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Abstract

Nowadays, rapid developments in computer technologies have greatly reduced the
cost of collecting and storing a massive amount of data. As a result, data with
ultrahigh dimensionality begins to enter our vision due to a cheaper cost. It makes
new levels of scientific discoveries promising, but also brings us new challenges
of analyzing and understanding these data. Variable selection methods, feature
screening procedures, and random forest algorithms have been widely used in
many scientific fields such as computational biology, health studies, and finan-
cial engineering. The goal is to recover the underlying model structure and make
an accurate prediction when a large number of predictors are introduced at the
initial stage, but only a small subset of them are truly associated with the response.

High dimensional survival data analysis is such a scientific field. In the first
part of the dissertation, we propose a two-stage feature screening procedure for
varying-coefficient Cox model with ultrahigh dimensional covariates. The varying-
coefficient model is flexible and powerful for modeling the dynamic effects of coef-
ficients. In the literature, the screening methods for varying-coefficient Cox model
are limited to marginal measurements. Distinguished from the marginal screening,
the proposed screening procedure is based on the joint partial likelihood of all pre-
dictors. Through this, the proposed procedure can effectively identify active pre-
dictors that are jointly dependent of, but marginally independent of the response.
In order to carry out the proposed procedure, we propose an efficient algorithm
and establish the ascent property of the proposed algorithm. We further prove
that the proposed procedure possesses the sure screening property: with probabil-
ity tending to one, the selected variable set includes the actual active predictors.
Monte Carlo simulation is conducted to evaluate the finite sample performance
of the proposed procedure, with comparison to SIS(Fan and Lv, 2008) procedure
and SJS (Yang et al., 2016) for Cox model. The proposed methodology is also
illustrated through the analysis of two real data examples.
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Although very helpful and computationally efficient, feature screening is not a
very powerful method to detect those marginal unimportant variables that partic-
ipate in high order interaction effects. However, this is the advantage of random
forest algorithms because tree structure is a natural and powerful structure for de-
tecting interaction effects. The drawback of the random forest algorithms is that
they don’t pay enough attention to feature selection, and therefore include lots of
redundancy when constructing the forest. This phenomenon will severely influence
the interpretability and prediction performance of the forest especially when only
a small proportion among large amount of candidate variables are important.

In the second part of the dissertation, we propose combining the advantages
of forest algorithm and feature screening for a better understanding of the hidden
mechanism. To achieve this, we propose a new two-layer random forest algorithm,
“Iteratively Kings’ Forests”(iKF), for feature selection and interaction detection
in classification and regression problems. In the first layer, we modified the tra-
ditional forest constructing process so that we can fully explore the mechanism,
both marginal and interaction effects, related to a given important variable(say
”King” variable). In the second layer, we iteratively search the next important
variable and iterate the process of the first layer for it. Finally, we not only obtain
a screened variable index set but also output a short list of ranked highly possible
interaction effects. Simulation comparisons are conducted to compare its perfor-
mance with the feature screening procedure DC-SIS(Li et al., 2012) and random
forest algorithm “iRF”(Basu et al., 2018). Also, we apply iKF procedure for an
empirical analysis to identify important interactions in an early Drosophila embryo
data and compare its performance with ”iRF”.
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Chapter 1
Introduction

1.1 Overview

Nowadays, “Big Data” has become an increasingly popular terminology. Rapid

developments in technologies have enabled us to collect, store and process a massive

amount of data at relatively low cost, and therefore make “Big Data” a regular

resource. From a statistical perspective, “Big Data” is a dataset with a large

sample size N or variable dimension p. Large sample size is appealing because it

can give accurate estimates for a given model. More importantly, large variable

dimension p prevents us from losing important variables and promises new levels of

scientific discoveries. However, when a large number of variables are introduced at

the initial stage, only a small subset are truly associated with the response. That

brings us new challenges of analyzing and understanding these data.

To deal with these issues, variable selection plays an essential role in recover-

ing the underlying model structure. In classical best subset selection, we search

all candidate sub-models of the full model and decide the optimal model through

criteria such as AIC (Akaike, 1974), BIC (Schwarz et al., 1978), RIC (Foster and

George, 1994) and Mallows Cp (Mallows, 1973). However, best subset selection

becomes infeasible for large p because the computing time increases at an expo-

nential rate of p. Classical stepwise selection avoids this drawback by adding or

subtracting one variable each time based on pre-specified criteria. However, it leads

to a local optimal model. To deal with these drawbacks, regularization methods,

such as LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001) and MCP (Zhang
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et al., 2010), are developed to simultaneously select important variables and give

coefficient estimates. However, when analyzing data with an ultrahigh dimension

of features, for example, millions of predictors, the regularization methods may fail

due to the tremendous computational burden and result instability.

Recently, feature screening in ultrahigh dimensional data analysis has become

one of the most important statistical topics. By effectively reducing ultrahigh di-

mensionality to a moderate size, feature screening procedures receive considerable

attentions in recent literature. Various feature screening methods have been de-

veloped in different contexts. Fan and Lv (2008) proposed a marginal screening

procedure for ultrahigh dimensional Gaussian linear models, and further demon-

strate that it possesses a sure screening property under certain conditions. Feature

screening procedures for varying-coefficient model (i.e. VCM) with ultrahigh di-

mensional covariates have also been proposed in the literature. Liu et al. (2014)

developed a SIS procedure for ultrahigh dimensional VCM by taking conditional

Pearson correlation coefficients as marginal utility for ranking importance of pre-

dictors. Fan et al. (2014) proposed a SIS procedure for ultrahigh dimensional

VCM by extending B-spline techniques in Fan et al. (2011) for additive models.

Xia et al. (2016) further extend the SIS procedure proposed in Fan et al. (2014)

to generalized varying coefficient models (GVCM). Cheng et al. (2016) proposed a

forward variable selection procedure for ultrahigh dimensional VCM based on tech-

niques related to B-splines regression and grouped variable selection. Song et al.

(2014) extended the proposal of Fan et al. (2014) for longitudinal data without

considering within-subject correlation, while Chu et al. (2016) proposed a new SIS

procedure that ranks weighted residual sum of squares, utilizes the information of

within-subject correlation, and highly improves the accuracy of feature screening

for longitudinal data.

Therefore, a computational efficient solution for high dimensional problems is to

incorporate a two-stage procedure. At first, feature screening procedures attempt

to filter out those predictors that are clearly not important by ranking different

utility measurements. After that, we could obtain a substantially smaller subset

and then pick the “best” subset of predictors by other methods such as variable

selection. By implementing this two-stage procedure, the computing time could

be reduced from several days to a few minutes.
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Survival analysis is an important subject widely used in medical science, eco-

nomics, finance, social science, and others. In many studies, survival data have

primary outcomes or responses subject to censoring. The Cox model (Cox, 1972)

is the most commonly-used regression model for survival data, and the partial

likelihood method has become a standard approach for parameter estimation and

statistical inference. Fan et al. (2010) extended screening methods SIS and ISIS in

GLM to Cox model and employ the maximum of the partial likelihood depending

on k-th covariate as k-th marginal untility. By specifying the desired false positive

rate, Zhao and Li (2012) proposed a principled sure independence screening (PSIS)

procedure for Cox model, which provides a more theoretical solid thresholding cri-

terion to determine the number of variables to retain. Sure joint screening(SJS)

proposed by Yang et al. (2016) studied the feature screening for Cox model with

ultrahigh dimensional non-independent covariates. However, none of the above

have considered a sure joint screening procedure for varying coefficient Cox model.

We will address this issue in chapter 3.

Although the two-stage procedure of feature screening procedures followed by

variable selection methods is very important and efficient, it usually only works well

in finding variables with marginal effects on the response. However, interaction

effects exist in many natural phenomena and process. To better understand the

mechanism behind them, we want to detect not only the variables with significant

marginal effects, but also variables only participating in high-order interaction

effects. For the interaction effects, we want to further figure out which variables

work together in the mechanism.

Forest algorithms have been proposed for feature and interaction selection in

the literature. Breiman (2001) proposed “Random Forest”(RF) for classification

and prediction, and use Permutation Variable Importance Measure (PVIM) for

ranking variable importances. However, when the number of features is huge and

the percentage of truly imformative features is small, the performance of RF de-

clines significantly. To solve this, Dı́az-Uriarte and De Andres (2006) selected

genes by iteratively fitting RF and dropping a pre-specified proportion of genes

each round. Instead of dropping features, Amaratunga et al. (2008) proposed a

feature-weighted version of RF for feature ranking and selection under the name

“Enriched Random Forests”. Beside feature selection, some forest alogrithms have
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been developed to further improve our understanding of model mechanism through

detecting interaction effects. Assuming both features and the response are binary,

Shah and Meinshausen (2014) proposed the “Random Intersection Trees” pro-

cedure to discover interactions using the intersection of d randomly chosen sets

of active features, whose d corresponding responses are from the same category.

By combining feature-weighted RF (Amaratunga et al., 2008) and “Random In-

tersection Trees”(Shah and Meinshausen, 2014), Basu et al. (2018) proposed an

“Iterative Random Forest” algorithm to discover interactions for problems with

binary response, and continuous or categorical features. Furthermore, Basu et al.

(2018) proposed a “stability score” based on an “outer layer” of bootstrapping to

assess the stability of recovered interactions. However, their algorithm just studied

the binary response case. Moreover, by removing interactions that are a strict sub-

set of another interaction with high stability score, the algorithm gives up studying

the detail structures between variables within this interaction.

1.2 Contributions

In the first part of this dissertation, we propose a new feature screening procedure

for ultrahigh dimensional varying-coefficient Cox model. It is distinguished from

the SIS procedures proposed by Fan et al. (2010) and Zhao and Li (2012) in

that it is based on the joint partial likelihood of potentially important features

rather than the marginal partial likelihood of individual features. Non-marginal

screening procedures have been demonstrated to have their advantage over the SIS

procedures in the context of generalized linear models. For example, Xu and Chen

(2014) proposed a feature screening procedure for generalized linear models via

the sparsity-restricted maximum likelihood estimator and demonstrate that their

approaches perform significantly better than the SIS procedures in some scenarios.

Compare to the sure joint screening procedure proposed in Yang et al. (2016),

we generalize the model to varying coefficient setting and first employ Hoeffdings

inequality for a sequence of martingale differences to establish a concentration

inequality for the score function of partial likelihood. Furthermore, we establish

the sure screening property for the proposed varying-coefficient sure joint screening

(V-SJS) procedure in Cox model.
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To evaluate its performance, we conduct Monte Carlo simulation studies for

different settings of nonzero coefficient functions to assess the finite sample per-

formance and compare it with the existing sure screening procedures under the

constant coefficient assumption. Our numerical results show that the proposed

V-SJS procedure outperforms the existing sure independence screening (SIS) and

sure joint screening (SJS) procedures. We also demonstrate this with the empirical

analysis of two real data.

In the second part, we propose a framework, “Iteratively Kings’ Forests”, for

feature selection and interaction detection in classfication and regresssion problems.

The framework is also a two stage process.

For the first stage, given the prior knowledge that one variable is important, we

treat it as a “King” and construct an iteratively weighted forest with the “King”

as the root node of every tree. In the iteratively reweighted process, we use the

“Permutation Variable Importance Measure” (PVIM) of the “King” variable as a

criteria to search the trees including other variables that participate in the same

interactions with the “King”. That is, larger PVIM means a better chance that

other variables are modelled in the tree. If the PVIM of “King” is positive, the

weights of all variables in this tree will be increased by the amount of PVIM.

As a result, variables participating in the same interactions with the “King” will

gradually gain larger weights, and therefore be likely to line in the same path of

different trees in the forest.

Although the first stage tremendously increases the possiblity of modelling

interaction effects related to the “King”, other important variables will still be

selected into trees and get large weights. In the second stage, we iteratively choose

the variable with largest weight from the variables haven’t been selected as “King”

as the new “King”, and construct “King’s Forest” for each of them. We keep doing

this until some convergence criterion are met.

Through this two stage procedure, we conduct both feature selection and inter-

action detection at the same time, and could therefore get a thorough and in-depth

understand of the mechanism. Furthermore, we propose a criterion to help iden-

tify the order of related interactions. Through iteratively constructing forests for

important variables, we outline the hidden model structure by selecting important

features and interactions.



6

For the performance evaluation, we conduct Monte Carlo simulation studies to

compare it with both DC-SIS(Li et al., 2012) and iRF (Basu et al., 2018) under

different settings of regression and classification problems. Our numerical results

show that the proposed procedure outperforms them in both feature selection and

interaction detection.

In the third part, we propose a multi-dimensional economic dispersion index

(MEDI) based on the Lorenz hyper-surface determined by the distributions of

multiple social resources to comprehensively evaluate the social inequality level.

As we know, the Gini index(Gini, 1912, 2005, 1921) is widely used in economics

as a measure of inequality with respect to income or wealth. However, it is not

applicable when we consider evaluating the inequality level using more than one

social resources. The proposed MEDI is a natural extension of the Gini index, and

is equivalent to the Gini index in the present of only one resource. Furthermore,

we propose the estimator of MEDI with good statistical properties and develop

an algorithm to calculate the estimate. We further apply MEDI for an empirical

analysis to evaluate the social inequality level of Chinese provincial capitals. The

results reveal some interesting phenomena of Chinese social inequalities, and also

demonstrate how MEDI captures more information in complex economic situations

than the classic Gini index.

1.3 Organization

The rest of this dissertation proposal is organized as follows. In chapter 2, we

review the literature on variable selection methods, feature screening procedures,

Cox model in survival data analysis, varying coefficient models, Random forest

algorithms and measures of social inequality level. In chapter 3, we propose a

new two-stage feature screening procedure for the varying-coefficient Cox model

and demonstrate the ascent property of our proposed algorithm. We also study

the sampling property of the proposed procedure and establish its sure screening

property. Furthermore, we present numerical comparisons through simulation and

empirical real data analysis. The chapter 4 gives the proposed framework, “Iter-

atively Kings’ Forests”, and uses two examples to demonstrate how to use it for

feature and interaction selection. Simulation studies are conducted to evaluate its
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performance by comparing it with DC-SIS and iRF under differents scenarios. In

chapter 5, we point out the disadvantages of the Gini index, and derive a multi-

dimensional economic dispersion index (MEDI) to more comprehensively evaluate

the social inequality level. In addition, we establish the consistent property of

emperical MEDI and calculate the emperical MEDI under different scenarios.



Chapter 2
Literature Review

This chapter is organized as follows. First, we review well-established variable

selection methods for linear regression and generalized linear regression models,

including classical variable selection criteria and penalized regression approaches.

Feature screening methods based on different assumptions for ultrahigh-dimensional

data analysis are reviewed in section 2.2. Section 2.3 presents a brief review of some

basic concepts and commonly-used models in survival data analysis. Furthermore,

existing variable selection and feature screening procedures are summarized in this

part. In the end, we introduce common structure of varying coefficient models and

widely used coefficient function estimation methods. Feature screening procedures

and varying coefficient Cox model are reviewed in section 2.4, based on which we

will propose a new screening procedure for Cox model in Chapter 3.

2.1 Variable Selection Methods

Variable selection plays an important role in high-dimensional linear regression.

To prevent the missing of important variables, we usually try to include every

potential influential predictor at the beginning stage of statistical modeling. As

a result, it is natural to assume that many predictors do not contribute to the

response in the true model. Under this sparsity assumption, statisticians make

great efforts on selecting important variables and getting a parsimonious model

with good prediction accuracy and interpretability. In this section, we first study

the classical variable selection criteria, and then review the regularized variable
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selection methods via penalized least squares and likelihood. Considering the linear

regression model

y = Xβ + ε (2.1)

where y is an n × 1 response vector, X = (x1,x2, . . . ,xn)T is a n × d predictor

matrix, β = (β1, β2, . . . , βd)
T denotes the coefficient vector, and ε is the n × 1

independently identical distributed noise vector with mean zero.

2.1.1 Classical Variable Selection Criteria

Classical variable selection is to select the subset of variables with best prediction

behavior. To evaluate the performance of regression model, statisticians have

developed a variety of variable selection criteria. They are measures of fit with a

penalty for the number of parameters. Residual sum of squares defined below is a

familiar measure of fit we want to minimize

RSS =
n∑
i=1

(yi − ŷi)2 (2.2)

where ŷi is the fitted value for yi

Denote RSSp as the residual sum of squares with p variables (1 ≤ p ≤ d) in

the model. As we know, RSSp will certainly decrease as p increase. Therefore,

selecting model simply based on RSS will easily lead to the full model suffering

from the overfitting problem. To select an optimal sub-model, the intuition is to

add a term to penalize the number of parameters to the objective function. Several

widely used variable selection criteria such as adjusted R2, AIC, BIC, RIC and Cp

are constructed based on this intuition. All of these criteria are applied through

so-call best subset selection. By fitting all subsets of the full model, we can get the

best sub-model based on any of given criteria we mention above. However, different

criteria usually produce different ”best models”. To evaluate the performance of

selected ”best models”, we will use the prediction sum of squares (Allen, 1974)

defined as

PRESSp =
n∑
i=1

(yi − ŷip)2, (2.3)

where ŷip is the predicted value for yi based on a subset of p-variables. To get
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an accurate and stable PRESSp statistic, cross-validation methods such as leave-

one-out cross-validation, k-fold cross-validation and generalized cross-validation

are widely used to estimate the PRESS statistic.

All aforementioned variable selection criteria are listed as follow:

• Adjusted R2: The adjusted R2 statistic with p variables is defined as

AR2
p = 1− (1−R2

p)
n− 1

n− p− 1
(2.4)

Unlike R2, the adjusted R2 can be used not only for how well the fitting of

the p predictors is, but also for variable selection via adding a penalty on the

number of predictors.

• Akaikes information criterion(AIC): The AICp statistic for linear model

with p variables is defined as

AICp = RSSp + 2pσ2 (2.5)

where σ2 is usually estimated by σ̂2 = RSSd
n−d .

• Bayesian Information Criterion(BIC): Similar extension of Akaikes In-

formation Criterion (BIC, Schwarz, 1978) yields BICp statistic in linear

model, which is defined as

BICp = RSSp + log(n)pσ̂2 (2.6)

Compared with AIC, BIC penalizes higher for more complicated models with

larger p. Hence the BIC tends to favor smaller models than AIC.

• Risk Inflation Criterion(RIC): Risk Inflation Criterion (RIC, Foster and

George, 1994) for linear model is defined as

RICp = RSSp + 2log(d)pσ̂2 (2.7)
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• Cp statistic: The Cp statistic (Mallows, 1973) is defined as

Cp =
RSSp
σ̂2

− (n− 2p) (2.8)

Hence, minimization of Cp with respect to p is equivalent to the minimization

of AICp.

However, when d is large, it is computionally infeasible for the exhaustive search

for all 2d possible subsets. In practice, stepwise selection is widely used to search

a good subset instead of best subset selection. Stepwise regression is a fitting

procedure in which the choice of predictive variables is automatically carried out.

In each step, a variable is considered for addition to or subtraction from the set

of explanatory variables based on some prespecified criteria such as F-tests, t-

tests, adjusted R2, Akaike information criterion, Bayesian information criterion,

Mallows’s Cp, PRESS, or false discovery rate. The procedure is carried out with

three main approaches from two directions

• Forward selection starts with no variables in the model, tests the addition

of each variable based on a chosen fit criterion, adds the variable gives the

most statistically significant improvement of the fit and repeats this process

until no variable improves the model to a statistically significant extent.

• Backward elimination starts with all candidate variables, tests the dele-

tion of each variable based on a given fit criterion, deletes the variable whose

loss results in the most statistically insignificant loss of the fit and repeats

this process until no variable can be deleted without a statistically significant

loss of fit.

• Bidirectional elimination, a combination of the above, tests at each step

for variables to be included or excluded.

Technical details are referred to Miller (2002).

2.1.2 Variable Selection via Penalized Least Squares

Subset selection and stepwise selection provide interpretable models with selected

most significant predictors. However, they both have inherent drawbacks. As we
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mention before, it is computionally infeasible for subset selection when d is large.

For stepwise selection, the greedy strategy it uses only results in a local optimal

model. As d increases, the probability of the consistency between local optimal

and global optimal model will sharply decrease. Furthermore, as d increases, both

selection procedures are increasingly sensitive to small changes in the data and get

very different selected models. To get a stable global optimal model and improve

prediction accuracy, penalized least squares (PLS) methods are proposed. Instead

of minimizing the residual sum of squares, we obtain the estimate by minimizing

a penalized least squares function

Q(β) =
1

2
||y−Xβ||2 + n

d∑
j=1

pλ(|βj|), (2.9)

where pλ(·) is the penalty function with tuning parameter λ selected by a data-

driven method to control the model complexity. For simplicity, we assume that

the tuning parameter λ and penalty function form for all coefficients are the same.

To be more specific, we present several commonly used penalty functions and their

specific properties.

Frank and Friedman (1993) propose a general framework called the bridge

regression with Lq penalty

pλ(|θ|) = λ|θ|q (2.10)

where 0 ≤ q ≤ 2. When q = 0, the penalty function only penalizes the number of

predictors. Previous mentioned best subset selection criteria fall into this category.

L1 and L2 correspond to famous LASSO (Tibshirani, 1996) and Ridge regression

(Hoerl and Kennard, 1970), which will be introduced later. By definition, L0, L1

and L2 penalty are all special cases of Lq penalty. For penalized least squares

methods, coefficient estimate is continuous with respect to the OLS estimate only

when q ≥ 1. However, if q > 1, the Lq penalty can not produce a sparse solution.

L2 penalty for Ridge regression is a perfect example

pλ(|θ|) =
1

2
λ|θ|2 (2.11)
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Ridge regression is proposed to deal with multi-collinearity problem in predictors.

It continuously shrinks coefficients and gets a more stable model with an explicit

form of coefficients estimate β̂ = (XTX + λI)−1(XTy). However, it can not set

any coefficient to 0 and fail to get a sparse model. To solve this, Tibshirani (1996)

proposed the Least Absolute Shrinkage and Selection Operator(LASSO) to shrink

coefficients and select significant predictors at the same time. The LASSO penalty

is

pλ(|θ|) = λ|θ| (2.12)

The LASSO estimate continuously shrinks the OLS estimate and sets some co-

efficients exactly to 0. Hence, it selects important predictors automatically to

produce an interpretable model like subset selection and enjoys the stability of

ridge regression. However, LASSO estimate is biased.

We have been discussed several penalty functions so far. However, they all have

their own drawbacks. L0 penalty can conduct variable selection, but the computa-

tional cost and the result instability make it unfeasible for high dimensional data

analysis. L2 penalty can solve the multi-collinearity problem by shrinking the es-

timated coefficients to make the result stable, but it cannot do variable selection.

L1 penalty(LASSO) can provide stable estimation and variable selection, but the

coefficient estimates are biased, especially for the large true coefficients. Therefore,

it is natural to ask: What kind of penalty function is a satisfactory one? To answer

this question, Fan and Li (2001) advocated that a good penalty function should

result in an estimator with three properties.

1. Unbiasedness. The coefficient estimates are nearly unbiased, especially for

those estimates with large true unknown parameters, to avoid unnecessary

modeling bias.

2. Sparsity. The coefficient estimates become a thresholding rule. It automat-

ically sets unimportant coefficient estimates to zero and produces a sparse

model.

3. Continuity. The coefficient estimates are continuous with a small change in

data to avoid instability in model prediction.

To guarantee the above three properties, Antoniadis and Fan (2001) propose the
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following three conditions

1. Unbiasedness. iff p
′

λ(|θ|) = 0 for large |θ|.

2. Sparsity. if minθp
′

λ(|θ|) + |θ| > 0.

3. Continuity: if argminθ{p
′

λ(|θ|) + |θ|} = 0.

As we point out before, all the previous mentioned penalty functions cannot simul-

taneously satisfy all three conditions for unbiasedness, sparsity, and continuity.

To satisfy all three conditions, Fan and Li (2001) propose a continuously dif-

ferentiable penalty function, the smoothly clipped absolute deviation (SCAD)

penalty, defined by its derivative

p
′

λ(θ) = λI(θ ≤ λ) +
aλ− θ
a− 1

I(θ > λ), a > 2 (2.13)

The above formula includes three intervals. For the first interval, the derivative is

the constant λ, which is equivalent to LASSO. The derivative linearly decreases

to 0 for λ ≤ θ ≤ aλ in the second interval. In the third interval, no more penalty

is added to the PLS function when θ is larger than aλ. The resulting solution to

SCAD penalty is

θ̂(z) =



0, if |z| ≤ λ

sgn(z)(|z| − λ), if λ < |z| ≤ 2λ

{(a− 1)z − sgn(z)aλ}/(a− 2), if 2λ < |z| ≤ aλ

z, if |z| ≥ aλ

(2.14)

As we can see, SCAD fixes the biased problem for LASSO by reducing the penalty

for large θ. It corresponds to a nonconcave symmetric function singular at the

origin with knots at λ and aλ and satisfies the condition of unbiasedness, sparsity

and continuity. Two unknown parameters λ and a are needed to be decided here.

a = 3.7 is found to be best and widely used in practice, while λ is the tuning

parameter. Furthermore, Fan and Li (2001) established the asymptotic oracle

property of the SCAD penalty under penalized likelihood setting. That is, the

resulting coefficient estimates with the SCAD penalty works so well by giving the

exactly correct submodel if the regularization parameter is appropriately chosen.
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In addition to SCAD, Zou (2006) also proposed an Adaptive LASSO penalty

satisfying the three conditions

pλ(|θ|) = λω̂|θ| (2.15)

where ω̂ = 1/ ˆ|β0|
γ

with β̂0 being any consistent estimate. In practice, we use OLS

estimate as β̂0 here. The adaptive LASSO assigns different weights to different

coefficients based on the reciprocal of initial OLS estimate. That is, the coefficients

with smaller initial estimates will be largely penalized, while coefficients with large

initial estimates will be just slightly penalized. The Adaptive LASSO also enjoys

the oracle properties with appropriate λ.

Zhang et al. (2010) proposed the minimax concave penalty (MCP) defined as

pλ(βj) = λ

∫ |βj |
0

(1− θ

aλ
)+dθ (2.16)

The MCP is also proved to enjoy the oracle property and three desirable properties.

2.1.3 Technical Details

To get the optimal resulting estimator, computational algorithms and tuning pa-

rameter selection are two necessary steps. We will review both aspects as follow.

2.1.3.1 Computational Algorithms

The penalty functions aforementioned could be categorized into two mainstream

types, convex penalty such as LASSO (L1) and the nonconvex penalization such

as SCAD and MCP. The convex penalty, for example LASSO, is popular due to its

computational efficiency. Fu (1998) provided a shooting algorithm for Lq penalized

regression, wihle the Least Angel Regression (LARS) was suggested by Efron et al.

(2004), which could be applied to solve the optimization problem of LASSO type

penalty. Furthermore, the coordinate descent algorithm has been shown to be very

efficient for convex penalization penalization problems.

The nonconcave penalty functions SCAD and MCP have recently achieved

great success because they can eliminate the estimation bias for parameters and

attain oracle properties. However, since nonconvex penalty usually has multiple
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local minimizers, it will be more difficult to arrive at the global optimal point.

In this subsection, we would discuss three main computational algorithms, LARS,

LQA and LLA for the minimization problems of PLS. Among them, LARS is com-

monly used for convex penalty, while LQA and LLA are widely used for nonconvex

penalty terms.

Least Angle Regression (LARS): Efron et al. (2004) propose the least

angle regression (LARS) algorithm for penalized variable selection. This fast and

efficient algorithm that can produce the entire LASSO solution path is defined as:

1. Start with all coefficients βj equal to zero.

2. Find the predictor xj most correlated with y.

3. Increase the coefficient βj in the direction of the sign of its correlation with

y. Take residuals r = y − ŷ along the way. Stop when some other predictor

xk has as much correlation with r as xj has.

4. Increase (βj, βk) in their joint least squares direction, until some other pre-

dictor xm has as much correlation with the residual r.

5. Continue until: all predictors are in the model.

The LARS-Lasso relationship: Denote β̂ as a Lasso solution, with µ̂ = Xβ̂. Efron

et al. (2004) shows that the sign of any nonzero coordinate β̂j of Lasso solution

must agree with the sign sj of the current correlation ĉj = x
′
j(y− µ̂)

sign(β̂j) = sign(ĉj) = sj, (2.17)

However, the LARS algorithm does not enforce restriction (2.17). Therefore, by

imposing a minor modification on the LARS algorithm, the full set of Lasso solu-

tions can be generated.

Define d̂ to be a m dimensional equiangular vector making equal angles with

the columns of m selected predictors. Moving in the positive γ direction along the

LARS line, we see that

µ(γ) = Xβ(γ), where βj(γ) = β̂j + γd̂j



17

Therefore, βj(γ) will change sign at

γj = −β̂j/d̂j, (2.18)

the first such change occurring at

γ̃ = minγj>0{γj}, (2.19)

γ̃ equals infinity by definition if there is no γj > 0.

If γ̃ is less than γ̂, then βj(γ) cannot be a Lasso solution for γ > γ̃ since the sign

restriction (2.17) will be violated. Therefore, we can get the Lasso Modification

for LARS. Lasso Modification: If γ̃ < γ̂, stop the ongoing LARS step at γ = γ̃

and remove the previous included index.

Local Quadratic Approximation (LQA): Fan and Li (2001) propose the

Local Quadratic Approximation (LQA) to optimize nonconvex penalized objective

function. Consider an initial estimate β0, for example βOLS, that is close to the

minimizer of (2.9). Set β̂j = 0 if β0
j is smaller than a given thresholding value.

Otherwise, approximate the penalty function by a local quadratic functions as

pλ(|βj|) = pλ(|β0
j |) +

1

2
{p′λ(|β0

j |)/|β0
j |}(β2

j − (β0
j )

2). (2.20)

Note that the residual sum of squares term 1
2
||y−Xβ||2 is convex with respect to

β, therefore (2.9) could be locally approximated by

Q(β) =
1

2
||y−Xβ||2 +

n

2
βTΣλ(β

0)β, (2.21)

where Σλ(β
0) = diag{p′λ(|β0

1 |)/|β0
1 |, . . . , p

′

λ(|β0
d |)/|β0

d |}, β0
j are the jth component

of initial value β0. The solution for (2.21) can be found by iteratively computing

the ridge regression

β(k+1) = {XTX + nΣλ(β
(k))}−1XTy, k = 0, 1, . . . (2.22)

Local Linear Approximation (LLA): However, once LQA algorithm delete

a covariate at any step, it wouldn’t be included in the final selected model again.

To resolve the drawback of the LQA, Zou and Li (2008) propose an efficient one-
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step sparse estimation procedure based on Local Linear Approximation (LLA).

According to LLA, the penalty function could be locally approximated by

pλ(|βj|) = pλ(|β0
j |) + p

′

λ(|βj − β0
j |), for βj ≈ β0

j .

Similar to the LQA algorithm, we could set the OLS estimates as initial value β0

and then repeatedly solve the local linear approximation function for k = 0, 1, . . .

βk+1 = argminβ{
1

2
||y−Xβ||2 + n

d∑
j=1

p
′

λ(|βkj |)|βj|}. (2.23)

From (2.23), we can see that the LLA algorithm transform the nonconvex penalty

into a convex LASSO-type penalty. As a result, the minimization could be ef-

ficiently solved by the existing algorithms such as the previous reviewed LARS.

Moreover, LLA automatically adopts a sparse estimator. The one-step LLA esti-

mator (k = 0 for (2.23)) is as efficient as the fully iterative one given a good initial

value, which avoids expensive computational cost.

Several other useful algorithms are also proposed to compute the nonconcave

penalized estimators. Zhang et al. (2010) propose a PLUS algorithm to solve the

penalized least squares with MCP penalty and SCAD penalty. Breheny and Huang

(2011) not only apply coordinate descent algorithms to the SCAD and the MCP

penalization problems, but also gave a frequently used R package ”ncvreg” for R

users. Fan et al. (2014) show that if the LLA algorithm is initialized at a LASSO

optimum that satisfies certain properties, then the two-stage procedure produces

an oracle solution for various nonconcave penalties. To get the global optimum

from several local ones, Wang et al. (2013) study a calibrating CCCP algorithm

to find a consistent solution path with probability approaching to one to contain

the oracle estimator.

2.1.3.2 Tuning Parameters Selection

In this part, we briefly review the selection of tuning parameter λ. Given λ, PLS

estimate β̂λ could be obtained by applying previous mentioned algorithms. Model

selection critera is a function of β̂λ, which is determined by λ. In practice, four

popular tuning parameter selectors, AIC, BIC, K-fold cross validation (CV) and

GCV, are widely used in practice
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1. AIC(λ) = ||y−Xβ̂λ||2 + 2dfλσ̂
2,

2. BIC(λ) = ||y−Xβ̂λ||2 + log(n)dfλσ̂
2,

3. CV (λ) =
∑K

k=1 ||yk −XT
k β̂

k
λ||2,

4. GCV (λ) = 1
n
||y−Xβ̂λ||2
{1−dfλ/n}2

where dfλ = trace{Xλ(X
T
λXλ+nΣλ(β̂λ))

−1Xλ} is the estimated degree of freedom

in selected model depending on λ. And yk, XT
k β̂

k
λ in CV (λ) correspond to the

testing set and the estimated model coefficients.

Intuitively, we could select the optimal tuning parameter λ by

λ̂ = argminλ{Selector(λ)} (2.24)

Wang et al. (2007) demonstrate that the GCV-selector for the PLS with SCAD

penalty can not select the tuning parameter consistently. They show that GCV

behaved similarly to AIC and usually produced an overfitting selected model. In-

stead, Wang et al. (2007) further propose a high dimensional BIC-type tuning

parameter selector as HBIC∗λ = log(σ̂2
λ) + log(n)

n
dfλ. Furthermore, they prove that

HBIC∗λ owned the desirable oracle property and could consistently identify the

true model.

2.1.4 Regularized Variable Selection via Penalized Likeli-

hood

The methodology and algorithms in PLS can be generalized directly to likelihood-

based generalized linear model, in which statistical inferences are based on the

likelihood functions. The penalized maximum likelihood estimator can be defined

to select significant variables.

Assume we have independently collected data {xi, yi}. Given xi, yi has a

density fi(g(xTi β), yi) with a known link function g. Therefore, the penalized

likelihood can be defined as

PL(β) =
n∑
i=1

log(fi(g(xTi β), yi))− n
d∑
j=1

pλ(|βj|), (2.25)
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By maximizing (2.25), we can obtain the penalized MLE with respect to β. Similar

to PLS, we apply LLA and LQA algorithm to objective function PL(β).

LLA approximates (2.25) by

`(β0)+∇`(β0)T (β−β0)+
1

2
(β−β0)T∇2`(β0)(β−β0)−n

d∑
j=1

p
′

λ(|β0
j |)|βj|, (2.26)

where ∇`(β0) and ∇2`(β0) are the first two partial derivatives of the likelihood

function in (2.25). Since β0 = β̂MLE and ∇`(β̂MLE)T = 0, (2.26) could be ex-

pressed as

`(β0) +
1

2
(β − β0)T∇2`(β0)(β − β0)− n

d∑
j=1

p
′

λ(|β0
j |)|βj| (2.27)

Through applying LLA, we transform the penalty term into a convex form. Hence

local maximum of (2.25) could be obtained.

LQA algorithm could be applied if the likelihood function has first two partial

derivatives continuous with respect to β. Applying LQA algorithm, (2.25) could

be locally approximated by

`(β0) +∇`(β0)T (β−β0) +
1

2
(β−β0)T∇2`(β0)(β−β0)− 1

2
nβTΣλ(β

0)β, (2.28)

where Σλ(β
0) = diag{p′λ(|β0

1 |)/|β0
1 |, . . . , p

′

λ(|β0
d |)/|β0

d |}.
By implementing the Newton-Raphson algorithm, the quadratic maximization

problem (2.28) yields the solution

β1 = β0 − {∇2`(β0)− nΣλ(β
0)}−1{∇`(β0)− Σλ(β

0)β0} (2.29)

Under the likelihood setting, the definition of AIC, BIC and GCV statistic are

also generalized to

AIC(λ) = −2`(β̂) + 2dfλ (2.30)

BIC(λ) = −2`(β̂) + log(n)dfλ (2.31)

CV (λ) =
1

n

−`(β̂)

{1− dfλ/n}2
(2.32)
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where dfλ = trace[{∇2`(β̂) + Σλ(β̂)}−1∇2`(β̂)]

2.2 Ultra-High Dimensional Feature Screening

Various variable selection methods for high dimensional data analysis have been

studied in the previous section. For high dimension, we usually mean that the

dimension p increases with sample size n at a polynomial rate: pn = O(nα) for

some α > 0. However, if the dimension pn, as a function of n, increases with

sample size n at an exponential rate: pn = O(exp(an)) for some 0 < a < 1, variable

selection methods can be computationally infeasible due to heavy computational

cost and algorithmic instability (Fan et al., 2014).

Recently, data with ultrahigh dimensionality begins to enter our vision due

to a cheaper cost. For example, in genome-wide association studies (GWAS), we

could get inexpensive measurement of the whole genome that enables the gener-

ation of hundreds of thousands of single-nucleotide polymorphisms (SNPs). As

a result, a new data analysis techniques to study ultrahigh dimensional data is

increasingly demanded in practice. To solve this, Fan and Lv (2008) proposed the

idea of feature screening. Feature screening is a two-stage computationally efficient

procedure that first removes unimportant predictors to produce a moderate scale

subset that contains all the active predictors with high probability, and then apply

more sophisticated variable selection techniques to identify important predictors.

2.2.1 Sure Independence Screening for Linear Model

Fan and Lv (2008) proposed Sure Independence Screening (SIS) method based on

marginal correlation ranking between covariates and the response y in linear model

setting. Consider the following linear model

y = Xβ + ε, (2.33)

where y = (y1, . . . , yn)T is a n × 1 response vector, X = (x1, . . . ,xn)T is a n ×
p design matrix. It is assumed that x′is are independent from each other and

standardized to have mean 0 and standard deviation 1. We have the sparity

assumption that only a small subset of xi = (xi1, . . . , xip)
T is truly associated with
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the response. That is, β is sparse under p � n setting. Sometimes, we further

assumed the number of nonzero components m < n and m = [a n
log(n)

] = [aγ(n)n],

where a is a scale parameter usually setted as 1. Fan and Lv (2008) define the

marginal correlation by ω = (ω1, . . . , ωp)
T

ω = XTy, (2.34)

Thus, for any given γ ∈ [0, 1], a submodel can be defined as

Mm = {1 ≤ j ≤ p : |ωj| is among the first m largest of all}, (2.35)

Thus, we effectively reduce the full model with dimensionality p to a submodel

with m nonzero components.

However, we don’t want to miss important variables during this process. To

deal with this concern, Fan and Lv (2008) prove that SIS enjoys the sure screening

property.

Sure Screening Property: Define z = Σ−1/2x and Z = XΣ−1/2 where

Σ = cov(x). Five regularity conditions are needed to establish sure screening

property:

C1 For p > n, there exist ξ > 0 such that log(p) = O(nξ). This condition shows

that SIS is suitable for the ultrahigh dimensional cases.

C2 z has a spherically symmetric distribution, while Z has a concentration prop-

erty. That is, there exists some c, c1 > 1 and C1 > 0 satisfying the following

inequality for any n× p̃ submatrix z̃ of z with cn < p̃ ≤ p

P (λmax(p̃
−1z̃z̃T ) > c1 and λmin(p̃−1z̃z̃T ) < 1/c1) ≤ e−C1n.

where λmax(A) and λmin(A) are the largest and smallest eigenvalue of matrix

A. This condition makes restriction on ξ through concentration property.

C3 Assume var(Y ) = O(1), there exists some κ ≥ 0 and c2, c3 > 0,

mini∈M0 |βj| ≥ c2
nκ

and mini∈M0 |cov(β−1
j Y, Xi)| ≥ c3
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This condition avoids the case in which a significant variable is marginally

uncorrelated but jointly correlated with y .

C4 For some τ ≥ 0 and c4 ≥ 0, we have

λmax(Σ) ≤ c4n
τ .

This condition rules out strong collinearity.

C5 ε ∼ N (0, σ2) for some σ > 0. This is a common restriction on the error

distribution.

Let M∗ represent the true sparse model. Suppose conditions (C1)-(C5) are satis-

fied. If 2κ + τ < 1, then for some θ < 1 − 2κ − τ such that when γ ∼ cn−θ with

c > 0, we have for some C > 0,

P (M∗ ∈ M̂γ) = 1−O(exp(−Cn1−2κ/log(n))) (2.36)

Therefore, the screened submodel will contain the true model with probability

tending to one.

P (M∗ ⊂Mm)→ 1, as n→∞. (2.37)

Since the submodel with moderate size m will contain the true model with an over-

whelming probability, many standard variable selection methods such as stepwise

selection (Miller, 2002), SCAD (Fan and Li, 2001) and adaptive lasso (Zou, 2006)

can be applied to further simply the model and produce coefficient estimates.

Motivated by SIS, Wang (2009) borrow the idea of forward regression (FR) and

proposed FR screening method for the ultrahigh dimensional situation. Let M(k)

be the index set of kth submodel. The FR algorithm is introduced as follow.

Step 1 Set initial index set M(0) = ∅.

Step 2 At the kth(k ≥ 1) step, for every j ∈ {1, . . . , p} \M(k−1), fit a candidate

model with variables from the index set Mj = M(k−1)
⋃
{j}. Then compute

RSS of the candidate model y = xMj
β+ ε for all j and get RSSj = yT (In−

xMj
(xTMj

xMj
)−1xTMj

)y, where In is a n × n identity matrix. Choose the

model with the smallest RSSj and update the index set to M(k).
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Step 3 Repeat Step 2 for n times and gets a solution path with n nested models

M = {M(k) : k = 1, . . . , n}.

Under certain conditions, the solution path M is defined to achieve screening con-

sistency

P (M0 ⊂M(k) ∈M for some 1 ≤ k ≤ n)→ 1 if n→∞, (2.38)

Denote k∗ as the smallest integer satisfying (2.38), then every model M(k) with

k > k∗ enjoys the screening consistency. To decide the optimal model, Wang

(2009) suggest to use the following BIC criterion (Chen and Chen, 2008) for the

model M(k)

BIC(M(k)) = log(
1

n
RSS(M(k))) +

1

n
|M(k)|(log(n) + 2 log(p)) (2.39)

The optimal model with the smallest BIC can be selected from the solution path

M. Denote the optimal model as M̂. Wang (2009) show that the model M̂ is

screening consistent.

2.2.2 Sure Independence Screening for Generalized Linear

Model

SIS proposed in Fan and Lv (2008) is developed under linear model assumption.

However, its property highly depends on the joint normality assumption, which

limits its use to data from other distributions and models. Fan and Song (2010)

generalize independence screening to generalized linear models and proposed a

more general independence screening method by ranking the maximum marginal

likelihood estimator (MMLE) or maximum marginal likelihood itself. Consider the

case where the response Y comes from an exponential family with the canonical

form

fY (y|x) = exp{yxTβ − b(xTβ) + c(y)}, (2.40)

where x is a (p + 1)-dimensional predictor with the first element equals to 1, and

b(·) and c(·) are known functions. Based on (2.40), the MMLE β̂Mj is defined as
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the maximizer of the marginal log-likelihood function:

β̂Mj = (β̂Mj0 , β̂
M
j ) = arg max

β0,βj

n∑
i=1

`(β0 + βjxij, yi), j = 1, . . . , p (2.41)

where `(β0 + βjxij, yi) = (β0 + βjxij)yi − b(β0 + βjxij). Based on β̂Mj , we can

rank the importance of features based on the magnitudes of marginal regression

coefficients |β̂Mj | and produce a submodel:

Mγn = {1 ≤ j ≤ p : |β̂Mj | ≥ γn}, (2.42)

where γn is a predefined threshold value. Under certain conditions, Fan and Song

(2010) prove that MMLE has sure screening property and size control property

if γn follows an ideal rate. The size control property states that the size of the

submodel will be at most O(n2κλmax(Σ)) if log(p) = o(n1−2κ). Here κ < 1/2 and

Σ = cov(xi).

Instead of independent outcome data, Xu et al. (2014) gave a screening method

for longitudinal data with correlated outcomes based on generalized estimating

equation (GEE). Assume the i-th subject is observed at Ji discrete time points. Let

yi = (Yi1, . . . , YiJi)
T be the corresponding vector of response and xi = (xi1, . . . , xiJi)

T

be the corresponding Ji × P matrix of covariates, where xik = (Xik1, . . . , Xikp)
T .

Given xik, the conditional mean of Yik is E(Yik|xik) = g−1(xTikβ), in which g(·)
is a known link function. Assume that Yik is from an exponential family with a

canonical link function. The GEE is defined as

G(β) ≡ 1

n

n∑
i=1

xTi a
1/2
i (β)R−1

i (θ)a
−1/2
i (β)(yi − µi(β)) = 0, (2.43)

where ai(β) is a Ji × Ji diagonal matrix with kth diagonal element cov(Yik|xik),
and Ri(θ) is a Ji×Ji working correlation matrix determined by parameters θ. To

measure the importance of each covariate, Xu et al. (2014) define a population

version of G(β) as follow

g(β) = E[xTa1/2(β)R−1(θ)a−1/2(β)(y− µ(β))], (2.44)
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thus, the marginal dependence between y and xj can be measured by gj(0), the

jth element of g(β) when β = 0. Based on an empirical estimate of the working

correlation matrix R(θ̂), we can estimate g(0) by Ĝ(0):

Ĝ(0) ≡ (Ĝ1(0), . . . , Ĝp(0))T =
1

n

n∑
i=1

xTi a
1/2
i (0)R−1

i (θ̂)a
−1/2
i (0)(yi − µi(0)).

(2.45)

Note that this procedure is computational efficient since it only produces one single

evaluation Ĝ(0) of the GEE function G(β) at β = 0 instead of p separate marginal

models for gj(0), j = 1, . . . , p. Furthermore, the authors show that GEE owns sure

screening property even when the working correlation matrix is misspecified.

2.2.3 Joint Screening via Sparse MLE

Instead of ranking the importance of predictors based on marginal correlations or

marginal magnitudes, Xu and Chen (2014) propose a new screening procedure con-

sidering the joint effects of features via the sparsity-restricted maximum likelihood

estimator (SMLE) under generalized linear model setting. Specifically, based on

the log-likelihood function `n(β) =
∑n

i=1{(xTi β)yi− b(xTi β)}, the SMLE is defined

as

β̂[k] = arg max
β

`n(β) subject to ||β||0 ≤ m, (2.46)

where || · ||0 denotes the number of nonzero components, and m is a pre-set value

known to be greater than the true model size. This model provides the chance to

find and explain the joint effects among features when screening.

To solve (2.46) and get β̂[k], Xu and Chen (2014) propose an iterative hard-

thresholding algorithm (IHT) for GLM. First, define function hn(γ;β) to approx-

imate the log likelihood function `n(·) at a neighbor of β:

hn(γ;β) = `n(β)− (γ − β)TSn(β)− u

2
||γ − β||22, (2.47)

where Sn(β) = `
′
n(β) is the score function and u a positive scaling parameter.

Note that hn(γ;β) well approximates `n(β) when γ is close to β. Especially,

when γ = β, hn(β;β) = `n(β). Therefore, we can obtain an approximate solution
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to (2.46) through the following iterative procedure:

β(t+1) = arg max
γ

hn(γ;β(t)) (2.48)

= arg min
γ
||γ − 1

u
{uβ(t) + xTy− xTb

′
(xβ(t))}||22, (2.49)

subject to ||γ||0 ≤ k. The solution of γ is obtained by keeping the k components

with largest absolute values of γ̃ = β(t) +u−1xT{y− b′(xβ(t))}. For each iteration,

the regularization term u
2
||γ −β||22 in (2.47) penalizes the step size between β(t+1)

and β(t). The iteration will stop when ||β(t+1) − β(t)||2 falls below the pre-set

thresholding value. Furthremore, Xu and Chen (2014) prove that the objective

function `n(β(t)) increases with t and certainly converges to a local maximum.

Also, SMLE based screening method is shown to own the sure screening property.

2.2.4 Screening Methods for Additive Model

By extending the idea of SIS to nonparametric setting, Fan et al. (2011) propose

nonparametric independence screening method for additive models through rank-

ing the importance of predictors based on a measure of the goodness of fit of their

marginal models. The nonparametric additive model is specified as follow

Y =

p∑
j=1

mj(Xj) + ε, (2.50)

where {mj(Xj)}pj=1s are unknown smooth functions and ε have conditional mean 0.

To identify important variables, we consider the following marginal non-parametric

regression models for j = 1, . . . , p:

min
mj∈L2(P )

E(Y −mj(Xj))
2, (2.51)

where P is the joint distribution of (x, Y ) and L2(P ) is the class of squares in-

tegrable functions under the measure P . The solution to the objective function

(2.51) is mj(Xj) = E(Y |Xj), which is the projection of Y onto Xj. Thus, the

marginal utility of Xj measured by E[m2
j(Xj)] can be used to rank the importance

of predictors.
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To estimate E[m2
j(Xj)], Fan et al. (2011) applied a normalized B-spline basis

functions {Ψjk, k = 1, . . . , dn} to approximate {mj(Xj)}pj=1. Let Sn be the space

of polynomial splines of degree l ≥ 1. Then, for any mnj ∈ Sn, j = 1, . . . , p, we

have

mnj(x) =
dn∑
k=1

βjkΨjk(x). (2.52)

Given certain conditions, mj(Xj) can be well approximated bymnj(Xj). Therefore,

the minimization problem (2.51) can be formulated as

min
mnj∈Sn

1

n

n∑
i=1

(Yi −mnj(Xij))
2 = min

βj∈Rdn

1

n

n∑
i=1

(Yi −ΨT
ijβj)

2, (2.53)

where Ψij = (Ψ1(Xij), . . . ,Ψdn(Xij))
T and βj = (βj1, . . . , βjdn)T . Let Ψj =

(Ψ1j, · · · ,Ψnj)
T , the minimizer of (2.53) can be obtained as β̂j = (ΨT

j Ψj)
1ΨT

j y.

Thus f̂nj(Xij) = ΨT
ijβ̂j, and then ||f̂nj||2n = 1

n

∑n
i=1 f̂

2
nj(Xij) can be used to esti-

mate the marginal utility E[m2
j(X)].

Similar rule as (2.42) can be applied to select a submodel with |β̂Mj | replaced by

||m̂nj||2n . Note that it is also equivalent to rank the residual sum of squares of the

marginal regression model, where RSSj = 1
n

∑n
i=1(Yi−f̂nj(Xij))

2. Fan et al. (2011)

also point out that the marginal signal of the true predictors {E[m2
j ], j ∈M0} does

not vanish. Under some regularity conditions, ||f̂nj|| uniformly converge to ||fnj||
and the sure screening property hold.

2.2.5 Model-Free Feature Screening

All aforementioned model-based screening methods can be biased if the underlying

model is incorrectly specified. To avoid this, some more general screening methods

are studied without model specification.

Hall and Miller (2009) define a generalized empirical correlation between the

response and predictors based on a vector space of functions H that include all

constants and linear functions. Thus, a model-free feature screening submodel can

be approached by ranking the generalized correlation. Given i.i.d. {Yi,xi}ni=1, the
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generalized correlation is defined as

ψj = sup
h∈H

cov[h(X1j), Y1]√
var[h(X1j)]var(Y1)

, (2.54)

which can be estimated by

ψ̂j = sup
h∈H

∑
i[h(Xij)− h̄j](Yi − Ȳ )√∑n
i [h(Xij)2 − h̄2

j ](Yi − Ȳ )2
. (2.55)

Here h̄j = 1
n

∑
i h(Xij). Furthermore, since it is quite challenging to calculate

ψ̂j, Hall and Miller (2009) proved that the maximizer of ψ̂j is equivalent to the

minimizer in the following problem

min
h∈H

n∑
i=1

[Yi − h(Xij)]
2, (2.56)

where H is a finite-dimensional function space. In practice, we impose certain

restrictions on H for an explicit analytic solution. For example, ψ̂j will be our

familiar Pearson correlation if we constrain H to only linear functions. To deter-

mine the screened submodel, Hall and Miller (2009) adopt bootstrap procedure to

decide the cutoff point for ranking. Details are refered to Hall and Miller (2009).

Although Pearson correlation is frequently used measure the strength of asso-

ciation between the response and covariates, it still has some inherent drawbacks.

For example, Pearson correlation is very sensitive to the outliers and influential

points. Furthermore, it is good at detecting linear association, while it fails to dis-

cover nonlinear relationship time to time. To deal with these drawbacks, Li et al.

(2012) propose a robust rank correlation screening (RRCS) method by ranking

Kendall τ correlation coefficient. Given pairs of data {Yi, Xij}ni=1, the marginal

Kendall τ correlation coefficient between Y and Xj is defined as

ωj =
1

n(n− 1)

n∑
i 6=k

I(Xij < Xkj)I(Yi < Yk)−
1

4
, j = 1, . . . , p. (2.57)

We can rank the importance of predictors by ranking the magnitudes of ωj and

get a submodel defined in the same way as (2.35).
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RRCS outperforms the Pearson correlation based SIS in three different aspects.

First, RRCS is robust with respect to the outliers and influential points. Second,

the rank of ωj is invariant under monotonic transformation. As a result, RRCS can

discover nonlinear relationship and deal with semiparametric models without more

complicated nonparametric estimation. Third, RRCS makes use of the ranking

information to greatly simplify its theoretical derivation and achieve sure screening

property with only a moment condition.

Distance correlation (DC) is studied by Székely et al. (2007) to measure the

dependence between two random vectors. Based on that, Li et al. (2012) propose

another completely model-free screening procedure. Denote φµ(t) and φν(s) as

the respective characteristic functions for the dµ dimensional random vector µ and

dν dimensional random vector ν. φµ,ν(t, s) is the joint characteristic function for

(µ,ν). The distance covariance between µ and ν is defined as

dcov2(µ,ν) =

∫
Rdn+dν

||φµ,ν(t, s)− φµ(t)φν(s)||2ω(t, s)dtds (2.58)

where ω(t, s) = 1/[cdµcdν ||t||
1+dµ
dµ
||s||1+dν

dν
] with cd = π(1+d)/2/Γ{(1 + d)/2}. Here,

||x||d represents the Euclidean norm for x ∈ Rd, and ||ψ||2 = φφ̄, where φ̄ is the

conjugate of φ if φ is a complex valued function. Thus, the distance correlation

(DC) between µ and ν is defined as

dcorr(µ,ν) =
dcov(µ,ν)

dcov(µ,µ)dcov(ν,ν)
. (2.59)

Based on dcorr(µ,ν), a marginal utility is naturally defined as uj = dcorr2(Xj, y)

and used for screening.

There are several advantages of using distance correlation to measure marginal

association. First, both Xj and y can be multivariate with different dimensions,

regardless of whether it is continuous, discrete or categorical. Therefore, DC-

SIS can deal with multivariate response and groupwise predictors without model

specification. Second, when Xj and y are normally distributed, their distance

correlation is a strictly increasing function with respect to |ρ|, which means that

SIS can be regarded as a special case of DC-SIS when the response and predictors

are normally distributed. Finally, dcorr(Xj, y) = 0 if and only if f(Xj) and y
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are independent, where f(·) is a strictly monotone function. This feature allows

exploration to nonlinear relationship between Xj and y, which is more powerful

than traditional SIS developed based on linear model assumption.

2.3 Ultra-High Dimensional Survival Data Anal-

ysis

In this section, we first briefly introduce the basic definitions and concepts together

with commonly used Cox model in survival analysis. Variable selection and feature

screening procedures are then discussed.

2.3.1 Background and Definition

Survival analysis is introduced to analyze survival data. The response in survival

data, which is referred as a event time, survival time or failure time, is usually

continuous. However, the survival time may be incompletely determined for some

subjects. If we have study dropout, we know that the survival time is larger than

or equal to the dropout time t. For other subjects, we would know their exact

survival time. We define these incompletely observed subjects as censored. For

those subjects without censoring, we can apply the regular regression procedures.

However, time to event is restricted to be positive and has a skewed distribution,

which doesn’t satisfy the normality assumption. Furthermore, in survival data

analysis, we are more interested in the probability of surviving after a certain time

point than the expected failure time. The hazard function, used for regression in

survival analysis, can provide more insight for the failure mechanism.

For the censoring mechanism, it is assumed to be noninformative and caused by

something other than the impending event throughout our discussion. Censoring

might occur due to the following reasons:

1. A subject withdraws from the study;

2. A subject does not experience the event before the study ends;

3. A subject is lost to follow-up during the study period.
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All three examples above are right-censoring, which commonly happens in the real

life.

Notation: To represent the right-censored survival data, we introduce the

terminology as follows. Ti denotes the event time for the i-th subject; Ci denotes

the censoring time; and δi = I(Ti ≤ Ci) is the event indicator. That is, δi = 1

if events happen, while δi = 0 if events are censored. Zi is the observed response

defined by Zi = min(Ti, Ci).

Regarding the survival time T , survival analysis has some special ways to de-

scribe the probability distribution of T . The cumulative distribution function F (t)

is the probability of survival time T ≤ t and is defined by F (t) = P (T ≤ t). The

corresponding pdf f(t) is defined as

f(t) = lim
∆t→0

1

∆t
P (t ≤ T ≤ t+ ∆t), (2.60)

In survival analysis, the probability of surviving at a given time t is more of

interest. Therefore, the survival function S(t) is defined as

S(t) = P (T > t) = 1− F (t), (2.61)

S(t) is a non-increasing function of time t with S(0) = 1 and S(∞) = 0.

The hazard function h(t) is the rate of events occur at time t conditioning on

no previous event

h(t) = lim∆t→0
1

∆t
P (t < T < t+ ∆t|T > t) (2.62)

= lim∆t→0
1

∆t

P (t < T < t+ ∆t)

P (T ≥ t)
=
f(t)

S(t)
. (2.63)

Based on h(t), the cumulative hazard function H(t), which describes the accumu-

lated risk before time t, is defined as

H(t) =

∫ t

0

h(µ)dµ. (2.64)

The relationships between these previous defined functions f(t), h(t), S(t), and
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H(t) are as follow

f(t) = −dS(t)

dt
(2.65)

h(t) =
f(t)

S(t)
= − d

dt
{log(S(t))} (2.66)

H(t) =

∫ t

0

h(µ)dµ =

∫ t

0

− d

dµ
{log(S(µ))}dµ = − log(S(t)) (2.67)

S(t) = exp{−H(t)}, (2.68)

Given a survival data, the survival or hazard function can then be estimated

through an empirical way or a parametric model. For the first way, Kaplan-Meier

estimator for the survival function and Nelson-Aalen estimator for cumulative haz-

ard are developed to gives robust estimates with few assumptions. For the second

way, we can specify a parametric model for hazard function h(t) based on a par-

ticular density and use the maximum likelihood estimators(MLE) to estimate the

unknown coefficients. However, this approach may be too restrictive to get inap-

propriate conclusions. In real life, it is natural to assume that the survival time

can be affected by a vector of covariates. At the same time, some nonparametric

unspecified baseline function changing with time t can be combined with the effect

of covariates. As a result, the widely used Cox model will be introduced in the

following part.

2.3.2 Cox Model in Survival Data Analysis

In this part, we consider survival model with right-censored observations. Their

responses are the waiting time until the occurrence of an event, and the covariates

whose effects on the survival time are of interest. Denote xi as the covariates for

i-th subject, where xi can be continuous, discrete and time-varying. The goal of

survival analysis is to model the effects of significant covariates given a survival

data {(xi, Zi, δi)}n.

The most popular framework for right-censored survival data is the Cox’s pro-

portional hazards model (Cox, 1972), where the hazard function h(t|x) for a subject

with covarties x is defined as

h(t|x) = h0(t) exp(xTβ). (2.69)
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h(t|x) contains the parametric term exp(xTβ) and the non-parametric unspecified

baseline hazard function h0(t) who serves as a reference group. Hence, Cox’s

proportional hazards model is a semi-parametric model. Under the proportional

hazard assumption, the relative hazard rate between two groups is the same at all

durations t. That is, for two subjects with fixed covariates, their relative risk only

depends on their corresponding covariates. To integrate both sides of (2.69) from

0 to t, we obtain the cumulative hazard function

H(t|x) = H0(t) exp(xTβ), (2.70)

which is also proportional. Applying the relationship (2.68), the survival function

S(t|x) can be then determined uniquely by

S(t|x) = exp(−H(t|x)) = S0(t)exp(xTβ), (2.71)

where S0(t) = exp(−H0(t)) is the baseline survival function. Thus, the effects of

covariates x on the survival function is to raise it to a power given by relative risk

exp(xTβ).

2.3.3 Variable Selection in Cox’s Survival Data Analysis

In this part, we review the variable selection techniques via penalization to survival

analysis setting with right-censored data. Assume that subjects {(xi, Zi, δi)}n are

i.i.d. and Ti and Ci are independent conditioning on x, a full likelihood function

can be written as

L =
∏
µ

f(Zi|xi)
∏
c

F̄ (Zi|xi) =
∏
µ

h(Zi|xi)
n∏
i=1

F̄ (Zi|xi), (2.72)

Here the subscript c and µ denote the censored and uncensored data. f(Zi|xi),
F (Zi|xi) and h(Zi|xi) are the conditional density function, the conditional survival

function and the conditional hazard function of T given x, respectively. Denote

t1 < . . . < tN as the ordered observed failure times. Thus, the covariates associated

with the N failures are x(1), . . . ,x(N). Rj is the risk set right before time tj, namely,

Rj = {i : Zi ≥ tj}.
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Based on the Cox model assumption, h(t|xi) = h0(t) exp(xTi β), the likelihood

function in (2.72) becomes

L(h0(t),β) =
∏
µ

h0(Zi) exp(xTi β)
n∏
i=1

exp{−H0(Zi)exp(x
T
i β)}. (2.73)

Here H0(·) is the cumulative baseline hazard function. Usually, the estimate of β

is what of interest and h0(t) is treated as a nuisance parameter. Following Bres-

low’s idea, we can estimate h0(t) by maximizing the profiled likelihood L(h0(t),β)

conditioning on the estimated β̂. Substituting this profiled estimate h0(t) into

(2.73) and take log-transformation, we get the resulting log-likelihood function

that depends only on β

`(β) =
N∑
j

[xT(j)β − log{
∑
i∈Rj

exp(xTi β)}], (2.74)

which is the partial likelihood function proposed by Cox (1975). Based on (2.74),

penalized maximum partial likelihood estimator can be used to select significant

covariates. The penalized partial likelihood is defined as

Q(β) =
N∑
j

[xT(j)β − log{
∑
i∈Rj

exp(xTi β)}]− n
d∑
j=1

pλ(|βj|). (2.75)

By choosing a proper tuning parameter λ, we can set many of the estimated

coefficients to zero and hence achieve the objectives of variable selection.

Fan and Li (2002) apply the SCAD penalty functions to solve the variable

selection problem. It shows that the SCAD penalty enjoys the oracle property.

To solve the nonconvex optimization problem, Fan and Li (2002) use the LQA

algorithm to get a local quadratic one. Given a good initial estimate, the mod-

ified Newton-Raphson algorithm achieves an efficient penalized partial likelihood

estimator. Furthermore, the author use a sandwich formula to do statistical in-

ference. For the determination of λ, they select the optimal λ via minimizing an

approximate generalized cross validation (GCV) statistic.

Zhang and Lu (2007) apply the adaptive LASSO penalty to partial likelihood

for Cox’s model with noninformative censoring mechanism, which avoids the in-



36

consistency of the LASSO and the numerical complexity of the SCAD. Weights of

the adaptive LASSO penalty are determined by unpenalized estimator. Similarly,

they choose GCV statistic as their tuning parameter selector.

2.3.4 Feature Screening in Ultra-High Dimensional Sur-

vival Data Analysis

Similar to the case in generalized linear model, the penalized variable selection

methods for the Cox model work not that good in the case of ultrahigh dimensional

survival problems. To solve this, Fan et al. (2010) extend SIS and ISIS methods

in GLM to Cox model and employ maximum of the partial likelihood depending

on k-th covariate as k-th marginal untility µk, which is defined as

µk = max
βk

(
n∑
i=1

δixikβk −
n∑
i=1

δi log{
∑

j∈R(zi)

exp(xjkβk)}), (2.76)

where R(t) = {j : Zj ≥ t} and xjk is the k-th predictor for subject j. Therefore, the

higher the marginal utility µk, the more information the k-th covariate contains for

the survival time. By ranking all the marginal utilities from the largest to smallest,

Fan et al. (2010) choose the top d = [n/ log(n)] covariates and filter unimportant

variables. Denote Î1 as the index set of these d covariates that have been selected.

Based on the selected d covariates, the variable selection technique can be applied

to the selected subset of the variables {Xj, j ∈ Î1} to further refine the model.

Mathematically, we solve the following penalized partial likelihood problem:

min
βÎ1

[−
n∑
i=1

δix
T
Î1,i
βÎ1 +

n∑
i=1

δi log{
∑

j∈R(yi)

exp(xÎ1,iβÎ1)}+
∑
m∈Î1

pλ(βm)], (2.77)

where βÎ1 and xÎ1,i denotes a sub-vector of β and xi with indices in Î1. Optimiza-

tion problem (2.77) will lead to sparse estimate β̂Î1 with the index set of nonzero

components M̂1. M̂1 will serve as our final estimate of M∗ in Cox-SIS two step

procedures.

As Fan and Lv (2008) point out, SIS can fail for some challenging scenarios

under which we will miss the jointly related but marginally unrelated covariates.



37

To deal with these scenarios, Fan et al. (2010) propose iterative SIS (ISIS). Instead

of employing only marginal information, ISIS tries to make more use of joint co-

variates’ information. Based on M̂1, Fan et al. (2010) next define the conditional

utility of m-th covariate that is not in M̂1 as follows:

µm|M̂1
= max

βm,βM̂1

n∑
i=1

δi[(ximβm+xTM̂1,i
βM̂1

)−log{
∑

j∈R(yi)

exp(xjmβm+xTM̂1,j
βM̂1

)}],

(2.78)

This conditional utility measures the additional contribution of the m-th covariate

given that all covariates in M̂1 have been included in the model. By ranking the

conditional utilities whose indices are not in M̂1 from the largest to the smallest,

we select the top ranking covariates with index set Î2. Based on the union index

set M̂1 ∪ Î2, we apply (2.77) again and get the index set M̂2 of sparse parameter

estimates, which is our updated estimate of the true index set M∗. Repeat the

above iteration until some convergence criterion such as M̂j = M̂j−1 is reached.

Furthermore, Fan et al. (2010) introduce two variants of iterated Cox-SIS to

reduce false selected rates(FSR). However, Cox-SIS still has two major problems.

Since censoring is confounding between the covariates and the survival time, it is

difficult to extend the sure screening property to Cox model. Besides that, Cox-SIS

only works well when the true underlying model is a Cox model. Otherwise, its

power is very limited.

The aforementioned screening procedures usually dictate the number of vari-

ables to retain. There is no principled evaluation criterion for the methods of

making such a choice. To get a more theoretical solid thresholding criterion,

Zhao and Li (2012) provide a new, principled method for choosing the number

of screened covariates based on specifying the desired false positive rate. They

solve β̂k marginally by

β̂k = arg max
βk

(
n∑
i=1

δixikβk −
n∑
i=1

δi log{
∑

j∈R(zi)

exp(xjkβk)}). (2.79)

Denote Ik(βk) as the information matrix at β̂k. They rank I
1
2
k (βk)|βk| and conclude
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the index set of the screened model:

M̂γ = {1 ≤ k ≤ p : I
1
2
k (βk)|βk| > γ}, (2.80)

where γ = Φ−1(1− f
2p

). Here Φ(·) is the standard normal cumulative distribution

function and f is the number of false positives that we are willing to tolerate. Thus,

the expected false positive rate will be expected to be f/p = 2(1 − Φ(γ)). This

method is named as principled Coxs sure independence screening procedure (PSIS),

where the cutoff γ is selected to control the false positive rate. The algorithm of

PSIS is illustrated as follows:

1. Fit a marginal Cox model for each of the covariates based on (2.79) to get

estimates β̂k and their corresponding variance estimates I−1
k (β̂k).

2. Specify the number of variables f , fix the false positive rate as f/p and

determine γ by γ = Φ−1(1− f
2p

).

3. Get the screened model with the index set M̂γ = {1 ≤ k ≤ p : I
1
2
k (βk)|βk| >

γ}

Furthremore, Zhao and Li (2012) give the first theoretical justifications of the

sure independence screening procedure for censored data. Under the asymptotic

framework where the number of predictors p can be regarded as a function of

sample size N , the author show that PSIS will select all of the important variables

with probability going to 1. At the same time, the false positive rate is close to

the prespecified level 2(1− Φ(γ)).

Other than just considering the marginal effect of covariates, screening method

of joint effects of features is promising for ultrahigh dimensional survival data.

Yang et al. (2016) propose a two-stages sure joint screening procedure for Cox

model based on the constrained version of partial likelihood function:

β̂m = arg max
β

`p(β)(=
N∑
j=1

[xT(j)β − log{
∑
j∈Rj

exp(xiβ)}]), subject to ||β||0 ≤ m,

(2.81)

where m is a pre-specified thresholding value assumed to be greater than the

number of nonzero elements of β∗. For high-dimensional problems, it is difficult to
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solve the constrained maximization problem (2.81) directly. Alternatively, Yang

et al. (2016) consider a proxy of the partial likelihood function by applying Taylor

expansion to `p(γ) at β in a neighbor of γ,

`p(γ) ≈ `p(β) + (γ − β)T `
′

p(β) +
1

2
(γ − β)T `

′′

p(β)(γ − β). (2.82)

Here `
′
p(β) = ∂`p(γ)/∂γ|γ=β and `

′′
p(β) = ∂2`p(γ)/∂γ∂γT |γ=β. When `

′′
p(β)

is invertible, the computational complexity of calculating the inverse of `
′′
p(β) is

O(p3). Therefore, the computational costs will be unacceptable when p is large.

Furthermore, `
′′
p(β) is even not invertible when p > n. To save computational

costs and deal with singularity of the Hessian matrix, we use udiag{`′′p(β)} to

approximate `
′′
p(β),

g(γ|β) = `p(β) + (γ − β)T `
′

p(β)− u

2
(γ − β)TW (γ − β), (2.83)

where u is a scaling constant to be specified and W = diag{−`′′p(β)} is a diagonal

matrix consisting of the diagonal elements of −`′′p(β). When γ = β, we have

g(β|β) = `p(β). Yang et al. (2016) point out that g(γ|β) ≤ `p(β) for all γ

under some conditions, which ensures the ascent property. Furthermore, since W

is a diagonal matrix, g(γ|β) is an additive function of γj for any given β, which

enables us to have a closed form solution of the maximization problem

max
γ

g(γ|β), subject to ||γ||0 ≤ m, (2.84)

for a given β and m. Easy to verify that the maximizer of g(γ|β) is γ̃ = β +

u−1W−1`
′
p(β). Define rj = ωj γ̃

2
j as the j-th utility measure with ωj the j-th

diagonal element of W for j = 1, . . . , p. By ranking rj so that |r(1)| ≥ |r(2)| ≥
. . . ≥ |r(p)|, the solution to (2.84) will be

γ̂j = γ̃jI{|rj| ≥ |r(m+1)|}=̂H(γ̃j;m). (2.85)

Thus, we can effectively screen features through the following algorithm:

Step1. Set the initial value β(0) = 0.
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Step2. Set t = 0, 1, 2, . . . and iteratively conduct Step 3 and the Step 4 until

the algorithm converges.

Step3. Calculate γ̃(t) = (γ̃
(t)
1 , . . . , γ̃

(t)
p )T = β(t) + u−1

t W−1(β(t))`
′
p(β

(t)) and

β̃
(t)

= (H(γ̃
(t)
1 ;m), . . . , H(γ̃(t)

p ;m))T =̂H(γ̃(t);m) (2.86)

Denote St = {j : β̃
(t)
j 6= 0} as the nonzero index of β̃

(t)

Step4. Update β by β(t+1) = (β
(t+1)
1 , . . . , β

(t+1)
p )T as follows. If j /∈ St, set

β
(t+1)
j = 0; otherwise, set {β(t+1)

j : j ∈ St} to be the maximum partial

likelihood estimate of the submodel St.

2.4 Varying Coefficient Model

In our statistical toolkit, parametric models such as linear regression model and

generalized linear model are the most useful tools. However, strict assumptions

about the relationship between the response and the covariates sometimes impose

restriction on their applications. As a result, the dynamic features existing in

data from various scientific areas often cannot be appropriately modeled through

parametric model. Among many attempts to understand the dynamic features,

varying coefficient model allows the regression coefficients to depend on certain

factors, which help to increase model flexibility and incorporate dynamics.

2.4.1 Model Structure and Penalized Least Squares

In Hastie and Tibshirani (1993), the varying coefficient model is systematically

studied and defined as

y = β0 +X1β1(R1) + . . .+Xpβp(Rp) + ε = η + ε, (2.87)

where y is the response with mean η, x = (X1, . . . , Xp) is a p-dimensional predictor,

R = (R1, . . . , Rp) is the ”effect modifiers” smoothly changing coefficient functions

β(R) = (β1(R1), . . . , βp(Rp)), and ε is the random error with E(ε|x,β(R)) =

0. Here, β(R) are estimated by nonparametric approach. Model (4.7) can be
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extended to generalized linear model framework, by assuming

E(y|x, U) = g−1(xTβ(R)), (2.88)

where g−1(·) is the inverse of the link function g(·).
Model (4.8) show the common structure of various models. Some instances of

model (4.8) listed below will be familiar by imposing different constraint conditions

on βj(Rj)

1. If βj(Rj) = j(the constant function), then that term is linear in Xj. If all

the terms are linear, then model (4.8) is the usual linear model or generalized

linear model.

2. If Xj = c, then the jth term is simply, βj(Rj) = j, an unspecified function

in Rj. If all the terms have this form or are linear, then model (4.8) has the

form of a generalized additive model.

3. Often the Rj s will be the same variable that suspect could modify the

effects of X1, . . . , Xp. Suppose, for example, the data consist of repeated

measurements over n time points t ∈ (t1, . . . , tn). Then we might model this

as

ηt = β0(t) +X1(t)β1(t) + . . .+Xp(t)βp(t), (2.89)

4. Each Rj can be scalar or vector.

Model (4.7) as it stands is too general for most applications, in that no re-

strictions are imposed on the coefficient functions. For that reason we impose

restrictions of one form or another on the coefficient functions. The paramet-

ric approaches such as polynomial functions do not provide enough flexibility and

local adaptiveness. As a result, a set of regression spline bases with a fixed arrange-

ment of knots is likely to be preferable. Furthermore, all the standard inferential

tools can be used to evaluate sets of coefficients with this approach. However, the

characteristics of the fitted curves can be quite different with minor changes in

the positions of the knots. To solve that, Hastie and Tibshirani (1993) present a

general nonparametric procedure for the varying-coefficients model (4.7) based on
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a penalized least squares criterion to consider measuring the goodness of fit and

penalizing the roughness of each βj as a whole.

Estimation in L2: Suppose that we decide to estimate β1(·), . . . , βp(·) in model

(4.7) by minimizing

E{Y −
p∑
j=1

Xjβj(Rj)}2, (2.90)

Conditioning on each Rj, a sufficient condition for the solutions is

E[Xj{Y −
p∑
j=1

Xjβj(Rj)}|Rj] = 0, j = 1, 2, . . . , p. (2.91)

To find βj(·), we can rearrange the above equation and solve

βj(Rj) =
E[X2

j {Y −
∑

k 6=j Xkβk(Rk)}/Xj|Rj]

E(X2
j |Rj)

, (2.92)

Since a scatterplot smoother can be viewed as a flexible estimate of a conditional

expectation, this suggests that each function βj(Rj) can be estimated in an iterative

‘one at a time’ manner by smoothing {Y−
∑

k 6=j Xkβk(Rk)}/Xj onRj, with weights

X2
j .

Penalized Least Squares: To solve the sensitivity issue with resepct to minor

changes in the knots positions, a penality term is added to L2 loss to penalize the

roughness of each βj(Rj) with a fixed parameter λ. As a result, we propose to

minimize the penalized least squares criterion

J(β1, . . . , βp) =
n∑
i=1

{yi −
p∑
j=1

xijβj(rij)}2 +

p∑
j=1

λj

∫
β
′′

j (rj)
2drj, (2.93)

For smoothing splines of βj, one might consider the use of the weighted cubic

smoothing spline, a locally weighted running line smoother or for time varying

coefficients an exponentially weighted moving average in the iterative procedure

above.

In statistical literature, two different estimation methods for βk(t) in (4.8) are

widely used. One is kernel-local polynomial smoothing proposed in Hoover et al.

(1998), Fan and Zhang (1999) and Fan and Zhang (2008), etc. The other one is
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polynomial spline introduced in Huang et al.(2002, 2004) and Huang and Shen

(2004), etc. We briefly introduce them in the following two sections.

2.4.2 Polynomial Splines

Polynomial splines are piecewise polynomials with pieces jointing smoothly at a set

of interior knots under certain continuity and derivatives conditions. The knots

are denoted by ξ0 < ξ1 < . . . < ξL < ξL+1 with two end points ξ0 and ξL+1 of

the interval on T . A spline of degree d = 0, 1, 2, 3 corresponds to, respectively,

a piecewise constant, linear, quadratic or cubic spline on each of the intervals

[ξl, ξl+1), 0 ≤ l ≤ L−1 and [ξL, ξL+1], and globally has d−1 continuous derivatives

for d ≥ 1. Among them, cubic spline is the most commonly used. Therefore, the

user-determined parameters include:

(a) The degree of the spline function, d;

(b) The number of knots, L;

(c) The positions of the interior knots, {ξl, l = 1, . . . , L};

(d) The number of free coefficients, i.e. degree of freedom of the spline function,

M = L+ d+ 1.

Two out of (a), (b) and (d) are needed to create the spline basis.

Among different options of spline basis, we introduce Basis spline, or B-spline,

which has the minimal support with respect to a given degree, smoothness and

knots positions. De Boor et al. (1978) and Schumaker (1981) introduce the detailed

construction and good properties of B-spline. Consider a varying-coefficient model

based on a single effect modifying factor t. Let {Bkm,m = 1, . . . ,Mk} be a B-spline

basis, then βk(t) can be approximated by

βk(t) ≈
Mk∑
m=1

γkmBkm(t), k = 0, 1, . . . , p. (2.94)

where Mk, the number of basis functions for βk(t), can be different for different

k. Larger Mk leads to more accurate approximations of the varying coefficient
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functions but results in higher variance. Therefore, model (4.8) becomes, approx-

imately, a linear regression model (Huang et al. 2004):

yi(t) ≈
p∑

k=0

Mk∑
m=1

γkmBkm(t)xik(t) + εi(t), (2.95)

where xi0(t) ≡ 1 for any i. Coefficients {γkm, k = 1, . . . , p;m = 1, . . . ,Mk} can be

estimated by minimizing the weighted least squares,

n∑
i=1

ωi{yi(t)−
p∑

k=0

Mk∑
m=1

γkmBkm(t)xik(t)}2 =
n∑
i=1

ωi{yi(t)− zTi γ}2, (2.96)

where ωi is the weight for the i-th subject. Let γ = (γT0 , . . . ,γ
T
p )T with γk =

(γk1, . . . , γkMk
)T ,

b(t) =


B01(t) · · · B0M0(t) 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 Bp1(t) · · · BpMp(t)


zTi = xTi (t)b(t). Then, the minimizer of (2.96) becomes

γ̂ = (
n∑
i=1

ωiz
T
i zi)

−1

n∑
i=1

ωiyizi, (2.97)

Hence, βk(t) can be estimated by β̂k(t) =
∑

m γ̂kmBkm(t).

We usually don’t select all three parameters: the degree of splines, the number

of basis functions and the locations of knots due to computational complexity.

Huang et al. (2004) propose to use equally spaced knots and fixed degree, and only

select the number of basis functions M by leave-one-out cross-validation (LooCV).

This technique is also supported by Rice and Silverman (1991), Hansen et al.

(1993) and Hoover et al. (1998). Denote β̂(−i)(t) as the spline estimator obtained

from all data without i-th subject. The cross-validation criterion is defined as

CV =
n∑
i=1

{ωi(yi(t)− xTi (t)β̂
(−i)

(t))2}. (2.98)

Therefore, {Mk, k = 0, . . . , p} is obtained by minimizing this cross-validation score
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(2.98). When the sample size N is large, one can also use the “K-fold” cross-

validation to reduce the computational complexity.

2.4.3 Kernel-local Polynomial Smoothing

For convenience, assume the varying coefficient model has varying coefficients de-

pending on time t. At each given time point, it can be considered as a linear model.

Thus, it is reasonable to estimate the coefficients using data from a local neigh-

borhood. That is the idea of kernel-local polynomial smoothing. The coefficient

functions {βk(t), k = 1, . . . , p} are approximated locally by

βk(t) ≈ βk(t0) + β
′

k(t0)(t− t0) ≡ ak + bk(t− t0) (2.99)

for any t in a neighborhood of t0. ak and bk can be estimated by minimizing the

weighted least squares

n∑
i=1

[yi(ti)−
p∑

k=1

{ak + bk(ti − t0)}xi(ti)]2Kh(ti − t0), (2.100)

where Kh(t) = K(t/h)/h. K(t) is a kernel function with bandwidth h. Ker-

nel functions such as Gaussian kernel (K(t) = 1√
2π

exp(−t2/2)), uniform kernel

(K(t) = I(|t| < 1/2)), and Epanechikov kernel(K(t) = 0.75(1 − t2)+, t ∈ [−1, 1])

are frequently used in practice. Technical details for matrix form of the solution are

referred to Fan et al. (1999). Bandwidth parameter h is the only tuning parameter

to control the extent of smoothing. Therefore, the choice of h is essential. The

aforementioned LooCV and “K-fold” CV can be applied to choose h, but it might

cause heavy computation. Another popular criterion for choosing h is the Mean

Squared Error (MSE), which can be decomposed into the summation of variance

and the squared bias. More details of estimation procedures for bias and variance

are referred to Fan and Zhang (1999).

2.4.4 Feature Screening for Varying Coefficient Model

The aforementioned screening procedures screen predictors under the constant co-

efficients assumption. Liu et al. (2014) develop a kernel-regression based screening



46

method specifically for ultrahigh dimensional varying coefficient models to reduce

dimensionality. Suppose the varying-coefficients are functions of u. Thus, con-

ditioning on u, the varying coefficient models are linear models. Therefore, it is

natural to employ the conditional Pearson correlation coefficients ρ(Xj, Y |u) be-

tween Y and X ′js as a measure for the strength of association, where the ρ(Xj, Y |u)

and corresponding estimate ρ̂(Xj, Y |u) are defined as

ρ(Xj, Y |u) =
cov(Xj, Y |u)√

var(Xj|u)var(Y |u)
, ρ̂(Xj, Y |u) =

ˆcov(Xj, Y |u)√
ˆvar(Xj|u) ˆvar(Y |u)

(2.101)

To estimate ρ̂(Xj, Y |u), Liu et al. (2014) apply kernel smoothing method to

estimate the five conditional means involved: E(Xj|u), E(Y |u), E(X2
j |u), E(Y 2|u)

and E(XjY |u), which are assumed as nonparametric smoothing functions of u. Let

K(t) be a kernel function and Kh(t) = K(t/h)/h with a bandwidth h. Then the

kernel regression estimate for E(Y |u) is

Ê(Y |u) =
n∑
i=1

Kh(ui − u)Yi∑n
i=1Kh(ui − u)

. (2.102)

Estimates for the other four conditional means can be similarly defined. Thus,

ˆcov(Xj, Y |u), ˆvar(Xj|u) and ˆvar(Y |u) can be obtained, and then ρ̂(Xj, Y |u).

Based on the observed i.i.d. data {yi, ui, xij}ni=1, the utility measure of j-th pre-

dictors can be defined as rj = E[ρ2(Xj, Y |u)]. Its corresponding sample estimate

is r̂j =
∑n

i=1 ρ̂
2(xij, yi|ui)/n. Then,the screened submodel is defined as

M̂ = {j : 1 ≤ j ≤ p : r̂j ranks among first d}. (2.103)

Fan and Lv (2008) suggest to set d = [n/ log(n)]. However, as we know, the

effective sample size is nh in the kernel regression setting, and the optimal rate

of bandwidth is h = O(n( − 1/5)). Thus, Liu et al. (2014) suggest using d =

[n4/5/log(n4/5)]. Under certain regularity conditions, this method has both ranking

consistency and sure screening properties, where the former states that the ranks

of the true predictors are consistently higher than the ranks of the unimportant

predictors.

Another screening method based on B-spline is developed in Fan et al. (2014),
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where the author extend the NIS procedure proposed in Fan et al. (2011) to a

screening procedure for sparse varying coefficient models in ultrahigh dimension

with the following form:

Y = β0(u) +

p∑
j=1

βj(u)Xj + ε, (2.104)

where u is some observable factors and {βj(·)}pj=0 are unknown smooth functions.

Assuming that β(u) = (β1(u), . . . , βp(u))T is sparse, the index set of nonzero com-

ponents is defined as M0 = {1 ≤ j ≤ p : E[β2
j (u)] > 0}.

Given u, the marginal strength of each predictor can be measured by the ex-

pected conditional correlation between Y and Xj. For Xj, consider the marginal

regression model:

min
αj(u),βj(u)∈L2(P )

E[(Y − αj(u)− βj(u)Xj)
2|u], (2.105)

where P denotes the joint distribution of (Y, u,X) and L2(P ) is the class of square

integrable functions under the measure P . The minimizer of (2.105) is

αj(u) =
cov(Xj, Y |u)

var(Xj|u)
, βj(u) = E(Y |u)− αj(u)E(Xj|u) (2.106)

Thus, the utility of Xj is defined as

µj = E[αj(u) + βj(u)Xj]
2 − [E(Y |u)]2 = E{ [cov(Xj, Y |u)]2

var(Xj|u)
}, (2.107)

Let E[β0(u)] = E(Y |u). To estimate µj, similar technique used by Fan et al.

(2011) is applied to approximate unknown coefficients {αj(u)}pj=1 and {βj(u)}pj=0

by B-splines functions:

αj(u) ≈
dn∑
k=1

ηjkΨjk(u) and βj(u) ≈
dn∑
k=1

θjkΨjk(u) (2.108)

Then, ηj = (ηj1, . . . , ηjdn)T and θj = (θj1, . . . , θjdn)T can be estimated by minimiz-
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ing the ordinary least squares:

min
ηj ,θj

1

n

n∑
i=1

[Yi −Ψj(ui)ηj −Ψj(ui)θj]
2, (2.109)

where Ψj(ui) = (Ψ1(ui), . . . ,Ψdn(ui))
T . Then a sample estimate of the marginal

utility µj can be obtained by

µ̂j =
1

n

n∑
i=1

[α̂j(ui) + β̂j(ui)Xij]
2 − 1

n

n∑
i=1

[β̂0(ui)]
2 (2.110)

where α̂j, β̂j and β̂0 are the estimates of αj, βj and β0 using LSE from (2.109).

Another equivalent measure of marginal strength is the residual sum of squares of

the marginal regression model, which can be calculated by

ν̂j =
n∑
i=1

[Yi − α̂j(ui)− β̂j(ui)Xij]
2. (2.111)

By properly choosing thresholds τn or νn, a submodel can be defined by

Mτn,νn = {1 ≤ j ≤ p : µ̂j ≥ τn} = {1 ≤ j ≤ p : v̂j ≥ νn} (2.112)

Under certain regularity conditions, the sure screening property holds.

2.4.5 Cox Model with Varying-Coefficients

Cox model proposed by Cox (1972) is widely used to model the relationships be-

tween the survival time and the time-invariant covariates. Under the conventional

form of Cox model, we assume the coefficients are constant function of t, thus

guaranteeing the hazard is proportional across time. However, the constant as-

sumption may fail to detect some important covariates when their effects change

over time. To deal with this issue, Zucker and Karr (1990) propose the Cox model

with time-varying covariate effects

λ(t|x) = λ0(t) exp{β(t)Tx}. (2.113)



49

Here β(t) are assumed to be time-varying smooth coefficient functions that need

to be estimated nonparametrically. The author propose to estimate β(t) using pe-

nalized partial likelihood. The weak uniform consistency and pointwise asymptotic

normality of the estimators are also derived in Zucker and Karr (1990) under cer-

tain regularity conditions. Furthermore, Hastie and Tibshirani (1993) develop an

algorithm based on smoothing spline basis to maximize the penalized partial like-

lihood as an extension. Gray (1992) proposes to use smoothing splines to estimate

β(t) and give corresponding test statistics.

In recent statistical literatures, local partial likelihood is frequently used to es-

timate (2.113). Cai and Sun (2003) obtain the the pointwise confidence bands and

show the pointwise asymptotic properties of the kernel estimators. This procedure

is used to measure the time-dependencies or departure from the Cox proportional

hazard models. Tian et al. (2005) constructed confidence bands for the kernel

estimators and compared them with the pointwise confidence bands in Cai and

Sun (2003). Sun et al. (2009) develop empirical likelihood pointwise and use lo-

cal partial likelihood smoothing to produce simultaneous confidence bands for the

time varying coefficients. The author further prove that they perform better than

the pointwise and simultaneous confidence bands in the previous studies (Cai and

Sun, 2003; Tian et al., 2005).

2.5 Feature Selection, Interaction Screening and

Forest Algorithms

Most previous mentioned methods for variable selection and feature screening are

designed for selecting main effects only. However, main effects are not sufficient

to describe the relationship between the response and predictors under complex

situations. Models including interaction effects give us a better approximation

for the response surface, and therefore improve the prediction accuracy and bring

new insight on the interplay between predictors. In many social, political, eco-

nomic, bioassay and epidemiology problems, interaction models are useful in iden-

tifying nontrivial interactions between variables in modeling product sales, so-

cial networks or financial market changes. Especially, in genome-wide association
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studies(GWAS), researchers pay more and more attention to identify the inter-

action(epistatic) effects of single-nucleotide polymorphisms (SNPs) because gene-

gene interactions can provide important insight on the complex biological pathways

related to human diseases.

Two main categories of methods are studied in the literature about searching

interaction effects. The first main category is called “two-stage analysis”, which

is an computational efficient modification of so called “joint analysis”. In the

methods of “joint analysis”, they usually include both main and interaction effect

in (2.114) altogether and make a global search over all candidate models.

Y = β0 + β1X1 + · · ·+ βpXp + β11X
2
1 + β12X1X2 + · · ·+ βppX

2
p + ε (2.114)

However, as ? points out, “joint analysis” methods become infeasible when p

is large due to limiting factors such as memory requirement and computational

cost. Based on the “marginality principle” and “heredity condition”, “two-stage

analysis” methods conclude that the models will have hierarchical structure, and

interaction effects will be accompanied by at least one main effect. Under these

assumptions, “two-stage analysis” methods could first select important main ef-

fects, and then select interaction effects of main effects that are obtained in the

first stage. Therefore, “two-stage analysis” will be feasible choices when the data

dimention p is large.

The second main category methods are random forest algorithms. As a natural

structure for modelling interaction effects, trees are constructed and ensembled in

different ways, which becomes different algorithms of random forest for prediction

and selecting important features and interaction effects. Unlike the “two-stage

analysis” methods, the forest algorithms assume neither the model forms of under-

lining mechanisms, nor the order of interaction effects. Both category of methods

are reviewed in this section.

2.5.1 Two-stage Analysis and Interaction Screening

The model setup and notations of “two-stage analysis” are given here. Given n

IID observations (x1, Y1), . . . , (xn, Yn), we consider a regression model with linear
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and second-order terms

Y = β0 + xTi β
(1) + zTi β

(2) + εi, 1 ≤ i ≤ n, (2.115)

where Yi is a real-valued response, xi = (Xi1, . . . , Xip) is a p-dimensional vector and

the vector zi = (X2
i1, Xi1Xi2, . . . , Xi1Xip, X

2
i2, Xi2Xi3, . . . , X

2
ip)

T includes quadratic

and two-way interaction terms. Also, β0 is the intercept, β(1) = {βi} and β(2) =

{βjk} are regression coefficients of linear effects and order-2 effects. Throughout

this part, we assume that E(Xij) = 0, V ar(Xij) = 1, E(Yi) = 0 and V ar(Yi) = 1

for i = 1, . . . , n and j = 1, . . . , p. Denote the index sets of linear and order-2 terms

as

P1 = {1, 2, . . . , p},P2 = {(k, l) : 1 ≤ k ≤ l ≤ p} (2.116)

and the nonzero linear and order-2 effects as

T1 = {j : βj 6= 0, j ∈ P1} (2.117)

T2 = {(j, k) : βjk 6= 0, (j, k) ∈ P2} (2.118)

Therefore, the full model is F = P1 ∪ P2 and the tree model is T = T1 ∪ T2

One typical representative of “two-stage analysis” is the two-stage iFOR pro-

cedure proposed by ?. It extends the FS solution path algorithm of Wang (2009),

which is discussed in the previous section, to the interaction selection, and proves

the sure screening property for interaction selection under some regularity condi-

tions. The two-stage iFOR procedure(iFORT) is outlined as follow:

Stage1: Define C = P1. Implement FS on C to get the solution path {S(1)
t , t =

1, 2, . . .} and the selected main effects set M̂ = {j1, . . . , jt1}.

Stage2: Update C = M̂ ∪ {(k, l) : k ∈ M̂ and l ∈ M̂}. Implement FS on C by

forcing-in M̂. Denote the solution path by {S(2)
t1+t, t = 1, 2, . . .}.

The above iFORT algorithm separately selects main effects and order-2 effects

at two stages. Furthermore, under marginality principle, ? propose another new

algorithm iFORM to select both main effects and order-2 effects altogether through

a dynamic candidate set C. The iFORM algorithm, also called “iFOR Under

Marginality Principle”, is as follow:



52

Step1: (Initialization) Set S0 = ∅,M0 = ∅ and C0 = P1.

Step2: (Selection) In the t-th step with given St−1, Ct−1 and Mt−1, FS is used to

select one more variable from Ct−1 \ St−1 and add it into St−1 to get St. If

the newly added variable a is a main effect, update Mt = Mt−1 ∪ {a} and

Ct = P1 ∪ {(k, l) : k, l ∈Mt}.

Step3: (Solution path) Iterating Step 2 and get a solution path {St : t = 1, 2, . . . , D}.

The above D is chosen as a reasonable total number of important effects to termi-

nate the procedure. The optimal model is determined from the FS path by BIC

criterion.

One of the largest potential applying fields of interaction screening is the

genome-wide association studies. Genetic interactions, which is known as epista-

sis, is playing a pivotal role in contributing to the genetic variation of phenotypic

traits. To help locating the genes participating in the epistasis, Li et al. (2014)

propose a two-stage sure independence screening(TS-SIS) procedure to generate

a set of candidate SNPs and interactions, which may help to explain and predict

the phenotypes of a complex trait. The related model setting for the observed

phenotypic value yi of subject i in a population cohort of n subjects is

yi = µ+

q∑
k=1

xk,iαk +

p∑
j=1

ξj,iaj +

p∑
j=1

ζj,idj (2.119)

= +

p∑
j=1

∑
j′<j

ξj,iξj′ ,iIaajj′ +

p∑
j=1

p∑
j′=1

ξj,iζj′ ,iIadjj′ (2.120)

= +

p∑
j=1

p∑
j′=1

ζj,iξj′ ,iIdajj′ +

p∑
j=1

∑
j′<j

ζj,iζj′ ,iIddjj′ + εi, (2.121)

where µ is the overall mean, q is the number of nongenetic covariates, p is the

number of SNPs, xk,i is the k-th covariate for subject i, k = 1, . . . , q, i = 1, . . . , n,

αk is the effect of the k-th covariate, aj and dj are the additive effect and dominant

effect of the j-th SNP, respectively. For j = 1, . . . , p, Iaa
jj′

is the additive×additive

epistatic effect between the j-th SNP and the j
′
-th SNP, Iad

jj′
, Idajj and Idd

jj′
are

additive× dominant epistatic effect, dominant× additive epistatic effect and dominant×
dominant epistatic effect. If an effect is nonzero in regression model (2.119), the
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corresponding covariate or interaction is considered active. For the i-th subject,

ξj,i and ζj,i, which are the indicators of the additive and dominant effects of the

j-th SNP, are defined as

ξj,i =


1, if the genotype of SNP j is AA

0, if the genotype of SNP j is Aa

−1, if the genotype of SNP j is aa

(2.122)

ζj,i =

1, if the genotype of SNP j is Aa

0, if the genotype of SNP j is AA or aa.
(2.123)

That is, the additive effect aj measures the effect of the average phenotypic value

by substituting allele A with allele a, while dominant effect dj represents how the

effect of allele A is modified by the presence of allele a.

Let Da and Dd be two sets of indices of truly important additive effects and

dominant effects, respectively. The first stage of the TS-SIS procedure will select

two subsets of SNPs with potential nonzero additive effects D̂a and dominant

effects D̂d. Based on D̂a, an additive× additive interaction term is formulated

by taking one SNP from D̂a and the other from all SNPs. Therefore, the set of

additive×additive interactions are denoted by D(0)
aa = {(j, j ′) : ξjξj′ , j ∈ D̂a, j

′
=

1, 2, . . . , p}. Similarly, D(0)
ad ,D(0)

da and D(0)
dd are formulated.

In the second stage, Li et al. (2014) apply SIS again to the pairwise epistatic

interactions given in D(0)
aa ,D(0)

ad ,D(0)
da and D(0)

dd . The algorithm is summarized as

Step1: Apply the SIS procedure to all additive and dominant main effects of SNPs

and obtain the D̂a and D̂d.

Step2: Formulate pairwise interaction sets D(0)
aa ,D(0)

ad ,D(0)
da and D(0)

dd .

Step3: Apply the SIS procedure again to D(0)
aa ,D(0)

ad ,D(0)
da and D(0)

dd , and obtain the

reduced model D̂aa,D̂ad,D̂da and D̂dd.

Step4: Combine all reduced model in step 1 and 3 and give the final selected model

{D̂a, D̂d, D̂aa, D̂ad, D̂da, D̂dd}
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Also, Li et al. (2014) propose the rates adjusted thresholding estimation (RATE)

approach to determine the size of the reduced models selected by SIS.

Other than searching interaction effects using two-stage analysis procedure,

Niu et al. (2018) suggest to directly do interaction screening by partial correla-

tion(ISPC). In this paper, they point out that the direct generalization of existing

screening methods to interaction screening can be incorrect or insufficient because

it may overlook the intrinsic relationship between main effects and interactions.

That is, it may label an interaction, say X1X2, as “important” while it is actually

not predictive to the response, or the vise versa, because its intrinsic relationship

with X1 and X2. To fix this problem, Niu et al. (2018) show that the ISPC proce-

dure is a main-effect-adjusted interaction screening procedure, and further extend

the ISPC procedure to the nonparametric rank correlation cases. The ISPC pro-

cedure is outlined as

1. Calculate the standardized interaction effects Z.

2. Calculate the sample partial correlation P as

Pjk =

 ˆpCorr(Y,XjXk|Xj, Xk), 1 ≤ j ≤ k ≤ p

ˆpCorr(Y,X2
j |Xj), 1 ≤ j ≤ p

(2.124)

3. Determine a threshold λ and obtain a model Îλ = {(j, k) : |Pjk| > λ}

Furthermore, Niu et al. (2018) show that ISPC is invariant of arbitrary linear cod-

ing transformation, while the Pearson correlation Corr(Y,XjXk is not invariant.

Therefore, ISPC is more preferable.

2.5.2 Feature Selection Using Random Forest

Random forest algorithms are widely used for prediction and feature selection in the

literature. To understand the mechanism of the “Random Forest”(RF), Breiman

(2001) makes a start by using “Permutation Variable Importance Measure”(PVIM)

for ranking variable importances. In a Random Forest, the PVIM of the j-th
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(j = 1, . . . , p) feature Xj of the t-th tree is defined as

PV IMt(Xj) =

∑
i∈Bt(Yi − Ŷ

∗
it )

2 −
∑

i∈Bt(Yi − Ŷit)
2

|Bt|
(2.125)

Here Bt is the OOB sample for tree t, t = 1, . . . , ntree. Ŷit and Ŷ ∗it are the

predictions for observation i got from the tree t before and after permuting Xj.

The final importance measure of Xj is averaged over all trees

PV IM(Xj) =
ntree∑
t=1

PV IMt(Xj)

ntree
(2.126)

As pointed out by Breiman (2001), Random Forest can help to understand the

interaction of variables that is providing the predictive accuracy.

However, it is not enough to give a more complete picture. Especially, when

the number of features is huge and the percentage of truly imformative features

is small, the performance of RF declines significantly both in prediction accuracy

and variable selection. Furthermore, the probability of detection of the causal

variant decreases much more rapidly for interactions than variants with marginal

effect. This is because as the dimensionality increases, interacting variants will

rarely appear in a tree together and therefore be rarely modeled. The interaction

will be even rarer modeled if they don’t exhibit strong marginal effects.

A very natural idea to solve this is variable selection. Dı́az-Uriarte and De An-

dres (2006) selected genes by iteratively fitting RF and dropping a pre-specified

proportion of genes with the smallest importances each round. After fitting all

forests, Dı́az-Uriarte and De Andres (2006) choose the solution with the smallest

number of genes whose OOB error rate is within 0 or 1 standard error of the min-

imum error rates of all forests. As a result, this algorithm usually selects a very

small set of genes. However, the genes selected in the original samples are rarely

selected in more than 50% of the bootstrap samples, which means the selected

gene set is not very stable.

Instead of dropping features, Amaratunga et al. (2008) proposed a feature-

weighted version of RF for feature ranking and selection under the name “Enriched

Random Forests”. Weighting can be done by scoring each gene based on its ability
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to seperate the groups or improve the prediction accuracy. By pointing out the

weakness of the t-test p-values as the weights, Amaratunga et al. (2008) proposed

to determine the weights based on q-values that are provide false discovery rate

(FDR)-adjusted measures of significance for the features.

q(i) = min
k≥1
{min((G/k)p(k), 1)}, (2.127)

where G is the number of predictors, p(i) and q(i) are the p-value the q-value

associated with the feature with the i-th smallest p-value. By assigning weights

w
′
i = (1/qi) − 1, features with pi ∼= 1 and qi ∼= 1 will get almost zero weight. At

the same time, features with high separability will get large weights.

Another way to improve the performance of Random Forest is through weight-

ing trees instead of variables. Winham et al. (2013) proposed to up-weigh better

performing trees based on some measure of predictive ability at the tree-level. In

the OOB training data, define vtrain,ij as the vote for subject i in tree j and denote

oobij as an indicator for the out of bag status of subject i in tree j. The tree-level

prediction error for the j-th tree is defined as:

tPEj =
1∑M1

i=1

M1∑
i=1

|vtrain,ij − yi| ∗ oobij. (2.128)

In this paper, Winham et al. (2013) utilizes weights using right skewed distributions

such as wj = exp( 1
tPEj

) or ( 1
tPEj

)λ to further up-weigh weights the best performing

trees.

2.5.3 Interaction Selection via Forest Algorithm

Beside feature selection, some forest alogrithms have been developed to further im-

prove our understanding of model mechanism through detecting interaction effects.

However, finding interactions between variables in large and high-dimensional

datasets is a serious computational challenge. Therefore, most algorithms build up

interactions incrementally by adding variables in a greedy way. As a result, some

informative high-order interaction will be overlooked.

To solve this, Shah and Meinshausen (2014) proposed the “Random Inter-
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section Trees”(RIT) procedure to discover interactions using the intersection of

d randomly chosen sets of active features, whose d corresponding responses are

from the same category. Consider a binary classification problem with p predic-

tors and n observations. The data is given in the form (Zi, Ii), i = 1, . . . , n. For

the observation i, Zi is a binary label and Ii ⊂ {1, 2, . . . , p} is a index subset of

“active features” viewed as an interaction. With these notations, prevalence of an

interaction S ⊂ {1, 2, . . . , p} in the class C ∈ {0, 1} is defined as

Pn(S|Z = C) :=

∑n
i=1 I[S ⊆ Ii]∑n
i=1 I[Zi = C]

(2.129)

For given thresholds 0 ≤ θ0 < θ1 ≤ 1, RIT searches for interaction S satisfying

Pn(S|Z = 1) ≥ θ1 ,Pn(S|Z = 0) ≤ θ0 (2.130)

For each class C ∈ {0, 1}, RIT randomly chooses D, a pre-specified integer, obser-

vations from the set of observations {i : Zi = C} and takes D-fold intersections

S = Ii(1)∩. . .∩Ii(D) to search for non-empty interaction S satisfying equation 2.130.

S is called a survived interaction if it remains non-empty after D-fold intersection

operation. To reduce computational complexity, these interactions are performed

in a tree-like fashion and result in a set of nDchild potential interactions(leaf nodes),

where nchild is the number of children of each non-leaf node. By repeating this

process M times for a given class C, RIT gives a collection of survived interaction

S = ∪Mm=1Sm. Here, Sm is the set of survived interactions among all nDchild leaf

nodes in the m-th tree. Given these survived interactions in S, comparison across

different classes will be subsequently conduct using the prevalence defined in 2.130.

Although computational efficient, RIT could only be used in selecting interac-

tions under the settings of binary response and features. By combining feature-

weighted RF (Amaratunga et al., 2008) and “Random Intersection Trees”(Shah

and Meinshausen, 2014) through proposing “Generalized RIT” algorithm, Basu

et al. (2018) raised an “iterative random forest”(iRF) algorithm to discover inter-

actions for problems with binary response, and continuous or categorical features.

Furthermore, Basu et al. (2018) proposed a “stability score” based on an “outer

layer” of bootstrapping to assess the stability of recovered interactions.
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The “Generalized RIT” could be viewed as a combination of RIT and a pre-

treatment step transforming one observation with binary response and continuous

or categorical features into T pairs of binary response and features. For the t-th

tree (t = 1, . . . , T ) of the output tree ensemble of a RF, we denote all its leaf nodes

by jt = 1, . . . , J(t). Each feature-response pair (yi,xi) is represented with respect

to the t-th tree by (Zit , Iit), where Iit is the set of feature indices falling on the

path of the leaf node containing (yi,xi) of the t-th tree. As a result, each (yi,xi)

will produce T such index set and label pairs corresponding to T trees. Basu et al.

(2018) aggregate all these pairs across observations and trees as

R = {(Zit , Iit) : xi falls in leaf node it of tree t} (2.131)

and apply RIT on this transformed dataset R to obtain a set of interactions.

The iRF algorithm consist of following three components:

1. Iteratively re-weighted RF: Given a pre-specified iteration K, iRF iter-

atively grows K weighted Random Forests RF(w(k)), k = 1, . . . , K. For the

first iteration(k = 1), the initial weights start with w(1) = (1/p, . . . , 1/p).

The mean decreases in Gini impurity of k-th iteration are stored as the im-

portance v(k) and used as the feature weights w(k+1) of the k+1-th iteration.

2. Generalized RIT: Apply the generalized RIT to the last feature-weighted

RF of the last iteration. This step produces a collection of interactions S

3. Bagged Stability Scores: Generate D bootstrap samples of the data

D(b), b = 1, . . . , B, fit RF(w(K)) on each of them and use the generalized

RIT to produce corresponding collection of interactions Sb in each bootstrap

sample. Based on bootstrap samples, we use the proportion of times (out

of B bootstrap samples) an interaction S ∈ ∪Bb=1S(b) appears to represent its

stability and define the stability score as

sta(S) =
1

B

B∑
b=1

I{S ∈ S(b)} (2.132)

Although iRF is presented in the binary classification setting, Basu et al. (2018)

briefly mentioned that it could be naturally extended to multiclass or continuous
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responses. In the multiclass setting, it proposed to select leaf nodes with predicted

class or classes of interest as inputs to RIT. In the regression setting, they consider

leaf nodes whose predictions fall within a range of interest as inputs to generalized

RIT. This range could be determined in domain-specific manner or by grouping re-

sponses using some clustering method. However, simulation and real data analysis

were not studied in this paper.

2.6 Measures of Social Inequality Level

2.6.1 Gini Index

In economics, the Gini index (Gini, 1912, 2005, 1921) is a measure of polarization

level used to describe how the income or wealth of residents distribute within

a country, and become the most popular criterion of social inequality in recent

decades. Assume that all people are ranked according to their income or wealth

in ascending order. Given the rank, Gini index is defined based on the Lorenz

curve in Figure 2.1, where horizontal and vertical axes stand for the cumulative

proportions of the people and corresponding income, respectively. As shown in

Figure 2.1, the Gini index is defined as the ratio of the area A to the lower triangle

area,

Gini =
SA

SA + SB
= 1− 2SB, (2.133)

where SA and SB stand for the areas of the regions A and B, and the latter

equation in (2.133) holds because SA + SB equals to 1/2. The Lorenz Curve

produces different Gini indices under different distributions. For example, in an

absolute equal society where everyone receives the exactly same income, the Lorenz

Curve is the 45 degrees line, and the corresponding Gini index will be 0. In the

other extreme case where one person possesses the total income and the remaining

people have none, the Lorenz Curve becomes the two perpendicular sides of the

lower triangle, and the corresponding Gini index will be 1. However, there is little

chance that the Lorenz curve meets either of the two cases above; it is usually a

curve between these two extreme lines, just as illustrated in Figure 2.1. That is,

the Gini index takes value in the interval [0, 1]. Many empirical studies show that

a good Gini index usually takes value between 0.3 and 0.4. Especially, if it exceeds
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0.5, there will be a risk of social instability, while people will lack motivation to

create wealth if the index is less than 0.2.
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Figure 2.1. A typical Lorenz Curve and Gini index

The Gini index was first calculated based on the Riemann integral under the

Lorenz curve. Let xi, i = 1, 2, ..., n, denote n incomes ranked in ascending order,

and L̂i, i = 1, 2, ..., n denote the proportion of the first i incomes among all incomes.

Thus we can obtain the estimation of SB,

ŜB =
1

2n
Σn
i=1(L̂i + L̂i−1), (2.134)

where L̂i = 1
nµ̂

Σi
j=1xj, µ̂ = 1

n
Σn
j=1xj and L0 = 0.

In the following decades after Gini index was introduced, there were many

other attempts to calculate it more precisely and efficiently. For instance, Kendall
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and Stuart (1977), Sen et al. (1997), Anand (1983) and Jasso (1979) proposed

different calculation methods and showed their good properties. Pyatt (1976)

and Silber (1989) improved the efficiency of the index computation with matrix

methods. Until now, the Gini index has been playing a critical role in describing

the inequality in social and economic issues.

2.6.2 Applications and Interpretations of the Gini Index

Along with theoretical research, more researchers have paid attention to the appli-

cations and interpretations of the Gini index. For example, the global income Gini

index in 2005 had been estimated to be between 0.61 and 0.68 by the literatures

(Hillebrand et al., 2009; Klugman, 2010). Moreover, some researchers have applied

the Gini index to other fields as diverse as sociology, economics, health science, ecol-

ogy, engineering and agriculture. For example, in social sciences and economics,

Shorrocks (1978) introduced a measure based on income Gini coefficients to es-

timate income mobility. This measure, generalized by Maasoumi and Zandvakili

(1986), is now generally referred to as the Shorrocks index. Thomas et al. (2001)

have proposed an education Gini index, which can be used to discern trends in

social development through educational attainment over time. Roemer (2013) and

Weymark (2003) have created an opportunity Gini index. Sadras and Bongiovanni

(2004) has assessed the yield inequality with paddocks using the Lorenz curve and

Gini index. In addition, for a given time interval, the Gini index can also be used

to compare diverse countries and different regions or groups within a country such

as states, educational levels, gender and ethnic groups. Kopczuk et al. (2010) have

applied social security income data for the United States since 1937 into Shorrocks

indices and concluded that income mobility in the United States has a complicated

history, primarily due to the mass influx of women into the American labor force

after World War II and difference for men and women workers between 1937 and

the 2000s.

2.6.3 More Indices about Economic and Social Inequality

At the same time, more indices are proposed to describe the economic and social

inequality, which has become one focus of economic research. There are discussions
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how to make theoretical improvements on these indices and their applications in

recent literature. Atkinson (1970) has proposed aptly-named Atkinson index to de-

termine which end of the distribution contributed most to the observed inequality.

Imedio-Olmedo et al. (2011) have compared the efficiency of a class of Bonferroni

indices on measurements of inequality. Sundrum (2003) has derived the decom-

position method to compute the indices of different subgroups. Firebaugh (1999)

has ascribed some measures of inequality to the average deviations from the mean

incomes, the greater the average deviation, the greater the inequality. Instead of

the Gini index, Greselin and his co-workers(Greselin et al., 2013; Greselin, 2014)

have introduced the Zenga index, L−functions and other statistics in measuring

economic inequality and actuarial risks. All of these indices mentioned above can

be viewed as the improvements of the Gini index.



Chapter 3
Feature Screening in Ultrahigh

Dimensional Varying-coefficient

Cox’s Model

3.1 New Feature Screening Procedure for Vary-

ing Coefficient Cox’s Model

Let T be the survival time, and x and U be p-dimensional covariate vector and

univariate covariate, respectively. Throughout this paper, we consider the following

varying coefficient Cox proportional hazard model:

h(t|x, U) = h0(t) exp{x>α(U)}, (3.1)

where h0(t) is an unspecified baseline hazard function andα(U) = {α1(U), . . . , αp(U)}>

consists of the unknown nonparametric coefficient functions. Here it is assumed

that the support of U is finite and denoted by [a, b]. In survival data analysis,

the survival time is subject to the censoring time C. Denote the observed time by

Z = min{T,C} and the event indicator by δ = I(T ≤ C). It is assumed through-

out this paper that the censoring mechanism is noninformative. That is, given x

and U , T and C are conditionally independent.

Suppose that {(xi, Ui, Zi, δi) : i = 1, . . . , n} is an independently and identically
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distributed random sample from model (3.1). Let t01 < . . . < t0N be the ordered

observed failure times. Let (j) provide the label for the subject failing at t0j so that

the covariates associated with the N failures are x(1), . . . ,x(N). Denote the risk

set right before the time t0j by Rj = {i : Zi ≥ t0j}. The partial likelihood function

(Cox, 1975) of the random sample is

`p{α(U)} =
N∑
j=1

x>j α(Uj)− log

∑
i∈Rj

exp{x>i α(Ui)}

 . (3.2)

To estimate the nonparametric regression, we use B-spline basis in this paper. Let

Sn be the space of polynomial splines of degree l ≥ 1 and {ψjk, k = 1, . . . , dnj}
denote a normalized B-spline basis with ‖ψjk‖∞ ≤ 1 and dnj = O(n1/5), where

‖ · ‖∞ is the sup norm. For any αnj(U) ∈ Sn, we have

αnj(U) =

dnj∑
k=1

βjkψjk(U) = β>j ψj(U), j = 1, . . . , p, (3.3)

for some coefficients {βjk}
dnj
k=1. Here we allow dnj to increase with n and be different

for different j since different coefficient functions may have different smoothness.

Under some conditions, the nonparametric coefficient function {αj(U)}pj=1 can be

well approximated by functions in Sn.

Substituting (3.3) into (3.2), the maximum partial likelihood estimate of (3.2)

is to maximize

`p(β) =̂
N∑
j=1

x>j ψ
>
j (Uj)βj − log

∑
i∈Rj

exp{x>i ψ>i (Ui)βi}

 ,

=
N∑
j=1

z>j βj − log

∑
i∈Rj

exp{z>i βi}

 , (3.4)

with respect to β, where β = (β>1 , . . . ,β
>
p )> and zi = (xi1ψ1(Ui)

>, . . . , xipψp(Ui)
>)>.

We next propose a feature screening procedure based on (3.4).
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3.1.1 A New Feature Screening Procedure

Denote ‖αj(U)‖2 = [Eα2
j (U)]1/2, the L2-norm of αj(U). For ease of presentation,

denote s as an arbitrary subset of {1, . . . , p}, xs = {xj, j ∈ s} and αs(U) =

{αj(U), j ∈ s}. For a set s, τ(s) stands for the cardinality of s. Suppose the effect

of x is sparse, and the true value of α(U) is α∗(U), where β∗ is the corresponding

coefficients of α∗(U). Denote s∗ = {j : ‖αj(U)‖2 > 0}. By sparsity, we mean that

τ(s∗) is much less than p. The goal of feature screening is to identify a subset s

such that s∗ ⊂ s with overwhelming probability and τ(s) is also much less than p.

According to (3.4), we propose screening features for the varying coefficient Cox

model by the constrained partial likelihood

β̂m = arg max
β

`p(β) subject to τ({j : ‖βj‖2 > 0}) ≤ m (3.5)

for a pre-specified m which is assumed to be greater than the number of nonzero

elements of β∗.

For high dimensional problems, it becomes almost impossible to solve the con-

strained maximization problem (3.5) directly. Alternatively, we consider a proxy

of the partial likelihood function. It follows by the Taylor expansion for the partial

likelihood function `p(γ) at β lying within a neighbor of γ that

`p(γ) ≈ `p(β) + (γ − β)>`′p(β) +
1

2
(γ − β)>`′′p(β)(γ − β),

where `′p(β) = ∂`p(γ)/∂γ|γ=β and `′′p(β) = ∂2`p(γ)/∂γ∂γ>|γ=β. Denote Pt =∑p
j=1 dnj. If `′′p(β) is invertible, the computational complexity of calculating the

inverse of `′′p(β) is O(P 3
t ). For large Pt, small n problems (i.e., Pt � n), `′′p(β)

becomes not invertible. Low computational costs are always desirable for feature

screening. To deal with singularity of the Hessian matrix and save computational

costs, we propose to use the following approximation for `′′p(γ)

h(γ|β) = `p(β) + (γ − β)>`′p(β)− u

2
(γ − β)>W (β)(γ − β), (3.6)

where u is a scaling constant to be specified and W (β) = diag{W1(β), . . . ,Wp(β)},
a block diagonal matrix with Wj(β) being a dnj × dnj matrix. Here (3.6) is the
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minimization of the original objective function, i.e,. h(γ|β) ≤ `p(β) for all γ

under some conditions. Due to the properties of the majorization and minorization

algorithm, using (3.6) we can obtain the same estimates as the original objective

function. The two functions themselves, however, are not numerically equal. Here

we allow W (β) to depend on β. This implies that we approximate `′′p(β) by

−uW (β). Throughout this paper, we will use Wj(β) = −∂2`p(β)/∂βj∂β
>
j .

It can be seen that h(β|β) = `p(β), and under some conditions, h(γ|β) ≤ `p(β)

for all γ. This ensures the ascent property. See Theorem 1 below for more details.

Since W (β) is a block diagonal matrix, h(γ|β) is an additive function of γj for any

given β. The additivity enables us to have a closed form solution for the following

maximization problem

max
γ

h(γ|β) subject to τ({j : ‖γj‖2 > 0}) ≤ m (3.7)

for given β and m. Define γ̃j = βj +u−1W−1
j (βj)∂`p(β)/∂βj for j = 1, . . . , p, and

γ̃ = (γ̃>1 , . . . , γ̃
>
p )> = β + u−1W−1(β)`′p(β) is the maximizer of h(γ|β). Denote

gj = γ̃>j Wj(βj)γ̃j for j = 1, . . . , p, and sort gj so that g(1) ≥ g(2) ≥ . . . ≥ g(p). The

solution of maximization problem (3.7) is the hard-thresholding rule defined below

γ̂j = γ̃jI{gj > g(m+1)}.

This enables us to effectively screen features by using the following algorithm.

Feature Screening Algorithm of Varying Coefficient Cox’s Models

Step 1. Set the initial value β
(0)
j = 0, j = 1, · · · , p.

Step 2. Set t = 0, 1, 2, · · · , iteratively conduct Step 2a and Step 2b below

until the algorithm converges.

Step 2a.Calculate γ̃
(t)
j = β

(t)
j + u−1

t W−1
j (βj)∂`(β

(t))/∂βj, and g
(t)
j = {γ̃(t)

j }>Wj(β
(t))γ̃

(t)
j .

Let g
(t)
(1) ≥ g

(t)
(2) ≥ . . . ≥ g

(t)
(p), the order statistics of g

(t)
j s. Set St = {j : g

(t)
j ≥ g

(t)
(m+1)},

the nonzero index set.

Step 2b.Update β by β(t+1) = (β
(t+1)
1 , . . . ,β(t+1)

p )> as follows. If j 6∈ St, set β
(t+1)
j = 0,

otherwise, set {β(t+1)
j : j ∈ St} be the partial likelihood estimate of the submodel St.

Theorem 1. Suppose that Conditions (D1)—(D4) in the Appendix hold. Let
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{β(t)} be the sequence defined in Step 2b in the above algorithm. Denote

ρ(t) = sup
β

[
λmax{W−1/2(β(t)){−`′′p(β)}W−1/2(β(t))}

]
,

where λmax(A) stands for the maximal eigenvalue of a matrix A. If ut ≥ ρ(t), then

`p(β
(t+1)) ≥ `p(β

(t)),

where β(t+1) is defined in Step 2b in the above algorithm.

Theorem 1 claims the ascent property of the proposed algorithm if ut is appro-

priately chosen. That is, the proposed algorithm may improve the current estimate

within the feasible region (i.e. τ({j : ‖αj(U)‖2 > 0}) ≤ m), and the resulting esti-

mate in the current step may serve as a refinement of the last step. This theorem

also provides us some insights about choosing ut in practical implementation.

3.1.2 Sure Screening Property

For a subset s of {1, . . . , p} with size τ(s), recall notation xs = {xj, j ∈ s} and

associated coefficients αs(U) = {αj(U), j ∈ s} corresponding to βs = {βj, j ∈ s}
with βj = (βj1, . . . , βjdnj )

>. We denote the true model by s∗ = {j : Eα2
j (U) >

0, 1 ≤ j ≤ p} with τ(s∗) = q. The objective of feature screening is to obtain a

subset ŝ such that s∗ ⊂ ŝ with very high probability.

We now provide some theoretical justifications for the ultrahigh dimensional

varying coefficient Cox model. The sure screening property (Fan and Lv, 2008) is

referred to as

Pr(s∗ ⊂ ŝ) −→ 1, as n→∞, (3.8)

To establish this sure screening property for the proposed varying coefficient

Cox model, we introduce some additional notations as follows. For any model s, let

`′(βs) = ∂`(βs)/∂βs and `′′(βs) = ∂2`(βs)/∂βs∂β
>
s be the score function and the

Hessian matrix of `(·) as a function of βs, respectively. Assume that a screening

procedure retains m out of p features such that τ(s∗) = q < m. So, we define

Sm+ = {s : s∗ ⊂ s; ‖s‖0 ≤ m} and Sm− = {s : s∗ 6⊂ s; ‖s‖0 ≤ m}
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as the collections of the over-fitted models and the under-fitted models, respec-

tively. We investigate the asymptotic properties of β̂m under the scenario where

p, q, m and β∗ are allowed to depend on the sample size n. We impose the fol-

lowing conditions, some of which are purely technical and only serve to facilitate

theoretical understanding of the proposed feature screening procedure.

(C1) The support of U is bounded on [a,b].

(C2) The function {αj(U)}pj=1 belong to a class of functions F , whose r-th deriva-

tive α
(r)
j (·) exists and is Lipschitz of order η,

F =
{
αj(·) : |α(r)

j (s)− α(r)
j (t)| ≤ K|s− t|η for s, t ∈ [a, b]

}
,

for some positive constant K, where r is a nonnegative integer and η ∈ (0, 1]

such that ν = r + η > 0.5.

(C3) There exist w1, w2 > 0 and some non-negative constants τ1, τ2 such that

τ1 + τ2 < 1/2 and

min
j∈s∗
‖αj(U)‖2 ≥ w1n

−τ1 and q < m ≤ w2n
τ2 .

(C4) log p = O(nκ) for some 0 ≤ κ < 1− 2(τ1 + τ2).

(C5) There exist constants C1, C2 > 0, δ > 0, such that for sufficiently large n,

C1d
−1
n ≤ λmin[−n−1`′′p(βs)] ≤ λmax[−n−1`′′p(βs)] ≤ C2d

−1
n

for βs ∈ {β : ‖βs−β∗s‖2 ≤ δ} and s ∈ S2m
+ , where λmin[·] and λmax[·] denotes

the smallest and largest eigenvalues of a matrix.

Under Conditions (C1) and (C2), the following two properties of B-splines are

valid.

(a) (De Boor et al. (1978)) For k = 1, . . . , dn, ψjk(U) ≥ 0 and
∑dn

k=1 ψjk(U) = 1,

U ∈ [a, b]. In addition, there exist positive constants C3 and C4 such that

C3d
−1
n ≤ Eψ2

jk(U) ≤ C4d
−1
n .
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(b) (Stone (1982); Stone et al. (1985)) If {αj, j = 1, 2, · · · , p} is a set of functions

in F described in condition (C2), there exists a positive constant C5 that

does not depend on αj(U), then the uniform approximation error satisfies

ρ = supU∈[a,b] ‖αj(U)− αnj(U)‖2 ≤ C5d
−ν
n ,∀j, as dn →∞.

Conditions (C1) and (C2) ensure properties (a) and (b), which are required for the

B-spline approximation and establishing the sure screening properties.

Note that ‖αnj(U)‖2
2 = β>j E{ψj(U)ψj(U)>}βj, based on the properties (a), (b)

and Condition (C3), we can derive that

min
j∈s∗
‖βj‖2 ≥ w1dnn

−τ1 .

Condition (C3) states a few requirements for establishing the sure screening

property of the proposed procedure. The first one is the sparsity of α∗(U) which

makes the sure screening possible with τ(ŝ) = m > q. Also, it requires that the

minimal component in α∗(U) does not degenerate too fast, so that the signal is

detectable in the asymptotic sequence. Meanwhile, together with (C4), it confines

an appropriate order of m that guarantees the identifiability of s∗ over s for τ(s) ≤
m. Condition (C5) assumes that p diverges with n at up to an exponential rate; it

implies that the number of covariates can be substantially larger than the sample

size.

We establish the sure screening property of the quasi-likelihood estimation by

the following theorem.

Theorem 2. Suppose that Conditions (C1)—(C5) and Conditions (D1)—(D7) in

the Appendix hold. Let ŝ be the model obtained by the (3.5) of size m. We have

Pr(s∗ ⊂ ŝ)→ 1, as n→∞.

The proof is given in the following section. The sure screening property is an

appealing property of a screening procedure since it ensures that the true active

predictors are retained in the model selected by the screening procedure. To be

distinguished from the SIS procedure, the proposed procedure is referred to as sure

joint screening (SJS) procedure.
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3.2 Technical Proofs

We need the following notation to present the regularity conditions for the partial

likelihood and the Cox model. Most notations are adapted from Andersen and

Gill Andersen and Gill (1982), in which counting processes were introduced for the

Cox model and the consistency and asymptotic normality of the partial likelihood

estimate were established. Denote N i(t) = I{Ti ≤ t, Ti ≤ Ci} and Ri(t) = {Ti ≥
t, Ci ≥ t}. Assume that there are no two component processes Ni(t) jumping at

the same time. For simplicity, we shall work on the finite interval [0, τ ].

In Cox’s model, properties of stochastic processes, such as being a local mar-

tingale or a predictable process, are relative to a right-continuous nondecreasing

family (Ft : t ∈ [0, τ ]) of sub σ-algebras on a sample space (Ω,F ,P); Ft repre-

sents everything that happens up to time t. Throughout this section, we define

Λ0(t) =
∫ t

0
h0(u) du.

By stating that N i(t) has intensity process hi(t)=̂h(t|xi), we mean that the

processes Mi(t) defined by

Mi(t) = N i(t)−
∫ t

0

hi(u)du, i = 1, . . . , n,

are local martingales on the time interval [0, τ ].

Define

S(k)(β, t) =
1

n

n∑
i=1

Ri(t) exp{xTi β}x⊗ki , s(k)(β, t) = E[S(k)(β, t)] for k = 0, 1, 2,

and

E(β, t) =
S(1)(β, t)

S(0)(β, t)
, V(β, t) =

S(2)(β, t)

S(0)(β, t)
− E(β, t)⊗2.

where x⊗0
i = 1, x⊗1

i = xi and x⊗2
i = xix

T
i . Note that S(0)(β, t) is a scalar, S(1)(β, t)

and E(β, t) are p-vector, and S(2)(β, t) and V(β, t) are p× p matrices.

Define

Qj =
n∑
i=1

∫ tj

0

{
xi −

∑
i∈Rj xi exp(xTi β)∑
i∈Rj exp(xTi β)

}
dMi.

Here, E[Qj|Fj−1] = Qj−1 i.e. E[Qj − Qj−1|Fj−1] = 0. Let bj = Qj − Qj−1, then

(bj)j=1,2,... is a sequence of bounded martingale differences on (Ω,F , P ). That is,
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bj is bounded almost surely (a.s.) and E[bj|Fj−1] = 0 a.s. for j = 1, 2, . . ..

(D1) (Finite interval). Λ0(τ) =
∫ τ

0
h0(t)dt <∞

(D2) (Asymptotic stability). There exists a neighborhood B of β∗ and scalar,

vector and matrix functions s(0),s(1) and s(2) defined on B × [0, τ ] such that

for k = 0, 1, 2

sup
t∈[0,τ ],β∈B

‖S(k)(β, t)− s(k)(β, t)‖ p→ 0.

(D3) (Lindeberg condition). There exists δ > 0 such that

n−1/2 sup
i,t
|xi|Ri(t)I{β′0xi > −δ|xi|}

p→ 0,

(D4) (Asymptotic regularity conditions). Let B, s(0), s(1) and s(2) be as in Condi-

tion (D2) and define e = s(1)/s(0) and v = s(2)/s(0) − e⊗2. For all β ∈ B,t ∈
[0, τ ];

s(1)(β, t) =
∂

∂β
s(0)(β, t), s(2)(β, t) =

∂2

∂β2 s(0)(β, t),

s(0)(·, t), s(1)(·, t) and s(2)(·, t) are continuous functions of β ∈ B, uniformly

in t ∈ [0, τ ], s(0), s(1) and s(2) are bounded on B× [0, τ ]; s(0) is bounded away

from zero on B × [0, τ ], and the matrix

S =

∫ τ

0

v(β0, t)s
(0)(β0, t)h0(t)dt

is positive definite.

(D5) The function S(0)(β∗, t) and s(0)(β∗, t) are bounded away from 0 on [0, τ ].

(D6) There exist constants C1, C2 > 0, such that maxij |xij| < C1 and maxi |xTi β∗| <
C2.

(D7) {bj} is a sequence of martingale differences and there exit nonnegative con-

stants cj such that for every real number t,

E{exp(tbj)|Fj−1} ≤ exp(c2
j t

2/2) a.s. (j = 1, 2, . . . , N)
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For each j, the minimum of those cj is denoted by η(bj).

|bj| ≤ Kj a.s. for j = 1, 2, . . . , N

and E{bj1 , bj2 , . . . , bjk} = 0 for bj1 < bj2 < · · · < bjk ;k = 1, 2, . . ..

Note that the partial derivative conditions on s(0), s(1) and s(2) are satisfied by S(0),

S(1) and S(2); and that S is automatically positive semidefinite. Furthermore the

interval [0, τ ] in the conditions may everywhere be replaced by the set {t : h0(t) >

0}.
Condition (D1)—(D5) is a standard condition for the proportional hazards

model (Andersen and Gill, 1982), which is weaker than the one required by Bradic

et al. (2011) and S(k)(β0, t) converges uniformly to s(k)(β0, t). Condition (D6) is

a routine one, which is needed to apply the concentration inequality for general

empirical processes. For example, the bounded covariate assumption is used by

Huang et al. (2013) for discussing the Lasso estimator of proportional hazards

models. Condition (D7) is needed for the asymptotic behavior of the score function

`′p(β) of partial likelihood because the score function cannot be represented as a

sum of independent random vectors, but it can be represented as sum of a sequence

of martingale differences.

Proof of Theorem 1. Applying the Taylor expansion to `p(γ) at γ = β, it

follows that

`p(γ) = `p(β) + `′p(β)(γ − β) +
1

2
(γ − β)>`′′p(β̃)(γ − β),

where β̃ lies between γ and β.

(γ − β)>{−`′′p(β̃)}(γ − β) = (γ − β)>W 1/2(β)W−1/2(β){−`′′p(β̃)}W−/2(β)W 1/2(β)(γ − β)

≤ λmax[W−1/2(β){−`′′p(β̃)}W−1/2(β)](γ − β)>W (β)(γ − β),

where W (β) is a block diagonal matrix with Wj(β) being a dnj×dnj matrix. Since

−`′′(β) is non-negative definite, λmax[W−1/2(β){−`′′p(β̃)}W−1/2(β)] ≥ 0. Thus, if

u > λmax[W−1/2(β){−`′′p(β̃)}W−1/2(β)] ≥ 0,
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then

`p(γ) ≥ `p(β) + `′p(β)(γ − β)− u

2
(γ − β)>W (β)(γ − β) = h(γ|β).

Thus it follows that `p(γ) ≥ h(γ|β) and `p(β) = h(β|β) by the definition of

h(γ|β). The solution of ∂h(γ|β)/∂γ = 0 is γ = β+ u−1W (β)`′(β). Hence, under

the conditions of Theorem 1, it follows that

`p(β
∗(t+1)) ≥ h(β∗(t+1)|β(t)) ≥ h(β(t)|β(t)) = `(β(t)).

The second inequality is due to the fact that τ({j : ‖β∗(t+1)
j ‖2 > 0}) = τ({j :

‖β(t)
j ‖2 > 0}) = m, and β∗(t+1) = arg maxγ h(γ|β(t)) subject to τ({j : ‖γj‖2 >

0}) ≤ m. By definition of β(t+1), `p(β
(t+1)) ≥ `p(β

∗(t+1)) and τ({j : ‖β(t+1)
j ‖2 >

0}) = m. This proves Theorem 1.

Proof of Theorem 2. For a given model s, a subset of {1, . . . , p}, let α̂s(U) be

the partial likelihood estimate of αs(U) based on the spline approximation. The

theorem is implied if Pr{ŝ ∈ Sm
+} → 1. Thus, it suffices to show that

Pr

{
max
s∈Sm
−
`p{α̂s(U)} ≥ min

s∈Sm
+

`p{α̂s(U)}
}
→ 0, (3.9)

as n→∞.

We approximate the coefficient function αj(U) by

αnj(U) =

dnj∑
k=1

βjkψjk(U) = β>j ψj(U), j = 1, . . . , p, (3.10)

where ψjk(U), k = 1, . . . , dn, are basis functions and dnj is the number of basis

functions, which is allowed to increase with the sample size n. For αnj(U), define

the approximation error by

ρj(U) = αj(U)− αnj(U) = αj(U)− β>j ψj(U), j = 1, . . . , p.

Let dist(αj(U),Sj) = infαnj(U)∈Sj supU∈[a,b] ‖ρj(U)‖2, and take ρ = max1≤j≤p dist(αj(U),Sj).
Let αn(U) = (αn1(U),
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. . . , αnp(U))> and α(U) = (α1(U), . . . , αp(U))>. For any s,

αs(U) =


ψ1(U)

. . .

ψs(U)


s×sdn


β1
...

βs


sdn×1

+


ρ1(U)

...

ρs(U)


=̂ Ψs(U)βs + ρs(U),

where Ψs(U) = diag(ψ1(U), . . . ,ψs(U)) with ψj(U) = (ψj1(U), . . . , ψjdn(U)), and

βj = (βj1, . . . , βjdnj )
>, j = 1, . . . , s.

For any s ∈ Sm− , define s′ = s ∪ s∗ ∈ S2m
+ . So, we have

`p{αs′(U)} − `p{α∗s′(U)} = `p{Ψs′(U)βs′ + ρs′(U)} − `p{Ψs′(U)β∗s′ + ρ∗s′(U)}

= `p{Ψs′(U)βs′}+ `′p{Ψs′(U)β̃s′}ρs′(U)− `p{Ψs′(U)β∗s′} − `′p{Ψs′(U)β̃
∗
s′}ρ∗s′(U),

where β̃s′ and β̃
∗
s′ are two immediate values. Denote

∆1 = {`p(βs′)− `p(β∗s′)}, ∆2 = `′p(β̃s′)ρs′(U), ∆3 = `′p(β̃
∗
s′)ρ

∗
s′(U).

Thus, we have

`p{αs′(U)} − `p{α∗s′(U)} = ∆1 + ∆2 + ∆3.

For ∆2, by Cauchy-Schwartz inequality, we have

E|∆2| = E|`′p(β̃s′)ρs′(U)| ≤
√

E‖`′p(β̃s′)‖2
√

E‖ρs′(U)‖2.

By condition (C5) and Corollary 1 in Wei et al. (2011), we can obtain ∆2 = op(1).

Similarly ∆2, we can also obtain, ∆3 = op(1).

Next, we consider term ∆1. For any s ∈ Sm− , define s′ = s ∪ s∗ ∈ S2m
+ . Under

(C3) condition, we consider βs′ close to β∗s′ such that ‖βs′ − β∗s′‖ = w1dnn
−τ1

for some w1, τ1 > 0. Clearly, when n is sufficiently large, βs′ falls into a small

neighborhood of β∗s′ , so that Condition (C5) becomes applicable. Thus, it follows

Condition (C5) and the Cauchy-Schwarz inequality that

`p(βs′)− `p(β∗s′) = [βs′ − β∗s′ ]>`′p(β∗s′) + (1/2)[βs′ − β∗s′ ]>`′′p(β̃s′)[βs′ − β∗s′ ]
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≤ [βs′ − β∗s′ ]>`′p(β∗s′)− (C1d
−1
n /2)n‖βs′ − β∗s′‖2

2

≤ w1dnn
−τ1‖`′p(β∗s′)‖2 − (C1dn/2)w2

1n
1−2τ1 , (3.11)

where β̃s′ is an intermediate value between βs′ and β∗s′ . Thus, we have

Pr{`p(βs′)− `p(β∗s′) ≥ 0} ≤ Pr{‖`′p(β∗s′)‖2 ≥ (C1w1/2)n1−τ1}

= Pr

{∑
j∈s′

[`′j(β
∗
s′)]

2 ≥ (C1w1/2)2n2−2τ1

}
≤

∑
j∈s′

Pr{[`′j(β∗s′)]2 ≥ (2m)−1(C1w1/2)2n2−2τ1}

Also, by (C3), we have m ≤ w2n
τ2 , and also the following probability inequality

Pr{`′j(β∗s′) ≥ (2m)−1/2(C1w1/2)n1−τ1} ≤ Pr{`′j(β∗s′) ≥ (2w2n
τ2)−1/2(C1w1/2)n1−τ1}

= Pr
{
`′j(β

∗
s′) ≥ cn1−τ1−0.5τ2

}
= Pr

{
`′j(β

∗
s′) ≥ ncn−τ1−0.5τ2

}
(3.12)

where c = C1w1/(2
√

2w2) denotes some generic positive constant. Recall (3.2), by

differentiation and rearrangement of terms, it can be shown as in Andersen and

Gill (1982) that the gradient of `p(β) is

`′p(β) ≡ ∂`p(β)

∂β
=

1

n

n∑
i=1

∫ ∞
0

[zi − z̄n(β, t)] dN i(t). (3.13)

where z̄n(β, t) =
∑

i∈Rj zi exp(zTi β)/
∑

i∈Rj exp(zTi β). As a result, the partial

score function `′p(β) no longer has a martingale structure, and the large deviation

results for continuous time martingale in Bradic et al. (2011) and Huang et al.

(2013) are not directly applicable. The martingle process associated with N i(t) is

given by Mi(t) = N i(t)−
∫ t

0
Ri(u) exp(zTβ∗)dΛ0(u).

Let tj be the time of the jth jump of the process
∑n

i=1

∫∞
0
Ri(t)dN i(t), j =

1, . . . , N and t0 = 0. Then, tj are stopping times. For j = 0, 1, . . . , N , define

Qj =
n∑
i=1

∫ tj

0

bi(u)dN i(u) =
n∑
i=1

∫ tj

0

bi(u)dMi(u) (3.14)
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where bi(u) = zi − z̄n(β, u), i = 1, . . . , n are predictable, under no two component

processes jumping at the same time and (D6), and satisfy |bi(u)| ≤ 1.

Since Mi(u) are martingales and bi(u) are predictable, {Qj, j = 0, 1, . . .} is a

martingale with the difference |Qj−Qj−1| ≤ maxu,i |bi(u)| ≤ 1. Recall definition of

N in Section 2, we define C2
0n ≤ N , where C0 is a constant. So, by the martingale

version of the Hoeffding’s inequality Azuma (1967) and under Condition (D7), we

have

Pr(|QN | > nC0x) ≤ 2 exp{−n2C2
0x

2/(2N)} ≤ 2 exp(−nx2/2)

By (3.14), QN = n`′p(β) if and only if
∑n

i=1

∫∞
0
Ri(t)dN i(t) ≤ N . Thus, the

left-hand side of (3.15) in Lemma 3.3 of Huang et al. (2013) is no greater than

Pr(|QN | > nC0x) ≤ 2 exp(−nx2/2).

Now (3.12) can be rewritten as follows.

Pr
{
`′j(β

∗
s′) ≥ ncn−τ1−0.5τ2

}
≤ exp{−0.5nn−2τ1−τ2} = exp{−0.5n1−2τ1−τ2} (3.15)

By the same arguments, we have

Pr{`′j(β∗s′) ≤ −m−1/2(C1w1/2)n1−τ1} ≤ exp{−0.5n1−2τ1−τ2} (3.16)

The inequalities (3.15) and (3.16) imply that,

Pr{`p(βs′) ≥ `p(β
∗
s′)} ≤ 4m exp{−0.5n1−2τ1−τ2}

Consequently, by Bonferroni inequality and under conditions (C3) and (C4), we

have

Pr

{
max
s∈Sm
−
`p(βs′) ≥ `p(β∗s′)

}
≤

∑
s∈Sm−

Pr{`p(βs′) ≥ `p(β
∗
s′)}

≤ 4mpm exp{−0.5n1−2τ1−τ2}

= 4 exp{logm+m log p− 0.5n1−2τ1−τ2}

≤ 4 exp{logw2 + τ2 log n+ w2n
τ2 c̃nκ − 0.5n1−2τ1−τ2}

= 4w2 exp{τ2 log n+ w2c̃n
τ2+κ − 0.5n1−2τ1−τ2}

= a1 exp{τ2 log n+ a2n
τ2+κ − 0.5n1−2τ1−τ2}
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= o(1) as n→∞ (3.17)

for some generic positive constants a1 = 4w2 and a2 = w2c̃. By Condition (C5),

`p(βs′) is concave in βs′ , (3.17) holds for any βs′ such that ‖βs′−β∗s′‖ = w1dnn
−τ1 .

For any s ∈ Sm− , let β̆s′ be β̂s augmented with zeros corresponding to the

elements in s′/s∗ (i.e. s′ = {s ∪ (s∗/s)} ∪ (s′/s∗)). By Condition (C3), it is seen

that ‖β̆s′−β∗s′‖2 = ‖β̆s∗∪(s′/s∗)−β∗s∗∪(s′/s∗)‖2 = ‖β̆s∗∪(s′/s∗)−β∗s∗‖2 ≥ ‖β∗s∗∪(s′/s∗)−
β∗s∗‖2 ≥ ‖β∗s′/s∗‖2 = w1dnn

−τ1 . Consequently,

Pr

{
max
s∈Sm
−
`p(β̂s) ≥ min

s∈Sm
+

`p(β̂s)

}
≤ Pr

{
max
s∈Sm
−
`p(β̆s′) ≥ `p(β∗s′)

}
= o(1).

So, we have shown that

Pr

[
max
s∈Sm
−
`{α̂s(U)} ≥ min

s∈Sm
+

`{α̂s(U)}
]
−→ 0,

as n→∞. The theorem is proved.

3.3 Numerical Studies

In this section, we assess the finite sample performance of the proposed procedure

and compare it with other existing ones via Monte Carlo simulations and illustrate

the proposed procedure by an empirical analysis of a genomic data set.

3.3.1 Simulation Studies

The main purpose of simulation studies is to assess the performance of the pro-

posed procedure by comparing with the SIS procedure (Fan et al., 2010) and SJS

procedure (Yang et al., 2016) for the Cox model. The model size selected by all

three methods are set to be the same for the purpose of comparison. We vary

the dimension of predictors p, the sample size n and the sample correlation ρ to

examine their impact on the performance of the proposed procedure. We use the

success rate of active predictors being selected and computing time as our criteria

to compare the performance of screening procedures.
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In our simulation, the predictors x are generated from a p-dimensional normal

distribution with mean zero and covariance matrix Σ = (σij). Two commonly-used

covariance structures are used in our simulation:

(S1) Σ is compound symmetric. That is, σij = ρ for i 6= j and equal 1 for i = j.

We choose ρ = (0.25, 0.5, 0.75).

(S2) Σ has autoregressive structure with AR(1). That is, σij = ρ|i−j|. We choose

ρ = (0.25, 0.5, 0.75).

We generate the survival time from the Cox model with h0(t) = 1, and the

censoring time from a uniform distribution U [0, 10]. Three different coefficient

function settings α(u)s are considered:

(a1) : α
(1)
1 (u) = 1 + 2 sin(2πu), α

(1)
2 (u) = 1− 2 cos(2πu), α

(1)
3 (u) = 0.5 + 2u2.

(a2) : α
(2)
1 (u) = 5 sin(2πu), α

(2)
2 (u) = 5 cos(2πu), α

(2)
3 (u) = 2.5 + 5u2.

(a3) : α
(3)
1 (u) = e0.5u, α

(3)
2 (u) = 2(u3 + 1.5(u− 0.5)2), α

(3)
3 (u) = 2u.

We set n = 200 and 400, and p = 2, 000 and 5, 000. For the feature screening

model size, we follow Liu et al. (2014) and set m = [n0.8/ log(n0.8)], where [a]

denotes the integer part of a. For each combination of different inputs, we conduct

1, 000 replications of Monte Carlo simulation.

To illustrate the performance of a statistical procedure in survival data analysis,

we want the censoring rates to lie within a reasonable range. Table 3.1 depicts the

censoring rates for the 18 combinations of covariance structure, sample correlation

ρ and the values of α(u). The censoring rates range from 22% to 37%, which is

reasonable to carry out simulation studies.

Table 3.1: Censoring Rates

ρ = 0.25 ρ = 0.5 ρ = 0.75
Σ (a1) (a2) (a3) (a1) (a2) (a3) (a1) (a2) (a3)
S1 .276 .367 .223 .277 .356 .260 .277 .340 .248
S2 .275 .365 .265 .279 .358 .283 .278 .347 .245

We compare the performance of feature screening procedures using the following

two criteria: Ps: the proportion that an individual active predictor is selected, and
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Pa: the proportion that all active predictors are selected. It is expected that

the performance of the proposed varying-coefficient sure joint screening (VSJS)

procedure depends on the following factors: the structure of the covariance matrix,

the values of α(u), the dimension of all candidate features p, sample correlation ρ

and the sample size n.

Table 3.2: Comparison between VSJS, SIS and SJS with Σ = (1 − ρ)I + ρ11T

(n=200)

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time

α(U) X1 X2 X3 all (s) X1 X2 X3 all (s) X1 X2 X3 all (s)

n = 200, p = 2000 and ρ = .25

α(1) .989 1 1 .989 74.5 .796 .747 .990 .580 9.5 .499 .419 .936 .190 3.6

α(2) .999 .998 .999 .996 67.7 .016 .002 1 0 8.3 .018 .037 .999 .002 2.4

α(3) 1 .810 .993 .803 82.2 1 .771 .992 .763 6.0 1 .785 .996 .781 2.8

n = 200, p = 2000 and ρ = .5

α(1) .970 .976 .915 .868 68.9 .621 .557 .968 .325 9.2 .392 .311 .863 .092 2.9

α(2) .922 .922 .990 .848 66.8 .006 .003 1 0 7.8 .020 .052 .997 0 2.5

α(3) .998 .617 .938 .581 74.8 .999 .611 .932 .573 5.3 1 .574 .932 .542 3.2

n = 200, p = 2000 and ρ = .75

α(1) .628 .670 .682 .259 62.4 .357 .316 .879 .093 9.4 .247 .211 .701 .031 3.0

α(2) .485 .535 .738 .204 67.3 .005 .001 1 0 6.8 .018 .059 .935 0 3.4

α(3) .910 .361 .686 .247 62.5 .987 .341 .736 .250 5.3 .958 .286 .644 .181 3.4

n = 200, p = 5000 and ρ = .25

α(1) 1 1 .993 .993 464.0 .721 .649 .983 .456 15.4 .391 .326 .865 .097 32.9

α(2) .996 .994 1 .990 416.3 .004 .004 1 0 18.1 .007 .016 .994 0 17.6

α(3) 1 .708 .984 .694 451.5 1 .684 .974 .667 15.2 1 .627 .980 .615 16.8

n = 200, p = 5000 and ρ = .5

α(1) .925 .930 .845 .725 412.7 .496 .430 .954 .199 22.9 .281 .224 .779 .040 16.8

α(2) .856 .876 .976 .740 423.7 .005 .002 1 0 16.1 .007 .030 .968 0 18.9

α(3) .992 .508 .884 .446 390.4 .999 .455 .866 .38 15.2 .998 .435 .878 .383 24.0

n = 200, p = 5000 and ρ = .75

α(1) .510 .501 .504 .121 398.1 .261 .218 .803 .042 15.3 .135 .140 .541 .010 20.3

α(2) .372 .399 .625 .093 396.6 .002 0 .999 0 14.9 .006 .022 .867 0 22.2

α(3) .892 .276 .597 .158 369.5 .977 .258 .624 .159 13.3 .909 .164 .493 .075 24.7

Tables 3.2 and 3.3 report Ps and Pa of VSJS, SIS and SJS for the active

predictors under (S1). Overall, VSJS outperforms both SIS and SJS for all the

three sets of α(u) in terms of Ps and Pa. For (a1), VSJS achieves high success

rate in detecting signals of α
(1)
1 and α

(1)
2 , while SIS and SJS fail from time to time.

We next consider the performance of VSJS under (a2). For the zero centered α
(2)
1
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Table 3.3: Comparison between VSJS, SIS and SJS with Σ = (1 − ρ)I + ρ11T

(n=400)

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time

α(U) X1 X2 X3 all (s) X1 X2 X3 all (s) X1 X2 X3 all (s)

n = 400, p = 2000 and ρ = .25

α(1) 1 1 1 1 217.7 1 .960 1 .960 8.8 .859 .805 .999 .686 5.8

α(2) 1 1 1 1 205.9 .020 .001 1 0 7.9 .010 .076 1 0 5.6

α(3) 1 1 1 1 215.3 1 .974 1 .974 8.3 1 .997 1 .997 4.9

n = 400, p = 2000 and ρ = .5

α(1) 1 1 1 1 190.2 .900 .871 .999 .779 8.5 .736 .607 .998 .437 4.6

α(2) 1 1 1 1 184.3 .010 .001 1 0 8.5 .023 .133 1 .002 6.3

α(3) 1 .988 1 .988 199.5 1 .918 .997 .916 8.2 1 .944 1 .944 5.1

n = 400, p = 2000 and ρ = .75

α(1) .984 .991 .976 .955 169.0 .655 .566 .997 .349 8.6 .474 .356 .955 .155 6.3

α(2) .998 .995 1 .994 162.2 .001 0 1 0 9.5 .035 .193 .999 .004 6.6

α(3) 1 .733 .982 .719 162.8 1 .676 .968 .657 8.2 1 .576 .938 .540 6.1

n = 400, p = 5000 and ρ = .25

α(1) 1 1 1 1 1202 .963 .957 1 .920 21.6 .963 .957 1 .920 21.6

α(2) 1 1 1 1 1164 .006 .001 1 0 20.6 .004 .038 1 .001 31.1

α(3) 1 1 1 1 1180 1 .960 1 .960 18.2 1 .993 1 .993 36.5

n = 400, p = 5000 and ρ = .5

α(1) 1 1 1 1 1086 .849 .798 .999 .669 21.0 .849 .798 .999 .669 21.1

α(2) 1 1 1 1 1101 .001 0 1 0 22.2 .011 .071 1 .002 32.1

α(3) 1 .975 1 .975 1071 1 .840 .998 .838 19.6 1 .872 1 .872 40.3

n = 400, p = 5000 and ρ = .75

α(1) 1 1 .980 .980 929.0 .562 .426 .994 .224 21.0 .336 .267 .933 .073 35.9

α(2) .994 .992 .997 .988 936.7 .001 0 1 0 20.8 .016 .109 1 .001 35.3

α(3) .995 .621 .926 .586 909.6 1 .580 .935 .535 18.3 .999 .446 .900 .401 46.1

and α
(2)
2 , VSJS successfully detects their variation signal and achieves high success

rates. As comparison, SIS and SJS fail to identify α
(2)
1 and α

(2)
2 as active predictors

completely in (a2). In general, VSJS still performs better to some extent in (a3),

though SIS slightly outperforms VSJS in a few cases.

Tables 3.2 and 3.3 clearly show how performances are affected by sample corre-

lation ρ, predictor dimension p and sample size n. When ρ increases, n decreases

or p increases, all three methods perform worse under (S1). Compared to SIS and

SJS, VSJS’s performance is more resistant to these changes. Also, Tables 3.2 and

3.3 depict that VSJS is more computational inefficient comparing to SIS and SJS.

Tables 3.4 and 3.5 report Ps and Pa of VSJS, SIS and SJS for the active
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Table 3.4: Comparison between VSJS, SIS and SJS with Σ = (ρ|i−j|) (n=200)

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time

α(U) X1 X2 X3 all (s) X1 X2 X3 all (s) X1 X2 X3 all (s)

n = 200, p = 2000 and ρ = .25

α(1) 1 1 1 1 76.9 1 1 .988 .988 5.2 .856 .809 .997 .684 2.6

α(2) 1 1 1 1 70.8 .042 .116 1 .008 5.9 .047 .027 1 0 2.4

α(3) 1 1 1 1 86.6 1 1 1 1 7.1 1 .981 1 .981 3.0

n = 200, p = 2000 and ρ = .5

α(1) 1 1 1 1 73.1 1 1 .999 .999 8.2 .889 .792 .990 .690 2.5

α(2) 1 1 1 1 67.6 .166 .611 1 .145 5.8 .052 .065 1 .011 2.4

α(3) 1 1 1 1 82.8 1 1 1 1 7.7 1 .977 1 .977 3.1

n = 200, p = 2000 and ρ = .75

α(1) 1 1 1 1 75.5 1 1 1 1 5.2 .877 .768 .990 .642 3.0

α(2) 1 1 1 1 68.6 .722 .968 1 .720 5.8 .125 .417 .997 .076 2.6

α(3) 1 .997 1 .997 79.4 1 1 1 1 8.4 1 .926 .991 .917 3.1

n = 200, p = 5000 and ρ = .25

α(1) 1 1 1 1 456.4 .968 .997 1 .965 15.4 .785 .734 .989 .559 16.1

α(2) 1 1 1 1 463.8 .016 .067 1 .004 14.6 .016 .022 .999 0 14.9

α(3) 1 1 .998 .998 477.1 1 .999 1 .999 16.2 1 .967 1 .967 20.1

n = 200, p = 5000 and ρ = .5

α(1) 1 1 1 1 451.1 1 1 1 1 13.1 .799 .730 .979 .543 13.2

α(2) 1 1 1 1 439.9 .121 .501 1 .103 14.3 .030 .025 1 .003 16.0

α(3) 1 1 1 1 475.4 1 1 1 1 15.8 1 .966 .997 .963 20.3

n = 200, p = 5000 and ρ = .75

α(1) 1 1 1 1 448.2 1 1 1 1 15.4 .844 .685 .987 .538 19.0

α(2) 1 1 1 1 427.3 .627 .938 1 .626 14.8 .062 .327 1 .040 15.9

α(3) 1 .996 1 .996 453.9 1 1 1 1 14.4 1 .916 .980 .896 23.3

predictors under (S2). Overall, VSJS still outperforms SIS and SJS. It is worth

noting that all the three methods have much better performance under (S2) than

previous cases under (S1), especially when the correlation ρ is larger. In (a1), VSJS

and SIS both perform perfectly and slightly better than SJS. When we consider

(a2), SIS and SJS perform better under (S2) and successfully identify α
(2)
1 and

α
(2)
2 from time to time. However, VSJS again outperforms them in (a2). For

(a3), all three methods achieve almost 100 percent success rate for selecting active

predictors. Among them, SJS miss some active predictors in a few cases.

We can conclude from Tables 3.4 and 3.5 that SIS and SJS tend to perform

better when ρ increases, n increases or p decreases. For VSJS, it performs perfectly

in all three setting under (S1). Similarly, Tables 3.4 and 3.5 show that VSJS is
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Table 3.5: Comparison between VSJS, SIS and SJS with Σ = (ρ|i−j|) (n = 400)

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time

α(U) X1 X2 X3 all (s) X1 X2 X3 all (s) X1 X2 X3 all (s)

n = 400, p = 2000 and ρ = .25

α(1) 1 1 1 1 229.6 1 1 1 1 8.6 .991 .979 1 .970 6.3

α(2) 1 1 1 1 223.3 .083 .251 1 .036 8.5 .047 .040 1 .001 5.2

α(3) 1 1 1 1 240.1 1 1 1 1 11.9 1 1 1 1 7.0

n = 400, p = 2000 and ρ = .5

α(1) 1 1 1 1 225.9 1 1 1 1 7.5 .992 .959 1 .951 5.3

α(2) 1 1 1 1 226.1 .387 .922 1 .382 8.8 .070 .263 1 .031 5.2

α(3) 1 1 1 1 236.8 1 1 1 1 8.5 1 1 1 1 7.3

n = 400, p = 2000 and ρ = .75

α(1) 1 1 1 1 217.9 1 1 1 1 8.9 .979 .907 1 .886 6.4

α(2) 1 1 1 1 218.4 .969 1 1 .969 9.1 .139 .598 1 .080 5.8

α(3) 1 .999 1 .999 227.8 1 1 1 1 11.9 1 .997 1 .997 7.6

n = 400, p = 5000 and ρ = .25

α(1) 1 1 1 1 1264 1 1 1 1 20.6 .988 .962 1 .952 29.5

α(2) 1 1 1 1 1265 .054 .183 1 .018 18.7 .029 .032 1 0 28.8

α(3) 1 1 1 1 1215 1 1 1 1 20.8 1 1 1 1 33.8

n = 400, p = 5000 and ρ = .5

α(1) 1 1 1 1 1274 1 1 1 1 20.5 .976 .924 1 .900 32.5

α(2) 1 1 1 1 1256 .318 .884 1 .312 19.9 .038 .162 1 .017 29.1

α(3) 1 1 1 1 1194 1 1 1 1 20.6 1 .999 1 .999 35.6

n = 400, p = 5000 and ρ = .75

α(1) 1 1 1 1 1202 1 1 1 1 20.7 .969 .902 1 .871 36.9

α(2) 1 1 1 1 1225 .954 1 1 .954 21.9 .085 .548 1 .051 29.9

α(3) 1 1 1 1 1139 1 1 1 1 29.5 1 .995 1 .995 34.6

more time consuming than SIS and SJS.

3.3.2 Real Data Analysis

We analyze The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/)

data on liver hepatocellular carcinoma to illustrate the application. Liver hepato-

cellular carcinoma is the most common form of liver cancer and the third cancer

death cause worldwide. Zhang and Sun (2015) studies 17,255 patients in the SEER

cancer registry and suggests that age is a prognosis factor for liver cancer. There-

fore, we consider age as the univariate covariate for coefficient functions, allowing

the effects of gene expression on survival time to vary with age. After removing 5
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subjects whose survival time are zero, we obtain 354 subjects with gene expressions

(IlluminaHiSeq RNA-seq v2 platform), age at diagnostic, and survival months. We

apply log 2 transformation to gene expressions and analyze 14683 genes that have

more than 90% nonzero observations.

For VSJS, we use a linear combination of 5 B-spline basis to approximate the

varying coefficient functions. As a result, VSJS retains 23 (3540.8/ log(3540.8))

genes and the partial likelihood function value for the corresponding model is -

544.9. With the same number of genes retrained, the resulting partial likelihood

function values for SIS and SJS are -589.2 and -588.4, respectively. Simultaneous

modeling of the screened 23 genes shows a clear advantage of VSJS in terms of

higher partial likelihood value. To better understand the screening result of VSJS,

we further apply the backward selection procedure to those 23 genes and obtain

a more parsimonious model. Specifically, each backward elimination step removes

a gene with the smallest likelihood ratio test statistic until all the genes are sig-

nificant at level 0.05. Table 3.6 provides the final list of 11 genes after applying

the backward elimination and Figure 3.1 depicts their varying coefficients. Our

literature search finds that those 11 genes are all associated with cancer risk and

some genes such as GTPBP4 (Liu et al., 2017) and SLC2A2 (Kim et al., 2017)

are promising prognostic factors for hepatocellular carcinoma. To test whether

those 11 genes have varying coefficients versus constant coefficients, a test of H0:

αj(u) = αj for some constant αj versus H1: αj(u) 6≡ αj can be conducted for each

j in the selected gene set. The test result is shown in Table 3.7 and all the genes

except DYNC1LI1 have significant varying coefficient functions of age at the 5%

level of significance. There is no evidence of their timing varying effects in the

current medical literature, but our study may suggest some evidence for potential

granular investigation on those genes.
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Table 3.6: Genes selected by backward elimination

Gene Name ANLN CEP55 DYNC1LI1 GTPBP4

LRT Stat 15.869 14.137 18.171 22.658

p value 0.00723 0.0148 0.00274 < 0.001

Gene Name SLC2A1 KIF2C KIF20A KPNA2

LRT Stat 18.465 26.261 15.839 14.511

p value 0.00241 < 0.001 0.00731 0.0127

Gene Name LIMS2 TRIP13 UCK2

LRT Stat 23.093 17.517 14.671

p value < 0.001 0.00361 0.0119

Table 3.7: LRT statistics and p-values for the varying coefficients of the final
selected genes

Gene Name ANLN CEP55 DYNC1LI1 GTPBP4

LRT Stat 15.058 10.495 8.268 19.036

p value 0.00458 0.0328 0.0822 0.000773

Gene Name SLC2A1 KIF2C KIF20A KPNA2

LRT Stat 17.473 24.253 15.183 14.238

p value 0.00156 0.000071 0.00433 0.00657

Gene Name LIMS2 TRIP13 UCK2

LRT Stat 23.097 16.191 13.803

p value 0.000121 0.00277 0.00795
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Figure 3.1. Estimated coefficient functions and the pointwise conference intervals of
selected genes. The red line represents the average level of the varying coefficient func-
tions.



Chapter 4
Feature and Interaction Selection

via “Iteratively Kings’ Forests”

4.1 A Forest-based Procedure for Feature and

Interaction Selection

4.1.1 Tree Structure: An All-inclusive Search Engine

The latest researches suggest that forest algorithms perform excellent in selecting

interaction effects. We believe that most credit goes to the properties of tree

structure. First of all, when constructing a tree, the split in every node, except

for the root node, is based on the previous splits of the node’s ancesters. That

makes tree structure a natural structure to model interaction effects. Moreover,

the greedy algorithm used to search and split each node allows tree structure to

include the variable that brings the most significant instant improvement. This

improvement may result from either a marginal effect or an interaction effect. To

conclude, tree structure is just like an all-inclusive search engine for important

marginal effects and interaction effects of different orders. The mathematical form

of a tree, say q(x), is given as follows.

Denote the p-dimensional candidate variables as x = (x1, . . . , xp). q(x) could

be expressed as a data-driven simple function, which is a linear combination of

k indicator functions. Assuming the tree depth is d, the score ai of an indicator
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function is determined by all d variables in the path from the corresponding leaf

node to the root node.

q(x) =
k∑
i=1

aiI(xi ∈ Bi) =
k∑
i=1

aiI(xi1 ∈ Bi1 , . . . , xid ∈ Bid). (4.1)

Here a = (a1, . . . , ak)
T are the scores of leaf nodes and xi is the subset of x chosen

for i-th indicator function. For any Bij , it is an interval with form (−∞, sij) or

[sij ,∞), where sij is given for spliting variable xij .

For i−th indicator function, the selected variable set xi may include marginal

effects, all or part of an interaction effect or even useless variables due to ran-

domicity. Given this, we want to maximize the chance to exclude random useless

variables and include all effects of different orders in the forest. Furthermore, we

try to separate one effect from the other, and therefore outline the hidden model

form.

4.1.2 Forest Algorithms

Random forest is well known for many good characteristics. It is applicable to high

dimensional data with a relative low number of observations, a large amount of

noise and highly correlated variables. At the same time, random forest is less prone

to over-fitting and can handle the problem of imbalanced classes. However, when

the truly imformative features is very sparse among a huge number of features,

the prediction performance of RF declines significantly. This requires us to do

feature selection. Breiman (2001) proposed to rank the variable importance using

the “Permutation Variable Importance Measure”(PVIM). PVIM of the j-th (j =

1, . . . , p) feature Xj is defined as

PV IMt(Xj) =

∑
i∈Bt(Yi − Ŷ

∗
it )

2 −
∑

i∈Bt(Yi − Ŷit)
2

|Bt|
(4.2)

Here Bt is the OOB sample for tree t, t = 1, . . . , ntree. Ŷit and Ŷ ∗it are the

predictions for observation i gotton from the tree t before and after permuting Xj.
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The final importance measure is averaged over all trees

PV IM(Xj) =
ntree∑
t=1

PV IMt(Xj)

ntree
(4.3)

The main idea of PVIM is to see how much prediction accuracy will decrease if

we “kill” a variable. If one feature is randomly permuted, all its modelled effects

on the response will be destroyed. That idea is very powerful because it could

measure both the variable’s marginal effect and interaction effects as a whole.

However, the power of PVIM will be sharply weaken if the effects related to

the variable are not adequately modelled in RF because of three possible reasons.

First, the important variables may only be selected in a small proportion of trees

of the whole forest; Sometimes, the node in which an important variable is selected

is far from the root node. Therefore, the variable could only explain a small part

of data and lead to less overall prediction accuracy improvement; Moreover, the

variables participating in an interaction effect may not be in the same path. That

is, the interaction effect is not adequately modelled.

A intuitive solution to these issues is to iteratively reweight variables’ im-

portance based on certain criterion. For example, mean decrease in Gini impu-

rity(Archer and Kimes, 2008; Basu et al., 2018) is used to update variables’ weights

under different scenarios. By giving important variables larger weights, we more

frequently select them for tree construction and move them up in trees. Also, vari-

ables that partipate in interaction effects are more likely to be in the same path.

The reweighting process also do feature selection by ranking variable importances,

which also improves the model interpretability and prediction accuracy. However,

main existing forest algorithms have the following drawbacks, which indicates the

potential of significant improvements.

First of all, impurity decrease of node spliting is a criteria of training process,

and might not be good especially when p is large. When the parameter mtry

is large, there will likely be a random variable giving a larger impurity decrease

than the important variables among these mtry selected variables. When p is

much larger than mtry and the truly imformative features are sparse, it is likely

that no important variable is included in these mtry selected variables. As a

result, some random variables will have large weights and there will be a large
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proportion of useless trees. Therefore, we need a new criteria to identify useful

trees and variables. Furthermore, existing forest algorithms do not leave room for

incorporating prior knowledge of the mechanism. When the hidden model is sparse

or prior knowledge is given, a proper use of prior information might be helpful for

outlining the hidden model structure. Finally, we still do not have criterion to

determine the degree of interaction effects an important variable participates in

because two seperate interaction effects could be in the same path and treated as

one high order interaction effect.

4.1.3 King’s Forests

To solve the previous mentioned three drawbacks, we revise the structure of trees

in the forest and propose a new forest algorithm named “King’s Forests”.

To start with, we define that a variable is considered to be important if and

only if it has marginal effect or participates in at least one interaction effect. Given

the prior knowledge that one variable is important, we treat it as a “king” and use

it to split the root node of every tree in the forest. Accordingly, all other variables

that participate in at least one common interaction effect of the “king” together

is called the “core team” of the “king”. Through this revision, we could make

room for incorporating prior knowledge and furthermore fully explore interaction

structures related to the “king”.

The PVIM of “king” is like the king’s power and used to measure the overall

effect related to the “king” on the response. To fully explore the king’s power, the

“king” should try the best to find all members of its “core team” and put those

from same interaction in the same path. To achieve that, we iteratively select

the trees with positive king’s PVIM, and increase the weights of variables in the

tree by the magnitude of king’s PVIM, which indicates the importance level of

the tree. That is, instead of impurity decrease, we increase variables’ weights only

when they are selected in a “useful” tree. As a result, the members of “core team”

will likely have larger weights and move to upper layers close to the “king”.

Based on the updated weights, we could do feature screening and select the top

ranked variables. If the depth of trees is setted as d, the king’s forests could model

at most order d interaction effects related to the “king”. Based on the selected
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features, we fit another d “king’s forests” of depth from 1 to d. For a forest of depth

m(1 ≤ m ≤ d), it consist of l = nt ∗2m−1 paths, or candidate order m interactions,

among which there are f ≤ l different paths. For each of the f different paths,

we get its number of repetitions, sum of king’s PVIMs of corresponding trees and

sum of impurity decrease of the last node. To select the most likely order m

interactions, we rank all f paths and output three short lists respectively based on

these three criterion. Generally speaking, the larger the repetitions, sum of king’s

PVIM or sum of impurity decrease (sum of ID) an interaction has, the more likely

it is an important interaction the “king” participates in.

The detailed algorithm for constructing “king’s forests” is outlined as follow:

1. From given prior knowledge, choose an important variable, say xk1 , as the

“king”.

2. For xk1 , construct a “king’s forest” of size nt and depth d for it.

3. For the t-th iteration(t ≥ 1), calculate the king’s PVIM using OOB sample

for each tree. Set initial weights w(0) as a positive constant w0. Update

variables’ weights by

w
(t)
i = w

(t−1)
i +

nt∑
j=1

pvimj ∗ I(pvimj > 0, xi is selected in tree j) (4.4)

Keep the weights updating procedure until nite iterations or king’s PVIM

stops increasing.

4. Rank the features base on updated weights, and select the top ranked vari-

ables with weights higher than the average weight.

5. Construct d “king’s forests” from depth 1 to d based on the selected features.

6. For the forest of depth m, output three ranked short lists of most likely order

m interactions.

The proposed “king’s forests” algorithm gives the most likely interaction effects

and “core team” related to the “king”. However, to distinguish two separate low-

order interaction effects from one high-order interaction effect, we evaluate the
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trend of king’s PVIMs as the depth m increases. For example, if the king’s PVIMs

significantly increases as m increases from 2 to 3, the most likely explanation is

that the “king” participates in at least one third-order interactions, which is not

modelled in the previous forest of depth 2. Otherwise, if its PVIMs doesn’t increase

as the depth increases, the “king” likely does not have a higher order interaction

effect.

4.1.4 Iteratively Kings’ Forests

While the “king’s forests” algorithm gives a framework to discover interaction

effects related to the “king”, it just focuses on one important variable. To explore

more for a whole picture, a natural idea is to iteratively implement the “king’s

forests” algorithm using different variables as the “king”. Among the variables

have not been chosen as “king”, we choose the variable whose weight is ranked

first as the next “king”, which is considered the most important based on current

best knowledge.

Besides, feature screening is also conducted during this iterative procedure.

For i-th iteration, we select the top ranked α percent variables of i-th “king’s

forest” and denote the index set as Ii. We start with an index set S0 of all p

variables. For iteration i ≥ 1, we get the intersection set Si = Si−1 ∩ Ii. We keep

constructing “king’s forests” until the size of Si is smaller than a pre-specified

number ss = [n/log(n)]. For each “king’s forests”, we also save the king’s PVIMs

and the top ranked interaction effects of different orders. For each depth m, we

give PVIMs of different “kings” and three short lists of interactions with a size of

a pre-specified ntop.

The details of iteratively “king’s forests” are as follows

1. Choose an important variable xk1 as the “king” based on prior knowledge.

If no prior knowledge is given, just randomly choose xk1 . The initial index

set is S0 = {1, . . . , p}.

2. Construct a “king’s forests”.

3. Select the α percent top ranked variables index set Ii, and get the intersection

set Si = Si−1 ∩ Ii.
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4. Save the lists of ranked interaction effects and king’s PVIMs, and choose the

next “king”.

5. Iteratively conduct step 2 to 4 until the size of Si is smaller than ss =

[n/log(n)]

6. Output the intersection S, PVIMs of different “kings” and three short lists

for potential interaction effects of different order.

To conclude, the “Iteratively Kings’ Forests”(iKF) algorithm proposes a frame-

work for discovering hidden model structure through kings’ PVIMs, selected fea-

tures index set and lists of ranked interactions. If one variable is chosen as a “king”

and has positive king’s PVIMs, it should be important. If the PVIMs increases

with the depth of forest, it participates in some high-order interactions. If one

variable is in the selected feature index set, it is an indicator that the variable

is important. Furthermore, when an interaction is selected into the short lists of

top ranked interaction, it could be an important interaction. Especially when its

number of repetitions is large comparing to the forest size nt, its sum of PVIM is

large, or the interaction show up more than once in different order, it is very likely

a very important interaction.

4.2 Two Examples

In this part, we use two examples, (a1) and (b1), to demonstrate how the proposed

algorithm select important features and interactions. In these two cases, the p-

dimensional predictors x and the random error e are independently generated

from standard normal distribution. We set the sample size n = 300, the number

of predictors p = 200 and the parameter scale s = 2. For the parameters of the

“Iteratively Kings’ Forests”, we set the forest size nt = 100, tree depth d = 4, the

size of screened variable set ss = [n/log(n)] and the length of potential interaction

effect list ntop = 10. When constructing a tree, we search mtry = [p/2] variables

for each node and nquantile = 9 quantile positions for each splitting. For any node,

if the number of observations in it is less than snode = 3, we stop splitting it and

use it as a leaf node.

(a1): y = s ∗ x1 ∗ x3 − s ∗ x5 ∗ (x7 < 0.2) + e
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We apply the “Iteratively Kings’ Forests” method on the dataset (y,x) generated

by model (a1). Kings’ PVIMs, selected index set and top ranked interactions lists

are given for analyzing the hidden model mechanism.

Table 4.1: Kings’ PVIMs for Model (a1) for Forests of Different Depths

King Depth = 1 Depth = 2 Depth = 3 Depth = 4

5 4.65 5.67 5.72 6.34

7 -0.21 1.79 1.26 0.93

3 0.99 3.75 4.03 4.47

1 -0.16 3.48 5.23 4.44

10 -0.19 0.33 0.33 0.49

146 0.68 0.59 0.53 0.34

91 0.61 0.31 0.77 0.16

The method iteratively chooses seven variables as “kings” and give correspond-

ing kings’ PVIMs from depth 1 to 4 in Table 4.1. When the depth is 1, kings’

PVIMs show that variables 3, 5, 91 and 146 may have marginal effects on the

response, while variables 7, 1 and 10 are marginally insignificant. Among them,

variable 5 has a very strong marginal effect. When the depth increases to 2, PVIMs

of variables 1, 3, 5 and 7 sharply increase. This indicates that they all participate

in some pairwise interaction effects. Furthermore, it seems that variable 1 might

also have some third order interactions, and variables 3 and 5 might have slight

forth order interactions according to the trend of their PVIMs.

Table 4.2: The Rank of Selected Important Variables for Model (a1)

5 7 3 1 110 104 193 48 146 122 49 103 47 190 64 12 65 163 72 159 118 172 196 117

Furthermore, the method also screens the features. Variables selected in Table

4.2 are ranked based on their weights. As we can see, all four variables of model

(a1) are selected and ranked as top four.
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Table 4.3: Top Ten Second Order Interactions Ranked by the Sum of PVIM for

Model (a1)

Interactions Sum of ID Layer 1 Layer 2 Repetition Sum of PVIM

1 27592 5 7 72 493

2 76970 1 3 93 434

3 52956 3 1 88 419

4 39879 1 5 72 286

5 60392 3 5 82 280

6 89495 7 5 91 202

7 4845 5 104 15 96

8 7726 5 3 18 85

9 52028 146 5 98 84

10 38692 91 5 76 81

Finally, we give the top ten possible interactions from order 2 to 4 ranked by

the sum of king’s PVIM. For second order interaction effects, the top ten pairs

are given in Table 4.3. Among them, pairwise interactions (5, 7) and (1, 3) both

show up twice in different orders. That is, when the “king” is 5, it tends to select

variable 7 to split the node of next layer, and vice versa. Similar things happen to

interaction (1, 3). According to all three criterion, (5, 7) and (1, 3) are selected

and ranked high. Considering that we only have nt = 100 trees in each forest, the

repetition times of the top seven pairs show that they dorminate the corresponding

kings’ forests of depth 2 because they show up in at least 64% of trees. Variable 5

seems show up everywhere. However, we don’t think variable 5 has second order

interaction effects with variable 3 and 1 because it has strong marginal effect and

only select variable 7 frequently when it is the “king”. All those signals together

strongly suggest that (1, 3) and (5, 7) are important second order interaction

effects. Table 4.4 gives top ten third order interaction effects. Among them, we

can see that third order interactions (1, 5, 3), (3, 1, 5), (3, 5, 7) and (1, 5, 7) show

up most frequentyly.
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Table 4.4: Top Ten Third Order Interactions Ranked by the Sum of PVIM for
Model (a1)

Interactions Sum of ID Layer 1 Layer 2 Layer 3 Repetition Sum of PVIM
1 29270 1 5 3 82 466
2 18888 3 1 5 70 399
3 16683 1 5 7 62 292
4 16222 3 5 7 54 204
5 5814 5 3 7 26 181
6 12830 5 3 1 34 173
7 2044 3 1 82 17 110
8 1489 1 3 22 12 94
9 2160 1 3 146 14 83
10 9701 7 5 3 42 79

Table 4.5: Comparison of Average PVIM Between Second and Third Order Inter-

actions

Interactions Average PVIM Interactions Average PVIM

(1, 5) 286/72=3.97 (1, 5, 3) 466/82=5.68

(3, 1) 419/88=4.76 (3, 1, 5) 399/70=5.70

(3, 5) 280/82=3.41 (3, 5, 7) 204/54=3.78

(1, 5) 286/72=3.97 (1, 5, 7) 292/62=4.71

However, if we calculate the average PVIM of them and compare with the

average of corresponding second order interactions, we have the Table 4.5. It

shows that average PVIM of third order interactions (1, 3, 5) and (1, 5, 7) are

much larger than that of interaction (1, 3) and (1, 5). Therefore, the researcher

may need to look into these two possible third order interactions.
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Table 4.6: Top Ten Order 4 Interactions Ranked by the Sum of PVIM for Model

(a1)

Interactions Sum of ID Layer 1 Layer 2 Layer 3 Layer 4 Repetition Sum of PVIM

1 7299 3 5 1 7 46 242

2 3519 3 5 1 193 13 65

3 993 3 5 1 127 9 63

4 1393 5 7 104 1 9 54

5 1217 5 7 1 190 7 47

6 1720 1 3 5 157 9 47

7 3278 10 3 5 7 20 42

8 583 1 5 7 140 6 42

9 573 3 5 176 1 4 40

10 566 1 5 80 3 7 39

When we set the tree depth d = 4, we get top ten possible order 4 interaction

effects given in Table 4.6. Among them, (1, 3, 5, 7) is obviously larger than other

nine order 4 interactions. It could be either an additional order 4 interaction effect,

or two separate second order interactions (1, 3) and (5, 7), which we already identify

before. Considering that all four variables’ PVIMs don’t increase significantly when

the depth increase from 3 to 4, we tend to conclude there is no additional order 4

interaction effect.

(b1): y = s ∗ x1 ∗ sign(1 + x3) ∗ sin(x5) + e

We apply the “Iteratively Kings’ Forests” method on the dataset (y,x) generated

by model (b1). Kings’ PVIMs, selected index set and top ranked interactions lists

are given for analyzing the hidden model mechanism.

The method iteratively chooses five variables as “king” and give corresponding

king’s PVIMs of depth from 1 to 4 in table 2.60. As the PVIMs of depth 1

forest show, no king variable has marginal effect on the response. When the depth

increases to 2, PVIMs of “king” 1 and 5 increase a lot. We will guess that variable

1 and 5 participate in some second order interactions. When the depth increases

to 3, king’s PVIMs of variable 1, 3 and 5 slightly increase. This indicates that they

might participate in some important third order interaction effects.
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Table 4.7: PVIM of Kings for Model (b1) in Forests of Different Depth

King Variable Depth = 1 Depth = 2 Depth = 3 Depth = 4

63 -0.03 0.15 -0.07 -0.03

1 0.20 1.11 1.33 1.54

5 -0.10 1.12 1.23 1.17

3 0.06 0.06 0.12 0.25

46 0.12 0.14 0.16 0.10

Variables selected in Table 4.8 are ranked based on their weights. All three

important variables of model (b3) are selected and ranked as top three. Finally, we

Table 4.8: The Rank of Selected Important Variables for Model (b1)

1 5 3 69 114 46 98 24 10 6 189 68 131 15 182 152 89 184 144 137 78 47 49 174 198 195

rank the top ten possible order 2 and 3 interaction effects. For pairwise interactions,

the top ten pairs are given in Table 4.9.

Table 4.9: Top Ten Pairwise Interactions Ranked by the Sum of PVIM for Model

(b1)

Interactions Sum of ID Layer 1 Layer 2 Repetition Sum of PVIM

1 22816 1 5 123 189

2 23290 5 1 126 161

3 737 5 27 12 14

4 1292 1 69 11 10

5 296 1 121 5 9

6 4326 3 69 39 9

7 282 5 194 5 8

8 366 1 83 5 8

9 371 5 190 5 8

10 527 5 28 5 7

In Table 4.9, pairwise interaction (1, 5) shows up twice in different orders.

Furthermore, interaction (1, 5) is selected and ranked high according to all three

criterion. Considering that the forest size nt = 100, the average of repetition times

for both (1, 5) and (5, 1) are larger than 1. That means, when variable 1 is the

“king”, both second layer nodes of some trees are selected as variable 5, and vice

versa. All these suggest that (1, 5) is a dominant second order interaction effect.
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Table 4.10: Top Ten Third Order Interactions Ranked by the Sum of PVIM for

Model (b3)

Interactions Sum of ID Layer 1 Layer 2 Layer 3 Repetition Sum of PVIM

1 3301 5 1 3 39 66

2 1291 1 5 3 17 40

3 544 1 5 184 12 24

4 1250 1 5 69 18 23

5 773 1 5 200 14 20

6 548 1 5 24 9 18

7 1608 5 128 1 18 18

8 588 5 1 69 10 16

9 355 1 5 7 6 16

10 369 1 121 5 6 15

Table 4.10 gives top ten third order interaction effects. Among them, we can

see that third order interactions (1, 3, 5) show up most frequentyly in different

orders. By calculating the average PVIM of them and comparing with second

order average, we have Table 4.11. It shows that average PVIM of third order

interactions (5, 1, 3) and (1, 5, 3) are much larger than that of interaction (5, 1)

and (1, 5). Therefore, (1, 3, 5) should be an important third order interaction.

Table 4.11: Comparison of Average PVIM Between Second and Third Order In-

teractions

Interactions Average PVIM Interactions Average PVIM

(1, 5) 189/123=1.54 (1, 5, 3) 40/17=2.35

(5, 1) 161/126=1.28 (5, 1, 3) 66/39=1.69

Similarly, we set the tree depth d = 4. Table 4.12 shows the top ten order 4

interactions. All of them have repetition times smaller than or equal to 6 times,

which is only 6% of the forest size. Therefore, we conclude that there is no order

4 interaction effect in the model.
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Table 4.12: Top Ten Order 4 Interactions Ranked by the Sum of PVIM for Model

(b1)

Interactions Sum of ID Layer 1 Layer 2 Layer 3 Layer 4 Repetition Sum of PVIM

1 165 1 5 12 15 5 16

2 110 5 1 181 126 6 14

3 203 5 161 1 60 4 10

4 104 1 5 3 10 4 9

5 55 5 1 181 129 4 8

6 73 5 1 28 3 3 7

7 66 1 5 29 100 2 6

8 75 1 5 29 131 2 6

9 20 1 5 6 68 2 6

10 35 1 5 6 152 2 6

4.3 Simulation Studies

The main purpose of simulation studies is to assess the performance of the “It-

eratively Kings’ Forests” in feature and interaction selection through comparison

with feature screening procedure DC-SIS (Li et al., 2012) and the Iterative Ran-

dom Forest (iRF) (Basu et al., 2018). We focus on models that all important

variables affect the response through participating in some interaction effects. The

proposed procedure is considered to be good if both important variables and in-

teraction effects are selected and ranked top.

In this section, we set the sample size n = 200, parameter scale s = 2 and

the number of predictors p = 200, 500. For the screening model size, we set d1 =

[0.5 ∗ n/ log(n)] and d2 = [n/ log(n)], where [a] denotes the integer part of a. For

each comparison setting, we do 100 times monto carlo simulation. We compare

the performance of the proposed procedure and DC-SIS using the following three

criteria:

1. S: The minimum model size to include all active predictors. We report the

5%, 25%, 50%, 75% and 95% quantiles of S out of 100 replications.

2. Ps: The proportion that an individual active predictor is selected for a given

model size d in the 100 replications.



100

3. Pa: The proportion that all active predictors are selected for a given model

size d in the 100 replications.

Besides the above mentioned criteria, we also compare the performance of the

proposed procedure and iRF in selecting interaction effects. Two additional criteria

are used for this purpose.

1. pinter: The proportion that one active interaction effect is selected in the 100

replications.

2. Pinter: The proportion that all active interaction effects are selected in the

100 replications.

When comparing the performance of the proposed procedure and iRF, we study

both the continuous and the binary response situations through different settings.

For the parameters of the proposed procedure, we set the forest size nt = 100

and the length of potential interaction effect list ntop = 20. When constructing

a tree, we search mtry = [p/2] variables for each node and nquantile = 9 quantile

positions for each splitting. For any node, if the number of observations in it is less

than snode = 3, we stop splitting it and use it as a leaf node. When comparing with

iRF in continuous response situation, we set tree depth d = 4; when comparing

with iRF in binary response cases, we set tree depth d = 6.

4.3.1 Comparison with DC-SIS in Feature Selection

We assess the performance of the proposed procedure by comparing with the Dis-

tance Correlation feature screening (Li et al., 2012) procedure. Simulation settings

are divided into two parts. For the part (a), we compare the performance of these

two procedures to find variables participating in pairwise interaction effects. Five

settings listed from (a1) to (a5) are studied. In each setting, four variables affect

the response through two pairwise interaction effects of different forms.

(a1): y = s ∗ x1 ∗ x3 − s ∗ x5 ∗ (x7 < 0.2) + e

(a2): y = 2 ∗ s ∗ x1 ∗ sin(x3) + 2 ∗ s ∗ x5 ∗ cos(x7 + π/2) + e

(a3): y = s ∗ exp(x1) ∗ x3/2− s ∗ log(5 ∗ |x5|) ∗ x7 + e
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(a4): y = s ∗ x1x
2
3/2− s ∗ sign(x5) ∗ x2

7 + e

(a5): y = s ∗ x1 ∗ x3 + 1.5 ∗ s ∗ x5 ∗ sin(x7) + e

For the part (b), we compare the performance of two procedures to find variables

participating in one third-order interaction effect. Five cases, (b1) to (b5), are

studied. In each of them, three variables affect the response through one third-

order interaction effect.

(b1): y = s ∗ x1 ∗ (1 + x3)2 ∗ sin(x5) + e

(b2): y = s ∗ x1 ∗ log(5 ∗ |1 + x3|) ∗ sin(x5) + e

(b3): y = s ∗ x1 ∗ sign(1 + x3) ∗ sin(x5) + e

(b4): y = s ∗ x1 ∗ x3 ∗ sin(x5) + e

(b5): y = s ∗ x1 ∗ x3 ∗ x5 + e

Tables 4.13-4.15 depict the simulation results of S, Ps and Pa for the proposed

algorithm and DC-SIS.

Table 4.13 shows that the proposed procedure outperforms DC-SIS in all cases

with respect to minimum model size. When p = 200, the proposed procedure

ranks all four important variables in settings (a1)-(a4) as the top five in more than

50% repetitions. That is, we find all the important variables of the model directly

in more than 50% of times. For the cases (a2), (a5), (b3) and (b4), DC-SIS gives

S larger than 16 in more than 95% of times, which mean DC-SIS doesn’t work

well in keeping all important variables under these settings. When we increase p

to 500, the proposed procedure still outperform DC-SIS in all settings, and works

well in all cases except for (b3).

Tables 4.14-4.15 give the proportions that active predictors are selected for

given model sizes. The proposed procedure again outpeforms DC-SIS in all cases.

Especially, DC-SIS fails to include all active predictors in cases (a2), (a5), (b3)

and (b4), while the proposed procedure still works pretty well. Furthermore, as

p increases from 200 to 500, the proposed procedure has even larger advantage

over DC-SIS with respect to Pa. If we consider p = 500 and the model size

d2 = [n/ log(n)] for comparison, the proposed procedure gives Pa larger than 80%
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Table 4.13: Quantiles of S between iKF and DC-SIS

S iKF DC-SIS
Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

n = 200 and p = 200
(a1) 4.00 4.00 4.00 8.00 22.30 9.00 20.00 37.00 62.00 117.00
(a2) 4.00 4.00 4.00 22.50 57.75 23.95 44.00 69.50 103.25 152.00
(a3) 4.00 4.00 5.00 8.00 23.70 6.00 15.00 29.00 52.00 110.10
(a4) 4.00 4.00 4.00 5.00 9.00 4.00 7.00 13.00 26.00 65.10
(a5) 4.00 4.00 16.00 40.00 107.00 16.00 37.00 57.00 87.00 128.40
(b1) 3.00 3.00 3.00 4.00 23.00 3.95 9.00 24.00 48.75 123.90
(b2) 3.00 3.00 5.00 11.00 38.40 4.95 10.00 20.00 35.00 91.10
(b3) 4.00 8.00 23.00 50.00 112.00 28.00 65.00 121.50 155.25 186.50
(b4) 4.00 9.00 16.00 36.00 79.50 19.80 40.00 63.50 87.25 129.05
(b5) 3.00 4.00 6.00 9.00 18.00 5.95 10.00 18.00 28.00 67.10

n = 200 and p = 500
(a1) 4.00 4.00 12.00 28.00 92.70 18.00 49.00 89.00 150.25 326.05
(a2) 4.00 4.00 18.00 80.00 196.00 49.00 114.75 177.00 263.00 383.10
(a3) 4.00 5.00 9.00 17.00 56.20 9.00 32.00 66.00 129.00 281.05
(a4) 4.00 4.00 5.00 11.00 25.30 6.00 13.00 25.00 53.00 142.10
(a5) 4.00 8.25 48.00 110.00 244.05 40.90 91.25 160.00 223.00 325.55
(b1) 3.00 3.00 3.00 6.00 31.05 5.00 21.50 62.00 140.00 258.70
(b2) 3.00 3.75 10.50 26.50 109.40 6.00 19.75 38.50 74.25 161.15
(b3) 30.85 95.50 193.50 323.25 411.90 53.85 146.50 240.00 391.00 471.35
(b4) 7.55 19.75 49.00 87.50 180.30 41.00 70.75 109.00 165.75 305.15
(b5) 3.00 5.00 12.00 19.00 42.30 7.00 21.00 36.50 63.25 175.05

in most cases, while DC-SIS gives Pa less than 60% in all situations. Therefore, the

proposed procedure performs much better than DC-SIS when the active variables

have no marginal effect, but affect the response through interaction effects.

4.3.2 Comparison with Iterative Random Forest in Inter-

action Detection

In this part, we assess the performance of the proposed procedure in both contin-

uous response settings and binary response settings. In the continuous response

situation, we still use the settings (a) and (b) to compare the proposed procedure

and iRF. We use the three Boolean rule settings (OR, AND, and XOR) used by

Basu et al. (2018) for comparison in the binary response situation, in which setting

details will be given correspondingly.

When calculating the proportion of selecting active interaction effects pinter
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Table 4.14: Comparison between iKF and DC-SIS for (a) Settings

iKF DC-SIS
Ps Pa Ps Pa

Model Size X1 X3 X5 X7 all X1 X3 X5 X7 all
n = 200 and p = 200
(a1) d1 0.98 0.97 1.00 0.96 0.92 0.68 0.67 1.00 0.46 0.22

d2 0.99 1.00 1.00 0.99 0.98 0.87 0.87 1.00 0.67 0.50
(a2) d1 0.97 0.86 0.93 0.87 0.71 0.70 0.25 0.68 0.26 0.02

d2 0.99 0.94 0.99 0.92 0.86 0.87 0.47 0.88 0.49 0.18
(a3) d1 0.99 1.00 0.94 1.00 0.93 0.78 1.00 0.39 1.00 0.27

d2 0.99 1.00 0.99 1.00 0.98 0.89 1.00 0.63 1.00 0.56
(a4) d1 1.00 0.98 1.00 1.00 0.98 1.00 0.61 1.00 0.99 0.60

d2 1.00 0.99 1.00 1.00 0.99 1.00 0.84 1.00 1.00 0.84
(a5) d1 0.87 0.89 0.87 0.69 0.53 0.50 0.55 0.64 0.27 0.03

d2 0.94 0.97 0.95 0.82 0.73 0.78 0.81 0.91 0.43 0.21
n = 200 and p = 500
(a1) d1 0.83 0.83 1.00 0.83 0.62 0.38 0.41 1.00 0.27 0.05

d2 0.92 0.95 1.00 0.95 0.83 0.60 0.62 1.00 0.43 0.16
(a2) d1 0.82 0.64 0.87 0.77 0.51 0.36 0.10 0.34 0.11 0.01

d2 0.87 0.75 0.95 0.84 0.64 0.58 0.19 0.53 0.21 0.03
(a3) d1 0.97 1.00 0.80 1.00 0.77 0.67 1.00 0.17 1.00 0.14

d2 0.99 1.00 0.90 1.00 0.89 0.77 1.00 0.31 1.00 0.26
(a4) d1 1.00 0.89 1.00 1.00 0.89 1.00 0.40 1.00 0.93 0.38

d2 1.00 0.97 1.00 1.00 0.97 1.00 0.59 1.00 0.99 0.59
(a5) d1 0.67 0.73 0.72 0.54 0.31 0.29 0.22 0.52 0.12 0.00

d2 0.82 0.80 0.88 0.61 0.43 0.48 0.42 0.78 0.21 0.02

and Pinter, we consider one interaction is selected by iRF if it is selected in the

interaction list given by the R package “iRF”, in which all interactions with non-

zero stability scores are included. For the proposed procedure, we consider one

interaction is selected if it is selected in at least one of the three shortlists with

length ntop = 20.

The tuning parameters of random intersection tree part were set to the default

levels. That is, M = 100 random intersection trees of depth 5 were grown with

nchild = 2. B = 20 bootstrap replicates were taken to determine the stability

scores of recovered interactions.
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Table 4.15: Comparison between iKF and DC-SIS for (b) Settings

iKF DC-SIS
Ps Pa Ps Pa

Model Size X1 X3 X5 all X1 X3 X5 all
n = 200 and p = 200
(b1) d1 1.00 1.00 0.93 0.93 0.92 1.00 0.45 0.44

d2 1.00 1.00 0.97 0.97 0.99 1.00 0.66 0.66
(b2) d1 1.00 0.87 1.00 0.87 0.99 0.76 0.62 0.49

d2 1.00 0.95 1.00 0.95 1.00 0.90 0.87 0.79
(b3) d1 1.00 0.47 1.00 0.47 0.94 0.06 0.37 0.02

d2 1.00 0.65 1.00 0.65 1.00 0.16 0.56 0.11
(b4) d1 0.96 0.97 0.63 0.60 0.62 0.62 0.22 0.05

d2 0.98 0.99 0.79 0.77 0.85 0.77 0.38 0.20
(b5) d1 0.99 0.98 0.99 0.96 0.80 0.76 0.79 0.51

d2 1.00 0.99 1.00 0.99 0.94 0.90 0.94 0.82
n = 200 and p = 500
(b1) d1 0.94 1.00 0.92 0.90 0.77 1.00 0.26 0.24

d2 0.97 1.00 0.97 0.96 0.91 1.00 0.42 0.39
(b2) d1 1.00 0.67 1.00 0.67 0.93 0.67 0.35 0.22

d2 1.00 0.81 1.00 0.81 0.99 0.86 0.56 0.48
(b3) d1 1.00 0.02 0.88 0.02 0.73 0.04 0.10 0.00

d2 1.00 0.08 0.94 0.08 0.94 0.05 0.30 0.04
(b4) d1 0.83 0.88 0.29 0.23 0.47 0.43 0.08 0.01

d2 0.96 0.94 0.54 0.46 0.64 0.61 0.14 0.04
(b5) d1 0.91 0.93 0.86 0.72 0.61 0.59 0.54 0.21

d2 0.97 1.00 0.97 0.93 0.86 0.77 0.77 0.51

4.3.2.1 Comparisons among Continuous Response Settings

Similar to the comparison with the feature screening procedure DC-SIS before, we

compare the proposed procedure with the forest algorithm iRF under settings (a)

and (b). We compare not only their performance in selecting important variables

through S, Ps and Pa, but also their accuracy in detecting interaction effects

through pinter and Pinter.

Table 4.16 shows that the proposed procedure outperforms iRF in most cases

with respect to minimum model size. However, its advantages over iRF is not as

large as the advantages over DC-SIS. Especially, when p = 500, iRF outperforms

the proposed procedure a little bit in the setting (a4). Among all ten settings, (b3)

is the most difficult for both algorithms to discover. When we increase p to 500,

the proposed procedure still ranks all important variables as the top 20 in more
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Table 4.16: Quantiles of S for Continuous Response Settings

S iKF iRF
Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

n = 200 and p = 200
(a1) 4.00 4.00 4.00 8.00 22.30 4.00 5.00 6.00 8.25 27.25
(a2) 4.00 4.00 4.00 22.50 57.75 8.00 13.00 22.50 43.25 83.60
(a3) 4.00 4.00 5.00 8.00 23.70 4.00 5.00 7.00 10.00 21.15
(a4) 4.00 4.00 4.00 5.00 9.00 4.00 4.00 4.00 5.00 11.05
(a5) 4.00 4.00 16.00 40.00 107.00 8.90 14.00 25.00 53.50 141.15
(b1) 3.00 3.00 3.00 4.00 23.00 10.95 18.00 34.50 58.25 120.10
(b2) 3.00 3.00 5.00 11.00 38.40 5.00 7.75 13.50 22.25 52.30
(b3) 4.00 8.00 23.00 50.00 112.00 13.00 60.75 122.50 149.25 157.00
(b4) 4.00 9.00 16.00 36.00 79.50 6.00 20.00 39.00 61.00 126.45
(b5) 3.00 4.00 6.00 9.00 18.00 4.95 8.00 12.50 21.25 53.10

n = 200 and p = 500
(a1) 4.00 4.00 12.00 28.00 92.70 4.95 8.00 12.00 26.75 120.15
(a2) 4.00 4.00 18.00 80.00 196.00 15.85 48.00 84.50 138.25 266.05
(a3) 4.00 5.00 9.00 17.00 56.20 4.00 7.00 12.00 20.50 67.85
(a4) 4.00 4.00 5.00 11.00 25.30 4.00 4.00 5.00 7.00 16.05
(a5) 4.00 8.25 48.00 110.00 244.05 9.95 29.75 61.00 104.25 260.10
(b1) 3.00 3.00 3.00 6.00 31.05 14.90 42.00 75.50 139.75 225.00
(b2) 3.00 3.75 10.50 26.50 109.40 10.00 20.00 38.50 73.25 234.50
(b3) 30.85 95.50 193.50 323.25 411.90 37.00 141.25 248.00 257.00 266.00
(b4) 7.55 19.75 49.00 87.50 180.30 14.95 33.75 77.00 143.00 255.10
(b5) 3.00 5.00 12.00 19.00 42.30 6.00 14.00 26.00 52.00 122.90

than 50% repetitions for the cases (a1)-(a4), (b1), (b2) and (b5). At the same

time, iRF could only achieve it in the cases (a1), (a3) and (a4).

Tables 4.17-4.18 give the proportions that active predictors are selected for

given model sizes d1 and d2. The proposed procedure outpeforms iRF in all (b)

settings. For the settings of (a), the proposed procedure wins the cases (a2) and

(a5), while iRF performs slightly better in (a1) and (a4). In general, iRF performs

much better than DC-SIS in finding active variables that participate in interaction

effects, but still not as good as the proposed procedure.

Tables 4.19 gives the successful selecting rate of interactions for both proce-

dures. The proposed procedure outperforms iRF for all cases. Especially for (b)

settings, iRF totally fails to find the third order interaction, while the proposed

procedure has more than 50% probability to discover them in cases (b1)-(b3) when

p = 200. For (a) settings, the proposed procedure also has a large advantage over

iRF. Since iRF gives a list of all candidate interaction effects with non-zero stabil-
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Table 4.17: Comparison between iKF and iRF for a Settings

iKF iRF
Ps Pa Ps Pa

Model Size X1 X3 X5 X7 all X1 X3 X5 X7 all
n = 200 and p = 200
(a1) d1 0.98 0.97 1.00 0.96 0.92 0.98 0.98 1.00 0.94 0.91

d2 0.99 1.00 1.00 0.99 0.98 0.99 1.00 1.00 0.98 0.97
(a2) d1 0.97 0.86 0.93 0.87 0.71 0.96 0.59 0.99 0.71 0.40

d2 0.99 0.94 0.99 0.92 0.86 1.00 0.81 1.00 0.83 0.68
(a3) d1 0.99 1.00 0.94 1.00 0.93 0.99 1.00 0.94 1.00 0.93

d2 0.99 1.00 0.99 1.00 0.98 1.00 1.00 0.99 1.00 0.99
(a4) d1 1.00 0.98 1.00 1.00 0.98 1.00 0.97 1.00 1.00 0.97

d2 1.00 0.99 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.99
(a5) d1 0.87 0.89 0.87 0.69 0.53 0.87 0.83 0.95 0.50 0.37

d2 0.94 0.97 0.95 0.82 0.73 0.96 0.94 0.99 0.69 0.60
n = 200 and p = 500
(a1) d1 0.83 0.83 1.00 0.83 0.62 0.91 0.90 1.00 0.87 0.70

d2 0.92 0.95 1.00 0.95 0.83 0.96 0.97 1.00 0.90 0.84
(a2) d1 0.82 0.64 0.87 0.77 0.51 0.89 0.30 0.80 0.25 0.07

d2 0.87 0.75 0.95 0.84 0.64 0.97 0.49 0.94 0.41 0.17
(a3) d1 0.97 1.00 0.80 1.00 0.77 1.00 1.00 0.72 1.00 0.72

d2 0.99 1.00 0.90 1.00 0.89 1.00 1.00 0.88 1.00 0.88
(a4) d1 1.00 0.89 1.00 1.00 0.89 1.00 0.96 1.00 1.00 0.96

d2 1.00 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
(a5) d1 0.67 0.73 0.72 0.54 0.31 0.64 0.74 0.83 0.25 0.11

d2 0.82 0.80 0.88 0.61 0.43 0.80 0.85 0.94 0.49 0.33

ity score, the list is much longer than that given by the proposed procedure in all

settings. Therefore, the proposed procedure is not only more accurate, but also

more efficient than iRF in discovering important interaction effects.

To conclude, the proposed procedure outperforms iRF in discovering both the

interaction effects and the marginal unimportant variables that participates in

these interaction effects.

4.3.2.2 Comparisons among Binary Response Settings

In this part, we follow Basu et al. (2018) to conduct the simulation using the

Boolean-type rules settings, and compare the performance of the proposed proce-

dure with iRF. Details of basu’s settings are given as follow.

Instead of normal distribution, we sampled features x = (x1, . . . , xp)
T from
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Table 4.18: Comparison between iKF and iRF for b Settings

iKF iRF
Ps Pa Ps Pa

Model Size X1 X3 X5 all X1 X3 X5 all
n = 200 and p = 200
(b1) d1 1.00 1.00 0.93 0.93 0.80 0.99 0.29 0.26

d2 1.00 1.00 0.97 0.97 0.95 1.00 0.58 0.57
(b2) d1 1.00 0.87 1.00 0.87 1.00 0.73 0.88 0.64

d2 1.00 0.95 1.00 0.95 1.00 0.93 0.97 0.90
(b3) d1 1.00 0.47 1.00 0.47 1.00 0.07 0.98 0.07

d2 1.00 0.65 1.00 0.65 1.00 0.12 1.00 0.12
(b4) d1 0.96 0.97 0.63 0.60 0.88 0.90 0.29 0.22

d2 0.98 0.99 0.79 0.77 0.94 0.97 0.51 0.47
(b5) d1 0.99 0.98 0.99 0.96 0.85 0.89 0.90 0.68

d2 1.00 0.99 1.00 0.99 0.97 0.96 0.96 0.89
n = 200 and p = 500
(b1) d1 0.94 1.00 0.92 0.90 0.62 0.98 0.09 0.07

d2 0.97 1.00 0.97 0.96 0.79 1.00 0.28 0.24
(b2) d1 1.00 0.67 1.00 0.67 1.00 0.41 0.48 0.24

d2 1.00 0.81 1.00 0.81 1.00 0.60 0.73 0.48
(b3) d1 1.00 0.02 0.88 0.02 1.00 0.04 0.74 0.02

d2 1.00 0.08 0.94 0.08 1.00 0.06 0.89 0.06
(b4) d1 0.83 0.88 0.29 0.23 0.75 0.83 0.14 0.07

d2 0.96 0.94 0.54 0.46 0.90 0.95 0.32 0.28
(b5) d1 0.91 0.93 0.86 0.72 0.74 0.72 0.71 0.35

d2 0.97 1.00 0.97 0.93 0.87 0.86 0.86 0.62

independent, standard Cauchy distributions to reflect heavy-tailed data. The bi-

nary responses are generated from three Boolean-type rule settings (OR, AND,

and XOR) as follows:

y(OR) = I{x1 > tOR|x3 > tOR|x5 > tOR|x7 > tOR} (4.5)

y(AND) =
4∏
i=1

I{x2i−1 > tAND} (4.6)

y(XOR) = I{
4∑
i=1

(x2i−1 > tXOR) ≡ 1 (mod 2)} (4.7)

To introduce noise, we swap the labels for 10% of the observations selected

at random. Therefore, the rules in equations (4.5)-(4.7) give rise to non-additive
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Table 4.19: Successful Selecting Rate of Interactions for Continuous Response
Settings

iKF iRF
Model pinter Pinter Model Pinter Model pinter Pinter Model Pinter
n = 200 and p = 200
(a1) 0.77 0.92 0.71 (b1) 0.87 (a1) 0.34 0.94 0.32 (b1) 0.08
(a2) 0.76 0.75 0.58 (b2) 0.67 (a2) 0.46 0.48 0.16 (b2) 0.01
(a3) 0.98 0.76 0.74 (b3) 0.53 (a3) 0.65 0.90 0.56 (b3) 0
(a4) 0.93 0.99 0.92 (b4) 0.15 (a4) 0.82 0.99 0.81 (b4) 0
(a5) 0.64 0.57 0.34 (b5) 0.21 (a5) 0.53 0.33 0.13 (b5) 0.09
n = 200 and p = 500
(a1) 0.73 0.82 0.60 (b1) 0.68 (a1) 0.12 0.84 0.09 (b1) 0
(a2) 0.53 0.73 0.41 (b2) 0.48 (a2) 0.19 0.15 0.02 (b2) 0
(a3) 0.92 0.54 0.51 (b3) 0.16 (a3) 0.62 0.76 0.45 (b3) 0
(a4) 0.80 0.97 0.77 (b4) 0.03 (a4) 0.65 0.96 0.61 (b4) 0
(a5) 0.57 0.45 0.28 (b5) 0.05 (a5) 0.28 0.14 0.04 (b5) 0

main effects that can be represented as an order-4 interaction between the active

features x1, x3, x5 and x7. For the AND and OR models, we set tOR = 3.2 and

tAND = −1 to ensure reasonable class balance (∼ 1/3 class 1 observations). We

set tXOR = 1 both for class balance (∼ 1/2 class 1 observations) and to ensure

that some active features were marginally important relative to inactive features.

Similarly, we compare their performance in selecting important variables and

interaction effects through S, Ps, Pa and Pinter in binary response situation.

Table 4.20: Quantiles of S for Binary Response Settings

S iKF iRF
Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
n = 200 and p = 200
Or4 4.00 4.00 4.00 4.00 6.00 4.00 4.00 4.00 4.00 4.00

And4 4.00 4.00 9.00 21.00 76.75 4.00 4.00 4.00 4.00 4.15
Xor4 27.00 98.00 140.00 171.00 197.55 51.35 112.50 140.00 152.75 160.00
n = 200 and p = 500
Or4 4.00 4.00 4.00 4.00 5.00 4.00 4.00 4.00 4.00 4.00

And4 4.00 4.00 16.00 63.00 301.00 4.00 4.00 4.00 5.00 8.00
Xor4 134.00 278.00 352.00 440.00 482.40 150.60 214.00 228.00 235.00 239.60

Different from the previous simulation results, Table 4.20 shows that iRF out-

performs the proposed procedure in general with respect to minimum model size.

For the setting Or4, both procedures works very well for both p = 200 and p = 500.

iRF works perfectly in the And4 setting, while the proposed procedure has rela-
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tively worse performance. Both procedures don’t work very well in the Xor4

setting.

Table 4.21: Comparison between iKF and iRF for Binary Response Settings

iKF iRF
Model Size X1 X3 X5 X7 Pa Pinter X1 X3 X5 X7 Pa Pinter
n = 200 and p = 200
Or4 d1 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99

d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
And4 d1 0.87 0.85 0.84 0.91 0.70 0.67 1.00 1.00 1.00 1.00 1.00 0.22

d2 0.93 0.93 0.94 0.95 0.87 1.00 1.00 1.00 1.00 1.00
Xor4 d1 0.22 0.22 0.26 0.21 0.02 0.05 0.25 0.24 0.23 0.22 0.01 0.00

d2 0.34 0.33 0.41 0.38 0.07 0.35 0.36 0.34 0.35 0.03
n = 200 and p = 500
Or4 d1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89

d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
And4 d1 0.69 0.76 0.72 0.69 0.52 0.55 0.97 1.00 1.00 1.00 0.97 0.07

d2 0.76 0.83 0.76 0.72 0.55 1.00 1.00 1.00 1.00 1.00
Xor4 d1 0.18 0.10 0.02 0.08 0.00 0.02 0.16 0.08 0.06 0.10 0.00 0.00

d2 0.22 0.12 0.08 0.14 0.00 0.20 0.14 0.14 0.20 0.00

Table 4.21 gives the results of Ps, Pa and Pinter for both procedures. With

respect to Ps and Pa, iRF shows much better performance in the And4 setting.

Both procedures work well under the Or4 setting, and don’t work well for the

Xor4 case. However, when we consider their performance based on the successful

selecting rate of the interaction effect, the proposed procedure still outperforms

iRF more or less in all three settings.

4.4 Real Data Analysis

In this section, we apply the proposed iKF procedure to the early Drosophila em-

bryo data (https://zenodo.org/record/885529#.XMOIVOtKjVo) investigated by

Basu et al. (2018), and compare its performance with iRF in identifying interac-

tion effects. In this data, 7809 genomic sequences are given for evaluating their

enhancer activity. For the response enhancer status, sequences that drive pat-

terned expression in blastoderm (stage 5) embryos were labeled as positive. In

our results, iKF not only identifies most of pairwise TF interactions recovered in

Basu et al. (2018), but also verifies several other important interactions studied
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in related biological literatures(Harrison et al., 2011; Nien et al., 2011; Morán and

Jiménez, 2006). Furthermore, through evaluation based on interactions’ PVIM and

times of repetition, our algorithm identifies the interactions’ structure, and cate-

gorizes them as either dominant TFs or assistant TFs that are nested in dominant

TFs. A best example to demonstrate this is that iKF rediscovers the basic and

crucial role of early regulatory factor Zelda (Zld) in timing zygotic gene activation

and promoting robust expression, and identify about ten interactions between Zld

and other TFs nested in Zld. Also, we identify twi as a dominant variable, whose

importance is also discussed in Stathopoulos et al. (2002), Markstein et al. (2004),

Zeitlinger et al. (2007) and many other literatures.

4.4.1 Background of the Early Drosophila Embryogenesis

Precisely regulated spatio-temporal gene expression is crucial for the development

in multi-cellular organisms. In this process, enhancers play a critical role through

coordinating combinatorial transcription factor(TF) binding. Their integrated ac-

tivities lead to patterned gene expression during embryogenesis(Levine, 2010). One

of the best-studied developmental embryogenesis cases is the Drosophila embryo

in which TF hierarchies act to pattern and subdivide the embryo along the antero-

posterior (AP) and dorsoventral (DV) body axes. In the early Drosophila embryo,

about 40 TFs drive patterning(Rivera-Pomar and Jackle, 1996), and therefore pro-

vide a valuable test case for evaluating the performance of iKF in modelling the

relationship between TF binding and enhancer status.

The zinc-finger protein Zelda (Zld) plays a key role as an early regulatory factor

in timing zygotic gene activation and promoting robust expression. When lacking

maternal expression of Zld in early embryos, expression profiling studies revealed

that about 70% of the genes normally activated between 12 hrs of development

were strongly down-regulated and never recover, including many genes related to

cellularization, sex determination, and dorsal patterning(Liang et al., 2008). That

is, these genes are variables nested in Zld. However, in the absence of Zld, some

genes involved in ventral patterning, for example twi, was just temporally delayed,

but later recovered by nuclear cycle (nc) 14. To be more specific, 44% of these

genes were down-regulated in lower level zld and 19% of them were bound by Zld,
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indicating that Zld activates many of the newly transcribed genes, both directly

and indirectly.

Zld regulates the expression through binding target genes of the key patterning

factors destined to be expressed in the blastoderm embryo. Nien et al. (2011)

points out that Zld binds to 72% of the Bcd targets, 70% of the Cad targets, and

80% of the tll targets. About 50% overlap was observed between Zld targets and

gap gene (Hb, Gt, Kr, Kni) targets. Also, Zld regulates the expression through

orchestrating the timing within the segmentation gene network. For example,

transcripts of gap genes gt and tll were detected at nc 10 in wild-type embryos,

while transcripts of gap genes kni, Kr and hb were not observed until nc 1112. In

lack of zld, embryos initial transcription of all five gap genes was delayed by 12 nc.

In addition, their patterns were significantly disrupted, which can be explained in

part by miscued gap gene interactions.

The TF twi is also widely studied in the literatures. At the core of the dorsoven-

tral patterning network are Dorsal and the products encoded by two of its earliest

target genes, Twist(twi) and Snail. Twist functions as a basic helix-loophelix

(bHLH) activator, and is very essential for specifying the ventral neurogenic ecto-

derm. At least half of the tissue-specific enhancers that are regulated by different

levels of Dorsal also contain binding sites for twi (Stathopoulos et al., 2002; Mark-

stein et al., 2004).

4.4.2 Analysis Results and Comparison

The proposed iKF procedure is conducted to analyze the early Drosophila embryo

data for selecting interactions. In this analysis, we set the tree depth d = 4,

forest size nt = 200 and the length of output interaction lists ntop = 50. When

constructing a tree, we search mtry = [p/3] variables for each node, nquantile = 7

quantile positions for splitting each variable and stop splitting a node if the number

of observations in it is less than snode = 3. In the corresponding analysis results of

iRF, Basu et al. (2018) gave the top 20 pairwise TF interactions, among which 16

interactions are already verified in related biological literatures. In our analysis, we

successfully identify 14 pairwise interactions out of the 16 verified interactions, and

2 pairwise interactions out of the 4 unverified interactions. All overlapped pairwise
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interactions are shown in the Table 4.22. This significant overlap (80%) illustrates

the powerful capability of iKF in identifying influential interaction effects.

Table 4.22: Pairwise TF Interactions Recovered by Both iRF and iKF

Interaction (S) References

(Gt, Zld) Harrison et al. (2011); Nien et al. (2011)
(Twi, Zld) Harrison et al. (2011); Nien et al. (2011)
(Gt, Kr) Kraut and Levine (1991); Struhl et al. (1992);

Capovilla et al. (1992); Schulz and Tautz (1994)
(Gt, Twi) Li et al. (2008)
(Kr, Twi) Li et al. (2008)
(Kr, Zld) Harrison et al. (2011); Nien et al. (2011)
(Bcd, Gt) Kraut and Levine (1991); Eldon and Pirrotta (1991)
(Bcd, Twi) Li et al. (2008)
(Hb, Twi) Zeitlinger et al. (2007)

(Med, Twi) Nguyen and Xu (1998)
(Med, Zld) Harrison et al. (2011)
(Hb, Zld) Harrison et al. (2011); Nien et al. (2011)
(Bcd, Kr) Hoch et al. (1991); Hoch et al. (1990)
(Bcd, Zld) Harrison et al. (2011); Nien et al. (2011)
(D, twi) -

(Gt, Med) -

Furthermore, iKF also identifies some other interaction effects that are not

recovered in iRF. Four of them that are verified by the biological literatures are

given in the Table 4.23. Among them, Harrison et al. (2011) and Nien et al. (2011)

showed that Kni, Ftz and Cad are TFs regulated by Zld, and therefore form three

pairwise interactions together with Zld. The forth selected interaction, (Zld, Kni,

Tll), is a third-order interaction. As Morán and Jiménez (2006) points out, tll

is a strong repressor of gap genes and becomes less expressed in the lack of Zld,

hence the ectopic expression of kni can likewise be explained by the delay in tll

expression in Zld−.

After identifying pairwise interactions, iKF can further identify the interac-

tions’ structure, and categorize the interactions’ participating variables as either

dominant TFs or assistant TFs that are nested in dominant TFs. As shown in

the Table 4.24, pairwise interactions between five gap gene expression TFs and

Zld are all selected in both direction under the similar pattern. That is, if Zld is
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Table 4.23: TF Interactions Recovered only by iKF

Interaction (S) References

(Kni, Zld) Harrison et al. (2011); Nien et al. (2011)
(Ftz, Zld) Harrison et al. (2011); Nien et al. (2011)
(Cad, Zld) Harrison et al. (2011); Nien et al. (2011)

(Zld, Kni, Tll) Nien et al. (2011); Morán and Jiménez (2006)

Table 4.24: Interaction and Nested Effects between Zld and Other TFs

Layer 1 Layer 2 Repetition Sum of PVIM Average PVIM

Gap Gene Expression TFs Nested in Zld
Zld Kni 69 3.166 0.0459
Kni Zld 15 3.011e-15 2e-16
Zld Bcd 6 0.2142 0.0357
Bcd Zld 48 5.024e-15 1.047e-16
Zld Gt 5 0.1022 0.0204
Gt Zld 27 3.011e-15 1.115e-16
Zld Kr 11 0.1165 0.0106
Kr Zld 29 2.970e-15 1.024e-16
Zld Tll 4 0.0522 0.0131
Tll Zld 29 2.359e-15 8.134e-17

Anteroposterior Patterning TFs Nested in Zld
Zld Ftz 29 0.9998 0.0345
Ftz Zld 27 3.081e-15 1.141e-16
Zld Cad 5 0.1030 0.0206
Cad Zld 14 1.346e-15 9.614e-17

Interaction between Zld and Twi (Expressed in Ventral-most Region)
Zld Twi 22 0.7098 0.0323
Twi Zld 33 0.2961 0.0090

selected as the “King” variable and splitted in the root node, the average PVIM

of all five interactions are larger than 0.01. Considering the response is binary

and the corresponding evaluation criterion is misclassification rate, 0.01 is a very

large importance measure. At the same time, if any of the gap gene expression

TFs, say Bcd, is selected as the “King”, its interaction with Zld will still stand

out because of the high repetition. However, the corresponding average PVIM is

amost 0. That pattern means, if Zld is not splitted before the gap gene expression

TFs, their interactions are rarely modelled in the tree. Therefore, we can conclude
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that Zld is a dominant variable interactions, while all five gap gene expression TFs

are assistant variables nested in Zld. Table 4.24 also shows that the anteroposte-

rior patterning TFs, Cad and Ftz, also have the similar interaction pattern with

Zld. The discovery of this interaction pattern surrounding Zld is already verified

in the previous section, in which we briefly review how Zld regulates the expression

through binding target genes of the key patterning factors destined to be expressed

in the blastoderm embryo.

Also, from the Table 4.24 we discover that the TF Twi has a different interaction

pattern with Zld. The average PVIM in both dirrection are significantly larger

than 0. Therefore, they are not nested in each other. That discovery is also partly

discussed in the previous part that twi was just temporally delayed, but later fully

recovered by nuclear cycle (nc) 14 in the absence of Zld.

Table 4.25: Kings, Kings’ Average PVIM and Their Roles in the Mechanism

King Depth=1 Depth=2 Depth=3 Depth=4 Role
Kni -4.774e-17 -3.525e-17 9.714e-19 2.220e-18 Assistant Variable
Twi -2.318e-17 2.170e-02 5.783e-03 5.891e-03 Dominant Variable
Zld -4.163e-19 2.959e-02 1.176e-02 1.554e-02 Dominant Variable
Bcd 2.359e-18 3.747e-18 -1.776e-17 1.207e-17 Assistant Variable
Cad 1.388e-18 1.110e-17 -6.106e-18 -2.082e-18 Assistant Variable
Gt -4.163e-18 -4.580e-18 7.910e-18 4.996e-18 Assistant Variable
Kr 1.568e-17 -4.996e-18 -1.429e-17 3.303e-17 Assistant Variable
Tll -5.829e-18 2.109e-17 -1.388e-18 -1.284e-17 Assistant Variable
Ftz -4.857e-18 -3.747e-18 1.207e-17 -2.193e-17 Assistant Variable

Table 4.25 lists all the 9 TFs that are selected as “King” and their average

PVIM during the “Iteratively Kings’ Forest” proceduce. When depth is 1, all of

them have average PVIM around 0, which means they all have no marginal effect

on the response. When the depth increases to 2, the average PVIMs of both Zld

and Twi increase to more than 0.02, which means they are dominant variables

participating in some pairwise interactions. At the same time, the other 7 TFs

still have average PVIM around 0. That means they are not only nested in Zld,

but also play no role as dominant variables in other potential interactions. When

the depth increases to 3 or 4, the average PVIMs of Zld and Twi don’t increase any

more, which means there are no very important interactions with order larger than
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or equal to 3. As pointed out in the supporting information appendix of Basu et al.

(2018), the high-order interactions related to the Drosophila embryo embryogenesis

have only been studied in a small number of select cases, most notably eve stripe

2(Levine, 2013). These limited cases are not sufficient to conduct a comprehensive

analysis of the high-order interactions.



Chapter 5
Multidimensional Economic

Dispersion Index and Application

The Gini index depicts the degree of social inequality with respect to income or

wealth, which is definitely an important aspect of social resources. However, so-

cial inequality is not equivalent to the income inequality. It is about inequalities

of many aspects such as asset, welfare, public service and education expenditure.

When considering a more comprehensive inequality measurement, the Gini index

is no longer applicable because its definition is constrained to a single dimension.

To evaluate multi-dimensional data, we should first use some algorithms(for ex-

ample principal component analysis) to compress them into one dimension, then

the Gini index can be calculated. When there is more than one dimension, the

main difficulty of a direct generalization for Gini Index is the non-existence of the

inverse function if we treat the cumulative proportion of resources as a function

of the cumulative proportion of people. In this chapter, we solve this problem

by treating the cumulative proportion of people as a function of the cumulative

proportion of resources, and propose multi-dimensional economic dispersion in-

dex (MEDI), a natural extension of Gini Index for multi-dimensional resources.

The Gini index is equivalent to the MDEI for one-dimensional resource. Since

MEDI could comprehensively evaluate the social inequality level with respect to

diverse economic aspects as a whole, it could be a more suitable reference index

when studying some complex economic issues. Furthermore, based on this multi-

dimensional definition, some other measures, for example Boferroni, may also be
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generalized to multi-dimensional cases.

5.1 Multidimensional Economic Dispersion In-

dex

5.1.1 The Re-formulation of Gini Index

The initial Gini index is defined as shown in Fig 2.1. The horizonal and vertical

axes are the cumulative proportions of population and corresponding income, re-

spectively. Denote the income as random variable X. Let F (t) be the cumulative

distribution function (cdf) for X, and L(t) be the cumulative income proportion,

which means the proportion in the total income concerning the people whose in-

comes are less than or equal to t,

L(t) =
1

µ

∫ t

0

xdF (x) =
1

µ

∫ t

0

xf(x)dx, (5.1)

where µ =
∫∞

0
tf(t)dt. Both F (t) and L(t) take values in the interval [0, 1]. The

Lorenz curve is formed by these points (F (t), L(t)), t ∈ [0,∞] in the unit square

[0, 1]⊗ [0, 1] and can be represented as an implicit function L(p),

y = L(p) :

{
p = F (t)

y = L(t)
, (5.2)

where p and y are the cumulative proportions for people and income, respectively.

If the random variable is discrete with the probability mass function f(ti), i =

1, 2, ...,m and finite mean µ = Σtif(ti) <∞, the index can be computed as (5.3),

as shown in (Gini, 1912, 2005, 1921),

Gini =
1

2µ
Σm
i=1Σm

j=1f(ti)f(tj)|ti − tj|. (5.3)

When the population is represented by a continuous probability density func-

tion (pdf) f(t) with cdf F (t) and finite mean µ < ∞, the Gini index can be
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computed by (5.4),

Gini =

∫ 1

0

L(p)dp =
2

µ

∫ ∞
−∞

t[F (t)− 1

2
]f(t)dt. (5.4)

The Gini index can be formulated as the integral shown in (5.4). This definition

is suitable for just one dimension because we can obtain the implicit function L(p)

when dimension is one. Now consider the multidimensional case. We first consider

the two-dimensional case, let t1, t2 and F (t1, t2) denote the income, expenditure

and their joint cdf, respectively; it is difficult to obtain the implicity function be-

cause there are two independent variables. Hence we cannot expand the index

definition to 2 or greater dimensions with the framework of the Gini index. There-

fore, an alternative formulation must be taken to achieve the generation. In order

to introduce the idea of this new framework, we first re-formulated the Gini index.

In the Figure 5.1, we exchange the vertical and horizontal axes of Figure 2.1 and

let F(y) denote the implicity population proportion function (IPPF) determined

by the point (L(t), F (t)),

π = F(y) :

{
π = F (t)

y = L(t)
. (5.5)

F(y) describes the cumulative population proportion p associated with the cumu-

lative income percentage y, i.e., the proportion of the people whose cumulative

income amounts the y percent in the total income. F(y) = F (t) because both of

them represent the same cumulative probability with different domains on [0, 1]

and R. Actually, since F (t) and L(t) are both strictly ascending functions, t one-

to-one corresponds to y in (5.1).

Note that SB in Figure 5.1 is now located in the upper-left part, so the Gini

index can also be derived as,

Gini = 1− 2SB = 1− 2(1−
∫ 1

0

F(y)dy) = 2

∫ 1

0

F(y)dy − 1. (5.6)

The equation (5.6) is equivalent to (5.4), which has been interpreted in the Figures

2.1 and 5.1. However, this equation provides an alternative formulation of Gini

index.
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Figure 5.1. An alternative formulation of Lorenz Curve and Gini index

5.1.2 The Definition of Two Dimensional MEDI

In this section, we generalize the definition of the Gini index into MEDI with the

same framework. For simplicity, we first consider the two-dimensional case. Let

F (t1, t2) denote the joint cdf of the random variables income and expenditure. The

joint IPPF F(y1, y2) associated with the cumulative income percentage y1 = L1(t1)

and expenditure percentage y2 = L2(t2) can be derived. The joint population pro-

portion means the population proportion simultaneously satisfies two conditions;

the income and expenditure equal to the percentages of y1 and y2 in the total
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income and expenditure, respectively. The joint IPPF can be viewed as,

π = F(y1, y2) :


π = F (t1, t2),

y1 = L1(t1) = 1
µ1

∫ t1
−∞

∫∞
−∞ x1dF (x1, x2),

y2 = L2(t2) = 1
µ2

∫ t2
−∞

∫∞
−∞ x2dF (x1, x2),

(5.7)

where µ1 and µ2 are the means of the t1 and t2, respectively. In this framework,

the percentage L1 is proportional to the function on t1, so does L2 on t2. The

function F(y1, y2) shares the same value with F (t1, t2) as t1 and t2 correspond to

the percentages y1 and y2, respectively.

The two dimensional MEDI(2) can be defined using the following equation

(5.8),

MEDI(2) =

∫ 1

0

∫ 1

0

F(y1, y2)dy1dy2, (5.8)

With this definition, we cannot obtain the close formulation as shown in (5.4)

directly related to the (t1, t2) because the implicity function F(y1, y2) as well as the

functions L(t1) and G(t2) may be complex with respect to different joint cdfs. We

can only transform the joint cdf into the joint IPPF with the percentages y1 and y2,

then use the original multidimensional Lorenz Curve to complete the generation

of MEDI to multi dimension.

From the geometric interpretation of the Gini index, MEDI2 can be viewed

as the volume which is under the curve of F(y1, y2) in the unit cube. MEDI is

obviously the extension of the Gini index. When it is constrained to one dimen-

sion, MEDI, according to (5.6), is equivalent to the Gini index with the following

transformation,

Gini = 2 ∗MEDI− 1. (5.9)

In this paper, such transformations as (5.9) will not be introduced any more be-

cause both indices can equivalently measure the degrees of the economic inequali-

ties in income, consumption, wealth, etc. Only the definition (5.8) directly formu-

lated with integration will be used for the simplicity of notation and derivations.
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5.1.3 Multidimensional MEDI

We can also introduce the definition of MEDI to multivariate cases. Considering

a multiple economic vector X = (X1, X2, ...., Xp)
T , if the joint cdf of the vector

is given by F (t1, t2, ..., tp) and the marginal cdf for the jth component is Fj(tj)

accordingly, we can obtain the joint IPPF by (5.10)

π = F(y1, y2, ..., yp) :

 π = F (t1, t2, ..., tp),

yj = Lj(tj) = 1
µj

∫ tj
−∞ xjdFj(xj), j = 1, 2, ..., p,

(5.10)

where µj represents the mean of the jth component and yj represents the cumu-

lative percentage at the point tj in the sum for jth component. The multivariate

definition of the MEDI can be obtained by (5.11),

MEDI(p) =

∫
[0,1]

⊗
p

F(y1, y2, ..., yp)dy1dy2...dyp, (5.11)

where [0, 1]
⊗
p means the Cartesian Product of p intervals [0, 1] in Rp.

Instead of solely focusing on income or wealth of the Gini index, MEDI can

capture more information when it is applied to measured the social inequality.

It integrates diverse resources and considers the relations between the resources.

Therefore, MEDI is more suitable for investigating complex economic issues, espe-

cially those containing numerous variables. Now we will investigate some properties

of MEDI with some conditions.

Remark 1: If the social resource vector x can be divided into m sub-vectors

x = (x1,x2, ...,xm)T , each xl has kl components l = 1, 2, ...,m,
∑m

l=1 kl = p,

and these m sub-vectors are mutually independent, then the MEDI for the social

resource vector can be composed of the product of the MEDIs for all the sub-

vectors, i.e.,

MEDI(p) = Πm
l=1MEDI

(kl)
l . (5.12)

Especially, if the p components of the vector are mutually independent, the equa-

tion (5.12) will be rewritten as follows,

MEDI(p) = Πp
j=1MEDIj. (5.13)
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This property is easy to interpret and understand. Since the cdf for the vector can

be rewritten as the product of the cdfs for the sub-vectors, the marginal IPPF for

each sub-vector can be defined as (5.14),

πl = Fl(yl) :

 πl = Fl(tl), l = 1, 2, ...,m,

yj = 1
µj

∫ tj
−∞ xjdFj(xj), j = kl−1 + 1, ..., kl.

(5.14)

where yl = (ykl−1+1, ykl−1+2, ..., ykl)
′, tl = (tkl−1+1, tkl−1+2, ..., tkl)

′ and k0 = 0. Hence

the IPPF and MEDI can also be rewritten accordingly,

F(y1, y2, ..., yp) =
m∏
l=1

Fl(yl), (5.15)

MEDI(p) =
m∏
l=1

∫
[0,1]

⊗
kl

Fl(yl)dyl =
m∏
l=1

MEDI
(kl)
l . (5.16)

Remark 1 discloses the property of MEDI with independence. In addition, the

following remarks explore some extreme cases of MEDI.

Remark 2: If the components are identical and independent(i.i.d) with the same

marginal cdf FM(t), we can derive the IPPF FM(y) by (5.5) and MEDI can be

simplified as,

MEDI(p) = (MEDI)p. (5.17)

Especially, if each social resource is in the absolutely equal condition, FM(yj) = yj

and the MEDI will be (1
2
)p which is the lower bound of MEDI.

Remark 3: If the resources are identical and definitely correlated with the marginal

cdf FM(t), the joint cdf will be minj=1,2,...,p FM(tj). We can infer from (5.10) that

the joint IPPF is consistent with the smallest value among the marginal IPPF

FM(yj), j = 1, 2, ..., p, i.e.,

F(y1, y2, ..., yp) = min
j=1,2,...,p

{FM(yj)}. (5.18)

Thus, the MEDI will be

MEDI(p) =

∫
[0,1]

⊗
p

min
j=1,2,...,p

{FM(yj)}dy1...dyp. (5.19)
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Especially, if each resource lies in absolutely equal condition, MEDI reaches the

lower bound at 1
p+1

.

MEDI(p) =

∫
[0,1]

⊗
p

min
j=1,2,...,p

{yj}dy1...dyp =
1

p+ 1
. (5.20)

From the formulations (5.14)-(5.20), we can derive that MEDI takes value in

the interval [(1
2
)p, 1] instead of the interval [0, 1] of the Gini index. MEDI takes

the value (1
2
)p with the mutual independence and absolute equality on each social

resource, and MEDI takes 1 if all the resources are processed by only one person.

5.2 The Empirical MEDI and Its Statistical Prop-

erties

5.2.1 The Definition of Empirical MEDI

In the previous section, the definition of MEDI has been theoretically put for-

ward and explained. In this section, we mainly discuss the empirical MEDI with

statistical samples.

Suppose the n samples of the economic vector X have been obtained and de-

noted by the sample data matrix X,

X =



x11, x12, ..., x1p

x21, x22, ..., x2p

......

xn1, xn2, ..., xnp


. (5.21)

The empirical joint cdf of X is given by (5.22),

π̂ = F̂n(t1, t2, ..., tp) =


1
n

∑n
i=1

∏p
j=1 1(−∞,tj)(xij)

0, otherwise
(5.22)

where 1A is the indicator of event A. For a fixed tj, the indicator for 1(−∞,tj)(xij)
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equals 1 if the ith sample value on jth component xij ≤ tj, hence the product∏P
j=1 1(−∞,tj)(xij) equals 1 if the conditions xi1 ≤ t1, xi2 ≤ t2, ..., xip ≤ tp are

simultaneously satisfied.

The empirical IPPF F̂n(yn,1, yn,2, ..., yn,p) is defined by the equation (5.23) with

respect to the sample marginal component percentages ŷj of the vector,

π̂ = F̂n(ŷ1, ŷ2, ..., ŷp) :


π̂ = F̂n(t1, t2, ..., tn)

ŷj = L̂nj(tj) = 1
nµ̂j

∑n
i=1 xij1(−∞,tj)(xij),

j = 1, 2, ..., p,

(5.23)

where µ̂j is the sample mean of the jth component of the vector,

µ̂j =
1

n

n∑
i=1

xij, j = 1, 2, ..., p. (5.24)

In order to calculate the value of empirical MEDI with samples, we firstly deter-

mine the values of the web nodes formed by the samples. For the jth component,

let x(i)j, i = 1, 2, ..., n denote the ascending order sample values of the data matrix

X,

x(1)j ≤ x(2)j ≤ . . . ≤ x(n)j, j = 1, 2, ..., p.

All these ascending samples formed the web nodes in Rp. We can obtain the

empirical percentage ŷi,j on each node with the predefined equation (5.23),

ŷi,j = L̂nj(x(i)j)

∆yi,j = ŷi,j − ŷi−1,j, i = 1, 2, ..., n,
(5.25)

where y0,j = 0 for j = 1, 2, ..., p. Hence, we can get a grid formed by np nodes

(ŷi1,1, ŷi2,2, ..., ŷip,p) in p-dimensional cubic space [0, 1]
⊗
p.

The empirical IPPF values on the nodes F̂n(ŷ1,j1 , ŷ2,j2 , ..., ŷp,jp) can be used

to calculate the empirical MEDI M̂. Substitute the equations (5.22)-(5.25) into

(5.11) and we can propose an algorithm to calculate the empirical p dimensional
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M̂
(p)

as shown in (5.26),

M̂
(p)

=
n∑

i1=1

· · ·
n∑

ip=1

F̂n(ŷi1,1, ŷi2,2, ..., ŷip,p)∆yi1,1 · · ·∆yip,p. (5.26)

5.2.2 The Simplification of Empirical MEDI

As shown in equations (5.12)-(5.20), the algorithms to achieve M̂
(p)

can also be

simplified with different conditions of data,

Case 1: If the social resource vector x can be divided into m sub-vectors x =

(x1,x2, ...,xm)T and these m sub-vectors are mutually independent, the empirical

MEDI can be composed of the product of the empirical MEDIs for the sub-vectors,

M̂
(p)

=
m∏
l=1

M̂
(kl)

l , (5.27)

where M̂
(kl)

l is the empirical MEDI for the lth sub-vector with kl components.

M̂
(kl)

l =
n∑

ikl−1+1=1

· · ·
n∑

ikl=1

F̂n,l(ŷl)∆ŷikl−1+1,kl−1+1 · · ·∆ŷikl ,kl , l = 1, 2, ...,m (5.28)

where k0 = 0, ŷl = (ŷikl−1+1,kl−1+1, ŷikl−1+2,kl−1+2, ŷikl ,kl)
′ and F̂n,l(·) is the marginal

empirical IPPF with the marginal empirical cdf F̂n,l(tl) for the lth sub-vector,

F̂n,l(ŷl) =


F̂n,l(yl) = F̂n,l(tl),

ŷj = L̂n,j(tj) = 1
nµ̂j

∑n
i=1 xij1(−∞,tj)(xij)

j = kl−1 + 1, ..., kl, l = 1, 2, ...,m.

(5.29)

Especially if the components of the vector are mutually independent, the empirical

MEDI can be obtained by (5.30),

M̂
(p)

=

p∏
j=1

M̂j =

p∏
j=1

n∑
i=1

F̂nj(ŷi,j)∆yi,j, (5.30)

where F̂nj(·) is the marginal empirical IPPF for the jth component, j = 1, 2, ..., p.
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Case 2: If all the components of the vector are identical and independent, denote

the marginal empirical cdf and IPPF with F̂nM(t) and F̂nM(y), respectively, and

then the p-dimensional MEDI can be simplified as,

M̂
(p)

= (
n∑
i=1

F̂nM(ŷi,j)∆yi,j)
p. (5.31)

From (5.12), (5.15) and (5.20), we can conclude that the MEDI for the social

resource vector can be formulated as the product of the MEDIs for the sub-vector

or components with the condition of independence. This property provides a pos-

sibility to reduce the complexity of MEDI. If we can ensure that the resources are

independent, we can calculate the MEDI for each resource separately and combine

them to form the MEDI for the resource vector.

5.2.3 The Statistical Consistence of MEDI

The MEDI enjoys good statistical properties. We can also prove that the empirical

M̂ converges to the MEDI under some wild assumptions.

Theorem 1 Suppose the joint cdf F (x1, x2, ..., xp) is a continuous function on each

component variable and the mean µj for each component is finite, the empirical

M̂ defined by (5.26) will converge to the MEDI, almost surely.

Denote Θ(F) =
∫

[0,1]
⊗

p F(y)dy1dy2...dyp and apply the mean value theorem

and we would have equation (5.32),

M̂
(p)
−MEDI(p) = Θ(F̂n)−Θ(F) = F̂n(t)−F(t), (5.32)

where t is a fixed vector in (0, 1)
⊗
p. According to the central limit theorem, we

have
F̂n(t)−F(t)√
F̂n(t)(1− F̂n(t))/n

→ N(0, 1), as n→∞, (5.33)

For a specified significance level α, we can obtain,

P (|M̂
(p)
−MEDI(p)| ≤ Zα

2
δn) = 1− α, (5.34)

where Zα
2

is the α
2

right quantile for the standard Gaussian distribution and δn is
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the standard error of M̂
(p)

,

δn =

√
F̂n(t)(1− F̂n(t))

n
=

√
M̂

(p)
(1− M̂

(p)
)

n
. (5.35)

Therefore we can give the (1 − α) level confidence interval of MEDI with M̂
(p)

,

(M̂
(p)
− Zα

2
δn, M̂

(p)
+ Zα

2
δn),

5.2.4 Proof of Theorem1

Proof: Because the joint empirical IPPF F̂n(ŷ1, ŷ2, ..., ŷp) and joint empirical cdf

F̂n(t1, t2, ..., tp) have the same statistical properties except for the different domains,

we mainly consider the convergence of the joint empirical cdf F̂n(t1, t2, ..., tp).

The proof of the theorem can use the Glivenko-Cantelli theorem. For simplicity,

we consider the case of continuous random for each vector component. Fix −∞ =

Ti,0 < Ti,1 < · · · < Ti,mi =∞ such that,

F (t1, ..., ti−1, Ti,j, ..., tp)− F (t1, ..., ti−1, Ti,j−1, ..., tp) =
1

mi

, (5.36)

for i = 1, 2, .., p and j = 1, 2, ...,mi. Now for any ti ∈ R, there exists j ≤ mi such

that ti ∈ [Ti,j−1, Ti,j]. Note that

F̂n(t1, ..., ti, ..., tp)− F (t1, ..., ti, ..., tp) ≤

F̂n(t1, ..., Ti,j, ..., tp)− F (t1, ..., Ti,j, ..., tp) + 1
mi

F̂n(t1, ..., ti, ..., tp)− F (t1, ..., ti, ..., tp) ≥

F̂n(t1, ..., Ti,j−1, ..., tp)− F (t1, ..., Ti,j−1, ..., tp)− 1
mi

. (5.37)

Therefore, almost surely,

‖ F̂n − F ‖∞= supt∈Rp |F̂n(t)− F (t)| ≤
∑p

i=1
1
mi

+∑p
i=1 maxji∈{1,...,mi} |F̂n(T1,j1 , ..., Ti,ji , ..., Tp,jp)− F (T1,j1 , ..., Ti,ji , ..., Tp,jp)|.

.(5.38)

Since maxj∈{1,2,...,mi} |F̂n(t1, ..., Ti,j, ..., tp) − F (t1, ..., Ti,j, ..., tp)| → 0 a.s. by the
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strong law of large numbers, for any m = (m1,m2, ...,mp)
T we can find N such

that for all n > N ,

‖ F̂n − F ‖∞≤
p∑
i=1

1

mi

a.s., (5.39)

which guarantees the almost sure convergence of F̂n.

On one hand, since F̂n converges to F almost surely, the empirical joint IPPF

F̂n(ŷ) is the strictly monotone map of F̂n, hence also converges to F(y), a.s.. On

the other hand, the empirical MEDI is the Riemann sum of the empirical IPPF,

which will almost surely converges to the integration of the IPPF as the sample

size increase to infinity.

M̂
p
→MEDIp a.s.. (5.40)

5.3 Simulation Studies

In this section, some simulations of MEDI will be shown. The main purpose of the

simulation studies is to explore the consistency as well as the influential factors

of the empirical MEDI. For computational simplicity, we only consider the p = 2

case. The simulation could be generalized to the p-dimensional case easily. We

vary the distribution types, distribution skewness, distribution standard error σ

and the correlation ρ between the two resources to examine their impact.

Let x and y denote the first and second resources, respectively. In our simula-

tion, we set the sample size n = 1000 and consider different distribution assump-

tions. In each simulation, we conduct 1, 000 Monte Carlo replications to obtain

the average MEDIs as well as the standard errors listed in the brackets.

Simulation 1: We conduct this simulation under four different settings of two

resources: (1) Both resources are from uniform distribution: x ∼ U(x0− r, x0 + r),

y ∼ U(y0 − r, y0 + r), where x0 = 5 and y0 = 3 are given constants, and r is the

radius of the interval. The correlation coefficient ρ of two resources is set as 0

or 1. (2) The first distribution is log-normal log(x) ∼ N(µ0, σ
2) and the second

distribution is uniform, y ∼ U(0, 2), where µ0 = 2 and σ0 = 1. x and y are assumed

to be independent. (3) log(x) ∼ N(µ0, σ
2) and log(y) ∼ N(µ0, σ

2), where µ0 = 2

and σ0 = 1. (4) Introduce the Box-Cox transformation a(λ) = aλ
λ

related with five

different values of positive λ on log(x(λ)) ∼ N(µ0, σ
2
0) and log(y(λ)) ∼ N(µ0, σ

2
0),
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where µ0 = 2, σ0 = 1.

In these settings, we examine the consistency of the empirical MEDI under

different conditions such as the extreme cases, different distributions and skewness

degrees. In the first setting, the extreme cases of absolutely equality situations

with independent and linear dependent variables are explored. For the second and

third settings, empirical MEDIs under different distributions and variances are

computed. Furthermore, the distributions with high skewness are also examined

in forth setting.

Table 5.1: The MEDIs for simulation 1
(1) r 0.001 0.01 0.05 0.25 1

Uniforms MEDI(2) 0.2500 0.2504 0.2522 0.2612 0.2963

ρ = 0 M̂
(2)

0.2504 0.2506 0.2526 0.2611 0.2968
(S.E.) (0.0017) (0.0026) (0.0026) (0.0027) (0.0028)

Uniforms MEDI(2) 0.3334 0.3338 0.3356 0.3446 0.3800

ρ = 1 M̂
(2)

0.3335 0.3340 0.3355 0.3450 0.3801
(S.E.) (0.000006) (0.000007) (0.00003) (0.0002) (0.0007)

(2) σ σ0/2 σ0/
√

2 σ0

√
2 ∗ σ0 2 ∗ σ0

Uniform & MEDI(2) 0.4254 0.4610 0.5068 0.5609 0.6142

Log-normal M̂
(2)

0.4259 0.4619 0.5070 0.5609 0.6131
(S.E.) (0.0041) (0.0049) (0.0058) (0.0072) (0.0088)

(3) σ σ0/2 σ0/
√

2 σ0

√
2 ∗ σ0 2 ∗ σ0

Log-normal & MEDI(2) 0.4072 0.4781 0.5780 0.7079 0.8488

Log-normal M̂
(2)

0.4077 0.4782 0.5783 0.7064 0.8454
(S.E.) (0.0037) (0.0049) (0.0073) (0.0113) (0.0161)

(4) λ 0.1 0.3 0.5 1.5 2

Box-Cox MEDI(2) 0.2789 0.3411 0.4073 0.7320 0.8488

Transformed M̂
(2)

0.2797 0.3411 0.4077 0.7290 0.8452
Log-normals (S.E.) (0.0025) (0.0026) (0.0035) (0.0099) (0.0129)

The results of simulation 1 are listed in Table 5.1. It shows that the M̂
(2)

ap-

proaches theoretical MEDI(2) in all given situations including different distribu-

tions, variance and skewness. That is, the empirical MEDI is an efficient estimator

of real MEDI, therefore it is an effective evaluator to the inequality of the social

resources.

In the following simulation, the empirical MEDI will be used to investigate the

statistically influential factors of the social inequalities.
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Simulation 2: We conduct this simulation under different assumptions of the

distributions of the resources: (1) Both the distributions of the first and second

resources are uniform x ∼ U(x0 − r, x0 + r), y ∼ U(y0 − r, y0 + r), where x0 = 5

and y0 = 3. The correlation coefficient ρ of the two resources is either 0 or 1. (2)

The first distribution is log-normal log(x) ∼ N(µ0, σ
2) and the second distribution

is uniform, y ∼ U(0, 2), where µ0 = 2 and σ0 = 1. x and y are independent. The

variance of the second distribution varies. (3) log(x) ∼ N(µ0, σ
2
0) and log(y) ∼

N(µ0, σ
2
0), where µ0 = 2 and σ0 = 1, ρ varies from −1 to 1. (4) log(x) ∼ N(µ0, σ

2)

and log(y) ∼ N(µ0, σ
2), where µ0 = 2. The standard errors σ of both resources

vary. (5) Box-Cox transformation related with λ is introduced to log(x(λ)) ∼
N(µ0, σ

2
0) and log(y(λ)) ∼ N(µ0, σ

2
0), where µ0 = 2, σ0 = 1 and a(λ) = aλ

λ
.

We examine the extreme cases under the first setting because both resources

are almost distributed in the absolutely equal situations. Resources for every one

just vary around a fixed value’s neighborhood. We vary the radius r to examine its

effect on the MEDI in condition of the correlations ρ = 1 and ρ = 0. Besides, we

explore the effect of varying the standard error of one resource on MEDI under the

second assumption. In this case, the distribution of y is fixed, and the standard

error σ of x varies from σ0/4 to 4 ∗σ0. After that, we further investigate the effect

of the correlation between the resources. Ten different correlation coefficients are

inspected. For the last situation, we study the impacts of the variance and skewness

on social inequality. Five variances and nine values of positive λ are examined in

order to detect the influences of the variance and skewness.

All the results are listed in Table 5.2, which shows that, in condition of the

perfect equal social resources, MEDI approximates its theoretical lower bound at
1
22

= 0.25 and 1
3

with ρ = 0 and ρ = 1, respectively. MEDI increases with r which

discloses the inequality of the resource. MEDI will approach the theoretical upper

bound 1 when social resources reach the other extreme case i.e. definitely unequal

resources.

MEDI can interpret the whole inequality for all social resources. It will not be

very large even if one of the social resources is extremely unequal, e.g. the MEDI

increases from 0.3718 to 0.6555 as the inequality of the first variable ascends to a

high level. However, the MEDI is not very high because the second social variable

has comparably lower inequality. Although the standard error σ has been proven
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Table 5.2: The estimated MEDIs for simulation 2
(1) r 0.001 0.01 0.05 0.2 0.75

Uniforms M̂
(2)

0.2504 0.2506 0.2526 0.2611 0.2968
ρ = 0 S.E. (0.0017) (0.0026) (0.0026) (0.0027) (0.0028)

Uniforms M̂
(2)

0.3335 0.3340 0.3355 0.3450 0.3801
ρ = 1 S.E. (0.000006) (0.000007) (0.00003) (0.0002) (0.0007)

(2) σ σ0/4 σ0/2 σ0 2 ∗ σ0 4 ∗ σ0

Uniform & M̂
(2)

0.3806 0.4259 0.5070 0.6131 0.6622
log-normal S.E. (0.0036) (0.0041) (0.0058) (0.0088) (0.0049)

(3) ρ 0.25 0.5 0.75 0.9 1

Log-normals M̂
(2)

0.5904 0.6035 0.6184 0.6271 0.6338
S.E. (0.0074) (0.0079) (0.0083) (0.0083) (0.0083)
ρ -0.25 -0.5 -0.75 -0.9 -1

Log-normals M̂
(2)

0.5666 0.5554 0.5451 0.5401 0.5362
S.E. (0.0073) (0.0081) (0.0084) (0.0091) (0.0093)

(4) σ σ0/4 σ0/2 σ0 2 ∗ σ0 4 ∗ σ0

Log-normals M̂
(2)

0.3256 0.4077 0.5783 0.8454 0.9848
S.E. (0.0029) (0.0037) (0.0073) (0.0161) (0.0063)

(5) λ 0.1 0.2 0.3 0.5 1.5

Log-normals M̂
(2)

0.2794 0.3099 0.3415 0.4077 0.7309
S.E. (0.0026) (0.0027) (0.0029) (0.0036) (0.0135)
λ 2 3 5 10

Log-normals M̂
(2)

0.8439 0.9549 0.9935 0.9990
S.E. (0.0156) (0.0120) (0.0036) (0.0008)

to have a large influence on the skewness of Log-normal distribution and on the

social inequality, MEDI will be large only if all the social resources reach high

unequal levels. Since we just vary the σ of one distribution and keep the other

fixed, it does not change dramatically as expected.

The correlation takes less effect on the social inequality compared with skew-

ness. However, positive correlation between resources will result in a larger in-

equality, while negative correlation will result in a smaller inequality.

Differing from the results of (2) in Table 5.2, the MEDI dramatically increases

from 0.3106 to 0.9657 in (4) when both of the resources become unequal. It is even

close to the upper bound with large standard error σ = 4σ0, which verifies our

judgement that the social inequality reaches the upper bound when both social

resources are unequally distributed. (5) also shows the effect of skewness. The
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MEDI dramatically decreases to 0.2741 when λ = 0.1 and almost reaches 1 when

λ = 10. It demonstrates that the highly right skewed distribution will result in

severe social inequality.

To summarize above simulations, MEDI can illustrate the inequality of multiple

social resources. The entire inequalities of all resources take greater effect on MEDI

than any individual resource. If the specific features of resource distribution are

considered, the skewness influences MEDI most while the negative correlation can

reduce the MEDI.

5.4 The Empirical Analysis in China Provincial

Capital Cities

In this section, we apply the proposed MEDI to evaluate the inequalities of provin-

cial capital cities in China. Our empirical analysis is based on a dataset concerning

people’s livelihood survey in these cities. The dataset is from a nationwide survey

about people’s livelihood in provincial capital cities held by Southwestern Univer-

sity of Finance and Economics. The research report of the survey was published

in 2017. In this dataset, we have three important social resources: income, ed-

ucational expenditure and asset. In order to clarify the inequalities of different

crowd, we also choose three categorical covariates: job type, age and education

level. As a comparison, we compute three indices, the original Gini index on in-

come (abbreviated as GI), the MEDI based on income & educational expenditure

(abbreviated as MEDI1) and the MEDI based on income & asset (abbreviated as

MEDI2). Furthermore, to study the detailed inequality structures of the society,

we give the indices and their 95% confidence intervals (abbreviated as 95%CI), and

analyze the results according to each covariate. After removing the observations

with missing values in income, education expenditure or asset, we have n1 = 4646

and n2 = 5863 valid observations for estimating M̂
(2)

1 and M̂
(2)

2 of MEDI1 and

MEDI2, respectively.

The estimated overall MEDI1 is 0.4955 with 95% confidence interval (0.4811, 0.5099),

while the estimated overall MEDI2 is 0.5280 with 95% confidence interval (0.5152, 0.5408).

The latter is much larger than the former, which means the inequality level regard-
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ing of asset is more severe than that of educational expenditure.

According to the covariates, the samples are divided into six job types including

public institution leaders (PIL), civil servants (CS), public institutions employees

(PIE), enterprisers managers (EM), enterprisers employees (EE) and enterprisers

R&D staffs (ERDS), six age groups from the 16-29 group to 70-79 one and six

different educational levels such as primary school, junior high school, master &

above and so on.

We study the detailed structures of inequality levels based on the estimated

MEDIs as well as the confidence intervals.

Table 5.3: The Gini indices and MEDIs for job groups
Job Type PIL CS PIE

ĜI 0.4116 0.4597 0.4645

95%CI (0.3795, 0.4436) (0.4378, 0.4817) (0.4372, 0.4919)

M̂
(2)

1 0.4665 0.4895 0.4693

95%CI (0.4295, 0.5035) (0.4635, 0.5154) (0.4393, 0.4992)

M̂
(2)

2 0.5006 0.5329 0.5229

95%CI (0.4680, 0.5332) (0.5109, 0.5548) (0.4955, 0.5503)

Job Type EM EE ERDS

ĜI 0.4747 0.4305 0.3826

95%CI (0.4482, 0.5012) (0.3712, 0.4898) (0.2586, 0.5066)

M̂
(2)

1 0.5267 0.4652 0.4438

95%CI (0.4984, 0.5550) (0.3974, 0.5330) (0.3018, 0.5859)

M̂
(2)

2 0.5289 0.5036 0.4607

95%CI (0.5025, 0.5555) (0.4437, 0.5634) (0.3335, 0.5879)

Table 5.3 shows that the estimated values. M̂
(2)

2 s are greater than M̂
(2)

1 s almost

in all the job types, which means in Chinese cities, the inequality in assets is more

severe than that in expenditure. The results provide that MEDI can reliably

capture more social inequality than Gini index. The indies will vary if different

resources are taken into consideration.

The results also illustrate that there are significant differences among groups.

Enterpriser managers have the largest Gini index and MEDI1 while civil servants

have the largest MEDI2 and second largest MEDI1. These two groups also have
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inner inequality values where both the MEDIs higher than the average levels.

Moreover, the inequality for enterpriser managers on income and expenditure is

significantly larger than the average level because the MEDI1 value of enterpriser

managers exceeds the 95% confident interval. Enterpriser R&D staff have the

lowest MEDI1 and MEDI2 which means there is significantly lower inequality on

income, expenditure and assets, for the values of MEDI1 and MEDI2 exceed the

confident intervals. Both MEDI1 and MEDI2 of public institution leaders and

enterpriser employees are also significantly lower than the average level.

We can infer that the inequalities on income, expenditure and assets are signif-

icantly different for different job types in China. First of all, enterpriser managers

present high inequality on their income because the corresponding Gini index is

the largest. Secondly, since the MEDI2 of the CS group is the largest, civil staffs

may have high inequality regarding their asset, as do the public institution employ-

ees. The reason for this difference likely lies within the regional gap of the asset,

especially the price gap in housing which is the most share of families’ wealth for

civil staff and public institution employees. In addition, enterpriser R&D staffs

and public institution leaders are in low inequality because they have comparable

income and expenditure. Finally, enterpriser employees get the relatively small

Gini index, MEDI1 and MEDI2 as they have less income and assets than the other

job types.
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Table 5.4: The Gini indices and MEDIs for age groups
Age 16− 29 30− 39 40− 49

ĜI 0.4423 0.5005 0.4345

95%CI (0.4188, 0.4659) (0.4737, 0.5274) (0.4071, 0.4620)

M̂
(2)

1 0.4769 0.5332 0.4753

95%CI (0.4469, 0.5068) (0.5065, 0.5599) (0.4491, 0.5015)

M̂
(2)

2 0.5234 0.5511 0.4983

95%CI (0.4998, 0.5471) (0.5244, 0.5778) (0.4706, 0.5260)

Age 50− 59 60− 69 70− 79

ĜI 0.4302 0.4658 0.4340

95%CI (0.3982, 0.4622) (0.4192, 0.5124) (0.3663, 0.5016)

M̂
(2)

1 0.4767 0.4872 0.4996

95%CI (0.4309, 0.5225) (0.4292, 0.5453) (0.3980, 0.6012)

M̂
(2)

2 0.4599 0.5207 0.5067

95%CI (0.4277, 0.4921) (0.4740, 0.5673) (0.4384, 0.5749)

Table 5.4 depicts that the MEDI concerning two resources can capture more

inequality than the Gini index. The age groups of 40−49, 50−59 and 70−79 have

the similar values on the Gini indices. However, the MEDI1 and MEDI2 of these

groups are quite different when new resources are included. The 70−79 group has

significantly higher MEDIs than the other groups. The main reason lies in the great

inequalities of educational expenditure and assets. In China, the parents of age

30−49 often have to pay the expense of their children’s education as well as the cost

of personal training. The grandparents of age 60−79 sometimes partially cover the

costs of their grandchildren’s educations. Among these educational expenditures,

there is a large gap between urban and rural regions, between the eastern developed

and western developing areas. Therefore the inequality in educational expenditure

is now revealed by MEDI1 which the Gini index did not capture. Additionally,

the age group of 30 − 39 has the highest MEDI2 among all the groups and is

significantly higher than the average level. The age group of 50 − 59 comes with

the lowest MEDI2 and is significantly lower than the overall average value. The

inequality of income and expenditure does not differ a lot except for the age group

30−39 while the inequality of income and asset starts high when people are younger

than 39, remains low during 40-59 and becomes high again with increasing age .
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We can conclude from Table 5.4 that there exist different inequalities in age

groups. The income and expenditure of young people is comparatively equal but

the assets are quite unequal possibly because of their parents. The middle-aged

people have the biggest inequalities on income, expenditure and asset, which is

partly due to the differences in ability, opportunity, region, consumption and

wealth. Some of the old people spend much on the education on their grand-

children and themselves, which results in greater MEDI1.

Table 5.5: The Gini indices and MEDIs for education groups
Education Primary School Junior High School High School

ĜI 0.4162 0.4110 0.3746

95%CI (0.3713, 0.4611) (0.3826, 0.4393) (0.3502, 0.3991)

M̂
(2)

1 0.4841 0.4695 0.4543

95%CI (0.4310, 0.5371) (0.4383, 0.5007) (0.4272 0.4814)

M̂
(2)

2 0.4961 0.4869 0.4832

95%CI (0.4505, 0.5416) (0.4581, 0.5157) (0.4579, 0.5084)

Education Junior College College Master & above

ĜI 0.3903 0.4210 0.5205

95%CI (0.3617, 0.4189) (0.3952, 0.4468) (0.4539, 0.5871)

M̂
(2)

1 0.4533 0.4439 0.5393

95%CI (0.4190, 0.4876) (0.4139, 0.4738) (0.4625, 0.6160)

M̂
(2)

2 0.4920 0.5108 0.5367

95%CI (0.4627, 0.5213) (0.4847, 0.5370) (0.4702, 0.6032)

Table 5.5 shows that people with master’s degree have very polarized income

and education expenditure, where even the lower bound of the confidence interval

is much larger than the overall level (0.4955). All the other five groups of people

have MEDI smaller than the overall level. The people with master’s degree have

inequality level larger than the overall level. All the other five groups of people

have MEDI smaller than the overall level.

We can infer that in Chinese cities, inequalities may become more severe with

regard to the three social resources when the education level is developed. We also

notice that the inequality of primary school is a little larger than the groups of

junior school, high school and junior college, which partly depends on the advance
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of technology. Some of the primary students have become skilled workers with high

income, educational expenditure and assets while other students may still remain

in a low social resources’ level, which is the reason why primary students differ a

lot in the social resources.



Chapter 6
Conclusion and Future Research

6.1 Conclusion

In chapter 3, we propose a sure joint screening procedure for the varying coefficient

Cox model with ultrahigh dimensional covariates based on partial likelihood. The

proposed SJS is distinguished from the existing SIS procedure in that the proposed

procedure is based on the joint likelihood of potential candidate features. We pro-

pose an effective algorithm to carry out the feature screening procedure, and show

that the proposed algorithm possesses an ascent property. We study the sampling

property of SJS, and establish the sure screening property for SJS. Theorem 1 en-

sures the ascent property of the proposed algorithm under certain conditions, but

it does not implies that the proposed algorithm converges to the global optimizer.

If the proposed algorithm converges to a global maximizer of (3.5), then Theorem

2 shows that such a solution enjoys the sure screen property.

In chapter 4, we propose a two-layer framework, “Iteratively Kings’ Forests”,

to select important features and interaction effects in classfication and regresssion

problems. In the first layer, assume that one variable is important, we treat it

as a “King” and construct an iteratively weighted forest with the “King” as the

root node of every tree. Through this iterative process, variables participating

in the same interactions with the “King” will gradually gain larger weights, and

therefore be likely to line in the same path of different trees. In the second layer,

we iteratively choose the next “King” and construct “King’s Forest” for each of

them. We keep doing this until some convergence criterion are met. This two-
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layer procedure outlines the hidden model structure by selecting important features

and interactions through iteratively constructing forests for important variables.

Based on it, a thorough and in-depth exploration is conducted to unveil the hidden

mechanism for us.

In chapter 5, we extend the definition of the Gini index to multiple dimensional

cases and show its statistical consistence. The new defined inequality index, multi-

dimensional economic dispersion index (MEDI), is more suitable for measuring and

interpreting the statistical dispersion in complex economic data analysis. It could

be widely used when we consider evaluating the inequality level using more than

one social resource. We also propose the algorithm to compute sample-empirical

MEDI which converges to the MEDI in some conditions. The MEDI can also be

applied in other sciential and social fields as the Gini index did. The simulations

and empirical analysis show that the MEDI can summarize multiple variables to

form an index. Therefore, the new index is actually a more general and advanced

method to explain the inequality in multivariate economic data.

6.2 Future Research

For the “Iteratively Kings’ Forests” algorithm proposed in chapter 4, there are a

number of potential future improvements. For example, we use a simple function

as the mathematical form of a tree structure. Based on this, we may explore the

theoretical properties of the forest and try to prove that the “Iteratively Kings’

Forests” is good theoretically. Moreover, as we point before, the greedy algorithm

used to search and split each node allows tree structure to include the variable that

brings the most significant instant improvement, which could be either a marginal

effect or a member of an interaction effect. That is, variables in one path of a tree

will be a mixture of marginal effects and interaction effects. Therefore, another

potential improvement is to create an algorithm or criterion to effectively separate

one effect from another.

For the MEDI proposed in chapter 5, there are also some valuable questions

lfet for deeper investigation. We already generalize the Gini index to the multi-

variate case. For the next step, we may examine how it works in high-dimensional

cases. Moreover, the algorithm is a common formulation currently based on the
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joint empirical cdf. Maybe it can be simplified under some assumptions of data

distribution.
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Morán, É. and G. Jiménez (2006). The tailless nuclear receptor acts as a dedicated
repressor in the early drosophila embryo. Molecular and Cellular Biology 26 (9),
3446–3454.

Nguyen, H. T. and X. Xu (1998). Drosophila mef2expression during mesoderm
development is controlled by a complex array ofcis-acting regulatory modules.
Developmental biology 204 (2), 550–566.

Nien, C.-Y., H.-L. Liang, S. Butcher, Y. Sun, S. Fu, T. Gocha, N. Kirov, J. R.
Manak, and C. Rushlow (2011). Temporal coordination of gene networks by
zelda in the early drosophila embryo. PLoS genetics 7 (10), e1002339.

Niu, Y. S., N. Hao, and H. H. Zhang (2018). Interaction screening by partial
correlation. Statistics and Its Interface 11 (2), 317–325.

Pyatt, G. (1976). On the interpretation and disaggregation of gini coefficients. The
Economic Journal 86 (342), 243–255.

Rice, J. A. and B. W. Silverman (1991). Estimating the mean and covariance
structure nonparametrically when the data are curves. Journal of the Royal
Statistical Society. Series B (Methodological), 233–243.



147

Rivera-Pomar, R. and H. Jackle (1996). From gradients to stripes in drosophila
embryogenesis: filling in the gaps. Trends in Genetics 12 (11), 478–483.

Roemer, J. E. (2013). Economic development as opportunity equalization. The
World Bank Economic Review 28 (2), 189–209.

Sadras, V. and R. Bongiovanni (2004). Use of lorenz curves and gini coefficients to
assess yield inequality within paddocks. Field Crops Research 90 (2-3), 303–310.

Schulz, C. and D. Tautz (1994). Autonomous concentration-dependent activation
and repression of kruppel by hunchback in the drosophila embryo. Develop-
ment 120 (10), 3043–3049.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of
statistics 6 (2), 461–464.

Sen, A., M. A. Sen, S. Amartya, J. E. Foster, J. E. Foster, et al. (1997). On
economic inequality. Oxford University Press.

Shah, R. D. and N. Meinshausen (2014). Random intersection trees. The Journal
of Machine Learning Research 15 (1), 629–654.

Shorrocks, A. F. (1978). The measurement of mobility. Econometrica: Journal of
the Econometric Society , 1013–1024.

Silber, J. (1989). Factor components, population subgroups and the computation
of the gini index of inequality. The Review of Economics and Statistics , 107–115.

Song, R., F. Yi, and H. Zou (2014). On varying-coefficient independence screening
for high-dimensional varying-coefficient models. Statistica Sinica 24 (4), 1735–
1752.

Stathopoulos, A., M. Van Drenth, A. Erives, M. Markstein, and M. Levine (2002).
Whole-genome analysis of dorsal-ventral patterning in the drosophila embryo.
Cell 111 (5), 687–701.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regres-
sion. The annals of statistics , 1040–1053.

Stone, C. J. et al. (1985). Additive regression and other nonparametric models.
The annals of Statistics 13 (2), 689–705.

Struhl, G., P. Johnston, and P. A. Lawrence (1992). Control of drosophila body
pattern by the hunchback morphogen gradient. Cell 69 (2), 237–249.

Sun, Y., R. Sundaram, and Y. Zhao (2009). Empirical likelihood inference for the
cox model with time-dependent coefficients via local partial likelihood. Scandi-
navian Journal of Statistics 36 (3), 444–462.



148

Sundrum, R. M. (2003). Income distribution in less developed countries. Routledge.
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