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Abstract
This dissertation consists of two parts. In the first part, we focus on the estimation
of linear functional and its application to projection test for high-dimensional mean
vector. We first study a general regularized quadratic programming with non-convex
penalty and linear constraint. Deterministic error bounds are established for any
stationary point that satisfies the necessary first order condition. We also propose
an ADMM algorithm with local linear approximation to solve such the non-convex
regularized quadratic programming. In particular, we study a special case of the
regularized quadratic programming: estimation of linear functional. Furthermore,
we apply the linear functional to perform projection test for high-dimensional data.
Two projection tests are proposed. The first one is a projection test based on a
data-splitting strategy, which achieves an exact t-test under normality assumption.
The second one is a projection test based on an online framework, which updates
the estimation of optimal projection direction when new observations arrive. This
online projection test improves the power the data splitting approach. We derive
the asymptotic normal distributions under both null and alternative for the online
projection test. We conduct numerical studies to compare the finite sample perfor-
mance of our proposed projection tests with several existing tests. The numerical
results show that the proposed projection tests can keep the type I error rate well
and are much more powerful than other existing tests.

In the second part, we focus on the model free feature screening for high-
dimensional data via projection correlation. The idea of feature screening is to
deliver a computationally efficient way to reduce the dimensionality of the feature
space from a very high scale to a moderate one while retaining all the important
features. The proposed method is based on ranking the projection correlations
between features and response variable. This screening procedure does not require
specifying any regression model and requires no moment conditions on both features
and response variable. The theoretical analysis demonstrates the proposed method
enjoys not only the sure screening property but also a stronger result called rank
consistency property. The extensive simulated experiments show the proposed
method wins the horse racing against its competitors on various scenarios.
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Chapter 1 |
Introduction

Rapid development of technology allows for a large number of features to be
measured and collected. It is increasingly important to be able to solve such
problems involving a very large number of variables. This type of data is typically
known as high-dimensional data, where the number of variables p can be much larger
than the sample size n. Such high-dimensional data arises in a broad spectrum
of real applications such as genomics, finance, medical imaging, sensor network,
etc. For example, advanced biotechnology now allows that thousands of genes or
proteins can be measured. Financial data is also of a high-dimensional nature.
Hundreds or thousands of financial instruments can be measured and tracked over
time at very fine time intervals in high frequency trading. In this dissertation, we
try to answer following two questions:

(1) Can we construct a powerful test for the mean of high-dimensional data?

(2) Can we select important features from thousands of variables without specifying
a regression model and without moment assumptions?

To answer the first question, we construct a sparse projection test via an online
framework for high-dimensional data. To answer the second question, we propose a
model free feature screening procedure based on projection correlation.

1.1 Linear functional and its applications

In the first part of this dissertation, we focus on the estimation of the linear
functional of the form β = Σ−1η and apply it to perform projection test for
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high-dimensional mean vector. This linear functional Σ−1η has many interesting
statistical applications including

• (Projection test for mean vectors) Let us consider a one-sample mean
vector test problem in high-dimensional data. Let x1, . . . ,xn be a random
sample from a p-dimensional distribution with mean vector µ and covariance
matrix Σ. Of interest is to test

H0 : µ = µ0 verses H1 : µ 6= µ0,

where µ0 is some given vector. Traditional methods such as Hotelling’s T 2

test is not directly applicable when p > n since the sample covariance matrix
is not invertible. The idea of projection test is to reduce the dimension by
projecting the high-dimensional vector xi to a space of lower dimension. Li
et al. (2015) shows that the optimal projection direction is Σ−1η with η = µ.
Then the high-dimensional xi’s can be projected to a 1-dimensional space by
left multiply (Σ−1µ)>. Similar conclusion holds for two-sample mean vectors
test where the optimal projection direction is Σ−1η with η = µ1−µ2, where
µ1 and µ2 are the mean vectors for the two populations respectively and Σ

is the common covariance matrix.

• (Linear Discriminant Analysis (LDA)) Consider the linear discriminant
analysis for classification problem. Assume we have two p-dimensional nor-
mal distributions N(µ1,Σ) (class 1) and N(µ2,Σ) (class 2) with the same
covariance matrix. Let z be a random observation that is drawn from one
the these two populations with equal probabilities. The well-known Fisher’s
linear discriminant rule is characterized by the linear functional Σ−1η with
η = µ1 − µ2. The new observation z is classified into class 1 if and only if

(z− (µ1 + µ2)/2)>Σ−1η ≥ 0.

• (Markowitz portfolio allocation problem) We consider the Markowitz
portfolio allocation problem. Suppose we have p assets x = (X1, . . . , Xp)

> to
invest, where x have mean µ and covariance matrix Σ. For a given amount
of expected return m, we want find a allocation plan such that the investment
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risk is minimized. The optimal portfolio allocation is proportional to Σ−1η

with η = µ (Chen et al. 2015).

This linear functional is typically not directly applicable in real application as it
is usually unknown and needs to be estimated from data. To estimate β, traditional
approaches take two steps: (i) we first construct an estimate Σ̂ of Σ and then (ii)
estimate β using Σ̂

−1
η or Σ̂

−1
η̂ if η is unobserved, where η̂ is an estimator of η.

Although the two-step estimator is usually asymptotically consistent in the low-
dimensional setting, it may no longer be a consistent estimator in high dimensions.
First, the estimate Σ̂ is typically not invertible when p > n and thus the plug-in
estimator is not well-defined. A naive approach is ignoring the dependence among
the variables and replace Σ̂ by some diagonal matrix such as identity matrix I

or diag(Σ̂), where diag(Σ̂) is a diagonal matrix with elements being the diagonal
elements of Σ̂. This approach works well when the true covariance matrix is
approximately a diagonal matrix but may fail when the correlation among the
variables are strong. In the setting of linear discriminant analysis, Mai et al. (2012)
pointed out that ignoring correlations among variables could produce misleading
feature selection and inferior classification.

Second, it is not possible to obtain a consistent estimator of Σ or its inverse
when the dimension is high unless structural assumptions such as sparsity or low
rank are imposed on Σ or its inverse (Fan, Liao and Liu 2016). To estimate the
covariance matrix, thresholding methods are proposed to obtain a sparse estimator
for Σ by setting small estimated elements to zero (Bickel and Levina 2008, Cai
and Liu 2011a, Rothman et al. 2009). Regularized methods are widely used to
estimate sparse precision matrix Σ−1. For example, Yuan and Lin (2007) and Lam
and Fan (2009) studied the estimation of sparse precision matrix using penalized
likelihood. Cai et al. (2011) and Yuan (2010) proposed to estimate the precision
matrix through column-by-column regressions.

Third, consistent estimation of Σ or its inverse does not automatically guarantee
the consistency of Σ̂

−1
η or Σ̂

−1
η̂. Fan and Fan (2008) demonstrated that even

in the ideal scenario where the true covariance matrix Σ is an identity matrix
and is assumed to be known, the classical Fisher’s classification rule is no better
than random guessing when p is sufficiently large, due to noise accumulation in
estimating µ1 and µ2.

Instead of imposing structural conditions on Σ or its inverse, one can impose

3



sparsity structure on the linear functional β itself. This is a plausible assumption in
real applications such as portfolio selection, linear discriminant analysis and optimal
direction estimation for projection test, etc. Fan and Fan (2008) demonstrated that
the classification rule using all features can perform as poorly as the random guessing.
Thus it is necessary to select a subset of important features for high-dimensional
classification problem. Under the sparsity assumption, direct approaches based
on regularization methods can be applied to estimate the linear functional. Mai
et al. (2012) studied the linear discriminant analysis problem using the penalized
least squares with L1 penalty. Dantzig-type selectors are also studied in linear
discriminant analysis, Markowtiz portfolio allocation problem and time series
settings (Cai and Liu 2011b, Chen et al. 2015). However, the resulting estimators
by these methods are usually biased. Nonconvex penalties such as the SCAD
(Fan and Li 2001) and the MCP (Zhang 2010) attract more attention recently.
Comparing with the L1 penalty, the estimator given by nonconvex penalties enjoys
more desirable statistical properties such as asymptotic unbiasedness and oracle
property. Penalized linear regression with nonconvex penalty has been well studied,
see Fan and Li (2001), Zhang (2010) and Wang et al. (2013). To avoid the drawbacks
of traditional methods and direct approaches using L1 penalty and Dantzig selector,
we propose an approach to estimate the linear functional based on regularized
quadratic programming with nonconvex penalty and linear constraint.

In chapter 3, we study a general regularized quadratic programming with
nonconvex penalty and linear constraint. Under the assumption that the quadratic
form satisfies the restricted strong convexity (RSC) condition, we establish the
deterministic L1 and L2 error bounds for our estimator. Our theory applies to
any stationary point that satisfies the first order necessary conditions to be a
local minimum. Further assuming the strict dual feasibility, we also show that
the stationary point is unique and establish the support recovery and L∞ error
bound. In addition, we consider three applications of the regularized quadratic
programming: (1) estimation of linear functional, (2) F -type test for regression
coefficients and (3) sparse linear discriminant analysis. We establish the convergence
rates in terms of L1 and L2 norms for stationary points. It is quite challenging
to solve such noncovnex optimization problem especially in the high-dimensional
setting. We propose an ADMM algorithm with local linear approximation (LLA),
which approximates the nonconvex penalty function by its first order expansion.
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It is guaranteed that the estimator converges to a local minimum and thus the
numerical solution fits in our theory. This ADMM algorithm can naturally handle
the linear equality constraint. A BIC-type criteria is proposed to select the tuning
parameter in the penalty function.

In chapter 4, we propose two projection tests for high-dimensional mean vector.
Assuming that the optimal projection direction is sparse, we apply the regularized
quadratic programming discussed in chapter 3 to estimate optimal projection di-
rection. The first test is the data splitting projection test. The entire dataset is
partitioned into two sets. We use the first set to estimate the optimal projection
direction and perform the test only using the data in the second set. This data
splitting projection test achieves an exact t-test under normality assumption. The
second test is the online projection test. We update the estimation of optimal
projection direction whenever a new observation arrives. We establish the asymp-
totic normal distribution of the proposed test statistic under both null hypothesis
and alternative hypothesis, based on which we derive the power function under
alternative. We also propose a mini-batch version of the online projection test,
which updates the estimation of the optimal projection direction when a batch of
new observations arrive and thus reduces the computational burden. Both of the
online projection tests improve the power of the data splitting projection test. We
also conduct numerical studies to compare the finite sample performance of our
proposed projection tests with several existing tests including sum-of-squares-type
tests, maximum-type tests and other projection tests. The numerical results show
that the proposed projection tests can keep the type I error rate well and are much
more powerful than other existing tests.

1.2 Robust and model free feature screening

Datasets with ultra-high dimensional features characterize many contemporary
research problems in machine learning, statistics, engineering, social science, finance
and so on. When the features contain redundant or noisy information, estimating
their functional relationship with the response can become quite challenging in
terms of computational expediency, statistical accuracy and algorithmic stability
(Fan et al. 2009). To overcome such challenges caused by ultra-high dimensionality,
Fan and Lv (2008) proposed a sure independence screening (SIS) procedure which
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aims to screen out the redundant features by ranking their marginal Pearson
correlations. The SIS method is named after the sure independence screening
property which states that the selected subset of features contains all the active
ones with probability approaching one. The promising numerical performance soon
made SIS popular among ultra-high dimensional studies. The sure screening idea
has be applied to many important statistical problems including generalized linear
model (Fan and Song 2010), multi-index semi-parametric models (Zhu et al. 2011),
nonparametric models (Fan et al. 2011, Liu et al. 2014), quantile regression (He
et al. 2013, Wu and Yin 2015) and compress sensing (Xue and Zou 2011) among
others.

The idea of screening is to deliver a computationally efficient way to reduce the
dimensionality of the feature space from a very high scale to a moderate one. The
researchers will then benefit both computationally and statistically from learning
the data in a much reduced feature space. Besides the sure screening property, we
argue an appealing screening method should satisfy the following two properties.
First, the screening method should be model free, which means that the screening
method can be implemented without specifying a regression model. In ultra-high
dimensional regime, it is challenging if not impossible to specify a correct regression
model with existence of the huge number of redundant features. Hence the model
free property is desired as it guarantees the effectiveness of the screening method in
the presence of model mis-specification. The model free screening method becomes
a hot research topic in recent years, see Zhu et al. (2011), Li et al. (2012), Mai
and Zou (2015), He et al. (2013), Cui et al. (2015) and the references therein.
The second property is robustness which means the screening method should be
insensitive to outliers. Assumption like sub-Gaussianity is usually not realistic in
ultra-high dimensional applications. Even when the sub-gaussian assumption is
satisfied on the population level, they can be easily violated in the realized sample
simply due to ultra-high dimensionality. Therefore the screening method which is
sensitive to outliers may perform poorly in real applications. The robust screening
method also draws certain amount of attention recently. He et al. (2013), Wu and
Yin (2015) and Ma et al. (2017) among others considered quantile based screening
which adapts to heavy-tailed data. Wang (2012) and Fan, Ke and Wang (2016)
developed screening methods for strongly correlated features.

In chapter 5, we propose a model free feature screening method. The proposed

6



method is based on ranking the projection correlations between features and the
response. The projection correlation, proposed by Zhu et al. (2017), is a measure
of dependence between two random vectors which enjoys several nice probability
properties. For example, the projection correlation is well-defined for any two
random vectors of any dimensions and no moment conditions are required for the
two random vectors. In addition, the estimation is free of tuning parameters. The
proposed screening procedure does not require specifying any regression model and
is insensitive to outliers. As the projection correlation is dimension free to both
random vectors, the proposed screening method can be applied to multi-task learning
problems (Caruana 1997). The theoretical analysis demonstrates the proposed
method enjoys not only the sure screening property but also a stronger result called
rank consistency property. The only condition required is a minimum signal gap
between active and inactive features. The extensive simulated experiments show the
proposed method wins the horse racing against its competitors on various scenarios.

1.3 Organization of this dissertation

The rest of this dissertation is organized as follows. In chapter 2, we provide
literature review on topics that are related to this dissertation, including regularized
methods in high-dimensional linear model, hypothesis testing for high-dimensional
mean vector and feature screening for high-dimensional data. In chapter 3, we first
study a general regularized quadratic programming with nonconvex penalty and
linear constraint. Then we further three applications of the regularized quadratic
programming: (1) estimation of linear functional, (2) F -type test for regression
coefficients and (3) sparse linear discriminant analysis. In chapter 4, we propose
two projection tests for high-dimensional mean vector using the optimal projection
direction. One is based on a data splitting approach and the other one is based on
an online framework for such projection test. In chapter 5, we propose a model
free feature screening via the projection correlation. In chapter 6, we conclude this
dissertation and discuss future work.
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Chapter 2 |
Literature Review

2.1 Variable selection via regularization

2.1.1 An overview

Variable selection has become a popular and fundamental problem in high di-
mensional regression where the underlying model has a sparse representation. A
large number of predictors are usually collected to reduce possible modeling biases.
However, sparse models are preferable because of the simplicity and interpretability.
In addition, identifying important predictors can improve the prediction accuracy.
Therefore, it is necessary to select important predictors and only include these
important predictors in the model. Over the past two decades, many model selection
methods have been developed. A majority part of them are based on the regularized
M -estimation including the Lasso (Tibshirani 1996), the SCAD (Fan and Li 2001),
th elastic net (Zou and Hastie 2005), and the Dantzig selector (Candes and Tao
2007), among others. These methods have attracted a large amount of theoretical
and algorithmic studies. See Meinshausen and Bühlmann (2006), Zhao and Yu
(2006), Fan and Lv (2008), Zou and Li (2008), Bickel et al. (2009), Zhang (2010),
and references therein.

Consider the linear regression model

y = Xβ + ε,

where y = (Y1, . . . , Yn)> ∈ Rp is the response vector, X = (x1, . . . ,xn)> ∈ Rn×p is
the covariate matrix, β = (β1, . . . , βp)

> ∈ Rp is the unknown regression coefficient,
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and ε = (ε1, . . . , εn)> ∈ Rp are independent and identically distributed random
errors. When p < n, the ordinary least squares estimator is defined as

β̂ols = (X>X)−1X>y.

In high-dimensional setting where p ≥ n, β̂ols is not well-defined since X>X is not
invertible. A common assumption is that the true parameter β? = (β?1 , . . . , β

?
p)> is

sparse, meaning that most elements in β? are zero. Regularized least squares are
widely used to select important variables and estimate the regression coefficient
simultaneously. The regularized least squares takes the following form

1

2n
‖y −Xβ‖2

2 +

p∑
j=1

pλ(|βj|), (2.1)

where pλ(·) is some penalty function. The regularized least squares estimator is
defined as the minimizer of (2.1). Various penalty functions have been proposed
and their theoretical properties and numeric performances are well studied, see
Tibshirani (1996), Fan and Li (2001), Zou (2006), Zou and Hastie (2005) and Zhang
(2010). These penalty functions can be categorized into two classes: convex penalty
and nonconvex penalty. Convex penalty such as Lasso penalty is very popular due
to its attractive computation advantage. However, the resulting estimator of the
Lasso penalty is usually biased. More recently, nonconvex penalties such as the
SCAD and the MCP attract more attention since it has more desirable statistical
properties (Fan and Li 2001, Zhang 2010, Xue et al. 2012, Fan, Xue and Zou 2014).
The computation with a nonconvex penalty can be very challenging since we need
to solve a nonconvex optimization problem. In the rest of this section, we will
focus on the two most popular penalties: the Lasso penalty and the folded-concave
penalty.

2.1.2 Variable selection with L1 penalty

Tibshirani (1996) first introduced the Lasso regression, which minimizes the least
squares with L1 penalty

β̂Lasso = arg min
β

1

2n
‖y −Xβ‖2

2 + λ

p∑
j=1

|βj|. (2.2)
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The Lasso regression has the following attractive properties. The Lasso shrinks
the resulting estimator β̂Lasso towards 0, and some of the coefficients are estimated
exactly to be 0. Therefore, Lasso regression can select important variables and
estimate the coefficients simultaneously. Lasso regression is also computationally
attractive since it only needs to solve a convex optimization problem. The Lasso
estimator depends on the choice of the tuning parameter λ, which controls the
amount of shrinkage applied to the estimator. A large λ would shrink many elements
of the coefficient to be 0.

Before introducing the theoretical properties of the Lasso, we first introduce
some notations and definitions. Recall that β? is the true regression coefficient and is
assumed to be sparse. LetA? = {j : β?j 6= 0} be the index set of nonzero components
in β?. Let β̂ be an estimator of β? and A(β̂) = {j : β̂j 6= 0} be the index set of
nonzero components in β̂. An estimator β̂ is (estimation) consistent if β̂ → β? in
probability. An estimator β̂ is model consistent if limn→∞ P(A(β̂) = A?) = 1. An
estimator β̂ is sign consistent if P(sgn(β̂) = sgn(β?))→ 1.

Under the conditions that ε1, . . . , εn are independent and identically distributed
random variables with mean 0 and variance σ2 and 1

n
X>X → C, where C is a

positive definite matrix, Knight and Fu (2000) proved that the Lasso estimator
is estimation consistent when p is fixed. Without loss of generality, assume that
A? = {1, 2, . . . , s} and the complement set A?c = {s+ 1, s+ 2, . . . , p}. Let

C =

(
C11 C12

C21 C22

)
,

where C11 is a s× s matrix. If λ/
√
n→ λ0 ≥ 0, then

√
n(β̂Lasso − β?)

d→ arg min V (u),

where d→ means convergence in distribution, u = (u1, . . . , up)
> ∈ Rp,

V (u) = −2u>W + u>Cu + λ0

p∑
j=1

[ujsgn(β?j )I(β?j 6= 0) + |uj|I(β?j = 0)],

W has a N(0, σ2C) distribution and I(·) is the indicator function. This theorem
shows that the Lasso estimator is root-n estimation consistent. Under the same
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conditions, Zou (2006) showed that

lim sup
n→∞

P(A(β̂Lasso) = A?) ≤ c < 1,

where c is a constant depending on the true model. This result shows that when
λ/
√
n→ λ0, the Lasso estimator is not model consistent. The optimal estimation of

Lasso regression is achieved only when λ = O(
√
n), however it leads to inconsistent

model selection. Zou (2006) and Zhao and Yu (2006) proposed a necessary condition
for Lasso estimator to be model consistent, which states that there exists some sign
vector d = (d1, . . . , ds)

> with dj = 1 or −1, such that

‖C21C
−1
11 d‖∞ ≤ 1.

This type of condition is referred to as the irrepresentable condition. The irrepre-
sentable condition closely resembles a regularization constraint on the regression
coefficients of the irrelevant covariates on the relevant covariates. This irrepre-
sentable condition is almost necessary and sufficient for a Lasso estimator to be
model consistent. However this irrepresentable condition is nontrivial. Zou (2006)
constructed an interesting example in which the irrepresentable condition fails.
Under the irrepresentable condition, Zhao and Yu (2006) showed that if λn/n→ 0

and λn/n
1+c
2 →∞ for some 0 ≤ c < 1, then

P(sgn(β̂Lasso) = sgn(β?)) = 1− o(e−nc).

The Lasso regression forces all the coefficients to be equally penalized even when
|β?j | is large. As a consequence, the Lasso estimator is usually biased and cannot
achieve the oracle property. Zou (2006) proposed the adaptive Lasso by assigning
different weights to different coefficients

arg min
β

1

2n
‖y −Xβ‖2

2 + λ

p∑
j=1

wj|βj|,

where w = (w1, . . . , wp)
> is a known weight vector. The insight is that if |β?j | is

large, it should be penalized less and if |β?j | is small, it should be penalized more.
Suppose β̃ is a root-n consistent estimator of β?, one can construct the weight

11



vector by ŵ = 1/|β̃|γ with γ > 0. In practice, the root-n consistent estimator
can be obtained from the ordinary least squares estimator. The adaptive lasso
estimator β̂ada is given by

β̂ada = arg min
β

1

2n
‖y −Xβ‖2

2 + λ

p∑
j=1

ŵj|βj|.

With a proper choice of λ, the adaptive lasso estimator enjoys the following (weak)
oracle property. Suppose that λ/

√
n→ 0 and λn(γ−1)/2 →∞, then

lim
n→∞

P(A(β̂ada) = A?) = 1,

√
n(β̂ada,A? − β?A?)→ N(0, σ2C−1

11 ),

where βA? represents the subvector of β corresponding to the subset A?. The oracle
property implies that the estimating procedure can estimate the zero coefficients as
exact zero with probability approaching one, and estimate the nonzero coefficients
as efficiently as if the true sparsity pattern is known in advance. The adaptive
Lasso is essentially a convex optimization with L1 penalty and efficient algorithms
for solving the Lasso can be used to compute the adaptive Lasso estimator.

Theoretical properties of Lasso estimator in the high-dimensional setting are
studied in Bickel et al. (2009). In order to establish the error bound, Bickel
et al. (2009) imposed the following restricted eigenvalue (RE) assumption. This
assumption plays an important role in the analysis of Lasso estimator with high
dimension. For some integer s such that 1 ≤ s ≤ p and a positive number c0, the
design matrix X satisfies RE(s, c0) condition if

min
J⊆{1,...,p},|J |≤s

min
δ 6=0,‖δJc‖1≤c0δJ‖1

‖Xδ‖2√
n‖δJ‖2

= κ(s, c0) > 0. (2.3)

This condition is known to be relatively mild on the design matrix for high-
dimensional data and is much weaker than the irrepresentable condition. Let
condition RE(s, 3) be satisfied and standardize the X such that all the diagonal
elements of the matrix X>X/n be equal to 1. Let λ = Aσ

√
log p/n with A > 2

√
2,
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then with probability at least 1− p1−A2/8, we have

‖β̂Lasso − β?‖1 ≤
16A

κ(s, 3)
σs

√
log p

n
.

Dantzig selector proposed by Candes and Tao (2007) is also very popular when
p > n. The Dantzig estimator is defined as the solution to the following problem

min
β
‖β‖1

subject to ‖X>(y −Xβ)‖∞ ≤ λ.
(2.4)

Clearly, the Dantzig selector can be efficiently solved by linear programming. If
assumption RE(s, 1) is satisfied and choose λ = Aσ

√
log p/n for some A >

√
2,

then with probability at least 1− p1−A2/2, we have

‖β̂Dantzig − β?‖1 ≤
8A

κ(s, 1)
σs

√
log p

n
.

The Dantzig selector is closely related to the Lasso estimator and has similar
performance to the Lasso estimator under the sparsity scenario (Bickel et al. 2009).

2.1.3 Variable selection with nonconvex penalty

The Lasso estimator is usually biased, which motivates researchers to use other
type of penalty. Fan and Li (2001) argued that a good penalty function should
result in an estimator with the following three properties:

1. Unbiasedness: The resulting estimator is nearly unbiased when the true
unknown parameter is large to avoid unnecessary modeling bias.

2. Sparsity : The resulting estimator is a thresholding rule, which sets small
estimated coefficients to zero to reduce model complexity.

3. Continuity : The resulting estimator is continuous in data to avoid instability
in model prediction.

Note that none of the Lq penalty pλ(|t|) = λ|t|q satisfy all the three properties.
When q < 1, the resulting estimator is not continuous in data. When q > 1, it
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does not produce a sparse solution. When q = 1, the resulting estimator is usually
biased. Fan and Li (2001) proposed the Smoothly Clipped Absolute Deviation
(SCAD) penalty that satisfies all the three properties. The first derivative of the
SCAD penalty is given by

p′SCAD,λ(|t|) = λ

{
I(|t| ≤ λ+

(aλ− |t|)+

(a− 1)λ
)I(|t| > λ)

}
, (2.5)

for some a > 2, where I(·) is the indicator function and a+ = aI(a > 0) is the
positive part of a. Consider the penalized least squares with the SCAD penalty

β̂SCAD = arg min
β

1

2n
‖y −Xβ‖2

2 +

p∑
j=1

pSCAD,λ(|βj|). (2.6)

Fan and Li (2001) proved that the SCAD estimator β̂SCAD is root-n consistent and
has the oracle property when p is fixed. More specifically, if max{p′′SCAD,λ(|β?j |) :

β?j 6= 0} → 0, then
‖β̂SCAD − β∗‖2

2 = Op(n
−1/2 + an),

where p′′SCAD,λ(·) is the second derivative of pSCAD,λ(·) and an = max{p′SCAD,λ(|β?j |) :

β?j 6= 0}. Further assume

lim inf
n→∞

lim inf
t→0+

p′SCAD,λ(|t|)/λ > 0,

λ → 0 and
√
nλ → ∞ as n → ∞, then with probability approaching to 1, the

SCAD estimator enjoys the oracle property.
The nonconvex SCAD penalty brings extra computational burden since we need

to solve a nonconvex optimization problem. Fan and Li (2001) proposed a unified
algorithm using local quadratic approximation (LQA) to solve (2.6). The idea is to
approximate the penalty function pλ(·) by its second order Taylor expansion. If βj0
is close to βj, then

pλ(|βj|) ≈ pλ(|βj0|) +
1

2
{p′λ(|βj0|)/|βj0|}(β2

j − β2
j0).

By the local quadratic approximation, the SCAD estimator can be obtained by
solving a quadratic programming. Instead of using the second order Taylor ex-
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pansion, Zou and Li (2008) proposed anther algorithm which approximates the
penalty function by its first order Taylor expansion. This algorithm is known as the
local linear approximation (LLA) algorithm. If βj0 is close to βj, then the penalty
function can be approximated by

pλ(|βj|) ≈ pλ(|βj0|) + p′λ(|βj0|)(|βj| − |βj0|).

The LLA algorithm is distinguished from the LQA algorithm in that the final
estimates naturally adopt a sparse representation. The LLA algorithm inherits the
good features of Lasso in terms of computational efficiency and can be solved by
efficient algorithms. In particular, Zou and Li (2008) proposed the one-step LLA
estimator and showed that this one-step LLA estimator enjoys the oracle property.
Let the initial estimate β(0) be ordinary least squares estimator. Then the one-step
LLA estimator is obtained by

β(1) = arg min
1

2n
‖y −Xβ‖2

2 +

p∑
j=1

p′λ(|β
(0)
j |)|βj|.

Similar to the SCAD penalty, the minimax concave penalty (MCP) function is
defined as

p′MCP(|t|) = a−1(aλ− |t|)+, (2.7)

for some a > 0. Zhang (2010) showed that the resulting MCP estimator is sign
consistent with high probability without assuming the irrepresentable condition
and attains the minimax rate. The penalized linear unbiased selection (PLUS)
algorithm was introduced in Zhang (2010) to obtain the MCP estimator. Fan, Xue
and Zou (2014) systematically studied the family of folded concave penalty function
pλ(t) under a general framework. The pλ(t) satisfies the following conditions

(1) pλ(t) is increasing and concave in t ∈ [0,∞) with pλ(0) = 0;

(2) pλ(t) is differentiable in t ∈ (0,∞) with p′λ(0) := p′λ(0+) ≥ a1λ;

(3) p′λ(t) ≥ a1λ for t ∈ (0, a2λ];

(4) p′λ(t) = 0 for t ∈ [aλ,∞) with a > a2,

where a, a1, a2 are fixed positive constants. The folded concave penalty includes
the SCAD and the MCP. Fan, Xue and Zou (2014) considered a general problem
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taking the following form,

min
β

`n(β) +

p∑
j=1

pλ(|βj|), (2.8)

where `n(β) is a convex loss function and pλ(·) is a folded concave penalty. Define
the oracle estimator as we know the true support set A? in advance,

β̂
(o)

= (β̂
(o)

A? ,0) = arg min
β,βA?c=0

`n(β).

For example, the oracle estimator in the linear regression setting with `n(β) =
1

2n
‖y −Xβ‖2

2 is characterized by (β̂
(o)

A? ,0) with

β̂
(o)

A? = (X>A?XA?)
−1X>A?y,

where XA? consists of the columns from X indexed by A?. Fan, Xue and Zou
(2014) proved that the LLA estimator has the strong oracle property, that is the
LLA estimator equals the oracle estimator with high probability. Wang et al. (2013)
proposed the ConCave Convex Procedure (CCCP) algorithm to solve the penalized
linear squares with nonconvex penalty. The idea is based on the observation
that nonconvex penalties such as the SCAD and the MCP can be written as the
difference of two convex functions, or equivalently, the sum of one convex function
and one concave function. Let pλ(|β|) be a nonconvex penalty and suppose it has
the following decomposition,

pλ(|β|) = Jλ(|β|) + λ|β|,

where Jλ(|β|) is a differentiable concave function. For example, for the SCAD,

Jλ(|β|) =− β2 − 2λ|β|+ λ2

2(a− 1)
I(λ ≤ |β| ≤ aλ)

+

(
(a+ 1)2λ2

2
− λ|β|

)
I(|β| > aλ).
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For the MCP,

Jλ(|β|) =
β2

2a
I(0 ≤ |β| < aλ) + (aλ2/2− λ|β|)I(|β| ≥ aλ).

Then the penalized least squares in (2.1) can be written as

1

2n
‖y −Xβ‖2

2 +

p∑
j=1

Jλ(|βj|) + λ

p∑
j=1

|βj|. (2.9)

The concave function Jλ(|β|) can be approximated by its tight convex upper bound.
Given a current estimator β(k), the tight convex upper bound of (2.9) is given by

Q(β|β(k), λ) =
1

2n
‖y −Xβ‖2

2 +

p∑
j=1

sgn(β
(k)
j )J ′λ(|β

(k)
j |)βj + λ

p∑
j=1

|βj|, (2.10)

where J ′λ is the derivative of Jλ. We update the current solution by

β(k+1) = arg min
β

Q(β|β(k), λ).

The CCCP algorithm has the descent property, that is, the objective function
decreases after each iteration. Starting with the initial value β(0) = 0, the calibrated
algorithm in Wang et al. (2013) consists of the following two steps:

Step 1. Let β̂
(1)

(λ) = arg minβQ(β|β(0), τλ) for some τ > 0.

Step 2. Let β̂(λ) = arg minβQ(β|β̂
(1)

(λ), τλ).

In step 1, a smaller tuning parameter τλ is adopted to increase the estimation
accuracy. In practice, one can set τ = λ or τ = 1/ log n. Assume design matrix X

satisfies
min

δ 6=0,‖δA?c‖1≤3‖δA?‖1

‖Xδ‖2√
n‖δA?‖2

= κ > 0,

τ = o(1), λ = o(min{|β?j | : j ∈ A?}) and τκ−2s = o(1),then for all n sufficiently
large

P(β̂(λ) = β̂
(o)

) ≥ 1− 8p exp{−nτ 2λ2/(8σ2)}.
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Further assume nτ 2λ2 →∞ and log p = o(nτ 2λ2), then

P(β̂(λ) = β̂
(o)

)→ 1 as n→∞.

To select the tuning parameter λ, Wang et al. (2013) extended the BIC criterion to
the high-dimensional setting. For a given λ, the high-dimensional BIC criterion
(HBIC) is defined by

HBIC(λ) = log(σ̂2
λ) + dfλ

Cn log p

n
,

where dfλ = ‖β̂(λ)‖0, the number of non-zero elements in β̂(λ) and σ̂2
λ = n−1SSEλ

with SSEλ = ‖y −Xβ̂(λ)‖2
2, Cn is a sequence of numbers that diverges to ∞, e.g.

Cn = log log n. The tuning parameter is selected by

λ̂ = arg min
λ

HBIC(λ).

Wang et al. (2013) proved that the resulting estimator selected by HBIC can recover
the true support with probability approaching to 1. Loh and Wainwright (2015)
studied the statistical properties of regularized M -estimators in which they allow
both the loss function and penalty to be nonconvex. In particular, the regularized
M -estimator is of the following form

β̂ ∈ arg min
g(β)≤R,β∈Ω

`n(β) +

p∑
j=1

pλ(|βj|), (2.11)

where g(·) is a convex function satisfying the lower bound g(β) ≥ ‖β‖1 for all
β ∈ Rp, R > 0 is a tuning parameter such that β? is a feasible point and Ω is some
convex set containing β?. In settings where such a constraint Ω is extraneous, one
can simply set Ω = Rp. The penalty function pλ(·) satisfies the following conditions:

(1) pλ(0) = 0 and is symmetric around zero.

(2) pλ(t) is nondecreasing on the nonnegative real line.

(3) For t > 0, the function pλ(t)/t is nonincreasing in t.

(4) pλ(t) is differentiable for t 6= 0 and limt→0+ p
′
λ(t) = λL.
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(5) There exists µ > 0 such that pλ,µ(t) := pλ(t) + µ
2
t2 is convex.

It is easy to see the standard L1 penalty, the SCAD and the MCP satisfy all
these conditions. Loh and Wainwright (2015) requires the loss function `n to be
differentiable, but does not require it to be convex. Instead, they impose a weaker
condition known as the restricted strong convexity (RSC), which involves a lower
bound on the remainder in the first order expansion of `n. In particular, they
assume

〈∇`n(β? + ∆)−∇`n(β?),∆〉 ≥

α1‖∆‖2
2 − τ1

log p
n
‖∆‖2

1, ‖∆‖2 ≤ 1,

α2‖∆‖2 − τ2

√
log p
n
‖∆‖1, ‖∆‖2 ≥ 1,

(2.12)

where the αj ’s are strictly positive constants and the τj ’s are nonnegative constants.
Suppose that β̂ satisfies the first order necessary conditions to be a local minimum
of the program (2.11)

〈∇`n(β̂) +∇pλ(β̂),β − β̂〉 ≥ 0, for all feasible β ∈ Rp. (2.13)

When β̂ lies in the interior of the constraint set, this condition reduces to the usual
zero-subgradient condition

∇`n(β̂) +∇pλ(β̂) = 0.

Suppose the loss function `n satisfies the RSC condition (2.12) with 3
4
µ < α1 and

consider any choice of λ such that

4

L
·max

{
‖∇`n(β?)‖∞, α2

√
log p

n

}
≤ λ ≤ α2

6RL
,

and suppose n ≥ 16R2 max{τ 2
1 , τ

2
2 } log p/α2

2. Then any vector β̂ satisfying the first
order necessary conditions (2.13) has the following error bounds

‖β̂ − β?‖2 ≤
6λL
√
s

4α1 − 3µ
and ‖β̂ − β?‖1 ≤

24λLs

4α1 − 3µ
.
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2.2 High-dimensional mean vector test

2.2.1 An overview

One-sample mean vector test or two-sample testing on the equality of two means is
a fundamental problem in high-dimensional statistics. These tests are commonly
encountered in genome-wide association studies. For instance, Chen and Qin (2010)
performed a hypothesis testing to identify sets of genes which are significant with
respect to certain treatments in a genetics research. Xu et al. (2016) applied
various tests to the bipolar disorder dataset from a genome-wide association study
collected by Consortium (2007) in which one would like to test whether there is
any association between a disease and a large number of genetic variants. In these
applications, the dimension of the data p is often much larger than the sample size
n. Traditional methods such as Hotelling’s T 2 test (Hotelling 1931) either cannot
be directly applied or have low power against the alternative.

Consider a size n random sample x1, . . . ,xn from a p-dimensional population x

with finite mean µ and positive definite covariance matrix Σ. Of interest is to test
the following hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0, (2.14)

for some known vector µ0. This problem is typically referred to as the one-sample
hypothesis testing problem in multivariate analysis and has been extensively studied
when p < n and p is fixed. Without loss of generality, we assume µ0 = 0 and the
one-sample problem (2.14) becomes

H0 : µ = 0 versus H1 : µ 6= 0. (2.15)

In most of the cases, the test statistic constructed for one-sample problem can be
easily extended to two-sample problem and the theoretical results hold as well. For
this reason, we only focus on the one-sample problem (2.15) and assume µ0 = 0 in
this section.

Let x̄ and S be the sample mean vector and the sample covariance matrix
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respectively,

x̄ =
1

n

n∑
i=1

xi, S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>. (2.16)

The Hotelling’s T 2 statistic for problem (2.14) is given by T 2 = nx̄>S−1x̄. Assume
that x1, . . . ,xn are normally distributed, under H0, we have

T 2 ∼ (n− 1)p

n− p
Fp,n−p,

where Fp,n−p is the F distribution with degrees of freedom p and n− p. For the one
sample problem (2.15), the Hotelling’s T 2 test is equivalent to the likelihood ratio
test. The Hotelling’s T 2 requires that the sample covariance matrix S is invertible
and cannot be directly used in high-dimensional setting where p > n. Despite the
singularity of S, it has been observed that the power of the Hotelling’s T 2 test
can be adversely affected even when p < n, if S is nearly singular; see Bai and
Saranadasa (1996) and Pan and Zhou (2011).

Several one-sample tests for high-dimensional data have been proposed recently.
These tests can be roughly categorized into three types. The first type is based on
the sum-of-squares of the sample mean and can be regarded as modified versions
of the Hotelling’s T 2 test. Since the sample covariance matrix S is not invertible,
these tests replace S by the identity matrix I or some other diagonal matrix leading
to a sum-of-squares test statistic. The second type is based on the maximum of a
sequence of tests. The third type is the projection test. The idea is to project the
high-dimensional vector xi onto a low-dimensional space and then we can apply the
traditional methods such as Hotelling’s T 2 to perform the test. These types of tests
are powerful only against certain alternatives. For example, if the true mean µ is
dense in the sense that there is a large proportion of small to moderate nonzero
components, then sum-of-squares type test is more powerful. In contrast, if the true
mean µ is sparse in the sense that there are only a few nonzero components in µ,
then the maximum-type test is more powerful. In practice, since the true alternative
hypothesis is unknown, it is unclear how to choose a powerful test. Furthermore,
there are intermediate situations in which none of these tests is powerful (Xu et al.
2016). Some recent work showed that the sum-of-squares-type test statistic and the
maximum-type test statistic are asymptoticly independent and hence combined the
two test statistics to boost the power, see Li and Xue (2015) and Li et al. (2018).
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2.2.2 Sum-of-squares-type Test

When p > n, the sample covariance matrix S is not invertible. To deal with the
singularity issue, one simple way is ignoring the dependence among the p variables
and replacing S by the identity matrix I.

Without assuming that data comes from normal distribution, Bai and Saranadasa
(1996) studied the hypothesis testing under a factor-like model structure. Let x be
a random vector from the factor-like model with mean µ and covariance matrix
Σ, then x can be written as x = µ + Pz, where P is a p × m matrix for some
m ≥ p such that PP> = Σ, and z = (Z1, . . . , Zm)> consisting of m independent
and identically distributed random variables satisfying E(Zj) = 0, Var(Zj) = 1,
and E(Z4

j ) = m4 < ∞, for j = 1, . . . ,m. This factor-like model is also known as
independent component model. Bai and Saranadasa (1996) proposed a test for the
two-sample problem under the factor-like model and Srivastava (2009) studied its
one-sample version. The test statistic for one-sample problem is defined as

TBS = x̄>x̄− trS/n.

The test statistic TBS can be regarded as unscaled distance x̄>x̄ with offset trS/n.
If z satisfies that E(

∏m
j=1 Z

vj
j ) equals 0 when there is at least one vk = 1 and

equals 1 when there are two vj’s equal 2, whenever
∑m

j=1 vj = 4, p/n→ c > 0 and
λmax(Σ) = o(

√
trΣ2), then under the local alternative µ>Σ−1µ = o(trΣ2/n),

n(n− 1)Var(TBS)→ 2tr(Σ2).

Under H0, TBS has mean 0. Therefore, the asymptotic null distribution is

TBS√
2tr(Σ2)/(n(n− 1))

→ N(0, 1).

The power function under local alternative that µ>Σ−1µ = o(trΣ2/n) is

βTBS(µ) = Φ

(
−zα +

n‖µ‖2
2√

2trΣ2

)
,

where Φ(·) is the cdf of standard normal distribution. Bai and Saranadasa (1996)
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also gave a consistent estimator of tr(Σ2),

t̂r(Σ2) =
(n− 1)2

(n− 2)(n+ 1)
(trS2 − (trS)2/n).

Inspired by the observation that both the term
∑n

i=1 x>i xi in calculating x̄>x̄

and the term trS impose a restricted condition that p and n should be of the same
order, Chen and Qin (2010) proposed the following test statistic in which the term
x>i xi is removed,

TCQ =
1

n(n− 1)

n∑
i 6=j

x>i xj.

Chen and Qin (2010) showed that if tr(Σ4) = o(tr2(Σ2)) and E(
∏q

k=1 Z
αk
lk

) =∏q
k=1 E(Zαk

lk
) for a positive integer q such that

∑q
l=1 αl ≤ 8 and l1 6=, . . . , 6= lq, then

under the local alternative that µ>Σ−1µ = o(trΣ2/n), we have n(n−1)Var(TCQ)→
2tr(Σ2). Under H0, TCQ has mean 0. Therefore, the asymptotic null distribution is

TCQ√
2tr(Σ2)/(n(n− 1))

→ N(0, 1),

and the power function is

βTCQ(µ) = Φ

(
−zα +

n‖µ‖2
2√

2trΣ2

)
.

Note that TBS and TCQ share the same asymptotic distribution and power function.
In fact, we can show TBS and TCQ take exactly the same form

TBS =x̄>x̄− trS/n

=
n

n− 1
x̄>x̄− 1

n(n− 1)

n∑
i=1

x>i xi

=
1

n(n− 1)

(∑
i 6=j

x>i xj +
n∑
i=1

x>i xi

)
− 1

n(n− 1)

n∑
i=1

x>i xi

=
1

n(n− 1)

n∑
i 6=j

x>i xj = TCQ.

The order of n and p is not explicatly controlled in TCQ. Instead, tr(Σ4) = o(tr2(Σ2))
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is used to control the growth of p. The estimator for trΣ2 is adapted from Bai and
Saranadasa (1996) by excluding the term

∑n
i=1 x>i xi,

t̂rΣ2 =
tr
(∑n

j 6=k(xj − x̄(j,k))x
>
j (xk − x̄(j,k))x

>
k

)
n(n− 1)

,

where x̄(j,k) is the sample mean after excluding xj and xk. Though TBS and TCQ
have exactly the same form, the estimators of variance for TBS and TCQ are slightly
different when performing the test.

TBS and TCQ are not invariant under different scales. To get rid of the unit
effect, Srivastava and Du (2008) and Srivastava (2009) constructed test statistics by
replacing S with diagonal matrix D, where D = diag(S), a diagonal matrix with
elements being the diagonal elements of S. The test statistic in Srivastava and Du
(2008) is defined as

TSD = nx̄>D−1x̄− (n− 1)p/(n− 3).

Assume that n = O(pζ) for some 1
2
≤ ζ ≤ 1, 0 < limp→∞ trRi

0/p < ∞ for
i = 1, 2, 3, 4 and limp→∞max1≤i≤p λi/

√
p = 0 where R0 = D

−1/2
Σ ΣD

−1/2
Σ with

eigenvalues λ1 ≤ · · · ≤ λp, and DΣ is the diagonal matrix with diagonal elements
from the covariance matrix Σ. Under H0 and normality assumption, we have

TSD√
2(trR2 − p2/(n− 1))cn,p

→ N(0, 1),

where R = D−1/2SD−1/2 is the sample correlation matrix and cn,p is an adjustment
coefficient that approaches 1 in probability as n and p tend to ∞. The adjustment
coefficient cn,p is needed to improve the convergence of TSD. The authors suggest
using

cn,p = 1 + tr(R2)/p3/2.

Under local alternative that µ = (n(n− 1))−1/2δ, where δ is a constant vector, if
for any p, δ>D−1

Σ δ is bounded by a constant that does not depend on p, then the
asymptotic power function βTSD is

βTSD(µ) = Φ

(
−zα +

nµ>D−1
Σ µ√

2trR2
0

)
.
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Srivastava (2009) removed the the adjustment coefficient cn,p and normality as-
sumption in Srivastava and Du (2008). Under the same conditions except that ζ is
relaxed to 0 < ζ ≤ 1, Srivastava (2009) showed that Var(TSD)→ 2trR2

0. Therefore,
under H0

TSD√
2trR2

0

→ N(0, 1).

A consistent estimator of trR2
0 is trR2 − p2/(n− 1). The condition 1

2
≤ ζ ≤ 1 in

Srivastava and Du (2008) guarantees that the adjustment coefficient converge to 1.
Since adjustment coefficient is removed in Srivastava (2009) and thus the condition
can be relaxed to 0 < ζ ≤ 1.

2.2.3 Maximum-type Test

If the null hypothesis H0 : µ 6= 0 is rejected, then there is at least one element
in µ is not 0. Intuitively, one can construct a test for each of the p variables and
hopefully at least one of the p tests is rejected if the alternative is true. Based on
this observation, the maximum value of the p individual tests can be used as the
test statistic. This type of tests is particularly powerful against sparse alternatives.

Cai et al. (2014) introduced a test that is based on a linear transformation of
the data by the precision matrix Ω = Σ−1 which incorporates the correlations
among the variables. Given that the precision matrix Ω = (ωij)p×p is known, the
test statistic is defined as

TCLX = n max
1≤j≤p

X̄2
j

ωjj
. (2.17)

Assume that Ω is sparse, Cai et al. (2014) used the CLIME estimator (Cai et al.
2011) to estimate Ω. Let Ω̂1 = (ω̂1

ij)p×p be a solution to the following optimization
problem

min ‖Ω‖1 subjection to ‖SΩ− I‖∞ < λn,

where ‖Ω‖1 =
∑p

i=1

∑p
j=1 |ωij|, ‖Ω‖∞ = max1≤i,j≤p |ωij|, and λn = C

√
log p/n for

some sufficiently large constant C. In practice, λn can be chosen by cross validation,
see Cai et al. (2011) for more details. To ensure that the resulting estimator of the
precision matrix is symmetric, the final estimator of Ω is defined to be Ω̂ = (ω̂ij)p×p

where
ω̂ij = ω̂ji = ω̂1

ijI{|ω̂1
ij| ≤ |ω̂1

ji|}+ ω̂1
jiI{|ω̂1

ij| > |ω̂1
ji|}.
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This estimator Ω̂ is called the CLIME estimator and can be implemented by
linear programming. In practice, ωjj in (2.17) is replaced by ω̂jj. Let Dσ =

diag(σ11, . . . , σpp) and Dω = diag(ω11, . . . , ωpp), where σjj and ωjj are the diagonal
entries of Σ and Ω respectively. The correlation matrix of x is Γ = (γij)p×p =

D
−1/2
σ ΣD

−1/2
σ and the correlation matrix of Ωx is R = (rij)p×p = D

−1/2
ω ΩD

−1/2
ω .

To obtain the limiting distribution under H0, Cai et al. (2014) imposed the following
conditions

(C1) c−1 ≤ λmin(Σ) < λmax(Σ) ≤ c for some constant c.

(C2) max1≤i,j≤p |γij| ≤ r2 for some constant 0 < r2 < 1.

Suppose conditions (C1) and (C2) hold under H0, Cai et al. (2014) showed that for
every x ∈ R,

P (TCLX − 2 log p+ 2 log log p ≤ x)→ exp

(
− 1√

π
exp(−x

2
)

)
as p→∞. (2.18)

The right hand side in (2.18) is known as the type I extreme value distribution or
Gumbel distribution. Therefore, the null hypothesis is rejected at level α when

TCLX > 2 log p− 2 log log p+ qα,

where qα is the 1− α quantile of the type I extreme value distribution, i.e.,

qα = − log(π)− 2 log log(1− α)−1.

Chen et al. (2014) proposed a test which removes components that are estimated
to be zero via thresholding. The motivation is that zero components are expected
to contribute little to the squared sample mean and those smaller than a given
threshold can be ignored. The test statistic with index s is defined as

TCLZ(s) =

p∑
j=1

{
nX̄2

j

σii
− 1

}
I

{
nX̄2

j

σii
> λp(s)

}
,

where the threshold level is set to be λp(s) = 2s log p for some s ∈ (0, 1). If
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log p = o(n1/3), Chen et al. (2014) showed that for any s ∈ (0, 1),

σ−1
CLZ(s)(TCLZ(s)− µCLZ(s))→ N(0, 1),

where µCLZ(s) and σ2
CLZ(s) are the expectation and variance of TCLZ(s). Therefore,

an asymptotic level α test rejects H0 if

TCLZ(s) > zασ̂CLZ,0(s) + µ̂CLZ,0(s),

where σ̂CLZ,0(s) and µ̂CLZ,0(s) are the estimators of σCLZ(s) and µCLZ(s) under
H0, and zα is the upper α quantile of N(0, 1). Chen et al. (2014) further proposed
the multi-level thresholding statistic, which is defined as

TCLZ = max
s∈(0,1−η)

{TCLZ(s)− µ̂CLZ,0(s)}/σ̂CLZ,0(s),

for some η ∈ (0, 1). The asymptotic null distribution of TCLZ is the Gumbel
distribution. Under H0,

P{a(log p)TCLZ − b(log p, η) ≤ x} → exp{−e−x},

where a(y) = (2 log y)1/2 and b(y, η) = 2 log y + log log y/2 − log(
√
π/(1 − η)).

Therefore, the multi-level thresholding test of asymptotic level α rejects H0 if

TCLZ > (qα + b(log y, η))/a(log p),

where qα is the upper α quantile of the Gumbel distribution. Due to the slow
convergence to the asymptotic null distribution, Chen et al. (2014) proposed to use
the parametric bootstrap to compute its p-value.

2.2.4 Projecton test

The idea of projection test is to project the high-dimensional vector xi onto a
space of low dimension and then traditional methods such as t-test or Hotelling’s
T 2 can be applied. Let P be a p× k matrix with k � n and we can project the
p-dimensional vector xi to a k-dimensional space by left-multiplying the matrix
P>. More specifically, define yi = P>xi, i = 1, . . . , n, and thus y1, . . . ,yn ∈ Rk are
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independent and identically distributed with mean P>µ and covariance matrix
P>ΣP. The Hotelling’s T 2

P after projection is defined to be

T 2
P = nx̄>P(P>Σ̂P)−1P>x̄,

which is equivalent to the Hotelling’s T 2 test based on y1, . . . ,yn.
Several methods have been proposed to determine the projection matrix P.

Lauter (1996) considered a test using the linear score z = (Z1, . . . , Zn)> = Xd,
where d is a p× 1 projection vector depending on X only through X>X and d 6= 0

with probability 1. Then one can perform the one-sample t-test based on Z1, . . . , Zn.
Lauter (1996) also proposed two different ways to obtain the projection vector d.
For example, d can take the form of

d = (diag(X>X))−1/2,

or be the eigenvector corresponding to the largest eigenvalue λmax for the following
eigenvalue problem

(X>X)d = diag(X>X)dλmax.

Lopes et al. (2011) proposed a random projection test where the entries in P are
randomly drawn from the standard normal distribution. This random projection
test is an exact test if xi’s are normally distributed. Instead of using random
projection, Li et al. (2015) proposed a projection test using the optimal projection
direction. Li et al. (2015) showed that the optimal choice of k in P is 1 and the
optimal projection direction is θ = Σ−1µ in the sense that the power of the test
T 2

P is maximized. Let yi = θ>xi, i = 1, . . . , n. The projection test statistic is

T 2
θ = nx̄>θ(θ>Σ̂θ)−1θ>x̄,

which follows F1,n−1 distribution under H0. It is equivalent to a one-sample t test
based on y1, . . . , yn. In order to control the type I error, Li et al. (2015) proposed a
data-splitting strategy to estimate the optimal direction and obtained an exact t-
test. They partition the random sample into two separate sets: D1 = {x1, . . . ,xn1}
and D2 = {xn1+1, . . . ,xn}. They use D1 to estimate the direction θ = Σ−1µ and
use D2 to construct the test statistic T 2

θ . To estimate θ, they proposed a ridge-type
estimator θ̂ = (S1 + λD1)−1x̄1, where x̄1 and Σ̂1 are the sample mean vector and
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the sample covariance matrix computed from D1 and D1 = diag(Σ̂1). The test
statistic T 2

θ̂
is constructed using θ̂

>
xn1+1, . . . , θ̂

>
xn. Li et al. (2015) also derived

the asymptotic power function of the projection test T 2
θ̂
under the assumption

that θ̂ → θ in probability. However, there is no guarantee that the ridge-type
estimator is consistent. In order to obtain a better estimation of θ, we assume the
optimal projection direction is sparse. Under the sparsity assumption, we estimate
θ using regularized quadratic programming and it can be shown that the resulting
estimator is consistent.

2.3 Feature screening of high-dimensional data

2.3.1 An overview

With the advent of modern technology for data collection, ultra-high dimensional
datasets are widely encountered in machine learning, statistics, genomics, medicine,
finance, marketing, etc. The ultra-high dimensionality causes challenges in both
computation and methodology. Scalability is the major challenge to ultra-high di-
mensional data analysis. Other issues such as high collinearity, spurious correlation,
and noise accumulation (Fan and Lv 2008, 2010) bring in additional challenges.
Therefore, variable selection and feature screening have been a fundamental prob-
lem in the analysis of ultra-high dimensional data. Over the past two decades, a
large amount of variable selection approaches based on regularized M -estimation
have been developed. These approaches include the Lasso (Tibshirani 1996), the
SCAD (Fan and Li 2001), the Dantzig selector (Candes and Tao 2007), and the
MCP (Zhang 2010), among others. However, these regularization methods may not
perform well for ultra-high dimensional data due to the simultaneous challenges of
computational expediency, statistical accuracy, and algorithmic stability (Fan et al.
2009). To improve the performance of regularized methods, a two stage approach
can be applied. In the first stage, we reduce the number of features from a very
large scale to a moderate size in a computationally fast way. In the second stage, we
further implement refined variable selection algorithms such as regularized methods
to the selected features from the first stage. Ideally, we select all the important
features and may allow a few unimportant features entering model in the first stage.
The first stage is referred to as the feature screening stage. We only focus on the
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feature screening stage in this chapter.
Suppose we have p features X1, . . . , Xp in the feature space and denote the

index set of true important variables by M?. The definition of M? may vary
across different models. For example, in a parametric model associated with true
parameters β? = (β?1 , . . . , β

?
p)
>,M? is typically defined to be

M? = {1 ≤ j ≤ p : β?j 6= 0}.

Our goal in the feature screening stage is to select a submodel M̂ ⊂ {1, . . . , p}
such thatM? ⊂ M̂ with high probability. This is referred to as the sure screening
property. The sure screening property ensures that all the important features are
included in the selected submodel with probability approaching to 1 as the sample
size goes to infinity.

The most common feature screening method is the marginal screening, which
uses the marginal utility of individual feature to rank the importance of all features.
More specifically, the marginal feature screening procedure assigns an index, say
ω̂j, to each of features Xj. This index ω̂j measures the dependence between the
jth feature and the response variable. Then we can rank all features according to
the index and include the top important features in the submodel. For example, in
the setting of linear regression, the index ω̂j is chosen to be the absolute value of
marginal Pearson correlation between the jth feature and the response (Fan and
Lv 2008). Features with larger values of ω̂j are more relevant to the response and
thus have higher rankings. We rank all the features according to ω̂j and include
the top dn features in the submodel,

M̂dn = {1 ≤ j ≤ p : ω̂j is among the top dn ones},

where dn is some pre-specified threshold. Note that the marginal feature screening
procedure only uses the information of jth feature and the response without looking
at all other features and thus it can be carried out in a very efficient way. A
large amount of literature have studied the the sure screening property of various
marginal feature screening methods, see Fan and Lv (2008), Fan et al. (2009, 2011),
Li et al. (2012) and Fan, Ma and Dai (2014).

As pointed out in Fan and Lv (2008), the marginal feature screening procedure
may suffer from the following two issues:
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1. Some unimportant features that are highly correlated with important features
can have higher rankings than other important features that are relatively
weakly related to the response.

2. An important feature that is marginally independent but jointly dependent
on the response tends to have lower ranking.

The first issue says that the marginal feature screening has the chance to include
some unimportant features in the submodel. This is not too bad from a feature
screening’s perspective. The second issue is a bigger issue, which says that the
marginal feature screening may fail to include the important feature if it is marginally
independent of the response. It is well known that absence of any important feature
would lead to a biased estimation. To overcome the two aforementioned issues, one
can use an iterative feature screening procedure, which iteratively carries out the
marginal screening procedure. This iterative procedure was first introduced by Fan
and Lv (2008) and can be viewed as an extension of the marginal feature screening.
At the kth iteration, we apply marginal feature screening to the features survived
from the previous step. Let M̂k be the selected index set of important variables at
the kth iteration and the final selected index set of important variables is given by
M̂ = M̂1 ∪ M̂2 ∪ . . . , the union of all selected index sets. For example, Fan and
Lv (2008) used the residual as the new response and iteratively applied marginal
feature screening based on Pearson correlation, where the residual is obtained from
the linear regression with features selected from the previous step. The iterative
feature screening can significantly improve the simple marginal screening, but it
can also be much more computationally expensive. Another approach to improve
the marginal screening is the sure joint screening, which utilizes all the features.
The joint screening approach approximates the objective function by its Taylor’s
expansion (Xu and Chen 2014, Yang et al. 2016) such that the optimization problem
can be solved in a fast manner. In many examples, one can obtain a closed form
for each update.

2.3.2 Linear model and generalized linear model

Let us consider the linear regression model,

y = β0 + x>β + ε, (2.19)
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where β0 is the intercept, β = (β1, . . . , βp)
> is a p-dimensional regression coefficient

vector, and ε is the error term. In the ultra-high dimensional setting, the true
regression coefficient vector β? = (β?1 , . . . , β

?
p)
> is assumed to be sparse, meaning

most of the coefficients β?j are 0. The index set of the true model is defined as

M? = {1 ≤ j ≤ p : β?j 6= 0}.

The features with indices in the support M? are called important features. To
select the important features, Fan and Lv (2008) suggested ranking all features
according to the marginal Pearson correlation coefficient between each feature and
the response and select the top features which have strong correlation with the
response. For a pre-specified value νn(0 < νn < 1), the index set of selected features
is given by

M̂νn = {1 ≤ j ≤ p : |ĉorr(x(j),y)| is among the top bνnnc largest ones},

where x(j) is the jth column of X, ĉorr denotes the sample Pearson correlation, and
bνnnc is the integer part of νnn. This procedure achieves the goal of feature screening
since it reduces the ultra-high dimensionality down to a relatively moderate scale
bνnnc. This procedure is referred to as the sure independence screening (SIS).
Then appropriate regularized methods such as the Lasso, the SCAD and the
Dantzig selector can be further applied to the selected important features. This
feature screening procedure is based on Pearson correlation and can be carried
out in a extremely simple way at very low computational cost. In addition to the
computational advantage, Fan and Lv (2008) also showed that under fairly general
conditions, the SIS has the sure screening property. It can reduce from exponentially
growing dimension p down to a relatively small scale dn = bνnnc = O(n1−θ) < n,
while include all important features in the submodel with high probability. In
practice, one can set dn = bn/ log nc or n− 1 as discussed in Fan and Lv (2008).

Since marginal Pearson correlation is employed to rank features, the SIS may
suffer from the potential issues with marginal screening. On one hand, the SIS
may fail to select an important feature when it is jointly correlated but marginally
uncorrelated with the response. On the other hand, the SIS tends to select
unimportant features which are jointly uncorrelated but highly marginally correlated
with the response. To address these issues, Fan and Lv (2008) also introduced
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an iterative SIS procedure (ISIS) by iteratively replacing the response with the
residuals obtained from the regression on the selected features survived the previous
step.

A natural extension of the SIS is to apply the feature screening procedure to
the generalized linear model. Assume that the response Y is from an exponential
family with the following canonical form

fY (y; θ) = exp{yθ − b(θ) + c(y)},

for some known functions b(·), c(·) and unknown parameter θ. Consider the
following generalized linear model

E(Y |x) = g−1(β0 + x>β), (2.20)

where g(·) is the link function, β0 is a unknown scalar, and β = (β1, . . . , βp)
> is

a p-dimensional unknown vector. The linear regression model (2.19) is a special
case of (2.20) by taking g(µ) = µ. Without loss of generality, we assume that all
the features are standardized to have mean zero and standard deviation one. Fan
and Song (2010) proposed a feature screening procedure for (2.20) by ranking the
maximum marginal likelihood estimator (MMLE). For each 1 ≤ j ≤ p, the MMLE
β̂
M

j is defined as

β̂
M

j = (β̂Mj0 , β̂
M
j1 )> = arg min

βj0,βj1

1

n

n∑
i=1

`(Yi, βj0 + βj1Xij), (2.21)

where `(y, θ) = −yθ + b(θ) − c(y) is the negative log-likelihood function. The
minimization problem (2.21) can be rapidly computed and its implementation is
robust since it only involves two parameters. Such a feature screening procedure
ranks features according to their magnitude of marginal regression coefficients. The
set of important features is defined as

M̂νn = {1 ≤ j ≤ p : |β̂Mj1 | > νn},

where νn is some pre-specified threshold. As a result, we dramatically decrease
the dimension from p to a moderate size by choosing νn properly. In the linear
regression setting, the MMLE ranking is equivalent to the marginal correlation
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ranking. However, the MMLE screening does not rely on the normality assumption
and can be more easily to applied to other models (Fan and Song 2010).

Fan et al. (2009) extended SIS and ISIS to a general pseudo-likelihood framework
in which the aim is to find the parameter vector β = (β1, . . . , βp)

> that minimizes
an objective function of the form

Q(β0,β) =
1

n

n∑
i=1

`(Yi, β0 + β>xi),

This framework includes a lot of important applications such as

1. Generalized linear model: All generalized linear models, including the
logistic regression and the Poisson log-linear model, fit very naturally into
the framework.

2. Classification: Some common approaches to classification assume the re-
sponse takes values in {−1, 1} also fit the framework. For instance, support
vector machine (Vapnik 2013) uses the hinge loss function `(Yi, β0 + x>i β) =

(1 − Yi(β0 + x>i β))+, while the boosting algorithm AdaBoost (Freund and
Schapire 1997) uses `(Yi, β0 + x>i β) = exp{−Yi(β0 + x>i β)}.

3. Robust fitting: Instead of the conventional least squares loss function,
one may prefer a robust loss function such as the `1 loss `(Yi, β0 + x>i β) =

|Yi − β0 − x>i β| or the Huber loss (Huber 1964), which also fits into the
framework.

Fan et al. (2009) suggested using the marginal utility to rank the features. The
marginal utility of the jth feature Xj is quantified by

Lj = min
β0,βj

n−1

n∑
i=1

`(Yi, β0 +Xijβj).

The idea is to compute the vector of marginal utilities L = (L1, . . . , Lp)
> and

rank the features according to the marginal utilities: the smaller Lj is, the more
important Xj is. Note that in order to compute Lj , we only need to fit a model
with two parameters, β0 and βj, so computing the vector L can be done very
quickly and stably, even for an ultra-high dimensional problem. The feature Xj is
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selected if the corresponding utility Lj is among the dn smallest components of L.
Typically, we may take dn = bn/ log nc. When dn is large enough, all important
features would be selected with high probability. Fan et al. (2009) also proposed
an iterative feature screening procedure, which consists of the following steps.

Step 1. Compute the vector of marginal utilities L = (L1, . . . , Lp)
> and select the

set Â1 = {1 ≤ j ≤ p : Lj is among the first k1 smallest ones}. Then apply a
penalized (pseudo)-likelihood, such as the Lasso and the SCAD, to select a
subset M̂.

Step 2. For each j ∈ {1, . . . , p}/M̂, compute

L
(2)
j = min

β0,βj ,βM̂

1

n

n∑
i=1

L(Yi, β0 + x>
i,M̂βM̂ +Xijβj), (2.22)

where xi,M̂ denotes the sub-vector of xi consisting of those elements in M̂.
Then select the set

Â2 = {j ∈ {1, . . . , p}/M̂ : L
(2)
j is among the fist k2 smallest ones}.

Step 3. Use penalized likelihood to the features in set M̂ ∪ Â2,

β̂2 = arg min
β0,βÂ2

,βM̂

1

n

n∑
i=1

`(Yi, β0 + x>
i,M̂βM̂ + x>

i,Â2
βÂ2

) +
∑

j∈M̂∪Â2

pλ(|βj|),

where pλ(·) is some penalty function. The indices of β̂2 that are non-zero
yield a new estimated set M̂.

Step 4. Repeat Step 2 and Step 3 until |M̂| = dn.

Note that L(2)
j can be interpreted as the additional contribution of feature Xj

given the existence of features in M̂. The optimization problem in Step 2 is a
low-dimensional problem which can be solved easily. An alternative approach of
Step 2 is to substitute the fitted value β̂M̂1

from the Step 1 into (2.22). Then the
optimization in (2.22) only involves two parameters and is exactly an extension of
Fan and Lv (2008). To this end, let ri = Yi− x>

i,M̂
βM̂ denote the residual from the
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previous step and we choose the square loss function, then

`(Yi, β0 + x>
i,M̂βM̂ +Xijβj) = (ri − β0 − βjXij)

2.

Without explicit definition of residuals, the idea of additional contribution can be
applied to a much more general statistical framework.

2.3.3 Nonparametric regression model

Fan et al. (2011) proposed a nonparametric independence screening (NIS) for
ultra-high dimensional additive model of the following form,

Y =

p∑
j=1

mj(Xj) + ε, (2.23)

where mj(Xj) is assumed to have zero mean for identifiability. The index set of
the true important features is defined as

M? = {1 ≤ j ≤ p : Em2
j(Xj) > 0}.

To identify the important features in model (2.23), Fan et al. (2011) considered the
following p marginal nonparametric regression problems

min
fj∈L2(P )

E(Y − fj(Xj))
2, (2.24)

where P denotes the joint distribution of (x, Y ) and L2(P ) is the family of square
integrable functions under the measure P . The minimizer of (2.24) is fj = E(Y |Xj),
which can be used as a population level marginal utility. With a random sample
{(xi, Yi)}, i = 1, . . . , n, fj(x) can be estimated by a set of B-spline basis. Let
B(x) = (B1(x), . . . , BL(x))> be the B-spline basis and βj = (βj1, . . . , βjL)> be the
corresponding coefficients. Consider the following least squares,

β̂j = arg min
βj

n−1

n∑
i=1

(Yi − β>j B(Xij))
2.

Thus fj(x) can be estimated by f̂j(x) = β̂
>
j B(x). The index set of selected submodel
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is given by
M̂νn = {1 ≤ j ≤ p : ‖f̂j‖2

n ≥ νn},

where ‖f̂j‖2
n = n−1

∑n
i=1 f̂j(Xij)

2 and νn is some prespecified threshold. This NIS
procedure enjoys the sure screening property. The larger the minimum signal level
or the smaller the number of basis functions, the higher the dimensionality that
the NIS can handle. However, the number of basis functions cannot be too small
since the approximation error would be too large if we only use a small number of
basis functions.

Varying coefficient model is another important nonparametric statistical model
that allows us to examine how the effects of features vary with some exposure
variable. Consider the following varying coefficient model,

Y =

p∑
j=1

βj(U)Xj + ε,

where U is some observable exposure variable and the coefficient βj(·) is a smooth
function of variable U . The index set of true important features is defined as

M? = {1 ≤ j ≤ p : E(β2
j (U)) > 0}

with model size s = |M?|. For each feature Xj, j = 1, . . . , p, Fan, Ma and Dai
(2014) considered the following marginal regression

min
aj ,bj

E[(Y − aj − bjXj)
2|U ]. (2.25)

Let aj(U) and bj(U) be the solution to (2.25). The marginal contribution of Xj for
the response can be characterized by

ωj = ‖aj(U) + bj(U)Xj)‖2 − ‖a0(U)‖2, (2.26)

where a0(U) = E[Y |U ] and ‖f‖2 = Ef 2. By some algebra, it can be seen that

ωj = E
[

(Cov[Xj, Y |U ])2

Var[Xj|U ]

]
.

The marginal utility ωj = 0 if and only if Cov[Xj, Y |U ] = 0. Given a random
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sample {(xi, Yi, Ui)}, i = 1, . . . , n, we can estimate aj(U), bj(U) and a0(U) using
B-spline. Let B(U) = (B1(U), . . . , BL(U))> be the B-spline basis and consider the
marginal regression problem

(η̂j, θ̂j) = min
ηj ,θj

n−1

n∑
i=1

(Yi −B(Ui)
>ηj −B(Ui)

>θjXij)
2,

η̂0 = min
η0

n−1

n∑
i=1

(Yi −B(Ui)
>η0)2,

where η0 = (η01, . . . , η0L)>, ηj = (ηj1, . . . , ηjL)>, and θj = (θj1, . . . , θjL)>. Thus
âj(U), b̂j(U) and â0(U) can be estimated by

âj(U) = B(U)>η̂j, b̂j(U) = B(U)>θ̂j, and â0(U) = B(U)>η̂0.

The sample marginal utility for screening is

ω̂j = ‖âj(U) + b̂j(U)‖2
n − ‖â0(U)‖2

n.

The submodel is selected by M̂νn = {1 ≤ j ≤ p : ω̂j ≥ νn}. Instead of using the
marginal utility ωj in (2.26) to rank the features, Liu et al. (2014) proposed a
screening procedure based on conditional correlation for varying-coefficient model.
Conditioning on U , the conditional correlation between Xj and Y is defined as the
conditional Pearson correlation

ρ(Xj, Y |U) =
cov(Xj, Y |U)√

cov(Xj, Xj|U)cov(Y, Y |U)
.

E[ρ2(Xj, Y |U)] can be used as a population level marginal utility to evaluate the
importance of Xj and it can be estimated by the kernel regression (Liu et al. 2014).
The features with high conditional correlations will be included in the selected
submodel.

2.3.4 Model free feature screening

In previous sections, we have discussed model-based feature screening procedures
for ultra-high dimensional data, which require us to specify the underlying true
model structure. However, it is quite challenging to correctly specify the model
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structure on the regression function in high-dimensional modeling. In practice, one
may do not know what model to use until the dimensionality of feature space is
reduced to a moderate size. Therefore, model free feature screening is necessary for
high-dimensional modeling. In this section, we review several model free feature
screening procedures.

Recall that in parametric modeling, the index set of true important features
M? is defined as the indices of nonzero elements in β?. Since we do not assume any
underlying model, there is no such true parameter β? and thus we need to redefine
the true index set of important featuresM?. Let Y be the response variable, which
can be univariate or multivariate and let x = (X1, . . . , Xp)

> be the p-dimensional
covariate vector. Define the index set of important features as

M? = {1 ≤ j ≤ p : F (y|x) functionally depends on Xj for any y ∈ Ψy},

where F (y|x) = Pr(Y < y|x) is the conditional distribution function of Y given
x and Ψy is the support of Y . This indicates that conditioning on xM? , Y is
statistically independent of xMc

?
, where xM? is a s-dimensional vector consisting of

all Xj with j ∈M?.
Zhu et al. (2011) considered a general model framework under which F (y|x)

depends on x only through B>xM? , where B is a s×K parameter matrix. In other
words, we assume F (y|x) = F (y|B>xM?). Note that B may not be identifiable.
What is identifiable is the space spanned by the columns of B. However, the
identifiability of B is of no concern here because our primary goal is to identify
important features rather than estimating B. This general framework covers a
wide range of existing models including the linear regression model, the generalized
linear models, the partially linear model (Hardle et al. 2012), the single-index
model (Hardle et al. 1993), and the partially linear single-index model (Carroll
et al. 1997), etc. It also includes the transformation regression model with a general
transformation h(Y ).

Zhu et al. (2011) proposed a unified screening procedure for this general frame-
work. Without loss of generality, assume E(Xj) = 0 and Var(Xj) = 1. Define
Ω(y) = E[xF (y|x)]. It then follows by the law of iterated expectations that
Ω(y) = E[xE(1(Y < y|x))|x] = cov(x,1(Y < y)). Let Ωj(y) be the jth element of
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Ω(y) and define
ωj(y) = E(Ω2

j(y)), j = 1, . . . , p.

ωj can be regarded as the marginal utility which measures the dependence between
feature Xj and the response Y . If Xj and Y are independent, so are Xj and
1(Y < y). Consequently Ωj(y) = 0 for all y ∈ Ψy and ωj = 0. On the other hand,
if Xj and Y are dependent, then there exists some y ∈ Ψy such that Ωj(y) 6= 0, and
hence ωj must be positive. Based on this observation, one can employ the sample
estimate of ωj to rank the features. Given a random sample {(xi, Yi)}, i = 1, . . . , n,
and assume the features are standardized in the sense that n−1

∑n
i=1 Xij = 0 and

n−1
∑n

i=1X
2
ij = 1 for all j. A natural estimator for ωj is

ω̃j =
1

n

n∑
k=1

{
1

n

n∑
i=1

Xij1(Yi < Yk)

}2

.

It is easy to see that ω̂j = n2/(n− 1)(n− 2)ω̃j is the corresponding U -statistic of ω̃j
and we can use ω̂j to select important features. The selected submodel is given by

M̂νn = {1 ≤ j ≤ p : ω̂j > νn}.

Zhu et al. (2011) established the consistency in ranking (CIR) property of their
procedure, which means that ω̂j always ranks important features above unimportant
ones with high probability. This procedure is referred to as the sure independent
ranking screening (SIRS). Provided an ideal cutoff is available, this property would
lead to consistency in selection in the ultra-high dimensional setup. In practice,
one can choose the cutoff value by introducing extra artificial auxiliary variables to
the dataset (Zhu et al. 2011). Lin et al. (2013) proposed an improved version of
the SIRS for a setting where the relationship between the response and individual
feature is symmetric.

Li et al. (2012) proposed a model free feature screening procedure based on the
distance correlation (Székely et al. 2007). Let u ∈ Rdu and v ∈ Rdv be two random
vectors. The squared distance covariance is defined as

dcov2(u,v) = S1 + S2 − 2S3,
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where Sj, j = 1, 2, 3 are defined as

S1 = E{‖u− ũ‖du‖v − ṽ‖dv},

S2 = E{‖u− ũ‖du}E{‖v − ṽ‖dv},

S3 = E{E(‖u− ũ‖du|u)E(‖v − ṽ‖dv |v)},

where (ũ, ṽ) is an independent copy (u,v). The distance correlation (DC) between
u and v is defined as

dcorr(u,v) =
dcov(u,v)√

dcov(u,u)dcov(v,v)
.

The distance correlation has many appealing properties. For two univariate normal
random variables U and V , the distance correlation dcorr(U, V ) is strictly increasing
in |ρ|, where ρ is the Pearson correlation between U and V . This property implies
that the DC-based marginal feature screening procedure is equivalent to the SIS in
Fan and Lv (2008) for linear regression if features and errors are normally distributed.
The second appealing property is that dcorr(u,v) = 0 if and only if u and v are
independent (Székely et al. 2007). Note that two univariate random variables U and
V are independent if and only if U and T (V ), a strictly monotone transformation
of V , are independent. This implies that a DC-based feature screening procedure
can be more effective than the Pearson correlation based procedure since DC can
capture the nonlinear relationship between U and V . In addition, DC is well-defined
for any random vectors, thus DC-based screening procedure can be directly used
for grouped predictors. These remarkable properties make distance correlation a
good candidate for feature screening.

Given a random sample {(ui,vi)}, i = 1, . . . , n from (u,v), the squared distance
covariance between u and v is estimated by d̂cov

2
(u,v) = Ŝ1 + Ŝ2 − 2Ŝ3, where

Ŝ1 =
1

n2

n∑
i=1

n∑
j=1

‖ui − uj‖du‖vi − vj‖dv ,

Ŝ2 =
1

n2

n∑
i=1

n∑
j=1

‖ui − uj‖du
1

n2

n∑
i=1

n∑
j=1

‖vi − vj‖dv ,

Ŝ3 =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

‖ui − uk‖du‖vj − vk‖dv ,
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and ‖a‖d stands for the Euclidean norm of a ∈ Rd. Similarly, we can define the
sample distance covariances d̂cov(u,u) and d̂cov(v,v). Accordingly, the sample
distance correlation between u and v is defined by

d̂corr(u,v) =
d̂cov(u,v)√

d̂cov(u,u)d̂cov(v,v)

.

Let y = (Y1, . . . , Yq)
> be the response vector with support Ψy, and x = (X1, . . . , Xp)

>

be the covariate vector. Here we allow the response to be multivariate and assume
q is a fixed number. For each j = 1, . . . , p, we can calculate the sample distance
correlation d̂corr(Xj,y). Based on the fact that dcorr(Xj,y) = 0 if and only if
Xj and y are independent, d̂corr(Xj,y) can be regarded as a marginal utility to
measure the importance of Xj. Therefore, the set of important variables is defined
as

M̂νn = {1 ≤ j ≤ p : d̂corr(Xj,y) > νn}

with νn = cn−κ for some pre-specified constants c and κ. This model free feature
screening procedure is known as DC-SIS, which allows for arbitrary regression
relationship of Y onto x, regardless of whether it is linear or nonlinear. It also
permits univariate and multivariate responses, regardless of whether it is continuous,
discrete, or categorical. This DC-SIS is completely model free and it does not
require a model assumption on the relationship between features and the response.
Since distance correlation is well defined for any random vectors, it can be directly
utilized for screening grouped variables and multivariate responses. An iterative
procedure for DC-SIS was proposed by Zhong and Zhu (2015) to address the issues
of marginal independent learning.
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Chapter 3 |
Regularized Quadratic Program-
ming and its Applications

In this chapter, we consider the regularized quadratic programming with nonconvex
penalty and linear constraint. This regularized quadratic programming has many
statistical applications including penalized linear regression, linear discriminant
analysis, estimation of precision matrix, etc. We study the theoretical properties of
the resulting estimator of a general regularized quadratic programming. Under the
assumption that the quadratic form satisfies the so-called restricted strong convexity
(RSC) condition, we establish the deterministic L1 and L2 error bounds for any
stationary point. Under slightly stronger condition, we also show that the stationary
point is unique and establish the support recovery and L∞ error bound using the
primal-dual witness (PDW) technique. Furthermore, we consider two applications
of the regularized quadratic programming: (1) estimation of linear functional, (2)
F -type test for regression coefficients and (3) sparse linear discriminant analysis.
To solve the regularized quadratic programming, we propose to use the ADMM
algorithm with local linear approximation. We also propose a BIC-type criteria to
select the regularization parameter.

3.1 Motivation

The work of regularized quadratic programming is motivated by the estimation of
functional of the form Σ−1η, where Σ ∈ Rp×p is a non-singular matrix and η ∈ Rp

is a p-dimensional vector. For example, Σ can be the covariance matrix and η can
be the mean vector or the difference of two mean vectors. Consider the following
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quadratic programming

min
β

1

2
β>Σβ − η>β. (3.1)

Clearly, the solution to (3.1) is β? = Σ−1η. Alternatively, we can reformulate (3.1)
as a quadratic programming with linear equality constraint,

min
β

1

2
β>Σβ subject to η>β = 1. (3.2)

The solution to (3.2) is β? = Σ−1η/(η>Σ−1η). Note that the reformulation (3.2)
rules out η = 0 since β? is not well-defined when η = 0. With the equality
constraint, the solution β? is not exactly the same as Σ−1η but proportional to it.
In many statistical applications, such as projection test for mean vector and linear
discriminant analysis, the magnitude of the linear functional is not important, it is
the direction of the functional that matters.

In high-dimensional data setting where p > n, it is well known that consistent
estimators for β cannot be achieved unless additional structural assumptions are
imposed on the model. Following the standard assumption in literature of high-
dimensional statistics, we assume that the linear functional β? = Σ−1η is sparse,
i.e., most of the elements in β? are 0. To obtain a sparse solution, we consider the
following regularized quadratic programming without linear constraint,

min
β

1

2
β>Σβ − η>β + Pλ(β), (3.3)

or with linear constraint

min
β

1

2
β>Σβ + Pλ(β) subject to η>β = 1, (3.4)

where Pλ(·) is some penalty function we will discuss later. In practice, Σ and η
are usually unknown and need to be estimated from data. Replacing Σ and η by
their sample counterparts Σ̂ and η̂, (3.3) and (3.4) become

min
β

1

2
β>Σ̂β − η̂>β + Pλ(β), (3.5)

and
min
β

1

2
β>Σ̂β + Pλ(β) subject to η̂>β = 1. (3.6)

44



Both (3.5) and (3.6) are special cases of the following regularized quadratic pro-
gramming with linear constraints,

min
β

1

2
β>Wβ − q>β + Pλ(β),

subject to Cβ ≤ b,

(3.7)

where β ∈ Rp is the p-dimensional unknown parameter of interest, W ∈ Rp×p is
a symmetric matrix, q ∈ Rp is a p-dimensional vector, C ∈ Rr×p is a matrix and
b ∈ Rr is a r-dimensional vector. Typically, W,q and C are unknown and can
be estimated from data and b is typically a known constant vector. Note that
(3.7) also includes the cases where no constraint is imposed. Simply set C = 0 and
b = 0, (3.7) is reduced to the case without constraint. Besides the estimation of the
functional, the regularized quadratic programming also includes other applications.
We list a few examples here.

Example 3.1: Consider the linear regression model y = Xβ + ε, where y is the
vector of response and X is the design matrix. The penalized least squares
estimator is given by

min
β

1

2n
‖y −Xβ‖2

2 + Pλ(β). (3.8)

We can reformulate the penalized least squares in the form of (3.7) by setting
W = 1

n
X>X, q = 1

n
X>y, C = 0 and b = 0. Then the penalized least squares

(3.8) becomes
1

2n
β>X>Xβ +

1

n
(X>y)>β + Pλ(β).

Example 3.2: Consider the Gaussian graphical model. Let x1, . . . ,xn be n
independent copies of x ∼ N(µ,Σ). Since the conditional independence
among x is characterized by the pattern of the precision matrix Σ−1, inferring
the component of the unknown precision matrix Σ−1 is often of interest.
Denote the kth column of Σ−1 as βk, and the estimator of βk based on the
following column-wise loss function is proposed by Liu and Luo (2012),

β̂k = min
β

1

2
β>Σ̂β − e>k β + Pλ(β), (3.9)
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where Σ̂ is the sample covariance matrix and ek is a vector with its k-th
element being 1 and all other elements being 0. The objective function in
(3.9) is a special case of (3.7) with choices of W = Σ̂, q = ek, C = 0 and
b = 0.

3.2 Theoretical results

3.2.1 Notations and assumptions on penalty function

In this chapter, we study the theoretical results for a regularized quadratic program-
ming with nonconvex penalty and linear constraint. Under the assumption that
the quadratic form satisfies the restricted strong convexity (RSC) condition, we
establish the deterministic L1 and L2 error bounds for our estimator. Our theory
applies to any stationary point that satisfies the first order necessary condition
to be a local minimum. Under the strict dual feasibility assumption, we also
show that the stationary point is actually unique with the help of the primal-dual
witness technique and establish the support recovery and L∞ error bound. In
addition, we consider three applications of the regularized quadratic programming:
(1) estimation of linear functional, (2) F -type test for regression coefficients and
(3) sparse linear discriminant analysis. We establish the convergence rate of our
estimator under the sub-Gaussian assumption. Direct computation of the global
solution to the nonconvex optimization problem is quite challenging when p is large.
We propose an ADMM algorithm with local linear approximation (LLA). The
nonconvex penalty function is approximated by it first order expansion and thus
becomes convex. It is guaranteed that the solution converges to a local minimum
and thus the theoretical results hold for the numerical solution. The ADMM algo-
rithm can naturally handle the liner constraint. A BIC-type criteria is developed
to choose the tuning parameter in the penalty function.

We first introduce some notations. For a vector v = (v1, . . . , vp)
>, its ab-

solute value is defined to be |v| = (|v1|, . . . , |vp|)>. We use ‖v‖p (p ≥ 1) to
denote Lp norm of the vector v, i.e., ‖v‖p = (|v1|p+, . . . ,+|vp|p)

1
p ; we use ‖v‖∞ =

max{|v1|, . . . , |vp|} to denote its infinity norm and ‖v‖0 = #{j : vj 6= 0} to denote
its L0 norm, where #S denotes the cardinality of the set S. For a p × p matrix
A, let ‖A‖∞ = max{|aij|, 1 ≤ i, j ≤ p|} and let ‖A‖L∞ = sup ‖Av‖∞/‖v‖∞ be
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the corresponding infinity norm induced from the infinity norm for a vector. As
a result, ‖A‖L∞ = maxi

∑p
j=1 |aij| the maximum absolute row sum of the matrix.

Let a ∧ b denote smaller one of a and b and let a ∨ b denote the larger one of a and
b. Let β? denote the true parameter of interest and s = #{β?j : β?j 6= 0} be the
number of nonzero elements in β?.

A random variable X is sub-exponential if there exists some constantK > 0 such
that P(|X| > t) ≤ 2 exp(−t/K) for all t > 0. A random variable X is sub-Gaussian
if there exists some constant K > 0 such that P(|X| > t) ≤ 2 exp(−t2/K2)

for all t > 0. If X is sub-exponential, its sub-exponential norm is defined as
‖X‖ψ1 = supp≥1 p

−1(E|X|p)1/p. If X is sub-Gaussian, its sub-Gaussian norm is
defined as ‖X‖ψ2 = supp≥1 p

−1/2(E|X|p)1/p. Then X is sub-exponential if and only
if ‖X‖ψ1 <∞ and X is sub-Gaussian if and only if ‖X‖ψ2 <∞. A random vector
x = (X1, . . . , Xp)

> is sub-Gaussian if sup‖v‖2=1 ‖v>x‖ψ2 = K <∞ and its norm is
defined to be ‖x‖ψ2 = K, which implies each component Xj is also sub-Gaussian
with sub-Gaussian norm at most K.

Following Loh and Wainwright (2015), we assume Pλ(·) satisfies the following
conditions.

(i) Pλ(0) = 0 and Pλ(t) is symmetric around 0.

(ii) Pλ(t) is differentiable for t 6= 0 and limt→0+ P
′
λ(t) = λ.

(iii) Pλ(t) is a non-decreasing function on t ∈ [0,∞).

(iv) Pλ(t)/t is a non-increasing function on t ∈ [0,∞).

(v) There exists µ > 0 such that Pλ(t) + µ
2
t2 is convex.

(vi) There exists a > 0 such that P ′λ(t) = 0 for all t ∈ [aλ,∞).

Such conditions on Pλ(t) are relatively mild and are satisfied for a wide variety of
regularizers. Examples include the SCAD (Fan and Li 2001) and the MCP (Zhang
2010). Fan, Xue and Zou (2014) imposed similar conditions on Pλ(t) and such
penalties are known as folded concave penalty functions. More specifically, the first
derivative of the SCAD is defined by

P ′λ(|t|) = λ

{
I(|t| ≤ λ) +

(aλ− |t|)+

(a− 1)λ
I(|t| > λ)

}
,
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for some a > 2, where I(·) is the indicator function and b+ stands for the positive
part of b, that is b+ = bI(b > 0). It is recommended to use a = 3.7 by Fan and Li
(2001). The first derivative of the MCP is defined by

P ′λ(|t|) = a−1(aλ− |t|)+ a > 0.

The standard L1 penalty is not in this family of regularizers since it only satisfies
conditions (i)-(v). The Lq(0 < q < 1) bridge penalty (Frank and Friedman 1993) is
excluded by condition (ii) since its derivative at 0 is unbounded. The capped-L1

penalty is also excluded because it has points of non-differentiability on the positive
real line. Condition (v) is known as weak convexity and is a type of curvature
constraint that controls the level of nonconvexity. Although this condition is
satisfied by many regularizers of interest, it is again not satisfied by the capped-L1

penalty for any µ > 0. Appendix A provides more details on the properties of the
regularizers.

3.2.2 Main results

We consider the following penalized quadratic optimization problem with linear
constraint,

min
β

1

2
β>Wβ − q>β + Pλ(β)

s.t. Cβ ≤ b,

(3.10)

where β ∈ Rp is the unknown parameter, W ∈ Rp×p is a symmetric matrix, q ∈ Rp,
C ∈ Rr×p, b ∈ Rr and Pλ(β) =

∑p
j=1 Pλ(βj) is the penalty function. We allow

C = 0, that is there is no constraint on β.
We impose the following restricted strong convexity (RSC) condition on the

matrix W,

δ>Wδ ≥ α‖δ‖2
2 − τ

√
log p

n
‖δ‖1 for all ‖δ‖1 ≥ 1, (3.11)

where α > 0 is a strictly positive constant and τ ≥ 0 is a nonnegative constant.
If W is positive definite, then the RSC condition in (3.11) naturally holds with
α = λmin(W) and τ = 0, where λmin(W) denotes the minimum eigenvalue of W. In
the high-dimensional setting where p > n, the matrix W in general is not positive
definite or not even semi-positive definite, the RSC condition can still hold with
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strictly positive α and τ . In fact, if W is semi-positive definite (but not positive
definite), then δ>Wδ ≥ 0 for any δ ∈ Rp, thus the RSC condition holds trivially
for {δ : ‖δ‖1/‖δ‖2

2 > c}, where c = α
τ

√
n

log p
. As a result, we only require the RSC

condition holds in the set {δ : ‖δ‖1/‖δ‖2
2 ≤ c, ‖δ‖1 ≥ 1}. Note that the RSC

condition in (3.11) is slightly different from the RSC conditions proposed in Loh
and Wainwright (2015), in which they stated two separate RSC inequalities for
different ranges of ‖δ‖2. Though we impose the RSC condition on W only for
‖δ‖1 ≤ 1, the following lemma shows that the inequality (3.11) holds for all δ ∈ Rp.

Lemma 3.1. If the RSC condition (3.11) holds, then

(i) For all δ ∈ Rp, δ>Wδ ≥ α‖δ‖2
2 − τ

√
log p
n
‖δ‖1.

(ii) For all δ ∈ Rp, δ>Wδ ≥ α‖δ‖2
2 − τ

√
log p
n
‖δ‖2

1.

Proof. We first prove part (ii). For any δ ∈ Rp, the L1 norm of δ/‖δ‖1 is 1 and
hence satisfies the RSC condition. We have

δ>

‖δ‖1

W
δ

‖δ‖1

≥ α
‖δ‖2

2

‖δ‖2
1

− τ
√

log p

n

‖δ‖1

‖δ‖1

δ>

‖δ‖1

W
δ

‖δ‖1

≥ α
‖δ‖2

2

‖δ‖2
1

− τ
√

log p

n

‖δ‖2
1

‖δ‖2
1

δ>Wδ ≥ α‖δ‖2
2 − τ

√
log p

n
‖δ‖2

1.

If ‖δ‖1 < 1, then ‖δ‖2
1 ≤ ‖δ‖1, implying

δ>Wδ ≥ α‖δ‖2
2 − τ

√
log p

n
‖δ‖1,

which completes the proof for part (i).

We establish the deterministic error bounds for any β̂ that satisfies the first-order
necessary condition to be a local minimum of program (3.10)

〈Wβ̂ − q +∇Pλ(β̂),β − β̂〉 ≥ 0, for all feasible β ∈ Rp. (3.12)

This condition (3.12) is even weaker than the first order KKT condition to be a
local minimum of program (3.10). When β̂ lies in the interior of the constraint
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set {β : Cβ ≤ b}, this condition reduces to the usual zero-subgradient condition
Wβ̂ − q + ∇Pλ(β̂) = 0. We first state a theorem that provides guarantees on
the error bounds β̂ − β? as measured in L1 and L2 norms, where β? is the true
parameter.

Theorem 3.1. Assume that W satisfies the RSC condition in (3.11) with 3
4
µ <

α and β? satisfies the equality constraint Cβ? = b. Let β̂ be any vector that
satisfies the first-order necessary condition (3.12) with the choice of λ satisfying
λ ≥ 4 max{minξ≥0 ‖Wβ? − q + C>ξ‖, τ

√
log p/n}. Then we have

(i) ‖β̂ − β?‖1 ≤ 24λs
4α−3µ

and ‖β̂ − β?‖2 ≤ 6λ
√
s

4α−3µ
.

(ii) (β̂ − β?)>W(β̂ − β?) ≤ λ2s
(

9
4α−3µ

+ 27µ
(4α−3µ)2

)
.

Remark. Loh and Wainwright (2015) established similar error bounds in L1 and
L2 norms for M -estimators under the following general framework,

β̂ ∈ arg min
g(β)≤R,β∈Ω

`n(β) + Pλ(β), (3.13)

where `n(β) is some differentiable loss function and is not necessarily convex, g(β)

is some convex function satisfying the lower bound g(β) ≥ ‖β‖1, and R is a tuning
parameter that needs to be chosen carefully to make sure β? is in the feasible set.
In our case, `n(β) is a quadratic form

`n(β) =
1

2
β>Wβ − q>β.

The constraint g(β) ≤ R guarantees the existence of global minimum and the L1

norm of any stationary point is bounded by R. The error bounds established in
Loh and Wainwright (2015) relies on the fact that ‖β̂‖1 ≤ R and the choice of
tuning parameter λ also depends on R. However, it is not clear how to choose
R in practice. On one hand, to ensure β? is in the feasible set, one needs to
choose a relatively large R such that ‖β?‖1 ≤ R. On the other hand, they require
the tuning parameter λ satisfies 4‖∇`n(β?)‖∞ ≤ λ ≤ α/6R and the sample size
satisfies n ≥ 16R2τ 2 log p/α. If R is too large, then a relatively large sample size n
is needed and it is possible that no such λ exists. We modify the RSC condition in
Loh and Wainwright (2015) such that the constraint g(β) ≤ R is no longer needed.
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Consequently, we do not require a lower bound on the sample size. In addition, we
take advantage of the linear constraint such that a possible smaller lower bound can
be found for λ since minξ≥0 ‖Wβ? − q + C>ξ‖∞ ≤ ‖Wβ? − q‖∞ = ‖∇`n(β?)‖∞.
A smaller λ leads to narrower L1 and L2 error bounds. Similar error bounds can be
established under the so called restricted eigenvalue (RE) condition, more details
can be found in Appendix C.

Next, we establish the support recovery and L∞ error bound of β̂. We borrow
the primal-dual witness (PDW) technique introduced in Loh and Wainwright
(2017). This technique is based on the construction of β̃ provided the true support
A = {j : β?j 6= 0} is known in advance. In particular, we consider the restricted
optimization program

β̃A ∈ arg min
βA∈RA,βAc=0,Cβ≤b

1

2
β>Wβ − q>β + Pλ(β), (3.14)

where RA = {βA : β ∈ Rp} and βA is a subvector of β consisting of elements in
set A. We restrict the solution β̃A in the subspace RA such that supp(β̃A) ⊂ A.
We partition W,q,C in the following way

W =

(
WAA WAAc

WAcA WAcAc

)
,q =

(
qA

qAc

)
,C =

(
CA CAc

)
.

By construction, β̃ satisfies the first order KKT condition of (3.14), that is, there
exists γ ∈ Rr ≥ 0 satisfying γj(b−CAβA)j = 0 for all 1 ≤ j ≤ r such that

WAAβ̃A − qA +∇Pλ(β̃A) + C>Aγ = 0. (3.15)

Define Jλ(t) = λ|t|−Pλ(t). Then zero-gradient condition (3.15) can be rewritten as

(Wβ̃)A − qA − (∇Jλ(β̃))A + λz̃A + C>Aγ = 0,

where β̃ = (β̃A,0Ac) and z̃A ∈ ∂‖β̃A‖1. Then we can find a vector z̃Ac such that
the zero-gradient condition holds in Rp,

Wβ̃ − q−∇Jλ(β̃) + λz̃ + C>γ = 0, (3.16)
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where z̃ = (z̃A, z̃Ac). The next theorem shows that if ‖z̃Ac‖∞ < 1, then all stationary
points β̂ satisfying condition (3.12) are supported on A when λ is properly chosen
and n is larger than some lower bound. If the submatrix WAA is invertible and
λmin(WAA) ≥ µ

2
, then the restricted program (3.14) is actually convex and the

constructed estimator β̃ is unique. Then we can show the stationary point β̂ is
also unique and agrees with constructed estimator β̃ and the oracle estimator
β̂

(o)
= (β̂

(o)

A ,0Ac), where β̂
(o)

A is the solution to the unpenalized the quadratic
programming restricted on the true support A,

β̂
(o)

A ∈ arg min
βA∈RA,βAc=0,Cβ≤b

1

2
β>Wβ − q>β.

Theorem 3.2. Assume that W satisfies the RSC condition in (3.11). If ‖z̃Ac‖∞ ≤
1− ν for some ν ∈ (0, 1], λ ≥ 2τ

ν

√
log p
n

and n ≥
(

τs
α−µ

)2 (
4
ν

+ 2
)4

log p, then

(i) For any β̂ satisfying condition (3.12), we have β̂Ac = 0.

(ii) If λmin(WAA) > µ
2
, then the stationary point β̂ is unique and

‖β̂ − β?‖∞ ≤ ‖β?A + W−1
AA(C>Aγ − qA)‖∞ + ‖W−1

AA‖∞.

(iii) Let β?min = min{|β?j |, j ∈ A} and further assume

β?min ≥ λ(a+ ‖W−1
AA‖∞) + ‖β?A + W−1

AA(C>Aγ − qA)‖∞,

then β̂ agrees withe the oracle estimator β̂
(o)

and

‖β̂ − β?‖∞ ≤ ‖β?A + W−1
AA(C>Aγ − qA)‖∞.

3.2.3 Application 1: estimation of linear functional

Let x1, . . . ,xn be independent and identically distributed random vectors with
mean vector µ and covariance matrix Σ. Of interest is to estimate the estimate
the the linear functional of the form β? = Σ−1µ/(µ>Σ−1µ). Let x̄ and Σ̂ be the
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sample mean vector and sample covariance matrix,

x̄ =
1

n

n∑
i=1

xi, Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)>.

We can apply the regularized quadratic programming (3.10) to estimate the the
linear functional β?. Simply set W = Σ̂, q = 0, C = x̄>, b = 1 and take the
equality linear constraint, then (3.10) becomes

min
β

1

2
β>Σ̂β + Pλ(β),

s.t. x̄>β = 1.

(3.17)

Many problems can be formulated in the form of (3.17), including one-sample
projection test for mean vector and Markowitz portfolio allocation problem. To
apply the results in Theorem 3.1, the true parameter β? needs to satisfy the
equality constraint. However in our case, the true linear functional β? doest not
necessarily satisfy the linear equality constraint x̄>β = 1. To this end, we define
β̃ = Σ−1µ/x̄>Σ−1µ, which is proportional to the true linear functional β? but also
satisfies the linear constraint x̄>β̃ = 1. In many applications, the magnitude of the
linear functional does not matter, it is the direction of the linear functional that
plays the key role. In other words, the two linear functionals β? and β̃ has exactly
the same performance in these applications. Define θ = Σ−1µ. The next theorem
states the L1 and L2 error bounds for β̂ − β̃ and β̂ − β?.

Theorem 3.3. Suppose x1, . . . ,xn are identically and independently distributed
sub-Gaussian vectors with finite sub-Gaussian norm K and the sample covariance
matrix Σ̂ satisfies the RSC condition in (3.11). Let β̂ be a stationary point of the
program (3.17) with λ = sM

√
log p/n for some large constant M . Assume that

there exists C1, C2 > 0 and 0 < ε < 1 such that µ>Σ−1µ ≥ C1, ‖θ‖∞ ≤ C2 and
C2λ ≤ 1− ε. Then with probability at least 1− cp−1 for some absolute constant c,
we have

(i). ‖β̂ − β̃‖1 = O(sλ) and ‖β̂ − β̃‖2 = O(
√
sλ).

(ii). ‖β̂ − β?‖1 = O(sλ) and ‖β̂ − β?‖2 = O(
√
sλ).
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The error bounds between β̂ and β̃ can be regarded as a direct application of
Theorem 3.10 since β̃ satisfies the equality constraint. The error bounds depend on
the the sparsity level s and the choice of λ. Note that β̃ = Σ−1µ/x̄>Σ−1µ. The
conditions µ>Σ−1µ ≥ C1 and C2λ ≤ 1− ε are needed to ensure that x̄>Σ−1µ is
close enough to µ>Σ−1µ and thus x̄>Σ−1µ is bounded away from 0. The error
bounds between β̂ and β? is based on the triangle inequality,

‖β̂ − β?‖k ≤ ‖β̂ − β̃‖k + ‖β̃ − β?‖k, for k = 1, 2.

The conditions µ>Σ−1µ ≥ C1 and C2λ ≤ 1− ε also ensure that β̃ is close enough
to β?.

We may also consider the unconstrained version of (3.17)

min
β

1

2
β>Σ̂β − x̄>β + Pλ(β). (3.18)

Similarly, we can also establish the error bounds for θ̂ − θ with θ̂ being any
stationary point of the program (3.18).

Theorem 3.4. Suppose x1, . . . ,xn are identically and independently distributed
sub-Gaussian vectors with finite sub-Gaussian norm K and the sample covariance
matrix Σ̂ satisfies the RSC condition in (3.11). Let θ̂ be a stationary point of the
program (3.18) with λ = sM

√
log p/n for some large constant M . Assume that

‖θ‖∞ ≤ C2 for some C2 > 0. Then we have

‖θ̂ − θ‖1 = O(sλ) and ‖θ̂ − θ‖2 = O(
√
sλ).

with probability at least 1− cp−1 with some absolute constant c.

The proof of Theorem 3.4 is very similar to that of Theorem 3.3 and is omitted
here. Theorem 3.4 characterizes the L1 and L2 error bounds for θ̂ − θ under
weaker conditions. Since θ = Σ−1µ, we do not need to worry about the scale
γ = 1/µ>Σ−1µ and γ̂ = 1/x̄>Σ−1µ and thus we can get rid of the assumptions
µ>Σ−1µ ≥ C1 and C2λ ≤ 1 − ε in Theorem 3.3. As a result, Theorem 3.4 also
holds even when µ = 0. However, based on our empirical study, solving program
(3.17) is less time consuming than solving program (3.18).

The conditions in Theorem 3.3 and Theorem 3.4 are relatively mild. To bet-
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ter understand the conditions, we examine two examples with commonly used
correlation structures.

Example 3.3: In this example, we consider the compound symmetry correlation
structure Σ1 = (1 − ρ)I + ρE, where I ∈ Rp×p is the identity matrix and
E ∈ Rp×p is a matrix with all its elements being 1. It is inverse can be written
as

Σ−1
1 =

1

1− ρ

(
I− 1

1/ρ+ p− 1
E

)
.

In order to have an approximately sparse projection direction, we assume
µ is also sparse µ = (µ1, . . . , µs, 0, . . . , 0)> with s � p. For example, with
the choice µj = a for all j = 1, . . . , s, one can see that Σ−1

1 µ is dominated
by its first s components and the rest (p− s) components converge to 0 as
p→∞. As p→∞, 1

1/ρ+p−1
E degenerates to 0 and thus Σ−1

1 is dominated by
1

1−ρI. As a result µ>Σ−1
1 µ ≈ 1

ρ
‖µ‖2

2. The condition µ>Σ−1
1 µ ≥ C1 becomes

1
ρ
‖µ‖2

2 ≥ C1, which imposes the minimal signal condition on the mean vector.
The condition ‖θ‖∞ ≤ C2 is roughly ‖Σ−1

1 µ‖∞ ≈ 1
1−ρ‖µ‖∞ ≤ C2, which says

that the largest magnitude in µ should be bounded.

Example 3.4: In this example, we consider the autocorrelation structure Σ2 =

(σij)p×p with σij = ρ|i−j|. Its inverse is a banded matrix and can be written as

Σ−1
2 = (1 + ρ2)I− ρF− ρ2G,

where F = (fij)p×p with fij = 1 if |i − j| = 1 otherwise 0 and G =

diag{1, 0, . . . , 0, 1}.

µ>Σ−1
2 µ = (1 + ρ2)

p∑
j1

µ2
j − ρ

∑
|i−j|=1

µiµj − ρ2(µ2
1 + µ2

p)

= (1 + ρ2 − 2ρ)

p∑
j=1

µ2
j + ρ

µ2
1 + µ2

p + 2

p−1∑
j=2

µ2
j −

∑
|i−j|=1

µiµj


+ (ρ− ρ2)(µ2

1 + µ2
p)

≥ (1− ρ)2

p∑
j=1

µ2
j + ρ

∑
i−j=1

(µi − µj)2

≥ (1− ρ)2‖µ‖2
2.
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Therefore, µ−1Σ−1
2 µ ≥ C1 is satisfied if ‖µ‖2

2 ≥ C2. We can also verify that
‖Σ−1

2 µ‖∞ is bounded if the largest magnitude in µ is bounded.

Since the magnitude of the projection direction does not matter, we can measure
the distance between the estimator and true linear functional in terms of cosine
similarity. The cosine similarity between two vectors u and v is defined by

cos〈u,v〉 =
u>v

‖u‖2‖v‖2

.

If u and v are of the same direction, i.e., u = av for some a > 0, then the cosine
similarity is 1. In other words, if the cosine similarity is close to 1, then the two
vectors are close to each other. If we can obtain good estimators β? or θ, we can
show that the cosine similarity converges to 1. We state the results in Corollary 3.1
and Corollary 3.2.

Corollary 3.1. Let β̂ be a stationary point of the program (3.17) with λ =

sM
√

log p/n for some large constant M . Suppose the conditions in Theorem
3.3 hold and further assume

√
sλ/‖β?‖2 = o(1), then we have cos〈β̂,β?〉 → 1.

Corollary 3.2. Let θ̂ be a stationary point of the program (3.18) with λ =

sM
√

log p/n for some large constant M . Suppose the conditions in Theorem
3.4 hold and further assume

√
sλ/‖θ‖2 = o(1), then we have cos〈θ̂,θ〉 → 1.

These results can be easily extended to the two-sample problem. Let x
(1)
1 , . . . ,x

(1)
n1

be identically and independently distributed random vectors with mean vector
µ1 and covariance matrix Σ and x

(2)
1 , . . . ,x

(2)
n2 be identically and independently

distributed random vectors with mean vector µ2 and common covariance matrix
Σ. Of interest is to estimate the functional θd = Σ−1µd or its scaled version
β?d = Σ−1µd/(µ

>
d Σ−1µd), where µd = µ1 − µ2 is the difference of the two popu-

lation mean vectors. Let x̄1 and x̄2 be the sample means of the two populations,
x̄d be the difference of the sample means and Σ̂ be the pooled sample covariance
matrix,

x̄k =
1

nk

nk∑
i=1

x
(k)
i , Σ̂k =

1

nk

nk∑
i=1

(x
(k)
i − x̄k)(x

(k)
i − x̄k)

>, k = 1, 2,

x̄d = x̄1 − x̄2, Σ̂ = (n1Σ̂1 + n2Σ̂2)/(n1 + n2).
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Consider the constrained quadratic programming with W = Σ̂, q = 0, C = x̄>d
and b = 1, (3.17) becomes

min
β

1

2
β>Σ̂β + Pλ(β),

s.t. x̄>d β = 1.

(3.19)

Or its unconstrained version

min
β

1

2
β>Σ̂β − x̄>d β + Pλ(β). (3.20)

The resulting estimator from problem (3.19) or (3.20) can be applied to projection
test for two-sample mean vector test, linear discriminant analysis, etc. Let sd =

‖θd‖0 = ‖β?d‖0 and n′ = min{n1, n2}. We simply list the results in the following
theorems.

Theorem 3.5. Suppose x
(k)
1 , . . . ,x

(k)
nk are identically and independently distributed

sub-Gaussian vectors with finite sub-Gaussian norm K for k = 1, 2 and the pooled
sample covariance matrix Σ̂ satisfies the RSC condition in (3.11). Let β̂d be a
stationary point of the program (3.19) with λ = sdM

√
log p/n′ for some large

constant M . Assume that there exists C1, C2 > 0 and 0 < ε < 1 such that
µ>d Σ−1µd ≥ C1, ‖θd‖∞ ≤ C2 and C2λ ≤ 1 − ε. Then with probability at least
1− cp−1 for some absolute constant c, we have

(i). ‖β̂d − β̃d‖1 = O(sλ) and ‖β̂d − β̃d‖2 = O(
√
sλ).

(ii). ‖β̂d − β?d‖1 = O(sλ) and ‖β̂d − β?d‖2 = O(
√
sλ).

Theorem 3.6. Suppose x
(k)
1 , . . . ,x

(k)
nk are identically and independently distributed

sub-Gaussian vectors with finite sub-Gaussian norm K for k = 1, 2 and the pooled
sample covariance matrix Σ̂ satisfies the RSC condition in (3.11). Let β̂d be
a stationary point of the program (3.20) with λ = sM

√
log p/n′ for some large

constant M . Assume that ‖θd‖∞ ≤ C2 for some C2 > 0. Then we have

‖θ̂d − θd‖1 = O(sλ) and ‖θ̂d − θd‖2 = O(
√
sλ).

with probability at least 1− cp−1 with some absolute constant c.
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3.2.4 Application 2: F -type test for H0 : Aβ = b

Consider the linear regression model

y = Xβ + ε, (3.21)

where X = (x1, . . . ,xn)> ∈ Rn×p is the matrix of covariates, y ∈ Rn is the response
vector, and ε = (ε1, . . . , εn)> is the error term with each εi having mean 0 and
variance σ2 and is independent of X. β = (β1, . . . , βp)

> is the vector of unknown
regression coefficients. Of interest is to test if the linear combination of the coefficient
is equal to a known vector b,

H0 : Aβ = b verses H1 : Aβ 6= b, (3.22)

where A ∈ Rm×p is a constant matrix and b ∈ Rm×1 is a known vector. A special
case of (3.22) is to test whether a subset of β is 0 or not,

H0 : βA = 0 verses H1 : βA 6= 0,

where A is a subset of {1, . . . , p}. A F -type test can be constructed to test whether
Aβ = b. Let β̂0 and β̂1 be the estimators for the coefficient under H0 and H1,
respectively. The F -type test statistic is defined as

F =
RSS(β̂0)− RSS(β̂1)

RSS(β̂1)
,

where RSS(β̂0) and RSS(β̂1) are the residual sum squares under H0 and H1 re-
spectively. Under the high-dimensional setting where p > n, we assume the true
regression coefficient β? is sparse. Under H1, we consider the following penalized
least squares

β̂1 = arg min
β

1

2n
‖y −Xβ‖2

2 + Pλ(β), (3.23)

where Pλ(·) is some nonconvex penalty function. The penalized least squares in
(3.23) can be rewritten as

β̂1 = arg min
β

1

2n
β>X>Xβ − 1

n
(X>y)>β + Pλ(β),
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which is in the form of (3.7) with W = 1
n
X>X, q = 1

n
X>y, C = 0 and b = 0.

Similarly, under H0, β can be estimated by

β̂0 = arg min
Aβ=b

1

2n
β>X>Xβ − 1

n
(X>y)>β + Pλ(β), (3.24)

which is in the form of (3.7) with W = 1
n
X>X, q = 1

n
X>y and linear constraint

Aβ = b.
Suppose that ε1, ε2, . . . , εn are independent and identically distributed sub-

Gaussian random variables with ‖εi‖ψ2 = K1 <∞ and x1, . . . ,xn are independent
and identically distributed sub-Gaussian random vectors with ‖xi‖ψ2 = K2 <∞.
The following theorem states the L1 and L2 error bounds for the estimators under
null and alternative.

Theorem 3.7. Let β̂1 be a stationary point of (3.23) and β̂0 be a stationary point
of (3.24) with the choice of λ = M

√
log p/n for some large constant M . If 1

n
X>X

satisfies the RSC condition and log p < n, then we have

(1) ‖β̂1 − β?‖1 = O(λs), ‖β̂1 − β?‖2 = O(λ
√
s).

(2) Under H0 : Aβ? = b, ‖β̂0 − β?‖1 = O(λs), ‖β̂0 − β?‖2 = O(λ
√
s).

with probability at least 1− cp−1, where c is an absolute constant and κ = 4α− 3µ.

Remark. In the above theorem, we assume the covariate xi and error εi are
both sub-Gaussian random variables. In some settings, people assume the design
matrix X is fixed. Instead of the sub-Gaussian assumption on X, we assume X is
normalized in the sense that ‖x(j)‖2/

√
n ≤ 1, where x(j) is the j-th column of X.

Terror bounds in Theorem 3.7 still hold, see Negahban et al. (2012).

3.2.5 Application 3: sparse linear discriminant analysis

In this section, we consider the linear discriminant analysis with a large number
of features. Let x

(1)
1 , . . . ,x

(1)
n1 be identically and independently distributed random

samples from N(µ1,Σ) (class 1) and x
(2)
1 , . . . ,x

(2)
n2 be identically and independently

distributed random samples from N(µ2,Σ) (class 2) with the same covariance
matrix Σ, respectively. Given a new observation z, we are interested in classifying
the new observation to one of the two classes. Let µd = µ1 − µ2 be the difference
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of the two population means and µ = (µ1 + µ2)/2. Fisher’s linear discriminant
rule classifies the new observation z into class 1 if and only if δF (z) = 1 where

δF (z) = I

{
(z− µ)>Σ−1µd ≥ log

π2

π1

}
,

π1 and π2 are the prior probabilities for class 1 and class 2, and I(·) denotes the
indicator function. If we assume that the two classes have the same prior probability
π1 = π2 = 1

2
, then the Fisher’s discriminant rule becomes

δF (z) = I{(z− µ)>Σ−1µd ≥ 0}.

However, this rule is not directly applicable in practice since the parameters in the
rule is typically unknown and needs to be estimated from samples. For any linear
discriminant rule associated with the classification direction β

δβ(z) = I{β>(z− µ) > 0},

the theoretical misclassification rate of the classifier δβ is

W (δβ) = 1− Φ

(
1

2
β>µd/(β

>Σβ)1/2

)
,

and the empirical misclassification rate is

Wn(δβ) = 1− Φ

(
1

2
β>x̄d/(β

>Σ̂β)1/2

)
,

where x̄d = x̄(1)− x̄(2) is the difference of the two sample means and Σ̂ = 1
n
(n1Σ̂

(1)
+

n2Σ̂
(2)

) is the pooled sample covariance matrix,

n = n1 + n2, Σ̂
(k)

=
1

nk

nk∑
i=1

(x
(k)
i − x̄(k))(x

(k)
i − x̄(k))>, k = 1, 2.

The theoretical misclassification rate of the Fisher’s discriminant rule is 1−Φ(1
2
∆

1/2
p ),

where ∆p = µ>d Σ−1µd. However, for high-dimensional data, it is almost impossible
to achieve such a good performance empirically. In addition, when p > n, the
estimated sample covariance matrix Σ̂ is typically ill-conditioned or not invertible.
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One possible solution is simply ignoring the dependence among variables. For
example, Bickel and Levina (2004) proposed an independence rule, which uses
a diagonal matrix with diagonal elements from the sample covariance matrix to
replace Σ̂. To improve the performance of the independence rule, Fan and Fan
(2008) proposed the Features Annealed Independence Rule (FAIR), which consists
of two steps: (1) select important features by two-sample t-test and (2) apply the
independence rule to the selected features. Fan and Fan (2008) proved that using
all features may increase the misclassification rate due to the noise accumulation
and therefore feature selection is important for high-dimensional classification
problem. Another class of methods focus on estimating Σ−1µd directly under
the sparsity assumption. Cai and Liu (2011b) used the Dantzig-type selector to
estimate the classification direction. Mai et al. (2012) proposed a penalized least
squares estimator by introducing some dummy variables as the response. Fan et al.
(2012) proposed the ROAD estimator which solves quadratic programming with
linear constraint and L1 penalty.

This motivates us to apply the regularized method to estimate linear functional
Σ−1µd directly. Set W = Σ̂, q = 0, C = x̄d and b = 1 in (3.7), we have

min
β

1

2
β>Σ̂β + Pλ(β)

s.t. x̄>d β = 1.

(3.25)

Remark. The ROAD estimator in Fan et al. (2012) is given by

β̂ROAD = arg min
β

β>Σ̂β s.t. x̄>d β = 1 and ‖β‖1 ≤ c. (3.26)

It is equivalent to

β̂ROAD = arg min
β

β>Σ̂β + λ‖β‖1 s.t. x̄>d β = 1,

where λ depends on the parameter c in (3.26). Therefore, the ROAD estimator
is equivalent to the estimator resulting from the first step of the two-step LLA
estimator, more details about two-step LLA estimator can be found in Section 3.3.
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Let β̂ be the LLA estimator for (3.25), then

β̂ = arg min
x̄>d β=1

1

2
β>Σ̂β +

p∑
j=1

λj|βj|,

where (λ1, . . . , λp)
> = (P ′λ(|β(1)

1 |), . . . , P ′λ(|β(1)
p |))> and β̂

(1)
is the estimator resulting

from the first step. It is equivalent to the following constraint version

β̂ = arg min∑p
j=1 λj |βj |≤cλ, x̄>d β=1

1

2
β>Σ̂β.

The constant cλ depends on λj ’s. We consider the constraint version with population
parameters Σ and µd using the same cλ,

β̃ = arg min∑p
j=1 λj |βj |≤cλ, µ>d β=1

1

2
β>Σβ. (3.27)

Note that 1 = µ>d β ≤ ‖β‖1‖µd‖∞, thus λ− ≤ λ−‖β‖1‖µd‖∞ ≤ cλ‖µd‖∞, where
λ− = min{|λj|, λj 6= 0}. The existence of a feasible solution for (3.27) dictates
that cλ ≥ λ−/‖µd‖∞. When cλ ≥ |λ|>|β?|, the constraint

∑p
j=1 λj|βj| ≤ cλ

becomes redundant and it reduces to the Fisher’s discriminant rule. When cλ is
small, we obtain a sparse solution and achieve feature selection by using covariance
information. To study the theoretical property of the LLA classifier based on β̂.
We introduce an intermediate optimization problem for convenience:

β̄ = arg min∑p
j=1 λj |βj |≤cλ, x̄>β=1

1

2
β>Σβ.

Theorem 3.8. Let s̃ = ‖β̃‖0, s̄ = ‖β̄‖0, ŝ = ‖β̂‖0 and ν = (‖β̃‖1 ∨ ‖β̄‖1 ∨ ‖β̂‖1).
Assume that λmin(Σ) ≥ σ2

0 > 0, ‖x̄d − µd‖∞ = O(an) and ‖Σ̂−Σ‖∞ = O(bn). If
cλ > (λ>|β̃|/β̃>x̄d ∨ λ>|β̄|/β̄

>
µd), then we have

(i) W (β̂)−W (β̃) = O(dn) and

(ii) Wn(β̂)−W (β̂) = O(cn),

where cn = (ν2bn ∨ an
√
s̃ ∨ s̄) and dn = cn ∨ an

√
ŝ.
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Remark. Under the assumption that x1, . . . ,xn are i.i.d sub-Gaussian, we can
take an = bn =

√
log p
n

.

3.3 ADMM algorithm with local linear approxima-

tion

3.3.1 Local linear approximation

The nonconvex penalty function in (3.7) brings difficulty in solving the regularized
quadratic programming. Direct computation of the global solution to the nonconvex
optimization (3.7) is quite challenging, especially in high-dimensional settings. Liu
et al. (2016) developed a mixed integer linear programming that finds a provably
global optimal solution to a certain class of nonconvex learning problems. In terms of
solution quality, this mixed integer linear programming outperforms other out-of-art
algorithms such as gradient-based methods, which typically find a local minimum
solution. However, this mixed integer linear programming can be much more
computationally expensive than gradient methods. For practical data analysis, it is
critical to find an efficient procedure which can find a local solution with satisfactory
theoretical properties. Zou and Li (2008) proposed the local linear approximation
(LLA) algorithm to deal with nonconvex penalty in the setting of penalized least
squares. The idea of LLA is to approximate the nonconvex penalty function by its
first order expansion. According to Theorem 3.1, the error bounds we derive hold
for any stationary point, including all the local minimum. We propose an ADMM
algorithm with local linear approximation, which converges to a local minimum of
the regularized linear programming.

Suppose βj0 is close to βj, ignoring the constant that does not involve βj, the
penalty function can be approximated by

Pλ(|βj|) ≈ P ′λ(|βj0|)(|βj| − |βj0|).
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Given the current solution β(k), program (3.7) can be approximated by

min
β

1

2
β>Wβ − q>β +

p∑
j=1

ω
(k)
j |βj|,

s.t. Cβ ≤ b,

(3.28)

where ω(k)
j = P ′λ(|β

(k)
j |). We summarize the details in Algorithm 1.

Algorithm 1 Local linear approximation (LLA) algorithm.

Initialize β̂
(0)

and compute the adaptive weights

ω(0) = (ω
(0)
1 , . . . , ω(0)

p )> = (P ′λ(|β̂
(0)
1 |), . . . , P ′λ(|β̂(0)

p |))>.

For k = 1, 2, . . . repeat the following steps till convergence:
1. Update β̂ by solving the following optimization problem

β̂
(k+1)

= arg min
Cβ≤b

1

2
β>Wβ − q>β +

p∑
j=1

ω
(k)
j |βj|.

2. Update the adaptive weight by setting ω(k+1)
j = P ′λ(|β̂

(k+1)
j |).

Fan, Xue and Zou (2014) showed that the LLA estimator finds the oracle
estimator after one iteration provided that the initial estimator β̂

(0)
is close to the

true parameter. Let

Q(β|β(k), λ) =
1

2
β>Wβ − q>β +

p∑
j=1

P ′λ(|β
(k)
j |)|βj|.

Starting with initial value 0, we propose a two-step LLA estimator consisting of
the following two steps:

Step 1 :β̂
(1)

= arg min
Cβ≤b

Q(β|0, τλ),

Step 2 :β̂ = arg min
Cβ≤b

Q(β|β̂
(1)
, λ).

Remark. Note that in step 1, the tuning parameter we use is τλ. Starting with
the initial value 0 in Step 1, we have P ′τλ(|0|) = τλ. Therefore, the first step is
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essentially a regularized quadratic programming with L1 penalty. A smaller tuning
parameter τλ is adopted to increase the estimation accuracy such that we obtain a
good initial estimator for Step 2. Typically, we choose τ to be small number such
as τ = 1/ log n or τ = λ.

Wang et al. (2013) proposed the two-step SCAD-CCCP (CCCP stands for
ConCave Convex procedure) algorithm for high-dimensional linear regression model
with the SCAD penalty. This algorithm is based on the observation that the SCAD
penalty can be decomposed as the difference of two convex functions, or equivalently,
the sum of a convex function and a concave function. More specifically, the SCAD
penalty has the following decomposition,

Pλ(|βj|) = Jλ(|βj|) + λ|βj|,

where Jλ(|βj|) is a differentiable concave function of the following form,

Jλ(|βj|) =−
β2
j − 2λ|βj|+ λ2

2(a− 1)
I(λ ≤ |βj| ≤ aλ)

+

(
(a+ 1)2λ2

2
− λ|βj|

)
I(|βj| > aλ).

(a) (b) (c)

Figure 3.1: The solid line in (a) is the SCAD penalty function with λ = 0.9 and
a = 3.7 and the dashed line is its local linear approximation at t = 2. In plot (b),
the solid line is the Jλ function and the dashed line is its local linear approximation;
In plot (c), the solid line is the Jλ function and the dashed line is its tight convex
upper bound.

Given that βj0 is close to βj , the concave function Jλ can be approximated by its
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tight convex upper bound sign(βj0)J ′λ(|βj0|)βj . Thus the (3.7) can be approximated
by

min
β

1

2
β>Wβ +

p∑
j=1

sign(βj0)J ′λ(|βj0|)βj + λ‖β‖1

s.t. Cβ ≤ b,

(3.29)

which is a convex optimization problem. In fact, the LLA algorithm and the CCCP
algorithm are closely connected to each other. The LLA algorithm essentially
approximates the nonconvex penalty function by a clipped linear function (see
Figure 3.1(a)). It is easy to see that it is equivalent to approximate the function Jλ
by

Jλ(|βj|) ≈ Jλ(|βj0|) + J ′λ(|βj0|)(|βj| − |βj0|), (3.30)

that is, a clipped linear function is used to approximate Jλ as shown in Figure
3.1(b). Instead of approximating the nonconvex function Jλ by a clipped linear
function, the CCCP algorithm approximates Jλ by its tight convex upper bound as
shown in Figure 3.1(c), which is a linear function.

3.3.2 ADMM algorithm for regularized quadratic program-

ming with linear constraint

Recently, the alternating direction method of multipliers (ADMM) has received
intensive attention from a broad spectrum of areas (Boyd et al. 2011, Fang et al.
2015). This algorithm can be applied to solve the regularized quadratic programming
after local linear approximation. Given the current solution β(k), (3.7) can be
approximated by

argmin
β

1

2
β>Wβ − q>β + w>|β|

subject to Cβ ≤ b,

(3.31)

where w = (w1, . . . , wp)
> = (P ′λ(|β

(k)
1 |), . . . , P ′λ(|β

(k)
p |))>. ADMM algorithm natu-

rally deals with equality constraint, thus we replace inequality constraint in (3.31)
with equality constraint by introducing an indicator function,

argmin
β,y

1

2
β>Wβ − q>β + w>|β|+ I(y)

subject to Cβ + y = b,

(3.32)
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where y ∈ Rr and I(y) =
∑r

i=1 I(yi) with

I(yi) =

0 if yi ≥ 0,

+∞ if yi < 0.

In ADMM form, (3.32) can be written as

argmin
β1,β2,y

1

2
β>1 Wβ1 − q>β1 + w>|β2|+ I(y)

subject to Cβ1 + y = b, β1 = β2.

(3.33)

The augmented Lagrangian for (3.33) is

Lρ(β1,β2,y,γ1,γ2) =
1

2
β>1 Wβ1 − q>β1 + w>|β2|+ I(y) + γ>1 (Cβ1 + y − b)+

γ>2 (β1 − β2) +
ρ

2
‖β1 − β2‖2

2 +
ρ

2
‖Cβ1 + y − b‖2

2.

Let u1 = γ1/ρ, u2 = γ2/ρ be the scaled dual variables, we can express the
augmented Lagrangian as

Lρ(β1,β2,y,u1,u2) =
1

2
β>1 Wβ1 − q>β1 + w>|β2|+

ρ

2
‖Cβ1 + y − b + u1‖2

2+

ρ

2
‖β1 − β2 + u2‖2

2 −
ρ

2
‖u1‖2

2 −
ρ

2
‖u2‖2

2 + I(y).

(3.34)
Given the kth iteration (β

(k)
1 ,β

(k)
2 ,y(k),u

(k)
1 ,u

(k)
2 ), the ADMM algorithm for (3.34)

has the following procedures,

β
(k+1)
1 = argmin

β1

1

2
β>1 Wβ1 − q>β1 +

ρ

2
‖Cβ1 + y(k) − b + u

(k)
1 ‖2

2+

ρ

2
‖β1 − β

(k)
2 + u

(k)
2 ‖2

2,

β
(k+1)
2 = argmin

β2

w>|β2|+
ρ

2
‖β(k+1)

1 − β2 + u
(k)
2 ‖2

2,

y(k+1) = argmin
y

ρ

2
‖Cβ(k+1)

1 + y − b + u
(k)
1 ‖2

2 + I(y),

u
(k+1)
1 = u

(k)
1 + Cβ

(k+1)
1 + y(k+1) − b,

u
(k+1)
2 = u

(k)
2 + β

(k+1)
1 − β(k+1)

2 .

(3.35)
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Fortunately, we can derive the closed forms for the updates of β1,β2 and y. β1-
update is similar to a ridge-type regression with the following closed form

β
(k+1)
1 = ρ

(
W + ρC>C + ρI

)−1
(
q/ρ+ C>(b− y(k) − u

(k)
1 ) + (β

(k)
2 − u

(k)
2 )
)
.

For β2-update, soft thresholding can be applied for each entry in β2. More
specifically, each entry in β2 can be updated as follows,

β
(k+1)
2j = Swj/ρ(β

(k+1)
1j + u

(k)
2j ), j = 1, 2, . . . , p.

where Sλ is the soft thresholding and defined to be

Sλ(a) = (a− λ)+ − (−a− λ)+.

The introduced variable y is updated as follows,

y(k+1) = max{0,Cβ(k+1)
1 + b− u

(k)
1 },

where the max operator is taken element-wisely. This ADMM algorithm for
regularized quadratic programming with linear inequality constraint is summarized
in Algorithm 2. In many applications, the inequality constraint Cβ ≤ b in replaced
by equality constraint Cβ = b. In that case, there is no need to introduce the
variable y. The ADMM procedures in (3.35) are reduced to

Algorithm 2 ADMM for regularized quadratic programming with linear inequality
constraint.
input: β(0)

1 ,β
(0)
2 ,y(0),u

(0)
1 ,u

(0)
2 and ρ > 0.

while not convergent do
1. β1-update: β

(k+1)
1 = W−1

ρ (q/ρ+ C>(b−y(k)−u
(k)
1 ) + (β

(k)
2 −u

(k)
2 )), where

Wρ = ρ(W + ρC>C + ρI).
2. β2-update: β

(k+1)
2j = Swj/ρ(β

(k+1)
1j + u

(k)
2j ), j = 1, 2, . . . , p.

3. y-update: y(k+1) = max{0,Cβ(k+1)
1 + b− u

(k)
1 }.

4. u1-update: u
(k+1)
1 = u

(k)
1 + Cβ

(k+1)
1 + y(k+1) − b.

5. u2-update: u
(k+1)
2 = u

(k)
2 + β

(k+1)
1 − β(k+1)

2 .
end while
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β
(k+1)
1 = argmin

β1

1

2
β>1 Wβ1 − q>β1 +

ρ

2
‖Cβ1 − b + u

(k)
1 ‖2

2+

ρ

2
‖β1 − β

(k)
2 + u

(k)
2 ‖2

2,

β
(k+1)
2 = argmin

β2

w>|β2|+
ρ

2
‖β(k+1)

1 − β2 + u
(k)
2 ‖2

2,

u
(k+1)
1 = u

(k)
1 + Cβ

(k+1)
1 − b,

u
(k+1)
2 = u

(k)
2 + β

(k+1)
1 − β(k+1)

2 .

(3.36)

The ADMM algorithm for regularized quadratic programming with linear equality
constraint is summarized in Algorithm 3.

Algorithm 3 ADMM for regularized quadratic programming with linear inequality
constraint.
input: β(0)

1 ,β
(0)
2 ,u

(0)
1 ,u

(0)
2 and ρ > 0.

while not convergent do
1. β1-update: β

(k+1)
1 = W−1

ρ (q/ρ + C>(b − u
(k)
1 ) + (β

(k)
2 − u

(k)
2 )), where

Wρ = ρ(W + ρC>C + ρI).
2. β2-update: β

(k+1)
2j = Swj/ρ(β

(k+1)
1j + u

(k)
2j ), j = 1, 2, . . . , p.

3. u1-update: u
(k+1)
1 = u

(k)
1 + Cβ

(k+1)
1 − b.

4. u2-update: u
(k+1)
2 = u

(k)
2 + β

(k+1)
1 − β(k+1)

2 .
end while

In chapter 4, we will study an application of the regularized quadratic pro-
gramming: the estimation of the linear functional, which can be formulated as
follows,

1

2
β>Σ̂β + Pλ(β) subject to x̄>β = 1,

where x̄ and Σ̂ are the sample mean and sample covariance matrix respectively.
In this application, we have W = Σ̂, q = 0, C = x̄> and the corresponding dual
variable u1 is a scalar. We summarize the ADMM algorithm for the estimation of
linear functional in Algorithm 4.

3.3.3 Choice of tuning parameter λ

The performance of resulting estimator depends on the choice of tuning parameter
λ and the optimal choice of λ relies on some unknown parameter. In practice, we
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Algorithm 4 ADMM for estimation of linear functional.

input: β(0)
1 ,β

(0)
2 , u

(0)
1 ,u

(0)
2 and ρ > 0.

while not convergent do
1. β1-update: β

(k+1)
1 = Σ̂

−1

ρ ((1− u(k)
1 )x̄ + (β

(k)
2 − u

(k)
2 )),

where Σ̂ρ = ρ(Σ̂ + ρx̄x̄> + ρI).
2. β2-update: β

(k+1)
2j = Swj/ρ(β

(k+1)
1j + u

(k)
2j ), j = 1, 2, . . . , p.

3. u1-update: u
(k+1)
1 = u

(k)
1 + x̄>β

(k+1)
1 − 1.

4. u2-update: u
(k+1)
2 = u

(k)
2 + β

(k+1)
1 − β(k+1)

2 .
end while

consider a sequence of tuning parameters and select the one optimizes some criteria.
In the high-dimensional linear regression setting, Wang et al. (2013) proposed the
following high-dimensional BIC to choose the tuning parameter,

HBIC(λ) = log(σ̂2
λ) + ‖β̂λ‖0

Cn log p

n
, (3.37)

where σ̂2
λ = n−1SSEλ with SSEλ = ‖y −Xβ̂λ‖2

2, and Cn is a sequence of positive
scalars that diverges. The optimal tuning parameter is chosen by minimizing the
HBIC criteria

λ̂ = argmin
λ

HBIC(λ).

Motivated by this, we propose BIC-type criterion the estimation of linear functional
(3.17) and (3.19). To this end, we replace sample covariance matrix Σ̂ by Σ̂φ =

Σ̂ + φIp with a small positive number φ =
√

log p/n. Such a perturbation does
not noticeably affect the computational accuracy of the final solution and all the
theoretical results still hold when φ ≤

√
log p/n. For the one-sample problem

(3.17), we define

SSE1
λ,φ =

∥∥∥∥∥ x̄

x̄>Σ̂
−1

φ x̄
− Σ̂φβ̂λ

∥∥∥∥∥
2

2

.

We propose the following BIC-type criterion for one-sample problem

HBIC1(λ) = SSE1
λ,φ + ‖β̂λ‖0

Cn log p

n
.
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The optimal choice of λ is the one that minimizes HBIC1(λ). Similarly, for the
two-sample problem (3.19), we define

SSE2
λ,φ =

∥∥∥∥∥ x̄d

x̄>d Σ̂
−1

φ x̄d
− Σ̂φβ̂λ

∥∥∥∥∥
2

2

,

where x̄d = x̄1 − x̄2. The BIC-type criterion for two-sample problem is given by

HBIC2(λ) = SSE2
λ,φ + ‖β̂λ‖0

Cn log p

n
.

3.4 Simulation studies

3.4.1 Comparison with ridge-type estimator

In this section, we compare the proposed LLA estimator for the linear functional
Σ−1µ with the ridge-type estimator. We generate a random sample of size n from
N(µ,Σ) with µ = c · (1>s ,0>p−s)> and s = 10. We set c to different values to
represent different signal strengths of µ. For ρ ∈ (0, 1), we consider the following
three covariance structures:

(1) Compound symmetry with Σ1 = (1 − ρ)Ip + ρ1p1
>
p , where Ip is the p × p

identity matrix;

(2) Autocorrelation with Σ2 = (ρ|i−j|)i,j.

Compound symmetry covariance structure Σ1 indicates that any pair of variables
(Xi, Xj), i 6= j, has equal correlation ρ. It turns out that Σ−1

1 is an approximately
sparse matrix and is diagonally dominant with the off-diagonal entries of order p−1.
As a result, the linear functional Σ−1

1 µ is also approximately sparse in the sense
that its first s entries dominate the rest entries. For the autocorrelation covariance
matrix, Σ2 can be well approximated by a sparse matrix and its inverse Σ−1

2 is a
3-sparse matrix, and thus the linear functional Σ−1

2 µ is sparse too.
We compare the cosine similarity for the LLA estimator and the ridge estimator

proposed in Li et al. (2015). The cosine similarity between two vectors u and v is
defined by

cos〈u,v〉 =
u>v

‖u‖2‖v‖2

.
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A large value of cosine similarity indicates that the two vectors share similar di-
rection. We set sample size n = 30, dimension p = 1000, c = 0.5 and 1. We let
ρ vary from 0.1 to 0.9 with increasement 0.1. For each combination of (n, p, c, ρ),
we compute the cosine similarity under both compound symmetry structure and
autocorrelation structure. Figure 3.2 shows that the LLA estimator is closer to the
true direction than the ridge-type estimator in all the situations. For the compound
symmetry structure, Figures 3.2.(a) and 3.2.(c) show that we obtain more accurate
estimation as ρ increases. For the autocorrelation structure, Figures 3.2.(b) and
3.2.(d) show that the cosine similarity decreases as ρ increases.

(a) n = 30, p = 1000, c = 0.5, Σ1 (b) n = 30, p = 1000, c = 0.5, Σ2

(c) n = 30, p = 1000, c = 1, Σ1 (d) n = 30, p = 1000, c = 1, Σ2

Figure 3.2: Comparison of cosine similarity for LLA estimator and ridge-type
estimator.
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3.4.2 Sparse discriminant analysis

In this section, we study the numerical performance of the proposed LLA estimator
when it is applied to high-dimensional linear discriminant analysis. Suppose we
have two classes with different mean vectors µ1 and µ2 and same covariance matrix
Σ. Without loss of generality, we set the mean vector of the first class µ1 to be 0.
Let n1 and n2 be the sample size for class 1 and class 2, respectively. The setup of
the simulation study is as follows. In all simulations, the number of variables is
p = 1000, and the sample size of the training and test data is n1 = n2 = 200 for each
class. Each simulation is repeated 100 times to test the stability of the proposed
method. We set µ2 = (1>s ,0

>
p−s)

>, where s = 10. We consider two difference
covariance matrix structure: Σ1(compound symmetry) and Σ2 (autocorrelation).
We use two different ways to choose the penalty parameter λ, represented by
LLA-BIC and LLA-CV. We use the HBIC discussed in Section 3.3.3 to choose λ
for LLA-BIC and use 5-fold cross-validation to choose λ for LLA-CV. In particular,
we compare our LLA classifier with the ROAD classifier (Fan et al. 2012), the
FAIR (Fan and Fan 2008), the NSC classifier (Tibshirani et al. 2003) and the oracle
classifier. The oracle classifier is defined to be the discriminant rule using true
parameter Σ−1µ.

The simulation results for compound symmetry covariance structure with pair-
wise correlations ranging from 0.1 to 0.9 are shown in Table 3.1. Among all the
classifiers, the LLA-BIC has the best performance and its performance is very
close to the oracle classifier. The HBIC criterion works slightly better than cross-
validation. The LLA-CV and the ROAD have very similar performance. We can
see from Table 3.1 that the oracle misclassification rate decreases as ρ increases.
The LLA-BIC, the LLA-CV and the ROAD successfully captures the pattern
while the classifiers based on independence rule fail to capture this pattern. The
misclassification rates of the FAIR and the NSC increase as ρ increases. This huge
discrepancy demonstrates that employing the dependence among the variables will
boost the classification power. Table 3.2 shows the results for the autocorrelation
covariance structure, where the correlation among variables is not as strong as
that in compound symmetry structure. When the correlation is not very strong
(ρ ≤ 0.5), the LLA-BIC, the LLA-CV, the ROAD and the FAIR have very similar
performance and performs slightly better than the NSC. When ρ is small, Σ−1

2 can
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be well approximated by identity matrix, which explains why those independence
rule based classifiers also perform well when ρ is small. As ρ increases, the LLA-CV
and the ROAD outperform other classifiers. For the autocorrelation structure, the
cross validation criterion performs better than the BIC-type criterion.

Table 3.1: Average of the percentage of misclassification rates for different classifiers
under compound symmetry covariance structure.

n1 = n2 = 200, p = 1000

ρ LLA-BIC LLA-CV ROAD FAIR NSC Oracle

0.1 6.9 (1.5) 7.3 (1.6) 7.3 (1.4) 12.9 (1.6) 19.4 (9.6) 5.1(1.1)
0.2 5.2 (1.1) 5.5 (1.3) 5.5 (1.2) 17.2 (1.8) 26.1 (11.9) 3.8(1.1)
0.3 4.4 (1.0) 4.6 (0.9) 4.7 (1.1) 20.6 (2.1) 30.5 (12.2) 3.1(0.8)
0.4 3.0 (0.8) 3.1 (0.9) 3.3 (0.9) 23.0 (2.1) 33.2 (12.7) 2.1(0.6)
0.5 2.0 (0.6) 2.1 (0.8) 2.3 (0.8) 25.0 (2.2) 35.1 (12.8) 1.3(0.6)
0.6 1.0 (0.5) 1.1 (0.6) 1.3 (0.7) 26.6 (2.1) 36.5 (12.9) 0.6(0.4)
0.7 0.3 (0.3) 0.4 (0.4) 0.5 (0.4) 27.8 (2.4) 37.8 (12.3) 0.2(0.2)
0.8 0.0 (0.1) 0.2 (0.3) 0.2 (0.3) 29.1 (2.4) 38.6 (12.0) 0.0(0.1)
0.9 0.0 (0.0) 0.2 (0.3) 0.2 (0.3) 30.1 (2.3) 39.5 (11.9) 0.0(0.0)

Table 3.2: Average of the percentage of misclassification rates for different classifiers
under autocorrelation covariance structure.

n1 = n2 = 200, p = 1000

ρ LLA-BIC LLA-CV ROAD FAIR NSC Oracle

0.1 7.9 (1.4) 8.0 (1.4) 7.9 (1.3) 7.4 (1.4) 10.3 (1.5) 7.2 (1.3)
0.2 10.2 (1.6) 10.2 (1.4) 10.1 (1.4) 9.6 (1.4) 12.2 (1.8) 9.4 (1.4)
0.3 13.0 (1.9) 12.5 (1.7) 12.5 (1.8) 11.9 (1.8) 14.6 (1.9) 11.5 (1.6)
0.4 15.3 (1.9) 14.6 (1.6) 14.7 (1.7) 14.1 (1.7) 16.7 (2.0) 13.1 (1.7)
0.5 18.6 (2.4) 16.9 (1.7) 16.9 (1.7) 16.6 (1.7) 19.3 (1.9) 15.0 (1.7)
0.6 21.8 (3.8) 18.6 (2.3) 18.7 (2.3) 18.9 (2.0) 22.0 (2.5) 16.4 (1.9)
0.7 27.8 (4.3) 20.3 (2.3) 20.4 (2.2) 21.7 (2.2) 24.7 (2.2) 17.3 (1.9)
0.8 32.0 (3.2) 19.5 (2.6) 20.5 (2.6) 24.9 (2.1) 27.7 (2.4) 16.6 (1.9)
0.9 30.2 (2.6) 14.0 (2.0) 17.0 (2.3) 28.2 (2.3) 31.9 (2.8) 11.7 (1.5)
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3.5 Proofs

Proof of Theorem 3.1.

Proof. Let δ̂ = β̂ − β?. Since β? is in the feasible set, the first order necessary
condition (3.12) implies that

−δ̂
>
Wβ̂ + δ̂

>
q− 〈∇Pλ(β̂), δ̂〉 ≥ 0. (3.38)

By the RSC condition (3.11), we have

δ̂
>
Wδ̂ ≥ α‖δ̂‖2

2 − τ
√

log p

n
‖δ̂‖1. (3.39)

Add (3.38) to (3.39), we have

−δ̂
>
Wβ? + δ̂

>
q− 〈∇Pλ(β̂), δ̂〉 ≥ α‖δ̂‖2

2 − τ
√

log p

n
‖δ̂‖1. (3.40)

Lemma A.1 shows that Pλ,µ(β) = Pλ(β) + µ
2
‖β‖2

2 is convex, hence

Pλ,µ(β?)− Pλ,µ(β̂) ≥ 〈∇Pλ(β̂) + µβ̂,β? − β̂〉,

which implies
−〈∇Pλ(β̂), δ̂〉 ≤ Pλ(β

?)− Pλ(β̂) +
µ

2
‖δ̂‖2

2. (3.41)

Combining (3.40) and (3.41), we have

α‖δ̂‖2 − τ
√

log p

n
‖δ̂‖1 ≤ −δ̂

>
Wβ? + δ̂

>
q + Pλ(β

?)− Pλ(β̂) +
µ

2
‖δ̂‖2

2.

Note that we assume β? satisfies the equality of the linear constraint, hence
Cδ̂ = C(β̂ − β?) ≤ 0. Let ξ? = arg minξ≥0 ‖Wβ? − q + C>ξ‖∞ and we have
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δ̂
>
C>ξ? ≤ 0. Then we have

α‖δ̂‖2
2 − τ

√
log p

n
‖δ̂‖1 ≤ −δ̂

>
Wβ? + δ̂

>
q− δ̂

>
C>ξ? + Pλ(β

?)− Pλ(β̂) +
µ

2
‖δ̂‖2

2

(α− µ/2)‖δ̂‖2
2 ≤ Pλ(β

?)− Pλ(β̂) + ‖Wβ? − q + C>ξ?‖∞‖δ̂‖1 + τ

√
log p

n
‖δ̂‖1

(α− µ/2)‖δ̂‖2
2 ≤ Pλ(β

?)− Pλ(β̂) +

(
‖Wβ? − q + C>ξ?‖∞ + τ

√
log p

n

)
‖δ̂‖1.

By the assumptions of the theorem, we know ‖Wβ?−q+C>ξ?‖∞+τ
√

log p
n
≤ λ/2.

Hence
(α− µ/2)‖δ̂‖2

2 ≤ Pλ(β
?)− Pλ(β̂) +

λ

2
‖δ̂‖1

≤ Pλ(β
?)− Pλ(β̂) +

1

2
Pλ(δ̂) +

µ

4
‖δ̂‖2

2,

where the second inequality is due to the inequality λ
2
‖δ̂‖1 ≤ 1

2
Pλ(δ̂) + µ

4
‖δ̂‖2

2

by Lemma A.1. By the subadditivity of Pλ, we have Pλ(δ̂) = Pλ(β̂ − β?) ≤
Pλ(β̂) + Pλ(β

?). Then

(α− µ/2) ‖δ̂‖2
2 ≤ Pλ(β

?)− Pλ(β̂) +
1

2
Pλ(β̂) +

1

2
Pλ(β

?) +
µ

4
‖δ̂‖2

2

(α− 3µ/4) ‖δ̂‖2
2 ≤

3

2
Pλ(β

?)− 1

2
Pλ(β̂)

(2α− 3µ/2) ‖δ̂‖2
2 ≤ 3Pλ(β

?)− Pλ(β̂).

By (iii) in Lemma A.1, we have 3λ‖δ̂I‖1 − λ‖δ̂Ic‖1 ≥ 3Pλ(β?)− Pλ(β̂) ≥ 0, where
I denotes the index set of the s largest elements of δ̂ in magnitude. Since α ≥ 3µ/4,
we have

0 ≤ (2α− 3µ/2) ‖δ̂‖2
2 ≤ 3λ‖δ̂I‖1 − λ‖δ̂Ic‖1. (3.42)

As a result, we have ‖δ̂Ic‖1 ≤ 3‖δ̂I‖1 and(
2α− 3

2
µ

)
‖δ̂‖2

2 ≤ 3λ‖δ̂I‖1 − λ‖δ̂Ic‖1 ≤ 3λ‖δ̂I‖1 ≤ 3λ
√
s‖δ̂I‖2,

from which we can conclude that

‖δ̂‖2 ≤
6λ
√
s

4α− 3µ
.
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The L1 norm bound follows immediately from the L2 norm bound

‖δ̂‖1 = ‖δ̂I‖1 + ‖δ̂Ic‖1 ≤ 4‖δ̂I‖1 ≤ 4
√
s‖δ̂I‖2 ≤

24λs

4α1 − 3µ
,

which completes the proof of part (i).
For part (ii), note that

δ̂
>
Wδ̂ = 〈Wβ̂ − q + C>ξ?, δ̂〉 − 〈Wβ? − q + C>ξ?, δ̂〉.

Combine the first order condition (3.12), (3.41) and the fact δ̂
>
C>ξ? ≤ 0, we have

〈Wβ̂ − q + C>ξ?, δ̂〉 ≤ 〈Wβ̂ − q, δ̂〉 ≤ Pλ(β
?)− Pλ(β̂) +

µ

2
‖δ̂‖2

2. (3.43)

Furthermore, Lemma A.1 implies that

〈Wβ? − q + C>ξ?, δ̂〉 ≤ ‖Wβ? − q + C>ξ?‖ · ‖δ̂‖1

≤ 1

2

(
Pλ(δ̂) +

µ

2
‖δ̂‖2

2

)
≤ 1

2

(
Pλ(β̂) + Pλ(β

?)
)

+
µ

4
‖δ̂‖2

2.

(3.44)

The last inequality is because of the additivity of Pλ(·). Combine (3.43) and (3.44),
we have

δ̂
>
Wδ̂ ≤ 3

2
Pλ(β

?)− 1

2
Pλ(β̂) +

3

4
µ‖δ̂‖2

2

≤ 3

2
λ‖δ̂I‖1 −

1

2
λ‖δ̂Ic‖1 +

3

4
µ‖δ̂‖2

2

≤ 3

2

√
sλ‖δ̂‖2 +

3

4
µ‖δ̂‖2

2

≤ λ2s

(
9

4α− 3µ
+

27µ

(4α− 3µ)2

)
.

Proof of Theorem 3.2.

Proof. (i) We first show the support recovery. Define δ = β̂−β̃, Jλ(t) = λ|t|−Pλ(t),
`n(β) = 1

2
β>Wβ − q>β + Pλ(β), and ¯̀

n(β) = `n(β)− Jλ(β). By Lemma 3.1, we
know

〈∇`n(β̂)−∇`n(β̃), δ〉 ≥ α‖δ‖2
2 − τ

√
log p

n
‖δ‖k1, k = 1, 2. (3.45)
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Lemma A.2 shows that Jλ(t)− µ
2
t2 is a differential concave function and thus its

derivative ∇Jλ(t)− µt is a decreasing function. Therefore,

〈∇Jλ(β̂)− µβ̂ − (∇Jλ(β̃)− µβ̃), δ〉 ≤ 0.

Rearranging (3.5), we have

〈−∇Jλ(β̂) +∇Jλ(β̃), δ〉 ≥ −µ‖δ‖2
2. (3.46)

Adding (3.46) to (3.45), we have

〈∇¯̀
n(β̂)−∇¯̀

n(β̃), δ〉 ≥ (α− µ)‖δ‖2
2 − τ

√
log p

n
‖δ‖k1. (3.47)

β̂ is a stationary point satisfying the first order condition (3.12) and β̃ is a feasible
point by construction, hence we have 〈∇`n(β̂) + ∇Pλ(β̂), β̃ − β̂〉 ≥ 0. Define
ẑ ∈ ∂‖β̂‖1 and we have

〈∇¯̀
n(β̂), β̃ − β̂〉+ λ〈ẑ, β̃ − β̂〉 ≥ 0, (3.48)

since ∇`n(β̂) +∇Pλ(β̂) = ∇¯̀
n(β̂) + λẑ. The zero gradient condition (3.16) implies

that
〈¯̀n(β̃) + λz̃ + C>γ, β̃ − β̂〉 = 0. (3.49)

Subtracting (3.49) from (3.48), we have

〈¯̀n(β̂)− ¯̀
n(β̃), β̃ − β̂〉+ λ〈ẑ, β̃〉 − λ‖β̂‖1 + λ〈z̃, β̂〉 − λ‖β̃‖1 − 〈C>γ, β̃ − β̂〉 ≥ 0

〈¯̀n(β̂)− ¯̀
n(β̃), β̃ − β̂〉+ λ〈ẑ, β̃〉 − λ‖β̂‖1 + λ〈z̃, β̂〉 − λ‖β̃‖1 ≥ 0.

(3.50)
The second inequality in (3.50) is because

〈C>γ, β̃ − β̂〉 = γ>Cβ̃ − γ>Cβ̂ = γ>(Cβ̃ − b)− γ>(Cβ̂ − b) ≥ 0,
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Rearranging (3.50), we have

λ‖β̂‖1 − λ〈z̃, β̂〉 ≤ 〈¯̀n(β̂)− ¯̀
n(β̃), β̃ − β̂〉+ λ〈ẑ, β̃〉 − λ‖β̃‖1

≤ 〈¯̀n(β̂)− ¯̀
n(β̃), β̃ − β̂〉

≤ τ

√
log p

n
‖δ‖2

1 − (α− µ)‖δ‖k2.

(3.51)

Set k = 2, we have

λ‖β̂‖1 − λ〈z̃, β̂〉 ≤ τ

√
log p

n
‖δ‖2

1 − (α− µ)‖δ‖2
2. (3.52)

We claim that if ‖ẑAc‖∞ ≤ 1 − ν for some ν ∈ (0, 1] and λ ≥ 2τ
ν

√
log p
n

, then
‖δ‖1 ≤ (4/ν + 2)

√
s‖δ‖2. From (3.51) with k = 1, we know

(α− µ)‖δ‖2
2 − τ

√
log p

n
‖δ‖1 ≤ 〈¯̀n(β̂)− ¯̀

n(β̃), δ〉

≤ λ〈ẑ, β̃〉 − λ‖β̂‖1 + λ〈z̃, δ〉.
(3.53)

We derive the upper bounds for λ〈ẑ, β̃〉 − λ‖β̂‖1 and λ〈z̃, δ〉 separately. Note that
β̃Ac = 0,

λ〈ẑ, β̃〉 − λ‖β̂‖1 ≤ λ‖β̃‖1 − λ‖β̂‖1 = λ
(
‖β̃A‖1 − ‖β̂A‖1 − ‖β̂Ac‖1

)
= λ (‖δA‖1 − ‖δAc‖1) .

(3.54)

For the term λ〈z̃, δ〉, we have

λ〈z̃, δ〉 = λ (〈z̃A, δA〉+ 〈z̃Ac , δAc〉) ≤ λ(‖z̃A‖∞‖δA‖1 + ‖z̃Ac‖∞‖δAc‖1)

≤ λ(‖δA‖1 + (1− ν)‖δAc‖1).
(3.55)
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Combining (3.53), (3.54) and (3.55), we have

(α− µ)‖δ‖2
2 − τ

√
log p

n
‖δ‖1 ≤ λ(2(‖δA‖1 − ν‖δAc‖1)

−τ
√

log p

n
‖δ‖1 ≤ λ(2(‖δA‖1 − ν‖δAc‖1)

−ν
2
λ‖δ‖1 ≤ λ(2(‖δA‖1 − ν‖δAc‖1).

ν

2
‖δAc‖1 ≤ (2 +

ν

2
)‖δA‖1

The third inequality is due to the assumption that λ ≥ 2τ
ν

√
log p
n

. Then we have

‖δ‖1 = ‖δA‖1 + ‖δAc‖1 ≤ ‖δA‖1 + (4/ν + 1)‖δA‖1 ≤ (4/ν + 2)
√
s‖δ‖2,

which proves the claim. As a result, equation (3.52) implies that

λ‖β̂‖1 − λ〈z̃, β̂〉 ≤ τ

√
log p

n
‖δ‖2

1 − (α− µ)‖δ‖2
2

≤ τs

√
log p

n

(
4

ν
+ 2

)2

‖δ‖2
2 − (α− µ)‖δ‖2

2.

Since n ≥
(

τs
α−µ

)2 (
4
ν

+ 2
)4

log p, we have λ‖β̂‖1 − λ〈z̃, β̂〉 ≤ 0. On the other

hand, the Holder inequality implies that λ〈z̃, β̂〉 ≤ λ‖β̂‖1. Then we must have
〈z̃, β̂〉 = ‖β̂‖1. By assumption ‖z̃Ac‖∞ < 1, we conclude that β̂j = 0 for j ∈ Ac, as
claimed.

(ii) By Lemma A.2, we know µ
2
t2 − Jλ(t) is convex and hence µ

2
β>AβA − Jλ(βA)

is convex too. Since λmin(WAA) > µ
2
, we know β>AWAAβA − µ

2
β>AβA is strictly

convex. Therefore β>AWAAβA − Jλ(βA) = β>AWAAβA − λ‖βA‖1 + Pλ(βA) is also
strictly convex. Consequently, β>AWAAβA − q>AβA + Pλ(βA) is strictly convex.
Therefore the solution β̃A to the restricted program (3.14) is unique. From part
(i), we know all stationary points β̂ are supported on A and can be written as
β̂ = (β̂A,0Ac). It is easy to verify that β̂A is also a stationary point of the restricted
program (3.14). Since the restricted program is strictly convex, the stationary
point β̂A is unique and so is β̂. We know that β̂A also satisfies the zero-gradient
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condition in (3.15),

WAAβ̂A − qA +∇Pλ(β̂A) + C>Aγ = 0.

Subtracting WAAβ
?
A on both sides, we have

WAA(β̂A − β?A) = −WAAβ
?
A + qA −∇Pλ(β̂A)−C>Aγ

β̂A − β?A = −β?A + W−1
AA(qA −C>Aγ)−W−1

AA∇Pλ(β̂A)

‖β̂A − β?A‖∞ ≤ ‖β?A + W−1
AA(C>Aγ − qA)‖∞ + ‖W−1

AA∇Pλ(β̂A)‖∞
≤ ‖β?A + W−1

AA(C>Aγ − qA)‖∞ + λ‖W−1
AA‖∞.

The last inequality is because ‖∇Pλ(β̂A)‖∞ ≤ λ. Furthermore, we have β̂Ac =

β?Ac = 0 and thus

‖β̂ − β?‖∞ ≤ ‖β?A + W−1
AA(C>Aγ − qA)‖∞ + λ‖W−1

AA‖∞.

(iii) From part (ii), we know for any j ∈ A,

|β̂j − β?j | ≤ ‖β?A + W−1
AA(C>Aγ − qA)‖∞ + λ‖W−1

AA‖∞.

Since |β?j | ≥ β?min ≥ λ(a + ‖W−1
AA‖∞) + ‖W−1

AA(qA + C>Aγ − β
?
A)‖∞, we have

|β̂j| ≥ aλ for all j ∈ A. By condition (vi) in assumption 1, we know ∇Pλ(β̂A) = 0

and hence
‖β̂ − β?‖∞ ≤ ‖β?A + W−1

AA(C>Aγ − qA)‖∞.

Since ∇Pλ(β̂A) = 0, the zero-gradient condition (3.15) reduces to

WAAβ̂A − qA + C>Aγ = 0.

Since the restricted program (3.14) is strictly convex on RA, this zero-gradient
condition implies that β̂A is the unique global minimum, hence β̂A = β̂

(o)

A and
β̂ = β̂

(o)
, as claimed.

Proof of Theorem 3.3.

Proof. Let θ = Σ−1µ, then we have β? = γθ and β̃ = γ̃θ, where γ = 1/µ>Σ−1µ
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and γ̃ = 1/x̄>Σ−1µ. γ̃ is chosen such that β̃ satisfies the equality constraint, i.e.,
x̄>β̃ = 1. According to Theorem 3.1, it suffices to show that with probability at
least 1− cp−1, we have

‖Σ̂β̃ − γ̃x̄‖∞ = |γ̃| · ‖Σ̂θ − x̄‖∞ ≤Ms
√

log p/n.

We first deal with ‖Σ̂θ − x̄‖∞. By triangle inequality, we have

‖Σ̂θ − x̄‖∞ ≤ ‖Σ̂θ − µ‖∞ + ‖x̄− µ‖∞.

Since x is sub-Gaussian random vector with norm K, we know that x̄ is also
sub-Gaussian random vector with norm K/

√
n. Therefore for any t > 0, we have

P(‖x̄− µ‖∞ > t) ≤ 2p exp

{
− nt2

cK2

}
.

Take t = M1

√
log p/n for some large M1 > 0, we have

P(‖x̄− µ‖∞ < M1

√
log p/n) ≥ 1− 2p−1. (3.56)

From Lemma B.2, we know that there exists M2 > 0 such that

P(‖Σ̂−Σ‖∞ ≤M2

√
log p/n) ≥ 1− 2p−1.

Then with probability at least 1− 2p−1, we have

‖Σ̂θ − µ‖∞ = ‖Σ̂θ −Σθ‖∞ ≤ ‖Σ̂−Σ‖∞‖θ‖1

≤ ‖Σ̂−Σ‖∞s‖θ‖∞ ≤M2C2s
√

log p/n.
(3.57)

Combine (3.57) and (3.56), we know that with probability at least 1 − 4p−1, we
have

‖Σ̂θ − x̄‖∞ ≤ sM ′
√

log p/n,

with M ′ = M1 + C2M2. Next we show that γ̂ is bounded from below. Note that

|x̄>θ − µ>θ| ≤ ‖x̄− µ‖∞‖θ‖1 ≤M1

√
log p

n
‖θ‖1 ≤M1C2s

√
log p

n
.
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By assumption, we know C2λ/C1 ≤ 1−ε with the choices ofM = max{M1,M
′/(C1ε)}

and λ = sM
√

log p/n. Thus M1C2s
√

log p/n ≤ (1 − ε)C1 and |x̄>θ − µ>θ| ≤
(1− ε)C1. Consequently,

|x̄>θ| ≥ ||µ>θ| − |x̄>θ − µ>θ|| ≥ |C1 − (1− ε)C1| = εC1.

Thus |γ̂| = 1/|x̄>θ| ≤ 1/(εC1). Therefore

‖Σ̂β̃ − γ̂x̄‖∞ = |γ̂| · ‖Σ̂θ − x̄‖∞ ≤ sM
√

log p/n,

According to Theorem 3.1, by the choice of λ = sM
√

log p/n, the L1 and L2 error
bounds in part (i) hold.

Now we move to part (ii). Note that ‖β?‖∞ is bounded too since

‖β?‖∞ = ‖θ‖∞/µ>Σ−1µ ≤ C2/C1 := C?.

Again by the triangle inequality, we have

‖β̂ − β?‖k ≤ ‖β̂ − β̃‖k + ‖β̃ − β?‖k, for k = 1, 2.

The first term is bounded by the result in part(i). To bound the second term,

‖β̃ − β?‖k ≤
∥∥∥∥θ( 1

µ>Σ−1µ
− 1

x̄>Σ−1µ

)∥∥∥∥
k

≤ ‖β?‖k
∣∣∣∣(x̄− µ)>θ

x̄>Σ−1µ

∣∣∣∣
≤ 2M1

C1

‖β?‖k‖θ‖1

√
log p

n

≤ 2sM1C
?‖β?‖k

√
log p

n
,

with probability at least 1− 2p−1. When k = 1,

‖β̃ − β?‖1 ≤ 2M1C
?2s2

√
log p

n
= O(sλ),
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When k = 2,

‖β̃ − β?‖2 ≤ 2M1C
?2s
√
s

√
log p

n
= O(

√
sλ),

which completes the proof of part(ii).

Proof of Corollary 3.1.

Proof. From the proof of Theorem 3.3, we know ‖β̃ − β?‖2 = O(
√
sλ). By

assumption,
√
sλ/(κ‖β?‖2) = o(1), or equivalently, κ‖β?‖2/

√
sλ→∞. We have

κ‖β̃‖2√
sλ
≥ κ(‖β?‖2 − ‖β̃ − β?‖2)√

sλ
=
κ(‖β?‖2 −O(

√
sλ))√

sλ
=
κ‖β?‖2√

sλ
−O(κ)→∞,

or equivalently,
√
sλ/(κ‖β̃‖2) = o(1). Note that cos〈β̂,β?〉 = cos〈β̂, β̃〉, we only

need to show cos〈β̂, β̃〉 → 1. cos〈β̂, β̃〉 can be decomposed as follows,

cos〈β̂, β̃〉 =
β̂
>
β̃

‖β̂‖2‖β̃‖2

=
β̂
>
β̃

‖β̂‖2‖β̃‖2

− β̃
>
β̃

‖β̂‖2‖β̃‖2

+
β̃
>
β̃

‖β̂‖2‖β̃‖2

.

On one hand,

‖β̃‖2 − ‖β̃ − β̂‖2

‖β̃‖2

≤ ‖β̂‖2

‖β̃‖2

≤ ‖β̃‖2 + ‖β̃ − β̂‖2

‖β̃‖2

1−O

(√
sλ

‖β̃‖2

)
≤ ‖β̂‖2

‖β̃‖2

≤ 1 +O

(√
sλ

‖β̃‖2

)

1− o(1) ≤ ‖β̂‖2

‖β̃‖2

≤ 1 + o(1)

(3.58)

As a result, we know that ‖β̂‖2‖β̃‖2
β̃
>
β̃

= ‖β̂‖2
‖β̃‖2
→ 1. One the other hand,

β̂
>
β̃

‖β̂‖2‖β̃‖2

− β̃
>
β̃

‖β̂‖2‖β̃‖2

=
(β̂ − β̃)>β̃

‖β̂‖2‖β̃‖2

≤ ‖β̂ − β̃‖2‖β̃‖2

‖β̂‖2‖β̃‖2

≤ ‖β̂ − β̃‖2

‖β̂‖2

=
‖β̂ − β̃‖2

‖β̃‖2

‖β̃‖2

‖β̂‖2

= O(
√
sλ/(κ‖β̃‖2)) = o(1).

(3.59)
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Combine (3.58) and (3.59), we know cos〈β̂,β?〉 = cos〈β̂, β̃〉 → 1.

Proof of Theorem 3.7.

Proof. Without loss of generosity, we assume E(xi) = 0. We first show with
probability at least 1− 2p−1, we have∥∥∥∥ 1

n
X>(y −Xβ?)

∥∥∥∥
∞
≤M

√
log p/n.

Note that 1
n
X>(y −Xβ?) = 1

n
X>ε = 1

n

∑n
i=1 xiεi. Since ‖Xij‖ψ2 ≤ K2, ‖εi‖ψ2 ≤

K1, we have ‖Xijεi‖ψ1 ≤ K where K = K1K2, then

P

(∣∣∣∣∣ 1n
n∑
i=1

Xijεi

∣∣∣∣∣ > t

)
≤ 2 exp

{
−c1n

(
t2

K2
∧ t

K

)}
,

where c1 is some absolute constant. By the union bound inequality,

P

(∥∥∥∥∥ 1

n

n∑
i=1

xiεi

∥∥∥∥∥
∞

> t

)
≤ 2p exp

{
−c1n

(
t2

K2
∧ t

K

)}
. (3.60)

Take t = M
√

log p/n with M ≥ 2K/c1 ∨
√

2K2/c1, we have

P

(∥∥∥∥∥ 1

n

n∑
i=1

xiεi

∥∥∥∥∥
∞

> t

)
≤ 2p−1. (3.61)

Therefore, P(‖ 1
n
X>(y −Xβ?)‖∞ ≤M

√
log p/n) ≥ 1− 2p−1. By Theorem 3.1, we

know part (i) holds. For part (ii),

‖ŷ − y?‖2 =

√
(β̂ − β?)>X>X(β̂ − β?) = O(

√
nsλ/κ).

by Theorem 3.1.
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Chapter 4 |
Sparse Online Projection Test

4.1 Introduction

One-sample mean vector test or two-sample test on the equality of two means is
a fundamental problem in high-dimensional statistics. These tests are commonly
encountered in genome-wide association studies. For instance, Chen and Qin (2010)
performed a hypothesis testing to identify sets of genes which are significant with
respect to certain treatments in a genetics research. Xu et al. (2016) applied
various tests to the bipolar disorder dataset from a genome-wide association study
collected by Consortium (2007) in which one would like to test whether there is
any association between a disease and a large number of genetic variants. In these
applications, the dimension of the data p is often much larger than the sample size
n. Traditional methods such as Hotelling’s T 2 test (Hotelling 1931) either cannot
be directly applied or have low power against the alternative. The Hotelling’s T 2

requires that the sample covariance matrix is invertible and this is typically not
true in high-dimensional setting where p > n. Despite the singularity of the sample
covariance matrix, it has been observed that the power of the Hotelling’s T 2 test
can be adversely affected even when p < n, if the sample covariance matrix is nearly
singular, see Bai and Saranadasa (1996) and Pan and Zhou (2011).

Several tests for high-dimensional data have been proposed recently. These
tests can be roughly classified into three types. The first type is known as the
sum-of-squares-type test or modified Hotelling’s T 2 test. These tests simply replace
the sample covariance matrix by some diagonal matrix such as identity matrix,
leading to a sum-of-squares-type test statistic, see Bai and Saranadasa (1996) and
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Chen and Qin (2010). To get rid of the unit effect, Srivastava and Du (2008)
suggested replacing the sample covariance matrix by its diagonal matrix. These
tests are typically asymptoticly normally distributed under null hypothesis. The
second type is the maximum-type test. The idea is performing p individual tests
and choose the most significant one as the final test statistic. For example, Cai
et al. (2014) introduced a test that is based on a linear transformation of the data
by the precision matrix which incorporates the correlations among the variables.
Such a maximum-type test converges to a certain extreme value distribution. The
third type test is the projection test. The idea is to project the high-dimensional
vector x onto a space of low dimension and then traditional methods such as
Hotelling’s T 2 can be applied. Lauter (1996) proposed a test which projects
high-dimensional data to a one-dimensional space by some weight vector. Lopes
et al. (2011) proposed a test based on random projection where the the entries in
the projection matrix are randomly generated from standard normal distribution.
Instead of using random projection, Li et al. (2015) proposed a projection test
based on the optimal projection direction.

Different types of tests are powerful only against certain alternatives. For
example, if the true mean is dense in the sense that there is a large proportion
of small to moderate nonzero components, then sum-of-squares-type test is more
powerful. In contrast, if the true mean is sparse in the sense that there are only
few nonzero components in the mean, the maximum-type test is more powerful.
In practice, since the true alternative hypothesis is unknown, it is unclear how to
choose a powerful test. Furthermore, there are some intermediate situations in
which neither type of test is powerful (Xu et al. 2016).

Consider a random sample x1, . . . ,xn from a p-dimensional population x with
finite mean E(x) = µ and positive definite covariance matrix cov(x) = Σ. Of
interest is to test the following hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0, (4.1)

for some known vector µ0. Without loss of generality, we assume µ0 = 0 and the
one-sample problem (4.1) becomes

H0 : µ = 0 versus H1 : µ 6= 0. (4.2)
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In most cases, the test statistic constructed for one-sample problem can be easily
extended to two-sample problem. For this reason, we only focus on the one sample
problem (4.2) and assume µ0 = 0. Let x̄ and Σ̂ be the sample mean vector and
the sample covariance matrix respectively,

x̄ =
1

n

n∑
i=1

xi, Σ̂ =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>. (4.3)

When p < n, the Hotelling’s T 2 test statistic for problem (4.2) is given by

T 2 = nx̄>Σ̂
−1

x̄.

Under the normality assumption, it is well known that the test statistic (n −
p)/((n− 1)p)T 2 ∼ Fp,n−p(nζ), which is a non-central F -distribution with degrees of
freedom (p, n− p) and non-centrality parameter nζ, where ζ = µ>Σ−1µ. Without
the normality assumption, T 2 asymptotically follows a χ2-distribution with degree
of freedom 1 as n → ∞ with p being fixed. When p ≥ n, the Hotelling’s T 2

is not well defined since the sample covariance matrix Σ̂ is not invertible. The
idea of projection test is to project the high-dimensional vector xi onto a space
of low dimension and then traditional methods such as t-test or Hotelling’s T 2

can be applied. Let P be a p × k matrix with k � n and we can project the
p-dimensional vector xi to a k-dimensional space by left-multiplying the matrix
P>. More specifically, define yi = P>xi, i = 1, . . . , n, and thus y1, . . . ,yn ∈ Rk are
independent and identically distributed with mean P>µ and covariance matrix
P>ΣP. The Hotelling’s T 2

P after projection is defined to be

T 2
P = nx̄>P(P>Σ̂P)−1P>x̄,

which is equivalent to the Hotelling’s T 2 test based on y1, . . . ,yn.
Several methods have been proposed to determine the projection matrix P.

Lauter (1996) considered a test using the linear score z = (Z1, . . . , Zn)> = Xd,
where d is a p× 1 projection vector depending on X only through X>X and d 6= 0

with probability 1. Then one can perform the one-sample t-test based on Z1, . . . , Zn.
Lauter (1996) also proposed two different ways to obtain the projection vector d.
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For example, d can take the form of

d = (diag(X>X))−1/2,

or be the eigenvector corresponding to the largest eigenvalue λmax for the following
eigenvalue problem

(X>X)d = diag(X>X)dλmax.

Lopes et al. (2011) proposed a random projection test where the entries in P are
randomly drawn from the standard normal distribution. This random projection
test is an exact test if xi’s are normally distributed. Instead of using random
projection, Li et al. (2015) proposed a projection test using the optimal projection
direction. Li et al. (2015) showed that the optimal choice of k in P is 1 and the
optimal projection direction is θ = Σ−1µ in the sense that the power of the test
T 2

P is maximized. Let yi = θ>xi, i = 1, . . . , n. The projection test statistic is

T 2
θ = nx̄>θ(θ>Σ̂θ)−1θ>x̄,

which follows F1,n−1 distribution under H0. It is equivalent to a one-sample t test
based on y1, . . . , yn. In order to control the type I error, Li et al. (2015) proposed a
data-splitting strategy to estimate the optimal direction and obtain an exact t-test.
They partition the random sample into two separate sets: D1 = {x1, . . . ,xn1} and
D2 = {xn1+1, . . . ,xn}. They use D1 to estimate the direction θ = Σ−1µ and use
D2 to construct the test statistic T 2

θ . To estimate θ, they proposed a ridge-type
estimator θ̂ = (S1 + λD1)−1x̄1, where x̄1 and Σ̂1 are the sample mean vector and
the sample covariance matrix computed from D1, D1 = diag(Σ̂1) is the diagonal
matrix of Σ̂1. The test statistic T 2

θ̂
is constructed using θ̂

>
xn1+1, . . . , θ̂

>
xn. Li et al.

(2015) also derived the asymptotic power function of the projection test T 2
θ̂
under

the assumption that θ̂ → θ in probability. However, there is no guarantee that the
ridge-type estimator is consistent. In order to obtain a better estimation of θ, we
assume the optimal projection direction is sparse. Under the sparsity assumption,
we estimate θ using regularized quadratic programming and it can be shown that
the resulting estimator is consistent.
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4.2 Sparse online projection test

4.2.1 Sparse projection test with data splitting

Let θ = Σ−1µ and β? = Σ−1µ/µ>Σ−1µ be the optimal projection direction. We
assume θ and β? are sparse and have s nonzero elements, i.e., ‖θ‖0 = ‖β?‖0 = s.
Under the assumption that the optimal projection direction is sparse, we propose a
new estimation vis the following regularized quadratic programming with nonconvex
penalty and linear constraint,

β̂ = arg min
x̄>β=1

1

2
β>Σ̂β + Pλ(β). (4.4)

We may follow the data splitting procedure proposed in Li et al. (2015). Given
the dataset D = {x1, . . . ,xn}, we partition the dataset into D1 = {x1, . . . ,xn1}
and D2 = {xn1+1, . . . ,xn}, where n1 = bτnc. We use the first subset to estimate
the optimal projection direction by the regularized quadratic programming

β̂ = arg min
x̄>1 β=1

1

2
β>Σ̂1β + Pλ(β), (4.5)

where x̄1 and Σ̂1 are the sample mean and sample covariance matrix estimated
from D1. Then we project the high-dimensional data in D2 to a 1-dimensional space
using β̂, i.e., yi = x>i β̂ for i = n1 + 1, . . . , n. Note that the estimated projection
direction β̂ is independent from D2 and thus yn1+1, . . . , yn are independent and
identically distributed with mean 0 and variance β̂

>
Σβ̂ under H0. As a result,

we can perform one-sample t-test based on the new dataset {yn1+1, . . . , yn}. The
advantage of the data splitting procedure is that we achieve an exact t-test and
the type I error can be well controlled. However, we perform the t-test only using
the data from D2 and the data in D1 is discarded, which may lead to some loss in
power. Define

ȳ =
1

n2

n∑
i=n1+1

yi, s
2
y =

1

n2 − 1

n∑
i=n1+1

(yi − ȳ)2,

where n2 = n − n1 This sparse projection test with data splitting procedure is
summarized in Algorithm 5 and is referred to as SPT-DS. The ridge projection test
with data splitting procedure in Li et al. (2015) is referred to as RPT-DS. Based on
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the empirical study in Li et al. (2015), one may set τ ∈ (0.4, 0.6) to achieve high
power.

Algorithm 5 Sparse projection test with data splitting
Input: D = {x1, . . . ,xn} and τ ∈ (0, 1).
1. Partition data D1 = {x1, . . . ,xn1} and D2 = {xn1+1, . . . ,xn} where n1 = bτnc.
2. Compute sample mean x̄1 and sample covariance matrix Σ̂1 based on D1.
3. Solve

β̂ = arg min
x̄>1 β=1

1

2
β>Σ̂1β + Pλ(β).

4. Compute yn1+1, . . . , yn where yi = x>i β̂, i = n1 + 1, . . . , n.
5. Compute the test statistic Ty =

√
n− n1ȳ/sy.

6. Reject H0 whenever |Ty| > zα/2.

We also derive the asymptotic power function for the proposed SPT-DS.

Proposition 4.1. Suppose the conditions in Theorem 3.3 hold. Let β̂ be a station-
ary point of program (4.5) with λ = Ms

√
log p/n1. Assume that s3/2

√
log p/n1 =

o(1) and both n1 and n2 go to infinity, we have

β1(µ)− Φ(−zα/2 +
√
n2

√
µ>Σ−1µ)→ 0,

β1(µ) = P(|Ty| > zα/2) is the power function for the SPT-DS and Φ(·) is the cdf
for the standard normal distribution.

Unlike RPT-DS which assumes that the ridge-type estimator is consistent,
we can show our estimator is consistent under the conditions of Proposition 4.1
and thus the power function we derive is reliable. With a sample of size n, one
may expect the power function is of order Φ(−zα/2 +

√
n
√
µ>Σ−1µ). With the

choice of n1 = bτnc, the power of the projection test with data splitting becomes
Φ(−zα/2 +

√
(1− τ)n

√
µ>Σ−1µ) and is less powerful than the test using the whole

dataset.

4.2.2 Sparse online projection test

To improve the power of data splitting projection test, we propose a sparse projection
test via an online framework. Pretending the data arrives one by one in a temporal
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manner (though it is not necessary), we keep updating the estimated projection
direction when new observations arrive. Suppose we have x1, . . . ,xt at time t and
we use the current t data points to estimate the optimal projection direction

β̂t = arg min
x̄>t β=1

1

2
β>Σ̂tβ + Pλ(β), (4.6)

where x̄t and Σ̂t are the sample mean and sample covariance matrix estimated from
{x1, . . . ,xt}. When a new data point xt+1 arrives, we project the new data point
to a scalar by yt+1 = x>t+1β̂t and update the estimation of β? by (4.6) with x̄t+1

and Σ̂t+1. Given an integer kn � n, we can obtain an initial estimator β̂kn based
on the first kn observations. As a result, we obtain a sequence of new data points
{ykn+1, . . . , yn} and we can carry out one-sample test based on {ykn+1, . . . , yn}. This
sparse online projection test is summarized in Algorithm 6. Since this algorithm
updates β̂t whenever we have a new observation and we refer it as Sparse Online
Projection Test - One by one (SOPT-O). This algorithm can be computationally
expensive especially when n is large because we need to solve a regularized quadratic
programming whenever a new observation arrives. To reduce the computational
burden, we also propose a mini-batch version of Algorithm 6. We update the
estimated projection direction only when a batch of observations arrive. More
specifically, suppose we have x1, . . . ,xt at time t and obtain β̂t using x1, . . . ,xt.
When the next b observations xt+1, . . . ,xt+b arrive, we project the b observations to
1-dimensional space by multiplying β̂t, i.e., yt+1 = x>t+1β̂t, . . . , yt+b = x>t+bβ̂t. Then
we update the estimation of β? based on {x1, . . . ,xt+b}. This mini-batch version
is summarized in Algorithm 7 and the corresponding test is referred to as Sparse
Online Projection Test - mini Batch (SOPT-B).
Remark. In Algorithm 6 and Algorithm 7, instead of using the regularized
quadratic programming to estimate β?, one may also use the ridge-type estimator.
In order to achieve stable numerical performance, we also standardize the ridge-type
estimator by β̂t ← β̂t/x̄

>
t β̂t, i.e., β̂t satisfies the linear constraint x̄>t β̂t = 1. The

corresponding tests are referred to as Ridge Online Projection Test - one by one
(ROPT-O) and Ridge Online Projection Test - mini Batch (ROPT-B). Note that
the data splitting projection test can be regarded as a special case of the mini-batch
online projection test where there is only one single batch.
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Algorithm 6 Sparse online projection test - one by one
Input: D = {x1, . . . ,xn} and integer kn ≥ 2.
for t = kn + 1 to n do
1. Compute sample mean x̄t−1 and sample covariance matrix Σ̂t−1 based on
x1, . . . ,xt−1.
2. Update β̂t−1 by

β̂t−1 = arg min
β>x̄t−1=1

1

2
β>Σ̂t−1β + Pλ(β).

3. Compute yt = x>t β̂t−1.
end for
Compute the test statistic Ty =

√
n− knȳ/sy.

Reject H0 if |Ty| > zα/2.

Algorithm 7 Sparse online projection test - mini batch
Input: D = {x1, . . . ,xn}, integer kn ≥ 2 and batch size b.
for t = 0 to B = b(n− kn)/bc do
1. Compute sample mean x̄t and sample covariance matrix Σ̂t based on
x1, . . . ,xkn+bt.
2. Update β̂t by

β̂t = arg min
β>x̄t=1

1

2
β>Σ̂tβ + Pλ(β).

if t < B then
Compute ykn+tb+i = x>kn+tb+iβ̂t for i = 1, . . . , b.

else
Compute ykn+bB+i = x>kn+bB+iβ̂t for i = 1, . . . , n− kn − bB.

end if
end for
Compute the test statistic Ty =

√
n− knȳ/sy.

Reject H0 if |Ty| > zα/2.

4.2.3 Asymptotic normality for sparse online projection test

In this section, we establish the asymptotic normality of the proposed test statistic
under both null hypothesis and alternative hypothesis. Let zt be the centralized
version of yt, i.e., zt = (xt−µ)>β̂t−1 for t = kn+1, . . . , n. Note that {zkn+1, . . . , zn}
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is actually a martingale difference since

E(zt+1|zt, zt−1, . . . ) = E((xt+1 − µ)>β̂t|zt, zt−1, . . . )

= E((xt+1 − µ)>)E(β̂t|zt, zt−1, . . . ) = 0.

The second equality is due to the fact that the new observation xt+1 is independent
from β̂t. Similarly, we know that {ykn+1, . . . , yn} is also a martingale difference
under H0. Next we establish the asymptotic null distribution using the technique
of central limit theorem for martingale difference. Let z̄ and s2

z be the sample mean
and sample variance based on {zkn+1, . . . , zn}, i.e.,

z̄ =
1

n− kn

n∑
t=kn+1

zt and s2
z =

1

n− kn

n∑
t=kn+1

z2
t .

Theorem 4.1. Suppose the conditions in Theorem 3.3 hold. Let β̂t be a stationary
point of program (4.6) with λ = Ms

√
log p/t. Assume that s

√
log p/n

τ
6 = o(1) for

some τ ∈ (0, 1), then with the choice of kn = nτ , we have

(i) (Normality under alternative) Tz =
√
n− knz̄/sz → N(0, 1).

(ii) (Power function) Further assume ‖µ‖∞s2
√

log p
nτ

= o(1), then

β2(µ)− Φ(−zα/2 +
√
n

√
µ>Σ−1µ)→ 0,

where β2(µ) = P(|Ty| ≥ zα) is the power function for the proposed SOPT-O.

Theorem 4.1 establishes the normality of the proposed test statistic under the
alternative µ>Σ−1µ ≥ C1 for some C1 > 0 (see conditions in Theorem 3.3), and
based on which we derive the power function. Clearly, we have β2(µ) > β1(µ).
The SOPT-O improves the performance of SPT-DS in the following two ways:
(1) SOPT-O keeps updating the estimation of β? and obtains a more and more
accurate estimation of β? as more observations arrive. (2) Less observations is
discarded in SOPT-O than SPT-DS when performing the test. For SOPT-O, only
kn = o(n) data points is discarded and is negligible when deriving the asymptotic
power function. However, the results in Theorem 4.1 does not hold for H0 : µ = 0

since the condition µ>Σ−1µ ≥ C1 is not satisfied. In order to establish the central
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limit theorem for martingale difference, according to Lemme D.1, we need to show
s2
z converge to some positive constant. Under the conditions of Theorem 4.1, we
can show that the estimated direction β̂t at time t is close enough to the true
direction β? for t = kn + 1, . . . , n and thus s2

y converges to (µ>Σ−1µ)−1. Thanks to
the fact that β̂t does not converge to β? = 0, otherwise the the variance s2

y would
diverge and consequently the martingale difference central limit theorem does not
hold. Actually, this also explains why we do not use the unconstrained version to
estimate the projection direction. In the unconstrained version, we dot not require
µ>Σ−1µ ≥ C1 and thus we have β̂t → 0 under H0, which is problematic. In fact,
the linear equality constraint β̂

>
t x̄t = 1 forces that β̂t cannot be too close to 0.

We establish the normality under H0 assuming that β̂t lies in the neighborhood of
some nonzero constant vector. We have the following theorem.

Theorem 4.2. (Normality under null) Let β̂t be a stationary point of program
(4.6) with λ = Ms

√
log p/t for some large M > 0. Under H0, assume that there

exists β0 6= 0 ∈ Rp such that ‖β̂t − β0‖1 = O(an) for some sequence an and all

t ≥ kn. If ‖β0‖2
2

√
log p
n

= o(1) and an log p(‖β0‖1 ∨ 1) = o(1), then we have

√
n− knȳ
sy

→ N(0, 1).

The proof of Theorem 4.2 is the same as the proof of part (i) in Theorem
4.1 by substituting β0 for β? and thus is omitted. Theorem 4.2 shows that the
asymptotic null distribution is the standard normal distribution. Thus we reject the
null hypothesis (4.1) if and only if |Ty| ≥ zα/2, where zα/2 is the upper α/2 quantile
of standard normal distribution. We also numerically examine the normality under
both H0 and H1. We consider two covariance matrix structures: (1) Autocorrelation
structure where Σ = (σij) with σij = ρ|i−j| and (2) compound symmetry structure
where Σ = (σij) with σij = ρ if i 6= j and σij = 1 if i = j. We set n = 160,
p = 400, 1600 and ρ = 0.5. Figure 4.1 shows the distributions of the test statistic
Ty under the null hypothesis µ = 0. The upper two panels are the histograms for
autocorrelation structure and the lower two panels are the histograms for compound
symmetry structure. The red curves are the probability density function of standard
normal distribution. Figure 4.1 shows that the distribution of the test statistic
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Figure 4.1: The distribution of test statistic Ty under H0. We set n = 160, ρ =
0.5 and consider p = 400, 1600. The upper two panels are the histograms for
autocorrelation structure and the lower two panels are the histograms for compound
symmetry structure. The red curves are the probability density function of standard
normal distribution.

is very close to standard normal distribution under H0 when n, p are relatively
large. Figure 4.2 shows the distributions of the statistic Tz under the alternative
hypothesis µ = 0.5(110,0p−10). It shows that the distribution of the Tz is very close
to standard normal distribution under H1 as claimed in Theorem 4.1

4.3 Numerical studies

4.3.1 Choice of kn

According to Algorithm 6, we use the first kn = nτ data to obtain an initial estimate
of the optimal projection direction β? and update the estimate when new data
arrives. In order to obtain a good initial estimate of β?, a large value of kn is
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Figure 4.2: The distribution of test statistic Tz under H1. We set n = 160, ρ =
0.5 and consider p = 400, 1600. The upper two panels are the histograms for
autocorrelation structure and the lower two panels are the histograms for compound
symmetry structure. The red curves are the probability density function of standard
normal distribution.

preferred. However, the value of kn cannot be too large since the first kn data
points are discarded when we perform the online projection test. A large choice
of kn may lead to a significant loss in power. In this section, we examine how
the choice of kn or equivalently the choice of parameter τ affect the power of the
proposed online projection test. We consider kn = nτ with τ = (0.2, 0.25, . . . , 0.95).
We set (n, p, c) = (100, 1600, 0.25) and (40, 1600, 0.5) for both autocorrelation and
compound symmetry covariance matrix structures with ρ ∈ {0.25, 0.50, 0.75, 0.95}.
Figure 4.3 depicts the power against the choice of τ . The upper two panels are
the power for autocorrelation structure and the lower two panels are the power
for compound symmetry structure. Figure 4.3 shows that the power of the test
increases very slowly as τ increases and then drops quickly as τ further increases.
In other words, the power of the online projection test is not very sensitive to the
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choice of τ when τ is relatively small (τ ≤ 0.8). When kn is large, we perform the
online projection test only based on a dataset with a relatively small sample size
and expect to see some loss in power. In practice, we suggest choosing τ ∈ [0.4, 0.8]

and we simply set τ = 0.6 in the rest of this chapter.

Figure 4.3: Power of the online projection test against the choice of τ . We
set (n, p, c) = (100, 1600, 0.25) and (40, 1600, 0.5) for both autocorrelation and
compound symmetry covariance matrix structure with ρ ∈ {0.25, 0.50, 0.75, 0.95}.
The upper two panels are the power for autocorrelation structure and the lower
two panels are the power for compound symmetry structure.

4.3.2 Size and power comparison for multivariate normal dis-

tribution

In this section, we conduct numerical studies to examine the finite sample per-
formance of different tests for one-sample high-dimensional mean vector problem.
These methods include the proposed projection tests using the online framework,
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data splitting projectio tests, the sum-of-squares-type test, the maximum-type
test as well as the random projection test. We consider two methods to estimate
the optimal projection direction: the proposed sparse estimator using regularized
quadratic programming with linear constraint and the ridge-type estimator pro-
posed in Li et al. (2015). For ease of presentation, we use the following notations
to denote the proposed online projection tests.

• SOPT-O: Sparse Online Projection Test with One-by-one update. The
projection direction is estimated by regularized quadratic programming and
is updated according to Algorithm 6.

• SOPT-B: Sparse Online Projection Test with mini-Batch update. The pro-
jection direction is estimated by regularized quadratic programming and is
updated according to Algorithm 7. The batch size is set to be 10.

• ROPT-O: Ridge Online Projection Test with One-by-one update. The pro-
jection direction is estimated by the ridge estimator and is updated in a
one-by-one manner.

• ROPT-B: Ridge Online Projection Test with mini-Batch update. The pro-
jection direction is estimated by the ridge estimator and is updated in a
mini-batch manner.

• SPT-DS: Sparse Projection Test with Data Splitting. The projection direction
is estimated by regularized quadratic programming with data splitting.

• SPT-DS: Ridge Projection Test with Data Splitting. The projection direction
is estimated by the ridge estimator, i.e., the test proposed in Li et al. (2015).

The sum-of-squares-type tests include D1958 test (Dempster 1958), BS1996 test
(Bai and Saranadasa 1996), CQ2010 test (Chen and Qin 2010). Srivastava and Du
(2008) considered two versions of their test, one with modification and one without
modification, and we denote them by SD2008w and SD2008wo, respectively. The
maximum-type test we compare with is the one from Cai et al. (2014) without
data transformation. We also include two other projection tests L1996 test (Lauter
1996) and LWJ2011 test (Lopes et al. 2011).
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We generate a random sample of size n from N(cµ,Σ) with µ = (1>s ,0
>
p−s)

>

and s = 10. We set c = 0, 0.5 and 1 to examine the Type I error rate and the power
of these tests. For ρ ∈ (0, 1), we consider the following two covariance structures:

(1) Compound symmetry with Σ1 = (1− ρ)I + ρ11>.

(2) Autocorrelation with Σ2 = (ρ|i−j|)i,j.

We consider ρ = 0.25, 0.5, 0.75 and 0.95 to examine the influence of correlation on
the power of these tests. We set sample size n = 160, 40 and dimension p = 400, 1600.
For SOPT-O, SOPT-B, ROPT-O and ROPT-B, we set kn = bnτc with τ = 0.6,
where b·c is the rounding operator. For SPT-DS and RPT-DS, we split the data
set by setting n1 = bnτc with τ = 0.4. To this end, we replace sample covariance
matrix Σ̂ by Σ̂φ = Σ̂ + φIp with a small positive number φ =

√
log p/n. Such a

perturbation does not noticeably affect the computational accuracy of the final
solution and all the theoretical properties hold when φ ≤

√
log p/n. We set the

type I error rate α = 0.05 and use zα/2 as the critical value. All simulation results
are based on 10,000 independent replicates. Tables 4.1 and 4.2 summarize the type
I error rate and power for compound symmetry structure when n = 160 and n = 40,
respectively. Tables 4.3 and 4.4 summarize the type I error rate and power for
autocorrelation structure when n = 160 and n = 40, respectively. In order to obtain
a good estimate of β?, we assume the optimal projection direction β? is sparse.
When Σ = Σ1, the compound symmetry structure, Σ−1

1 is an approximately sparse
matrix in the sense that the off-diagonal entries are of order p−1 and are dominated
by its diagonal entires. The corresponding optimal projection correlation Σ−1µ

is also approximately sparse in the sense that the first s entries dominate the rest
entries. When Σ = Σ2, the autocorrelation structure, Σ−1 is a 3-sparse matrix,
meaning that only the diagonal and the first off-diagonal entries are nonzero, and
optimal projection direction Σ−1µ is sparse too.

We first examine the type I error rate. Among all these tests, SPT-DS, RPT-DS,
L1996 test and LJW2011 test are exact tests under the normality assumption and
thus control the type I error rate very well. All the sum-of-squares-type tests and
our proposed online projection tests (SOPT-O, SOPT-B, ROPT-O and ROPT-B)
have asymptotic normal distribution under H0. These online projection tests also
keep the type I error very well when n = 160 and may have slightly higher type
I error rate than 0.05 when n = 40. We also observe the same phenomenon for
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Table 4.1: Size and power comparison for N(cµ,Σ1) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 160, p = 400
SOPT-O 5.02 5.48 5.28 5.24 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SOPT-B 5.00 5.38 5.15 5.26 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-O 5.01 4.87 5.16 5.28 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-B 5.07 5.02 5.10 5.33 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SPT-DS 4.77 5.10 4.96 4.83 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RPT-DS 4.97 4.89 4.80 4.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

D1958 6.34 5.32 5.10 5.42 87.48 20.32 12.16 9.70 100.0 100.0 99.94 89.00
BS1996 5.64 5.24 5.32 5.98 81.46 20.16 12.64 10.60 100.0 100.0 99.98 92.76
CQ2010 5.64 5.24 5.32 5.98 81.44 20.16 12.64 10.60 100.0 100.0 99.98 92.80

SD2008w 2.49 0.68 0.09 0.01 33.48 2.46 0.45 0.08 100.0 73.10 4.11 0.64
SD2008wo 5.98 5.60 5.49 5.70 83.70 21.07 12.63 10.83 100.0 100.0 99.96 92.77

L1996 5.32 4.84 4.86 5.36 5.36 5.72 5.12 5.06 7.34 6.06 5.78 5.40
LJW2011 4.98 5.42 4.30 5.32 98.26 100.0 100.0 100.0 100.0 100.0 100.0 100.0
CLX2013 4.84 3.02 0.82 0.12 100.0 100.0 100.0 99.80 100.0 100.0 100.0 100.0

n = 160, p = 1600
SOPT-O 5.22 5.20 4.65 5.12 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SOPT-B 5.14 5.45 5.08 4.76 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-O 4.91 4.62 4.90 4.87 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-B 4.76 4.65 4.82 5.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SPT-DS 4.63 4.99 4.79 4.96 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RPT-DS 4.91 5.43 5.40 4.74 98.84 99.92 100.0 100.0 100.0 100.0 100.0 100.0

D1958 6.14 5.58 5.28 4.94 11.14 6.88 6.44 6.04 92.62 19.50 12.18 9.94
BS1996 5.46 5.54 5.56 5.38 10.02 6.76 6.84 6.46 87.52 19.44 12.94 10.64
CQ2010 5.46 5.54 5.54 5.38 10.02 6.78 6.82 6.46 87.54 19.44 12.96 10.64

SD2008w 1.56 0.22 0.00 0.01 2.71 0.22 0.03 0.00 17.53 0.58 0.03 0.01
SD2008wo 5.71 5.32 5.42 5.41 10.80 7.29 6.95 6.62 90.39 20.01 13.01 10.78

L1996. 5.30 5.26 5.18 4.92 4.98 4.44 5.18 5.26 5.26 5.36 5.46 5.42
LJW2011 5.24 5.80 5.08 5.32 34.28 56.34 91.70 100.0 98.26 99.94 100.0 100.0
CLX2013 5.64 3.04 0.80 0.12 100.0 100.0 99.94 99.44 100.0 100.0 100.0 100.0

D1958 test, BS1996 test, CQ2010 test and SD2008wo. All these tests tend to have
slightly higher type I error rate than the online projection tests. SD2008w does not
control the type I error well and is very sensitive to the correlation level ρ. The
maximum-type test CLX2013 test converges to a type I extreme-value distribution
under H0 and may suffer from a slower convergence rate. It turns out that CLX2013
test cannot control the type I error and is also sensitive to the correlation level ρ.
The type I error rate of CLX2013 test decreases as ρ increases and can be much
greater than the pre-specified level α when ρ is small. For example, the type I error
rate of CLX2013 test can be as large as 23.06% in the setting of autocorrelation
with (n, p) = (40, 1600).
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Table 4.2: Size and power comparison for N(cµ,Σ1) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400
SOPT-O 5.92 5.49 5.31 5.23 97.51 99.96 100.0 100.0 100.0 100.0 100.0 100.0
SOPT-B 5.71 5.73 5.61 5.73 91.38 98.46 99.89 99.99 100.0 100.0 100.0 100.0
ROPT-O 5.53 5.23 5.35 5.24 80.76 96.92 99.99 100.0 100.0 100.0 100.0 100.0
ROPT-B 5.41 5.81 5.04 5.54 66.37 85.71 98.65 100.0 99.98 99.95 100.0 100.0
SPT-DS 4.98 4.50 4.94 5.19 71.53 89.92 99.00 99.96 99.97 99.88 99.99 100.0
RPT-DS 5.16 4.47 4.88 4.90 50.22 70.74 94.04 100.0 98.61 99.53 100.0 100.0

D1958 6.36 5.74 5.20 4.96 13.14 8.10 6.86 6.28 81.56 23.18 13.56 10.60
BS1996 5.74 5.86 5.84 5.82 11.82 8.22 7.60 7.22 77.98 23.38 15.18 12.30
CQ2010 5.72 5.86 5.82 5.82 11.82 8.24 7.58 7.22 77.98 23.40 15.22 12.28

SD2008w 3.29 1.11 0.29 0.09 6.65 1.56 0.37 0.11 45.52 4.40 0.76 0.17
SD2008wo 7.63 6.96 6.47 6.22 15.24 9.77 8.17 7.47 86.63 27.57 16.20 12.74

L1996 4.70 4.76 4.74 4.72 4.74 4.66 4.52 4.54 5.06 4.66 4.48 4.50
LJW2011 4.90 4.34 4.88 4.92 14.66 20.02 42.06 98.36 55.18 74.68 95.92 100.0
CLX2013 11.94 6.18 2.06 0.28 88.08 76.62 59.42 40.26 100.0 100.0 100.0 99.74

n = 40, p = 1600
SOPT-O 5.70 5.83 5.07 5.11 90.35 99.70 100.0 100.0 100.0 100.0 100.0 100.0
SOPT-B 6.11 5.74 5.68 5.41 77.18 95.28 99.80 99.97 100.0 100.0 100.0 100.0
ROPT-O 5.20 5.03 5.27 5.05 15.82 28.90 82.01 100.0 97.97 99.79 99.99 100.0
ROPT-B 5.71 5.06 5.26 5.14 16.25 25.86 64.16 99.67 86.72 92.29 99.11 100.0
SPT-DS 5.22 4.99 5.21 5.08 50.43 79.97 98.51 99.98 99.92 99.94 99.99 100.0
RPT-DS 5.01 4.71 5.06 4.94 14.62 23.71 54.68 98.14 71.49 81.98 95.74 100.0

D1958 6.82 6.16 5.64 5.38 7.92 6.62 5.96 5.60 12.30 8.30 7.02 6.48
BS1996 6.08 6.20 6.22 6.22 7.28 6.72 6.58 6.50 11.18 8.46 7.70 7.34
CQ2010 6.02 6.14 6.14 6.12 7.30 6.62 6.54 6.46 11.18 8.46 7.58 7.32

SD2008w 2.29 0.56 0.11 0.01 2.50 0.58 0.12 0.01 4.06 0.72 0.14 0.01
SD2008wo 7.72 6.92 6.45 6.28 8.94 7.47 6.82 6.53 14.30 9.30 7.95 7.32

L1996 5.16 5.18 5.14 5.16 5.04 5.06 5.08 5.06 5.12 5.08 5.02 5.02
LJW2011 5.12 5.24 5.04 4.90 6.88 8.00 11.78 51.76 14.56 20.94 42.22 98.38
CLX2013 15.64 7.50 2.56 0.22 78.46 64.74 46.54 28.60 100.0 100.0 99.96 99.08

Next we compare the power of these tests. Tables 4.1 - 4.4 show that the power
of these tests strongly relies on the covariance structure as well as the values of ρ
and c. We first examine the 6 tests based on the optimal projection, i.e., SOPT-O,
SOPT-B, ROPT-O, ROPT-O, SPT-DS and RPT-DS. In summary, the one-by-one
online projection test is slightly more powerful than the mini-batch online projection
test and improves the power of data splitting projection test a lot. This is not
surprising since the one-by-one online projection test keeps updating the estimated
projection whenever a new data point arrives and thus in general has more accurate
estimation than the mini-batch version. The mini-batch projection test sacrifices
the accuracy a little bit to reduce the computation burden. The data splitting
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Table 4.3: Size and power comparison for N(cµ,Σ2) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 160, p = 400
SOPT-O 5.14 5.44 5.34 5.20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SOPT-B 5.38 5.30 5.20 4.77 100.0 100.0 99.99 100.0 100.0 100.0 100.0 100.0
ROPT-O 4.97 4.93 5.02 5.44 100.0 99.98 98.27 99.98 100.0 100.0 100.0 100.0
ROPT-B 5.05 5.20 5.20 4.98 100.0 99.97 98.09 99.94 100.0 100.0 100.0 100.0
SPT-DS 5.10 4.94 4.82 5.03 100.0 99.97 99.37 99.98 100.0 100.0 100.0 100.0
RPT-DS 5.33 4.68 5.03 5.16 99.99 99.43 89.97 96.04 100.0 100.0 100.0 100.0

D1958 5.20 5.24 4.92 5.40 100.0 100.0 99.98 85.90 100.0 100.0 100.0 100.0
BS1996 4.82 4.96 4.52 4.48 100.0 100.0 99.98 82.52 100.0 100.0 100.0 100.0
CQ2010 4.82 4.96 4.50 4.46 100.0 100.0 99.98 82.54 100.0 100.0 100.0 100.0

SD2008w 4.15 3.80 2.96 1.45 100.0 100.0 99.92 61.45 100.0 100.0 100.0 100.0
SD2008wo 5.97 5.85 5.53 5.04 100.0 100.0 99.95 84.16 100.0 100.0 100.0 100.0

L1996 5.12 4.84 4.46 5.78 57.58 36.30 19.24 7.32 93.70 73.74 39.54 11.26
LJW2011 5.00 5.02 5.84 4.96 89.76 86.02 80.22 98.60 100.0 100.0 100.0 100.0
CLX2013 5.72 5.90 5.30 2.38 100.0 100.0 100.0 99.98 100.0 100.0 100.0 100.0

n = 160, p = 1600
SOPT-O 5.51 5.35 5.41 5.21 100.0 100.0 99.94 99.99 100.0 100.0 100.0 100.0
SOPT-B 5.42 5.34 5.47 5.35 100.0 100.0 99.92 99.98 100.0 100.0 100.0 100.0
ROPT-O 5.24 5.53 4.84 5.13 99.94 98.80 84.90 70.08 100.0 100.0 100.0 100.0
ROPT-B 5.38 5.60 4.99 5.25 99.89 98.51 83.39 66.93 100.0 100.0 100.0 100.0
SPT-DS 4.85 5.04 4.92 4.79 100.0 99.94 97.61 93.27 100.0 100.0 100.0 100.0
RPT-DS 5.24 4.83 4.97 5.01 97.18 88.69 61.66 35.37 100.0 100.0 100.0 99.60

D1958 5.18 4.56 4.78 5.92 100.0 99.94 94.74 43.40 100.0 100.0 100.0 99.98
BS1996 5.52 4.72 4.90 4.82 100.0 99.80 91.82 35.86 100.0 100.0 100.0 99.98
CQ2010 5.52 4.70 4.90 4.84 100.0 99.80 91.82 35.84 100.0 100.0 100.0 99.98

SD2008w 4.10 3.73 2.99 1.74 99.99 99.72 91.28 22.26 100.0 100.0 100.0 99.87
SD2008wo 7.07 6.37 5.67 5.47 100.0 99.90 94.50 39.96 100.0 100.0 100.0 100.0

L1996 5.02 5.06 5.10 5.40 19.08 12.20 8.46 5.70 40.38 25.06 13.58 6.28
LJW2011 4.50 5.24 4.94 5.10 25.60 25.04 23.18 37.16 92.12 91.08 90.62 98.80
CLX2013 7.34 7.26 6.20 3.20 100.0 100.0 100.0 99.86 100.0 100.0 100.0 100.0

projection test is less powerful is because it discards too many data points comparing
to the online projection tests. Under the settings of compound symmetry and
autocorrelation, the optimal projection direction is sparse or approximately sparse,
thus the tests based on regularized quadratic programming are more powerful than
the tests using ridge-type estimators.

In the setting of Σ = Σ2, n = 40, c = 0.5, SD2008wo test and CLX2013 test
cannot control the type I error and their type I error rate can be as high as
20%. Thus their high power are not reliable. SOPT-O is the most powerful test
among those who have control on the type I error rate. In the setting of compound
symmetry, the power of tests based on the optimal projection increases as ρ increases
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Table 4.4: Size and power comparison for N(cµ,Σ2) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400
SOPT-O 5.82 5.88 5.73 6.09 91.05 77.42 54.81 43.46 100.0 100.0 100.0 100.0
SOPT-B 5.87 6.03 5.99 6.39 83.98 69.45 47.97 36.29 100.0 100.0 99.97 99.88
ROPT-O 5.70 6.36 6.07 6.04 73.80 55.54 33.10 22.50 100.0 100.0 99.02 95.32
ROPT-B 5.77 6.07 5.98 6.37 64.99 47.91 28.92 19.00 100.0 99.93 97.89 87.22
SPT-DS 5.18 5.19 5.26 4.78 61.15 50.17 36.46 27.19 100.0 99.99 99.67 97.72
RPT-DS 5.29 4.46 5.16 4.81 46.27 35.27 21.13 13.86 99.98 99.53 91.08 68.03

D1958 4.90 4.98 4.78 5.44 88.86 77.00 50.34 17.52 100.0 100.0 99.94 85.12
BS1996 5.16 4.64 4.66 4.72 83.98 69.96 43.02 14.66 100.0 100.0 99.86 82.12
CQ2010 5.24 4.68 4.62 4.70 84.00 69.96 43.02 14.82 100.0 100.0 99.84 81.98

SD2008w 6.91 5.66 3.84 1.92 89.91 75.60 43.69 7.14 100.0 100.0 99.84 60.80
SD2008wo 14.36 12.21 9.54 7.15 95.01 86.40 59.98 21.70 100.0 100.0 99.95 85.66

L1996 4.72 4.86 4.80 4.88 18.74 12.26 7.70 5.18 40.40 24.78 12.98 5.96
LJW2011 5.20 4.78 5.20 5.14 11.82 11.30 11.78 15.34 44.40 42.08 42.08 59.82
CLX2013 14.72 13.78 12.58 6.24 93.82 89.08 77.90 52.68 100.0 100.0 100.0 99.96

n = 40, p = 1600
SOPT-O 5.87 5.99 5.76 5.88 74.33 59.22 40.02 25.12 100.0 100.0 99.98 99.84
SOPT-B 5.48 5.90 6.06 5.98 63.21 49.59 32.92 20.84 100.0 100.0 99.87 98.33
ROPT-O 6.14 5.45 5.96 5.47 32.44 24.99 15.73 8.37 99.89 98.48 84.55 40.02
ROPT-B 5.95 5.74 6.27 5.49 27.08 21.14 13.53 7.44 99.37 96.33 77.47 32.85
SPT-DS 5.25 5.19 5.09 5.12 38.03 30.96 22.88 16.49 100.0 99.94 98.81 91.04
RPT-DS 4.61 4.95 5.30 4.92 17.85 14.57 9.55 6.10 94.90 84.59 58.09 22.43

D1958 5.28 5.36 5.34 5.18 49.08 38.84 24.40 11.12 100.0 99.98 94.56 42.64
BS1996 5.18 4.96 5.24 4.46 38.02 29.42 17.74 8.02 100.0 99.84 91.44 33.82
CQ2010 5.16 5.06 5.24 4.44 38.08 29.46 17.72 8.06 100.0 99.84 91.48 33.92

SD2008w 11.73 8.22 4.08 1.65 64.17 45.15 20.19 3.45 100.0 99.82 91.48 20.90
SD2008wo 32.71 25.60 16.07 9.19 85.92 71.63 45.15 15.73 100.0 99.98 98.15 51.92

L1996 4.90 4.66 5.20 5.10 8.70 6.42 5.94 5.14 14.64 9.48 6.98 5.36
LJW2011 4.86 4.98 5.16 4.90 6.34 6.30 6.60 6.86 11.88 12.16 11.52 13.36
CLX2013 23.06 22.64 19.72 10.06 87.86 81.14 69.82 44.96 100.0 100.0 100.0 99.76

when c = 0.5. As the value of c increases from 0.5 to 1, the power of the these tests
increases dramatically. As the dimension p increases, there is a downward trend for
these tests. However, even in the most challenging case (n, p, c) = (40, 1600, 0.5),
the proposed SOPT-O has power between 90% and 100%. The sum-of-squares-type
tests tend to become less powerful when ρ increases. This is because theses tests
ignore the correlation among the variables and therefore their overall performances
are not satisfactory. In the setting of autocorrelation, the power of all the tests
decrease as ρ increases. We notice that some of the sum-of-squares-type tests may
have more satisfactory performance than the data splitting projection tests when ρ
is small. This is because Σ−1

2 is a 3-sparse matrix and it does not hurt too much if
the dependences among variables are ignored. It is also observed that the power of
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Table 4.5: Size and power comparison for t6(cµ,Σ1) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 160, p = 400
SOPT-O 5.22 4.78 5.94 5.35 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SOPT-B 5.08 5.20 5.62 4.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-O 4.78 4.99 5.43 5.20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-O 4.81 4.92 5.51 5.28 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SPT-DS 4.65 4.77 5.00 5.14 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RPT-DS 5.03 5.06 4.72 4.96 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

D1958 5.56 5.49 5.05 5.24 36.56 13.47 9.03 8.00 99.95 98.63 65.71 34.93
BS1996 4.83 5.43 5.24 5.68 31.78 13.42 9.61 8.62 99.95 98.78 69.46 38.23
CQ2010 5.35 5.60 5.31 5.74 34.68 13.78 9.76 8.72 100.0 99.10 70.35 38.80

SD2008w 2.24 0.70 0.22 0.04 12.87 1.62 0.22 0.07 99.75 22.01 1.59 0.22
SD2008wo 5.21 5.57 5.34 5.71 35.33 14.04 9.76 8.63 100.0 99.00 71.08 38.39

L1996 4.68 5.16 5.00 5.16 5.58 5.50 5.11 5.03 6.70 5.58 5.77 5.08
LJW2011 4.40 4.13 4.45 4.42 95.01 99.50 100.0 100.0 100.0 100.0 100.0 100.0
CLX2013 4.38 2.66 1.07 0.17 100.0 99.91 99.01 94.66 100.0 100.0 100.0 100.0

n = 160, p = 1600
SOPT-O 5.11 4.92 4.83 4.96 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SOPT-B 5.14 5.19 5.06 4.94 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-O 4.92 4.77 4.61 4.76 99.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ROPT-B 4.74 4.75 4.61 4.80 99.92 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SPT-DS 5.19 4.82 4.98 4.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RPT-DS 5.05 4.59 4.80 4.41 95.94 99.61 100.0 100.0 100.0 100.0 100.0 100.0

D1958 5.64 5.25 5.28 5.14 8.93 6.67 5.62 5.87 37.23 13.27 8.74 7.52
BS1996 5.10 5.17 5.54 5.43 7.92 6.61 5.90 6.22 31.38 13.15 9.22 8.12
CQ2010 5.42 5.34 5.62 5.45 8.59 6.77 5.98 6.29 35.14 13.48 9.40 8.17

SD2008w 1.37 0.15 0.03 0.00 2.02 0.24 0.04 0.00 6.59 0.38 0.02 0.00
SD2008wo 5.46 5.42 5.63 5.42 8.59 6.85 5.98 6.23 35.82 13.75 9.43 8.16

L1996 5.11 4.84 5.18 5.11 5.20 5.11 4.73 5.20 5.07 4.93 5.00 4.45
LJW2011 4.44 4.35 4.27 4.14 27.76 45.62 85.50 100.0 94.92 99.58 99.99 100.0
CLX2013 4.41 2.08 0.71 0.09 99.99 99.60 97.52 90.55 100.0 100.0 100.0 100.0

these sum-of-squares-type tests decreases significantly as the correlation increases
and become less powerful than the data splitting projection tests when ρ = 0.95.

4.3.3 Size and power comparison for multivariate t-distribution

We also investigate the numerical performance of type I error and power of the
proposed online projection tests without the normality assumption. To this end,
we generate random samples from the multivariate t-distribution with degrees of
freedom 6. Again, we consider bothn compound symmetry and autocorrelation
covariance structures. We use the same critical values as those used with normality
assumption to examine the robustness of the online projection tests. Simulation
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Table 4.6: Size and power comparison for t6(cµ,Σ1) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400
SOPT-O 5.59 5.37 5.54 5.16 88.41 98.30 100.0 100.0 100.0 99.99 100.0 100.0
SOPT-B 5.89 5.62 5.52 5.30 78.57 94.22 99.50 99.96 100.0 99.97 100.0 100.0
ROPT-O 5.70 5.58 5.49 5.26 65.20 87.21 99.54 100.0 99.96 99.97 99.99 100.0
ROPT-B 6.03 5.63 5.42 5.40 52.33 73.24 95.99 99.97 99.59 99.75 99.98 100.0
SPT-DS 4.79 5.14 4.53 4.65 59.04 82.06 97.16 99.85 99.89 99.87 99.98 99.97
RPT-DS 5.02 5.10 4.59 4.78 38.22 58.97 88.91 99.96 96.86 98.47 99.93 100.0

D1958 5.25 5.57 5.34 5.12 8.42 6.86 6.22 5.88 38.68 14.42 9.83 8.23
BS1996 4.72 5.65 5.90 5.96 7.61 7.03 6.77 6.65 34.53 14.66 10.84 9.48
CQ2010 5.98 6.03 6.09 6.09 9.53 7.47 6.99 6.78 44.09 15.69 11.25 9.72

SD2008w 2.27 1.13 0.31 0.08 3.87 1.40 0.34 0.10 17.70 2.93 0.60 0.14
SD2008wo 6.18 6.57 6.27 6.05 9.97 8.06 7.21 6.72 48.77 17.70 11.66 9.67

L1996 4.90 4.90 4.87 4.87 5.16 5.01 4.91 4.86 5.29 5.16 5.07 4.98
LJW2011 4.24 4.42 4.34 4.20 12.17 17.69 35.17 96.12 47.07 65.95 92.81 100.0
CLX2013 9.61 5.44 2.04 0.34 68.31 54.94 39.89 24.08 99.98 99.81 98.70 94.09

n = 40, p = 1600
SOPT-O 5.81 5.39 5.18 4.89 75.58 95.94 99.90 100.0 100.0 100.0 100.0 100.0
SOPT-B 6.21 5.32 5.11 4.79 61.58 87.35 98.92 100.0 100.0 99.98 99.99 100.0
ROPT-O 4.93 4.79 4.75 5.74 12.71 22.99 67.67 99.95 89.86 96.65 99.74 100.0
ROPT-B 5.03 4.95 4.78 4.99 12.45 20.61 53.67 99.00 75.52 85.93 97.51 100.0
SPT-DS 5.28 5.09 4.83 4.62 40.44 69.29 95.49 99.97 99.82 99.83 99.99 99.99
RPT-DS 4.88 5.06 5.02 4.74 11.40 18.51 46.12 96.50 61.99 74.62 92.62 99.98

D1958 5.44 5.59 5.43 5.23 5.91 5.92 5.64 5.35 8.29 6.96 6.18 5.85
BS1996 4.92 5.75 5.93 5.98 5.45 6.03 6.09 6.12 7.48 7.13 6.82 6.65
CQ2010 6.16 6.19 6.18 6.13 6.75 6.44 6.31 6.28 9.42 7.57 7.12 6.89

SD2008w 1.19 0.43 0.05 0.02 1.34 0.43 0.05 0.02 1.89 0.53 0.05 0.02
SD2008wo 6.24 6.51 6.34 6.05 7.07 6.89 6.56 6.20 9.92 8.22 7.32 6.80

L1996 4.95 4.97 4.93 4.96 4.98 4.95 4.97 4.96 4.97 4.93 4.92 4.91
LJW2011 4.43 4.61 4.26 4.15 5.71 7.08 9.87 44.45 12.53 18.11 35.10 96.15
CLX2013 11.57 5.67 1.71 0.14 55.24 42.53 29.76 16.47 99.98 99.55 96.81 89.51

results are summarized in Tables 4.5 - 4.8, from which we observe that all the
online projection tests and the data splitting projection tests can retain the type I
error rate very well. This implies that these projection tests are not very sensitive
to the normality assumption. All other alternative tests except for the CQ2010
test fail to retain the type I error. The pattern of power is very similar to that of
multivariate normal setting. When the covariance matrix is compound symmetry,
the proposed SOPT-O is the most powerful test including those that cannot retain
the type I error. When the covariance matrix is autocorrelation structure, the
proposed SOPT-O is the most powerful one among those who can retain the type I
error rate.
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Table 4.7: Size and power comparison for t6(cµ,Σ2) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 160, p = 400
SOPT-O 4.89 5.37 5.26 5.13 99.99 99.99 99.59 100.0 100.0 100.0 100.0 100.0
SOPT-B 4.97 5.33 5.14 5.19 99.99 99.98 99.56 100.0 100.0 100.0 100.0 100.0
ROPT-O 4.95 5.27 5.54 5.40 100.0 99.51 92.75 99.31 100.0 100.0 100.0 100.0
ROPT-B 4.93 5.12 5.39 5.32 99.99 99.47 92.06 99.06 100.0 100.0 100.0 100.0
SPT-DS 4.68 4.94 4.29 4.69 100.0 99.58 94.11 99.66 100.0 100.0 99.98 100.0
RPT-DS 4.77 4.98 4.82 4.95 99.58 96.61 78.27 88.18 100.0 100.0 99.97 100.0

D1958 0.54 1.09 2.45 4.73 99.56 98.96 95.90 53.54 99.98 100.0 99.98 99.96
BS1996 0.28 0.56 1.75 3.87 99.36 98.61 94.01 48.96 99.98 100.0 99.98 99.95
CQ2010 4.77 4.80 4.91 4.53 100.0 99.96 97.68 52.31 100.0 100.0 100.0 99.99

SD2008w 0.21 0.35 1.04 1.27 99.31 98.38 91.41 26.90 99.99 100.0 99.98 99.78
DS2008wo 0.49 0.88 2.17 4.34 99.74 99.21 95.30 52.32 100.0 100.0 99.98 99.97

L1996 4.69 5.27 4.75 5.25 45.62 28.58 14.71 6.44 87.08 63.57 33.29 9.76
LJW2011 4.11 4.61 4.68 4.23 82.77 76.28 70.63 95.51 100.0 100.0 100.0 100.0
CLX2013 5.30 5.14 4.74 1.99 100.0 100.0 99.85 97.34 100.0 100.0 100.0 100.0

n = 160, p = 1600
SOPT-O 5.14 5.23 4.95 4.72 100.0 99.96 98.67 99.53 100.0 100.0 100.0 100.0
SOPT-B 5.48 5.17 5.13 4.73 100.0 99.94 98.37 99.17 100.0 100.0 100.0 100.0
ROPT-O 5.45 4.92 4.79 4.70 98.87 92.61 70.22 52.48 100.0 100.0 100.0 99.98
ROPT-B 5.28 4.93 5.21 5.03 98.72 91.84 68.45 49.92 100.0 100.0 100.0 99.99
SPT-DS 5.19 5.08 5.35 4.85 99.95 98.95 89.73 79.71 100.0 100.0 100.0 100.0
RPT-DS 5.19 4.68 4.39 4.81 88.97 75.32 45.68 27.00 100.0 100.0 99.90 97.5

D1958 0.00 0.04 0.49 3.10 43.79 40.97 33.62 17.27 99.68 99.66 99.56 96.05
BS1996 0.00 0.02 0.22 2.26 27.97 27.81 22.73 12.69 99.50 99.60 99.43 93.99
CQ2010 4.92 5.17 5.35 4.97 97.87 91.43 66.06 19.72 100.0 100.0 100.0 97.68

SD2008w 0.00 0.02 0.10 0.59 21.42 21.18 16.14 4.90 99.20 99.38 98.86 81.67
SD2008wo 0.00 0.05 0.42 3.00 41.38 39.18 31.28 15.92 99.85 99.84 99.73 94.36

L1996 4.97 5.09 5.55 4.95 15.09 10.91 7.08 5.33 34.25 21.43 11.64 5.99
LJW2011 4.46 4.24 4.48 4.45 20.00 19.15 19.03 30.21 84.88 83.68 83.38 96.87
CLX2013 5.87 5.93 5.38 2.53 99.99 99.97 99.73 95.36 100.0 100.0 100.0 100.0

4.3.4 Real data example

In this section, we apply the proposed sparse projection tests to a real dataset
of high resolution micro-computed tomography. This dataset contains the bone
density of 58 mice’s skull of three different genotypes (“T0A0”, “T0A1”, “T1A1”)
measured at different bone density levels in a genetic mutation study. For each
mouse, bone density is measured for 16 different areas of its skull. For each area,
bone volume is measured at density levels from 130 - 249. This dataset was collected
at Center for Quantitative X-Ray Imaging at the Pennsylvania State University.
See Percival et al. (2014) for a detailed description of protocols. In this empirical
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Table 4.8: Size and power comparison for t6(cµ,Σ2) (values are in percentage).

c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400
SOPT-O 6.19 5.82 6.00 5.74 76.39 62.21 42.33 31.76 100.0 99.97 99.66 99.52
SOPT-B 6.04 5.89 5.68 6.23 68.29 55.25 36.58 27.53 100.0 99.95 99.37 98.20
ROPT-O 6.00 5.90 6.02 5.87 57.47 43.44 25.83 18.85 99.98 99.61 94.46 84.48
ROPT-B 6.05 5.67 6.03 5.94 49.53 38.07 22.86 15.87 99.87 99.19 91.50 74.71
SPT-DS 4.74 4.44 4.81 5.19 46.94 38.23 27.23 19.02 99.95 99.52 96.50 91.21
RPT-DS 4.77 5.00 4.53 5.52 36.00 26.34 16.44 11.40 99.27 95.97 79.71 55.13

D1958 0.03 0.16 0.85 3.63 9.72 10.63 10.93 8.87 92.90 91.23 84.55 47.77
BS1996 0.01 0.06 0.51 3.20 5.43 6.92 7.71 7.76 90.47 88.62 80.54 43.69
CQ2010 5.04 4.89 4.73 4.73 57.67 44.93 27.18 10.75 99.99 99.82 96.78 53.52

SD2008w 0.02 0.04 0.30 0.99 6.14 6.69 6.11 2.94 89.35 86.42 75.20 24.96
SD2008wo 0.24 0.52 1.66 5.09 20.25 20.14 18.04 11.63 97.27 95.81 90.66 56.35

L1996 5.04 4.83 4.88 4.84 15.39 10.85 7.66 5.36 34.28 21.55 11.88 6.45
LJW2011 3.99 4.58 4.53 4.20 9.89 9.84 10.32 12.91 37.22 35.84 35.41 52.02
CLX2013 11.38 10.96 9.60 4.58 75.57 69.57 57.40 34.03 100.0 100.0 99.86 97.08

n = 40, p = 1600
SOPT-O 5.93 5.86 5.91 6.03 58.34 45.07 30.92 17.82 99.99 99.96 99.36 96.20
SOPT-B 5.46 5.82 6.02 6.24 48.12 36.98 26.30 16.15 99.99 99.90 98.59 91.16
ROPT-O 5.48 5.96 6.20 6.19 23.81 18.51 12.64 7.43 97.26 91.16 70.57 30.22
ROPT-B 5.54 5.52 5.81 5.82 20.15 16.04 11.49 7.24 94.57 85.87 63.29 25.07
SPT-DS 4.89 4.61 4.85 4.77 28.90 24.90 17.90 12.35 99.89 99.19 94.29 78.77
RPT-DS 5.24 4.58 5.08 5.37 13.82 11.03 8.69 5.40 83.00 69.65 44.60 17.05

D1958 0.00 0.00 0.02 1.28 0.01 0.01 0.15 2.25 6.76 7.62 8.96 9.62
BS1996 0.00 0.00 0.01 0.78 0.00 0.01 0.06 1.36 3.05 3.60 5.24 6.85
CQ2010 5.14 5.17 5.09 5.25 21.73 17.47 11.39 7.08 97.03 90.64 66.82 20.99

SD2008w 0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.18 1.31 1.82 2.21 1.66
SD2008wo 0.00 0.00 0.15 2.31 0.08 0.22 0.85 4.14 21.14 21.05 21.04 16.37

L1996 5.07 5.12 4.76 5.09 7.72 6.65 5.08 5.27 12.20 9.06 6.38 5.44
LJW2011 3.89 4.63 4.00 4.34 5.47 5.81 5.14 5.78 10.12 10.39 10.17 11.02
CLX2013 14.61 15.40 14.07 6.98 62.50 57.26 47.60 26.83 100.0 99.95 99.44 94.29

analysis, we are interested in comparing the bone density patterns of two different
areas in mice’s skull. We compare the performance of the proposed SOPT-O and
SPT-DS with several existing methods. To emphasize the high-dimensionality
nature of this dataset, we only use a subset of the dataset. We select the mice of
the genotype “T0A1” and there are 29 observations available in the dataset, i.e.,
sample size n = 29. The two areas of the skull “Mandible” and “Nasal” are selected.
We use all density levels from 130 - 249 for our analysis, hence dimension p = 120.
We first take the difference of the bone density of the selected two areas at the
corresponding density level for each subject since the two bones come from the
same mouse. Then we normalize the bone density in the sense that 1

29

∑29
i=1 X

2
ij = 1

for all 1 ≤ j ≤ 120.
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Table 4.9: P-values of different tests for bone density dataset.

δ 1.0 0.8 0.6 0.4 0.3 0.2

SOPT-O 0 0 4.6× 10−13 4.0× 10−10 1.6× 10−4 0.0325
SPT-DS 7.9× 10−10 6.7× 10−9 3.3× 10−7 9.9× 10−6 3.4× 10−4 0.0418
RPT-DS 2.4× 10−8 5.1× 10−7 1.9× 10−5 0.0014 0.0140 0.1462

D1958 9.0× 10−9 1.4× 10−6 1.7× 10−4 1.2× 10−2 0.0697 0.2705
BS1996 0 0 0 1.2× 10−4 0.0763 0.7684
CQ2010 0 0 0 1.6× 10−4 0.0810 0.7717

SD2008w 0 0 2.0× 10−9 1.6× 10−2 0.2494 0.7995
SD2008wo 0 0 0 6.9× 10−9 0.0056 0.5414

L1996 1.1× 10−10 3.1× 10−8 1.6× 10−3 0.1265 0.2625 0.4574
LJW2011 3.8× 10−9 4.2× 10−8 4.5× 10−6 8.5× 10−4 9.6× 10−3 0.2031
LCX2013 0 1.1× 10−14 6.4× 10−8 4.3× 10−3 0.1885 0.9651

We apply SOPT-O, SPT-DS and several other existing tests to perform the
one-sample test and compute the p-values. The p-values are reported in the firs row
in Table 4.9. The p-values of all methods are very small (� 0.05), implying that
the bone volume is significantly different. To compare the power of different tests,
we also compute the p-values of different tests as we decrease the signals. Let x̄ be
the sample mean and ri = xi − x̄ is the residual for the ith subject. Then a new
observation zi = δx̄ + ri is constructed for the ith subject. By the construction, a
smaller δ leads to a weaker signal and would make the test more challenging. Table
4.9 reports the p-values of all tests with δ = 1, 0.8, 0.6, 0.4, 0.3, 0.2. As expected,
the p-values all tests increase as δ decreases. When δ = 0.8 and 0.6, all the tests
perform well and reject the null hypothesis at level 0.05. When δ = 0.4, the Lauter’s
test starts to fail to reject the null hypothesis. When δ = 0.3, three projections
SOPT-O, SPT-DS and RPT-DS are able to reject the null hypothesis while all
other tests except the LJW2011 test fail to reject null hypothesis. When δ = 0.2,
only SOPT-O and SPT-DS reject the null hypothesis, which suggests that our
proposed projection tests can still perform well even though the signal is weak.
Among those tests that fail to reject the null hypothesis at δ = 0.2, RPT-DS has
the smallest p-value.

We plot the histogram of absolute values of paired sample correlations among all
bone density levels in Figure 4.4. The histogram indicates that some bone density
levels are highly correlated. This may explain why the proposed projection tests
are more powerful than the D1958 test, the BS1996 test test and SD2008w test
since these tests do not take the dependence among variables into account.
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Figure 4.4: Histogram of absolute values of paired sample correlations among bone
densities at all different bone density levels.

4.4 Proofs

Proof of Theorem 4.1
(i) Define x̃t = xt − µ, thus zt = x̃>t β̂t−1 and let mn = n − kn. Since kn =

nτ = o(n), we have mn/n→ 1. By the construction, we know that {zkn+1, . . . , zn}
is a martingale difference. According to the central limit theorem for martingale
difference in Lemma D.1, we need to show (1) 1

mn

∑n
t=kn+1 z

2
t → σ2 for some σ > 0

and (2) 1√
mn

E(maxkn+1≤t≤n |zt|)→ 0. Note that
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1

mn

n∑
t=kn+1

z2
t =

1

mn

n∑
t=kn+1

(x̃>t β̂t−1)2

=
1

mn

n∑
t=kn+1

(
x̃>t β̂t−1 − x̃>t β

? + x̃>t β
?
)2

=
1

mn

n∑
t=kn+1

[
x̃>t (β̂t−1 − β?)

]2

︸ ︷︷ ︸
1

+
2

mn

n∑
t=kn+1

(
x̃>t β

?
) [

x̃>t (β̂t−1 − β?)
]

︸ ︷︷ ︸
2

+

β?>

[
1

mn

n∑
t=kn+1̃

xtx̃
>
t

]
β?︸ ︷︷ ︸

3

We first deal with term 3 . Let

Σ̃ =
1

mn

n∑
t=kn+1

x̃tx̃
>
t =

1

mn

n∑
t=kn+1

(xt − µ)(xt − µ)>.

Since xt is sub-Gaussian, by Lemma 4.3 we have ‖Σ̃−Σ‖∞ ≤M2

√
log p/mn for

some M2 > 0 with high probability. Therefore

3 = β?>(Σ̃−Σ)β? + β?>Σβ? ≤M2

√
log p

mn

‖β?‖2
2 +

1

µ>Σ−1µ

≤ C2
2M2s

√
log p

mn

+
1

µ>Σ−1µ
.

The last inequality is because of the assumptions ‖β?‖0 = s and ‖β?‖∞ ≤ C2.
Since s

√
log p/mn ' s

√
log p/n = o(1), we have 3 → (µ>Σ−1µ)−1 > 0. Now

we deal with term 1 . Since x̃t is sub-Gaussian, we know ‖x̃t‖∞ ≤ M1

√
log p for

some M1 > 0 with high probability. From the result of Theorem 3.3, we have
‖β̂t−1 − β?‖1 = O

(
s2

κ

√
log p
t−1

)
for t = kn + 1, . . . , n. With the choice kn = nτ , we
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further have ‖β̂t−1 − β?‖1 = O

(
s2

κ

√
log p
nτ

)
. As a result,

x̃>t (β̂t−1 − β?) ≤ ‖x̃t‖∞‖β̂t−1 − β?‖1 = O

(
s2 log p

κnτ/2

)
= o(1),

implying that 1 → 0. As for term 2 , note that

x̃>t β
? ≤ ‖x̃t‖∞‖β?‖1 ≤M1C2s

√
log p.

Hence we have

2 =
1

mn

n∑
t=kn+1̃

x>t β
? ·O

(
s2 log p

κnτ/2

)
= O

(
s3(log p)3/2

κnτ/2

)
= o(1).

Combine 1 , 2 and 3 , we have

1

mn

n∑
t=kn+1

z2
t =

1

mn

n∑
t=kn+1

(x̃>t β̂t−1)2 → 1

µ>Σ−1µ
.

We next show 1√
mn

E(maxkn+1≤t≤n |zt|)→ 0. Note that

1
√
mn

E
(

max
kn+1≤t≤n

|zt|
)

=
1
√
mn

E
(

max
kn+1≤t≤n

|β̂
>
t−1x̃t|

)
≤ 1
√
mn

E
(

max
kn+1≤t≤n

|β?>x̃t|
)

+
1
√
mn

E
(

max
kn+1≤t≤n

|(β̂t−1 − β?)>x̃t|
)

Since x̃t is a sub-Gaussian random vector with variance proxy σ2, then β?>x̃t is also
a sub-Gaussian random variable with variance proxy ‖β?‖2

2σ
2, which is bounded

by sC2
2σ

2. From Lemma B.1, we know that

1
√
mn

E
(

max
kn+1≤t≤n

|β?>x̃t|
)
≤ σ‖β?‖2

√
2 log(2mn)

mn

= O

(√
s log n

n

)
→ 0. (4.7)

From the result of Theorem 3.3, we have ‖β̂t−1 − β?‖2
2 = O

(
s3 log p
κ2nτ

)
. Again by
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Lemma B.1, we have

1√
m
E
(

max
1≤i≤n

|(β̂t−1 − β?)>xt|
)

= O

(
s3 log p

κ2nτ

√
log n

n

)
→ 0. (4.8)

Combine (4.7) and (4.8), we know 1√
mn

E(maxkn+1≤t≤n |zt|) → 0. According to
Lemma D.1, we conclude √

n− nτ z̄
sz

→ N(0, 1).

(ii) We derive the power function for the proposed test statistic Ty. We first
show s2

y and s2
z are asymptotically equivalent. By definition, we have

s2
y − s2

z =
1

mn

n∑
t=kn+1

y2
t − ȳ2 − s2

z

=
1

mn

n∑
t=kn+1

(x>t β̂t−1)2 − ȳ2 − s2
z

=
1

mn

n∑
t=kn+1

((xt − µ)>β̂t−1 + µ>β̂t−1)2 − ȳ2 − s2
z

=
1

mn

n∑
t=kn+1

(µ>β̂t−1)2 − ȳ2

︸ ︷︷ ︸
4

+
2

mn

n∑
t=kn+1

β̂
>
t−1µ(xt − µ)>β̂t−1︸ ︷︷ ︸

5

.

We will show both of the terms 4 and 5 converge to 0 in probability. Before we
show 4 → 0, wee first show ȳ → 1. Note that µ>β? = 1, we have

ȳ − 1 =
1

mn

n∑
t=kn+1

yt − µ>β?

=
1

mn

n∑
t=kn+1

x>t β̂t−1 − µ>β?

=
1

mn

n∑
t=kn+1

(xt − µ)>β̂t−1 +
1

mn

n∑
t=kn+1

µ>(β̂t−1 − β?).

(4.9)
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For the second term of the right hand side of (4.9), we have

1

mn

n∑
t=kn+1

µ>(β̂t−1 − β?) ≤
1

mn

n∑
t=kn+1

‖µ‖∞‖β̂t−1 − β?‖1

= O

(
‖µ‖∞s2

√
log p

nτ

)
→ 0.

(4.10)

Let x̄mn = 1
mn

∑n
t=kn+1 xt, then the first term of the right hand side of (4.9) can be

written as

1

mn

n∑
t=kn+1

(xt − µ)>β̂t−1

=
1

mn

n∑
t=kn+1

(xt − µ)>(β̂t−1 − β?) +
1

mn

n∑
t=kn+1

(xt − µ)>β?

=
1

mn

n∑
t=kn+1

(xt − µ)>(β̂t−1 − β?) + (x̄mn − µ)>β?

≤ 1

mn

n∑
t=kn+1

‖xt − µ‖∞‖β̂t−1 − β?‖1 + ‖x̄mn − µ‖∞‖β?‖1

=O

(
s2 log p

nτ/2

)
+O

(
s

√
log p

mn

)
→ 0.

(4.11)

The last equality is due to the fact the xt and x̄mn are sub-Gaussian random vectors

and ‖β̂t−1 − β?‖1 = O

(
s2
√

log p
nτ

)
. Combine (4.9), (4.10) and (4.11), we have

ȳ − 1 → 0 and hence ȳ2 → 1. In order to show 4 → 0, it suffices to show that
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1
mn

∑n
t=kn+1

(
µ>β̂t−1

)2

→ 1. To see this,

1

mn

n∑
t=kn+1

(
µ>β̂t−1

)2

=
1

mn

n∑
t=kn+1

(
µ>(β̂t−1 − β?)− 1

)2

=
1

mn

n∑
t=kn+1

(
µ>(β̂t−1 − β?)

)2

− 2

mn

n∑
t=kn+1

µ>(β̂t−1 − β?) + 1

≤ 1

mn

n∑
t=kn+1

(
‖µ‖∞‖β̂t−1 − β?‖1

)2

− 2

mn

n∑
t=kn+1

‖µ‖∞‖β̂t−1 − β?‖1 + 1

=1 + o(1).

The last equality is due to

µ>(β̂t−1 − β?) ≤ ‖µ‖∞‖β̂t−1 − β?‖1 = O

(
‖µ‖∞s2

√
log p

nτ

)
→ 0. (4.12)

Thus we have 4 → 0. Now we deal with term 5 , which can be rewritten as

5 =
2

mn

n∑
t=kn+1

{
(β̂t−1 − β?)>µ(xt − µ)>β̂t−1 + (xt − µ)>β̂t−1

}
=

2

mn

n∑
t=kn+1

{
(β̂t−1 − β?)>µ+ 1)(xt − µ)>β̂t−1

}
According to (4.12) and (4.11), we know that

5 =
2

mn

n∑
t=kn+1

{
(o(1) + 1)(xt − µ)>β̂t−1

}
→ 0.

As a result, we have s2
y/s

2
z → 1 and hence

√
mnz̄

sy
→ N(0, 1) and sy →

1

µ>Σ−1µ
.

Note that ȳ − z̄ = 1
mn

∑n
t=kn+1µ

>β̂t−1, (4.12) also implies that ȳ − z̄ = 1 + o(1).
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Therefore, we have

P(|Ty| ≥ zα/2) = P
(∣∣∣∣√mnȳ

sy

∣∣∣∣ ≥ zα/2

)
= P

(√
mnȳ

sy
≥ zα/2

)
+ P

(√
mnȳ

sy
≤ −zα/2

)
' P

(√
mnz̄

sz
≥ zα/2 −

√
mn

sz

)
' P

(√
mnz̄

sz
≥ zα/2 −

√
nµ>Σ−1µ

)
= Φ(

√
nµ>Σ−1µ− zα/2),

where Φ(·) is the cumulative distribution function of standard normal.
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Chapter 5 |
Model Free Feature Screen-
ing via Projection Correlation

5.1 Introduction

The technological development has made the data collection and storage easy and
cheap in diverse fields. Datasets with ultra-high dimensional features characterize
many contemporary research problems in computational neuroscience, machine
learning, statistics, engineering, social science, finance and so on. When the features
contain redundant or noisy information, estimating their functional relationship with
the response can become quite challenging in terms of computational expediency,
statistical accuracy and algorithmic stability (Fan et al. 2009). To overcome such
challenges caused by ultra-high dimensionality, Fan and Lv (2008) proposed a
sure independence screening (SIS) method which aims to screen out the redundant
features by ranking their marginal Pearson correlations. The SIS method is named
after the sure independence screening property which states the selected subset of
features contains all the active ones with probability approaching one. The promising
numerical performance soon made SIS popular among ultra-high dimensional studies.
The sure screening idea has be applied to many important regression problems
including generalized linear model (Fan and Song 2010), multi-index semi-parametric
models (Zhu et al. 2011), nonparametric models (Fan et al. 2011, Liu et al. 2014)
and quantile regression (He et al. 2013, Wu and Yin 2015) among others.

The idea of screening is to deliver a computationally efficient way to reduce
the dimensionality of the feature space from a very high scale to a moderate
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one. The researchers will then benefit both computationally and statistically from
learning the data in a much reduced feature space. Besides the sure screening
property, we argue an appealing screening method should satisfy the following two
properties. First, the screening method should be model free which means it can
be implemented without specifying a regression model. In ultra-high dimensional
regime, it is challenging if not impossible to specify a correct regression model
with existence of the huge number of redundant features. Hence the model free
property is desired as it guarantees the effectiveness of the screening method in
the presence of model mis-specification. The model free screening method becomes
a hot research topic in recent years, see (Zhu et al. 2011, Li et al. 2012, Mai and
Zou 2015, He et al. 2013, Cui et al. 2015) and the references therein. The second
property is data adaptive which means the screening method should be insensitive
to the assumptions like independence, sub-Gaussianity and uni-variate response.
Such assumptions are usually not realistic in ultra-high dimensional applications.
Even when the assumptions are satisfied on the population level, they can be easily
violated in the realized sample simply due to ultra-high dimensionality. Therefore
the screening method which is sensitive to such assumptions may perform poorly in
real applications. The data adaptive screening method also draws certain amount
of attention recently. He et al. (2013), Wu and Yin (2015) and Ma et al. (2017)
among others considered quantile based screening which adapts to heavy-tailed
data. Wang (2012) and Fan, Ke and Wang (2016) developed screening methods for
strongly correlated features.

Unfortunately, none of the aforementioned screening methods enjoy sure screen-
ing, model free and data adaptive properties simultaneously. For example, the SIS
is tailored to the linear regression and depends on the Gaussian assumption. Li
et al. (2012) developed a sure independence screening procedure based on the dis-
tance correlation which is model free. However its sure screening property requires
sub-exponential assumptions for features and response. The Kolmogorov distance
based screening method proposed in Mai and Zou (2012) is robust against heavy
tailed data but only works for binary classification problems. Pan et al. (2016)
proposed a pairwise sure screening procedure for linear discriminant analysis which
requires balanced categories and is sensitive to the tail behavior of the features.

In this chapter, we propose a model free and data adaptive feature screening
method. The proposed method is based on ranking the projection correlations
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between features and the response. The projection correlation, proposed by Zhu
et al. (2017), is a measure of dependence between two random vectors which
enjoys several nice probability properties. Assume that two random vectors have
continuous joint and marginal densities, the projection correlation equals zero if
and only if the two random vectors are independent and is invariant to orthogonal
transformations. The proposed screening procedure does not require specifying any
regression model and is insensitive to the moment conditions of the dataset. As
the projection correlation is dimension free to both random vectors, the proposed
screening method can be applied to grouped features and multivariate response.
For instance, we can find a parsimonious set of features that are jointly dependent
with multivariate response. The theoretical analysis demonstrates the proposed
method enjoys not only the sure screening property but also a stronger result called
rank consistency property. The only condition required is a minimum signal gap
between active and inactive features. The extensive simulated experiments show the
proposed method wins the horse racing against its competitors on various scenarios.

The rest of chpater is organized as follows. The Section 5.2 introduces the
projection correlation and its properties. We study the sample projection correlation
and demonstrate its non-asymptotic properties. In Section 5.3, we propose a
screening procedure based on the projection correlation. We show the proposed
screening method satisfies sure screening and rank consistency properties under
very mild conditions. The Section 5.4 provides various simulated experiments to
assess the performance of the proposed screening procedure. The Section 5.5 further
demonstrates the proposed screening method by a real data example.

5.2 Projection correlation

To begin with, we give some background on the projection correlation and its
properties introduced in Zhu et al. (2017) to pave the way for the proposed
screening procedure. Let x ∈ Rp and y ∈ Rq be two random vectors. The
projection correlation is elicited by the following independence testing problem.

H0 : x and y are independent versus H1 : otherwise.
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The null hypothesis holds if and only if U = αTx and V = βTy are independent
for all unit vectors α and β. Let FU,V (u, v) be the joint distribution of (U, V ), and
let FU(u) and FV (v) be the marginal distributions of U and V . We can define the
squared projection covariance as follows

Pcov(x,y)2 =

∫∫∫
(FU,V (u, v)− FU(u)FV (v))2 dFU,V (u, v) dα dβ

=

∫∫∫
Cov2{I(αTx ≤ u), I(βTy ≤ v)} dFU,V (u, v) dα dβ,

(5.1)

where I(·) is the indicator function and Cov(·, ·) is the Pearson covariance. Fur-
thermore, we define the projection correlation between x and y as the square root
of

PC(x,y)2 =
Pcov(x,y)2

Pcov(x,x)Pcov(y,y)
, (5.2)

and we follow the convention 0/0 = 0. In general 0 ≤ PC(x,y) ≤ 1, testing whether
x and y are independent amounts testing whether PC(x,y) = 0. The following
lemma in Zhu et al. (2017) presents some appealing properties of the projection
correlation at the population level.

Lemma 5.1. Let (x,y) belong to the class of random vectors with continuous joint
and marginal probability densities. Then we have

(1) PC(x,y) = 0 if and only if x and y are independent.

(2) PC(x,x) = 0 if and only if x = E(x) almost surely.

(3) Let D1 ∈ Rp×p and D2 ∈ Rq×q be two orthonormal matrices, a1 ∈ Rp and
a2 ∈ Rq be two vectors, and b1 and b2 be two scalars. Then PC(x,y) =

PC(a1 + b1D1x, a2 + b2D2y).

Remark. The first two properties state that the projection correlation is a measure
of dependence between two random vectors. The third one indicates the projection
correlation is invariant with respect to orthogonal transformations. The first
property in Lemma 5.1 does not hold in general without the assumption that (x,y)

is jointly and marginally continuous random vectors. Hoeffding (1948) constructed
a counterexample in which x and y are two dependent discrete random variables
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but PC(x,y) = 0. However, our numerical results show that the PC may still work
well and serve the purpose of screening when the response is discrete.

Zhu et al. (2017) gives an explicit formula for the squared projection covariance
in (5.1). Let (x1,y1), . . . , (x5,y5) be 5 independent random copies of (x,y), then

Pcov(x,y)2 =S1 + S2 − 2S3

=E

[
arccos

{(x1 − x3)T(x4 − x3)

‖x1 − x3‖‖x4 − x3‖

}
arccos

{(y1 − y3)T(y4 − y3)

‖y1 − y3‖‖y4 − y3‖

}]
+E

[
arccos

{(x1 − x3)T(x4 − x3)

‖x1 − x3‖‖x4 − x3‖

}
arccos

{(y2 − y3)T(y5 − y3)

‖y2 − y3‖‖y5 − y3‖

}]
−2E

[
arccos

{(x1 − x3)T(x4 − x3)

‖x1 − x3‖‖x4 − x3‖

}
arccos

{(y2 − y3)T(y4 − y3)

‖y2 − y3‖‖y4 − y3‖

}]
,

(5.3)
where S1, S2 and S3 are defined in an obvious manner and ‖ · ‖ represents the L2

Euclidean norm. Equation (5.3) shows that the projection covariance only depends
on the vectors through (xk − xl)/‖xk − xl‖ and (yk − yl)/‖yk − yl‖ whose second
moments are unity. This gives us the intuition that the projection covariance is
free of the moment conditions on (x,y) which are usually required by some other
measurements, such as distance correlation (Li et al. 2012).

Let X = (x1, . . . ,xn)T and Y = (x1, . . . ,yn)T be an observed sample of
(x,y). Equation (5.3) leads to a straightforward empirical estimate of Pcov(x,y)2

based on U -statistic, yet it is difficult to calculate (Székely and Rizzo 2010). An
equivalent form of the U -statistic is given in Zhu et al. (2017). In particular, the
sample projection variance and covariance of X and Y can be calculated as

P̂cov(X,Y) =

{
n−3

n∑
k,l,r=1

AklrBklr

}1/2

,

P̂cov(X,X) =

{
n−3

n∑
k,l,r=1

A2
klr

}1/2

, and

P̂cov(Y,Y) =

{
n−3

n∑
k,l,r=1

B2
klr

}1/2

,

(5.4)
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where for k, l, r = 1, · · · , n,

aklr = arccos

{
(xk − xr)

T(xl − xr)

‖xk − xr‖‖xl − xr‖

}
, aklr = 0 if k = r or l = r,

āk·r = n−1

n∑
l=1

aklr, ā·lr = n−1

n∑
k=1

aklr, ā··r = n−2

n∑
k=1

n∑
l=1

aklr,

Aklr = aklr − āk·r − ā·lr + ā··r,

bklr = arccos

{
(yk − yr)

T(yl − yr)

‖yk − yr‖‖yl − yr‖

}
, bklr = 0 if k = r or l = r,

b̄k·r = n−1

n∑
l=1

bklr, b̄·lr = n−1

n∑
k=1

bklr, b̄··r = n−2

n∑
k=1

n∑
l=1

bklr,

Bklr = bklr − b̄k·r − b̄·lr + b̄··r.

Then the sample projection correlation between X and Y is defined as the square
root of

P̂C(X,Y)2 =
P̂cov(X,Y)2

P̂cov(X,X)P̂cov(Y,Y)
. (5.5)

Based on (5.4), the sample projection correlation can be computed in O(n3).
We first provide exponential-type deviation inequalities for sample projection

covariance and correlation.

Theorem 5.1. For any 0 < ε < 1, as long as n ≥ 10π2/ε, there exists positive
constants c1 and c2, such that

Pr
{
|P̂cov(X,Y)2 − Pcov(x,y)2| > ε

}
≤ c1 exp{−c2nε

2},

and
Pr
{
|P̂C(X,Y)2 − PC(x,y)2| > ε

}
≤ 5c1 exp{−c2σnε

2},

where σ = min{σ3
xσ

3
y/4M

4, σ2
xσ

2
y/4M

4, σxσy/4}, σx = Pcov(x,x)2, σy = Pcov(y,y)2

and M = (2π)2.

The proof of Theorem 5.1 is based on an exponential-type deviation inequality
for U -statistic and can be found in Section 5.6. The above exponential-type
inequalities do not depend on the dimensionality and moment conditions of both
random vectors. The exception probability decays exponentially with sample size
n which guarantees good finite sample performance of the proposed estimators.
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5.3 A model free feature screening procedure

In the section, we propose a model free screening procedure utilizing the nice proper-
ties of projection correlation. Let y = (Y1, . . . , Yq)

T be vector of q response variables
and x = (X1, . . . , Xp)

T be a vector of p features. To avoid the trivial discussion, we
restrict ourselves to the random designed case, i.e. min1≤k≤p Pcov(Xk, Xk)

2 ≥ σ2

and min1≤k≤q Pcov(Yk, Yk)
2 ≥ σ2 for some σ > 0.

Denote by F (y|x) the conditional distribution function of y given x. Without
specifying any regression model on y and x, we define the index set of active
features by

A = {k : F (y|x) functionally depends on Xk, k = 1, . . . , p}.

The number of active features is s = |A|, where |A| denotes the the cardinality of A.
The features that do not belong to A are called inactive features. We use Ac, the
complement of A, to denote the index set of all inactive features. The above setting
abstracts a large number of sparse regression problems including linear model,
generalized linear model, additive model, semi-parametric model, non-linear model
and so on. In addition, it allows multivariate response and grouped predictor.

In practice, one observes a random sample {(xi,yi)}, i = 1, . . . , n of (x,y)

and let X = (x1, . . . ,xn)T and Y = (x1, . . . ,yn)T. In ultra-high dimensional
regime, it is natural to assume that the number of features p greatly exceeds the
sample size n but the number of active features s is smaller than n. For a given
feature Xk, k = 1, . . . , p, a sufficient condition for Xk to be an inactive feature is
the independence between Xk and y. This intuition together with Theorem 5.1
encourages us to screen out the features whose projection correlations with y are
small. As a result, we select a set contains active features as follows

Â(δ) = {k : P̂C(Xk,Y) ≥ δ, 1 ≤ k ≤ p},

where δ is a pre-specified threshold value, Xk is the kth column of X. With a
proper choice of δ, we show that the proposed feature screening procedure enjoys
the sure screening property, which states that with probability approaching to 1,
all active features are selected in Â(δ). We first impose the following minimum
signal strength type conditions.
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Condition 1 (Minimum signal strength)
Denote ωk ≡ PC(Xk,y)2 the population squared projection correlation between

the kth feature and the response.

(a) For some c3 > 0 and 0 ≤ κ < 1/2, mink∈A ωk ≥ 2c3n
−κ.

(b) For some c3 > 0 and 0 ≤ κ < 1/2, mink∈A ωk −maxk∈Ac ωk > 2c3n
−κ.

Remark. The Condition 1 (a) is a minimum signal strength condition that assumes
the squared projection correlations between the active features and response should
be uniformly lower bounded and do not converge to zero too fast as n diverges.
The Condition 1 (b) puts an assumption on the gap of signal strength between
active and inactive features. Condition 1 (a) is implied by Condition 1 (b) since ωk
is always non-negative.

The following two theorems state the sure screening property and rank consis-
tency property of the proposed screening procedure. We refer the proposed feature
screening procedure as PC-SIS.

Theorem 5.2 (Sure screening property). Under Condition 1 (a), choose δ ≤
mink∈A ωk/2, then we have

Pr
(
A ⊆ Â(δ)

)
≥ 1−O

(
s exp{−c4nδ

2}
)
, (5.6)

where c4 is a positive constant.

Remark. In Theorem 5.2, if we set δ = c3n
−κ, which satisfies the condition

δ ≤ mink∈A ωk/2, then we have

Pr
(
A ⊆ Â(δ)

)
≥ 1−O(s exp{−c2

3c4n
1−2κ}). (5.7)

From equation (5.7), we know that with the choice δ = c3n
−κ, all active features

are selected with probability approaching to 1 as n → ∞. In fact, any choice of
δ ≤ c3n

−κ leads to the sure screening property. With the same choice of δ = c3n
−κ,

Li et al. (2012) showed that the distance correlation based screening method
(DC-SIS) satisfies

Pr
(
A ⊆ Â(δ)

)
≥ 1−O(s exp{−c′4n1−2(κ+η)}+ n exp{−c′′4nη}),
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where c′4, c′′4 and η are positive constants. Our PC-SIS achieves a faster rate since
it does not have the extra second term n exp{−c′′4nη} and the extra η in the power
of the first term. The faster rate of PC-SIS is due to the fact that projection
correlation does not require the existence of any moments.

Theorem 5.3 (Rank consistency property). Under Condition 1 (b), we have

Pr

(
min
k∈A

ω̂k −max
k∈Ac

ω̂k > 0

)
> 1−O(p exp{−c5n

1−2κ}),

where c5 is some positive constant. If log p = o(n1−2κ) with 0 ≤ κ < 1/2, then we
have

lim infn→∞

(
min
k∈A

ω̂k −max
k∈Ac

ω̂k

)
> 0, almost surely.

Remark. The rank consistency in Theorem 5.3 is a stronger result than sure
screening property. When the signal gap between active and inactive features
satisfies Condition 1 (b), the active features are always ranked ahead of the inactive
ones with high probability. In other words, there exists a choice of δ on the solution
path that can perfectly separate the active and inactive sets with high probability.

5.4 Simulated experiments

In this section, we asses the finite sample performance of the proposed projection
correlation based feature screening procedure and compare it with sure independence
screening (Fan and Lv 2008), distance correlation based screening (Li et al. 2012)
and the bias-corrected distance correlation based screening (Székely and Rizzo 2014)
under various scenarios. We denote our method by PC-SIS and the competitors
by SIS, DC-SIS and bcDC-SIS respectively. In the following regression models,
we set n = 100 and p = 5000, 10000 to mimic the ultra-high dimensional setting.
For each scenario, we repeat 200 replications. For each replication, we rank the
features in descending order by the above four screening criteria and record the
minimum model size that contains all active features. The screening performance
is measured by the 5%, 25%, 50%, 75%, 95% quantiles of the minimum model size
of each screening method. Throughout this section, we denote Σ = (σij)p×p, where
σij = 0.5|i−j|.
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5.4.1 Linear and generalized linear model

Consider the following linear model

Y = xTβ + ε,

where β = (1T
5 ,0

T
p−5)T. We generate covariates x = (X1, . . . , Xp)

T and ε from the
following 4 scenarios.

Model 1.a: x ∼ N(0,Σ) and ε ∼ N(0, 1).

Model 1.b: x ∼ N(0,Σ) and ε ∼ Cauchy(0, 1).

Model 1.c: u ∼ Cauchy(0, I), x = Σ1/2u and ε ∼ N(0, 1).

Model 1.d: u ∼ Cauchy(0, I), x = Σ1/2u and ε ∼ Cauchy(0, 1).

Cauchy(0, 1) stands for the standard Cauchy distribution. The Cauchy distribution
is a heavy-tailed distribution and does not have any finite moment. In Model 1.a,
both covariates and error are normally distributed and no heavy-tailed distribution
is involved. In Models 1.b - 1.d, at least one of x and ε is a heavy-tailed distribution,
i.e., Cauchy distribution, making the task of feature screening more challenging.
We also consider the following two generalized linear models

Model 1.e: Y = exp{xTβ}+ ε, where ε ∼ N(0, 1).

Model 1.f: (Poisson regression) Y ∼ Poisson(exp{xTβ}).

We generate x from N(0,Σ) and set β = (2T
5 ,0

T
p−5)T. Model 1.e is the well known

Poisson regression model in which the response Y is the count data. The difference
between Model 1.e and Model 1.f is the that the response in Model 1.e is continuous
while the response in Model 1.f is discrete. Notice that the property PC(Xj, Y ) = 0

if and only if Xj and Y are independent may not hold if Xj and Y are discrete
random variables (see Lemma 5.1). The numerical results show that the proposed
PC-SIS still has good performance when the response is discrete.

There are 5 active features in all the scenarios. The different quantiles of
minimum model size are summarized in Table 5.1. For Model 1.a, all the four
methods can select all active variables almost perfectly since both covariates x and
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error term ε are normal distribution. For Models 1.b-1.d, PC-SIS outperforms all
other 3 methods. The SIS completely fails at the presence of Cauchy distribution
since the Pearson correlation requires the existence of first and second moments.
The bcDC-SIS has a better performance than DC-SIS. The 75% and 95% quantiles
of minimum model size of PC-SIS is roughly half of that of bcDC-SIS. Even for
the most challenging scenario where both x and ε are Cauchy distribution, the
PC-SIS still works reasonably well which indicates that the PC-SIS is more robust
to heavy-tailed distribution and outliers. For the generalized linear models 1.e and
1.f, the PC-SIS performs much better than the other three methods. The PC-SIS
can recover the true active set with a model size close to 5 while the other three
methods perform as bad as random guesses.

5.4.2 Nonparametric model

Consider the following four non-linear models

Model 2.a: Y = 5X1 + 2 sin(πX2/2) + 2X31{X3 > 0}+ 2 exp{5X4}+ ε.

Model 2.b: Y = 3X1 + 3X3
2 + 3X−1

3 + 51{X4 > 0}+ ε.

Model 2.c: Y = 1− 5(X2 +X3)3 exp{5(X1 +X2
4 )}+ ε.

Model 2.d: Y = 1− 5(X2 +X3)−3 exp{1 + 10 sin(πX1/2) + 5X4}+ ε.

Models 2.a - 2.b are also known as additive model and Models 2.c - 32.d are more
general nonparametric models. We generate x ∼ N(0,Σ) and ε ∼ N(0, 1). The
number of active features in the four models are 4 and the simulation results
are summarized in Table 5.2. For Model 2.a, the median of the minimum model
size of the PC-SIS is exactly the same as the number of active features while the
other three methods need a much larger model size to recover the active set. The
PC-SIS performs slightly worse for Model 2.b due to the high intrinsic difficulty
of the model, but still outperforms other three methods by a big margin. For the
nonparametric models 2.c - 2.d, the PC-SIS performs reasonably well while the
other methods fail to effectively screen out the inactive features. The 95% quantile
of SIS, DC-SIS and bcDC-SIS are almost as large as p. This shows, in the worst
case scenario, SIS, DC-SIS and bcDC-SIS are hopeless to reduce the dimensionality
without screening out active features.
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Table 5.1: The quantiles of minimum model size for linear and generalized liner
models out of 200 replications.

Model 1.a Model 1.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-SIS 5.0 5.0 5.0 5.0 8.0 5.0 5.0 6.0 14.0 125.0
DC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 5.0 10.0 81.2 1305.0

bcDC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 5.0 6.0 20.5 231.4
SIS 5.0 5.0 5.0 5.0 5.0 6.0 238.0 1833.0 3878.5 4915.0

p = 10000

PC-SIS 5.0 5.0 5.0 5.0 7.0 5.0 5.0 8.0 23.0 233.5
DC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 6.8 21.0 204.2 3511.2

bcDC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 5.0 10.0 43.2 718.8
SIS 5.0 5.0 5.0 5.0 5.0 16.0 703.2 3418.5 7432.0 9651.0

Model 1.c Model 1.d

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-SIS 5.0 5.0 6.0 8.0 50.9 5.0 5.0 6.0 10.2 139.9
DC-SIS 5.0 8.0 42.5 143.0 722.5 5.0 16.0 54.0 189.0 701.6

bcDC-SIS 5.0 5.0 6.0 14.2 80.4 5.0 5.0 8.0 21.8 156.8
SIS 5.0 39.0 81.5 374.0 3244.4 5.0 45.8 130.5 523.5 3241.0

p = 10000

PC-SIS 5.0 5.0 6.0 8.0 92.4 5.0 6.0 6.0 13.0 176.2
DC-SIS 5.0 18.2 78.0 277.5 1567.5 5.0 30.8 113.0 410.0 2036.5

bcDC-SIS 5.0 5.0 7.0 19.2 179.1 5.0 5.0 10.0 27.0 412.6
SIS 6.0 58.8 180.5 773.2 4189.0 8.9 73.0 244.5 959.8 5777.7

Model 1.e Model 1.f

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-SIS 5.0 5.0 5.0 5.0 17.2 5.0 5.0 5.0 5.0 7.0
DC-SIS 90.3 396.0 897.5 1762.5 3787.3 76.3 396.0 893.5 1764.8 3471.8

bcDC-SIS 22.7 82.2 259.5 669.2 2358.7 15.0 87.2 266.5 821.2 2471.5
SIS 178.6 604.8 1137.0 2319.8 4303.4 186.0 606.2 1210.5 2253.0 4261.6

p = 10000

PC-SIS 5.0 5.0 5.0 6.0 23.0 5.0 5.0 5.0 5.0 12.0
DC-SIS 138.0 788.8 1878.5 3301.0 6831.9 154.2 729.2 1725.5 3424.0 6832.8

bcDC-SIS 45.7 163.5 534.5 1520.5 5415.2 30.0 175.8 509.0 1513.2 5580.0
SIS 462.8 1276.8 2460.0 4164.5 8622.5 512.6 1271.2 2484.5 4281.0 8416.3
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Table 5.2: The quantiles of minimum model size for nonparametric model out of
200 replications.

Model 2.a Model 2.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000
PC-SIS 4.0 4.0 4.0 5.2 19.1 4.0 5.0 9.5 26.5 261.9
DC-SIS 600.0 1880.2 2994.5 4052.2 4701.3 4.0 7.8 61.0 541.5 2310.9

bcDC-SIS 488.4 1480.8 2863.0 3967.8 4855.9 4.0 6.0 21.5 88.0 893.8
SIS 709.0 2065.8 3062.5 4160.0 4869.4 54.0 658.5 2692.5 4213.0 4829.1

p = 10000
PC-SIS 4.0 4.0 4.0 5.0 31.0 4.0 5.8 13.0 48.8 393.9
DC-SIS 664.0 3162.5 5655.5 7605.8 9490.1 4.0 13.8 86.0 843.2 5529.2

bcDC-SIS 663.4 2605.8 5578.5 7745.2 9208.4 4.0 8.0 24.5 150.5 1403.9
SIS 986.2 4048.2 6068.0 8298.5 9752.6 64.5 1193.8 4488.0 8139.5 9725.6

Model 2.c Model 2.d

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000
PC-SIS 4.0 4.0 4.0 6.0 21.3 4.0 5.0 9.5 36.0 169.4
DC-SIS 397.6 1536.8 2750.5 3930.0 4721.8 1639.1 3138.5 3851.5 4434.8 4902.4

bcDC-SIS 196.5 1267.5 2774.0 4236.0 4986.2 605.5 1251.8 2073.5 2972.5 4209.1
SIS 421.2 1615.8 2920.0 4057.0 4761.0 2065.0 3487.8 4083.5 4659.0 4950.3

p = 10000
PC-SIS 4.0 4.0 4.0 7.2 25.0 4.0 5.0 13.0 62.5 297.4
DC-SIS 668.8 3628.2 6243.5 7920.5 9531.6 3409.6 6380.8 7705.0 8756.5 9790.6

bcDC-SIS 288.2 2006.5 4714.5 7370.2 9869.9 776.4 2567.8 4154.5 5517.8 8251.0
SIS 760.9 3609.5 6155.5 8129.8 9577.1 3333.4 6387.8 8007.5 9252.8 9847.2

5.4.3 Multivariate response model

In the last experiment, we investigate the performance of the PC-SIS for a multivari-
ate response problem. Here we ignore the the SIS as it cannot be directly applied
to multivariate response problem. We generate y = (Y1, Y2)

T from a bivariate
normal distribution with conditional mean µy|x = (µ1, µ2)T and covariance matrix
Σy|x = (σij)2×2, where σ11 = σ22 = 1 and σ12 = σ21 = σ(x), a function of x.
Following the settings in Li et al. (2012), we consider the following two models.

Model 3.a: µ1 = exp{2(X1 +X2)}, µ2 = X3 +X4 and σ(x) = sin(xTθ).

Model 3.b: µ1 = 2 sin(πX1/2) +X3 + exp{1 +X4}, µ2 = X−2
1 +X2 and

σ(x) = (exp{xTθ} − 1)/(exp{xTθ}+ 1).

We set θ = (2T
4 ,0

T
p−4)

T. The above two models allow µ1 and µ2 to depend on
different active sets and the union of their active sets contains 4 features. We also
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Table 5.3: The quantiles of minimum model size for multivariate response model
out of 200 replications.

Model 3.a Model 3.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000
PC-SIS 4.0 4.0 4.0 4.0 6.0 4.0 4.0 6.0 18.0 114.4
DC-SIS 53.0 463.0 1211.0 2349.0 3774.2 641.1 2308.8 3307.0 4257.8 4838.0

bcDC-SIS 24.0 215.5 758.5 1965.0 3999.8 225.2 1270.2 2494.5 3596.8 4709.0

p = 10000
PC-SIS 4.0 4.0 4.0 4.0 9.0 4.0 4.0 8.0 30.2 302.9
DC-SIS 136.8 978.5 2237.5 4506.0 8106.6 1804.7 4510.5 6445.5 8153.5 9707.6

bcDC-SIS 83.0 546.0 1828.5 4264.5 7711.3 444.4 2217.0 4695.0 7122.5 9076.4

allow the covariance matrix Σy|x to depend on the covariates. The simulation
results are summarized in Table 5.3. Again, the PC-SIS method performs strikingly
well compared to the other methods.

5.5 Real data example

In this section, we apply the proposed PC-SIS to a microarray dataset, which is
from a transgenic mouse model of dilated cardiomyopathy. The mice overexpress a
G protein-coupled receptor, designated Ro1, that is a mutated form of the human
kappa opioid receptor. The aim was to determine which are the influential genes for
overexpression of Ro1 in mice. The research is related to understanding different
types of human heart disease. The expression of Ro1 (the response) was measured
for n = 30 mice and p = 6319 genetic expression levels were obtained for each mice.
This dataset was also analyzed by Segal et al. (2003) Hall and Miller (2009) and Li
et al. (2012).

We apply both PC-SIS and DC-SIS to the dataset and rank the features
based on projection correlation and distance correlation respectively. PC-SIS ranks
Msa.5799.0 and Msa.21346.0 as the two most important features while DC-SIS ranks
Msa.21346.0 and Msa.28772.0 as the two most important features. Msa.21346.0
is shared by the two methods. In practice, we may choose the top dn/ log ne = 9

(Fan and Lv 2008) features as the important features for further analysis. Table
5.4 shows the top 9 features selected by PC-SIS and DC-SIS. Among the top 9
features, 6 features are selected by both methods. We fit linear regression model
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and nonparametric additive model with the selected 9 features for each method.
The adjusted R2 is reported in Table 5.5, which shows PC-SIS works slightly better
than PC-SIS for both linear model and additive model with top 9 selected features
in terms of prediction.

Table 5.4: Top 9 features identified by PC-SIS and DC-SIS. The gene names in
bold are the common genes selected by both methods.

Ranking 1 2 3 4 5

PC-SIS Msa.5799.0 Msa.21346.0 Msa.702.0 Msa.11662.0 Msa.1545.0
DC-SIS Msa.21346.0 Msa.28772.0 Msa.2603.0 Msa.559.0 Msa.1591.0

Ranking 6 7 8 9

PC-SIS Msa.1591.0 Msa.1011.0 Msa.573.0 Msa.28772.0
DC-SIS Msa.11662.0 Msa.24000.0 Msa.1545.0 Msa.1011.0

Table 5.5: The adjusted R2 for linear and additive models with the top 9 features
identified by PC-SIS and DC-SIS.

Linear model Additive model

PC-SIS 0.7780 0.7780
DC-SIS 0.7716 0.7720

Figure 5.1 gives the scatter plots for Msa.5799.0 and Msa.21346.0, the most
important features detected by PC-SIS. The left panel of Figure 5.1 clearly shows
that there is a nonlinear relationship between Ro1 and Msa.5799.0: when Msa.5799.0
expression level is relatively low (< 0.5), Ro1 expression decreases dramatically as
Msa.5799.0 increases; when Msa.5799.0 expression level is relatively high (> 0.5),
the Ro1 expression level stays roughly flat. DC-SIS misses Msa.5799.0 and only
ranks it as the 18th most important feature. The right panel of Figure 5.1 also shows
a clear nonlinear relationship between Ro1 and Msa.21346.0. In addition, Figure 5.1
indicates that there are potential outliers, that are marked in red triangles. The
red dash curves and blue solid curves are fitted regression lines by local polynomial
regression with and without potential outliers. After the removal of potential
outliers, the nonlinear relationships become more clear, see the blue curves in
Figure 5.1.

The existence of influential points motivates us to examine the robustness of
the PC-SIS and the DC-SIS. To see how the potential outliers affect the ranking of
Msa.5799.0, we remove one data point at one time and then obtain the ranking of
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Figure 5.1: Scatter plots for Msa.5799.0 and Msa.21346.0. The red triangles are the
potential outliers. The red dash curves and blue solid curves are fitted regression
lines by local polynomial regression with and without the potential outliers. The
gray shadows are the 95% confidence interval.

Msa.5799.0 by the PC-SIS and the DC-SIS respectively using the remaining 29 data
points. We repeat this procedure for n = 30 times and thus obtain 30 rankings of
Msa.5799.0 for each method. The left panel in Figure 5.2 shows the boxplot of the
30 rankings. As we can see, the PC-SIS always ranks Msa.5799.0 as the 1st or 2nd
most important feature while its rankings given by the DC-SIS varies from 5 to 35.
To further distinguish the PC-SIS and the DC-SIS, instead of removing one data
point, we contaminate one data point at one time for Msa.21346.0. More specifically,
for each i = 1, . . . , 30, we replace the ith data point (Xi, Yi) by (X ′i, Y

′
i ) where X ′i is

generated from Uniform(−1.5,−1) and Y ′i is generated from Uniform(2.0, 2.5) such
that (X ′i, Y

′
i ) is very likely to be a potential outlier. The right panel in Figure (5.2)

shows that the rankings given by the PC-SIS has less variance than the DC-SIS.
Both boxplots show that the PC-SIS is much more robust to potential outliers than
the DC-SIS.

5.6 Proofs

Before proving Theorem 5.1, we introduce two useful lemmas. The first lemma is
based on Theorem 5.6.1.A in Serfling (1980), which gives a probability equality for
U -statistics.
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Figure 5.2: Boxplots of rankings for Msa.5799.0 and Msa.21346.0.

Lemma 5.2. Let h(x1, . . . ,xm) be a kernel of the U-statistic Un, and
θ = E{h(x1, . . . ,xm)}. If a ≤ h(x1, . . . ,xm) ≤ b, then for any t > 0 and n ≥ m,

Pr(|Un − θ| ≥ t) ≤ 2 exp{−2bn/mct2/(b− a)2},

where bn/mc denotes the integer part of n/m.

Proof. By Theorem 5.6.1.A of Serfling (1980), we have

Pr(Un − θ ≥ t) ≤ exp{−2bn/mct2/(b− a)2}.

Due to the symmetry of U -statistic, we have

Pr(|Un − θ| ≥ t) ≤ 2 exp{−2bn/mct2/(b− a)2}.

The next theorem establishes the connection between the exponential-type
deviation inequalities for sample covariance and sample correlation.

Lemma 5.3. Suppose γ̂1, γ̂2 and γ̂3 are estimates of parameters γ1, γ2 and
γ3 based on a size-n sample, respectively. Assume γ2 > 0, γ3 > 0 and M ≥
2 max{γ1, γ2, γ3, γ̂1, γ̂2, γ̂3}. If

Pr(|γ̂k − γk| > ε) ≤ c1 exp{−c2nε
2}, k = 1, 2, 3,
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for some positive constants c1, c2. Then we have

Pr

{∣∣∣∣∣ γ̂1√
γ̂2γ̂3

− γ1√
γ2γ3

∣∣∣∣∣ > ε

}
≤ 5c1 exp{−c2nε

2γ0},

where γ0 = min{γ2
2γ

2
3/4M

4, γ3
2γ

3
3/4M

4, γ2γ3/4}.

Proof. Since γ1, γ2, γ3, γ̂1, γ̂2, γ̂3 are bounded by M/2, it is easy to verify that

Pr(|γ̂2γ̂3 − γ2γ3| > 2ε) ≤ 2c1 exp{−c2nε
2/4M2}, and

Pr(|
√
γ̂2γ̂3 −

√
γ2γ3| > 2ε) ≤ 2c1 exp{−c2nε

2γ2γ3/4M
2}. (5.8)

Let γ =
√
γ2γ3 and γ̂ =

√
γ̂2γ̂3. For any 0 < ε < 1, we have

Pr {|1/γ̂ − 1/γ| > ε} =Pr(|γ̂ − γ| > |γ̂γ|ε)

≤Pr{|γ̂ − γ| > |γ̂γ|ε, |γ̂| ≥ γ/2}+ Pr{|γ̂| < γ/2}

≤Pr{|γ̂ − γ| > γ2ε/2}+ Pr{|γ̂ − γ| > γ/2}

≤2Pr{|γ̂ − γ| > min{γ, γ2}ε/2}.

From (5.8), we know

Pr {|1/γ̂ − 1/γ| > ε} ≤ 4c1 exp{−c2nε
2γ′/16M2},

where γ′ = min{γ2
2γ

2
3 , γ

3
2γ

3
3}. As a result,

Pr

{∣∣∣∣∣ γ̂1√
γ̂2γ̂3

− γ1√
γ2γ3

∣∣∣∣∣ > ε

}
=Pr {|γ̂1/γ̂ − γ1/γ| > ε}

≤Pr {|γ̂1/γ̂ − γ̂1/γ| > ε/2}+ Pr (|γ̂1/γ − γ1/γ| > ε/2}

≤Pr {|1/γ̂ − 1/γ| > ε/M}+ Pr {|γ̂1 − γ1| > εγ/2}

≤4c1 exp{−c2nε
2γ′/4M4}+ c1 exp{−c2nε

2γ2γ3/4}

≤5c1 exp{−c2nε
2γ0},

where γ0 = min{γ2
2γ

2
3/4M

4, γ3
2γ

3
3/4M

4, γ2γ3/4}.
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Proof of Theorem 5.1

Let zi = (zi,yi), i = 1, . . . , n and define

h1(zi, zj, zk) =

[
arccos

{
(xi − xk)

T(xj − xk)

‖xi − xk‖‖xj − xk‖

}
arccos

{
(yi − yk)

T(yj − yk)

‖yi − yk‖‖yj − yk‖

}]
,

h2(zi, zj, zk, zl, zr) =

[
arccos

{
(xi − xk)

T(xl − xk)

‖xi − xk‖‖xl − xk‖

}
arccos

{
(yj − yk)

T(yr − yk)

‖yj − yk‖‖yr − yk‖

}]
,

h3(zi, zj, zk, zl) =

[
arccos

{
(xi − xk)

T(xl − xk)

‖xi − xk‖‖xl − xk‖

}
arccos

{
(yj − yk)

T(yl − yk)

‖yj − yk‖‖yl − yk‖

}]
.

Recall that the squared population projection covariance and correlation are defined
as

Pcov(x,y)2 = S1 + S2 − 2S3,

PC(x,y)2 = Pcov(x,y)2/Pcov(x,x)Pcov(y,y),

where S1, S2, S3 are defined in (5.3). Their sample counterparts are given by

P̂cov(X,Y)2 = Ŝ1 + Ŝ2 − 2Ŝ3,

P̂C(X,Y)2 = P̂cov(X,Y)2/P̂cov(X,X)P̂cov(Y,Y),

where Ŝ1, Ŝ2, Ŝ3 are defined as follows,

Ŝ1 =n−3

n∑
i,j,k=1

h1(zi, zj, zk),

Ŝ2 =n−5

n∑
i,j,k,l,r=1

h2(zi, zj, zk, zl, zr),

Ŝ3 =n−4

n∑
i,j,k,l=1

h3(zi, zj, zk, zl).

Clearly Ŝ1, Ŝ2 and Ŝ3 are V -statistics. Denote by π(i1, . . . , im) the set of all
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permutations of (i1, . . . , im). Define

Ŝ∗1 =

(
n

3

)−1 ∑
i<j<k

h∗1(zi, zj, zk),

Ŝ∗2 =

(
n

5

)−1 ∑
i<j<k<l<r

h∗2(zi, zj, zk, zl, zr),

Ŝ∗3 =

(
n

4

)−1 ∑
i<j<k<l

h∗3(zi, zj, zk, zl),

where
h∗1(zi, zj, zk) =

1

3!

∑
π(i,j,k)

h1(zi, zj, zk),

h∗2(zi, zj, zk, zl, zr) =
1

5!

∑
π(i,j,k,l,r)

h2(zi, zj, zk, zl, zr),

h∗3(zi, zj, zk, zl) =
1

4!

∑
π(i,j,k,l)

h3(zi, zj, zk, zl).

By definition, we know Ŝ∗1 , Ŝ
∗
2 , Ŝ

∗
3 are the corresponding U -statistics with associated

kernels h∗1, h∗2 and h∗3, respectively. We have 0 ≤ Sk, Ŝk, Ŝ
∗
k ≤ π2 and 0 ≤ h∗k ≤ π2,

k = 1, 2, 3.
We first deal with Ŝ1. Note that∑

i,j,k

h1(zi, zj, zk) =
∑
i 6=j 6=k

h1(zi, zj, zk),

which implies n3Ŝ1 = n(n− 1)(n− 2)Ŝ∗1 . For any given ε > 0, take n ≥ 3π2/ε such
that 3S1/n ≤ ε, we have

Pr(|Ŝ1 − S1| ≥ 2ε)

=Pr{|Ŝ∗1(n− 1)(n− 2)/n2 − S1(n− 1)(n− 2)/n2 − S1(3n− 2)/n2| ≥ 2ε}

≤Pr{|Ŝ∗1 − S1|(n− 1)(n− 2)/n2 ≥ 2ε− S1(3n− 2)/n2}

≤Pr{|Ŝ∗1 − S1| ≥ ε}.

Since 0 ≤ h∗1 ≤ π2, applying Lemma 5.2, we have

Pr(|Ŝ1 − S1| ≥ 2ε) ≤ 2 exp{−2bn/3cε2/π4}. (5.9)

136



Now we move to the third term Ŝ3. Note that∑
i,j,k,l

h3(zi, zj, zk, zl) =
∑

i 6=j 6=k 6=l

h3(zi, zj, zk, zl) +
∑

i=j 6=k 6=l

h3(zi, zj, zk, zl).

Thus
n4Ŝ3 =n(n− 1)(n− 2)(n− 3)Ŝ∗3 + n(n− 1)(n− 2)Ŝ∗1 ,

Ŝ3 =Ŝ∗3(n− 1)(n− 2)(n− 3)/n3 + Ŝ∗1(n− 1)(n− 2)/n3.

Take n ≥ 6π2/ε, then Ŝ∗1(n− 1)(n− 2)/n3 ≤ ε and S3(6n2− 11n+ 6)/n3} ≤ ε. We
have

Pr(|Ŝ3 − S3| ≥ 3ε)

=Pr{|Ŝ∗3(n− 1)(n− 2)(n− 3)/n3 + Ŝ∗1(n− 1)(n− 2)/n3 − S3| ≥ 3ε}

≤Pr{|Ŝ∗3(n− 1)(n− 2)(n− 3)/n3 − S3| ≥ 2ε}

≤Pr{|Ŝ∗3 − S3|(n− 1)(n− 2)(n− 3)/n3 ≥ 2ε− S3(6n2 − 11n+ 6)/n3}

≤Pr{|Ŝ∗3 − S3| ≥ ε}.

Since 0 ≤ h∗3 ≤ π2, applying Lemma 5.2 again, we have

Pr(|Ŝ3 − S3| ≥ 3ε) ≤ 2 exp{−2[n/4]ε2/π4}. (5.10)

It remains to deal with the second term Ŝ2. Note that∑
i,j,k,l,r

h2(zi, zj, zk, zl, zr) =
∑

i 6=j 6=l 6=r 6=k

h2(zi, zj, zk, zl, zr) +∑
i=j 6=l 6=r 6=k

h2(zi, zj, zk, zl, zr) +∑
i=r 6=j 6=l 6=k

h2(zi, zj, zk, zl, zr) +∑
l=j 6=i 6=r 6=k

h2(zi, zj, zk, zl, zr) +∑
l=r 6=i 6=j 6=k

h2(zi, zj, zk, zl, zr).
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Thus

n5Ŝ2 =n(n− 1)(n− 2)(n− 3)(n− 4)Ŝ∗2 + 4n(n− 1)(n− 2)(n− 3)Ŝ∗3 ,

Ŝ2 =(n− 1)(n− 2)(n− 3)(n− 4)/n4Ŝ∗2 + 4(n− 1)(n− 2)(n− 3)Ŝ∗3/n
4.

Take n ≥ 10π2/ε, we have

4(n− 1)(n− 2)(n− 3)Ŝ∗3/n
4 ≤ ε and

(1− (n− 1)(n− 2)(n− 3)(n− 4)/n4)S3 ≤ ε.

As a result,

Pr(|Ŝ2 − S2| ≥ 3ε)

=Pr{|Ŝ∗2(n− 1)(n− 2)(n− 3)(n− 4)/n4 + 4(n− 1)(n− 2)(n− 3)Ŝ∗3/n
4 − S2| ≥ 3ε}

≤Pr{|Ŝ∗2(n− 1)(n− 2)(n− 3)(n− 4)/n4 − S2| ≥ 2ε}

≤Pr{|Ŝ∗3 − S3|(n− 1)(n− 2)(n− 3)(n− 4)/n4 ≥ ε}

≤Pr{|Ŝ∗3 − S3| ≥ ε}.

Since 0 ≤ h∗2 ≤ π2, by Lemma 5.2, we have

Pr(|Ŝ2 − S2| ≥ 3ε) ≤ 2 exp{−2bn/5cε2/π4}. (5.11)

Combining (5.9), (5.10) and (5.11), we have

Pr{|(Ŝ1 + Ŝ2 − 2Ŝ3)− (S1 + S2 − 2S3)| ≥ 11ε}

≤Pr(|Ŝ1 − S1| ≥ 2ε) + Pr(|Ŝ2 − S2| ≥ 3ε) + Pr(|Ŝ3 − S3| ≥ 3ε)

≤6 exp{−2bn/5cε2/π4}.

Therefore

Pr{|(Ŝ1 + Ŝ2 − 2Ŝ3)− (S1 + S2 − 2S3)| ≥ ε} ≤ c1 exp{−c2nε
2}, (5.12)

with choices c1 = 6 and c2 = 1/(320π4). For the second part, we apply Lemma 5.3
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to (5.12) with the choice M = (2π)2, we obtain

Pr{|P̂C(X,Y)2 − PC(x,y)2| ≥ ε} ≤ 5c1 exp{−c2nε
2γ}.

where γ = min{γ3
xγ

3
y/4M

4, γ2
xγ

2
y/4M

4, γxγy/4}.

Proof of Theorem 5.2

Recall that
ωk = PC(Xk,y) and ω̂k = PC(Xk,Y),

where Xk is the kth column of X. By Theorem 5.1 and Condition 1 (a), we have

Pr(|ω̂k − ωk| ≥ δ) ≤ O(exp{−c4nδ
2}),

where c4 is some constant. We consider the compliment A * Â(δ), meaning that
there is at least one k ∈ A such that k /∈ Â(δ). We have

Pr(A * Â(δ)) = Pr(∪k∈A{k /∈ Â(δ)})

≤
∑
k∈A

Pr(ω̂k ≤ δ)

≤
∑
k∈A

Pr(|ω̂k − ωk| ≥ δ)

≤ O(s exp{−c4nδ
2}).

Thus Pr(A ⊆ Â(δ)) ≥ 1−O(s exp{−c4nδ
2}).

Proof of Theorem 5.3

Let k1 = arg mink∈A ω̂k and k2 = arg maxk∈Ac ω̂k. For any 0 ≤ κ < 1/2, we have
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Pr{min
k∈A

ω̂k −max
k∈Ac

ω̂k ≤ 0}

≤Pr{min
k∈A

ω̂k −max
k∈Ac

ω̂k ≤ min
k∈A

ωk −max
k∈Ac

ωk − 2c3n
−κ}

=Pr{(min
k∈A

ωk −min
k∈A

ω̂k) + (max
k∈Ac

ω̂k − min
k∈Ac

ωk) ≥ 2c3n
−κ}

≤Pr{(ωk1 − ω̂k1) + (ω̂k2 − ωk2) ≥ 2c3n
−κ}

≤Pr{|ω̂k1 − ωk1| ≥ c3n
−κ}+ Pr{|ω̂k2 − ωk2| ≥ c3n

−κ}

≤2Pr{max
1≤k≤p

|ω̂k − ωk| ≥ c3n
−κ}

=c′5p exp{−c5n
1−2κ},

where c5, c
′
5 > 0 are positive constants. The first inequality follows Condition 1 (b)

and the last equality is implied by Theorem 5.1. Hence we have

Pr{min
k∈A

ω̂k −max
k∈Ac

ω̂k > 0} ≥ 1−O(p exp{−c5n
1−2κ}).

If we further assume log p = o(n1−2κ), we know p < exp{c5n
1−2κ/2} for large n.

Then we have

p exp{−c5n
1−2κ} ≤ exp{−c5n

1−2κ/2} ≤ exp{−2 log n} ≤ n−2,

for large n. Thus for some n0, we have

∞∑
n=n0

c′5p exp{−c5nε
2} ≤ c′5

∞∑
n=n0

n−2 ≤ ∞.

Therefore, by Borel-Contelli Lemma, we obtain

Pr(lim supn→∞{min
k∈A

ω̂k −max
k∈I

ω̂k ≤ 0}) = 0,

As a result
Pr(lim infn→∞{min

k∈A
ω̂k −max

k∈I
ω̂k > 0})

=Pr([lim supn→∞{min
k∈A

ω̂k −max
k∈I

ω̂k ≤ 0}]c)

=1.
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Chapter 6 |
Summary and Future Work

6.1 Summary of the dissertation

In this dissertation, we study two fundamental problems for high-dimensional
statistics: mean vector test of high-dimensional data and feature screening for
ultra-high dimensional data. In the first part, consisting of chapter 3 and chapter
4, we focus on the estimation of linear functional and its application to projection
test for high-dimensional mean vector. In chapter 3, we study the regularized
quadratic programming with nonconvex penalty and linear constraint. Under the
assumption that the quadratic form satisfies the restrict strong convexity (RSC)
condition, we establish the L1 and L2 deterministic error bounds for any stationary
point that satisfies the necessary first order condition to be a local minimum.
Further assuming the strict dual feasibility, we show that the stationary point
is unique and establish the support recovery and L∞ error bound. We propose
an ADMM algorithm with local linear approximation to solve the nonconvex
quadratic programming, which is guaranteed to converge to a local minimum. In
particular, we study three applications of the regularized quadratic programming:
(1) estimation of linear functional, (2) F -type test for regression coefficients and
(3) sparse linear discriminant analysis. Convergence rates in terms of L1 and L2

norms are established for the proposed estimator. In chapter 4, we apply the linear
functional, also known as the optimal projection direction, to perform projection
test for high-dimensional data assuming that the linear functional is sparse. We
propose two sparse projection tests. The first test is the sparse projection test with
data splitting. The entire dataset is partitioned into two sets. We use the first
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set to estimate the optimal projection direction and perform the test only using
the data in the second set. This data splitting projection test achieves an exact
t-test under normality assumption. The second test is the sparse online projection
test, which updates the estimation of optimal projection direction whenever a
new observation arrives. We derive the asymptotic normal distribution of the
test statistic under both null hypothesis and alternative hypothesis. This sparse
online projection test improves the power of data splitting projection test. A
mini-batch version of the online projection test is also proposed. This test updates
the estimation when a batch of new observations arrive and thus reduces the
computational burden a lot. In addition, we conduct numerical studies to compare
the finite sample performance of the proposed projection tests with several existing
tests. The numerical results show that the proposed projection tests can control
the type I error rate well and are much more powerful than other existing tests.
The second part of this dissertation, consisting of chapter 5, focuses on the model
free feature screening for ultra-high dimensional data. The proposed method is
based on ranking the projection correlations between features and response. This
projection correlation based screening procedure is model free in the sense that
it does not require specifying a regression model and can be applied to grouped
variables as well. This procedure is also insensitive to outliers since no moment
conditions are needed for the data. Theoretical analysis demonstrates the proposed
method enjoys not only the sure screening property but also a stronger result called
rank consistency property.

6.2 Future work

There are a lot of interesting topics we can continue to work on. In chapter 3, we
consider the regularized quadratic programming with linear constraint Cβ ≤ b and
achieve the following convergence rates (error bounds) under proper assumptions,

‖β̂ − β?‖1 = O(sλ/κ), and ‖β̂ − β?‖2 = O(
√
sλ/κ).

These convergence rates coincide with the results in Negahban et al. (2012) and
Loh and Wainwright (2015) where no such linear constraint is imposed. These
convergence rates are known to be optimal when no constraint exists (Raskutti
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et al. 2011, Negahban et al. 2012, Wang et al. 2014). Are they also optimal when
we have additional constraint? Suppose the rank of matrix C is m and assume
m < s, one interesting question is can we improve the convergence rate by taking
advantage of the linear constraint. For example, we may expect to achieve the
following convergence rate,

‖β̂ − β?‖1 = O((s−m)λ/κ), and ‖β̂ − β?‖2 = O(
√
s−mλ/κ).

In chapter 4, we propose the online projection test for high-dimensional mean
vector. Projection test under the online framework can improve the performance of
projection test using the data splitting technique. On one hand, the online projection
test keeps updating the estimated projection direction when new observations arrive,
thus we can obtain a more and more accurate estimation of the optimal projection
direction. On the other hand, only the first kn = n−τ = o(n) observations are
discarded when performing the test while the data splitting procedure discards
about half of the data. Hence the online projection test is more powerful than
the data splitting procedure. Though discarding the first kn data points does not
affect the asymptotic results, of interest is to develop a new projection test without
throwing away any data points. One possible approach is to pretend the discarded
kn observations come from the future and reuse them. Another approach is to
use the entire dataset to obtain an estimate of the projection direction and then
perform the projection test with the entire dataset. In both cases, we expect to
see some improvement on the test power since no observation is discarded. The
challenge is it can be very completed to derive the limiting null distribution since
the estimated projection direction and the data are no longer independent.

In chapter 5, we propose a feature screening procedures based on projection
correlation. Let ω̂j be the sample projection correlation between the response and
the jth feature, the selected features are given by

M̂ = {j : ω̂j ≥ δ, 1 ≤ j ≤ p},

or equivalently,

M̂ = {j : ω̂j are among the top d ones, 1 ≤ j ≤ p}.
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We show that with a proper choice of δ or d, our feature screening procedure
enjoys the sure screening property, that is, all important features are selected
with probability approaching to 1. However, the proper choice of threshold δ or
d depends on unknown parameters. From a practical point of view, one may be
conservative and use a relatively large value of d such that all important features are
included. In that case, many unimportant features may enter the selected model as
well. Zhu et al. (2011) proposed a threshold rule by introducing a series of artificial
auxiliary variables. Based on our simulation study, this kind of threshold rule is
also conservative and allows a lot of unimportant features entering the selected
model. We are also interested in developing some data-driven method to find a
proper threshold δ or d such that not only the sure screening property is satisfied
but the number of unimportant features that are selected is well controlled.
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Appendix A|
Properties of Nonconvex Reg-
ularizers

We state several properties of the nonconvex penalty function Pλ(t).

Lemma A.1. Assume penalty function Pλ(t) satisfies conditions (i)-(v) in Section
3.2.1, then

(1) |Pλ(t1)− Pλ(t2)| ≤ λ|t1 − t2| for any t1, t2 ∈ R.

(2) For any β ∈ Rp, we have λ‖β‖1 ≤ Pλ(β) + µ
2
‖β‖2

2.

(3) Suppose ‖β?‖0 = s, then for any β ∈ Rp such that cPλ(β?)− Pλ(β) ≥ 0 with
c ≥ 1, we have cPλ(β?)−Pλ(β) ≤ λ(c‖δA‖1−‖δAc‖1), where δ = β−β? and
A is the index set of the s largest elements of δ in magnitude.

Proof. The proof can be found in Loh and Wainwright (2015).

Lemma A.2. The function Jλ(t)− µ
2
t2 = λ|t| − Pλ(t)− µ

2
t2 is concave and differ-

entiable.

Proof. When t > 0, Jλ(t) − µ
2
t2 = λt − Pλ(t) − µ

2
t2. By assumption, we know

Pλ(t) + µ
2
t2 is convex and thus Jλ(t) − µ

2
t2 is concave when t > 0. Similarly,

Jλ(t) − µ
2
t2 is concave when t < 0. As a result, the derivative of Jλ(t) − µ

2
t2

is decreasing on (−∞, 0) and (0,∞). At t = 0, we have J ′(0) = 0. Therefore,
Jλ(t) − µ

2
t2 is differential and its derivative is monotonically decreasing. Hence

Jλ(t)− µ
2
t2 is a concave function.
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Appendix B|
Sub-Gaussian Random Vari-
able

The following lemmas show some nice properties of sub-Gaussian random variable.

Lemma B.1. Let X1, X2, . . . , Xn be sub-Gaussian random variables with variance
proxy σ2, then

E
(

max
1≤i≤n

Xi

)
≤ σ

√
2 log n and E

(
max
1≤i≤n

|Xi|
)
≤ σ

√
2 log(2n).

Proof. Let Z = max
1≤i≤n

Xi. By Jensen’s inequality, for any t > 0

exp{tE[Z]} ≤ E exp{tZ} ≤
n∑
i=1

E exp {tXi} ≤ n exp{t2σ2/2}.

Taking the logarithm of both sides, we get

E[Z] ≤ log n

t
+
tσ2

2
.

Taking t =
√

2 log n/σ yields the first inequality. The second inequality follows
trivially by noting that

max
1≤i≤n

|Xi| = max
1≤i≤2n

Xi,

with Xn+i = −Xi, i = 1, . . . , n.

Lemma B.2. Suppose x1, . . . ,xn are independent and identically distributed sub-
Gaussian random vectors with ‖xi‖ψ2 = K. Let Σ̂ = (σ̂ij)p×p be the sample
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covariance matrix. If log p < n, then there exists a constant M only depending on
K such that maxi,j |σ̂ij − σij| ≤M

√
log p/n with probability at least 1− 2p−1.

Proof. Let x = 1
n

∑n
k=1 xi be the sample mean and Σ̂ = 1

n

∑n
k=1(xk − x̄)(xk − x̄)>

be the sample covariance matrix. The Σ̂ can be decomposed as

Σ̂ =
1

n

n∑
k=1

xkx
>
k − x̄x̄>.

Without loss of generality, we assume E(xi) = 0. Therefore,

max
i,j
|σ̂ij − σij| ≤ max

i,j
| 1
n

n∑
k=1

xkixkj − σij|+ max
i,j
|x̄ix̄j|.

By the property of sub-Gaussian random variables, we know

‖xkixkj‖ψ1 ≤ 2‖xki‖ψ2‖xkj‖ψ2 ≤ 2K2,

and hence ‖xkixkj − σij‖ψ1 ≤ 4K2. As a result,

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

xkixkj − σij

∣∣∣∣∣ > t

)
≤ max

(
2p2 exp

{
−c1n

t2

16K4

}
, 2p2 exp

{
−c1n

t

4K2

})
.

It is easy to verify that ‖x̄i‖ψ2 ≤
√
c/nK and ‖x̄ix̄j‖ψ1 ≤ 2‖x̄i‖ψ2‖x̄j‖ψ2 ≤ 2cK2/n,

we have
P(max

i,j
|x̄ix̄j| > t) ≤ 2p2 exp

{
− nt

2cK2

}
.

By the choice of t = M
2

√
log p
n

, we have maxi,j |σ̂ij − σij| ≤ M
√

log p/n with
probability at least 1 − 2p−1 whenever M > C, where C is a constant only
depending on K.
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Appendix C|
Error Bounds Under the RE
Condition

Instead of imposing the restricted strong convexity (RSC) condition, here we state
some results on the error bounds and strong oracle property for the regularized
quadratic programming (3.7) under the restricted eigenvalue (RE) condition. We
say a matrix W satisfies the RE(q, κ) condition with r > 1 if

min
β 6=0,‖βA‖1≤q,‖βAc‖1

β>Wβ

‖β‖2
2

= κ > 0, (C.1)

where A is the support of true parameter β?. By the definition, we know that if
q′ > q, then RE(q′, κ) implies RE(q, κ). This type of restricted eigenvalue condition
was proposed in Bickel et al. (2009) when they studied the connection between
the Lasso and the Dantzig selector. Wang et al. (2013) also adopted this type of
condition to study the SCAD-CCCP estimator under a high-dimensional regression
setting.

It is natural to ask under what conditions a matrix W would satisfy the RE
condition. In many applications, W is of the form of W = X>X/n where X is a
n× p design matrix. If X has i.i.d. entries following a sub-Gaussian distribution,
then known results from random matrix theory implies that this RE condition
holds with a high probability. In statistical applications, we are more interested in
design matrix X with substantial dependency. Let xi denote the i-th row of X and
if x1, . . . ,xn are i.i.d. random sub-Gaussian vectors, Rudelson and Zhou (2012)
showed that the RE condition holds with high probability when the sample size n is
larger than some constant depending on dimension p and sparsity level s. The RE
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condition is known to be a relatively mild condition for high-dimensional estimation
and is much weaker than the irrepresentable condition (Zhao and Yu 2006) which
is a necessary condition for Lasso estimator to be model selection consistent.

We consider the penalty function pλ(t) from the family Pλ(a0, a1, a2, a3) which is
a set of concave folded penalty functions and each element pλ(t) in the set satisfies
the following conditions:

(1) pλ(t) is symmetric on the real line and is non-decreasing and concave in
t ∈ [0,∞) with pλ(0) = 0.

(2) pλ(t) is differentiable in t ∈ (0,∞) with p′λ(0+) = a0λ for some a0 > 0.

(3) p′λ(t) ≥ a1λ in t ∈ (0, a2λ] for some a1 ≤ a0.

(4) p′λ(t) = 0 if t ∈ [a3λ,∞) for a3 > a2.

This class of folded concave penalty functions Pλ(a0, a1, a2, a3) includes the two
most widely used nonconvex penalty functions: the SCAD (Fan and Li 2001) and
the MCP (Zhang 2010). In particular, the SCAD belongs to Pλ(1, 1, 1, a3) with
a3 > 2 and the MCP belongs to Pλ(1, 1/2, a3/2, a3) with some a3 > 0.

To establish the deterministic error bound for our proposed LLA estimator, we
specify a set of regularity conditions. Recall that a0, a1, a2, a3 are the parameters
in the folded concave penalty.

(C.A.1) The true parameter β? satisfies the linear equality constraint Cβ? = b.

(C.A.2) τ < min{1, κa2/(3a0
√
s0)}.

(C.A.3) There exists a vector w such that 2‖Wβ? −C>w − q‖∞ ≤ τλa1.

Theorem C.1 (Deterministic error bounds). Let β̂ be the LLA estimator to (3.7)
with pλ(·) ∈ P(a0, a1, a2, a3). Assume that W satisfies RE(max{1 + 2a0/a1, 3}, κ)

and conditions (C.A.1) - (C.A.3) hold, then we have

(1) ‖β̂ − β?‖1 ≤ aλs0/κ, ‖β̂ − β?‖2 ≤ (2a0 + a1)λ
√
s0/κ,

(2)
√

(β̂ − β?)>W(β̂ − β?) ≤ (2a0 + a1)λ
√
s0/κ,

where a = 6a0 + 2a1 + 4a2
0/a1.
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Proof. Let β̂ be some estimator of β? and denote ∆ = β̂ − β?. Let

Q(β|λ) =
1

2
β>Wβ − q>β + λ>|β|, (C.2)

where λ = (λ1, λ2, . . . , λp)
> satisfying λj ≤ a0λ for all j and λj ≥ a1λ for j ∈ Ac.

We first claim that if λ is chosen such that a1λ ≥ 2‖Wβ? −C>w − q‖∞ and
Q(β̂|λ) ≤ Q(β?|λ), then we have ‖∆‖2 ≤ (2a0 + a1)λ

√
s0/κ and ‖∆‖1 ≤ aλs0/κ,

where a = 6a0 + 2a1 + 4a2
0/a1, To see that, notice

1

2
β̂
>
Wβ̂ − q>β̂ + λ>|β̂| ≤ 1

2
β∗>Wβ? − q>β? + λ>|β?|.

Therefore

1

2
β̂
>
Wβ̂ −w>Cβ̂ − q>β̂ + λ>|β̂| ≤ 1

2
β∗>Wβ? −w>Cβ? − q>β? + λ>|β?|,

since Cβ̂ = Cβ = b. By rearrangement, we have

1

2
∆>W∆ + λ>|β̂| ≤∆>(Wβ? −C>w − q) + λ>|β?|

≤ ‖∆‖1 · ‖Wβ? −C>w − q‖∞ + λ>|β?|

≤ a1

2
λ‖∆‖1 + λ>|β?|.

Now breaking β? and β̂ into β? = (β?A,β
?
Ac) and β̂ = (β̂A, β̂Ac), we have

1

2
∆>W∆ + λ>A|β̂A|+ λ>Ac |β̂Ac | ≤

a1

2
λ‖∆A‖1 +

a1

2
λ‖∆Ac‖1 + λ>|β?|

1

2
∆>W∆ + λ>A|β?A| − λ>A|∆A|+ a1λ‖β̂Ac‖1 ≤

a1

2
λ‖∆A‖1 +

a1

2
λ‖∆Ac‖1 + λ>|β?|

1

2
∆>W∆ ≤ (a0 +

a1

2
)λ‖∆A‖1 −

a1

2
λ‖∆Ac‖1.

Using the fact that 1
2
∆>W∆ ≥ 0, we know ‖∆Ac‖1 ≤ (1 + 2a0/a1)‖∆A‖1. Under

the RE condition of the theorem, we know κ‖∆‖2
2 ≤ (2a0 + a1)λ‖∆‖1 ≤ (2a0 +

a1)λ
√
s0‖∆‖2, hence ‖∆‖2 ≤ (2a0 + a1)λ

√
s0/κ. Therefore, ‖∆‖1 = ‖∆A‖1 +

‖∆Ac‖1 ≤ (2 + 2a0/a1)‖∆A‖1 ≤ (2 + 2a0/a1)
√
s0‖∆A‖2 ≤ aλs0/κ, where a =

6a0 + 2a1 + 4a2
0/a1. We prove the claim.

By the definition of β̂
(1)

and applying the claim with λ1 = (τa0λ, . . . , τa0λ)>,
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we have ‖β̂
(1)
− β?‖2 ≤ (2a0 + a1)τλ

√
s0/κ ≤ 3a0τλ

√
s0/κ, which implies that

maxj∈Ac |β̂(1)
j | ≤ a2λ since τ ≤ κa2/(3a0

√
s0) . As a result, we have pλ(|β̂(1)

j |) ≤ a0λ

for all j ∈ A and pλ(|β̂(1)
j |) ≥ a1λ for j ∈ Ac. Let λ2 = (pλ(|β̂(1)

1 |), . . . , pλ(β̂
(1)
p ))>

and λ2 satisfies the condition of the claim. Let β̂ be the LLA estimator. By the
claim, we have ‖β̂ − β?‖2 ≤ (2a0 + a1)λ

√
s0/κ and ‖β̂ − β?‖1 ≤ aλs0/κ, which

completes part (1). For part (2), note that

∆>W∆ ≤ (2a0 + a1)λ‖∆A‖1

≤ (2a0 + a1)λ
√
s0‖∆A‖2

≤ (2a0 + a1)2λ2s0/κ.

Therefore
√

(β̂ − β?)>W(β̂ − β?) ≤ (2a0 + a1)λ
√
s0/κ.

Remark. Negahban et al. (2012) established a similar error bound for a more
general loss function L(β) and a certain type of penalty function R(β) without the
linear constraint. They assume the loss function L(β) is convex and differentiable,
and satisfies the restricted strong convexity (RSC) condition. The penalty function
R(β) satisfies the decomposable condition. In our case, the quadratic loss 1

2
β>Wβ−

q>β satisfies the RSC condition. However, the folded-concave penalty functions do
not satisfy the decomposable condition. By local linear approximation, we replace
the folded concave penalty by weighted L1 penalty, which satisfies the decomposable
condition. Furthermore, we allow linear equality constraint imposed on β.

Next, we establish the strong oracle property of the LLA estimator. Let

W =

(
WAA WAAc

WAcA WAcAc

)
, q =

(
qA

qAc

)
, C =

(
CA CAc

)
. (C.3)

The oracle estimator is the estimator that we know the true support of β? in
advance. Define the oracle estimator as β̂

(o)
= (β̂

(o)

A ,0), where β̂
(o)

A is the solution
to the following problem

arg min
βA

1

2
β>AWAAβA − q>AβA

s.t. CAβA = b.

(C.4)

If WAA is non-singular, we can derive the closed form solution of the oracle
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estimator. As a result, we have β̂
(o)

A = W−1
AA(qA −C>Aγ), where

γ = (CAW−1
AAC>A)−1(CAW−1

AAqA − b). (C.5)

To establish the strong oracle property, we further specify the following conditions

(C.B.1) (minimal signal condition) The minimal signal of β? satisfies

min
j∈A
|β?j | > (a2 + a3)λ. (C.6)

(C.B.2) There exists a r × 1 vector u such that

‖WAcβ̂
(o)

+ C>Acu‖∞ ≤ a0λ, (C.7)

where WAc = (WAcA WAcAc).

Theorem C.2 (Strong oracle property). Let β̂(λ) be the LLA estimator to (3.7)
with parameter λ, under the conditions of Theorem C.1 and conditions (C.B.1) -
(C.B.2) hold, then the LLA estimator β̂(λ) equals to the oracle estimator

β̂(λ) = β̂
(o)
. (C.8)

Proof. By definition, β̂(λ) = arg minβ:Cβ=b Qλ(β|β̂
(1)

), where

Qλ(β|β̂
(1)

) =
1

2
β>Wβ − q>β +

p∑
j=1

p′λ(|β̂
(1)
j |)|βj| (C.9)

Since the objective function Qλ(β|β̂
(1)

) is a convex function of β, the KKT condition
is necessary and sufficient for characterizing the minimum. To verify that β̂

(o)
is

the minimizer of Qλ(β|β̂
(1)

), it is sufficient to show that there exists a vector u

such that

w>(j)β̂
(o)
− qj + sgn(β

(o)
j )p′λ(|β̂

(1)
j |) + u>c(j) = 0, j ∈ A, (C.10)

and
|w>(j)β̂

(o)
− qj + u>c(j)| ≤ a0λ, j ∈ Ac. (C.11)
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where w>(j) is the j-th column of W, c(j) is the j-th column of C and qj is the j-th
element of q.

We first verify (C.10). Note that with the initial value 0, we have β̂
(1)

=

arg minβ:Cβ=bQτλ(β|0). From the proof of Theorem C.1, we know ‖β̂
(1)
−β?‖∞ ≤

‖β̂
(1)
−β?‖2 ≤ a2λ and thus |β̂j − β?j |∞ ≤ a2λ for all j ∈ A. By the minimal signal

condition, we have |β̂(1)
j | > a3λ for j ∈ A and therefore p′λ(|β̂

(1)
j |) = 0 for j ∈ A.

Note that β̂
(o)

A is the solution to (C.4), then β̂
(o)

A satisfies its KKT condition, that
is, there exists a vector u such that

WAAβ̂
(o)

A − qA + C>Au = 0. (C.12)

(C.12) implies that for all j ∈ A, we have

w>(j)β̂
(o)
− qj + v>c(j) = 0. (C.13)

Therefore (C.10) holds. (C.11) is implied by condition (C.7), which completes the
proof.
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Appendix D|
Central Limit Theorem for Mar-
tingale Difference

Definition D.1. A stochastic process {Xn, n ≥ 1} is a martingale if

(i) E(|Xn|) ≤ ∞ for all n and

(ii) E(Xn+1|X1, . . . , Xn) = Xn.

Definition D.2. A stochastic process {Xn, n ≥ 1} is a martingale difference if

(i) E(|Xn|) ≤ ∞ for all n and

(ii) E(Xn+1|X1, . . . , Xn) = 0.

From the definitions above, if X1, X2, . . . is a martingale difference, then the
partial sum Sn =

∑n
i=1 Xi is a martingale. Next we state a lemma on the central

limit theorem for martingale difference. This lemma is a special case of Theorem
3.2 in Hall and Heyde (2014).

Lemma D.1. Let X1, . . . , Xn be a sequence of martingale difference and

E(max
i
|Xi|)→ 0 and

n∑
i=1

X2
i

p→ σ2,

then Sn
d→ N(0, σ2), where Sn =

∑n
i=1 Xi.

Proof. The proof can be found in Hall and Heyde (2014).
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