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ABSTRACT 

In the first part of this thesis we introduce a computationally-driven enzyme redesign workflow 
for altering cofactor specificity from NADPH to NADH. By compiling and comparing data from 
previous studies involving cofactor switching mutations, we show that their effect cannot be 
explained as straightforward changes in volume, hydrophobicity, charge, or BLOSUM62 scores 
of the residues populating the cofactor binding site. Instead, we find that the use of a detailed 
cofactor binding energy approximation is needed to adequately capture the relative affinity 
towards different cofactors. The implicit solvation models Generalized Born with molecular 
volume integration and Generalized Born with simple switching were integrated in the Iterative 
Protein Redesign and Optimization (IPRO) framework to drive the redesign of Candida boidinii 
xylose reductase (CbXR) to function using the non-native cofactor NADH. We identified ten 
variants, out of the 8,000 possible combinations of mutations, that improve the computationally 
assessed binding affinity for NADH by introducing mutations in the CbXR binding pocket. 
Experimental testing revealed that seven out of ten possessed significant xylose reductase activity 
utilizing NADH, with the best experimental design (CbXR-GGD) being 27-fold more active on 
NADH. The NADPH-dependent activity for eight out of ten predicted designs was either 
completely abolished or significantly diminished by at least 90%, yielding a greater than 104-fold 
change in specificity to NADH (CbXR-REG). The remaining two variants (CbXR-RTT and 
CBXR-EQR) had dual cofactor specificity for both nicotinamide cofactors. The modified IPRO 
software is available at http://maranas.che.psu.edu.  
In the second part of this thesis we present the first steps to developing an enzyme design 
workflow. We first explored whether changes in interaction energy at the ground state or 
transition state or both as a result of mutations can explain experimental activity. We chose as our 
test system the cytochrome P450BM-3 monooxygenase to catalyze the hydroxylation of ethane.  
For the design of this system, first, we had to identify the rate limiting step, and calculate the 
ground and transition states using quantum mechanical methods. Next, we parameterized these 
calculated states into the CHARMM forcefield. Thirdly, we explored whether mutations 
identified by directed evolution always maximize the interaction energy or not. Finally, we 
systematically selected design positions and explored redesigns via the IPRO algorithm. 
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Chapter 1: Literature Review and Introduction 

Section 1.1: Motivation and Objectives 

Advances in technology in the past several years have greatly increased mankind’s ability to 

control life at its most basic level – the genetic. Over millions of years, the struggle for continued 

existence has resulted in proteins supplying creative, diverse, and efficient solutions to a plethora 

of problems.1 These solutions include being able to harvest energy from the environment, to 

replicating and repairing their own genetic code. Since nature only provides a limited array of 

proteins, protein engineers seek to broaden known protein function to new environments and 

tasks (i.e. requiring enhanced thermostability, operating in non-aqueous environments, or binding 

non-native substrates, and combinations of these),2,3 or creating new functions.4 This is done by a 

series of targeting mutations.  

Recently, the literature has reported a diverse set of biotechnological applications of protein 

engineering including enzymes with improved protein thermostability,5-7 genetic circuits,8 

biosensors,9,10 chiral separations,11 the creation of gene switches12 and signal transduction 

pathways,13,14 and enzymes with improved catalytic activity.15-17 An extensive literature review on 

engineering for alternate cofactor switching is provided in Chapter 2 of this thesis. Even with 

these successes, an open challenge is understanding at a molecular-level why one protein carries 

out a task better than another.1 This challenge is compounded by the large combinatorial design 

space in the active site of many proteins (20#of Design Positions) as well as the fact that mutations far 

away from an active site can influence protein function.18 Engineering for enzymatic activity is 

especially challenging since minute changes in chemical properties or structure can have large 

effects on catalytic activity.1 Therefore, correctly predicting the changes in amino acid sequence 
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that can produce a specific behavior is difficult. To this end, the underlying objective of this 

research is to develop new computational tools and to improve existing ones aimed at modeling 

and subsequently optimizing the enzyme/substrate or enzyme/cofactor interactions in systems of 

industrial interest. This research will have an impact on protein engineering by using energy 

functions that have improved correlation with experimentally derived metrics (i.e. kcat, Km, and 

binding energy) by including highly accurate implicit solvation models as part of the energetic 

objective function, as well as introducing the use of quantum mechanical energy functions to 

compliment molecular mechanics which is currently used in many approaches. The hypothesis is 

that by using higher accuracy representations of enzymatic systems (at the expense of 

computational time) the probability of success in design will improve. Further, introducing the 

ability for time-intensive steps (i.e. structural refinements, backbone perturbations, backbone 

relaxations) in the computational design to run in parallel will significantly reduce the time 

necessary to produce a design of interest. In this chapter, I provide a general overview on 

progress in computational protein design to date and the necessary background needed on the 

algorithms used and modified to understand the subsequent chapters.  

Section 1.2: Background  

Section 1.2.1: Directed Evolution Approaches 

Directed evolution is the use of subsequent rounds of mutation and artificial selection/screening 

to alter the properties of biological molecules and systems.1 Figure 1-1 provides a general 

overview of directed evolution. 
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Figure 1 - 1: The primary objective of directed evolution is to create a protein with a 
specific function through iterative rounds of mutation and screening starting from a parent 
sequence with associated function. First, a parent sequence is chosen from its closeness to a 
desired function and its evolvability.  A library of new sequences is constructed via site-
directed, saturation, or random mutagenesis, or with recombination to introduce mutations 
from other functional sequences. The mutants are next screened for their ability to carry 
out their desired function. The fittest mutants are selected and are subsequently used as the 
parent for the next iteration of directed evolution. This scheme is repeated until the design 
objective is met (typically after 5-10 generations).2,3 
 

Notable works in directed evolution include the DNA shuffling of the genes encoding class C 

cephalosporinases. In this work, Crameri et al. compared the use of single shuffling and family 

shuffling to recombine Citrobacter freundii, Enterobacter cloacae, Klebsiella pneumonia, and 

Yersinia enterocolitica on the catalytic efficiency of obtaining moxalactamase activity.  They 

found that single shuffling yielded only eightfold improvements from the four genes evolved 

separately, compared to the 270- to 540-fold improvement in activity from the four genes 

shuffled together. 19 DNA shuffling is a powerful is tool used in directed evolution. This method 

generates diversity by combining useful mutations from individual genes (also termed genetic 
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recombination). Figure 1–2 pictorially illustrates the sequence diversity obtained via single and 

family gene shuffling.  

 

Figure 1 - 2: Pictorial illustration of how family shuffling searches sequence space vs. single 
sequence shuffling to create sequence diversity. Family shuffling yields chimeras that have a 
much larger sequence divergence since it causes sequence block exchange. Single shuffling 
yields clones with only a few point mutations. When the library sizes are similar, the family 
shuffling causes increased sequence diversity of the resulting chimeric libraries allowing 
increased sample diversity. 19 
 

Beaudry et al.20 created a library of 1013 variants of the Tetrahymena ribozyme, which naturally 

catalyzes the sequence-specific cleavage of RNA via a phosphoester transfer mechanism. This 

enzyme cannot naturally cleave DNA, therefore in their paper they described how they introduced 

a selection constraint to the population of ribozyme variants created, resulting in variants with a 

100x improvement in DNA cleavage activity. Despite numerous successes via directed evolution, 

genomic diversity is not simple to generate in the lab, and especially not within a practical period 

of time. The Church Lab recently addressed this challenge by creating a multiplex automated 

genome engineering (MAGE) approach for the large-scale programming and evolution of cells.21 

This approach concurrently targets multiple locations on a chromosome to modify a cell or 
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population of cells, therefore producing combinatorial genomic variety. MAGE was applied to 

optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway to in Escherichia coli 

to overproduce lycopene. By modifying 24 genetic components in the DXP pathway, 4.3 billion 

combinatorial variants per day were created, and those variants with more than 5-fold increase in 

lycopene production were isolated. This approach was a significant approach over existing 

metabolic and protein engineering approaches, and can be applied to expediting the design and 

evolution of organisms with novel and enhanced performance characteristics.21 These 

experimental methods are the cutting edge in directed evolution, but are still relatively slow and 

costly. Therefore I will now introduce the recent advances in computational methods available. 

Section 1.2.2: Current Methods and Challenges in Computational Protein Design  
 

Computational protein design provides a method for the efficient generation of protein catalysts 

for any chemical reaction. The use of computational methods has recently led to many protein 

redesign successes 22-26 by optimizing protein-ligand and/or enzyme-cofactor interactions using 

static and molecular dynamics calculations. These methods have focused primarily on rotamer, 

geometry, and energetic optimization. Major developments have been made towards the de novo  

design problems which include the creation of novel protein folds, enzymatic activity, and 

binding interfaces. 27 Ab initio design of proteins entails identifying the amino acid choices that 

best fit into a protein fold. The Cartesian coordinates of a protein’s backbone atoms define the a 

protein’s structure. At atomistic detail, candidate protein designs are produced by selecting amino 

acid side chains, or statistically preferred rotamers 28,29 to fit in the backbone design. Therefore 

protein design problem formulations involve both residue and a rotamer assignment.  

Rotamer/rotamer and rotamer/backbone energies are calculated for all rotamers in a chosen 
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library to determine how well possible designs fit into a given fold. Methods utilizing molecular 

mechanics-based potential energy functions are estimated with a number of different force-fields 

(i.e. CHARMM 30, DREIDING 31, AMBER 32, GROMOS 33). Custom scoring/energy function as 

have also been created specifically for protein design.34-37 

A limitation in design is the choice of the objective function, as few problems can be sufficiently 

addressed by the straightforward energy minimization of a single protein state. Activity level is 

very difficult to assess computationally.  Instead, multi-objective optimization searches are 

necessary for designing for improved binding affinity (increase interactions while maintaining 

fold stability), specificity (stabilize a state relative to another), and designing de novo proteins 

(avoid aggregation and alternative structures). 27 Stability is often used as a proxy for a design’s 

fitness for alternative functions/substrates since it is a prerequisite, although not necessarily a 

monotonic descriptor of function. Since this surrogate is an indirect descriptor of activity, it is 

necessary to design not just one design, but an entire combinatorial library.37 

The enormity of the design space is vast, and therefore deterministic and stochastic methods have 

been employed. Stochastic methods explore the feasible space by making a series of random 

and/or directed moves. 37 Mayo and colleagues recently released two enhancements to the 

stochastic optimizer FASTER that resulted in 100x improvement in convergence speed.38  

Monte Carlo methods,35,39,40 genetic algorithms, 41-43 and simulated annealing 44,45 methods also 

exist and have been used in computational protein design with different success rates. Stochastic 

methods are typically used for problems with an enormous design space with relatively small 

computing resources, but are not guaranteed to converge to the best variant.37  

Deterministic methods on the other hand are advantageous since they are guaranteed to converge 

to a global minimum in a given objective function. The key disadvantage of using these methods 

is their intractability for large systems. The most commonly used method is dead-end 

elimination,46 where rotamers and residues determined to not be optimal are eliminated over a 
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series of computational cycles. Xie and Sahinidis reformulated the hierarchy used in discrete 

searches by explicitly considering residue elimination on top of the traditional rotamer 

elimination methods, which led to a 100x increase in convergence speed.47  

For an excellent review of the advances in methodology (energy functions, search and 

optimization procedures, solvation effects) and applications (specificity, affinity, catalytic 

efficiency) see Lippow et al.27 Other  reviews on current protein design methods and viewpoints 

include the references within.27,48-55 The leading well-developed methods available include 

ORBIT56-66 by the Mayo lab, which given a backbone structure designs a sequence such that it 

folds to that of the backbone. The Rosetta suite of software developed by the David Baker Lab is 

one program to treat diverse structure prediction and design problems.67-116 This thesis research 

utilized and advanced the Iterative Protein Redesign and Optimization (IPRO) algorithm117-119 

developed by the Maranas Lab, which uses a mixed-integer linear programming formulation to 

design combinatorial libraries, and will be covered in the next section.  

 

Section 1.2.3: Iterative Protein Redesign and Optimization  

The Iterative Protein Redesign and Optimization (IPRO) algorithm developed by Saraf et al. is an 

iterative framework used to design combinatorial libraries with a mixed-integer linear 

programming formulation. IPRO is capable of determining the optimal combination of 

residue/rotamer combinations that minimize the interaction energy between a protein and desired 

substrate for a given set of design positions. It is pictorially illustrated in Figure 1–3. 
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Figure 1 - 3: A schematic representation of IPRO algorithm implemented in this work 
utilizing the generalized born implicit solvent models. First, a local region of the protein (1-
5 consecutive residues around the targeted ligand) is randomly chosen for perturbation (A). 
The φ and ψ angles of each targeted position are perturbed by up to 5˚ (B). All amino acid 
rotamers consistent with these torsion angles are selected at each position from the 
Dunbrack and Cohen rotamer library.28,29,120 Rotamer-backbone and rotamer-rotamer 
energies are calculated for all the selected rotamers. The binding energy is minimized using 
a MILP formulation to select the optimal rotamer at each of the positions (C). The 
backbone of the protein is relaxed through energy minimization with GBSW to allow it to 
adjust to the new side-chains. (D). The ligand position is readjusted with respect to the 
modified backbone and side chains (E). The binding score/interaction energy of the protein-
ligand complex is evaluated with the GBMV implicit solvation model (F), and the move is 
accepted or rejected using the Metropolis criterion (G) until the iteration limit is met. 
 

IPRO was utilized and extended to generating novel libraries of DHFR and β-lactamase enzymes 

119, changing substrate 14,117 and cofactor 118 specificities, and adding a new Ca+2 binding site to a 

domain 26. In the author of this thesis’ opinion, it has not received the attention it deserves by the 

scientific community, namely because of its original complexity in use. Recent efforts by the 

Maranas lab (via graduate student Robert Pantazes) to make it modular and reusable have helped 
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considerably, and it is now available for download and use through the group webpage. The 

original algorithm utilized the Baker energy function121 for the rotamer selection step and the 

CHARMM30,122,123 energy function decomposed below for all energy minimization steps. 

Epot = Ebond + Eangle + Edihedrals+ Eimpropers+ Eelec + EvdW + Erestraint    

EvdW = 12 6( ij ij

ij ij ij

)
A B
r r

−∑   

Eelec = ∑
ij ij

ji

r
qq

04πεε
   

Ebonds =     2
0 )( rrkb −∑

Eangles =     2
0 )( θθθ −∑k

Edihedrals = )cos( φφφ nkk −∑    

Eimpropers =        2
0 )( χχχ −∑k

Erestraint =    2
0( )i i i ik m r r−∑

 

In Chapter 2,118 I show that the standard CHARMM energy function was insufficient to be able to 

correlate calculated interaction energies with experimental binding energies. Instead, we found 

that the introduction of solvation effects was necessary to achieve a qualitative correlation 

between computational and experimental results. Therefore, we introduced solvation effects into 

IPRO via the Generalized Born with a simple switching implicit solvent model (GBSW)124,125 for 

all minimization steps in IPRO, and the Generalized Born with molecular volume integration 

(GBMV) implicit solvent model126,127 for all interaction energy calculations. Explicit solvent 

calculations are by far the most accurate means of incorporating solvation, but greatly reduce the 

viable system size due to high computational cost. Implicit solvation models utilize estimations to 
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the solvation effects and are far more efficient than explicit solvation methods.128 GBSW was 

chosen for all energy minimizations to ensure proper packing of hydrophobic cores, and GBMV 

was used to approximate the solvation component for the binding energy calculations.  In the 

GBMV method, the effective Born radius is computed by numerical integration of the molecular 

volume. The Coulomb field approximation includes a higher order correction term to improve 

agreement with the radii calculated from solving the Poisson-Boltzmann equation. With respect 

to absolute solvation energies, the model achieved an overall 1.3% error compared to the highly 

accurate converged Poisson solutions for a sample of 3000+ proteins previously tested from the 

PDB .124,129 This method was used for the binding energies as it was highly accurate, yet more 

tractable in an iterative form than solving the Poisson-Boltzmann equation. The minimizations 

utilized the GBSW model, as the GBMV model may utilize a sharp molecular surface 

representation for some systems, which would lead to large fluctuations in energy and cause 

stability problems in the simulations. GBSW is very similar to GBMV, but is 2-3 times faster 

than the GBMV method since it replaces the computationally expensive molecular surface 

calculation with a simple smoothing function at the dielectric boundary. GBSW’s use of a 

smoothed dielectric boundary allows the change in polarization forces to vary more smoothly 

compared to GBMV. 

The introduction of these implicit solvent models increased the computational cost for designing 

a protein. Therefore, I introduced the ability of running IPRO in parallel through CHARMM by 

using a different build and adjusting the code accordingly to utilize parallel CHARMM for all 

energy minimizations and interaction energy calculations. This significantly increased the speed 

of being able to redesign a protein – previously taking almost two weeks of computation whereas 

now only taking two days assuming everything is properly parameterized for the design of 

Candida boidinii xylose reductase.  
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Section 1.3: Thesis Overview 

 

The remainder of this thesis is organized as follows. Chapter 2 describes the computational 

design of the enzyme Candida boidinii xylose reductase and its corresponding experimental 

verification. Chapter 3 describes the integration of quantum mechanical calculations as part of the 

palette of tools available to redesign enzymes, and its application on the redesign of Cytochrome 

P450BM-3 monooxygenase. Finally, Chapter 4 concludes by offering some perspectives on future 

work in cofactor engineering and the development of an enzyme design workflow.



 

Chapter 2: Computational Design of Candida boidinii Xylose Reductase for 
Altered Cofactor Specificity 

Section 2.1: Introduction and Background 

The ability of enzymes to catalyze chemical reactions with great specificity, efficiency, and 

selectivity provides the basis of metabolism in all living organisms. By carefully redesigning 

metabolism through enzyme modification, many desired biocatalytic transformations can be 

efficiently carried out in a variety of microbial production hosts. Proteins have been previously 

computationally designed to bind new ligands,24 proteins,130 and nucleic acids,131 to improve 

protein stability,121,132 as well as to introduce novel enzymatic activity,133,134 demonstrating that 

the fundamental rudiments of molecular recognition can adequately be captured via 

computational design. The systematic fine-tuning of molecular recognition between proteins and 

ligands finds many biotechnological applications ranging from improved catalytic activity,16 

improved protein thermostability,5-7 genetic circuits,8 biosensors,9,10 chiral separations,11  the 

construction of novel enzymes with alternative functionality,56,135 the creation of gene switches12 

and signal transduction pathways.13,14 Many of the aforementioned applications require the 

enzymes to operate under unnatural conditions (e.g., at elevated temperatures or in nonaqueous 

environments), and/or possess altered cofactor or substrate specificity.3 Even with these 

successes, predictably changing a protein’s cofactor specificity has not been reported via a 

systematic computational workflow. 

In the past few years, there have been many reported successes of enzyme redesign for altered 

cofactor specificity utilizing structural analysis with site-directed mutagenesis as their method for 

redesign. Table 2-1 summarizes the best identified mutations involved in changing cofactor 
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specificity (extending an earlier compilation).136 Key successful redesigns include the work of 

Woodyer et al.137 that succeeded in relaxing the cofactor specificity of Pseudomonas stutzeri 

phosphite dehydrogenase from 100-fold in favor of nicotinamide adenine dinucleotide (NAD+) to 

3-fold in favor of nicotinamide adenine dinucleotide phosphate (NADP+) using homology 

modeling and site-directed mutagenesis to identify and construct a double mutant. This double 

mutant showed potential as an efficient in vitro NAD(P)(H) regeneration system for reductive 

biocatalysis.137 Watanabe et al.138 used site-directed mutagenesis to change cofactor specificity of 

a Pichia stipitis NAD+-dependent xylitol dehydrogenase (PsXDH) from NAD+ to NADP+ as part 

of an efficient biomass-ethanol conversion system. Their designs yielded greater activity for 

NADP+ than NAD+ after redesign. Kostrzynska et al.139 found that in the aldo-keto reductase 

family of enzymes, the IPKS (Ile-Pro-Lys-Ser) motif is strictly conserved. They utilized site-

directed mutagenesis at a conserved Lys-270 in P. stipitis xylose reductase (PsXR) to conclude 

that it binds to the 2’-phosphate of the NADPH (reduced form of NADP+). Site-directed 

mutagenesis-based studies also successfully pinpointed sets of mutations leading to complete 

reversal of Candida tenuis xylose reductase (CtXR) cofactor specificity from NADPH to NADH 

(reduced form of NAD+).140,141  Similarly, Liang et al.142 used a semi-rational approach called 

combinatorial active site saturation (CASTing) to switch cofactor preference from NADPH to 

NADH in PsXR.  
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Table 2 - 1: Summary1 of NAD(P)(H) cofactor engineering studies extending from 
Marohnic et al.136 

Source Enzyme Specificity 
Change 

Mutation(s)2 Reference(s) 

Candida tenuis xylose reductase NADPH → NADH K274R, K274G, K274M, S275A, N276D, 
R280H, K274R/N276D 

140,141 
Corynebacterium 2,5-diketo-D-gluconic acid NADPH → NADH K232G, R235G, R238H  

& F22Y/RS233T/R235E/A272G 
143,144 

Escherichia  coli glutathione reductase NADPH → NADH A179G/A183G/V197E/ 
R198M/K199F/H200D/R204P 

145 
Escherichia coli ketol acid reductoisomerase NADPH → NADH R68D, K69L, K75V, R76D 146 
Neurospora  crassa nitrate reductase NADPH → NADH S920D/R932S 147 
Pichia stipitis xylose reductase NADPH→ NADH K270M, K270S/ S271G/N272P/R276F 139,142 
Pseudomonas 
fluorescens 

p-hydroxybenzoate 
hydroxylase 

NADPH → NADH R33S/Q34R/P35R/D36A/Y37E 148 
Rattus norvegicus cytochrome p450 reductase NADPH → NADH S596D 149 
Saccharomyces. 
cerevisiae 

17ß-hydroxysteroid 
dehydrogenase 

NADPH → NADH Y49D 150 
Sinorhizobium morelense 1,5-anhydro-D-fructose 

reductase 
NADPH → NADH A13G/S33D 151 

Anabaena. sp. (strain 
PCC 7119) 

ferredoxin:NADP+ reductase NADP+ → NAD+ S223D 152 
Escherichia coli isocitrate dehydrogenase NADP+ → NAD+ C201I/C332Y/K344D/Y345I/V351A/ 

Y391K/R395S 
153 

Thermus thermophilus isocitrate dehydrogenase NADP+ → NAD+ K283D/Y284I/N287G/V288I/I290A 154 
Vibrio harveyi aldehyde dehydrogenase NADP+ → NAD+ T175D, T175E, T175S, T175N, T175Q 155 
Bacillus 
stearothermophilus 

L-lactate dehydrogenase NADH → NADPH I51K/D52S 156 
Rattus norvegicus cytochrome b5 reductase NADH → NADPH D239T 136 
Spinacia oleracea nitrate reductase NADH → NADPH E864S/F876R 157 
Thermus thermophilus ß-isopropylmalate 

dehydrogenase 
NADH → NADPH D236R/D289K/I290A/A296V/G337Y 158 

Bacillus 
stearothermophilus 

D-lactate dehydrogenase NAD+ → NADP+ D175A 159 
Bacillus 
stearothermophilus 

glyceraldehyde-3-phosphate 
dehydrogenase 

NAD+ → NADP+ D32A/L187A/P188S 160 
Gluconobacter oxydans xylitol dehydrogenase NAD+ → NADP+ D38S/M39R 161 
Homo sapien human mitochondrial 

NAD(P)-dependent malic 
enzyme 

NAD+ → NADP+ Q362K 162 

Pichia stipitis xylitol dehydrogenase NAD+ → NADP+ D207A/I208R/F209S/N211R 138 
Pseudomonas stutzeri phosphite dehydrogenase NAD+ → NADP+ E175A/A176R 137 
Saccharomyces 
cerevisiae  

formate dehydrogenase NAD+ → NADP+ D196A/Y197R 163 
Thermus thermophilus isopropylmalate 

dehydrogenase 
NAD+ → NADP+ S226R/D278K/I279Y/A285V/P324T/ 

P325Y/G328E/G329R/S330L 
164 

Tramitichromis 
intermedius  

leucine dehydrogenase NAD+ → NADP+ D203A/I204R/D210R 165 
1In all studies, structural analysis was used to determine residues to be mutated. Mutations were introduced 
by site-directed mutagenesis except for Liang et al.,142 who used a combinatorial saturation mutagenesis 
approach. 
2The best mutants reported in each study are summarized in this table. Multiple mutations occurring in a 
single mutant are separated by “/”. Commas are used to separate individual mutants. 
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Purely experimental design efforts relying on combinatorial library constructxon and screening 

have been successful for a number of cofactor alteration studies (see Table 2-1), however, the 

lessons learned do not easily generalize to other systems. To address the lack of a systematic 

procedure, we introduce a generally applicable computational workflow based on the Iterative 

Protein Redesign and Optimization algorithm (IPRO).119 The approach is tested for the xylose 

reductase enzyme from the yeast Candida boidinii (CbXR). Xylose reductase catalyzes the 

reduction of the open chain form of D-xylose to xylitol.  

Xylose reductase belongs to the aldo-keto reductase (AKR) superfamily.166,167 The AKR 

superfamily shares a common (α/ß)8-barrel fold without a Rossmann-fold motif and their 

members show varied preferences for NADPH over NADH.168 The active site, conserved in both 

structure and sequence in nearly all AKRs, is situated in a deep cavity inside the (α/ß)8 barrel, and 

is defined by a tetrad of catalytic residues. In CtXR, these residues are Asp-46, Tyr-51, Lys-80, 

and His-113,169 and are homologous to Asp-45, Tyr-50, Lys-79, and His-112 in CbXR. Previous 

studies169-172 of AKRs have identified the functional role these residues have on the catalytic 

mechanism, but because they are further than 12 Å from the residues involved in determining 

cofactor specificity, they have minimal effect on cofactor binding. Structures of the apo- and 

holo- forms of CtXR have been determined to 2.2 Å resolution.168 This enzyme selectively binds 

NADPH over NADH by roughly 20-fold.141 In contrast, CbXR (62% homologous to CtXR) is 

strictly an NADPH-dependent enzyme. The structure of the homology modeled CbXR is shown 

in Figure 2-1A, with NADPH bound and D-xylose situated inside the (α/ß)8 barrel. In Figure 2-

1B, the cofactor binding pocket is shown with no hydrogen bonding interactions observed 

between wild-type CbXR and NADH. In Figure 2-1C, hydrogen bond interactions are shown 

between the 2’-phosphate in NADPH and the surrounding residues Lys-272, Ser-273, and Asn-

274.  Alignment of AKRs reveals a conserved Lys residue near position 274 (amino acid position 

274 in CtXR; position 272 in CbXR), which plays a critical role in cofactor binding.140 One 
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notable exception is the presence of an Arg residue rather than Lys at position 276 of the XR 

from C. parapsilosis, which prefers NADH as its cofactor.173 Leitgeb et al. showed that 

replacement of Lys-274 with Arg in CtXR results in reversal of cofactor specificity for NADH 

over NADPH 140.  

 
Figure 2 - 1: (A) The structure of the homology modeled CbXR with NADPH bound and D-
xylose situated in a deep cavity inside the (α/ß)8 barrel. (B) The cofactor binding pocket of 
wild-type CbXR containing NADH with no hydrogen bonding interactions near the 2’-
hydroxyl group. (C) The cofactor binding pocket of CbXR containing hydrogen bonding 
interactions within 2.5 Å of the 2’-phosphate of NADPH. These hydrogen bonding 
interactions are important for the specificity of CbXR for NADPH over NADH. This figure 
was made using PyMOL (Delano Scientific).  

 

Xylitol has been listed among the top value-added platform chemical products of biomass 

refining.174 The production of xylitol from xylose by engineered Escherichia coli growing on 

glucose and expressing a xylose reductase from either C. boidinii, C. tenuis, P. stipitis, or 
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Saccharomyces cerevisiae was recently studied.175  Of the enzymes tested, functional expression 

of CbXR in E. coli resulted in the highest titers of xylitol production. It is unclear whether this is 

related to its strict requirement for NADPH or whether it is more a function of its expression 

characteristics. We explored whether xylitol production could be improved by enabling the use of 

NADH for xylose reduction. In addition to a number of other strategies recently explored,176 we 

sought a variant of CbXR with either dual cofactor specificity or specificity toward NADH 

(which could then be co-expressed with wild-type CbXR). In addition, due to the higher stability 

of NADH relative to NADPH,143 and the higher cost of NADPH regeneration compared to 

NADH generation,177 a NADH-utilizing CbXR variant may prove industrially useful. We initially 

constructed the K272R mutation in CbXR and found this mutant to be active on NADH, while 

NADPH activity was weakened by five-fold. However, NADH-utilizing activity was less than 

5% of the wild-type enzyme’s activity with NADPH. We therefore sought to use computational 

design to more effectively engineer mutants with activity toward NADH.   

The goal of this work was to explore the computational design of CbXR to bind (and 

subsequently oxidize) NADH as its cofactor. We first extracted and analyzed data from various 

cofactor usage alteration studies to pinpoint key interactions, factors, and trends that are 

discernable when performing cofactor switches between these particular substrates. We next 

validated the use of a computationally-derived interaction energy as a reasonable objective 

function and binding free energy surrogate by correlating it to published experimental binding 

results. This surrogate of cofactor affinity was found to correlate (R2=72%) with experimental 

activities for a system previously designed using IPRO.119  Our working hypothesis was that 

computationally generated sets of mutations that improve binding of NADH to CbXR will lead to 

mutants that exhibit enzymatic activity on NADH. Next, we modified the Iterative Protein 

Redesign and Optimization (IPRO) framework as presented by Saraf et al.119 to improve 

modeling accuracy by adding implicit solvation models to drive the identification of sets of 
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mutations that have increased affinity for NADH as evidenced by improved interaction energies, 

as well as increased stability for the CbXR mutants relative to the wild-type. Lastly, we 

constructed and experimentally tested the best variants predicted by IPRO to assess the value of 

computations to drive redesign.  

Section 2.2: Materials and Methods 

Section 2.2.1: Modified IPRO Computational Procedure 

The Iterative Protein Redesign and Optimization (IPRO) framework, which was previously 

developed by our group,117,119 performs enzyme redesign by optimally identifying mutations in 

the protein sequence using energy-based scoring functions. The modified IPRO algorithm is 

available for download at http://maranas.che.psu.edu. In this effort, we added the implicit 

solvation models GBSW and GBMV to the minimization and interaction energy calculation 

steps, respectively. The steps of the algorithm are as follows. First, design positions are selected, 

and the torsion angles in a small region around a design position of the backbone are perturbed by 

up to ±5 degrees. The vast majority of evolutionary engineering studies over the past ten years 

involve simple uphill walks on the plot of fitness versus sequence.178 As a result, the positions 

chosen for redesign of CbXR were Lys-272, Ser-273, and Asn-274 after structurally aligning 

CbXR with CtXR using Combinatorial Extension179 between residues 200-290 and based on 

previous cofactor engineering studies on CtXR.140,141 Next, all amino acid rotamers consistent 

with these torsion angles are selected at each position from the Dunbrack rotamer library.29,180 For 

the design positions, the rotamers considered include all amino acids, whereas for non-design 

positions, the possible rotamers are only those from the native amino acid. Next, rotamer-rotamer 

and rotamer-backbone energies are calculated for all of the selected rotamers in the previous step 

 

http://maranas.che.psu.edu/
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using the energy function presented in Kuhlman et al.121 A mixed-integer linear programming 

formulation is then used to select the optimal combination of rotamers in the design window such 

that the energy is minimized for the torsion angles considered. The backbone of the protein is 

next relaxed through energy minimization with the GBSW implicit solvation model to allow the 

backbone to adjust to the new side chains. The ligand position is then readjusted in the next step 

with respect to the modified backbone and side chains using the Fast-Fourier Transform ZDOCK 

docking software181 (version 2.3) with constraints added to block residues 8Å from the binding 

pocket from being considered in the docking step. The interaction energy of the protein-ligand 

complex is next evaluated with the GBMV implicit solvation model and the move is accepted or 

rejected based on whether the interaction energy has been improved relative to the best design 

thus far with the Metropolis criteria182 to escape local minima. Please refer to Saraf et al.119 for 

further details of the algorithm. Here IPRO was used to identify the optimal set of rotamers or 

residues on CbXR in the NADPH binding pocket necessary to increase the affinity for NADH 

over NADPH. 

Although a high-resolution crystal structure of CbXR has not been determined, the amino acid 

sequence of CtXR183 is sufficiently similar to that of CbXR184 to act as a plausible model for 

CbXR (62% sequence similarity). The model structure of CbXR was constructed by homology 

modeling through Modeller using defined geometrical restraints between the conserved atoms of 

binding pocket residues and the cofactor obtained from the homologous CtXR crystal structure 

with NADPH bound (PDB: 1K8C).168  

IPRO was performed with the modifications for solvation on a Linux PC cluster using eight 

3.06GHz Xeon CPUs with 4GB RAM for 2 CPU days to improve the interaction energies of 

CbXR for NADH. In each iteration, interaction energy calculations took approximately 6 seconds 

of CPU time per evaluated mutant.  
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Section 2.2.2: Experimental Procedure 

The redesigned proteins were constructed using standard site-directed mutagenesis techniques185 

and all sequences were verified by DNA sequencing. Proteins were then expressed in E. coli 

BL21 as follows: Seed cultures (10 ml in LB medium containing 50μg/ml kanamycin) were 

grown at 37oC to an OD600 of ~ 2.0 and were used to inoculate cultures by dilution to a final 

OD600 of 0.1 in 125 ml of LB (50μg/ml kan). When the cultures (at 37ºC) reached an OD600 of 

0.6-0.7, protein expression was initiated by adding 1.0 mM IPTG and transferring the cell 

cultures to 30ºC. After 9 hours of induction, cells were pelleted by centrifugation at 3200 g for 20 

min, washed twice with 25 ml of 50mM potassium phosphate buffer (pH 7.5). Cell pellets were 

stored at -20ºC until use. The cell pellets were resuspended to a final OD600 of 100 in ice-cold 

lysis buffer (50mM potassium phosphate buffer (pH 7.5), 4mM MgCl2, 3.3μg/ml DNase I). Cells 

were lysed by three passes through a French Pressure cell press, and centrifuged at 4ºC, 3750 g 

for 25 min to separate cellular debris. The resulting supernatant contained the soluble xylose 

reductase.  

Xylose reductase activity was measured in 96-well microtiter plates using a Spectra Max Plus384 

plate reader. A typical enzymatic reaction contained 300mM xylose, 300μM β-NADPH or 

300μM β-NADH, 50mM potassium phosphate buffer (pH 7.5), 40μl cell lysate supernatant and 

5mM KCN (to reduce background dehydrogenase activity) in 200 μl total final volume. 

Reduction in the β-NADH or β-NADPH concentration was monitored by the decrease in 

absorbance at 340 nm (extinction coefficient ~ 6.2 (mM-cm)-1). Reactions were initiated by 

adding reduced cofactor and measurements were taken every 3 seconds for 90 seconds. One unit 

is defined as the enzyme activity that consumes one μmol of NADH or NADPH in one minute 

(background activity in the absence of xylose is subtracted).  Total protein concentration was 
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measured using the Quick StartTM Bradford protein assay protocol (Bio-Rad laboratories) based 

on binding of Coomassie Blue dye to proteins. Bovine serum albumin was used as a standard. 

Section 2.3: Results 

Section 2.3.1: Analysis of Results from Previous Cofactor Engineering Studies 

We first explored whether the experimentally observed binding affinities for NAD(P)(H) and/or 

enzymatic activities requiring these cofactors can be explained by using simple metrics such as 

residue volume, charge and hydrophobicity.  Net charge,186 hydrophobicity,187 and side-chain 

volume188  data for all amino acids were collected. A structural alignment was performed for the 

nicotinamide binding pockets targeted by mutational studies of the following proteins: 

glutathione reductase (GR),145 ketol acid reductoisomerase (KARI),146 p-hydroxybenzoate 

hydroxylase (PHBH),148 2,5-diketo-D-gluconic acid (2,5-DKG),143,144 1,5-anhydro-D-fructose 

reductase (1,5-AFR),151 isocitrate dehydrogenase (IDH),153 glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH),160 P. stipitis xylitol dehydrogenase (PsXDH),138 ferrodoxin:NADP+ 

reductase,152 and L-lactate dehydrogenase (L-LDH).156 The nicotinamide cofactor binding pockets 

of these proteins were aligned to the NADPH binding pocket of CtXR using Combinatorial 

Extension.179 These proteins were chosen as they are well characterized and most had high 

resolution crystal structures available. The structural alignments used RCSB Protein Data Bank 

(PDB) 129 crystal structures to provide the atomic coordinates for all structures except for PsXDH, 

which was constructed via the SWISS-MODEL first approach method.189,190 The results of the 

different nicotinamide binding pockets structurally aligned with Combinatorial Extension are 

shown in Table 2-2. Significant structural similarity in the nicotinamide cofactor binding pockets 

was found across the enzymes used based on their root of mean square deviation (RMSD) values. 
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In contrast, no significant sequence alignment occurred in the binding pockets of the sampled 

proteins and that of CtXR, except in 2,5-DKG, where there is 50% sequence similarity.  

Table 2 - 2: NAD(P)(H) binding pockets structurally aligned with combinatorial extension.  
Protein PDB  

Code 
Sequence 
Positions 
Aligned 

RMSD 
Binding 

Pocket (Ǻ) 

Sequence Identity of 
Binding Pocket (%) 

(20-50 residues) 

Overall 
RMSD 

(Ǻ) 
CtXR 1MI3 270-290 0.0 100.0 0.0 
GR 1GER 170-210 1.9 6.2 4.9 

KARI 1YRL 60-80 2.9 12.5 4.4 
PHBH 1PBB 20-50 2.5 12.5 4.5 

2,5-DKG 1A80 220-250 0.8 50 1.3 
1,5-AFR 2GLX 2-49 1.7 18.8 3.7 

IDH 2D1C 280-300 3.25 12.5 4.7 
GAPDH 1GD1 180-200 3.26 6.2 5.28 
PsXDH 1 200-220 1.42 15.8 4.9 

ferrodoxin:NADP+ 
reductase 

1QUF 220-240 3.31 6.2 5.15 

L-LDH 1LDB 46-70 1.88 0 5.31 
1This structure was generated utilizing the SWISS-MODEL first approach homology modeling method as 
there was no initial PDB crystal structure available.189,190 
 

Based on previous mutational studies performed on CtXR, positions Lys-274, Ser-275, and Asn-

276 emerged as key locations to mutate to increase cofactor specificity for NADH over 

NADPH.141,166,191 We defined Positions 1-3 as the residues that are aligned to K274, S275, and 

N276, respectively. Positions 1-3 are nearby the phosphate group in NADPH, but are over 12Å 

from the hydride transfer site in the catalytic mechanism, highlighting that these positions affect 

cofactor specificity and affinity but are not directly involved in the reaction. Next, a statistical 

analysis on charge, hydrophobicity, and volume was performed for each design position 

structurally aligned to CtXR in both their NADP(H) and NAD(H)-preferring forms for the 

residues listed in Table 2-3. This allowed us to discern whether any of those metrics played an 

identifiable role in cofactor specificity. For each position, we calculated the average value of each 

parameter, as depicted in Figure 2-2 with error bars representing 95% confidence intervals. 
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Figure 2 - 2: Comparison of average hydrophobicity, volume, charge, and BLOSUM62 
score for all design positions. Error bars are shown for a 95% confidence interval. No 
statistically significant signal was found except for charge in position 2, where NADH-
preferring residues were found to be more negative than NADPH-preferring residues, 
which is consistent with previous reports in the literature.  
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Table 2 - 3: Residues used in calculating average properties of NAD(P)H-binding residues.  
                                                                              NADP(H) → NAD(H) Preferring 
Protein Position 1 Position 2 Position 3 
CtXR Lys→Arg Ser→Ala Asn→Asp 
GR Val Gly Ala
KARI Leu Arg→Asp Lys→Leu 
PHBH Glu Arg→Ser Gln→Arg
2,5-DKG Lys→Gly Ser Val 
1,5-AFR Met Ser→Asp Thr 
IDH Lys→Asp Tyr→Iso Ala
GAPDH Ala→Leu Ser→Pro His 
PsXDH Val Ala→Asp Arg→Iso
ferrodoxin:NADP+ reductase Iso Ser→Asp Arg 
L-LDH Lys→Iso Ser→Asp Ala
 

 

While differences exist between the average values for charge, hydrophobicity, and volume, the 

average values are well within their confidence intervals for the mean, indicating no statistically 

significant signal.  In position 2, enzymes preferring NAD(H) over NADP(H) were on average 

more negative compared with NADP(H)-preferring enzymes, which is consistent with what 

would be expected. The more positively charged residues electrostatically interact with the 

negatively charged phosphate of the adenosine ribose in NADP(H). The residues that are more 

negative in the NAD(H)-preferring enzymes may be compensating for the lack of the negative 2’-

phosphate present in NADP(H) and are stabilizing the 2’-OH in the enzymes’ NAD(H)-bound 

form.146,148 In addition, we performed a similar analysis using the BLOSUM62192 scores of the 

mutations in each position leading to altered cofactor specificity. The BLOSUM62 scores 

reported are based on the change in amino acid when going from NADPH-preferring to NADH-

preferring residues. There was no statistically significant difference in the average scores per 

position. Notably, the mutations considered resulted, on average, in negative BLOSUM62 scores, 

indicating generally non-conservative mutations.193 These results do not mean that charge, 

hydrophobicity, volume, and BLOSUM62 scores do not have an effect on affinity for different 
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cofactors. Instead, they imply that the effect of each factor separately is not monotonic or even 

discernible in isolation of all other metrics. Therefore, straightforward approaches using size, 

charge or hydrophobicity observations to suggest successful enzymatic redesigns cannot be 

successfully applied. Given the insufficiency of simple metrics to drive redesign, we next 

explored whether calculated binding affinities could be used to support enzyme redesign.  

Section 2.3.2:  Comparison of Calculated Interaction Energies of Enzyme-NAD(P)(H) 
Complexes vs. Affinities 

Here we explore whether cofactor interaction energy is an adequate surrogate of cofactor 

specificity to drive computational cofactor alteration. To test this, we contrasted calculated 

interaction energy values (through CHARMM30,194) with published kinetic parameter data from a 

study aimed at changing specificity from NADPH to NADH in CtXR.141 We compare the results 

of interaction energy changes calculated with and without solvation effects to determine whether 

the substantially increased computational cost needed for solvation is necessary.  

The crystal structure of CtXR with NADH bound (PDB:1MI3) provided the starting coordinates 

for this analysis.129 For this complex, we imposed a harmonic restraint to all non-hydrogen atoms 

with a force constant of 0.1 and mass weighting enabled. The CHARMM force field was applied 

and the complexes were energy minimized using the Adopted Basis-set Newton-Raphson 

(ABNR)194 method with a Generalized Born with a simple switching implicit solvent model 

(GBSW).124,125 The energy function in CHARMM accounts for forces from van der Waals 

interactions, bond stretching, bond angles, dihedral (torsion) angles, improper dihedral angles, 

electrostatics, and solvation. All minimizations converged successfully within the iteration limit. 

The interaction energy for the minimized wild-type complex was calculated using the 

Generalized Born with molecular volume integration (GBMV)126,127  implicit solvent model as: 
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Interaction Energy = Energy of Complex – Energy of Apo Enzyme – Energy of Cofactor (1) 

The interaction energy represents the intermolecular component of the total energy. The 

minimized wild-type structure was then mutated in positions relevant to altering cofactor 

specificity for NAD(P)H as reported in the literature.141 Each mutated structure was minimized 

and had its interaction energy calculated using the same methods applied to the wild-type 

structure.  ∆Interaction Energy was then calculated as: 

∆Interaction Energy = Interaction Energy (Mutant) – Interaction Energy (Wild-type)   (2) 

Here we used GBSW in all energy minimizations to ensure proper packing of hydrophobic cores 

while GBMV was used to approximate the solvation component for the interaction energy 

calculations.  In the GBMV method,126,127 the effective Born radius is computed by numerical 

integration of the molecular volume. The Coulomb field approximation includes a higher order 

correction term to improve agreement with the radii calculated from solving the Poisson-

Boltzmann equation. The GBMV method was used for the interaction energy calculations 

because it is highly accurate but still more tractable in an iterative form than other options, such 

as solving the Poisson-Boltzmann equation. The minimizations utilized the GBSW model, as the 

GBMV model may utilize a sharp molecular surface representation for some systems, which 

would lead to large fluctuations in energy and cause stability problems in the simulations. GBSW 

is very similar to GBMV, but it is 2-3 times faster since it replaces the computationally expensive 

molecular surface calculation with a simple smoothing function at the dielectric boundary. 

GBSW’s use of a smoothed dielectric boundary allows the change in polarization forces to vary 

more smoothly compared to GBMV. 

For mutations changing cofactor specificity from NADPH to NADH, Figure 2-3 shows the 

calculated changes in interaction energy from (wild-type to mutant) including solvation against 

experimental ground state binding energy data outlined in Petschacher et al.141 The correlation 

coefficient value is equal to 67%. This implies the calculated interaction energy explains 67% of 
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the variance in the experimental binding data. Although not a fully quantitative description, this is 

generally sufficient for rank ordering of different enzyme redesigns. When eliminating the 

implicit solvation model GBMV from the energy calculations, the correlation was reduced to 

24% (data not shown), implying the need to include solvation effects in enzyme redesign. With 

these observations, we next modified and used the Iterative Protein Redesign and Optimization 

(IPRO)119 framework to account for solvation based on the GBSW and GBMV models to explore 

redesigns for CbXR.  

 

Figure 2 - 3: Changes in experimental ground state binding energies from Petschacher et 
al.141 vs. our calculated changes in interaction energies. Shown are the changes in 
interaction energy with solvation showing reasonable correlation with the experimental 
data (R2=67%), whereas changes in interaction energy without solvation correlated 
significantly less with the experimental data (R2=24%) (data not shown).   
 

 



28 

Section 2.3.3: Computational Predictions using IPRO 

Using the modified IPRO, we were able to generate variants of CbXR with improved interaction 

energies  for NADH by targeting the design positions Lys-272, Ser-273, and Asn-274 in the 

NADPH binding pocket.  

The wild-type interaction energies of CbXR-NADH and CbXR-NADPH were calculated to be -

232 kcal/mol and -339 kcal/mol, respectively, and the interaction energy improvements towards 

NADH as a result of mutations predicted by IPRO for the top 10 designs are reported in Table IV. 

The mutants generated improvements in interaction energies  for NADH by up to 78% relative to 

the wild-type and were selected among the 203 (=8,000) possible combinations of mutations.  The 

interaction energies of the redesigned variants with the native cofactor NADPH were also 

calculated to assess the effect of the NADH binding improving mutations on the retention or 

abolishment of affinity for NADPH. Notably, we found that mutations in position 272 to 

methionine to be most effective at suppressing binding affinity based on an increase in interaction 

energy for the native cofactor. This is in agreement with the experimental results derived by 

Petschacher et al.141 who found that the K274M mutation in the homologous CtXR increases 

NADPH dissociation and reduces the catalytic efficiency of CtXR utilizing NADPH. The 

increased hydrophobicity of the methionine side chain relative to lysine may imply that the 

orientation of the methionine side chain with respect to bulk water is not favored.141,166  
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Table 2 - 4: Computational and Experimental Results 

Mutations 
ΔInteraction 
EnergyNADH  
(kcal/mol) 

ΔInteraction 
EnergyNADPH  

(kcal/mol) 

Activity with 
NADH  

(mU/mg protein) 

Activity with 
NADPH  

(mU/mg protein) 

Specificity 
(NADH/NADPH) 

ΔCharge

Wild-Type 0 0 0.7 ± 2.2 78.6 ± 4.7 0.01 0
EDS -181 42 12.8 ± 2.1 5.5 ± 2.7 2.4 -3
EDR -133 29 1.9 ± 0.8 < 0.1 > 19 -2
MGD -129 181 17.1 ± 1.1 1.9 ± 0.6 8.9 -2
GGD -126 195 19.0 ± 0.8 4.3 ± 0.8 4.4 -2
EQR -103 -10 4.1 ± 0.6 72.3 ± 5.2 0.06 -1
RTT -102 -30 14.4 ± 2.3 109.3 ± 16.5 0.13 0
MES -99 180 1.81 ± 0.4 < 0.1 > 18 -2
MAE -92 266 5.4 ± 1.3 < 0.1 > 54 -2
REG -79 135 11.2 ± 3.1 < 0.1 > 112 -1
RSE -70 15 10.8 ± 1.2 29.5 ± 0.4 0.37 -1 

R -60 -9 7.4 ± 2.5 14.7 ± 5.4 0.5 0
Negative Controls

RNI -45 74 < 0.1 ND ND 0
KKG 101 232 < 0.1  ND ND 1
RHC -73 127 < 0.1 ND ND 0

1The top designs predicted by IPRO with their changes in interaction energy are reported. The mutation 
labels (e.g. EDS) correspond to positions 272, 273, and 274 respectively in CbXR. The wild-type 
interaction energy with NADH was calculated as -232 kcal/mol and with NADPH as -339 kcal/mol.  

 

2The NADH and NADPH-linked activities of the CbXR variants are reported in this table for comparison 
with the computational predictions. Values of < 0.1 indicate activity could not be detected above the 
background value in the absence of xylose. ND indicates the activity was not determined.  
3The net local change in charge was calculated as a result of mutation and provided since charge was found 
to be important in determining cofactor specificity.  
 
In Figure 2-1B, no hydrogen bonding interactions were present between NADH and the design 

positions chosen in CbXR. In contrast, as shown in Figure 2-4, the best computationally-derived 

design, CbXR-EDS (involving three point mutations K272E, S273D, and N274S) improved the 

interaction energy by -181 kcal/mol while forming a number of new hydrogen bonds between 

CbXR and the NADH. These newly formed hydrogen bonds likely explain the acquired affinity 

for NADH. Note that a hydrogen bond with the glutamic acid at position 272 stabilizes the 3’-OH 

of NADH (near the 2’-phosphate position of NADPH).  
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Figure 2 - 4: CbXR-EDS binding pocket containing NADH. The mutated residues Glu-272, 
Asp-273, and Ser-274 are labeled. Hydrogen bonding interactions are observed within 2.5 Å 
between the negative Glu-272 and the 3’-OH from NADH. This figure was made using 
PyMOL (Delano Scientific). 
 

In nine out of the ten variants generated as shown in Table 2-4, including CbXR-EDS, the net 

charge change of the residues in the three positions considered is negative relative to the wild-

type, with the change in CbXR-EDS being greatest (-3). This is in agreement with the results of 

the statistical analysis presented above. Presumably, this is because the more positively charged 
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residues in the NADP(H)-bound enzymes electrostatically interact with the negatively charged 

phosphate of the adenosine ribose. The residues with a higher net negative charge change in the 

NAD(H)-preferring enzymes, specifically the Asp and Glu residues, are thought to provide a 

significant portion of substrate specificity for NAD(H) by hydrogen bonding to one or both of the 

2’- and 3’-OH and to compensate for the lack of a partially negative 2’-phosphate present in 

NADP(H).137,146,148,195 Also, in three of the top five designs, position 272 was mutated to glutamic 

acid, indicating that this may be a critical mutation in changing the cofactor specificity of this 

enzyme.  

Interestingly, CbXR-EQR and CbXR-RTT increased binding affinity for NADH, as required by 

IPRO, but also increased binding affinity for the original cofactor NADPH. Of the mutants 

generated, CbXR-RTT was the only design in which the net charge change as a result of mutation 

in the three design positions did not change. Comparing CbXR-RTT to the wild-type, there is no 

significant change in hydrophobicity or side-chain volume in any of the residues compared to the 

wild-type. Conservative increases in side-chain volume as a result of the mutations may slightly 

increase van der Waals and hydrogen bonding interactions to fine-tune the enzyme to bind 

NADH as well, without disrupting the original hydrogen bonding network and positive charge 

preference of the 2’-phosphate of NADPH  

With these computationally-predicted designs, we next experimentally assessed the effect of the 

predicted mutations on cofactor preference to assess the efficacy of our computational 

predictions.  

Section 2.3.4: Experimental Results 

We experimentally constructed the top ten predicted designs to test the computational procedure 

and also shed light onto the functional significance of mutations in the binding pocket of CbXR. 
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One additional mutant (CbXR-R) was also constructed by mutating Lys-272 to Arg. The wild-

type lysine in this position provides a positive charge for NADPH binding and the mutation of 

this residue to Arg was previously shown to change the cofactor specificity of CtXR from 

NADPH to NADH.140,141 As negative controls, we also constructed three mutants not predicted by 

IPRO (CbXR-RNI, -KKG, -RHC). 

Specific activities (μmol/min/mg) of clarified cell lysates containing the engineered CbXR 

mutants in the presence of 300 μM NADH and 300 mM D-xylose were measured and are 

presented in Table 2-4. Wild-type CbXR, as expected, clearly showed activity for NADPH (78.6 

mU/mg protein) and less than 1 mU/mg protein of activity for NADH. Interestingly, while all top 

ten predicted designs clearly displayed some levels of NADH-linked enzymatic activity, all three 

negative controls exhibited a complete loss of reductase activity. Interaction energy calculations 

were performed on the negative controls for completeness and are reported in Table 2-4. Notably, 

CbXR-KKG was calculated to have worse affinity for both cofactors, which is consistent with the 

observation from results presented above for mutants having a net positive charge change. CbXR-

RNI and CbXR-RHC were calculated to have increased affinity for NADH and decreased affinity 

for NADPH, with zero net charge change. The lack of NADPH activity for these mutants with no 

local charge change bolsters the importance of charge in determining specificity and affinity for 

cofactor.  

Experimental results for redesigning the cofactor binding pocket of CbXR for NADH specificity 

confirmed a number of important computationally predicted redesign trends. Cofactor specificity 

of this enzyme is markedly influenced by different amino acid substitutions in three design 

positions. Replacement of Lys-272 by Arg, which was previously shown to completely reverse 

nicotinamide cofactor specificity in CtXR,140 also yielded NADH activity in CbXR while 

weakening the NADPH-linked catalytic activity (by ~5 fold; see Table 2-4).  While this mutant 

did not make the top ten predicted designs, off-line interaction energy calculations showed a 
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significant -60 kcal/mol (26%) improvement in interaction energy toward NADH relative to the 

wild-type CbXR. The effect of this mutation on NADH binding is clearly dependent on amino 

acids in positions 273 and 274. In the presence of Arg at position 272, mutation of Ser273 and 

Asn274 to larger and more hydrophobic amino acids in CbXR-RNI and CbXR-RHC resulted in a 

complete loss of reductase activity, whereas smaller and more hydrophilic amino acids at these 

positions in CbXR-REG, CbXR-RTT, and CbXR-RSE exhibited improved enzymatic activity. 

In agreement with the computational results, methionine in position 272 is found to improve 

binding and activity for NADH while abolishing activity for NADPH. It appears that more 

negatively charged residues in the design positions help to explain the observed cofactor affinity 

alterations, as the net charge change for the three residues in CbXR-MGD, CbXR-MAE, and 

CbXR-MES is negative relative to wild-type. This may serve to compensate for the lack of a 

partially negative 2’-phosphate in NADP(H).137,146,148,195 

Of the mutants experimentally tested, only CbXR-RTT showed activity toward NADH and also 

increased activity for NADPH. This is consistent with the computational results in that the 

binding affinity for both cofactors was increased for this mutant (Table 2-4). CbXR-EQR was 

predicted computationally to have a small increase in affinity for NADPH while also binding 

NADH. Experimental results revealed a slight decrease (~8%) in activity for NADPH while 

introducing novel activity for NADH. Cofactor specificity of the designed mutants was measured 

as the ratio of activity on NADH vs. NADPH. Seven of the ten predicted mutations exhibited 

specificity values greater than one, indicating greater specificity for NADH. Four mutants (EDR, 

MES, MAE, REG) exhibited completely diminished (< 0.1mU/mg) activity on NADPH, most 

likely as a result of local charge repulsion between the 2’-phosphate and the more negative 

residues in the design region. Mutant CbXR-REG exhibited a greater than 104-fold change in 

substrate specificity from NADPH to NADH.  
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The variants that showed the highest activity toward NADH, (i.e., CbXR-GGD, CbXR-MGD, 

and CbXR-RTT) were further analyzed by determining their Michaelis kinetic parameters for 

NADH and NADPH in the presence of saturating concentrations of D-xylose (300mM).  Data 

were fitted to the Michaelis-Menten equation for a single substrate using non-linear least squares 

regression as shown in Figure 2-5. Km and Vmax values are listed in Table 2-5. The Km values for 

the mutant enzymes and wild-type CbXR are comparable, however, the Vmax values for these 

mutants are approximately one order of magnitude lower than the one for the wild-type enzyme. 

This suggests that NADH binding strength for these mutants is comparable to that of NADPH to 

the wild-type, and that IPRO successfully improved substrate binding. Figure 2-6 highlights the 

computationally-predicted enzyme-cofactor interactions for the best three mutant enzymes. 

NADH binding is suggested to be stabilized by a network of hydrogen bonds, absent in the wild-

type enzyme, as well as van der Waals interactions between the side chains of residues in the 

design positions and the 2’- and 3’-OH groups in NADH. In CbXR-GGD (Figure 2-6A) and 

CbXR-MGD (Figure 2-6B), new hydrogen bonding interactions were established between the 

new residues and bridging phosphate groups in NADH. It is interesting that mutations to glycine 

were selected, perhaps to introduce conformational flexibility that allows better placement of the 

new cofactor in the binding pocket. In CbXR-RTT, new hydrogen bonding interactions appear to 

stabilize the 3’-hydroxyl group both for NADH (Figure 2-6C) and NADPH (Figure 2-6D). New 

hydrogen bonds from Arg-272 and Thr-274 are found to stabilize the 2’-phosphate group in 

NADPH. These mutations yield a net neutral charge change, which may be why both cofactors 

can be bound without substantial electrostatic resistance.   
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Figure 2 - 5: Michaelis-Menten plot for (A) wild type CbXR with NADPH and (B) three 
tested variants of engineered CbXR with NADH.  
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Table 2 - 5: Michaelis-Menten constants for wild-type and mutant CbXR. 

 

Engineered CbXR with NADH 
Wild-type 

CbXR with 
NADPH 

 CbXR-GGD CbXR-RTT CbXR-MGD CbXR 
Km (μM) 238 ± 24 205 ± 12 169 ± 12 307± 87 

Vmax (mUnits/mg) 10  ± 0.6 16 ± 0.5 9 ± 0.3 152 ± 25 
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Figure 2 - 6: Structures of redesigned NAD(P)H binding pockets. (A) CbXR-GGD and (B) 
CbXR-MGD establish new hydrogen bond interactions between the mutated residues in 
CbXR and the bridging phosphates in NADH. The net charge change of these mutations is 
negative which may serve to compensate for the lack of negative 2’-phosphate in NADH. 
The mutations to glycine may serve to add conformational flexibility in the backbone to 
allow proper positioning of the NADH. CbXR-RTT, the mutation predicted by IPRO that 
was experimentally found to have dual cofactor specificity, bound to NADH (C) and 
NADPH (D). New hydrogen bond interactions are shown stabilizing the 3’-phosphate in 
NADH and NADPH from Arg-272, which may be the cause of the dual cofactor specificity.  
In NADPH, new hydrogen bonds are found to stabilize the 2’-phosphate group from Arg-
272 and Thr-274. A neutral net change in charge is thought to contribute to dual cofactor 
specificity as well. All hydrogen bonds shown are within 2.5 Å. This figure was made using 
PyMOL (Delano Scientific).  
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Figure 2-7 plots the natural log of specific activity against interaction energy for all mutants. For 

NADPH (Figure 2-7A) there was a 79% correlation, and only 30% for NADH (Figure 2-7B). The 

difference in the ability of the interaction energy to predict differences in activity toward the two 

cofactors may be related to the fact that the position of NADPH is based on crystallographic 

data,168 while NADH was computationally docked using ZDOCK (version 2.3),74 causing some of 

the catalytic atoms to be positioned sub-optimally for the reaction to occur.  An alternate 

explanation for this difference in correlations is that mutations that improve NADH binding may 

also disrupt xylose reduction to some extent, in which case activity will not necessarily correlate 

with interaction energy.  
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Figure 2 - 7: Plots of the natural log of specific activity toward NADPH (A) or NADH (B) 
versus interaction energy for CbXR mutants described in this study. The correlation 
coefficient for mutants yielding activity for NADPH is 79%, whereas the correlation is only 
30% for NADH.  
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Section 2.4: Discussion and Summary 

Redox enzyme variants with dual or switched cofactor preference are useful choices in metabolic 

engineering studies to better understand the role of cofactor utilization in strain performance. To 

date, strategies to engineer nicotinamide cofactor specificity have mainly relied on structural 

analysis and site-directed mutagenesis (see Table I). Despite a number of successes, a systematic 

computational workflow to drive design of cofactor specificity has been absent. 

In this paper, using a modified IPRO workflow we identified sets of mutations that changed the 

nicotinamide cofactor specificity of CbXR from its physiological preference for NADPH, to the 

alternate cofactor NADH. We used calculated interaction energies to determine the increased or 

decreased affinities of CbXR variants for both nicotinamide cofactors, which were verified by our 

experimental results. Modifying the computational framework to account for implicit 

solvation124,125,196 effects, we conclude that the increased computational expense needed to 

account in detail for solvation using GBSW and GBMV was warranted, as manifested by the 

successful experimental redesigns. Seven out of ten mutants proposed computationally to have 

increased affinity toward NADH were verified experimentally to bind and show significant 

activity toward NADH. Two variants identified by IPRO (i.e., CbXR-EQR and CbXR-RTT) led 

to dual cofactor specificity with preference for NADPH. Our results suggest interaction energies 

can successfully serve to introduce activity towards a new cofactor. Nevertheless, reaching the 

activity levels of the wild-type enzyme using the native cofactor for the redesigned enzymes 

using the new cofactor remains a challenge.137 For example, for CtXR, Petschacher et al.141 

through site-directed mutagenesis was able to achieve increased catalytic efficiency for the 

alternate cofactor, but only at 27% of the native cofactor’s efficiency (mutant K274R). Additional 

engineering efforts are therefore necessary to further increase activity toward NADH by 
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expanding the list of positions for mutation. Specifically, it may be necessary to proactively 

design the catalytic atoms in the binding pocket.  

Given there were only three design positions, we believe the reported top ten designs are a good 

representation of the top performing ones. The rotamer/residue selection step in IPRO converges 

to the globally optimal solution for the randomly perturbed φ and ψ angles, however, a rigorous 

mathematical proof is not possible given the reliance on a simulated annealing step after every 

backbone relaxation/redocking step. Our computational results showed that the CbXR variants 

binding NADH are characterized by a net negative charge change in the binding pocket. We 

suggest that this net negative charge change coupled with the predicted new hydrogen bonding 

interactions between the mutants and NADH are important factors in ushering the change in 

CbXR’s cofactor specificity. This is consistent with what has been observed in the literature: 

more negative residues in the binding pocket of NAD(H)-preferring enzymes  compensate for the 

lack of partially negative 2’-phosphate of the NADP(H).146,148,195 In summary, the computational 

procedure presented here can serve as a powerful tool for introducing enzyme activity toward a 

non-native cofactor. It can be applied to other enzyme-cofactor systems, and the methodology can 

be extended to engineer specificity toward oxidized or reduced nicotinamide cofactors, as well as 

to non-nicotinamide cofactors of interest such as AMP and GMP. 

 

 

 

 

 



 

Chapter 3: Ground and Transition State Design of Cytochrome P450BM3 for 
Altered Substrate Specificity 

Section 3.1: Introduction 

Enzymes are remarkably versatile structures exquisitely tuned by nature to selectively carry an 

incredible array of catalytic functions. Their immense potential to provide solutions to challenges 

in biomass treatment, biofuels production, biosensing, wastewater and environmental pollutants 

treatment24,26,56,117,135,197-202 has long been recognized. Regrettably, enzymes with potential 

commercial utility often suffer from poor stability under the desired reaction conditions, 

inadequate catalytic activity or a lack of specificity for non-native substrates. Protein engineering 

efforts are increasingly effective at identifying mutations and/or recombinations that create 

enzymes with improved performance characteristics.22,121,130,134,135,200,203 Purely experimental 

library screening approaches cannot predictably lead to optimized designs due to the 

difficulty/cost of screening and the enormity of the combinatorial design space. The use of 

computational methods has recently led to many protein redesign successes22-26 by optimizing 

protein-ligand or and/or enzyme-cofactor interactions using static and molecular dynamics 

calculations. We have previously successfully computationally redesign proteins that were 

experimentally verified to use a different cofactor118 and constructed novel calcium binding 

sites.26 However, the rational design of enzymes for improved or novel catalytic activity remains 

an open challenge, in part because catalytic efficiency depends on not only ground state (GS) but 

also transition state (TS) interactions and energy barriers. A challenge in enzyme design is to 

improve substrate specificity, active site access, and binding while maintaining or even improving 

transition state stabilization. In this work we take the first steps to address this challenge by 
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performing calculations at multiple energy scales (QM and MM) and offering designs for further 

experimental validation. We choose as our system the cytochrome P450BM-3 monooxygenase, 

which is functionally expressed at high levels in E. coli and has become a prime target for 

hydroxylase engineering of small alkanes towards alcohols. It is an ideal system on which to test 

our enzyme design work-flow because the reaction mechanism is well established, experimental 

design attempts exist for comparison, and the system is computationally tractable.  From a 

practical viewpoint, the selective oxidation of light alkanes can produce liquid fuels or value-

added chemicals from remote natural gas sources or less valuable refinery by-products. 

In this work, we take the first steps to create a general computational workflow that can create 

enzymatic activity for a non-natural substrate. First, density functional theory (DFT) quantum 

mechanical (QM) calculations were employed to converge on the ground and transition states of 

the rate-limiting step. Next we parameterized the ground and transition states with QM into a 

molecular mechanics (MM) parameterization in CHARMM,30,123 and explored its application 

against experimental mutant data prior to moving forward with computational design with a new 

computational saturation mutagenesis protocol. Arnold and coworkers204 used directed evolution 

to identify a mutant of P450BM-3, 535-h, which was capable of hydroxylating ethane to ethanol 

with 14 amino acid substitutions and 3 mutations occurring in the active site region (Positions 78, 

82, 328). Finally IPRO was used to find the optimal rotamer/residue combination in predefined 

design positions that are systematically selected to offer designs for further experimental study. 

Section 3.2: Background on P450BM-3  

We choose as our system for design the cytochrome P450BM-3 monooxygenase from the bacterium 

Bacillus megaterium.205,206 This soluble enzyme utilizes oxygen and the reduced cofactor 

NADPH to hydroxylate fatty acids, as depicted in Figure 3-1.  
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Figure 3 - 1: P450BM-3 catalyzed hydroxylation of a substrate. 

P450BM-3 is a single peptide chain composed of a heme-containing domain fused to a reductase 

domain (Figure 3-1) responsible for supplying electrons from NADPH to the heme via FAD and 

FMN moieties. The catalytic center in P450 involves iron(Fe(III)) equatorially coordinated by 

four nitrogens of prottoporphyrin IX and axially coordinated below the heme (proximal) by a 

cysteine thiolate.  

The general reaction mechanism (Figure 3-2) of substrate oxidation begins with the substrate 

accessing the binding pocket and excluding a distal coordinating water molecule. This triggers 

transfer of one electron to the iron center (forming Fe(II)), which then allows O2 to coordinate 

and form superoxo-Fe(III). Delivery of a second electron to the heme enables heterolytic O-O 

cleavage resulting in the formation of H2O and the strongly oxidizing iron-oxo intermediate, 
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which then abstracts hydrogen from the substrate. The likely mechanism creates an organic 

radical in this hydrogen abstraction step that then ”rebounds” to the iron-hydroxyl site and 

hydroxylates the substrate.207 Based on earlier studies on the cytochrome P450 catalytic 

mechanism,  ripping the hydrogen from the substrate is energetically rate limiting since the bond 

strength of a terminal C-H bond is strong at 101 kcal/mol. 

 
Figure 3 - 2: Consensus catalytic cycle for oxygen activation and transfer by Cytochrome 
P450.208 

 

Wild-type P450BM-3 naturally hydroxylates subterminal, saturated C-H bonds (bond strength ~99 

kcal/mol). The low hydroxylation activity toward terminal C-H bonds (~101 kcal/mol) suggests 

that the BM-3 heme iron-oxo reactive intermediate does not have sufficient reactivity to 

efficiently perform terminal oxidation, a property generally associated with more complex, di-
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iron core enzymes such as methane monooxygenase (MMO). The relatively complicated 

molecular organization of MMO and accompanying difficulties associated with obtaining large 

quantities of this enzyme complex make it a poor candidate in applied biocatalysis.209 P450’s on 

the other hand have been the subject of extensive characterization, engineering, and 

biotechnological implementation for more than 30 years. The ability of P450BM-3 to be 

functionally expressed at high levels in the bacterium E. coli has made it a prime target for 

hydroxylase applications and engineering.205 The heme domain of this P450 can be functionally 

expressed separately from the reductase portion. Conveniently, the heme domain alone is 

sufficient for catalyzing the “peroxygenase” or “peroxide-shunt” reaction, in which hydrogen 

peroxide (H2O2) reacts with the ferrous heme species to generate a hydroperoxo intermediate 

leading to iron-oxo.210 

This work addresses the timely issue of controlled hydroxylation of small gaseous hydrocarbons 

(methane, ethane and propane) and terminal C-H bonds, and of elucidating determinants of C-H 

bond activation by mononuclear iron centers.  In general, it is not clear whether the protein 

environment influencing the chemistry of P450 heme-catalyzed oxidations could support an iron-

oxo species having sufficient strength to oxidize terminal C-H bonds or even methane (~104 

kcal/mol) at biologically or biotechnologically useful turnover rates.  Recent engineering efforts 

by Arnold and coworkers have provided encouraging results by showing that the mononuclear 

heme moiety is capable of oxidizing propane and ethane and even iodomethane, which has a bond 

strength of 103 kcal/mol.211 Using a variety of mutagenesis and directed evolution techniques, 

they followed an evolutionary progression of BM-3 mutants that first hydroxylated long-chain 

alkanes (octane), followed by shorter chain alkanes (propane and ethane) but with poor coupling 

efficiency, and finally a propane monooxygenase variant having high coupling efficiency on 

propane and the ability to oxidize iodomethane. 
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These previous research efforts collectively demonstrate how important a role the protein 

environment plays in dictating not only substrate access but also heme chemistry and oxidative 

strength.  These results are encouraging, particularly in light of the potential applications relating 

to conversion of small gaseous alkanes (methane, ethane and propane) into liquid alcohols via 

monohydroxylation. However, the activities or coupling efficiencies of the reported mutants are 

low and far from finding practical applications. Engineering activity towards progressively 

smaller substrates was met with increasing difficulty, and further attempts at using evolutionary 

techniques to isolate more active and/or efficient variants acting on propane and ethane have been 

difficult.211,212 Reasons for these catalytic difficulties relating to substrate size are likely due to a 

combination of factors that include poorer substrate affinity, reduced substrate exposure to the 

heme face (resulting in increased uncoupling), reduced interaction- or free energy-dependent 

conformational changes that mediate electron transfer, and elevated terminal C-H bond energies. 

We postulate that this is not due to inherent limitations in the mononuclear heme moiety, but 

rather it is due to an increase in the complexity of the binding pocket chemistry required to 

achieve the desired functionality. This translates to progressively fewer protein engineering 

solutions that can support the desired reactivity. Hence evolutionary or combinatorial methods 

become less likely to identify the rare solutions.  

We propose that by combining strengthening interaction energy at the reactant and transition 

states coupled with computational protein optimization and rational protein design, the P450BM-3 

protein environment can be fine-tuned to improve upon the results achieved by Arnold and 

coworkers using evolutionary design methods.  

While the accumulation of additively acting point mutations throughout the protein structure is an 

effective approach to gradually evolving enzyme activity, a major limitation to this technique is 

its ineffectiveness in identifying cooperative mutations. Active-site mutations can improve alkane 

binding and proximity to the reactive iron-oxo species as well as stabilize the reaction transition 
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state, leading to both improved cofactor coupling efficiency and increased rates of C-H bond 

activation. This applies to increasing existing activities on small substrates (propane, ethane) as 

well as identifying solutions enabling “new” (or detectable) activity on methane.  

The availability of crystal structures for both the wild-type P450 BM-3 heme domain213 and one 

of its evolved propane-oxidizing mutants (“139-3”)211 enables us to use reliable active site 

structural information for the computational methods outlined in this work.  Importantly, the 

tertiary structure of mutant 139-3 is changed very little relative to the wild-type enzyme structure 

(average Cα RMSD = 0.5 Å), indicating that accumulation of mutations conserving function 

during in vitro evolution (albeit modified function) correspondingly maintain the important 

structural features required for catalysis. In accordance, we expect successful mutagenesis 

strategies revealed through our studies to cause little perturbation to the backbone structure, 

further justifying our use of the available structure as a platform for engineering. 

In summary, this enzyme system was selected because of its potential for computational redesign 

and its technologically important oxidation chemistry. The P450 catalytic mechanism is complex, 

requiring a mononuclear reaction center. Modeling and engineering this system therefore 

addresses a relevant and realistic enzyme engineering challenge. P450BM-3 is a well-studied model 

system and engineering target, whose catalysis can be driven directly by NADPH or by H2O2 

using the heme domain alone. Now that we have discussed the necessary background information 

on our system of interest and have identified the rate-limiting step (RLS), we proceed to calculate 

the ground and transition state structures for the RLS.  

Section 3.3: QM Calculations of Ground and Transition States 

We initiated preliminary computational efforts toward method validation and design of P450BM-3 

mutants for enhanced alkane oxidation activity. We calculated the GS and TS structures using 
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Gaussian03214 using the density functional theory (DFT) method with the hybrid UB3LYP 

exchange-correlation functional.215,216  The Lanl2DZ basis set was also invoked. The QM 

calculations included the Fe(IV) oxo, porphyrin, truncated cysteinate anion (CysS-) and alkane 

substrate. Our transition state search procedure considered the “rebound” mechanism proposed 

earlier. The computational model system consisted of a cluster model including the ethane 

molecule and iron-oxo porphyrin complex and neglected the extended enzyme structure. The 

transition state was calculated with a linear scan method, and optimized and confirmed by 

vibrational frequency analysis. The QM calculated activation barrier for the hydrogen abstraction 

step was 33.3 kcal/mol calculated as: 

Activation Barrier = EnergyTransition State –EnergyGround State 

The DFT UB3LYP/Lanl2DZ method is known to have a ~7.73kcal/mol mean deviation from 

experimental values of the activation barrier, which should be sufficient for this study. The 

calculated TS equilibrium bond lengths, angles, dihedrals, and Mullikan charges were extracted 

and used to parameterize a new molecule type in CHARMM representing the GS/TS as shown in 

Figure 3-3. Strict constraints were implemented into CHARMM for the bond lengths to preserve 

the integrity of the calculated transition state. A strict constraint on the iron, oxygen, hydrogen, 

carbon dihedral angle was implemented as well, which allowed for the ethane intermediate 

portion of the transition state to rotate. With a calculated GS and TS structure properly 

parameterized in CHARMM, we next performed a computational saturation mutagenesis on the 

positions previously determined experimentally by Arnold and coworkers to be able to catalyze 

the hydroxylation of ethane.  
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Figure 3 - 3: Calculated key transition state equilibrium bond lengths and angles used in 
reparameterization in CHARMM in conjunction with the charges calculated. All distances 
shown are in Angstroms. 

Section 3.4: Computational Saturation Mutagenesis Procedure and Results 

We developed a computational saturation mutagenesis procedure to computationally evaluate the 

effects of mutations in the 14 positions indentified in mutant 535-h.204 The formulation presented 

in Figure 3-4 includes the CHARMM30,123 energy function (van der Waals, bonds, angles, 

dihedrals, impropers, and electrostatic energy terms as well as solvation). We utilized the 

Generalized Born with simple switching (GBSW)124,125 implicit solvent model for all energy 

minimization steps and the Generalized Born with molecular volume integration (GBMV)126,127 

model for all interaction energy calculations. The nested for loop calls CHARMM, selects 

predetermined design positions by the user, mutates each position to every amino acid one at a 

time, minimizes the energy of the system, and then calculates the interaction energy. The 

procedure was written in Python and currently is capable of running on one node or in parallel. 

The full code is available as is in Appendix A.  
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For {Pos1, Pos2, Pos3,…PosN} 

 For Amino Acid = {Ala, Arg, Asn,…M} 

Mutate 
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Figure 3 - 4: Formulation for computational saturation mutagenesis procedure.  
 

Arnold and coworkers 204 used directed evolution to identify a mutant of P450BM-3, 535-h, which 

was capable of hydroxylating ethane to ethanol. This mutant involved 14 amino acid substitutions 

relative to the wild-type, with 3 mutations occurring in the active site region (Positions 78, 82, 

328). The method outlined above was run to explore whether the 535-h mutant performance, 

identified by Meinhold et al., 204 can be explained by improvements in enzyme-ethane binding 

and enhanced transition state stabilization. Each run took 7 real hours of compute time distributed 

across 4 3.0 Ghz Intel Xeon Processors. The BM-3 crystal structure of P450 bound to the heme 

domain and the palmitoleic acid substrate was downloaded from the Protein Data Bank (PDB).129 

The QM calculated and MM parameterized ground and transition state structures were inserted to 

the enzyme by tethering the atomic coordinates to the coordinates of the heme in the crystal 

structure. 
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In Figure 3-5, we plot the interaction energy improvement (-∆∆Gcalculated ) compared to the wild-

type enzyme for every position and single mutation choice. A positive value in Figure 5 indicates 

stronger binding of ethane to the mutant as compared to the wild-type enzyme. Looking at the 53-

5h mutations (one at a time) arrived at through the directed evolution procedure we find that they 

are sometimes but not always the most energetically beneficial. In particular, for residues 78 and 

328 that are in contact with the substrate (but not for position 82) the identified mutations are near 

at the interaction energy optimum. Mutations found by directed evolution in some cases appear to 

be near optimal in interaction energy, but in other cases they are not. Clearly, something else is 

needed to explain the identified mutations. Therefore we carry out exactly the same study at the 

transition state.  

 
Figure 3 - 5: Interaction energy improvement (-ΔΔG) compared to the wild-type P450BM-3 
upon single amino acid mutations at the 14 positions changed in mutant 535-h for the 
binding of the ground state (ethane) structure. The x-axis value represents the mutated 
position in the enzyme. The blue (top) amino-acid abbreviations represent the 
computationally determined optimal mutation at that position, whereas in cases the 
experimental and computationally optimal mutants differ, red values (bottom) indicate the 
experimental mutation. 

 



53 

 
Figure 3-6 illustrates the results of the computational saturation mutagenesis procedure applied to 

the transition state, where the interaction energy was calculated exactly the same way as in the 

ground state calculations. Interaction energy improvements at the TS are significantly higher on 

average than the corresponding ones at the ground state. This is largely due to the difference in 

charge distribution between the ground and transition states. The experimentally found mutations 

were able to track the energetically optimal residues at the transition state much better than the 

ground state, with the exception of those in the active site. The trends seen between the ground 

and transition states are that some mutations are improving substrate binding, while mutations in 

other positions are important for improving transition state stabilization, and presumably lowering 

the activation barrier. We don’t know if directed evolution is optimal in terms of activity, or if 

other mutations exist that have not been identified. These results demonstrate the complementary 

nature of ground state and transition state calculations for explaining substrate binding and 

improving enzymatic activity levels and tell us when designing for activity, mutations must be 

selected that improve interactions at both the ground and transition states. Based on these 

findings, next we switch gears from the analysis of previous results to design at both the GS/TS 

with IPRO. 
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Figure 3 - 6: Improvement in interaction energy (-ΔΔG), compared to the wild-type 
P450BM-3, upon single amino acid mutations at the 14 positions changed in mutant 535-h 
for the transition state structure. Mutations were found that significantly improve the 
interaction energy between the protein and the transition state structure that were not 
found to improve the binding of the reactant state (ethane).  

Section 3.5: Systematic Selection of Design Positions and Iterative Protein Redesign at the 
Ground and Transition States 

In this next section, we describe the methods used to redesign P450 computationally to 

hydroxylate ethane using calculations at the ground and transition states. We first had to 

systematically identify design positions for design. Experimental methods usually involve 

performing random or saturation mutagenesis on positions known to influence the active site, but 

computational methods on the other hand usually rely upon rational selection of design positions 

identified by visualizing the active site residues and their proximity to the target substrate.  

We therefore propose a new approach to systematically select design positions. In our approach 

we employ sequence, structural, and energetic factors. Shannon entropy analysis is possibly the 
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most sensitive tool to estimate the diversity of a system.217 Therefore, the sequence of P450BM-3 

was aligned with the P450 superfamily, and 169 positions with intermediate Shannon entropies 

were identified. Intermediate Shannon entropies are defined as those with values between 2 and 3. 

Positions with entropies lower than 2 were not selected since this indicates that sequence 

conservation is probable and mutation of such a position may cause the enzyme to lose function. 

Values greater than 3 indicate that the sequence positions are approaching the limit where every 

amino acid choice is equally probably and therefore random.218 Therefore, we selected positions 

with entropic values between 2 and 3.  

Next, the distances of the previously identified positions to the ethane were calculated, and only 

those within 8A were selected as part of the final group of design positions. Lastly, we developed 

and performed a computational alanine scanning mutagenesis mutating every sequence position 

of P450BM3 to alanine, and identifying which of the positions affected the interaction energy 

with the ethane most drastically. The average change in interaction energy was 1.64 kcal/mol 

with a standard deviation of 1.02kcal/mol as a result of mutation to alanine. Therefore design 

positions that changed the interaction energy by more than 2.5 kcal/mol, or 1 standard deviation, 

were considered in the final pool of design positions. Based on the sequence, structure, and 

energetic factors, as well as knowledge of the active site residues, we refined our final # of design 

positions to 16 positions in Table 3-1. A pictorial illustration of how design positions were 

selected is shown in Figure 3-7. The code for the alanine scanning procedure can be found in 

Appendix B.  
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Table 3 - 1:  Design positions selected from sequence, structure, and energetic factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design Position WT Amino Acid 
47 Arg 

69 Lys 

75 Leu 

78 Val 

82 Ala 

85 Gly 

88 Thr 

94 Lys 

142 Pro 

177 Met 

182 Asp 

200 Glu 

260 Thr 

327 Thr 

328 Ala 

329 Pro 
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Figure 3 - 7: Schematic of Design Position Selection Protocol.  Design positions were 
selected based on sequence, structure, and energetic factors.  
 

We next used the IPRO117-119 framework running in parallel and with solvation and optimized the 

interaction energy between the P450 and the ground and the transition states calculated 

previously. IPRO was performed on a Linux PC cluster using 4 3.06GHz Xeon CPUs with 4GB 

RAM for 8.3 CPU days. 

IPRO generated 8 ground state and 6 transition state solutions that optimized the interaction 

energy between the P450 and the substrates presented in Table 3-2. 
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 Table 3 - 2:  IPRO generated designs optimizing the interaction energy between the ground 
and transition states. 
Ground State Designs  Transition State Designs 

260G  75D, 78K, 82G 

88G, 260G  75D, 78K, 82G, 260G 

88G, 260G, 327G, 328G 
75D, 78K, 82G, 260G, 327G,  
328G 

88G, 200K, 260G, 327G, 328G 
75D, 78K, 82G, 177G, 182K,  
260G, 327G, 328G 

88G, 177K, 182G, 200K, 260G,  
327G, 328G 

75D, 78K, 82G, 177G, 182K,  
200K, 260G, 327G, 328G 

47K, 88G, 177K, 182G, 200K,  
260G, 327G, 328G 

47H, 75D, 78K, 82G, 177G,  
182K, 200K, 260G, 327G, 328G 

47K, 88G, 177K, 182G, 200E,  
260G, 327G, 328G 

 

47K, 94R, 88G, 177K, 182G,  
200E, 260G, 327G, 328G 

 

 

At this stage in the design process, we cannot describe any specific designs in detail without 

experimental results. Instead, we will highlight some of the general trends found. What we are 

seeing is that IPRO predicted more positive and more hydrophobic residues at the ground state. 

The change in charge can be explained by the partial negative charge on the oxygen portion of the 

iron-oxo species. The increase in hydrophobicity can be explained by the reaction mechanism, 

whereas the mechanism can exclude the water molecules more easily after the substrate has 

accessed the pocket. For the transition state, the residues predicted were net smaller than the wild-

type. Mutations to glycine can be rationalized by the backbone needing more flexibility to 

conform around the smaller ethane substrate.  

We next employed IPRO using the design positions found by Meinhold et al. while employing 

directed evolution approaches.204 The goal of this was to compare whether the experimentally-
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found positions would improve interaction energy and the number of stabilizing residue contacts 

within 3 angstroms to the ethane relative to the design position selection procedure outlined 

above. The results are presented in Table 3-3. 

Table 3 - 3:  Comparison of IPRO designs using systematically and experimentally selected 
design positions. 
Design  Meinhold et al. Positions   Our Positions 

State  Ground  Ground 

# of Contacts within 3 Angstroms  18  17 

Design  Meinhold et al. Positions  Our Positions 

State  Transition   Transition 

# of Contacts within 3 Angstroms  16  22 

 

The wild-type P450 has 11 contacts within 3 angstroms of the ethane. Our best ground state 

design improved the number of contacts to 17, whereas the experimentally determined positions 

improved the number of contacts to 18. IPRO using the Meinhold et al. positions improved the 

interaction energy by 25.6% relative to the best designs predicted by our systematically 

determined design positions. At the transition state, we observed just the opposite. The IPRO 

designs using our design positions improved the number of contacts to 22 from 11, whereas the 

designs predicted with Meinhold et al. design positions improved the number of contacts to 16.  

Our best design improved the interaction energy by 58.1% relative to the best design predicted 

with the Meinhold et al. design positions at the transition state. The design positions 

experimentally found computationally improved the interaction energy the best at the ground 

state, whereas the systematically selected design positions improved the interaction energy the 

best at the transition state. This conflicts with the results found by the saturation mutagenesis 

procedure, where we found that the transition state mutations better tracked directed evolution.  

Finally, with several designs found to improve the ground and transition state interactions, let us 

make sure the substrate is still capable of entering the binding pocket. Figure 3-8 shows the 

binding pockets of the best ground and transition state designs using our systematically selected 
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design positions, relative to the wild-type binding pocket. Clearly the substrate can still access the 

binding pocket to bind/unbind. 

 

Figure 3 - 8: Visual depiction of best ground and transition state binding pockets relative to 
the wild-type binding pocket. The best designs improved the number of contacts while still 
allowing the substrate to bind/unbind.  
 

With the shortage of experimental data for this system, the next steps would be to construct the 

designs predicted both by Meinhold et al.’s design positions as well as our systematically selected 

design positions for experimental quantitative comparison. These next steps will be taken when 

developing a comprehensive enzyme design workflow followed by experimental verification. 

These limited number of sequence designs are offered for further experimental study 

 



 

Chapter 4: Future Work 

Section 4.1: Future Perspectives on Cofactor Engineering 

Cofactor engineering as a subset of protein engineering has a plethora of applications in 

metabolic engineering, since many metabolic pathways are limited by cofactor preference. Being 

able to systematically change an enzyme’s cofactor preference will allow pathways that 

previously could not be explored to be entered. Future development of computational protein 

design will more likely progress as  a result of understanding failures rather than the rare 

successes, the development of more accurate energy functions, the determination and 

understanding of a computational surrogate for enzymatic activity, and the adoption of fully-

automated protein design.  

Section 4.2: Future Perspectives/Work on Enzyme Design 

We recently have been approved for funding to develop a computational enzyme design 

workflow followed by experimental verifications by the NSF. The preliminary results presented 

in Chapter 3 were utilized in the proposal, and our future work entails producing the following 

deliverables. 

4.2.1: Determination of Optimal Designs Improving Reactant Binding and Product Off-
Rate 

At the ground states level we plan to deploy and customize our previously developed 

computational protein procedure Iterative Protein Redesign and Optimization (IPRO)117-119 to 
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explore what mutations in the wild-type enzymes are likely to lead to enzyme variants which 

improve the interaction energy between the reactant/enzyme as well as disrupt the interaction 

energy between the product/enzyme. We will target candidate designs that bind the reactant more 

strongly (improve substrate binding) while also allowing for product molecule release (improved 

product off-rate). We will develop a systematic approach for design position selection based on 

sequence variability, structure factors, as well as energetic. To this end, we plan to make use of 

the efficient amino acid selection scheme embedded within IPRO to drive amino design that relies 

on the sequential solution of mixed integer linear programming (MILP) optimization problems to 

global optimality. This framework has been shown to be effective at identifying mutations that 

change enzymatic cofactor specificity 219 as well as graft new binding sites onto existing protein 

scaffolds.26 Currently IPRO performs binding calculations using CHARMM at only the ground 

state. We plan to extend IPRO by including not just the binding energy optimization at the ground 

states but also optimizing the interaction energy at the QM calculated transition state.   

We intend to explore different ways of melding together all these objectives within IPRO. This 

includes minimizing interaction energy at the ground state while imposing a lower limit on the 

minimum allowable improvement in the TS stabilization energy and an upper bound on the 

interaction energy at the product ground state. Conversely, we will explore the direct 

minimization of TS stabilization energy while imposing bounds on how high/low the interaction 

energy is allowed to be for the reactant/product ground states, respectively. We will use known 

good/poor binders220-225 for the DHFR system to arrive at good threshold values for successful 

binding. Similarly to the original IPRO procedure, the outer optimization problem will be solved using 

a Metropolis criterion to update amino acid choices after each iteration. We plan to start with these 

two choices as performance targets and evolve it in response to the experimental results. For 

example, we will explore whether backbone relaxation and substrate redocking steps are needed 

after each time the inner rotamer optimization problems are solved.  This work will seamlessly 
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integrate with QM/MM calculations by making use of QM results to re-parameterize the 

employed force-field.  The improved transition state stabilization indicated by IPRO will also be 

validated by directly computing activation barriers using QM/MM methods with a subset of 

encouraging mutants. 

We intend to focus our design efforts on the well-known rate-limiting steps for both DHFR 

reduction (benchmark/test case) and P450 hydroxylation (design case). The novelty here will be 

to identify a manageable number of enzyme redesigns with full backbone flexibility that allow for 

proper reactant/product placement and energetic interactions at the ground states.  

In addition, we plan to use molecular dynamics MD simulations using CHARMM on the set of 

identified promising mutants to assess the structural changes upon mutation and their dynamic 

features and confirm the ability of the substrate to access the active site. Accurate equilibrated 

structures are critical to obtain the correct reaction path and accurate reaction barrier using the 

subsequent QM/MM method.  MD simulations will aid in validating the assumption of a “static” 

backbone structure and limited tertiary structure rearrangement, or identify structural changes that 

must be considered and added within the IPRO framework.  Simulations will be carried out for 

the designed protein-substrate complexes to obtain more accurate complex structure and accurate 

binding free energy using techniques such as MM-PBSA.226 

4.2.2: Use of QM/MM methods to explore transition state stabilization 

In recent years, multi-scale modeling techniques using combined quantum-mechanics/molecular-

mechanics (QM/MM) methods are making rapid progress both methodologically and with respect 

to their range of application, especially in mechanistic studies of enzymes.227-231 In the QM/MM 

approach, quantum mechanics (QM) is applied to the reactive center to properly describe 

interactions, and classical molecular mechanics (MM) is used to treat the extended enzyme 
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environment. The development of QM/MM methods has enabled the modeling of complex 

chemical and biological processes for a reasonable computational effort at the necessary 

accuracy. In the area of enzyme design, the QM/MM approach has been use to evaluate the 

potential performance of design variations, and obtain detailed information about the impact of 

composition alterations on the catalytic mechanisms and activation barriers.232 We proposed to 

apply the QM/MM method in three different stages of the computational enzyme design process: 

(1) to obtain more accurate ground state and transition state structures and force field parameters 

taking into account the polarization effect due to the enzyme environment for input into IPRO, 

force-field based enzyme optimization protocols; (2) to validate the IPRO/MM approach to 

determining transition-state stabilization by assuring that trends in enthalpic activation barriers 

with mutation are preserved between the IPRO/MM and QM/MM methods, and (3) to accurately 

evaluate the change of the transition state barrier for selected mutants with advanced free-energy 

techniques. We will apply the QM/MM implementation in CHARMM30,122 and Q-Chem233 

software packages to obtain the reaction profile.  This choice provides the best integration with 

the IPRO/MM part of our design scheme, and utilizes a flexible software package with multiple 

transition state search methods, facile construction of QM/MM input, and ease of parallelization 

across available Linux computational clusters. 

We will use the DFT method with hybrid B3LYP exchange-correlation functional215,216 and 

Lanl2DZ, 6-31G* basis set for the QM calculations and CHARMM or AMBER force field for 

MM calculations. The B3LYP functional performs well for accurately reproducing a number of 

properties, including enthalpies of formation. The transition states will be obtained by direct 

optimization to the transition state, or by constraining the reaction coordinate in terms of the 

distances between key atoms, or finding the minimum-energy path (MEP) using the nudged-

elastic-band (NEB) approach as implemented by Yang and coworkers.234 We will also explore the 

calculation of free energies of activation using QM/MM methods, to determine whether 
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qualitative enthalpic trends among mutants are preserved on a free-energy landscape. As long-

time QM/MM/MD simulation is needed for the free-energy calculation to allow for proper 

molecular-dynamics sampling of the enzyme, semi-empirical QM methods, such as PDDG/PM3, 

or SCC-DFTB (self-consistent charge density-functional tight-binding) methods, will be adopted 

to save computational costs.235 

4.2.3: Experimental Assessment of Predicted Designs  

Throughout our studies we will successively construct, express, and characterize select DHFR 

(benchmark/test case) and P450BM-3 (design case) mutants suggested by the design predictions. 

DHFR was chosen as a testing ground for our computational methods due to the wealth of 

previous kinetic studies, including the influence of various mutations on kinetic parameters in the 

reduction of DHF.220-224,236 However it will still be necessary to perform similar studies in-house 

under a uniform set of reaction conditions. As described below, a variety of kinetic parameters 

will be determined for activities of DHFR on DHF and P450BM-3 on ethane.  We will then compare 

experimental results from the computational predictions, and assess whether individual mutants 

(or which mutants) qualitatively reflect the computationally determined binding affinity and 

activity. Data accumulated from these mutant studies will also help to identify relationships 

between the kinetic parameters, e.g. Michaelis constant (Km), rate constant (kcat), and coupling 

efficiency. This in turn will help to identify which computational design determinants (binding 

energy, transition state energy, active site hydrophobicity, etc.) are more or less important for 

improving coupling efficiency or Km values. Results from these experimental studies will provide 

insights onto which predictions (residue positions or combinations thereof) better reflect the 

expected computational/kinetic results. Discrepancies between experiments and computational 

predictions will pinpoint interventions within the computational workflow.  For example, a lack of 
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qualitative agreement between kcat and QM/MM computed activation barrier trends will 

necessitate an increase in the QM-described part of the enzyme, extension to explicit solvation 

models, and/or advances in the level of theory applied.  Discrepancies between trends in Km and 

IPRO-evaluated binding energy trends will target force-field evaluation or a relaxing of structural 

constraints.  

We can readily construct and assay select DHFR variants using standard procedures well-

documented for this enzyme.237  For the case of P450 activity assays, approximately 10 – 20 

individual mutants (each containing a variety of point mutations) can be characterized from 

clarified cell lysates in a matter of 4-5 months. More promising or interesting mutants will be 

fully purified for more detailed characterization.  Cirino has previously worked extensively on the 

P450 systems with Arnold and co-workers, and protocols similar to those already published will 

be used here.204,210,238Briefly, we use plasmid pCwori to express in E. coli strain BL-21 the full-

length P450BM-3, or only the heme domain carrying a C-terminal 6-Histidine tag fusion to 

facilitate rapid nickel affinity purification. Standard protein engineering protocols will be used to 

add mutations to the P450BM-3 heme domain 185. Soluble P450 concentrations in cell lysates or 

purified samples can be quantified via the characteristic reduced heme CO-binding spectrum (450 

nm). For reactions involving the reductase domain, NADPH oxidation rates will be measured 

spectrophotometrically (6.22 mM-1 cm-1 at 340 nm).  Alkane hydroxylation reactions will be 

performed in buffer under one atmosphere of dioxygen, nitrogen, and different mole fractions of 

ethane or propane (provided by a balloon filled with the gases). An NADPH regeneration system 

(using sodium isocitrate and isocitrate dehydrogenase) will be used for the reactions. Ethane and 

propane hydroxylation reactions will be performed in 25-mL Schlenk flasks topped with a 

balloon and containing enzyme (either purified or in cell lysate) and alkane-containing buffer. 

The hydroxylation products will be derivatized to alkyl nitrites, samples will be worked-up as 

described 238 and analyzed by GC.  
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From the initial rates of NADPH oxidation and alcohol formation data, coupling efficiencies can 

readily be determined. Reaction rate constants (kcat) and hence activation energies can be 

estimated based on the quantified P450 expression level (by CO-binding). By varying the partial 

pressure of ethane or propane, the Michaelis constant (Km) for each mutant and substrate will be 

estimated. Similarly, the binding constants (Kd) for these substrates will be estimated 

spectrophotometrically by monitoring the heme iron spin shift (from 418 nm to 390 nm) 

accompanying substrate binding. Stabilities of select mutants compared to wild-type P450 BM-3 

will also be established as described 239. Finally, some mutants may suffer perturbed electron 

transfer to the heme, but may still bind substrate and stabilize the hydroxylation reaction 

transition state upon formation of the iron-oxo species. Thus, it will be important to test whether 

mutants with poor activity on NADPH+O2 show improved kinetics using the H2O2 shunt 

pathway. Therefore we will also screen all mutants for peroxygenase activity.210 Heme domain 

mutants with notable kinetic properties will be purified and their peroxygenase kinetics 

characterized more thoroughly. 

Steps 1-3 put forth a roadmap that we plan to follow to identify improved DHFR/folate 

reductases and P450BM-3 ethane hydroxylases to establish a generalized computational workflow 

for enzyme engineering. We anticipate that as this future undertaking unfolds we may modify this 

roadmap and add additional computational and/or experimental steps.  
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Appendix A: CHARMM Saturation Mutagenesis Script with Solvation in 
Parallel 

#!/usr/bin/python 
import os 
import sys 
import random 

 
# define amino acid types 
aminos = ["GLY", "GLU", "GLN", "LYS", "ARG", "HSD", "ASP", "ASN", "PHE", "TRP", 
"TYR", "ALA", "VAL", "LEU", "ILE", "CYS", "SER", "MET", "THR"] 

 
# define positions to mutate 

 
positions = ["47", "78", "94", "142", "184", "205", "226", "236", "252", "255", "290", "353", 
"82", "328"] 

 
#mutation preparation 

 
a = "rename resname " 
b = " select segid pep .and. resid " 
c = " end\n" 
d = "delete atom sele segi pep .and. resid " 
e = " .and. .not. (type n .or. type ca .or. type c .or. type ha .or. type hn) end\n\n" 

 
def mutation(position, aa): 
        line = a + aa + b + position + c + d + position + e 
        return line 

 
#define charmm text used for minimization 
def minimization(position, aa): 
        minimizationt = """* CHARMm Minimization 
* 
 
wrnl -2 
!prnl -2 
bomb -5 

 
open read unit 1 name /usr/global/cdm/c34b1/toppar/top_all22_prot.inp card 
read rtf card unit 1 
close unit 1 
open read unit 1 name /usr/global/cdm/c34b1/toppar/par_all22_prot.inp card 
read para card unit 1 
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close unit 1 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_heme.str 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_fluoro_alkanes.str 
 
! read in primary sequence 
open unit 1 read form name p450.pdb 
read sequ pdb unit 1 
close unit 1 
 
gene pep setup 
 
! read in coordinates 
open unit 1 read form name p450.pdb 
read coor pdb unit 1 
close unit 1 
 
""" 
 
        minimizationt += mutation(position, aa) 
 
        minimizationt += """ 
 
open write card name temp.pdb unit 14 
write coordinates pdb select all end unit 14 
*Temporary 
* 
close unit 14 
 
delete atom sele segi pep end 
 
open read card name temp.pdb unit 14 
read sequence pdb unit 14 
generate pep setup 
rewind unit 14 
read coordinate pdb unit 14 
close unit 14 
 
system "rm temp.pdb" 
 
! read in heme 
open unit 1 read form name heme.pdb 
read sequ pdb unit 1 
close unit 1 
 
gene hem setup 
 
! read in coordinates 
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open unit 1 read form name heme.pdb 
read coor pdb unit 1 
close unit 1 
 
open unit 2 read form name ethane.pdb 
read sequ pdb unit 2 
close unit 2 
 
gene eth setup 
 
open unit 2 read form name ethane.pdb 
read coor pdb unit 2 
close unit 2 
 
ic fill preserve 
ic param 
ic build 
hbuild 
 
set usepme false 
NBONDS CUTNB 14.0 CTOFNB 12.0 CTONNB 10. 
SCALER WMAIN = RADIUS 
stream "radius.str" 
SET EPSW = 80 ! 
SET EPSP = 1 
 
NBONDS CDIE EPS @EPSP 
 
GBSW EPSP @EPSP EPSW @EPSW sw 0.3 sgamma 0.00542 dgp 1.5 GBenergy 
 
nbon nbxm 5 
skip all excl vdw bond angl urey dihe impr elec gbener 
mini abnr nstep 2000 tolgrd 0.001 
 
""" 
 
#output file 
 
        minimizationt += """ 
! write new coordinates to a file \n""" 
        minimizationt += "open write unit 1 name p450" + position +  "_" + aa + "refined.pdb card 
\n" 
        minimizationt += """write coor sele segi pep end pdb unit 1 card 
* After backbone relaxation 
* 
 
""" 
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        minimizationt += "open write unit 2 name ethane" + position + "_" + aa + 
"refined.pdbcard\n" 

       minimizationt += """write coor sele segi eth end pdb unit 2 card 
 
""" 

 
        minimizationt += "open write unit 3 name heme" + position + "_" + aa + "refined.pdb 
card\n" 
        minimizationt +="""write coor sele segi hem end pdb unit 3 card 
stop 
 
""" 
 
        return minimizationt 
 
def energycalc(position, aa): 
        energycalct = """* CHARMm Accurate Energy Calculation 
* 
 
wrnl -2 
!prnl -2 
bomb -5 
 
open read unit 1 name /usr/global/cdm/c34b1/toppar/top_all22_prot.inp card 
read rtf card unit 1 
close unit 1 
 
open read unit 1 name /usr/global/cdm/c34b1/toppar/par_all22_prot.inp card 
read para card unit 1 
close unit 1 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_heme.str 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_fluoro_alkanes.str 
 
""" 
        energycalct += "open unit 1 read form name p450" + position + "_" + aa + "refined.pdb\n" 
        energycalct += """read sequ pdb unit 1 
close unit 1 
gene pep setup 
 
""" 
 
        energycalct += "open unit 1 read form name p450" + position + "_" + aa + "refined.pdb\n" 
        energycalct += """read coor pdb unit 1 
close unit 1 
 
""" 
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        energycalct += "open unit 1 read form name heme" + position + "_" + aa + "refined.pdb\n" 
        energycalct +="""read sequ pdb unit 1 
close unit 1 
gene hem setup 
""" 
        energycalct += "open unit 1 read form name heme" + position + "_" + aa + "refined.pdb\n" 
        energycalct += """read coor pdb unit 1 
close unit 1 
 
""" 
        energycalct +=""" 
update atom CDIE eps 1 cutnb 14 ctofnb 12 ctonnb 10 switch vswitch 
GBMV GRID EPSILON 80 DN 0.2 watr 1.4 GEOM P6 8.0 - 
WTYP 0 NPHI 10 SHIFT -0.007998 SLOPE 0.9026 CORR 1 CONV 
 
skip all excl vdw bond angl urey dihe impr harm elec gbener 
ener 
set totp ?ener 
 
""" 
 
        energycalct +="open unit 1 read form name ethane" + position + "_" + aa + "refined.pdb\n" 
        energycalct +="""read sequ pdb unit 1 
close unit 1 
 
gene eth setup 
 
""" 
        energycalct +="open unit 1 read form name ethane" + position + "_" + aa + "refined.pdb\n" 
        energycalct +="""read coor pdb unit 1 
close unit 1 
 
GBMV clear 
GBMV GRID EPSILON 80 DN 0.2 watr 1.4 GEOM P6 8.0 - 
WTYP 0 NPHI 10 SHIFT -0.007998 SLOPE 0.9026 CORR 1 CONV 
 
skip all excl vdw bond angl urey dihe impr harm elec gbener 
ener 
set tot ?ener 
 
dele atom sele segid pep end 
dele atom sele segid hem end 
 
GBMV clear 
GBMV GRID EPSILON 80 DN 0.2 watr 1.4 GEOM P6 8.0 - 
WTYP 0 NPHI 10 SHIFT -0.007998 SLOPE 0.9026 CORR 1 CONV 
 
skip all excl vdw bond angl urey dihe impr harm elec gbener 
ener 
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set tots ?ener 
 
set ben 0.0 
calc ben @tot - @totp - @tots 
open write name energy.txt unit 6 card 
write title unit 9 
* @ben 
* @tot 
* 
 
 
stop 
 
""" 
 
        return energycalct 
 
#open the file that the energies are going to be appended to and create it 
 
def energyoutputs(): 
        file = open("energies.txt", "w") 
        file.close() 
 
energyoutputs() 
 
def energyfile(position, aa): 
        file = open("energy_file", "w") 
        file.write(energycalc(position, aa)) 
        file.close() 
 
def minimizationfile(position, aa): 
        file = open("minimization_file", "w") 
        file.write(minimization(position, aa)) 
        file.close() 
 
def minimizationrun(): 
        command = 
os.system("""/usr/global/bin/mpirun/usr/global/cdm/c34b1.xj/exec/gnu/charmm.mpi.large 
<minimization_file > minimizationout""") 

#       command = os.syste("""charmm <minimization_file> minimization_out""") 
        return comman 

 
def energyrun(): 
        command = 
os.system("""/usr/global/bin/mpirun/usr/global/cdm/c34b1.xj/exec/gnu/charmm.mpi.large 
<energy_file > energy_out""" 

#       command = os.ystem("""charmm <energy_file > energy_out""") 
        return comman 
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#for looping 
for position in positions: 
        for aa in aminos: 
                minimizationfile(position, aa) 
                energyfile(position, aa) 
                print position + "_" + aa + "\n" 
                minimizationrun() 
                energyrun() 
                energy = [] 
                energy_output_file = open("energy.txt","r") 
                for line in energy_output_file: 
                        energy.append(line) 
                energy_output_file.close() 
                file = open("energies.txt", "a") 
                information = "\n" + position + "_" + aa + "\n" 
                file.write(information) 
                for line in energy: 
                        if line.startswith(" RDTITL>"): 
                                file.write(line) 
                file.close() 
\               os.system("""rm fort.9""") 
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Appendix B: CHARMM Alanine Scanning Mutagenesis Script with Solvation 
in Parallel 

#!/usr/bin/python 
 
import os 
import sys  
import random 
 
# define amino acid types  
 
 
aminos = ["ALA"] 
 
# define positions to mutate 
 
pos = range(1,456) 
positions = [] 
for elem in pos: 
        positions.append(str(elem)) 
 
#mutation prepp 
 
a = "rename resname " 
b = " select segid pep .and. resid " 
c = " end\n" 
d = "delete atom sele segi pep .and. resid " 
e = " .and. .not. (type n .or. type ca .or. type c .or. type ha .or. type hn) end\n\n" 
 
def mutation(position, aa): 
 line = a + aa + b + position + c + d + position + e 
 return line 
 
#define charmm text used for minimization 
def minimization(position, aa): 
 minimizationt = """* CHARMm Minimization 
* 
 
wrnl -2 
!prnl -2 
bomb -5 
 
open read unit 1 name /usr/global/cdm/c34b1/toppar/top_all22_prot.inp card 
read rtf card unit 1 
close unit 1 
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open read unit 1 name /usr/global/cdm/c34b1/toppar/par_all22_prot.inp card 
read para card unit 1 
close unit 1 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_heme.str 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_fluoro_alkanes.str 
 
! read in primary sequence 
open unit 1 read form name p450.pdb 
read sequ pdb unit 1 
close unit 1 
 
gene pep setup 
 
! read in coordinates 
open unit 1 read form name p450.pdb 
read coor pdb unit 1 
close unit 1 
 
""" 
 
 minimizationt += mutation(position, aa) 
 
 minimizationt += """ 
 
open write card name temp.pdb unit 14 
write coordinates pdb select all end unit 14 
*Temporary  
* 
close unit 14 
 
delete atom sele segi pep end 
 
open read card name temp.pdb unit 14 
read sequence pdb unit 14 
generate pep setup  
rewind unit 14 
 
read coordinate pdb unit 14 
close unit 14 
 
system "rm temp.pdb" 
 
! read in heme 
open unit 1 read form name heme.pdb 
read sequ pdb unit 1 
close unit 1 
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gene hem setup 
 
! read in coordinates 
open unit 1 read form name heme.pdb 
read coor pdb unit 1 
close unit 1 
 
open unit 2 read form name ethane.pdb 
read sequ pdb unit 2 
close unit 2 
 
gene eth setup 
 
open unit 2 read form name ethane.pdb 
read coor pdb unit 2 
close unit 2 
 
ic fill preserve 
ic param 
ic build 
hbuild 
 
set usepme false 
NBONDS CUTNB 14.0 CTOFNB 12.0 CTONNB 10. 
SCALER WMAIN = RADIUS 
stream "radius.str" 
SET EPSW = 80 ! 
SET EPSP = 1 
 
NBONDS CDIE EPS @EPSP 
 
GBSW EPSP @EPSP EPSW @EPSW sw 0.3 sgamma 0.00542 dgp 1.5 GBenergy 
 
nbon nbxm 5 
skip all excl vdw bond angl urey dihe impr harm elec gbener 
mini abnr nstep 2000 tolgrd 0.001 
 
""" 
 
#output file 
 
 minimizationt += """ 
! write new coordinates to a file \n""" 
 minimizationt += "open write unit 1 name p450" + position +  "_" + aa + "refined.pdb 
card \n" 
 minimizationt += """write coor sele segi pep end pdb unit 1 card 
* After backbone relaxation 
* 
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""" 
 
 minimizationt += "open write unit 2 name ethane" + position + "_" + aa + "refined.pdb 
card\n" 
 minimizationt += """write coor sele segi eth end pdb unit 2 card 
 
""" 
 
 minimizationt += "open write unit 3 name heme" + position + "_" + aa + "refined.pdb 
card\n" 
 minimizationt +="""write coor sele segi hem end pdb unit 3 card 
stop 
 
""" 
 
 return minimizationt 
 
def energycalc(position, aa): 
 energycalct = """* CHARMm Accurate Energy Calculation 
* 
 
wrnl -2 
!prnl -2 
bomb -5 
 
open read unit 1 name /usr/global/cdm/c34b1/toppar/top_all22_prot.inp card 
read rtf card unit 1 
close unit 1 
 
open read unit 1 name /usr/global/cdm/c34b1/toppar/par_all22_prot.inp card 
read para card unit 1 
close unit 1 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_heme.str 
 
stream /usr/global/cdm/c34b1/toppar/stream/toppar_all22_prot_fluoro_alkanes.str 
 
""" 
 energycalct += "open unit 1 read form name p450" + position + "_" + aa + 
"refined.pdb\n" 
 energycalct += """read sequ pdb unit 1 
close unit 1 
gene pep setup 
 
""" 
 
 energycalct += "open unit 1 read form name p450" + position + "_" + aa + 
"refined.pdb\n" 
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 energycalct += """read coor pdb unit 1 
close unit 1 
 
""" 
 
 energycalct += "open unit 1 read form name heme" + position + "_" + aa + 
"refined.pdb\n" 
 energycalct +="""read sequ pdb unit 1 
close unit 1 
gene hem setup 
""" 
 energycalct += "open unit 1 read form name heme" + position + "_" + aa + 
"refined.pdb\n" 
 energycalct += """read coor pdb unit 1 
close unit 1 
 
""" 
 
 energycalct +=""" 
update atom CDIE eps 1 cutnb 14 ctofnb 12 ctonnb 10 switch vswitch 
GBMV GRID EPSILON 80 DN 0.2 watr 1.4 GEOM P6 8.0 - 
WTYP 0 NPHI 10 SHIFT -0.007998 SLOPE 0.9026 CORR 1 CONV 
 
skip all excl vdw bond angl urey dihe impr harm elec gbener 
ener 
set totp ?ener 
 
""" 
 
 energycalct +="open unit 1 read form name ethane" + position + "_" + aa + 
"refined.pdb\n" 
 energycalct +="""read sequ pdb unit 1 
close unit 1 
 
gene eth setup 
 
""" 
 energycalct +="open unit 1 read form name ethane" + position + "_" + aa + 
"refined.pdb\n" 
 energycalct +="""read coor pdb unit 1 
close unit 1 
 
GBMV clear 
GBMV GRID EPSILON 80 DN 0.2 watr 1.4 GEOM P6 8.0 - 
WTYP 0 NPHI 10 SHIFT -0.007998 SLOPE 0.9026 CORR 1 CONV 
 
skip all excl vdw bond angl urey dihe impr harm elec gbener 
ener 
set tot ?ener 

 



95 

 
dele atom sele segid pep end 
dele atom sele segid hem end 
 
GBMV clear 
GBMV GRID EPSILON 80 DN 0.2 watr 1.4 GEOM P6 8.0 - 
WTYP 0 NPHI 10 SHIFT -0.007998 SLOPE 0.9026 CORR 1 CONV 
 
skip all excl vdw bond angl urey dihe impr harm elec gbener 
ener 
set tots ?ener 
 
set ben 0.0 
calc ben @tot - @totp - @tots 
open write name energy.txt unit 6 card 
write title unit 9 
* @ben 
* @tot  
* 
 
 
stop 
 
""" 
 
 return energycalct 
 
#open the file that the energies are going to be appended to and create it 
 
def energyoutputs(): 
 file = open("energies.txt", "w") 
 file.close() 
 
energyoutputs() 
 
def energyfile(position, aa): 
 file = open("energy_file", "w") 
 file.write(energycalc(position, aa)) 
 file.close() 
 
def minimizationfile(position, aa): 
 file = open("minimization_file", "w") 
 file.write(minimization(position, aa)) 
 file.close() 
 
def minimizationrun(): 
 command = os.system("""/usr/global/bin/mpirun 
/usr/global/cdm/c34b1.xj/exec/gnu/charmm.mpi.large <minimization_file > minimization_out""") 
# command = os.system("""charmm <minimization_file> minimization_out""") 
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 return command 
 
def energyrun(): 
 command = os.system("""/usr/global/bin/mpirun 
/usr/global/cdm/c34b1.xj/exec/gnu/charmm.mpi.large <energy_file > energy_out""")  
# command = os.system("""charmm <energy_file > energy_out""") 
 return command 
 
#for looping 
for position in positions: 
        for aa in aminos: 
  minimizationfile(position, aa) 
  energyfile(position, aa) 
  print position + "_" + aa + "\n"   
  minimizationrun() 
  energyrun() 
  energy = [] 
  energy_output_file = open("energy.txt","r") 
  for line in energy_output_file: 
   energy.append(line) 
  energy_output_file.close()  
  file = open("energies.txt", "a") 
  information = "\n" + position + "_" + aa + "\n"  
  file.write(information) 
  for line in energy: 
   if line.startswith(" RDTITL>"): 
    file.write(line) 
  file.close() 
  os.system("""rm fort.9""") 
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