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Abstract

This dissertation comprises of three main essays, all of which fall under the umbrella
of models and algorithms for stochastic variational and hierarchical problems.

(i). Extragradient-type schemes for stochastic variational inequality problems. When
solving stochastic variational inequality problems, the classical extragradient method
for merely monotone problems is complicated by a key challenge: the scheme requires
two projections on what could be a complicated convex set and two evaluations of
the map for every major iteration. We consider two related avenues where every iter-
ation requires only a single projection: (i) A stochastic projected reflected gradient
(SPRG) method requiring a single evaluation of the map and a single projection;
and (ii) A stochastic subgradient extragradient (SSE) method that requires two eval-
uations of the map and a single projection. We prove the almost-sure convergence
of the iterates to a random point in the solution set for both schemes under suitable
requirements and prove that variance-reduced counterparts achieve the canonical
deterministic rates of convergence. To contend with complex feasibility sets given
by an intersection of a large number of convex sets, we provide rate statements
for a variant of our scheme where the projection is replaced by a random projections.

(ii). Sampling-based Proximal and splitting schemes for monotone stochastic inclu-
sion problems. Next, we consider a stochastic generalized equation with monotone
operators, a class of problems that subsumes convex stochastic optimization prob-
lems as well as subclasses of convex Nash games and variational inequality problems.
A direct application of proximal and splitting schemes are complicated by the need
to resolve problems with expectation-valued maps at each step, a concern that is
addressed by using sampling. Accordingly, we propose two avenues for addressing
uncertainty in the mapping. (i) Stochastic proximal point methods (SPP). We
develop amongst the first variance-reduced stochastic proximal point scheme that
achieves deterministic rates of convergence in terms of solving proximal-point prob-
lems. Notably, the presented schemes achieve deterministic rates of convergence and
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oracle complexity bounds are provided; (ii) Stochastic modified forward-backward
splitting scheme (SMFBS). In settings, where the map is a sum of two maps, of
which the first is an expectation-valued map and the second has a cheap resolvent.
In such cases, we prove that variance-reduced splitting schemes display deterministic
rates of convergence under maximal monotonicity and optimal oracle complexities.
We proceed to show that both schemes achieve the optimal (deterministic) rates of
convergence and provide oracle complexity guarantees.

(iii). Competitive transmission expansion under uncertainty. Finally, we consider a
problem of competitive transmission expansion framework under uncertainty in the
context of power systems planning. This work is motivated by the need to consider
transmission charges and their impact on subsequent generation expansion decisions
and the resulting social welfare in a competitive environment, as captured by a
market equilibrium problem. We model this hierarchical problem as a mathematical
program with equilibrium constraints complicated by the presence of first-stage
binary expansion decisions. Empirical studies suggest that by smoothing the
problem allows for improving the efficiency of computing near-global solutions in a
fraction of the time taken by standard branching schemes. Preliminary insights
from the model show that using charges such as MW-miles leads to lower social
welfare compared to that obtained from either the flat rate charge or no charge.
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Chapter 1 |
Introduction

The role of optimization in planning and operation has been crucial in the context
of range of settings including supply-chain management, power systems, transporta-
tion, and telecommunication. Many of these problems have been complicated by
uncertainty and discreteness, fueling the development of scalable and convergent
algorithms to contend with the size and complexity of such problems. Yet, two
crucial concerns complicate the resolution of both problems.

(i) Competition: While traditional models assume the presence of a single user
or a centralized planner, increasingly such problems are complicated by the
presence of competition and the relevant question is one of computing an
equilibrium rather than an optimum. When overlaid by uncertainty, under
suitable convexity requirements, the necessary and sufficient equilibrium con-
ditions can be compactly stated as stochastic variational inequality problems,
or more generally, stochastic generalized equations.

(ii) Hierarchy: In may settings, there is a notion of leadership in the decision-
making framework with respect to a collection of followers. Such leadership
may emerge from the timing of the decision-making or may be a consequence
of informational asymmetries. A popular approach for capturing such a
framework lies in formulation this problem as a mathematical program with
equilibrium constraints, where the equilibrium constraints capture the optimal
follower decisions, contingent on leader-level decisions.

This dissertation is devoted to the development of tools and techniques for the
resolution to aforementioned problems. The remainder of this chapter is partitioned
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into three Sections, each of which corresponds to the three main essays in the
dissertation. In Section 1.1, we consider the computation of solutions to monotone
stochastic variational inequality problems by developing stochastic extragradient-
type schemes reliant on a single projection (rather than two projections onto a
complicated set) or on random projections (when the set is defined as an intersec-
tion on a large collection of convex sets). The more general problem of resolving
stochastic generalized equations with strongly monotone and maximal monotone
operators is addressed in Section 1.2, which are addressed via proximal-point and
splitting schemes in deterministic regimes. Relatively less is known regarding
variance-reduced sampling-based counterparts of such schemes and is the focus
of Section 1.2 where convergence, rate, and complexity statements are provided.
Finally, in Section 1.3, we consider the competitive transmission expansion problem,
a rather challenging class of mixed-binary hierarchical optimization problems in
which a transmission provider determines an expansion plan subsequent to the
optimal reaction of the generation providers and the associated energy market. It
may be observed that while the first two chapters focus on stochastic variational
inequality problems and multi-valued generalizations (in the form of stochastic
generalized equations), the third chapter is a hierarchical generalization in that it
considers mathematical programs with equilibrium constraints. In effect, each chap-
ter can be viewed as an essay under the broader umbrella of stochastic variational
and hierarchical problems.

1.1 Stochastic Variational Inequality Problems

1.1.1 Variational Inequality Problems

The variational inequality (VI) problem is a fundamental object in optimization
and variational analysis. The variational inequality has its roots in the Signorini
problem that considered the equilibrium configuration of an elastic body on a
frictionless plane [1]. This problem was subsequently announced by Fichera [2]
who modeled this problem as a variational inequality problem and subsequently
provided existence and uniqueness conditions in [3], marking the first instance
of such a problem in the literature. The earliest work in the finite-dimensional
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regime setting considered the traffic network equilibrium problem1 by Dafermos [4].
Recently, the study of variational inequality problems has been supported through
a series of edited volumes and monographs [5–7]. Next we state a general definition
for the variational inequality problem and an illustration is shown in Figure 1.1.

Definition 1. Given a set X ⊆ Rn and a single-valued map F : Rn → Rn, the
variational inequality problem VI(X,F ) requires finding a point x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0, ∀x ∈ X. (VI(X,F ))

Figure 1.1: Variational inequality problem illustration with α1, α2 ∈ [0, π2 ]

1.1.2 Applications

Variational inequality problems can capture a large number of problems in eco-
nomics, engineering, and the applied sciences. Some of important applications
include convex optimization problems, convex Nash games over continuous strategy
sets, economic equilibrium problems, and complementarity problems, among oth-
ers [6]. We briefly review several well-known optimization and equilibrium problems
that can be captured by this object:

Convex optimization problems. Consider the convex optimization problem
1A pair of vectors (f∗, d∗) ∈ K is an traffic network equilibrium pattern if and only if it

satisfies the variational inequality problem

c(f∗)T (f − f∗)− λ(d∗)T (d− d∗) ≥ 0, ∀(f, d) ∈ K,

where f denotes the link flows, c(f) denotes the user cost, d denotes the demand, λ(d) denotes
the travel disutility functions and K denotes the feasible set.
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given by the following:

min
x∈X

f(x),

where f : Rn → R is a continuously differentiable convex function and X ∈ Rn is a
closed and convex set. Then, by the minimum principle, any local solution of this
problem is necessarily a global solution and must satisfy the following condition:

∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ X.

Complementarity problems. Suppose X is a cone. Recall that X is a cone if
x ∈ X implies that λx ∈ X where λ is a nonnegative scalar. The complementarity
problem, denoted by CP(X,F ), requires an x ∈ X such that

X 3 x ⊥ F (x) ∈ X∗, (CP(X,F ))

where X∗ denotes the dual cone (Figure 1.2). In such an instance, VI(X,F ) is
equivalent to the complementarity problem CP(X,F ) [8] in the sense that

x solves VI(X,F ) ⇔ x solves CP(X,F ).

Figure 1.2: Dual cone illustration

Convex Nash games2 Consider an N -player Nash game in which the ith solves
2A detailed example of stochastic Cournot game is provided in Section 2.5.1.
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the following parametrized convex optimization problem:

min
xi∈Xi

fi(xi;x−i), (Playeri(x−i))

where fi(xi;x−i) is a convex and continuously differentiable function in xi, for every
x−i, and Xi ∈ Rni is a closed and convex set. A Nash equilibrium of this game is
defined as a tuple {x∗i }Ni=1 such that

x∗i ∈ SOL(Playeri(x∗−i)), i = 1, . . . , N,

where SOL(·) denotes solution to the corresponding problem. It is well known [6]
that x , {x∗i }Ni=1 is a Nash equilibrium of this game if and only if x is a solution of
VI(X,F ), where

X ,
N∏
i=1

Xi and F (x) ,


∇x1f1(x)

...

∇xNfN(x)

 .

Finally, we comment on the relevance of equilibrium models in policy-making.
Equilibrium models have played an important role in the the design of policy
mechanisms. An early application of complementarity models for energy policy
modeling was provided by Hogan [9] (also see [10]) while a recent tutorial [11]
discussed the role of complementarity models on building policy models. Over
the last several decades, complementarity-based models have assumed relevance
in the context of electricity [12–19] and natural gas markets [20–22]. A review of
complementarity modeling in energy markets was provided in the comprehensive
monograph [22]. Such models are capable of capturing a range of competitive
interactions including Nash [13,19] and Stackelberg [14,16], allow for modeling the
impact of a range of market intricacies including sequential market clearings [16,23]
and price caps [18], amongst others. As there is a growing need to model uncertainty
arising from demand and renewable supply, there has been an effort to model such
problems in uncertain regimes [23–25]. Accordingly, this motivates the present
efforts in the examination of stochastic variational inequality problems and their
multi-valued generalizations (which may be modeled as stochastic generalized
equations), the focus of the Chapters 2 and 3.
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1.1.3 Stochastic Variational Inequality Problems

Uncertainty plays an increasingly significant role in modern systems and is inherent
to any practical problem that relies on data. In most practical variational inequality
problems, the stochastic generalization is of relevance as well. An introduction to
the stochastic variational inequality problem may be found in [26] and such problems
find application in a range of settings including power markets, communication
networks, traffic networks, amongst others (cf. [24,27–32]) as well. In the stochastic
generalization, the components of the map F are expectation-valued; specifically
Fi(x) , E[Fi(x, ξ(ω))], where ξ : Ω→ Rd is a random variable, Fi : Rn × Rd → R
is a single-valued function, and the E[·] denotes the expectation and the associated
probability space being denoted by (Ω,F ,P). In short, we are interested in a vector
x∗ ∈ X such that

E[F (x∗, ω)]T (x− x∗) ≥ 0, ∀x ∈ X, (SVI(X,F ))

where E[F (x, ω)] =
(
E[Fi(x, ω)]

)N
i=1

.

It may be less possible to capture certain application settings with the expected-
value formulation. For instance, in many cases, the focus is on obtaining a solution
to a variational inequality problem that is robust to parametric uncertainty. This
leads to the almost-sure formulation of the stochastic variational inequality. Given
a random mapping F , the almost-sure variational inequality, denoted by asVI,
requires a vector x∗ ∈ X such that for almost every ω ∈ Ω,

F (x∗, ω)T (x− x∗) ≥ 0, ∀x ∈ X. (asVI(X,F ))

It is highly unlikely that the problem admits a solution. If X is an n-dimensional
cone, then asVI(X,F ) reduces to asCP(X,F ); this problem requires an x such that

0 ≤ x ⊥ F (x;ω) ≥ 0 for almost every ω ∈ Ω. (asCP(X,F ))

One may recast this nonlinear CP as a system of equations by using the Fischer-
Burmeister function. For a fixed but arbitrary realization ω ∈ Ω, the residual of
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this equation can be minimized as follows:

min
x≥0
‖Φ(x;ω)‖,

where Φ(x;ω) ,
(√

x2
i + Fi(x;ω)2 − (xi + Fi(x;ω))

)n
i=1

.One avenue toward solving
asCP(X,F ) is by considering the expected residual minimization (ERM) problem
[33,34]:

min
x≥0

E[‖Φ(x;ω)‖]. (ERM)

More specifically, x∗ is a solution of asCP(X,F ) if and only if x∗ is a minimizer of
(ERM) with E[‖Φ(x;ω)‖] = 0.

Naturally, when the expectation of the mapping under uncertainty in instances
is simple to evaluate (such as when the sample space Ω has finite cardinality),
the resulting SVI(X,F ) can be easily converted to its deterministic counterpart.
Unfortunately, in most stochastic regimes, this evaluation is impossible to be
expressed as closed form and it relies on a multidimensional integration which is
quite time consuming. From a computational standpoint, two distinct ways are
employed to solve SVIs. Of these, the first leverages sample-average approximation
schemes [35]. In such an approach, the expectation is replaced by a mean value of
a number of samples, and the effort is on the asymptotic and rate analysis of the
resulting estimators, which are obtainable by solving a deterministic variational
inequality problem [32,36–38]. A natural concern is the development of confidence
statements for such estimators. The other avenue was proposed first by Jiang
and Xu [39], where a stochastic approximation scheme was developed for solving
such stochastic variational inequality problems. Two regularized counterparts were
presented by Koshal et al [40]. To overcome the shortcoming of standard stochastic
approximation schemes where there is little information on the choice of step-length
sequences, Yousefian et al. [41] developed distributed stochastic approximation
schemes where users can independently choose a step-length rule. Our work focus
on the second approach, that we develop stochastic approximation type algorithms
for solving SVIs.
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1.1.4 Solution Schemes

Amongst the simplest of schemes for deterministic VIs are analogs of the standard
projection-based gradient schemes for convex optimization problems:

xk+1 := ΠX(xk − γkF (xk)), (PG)

where ΠX(y) denotes the projection of y onto X and γk denotes the steplength at
each iteration. This method generally requires a strong monotonicity assumption on
F to ensure convergence of the iterates. An extension was suggested by Antipin [42]
and Korpelevich [43] that weakened the requirement on F to mere monotonicity
and required 2 steps:

xk+ 1
2

:= ΠX(xk − γF (xk)),

xk+1 := ΠX

(
xk − γF

(
xk+ 1

2

))
.

(EG)

In this extragradient scheme (presumably associated with taking an “extra” gradient
step), two projections were required at each iteration to obtain a new point and
convergence was proved under the assumptions of Lipschitz continuity and mere
monotonicity of the map F . Then we extend both schemes to be applied to
SVI(X,F ):

xk+1 := ΠX(xk − γkF (xk, ωk)). (SPG)

Similarly, a stochastic counterpart to (EG) is (SEG) and is defined below:

xk+ 1
2

:= ΠX(xk − γkF (xk, ωk)),

xk+1 := ΠX

(
xk − γkF

(
xk+ 1

2
, ωk+ 1

2

))
.

(SEG)

1.1.5 Main Work

Classical extragradient schemes and their stochastic counterpart represent a corner-
stone for resolving monotone variational inequality problems. Yet, such schemes
have a per-iteration complexity of two projections on a convex set and two eval-
uations of the map, the former of which could be relatively expensive if X is a
complicated set. In Chapter 2, we consider two related avenues where the per-
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iteration complexity is significantly reduced: (i) A stochastic projected reflected
gradient (SPRG) method requiring a single evaluation of the map and a single
projection; and (ii) A stochastic subgradient extragradient (SSE) method that
requires two evaluations of the map, a single projection, and a projection onto
a halfspace (computable in closed form). Under suitable conditions, we prove
almost sure (a.s.) convergence of the iterates to a random point in the solution
set. Additionally, we show that under a variance-reduced framework, both schemes
display a non-asymptotic rate of O(1/K), matching their deterministic counter-
parts. To address constraints with a complex structure, we prove that random
projection variants of both schemes also display a.s. convergence while displaying
a rate of O(1/

√
K) in terms of the sub-optimality and infeasibility. Preliminary

numerics support theoretical findings and the schemes outperform their standard
extragradient counterparts in terms of the per-iteration complexity.

1.2 Stochastic Generalized Equations

1.2.1 Generalized Equations

In Chapter 3, we extend our work from Chapter 2 to developing solution methods
to stochastic generalized equations which require finding a zero of a an expectation-
valued set-valued mapping, defined next.

Definition 2. Given a set-valued map T : Rn → Rn, the generalized equation (GE)
requires finding a point x∗ ∈ Rn such that

0 ∈ T (x∗). (GE)

We are interested in the stochastic version of (GE), which is finding an x∗ ∈ Rn

such that

0 ∈ E[T (x∗, ω)], where E[T (x∗, ω)] ,


E[T1(x∗, ω)]

...

E[Tn(x∗, ω)]

 . (SGE)
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1.2.2 Applications

Stochastic generalized equations subsume a broad class of problems, including pos-
sibly nonsmooth stochastic convex optimization problems, nonsmooth saddle-point
problems, as well as a broad class of nonsmooth stochastic Nash games and stochas-
tic variational inequality problems. We discuss two broad problem classes of interest.

(i) Stochastic variational inequality problems with multi-valued maps. Consider
the stochastic variational inequality problem given by VI(X,Φ) which requires an
x ∈ X and u ∈ Φ(x) such that

(y − x)Tu ≥ 0, ∀y ∈ X.

This problem can be equivalently stated as follows.

0 ∈ Φ(x) +NX(x),

where Φ(x) , E[F (x, ω)], F (x, ω) is a set-valued map, NX(x) denotes the normal
cone at x associated with the set X (Figure 1.3), the expectation is specified in
a component-valued sense, and the integral of the set-valued map is defined in
an Aumann sense. If F (x, ω) is a monotone map on X for a.e. ω ∈ Ω, it can be
easily shown that E[F (x, ω)] is also a monotone map. Furthermore, since NX(x)
is maximal monotone map, it follows that Φ(x) +NX(x) is a maximal monotone
map [6, Prop. 12.3.6]. This problem is a generalized equation in which the mapping
T (x) is defined as T (x) , Φ(x) + NX(x). We observe that such problems arise
commonly when modeling markets complicated by the presence of price-caps [18]
and risk measures [27].
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Figure 1.3: Normal cone illustration

(ii) A subclass of stochastic multi-leader multi-follower games. Consider a class of
multi-leader multi-follower games [44,45] in which there is a set of leaders, denoted
by N , {1, . . . , N} and a collection of leaders given by M , {1, . . . ,M}. We
consider the setting with a single follower where M = 1.

min
yi

1
2y

T
i Qi(ω)yi − di(xi)Ty

subject to yi ≥ `i(xi),
(Followi(xi, ω))

where Qi(ω) � 0 (implying that Qi(ω) is a positive definite matrix) for every ω ∈ Ω.
Suppose the ith leader solves the following parametrized problem

min
xi

ci(xi)− p(x̄)xi + E[ai(ω)Tyi]

subject to xi ∈ Xi,
(Leaderi(x−i))

where ci : Xi → R is a convex function, p : R+ → R+ is a positive-valued strictly
decreasing function of x̄ , ∑N

i=1 xi, Xi is a closed and convex set in R. We may
compute the best-response of the follower by considering the necessary and sufficient
conditions of optimality:

0 ≤ λi ⊥ yi − `i(xi) ≥ 0

0 = Qi(ω)yi − di(xi)− λi.

This system can be equivalently stated as follows.

0 ≤ Qi(ω)yi − di(xi) ⊥ yi − `i(xi) ≥ 0 ≡ yi = max{Qi(ω)−1di(xi), `i(xi)}.
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Consequently, we may eliminate follower decision in the leader level problem, leading
to a nonsmooth stochastic Nash game given by the following:

min
xi

ci(xi)− p(x̄)xi + E[ai(ω)T max{Qi(ω)−1di(xi), `i(xi)}︸ ︷︷ ︸
,hi(xi,ω)

]

subject to xi ∈ Xi.

(Leaderi(x−i))

Under convexity of di and `i and suitable assumptions on Qi(ω) and ai(ω), the
expression ai(ω)T max{Qi(ω)−1di(xi), `i(xi)} is a convex function in xi, a fact that
follows from observing that this term is a scaling of the maximum of two convex
functions. Consequently, the necessary and sufficient equilibrium conditions of this
game are given by the following.

0 ∈ ∂xici(xi)− p(x̄)− p′(x̄)xi + E[∂xihi(xi, ω)] +NXi(xi), i = 1, . . . , N.

If hi(xi, ω) is a convex function in xi for every ω and p(x̄) is an affine and strictly
decreasing function of xi, then this is monotone stochastic generalized equation
where the mapping T is defined as follows.

T (x) =
N∏
i=1

[∂xici(xi)− p(x̄)− p′(x̄)xi + E[∂xihi(xi, ω)] +NXi(xi)] .

1.2.3 Algorithms for the Solution of Generalized Equations

A range of algorithms have been developed for the resolution of generalized equations
with maximal monotone operators, which are defined next.

Definition 3. A monotone map T is maximal monotone if no monotone map T ′

exists such that gph T ⊂ gph T ′, where gph T = {(x, y) ∈ Rn × Rn : y ∈ T (x)}.

We now review a subset of avenues for the resolution of this problem.
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1.2.3.1 Proximal-point Schemes.

A standard scheme to solve the problem 0 ∈ T (x) is the proximal point algorithm
proposed by Martinet [46] and Rockafellar [47,48]:

xk+1 := (I + γkT )−1(xk), (PP)

where γk denotes the steplength, T is required to be maximal monotone and
JTγk , (I + γkT )−1 is defined as the resolvent operator of T [47].

1.2.3.2 Splitting Schemes

In many applications, while the map T does not have a tractable resolvent operator,
either the resolvent of A or B (or both) are tractable where T , A + B. In
such instances, splitting schemes assume relevance. Moreover, if the resolvent of
B is easier to evaluate, we may develop algorithms leveraging these resolvents.
Assuming A and B are maximal monotone, the forward-backward splitting method
was proposed by [49,50] respectively and was applied to convex optimization by [51]:

xk+1 := (I + γkB)−1(I − γkA)(xk). (FBS)

A drawback of this method is that it generally requires a strong monotonicity
assumption on A to ensure convergence. An extension was suggested by Tseng [52]
that weakened the requirement on A to be mere monotonicity:

xk+ 1
2

:= (I + γkB)−1(I − γkA)(xk),

xk+1 := ΠX

(
xk+ 1

2
− γk

(
A
(
xk+ 1

2

)
− A(xk)

))
.

(MFBS)

1.2.4 Main Work

First, we develop a stochastic proximal point framework where we consider one of
two avenues:

(A) The resolvent of the expectation-valued map, denoted by (I +γkE[T (x, ω)])−1

is approximated with increasing accuracy via Monte-Carlo sampling. In
particular, (I + γkE[T (x, ω))−1 requires computing a solution of a strongly
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monotone stochastic generalized equation, which itself can be obtained via a
stochastic approximation framework.

(B) The resolvent of the sample-average approximation of the map is employed,
as defined by (I + γkT̄k)−1, where T̄k ,

∑Nk
j=1 T (x,ωj)
Nk

.

Yet, the applicability of proximal-point schemes is crucially reliant on the tractability
of evaluating the resolvent operator JTγk(xk). When this evaluation is problematic,
splitting-based approaches have emerged as important alternatives.

Thereafter, we consider a setting where A(x) , E[A(x, ω)] and B(x) admits a
relatively cheap resolvent. Here, we develop a stochastic modified forward-backward
splitting framework in which the resolvent of A is approximated by Monte-Carlo
sampling techniques. In both sets of schemes, we consider variance-reduced schemes
that admit deterministic rates of convergence and near-optimal oracle complexities
in some instances.

1.3 Transmission Expansion Problems
An important issue in the planning of electric energy systems is the capacity
expansion of transmission lines [53–55] that enables energy flows from generation
nodes to demand nodes. It requires a transmission planner to identify the optimal
transmission reinforcements to be carried out with the aim of facilitating energy
exchange among producers and consumers, e.g., by maximizing social welfare; this
represents the essence of the transmission expansion problem.

The transmission expansion problem is generally tackled under two different
frameworks: centralized and competitive. In a centralized framework, a planning
entity controls both generation and transmission facilities and is in charge of per-
forming generation and transmission expansion. In a competitive environment, an
independent and regulated entity is generally in charge of operating and expanding
the transmission network with the aim of maximizing social welfare over the entire
market of generators and consumers. We briefly introduce the two framework in
the follows.
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1.3.1 Centralized Transmission Expansion Problems

Traditionally, before a competitive environment was considered in power systems
planning, transmission expansion planning was modeled based on the demand
forecast together with the associated generation capacity expansion plans. The
mathematical model for this kind of problems is usually a single-level optimization
problem with a general objective function subject to linear/nonlinear or integer
constraints and is solved by standard mathematical programming methods [56–59].
Some of the past work has leveraged the use of Bender’s decomposition [60] and
heuristic approaches [61]. The general form of this problem is as follows:

min
x,z

h(x, z)

subject to f(x, z) = 0

g(x, z) ≥ 0

z ∈ {0, 1}p,

(ceTEP)

where z denotes the transmission expansion decision, x denotes other associated
variables including generations, generation capacity expansion decisions, consumer
demand, ISO arbitrage, etc. Furthermore, h denoted the objective value to be
optimized while f and g represent linear/nonlinear constraints. If the size of the
transmission expansion problem is too large to make it computationally intractable,
a screening model [62] can be employed to reduce the number of investment
variables.

1.3.2 Competitive Transmission Expansion Problems

In a competitive framework, a single regulated entity, referred to as the transmis-
sion system operator, determines the transmission expansion plans. Generation
companies freely decide on investment decisions and the TSO is not directly in-
volved in those decisions. The TSO makes expansion decisions regarding the
existing transmission network with the goal of maximizing social welfare (the sum
of consumer and producer surpluses) by utilizing a joint economic and engineering
objective. Specifically, transmission expansion may allow for reducing overall costs
of generation and improve the reliability in the supply of demand. This expansion
problem is usually considered over a long-term planning horizon and accounts for
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(uncertain) changes in demand and generation capacity. Note that generation is not
modeled as a player but is instead modeled as a random variable. Techniques from
stochastic optimization [63–68] can be leveraged to cope with these uncertainties.

With competition, transmission expansion problems are generally highly com-
plex, involving multiple optimization problems and nonlinear constraints. The
problem is usually captured by two or more levels optimization problems. In general,
tri-level [67, 69,70] and bilevel [68, 71] structures are most popular in transmission
expansion problems. Figure 1.4 and 1.5 illustrate both structures where y denotes
transmission expansion decisions and k denotes generation capacity expansion
variables, respectively. The difference between the tri-level and bilevel model lies in
whether the spot market clearing condition is included in the second level (leading
to a bilevel problem) or not (resulting in a tri-level problem). As a result, different
approaches such as decomposition techniques [72–74] and heuristics [75–77] have
been proposed.

Transmission Expansion Decision

Generation Expansion(y)

Spot Market Clearing(y, k)

y

k

Figure 1.4: Tri-level transmission expansion model

Transmission Expansion Decision

Generation Expansion(y)
Market Clearing(y)

y

Figure 1.5: Bilevel transmission expansion model
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We generally employ the following model to describe the framework:

min
x,z

h(x, y, z)

subject to 0 ≤ y ⊥ F (x, y, z) ≥ 0

f(x, y, z) = 0

g(x, y, z) ≥ 0

z ∈ {0, 1}p,

(coTEP)

where 0 ≤ y ⊥ F (x, y, z) ≥ 0 are the equivalent optimal solutions to a second level.

1.3.3 Solution Methods in Transmission Expansion Problems

Transmission expansion planning problems have received attention for a long time.
Many classical optimization methods have been used in analyzing transmission
systems, such as linear programming [56, 78] and mixed integer programming
[72, 73, 79–82]. Models with other kinds of typical techniques are also presented
[75,83–87]. [88] proposed a transmission planning framework which assumed only
the generation sector is deregulated and future generation expansion of generation
companies was taken into account by the transmission planner. An iterative solution
algorithm was presented linking agent-based systems and search-based optimization
technique.

Recently, multi-level modeling in transmission expansion problems has become
popular, and some novel techniques have been invented. Jin and Ryan [69, 70]
developed a tri-level model of centralized transmission and decentralized generation
expansion planning. The second and third level may be collectively reformulated as
a bilevel (MPEC) problem and this optimization problem can be resolved by either
a diagonalization method (DM) or a complementarity problem (CP) reformulation.
Then a hybrid iterative algorithm combining (CP) and (DM) was proposed. A
mixed-integer linear programming model was developed in [89], consisting of three
levels, transmission investment, generation investment and market operation. It
integrated the three stages within a single optimization model and proposed a
solution method after approximating the impedance as a function of capacity.
In [90], the authors developed methodologies for capturing interactions between
generation and transmission investment planning in the expansion planning problem
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of power networks. The first methodology formulated the problem as a mixed-integer
nonlinear program (MINLP) which assuming a central regulatory organization
exists while the second represents a bilevel model where the transmission operator
is a leader.

Transmission planning under uncertainty also plays an important role in the
literature [63–66]. In [67], the authors presented a three-level model for generation
and transmission expansion planning that considered uncertainty in demand and
the use of renewable sources in the model. The model included an (MPEC) and
equilibrium program with equilibrium constraints (EPEC) formulations. These
studies assumed that all the investments are made at the same time, which may
not be realistic. The two-stage framework can also cope with the uncertainty in
investment decisions better than a single stage decision. Similarly, a two-stage
stochastic optimization model regarding planning electricity transmission was
presented in [68] where a second decision was made based on the performance
of a certain period after the first optimization solution. A robust analysis was
conducted for the given practical problems. Some other multi-stage models also
been developed in the literature (cf. [91, 92]).

1.3.4 Main Work

In Chapter 4, we consider transmission expansion planning in competitive environ-
ment subjected to the response of a generation market with imperfect transmission
pricing. In particular, we add annual transmission charges to the model for ef-
ficiency analysis purpose. Two different regimes on pricing models are analyzed
and compared: one applies flat rate charge to generators, the other relies on a
MW-miles based charging model. In the charging model, transmission charge to
each generator is calculated by the following steps:

• Model power flows at system peak (the base case)

• Inject an additional MW at each node

• Look how power flows change compared to the base case

• Measure length of network traversed by additional MW flows.
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Then this length represents the investment required for additional generation con-
necting at this node. The process is illustrated in a simple example shown in Figure
1.6.

Figure 1.6: MW-miles illustration
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In effect, we leverage a bilevel structure to describe the power system and recast
the model as a mathematical program with equilibrium constraints (MPEC). Fur-
thermore, leveraging techniques from robust solutions to uncertain complementary
problems, we incorporate robustness into the transmission expansion problem and
reformulate it as a determinate model. Although the optimal solution to (MPEC)s
is challenging given the discreteness and nonlinearity, we propose a direct solution
method leveraging a branching scheme. To accelerate the solving process, we
consider a smoothing scheme where discrete variables are relaxed by continuous
functions. Preliminary results are considered for analysis.
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Chapter 2 |
On the optimality of single pro-
jection variants of extragradi-
ent schemes for monotone stochas-
tic variational inequality prob-
lems

2.1 Introduction
This chapter considers the solution of stochastic variational inequality problems, a
stochastic generalization of the variational inequality problem. Given a set X ⊆ Rn

and a map F : Rn → Rn, the variational inequality problem VI(X,F ) requires
finding a point x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0, ∀x ∈ X. (VI(X,F ))

In the stochastic generalization, the components of the map F are expectation-
valued; specifically Fi(x) , E[Fi(x, ξ(ω))], where ξ : Ω→ Rd is a random variable,
Fi : Rn × Rd → R is a single-valued function, and the E[·] denotes the expectation
and the associated probability space being denoted by (Ω,F ,P). In short, we are
interested in a vector x∗ ∈ X such that

E[F (x∗, ω)]T (x− x∗) ≥ 0, ∀x ∈ X, (SVI(X,F ))
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where E[F (x, ω)] =
(
E[Fi(x, ω)]

)K
i=1

. The variational inequality problem is an
immensely relevant problem that finds application in engineering, economics, and
applied sciences (cf. [6, 93–96]). Increasingly, the stochastic generalization is of
relevance and has found application in the study of a broad class of equilibrium
problems under uncertainty. Of these, sample average approximation (SAA) scheme
solves the expected value of the stochastic mapping which is approximated via the
average over a large number of samples (cf. [28–30, 32]). A counterpart to SAA
schemes is the stochastic approximation (SA) methods where at each iteration, a
sample of the stochastic mapping is used (cf. [24, 27, 31]). Amongst the simplest of
SA schemes are analogs of the standard projection-based schemes, which we review
next.

2.1.1 Projection-based Schemes and Their Variants

xk+1 := ΠX(xk − γkF (xk)), (PG)

where ΠX(y) denotes the projection of y onto X and γ denotes the steplength.
This method generally requires a strong monotonicity assumption on F to ensure
convergence. An extension, suggested by Antipin [42] and Korpelevich [43], required
that F be merely monotone:

xk+ 1
2

:= ΠX(xk − γF (xk)),

xk+1 := ΠX

(
xk − γF

(
xk+ 1

2

))
.

(EG)

In (EG) however, two projections were required at each iteration to obtain a new
point and convergence was proved under the assumptions of Lipschitz continuity
and monotonicity of the map F . Naturally, when the set X is not necessarily a
simple set, this projection operation by no means cheap. There have been several
schemes in which merely monotone variational inequality problems can be addressed
by taking a single projection operation and we consider two instances. In recent
work, a projected reflected gradient (PRG) method was proposed by Malitsky [97],
requiring a single, rather than two, projections:

xk+1 := ΠX(xk − γkF (2xk − xk−1)). (PRG)
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Intuitively, this scheme has a similar structure to the projected gradient scheme
taking a form with the following key distinction: Rather than evaluating the map
at xk (as in (PG)), the map is evaluated at the reflection of xk−1 in xk which
is xk − (xk−1 − xk) = 2xk − xk−1. Remarkably, this simple modification allows
for proving convergence of this scheme for merely monotone Lipschitz continuous
maps [97]. An alternate modification of the extragradient method was proposed
by Censor, Gibali and Reich and was referred to as the subgradient extragradient
method (SE) [98]:

xk+ 1
2

:= ΠX(xk − γkF (xk)),

xk+1 := ΠCk

(
xk − γkF

(
xk+ 1

2

))
,

(SE)

where Ck , {w ∈ Rn | (xk − γkF (xk)− xk+ 1
2
)T (w − xk+ 1

2
) ≤ 0}. In (SE), the two

projections are replaced by a projection onto the set and a second onto a halfspace
(computable in closed form).

2.1.2 Stochastic Variational Inequality Problems.

There have been schemes analogous to (PG) and (EG) in this regime with the key
distinction that an evaluation of the map, namely F (xk), is replaced by F (xk, ωk),
in the spirit of stochastic approximation [99]. Jiang and Xu [39] appear amongst
the first who applied SA methods to solve stochastic variational inequalities. An
extension to address merely monotone stochastic VIs was studied by Koshal et
al. [40]. A regularized smoothing SA method to address stochastic VIs with non-
Lipschitzian and merely monotone mappings was proposed in [100]. Recently, a
class of prox generalization of SA methods were developed (cf. [101–104]) for solving
smooth and nonsmooth stochastic convex optimization problems and variational
inequalities. For instance, a simple stochastic extension of the standard projection
scheme for VI(X,F ) leads to a stochastic approximation scheme [99]:

xk+1 := ΠX(xk − γkF (xk, ωk)). (SPG)
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Similarly, an extragradient counterpart to (EG) is (SEG) and is defined below:

xk+ 1
2

:= ΠX(xk − γkF (xk, ωk)),

xk+1 := ΠX

(
xk − γkF

(
xk+ 1

2
, ωk+ 1

2

))
.

(SEG)

Fig. 2.1 illustrates (SEG) scheme. Extragradient-based schemes (and their stochas-

X

xk

−γkF (xk, ωk)

xk+ 1
2 xk+1

−γkF
(
xk+ 1

2
, ωk+ 1

2

)

Figure 2.1: Stochastic extragradient (SEG)

tic mirror-prox counterparts) represent amongst the simplest of schemes for mono-
tone SVIs (cf. [31, 105]). However, each iteration requires two projection steps,
rather than one (as in (SPG)). We summarize much of the prior results in Ta-
ble 3.1. Given that this class of Monte-Carlo approximation schemes routinely
requires 10s or 100s of thousands of steps, our interest lies in ascertaining whether
projection-based schemes can be developed requiring a single projection step per
iteration, reducing the per-iteration complexity by a factor of two. We consider two
such schemes given a random point x0 ∈ X:
(i) Stochastic projected reflected gradient schemes (SPRG);

xk+1 := ΠX(xk − γkF (2xk − xk−1, ωk)), (SPRG)

and (ii) Stochastic subgradient extragradient schemes (SSE).

xk+ 1
2

:= ΠX(xk − γkF (xk, ωk)),

xk+1 := ΠCk

(
xk − γkF

(
xk+ 1

2
, ωk+ 1

2

))
,

(SSE)

where Ck ,
{
w ∈ Rn |

(
xk − γkF (xk, ωk)− xk+ 1

2

)T (
w − xk+ 1

2

)
≤ 0

}
. Clearly, the

second projection is a simple optimization problem. Solving for xk+1, we could
obtain an equivalent scheme which requires a single projection (the proof is in
appendix). Fig. 2.2 illustrate the steps of these schemes.
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X

xk−1

xk

yk−γkF (yk, ωk)

xk+1

X

xk

−γkF (xk, ωk)

xk+ 1
2

Tk
−γkF

(
xk+ 1

2
, ωk+ 1

2

)
xk+1

Figure 2.2: Left: (SPRG); Right: (SSE)

Table 2.1: A review of stochastic extragradient schemes
Ref. Applicability Avg. Metric Rate A.s. # proj.
[39] Monotone, uniqueness N Iterates - Y
[40] Monotone, Lipschitz N Iterates - Y
[100] Monotone, non-Lip. N Iterates - Y
[31] Monotone, non-Lip. Y Gap fn. O(1/

√
K) N

[102] Monotone, non-Lip. Y Gap fn. O(1/
√
K) Y

[106] Strongly pseudo/monotone+weak-sharp N MSE O(1/K) Y
[107] Strongly monotone, Lip., random proj. N Iterates - Y
[108] Pesudo monotone, Lip., var. reduction N Iterates O(1/K) Y
[95] Monotone+weak-sharp, Lip., random proj. Y Dist. fn. O(1/

√
K) Y 2

v-SPRG Monotone+weak-sharp, Lip., var. reduction Y Dist. fn. O(1/K) Y 1
v-SSE Monotone, Lip., var. reduction Y Gap fn. O(1/K) Y 1
r-SPRG Monotone+weak-sharp, Lip., random proj. Y Dist. fn. O(1/

√
K) Y 1

r-SSE Monotone+weak-sharp, Lip., random proj. Y Dist. fn. O(1/
√
K) Y 1

2.1.3 Incorporating Variance Reduction and Random Projec-
tions.

To mitigate computational complexity, we define two variable sample-size counter-
parts of (SPRG) and (SEG), where Nk samples of the map are utilized at iteration k
to approximate the expectation. We define (i) Variable sample-size stochastic
projected reflected gradient schemes:

xk+1 := ΠX

xk − γk∑Nk
j=1 F (2xk − xk−1, ωj,k)

Nk

 , (v-SPRG)

and (ii)Variable sample-size stochastic subgradient extragradient schemes.

xk+ 1
2

:= ΠX

xk − γk∑Nk
j=1 F (xk, ωj,k)

Nk

 ,
xk+1 := ΠCk

xk − γk
∑Nk
j=1 F

(
xk+ 1

2
, ωj,k+ 1

2

)
Nk

 ,
(v-SSE)
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where Ck ,
{
w ∈ Rn |

(
xk − γkF (xk, ωk)− xk+ 1

2

)T (
w − xk+ 1

2

)
≤ 0

}
.

A difficulty arises when implementing such schemes on a complex set X when X
is defined as the intersection of a large number of convex sets. Inspired by [107],
we consider extending our work to random projections when X is defined as the
intersection of a finite number of sets:

X =
⋂
i∈I

Xi,

where I is a finite set and Xi ⊆ Rn is closed and convex for all i ∈ I. The key
distinction is that at each iteration, we project onto a random subset Xlk rather than
X, where {lk} is a sequence of random variables in the appropriate steps of (SPRG)
and (SSE). In prior work, Nedić [109,110] considered random projection algorithms
for convex optimization problems with similarly defined sets and related schemes
were subsequently considered for nonsmooth convex regimes [111–113]. Wang and
Bertsekas [107] extended (SPG) to allow for projecting on a subset of constraints
based on either a random projection technique on either a random or deterministic
(such as cyclic projection) subset. We consider analogous generalizations to (SPRG)
and (SEG):

(i) Random projected stochastic projected reflected gradient schemes
(r-SPRG);

xk+1 := Πlk(xk − γkF (2xk − xk−1, ωk)), (r-SPRG)

and (ii) Random projected stochastic subgradient extragradient schemes
(r-SSE).

xk+ 1
2

:= Πlk(xk − γkF (xk, ωk)),

xk+1 := ΠCk

(
xk − γkF

(
xk+ 1

2
, ωk+ 1

2

))
, (r-SSE)

where Ck ,
{
w ∈ Rn |

(
xk − γkF (xk, ωk)− xk+ 1

2

)T (
w − xk+ 1

2

)
≤ 0

}
.
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2.1.4 Contributions

We summarize the key aspects of our schemes in Tables 2.2 and elaborate on these
next:

Table 2.2: (SRPG), (SSE) and (SEG) schemes comparison

Variance-reduced schemes Random projection
Assump. Rate a.s. Assump. Rate, infeas. a.s.

SPRG monotone+weak-sharp O (1/K) 4 monotone+weak-sharp O
(
1/
√
K
)

, O
(
1/
√
K
)

4

SSE monotone O (1/K) 4 monotone+weak-sharp O
(
1/
√
K
)

, O
(
1/
√
K
)

4

SEG monotone O (1/K) 4 monotone+weak-sharp O
(
1/
√
K
)

, O
(
1/
√
K
)

4

(i) In Section 2.3, we prove that in monotone regimes, the iterates produced by
both (SPRG) and (SSE) converge almost surely (a.s.) to the solution and the
expectation of the distance function (for (SPRG)) or the gap function (for (SSE))
diminishes at O(1/K), matching the deterministic rate of convergence.

(ii) In Section 2.4, under merely monotone settings with a weak-sharpness require-
ment, random projection variants of (SPRG) and (SSE) are examined and we
proceed to prove a.s. convergence of the iterates to the solution set. Additionally,
we proceed to show that the expected distance to both the optimal solution set X∗

and the feasible set X diminish at the rate of O(1/
√
K).

(iii) In Section 2.5, preliminary numerics are observed support our expectations
based on the theoretical findings.

2.2 Background and Assumptions
We consider the schemes (SPRG) and (SSE) where x0 ∈ X is a random initial point
and {γk} denotes the steplength sequence. We begin by imposing an assumption
on the map F which will be valid through the remainder of this chapter.

Assumption 1. The mapping F is L-Lipschitz continuous and monotone on Rn;
i.e. for all x, y ∈ Rn,

‖F (x)− F (y)‖ ≤ L‖x− y‖ and (F (x)− F (y))T (x− y) ≥ 0.

26



We often impose a boundedness requirement on the set X and F (x∗).

Assumption 2. The set X is bounded, i.e., there exists a scalar B > 0 such that
‖x− y‖ ≤ B for all x, y ∈ X.

Assumption 3. There exists a constant C > 0 such that ‖F (x∗)‖ ≤ C.

In some instances, a weak-sharpness requirement is imposed on VI(X,F ).

Assumption 4 (Weak sharpness). The variational inequality problem VI(X,F )
satisfies the weak sharpness property implying that there exists an α > 0 such that
for all x ∈ X, (x− x∗)TF (x∗) ≥ αdist (x,X∗) .

The following lemma is used in our analysis proofs and may be found in [114].

Lemma 1. Let X be nonempty closed convex set in Rn. Then for all y ∈ X and
for any x ∈ Rn, we have that the following hold: (i) (ΠX(x)− x)T (y−ΠX(x)) ≥ 0;
and (ii) ‖ΠX(x)− y‖2 ≤ ‖x− y‖2 − ‖x− ΠX(x)‖2.

We assume the presence of a stochastic oracle that can provide a conditionally un-
biased estimator of F (x), given by F (x, ω) such that E[F (x, ω) | x] = F (x). Define
wk , F (xk, ωk)−F (xk), w̄k ,

∑Nk
j=1 F (xk,ωj,k)

Nk
−F (xk), wk+1/2 , F (xk+1/2, ωk+1/2)−

F (xk+1/2) and w̄k+1/2 ,
∑Nk

j=1 F (xk+1/2,ωj,k)
Nk

−F (xk+1/2), where Nk denotes the batch-
size of sampled maps F (x, ωj,k) at iteration k. Furthermore, let Fk denote the history
up to iteration k, i.e., Fk ,

{
x0, ω0, ω 1

2
, ω1, · · · , ωk−1, ωk− 1

2

}
and Fk+ 1

2
, Fk∪{ωk}.

Assumption 5. At an iteration k, the following hold in an a.s. sense: (i) The
conditional means E[wk | Fk] and E

[
wk+ 1

2
| Fk+ 1

2

]
are zero for all k in an a.s.

sense; (ii) The conditional second moment-2s are bounded in an a.s. sense or
E[‖wk‖2 | Fk] ≤ ν2 and E

[
‖wk+ 1

2
‖2 | Fk+ 1

2

]
≤ ν2 for all k in an a.s. sense.

Assumption 6. The diminishing sequence γk is square-summable but non-summable:∑∞
k=0 γ

2
k <∞, ∑∞k=0 γk =∞.

The following super-martingale convergence Lemma is essential to our proof
[115].
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Lemma 2. Let vk, uk, δk, ψk be nonnegative random variables adapted to σ-algebra
Fk, and let the following relations hold almost surely:

E[vk+1 | Fk] ≤ (1 + uk)vk − δk + ψk, ∀k;
∞∑
k=0

uk <∞, and
∞∑
k=0

ψk <∞.

Then a.s., we have that limk→∞ vk = v and ∑∞k=0 δk <∞, where v ≥ 0 is a random
variable.

2.3 Convergence Analysis for (v-SPRG) and (v-SSE)

2.3.1 Stochastic Projected Reflected Gradient Schemes

In this subsection, we prove the a.s. convergence of the iterates produced by
(SPRG) when F is a Lipschitz continuous and monotone map on Rn, satisfying a
weak-sharpness requirement. We begin with an intermediate lemma that relates
the error in consecutive iterates.

Lemma 3. Let Assumptions 1, 4, and 5 hold and let 0 < γk = γ ≤ 1
8L for all k.

Consider a sequence generated by (v-SPRG). For any x0 ∈ X, the following holds
for all k ≥ 0:

‖xk+1 − x∗‖2 + 3
4‖xk+1 − yk‖2 + 2γF (x∗)T (xk − x∗)

≤ ‖xk − x∗‖2 + 3
4‖xk − yk−1‖2 + 2γF (x∗)T (xk−1 − x∗)

+ 8γ2‖wk − wk−1‖2 −
(
1− 16γ2L2

)
‖xk − yk‖2

− 2γαdist (xk, X∗)− 2γwTk (yk − x∗).

Proof. Define yk , 2xk−xk−1 for all k ≥ 1 and F̄ (yk) ,
∑Nk

j=1 F (yk,ωk,j)
Nk

. By Lemma
1(ii) and noting that xk+1 = ΠX(xk − γkF̄ (yk)) and F̄ (yk) = F (yk) + w̄k, the
following holds for xk+1 and any solution x∗.

‖xk+1 − x∗‖2 ≤ ‖xk − γkF̄ (yk)− x∗‖2 − ‖xk − γkF̄ (yk)− xk+1‖2

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2γk(F (yk) + w̄k)T (xk+1 − x∗). (2.1)

Since F is monotone over Rn, by adding 2γk(F (yk)− F (x∗))T (yk − x∗) to the rhs
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of (2.1), we obtain:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2γk(F (yk)− F (x∗))T (yk − x∗)

− 2γk(F (yk) + w̄k)T (xk+1 − x∗)

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2γkF (yk)T (yk − xk+1) + 2γkF (yk)T (xk+1 − x∗)

− 2γkF (x∗)T (yk − x∗)− 2γkF (yk)T (xk+1 − x∗) + 2γkw̄Tk (yk − xk+1)

− 2γkw̄Tk (yk − x∗)

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2γk(F (yk) + w̄k)T (yk − xk+1)

− 2γk(F (x∗) + w̄k)T (yk − x∗)

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2γk(F (yk)− F (yk−1))T (yk − xk+1)︸ ︷︷ ︸
Term 1

+ 2γk(F (yk−1) + w̄k)T (yk − xk+1)︸ ︷︷ ︸
Term 2

− 2γk(F (x∗) + w̄k)T (yk − x∗)︸ ︷︷ ︸ . (2.2)

Since xk+1, xk−1 ∈ X, by Lemma 1(i), we may conclude that

(xk − xk−1 + γk−1(F (yk−1) + w̄k−1))T (xk − xk+1) ≤ 0 and

(xk − xk−1 + γk−1(F (yk−1) + w̄k−1))T (xk − xk−1) ≤ 0.

Adding these two inequalities yields the following:

(xk − xk−1 + γk−1(F (yk−1) + w̄k−1))T (yk − xk+1) ≤ 0,

since yk = 2xk − xk−1, leading to the following inequality:

2γk−1(F (yk−1) + w̄k−1)T (yk − xk+1) ≤ 2(xk − xk−1)T (xk+1 − yk)

= 2(yk − xk)T (xk+1 − yk) = ‖xk+1 − xk‖2 − ‖xk − yk‖2 − ‖xk+1 − yk‖2,

(2.3)

where the first equality follows from recalling that yk = 2xk − xk−1. Now, we may
bound 2γk(F (yk−1) + w̄k)T (yk − xk+1) as follows:

Term 2 = 2γk(F (yk−1) + w̄k)T (yk − xk+1) = 2γk(F (yk−1) + w̄k)T (yk − xk+1)

− 2γk(F (yk−1) + w̄k−1)T (yk − xk+1) + 2γk(F (yk−1) + w̄k−1)T (yk − xk+1)

= 2γk(w̄k − w̄k−1)T (yk − xk+1) + 2
(
γk
γk−1

)
γk−1(F (yk−1) + w̄k−1)T (yk − xk+1)
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≤ 8γ2
k‖w̄k − w̄k−1‖2 + 1

8‖xk+1 − yk‖2 − γk
γk−1
‖xk+1 − yk‖2 + γk

γk−1
‖xk+1 − xk‖2

− γk
γk−1
‖xk − yk‖2

= 8γ2
k‖w̄k − w̄k−1‖2 +

(
1
8 −

γk
γk−1

)
‖xk+1 − yk‖2 + γk

γk−1
‖xk+1 − xk‖2

− γk
γk−1
‖xk − yk‖2, (2.4)

where 2γk(wk−wk−1)T (yk−xk+1) ≤ 8γ2
k‖wk−wk−1‖2 + 1

8‖xk+1−yk‖2 and inequality
(2.3) allows for bounding 2γk−1(F (yk−1) + wk−1)T (yk − xk+1). Next we estimate
(F (yk)−F (yk−1)T (yk−xk+1). By the Cauchy-Schwarz inequality and the Lipschitz
continuity of the map (Ass. 1), it follows that

Term 1 = 2γk(F (yk)− F (yk−1))T (yk − xk+1) ≤ 2γk‖F (yk)− F (yk−1)‖‖yk − xk+1‖

≤ 2γkL‖yk − yk−1‖‖yk − xk+1‖ ≤ 8γ2
kL

2‖yk − yk−1‖2 + 1
8‖xk+1 − yk‖2

≤ 16γ2
kL

2‖xk − yk−1‖2 + 16γ2
kL

2‖xk − yk‖2 + 1
8‖xk+1 − yk‖2, (2.5)

where (2.5) follows from ‖u + v‖2 ≤ 2‖u‖2 + 2‖v‖2. Using (2.4) and (2.5), we
deduce from (2.2) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −
(

1− γk
γk−1

)
‖xk+1 − xk‖2

−
(
γk
γk−1

− 16γ2
kL

2
)
‖xk − yk‖2 −

(
γk
γk−1

− 1
4

)
‖xk+1 − yk‖2

+ 16γ2
kL

2‖xk − yk−1‖2 + 8γ2
k‖w̄k − w̄k−1‖2

− 2γk(F (x∗) + w̄k)T (yk − x∗). (2.6)

By assumption, γk = γ ≤ 1/(8L), for all k,

16γ2
kL

2 ≤ 1
4 ≤

(
γk−1

γk−2
− 1

4

)
. (2.7)

Consequently, from (2.6) and by invoking (2.7), we may conclude the following:

‖xk+1 − x∗‖2 +
(
γk
γk−1

− 1
4

)
‖xk+1 − yk‖2 ≤ ‖xk − x∗‖2
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+
(
γk−1

γk−2
− 1

4

)
‖xk − yk−1‖2 + 8γ2

k‖wk − wk−1‖2 −
(
γk
γk−1

− 16γ2
kL

2
)
‖xk − yk‖2

− 2γkF (x∗)T (yk − x∗) + γkw̄
T
k (yk − x∗).

We may bound 2γkF (x∗)T (yk − x∗) as follows:

− 2γkF (x∗)T (yk − x∗) = −2γkF (x∗)T (xk − x∗)− 2γkF (x∗)T (xk − x∗)

+ 2γkF (x∗)T (xk−1 − x∗)

≤ −2γkF (x∗)T (xk − x∗)− 2γkF (x∗)T (xk − x∗) + 2γk−1F (x∗)T (xk−1 − x∗). (2.8)

By the weak sharpness property, we have that F (x∗)T (xk − x∗) ≥ αdist (xk, X∗) ,
which together with (2.8), implies that

‖xk+1 − x∗‖2 + 3
4‖xk+1 − yk‖2 + 2γF (x∗)T (xk − x∗)

≤ ‖xk − x∗‖2 + 3
4‖xk − yk−1‖2 + 2γF (x∗)T (xk−1 − x∗)

+ 8γ2‖w̄k − w̄k−1‖2 −
(
1− 16γ2L2

)
‖xk − yk‖2

− 2γαdist (xk, X∗)− 2γw̄Tk (yk − x∗). (2.9)

With this lemma, we now analyze convergence of (v-SPRG).

Proposition 1 (a.s. convergence of (v-SPRG)). Consider the scheme (v-SPRG).
Let Assumptions 1, 4, and 5 hold. Let 0 < γk = γ ≤ 1

8L for all k ≥ 0 and∑∞
k=1

1
Nk

<∞. Then for any x0 ∈ X, a sequence generated by (v-SPRG) converges
to a solution x∗ ∈ X in an a.s. sense.

Proof. Using (2.9) and taking expectations conditioned on Fk,

E
[
‖xk+1 − x∗‖2 + 3

4‖xk+1 − yk‖2 + 2γF (x∗)T (xk − x∗)|Fk
]

≤ ‖xk − x∗‖2 + 3
4‖xk − yk−1‖2 + 2γF (x∗)T (xk−1 − x∗)− 2αγdist (xk, X∗)

+ 8γ2E[‖w̄k − w̄k−1‖2|Fk]−
(
1− 16γ2L2

)
‖xk − yk‖2

≤ ‖xk − x∗‖2 + 3
4‖xk − yk−1‖2 + 2γF (x∗)T (xk−1 − x∗)− 2αγdist (xk, X∗)

+ 32γ2 ν
2

Nk

−
(
1− 16γ2L2

)
‖xk − yk‖2 = vk − δk + ψk, (2.10)
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where vk, δk, and ψk are nonnegative random variables defined as

vk , ‖xk − x∗‖2 + 3
4‖xk − yk−1‖2 + 2γF (x∗)T (xk − x∗),

δk ,
(
1− 16γ2L2

)
‖xk − yk‖2 + 2αγdist (xk, X∗) and ψk , 32γ2 ν

2

Nk

.

We note that ∑k ψk <∞ since ∑k
1
Nk

<∞ and δk ≥ 0 since dist(xk, X∗) ≥ 0 for
all k and (

1− 16γ2L2
)
≥ 1

4 .

We may now invoke Lemma 2 to claim that vk → v̄ ≥ 0 and ∑k δk <∞ in an a.s.
sense, implying the following holds a.s.:

∞ >
∑
k

((
1− 16γ2L2

)
‖xk − yk‖2 +2αγdist (xk, X∗))

≥
∑
k

((
1− 1

4

)
‖xk − yk‖2 + 2αγdist (xk, X∗)

)

=
∑
k

(3
4‖xk − yk‖

2 + 2αγdist (xk, X∗)
)
,

where the second inequality follows from γ ≤ 1/(8L). Consequently, we have that

∞ >
∑
k

(3
4‖xk − yk‖

2 + 2αγdist (yk, X∗)
)
.

It follows that in an a.s. sense,

∞ >
∑
k

‖xk − yk‖2 =
∑
k

‖xk − xk−1‖2. (2.11)

From (2.11), xk − yk → 0 as k →∞ in an a.s. sense. Furthermore, in an a.s. sense,∑
k αγdist (xk, X∗) <∞ and in an a.s. sense, we have

lim
k→∞

dist(xk, X∗) = 0.

This implies that the entire sequence of {xk} converges to a point in X∗ in an a.s.
sense. Since {xk} and {yk} have the same limit points almost surely, we have that
{yk} also converges to a point in X∗ in an a.s. sense.

We are now in a position to derive a rate statement for the sequence of iterates.
Importantly, we attain a rate of O(1/K) in terms of the distance to the solution, an
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improvement over the rate of O(1/
√
K) by using an increasing batch-size sequence

{Nk}.

Proposition 2 (Rate statement for (SPRG)). Consider the (v-SPRG) scheme.
Let Assumptions 1, 2, and 5 hold. Let 0 < γk = γ ≤ 1/8L for all k ≥ 0,∑∞

k=1
1
Nk

< M , and x̄K ,
∑K
k=1 xk/K.

(1). Then for any K, E[dist(x̄K , X∗)] ≤ O
(

1
K

)
. (2). Suppose Nk = bkac, for

a > 1. The oracle complexity to obtain an xK such that E[dist(xk, X∗)] ≤ ε is
bounded as follows. ∑K

k=1Nk ≤ O
(

1
ε2

)
.

Proof. (1). From (2.10), taking expectations on both sides and by summing over k
from 1 to K, we have the following inequality:

K∑
k=1

2αγE[dist(x̄k, X∗)] ≤ E[‖x1 − x∗‖2] + 3
4E[‖x1 − y0‖2]

+ 2γF (x∗)T (x1 − x∗) + 32γ2ν2
K∑
k=1

1
Nk

.

Dividing both sides by 2Kαγ, we have the following sequence of inequalities:∑K
k=1 2αγE[dist(xk, X∗)]

2∑K
k=1 αγ

≤
E[‖x1 − x∗‖2] + 3

4E[‖x1 − y0‖2] + 2γF (x∗)T (x1 − x∗)
2Kαγ

+
16γν2∑K

k=1
1
Nk

Kα

≤
7
4B

2 + 2γBC
2Kαγ +

16γν2∑K
k=1

1
Nk

Kα
,

where the second inequality follows from the boundedness of X. By the convexity
of the distance function, we have that

E[dist(x̄K , X∗)] ≤
∑K
k=1 2αγE[dist(xk, X∗)]

2∑K
k=1 αγ

, where x̄K ,
∑K
k=1 xk
K

.

By choosing Nk such that ∑K
k=1

1
Nk

< M <∞, we have

E[dist(x̄K , X∗)] ≤
1
K

( 7
4B

2 + 2γBC
2αγ + 16γν2M

α

)
︸ ︷︷ ︸

,Ĉ

≤ O
( 1
K

)
.
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(2). It follows from Proposition 2(1) that for ε sufficiently small,

K∑
k=1

Nk ≤
d(Ĉ/ε)e∑
k=1

Nk ≤
d(Ĉ/ε)e∑
k=1

ka ≤
∫ (Ĉ/ε)+1

k=1
xadx

≤ ((Ĉ/ε) + 1)a+1

a+ 1 ≤
(
Ĉ

εa+1

)
.

2.3.2 Stochastic Subgradient Extragradient Schemes

We begin by proving the a.s. convergence of the iterates produced by (v-SSE).
Unlike (v-SPRG), this scheme does not require an assumption of weak sharpness
but mere monotonicity suffices.

Proposition 3 (a.s. convergence of (v-SSE)). Consider the scheme (v-SSE).
Let Assumptions 1 and 5 hold. Suppose 0 < γk = γ ≤ 1

2L and ∑k=1
1
Nk

< M . Then
any sequence generated by (v-SSE) converges to a solution x∗ ∈ X in an a.s. sense.

Proof. By Lemma 1(ii) we have

‖xk+1 − x∗‖2 ≤
∥∥∥xk − γk (F (xk+ 1

2

)
+ w̄k+ 1

2

)
− x∗

∥∥∥2

−
∥∥∥xk − γk (F (xk+ 1

2

)
+ w̄k+ 1

2

)
− xk+1

∥∥∥2

= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γk
(
F
(
xk+ 1

2

)
+ w̄k+ 1

2

)T
(x∗ − xk+1).

(2.12)

It is clear that

F
(
xk+ 1

2

)T
(xk+1 − x∗) = F

(
xk+ 1

2

)T (
xk+1 − xk+ 1

2
+ xk+ 1

2
− x∗

)
= F

(
xk+ 1

2

)T (
xk+1 − xk+ 1

2

)
+ F

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
.

(2.13)

Substituting (2.13) in (2.12), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γkF
(
xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
− F

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γkw̄Tk+ 1

2
(x∗ − xk+1)

= ‖xk − x∗‖2 −
∥∥∥xk − xk+ 1

2
+ xk+ 1

2
− xk+1

∥∥∥2
+ 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
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− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γkw̄Tk+ 1

2
(x∗ − xk+1)

= ‖xk − x∗‖2 −
∥∥∥xk − xk+ 1

2

∥∥∥2
−
∥∥∥xk+ 1

2
− xk+1

∥∥∥2
− 2

(
xk − xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
+ 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
− F

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γkw̄Tk+ 1

2
(x∗ − xk+1)

= ‖xk − x∗‖2 −
∥∥∥xk − xk+ 1

2

∥∥∥2
−
∥∥∥xk+ 1

2
− xk+1

∥∥∥2
− F

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2

(
xk+1 − xk+ 1

2

)T (
xk − γkF

(
xk+ 1

2

)
− xk+ 1

2

)
+ 2γkw̄Tk+ 1

2
(x∗ − xk+1). (2.14)

By definition of Ck, we have
(
xk+1 − xk+ 1

2

)T (
xk − γk(F (xk) + w̄k)− xk+ 1

2

)
≤ 0. (2.15)

Substituting (2.15) in (2.14), we deduce that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −
∥∥∥xk − xk+ 1

2

∥∥∥2
−
∥∥∥xk+ 1

2
− xk+1

∥∥∥2

− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γk

(
xk+1 − xk+ 1

2

)T (
F (xk)− F

(
xk+ 1

2

))
+ 2γkw̄Tk

(
xk+1 − xk+ 1

2

)
+ 2γkw̄Tk+ 1

2
(x∗ − xk+1)

≤ ‖xk − x∗‖2 −
∥∥∥xk − xk+ 1

2

∥∥∥2
−
∥∥∥xk+ 1

2
− xk+1

∥∥∥2
− F

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γk

∥∥∥xk+1 − xk+ 1
2

∥∥∥ ∥∥∥F (xk)− F
(
xk+ 1

2

)∥∥∥+ 2γk
(
w̄k − w̄k+ 1

2

)T (
xk+1 − xk+ 1

2

)
+ 2γkw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
≤ ‖xk − x∗‖2 −

∥∥∥xk − xk+ 1
2

∥∥∥2
−
∥∥∥xk+ 1

2
− xk+1

∥∥∥2
+ 1

2
∥∥∥xk+1 − xk+ 1

2

∥∥∥2

+ 2γ2
kL

2
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2
+ 1

2
∥∥∥xk+1 − xk+ 1

2

∥∥∥2

− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γkw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
= ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γkw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
= ‖xk − x∗‖2 − (1− 2γ2L2)

∥∥∥xk − xk+ 1
2

∥∥∥2
+ 2γ2

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
, (2.16)

by noticing that γk = γ. Define rγ(x) , ‖x−ΠX(x−γF (x))‖ as a residual function.
We have

r2
γ(xk) = ‖xk − ΠX(xk − γF (xk))‖2
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=
∥∥∥xk − xk+ 1

2
+ ΠX(xk − γF (xk)− γw̄k)− ΠX(xk − γF (xk))

∥∥∥
≤ 2

∥∥∥xk − xk+ 1
2

∥∥∥2
+ 2γ2‖w̄k‖2.

It follows that

−1
2
∥∥∥xk − xk+ 1

2

∥∥∥2
≤ −1

4r
2
γ(xk) + 1

2γ
2‖w̄k‖2. (2.17)

Using (2.17) in (2.16), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −
(1

2 − 2γ2L2
) ∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
− 1

2
∥∥∥xk − xk+ 1

2

∥∥∥2

≤ ‖xk − x∗‖2 −
(1

2 − 2γ2L2
) ∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
− 1

4r
2
γ(xk) + 1

2γ
2‖w̄k‖2

≤ ‖xk − x∗‖2 −
(1

2 − 2γ2L2
) ∥∥∥xk − xk+ 1

2

∥∥∥2
+ 9

2γ
2‖w̄k‖2 + 4γ2

∥∥∥w̄k+ 1
2

∥∥∥2

− F
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
− 1

4r
2
γ(xk).

Taking expectations conditioned on Fk and leveraging γ ≤ 1
2L , we obtain the

following bound:

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 + E
[
E
[
4γ2

∥∥∥w̄k+ 1
2

∥∥∥2
| Fk+ 1

2

]
| Fk

]
+ E

[9
2γ

2‖w̄k‖2 | Fk
]
− E

[
E
[
2γw̄Tk+ 1

2

(
xk+ 1

2
− x∗

)
| Fk+ 1

2

]
| Fk

]
− 1

4r
2
γ(xk)

≤ ‖xk − x∗‖2 + 17
2 γ

2 ν
2

Nk

− E
[
2γE

[
w̄k+ 1

2
| Fk+ 1

2

]T (
xk+ 1

2
− x∗

)
| Fk

]
− 1

4rγ(xk)
2

= ‖xk − x∗‖2 + 17
2 γ

2 ν
2

Nk

− 1
4r

2
γ(xk).

We may now apply Lemma 2 which allows us to claim that {‖xk−x∗‖} is convergent
and ∑k rγ(xk)2 <∞ in an a.s. sense. Therefore, in an a.s. sense, we have

lim
k→∞

rγ(xk)2 = 0.

This implies that the entire sequence {xk} converges to a point in X∗ in an a.s.
sense.
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Next we derive rate statements for the averaged sequence in the mere monotonic-
ity. Unlike in stochastic convex optimization where the function value represents a
metric to ascertain progress of the algorithm, a similar metric is not immediately
available for variational inequality problems. Instead, the progress of the scheme
can be ascertained by using the gap function, defined next.

Definition 4 (Gap function). Given a nonempty closed set X ⊆ Rn and a
mapping F : Rn → Rn, then the gap function at x is denoted by G(x) and is defined
as follows for any x ∈ X.

G(x) , sup
y∈X

F (y)T (x− y).

The gap function is nonnegative for all x ∈ X and is zero if and only if x is a
solution of SVI (cf. [6]). We establish the convergence rate for (v-SSE) by using
the gap function.

Proposition 4. Consider the (v-SSE) scheme and let {x̄K} be defined as x̄K =∑K
k=1 xk+ 1

2
/K, where 0 < γk = γ ≤ 1/(2L) for all k ≥ 0 and ∑∞k=1

1
Nk

< M . Let
Assumptions 1, 2, 5 hold. (1). Then we have E[G(x̄K)] ≤ O

(
1
K

)
for any K. (2).

Suppose Nk = bkac, for a > 1. Then the oracle complexity to compute an x̄K such
that E[G(x̄K)] ≤ ε is bounded as follows: ∑K

k=1Nk ≤ O
(

1
ε2

)
.

Proof. (1). From (2.16) and by replacing x∗ by y, we obtain

F (y)T
(
xk+ 1

2
− y

)
≤ ‖xk − y‖2 − ‖xk+1 − y‖2 − (1− 2γ2L2)

∥∥∥xk − xk+ 1
2

∥∥∥2

+ 2γ2
∥∥∥w̄k − w̄k+ 1

2

∥∥∥2
+ 2γw̄Tk+ 1

2

(
x∗ − xk+ 1

2

)
.

Summing over k, we obtain the following bound:

K∑
k=1

F (y)T
(
xk+ 1

2
− y

)
≤ ‖x1 − y‖2 + 2γ2

K∑
k=1

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

+ 2γ
K∑
k=1

w̄Tk+ 1
2

(
x∗ − xk+ 1

2

)

=⇒ 1
K

K∑
k=1

F (y)T
(
xk+ 1

2
− y

)
≤ 1
K
‖x1 − y‖2 +

2γ2∑K
k=1

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

K

+
∑K
k=1 2γw̄T

k+ 1
2

(
x∗ − xk+ 1

2

)
K
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or F (y)T (x̄K − y) ≤ 1
K
‖x1 − y‖2 +

2γ2∑K
k=1

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

K

+
∑K
k=1 2γw̄T

k+ 1
2

(
x∗ − xk+ 1

2

)
K

.

By taking supremum over y ∈ X, we obtain the following inequality:

sup
y∈X

F (y)T (x̄K − y) ≤ 1
K

sup
y∈X
‖x1 − y‖2 +

2γ2∑K
k=1

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

K

+
∑K
k=1 2γw̄T

k+ 1
2

(
x∗ − xk+ 1

2

)
K

=⇒ G(x̄K) ≤ B2

K
+

2γ2∑K
k=1

∥∥∥w̄k − w̄k+ 1
2

∥∥∥2

K
+
∑K
k=1 2γw̄T

k+ 1
2

(
x∗ − xk+ 1

2

)
K

.

Taking expectations on both sides, leads to the following inequality.

E[G(x̄K)] ≤ B2

K
+

2γ2∑K
k=1 E

[∥∥∥w̄k − w̄k+ 1
2

∥∥∥2
]

K
+

∑K
k=1 2γE

[
w̄T
k+ 1

2

(
x∗ − xk+ 1

2

)]
K

≤
B2 +∑K

k=1
8γ2ν2

Nk

K
.

It follows that E[G(x̄K)] ≤ O(1/K).
(2). We can use a same proof manner with Proposition 2(2).

Remark: While the statements display the similar rates for these three methods,
the constants are naturally quite distinct. In particular, we note that the Lipschitz
constant appears in the bounds defining the complexity of (SPRG) and lead to a
somewhat poorer bound. Yet, as the numerics display, these distinctions are less
evident in practice suggesting that the bounds are relatively weak.

2.4 Incorporating Random Projections in (SPRG) and
(SSE)
In this section, we assume that even a single projection onto the feasible set X
is challenging. We assume that X is given by an intersection of a collection of
closed and convex sets {Xi}i∈I where I is a finite set and consider a variants of

38



(SPRG) and (SSE) where the projection onto X is replaced by a projection onto
a randomly selected set Xi. In Section 2.4.1, we review our main assumptions and
any supporting results and proceed to derive asymptotic and rate guarantees in
Sections 2.4.2 and 2.5.2 for the random projection variants of (SPRG) and (SSE),
respectively.

2.4.1 Assumptions and Supporting Results

To establish the convergence, we need the following addtional assumptions on the
projection set X = ⋂

i∈I Xi and random projection process Πlk . The following
assumption is known as linear regularity discussed in [107]. It indicates that this
condition is a mild restriction in practice.

Assumption 7. There exists a positive scalar η such that for any x ∈ Rn

‖x− ΠX(x)‖2 ≤ ηmax
i∈I
‖x− ΠXi(x)‖2,

where I is a finite set of indexes, I = {1, . . . ,m}.

The following assumption requires that each constraint is sampled with at least
some probability and the random samples are nearly independent, which refers
to [107].

Assumption 8. The random variables lk, k = 0, 1, . . . , are such that

inf
k≥0

P (lk = Xi | Fk) ≥
ρi
m
, i = 1, . . . ,m,

with probability 1, where for i = 1, . . . ,m, ρi ∈ (0, 1] is a scalar.

The following lemma is essential to our proofs and it leverages basic properties
of projection.

Lemma 4. Let X be a closed convex subset of Rn. We have

‖y − ΠX(y)‖2 ≤ 2‖x− ΠX(x)‖2 + 8‖x− y‖2, ∀x, y ∈ Rn.

Proof. Since y − ΠX(y) = (x− ΠX(x))− (x− y) + (ΠX(x)− ΠX(y)), we have

‖y − ΠX(y)‖ ≤ ‖x− ΠX(x)‖+ ‖x− y‖+ ‖ΠX(x)− ΠX(y)‖
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≤ ‖x− ΠX(x)‖+ 2‖x− y‖.

Thus,

‖y − ΠX(y)‖2 ≤ 2‖x− ΠX(x)‖2 + 8‖x− y‖2,

where the last inequality leverages ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

The following lemma provides an inequality which is useful in deriving lower
bound of ‖xk+1 − x∗‖2.

Lemma 5. Under Assumptions 1, 3 and 4, we have

F (x)T (x− x∗) ≥ αdist (ΠX(x), X∗)− Cdist(x,X), ∀x ∈ Rn.

Proof. We have

F (x)T (x− x∗) = (F (x)− F (x∗))T (x− x∗) + F (x∗)T (ΠX(x)− x∗)

+ F (x∗)T (x− ΠX(x)). (2.18)

From the monotonicity assumption on F , we have

(F (x)− F (x∗))T (x− x∗) ≥ 0. (2.19)

Since x∗ is a solution, it follows that from the weak sharpness property,

F (x∗)T (ΠX(x)− x∗) ≥ αdist (ΠX(x), X∗) . (2.20)

Finally, F (x∗)T (ΠX(x)−x) ≤ ‖F (x∗)‖‖x−ΠX(x)‖ and ‖F (x∗)‖ ≤ C (by Assump-
tion 3),

F (x∗)T (x− ΠX(x)) ≥ −‖F (x∗)‖‖x− ΠX(x)‖ ≥ −Cdist(x,X). (2.21)

By substituting (2.19) – (2.21) in (2.18), the result follows.

Lemma 6. Suppose Assumptions 1 and 3 hold. Then for any x ∈ Rn,

‖F (x)‖2 ≤ 2L2‖x− x∗‖2 + 2C2.

Proof. The result follows by using the triangle inequality ‖F (x)‖ ≤ ‖F (x) −
F (x∗)‖+ ‖F (x∗)‖.
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Lemma 7. Suppose Assumptions 7 and 8 hold. Then for any lk ∈ I and any
x ∈ Rn,

E[‖x− Πlk(x)‖2 | Fk] ≥
ρ

mη
dist2(x,X), k ≥ 0,

with probability 1, where ρ , mini∈I{ρi}.

Proof. Following from Assumption 8, we have

E[‖x− Πlk(x)‖2 | Fk] =
m∑
i=1

P (lk = i | Fk)‖x− Πi(x)‖2

≥ ρ

m
‖x− Πj(x)‖2, ∀j = 1, . . . ,m

=⇒ E[‖x− Πlk(x)‖2 | Fk] ≥
ρ

m
max
j
‖x− Πj(x)‖2

(Ass. 7)
≥ ρ

mη
dist2(x,X).

2.4.2 SPRG with Random Projections

We begin with an a.s. convergence claim for (r-SPRG).

Proposition 5. Let Assumptions 1, 3 – 8 hold. Then any sequence generated by
(r-SPRG), where the projections are randomly generated, converges to a solution
x∗ ∈ X in an a.s. sense.

Proof. Define yk = 2xk − xk−1 for all k ≥ 1. By Lemma 1(ii) and by noting
that xk+1 = ΠX(xk − γkF (2xk − xk−1)) and F (xk, ωk) = F (xk) + wk, we have the
following inequality:

‖xk+1 − x∗‖2 ≤ ‖xk − γkF (yk, ωk)− x∗‖2 − ‖xk − γkF (yk, ωk)− xk+1‖2

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2γk(F (yk) + wk)T (xk+1 − x∗)

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2γkF (yk)T (xk+1 − x∗)− 2γkwTk (xk+1 − x∗).
(2.22)

Since

‖yk − xk+1‖2 = 2‖xk − xk+1‖2 − ‖xk−1 − xk+1‖2 + 2‖xk − xk−1‖2,
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We have

1
4‖xk − xk+1‖2 = 1

8‖yk − xk+1‖2 + 1
8‖xk−1 − xk+1‖2 − 1

4‖xk − xk−1‖2. (2.23)

Using (2.23) in (2.22), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 3
4‖xk+1 − xk‖2 − 1

8‖yk − xk+1‖2 − 1
8‖xk−1 − xk+1‖2

+ 1
4‖xk − xk−1‖2 − 2γkF (yk)T (xk+1 − x∗)− 2γkwTk (xk+1 − x∗)

= ‖xk − x∗‖2 − 3
4‖xk+1 − xk‖2 − 1

8‖yk − xk+1‖2 − 1
8‖xk−1 − xk+1‖2

+ 1
4‖xk − xk−1‖2 − 2γkF (yk)T (yk − x∗)− 2γkF (yk)T (xk+1 − yk)

− 2γkwTk (xk+1 − x∗)

≤ ‖xk − x∗‖2 − 3
4‖xk+1 − xk‖2 − 1

8‖yk − xk+1‖2 − 1
8‖xk−1 − xk+1‖2

+ 1
4‖xk − xk−1‖2 − 2γkαdist (ΠX(yk), X∗) + 2γkCdist(yk, X)

− 2γkF (yk)T (xk+1 − yk)− 2γkwTk (xk+1 − x∗), (2.24)

where the last inequality follows from Lemma 5. Since

−2γkF (yk)T (xk+1 − yk) ≤ 16γ2
k‖F (yk)‖2 + 1

16‖xk+1 − yk‖2 (2.25)

Using (2.25) in (2.24), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 3
4‖xk+1 − xk‖2 − 1

16‖yk − xk+1‖2 − 1
8‖xk−1 − xk+1‖2

+ 1
4‖xk − xk−1‖2 − 2γkαdist (ΠX(yk), X∗) + 2γkCdist(yk, X) + 16γ2

k‖F (yk)‖2

+ 16γ2
k‖wk‖2 − 2γkwTk (yk − x∗)

≤ ‖xk − x∗‖2 − 3
4‖xk+1 − xk‖2 − 1

16‖yk − xk+1‖2 − 1
8‖xk−1 − xk+1‖2

+ 1
4‖xk − xk−1‖2 − 2γkαdist (ΠX(yk), X∗) + 2γkCdist(yk, X) + 32γ2

kL
2‖yk − x∗‖2

+ 32γ2
kC

2 + 16γ2
k‖wk‖2 − 2γkwTk (yk − x∗).

Since

− 2γkαdist (ΠX(yk), X∗) ≤ −2γkαdist (xk, X∗) + 2γkα‖xk − ΠX(yk)‖
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≤ −2γkαdist (xk, X∗) + 2γkα‖xk − yk‖+ 2γkα‖yk − ΠX(yk)‖

= −2γkαdist (xk, X∗) + 2γkα‖xk − yk‖+ 2γkαdist(yk, X),

we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗)−
3
4‖xk+1 − xk‖2

− 1
16‖yk − xk+1‖2 − 1

8‖xk−1 − xk+1‖2 + 1
4‖xk − xk−1‖2 + 2γkα‖xk − yk‖

+ 2γk(C + α)dist(yk, X) + 64γ2
kL

2‖xk − x∗‖2 + 64γ2
kL

2‖xk − xk−1‖2

+ 32γ2
kC

2 + 16γ2
k‖wk‖2 − 2γkwTk (yk − x∗). (2.26)

By Lemma 7,

E[‖yk − xk+1‖2 | Fk] ≥ E[‖yk − Πlkyk‖2 | Fk] ≥
ρ

mη
d2(yk). (2.27)

Taking expectations conditioned on Fk and using (2.27) in (2.26), we have

E[‖xk+1 − x∗‖2 + 3
4‖xk+1 − xk‖2 | Fk] ≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗)

− 1
16E[‖yk − xk+1‖2 | Fk]−

1
8E[‖xk−1 − xk+1‖2 | Fk] + 1

4‖xk − xk−1‖2

+ 2γkα‖xk − yk‖+ 2γk(C + α)dist(yk, X) + 64γ2
kL

2‖xk − x∗‖2

+ 64γ2
kL

2‖xk − xk−1‖2 + 32γ2
kC

2 + 16γ2
kE[‖wk‖2 | Fk]

≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗)−
1
16

ρ

mη
d2(yk) + 1

4‖xk − xk−1‖2

+ 2γkα‖xk − yk‖+ 2γk(C + α)dist(yk, X)

+ 64γ2
kL

2‖xk − x∗‖2 + 64γ2
kL

2‖xk − xk−1‖2 + 32γ2
kC

2 + 16γ2
kν

2

= ‖xk − x∗‖2 + 3
4‖xk − xk−1‖2 − 2γkαdist (xk, X∗)−

1
2‖xk − xk−1‖2

+ 2γkα‖xk − xk−1‖+ 2γk(C + α)dist(yk, X)− 1
16

ρ

mη
d2(yk)

+ 64γ2
kL

2‖xk − x∗‖2 + 64γ2
kL

2‖xk − xk−1‖2 + 32γ2
kC

2 + 16γ2
kν

2

≤ ‖xk − x∗‖2 + 3
4‖xk − xk−1‖2 − 2γkαdist (xk, X∗)−

1
2‖xk − xk−1 − 2γkα‖2

+ 2γ2
kα

2 − ρ

16mη

(
dist(yk, X)− 16mηγk(C + α)

ρ

)2

+ 16mη(C + α)2

ρ
γ2
k

+ 64γ2
kL

2‖xk − x∗‖2 + 64γ2
kL

2‖xk − xk−1‖2 + 32γ2
kC

2 + 16γ2
kν

2
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≤ (1 + 86γ2
kL

2)
(
‖xk − x∗‖2 + 3

4‖xk − xk−1‖2
)

−
(

1
2‖xk−xk−1+2γkα‖2+2γkαdist(xk,X∗)+ ρ

16mη

(
dist(yk,X)− 16mηγk(C+α)

ρ

)2
)

︸ ︷︷ ︸
βk

+
(

2γ2
kα

2 + 16mη(C + α)2

ρ
γ2
k + 32γ2

kC
2 + 16γ2

kν
2
)

︸ ︷︷ ︸
ηk

. (2.28)

In effect, we obtain the following recursion:

E[vk+1 | Fk] ≤ (1− uk)vk − βk + ηk,

where vk ,
(
‖xk − x∗‖2 + 3

4‖xk − xk−1‖2
)
and uk = 86γ2

kL
2. Since ∑ γ2

k < ∞, it
follows that uk and βk are summable. We may then invoke Lemma 2 and it follows
that with probability one, the random sequence {‖xk − x∗‖2 + 3

4‖xk − xk−1‖2} is
convergent and ∑{1

2‖xk−xk−1−2γkα‖2 +2γkαdist (xk, X∗)} <∞ with probability
one. We have that∑k

1
2‖xk−xk−1−2γkα‖2 <∞ implying that ‖xk−xk−1−2γkα‖ →

0 in a.s. sense. It follows that ‖yk − xk − 2γkα‖ → 0 a.s. Since γk → 0, it follows
that yk − xk → 0 in an a.s. sense, which means xk − xk−1 → 0 in an a.s. sense.
Thus {‖xk − x∗‖} is convergent in an a.s. sense. We may then conclude by
contradiction that dist(xk, X∗) → 0 in an a.s. sense. If not, then with finite
probability, every subsequence of {xk} satisfies dist(xk, X∗) → h(ω) ≥ h̄ > 0
implying that ∑∞k=1 γkαdist(xk, X∗) =∞ with finite probability. This contradicts∑
k βk <∞, implying that xk k→∞−−−→ x∗ in an a.s. sense.

We now provide a rate and oracle complexity statement for this scheme.

Proposition 6. Let Assumptions 1 – 5, 7 – 8 hold and let 0 < γk = γ =
√

7B
2
√
M1K

,
where K is the pre-defined termination number of iterations and M1 = 301

2 L
2B2 +

2α2 + 16mη(C+α)2

ρ
+ 32C2 + 16ν2. Then the following holds for any sequence gen-

erated by (r-SPRG) in an expected value sense, where x̄k = ∑K−1
k=0 xk/K: (1)

E[dist (x̄K , X∗)] ≤ O
(

1√
K

)
; (2) The oracle complexity to compute an x̄K such that

E[dist(x̄k, X∗)] is bounded as follows: ∑K
k=1Nk ≤ O

(
1
ε2

)
, where Nk = 1 for all k.

Proof. (1). Taking expectations on both sides of (2.28), we have

2γkαE[dist (xk, X∗)] ≤ E
[
‖xk − x∗‖2 + 3

4‖xk − xk−1‖2
]
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− E
[
‖xk+1 − x∗‖2 + 3

4‖xk+1 − xk‖2
]

+ 86γ2
kL

2E
[
‖xk − x∗‖2 + 3

4‖xk − xk−1‖2
]

+ 2γ2
kα

2 + 16mη(C + α)2

ρ
γ2
k + 32γ2

kC
2 + 16γ2

kν
2

≤ E
[
‖xk − x∗‖2 + 3

4‖xk − xk−1‖2
]

− E
[
‖xk+1 − x∗‖2 + 3

4‖xk+1 − xk‖2
]

+ γ2
kM1,

where M1 = 301
2 L

2B2 + 2α2 + 16mη(C+α)2

ρ
+ 32C2 + 16ν2.

Summing over k from k = 0 to K − 1, we have

2γα
K−1∑
k=0

E[dist (xk, X∗)] ≤ E
[
‖x0 − x∗‖2 + 3

4‖x0 − x−1‖2
]

− E
[
‖xK − x∗‖2 + 3

4‖xK − xK−1‖2
]

+Kγ2M1

≤ E
[
‖x0 − x∗‖2 + 3

4‖x0 − x−1‖2
]

+Kγ2M1.

It follows that 2γαE[dist (x̄K , X∗)] ≤ 7B2

4K + γ2M1. Dividing both sides by 2γα and
optimizing the right-hand side in γ, we obtain the following when γ∗ =

√
7B

2
√
M1K

.

E[dist (x̄K , X∗)] ≤
7B2

8Kγα + γM1

2α =
√

7M1B

2α
√
K

= O
(

1√
K

)
,

(2). From (1), we know that K = O(1/ε2) and it follows that

K∑
k=1

Nk =
K∑
k=1

1 = K = O
( 1
ε2

)
.

The feasibility error arises because the random projection algorithms cannot
guarantee {xk} to be feasible. First we conduct almost-sure convergence analysis on
the metric {dist(xk, X)} for both randomly generated algorithms and then derive
the optimal rate of convergence. To establish the rate of convergence, we need the
following lemma.

Lemma 8. Let {δk} and {αk} be sequences of nonnegative scalars such that

δk+1 ≤ (1− β)δk +Kα2
k, ∀k ≥ 0,
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where β ∈ (0, 1) and K ≤ 0 are constants. If there exists k̄ ≥ 0 such that
α2
k+1 ≥ (1− β

2 )α2
k for all k ≥ k̄, we have

δk ≤
2N
β
α2
k + δ0(1− β)k +

K k̄∑
t=0

α2
t

 (1− β)k−k̄.

Proof. Please refer to [107].

Proposition 7. Let Assumptions 1 – 3, 5 – 8 hold. Suppose {xk} is generated by
(r-SPRG), where the projections are randomly generated. Then E[dist(x̄K , X)] ≤
O
(

1√
K

)
for any K > 0.

Proof. Let zk = xk − γkF (2xk − xk−1, ωk). We have

dist2(xk+1, X) ≤ ‖xk+1 − ΠX(zk)‖2 = ‖Πlk(zk)− ΠX(zk)‖2

≤ ‖zk − ΠX(zk)‖2 − ‖Πlk(zk)− zk‖2, (2.29)

where it follows from Lemma 1. By leveraging ‖a + b‖2 ≤
(
1 + 4mη

ρ

)
‖a‖2 +(

1 + ρ
4mη

)
‖b‖2, we obtain

‖zk − ΠX(zk)‖2 ≤ ‖zk − ΠX(xk)‖2 = ‖zk − xk + xk − ΠX(xk)‖2

≤
(

1 + 4mη
ρ

)
‖zk − xk‖2 +

(
1 + ρ

4mη

)
‖xk − ΠX(xk)‖2. (2.30)

Combining (2.29) and (2.30), we get

dist2(xk+1, X) ≤
(

1 + 4mη
ρ

)
‖zk − xk‖2 +

(
1 + ρ

4mη

)
dist2(xk, X)

− ‖Πlk(zk)− zk‖2. (2.31)

Following from Lemma 4 and 7, we have

E[‖zk − Πlk(zk)‖2 | Fk] ≥
ρ

mη
d2(zk) ≥

ρ

mη

(1
2dist

2(xk, X)− 4‖zk − xk‖2
)

≥ ρ

2mηdist
2(xk, X)− 4ρ

mη
‖zk − xk‖2 ≥ ρ

2mηdist
2(xk, X)− 4‖zk − xk‖2. (2.32)

Applying (2.32) to (2.31), it follows that

E[dist2(xk+1, X) | Fk] ≤
(

1− ρ

4mη

)
dist2(xk, X) +

(
5 + 4mη

ρ

)
‖zk − xk‖2
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≤
(

1− ρ

4mη

)
dist2(xk, X) +

(
5 + 4mη

ρ

)
(4L2B2 + 4C2 + 2ν2)γ2

k.

It is clear that γ2
k+1 ≥

(
1− ρ

8mη

)
γ2
k when k is sufficiently large. Leveraging Lemma

8, we have

E[dist2(xk, X)] ≤
(

40mη
ρ

+ 32m2η2

ρ2

)
(4L2B2 + 4C2 + 2ν2)γ2

k + d(x0)
(

1− ρ

4mη

)k

+
(5 + 4mη

ρ

)
(4L2B2 + 4C2 + 2ν2)

k̄∑
t=0

γ2
t

(1− ρ

4mη

)k−k̄

When k is sufficiently large, it satisfies that

E[dist2(xk, X)] ≤
((

40mη
ρ

+ 32m2η2

ρ2

)
(4L2B2 + 4C2 + 2ν2) + U1

)
γ2
k,

where U1 is a large number. It follows that

E[dist2(x̄K , X)] ≤
∑K−1
k=0 E[dist2(xk, X)]

K
≤
O
(∑K−1

k=0 γ
2
k

)
K

= O
( 1
K

)
, (2.33)

where we assume ∑K−1
k=0 γ

2
k < M <∞. By Jensen’s inequality, we obtain

E[dist(x̄K , X)] ≤
√
E[dist2(x̄K , X)] = O

(
1√
K

)

2.4.3 SSE with Random Projections

We now proceed to provide an analogous set of statements for the SSE scheme with
random projections.

Proposition 8. Let Assumptions 1, 3 – 8 hold and let γk ≤ 1
2L . Then any sequence

generated by (r-SSE), where the projections are randomly generated, converges to a
solution x∗ ∈ X in an a.s. sense.

Proof. By Lemma 1(ii), we have

‖xk+1 − x∗‖2 ≤
∥∥∥xk − γk (F (xk+ 1

2

)
+ wk+ 1

2

)
− x∗

∥∥∥2

−
∥∥∥xk − γk (F (xk+ 1

2

)
+ wk+ 1

2

)
− xk+1

∥∥∥2
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= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γk
(
F
(
xk+ 1

2

)
+ wk+ 1

2

)T
(x∗ − xk+1).

(2.34)

It is clear that

F
(
xk+ 1

2

)T
(xk+1 − x∗) = F

(
xk+ 1

2

)T (
xk+1 − xk+ 1

2

)
+ F

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
.

(2.35)

Using (2.35) in (2.34), we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γkF
(
xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
+ 2γkwTk+ 1

2
(x∗ − xk+1)− 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
= ‖xk − x∗‖2 −

∥∥∥xk − xk+ 1
2

+ xk+ 1
2
− xk+1

∥∥∥2
+ 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
+ 2γkwTk+ 1

2
(x∗ − xk+1)− 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
= ‖xk − x∗‖2 −

∥∥∥xk − xk+ 1
2

∥∥∥2
−
∥∥∥xk+ 1

2
− xk+1

∥∥∥2
− 2

(
xk − xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
+ 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− xk+1

)
+ 2γkwTk+ 1

2
(x∗ − xk+1)

− 2γkF
(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
= ‖xk − x∗‖2 −

∥∥∥xk − xk+ 1
2

∥∥∥2
−
∥∥∥xk+ 1

2
− xk+1

∥∥∥2

+ 2
(
xk+1 − xk+ 1

2

)T (
xk − γkF

(
xk+ 1

2

)
− xk+ 1

2

)
+ 2γkwTk+ 1

2
(x∗ − xk+1)− 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
.

With the similar approach in Proposition 3, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk − wk+ 1
2

∥∥∥2

+ 2γkwTk+ 1
2

(
x∗ − xk+ 1

2

)
− 2γkF

(
xk+ 1

2

)T (
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk − wk+ 1
2

∥∥∥2

+ 2γkwTk+ 1
2

(
x∗ − xk+ 1

2

)
− 2γkαdist

(
ΠX

(
xk+ 1

2

)
, X∗

)
+ 2γkCd

(
xk+ 1

2

)
.

(2.36)

Invoking weak sharpness property, we have

−2γkαdist
(
ΠX

(
xk+ 1

2

)
, X∗

)
≤ −2γkαdist (xk, X∗) + 2γkα

∥∥∥xk − xk+ 1
2

∥∥∥
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+ 2γkαd
(
xk+ 1

2

)
(2.37)

and

2γk(C + α)d
(
xk+ 1

2

)
≤ 2γk(C + α)dist(xk, X) + 2γk(C + α)

∥∥∥xk − xk+ 1
2

∥∥∥
≤ 2γk(C + α)dist(xk, X) + 4γ2

k(C + α)2 + 1
4
∥∥∥xk − xk+ 1

2

∥∥∥2
,

(2.38)

Using (2.37) and (2.38) in (2.36), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk − wk+ 1
2

∥∥∥2

+ 2γkwTk+ 1
2

(
x∗ − xk+ 1

2

)
− 2γkαdist

(
ΠX

(
xk+ 1

2

)
, X∗

)
+ 2γkCd

(
xk+ 1

2

)
≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk − wk+ 1
2

∥∥∥2

+ 2γkwTk+ 1
2

(
x∗ − xk+ 1

2

)
− 2γkαdist (xk, X∗) + 2γkα

∥∥∥xk − xk+ 1
2

∥∥∥
+ 2γk(C + α)d

(
xk+ 1

2

)
≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk − wk+ 1
2

∥∥∥2

+ 2γkwTk+ 1
2

(
x∗ − xk+ 1

2

)
− 2γkαdist (xk, X∗) + 2γkα

∥∥∥xk − xk+ 1
2

∥∥∥
+ 2γk(C + α)dist(xk, X) + 4γ2

k(C + α)2 + 1
4
∥∥∥xk − xk+ 1

2

∥∥∥2

≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗)−
(5

8 − 2γ2
kL

2
) ∥∥∥xk − xk+ 1

2

∥∥∥2

− 1
8
∥∥∥xk − xk+ 1

2
− 8γkα

∥∥∥2
+ 8γ2

kα
2 + 4γ2

k(C + α)2 + 2γk(C + α)dist(xk, X)

+ 2γ2
k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
.

Taking expectations conditioned on Fk, we obtain

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗)

−
(5

8 − 2γ2
kL

2
)
E
[∥∥∥xk − xk+ 1

2

∥∥∥2
| Fk

]
+ 8γ2

kα
2 + 4γ2

k(C + α)2 + 2γk(C + α)d(xk) + 8γ2
kν

2. (2.39)

According to Lemma 7, we have

E[
∥∥∥xk − xk+ 1

2

∥∥∥2
| Fk] = E[‖xk − Πlk(xk − γkF (xk, ωk))‖2 | Fk]
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≥ E[‖xk − Πlk(xk)‖2 | Fk] ≥
ρ

mη
dist2(xk, X). (2.40)

where the last inequality follows from Lemma 4. Multiplying (2.40) by 1
8 and using

it in (2.39), we have

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗)

−
(3

4 − 2γ2
kL

2
)
E
[∥∥∥xk − xk+ 1

2

∥∥∥2
| Fk

]
+ 8γ2

kα
2 + 4γ2

k(C + α)2 + 2γk(C + α)d(xk)

− ρ

8mηdist
2(xk, X) + 8γ2

kν
2

= ‖xk − x∗‖2 − 2γkαdist (xk, X∗)−
(3

4 − 2γ2
kL

2
)
E
[∥∥∥xk − xk+ 1

2

∥∥∥2
| Fk

]
+ 8γ2

kα
2

+ 4γ2
k(C + α)2 − ρ

8mη

(
dist(xk, X)− 8mηγk(C + α)

ρ

)2

+ 8mη(C + α)2

ρ
γ2
k + 8γ2

kν
2

≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗) + 8γ2
kα

2 + 4γ2
k(C + α)2

+ 8mη(C + α)2

ρ
γ2
k + 8γ2

kν
2 (2.41)

Now we may invoke Lemma 2. It follows that {‖xk − x∗‖2} is convergent a.s. and∑ 2γkαdist (xk, X∗) < ∞. It remains to show that dist(xk, X∗) k→∞−−−→ 0 a.s.. We
proceed by contradiction and assume that with finite probability, dist(xk, X∗)→
h(ω) > 0. Since ∑k γk = ∞, it follows that ∑k γkdist(xk, X∗) = ∞ with fi-
nite probability. But this contradicts ∑ 2γkαdist (xk, X∗) < ∞ a.s.. Therefore,
dist (xk, X∗)→ 0 in an a.s. sense.

Proposition 9. Let Assumptions 1 – 5, 7 – 8 hold and let 0 < γk = γ = B√
M2K

,
where K is the pre-defined termination number of iterations and M2 = 8α2 + 4(C +
α)2+ 8mη(C+α)2

ρ
+8ν2. Then the following holds for any sequence generated by (r-SSE)

in an expected value sense, where x̄k = ∑K−1
k=0 xk/K:(1) E[dist (x̄K , X∗)] ≤ O

(
1√
K

)
;

(2) The oracle complexity to compute an x̄K such that E[dist(x̄k, X∗)] is bounded
as follows: ∑K

k=1Nk ≤ O
(

1
ε2

)
, where Nk = 1 for all k.

Proof. (1). Taking expectations on both sides of (2.41) and using a similar deriva-
tion with the proof of Proposition 6, we have

2γαE[dist (x̄K , X∗)] ≤
B2

K
+ γ2M2,
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where M2 = 8α2 + 4(C + α)2 + 8mη(C+α)2

ρ
+ 8ν2.

Dividing both sides by 2γα and minimizing the right-hand side in γ, we obtain the
following at the optimal γ = B√

M2K
.

E[dist (x̄K , X∗)] ≤
B2

2Kγα + γM2

2α =
√
M2B

α
√
K

= O
(

1√
K

)
.

(2). The result follows using the same avenue as Proposition 6(2).

We conclude with an analysis of the infeasibility sequence.

Proposition 10. Let Assumptions 1 – 3, 5 – 8 hold. Let γk ≤ 1
2L . Suppose {xk}

is generated by (r-SSE), where the projections are randomly generated. Then the
feasibility error satisfies E[dist(x̄k, X)] ≤ O

(
1√
K

)
.

Proof. Let zk = xk − γkF
(
xk+ 1

2
, ωk+ 1

2

)
. We have

dist2(xk+1, X) ≤
∥∥∥xk+1 − ΠX

(
xk+ 1

2

)∥∥∥2
=
∥∥∥ΠTk(zk)− xk+ 1

2
+ xk+ 1

2
− ΠX

(
xk+ 1

2

)∥∥∥2

≤
(

1 + 4mη
ρ

)
‖ΠTk(zk)− xk+ 1

2
‖2 +

(
1 + ρ

4mη

)∥∥∥xk+ 1
2
− ΠX

(
xk+ 1

2

)∥∥∥2

=
(

1 + 4mη
ρ

)
‖ΠTk(zk)− Πlk(xk)‖2 +

(
1 + ρ

4mη

)∥∥∥xk+ 1
2
− ΠX

(
xk+ 1

2

)∥∥∥2

=
(

1 + 4mη
ρ

)
‖ΠTk(zk)− ΠTk(xk)‖2 +

(
1 + ρ

4mη

)∥∥∥xk+ 1
2
− ΠX

(
xk+ 1

2

)∥∥∥2

≤
(

1 + 4mη
ρ

)
‖zk − xk‖2 +

(
1 + ρ

4mη

)∥∥∥xk+ 1
2
− ΠX

(
xk+ 1

2

)∥∥∥2
, (2.42)

where we leverage ‖a+ b‖2 ≤
(
1 + 4mη

ρ

)
‖a‖2 +

(
1 + ρ

4mη

)
‖b‖2. We have that

E[d2
(
xk+ 1

2

)
| Fk] ≤

(
1− ρ

4mη

)
dist2(xk, X)

+
(

5 + 4mη
ρ

)
(4L2B2 + 4C2 + 2ν2)γ2

k. (2.43)

Using (2.43) in (2.42), we obtain

E[dist2(xk+1, X) | Fk] ≤
(

1− ρ2

16m2η2

)
dist2(xk, X)

+
(

8 + 12mη
ρ

+ 5ρ
4mη

)
(4L2B2 + 4C2 + 2ν2)γ2

k.
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It is clear that γ2
k+1 ≥

(
1− ρ2

32m2η2

)
γ2
k when k is sufficiently large. Leveraging

Lemma 8, we have

E[dist2(xk, X)] ≤
(

256m2η2

ρ2 + 384m3η3

ρ3 + 40mη
ρ

)
(4L2B2 + 4C2 + 2ν2)γ2

k

+ d(x0)
(

1− ρ2

16m2η2

)k

+
(8 + 12mη

ρ
+ 5ρ

4mη

)
(4L2B2 + 4C2 + 2ν2)

k̄∑
t=0

γ2
t

(1− ρ2

16m2η2

)k−k̄

When k is sufficiently large, it satisfies that

E[dist2(xk, X)] ≤
(

256m2η2

ρ2 + 384m3η3

ρ3 + 40mη
ρ

)
(4L2B2 + 4C2 + 2ν2)O(γ2

k).

By employing the same technique used in (2.33), we have E[dist(x̄K , X)] ≤ O
(

1√
K

)
.

2.5 Numerical Results
In this section, we apply the schemes on a stochastic Nash-Cournot game (Sec-
tion 2.5.1) and the computation of the invariant distribution of a Markov chain
(Section 2.5.2).

2.5.1 A Stochastic Nash-Cournot Game

In this section, we present and compare the computational results of applying
the extragradient schemes aforementioned to a stochastic Nash-Cournot game.
This game is assumed that I firms compete over a network of J nodes. Level
of production and sales of firm i ∈ I at node j ∈ J are denoted by pij and sij,
respectively. Furthermore, we assume the cost of production at node j is Cij(pij)
and the price at node j is denoted by Qj(s̄j, ξ), where s̄j is the aggregate sales at
node j. For simplicity, we assume the transportation costs are zero. Thus, each
firm i will solve a profit maximization problem given by the following:

max E[fi(x, ξ)] = E

∑
j∈J

(Qj(s̄j, ξ)sij − Cij(pij))


52



subject to
∑
j∈J

pij =
∑
j∈J

sij, pij ≤ capij, sij, qij ≥ 0, ∀j ∈ J .

The equilibrium conditions of this problem can be captured by a variational
inequality VI(X,F), where F = (F1(x); ...;FI(x)) with Fi(x) = E[∇xifi(x, ξ)]. In our
original setting, we assume there are I = 5 firms and J = 4 nodes, and the capacity
capij = 300, ∀i, j. Cij(pij)) , cijpij +dij , where cij = 1.5 and dij is a constant, ∀i, j.
Qj(s̄j, ξ) , aj − bj s̄j, where bj = 0.05 and aj is a uniformly distributed random
variable sampled from [49.5, 50.5], ∀j. With the above parameters, it can be shown
that the mapping F is strictly monotone.

We assume square-summable and non-summable step sizes in our experiments
and utilize gap function as our metric. Table 2.3 shows the empirical and theoretical
errors at the 4000th iteration with a diminishing steplength. Parameters of this
problem are L = 0.3, B = 2.25e2 and ν = 10/

√
3.

Table 2.3: Empirical and theoretical errors under mere monotonicity

SEG SPRG SSE
Empirical 9.8574e-3 9.2702e-3 9.1534e-3
Theoretical 2.259e3 3.373e3 2.259e3
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Figure 2.3: Convergence based on projections under mere monotonicity

Recall that SEG has two projections onto the set, while the other two schemes just
require one. We compare their performance under the same number of projections
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(Fig. 3.1). Next we change the size and parameters of the original game to ascertain
parametric sensitivity. In Table 2.4 we consider test problems which are a set of 16
problems where the settings and their corresponding empirical errors and elapsed
time are shown in Table 2.4. Table 2.4 shows the performance after 4000 iterations
and find that while SEG has almost the same empirical error with the others
but with significant computational cost. To check the performance of variance
reduction, we enlarge the random set for random variable aj to [40, 60]. We show
the difference of convergence results between enlarged random set and the original
narrow set in Fig. 2.4. Fig. 2.5 shows comparison of variance reduction schemes
with original ones under the same number of iterations. Table 2.5 shows the results
generated from different nodes in the system. The number of iterations used is 4000.
We note that all schemes show relatively similar sensitivity to the changes introduces.
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Figure 2.4: Convergence comparison between the enlarged random set and the
original narrow one

Key findings. The key findings are that (SPRG) and (SSE) produce empirical
errors but do so in approximately 65% of the time utilized by (SEG). Moreover, the
presence of variance reduction allows for significant improvement in the empirical
rates from the single-sample counterparts (See Table 2.5).
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Table 2.4: Errors and elapsed time comparison of the three schemes with different
parameters under mere monotonicity

SEG Time SSE Time SPRG Time
I = 5,J = 4, cij = 2, bj = 0.05 9.1e-3 2.4e3s 9.1e-3 1.6e3s 9.2e-3 1.5e3s
I = 6,J = 4, cij = 2, bj = 0.05 1.0e-2 2.4e3s 1.1e-2 1.6e3s 1.1e-2 1.5e3s
I = 5,J = 5, cij = 2, bj = 0.05 1.2e-2 2.5e3s 1.2e-2 1.8e3s 1.2e-2 1.5e3s
I = 6,J = 5, cij = 2, bj = 0.05 1.2e-2 2.5e3s 1.1e-2 1.9e3s 1.3e-2 1.5e3s
I = 5,J = 4, cij = 1, bj = 0.05 9.1e-3 2.3e3s 9.2e-3 1.7e3s 9.3e-3 1.4e3s
I = 6,J = 4, cij = 1, bj = 0.05 1.1e-2 2.3e3s 1.1e-2 1.8e3s 1.1e-2 1.4e3s
I = 5,J = 5, cij = 1, bj = 0.05 1.2e-2 2.4e3s 1.3e-2 1.8e3s 1.3e-2 1.5e3s
I = 6,J = 5, cij = 1, bj = 0.05 1.2e-2 2.4e3s 1.3e-2 1.9e3s 1.3e-2 1.5e3s
I = 5,J = 4, cij = 2, bj = 0.1 1.1e-2 2.4e3s 1.1e-2 1.6e3s 1.2e-2 1.4e3s
I = 6,J = 4, cij = 2, bj = 0.1 1.1e-2 2.4e3s 1.0e-2 1.6e3s 1.1e-2 1.5e3s
I = 5,J = 5, cij = 2, bj = 0.1 1.2e-2 2.4e3s 1.1e-2 1.7e3s 1.2e-2 1.4e3s
I = 6,J = 5, cij = 2, bj = 0.1 1.1e-2 2.5e3s 1.2e-2 1.8e3s 1.3e-2 1.4e3s
I = 5,J = 4, cij = 1, bj = 0.1 1.0e-2 2.4e3s 1.0e-2 1.7e3s 1.1e-2 1.3e3s
I = 6,J = 4, cij = 1, bj = 0.1 1.1e-2 2.4e3s 1.1e-2 1.6e3s 1.1e-2 1.3e3s
I = 5,J = 5, cij = 1, bj = 0.1 1.2e-2 2.4e3s 1.2e-2 1.8e3s 1.1e-2 1.4e3s
I = 6,J = 5, cij = 1, bj = 0.1 1.1e-2 2.4e3s 1.1e-2 1.7e3s 1.2e-3 1.0e3s

Table 2.5: Errors and elapsed time comparison of the schemes with different sizes
under the same number of iterations

Network Size SEG Time SSE Time v-SSE Time SPRG Time v-SPRG Time
20 1.0e-1 2.4e3s 1.1e-1 1.7e3s 7.5e-3 1.9e3s 1.1e-1 1.5e3s 7.4e-3 1.6e3s
24 1.3e-1 2.4e3s 1.4e-1 1.8e3s 7.7e-3 2.0e3s 1.3e-1 1.5e3s 7.7e-3 1.7e3s
28 1.8e-1 2.7e3s 1.7e-1 1.9e3s 7.9e-3 2.1e3s 1.9e-1 1.6e3s 8.0e-3 1.7e3s
32 2.0e-1 2.8e3s 1.9e-1 1.9e3s 8.3e-3 2.2e3s 2.0e-1 1.7e3s 8.2e-3 1.8e3s
36 2.5e-1 3.1e3s 2.5e-1 2.2e3s 8.7e-3 2.4e3s 2.4e-1 2.0e3s 8.8e-3 2.1e3s
40 3.4e-1 3.2e3s 3.5e-1 2.3e3s 9.0e-3 2.5e3s 3.5e-1 2.1e3s 9.1e-3 2.2e3s

2.5.2 Markov Invariant Distribution Approximation

We test the performance of the random projection schemes on an example from [107]
which requires computing a low-dimensional approximation to the invariant distri-
bution of a Markov chain. We denote its transition matrix by P and its stationary
distribution as π. The number of states is assumed to be 1000 and we want to
approximate the states in a low-dimensional subspace of R20 with a transforma-
tion matrix Σ. Then we use a projection approach to approximate π = P Tπ as
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Figure 2.5: Performance comparison between variance reduction schemes and
original ones

Σx = ΠX(P TΣx), where X , {x | Σx ≥ 0, eTΣx = 1}. It has been proved [107,116]
that the projected equation is equivalent to the VI:

(x− x∗)TSx∗ ≥ 0, ∀x ∈ R20,Σx ≥ 0, eTΣx = 1,

where S = ΣT (I − P T )Σ. We generate the transition matrix P randomly in our
experiment. The schemes are under strong monotone as well. Table 2.6 shows the
empirical and theoretical errors of all extragradient-type schemes at the 10000th
iteration. Figure 2.6 illustrates the convergence performance of the extragradient
schemes considered.

Table 2.6: Empirical and Theoretical errors on random projections

r-SEG r-SPRG r-SSE
Empirical 0.0776 0.0758 0.0657
Theoretical 2.0616 2.9183 2.0616

We record the elapsed time and empirical errors of each scheme with 10 different
transition matrices, as shown in Table 2.7 while the comparison between original
stochastic schemes and the random projection variants are shown in Table 2.8.
Key insights. In random projection variants, the projection onto each random
constraint is cheap. Thus, the run-time benefits of (r-SSE) are not obvious when
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Figure 2.6: Convergence based on projections on random projections

compared with (r-SEG) while (r-SPRG) is still faster than others. This is because
the second projection in (r-SSE), while computable in closed form, is almost as
expensive as a (cheap) projection.

Table 2.7: Errors and elapsed time comparison of the three schemes with different
transition matrices on random projections

Matrix r-SEG Time r-SSE Time r-SPRG Time
No.1 7.7e-2 1.4e3s 6.5e-2 1.4e3s 7.5e-2 0.7e3s
No.2 4.0e-2 1.3e3s 3.9e-2 1.4e3s 4.0e-2 0.7e3s
No.3 1.8e-2 1.3e3s 1.7e-2 1.4e3s 1.8e-2 0.7e3s
No.4 5.2e-2 1.4e3s 4.9e-2 1.4e3s 5.1e-2 0.7e3s
No.5 4.7e-2 1.3e3s 4.4e-2 1.4e3s 4.6e-2 0.7e3s
No.6 5.9e-2 1.3e3s 5.5e-2 1.4e3s 5.8e-2 0.7e3s
No.7 2.7e-2 1.4e3s 2.6e-2 1.4e3s 2.7e-2 0.7e3s
No.8 5.8e-2 1.3e3s 5.3e-2 1.4e3s 5.7e-2 0.7e3s
No.9 2.6e-2 1.4e3s 2.3e-2 1.4e3s 2.5e-2 0.7e3s
No.10 3.3e-2 1.4e3s 3.1e-2 1.4e3s 3.2e-2 0.7e3s
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Table 2.8: Errors and elapsed time comparison between the three schemes with
random projections and original ones

SEG r-SEG SSE r-SSE SRPG r-SRPG
Error 4.3e-3 7.7e-2 3.7e-3 6.5e-2 4.2e-3 7.5e-2
Time 2.8e4s 1.4e3s 1.6e4s 1.4e3s 1.5e4s 0.7e3s

2.6 Concluding Remarks
Extragradient schemes and their sampling-based counterparts represent a key
cornerstone of solving monotone deterministic and stochastic variational inequality
problems. Yet, the per-iteration complexity of such schemes is twice as high as
their single projection counterparts. We consider two avenues in which the two
projections are replaced by exactly one projection (a projected reflected scheme) or
a single projection onto the set and another onto a halfpace, the second of which is
computable in closed form (a subgradient extragradient scheme). In both instances,
we derive a.s. convergence statements and rate statements under variance reduction.
Notably, the sequences achieve a non-asymptotic rate of O(1/K), matching its
deterministic counterpart. Furthermore, when this set is itself challenging to
project onto, we develop a random projection variant for each scheme. Again,
a.s. convergence and rate statements are provided. Empirical behavior of both
schemes show significant benefits in terms of per-iteration complexity compared to
extragradient counterparts.
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Chapter 3 |
Stochastic proximal-point and
splitting schemes for monotone
stochastic generalized equations

3.1 Introduction
This chapter considers the resolution of the stochastic generalized equation, a
problem that requires an x ∈ Rn such that

0 ∈ E[T (x, ξ(ω))], (SGE)

where the components of the map T are denoted by Ti, i = 1, . . . , n; ξ : Ω→ Rd

is a random variable, Ti : Rn × Rd ⇒ Rn is a set-valued map, E[·] denotes the
expectation, and the associated probability space is given by (Ω,F ,P). In the
remainder of this chapter, we refer to T (x, ξ(ω)) by T (x, ω). The expectation of a
set-valued map leverages the Aumann integral [117] and is formally defined next.

E[Ti(x, ξ(ω))] =
{∫

vi(ω)dP (ω) | vi(ω) ∈ Ti(x, ξ(ω))
}
.

Consequently, the expectation E[T (x, ω)] can be defined as a Cartesian product of
the sets E[Ti(x, ω).

E[T (x∗, ω)] ,
n∏
i=1

E[Ti(x∗, ω)].
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Generalized equations find broad applicability in a range of settings in mathematical
programming, some instances of which are provided next.

(a) Convex optimization. Consider a convex programming problem defined
as (C-Opt)

min
x∈X

f(x), (C-Opt)

where f is a convex function defined on a closed and convex set X. Then x is a
solution of (C-Opt) if and only if

0 ∈ ∂f(x) +NX(x), (C-Opt-GE)

where NX(x) denotes the normal cone of X at x and NX(x) , {y ∈ Rn : yT (u−
x) ≤ 0, for all u ∈ X}. But this in effect requires solving a generalized equation
0 ∈ T (x) , ∂f(x) +NX(x).

(b) Saddle-point problems. Consider the solution of a saddle point problem
(Saddle-pt)

min
x∈X

max
y∈Y
L(x, y), (Saddle-pt)

where L(x, y) is a convex-concave function over X × Y and X and Y are closed
and convex sets. Then (x, y) is a solution of (Saddle-pt) if and only if

0 ∈ ∂xL(x, y) +NX(x),

0 ∈ −∂yL(x, y) +NY (y).
(Saddle-GE)

where NX(x) and NY (y) denotes the normal cones of X at x and Y at y, re-
spectively. It follows that computing a saddle-point of (Saddle) is equivalent
solving a generalized equation 0 ∈ T (x, y) where T (x, y) = T1(x, y) × T2(x, y),
T1(x, y) , ∂xL(x, y) +NX(x), and T2(x, y) , −∂yL(x, y) +NY (y).

(c) Variational inequality problems. Consider a variational inequality
problem, a class of problems that captures a range of settings including convex
optimization problems, Nash equilibrium problems, traffic equilibrium problems,
amongst others. Recall that a variational inequality problem VI(X,F ) requires an
x ∈ X such that

(y − x)TF (x) ≥ 0, ∀y ∈ X.
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But computing such an x is equivalent to solving the following inclusion problem.

0 ∈ F (x) +NX(x).

In effect, computing a solution to VI(X,F ) is equivalent to resolving 0 ∈ T (x)
where T (x) , F (x) +NX(x).

Generalized equations have been extensively examined since the 70s when
Rockafellar [47] developed a proximal point scheme for a generalized equation
characterized by monotone operators. In fact, this scheme subsumes a range of well
known schemes such as the augmented Lagrangian method [118], Douglas-Rachford
splitting [119], amongst others. While generalized equations represent a unifying
paradigm for a broad class of decision-making problems, there is growing need to
contend with the manifold uncertainty that emerges in a range of applications. To
this end, stochastic linear programming through the seminal work by Dantzig [120]
and Beale [121] provided a crucial foundation and much of the subsequent research in
this area focused on extending the realm of stochastic programming to convex [122],
nonlinear [123], and integer regimes [124]. Forays into the regime of stochastic
generalized equations have been far less common and been limited to recent efforts
on the analysis [125] and computation of solutions to stochastic variational inequal-
ity problems via stochastic approximation [39] and sample-average approximation
(SAA) [126]. We consider the solution of generalized equations under uncertainty,
a class of problems that has seen relatively little study, crucial exceptions being
the SAA-based analysis of such problems [30, 127]. In this paper, we consider how
the proximal point framework for stochastic generalized equations can be extended
to account for uncertainty. Such, stochastic generalizations of the proximal point
framework have significant reach since such developments will immediately allow
for stating stochastic counterparts for a range of the aforementioned techniques.

In fact, there have been some recent efforts in examining stochastic counterparts
of proximal point schemes [128–131] but all of these schemes are characterized by
a convergence rates which do not match their deterministic counterparts. These
gaps, in part, motivate the present work. The crucial challenge in developing a
direct extension of the proximal-point framework to the stochastic regime arises
in the evaluation of the resolvent operator (which will be subsequently defined),
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a computation that is complicated by the presence of an expectation-valued op-
erator. We provide two distinct avenues for addressing this concern: (i) In our
first approach, qualified as “sample-then-resolve”, we utilize increasingly large
sample-sizes, as a consequence of which the resolvent operator is based on a de-
terministic (albeit sample-average) operator; (ii) Our second scheme, referred to
as “resolve-then-sample”, maintains the expectation in the resolvent but utilizes a
Monte-Carlo sampling scheme for computing an inexact solution to this problem.
In both instances, we develop rate statements as well as oracle complexity bounds
when the mappings are maximal monotone and expectation-valued.

Often the operator T is characterized by a distinct structure in that it can be
cast as the sum of two operators A and B. Under suitable requirements on A and
B, a range of splitting methods can be developed and has represented a vibrant
area of research over the last two decades [49,50,119,132]. The regime where the
maps are expectation-valued has seen relatively less study [133]. We extend the
modified backward-forward splitting scheme developed by Tseng [52] to the setting
where the maps are expectation-valued. The key contributions of this chapter can
be articulated as follows:

I. Stochastic proximal point framework. In Section 3.3, we present a stochas-
tic proximal point framework for a subclass of stochastic generalized equations
where the operator is either strongly monotone or maximal monotone. By employ-
ing a sample-then-resolve approach, denoted by (str-SPP), we show that when
the sample-size sequences are raised at a suitable rate, we prove that the resulting
sequence of iterates converges either at a linear rate (strongly monotone) or at
a rate of O(1/k) (maximal monotone) (in terms of a suitable expectation-valued
metric), leading to oracle complexities of O(1/ε) and O(1/ε2a+1) for a > 1 when
the sample-size is raised at the rate of d(k + 1)2ae, respectively. In contrast, when
adopting a “resolve-then-sample” approach, denoted by (rts-SPP), the resolvent
operator is evaluated inexactly through a Monte-Carlo sampling scheme.

II. Stochastic splitting schemes. In Section 3.4, we consider structured regimes
in which the map can be rewritten as the sum of two maps, facilitating the use of
splitting-based framework. In this context, when one of the maps is expectation-
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valued while the other has a cheap resolvent, we consider a scheme in which a
sample-average of the expectation-valued map is utilized in the forward step. Akin
to the prior scheme, when the sample-size is increased at a suitable rate, the
resulting sequence of iterates converges either at a linear rate (strongly monotone)
or at a rate of O(1/k) (maximal monotone), leading to oracle complexities of O(1/ε)
and O(1/ε2), respectively. We compare the rate statements with prior work in
Tables 3.1 and 3.2.

Table 3.1: A review of proximal point schemes

Ref. Applicability Sto. Avg. Nk Metric Rate Oracle
[47] Strongly monotone N N 1 Iterates Linear -
[134] Maximal monotone N N 1 Yosida O(1/K) -
[134] Strongly monotone N N 1 Iterates Linear -
[128] Maximal mono., Lip. Y Y 1 Gap O(1/

√
K) -

[128] Strongly mono., Lip. Y N 1 Iterates O(1/K) -
[130] Strongly monotone Y N 1 Iterates O(1/K) -
[129] Maximal monotone Y Y 1 Iterates A.s. -

str-SPP Maximal monotone Y N d(k + 1)2ae Yosida O(1/K) O(1/ε2a+1)
str-SPP Strongly monotone Y N bρ−2(k+1)c Iterates Linear O(1/ε)
rts-SPP Maximal monotone Y N d(k + 1)2ae Yosida O(1/K) O(1/ε2a+1)
rts-SPP Strongly monotone Y N bρ−2(k+1)c Iterates Linear O(1/ε)

Table 3.2: A review of splitting schemes

Ref. Applicability Sto. Avg. Nk Metric Rate Oracle
[52] Strongly mono., Lip. N N 1 Iterates Linear -
[135] Maximal monotone N N 1 Iterates O(1/K) -
[136] Strongly monotone Y N 1 Iterates O(1/K) -
[137] Maximal monotone Y N 1 Iterates A.s. -

SMFBS Maximal monotone Y Y k Gap Fn. O(1/K) O(1/ε2)
SMFBS Strongly monotone Y N bρ−(k+1)c Iterates Linear O(1/ε)

The remainder of the chapter is organized into the four sections. In Section 3.2,
we provide some background on proximal and splitting schemes and outline the main
assumptions. In Section 3.3, we present and analyze a stochastic proximal-point
framework while in Section 3.4 examines the stochastic splitting framework. We
conclude this chapter by applying the two schemes to a set of applications.
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3.2 Background and Assumptions
In this section, we provide some background on proximal-point and splitting
schemes which provide a foundation for the development in the sections to follow.
We conclude this section with an outline of the assumptions as well as any results.

3.2.1 Generalized Equations

In this section, we provide some background on solving generalized equations of
the form

0 ∈ T (x), (GE)

where the mapping T is a set-valued maximal monotone map.

3.2.2 Algorithms for the solution of generalized equations

A range of algorithms have been developed for the resolution of (GE). We now
review a subset of the important avenues for the resolution of this problem.

I. Proximal-point schemes. A standard scheme to solve (GE) is the proximal
point algorithm proposed by Martinet [46] and Rockafellar [47, 48]:

xk+1 := (I + γkT )−1(xk), (PP)

where γk denotes the steplength, T is required to be maximal monotone. The map
(I + γkT )−1, referred to as the resolvent of T , is denoted by JTγk , (I + γkT )−1 [47].
This resolvent is a single-valued, nonexpansive map for a monotone T ; the domain
of JTγk is equal to Rn if T is maximal monotone [6]. In [47], Rockafellar developed
a proximal-point framework for generalized equations with monotone operators,
presenting a linear rate statement for strongly monotone T . More recently, in [134],
Corman and Yuan proved that under maximal monotonicity, the proximal-point
scheme produced sequences which diminishes to zero at the rate of O(1/k) under an
appropriate metric while a linear rate can be proven in strongly monotone regimes.
In Section 3.3, we develop a stochastic proximal point framework where we consider
one of two avenues:
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(A) The resolvent of the expectation-valued map, denoted by (I+γkE[T (x, ω)])−1,
is approximated with increasing accuracy via Monte-Carlo sampling. In
particular, (I + γkE[T (x, ω))−1 requires computing a solution of a stochastic
generalized equation with a strongly monotone operator, which can often be
obtained via a stochastic approximation framework.

(B) The resolvent of the sample-average approximation of the map is employed,
as defined by (I + γkT̄k)−1, where T̄k ,

∑Nk
j=1 T (x,ωj)
Nk

.

Yet, the applicability of proximal-point schemes is crucially reliant on the tractability
of evaluating the resolvent operator JTγk(xk). When this evaluation is problemmatic,
splitting-based approaches have emerged as important alternatives.

(II). Splitting schemes. In many applications, the map T may not have a
tractable resolvent operator. However, suppose either the resolvent of A or B (or
both) is tractable where T , A+B, then splitting schemes assume relevance.

(a) Douglas-Rachford Splitting [49,119]. In this scheme, the resolvent of A and
B can be separately evaluated to generate a sequence defined as follows.

xk+1 := (I + γkB)−1((I + γkA)−1(I − γkB) + γkB)(xk), (DRS)

(b) Peaceman-Rachford Splitting [49,132]. In contrast, in the Peaceman-Rachford
splitting method, the update rule is slightly different, given by the following.

xk+1 := (I + γkB)−1(I − γkA)(I + γkA)−1(I − γkB)(xk). (PRS)

(c) Forward-backward splitting. Moreover, if the resolvent of B is easier to
evaluate, we may develop algorithms leveraging these resolvents. Assuming
A and B are maximal monotone, the forward-backward splitting method
was proposed by [49, 50] respectively and was applied to convex optimization
by [51]:

xk+1 := (I + γkB)−1(I − γkA)(xk). (FBS)

In [137], a stochastic variants of the forward-backward splitting method is
developed for strongly monotone and equipped with a rate of O( 1

K
) while
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in [136], maximal monotone regimes are examined and a.s. convergence
statements are provided. Notably, we present schemes that provide distinct
improvements over these rates.

(d) Modified backward-forward splitting. A drawback of (FBS) is that it generally
requires a strong monotonicity assumption on A to ensure convergence. An
extension was suggested by Tseng [52] that weakened the requirement on A
to be mere monotonicity:

xk+ 1
2

:= (I + γkB)−1(I − γkA)(xk),

xk+1 := ΠX

(
xk+ 1

2
− γk

(
A
(
xk+ 1

2

)
− A(xk)

))
.

(MFBS)

In this scheme, convergence was proved under the assumptions of Lipschitz
continuity and monotonicity of the map A.

In Section 3.4, we consider a setting where A(x) , E[A(x, ω)] and develop a
modified forward-backward splitting framework in which the resolvent of A is
computed via either utilizing the resolvent of a single sample or the sample-average.

3.2.3 Assumptions and Supporting Results

We outline some assumptions on T which we will utilize when necessary.

Assumption 9. The mapping T is maximal monotone.

In some instances,T is assumed to be strongly monotone.

Assumption 10. The mapping T is σ-strongly monotone, i.e. there exists σ > 0
such that

(u− v)T (x− y) ≥ σ‖x− y‖2, ∀x, y ∈ Rn, u ∈ T (x), v ∈ T (y).

Assumption 11. The mapping T is L-Lipschitz continuous on Rn, i.e. for all
x, y ∈ Rn,

‖u− v‖ ≤ L‖x− y‖, ∀u ∈ T (x), v ∈ T (y).

We consider schemes in which the x0 ∈ Rn is a random initial point and {γk}
denotes the steplength sequence.
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Assumption 12. The diminishing steplength sequence γk is square-summable but
non-summable; ∑∞k=0 γ

2
k <∞,

∑∞
k=0 γk =∞.

We assume the presence of a stochastic first-order oracle that can provide an
unbiased estimator of T (x), given by T (x, ω), such that E[Ti(x, ω)] = Ti(x). Define
vk ∈ T (xk), vk(ωk) ∈ T (xk, ωk) and wk , vk(ωk)− vk. Furthermore we denote Fk
as the history up to iteration k, i.e., Fk , {x0, ω0, ω1, · · · , ωk−1}. The following
requirements on the first and second moments are imposed when necessary.

Assumption 13. At an iteration k, the following hold in an a.s. sense: (i) The
conditional mean E[wk | Fk] is zero for all k; (ii) The conditional second moment
is bounded or E[‖wk‖2 | Fk] ≤ ν2 for all k.

3.3 Stochastic Proximal Point Schemes
In this section, we consider the stochastic counterpart of the proximal-point method.
While stochastic counterparts of the proximal gradient method (and its accelerated
counterparts) have received much attention [111, 138, 139], there has been less
progress in extending the proximal-point method. Recently, Asi and Duchi [130]
developed model-based methods combining stochastic proximal point method which
produces a convergence rate of O( 1

k
).

xk+1 := argmin
x∈X

{
f(x, ωk) + 1

2γk
‖x− xk‖2

2

}
.

Bianchi [129] established the almost-sure weak ergodic convergence of the following
scheme under a weaker assumption of maximal monotonicity.

xk+1 := (I + γkT (xk, ωk))−1(xk).

Under a strong monotonicity requirement on the operator, Patrascu and Necoara [128]
proposed a variant of stochastic proximal point method on a problem over the
intersection of a large collection of convex sets,

yk := argminx∈Rn
{
f(x, ωk) + 1

2γk
‖x− xk‖2

2

}
xk+1 := ΠXωk

(yk),
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where f : Rn → R is a convex function and ω is a random variable with its associated
probability space (Ω, P ). This leads to a convergence rate of O( 1

k
). When imple-

menting (PP) on an expectation-valued map T (xk), where Ti(x) , E[Ti(x, ξ(ω))],
the resolvent is challenging to compute since the expectation is unavailable in closed
form. To this end, we consider two avenues.

I. Sample-then-resolve Stochastic Proximal-Point schemes (str-SPP).

Our first scheme replaces the expectation T (xk) by a sample-average T̄k ,
∑Nk

j=1 T (x,ωj,k)
Nk

in computing the resolvent; in effect, we first sample and then resolve. The resulting
scheme is defined as follows given a random point x0 ∈ Rn,

xk+1 := (I + γT̄k)−1(xk), (str-SPP)

where γ is a suitably chosen steplength. If Nk = 1 for all k, we obtain a counterpart
that is aligned with stochastic approximation schemes [99] while Nk = N for all
k leads to a mini-batch framework. If however, Nk is an increasing sequence, a
variance-reduced scheme is obtained with the intent of recovering deterministic rates
of convergence [108,140]. We analyze the convergence of (str-SPP) in Section 3.3.1.

II. Resolve-then-sample Stochastic Proximal-Point schemes (rts-SPP).
Our second scheme retains the expectation T (xk) in the resolvent operator but
computes the resolvent operator by a Monte-Carlo sampling scheme, leading to
an error; in effect, we articulate the resolvent problem then utilize sampling to get
an approximation, thus the qualifier resolve then sample. The resulting scheme is
defined as follows given a random point x0 ∈ Rn,

xk+1 := (I + γkT (xk))−1(xk) + ek, (rts-SPP)

where ek denotes the random error in computing the resolvent (I + γkT (xk))−1

when employing Monte-Carlo sampling schemes. We analyze the convergence of
(rts-SPP) in Section 3.3.2.

3.3.1 Convergence Analysis of (str-SPP)

We first introduce the Yosida approximation operator [141] and recall some of its
properties.
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Definition 5 (Yosida approximation). For a set-valued maximal monotone
operator T : Rn → Rn, the Yosida approximation operator is denoted as Tγ(•) and
is defined as follows.

Tγ ,
1
γ

(I − JTγ ).

The Yosida approximation has an important property (cf. [134]) in that a zero
of the operator is a solution to the original generalized equation, i.e.

0 ∈ T (x)⇔ Tγ(x) = 0.

Recall that the Yosida operator Tγ(x) is single-valued and 1
γ
-Lipschitz continuous

and has the following property [134].

Lemma 9. Given a set-valued maximal monotone operator T : Rn ⇒ Rn, let
JTγk(xk) denote the resolvent operator while Tγk denotes the Yosida approximation
operator of T . Then we have that Tγk(x) ∈ T (JTγk(x)) for all x ∈ Rn.

We begin with a result that provides a bound for the sequence of iterates
produced by a deterministic proximal point scheme.

Lemma 10. Let Assumptions 9, 13 hold and let γk = γ > 0 for all k. Assume
x∗ ∈ T−1(0) is a solution. Consider any sequence generated by (SPP). Then the
following holds for all k > 0:

‖JTγk(xk)− x
∗‖2 = ‖xk − x∗‖2 − γ2

k‖Tγk(xk)‖2 − 2γkTγk(xk)T (JTγk(xk)− x
∗).

Proof. By the definition of the Yosida approximation operator, we can write JTγk(xk)
as follows.

JTγk(xk) = xk − γkTγk(xk). (3.1)

Using (3.1), we have

‖JTγk(xk)− x
∗‖ = ‖xk − γkTγk(xk)− x∗‖2

= ‖xk − x∗‖2 + γ2
k‖Tγk(xk)‖2 − 2γkTγk(xk)T (xk − x∗). (3.2)
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Using the definition of Tγk , we have

xk = γkTγk(xk) + JTγk(xk) and x∗ = γkTγk(x∗) + JTγk(x
∗). (3.3)

Using (3.3), it follows that

Tγk(xk)T (xk − x∗) = Tγk(xk)T (γkTγk(xk)− γk Tγk(x∗)︸ ︷︷ ︸
=0

)

+ Tγk(xk)T (JTγk(xk)− J
T
γk

(x∗)︸ ︷︷ ︸
=x∗

)

= Tγk(xk)T (γkTγk(xk)) + Tγk(xk)T (JTγk(xk)− x
∗) (3.4)

The conclusion follows by inserting (3.4) in (3.2).

We are now ready to prove our main convergence statement for (str-SPP).
Since every iterate utilizes the resolvent of the sample-average map, we require the
following assumption on w̄k,Nk , defined as follows.

v̄k,Nk = xk+1 − yk+1

where yk+1 = (I + T (xk))−1(xk).

We then impose the following assumption on the conditional second moment of
vk.

Assumption 14. At an iteration k, the following hold in an a.s. sense: (i) The
conditional second moment is bounded or E[‖vk‖2 | Fk] ≤ Cν2

Nk
for all k.

Proposition 11 (Rate statement for (str-SPP)). Let Assumptions 9 and 14 hold
and let γ > 0 and Nk = d(k + 1)2ae for k > 0 where a > 1. Consider a sequence
{xk} generated by (str-SPP). Then the following hold.
(1). The following holds for any k > 0.

E[‖Tγ(xk)‖2] = O
( 1
k + 1

)
.

(2).If xK is such that E[‖Tγ(xk)‖2 ≤ ε, then the oracle complexity of the number of
evaluations of T (x, ω) are bounded as follows.

K∑
k=1

Nk = O
( 1
ε2a+1

)
.
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Proof. (1). We begin with invoking Lemma 9, implying that

(Tγ(xk)− Tγ(x∗))T (JTγ (xk)− JTγ (x∗)) ≥ 0,

≡ (Tγ(xk))T (JTγ (xk)− x∗) ≥ 0, (3.5)

by noticing that Tγ(x∗) = 0 and JTγ (x∗) = x∗. Substituting (3.5) in Lemma 10, we
obtain the following relation

‖JTγ (xk)− x∗‖2 = ‖xk − x∗‖2 − γ2‖Tγ(xk)‖2 − 2γTγ(xk)T (JTγ (xk)− x∗)

≤ ‖xk − x∗‖2 − γ2
k‖Tγk(xk)‖2 ≤ ‖xk − x∗‖2. (3.6)

With the aforementioned inequalities, we may provide the following bound in
expectation.

E[‖xk+1 − x∗‖] ≤ E[‖JTγ (xk)− x∗‖] + E[‖xk+1 − JTγ (xk)‖]

≤ E[‖JTγ (xk)− x∗‖] + γCν√
Nk+1

(From (3.6))
≤ E[‖xk − x∗‖] + Cγν√

Nk+1
(3.7)

≤ ‖x0 − x∗‖+ Cγν
∞∑
i=0

1√
Ni+1

. (3.8)

Recall that ‖xk+1 − x∗‖2 can be bounded as follows.

‖xk+1 − x∗‖2 = ‖JTγk(xk)− x
∗‖2 + ‖xk+1 − JTγk(xk)‖

2

+ 2(JTγk(xk)− x
∗)T (xk+1 − JTγk(xk))

≤ ‖JTγk(xk)− x
∗‖2 + ‖xk+1 − JTγk(xk)‖

2

+ 2‖JTγk(xk)− x
∗‖‖xk+1 − JTγk(xk)‖. (3.9)

Taking expectations on both sides of (3.9), we get

E[‖xk+1 − x∗‖2] ≤ E[‖JTγ (xk)− x∗‖2] + E[‖xk+1 − JTγ (xk)‖2]

+ 2E[‖JTγ (xk)− x∗‖‖xk+1 − JTγ (xk)‖]

≤ E[‖JTγ (xk)− x∗‖2] + E[‖xk+1 − JTγ (xk)‖2]

+ 2E[E[‖JTγ (xk)− x∗‖‖xk+1 − JTγ (xk)‖ | Fk]]

= E[‖JTγ (xk)− x∗‖2] + E[‖xk+1 − JTγ (xk)‖2]
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+ 2E[E[‖JTγ (xk)− x∗‖]E[‖xk+1 − JTγ (xk)‖ | Fk]]

= E[‖JTγ (xk)− x∗‖2] + E[‖xk+1 − JTγ (xk)‖2]

+ 2E[‖JTγ (xk)− x∗‖]E[E[‖xk+1 − JTγ (xk)‖ | Fk]]. (3.10)

Invoking nonexpansivity of JTγk , Lemma 10, and (3.8), it follows that

E[‖JTγk(xk)− J
T
γk

(x∗)‖] ≤ E[‖xk − x∗‖] ≤ ‖x0 − x∗‖+ Cγν
∞∑
i=0

1√
Ni+1

. (3.11)

By invoking Lemma 13 and 10 and (3.11), the expression in (3.10) can be bounded
as follows by noticing γk = γ.

E[‖xk+1 − x∗‖2] ≤ E[‖xk − x∗‖2]− γ2E[‖Tγ(xk)‖2] + C2γ2ν2

Nk+1

+ 2Cγν√
Nk+1

(
‖x0 − x∗‖+ Cγν

∞∑
i=0

1√
Ni+1

)
.

Defining E1 ,
∑∞
i=0

1√
Ni
,E2 ,

∑∞
i=0

1
Ni

and summing from i = 0, · · · , k, we get

γ2
k∑
i=0

E[‖Tγ(xi)‖2] ≤ ‖x0 − x∗‖2 − E[‖xk+1 − x∗‖2]

+
k∑
i=0

(
C2γ2ν2

Ni+1
+ 2Cγν√

Ni+1

(
‖x0 − x∗‖+ Cγν

∞∑
`=0

1√
N`+1

))

≤ ‖x0 − x∗‖2 + C2γ2ν2E2 + 2CγνE1‖x0 − x∗‖+ 2 (Cγν)2E2
1

= (‖x0 − x∗‖+ CγνE1)2 + C2γ2ν2(E2 + E2
1). (3.12)

We have

Tγ(xk) = 1
γ

(xk − JTγ (xk)) = 1
γ

(xk+1 − JTγ (xk)− (xk+1 − xk))

= 1
γ

(xk+1 − JTγ (xk))−
1
γ

(JTγ (xk+1)− JTγ (xk))− (Tγ(xk+1)− Tγ(xk))

It follows that

(Tγ(xk+1)− Tγ(xk))TTγ(xk) = 1
γ

(Tγ(xk+1)− Tγ(xk))T (xk+1 − JTγ (xk))

− 1
γ

(Tγ(xk+1)− Tγ(xk))T (JTγ (xk+1)− JTγ (xk))︸ ︷︷ ︸
≥ 0

−‖Tγ(xk+1)− Tγ(xk)‖2
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≤ 1
γ

(Tγ(xk+1)− Tγ(xk))T (xk+1 − JTγ (xk))

− ‖Tγ(xk+1)− Tγ(xk)‖2. (3.13)

Then we have

‖Tγ(xk+1)‖2 = ‖Tγ(xk)‖2 + ‖Tγ(xk+1)− Tγ(xk)‖2 + 2(Tγ(xk+1)− Tγ(xk))TTγ(xk)
(3.13)
≤ ‖Tγ(xk)‖2 − ‖Tγ(xk+1)− Tγ(xk)‖2

+ 2
γ
‖Tγ(xk+1)− Tγ(xk)‖‖xk+1 − JTγ (xk)‖

≤ ‖Tγ(xk)‖2 − ‖Tγ(xk+1)− Tγ(xk)‖2 + ‖Tγ(xk+1)− Tγ(xk)‖2 + ν2

γ2Nk+1

= ‖Tγ(xk)‖2 + ν2

γ2Nk+1
. (3.14)

By (3.14), we have the following relationship.

‖Tγ(xk)‖2 ≤ ‖Tγ(xi)‖2 +
k−1∑
j=i

ν2

γ2Nj+1
, ∀i = 0, · · · , k − 1. (3.15)

Thus, we have

E[‖Tγ(xk)‖2]
(3.12),(3.15)
≤

(‖x0 − x∗‖+ CγνE1)2 +
(
C2γ2ν2E2 + (CγνE1)2

)
γ2(k + 1)

+
ν2∑k

i=0
∑k−1
j=i

1
Nj+1

(k + 1) .

Recalling Nk = d(k + 1)2ae, a > 1, it follows that

k∑
i=0

k−1∑
j=i

1
Nj+1

=
k∑
i=0

k−1∑
j=i

1
d(j + 1)2ae

≤
k∑
i=0

k−1∑
j=i

1
(j + 1)2a

≤
∫ k+1

0

∫ k+1

y

1
(x+ 1)2a dx dy ≤

1
2(2a− 1)(a− 1) .

Since ∑∞i=0
1√
Ni+1

< +∞ and ∑∞i=0
1

Ni+1
< +∞, we have E[‖Tγ(xk)‖2] = O

(
1

k+1

)
.

(2). Suppose xK is such that E[‖Tγ(xK)‖2] ≤ ε. From (1), we have, for sufficiently
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small ε,

K∑
k=1

Nk ≤
dĈ/εe−1∑
k=1

Nk ≤
dĈ/εe−1∑
k=1

d(k + 1)2ae ≤ 2
dĈ/εe−1∑
k=1

(k + 1)2a

≤ 2
∫ Ĉ/ε

x=1
(x+ 1)2a dx ≤ 2(Ĉ/ε+ 1)2a+1

2a+ 1 ≤
(

Ĉ

ε2a+1

)
.

Next, we derive a rate statement under a strong monotonicity assumption on T .
To begin, we need the following lemmas:

Lemma 11. Given a scalar y, we have that byc ≥
⌈

1
2y
⌉
, ∀y ≥ 1, y ∈ R.

Proof. Please refer to Appendix.

Lemma 12. Let Assumptions 9 – 10, 13 hold and let γ > 0. Assume x∗ ∈ T−1(0)
is a solution. Then we have the following for all k.

‖JTγ (xk)− x∗‖ ≤ (1 + σγ)−1‖xk − x∗‖.

Proof. Suppose yk+1 = JTγ (xk). From the definition of JTγk(xk), we have xk =
yk+1 + γTk(yk+1). It follows that

‖xk − x∗‖2 = ‖yk+1 − x∗‖2 + γ2‖T̄k(yk+1)− T̄k(x∗)‖2

+ 2γ(T̄k(yk+1)− T̄k(x∗))T (yk+1 − x∗)

≥ (1 + 2σγ)‖yk+1 − x∗‖2 + γ2‖T̄k(yk+1)− T̄k(x∗)‖2

≥ (1 + σγ)2‖yk+1 − x∗‖2,

where the first inequality follows from the strong monotonicity of Tk and the second
inequality is a consequence of ‖Tk(yk+1)− Tk(x∗)‖2 ≥ σ2‖yk+1 − x∗‖2. Note that
‖Tk(yk+1)− Tk(x∗)‖2 ≥ σ‖yk+1 − x∗‖2 follows from strong monotonicity of Tk and
by invoking the Cauchy-Schwarz inequality. It follows that

‖xk − x∗‖2 ≥ (1 + σγk)2‖yk+1 − x∗‖2 = (1 + σγ)2‖JTγk(xk)− x
∗‖2.

With Lemma 11 and 12, we may derive the following rate statement under
strong monotonicity.
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Proposition 12 (Linear convergence of (str-SPP) under strong mono-
tonicity). Let Assumptions 10 and 14 hold and assume ‖x0 − x∗‖ is bounded by
C. Let γk = γ. Suppose Nk+1 = bρ−2(k+1)c, D ,

√
2γν, q , (1 + σγ)−1, ρ̃ ∈ (q, 1),

D̂ > 1/ ln(ρ̃/ρ)e and D̃ ,
(
C +D 1

1−min{(q/ρ),(ρ/q)}

)
. Then the following hold.

(a). Then any sequence generated by (str-SPP) converges to a solution x∗ ∈ T−1(0)
at a linear rate in an expected value sense .
(b). Suppose xK+1 satisfies E[‖xK+1 − x∗‖] ≤ ε. Then ∑K

k=1Nk ≤ O
(

1
ε

)
.

Proof. (a). By invoking Lemma 12 and Assumption 14, we obtain the following.

E[‖xk+1 − x∗‖] ≤ E[‖yk+1 − x∗‖] + E[‖xk+1 − yk+1‖]

≤ (1 + σγ)−1E[‖xk − x∗‖] + γν√
Nk+1

. (3.16)

According to Lemma 11, we have

Nk = bρ−2(k+1)c ≥
⌈1

2ρ
−2(k+1)

⌉
≥ 1

2ρ
−2(k+1). (3.17)

If q < ρ < 1: Using (3.17) in (3.16), we deduce

E[‖xk+1 − x∗‖] ≤ qE[‖xk − x∗‖] + γν√
Nk+1

= qE[‖xk − x∗‖] +Dρk+1

≤ qk+1E[‖x0 − x∗‖] +D
k+1∑
j=1

qk+1−jρj

≤ qk+1C +Dρk+1
k+1∑
j=1

(q/ρ)k+1−j ≤ D̃ρk+1.

If ρ < q < 1: With a similar approach, we obtain E[‖xk+1 − x∗‖] ≤ D̃qk+1.

If ρ = q: We have that

E[‖xk+1 − x∗‖] ≤ qk+1E[‖x0 − x∗‖] +Dqk+1 ≤ qk+1C +D
k+1∑
j=1

qj+1. (3.18)

According to [142, Lemma 4], we can deduce from (3.18) that

E[‖xk+1 − x∗‖] ≤ qk+1C +D
k+1∑
j=1

qj+1 ≤ Cqk+1 +Dqk+1(k + 1)

≤ Cqk+1 + D̂ρ̃k+1 ≤ (C + D̂)ρ̃k+1.
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Thus, we conclude that any sequence generated by (str-SPP) converges linearly
in an expected-value sense.
(b). If q < ρ < 1: From (a), it follows that

E[‖xK+1 − x∗‖] ≤ D̃ρK+1 ≤ ε =⇒ K = dlog1/ρ(D̃/ε)e − 1.

For the optimal oracle complexity, we require ∑K
k=1Nk gradients. Since Nk =

bρ−2(k+1)c ≤ ρ−2(k+1), we have

log1/ρ(D̃/ε)∑
k=1

ρ−2(k+1) ≤ 1(
1
ρ
− 1

) (1
ρ

)2+2 log1/ρ(D̃/ε)

≤
(
D̃

ε

)2 1
ρ(1− ρ) .

If ρ < q < 1: Similarly, we have ∑K
k=1Nk ≤

(
D̃
ε

)2 1
q(1−q) .

If q = ρ: From (a), we have that E[‖xK+1 − x∗‖] ≤ C̃ρ̃K+1, where C̃ = C + D̂. It
follows that ∑K

k=1Nk ≤
(
C̃
ε

)
1

ρ(1−ρ) .

Crucial to the rate and complexity statements is Assumption 14. While there
are many settings under which this Assumption holds we now show that when
Assumption 11 holds, Assumption 13 implies that Assumption 14 is satisfied.

Lemma 13. Let Assumptions 9, 11, 13 hold. Consider a sequence generated by
(str-SPP). For any x0 ∈ Rn, the following holds for all k > 0:

E[‖xk+1 − JTγ (xk)‖2] ≤ γ2ν2

(1− 2γL)2Nk+1
.

Proof. Suppose yk+1 = JTγ (xk). From the definition of JTγ (xk) and JTkγ (xk),[
yk+1 = (I + γT )−1(xk)

]
≡ [yk+1 + γT (yk+1) = xk][

xk+1 = (I + γT̄k)−1(xk)
]
≡
[
xk+1 + γT̄k(xk+1) = xk

]
.

(3.19)

Recall from the monotonicity of T , we have the following.

((I + γT )(xk+1)− (I + γT )(yk+1))T (xk+1 − yk+1)

= ((xk+1 − yk+1) + γ(T (xk+1)− T (yk+1)))T (xk+1 − yk+1)

= (xk+1 − yk+1)T (xk+1 − yk+1) + γ(T (xk+1)− T (yk+1))T (xk+1 − yk+1)

≥ ‖xk+1 − yk+1‖2.
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It follows that

‖xk+1 − yk+1‖2 ≤ ((I + γT )(xk+1)− (I + γT )(yk+1))T (xk+1 − yk+1)

= ((I + γT )(xk+1)− xk − (I + γT )(yk+1) + xk)T (xk+1 − yk+1)
(3.19)= ((I + γT )(xk+1)− xk)T (xk+1 − yk+1)

= ((I + γT )(xk+1)− (I + γT̄k)(xk+1) + (I + γT̄k)(xk+1)− xk)T (xk+1 − yk+1)
(3.19)= γ(T (xk+1)− T̄k(xk+1))T (xk+1 − yk+1). (3.20)

We have the following equality

T (xk+1)− T̄k(xk+1) = T (xk+1)− T̄k(xk+1) + T̄k(yk+1)− T̄k(yk+1)

= T (xk+1)− T (yk+1)− T̄k(xk+1) + T̄k(yk+1) + T (yk+1)

− T̄k(yk+1). (3.21)

Substituting (3.21) to (3.20), it follows that

‖xk+1 − yk+1‖2 ≤ γ(T (xk+1)− T̄k(xk+1))T (xk+1 − yk+1)

= γ(T (xk+1)− T (yk+1))T (xk+1 − yk+1)

− γ(T̄k(xk+1)− T̄k(yk+1))T (xk+1 − yk+1)

+ γ(T (yk+1)− T̄k(yk+1))T (xk+1 − yk+1)
Lip.
≤ 2γL‖xk+1 − yk+1‖2

+ γ‖T (yk+1)− T̄k(yk+1)‖‖xk+1 − yk+1‖. (3.22)

Following (3.22), we have

(1− 2γL)‖xk+1 − yk+1‖2 ≤ γ‖T (yk+1)− T̄k(yk+1)‖.

Therefore, by leveraging Assumption 13, we have that

E[‖xk+1 − JTγ (xk)‖2] = E[‖xk+1 − yk+1‖2] ≤ γ2

(1− 2γL)2E[‖T (yk+1)− T̄k(yk+1)‖2]

= γ2

(1− 2γL)2E[E[‖T (yk+1)− T̄k(yk+1)‖2 | Fk]]

≤ γ2ν2

(1− 2γL)2Nk+1
.
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3.3.2 Convergence Analysis of (rts-SPP)

We now prove convergence of the (rts-SPP) scheme and being by making an
assumption on the random error ek that emerges in the (rts-SPP) update rule.
Notably, this error arises from solving the resolvent problem inexactly by using a
Monte-Carlo sampling scheme.

Assumption 15. At an iteration k, the following hold in an a.s. sense: (i) The
conditional second moment is bounded or E[‖ek‖2 | Fk] ≤ Cν2

Nk
for all k.

Proposition 13 (Rate statement for (rts-SPP)). Let Assumptions 9 and 15 hold,
γk = γ > 0, and Nk , d(k + 1)2ae for k > 0, where a > 1. Consider a sequence
generated by (rts-SPP).
(1). Any sequence generated by (rts-SPP) converges to a solution x∗ ∈ T−1(0) as
specified by the following. E[‖Tγ(xk)‖2] = O

(
1

k+1

)
.

(2). Suppose xK satisfies E[‖T (xK)‖2] ≤ ε. Then the oracle complexity of computing
xK is bounded as follows

K∑
k=1

Nk = O
( 1
ε2a+1

)
.

Proof. The proof proceed in a similar manner to that provided for Proposition 11,
the only difference being that E[‖xk+1 − JTγk(xk)‖]

2 = C2ν2

Nk+1
. Thus, we have

K∑
k=1

Nk ≤
dĈ/εe−1∑
k=1

Nk ≤
dĈ/εe−1∑
k=1

d(k + 1)2ae ≤ 2
dĈ/εe−1∑
k=1

(k + 1)2a

≤ 2
∫ Ĉ/ε

x=1
(x+ 1)2a dx ≤ 2(Ĉ/ε+ 1)2a+1

2a+ 1 ≤
(

Ĉ

ε2a+1

)
.

In the (rts-SPP) scheme, we employ a Monte-Carlo sampling-based scheme
for approximating the resolvent. Based on the nature of this problem, we may
derive an overall iteration complexity in terms of “minor” iterations for solving
the resolvent. So one thing we benefit from using (rts-SPP) is that we can obtain
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a superior iteration complexity for approximating the resolvent by leveraging the
structure of different problems.

Proposition 14 (Linear convergence of (rts-SPP) under strong mono-
tonicity). Let Assumptions 9 – 10, 13 hold and assume ‖x0 − x∗‖ is bounded by
C.
(a). Let γk = γ. Suppose Nk+1 = bρ−2(k+1)c, D ,

√
2γν, q , (1 +σγ)−1, ρ̃ ∈ (q, 1),

D̂ > 1/ ln(ρ̃/ρ)e and D̃ ,
(
C +D 1

1−min{(q/ρ),(ρ/q)}

)
. Then any sequence generated

by (rts-SPP) converges to a solution x∗ ∈ T−1(0) at a linear rate in an expected
value sense .
(b). To xK+1 such that E[‖xK+1 − x∗‖] ≤ ε, we have ∑K

k=1Nk ≤ O
(

1
ε

)
.

Proof. Please refer to the proof of Proposition 12 by noticing that E[‖xk+1 −
JTγk(xk)‖] = ν√

Nk+1
instead of E[‖xk+1 − JTγk(xk)‖] ≤

γν√
Nk+1

.

3.4 Stochastic Modified Forward-Backward Schemes
In this section, we consider the development of stochastic splitting schemes when
T = A+B with our interest lying in computing an x ∈ X ⊆ Rn such that

0 ∈ T (x) , A(x) +B(x),

where A(x) , E[A(x, ω)] and B has a relatively cheap resolvent. In such instances,
we may consider develop a stochastic generalization of a splitting-based framework.
We first provide a short summary of our approach and relate it to prior work and
then proceed to derive rate statements for the proposed scheme.

3.4.1 Overview of proposed framework

While there are a range of splitting schemes that may be adopted, we consider a
stochastic modified forward-backward scheme that utilizes

∑Nk
j=1 A(xk,ωj,k)

Nk
to approx-

imate E[A(xk, ω)] at iteration k. We formally defined such a scheme next, given a
random point x0 ∈ Rn.

xk+ 1
2

:= (I + γkB)−1(xk − γkAk),

xk+1 := ΠX

(
xk+ 1

2
− γk

(
Ak+ 1

2
− Ak

))
,

(SMFBS)
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where Ak ,
∑Nk

j=1 A(xk,ωj,k)
Nk

, Ak+ 1
2
,
∑Nk

j=1 A(xk+1/2,ωj,k+1/2)
Nk

are unbiased estimators
of A(xk) and A

(
xk+ 1

2

)
, respectively. We provide rate statements for settings

where Nk = 1 for all k (a stochastic approximation counterpart) and Nk = K

for all k (a mini-batch stochastic approximation framework). When Nk is an
increasing sequence, a variance-reduced scheme is obtained and allows for recovering
deterministic rates of convergence under some assumptions. Throughout the
remainder of this section, x∗ refers to a point in T−1(0) ∩X. We analyze the rate
of convergence of (SMFBS) in Section 3.4.2

3.4.2 Convergence Analysis

We assume the following on the map A and B.

Assumption 16. The mapping A(x) is L-Lipschitz continuous, monotone, and
single-valued on Rn and the mapping B is maximal monotone on Rn, i.e.

‖A(x)− A(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn

(A(x)− A(y))T (x− y) ≥ 0, ∀x, y ∈ Rn,

and (u− v)T (x− y) ≥ 0, ∀x, y ∈ Rn, ∀u ∈ B(x), ∀v ∈ B(y).

Assumption 17. The single-valued mapping A is co-coercive on Rn; there exists a
constant c1 such that (A(x)− A(y))T (x− y) ≥ c1‖A(x)− A(y)‖2 for all x, y ∈ Rn.

We assume the presence of a stochastic oracle that can provide an unbiased
estimator of A(x), given by A(x, ω) such that E[A(x, ω)] = A(x). Define wk ,
A(xk, ωk)−A(xk) and wk+ 1

2
, A

(
xk+ 1

2
, ωk+ 1

2

)
−A

(
xk+ 1

2

)
. Furthermore we denote

Fk as the history up to iteration k, i.e., Fk ,
{
x0, ω0, ω 1

2
, ω1, · · · , ωk−1, ωk− 1

2

}
and

Fk+ 1
2
, Fk ∪ {ωk}.

Assumption 18. At an iteration k, the following hold in an a.s. sense: (i) The
conditional means E[wk | Fk] and E

[
wk+ 1

2
| Fk+ 1

2

]
are zero for all k; (ii) The condi-

tional second moments are bounded or E[‖wk‖2 | Fk] ≤ ν2

Nk
and E

[∥∥∥wk+ 1
2

∥∥∥2
| Fk+ 1

2

]
≤

ν2

Nk
for all k.
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Lemma 14. Let Assumptions 12, 16 – 18 hold and assume A is strictly monotone.
Let γk ≤ 1

4L and c ≤ 1
2L . Then for any k, we have the following bound.

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 − γkc1‖uk − u∗‖2 + 8γ2
k
ν2

Nk
.

Proof. From the definition of xk+ 1
2
and xk+1, we have

xk+1/2 = (I + γkB)−1(xk − γkAk) or xk+ 1
2

+ γkvk+ 1
2

= xk − γk(uk + wk),

xk+1 = ΠX

(
xk+ 1

2
− γk

(
uk+ 1

2
+ wk+ 1

2
− uk − wk

))
.

where uk = A(xk), uk+ 1
2

= A
(
xk+ 1

2

)
, vk+ 1

2
∈ B

(
xk+ 1

2

)
. From 0 ∈ A(x∗) +B(x∗),

u∗ + v∗ = 0, where u∗ = A(x∗), v∗ ∈ B(x∗) (3.23)

If zk = xk+ 1
2
− γk

(
uk+ 1

2
+ wk+ 1

2
− uk − wk

)
, we have the following equality:

‖xk − x∗‖2 =
∥∥∥xk − xk+ 1

2
+ xk+ 1

2
− zk + zk − x∗

∥∥∥2

=
∥∥∥xk − xk+ 1

2

∥∥∥2
+
∥∥∥xk+ 1

2
− zk

∥∥∥2
+ ‖zk − x∗‖2 + 2

(
xk − xk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2

(
xk+ 1

2
− zk

)T
(zk − x∗)

=
∥∥∥xk − xk+ 1

2

∥∥∥2
+
∥∥∥xk+ 1

2
− zk

∥∥∥2
+ ‖zk − x∗‖2 + 2

(
xk − xk+ 1

2

)T (
xk+ 1

2
− x∗

)
− 2

∥∥∥xk+ 1
2
− zk

∥∥∥2
+ 2

(
xk+ 1

2
− zk

)T (
xk+ 1

2
− x∗

)
=
∥∥∥xk − xk+ 1

2

∥∥∥2
−
∥∥∥xk+ 1

2
− zk

∥∥∥2
+ ‖zk − x∗‖2 + 2(xk − zk)T

(
xk+ 1

2
− x∗

)
=
∥∥∥xk − xk+ 1

2

∥∥∥2
− γ2

k

∥∥∥uk+ 1
2

+ wk+ 1
2
− uk − wk

∥∥∥2
+ ‖zk − x∗‖2

+ 2γk
(
uk+ 1

2
+ vk+ 1

2
+ wk+ 1

2

)T (
xk+ 1

2
− x∗

)
. (3.24)

Since A is co-coercive and B is monotone on Rn, it follows that
(
uk+ 1

2
+ vk+ 1

2
− u∗ − v∗

)T (
xk+ 1

2
− x∗

)
≥ c1

∥∥∥uk+ 1
2
− u∗

∥∥∥2

=⇒
(
uk+ 1

2
+ vk+ 1

2

)T (
xk+ 1

2
− x∗

)
≥ c1

∥∥∥uk+ 1
2
− u∗

∥∥∥2
. (From (3.23)) (3.25)

By (3.25), γk ≤ 1/2L, and moving ‖xk+1 − x∗‖2 to the left hand side, from (3.24),

‖xk+1 − x∗‖2 ≤ ‖zk − x∗‖2

= ‖xk − x∗‖2 −
∥∥∥xk − xk+ 1

2

∥∥∥2
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+ γ2
k

∥∥∥uk+ 1
2

+ wk+ 1
2
− uk − wk

∥∥∥2
− 2γk

(
uk+ 1

2
+ vk+ 1

2
+ wk+ 1

2

)T (
xk+ 1

2
− x∗

)
= ‖xk − x∗‖2 −

∥∥∥xk − xk+ 1
2

∥∥∥2
+ γ2

k

∥∥∥uk+ 1
2

+ wk+ 1
2
− uk − wk

∥∥∥2

− 2γk
(
uk+ 1

2
+ vk+ 1

2

)T (
xk+ 1

2
− x∗

)
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 −

∥∥∥xk − xk+ 1
2

∥∥∥2
+ 2γ2

k

∥∥∥uk+ 1
2
− uk

∥∥∥2
+ 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2

− 2γk
(
uk+ 1

2
+ vk+ 1

2

)T (
xk+ 1

2
− x∗

)
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
− 2γk

(
uk+ 1

2
+ vk+ 1

2

)T (
xk+ 1

2
− x∗

)
+ 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
(3.26)

(3.25)
≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
− 2γkc1

∥∥∥uk+ 1
2
− u∗

∥∥∥2

+ 2γ2
k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
. (3.27)

It follows that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)
∥∥∥xk − xk+ 1

2

∥∥∥2
− 2γkc1

∥∥∥uk+ 1
2
− u∗

∥∥∥2

+ 2γ2
k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
− γkc1‖uk − u∗‖2

+ 2γkc1

∥∥∥uk − uk+ 1
2

∥∥∥2
+ 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
= ‖xk − x∗‖2 −

∥∥∥xk − xk+ 1
2

∥∥∥2
− γkc1‖uk − u∗‖2 + 1

2(2γk + c1)2L2
∥∥∥xk − xk+ 1

2

∥∥∥2

− 1
2c

2
1L

2
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
(2γk+c1)2L2<1)

≤ ‖xk − x∗‖2 − 1
2
∥∥∥xk − xk+ 1

2

∥∥∥2
− γkc1‖uk − u∗‖2

− 1
2c

2
1L

2
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 − γkc1‖uk − u∗‖2 + 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 − γkc1‖uk − u∗‖2 + 4γ2

k

∥∥∥wk+ 1
2

∥∥∥2
+ 4γ2

k‖wk‖2

− 2γkwTk+ 1
2

(
xk+ 1

2
− x∗

)
,

where we leverage ‖uk−u∗‖2 ≤ 2
∥∥∥uk − uk+ 1

2

∥∥∥2
+2

∥∥∥uk+ 1
2
− u∗

∥∥∥2
and

∥∥∥wk+ 1
2
− wk

∥∥∥2
≤

2
∥∥∥wk+ 1

2

∥∥∥2
+ 2‖wk‖2 in the last inequality. Taking expectations conditioned on Fk,

82



we obtain the following bound:

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 − γkc1‖uk − u∗‖2

+ 4γ2
kE
[
E
[∥∥∥wk+ 1

2

∥∥∥2
| Fk+ 1

2

]
| Fk

]
+ 4γ2

kE[‖wk‖2 | Fk]

− 2γkE
[
E
[
wTk+ 1

2

(
xk+ 1

2
− x∗

)
| Fk+ 1

2

]
| Fk

]
≤ ‖xk − x∗‖2 − γkc1‖uk − u∗‖2 + 8γ2

k
ν2

Nk
.

We are now ready to prove the a.s. convergence of the sequence generated by
this scheme.

Proposition 15. Let Assumptions 12, 16 – 18 hold and assume A is strictly
monotone. Let γk ≤ 1

4L and c ≤ 1
2L . Suppose Nk ≥ 1 for all k. Then for any

x0 ∈ X, a sequence generated by (SMFBS) converges to a solution x∗ in an a.s.
sense.

Proof. We may now apply Lemma 2 which allows us to claim that {‖xk − x∗‖} is
convergent and ∑k γkc1‖uk − u∗‖2 <∞ in an a.s. sense. Since ∑k γk =∞, in an
a.s. sense, we have

lim inf
k→∞

‖uk − u∗‖2 = 0.

Consequently, a subsequence of {uk} converges to u∗. Furthermore, since ‖xk −
x∗‖ → r ≥ 0 in an a.s. sense implying that every limit point of {xk} satisfies
‖x̄− x∗‖ = r. Furthermore, for every limit point x̄, we have that A(x̄) = u∗. Since
A is strictly monotone, thus (A(x̄)− u∗)T (x̄− x∗) > 0 holds at x∗. But for every
x̄, we have A(x̄)− u∗ = 0, implying that x̄ = x∗. Consequently, every limit point
of {xk} is x∗ in an a.s. sense and we may claim that the entire sequence {xk}
converges to x∗ in an a.s. sense.

It is worth emphasizing that the aforementioned result holds for both constant
and increasing sequences {Nk}.

3.4.3 Rate under Strong Monotonicity of A

Next, we derive the rate of convergence of the iterates generated by (SMFBS). The
following bound is used in deriving the rate of convergence for (SMFBS).
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Lemma 15. Suppose {xk} and {xk+ 1
2
} denote the sequences generated by (SMFBS).

Then
∥∥∥xk − xk+ 1

2

∥∥∥ is bounded for all k, i.e.
∥∥∥xk − xk+ 1

2

∥∥∥ ≤ C1.

Proof. Taking limits on both sides of the first step of (SMFBS), we obtain

lim
k→∞

(
xk+ 1

2
+ γkB

(
xk+ 1

2

))
= lim

k→∞
(xk − γkA(xk)).

Since limk→∞ γk = 0, we have limk→∞
(
xk+ 1

2
− xk

)
= 0 and the result follows.

Assumption 19. The solution set X∗ is bounded as specified by supx∗∈X∗ ‖x∗‖ ≤ C.

Assumption 20. The mapping A is σ-strongly monotone, i.e. (A(x)−A(y))T (x−
y) ≥ σ‖x− y‖2, ∀x, y ∈ Rn.

We now consider two sets of cases.

(i). Nk = 1 for every k. In this setting, we assume that the steplength sequence is
given by

γk = γ0

k
. (3.28)

We need the following lemma to establish the convergence rate [29].

Lemma 16. Consider the following recursion: ak+1 ≤
(
1− 2cθ

k

)
ak + θ2M2

2k2 , where
θ, M are positive constants and 1 − 2cθ < 0. Then for k ≥ 1, we have that
2ak ≤ 1

k
max

(
θ2M2

2cθ−1 , 2a1
)
.

We now proceed to prove our rate statement under strong monotonicity.

Lemma 17. Let Assumptions 16, 18, 20 hold. Then we have that the following
holds for every k.

‖xk+1 − x∗‖2 ≤ (1− σγk)‖xk − x∗‖2 − (1− 2γ2
kL

2 − 2σγk)
∥∥∥xk − xk+ 1

2

∥∥∥2

+ 4γ2
k

∥∥∥wk+ 1
2

∥∥∥2
+ 4γ2

k‖wk‖2 − 2γkwTk+ 1
2

(
xk+ 1

2
− x∗

)
.

Proof. According to Assumption 20, we have

−2γk
(
uk+ 1

2
+ vk+ 1

2

)T (
xk+ 1

2
− x∗

)
≤ −2γkσ

∥∥∥xk+ 1
2
− x∗

∥∥∥2

≤ 2γkσ
∥∥∥xk+ 1

2
− xk

∥∥∥2
− γkσ‖xk − x∗‖2. (3.29)
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Using (3.29) in (3.27), we deduce

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)
∥∥∥xk − xk+ 1

2

∥∥∥2
− 2γkσ

∥∥∥xk+ 1
2
− x∗

∥∥∥2

+ 2γ2
k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γkσ

∥∥∥xk+ 1
2
− xk

∥∥∥2

− γkσ‖xk − x∗‖2 + 2γ2
k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ (1− σγk)‖xk − x∗‖2 − (1− 2γ2

kL
2 − 2σγk)

∥∥∥xk − xk+ 1
2

∥∥∥2
+ 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2

− 2γkwTk+ 1
2

(
xk+ 1

2
− x∗

)
≤ (1− σγk)‖xk − x∗‖2 − (1− 2γ2

kL
2 − 2σγk)

∥∥∥xk − xk+ 1
2

∥∥∥2
+ 4γ2

k

∥∥∥wk+ 1
2

∥∥∥2

+ 4γ2
k‖wk‖2 − 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
.

Proposition 16 (Rate of convergence under Nk = 1). Let Assumptions 16, 18,
20 hold, let {γk} be given by (3.28) and Nk = 1 for every k. Then any sequence
generated by (SMFBS) converges to a solution x∗ in an expected value sense:

E[‖xk − x∗‖2] = O
(1
k

)
.

Proof. According to Lemma 17, and taking expectations conditioned on Fk, we
obtain

E[‖xk+1 − x∗‖2 | Fk] ≤ (1− σγk)‖xk − x∗‖2

− (1− 2γ2
kL

2 − 2σγk)E
[∥∥∥xk − xk+ 1

2

∥∥∥2
| Fk

]
+ 4γ2

kE
[
E
[∥∥∥wk+ 1

2

∥∥∥2
| Fk+ 1

2

]
| Fk

]
+ 4γ2

kE[‖wk‖2 | Fk]

− 2γkE
[
E
[
wTk+ 1

2

(
xk+ 1

2
− x∗

)
| Fk+ 1

2

]
| Fk

]
≤ (1− σγk)‖xk − x∗‖2 + (2γ2

kL
2 + γ2

kσ
2)E

[∥∥∥xk − xk+ 1
2

∥∥∥2
Fk
]

+ 8γ2
kν

2,

(3.30)

where the second inequality leverages 1− 2γkσ ≥ −γ2
kσ

2. Invoking Lemma 15, we
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have
∥∥∥xk − xk+ 1

2

∥∥∥ ≤ C1. Then taking expectations on both sides of (3.30), we get

E[‖xk+1 − x∗‖2] ≤ (1− σγk)E[‖xk − x∗‖2] + (2L2 + σ2)γ2
kC

2
1 + 8γ2

kν
2. (3.31)

By assuming 1 < σγ0 and invoking Lemma 16, we get

E[‖xk − x∗‖2] ≤ M1

k
,

where M1 , max
(
γ2

0((2L2+σ2)C2
1 +8ν2)

σγ0−1 ,E[‖x0 − x∗‖2]
)
. This means {xk} converges to

x∗ in an expected value sense.

Next we provide rate statements involving (SMFBS) with increasing sample-size.
We are now to provide a proposition that deriving rate statements and oracle
complexity bounds.

Proposition 17 (Rate and oracle complexity under Nk = bρ−(k+1)c). Let As-
sumptions 16, 18, and 20 hold. Let γk = γ ≤ min

{
1
σ
, −σ+

√
σ2+2L2

2L2

}
. Suppose

Nk = bρ−(k+1)c, C2 , ‖x0‖+C, D , 16γ2ν2, q , 1−σγ, ρ̃ ∈ (q, 1), D̂ > 1/ ln(ρ̃/ρ)e

and D̃ ,
(
C2

2 +D 1
1−min{(q/ρ),(ρ/q)}

)
. Then the following hold.

(a) Any sequence generated by (SMFBS) converges at a linear rate to a solution x∗

in an expected value sense.
(b). Let xK+1 be such that E[‖xK+1 − x∗‖2] ≤ ε. Then we have ∑K

k=1Nk ≤ O
(

1
ε

)
.

Proof. (a). Invoking Lemma 17 and since γ ≤ −σ+
√
σ2+2L2

2L2 , we obtain

‖xk+1 − x∗‖2 ≤ (1− σγ)‖xk − x∗‖2 − (1− 2γ2L2 − 2σγ)
∥∥∥xk − xk+ 1

2

∥∥∥2

+ 4γ2
∥∥∥wk+ 1

2

∥∥∥2
+ 4γ2‖wk‖2 − 2γwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ (1− σγ)‖xk − x∗‖2 + 4γ2

∥∥∥wk+ 1
2

∥∥∥2
+ 4γ2‖wk‖2

− 2γwTk+ 1
2

(
xk+ 1

2
− x∗

)
.

Taking expectations conditioned on Fk, we obtain

E[‖xk+1 − x∗‖2 | Fk] ≤ (1− σγ)‖xk − x∗‖2 + 4γ2E
[
E
[∥∥∥wk+ 1

2

∥∥∥2
| Fk+ 1

2

]
| Fk

]
+ 4γ2E[‖wk‖2 | Fk]− 2γE

[
E
[
wTk+ 1

2

(
xk+ 1

2
− x∗

)
| Fk+ 1

2

]
| Fk

]
≤ (1− σγ)‖xk − x∗‖2 + 8γ2ν2

Nk

. (3.32)
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By taking conditions on both sides of (3.32), we obtain

E[‖xk+1 − x∗‖2] ≤ (1− σγ)E[‖xk − x∗‖2] + 8γ2ν2

Nk

= qE[‖xk − x∗‖2] + 8γ2ν2

Nk

. (3.33)

According to Lemma 11, we have

Nk = bρ−(k+1)c ≥
⌈1

2ρ
−(k+1)

⌉
≥ 1

2ρ
−(k+1). (3.34)

We now consider three cases.
Case (i). If q < ρ < 1: Using (3.34) in (3.33), we deduce that

E[‖xk+1 − x∗‖2] ≤ qE[‖xk − x∗‖2] + 8γ2ν2

Nk

= qE[‖xk − x∗‖2] +Dρk+1

≤ qk+1E[‖x0 − x∗‖2] +D
k+1∑
j=1

qk+1−jρj

≤ qk+1C2
2 +Dρk+1

k+1∑
j=1

(q/ρ)k+1−j ≤ D̃ρk+1.

Case (ii). ρ < q < 1. If ρ < q < 1: Employing a similar approach, we obtain

E[‖xk+1 − x∗‖2] ≤ D̃qk+1.

Case (iii). ρ = q < 1. If ρ = q: We have that

E[‖xk+1 − x∗‖2] ≤ qk+1E[‖x0 − x∗‖2] +Dqk+1 ≤ qk+1C2
2 +D

k+1∑
j=1

qj+1. (3.35)

According to [142, Lemma 4], we can deduce from (3.35) that

E[‖xk+1 − x∗‖2] ≤ qk+1C2
2 +D

k+1∑
j=1

qj+1 ≤ C2
2q

k+1 +Dqk+1(k + 1)

≤ C2
2q

k+1 + D̂ρ̃k+1 ≤ (C2
2 + D̂)ρ̃k+1.

Therefore, we conclude that any sequence generated by (SMFBS) converges linearly
in an expected sense.
(b). Again, we consider three cases.
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Case (i) q < ρ < 1. If q < ρ < 1: From part 17(a), it follows that

E[‖xK+1 − x∗‖2] ≤ D̃ρK+1 ≤ ε =⇒ K = dlog1/ρ(D̃/ε)e − 1.

For the optimal oracle complexity, we require ∑K
k=1Nk gradients. Since Nk =

bρ−(k+1)c ≤ ρ−(k+1), we have

log1/ρ(D̃/ε)∑
k=1

ρ−(k+1) ≤ 1(
1
ρ
− 1

) (1
ρ

)2+log1/ρ(D̃/ε)

≤
(
D̃

ε

)
1

ρ(1− ρ) .

Case (ii) ρ < q < 1. If ρ < q < 1: With a similar manner, we have

K∑
k=1

Nk ≤
(
D̃

ε

)
1

q(1− q) .

Case (iii) ρ = q < 1. If q = ρ: From Proposition 17(a), we have that E[‖xK+1 −
x∗‖2] ≤ C̃ρ̃K+1, where C̃ = C2

2 + D̂. It follows that

K∑
k=1

Nk ≤
(
C̃

ε

)
1

ρ(1− ρ) .

3.4.4 Rate under Maximal Monotonicity of A

To establish rate of convergence under maximal monotonicity, we need introduce a
metric for ascertaining progress. In strongly monotone regimes, the mean-squared
error serves this roole. However, when the solution set is multi-valued, this avenue is
no longer available unless one can derive a bound on the distance to X∗, the solution
set of the stochastic generalized equation. In stochastic convex optimization, the
function value represents such a metric. Instead, the progress of the scheme can be
ascertained by using a suitably defined gap function [143], which is inspired by a
Fitzpatrick function [144,145].

Definition 6 (Gap function). Given a nonempty closed set X ⊆ Rn and a set-
valued mapping T : Rn → Rn, then the gap function at x is denoted by G(x) and is
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defined as follows:

G(x) , sup
y∈X

sup
z∈T (y)

zT (x− y), ∀x ∈ X.

The gap function is nonnegative for all x ∈ X and is zero if and only if x is a
solution of the monotone inclusion problem. To derive the convergence rate under
maximal monotonicity, we require boundedness of X as captured by the following
assumption.

Assumption 21. The set X is bounded as specified by ‖x− y‖ ≤ B ∀x, y ∈ X.

We establish the convergence rate for (SMFBS) by using the gap function.

Lemma 18. Let Assumptions 16, 18 hold and 0 < γk ≤ 1/
√

2L for all k. Assume
{xk} and {xk+ 1

2
} be sequences generated by (SMBFS). It follows that the following

inequality holds for all y ∈ X, z ∈ T (y) and all k ≥ 0:

2γkE
[
zT
(
xk+ 1

2
− y

)]
≤ E[‖xk − y‖2]− E[‖xk+1 − y‖2] + 8γ2

k

ν2

Nk

. (3.36)

Proof. According to (3.26),we have that

2γk
(
uk+ 1

2
+vk+ 1

2

)T (
xk+ 1

2
− y

)
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

− (1− 2γ2
kL

2)
∥∥∥xk − xk+ 1

2

∥∥∥2
+ 2γ2

k

∥∥∥wk+ 1
2
− wk

∥∥∥2
− 2γkwTk+ 1

2

(
xk+ 1

2
− x∗

)
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 4γ2

k

∥∥∥wk+ 1
2

∥∥∥2
+ 4γ2

k‖wk‖2

− 2γkwTk+ 1
2

(
xk+ 1

2
− x∗

)
.

Taking expectations conditioned on Fk, we obtain

2γkE
[(
uk+ 1

2
+vk+ 1

2

)T (
xk+ 1

2
− y

)
| Fk

]
≤ ‖xk − x∗‖2 − E[‖xk+1 − x∗‖2 | Fk]

+ 4γ2
kE
[
E
[∥∥∥wk+ 1

2

∥∥∥2
| Fk+ 1

2

]
| Fk

]
+ 4γ2

kE[‖wk‖2 | Fk]

− 2γE
[
E
[
w̃Tk+ 1

2

(
xk+ 1

2
− x∗

)
| Fk+ 1

2

]
| Fk

]
≤ ‖xk − x∗‖2 − E[‖xk+1 − x∗‖2 | Fk] + 8γ2

k

ν2

Nk

. (3.37)
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By taking conditions on both sides of (3.37), it deduce that

2γkE
[(
uk+ 1

2
+ vk+ 1

2

)T (
xk+ 1

2
− y

)]
≤ E[‖xk − x∗‖2]− E[‖xk+1 − x∗‖2] + 8γ2

k

ν2

Nk

.

According to monotonicity property of T , we conclude that

2γkE
[
zT
(
xk+ 1

2
− y

)]
≤ 2γkE

[(
uk+ 1

2
+ vk+ 1

2

)T (
xk+ 1

2
− y

)]
≤ E[‖xk − x∗‖2]− E[‖xk+1 − x∗‖2] + 8γ2

k

ν2

Nk

.

Using Lemma 18, we may derive the following rate statement for a diminishing
steplength sequence {γk}. The result is provided for the sequence x̄K , an average
of the iterates {xk+1/2} generated by (SMFBS) over the window constructed from
Kl to K where Kl , bK/2c and K ≥ 2:

x̄K ,

∑K
k=Kl γkxk+ 1

2∑K
k=Kl γk

. (3.38)

Proposition 18. Consider the (SMFBS) scheme and let {x̄K} be defined in (3.38).
Let Assumptions 16, 18, 21 hold.
(a). Let 0 < γk ≤ 1/

√
2L for all k ≥ 0 and γk = γ0/

√
k. Then, we have

E[G(x̄K)] = O
(

1√
K

)
.

(b). Let 0 < γk = γ ≤ 1/
√

2L for all k ≥ 0. Then, we have

E[G(x̄K)] = O
(

1√
K

)
.

Consider the (SMFBS) scheme and let {x̄K} be defined as (3.38), where 0 < γk =
γ ≤ 1/

√
2L for all k ≥ 0. Let Nk = K, ∀k, where K is a pre-defined termination

number.
(c1). Then, we have

E[G(x̄K)] = O
( 1
K

)
.
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(c2). The oracle complexity holds for any sequence generated by (SMFBS):

K∑
k=1

Nk ≤ O
( 1
ε2

)
.

Consider the (SMFBS) scheme and let {x̄K} be defined as (A.7), where 0 < γk =
γ ≤ 1/

√
2L for all k ≥ 0. Let ∑∞k=1Nk < M .

(d1). Then, we have
E[G(x̄K)] = O

( 1
K

)
.

(d2). Suppose Nk = bkac, for a > 1. Then the oracle complexity to compute an x̄K
such that E[G(x̄K)] ≤ ε is bounded as follows:

K∑
k=1

Nk ≤ O
( 1
εa+1

)
.

Proof. (a). From (3.36), by summing over k from Kl to K, we have the following
for all y ∈ X, z ∈ T (y):

2
K∑

k=Kl
γkE

[
zT
(
xk+ 1

2
− y

)]
≤ E[‖xKl − y‖2]− E[‖xK+1 − y‖2] + 8

K∑
k=Kl

γ2
kν

2.

Consequently, we have the following sequence of inequalities:

2
 K∑
k=Kl

γk

E[zT (x̄K − y)] ≤ E[‖xKl − y‖2]− E[‖xK+1 − y‖2] + 8
K∑

k=Kl
γ2
kν

2

≤ E[‖xKl − y‖2] + 8
K∑

k=Kl
γ2
kν

2 ≤ B2 + 8
K∑

k=Kl
γ2
kν

2,

(3.39)

where the second inequality follows from the boundedness of X. Since γk = γ0/
√
k,

it follows that for all y ∈ X, z ∈ T (y):

E[zT (x̄K − y)] ≤
B2 + 8∑K

k=Kl γ
2
kν

2

2∑K
k=Kl γk

= B2

2γ0

1∑K
k=Kl k

− 1
2

+ 4γ0ν
2
∑K
k=Kl k

−1∑K
k=Kl k

− 1
2
.

(3.40)
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We now utilize the following lower bound on the denominator for K ≥ 1:

K∑
k=Kl

k−
1
2 ≥

∫ K

K
2

(x+ 1)− 1
2dx = 2

√
(K + 1)− 2

√
K/2 + 1) ≥ 2

√
K/40. (3.41)

Similarly an upper bound may be constructed:

K∑
k=Kl

k−1 ≤
∫ K

K
2

x−1dx+ 1
bK2 c

≤ log 2 + 1. (3.42)

By substituting (3.41) and (3.42) in (3.40), we obtain that the following holds:

E[zT (x̄K − y)] ≤ S1√
K

for all y ∈ X, z ∈ T (y)

where S1 ,

(√
40B2

4γ0
+ 2
√

40(log 2 + 1)γ0ν
2
)
.

The result follows by taking supremum over y ∈ X, z ∈ T (y).
(b). Proceeding similarly as in the prior proof, an analogous inequality to (3.39)
can be derived for all y ∈ X, z ∈ T (y):

2
 K∑
k=Kl

γk

E[zT (x̄K − y)] ≤ B2 + 8
K∑

k=Kl
γ2
kν

2. (3.43)

Since γk ≡ γ, we can rewrite (3.43) as follows for all y ∈ X:

2
⌈
K + 2

2

⌉
γE[zT (x̄K − y)] ≤ B2 + 8

⌈
K + 2

2

⌉
γ2ν2,

leading to the following inequality for all y ∈ X, z ∈ T (y):

E[zT (x̄K − y)] ≤ B2

2
⌈
K+2

2

⌉
γ

+
8
⌈
K+2

2

⌉
γ2ν2

2
⌈
K+2

2

⌉
γ

= B2

2
⌈
K+2

2

⌉
γ

+ 4γν2 ≤ B2

Kγ
+ 4γν2.

By optimizing in γ, we have that γ∗ = C/2
√
Kν, we may deduce that

E[zT (x̄K − y)] ≤ 2Cν√
K
,∀y ∈ X.
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The result follows.
(c1). Similar to (3.43), we have

2
 K∑
k=Kl

γk

E[zT (x̄K − y)] ≤ B2 + 8
K∑

k=Kl

γ2
kν

2

K
. (3.44)

Since γk ≡ γ, we rewrite (3.44) as follows for all y ∈ X:

2
⌈
K + 2

2

⌉
γE[zT (x̄K − y)] ≤ B2 + 8

⌈
K + 2

2

⌉
γ2ν2

K
,

leading to the following inequality for all y ∈ X, z ∈ T (y):

E[zT (x̄K − y)] ≤ B2

2
⌈
K+2

2

⌉
γ

+
8
⌈
K+2

2

⌉
γ2ν2

2
⌈
K+2

2

⌉
Kγ

(3.45)

= B2

2
⌈
K+2

2

⌉
γ

+ 4γν2

K
≤ B2

Kγ
+ 4γν2

K
.

By optimizing in γ, we have that γ∗ = B/2ν, we may deduce that

E[zT (x̄K − y)] ≤ 2Bν
K

,∀y ∈ X.

The result follows.
(c2). Following (c1) and E[‖xK+1 − x∗‖2] ≤ ε, it follows that

E[zT (x̄K+1 − x∗)] ≤
2Bν
K + 1 =⇒ K = d2Bν/εe − 1 ≤ 2Bν

ε
.

Thus,
K∑
k=1

Nk = KK ≤ 4B2ν2

ε2
.

(d1). Similarly to (3.44), we have

2
 K∑
k=Kl

γk

E[zT (x̄K − y)] ≤ B2 + 8
K∑

k=Kl

γ2
kν

2

Nk

.

Similarly to (3.45), it leads to

E[zT (x̄K − y)] ≤ B2

2
⌈
K+2

2

⌉
γ

+
8
(∑K

k=Kl
1
Nk

)
γ2ν2

2
⌈
K+2

2

⌉
γ
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≤ B2

Kγ
+ 8Mγν2

K
.

By optimizing in γ, we have that γ∗ = B/2
√

2Mν, we may deduce that

E[zT (x̄K − y)] ≤ 2
√

2MBν

K
,∀y ∈ X.

The result follows.
(d2). it follows that for ε sufficiently small,

K∑
k=Kl

Nk ≤
d(Ĉ/ε)e∑
k=1

Nk ≤
d(Ĉ/ε)e∑
k=1

ka ≤
∫ (Ĉ/ε)+1

k=1
xadx ≤ ((Ĉ/ε) + 1)a+1

a+ 1 ≤
(
Ĉ

εa+1

)
.

3.5 Numerical Results
In this section, we apply the proximal point scheme to a generalized equation
problem (Section 3.5.1) and the splitting schmes on a stochastic Nash-Cournot
game (Section 3.5.2).

3.5.1 A Generalized Equation Problem

We test the performance of (SPP) on an example from [134] which requires finding
the root of a stochastic mapping. The mapping T is defined as T = E[T (x, ξ)] where
T (x, ξ) =

(
x3

1
1+x2

1
+ ξ1,

x3
2

1+‖x2‖3 + ξ2
)T

. We define ξ1 and ξ2 are uniformly distributed
random variables sampled from [−1, 1] and it’s clear that (0, 0) is a root of T . We
assume a constant step size of (SPP) with γ = 1. The result is shown in 3.1.

3.5.2 A Stochastic Nash-Cournot Game

In this section, we present and compare the computational results of applying the
splitting scheme aforementioned to a stochastic Nash-Cournot game. This game
is assumed that I firms compete over a network of J nodes. Level of production
and sales of firm i ∈ I at node j ∈ J are denoted by pij and sij, respectively.
Furthermore, we assume the cost of production at node j is Cij(pij) and the price
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Figure 3.1: (SPP) convergence based on iterations

at node j is denoted by Qj(s̄j, ξ), where s̄j is the aggregate sales at node j. For
simplicity, we assume the transportation costs are zero. Thus, each firm i will solve
a profit maximization problem given by the following:

max E[fi(x, ξ)] = E[
∑
j∈J

(Qj(s̄j, ξ)sij − Cij(pij))]

subject to
∑
j∈J

pij =
∑
j∈J

sij, pij ≤ capij, sij, qij ≥ 0, ∀j ∈ J .

The equilibrium conditions of this problem can be captured by a variational
inequality VI(X,F), where F = (F1(x); ...;FI(x)) with Fi(x) = E[∇xifi(x, ξ)].
Recall that the variational inequality problem is finding an x ∈ X satisfying
0 ∈ F (x) + NX(x) where X is a nonempty closed convex set in Rn and F is
a single-valued monotone mapping that is continuous on X. Thus (SMFBS) is
converted to the following scheme:

xk+ 1
2

:= ΠX(xk − γkF (xk, ωk)),

xk+1 := xk+ 1
2
− γk

(
F
(
xk+ 1

2
, ωk+ 1

2

)
− F (xk, ωk)

)
.

In our original setting, we assume there are I = 5 firms and J = 4 nodes,
and the capacity capij = 300, ∀i, j. Cij(pij)) , cijpij + dij, where cij = 1.5
and dij is a constant, ∀i, j. Qj(s̄j, ξ) , aj − bj s̄j, where bj = 0.05 and aj is a
uniformly distributed random variable sampled from [49.5, 50.5], ∀j. With the
above parameters, it can be shown that the mapping F is strictly monotone. We
assume suitable step sizes in our experiments and leverage gap function as our
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metric. We compare the performance of (SMFBS) with the stochastic extragradient
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Figure 3.2: Convergence based on projections under maximal monotonicity

method (SEG) under the same number of projections (Fig. 3.2). The convergence
difference here is because that (SEG) has two projections onto the set, while
(SMFBS) just require one.

xk+ 1
2

:= ΠX(xk − γkF (xk, ωk)),

xk+1 := ΠX

(
xk − γkF

(
xk+ 1

2
, ωk+ 1

2

))
.

To check the performance of variance reduction, we enlarge the random set for
random variable aj to [40, 60]. Fig. 3.3 shows comparison of (SMFBS) with
(SMFBS) under the same number of iterations. The presence of variance reduction
allows for significant improvement in the empirical rates from the single-sample
counterparts.
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Chapter 4 |
Optimal proactive transmission
expansion with transmission charg-
ing systems1

4.1 Introduction2

In an electric energy system, we rely on transmission networks to allow for power
flow from generation nodes to demand centers. In a competitive environment
the transmission system operator (TSO), an independent and regulated entity, is
generally in charge of operating and expanding the transmission network with the
aim of maximizing energy trade opportunities among producers and consumers.
The TSO is also in charge of recovering long run network maintenance cost as well as
transmission networks costs included. The use of system charges reflects the cost of
installing, operating and maintaining the transmission system for the transmission
owner activity. Charging mechanisms for recovering transmission network costs
can significantly impact new generation investment. However, interactions between
these charges and generation decisions are usually neglected in transmission planning.
In this chapter we consider the proactive planning of transmission subject to the
subsequent response of a generation market with imperfect transmission pricing.
Prior work has emphasized short term pricing, either locational marginal pricing
(LMP, which refers to the marginal cost of delivering an additional unit of energy to

1This chapter is joint work with Pengcheng Ding from Johns Hopkins University and has
been jointly supervised by Prof. B. Hobbs from Johns Hopkins along with my advisor.

2This section has been jointly developed by Pengcheng and Shisheng
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a node in the network), or zonal pricing systems. Here, we consider an equilibrium
modeling framework with inefficient long-term pricing and the incentives provided
for generation mix and siting, a framework that has not received consideration thus
far. We investigate how generation decisions may be affected by alternative network
cost recovery methods and how a proactive transmission planner can take those
reactions into account while deciding how to plan new transmission. We model
two distinct types of potentially inefficient cost recovery schemes. The first is a
postage-stamp type charge, while the second is a marginal MW-miles based charge
akin to that used in the UK. We develop a hierachical framework in which the
system operator determines transmission investments (binary) at the upper level
subject to the resulting transmission charging and the resulting market equilibrium,
both of which are defined at at the lower level and are contingent on transmission
level decisions. The resulting problem is a mathematical program with equilibrium
constraints (MPEC) and binary variables at the first-stage, a relatively challenging
class of nonconvex programs. We conduct a case study of a 5-node nodal network
by resolving the mixed-binary (MPEC) via a branching scheme combined with a
smoothing-based approach to further improve the efficiency of the scheme. We find
that the efficiency impacts of the different cost recovery schemes (relative to the
LMP ideal) vary significantly depending on the network and the exact structure of
the charge.

4.1.1 Motivation and Approach3

Market operators across the world have designed different charging schemes [146,147]
to recover both the investment and the operation and maintenance costs of the
transmission grid. In addition to full cost recovery, a design goal for some charges
is to approximate the short-run and long-run marginal costs of transmission assets
investment, operation, and maintenance in order to incentivize efficient generation
dispatch as well efficient location and mix of new supply development. The
underlying philosophy is that by incorporating better representations of system
marginal costs as part of the incentives to the market participants, higher economic
efficiency may be achieved [148].

In Schweppe et al.’s vision [149], LMP, the most popular short-run congestion
3This subsection has been contributed by Pengcheng and is presented here for purposes of

completeness.
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management method may result in optimal short-run operations; in addition, under
some assumptions, LMP also provides optimal long-run incentives for generation
and transmission investment. However, the total congestion revenue resulting form
LMP may only recover 20% of the total costs for the transmission system [150]
and consequently system operators have to supplement LMP with additional
transmission charges to recover the entirety of the costs from either the consumers
and/or the generator. While LMP represents an efficient short-run incentive for
dispatch, these additional charges are expected to incorporate efficient long-run
incentives for investment. These may be volumetric (per MWh) or based on installed
capacity and may or may not be locationally differentiated. We investigate the
distortions in short and long-run decisions that could result from alternative designs
of such charge considering transmission network expansions, which will heavily affect
the generation expansion decisions [151]. We examine the interactions between
transmission planning, generation expansion, and transmission costs recovery. These
distortions can be gauged by the decrease in total social welfare, which is the sum
of generation profit, consumer surplus, and transmission surplus.

In general, transmission assets require much longer lead time [86] than generation
assets. It has been shown that, in theory, proactive transmission planning that
anticipates how network expansions affect generation investment and siting decisions
yield a higher total market efficiency, defined as the sum of all economic surpluses
(welfare) of all market participants. We model transmission cost recovery charges in
a proactive transmission planning framework to find how a proactive transmission
plan might differ depending on the choice of transmission charging schemes. We
model two potentially inefficient cost recovery schemes: (i) a postage-stamp type
charge; and (ii) a marginal MW-miles based charge similar to that used by UK’s
Office of Gas and Electricity Markets [152]. We formulate the relationship between a
proactive grid planner and the generation market [86] through a bilevel framework in
which at the upper level, the system operator determines transmission investments;
at the lower level, transmission charging schemes are incorporated into the lower-
level generation expansion problem and the market clearing equilibrium problem.
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4.1.2 Literature Review4

Next, we first discuss several types of transmission pricing systems and provide
some detail on the Marginal MW-miles approach that is the focus of this chapter.
We then review some related work that compares the economic efficiency of different
pricing systems and their impact on transmission planning. We then discuss the
methods used to solve a grid planning problem subject to anticipating the response
of generators to prices, which is in general a non-convex problem. Finally, we review
several formulations of capacity expansion problems and their solution schemes.

4.1.2.1 Transmission Pricing Systems5

As mentioned, LMPs are generally inadequate in terms of recovering total trans-
mission related costs, requiring system operators to supplement the LMP with
other transmission charges to recover all the costs and collect adequate revenue. In
addition to revenue adequacy, a transmission charge is expected to promote efficient
operation and investment in the power market while being fair and practically
implementable [153,154]. However, these goals are often in conflict with each other
and different transmission charging schemes emphasize distinct goals.

We may categorize transmission charges in a variety of ways: they could be based
on power flows or not; they could be based on average total costs or incremental
costs; they could be location-dependent or independent. We list some popular
charging methods here. The postage-stamp type of charge is the most widely
used non-power-flow-based method and allocates costs without considering the
location of the network users. Users may be charged by their energy injection or
peak power. Postage-stamp, though simple to implement, does not distinguish
between users based on how their decisions affect short- or long-run transmission
costs [155] and may not encourage the most efficient use of the grid. The contract
path method specifies a path between different nodes and the costs associated
with the transmission facilities on the paths are allocated to the implied users of
those paths. This method ignores how a system operates in reality and may send
incorrect economic signals [153]. There is also the power flow-based MW-miles
charging method, which considers both the flows on the lines and the length of

4This subsection has been jointly developed by Pengcheng and Shisheng
5This part is contributed by Pengcheng
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the lines. It attributes flows back to the users using either distribution factors,
power flow comparison methods or power flow tracing methods [156]. This kind
of MW-miles method considers each user’s unique contribution to network costs
based on better approximations of the power flow than the contract path method
and assign costs accordingly.

More recently, in [155], the authors proposed a MW-miles based charge incorpo-
rating reliability concerns by using the maximum flows under all N-1 contingencies.
All the methods mentioned assign average rolled-in total costs [156]; in contrast,
some researchers have argued that charges based on incremental costs may lead to
higher efficiency [157].

Notable incremental cost methods include the Investment Cost-Related Pricing
(ICRP) [152] model, the Long-Run Incremental Cost Pricing (LRIC) [158] model,
and models based on LMP [159,160]. The first two models approximate long-run
marginal costs of the grid while the last model modifies the short-run LMP signals
to encourage more efficient investment. ICRP derives the charge by evaluating
the marginal MW-miles in changing incremental injection at a node while LRIC
assumes that line investment would be made when the flow on the line reaches
its thermal capacity and uses the change in the present value of the lines due to
incremental injections in constituting a charge. A more recent model is proposed
in [161] where the charge is based on the marginal value of the system’s capital
costs including that of the transmission lines and generators when an incremental
generation investment is made. We choose to study a marginal MW-miles method
based on Investment Cost-Related Pricing (ICRP) from OFGEM [152] given that
it can be easily incorporated in an equilibrium framework.

4.1.2.2 Economic Efficiency of Alternative Systems6

Some prior work considers the influence of transmission charges on transmission
planning [161–166]. In both [162] and [163], the authors conclude that LMP-based
models are better in achieving market efficiency than non-LMP based systems. The
methods considered include the postage stamp charge and a per-power-flow payment
charge. Tohidi et al. [161] observe that their proposed transmission charge may
distort efficient coordination between generation and transmission expansion while
affecting market efficiency. Effects of ICRP charges on transmission planning has

6This part is contributed by Pengcheng
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also been studied by Strbac et al. [164] where it has been observed that significant
benefit is transferred from consumers to generators under inefficient transmission
charges. ICRP is further compared with the postage-stamp charging model and
LRIC in [166] where the authors build an iterative model that models different
players in the market and find that the LRIC model provides the best efficiency
amongst the three. However, there appears to be no convergence criterion in the
scheme and it remains unclear if the resulting solution is an equilibrium.

However, the models used in the majority of the works mentioned above are
single-level models [161–163] where a single entity plans everything including both
transmission and generation. These models cannot represent how a proactive planner
would anticipate the investment and operational decisions in response to the specific
transmission charging method used. There are also models that iterate between
between transmission, generation and transmission charging models [164, 166].
Solutions to the latter model can be viewed as equilibria between transmission
planners who attempt to maximize net market surplus and generation investors
who behave competitively facing a transmission charge, although the resulting
equilibria may be worse from a welfare standpoint than the solution generated from
proactive planning model.

4.1.2.3 Proactive Models7

Distinct from single-level models like the ones mentioned previously, in the proactive
or anticipative transmission planning paradigm, decisions are made sequentially. At
the upper level, the network owner or ISO makes decisions concerning which lines
to build and which existing lines to upgrade, anticipating the response from the
generation market. Then, given how transmission is priced in both the short-run
(e.g., LMP) and long-run (e.g., transmission cost recovery charges), generators
make investment and dispatch decisions in a market framework. Furthermore, a
multi-level framework could model players that make decisions sequentially and
may have objectives that do not align with maximizing total surplus. The latter
ability is particularly useful to model market imperfections [69,70,86,90,167], such
as generator market power, inefficient zonal transmission prices, extra capacity
payment rules, or if reliability goals are embedded in the planning problem.

7This part is contributed by Pengcheng
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In [165] and [168], the authors use multi-level models to consider the transmission
planning problem with cost recovery. Wang et al. [165] employ a tri-level model to
consider transmission planning and distributed energy resource capacity expansion
with a transmission charge based on a power tracing method. However, this scheme
has no convergence theory nor does the transmission charge guarantee full recovery
of the transmission costs. Weibelzahl et al. [168] build a bilevel model to consider
transmission planning and storage investment planning. Here, transmission costs
will be fully recovered, but only one kind of transmission charge is considered and
the charge is assumed to be invariant among different lines. Neither of these works
emphasize the efficiency impacts of choice of transmission charging model. Here we
extend the paradigm to the case of inefficient long-run transmission pricing, with
the goal of investigating whether network planning can counter the distorted siting
incentives arising from MW-mile or postage-stamp based pricing.

However, these multilevel models are known to be nonconvex and NP-hard
in general [169] and various methods, including reformulation, penalization and
regularization, have been developed to cope with them. A mixed integer linear pro-
gramming model was developed in [89] which consisted of three levels, transmission
investment, generation investment and market operation. It utilized disjunctive
constraints to recast equilibrium constraints as mixed-integer linear constraints.
Depending on the scale of the problem, it is also possible to apply a nonlinear
programming to directly resolve the problem. However, most nonlinear program-
ming solvers tend to have less predictable behavior in the resolution of large-scale
(MPEC)s. Generally, mixed-integer linear/convex/nonconvex problems can in
principle be solved via global optimization solvers such as baron and couenne.
However, this is generally possible for small problem instances. If the problem
is a mixed-integer linear/quadratic program, then cplex and gurobi can also be
employed with the relaxations are convex. In this chapter, since the scale of our
problem is relatively small, we attempt to compute near-global solutions by utilizing
a branching scheme and solving via baron. By utilizing smoothing techniques, we
garner further efficiencies.

4.1.2.4 Capacity Expansion Problems8

• Deterministic generation capacity expansion problem: Suppose the
8This part is contributed by Shisheng
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generation capacity of firm j is denoted by xj, the cost of each firm j is fj,
the discounted operating cost during time period t is ot(x) and the constraint
on capacity of firm j is cj. Then the formulation of this problem is

min fTx+
∑
t

ot(x)

subject to cj ≥ xj ≥ 0, ∀j.

In this formulation, the solution vector x∗ describes the entire optimal plan
of capacities over all time periods.

• Generation capacity expansion problem under uncertainty: Borison,
Morris and Oren [170] suggested a static probabilistic model, where technolo-
gies are purchased and operated under uncertain conditions. It is similar
to the deterministic problem can be converted to a single linear/nonlinear
problem which is analogous to the deterministic case. Eager, Hobbs and
Bialek [171] presented a dynamic simulation model of a certain generation
investment market. A dynamic investment model was presented in which
the Mix of Normals distribution (MOND) technique was embedded. The
generation companies used a Value at Risk (VaR) criterion for investment
decisions. A stochastic multiscale model [172] for electricity generation ca-
pacity expansion has also been considered where an efficient method for
coupling multiple temporal scales in the capacity expansion problem was
utilized. The solution technique relied on a finite difference approximation of
the Hamilton-Jacobi-Bellman equation.

• Generation capacity expansion problem in a competitive environ-
ment: Let the capacity variables be denoted by x and generation decisions be
denoted by y. The parameters include the price of power seen by generator p,
generator’s investment K and operational cost v. The ith generator i solves
the following optimization problem

min − (p(X)− vi)yi +Kixi

subject to xi − yi ≥ 0

yi ≥ 0.
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Ehrenmann and Smeers [173] proposed a model inherited from the gener-
ation capacity expansion developed for monopolistic regimes, (adapted for
a competitive environment with risk-aversion). de Frutos and Fabra [174]
analyzed role of demand uncertainty in markets of fixed size, in which firms
take long-run capacity decisions prior to competing in prices. In the first
stage, firms simultaneously choose their capacities. Capacity decisions are
assumed to be irreversible and become publicly known. In the second stage,
firms simultaneously choose prices. It was analyzed as a two-stage Nash
game. Three models of investments in generation capacity expansion in
imperfectly competitive restructured electricity markets were considered by
Murphy and Smeers [175]. These models differ in their underlying economic
assumptions: the perfectly competitive model, the open-loop Cournot model
and the closed-loop Cournot model. Existence and uniqueness of the solutions
analyzed. A complementarity-based simulation model [176] was developed
for providing strategies for risk-averse firms in competitive settings where
the main uncertainty considered was the future regulation of carbon dioxide
emissions.

• Transmission capacity expansion problem: Jin and Ryan [69] consid-
ered a tri-level model of generation and transmission expansion problem.
Transmission expansion is considered at the upper level as a centralized
decision while at the second level, multiple decentralized GENCOs make their
own capacity expansion decisions. The third level represents the electricity
market equilibrium problem. A hybrid iterative solution algorithm was pro-
posed that combined a complementarity problem (CP) reformulation and
diagonalization method (DM) solutions of the EPEC sub-problem. A similar
tri-level model was considered in [67]. The solution method required approxi-
mating the line impedance values as a function of the installed transmission
capacity. Bilevel models also employed for the transmission problem [68].
Transmission decisions were modeled via a two-stage, bilevel game-theoretic
problem. Naturally, a two-stage framework may better cope with uncertainty
than a one-time decision. The equilibrium of the lower level are imposed
as constraints in the upper level and this framework may be modeled and
analyzed as a mixed integer linear program if suitable bounds are available
on the variables in the equilibrium problem. Alternate bilevel formulations
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were proposed for transmission and generation capacity expansion by [71]
in which the upper level problem represents the investment problem faced
by the transmission operator (TO) while the lower level captures market
outcomes obtained from clearing the market. This can be reduced to a
mixed-integer linear/nonlinear program. Motamedi, Zareipour, Buygi and
Rosehart [88] proposed a transmission planning framework which assumed
only the generation sector was deregulated and future generation expansion
of GENCOs was taken into account. The four levels included transmission
expansion planning, generation providers’ optimal expansion problems, the
market clearing problem, and the generation firms’ optimal bidding strategy.
The solution method was based on agent-based techniques and search-based
optimization techniques which is efficient and minimal assumptions needed
for market players but lacks rigorous convergence theory.

4.1.3 Contributions

1. Via an equilibrium modeling framework, we consider an inefficient long-term
transmission pricing and the incentives provided for generation mix and
siting. We incorporate this framework with a bilevel model for optimal
transmission planning, anticipating the response to generation to the network
reinforcements and inefficient financial incentives.

2. We propose a novel linear programming model to approximate the Marginal
MW-miles transmission charging system. This model can be embedded
in a transmission planning model to endogenously calculate the resulting
transmission charge.

3. We solve the bilevel model as a Mixed Integer Mathematical Program with
Equilibrium Constraints which we solve by combining a branching method
with a smoothing method and allows for obtaining near global solutions.

4. We examine the economic efficiency impacts from different transmission
charging schemes and illustrate their significance in the context of transmission
planning. In particular, we observe that if generator investments are affected
by transmission charging systems, transmission planning that ignore such
interactions will result in plans with lower net market surplus.
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5. Uncertainties are included in the model and we use a robust approach to
address the uncertainty. Leveraging techniques from robust optimization, we
incorporate robustness into the transmission expansion problems and provide
some preliminary numerics.

4.2 Model Description9

In the proactive or anticipative transmission planning paradigm, decisions are made
sequentially. At the upper level, the network owner or transmission system operator
(TSO) makes decisions concerning where lines should be built and which existing
lines should be upgraded, anticipating the response from the generation market.
Then, given how transmission is priced in both the short (e.g., LMP) and long-run
(e.g., interconnection charges), generators make investment and dispatch decisions
in a market framework. Multi-level models can be used to implement this paradigm.
Here we extend the paradigm to the case of inefficient long-run transmission pricing,
with the goal of investigating whether network planning can counter the distorted
siting incentives arising from MW-mile based pricing.

Each generation firm determines its dispatch and capacity investments given
energy and transmission prices. Its objective lies in maximizing profit (revenue
minus the expense of operations, capacity investments, and interconnection and
transmission charges). Through this formulation, we consider investment incentives
introduced by transmission charges.

Energy prices and LMPs arise from the short-run market clearing constraints,
while long-run (annual) transmission charges are based on a MW-miles model that
results from a separate optimization in the equilibrium model. The combination
of the market clearing and the first-order conditions of generators and the long-
run transmission pricing model constitutes an equilibrium model formulated as a
complementarity problem.

We assume that the market is perfectly competitive; generators make investment
decisions given the transmission charge but believe that they are incapable of either
changing this charge or the energy price. Since the transmission planning decisions
and the subsequent generation investments are made sequentially, the transmission
planner (leader) is anticipating generator responses in a proactive manner. We

9This section is contributed by Pengcheng
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employ this model to investigate the influence of transmission charging schemes
on proactive transmission planning decisions. The structure of our framework is
described in Fig. 4.1.
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Figure 4.1: Model structure

4.2.1 Marginal MW-miles Transmission Charging Model

The transmission charge may take the form of one-time entry fee which could
either be based on peak capacity during the year or the volume of energy sold.
This charge could also be set to be location-dependent. In this subsection, we
first describe the marginal MW-miles transmission charging model, which allocates
transmission costs to network users in a location-dependent way. We then show
when some of the parameters of the model are set to zero, the model reduces to a
location-independent model.

Our marginal MW-miles based charging system is inspired by UK’s Transmission
Network Use of System Charges [152], used to collect the annual revenue of the
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transmission owner from the demand and generation. The UK model starts by
designating a hub node, which is assumed to be the main load center in the network.
It then computes the power flow in the system (based on DC load flow equations)
during the peak hour assuming that transmission capacity is not constrained. A
base MW-mile quantity for the system is then computed by first multiplying the
absolute value of the load flow on each line by its cost-adjusted length and a
summation is conducted over all lines. The cost-adjusted length is the length of
the line times a factor representing the relative costs among different type of lines.
The nodal MW-miles for each network location is then computed, by raising the
generation capacity of that location by 1 MW and increasing the consumption at
the hub node by 1 MW; the difference between the base MW-miles and the nodal
MW-miles is the Nodal Marginal MW-miles. Since the UK has combined nodes into
different charging zones, the obtained nodal MW-miles are then weighted by the
ratio of peak nodal capacity versus overall peak capacity in the zone and summed
over the zone to form Zonal Marginal MW-miles. Finally, the zonal marginal
MW-miles are multiplied by a constant in an attempt to better reflect costs and
then modified by a scaling variable to ensure that the payments from the demand
and generation maintain a certain ratio. With the Zonal Marginal MW-miles based
charge alone, it may not be possible to collect all the revenue the network owner
needs, and therefore a location-independent Residual Recovery Tariff is used to
recover the remaining costs.

We have adapted this model to a nodal energy market, where similar to the UK’s
model, we calculate the DC power flow during the “system peak” with all the nodes
except the hub node producing at full capacity and the hub node withdrawing all
the power. To calculate the nodal marginal MW-miles, we solve a linear program
with the goal of minimizing total MW-miles. The dual variables of the nodal
balance constraint represent the change in total MW-miles when an extra MW is
injected at the corresponding node (∂Total_MW−miles

∂Capacity_change ), and is thus equivalent to the
nodal marginal MW-miles. We use these dual values as the “Base Charges” and
scale them to ensure that all the revenue is collected.

We may generalize this to each node i in the system where we may represent
the final cost measured in $/MW/y as ici = c1 + c2 · λi. The constant c2 is applied
to scale the location-dependent part akin to the constant multiplied by the zonal
marginal MW-miles, while c1 represents the residual charge that is used to make
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sure revenue is collected. λi is the base charge found as the Lagrange multiplier
associated with the flow constraints.

Furthermore, c1 and c2 are determined by setting the sum of collected charges
equal to the annual revenue required from generation. c1 and c2 could be uniquely
found by requiring that total collected charge equals annual revenue and that the
charge collected from the generator and demand maintains a fixed ratio. This
charge includes both location-independent(c1) and dependent parts (c2λi). If we
set c2 = 0, we find that the charge would no longer depend on the location.

As discussed in the previous paragraph, we may obtain the base charge from
the Lagrange multiplier associated with the flow constraints in the following opti-
mization problem:

min TMM =
∑
l∈L

(f0+
l + f0−l )CLl (TMM(y))



∑
l∈L

Ail(f0+
l − f0−l ) =

∑
g∈G

kg,i (λi)∀i ∈ N \
{
h
}

∑
l∈KV L(v)

Xll(f0+
l − f0−l ) = 0 ∀v ∈ V

f0+
l , f0−l ≥ 0, ∀l


, (4.1)

where h denotes the index of the hub node, kg,i denotes the capacity of generator g
at i, which are the decision variables of the generation expansion problem. f0+

l and
f0−l denote positive and negative power flow on l for transmission charge evaluation;
CLl denotes cost-adjusted length of line l; Ail denotes elements of network incidence
matrix while X denotes diagonal matrix containing the reactances of all lines. The
objective lies in to maximizing the total MW-miles given by the sum of the absolute
value of the flow times the cost-adjusted length over all lines. The first constraint
is the nodal balance constraint, or Kirchhoff’s Current Law, while the second
constraint is the Kirchhoff’s Voltage Law. When upper level transmission decisions
yl are given, the system (4.1) changes as follows:
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

∑
g∈G

kg,i =
∑
l∈L

Ail(f+
l − f−l ) (λi) ∀i ∈ N \

{
h
}

∑
l∈KV L(v)

M(yl − 1) ≤
∑

l∈KV L(v)
Xl(f+

l − f−l ) ∀v ∈ V

∑
l∈KV L(v)

M(1− yl) ≥
∑

l∈KV L(v)
Xl(f+

l − f−l ) ∀v ∈ V

f+
l , f

−
l ≥ 0 ∀l


.

We make the assumption that the reactance of the lines does not change with the
thermal capacity of the lines to keep the model linear. In other words, Xl is not a
variable in this model. Note that yl and tll are both transmission decisions, they
are related to each other following the constraint:

tll ≤ ylM.

To simplify the problem, we only consider charges to generators, and set them
to recover the generators’ share of fixed transmission costs in the below revenue
sufficiency constraint. Thus, we set c2 to a predetermined value with this change
and the revenue sufficiency constraint can then be written as follows:

(Rev −
∑
l∈L

tllCTl)(1− Ps)−
∑
t∈T

∑
i∈N

H(t)pi,t · ai,t

=
∑
i∈N

(c1 + c2λi) ·
∑
g∈G

kg,i, (REV)

where the left hand side comprises of fixed annual revenue and capital costs of
constructing new lines from generation less congestion revenue (sum of LMPs times
nodal injections), while the right hand side represents the total collected charge
from the generation.

4.2.1.1 Transmission Charging: Generalization and Variants

Finally, with different generators using transmission grid in widely varying ways,
it may be fair to define another generation-type-dependent scaling factor on the
transmission charge ic, so that different types of generation pay differentiated
transmission charges. Following sec 4.2.1, we redefine ic multiplying this scaling
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factor Gscaleg:
ici = Gscaleg(c1 + c2λi).

With different values for the parameters/variables, we define the following charges:

1. Marginal MW-miles Based Transmission Charge (MTC): c2 is set to a certain
nonzero value while c1 is found through REV; Gscaleg1 = Gscaleg2 , ∀g1, g2 ∈
G; cost-recovery transmission charge is based on marginal MW-miles; charges
for different generators are the same

2. Generator-dependent Marginal MW-miles Based Transmission Charge (MTCg):
c2 is set to a certain nonzero value while c1 is found through REV; ∃g1, g2 ∈ G :
Gscaleg1 6= Gscaleg2 ; cost-recovery transmission charge is based on marginal
MW-miles; charges for different generators are not the same

3. Flat Rate Charge (FR): Set c2 = 0 and c1 is found through REV; Gscaleg1 =
Gscaleg2 , ∀g1, g2 ∈ G; cost-recovery transmission charge is no longer based
on marginal MW-miles; it is the same across all network nodes;

4. LMP: c1 = 0 and c2 = 0; locational marginal price (LMP) is the only price
signal.

4.2.2 Bilevel Framework

We build a bilevel model to capture the decision making of a proactive transmission
planner. In this model, the transmission planner determines transmission investment
yl, tll at the upper level while at the lower level values of generation investment and
operation as well as prices are determined contingent on transmission decisions,
given yl, tll. To account for the transmission charge, different types of transmission
charging frameworks are also in the lower level. At the lower level, each generation
firm determines its dispatch and capacity investments given energy and transmission
prices, with the objective of maximizing profit (revenue minus the expense of
operations, capacity investments, and interconnection and transmission charges).

4.2.2.1 Lower-level Generation Expansion and Operation Problem

In summary, at the lower level, we model the interaction between the generators,
consumers, arbitrager and the transmission charging player as a perfectly compet-
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itive equilibrium problem. Each generator determines its dispatch and capacity
investments given energy and transmission prices with the overall objective of
maximizing profits/benefits. Consumers react to the energy price based on their
demand curves, while system operator acts as an arbitrageur in maximizing profits
from the buying and selling of electricity at different nodes. The transmission
charging player calculates the nodal MW-miles by solving Problem TMM(y), re-
sulting in the transmission charges paid by generating capacity minimizes the total
MW-miles. Energy prices arise from the short-run market clearing constraints.
The combination of the market clearing and the first-order conditions of generators
and the long-run transmission pricing model constitute a complementarity problem
parameterized by transmission expansion decisions.

Next, we define the optimization problem corresponding to each market par-
ticipant and assume that each node has a single generation firm. More general
assumptions are readily accommodated. The ith generator solves the following
problem:

max
∑
t∈T

∑
g∈G

Ht(pi,t · qg,i,t −MCg,i · qg,i,t)

−
∑
g∈G

(ICi + CKg,i)kg,i (Problem Geni(y, tl))
qg,i,t ≤ kg,i · (1− FORg,i,t) (µg,i,t) ∀g ∈ G, t ∈ T

qg,i,t ≥ 0 ∀g ∈ G, t ∈ T

kg,i ≥ 0 ∀g

 .

The ith consumer solves the following problem. The resulting price pi,t will support
decisions in generators’ and ISO’s problems.

Demi, t(di,t) = pi,t = INTi + SLPidi,t. (Relationship Coni)

The ISO solves the following parameterized problem during each time period t to
obtain short run prices and dispatch

max
{ai,t}

∑
i∈N

pi,tai,t (Problem ISOt(y, tl))
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ai,t =
M∑
l=1

Ani,lfl,t∑
i∈N

ai,t = 0 (ηt)

fl,t = Sl(θi,t − θj,t) ∀(i, j) ∈ Ωl, l ∈ LE (ξl,t)

Ml(1− yl) ≥ fl,t − Sl(θi,t − θj,t) ∀(i, j) ∈ Ωl,

∀l ∈ LC (σ+
l,t)

Ml(1− yl) ≤ −fl,t + Sl(θi,t − θj,t) ∀(i, j) ∈ Ωl,

∀l ∈ LC (σ−l,t)

fl,t ≤ tll ∀l ∈ LE (λ+
l,t)

fl,t ≥ −tll ∀l ∈ LE (λ−l,t)

fl,t ≤M · yl ∀l ∈ LC (π+
l,t)

fl,t ≥ −M · yl ∀l ∈ LC (π−l,t)

θi,t ≤ π ∀i (ρ+
i,t)

θi,t ≥ −π ∀i. (ρ−i,t)

Note that, we have linearized the constraint fl,t = Sl · yl(θi,t − θj,t) using Big M
method here. Finally, the market clearing conditions for each node is listed below.

di,t = ai,t +
G∑
g=1

qg,i,t ∀i ∈ N, t ∈ T. (MK(y, tl))

Combining with the transmission charging model TMM(y), the four models of this
section constitute the lower level problem Follower(y, tl):

Follower(y, tl)

TMM(y) REV Geni(y, tl) Coni ISOt(y, tl) MK(y, tl)

With the assumption of perfect competitiveness, we reformulate the lower level by
leveraging the sufficient KKT conditions of each problem. We state the equilibrium
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conditions as: For generators:

0 ≤ qg,i,t ⊥ Htpi,t −HtMCg,i − µg,i,t ≤ 0

0 ≤ µg,i,t ⊥ qg,i,t − kg,i · (1− FORg,i,t) ≤ 0

0 ≤ kg,i ⊥ −(ICi + CKg,i) +
T∑
t=1

µg,i,t(1− FORg,i,t) ≤ 0


∀g, i, t. (CPG

i (y))

For ISO: First we substitute ai = ∑M
l=1A2i,lfl into the objective and constraints.

The decision variables change to fl and θl.

For l ∈ LE,



0 =
N∑
i=1

pi,tAni,l − ηt
N∑
i=1

Ani,l − ξl,t − λ+
l,t + λ−l,t

fl,t = Sl(θi,t − θj,t) ∀(i < j) ∈ Ωl

0 ≤ λ+
l,t ⊥ fl,t − Fl,t ≤ 0

0 ≤ λ−l,t ⊥ −fl,t − Fl,t ≤ 0.


. (CP le

i (y))

For l ∈ LC ,



0 =
N∑
i=1

pi,tAni,l − ηt
N∑
i=1

Ani,l − σ+
l,t + σ−l,t − π+

l,t + π−l,t

0 ≤ σ+
l,t ⊥ fl,t − Sl(θi,t − θj,t)−Ml(1− yl) ≤ 0 ∀(i < j) ∈ Ωl

0 ≤ σ−l,t ⊥ −fl,t + Sl(θi,t − θj,t)−Ml(1− yl) ≤ 0 ∀(i < j) ∈ Ωl

0 ≤ π+
l,t ⊥ fl,t − Fl,t ≤ 0

0 ≤ π−l,t ⊥ −fl,t − Fl,t ≤ 0


. (CP lc

i (y))

For both settings,


0 = ξl,tSl + σ+

l,tSl − σ−l,tSl − ρ+
i,t + ρ−i,t

0 ≤ ρ+
i,t ⊥ θi,t − π ≤ 0

0 ≤ ρ−i,t ⊥ −θi,t − π ≤ 0

 . (CP l
i (y))
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4.2.2.2 Upper-level Transmission Capacity Expansion

If we denote the decision variable of the lower level equilibrium problem as x, we
may write the proactive transmission planning problem as follows:

max
x,y,tl

F (x, y, tl) y, tl ∈ Feasible Transmission Plans

x ∈ Follower(y, tl)

 .
Assuming perfect competition, every player is modeled as a price taker and the
follower-level problem is recast as a complementarity problem by concatenating the
player-specific necessary and sufficient optimality conditions. Specifically, we denote
the complementarity problem of the associated player problem as (CPProb), e.g.
the complementarity conditions of Geni(y, tl) are denoted by CPGen

i (y, tl). The
whole follower-level complementarity problem is then denoted by CPFollower(y,tl),
which contains CPTMM(y), CPGen

i (y, tl), CPConi , CPISOt (y, tl), and MK(y, tl).
We then introduce CPFollower(y,tl) into the feasible level of the transmission plan-
ner’s problem. We denote λ as the tuple of Lagrange multipliers arising from
CPFollower(y,tl). The ISO makes planning decisions in this model subject to the
reaction of the generation market, as captured by the following equilibrium model:

max
∑
t∈T

[∑
i∈N

Ht

(∫ ai,t+
∑

g∈G qg,i,t

0
Demi,t(x)dx− (UP)

∑
g∈G

∫ qg,i,t

0
MCg,i(q)dq

)
−
∑
i∈N

∑
g∈G

CKg,ikg,i −
∑
l∈L

CTltll

]

subject to

 ai,t, qg,i,t, kg,i, λ solve CPFollower(y, tl)

tll ≥ 0, yl ∈ {0, 1}, ∀l

 . (LO)

More generally, the problem is given by the following compact model:

min
x,y,z

h(x, y, z)

subject to 0 ≤ y ⊥ F (x, y, z) ≥ 0

f(x, y, z) ≥ 0

g(x, z) ≥ 0

z ∈ {0, 1}p,
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where the first (complementarity) constraint captures the market equilibrium
conditions, the second and third conditions represent feasibility requirements, while
the final set of integrality requirements pertain to transmission expansion decisions.

4.3 Uncertainty Modeling10

We now consider an uncertain generalization where the inverse demand function
Pi(xi) and generation marginal cost MCi(qi) are assumed to be uncertain. We
assume that these uncertain parameters have the following forms:

Pi,t(x, u1,i,t) , Pi,t,0(x) + u1,i,tP1,i,t(x)

MCg,i(q, u2,g,i) ,MCg,i,0(q) + u2,g,iMC2,g,i(q),

where u1,i,t and u2,g,i are stochastic components and ‖u1‖∞ ≤ 1, ‖u2‖∞ ≤ 1. We
consider a robust approach to transform the stochastic model to a deterministic
(MPEC) with binary variables.

The field of robust optimization [177] have grown immensely over the last two
decades in an effort and are guided by the desire to provide solutions robust to
parametric uncertainty. In general, it is interested in the convex optimization
problem:

min
x∈X

f(x;u),

where X ∈ Rn, u ∈ U ⊆ RL, f : X × U → R is a convex function in x for every
u ∈ U . Given such a problem, one avenue for defining a robust solution to this
collection of uncertain problems is given by the solution to the following worst case
problem:

min
x∈X

max
u∈U

f(x;u).

Inspired by the idea of robust optimization, we can derive the following robust
10This section is contributed by Shisheng
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counterpart of our model:

min
x,y,z

max
u∈U

h(x, y, z;u)

subject to 0 ≤ y ⊥ F (x, y, z;u) ≥ 0, ∀u ∈ U

f(x, y, z) ≥ 0, ∀u ∈ U

g(x, z) ≥ 0

z ∈ {0, 1}p.

(RC)

Unfortunately, the y ⊥ F (x, y, z;u) constraint need not admit a solution for all
u ∈ U . Instead, we recast the uncertain complementarity constraint as follows:

min
x,y,z

max
u∈U

h(x, y, z;u)

subject to min
x,y,z

max
u∈U

yTF (x, y, z;u)

y ≥ 0

F (x, y, z;u) ≥ 0, ∀u ∈ U

f(x, y, z) ≥ 0, ∀u ∈ U

g(x, z) ≥ 0

z ∈ {0, 1}p,

(Approx-RC)

where y ⊥ F (x, y, z;u), ∀u ∈ U is approximated by minx,y,z maxu∈U yTF (x, y, z;u).
Although (Approx-RC) may be solved computationally, it can be seen that for

some u, it may not hold that 0 ≤ y ⊥ F (x, y, z;u) ≥ 0. Consequently, (x, y, z) can
be viewed as not satisfying equilibrium conditions for this set of u. For example, if
we assume that demand is uncertain. Thus, pi,t is uncertain in the complementarity
problem CPG

i (y). This means the first complementarity constraint in this problem
may not be satisfied for all u and operational decisions of generator i are not
necessarily optimal for all u. Thus, we consider an adjustable robust technique first
suggested in [178]. The idea is that some parts of uncertain variables can be chosen
after the realization (akin to a recourse-based model). In our model, investment
decisions are made before uncertainty is realized while operational decisions can
wait until afterwards. Based on this method, we can develop an adjustable robust
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counterpart of our model as follows.

min
x,z,q1,...,qn

max
u∈{1,...,n}

h(x, z, qu)

subject to 0 ≤ qu ⊥ F (x, z, qu) ≥ 0, ∀u ∈ {1, . . . , n}

f(x, z, qu) ≥ 0, ∀u ∈ {1, . . . , n}

g(x, z) ≥ 0

z ∈ {0, 1}p,

(ARC)

where qu are adjustable variables and we assume u has discrete realizations.

4.4 Algorithmic Framework11

We briefly review relevant prior research in Section 4.4.1 and describe our proposed
scheme for the deterministic problem in Sections 4.4.2- 4.4.3.

4.4.1 Literature Review on Non-convex Mixed-integer Nonlin-
ear Programming (MINLP)

The transmission planning model is a mixed integer mathematical program with
equilibrium constraints (MIMPEC), a challenging problem since it involves both
binary variables and as well as nonconvexit (due to the inclusion of complementarity
conditions). The resulting (MIMPEC) lies in a broad class of mathematical
programs referred to as mixed-integer nonlinear programs (MINLPs). Generally,
(MINLP)s are categorized as one of the following: (i) The convex MINLP is
easier to solve because its continuous relaxation is computationally tractable. (ii)
However, the continuous relaxation of the nonconvex (MINLP) is NP-hard [179].
Our problem is an instance of (ii), namely a nonconvex (MINLP). Several techniques
have been proposed to handle the difficulty, including convex under- and over-
estimators [180]. If a nonconvex (MINLP) has a suitable separability structure,
it can be approximated by an (MILP) [181]. Another approximation technique
lies in applying a factorization [182] to a (MINLP), leading to a simpler form and
allowing for generating good solutions. However if an exact solution is desired, the
branching schemes are appropriate.

11This section is contributed by Shisheng
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4.4.2 Branching Schemes

It has been observed that the resulting (MIMPEC) is difficult to solve by available
global optimization solvers directly. To overcome this difficulty, we develop a branch
and bound scheme and employ baron [183] to solve each subproblem. First, we
assume all integer variables are continuous within a range. In our model, since
the integer variables y′is are all binary in nature, we may relax them as yi ∈ [0, 1].
The model with all binary variables relaxed is treated as the root node. Then we
iteratively do the following: at each node, we branch on a relaxed binary variable
and convert this variable to be a parameter with a value of 0 or 1 and solve this
model to obtain the optimal value. After solving the model, we compare the current
optimal value with a maintained lower and an upper bound to determine whether
to continue along this branch or prune this branch. After this branch and bound
approach terminates, we end up with an optimal solution to the original (MIMPEC).
Since we split the node into two each time, the whole process is actually a binary
tree. We explain this scheme with a simple example. Assume we have 2 candidate
lines to upgrade and the binary decision variables are y1, y2. Algorithm 3 and
Figure 4.2 summarize the whole process.

Algorithm 1 Branch and Bound Scheme
1: Relax yl as yl ∈ [0, 1], ∀l. Set k = 1, zl = 0 and zu = 1× 1010. Set ε = 10.
2: Split yk as yk = 0 and yk = 1. Optimize the corresponding problems using baron.
3: If zu − zl < ε, then stop and report the solution as optimal to branch. Else, if yl is

binary ∀l and z > zl, set zl = z.
4: If the optimal value z < zl, prune the branch; Else, if z > zu, set zu = z. k = k + 1.

Return to 2.
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y1, y2 ∈ [0, 1]

y1 = 0, y2 ∈ [0, 1]

y2 = 0 y2 = 1

y1 = 1, y2 ∈ [0, 1]

y2 = 0 y2 = 1

Figure 4.2: Brief explanation for the branching scheme

4.4.3 Global Smoothing

To reduce the computational effort, we leverage a smoothing scheme to provide a
reasonable lower bound to the maximization problem (UP). The idea is that we
smooth each yl in the objective function by a continuous function 1− e−µyl , where
µ is a large positive value. In theory, we have

1− e−µyl −→

1, yl = 1

0, yl = 0
, as µ→∞.

Thus, we may approximate the original program from a (MIMPEC) by a continuous
(MPEC) and a global solution of the smoothed (MPEC) can be obtained via baron
relatively fast. After rounding the corresponding (relaxed) values to their binary
values and recovering feasibility, we resolve the resulting (MPEC) by fixing these
binary values. This provides a reasonable lower bound to the original (MIMPEC)
(which is being maximized). In fact, this lower bound aids significantly in pruning
the tree in the branch-and-bound process, significantly improving the performance.
Figure 4.3 shows plots of functions with different value of µ. It improves the
efficiency dramatically. We use this smoothing-branching scheme to solve every
mixed-binary (MPEC) problem in the case study.
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Figure 4.3: Smoothing function with µ from 10 to 100

4.5 Case Study12

In this section, we investigate the economic impacts of different transmission
charging systems in a 5-node network (Figure 4.4). We first show how generation
investment changes with transmission charges and we then show how transmission
planning decisions change under different transmission charging systems. Total
economic surplus is the major metric we use to compare the solutions. All programs
were run on the NEOS Server [184–186] with CPU - 2x Intel Xeon X5660 @ 2.8GHz
(12 cores total) CPU and 64GB RAM memories. All models are solved with the
proposed branching scheme by employing the smoothing approach.

Since we study a power system with a short-temp nodal market, LMP as a
kind of transmission charge always exists in the system. In addition to LMP, we
study another 3 kinds of transmission charging system mentioned already in Sect
4.2.1.1, namely the “Marginal MW-miles Based Transmission Charge” (MTC), the
“Flat Rate Charge” (FR) and “Generator-dependent Marginal MW-miles Based
Transmission Charge” (MTCg). We set c2 = 29 $/MW/y for both MTC and MTCg.
c1 is found through REV. With different transmission charges, we construct six
different models based on the proposed framework. We then apply these models to
a 5-node system for the analysis. We list them below:

12This section is joint work by Pengcheng and Shisheng, where Pengcheng designed the test
case and analyzed the results while Shisheng developed the algorithm, solved the models, and
conducted sensitivity and uncertainty analysis
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Figure 4.4: L:Five-node network M:Load distribution R:Wind capacity factor

1. Model LMP : A bilevel transmission planning model (as in section 2.2.2) with
only LMP as the transmission charge in the lower level.

2. Model MTC: A bilevel transmission planning model with both LMP and
MTC charge as the transmission charge.

3. Model MTCg: A bilevel transmission planning model with both LMP and
MTCg charge as the transmission charge.

4. Model FR: A bilevel transmission planning model with both LMP and a FR
charge as the transmission charge.

5. Model LMP (MTC): A single level generation expansion model (as in section
2.2.1) with both LMP and MTC charge as the transmission charge. However,
the network is the same as the optimal network from the solution of Model
LMP .

6. Model LMP (FR): A single level generation expansion model with both LMP
and FR charge as the transmission charge. The network is the same as the
optimal network from the solution of Model LMP .

Other fixed parameters include: the demand curve and wind capacity factors
calibrated to the ERCOT system data published online of the year 2015, by
clustering one year into 22 time periods, generation costs taken from EIA database
[187, 188], and transmission line expansion costs are taken from WECC 2014
report [189]. The values are documented in the online Appendix.
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Table 4.1: Transmission charges under all models in $/MW/Year

A B C D E
LMP 0 0 0 0 0

LMP(MTC) 24748 10740 24893 45657 39857
LMP(FR) 16629 16629 16629 16629 16629

Table 4.2: Generation capacity under LMP (MTC) in MW

LMP(MTC) A B C D E
CC 2690 0 1260 131 0
CT 389 525 401 30 0
Wind 0 0 0 0 0

4.5.1 Transmission Charges’ effects on Generation Equilibrium

We show the effects of transmission charges on generation equilibrium by comparing
results from Models LMP , LMP (MTC), and LMP (FR), which all share the
same transmission network. Although LMP is a bilevel model, the results of the
model can be seen as the lower level’s response to the shared optimal network, and
thus can be compared to the other two models. We first list the equilibrium charge
ici in the Table 4.1. We can see that the MTC penalizes the nodes far away from
the hub, in this case, nodes D and E, which have cheap wind resources. This could
incentivize generators to site new generation in places where the local demand is
high, especially the hub node B.

Next, we consider the resulting generation capacity investment at different nodes
for diverse models in Table 4.2 (LMP(MTC)), Table 4.3 (LMP(FR)), and Table
4.4 (LMP). We can see that the wind generation has been completely pushed out
of the system with the MTC charge. Although the wind generation capacity also
decreases with the FR charge, the overall generation mix does not change much.

Table 4.3: Generation capacity under LMP (FR) in MW

LMP(FR) A B C D E
CC 2347 0 1260 134 0
CT 506 516 417 33 0
Wind 0 0 0 0 878
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Table 4.4: Generation capacity under LMP in MW

LMP A B C D E
CC 2344 0 1260 54 0
CT 535 539 450 78 0
Wind 0 0 0 195 898

Table 4.5: Social welfare decomposition in M$/Year

Model Social
Welfare
Change

Consumer
Benefits
Change

GenCost
Change

Transmission
Capital
Cost Change

LMP 0 0 0 0
MTC -5.77 -11.40 7.11 -12.74
FR -1.70 -10.10 0.28 -8.67
LMP(MTC) -20.47 -12.30 8.17 0
LMP(FR) -3.12 -9.06 -6.41 0

Social Welfare Change = Consumer Benefits Change - Gen Cost Change -
Transmission Capital Cost Change

Reducing the capacity of wind generators would result in loss of efficiency for the
whole system, especially since they have practically negative variable costs due
to tax credits. The changes in the generation capacity also induces change in the
energy output. 11.4% of energy is generated by wind in LMP , while there’s only
9.2% in LMP (FR) and the value drops to zero in case of LMP (MTC).

Social surplus drops more with the MTC charge than with the FR charge,
resulting in a loss of 0.674$/MWh for the LMP (MTC) model and 0.103$/MWh
for the LMP (FR) model. With the decrease in the capacity of wind generation,

Table 4.6: Solution description

Model WelfareLoss
$/MWh/Year

Gen Mix as %
of Demand
(Wind;CC;CT)

Average
Demand
MW/hr/Year

LMP 0 11.4; 83.1; 5.5 3465.83
MTC 0.190 0.0, 95.2; 4.8 3464.56
FR 0.056 4.2; 90.7; 5.1 3465.19
LMP(MTC) 0.674 0.0; 95.2; 4.8 3462.33
LMP(FR) 0.103 9.2; 85.5; 5.3 3462.28
MTCg 0.029 17.8; 76.1; 6.1 3458.67
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Table 4.7: Social welfare decomposition in M$/Year

Model Consumer
Surplus

Transmission
Surplus

Generation
Revenue

Consumer
Payment

LMP 8610.81 13.62 1557.08 1633.77
MTC 8509.60 109.07 1695.00 1723.58
FR 8514.68 108.05 1668.33 1719.80
LMP(MTC) 8498.08 105.88 1695.77 1734.20
LMP(FR) 8515.43 105.88 1651.96 1719.62

Social Welfare = Consumer Surplus + Generator Surplus + Trans-
mission Surplus. Since the generator surplus is always zero, it is not
listed here. The transmission surplus should also include the rev-
enue collected from consumers which is assumed to be collected by a
non-distorting tax and is not included here.

Table 4.8: Comparison of Congestion Revenue, Transmission Charge, and Average
Generation Costs (transmission charge excluded)

Model Congestion
Revenue
M$/Year

Transmission
Charge
M$/Year

GenerationCosts-
TransmissionCharge
$/MWh/Year

LMP 76.69 0 51.29
MTC 28.58 130.82 51.54
FR 51.47 110.97 51.30
LMP(MTC) 38.43 130.52 51.61
LMP(FR) 67.66 101.29 51.13

the per MWh generation revenue also increases in both the LMP (MTC) and
LMP (FR) models. However, the price also increased with decrease of cheap wind
generation and thus the overall demand decreases. If we look at the average per
MWh generation costs (with transmission charge omitted), we could see that it
increases with LMP (MTC) model, but decreases with LMP (FR) model. We
know the demand drops and lowers system costs and that the generation costs rise
with less wind capacity. Overall since there is still significant wind generation in
LMP (FR), the reduction of costs from lower demand offsets the rise of costs from
more expensive generation.

If we look at the capacity of generators at each node, the deciding factors of
the system efficiency is the capacity of wind generation. In the model, the wind
generators, though having a much lower capacity factor than fossil fuels generators,
would be charged the same way. Additionally, since wind resources are located far
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away from load center, their locational transmission charge would be higher than
generators at other places. These two factors also contribute to the diminishing of
wind generators with location dependent transmission charge. We could also see
that the more efficient way to collect transmission costs is to collect as much as
possible from the congestion charge.

Comparing results from Models LMP , LMP (MTC), and LMP (FR), we may
also illustrate the effects of transmission planning without considering actual
transmission charges. The planner assumes the transmission charge is only LMP

and builds the network according to the optimal plan of the LMP model, however,
in reality, the equilibrium outcomes are actually from models LMP (MTC) and
LMP (FR), where significant losses have incurred. The cost of transmission is
$63063700, if we calculate the welfare loss of LMP (MTC) and LMP (FR) models
relative to this cost, we will find them to be 32.5% and 4.9%. The ratio from
LMP (MTC) model is significant and it indicates that more efficient transmission
might be found through a proactive transmission planning model.

4.5.2 Transmission Charge effects on Transmission Planning

Table 4.9: Network differences

Model OptimalNetwork Transmission
Capital M$/Year

LMP AB=1491.725,
AE=412.112,
BC=5.693,
DE=9.624

63.06

MTC AB=1553 50.33
FR AB=1553, AE=86,

DE=79
54.39

Comparing the transmission expansion plans in the models LMP , MTC and
FR, we observe that the optimal transmission plan changes with different transmis-
sion systems. This indicates that the proactive planner may take actions to correct
distortions from the transmission charge.

If we compare the per MWh welfare loss from all the models, we see that
the proactive planning models MTC and FR do better than LMP (MTC) and

128



LMP (FR). More than 50% of the losses while using a transmission charging
model can be mitigated by planning proactively. However, the degree of this
correction differs significantly with different transmission charging systems. The
decrease in surplus of MTC is much larger than that of FR, which is caused by
less transmission capacity investment due to wind’s inability to enter the system.
While the proactive planning can mitigate some of the inefficiencies, the welfare
drop is still significant for the MTC model, which has no wind generation. We
attribute these losses to the nature of the distance-based charge penalizing remote
generation.

Although a proactive plan cannot correct all the distortions from the cost
recovery charge, can modifying the cost recovery charge encourage wind adoption
to reduce the distortion. Furthermore, the remote wind generation, while leading
to larger marginal MW-miles, may not employ the transmission system in the same
way as baseload or peaking plants. Building on the MTC, we scale the charge ICi
by a scaling factor, so that the new charge SICg,i could be defined as:

SICg,i = gscaleg · ICi

As can be seen, it now becomes possible to charge different types of generators in a
distinct fashion. The charges to the renewable, base load and peaking generators
are expected to change and through some testing, we find that in our system, when
the gscaleg is chosen in a certain way (gscalewind = 0.1, gscaleCC = 1.0, gscaleCT =
0.5), the system efficiency loss may be even lower than that from FR. We define
the model with this charge as MTCg and provide a comparison table in 4.6. With
much less cost recovery charge, wind generators have an advantage in investment
costs. Thus, we see the wind generation ratio is even higher than the LMP case,
although at the cost of lowering system efficiency. We believe a careful design of
gscaleg could indeed lessen the distortion from this charge, however, its values are
highly dependent on the system configuration and determining them is out of the
scope of this study.

We also see that in this system, the transmission planner has to make a tradeoff
between building expensive transmission capacity to accommodate remote cheap
wind resources and building less transmission capacity while using more expensive
but local generation. As can be seen by comparing FR and LMP (FR), the
proactive transmission planner improves the system efficiency by building less
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transmission capacity and thus limits wind generation. Since wind generation is
dropping out of system and the system can no longer make use of the significantly
cheaper wind generation and fossil fuel generation prices do not significantly differ
across different nodes, it makes less economic sense to build expensive transmission
to replace local generation.

We can see that the generation revenue also rises for both MTC and FR

models and that the revenues are higher than that in LMP (MTC) and LMP (FR).
This is caused by both the slightly higher demand and the reduced transmission
capacity. However, in contrast with what is observed in section 4.1, the average
cost of generation now rises for FR. This is due to the fact that although demand
is lower due to higher prices, the generation costs also rise due to lower wind
capacity. Overall the demand is not low enough to reduce the system costs while
the depressed wind capacity causes too large an increase in costs, and thus the
average generation costs (without considering transmission charges) increase.

Again, consistent with what we observe in the prior subsection, another obser-
vation is that the social surpluses rise with the percentage of transmission costs
recovered from congestion charge. This could create an incentive for the trans-
mission planner to build insufficient transmission capacity to raise the congestion
revenue to recover all the costs, even when the objective to maximize social surplus.

4.5.3 Smoothing Approach Results

We compare the objective values and running time of smoothing-branching scheme
with classical branching scheme in Figure 4.10. We test MTC, FR and LMP models
over two different settings of network. It indicates smoothing techniques lead to
significant computational savings with modest loss in solution quality.
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Table 4.10: Objective value comparisons(µ = 10)

Branching(global) Smoothing
MTC(set.1) 8.7452e+9 8.7451e+9
FR(set.1) 9.2141e+9 9.2140e+9
LMP(set.1) 9.2153e+9 9.2151e+9
MTC(set.2) 8.7697e+9 8.7695e+9
FR(set.2) 9.0799e+9 9.0798e+9
LMP(set.2) 9.0799e+9 9.0797e+9

4-5 hours 10-20 minutes

4.5.4 Sensitivity Analysis

In this section, we conduct a sensitivity analysis to examine the relation of system
performance to key parameters. First, the solutions of deterministic models (Table
4.11) and the resulting networks (Figure 4.5) are provided for reference. Table
4.12 shows total welfare and transmission plan for different value of revenue to be
recovered. When we increase revenue requirements from 1.6× 108 to 2.5× 108, the
planning decisions do not change at all, implying that this parameter has little
impact on transmission lines expansion. An interesting finding in Table 4.12 and
Figure 4.6 is that social welfare sees a significant drop when we increase the value
from 2.0× 108 to 2.5× 108, which indicates that the whole transmission network is
redistributed although the transmission expansion decision is unchanged.

SW y k(Wind)
MTC 8.6186e+9 y(AB)=1 0
FR 8.6227e+9 y(AB)=1, y(AE)=1, y(DE)=1 k(E)=401
LMP 8.6244e+9 y(AB)=1, y(AE)=1, y(BC)=1, y(DE)=1 k(D)=195,k(E)=858

Table 4.11: Social welfare comparison
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Figure 4.5: L: MTC; M: FR; R: LMP

Table 4.12: (MTC) solutions with different Revenue

Rev SW y k(CT)
1.6e+8 8.6186e+9 y(AB)=1 A=372, B=458
1.7e+8 8.6183e+9 y(AB)=1 A=369, B=456
1.8e+8 8.6180e+9 y(AB)=1 A=367, B=454
1.9e+8 8.6177e+9 y(AB)=1 A=365, B=452
2.0e+8 8.6174e+9 y(AB)=1 A=362, B=450
2.1e+8 8.6147e+9 y(AB)=1 A=807, B=0
2.2e+8 8.6144e+9 y(AB)=1 A=803, B=0
2.3e+8 8.6140e+9 y(AB)=1 A=800, B=0
2.4e+8 8.6036e+9 y(AB)=1 A=796, B=0
2.5e+8 8.6032e+9 y(AB)=1 A=792, B=0
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Figure 4.6: Solutions with different Revenue
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We rerun the models by varying values of marginal cost for wind at each
generation. Table 4.13 shows that the transmission expansion plan changes with
decreasing marginal cost for wind. We assume the marginal cost is the same at
each generation. Also, the social welfare has significant increase when the marginal
cost is set below −35. Figure 4.7 shows the two optimal transmission networks
generated by the model.

Table 4.13: (MTC) solutions with different Marginal Cost

MC(Wind) SW y k(Wind)
-15 8.6186e+9 y(AB)=1 0
-20 8.6186e+9 y(AB)=1 0
-25 8.6186e+9 y(AB)=1 0
-30 8.6186e+9 y(AB)=1 0
-35 8.6186e+9 y(AB)=1 0
-40 8.7928e+9 y(AB)=1, y(AE)=1, y(CE)=1, y(DE)=1 E=4406
-45 8.8951e+9 y(AB)=1, y(AE)=1, y(CE)=1, y(DE)=1 E=5373
-50 8.9607e+9 y(AB)=1, y(AE)=1, y(BC)=1, y(DE)=1 E=5714
-55 9.0607e+9 y(AB)=1, y(AE)=1, y(BC)=1, y(DE)=1 E=5983
-60 9.2373e+9 y(AB)=1, y(AE)=1, y(CE)=1, y(DE)=1 D=403, E=5791

Figure 4.7: Transmission network with different MC
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4.5.5 Robust Solutions

Next, we consider the role of uncertainty and examine the adjustable robust
counterpart. First, we assume that the parameter a in the inverse demand function
a− bX is uncertain and takes on realizations denoted by a(u). Next, we randomly
choose 10 samples {a1, . . . , a10}, where a1 < a2 < · · · < a10. We also generate
results of another 7 random samples a11, . . . , a17 as well as the expected-valued
objective for comparison. The result is shown in Table 4.14. From the table, it is
clear that (ARC) provides a lower social welfare since it represents a worst-case
solution. However, the robust objective value is better than worst case (Sample 11).
Another finding is that the expected-valued model generates a different transmission
plan compared with (ARC). Capacity of wind remains zero throughout all scenarios,
which indicates that in (MTC) we may not expect power supply from wind. Figure
4.8 displays networks generated by solving (ARC) and expected objective model. It
means that the (ARC) formulation generates a different network from an expected
objective model. The reason is that the expected objective model tries to maximize
the social welfare of all scenarios in an averaged value sense which (ARC) ensures
normal operation of the worst case scenario.

4.6 Concluding Remarks
In this chapter, we build a bi-level transmission planning model with consideration
of transmission cost recovery schemes. We have the transmission planner in the
upper level and the generation expansion and transmission cost recovery market
equilibrium in the lower level. We are able to illustrate the behavior of a proactive
planner, who plans transmission considering the response from the lower level market
equilibrium with or without transmission cost recovery. We analyze the economic
consequences of imposing different cost recovery schemes when the transmission
planner does transmission planning considering these charges. We show that
different charges would result in different social efficiency loss. The flat rate charge
induces less distortion than the standard MW-miles based charge. We would
like to note here that a different configuration of MW-miles based charge that
differentiates among generator types results in even less efficiency loss comparing
to flat rate charge, however, designing an optimal configuration and making sure it
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complies with the principles of pricing designs is complicated and out of the scope
of this study. We also illustrate that higher efficiency loss could be observed if the
transmission planner did not take into account of the cost recovery scheme while
planning. This illustrates that the proactive planning could indeed correct some
distortions from the cost recovery charge. With uncertainty considered in the model
and leveraging techniques from robust optimization, we incorporate robustness into
the transmission expansion problem. We develop an adjustable robust counterpart
to the uncertain model which admits solutions. A branching scheme is developed
to solve the mixed-binary (MPEC) directly and a smoothing approach is employed
to accelerate the solving process.

Table 4.14: Solutions with different sample size (MTC)

MTC Sample SW Planning
ARC a1, . . . , a10 2.5572e+9 AB, AE, CE, DE

Sample 11 a11 1.7476e+9 AB, AE, CE, DE
Sample 12 a12 2.7133e+9 AB, AE, CE, DE
Sample 13 a13 3.8805e+9 AB, AE, CD, DE
Sample 14 a14 5.2296e+9 AB, AE, CD, DE
Sample 15 a15 6.8372e+9 AB
Sample 16 a16 8.5305e+9 AB
Sample 17 a17 9.5816e+9 AB
Expected a1, . . . , a10 5.6293e+9 AB, AE, BC, DE

Figure 4.8: Transmission network generated by ARC and expected objective
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Chapter 5 |
Concluding remarks and future
work

In this chapter, we recap our main findings from each essay and briefly discuss
future work.

5.1 Stochastic Extragradient-type Methods
In this dissertation, we first develop single projection variants of extragradient
schemes for monotone stochastic variational inequality problems. Extragradient
schemes and their sampling-based counterparts represent a key cornerstone of solv-
ing monotone deterministic and stochastic variational inequality problems. Yet, the
per-iteration complexity of such schemes is twice as high as their single projection
counterparts. We consider two avenues in which the two projections are replaced by
exactly one projection (a projected reflected scheme) or a single projection onto the
set and another onto a halfpace, the second of which is computable in closed form
(a subgradient extragradient scheme). In both instances, we derive a.s. convergence
statements and rate statements under variance reduction. Notably, the sequences
achieve a non-asymptotic rate of O(1/K), matching its deterministic counterpart.
Furthermore, when this set is itself challenging to project onto, we develop a random
projection variant for each scheme. Again, a.s. convergence and rate statements
are provided. Empirical behavior of both schemes show significant benefits in terms
of per-iteration complexity compared to extragradient counterparts.

Yet, there is much to be gained from understanding how the schemes can be
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extended to pseudomonotone and non-monotone regimes. While it is plausible that
such avenues could allow for rate statements under strong pseudomonotonicity,
addressing more general mappings (non-monotone) requires the use of a line search.
This is particularly problematic in that naive implementations lead to correlation
between the steplength and the iterate, significantly complicating the analysis. A
second question pertains to the use of random projections where the rate statements
are poorer than the deterministic counterparts (O(1/K)) under mere monotonicity.
Can increasing number of simple projections at each step reduce this gap? Such
questions remain of interest in future work.

5.2 Stochastic Proximal and Splitting Schemes
Next, we extend our work to solving the stochastic generalized equation with mono-
tone operators, a class of problems that subsumes convex stochastic optimization
problems as well as subclasses of convex Nash games and variational inequality
problem. In this context, we propose two avenues where the first avenue develops
a stochastic proximal point framework for a subclass of stochastic generalized
equations in which the operator is either strongly monotone or maximal monotone.
By employing a sample-average of the map, we proceed to show that when the
sample-size sequences are raised at a suitable rate, we prove that the resulting
sequence of iterates converges either at a linear rate (strongly monotone) or at a
rate of O(1/k) (maximal monotone), leading to oracle complexities of O(1/ε) and
O(1/ε2a+1), ∀a > 1, respectively. The second one consider structured regimes in
which the map can be rewritten as the sum of two maps, facilitating the use of
splitting-based framework. In this context, when one of the maps is expectation-
valued while the other has a cheap resolvent, we consider a scheme in which a
sample-average of the expectation-valued map. Akin to the prior scheme, when the
sample-size is increased at a suitable rate, the resulting sequence of iterates con-
verges either at a linear rate (strongly monotone) or at a rate of O(1/k) (maximal
monotone), leading to oracle complexities of O(1/ε) and O(1/ε2), respectively.

Several questions remain in developing a comprehensive study of stochastic
generalized equations. A crucial open question is contending with non-monotone
operators complicated by uncertainty. The resolution of such problems is challenging,
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even in deterministic regimes, and remains a broad goal of study. Second, one
of the stochastic proximal-point schemes relies on settings where the resolvent
is equivalent to solving a tractable optimization/equilibrium problem. Instead,
can one develop an improved scheme for solving strongly monotone generalized
equations which display a muted dependence on the condition number.

5.3 Competitive Transmission Expansion Planning
Finally, we build a bilevel transmission planning model with consideration of trans-
mission cost recovery schemes where the transmission planner’s problem is at the
upper level while the generation expansion and transmission cost recovery market
equilibrium are at the lower level. We are able to illustrate the behavior of a
proactive planner, who plans transmission by incorporating the response from the
lower level market equilibrium with or without transmission cost recovery. We
analyze the economic consequences of imposing different cost recovery schemes
when the transmission planner does transmission planning considering these charges.
We show that diverse charges would result in widely differing social welfare loss.
The flat rate charge induces less distortion than the standard MW-Miles based
charge. We would like to note here that a different configuration of MW-miles
based charge that differentiates among generator types results in even less efficiency
loss comparing to flat rate charge, however, designing an optimal configuration
and making sure it complies with the principles of pricing designs is complicated
and out of the scope of this study. We also illustrate that higher efficiency loss
could be observed if the transmission planner does not take into account of the cost
recovery scheme while planning. This illustrates that the proactive planning could
indeed correct some distortions from the cost recovery charge. Also, uncertainty is
included in the model and we use a robust approach to reformulate the stochastic
model. Leveraging techniques from robust solutions to uncertain complementary
problems, we incorporate robustness into the transmission expansion problem and
some preliminary numerics are provided.

Much remains to be understood about how such models can be extended to
account for uncertainty. Currently, we employ a sampled approach to approximate
the adjustable robust counterpart. However, under what conditions can the original
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adjustable robust counterpart be recast as a single low-dimensional nonlinear
program. Can such avenues provide better expansion plans from a robustness
standpoint? This remains the focus of future work.
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Appendix A|
Convergence analysis of stochas-
tic extragradient method

Proposition 19. Let Assumptions 1, 4 – 6 hold and let γk ≤ 1
2L . Then for any

x0 ∈ X, a sequence generated by (SEG) converges to a solution x∗ ∈ X in an a.s.
sense.

Proof. By Lemma 1(ii), we have
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Applying (A.2) to (A.1) yields
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By Lemma 1(i), we have

(xk+ 1
2
− xk+1)T (xk+ 1

2
− xk + γkF (xk, ωk)) ≤ 0. (A.4)

Using (A.4) in (A.3), we obtain
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‖+ 2γkωTk (xk+1 − xk+ 1

2
)

≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)‖xk − xk+ 1
2
‖2 − 1

2‖xk+ 1
2
− xk+1‖2

− 2γkF (xk+ 1
2
)T (xk+ 1

2
− x∗)− 2wTk+ 1

2
(xk+ 1

2
− x∗) + 2γk(ωk − ωk+ 1

2
)T (xk+1 − xk+ 1

2
)

≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)‖xk − xk+ 1
2
‖2 − 2γkF (xk+ 1

2
)T (xk+ 1

2
− x∗)

− 2wTk+ 1
2
(xk+ 1

2
− x∗) + 2γ2

k‖ωk − ωk+ 1
2
‖2.

Invoking the weak sharpness property, we have that
F (x∗)T (xk+ 1

2
− x∗) ≥ αdist

(
xk+ 1

2
, X∗

)
, implying that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)‖xk − xk+ 1
2
‖2 − 2γkαdist

(
xk+ 1

2
, X∗

)
+ 2γ2

k‖wk+ 1
2
− wk‖2 − 2γkwTk+ 1

2
(xk+ 1

2
− x∗). (A.5)

We have the following inequality:

dist (xk, X∗) = ‖xk − ΠX∗(xk)‖

≤ ‖xk − ΠX∗(xk+ 1
2
)‖

≤ ‖xk − xk+ 1
2
‖+ ‖xk+ 1

2
− ΠX∗(xk+ 1

2
)‖

= ‖xk − xk+ 1
2
‖+ dist

(
xk+ 1

2
, X∗

)
. (A.6)

Using (A.6) in (A.5), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)‖xk − xk+ 1
2
‖2 − 2γkαdist

(
xk+ 1

2
, X∗

)
+ 2γ2

k‖wk+ 1
2
− wk‖2 − 2γkwTk+ 1

2
(xk+ 1

2
− x∗)
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≤ ‖xk − x∗‖2 − (1− 2γ2
kL

2)‖xk − xk+ 1
2
‖2 − 2γkαdist (xk, X∗)

+ 2γkα‖xk − xk+ 1
2
‖+ 2γ2

k‖wk+ 1
2
− wk‖2 − 2γkwTk+ 1

2
(xk+ 1

2
− x∗)

= ‖xk − x∗‖2 −
(1

2 − 2γ2
kL

2
)
‖xk − xk+ 1

2
‖2 − 2γkαdist (xk, X∗)

− 1
2‖xk − xk+ 1

2
‖2 + 2γkα‖xk − xk+ 1

2
‖+ 2γ2

k‖wk+ 1
2
− wk‖2 − 2γkwTk+ 1

2
(xk+ 1

2
− x∗)

= ‖xk − x∗‖2 −
(1

2 − 2γ2
kL

2
)
‖xk − xk+ 1

2
‖2 − 2γkαdist (xk, X∗)

− 1
2‖xk − xk+ 1

2
− 2γkα‖2 + 2γ2

kα
2 + 2γ2

k‖wk+ 1
2
− wk‖2 − 2γkwTk+ 1

2
(xk+ 1

2
− x∗)

≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗) + 2γ2
kα

2 + 2γ2
k‖wk+ 1

2
− wk‖2

− 2γkwTk+ 1
2
(xk+ 1

2
− x∗)

Taking expectations conditioned on Fk, we obtain the following bound:

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗) + 2γ2
kα

2 + 8γ2
kν

2,

where we leverage ‖wk+ 1
2
−wk‖2 ≤ 2‖wk+ 1

2
‖2+2‖wk‖2. We may now apply Lemma 2

which allows us to claim that {‖xk−x∗‖} is convergent and
∑
k γkαdist (xk, X∗) <∞

in an a.s. sense. Since ∑k γk =∞, in an a.s. sense, we have

lim inf
k→∞

dist(xk, X∗) = 0.

This implies that some subsequence of {xk} converges to a point in X∗ in an a.s.
sense. Since we have known that {‖xk − x∗‖} is a convergent sequence in an a.s.
sense, we can claim that the entire sequence {xk} converges to a point in X∗ in an
a.s. sense.

The following rate statements are provided for the sequence x̄N , an average of
the iterates {xk+1/2} generated by (SEG) over the window constructed from Nl to
N where Nl , bN/2c and N ≥ 2:

x̄N ,

∑N
k=Nl γkxk+ 1

2∑N
k=Nl γk

. (A.7)

Proposition 20 (Dim. steplength: SEG). Consider the (SEG) scheme and let
{x̄N} be defined in (A.7), where 0 < γk ≤ 1/L for all k ≥ 0 and γk = γ0/

√
k. Let
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Assumptions 1 – 2, 5 hold. Then, we have

E[G(x̄N)] = O
(

1√
N

)
.

Proof. Adding 2γkF (xk+ 1
2
)T (xk+ 1

2
− x∗) to both sides of (A.1), we can deduce

E[‖xk+1 − x∗‖2 | Fk+ 1
2
] ≤ ‖xk − x∗‖2 − (1− 2γ2

kL
2)‖xk − xk+ 1

2
‖2

− 2γkF (xk+ 1
2
)T (xk+ 1

2
− x∗) + 8γ2

kν
2. (A.8)

Taking expectations on both sides of (A.8), we obtain

2γkE[F (y)T (xk+ 1
2
− y)] ≤ E[‖xk − y‖2]− E[‖xk+1 − y‖2] + 8γ2

kν
2, ∀y ∈ X.

(A.9)

From (A.9), by summing over k from Nl to N , we have the following for all y ∈ X:

2
N∑

k=Nl
γkE[F (y)T (xk+ 1

2
− y)] ≤ E[‖xNl − y‖2]− E[‖xN+1 − y‖2] + 8

N∑
k=Nl

γ2
kν

2.

Consequently, we have the following sequence of inequalities:

2
 N∑
k=Nl

γk

E[F (y)T (x̄N − y)] ≤ E[‖xNl − y‖2]− E[‖xN+1 − y‖2]

≤ B2
2 + 8

N∑
k=Nl

γ2
kν

2, (A.10)

where the second inequality follows from the boundedness of X. Since γk = γ0/
√
k,

it follows that for all y ∈ X:

E[F (y)T (x̄N − y)] ≤
B2

2 + 8∑N
k=Nl γ

2
kν

2

2∑N
k=Nl γk

= B2
2

2γ0

1∑N
k=Nl k

− 1
2

+ 4γ0ν
2
∑N
k=Nl k

−1∑N
k=Nl k

− 1
2
.

(A.11)

We now utilize the following lower bound on the denominator for N ≥ 1:

N∑
k=Nl

k−
1
2 ≥

∫ N

N
2

(x+ 1)− 1
2dx = 2

√
(N + 1)− 2

√
N/2 + 1) ≥ 2

√
N/40. (A.12)
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Similarly an upper bound may be constructed:

N∑
k=Nl

k−1 ≤
∫ N

N
2

x−1dx+ 1
bN2 c

≤ log 2 + 1. (A.13)

By substituting (A.12) and (A.13) in (A.11), we obtain that the following holds:

E[F (y)T (x̄N − y)] ≤ C4√
N

for all y ∈ X

where C4 ,

(√
40B2

2
4γ0

+ 2
√

40(log 2 + 1)γ0ν
2
)
.

The result follows by taking supremum over y ∈ X.

Proposition 21 (Constant steplength: SEG). Consider the (SEG) scheme
and let {x̄N} be defined as (A.7), where 0 < γk = γ ≤ 1/L for all k ≥ 0. Let
Assumptions 1 – 2, 5 hold. Then, we have

E[G(x̄N)] = O
(

1√
N

)
.

Proof. Proceeding similarly as in the prior proof, an analogous inequality to (A.10)
can be derived for all y ∈ X:

2
(

N∑
k=0

γk

)
E[F (y)T (x̄N − y)] ≤ B2

2 + 8
N∑
k=0

γ2
kν

2. (A.14)

Since γk ≡ γ, we can rewrite (A.14) as follows for all y ∈ X:

2(N + 1)γE[F (y)T (x̄N − y)] ≤ B2
2 + 8(N + 1)γ2ν2,

leading to the following inequality for all y ∈ X:

E[F (y)T (x̄N − y)] ≤ B2
2

2(N + 1)γ + 8(N + 1)γ2ν2

2(N + 1)γ = B2
2

2(N + 1)γ + 4γν2

≤ B2
2

2Nγ + 4γν2.

Letting γ = B2/2
√

2Nν, we may deduce that

E[F (y)T (x̄N − y)] ≤
√

2B2ν√
N

,∀y ∈ X.

145



The result follows.

Proposition 22. Let Assumptions 1 – 2, 5 hold and assume the mapping F is
strongly monotone. Let {γk} be given by γk = γ0/k. Then any sequence generated
by (SEG) converges to a solution x∗ ∈ X in an expected value sense:

E[‖xk − x∗‖2] = O
( 1
N

)
.

Proof. According to strong monotonicity assumption of F , we get

−2γkF (xk+ 1
2
)T (xk+ 1

2
− x∗) ≤ −2γkσ‖xk+ 1

2
− x∗‖2

≤ 2γkσ‖xk+ 1
2
− xk‖2 − γkσ‖xk − x∗‖2.

Using it in (A.3), we deduce

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+ 1
2
− xk‖2 − ‖xk+ 1

2
− xk+1‖2 − wTk+ 1

2
(xk+1 − x∗)

+ 2(xk+1 − xk+ 1
2
)T (xk − γkF (xk+ 1

2
)− xk+ 1

2
)

+ 2γkσ‖xk+ 1
2
− xk‖2 − γkσ‖xk − x∗‖2.

Modifying the subsequent deduction accordingly, we obtain

E[‖xk+1 − x∗‖2 | Fk+ 1
2
] ≤ (1− σγk)‖xk − x∗‖2 − (1− 2γ2

kL
2 − 2σγk)‖xk − xk+ 1

2
‖2

+ 4γ2
kν

2

≤ (1− σγk)‖xk − x∗‖2 + (2γ2
kL

2 + γ2
kσ

2)‖xk − xk+ 1
2
‖2 + 4γ2

kν
2, (A.15)

where the second inequality leverages 1 − 2γkσ ≥ −γ2
kσ

2. Since ‖xk − xk+ 1
2
‖ is

bounded, we have ‖xk − xk+ 1
2
‖ ≤ B2. Then taking expectations on both sides of

(A.15), we get

E[‖xk+1 − x∗‖2] ≤ (1− σγk)E[‖xk − x∗‖2] + (2L2 + σ2)γ2
kB

2
2 + 4γ2

kν
2.

By assuming 1 < σγ0 and invoking Lemma 16, we get

E[‖xk − x∗‖2] ≤ M

k
,

where M = max
(
γ2

0((2L2+σ2)B2
2+4ν2)

σγ0−1 ,E[‖x0 − x∗‖2]
)
. This means {xk} converges to

x∗ in an expected value sense.
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Proposition 23. Let Assumptions 1, 3 – 8 hold and let γk ≤ 1
2L . Then any se-

quence generated by (r-SEG), where the projections are random generated, converges
to a solution x∗ ∈ X in an a.s. sense.

Proof. By Lemma 1(ii), we have

‖xk+1 − x∗‖2 ≤ ‖xk − γk(F (xk+ 1
2
) + wk+ 1

2
)− x∗‖2

− ‖xk − γk(F (xk+ 1
2
) + wk+ 1

2
)− xk+1‖2

= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γk(F (xk+ 1
2
) + wk+ 1

2
)T (x∗ − xk+1).

(A.16)

It is clear that

F (xk+ 1
2
)T (xk+1 − x∗) = F (xk+ 1

2
)T (xk+1 − xk+ 1

2
) + F (xk+ 1

2
)T (xk+ 1

2
− x∗). (A.17)

Using (A.17) in (A.16), we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γkF (xk+ 1
2
)T (xk+ 1

2
− xk+1)

+ 2γkwTk+ 1
2
(x∗ − xk+1)− 2γkF (xk+ 1

2
)T (xk+ 1

2
− x∗)

= ‖xk − x∗‖2 − ‖xk − xk+ 1
2

+ xk+ 1
2
− xk+1‖2 + 2γkF (xk+ 1

2
)T (xk+ 1

2
− xk+1)

+ 2γkwTk+ 1
2
(x∗ − xk+1)− 2γkF (xk+ 1

2
)T (xk+ 1

2
− x∗)

= ‖xk − x∗‖2 − ‖xk − xk+ 1
2
‖2 − ‖xk+ 1

2
− xk+1‖2 − 2(xk − xk+ 1

2
)T (xk+ 1

2
− xk+1)

+ 2γkF (xk+ 1
2
)T (xk+ 1

2
− xk+1) + 2γkwTk+ 1

2
(x∗ − xk+1)− 2γkF (xk+ 1

2
)T (xk+ 1

2
− x∗)

= ‖xk − x∗‖2 − ‖xk − xk+ 1
2
‖2 − ‖xk+ 1

2
− xk+1‖2

+ 2(xk+1 − xk+ 1
2
)T (xk − γkF (xk+ 1

2
)− xk+ 1

2
) + 2γkwTk+ 1

2
(x∗ − xk+1)

− 2γkF (xk+ 1
2
)T (xk+ 1

2
− x∗).

With a similar approach in Proposition 8, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗)−
(5

8 − 2γ2
kL

2
)
‖xk − xk+ 1

2
‖2

− 1
8‖xk − xk+ 1

2
− 8γkα‖2 + 8γ2

kα
2 + 4γ2

k(C + α)2 + 2γk(C + α)d(xk)

+ 2γ2
k‖wk+ 1

2
− wk‖2 − 2γkwTk+ 1

2
(xk+ 1

2
− x∗).

147



Finally, we can obtain

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 − 2γkαdist (xk, X∗) + 8γ2
kα

2 + 4γ2
k(C + α)2

+ 8mη(C) + α2

ρ
γ2
k + 8γ2

kν
2

Now we can invoke Lemma 2. It follows that {‖xk − x∗‖2} is convergent and∑ 2γkαdist (xk, X∗) <∞. Therefore, it is clear that xk → x∗ in an a.s. sense.

Proposition 24. Let Assumptions 1, 3, 5 – 8 hold and assume the mapping F is
strongly monotone. Let {γk} be given by γk = γ0/k. Then any sequence generated
by (r-SEG) converges to a solution x∗ ∈ X in an expected value sense.

Proof. With a similar approach in Proposition 22, we obtain

E[‖xk+1 − x∗‖2] ≤ (1− γkσ)E[‖xk − x∗‖2] +
(4

3σ
2 + 2L2

)
B2

2γ
2
k

+ γ2
k

(
32C2 + 8mηC2

ρ
+ 8ν2

)

By assuming 1 < σγ0 and invoking Lemma 16, we get

E[‖xk − x∗‖2] ≤ M

k
,

where M = max
γ2

0

(
( 4

3σ
2+2L2)B2

2+32C2+ 8mηC2
ρ

+8ν2
)

σγ0−1 ,E[‖x0 − x∗‖2]
. This means

{xk} converges to x∗ in an expected value sense.

148



Appendix B|
Supporting mathematical results

Proposition 25. The solution to

min
x∈X

‖y − x‖2,

where X = {aTx+ b ≥ 0} and y 6∈ X, is

x∗ = y − b+ aTy

aTa
a.

Proof. Since y 6∈ X, we know that aTx∗ + b = 0. This implies that optimality
conditions are given by

2(x∗ − y)− λa = 0

aTx∗ + b = 0

This implies

x∗ = y − b+ aTy

aTa
a,

which completes the proof.

Lemma 19.
byc ≥

⌈1
2y
⌉
, ∀y ≥ 1, y ∈ R.

Proof. (i) Suppose y = 2n, n ∈ Z+. It is clear that

byc = 2n ≥ n =
⌈1

2y
⌉
.
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(ii) Suppose 2n < y < 2n+ 1, n ∈ Z+, we have

byc = 2n ≥ n+ 1 =
⌈1

2y
⌉
.

(iii) Suppose 2n+ 1 ≤ y < 2n+ 2, n ∈ Z+ and it follows that

byc = 2n+ 1 ≥ n+ 1 =
⌈1

2y
⌉
.

The proof is complete.
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