely isotropic. These element types are evaluated, as an example, in a network of polymer 

chain arc segments, which is directly a physical interpretation of the microstructure of the 

material. This network model accounts for the non-electrical, mechanical constraints on the 

movements of chains caused by structural arrangements, and their contributions to the macro-

deformation of the polymer. The major drawback of the model is that it results in a polarization 

function as a linear function of electric field and the model is inherently composed of a 

framework for linear dielectrics.  

The model in Ref [28] employs the Langevin dipole model, which combines Boltzmann 

statistics with local field calculations to determine the average polarization response in a 

ferroelectric material with isolated polar regions. The model accounts for local fields at a dipole 

location and implements distribution functions for the reorientational component of the random 

field. The local field 𝑬𝒍 is defined as  

 𝑬𝒍 = 𝒆 + 𝑬𝟎 + 𝛾𝑷 (4-8) 

where e is the field induced on a microdipole by neighboring structures, 𝑬𝟎 is the external field, P 

is the polarization, and 𝛾 is the Lorentz constant. Reference [28] defines a dipole moment  𝜇 by 

the Langevin function in (4-9). 



71 

 

 𝜇 = 𝜇0𝑡𝑎𝑛ℎ (
𝐸0𝜇0

3𝑘𝐵𝑇
) (4-9) 

Here, 𝐸0 is the external field,  is the dipole moment near absolute zero temperature, 

𝑘𝐵is the Boltzmann constant, and 𝑇 is temperature. Next, the dipole moment is substituted into the 

equation for polarization, which is also a function of the local field 𝐸𝑙 as shown in (4-10).  

 𝑷 = 𝑛𝜇𝑬𝒍(𝒓)/𝐸𝑙 (4-10) 

In (4-10), 𝑬𝒍(𝒓) is the local field vector with a magnitude of 𝐸𝑙, and n is the dipole 

density. By redefining 𝐸𝑙 as 

 𝐸𝑙 = √𝐸2 + 𝑒2 + 2𝐸𝑒𝑐𝑜𝑠𝜃𝑒 , (4-11) 

in which 𝜃𝑒 is the angle between the direction of the external field and the direction of the random 

field. Reference [28] examines the effects of this orientational parameter by assuming that the 

random field directions fall under some distribution function, with which the average polarization 

can be calculated, as in (4-12). 

 𝑃 =
𝜇𝑛

2
∫ 𝑝(𝜃𝑒 , 𝐸)𝑠𝑖𝑛𝜃𝑒𝑑𝜃𝑒

𝜋

0

 (4-12) 

Furthermore, Ref [28] predicts the linear relationship between polarization and electric 

field at low fields, and the quadratic relationship at high fields, by incorporating the re-

orientational component of the random field.  

3.1.4.3. Type (c) Modeling – Polarization-based Electrostriction Models 

A good example of a (c)-type model is found in Ref [29] where the authors develop a 

model that predicts the electrostrictive coefficient of an EAP. As a (c)-type model, Ref [29] 

builds a polarization model as a function of electric field based on Boltzmann statistics and 

Debye/Langevin formalism. They define polarization as a function of the dipole moments within 

a volume, V, as shown below in (4-13). 

 𝑷 = 𝑛〈𝝁〉 (4-13) 



72 

 
In (4-13), P is the macroscopic polarization vector, 〈𝝁〉 is the average dipole moment 

vector, and n is the dipole density. The average dipole moment is split into an average magnitude 

and average cosine of the angle between the dipole moment and the external field. 

 〈𝝁〉 = 𝜇〈𝑐𝑜𝑠𝜃〉 (4-14) 

 

Most importantly, Boltzmann statistics is applied to (4-14) to describe the average cosine 

by a Langevin function, which results in the relation,  

 〈𝑐𝑜𝑠𝜃〉 = 𝑐𝑜𝑡ℎ [
𝐸

𝐸𝑆𝑎𝑡
] −

𝐸𝑆𝑎𝑡

𝐸
, (4-15) 

where E is the magnitude of the external field, and 𝐸𝑆𝑎𝑡 is the electric field when saturation of the 

dipoles begins. As a result, the polarization is rewritten as 

 𝑃(𝐸) = 𝑁𝜇 [𝑐𝑜𝑡ℎ [
𝐸

𝐸𝑆𝑎𝑡
] −

𝐸𝑆𝑎𝑡

𝐸
]. (4-16) 

The authors implement (4-16) in a unique way by separating the total macroscopic 

polarization into two separate terms that represent the two different phases of the semicrystalline 

material: one term is the polarization response of the crystalline phase (𝑃1), and the other term is 

the response of the amorphous phase (𝑃2). 

 𝑃(𝐸) = 𝑃1(𝐸) + 𝑃2(𝐸) (4-17) 

The amorphous phase is treated as a nearly constant permittivity that begins saturating at 

very high electric fields (around 500 MV/m), whereas the crystalline phase saturates at much 

lower field strengths (under 50 MV/m), which is explained by the gradual orientation of dipoles. 

Furthermore, the study considers a polarization model that is a function of the orientation of 

dipoles within the material, defined by (4-15). Lastly, Ref [29] derives the permittivity of the 

material from the polarization function by the relation, 
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 𝜀𝑟 =
1

𝜀0

𝑑𝑃

𝑑𝐸
+ 1 (4-18) 

 

where 𝜀𝑟 is the relative permittivity of the phase/material, and 𝜀0 is the permittivity of vacuum. 

The permittivity is substituted into (4-19) to determine the electromechanical strain. 

 𝑆𝑀𝑎𝑥𝑤𝑒𝑙𝑙 =
𝜀∗𝐸2

𝑌
, 𝑆33 =

𝑃(𝐸)2

𝑌𝜀
  ,      (4-19.a,b) 

In (4-19.a,b), two separate methods are presented for determining the electromechanical 

response of the material. The first method is by calculating 𝑆𝑀𝑎𝑥𝑤𝑒𝑙𝑙, which is the strain 

generated by Maxwell forces. This term is a function of the nominal permittivity of the material, 

𝜀∗, which is a non-constant term that is related to the relative permittivity by the relation 𝜀𝑟 =

𝜀∗

𝜀0
+ 1, and the Young’s modulus, Y. The second method calculates the electrostrictive coefficient 

𝑄33 based on the low-field permittivity of the material, 𝜀, which as a result works well for low 

field responses. Recall that 𝑄33 directly solves for the strain in (4-6) by the quadratic relationship 

with the polarization P(E). In both cases, although the polarization response is nonlinear, the 

elastic response of the material is treated with a linear expression (Y = constant).  

3.1.4.4. Type (d) Modeling – Direct Electrostriction Models 

The models mentioned so far focus on the polarization response of the material, and the 

ones that solve for electromechanical coupling have only done so by assuming a linear elastic 

response. As a (d) type model, Ref [51] offers the first approach that considers hyperelasticity by 

postulating a Helmholtz free energy function in the form of 

 𝑊 = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 , (4-20) 

where  represent a set of contributions to the free energy of the material and the authors of Ref 

[51] have prescribed them as the elastic, electrostrictive, dielectric, and residual electric 

displacement responses, respectively. The elastic response of the free energy function is provided 
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by a modified Mooney-Rivlin model [33[34]. The electrostrictive response function in (4-20) is 

similar to that of the linear dielectric energy density, with a quadratic relation with E. 

 𝐴2 = −
1

2
(𝛼6 + 𝛼7𝑇)𝐸1

2(𝐼4 − 1) (4-21) 

In (4-21), 𝛼6 and 𝛼7 are material parameters, and 𝐼4 is the determinant of the right 

Cauchy Green deformation tensor. The dielectric response is given by a similar function with a 

quadratic dependence on the electric field in the three principal axes. As such, the combined 

effect of the electrostrictive and dielectric response functions describes the general response of a 

linear dielectric under an arbitrary electric field. The electric displacement is assumed as a 

function of the residual electric displacement value multiplied by the electric field in the 1-

direction. Although the study considers multiple cases of boundary conditions to reduce and 

simplify the total free energy function to model for some applications, there are no comparisons 

with experimental data, and ultimately the model only partially utilizes variables with a physical 

basis.   

Reference [50] finds a quantum explanation for the negative piezoelectric phenomenon 

that PVDF experiences by modeling PVDF chains at the nanoscale. Piezoelectric materials 

observe an induced strain under an electric field, and an induced field under a mechanically 

generated strain; both effects are linearly related. Unlike most piezoelectrics, however, P(VDF) 

exhibits contraction, i.e., negative strain, in the direction of the field. The authors apply first 

principle calculations with quantum-chemical methods (QCM), and analyze the changes of dipole 

moment orientations and lattice deformations to determine the piezoelectric coefficient 𝑑33 for 

P(VDF). In addition to this coefficient, they calculate other properties such as the polarizability, 

dielectric permittivity 𝜀, electrostrictive coefficient Q, and compare them with experimental 

results. As a side note, since the model predicts a coupling coefficient without deriving an 

expression for the polarization, it falls under the (d)-type model category. 
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Most recently, Ref [31] emerged with a more integral approach to the overall modeling of 

electrostriction. Similar to Ref [51], they utilize the free energy density function of a dielectric 

material. In addition, a deformation dependent electric permittivity is implemented instead of a 

constant value. The study follows with the rigorous development of a continuum-based model 

that considers the effects of cross-linking of the polymer chains on the electromechanical 

coupling. The work specifically focuses on graft elastomers, which consist of backbone chains 

connected via flexible side chains that contain crystalline, polar regions, which rotate under an 

applied electric field. As the crystal units rotate, they pull the surrounding backbone chains 

together.   

The model proposed by Ref [31] agrees well with experiments. However, this type of 

deformation may only be valid for graft elastomers due to the assumption that cross-links are 

prevalent in the polymer network. On the other hand, cross-links do not exist in the P(VDF)-

based terpolymer, as previously mentioned, and as a result, a major component of the mechanism 

for electrically-induced deformation is significantly different between the relaxor ferroelectric 

polymer and the graft elastomer.  

Table 4-2. Comparisons of the various models discussed with respect to the relevant criteria. 

Model  Modeled 

Material 

Type Modeling Methods Physical 

basis 

Dielectric 

Nonlinearity 

 [23] P(VDF) 

(ferroelectric)  

a Dipole-dipole 

interaction model 

Yes (dipole 

moments) 

N/A 

 [24] P(VDF) 

(ferroelectric) 

b Monte Carlo 

simulations of dipole 

interactions 

Yes (dipole 

moments) 

Yes 

 [50] P(VDF) 

(piezoelectric) 

b Quantum-Chemical 

simulations 

Yes (dipole 

moments) 

No 

[49] Dielectrics b/c Electromechanical 

energy density with 

polymer chain 

deformation 

Yes (dipole 

moments) 

No 

[28] Ferroelectrics 

with isolated 

polar regions 

c Langevin dipoles, 

probability 

distribution of field 

orientations 

Yes (dipole 

orientations) 

Yes 
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[29] Electrostrictive 

polymers 

c Debye/Langevin 

Formalism 

Yes (multi-

phase 

Polarization) 

Yes 

[24] P(VDF) 

ferroelectric 

d Molecular Dynamics Yes Yes 

[51] Dielectric d Helmholtz free 

energy; 

electromechanical 

terms 

No No 

[31] Graft 

elastomers 

c/d Non-affine 

deformation; stretch-

dependent 

permittivity 

Yes (rotation 

of crystal 

units with 

cross-

linking) 

Yes 

The comparisons in Table 4-2 highlight some of the advantages and disadvantages of 

each model, and demonstrates the different approaches taken by each model. The wide range of 

modeling types (a)-(d) illustrate that many approaches can be taken to modeling electrostriction: 

type (a) models seek the relationship between electric field E and the rotation of dipoles; type (b) 

models seek the relationship between E and the macroscopic polarization P; type (c) models seek 

the relationship between E and the field-induced strain S by first determining the relationship 

between E and P and then by determining the relationship between P and S; type (d) models 

directly determine the relationship between E and S by methods such as hyperelasticity. Some of 

the models in Table 4-2 implement averaging methods based on dipole statistics, or molecular 

dynamics implementing the dipole-dipole interaction energy [24[28]. Other models utilize some 

aspects of the microstructure, such as dipole unit shapes, chain orientations and crystal region 

rotations [31[49]. However, there are no in-depth studies on crystal domain arrangements that 

incorporate the dipole-dipole interaction energy based on dipole statistics or distributions. As a 

result, this gap in the literature warrants the formulation of a constitutive model that captures the 

variations in the microstructure of EAPs in terms of relative polar domain orientations with 

respect to each other and with respect to the external field by applying deriving the free energy of 

various network models. 
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3.1.5 Summary of Literature 

In summary, PVDF-based polymers are semicrystalline polymers, requiring models that 

describe their biphasic, crystalline and amorphous, constitution. The spatial and orientation 

distributions of these polarizable crystalline regions, which may be controlled through 

composition and processing, affect electromechanical coupling and hence are important quantities 

to any modeling attempt. The spatial organization of the crystalline regions formed in these 

relaxor ferroelectric (RFE) polymers during processing varies, requiring the development of a 

model capable of capturing what is known about terpolymer morphology. Thus, the main goal of 

this study is to construct an appropriate network model for a P(VDF)-based relaxor RFE polymer 

that ties microstructure to electromechanical coupling by incorporating chain kinematics and 

deformation for polymeric response; spatial and orientation averaging methods of polarizable 

domains’ relative locations and orientations; and a representation of the material’s 

semicrystallinity, i.e. its biphasic constitution. A secondary purpose of this model is to guide 

future researchers in choosing a target design for the microstructure of a dipole-based material in 

terms of domain arrangements in order to achieve their desired material properties. Thus, the 

model will build a foundation for more complex analyses on understanding the relationship 

between specific parameters within the microstructure and bulk properties of the material.   

3.2 EAP Modeling framework 

In this section, the mechanics of the dipole-based EAP system is developed. The first 

subsection outlines the kinematics of a semicrystalline, deformable body consisting of rigid and 

elastic regions; the second subsection provides the traction-free equilibrium equations with related 

constitutive laws; the third subsection adds energies for the system; the fourth subsection relates 

the orientation of dipolar regions to the polarization; the fifth subsection derives the network 

model incorporating both crystalline and amorphous regions; and the sixth subsection provides 

methodologies for deriving the permittivity of the amorphous region. 
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3.2.1 Kinematics of a semicrystalline, electrostrictive body 

The discussion begins by defining a body Ω consisting of two phases (see Figure 4-2). It is 

assumed that there are distinct boundaries at the interfaces between the two phases, such that the 

two phases are contained in separate domains. An amorphous phase is contained in the nominally 

contiguous subspace, Ω0, and the crystalline phases are a collection of discrete domains within the 

subspaces, Ω𝑖 (for 𝑖 = 1,2,…𝑁𝑐). The subspaces are defined such that 

𝛺 = 𝛺0 ∪ Ω𝐶1
∪ Ω𝐶2

∪ …∪ Ω𝑁𝑐
 . (4-22) 

Figure 4-2 illustrates the deformation of Ω, which can be represented by the linear mapping 𝝌 

between the undeformed body, and the deformed body. The position vectors in the undeformed 

and the deformed configurations are X and x, respectively. The deformation 𝝌 can be written as a 

function of the position vectors in the reference configuration, X, as well as other parameters that 

affect the deformation, such that 𝝌 = 𝝌(𝑿, 𝑬,𝑶), where 𝑬 is the applied electric field and 𝑶 =

{𝑶𝑨, 𝑶𝑪} contains sets of parameters relating to the properties of the amorphous and crystalline 

phases of the material. For simplicity, the bases in both configurations are prescribed as the 

orthonormal set, {𝑒̂1, 𝑒̂2, 𝑒̂3}. The components of the deformation gradient of Ω are defined in the 

reference configuration by 

𝑭 =
𝜕𝝌(𝑿,𝑶)

𝜕𝑿
= 𝛻𝑿𝒙. (4-23) 

In (4-23), F is the deformation gradient, which is a second-order tensor, and 𝛻 is the 

gradient operator in a three-dimensional point space. The left and right Cauchy-Green deformation 

tensors are defined in terms of the deformation gradient by the relations, respectively, 

𝑩 = 𝑭𝑭𝑇, (4-24) 
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𝑪 = 𝑭𝑇𝑭. (4-25) 

 

Figure 4-2. Two-dimensional schematic of a biphasic body (i.e., a body with inclusions) 

undergoing deformation. The left body is in the undeformed configuration and the body on the 

right is in the deformed configuration. Two dipolar regions are highlighted with electric dipole 

moments 𝒑𝟏 and 𝒑𝟐 with a vector 𝑹 between them in the undeformed configuration and 𝒓 in the 

deformed configuration. 

Expressing any vector 𝑹 between any two crystalline domains Ω𝑖 and Ω𝑗 in the undeformed 

configuration in terms of the basis vectors yields 

𝑹 = 𝑅1𝒆̂1 + 𝑅2𝒆̂2 + 𝑅3𝒆̂3. (4-26) 

where 𝑅𝑘 represents the component of 𝑹 in 𝒆̂𝑘 for 𝑘 = 1,2,3. After deformation 𝝌,   

𝒓 = 𝑭𝑹. (4-27) 

The magnitude of 𝒓 can be expressed as  

𝑟2 = 𝑭𝑹 ∙ 𝑭𝑹. (4-28) 

We assume 𝛺 undergoes affine deformation, and further that crystalline domains Ω𝑖 are free to 

rotate. The relatively large stiffness of the crystalline phase with respect to the amorphous phase 
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strongly apportions stretch to the amorphous phase. Consequently, crystalline regions are assumed 

to be rigid. Additionally, the rotations of the crystalline regions will have no impact on the elastic 

or dielectric response of the material. These assumptions follow findings of Yang et al (2013). For 

the purpose of this study, we choose a representative volume element (RVE) composed of a single 

spherical crystalline region surrounded by a spherical amorphous region, as shown in Figure 4-3.  

Given the assumptions made on the crystalline regions (rigidity and ability to freely rotate), 

any polarization vector 𝒑𝒊 of any domain Ω𝑖 is a function of 𝑬 and 𝑶. This implies that 𝒑𝒊 may be 

assumed to be uninfluenced by mechanical deformation. The field-dependent form of 𝒑𝒊 will be 

later defined by electrodynamics. 

 

 
Figure 4-3. The representative volume element contains a spherical crystalline domain, surrounded 

by a concentric amorphous domain that is initially spherical and deforms into an ellipsoidal shape 

after deformation.  

Based on the symmetry of the RVE, a differential element can be drawn similar to a “proto-

type” semicrystalline chain developed by Nateghi et al. (2018). In this prior work, the crystalline 

region is represented as a straight, rigid line segment while the amorphous region continues from 

the end of the crystalline segment along a representative random walk. Considering this type of 

element will allow us to write the kinematics of the semicrystalline RVE in terms of the micro-

stretch, and relate it to the macro-stretch. The newly defined semicrystalline element in Figure 4-4 

occupies an infinitesimal region in space, which is divided among the two phases. In our work, the 

crystalline region is indicated by ordered, rectilinear chain paths, while the amorphous region 
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contains less ordered paths resembling a random walk. In Figure 4-4, the left element is in the 

undeformed configuration, and the right element is in the deformed configuration; the 

configurations are annotated with their respective notations, and each adopt an appropriate 

spherical coordinate system, as depicted in Figure 4-4.  

 
Figure 4-4. The deformation of a segmented element consisting of crystalline and amorphous 

phases is presented.  

The element contains a rigid crystalline region of length 𝑟𝑐 ≡ 𝑅𝑐, and a deforming amorphous 

region of length 𝑟𝐴 (see Figure 4-4). The total length of the semicrystalline element in the 

undeformed state is 𝑅𝑠𝑐 = 𝑅𝑐 + 𝑅𝐴, and in the deformed state, 𝑟𝑠𝑐 = 𝑟𝑐 + 𝑟𝐴, which can be related 

to the macroscopic deformation by the relations in (4-27) and (4-28). A spherical coordinate 

system is adopted for the undeformed and deformed configurations, as depicted in Figure 4-4. The 

subscript “sc” denotes parameters used for the semicrystalline differential element.  

Following Nateghi et al. (2018), although the crystalline region is assumed rigid (relatively), 

the amorphous region may stretch, yielding the relationship 𝑟𝐴 = 𝜆𝐴𝑅𝐴, where 𝜆𝐴 is the stretch of 

the amorphous region. The stretch along 𝒓 of the two-segment element, 𝜆,  can be defined as, 

𝜆 =
𝜆𝐴𝑅𝐴+𝑅𝐶

𝑅𝐴+𝑅𝐶
. (4-29) 

The length of the crystalline segment can be determined if the material’s percent crystallinity 

𝑋𝑐 is known, and defined as   
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𝑉𝑐 = 𝑣𝑐𝑉, (4-30) 

where 𝑉𝑐 is the volume occupied by the crystalline phase, and 𝑉 is the total volume of the 

RVE. These volumes are spherical, which yields  

𝑉 =
4𝜋

3
𝑅3, (4-31) 

𝑉𝑐 =
4𝜋

3
𝑅𝑐

3. (4-32) 

Equations (4-30)-(4-32) can be combined to determine the initial lengths of the crystalline and 

amorphous regions, 

𝑅𝑐 = 𝑣𝑐

1

3𝑅, 
 

𝑅𝐴 = (1 − 𝑣𝑐

1

3)𝑅, 
(4-33) 

which can be substituted into (4-29) to yield 

𝜆 = 𝜆𝐴 (1 − 𝑣𝑐

1

3) + 𝑣𝑐

1

3. 
(4-34) 

Equation (4-34) relates the semicrystalline element's stretch to the crystallinity of the material 

and the stretch of the amorphous segment. If the material contains 0% crystalline phase, then 𝑣𝑐 =

0, yielding 𝜆 = 𝜆𝐴. Conversely, if the material is 100% crystalline, then 𝑣𝑐 = 1, and 𝜆 = 1 

(completely rigid). This equation is thus a good start for the relation between the total chain stretch 

and the amorphous segment stretch, but must still be related to macroscopic deformation.  

The semicrystalline element’s stretch can be related to the macroscopic stretches by writing 𝑟𝑠𝑐 

in terms of its components 𝑟1, 𝑟2, and 𝑟3, 

𝑟2 = 𝑟1
2 + 𝑟2

2 + 𝑟3
2, (4-35) 

where 𝑟𝑖 = 𝒓 ⋅ 𝒆̂𝒊 for i = 1,2,3. Relating each component to the undeformed total length and 

macroscopic stretches, 

(𝜆𝑅)2 = (𝜆1𝑅1)
2 + (𝜆2𝑅2)

2 + (𝜆3𝑅3)
2, (4-36) 
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By following a procedure similar to Wu and van der Giessen (1992), we relate the components 

of the semicrystalline element’s length to the element’s orientation in the undeformed 

configuration, 

𝑅1 = 𝑅𝑠𝑖𝑛𝛷𝑐𝑜𝑠𝛩,  

𝑅2 = 𝑅𝑠𝑖𝑛𝛷𝑠𝑖𝑛𝛩,  

𝑅3 = 𝑅𝑐𝑜𝑠𝛷,    (4-37) 

which yields 

𝜆 = √(𝑠𝑖𝑛𝛷𝑐𝑜𝑠𝛩𝜆1)
2 + (𝑠𝑖𝑛𝛷𝑠𝑖𝑛𝛩𝜆2)

2 + (𝑐𝑜𝑠𝛷𝜆3)
2. (4-38) 

The relation in (4-38) can be combined with (4-34) to write 𝜆𝐴 in terms of the principal 

stretches, 

𝜆𝐴 =
1

(1−𝑣𝑐)
√(𝑠𝑖𝑛𝛷𝑐𝑜𝑠𝛩𝜆1)

2 + (𝑠𝑖𝑛𝛷𝑠𝑖𝑛𝛩𝜆2)
2 + (𝑐𝑜𝑠𝛷𝜆3)

2 −
𝑣𝑐

(1−𝑣𝑐)
. (4-39) 

Similarly, 𝜆𝐴 may be written in an Eulerian description as 𝜆𝐴(), 

𝜆𝐴 =
1

(1−𝑣𝑐)
[(𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃)2𝜆2

−2 + (𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃)2𝜆2
−2 + (𝑐𝑜𝑠𝜙)2𝜆3

−2]
−1/2

−

𝑣𝑐

(1−𝑣𝑐)
. 

(4-40) 

The derivation of 𝜆(𝜙, 𝜃) can be found in Wu and van der Giessen (1992). 

For later calculations, it will also be convenient to express the principal stretches of only the 

amorphous region, which are denoted by 𝜆𝐴
𝑖. The relations between the components of 𝑟, 𝑟𝑐, and 

𝑟𝐴 can be established as 

𝑟𝑖 = 𝑟𝑐
𝑖 + 𝑟𝐴

𝑖, (4-41) 

where 𝑟𝑐
𝑖 = 𝒓𝒄 ⋅ 𝒆̂𝒊 and 𝑟𝐴

𝑖 = 𝒓𝑨 ⋅ 𝒆̂𝒊 (superscripts not to be confused with contravariant 

components). Similar to the procedure used to obtain (4-36), we can write 

𝜆𝑖𝑅 = 𝑅𝑐 + 𝜆𝐴
𝑖𝑅𝐴, (4-42) 
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and with the help of (4-33), substitutions for 𝑅𝑐 and 𝑅𝐴 can be made. After rearranging (4-41), 𝜆𝐴

𝑖 

can be determined, 

𝜆𝑖
𝐴 =

𝜆𝑖−𝑣𝑐

1
3

1−𝑣𝑐

1
3

. 
(4-43) 

This relation direction relates the stretch of the amorphous region in the micro-scale 

semicrystalline chain 𝜆𝑖
𝐴 to the macroscopic stretch 𝜆𝑖. 

3.2.2 Traction-free equilibrium 

The electrostrictive material is assumed to have an electromechanical strain energy-density, 

W. The Cauchy stress, 𝑻, can be written as a function of W by a constitutive law between W and 𝑻 

derived for an isothermal, electromechanical process (developed by Richards, et al. (2010) via the 

Clausius-Duhem inequality). Thus, the expression for 𝑻 is given by 

𝑻 =
2

𝐽

𝜕𝑊

𝜕𝑩
𝑩 + 𝑞𝑰, 

(4-44) 

where 𝑞 is a Lagrange multiplier enforcing the incompressibility constraint, and 𝑰 is the second 

order identity tensor. In describing the behavior of a small section of this electrostrictive material, 

it is assumed the body is traction-free and its boundary 𝜕Ω is not subjected to any constraints on 

deformation. These assumptions represent traction free self-equilibrium (free deformation), 𝑻 =

𝟎. 

From (4-44), the forms of each stress are 

𝑇11 = 𝜆1

𝜕𝑊

𝜕𝜆1
+ 𝑞, 𝑇22 = 𝜆2

𝜕𝑊

𝜕𝜆2
+ 𝑞, 𝑇33 = 𝜆1

𝜕𝑊

𝜕𝜆3
+ 𝑞.   

(4-45) 

The purpose of this model is to determine the electromechanical response of the material 

operating in a planar electrostriction mode, which is often measured in terms of strain in the 3-

direction versus electric field. Thus, the principal stress difference between is considered,  

𝑇33 − 𝑇11 = 𝜆3

𝜕𝑊

𝜕𝜆3
− 𝜆1

𝜕𝑊

𝜕𝜆1
,   

(4-46) 

eliminating the unknown hydrostatic stress. 
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Equations (5) – (14) form the kinematic basis for the model developed in this work. In the 

next section, the Helmholtz free energy relating elastic to electric energy densities within the EAP 

is derived such that the Cauchy stresses may be determined. 

3.2.3 Electromechanical response of a hyperelastic biphasic body with dipole-dipole 

interactions 

This section outlines the methodologies for including microstructure as defined by averages of 

crystalline domains’ relative spatial locations and orientations in to the electrostriction model. The 

biphasic aspect of the microstructure of PVDF-based RFE polymers is also considered through 

free energy contributions of each phase. It is assumed that the amorphous phase provides a 

hyperelastic and linear dielectric response while the crystalline phases contribute to the free 

energy solely through their nonlinear electrostatic interactions. 

3.2.3.1 Free energy formulation of a biphasic body 

The strain energy density of a body composed of a crystalline and an amorphous phase is postulated as  

𝑊 = 𝑊𝐴,𝐸𝑙 + 𝑊𝐴,𝐿𝐷 + 𝑊𝐶 , (4-47) 

where 𝑊𝐴,𝐸𝑙 and 𝑊𝐴,𝐿𝐷 are the elastic and electrostatic (linear dielectric) responses of the 

amorphous phase, respectively, while 𝑊𝐶 is the dipolar response of the crystalline phase. This 

decomposition of the energy density function into the contributions from the amorphous phase and 

the crystalline phase is similar to the models developed by Richards (2010) and Zah (2014), which 

implemented multiple contributions into their material energy densities. The following subsections 

explore the separate contributions of each phase’s response to the total energy density, 𝑊.   

3.2.3.2 Hyperelastic response of the amorphous phase 

The relaxational behavior of semicrystalline RFE polymers is due to the behavior of the 

amorphous phase (Ang et al. 2005; Lu, et al. 2006; Lu, et al. 2008). We assume that the 

amorphous phase has a hyperelastic response, which can be described by an energy density 

function 𝑊𝐴,𝐸𝑙. Furthermore, the problem is simplified by assuming that the ellipsoidal amorphous 
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phase of the material exhibits affine deformation, with stretch apportioning following (4-39), and 

its elastic response is governed by the eight-chain hyperelastic model by Arruda and Boyce 

(1992), due to its efficacy modeling polymeric materials in multiple deformation states and 

physical network basis. The eight-chain model, after approximation, has the form 

𝑊8𝑐ℎ(𝐼1, 𝜆𝑚, 𝐶1)

≈  𝐶1 [
1

2
(𝐼1 − 3) +

1

20𝜆𝑚
2 (𝐼1

2 − 9) +
11

1050𝜆𝑚
4 (𝐼1

3 − 27)

+
19

7000𝜆𝑚
6 (𝐼1

4 − 81) +
519

673750𝜆𝑚
8 (𝐼1

5 − 243)] , 

(4-48) 

where 𝐼1 is the first principal invariant as defined in (4-2); 𝐶1 and 𝜆𝑚 are experimentally 

determined constants; The constant 𝜆𝑚 also has a physical interpretation: it is the number of rigid 

links in a polymer chain.  

The elastic energy must be written for only the amorphous segment of the semicrystalline 

element (see Figure 4-4), which demands the modification of 𝐼1 such that it represents the stretch 

of only the amorphous phase: 𝐼1 
𝐴 = 𝐼1(𝜆𝐴). As a result, we obtain 𝑊8𝑐ℎ(𝐼1

𝐴, 𝜆𝑚, 𝐶1) for the elastic 

energy of the amorphous phase.  

Additionally, the elastic energy density must be scaled by the volume fraction occupied by the 

amorphous phase, which is proportional to (1 − 𝑣𝐶), 

𝑊𝐴,𝐸𝑙 = (1 − 𝑣𝑐)𝑊8𝑐ℎ(𝐼1
𝐴, 𝜆𝑚, 𝐶1) . (4-49) 

Since the elastic energy describes the energy of our chosen differential element, we must 

average the energy over the entire range of orientations based on a probability density function, 

𝑓𝑠𝑐(ϕ, θ). The average energy 〈𝑊𝐴,𝐸𝑙〉 is defined by the integral 

〈𝑊𝐴,𝐸𝑙〉 =
(1 − 𝑣𝑐)

𝐴𝑒𝑙
∬ 𝑓sc(ϕ, θ)𝑊8𝑐ℎ(𝐼1

𝐴(ϕ, θ), 𝜆𝑚, 𝐶1) 𝑠𝑖𝑛ϕdθ𝑑ϕ

𝜋  2𝜋

0  0

. (4-50) 

The constant 𝐴𝑒𝑙 is a normalizer, determined by  
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𝐴𝑒𝑙 = ∬ 𝑓sc(ϕ, θ)𝑠𝑖𝑛ϕdθ𝑑ϕ

𝜋  2𝜋

0  0

. (4-51) 

In the Lagrangian description, 〈𝑊𝐴,𝐸𝐿〉 can also be written as (Wu and van der Giessen, 1992) 

〈𝑊𝐴,𝐸𝑙〉 =
(1 − 𝑣𝑐

1/3)

𝐴𝑒𝑙
∬ 𝑓sc(Φ,Θ)𝑊8𝑐ℎ(𝐼1

𝐴(Φ,Θ), 𝜆𝑚, 𝐶1)𝑠𝑖𝑛Φ𝐽−1dΘ𝑑Φ

𝜋  2𝜋

0  0

. (4-52) 

We assume that the chain’s orientation distribution is initially uniformly distributed, since the 

amorphous region exists in the same amount in every direction around the crystalline domain 

inside the RVE (see Figure 4-3), resulting in 𝐴𝑒𝑙 = 1/4𝜋. Furthermore, the Lagrangian 

description of 〈𝑊𝐴,𝐸𝑙〉 will be of more use to us since the initial distribution 𝑓sc(Φ,Θ) is known. 

However, due to the difficulty in obtaining an analytical solution to (4-52), we consider a 

discretized approach to calculating the integral in (4-52) numerically, 

〈𝑊𝐴,𝐸𝑙〉 = 𝑛(1 −

𝑣𝑐
1/3)∑ ∑ 𝑓sc(Φ𝑗, Θ𝑖)𝑊8𝑐ℎ(𝐼1

𝐴(Φ𝑗, Θ𝑖), 𝜆𝑚, 𝐶1)𝑠𝑖𝑛Φ𝐽−1ΔΘΔΦ
𝑁Φ
𝑗

𝑁Θ
𝑖 , 

(4-53) 

where ΔΘ and ΔΦ are step sizes for the angles, and 𝑁Θ and 𝑁Φ are the total number of steps, 

which are related to the step sizes by 𝑁ΘΔΘ = 2𝜋 and 𝑁ΘΔΦ = 𝜋. 

3.2.3.3 Linear dielectric response of the amorphous phase 

Following Capsal et al. 2012, the amorphous phase comprises chain structures that 

generate a linear dielectric response. Its saturation field is very high, but its dielectric constant 

(approx. 1 to 5) is significantly lower than the effective dielectric constant produced by the 

crystalline phases (approx. 50 or greater), as discussed in Capsal et al. 2012.  

The linear dielectric energy density of the amorphous phase can be written as 

𝑊𝐴,𝐿𝐷 = (1 − 𝑣𝑐)
𝐽

2
𝜖𝑟𝜖0(𝑬 ⋅ 𝑬), (4-54) 

where 𝜖𝑟 is the relative electric permittivity of the amorphous phase, 𝜖0 is the electric permittivity 

of free space, and 𝑬 is the applied field. The form of (4-53) is a common representation of a linear 

dielectric material response, scaled by the volume fraction of the amorphous phase, (1 − 𝑣𝑐). 
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3.2.3.4 Dipole-dipole interactions of crystalline phases 

As noted in Section 1.2, relative spatial and orientation characteristics of dipolar domains are 

important to their energetic contributions and subsequent electro-mechanical coupling. 

Consequently, the work herein seeks to develop a model framework that incorporates those 

dependencies. The model framework begins with a statement of the interaction energy (Duan et al. 

2004) between two crystalline domains, treated as nominally point dipoles of dipole moments 𝒑1 

and 𝒑2, as shown in Figure 4-5. The energy is in the form of 

𝑈𝑑 =
1

4𝜋𝜖
[
𝒑1 ⋅ 𝒑2

𝑟3
−

3(𝒑1 ⋅ 𝒓)(𝒑2 ⋅ 𝒓)

𝑟5
]. 

(4-55) 

where 𝒓 is the dipole-dipole separation vector with a magnitude of 𝑟, and 𝜖 is the electric 

permittivity of the medium that contains the dipoles. This permittivity, 𝜖, should not be confused 

with the overall permittivity of the polymer; it is strictly the permittivity of the space—or 

medium—between the dipoles.  

The free energy of the crystalline domains is assumed comprised wholly of the potential 

between dipoles. Consequently, the energy density of the crystalline domain W𝐶 can be written as  

W𝐶 =
1

𝑉𝑐
U𝑑 . 

(4-56) 

where the volume of the crystalline phase is 𝑉𝑐 = 𝑣𝑐𝑉𝑡𝑜𝑡. Specifically, (4-56) characterizes the 

attractive or repulsive potentials between a pair of crystalline domains, associated with Ω𝐶𝑖
. This 

dipole energy will be coupled to the elastic energy, which characterizes the elastic potential of the 

amorphous domains, Ω𝐴, in a representative volume element to derive the total free energy 

density.  
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Figure 4-5. Variables defining the orientations and separation of two dipole moments with respect 

to the basis vector 𝒆̂𝟑. The angles calculated in equation (4-84) are visually depicted at relevant 

locations; 𝛼1 is drawn separately for simplicity. 

For a convenient assessment of the electromechanical strains, the dipolar energy density can 

be written in terms of 𝑭 by substituting the kinematic relationships in (4-27) and (4-28) and the 

definition of the interaction energy in (4-55), into (4-56), yielding 

𝑊̃𝐶 =
1

4𝜋𝑋𝑐𝑉𝑡𝑜𝑡𝜖
[

𝒑1 ⋅ 𝒑2

[𝑭𝑹 ⋅ 𝑭𝑹]3/2
−

3(𝒑1 ⋅ 𝑭𝑹)(𝒑2 ⋅ 𝑭𝑹)

[𝑭𝑹 ⋅ 𝑭𝑹]5/2
]. 

(4-57) 

Finally, the total energy density of the material is rewritten by combining (4-53) and (4-57), 

𝑊̃ =
(1 − 𝑋𝐶

1/3)

𝐴𝑒𝑙
∑∑𝑓sc(Φ𝑗, Θ𝑖)𝑊8𝑐ℎ(𝐼1

𝐴(Φ𝑗, Θ𝑖), 𝜆𝑚, 𝐶1)𝑠𝑖𝑛Φ𝐽−1ΔΘΔΦ

𝑁Φ

𝑗

𝑁Θ

𝑖

+ (1 − 𝑋𝐶)
𝐽

2
𝜖𝑟𝜖0(𝑬 ⋅ 𝑬)

+
1

4𝜋𝑋𝑐𝑉𝑡𝑜𝑡𝜖
[

𝒑1 ⋅ 𝒑2

[𝑭𝑹 ⋅ 𝑭𝑹]3/2
−

3(𝒑1 ⋅ 𝑭𝑹)(𝒑2 ⋅ 𝑭𝑹)

[𝑭𝑹 ⋅ 𝑭𝑹]5/2
]. 

(4-58) 
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3.2.4 Orientation dependence of polarization of crystalline domains 

3.2.4.1 Determining magnitude of the average dipole moment 

When subject to an external field, the crystalline domains, Ω𝑖, comprise collinear electric 

dipoles resulting in a net dipole moment 𝒑 per crystalline domain. We assume that each crystalline 

domain exhibits an average dipole moment strength, 𝑝. It is convenient to write the dipole moment 

of a crystalline domain as  

𝒑 = 𝑝𝒑̂, (4-59) 

where the dipole moment vector is split into its magnitude 𝑝 and the orientation component, 𝒑̂, 

which is the unit vector defined as 

𝒑̂ = 𝑐𝑜𝑠 𝜃𝑝 𝑠𝑖𝑛𝜙𝑝 𝒆̂1 + 𝑠𝑖𝑛 𝜃𝑝 𝑠𝑖𝑛 𝜙𝑝 𝒆̂2 + 𝑐𝑜𝑠 𝜙𝑝 𝒆̂3, (4-60) 

where θ𝑝 and ϕ𝑝 are new polar and azimuthal angles defined for the dipole moment vector with 

respect to the orthonormal basis vectors, as shown in Figure 4-5. 

When considering the alignment of dipoles, the angle ϕ𝑝 is of interest, as it defines the 

alignment of the dipole with respect to the direction of the applied field, prescribed as 𝒆̂3. This 

angle can be better visualized in Figure 4-5, which depicts two dipoles separated by some vector 

𝒓, each assigned ϕ𝑝𝑖
.   

The average dipole moment magnitude 𝑝 can be determined by assessing the polarization of a 

representative volume element (RVE) under the saturation condition, 𝐸 → ∞, which implies 

lim
𝐸→∞

𝑃 → 𝑃𝑠𝑎𝑡, where 𝑃𝑠𝑎𝑡 is the saturated electric polarization density. Assuming all crystalline 

domains will perfectly align at some saturation field strength, at saturation the dipole moment 

magnitude 𝑝 can be nominally expressed as 

𝑝 =
𝑉𝑡𝑜𝑡𝑃𝑠𝑎𝑡

𝑁
 , 

(4-61) 

in which 𝑁 is the number of dipoles (i.e., crystalline domains) within the RVE of volume 𝑉𝑡𝑜𝑡. 

Note that 𝑃𝑠𝑎𝑡 is a directly measurable quantity.  
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Substitution of (4-60) and (4-61) in (4-59) yields, 

𝒑 =
𝑉𝑡𝑜𝑡𝑃𝑠𝑎𝑡

𝑁
(cos θ𝑝 sinϕ𝑝 𝒆̂1 + sin θ𝑝 sinϕ𝑝 𝒆̂2 + cosϕ𝑝 𝒆̂3). 

(4-62) 

3.2.4.2 Dipole moment orientations based on a probability distribution function 

This subsection introduces the concept of polar domain orientations as a function of electric 

field. This relationship is characterized by a von Mises distribution function incorporating 

previous descriptions of the average orientation of dipoles to derive an expression for a probability 

distribution function (PDF) of polar domain orientations that is a function of the applied electric 

field, 𝐸.  

The dipole-dipole energy in (4-55) is influenced by crystalline domains alignments with 

respect to the field, and with respect to each other. The alignment of a set of crystalline domains 

can be described by a distribution function, denoted by 𝑓ϕ𝑝
, through which we can determine the 

relationship between the applied electric field and the average alignment of crystalline domains. 

The alignment is quantified by 𝜔, as defined in Figure 4-5, which assumes rotational symmetry 

about 𝒆̂𝟑 (an artifact of assuming in-plane isotropy). The angle is defined in this manner for 

convenience in later calculations.  

We consider the collection of crystalline domains with net dipoles 𝒑, of uniform strength, 𝑝, 

with varying orientations about the axis 𝑒̂3, defined by ϕ𝑝 in (4-60) (see Figure 4-2 and Figure 

4-5). For the set of dipoles, the average dipole moment can be expressed as 

〈𝒑〉 = 〈𝑝𝒑̂〉.  (4-63) 

In (4-63), the brackets 〈∙〉 denote the average over all dipoles.  

The average orientation of the dipoles with respect to 𝒆̂3 based on a probability distribution 

function is adopted as  

〈𝑐𝑜𝑠ϕ𝑝〉 =
1

𝐴ϕ𝑝

∫ 𝑓ϕ𝑝
(ϕ𝑝 | 𝜇, 𝑏ϕ𝑝

) 𝑐𝑜𝑠ϕ𝑝𝑑ϕ𝑝

𝜋

−𝜋

, 
(4-64) 

where 𝑓ϕ𝑝
(ϕ𝑝 | 𝜇, 𝑏ϕ𝑝

) denotes a von Mises (wrapped normal) distribution, with the form  
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𝑓ϕ𝑝
(ϕ𝑝 | 𝜇, 𝑏ϕ𝑝

) =
𝑒

𝑏ϕ𝑝𝑐𝑜𝑠(ϕ𝑝−𝜇ϕ𝑝)

2𝜋𝐼0 (𝑏ϕ𝑝
)

 , 

(4-65) 

in which ϕ𝑝 ∈ [−𝜋,+𝜋], while 𝜇ϕ𝑝
 is the mean of the distribution, 𝐼0 is the modified Bessel 

function of the first kind with order 0, and 𝑏ϕ𝑝
 is the concentration parameter that determines the 

width of the distribution of dipole orientations about the mean 𝜇ϕ𝑝
. The term 𝐴ϕ𝑝

 normalizes the 

distribution and can be computed by equating the integral of 𝑓ϕ𝑝
(ϕ𝑝 | 𝜇, 𝑏ϕ𝑝

)𝑑ϕ𝑝 over the 

domain of interest to unity. In this context, we emphasize that this distribution of dipole 

orientations refers to the distribution of dipole orientations of the crystalline domains, Ω𝑖. Each 

crystalline domain is treated as a single dipole. With this distinction in mind, the dipoles—or 

crystal domains—are assumed to perfectly align with the field along 𝒆̂3 (given 𝑬 = 𝐸𝒆̂3) as 𝐸 →

∞, so the mean of the distribution in (4-65) is set to 𝜇ϕ𝑝
= 0. It is possible that variable 

processing or loading conditions may in the future warrant 𝜇ϕ𝑝
≠ 0. 

The utility of the distribution function lies in its statistical representation of a set of domains 

that gradually align with an external field. The distribution’s concentration, 𝑏ϕ𝑝
, couples the effect 

of the external field to the change in alignment of the crystalline domains. Without influence of an 

electric field, it is assumed that crystalline domains exist in a randomly oriented state 

characterized by 𝑏ϕ𝑝
= 0. A uniform distribution of dipole orientations falls in a full circular 

range, such that there is an equal probability of a dipole within the collection to be at any 

orientation between ϕ𝑝 = −𝜋 and ϕ𝑝 = +𝜋. By contrast, a higher value such as 𝑏ϕ𝑝
= 5 means 

there is a much greater probability of dipole orientations near the mean alignment 𝜇ϕ𝑝
. To 

determine the relationship between electric field and the concentration  parameter, we consider the 

averaging method for dipole orientations found in the appendix of Capsal et al, 2012, in which the 

average dipole orientation  〈cosϕ𝑝 〉 is expressed as   
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⟨cos ϕ𝑝⟩ = coth [
𝐸

𝐸𝑠
] −

𝐸𝑠

𝐸
. 

(4-66) 

Thus, combining (4-64) – (4-66) yields 

coth [
𝐸

𝐸𝑠
] −

𝐸𝑆

𝐸
=

1

𝐴𝑓
∫

𝑒
𝑏ϕ𝑝𝑐𝑜𝑠(ϕ𝑝−𝜇ϕ𝑝)

2𝜋𝐼0 (𝑏ϕ𝑝
)

𝑐𝑜𝑠ϕ𝑝𝑑ϕ𝑝

𝜋

0

, 

(4-67) 

which can be used to evaluate 𝑏ϕ𝑝
  as a function of the experimentally applied electric field 

strength 𝐸 by seeking successive [𝐸, 𝑏ϕ𝑝
] pairs that satisfy (4-67), to within a given tolerance, for 

an experimentally determined constant, 𝐸𝑠. (Note: 𝐸𝑠 is not the field at which saturation occurs, 

but the field when the polarization response breaks from a linear regime. Consequently, a typical 

RFE polymer will not saturate until far beyond 𝐸𝑠. This notation is adopted to stay consistent with 

Capsal et al, 2012.) The correlation between 𝐸 and 𝑏ϕ𝑝
 is shown in Figure 4-6.  

 
Figure 4-6. Relationship between ϕ𝑝 and E as calculated by (4-67). 

Figure 4-7 illustrates the relationship between 𝐸 and 𝑏ϕ𝑝
 with a plot of the distribution in 

(4-65) at varying electric field strengths. As 𝐸 increases, the probability of alignment increases 

near ϕ𝑝 = 0, the direction of 𝐸. 

The purpose of deriving the [𝐸, 𝑏ϕ𝑝
] pairs is to utilize them in assessing the average of the dot 

products, 〈𝒑𝟏 ⋅ 𝒑𝟐〉, in the interaction energy, (4-57). One approach to calculating 〈𝒑𝟏 ⋅ 𝒑𝟐〉 is by 
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determining the average angle of the dipoles 〈ϕ𝑝〉 with respect to the field such that the average 

dipole moment unit vector 〈𝒑̂〉 is written as 

〈𝒑̂〉 = cos〈θ𝑝〉 sin〈ϕ𝑝〉 𝒆̂1 + sin 〈θ𝑝〉 sin〈ϕ𝑝〉 𝒆̂2 + cos〈ϕ𝑝〉 𝒆̂3, (4-68) 

where 〈θ𝑝〉 is the average angle based on a uniform distribution 𝑓θ𝑝
(θ𝑝 | 𝜇θ𝑝

= 0, 𝑏θ𝑝
= 0), and 

〈ϕ𝑝〉 is calculated by applying the [𝐸, 𝑏ϕ𝑝
] pairs determined by (4-67) into 

 

〈ϕ𝑝〉 =
1

𝐴ϕ𝑝

∫ 𝑓ϕ𝑝
(ϕ𝑝 | 𝜇ϕ𝑝

, 𝑏ϕ𝑝
(𝐸))ϕ𝑝𝑑ϕ𝑝

𝜋

0

, 
(4-69) 

and similarly  

〈θ𝑝〉 =
1

𝐴θ𝑝

∫ 𝑓θ𝑝
(θ𝑝 | 𝜇θ𝑝

= 0, 𝑏θ𝑝
= 0)θ𝑝

𝜋

0

𝑑θ𝑝, 
(4-70) 

in which 𝐴ϕ𝑝
 and 𝐴θ𝑝

 normalize the integrals over the domain. 

 
Figure 4-7. A von Mises distribution function is chosen as the PDF of the electric dipoles. 

With the implementation of 𝑏ϕ𝑝
= 𝑏ϕ𝑝

(𝐸) solved in (4-67), the model represents a set of dipoles 

progressively aligning with the field direction (ϕ𝑝 = 0) as 𝐸 is increased. 

 

The form of 〈𝒑̂〉 incorporated into the first term of (4-57) reduces to 〈𝒑̂〉 ⋅ 〈𝒑̂〉 = 1, which may 

not always be true, because crystalline domains are not assumed collinear with each other. 

Alternatively, we can determine the average dot product 〈𝒑̂ ⋅ 𝒑̂〉, by discretely sampling two sets 
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of angles, {ϕ𝑝1

, θ𝑝1
} and {ϕ𝑝2

, θ𝑝2
}, based on the distributions (4-69) and (4-70), utilizing a von 

Mises distribution function in (4-65), and evaluating at [𝐸, 𝑏θ𝑝
] pairs. The sets of angles yields 

two sets of dipole moment directions, {𝒑̂1} and {𝒑̂2}, such that the average dot product 〈𝒑̂ ⋅ 𝒑̂〉 can 

be evaluated by 

〈𝒑̂𝟏 ⋅ 𝒑̂𝟐〉 =
1

𝑁𝑝
∑{𝒑̂1}𝑘 ⋅ {𝒑̂2}𝑘

𝑁𝑝

𝑘=1

. 

 

(4-71) 

Similarly, the average dot products 〈𝒑̂𝟏 ⋅ 𝒓̂〉 and 〈𝒑̂𝟐 ⋅ 𝒓̂〉 can be calculated by  

〈𝒑̂𝟏 ⋅ 𝒓̂〉 =
1

𝑁𝑝
∑ {𝒑̂1}𝑘 ⋅ 𝒓̂

𝑁𝑝

𝑘=1 ,  

(4-72) 

〈𝒑̂𝟐 ⋅ 𝒓̂〉 =
1

𝑁𝑝
∑ {𝒑̂2}𝑘 ⋅ 𝒓̂

𝑁𝑝

𝑘=1 .  

(4-73) 

The sample size 𝑁𝑝 is studied more in the next section. It is noted that the expressions (4-71)-

(4-73) provide a means of estimating the required dot products and carry the assumption that the 

magnitudes of crystalline domains, 𝑝, are uniform across all crystallites, which places variance of 

(4-63) into 𝒑̂, where 𝒑 = 〈𝑝𝒑̂〉. As a result, 

𝑊𝐶 =
𝑝2

4𝜋𝑋𝑐𝑉𝑡𝑜𝑡𝜖𝑟
3
[〈𝒑̂𝟏 ⋅ 𝒑̂𝟐〉 − 3〈𝒑̂𝟏 ⋅ 𝒓̂〉〈𝒑̂𝟐 ⋅ 𝒓̂〉]. 

 

(4-74) 

3.2.5 Formulation of electrostrictive model for different network models 

3.2.5.1 Derivation of the discrete network model response under a principle deformation 

mode 

In this subsection, we consider the interaction of the RVE with neighboring crystalline 

domains to study the coupling of the dipole-dipole forces between crystalline domains with the 

hyperelasticity of the amorphous phase within the RVE. Consider the chosen single-crystallite 

RVE (see Figure 4-3), which represents any chosen semicrystalline region in the material. The 

crystalline domain in this RVE, which we assume behaves as a rigid polarizable region (whose 
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dipole moment is treated as a point dipole located at its center), experiences interactions with 

neighboring dipoles. To represent the dipole-dipole interaction effect of the nearest neighbor 

crystalline domains on the RVE, we draw a second body containing another crystalline domain at 

an arbitrary orientation Φ𝑟 from the RVE’s center point, as shown in Figure 4-3. The second body 

is shown more transparent because we are only considering its interaction effects on the main 

RVE. It should be noted that the ellipsoidal volumes are meant to give geometric definition to the 

regions of influence of any given crystallite dipole. Consequently, the deformation of these 

volumes is imposed with respect to the macroscopic deformation gradient, and not, as the figure 

might suggest, spherical contact mechanics. The interaction energy of the dipoles induces 

deformation over the affected volumes that produces strain energy within their amorphous phases 

in balance with the dipole energy. Additionally, it should be noted that the bodies are cut to better 

show the angles associated with the dipole moments of each crystalline domain. We further 

assume that all crystalline domains are separated by the same distance 𝑅 = 2𝑅𝑅𝑉𝐸, which allows 

us to conveniently adopt (4-57) without any changes in notation. The initial case we study is a 

fixed Φ𝑟 (Φ𝑟 = 𝑐𝑜𝑛𝑠𝑡.), referred to as the discrete network model, which will allow us to 

determine the effects of relative spatial locations of the nearest crystalline domains on the RVE. 

Later adaptations of this framework will provide means of more complex network averaging 

schemes over a range of Φ𝑟.  

The representative volume element (RVE) is assumed spherical, initially, and incompressible, 

such that the nominally constant volume can be written as  

𝑉𝑅𝑉𝐸 =
4

3𝐽
𝜋(𝑅𝑅𝑉𝐸)3, 

(4-75) 

Where the Jacobian 𝐽 is defined in (4-78). 

Given the analysis of this paper focuses on electrostriction, the semicrystalline body is 

assumed to undergo affine deformation in the principle space, for which the deformation gradient 

holds the form 
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𝑭 = (

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

), 
(4-76) 

As shown in Figure 4-8, the network model is defined within a Cartesian coordinate system 

with basis vectors {𝒆̂1, 𝒆̂2, 𝒆̂3} and two spherical coordinate systems with coordinates {𝑅, Θ,Φ} 

and {𝑟, 𝜃, ϕ} in the undeformed and deformed configurations, respectively. These coordinates 

allow for more convenient derivations of the energy of the network model.  

Maintaining the assumption of uniaxial deformation, the magnitude of the vector 𝒓 between 

the two dipoles in Figure 4-8 can be written in terms of the spherical coordinate system as 

𝒓 = 𝑅(𝜆1 cosΘ𝑟 sinΦ𝑟 𝒆̂1 + 𝜆2 sin Θ𝑟 sinΦ𝑟 𝒆̂2 + 𝜆3 cosΦ𝑟 𝒆̂3) (4-77) 

where the principle stretch terms 𝜆𝑖 correspond to each principle direction. The common 

incompressibility assumption is made, so that 𝐽 = 1, where 𝐽 is the Jacobian defined as 

𝐽 = 𝑑𝑒𝑡𝑭. (4-78) 

Consequently, 

𝐽 = 𝜆1𝜆2𝜆3 = 1 . (4-79) 

Typically, electrostriction is measured in terms of the applied field versus strain in the 

direction of the field, which is conventionally the 3-direction. To comply with existing measures, 

we set 𝑬 = 𝐸𝒆̂3, and put focus on 𝜆3. We assume that the directions transverse to the direction of 

polarization will experience equivalent electromechanical strain, i.e., the principal electrostriction 

in-plane is isotropic. The resulting stretch dependences can be written as 

𝜆1 = 𝜆2 = 𝜆3
−
1
2. 

(4-80) 

Substitution of (4-80) into (4-77) yields a stretch dependent expression for the deformed 

radius magnitude, 𝑟, namely 

𝑟 = 𝑅√𝜆3
−1 sin2 Φ𝑟 + 𝜆3

2 cos2 Φ𝑟 . 
(4-81) 



98 

 
We can also consider rewriting 𝜆𝐴 for the electrostriction case, utilizing (4-80), which reduces 

(8) to 

𝜆𝐴 =
1

(1−𝑣𝑐)
√(𝑠𝑖𝑛2𝛷)𝜆3

−1 + (𝑐𝑜𝑠2𝛷)𝜆3
2 −

𝑣𝑐

(1−𝑣𝑐)
. 

(4-82) 

Additionally, the constitutive relation in (4-46) can be written in terms of 𝜆3 by substitution of 

(4-80). This form is amenable to the determination of electrostrictive response, 𝐸 vs. 𝜆3 and given 

by 

𝜕𝑊

𝜕𝜆3
= 0.   

(4-83) 
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Figure 4-8. The RVE is represented by a sphere annotated with quantities with a subscript of 1, 

while a neighboring RVE is indicated by the second sphere annotated with quantities with 

subscript 2. Depiction of spheres in (a) represent the undeformed shapes of the RVE and 

neighboring body with no field present, at an initial relative orientation of crystallites defined, and 

(b) illustrates the deformed shapes of the RVE and neighboring body under an applied field along 

𝒆̂3, creating nominal  𝒆̂3-alignment and dipole-dipole forces, and subsequent uniaxial compression 

of the RVE. Please note that the neighboring RVE display does not represent a spherical contact 

problem.  
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The substitution of 𝑅 = 2𝑅𝑅𝑉𝐸, dipole moment magnitude (4-61), 𝑁 = 1 (for one crystalline 

domain in RVE), and the radius (4-81) into the energy in (4-74), yields 

𝑊𝐶 =
𝑃𝑠𝑎𝑡

2

3𝑣𝑐𝜖(𝜆3
−1 sin2 Φ𝑟+𝜆3

2 cos2 Φ𝑟)
3/2 [〈𝒑̂𝟏 ⋅ 𝒑̂𝟐〉 − 3〈𝒑̂𝟏 ⋅ 𝒓̂〉〈𝒑̂𝟐 ⋅ 𝒓̂〉].  (4-84) 

For simplicity, we will drop the subscript on 𝜆3 such that 𝜆3 = 𝜆. The dot products in (4-84) 

are averages determined by the sampling from the von Mises distribution (𝑁𝜔 = 105) in (4-65) – 

(4-67), and the orientation Φ𝑟. Upon substitutions made into (4-84), and the resulting 

simplifications, 𝑊𝐶 becomes independent of 𝑅 and 𝑅𝑅𝑉𝐸, allowing us to isolate the influences of 

only orientation components of the dipole positions when calculating electrostriction. 

Consequently, this RVE structure will suffice for the purpose of this study.  

The elastic energy can also be simplified for the electrostriction case. The local invariant, in its 

general form 𝐼1
𝐴 = (𝜆1

𝐴)2 + (𝜆2
𝐴)

2
+ (𝜆3

𝐴)
2
, can be written as 𝐼1

𝐴 = (2𝜆3
𝐴)

−1
+ (𝜆3

𝐴)
2
, in which 𝜆𝑖

𝐴 

are the principal stretches of just the amorphous region, as defined in (4-43). With the substitution 

for  𝐼1
𝐴,  the total energy can be written, 

𝑊̃ =
(1−𝑣𝑐)

𝐴𝑒𝑙
∑ ∑ 𝑓sc(Φ𝑗, Θ𝑖)𝑊8𝑐ℎ(𝐼1

𝐴(𝜆, Φ𝑗, Θ𝑖), 𝜆𝑚, 𝐶1)𝑠𝑖𝑛ΦΔΘΔΦ
𝑁Φ
𝑗

𝑁Θ
𝑖 +

(1 − 𝑣𝑐)
𝜆−2

2
𝜖𝑟𝜖0(𝑬 ⋅ 𝑬) +

𝑃𝑠𝑎𝑡
2

3𝑣𝑐𝜖(𝜆
−1 sin2 Φ𝑟+𝜆2 cos2 Φ𝑟)

3/2
[〈𝒑̂𝟏 ⋅ 𝒑̂𝟐〉 −

3〈𝒑̂𝟏 ⋅ 𝒓̂〉〈𝒑̂𝟐 ⋅ 𝒓̂〉]. 

(4-85) 

3.2.5.2 Analysis of the response of two cases of the discrete network model 

Two limiting cases emerge from the arbitrarily oriented discrete network model shown in 

Figure 4-8: the parallel, ∥,  and perpendicular, ⊥, discrete neighboring crystallite locations. These 

cases derive their names from the neighboring RVE’s orientation with respect to the applied field. 

Hence, the parallel discrete network model consists of crystalline domains oriented parallel to 𝑬, 

and the perpendicular case assumes neighboring crystalline domains to exist perpendicular with 

respect to 𝑬. These two specific cases of the discrete network model are illustrated in Figure 4-9. 
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Figure 4-9. The discrete network model is shown for two specific cases. The parallel case is shown 

in (a), where the vector to nearest neighboring crystalline domain, 𝒓, is parallel to the external 

field, while in the perpendicular case in (b) 𝒓 is perpendicular to the external field. 

The significance of the two specific discrete network cases is apparent from the behavior of 

𝑊𝐶, which is based on dipole-dipole interactions. The energy (4-84) is a function of the direction 

of 𝒓, and the orientations of 𝒑𝟏 and 𝒑𝟐. The energy can be reduced in each special case as 𝐸 → ∞, 

yielding 

lim
𝐸→∞

𝑊̅𝐶,∥ = −(
2𝑃𝑠

2

3𝑣𝑐𝜖
)𝜆−3, 

And 

(4-86) 

lim
𝐸→∞

𝑊̅𝐶,⊥ = (
𝑃𝑠

2

3𝑣𝑐𝜖
)𝜆3/2 . (4-87) 
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To gain a better understanding of the geometry-dependent qualitative differences between the 

two limiting cases of the discrete network model, we non-dimensionalize each subcase’s energy 

function by the constant 𝑃𝑠
2/(3𝑋𝐶𝜖) leaving 

𝑊𝐶
∗ = 𝑊𝐶 (

𝑃𝑠
2

3𝑣𝑐𝜖
)

−1

 (4-88) 

In (4-88), the asterisk on 𝑊𝐶 denotes its non-dimensionalized property. The limit of the 

parallel and perpendicular single chain network models as 𝐸 → ∞ are expressed below in (4-89) 

and (4-90), respectively. 

lim
𝐸→∞

𝑊̅𝐶,∥
∗ = −2𝜆−3 (4-89) 

lim
𝐸→∞

𝑊̅𝐶,⊥
∗ = 𝜆3/2 (4-90) 

These energies are compared in Figure 4-10.a as functions of 𝜆, both exhibiting an increase in 

energy as 𝜆 increases.  Due to the coefficients in (4-89) and (4-90), the parallel case is greater in 

magnitude by a factor of 2 than the energy of the perpendicular case at 𝜆 = 1 (as shown in Figure 

4-10.a), and the rate of change of the parallel case is higher below 𝜆 = 1 due to the higher order 

exponential on 𝜆 in (4-89)compared to (4-90). Furthermore, the signs of (4-89) and (4-90) are 

opposite, which implies that in the transition between the two extreme cases, there is a state of 

orientation that generates zero interaction energy.  

The stress generated by the interaction energy of the dipoles can be determined by 

𝑇𝐶
∗ =

𝜕𝑊∗
𝐶

𝜕𝜆
. (4-91) 

With (4-91), the forces corresponding to the two cases of the single chain network model are 

shown in (4-92) and (4-93), 

lim
𝐸→∞

𝑇𝐶,∥
∗ = 6𝜆−4 (4-92) 
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lim
𝐸→∞

𝑇𝐶,⊥
∗ =

3

2
𝜆1/2. (4-93) 

These dipolar stresses are plotted in Figure 4-10.b. There are significant differences between 

(4-92) and (4-93): firstly, the parallel case, (4-92), has a coefficient of 6, while the perpendicular 

case, (4-93), has a coefficient of 3/2. Thus, when 𝜆 = 1 and 𝐸 → ∞, the ratio of 𝑇𝐶,∥
∗ : 𝑇𝐶,⊥

∗ , is 4:1. 

In addition, the fourth-order exponent on 𝜆 in (4-92) results in a quartic increase as 𝜆 → 0, while 

the exponent in (4-93) is 1/2. Consequently, as 𝜆 → 0, the ratio of the forces, 𝑇𝐶,∥
∗ : 𝑇𝐶,⊥

∗ diverges 

towards ∞. 

 
Figure 4-10. The non-dimensionalized energies (a) and the corresponding forces (b) of 

the two cases of the single chain network model, parallel and perpendicular, are plotted 

versus the stretch in the direction of the applied electric field. The comparisons highlight 

key differences in the strengths of the interactive energies/forces between the parallel and 

perpendicular cases.  

In comparison, the dielectric energy of the amorphous phase, under the incompressibility 

assumption and 𝑬 = 𝐸𝒆̂3, can be simplified to 

𝑊𝐴,𝐷𝐸 = (1 − 𝑣𝑐)
𝜆3

−2

2
𝜖𝑟𝜖0𝐸3

2 (4-94) 

The stress generated by the amorphous phase's dielectric response can also be defined, 

𝑇𝐴,𝐷𝐸 =
𝜕𝑊𝐴,𝐷𝐸

𝜕𝜆3
= 𝜆3

−3𝜖𝑟𝜖0𝐸3
2 (4-95) 
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Recall that the dielectric constant of the amorphous phase 𝜖𝑟 is relatively low: approximately 

between 1 and 5 (Capsal et al. 2012). At low fields, when 𝐸3~106 𝑉/𝑚, the order of magnitude of 

the amorphous phase's dielectric contribution is 𝜎𝐴,𝐷𝐸~10. At high fields, when 𝐸3~108 𝑉/𝑚, 

𝜎𝐴,𝐷𝐸~104. 

In contrast, the crystalline phase's dielectric response is driven by dipole-dipole interactions. 

The parallel and perpendicular spatial alignment cases are considered for the dipole-based energy, 

which yield the stresses, 

𝑇𝐶,∥ =
𝑃𝑠

2𝜆−4

𝑣𝑐𝜖𝑟𝜖0
𝐹(𝐸), 

𝑇𝐶,⊥ =
𝑃𝑠

2𝜆3/2

2𝑣𝑐𝜖𝑟𝜖0
𝐹(𝐸). 

(4-96) 

The function 𝐹(𝐸) contains the Langevin orientation model (found in second term of equation 

33) and determines the dot products of the dipole moment, and separation vectors. The output of 

𝐹(𝐸) varies between 0 and 1 for the perpendicular case, and 0 and 2 for the parallel case; 

furthermore, due to a relatively low field saturation of the crystalline phase, the contributions of 

the crystalline regions will quickly reach their maximum values within the typical range of applied 

field in experiments, which is between 0 and 150 MV/m. Consequently, the magnitudes of the 

crystalline phase's forces (at non-extreme 𝜆 values; i.e, 𝜆~1) are largely determined by the order 

of magnitude of 𝑃𝑠
2/(𝑣𝑐𝜖𝑟𝜖0), which is 109 if 𝑃𝑠

2~10−2 𝐶/𝑚2, 𝜖𝑟𝜖0~10−12 𝐹/𝑚, and 𝑣𝑐~10−1. 

Thus, dipolar stresses generated by the crystalline phase will achieve stress on the order of 109 Pa 

near saturation (i.e., 150 𝑀𝑉/𝑚).  

Due to its relatively small stress generation with respect to the crystalline phases, the dielectric 

contribution of the amorphous phase can be ignored within the ranges that will be analyzed in this 

study. 



105 

 
Consequently, the non-dimensionalization of the coupled response can be calculated by the 

traction-free equilibrium of only the crystalline phase’s dipolar response and the amorphous 

phase’s elastic response. Enforcing equilibrium  
𝑑𝑊𝐶

∗

𝜕𝜆
+

𝑑𝑊𝐴,𝐸𝑙
∗

𝜕𝜆
= 0, results in 

𝜕𝑊𝐴,𝐸𝑙
∗

𝜕𝜆3
= −Η(

𝜕𝑊𝐶
∗

𝜕𝜆3
). (4-97) 

where the parameter Η is a combination of model parameters defined as  Η = 𝑃𝑠𝑎𝑡
2/(3𝐶1𝑣𝑐𝜖), and 

the energy 𝑊𝐴,𝐸𝑙
∗  is a result of non-dimensionalization, 𝑊𝐴,𝐸𝑙

∗ = 𝑊𝐴,𝐸𝑙/𝐶1. Accordingly, the forms 

of both sides of (4-97) may be determined by substituting the dipolar energy, (4-84), and the 

elastic energy in (4-53), into (4-97), yielding 

 
(1 − 𝑣𝑐)

𝐴𝑒𝑙
∑∑𝑓sc(Φ𝑗, Θ𝑖)𝑊

∗
8𝑐ℎ(𝐼1

𝐴(𝜆,Φ𝑗, Θ𝑖), 𝜆𝑚)𝑠𝑖𝑛ΦΔΘΔΦ

𝑁Φ

𝑗

𝑁Θ

𝑖

= −Η
𝜕

𝜕𝜆3
[(𝜆−1 sin2 Φ + 𝜆2 cos2 Φ)−

3
2] (〈𝒑̂𝟏 ⋅ 𝒑̂𝟐〉

− 3〈𝒑̂𝟏 ⋅ 𝒓̂〉〈𝒑̂𝟐 ⋅ 𝒓̂〉) 

(4-98) 

The right hand side of (4-98) is the product of Η and the dimensionless stress corresponding to 

the dipole energy. This dipolar stress will vary for the two extreme cases because the dot products 

〈𝒑̂𝟏 ⋅ 𝒓̂〉 and 〈𝒑̂𝟐 ⋅ 𝒓̂〉 depend on placement of neighboring crystalline domains, which affects 𝒓̂. In 

the parallel case (𝑹 = 𝑅𝒆̂𝟑), an increase of field will yield 〈𝒑̂𝟏 ⋅ 𝒓̂〉 → 1, and 〈𝒑̂𝟐 ⋅ 𝒓̂〉 → 1. In 

contrast, as the field increases in the perpendicular case (𝑹 = 𝑅𝒆̂𝟏), the dot products will approach 

towards 〈𝒑̂𝟏 ⋅ 𝒓̂〉 → 0, and 〈𝒑̂𝟐 ⋅ 𝒓̂〉 → 0. The assessments of 〈𝒑̂𝟏 ⋅ 𝒓̂〉 and 〈𝒑̂𝟐 ⋅ 𝒓̂〉 are performed by 

sampling a set of dipole moments from the von Mises distribution. The electric field dependence 

of these dot products causes the dipolar stress to be driven by the electric field, for which we 

choose a dimensionless parameter, 𝐸∗ = 𝐸/𝐸𝑠, implemented into (4-67) to obtain the orientation 

distribution parameter 𝑏Φ𝑝
 used to calculate dipole moment angles. 

 To visually illustrate equilibrium, the two sides of (4-98), representing the elastic and dipolar 

stresses, are plotted versus 𝜆 in Figure 4-2. The parameter Η is set to 1 (one). The intersection 
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between the elastic and the dipolar stress differences indicates the equilibrium stretch-state for the 

traction-free body. Figure 4-2.a plots the stress differences for the parallel case, and Figure 4-2.b 

for the perpendicular case. Initially in each figure, at 𝐸∗ = 0 the dipole energy is identically zero 

and the elastic energy crosses the 𝑦-axis at 𝜆 = 1 signaling the undeformed state as expected. As 

𝐸∗ increases, the dipolar stress difference curve amplifies, shifting the equilibrium towards the 

left, meaning a contraction in the 𝒆̂𝟑 direction (i.e., electrostriction response). However, while the 

perpendicular case in Figure 4-2.b depicts intersection over the full range of 𝐸∗ shown, the parallel 

case in Figure 4-2.a becomes tangent to the dipole stress near 𝐸∗ = 7. Consequently, beyond 𝜆 =

7 there is no solution to (4-98). This phenomenon can be physically interpreted as the field 

strength at which the dipolar stresses overcome the elastic stresses of the material, resulting in a 

phenomenon similar to the pull-in instability, as defined in Zhao and Wang (2014). 

 

 

(a) 
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Figure 4-11. The left- and right-hand sides of (4-98) are plotted versus λ for the extreme cases, (a) 

parallel single chain, and (b) perpendicular single chain. The blue line is the stress difference 

associated with the dipolar energy. The intersections of the curves indicate the equilibrium 

locations.  

This type of mechanical failure has been studied for dielectric materials (i.e., pull-in 

instability), but it has not been studied for RFE polymers in the same manner (Plante and 

Dubowsky, 2007; Zhao and Suo, 2008; Zhao and Wang, 2014; Dorfmann and Ogden, 2017). Pull-

in instability in dielectric elastomers is typically studied via the energy for an ideal linear 

dielectric material with a Neo-Hookean elastic model, as developed in Zhao and Wang (2014), in 

the form of 

 𝑊𝐿𝐷 = 𝐶10(𝜆
2 − 2𝜆−2 − 3) +

𝜆2𝐷2

2𝜀
, (4-99) 

where 𝐶10 =
1

2
𝑁𝑘𝑇, 𝜀 is the dielectric constant, and 𝐷 is the electric displacement in the 𝒆̂𝟑 

direction. The nominal stress calculated by Zhao and Wang (2014) is  

 𝑠3 = 𝐶10(𝜆 − 𝜆−2) +
𝜆𝐷2

𝜀
, (4-100) 

and 𝐷 is related to 𝐸 by the relation, 

 𝐸 =
Υ

ℎ
=

𝜆2𝐷2

𝜀
, (4-101) 

(b) 



108 

 
in which Υ is the voltage and ℎ is the distance between two compliant electrodes attached to the 

dielectric elastomer.  

Substituting (4-101) into (4-100) and setting 𝑠3 = 0 for traction free equilibrium yields 

 √
𝜀

𝐶10

Υ

ℎ
= √(𝜆 − 𝜆4). (4-102) 

Multiple similarities can be drawn between (4-102) and (4-98). Namely, the left- and right-

hand sides of both equations represent stresses related to either the elastic or the dipolar energies, 

with a coefficient Η = √𝜀/𝐶10 in (4-102) and Η = 𝑃𝑠𝑎𝑡
2/(3𝐶1𝑣𝑐𝜖) in (4-98). In our model, 𝜖 

represents the electric permittivity of the medium between the dipoles, whereas in the linear 

dielectric model, 𝜀 represents the average permittivity (or dielectric constant) of the entire 

material. Meanwhile, the differences between the two approaches are evident when considering 

the physical representations of the models. While the energies explored in our proposed model can 

be attributed to the interactions between domains and the amorphous phase’s elastic response, the 

dielectric and elastic energy components in (4-99) are not based on any microstructure 

characteristics, and instead rely on phenomenological modeling. 

The electrostrictive response of a material can be calculated by solving the nonlinear equation 

(4-98) for pairs of [𝐸, 𝜆]. The percent strain 𝑆33 (%) commonly reported in experimental results 

can be related to 𝜆 by 

𝑆33 = 100 ∗ ln 𝜆, (4-103)  

yielding pairs of [𝐸, 𝑆33]. These pairs, when plotted over a range of 𝐸, define electrostriction; 

hence, the relationship between 𝐸 and 𝑆33 will be referred to as electrostriction in subsequent 

discussions. 

3.2.5.3 Derivation of the PDF-based network model 

In this section, we consider averaging techniques for the spatial orientation aspect of the 

dipole-dipole interaction energy function, e.g. 𝒓. This is not to be confused with the von Mises 
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probability density function applied to the distribution of dipole moment vector orientations. A 

probability distribution function will enable exploring the effect of intermediate orientations 

between the parallel and perpendicular cases on the electrostrictive response.  

Consider a single (central) dipole residing in the RVE surrounded by a probability density of 

neighboring dipoles at some distance 𝑟 from the central dipole and some azimuthal angle Φ𝑟.  The 

total interaction energy of the system is the volume average scaled by the corresponding 

probability density, given by 

〈𝑊𝐶〉 =
1

𝐴𝑓
∫ 𝑓Φ𝑟

(Φ𝑟)𝑊𝑑(Φ𝑟)𝑠𝑖𝑛Φ𝑟𝑑Φ𝑟

+𝜋

−𝜋

, (4-104)  

where 𝑓Φ𝑟
(Φ𝑟) is a distribution function for the spatial orientations of dipoles. However, 𝑊𝐶 must 

be calculated discretely to assess the dipole-dipole interactions under realist conditions; thus, an 

analytical solution is not obtainable to the continuous integral in (4-104). As a result, the PDF-

based average of 𝑊𝐶 is calculated discretely below, in (4-105). 

〈〈𝑊𝐶〉〉 =
1

𝐴𝑓
∑ 𝑓Φ𝑟

(Φ𝑟𝑖)𝑊𝑑(Φ𝑟𝑖)ΔΦ𝑟.

𝑁Φ𝑟

𝑖

 (4-105)  

where the double bracket  〈〈∙〉〉 denotes the discrete average. Given a small arc length, ΔΦ𝑟, 

discretization offers a viable option to solve the integral in (4-104). Furthermore, ΔΦ𝑟 is directly 

related to 𝑁Φ𝑟
 by  

𝛥Φ𝑟 =
2π

𝑁Φ𝑟

. (4-106)  

A convergence study on the averaged energy in (4-105) evaluated at 𝑊𝐶(Φ𝑟𝑖) = 1 is plotted 

in Figure 4-12, revealing that 𝑁Φ𝑟
= 500 is sufficiently large to yield an approximation with less 

than 0.1% error compared to the integral in (4-104) with  𝑊𝐶(Φ𝑟𝑖) = 1.  

To determine the spatial distribution function 𝑓Φ𝑟
(Φ𝑟), we consider the location of any dipole, 

earlier defined as 𝒓𝒊𝒋, which lies on the surface 𝜕𝑉 of a sphere. Assuming axisymmetry, the spatial 

distribution can be defined as a 1D von Mises distribution on Φ𝑟 ∈ [0, 𝜋], 
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𝑓Φ𝑟
(Φ| 𝜇Φ𝑟

, 𝑏Φ𝑟
) =

𝑒𝑏Φ𝑟𝑐𝑜𝑠(Φ𝑟−𝜇Φ𝑟)

2𝜋𝐼0(𝑏Φ𝑟
)

 , (4-107) 

where 𝜇Φ𝑟
 is the mean, and 𝑏Φ𝑟

 is the concentration of the distribution of azimuthal angles Φ𝑟. As 

depicted in (4-98), the dipolar energy is not dependent on Θ, and consequently, the probability 

density is not affected by Θ, again a consequence of assuming isotropy in-plane. Moreover, the 

only adjustable parameters in this model is 𝑏Φ𝑟
 because the mean is assumed collinear with the 

applied field direction 𝒆̂3; hence 𝜇Φ𝑟
= 0. 

 

Figure 4-12. The discretized distribution function in (4-105) is evaluated at 𝑊𝐶(Φ𝑟𝑖) = 1 

for varying values of 𝑁Φ𝑟
. 

The averaged dipolar energy can be written by substituting (4-84) and (4-107) into (4-105), 

yielding 

〈〈𝑊̅𝐶〉〉 = ∑ [
𝑒𝑏Φ𝑟𝑐𝑜𝑠(Φ𝑟−𝜇Φ𝑟)

2𝜋𝐼0(𝑏Φ𝑟
)

] [
𝑃𝑠𝑎𝑡

2[〈𝒑̂𝟏 ⋅ 𝒑̂𝟐〉 − 3〈𝒑̂𝟏 ⋅ 𝒓̂〉〈𝒑̂𝟐 ⋅ 𝒓̂〉]

3𝑁Φ𝑟
𝑣𝑐𝜖(𝜆

−1 sin2 Φ𝑟 + 𝜆2 cos2 Φ𝑟)
3/2

]

𝑁Φ𝑟

𝑖=1

 . 

(4-108) 

The distribution parameter is defined as 𝑏Φ𝑟
∈ [0,∞). Due to its undefined maximum, 𝑏Φ𝑟

 is 

difficult to relate to a physical structure. For performing a microstructure-based analysis, the 

model will be evaluated with respect to 𝜅 ∈ [0,1/3], which, given the von Mises distribution, has 

been used to discuss various physical structures in literature (Gasser et al, 2006). It is evaluated as 
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𝜅 =
1

4
∫ 𝑓Φ𝑟

(Φ| 𝜇Φ𝑟
, 𝑏Φ𝑟

)𝑠𝑖𝑛3Φ𝑟dΦ𝑟

𝜋

0

, 
(4-109) 

and as a result, (4-107) can be plotted as a function of 𝜅. The significance of 𝜅 is that it is a more 

physically relatable term; 𝜅 = 0 implies a singular orientation with unit probability, while 𝜅 =

1/3 implies a uniform distribution. Since 𝜅 ∈ [0,1/3] is a clearly defined parameter, it will be 

used in the remaining calculations and analyses. 

Various configurations of the distribution in (4-107) can be conceived by modifying 𝜇Φ𝑟
 and 

𝜅, as an alternative to the single chain network models. The distributions can be visualized by 

scatter plot of randomly generated points based on the distribution, as in Figure 4-13. The 

examples shown in Figure 4-13 are in the reference configuration, representing the spatial 

distribution of dipoles over an initially spherical, undeformed state of the RVE. Each point 

indicates a dipole that interacts with the central dipole. The spatial distribution is plotted for two 

cases, 𝜇Φ𝑟
= 0 and 𝜇Φ𝑟

= 𝜋/2 (representing nominally parallel and perpendicular single chain 

RVEs), at 𝜅 = 1/3, 1/4, 1/10, 1/20, 1/80. The distribution at 𝜅 = 0.333 is a uniform 

distribution, and thus it is the same for any 𝜇Φ𝑟
. As 𝜅 is gradually decreased, the points begin 

coalescing towards their respective centers; eventually, as 𝜅 → 0, all points will reside at a single 

location.  

 
Figure 4-13. The von Mises PDF is graphically represented by a scatter plot of randomly 

generated points based on the distribution evaluated at varying values of 𝜅. The PDF is centered 

either at 𝜇Φ𝑟
= 0 and 𝜇Φ𝑟

= 𝜋/2 as shown, where these distributions move toward approximating 

the parallel and perpendicular discrete single chain models .  
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3.2.5.4 Analysis of the response of the PDF-based single chain network model 

This subsection evaluates the total energy density substituted into (4-98) at varying electric 

field strengths to simulate the electromechanical response of the material. To study the effects of 

the spatial distribution function, the averaged dipolar energy in (4-108) replaces the third term in 

(4-58), yielding  

〈𝑊̅〉

=
(1 − 𝑣𝑐)

𝐴𝑒𝑙
∑∑𝑓sc(Φ𝑗, Θ𝑖)𝑊8𝑐ℎ(𝐼1

𝐴(𝜆, Φ𝑗, Θ𝑖), 𝜆𝑚, 𝐶1)𝑠𝑖𝑛ΦΔΘΔΦ

𝑁Φ

𝑗

𝑁Θ

𝑖

+ (
𝑃𝑠𝑎𝑡

2𝐹(𝐸)

3𝑁Φ𝑟
𝑣𝑐𝜖

) ∑ [
𝑒𝑏Φ𝑟𝑐𝑜𝑠(Φ𝑟−𝜇Φ𝑟)

2𝜋𝐼0(𝑏Φ𝑟
)

] [
1

(𝜆−1 sin2 Φ𝑟𝑖 + 𝜆2 cos2 Φ𝑟𝑖)
3/2

]

𝑁Φ𝑟

𝑖=1

  . 

(4-110) 

The stress differences based on this energy can be calculated in the same manner as in 

(4-97) and (4-98) by non-dimensionalizing via Η = 𝑃𝑠𝑎𝑡
2/(𝐶1𝜖). 

To highlight the dependence of 〈𝑊̅〉 on 𝐸, we use F(E) = 〈𝒑̂𝟏 ⋅ 𝒑̂𝟐〉 − 3〈𝒑̂𝟏 ⋅ 𝒓̂〉〈𝒑̂𝟐 ⋅ 𝒓̂〉, 

which combines the terms indirectly related to 𝐸 via the orientation distribution function in 

Section 4.2. The value of 𝑁Φ is set to 50, determined from the convergence study in Section 5.3. 

The variable 𝜆 is solved for by substituting (4-110) into (4-83) and solving for pairs of [𝐸, 𝜆3], 

which are transformed via (4-103) into [𝐸, 𝑆33]. Recall that this relationship between 𝐸 and 𝑆33 

was defined earlier as electrostriction. Based on fitting of the eight-chain hyperelastic model in 

(4-48) to experimental data performed later in this paper, we chose 𝜆𝑚 = 2.5 for the following 

model calculations. Consequently, the model will be capable of plotting electrostriction with only 

a few adjustable parameters, 𝜇Φ𝑟
, and 𝜅5.  

The electrostriction model can be analyzed by varying the two adjustable parameters in 

the context of the earlier defined parallel and perpendicular cases. We consider two cases for 𝜇Φ𝑟
 

                                                 
5 Although the von Mises distribution is a function of 𝑏Φ𝑟

, we redefined the distribution in terms of 𝜅, which 

is indirectly related to the distribution function via (4-109). Consequently, we consider 𝜅 as an adjustable 

parameter instead of 𝑏Φ𝑟
. 
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that approximate the parallel and perpendicular models: 𝜇Φ𝑟

= 0 and 𝜇Φ𝑟
= 𝜋/2, respectively. 

For these two cases, the model calculates the electrostrictive response of (4-110) at varying 

dispersion factors, 𝜅, as plotted in Figure 4-14. Note that the electrostriction is plotted in terms of 

a normalized strain, 𝑆33
∗ = 𝑆33/𝑆𝑚𝑎𝑥, where 𝑆𝑚𝑎𝑥 is the maximum obtained strain in all of the 

electrostriction calculations, and a normalized electric field 𝐸∗ = 𝐸/𝐸𝑠𝑎𝑡. As 𝜅 → 1/3, the 

distribution functions for both cases, 𝜇Φ𝑟
= 0 and 𝜇Φ𝑟

= 𝜋/2, are identically uniform, and thus, 

the electrostrictive responses of both cases converge at a value as shown in Figure 4-14a, 

indicating internal consistency of the model. In contrast, as 𝜅 → 0, the distributions rapidly 

diverge, and their electrostrictive responses diverge toward separate asymptotes at Figure 4-14 

point c and Figure 4-14 point e. Specifically, as 𝜅 → 0 for 𝜇Φ𝑟
= 0, the electrostriction 

significantly increases as the distribution function approaches a singular point, as shown in Figure 

4-14 point c. However, as 𝜅 → 0 for 𝜇Φ𝑟
= 𝜋/2, the electrostriction observes a small decrease, 

shown in Figure 4-14 point e. These results imply that the forces generated by dipoles whose 

relative positions are parallel to the field-direction dominate the electrostriction response of a 

material, and to maximize the electrostrictive response of a material, the target microstructure 

should contain crystalline domains that are aligned parallel to the direction of the field (often the 

direction of the thickness). However, it should be noted that the model failed to compute pairs of 

[𝐸, 𝑆33] for 𝜇Φ𝑟
= 0 below 𝜅 ≅ 0.0005, shown in Figure 4-14 point c, due to the material failure 

phenomenon discussed in Section 5.2. Thus, spatially aligning domains to a very high order of 

𝜅 < 0.001 may be counterproductive as it may trigger material failure at high field strengths. As a 

result, perfectly (spatially) aligned domains may not be desired, especially at field strengths above 

𝐸∗ = 15.  

An anomaly in the energy functions is revealed near Figure 4-14 point d, where the 

electrostriction for 𝜇Φ𝑟
= 𝜋/2  observes a dip near 𝜅 ≅ 0.05. This behavior reflects the 

phenomenon introduced earlier in Section 5.2, where the possibility of a state of orientation 
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between 0 < Φ𝑟 < 𝜋/2 yielding zero interaction energy was mentioned. Furthermore, due to the 

relatively weak energy at Φ𝑟 = 𝜋/2, the zero-energy orientation affects the averaging of the 

energy more significantly for 𝜇Φ𝑟
= 𝜋/2, thus causing the drop in electrostriction at Figure 4-14 

point d. Considering this phenomenon, alignments in the diagonals may not be ideal for achieving 

a high electrostrictive response. 

  

Figure 4-14. Comparison of the two extreme cases with PDFs in prediction of electrostriction. As 

𝜅 → 1/3, both PDF-based responses converge toward the discrete network responses, which is 

why the discrete network models are placed at the low end of the 𝜅 range. Due to theoretical 

material failure, electrostriction could not be determined at field strengths above 𝐸∗ = 15 for 

𝜇Φ𝑟
= 0 as 𝜅 → 0; as a result, saturation is not observed at (c). 

3.2.6 Deriving The Permittivity of the Amorphous Phase 

The dipole-dipole interaction energy requires the relative permittivity 𝜀𝑟 of the medium 

that holds the dipoles. This medium corresponds to the amorphous phase of the material. 

However, there are no direct methods of measuring the permittivity of the amorphous phase of the 
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EAPs to the author’s knowledge. In this section, some indirect approaches to determining the 

permittivity of the amorphous phase are explored. 

A common approach to determining the relative permittivity of the amorphous phase of a 

semicrystalline polymer is by effective medium theory. However, only one study does this to the 

author’s knowledge, in which the relative permittivity of the amorphous phase of the P(VDF-

TrFE) copolymer is determined to be 8 [53]. Since the model presented in this paper is mainly 

focused on the mechanism behind the P(VDF)-based terpolymer, we turn to a different approach 

presented in Ref [29], in which the authors consider a biphasic polarization model for the relaxor 

ferroelectric terpolymer. Most importantly, Ref [29] proves the relationship between permittivity 

and polarization shown in (4-111). 

 𝜀𝑟 =
1

𝜀0

𝑑𝑃

𝑑𝐸
+ 1 (4-111) 

By substituting their description of polarization, Ref [29] is able to obtain a relationship 

between electric field and electric permittivity. Furthermore, the biphasic model in Ref [29] allows 

the model to differentiate between the contributions of the crystalline and the amorphous regions. 

Beyond the basic capability of their model, one other observation is made in the paper: the 

crystalline regions exhibit high nonlinearity by saturation, as more and more dipoles align with the 

field. On the other hand, the amorphous phase acts as a linear dielectric, by possessing a very high 

saturation field, 𝐸𝑠𝑎𝑡, compared to that of the crystalline phase. This brings a key point: as the 

electric field is further increased, the amorphous region takes over the polarization response of the 

material and completely dominates once the crystalline regions saturate in alignment. More 

importantly, this is evident from permittivity plotted versus electric field, where the permittivity 

levels off at a certain value at very high fields (~400 MV/m). The experimental values for 

permittivity are obtained from the calculations found in Ref [2], in which the energy density of the 

material is calculated using the integral in (4-112). 
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 𝑊𝑒 = ∫𝐸𝑑𝑃 (4-112) 

This integral is calculated for a polarization curve, and the ‘effective’ dielectric constant, 

based on a linear dielectric assumption, at each point is determined by the (4-113). 

 𝑊𝑒 =
1

2
𝜀𝑟𝜀0𝐸

2 (4-113) 

However, given a set of polarization data, the following question is raised: how accurate 

are the permittivity calculations based on the linear dielectric assumption? Furthermore, would a 

more direct calculation of the slope of the polarization curve based on discretized data points 

generate different results for the permittivity? To answer these questions, we discretize the 

polarization data, and evaluate the slope by a simple approximation by interpolation. If the step 

size in the discretized system is small enough, this generates an accurate approximation of the 

slope. The derivative approximation is calculated by (4-114). 

 
𝑑𝑃

𝑑𝐸
|
𝑖
≈

𝑃(𝑖 + 1) − 𝑃(𝑖 + 1)

𝐸(𝑖 + 1) − 𝐸(𝑖 − 1)
 (4-114) 

Each point, i, is the average distance between two discrete data points. Discrete data from 

literature is extracted by the Web Plot Digitizer App. For plots that present smooth curves, the step 

size is reduced to a small enough value that can extract a trend based on the statistics of the data. 

Lastly, the biphasic permittivity model derived in Ref [29] is implemented into a least squares 

method, where MATLAB’s fminsearch command is utilized.  The permittivity equation is split 

into the two components that are associated to the different phases of the material. Since the 

amorphous phase almost acts as a linear dielectric, it is assumed to be constant for the sake of 

reducing the number of parameters for optimization. The permittivity model is shown in (4-115). 

 𝜀𝑟,𝑡𝑜𝑡𝑎𝑙 =
1

𝜀0
3𝐸𝑠𝑎𝑡(𝜀𝑐 − 𝜀0) [−

1

sinℎ2 (
𝐸

𝐸𝑠𝑎𝑡
)
+

𝐸𝑠𝑎𝑡
2

𝐸2 ] + 𝜀𝑎 (4-115) 

In equation (4-115), 𝜀𝑐 is the low field linear permittivity constant for the crystalline 

region, 𝐸𝑠𝑎𝑡 is the electric field at which the crystalline region begins exhibiting nonlinearity, and 
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𝜀𝑎 is the constant permittivity attributed to the amorphous phase. The parameters 𝜀𝑐, 𝜀𝑎, 𝐸𝑠𝑎𝑡, will 

be fit to experimental data, and the amorphous phase’s permittivity 𝜀𝑎 will be substituted into the 

dipole-dipole interaction energy as 𝜀𝑟.   

3.3 Results and Discussions of Microstructure-Based Model 

This chapter addresses Hypothesis 2 by studying the effectiveness of the microstructure-

based model in terms of predicting the behavior of EAPs, as well as its ability to address 

variability of relative spatial locations of crystalline domains. In this section, the electrostriction 

model is compared to multiple data sets by first determining material constants from experiments, 

then fitting the PDF-based network model via adjustment of 𝜅.  

3.3.1 Comparisons of network model responses to experimental data 

Three materials have been chosen in this study. One of the materials was fabricated and 

tested by us, while the remaining two material data sets were borrowed from literature. All three 

materials are P(VDF)-based terpolymers; their processing methods are listed along with their 

chemical compositions in Table 4-3. 

 All three terpolymers were synthesized by bulk polymerization. The material fabricated 

for this study is polyvinylidene-trifluoroethylene-chlorotrifluoroethylene, also known as P(VDF-

TrFE-CTFE) 61.8/30.4/7.8%.  

Table 4-3. Terpolymers are listed with chemical composition and processing details. The chemical 

compositions may differ from the literature because they have been normalized here to add up to 

100%. 

Polymer Percent composition Additional processing 

P(VDF-TrFE-CTFE) 

(Saad et al.. 2018) 

61.8/30.4/7.8%  Annealed at 120°C for 9 hours 

P(VDF-TrFE-CTFE)  

(Xu et al, 2001) 

59.1/31.8/9.1% Annealed at 100-120°C for 6 hours 

P(VDF-TrFE-CFE)  

(Cheng et al. 2003) 

59.6/36.5/3.8% Annealed at 110°C for an 

unspecified period 
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Figure 4-15. The single-phase polarization model is fitted to the polarization responses of three 

data sets. The fitted parameters 𝑃𝑠 and 𝐸𝑠 (in legend) are also listed in Table 4-3. 

The polarization model in Capsal, et al. (2012), which is based on (4-66), was used to 

determine the saturation polarization of the material by least squares fitting the polarization model 

to experimental data from our laboratory and borrowed from literature. Figure 6-6 shows the fitted 

models to each set of measured data.  Results are tabulated in Table 3 and used to determine 

electrostriction in equations (4-83) and (4-110). 

The elastic properties of P(VDF-TrFE-CTFE) 7.8% are determined by fitting the modified 

eight chain hyperelastic model 𝑊8𝑐ℎ(𝐼1
𝐴) to experimental tensile data conducted in our laboratory 

(not shown). The energy is fitted for 𝑣𝑐 = 0.36 (actual crystallinity) and also 𝑣𝑐 = 0 to study the 

effects of crystallinity. The energy with zero crystallinity will provide us a measure of an average 

𝐶1, while the corrected energy apportioned to only the amorphous phase will provide us a 𝐶1 value 

for only the amorphous phase. As shown in Figure 4-16, the best fit for the average and 

amorphous 𝐶1 constants are 170 MPa and 14.1 MPa, respectively. The amorphous phase’s 𝐶1 is 

more than an order of magnitude lower than the average, which is expected, as the rigidity of the 

crystallites will significantly increase the average elastic response of the material. Note that the 
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models are fitted to experiments within a small range of 𝜆, because electrostriction often does not 

exceed 10% strain.  

For the other terpolymers, the reported Young’s modulus is used and as a result, we 

employ a simple Neo-Hookean model to model the hyperelastic response of the material.  Results 

are tabulated in Table 4-4 and used to predict electrostriction in equations (4-83) and (4-110). 

 
Figure 4-16. Tensile test data for the CTFE 7.8% terpolymer, and two best-fit models: 

modified 8-chain hyperelastic model 𝑊8𝑐ℎ(𝐼1
𝐴) with crystallinity 𝑣𝑐 = 0 and 𝑣𝑐 = 0.36. 

In addition to the saturation polarization, the permittivity of the amorphous phase 𝜀𝑎is also 

required for calculating the dipole-dipole interaction energy. Thus, we utilize the biphasic model 

derived by Capsal et al. (2012), defined in (4-115). This model is fitted to each experimental data 

(both from our laboratory and borrowed from other studies) to obtain average values of the bulk 

permittivity 𝜀𝑟,𝑡𝑜𝑡𝑎𝑙. The biphasic model assumes that the crystalline phase dominates the 

material’s polarization response at low field strengths of about 0 to 150 MV/m, and eventually the 

amorphous phase begins to dominate the material’s response, behaving similar to a linear 

dielectric. Thus, we make the assumption that the amorphous phase has a constant permittivity of 

𝜀𝑎, to reduce the number of unknown variables.  
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𝜀𝑟,𝑡𝑜𝑡𝑎𝑙 =
1

𝜀0
3𝐸𝑠(𝜀𝑐 − 𝜀0) [−

1

sinℎ2 (
𝐸
𝐸𝑠

)
+

𝐸𝑠
2

𝐸2 ] + 𝜀𝑎 (4-116) 

All literature data is analyzed by Web Plot Digitizer, which is an online tool that aids in 

extracting data points on an image. The images are analyzed by a step size of 1 pixel. The relative 

electric permittivity of a dielectric material is defined as  

𝜀𝑟 =
1

𝜀0

𝑑𝑃

𝑑𝐸
+ 1, (4-117) 

in which 𝜀𝑟 is the relative electric permittivity, 𝑃 is the polarization, and 𝐸 is the electric field. We 

must determine the permittivity by approximating the derivative of the polarization with respect to 

the electric field, which can be determine from a set of data as  

𝑑𝑃

𝑑𝐸
|
𝑖
≈

𝑃(𝑖 + 1) − 𝑃(𝑖 + 1)

𝐸(𝑖 + 1) − 𝐸(𝑖 − 1)
 (𝑓𝑜𝑟 𝑖 = 1, 2, …𝑛𝑃). (4-118) 

Once we obtain a set of permittivity data, we fit the model to the data by a least squares 

method to determine 𝜖𝑟 . Given known variance in the polarization data for P(VDF-TrFE-CTFE) 

7.8%, we fit the model to one standard deviation below, one standard deviation above, and exactly 

at the average measured values. As a result, we obtain a range of permittivity for the amorphous 

phase for this material, from 4.0 to 14, with an average of 9.4. Variance in the other materials are 

studied by exploring the effects of adding weights to the least squares fitting method to prioritize 

the polarization responses at higher field strengths, which will better reflect the amorphous 

phase’s permittivity. Due to the complexity of extracting the exact value of 𝜖𝑟 from experiments, 

we focused on using approximate (averaged) values of 𝜖𝑟 instead of analyzing a spectrum of 𝜖𝑟 

per materail (such an analysis is beyond the scope of this paper). The approximate results are 

listed in Table 4-4. The relatively low permittivities for the amorphous phase are consistent with 

the theory that the amorphous phase should have a low dielectric response compared to the 

crystalline phase.  

Table 4-4. Parameters used for the simulations in Figure 15. 
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 𝑣𝑐  (%) 𝐶1 (MPa) 𝜆𝑚 Y(GPa) 𝜖𝑟 

𝑃𝑠  (
𝐶

𝑚2
) 

𝐸𝑠 

(MV/m) 

P(VDF-TrFE-CTFE) 

61.8/31.4/7.8%   

36 14.1 2.5 - 9.4 0.0722 38.7 

P(VDF-TrFE-CFE) 

59.6/36.5/3.8% 

43 - - 1.1 3.0 0.113 59.1 

P(VDF-TrFE-CTFE) 

59.1/31.8/9.1% 

56 - - 0.4 4.6 0.0961 33.2 

The parameters listed in Table 4-4 are used in the electrostriction model for each material 

at varying values of 𝜅 at 𝜇Φ𝑟
= 0 and 𝜇Φ𝑟

= 𝜋/2. Figure 4-17 shows the model evaluated at 

0.025 ≤ 𝜅 ≤ 0.333 for 𝜇Φ𝑟
= 0 and at 0.05 ≤ 𝜅 ≤ 0.333 for 𝜇Φ𝑟

= 𝜋/2 compared to data for 

P(VDF-TrFE-CTFE) 7.8%. The best-fit curve to experiments (by least square errors) is signaled 

by a dashed line, with the fitted values 𝜇Φ𝑟
= 0 and  𝜅 = 0.111. A distribution of 

𝑓Φ𝑟
(Φ𝑟; 𝜇Φ𝑟

= 0, 𝜅 = 0.111) leans towards a narrow distribution of neighboring RVE locations 

around the Φ𝑟 = 0 (parallel) position. Furthermore, the fitted distribution may be interpreted as 

spatial distributions of crystalline domains, and consequently, the distribution represents an 

implied microstructure characteristic. The implied microstructure the fitted model for CTFE 7.8% 

RFE polymer contains crystalline domains with relative locations that are to varying degrees 

parallel with respect to the field, as depicted in Figure 4-17.  
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Figure 4-17. Comparison of the electrostriction model evaluated at varying distribution parameters 

with experiments for P(VDF-TrFE-CTFE) 7.8%. Data is from (Erol et al. 2019). 

 

Figure 4-18. Comparison of the electrostriction model evaluated at 0 < 𝜅 < 1/3 for 𝜇Φ = 0 and 

0.05 < 𝜅 < 0. 3̅ for 𝜇Φ = 𝜋/2 with experiments for P(VDF-TrFE-CTFE) 9.1%.  

A similar fitting procedure is performed for the CTFE 9.1% RFE polymer, and the model 

is plotted over the same range of distributions in Figure 4-19. For this material, the best-fit 

distribution is 𝑓Φ𝑟
(Φ𝑟; 𝜇Φ𝑟

= 0, 𝜅 = 0.145), indicating a very similar distribution to the best-fit 

model for the CTFE 7.8% polymer. Similarly, the best-fit model implies that neighboring 

crystalline domains would be at varying degrees of alignment to the applied-field direction, with 

most concentrated at the parallel orientation.  

It is important to note that the comparisons in Figure 4-17 and Figure 4-19 reveal a best-fit 

model with a distribution center of 𝜇Φ𝑟
= 0 and a moderate degree of spatial alignment. Despite 

their moderately narrow distributions, the best-fit models for the CTFE RFE polymers still show 

considerable probabilities of spatial arrangements of neighboring crystallites far beyond Φ𝑟 = 0. 

Conversely, the model comparisons for P(VDF-TrFE-CTFE) 9.1% result in a very narrow 

distribution of 𝑓Φ𝑟
(Φ𝑟; 𝜇Φ𝑟

= 0, 𝜅 = 0.034), which is between the visual depictions of 𝜅 = 1/80 

and 𝜅 = 1/20 in Figure 4-18. Such a distribution implies very little variation beyond the parallel 

arrangement.  
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Beyond fitting the electrostriction model to experiments, the model may be used 

predictively to determine microstructures required for desired properties. It is apparent from the 

model-experiment comparisons (as well as preliminary comparisons of nondimensionalized 

energies) that spatial distributions centered parallel to the field with very narrow widths generate 

the largest electrostrictive responses. Consequently, we would prefer to fabricate materials with 

similar microstructural arrangements. For example, Figure 4-17 implies that, if the predicted 

microstructure for the tested P(VDF-TrFE-CTFE) 7.8% terpolymer is correct, it is possible to 

increase the material’s electrostrictive response by more than a factor of 2 if we reduce the 

distribution width to 𝜅 = 0.025 through material processing techniques during fabrication, which 

would theoretically yield greater than 10% electrostrictive strain at 150 MV/m. Using this method, 

the model may assist materials scientists to assess the performance envelope of a given set of 

fabrication methods or achieve target materials properties through tailored processing. Namely, 

processing methods such as the simultaneous application of multiple fields (e.g. magnetic and 

electric fields) could be used to manipulate the microstructure to achieve a distribution with a 

precise 𝜇Φ𝑟
 and 𝜅. However, it is important to note that due to a lack of availability of 

experimental data on spatial arrangements of crystallites within RFE polymer microstructures, it is 

currently not feasible to validate the model's predictive capabilities. Furthermore, a validation 

procedure is necessary before the model can be used for targeting desired material properties. 

Nonetheless, the model's significance remains from its ability to address the microstructural 

characteristics that would be necessary to predict structure-property relationships.   

Although the model fits the experimental data well, especially at high field strengths 

(above 100 MV/m), some characteristics of the curves are not captured entirely at lower field 

strengths. For example, there is a relatively high error in fitting the model to CTFE 7.8% at 

approximately 40 MV/m in Figure 4-17. This is due to a spike in electrostriction observed in 

experiments; it is hypothesized that these spikes may result from two separate crystalline phases. 

Based on in situ X-ray diffraction (XRD) data on CTFE 7.8% terpolymer, 𝛽-phase has a coercive 
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field around 40-50 MV/m, which may explain the electrostrictive spike. Additionally, a similar 

spike is observed for CTFE 9.1% at 50 MV/m in Figure 4-18. The relatively low initial 

electrostrictive response in the experimental data for CTFE 7.8% (Figure 4-17) may also be due to 

the resolution of the experimental measurements, which could amplify the spike at 40 MV/m. 

These spikes are not as clearly observed in the other data sets. Additionally, predicting low-field 

responses may be improved by adding the effects of dipole-induced fields. However, including 

dipole-induced fields in a local field calculation would create new computational challenges 

beyond the scope of this study.  

 
Figure 4-19. Comparison of the electrostriction model evaluated at varying distribution parameters 

with experiments for P(VDF-TrFE-CFE) 3.8%. 

 

3.4 Conclusions 

The microstructure-based model is developed and analyzed such that it could answer 

Hypothesis 2. The model utilizes an approach which captures the electromechanical coupling 

within the relaxor ferroelectric terpolymer based on its dipole-dominant microstructure, with only 

a few adjustable parameters, all of which possess physical significance. A free energy function 

composed of both an electrostatic and elastic term is implemented, where the electrostatic 
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component is the interaction energy of dipoles (Coulomb), which are prevalent in the 

microstructure of the terpolymer and a direct mechanism behind the nonlinear electromechanical 

coupling behavior. A probability distribution function for both the spatial orientation of polar 

regions and the orientation of their dipole moments provides a more realistic picture of the 

microstructure—as it is beyond just two points of crystal regions connected via an elastic chain. 

Fitting the model to experimental results by varying these PDF parameters provides a better grasp 

of the orientations of crystal regions with respect to each other, and this yields a framework for 

more detailed studies on the actual shape and sizes of these domains.  

The modeling results showed that the anisotropy of the dipole-dipole interactions 

influences the electromechanical coupling of the system. Namely, arrangements of crystalline 

regions parallel to the field can generate the largest electromechanical strain, while perpendicular 

arrangements generate about an order of magnitude less.  

Additionally, the model can capture a phenomenon known as pull-in instability, which 

can either cause material failure or be harvested to yield larger electromechanical coupling 

depending on boundary conditions. Parallel arrangements were found to be prone to induce pull-

in instability, and the exact strength of the field required for the instability can be predicted by the 

model. With this information, dipole-based EAPs can be fabricated and processed to either 

promote or inhibit pull-in instability by manipulating the arrangements of the dipolar regions.  

To improve the modeling methods, multiple spatial means (averages) may be 

implemented into the PDF for spatial orientations, resembling network models such as the three-

chain or eight-chain model. In addition, crystal regions may be modeled as aggregates of single 

dipolar molecules or structures, with a PDF dependent on a third variable, r, to be implemented in 

a multi-scale framework. In such a model, exact domain sizes, shapes, and other structural 

properties will be directly employed for a more accurate picture of the microstructure of EAPs. In 

addition to these expansions of the model, the model can be implemented for materials outside 

the scope of EAPs, for other dipole-based active materials such as magneto-active [80]. 
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 CHAPTER 4 

Link Between Electrostrictive Material Response and Structural 

Deformation: Optimization of a Multi-Field Actuated Multi-Layered and 

Segmented Beam 

 

 

This Chapter focuses on the third hypothesis, which states that an analytical model for multi-

layer, segmented composite beams incorporating the EAP constitutive model and magnetic torques 

can accurately predict multi-field device response, and can be used for the design optimization for 

a target shape containing ideal folds. To answer the hypothesis, two objectives are completed. 

Objective 3.1: Derive an analytical model for the bending of an arbitrarily segmented, multi-

layered, multi-field actuating composite beam that accounts for large displacements, dipole-based 

electrostrictive constitutive relations of EAPs, and magnetic dipoles of MAEs.   

Objective 3.2: Define and execute a multi-objective design optimization problem on a case 

study with preset material types and fixed number of segments for work, shape, and cost. The shape 

function must contain ideal folds, and the parameters must include segment lengths and the Young’s 

modulus of at least one material. The results of the multi-objective optimization will determine how 

well folding can be achieved by segment length variation.  

Note: This section is the author’s 2016 SMASIS conference proceeding (Erol et al. 2016) 

and article paper submitted to a special issue of Smart Materials and Structures. 

4.1 Introduction to Self-Actuated Origami-Inspired Devices 

This section provides an introduction to the topics related to addressing Hypothesis 3, 

including Origami-inspired engineering, self-folding structures, compliant mechanisms, magneto- 

and electro-active structures, multi-field actuated structures, and specifically multi-field actuated 

bimorphs. Each of these areas provides useful insight into how the new methodologies can 
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incorporate state-of-the-art materials into a new framework for the optimization of a self-folding 

structure utilizing two or more types of active materials. While the introductions in Chapters 2 and 

3 provide the groundwork for modeling and engineering materials, this introduction focuses on a 

background for the implementation of those materials in structures for specific purposes, such as 

self-folding Origami-inspired structures.  

4.1.1 Self-Folding Structures 

Designs of foldable structures in engineering have drawn inspiration from origami, the 

Japanese art of folding paper, which offers fold patterns that have been employed for centuries 

(Schenk and Guest 2011; Peraza-Hernandez et al. 2014; Onal et al. 2015). Some examples include 

deformable wheels (Lee et al. 2013; Yu She, Hurd, and Su 2015), locomotive worm devices (Onal, 

Wood, and Rus 2013), reconfigurable metamaterials (Filipov, Tachi, and Paulino 2015), pneumatic 

actuators (Martinez et al. 2012), and robotic tentacles with 3D mobility (Martinez et al. 2013).  

Recent advances in smart materials and their applications have focused attention toward 

developing self-folding structures (Stoychev, Puretskiy, and Ionov 2011; S. M. Felton et al. 2013; 

S. Felton et al. 2014). Several types of origami-inspired self-folding structures have been made in 

the past, including those utilizing the Miura-ori (Cowan 2015) and Waterbomb (Bowen et al. 2015) 

patterns, origami cranes (S. M. Felton et al. 2013), barking dog (Bowen et al. 2017) and an origami 

inspired forceps (Edmondson et al. 2013). 

4.1.2 Compliant Mechanisms 

Some smart devices utilize materials that are relatively compliant, i.e,. they have a relatively 

small Young's modulus, such as that of rubbers and elastomers (Kota and Ananthasuresh 1995; 

Howell 2001; Bruns and Tortorelli 2001). A compliant material has both advantages and 

disadvantages in the context of self-folding structures. Folding structures typically possess stiff 

facets that experience little to no deformations, and thus any compliance would be undesirable in 

those regions/parts. Meanwhile, the creases of a foldable structure exhibit very large deformations, 

and can only be achieved by a relatively compliant material. Hence, folds are limited to finite 
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curvatures, which has led to studying smooth folds in compliant structures (Peraza Hernandez 

2016).  

Compliant mechanisms have been combined with active self-folding concepts for achieving 

a wide range of applications (S. M. Felton et al. 2013; Saggere and Kota 1999; Frecker 2003; Crivaro 

et al. 2016; Calogero et al. 2017). Some potential applications may seek a complex deformed shape 

upon actuation, i.e. target shape, that may not consist entirely of creases and flat surfaces, and 

instead possess regions of both flat and curved surfaces. Thus, materials like elastomers and 

polymers whose mechanical properties can be finely tuned are ideal candidates for foldable 

structures.   

4.1.3 Magneto-Active Structures 

Hard magnets have been used to actuate self-folding because the magnetic torque is strong 

enough to generate large displacements, especially in compliant mechanisms(S. M. Felton et al. 

2013; Edmondson et al. 2013; Calogero et al. 2017).  Magnetic torque is possible due to the 

anisotropic magnetic properties of hard magnets, which have a preferred magnetic direction 

determined by their magnetization. The net magnetization 𝑴 of a material generates a net torque 𝝉 

under an external magnetic field 𝑯 following: 

𝝉 = 𝑴 × 𝑯 . (5-1) 

The magnetic torque is shown schematically in Figure 5-1, where a magnetically susceptible 

body (red rectangle) is subjected to an external magnetic field (wide blue arrows) applied 

perpendicular to the direction of the body’s net magnetization (red arrows). Consequently, an 

induced torque tends to rotate a body with volume 𝑉 to minimize the Zeeman energy, 𝐸𝑍𝑒𝑒𝑚𝑎𝑛, by 

aligning 𝑴 with 𝑯.  

𝐸𝑍𝑒𝑒𝑚𝑎𝑛 = −𝜇0 ∫ 𝑴 ⋅ 𝑯𝑑𝑉
𝑉

  (5-2) 

Magneto-active elastomers (MAEs) are a suitable class of magnetically actuated smart 

materials for self-folding structures due to their controllable magnetic properties and ease of 



129 

 
fabrication into desired shapes. In recent work, MAEs have been fabricated using barium hexaferrite 

(BAM) particles embedded inside an elastomeric substrate while prescribing magnetic volume 

fraction and magnetic alignment direction during curing to control magnetic properties (Von 

Lockette, Kadlowec, and Koo 2006; Breznak and Lockette 2016). 

 
Figure 5-1. A magneto-active body is represented by a rectangle in (a), with its magnetization 𝑀 

indicated by the red arrows. An external field 𝐻 induces a torque 𝑇 in the body, as shown in (b). 

The body’s Zeeman energy is minimized by aligning 𝑀 with 𝐻 as shown in (c).  

4.1.4 Electro-Active Structures 

Electro-active polymers (EAPs) have also been deployed in active self-folding structures due to 

their ability to generate large displacements upon actuation (Ahmed et al. 2015; Ahmed, Ounaies, 

and Arrojado 2017; Ahmed, Arrojado, and Ounaies 2016). Electrostrictive EAPs yield relatively 

high strains as they contract in the direction of the applied electric field and expand in the transverse 

directions. The actuation of EAPs in self-folding structures relies on at least one secondary layer of 

passive material attached to the EAP, which will constrain the deformation on one surface, inducing 

bending in the overall composite structure.  
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Figure 5-2. Bimorph composed of an EAP and MAE layer. Magnetic actuation yields bending 

towards the left, while electric actuation yields bending towards the right.  

 

4.1.5 Multi-Field Actuated Structures 

In this work, we seek to combine magneto- and electro-active materials as possible layers 

and /or segments of a multifunctional structure. The combination of magneto- and electro-active 

materials in an active self-folding structure has been studied recently, and has several advantages 

(Frecker 2003). Two different actuation mechanisms enable more possible deformed configurations, 

e.g. multiple target shapes, as shown in Figure 5-2. The example in Figure 5-2 shows a bimorph 

actutator, which consists of an EAP and an MAE. The initial shape of the beam is straight, as shown 

in Figure 5-2.a. With magnetic actuation the beam bends in one direction (Figure 5-2.b), while with 

electric actuation the beam bends in the opposite direction (Figure 5-2.c). When both fields are 

present simultaneously, however, the beam deforms into a more complex shape, highlighting the 

potential of multi-field actuation.   

The purpose of this study is to understand how the choice of active material, configuration 

of that active material, device compliance, and layer geometries of a multi-field actuated device 

may influence its self-folding behavior. This goal is achieved by developing a model of the device’s 

response, and then exploring the performance space associated with design variables within the 

model. The next section develops the geometry for our self-folding compliant beam structure 

consisting of two possible active materials, device geometry in terms of layer thickness and length, 
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and active material placement in the multi-layered, segmented structure. Next, the constraints of the 

design are determined based on manufacturing considerations, and the parameters are determined 

based on influence on self-folding actuation.  Objective functions are next defined followed by 

implementation of a previously validated modeling approach to predict the multi-field actuation of 

the structure. Results of simulations across the design space are explored and analyzed in terms of 

the objective functions, allowing us to assess the efficacy of the objective functions and the relative 

significance of our chosen parameters.  

4.1.6 Multi-field Bimorph Design 

Multi-field bimorph actuators have been studied in active self-folding applications due to 

their ability to generate complex shapes (Erol et al. 2016; Sung et al. 2016; W. Zhang, Ahmed, et 

al. 2018). Consequently, they will be utilized as model segments in determining the structure for 

this study. In its most basic form, the multi-field bimorph consists of two layers, an MAE and EAP 

layer, as shown in Figure 5-2. In this study, we will examine a more complex version of this basic 

bimorph by (1) dividing the MAE into separate, individual patches with alternating orientations, 

and (2) adding a passive layer. The segmentation of the MAE layer allows us to add a level of 

complexity to the deformed shape, and the ability to control the amount of magnetic material by 

varying patch sizes. The separation of the MAE layer into individual patches introduces the concept 

of a segmented beam. The passive layer is added to provide support to the segments lacking MAEs, 

while also constraining the EAP layer to promote bending in those segments.  

4.2 Modeling Multi-Layer Multi-Segment Composites Methodology 

To perform a formal design optimization of a multi-field, segmented self-folding structure, 

a modeling approach with appropriate functions must be chosen. The chosen model should be able 

to accommodate large displacements, electro- and magneto-mechanical coupling, multi-layering, 

and segmentation. This section covers a model that can address each function and be used for an 

arbitrary optimization problem. 
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4.2.1 Model Framework 

An existing modeling technique previously derived and validated by the authors is selected 

as a framework for predicting the deformed shape of the configurations allowing computation of 

the objective functions (Erol et al. 2016). The model is based on a nonlinear, large displacement 

beam method for a composite beam of an arbitrary number of segments 𝑁𝑆, each composed of an 

arbitrary number of layers 𝑁𝑖𝐿, as shown in Figure 3.a. The indices 𝑖 and 𝑗 represent the segment 

and layer locations, respectively. Thus, any segment-layer coordinate along the length of the beam 

may contain a set of material and geometric properties, 𝑺𝒊𝒋. 

Let the beam of length 𝐿  be discretized into 𝑝  nodes. Consider a differential element 

between two points along the beam, 𝑛 − 1 and 𝑛 + 1, such that the element contains three nodes. 

This type of three-node element is chosen for the convenience it provides when describing each 

element curvature by the curvature at node 𝑛, which falls at the center of the element. The governing 

equations can be written with two equilibrium equations for the differential element, 

∑ 𝐹𝑥,𝑖𝑗
𝑁
𝑗=1 = 0, (5-3) 

∑ 𝑀𝑁
𝑗=1 = 0,  (5-4) 

where 𝐹𝑥,𝑖𝑗 is the force in the direction of the beam’s deformed neutral axis at segment 𝑖 and layer 

𝑗. The forces can be substituted with the integrals of the stresses over the surface of each cut, such 

that the sum of forces and moments, respectively, can be expressed as 

∑ [∫ 𝜎𝑛+1,𝑖𝑗𝑑𝐴𝑖𝑗𝐴𝑖𝑗
+ 𝐹𝑁,𝑛+1]

𝑁𝑖𝐿
𝑗=1 − ∑ [∫ 𝜎𝑛−1,𝑖𝑗𝑑𝐴𝑖𝑗𝐴𝑖𝑗

]
𝑁𝑖𝐿
𝑗=1 = 0, (5-5) 

∑ [∫ 𝜎𝑛+1,𝑖𝑗𝑧𝑑𝐴𝑖𝑗𝐴𝑗
+ 2𝑉𝑛+1Δ𝑥]

𝑁𝑖𝐿
𝑗=1 + ∑ [−∫ 𝜎𝑛−1,𝑖𝑗𝑧𝑑𝐴𝑖𝑗𝐴𝑗

]
𝑁𝑖𝐿
𝑗=1 +

∑ [2𝜏𝑛,𝑖𝑗(𝐻)𝑡𝑀𝐴𝐸𝑤Δ𝑥]
𝑁𝑖𝐿
𝑗=1 = 0,  

(5-6) 

where 𝜎𝑛,𝑖𝑗  are the stresses in the 𝑥 direction at node 𝑛; 𝐴𝑖𝑗  is the cross-sectional area; Δ𝑥 is the 

length between two nodes; 𝜏𝑛,𝑖𝑗(𝐻) is a magnetic torque dependent on magnetic field strength; 𝑤 

is the width in the 𝑦 direction; 𝑉𝑛+1 is a shear force; 𝐹𝑁,𝑛+1 is the normal force; and 𝑧 is the distance 
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in the direction of the thickness, as defined in Figure 5-3.b. The indices 𝑖 and 𝑗 refer to segment and 

layer locations, respectively. Each summation from 𝑗 = 1 (layer 1) to 𝑗 = 𝑁𝑖𝐿 is shown separately 

to emphasize that the number of layers 𝑁𝑖𝐿 may be different for each node, 𝑛, 𝑛 − 1 and 𝑛 + 1. 

 

 
Figure 5-3. In (a), a schematic of a sample multi-field composite beam with an arbitrary number of 

segments, each consisting of an arbitrary number of layers, is shown. Each layer of each segment 

can have an arbitrary material type, denoted by the color code (the colors indicate different 

material types, which can be any type). In (b), a differential element of the composite beam at an 

arbitrary location along its length is provided, with cut faces subject to normal stresses and shear 

forces. 

The following constitutive equation is used for stress, 

𝜎𝑛,𝑖𝑗 = 𝑌𝑖𝑗(𝜀𝑛 + 𝜀𝑖𝑗
𝑒 (𝐸)), (5-7) 

in which 𝜀𝑛 is the elastic strain at node 𝑛, defined by beam kinematics, 

𝜀𝑗 = −𝐾(𝑧 + 𝑧̅). (5-8) 

The variable 𝐾 is the curvature, and 𝑧̅ is the distance to the neutral axis. Meanwhile, 𝜀𝑖𝑗
𝑒 (𝐸) 

is the electrostrictive strain as a function of an applied electric field 𝐸 , determined from a 

microstructure-based electrostriction model for a nonlinear EAPs (Erol et al. 2019). The model is 

based on averaging the strain-energy density of a semicrystalline microstructure, consisting of 

amorphous regions that behave like a hyperelastic material, and crystalline regions that behave like 
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dipoles interacting with each other. The generalized form of the strain energy density for a 

semicrystalline EAP is 

W̃ =
(1 − vc)

Ael
∑∑fsc(Φn, Θm)W8ch(Φn, Θm, λm, C1)sinΦΔΘΔΦ

NΦ

n

NΘ

m

+
Psat

2

3vcϵ(λ
−1 sin2 Φr + λ2 cos2 Φr)

3
2

 

[〈𝐩̂𝟏 ⋅ 𝐩̂𝟐〉 − 3〈𝐩̂𝟏 ⋅ 𝐫̂〉〈𝐩̂𝟐 ⋅ 𝐫̂〉] 

(5-9) 

where Φ𝑛  and Θ𝑚  are microstructural parameters describing spatial orientations of crystalline 

regions, 𝜆𝑚 and 𝐶1 are elastic constants for the 8-chain hypelastic model 𝑊8𝑐ℎ (Arruda and Boyce 

1993), 𝑓sc is a probability density function, 𝑝̂1 and 𝑝̂2 are the unit vectors of two neighboring dipole 

moments separated by a vector whose unit vector is 𝑟̂, 𝑣𝑐 is the volume fraction of the crystalline 

regions, 𝜆  is the macroscopic stretch, 𝐴𝑒𝑙  is a constant of integration, 𝑃𝑠𝑎𝑡  is the saturation 

polarization, and 𝜖 is the permittivity of the amorphous phase. All constants are grouped into a set 

𝚪𝒊𝒋, which will serve as a parameter set for electrostrictive properties of materials at each layer 𝑗 of 

each segment 𝑖. The constitutive relation between the strain-energy density 𝑊̃ and the Cauchy stress 

tensor 𝑻 is given by  

𝑻 =
2

𝐽

𝜕𝑊

𝜕𝑩
𝑩 + 𝑞𝑰, (5-10) 

where 𝑞 is a Lagrange multiplier to enforce an incompressibility constraint, 𝑰 is the identity tensor, 

and 𝑩 = 𝑭𝑻𝑭, in which 𝑭 is the deformation gradient tensor. The interactions between the dipoles 

changes as a function of the external field via the alignments of 𝒑̂𝟏  and 𝒑̂𝟐 , which shifts the 

equilibrium between the stresses generated from each phase. Finding the strain 𝜀𝑒  at which 

equilibrium is satisfied for each field strength is how the electromechanical coupling 𝜀𝑖𝑗
𝑒 (𝐸) is 

determined. 
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The magnetic torque at each location, 𝜏𝑛,𝑖𝑗 , is determined by the amount of magnetic 

material is present in the volume of magneto-active layer at each location 𝑖, 𝑗. The torque is a 

function of the relative angle of the point 𝑛, such that  

𝜏𝑛,𝑖𝑗 = 𝑉∆𝑴𝒏,𝒊𝒋 × 𝑯, (5-11) 

where 𝑴𝒏,𝒊𝒋 is the magnetization of the material at 𝑛, 𝑉∆ = ∆𝑥𝑡𝑖𝑗𝑤 is the volume of the magnetic 

layer in the differential element, and 𝑯 is the externally applied magnetic field. 

If a force 𝑭𝒕𝒊𝒑 is applied at one end of the beam, then the shear term 𝑉 will be non-zero. 

Since the model is assuming large displacements, 𝑉 cannot be assumed constant at each node. While 

this does not strictly satisfy equilibrium for each element, the difference between 𝑉𝑛−1 and 𝑉𝑛+1 

can be assumed to reach 0 as Δ𝑥 → 0. Thus, if Δ𝑥 ≪ 𝐿, then the equilibrium can be approximated 

by (5-5) and (5-6). 

The value of 𝑉 at any node is a function of the deformation, as it will change based on the 

orientation of the element. For instance, if the beam is fixed on one end and 𝑭𝒕𝒊𝒑 is applied on the 

other end, which is free, then upon actuation, the beam will experience large deformations, and the 

shear force will change at each location depending on the orientation of the element. The 

orientations of the elements are dependent on the curvatures of the element and all those prior to it 

(starting from the fixed end, since it is more convenient to apply the boundary condition this way). 

Similar arguments apply for the normal force, 𝐹𝑁. The normal and shear forces can be defined by 

𝑭𝑵,𝒏 = 𝐹𝑡𝑖𝑝,𝑥𝑠𝑖𝑛𝜃𝑛 + 𝐹𝑡𝑖𝑝,𝑦𝑐𝑜𝑠𝜃𝑛, (5-12) 

𝑽𝒏 = 𝐹𝑡𝑖𝑝,𝑥𝑐𝑜𝑠𝜃𝑛 + 𝐹𝑡𝑖𝑝,𝑦𝑠𝑖𝑛𝜃𝑛,,  (5-13) 

where 𝜃𝑛 is the angle of the element relative to the 𝑥-coordinate (counter-clockwise is positive). 

The angle and the shear and normal forces are illustrated in Figure 5-4.  
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Figure 5-4. A tip force is applied to one end of the beam. The beam is cut at a location to show the 

angle of the location and the normal and shear forces acting at the cut surface. 

The governing equations are written for every possible three-node element across the beam, 

such that a system of equations can be written, 

𝑪𝒎𝒏𝑲𝒏 = 𝒇𝒏, (5-14) 

where 𝑲𝒏  are the unknown curvatures at each node, 𝑪𝒎𝒏 = 𝑪𝒎𝒏(𝑡𝑖𝑗, 𝜖𝑖𝑗, 𝑌𝑖𝑗 , 𝐿, 𝑤) is a stiffness 

matrix, 𝒇𝒏 = 𝒇𝒏(𝑲,𝑯,𝑭𝒕𝒊𝒑) are the forcing terms. After solving for the curvatures, the curvatures 

can be transformed into coordinates in the deformed configuration, 𝒙𝒏, by a rotation matrix 𝑹𝒎𝒏 in 

the relation 𝒙𝒏 = 𝑹𝒎𝒏𝑲𝒏. Details of the model can be found in (Erol et al. 2016). 

Due to the nonlinearity of the problem, the model is solved by an iterative technique that 

utilizes the previous solution to determine the next solution at every step. At each iteration, the 

deformed shape solutions for given parameter sets 𝑺 are calculated in MATLAB via the vpasolve 

numerical solver, and solutions of previous field increments are used as an initial guess for the next 

increment's solution. Between each iteration, the field strengths are incrementally increased to allow 

the solver to find the next solution. Thus, different sequences of electric or magnetic actuation can 

be simulated by changing the field strengths at each iteration in the order of our choosing. The order 

in which the fields are applied in multi-field actuation is significant because it is a path-dependent 

problem. A structure with the same configuration may yield different deformed shapes if the order 

of actuation is reversed. Multi-field actuation in experiments is typically conducted with the 

magnetic field applied first and held constant, while the electric field is increased afterwards (to 
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avoid prolonged electric actuation that may result in dielectric breakdown). As such, in the 

simulation the magnetic field is ramped first until it reaches its maximum, then while holding the 

magnetic field constant, the electric field is ramped until it also reaches its maximum value.  

4.2.2 Model Validation for Basic Configurations 

To validate the model prior to optimization, the model was compared to a few simplified 

configurations. The first configuration is a unimorph (a beam with one active layer, and one passive 

layer) composed of a P(VDF)-based EAP and Scotch tape as the constraining layer. This setup was 

tested experimentally under just an electric field, and its resultant tip displacement was measured as 

shown in Figure 5-5. 

Each sample was fixed on one end as a cantilever beam. For electric actuation, the strips of 

electrodes were placed on both sides of the terpolymer, and copper wires were attached on each 

side. The copper wires were connected to a voltage generator and amplifier. The function 

generator was operated at a DC voltage varying the amplitudes from 0 to 3 kV to produce the 

through-thickness electric field, which was calculated as E = V/t, where t is the thickness of the 

terpolymer and V is the applied voltage. For magnetic actuation, the setup was placed between 

two poles of an electromagnet. A power supply was connected to the electromagnet to produce a 

current-induced magnetic field. The unimorph was actuated up to 62.5 MV/m. 

 

Figure 5-5. Resultant, R, is measured as the tip displacement from before and after actuation. 
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The model for the unimorph case is assumed to be a single segment containing two layers: one  

layer EAP and one layer passive material. The beam is discretized into 200 nodes for the numerical 

solution. The results are presented in Figure 5-6, which shows good agreement between the model 

and experimental data, especially at higher field strengths where the larger displacements could be 

more accurately measured. The model used the same dimensions of the unimorph and the material 

properties of the EAP and Scotch tape, listed in Table 5-1.  

  

Figure 5-6. Experimental and modeling results for the EAP-based (terpolymer) unimorph. The 

figures in (a) and (b) present a deformed shape comparison at 60 MV/m, while (c) is the layer 

configuration of the unimorph, and (d) shows the tip displacement results. R is the resultant tip 

displacement and L is the original length when the beam is flat. 

 
Table 5-1. Material parameters. 

 

 MAE Terpolymer Scotch tape 

E (MPa) 1.5 200 1600 

M (A/m) 50,000  0 0 

𝛼 (
𝐶

𝑉2𝑚
) 

0 3 × 10−18  0 
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Layer height (𝜇𝑚) 500 40 60 

Width (cm) 2 2 2 

 
The second case used to validate the model is the bimorph, which contains two active 

material layers. The bimorph contains an MAE layer with 0.5 mm thickness attached to the EAP, 

and the field strength was tested up to 80 MV/m. Since the EAP exhibits a nonlinear dielectric 

response, a nonlinear method must be implemented. The constitutive model from Part II is employed 

for the relationship between electrostrictive strain and the electric field. 

 

Figure 5-7. Model and experiments compared for the bimorph with two separate fields turned on. 

(a) compares the tip displacements for the electrical actuation of the bimorph while (b) is for the 

magnetic actuation. 

 
The bimorph was tested under two separate fields. The top layer was the terpolymer and the 

bottom layer was the MAE. An MAE magnetization of M = 50000 A/m (approximately 0.05 Tesla), 

determined using vibrating sample magnetometry experiments, was used. Figure 5-7.a shows the 

(a) (b) 
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electrical response of the bimorph sample and the model. Based on the results, the nonlinear 

electrostriction is better at predicting the tip displacement of the bimorph. Therefore, the linear 

electrostrictive coefficient is not suitable for the model of this structure. It is likely that this deviation 

from experimental behaviors is emphasized more so in the bimorph than in the unimorph because 

of the different constraining layer, and it should also be noted again that the comparisons of the 

unimorph were only performed up to 62.5 MV/m. On the other hand, Figure 5-7.b shows the 

magnetic response of the bimorph and the model, which shows good agreement as well.  

After the validation of the model for separate actuation cases, the combined effects of the 

external fields are investigated via multi-field simulations. These effects, as shown in Figure 5-8, 

produce more interesting results that could further provide information on how to construct the 

bimorph and which combinations of field strengths are required for a target shapes to be achieved.   

Figure 5-8.a shows that for a fixed electric field, varying the magnetic field can change the 

structure’s orientation significantly. For zero magnetic field, the structure’s tip ends in the first 

quadrant, for H=20,000 A/m it ends in the second quadrant, and for H=-20000 A/m it ends in the 

fourth quadrant. The transition of shape from H=0  to H=-10,000 A/m also suggests that a neutrally 

enforced flat state, balancing magnetic and electric actuation is also possible. Figure 5-8.b also 

shows how the structure can change shape for a fixed magnetic field while varying the electric field.  

 
 (a) Constant E = 80 MV/m 

(b) Constant H = 8 kA/m 

H
 =

 -
 2

 k
A

/m
 

 𝐻⃗⃗   
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Figure 5-8. Simulations of the bimorph under (a) constant electric field with varying magnetic 

fields, and (b) constant magnetic field with varying electric fields. 

 

4.2.3 Objective Functions 

When considering the performance of a self-folding structure, a key metric is its ability to 

match the actuated shape it is designed to achieve. The target shape is defined in terms of a set of 

four panels and three folds, as shown in Figure 5-9. To examine how closely the structure can reach 

ideal folded shape within the chosen design space, the fold angles are used. For example, all fold 

angles in the target shape, as defined in Figure 5-9, are set to 60 degrees.  

The shape error objective function is computed in terms of the difference between the target 

shape's coordinates and the calculated coordinates under multi-field actuation at discrete points 

along the beam. Shape matching was originally proposed for rigid link mechanisms, and later 

applied to compliant mechanisms (Jovanova et al. 2016). Thus, it is an adequate measure of the self-

folding structure’s actuation capabilities. 

𝑓𝑠ℎ𝑎𝑝𝑒 = ∑
(𝒙𝑚𝑜𝑑𝑒𝑙,𝑖−𝒙𝑡𝑎𝑟𝑔𝑒𝑡,𝑖)

2

𝐿2
𝑁
𝑖=1   (15) 

The target shapes coordinates are defined as 𝒙𝑡𝑎𝑟𝑔𝑒𝑡,𝑖, and the simulated coordinates are 

𝒙𝑚𝑜𝑑𝑒𝑙,𝑖 for 𝑖 = 1,2, … ,𝑁, where 𝑁 is the number of discrete points along the beam’s neutral axis 

(note the simulation methods yields the deformation along the beams’ neutral axis). The differences 

between the locations of corresponding points on the simulated and target shape are divided by 𝐿2 

(𝐿 is the total length of the beam) to normalize the error.  
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Figure 5-9. Target shape drawn as a line through the structure's neutral axis. Segments are 

identified between points along the shape’s path.  

In terms of design, the cost of a self-folding structure is another important measure when 

evaluating the feasibility of the design. Two of our structural parameters, the length ratio and 

magnetization of the MAEs, directly influence how much magnetic material is present in the 

structure, and the magnetic material, BAM, is by far the most expensive material at approximately 

$8,000 per kg for nanoparticles (Sigma Aldrich). The magnetic cost of a design is defined as in 

Equation 8 which depends on the total volume of BHF across all MAE patches, 𝑉𝑀𝐴𝐸, a volume 

percentage, 𝑣, and the cost per volume, 𝑐. 

𝑓𝑐𝑜𝑠𝑡  = 𝑐 ∗ 𝑣 ∗ 𝑉𝑀𝐴𝐸   (5-15) 

The total volume of the MAEs is dependent on the length parameter,  

𝑉𝑀𝐴𝐸 = 4 ∗ 𝑤 ∗ 𝑙𝑀𝐴𝐸 ∗ 𝑡𝑀𝐴𝐸. (5-16) 

where 𝑙𝑀𝐴𝐸 = 𝑙𝑒𝑣𝑒𝑛 is the length of the MAE patch, and 𝑡𝑀𝐴𝐸 is the thickness of the MAE patch.  

In addition, a third objective function is considered for the design optimization problem: the 

work performed by the structure on a force applied at the tip. This objective function is a significant 

addition to the optimization because (i) it is a metric of performance that can be directly applied to 

a gripper-like application (Shian, Bertoldi, and Clarke 2015; W. Zhang, Hong, et al. 2018), and (ii) 

it has not been previously included in an optimization for a multi-field actuated device.  
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The force on the tip of the composite beam is assumed arbitrarily applied (see Figure 5-10) 

such that the structure may pull the force to perform work.  

The objective function for work is defined as 

𝑓𝑤𝑜𝑟𝑘 = ∫ 𝑭𝒕𝒊𝒑 ⋅ 𝒅𝒓
𝑠

0
, (5-17) 

where 𝑭𝒕𝒊𝒑 is the applied tip force, 𝒅𝒓 is the incremental displacement of the tip, and 𝑠 is the path 

traveled by the tip.  

 

Figure 5-10. The location of the tip force is shown on the structure schematic. 

4.2.4 Formal Optimization Setup 

The results of the parameter study helped determine that each parameter influences the 

deformed shapes significantly. However, while the best designs contained a wide range of 

magnetizations and length ratios, the Young’s modulus was consistently low. Consequently, the 

Young’s modulus will be kept constant for the formal optimization. Additionally, a gap between the 

MAE patches was another common feature among the best designs, which means the optimization 

algorithm would benefit from a gap constraint.  

The formal optimization problem is defined as: 

Minimize:  𝑓𝑠ℎ𝑎𝑝𝑒, 𝑓𝑐𝑜𝑠𝑡, 𝑓𝑤𝑜𝑟𝑘 

Subject to:  𝑪𝒎𝒏𝑲𝒏 = 𝒇𝒏 

  𝒙𝒏 = 𝑹𝒎𝒏𝑲𝒏 

  0 ≤ 𝑀𝑘 ≤ 𝑀𝑚𝑎𝑥 

  ∑ 𝑙𝑖
8
𝑖=1 = 1 

  𝑙𝑖 > 0 

where the variables are 
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 𝐒 = {𝑁𝑆, 𝑁𝑖𝐿 , 𝑀𝑖𝑗 , 𝑡𝑖𝑗, 𝜖𝑖𝑗 , 𝑌𝑖𝑗 , 𝐿, 𝑤, 𝐻, 𝐸}. (5-18) 

Two constraints are added to ensure that segment length fractions, 𝑙𝑖, remain positive (𝑙𝑖 >

0) and sum to unity (∑ 𝑙𝑖
8
𝑖=1 = 1).  

For the optimization, a genetic algorithm developed by MATLAB, called gamultiobj, is 

chosen. This algorithm is a variant of the multiobjective genetic algorithm NSGA-II, and it well 

suited for problems with a relatively small number of variables. More details can be found on the 

base algorithm in the original publication (Deb et al. 2002). The genetic algorithm options are held 

at default except for the population size set to 100.  

4.2.5 Case Study for Parameter Study and Optimization  

As a case study, consider a beam composed of a layer of EAP and a layer of passive material 

stretching along the entire length of the beam, with four MAE patches that are placed as shown in 

Figure 5-11. Due to the MAE placements, and their magnetization orientations, the beam is divided 

into eight segments. The four-MAE-patch configuration allows the EAP layers in the two-layer 

segments to generate bending that can cooperate with the MAEs in folding the structure forming 

the so-called ‘accordion’ bending configuration (a double humped ‘M’ shape). 

 

Figure 5-11. Schematic of a simple bimorph composed of eight segments with 𝑗 layers, fixed on 

the left end. An external magnetic field 𝐻 is applied upward. Layer 1 is an EAP (green); layer 2 is 

a passive material (blue); even numbered segments contain a layer 3, which is an MAE 

(magnetization directions signaled by yellow arrows). Dimensions are not to scale.  

The direction of the force, 𝑭𝒕𝒊𝒑, is assumed constant, and always in the 𝑥-direction. 

Thus, 𝑓𝑤𝑜𝑟𝑘 can be simplified to   

𝑓𝑤𝑜𝑟𝑘 = 𝐹𝑡𝑖𝑝𝜕𝑥,  (5-19) 

where 𝜕𝑥 is the tip-displacement in the x-direction.  
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4.2.6 Chosen Parameters 

In this subsection, the system parameters are explored such that the optimization problem 

can be narrowed by utilizing only a few key parameters, which will save computational costs.  

Prior to any reductions to the parameters, consider the complete set of model parameters that 

describe the geometry, materials, and external stimuli, which are:  

𝑺 = {𝑀𝑖𝑗, 𝑡𝑖𝑗 , 𝜖𝑖𝑗, 𝑌𝑖𝑗 , 𝐿, 𝑤, 𝐻, 𝐸}. (5-20) 

The parameters with subscripts are associated with layer 𝑗  at 𝑖 th segment: 𝑀𝑖𝑗  are the 

magnetizations; 𝑡𝑖𝑗  are the layer thicknesses; 𝜖𝑖𝑗  are the electrostrictive strains; and 𝑌𝑖𝑗  are the 

Young’s moduli. The parameters 𝐿 and 𝑤 are the length and width of the structure, respectively. 

The magnetic and electric fields are 𝐻 and 𝐸, respectively.  

In the generalized form, the structure must contain geometric and material information for 

every segment and layer, such that there are 𝑁𝑆 segments with lengths 𝑙𝑖 , yielding a total device 

length 𝐿 = ∑ 𝑙𝑖
𝑁𝑠
𝑖=1 .  Total length 𝐿 is kept constant, allowing focus on the relative lengths, 𝑙𝑖. All 

potential geometric and material parameters are listed in Table 5-2.  

Since EAPs are difficult to manufacture, and their properties are difficult to fine-tune, the 

EAP layers’ properties will be held constant for all segments present, resulting in 𝜖𝑖𝑗 = 𝜖 when 𝑗 =

1 and 𝜖𝑖𝑗 = 0 otherwise.   

We assume the width transverse to all layers and segments is constant, 𝑤, and all applied 

fields, 𝑬 and 𝑯, are held constant globally (i.e., no spatial variation in either field).  

The subset of parameters for the case study are reduced to 

𝐒 = {𝑀2,𝑀4,𝑀6,𝑀6, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6, 𝑙7, 𝑙8, 𝑌𝑃}. (5-21) 

where 𝑌𝑃 is the Young’s modulus of the passive layer for all segments (i.e., 𝑌𝑖2 = 𝑌𝑃 for all 𝑖), 𝑀𝑖 

are the magnetizations of each MAE patch (𝑖 representing segment number), and 𝑙𝑖 are the segment 

lengths. The layer indices, 𝑗, are dropped for the case study due to the predefined layer locations of 

each material (i.e., the passive layer is always at 𝑗 = 1, EAPs at 𝑗 = 2, and MAEs at 𝑗 = 3). 
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These parameters are chosen due to their potentially large influences on the actuation of the 

structure, and consequently the objective functions.  

For instance, one of the purposes of this study is to determine how compliance can affect 

the deformation and folding of a smart structure, making the Young’s modulus of the materials an 

important variable. The Young’s modulus of at least one of the materials is thus considered, and 

since varying the Young's modulus of an active material may result in nonlinear influences on its 

actuation properties, the passive layer's Young's modulus is selected as a parameter.  

Another method of varying the bending stiffness along the length of the structure is by 

changing the lengths of the segments, which have different stiffnesses depending on the number of 

layers.  

Beyond the stiffness of the structure, magnetization was considered as the third parameter, 

since the magnetization of an MAE is controllable during fabrication by adjusting the volume 

content of magnetic material of known magnetization response (Breznak and Lockette 2019). 

Magnetization also influences both the actuation capability (see eq. 1), and the cost of the structure.  

4.2.7 Parameter Study Formulation and Results 

A preliminary parametric study was performed prior to the optimization to understand the 

viability and usefulness of the chosen objective functions and a few key parameters (Erol, 

Lockette, and Frecker 2018). The parameter study focused on two objective functions, 𝑓𝑠ℎ𝑎𝑝𝑒 and 

𝑓𝑐𝑜𝑠𝑡, and considered the effects of three parameters, the magnitude of the magnetization of the 

MAE patches, 𝑀, the Young’s modulus of the passive layer, 𝑌𝑝, and the ratio of the lengths of 

segments with the MAE patches to those without MAE patches, Υ = 𝑙𝑜𝑑𝑑/𝑙𝑒𝑣𝑒𝑛. The reason for 

reducing the length parameters from all 𝑙𝑖 to a ratio of the lengths of the odd segments to even 

segments is because all eight 𝑙𝑖 was unwieldy for the parametric study, and creating a length ratio 

for varying the lengths produces a single parameter that affects all segment lengths. The segment 

lengths were thus divided into two categories: odd and even numbered segments. A length ratio Υ 
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was defined as Υ = 𝑙𝑜𝑑𝑑/𝑙𝑒𝑣𝑒𝑛, where 𝑙𝑖 are the fraction of each segment length with respect to 

the total length of the structure. 

The tip force was 𝑭 = 𝟎, since 𝑓𝑤𝑜𝑟𝑘 was not included in the study. The set of parameters 

for the parametric study can be shown as, 

𝑺∗ = {𝑀, Υ, 𝑌𝑖2 = 𝑌𝑃}, (5-22) 

where 𝑌𝑃 is the Young’s modulus of the passive layer for all segments (i.e., 𝑌𝑖2 = 𝑌𝑃 for all 𝑖), Υ is 

the length ratio of each segment with respect to each other. To generate symmetric torques, 𝑀𝑖𝑗 

are held constant as well, hence 𝑀𝑖𝑗 = 𝑀 for all even segments (𝑖 = 2,4,6,8), at 𝑗 = 3, and 𝑀𝑖𝑗 =

0 for all others. 

Table 5-2. All possible geometric quantities and material properties for all layers in each segment 

for the chosen four MAE patch bimorph configuration. 

 Geometric Quantities Material Properties 

 Segment 

Length 

Layer Thickness 
Layer 𝑗 =

1 

Layer 𝑗 =

2 

Layer 

𝑗 = 3 Layer 𝑗 =

1 

Layer 𝑗 =

2 

Layer 𝑗 =

3 

Segment 𝒊 = 𝟏 𝑙1 𝑡𝐸𝐴𝑃 𝑡𝑃 − 𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 − 

Segment 𝒊 = 𝟐 𝑙2 𝑡𝐸𝐴𝑃 𝑡𝑃 𝑡𝑀𝐴𝐸  𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 𝑀,𝑌𝑀𝐴𝐸 

Segment 𝒊 = 𝟑 𝑙3 𝑡𝐸𝐴𝑃 𝑡𝑃 − 𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 − 

Segment 𝒊 = 𝟒 𝑙4 𝑡𝐸𝐴𝑃 𝑡𝑃 𝑡𝑀𝐴𝐸  𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 𝑀,𝑌𝑀𝐴𝐸 

Segment 𝒊 = 𝟓 𝑙5 𝑡𝐸𝐴𝑃 𝑡𝑃 − 𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 − 

Segment 𝒊 = 𝟔 𝑙6 𝑡𝐸𝐴𝑃 𝑡𝑃 𝑡𝑀𝐴𝐸  𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 𝑀,𝑌𝑀𝐴𝐸 

Segment 𝒊 = 𝟕 𝑙7 𝑡𝐸𝐴𝑃 𝑡𝑃 − 𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 − 

Segment  𝒊 = 𝟖 𝑙8 𝑡𝐸𝐴𝑃 𝑡𝑃 𝑡𝑀𝐴𝐸  𝚪, 𝑌𝐸𝐴𝑃 𝑌𝑃 𝑀,𝑌𝑀𝐴𝐸 

 

The same large displacement composite beam model discussed in the Methodology section 

was used to simulate the structures for the combinatorial set of parameters listed below, yielding 

125 cases. 

𝑀 = {0.1, 0.2, 0.3, 0.45, 0.6} 𝑇,  (5-23) 



148 

 
𝑌𝑃 = {0.1, 0.5, 1, 5, 10} 𝑌𝐸𝐴𝑃,  (5-24) 

Υ = {0, 1/3, 1, 3, 7} .  (5-25) 

The magnetization 𝑀 was varied from 0.1 Tesla to 0.6 Tesla; the increments of the Young’s 

Modulus of the passive layer, 𝑌𝑃, were chosen relative to the Young’s modulus of the EAP, 𝑌𝐸𝐴𝑃; 

and the ratio of the lengths of two-layer to three-layer segments were varied from 0, which means 

the entire beam is covered with MAEs, to 7, which means the MAE patches were very short. A 

visual representation of the length ratios, Υ, are shown in Figure 5-12. 

 

  
Figure 5-12: Chosen length parameter is visualized on a sample configuration. Red layers are 

MAEs, blue layers are passive, and green layers are EAPs. The yellow arrows on the MAE 

patches indicate direction of magnetization. From Υ1 to Υ5, segments containing MAEs increase in 

length, while the remaining segments reduce in length.  

The remaining material properties and structure dimensions are borrowed from literature 

(Erol, Lockette, and Frecker 2018), and listed in Table 5-3. The width was 𝑤 = 1 𝑐𝑚, and the length 

is 𝐿 = 3 𝑐𝑚. The maximum fields used were 𝐻𝑚𝑎𝑥 = 30 𝑘𝐴/𝑚 and 𝐸𝑚𝑎𝑥 = 50 𝑀𝑉/𝑚. The fields 

were incremented at Δ𝐻 = 𝐻𝑚𝑎𝑥/15  , followed by Δ𝐸 = 𝐸𝑚𝑎𝑥/15, totaling 30 steps to reach the 

final deformed shape. 

Table 5-3. Material and layer properties for MAE, EAP, and the passive layer.  

Parameter MAE EAP Passive Layer 

𝑡 (𝜇𝑚)  520 30 62 

𝑌 (𝑀𝑃𝑎) 3.5 200 𝑌𝑃 (varied) 
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Quantitative comparisons were made to determine how much the objective functions varied 

based on parametric changes. The simulations were assessed in a performance space to view the 

tradeoffs between the objectives, as shown in Figure 5-11, where each point represents a feasible 

design. The points are also color coded to distinguish their length ratio. The best designs are 

expected to be in the lower left corner of Figure 5-13.  

Samples of the deformed shapes of the best designs, plotted with a custom graphics code in 

MATLAB that schematically represents the number of layers, segments, and material properties, 

are shown in Figure 5-13. Each layer’s color intensity signifies a specific property. The MAEs 

become more red as their magnetization 𝑀 increases; the passive layer becomes more blue as 𝑌𝑝 

increases; and the EAP is a static green to indicate constant electrostrictive properties. Recall that 

the MAEs are oriented in the directions shown in Figure 5-11, with an external field upward. The 

layer thicknesses are not shown to scale, and thus any overlapping on the images does not imply 

physical contact between MAE patches from different segments. In reality, the thicknesses are small 

enough to allow very large curvatures. 

Configurations within length ratio 1 were relatively low cost due to a low volume of MAEs, 

but they performed approximately in the middle of the total group of simulations. By contrast, length 

ratio 5 performed poorly across all parameter sweeps, and was the most costly due to the high 

volume of MAEs. Length ratios 2, 3, and 4 were more diagonally distributed on the 𝑓𝑠ℎ𝑎𝑝𝑒 versus 

𝑓𝑐𝑜𝑠𝑡 map.  

The three best performing configurations for each length ratio, as indicated by arrows in 

Figure 5-13, were identified. Conversely, the worst designs are entirely of length ratio 5 (top right 

schematic in Figure 5-13), showing little change as other parameters are varied. This may be a result 

of the high stiffness of the MAEs; when the MAEs are continuous across the length of the beam, no 

region of the structure exhibits relatively high bending, as in the case of the other length ratios. 

Thus, any attempt at achieving folding or even moderate displacements may require spacing 

between the MAEs, which agrees with findings reported in the literature (Cowan 2015).  
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Figure 5-13. The performance space is shown. Each dot represents a simulation of a different 

combination of  𝑀, 𝑌𝑃, and Υ. The length ratio, Υ, is indicated by color. The colored arrows on the 

bottom left indicate the best of the feasible designs.  

The effectiveness of the shape function’s ability to gauge how well a design approximates 

the target shape was also studied by visually comparing the deformed shapes of designs along with 

their 𝑓𝑠ℎ𝑎𝑝𝑒 metrics. For example, the deformed shapes of the best designs in terms of shape are 

displayed in Figure 5-14. The target shape is also displayed as an overlay on each simulated shape. 

It is evident from Figure 5-14 that as the objective function 𝑓𝑠ℎ𝑎𝑝𝑒 decreases among the best designs, 

the simulated shape better matches the target shape. In addition, the objective function also 

decreases as folding becomes more prominent at the creases between the MAE patches. This is 

further support for utilizing the objective function in seeking target shapes with sharp folds. 

However, this finding also implies that the length ratios 2, 3, and 4 are likely ideal starting locations 

for a formal optimization problem, and could potentially save significant time in searching for the 

best possible active self-folding design.  
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Figure 5-14. Deformed shapes of the three best designs with overlays of the target shape (red 

lines). From left to right: L2-M5-Y1, L3-M4-Y1, L4-M3-Y1.  

4.2.8 Formal Optimization Problem Results and Discussions 

The results of the parametric study informed choice of parameters such that the optimization 

problem would yield even better designs. Namely, the Young’s modulus of the passive layer is 

removed as a parameter, and kept constant at 𝑌𝑃 = 0.1𝑌𝐸𝐴𝑃, since the lowest 𝑌𝑃 produced the best 

designs in the parametric study. Furthermore, the magnetizations and segment lengths are not 

assumed equal for each MAE patch or segment, respectively. As a result, the set of parameters for 

the optimization problem is  

𝐒 = {𝑀2,𝑀4,𝑀6,𝑀6, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6, 𝑙7, 𝑙8}. (5-26) 

The same constants from the parameter study are used for the optimization (see Table 5-3). 

Additionally, a tip force is present in the optimization problem to calculate 𝑓𝑤𝑜𝑟𝑘. The magnitude 

of the force is manually chosen to be 10 mN, and the magnetic field is increased to 70 kA/m, which 

allows the structure to fold beyond the target shape at the configuration with the highest BHF 

content. 

Since a genetic algorithm is employed for optimization, an initial search population must 

be selected. MATLAB’s genetic algorithm, gamultiobj, can generate a default initial population, 

but a few preliminary optimization iterations utilizing the default initial population did not yield a 

diverse set of optimal designs. 

To address this issue, the initial population is modified by (1) adding the best designs from 

the parametric study, which can aid the algorithm in finding more optimal spaces, and (2) designs 

with more extreme segment lengths, particularly those with Υ > 7, are introduced, which helps 



152 

 
promote diversity in the initial population. The custom designs selected for the initial population do 

not add to the total population size, which is 100. Consequently, the remaining individuals in the 

initial population are generated by the default algorithm.  

The optimization is performed with the genetic algorithm, and allowed to converge toward 

a Pareto front for minimizing the three objective functions, shown in Figure 5-15. The axes represent 

the three objective functions, and each circle in the Pareto front represents an optimal individual 

whose performances in terms of the objective functions cannot be improved by changing their 

parameters. The path of the Pareto front is 3-dimensional and contains individuals with a range of 

performances in terms of the objective functions. For example, there are individuals with high shape 

error, low cost and low work on one end, and those with low shape error, high cost, and high work 

on the other end. Individuals at around the mid-point of the Pareto front have a more balanced 

performance in terms of the three objectives.  

 

 

Figure 5-15. The Pareto front for the three objective functions is shown in a 3D plot, as obtained 

from the genetic algorithm. Each point represents an optimal individual based on the objective 

functions. 
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Samples of the deformed shapes of feasible designs on the Pareto front are provided in Figure 5-15. 

Design 1 has the highest shape error (16), lowest cost ($1.6), and least work done (0.12). Design 2 

has moderate shape error (5.1), cost ($7.1), and work (0.84). Design 3 has the least shape error 

(0.12), and high cost ($25.4), and work (1.49). Design 4 has the low shape error (0.71), highest cost 

($25.4), and the best work (1.81). A summary of these results are listed in Table 5-4.    

Table 5-4. Objective function evaluations, magnetizations, and segment length ratios for the 

highlighted in designs in Figure 11. 

 D1 D2 D3 D4 

𝒇𝒔𝒉𝒂𝒑𝒆 16 5.1 0.12 0.71 

𝒇𝒄𝒐𝒔𝒕 ($) 1.6 7.1 17.3 25.4 

-𝒇𝒘𝒐𝒓𝒌 (𝟏𝟎−𝟒) 0.12 0.84 1.49 1.81 

𝑴𝟐 (𝐓)  0.093 0.19 0.36 0.45 

𝑴𝟒 (𝑻)  0.037 0.20 0.29 0.57 

𝑴𝟔 (𝐓) 0.15 0.31 0.24 0.45 

𝑴𝟖 (𝐓) 0.068 0.19 0.31 0.32 

𝒍𝟏 0.200 0.137 0.051 0.051 

𝒍𝟐 0.050 0.090 0.183 0.199 

𝒍𝟑 0.200 0.154 0.052 0.051 

𝒍𝟒 0.051 0.084 0.216 0.198 

𝒍𝟓 0.199 0.152 0.050 0.051 

𝒍𝟔 0.052 0.120 0.216 0.201 

𝒍𝟕 0.198 0.147 0.050 0.050 

𝒍𝟖 0.051 0.117 0.183 0.199 

The design with the highest shape error (or least matching shape), Design 1, has very short 

MaE patches, while those with the best matching shapes near the other end of the Pareto front, such 

as Designs 3 and 4, have the largest MAE patches. In between designs 1 and 4, there is a gradual 

change in MAE patch size. Interestingly, the lengths of the segments containing MAEs (i.e.. even 
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numbered segments) are relatively even within each Pareto individual. Since there was no constraint 

on the relative lengths (as there were in the parametric study), these results imply that symmetry 

may promote shape matching.  

Similar to the MAE patch lengths, the magnetizations of MAE patches also gradually 

change along the Pareto front. Design 1’s MAE patches have the least magnetization among all 

designs, while Design 4’s patches have the highest magnetizations. The values of the magnetizations 

for each patch on all four selected designs are listed in Table 5-4.  

Another notable trend is that the magnetization of the patch on the fourth segment, 𝑀4, is 

lowest among the patches in Design 1, but highest in Design 4. In fact, 𝑀4 in Design 4 is greater 

than 𝑀4 in Design 1 by more than a factor of 15, the largest factor across any two magnetizations. 

Thus, this means that the system is highly sensitive to 𝑀4 (combined with a steady change in MAE 

patch lengths), perhaps more than any other parameter that was used in the optimization. Similarly, 

the system is also sensitive to 𝑀2, which changes by almost a factor of 5 between Design 1 and 

Design 4.  

Another trend in the Pareto space is that 𝑀8 remains the lowest in almost every design. It is 

likely that 𝑀8 is lowest in most designs since it is located on the 8th segment, which is the free end 

of the beam. Regions near the free end of the beam may not require as much torque, which can be 

useful information when designing a magnetically-actuated cantilever device.  

The only exception to this rule is found in Design 3. Unlike the other selected designs, 

Design 3 has an 𝑀8 that is not the weakest of its MAE patches. In fact, the magnetizations of the 

MAE patches in Design 3 are relatively uniform. The smallest magnetization (𝑀6 = 0.24 𝑇) in 

Design 3 is only 66% of the largest magnetization (𝑀2 = 0.36 𝑇). Compared to the designs (25% 

for Design 1, 61% for Design 2, and 57% for Design 3), this is the closest relative magnetizations 

between the weakest and strongest MAE patches in a design. There is also better symmetry in 

Design 3 than in any other design. The outer MAE patches (𝑀2  and 𝑀8 ) have the highest 

magnetizations while the inner MAE patches (𝑀4 and 𝑀6) have the lowest. Conversely, Designs 1 
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and 2 are asymmetric with 𝑀6 being greater than the next strongest MAE patch in each design, and 

without a balance on the other end of the beam (i.e., 𝑀2 or 𝑀4). Similarly, Design 4 is skewed 

toward the fixed end of the beam. Thus, the results imply that symmetry and relatively uniform 

magnetizations are best for matching the chosen target shape. This is not a coincidence, since the 

chosen target shape is also symmetric about the midpoint. However, it is also important to point out 

that the magnetizations and lengths of Design 3 are not exactly uniform or symmetric, which would 

be expected for the chosen target shape. This is likely due to (i) a bias with the initial population, 

which led to a convergence toward a non-symmetric or uniform design in terms of magnetizations, 

and (ii) a relatively low population size of 100. It may also be due to the boundary conditions (fixed 

end, and free end with applied load) combined with numerical approximation errors.  

Nonetheless, despite the optimization results not being exactly symmetric as expected for 

some of the designs, the methodologies presented in this work have yielded quick results that 

perform significantly better than any design found via the parameter study. For instance, the lowest 

shape error acquired from the parameter study was 0.34, which is nearly three times greater than the 

lowest shape error from the optimization (0.12, Design 3). Similarly, the lowest cost from the 

parameter study, $3.5 (L3-M4-Y1), is more than twice as much as the lowest cost of a Pareto design 

from the optimization, $1.6 (Design 1). Thus, the optimization method improved upon the parameter 

study in terms of the objective functions, and it took about 40 hours to run on a 100-core cluster, 

which is a feasible computational speed for results several times better than any results that could 

be obtained from trial and error, or a parametric study.  

Based on this analysis, if an application requires ideal shape matching, then the best design 

should have relatively high, uniform, and symmetric magnetizations and long MAE patches 

throughout the length of the device as in Design 3. If an application prioritizes costs, then shortening 

the lengths of the MAE patches and reducing their magnetizations, while maintaining patch 

placement symmetry, as in Design 1, is ideal. For maximizing work, the magnetizations should be 

increased near the limits, with 𝑀4  the highest among the MAE patches, as in Design 4. If an 
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application requires more complex priorities, then one can select another design based on the trade-

offs in the Pareto front that meet their needs.  

4.3 Conclusions on Self-Folding Composite Optimization 

The purpose of this study was to answer hypothesis 3 by developing a multi-objective 

design optimization problem for a multi-field actuated device employing magneto- and electro-

active materials. An existing model accommodating large displacements and magneto- and 

electromechanical coupling was used and extended for the application of a force on one end of the 

beam. The design optimization problem was written for a multi-field actuated device consisting of 

several parameters, including number of segments and layers; thicknesses, lengths, and all material 

properties. Three objective functions were chosen: (1) shape error, i.e., the error between calculated 

and target shapes, (2) cost, and (3) work performed on the tip load.  

To assist the formal optimization, a case study consisting of eight segments was considered, 

reducing the number of parameters and possible combinations of materials at each layer and 

segment. Furthermore, a preliminary parameter study was performed on the eight-segmented 

bimorph structure design to predict how a set of parameters affect the self-folding of the structure. 

Only the shape and cost objective functions were considered. The parameters chosen for the study 

were the magnetization of the MAEs, the Young’s modulus of the passive layer, and the length ratio 

of the segments. The results of the parameter study found that each parameter influenced shape 

approximation by almost an order of magnitude. Furthermore, the designs that yielded the lowest 

shape error performed significantly better in both matching the target shape and achieving self-

folding, which implies that the chosen shape objective function was adequate in assessing the degree 

of folding.  

The results of this parameter study were used in determining the constraints and initial 

search population for the optimization algorithm, and in reducing the number of design variables. 

For example, relatively long MAE patches were used as a good starting point, since long MAE 

patches performed best among all length ratios in terms of folding. Configurations with MAE 
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patches covering the entire length of the structure were omitted from the design space, and very 

small MAE patches were also eliminated. The parameter study also highlighted the significance of 

the Young’s modulus of the passive layer and suggested that self-folding requires very low Young’s 

modulus of the passive layer with respect to the EAP layer. Thus, the Young’s modulus was preset 

to the lowest value from the parametric study. Using the best designs from the parameter study in 

the initial population of the genetic algorithm yielded better optimization results in terms of the 

three objective functions.  

The multi-objective genetic algorithm produced a Pareto front with a range of optimal 

individuals to select from based on the priority of the design. The Pareto front showed optimal 

designs in terms of cost, shape, and work. Nearly all designs were relatively symmetric in length 

segments and contained a range of magnetizations. However, some MAE locations, such as 𝑀4, 

played a more important role in actuation than others, especially in terms of shape approximation. 

Furthermore, the results yielded much better designs in terms of the chosen objective functions than 

any design obtained from the parameter study. It can be concluded from the genetic algorithm results 

that the optimization method is an improvement over trial and error or parametric studies, and 

performs well in terms of computational speed (two days with 100 nodes).  

Future improvements on the optimization can be made through adjustments to the settings. 

For example, different custom initial populations can yield different Pareto fronts, which can 

potentially contain more optimal individuals. Particularly, the diversity of the initial population 

plays a significant role, which can be studied further. In addition, the number of elites was not 

modified, which could also influence which traits are passed down in the genetic algorithm. 

Additionally, several variables were not considered in this study, such as the width and 

length of the structure, Young’s moduli of the MAE and EAP, and the electrostrictive properties of 

the EAP. Both the electric and magnetic fields were kept constant for the simulations, and we chose 

a specific order of actuation (magnetic field first, and then electric field). Varying any of these 

parameters may alter influence the self-folding behavior of the structure, which means that the scope 
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of this study is limited to structures with similar configurations and constants. As a result, a more 

thorough investigation utilizing a larger parameter space may generate more optimal Pareto fronts. 

However, our results show this methodology may be useful for the multi-objective optimization of 

arbitrary multi-field-active, compliant, self-folding structures. 
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 CHAPTER 5 

Thesis Conclusions, and Future Works 

 

 

 
As a doctoral thesis, this document presents works on modeling and simulating dipole-

based materials on multiple scales. This chapter aims to summarize the findings, discuss 

conclusions in a wider context, and project future outlooks for the work.  

5.1 Conclusions and Future Works 

Each chapter in this document completed the objectives related to their respective 

hypothesis outlined in Chapter 1.  

In Chapter 2, the first hypothesis was addressed, which was on how particle simulations 

utilizing ferrohydrodynamics could provide evidence for whether applying magnetic and electric 

fields to particles suspended in a fluidic polymer matrix yields a microstructure with multiple 

levels of hierarchy. To answer this hypothesis, the objective to develop simulation methods for 

electro-magnetically susceptible particles in a fluid matrix was accomplished, and simulation 

results were used to analyze five processing cases. The differences between the cases revealed 

that four levels of structural hierarchy could be obtained: particle, stack, micro-chain, and macro-

chain levels. Each level was quantitatively assessed via a dipole-based spanning tree algorithm, 

which was found to be an effective way to group particles into structures commonly identified. 

Furthermore, metrics such as percolation and the amount of mass in a spanning tree were 

effective in distinguishing the structures at each length-scale. In fact, the differences in these 

metrics for structures across all five cases showed microstructural differences that could lead to 

changes in material properties. For example, the higher percolation in Case 5 versus Case 3 is the 

primary difference between the microstructures of these cases, and percolation alone can 

influence elastic, dielectric, and conductive properties. Additional analysis of the distributions of 

the orientations of the structures across all cases also showed how well alignment can be 
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manipulated by processing conditions, and in turn, properties such as the net magnetic torque. For 

example, high particle alignment directly correlates with the magnetic torque of a bulk composite 

containing magnetically dipolar materials, and the simulations show how each processing 

condition influences their alignments.    

In Chapter 3, the second hypothesis was addressed, which was on how network models of 

semicrystalline hyperelasticity accounting for microstructure by representing different relative 

locations of crystalline regions can form an effective framework for modeling electrostriction. The 

chapter developed a framework incorporating various aspects of the microstructure of a 

semicrystalline class of EAPs, relaxor ferroelectrics, and in doing so, related the relative spatial 

alignments of crystalline domains with neighboring crystalline domains. The analyses revealed 

that parallel arrangements of crystalline regions yielded much greater electromechanical coupling 

than other configurations, due to the anisotropic nature of dipole-dipole interactions. Additionally, 

due to this anisotropy, parallel configurations were also found to cause material failure through in-

stabilities. The model’s ability to relate these arrangements to predict material response and even 

failure can provide engineers a means of avoiding instabilities, or possibly promoting them, since 

researchers have found ways to harness them to generate larger deformations. Finally, a 

probability density function (PDF) for the relative spatial arrangements of dipolar regions proved 

useful in fitting the model to data. The PDF-based network model offered a higher fidelity 

approach to modeling EAPs and could allow for a means of validating the model to more realistic 

microstructures through the dispersion parameter.  

In Chapter 4, the third hypothesis was addressed, which was on how an analytical model 

for multi-layer, segmented composite beams incorporating the EAP constitutive model and 

magnetic torques can accurately predict multi-field device response, and can be used for the 

design optimization for a target shape containing ideal folds. To address this hypothesis, a new 

multi-layered, segmented composite beam model accommodating large displacements and 

constitutive relations for magneto- and electro-active models was developed. The model was used 
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in an optimization problem for a specific configuration with the objectives of matching a shape 

with ideal folds, minimizing cost and maximizing work performed on a tip force. Optimization 

results revealed the importance of gaps between MAE patches and the uniformity and symmetry 

in their magnetization for matching symmetric shapes with ideal folds. For lowering costs, short 

MAE patches with high magnetization were ideal. For greatest work performance, long MAE 

patches with near maximum magnetization were essential, offering a trade-off between work and 

shape approximation. While these results could be improved with a larger and more diverse initial 

population, the methodology demonstrated the ability to quickly achieve near-optimal designs 

with a wide selection of designs based on application priorities. Studies also highlight the need to 

begin the optimization with a population of relatively strong candidates, possibly found from a 

parameter study, as opposed to using a random initial population.  

Designers can ultimately choose the appropriate design for a given application based off 

the trade-offs between the three objectives. The differences between the designs, such as increase 

in magnetization or change in the segment lengths, determine the trade-offs, and knowing how 

these parameters play a role in the performance (or Pareto front) can help one design the ideal 

structure for an application.  

The work presented in this document still has a lot of room for advancement. For 

instance, the simulation methods for multi-field processing need more robust methods including 

more realistic interactions between particles, such as friction, ellipsoidal forms of drag terms, and 

nonlinear external fields. The electrostriction model can be expanded further to include different 

crystalline phases, sizes, shapes, and defects within the microstructure, also with a metric for the 

varying distances between crystalline regions. The optimization can be expanded to include 

aspects of the first two links, i.e. the links between (1) processing and microstructure and (2) 

microstructure and material response, such that the optimization problem can be defined to link 

processing directly to structural response, as shown in Figure 5-1. In this manner, an engineer 
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could find optimal processing parameters for a given material constituent set for a multi-objective 

trade-space.  

 
Figure 6-1. A full-scale optimization problem may only require material set properties and 

structure configuration such that the only variables can be processing conditions, and the outputs 

structural response relating to multiple objectives. This way, a direct link between processing 

conditions and structural response objectives, 𝑓𝑠ℎ𝑎𝑝𝑒, 𝑓𝑐𝑜𝑠𝑡, and 𝑓𝑤𝑜𝑟𝑘, can be obtained. 
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 APPENDIX A 

Intermediary Calculations 

 

Recall that the coordinates of the deformed configuration, (𝑥, y, z), are related to the 

coordinates of the reference configuration, (𝑋, Y, Z), by the relations in (6-1).  

 

 𝑥 = 𝜆1𝑋 ,  𝑦 = 𝜆2𝑌 ,  𝑧 = 𝜆3𝑍 (6-1) 

 

Since the elastic energy is a function of principal invariants 𝐼𝑖, and the electrostatic 

energy is a function of the stretches 𝜆𝑖, the chain rule must be applied, as shown in (6-2).  

 

 
𝜕𝑊̃

𝜕𝑩
= ∑

𝜕𝑊̃

𝜕𝐼𝑖

𝜕𝐼𝑖
𝜕𝑩

3

𝑖=1

= ∑
𝜕𝑊̃

𝜕𝜆𝑖

𝜕𝜆𝑖

𝜕𝑩

3

𝑖=1

 (6-2) 

 

The unknowns now are the derivatives of the invariants  𝐼𝑖 and the stretches 𝜆𝑖 with 

respect to the left Cauchy-Green deformation tensor B. By the definitions of 𝐼𝑖, B, and the 

derivative, the relations in (6-3) are true.  

 
𝜕𝐼1
𝜕𝑩

= 𝑰  ,
𝜕𝐼1
𝜕𝑩

= 𝐼1𝑰 − 𝑩  ,
𝜕𝐼1
𝜕𝑩

= 𝐼3𝑩
−𝟏  ,   (6-3) 

 

The deformation tensor B can also be written in terms of its basis vectors, 𝒃̂𝒊. 

 𝑩 = ∑𝐵𝒊

𝟑

𝒊=𝟏

𝒃̂𝒊⨂𝒃̂𝒊 ,   (6-4) 
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where 𝐵𝒊 are the components of B, and  ⨂ is the tensor product. Recall that 𝑩 = 𝑭𝑭𝑻 and the 

polar decomposition of F produces the relation  

 

 𝑭 = 𝑹𝑼 ,   (6-5) 

 

in which R is the orthogonal tensor relating the deformation to rotations, and U is the stretch 

tensor. Thus, the relations between  𝒃̂𝒊 and any arbitrary orthonormal basis vectors 𝑬̂𝒊 in the 

reference configuration are 

 𝒃̂𝒊 = 𝑹𝑬̂𝒊 . (6-6) 

Since in there is no rotation in the case of the RVE developed in this section (𝑹 = 𝑰), the 

bases  𝒃̂𝒊 = 𝑬̂𝒊, and within a Euclidian point space and orthonormal coordinate system, 𝑬̂𝒊 = 𝒆̂𝒊, 

where 𝒆̂𝒊 are the orthonormal bases of the deformed configuration. As a result, B is rewritten as 

 𝑩 = 𝐵𝟏𝒊̂⨂𝒊̂ + 𝐵𝟐𝒋̂⨂𝒋̂ + 𝐵𝟑𝒌̂⨂𝒌̂ , (6-7) 

where 𝐵1 = 𝐵2 = 𝜆3
−1

 and 𝐵2 = 𝜆3. Thus, to obtain the second unknown, the derivative of 

stretches 𝜆𝑖 with respect to B, the chain rule in (6-8) is employed. 

 
𝜕𝜆𝑖

𝜕𝑩
=

𝜕𝜆𝑖

𝜕𝐵𝑖

𝜕𝐵𝑖

𝜕𝑩
 (6-8) 

The relation between the stretches 𝜆𝑖 and 𝐵𝑖 is known: 𝐵𝑖 = 𝜆𝑖
2
, and therefore,  

 
𝜕𝜆𝑖

𝜕𝐵𝑖
=

1

2𝜆𝑖

𝜕𝐵𝑖

𝜕𝑩
 , (6-9) 

and by the definition of the derivative,  

 
𝜕𝐵𝑖

𝜕𝑩
= 𝒃̂𝒊⨂𝒃̂𝒊 .  (6-10) 

When (6-9) and (6-10) are substituted into (6-2), we obtain 

 
𝜕𝑊̃

𝜕𝑩
= ∑

1

2𝜆𝑖

𝜕𝑊̃

𝜕𝜆𝑖
𝒃̂𝒊⨂𝒃̂𝒊

3

𝑖=1

 . (6-11) 
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When (6-11) is substituted into the formula for Cauchy stress T, 

  𝑇𝑖 = 𝜆𝑖
𝜕𝑊̃

𝜕𝜆𝑖
 .       (no sum on i) (6-12) 

Lastly, this is substituted into the equilibrium equation. The divergence calculates the 

derivative of the diagonal components with respect to the principle directions, such that 

 (𝑑𝑖𝑣𝑻)𝑖 =
𝜕

𝜕𝑥𝑖
[𝜆𝑖

𝜕𝑊̃

𝜕𝜆𝑖
] ,    (no sum on i) (6-13) 

where 𝑥𝑖 are any arbitrary coordinates in the deformed configuration. In this case, they are x, y, 

and z. The relationship between these coordinates and the stretches are provided in (6-1). By the 

chain rule, (6-12) is simplified as  

 (𝑑𝑖𝑣𝑻)𝑖 =
𝜕

𝜕𝜆𝑖
[𝜆𝑖

𝜕𝑊̃

𝜕𝜆𝑖
] .    (no sum on i) (6-14) 
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 APPENDIX B 

Methodologies for Extracting Parameters from Experiments 

 

B.1 Permittivity of the Amorphous Phase 

The dipole-dipole interaction energy includes the relative permittivity of the medium in 

which the dipoles interact with each other. In the case of semicrystalline RFPs, this medium 

corresponds to the amorphous phase. As discussed in Chapter 2, dipoles within the crystalline 

phase of the material saturate at high fields, so their influence over the polarization response of the 

material diminishes. At high fields, the amorphous phase takes control over the polarization 

response of the material and it behaves as a linear dielectric. Thus, the permittivity of the 

amorphous phase can be extracted from available polarization data by determining the slope of 

polarization versus the electric field at very high field strengths.  

Chapter 3 describes a method for determining the permittivity of an EAP, which is by 

calculating its energy density based on the polarization data, and evaluating each point based on 

the linear dielectric equation (4-113). Additionally, Chapter 3 derives an alternative method for the 

calculation of permittivity, which directly estimates the slope (or derivative) of the curve. To 

analyze the differences between the linear dielectric calculations and the derivative 

approximations, the data found in Ref [2] is used.  

Figure 18 compares the linear permittivity calculations in Ref [2], and the results from the 

point-wise derivative approximation in (4-114) implemented on the polarization curve for P(VDF-

TrFE-CFE) 63/37/7.5% found in Ref [2]. Additionally, the biphasic model discussed in section 3.3 

is fitted to the derivative approximation points by a least-squares method, and the least-errored 

model is also displayed in Figure 15. The derivative approximation captures much greater 

nonlinearity at low fields compared to the constants derived by the linear dielectric approach in 

Ref [2]. As a result, the derivative approximation generates a sharper change in slope at the 

transition between lower and higher fields; this directly reflects the nonlinear behavior of the 
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polarization observed in RFPs. On the other hand, both the linear dielectric approximation and the 

derivative approximation follow a similar trend at high fields. In fact, the permittivity value found 

from least-errors for the derivative method is 12.9, which is very close to the reported value of 13 

in Ref [2]. The amorphous regions dominate the high field response of the field and act like linear 

dielectrics, and thus the linear dielectric approximation is more accurate at higher field strengths. 

Similarly, Ref [29] fits the same biphasic model to the permittivity data calculated by the linear 

dielectric method in Ref [2], and their reported amorphous permittivity value is 12.   

 

 
Figure 6-2. The relative permittivity (dielectric constant) is plotted versus electric field. The 

derivative approximation is obtained from the discretized points from the data set in Ref [2], and 

the linear dielectric approximation is the set of calculated constants based on the linear dielectric 

energy density equation. The derivative curve fit is the least-error biphasic model to predict the 

high field permittivity values based on the derivative approximation. 

 

Since the very high field polarization responses of some of the terpolymers taken from 

literature are not available, the point-wise derivative approximation is more convenient to use, as 

it can directly predict high field permittivity based on low field data sets. Figure 6-3 shows the 

derivative approximation method performed on two sets of data from Ref.’s [20] and [16]. The 

biphasic model is then fitted to the data obtained from the derivative approximation method.  
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Figure 6-3 . The dielectric constant versus electric field response is extracted from the polarization 

responses found in (a) Ref [20] and (b) Ref [16]. The high field dielectric constant is 7.7 for (a) 

and 11.7 for (b). 

 

In addition to these two sets of data, experimental measurements for P(VDF-TrFE-CTFE) 

61.8/30.4/7.8% are also available. The derivative approximation method is applied to the 

polarization data to obtain the dielectric constant at various fields, and the results are shown in 

Figure 6-4. However, since this material exhibits a strong double hysteresis loop (DHL), the 

biphasic model borrowed from Ref [29], which is suited for a single hysteresis loop (SHL), does 

not predict the permittivity of the material very well at low fields. As a result, the least-error high 

field relative permittivity is almost exactly 1. The purpose of this analysis is to obtain this high 

permittivity value so that it can be substituted into the dipole-dipole interaction energy as the 

relative permittivity of the amorphous phase, which is the medium in which the dipoles exist. The 

biphasic model should thus predict the permittivity better at higher fields in order to obtain an 

accurate permittivity of the amorphous phase.  
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Figure 6-4. The dielectric constant for P(VDF-TrFE-CTFE) 61.8/30.4/7.8%, as calculated by 

applying the derivative method to experimentally measured values of polarization versus electric 

field. The amorphous phase’s relative permittivity, 𝜀𝑎, is 1. 

The biphasic model in (4-115) is fitted into the data set without the low field response, as 

shown in Figure 6-5. The biphasic model is fitted for a range of responses based on the standard 

deviation calculated from multiple experiments. The model is fitted for one standard deviation 

above the averages, and one standard deviation below. The fitted parameters reveal that the 

relative permittivity 𝜀𝑎 must be between 4 and 14 for the data to lie within a standard deviation 

from the average permittivities. In addition, the model is fitted a third time based on the average 

values of permittivity calculated by the derivative approximation, which results in 𝜀𝑎 = 9.4.  

Finally, all of the values for 𝜀𝑎 obtained from fitting the biphasic model in (4-115) to the 

permittivities calculated by the derivative approximation method are listed in Table 6-1. The 

P(VDF-TrFE)-based terpolymers exhibit, on average, an 𝜀𝑎 between 7.7 and 13. However, the 

statistical analysis in Figure 6-5 implies that it is possible for 𝜀𝑎 to reach values up to 14 and 

higher, as well as drop to 4 and below.  
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Figure 6-5.The dielectric constant for P(VDF-TrFE-CTFE) 61.8/30.4/7.8%, as calculated by 

applying the derivative method to experimentally measured values of polarization versus electric 

field for only the high field response. The biphasic model is fitted to both one standard deviation 

above and below the average experimental values and fitted again to the average measurements. 

 

Table 6-1.Terpolymer high field permittivities are recorded based on least-squaring of the biphasic 

model to the derivative approximation data. 

Material High field permittivity 

P(VDF-TrFE-CFE) 63/37/7.5% 
 

As reported in Ref [2] 13 

As determined by Ref [29] 12 

As calculated via derivative method 12.9 

P(VDF-TrFE-CFE) 62/38/4% 7.7 

P(VDF-TrFE-CTFE) 65/35/10% 11.7 

P(VDF-TrFE-CTFE) 61.8/31.4/7.8% 9.4 

 

B.2. Obtaining the saturation polarization parameters for the dipoles 

The remaining electrostatic parameters are the saturation electric field for the dipole 

orientations, 𝐸𝑠𝑎𝑡 and the saturation polarization, 𝑃𝑠. To obtain these values, the biphasic 

polarization model is no longer viable, because most EAPs are known to exhibit breakdown at 

high fields[45], so the low field response of the material is more relevant, which is dominated by 

dipole-dipole interactions. The application of the biphasic model was strictly to gain the high-field 

permittivity property of the material.   
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A simple approach to extracting 𝐸𝑠𝑎𝑡 is by constructing a polarization model based on Ref 

[29] with only a single term that entirely corresponds to the dipole-dipole interactions within the 

crystalline phase. First, recall the definition of polarization density, shown in (6-15).   

 𝑃 =
〈𝑝〉

𝛥𝑉
 (6-15) 

The average dipole moment 〈𝑝〉 can be split into its magnitude p and its orientational 

component ⟨cos 𝜃⟩. As a result, (6-15) can be rewritten as (6-16). 

 𝑃 =
𝑝⟨cos 𝜃⟩

𝛥𝑉
 (6-16) 

In (6-16), 𝑝 is the magnitude of the net dipole moment over the small change in volume, 

𝛥𝑉. Thus, when the dipoles within the volume saturate at high fields, ⟨cos 𝜃⟩ → 1. Assuming that 

any 𝛥𝑉  contains approximately the same number of dipoles (though not necessarily uniformly 

distributed), the relation in (6-17) must hold true. 

 lim
𝐸→∞

𝑝𝛥𝑉⟨cos 𝜃⟩

𝛥𝑉
= 𝑃𝑠 (6-17) 

The parameter 𝑃𝑠 is the same saturation polarization as the one found in the previous 

section. Thus, the final macroscopic polarization function is written as shown in (6-18). 

 𝑃 = 𝑃𝑠⟨cos 𝜃⟩ (6-18) 

The expression for the average cosine ⟨cos 𝜃⟩ defined in Chapter 3 is substituted, which is 

a function of 𝐸𝑠𝑎𝑡. The plots in Figure 6-6 display the polarization model in (6-18) fitted to 

experimental data by the least-squares method, and the optimized parameters are listed in Table 

6-2. 

 Table 6-2. The optimized parameters from the single phase model for polarization 

Material 
𝑷𝒔  (

𝑪

𝒎𝟐
) 𝑬𝒔𝒂𝒕 (

𝑴𝑽

𝒎
) 

P(VDF-TrFE-CFE) 62/38/4% 0.122 59.0 

P(VDF-TrFE-CTFE) 65/35/10% 0.0733 31.1 

P(VDF-TrFE-CTFE) 61.8/31.4/7.8% 0.0722 38.7 
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Figure 6-6. The polarization response and the fitted single phase polarization model are compared 

for (a) P(VDF-TrFE-CTFE) 61.8/30.4/7.8%, (b) P(VDF-TrFE-CFE) 62/38/4%, and (c) P(VDF-

TrFE-CTFE) 65/35/10%. The optimal parameters are listed in Table 6-2. 

 

 

 

 

 
 

(a) 

(b) 

(c) 
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 APPENDIX C 

Details of Modeling Methodology 

 

C.1 Mathematical Formulation: Part I – Constitutive Response 

The active response of electrostrictives is often modeled as an electric-polarization induced 

strain which is in turn integrated into a standard generalized small stress-strain response [81]. The 

small strain formulation is appropriate when the expected radii of curvature are moderate and the 

bimorph thickness is also small, resulting in small bending strains on outermost fibers which 

remain within the linear stress-strain response [76]. Such is the expected case for the bimorphs 

studied herein. The resulting response can be seen as the sum of elastic strains, 𝝐𝑒, and 

electrostrictive strains, 𝝐𝐸, that work to produce a combined stress, 𝝈, given a compliance tensor , 

𝑪. 

 

 𝝈 = 𝑪: (𝝐𝑒 + 𝝐𝐸) (6-19) 

 

The elastic strain is the measurable, physical strain observed in the material while the 

electrostrictive strain is the strain induced by the electric field’s development of polarized regions 

within the material. The latter strain is often represented in the uniaxial form of [82]. 

 𝜖𝐸 = −𝛼𝐸2 , (6-20) 

where the negative sign ensures compression, 𝛼 is the electrostrictive constant, and  𝐸  is the 

electric field. In this form, and in the remainder of this work, it is assumed that 𝛼 = 𝛼31, 𝐸 = 𝐸3 , 

𝜖𝐸  acts in the uniaxial direction (which is 𝒆̂1),  and 𝜖𝑒 = 𝜖1.  

Development of equilibrium equations in the following section will require the one-

dimensional form for the constitutive equations which, assuming purely one-dimensional 

behavior, follow from equations (6-19) and (6-20) as 
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 𝜎𝑇𝑃 = 𝐸𝑇𝑃(𝜖𝑒 − 𝛼𝐸2) (6-21) 

where 𝜎𝑇𝑃and 𝐸𝑇𝑃 are the stress and modulus in the terpolymer, respectively.  

The constitutive response of MAE materials has been modeled by several researchers, 

however prior emphasis has been placed on soft-magnetic response [83[90] whereas the barium 

hexaferrite particles used here are hard-magnetic materials which have seen considerably less 

study [91]. The difference is critical when determining the effect of the particles on the matrix and 

the larger bimorph structure.  Within a material, a magnetic dipole, 𝑴, subjected to an external 

magnetic field, 𝑯, will experience a magnetic torque 𝑻 = 𝑴 ×  𝑯. However, in soft magnetic 

materials 𝑴  and 𝑯 are collinear and hence 𝑻 = 𝟎. Therefore, magnetic torque will only be 

produced in materials with hard magnetic behavior.  While it is true that strong geometric 

anisotropy may misalign 𝑴 from 𝑯  even in soft magnetic materials, experiments have shown that 

typical soft magnetic particles (e.g. carbonyl iron) are roughly spherical and hence produce no 

magnetic torque. Additionally, while magnetostriction is expected in MAE materials, the bulk 

deformation produced by the magnetic torque in MAE composites is orders of magnitude larger 

than typical magnetostrictive strains [80[92].  

Given the prominence of magnetic torque based deformation over magnetostrictive 

deformation in MAE materials, and their use as active material “patches” in the geometries 

proposed below, MAEs will be modeled as loci of external body torques following 

 𝝉 = 𝒎 × 𝑯 , (6-22) 

where 𝝉 is magnetic torque density, and  𝒎  is the magnetic dipole density. This torque density 

will be added to the formulation when developing equations for the equilibrium of moments in the 

bimorph. Incorporation of MAE behavior as an external load, specifically body forces in the case 

of soft-magnetic MAEs has precedence in the literature [93]. Hence, extension of this technique to 

magnetic torques is employed here. 

Previous works predicated on the behavior of soft-magnetic responses are not capable of 

generating the mechanism of magnetic-torque necessary to model MAE with BaM particles. 
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Methods based on soft-magnetic behavior, while able to model magnetostrictive effects (eg. soft 

magnetic behavior) cannot accommodate magnetic torque based responses. These methods while 

able to model magnetostrictive effects (e.g. soft magnetic behavior) cannot accommodate 

magnetic torque based responses. The experimental stress-strain response ultimately seen in 

experiments remains in the linear stress-strain regime for the MAE material, hence Hooke’s Law 

is used in this work to model MAE response as  

 𝜎𝑀𝐴𝐸 = 𝐸𝑀𝐴𝐸𝜖𝑒 (6-23) 

where 𝜎𝑀𝐴𝐸 and 𝐸𝑀𝐴𝐸 are the stress and modulus of the MAE material, respectively. 

C.2 Mathematical Formulation: Part II – Mechanics and Equilibrium within the Bimorph 

Structure 

The bimorph model consists of two layers of material, the terpolymer and the MAE, each 

having their own constitutive response bonded together at a continuous interface. In reality the 

two materials are bonded by a glue layer, however that layer is neglected in this work due to is 

relative thinness with respect to the overall bimorph geometry; formulation of a higher fidelity 

model incorporating the glue layer is in development.  The geometry will be modeled as a one 

dimensional solid that conforms to prescribed bending kinematics transverse to the major axis and 

equilibrium of forces and moments throughout. 

Given the previously mentioned assumptions, any arbitrary segment along the 1-D bimorph 

between two cut lines at 𝑥 and 𝑥 + Δ𝑥 must satisfy summation of forces 

 
𝜕𝑁(𝑥)

𝜕𝑥
= 0 (6-24) 

and summation of moments 

 
𝜕𝑀(𝑥)

𝜕𝑥
+ 𝜏(𝑥) ∗ 𝐴𝑀𝐴𝐸(𝑥) = 0 (6-25) 

where 𝐴𝑀𝐴𝐸(𝑥) is the cross-sectional area of the MAE material at point 𝑥. 

The stress-induced tractions along an arbitrary cut line at some point 𝑥 yield the relationships 

to the normal force and moment, namely 
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 𝑁(𝑥) =  Δ𝑥 ∫ 𝜎(𝑥, 𝑧) ∗ 𝑡(𝑥, 𝑧) ∗ 𝑑𝑧
𝛿2

𝛿1

 (6-26) 

And 

 𝑀(𝑥) = Δ𝑥 ∫ 𝑧 ∗ 𝜎(𝑥, 𝑧) ∗ 𝑡(𝑥, 𝑧) ∗ 𝑑𝑧
𝛿2

𝛿1

 (6-27) 

where 𝑧 = 𝛿1 …𝛿2 signifies the range of integration through the height of the bimorph and 𝑧 is 

measured from the base of the bimorph. Note that the integral will be evaluated over each layer in 

the bimorph, therefore the normal stress will be drawn from eqs. (6-21) or (6-23), respectively. 

Furthermore, the type of material may vary arbitrarily along any point 𝑥 within a layer hence the 𝑥 

dependence in the stress function and bimorph thickness. 

Finally, assuming kinematics of Bernoulli Euler bending, the elastic strain at some point 𝑥 

along the length of the bimorph can be expressed as 

 𝜖𝑒(𝑥) = −(𝑧 − 𝑧̅(𝑥)) ∗ 𝜅(𝑥) (6-28) 

where 𝑧̅(𝑥) is the height of the neutral axis from the base of the bimorph and 𝜅(𝑥) is the radius of 

curvature.  

Equations (6-21), (6-23) and (6-24)-(6-27) yield a set of differential equations which can 

be used to predict the local radius of curvature and height of the neutral axis given material 

parameters and the geometry of the bimorph. 

C.3 Numerical Solution Techniques 

The solution method to the first order differential system is a combination of analytical and 

numerical computations. The approach begins with the analytical solution to the neutral axis height 

from the bottom of the beam, i.e. 𝑧̿. Since there are no external forces applied on the beam, this 

holds true across the entire length of the beam. As such, eqs. (6-24) and (6-26)  yield  

 𝑧̅ = 𝐴1 +
𝐴2

𝜅
𝛼𝐸2 (6-29) 
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where 𝜅 is the curvature, and 𝐴1/2 are functions of the material properties and the geometry of each 

layer.  

The substitution of eqs. (6-21), (6-23), and (6-27) into (6-25) yields a first order differential 

equation in  𝜅(𝑥)  that is solved with the forward finite difference method using the first order 

differential approximation  

 
𝜕𝜎Ω(𝑥)

𝜕𝑥
=

𝜎Ω(𝑥 + Δ𝑥)

Δ𝑥
−

𝜎Ω(𝑥)

Δ𝑥
 (6-30) 

In eq. (6-30), 𝜎Ω  are the stresses of each layer of type  Ω  at an arbitrary point,  and Δ𝑥 

represents an infinitesimal increment of the beam’s length. Given eq. (6-30) the finite difference 

approximation of (6-25) can be represented as  

 

0 = ∫ (
𝜎𝐴

𝑥+Δ𝑥−𝜎𝐴
𝑥

Δ𝑥
) 𝑧𝑡𝐴𝑑𝑧

ℎ𝐴

0
  

+∫ (
𝜎𝐵

𝑥+Δ𝑥 − 𝜎𝐵
𝑥

Δ𝑥
)𝑧𝑡𝐵𝑑𝑧

ℎ𝐵

ℎ𝐴

+ 𝜏ℎ𝐴𝑡𝐴Δ𝑥 

(6-31) 

where thicknesses 𝑡𝐴and 𝑡𝐵 do not vary with 𝑥, and ℎ𝐴 and ℎ𝐵 are heights of the two layers. After 

integration, the resulting system of equations yields a finite difference scheme for the solution of 

𝜅(𝑥) discretized over the length of the bimorph. At each point 𝑖, (6-31) produces equations of the 

form  

 𝜓𝑖(𝜅𝑖+1, 𝜅𝑖, 𝐶𝑖) = 𝑓(𝜏𝑖) (6-32) 

where 𝐶𝑖is a function of parameters, 𝐴𝑖 and factors from integration, and the desired curvatures 𝜅𝑖, 

and the forcing term depends on the magnetic torque.  

These equations can be rewritten in the matrix form below. 

 [
−𝜓𝑖  𝜓𝑖+1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ −𝜓𝑛

] [

𝜅1

…
𝜅𝑛

] = [
𝑓(𝜏𝑖)
…

𝑓(𝜏𝑛)
] (6-33) 

the solution of which can be written as 𝜿 = 𝝍−1𝒇(𝜏). 

The numerical component of this method arises when dealing with the torque strength as 

the MAE orients itself with the beam. If the magnetic torque is a constant (𝜏 = 𝑚⃗⃗ × 𝐻⃗⃗ ), the linear 
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relation with the external field results in a beam that bends past the alignment with the field. 

Accordingly, a numerical solution is required to adjust the torque as the beam aligns with the field. 

The cross product in 2 dimensions can also be presented as (6-34). 

 𝜏 = 𝑚𝐻𝑠𝑖𝑛𝜃 (6-34) 

therefore, 𝜏 = 𝜏(𝜃) , where 𝜃  is the angle between the MAE and the field H. In addition to this 

dependence, 𝜃 is also a function of x, the distance along the beam, since the alignment of the MAE 

will vary as x changes. One solution to this problem is an iterative process that calculates 𝜃 at each 

point and adjusts the torque for the next point. A basic outline of this process is illustrated in Figure 

6-7 below. Also, note that the angle in (6-34) is redefined as the angle 𝜃′ shown in Figure 6-8, and 

the form of (6-34) is changed to (6-35) for convenience in calculations.  

 

Step 1: Initially solve for all K’s with 𝜃′ = 0 and 

store 𝐾1 (K at i=1) 

Step 2: Find the angle 𝜃′ at i=1 and store 𝜃′ 

Step 3: Calculate new 𝜏 as defined in (6-34) 

Step 4: Solve for all K’s again and store 𝐾2   

Step 5: Find the new angle 𝜃′ again and add it to 

the stored 𝜃′ 
Repeat steps 3-6 until i=n 

Figure 6-7. The procedures of the iterative solution method for the curvatures with varying 

angles. 

 
 𝜏 = 𝑀𝐻𝑐𝑜𝑠(𝜃′) (6-35) 

 
The resulting curvatures will always be adjusted according to their orientation with the field, 

since the cosine term will reduce the torque to zero as the angle approaches 90 degrees.  

The next step is to convert the curvatures to coordinate locations, for which we will follow the 

approach used in [94]. The curvature is initially defined as below. 

 𝐾 =
𝑑𝜃

𝑑𝑠
 (6-36) 

Using the separation of variables technique, this first order DE is set up to be solved as shown 

below. 
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 𝑑𝑠 =
1

𝐾
𝑑𝜃 (6-37) 

In (19), ds represents an infinitesimal arclength, which is a straight line (linear) under the 

assumption that ds is a very small distance. The following relations are derived from Figure 6-8. 

 

𝑑𝑧

𝑑𝑠
= 𝑠𝑖𝑛𝜃 → 𝑑𝑠 =

𝑑𝑧

𝑠𝑖𝑛𝜃
 

𝑑𝑥

𝑑𝑠
= 𝑐𝑜𝑠𝜃 → 𝑑𝑠 =

𝑑𝑥

𝑐𝑜𝑠𝜃
 

(6-38) 

Therefore, ds can be replaced with the above relations in (6-39).  

 ∫ 𝑑𝑧
𝛿𝑧

0

= ∫
𝑠𝑖𝑛𝜃

𝐾
𝑑𝜃

𝜃0

0

 (6-39) 

The integration generates the displacement in the z-direction, 𝛿𝑧.  

 𝛿𝑧 =
1 − cos (𝐾𝑙)

𝐾
 (6-40) 

And similarly, 

 𝛿𝑥 = 𝑙 −
sin (𝐾𝑙)

𝐾
 (6-41) 

The relation 𝜃=Kl, derived from (6-36), is used in the equations above, where l is an 

incremental length between two points of interest. 

 

Figure 6-8. An infinitesimal segment along the arc, which produces a linear relation between 

dx and dz. 

The displacements are then used to determine the local coordinate components 𝑋𝑡𝑖 and 𝑍𝑡𝑖 of 

each point in the deformed configuration. These coordinates are defined below in (6-42). 
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 [
𝑐𝑜𝑠𝜃𝑖−1 −𝑠𝑖𝑛𝜃𝑖−1

𝑠𝑖𝑛𝜃𝑖−1 𝑐𝑜𝑠𝜃𝑖−1
] [

𝑋𝑡𝑖

𝑍𝑡𝑖
] = [

𝑙𝑖 − 𝛿𝑥,𝑙𝑜𝑐𝑎𝑙𝑖

𝛿𝑧,𝑙𝑜𝑐𝑎𝑙𝑖

] (6-42) 

The above matrix must be calculated at each point, i, which will be used to determine the global 

coordinates below. 

 𝑋𝑖 = 𝑋𝑡𝑖 + 𝑋𝑡𝑖−1
 (6-43) 

 

 𝑍𝑖 = 𝑍𝑡𝑖 + 𝑍𝑡𝑖−1
 (6-44) 
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 APPENDIX D 

Electrostriction Model’s MATLAB Code 

 
% Following program computes a microstructure based model  
clc, clear 
Emax = 100000000; % Must be in multiples of 10000000 
Estep = 1000000; 
Efieldvec = linspace(Estep,Emax,Emax/Estep); % electric field vector to 

be used for plotting 
stretchvals = zeros(Emax/Estep,1); 
tic 

  
% Known Parameters 
Ps = 0.07; 
Crystallinity = 1; 
epsr = 12; 
mu = 0; 
C1 = 150000000; 
ms = 2.5; % stretch at which the polymer chain network becomes locked 

  
% Variable Parameters 
Esat = 35000000;  
muGauss1 = 0;  
muGauss2 = 0; 
Sigma1 = 0.06; 
Sigma2 = 0.01; 

  
% Code parameters 
a = 16; % number of steps for phi (0 <= phi <= pi 
b = 2*a; % number of steps for the (0 <= the <= 2*pi) 
xx1 = linspace(-pi,pi,100); 
Nsamples = 1000000; % actual sample size? double check if n is actually 

used 

  
muGauss = [muGauss1 muGauss2]; % mean vector 

  
Sigma = [Sigma1 0; 0 Sigma2]; % deviance matrix 
xxy1 = 0:pi/a:pi; xxy2 = 0:pi/a:2*pi; % first and second variables, 

respectively 
[X1,X2] = meshgrid(xxy1,xxy2); 

  
for Efield = Estep:Estep:Emax 

  
b1 = bfun(Efield,Esat,mu); % deviance parameter 
b2 = 0; 

  
pdf = double(vonMises(b1,mu,xx1)); 
pdf2 = double(vonMises(b2,mu,xx1)); 

  
% Find the cdf of the pdf. (NOTE: alternate method for this is using the 
% cdf command within MATLAB 
n = size(pdf); 
vonMisescdf = (1/sum(pdf))*cumsum(pdf); 
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vonMisescdf2 = (1/sum(pdf2))*cumsum(pdf2); 

  

  
% The following pseudorandom number generation method is based on an 
% article written by John S. Denker 
% for more information: http://matlabtricks.com/post-44/generate-random-

numbers-with-a-given-distribution 
% and http://www.av8n.com/physics/arbitrary-probability.htm 
% References 
% John Denker, "Measurements and Uncertanties versus Significant Digits" 
%   "     "  , "Models and Pictures of Atomic Wavefunctions" 
%   "     "  , "Introduction ot Probability"  

  
% remove non-unique elements 
[vonMisescdf, mask] = unique(vonMisescdf); 
xx1 = xx1(mask); 

  
[vonMisescdf2, mask] = unique(vonMisescdf2); 
xx2 = xx1(mask); 

  
% create an array of 2500 random numbers 

  
randomValues = rand(1, Nsamples); 
randomValues2 = rand(1, Nsamples); 

  
% inverse interpolation to achieve P(x) -> x projection of the random 

values 
projection = interp1(vonMisescdf, xx1, randomValues); 
projection2 = interp1(vonMisescdf2, xx1, randomValues2); 

  
cosangle = zeros(1,Nsamples/2); 
for i = 1:Nsamples/2 
    cosangle(1,i) = cos(projection(i)-projection(2*i)); 

     
end 

  
cosangle(isnan(cosangle)) = 0; 
fprintf('average angle:\n') 
avgangle = mean(cosangle) 

  
% Next, compare to vectors 
dipolemoments = zeros(Nsamples,3); 
dipolemoments(:,1) = cos(projection2).*sin(projection); 
dipolemoments(:,2) = sin(projection).*sin(projection2); 
dipolemoments(:,3) = cos(projection); 

  
averages = sym(zeros(a,1)); 

  
% Dot product with vectors ranging from -pi to pi (due to axisymmetry, 

we 
% can ignore dot product with vectors that have varying theta 

orientations 

  
% Additional note: effective cosine mentioned before is supposed to be  
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% cos(phi) here, using the notation below. So the paper's theta = our 

phi. 
syms lambda q 
assumeAlso(lambda,'real') 
assumeAlso(lambda > 0) 

  
averages = averagesfun(Efield,Esat,mu,Nsamples,a,b); 

  
averagesmat= zeros(b+1,a+1); 
for i = 1:b+1 
    averagesmat(i,:)= averages; 
end 

  
% Next, consider the energy equation:  
% Udd = mu^2/(4*pi*eps)*(cos(theta1-theta2) - 3*(cos(phi-theta))^2/r^3) 
syms the phi 
assumeAlso(the,'real') 
assumeAlso(0 <= the <= 2*pi) 
assumeAlso(phi,'real') 
assumeAlso(0 <= phi) 
assumeAlso(phi <= pi) 
eps0 = 8.854187*10^-12; 

  
r0 = 1; % original radius of RVE 
r = r0*sqrt((lambda.^(-1/2).*sin(X1)).^2 + (lambda.*cos(X1)).^2); % 

magnitude of the radius of RVE as function of stretch 
Vd = Crystallinity*(4/3)*sym(pi)*r0^3; % volume of crystals - constant 

because detJ = 1  
Vtot = (4/3)*sym(pi)*r0^3; % volume of total RVE - constant because detJ 

= 1 
dipmoment = Vd*Ps; 

  
Udd = simplify(dipmoment^2./(Vtot.*4.*pi.*eps0.*epsr).*(avgangle - 

3*averagesmat.^2)./r.^3); 

  
% Apply multi-variate normal distribution for spatial distribution of  
% particles (dipoles) 

  
F = mvnpdf([X1(:) X2(:)],muGauss,Sigma); 
F1 = reshape(F,length(xxy2),length(xxy1)); 
toc 

  

  
sinvec = sin(0:pi/a:pi); 
sinmat= zeros(b+1,a+1); 
for i = 1:b+1 
    sinmat(i,:)= sinvec; 
end 

  
Nf = sum(sum(F1.*sinmat*sym(pi)/a*sym(pi)/a)) 

  
EnergyMatrix = F1.*Udd.*(sym(pi)/a)*(sym(pi)/a).*sinmat; 
TotalDipoleEnergy = (1/Nf)*sum(sum(EnergyMatrix)); 
% TotalDipoleEnergy = Udd(1,1); 
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% Next, we compute Cauchy stress 
F = [lambda^(-1/2) 0 0; 0 lambda^(-1/2) 0; 0 0 lambda ];% deformation 

gradient 
B = F*F; % did not do transpose because 1) [F] is a symmetric matrix, 

and 2) MATLAB is being weird with transposes 
        % the actual definition of B is: B = F*F^T 

  
% Cauchy stress for elastic energy 
Tke = simplify(2*diff(Uelasticfun(C1,ms),lambda)*B); 
Tkd = 2*diff(TotalDipoleEnergy,lambda)*B; % Cauchy stress related to 

dipole-dipole energy 
% Tkd = 2*diff(Udd(1,9),lambda)*B; % D-D energy for vertical chain 

  
Tk = Tkd + Tke + q*eye(3); % eye(3) is the Identity matrix of 2nd order, 

dim(I)=3 

  
% next, solve for q 
toc 
qq = solve(Tk(3,3)==0,q); 
toc 
Tk = Tkd + Tke + qq*eye(3); % Cauchy stress with q plugged in 

  
syms x2 
divT = diff(subs(Tk(2,2),lambda,(r0^2)/(x2^2)),x2); 
divT = subs(divT,x2,r0*lambda^(-1/2)); 

  
toc 
stretchvals(Efield/Estep) = vpasolve(divT == 0,lambda,1) 

  
toc 
end 

  
% Convert stretch to strain 
% pseudo-code: (stretch - 1)*100 = strain 
strainvals = (stretchvals - 1).*100*(-1) % multiply by -1 so it looks 

positive 
strainvals2 = zeros(Emax/Estep + 1,1); 
strainvals2(2:Emax/Estep+1) = strainvals; 
Efieldvec2 = zeros(Emax/Estep+1,1); 
Efieldvec2(2:Emax/Estep+1) = Efieldvec; 

  

  
plot(Efieldvec2,strainvals2) 
xlabel('Electric Field (MV/m)') 
ylabel('-Strain (%)') 
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 APPENDIX E 

MATLAB Bimorph Code 

 
% Program: 1D bimorph model with 3+ layer feature 
% UPDATED ON 7/31/2016 
% Log:  
%   Changes made to the following features 
%   (1) fmatrix fixed - appropriately subs in B.C. curvature and leaves 

the 
%   rest at zero (unless there is an extra term in the sum of moments 
%   equation developed for the differential element 
%   (2) alpha*v^2 term written as negative, which fixes direction of 
%   curvatures (not 100% sure why) 
%   Other updates: 
%   (1) Verified all curvature calculations on Mathematica (for 2 layer 
%   segment) 
%   (2) Verified all boundary condition calculations on Mathematica (for 

2 
%   layer segment) 
%   (3) Verified curvature calculations on Mathematica for 3 layer 

segment 
%  
% UPDATES ON 8/16/2016 
%   (1) Found possible source of convergence issue: fmatrix1 was being 
%   multiplied by (q/Hsteps) at the beginning of each loop, but the loop 
%   itself solves for each element of that matrix, so it is not at 
%   equilibrium. Instead, the invidivual components will be multiplied 

by 
%   the factor before the nested loop. 
%   (2) Coefficients are now properly being taken out of totalmoments. 

CK1, 
%   CK2, Cf cells and their respective 2D arrays have been added.  
%   Appropriate changes have been made to the stiffness matrix. 
% 
% Updates on 8/31/2016 
%   (1) K is no longer solved consecutively for each point starting from 
%   the fixed end. Instead, the entire equation is calculated for K's, 

and 
%   the angle at every point is calculated. These angles are then 
%   cumulatively added to represent the total angles, which are then 
%   plugged back into the fmatrix1. 
% 
%   Updates on 9/1/2016 
%   (1) On initial fmatrix setup, changed Cfm(y) to Cfm(i), so the 

correct  
%   Cfm element is assigned to each part of the fmatrix 
%    
%   Updates on 9/2/2016 
%   (1) Changed the first calculation of Kmatrix to match the iteration 
%   steps when Hsteps is introduced for the 2nd part 
%   (2) Completely got rid of initial Kmatrix calculation. Fixed initial 
%   setup such that the iteration has something to start with (zeros for 
%   curvatures, angles, etc). 
%   (3) Found error in totalmoment equation: the negative was outside of 

a 
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%   paranthesis, instead of being inside (such that it is stress2 - 
%   stress1) 

  

 
hold off 

  
clc,clear 

  
tic  

  

  
S = 5; % Segment numbers 
n = 200; % Number of FDM points 
L = 0.03; % [m] Length of total beam 
H = -5; % [A/m] External magnetic field strength  
Efield = 0; 
t = 0.01; % [m]  
hstiffener = 0.000001  

  
% ADVANCED SETTINGS 
maxiterations = 500 
Hsteps = 2 % number of iterations for the loop below 

  

  
% Enter properties in following order: [Pa] stiffness, # of layers,  
% [m] thickness, [m] height, electrostrictive coefficient,  
% [V/m] electric field, [T] magnetization 
Lengths = [0 0.32 0.35 0.66 0.69 1]; % fraction of  distance of starting 

point of  
%                                                          each segment 

from the fixed end of the beam 

  
% Saad's parameters 
props = cell(1,S); 
props{1} = [5000000, 2, t, 0.00003,0,0,0; 2000000, 2, t, 0.00003, 3*10^-

18, Efield, 0]; 
props{2} = [5000000, 6, t, 0.00003,0,0,0; 1000000, 0, t, 0.000005, 0, 0, 

0; 2000000, 0, t, 0.00003, 3*10^-18, Efield, 0; 1000000, 0, t, 0.000005, 

0, 0, 0; 2000000, 0, t, 0.00003, 3*10^-18, Efield, 0; 1000000, 0, t, 

0.000005, 0, 0, 0]; 
props{3} = [5000000, 2, t, 0.00003,0,0,0; 2000000, 0, t, 30*10^-6, 

3*10^-18, Efield, 0]; 
props{4} = [5000000, 3, t, 0.00003,0,0,0; 1000000, 0, t, 0.000005, 0, 0, 

0; 2000000, 0, t, 30*10^-6, 3*10^-18, Efield, 0]; 
props{5} = [1600000000, 2, t, 0.00006,0,0,0; 200000000, 0, t, 30*10^-6, 

3*10^-18, Efield, 0]; 

  

  

  
    % Call on layer number per "segment" as shown below 
    props{1,3}(1,2); 

   

  
    C = cell(1,S); 
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    CK1 = cell(1,S); 
    CK2 = cell(1,S); 
    Cf = cell(1,S); 

     
    CK1m = zeros(1,S); 
    CK2m = zeros(1,S); 
    Cfm = zeros(1,S); 

     
    KBCtot = cell(1,S); 

  
for y = 1:S 

  
        % Next, define the stress terms  
        syms z zbar K K2 zbar2 theta qdup 

  
        % determine heights for integration 
        heights = zeros(props{1,y}(1,2),1); 
            for i = 1:props{1,y}(1,2) 
                if i < 2 
                    heights(i) = props{1,y}(i,4); 
                else 
                    heights(i) = props{1,y}(i,4) + heights(i-1); 
                end 
            end 

  
            heights; 

          

             
        % Define stresses: 
        stress =  -(props{1,y}(:,1)).*(z - zbar)*K + 

(props{1,y}(:,1)).*props{1,y}(:,5).*props{1,y}(:,6).^2 
        stress2 =  -(props{1,y}(:,1)).*(z - zbar2)*K2 + 

(props{1,y}(:,1)).*props{1,y}(:,5).*props{1,y}(:,6).^2 

         

         
        % Sum forces to find zbar 
        totalforce = 0; 

  
            for k = 1:props{1,y}(1,2) 
                if k < 2 
                    totalforce = totalforce + 

props{1,y}(k,3).*int(stress(k),z,0,props{1,y}(k,4)) 
                else 

     
                totalforce =totalforce + 

props{1,y}(k,3).*int(stress(k),z,heights(k-1),heights(k)) 
                end 
            end 

             
             % Solve for the neutral axis position, zbar    
        zbar1 = solve(totalforce==0,zbar) 

         
            % Sum forces to find zbar2 
        totalforce = 0; 



195 

 
  
            for k = 1:props{1,y}(1,2) 
                if k < 2 
                    totalforce = totalforce + 

props{1,y}(k,3).*int(stress2(k),z,0,props{1,y}(k,4)); 
                else 

     
                totalforce =totalforce + 

props{1,y}(k,3).*int(stress2(k),z,heights(k-1),heights(k)); 
                end 
            end 

  
        % Solve for the neutral axis position, zbar2     
        zbar3 = solve(totalforce==0,zbar2) 

  

        % Next, solve for the boundary condition (i.e., electrostrictive 
        % influence) 
        totalmomentBC = 0; 

  
            for p = 1:props{1,y}(1,2) 
                if p < 2 
                    totalmomentBC = totalmomentBC + 

props{1,y}(k,3).*int(subs(stress(p),zbar,zbar1).*z,0,props{1,y}(p,4)); 
                else 
                    totalmomentBC = totalmomentBC + 

props{1,y}(k,3).*int(subs(stress(p),zbar,zbar1).*z,heights(p-

1),heights(p)); 
                end 
            end 

  
        KBC = solve(totalmomentBC==0,K) 

  
        % Store BC into global BC curvatures, KBCtot 
        KBCtot{y} = KBC;  

   

        

  
        % Next, set up sum of moments equation for recurrence solver 
        totalmoment = 0; 

  
            for p = 1:props{1,y}(1,2); 
                if p < 2 
                    totalmoment = totalmoment + props{1,y}(k,3).*int((-

subs(stress(p),zbar,zbar1) + 

subs(stress2(p),zbar2,zbar3)).*z,0,props{1,y}(p,4)) + 

H*props{1,y}(p,3)*props{1,y}(p,4)*(L/n)*props{1,y}(p,7); 
                else 
                    totalmoment = totalmoment + props{1,y}(k,3).*int((-

subs(stress(p),zbar,zbar1) + subs(stress2(p),zbar2,zbar3)).*z,heights(p-

1),heights(p)) + 

H*props{1,y}(p,3)*props{1,y}(p,4)*(L/n)*props{1,y}(p,7); 
                end 
            end 
totalmoment 
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        C{y} = coeffs(totalmoment) % obtain the coefficients of the 

moment equation to be used in the FDM below 
        CK1{y} = coeffs(totalmoment, K); 
        CK2{y} = coeffs(totalmoment, K2); 
        Cf{y} = coeffs(totalmoment); 

         
        CK1m(y) = CK1{y}(1,2); 
        CK2m(y) = CK2{y}(1,2); 

         
        if size(Cf{y}) < 3 
            Cfm(y) = 0; 
        else 
            Cfm(y) = Cf{y}(1,1); 
        end 

         
end 

  

 
% Forcing terms 
fmatrix = []; 

  
for i = 1:S 
    fmatrix = vertcat(fmatrix,repmat(-

Cfm(i)*(qdup/Hsteps)*cos(theta),round(n*(Lengths(i+1)-Lengths(i))),1)); 

% qdup is a duplicate of q, which will be subbed in later on, while 

Hsteps remains the same 
    Cfm(i) 
end 

  

  
fmatrix(1) = 0; 

  
if double(KBCtot{S}) == 0 
    fmatrix(n) = 0.00001 
else 
fmatrix(n) = double(KBCtot{S}); 
end 

  
forcingtermsdone = 1.000 

  
% Code for the stiffness matrix 
stiffness = zeros(n); 
for q = 1:S 
    if q < 2 
        for i = 1:round(Lengths(q+1)*n); 
            for j = 1:round(Lengths(q+1)*n); 

             
                if i==j 
                stiffness(i,j) = CK1m(q); 
                else 

             
                end 

         
                if i+1 == j 
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                stiffness(i,j) = CK2m(q);  
                else 

             
                end 
            end 
        end 
    else 
        for i = round(Lengths(q)*n):round(Lengths(q+1)*n) 
            for j = round(Lengths(q)*n):round(Lengths(q+1)*n) 

             
                if i==j 
                stiffness(i,j) = CK1m(q); 
                else 

             
                end 

         
                if i+1 == j 
                stiffness(i,j) = CK2m(q); 
                else 

             
                end 
            end 
        end     
    end 
end 

  
for i = 1:S 

  
stiffness(round(Lengths(i+1)*n),round(Lengths(i+1)*n)) = CK1m(i); 
end 

  
stiffness(1,1) = 1; 
stiffness(1,2) = 0; 
stiffness(n,n) = 1; 

  

  
% Addition for the BC's at the segment interfaces (do not need now) 
%for i = 1:(S-1) 

  
%   stiffness(round(Lengths(i+1)*n) , round(Lengths(i+1)*n)) = 1; 

  
%fmatrix(round(Lengths(i+1)*n)) = double(KBCtot{i}); 

  

% end 

  
% End of BC addition 

  

  
stiffnessmatrixcomplete = 1.00 

  
format shortEng 
format compact 

  
Kmatrix = zeros(1,n); 
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thetamatrix = zeros(n,1) 

  

  
fmatrix1 = zeros(n,1); 
thetacell = cell(Hsteps,1); 
thetacell{1,1} = thetamatrix; 

  
kcell = cell(Hsteps,1) 
kcell{1,1} = Kmatrix; 
fmatrixcell = cell(Hsteps,1) 

  
thetai = 0; 

  

  
fcell=[] % create this to prevent failure of converting from double 

  

  
for j = 1:n 
        fcell{1} = subs(fmatrix(j),theta,thetacell{1,1}(j)); 
        fmatrix1(j) = subs(fmatrix1(j),qdup,1); 
end   

  
% Initial setup used as information for first calculation of the 

iterations 
% below 

  
 allkmatrices = []; 
 allfmatrices = []; 
 fmatrixcell{1,1} = fmatrix1; 
toc 

  
thetacollective = [] 
allsmatrices = [] 

  

  
for q = 1:Hsteps 

     
    s_matrix = zeros(maxiterations,1); 
    s_matrix(1,1) = 50; 
    z = 1 

     
    while s_matrix(z,1) >= 1 

     
    thetai = 0; 
        Kmatrix = double(stiffness\fmatrix1); % fmatrix is defined from 

before, and stiffness is constant 

         
        kcell{z+1,1} = Kmatrix; % store Kmatrix into kcell for later use 
        thetatemp = Kmatrix.*(L/n); % obtain temporary thetas at each 

point 
        thetacell{z+1,1} = cumsum(thetatemp); % total theta at each 

point 

         
        % loop below recalculates fmatrix1 based on angles found above 
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        for k = 1:n 
        fcell{k} = subs(fmatrix(k),theta,thetacell{z+1,1}(k)); % fmatrix 

always in the most updated form, while thetacell is used in the error 

function 
        fmatrix1(k) = subs(fcell{k},qdup,q); 
        end 
        fmatrixcell{z+1,1} = fmatrix1; 
        kcell{z+1,1} = Kmatrix; 

         
        for i = 1:n 
            s_matrix(z+1,1) = s_matrix(z+1,1) + (kcell{z+1,1}(i) - 

kcell{z,1}(i)).^2;     
        end 

     
    s_matrix(z+1,1) = sqrt(s_matrix(z+1,1)/n);    

     

     
       % if s_matrix(z+1,1) - s_matrix(z,1) > 0 
         % restart same q from this last thetacell 

         
        % s_matrix(z+1,1) = 0.01; 

          
         %   for j = 1:n 
          %      fmatrix1(j) = subs(fmatrix(j),theta,thetacell{z,1}(j)); 
          %  end   
         %else 

             
        % end 
    z = z + 1 

     
    end 
    q 
    thetacollective{q,1} = thetacell; 
    allsmatrices{q,1} = s_matrix; 
    allkmatrices{q,1} = kcell; 
    allfmatrices{q,1} = fmatrixcell; 
end 

  

  

  
iterativesolutioncomplete = 1.00 

  

l = L/n; 

  

  

  
Kmatrix(1) = 0.000001; % replaces first curvature with a very small 

number to  
%                      allow code to solve a linear system below (i.e. 

to 
%                      avoid singular matrix) 
angle = Kmatrix*l; 
globalangle = cumsum(angle); 
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xdisp = l - (sin(Kmatrix.*l))./(Kmatrix); 
ydisp = (1./Kmatrix).*(1 - cos(Kmatrix.*l)); 

  
xandydispcomplete = 1.00 

  
syms Xglobal Yglobal 

  
Xglobali = zeros(1,n); 
Yglobali = zeros(1,n); 

  

  
for i = 1:n 
qq = Xglobal == (l - xdisp(i) - 

sin(globalangle(i)).*Yglobal)/cos(globalangle(i)); 
zz = Yglobal == (ydisp(i) + 

sin(globalangle(i)).*Xglobal)/cos(globalangle(i)); 

  
[A, B] = equationsToMatrix([qq,zz],[Xglobal,Yglobal]); 

  
XY = double(linsolve(A,B)); 
Xglobali(i) = XY(1); 
Yglobali(i) = XY(2); 

  
end  

  
globaldisplacementscomplete = 1.00 

  
FinalX = cumsum(Xglobali); 
FinalY = cumsum(Yglobali); 
axis square 
plot(FinalX,FinalY) 

  
axis([-L L -L L]) 

  
toc 
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