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Abstract

During the past decade, the slow down of scaling in transistor technology has brought
the chip design to the “post-Moore” era, where integrating more transistors in a
single core system can no longer yield performance because of the power wall and
the utilization wall. As a revolutionary success, manycore systems have rapidly
penetrated into various markets such as desktop, laptop, servers, mobiles, and IoT
devices. The amount of resources in those manycore systems are scaling out, forming
various parallel systems such as Graphics Processing Units (GPUs), manycore CPUs
and heterogeneous datacenters. These systems provide huge computing capability and
become the default platforms for different communities such as scientific computing,
large-scale data analytics, entertainment and deep learning, where high performance,
accuracy, and quality of service are of concern. However, the delivered performance
rarely keeps up with the growing amount of resources. This is because of two major
challenges. First, the applications’ intrinsic irregularity makes them unable to utilize
the resources effectively and efficiently. Second, current systems are not able to
dynamically and automatically adapt to those application characteristics. Targeting
these challenges, this dissertation systematically researches the opportunities existing
in the software-hardware stack (i.e., compiler, runtime system, and architecture) with
the goal to effectively improve performance and energy-efficiency for applications,
especially for those applications with irregular computation and data access patterns.
Specifically, this dissertation consists of four parts. First, focusing on irregular
applications running on Graphics Processing Units (GPUs), it proposes controlled
computation spawning to dynamically improve compute resource utilization and
balance computation across parallel computing engines. Second, targeting poor cache
performance of irregular applications, it proposes a dynamic runtime approach to
exploit data reuse and improving cache locality. Third, focusing on data access
parallelism, it proposes a compiler directed approach to improve memory bank-level
parallelism. Finally, in addition to memory bank-level parallelism, it proposes co-
optimization strategies to maximize cache level parallelism while keeping the memory
bank-level parallelism maximized.
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Chapter 1 |
Introduction

Since the first working computer being implemented in 1946, the evolution in transistor
technology (known as Moore’s law) has driven the revolution of computer chip
developments for over several decades, from single cycle execution to pipelining, to
instruction level parallelism (ILP). Recently, there were plenty of evidences showing
that, as the transistors scaling smaller, the power wall and thermal constrains prohibits
the performance scaling expected from Moore’s law, bringing us to the “post-Moore’s
law” era [2–5].

Since 2004, the focus from both industrial and academia shifted from single-
core processor optimizations to multicore/manycore systems (also known as chip-
multiprocessors). Since then, the amount of resources in computing systems are
scaling out, forming various parallel systems such as Graphics Processing Units
(GPUs), manycore CPUs and heterogeneous datacenters. These systems with huge
compute capability become the default platforms adopted by various communities
such as scientific computing, large-scale data analytics, entertainment, and deep
learning, where high performance, accuracy, and quality of service are of concern.
The fundamental design philosophy behind the manycore system is that, instead of
integrating many transistors in a single socket and increasing the core frequency,
multiple simpler designed cores and other parallel resources (e.g., ASICs and 3D-
stacked memories) are connected through an on-chip network to provide tremendous
parallelism for different application execution scenarios. For instance, Apple A11 chip
is manufactured with 6 ARM cores [6] and IP cores for video processing. Qualcomm
Snapdragon [7] has 4 big cores and 4 little cores targeting both high-performance
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execution scenarios and low-power execution scenarios. For the server-level processors,
Intel Knight’s Landing Xeon Phi co-processor consists of 60 cores working at 1.5
GHz [8]. NVIDIA Volta GPUs have 84 streams multiprocessors (SMs) with each SM
having 64 32-bit floating point cores, providing a total of 5120 cores on a single die [9].
The tremendous parallel resources, either homogeneous or heterogeneous equipped
in modern manycore systems act as fertile soil for the programmers and application
designers to improve their application performance, energy-efficiency, and quality of
services through parallelization and high-throughput computing.
The Problem: However, the delivered performance of applications running on many-
core systems varies. For some applications, the performance improves proportionally
with the scaling of the resources, whereas for other applications, having more resources
does not yield any performance benefit, and sometimes even degrades the overall
performance. This is because of two major challenges. First, the application’s intrinsic
characteristics make them unable to utilize the resources effectively and efficiently.
One of these characteristics is irregularity. Unlike regular applications which deal
with dense matrices or dense vectors. Irregular applications deal with data structures
such as graphs, linked lists, etc. Most of these data structures are implemented using
pointers. As a result, the irregularity within applications makes the runtime behaviors
(e.g., computation distribution, data locality) very difficult to predict. Second, current
systems are not able to dynamically and automatically adapt to those application
characteristics. This brings one question onto the table: how to effectively and
efficiently exploit the parallel resources for performance and energy-efficiency? First,
different applications have different execution scenarios and hence there does not exist
one-size-fit-all solutions. For example, GPUs are known to be energy efficient and
performance beneficial for streaming applications with regular control flow and regular
data access pattern. However, for those irregular applications, running on GPUs
can lead to severe resource under-utilization or resource contention [10, 11] which
consequently degrades overall performance. Second, while computation parallelization
is absolutely important to the performance of manycore systems and has received
substantial attention, data access parallelism also plays an important role in shaping
the overall performance. Specifically, modern manycore systems generally adopt
on-chip networks, such as mesh, to connect compute cores, caches, and memory. This
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spatial distribution of resources introduces non-uniformity in terms of data access
latency. An example is that, as the memory system is portioned, memory utilization
can be very low and the performance suffered in the circumstance that all data
accessed are routines to the same memory partition in a short time of period.

Targeting those challenges, this dissertation adopts a holistic approach to research
on how to effectively and efficiently utilize parallel resources in manycore architectures
systematically. First, using GPU as a substrate, this dissertation investigates the
inefficiency of irregular application executions and researches on the question of when
to launch compute blocks such that the massive underlining compute resources are
exploited in a balanced fashion. Second, targeting the poor data locality while running
irregular applications on GPUs, this dissertation introduces a runtime hierarchical
scheduler to dynamically co-locate compute blocks with intensive data reuse such
that it can take advantages of the local cache hierarchy. Third, on a mesh-connected
manycore system, this dissertation researches improving memory access parallelism
and memory utilization by exploring the parallelism among memory banks (sub-
regions of memory). This is done by analyzing the application program at compile
time and reorganize/schedule the program statements at runtime. Finally, in addition
to memory-level parallelism, this dissertation explores cache-level parallelism in
manycore systems, and co-optimizes both memory-level parallelism and cache-level
parallelism.
Contribution 1: Managing Computation in GPGPUs. GPUs are known to
provide significantly high degree of parallelism and energy efficiency for applications
with regular data structures. Such structured and load-balanced mapping of the
computational workload facilitates efficient harnessing of the available compute
throughput and memory bandwidth in GPUs. However, for many emerging data-
intensive applications that work on irregular and unstructured inputs, the performance
on GPU drops significantly. To better support irregular applications, NVIDIA
introduced dynamic parallelism (DP) which provides applications with the flexibility
to launch kernels at the GPU side without CPU intervention. Such dynamically-
generated kernels can expose additional parallelism to GPU and potentially improve
resource utilization. However, there are two primary drawbacks of DP. First, launching
of such child kernels is not free. Aggressively launching too many child kernels can
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incur significant performance penalties arising from the launch overheads. Second, as
each GPU core can only run a fixed number of Cooperative Thread-Arrays (CTAs)
and each GPU can only execute a maximum number of concurrent kernels due
to the hardware-limitations, cores can be severely underutilized. To address the
aforementioned two drawbacks, we developed a runtime framework, underpinned by
the observation that a better workload distribution (partitioning) between the parent
and child kernels can minimize the exposed launch overheads and queuing latencies,
while maintaining enough parallelism to improve performance. The proposed approach
mitigates the aforementioned issues by dynamically controlling the launch of child
kernels depending on the state of the GPU. The framework estimates the launch
overhead and queuing latency, and based on this, it makes judicious decisions regarding
child kernel launches. Experimental results show that our approach significantly
improves the performance of the baseline dynamic parallel execution with an average
speedup of 57% across 13 dynamic parallelism benchmarks.
Contribution 2: Managing Data Reuse in GPGPUs. Dynamic kernel
launching in DP introduces parent-child and sibling-sibling relationships among GPU
schedulable units (i.e., kernels, thread blocks, and warps). Such relationships affect
the data access patterns of DP applications. For example, a parent kernel can
produce the data for its child kernel before launching it, and the child kernel can
consume the data. This provides us an opportunity to explore data reuse among the
schedulable units based on the new relationships in DP applications. Prior techniques
on GPU cache optimization involved throttling the available parallelism, bypassing
the cache for certain memory requests to reduce contention, and building efficient
cache management policies tuned towards GPU applications. While these techniques
improve cache performance for certain applications, they cannot be ported to improve
cache performance for DP applications, as they are agnostic to the on-demand kernel
launch behavior. Therefore, there are four questions emerged related to data reuse and
cache locality of DP applications: 1) how prevalent are intra-kernel and inter-kernel
data reuses in DP applications?; 2) what is the effect of launch overhead on data
reuse patterns?; 3) do neighboring CTAs have more temporal reuse or spatial reuse?;
4) is it necessary to always prioritize the child CTAs? To answer these questions, we
quantitatively characterized the data reuse of dynamic applications in three different
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granularities of schedulable units: kernel, CTA, and warp. We observe that, for DP
applications, data reuse is highly irregular and is heavily dependent on the application
and its input. Thus, existing techniques cannot exploit data reuse effectively for
DP applications. To this end, we first conduct a limit study on the performance
improvements that can be achieved by hardware schedulers that are provided with
accurate data reuse information. The limit study shows that, on average, performance
improves by 19.4% over the baseline scheduler. We next propose LASER, a Locality-
Aware SchedulER, where hardware schedulers employ data reuse monitors to help
make scheduling decisions to improve data locality at runtime. Our experimental
results on 16 benchmarks show that LASER, on average, can improve performance
by 11.3%.
Contribution 3: Managing Memory Access Parallelism. To maximize the
performance of multithreaded applications mapped to manycore CPUs, one needs to
consider end-to-end data access performance, not just the cache performance. In fact,
trying to maximize last-level cache (LLC) hit rates (which is the main goal of many
compiler schemes) does not guarantee good, let alone being optimal, end-to-end data
access performance. This is because off-chip accesses can consume a lot of cycles,
and more importantly, latencies they experience are not uniform, being dependent
on several factors such as bank-level parallelism (BLP), row-buffer locality, memory
scheduling policy, etc. Targeting data access parallelism, our first strategy, built upon
the inspector/executor paradigm, reorganizes LLC misses at runtime to maximize
memory bank level parallelism. We evaluate the proposed approach in both simulator
and real multicore hardware, and results indicate that the proposed strategy reduces
execution time by 18.3% on average. Our second strategy tries to maximize both
cache-level parallelism (CLP) of LLC hits and memory-level parallelism (MLP) for
LLC misses. Results indicate that (i) optimizing MLP first and CLP later can
bring, on average, 11.31% performance improvement over an approach that already
minimizes the number of LLC misses, and (ii) optimizing CLP first and MLP later
can bring 9.43% performance improvement. In comparison, balancing MLP and CLP
can bring 17.32% performance improvement on average.
Contribution 4: Managing Data Parallelism. While many commercial compil-
ers already employ a large suite of optimizations that target cache miss minimizations
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(e.g., loop permutation, iteration space tiling, loop fusion), the impact of these tech-
niques is becoming increasingly limited as (i) emerging applications are processing
enormous amounts of data, (ii) the increases in cache capacities are lagging far behind
the increases in application data volume [12, 13], and (iii) as a result, caches are
becoming unable to maintain application working sets even after aggressive cache miss
minimization. Targeting emerging NoC-based manycore systems/accelerators and
multithreaded workloads, in this dissertation, we propose a novel compiler framework
oriented towards reducing the latencies of both LLC hits and LLC misses, by increas-
ing their parallelism. At a high level, this is achieved by maximizing the number of
accesses to distinct cache banks and the number of accesses to distinct memory banks
in a given period of time.

The rest of the dissertation is organized as follows: Chapter 2 discussed the
deficiency while running irregular application on GPGPUs and proposed light-weigh
runtime support to dynamically control the workload distribution across GPU threads.
Chapter 3 investigated the data reuse opportunities for irregular applications and
proposed a hierarchical scheduling mechanism to improve the cache performance
of GPGPUs. Focusing on the memory system in manycore systems, Chapter 4
introduces a software approach to improve performance by exploiting memory bank
access parallelism. Chapter 5 introduces an approach to co-optimize both cache
access parallelism and memory access parallelism. In Chapter 6, we summarized the
related prior works and Chapter 7 draw the conclusion and future research directions.
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Chapter 2 |
Controlled Kernel Launch for
Dynamic Parallelism in GPUs

Dynamic parallelism (DP) is a promising feature for GPUs, which allows on-demand
spawning of kernels on the GPU without any CPU intervention. However, this feature
has two major drawbacks. First, the launching of GPU kernels can incur significant
performance penalties. Second, dynamically-generated kernels are not always able
to efficiently utilize the GPU cores due to hardware-limits. To address these two
concerns cohesively, this chapter proposes SPAWN, a runtime framework that controls
the dynamically-generated kernels, thereby directly reducing the associated launch
overheads and queuing latency. Moreover, it allows a better mix of dynamically-
generated and original (parent) kernels for the scheduler to effectively hide the
remaining overheads and improve the utilization of the GPU resources. Our results
show that, across 13 benchmarks, SPAWN achieves 69% and 57% speedup over the
flat (non-DP) implementation and baseline DP, respectively.

2.1 Introduction
Graphics Processing Units (GPUs) are known to provide significantly high perfor-
mance and energy efficiency for a variety of applications from different domains,
such as medical science [14, 15], finance [16, 17], social media, graphics [18], and
computer vision [19]. The CUDA and OpenCL programming models allow most of
these applications to naturally map thread computations to regular data structures.
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Such structured and load-balanced mapping of the computational workload facilitates
efficient harnessing of the available compute throughput and memory bandwidth
in GPUs. However, such balanced mapping is not always possible, especially for
many emerging data-intensive applications that work on irregular and unstructured
inputs (e.g., graphs [20–22] and adaptive meshes [23]). Consequently, with contin-
uously growing dataset sizes, it is becoming increasingly harder to effectively map
such applications to GPUs and achieve high throughput with the desired energy
efficiency [10,24,25].

Dynamic Parallelism (DP), supported by both CUDA [26] and OpenCL [27], is a
promising feature that enables superior portability of irregular applications on GPUs.
It provides applications with the flexibility to launch kernels at the device (GPU) side.
In other words, if some threads are assigned higher computational workload than
other threads, these threads (parent threads) can offload their workload by launching
additional kernels (child kernels).Such dynamically-generated kernels can expose
additional parallelism to GPU and potentially improve resource utilization [26].
However, there are two primary drawbacks of DP. First, launching of such child
kernels is not free. Aggressively launching too many child kernels can incur significant
performance penalties arising from the launch overheads [28]. Second, as each GPU
core can only run a fixed number of Cooperative Thread-Arrays (CTAs1) [29] and
each GPU can execute a maximum number of concurrent kernels due to the hardware-
limits [30], cores can be severely underutilized in phases where only child kernels2

are executing. This leads to an increase in queuing latency for the CTAs and kernels
that cannot be scheduled due to the hardware-limits.

To address the above two drawbacks, we develop a new runtime framework,
called SPAWN, underpinned by our observation that a better workload distribution
(partitioning) between the parent and child kernels can minimize the exposed launch
overheads and queuing latencies, while maintaining enough parallelism to improve
performance. SPAWN mitigates the aforementioned issues by dynamically controlling
the launch of child kernels depending on the state of the GPU. The framework

1A CTA is called as a “Workgroup” in OpenCL, and a “Thread-Block” in CUDA.
2Most of the child kernels launched are lightweight, and the CTAs associated with each child

kernel can have very few warps.
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estimates the amount of launch overhead and queuing latency based on the current
GPU workload, and based on this, it makes judicious decisions regarding child kernel
launches. If the framework decides not to launch child kernels for specific parent
threads, the overhead of launching child kernels is significantly reduced. Also, as
more computations are performed in the parent threads, the number of pending
child kernels and CTAs reduces. Therefore, the queuing latency that is exposed
substantially reduces as well. We make the following contributions in this chapter:
• We conduct an in-depth characterization of DP applications and quantitatively
study three parameters (factors) that affect the performance of dynamic parallelism.
We demonstrate that the workload distribution (partitioning between parent and
child kernels) is the most significant factor that affects the performance of a dynamic
parallel application. We observe that by tuning the workload distribution statically,
one can achieve performance improvements ranging from 4% to as much as 8.6×.
• We propose a novel runtime framework, called SPAWN, which dynamically tunes
the workload distribution between the parent and the child kernels. SPAWN improves
the applications’ resource utilization and minimizes the launch overhead and queuing
latency, and therefore, improves performance.
• Experimental evaluations show that SPAWN significantly improves the performance
of the baseline dynamic parallel execution with an average speedup of 57% across
13 benchmarks. It is also able to perform within 6% of the performance achieved
by the best offline workload distribution. SPAWN outperforms the flat (non-DP)
implementations by 69% on average, making dynamic parallelism a viable option in
GPUs.

2.2 Background
In this section, we provide a brief background on dynamic parallelism (DP) and
critical factors that affect its behavior.

2.2.1 Irregular Applications and DP

To help understand the inefficiencies of irregular applications running on a GPU,
let us consider Breadth-First-Search (BFS) as an example. Assuming that each
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thread represents a vertex, threads that traverse more edges (the vertices that have
high number of neighboring vertices) require more computation. Figure 2.1 shows a
snippet of BFS threads. Threads T1, T5 and T7 have few edges to traverse, while
the threads T3 and T6 traverse more edges. In such a scenario, when threads T1, T5
and T7 finish, a lot of compute resources are left underutilized. Clearly, the overall
performance is determined by threads T3 and T6. Many other irregular applications
also suffer from this workload imbalance, causing performance loss when running on
GPUs [10,31–33].
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Figure 2.1: Illustrating workload imbalance in BFS.

Dynamic Parallelism (DP) is a mechanism supported by both CUDA [26] and
OpenCL [27] that enables device-side kernel launches. Figure 2.2a shows the high-level
structure of a conventional (non-DP) GPGPU application consisting of threads, CTAs,
and kernels. A kernel contains multiple CTAs which can execute independently of
each other. A CTA is a batch of threads which can communicate and synchronize
with one another. The GPU hardware schedules threads into the pipeline in groups
called “warps”. As opposed to a conventional GPU application, a DP application
can launch nested kernels from the device, as illustrated in Figure 2.2b. Each parent
kernel can launch one or more child kernels. A child kernel itself can launch further
child kernels and exhibit a nested launching pattern. Synchronizations are provided
on device to guarantee the execution correctness. Through child kernel launches,
a DP application can exploit more parallelism than its flat (non-DP) counterpart.
This feature is particularly useful for irregular applications, where there can be large
imbalances across the workloads assigned to different threads.
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Figure 2.2: High-level structures of conventional GPU applications and DP applica-
tions.

2.2.2 Properties of DP Applications

To trigger device kernels, a DP application is structured differently from a conventional
GPU application. Figure 2.3 is an example code fragment extracted from BFS3. In this
figure, (a) shows the code segment executing on the CPU (host), which is agnostic of
any specific DP implementation. (b) shows the implementation of a parent kernel with
the ability to launch device side kernels (child kernels), and (c) shows the application
code for child kernels. For each child kernel, there are three unique parameters:
THRESHOLD, (c_grid, c_cta), and c_stream, shown in red in Figure 2.3b.
THRESHOLD: As explained previously, if a thread has a lot of edges to traverse
in BFS, spawning a new kernel from that thread can increase parallelism. To achieve
this, a THRESHOLD is set for a parent thread to decide whether to launch a child
kernel or to traverse all the edges serially. For example, if the THRESHOLD is
set to 128, threads with more than 128 edges to traverse will launch a child kernel
to perform the work. Other threads with less than 128 neighboring vertices will
perform the traversal in loops (that is they will not create child kernels; instead,
they will do the work by themselves in an iterative fashion). CUDA programming
model allows applications to set any value as a THRESHOLD : a large value will
result in a few heavyweight child kernels, whereas a small value will lead to a large

3Although the same approach is applicable to both OpenCL and CUDA, we show an implemen-
tation of BFS written in CUDA.
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1.       __global__ void parent (type *workload){

2.             int pid = blockIdx.x*blockDim.x + threadIdx.x;

3.             type *local_workload = workload[pid]; /**each parent threads pick up its workload*/

4.             if (local_workload > THRESHOLD){

5.                   dim3 c_grid; dim3 c_cta; 

6.                   cudaStream_t c_stream;

7.                   cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

8.                   child<<< c_grid, c_cta, shmem, c_stream>>>(type *local_workload);}

9.            else

10.                   while(local_workload){…}

11.              …

12.              cudaDeviceSynchronize(); /**waiting all children finishing*/

13.       }

1.       int main( int argc, char** argv){

2.             …

3.             dim3 p_grid; dim3 p_cta; /**parent kernel dimension*/

4.             parent<<< p_grid, p_cta>>>(type *workload); /**parent kernel launch*/

5.             …}

1.       __global__ void child(*c_workload){

2.             int cid = blockIdx.x*blockDim.x + threadIdx.x;

3.             …

4.       }

(a)

(c)

(b)

Figure 2.3: Structure of BFS using DP. (a) Host code segment. (b) Parent kernel
code segment. (c) Child kernel code segment.

number of lightweight child kernels. Clearly, setting a proper THRESHOLD value is
a non-trivial task, as the value selected needs to reduce workload imbalance while
avoiding significant overheads (Section 2.2.3). Most DP applications [28,34–36] make
use of a small THRESHOLD value.
(c_grid, c_cta): Another important responsibility of the parent thread is to specify
the dimensions of its child kernel. c_grid specifies the grid dimension in terms of the
number of CTAs, and c_cta specifies the number of threads per CTA. c_grid and
c_cta capture how the workload is parallelized in a child kernel.
c_stream: The last important responsibility of the parent thread is to assign
Software-managed Work Queue (SWQ) IDs to child kernels. These SWQs are called
c_stream in CUDA programming. Child kernels with the same SWQ ID execute
sequentially. In other words, all child kernels with the same SWQ ID execute
sequentially but those with different SWQ IDs can potentially execute in parallel.
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An application creates a SWQ ID for each child kernel by initializing c_stream
before launching a child kernel (lines 6 and 7 in Figure 2.3b). If the application does
not specify c_stream, each parent CTA assigns the same SWQ ID to all its child
kernels [37]. As a result, all the child kernels launched from the same parent CTA
execute sequentially.

2.2.3 Hardware Architecture

The necessary architectural support for DP is shown in Figure 2.4. Similar to the
traditional GPU applications (i.e., those without DP), a DP application starts running
on the host ( 1 ), and the parallel portion of the code is offloaded to the GPU through
a runtime API ( 2 ). A GPU kernel is tagged with a SWQ ID ( 3 ), and pushed into
Pending Kernel Pool located in Grid Management Unit (GMU) ( 4 ). Kernels with the
same SWQ ID are mapped into a single hardware work queue (HWQ). CTAs from
a chosen HWQ’s head-of-the-line kernel are dispatched to the GPU multiprocessor
units ( 5 ). The number of HWQs is 32 according to publicly-available documents
from NVIDIA [30]. Therefore, the maximum number of kernels that can concurrently
execute on the GPU is 32. Note that a CTA needs to wait in GMU if its required
resources are not available or the hardware-limits are reached. The amount of time
spent in GMU is called queuing latency.

Child kernels are launched through by invoking the related Runtime API function
calls ( 6 ). These API functions prepare the child kernel parameters and push the kernel
into Pending Kernel Pool in GMU. Note that these API calls are asynchronous [37],
and allow the parent thread to continue its execution without waiting for the child
kernel to be launched. The parent thread stops and waits for its child kernels to finish
only when it finishes its execution or reaches an explicit synchronization point. If an
entire parent CTA is waiting for synchronization, it relinquishes the occupied GPU
resources so that other CTAs can be scheduled. It is important to emphasize that
full memory consistency is only guaranteed at launching point and synchronization
point; DP provides weak memory consistency between the launching point and
synchronization point [37].

Launching a child kernel is not free, and entails performance overheads. The time
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Figure 2.4: Hardware architecture realizing DP.

spent on invoking the API ( 6 ) and pushing the child kernel into Pending Kernel
Pool ( 3 + 4 ) is called launch overhead. This launch overhead can potentially be
hidden by overlapping the execution of other available warps on SMXs. However, in
cases where a majority of running parent threads launch child kernels within a short
period of time, such high number of API calls cannot be serviced simultaneously. As
a result, the resulting launch overheads can degrade performance.

2.3 Application Characterization and Motivation
In this section, we first characterize all three parameters mentioned above using
our benchmarks. We observe that THRESHOLD is the most significant contributor
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towards performance since it directly controls the workload distribution between the
parent and child kernels. We next show how this workload distribution can affect: 1)
the launch overheads and queuing latency, and 2) the GPU utilization.

2.3.1 Benchmarks, Metrics, and Observations
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Figure 2.5: Effect of parent-child workload distribution on overall performance. We
calculate the speedup in simulator (bars) and hardware (dashed curve) separately,
by normalizing performance to the performance of running application’s flat (non-
DP) implementation on simulator and hardware, respectively. The x-axis shows the
percentage of workload offloaded by launching child kernels.

We use 8 applications and generate 13 benchmarks (each benchmark is an
<application, input> pair) by varying input sets of a few applications. The ap-
plications along with the benchmarks are listed in Table 2.1. MM and SA are two
applications written by our group. In MM, each parent thread multiplies one row (or
couples of rows) of the multiplicand matrix with an entire multiplier matrix. In the
DP version, a parent thread launches a child kernel and each thread of that child
kernel picks up one column from the multiplier matrix to perform multiplication. In
SA, all the reads 4 are divided into sections. Each parent thread handles one section
of reads. For each read, there are several candidate locations in the reference index

4A read is a substring of genome.
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to match. The number of candidate locations varies among reads. In the DP version
of this application, a thread launches a child kernel for a read if it has too many
candidate locations. All the applications have a flat variant that does not use dynamic
parallelism.

Table 2.1: List of benchmarks.

Applications Input Sets Benchmarks
Adaptive Mesh Combustion AMR
Refinement [28] Simulation [38]
Breadth-First Citation Network [39] BFS-citation
Search [21,28] Graph 500 [39] BFS-graph500
Single Source Shortest Citation Network [39] SSSP-citation
Path [10,28] Graph 500 [39] SSSP-graph500
Relational Join [28,40] Uniform Data JOIN-uniform

Gaussian Data JOIN-gaussian
Graph Coloring [41] Citation Network [39] GC-citation

Graph 500 [39] GC-graph500
Mandelbrot Set N/A Mandel
Matrix Small sparse matrix MM-small
Multiplication Large sparse matrix MM-large
Sequence Arabidopsis SA-thaliana
Alignment [42] Thaliana [43]

We measure performance using speedup, which is the ratio of the execution time
of the flat (non-DP) implementation to the execution time of the DP implementation.
We use geometric mean to represent the average speedup across all benchmarks.
We also define resource utilization as the maximum of the register file utilization,
shared memory utilization, and GPU compute unit (SMXs) utilization.

For our 13 benchmarks (Table 2.1), we study the performance impact of varying
the workload distribution ratio between the parent and child kernels. Each plot in
Figure 2.5 represents one benchmark and the percentage numbers on x-axis represent
the amount of workload offloaded to child kernels. Note that this analysis is static (off-
line), performed by changing THRESHOLD in the application code. It is important
to emphasize that offloading 100 percent of a workload to child kernels is also possible.
However, this would lead to intra-warp inefficiency because a very small workload
might not use all the threads in a warp.

We show the results obtained from both the simulator and a real hardware
in Figure 2.5. The yellow bars represent the performance results obtained using a
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modified version of GPGPU-Sim [1,44], and the dashed lines represent the performance
results obtained using NVIDIA Tesla K20m GPU. We use NVIDIA CUDA profiler [45]
to profile the performance on hardware. The performance trends observed when
using the simulator and the real hardware are similar. All the other observations and
results provided in the rest of this chapter are based on simulation results. From this
analysis, one can make four major observations:
Observation 1: The preferred workload distribution ratio for each benchmark is
different. Further, a given application (e.g., BFS) can have different preferred workload
distribution ratios for different inputs.
Observation 2: Two of the benchmarks (Join-uniform and AMR) prefer processing
the majority of work within the parent threads instead of launching child kernels.
Join-uniform’s input is regular, and the workload is balanced across all parent
threads, leading to its preference of performing the workload within parent threads
without launching child kernels. On the other hand, AMR launches nested child kernels
and it is bottlenecked with the concurrent CTA limitation, and thus it also prefers to
perform computations within the parent threads.
Observation 3: Three of the benchmarks MM-small, MM-large, and SA-thaliana

prefer offloading a significant amount of workload to child kernels. In MM, both inputs
are sparse matrices, resulting in severe workload imbalance among threads. Similarly,
the number of candidate positions in SA varies among different reads, leading to
workload imbalance among threads. Additionally, both MM and SA launch a small
number of heavyweight child kernels, which means that the launch overheads have
already been effectively hidden by the interleaved execution.
Observation 4: All the other benchmarks gain significant (8.6× in SA-thaliana)
to modest (4% in Join-Gaussian) performance improvements by offloading parts of
their computational workloads to child kernels, except GC-citation. In GC-citation,
the number of child kernels is few ( < 2300 child kernels), and the amount of work
in a parent is still significant to hide the launch overheads, leading to little variance
between processing in the parent kernel and offloading to the child kernels.

To understand how a workload distribution impacts the GPU core utilization,
consider Figure 2.6 which shows an execution snippet of BFS-graph500. The figure
plots the number of concurrently-executing CTAs along with the resource utilization
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Figure 2.6: CTA concurrency and resource utilization over the course of execution of
BFS-graph500 Baseline-DP. The maximum number of concurrently-running CTAs
across all SMXs is 208. The total number of concurrently-running CTAs is the sum
of the number of concurrent-executing child and parent CTAs.

(as defined in Section 2.3.1). Initially, until cycle i , only the parent CTAs are
executing. The child CTAs start their executions beyond that point, increasing
resource utilization until the maximum concurrent CTAs is reached (between i

and iii ). Due to this hardware-imposed limit, even with enough available hardware
resources, the GPU cannot run more CTAs. Starting from time ii , the parent CTAs
start to finish and relinquish resources, allowing more child CTAs to be scheduled.
The resource utilization keeps decreasing because the child CTAs usually tend to
be lightweight, not requiring as much hardware resources as the parent CTAs [28].
The number of concurrent child CTAs fluctuates between iii and iv because of two
reasons. First, apart from the concurrent CTA limitation, there is a concurrent kernel
limitation due to the limited number of HWQs. As a result, a large number of child
kernels with a few CTAs per kernel will hit the concurrent kernel limit instead of the
concurrent CTA limit, leading to a few concurrent child CTAs. Second, the trailing
child kernels have long latencies before they can start executing, resulting in system
idleness due to launch overheads. We show in Section 2.4 how an intelligent workload
balance can allow a better GPU core occupancy, thereby improving the overall GPU
utilization.
(c_grid, c_cta): Figure 2.7 shows the performance variation with varying child CTA
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dimensions. The speedup is normalized to the CTA dimension with 32 threads. We
observe from this plot that only certain applications such as AMR and SSSP-graph500

are sensitive to the CTA dimensions. AMR is bottlenecked by the hardware CTA
concurrency limit under small CTA dimensions. Larger CTA dimensions prevent AMR
from reaching this CTA concurrency limit. SSSP-graph500 prefers smaller child CTA
dimensions, because the resource requirement for each of the child CTAs is high due
to the unavailability of hardware threads. As a result, in SSSP-graph500, having
smaller CTAs helps the CTA scheduler allocate more CTAs on SMXs, as the resource
requirement is low compared to a larger-sized CTA.
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Figure 2.7: Performance sensitivity to different CTA sizes (64, 128, and 256 thread-
s/CTA).

c_stream: We also studied the impact of the number of SWQs on performance. As
discussed in Section 2.2.2, child kernels can be assigned with 1) a unique SWQ id for
each child kernel, or 2) the same SWQ id for all child kernels being generated by a
given parent CTA. The former enables more kernels to run concurrently, whereas the
latter has fewer SWQs to manage. We compare these two mechanisms in Figure 2.8,
and observe that assigning each child kernel a unique SWQ id always performs better.
This is mainly because, in the second mechanism, a sequential execution of kernels
limits concurrency. Therefore, we choose to assign each child kernel a unique SWQ id
in all of the experiments presented in the rest of this chapter.

In conclusion, our characterization shows that varying the workload distribution
ratio (THRESHOLD) results in significant performance impact for our applications,
while the other parameters do not affect most of the applications.
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one SWQ per parent CTA.

2.3.2 Potential Benefits of Parent-Child Workload Distribution

We now show the potential benefits of different workload distributions (partitioning)
between the parent and child kernels with the help of an example. For the convenience
of explanation, we assume there are 3 HWQs. In Figure 2.9, I shows the execution
time-line of the baseline DP scenario. At the very beginning, the parent kernel
starts its execution, and there are multiple parent CTAs that are being executed
concurrently. At some point during the execution, the local workload of some threads
is found to be greater than THRESHOLD. These threads launch child kernels while
the other threads proceed normally. As discussed in Section 2.2.3, these child kernels
need to wait for a period of time before they can start executing due to the launch
overhead (A ). We further assume that each child kernel is associated with one unique
SWQ id. However, since the number of HWQs is 3, there can be only 2 child kernels
running concurrently along with the parent kernel. The remaining kernels have to
wait and this results in increased queuing latencies. In I , most of the parent threads
launch child kernels, and consequently, the amount of computation performed by the
parent kernel is less. As a result, most parent threads finish their executions faster
and the GPU is under-utilized as child kernels are not able to start executing right
away. There are two major shortcomings in this baseline DP execution. First, it
cannot hide all the launch overheads. Second, due to the large number of child kernels
in the queue and limited concurrency (number of HWQs) of the GPU hardware,
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the queuing latency of the child kernels can be quite high, leading to performance
degradation.

Figure 2.9 II shows a possible solution to mitigate these performance penalties.
By limiting the workload offloaded to child kernels, first, the overall number of
child kernels is reduced. This results in few and sparse child launching API calls
and consequently reduces the launch overhead. In addition, more computation is
performed within the parent threads. As a result, the parent thread execution is
extended and can hide the launch overhead and queuing latency more effectively.
A better workload balance, although not optimal, is achieved in II . It saves us B

execution cycles.
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Time
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Figure 2.9: Time-line graph showing the benefits of balanced workload distribution
between the parent and child kernels.

Obviously, in the best case scenario, the launch overhead is completely hidden
while all necessary child kernels are launched to improve parallelism. Queuing latency
also reduces since there are fewer pending kernels. III depicts such a case. Further
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execution time savings can be achieved by balancing the workload between the parent
and child kernels if more concurrency is available. Such an approach takes full
advantage of the available parallelism in a workload-balanced fashion, resulting in
additional savings of C cycles.

In summary, the workload distribution (partitioning) between the parent and child
kernels is the most important parameter, and has a significant performance impact on
DP applications. Since the preferred ratio varies among different applications (even
with different inputs for the same application), setting a proper ratio is non-trivial
and requires the knowledge of GPU runtime state. This, in turn, motivates the need
for a dynamic mechanism that can control the workload distribution ratio between the
parent and child kernels on the fly . To this end, we propose our runtime framework
SPAWN.

2.4 SPAWN: Dynamic Launch Control of Child Ker-

nels
In this section, we describe our proposed approach to determine a balanced workload
distribution between the parent and child kernels.
Overview: To achieve a balanced workload distribution between the parent and child
kernels, we propose a runtime framework called SPAWN, oriented towards improving
the GPU performance. The goal of SPAWN is to 1) improve GPU occupancy, 2)
prevent the application from reaching the hardware-limits, and 3) dynamically control
the performance trade-offs between increasing parallelism (launching child kernels)
and incurring overheads.
Challenges: In order to effectively achieve a balanced workload distribution between
the parent and child kernels, we should be able to estimate how beneficial it will be to
launch a new child kernel, as opposed to performing the specified computation within
the parent thread. To better explain this, let us consider the example depicted in
Figure 2.10, which shows the child kernel launches from three different parent threads
(PTi).

At time t1, two parent threads PT1 and PT2 launch their respective child kernels
(C1 and C2), and these child kernels start their executions at time t3. PT3 makes
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Figure 2.10: Illustrating the advantages and importance of knowing the runtime
status while a parent thread is launching a child kernel.

a decision whether to launch C3 or not at t2. if C3 is launched, it cannot start its
execution immediately due to the launch overhead. Let us assume that C3 is launched
and can start its execution at time t4. Based on the hardware requirements of C1

and C2 at time t4, one can have two different scenarios. In Scenario I, C1 and C2

occupy most of the GPU resources for a long duration. In such a case, child kernel
C3 needs to wait for a long time for GPU resources to be freed up so that it can
start its execution. Finally, C3 finishes its execution at t7. However, if PT3 performs
the computations itself without launching C3 at time t2, it finishes its execution at
t6, resulting in shorter execution time than the case where PT3 launches C3. On
the other hand, as illustrated in Scenario II, C1 and C2 could be short running
kernels and occupy resources for a short period of time. This would cause C3 to start
its execution earlier and thus, finish faster at t5, where t5 < t6. Therefore, in this
second scenario, launching a child kernel for PT3 would be beneficial for improving
performance.
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2.4.1 The SPAWN Model

There are two major components of our SPAWN framework: Child CTA Queuing
System (CCQS) and SPAWN Controller. As shown in Figure 2.11, CCQS monitors
the launched child kernels and provides feedback information to the SPAWN controller
enabling the latter to make a decision about child kernel launchings.
Child CTA Queuing System (CCQS): CCQS models the Grid Management Unit
(GMU) as a “queue” and the SMXs as a server. The launch of child kernels generates
CTAs, which act as “jobs” for CCQS5. As shown in Figure 2.11, the arrival rate of
the jobs is denoted by λ. It conveys the spawning rate of CTAs from the new child
kernels into the system. The throughput of CCQS is denoted by T . It conveys the
rate of processing the child kernel CTAs on the GPU. Let n be the number of total
jobs in CCQS, including both the running and pending child CTAs. Since CCQS
works in a FCFS fashion, newly-launched child CTAs need to wait for the previous
CTAs to be drained from CCQS and relinquish the occupied resources. Note that, if
the child CTA arrival rate (λ) is greater than the throughput (T ), CCQS accumulates
more child CTAs, leading to long queuing latencies for newly-launched kernels.

SPAWN 

Controller
SMXs

Child CTA Queuing System (CCQS)
Spawn 

Childs

Compute in Parent Thread

GMU

𝒏

𝑇𝝀

Figure 2.11: High-level view of SPAWN.

The SPAWN Controller: At each kernel launch call, SPAWN controller is invoked,
and it is responsible for estimating the benefit of launching that child kernel, and
making a decision on launching or not. For each child kernel, there are three time
components involved: 1) launch overhead, 2) queuing latency, and 3) execution time.
In our SPAWN framework, the launch overhead is modeled as the time to push
child CTAs from SPAWN controller to CCQS. Note that we separate the launch
overhead from CCQS, as CCQS tracks the child kernel CTAs only after they are

5We use CTA granularity for our model because of two reasons: 1) each CTA execution is
independent, and 2) CTAs cannot be preempted, or migrated to another core [37].
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pushed into GMU. Queuing latency is modeled in CCQS as queuing time, and is
calculated by examining throughput (T ) and the number of jobs (n) residing in
CCQS. Execution time on cores is modeled as the service time in CCQS, and is
calculated using throughput (T ) and the number of CTAs (x) that the new kernel
has. Therefore, we can approximate the time it takes for a new child kernel to finish
its assigned workload using Equation 2.1,

tchild ≈ Launch overhead +
n

T
+
x

T
(2.1)

where:

T = Average Number of Concurrent CTAs
Average Child CTA Execution Time and

x is the number of CTAs in the new kernel.

Similarly, Equation 2.2 estimates the time needed by the parent thread to perform the
computations within itself rather than performing them in a child kernel. Generally,
the parent thread will perform the computation in an iterative fashion. Each iteration
time is approximately similar to the counterpart’s child warp execution time.

tparent ≈ Workload× twarp (2.2)

where:

twarp is Average Child Warp Execution Time

By comparing the results of these two equations, our SPAWN controller chooses the
option with the lower estimated execution time. Algorithm 1 gives the working of
SPAWN in detail. Initially, it decides to launch child kernels because there is no
CTAs in CCQS (line 2 to 3). Line 5 and line 6 represent Equations 2.1 and 2.2,
respectively. Note that, there is a maximum queue size in CCQS, which we set to
65,536 in our implementation, based on the Kepler architecture [30].
Accuracy: SPAWN controller uses the historical average child CTA execution time
to estimate the execution time of newly-launched child CTAs. In other words,
SPAWN might make wrong decisions and lose opportunities if the execution time
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Algorithm 1 SPAWN Controller
INPUT:

n : Total child CTAs in CCQS.
x : number of CTAs in new child kernel.
workload : Workload hold by parent thread.
toverhead : Child launch overhead.
tcta : Average child CTA execution time.
twarp : Average child warp execution time.
ncon : Average number of concurrent CTAs.
tchild : Estimated child kernel execution time.
tparent : Estimated parent thread execution time.

1: Initialization
2: if tcta = 0 then
3: Spawn child kernel
4: end if
5: tchild ← toverhead + (x + n)× tcta/ncon

6: tparent ← workload× twarp

7: if tchild 6 tparent and n+ x 6 max_queue_size then
8: n ← n + x
9: Spawning Child Kernel
10: else
11: Process computation in parent thread
12: end if

has a big variance among most child CTAs. However, this does not happen in most
DP applications because: 1) all child CTAs share the same instructions and thus
require similar hardware resources, and 2) child kernels are essentially lightweight
and contain lightweight CTAs. Therefore, it is unlikely that the child CTA execution
times significantly vary. In Figure 2.12, we show the PDF of child CTA execution
time from four of our benchmarks. As one can see, 95% of the child CTAs (80%
in SSSP-graph500) have their execution time within 10% of the average child CTA
execution time. Because of this characteristic, even though SPAWN needs time to
get tcta converge to the average at the beginning of execution (within 5% of total
execution), it can accurately estimate most child kernel execution times and make
proper decisions for the remaining execution of the program.

2.4.2 Implementation Details

Figure 2.13 shows the high-level implementation of our SPAWN runtime framework.
This implementation has two parts: 1) a source-to-source translator, and 2) an
extension to the CUDA runtime that acts as a wrapper for the SPAWN controller
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Figure 2.13: High-level view of SPAWN implementation.
function.
Source-to-Source Translator: Figure 2.14 shows the translated source code. First,
the declaration of the kernel environment variables are moved outside the condition
block, and the CUDA device launch function is used as the condition clause. The
API function call returns with a flag of “success” when the child kernel is launched;
otherwise, it returns with “fail” and the workload will be computed by the parent
thread. Second, the child kernel launch needs to integrate the local_workload param-
eter into the CUDA runtime call to facilitate the estimation of the execution times in
the SPAWN controller. This relieves the programmer from specifying any value of
THRESHOLD.
CUDA Runtime Extension: We extend the CUDA Runtime, specifically the
device kernel launch API call to integrate the SPAWN controller. At runtime, when
the child kernel launch API is executed, SPAWN makes the decision regarding the
launch of a child kernel by examining CCQS.
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1.      __global__ void parent (type *workload){

2.             type *local_workload = workload[pid]; //each parent threads pick up its workload

3.             dim3 c_grid; dim3 c_cta; 

4.             cudaStream_t c_stream;

5.             cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

6.             if (child<<< c_grid, c_cta, shmem, c_stream, local_workload>>>(type

*local_workload)){ … }

7.             else

8.                   while(local_workload){…}

9.              …

10.              cudaDeviceSynchronize(); //waiting all children finishing.

11.       }

Figure 2.14: Translated version of the source given in Figure 2.3b.
Monitored Metrics: We monitor the following metrics: 1) n, 2) tcta, 3) ncon and 4)
twarp. As mentioned in Section 2.4.1, we need n and T to calculate the child kernel
execution time. In order to compute T , we use two proxy metrics: i) tcta, average
child CTA execution time and ii) ncon, average number of concurrent child CTAs.
Similarly, we monitor twarp, average child warp execution time, to estimate the parent
thread execution time. At the start of an application execution, all the metrics are
initialized to 0. n is incremented/decremented in the SPAWN controller whenever a
child CTA either enters or leaves CCQS. tcta is updated only when a CTA finishes
its execution and leaves CCQS. We compute ncon over a window of 1024 cycles. At
every cycle, we add the number of concurrently executing child CTAs to ncon and, at
the end of the window, we bit-shift ncon by 10 bits to the right to obtain the average
number of the concurrently-running child CTAs in the window. This average number
is then used over the next window until a new value of ncon is calculated. Similarly,
twarp is also calculated in a windowed fashion.
Hardware Overheads: The main hardware overheads involve storing and updating
the monitored metrics and computing the execution time. As shown in Figure 2.4,
GMU is extended with the SPAWN logic ( 8 ). It requires a 416 bytes table to keep
track of each running child CTA’s execution time6. It also requires one 16-bit register
to hold n, two 16-bit adders and one shift register to calculate the estimated execution
time. When a child CTA finishes its execution, it updates the related metrics located
in GMU. Since the cores and GMU already communicate every cycle, this does not
cause any extra communication overhead. The child kernel launch API communicates

6The table includes 208 entries, and each entry is a 16-bit cycle counter.
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with SPAWN ( 7 ) and returns the decision immediately, as the kernel launch API
call is asynchronous.

2.5 Experimental Evaluation

2.5.1 Simulated System

We use a modified version of the cycle-accurate GPGPU-Sim v3.2.2 [44] that is able
to simulate concurrent kernel execution and support dynamic parallelism. Table 2.2
provides the configuration details of the simulated system. The simulated system is
modeled with 32 Hardware Work Queues (HWQs), therefore, limiting the maximum
number of concurrently executing kernels to 32. In our simulation framework, we
modify the GPU runtime to support SPAWN as described in Section 2.4.2.

Table 2.2: GPU configuration parameters.

SMX 13 SMXs, 1400MHz, 5-Stage Pipeline
Resources per 48KB Shared Memory, 64KB Register File,
SMX Max.2048 threads (64 warps, 32 threads/warp)
cache per 16KB 4-way L1 D-cache, 12KB 24-way
SMX Texture cache, 8KB 2-way Constant cache,

2KB 4-way L1 I-cache, 128B cacheline .
L2 Unified 128KB/Memory Partition, 1536KB Total Size,
cache 128B cacheline, 8-way associativity
Scheduler Greedy-Then-Oldest (GTO) [46] dual warp

scheduler, Round-Robin (RR) CTA scheduler
Concurrency 16 CTAs/SMX, 32 HWQs across all SMXs
Interconnect 1 crossbar/direction (13 SMXs, 6 MCs)

1.4GHz, islip VC & Switch Allocators
DRAM Model 2 Memory Partition/MC, 6 MCs,

FR-FCFS (128 Request Queue Size/MC)
Child Kernel Latency = Ax + b where A is 1721
Launch cycles, b is 20210 cycles, x is number
Overhead of child kernels launched per warp [1]

2.5.2 Experimental Results

We study the effects of utilizing our SPAWN mechanism across 13 benchmarks
(Table 2.1). All the speedup results have been normalized to the execution of a flat
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(non-DP) variant of each benchmark. For each benchmark, we analyze the results for
three different schemes: 1) the baseline dynamic parallelism execution (Baseline-DP),
2) the best workload distribution ratio7 (Offline-Search), and 3) SPAWN. Figure 2.15
shows the speedups obtained when using three different schemes. Across the 13
benchmarks evaluated, we observe an average speedup of 69% and 57% compared to
the flat variant and Baseline-DP execution, respectively. That is, although Baseline-
DP performs better than flat version, our SPAWN significantly outperforms both flat
and Baseline-DP. For the Offline-Search execution with the best workload distribution
ratio, we obtain performance improvement of 61% over Baseline-DP execution.
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Figure 2.15: Speedup over the flat (non-DP) implementation.

We make three important observations based on these results. First, SPAWN is
able to match the speedup obtained by Offline-Search, irrespective of whether the
benchmark prefers launching child kernels or performing the computations within
the parent thread. For example, SA-large has high performance when offloading a
significant amount of work to the child kernels, whereas AMR prefers processing within
the parent threads. SPAWN successfully captures the characteristics of these two
dissimilar benchmarks. Note that, SPAWN is able to achieve within 4% of the Offline-
Search’s performance. Second, for three benchmarks, BFS-graph500, GC-graph500,
MM-small, SPAWN performs better than Offline-Search. The slight performance
improvement in SPAWN is due to Offline-Search being agnostic to the GPU hardware
state. SPAWN is able to dynamically tune the workload distribution over the course

7We pick the best workload distribution ratio by performing an exhaustive sweep of the THRESH-
OLD metric, as mentioned in Section 2.3.
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of execution, taking into consideration the current state of the GPU, and also, it
is able to control workload distribution decisions on a per kernel basis rather than
using a statically fixed THRESHOLD value. Third, SPAWN under-performs for
SSSP-graph500 compared to Offline-Search and is similar to performance of Baseline-
DP. This is because, for the monitored metrics to be useful to SPAWN, some child
CTAs need to finish for the metrics to be updated to an accurate value. However, in
SSSP-graph500, by the time the first child kernel finishes and updates the metrics,
SPAWN had already made incorrect decisions and launched all the child kernels at
this phase of execution.
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Figure 2.16: SMX occupancy.

Figure 2.16 shows the achieved occupancy across all SMXs. SMX occupancy is
defined as the ratio of the average active warps per active cycle to the maximum
number of warps supported on all SMXs. A higher SMX occupancy could potentially
improve the GPU performance and provide more latency tolerance towards child
kernel launch overheads and queuing latency as seen by correlating Figure 2.15
and Figure 2.16. SPAWN achieves, on average, 1.96× higher SMX occupancy over
Baseline-DP, and is within 4% of the SMX occupancy achieved by Offline-Search.

We next evaluate the impact of SPAWN on cache performance. Figure 2.17 shows
the L2 cache hit rate for the three evaluated schemes. Although SPAWN does not
take data reuse and data access pattern into account, the L2 hit rate increases by
around 10% compared to the Baseline-DP execution. This is mainly due to two
reasons: 1) L2 cache contention is significant in Baseline-DP due to the high number of
concurrently-executing child kernels, and 2) child kernels cannot execute immediately
because of the launch overheads and queuing latency. This delay in execution of child
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Figure 2.17: L2 cache hit rate.
kernels causes the loss in both temporal and spatial locality between the parent and
child kernels [47]. SPAWN is able to increase locality by providing more computations
to parent (improving spatial locality) and allowing the parent execution to last longer
and overlap with the launched child kernels (improving temporal locality).
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Figure 2.18: Number of child kernels launched.

Figure 2.18 shows the number child kernels that are launched during the bench-
mark’s execution for the three different schemes. Note that the trend in the number
of child kernels launched in Offline-Search execution and SPAWN are similar to each
other. With SPAWN, the number of child kernels launched significantly reduces (by
73% on average). This reduction in the child kernel count helps in reducing the launch
overhead and queuing latency. In the following subsection, we discuss the working of
our SPAWN mechanism in detail.
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Figure 2.19: Concurrent CTAs of BFS-graph500 over time.

2.5.3 Dynamic Workload Distribution

To better understand the working of our SPAWN mechanism, we describe the child
kernel launch patterns for the Baseline-DP execution and our SPAWN mechanism.
Figure 2.19a and Figure 2.19b show the number of concurrent CTAs in BFS-graph500

scheduled on the SMXs at any given time during the course of execution for the
Baseline-DP and SPAWN, respectively. Initially, only parent CTAs execute, fol-
lowing which the child CTAs start execution at 75k cycles. Since Baseline-DP of
BFS-graph500 gives significant work to child kernels, parent threads do not have
much edges to traverse. As a result, they finish execution at 436k cycles, after which
child kernels start dominating the SMXs’ resources. However, there are two issues
in the Baseline-DP. First, the child kernels cannot start execution immediately due
to the launch overhead and queuing latency. Consequently, the concurrency and
resource utilization dramatically drop. Second, many child kernels are launched in
Baseline-DP, and they cannot execute concurrently because of the limited number of
HWQs. Since each child kernel in BFS is lightweight (traversing only the neighboring
nodes), the resource utilization is low during the phase when only child kernels execute
(from cycle 436k to cycle 2,400k).
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In SPAWN (Figure 2.19b), since more parent threads traverse the edges in a loop,
the parent CTAs execute for longer duration and fewer child kernels are launched.
As a result, the parent CTA execution is now able to hide the child kernels’ launch
overhead efficiently. In addition, as fewer child kernels are launched, it results in lower
launch overhead and reduced queuing latency. Therefore, it leads to higher resource
utilization, and allows the application execution finish at 1600k cycles, unlike the
Baseline-DP execution which takes 2400k cycles.

Figure 2.20 depicts the cumulative child kernel launch decisions that are taken
over the entire execution for BFS-graph500. We see that SPAWN is dynamically
able to make kernel launch decisions which are similar to the decisions taken by
Offline-Search, and achieve similar workload distributions. From the figure, we see
that Baseline-DP has considerable high child kernel launch rate compared to SPAWN.
Since launch overhead and queuing latency dramatically increase when large number
of child kernels are intensively launched8, a reduction in child kernel launch rate
effectively reduces the overheads and improves performance.
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Figure 2.20: CDF of child kernels launched over time

2.5.4 Comparison with an Alternate Strategy

We are not aware of any runtime scheme that tunes the workload distribution
(partitioning) between the parent and child kernels in DP applications. Wang et
al. [1] proposed a mechanism called Dynamic Thread Block Launch (DTBL). Instead

8With an intensive child kernel launch rate, the launch overhead and queuing latency gets exposed
when there is lack of work in the GPU to hide this increased latency.
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of launching child kernels, they propose to launch child CTAs and coalesce them with
an existing kernel, thereby removing the launch overheads associated with launching
kernels. However, this coalescing of CTA to an existing kernel can happen only when
the CTA is equal in dimensions to the CTAs in the existing kernel and have the same
instruction sequence for execution. This reduces the applicability of the scheme to a
limited set of programs. Also, the number of CTAs launched remains the same in
DTBL, which still incur significant queuing latency if the concurrent CTA limitation
is reached. We show results from three representative applications in Figure 2.21. SA
is bottlenecked due to concurrent CTA limitation and SPAWN outperforms DTBL
by 1.8× and 1.4× in thaliana and elegans [43], respectively. MM launches a lot of large
child kernels and suffers from both launch overhead and queuing latency. SPAWN
and DTBL perform similarly in this scenario. SPAWN is able to reduce both the
launch overheads and queuing latency while DTBL largely eliminates only the launch
overhead. DTBL performs better than SPAWN in SSSP because SSSP launches small
child kernels and the execution is bottlenecked by the launch overhead, which DTBL
is designed to eliminate.
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Figure 2.21: Comparison with DTBL [1]. Normalized performance to flat (non-DP)
implementation.

2.6 Conclusion Remarks
Although GPUs can be very effective in executing parallel programs, many irregular
applications (e.g. graph algorithms with irregular data inputs) that have been
ported to GPUs execute inefficiently due to the workload imbalances across its
threads. Dynamic parallelism supported by OpenCL and CUDA help in reducing this
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imbalance by allowing GPU kernels to launch additional kernels on-demand without
involving the CPU. However, this approach entails extra performance overheads for
launching child kernels; and a straightforward way of launching kernels can lead to
both resource underutilization and uneven work across concurrently-executing kernels.
Our proposed hardware-based solution, SPAWN, improves the GPU performance by
hiding and reducing the performance overheads of child kernel launches, and improving
the load balance across different kernels. Using our approach, programmers can port
existing irregular applications to GPUs without having to go through extensive
architecture-specific software optimizations that balance the work across different
kernels. To the best of our knowledge, this is the first work that dynamically tunes
the workload distribution (partitioning) ratio among parent and child kernels, to find
the sweet spot to minimize launch overhead and queuing latency while maximizing
parallelism.
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Chapter 3 |
Quantifying Data Locality in
Dynamic Parallelism in GPU

GPUs are becoming prevalent in various domains of computing and are widely used for
streaming (regular) applications. However, they are highly inefficient when executing
irregular applications with unstructured inputs due to load imbalance. Dynamic
parallelism (DP) is a new feature of emerging GPUs that allows new kernels to be
generated and scheduled from the device-side (GPU) without the host-side (CPU)
intervention to increase parallelism. To efficiently support DP, one of the major
challenges is to saturate the GPU processing elements and provide them with the
required data in a timely fashion. There have been considerable efforts focusing on
exploiting data locality in GPUs. However, there is a lack of quantitative analysis of
how irregular applications using dynamic parallelism behave in terms of data reuse.

In this chapter, we quantitatively analyze the data reuse of dynamic applications
in three different granularities of schedulable units: kernel, work-group, and wavefront.
We observe that, for DP applications, data reuse is highly irregular and is heavily
dependent on the application and its input. Thus, existing techniques cannot exploit
data reuse effectively for DP applications. To this end, we first conduct a limit study
on the performance improvements that can be achieved by hardware schedulers that
are provided with accurate data reuse information. This limit study shows that, on
an average, the performance improves by 19.4% over the baseline scheduler. Based
on the key observations from the quantitative analysis of our DP applications, we
next propose LASER, a Locality-Aware SchedulER, where the hardware schedulers

37



employ data reuse monitors to help make scheduling decisions to improve data locality
at runtime. Our experimental results on 16 benchmarks show that LASER, on an
average, can improve performance by 11.3%.

3.1 Introduction
Graphics Processing Units (GPUs) provide massive computational throughput for
a wide spectrum of applications from various domains such as computer vision [19],
finance [16,17], machine learning [48,49], and bioinformatics [50]. As progressively
more applications get ported to GPUs for parallelization, the shortcomings of the
traditional GPU execution model become evident. Particularly, execution of irregular
applications with unstructured inputs on GPUs leads to severe bottlenecks such
as imbalanced computational load across the GPU Compute Units (CUs). This
inefficiency is widely observed in adaptive meshes and graph applications which
are becoming important classes of applications due to their increasing popularity.
Therefore, it is becoming more and more difficult to effectively utilize GPUs for such
applications [28].

Dynamic Parallelism (DP) is a feature supported by CUDA [37] and OpenCL™ [27].
It allows the generation and scheduling (launching) of kernels dynamically on GPUs
without the involvement of a host (CPU). This model of computation is quite useful for
irregular applications with unstructured and irregular inputs, as it essentially increases
parallelism on-the-fly. Specifically, if there are threads which are more compute-
intensive than other threads, then these threads (parent threads) can parallelize their
work by launching more threads (child kernels). This would allow for better (and
on-demand) load balancing as there are higher number of threads to distribute across
the GPU cores. However, by increasing the parallelism and redistributing the threads,
the data reuse and access pattern can change dramatically. For example, original
intra-thread temporal data reuse (i.e., the data blocks that are reused within a thread)
can translate to inter-thread temporal reuse, due to the fact that parent thread
offloads computations to its child threads. Moreover, this intra-thread temporal
data reuse can even translate to inter-thread spatial locality, as the child kernel has
multiple threads, and each child thread can work on a small portion of data.
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Prior techniques on GPU cache optimization involved throttling the available
parallelism [51, 52], bypassing the cache for certain memory requests to reduce
contention [53,54], and building efficient cache management policies tuned towards
GPU applications [55, 56]. These techniques cannot be ported to improve cache
performance for DP applications, as they are agnostic to the on-demand kernel launch
behavior in DP applications. Furthermore, it is extremely difficult to control the
temporal data reuse in applications via cache optimizations as they lack mechanisms
to control the scheduling of instructions for execution. To be able to efficiently control
the temporal data reuse of applications, we need intelligent scheduling strategies.
Prior efforts efficiently scheduled applications based on their reuse behavior using
runtime statistics, or via compiler based approaches, but they do not consider DP
applications [52, 57, 58]. Wang et al. [47] proposed a work-group (WG) scheduling
mechanism that maps child WGs together with its parent WG to the same compute
unit (CU) during execution. This strategy does not differentiate between the children
of a parent or take into account the data reuse behavior of the children among
themselves. No prior work quantitatively studied the data reuse nor explored the
potential performance benefits by fully exploiting the data reuse opportunities in DP
applications.

Our goal in this chapter is three-fold: (1) to quantitatively analyze the intrinsic
data reuse opportunities in DP applications; (2) to reveal the best achievable perfor-
mance improvements through a limit study; and (3) to propose a practical scheduling
mechanism that improves data locality. To this end, we first conduct an in-depth
data reuse analysis. We define a new “metric” called reuse ratio which captures the
“intensity” of data reuse. The reuse ratio is computed for each pair of “schedulable
units” where a schedulable unit is either a kernel, a work-group, or a wavefront. We
then perform a limit study that exploits the reuse ratios for all possible permutations
of the schedulable units at each level of the scheduling hierarchy and optimizes the
placement (temporally and spatially) of the schedulable units to maximize data local-
ity. Finally, we modify the hardware schedulers and propose a practical scheduling
mechanism that schedules the schedulable units in a locality-aware fashion. this
chapter makes the following major contributions:
• It provides an in-depth data reuse quantification and analysis of GPU dynamic

39



parallelism applications. The analysis is at multiple granularities (kernel, work-group,
and wavefront) with respect to suitability for improving cache locality via scheduling
techniques.
• It defines a new metric called reuse ratio, which captures the intensity of data reuse
among schedulable units. We discuss the merits of this metric and demonstrate how
to use it to guide scheduling strategies for DP applications.
• It performs a limit study by proposing an optimal scheduling mechanism that
optimizes compute placement for cache locality by exploiting reuse ratios at each
level of scheduling, viz. kernel, work-group and wavefront. This is achieved by
providing accurate “reuse ratio” information to the hardware schedulers. The optimal
scheduler provides, on an average, 19.4% performance improvement over the baseline
scheduler.
•Based on the key observations from the data reuse analysis, it proposes LASER,
a Locality-Aware SchedulER, that monitors the reuse ratio metric and makes
scheduling decisions based on it. Our experimental results show that, on an average,
LASER provides 11.3% performance improvement over the baseline scheduler.

To our knowledge, this is the first work that systematically investigates the data
reuse and access patterns of DP applications at various granularities of schedulable
units. Our work is most closely related to the work of Wang et al. [47]. However, their
approach does not differentiate between the children of a given parent kernel, nor does
it consider the intra-kernel data reuse. Therefore, we quantify the memory behavior
of DP applications in detail and analyze their data reuse patterns to answer the
following key questions. Question 1: How prevalent are intra-kernel and inter-kernel
data reuses in DP applications? Question 2: What is the effect of launch overhead
on data reuse patterns? Question 3: Do neighboring work-groups have more of
temporal or spatial reuse? and Question 4: Is it necessary to always prioritize the
child work-groups?
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Figure 3.1: (a) DP programming model. (b) Type I DP applications. (c) Type II DP
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3.2 Background

3.2.1 Dynamic Parallelism

In conventional GPU programming model, computations in an application are mapped
to work-items (threads in NVIDIA terminology), work-groups (thread-blocks in
NVIDIA terminology), and kernels. A kernel consists of multiple work-groups (WGs)
and a WG consists of multiple work-items. At runtime, work-items are scheduled in
groups, called “wavefronts”. All threads in a wavefront execute the same instruction
in a lock-step fashion. Unlike conventional applications, a DP application can launch
nested device kernels (child kernels), as shown in Figure 3.1(a). Each work-item
in a kernel has the capability to launch kernels. This feature is particularly useful
for irregular applications, as threads with heavy computations can launch a child
kernel and offload some of its computations to that child kernel. Therefore, one can
potentially achieve both parallelism and better resource utilization. Note that, it is
the programmer’s responsibility to decide whether to launch a child kernel or not
from within a parent kernel. Specifically, a threshold is set by the programmer and
used in DP applications to make kernel launch decisions [26, 59]. In Figure 3.1(a),
we call the depth of the nested launched kernels as Launch Depth. It represents the

41



number of nested levels (depth) at which child kernels are launched. Note that the
GPU hardware needs to reserve memory space for the child kernels [26, 28]. As a
result, the maximum launch depth is limited to 24 by the hardware [37]. At each
launch depth, there can be multiple kernels being launched. We refer to the number
of kernels launched at a given depth as Launch Width.

3.2.2 Baseline Architecture
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Figure 3.2: Baseline GPU architecture.

Figure 3.2 shows our baseline GPU architecture with support for DP. A DP
application (similar to a regular GPU application) starts running on a host CPU
and the very first kernel (parent) is launched to the GPU from the host ( 1 ). This
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kernel is also labeled with a software queue ID (e.g., CUDA stream ID in CUDA
terminology), which is used to provide execution ordering among kernels1 There are
32 hardware work queues (HWQs) located in the Grid Management Unit (GMU).
Kernels with the same software queue ID are mapped to the same HWQ, and all
kernels in the same HWQ are executed sequentially. If there is an available slot in a
HWQ, the launched kernel is pushed into that HWQ ( 2 ). Otherwise, the kernel is
suspended in the pending kernel pool ( 3 ), waiting for a free slot in HWQ. Kernels
are scheduled for execution in a first-come-first-serve (FCFS) order ( 4 ), with respect
to kernel dependencies. The kernels at the head of HWQs can potentially execute
concurrently. That is, the WG scheduler can schedule any work-groups (WGs) from
the “head-of-queue” kernels, and map them onto CUs, if there are enough available
resources ( 5 ). In the baseline execution, the WG scheduler picks up WGs from the
“head-of-queue” kernel and distributes them across all CUs in a round-robin fashion.
On a CU, wavefronts from WGs are executed on cores. At any time during wavefront
execution, multiple wavefronts may be standing by and waiting for execution in order
to hide long latency operations (e.g., memory accesses, expensive math operations,
etc.). Once a wavefront encounters a long latency operation, that wavefront is switched
out, and another “ready” wavefront is scheduled to overlap with the long latency
operation. The ready wavefront is chosen by the wavefront scheduler which uses a
greedy-then-oldest policy (GTO) [46] to select candidate wavefronts. Specifically, in
GTO, the same wavefront is always issued to execute if it does not encounter any long
latency operations. Whenever a long latency operation is observed, the wavefront is
replaced with the “oldest” pending wavefront.

With DP, any thread running on a CU can launch device kernels by calling the
driver API. The newly-launched kernels are pushed into GMU by device driver ( 6 ).
Note that launching child kernels incurs extra latencies, (called Launch Overhead) [28].
Due to this overhead, a child kernel cannot start its execution immediately after
launching. This overhead is accurately modeled in our simulation framework, and
multiple approaches have been proposed in the literature to mitigate it [1, 59–61].

1In DP, the parent thread can choose two ways to assign software queues (SQs) to child kernels.
First, it can create a new SQ before launching a child kernel. Second, each parent WG has a default
SQ. Parent threads in the same WG launch child kernels to the default SQ, if no new SQs are
explicitly created for the child kernels.
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3.2.3 Evaluation Methodology

Table 3.1: GPU configuration parameters.

CU 13 CUs, 1400MHz, 5-Stage Pipeline
Resources per 32KB Shared Memory, 64KB Register File,
CU Max.2048 threads (64 wavefronts, 32 threads/wavefront)
cache per 32KB 8-way L1 D-cache, 12KB 24-way Texture Cache, 8KB 2-way
CU Constant cache, 2KB 4-way L1 I-cache, 128B cacheline
L2 Unified 128KB/Memory Partition, 1536KB Total Size,
cache 128B cacheline, 8-way associativity
Scheduler Greedy-Then-Oldest (GTO) [46] dual wavefront

scheduler, Round-Robin (RR) WG scheduler
Concurrency 16 WGs/CU, 32 HWQs across all CUs
Interconnect 1 crossbar/direction (13 CUs, 6 MCs), 1.4GHz, islip VC and switch allocators
DRAM Model 2 Memory Partitions/MC, 6 MCs, FR-FCFS (128 Request Queue Size/MC)
Child Kernel Latency = Ax + b where A is 1721
Launch cycles, b is 20210 cycles, x is number
Overhead of child kernels launched per wavefront [1]

Infrastructure: We use a cycle-level simulator, GPGPU-Sim [44], that enables
DP [1] as our evaluation framework. Table 3.1 provides the detailed configuration
of the baseline GPU architecture. The maximum number of HWQs is 32, and the
maximum number of concurrent WGs per CU is 16.

Table 3.2: Benchmark characteristics: Number of kernels, type, depth (refers to the
number of stages (parent-child-barrier) for Type-I applications and Launch Depth for
Type-II applications), and high-reuse chain length (kernels/WGs).

Application Input Sets Benchmark Total # of TypeDepth Chain Chain
Kernels of Kernels of WGs

(Max,Avg)(Max,Avg)
Adaptive Mesh Combustion Simulation [38] AMR 1261 II 24 (6, 1.5) (6, 1.5)Refinement [28]

BFS [28]
Small Graph BFS-small 1030 I 1 (1, 1) (240, 11)

Citation Network [39] BFS-citation 126 I 23 (1,1) (240, 37)
Graph 500 [39] BFS-graph500 6899 I 6 (27, 3) (240, 17)

Graph Coloring [41] Citation Network [39] GC-citation 221 I 87 (1, 1) (443, 2)
Graph 500 [39] GC-graph500 924 I 139 (10, 6) (18, 4)

Relation Join [28] Gaussian Distribution JOIN-Gaussian 159 I 1 (21, 4) (227, 4)
Uniform Distribution JOIN-uniform 6725 I 1 (721, 361) (7, 2)

Mandelbrot Set [59] N/A Mandel 1025 II 6 (1, 1) (1, 1)
Sparse Matrix Small Matrices SPMM-small 1025 I 1 (1024, 28) (256, 23)

Multiplication [59] Large Matrices SPMM-large 5121 I 1 (824, 39) (256, 72)
Quick Sort [34] N/A Quicksort 56 II 24 (48, 28) (48, 28)
Radix Sort N/A Radixsort 4765 II 24 (176, 21) (176, 21)

Sequence [42] Arabidopsis Thaliana [43] SA 24 I 1 (22, 19) (289, 16)
Single Source Citation Network [39] SSSP-citation 6524 I 23 (2612, 121) (165, 7)

Shortest Path [28] Graph 500 [39] SSSP-graph500 16087 I 6 (5830, 219) (189, 28)
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Table 3.3: Input characteristics.

Name Size
Combustion Simulation [38] Cell count: 150,000,000

Small Graph Vertices: 1024 Edges: 1,047,552
Citation Network [39] Vertices: 227,320 Edges: 814,134

Graph 500 [39] Vertices: 65,536 Edges: 2,456,071
Gaussian Distribution Array 1: 300,000 Array 2: 300,000
Uniform Distribution Array 1: 204,800 Array 2: 204,800

Small Matrices Matrix 1: 512*512 Matrix 2: 512*512
Large Matrices Matrix 1: 5,120*512 Matrix 2: 512*5,120

Benchmarks: We use ten GPU DP applications from various benchmark suites.
For applications whose data access patterns are highly influenced by input data, we
also provide various inputs. As shown in Table 3.2, we call an <application, input>
pair as one “benchmark”, and there are a total of 16 benchmarks. We also provide the
total number of launched kernels in Table 3.2. As one can see, these DP applications
launch many more kernels compared to conventional (static) GPU applications [28],
which motivates us to explore the kernel-level data reuse.

For a DP application, there can be two types of kernel launch patterns: Type
I in Figure 3.1(b), and Type II in Figure 3.1(c). In type I, the launch depth for
each parent kernel is 1. After the parent kernel and all its child kernels finish their
executions, the host launches another barrier kernel to check some application related
criteria in order to decide whether to launch another parent kernel or not. Let us
consider BFS, where each thread in a parent kernel is responsible to traverse the edges
of a node from the frontier node set that contains the nodes visited in last level of
search. Based on the number of edges connected to a node, the parent thread may
launch a child kernel to help traverse those edges. Before the next level of search
starts, the visited edges and the frontier node set should be updated. Therefore,
the host launches a barrier kernel to perform the update and also to check whether
the search is over. If there are nodes not visited yet, another parent kernel will
be launched from the host to perform the next level of search. Applications that
have Type I feature include BFS, Graph Coloring, Relation Join, Sparse Matrix

Multiplication, Sequence Alignment, and Single Source Shortest Path. In
type II, the launch depth can be any number up to the hardware limit (24 levels). For
example, in Quick Sort, the left-pivot array elements are sorted by a child kernel,
whereas the right-pivot array elements are sorted by another child kernel. As a result,
the kernel launch pattern is similar to a binary tree. If the maximum depth is reached
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or there are very few elements for processing (i.e., below the threshold), bubble sort is
used to avoid any potential overheads involved in launching additional child kernels.
Applications that have type II feature include AMR, Mandelbrot Set, Quick Sort,
and Radix Sort. We list the types of each benchmark in Table 3.2. In the table,
the number next to the type indicates either the number of barrier kernels in Type
I, or the launch depth in Type II. We also provide the inputs used to execute our
applications in Table 3.3.

3.2.4 Data Locality in DP

Prior works have shown that irregular applications exhibit data locality [62–64].
However, this data locality is hard to capture due to the dynamic, unpredictable, and
divergent memory access patterns that generate it. As a result, they are not exploited
well in current GPU architectures. By using DP, some of the data reuse is exposed
between the boundary of kernels, WGs, and wavefronts due to child kernel launches.
Specifically, a parent thread generally prepares or pre-processes the data before
launching its child kernel. The child kernel operates on this data and returns the result
back to the parent kernel. This “producer-consumer” relationship introduces temporal
data locality between the parent-child kernels, WGs, and wavefronts. Meanwhile,
child kernels (WGs or wavefronts) operate on neighboring data elements in the data
layout. Since GPUs generally have large cachelines, spatial data locality among
sibling-sibling kernels (WGs or wavefronts) is also exposed.

3.3 Reuse Characterization
In this section, we conduct an in-depth characterization of data reuses at different
schedulable units for our benchmarks listed in Table 3.2. We profile each benchmark
using GPGPU-Sim (discussed in Section 3.2.3) to get the memory footprint traces
and analyze data reuse by parsing the memory traces. The memory footprints are
extracted at a data block (128 Byte cache line) granularity after memory coalescing.
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3.3.1 Kernel-Level Reuse

We explore three types of kernel-level data reuse based on the kernel relationships:
self-kernel, parent-child, and sibling-sibling. To help explain these three different
types of data reuses, let us consider a representative kernel launch sequence, shown
in Figure 3.3(a). The parent kernel A launches child kernels B, C and E. Child
kernels B and C further launch grandchild kernels D and F , respectively. A solid
line in the figure denotes the kernel launch sequence, while a broken line denotes a
potential data reuse. From a particular kernel’s perspective (kernel B for example),
a self-kernel data reuse happens when a data block is referenced multiple times by
itself during execution. In comparison, a parent-child data reuse happens when a
data block is accessed at least once by both the parent kernel and child kernel (e.g.,
parent B and child D). Similarly, a sibling-sibling data reuse is said to occur when
a data block is accessed at least once by both the sibling kernels (e.g., B and C).
Note that sibling kernels are the child kernels launched from the same parent WG.
For example, child kernels B and C are considered as sibling kernels; however, child
kernels B and E (likewise, D and F ) are not. We use this definition due to the fact
that the child kernels launched by different parent WGs rarely share any data blocks
and are unlikely to work on the same portion of the input data [28].

We count the number of memory accesses to the same data block made by self-
kernel, parent-child kernels, and sibling-sibling kernels. Figure 3.4 plots the percentage
of the shared memory footprints over the total memory footprints. Note that, a
particular memory access can be counted multiple times toward different types of
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Figure 3.5: Reuse distances for kernel-level data reuse.
reuses. For example, a data block accessed by a kernel can also be accessed by its
parent kernel and its siblings. As a result, the access to that data block is counted as
both parent-child data reuse and sibling-sibling data reuse. This is the reason why
the total sum of the three types of reuses can exceed 100% in Figure 3.4. From this
figure, we make the following critical observations :
Observation 1: There exists significant data reuse in DP applications at a kernel
granularity. Data blocks are heavily reused across all three types of kernel relationships.
Specifically, on an average, across all 16 benchmarks, self-kernel, parent-child kernel,
and sibling-sibling kernel account for 77.8%, 32.2%, and 41.1% of the total data reuse
with respect to the total memory footprint, respectively. Recall the Question 1 from
Section 3.1, our characterization results show that data blocks are frequently reused
among different kernels in these DP applications.
Observation 2: The amount of data reuse is different across different applications.
For instance, applications such as AMR and Mandel do not have much data reuse for
any of the three types of kernel relationships. This is because these two applications
are compute-intensive with few data reuse. All the other applications have significant
data reuses in different types of kernel relationships. This is due to the significant
data reuse exposed by the algorithms implemented in the applications.
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Observation 3: For a given application, different inputs can lead to different
data reuse patterns. This can be observed in GC, SPMM, and SSSP. For exam-
ple, SSSP-citation shows significant self-kernel and sibling-sibling reuses, whereas
SSSP-graph500 exhibits more data reuse in parent-child and sibling-sibling kernels.
This is because the irregularity of input (e.g., a graph) in such applications can cause
different number of child kernels to be launched with different kernel dimensions,
eventually leading to different data access and reuse patterns. For example, the
average number of neighboring nodes in citation graph is relatively small when
compared to the graph500 graph. As the threshold which determines child kernel
launch is fixed to a smaller number in SSSP by the programmer, SSSP-citation
launches fewer as well as smaller child kernels compared to SSSP-graph500. On
the other hand, the child kernels in SSSP-graph500 process more neighboring nodes
than the child kernels in SSSP-citation. Consequently, SSSP-graph500 has more
parent-child data reuse, but less self-kernel data reuse than SSSP-citation.

Next, we perform a study on characterizing the reuse distances of the applications.
We define “reuse distance” as the number of unique data blocks between two references
to the same data block. Generally, references to the same data block with short reuse
distances are expected to hit in the caches. Figure 3.5 gives the CDF of the average
reuse distances (in log2 scale) between the references to the same data block for
three types of data reuses, across all the benchmarks. From the figure, we make the
following observations. First, in DP applications, the reuse distances of all three reuse
types are generally larger than the GPU caches can take advantage of. For example,
in self-kernel reuse, more than 60% and 25% of the data blocks referenced by the
kernels are evicted from L1 cache and L2 cache, respectively. Second, the distances
exhibited by the parent-child data reuses are longer when compared to the distances
exhibited by the self-kernel and sibling-sibling data reuses. This is because the child
launch overhead (discussed in Section 3.2.2) delays the child kernel execution, leading
to long distances in parent-child data reuses. This provides an answer to Question 2
from Section 3.1. As these child kernels are generally launched in bursts, they execute
concurrently, leading to shorter reuse distance for the sibling-sibling relationship.
Takeaway: Unlike traditional GPU applications (i.e., those with static/compile-time
parallelism), DP applications launch massive numbers of kernels (children). In addition
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to the data blocks being reused within a kernel, these light-weight child kernels exhibit
high data reuses with their parent kernels as well as among themselves. However,
long reuse distances prevent the underlying GPU caches from taking advantage of
most reused data blocks.

This motivates us to explore a locality-aware kernel scheduling strategy which
can schedule kernels with high degrees of data reuse among themselves close to each
other during execution. However, we first need to quantify the “degree of data reuse”
between the two kernels. In other words, we need to determine the “strength” of the
kernel-to-kernel relation (in terms of the “intensity” of data reuse). Kernels having
intensive data reuse among themselves should have a higher priority to be scheduled
together when compared to kernels rarely having any data reuse. To this end, we
define Reuse Ratio as a measure of the degree of data reuse among kernels.
Self-Kernel Reuse Ratio (Rk): Given a kernel k, the memory footprint of kernel
k is denoted as Mk. Each entry in Mk is a memory access to a data block. We define
the self-kernel reuse ratio, Rk, as:

Rk = 1− uniq(Mk)

size(Mk)
, (3.1)

where uniq(Mk) is the number of unique data blocks referenced by kernel k, and
size(Mk) is the total number of data block accesses. Therefore, 1−uniq(Mk)/size(Mk)

captures the fraction of “repeated accesses” to the same data block.
Parent-Child Reuse Ratio (Rp−c): Given a parent kernel p and its child kernel c,
the traces of memory footprints from parent kernel p and child kernel c are denoted
respectively as Mp and Mc. The parent-child data reuse ratio, Rp−c, is defined as:

Rp−c =
size(x, x ∈Mc | x ∈ uniq(Mp) ∩ uniq(Mc))

size(Mc)
. (3.2)

The numerator is the total number of data blocks referenced by child kernel c, where
each data block is also referenced by parent kernel p at least once. The denominator
is the total number of data blocks accessed by the child kernel. Note that a data
block can be referenced multiple times by either the parent kernel or the child kernel.
Our definition of parent-child reuse ratio captures the “intensity” of data reuses in a
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child kernel with respect to its parent. Note that, we do not count child-parent kernel
reuse ratio as child kernels need to be launched by their parent kernels. For this to
happen, the parent kernels already need to be scheduled. Therefore, child-parent
kernel reuse ratio does not help in dynamic kernel scheduling. Since a DP application
can launch multiple levels of child kernels, a child in level l is considered as a parent
in level l + 1.
Sibling-Sibling Reuse Ratio (Rcx−cy): Given two child kernels c1 and c2 launched
by the same parent WG pwg, the memory footprints of these two child kernels are
denoted as Mc1 and Mc2, respectively. We define the sibling-sibling data reuse ratio,
Rcx−cy, as:

Rcx−cy =
size(x, x ∈Mcx | x ∈ uniq(Mcx) ∩ uniq(Mcy))

size(Mcx)
, (3.3)

where (cx, cy) can be either (c1, c2) or (c2, c1) which represent the reuse ratio in terms
of child kernel c1 or c2, respectively. It is important to note that, we separate the
reuse ratios for the two child kernels in the child kernel pair because doing so allows
us to capture the scenario where two child kernels have different memory footprint
intensity. For example, let us consider the scenario in Figure 3.7. Suppose child
c1 has 100 accesses, child c2 has 50 accesses, and child c3 has 200 accesses. Let us
assume that the data blocks referenced by 30 accesses from c2 are also referenced
by c1. In this case, the reuse ratio Rc2−c1 is 30/50 = 0.6. However, there can be 40
accesses from c1 that reference the same set of data blocks. This is due to the fact
that a data block can be referenced multiple times by a kernel. As a result, the reuse
ratio Rc1−c2 is calculated as 40/100 = 0.4.

It is important to emphasize that the reuse ratio does not capture the absolute
number of data blocks being shared between the involved schedulable units. For
example, both Rc2−c1 and Rc3−c1 are 0.6. However, there are 120 data blocks accessed
by c3 that are also accessed by c1, whereas only 30 data blocks accessed by c2 that
are also accessed by c1. Although the absolute value would be more accurate to
represent the quantity of data reuses, it is less effective in managing caches. For
instance, a kernel pair having one million total accesses with a 10% reuse ratio will
have many more data blocks being reused when compared to a kernel pair having
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one thousand total accesses with 90% reuse ratio. However, the first kernel pair is
not friendly to caches: there are 90% of data blocks that are not being reused, and
therefore, it may lead to severe cache contention and poor cache performance.
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Figure 3.6: Kernel-level data reuse ratios for all benchmarks. Each plot includes the
results of one benchmark. The X-axis represents the data reuse ratio. The reuse ratio
is divided into 10 bins (b0, b1, ..., b9), using 0.1 as stride size. If the reuse ratio of a
kernel pair is between (x,x+ 0.1), that kernel pair is counted in bin bx. The Y-axis
represents the CDF of reuse pairs. The black bar in each plot represents the CDF of
self-kernel reuse, whereas the yellow and red bars represent the CDFs of parent-child
and sibling-sibling reuses, respectively.

Results: Figure 3.6 shows the data reuse ratio at the kernel-level for all 16 bench-
marks. We divide the data reuse ratio into 10 ratio bins (b0−−b9), with the stride
size of 0.1. All 10 ratio bins are labeled on the X-axis. The Y-axis plots the CDF of
the kernel pairs, which captures the number of kernel pairs that fall into the different
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ratio bins. Specifically, for two kernels in a kernel pair, we first calculate the three
types of data reuse ratios using Equations (1)–(3) given above. Then, for each ratio
bin, we count the number of kernel pairs whose reuse ratio falls into that bin. For
example, if two kernels in a kernel pair have, say, 0.46 parent-child reuse ratio, we
count this kernel pair in the ratio bin b4. From the cumulative results shown in
Figure 3.6, we make the following important observations:
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Figure 3.7: Sibling-sibling
data reuse.

Observation 1: Different benchmarks show different
kernel pair distributions in all three types of kernel
reuse ratios. For benchmarks AMR and Mandel, most
of the kernel pairs have low self-kernel reuse ratio
(less than 0.1) as these two benchmarks have few data
blocks being reused (Figure 3.4). For benchmarks
such as GC-citation, GC-graph500, SPMM-small,
SPMM-large, Radixsort, SA, SSSP-citation and
SSSP-graph500, most of the parent-child kernel pairs
and/or sibling-sibling kernel pairs have similar reuse
ratios. For example, in SA, 85% of parent-child ker-

nel pairs fall in to b5. Benchmarks such as Quicksort, BFS-small, BFS-citation,
BFS-graph500, JOIN-Gaussian and JOIN-Uniform, have a uniform distribution in
one or more of their kernel relationships. For example, in Quicksort, the sibling-
sibling kernel pairs are uniformly distributed across the 10 reuse bins.
Observation 2: For applications such as SPMM, BFS, GC, and SSSP, different inputs
can lead to different distributions of kernel pairs in terms of their reuse ratios. For
example, when SPMM is used with small sparse matrices (SPMM-small) as inputs, we
see that there is a significant fraction of parent-child and sibling-sibling kernel pairs
having high reuse ratios, whereas, with large sparse matrices (SPMM-large) as input,
the number of parent-child kernel pairs with high reuse ratio reduces significantly
(i.e., most of the parent-child kernel pairs fall into bin b0). The main reason is that
the threshold (discussed in Section 3.2) set by the programmer significantly affects
the number of child kernels and their properties. Therefore, for large matrices, parent
thread always opts to launch child kernels to perform the multiplications in child
kernels (due to more elements per row and column), whereas for small matrices,
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the multiplications are usually performed by the parent thread itself in an iterative
fashion as there are fewer elements in the rows and columns of the input matrices.
Observation 3: By comparing Figure 3.4 and Figure 3.6, we observe that a bench-
mark with a high “data reuse” does not necessarily have high “reuse ratio”. This is
because, data reuse is measured as an aggregated metric, whereas the reuse ratio is
measured as a pair-wise metric. For example, SPMM-small has high self-kernel data
reuse than parent-child and sibling-sibling kernel data reuses (Figure 3.4). However,
all of the parent-child kernel pairs fall into b9 in Figure 3.6 and all sibling-sibling
kernel pairs fall into b8 and b9, but most of the self kernel pairs fall into b0 and b1.
This discrepancy is because the reuse ratio is normalized to the memory footprints
of two kernels whereas data reuse is computed using the memory footprint of the
entire application. As we discussed earlier, reuse ratio is a more effective metric in
managing caches.
Takeaway: Our results show that DP applications introduce parent-child and sibling-
sibling kernel relationships in addition to the self-kernel relationship. The reuse
distance analysis indicates that GPU cache system is unable to take advantage of
inherent data reuses in DP applications. We define and analyze reuse ratio to indicate
the “intensity” of the data reuses among kernels, which is used later to design a
locality-aware kernel scheduling mechanism.

3.3.2 Work-group-Level Reuse

Work-groups are the smallest granularity of scheduling at the CU level. Note that,
while it may seem possible to extend the kernel level data reuse information (discussed
above) to the WG level, it is not the case. This is due to the fact that the kernels
from a given application might have different number of WGs, and some of these
WGs contribute to significant data reuse whereas others may not. Conceptually, we
need to understand the data reuses among WGs in order to map WGs to CUs in a
“locality-aware” fashion, and schedule them to execute close to each other in time
to take full advantage of the per CU L1 cache. Similar to kernel level data reuse,
we explore data reuse along four types of WG relationships: self-WG, intra-kernel-
WG, parent-child-WG, and sibling-sibling-WG (shown in Figure 3.3(b)). Self-WG
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reuse and intra-kernel-WG reuse are defined within a kernel boundary (i.e., intra-
kernel), whereas parent-child-WG reuse and sibling-sibling-WG reuse are defined
across different kernels (i.e., inter-kernel). Specifically, for a given WG (B1 from
kernel B highlighted in Figure 3.3(b)), self-WG reuse captures the fraction of data
blocks that are accessed multiple times by that same WG. Intra-kernel-WG reuse
captures the data blocks reused between the WGs within the same kernel (B1 and
B2). Parent-child-WG reuse is measured between the parent WG (B1 in the example)
and all WGs from its launched child kernels (D1 and D2). Finally, sibling-sibling-WG
reuse captures the data blocks reused among the WGs that belong to the sibling
kernels (e.g., B1 and C1).
Self-WG Reuse Ratio: Similar to self-kernel reuse ratio calculation, self-WG reuse
ratio can be calculated using Equation (1) by replacing kernel with WG. Specifically,
for a particular WG wg, Rwg = 1− uniq(Mwg)/size(Mwg).
Intra-kernel-WG Reuse Ratio: Given two WGs wgi and wgj from a kernel k, we
define intra-kernel-WG reuse ratio using Equation (3) by replacing (cx, cy) with (wgi,
wgj). We want to emphasize that this equation calculates the reuse ratio in terms of
WG wgi. That is, the ratio Rwgi−wgj may not be the same as Rwgj−wgi .
Parent-Child-WG Reuse Ratio: Given a parent WG wgp and a WG wgc from
a child kernel launched by wgp, we define the parent-child-WG reuse ratio using
Equation (2) by replacing p and c with wgp and wgc, respectively. One may notice
that this definition only captures the reuse with respect to child WG wgc. Ideally, we
should also calculate the reuse ratio with respect to that parent WG. However, this
is not necessary in practice. This is because, in order to schedule a child WG with its
parent WG, the child kernel should be first launched and be ready to execute. That
is, for a child WG to be visible to the scheduler (i.e., for a child kernel to be launched
by the parent WG), its parent WG must be already scheduled and running on the
CU. Thus, we just need to focus on where to schedule the child WG based on the
child WG reuse ratio, not the parent WG, as it would be already running.
Sibling-Sibling-WG Reuse Ratio: Sibling-sibling-WG reuse ratio is measured
among the WGs that belong to sibling kernels. The formal definition is similar to
that of the sibling-sibling kernel reuse ratio and can be obtained by replacing the
kernel information with WG information. It can be treated as a finer granularity
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Figure 3.8: WG-level data reuse ratio. The X-axis represents 10 bins (b0, b1, ..., b9)
of data reuse ratio with 0.1 as stride size. The Y-axis represents the CDF of WG pairs.
The gray bar captures intra-kernel-WG. The black bar represents the self-WG, and the
yellow and red bars represent parent-child-WG and sibling-sibling-WG, respectively.
of data reuse compared to the sibling-sibling kernels and can be calculated using
Equation (3).
Results: Figure 3.8 shows the cumulative distribution of WG pairs for each bench-
mark. The four bars in each plot of this figure represent the four types of WG
relationships.

We make the following observations from these results:
Observation 1: Similar to kernel level, the WG pair distributions of intra-kernel-
WG, self-WG, parent-child-WG and sibling-sibling-WG are also application and input
dependent.
Observation 2: By comparing Figure 3.6 and Figure 3.8, we observe that,
in benchmarks AMR, BFS-citation, BFS-graph500, GC-graph500, JOIN-Gaussian,
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Figure 3.9: Intra-wavefront data reuse.
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Figure 3.10: Inter-wavefront data reuse.
JOIN-uniform, Quicksort, Radixsort, SA and SSSP-graph500, the distribution of
the WG pairs on a particular type of reuse ratio follows a similar trend to the
distribution of kernel pairs on the same type of reuse ratio. In other words, the
reuse ratio can translate from kernel level to WG level, due to the fact that a kernel
consists of multiple WGs. It is also interesting to observe that self-kernel reuse can
translate to either intra-kernel-WG reuse, or self-WG reuse, or both. For example,
in BFS-graph500 (see Figure 3.6 and Figure 3.8), the self-kernel reuse translates
to intra-kernel-WG reuse. However, in BFS-citation, self kernel reuse translates
to both intra-kernel-WG and self-WG reuse. This is because the child kernels con-
tain more WGs in BFS-graph500 compared to the child kernels in BFS-citation.
For benchmarks BFS-small, GC-citation, Mandel, SPMM-small, SPMM-large and
SSSP-citation, the WG pair distribution is different from the kernel pair distribution.
The is because that most of these applications contain branches in their kernel codes.
Based on the inputs, the runtime branch conditions are different across WGs in a
kernel. As a result, WGs may execute different paths, leading to different data reuse
patterns at the WG level.
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Observation 3: If two kernels do not reuse data blocks, all the WGs from these two
kernels do not reuse data blocks either. For example, Radixsort and SPMM-small

have very few kernels with high self-kernel reuse ratio. Consequently, these two
benchmarks also have very few WGs with high self-WG and intra-kernel-WG reuse
ratios2. However, this is not true in the inverse case. If two kernels have high data
reuse between them, this does not guarantee that all the WGs from the two kernels
will have high data reuse. For instance, more than 50% of the sibling-sibling kernels in
SPMM-small have reuse ratios larger than 90%. However, at the WG granularity, 75%
of the sibling-sibling WGs have reuse ratio less than 10% and the remaining 25% have
reuse ratio more than 80%. This disparity arises due to the branch instructions in the
kernel code, which lead to divergent paths across WGs, as discussed in Observation 2.
Takeaway: Our results indicate that not only neighboring WGs significantly share
data blocks (Question 3), but also the parent-child WGs and sibling-sibling WGs
(Question 4). This information is helpful in assisting WG-to-CU mapping. Specifi-
cally, WGs with high reuse ratios should be scheduled on the same CU and executed
in close proximity in time, in order to take advantage of the per-CU L1 cache. On
the other hand, WG with high self-WG reuse ratios should be scheduled to low-load
CUs in order to reduce the L1 cache contention.

3.3.3 Wavefront-Level Reuse

Wavefront is the smallest schedulable unit and it is the granularity at which the
GPU executes instructions. Therefore, wavefront scheduler can impact data locality
significantly. To quantify the data reuse in wavefronts, we characterize the intra-
wavefront and the inter-wavefront data reuses for all our benchmarks. For a wavefront
w, the intra-wavefront reuse is quantified using Equation (1) by replacing kernel k with
wavefront w. Similarly, given two wavefronts wx and wy, the inter-wavefront reuse is
quantified using Equation (3) by replacing (cx, cy) with (wx, wy). Intuitively, one
can still define self-wavefront, parent-child-wavefront, and sibling-sibling-wavefront
relationships and analyze data reuses along those relationships. However, we choose
to classify data reuses into inter-wavefront and intra-wavefront reuses, due to following

2Both self-WG and intra-kernel-WG are within a kernel boundary, and a low self-kernel reuse
leads to a low self-WG and intra-kernel-WG reuses.
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two reasons. First, wavefronts are mapped to CUs at a WG granularity. In other
words, all wavefronts from the same WG are mapped to a particular CU at the
time that WG gets scheduled. Second, once mapped to a CU, wavefronts cannot
migrate or be reassigned to other CUs, as WG migration is not supported. These
two reasons limit the capability of scheduling “any” set of wavefronts together on the
same CU. For example, suppose that two wavefronts from two sibling WGs have high
inter-wavefront reuse between them. In order to convert the data reuses between
these two wavefronts into data locality (cache hits), the two sibling WGs have to be
scheduled first. As there are limited hardware resources, it is impossible to schedule
all the WGs together to have all the wavefronts ready for the wavefront scheduler.
Once both the WGs are scheduled, it is possible for the wavefront scheduler to exploit
the reuse between these two wavefronts. This is captured as inter-wavefront locality.
We characterize the intra-wavefront and inter-wavefront reuse ratios in Figure 3.9
and Figure 3.10, respectively. We divide reuse ratio into 10 bins (b0− b9), and for
each benchmark, the Y-axis reports the percentage of wavefront pairs that fall into
different bins.
Takeaway: Overall, DP applications have significant number of wavefronts exhibiting
intensive intra-wavefront reuse. Moreover, there is also a sizable fraction of wavefronts
showing intensive inter-wavefront reuse. Since a wavefront can offload its computations
to other wavefronts by launching child kernels, some of the intra-wavefront data reuses
are transferred to inter-wavefront data reuse between parent wavefront and child
wavefronts [28].

3.4 Optimal Locality-aware Scheduler: A Limit

Study
In this section, we propose an “optimal” scheduling mechanism to realize the maximum
potential performance gains that can be achieved by leveraging data reuses in DP
applications. Note however that, this optimal scheduler only has a priori knowledge
about the data reuse patterns in the DP benchmarks and cannot change any appli-
cation (data dependency, correctness, etc.) or hardware (occupancy limits, cache
replacement policies, etc.) constraints to improve data locality. For this limit study,
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Algorithm 2 Locality-aware kernel scheduling
INPUT:

List_k : kernels launched in pending kernel pool
1: while HWQ qi is empty do
2: for kernel kx from the head of HWQ qj , where i 6= j do
3: Search for high reuse kernels with kx
4: high_reuse(kx)← (ky1, ky2, ..., kyn)
5: if ky1 is also in List_k then
6: schedule ky1 to qi and remove ky1 from List_k
7: end if
8: end for
9: end while

we profile all the benchmarks and analyze the reuse ratio among the schedulable units
at kernel, WG and wavefront granularities. Then, we discuss scheduling policies that
choose the appropriate schedulable units based on the reuse ratios. Note that, the
scheduling policies in this limit study are not implementable in practice. Instead, they
reveal the “optimal” benefits one can get from realizing data reuse in DP applications.
Challenges: There are several challenges involved in building an optimal scheduling
mechanism. First, hardware constraints limit the effectiveness of the schedulers. For
example, high reuse kernels should be launched to different HWQs for concurrent
execution, but the number of HWQs limits the number of kernels that can execute
concurrently. Second, in all the three granularities of reuses studied, high reuse
schedulable units can form “reuse chains”. For example, if kernel k1 has a high reuse
ratio with kernel k2, and k2 also has high reuse with kernel k3, all three kernels
collectively form a high reuse chain, k1-k2-k3. We quantify maximum as well as
average high reuse chain length at kernel and WG granularities (shown in Table 3.2).
For the limit study, we define “high reuse” as a reuse ratio of greater than 0.4. Since
there are limited hardware resources (e.g., register file) and limited concurrency, it is
impossible to always schedule the entire chain to hardware for concurrent execution.
For example, in Radixsort, the maximum WG chain is 176, and as a result, it is not
possible to find a CU and schedule all the 176 WGs in that CU. Third, scheduling an
entire reuse chain of WGs into a CU can also lead to workload imbalance, causing
some of the CUs to have more computations, while other CUs are idle. The WG
scheduler should be able to dynamically balance the workload among CUs without
compromising much on data locality.

Algorithm 2 provides the high-level pseudo-code for optimal kernel scheduler.
Whenever there is an empty slot in any HWQ, the kernel scheduler tries to find a
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candidate kernel which has the highest reuse ratio with the already-running kernels,
and schedules it into the head of that empty HWQ. In other words, it tries to maximize
the potential chances of running high reuse kernels concurrently. A significant benefit
of our scheduling strategy is that it facilitates the subsequent locality-aware WG
scheduling. More specifically, the WG scheduler is free and safe to choose any WGs
from these high reuse kernels and schedule the selected WGs into CUs as long as there
are enough hardware resources. It should also be noted that, dependencies among
parent kernels and child kernels are rare in dynamic applications [26]. However, if
there is a dependency, the dependent kernels are labeled with same software queue
ID (e.g., CUDA stream), which in turn is mapped to the same HWQ for sequential
execution. Our scheduler tries to co-locate parent and child kernels during scheduling
such that the data reuse between dependent kernels are captured.

Algorithm 3 shows the WG scheduling policy used in our limit study. We define
reuse ratio to be “high” if it is greater than 0.4. We form the high reuse chains of WGs
based on the characterization results and import the high reuse chains to Algorithm 3
for scheduling. To take high reuse WG chains into consideration, we associate each
CU with a CU queue. At runtime, we schedule high reuse WG chains into these
CU queues. Note that the WGs in CU queues do not occupy CU resources (e.g.,
hardware threads, register file). Once a CU has sufficient available resources, it selects
a candidate WG from its CU queue. Note that, scheduling an entire WG chain onto
a single CU can lead to load imbalance (in terms of the number of WGs assigned)
across different CUs. This is due to the different lengths of the WG reuse chains and
can lead to significant GPU under-utilization and performance degradation. To avoid
load imbalance, every time a WG chain is to be scheduled, all the CU queues lengths
are checked. The WG chain is assigned to the CU queue with the least number of
WGs in its queue. To tackle the issue of load imbalance, we enable WG stealing
across the CU queues. Specifically, if a CU has available resources and its associated
CU queue is empty, it steals a WG from another CU queue. Note that WGs that
have been scheduled and are executing on a CU cannot migrate.

Once a WG is scheduled on a CU, the wavefronts in the WGs are mapped to the
hardware wavefronts. There are a total of 64 hardware wavefronts in our baseline
GPU, and the default wavefront scheduler is GTO [46]. GTO scheduling performs well
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Algorithm 3 Locality-aware WG scheduling
INPUT:

QCUi
: The CU queue of CUi.

1: for each QCUi
do /**schedule reuse chains to CU queues*/

2: if size of QCUi
is minimum then

3: schedule reuse chain (wg1, wg2, ..., wgn) to QCUi

4: end if
5: end for
6: for each CUi do /**schedule WGs on CU*/
7: if CUi can issue a WG then
8: if QCUi

is empty then Steal an WG from other CU queue.
9: else issue WG from QCUi

10: end if
11: end if
12: end for

in achieving intra-wavefront data locality. However, it is not as effective in exploiting
inter-wavefront data locality. To address this, we enhance the two-level wavefront
scheduler [65]. More specifically, if two WGs have high reuse ratio, the wavefronts
from these two WGs are grouped together and executed in a round-robin fashion.
To select between the groups, GTO is used. For example, let us assume four WGs:
wg1 = (w11, w12), wg2 = (w21, w22), wg3 = (w3), and wg4 = (w41, w42). Suppose
that work-groups wg1, wg2 and wg3 have high data reuse ratio among themselves,
and wg4 has high self-WG reuse. Let us further assume all four WGs are running on
the same CU. In this case, we make two groups of wavefronts based on the WG reuse
ratios: group1 = (w11, w12, w21, w22, w3) and group2 = (w41, w42). First, GTO is
used to select between the two groups, and once the group is selected, the wavefronts
within the group are executed in a round-robin fashion.

Note that, although we use the profiled data reuse information to guide our
scheduling, we still cannot achieve the optimal data locality along with the optimal
performance. The reason for this is two-fold. First, there is a tradeoff between
parallelism (workload balance) and data locality. For instance, to guarantee CU
occupancy, we have to schedule a WG whenever a CU has available resources.
Consequently, if a high reuse WG from a child kernel is not available to the scheduler
(e.g., due to launch overhead), we do not want to reserve the CU resources while
waiting for a high reuse WG to be scheduled. This is because leaving a CU under-
utilized reduces the effectiveness on tolerating long latency operations and leads to
performance degradation. Second, GPUs usually have smaller caches compared to
CPUs. Even with our locality-aware scheduling strategies, it is not guaranteed that

62



all of the reused data blocks can remain in the cache when they are reused. To
further improve data locality in GPUs, our scheduling strategies can co-exist with
other locality-aware cache optimizations [55, 56,66].
Implementation Issues: It is not feasible for the optimal scheduler to be imple-
mented in practice. This is due to two main reasons. First, the data reuse information
that is needed at runtime is not known a priori. Unlike regular applications, where
profiling some training applications/inputs to build a prediction model can help
predict the reuse information for new applications/inputs [67,68], it is not possible
to do the same for DP applications. This is due to the irregular and unstructured
behavior of the applications and their inputs, as discussed in Section 3.3. Second,
even if the data reuse information was known a priori, the bookkeeping and hardware
overheads of implementing an optimal scheduler in practice would be too high due to
the increase on area and power costs.

3.5 LASER – Locality-Aware SchedulER: A Practi-

cal Approach
In this section, we distill the observations from our data reuse characterization and
limit study presented above, and propose LASER, a Locality-Aware SchedulER,
that makes scheduling decisions based on the reuse ratios. The reuse ratios are
computed dynamically at runtime with minimal hardware overheads and no profiling
requirements. Figure 3.11 depicts the necessary architectural support required to
implement LASER. We modify the baseline GPU architecture by extending/adding
components in the GMU, WG scheduler, and CUs.
GMU: In the baseline GPU, the newly launched kernels (device kernels) are either
directly launched into the HWQs in the GMU or temporarily “stored” in the pending
kernel pool (a queue based structure) if there are no empty slots in HWQ. We partition
the pending kernel pool to have two priority queues: High-Priority Queue (HPQ)
and Low-Priority Queue (LPQ) B . A kernel is queued to either HPQ or LPQ based
on the priority flag associated in the kernel instance A . The priority flags of child
kernels are set at the time the parent thread launches the child kernels. The priority
values are determined based on the outputs of reuse monitors (discussed later in this
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Figure 3.11: Architectural support for LASER.
section) located in each CU. Once there is an empty slot in HWQ, the GMU selects
the kernel at the head of HPQ and only selects a kernel from LPQ when HPQ is
empty C . Since we partition the pending kernel pool into HPQ and LPQ without
increasing the pool capacity, the only incurred hardware overhead is adding one more
read port and one more write port to the pending kernel pool.
WG scheduler: Recall that, in the baseline GPU scheduler, WGs from “head-of-
queue” kernels in HWQs are scheduled to CUs in a round-robin fashion. The WG
scheduler keeps tracks of the necessary WG scheduling information such as next
WG to be scheduled and WG dimension for every kernel. In LASER, we extend the
information table to include the parent information (i.e., parent kernel ID and WG
ID D ). We also add a new table called Schedule Status Table (SST) in the WG
scheduler to track the running WGs on each CU E . Each entry in SST contains the
information of the running WGs in the form of (k_id, WG_id) pair. Since each CU
can have a maximum of 16 WGs resident [37], each table entry for a CU contains
information from a maximum of 16 WGs. Therefore, we need 1664 bytes for the
hardware SST 3. A (k_id, WG_id) pair is inserted into the SST once the WG is

31664 bytes is calculated by 13 CUs with each CU has maximum 16 WGs. For each WG, we
track k_id and WG_id with each 4 bytes.
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Figure 3.12: IPC normalized to baseline scheduling.
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Figure 3.13: L1 hit rates.
scheduled to a CU and removed from the SST when the WG finishes execution and
relinquishes its occupied resources. For scheduling a child WG, the WG scheduler
relies on its parent’s information and the information from SST, and schedules it
on a CU where the parent WG is already running. As a result, parent-child WG
reuse is captured. Recall that multiple WGs can have high data reuse among them
and form reuse chains. To preserve the data reuse in reuse chains, we add a CU
queue (CUQ) F for each CU. CUQs serve two purposes: (1) to ensure that the high
reuse WGs are executed by the same CU as much as possible, and (2) to enable WG
stealing across different CUs in order to avoid workload imbalance. The CUQs are
mapped onto CUs in a one-to-one fashion. The WG scheduler always tries to schedule
WGs to a CU from its CUQ (e.g., CUQ 1 to CU 1), and a CU only steals a WG from
another CUQ if its CUQ is empty, and it has enough available resources for a new
WG to be scheduled. We implement CUQs in the GPU’s global memory such that
the hardware overheads are minimized [47].
Compute Unit (CU): We modify/add two components in each CU: (1) the wave-
front scheduler G , and (2) the reuse monitor H . As discussed in Section Section 3.4,
we use a two-level wavefront scheduler to leverage wavefront-level data reuse. Specifi-
cally, if a child kernel is predicted to have high parent-child data reuse, all the child
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wavefronts are grouped with its parent wavefront (if it is not finished yet) in the same
group and round-robin wavefront scheduler is applied within the group. Note that,
as the majority of child kernels are light-weight [28] (i.e., they contain few WGs and
each WG has few wavefronts), the total number of wavefronts in a child kernel is
small, making the group size relatively small.
Reuse Monitor: Whenever there is a child kernel launch from a CU, we estimate
the reuse type (i.e., parent-child, sibling-sibling, and self) of that particular child
kernel. This is done through the information obtained from the reuse monitor H in
each CU. The reuse monitor consists of three Bloom filters, one for each type of data
reuse: parent-child kernel, sibling-sibling kernel, and self kernel reuse. Each Bloom
filter is associated with two counters: number of hits and number of misses. For
each L1 cache read request, the accessed cacheline address is checked in the Bloom
filter and the corresponding counters are updated. The address is then added to the
Bloom filter based on the kernel type (e.g., only parent kernel adds to the parent-child
Bloom filter and only child kernel adds to the sibling-sibling Bloom filter). The reuse
monitor predicts the child kernel to be of parent-child reuse type if the “hit rate” of
the parent-child Bloom filter is greater than a predefined threshold, and is larger than
the hit rates of sibling-sibling and self-kernel. We empirically set the threshold to
be 0.5. Similarly, for sibling-sibling and self-kernel, the reuse monitor predicts the
reuse type based on the corresponding hit rates of Bloom filters. If a child kernel
is predicted to be parent-child type or sibling-sibling type, the kernel is labeled a
high-priority. Otherwise, if it is predicted self-reuse type or no reuse, it is labeled a
low-priority. We use MurmurHash2 [69] as the hash function in the Bloom filter.

At the beginning of application execution, the very first parent kernel is launched
by the host CPU and pushed into HPQ in the GMU. Due to the lack of reuse
information at the initial stage of execution, the WGs in that parent kernel are
scheduled to CU queues in a round-robin fashion for load balance. In order for the
reuse monitor to capture parent-child WG reuses, the first couple of child kernels
are launched to the HPQ and child WGs are scheduled to the same CUs where the
parent WGs execute. After this stage, further kernel launches are attached with
estimated priorities based on information from reuse monitor I . The kernel’s priority
is checked at A and is either pushed into the HPQ or the LPQ B . When a parent
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kernel finishes its execution, we reset the Bloom filters but leave the counter values
unchanged. Later, when the next parent kernel starts launching child kernels, it
uses the counter information to perform the priority prediction as well as update the
counters and Bloom filters. The major hardware overheads come from the structure
of Bloom filters which are space-efficient data structures. A Bloom filter does not
need to account for a lot of entries, especially in applications that exhibit frequent
data reuse, since only the misses are added to Bloom filter and hits just update the
counters. In LASER, each Bloom filter needs 605 bytes (with 1000 entries and 0.1
false positive probability). As a result, the total hardware overhead is 2 KB for the 3
Bloom filters per CU.

3.6 Experimental Evaluation
In this section, we evaluate the effectiveness of our limit study and our proposed
scheduling mechanism, LASER. We also compare against two prior efforts targeting
data locality on GPUs.
Results of the limit study: The first three bars in Figure 3.12 show the normalized
IPC across all 16 benchmarks from our limit study. The results are normalized to the
baseline scheduler which uses FCFS kernel scheduling, round-robin WG scheduling,
and GTO wavefront scheduling. The first three bars in Our limit study is a three-part
study which involves an optimal locality-aware kernel scheduling policy(kernel), an op-
timal locality-aware kernel+WG scheduling policy (kernel+WG) and finally, an op-
timal locality-aware kernel+WG+wavefront scheduling (kernel+WG+wavefront).
On an average, the three policies achieve performance improvements of 2.6%, 14.3%,
and 19.4%, respectively with respect to the baseline scheduling policy. From the
results, we make the following observations. First, for most benchmarks having high
data reuses in Figure 3.4, such as three inputs of BFS and both inputs of SSSP, the
performance improvements are also high compared to other benchmarks. This is
because we schedule the units (i.e., kernels, WGs, and wavefronts) with high reuse
ratios close to each other during execution. Second, for applications AMR and Mandel,
the results are similar to baseline since these two applications do not have intrinsic
data reuse properties. Third, for benchmarks such as JOIN-Uniform and SA, even
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though we use accurate reuse information to guide scheduling, some of the data reuse
opportunities may not be achievable, especially data reuse along the relationship
of parent-child. This is primarily due to the launch overhead. Specifically, child
kernels are not available in pending kernel pool immediately after launch. Since our
approach can only choose the kernels from the pending kernel pool which contains
only ready-to-execute kernels, we fail to exploit some of the parent-child data reuses.

Note that, we do not enable throttling in any of our experimental evaluation.
Throttling has been proved to be very beneficial in reducing the cache contention [57,
70]. With throttling enabled, we expect both, the limit study and LASER to provide
better performance improvements as it reduces the cache contention.
Evaluation of LASER: The last bar in Figure 3.12 shows the overall performance
of LASER, normalized with respect to the baseline scheduler. LASER, on an average,
achieves 11.3% performance improvement across the 16 GPU benchmarks tested.
We make two observations from the results. First, in benchmarks BFS-citation,
SPMM-small, and SPMM-large, LASER performs very well (close to the “optimal”).
This is because most of the parent-child kernels pairs and/or sibling-sibling kernel
pairs have similar high reuse ratios (i.e., fall into the same bin as shown in Figure 3.6).
As a result, the reuse type prediction in LASER is very accurate. Second, there is
still a sizable gap between LASER and the optimal scheduler for few applications.
This is due to two reasons. First, for benchmarks such as Quicksort, SSSP-citation
and SSSP-graph500, LASER fails to accurately predict the reuse type as the kernel
pairs have diverse reuse ratios in these benchmarks. For example, the sibling-
sibling pairs in Quicksort are uniformly distributed among reuse ratio bins (see
Figure 3.6). Second, for benchmarks such as BFS-small, Radixsort and SA, the
reuse information collection overheads (i.e., the parallelism is compromised at the
initial stages of execution where the child kernels are bound to the same CU to collect
reuse information) outweigh the performance improvements that we get with the
improved data locality.

Figure 3.13 plots the L1 hit rates with our limit study and LASER. As can be seen,
the L1 hit rate increases by enabling hardware schedulers to be locality-aware. The
L1 hit rate significantly improves for kernel+WG scheduling. This is because that
WGs with high reuses are now mapped to the same CU to take advantage of the L1
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Figure 3.14: Performance comparison against prior schemes.
cache unlike the scenario in kernel, where the WGs are scheduled in round-robin. By
using LASER, the L1 hit rate is within 3% of the optimal kernel+WG+wavefront
scheduler.

We next compare LASER with two prior efforts that target data locality in
GPUs: OWL-locality [71] and LaPerm [47]. OWL-locality implements a locality-
aware wavefront scheduler to reduce cache contention and improve the latency hiding
capability. It enhances the two-level wavefront scheduler with the knowledge of the
data layout to WG mapping. LaPerm, on the other hand, binds child WGs with their
direct parent WG, and schedules them on the same CU in a load balanced fashion.
Figure 3.14 shows the comparison of OWL-locality, LaPerm, and LASER along
with the optimal scheduling (kernel+WG+wavefront) policy. The results are
normalized to baseline scheduling. On average, OWL-locality and LaPerm improve
performance by 3.8% and 5.7%, respectively, over the baseline, whereas LASER
provides 11.3% performance improvement. In summary, DP applications are generally
complicated in data access pattern and have data reuses along different types of
kernel/WG relationships. As a result, simply co-locating neighboring WGs (as in
OWL-locality) or binding parent-child WGs (as in LaPerm) does not fully exploit
the data reuse.

3.7 Conclusion Remarks
Dynamic parallelism is an effective approach for improving GPU performance and
resource utilization when executing irregular applications. While there have been
prior efforts focusing on resource management and overhead tolerance for dynamic
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parallelism, the data access patterns and data reuse remain unclear. In this chapter,
we systematically characterize the data reuse and data locality opportunities that exist
in dynamic parallel GPU applications. Based on our observations, we conduct a limit
study to show the performance benefits of an “optimal” scheduler that realizes as much
data reuse as possible. Furthermore, we propose a practical locality-aware scheduler,
called LASER, which makes the GPU hardware schedulers locality-aware, and thus
improves data reuse. Our experimental evaluations show that, on an average, 19.4%
and 11.3% performance improvements can be achieved with an optimal scheduler and
LASER, respectively.
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Chapter 4 |
Improving Bank-Level Paral-
lelism for Irregular Applica-
tions

Observing that large multithreaded applications with irregular data access patterns
exhibit very low memory bank-level parallelism (BLP) during their execution, we
propose a novel loop iteration scheduling strategy built upon the inspector-executor
paradigm. A unique characteristic of this strategy is that it considers both bank-
level parallelism (from an inter-core perspective) and bank reuse (from an intra-core
perspective) in a unified framework. Its primary goal is to improve bank-level
parallelism, and bank reuse is taken into account only if doing so does not hurt
bank-level parallelism. Our experiments with this strategy using eight application
programs on both a simulator and a real multicore system show an average BLP
improvement of 46.8% and an average execution time reduction of 18.3%.

4.1 Introduction

To maximize the performance of multithreaded applications mapped to multicores/-
manycores, one needs to consider end-to-end data access performance, not just the
cache performance. In fact, trying to maximize LLC (Last-Level Cache) hit rates
(which is the main goal of many compiler schemes) does not guarantee good, let alone
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being optimal, end-to-end data access performance [72–74]. This is because off-chip
accesses can consume a lot of cycles, but more importantly, latencies they experience
are not uniform, being dependent on several factors such as bank-level parallelism,
row-buffer locality, memory scheduling policy, etc. Therefore, an end-to-end data
access optimization strategy should consider cache performance as well as performance
of the LLC misses. Unfortunately, while there are some recent hardware-based works
targeting off-chip accesses [75–77], software works targeting off-chip accesses are still
in their infancy.

One of the important factors that influence the performance of LLC misses is
"bank-level parallelism" (BLP), which refers to the number of concurrently-served
memory accesses by different memory banks in the system. Note that BLP is a
measure of memory-level parallelism since in the ideal case one would want all the
banks to be busy in serving memory requests (LLC misses). Note also that, in
order to have high BLP, one needs (1) a large number of concurrent LLC misses
and (2) a balanced distribution of these misses over the available memory banks.
To achieve (1), LLC misses need to be clustered and, to achieve (2), misses should
be reorganized either through code transformations or data layout transformations.
While these tasks are not trivial and have not received much attention so far from
the compiler and runtime system communities, they are even harder in the context
of irregular applications, i.e., applications whose data access patterns cannot be
completely analyzed at compile-time (e.g., index array-based calculations in scientific
codes).

This chapter presents a novel strategy to optimize BLP of index array-based
irregular programs. Our strategy, built upon the inspector/executor paradigm [78],
reorganizes LLC misses at runtime to maximize BLP. To our knowledge, this is
the first compiler work that targets improving BLP in irregular applications. The
contributions of this work can be summarized as follows:
• It presents experimental evidence, using eight multithreaded irregular applications,
showing that (1) the BLP of the original versions of these irregular applications are
very poor in general, (2) simply maximizing memory-level parallelism (by clustering
misses) does not bring significant improvements, and (3) maximizing bank-level
parallelism on the other hand can bring significant performance benefits.
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•Drawing insights from this motivational data, it next proposes a compiler/runtime
based loop iteration scheduling strategy to maximize BLP. A unique characteristic
of this strategy is that it considers both bank-level parallelism (from an inter-core
perspective) and bank reuse (from an intra-core perspective) in a unified framework.
Its primary goal is to improve bank-level parallelism, and bank reuse is taken into
account only if doing so does not hurt bank-level parallelism.
• It gives experimental evidence showing the effectiveness of the proposed strategy.
We evaluate the proposed approach in both simulator (to collect detailed off-chip
statistics and compare it against hardware-based memory schedulers) and real mul-
ticore hardware. Our results indicate that the proposed strategy reduces execution
time by 18.3% on average.

4.2 Background on DRAM and BLP

DRAM in modern systems is composed of various components like ranks, banks,
and sub-arrays. Cores in a multicore access the data from off-chip DRAM through
a component called Memory Controller (MC). Upon a last-level cache (LLC) miss,
read/write requests are mapped to a specific MC based on the address mapping
which we describe below. Requests to a DRAM are queued in a buffer at the MC,
and are issued to the DRAM by MC. Figure 4.1 shows the basic organization of
a DRAM and how it is connected to a multicore. Each MC manages a DRAM
module also referred to as DIMM by issuing commands over address/data buses,
also referred to as channel. Internally, each module is organized hierarchically as
ranks, banks, and sub-arrays. We do not consider sub-arrays in our hierarchy as they
are less common. Each DIMM is made up of multiple ranks. Each rank consists of
multiple banks and all the banks in a rank share the timing circuitry. Each bank
consists of a set of sense-amplifiers, referred to as row-buffer, where the memory row
is loaded to before the data corresponding to the request is sent back over the channel.
In an open-row policy, the row previously accessed is left open in the row-buffer.
Consequently, if there is a request to the same row in the row-buffer, it need not
be activated again, and hence incurs low latency resulting in a row-buffer hit. If
there is a request to a different row, the current row in the row-buffer needs to be
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precharged and the new row has to be activated before the data is accessed and
such a scenario is widely referred to as row-buffer conflict. Many works in the past
proposed hardware-based schedulers that take advantage of the open-row policy. One
such scheduler, FR-FCFS [79,80], prioritizes accesses that target the current row in
the row-buffer over other accesses.
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Figure 4.1: DRAM organization and DRAM-multicore interfacing.

Address mapping, also referred to as interleaving, governs how data are distributed
across various components in the DRAM. This mapping (from physical addresses to
memory banks) is decided statically (at hardware design time), and depending on the
mapping scheme employed by the hardware, a request to a physical address can result
in an access to a channel/rank and bank. Various interleavings are possible at each
level in the memory hierarchy like caches, channels and banks. Two widely-employed
interleavings are cache line level and page level. Address mapping plays an important
role in determining the performance of the system as it effects both the locality and
parallelism in the memory hierarchy. Figure 4.2 shows how a physical address is
mapped to a channel/rank and bank based on page-level interleaving. The least
significant 12-bits represent the page offset for a 4KB page. Assuming there are 4
MCs, the next 2 bits (bits 12 and 13) represent the channel id where this physical
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address is mapped. In a corresponding channel, assuming there are 4 ranks, the next
2 bits (bits 14 and 15) represent the rank where this physical address is mapped.
Once the rank is determined, assuming there are 8 banks in a rank, the next 3 bits
(bits 16, 17 and 18) are the bank bits and determine which bank this physical address
is mapped to.

5 0

Page offset

1113151847

Mem

Channel 

Mem

Rank 

Mem

Bank 

Figure 4.2: Page interleaved address mapping.

Ideally, consecutive requests to different pages in time domain should be mapped
to different banks such that these independent requests are served in parallel. This is
commonly referred to as bank-level parallelism (BLP). In this chapter, we define
BLP as

the average number of requests being served in parallel by all the banks in
the DRAM when at least one request is being served by any bank.

This definition for BLP is same as the one used in [77]. There exist various hardware-
based schemes to improve BLP, and we compare our work to a few of them in this
chapter.

4.3 Motivational Results

The curves marked as “Original" in Figure 4.3 give BLP values for a period of 2
billion cycles for our applications on a 12-core, 64-bank system. One can make two
critical observations from these results. First, most of these applications do not
perform well from a BLP angle. In fact, the average BLP values for applications
HPCG and GMR are 19.7 and 16.6, respectively, as given in Figure 4.4. Second,
as far as BLP is concerned, each of these applications exhibits a quite repetitive
pattern. This is primarily because these index array-based irregular applications have
an outermost “timing" loop that iterates either for a fixed number of iterations or until
a convergence criterion is met. In fact, this repetitiveness (not just in terms of BLP,
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Figure 4.3: BLP values (y-axis) for our applications over a period of 2 billion cycles
in a 12-core, 64-bank system.
but also in terms of access patterns and cache statistics) is the main reason why the
inspector/execution paradigm (explained later) works well for irregular applications.
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Figure 4.4: BLP results with different schemes.

To illustrate the influence of these low BLP values on performance, we present
in Figure 4.5, the execution times collected using our simulator. The first bar for
a benchmark in this bar-graph plots the execution time of the original application
in seconds. We see that, without performing anything special regarding BLP, the
execution times of our applications vary between 55.6 seconds and 124.4 seconds.
At this point, one may suggest that optimizing memory level parallelism (MLP),
that is, simply increasing the burstiness of off-chip memory requests can help us
improve BLP and ultimately reduce the overall application execution times. To check
the validity of this, we implemented in our simulator a strategy where the off-chip
accesses originating from each core have been clustered as much as possible, subject
to data dependences. Note that clustering memory requests does not necessarily
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mean delaying all of them. It is true that some memory requests are delayed due
to clustering but also some other requests are moved to an earlier point. Actually,
what this strategy (called MLP Ideal) implements in the simulator is the hardware-
equivalent of the compiler technique proposed by Pai and Adve [81] that aims to
increase memory-level parallelism. MLP Ideal incurs around the same number of
LLC misses as the original case (within 1% in our experiments), but incurs them at
different points in execution. Clearly, MLP Ideal can increase BLP, depending on the
target banks of the misses clustered. The second bar for an application in Figures 4.4
and 4.5 give the resulting BLP values and execution times with MLP Ideal. On an
average, maximizing MLP (instead of BLP) improves BLP by 21.2%, and reduces
application execution time by 6.5%, both compared to the original case. In other
words, while optimizing for MLP brings some BLP benefits, it is not very effective,
and leaves a lot of performance on the table.
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Figure 4.5: Execution time results with different schemes.

To show what the potential of an ideal scheme that maximizes BLP (as opposed
to MLP) would be, we performed another set of experiments. It needs to be observed
that, at any given period of time, there could be two reasons why an application
can experience less than maximum BLP. First, there may not be enough number of
off-chip memory references (e.g., if we have only 16 outstanding memory references in
a period of execution, we can have a maximum BLP value of 16). Second, even if we
have enough off-chip accesses, those accesses may not get distributed evenly across
available memory banks. In our implementation of the ideal scheme, we ensured that,
if there are sufficient number of off-chip accesses, they are always distributed across
the banks evenly. Therefore, the only reason this ideal scheme could not achieve
maximum BLP is the lack of sufficient number of memory accesses. The results with
this ideal scheme (called BLP Ideal) are given as the last bar for each application, in
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Figures 4.4 and 4.5. As compared to the original execution, this ideal scheme brings
an average BLP improvement of 69.8%, resulting in an average execution time saving
of 27.8%.
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Figure 4.6: BLP and execution time improvements brought by BLP Ideal, with
different bank counts on a system with 4 MCs and 8 ranks per channel.

Our last set of experiments in this section quantifies the potential of this ideal
scheme in a system with a large number of banks. In Figure 4.6, a bar marked “a(b)"
indicates that the system has “a" banks per rank, giving a total of b=2x4xa banks,
(8(64) is the default configuration used so far). The y-axis represents the average
value across all applications. We see from these results that the effectiveness of the
BLP-optimal scheme increases as we increase the number of banks, which is the
current trend in system design.

Overall, the results plotted in Figures 4.3, 4.4, 4.5, and 4.6 clearly show that
simply maximizing MLP does not bring significant BLP improvements, and instead,
maximizing BLP can bring significant performance benefits, especially with larger
configurations. However, BLP Ideal sets an upper bound for potential execution time
improvements and cannot be directly implemented. Thus, we propose a practical
BLP optimization strategy that approximates BLP Ideal.

4.4 Technical Details

4.4.1 High Level View of Our Approach

The high-level view of our approach is illustrated in Figure 4.7 for a system with 4
cores and 4 banks. Each circle in this figure represents a slab, a set of loop iterations,
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which is the unit for scheduling computations in our framework. In Figure 4.7(a), the
default execution order is shown, where accesses from different cores are clustered
into the same bank (at a given period of time), resulting in a BLP of 1. For example,
in the first period, requests from all cores access the first bank. Figure 4.7(b) depicts
the execution order after our approach is applied. In this case, at any given time, all
banks are accessed, giving a BLP of 4, which is much better than the default case.

1 5 6 742 3 1098 1612 13 14 1511

Bank-1 Bank-2 Bank-3 Bank-4

1 6 7 842 3 12115 1510 16 13 149

Bank-1 Bank-2 Bank-3 Bank-4

Core-1 Core-2

Core-1 Core-2

Core-3

Core-3

Core-4

Core-4

(a)

(b)

Slab

Figure 4.7: High level view of a system with 4 cores and 4 banks. Each core executes
its slabs from left to right.

Our approach works at the granularity of a parallel region. For the purposes of
this chapter, a parallel region represents a region that starts with an assignment to
index arrays and ends with another assignment to them, as shown on the left side of
Figure 4.8, for an example extracted from one of our application programs. The total
set of iterations that will be executed by all cores in parallel region i is denoted using
Ci(1 ≤ i ≤ N), where N is the number of parallel regions. After the parallelization
of Ci, the set of iterations assigned to core j is referred to as Li,j, with 1 ≤ j ≤ P ,
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where P is the total number of cores. Each Li,j is divided into nearly equal sized
slabs, Si,j,kt , where we execute Si,j,kt (from Li,j) at scheduling slot (time) t.

X[…]  …

Y[…]  … 

parallel-loop:

… A[X[…]] + E[Y[…]]

…  F[Y[…]] + D[X[…]]

X[…] …

Y[…]  … 

parallel-loop:

…A[X[…]] + B[X[…]]

… C[Y[…]] + D[Y[…]]

…

C1

C2

X[…]  …

Y[…]  … 

Sch  BLP-scheduling()

/* Algorithm I */

parallel-loop using Sch:

… A[X[…]] + B[X[…]]

…  C[Y[…]] + D[Y[…]]

C1

Inspector

Executor

(a)

(b)

Figure 4.8: (a) A code fragment with two parallel regions and (b) Modified version of
the first parallel region in (a) based on the inspector-executor paradigm.

4.4.2 Optimization Goal

The main goal behind our loop iteration scheduling algorithm is to optimize BLP.
In mathematical terms, at each scheduling slot t, we need to select and schedule a
slab for each core (i.e., Si,j,kt from Li,j) such that we cover as many memory banks
as possible. Clearly, to figure out the bank(s) accessed by a given slab, we first need
to be able to predict the LLC misses, which is quite hard in the case of irregular
applications. Therefore, in our default implementation, we conservatively assume
that all data accesses in the parallel region will miss in the LLC, and schedule loop
iterations based on this assumption. Later, we also explain how one can relax this
assumption. To determine the bank to be accessed by an LLC miss, we also need
support from the architecture and the OS. Operating systems have APIs that allocate
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a physical page for a given virtual address using page-coloring algorithm. There is
also an API called page-create-va(.) in Solaris (and similar calls in other operating
systems) that can accept hints from the user such that the physical pages allocated
by the OS honor these hints. We modified this call to allocate physical addresses
such that the kernel uses the same bank bits from the virtual address for the physical
address. As a result, the bits specifying the bank (e.g., bits 16, 17 and 18 in Figure 4.2)
are not changed during the virtual-to-physical address translation, and for a given
slab, we can determine the set of bank(s) that hold the data that slab will access,
and this allows the compiler to optimize for BLP using virtual addresses and expect
the corresponding improvements when the hardware uses physical addresses. We
observed during our experiments that the number of page faults did not increase after
our optimization. That is, while our approach changes the virtual address-to-physical
address mapping, doing so does not lead to any observable change in the virtual
memory performance.

Each slab Si,j,kt can be associated with a bitmap, called bank-map ∆i,j,kt , of the
form:

< B1, B2, · · · , BQ >,

where Bz (1 ≤ z ≤ Q) is set to 1 if Si,j,kt accesses memory bank z, and 0 if it does
not (Q is the total number of banks in the system). Consequently, ∆i,j,kt in a sense
represents the “bank access pattern" of Si,j,kt in a compact fashion. Now, one can try
to maximize the value of the following expression to optimize BLP at scheduling slot
t:

�{
∨

1≤j≤P
∆i,j,kt},

where ∨ denotes “bitwise OR" operation and � is an operator that returns the number
of 1s in a bit-map.

While the objective function given above can be used to maximize BLP, it does not
consider row-buffer locality at all. One option to take into account row-buffer locality
would be defining another type of bitmap (row-map) where each entry (position)
captures whether we access a certain memory row or not. These vectors, which
represent data access patterns at a memory row granularity, can then be used to
develop a scheduler that can account for row-buffer locality. However, the sheer
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number of rows makes this approach infeasible to be implemented in practice as a part
of dynamic scheme. Instead, we propose a strategy that works with the bank-maps
defined earlier.

Our strategy is to maximize the value of the following target function, if doing so
does not create a conflict with the BLP optimization goal discussed above:∑

1≤j≤P

∑
1≤t≤T

�{∆i,j,kt−1 ⊗∆i,j,kt},

where ⊗ refers to the “bitwise Exclusive-NOR" operation. It is important to note that
what this function tries to capture is to ensure that the bank-maps of two successively
scheduled slabs from the same core (∆i,j,kt−1 and ∆i,j,kt) have the same bit values
(0 or 1) in as many positions as possible. That is, this function is oriented towards
achieving bank reuse across the successively-scheduled slabs from the same core. It
is also to be noted that, while bank reuse does not necessarily guarantee memory
row reuse, it increases the chances for the latter (in our experiments, we quantify the
impact of our approach on row-buffer hit rate).

Overall, our approach tries to optimize BLP across the cores in a given scheduling
step (horizontal dimension), while considering row-buffer locality, for each core, across
successive scheduling slots (vertical dimension). The rationale behind this can be
explained as follows. First, given sufficiently large slabs, careful selection of slabs from
different cores (at the same scheduling slot) can be expected, in most cases, to cover
all the memory banks in the system. If, for some reason, one wants to work with small
slabs (each with fewer iterations) however, one needs to consider not just a single
scheduling slot but multiple neighboring slots to make sure that all banks are covered.
This generalized formulation will be given in the next subsection. On the other hand,
the reason why we consider only intra-core bank reuse instead of inter-core bank
reuse is the observation that sharing (at a memory row granularity) across cores is
not as frequent as sharing within a core (especially in carefully-parallelized scientific
codes where inter-core data sharing is minimized).

4.4.3 Generalization

There are two generalizations that we discuss. First, in optimizing BLP, we can
consider multiple scheduling steps, and second, in considering row-buffer locality, we
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can consider inter-core bank reuse, in addition to intra-core bank reuse. The target
function to maximize for BLP when considering q successive schedule slots instead of
only the current slot t can be expressed as follows:

�{
∨

1≤j≤P ; t−q≤r≤t
∆i,j,kr}.

Clearly, q is a parameter that can be tuned to strike a balance between BLP and
runtime overheads (due to working with small-sized slabs). The objective function
that considers both intra-core and inter-core bank reuse (row-buffer locality) can be
expressed as: ∑

1≤j≤P

∑
1≤v≤P ; 1≤t≤T

�{∆i,v,kt−1 ⊗∆i,j,kt}.

This function can be further enhanced to capture the bank reuse across multiple
scheduling steps as well. Our experiments with this generalized scheme revealed
that, considering 2 steps (instead of 1) in making scheduling decisions brought an
additional 1.8% improvement (over the 1 step case) but increasing it to 3 or 4 steps
did not bring any additional improvement. Consequently, in this chapter, we focus
exclusively on the case where 1 scheduling step at a time is considered.

4.4.4 Algorithm and Example

To implement the objective function discussed in Section 4.4.2, our algorithm employs
an iterative strategy. More specifically, to select the entries Si,j,kt in scheduling step
t, our approach considers each core in turn, starting with the first one. For the first
core, it selects a slab (as will be discussed shortly, bank reuse is taken into account
for this). For the second core, it selects a slab such that this new slab covers as many
banks as possible that have not been covered by the first slab. Similarly, for the third
core, it picks up a slab that covers (if possible) the banks that have not been covered
by the first two slabs, and so on. The row-buffer locality aspect on the other hand is
taken into account as follows. Whenever we have multiple candidates (for a given
core) to select from (i.e., candidates that cover exactly the same set of additional
banks), we give priority to the one that maximizes bank reuse with the slab that has
been scheduled on the same core in the previous step. In this way, row-buffer locality
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Algorithm 4 BLP_scheduling
INPUT: Number of parallel regions (N); number of cores (P); number of slabs per core (M);
1: //Initialization
2: for i from 1 to N do
3: for j from 1 to P do
4: Li,j ← {Si,j,1, ..., Si,j,k, ..., Si,j,M}
5: end for
6: end for
7: for Ci from C1 to CN do
8: for Li,j from Li,1 to Li,P do
9: t← 0
10: while Li,j 6≡ ∅ do
11: schedule← ∅
12: if t 6≡ 0 then
13: Search Si,j,k in Li,j

14: choose Si,j,k makes
15: �{∆i,j,kt−1

⊗∆i,j,kt}maximum
16: else
17: Random choose Si,j,k from Li,j

18: end if
19: delete Si,j,k from Li,j

20: schedule← schedule ∪ Si,j,k

21: //Use iterative method to search for candidates
22: for l from j + 1 to P do
23: Candidate← ∅
24: Search Si,l,k in Li,l

25: Candidate← all Si,l,k makes
26: �{

∨
1≤r≤l

∆i,r,kt} maximum

27: if t 6≡ 0 then
28: Search Si,l,k in Candidate
29: choose Si,l,k makes
30: �{∆i,l,kt−1

⊗∆i,l,kt}maximum
31: else
32: Random choose Si,l,k from Candidate
33: end if
34: delete Si,l,k from Li,l

35: schedule← schedule ∪ Si,l,k

36: end for
37: schedule set is the set of slabs to schedule
38: t← t+ 1 //T ime increased
39: end while
40: end for
41: end for

(actually, bank reuse) is considered only if doing so does not prevent us from reaching
the best candidate from a BLP viewpoint.

Our approach is implemented using the inspector-executor paradigm. Specifically,
for each parallel region, the compiler inserts the scheduler code right after the values
of the index arrays are known (the index array assignments and the scheduler code
together constitute the inspector). The main parallel loop that follows (known
as executor) uses the schedule determined by the scheduler (see the right side of
Figure 4.8). The formal algorithm for the scheduler is given as Algorithm I. The
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asymptotic complexity of this algorithm is O(N ∗ M ∗ P 2), where N , P , M are
respectively the total number of parallel regions, number of cores and number of
slabs per core. This algorithm goes over cores one by one, and for each core, selects a
slab from the remaining ones. In selecting a slab for a core j at schedule slot t, two
rules are observed. First, the slab that contributes to most 1s when it is ORed with
the slabs selected for cores 1 through j − 1 in the same schedule slot (t) is selected.
Second, if there are multiple such candidates, we give priority to the one that reuses
most banks with the slab scheduler in the previous slot (t− 1) on the same core. We
also implemented a slightly modified version of this slab selection strategy, where
cores (at a given schedule slot) are not visited in order, but based on the flexibility
they have at that point. For example, if a core has only 1 potential slab that can
enhance the current BLP, it is given priority over the others. This is because the
others are less constrained and we may still find suitable slab candidates for them
when they are visited. However, we observed in our experiments that, the difference
between these two alternate implementations is less than 1%.

We want to emphasize that our approach is capable of handling a wide variety
of indexed array applications. This includes applications where each index array is
assigned only once in the program, as well as the applications where an index array
is updated in multiple points in the program. Since our compiler analysis detects
index arrays automatically, if no index array is used in the program, our optimization
is simply not applied. We also believe that our implementation can be extended
to work with a set of pointer codes where, once the pointer-based data structure is
built, it is visited multiple times (e.g., many decision tree algorithms fall into this
category). In such cases, we can collect the bank access patterns (or conservatively
assume that every data access will be an LLC miss and go to main memory) after the
data structure (e.g., tree) is built, and use this information in scheduling the chunks
of computations that go over the data structure.

We focus on a small system with 4 cores and 4 memory banks. Each core is
assumed to have been assigned 4 slabs. Figure 4.9(a) depicts the initial state of the
cores at the first scheduling slot (t = 1). We randomly pick one slab (slab 1) from core
1. For core 2, to maximize the BLP, we have three choices (slab 1, slab 2 and slab 3).
Our selection is still random at this point since no bank reuse is possible for the
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Figure 4.9: An example of BLP optimized scheduling with 4 cores and 4 banks. Each
core is assigned 4 slabs.
first schedule slot. At the end, we have the schedule set ({S1,1,1, S1,2,1, S1,3,1, S1,4,2}),
giving the maximum BLP of 4 for this schedule slot. Figure 4.9(b) illustrates the
case when time moves to the next scheduling slot (t = 2). Now, we have three
choices for core 1 (slab 2, slab 3 and slab 4). Taking memory bank reuse into
consideration, we pick slab 4 as this slab reuses the memory bank 4 from the previous
schedule slot (0001⊗ 1001). Similarly, for core 4 at this schedule slot (t = 2), we pick
slab 4 to achieve memory bank reuse without hurting BLP. Therefore, the complete
schedule for the second schedule slot is ({S1,1,4, S1,2,2, S1,3,2, S1,4,4}). Figure 4.9(c)and
Figure 4.9(d) illustrate the results for the subsequent schedule slots (t = 3 and t = 4).
Our algorithm ends when all the slabs are scheduled with maximum BLP while also
exploiting bank reuse as much as possible.
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4.4.5 Handling Regular Accesses

In determining the schedule (within the inspector code), the regular accesses are
taken into account along with irregular accesses. Essentially, once the index arrays
are assigned, we have all the information we need, and regular accesses along with
irregular ones contribute to the determination of the schedule. Note also that the
first job of the inspector is to determine the bank access pattern of a slab. As long as
there is at least one regular or irregular reference from a slab to a bank, it is captured
in the bank-map; repeated occurrences of the same irregular reference will not add
anything more. However, if the same irregular reference is touched by two slabs, the
bit of the corresponding bank is set in both the bank-maps. Also, if the same index
array is updated multiple times, it is possible that the same reference in one place
will point to a bank, and in another place to another bank. This is fully captured in
our implementation.

4.4.6 Discussion

We now want to discuss a couple of important points. First, there is the question
of why we consider BLP as the main optimization target and consider row-buffer
locality only if doing so does not hurt BLP. The reason for this is two-fold. First,
our framework operates with bank-maps and row-buffer locality optimization using
them is a speculative one, i.e., its deemed benefits may or may not be realized at
runtime. Second, memory schedulers employed by current architectures (e.g., FR-
FCFS) compensate, to some extent, not-so-good row-buffer locality by prioritizing
memory requests that hit in the row-buffers of DRAM banks over other requests,
including older ones. So, even if the row-buffer locality is not optimized perfectly, the
memory scheduler can still achieve some locality at runtime.

Second, while we assumed so far that the slabs in Ci can be executed in any order,
our approach can be modified to work with the scenarios where we have inter-slab
dependences (intra-slab dependences are taken naturally into account as the iterations
in a slab are executed in their default order). To capture such dependences, we build
a dependence graph at the slab level, where nodes correspond to slabs and an edge
from one slab to another represents a data dependence between them. With this
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representation, our approach can be modified to consider (at each scheduling step)
only the slabs that are “schedulable" and select, if dependences allow, one slab for
each core to maximize BLP while considering bank-level reuse.

The third issue is regarding the validity of our conservative assumption which
states that all data accesses will miss in the LLC. Clearly, this assumption does not
hold in practice. By making this assumption however, capture a scenario where we
put the maximum pressure on the main memory system. Clearly, depending on the
actual misses at runtime, the relative success of our iteration scheduling strategy may
vary. Also, in many irregular applications, a given slab is executed multiple times
(once in each iteration of the outermost loop of the application). Consequently, it
is possible to predict the banks that will be accessed by a given slab based on its
previous executions. Current Intel processors like Xeon E5-E7 series [82] already
provide uncore performance counters which can be read by a Unix performance
tool like perf to understand the row-buffer hit rates in the DRAM banks. With
all the physical address information already available in the MSHRs (Miss Status
Handling Registers, which keep track of outstanding LLC misses), we assume that
new ISA instructions which can capture bank accesses would be a logical extension
to these performance counters. These ISA instructions could easily read the physical
addresses in the MSHRs and identify the bank bits by performing a simple right shift
bit-level operations and a modulo operation. With this hardware support, it would
be possible to learn which bank(s) a given slab accessed in its previous executions,
and accordingly, predict which banks it will access in its future executions.

Fourth, note that the scheduling problem we have is NP-hard, and our greedy
algorithm may not work well in some cases because it makes a (local) slab selection
decision at each step, and that decision binds the scope for future decisions (for other
cores). To reach the optimal BLP, slabs for all cores should be selected considering all
cores at the same time (instead of one-core-at-a-time). However, we decided against
such a scheme because of two factors. First, this would increase the complexity of our
algorithm. Second, we also formulated an ILP problem for the optimal slab selection
and found that the additional execution time improvements it brought over our greedy
scheme was only 2.5% on average (per parallel loop, after 7 hours of execution of the
ILP solver).
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Table 4.1: Benchmarks used in evaluation.

App Description Input MPKI
Size

Moldyn Generalized program for the 336.2MB 81.3
[84] evaluation of molecular

dynamics models
STUN Parallel sparse direct solver 1.25GB 66.6
HPCG High performance precondit- 210.8MB 87.4
[85] -ioned CG solver benchmark

MiniFE [86] Finite element mini application 654.1MB 26.5
GMR Generalized minimal residual 308.6MB 91.2

based iterative sparse solver
Carey Epidemic diffusion simulation 1.10GB 12.5

on large social networks
Equake [87] Earthquake simulation 487.7MB 14.1
GS-Solver Gauss-Seidel based iterative 390.2MB 9.1

[88] sparse solver

4.5 Experimental Evaluation

4.5.1 Setup and Applications

We implemented our scheme using LLVM 3.5.0 [83] as a source-to-source transla-
tor. The original source code and the resulting optimized code are then compiled
for simulator and actual hardware using different node compilers with the highest
optimization level available, thereby activating all cache optimizations as well. We
observed the following increases in compilation time (over the compilation time
of the original applications): Moldyn:41%, STUN:26%, HPCG:36%, miniFE:39%,
GMR:19%, Carey:14%, Equake:51%, and GS-Solver:67%. The longest compilation
time we observed when using our approach was about 57 seconds. We evaluated our
approach over a set of eight application programs described in Table 4.1. The third
column shows the total input size (in MBs), and the last column gives the MPKI
values of the original codes under our default simulation platform (described below).
GMR, STUN and Carey are three codes written by our group.

We used both simulation-based evaluation (using GEM5 [89]) and commercial
hardware-based evaluation in this work. The reason for the former is three-fold. First,
we wanted to get detailed BLP statistics to measure the impact of our approach.
Unfortunately, we are not aware of any way of measuring BLP in real systems. Second,
we also wanted to conduct a sensitivity study where we change the values of critical
system parameters/policies. Third, we wanted to compare our compiler-based scheme
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Table 4.2: Major platform parameters.

Parameter Default value
Cores 12 Xeon E5 (3.4GHz)

Cache Line 64 bytes (for all caches)
L1 Cache 32KB per core (private), 8-way, 4 cycle-latency
L2 Cache 256KB per core (private), 8-way, 12 cycle-latency
L3 Cache 10MB shared, 32-way, 32 cycle-latency
Data TLB Two-level; L1: 64 entries, 4-way,

L2: 512 entries, 4-way
Main Memory 4 DDR4-2933 MCs, 32GB capacity

(tCL, tRCD, tRP) = (20cycles,20cycles,20cycles)
8 ranks/DIMM, 2 banks/rank, 2KB row size

FR-FCFS (64 max requests/MC)

to existing hardware-based BLP optimization schemes and this comparison could only
be done using a simulator. However, in addition to this simulation based study, we
also collected execution time results on an Intel Ivy Bridge based multicore system.
Note that, the default parameters used in our simulation closely follow those of the
Intel architecture.

Table 4.2 gives the important features of the default system we modeled in our
simulator. Note that the default memory scheduler in GEM5 is FR-FCFS, and later
when comparing our approach to other memory schedulers, we changed this default
scheduler. Our results are collected when both hardware and software prefetchers are
ON (in both the simulation-based experiments and real-hardware executions). In the
simulator, we implemented a state-of-the-art stride-prefetcher. In all the experiments
presented below, the slab size is set to 1/50th of the iterations assigned to a core.
Our sensitivity analysis with different slab sizes generated similar results, as long as
the slab size chosen is large enough.

We define a metric called “coverage ratio" which captures the percentage of original
executor iterations that use the new schedule after the optimization (in the ideal case,
this ratio would be 100%). The coverage ratios for our benchmarks varied between
73% and 91%, averaging on 86%, indicating that our compiler was able to optimize a
very large fraction of each application.

4.5.2 Simulation Results

The curves marked “BLP Optimized" in Figure 4.3 give the BLP results when our
scheme is applied. Comparing these results to those of the original executions shown
in the same figure, one can see that our scheme brings significant improvements
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Figure 4.10: BLP results with different schemes.
in BLP. The third bar for each benchmark in Figure 4.10 gives the average BLP
value with our scheme. The first two bars of the same graph reproduce results from
Figure 4.4 for ease of comparison. When averaged over all application programs
in our experimental suite, the proposed approach achieves an average BLP of 44.5,
which is much better than the average BLP of the original benchmarks (30.3), and
not too far from the BLP Ideal case (51.5).
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Figure 4.11: Variations in LLC and row-buffer hit rates as a result of our approach
(BLP Optimized).

We now quantify the impact of our approach on execution times of our applications.
Note that BLP is only one part of the big performance equation, and there are at
least two important factors to consider here, in addition to BLP values, which may
influence execution times: LLC behavior and row-buffer hit rates. On the positive
side, recall that our approach tries to improve bank-level reuse, if doing so does not
conflict with the BLP optimization goal. We can expect this to have a positive effect
on both LLC performance and row-buffer hit rates. On the negative side, we have
two issues to consider. First, since our approach changes the execution order of loop
iterations, this can negatively affect the cache behavior. However, we do not expect
this to be a major issue, as our approach works at a slab granularity and, since once
a slab is scheduled all its iterations are executed in their original order, the impact on
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cache behavior will be quite limited. The second issue is due to the inherent conflict
between BLP optimization and row-buffer locality optimization. Since our approach
is primarily driven by the former, it may negatively affect the latter, though we expect
the bank-reuse optimization to compensate for it. Further, the FR-FCFS memory
scheduler used by the hardware is also expected to help with the negative impact of
our approach on row-buffer locality. Figure 4.11 gives the variations on LLC hit rate
and row-buffer hit rate when our approach is applied. We see from this plot that
overall BLP Optimized improves row-buffer locality in 3 of our 8 applications, and
distorts it in the remaining ones. One can also observe that the improvements in
the LLC hit rates brought by our approach vary between 2.2% and 8.8%, averaging
on 5.6%. It is also important to note from Table 4.1 that our applications have
relatively high MPKI values, that is, they are memory intensive. With such high
MPKI values, even after the optimization (and the reduction in LLC misses), there
are still enough misses that allow BLP to play an important role. Further, comparing
the last column of Table 4.1 and Figure 4.10, we see that our approach achieves better
BLP improvements with applications that have higher MPKI values, as there are
more memory accesses to schedule for different banks.
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Figure 4.12: Execution time results (simulator).

The execution time results with BLP Optimized are presented in Figure 4.12, as
the third bar for each benchmark. These results capture the impact of our approach
on BLP, row-buffer locality and LLC misses. We see that our approach improves
the execution times of all the applications. These improvements range between 4.1%
(GS-Solver) and 22.6% (STUN), averaging on 18.3%. The relative improvements
are lower in applications Carey and GS-Solver, which align well with the relatively
lower BLP improvements observed in Figure 4.10. We want to emphasize that these
execution time results also include all the runtime overheads incurred by our approach,
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which includes the execution of the code that determines the new scheduling as well
as any impact on caches and on-chip network. Figure 4.13 zooms in this overhead
for each benchmark, and quantifies it as a fraction of the total execution time. On
an average, the contribution of the overheads amounts to 4% of the execution time.
Actually, scheduling costs can be considered from two aspects. First, note that our
optimization target is a parallel region, not loops. Therefore, if there is a large
loop body, loop fission can be applied before our approach. Second, our approach
actually uses a sliding window-based implementation. The reason is that searching
all candidates to maximize BLP is not feasible in practice. Therefore, at any given
time, our algorithm only considers the candidates in a window. Further, some portion
of the overheads are also probably hidden during parallel execution. This is why in
practice the overheads we observe are not very high.
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Figure 4.13: Contribution of the runtime overheads to the total execution time.

4.5.3 Results with Intel Ivy Bridge
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Figure 4.14: Execution time results (Ivy Bridge).

Next, we quantify the execution time improvement on our Ivy Bridge based
multicore platform, which is equipped with 4 DDR3-2133 memory controllers (14
cycles for each of tCL, tRCD, and tRP). It is important to note that in the Ivy Bridge
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Figure 4.15: Results from the sensitivity experiments. (a) BLP improvements, and
(b) execution time reduction. In each experiment, all versions use the same hardware
configuration, specified by the x-axis.
platform, there is no way to measure BLP directly. However, we are able to measure
LLC misses, row-buffer hits and conflicts, and execution time. Due to space concerns,
we present only execution time results but want to mention that the impact of our
approach on LLC and row-buffer statistics were similar to the simulator case. In
particular, compared to the original execution, our approach distorted row-buffer
locality by 1% on average (generating, though, better row-buffer hit rates in three
applications – STUN, miniFE, and GS-Solver), and improved LLC hit rates by 6.6%
on average (improvements range from 1.8% to 9.2%). The execution time results
given in Figure 4.14 indicate similar trends to those plotted in Figure 4.12. The
average improvement brought by BLP Optimized is 15.7%. Clearly, there may be
other factors in the real system that influence the execution times but cannot be
captured by the simulator; however, our results indicate that applying our BLP
optimization improves execution time significantly in the real system as well. As a
point of comparison, when we modeled the same DDR3-2133 system in our simulator,
we observed BLP improvements (over the original version) ranging between 18.8%
and 56.3%, averaging on 30.7%. As indicated above however, there is no way to
collect such BLP statistics from the real hardware.
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4.5.4 Sensitivity Experiments

We now report, with the help of our simulator, the BLP and execution time results
under different values of the system parameters. Each group of bars in Figure 4.15
represents the average values from a single sensitivity experiment, that is, the value
of only one system parameter is varied, and the values of the remaining parameters
are kept at their default values shown in Table 4.2. These results indicate that the
effectiveness of our approach increases as we increase the number of banks, L3 (LLC)
capacity, and number of cores. When we increase the number of banks (while keeping
the number of memory requests the same), the number of idle banks in any given
period of time increases, leading to a drop in the relative BLP (not in absolute BLP,
as the absolute BLP increases with the increased bank count, but the relative BLP
[the ratio between the observed BLP and maximum possible BLP] gets reduced).
Consequently, there is more scope to optimize (more gap between the maximum
BLP and observed BLP), and this in turn increases the potential impact of our BLP
optimization.

One can also see that, although the effectiveness of our approach gets reduced
with the increased L3 capacity, even with 12MB L3 cache it achieves 29% BLP
improvement and 13.7% execution time improvement. On the other hand, it is not
easy to predict the impact of increasing the number of cores on BLP. In the case of
our benchmarks, we found that our optimization scheme generates better savings
with the increasing core count, except for STUN and GMR. This is probably because
increasing the number of cores creates more bank-level conflicts, which presents
more opportunities to our approach. In addition to these three parameters, we also
gauged the sensitivity of our approach to the row-buffer size, the number of memory
controllers (keeping the total number of banks the same), slab size, and the size of the
memory queue. Our results showed that the percentage performance improvements
brought by our approach were less sensitive to these two parameters (within 2%). We
also tested our irregular applications (in their default form) under both open-page
and closed-page policies, and found that the former results in 4% better performance
than the latter, due to primarily data locality/sharing across different threads (which
may be more pronounced than in the case of commercial workloads). This observation

95



plus the fact that we have more scope for optimization in the case of open-page policy
motivated us to use the open-page policy as our baseline.
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Figure 4.16: Execution time reduction for HPCG and GMR with different input sizes.

Our next experiment focuses on increasing the dataset sizes, and reports both
simulation and Ivy Bridge results. In only two of our benchmarks (HPCG and GMR),
we were able to change the input size safely. The results plotted in Figure 4.161

indicate that, as we increase the input size, the improvement brought by our approach
increases but to a certain point. Beyond that point, the relative savings slightly
reduce. This can be explained as follows. When the dataset size is increased, we incur
more misses, which makes it even more important to exploit BLP. However, beyond
a certain point, the outstanding misses start to fill all banks, and the original code
starts to exhibit high levels of BLP. Since Figure 4.16 gives the relative improvements
over the original version, we observe a reduction in savings.

4.5.5 Comparison against Alternate Strategies

We are not aware of any compiler scheme that tries to optimize BLP for irregular
applications. Pai and Adve [81] improve MLP in the context of single-core machines
by clustering cache misses, and Ding et al [90] enhance BLP for multicore systems.
However, both of these work with regular loop structures with affine accesses and do
not have any runtime component, and consequently, they cannot handle irregular
codes. In this subsection, we compare our approach, using GEM5, against five
alternate schemes (one software based and four hardware based). The software

1On the x-axis, “x" corresponds to the default input size of the benchmark (210.8MB for HPCG
and 308.6MB for GMR).
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Figure 4.17: Comparison of our approach against alternate strategies: (a) BLP
improvement and (b) Reduction in execution time.
scheme is GPART [91], which is a hierarchical graph clustering algorithm designed to
re-organize data layout in irregular applications to improve cache performance (in our
implementation, we adjusted the cluster sizes to maximize GPART’s performance).
The reason why we perform experiments with GPART is to gauge the impact a pure
cache-locality oriented compiler scheme can have on BLP. The hardware schemes
against which we compare are (1) PAR-BS [77], (2) TCM [92], (3) the critical region-
aware parallel application memory scheduling scheme [93] (called CRA henceforth),
and (4) the scheme described in [75] (called PAR henceforth). Note that CRA is a
memory scheduling scheme designed exclusively for multithreaded workloads, whereas
the remaining three hardware schemes are originally designed for multiprogrammed
workloads. For each scheme we compare, we run that scheme alone as well as when it
is coupled with our BLP Optimized.

The results presented in Figures 4.17(a) and (b) are normalized with respect to
FR-FCFS and use the default system parameters given in Table 4.2. We see from
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Figure 4.17(a) that GPART degrades BLP (with respect to the original case) in all
eight applications. This is mainly because it does not do anything special for BLP
and clustering data accesses (for better cache performance) tends to distort BLP,
compared to the original case. Although not presented here due to space concerns, our
experiments also showed that, while GPART improves the cache performance by 9.6%
on average, it has little impact on row-buffer performance. These cache/row-buffer
results combined with the BLP results generated, on average, 9.4% execution time
improvement for GPART, as plotted in Figure 4.17(b).

Regarding the hardware schemes, we start by observing that TCM does not
improve much over the FR-FCFS, primarily because TCM exploits the differences in
memory intensities of different cores to improve system throughput, which makes a lot
of sense in multiprogrammed workloads where one runs, for example, one application
in each core. In a multithreaded application however, all threads normally have
similar memory intensities. Consequently, except for two applications (miniFE and
GS-Solver), TCM does not improve performance, and BLP Optimized generates
an average BLP (resp. execution time) improvement of 32% (resp. 16.8%) over it.
CRA prioritizes the threads holding locks over the others to reduce serialization; it
improves over the default scheduler (as expected) in terms of the execution time,
but it is orthogonal to our scheme (as it does not do anything specific for BLP).
Consequently, our approach improves further over CRA; specifically, CRA and CRA
+ BLP Optimized generate average execution time savings of 11.5% and 26.7%,
respectively, over the original execution.

PAR-BS tries to process the requests from a thread as a batch. Our approach
generates better BLP results than PAR-BS in all programs except two (Carey and
Equake). This is because, while PAR-BS can only take advantage of the potential
BLP in memory queues, BLP Optimized can perform BLP-aware scheduling at a
much larger scope (parallel region level). These trends translate to execution times,
and we generate 6.9% improvement, on average, over PAR-BS, when all benchmarks
are considered. When the two schemes (PAR-BS and BLP Optimized) are combined,
we observe further improvements in application performance (23.4% on average over
the original execution). Finally, PAR is a scheme originally designed for exploiting
the potential MLP of prefetch requests. It has two components: the first one issues
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prefetch requests to MSHRs in a BLP-aware fashion and, the second one tries to
preserve BLP exhibited by individual cores by removing interferences. We observe
that, while PAR improves over FR-FCFS, our approach generates much better savings.
This is mainly because PAR in a sense tries to improve BLP in a similar fashion
to PAR-BS (in fact, as stated in [75], the benefits of the two schemes can partially
overlap). The results in Figure 4.17(a) indicate that PAR and PAR+BLP Optimized
generate average BLP (resp. execution time) improvements of 23.2% (resp. 13.7%)
and 51.5% (resp. 26.7%), respectively.

To sum up, BLP Optimized outperforms, in most cases, all four hardware-based
schemes tested and more importantly it can be used in conjunction with any BLP-
aware scheduler (such as PAR-BS and PAR) to generate additional execution time
savings. Also, it is orthogonal to schemes such as CRA (which improves aspects
of execution other than BLP) and can be combined with them to obtain higher
performance savings.

4.5.6 Scheduling with Dependences

Recall that, so far, if a code region has inter-slab dependences, we did not execute it
in parallel. We also performed a set of experiments where such code regions are also
executed in parallel, using the dependency graph discussed in Section 4.4.6. Although
we do not present the detailed results due to lack of space, we want to say that 7 of
our codes had at least one inter-slab dependence (miniFE did not have any), STUN
having the largest number of such dependences (17 in total). Our approach generated
an additional 3.3% (average) execution time improvement in this case, compared to
the sequential execution of the code regions with inter-slab dependences (in STUN
and Equake, the additional gains were 8.4% and 6.3%, respectively).

4.6 Conclusion Remarks

This chapter proposes and evaluates a novel loop iteration scheduling strategy to
improve memory bank-level parallelism (BLP) of irregular application programs. The
proposed scheduling strategy uses bank-maps to capture bank access patterns and
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reorganizes groups of iterations, called slabs, across cores to increase the number of
concurrently-accessed banks. It also considers bank reuse, in an attempt to improve
row-buffer locality, if it does not conflict with the BLP optimization. Our detailed
evaluations of this scheduling strategy indicate significant improvements in terms of
both BLP (46.8% on average) and execution times (18.3% on average).
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Chapter 5 |
Co-optimizing Memory-Level
Parallelism and Cache-Level
Parallelism

Minimizing cache misses has been the traditional goal in optimizing cache performance
using compiler based techniques. However, continuously increasing dataset sizes
combined with large numbers of cache banks and memory banks connected using
on-chip networks in emerging manycores/accelerators makes cache hit–miss latency
optimization as important as cache miss rate minimization. In this chapter, we propose
compiler support that optimizes both the latencies of last-level cache (LLC) hits and
the latencies of LLC misses. Our approach tries to achieve this goal by improving
the parallelism exhibited by LLC hits and LLC misses. More specifically, it tries to
maximize both cache-level parallelism (CLP) and memory-level parallelism (MLP).
This chapter presents different incarnations of our approach, and evaluates them
using a set of 12 multithreaded applications. Our results indicate that (i) optimizing
MLP first and CLP later brings, on average, 11.31% performance improvement over
an approach that already minimizes the number of LLC misses, and (ii) optimizing
CLP first and MLP later brings 9.43% performance improvement. In comparison,
balancing MLP and CLP brings 17.32% performance improvement on average.
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5.1 Introduction

Compiler researchers investigated a variety of optimizations to improve cache per-
formance [94–102]. Most of these optimizations are geared towards minimizing the
total number of cache misses, the rationale being that, lower the misses, higher the
application performance. While this is certainly true and many commercial compilers
already employ a large suite of optimizations that target cache miss minimizations
(e.g., loop permutation, iteration space tiling, loop fusion), the impact of these tech-
niques is becoming increasingly limited as (i) emerging applications are processing
enormous amounts of data, (ii) the increases in cache capacities are lagging far behind
the increases in application data volume [12, 13], and (iii) as a result, caches are
becoming unable to maintain application working sets even after aggressive cache
miss minimization.

As a result, a complementary approach would be embracing cache misses and
trying to reduce their latencies (in addition to their counts). Recent works [92,103–114]
have shown that significant amount of the overall data access latency is spent on
cache miss related traffic (either as network latency to reach the last-level cache (LLC)
banks/memory controllers (MCs), or as memory access itself). In other words, cache
misses contribute to a large fraction of the overall data access latency. Therefore,
an optimization approach that targets cache miss latencies can potentially bring
significant reductions in application execution times.

Meanwhile, to enable application scalability, modern manycores are employing
scalable interconnects (e.g., mesh-based network-on-chip (NoC)), instead of conven-
tional buses. However, such NoC-based manycores lead to non-uniform latencies for
both LLC hits and LLC misses. Typically, a data access missing in its local private
cache (e.g., L1) is routed to remote LLC bank, and if it is a miss in LLC, it will
be further routed to corresponding MC for an off-chip access. In this flow, multiple
simultaneous accesses to a given LLC bank further increase the access latency, even
when these accesses hit in the LLC bank. This is because that (i) routing all the
requests to the same node can cause network contention, and (ii) multiple requests to
the same LLC/memory bank can lead to cache contention.

Therefore, it is very important for an optimizing compiler that aims to maximize
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the performance of data access in an NoC-based manycore to minimize the latencies
of both LLC hits and LLC misses (in addition to reducing the number of LLC misses,
which is a traditional optimization goal). One way of reducing the latencies of both
LLC hits and LLC misses is to improve their parallelism, that is, the number of LLC
banks and memory banks that are concurrently accessed in a given period of time
should be maximized.

In this chapter, we define cache-level parallelism (CLP) as the number of the
LLC banks serving L1 misses when at least one LLC bank is serving an LLC access.
Similarly, we define memory-level parallelism (MLP) as the number of memory banks
serving LLC misses in parallel when at least one request is being served by a memory
bank1. We then propose a compiler framework for reducing the latencies of both LLC
hits and LLC misses, by increasing their parallelism. At a high level, this is achieved
by maximizing MLP and CLP in a given period of time (i.e., execution epoch). Our
contributions can be summarized as follows:
•We propose an optimization strategy that optimizes MLP for LLC misses and CLP
for LLC hits together. Our approach employs code restructuring and computation
scheduling, with the goal of reducing the latency experienced by data accesses.
More specifically, for LLC hits, we want to maximize the number of cache banks
concurrently accessed; and, similarly, for LLC misses, we want to maximize the
number of memory banks concurrently accessed within a given period of time (in
addition to the number of cache banks, as all memory accesses visit LLC banks
before memory banks).
•We explain how our strategy can be used to strike a balance between MLP and CLP.
Specifically, by considering the total number of accesses to each of the cache and
memory banks, our compiler automatically determines the proper “trade-off” between
MLP and CLP for each loop nest, that leads to the best application performance.
•We evaluate our approach using a set of 12 multithreaded applications on both a
detailed manycore simulator and a commercial manycore system (Intel Knight’s
Landing [8]). The experimental data collected from the simulator indicate that (i)
optimizing MLP first and CLP later can bring, on average, 11.31% performance

1We use the terms “memory-level parallelism” (MLP) and “bank-level parallelism” (BLP) inter-
changeably.
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Figure 5.1: Network-on-chip (NoC) based manycore architecture template and the
flow of a representative data access.
improvement over an approach that already minimizes the number of LLC misses,
and (ii) optimizing CLP first and MLP later can bring 9.43% improvement. Finally,
balancing MLP and CLP can bring 17.32% improvement. The corresponding
improvement from our approach that balances CLP and MLP on Intel manycore is
26.15%, on average.
•Using both the simulator and the commercial manycore architecture, we present
a detailed comparison of our approach against two previously-published compiler
optimizations [81,115] as well as a hardware-based memory parallelism optimization
[77]. The experimental results collected clearly show that our proposed approach
performs better than these alternative approaches. Specifically, it performs 12.87%,
8.31% and 6.21% better, respectively, compared to [81], [115] and [77], when using
the simulator. On the commercial manycore system, our approach outperforms [81]
and [115] by 20.13% and 13.27%, respectively.

To our knowledge, this is the first work that presents a compiler scheme designed
to co-optimize MLP and CLP. Further, our approach, which primarily targets “hit
and miss latencies” is complementary to conventional data locality optimizations (that
target minimizing the “number of cache misses”) as well as techniques designed to
increase compute level parallelism (e.g., loop parallelism).
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5.2 Manycore Architecture

In this chapter, we target emerging Network-on-Chip (NoC) based manycore/acceler-
ator architectures. Figure 5.1 depicts a manycore architecture template. Each node
in this architecture contains a core, a private L1 cache, and a shared LLC bank.
The LLC is divided in to cache banks and shared across all cores. The LLC in our
baseline architecture refers to L2 cache, though our approach can work with cache
hierarchies of any depth. We assume a static-NUCA based [116] LLC management,
where the LLC is partitioned into (cache) banks and banks are distributed across
nodes. Each cache line is statically mapped to a particular LLC bank based on its
address. Figure 5.1 also illustrates a typical request/data flow involved in a data
access. Specifically, an access that misses the private L1 cache is directed to an LLC
(L2) bank ( 1 ). If it hits in the LLC bank, the requested data is sent back to the
requesting node ( 4 ). However, if it misses there, an LLC miss occurs, and the request
is forwarded to the corresponding MC ( 2 ). The request to a DRAM is queued in a
buffer at the MC, and is issued to the DRAM by MC.

The core in each node can simultaneously issue data reference requests and those
requests are received and served by LLC banks (for hits), or memory banks (for
misses). Our optimization focuses on cache-level parallelism (CLP) and memory-
level parallelism (MLP) in an epoch of n cycles. Typically, n can be set to a value
considering the size of the ROB (reorder buffer) in the target architecture [117]. Note
that, CLP captures the number of LLC banks serving L1 misses when there is at
least one bank serving an L1 miss. Clearly, a higher CLP value indicates a better
utilization of the LLC in the system. Similar to the CLP case, a higher MLP means
better utilization of hardware resources memory banks. Each memory bank has
a sense-amplifier called row-buffer, which is used to hold the memory row loaded.
Subsequent accesses to the same row experience short latency, and are referred as
row-buffer hits in an open-row policy.

In addition to a manycore simulator, we also use Intel Knight’s Landing (KNL) [8].
KNL consists of 36 nodes (referred to as tiles in Intel terminology) connected through
mesh on-chip network. Each tile consists of two cores where each core features two
512-bit AVX vector units (VUs). There is a 1 MB “tile-private” L2 cache shared by
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two cores within a tile and cache coherence is maintained among L2 caches across
different tiles. KNL has a 16GB of multi-channel dynamic random access memory
(MCDRAM), which is divided into 8 channels and attached to the 8 MCDRAM
MCs spread across 4 corners of the mesh on-chip network. This MCDRAM, which is
separate from the DDR4 memory, can be configured into one of three different modes:
(i) cache mode, where MCDRAM simply acts entirely as a conventional LLC (L3); (ii)
flat mode, where MCDRAM acts entirely as an addressable memory; and (iii) hybrid
mode, where 25% (or 50%) of the MCDRAM capacity is configured as LLC and the
rest is configured as an addressable memory. KNL also has three different cluster
modes. The base mode is referred to as the “all-to-all” mode, where the addresses
are spread over the caches and MCs uniformly. On the other hand, in the “quadrant”
mode, the entire mesh is divided into 4 virtual regions, and a memory access travels
within the same region. Finally, in the “SNC-4” mode (also known as the sub-NUMA
mode), the mesh is split into 4 non-uniform memory access (NUMA) clusters. In
this case, all accesses (both cache accesses and memory accesses) travel within each
NUMA cluster.

5.3 Motivation

Let us consider the data access2 pattern shown in Figure 5.2a on a two-dimensional
array. We assume that the array is stored in memory in a row-major fashion (as in C
language). There are two cores in the system, and each core accesses a 4× 8 portion
of the array (for illustrative purposes). Let us assume that this access pattern repeats
itself in a (timing) loop (that is, after the last element of the array is accessed, the
first element is accessed again, until a convergence criterion – captured by the timing
loop condition – is met). The figure also highlights the cache lines (blocks) using gray
boxes, each holding 4 array elements.

The access pattern in Figure 5.2a is very good from a data locality viewpoint, as
the only misses incurred are for the accesses to the first element of each cache line
(i.e., cold misses). The problem with this hit/miss pattern is that it does not exploit
MLP (memory-level parallelism) well. Assuming, for example, there are 4 MCs in

2We use the terms “data access” and “array reference” interchangeably.
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Figure 5.2: An example of data access restructuring to cluster cache misses. The
ovals represents the array elements. The shaded rectangle box represents the cache
line. The arrow denotes the reference order. (a) Default reference pattern captured
by solid arrows. (b) Reference pattern after applying loop permutation. (c) Reference
pattern after applying loop tiling on (b).
the system each controlling 4 banks, from a single core perspective, at a period of
accessing consecutive 4 array elements, only one memory bank is accessed (by the
access corresponding to the miss), leading to a total of 2 bank accesses at most when
considering both cores. This is clearly much lower than the maximum possible of 16
memory banks.

One way of improving MLP is to cluster cache misses. In Figure 5.2b, each
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core traverses its portion of the array in a column-major fashion, instead of the
row-major fashion (shown in Figure 5.2a). This new traversal order clusters the cache
misses as they are now accessed in bursts. Therefore, at the initial period of 4 data
accesses, each core accesses 4 banks (assuming each request/miss goes to a different
bank), resulting in 8 banks being accessed when two cores are considered. However,
now, one can expect additional cache misses since the new access pattern (which
is column-wise) does not align with the underlying row-major layout of the array
(in fact, in the worst case, after this transformations, all hits in Figure 5.2a can get
converted into misses in Figure 5.2b). In other words, by going from Figure 5.2a to
Figure 5.2b, we improve MLP but distort cache locality. However, this can be fixed,
as suggested by [81], by tiling/strip-mining the innermost loop. The new post-tiling
access pattern is illustrated in Figure 5.2c. Thus, after the back-to-back optimizations
of loop permutation and tiling, we have the cache misses clustered and, at the same
time, we maintain the original cache locality (number of cache hits).

Similar to optimizing MLP for LLC misses (red ovals in Figure 5.2), we can also
optimize CLP for LLC hits (yellow ovals in Figure 5.2). There are two benefits of
considering CLP together with MLP. First, a higher CLP indicates better utilization
of LLC banks, and consequently reduces the LLC hits latency by overlapping (in time)
different LLC accesses. And, second, a higher CLP means that requests are spread
across different nodes in the network more uniformly. This potentially reduces the
previously mentioned non-uniformity of cache hit latencies, and also better balances
the utilizations of network links and routers (i.e., reduces network contentions as
well). In this chapter, we explore three optimizations: MLP-first, CLP-first, and
Balanced. In MLP-first, we first optimize MLP, then CLP is optimized without
distorting optimized MLP. Alternately, in CLP-first, we optimize CLP as the primary
target and MLP as the secondary. Finally, in Balanced, we try to strike a balance
between MLP and CLP. The following discussion focuses mainly on MLP-first. The
CLP-first is quite similar and therefore we omit its detailed discussion. We discuss
Balanced in Section 5.5.6.
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Figure 5.3: Clustering array references to improve both intra-core MLP/CLP and
inter-core MLP/CLP. The read oval in each cache line represents LLC miss, whereas
the subsequent yellow ovals represent LLC hits. Each cache line is associated with a
memory bank and an LLC bank. The pair (memory bank, LLC bank) above a cache
line indicates the corresponding memory bank ID and LLC bank ID.

5.4 High-Level Overview of Our Approach

It is to be noted that, clustering misses may not necessarily guarantee high MLP. This
is because it is possible that the clustered misses still access only few memory banks.
Motivated by this observation, we propose a loop iteration scheduling strategy where
the clustered misses provide the maximum values of MLP from both the inter-core
and the intra-core perspectives. Specifically, LLC misses issued within tiles across
different cores (inter-core), and LLC misses clustered within a tile of a given core
(intra-core) access as many different memory banks as possible.

Consider the example in Figure 5.3, which shows the array access order after the
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loop permutation and strip-mining (Section 5.3). For simplicity, let us assume that
there are 4 memory banks and 4 LLC banks in the system. For a given cache line
(denoted as gray box), the corresponding memory bank ID and LLC bank ID are
labeled as a pair of number on top of the first data element in a given cache line.

For explanation purposes, in Figure 5.3a, we divide the scheduling process into 4
phases (labeled as t0 to t3).

In this example, among the total 16 cache lines, there are 5 in memory bank-1, 4
in memory bank-2, 5 in memory bank-3, and 2 in memory bank-4. In MLP-first, our
focus is on the distinct memory banks accessed by LLC misses (red ovals). Figure 5.3a
depicts the default array accesses order without our optimization. In phase t0, LLC
misses from core0 access two different memory banks (bank-2 and bank-1). Therefore,
the intra-core MLP for core0 is 2. In phase t2, the misses from core0 access bank-3,
bank-2, and bank-1, resulting in an intra-core MLP value of 3. Hence, we can denote
the intra-core MLP of core0 as MLPcore0 = {2,3}. Similarly, we have intra-core
MLP of core1 as MLPcore1 = {2,2}. Compared to intra-core MLP, inter-core MLP
considers concurrent data accesses from different cores within the same execution
phase. Specifically, in phase t0, the misses from core0 and core1 access bank-1, bank-2,
and bank-4. As a result, we have MLPt0 = {3}. Similarly, we calculate MLPt2 = {4}
at phase t2.

We now try to optimize both intra-core and inter-core MLP. Figure 5.3b shows
the new array reference order after iteration scheduling. Note that the new array
referencing order is generated because of reordering the execution order of loop
iterations, not data layout transformation. Using the same MLP calculation discussed
above, the intra-core MLPs of the new array reference order are MLPcore0={3,4} and
MLPcore1={4,3}. Similarly, the inter-core MLPs are MLPt0={4} and MLPt2={4}. As
one can observe, the new loop iteration order in Figure 5.3b improves both intra-core
MLP and inter-core MLP compared to the execution in Figure 5.3a.

An interesting observation is that two different iteration schedules could have
exactly the same MLP values. For example, Figure 5.3c has the same intra-core MLP
and inter-core MLP compared to Figure 5.3b, with a different loop iteration execution
order. This potential allows us to optimize CLP for cache hits (denoted as yellow
ovals in Figure 5.3), without compromising MLP. In Figure 5.3a, the second number
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in the pair denotes the LLC bank ID. In total, there are 2 accesses to LLC bank-1, 5
accesses to LLC bank-2, 4 accesses to LLC bank-3, and 5 accesses to LLC bank-4.
All the three hits (yellow ovals) in a cache line access the same LLC bank. In the
default loop execution order (Figure 5.3a), cache hits from core0 access LLC bank-3,
LLC bank-2, and LLC bank-1, giving an intra-core CLP of 3 in phase t1. Similarly,
cache hits access LLC bank-2, LLC bank-3, and LLC bank-4 in phase t3. As a
result, the intra-core CLP for core0 is CLPcore0={3,3}. We apply the same calculation
for core1 and obtain CLPcore1={3,3}. We can also calculate the inter-core CLP of
Figure 5.3a. Cache hits from core0 and core1 access all four LLC banks in phases t1
and t3, respectively, resulting in inter-core CLPs as CLPt1={4} and CLPt3={4}.

Note that, while Figure 5.3b gives us the maximized MLP, CLP is not opti-
mized. In fact, the CLP in Figure 5.3b is even worse compared to the CLP in
Figure 5.3a. Specifically, in Figure 5.3b, the intra-core CLPs are CLPcore0={2,2} and
CLPcore1={3,2}, and the inter-core CLPs are CLPt1={3} and CLPt3={3}, which are
lower compared to Figure 5.3a.

Finally, in Figure 5.3c, we take the optimization of CLP into account while
performing our loop iteration scheduling. This gives us the optimized MLP as well
as the optimized CLP. Specifically, in this case, we have intra-core CLPcore0={4,3},
CLPcore1={3,4}, and inter-core CLPt1={4}, CLPt3={4}. It should be emphasized
that, in our discussion so far, we have mainly focused on the MLP-first approach.

5.5 Details of the Optimizations

5.5.1 Formalization

We now define four important concepts employed by our compiler framework: iteration
block (IB), iteration window (IW), data block (DB), and data set (DS). Among
these four concepts, IB and IW are defined on iteration space, whereas DB and
DS are defined on data space. The iteration space of an m-level nested loop can
be represented by an m-dimensional vector ~i = (i1, i2, · · · , im)T , delimited by loop
bounds {(l1, u1), (l2, u2), · · · , (lm, um)}, where lk ≤ ik ≤ uk and 1 ≤ k ≤ m. Each loop
iteration is represented using an iteration vector ~i. Similarly, the data space for an n-
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dimensional array can be represented by an n-dimensional vector ~j = (j1, j2, · · · , jn)T

where jk (1 ≤ k ≤ n) is the index of array element. Each array reference is represented
by a mapping from iteration space to data space. Given a loop iteration vector ~i,
the corresponding array reference (i.e., array index) is ~r = A~i + ~o, where A is the
reference matrix and ~o is the reference offset3. For example, the reference to array

A[i1 + i2][i2 + 2] in two-level nested loop is represented as ~r =

(
1 1

0 1

)
·~i+

(
0

2

)
,

where ~i = (i1, i2)T .
Iteration Block (IB): An iteration block is the granularity at which loop iterations
are distributed across multiple cores for execution. Given an m-level loop nest with
~i = (i1, i2, · · · , im)T , an iteration block IB is defined as:
(1) IB = {~i1, ~i2, · · · , ~iq}, where each ~ix, (1 ≤ x ≤ q) is one loop iteration.
(2) For any two loop iterations ~ix = (ix1 , ix2 , · · · , ixt︸ ︷︷ ︸

t

, ixt+1 , · · · , ixn)T and ~iy =

(iy1 , iy2 , · · · , iyt︸ ︷︷ ︸
t

, iyt+1 , · · · , iyn)T (1 < x, y < q, 1 < t < n) that belong to the same IB,

we have ixv = iyv (1 <= v <= t).
The value of t determines the outermost t-level loops can be potentially parallelized
across multiple cores. In other words, it specifies the size of an IB. Choosing a proper
t involves a tradeoff between parallelism and cache locality. Specifically, a small
value of t indicates a parallelization of the loop iterations across different cores in
big chunks (IBs), in which, consecutive data accesses to the same cache line are
contained in a single chunk and assigned to one core. While this scenario is good
for cache locality, there are two drawbacks of using large-sized IB. First, a large
block would typically access many memory banks. As a result, we lose the flexibility
of scheduling IBs towards optimizing MLP. Second, large blocks can also lead to
imbalanced computation among cores and sacrifice performance due to less parallelism.
On the other hand, a large value of t (small-sized IBs) can hurt cache locality. This is
due to the fact that subsequent accesses to the same cache line might be distributed
across different cores, resulting in extra cache misses from different cores. In our

3In this chapter, we focus on affine programs [118]. That is, the loop bounds and array references
are assumed to be affine functions of the loop iterators. For an application program that has both
affine and non-affine references, our approach optimizes only the affine ones.
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framework, we choose to use proper small-sized iteration blocks so that the loop nest
can be parallelized in a fine-granular and balanced fashion (Section 5.5.3). Meanwhile,
loop iterations that access the same cache line are grouped into the same IB. Therefore,
the temporal locality of accesses to a cache line is maintained within an IB.
Iteration Window (IW): An iteration window is a group of iteration blocks assigned
to a core. Formally, an IW assigned to core ci is denoted as IW(i,j) with 1 ≤ i ≤ C,
where C is the total number of cores, and i and j denote the core ID and IW ID,
respectively. In our approach, an IW follows two rules:
(1) For any IW(i,j), IW(i,k) (j < k) from core ci, loop iterations in IW(i,j) are executed
before loop iterations in IW(i,k).
(2) For any two IW(m,j), IW(n,j) from cores cm and cn, loop iterations from IW(m,j)

and IW(n,j) are expected to execute concurrently at runtime.
Rule (1) captures the execution order of IWs within a core, whereas rule (2) provides
concurrent execution of IWs from multiple cores. Each IW(i,j) can be expanded as
a set of IBs, i.e., {IB(i,j,1), IB(i,j,2), · · · , IB(i,j,n)}. In general, we use a large-sized
IWs, so that rule (2) can be satisfied at runtime. However, the size of IW cannot be
arbitrary large. This is because our loop permutation changes the data access order
within an IW, and we do not want to introduce extra cache misses within an IW. We
discuss how we choose a proper size of IW in Section 5.5.3.
Data Block (DB): A data block is a group of data elements (addresses) in data
space. Specifically, an DB can be expressed as a set of array elements accessed by
array references ({~r1, ~r2, · · · , ~rp}). In our framework, we use the cache line size to
determine the DB size (p). That is, array references in the same DB are mapped to
the same cache line, and can potentially benefit from spatial locality. It is possible
that multiple DBs are mapped to a single cache line, but not the other way around.
Recall that data accesses to an n-dimensional array can be represented as vectors in
the data space (~rk = (rk1 , rk2 , · · · , rkn)T , where 1 ≤ k ≤ p, and rki (1 ≤ i ≤ n) is the
array index in the ith dimension). An DB can formally be defined as:
(1) DB = {~r1, ~r2, · · · , ~rp}, and
(2) For any two ~rx = (rx1 , rx2 , · · · , rxu︸ ︷︷ ︸

u

, rxu+1 , · · · , rxn)T and ~ry =

(ry1 , ry2 , · · · , ryu︸ ︷︷ ︸
u

, ryu+1 , · · · , ryn)T (1 ≤ x, y ≤ p, 1 ≤ u ≤ n) in the same DB,
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we have rxv = ryv for any v where 1 ≤ v ≤ u and u is determined by the cache line
size.
Data Set (DS): A data set is a group of DBs referenced by loop iterations from
the same iteration block (IB). The data blocks (DBs) referenced by an IB can be
inferred by applying reference matrix and offset to each iteration vector in the IB.
Specifically, an DS can be defined as follows:
(1) DS = {DB1, DB2, · · · , DBn}, with DBx = { ~rx1, ~rx2, · · · , ~rxq}, where ~rxj =

A ~ixj + ~o (1 ≤ j ≤ q).
(2) Given an array reference ~rx from DS, if ~rx ∈ DBi, then DBi is included in DS.

To summarize, loop iterations in a loop nest are grouped into IBs and IB is the
granularity we use to parallelize and schedule a loop nest (distribute its iterations)
across multiple cores. IBs within the same IW can execute in any order without
compromising cache locality. Further, IWs are executed sequentially within each core.
The array references made by an IB collectively constitute an DS. A DS may contain
several DBs. Array references to the same cache line are grouped into the same DB.

5.5.2 Optimization Goal

With these four concepts (IB, IW, DB, and DS) in place, we are now ready to discuss
our optimization target. Each DB is associated with a memory bank and an LLC
bank, based on its address. We use memory bank vector to represent the memory
bank of an DB. Given a memory bank vector ~b = (b1, b2, · · · , bn), where n is the
total number of memory banks, bit bi (1 ≤ i ≤ n) is set to 1 in a bank vector, if the
requested DB (cache line) is mapped to memory bank i. Similarly, for LLC banks,
we define LLC bank vectors as ~c = (c1, c2, · · · , cl), where l is the total number of LLC
banks. We use

∑~b and
∑
~c to denote the total number of 1s in memory bank vector

and LLC bank vector, respectively. Obviously, for ~b and ~c of a given DB, we have∑~bDB = 1 and
∑
~cDB = 1, indicating that the references to an DB only access one

memory bank and one LLC bank.
An IB accesses a set of DBs (i.e., an DS). To capture the memory banks accessed

by an IB, we apply bit-wise or ( ·∪) operation over all the bank vectors associated
with the DBs in an DS. Specifically, the bank vector of an IB is expressed as
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Algorithm 5 MLP, CLP aware iteration block scheduling (Single array, Manycore).
INPUT: Number of cores (N); Size of iteration window (W); Number of total iteration blocks (M);
OUTPUT: Iteration windows to core mapping.
1: function get_MLP_of_IB(IterationBlockPool)
2: for each IBi in IterationBlockPool do
3: ~bIBi

← ~0
4: data_blocks← get_data_blocks(IBi)
5: for each data block DBj in data_blocks do
6: ~bIBi

·∪ get_MLP_V ector(DBj)
7: end for
8: end for
9: return (~bIB)
10: end function
11: function Single_Core(W, MLPIB , IterationBlockPool, ~g)
12: iterationWindow ← ∅
13: ~l← ~0 Intra-core MLP vector
14: TempSet← ∅
15: for each IBi in IterationBlockPool do
16: −−−−→

tempg ←
−−−→
MLP IBi

·∪ ~g //calculate inter-core MLP
17: if

∑−−−−→
tempg >

∑
~g then

18: IterationWindow ∪ bi
19: Update IterationBlockPool and W
20: ~l← ~l ·∪

−−−→
MLP IBi

; ~g ← −−−−→tempg
21: Break if W == 0
22: else if

∑−−−−→
tempg ==

∑
~g then

23: −−−→
templ ←

−−−→
MLP IBi

·∪~l //calculate intra-core MLP
24: if

∑−−−→
templ >

∑~l then
25: IterationWindow ∪ bi
26: Update IterationBlockPool and W
27: ~l← −−−→templ
28: Break if W == 0
29: else if

∑−−−→
templ ==

∑~l then
30: TempSet ∪ IBi

31: end if
32: end if
33: if

∑
(~g ·∪~l) ≥ β ×MAX_MLP then

34: Add remaining IBs in IterationBlockPool to TempSet; Break
35: end if
36: end for
37: if W 6= 0 then
38: for each iteration block IBi in TempSet do
39: Choose IBi if it improve CLP, remove IBi from IterationBlockPool and TempSet
40: Break if W == 0
41: end for
42: end if
43: return (IterationWindow,~g)
44: end function
45: k ← 0
46: Generate dependency of IterationBlockPool
47: MLPIB = get_MLP_of_IB(IterationBlockPool)
48: while There are iteration blocks in IterationBlockPool do
49: ~g ← ~0 //Inter-core MLP vector
50: for Ci from C1 to CN do
51: (IWk,Ci

, ~g) = Single_Core(W , MLPIB , IterationBlockPool, ~g)
52: schedulek ∪ IWk,Ci

53: end for
54: k ← k + 1 //Increase 1 schedule time unit
55: end while
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for (j =0; j < m; j++)

for (i = 2; i < n; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

core 1:

for (j = 0; j < m/2; j++)

for (i = 2; i < n; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

core 2:

for (j = m/2; j < m; j++)

for (i = 2; i < n; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

for (iw = 0; iw < m; iw+=iw_size )

for (j = iw; j < iw+iw_size; j++)

for (ib = 2; ib < n; ib+=ib_size)

for (i = ib; i < ib+ib_size; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

（a）original code

（b）naive parallelization

（c）loop strip mining

core 1: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (each ib in iw) /**number of iteration blocks in a 

window */  

for (i = ib; i < ib+ib_size; i++)

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

core 2: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (each ib in iw) /**number of iteration blocks in a 

window */  

for (i = ib; i < ib+ib_size; i++)

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

（d）loop iteration block scheduling core 1: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (i = ib; i < ib+ib_size; i++)    

for (each ib in iw) /**number of iteration blocks in 

a    window */  

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

core 2: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (i = ib; i < ib+ib_size; i++)    

for (each ib in iw) /**number of iteration blocks in 

a    window */  

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

（e）loop permutation

Figure 5.4: An example code fragment and its transformed versions after applying
our optimizations.
~bIB = ·∪{~bDB1 ,

~bDB2 , · · · ,~bDBn}.
To optimize MLP, we further apply bitwise or ( ·∪) on memory bank vectors among

IBs. At each scheduling step4, we try to maximize
∑ ·∪~b(i,j,k), where i is the core id,

j is the IW id, and k is the IB id. For inter-core MLP, we choose the IBs such that∑ ·∪~b(i,J ,k) is maximum for a given IW J . Similarly, for intra-core MLP, we maximize∑ ·∪~b(I,J ,k) for a given core I and a given IW J .
In the CLP-first approach on the other hand, we calculate CLP using the same

approach discussed above, and the only difference is that we replace memory bank
vector with LLC bank vector (~c) as our primary optimization target is CLP.

5.5.3 Loop Strip-Mining

Let us consider the two-level loop nest shown in Figure 5.4a. There are three references
to array a and one reference to array b in each innermost loop iteration (ith dimension).
Focusing on array a, the corresponding data access pattern is plotted in Figure 5.5a.
We assume that there is a total of 4 memory banks (the number in the oval is the
bank ID). Figure 5.4b and Figure 5.5b show the results of parallelizing the outer j
loop between two cores without applying our approach. In our framework, we first
apply loop strip-mining based on the iteration window size and the iteration block

4A scheduling step is a round of assigning iteration blocks to cores. More specifically, at each
scheduling step, we assign each core a number of iteration blocks. This number is determined by
the iteration window size.
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Figure 5.5: The corresponding memory access pattern of the code example in Fig-
ure 5.4. (a) Default access pattern. (b) Parallelization between two cores. (c)
Forming iteration block and iteration window. (d) Iteration block scheduling. (e)
Loop permutation to cluster cache misses.
size to eliminate the potential extra cache misses.
Iteration block size: Recall from Section 5.5.1 that small-sized IBs can lead to
extra cache misses, whereas large-sized IBs can reduce MLP. In the example shown
in Figure 5.4a, there are three data references to array a in each innermost loop
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iteration (a[j][i− 1], a[j][i], and a[j][i+ 1]). As the iterator (i) moves forward, these
three references also move forward as a “group”, as illustrated in Figure 5.5a. Since
these three references move across the boundaries between two neighboring DBs
(highlighted with square in the figure), it is simply impossible to have each IB access
only one data block. Let us assume in this case that all three data references go to
the same DB from iteration 1 to k − 1 of the inner ith loop. In the kth iteration,
a[j][k + 1] refers to a data element in the second DB, whereas a[j][k − 1] and a[j][k]

still refer to the data elements in the first DB. Similarly, in the (k + 1)th iteration,
a[j][k + 2] and a[j][k + 1] refer to the data elements in the second DB, whereas only
a[j][k] refers to a data element in the first DB. Now, the question is: should we group
iterations k and k + 1 in the first IB or in the second IB? Let us assume there are
two different iteration blocks (IB1, IB2) that are assigned to two different cores (c1,
c2). We want iterations k and k + 1 both in either IB1 or IB2 so that only one core
(either c1 or c2) accesses both the DBs and the other core accesses only one DB. For
instance, the consequence of grouping iterations k and k+ 1 in IB1 is that IB2 starts
with iteration k + 2 which does not access the first DB, as all of the array indices
(a[j][k+ 1], a[j][k+ 2], a[j][k+ 3]) are in the second DB. Otherwise, c1 needs to access
2 DBs, and c2 also needs to access 2 DBs.
Iteration window size: IBs are grouped into iteration windows. The size of an
IW is decided by the cache capacity. Specifically,

IW_size = C/(D ∗ n), (5.1)
where C is the cache capacity in terms of the number of cache lines, D is the size of
DS, and n is the number of cores. Since the size of DS captures the number of DBs
(cache lines) accessed by an IB, the IW size captures the number of maximum IBs
per window without hurting cache locality.

5.5.4 Loop Iteration Block Scheduling

After the sizes of IB and IW are determined, we apply loop-strip-mining (Figure 5.5c).
Then, the loop nest after strip-mining is treated as consecutive iteration blocks which
are input to our proposed IB scheduling (IterationBlockPool in Algorithm 1). We give
the formal description of our scheduling approach in Algorithm 1. At high-level,
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Our scheme tries to achieve two objectives: 1) at each time unit of scheduling, we
choose an IB that improves inter-core MLP as well as intra-core MLP, and 2) once the
MLP cannot be improved any further (in the MLP-first approach), CLP is considered
as the next optimization target.5 To do that, there are three steps involved in the
algorithm: 1) dependence analysis at IB granularity (line 41), 2) obtaining the MLP
vector of each IB (line 42), and 3) scheduling IBs for each core (lines 45 to 47).

Our approach starts by building dependence graph (DAG) of iteration blocks. If
two IBs are dependent, the necessary ordering is enforced by inserting synchronization
between those two dependent iterations blocks. In subsequent IB scheduling, we always
try to select independent IBs for inter-core optimization. If we cannot find independent
IB, dependent IBs are chosen and correctness is guaranteed by synchronizations. We
want to emphasize that, to reduce the overhead of synchronization, after scheduling
all IBs, we perform a “transitive closure” based synchronization minimization strategy
to remove redundant synchronizations.

Our loop iteration scheduling chooses IB from in IterationBlockPool (line 46).
We define one scheduling cycle (time unit) as a round of assigning IBs to each core
which fills an iteration window (lines 9 to 39). The scheduling ends when all the
iteration blocks in IterationBlockPool have been scheduled. Our IB scheduling
consists of three major steps: for each core and for each iteration window, (1) we first
choose IBs that optimize inter-core MLP (lines 15 to 20), and then, (2) we select IBs
that maximize intra-core MLP (lines 22 to 29), and finally, (3) if the iteration window
still have slots and the preferred value of MLP is reached (line 30), we choose IBs
that optimize CLP (lines 33 to 38). To be more specific, if a candidate IB contributes
more to the inter-core MLP or intra-core MLP, we schedule that IB in the current
IW. Otherwise, if the candidate provides the same MLP, we add it to a TempSet,
which holds all the candidates that can be used for improving CLP. We use a factor
β (line 30) to balance CLP and MLP (details are provided in Section 5.5.6). The
complexity of this algorithm is O(NM2), where N is the number of cores and M is
the total number of iteration blocks.

Figures 5.4d and 5.5d give an example code fragment and the corresponding array
5In the CLP-first approach on the other hand, we try choose an IB that improves CLP, and once

the CLP cannot be improved any further, MLP optimization is attempted.
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reference pattern, respectively, after applying our iteration block scheduling. As
can be seen from Figure 5.5d, the inter-core MLP is 4 for each of the four iteration
windows, and at the same time, the intra-core MLP is 2. Clearly, compared to the
default access pattern depicted in Figure 5.5c (where MLP is 2 for inter-core and 1
for intra-core), both inter-core and intra-core MLP are improved.

5.5.5 Loop Permutation

At this point, iteration blocks are scheduled across cores and iteration windows are
formed. The last step is loop permutation. Recall from our discussion in Section 5.3
that we interchange the innermost loop with the second innermost loop such that the
misses are grouped together to reach an improved MLP. We apply loop permutation
to loop iterations within an iteration window. Since all the data blocks accessed by
the iterations within an iteration window across cores can fit in the cache (due to our
selection of the size of iteration window), our permutation will t not cause any extra
cache misses. Figures 5.4e and 5.5e depict the loop nest body and the array reference
pattern, respectively, after applying loop permutation.

Table 5.1: An example illustrating the trade-off between MLP and CLP.

Memory Banks LLC Banks
b0 b1 b2 b3 b0 b1 b2 b3

IB0 0 1 3 0 2 0 4 0
IB1 1 2 0 1 2 0 4 0
IB2 0 0 2 2 0 2 0 4
IB3 2 2 0 0 0 3 0 3

As a summary, our approach takes iteration blocks (IterationBlockPool in Algo-
rithm 1) as input, where each iteration block has its unique identifier (id). Then,
Algorithm 1 picks up iteration blocks from IterationBlockPool and forms iteration
window across the cores. As a result, each core is associated with a sequence of
iteration blocks. During execution, array reference index is derived from iteration
window id and iteration block id. Note that, our approach generates the transformed
source code of each loop nest. In the experimental results discussed in Section 5.6
(in both the simulation and KNL experiments), we enabled all vectorization and
data locality optimizations. In KNL, we used Intel compiler (icc) to generate code.
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In simulation-based experiments, gcc code generator (with the highest optimization
level) is used.

5.5.6 Striking a Balance between CLP and MLP

Although our discussion above mainly focuses on MLP-first which takes CLP into
consideration only as secondary objective, as an alternative approach, one can also
choose CLP as the primary optimization goal over MLP, or even choose to trade
MLP for CLP. To explain the benefits of doing so, let us consider the access patterns
of four iteration blocks, shown in Table 5.1. Each value shown in the table represents
the number of accesses to a particular memory/LLC bank. Let us assume that IB0

has already been scheduled, and we are now choosing the next IB from IB1, IB2,
and IB3. Based on our previous discussion, we choose IB2 since

∑~bIB0
·∪~bIB1 is 4,

meaning that MLP is maximized to 4. However, doing so is not good from a CLP
perspective, as it adds more latency to LLC hits and the value of CLP is only 2 .
This is because both IB0 and IB1 access LLC banks b0 and b2, resulting in a total of
4 (2+2) and 8 (4+4) accesses to LLC banks b0 and b2, respectively. Since the hits in
an LLC bank compete with one another, this cache contention can easily offset the
potential benefits coming from optimized MLP.

As a result, one may want to explore a more “balanced approach” between MLP
and CLP. We enable a tradeoff between MLP and CLP by determining the value of
parameter β in Algorithm 1 (line 30). More specifically, we employ the following
optimization target:

Target_Metric = β ×MLP + (1− β)× CLP, (5.2)
where we have 0 ≤ β ≤ 1. To determine an optimum value for β, we first need to
augment our approach explained so far to take the number of bank accesses into
consideration. More specifically, we use integer values (instead of boolean values
which are used in previous discussion) for the entries in a bank vector of an IB, so
that we can capture the number of accesses made to a given bank. Also, we define an
operation, ], which performs the entry-wise addition between two bank vectors, and
compute the standard deviation (SD) for the weighted MLP vector. Note that, SD
captures the distribution of accesses across different banks. In particular, a higher
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SD indicates that the accesses are not balanced and some banks have long service
queues populated by many accesses, whereas other banks have only a few accesses.

Let us assume that the request service latency at memory banks is ηm and the
service latency at LLC banks is ηn. Let us further assume that the weighted bank
MLP and CLP vectors for the current iteration block IB(c)urrent are ~mc and ~cc,
respectively, and we are selecting the next iteration block from IBx and IBy. We
use ~mx and ~cx to denote, respectively, the MLP vector and CLP vector of IBx.
Similarly for IBy, we have ~my and ~cy. We can calculate the corresponding standard
deviation between IBc and IBx using SDm(IBc, IBx) = SDm(( ~mc ] ~mx) ∗ ηm).
In terms of CLP, the corresponding SD is SDc(IBc, IBx) = SDc((~cc ] ~cx) ∗ ηc).
Therefore, we have SD(IBc, IBx) = SDm(IBc, IBx) + SDc(IBc, IBx). We then
define δ = SD(IBc, IBx)− SD(IBc, IBy) to capture the difference of SDs between
two iteration blocks IBx and IBy. If δ > 0, it indicates that choosing IBy is better
since a smaller value of SD indicates a more balanced distribution of accesses to
different banks. On the other hand, if δ = 0, we randomly choose one iteration block
from IBx and IBy.

Note that, to reduce potential overheads, we only perform SD analysis for the first
two iteration blocks of each iteration window. After we select the first two blocks, we
check the MLP vector and CLP vector of the chosen iteration block and determine
the value of β. In other words, we choose the most beneficial iteration blocks (in
terms of a both CLP and MLP) at the beginning of constructing an iteration window.
We then use the obtained β to choose the successive iteration blocks for that iteration
window. That is, our compiler automatically determines the value of β for each
iteration window. Later, we present the distribution of β values determined by our
approach.

5.5.7 Discussion

We now discuss the generality of our approach. If the target system employs dynamic
NUCA (DNUCA) where a cache line doesn’t have a fixed home bank and can reside
in any cache bank in the system, our approach can be augmented to predict the
locations (LLC bank) for DBs (for the next scheduling epoch). Equipped with
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such prediction, our approach can be used for DNUCA as well. If the LLCs are
private (which is not very common), our approach will have limited impact on CLP.
However, we want to emphasize that, even when the target-system employs DNUCA
or private LLC, our framework will still improve MLP. Also, our approach works
with different NoC topologies (e.g., mesh, butterfly, etc). As long as the information
of cache/memory placement, cache management policy (i.e., SNUCA or DNUCA),
and network topology are exposed to our compiler, we can apply our optimization on
CLP and MLP.

5.6 Experimental Evaluation

5.6.1 Setup

We conducted both a simulation based study as well as experiments on a commercial
manycore architecture. The reason why we performed simulation based experiments
is two-fold. First, it is not possible to extract CLP and MLP information from a
real hardware, as current performance counters, debugging tools and performance
evaluation tools do not provide CLP or MLP statistics. Second, to see how our
proposed compiler based approach performs under different architectures, we wanted
to change some of the architectural parameters, and this could be done only in a
simulation based environment. However, in addition to the simulation based experi-
ments, we also performed experiments on Intel Knight’s Landing [8], a commercial
manycore/accelerator system. In KNL, each experiment is repeated 15 times, and
the median-value is used in the presented-plots. The variance between the lowest and
highest values was less than 2% in all experiments.

For our simulation based experiments, we used gem5 [89] infrastructure to execute
12 multithreaded applications in the full system mode. Ten of our twelve multithreaded
applications are from Splash-2 [119] and the remaining two are matrix multiplication
(mxm) and syr2k, a kernel that performs a rank-2k matrix-matrix operation. The
input dataset sizes of these applications vary between 33.1 MB and 1.4 GB, and
their LLC (L2) cache miss rates range from 16.6% to 37.2% (in simulator). Also, the
number of iteration blocks (as defined in Section 5.5.1) ranges between 8,032 and
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Table 5.2: System setup.

Manycore Size, Frequency 36 cores (6× 6), 1 GHz, 2-issue
L1 Cache 16 KB; 8-way; 32 bytes/line
L2 Cache 512 KB/core; 16-way; 128 bytes/line
Hardware Prefetcher stream prefetcher with 32 streams, prefetch

degree of 4, prefetch distance of 64 cache lines
Coherence Protocol MOESI
Router Overhead 3 cycles
Memory Row Size 2 KB
On-Chip Network Frequency 1 GHz
Routing Policy X-Y routing
DRAM Controller open-row policy using FR-FCFS scheduling policy

128-entry MSHR and memory request queue
DRAM DDR4-2400; 250 request buffer entries

4 MCs; 1 rank/channel; 8 banks/rank
Row-Buffer Size 2 KB
Operating System Linux 4.7
Data Distribution 2KB granularity, round-robin
Across Memory Banks
Data Distribution 128 bytes granularity, round-robin
Across LLC Banks

31,554.
We used LLVM [120] to implement our compiler support. Table 5.2 gives the

important parameters of the manycore/memory configurations modeled in this work
using gem5. In most of our simulation-based experiments, we used 36 cores and
parallelized each application program such that each core executes one thread at a
time (i.e., one-to-one thread-to-core mapping In all experiments, we set the scheduling
epoch length 2500 cycles. We also enable both vectorization and the hardware-based
prefetcher (stream-prefetcher).

In this work, we compare eight different versions for the execution of our application
programs:
•Default: In this version (also called the original version), the iterations of a loop
nest are divided into iteration blocks of equal size, and the resulting iteration blocks
are assigned to available cores in a round-robin fashion. Unless stated otherwise, the
results with all the remaining versions described below are normalized with respect
to this version.
•Clustering: This version implements the approach in [81]. While it clusters the
LLC misses, it does not specifically consider cache-level parallelism.
•MLP-first: In this version, MLP is optimized aggressively using the approach
explained in Section 5.5.4. As noted there, CLP is considered, as a secondary
optimization, only if doing so does not hurt MLP.
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•CLP-first: This is the other extreme where CLP is aggressively exploited first, and
MLP is considered only if doing so does not hurt CLP.
•Balanced: This is the approach defended in Section 5.5.6, where the compiler tries
to determine the value of β parameter to co-optimize (balance) MLP and CLP so
that maximum performance can be achieved. It is important to note that MLP-first
and CLP-first are just two different incarnations of Balanced, with β = 1 and β = 0,
respectively.
• Locality-Aware-MLP: This is a recently published compiler approach [115] that
targets optimizing bank-level parallelism in a locality-conscious (row-buffer aware)
manner. It does not consider CLP; however, it considers row-buffer locality.
•PAR-BS: This is a pure hardware based optimization scheme proposed by [77]. It
(i) handles DRAM requests in batches to provide fairness across competing memory
requests coming from different threads, and (ii) employs a parallelism-aware DRAM
scheduling policy with the goal of processing requests from threads in parallel in the
DRAM banks, to improve memory bank-level parallelism.
• Ideal: This version represents the maximum potential savings. It is implemented
in the simulator by maximizing both MLP and CLP. It, in a sense achieves, at
the same time, the MLP performance of MLP-first, and the CLP performance of
CLP-first. Note that, this version is not practical as CLP and MLP can conflict with
one another, and it is not always possible to maximize the both at the same time.

While we tested all these versions in our simulator (gem5), the PAR-BS and Ideal
versions could not be used on Intel manycore system, as the former is a pure hardware
based scheme that requires architectural modifications and the latter represents a
limit study that can be evaluated only in a simulated environment. We also want to
emphasize that, unless stated otherwise, all these versions have the same degree of
compute parallelism and use the same set of conventional data locality optimizations
(such as loop permutation and tiling that collectively minimize the number of LLC
misses), and that they only differ how they map and schedule iteration blocks. The
accuracy of the CME implementation employed in estimating LLC misses ranged
between 79.14% and 88.36%.
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5.6.2 Results with the Manycore Simulator

We present the MLP results in Figure 5.6. As expected, MLP-first generates the best
MLP results. While CLP-first performs much worse than MLP-first, it is still better
than the default version, as CLP-first considers MLP if doing so does not hurt CLP.
Also, Clustering does not perform very well, as mere clustering of memory accesses
does not guarantee MLP improvement (though it performs, as can be expected,
better than the default version). Overall, PAR-BS performs slightly better than
Clustering; but, since the throughput optimization it brings is balanced with fairness
optimization, its performance is not as good as Balanced. Also, since PAR-BS is a
pure hardware optimization, it is not as good as compiler based schemes that have
the flexibility of performing whole program analysis. Finally, Locality-Aware-MLP
generates comparable MLP results to Balanced, and Balanced outperforms all the
versions tested (except MLP-first).

Figure 5.7 presents the CLP results produced by the same versions. It can be
observed that Clustering, MLP-first, and Locality-Aware-MLP do not perform very
well as far as CLP is concerned, though they are in general better than the default
version. This is hardly surprising, as these versions do not specifically target CLP.
PAR-BS does not perform any better than Default, primarily because the former
mainly targets MLP, not CLP. In comparison, Balanced performs quite well in terms
of CLP, and the average CLP values Balanced and CLP-first bring are about 20.59
and 24.16, respectively.

Before presenting the execution cycle results, we want to discuss the impact of these
versions on cache miss statistics and row-buffer statistics (as those two metrics are
generally affected by how computations are scheduled). Figure 5.8 gives the percentage
increases in LLC miss rates (over the default version) when using optimized versions.
We observe that, none of these versions (Clustering, MLP-first, CLP-first, Balanced,
Locality-Aware-MLP, and PAR-BS) has any noticeable impact on cache miss statistics,
compared the default version (the highest increase on the L2 misses over the default
version was about 1.48%). This is because Clustering, MLP-first, CLP-first, and
Balanced are designed, as explained earlier, to make sure that cache misses are not
increased. On the other hand, Locality-Aware-MLP improves row-buffer locality (to
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Figure 5.6: MLP Results.
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Figure 5.7: CLP Results.
be presented shortly), and that slightly improves, as a side effect, cache hits as well.
Figure 5.9, on the other hand, shows the variations (increase) in row-buffer misses,
with respect to the default version. These results indicate that, most of the versions
tested do not cause significant variations on row-buffer misses (in fact, all observed
variations are between -2% and 2%). As expected, Locality-Aware-MLP leads to
some improvement on row-buffer misses.

Figure 5.10 gives, for each version, the performance improvement (parallel execu-
tion time reduction) it brings over the default version (higher, the better). Note that,
in these results, for a given version, all its impact on different metrics (e.g., CLP,
MLP, row buffer miss rate, LLC miss rate) as well as all other overheads it incurs
are included. We observe from these results that, our defended approach (Balanced)
outperforms all remaining versions in all the 12 benchmarks tested (except Ideal, of
course). This is because, as explained in Section 5.5.6, Balanced tries to perform
the best trade-off between CLP and MLP, instead of trying to optimize one of them
very aggressively (which is the case in CLP-first and MLP-first). Clustering does not
perform well, as it fails to tap the full potential of bank-level parallelism and cache-
level parallelism. On the other hand, Locality-Aware-MLP performs worse than our
approach, as it does not consider CLP at all. Similarly, the improvements brought by
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Figure 5.8: Increase in LLC miss rates (lower, the better).
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Figure 5.9: Increase in row-buffer miss rates (lower, the better).
PAR-BS are lower than those obtained using Balanced, as the former cannot optimize
CLP. Further, note that, PAR-BS requires architecture level modifications, whereas
our approach is a software-only solution. Overall, these results clearly underline the
importance of optimizing both MLP and CLP together (in fact, Balanced brought an
average performance improvement of 17.32% over the default scheme). Finally, the
difference between Balanced and Ideal indicates that there is still some additional
optimization opportunities that could be exploited by a more sophisticated compiler
scheme.

Next, we delve into the behavior of Balanced a bit more, and explain the dis-
tribution of the compiler-determined β values across all the loop nests of a given
application. These distribution results, plotted in Figure 5.11, indicate that, for an
overwhelming majority of the loop nests in these 12 applications, the determined
β values fall between 0.3 and 0.8, indicating that our approach (Balanced) really
balances MLP and CLP quite well. These results also explain why Balanced performs
better than CLP-First and MLP-first.
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Figure 5.10: Execution time reduction (higher, the better).
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Figure 5.11: Distribution of the compiler-determined β values across all loop nest of
our applications.

5.6.3 Results with Intel Knight’s Landing

Recall from Section 5.2 that this architecture supports various “memory modes” and
“cluster modes”. We tested each of the three cluster modes (all-to-all, quadrant and
sub-NUMA) under two memory modes. The first memory mode is the “cache mode”
where all of the MCDRAM behave as a memory-side direct mapped cache in front of
DDR4. Consequently, there is only a single visible pool of memory, and MCDRAM
is simply treated as a high bandwidth (L3) cache. The second memory mode used is
“hybrid mode” where some of MCDRAM space is configured as memory extension and
the remaining MCDRAM space is configured as L3 cache. In this case, we profiled the
applications in our experimental suite and allocated the some select data structures
from the memory extension part of MCDRAM. Since the observed trends and overall
conclusions with the cache and hybrid memory modes were similar, we present results
from only the cache mode.

The KNL results are plotted in Figures 5.12, 5.13 and 5.14 for the “all-to-all+cache”,
“quadrant+cache” and “sub-NUMA+cache” configurations, respectively. For each
configuration, we performed two types of experiments: one with O2 compiler flag
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Figure 5.12: Results with “all-to-all” cluster mode and “cache” memory mode.
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Figure 5.13: Results with “quadrant” cluster mode and “cache” memory mode.
and one with O3 compiler flag. O2 corresponds to default set of icc optimizations; it
includes vectorization as well as some loop transformations such as loop unrolling
and inlining within source file. In O3 on the other hand, the compiler activates all
optimizations in O2 level; in addition, it also uses more aggressive loop optimizations
such as cache blocking (tiling), loop fusion, and loop interchange.

One can make several observations from the results presented in Figures 5.12, 5.13
and 5.14 (higher, the better). First, our approach improves the performance of all
cluster nodes in all application programs tested. Second, the relative performance
variations we observed in our simulation based experiments are valid in Intel Knight’s
Landing case as well. In particular, Balanced outperforms the remaining versions
under all cluster modes, and MLP-First comes the second. Third, our approach
(which is oriented towards reducing the latencies of both cache hits and cache misses)
blends well with the traditional locality optimizations. More specifically, it can
be observed that, as we move from O2 to O3, the overall execution time savings
significantly improve. For example, in the case of the quadrant cluster mode, the
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Figure 5.14: Results with “sub-NUMA” cluster mode and “cache” memory mode.
average performance improvements brought (over the default version) are 25.69%
and 32.54%, under O2 and O3, respectively.

5.7 Conclusion Remarks

Targeting data access parallelism, we propose three alternative optimization strategies:
(i) MLP-first, which primarily optimizes memory-level parallelism for LLC misses,
(ii) CLP-first, which primarily optimizes cache-level parallelism for LLC hits, and
(iii) Balanced, which strikes a balance between MLP and CLP. Our simulations show
that the proposed three approaches bring 11.31%, 9.43%, and 17.32% reduction in
execution times. We also tested our approach on a commercial manycore architecture,
and the results collected indicate 17.06%, 15.19% and 26.15% average execution time
savings with MLP-first, CLP-first and Balanced, respectively.
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Chapter 6 |
Related Work

In this chapter, we discuss the related research efforts from two aspects: i) managing
computation and data access in GPGPUs, and ii) managing data access parallelism
in manycore CPUs.

6.1 Managing Computation and Data Accesses in

GPGPUs

Managing irregular computation: Prior work on dynamic parallelism for GPUs
has mainly dealt with the challenges of launch overhead. Wang et al. [28] characterize
the overheads involved in dynamic parallel applications. They also compare the
control-flow and memory behavior of the dynamic parallel applications against their
non-dynamic parallel counterparts. Chen et al. [61] propose a compiler-based code
transformation that replaces the child kernel launches in the parent threads with the
child kernel code to reuse the already running parent threads. Therefore, they avoid the
large runtime overheads involved in launching child kernels. Their code transformation
also load balances the parent threads by reassigning the child tasks to different parent
threads. There has been considerable amount of research done on effectively mapping
computations of conventional applications to multi threads [51, 94, 104,110,121–125].
Yang et al. [121] propose a compiler framework called CUDA-NP, that starts execution
with a high number of threads which are activated/deactivated by control flow during
runtime, essentially distributing the work among the threads. Shen et al. [123] develop
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a mechanism that can find an optimal partitioning of work between CPU and GPU
based on the workload characteristics using a two-step quantitative model. Kim
et al. [124] investigate a fine-grain hardware worklist for GPGPUs which acts as
the center for all the warps to pick up work. This allows the work distribution to
load balance itself dynamically during the source of execution. In Chapter 2 of this
dissertation, we dynamically tune the workload distribution by controlling the kernel
launches, which effectively reduces not only the number of child kernels, but also the
number of child CTAs. Consequently, we reduce both launch overheads and queuing
latencies. Also, these overhead and latency can be hidden more effectively due to
extended executions of parent threads.
Hierarchical scheduling in GPUs: There has been a substantial body of work
on building efficient work-group and wavefront scheduling mechanisms for GPUs to
improve cache performance, memory bandwidth utilization, DRAM performance,
system performance, and energy efficiency [20,25,33,46,47,52,57,58,71,110,126,127].
Lee et al. [52] proposed work-group and wavefront scheduling techniques which
optimize the locality for applications with neighboring work-group data reuse by
scheduling work-groups contiguously to CUs rather than in a round-robin fashion. Li et
al.. [57] developed software-based techniques to improve the inter-work-group locality
of an application. Jog et al. [71] investigated multiple scheduling techniques to reduce
cache contention and improve memory-side prefetching and bank-level parallelism.
Lai et al. [127] developed a three-stage methodology for mapping threads to cores
using a formal model that captures thread characteristics as well as cache sharing
behavior. Wang et al. [47] proposed work-group scheduling for DP applications, where
they bind child WGs to its parent WG in order to exploit parent-child reuse.
Managing data locality in GPUs: There are several prior efforts focusing on
improving data access performance on CPUs and GPUs [94, 104, 108, 111, 113, 122,
128]. Improved cache performance in GPUs is mainly achieved via efficient cache
management policies ( [24,55,56,66,129–132]), throttling the amount of parallelism
( [51,52,57,59]), and cache bypassing ( [53,54,129,133]). Oh et al. [55] proposed an
adaptive prefetching and scheduling mechanism to improve the GPU cache efficiency.
They achieve this by grouping together work-groups and monitoring the data access
patterns of the wavefronts in a work-group. Koo et al. [56] developed an access
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pattern-aware cache management technique which dynamically detects the type of
locality of each load instruction by monitoring a representative wavefront. Chen et
al. [129] adaptively bypassed memory requests to the cache based on reuse distances
to protect against cache contention. In Chapter 3 [102], we quantitatively characterize
the data locality opportunities residing in dynamic GPU application, and propose
corresponding hierarchical scheduling mechanisms to improve the data locality and
application performance.

6.2 Managing Data Access Parallelism in Manycore

Systems

Software approaches to improve MLP: Liu et al. [134] proposed an OS based
bank-level partitioning scheme, where OS allocates pages to cores (threads) from
a particular bank, thereby reducing the interference from the other applications.
Pai and Adve [81] introduced the concept of clustering cache misses to improve
memory level parallelism. Sung et al. [135] presented data layout transformations for
structured grid codes with dynamic allocated arrays. Targeting GPUs, they use the
variable length allocation syntax supported by C99 and other languages to collect the
required information to perform these transformations. Pai et al. [81] proposed code
transformations to increase memory parallelism by overlapping multiple read misses
within the same instruction window, while preserving cache locality. Compared to their
work, ours focuses on multithreaded applications running on manycores. Further,
we propose iteration scheduling upon miss clustering (permutation), to improve
inter-core MLP, and we consider CLP as well. In our experimental evaluations, we
compared our proposed approach against [81] (which is annotated as Clustering in
the experimental results). Ding et al. [115] proposed iteration space tile scheduling
to improve BLP. Targeting regular codes with affine references, they predict last-level
cache misses per tile in a loop nest in the first step, and in the second step, they
identify which banks are accessed by the corresponding indices and schedule the tiles
such that they increase the BLP. Their approach schedules the tiled loop iterations
across cores targeting BLP optimization. It does not consider CLP. We compared
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our approach to this prior work in our experimental evaluations. Targeting irregular
applications, Tang et al. [122] proposed an inspector-executor based loop scheduling
to improve bank-level parallelism across cores and row-buffer locality from each core’s
perspective. We quantitatively and qualitatively compared our approach to those
two works in Chapter 5 [136]. Instead of focusing row-buffer locality, we demonstrate
that intra-core MLP is also important, and our approach considers both inter-core
and intra-core MLP. Further, we consider CLP to improve performance by reducing
cache hits latencies.
Hardware approaches to improve MLP: Several techniques [128,137–140,140,
141,141,142,142] are proposed to improve memory parallelism. Lee et al. [75] proposed
two schemes (1) MSHR issuing policy which prioritizes prefetch requests to different
banks ahead of prefetch requests to the same bank to increase the BLP. (2) a BLP
preserving scheme that allocates the requests in to memory controller such that
the BLP across an application is preserved minimizing the interference from the
other applications running on different cores. Mutlu and Moscibroda [77] proposed
a scheduler which provides fairness and higher MLP. Their technique improves
bank level parallelism by grouping the requests from a thread and servicing them
concurrently. Kim et al. [76] proposed that considering a bank as monolithic entity
results in high access latencies due to long bitlines. By further dividing the banks
in to sub-arrays, the authors have proposed techniques to improve sub-array level
parallelism and reduce bank serialization. Their proposal also resulted in increased
row-buffer hit rate with multiple rows being maintained in the local row-buffers of
the sub-arrays. Qureshi et al. [139] proposed a MLP-aware cache management to
reduce the memory stalls. Compared to all these hardware efforts, we reduce the
hardware design complexity by employing a “software-only” solution to improve MLP
in Chapter 4 of this dissertation.
Irregular applications: There exist many compiler works that target irregular
applications. Most of those works focus on data layout optimizations to improve
cache locality [143–149]. The other body of work in this area focus on parallelizing
irregular applications [150–153]. [91] presented a hierarchical clustering method
(GPART) to improve cache locality in irregular applications. Han and Tseng [154]
employed graph partitioning to improve locality in irregular applications. Zhong et
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al. [155] described how an affinity-based hierarchical partitioning of data can improve
cache locality. Das et al. [78] are the first one to propose inspector-executor model to
identify parallelism in irregular applications. Ding et al. [90] proposed trading cache
hit rate for memory performance to improve performance. All these studies aimed
at either improving cache performance or parallelism. Our main focus on the other
hand is on BLP.
Traditional Data Locality Optimizations: The compiler literature is full of
optimization techniques that target reducing the number of cache misses [95–99,156–
169]. There also exist cache bandwidth optimizations [170–172]. Our work presented
in this dissertation is fundamentally different from these prior works, as it tries to
optimize cache hit and miss latencies, instead of reducing the number of cache misses.
Clearly, these two approaches (reducing the number of misses and reducing the miss
latency) are complementary, and one would normally need to employ the both to
maximize performance benefits (as already demonstrated with our O2/O3 results in
KNL).
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Chapter 7 |
Conclusion and Future Work

7.1 Conclusion

Manycore systems have been rapidly penetrated into various platforms including
handheld mobiles, desktop computers, high-performance data centers and cloud. The
tremendous resources, both homogeneous and heterogeneous, equipped with many-
core systems provide applications huge performance potentials from parallelization.
However, realizing the underlining parallelism requires detailed investigation of the
entire software-hardware stack in manycore systems in order to boost application
performance, especially for those applications with irregular computation and data
access pattern. To this end, This dissertation takes a holistic approach and quantita-
tively examines the the reasons causing inefficiencies and ineffectiveness in manycore
systems. The particular contributions of this dissertation can be summarized as
follows.

First, using GPGPUs as a typical manycore system, this dissertation identifies
that the deficiency of irregular application comes from aggressive child kernel launch
without knowing the runtime states and hardware limits. It proposes controlled
kernel launch which dynamically makes the child kernel launch decision based on
the runtime states. Further, it proposes locality-aware hierarchical scheduling in
GPGPUs which determines where to execute the launched child kernels such that
the significant data reuse is captured by the caches. Together with the controlled
kernel launch strategy, this dissertation answers the questions of how many, when,
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and where to launch child kernels.
Second, focusing on data access performance in manycore systems, this disser-

tation investigates the data access parallelism opportunities, which are orthogonal
optimizations to transitional computation parallelism. Specifically, it proposes a
software approach that re-organize and schedule computation to cores such that the
memory bank level parallelism is maximized. Further, it investigate a co-optimizing
strategy for both memory parallelism and cache parallelism. Those approaches dis-
cussed in this dissertation significantly improve data access parallelism and hence the
application performance.

7.2 Future Research Directions

The next generation of computing systems is going to be exascale platforms where
tremendous heterogeneous/specialized resources (e.g., accelerators, IoT sensors, hybrid
memories) are integrated in a single system. This is driven by the fact that the
proliferation of real world applications require a variety of system supports to meet
certain performance/energy-efficiency/quality of service (QoS) requirements. With
more and more specialized resources being integrated to the system, it makes the design
more complicated and requires systematic optimizations to guarantee the delivered
performance. In particular, the challenges come from irregularity, heterogeneity,
concurrency, and scaling. My previous research in this dissertation demonstrates
that resources in manycore systems are not effectively and efficiently utilized by
the applications, and I believe these ineffectiveness and inefficiency are more severe
and challenging in exascale heterogeneous platforms. This opens a huge exploration
space of research opportunities and makes way for new research avenues such as
heterogeneous resource management, computation distribution, data placement, and
other topics.

Although the opportunities are exciting and attractive, there exist a lot of chal-
lenging/open questions in this field. For example, given heterogeneous resources,
different types of resources have different properties and are beneficial to certain
execution scenarios. How can applications utilize them properly and take advantage
of those resources? Moreover, it is very common that multiple applications execute
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concurrently on the same platform. How can we efficiently manage the resources
shared across different applications? How to perform collaborative management
among multiple system layers (i.e., compiler, OS, runtime, and architecture) to fuse
the high-level ideas with the low-level implementations without introducing signifi-
cant overheads? Apart from performance and energy efficiency, how can the system
ensure other metrics (e.g., security, fairness)? All such questions are non-trivial and
require examination throughout the entire software-hardware stack. These questions
and challenges motivate my future research, and I am confident to make significant
research progress based on my previous experiences.

7.2.1 Heterogeneous Computing Systems

I think heterogeneity is default in future computing systems ranging from cloud,
desktops, mobile devices to wearable devices and IoT. The fundamental question is
how to use the heterogeneous resources to improve performance and meet certain
requirements such as user experience, energy efficiency, portability, etc. Plenty of chal-
lenges and opportunities exist from compiler optimization to innovative architecture
designs.

Given CPU-GPU system as an example of heterogeneous platform, since GPU
is high-throughput oriented and provides massive parallel threads, it is good for
executing parallel portion of an application program. However, the control portion
which consists of lots of branches is GPU-unfriendly and is good to execute on CPU
as it has higher frequency. Ideally, this partition should be done dynamically and
automatically by compiler and runtime. However, programmers currently have to
explicitly specify and label the portion of application program to execute either
on CPU or on GPU. Such a “master-slave” model has two drawbacks. First, it is
difficult or even impossible for the programmers to do an optimal program partitioning
especially for applications that are input sensitive and have unpredictable runtime
behaviors. Second, the redundant communication and data transfer between CPU
and GPU can cause under-utilization of resources and also consume unnecessary
PCIe bandwidth. I believe programmers should be freed from the burden of statically
partitioning application programs, and the underlying system should be able to
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automatically and dynamically manage the computation and data between CPU and
GPU based on program characteristics and execution status. This requires system
designers to rethink the programming model, compiler and runtime systems, which
will lead to many design challenges/questions. For example, can a smart compiler
automatically identify code portions? Can the computation migrate dynamically from
CPU to GPU or the other way around based on the execution status? When and
where should such a migration happen? How are the shared resources (e.g., memory
system) managed between CPU and GPU? As a first step, my ongoing work studies
the unified memory system in a CPU-GPU system. Initial experiments show that
the address translation is inefficient and the hardware translation structures (e.g.,
TLB) are under-utilized in such a system.

7.2.2 Advancing System Design for Deep Learning

Deep learning are becoming extremely hot recent years and are being widely used
in various applications such as object detection, image generation. At high level,
the deep learning neural network (DNN) consists of several compute intensive and
memory intensive kernels which dominate the execution time. Although intra-kernel
optimization has been heavily studied and various libraries and hardware accelerators
have been proposed, the inter-kernel behavior receive little attention. In my ongoing
study, I found that the preferred computation parallelism, data placement, data layout
across compute kernels play a significant role in shaping the performance of DNN
applications. Based on this observation, I intend to propose inter-kernel optimizations
for large-scale DNNs to boost both training and inference of DNN applications on
manycore systems. Specifically, I will research the opportunities through computation
parallelization, data layout optimization and data placement.

7.2.3 Beyond Performance and Energy Efficiency

Beyond high performance and energy efficiency, other criterias are also important
in certain circumstances and require support from systems. A practical example
is security. Recent covert channel and side channel attacks in hardware, such as
Meltdown and Spectre in commercial products, have alerted both industrial and
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academia researchers to the security dangers of attacks on hardware architecture
features. Even traditional architecture features such as speculation and prefetching
can potentially leak critical and sensitive security information to unauthorized entities.
Existing architectural support for security are mainly through two approaches: i)
resource partitioning, and ii) randomization, and both are conservative approaches
which may compromise application performance severely due to the incurred overheads
and resource under-utilization. The challenge is that can we perform fine-grain
resource management to reduce the overhead while maintaining the targeted security.
Moreover, most of previous efforts focus on single hardware components (e.g., cache
or scheduler) separately. One disadvantage is that these approaches lose the entire
picture of the system, and making a particular hardware component secure might
compromise the security of other components. In my opinion, it is really necessary to
view the security problem systematically and leverage the collaboration of compiler,
runtime and architecture to design more effective and efficient secure systems.
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