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Abstract

Sculptured thin films (STFs) are unidirectionally nonhomogeneous, anisotropic nanoma-

terials comprising parallel nanowires of tailored morphology. The nanowire morphology

of STFs is exploited to evoke remarkable optical phenomenons of technological interest.

To couple the characteristic optical responses of volume gratings and diffraction gratings

in the STF architecture, slanted chiral STFs are proposed and optically characterized in

this thesis.

The objective of this thesis is to theoretically establish an optical framework for slanted

chiral STFs. This objective is achieved by investigating the optical responses of slanted

chiral STFs to several types of excitation sources, such as plane waves, optical beams, and

dipoles. These studies would also help integrate slanted chiral STFs with semiconductor

chips used in the electronics industry.

First, the response of slanted chiral STFs to plane waves is investigated by developing a

robust numerical procedure involving the rigorous coupled–wave analysis. The prominent

feature of the planewave response is the partial exhibition of the circular Bragg phe-

nomenon in a nonspecular reflection mode and in its diminishment and even elimination

by a Rayleigh–Wood anomaly.

Next, the optical response of a slanted chiral STF with a central twist defect is explored,

numerically as well as analytically. Due to the twist defect, wave resonance occurs in a

localized fashion in the Bragg regime. A remarkable crossover phenomenon is found in

slanted chiral STFs for the localization of wave resonance: When the slanted chiral STF is

relatively thin, a co–handed reflectance hole occurs in the Bragg regime; as the thickness

increases, the co–handed reflectance hole diminishes to vanish eventually, and is replaced

by a cross–handed transmittance hole. A coupled–wave theory is employed to derive an

approximate but closed–form solution for axial wave propagation in chiral STFs. The

crossover phenomenon can be harnessed for the design of ultra–narrowband optical filters.
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Finally, the optical responses of slanted chiral STFs to both optical beams and dipolar

radiations are examined, which are a step closer to practical applications. An optical beam

is represented as an angular spectrum of plane waves, while dipolar radiation is formulated

in terms of spectral dyadic Green functions. Lateral shifts of optical beams on reflection by

slanted chiral STFs are computed and characterized, with emphasis on the Goos–Hänchen

shift. Being comparable with the dimensions of nanomaterials, these lateral shifts are too

important to be neglected in nanotechnology. The radiation patterns of Beltrami dipolar

sources in the presence of slanted chiral STFs are presented, to elucidate the spatial

signature of the circular Bragg phenomenon.

Potential applications of slanted chiral STFs are suggested in this thesis as optical beam-

splitters and couplers, nanoband and sub–nanoband spectral–hole filters, and biosensors.
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Nontechnical Abstract

Sculptured thin films (STFs) are a class of nanomaterials that emerged during the 1990s

from the widely used columnar thin films. The microstructure of an STF is an assembly

of virtually identical, curved, and parallel nanowires with diameter 10–100 nm. A wide

variety of two–dimensional and three–dimensional nanowire morphologies can nowadays

be realized on large–area substrates. Being porous, STFs contain voids of characteristic

shapes and sizes. As these voids can be filled with different materials, STFs can function in

many different ways and for many different applications in optics and biotechnology. For

example, STFs have been designed, fabricated, and tested to filter out selected frequen-

cies of light, change the handedness of light, and optically sense infiltration by moisture.

Research on using STFs as biochemical sensors, frequency–tunable lasers, optical pulse–

shapers, and transmission–inhibition materials is also occurring.

When the nanowires of a STF are shaped as helixes, the film possesses the property of

structural handedness, also known as chirality. Light can also be handed. The attraction

of chiral STFs is attributed to the circular Bragg phenomenon displayed by them. Briefly,

normally incident light is mostly reflected within a certain wavelength–regime when it

has the same handedness as that of the chiral STF; while reflection is little when the

handednesses of light and the chiral STF are opposite to each other.

The helical nanowires of a chiral STF stand upright on a substrate. Therefore, the

optical periodicity of a chiral STF is unidirectional — along the normal to the substrate

plane. It appears possible to fabricate a chiral STF with its helical nanowires slanted at

an angle to the normal to the substrate plane. In this way, a slanted chiral STF is formed

with optical periodicity both perpendicular and parallel to the substrate plane. The

optical importance of slanted chiral STFs lies in the coupling of the dual periodicities —

whereas the periodicity perpendicular to the substrate plane gives rise to the circular

Bragg phenomenon, the periodicity parallel to the substrate plane leads to the optical
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response being spatially multiplexed and discrete.

The objective of this thesis is to theoretically establish an optical framework for slanted

chiral STFs. This objective is achieved by investigating the optical responses of slanted

chiral STFs to several types of excitation sources, such as plane waves, optical beams, and

dipoles. These studies would help integrate slanted chiral STFs with semiconductor chips

used in the electronics industry.

First, the response of slanted chiral STFs to plane waves is investigated by developing

a robust numerical procedure for reflection and transmission calculations. The prominent

feature of the planewave response is exhibited by the circular Bragg phenomenon in a non-

specular mode — that is, a normally incident co–handed plane wave is obliquely reflected

for the most part, when the circular Bragg phenomenon occurs.

Next, the optical response of a slanted chiral STF with a central twist defect is explored.

The central twist defect is introduced into the slanted chiral STF by purposely rotating

its upper half by an angle about the helical axis of nanowires in relation to its lower

half. Due to the twist defect, wave resonance occurs in a very narrow regime, i.e., it is

localized within the wavelength–regime wherein the circular Bragg phenomenon occurs.

Additionally, there is a crossover phenomenon associated with the localization of wave

resonance by chiral STFs: The localization is seen as a hole in the reflection spectrum

when the slanted chiral STF is relatively thin, but as a hole in the transmission spectrum

when the thickness is large. This remarkable crossover phenomenon is mathematically

elucidated, and can be harnessed for the design of ultra–narrowband optical filters.

Finally, the optical responses of slanted chiral STFs to both optical beams and dipolar

radiations are examined, which are a step closer to practical applications. In general, an

optical beam is laterally shifted on reflection. Particular interest arises in the so–called

Goos–Hänchen shift which is the lateral shift of optical beam when it is totally reflected.

Lateral shifts of optical beam on reflection by slanted chiral STFs are computed, with
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emphasis on the Goos–Hänchen shift. Being comparable with the dimensions of nano-

materials, these lateral shifts are too important to be neglected in nanotechnology. The

radiation pattern of dipolar source in the presence of the slanted chiral STF is presented,

which expresses the circular Bragg phenomenon in the coordinate space.

Potential applications of slanted chiral STFs are suggested in this thesis as optical

beamsplitters and couplers, spectral–hole filters, and biochemical sensors.
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Glossary of Important Symbols

a
(n)
L , a

(n)
R Complex–valued amplitudes related to LCP and RCP components of

order n of incident field

[A], [R], [T] Column vectors defined from a
(n)
L,R, r

(n)
L,R and t

(n)
L,R

b Local birefringence

d Thickness of a chiral STF

d′ uz · r′ = location of a point dipolar source

d
‖
Br, d

⊥
Br In–plane and out–of–plane lateral shift on Bragg reflection

d
GH‖
L , dGH⊥

L In–plane and out–of–plane components of dGH
L

d
(n)‖
L , d

(n)⊥
L In–plane and out–of–plane components of d

(n)
L

d
GH‖
R , dGH⊥

R In–plane and out–of–plane components of dGH
R

d
(n)‖
R , d

(n)⊥
R In–plane and out–of–plane components of d

(n)
R

dGH
L Goos–Hänchen shift vector of LCP beam

d
(n)
L Lateral shift vector of order n of LCP beam

dGH
R Goos–Hänchen shift vector of RCP beam

d
(n)
R Lateral shift vector of order n of RCP beam

Diag[.][m,m′] Diagonal matrix

D, B Electric and magnetic displacement phasors
[

D̃
]

Diagonal matrix containing eigenvalues of
[

P̃
]

[

D̃
]

σ
Diagonal matrix containing eigenvalues of

[

P̃
]

σ
[

D̃
u

]

,
[

D̃
l

]

Upper and lower diagonal submatrixes of
[

D̃
]

[

D̃
u

]

σ
,
[

D̃
l

]

σ
Upper and lower diagonal submatrixes of

[

D̃
]

σ

e Auxiliary electric field phasor

ei, hi Incident electromagnetic field vectors

e
(n)
r , h

(n)
r Reflected electromagnetic field vectors of order n
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continued

e
(n)
t , h

(n)
t Transmitted electromagnetic field vectors of order n

E, H Electric and magnetic field phasors

Ei, Hi Incident electromagnetic field phasors

Er, Hr Reflected electromagnetic field phasors

E
(n)
r , H

(n)
r Reflected electromagnetic field phasor of order n

Et, Ht Transmitted electromagnetic field phasors

E
(n)
t , H

(n)
t Transmitted electromagnetic field phasor of order n

Ex,y,z Components of E for axial wave propagation

E
(n)
x,y,z, H

(n)
x,y,z Floquet harmonic components of E, H

Ẽ
(n)
x,y,z, H̃

(n)
x,y,z Functions defined from E

(n)
x,y,z, H

(n)
x,y,z

[Eσ(z)], [Eσ(z)] Column vectors defined from E
(n)
x,y,z , H

(n)
x,y,z

[E⊥(z)] 2–column vector containing Ex and Ey
[

Ẽσ(z)
]

,
[

Ẽσ(z)
]

Column vectors containing Ẽ
(n)
x,y,z, H̃

(n)
x,y,z

[

Ẽ⊥(z)
]

2–column vector related to [E⊥(z)]

[f (z)] Column vector containing [Eσ(z)] and [Hσ(z)]
[

f̃(z)
]

Column vector containing
[

Ẽσ(z)
]

and
[

H̃σ(z)
]

[

G(z)
]

Square matrix function related to
[

G̃
]

[

G(z)
]

σ
Square matrix function related to

[

G̃
]

σ
[

G̃
]

Square matrix containing eigenvectors of
[

P̃
]

[

G̃
]

σ
Square matrix containing eigenvectors of

[

P̃
]

σ

G
0

Free–space dyadic Green function (DGF)

G
L0

, G
R0

DGFs defined from G
0
(r, r′)

G
L
, G

R
DGFs in the presence of a slanted chiral STF

G
Lr

, G
Rr

Reflection DGFs

G
Lt

, G
Rt

Transmission DGFs
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continued

h = ±1 Structural handedness parameter

Hx,y,z Components of H for axial wave propagation

[H′
⊥(z)] 2–column vector containing η0Hx and η0Hy

i
√
−1

[

I
]

m
m×m identity matrix

I 3 × 3 identity dyadic

J(r′), K(r′) Source electric and magnetic density phasors

k k0n̄

k0 Free–space wavenumber

kδ k0δn

k
(n)
x , k

(0)
y , k

(n)
z Coordinate components of k

(n)
±

k
(0)
+ Wavevector of incident plane wave

k
(n)
± Wavevector of the nth–order Floquet harmonic
[

K
x

]

Diagonal matrix containing k
(n)
x

L
(n)
± , R

(n)
± Circular polarization vectors of order n

n Floquet harmonic order

n̄
√
ǭ

nhs Refractive index of ambient dielectric medium

Na,b,c Absorption linewidths

Nd d/Ω

Nco
d Crossover value of Nd

Nt Maximum harmonic order for computation; |n| ≤ Nt

pa,b,c Oscillator strengths
[

P̃
]

Kernel matrix
[

P̃
]

σ
Different values of kernel matrix
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continued

r
(n)
L , r

(n)
R Complex–valued amplitudes related to LCP and RCP components of

order n of reflected field

rLL, etc. Reflection coefficients for axial wave propagation

r
(n)
LL , etc. Reflection coefficients of order n

r, r′ Position vectors

r̃, r − duz

R r − r′

R RLL, etc. Reflectances for axial wave propagation

R
(n)
LL , etc. Reflectances of order n

s(n), p
(n)
± Linear polarization vectors of order n

s
y
, s

z
Rotation dyadics for slanted chiral STFs

S ∈
{

S
x
,S

y
,S

z

}

Rotation dyadic

t Time

t
(n)
L , t

(n)
R Complex–valued amplitudes related to LCP and RCP components of

order n of transmitted field

tLL, etc. Transmission coefficients for axial wave propagation

t
(n)
LL , etc. Transmission coefficients of order n

TLL, etc. Transmittances for axial wave propagation

T
(n)
LL , etc. Transmittances of order n

us Orientation vector of a dipole

ux,uy,uz Unit Cartesian vectors

ux̄,uȳ,uz̄ Unit Cartesian vectors for beam incidence

uτ ,un,ub Unit Cartesian vectors to describe nanowire morphology

uℓ Unit vector parallel to the axis of nonhomogeneity

WL, WR Beltrami source configurations
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continued
[

W±(z)
]

4 × 4 transfer matrix for axial wave propagation

(x, y, z) Cartesian coordinate system

(x̄, ȳ, z̄) Cartesian coordinate system for optical beam
[

Y±
e

]

,
[

Y±
h

]

Square matrixes derived from L
(n)
± , R

(n)
± , s(n) and p

(n)
±

α Slant angle of a (slanted) chiral STF

αn, α̃n Saddle points along the SDPs of k
(0)
x

α∞ Matrix weight

α, β Relative magnetoelectricity dyadics

α
ref

, β
ref

Reference relative magnetoelectricity dyadics

β (k − π/Ω)/kδ

β0, β̃0 Saddle points along the SDPs of k
(0)
y

γn +
√

k2
0 − α2

n − β2
0

γ̃n +
√

k2
0 − α̃2

n − β̃2
0

δ(.) Dirac delta function

δn δǫ/2n̄

δn,n′ Kronecker delta

δǫ (ǫd − ǫc)/2

ǫ0 Free–space permittivity

ǫa,b,c Reference relative permittivity scalars

ǫd Parameter derived from ǫa, ǫb and χs

ǭ (ǫd + ǫc)/2

ǫ
(n)
σσ′ Components of ǫ(n)

ǫ Relative permittivity dyadic

ǫ
ref

Reference relative permittivity dyadic

ǫ(n) Constant–valued dyadic derived from ǫ

continued on next page

xvii



continued
[

ǫ
perp

(z)
]

2 × 2 matrix defined from ǫ for axial wave propagation
[

ǫ
σσ′

]

Toeplitz matrix defined from ǫ(n)

ζx, ζy, ζz Rotational angles to describe morphology

ζρ Polar angle of observation

η0 Intrinsic impedance of free space

θb
i , ψ

b
i Mean polar and azimuthal angles of beam incidence

θp
i , ψ

p
i Polar and azimuthal angles of planewave incidence

θb
ic Critical value of θb

i upon total reflection

θp
ic Critical value of θp

i upon total reflection

ϑx, ϑy, ϑz Variables related to wavevector

κx, κz κx = 2π
Λx

, κz = 2π
Λz

[

κ
z

]

Diagonal matrix defined from κz

λ0 Free–space wavelength

λBr
0 Center–wavelength of Bragg regime

λBr
0CWT

Center–wavelength of Bragg regime predicted by CWT

λp
0 Peak wavelength

λp
0CWT

Peak wavelength predicted by CWT

λRW
0n

Free–space wavelength of Rayleigh–Wood anomaly of order n

λa,b,c Resonance wavelengths

λhs Wavelength in the medium with refractive index nhs

µ0 Free–space permeability

µ Relative permeability dyadic

µ
ref

Reference relative permeability dyadic

ν0 Distance between origins of two coordinate systems

σ, σ′ Dummy indexes

continued on next page

xviii



continued
[

τ
]

,
[

τ̂
]

4 × 4 transmission matrixes for axial wave propagation

φ Twist angle

ϕ Phase of planewave reflection coefficient

χs Tilt angle

ω Angular frequency

ωa,b,c Resonant frequencies

∆λBr
0 FWHM bandwidth of Bragg regime

∆i First moment of energy density of Ei

∆
(n)
r First moment of energy density of E

(n)
r

[

Θ(b)
]

Perturbing term of
[

τ̂
]

Λx, Λz Equivalent periods along x and z axes

Ψ Angular–spectrum function

Ω Structural half–period

[A ] 2–column vector containing amplitudes of the LCP and RCP

components of incident field for axial wave propagation

[R ] 2–column vector containing amplitudes of the LCP and RCP

components of reflected field for axial wave propagation

[T ] 2–column vector containing amplitudes of the LCP and RCP

components of transmitted field for axial wave propagation

R
(n)
L

, R
(n)
R

Reflection dyadics

T
(n)
L

, T
(n)
R

Transmission dyadics

R
3 3D real space

Z Set of all integers

[ 0 ]m m–column null vector
[

0
]

m
m×m null matrix
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|| . || L∞–norm of a matrix
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Chapter 1

Introduction

1.1 Sculptured Thin Films

1.1.1 A General Picture

The concept of sculptured thin films (STFs) and an associated technology for optics

emerged during the 1990s from the widely used columnar thin films (CTFs) [1]–[3]. The

ideal morphology of CTFs consists of almost identical, straight, and parallel nanowires of

elliptical cross–section. The nanowires in a STF are not straight, but are made to grow

as curves that veer away from the substrate [4]–[6], as shown in Figure 1.1. The nanowire

diameters range from about 10 to 100 nm, and a wide variety of such morphologies are

realizable through instantaneous variation in the growth direction of nanowires during

physical vapor deposition (PVD) [7, 8].

Two canonical classes of STF morphologies — nematic and helicoidal — are obtainable

by choosing the proper axis of rotation of the substrate during PVD. Nematic morpholo-

gies are two–dimensional (2D), ranging from the simple chevrons to the more complex C

and S shapes. Helicoidal morphologies are three–dimensional (3D), including helical and
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superhelical [9]. More complex morphologies and multisection STFs, in which the chemical

composition or/and the nanowire shape varies from section to section along the thickness

direction, can also be realized on large–area substrates [10, 11]. The two–section STF,

illustrated in Figure 1.2 as an example, comprises helical nanowires in the lower section

and chevronic nanowires in the upper section.

A wide variety of materials can be used for PVD of STFs, ranging from insulators (e.g.,

oxides and fluorides) to semiconductors (e.g., crystalline silicon) to metals (e.g., aluminum

and chromium). This diversity reflects the low degree of sensitivity of morphology obtained

by PVD to chemical composition. In fact, as predicted by the structure zone model

of Thornton [12], the morphology obtained through PVD is largely a consequence of

obeying simple geometric rules of atomic aggregation, when little or no surface diffusion

is involved — which explains why essentially similar morphologies can be generated from

a broad range of material sources.

Being porous, STFs contain voids of characteristic shapes and sizes. As these voids can

be filled with different materials, STFs can function in many different ways. For examples,

the fabrication of low–permittivity nanocomposites for the microelectronics industry has

been suggested using STF technology [13], and proof–of–concept optical fluid sensors have

been designed and fabricated to exploit the textured porosity of STFs [14, 15].

In order to fully harness STF technology, an electromagnetic model of STFs needs to

be established with the capability to account for structure–property relationships. In the

macroscopic sense, a STF is a unidirectionally nonhomogeneous, bianisotropic continuum

in the optical regime. In the microscopic sense, a STF is viewed as a composite material

with at least two different material phases molded into the sculptured morphology. The

relationship between the nanostructure and the macroscopic constitutive properties needs

to be quantitatively delineated and understood. For that purpose, a nominal model has

been developed to determine the constitutive dyadics of STFs from local homogenization
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of electrically small ellipsoidal particles of different material phases [16]–[19]. Intelligent

design and fabrication of STF devices are made possible by coupling this nominal model

with experimentation [18].

1.1.2 Growth of STFs

In general, STFs are fabricated by directional PVD methods, such as evaporation in high–

vacuum conditions or by sputtering at intermediate–vacuum conditions. The schematic

of a basic system for PVD of STFs on planar substrates is presented in Figure 1.3. There

are two fundamental axes of rotation of the substrate: one (z axis) is perpendicular to the

substrate plane (xy plane), and the other (y axis) is parallel to the substrate plane. The

incident vapor flux makes an oblique angle χv to the substrate plane.

The growth of a STF starts with the process of nucleation and involves continuous

renucleation thereafter. These processes are controlled through the proper choice of PVD

parameters — such as energy of bombarding particles, substrate temperature, and χv.

Once the growth reaches a steady state, the nanowire shapes can be tailored by control-

ling the rotation of substrate. For example, nematic STFs are attained by rotating the

substrate about the y axis [20], while helicoidal STFs are formed with the substrate ro-

tation about the z axis [21, 22]. The mass density of helicoidal STFs is expected not to

vary in the thickness direction since χv is fixed during growth, so long as the nanowires

attain a steady–state diameter in the early nucleation and growth stages. By changing the

rotational speed and the orientation of the substrate sequentially without halting deposi-

tion, multisection STFs have been fabricated with cascaded morphologies in the thickness

direction [10, 11].
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1.1.3 Canonical Delineation of STFs

The macroscopic conception of STFs in the optical regime is as unidirectionally nonho-

mogeneous, bianisotropic continuums, with the linear constitutive relations

D(r, ω) = ǫ0[ǫ(z, ω) · E(r, ω) + α(z, ω) · H(r, ω)]

B(r, ω) = µ0[β(z, ω) ·E(r, ω) + µ(z, ω) · H(r, ω)]











(1.1)

indicating that the axis of nonhomogeneity is parallel to the z axis. In (1.1) and hereafter,

E(r, ω) and H(r, ω) are the electric and magnetic field phasors, respectively; D(r, ω) and

B(r, ω) are the electric and magnetic displacement phasors, respectively; an exp(−iωt)

time–dependence is implicit, with i =
√
−1, ω as the angular frequency of light, and t as

time; r = xux + yuy + zuz is the position vector, with ux, uy and uz as unit cartesian

vectors; and ǫ0 = 8.854×10−12 Fm−1 and µ0 = 4π×10−7 Hm−1 are the permittivity and

permeability of free space, respectively. The electric and magnetic properties of STFs are

expressed through the relative permittivity dyadic ǫ(z, ω) and the relative permeability

dyadic µ(z, ω), respectively; while the magnetoelectric properties are expressed through

the relative magnetoelectricity dyadics α(z, ω) and β(z, ω). These four constitutive dyadics

in (1.1) have to be modeled with guidance from morphology.

In the macroscopic sense, the STF morphology is delineated by a unaxially rotational

dyadic S(z), which is a composition of the following three elementary rotational dyadics:

S
x
(z) = uxux + (uyuy + uzuz) cosζx(z) + (uzuy − uyuz) sinζx(z) , (1.2)

S
y
(z) = uyuy + (uxux + uzuz) cosζy(z) + (uzux − uxuz) sinζy(z) , (1.3)

S
z
(z) = uzuz + (uxux + uyuy) cosζz(z) + (uyux − uxuy) sinζz(z) . (1.4)

Here, ζx(z), ζy(z) and ζz(z) are angular functions indicating rotations about the x, y and

z axes, respectively. Accordingly, the linear constitutive relations of a single–section STF
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are set up as follows:

D(r, ω) = ǫ0S(z) · [ǫ
ref

(ω) · ST(z) ·E(r, ω) + α
ref

(ω) · ST(z) · H(r, ω)]

B(r, ω) = µ0S(z) · [β
ref

(ω) · ST(z) ·E(r, ω) + µ
ref

(ω) · ST(z) ·H(r, ω)]















. (1.5)

The dyadics ǫ
ref

(ω), etc., are termed reference relative constitutive dyadics that are spa-

tially invariant, and the superscript T denotes the transpose. The constitutive equations

(1.5) reflect the fact that the morphologies of a single–section STF in any two planes

z = z1 and z = z2 are exactly interchangeable by a suitable rotation.

Canonical forms of STFs have been delineated. For example, by choosing S(z) = S
y
(z),

(1.5) describes the canonical class of STFs with nematic morphology. The choice of S(z) =

S
z
(z) gives rise to the canonical class of STFs with helicoidal morphology. Helicoidal

STFs are exemplified by chiral STFs for which ζz(z) = ±πz/Ω in (1.4), where 2Ω is

the structural period, and the +/− signs indicate the structural right/left–handedness

of the film. More complicated specifications of S(z) are possible, as for the STFs with

superhelical morphology [9].

On account of the inclination of the nanowires with respect to z axis, it is appropriate

to delineate ǫ
ref

(ω), etc., in terms of the reference unit vectors

uτ = uxcosχs + uzsinχs

un = −uxsinχs + uzcosχs

ub = −uy























, (1.6)

where χs is called the tilt angle. The specification

σ
ref

(ω) = σa(ω)unun + σb(ω)uτuτ + σc(ω)ubub , σ ∈ (ǫ, α, β, µ) (1.7)

is in accord with the local orthorhombicity of STFs, as illustrated in Figure 1.4. In fact, if

the nanowire cross–section is circular, σa(ω) = σc(ω) and the unit vectors un and ub can

be chosen arbitrarily in the cross–section plane of the nanowire (Figure 1.4(a)). When the

nanowire cross–section is elliptical, σa(ω) 6= σc(ω) and the unit vectors un and ub should
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be along the two principal axes of the cross–section ellipse (Figure 1.4(b)). More generally,

the nanowire cross–section can be of any convex shape defined by

rs = U(θ) · ur(θ) . (1.8)

Here, ur(θ) is the radial unit vector in a two–dimensional polar coordinate system and U(θ)

is the 2×2 shape dyadic which is assumed to real symmetric because of the convexity of the

cross–section. Clearly, the determination of the in–plane dyadic σ
||
ref (ω) — which is the

projection of σ
ref

(ω) in the nanowire cross–section plane — through (1.8) can be achieved

by a local homogenization procedure (e.g., Bruggeman formalism) detailed elsewhere [16]–

[19]. However, because U(θ) is real symmetric, it can be shown that σ
||
ref (ω) should be a

symmetric 2 × 2 dyadic which can be diagonalized as

σ||
ref

(ω) = V(ω) · σ||
diag

(ω) · VT(ω) , σ ∈ (ǫ, α, β, µ) . (1.9)

Here, σ
||
diag(ω) is the 2×2 diagonal dyadic whose two nonzero entries determine the values

of σa(ω) and σc(ω); and V(ω) is the 2 × 2 orthogonal dyadic comprising the normalized

eigenvectors of σ
||
ref (ω). By choosing the in–plane unit vectors un and ub as the two

normalized eigenvectors contained in V(ω), σ
ref

(ω) can still be expressed as per (1.7),

which is tantamount to the local orthorhombicity of STFs in general (Figure 1.4(c)). By

choosing σa(ω) 6= σb(ω) 6= σc(ω) in general for σ
ref

(ω), the density anisotropy occurring

during PVD is thus also taken into account [1].

For magneto–optics, gyrotropic terms such as iσg(ω)uτ × I can be included in (1.7),

where I is the identity dyadic [23].

The Post constraint

Trace

{

µ−1

ref
(ω)

[

β
ref

(ω) +
ǫ0
µ0
α

ref
(ω)

]}

≡ 0 (1.10)

is mandated by the Lorentz–Heaviside visualization of electromagnetic theory [24]. If

ǫ
ref

(ω) = ǫT
ref

(ω), µ
ref

(ω) = µT

ref
(ω), and α

ref
(ω) = −βT

ref
(ω), the STF is Lorentz–
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reciprocal [25]. The simplest form of STFs is the purely dielectric one, so that µ
ref

(ω) = I,

whereas both α
ref

(ω) and β
ref

(ω) are null dyadics.

1.1.4 From Nanostructure to Continuum

The constitutive relations (1.5) are set by viewing any STF as a continuous medium. The

nanoscale information regarding morphology and composition needs to be reflected in this

macroscopic model. As any STF is a composite material with at least two different material

phases, the constitutive dyadics ǫ(z, ω), etc., can be modeled through the commonly used

procedure of homogenization, so long as the particulate dimensions of all material phases

are much smaller than the wavelength of incident light [26]. However, as a STF is effectively

nonhomogeneous in the z direction, the homogenization procedure must be implemented

in the localized fashion, i.e., for any thin slice of the STF perpendicular to the z axis.

But any two slices of a single–section STF are in fact identical, except for a rotational

transformation captured by S(z). Therefore, the local homogenization procedure for the

STF can be performed for ǫ
ref

(ω), etc., but leading to the construction of ǫ(z, ω), etc.

In a nominal model that has been developed during the last five years [16]–[19], the

nanowires as well as interparticle voids/fillings in a STF are represented as parallel strings

of electrically small ellipsoidal particles. Both ellipsoidal shape factors and the volumetric

proportions of the material phases must be chosen for the implementation of local homog-

enization procedure. Once an algorithm for the macroscopic properties of the STF has

been set up, calibration of this nominal model is possible by comparison of the predicted

optical responses against measured data [18].
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1.2 Chiral STFs

Chiral STFs are a subclass of helicoidal STFs that are periodically nonhomogeneous along

the z axis. It is easy to fabricate them with periods specified between 50 nm and 2 µm. A

of chiral STF is described by specifying S(z) = S
z
(z) in (1.5), along with ζz(z) = ±πz/Ω.

Modeled as purely dielectric substances, these have been the most popular STFs for optics

till date.

1.2.1 Circular Bragg Phenomenon

The attraction of chiral STFs is attributed to the circular Bragg phenomenon evinced by

them [9]. Briefly, a structurally right/left–handed chiral STF only a few periods thick

reflects almost completely normally incident right/left circularly polarized (RCP/LCP)

plane waves with wavelength lying in the so–called Bragg regime; while the reflection of

normally incident LCP/RCP plane waves in the same regime is very little. A schematic

of the circular Bragg phenomenon is presented in Figure 1.5.

Certainly, the circular Bragg phenomenon occurs for oblique incidence as well, but it

is greatly influenced by the directionality of planewave incidence [27, 28]. For example,

the Bragg regime shifts to shorter wavelengths as the polar angle of planewave incidence

θp
i (with respect to the z axis) increases in absolute value. The width of Bragg regime

also decreases with increasing |θp
i |. The azimuthal angle of planewave incidence ψp

i (eith

respect to the x axis in the xy plane) does not affect the Bragg regime strongly, but it

does significantly affect properties of optical rotation and ellipticity in the Bragg regime.

There is also a decrease in discrimination between LCP and RCP plane waves when |θp
i |

is very large [29].

A simple explanation of circular Bragg phenomenon for chiral STFs is provided by the

application of coupled–wave theory for normal incidence [30, 31]: When the incident wave-
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length is approximately equal to the optical period of the dielectric nonhomogeneity, the

morphology of a chiral STF acts as a scalar Bragg grating for co–handed circularly polar-

ized (CP) plane waves, but not for cross–handed circularly polarized plane waves. Rather,

the chiral STF acts as a homogenous, isotropic, dielectric medium in the latter case. This

discrimination of circularly polarized plane waves by chiral STFs can be harnessed in many

different ways, so that optical applications of chiral STFs are abundant.

1.2.2 Optical Applications

Many optical applications of chiral STFs have been proposed and even realized to date.

By utilizing the circular Bragg phenomenon, chiral STFs as circular polarization filters

have been theoretically examined and then experimentally realized [9, 33]. A handedness–

selective light inverter, which comprises a chiral STF and a CTF functioning as a half

waveplate, was also designed and then fabricated and tested [34, 35]. By introducing

either a layer defect or a twist defect in the middle of a chiral STF, narrowband spectral–

hole filters have been designed and implemented [15, 36, 37]. The operational free–space

wavelength of these filters is located in the Bragg regime for normal incidence, and is

dependent on the nature of the defect.

Piezoelectrically tunable lasers made of dye–doped polymer chiral STFs have been

recently proposed as a result of theoretical analysis of piezoelectric manipulation of chiral

STFs [38]. Time–domain exhibition of the circular Bragg phenomenon is being studied,

which would lead to the use of chiral STFs to shape optical pulses in optical communication

systems [39, 40]. Being porous, chiral STFs are also useful for optically sensing humidity

and various chemicals [15, 41, 42].
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1.3 Slanted Chiral STFs

1.3.1 Genesis

The helical nanowires of a chiral STF stand upright on a substrate. Therefore, the optical

periodicity of a chiral STF is unidirectional — along the normal to the substrate plane,

i.e., the z axis. A chiral STF can be viewed as a volume grating that consists of infinites-

imally thin dielectric sublayers. The constitutive properties are homogenous within each

sublayer, but vary periodically from sublayer to sublayer to form a chiral architecture.

The periodicity of the chiral architecture implies that a chiral STF is indeed a volume

grating, albeit different from the ones usually studied [43].

There exists another type of gratings of great importance in optics, however. These are

diffraction gratings [44]. The distinguishing feature of a diffraction grating is the periodic

variation of constitutive properties in a plane, often achieved by periodically corrugat-

ing a planar sheet. In consequence of illumination by a plane wave, the reflected, the

refracted, and the transmitted fields of a diffraction grating are discrete angular spec-

trums of propagating as well as evanescent plane waves — called the Floquet harmonics,

on account of their emergence from the Floquet–Bloch theorem [45]. As either the fre-

quency or the direction of incidence is altered, an evanescent Floquet harmonic of the

reflected/refracted/transmitted field may turn into a propagating one or vice versa, this

phenomenon being manifested as the so–called Rayleigh–Wood anomaly [44] in the remit-

tance (i.e., reflectance and transmittance) spectrums.

Clearly, the coupling of these two types of gratings (i.e., volume and diffraction grat-

ings) is likely to be rich in optical phenomenons and applications, the more so when the

volume grating is sensitive to circular polarization. A direct outcome of the coupling is

that the circular Bragg phenomenon would be affected by the nonspecular angular spec-

trums of diffraction as well as by the associated Rayleigh–Wood anomalies. In order to
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physically achieve this coupling, slanted chiral STFs were conceptualized for this thesis as

an extension of chiral STFs [46].

Morphologically, a slanted chiral STF comprises helical nanowires slanted at an angle

α 6= 0 to the normal to the substrate plane, as schematically illustrated in Figure 1.6. A

possible way to attain this morphology is by rotating the substrate with a variable angular

velocity during deposition [47, 48]. A slanted chiral STF will thus be unidirectionally and

periodically nonhomogeneous along an axis inclined, but not perpendicular to the substrate

plane.

Therefore, a slanted chiral STF is periodic along the z and the x axes as well. In order

to represent the slanted morphology, S(z) in (1.5) is replaced by

S(r) = s
y
(−α) · s

z
(r) , (1.11)

where

s
y
(α) = uyuy + (uxux + uzuz) cosα+ (uzux − uxuz) sinα (1.12)

is similar to S
y
(z), while

s
z
(r) = uzuz + (uxux + uyuy) cos

[π

Ω
(r · uℓ)

]

+ h(uyux − uxuy) sin
[π

Ω
(r · uℓ)

]

(1.13)

is similar to S
z
(z) except that the axis of nonhomogeneity is parallel to the unit vector

uℓ = sinαux + cosαuz . (1.14)

Therefore, s
z
(r) in (1.13) is a function of both x and z, and the structural handedness is

specified through the parameter h = ±1.

The constitutive relations of a single–section slanted chiral STF are thereby written as

D(r, ω) = ǫ0sy(−α) · s
z
(r) ·

[

ǫ
ref

(ω) · sT
z
(r) · sT

y
(−α) · E(r, ω)

+ α
ref

(ω) · sT
z
(r) · sT

y
(−α) · H(r, ω)

]

B(r, ω) = µ0s
T
y
(−α) · s

z
(r) ·

[

β
ref

(ω) · sT
z
(r) · sT

y
(−α) · E(r, ω)

+ µ
ref

(ω) · sT
z
(r) · sT

y
(−α) · H(r, ω)

]















































. (1.15)
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Clearly from (1.12) to (1.15), a slanted chiral STF couples the two types of gratings in

its constitutive properties, and the slant angle α 6= 0 totally controls this coupling. In

the remainder of the thesis, µ
ref

(ω) = I while α
ref

(ω) and β
ref

(ω) are null dyadics, for

simplicity as well as in accord with the dielectric nature of most optical films.

1.3.2 Optics of Slanted Chiral STFs

The basic feature of slanted chiral STFs is likely to be visualized best in terms of the

planewave response. The circular Bragg phenomenon may occur nonspecularly due to the

dual–periodicity in morphology. Affected by the slant angle α, the circular Bragg phe-

nomenon could become even tunable in both spectrum and direction; and many different

optical applications could arise.

Apart from the commonplace planewave excitation, finite sources of excitation (e.g.,

evanescent waves, nonparaxial optical beams, and point dipoles) are being widely used

in nano–optics research [49, 50]. While evanescent waves are essential to near–field op-

tics, oriented dipolar sources are useful for modeling nanoprobes in near–field scanning

microscopy as well as for near–field lithography in optoelectronics [51, 52]. Radiation

from these finite sources is likely to be responded by slanted chiral STFs in a distinctive

fashion that not only incorporates all the features displayed in analogy by planewave ex-

citation, but also encompasses optical phenomenons that would be new and valuable in

nanotechnology.

Furthermore, structural defects parallel to the substrate plane could be easily incor-

porated into the nanostructure of slanted chiral STFs. These structural defects generally

produce a wave resonance localized inside the Bragg regime or at its edges. Both fre-

quency and polarization characteristics of wave resonance have been harnessed for the

design of narrowband optical filters in chiral STFs [36, 37], and low–threshold lasers and

low–loss waveguides are also possible for being devised therefrom [53]–[55]. There is a
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crossover phenomenon associated with the localization of wave resonance in both chiral

STFs [56] and cholesteric liquid crystals (CLCs) [57]–[59]: The localization is seen as a co–

handed reflectance hole when the chiral structure is relatively thin, but as a cross–handed

transmission hole when the thickness is large. No doubt, this phenomenon would also be

found in slanted chiral STFs in the presence of some types of defects. Exploitation of the

crossover phenomenon for new devices is also possible, as exemplified by the design of a

superior filter by combining both layer and twist defects in a chiral STF [56].

1.4 Outline of Thesis

The main objective of this thesis is to couple the characteristic optical responses of volume

and diffraction gratings in the architecture of STFs. For that purpose, slanted chiral STFs

are proposed. Theoretical analyses of their optical responses to both plane waves and finite

sources are presented. A simple method to deal with beam propagation is to represent

an optical beam as an angular spectrum of propagating and evanescent plane waves. The

planewave response of slanted chiral STFs must then be characterized before analyzing

their responses to optical beams, dipolar sources, as well as other finite sources.

The remainder of this thesis is organized according to the following plan. Chapter 2

presents a theoretical treatment of planewave diffraction by slanted chiral STFs. By ex-

ploiting the periodicity along the axis of nonhomogeneity, a rigorous coupled–wave analysis

(RCWA) is undertaken to devise a numerical solution procedure. RCWA is chosen as the

solution tool chiefly because of its simplicity and its consistency with the structure of elec-

tromagnetic theory [60, 61]. It is commonly used for computation of planewave diffraction

by superlattices and diffraction gratings. However, the RCWA implementation in Chapter

2 has novel features for easier application to slanted chiral STFs.

The planewave response of a slanted chiral STF is presented in Chapters 3 and 4,
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respectively, under normal–incidence and oblique–incidence conditions. The distinctive

features of the circular Bragg phenomenon as displayed by a slanted chiral STF are con-

trasted with those of a chiral STF in Chapter 3. The effect of directionality of planewave

incidence on the circular Bragg phenomenon is discussed in Chapter 4.

The wave resonance in a slanted chiral STF with a central twist defect is presented in

Chapter 5, focusing on the crossover phenomenon as seen in the evolution of two types of

spectral holes in the Bragg regime.

Theoretically, the phenomenon of wave resonance in a chiral STF with a central 90◦–

twist defect is re–constructed in Chapter 6, but with an analytical approach. Based on

the coupled–wave theory (CWT), an approximate but closed–form solution for axial wave

propagation in a chiral STF is derived in terms of a 4× 4 CWT transmission matrix. The

crossover phenomenon due to a central 90◦–twist defect in a chiral STF is explained by

the spectral characteristics of transmission matrix. A similar explanation is expected hold

for a slanted chiral STF with a central twist defect.

The response of slanted chiral STFs to optical beams is dealt with in Chapter 7. Diffrac-

tion of 3D optical beams by slanted chiral STFs is formulated in terms of the spectral

superposition of planewave diffractions. The reflected/refracted/transmitted field is a dis-

crete spectrum of beams (each of which is an angular spectrum of plane waves) that are

tagged with different Floquet–harmonic orders. Lateral shifts of the reflected beams would

occur on Bragg reflection as well as on total reflection. For the latter case, the lateral shift

is named as the Goos–Hänchen shift [62]. Being comparable with the dimensions of na-

noengineered features, the Goos–Hänchen shift must not be neglected in nanotechnology

[63].

The electromagnetic interaction of dipolar sources with slanted chiral STFs is discussed

in Chapter 8. Dyadic Green functions (DGFs) are synthesized for reflection and trans-

mission by a slanted chiral STF irradiated by Beltrami dipolar sources. The technique of
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angular–planewave–spectrum representation is employed to facilitate calculation of radia-

tion patterns in the far–zone.

The results of these studies is briefly summarized in Chapter 9, which concludes this

thesis with a sketch of future research possibilities.
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Figure 1.1: Scanning electron micrograph of a chiral STF of silicon oxide. This thin film is

an assembly of parallel helical nanowires. (Courtesy: Mark W. Horn, Pennsylvania State

University)

Figure 1.2: Scanning electron micrograph of a two–section STF of silicon oxide. This thin

film comprises helical nanowires (3D) in the lower section and chevronic nanowires (2D)

in the upper section. (Courtesy: Mark W. Horn, Pennsylvania State University)
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Chapter 2

Rigorous Coupled–Wave Analysis

for Slanted Chiral STFs‡

Rigorous coupled–wave analysis (RCWA) is a relatively straightforward and semianalytical

technique for solution of the Maxwell postulates for planewave diffraction by superlattices

and diffraction gratings [60, 61]. It is a noniterative, deterministic technique utilizing a

state–variable approach, and provides a convergent solution in terms of infinite series of

Floquet harmonics without inherent numerical instabilities. A remarkable advantage of the

RCWA is its internal consistency: Many constraints, such as those of energy conservation

and reciprocity, are satisfied even with the truncation of the series of Floquet harmonics

[61].

In contrast to the ordinary diffraction gratings that are periodic parallel to the substrate

plane, a slanted chiral STF is periodic along an axis that is inclined to the substrate plane.

Therefore, RCWA for planewave diffraction by slanted chiral STFs must be implemented

in a different way than for ordinary procedures. Hence, the objective of this chapter is to

‡ This chapter is partly adapted from the following paper: F. Wang, A. Lakhtakia, “Lateral shifts of

optical beams on reflection by slanted chiral sculptured thin films”, Opt. Commun. 235 107–132 (2004).
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establish a robust implementation of RCWA for the planewave responses of slanted chiral

STFs.

2.1 Geometry of the Basic Problem

Let the region 0 ≤ z ≤ d be occupied by a slanted chiral STF, as shown in Figure 1.6,

while the half–spaces z ≤ 0 and z ≥ d are filled with a homogeneous, isotropic, and

dielectric medium of refractive index nhs. The general constitutive relations of a single–

section slanted chiral STFs have been specified in (1.15). However, the focus hereafter is

on dielectric slanted chiral STFs for which

D(r, ω) = ǫ0ǫ(r, ω) ·E(r, ω)

B(r, ω) = µ0H(r, ω)











, 0 < z < d , (2.1)

where the relative permittivity dyadic

ǫ(r, ω) = s
y
(−α) · s

z
(r) · ǫ

ref
(ω) · sT

z
(r) · sT

y
(−α) . (2.2)

The reference relative permittivity dyadic ǫ
ref

(ω) in (2.2) can be visualized either from

a microscopic perspective or from a phenomenological perspective. Microscopic modeling

of ǫ
ref

(ω) takes account of the nanostructure, and links it to macroscopic observables. As

exemplified by a nominal model for chiral STFs [16]–[19], ǫ
ref

(ω) can be derived from a

local homogenization procedure by viewing a STF as an ensemble of oriented ellipsoidal

particles of different material phases. The Bruggeman formalism is used to implement a

local homogenization procedure in this model, but other formalisms can also be used [26].

From the macroscopic point of view, a dielectric STF is locally orthorhombic in most

cases [6, 9]. Therefore, ǫ
ref

(ω) is set up as

ǫ
ref

(ω) = ǫa unun + ǫb uτuτ + ǫc ubub . (2.3)
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Most simply, the scalars ǫa,b,c(ω) are assumed to emerge from a single–resonance Lorentzian

model [64, 65] such that

ǫσ(ω) = 1 +
pσ

[

1 +
(

N−1
σ − i ω−1

σ ω
)2
] , σ = a, b, c . (2.4)

Here, the parameters pa,b,c are the oscillator strengths, while ωa,b,c and Na,b,c determine

the resonance frequencies and absorption linewidths. For later convenience, the composite

scalar

ǫd =
ǫa ǫb

cos2χs ǫa + sin2χs ǫb
(2.5)

is introduced, which, combined with ǫc, suffices for optical investigations of axially excited

chiral STFs [30]–[33].

For slanted chiral STFs, the restriction |α| < χs should be made because the nanowires

must always grow upwards in relation to the substrate plane [46]. Specially, α = 0 specifies

chiral STFs with the consequent reduction ǫ(r, ω) → ǫ(z, ω) in (2.2). From here onwards,

the dependences of various quantities on ω are implicit. Instead, the dependences on the

free–space wavelength λ0 = 2π/ω
√
µ0ǫ0 may be written explicitly for emphasis.

2.1.1 Field Representation

A plane wave is incident from the half–space z ≤ 0 on to the plane z = 0. As a result,

reflection and transmission into the two half–spaces occur. Let the incident plane wave

propagate with the wavevector k
(0)
+ = k

(0)
x ux + k

(0)
y uy + k

(0)
z uz. The incident, reflected,

and transmitted electromagnetic field phasors are expressed in sets of Floquet harmonics
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respectively as [46]

Ei =
∑

n∈Z

(

L
(n)
+ a

(n)
L + R

(n)
+ a

(n)
R

)

exp
(

ik
(n)
+ · r

)

, z ≤ 0 , (2.6)

Hi =
−inhs

η0

∑

n∈Z

(

L
(n)
+ a

(n)
L −R

(n)
+ a

(n)
R

)

exp
(

ik
(n)
+ · r

)

, z ≤ 0 , (2.7)

Er =
∑

n∈Z

(

L
(n)
− r

(n)
L + R

(n)
− r

(n)
R

)

exp
(

ik
(n)
− · r

)

, z ≤ 0 , (2.8)

Hr =
−inhs

η0

∑

n∈Z

(

L
(n)
− r

(n)
L − R

(n)
− r

(n)
R

)

exp
(

ik
(n)
− · r

)

, z ≤ 0 , (2.9)

Et =
∑

n∈Z

(

L
(n)
+ t

(n)
L + R

(n)
+ t

(n)
R

)

exp
(

ik
(n)
+ · r̃

)

, z ≥ d , (2.10)

Ht =
−inhs

η0

∑

n∈Z

(

L
(n)
+ t

(n)
L − R

(n)
+ t

(n)
R

)

exp
(

ik
(n)
+ · r̃

)

, z ≥ d . (2.11)

In (2.6)–(2.11) and hereafter, η0 =
√

µ0/ǫ0 is the intrinsic impedance of free space; while
{

a
(n)
L , a

(n)
R

}

,
{

r
(n)
L , r

(n)
R

}

and
{

t
(n)
L , t

(n)
R

}

, respectively, are complex–valued amplitudes

of the LCP and RCP components of the Floquet harmonic of order n of the incident,

reflected, and transmitted fields. The symbol Z represents the set {0, ±1, ±2, . . .} of all

integers, and r̃ = r− duz.

The wavevectors k
(n)
± as well as the circular polarization vectors L

(n)
± and R

(n)
± of the

Floquet harmonic of order n are specified as

k
(n)
± = k(n)

x ux + k(0)
y uy ± k(n)

z uz , (2.12)

L
(n)
± = ±

(

is(n) − p
(n)
±

)

/
√

2 , (2.13)

R
(n)
± = ∓

(

is(n) + p
(n)
±

)

/
√

2 . (2.14)

In these expressions, the vectors

s(n) =
−k

(0)
y

k
(n)
xy

ux + k
(n)
x

k
(n)
xy

uy

p
(n)
± = ∓ k

(n)
z

k0nhs

(

k
(n)
x

k
(n)
xy

ux +
k
(0)
y

k
(n)
xy

uy

)

+
k
(n)
xy

k0nhs
uz















(2.15)
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help denote linearly polarized fields of s– and p–types, in electromagnetics literature [44],

with respect to the wavevector k
(n)
± . The scalars

κx = (π/Ω)|sinα|

k
(n)
x = k

(0)
x + nκx

k
(n)
z = +

√

k2
0 n

2
hs −

(

k
(n)
xy

)2

k
(n)
xy = +

√

(

k
(n)
x

)2
+
(

k
(0)
y

)2















































(2.16)

depend on the x–period Λx = 2Ω/|sinα| of the slanted chiral STF. The free–space wavenum-

ber is denoted by k0 = ω
√
µ0ǫ0 = 2π/λ0.

The incident plane wave is the Floquet harmonic of order 0; hence, a
(n)
L = a

(n)
R =

0∀n 6= 0. Since all
{

a
(n)
L , a

(n)
R

}

are supposed to be known, the amplitude sets
{

r
(n)
L , r

(n)
R

}

and
{

t
(n)
L , t

(n)
R

}

need to be determined by the solution of certain coupled–wave ordinary

differential equations (ODEs) augmented by boundary conditions at z = 0 and z = d.

2.1.2 Coupled–Wave ODEs

The spatially periodic variation of ǫ(r) of (2.2) is represented by the Fourier series

ǫ(r) =
∑

n∈Z

ǫ(n) exp [in (κxx+ κzz)] , 0 < z < d , (2.17)

where

ǫ(n) =
∑

σ,σ′

ǫ
(n)
σσ′uσuσ′ , σ, σ′ = x, y, z , (2.18)

are constant–value dyadics; and κz = (π/Ω) cosα is in accord with the z–period Λz =

2Ω/cosα of the slanted chiral STF.

Wave propagation occurs inside the thin–film material such that the electromagnetic
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field phasors everywhere can be decomposed as

E (r) =
∑

n∈Z

[

E
(n)
x (z)ux + E

(n)
y (z)uy + E

(n)
z (z)uz

]

exp
[

i
(

k
(n)
x x+ k

(0)
y y

)]

H (r) =
∑

n∈Z

[

H
(n)
x (z)ux + H

(n)
y (z)uy + H

(n)
z (z)uz

]

exp
[

i
(

k
(n)
x x+ k

(0)
y y

)]















, (2.19)

where E
(n)
x,y,z and H

(n)
x,y,z are unknown functions of z. Following Chateau and Hugonin [66],

it is useful to define

Ẽ
(n)
σ (z) = E

(n)
σ (z) exp(−inκzz)

H̃
(n)
σ (z) = H

(n)
σ (z) exp(−inκzz)







, σ = x, y, z . (2.20)

On substituting (2.17)–(2.20) in the frequency–domain Maxwell curl postulates

∇× E (r) = iωµ0 H (r)

∇× H (r) = −iωǫ0 ǫ(r) • E (r)







, 0 < z < d , (2.21)

and exploiting the orthogonalities of the functions exp(ik
(n)
± · r) across any plane z =

constant, coupled–wave ODEs

d

dz
Ẽ(n)

x (z) + inκzẼ
(n)
x (z) − ik(n)

x Ẽ(n)
z (z) = ik0η0H̃

(n)
y (z) , (2.22)

d

dz
Ẽ(n)

y (z) + inκzẼ
(n)
y (z) − ik(0)

y Ẽ(n)
z (z) = −ik0η0H̃

(n)
x (z) , (2.23)

k(0)
y Ẽ(n)

x (z) − k(n)
x Ẽ(n)

y (z) = − k0η0H̃
(n)
z (z) , (2.24)

d

dz
H̃(n)

x (z) + inκzH̃
(n)
x (z) − ik(n)

x H̃(n)
z (z) = − ik0

η0

∑

n′∈Z

[

ǫ̃(n−n′)
yx Ẽ(n′)

x (z)

+ ǫ̃(n−n′)
yy Ẽ(n′)

y (z) + ǫ̃(n−n′)
yz Ẽ(n′)

z (z)
]

, (2.25)

d

dz
H̃(n)

y (z) + inκzH̃
(n)
y (z) − ik(0)

y H̃(n)
z (z) =

ik0

η0

∑

n′∈Z

[

ǫ̃(n−n′)
xx Ẽ(n′)

x (z)

+ ǫ̃(n−n′)
xy Ẽ(n′)

y (z) + ǫ̃(n−n′)
xz Ẽ(n′)

z (z)
]

, (2.26)

k(0)
y H̃(n)

x (z) − k(n)
x H̃(n)

y (z) =
k0

η0

∑

n′∈Z

[

ǫ̃(n−n′)
zx Ẽ(n′)

x (z)

+ ǫ̃(n−n′)
zy Ẽ(n′)

y (z) + ǫ̃(n−n′)
zz Ẽ(n′)

z (z)
]

(2.27)

are derived for z ∈ (0, d).

25



Equations (2.22)–(2.27) hold for all n ∈ Z, and are thus an infinite system of first–

order ODEs. For numerical solution, the restriction |n| ≤ Nt is made, and then four

(2Nt + 1)–column vectors

[

Ẽσ(z)
]

=
[

Ẽ
(n)
σ (z)

]

,

[

H̃σ(z)
]

=
[

H̃
(n)
σ (z)

]

,

[Eσ(z)] =
[

E
(n)
σ (z)

]

[Hσ(z)] =
[

H
(n)
σ (z)

]











, σ = x, y, z; n ∈ [−Nt,Nt] (2.28)

are defined. Likewise, the diagonal (2Nt + 1) × (2Nt + 1) matrixes

[

K
x

]

= Diag
[

k
(n)
x

]

[−Nt,Nt]
[

κ
z

]

= κzDiag [n][−Nt,Nt]











(2.29)

are defined; and so are the Toeplitz matrixes

[

ǫ
σσ′

]

=
[

ǫ
(n−n′)
σσ′

]

, σ = x, y, z; n, n′ ∈ [−Nt,Nt] . (2.30)

Here, Diag[℘(n)][m,m′] denotes the diagonal matrix with the diagonal entries ℘(n) for

n ∈ [m,m′], with m and m′ being integers.

After substituting (2.24) and (2.27) into (2.22), (2.23), (2.25) and (2.26), in order to

eliminate the normal electromagnetic field components (i.e., Ẽ
(n)
z and H̃

(n)
z ), and perform-

ing some algebraic manipulations, the first–order matrix ODE

d

dz

[

f̃(z)
]

= i
[

P̃
] [

f̃(z)
]

, 0 < z < d (2.31)

is derived. The column vector

[

f̃(z)
]

=

[

[

Ẽx (z)
]T
,
[

Ẽy (z)
]T
, η0

[

H̃x (z)
]T
, η0

[

H̃y (z)
]T
]T

(2.32)

contains 4(2Nt + 1) components, and the constant–valued matrix
[

P̃
]

has the form

[

P̃
]

=























[

P̃
11

] [

P̃
12

] [

P̃
13

] [

P̃
14

]

[

P̃
21

] [

P̃
22

] [

P̃
23

] [

P̃
24

]

[

P̃
31

] [

P̃
32

] [

P̃
33

] [

P̃
34

]

[

P̃
41

] [

P̃
42

] [

P̃
43

] [

P̃
44

]























, (2.33)
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wherein the sixteen (2Nt + 1) × (2Nt + 1) submatrixes are defined as follows:

[

P̃
11

]

= −
[

κ
z

]

−
[

K
x

] [

ǫ
zz

]−1 [

ǫ
zx

]

,

[

P̃
12

]

= −
[

K
x

] [

ǫ
zz

]−1 [

ǫ
zy

]

,

[

P̃
13

]

=
k
(0)
y

k0

[

K
x

] [

ǫ
zz

]−1
,

[

P̃
14

]

= k0

[

I
]

2Nt+1
− 1

k0

[

K
x

] [

ǫ
zz

]−1 [

K
x

]

,

(2.34)

[

P̃
21

]

= −k(0)
y

[

ǫ
zz

]−1 [

ǫ
zx

]

,

[

P̃
22

]

= −
[

κ
z

]

− k
(0)
y

[

ǫ
zz

]−1 [

ǫ
zy

]

,

[

P̃
23

]

= −k0

[

I
]

2Nt+1
+

“

k
(0)
y

”2

k0

[

ǫ
zz

]−1
,

[

P̃
24

]

= −k
(0)
y

k0

[

ǫ
zz

]−1 [

K
x

]

,

(2.35)

[

P̃
31

]

= −k
(0)
y

k0

[

K
x

]

+ k0

(

[

ǫ
yz

] [

ǫ
zz

]−1 [

ǫ
zx

]

−
[

ǫ
yx

]

)

,

[

P̃
32

]

= 1
k0

[

K
x

] [

K
x

]

+ k0

(

[

ǫ
yz

] [

ǫ
zz

]−1 [

ǫ
zy

]

−
[

ǫ
yy

]

)

,

[

P̃
33

]

= −
[

κ
z

]

− k
(0)
y

[

ǫ
yz

] [

ǫ
zz

]−1
,

[

P̃
34

]

=
[

ǫ
yz

] [

ǫ
zz

]−1 [

K
x

]

,

(2.36)

[

P̃
41

]

= −
“

k
(0)
y

”2

k0

[

I
]

2Nt+1
− k0

(

[

ǫ
xz

] [

ǫ
zz

]−1 [

ǫ
zx

]

−
[

ǫ
xx

]

)

,

[

P̃
42

]

=
k
(0)
y

k0

[

K
x

]

− k0

(

[

ǫ
xz

] [

ǫ
zz

]−1 [

ǫ
zy

]

−
[

ǫ
xy

]

)

,

[

P̃
43

]

= k
(0)
y

[

ǫ
xz

] [

ǫ
zz

]−1
,

[

P̃
44

]

= −
[

κ
z

]

−
[

ǫ
xz

] [

ǫ
zz

]−1 [

K
x

]

.

(2.37)

Here,
[

I
]

m
denotes the m×m identity matrix.
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2.1.3 Solution of Boundary Value Problem

The matrix ODE (2.31) has the solution [67]

[

f̃(z2)
]

=
[

G̃
]

exp
{

i(z2 − z1)
[

D̃
]} [

G̃
]−1 [

f̃(z1)
]

, (2.38)

where the columns of the square matrix
[

G̃
]

are the successive eigenvectors of
[

P̃
]

, and

the diagonal matrix
[

D̃
]

contains the corresponding eigenvalues of
[

P̃
]

. The assumption

here is that
[

P̃
]

is diagonalizable, i.e., it has 4(2Nt + 1) linearly independent eigenvectors

[68].

In order to solve the boundary value problem for determining
{

r
(n)
L , r

(n)
R

}

and
{

t
(n)
L , t

(n)
R

}

,

it is necessary to determine the column vector

[f (z)] =
[

[Ex (z)]T ,
[

Ey (z)
]T
, η0 [Hx (z)]T , η0

[

Hy (z)
]T
]T

(2.39)

instead of
[

f̃(z)
]

. The two column vectors are simply related to each other as

[f (z)] =
[

c(z)
]

[

f̃(z)
]

, (2.40)

where the diagonal matrix

[

c(z)
]

= Diag [exp (inMκzz)] ; (2.41)

nM = Mod[n−1, 2Nt +1]−Nt; and Mod[m,m′] denotes the remainder when m is divided

by m′.

Equations (2.38) and (2.40) yield the relation

[f(z2)] =
[

G(z2)
]

exp
{

i(z2 − z1)
[

D̃
]}

[

G(z1)
]−1

[f(z1)] , (2.42)

where the matrix
[

G(z)
]

=
[

c(z)
]

[

G̃
]

(2.43)

is a periodic function of z; hence,

[f(d)] =
[

G(d)
]

exp
{

id
[

D̃
]}

[

G(0)
]−1

[f(0)] . (2.44)
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The continuity of the tangential components of the electric and magnetic field phasors

across the two boundaries z = 0 and z = d must be enforced with respect to the Floquet

harmonic of any order n. From (2.6)–(2.11), the boundary values

[f (0)] =







[

Y+
e

] [

Y−
e

]

[

Y+
h

] [

Y−
h

]











[A]

[R]



 , [f (d)] =







[

Y+
e

]

[

0
]

4Nt+2
[

Y+
h

]

[

0
]

4Nt+2











[T]

[0]4Nt+2



 (2.45)

are available. Here, [0]m is the m–column null vector; while
[

0
]

m
is the m×m null matrix.

The column vectors

[A] =





a
(n)
L

a
(n)
R



 , [R] =





r
(n)
L

r
(n)
R



 , [T] =





t
(n)
L

t
(n)
R



 (2.46)

in (2.45) are of size 4Nt+2. The square matrixes
[

Y±
e

]

and
[

Y±
h

]

of size (4Nt+2)×(4Nt+2)

are quite sparse; and their nonzero entries are calculated as follows:

[

Y±
e

]

nn′
= (−i/nhs)

[

Y±
h

]

nn′
= L

(n)
± · ux , if n = n′ ∈ [1, (2Nt + 1)]

[

Y±
e

]

nn′
= (−i/nhs)

[

Y±
h

]

nn′
= L

(n)
± · uy , if n = n′ + 2Nt + 1

[

Y±
e

]

nn′
= (i/nhs)

[

Y±
h

]

nn′
= R

(n)
± · ux , if n = n′ − 2Nt − 1

[

Y±
e

]

nn′
= (i/nhs)

[

Y±
h

]

nn′
= R

(n)
± · uy , if n = n′ ∈ [(2Nt + 2), (4Nt + 2)]











































.

(2.47)

Finally, the substitution of (2.45) into (2.44) yields







[

U
T

]

[

V
T

]






[T] +







e
id

h

D̃
u

i

[

0
]

4Nt+2

[

0
]

4Nt+2
e
id

h

D̃
l

i













[

U
R

]

[

V
R

]






[R] =







e
id

h

D̃
u

i

[

0
]

4Nt+2

[

0
]

4Nt+2
e
id

h

D̃
l

i













[

U
A

]

[

V
A

]






[A] ,

(2.48)

where
[

D̃
u

]

and
[

D̃
l

]

are the upper and lower diagonal submatrixes of
[

D̃
]

, respectively,
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and the following three rectangular matrixes assist in notational brevity:







[

U
T

]

[

V
T

]






=
[

G(d)
]−1







[

Y+
e

]

[

Y+
h

]






, (2.49)







[

U
R

]

[

V
R

]






= −

[

G(0)
]−1







[

Y−
e

]

[

Y−
h

]






, (2.50)







[

U
A

]

[

V
A

]






=
[

G(0)
]−1







[

Y+
e

]

[

Y+
h

]






. (2.51)

For calculating the unknown [R] and [T], the so–called R–matrix propagating algorithm

[66, 69] — which is based on the rearrangement of the positions of the eigenvalues of
[

P̃
]

in the diagonal matrix
[

D̃
]

— helps in avoiding numerical instabilities, especially when

Nt is large [70, 71]. Therefore, the entries on the diagonal of
[

D̃
]

(thus
[

D̃
u

]

and
[

D̃
l

]

also) are rearranged in the order of increasing magnitude of the imaginary part, and the

columns of
[

G̃
]

are rearranged accordingly. The final algebraic equation
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





e
−id

h
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i
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
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]

e
id

h

D̃
l

i
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]









[A] , (2.52)

yielded by (2.48) for the determination of [R] and [T] is algorithmically stable due to

the fact that the exponential terms e
−id

h

D̃
u

i

and e
id

h

D̃
l

i

never become overwhelming in

magnitude because of the rearrangement of the eigenvalues. The matrix inverse operation

required to solve (2.52) for [R] and [T] is then easily accomplished for arbitrary d and Nt.

Thus, the RCWA has been used to devise a robust numerical solution procedure for

planewave diffraction by slanted chiral STFs: Calculation of the planewave response is

reduced to the solution of the algebraic equation (2.52) for [R] and [T]. In Chapters 3 and

4, the results obtained after implementing the devised procedure are presented.
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Chapter 3

Response of Slanted Chiral STFs

to Normally Incident Plane

Waves‡

The response of a dielectric slanted chiral STF to an incident plane wave is expressed

through the column vectors [R] and [T], which can be determined by following the pro-

cedure devised in Chapter 2. Several quantities of significance such as reflectances and

transmittances for Floquet harmonics of different orders can then be calculated. The ob-

jective of this chapter is to identify the characteristics of the response of slanted chiral

STFs to normally incident plane waves (i.e., k
(0)
x = k

(0)
y = 0), with a focus on the circular

Bragg phenomenon.

‡ This chapter is partly adapted from the following paper: F. Wang, A. Lakhtakia, R. Messier, “Cou-

pling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin

films”, Eur. Phys. J. Appl. Phys. 20 91–103 (2002); corrections: 24 91 (2003).
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3.1 Preliminaries

Once the column vectors [R] and [T] have been determined using the RCWA described in

Chapter 2, the reflection and transmission coefficients

r
(n)
σσ′ =

r
(n)
σ

a
(0)
σ′

, t
(n)
σσ′ =

t
(n)
σ

a
(0)
σ′

, σ, σ′ = L,R (3.1)

can be computed as functions of the incidence wavevector k
(0)
+ . Reflectances (R

(n)
LL , etc.)

and transmittances (T
(n)
LL , etc.) of order n are thereby defined as

R
(n)
σσ′ =

Re[k
(n)
z ]

Re[k
(0)
z ]

|r(n)
σσ′ |2 , T

(n)
σσ′ =

Re[k
(n)
z ]

Re[k
(0)
z ]

|t(n)
σσ′ |2 , σ, σ′ = L,R , (3.2)

where Re[ ] stands for the real part. Coefficients and remittances with both subscripts

identical are co–polarized, and those with two different subscripts are cross–polarized. Co–

polarized coefficients and remittances subscripted RR (LL) are labeled as co–handed, and

those subscripted LL (RR) are labeled as cross–handed, when the chiral STF is structurally

right(left)–handed.

The principle of conservation of energy mandates the inequalities

∑

n∈[−Nt,Nt]

(

R
(n)
LL + R

(n)
RL + T

(n)
LL + T

(n)
RL

)

≤ 1 , (3.3)

∑

n∈[−Nt,Nt]

(

R
(n)
LR + R

(n)
RR + T

(n)
LR + T

(n)
RR

)

≤ 1 . (3.4)

The inequalities reduce to equalities for non–dissipative slanted chiral STFs.

Care must be taken for the special case α = 0. All nonspecular coefficients then fold

into the specular ones, i.e.,

r
(0)
σσ′ ⇐

∑

|n|≤Nt

r
(n)
σσ′ , t

(0)
σσ′ ⇐

∑

|n|≤Nt

t
(n)
σσ′ , σ, σ′ = L,R , (3.5)

because Λx → ∞. Similarly, the remittances for α = 0 can only be specular; hence,

R
(0)
σσ′ = |r(0)σσ′ |2 , T

(0)
σσ′ = |t(0)σσ′ |2 , σ, σ′ = L,R . (3.6)
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The numerical solution procedure of Chapter 2 was implemented using double–precision

arithmetic in Fortran 90 on a Solaris computer. A structurally right–handed slanted chiral

STF was chosen for the results presented here; thus, h = 1. The constitutive scalars

ǫa,b,c were determined by the single–resonance Lorentzian model (2.4) with the following

parameters: pa = 2.0, pb = 2.6, pc = 2.1, Na = Nb = Nc = 100, λa = λc = 140 nm,

and λb = 150 nm. Here, λa,b,c = 2π/ωa,b,c
√
µ0ǫ0 are resonance wavelengths. Structural

parameters were specified as Ω = 300 nm, d = 27Ω, and χs = 30◦. The slant angle

α ∈ (−χs, χs) was kept as a variable. The chosen slanted chiral STF is potentially

realizable using silicon dioxide, and is thus likely to be compatible with semiconductor

technology.

Let the wavevector k
(0)
+ make the angles (i) θp

i ∈ (−90◦, 90◦) to the z axis and (ii)

ψp
i ∈ [0, 180◦) to the x axis in the xy plane‡. Only the normal–incidence case is examined

in this chapter; hence, θp
i = ψp

i = 0.

From numerous computational tests, it was confirmed that every reflectance and trans-

mittance greater than 0.001 converged to 1% accuracy for the wavelength–regime λ0 ∈

[900, 1200] nm focused on, when Nt = 20 and nhs = 1 were chosen. All propagating

harmonics and some evanescent harmonics were thereby covered. Moreover, the left sides

of both (3.3) and (3.4) converged to have neither condition violated by more than 1 ppm.

‡An exception to the specification of the domain of ψp
i is that ψp

i ∈ [−180◦, 180◦) when θ
p
i is fixed to

illustrate the effect of ψp
i . Analogously, this regulation applies to the specification of the domains of θb

i

and ψb
i in Chapter 7 for beam incidence.
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3.2 Circular Bragg Phenomenon

3.2.1 Chiral STFs

To begin with, chiral STFs (α = 0) must be examined. The response of this film to

normally incident plane waves has been extensively studied, theoretically [9] as well as

experimentally [5, 33, 72].

The hallmark of an axially excited chiral STF is the circular Bragg phenomenon: Pro-

vided the ratio Nd = d/Ω is sufficiently large and λ0 lies within the Bragg regime, the

reflectance is much higher if the handedness of the incident circularly polarized plane wave

matches the structural handedness of the film than if otherwise. The center–wavelength

of the Bragg regime is estimated as [9]

λBr
0 = Ω

[

√

ǫc
(

λBr
0

)

+
√

ǫd
(

λBr
0

)

]

. (3.7)

Coupled–wave theory provides an explanation for the polarization–sensitive Bragg phe-

nomenon — a plane wave of matching handedness effectively encounters a Bragg grating,

while that of the other handedness does not [30]–[32].

Figure 3.1 shows a comparison of the reflectances and transmittances computed using

the numerical solution procedure of Chapter 2 against those computed using the analytical

procedure available elsewhere [9]. All reflectances and transmittances must be specular

when α = 0, regardless of their order n, in view of (3.5) and (3.6). The Bragg regime —

specified by λ0 ∈ (1050, 1150) nm — is obvious in the plots: R
(0)
RR >> R

(0)
LL and T

(0)
RR <<

T
(0)
LL, while R

(0)
RL ≈ R

(0)
LR and T

(0)
RL ≈ T

(0)
LR are very small, especially around λBr

0 = 1090 nm

as predicted by (3.7). The coincidence of the two sets of computed remittances is evident

in Figure 3.1.
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3.2.2 Slanted Chiral STF

Only for α 6= 0 does a distinction between Floquet harmonics of order n = 0 and n 6=

0 appears, the former being classified as specular and the latter as nonspecular in the

literature on diffraction gratings [44]. Non–negligible remittances were found to be only

of orders n = ∓2 and n = 0. The remittances of other orders turned out to be negligible

(< 0.01) in the wavelength–regime λ0 ∈ [900, 1200] nm.

Figures 3.2 and 3.3 comprise spectral plots of the reflectances and the transmittances

of order n = 0 and −2 as functions of λ0 when α = 10◦ and 15◦, respectively. The

characteristic signature of the circular Bragg phenomenon is found as a broad crest in the

plot of R
(−2)
RR and a trough in the plot of T

(0)
RR, positioned between the 1030–nm and 1120–

nm wavelengths. Thus, a normally incident RCP plane wave is mostly reflected obliquely:

at an angle sin−1 [(λ0/Ω) sinα] to the +z axis. Since λ0/Ω ∼ 3.3, even a slight increase in

|α| results in more oblique reflection.

When the incident plane wave is LCP, however, T
(0)
LL dominates all the other remittances

in the same wavelength regime. Hence, the LCP plane wave is mostly transmitted without

change of direction — in a fashion similar to that for α = 0.

Clearly, the circular Bragg phenomenon is partly nonspecular for slanted chiral STFs,

as indicated by a high co–handed reflectance of order n = ∓2 for α ≷ 0 and a low co–

handed specular transmittance in the Bragg regime. This characteristic of the circular

Bragg phenomenon can be exploited for circular–polarization beamsplitters and direction

couplers.

The center–wavelength of the Bragg regime shifts to smaller values with increasing |α|.

This blue–shift is captured by the modification of (3.7) to

λBr
0 = (Ω cosα)

[

√

ǫc
(

λBr
0

)

+
√

ǫd
(

λBr
0

)

]

(3.8)

for |α| << χs, as suggested by the values of λBr
0 computed using the numerical solution
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procedure of Chapter 2 for various |α|. Figure 3.4(a) shows the comparison of the |α|–

dependence of λBr
0 obtained using the RCWA procedure with (3.8), and the excellent

correspondence for |α| ≤ 15◦ is illustrated. No surprisingly, this |α|–dependence of λBr
0 as

predicted by (3.8) is in accord with the orange color of multi–domain cholesteric liquid

crystals that were fabricated to reflect the red color [73].

Figure 3.4(b) contains a plot of the full–width–at–half–maximum (FWHM) bandwidth

∆λBr
0 as a function of |α|. This plot clearly shows the thinning of the Bragg regime

with increase in |α|. Indeed, the circular Bragg phenomenon vanishes for |α| > 17.1◦.

The reason for the disappearance of that phenomenon is best explained via the so–called

Rayleigh–Wood anomalies as follows.

Just as for the commonplace surface–relief gratings [44], nonspecular Floquet harmonics

exist in the two half–spaces z ≤ 0 and z ≥ d. A Floquet harmonic of order n propagates

energy away from the slanted chiral STF, provided k
(n)
z is real–valued, i.e., for wavelengths

λ0 < λRW
0n

, where the relation

λRW
0n

=
2nhsΩ

|n| |sinα| (3.9)

follows from (2.16). The conversion of the Floquet harmonic of order n from propagating

to evanescent, or vice versa, as λ0 either increases or decreases across λRW
0n

is a Rayleigh–

Wood anomaly.

Table 3.1 shows computed values of λRW
0n

, (n = ±1, ±2, ±3), for several different values

of |α| ≤ 17.1◦. Specifically, as |α| increases from 0, λRW
0∓2

decreases from “infinity” and

begins to approach the center–wavelength λBr
0 of the Bragg regime predicted by (3.8).

Table 3.1 records the blue–shifts of both λRW
0∓2

and λBr
0 as |α| increases, but the decrease

in λRW
0∓2

is more rapid than the decrease in λBr
0 .

When |α| = 15◦, λRW
0∓2

is about 100 nm larger than λBr
0 . Still, the spectrums of R

(∓2)
RR

and T
(0)
RR are clearly affected, as implied by Figure 3.3 for α = 15◦. The signature features

of the circular Bragg phenomenon become irregular in Figure 3.3, in comparison to those
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Table 3.1: Center–wavelength λBr
0 of the Bragg regime and the wavelength λRW

0n
of the

Rayleigh–Wood anomaly of order n for normal incidence. See Figure 3.1 for the various

parameters used for the data presented in this table.

|α| 0 10◦ 15◦ 16.7◦ 17.1◦

λBr
0 (nm) 1090 1073 1053 1044 1042

λRW
0∓1

(nm) ⋆ 3456 2318 2088 2040

λRW
0∓2

(nm) ⋆ 1728 1159 1044 1020

λRW
0∓3

(nm) ⋆ 1152 773 696 680

⋆ not applicable

in Figure 3.1 for α = 0.

A further increase in |α| makes λRW
0∓2

come even closer to λBr
0 as predicted by (3.8). For

example, the two wavelengths are equal in Table 3.1 when |α| = 16.7◦. The actual Bragg

regime in Figure 3.5 for α = 16.7◦ is blue–shifted relative to the prediction from (3.8);

the peak value of R
(−2)
RR is noticeably smaller than that in Figures 3.1–3.3; and the Bragg

regime is also narrower.

The circular Bragg phenomenon almost disappears when |α| = 17.1◦, with the peak

value of R
(∓2)
RR (for α ≷ 0) dropping to one–half of its value for α = 0. As |α| increases

further, the rapid blue–shift of λRW
0∓2

subverts the circular Bragg phenomenon considerably,

leaving some minor peaks of nonspecular reflectances and transmittances.

3.3 Concluding Remarks

In conclusion,

• the partly nonspecular nature of the circular Bragg phenomenon, and
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• the diminishment and even subversion of the circular Bragg phenomenon by the

Rayleigh–Wood anomaly

are the two remarkable features of slanted chiral STFs in comparison to chiral STFs. Both

have technological consequences which deserve exploration by experimentalists.
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Figure 3.1: Reflectances and transmittances computed using the RCWA of Chapter 2 are

compared against the results obtained from the analytical method available elsewhere [9].

The various parameters used are as follows: pa = 2.0, pb = 2.6, pc = 2.1, Na = Nb = Nc =

100, λa = λc = 140 nm, λb = 150 nm, Ω = 300 nm, d = 27Ω, α = 0, χs = 30◦, h = 1,

nhs = 1, and θp
i = ψp

i = 0.
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Figure 3.2: Reflectances and transmittances of order n, computed for the same param-

eters as for Figure 3.1 but with α = 10◦. Reflectances and transmittances of maximum

magnitudes less than 0.01 are not shown.
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Figure 3.3: Same as Figure 3.2, but for α = 15◦.
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0 of the Bragg regime computed using the RCWA of Chapter 2.

42



0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.04

0.08

0.12

0.16

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

900 1000 1100 1200

free-space wavelength  (nm)

   
re

fl
e

ct
a

n
ce

900 1000 1100 1200

free-space wavelength  (nm)

   
re

fl
e

ct
a

n
ce

900 1000 1100 1200

free-space wavelength  (nm)

   
tr

a
n

sm
it

ta
n

ce

900 1000 1100 1200

free-space wavelength  (nm)

   
tr

a
n

sm
it

ta
n

ce

RRR
(−2)

LRR
(−2)

@RLR
 (0)

LRR
 (0)

l 0
RW

+- 2

l 0
RW

+- 2

RLT
(+2)

LRT
(−2)

RRT
(−2)

RRT
(0)

LLT
 (0)

Figure 3.5: Same as Figure 3.2, but for α = 16.7◦.
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Chapter 4

Response of Slanted Chiral STFs

to Obliquely Incident Plane

Waves‡

The response of slanted chiral STFs to normally incident plane waves in Chapter 3 shows

that the circular Bragg phenomenon is partly nonspecular for α 6= 0, and a Rayleigh–Wood

anomaly exerts a dramatic influence on the Bragg regime as |α| increases.

In general, the circular Bragg phenomenon exists also for oblique incidence of plane

waves, but it is greatly influenced by the directionality of planewave incidence, as is known

for α = 0 [27, 28]. Therefore, both spectral (i.e., wavelength–dependence) and angular–

spread (i.e., wavevector–dependence) features of the circular Bragg phenomenon need to

be characterized for the case of oblique incidence. In this chapter, the response of slanted

chiral STFs to obliquely incident plane waves is presented, with a focus on the circular

Bragg phenomenon that is affected by both the directionality of planewave incidence and

‡ This chapter is partly adapted from the following paper: F. Wang, A. Lakhtakia, “Lateral shifts of

optical beams on reflection by slanted chiral sculptured thin films”, Opt. Commun. 235 107–132 (2004).
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the refractive index nhs. Two problems are considered:

• Problem A: The half–spaces of reflection and transmission are vacuous.

• Problem B: The half–spaces of reflection and transmission are occupied by a di-

electric medium that is optically denser than the slanted chiral STF.

For Problem A, the focus lies on the interaction of circular Bragg phenomenon with the

Rayleigh–Wood anomalies; for Problem B, the focus lies on the truncation of the angular

spread of the Bragg regime due to the occurrence of total reflection.

4.1 Problem A: Circular Bragg Phenomenon

The most prominent feature of the planewave response of slanted chiral STFs is due to the

circular Bragg phenomenon, which is CP–selective reflection in the Bragg regime. The

circular Bragg phenomenon is indicated by a high co–handed reflectance in the Bragg

regime. Although this reflectance is purely specular for α = 0, it is nonspecular for α 6= 0

as it occurs in the order n = ∓2 for α ≷ 0, regardless of the structural handedness of the

film. The Bragg regime blue–shifts as |α| increases, and diminishes due to the effect of a

Rayleigh–Wood anomaly of order n = ∓2 for α ≷ 0. These trends hold for both normal–

and oblique–incidence conditions.

Figure 4.1 shows the characteristic spectrums of R
(−2)
RR and T

(0)
RR for arbitrary incidence

in either the xz plane (i.e., ψp
i = 0) or the yz plane (i.e., ψp

i = 90◦) for α = 10◦. The

circular Bragg phenomenon is clearly identifiable as a ridge in plots of R
(−2)
RR and as a

trough in the plots of T
(0)
RR for various sinθp

i ∈ (−1, 1) in the wavelength–regime λ0 ∈

[650, 750] nm, because the chosen film is structurally right–handed. Had the film been

structurally left–handed, the ridge would be seen in the plots of R
(−2)
LL and the trough in

the plots of T
(0)
LL.
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Figure 4.1 indicates that the Bragg regime blue–shifts more for more obliquely incident

plane waves. Moreover, the influence of a Rayleigh–Wood anomaly on the circular Bragg

phenomenon is very explicit for obliquely incident plane waves. The angular spread of

the Bragg regime — quantitated as the θp
i –span of the broad ridge in the plot of R

(−2)
RR —

becomes asymmetric with respect to θp
i in the xz plane (Figure 4.1(a)), but not in the yz

plane (Figure 4.1(c)).

In fact, because of the incidence being oblique, both λBr
0 and λRW

0n
depend on the values

of θp
i and ψp

i . Therefore, (3.8) and (3.9) must undergo changes for oblique incidence. On

the one hand, computations suggest that

λBr
0 = Ω cosα

√

cosθp
i

[

√

ǫc(λBr
0 ) +

√

ǫd(λ
Br
0 )

]

(4.1)

provides a good quantitative estimate of λBr
0 when |θp

i | ≤ 30◦, although the actual func-

tional dependence of λBr
0 on both θp

i and ψp
i might be very complicated. On the other

hand, the Rayleigh–Wood anomalies of different orders occur at

λRW
0n

=
nhsΩ

|nsinα|

[

√

1 − (sinθp
i sinψp

i )
2 − sinθp

i cosψp
i sign(nα)

]

(4.2)

for oblique incidence in general. Clearly, λRW
0n

6= λRW
0−n

when θp
i 6= 0 and ψp

i 6= ±90◦.

As the wavevector k
(0)
+ tilts away from the z axis, both λBr

0 and λRW
0∓2

(for α ≷ 0)

change noticeably. If λRW
0∓2

becomes smaller than λBr
0 , the signature of the circular Bragg

phenomenon disappears. The wavelength–neighborhood of the disappearance depends

strongly on the orientation of the plane of incidence with respect to the plane containing

the helical axis (i.e., xz plane); hence, the circular Bragg phenomenon is far from displaying

circular symmetry with respect to ψp
i when α 6= 0, as seen from the contrast between

Figures 4.1(a) and 4.1(c).

The dependence of λRW
0∓2

(for α ≷ 0) on sinθp
i cosψ

p
i is different from that on sinθp

i sinψ
p
i .

When sinθp
i sinψ

p
i is constant–valued, λRW

0∓2
changes linearly with sinθp

i cosψ
p
i ; and the Bragg

regime is susceptible to subversion by the Rayleigh–Wood anomaly of order n = ∓2
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if sinθp
i cosψ

p
i ≶ 0. That is the reason for the absence of the Bragg regime in Figures

4.1(a) and 4.1(b) (ψp
i = 0), for sinθp

i ∈ (−1,−0.37). In contrast, λRW
0∓2

is a monotonically

decreasing function of |sinθp
i sinψ

p
i | for constant–valued sinθp

i cosψ
p
i . Therefore, in Figures

4.1(c) and 4.1(d) (ψp
i = 90◦), the Bragg regime is completely subverted by the Rayleigh–

Wood anomaly of order n = −2 in the angular regime |sinθp
i | ∈ (0.83, 1).

The influence of the slant angle α ≷ 0 on the subversion of the circular Bragg phe-

nomenon by the Rayleigh–Wood anomaly of order n = ∓2 is available in Chapter 3 for

normal incidence. Figures 4.2 and 4.3 present characteristic remittances for arbitrary in-

cidence in either the xz plane or the yz plane for α = 0, 5◦, 10◦, and 15◦. For these

plots, the wavelength λ0 was fixed equal to λBr
0

∣

∣

∣

θp
i =0

, which is the center–wavelength of

the Bragg regime for normal incidence. Both figures clearly show that the angular spread

of the Bragg regime is asymmetric with respect to θp
i in the xz plane but symmetric in

the yz plane.

The effect of α 6= 0 is fairly trivial when the incident plane wave is cross–handed (Figure

4.2), but not when the incident plane wave is co–handed (Figure 4.3). The asymmetric

shift of the Bragg regime due to the increase of α > 0 is clearly demonstrated in Figures 4.3

by the sinθp
i –span of R

(−2)
RR and T

(0)
RR in the xz plane. When α rises to 15◦, new features

appear in the plots of R
(−2)
RR and T

(0)
RR, as shown by the contrast between 4.3(g) and

4.3(h). While partially subverted by a Rayleigh–Wood anomaly, the crest(trough) feature

in R
(−2)
RR (T

(0)
RR) splits into two narrower and disconnected portions in Figure 4.3(g), but

not in Figure 4.3(h). This major difference implies that the circular Bragg phenomenon,

whether or not subverted by a Rayleigh–Wood anomaly, becomes strongly sensitive to the

plane of incidence when |α| crosses a threshold value.
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4.2 Problem B: Truncation of Angular Spread of Bragg

Regime

Experience with chiral STFs indicates that the circular Bragg phenomenon must be af-

fected by the value of nhs [63]. Typically, when the half–spaces z ≤ 0 and z ≥ d are not

vacuous, but filled with a homogeneous medium that is optically denser than the slanted

chiral STF, the angular spread of the Bragg regime is restricted by the occurrence of total

reflection. That is the basic attraction of Problem B for being considered here.

Figures 4.4 and 4.5 present the planewave reflectances for arbitrary incidences when

nhs = 4 and λ0 = 727 nm. The circular Bragg phenomenon still exists but its angular

spread is highly restrained, as seen from comparing Figures 4.4 and 4.5. Instead, total

reflection into the half–space of incidence occurs when |θp
i | reaches the critical value θp

ic ≈

sin−10.47 for both LCP and RCP plane waves, as may be concluded from the plots of

R
(0)
LL + R

(0)
RL (Figure 4.4) and the plots of R

(0)
LR + R

(0)
RR (Figure 4.5).

Although the circular Bragg phenomenon is not specular when α 6= 0, total reflection is

purely specular whether α = 0 or not. Indeed, the reflectance plots in Figures 4.4 and 4.5

look independent of α in the total–reflection regime |sinθp
i | ∈ [0.47, 1), thereby implying

the insensitivity of the total–reflection phenomenon to either the structural handedness or

the slantedness of the chosen thin film.

4.3 Concluding Remarks

In conclusion, the circular Bragg phenomenon exhibits two remarkable angular–spread

features for slanted chiral STFs. These features are summarized as follows:

• The angular spread of the Bragg regime is significantly asymmetric because of the

subversion of the circular Bragg phenomenon by the Rayleigh–Wood anomaly, and
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• the angular spread is affected by the value of nhs such that it is highly constrained

by the occurrence of total reflection.
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Figure 4.1: Spectrums of reflectance R
(−2)
RR and transmittance T

(0)
RR, computed for a slanted

chiral STF for oblique planewave incidence. (a, b) ψp
i = 0; (c, d) ψp

i = 90◦. The various

parameters used are as follows: pa = 2.0, pb = 2.6, pc = 2.1, Na = Nb = Nc = 500,

λa = λc = 140 nm, λb = 150 nm, Ω = 200 nm, d = 60Ω, α = 10◦, χs = 30◦, h = 1, and

nhs = 1.
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Figure 4.2: Dependences of the remittances R
(0)
RL+R

(0)
LL (solid lines) and T

(0)
RL+T

(0)
LL (dashed

lines) on the obliqueness of planewave incidence: (a, c, e, g) ψp
i = 0; (b, d, f, h) ψp

i = 90◦.

The slanted chiral STF has the same parameters as Figure 4.1, but for different values

of α: (a, b) α = 0; (c, d) α = 5◦; (e, f) α = 10◦; and (g, h) α = 15◦. The wavelength

λ0 = λBr
0 |θp

i =0, which is the center–wavelength of the Bragg regime for normal incidence.
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Figure 4.3: Same as Figure 4.2, except that the remittances plotted are R
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(0)
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(0)
RL (dotted lines),

calculated for (a, b) α = 0 and (c, d) α = 15◦. Same parameters as for Figure 4.1, except

that nhs = 4 and λ0 = 727 nm.
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Chapter 5

Spectral Holes in Slanted Chiral

STFs‡

The planewave responses of a single–section slanted chiral STF are examined in Chapters 3

and 4, based on the solution procedure devised in Chapter 2. A similar solution procedure

can be devised for the planewave responses of multisection slanted chiral STFs. One of the

benefits of the construction of multisection slanted chiral STFs is that structural defects

can be purposely incorporated to induce resonance phenomenons.

Previous studies have shown the emergence of spectral holes in the Bragg regime of

two–section chiral STFs containing either layer or twist defects or both [15, 37, 56]. There

are two types of spectral holes in a chiral STF with a central defect, and the evolution

of these spectral holes with the thickness of the chiral STF sections gives evidence of a

remarkable crossover phenomenon. The objective of this chapter is to identify the spectral

holes and the associated crossover phenomenon in slanted chiral STFs with central twist

‡ This chapter is partly adapted from the following paper: F. Wang, A. Lakhtakia, “Specular and

nonspecular, thickness–dependent, spectral holes in a slanted chiral sculptured thin film with a central

twist defect”, Opt. Commun. 215 79–92 (2003).
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defects.

5.1 Geometry of Twist Defect

The geometry of a slanted chiral STF with a central twist defect is sketched in Figure 5.1.

The slanted chiral STF has a thickness of d and is bounded by two vacuous half–spaces

(i.e., nhs = 1). The central twist defect is introduced by a twist angle φ 6= mπ (m ∈ Z)

between the upper and the lower halves about their common axis of nonhomogeneity. The

constitutive relations of the slanted chiral STF are delineated in the same way as presented

in (2.1) and (2.2), except that the rotational dyadic s
z
(r) of (2.2) is reformulated as

s
z
(r) = (uxux + uyuy) cos

[π

Ω
(r · uℓ) + φlayer

]

+ h (uyux − uxuy) sin
[ π

Ω
(r · uℓ) + φlayer

]

+ uzuz , (5.1)

where the auxiliary angle

φlayer =











0 , 0 < z < d/2 ,

φ , d/2 < z < d .

(5.2)

5.2 Solution Procedure for Planewave Response

The slanted chiral STF with a central twist defect can be viewed as a two–section slanted

chiral STF, each section of which has a different permittivity dyadic. A numerical solution

procedure is devised in Chapter 2 for the planewave response of a single–section slanted

chiral STF. Therefore, a similar solution procedure can be devised through RCWA for the

planewave response of a slanted chiral STF with a central twist defect.

After following the exact steps from (2.6) to (2.31), the first–order matrix ODE

d

dz

[

f̃(z)
]

= i
[

P̃(z)
] [

f̃(z)
]

, 0 < z < d (5.3)
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is derived for the slanted chiral STF being considered. In the presence of a central twist

defect, the matrix
[

P̃(z)
]

becomes piecewise uniform such that

[

P̃(z)
]

=











[

P̃
]

1
, 0 < z < d/2 ,

[

P̃
]

2
, d/2 < z < d .

(5.4)

where
[

P̃
]

σ
, (σ = 1, 2), is a constant–valued matrix. In accord with (5.2), it is evident

that
[

P̃
]

1
=
[

P̃
]

and
[

P̃
]

2
is related to

[

P̃
]

with the replacement

[

ǫ
σ,σ′

]

⇒ Diag[einφ][−Nt,Nt]

[

ǫ
σ,σ′

]

Diag[e−inφ][−Nt,Nt] (5.5)

in (2.33)–(2.37).

To be concise, let dσ = σd/2, (σ = 0, 1, 2). According to (2.38), the matrix ODE (5.3)

has the solution

[f(dσ−1)] =
[

G̃
]

σ
exp

{−id
2

[

D̃
]

σ

}

[

G̃
]

σ

−1
[f(dσ)] , σ = 1, 2 , (5.6)

where the square matrix
[

G̃
]

σ
consists of the eigenvectors of

[

P̃
]

σ
as its columns; and the

diagonal matrix
[

D̃
]

σ
contains the eigenvalues of

[

P̃
]

σ
in the same order. Combination

of (2.40) and (5.6) yields

[f(dσ−1)] =
[

G(dσ−1)
]

σ
exp

{−id
2

[

D̃
]

σ

}

[

G(dσ)
]

σ

−1
[f(dσ)] , σ = 1, 2 , (5.7)

where the matrix
[

G(z)
]

σ
=
[

c(z)
]

[

G̃
]

σ
(5.8)

for 0 ≤ z ≤ d.

Augmented by the boundary values (2.45), the iterative relation (5.7) suffices to deter-

mine the unknown [R] and [T]. To avoid numerical instability, it is necessary to formulate

a stable algorithm from (5.7). This can be done as follows [70, 71, 74]: Let

[f(dσ)] =
[

Υ
]

σ
[T]σ , σ = 0, 1, 2 , (5.9)
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where

[T]2 = [T] ,
[

Υ
]

2
=







[

Y+
e

]

[

Y+
h

]






, (5.10)

and

[T]σ−1 = e
−id
2

h

D̃
u

i

σ

[

υ
u

]

σ
[T]σ , σ = 1, 2 . (5.11)

Here,
[

D̃
u

]

σ
(and

[

D̃
l

]

σ
) is the upper(lower) diagonal submatrixes of

[

D̃
]

σ
, while

[

υ
u

]

σ

and
[

υ
l

]

σ
are defined through the relation







[

υ
u

]

σ
[

υ
l

]

σ






=
[

G(dσ)
]

σ

−1 [
Υ
]

σ
, σ = 1, 2 . (5.12)

The substitution of (5.9) and (5.12) into (5.6) yields

[

Υ
]

σ−1
=
[

G(dσ−1)
]

σ







[

I
]

4Nt+2

e
−id
2

h

D̃
l

i

σ

[

υ
l

]

σ

{[

υ
u

]

σ

}−1
e

id
2

h

D̃
u

i

σ






, (5.13)

which, combined with (5.12), establishes the iterative relation for
[

Υ
]

σ
. Algorithm sta-

bility is guaranteed for (5.13) by rearrangement of eigenvalues on the diagonal of
[

D̃
]

σ
in

the order of decreasing magnitude of the imaginary part.

From (5.11)–(5.13), the expressions of [T]0 and
[

Υ
]

0
are obtained in terms of [T]2 and

[

Υ
]

2
of (5.10). After partitioning

[

Υ
]

0
=







[

Υ
u

]

0
[

Υ
l

]

0






, (5.14)

and on account of (2.45) and (5.9), [R] and [T]0 are determined as





[T]0

[R]



 =







[

Υ
u

]

0
−
[

Y−
e

]

[

Υ
l

]

0
−
[

Y−
h

]







−1 





[

Y+
e

]

[

Y+
h

]






[A] . (5.15)

Once [T]0 has been determined thus, [T] = [T]2 is easily obtained by reverse iteration of

(5.11).
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5.3 Characterization of Spectral Holes

5.3.1 Preliminaries

Equations (5.3)–(5.15) suffice to establish a robust solution procedure for the planewave re-

sponse of a slanted chiral STF with a central twist defect, and calculation of the planewave

response is reduced to solving the algebraic equation (5.15) for [R] and [T]. Thereafter,

reflectances and transmittances can be defined in the same way as in Chapter 3 to char-

acterize the planewave response in the presence of a central twist defect.

The solution procedure was implemented by choosing the following parameters: pa =

2.0, pb = 2.6, pc = 2.1; Na = Nb = Nc = 40000; λa = λc = 140 nm, λb = 150 nm; Ω = 300

nm; χs = 30◦; h = 1; θp
i = ψp

i = 0; and Nt = 20. Only integer values of Nd = d/Ω

were considered, while φ = 45◦ and φ = 90◦ were selected. The slant angle α was left

as a variable. The chosen slanted chiral STF was structurally right–handed, and only

the normal–incidence case was examined, although similar results are expected for the

oblique–incidence case.

5.3.2 Crossover Phenomenon

Chiral STF with a Central 90◦–Twist Defect

Let α = 0 first, which provides the chiral STF analog of the CLC considered elsewhere [57]–

[55]. The Bragg regime of the otherwise defect–free chiral STF is centered at λBr
0 = 1090

nm and the bandwidth ∆λBr
0 = 72 nm; the circular Bragg phenomenon is indicated by a

peak in R
(0)
RR and a trough in T

(0)
RR, because the chosen chiral STF is structurally right–

handed.

In the presence of a central 90◦–twist defect, a spectral hole is produced in the center of

the Bragg regime, as the preceding studies had suggested [37, 56]. Figure 5.2 shows a nar-
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row co–handed reflectance hole (of about 2–nm bandwidth) in R
(0)
RR and correspondingly,

a co–handed transmittance peak in the T
(0)
RR around λBr

0 = 1090 nm, when Nd = 54.

A cross–handed spectral hole must also be excitable, provided the ratio Nd is sufficiently

large. Indeed, Figure 5.3 shows an ultra–narrow cross–handed transmittance hole (about

0.02–nm bandwidth) in T
(0)
LL and a corresponding cross–handed reflection peak in R

(0)
LL at

the peak wavelength λp
0 = 1090.328 nm, when Nd = 182.

Therefore, there are two types of spectral holes of opposite circular polarization states,

depending on different values of Nd. As the two types of spectral holes evolve with the

increase of Nd, a crossover phenomenon can be identified. Figure 5.4 shows the plots

of T
(0)
RR and R

(0)
LL versus Nd at λp

0 = 1090.328 nm. The crossover value of Nd, denoted

by Nco
d , is that value at which T

(0)
RR = R

(0)
LL for α = 0. As Nd increases above Nco

d , the

co–handed reflectance hole wanes and the cross–handed transmittance hole enhances to a

steady state.

Slanted Chiral STF with a Central 90◦–Twist Defect

For a slanted chiral STF, α 6= 0. The circular Bragg phenomenon of a slanted chiral STF

is partly nonspecular, indicated by a high co–handed reflectance of order n = ∓2 for α ≷ 0

and a low co–handed specular transmittance in the Bragg regime. The center–wavelength

of the Bragg regime for the otherwise defect–free slanted chiral STF blue–shifts as |α|

increases, and the width of the Bragg regime decreases towards zero, due to the influence

of a Rayleigh–Wood anomaly.

In the presence of a central 90◦–twist defect, Figure 5.5 shows the remittance spectrums

for α = 15◦ and Nd = 54. A co–handed reflectance hole centered at λBr
0 = 1053 nm in

R
(−2)
RR , and a corresponding co–handed transmittance peak in T

(0)
RR, are clearly evident

in Figure 5.5, because the chosen slanted chiral STF is structurally right–handed. The

bandwidth of the co–handed reflectance hole is still about 2 nm. Thus, a major effect of
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α 6= 0 is to also produce a co–handed reflectance hole, but nonspecularly.

That co–handed reflectance hole is absent in the remittance spectrums of Figure 5.6, for

which α = 15◦ and Nd = 182. Instead, a cross–handed transmittance hole appears in T
(0)
LL,

which is specular; and it is accompanied by cross–handed transmittance/reflectance peaks

in R
(−2)
LL , R

(0)
LL, and T

(−2)
LL . The peak wavelength λp

0 = 1052.80 nm ‡ and the bandwidth is

about 0.15 nm.

Therefore, the crossover phenomenon as shown for α = 0 is exhibited for α 6= 0 as well,

though with different values of Nco
d . The value of Nco

d for α 6= 0 can be estimated from

the plots of the peak remittances against Nd, as illustrated in Figure 5.7 for α = 15◦.

The peak remittances at λ0 = λp
0 seem to be varying somewhat irregularly with Nd in

Figure 5.7, in contrast to that in Figure 5.4 for α = 0. However, the values of T
(0)
RR and

R
(−2)
LL +R

(0)
LL+T

(+2)
LL at λ0 = λp

0 do vary quite smoothly with Nd. From their plots therefore,

the value Nco
d = 84 is determined for α = 15◦. Only for Nd < Nco

d does the co–handed

reflectance hole exist in R
(∓2)
RR for α ≷ 0; when Nd > Nco

d , the cross–handed transmittance

hole in T
(0)
LL takes over just as for α = 0.

5.3.3 Parametric Characterization

Effect of Slant Angle α

While the cross–handed transmittance hole always occurs in T
(0)
LL for Nd > Nco

d , the corre-

sponding cross–handed reflectance peaks appear in Floquet harmonics of different orders as

α 6= 0 changes. Figure 5.8 shows the cross–handed reflectance peaks of different orders for

α = 5◦, 10◦ , 15◦ and 16.7◦ respectively, when Nd = 182. The cross–handed transmittance

hole in T
(0)
LL shown in Figure 5.8 is nearly unaffected by α, though its bandwidth increases

‡Actually, λp
0 turns out to be a function of both α and Nd. For α = 0, λp

0 = 1090.328 nm for all Nd. In

contrast, λp
0 varies from 1052.65 nm to 1053.75 nm as Nd changes from 50 to 200, when α = 15◦.
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with α > 0 (with the exception of α = 16.7◦). But the co–handed reflectance peak shifts

from a nonspecular order (R
(+2)
LL ) to the specular order (R

(0)
LL), and then is shared by the

specular and the other nonspecular orders (R
(0)
LL and R

(−2)
LL ), as α > 0 increases up to 15◦.

A further increase in α returns the peak in Figure 5.8 to the specular order.

In fact, as |α| increases beyond 15◦, the circular Bragg phenomenon is subverted by a

Rayleigh–Wood anomaly, as shown in Chapter 3. That is the reason why the co–handed

reflectance hole in R
(−2)
RR is absent in Figure 5.9 for α = 16.7◦ and Nd = 54. But the cross–

handed transmittance hole in T
(0)
LL survives at about λp

0 = 1043.98 nm when Nd = 182

(Figure 5.8(d)). For |α| > 17.1◦, the circular Bragg phenomenon vanishes completely, and

in consequence, neither of the two types of spectral holes exists.

Effect of Dissipation

Though the slanted chiral STF is very weakly dissipative, significant absorption occurs for

an incident cross–handed CP plane wave in the wavelength–regime of the cross–handed

transmittance hole. In contrast, the absorbance for an incident co–handed CP plane wave

first increases to a small value (< 0.1) as Nd increases to Nco
d , and then drops to a minuscule

value (< 0.01). Figure 5.10 shows the absorbance spectrums for LCP incidence in a chiral

STF (α = 0) and a slanted chiral STF (α = 15◦) as before, when Nd = 182. Clearly,

absorbance is higher for the chiral STF than for the slanted chiral STF, in their respective

cross–handed transmittance hole regimes.

When dissipation in the slanted chiral STF is enhanced — for example, by choosing

smaller Na,b,c in (2.4) — it is found that the cross–handed transmittance hole for Nd >

Nco
d fades away, although the co–handed reflectance hole still exists for Nd < Nco

d . This

conclusion is not surprising because the cross–handed transmittance hole is affected by

the entire thickness d of the thin film, whereas the co–handed reflectance hole is affected

only by the first few structural periods [75].
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Effect of Twist Angle φ

Finally, the twist angle φ 6= moπ
2 (mo is an odd integer) affects the spectral holes too. Most

significantly, the spectral holes are not located roughly in the center of the Bragg regime

as for φ = moπ
2 , but are shifted towards the edges of the Bragg regime when φ 6= mπ

2 .

This is illustrated by Figures 5.11 and 5.12 — which show the spectral holes of the slanted

chiral STF as before (α = 15◦), but with φ = 45◦. Evidently, the spectral holes, located

close to 1071 nm, are blue–shifted in the Bragg regime.

5.4 Concluding Remarks

In conclusion, there are several remarkable features of the spectral holes exhibited in a

slanted chiral STF with a central twist defect. These features are summarized as follows:

• Two types of spectral holes are excitable by CP plane waves — one is the co–handed

reflectance hole, and the second is the cross–handed transmittance hole.

• There is a crossover phenomenon associated with the evolution of the two types of

spectral holes with the increase of thickness.

• The bandwidth of the cross–handed transmittance hole is significantly smaller than

that of the co–handed reflectance hole.

• The co–handed reflectance hole is nonspecular for α 6= 0, while the cross–handed

transmittance hole is always specular.

• The spectral holes occur in the center of the Bragg regime, when the twist angle

α = moπ
2 (mo is an odd integer); they are shifted towards the edges of the Bragg

regime when φ 6= mπ
2 (m ∈ Z).
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• The spectral holes are accompanied by spectral peaks in the corresponding transmit-

tance and reflectance spectrums. In contrast to the co–handed transmittance peak

which is always specular for α 6= 0, the cross–handed reflectance peak happens in

Floquet harmonics of different orders as α 6= 0 changes.

• Even for weakly dissipative slanted chiral STFs, the cross–handed transmittance

hole is accompanied by substantial absorption.

64



α

φ

χs

z = d/2

z = 0

z = d

ax
is

H
el

ic
al

α

x

z

ax
is

H
el

ic
al

Ω

(−2) (−1)
(0)

(+1)

Transmitted

(−1)
(−2)

(+1)

(0)

Refle
ctedIncident

plane wave

Free space 

Free space 
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reflection and transmission can occur because α 6= 0.
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Chapter 6

Analytical Approach to the

Crossover Phenomenon in Chiral

STFs

The exhibition of two types of spectral holes in a slanted chiral STF with a central twist

defect is established in Chapter 5, based on a numerical solution procedure devised using

RCWA. Notably, there is a crossover phenomenon associated with the occurrence of the

two types of spectral holes: A co–handed reflectance hole is seen when the chosen thin film

is relatively thin, but a cross–handed transmittance hole takes over when the thickness

is large. The same crossover phenomenon also occurs in other types of chiral structures,

such as chiral STFs and CLCs.

There is a need to theoretically understand the crossover phenomenon rather than

simply examine it numerically. Kopp & Genack [57] and Schmidtke & Stille [59] formulated

the existence of a localized defect mode to explain the crossover phenomenon in CLCs.

Oldano [76] and Becchi et al. [58] pointed out that the defect mode in CLCs has both
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spatially localized and nonlocalized components, because the electromagnetic modes in an

axially excited CLC or chiral STF are not circularly polarized, in general [77]. Both Oldano

and Kopp & Genack agreed that an analytic explanation of the crossover phenomenon is

greatly desirable.

The objective of this chapter is to present an analytical explanation of the crossover

phenomenon for chiral STFs. A similar explanation should hold for slanted chiral STFs

as well, but the focus is kept on α = 0 to keep analysis tractable. An analytic treatment

of the central 90◦–twist defect in a chiral STF is presented here.

6.1 Formalism of Coupled–Wave Theory

6.1.1 Geometry of the Problem

Let the region 0 < z < d be occupied by a chiral STF with a central twist defect of

φ = 90◦, as shown in Figure 6.1, while the two half–spaces z ≤ 0 and z ≥ d are filled

with a homogenous, isotropic, dielectric medium of refractive index nhs. The formulas of

Chapter 5 apply with α = 0 and φ = π/2.

6.1.2 Coupled–Wave ODEs

A plane wave is normally incident on to the plane z = 0 from the half–space z ≤ 0. As a

result, the chiral STF is axially excited, such that the electromagnetic field phasors E(r)

and H(r) are independent of x and y, i.e.,

E(r) ≡ E(z) =
∑

σ=x,y,z

Eσ(z)uσ (6.1)

and

H(r) ≡ H(z) =
∑

σ=x,y,z

Hσ(z)uσ . (6.2)
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The Maxwell curl postulates in (2.21) now reduce to the ODEs

uz × d
dzE(z) = iωµ0H(z)

uz × d
dzH(z) = −iωǫ0ǫ(z) ·E(z)







, 0 < z < d , (6.3)

for axial wave propagation in the chiral STF. By projecting (6.3) onto the subspace perpen-

dicular to the z axis (i.e., xy plane), the following matrix ODEs for axial wave propagation

are obtained [32]:

d
dz

(





0 −1

1 0



 [E⊥(z)]

)

= ik0 [H′
⊥(z)]

d
dz

(





0 −1

1 0



 [H′
⊥(z)]

)

= −ik0

[

ǫ
perp

(z)
]

[E⊥(z)]



































, 0 < z < d . (6.4)

Here,

[E⊥(z)] = [Ex(z) , Ey(z)]
T ,

[

H′
⊥(z)

]

= [η0Hx(z) , η0Hy(z)]
T (6.5)

are 2–column vectors;
[

ǫ
perp

(z)
]

=
{

[

ǫ(z)
]−1

⊥

}−1
(6.6)

is a 2×2 matrix;
[

ǫ(z)
]

is the matrix form of ǫ(z); and
[

ǫ(z)
]−1

⊥
is obtained by neglecting

all components of
[

ǫ(z)
]−1

on the z axis.

By simply eliminating [H′
⊥(z)] in (6.4), the matrix ODE

d2

dz2
[E⊥(z)] + k2

0

[

ǫ
perp

(z)
]

[E⊥(z)] = [0]2 , (6.7)

analogous to the homogenous Helmholtz equation, is obtained for the axial variation of

[E⊥(z)].

Analytic solution of the second–order ODE (6.7) needs an appropriate expansion of

the matrix
[

ǫ
perp

(z)
]

. The axial periodicity of chiral STFs suggests that
[

ǫ
perp

(z)
]

can be

decomposed into a Fourier series [78]. According to (2.2) and (5.2), the Fourier represen-
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tation of
[

ǫ
perp

(z)
]

in (6.6) is

[

ǫ
perp

(z)
]

=











ǭ
[

I
]

2
+ δǫ

[

F
]

ei2πz/Ω + δǫ
[

F
]∗
e−i2πz/Ω , 0 < z < d ,

ǭ
[

I
]

2
− δǫ

[

F
]

ei2πz/Ω − δǫ
[

F
]∗
e−i2πz/Ω , d < z < 2d ,

(6.8)

where the scalars

ǭ = (ǫd + ǫc)/2

δǫ = (ǫd − ǫc)/2







, (6.9)

the 2×2 matrix

[

F
]

=





1 −hi

−hi −1



 , (6.10)

and the superscript ∗ denotes the complex conjugate.

Now, on neglecting the perturbation factor δǫ in (6.8), the ODE (6.7) yields the solution

[E⊥(z)] =
[

B+
]

eikz +
[

B−
]

e−ikz , (6.11)

where k = k0n̄, n̄ =
√
ǭ, and

[

B±
]

are constant–valued 2–column vectors. Therefore, it is

natural to render

[E⊥(z)] =
[

B+(z)
]

eikz +
[

B−(z)
]

e−ikz (6.12)

as the solution of ODE (6.7) without ignoring δǫ. Thus, (6.12) is nothing but a modification

of (6.11) with variable
[

B±(z)
]

accounting for the periodic nature of
[

ǫ
perp

(z)
]

.

Furthermore, in light of the circular–polarization–discriminatory optical responses of

chiral STFs, it is useful to transform
[

B±(z)
]

into their CP counterparts
[

B̃
±
(z)
]

by

[

B±(z)
]

=
[

Y
]

[

B̃
±
(z)
]

, (6.13)

where the transformation matrix

[

Y
]

=
1√
2





1 1

i −i



 . (6.14)
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While the components of the 2–column vectors

[

B±(z)
]

=





B±
x (z)

B±
y (z)



 (6.15)

are understood in the cartesian coordinate system, the components of the 2–column vectors

[

B̃
+
(z)
]

=







B+
L (z)

B+
R(z)






,
[

B̃
−
(z)
]

=





B−
R(z)

B−
L (z)



 (6.16)

are LCP and RCP, as indicated by the subscripts L and R.

By substituting (6.8), (6.12) and (6.13) into the ODE (6.7), and enforcing the mutual

orthogonalities of LCP and RCP phasors, the following coupled–wave ODEs are derived:

1
k2
0

d2

dz2

[

B̃
+
(z)
]

+ 2ik
k2
0

d
dz

[

B̃
+
(z)
]

= ∓δǫ
{[

F̃
+
] [

B̃
−
(z)
]

e−2i(k−π/Ω)z

+
[

F̃
−
] [

B̃
−
(z)
]

e−2i(k+π/Ω)z
}

1
k2
0

d2

dz2

[

B̃
−
(z)
]

− 2ik
k2
0

d
dz

[

B̃
−
(z)
]

= ∓δǫ
{[

F̃
−
] [

B̃
+
(z)
]

e2i(k−π/Ω)z

+
[

F̃
+
] [

B̃
+
(z)
]

e2i(k+π/Ω)z
}















































. (6.17)

In these equations, the upper signs (before δǫ) apply for 0 < z < d/2 and the lower signs

for d/2 < z < d, while the 2×2 matrixes

[

F̃
±
]

=
1

2





0 1 ∓ h

1 ± h 0



 (6.18)

are anti–diagonal. Hence, the ODEs (6.17) decouple B±
L (z) from B±

R(z), but B−
L (z) is

coupled to B+
L (z), and B−

R(z) to B+
R(z).

6.1.3 Transfer Matrixes

After substituting

[ẽ±(z)] =
[

B̃
±
(z)
]

e±ikz (6.19)
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in (6.17) and neglecting the second–order derivatives, the solutions of the ODEs (6.17) are

obtained as





[

ẽ+(z)
]

[

ẽ−(z)
]



 =
[

W+(z − z0)
]





[

ẽ+(z0)
]

[

ẽ−(z0)
]



 , 0+ ≤ z0, z ≤ d/2− , (6.20)

and




[

ẽ+(z)
]

[

ẽ−(z)
]



 =
[

W−(z − z0)
]T





[

ẽ+(z0)
]

[

ẽ−(z0)
]



 , d/2+ ≤ z0, z ≤ d− . (6.21)

The transfer 4×4 matrixes
[

W±(z)
]

are defined as

[

W±(z)
]

=





















P−(z) 0 0 ±Q−(z)

0 P+(z) ±Q+(z) 0

0 ±Q∗
+(z) P∗

+(z) 0

±Q∗
−(z) 0 0 P∗

−(z)





















, 0 ≤ z ≤ d/2 , (6.22)

where

P±(z) = e±ihπz/Ω

[

cosh(∆∓z) +
i(k ∓ hπ/Ω)

∆∓
sinh(∆∓z)

]

, (6.23)

Q±(z) = e±ihπz/Ω

[

ikδ

∆∓
sinh(∆∓z)

]

, (6.24)

kδ = k0δn, δn = δǫ/2n̄, and ∆± =
√

k2
δ − (k ± hπ/Ω)2.

The structure of
[

W±(z)
]

confirms the decoupling of LCP and RCP phasors for all z ∈

(0, d), within the approximate framework of CWT. Furthermore, it is worth mentioning

that neglect of the terms containing e±2i(k+π/Ω)z in (6.17) would mean that

P+(z)δh,−1 + P−(z)δh,1 ⇒ eikz

Q+(z)δh,−1 + Q−(z)δh,1 ⇒ 0







, (6.25)

thereby defeating the purpose of explaining the crossover phenomenon in the chiral STF.

Here, δm,m′ is the Kronecker delta.
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6.1.4 Boundary Conditions

Expressions for [E⊥(z)] and [H′
⊥(z)] are to be obtained after combining (6.20) and (6.21)

with the boundary conditions on the interfaces z = 0, z = d/2, and z = d. The conti-

nuity of the tangential components of the electric and magnetic field phasors across these

interfaces implies that [E⊥(z)] and [H′
⊤(z)] = (ik0)

−1 d
dz [E⊥(z)] should be continuous,

according to the ODEs (6.4).

Consistently with developments in Section 6.1.2, it is useful to define the circular coun-

terparts of [E⊥(z)] and [H′
⊤(z)] as

[

Ẽ⊥(z)
]

=
[

Y
]†

[E⊥(z)] =
[

ẽ+(z)
]

+
[

ẽ−(z)
]

(6.26)

and
[

H̃
′
⊤(z)

]

=
[

Y
]† [

H′
⊤(z)

]

= (ik0)
−1

[

d

dz

[

ẽ+(z)
]

+
d

dz

[

ẽ−(z)
]

]

, (6.27)

where the superscript † denotes the Hermitian adjoint [68]. These 2–column vectors must

be continuous across the interfaces as well; i.e.,
[

Ẽ⊥(z−)
]

=
[

Ẽ⊥(z+)
]

[

H̃
′
⊤(z−)

]

=
[

H̃
′
⊤(z+)

]











, z ∈ {0, d/2, d} . (6.28)

In accordance with (6.20), (6.21), (6.26) and (6.27), one can obtain the expressions






[

Ẽ⊥(z)
]

[

H̃
′
⊤(z)

]






=
[

Z+
]





[

ẽ+(z)
]

[

ẽ−(z)
]



 , z ∈ {0+, d/2−} , (6.29)

and






[

Ẽ⊥(z)
]

[

H̃
′
⊤(z)

]






=
[

Z−
]





[

ẽ+(z)
]

[

ẽ−(z)
]



 , z ∈ {d/2+, d−} , (6.30)

where the 4×4 matrixes

[

Z±
]

=
[

Z(n̄)
]

∓ δn



















0 0 0 0

0 0 0 0

0 1 0 −1

1 0 −1 0



















(6.31)
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and

[

Z(σ)
]

=





[

I
]

2

[

I
]

2

σ
[

I
]

2
−σ
[

I
]

2



 . (6.32)

Parenthetically, it is noted that the approximation of
[

W±(z)
]

via (6.25) must not be made

for the establishment of the boundary conditions (6.29) and (6.30), which are crucial to

provide an analytic expression of the crossover phenomenon.

The values of the field phasors at z = 0− and z = d+ should be related to the electro-

magnetic field in the two half–spaces. The incident, reflected and transmitted plane waves

propagate along the z axis in the two half–spaces z ≤ 0 and z ≥ d. Following Venugopal

and Lakhtakia [27, 28], and in analogy with (6.19) and (6.26), the electric field phasors in

the two half–spaces are represented as

[

Ẽ⊥(z)
]

= [A ] einhsk0z + [R ] e−inhsk0z , z ≤ 0−

[

Ẽ⊥(z)
]

= [ T ] einhsk0z , z ≥ d+











, (6.33)

where the 2–column vectors

[A ] =





aL

aR



 , [R ] =





rR

rL



 , [ T ] =





tL

tR



 , (6.34)

respectively, comprise amplitudes of the LCP and RCP components of the incident, re-

flected, and transmitted plane waves. Finally, similarly to (6.29) and (6.30), the expres-

sions






[

Ẽ⊥(z)
]

[

H̃
′
⊤(z)

]






=
[

Z
hs

]





[A ]

[R ]



 , z = 0− , (6.35)

and






[

Ẽ⊥(z)
]

[

H̃
′
⊤(z)

]






=
[

Z
hs

]





[ T ]

[0]2



 , z = d+ (6.36)

are obtained, where
[

Z
hs

]

=
[

Z(nhs)
]

.
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6.1.5 Reflection and Transmission

By combining the equalities (6.20), (6.21), (6.29), (6.30), (6.35) and (6.36) with the bound-

ary conditions (6.28), the unknown [R ] and [T ] are determined by the algebraic equation





[T ]

[0]2



 =
[

τ
]





[A ]

[R ]



 , (6.37)

where the 4 × 4 transmission matrix

[

τ
]

=
[

Z
hs

]−1
[

Z−
] [

τ̂
] [

Z+
]−1

[

Z
hs

]

(6.38)

employs the matrix

[

τ̂
]

=
[

W−(d/2)
] [

Z−
]−1 [

Z+
] [

W+(d/2)
]

(6.39)

which does not depend on nhs. The transmission matrix
[

τ̂
]

of (6.39), through specified

here for the central 90◦–twist defect, applies in a general sense for any φ.

In fact, because of structural chirality,
[

W−(d/2)
]

is related to
[

W+(d/2)
]

, and
[

Z−
]

to
[

Z+
]

, by a rotational transformation:

[

W−(d/2)
]

=
[

R(φ)
] [

W+(d/2)
] [

R(φ)
]−1

[

Z−
]

=
[

R(φ)
] [

Z+
] [

R(φ)
]−1







. (6.40)

The 4 × 4 rotational matrix
[

R(φ)
]

consists of two diagonal blocks as follows:

[

R(φ)
]

=







[

Y
]† [

R(φ)
] [

Y
] [

0
]

2

[

0
]

2

[

Y
]† [

R(φ)
] [

Y
]






. (6.41)

The 2 × 2 matrix

[

R(φ)
]

=





cosφ −sinφ

sinφ cosφ



 (6.42)

denotes a rotation about the z axis by an angle φ. When φ = mπ, (m ∈ Z), the matrix
[

R(φ)
]

=
[

I
]

4
; therefore, (6.40) simplifies to

[

W−(d/2)
]

=
[

W+(d/2)
]

,
[

Z−
]

=
[

Z+
]

. (6.43)
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As a result, the transmission matrix

[

τ̂
]

=
[

W+(d/2)
]2

=
[

W+(d)
]

, (6.44)

which applies to a defect–free chiral STF. When φ 6= mπ,
[

W−(d/2)
]

6=
[

W+(d/2)
]

in

general, which gives rise to the spectral characteristics of
[

τ̂
]

responsible for the crossover

phenomenon.

Although the transmission matrix
[

τ
]

seems very complicated, its replacement by
[

τ̂
]

in (6.37) is found to generate values of [R ] and [ T ] that exhibit the main spectral features

of the circular Bragg phenomenon as well those due to the central twist defect. In physical

terms, the replacement of
[

τ
]

by
[

τ̂
]

for obtaining [R ] and [ T ] amounts to ignoring

the index–mismatch across the interfaces z = 0 and z = d. Indeed, when |δn| << n̄

and nhs = n̄, the chiral STF can be said to be index–matched to the medium in the two

half–spaces, and
[

τ
]

≃
[

τ̂
]

would then be very true.

To analyze the crossover phenomenon, let nr = n̄ to minimize the index–mismatch

across the interfaces z = 0 and z = d. Then,




[T ]

[0]2



 =
[

τ̂
]





[A ]

[R ]



 (6.45)

yields approximate but closed–form solutions for [R ] and [T ] as follows.

The reflection coefficients (rLL, etc.) and the transmission coefficients (tLL, etc.) are

defined through the matrix expressions




rL

rR



 =





rLL rRL

rLR rRR









aL

aR



 ,





tL

tR



 =





tLL tRL

tLR tRR









aL

aR



 . (6.46)

Reflectances and transmittances are defined as

Rσσ′ = |rσσ′ |2 , Tσσ′ = |tσσ′ |2 , σ, σ′ = L,R . (6.47)

The coefficients and remittances defined by (6.46) and (6.47) are equivalent to those defined

by (3.5) and (3.6) for the special case α = 0.
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Because the crossover phenomenon involves only the co–polarized quantities, closed–

form expressions of the cross–polarized reflection and transmission coefficients are not of

interest. On neglecting the small item Q̂− in
[

W±(d/2)
]

for |b| << 1, the solution of

(6.45) results in the co–polarized transmission coefficients

tLL =
P̂2
−Ĝ

Ĝ+b2Q̂2
+

δh,1 +
(|P̂+|2−|Q̂+|2)

2

Ĝ+b2Q̂2
+

δh,−1

tRR =
P̂2
−Ĝ

Ĝ+b2Q̂2
+

δh,−1 +
(|P̂+|2−|Q̂+|2)

2

Ĝ+b2Q̂2
+

δh,1















, (6.48)

and the co–polarized reflection coefficients

rLL = − P̂−

P̂∗
−

(

bĜ−b2P̂∗
+Q̂+

Ĝ+b2Q̂2
+

)

δh,1 −
2Re[P̂+Q̂+]+b(|P̂+|2+|Q̂+|2)+b2P̂+Q̂+

Ĝ+b2Q̂2
+

δh,−1

rRR = − P̂−

P̂∗
−

(

bĜ−b2P̂∗
+Q̂+

Ĝ+b2Q̂2
+

)

δh,−1 −
2Re[P̂+Q̂+]+b(|P̂+|2+|Q̂+|2)+b2P̂+Q̂+

Ĝ+b2Q̂2
+

δh,1



















, (6.49)

where

Ĝ = (P̂∗
+)2 + 2bP̂∗

+Q̂+ + Q̂2
+

P̂± = P∓(d/2)δh,−1 + P±(d/2)δh,1

Q̂± = Q∓(d/2)δh,−1 + Q±(d/2)δh,1























. (6.50)

All the results presented in Section 6.2 for the chiral STF with a central 90◦–twist

defect are obtained from (6.48) and (6.49), unless otherwise noted.

6.2 Solution and Analysis

6.2.1 Circular Bragg Phenomenon

For phenomenological completeness, it is desirable to begin with the optical response of a

chiral STF without a twist defect. For simplicity, but without loss of essential physics, let

dispersion be ignored. In the absence of the twist defect, the transmission matrix
[

τ̂
]

is

given in (6.44).

Figure 6.2 shows the reflectances and transmittances for λ0 ∈ [640, 740] nm, when

ǫc = 1.70292, ǫd = 1.74272, nhs = n̄ = 1.7230, h = 1, Ω = 200 nm, and Nd = d/Ω = 100.
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The circular Bragg phenomenon is indicated by a peak in RRR and a trough in TRR,

because the chosen chiral STF is structurally right–handed. The incident LCP plane wave

is mostly transmitted. According to CWT, the Bragg regime is centered at the wavelength

[30]

λBr
0CWT

= 2n̄Ω . (6.51)

From numerous computations, it was ascertained that substantial development of circular

Bragg phenomenon requires

Nd ≥ 1/|b| , (6.52)

where b = δn/n̄ is the relative local birefringence.

The emergence of the circular Bragg phenomenon can be analytically explained by the

characteristics of
[

W+(z)
]

. This 4×4 matrix can be decomposed into the following 2×2

submatrixes:

[

W+
L
(z)
]

=





P−(z) Q−(z)

Q∗
−(z) P∗

−(z)



 ,
[

W+
R
(z)
]

=





P+(z) Q+(z)

Q∗
+(z) P∗

+(z)



 . (6.53)

These two submatrixes control the responses of the chiral STF to incident LCP and RCP

plane waves, respectively. For |b| << 1, |Q∓(z)| is much smaller than |P∓(z)| (≃ 1) for

h = ±1. Therefore,
[

W+
R
(z)
]

δh,−1 +
[

W+
L
(z)
]

δh,1 is approximately equal to
[

I
]

2
for

λ0 ∼ λBr
0CWT

, which leads to the total transmission of the incident cross–handed CP plane

wave in the Bragg regime. In other words, a chiral STF acts as a homogenous, isotropic,

dielectric medium for a normally incident, cross–handed, CP plane wave. However, the

format of
[

W+
L
(z)
]

δh,−1 +
[

W+
R
(z)
]

δh,1 resembles the scattering matrix of a scalar Bragg

grating [79]. Accordingly, the response to a co–handed CP plane wave is the same as of a

scalar Bragg grating, for wavelengths within the Bragg regime [31].
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6.2.2 Crossover Phenomenon

Now, the optical response of a chiral STF with a central 90◦–twist defect is considered.

Figures 6.3 and 6.4 show the spectrums of the co–polarized reflectances and transmittances

obtained from the CWT expressions (6.48) and (6.49), when Nd = 100 and Nd = 600,

respectively. As expected, the CWT captures the already–known phenomenons that

• a co–handed reflectance hole, accompanied by a co–handed transmittance peak,

occurs in the center of the Bragg regime for relatively small Nd (Figure 6.3), disap-

pearing for large Nd; and

• a cross–handed transmittance hole, accompanied by a cross–handed reflectance peak,

occurs in the center of the Bragg regime for large Nd (Figure 6.4).

Typically, the bandwidth of the cross–handed transmittance hole is extraordinarily small,

and is independent of Nd beyond its crossover value Nco
d .

In order to analyze the consequences of introducing the central 90◦–twist defect, re-

course to the matrix
[

τ̂
]

must be taken. This matrix can be decomposed as

[

τ̂
]

=
[

W−(d/2)
] [

W+(d/2)
]

+
[

W−(d/2)
] [

Θ(b)
] [

W+(d/2)
]

, (6.54)

where all nonzero entries of the 4×4 matrix

[

Θ(b)
]

=
[

Z−
]−1 [

Z+
]

−
[

I
]

4
(6.55)

are of O(b). This decomposition is not arbitrary but has physical meaning. The first term

on the right side of (6.54), all by itself, would give rise to total transmission in the central

part of the Bragg regime. In contrast, were
[

τ̂
]

=
[

W−(d/2)
] [

Θ(b)
] [

W+(d/2)
]

, total

reflection would occur in the entire Bragg regime, for all Nd ≥ 1/|b|. Thus, the second

term on the right side of (6.54) describes a CP mirror.
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As |b| << 1, the second term on the right side of (6.54) may be viewed as perturbing

the leading term
[

W−(d/2)
] [

W+(d/2)
]

. Even so, the former is essential to the elucidation

of the crossover phenomenon. For convenience, the weight of the second term in relation

to the first term is defined

α∞ =
‖
[

W−(d/2)
] [

Θ(b)
] [

W+(d/2)
]

‖∞
‖
[

W−(d/2)
] [

W+(d/2)
]

‖∞
=

|b|
1 − b2

|P̂+|2 + |Q̂+|2

|P̂2
+ + (Q̂∗

+)2|
, (6.56)

where || . || is the L∞–norm of matrix [68]. According to (6.50),

α∞ ≈











|b| , for |b sinh(πbNd)| << 1 ,

|b/β| , for |b sinh(πbNd)| >> 1 ,

(6.57)

where β = (k − π/Ω)/kδ . Clearly, α∞ is independent of Nd in either of the Nd–ranges

specified in (6.57); therefore, both terms on the right side of (6.54) are similar to each other

in the sense of L∞ norms in those two Nd–ranges. Furthermore, a wavelength–regime can

be mapped to a β–regime uniquely. When β = 0, λ0 = λBr
0CWT

; therefore, the neighborhood

of λBr
0CWT

can be equivalently specified through the β–neighborhood of 0.

When Nd is relatively small (but larger than 1/|b|), ||
[

W±(d/2)
]

||∞ = O(1) and α∞ ≈

|b| << 1; thus, the second term on the right side of (6.54) can be ignored in favor of

the first term, so that
[

τ̂
]

≈
[

W−(d/2)
] [

W+(d/2)
]

. According to (6.23) and (6.24),
[

W−(d/2)
] [

W+(d/2)
]

becomes almost equal to
[

I
]

4
for λ0 ∼ λBr

0CWT
, which gives rises

to almost total transmission in the center of Bragg regime, as confirmed by Figure 6.3(b)

for Nd = 100. In other words, the chiral STF with the central 90◦–twist defect becomes

optically transparent in a small neighborhood of λBr
0CWT

, for both LCP and RCP plane

waves. Another interpretation is that the phase difference between the field phasors at

z = 0+ and z = d/2− is exactly the opposite of the phase difference between the field

phasors at z = d/2+ and z = d−.

When Nd is significantly large, the foregoing picture changes completely. No longer can
[

τ̂
]

be considered approximately equal to
[

W−(d/2)
] [

W+(d/2)
]

, because α∞ ≈ |b/β| →

+∞ as λ0 → λBr
0CWT

. The first term on the right side of (6.54) is still almost equal to
[

I
]

4
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at λ0 = λBr
0CWT

— and therefore indicates total transmission all by itself in the central

part of the Bragg regime — although the bandwidth of that feature falls exponentially

as Nd increases. But, the second term interferes with the first term in the neighborhood

of λBr
0CWT

so that
[

τ̂
]

is isomorphic to the transmittance matrix of a defect–free chiral

STF — except in a tiny neighborhood of β = b wherein α∞ ≈ 1. It must be the L∞–

norm–equivalence of the two terms that engenders the total–reflection feature in the tiny

neighborhood of β = b, as confirmed by Figure 6.4(a) for Nd = 600. This conclusion applies

to any arbitrary φ 6= mπ, (m ∈ Z), as proved by further investigations.

An analytical view of the crossover phenomenon is attained by examining the CWT

expressions (6.48) and (6.49) when β = b. Now, Ĝ ≡ 1 for any Nd, when β = b or λ0

equals

λp
0CWT

= λBr
0CWT

(1 − b2) . (6.58)

Furthermore, |P̂−|2 = 1 + O(b2) and

Det
{[

W+
L
(d/2)

]

δh,−1 +
[

W+
R
(d/2)

]

δh,1

}

= |P̂+|2 − |Q̂+|2 ≡ 1 (6.59)

for any Nd. Hence, the values of tLL and tRR in (6.48) are generally determined by the

denominator Ĝ + b2Q̂2
+. Typically, when Nd is not significantly large so that

b2Q̂2
+ ≈ − b2

1 − b2
sinh2(πbNd) (6.60)

is of o(1) for λ0 = λp
0CWT

, then Ĝ + b2Q̂2
+ ≈ 1. Hence, TLL → 1 and TRR → 1, as

λ0 → λp
0CWT

. Correspondingly, total transmission (and thereby the co–handed reflection

hole) occurs near λp
0CWT

for small values of Nd ≥ 1/|b|.

However, as Nd increases, the value of |b2Q̂2
+| increases exponentially to exceed Ĝ = 1

tremendously at λ0 = λp
0CWT

. Therefore, TLL → 0 and TRR → 0 for significantly large

Nd at λ0 = λp
0CWT

, leading to the disappearance of total transmission in the center of

the Bragg regime. Instead, (6.49) implies that RLL → 1 and RRR → 1 at λ0 = λp
0CWT

for Nd → +∞, thereby confirming the emergence of total reflection (and thereby the

cross–handed transmittance hole) for large values of Nd ≥ 1/|b|.
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Although the foregoing analysis successfully provides a rigorous explanation of the

crossover phenomenon for either small or significantly large values of Nd, it is not able

to yield an estimate of Nco
d . In fact, when Nd is close to Nco

d , the denominator Ĝ + b2Q̂2
+

in (6.48) and (6.49) becomes almost null–valued for λ0 = λp
0CWT

. Therefore, (6.48) and

(6.49) are not reliable as far as adherence to the principle of conservation of energy is

considered. The reason for this inadequacy is the neglect of the second–order derivatives

in the coupled–wave ODEs (6.17).

Parenthetically, although the electromagnetic field in axially excited defect–free chiral

STFs can be expressed exactly [80, 81] and has been used for chiral STFs with central twist

defects [58], closed–form expressions of the reflectances and transmittances of chiral STFs

with central 90◦–twist defects are presented here for the first time. These expressions may

be used to calculate the peak wavelength and bandwidth when Nd is sufficiently different

from Nco
d .

6.2.3 Hole/Peak Locations and Bandwidths

Figure 6.5 provides a comparison of the co–handed transmittance and the cross–handed

reflectance obtained using the CWT equation (6.49) with those obtained from the numer-

ical solution procedure devised in Chapter 5 for α = 0. Clearly, Figure 6.5(a) illustrates

that the CWT agrees with the numerical solution procedure in modeling the co–handed

transmittance peak (and thereby the co–handed reflectance hole) on a relatively coarse

wavelength–scale for small values of Nd ≥ 1/|b|. However, on a highly refined wavelength–

scale, the locations of the cross–handed reflectance peak (as well as the cross–handed

transmittance hole) for large values of Nd are predicted differently by the CWT and the

numerical solution procedure, as illustrated in Figure 6.5(b).

In fact, according to the numerical solution of (5.15), both types of spectral holes and
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peaks are centered at

λp
0 = λBr

0CWT
(1 − 0.5b2) . (6.61)

When compared with λBr
0 of (4.1), it is found that λp

0 = λBr
0 correct to order O(b4). The

deviation of λp
0CWT

of (6.58) from λp
0 echoes the approximation inherent in the CWT.

Figure 6.6 provides an assessment of the bandwidths of both types of spectral holes

in relation to the local birefringence. The bandwidth of the co–handed reflectance hole

decreases exponentially with Nd. This is because the factor b2Q̂2
+ in (6.48) increases

exponentially with Nd, as per (6.60). The bandwidth of the cross–handed transmittance

hole, although saturated for Nd > Nco
d , increases exponentially with |b|, as shown in Figure

6.6(b). In comparison, Figure 6.6(a) illustrates that the b–dependence of the bandwidth

of the co–handed reflectance hole is linear for Nd = 1/|b|.
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Figure 6.1: Schematic of the boundary value problem involving axial propagation of elec-

tromagnetic wave in a chiral STF with a central twist defect of φ 6= mπ (m ∈ Z) introduced

between the upper and the lower halves about the helical axis.
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Figure 6.2: (a) Reflectances and (b) transmittances of a structurally right–handed chiral

STF without the central twist defect, for normal incidence. The following parameters were

used for CWT calculations: ǫc = 1.70292, ǫd = 1.74292, nr = n̄ = 1.7230, h = 1, Ω = 200

nm and Nd = 100. Interchange the subscripts L and R for h = −1.
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Figure 6.3: (a) Reflectances RLL and RRR and (b) transmittances TLL and TRR, computed

for a structurally right–handed chiral STF with a central 90◦–twist defect. While Nd =

100, other parameters are the same as for Figure 6.2. A co–handed reflectance hole and a

co–handed transmittance peak must be noted.
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Figure 6.4: Same as Figure 6.3, but for Nd = 600. A cross–handed transmittance hole and

a cross–handed reflectance peak must be noted.
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Figure 6.5: (a) Co–handed transmittance TRR for Nd = 100 and (b) cross–handed re-

flectance RLL for Nd = 600. Other parameters are the same as for Figure 6.3. Data for

the solid lines were computed using CWT expressions (6.48) and (6.49), while the dashed

lines are due to the numerical solution of (5.15) for α = 0.
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Figure 6.6: Bandwidths of (a) co–handed reflectance hole for Nd = 1/b and (b) cross–

handed transmittance hole for Nd = 2(πb)−1ℓn(8/b) (significantly large), as functions of

b > 0. Data for the solid lines were computed using (6.48) and (6.49), while the dashed

lines are fitted to solid lines by (a) a linear function and (b) an exponential function. See

Figure 6.3 for other parameters.
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Chapter 7

Lateral Shifts of Optical Beam on

Reflection by Slanted Chiral STFs‡

In addition to planewave excitation discussed in Chapters 3–6, finite sources of excitation

(e.g., evanescent waves, nonparaxial optical beams, and point dipoles) are widely exploited

in nano–optics. Due to the interaction between the circular Bragg phenomenon and the

Rayleigh–Wood anomaly, practical applications of slanted chiral STFs are likely to involve

optical beams which are either continuous–wave or pulsed. Therefore, the objective of this

chapter is to present the response of slanted chiral STFs to optical beams, with emphasis

on lateral shifts of optical beams on reflection.

7.1 Angular–spectrum Representation of 3D Optical Beams

Let a slanted chiral STF of thickness d occupying the region 0 < z < d, while two half–

spaces z ≤ 0 and z ≥ d filled with a homogeneous and isotropic medium of refractive index

‡ This chapter is partly adapted from the following paper: F. Wang, A. Lakhtakia, “Lateral shifts of

optical beams on reflection by slanted chiral sculptured thin films”, Opt. Commun. 235 107–132 (2004).
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nhs, as shown in Figure 7.1. A 3D optical beam is incident from the half–space z ≤ 0 on

to the plane z = 0. As a result, reflection and transmission of the optical beam into the

two half–spaces occur.

The incidence geometry of the 3D optical beam is described as follows: Let θb
i ∈

(−π/2, π/2) and ψb
i ∈ [0, π), respectively, be the mean angles of beam incidence with

respect to the z axis and the x axis in the xy plane. The introduction of θb
i and ψb

i helps

define the cartesian coordinates (x̄, ȳ, z̄), where

x̄ = x cosθb
i cosψb

i + y cosθb
i sinψb

i − z sinθb
i

ȳ = −x sinψb
i + y cosθb

i

z̄ = x sinθb
i cosψb

i + y sinθb
i sinψb

i + z cosψb
i − ν0/cosθi























, (7.1)

and ν0 is the z–value of the origin of the (x̄, ȳ, z̄) coordinates. A schematic of the (x̄, ȳ, z̄)

coordinates is shown in Figure 7.1, where ux̄, uȳ and uz̄ are the basis vectors. Clearly, the

zz̄ plane is the plane of incidence; while the x̄ and ȳ axes are parallel and perpendicular

to the plane of incidence, respectively.

The incident beam can be decomposed into an angular spectrum of plane waves [82].

Therefore, the electromagnetic field phasors of the 3D incident beam are written in the

(x̄, ȳ, z̄) coordinates as

Ei(x̄, ȳ, z̄) =
∫∞
−∞

∫∞
−∞ Ψ(ϑx, ϑy)ei(ϑx, ϑy)

×exp [ik0nhs(ϑxx̄+ ϑy ȳ + ϑz z̄)] dϑxdϑy

Hi(x̄, ȳ, z̄) =
∫∞
−∞

∫∞
−∞ Ψ(ϑx, ϑy)hi(ϑx, ϑy)

×exp [ik0nhs(ϑxx̄+ ϑy ȳ + ϑz z̄)] dϑxdϑy







































, z ≤ 0 . (7.2)

In (7.2), the real–valued ϑx and ϑy together define the domain of the angular spectrum

of plane waves, while ϑz = +
√

1 − ϑ2
x − ϑ2

y is either real–valued or complex–valued. The

unit vectors ei(ϑx, ϑy) and hi(ϑx, ϑy), respectively, represent the electric and magnetic

fields of a plane wave specified by (ϑx, ϑy); while the angular–spectrum function Ψ(ϑx, ϑy)

defines the profile of the incident beam.
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The substitution of (7.1) into (7.2) yields

Ei(x, y, z) =
∫∞
−∞

∫∞
−∞ Ψ(ϑx, ϑy)ei(ϑx, ϑy)exp[i(k

(0)
+ · r +̟0)] dϑxdϑy

Hi(x, y, z) =
∫∞
−∞

∫∞
−∞ Ψ(ϑx, ϑy)hi(ϑx, ϑy)exp[i(k

(0)
+ · r +̟0)] dϑxdϑy











, z ≤ 0 ,

(7.3)

where ̟0 = −ϑzν0/cosθi. The quantity k
(0)
+ ≡ k

(0)
+ (ϑx, ϑy) in (7.3) symbolizes the

wavevector of each planewave contributor of the incident beam; thus,

k
(0)
+ = k(0)

x ux + k(0)
y uy + k(0)

z uz , (7.4)

where

k
(0)
x = k0nhs(ϑxcosθb

icosψ
b
i − ϑysinψ

b
i + ϑzsinθ

b
icosψ

b
i )

k
(0)
y = k0nhs(ϑxcosθb

i sinψ
b
i + ϑycosψ

b
i + ϑzsinθ

b
i sinψ

b
i )

k
(0)
z = k0nhs(−ϑxsinθb

i + ϑzcosθ
b
i )























. (7.5)

In order to represent ei(ϑx, ϑy) and hi(ϑx, ϑy), it is assumed that each of the contribut-

ing plane waves of the incident beam locally has an identical polarization state denoted

via
{

a
(0)
L , a

(0)
R

}

. As a matter of fact, the local planewave polarization state can be defined

in a variety of ways for an optical beam [83, 84], although the polarization state of the

beam is not the same as the local planewave polarization state [85]. Here, it is reasonable

to consider the incident beam defined whose polarization state is approximately circular.

Hence, an approximately LCP beam is simulated by setting a
(0)
R = 0, and an approx-

imately RCP beam by a
(0)
L = 0. In analogy with (2.6) and (2.7), ei and hi for each

planewave component (ϑx, ϑy) are written in terms of
{

a
(0)
L , a

(0)
R

}

as

ei = L
(0)
+ a

(0)
L + R

(0)
+ a

(0)
R , hi =

−inhs

η0

[

L
(0)
+ a

(0)
L − R

(0)
+ a

(0)
R

]

, (7.6)

where L
(0)
+ and R

(0)
+ are defined in (2.13) and (2.14), respectively, to vary with k

(0)
+ (and

thus with ϑx and ϑy).

The planewave angular spectrum can then be multiplied by the reflection or trans-

mission coefficients and recombined to produce the reflected or the transmitted beams
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[83, 86]. Therefore, the electromagnetic field phasors of the reflected and transmitted

beams of order n are written as follows:

E(n)
r (x, y, z) =

∫ ∞

−∞

∫ ∞

−∞
Ψ(ϑx, ϑy)e

(n)
r (ϑx, ϑy)

×exp[i(k
(n)
− · r +̟0)] dϑxdϑy , z ≤ 0 , (7.7)

H(n)
r (x, y, z) =

∫ ∞

−∞

∫ ∞

−∞
Ψ(ϑx, ϑy)h

(n)
r (ϑx, ϑy)

×exp[i(k
(n)
− · r +̟0)] dϑxdϑy , z ≤ 0 , (7.8)

E
(n)
t (x, y, z) =

∫ ∞

−∞

∫ ∞

−∞
Ψ(ϑx, ϑy)e

(n)
t (ϑx, ϑy)

×exp[i(k
(n)
+ · r̃ +̟0)] dϑxdϑy , z ≥ d , (7.9)

H
(n)
t (x, y, z) =

∫ ∞

−∞

∫ ∞

−∞
Ψ(ϑx, ϑy)e

(n)
t (ϑx, ϑy)

×exp[i(k
(n)
+ · r̃ +̟0)] dϑxdϑy , z ≥ d . (7.10)

In these expressions, the electric and magnetic fields vectors e
(n)
r , h

(n)
r , e

(n)
t and h

(n)
t are

calculated similarly to ei and hi of (7.6); thus,

e(n)
r = L

(n)
− r

(n)
L + R

(n)
− r

(n)
R , h(n)

r =
−inhs

η0

[

L
(n)
− r

(n)
L − R

(n)
− r

(n)
R

]

, (7.11)

and

e
(n)
t = L

(n)
+ t

(n)
L + R

(n)
+ t

(n)
R , h

(n)
t =

−inhs

η0

[

L
(n)
+ t

(n)
L − R

(n)
+ t

(n)
R

]

. (7.12)

For (7.11) and (7.12), L
(n)
± and R

(n)
± are defined in (2.13) and (2.14), respectively; while

the amplitude pairs
{

r
(n)
L , r

(n)
R

}

and
{

t
(n)
L , t

(n)
R

}

, which are functions of ϑx and ϑy, need

to be determined by means of the numerical solution procedure devised in Chapter 2.

The electromagnetic field phasors of the reflected and transmitted beams are thereafter

obtained from (7.7)–(7.10).

Additionally, similar definitions as (3.5) are needed for the electromagnetic field phasors

of the reflected and transmitted beams when α = 0; i.e.,

E(0)
r (x, y, z) ⇐

∑

|n|≤Nt

E(n)
r (x, y, z) , H(0)

r (x, y, z) ⇐
∑

|n|≤Nt

H(n)
r (x, y, z) (7.13)
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and

E
(0)
t (x, y, z) ⇐

∑

|n|≤Nt

E
(n)
t (x, y, z) , H

(0)
t (x, y, z) ⇐

∑

|n|≤Nt

H
(n)
t (x, y, z) , (7.14)

because all nonspecular field phasors fold into the specular ones [86].

7.2 Lateral Shifts on Reflection

In general, lateral shifts on reflection are expected because every planewave component

of an incident beam experiences different phase and magnitude changes on reflection.

Reflection of an optical beam by a slanted chiral STF occurs in different Floquet–harmonic

orders, and each reflected beam of order n shifts by d(n) in the z = 0 plane relative to

the incident beam. The value of d(n) is represented by the relative difference between

the first moments of the energy densities of the electric fields Ei(x, y, z) and E
(n)
r (x, y, z),

respectively, evaluated on the interface plane z = 0. Thus,

d(n) = ∆(n)
r −∆i , (7.15)

where

∆i =

(
∫ ∞

−∞

∫ ∞

−∞
(xux + yuy)|Ei|2 dxdy

) (
∫ ∞

−∞

∫ ∞

−∞
|Ei|2 dxdy

)−1

(7.16)

and

∆(n)
r =

(
∫ ∞

−∞

∫ ∞

−∞
(xux + yuy)|E(n)

r |2 dxdy

) (
∫ ∞

−∞

∫ ∞

−∞
|E(n)

r |2 dxdy

)−1

. (7.17)

A lateral shift is always in the plane of incidence (i.e., the z̄z plane) for 2D beams, but

may comprise components both in and normal to the z̄z plane for 3D beams.

Let d
(n)
L and d

(n)
R denote the lateral shifts of order n by LCP and RCP beams, respec-

tively. It is convenient to represent d
(n)
L and d

(n)
R in the form

d
(n)
L = d

(n)‖
L u‖ + d

(n)⊥
L u⊥

d
(n)
R = d

(n)‖
R u‖ + d

(n)⊥
R u⊥











, (7.18)
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where the unit vectors u‖ = uȳ × uz and u⊥ = uȳ are parallel and perpendicular to the

z̄z plane, respectively. Clearly, d
(n)‖
L and d

(n)‖
R represent the in–plane shifts; while d

(n)⊥
L

and d
(n)⊥
R represent the out–of–plane shifts [84].

7.3 Solution and Analysis

7.3.1 Preliminaries

The numerical solution procedure devised in Section 7.1 is suitable for the computation

of lateral shifts of reflected optical beams in the following two problems:

• Problem A: The half–spaces of reflection and transmission are vacuous.

• Problem B: The half–spaces of reflection and transmission are occupied by a di-

electric medium that is optically denser than the slanted chiral STF.

For Problem A, the focus lies on the lateral shift of a co–handed optical beam on Bragg

reflection, when the angular spectrum of the beam lies totally within the angular spread

of the Bragg regime. For Problem B, total reflection of the incident beam must occur

when |θb
i | exceeds a critical value θb

ic. Therefore, the focus is on the Goos–Hänchen shifts

of an incident beam on total reflection [62, 63]. Both of these problems are similar to their

counterparts in Chapter 4.

The angular–spectrum function of a 3D Gaussian beam is [53, 83]

Ψ(ϑx, ϑy) =
ρ2
0

2π
exp

[

−1

2
ρ2
0

(

ϑ2
x + ϑ2

y

)

]

, (7.19)

where ρ0 = k0nhsw0 and w0 is the beam waist. The 2D Gaussian beam is represented

through the angular–spectrum function

Ψ(ϑx, ϑy) =
ρ0√
2π

exp

(

−1

2
ρ2
0ϑ

2
x

)

δ(ϑy) , (7.20)

102



where δ(·) is the Dirac delta function.

Computations were carried out with the same parameters as those in Chapter 4, with

the selections α = 0, 10◦, and 15◦. For simplicity, ν0 = 0 was chosen. The 3D Gaussian

beam profile was uniformly discretized to a 80×80 mesh in the angular–spectrum domain
{

(ϑx, ϑy)
∣

∣

√

ϑ2
x + ϑ2

y ≤ 4/ρ0

}

, which was sufficient to calculate the approximate value of

|Ei|2 of (7.2) with less than 0.01% inaccuracy. Accordingly, 80 × 80 = 6400 plane waves

corresponding to different values of the pair (ϑx, ϑy) were generated to span the entire

angular spectrum of the reflected/transmitted beams.

7.3.2 Problem A: Lateral Shift of Gaussian Beam on Bragg reflection

In analogy with the circular Bragg phenomenon, a co–handed incident beam would be

mostly reflected, and thus shifted with little distortion in profile, when its angular spectrum

lies totally within the angular spread of the Bragg regime (if possible at that wavelength).

Figure 7.2 shows the in–plane shift of a 2D RCP (i.e., co–handed) Gaussian beam on

Bragg reflection by either a chiral STF (α = 0) or a slanted chiral STF (α = 10◦), when

nhs = 1. The in–plane shift presented in this figure was calculated as

d
||
Br =











d
(0)‖
R , α = 0 ,

d
(∓2)‖
R , α ≷ 0 ,

(7.21)

because the (slanted) chiral STF is structurally right–handed; while the out–of–plane

shift d⊥Br ≡ 0. Clearly, the in–plane shift is always forward (i.e., d
‖
Br sinθb

i ≥ 0) and almost

symmetric with respect to θi when α = 0. However, when α 6= 0, the in–plane shift could

be either forward or backward (i.e., d
‖
Br sinθb

i ≤ 0), depending on the angles θb
i and ψb

i . For

example, Figure 7.2(a) shows negative d
‖
Br for sinθb

i ∈ (0, 0.31) when ψb
i = 0 and α = 10◦.

The reason for occurrence of a backward shift is simply because reflection occurs mostly in

the order n = ∓2 for α ≷ 0. Incidentally, negative shifts do not violate causality [87, 88].
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The in–plane shift of the RCP Gaussian beam on Bragg reflection can be estimated by

d
||
Br ≈























−
∂ϕ

“

r
(0)
RR

”

∂k
||
hs

[

1 + O
(

R
(0)
LR

R
(0)
RR

)]

, α = 0 ,

−
∂ϕ

“

r
(∓2)
RR

”

∂k
||
hs

[

1 + O
(

R
(∓2)
LR

R
(∓2)
RR

)]

, α ≷ 0 ,

(7.22)

where ϕ(σ) is the phase ϕ of the planewave reflection coefficient σ computed by setting

θp
i = θb

i , and k
||
hs = k0nhssinθ

p
i . This simple formula is adequate because the co–handed

reflection coefficient —- either r
(0)
RR for α = 0 or r

(∓2)
RR for α ≷ 0 — does not change

significantly in magnitude when θp
i lies squarely within the angular spread of the Bragg

regime; see Figure 4.3. In addition, because R
(0)
LR << R

(0)
RR (for α = 0) and R

(∓2)
LR << R

(∓2)
RR

(for α ≷ 0) in the Bragg regime, the minute items O
(

R
(0)
LR

R
(0)
RR

)

and O
(

R
(∓2)
LR

R
(∓2)
RR

)

on the right

side of (7.22) can be omitted.

The phases of the co–handed reflection coefficients r
(0)
RR (for α = 0) and r

(−2)
RR (for

α = 10◦) are presented in Figure 7.3 as functions of θp
i and ψp

i . In fact, the phases

in Figure 7.3 appear to be approximately second–order polynomials of sinθp
i that are

defined piecewise. Correspondingly, d
||
Br should be approximately linearly proportional to

sinθb
i , which is predicted by (7.22) and basically confirmed by the plots of Figure 7.2. In

addition, the plot of ϕ
(

r
(−2)
RR

)

in Figure 7.3(a) is symmetric about sinθp
i = 0.31, but not

about sinθp
i = 0, which explains the backward shifts in Figure 7.2(a) for the slanted chiral

STF.

When α 6= 0, the reflected field comprises beams of different orders n. Thus, lateral

shifts of different orders are possible, as indicated by (7.18). In fact, the dominant Bragg

reflection of the co–handed Gaussian beam, which occurs in the order n = ∓2 for α ≷ 0, is

always accompanied by a weak reflection of order n = 0 (i.e., 0.01 < |E(0)
r |2

/

|Ei|2 < 0.1).

Certainly, the reflected beam of order n = 0 shifts laterally away from the incident beam

as well. Figure 7.4 shows the in–plane shift d
(0)‖
R of the 2D RCP Gaussian beam, when

α = 10◦. The shift d
(0)‖
R oscillates with θb

i about the zero value, indicating that the

specularly reflected beam can shift in the forward as well as the backward directions.
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A comparison of Figures 7.2 and 7.4 indicates a distinction between d
(0)‖
R and d

‖
Br when

α 6= 0, implying the fact that the lateral shifts of different orders are different. The circular

Bragg phenomenon being the chief attraction of the slanted chiral STF, secondary lateral

shifts are of incidental importance.

7.3.3 Problem B: Goos–Hänchen Shifts of Gaussian Beams

Total Reflection of Gaussian Beam

As an incident plane wave is totally reflected in the order of n = 0, so does an optical

beam. The lateral shift of the reflected beam under the total–reflection condition is called

the Goos–Hänchen shift [62]

dGH = d(0) , (7.23)

for arbitrary α. Two different Goos–Hänchen shifts are possible, one for LCP beams and

the other for RCP beams. The shifts are denoted by dGH
L and dGH

R , respectively.

Since an optical beam is an angular continuum of plane waves, the critical angle θb
ic for

an optical beam is certainly different from its planewave counterpart θp
ic. Table 7.1 shows

the approximate values of θb
ic obtained from actual computation as well as from a simple

estimation procedure. The value of θb
ic was actually computed by ascertaining that |E(0)

r |2

rises to 0.995|Ei|2 as |θb
i | increases to θb

ic. The simple estimate

θb
ic ≈ θp

ic + sin−1(2/ρ0) , (7.24)

is based on the assumption that all planewave components in the domain
{

(ϑx, ϑy)
∣

∣

√

ϑ2
x + ϑ2

y ≤ 2/ρ0

}

of an incident beam should be totally reflected. As is clear from

Table 7.1, (7.24) is a good predictor of θb
ic, especially when w0 ≥ 3λhs, where λhs =

λ0/nhs is the wavelength in the medium filling the half–spaces of incidence and reflection.

Computational results showed that θb
ic is largely unaffected by ψb

i . The computed values

of θb
ic are employed for all the plots presented in Figures 7.5, 7.7 and 7.10.
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Table 7.1: Values of θb
ic for various w0 as estimated by (7.24) and from actual computation.

w0 estimated from (7.24) computed for 2D beam computed for 3D beam

2λhs 37.2◦ 39.3◦ 39.9◦

3λhs 34.1◦ 35.1◦ 35.6◦

4λhs 32.6◦ 32.9◦ 32.9◦

6λhs 31.1◦ 31.3◦ 31.3◦

Goos–Hänchen shifts of 2D Gaussian Beams

Figure 7.5 shows the in–plane Goos–Hänchen shifts d
GH‖
L and d

GH‖
R as functions of sinθb

i ∈

[sinθb
ic, 1) when the incident beam is 2D. Similarly, Figure 7.6 presents d

GH‖
L and d

GH‖
R

plotted against ψb
i ∈ [0, 180◦) when θi = 37.5◦ > θb

ic. It is clear from Figure 7.5 that α

affects the Goos–Hänchen shift at low angles of incidence for total reflection.

A distinction between d
GH‖
L and d

GH‖
R is unambiguously evident at low values of |θb

i | >

θb
ic when α = 0 (Figure 7.6). However, that distinction diminishes for all post–critical θi

when α 6= 0, as illustrated by the plots in Figure 7.6 for α = 15◦. Similarly, the variations

of d
GH‖
L and d

GH‖
R with ψb

i are less pronounced for α 6= 0 than for α = 0.

Although the foregoing effects of α may be considered small in conventional optics

practice, as they amount to small fractions of the wavelength, their nanotechnological

significance cannot be denied [89]. That becomes evident on noting that quantum dots

are 1–2 nm in diameter, globular proteins are of 6 nm diameter, while gate oxide films

have been shrunk to about 2 nm in thickness [90]. In comparison, 1% of the typical λ0 in

the visible regime is between 4 and 7 nm.

Figure 7.7 shows the effect of the beam waist width w0 on the Goos–Hänchen shift

when α = 15◦. Enhancement of the beam waist decreases the critical angle θb
ic, as shown

by Table 7.1 also. Furthermore, both d
GH‖
L and d

GH‖
R decrease (increase) with increasing
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beam waist when the post–critical |θb
i | is low (high).

The Goos–Hänchen shift of a 2D Gaussian beam can be estimated by

d
GH‖
L ≈ −R

(0)
LL

∂ϕ
“

r
(0)
LL

”

∂k
||
hs

− R
(0)
RL

∂ϕ
“

r
(0)
RL

”

∂k
||
hs

d
GH‖
R ≈ −R

(0)
LR

∂ϕ
“

r
(0)
LR

”

∂k
||
hs

− R
(0)
RR

∂ϕ
“

r
(0)
RR

”

∂k
||
hs



















, (7.25)

in analogy with (7.22). Figures 7.8 and 7.9 contain the plots of ϕ of different reflection

coefficients, for both α = 0 and α = 15◦. Although ϕ
(

r
(0)
LL

)

and ϕ
(

r
(0)
RR

)

are little affected

by α (Figure 7.8(b)), ϕ
(

r
(0)
RL

)

and ϕ
(

r
(0)
LR

)

are absolutely under its influence at low values

of |θp
i | ≥ θp

ic (Figure 7.8(a)). According to (7.25), the Goos–Hänchen shifts d
GH‖
L and d

GH‖
R

should be affected by α at low values of |θb
i | ≥ θb

ic, by noting the fact that
R

(0)
RL

R
(0)
LL

and

R
(0)
LR

R
(0)
RR

are not trivial at low values of |θp
i | ≥ θp

ic (Figures 4.4 and 4.5). Similarly, because

ϕ
(

r
(0)
LL

)

≈ ϕ
(

r
(0)
RR

)

and ϕ
(

r
(0)
RL

)

6= ϕ
(

r
(0)
LR

)

for α = 0 (Figure 7.9(a)), a distinction

between d
GH‖
L and d

GH‖
R is undoubtedly evident when α = 0 (Figure 7.6). However, that

distinction reduces when α 6= 0, because ϕ
(

r
(0)
LL

)

≈ ϕ
(

r
(0)
RR

)

and the difference between

ϕ
(

r
(0)
LR

)

and ϕ
(

r
(0)
RL

)

is minute then (Figure 7.9(b)).

Goos–Hänchen Shifts of 3D Gaussian Beams

Figure 7.10 presents the plots of dGH
L and dGH

R against sinθb
i ∈ [sinθb

ic, 1) for α = 0 and α =

15◦, when the beam is 3D. The most prominent feature of the Goos–Hänchen phenomenon

for 3D CP beams is that both in–plane (d
GH‖
L and d

GH‖
R ) and out–of–plane (dGH⊥

L and

dGH⊥
R ) shifts are not zero. In fact, the out–of–plane Goos–Hänchen shift increases in

amplitude as the post–critical |θb
i | decreases.

Furthermore, because dGH⊥
L < 0 and dGH⊥

R > 0 for any |θi| ≥ θb
ic, the direction of

the out–of–plane Goos–Hänchen shift depends on the handedness of the incident beam in

relation to the structural handedness of the thin film. In contrast, the in–plane Goos–

Hänchen shift is always directed forward and exhibits characteristics similar to that of a 2D
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beam. Specifically, d
GH‖
L 6= d

GH‖
R at low values of |θb

i | ≥ θb
ic when α = 0 (Figure 7.10(a)),

but that distinction diminishes for all post–critical θb
i when α 6= 0 (Figure 7.10(b)).

The effect of ψb
i on the Goos–Hänchen shift of a 3D Gaussian beam is illustrated in

Figure 7.11, wherein θb
i = 37.5◦ > θb

ic. Both in–plane and out–of–plane Goos–Hänchen

shifts are less affected by ψb
i for α 6= 0 than for α = 0. In addition, it is clear from

Figure 7.11(b) that
∣

∣ dGH⊥
L

∣

∣ ≈
∣

∣ dGH⊥
R

∣

∣ for α 6= 0, but not for α = 0, thereby implying

that the magnitude of out–of–plane Goos–Hänchen shift is not affected by the structural

handedness of the slanted chiral STF with α 6= 0.

The occurrence of the out–of–plane Goos–Hänchen shift depends on the ellipticity of

the polarization state of the 3D incident beam. For example, when the 3D incident beam

is approximately linearly polarized (i.e., either s– or p–polarized), no out–of–plane shift

would occur on total reflection.

7.4 Concluding Remarks

In conclusion, there are two interesting types of lateral shifts of optical beams on reflection

by slanted chiral STFs. One is the lateral shift of a co–handed optical beam that is mostly

reflected due to the circular Bragg phenomenon. The other is the Goos–Hänchen shift

that occurs when the beam is totally reflected. Four remarkable features of the two types

of lateral shifts of optical beams are as follows:

• The lateral shift of a co–handed beam on Bragg reflection can be either forward or

backward when α 6= 0, depending on the directionality of incidence.

• The Goos–Hänchen shift is affected by both slantedness and structural handedness

of the slanted chiral STF, when the post–critical angle of incidence (i.e., |θb
i | ≥ θb

ic)

is small.
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• When the incident beam is CP and 3D, both in–plane and out–of–plane Goos–

Hänchen shifts occur on total reflection. In particular, the out–of–plane Goos–

Hänchen shift increases in amplitude as the angle of incidence decreases, and it can

be either forward or backward.

• Lateral shift of each type at low–ultraviolet and longer wavelengths is large enough

in magnitude to be significant for nanotechnology.
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Figure 7.1: Cartesian coordinates (x̄, ȳ, z̄) for a 3D optical beam incident on a slanted

chiral STF occupying the region 0 < z < d. Reflection and transmission occur in the two

half–spaces z < 0 and z > d in both specular (n = 0) and nonspecular (n 6= 0) orders

when α 6= 0. All nonspecular orders fold into the specular one when α = 0.
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Figure 7.2: Normalized in–plane shift d
||
Br/λ0 as a function of sinθi, when α = 0 (dotted

lines) and α = 10◦ (solid lines). The incident beam is 2D RCP Gaussian, λ0 = λBr
0

∣

∣

∣

θp
i =0

,

w0 = 4λ0, and ν0 = 0. (a) ψb
i = 0, and (b) ψb

i = 90◦. The values of θb
i chosen lie squarely

within the angular spread of the Bragg regime, so that the co–handed beam is mostly

reflected. See Figure 4.1 for other parameters.
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Figure 7.3: Phases of the planewave reflection coefficients r
(0)
RR (dotted lines) for α = 0,

and r
(−2)
RR (solid lines) for α = 10◦. (a) ψp

i = 0, and (b) ψp
i = 90◦. See Figure 4.1 for other

parameters.
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Figure 7.4: Normalized in–plane shift d
(0)||
R /λ0 as a function of sinθb

i , computed for ψb
i = 0

(solid line) and ψb
i = 90◦ (dotted line), when α = 10◦. The incident beam is 2D RCP (i.e.,

co–handed) Gaussian, and the values of θb
i chosen lie squarely within the angular spread

of the Bragg regime. See Figure 7.2 for other parameters.
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Figure 7.5: Normalized Goos–Hänchen shifts (a) d
GH‖
L /λhs and (b) d

GH‖
R /λhs as functions

of sinθb
i ∈ [sinθb

ic, 1), computed for α = 0 (dotted lines) and α = 15◦ (solid lines), when

ψb
i = 120◦, nhs = 4, λ0 = 727 nm, and w0 = 4λhs. See Figure 7.2 for other parameters.
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Figure 7.7: Normalized Goos–Hänchen shifts (a) d
GH‖
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when α = 15◦. See Figure 7.5 for other parameters.
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Chapter 8

Response of Slanted Chiral STFs

to Dipolar Radiation‡

Apart from optical beams, dipolar sources are useful in studying nano–optics. For ex-

ample, point dipoles are treated as functional models of nanoprobes in the technique

of scanning near–field optical microscopy (SNOM) that is utilized in nanodetection and

nanolithography [51, 52]. Novel optical phenomenons are expected for dipolar sources

interacting with nanomaterials, as implied by the fact that the interparticle correlation

of nanomaterials resembles the dipole–dipole interaction [91, 92]. Slanted chiral STFs, as

a type of nanomaterials, must certainly respond to radiation from dipolar sources in a

distinguishing manner. The analytical treatment is similar to that devised in Chapter 7

for diffraction of optical beams. Thus, the objective of this chapter is to investigate the

dipolar response of slanted chiral STFs.

‡ This chapter is partly adapted from the following paper: F. Wang, A. Lakhtakia, “Response of

slanted chiral sculptured thin films to dipolar sources”, Opt. Commun. 235 133–151 (2004).
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8.1 Dyadic Green Functions

Without loss of generality, a slanted chiral STF of thickness d sandwiched between two

vacuous half–spaces (i.e., nhs = 1) is considered. Let the slanted chiral STF occupy the

region 0 < z < d; a point dipolar source lies exclusively in the half–space z ≤ 0; see Figure

8.1.

Suppose initially that the slanted chiral STF is absent; then the electric field phasors

everywhere can be formulated as [93]

E (r) = iωµ0

∫∫∫

R3

G
0
(r, r′) · J(r′) d3r′ −∇×

∫∫∫

R3

G
0
(r, r′) · K(r′) d3r′ , (8.1)

where J(r′) and K(r′) are the externally impressed electric and magnetic current densities,

respectively, at the source position r′; while

G
0
(r, r′) =

(

I + k−2
0 ∇∇

)

[exp (ik0|R|) /4π|R|] , (8.2)

is the infinite–medium dyadic Green function (DGF) for free space. Here and hereafter,

R = r− r′, and R
3 denotes the 3D real space.

In consonance with the distinguishing role of structural handedness, sources of circularly

polarized plane waves are preferred. Hence, two Beltrami source densities

WL = J + iωǫ0K

WR = J− iωǫ0K







(8.3)

are defined [94]. These two Beltrami source configurations are of the left– and right–

handed types, respectively; They can be synthesized as co–located pairs of electric and

magnetic dipoles that are either parallel or anti–parallel. After substituting (8.3) into

(8.1), the electric field can be rewritten as

E (r) =
iωµ0

2

∫∫∫

R3

[

G
L0

(r, r′) ·WL(r′) + G
R0

(r, r′) ·WR(r′)
]

d3r′ , (8.4)
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where

G
L0

(r, r′) =
(

I + k−1
0 ∇× I

)

G
0
(r, r′)

G
R0

(r, r′) =
(

I − k−1
0 ∇× I

)

G
0
(r, r′)







. (8.5)

Next, in the presence of the slanted chiral STF, the electric field in either of the two

half–spaces must be of the form

E (r) =
iωµ0

2

∫∫∫

R3

[

G
L
(r, r′) · WL(r′) + G

R
(r, r′) · WR(r′)

]

d3r′ , z /∈ (0, d) , (8.6)

where G
L
(r, r′) and G

R
(r, r′) are DGFs that take the presence of the slanted chiral STF

into account. Synthesis of these two DGFs is accomplished through the decomposition

G
σ
(r, r′) =







G
σ0

(r, r′) + G
σr

(r, r′) , z ≤ 0 ,

G
σt

(r, r′) , z ≥ d ,
σ = L,R . (8.7)

As the planewave response of a slanted chiral STF can be determined by RCWA for-

mulated in Chapter 2, G
σr

(r, r′) and G
σt

(r, r′), (σ = L,R), can be derived therefrom.

Accordingly, a spectral representation of G
0
(r, r′) is necessitated; thus [95],

G
0
(r, r′) = −k−2

0 δ(R)uzuz +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

(

k(0)
z

)−1

× exp
(

ik
(0)
± · R

)(

s(0)s(0) + p
(0)
± p

(0)
±

)

dk(0)
x dk(0)

y , (8.8)

where the upper signs apply for z > z′ and the lower signs for z < z′. The second part of

G
0
(r, r′) in (8.8) functions like an angular spectrum of both propagating and evanescent

plane waves. From (8.5) and (8.8), spectral representations of G
L0

and G
R0

are similarly

obtained:

G
L0

(r, r′) = −k−2
0 δ(R)uzuz + i

4π2

∫∞
−∞

∫∞
−∞

(

k
(0)
z

)−1

× exp
(

ik
(0)
± ·R

)

L
(0)
± R

(0)
± dk

(0)
x dk

(0)
y

G
R0

(r, r′) = −k−2
0 δ(R)uzuz + i

4π2

∫∞
−∞

∫∞
−∞

(

k
(0)
z

)−1

× exp
(

ik
(0)
± ·R

)

R
(0)
± L

(0)
± dk

(0)
x dk

(0)
y







































. (8.9)

The upper and lower signs in (8.9) are applied in the same way as in (8.8).

118



By strict analogy with representations of optical beams in Chapter 7, the spectral

representations of the remaining DGFs in (8.7) are synthesized as follows:

G
Lr

(r, r′) =
i

4π2

∑

n∈Z

∫ ∞

−∞

∫ ∞

−∞

(

k(n)
z

)−1

× exp
[

i
(

k
(n)
− · r− k

(0)
+ · r′

)]

R
(n)
L

dk(0)
x dk(0)

y , z ≤ 0 , (8.10)

G
Rr

(r, r′) =
i

4π2

∑

n∈Z

∫ ∞

−∞

∫ ∞

−∞

(

k(n)
z

)−1

× exp
[

i
(

k
(n)
− · r− k

(0)
+ · r′

)]

R
(n)
R

dk(0)
x dk(0)

y , z ≤ 0 , (8.11)

G
Lt

(r, r′) =
i

4π2

∑

n∈Z

∫ ∞

−∞

∫ ∞

−∞

(

k(n)
z

)−1

× exp
[

i
(

k
(n)
+ · r̃− k

(0)
+ · r′

)]

T
(n)
L

dk(0)
x dk(0)

y , z ≥ d , (8.12)

G
Rt

(r, r′) =
i

4π2

∑

n∈Z

∫ ∞

−∞

∫ ∞

−∞

(

k(n)
z

)−1

× exp
[

i
(

k
(n)
+ · r̃− k

(0)
+ · r′

)]

T
(n)
R

dk(0)
x dk(0)

y , z ≥ d . (8.13)

The reflection and transmission dyadics entering (8.10)–(8.13) are given by

R
(n)
L

(

k
(0)
x , k

(0)
y

)

= r
(n)
LL L

(n)
− R

(0)
+ + r

(n)
RL R

(n)
− R

(0)
+

R
(n)
R

(

k
(0)
x , k

(0)
y

)

= r
(n)
LR L

(n)
− L

(0)
+ + r

(n)
RR R

(n)
− L

(0)
+

T
(n)
L

(

k
(0)
x , k

(0)
y

)

= t
(n)
LL L

(n)
+ R

(0)
+ + t

(n)
RL R

(n)
+ R

(0)
+

T
(n)
R

(

k
(0)
x , k

(0)
y

)

= t
(n)
LR L

(n)
+ L

(0)
+ + t

(n)
RR R

(n)
+ L

(0)
+







































. (8.14)

These four dyadics are related to the reflected and transmitted plane waves of order n, and

are also dependent on the incidence wavevector k
(0)
+ . The integrands on the right sides

of (8.10)–(8.13) are 2D Lebesgue–integrable if the reflection and transmission dyadics in

(8.14) are bounded. Therefore, it is possible to carry out integrations in (8.10)–(8.13)

numerically. However, in many applications related to far–field radiation, only the asymp-

totic evaluation of the double radiation integrals in the limit k0|r| → ∞ is needed.
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8.2 Asymptotic Evaluation

The methods of stationary phase and steepest descent path (SDP) are generally used for

asymptotic approximation of integrals [96]–[100]. As for the double integrals, the contours

of integration can be deformed to confine the integration on a local domain defined by two

local SDPs [98, 99]. The saddle points (or 1st–order critical points) along each SDP can

then be utilized to establish the truncated Taylor expansion of the integrand, provided that

the integrand term is differentiable on the mapped complex domain [99]. Following this

approach, the double integrals in (8.10)–(8.13) can be asymptotically evaluated without

any trouble up to the lowest order 1
k0|r|

, provided the observation point r is not close to

the boundaries z = 0 and z = d, i.e., − z
|r| > 10

√

1
k0|r|

for z < 0 and (z−d)
|̃r| > 10

√

1
k0 |̃r|

for

z > d.

With the source point r′ set equal to d′uz, d
′ < 0, the lowest–order approximations of

the DGFs in (8.10)–(8.13), in the limit k0|r| → ∞, turn out to be

G
Lr

(r, r′) ≃ 1

2π|r|
∑

n∈Z

R
(n)
L

(αn, β0) exp
[

i(k0|r| − γnd
′)
]

, z < 0 , (8.15)

G
Rr

(r, r′) ≃ 1

2π|r|
∑

n∈Z

R
(n)
R

(αn, β0) exp
[

i(k0|r| − γnd
′)
]

, z < 0 , (8.16)

G
Lt

(r, r′) ≃ 1

2π|̃r|
∑

n∈Z

T
(n)
L

(α̃n, β̃0) exp
[

i(k0 |̃r| − γ̃nd
′)
]

, z > d , (8.17)

G
Rt

(r, r′) ≃ 1

2π|̃r|
∑

n∈Z

T
(n)
R

(α̃n, β̃0) exp
[

i(k0 |̃r| − γ̃nd
′)
]

, z > d , (8.18)

subject to the restrictions stated in the previous paragraph. In (8.15)–(8.18), αn = k0
x
|r| −

nΛx and α̃n = k0
x
|̃r| − nΛx are the saddle points along the SDPs of k

(0)
x with respect to

the reflected and transmitted plane waves of order n, respectively; while β0 = k0
y
|r| and

β̃0 = k0
y
|̃r| are correspondingly the saddle points along the SDPs of k

(0)
y . The quantities

γn = +
√

k2
0 − α2

n − β2
0 and γ̃n = +

√

k2
0 − α̃2

n − β̃2
0 .
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8.3 Solution and Analysis

8.3.1 Preliminaries

The response of a slanted chiral STF to radiation by sources comprising electric and

magnetic dipoles are considered. As any chiral STF discriminates between LCP and RCP

plane waves strongly in the Bragg regime, the following two different Beltrami source

configurations can be considered to be canonical:

(a) WL = iω̺
2 usδ(r

′ − d′uz) , WR = 0 , (8.19)

(b) WL = 0 , WR = iω̺
2 usδ(r

′ − d′uz) . (8.20)

These configurations are of the left– and right–handed types, respectively. Nominally,

either configuration is a pair of parallel electric and magnetic dipoles co–located at r′ =

d′uz, (d′ < 0), with Re[̺e−iωt] being the electric dipole moment. The unit vector us

represents the orientation of the dipolar sources. For either configuration, the electric

field at observation points far from both the sources and the slanted chiral STF is derived

from (8.4) in a normalized form as

e(r) =
4π|r|E(r)

µ0̺ω2
exp (−ik0|r|) . (8.21)

Computation of e(r) was carried out with the same parameters as those in Chapter 4,

with α ∈ [0, 15◦] and nhs = 1. The dipolar sources were located at d′ = −10λ0, and the

far–field radiation patterns were computed at a fixed radial distance |r| = 105λ0. Com-

puted values of |e(r)|2 in the xz and yz planes, for the two Beltrami source configurations,

are presented in the remainder of this section.
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8.3.2 Response to Parallel Beltrami Source Configurations

Chiral STF

Let α = 0 first. The responses of chiral STFs to incident CP plane waves [9, 27] as well

as Betrami source configurations [86] have been studied. The most prominent features of

the planewave and dipolar responses are due to the circular Bragg phenomenon. With the

chosen parameters, the Bragg regime is located at λ0 ∈ [702, 752] nm for normal planewave

incidence; furthermore, the Bragg regime blue–shifts for oblique planewave incidence [27].

Figures 8.2 and 8.3 show plots of |e(r)|2 in the xz and yz planes for Beltrami source

configurations that are oriented parallel (i.e., us = ux) and perpendicular (i.e., us = uz),

respectively, to the xy plane. The plots for y–directed dipolar sources do not differ qualita-

tively from those for x–directed sources. The wavelength λ0 = λBr
0

∣

∣

∣

θp
i =0

= 727 nm, which

is the center–wavelength of the Bragg regime for normal planewave incidence. Evidently,

the radiation patterns in Figures 8.2 and 8.3 contain substantial Fabry–Perot rings in the

reflection half–space (i.e., z ≤ 0) which arise due to thickness resonances inside the film.

Fabry–Perot rings are also present in the transmission half–space (i.e., z ≥ d), but are

considerably muted [86].

One of the two most interesting features of the radiation patterns in Figure 8.2 is

the presence of a wedge along the z axis in the transmission half–space (Figures 8.2(b)

and 8.2(d)) for the right–handed (i.e., co–handed) Beltrami source configuration. That

wedge is conspicuously absent for the left–handed (i.e., cross–handed) Beltrami source

configuration, but a double–fang — the second of the two interesting features — appears

in the reflection half–space (Figures 8.2(a) and 8.2(c)). The diversity with respect to

the handedness of the source configuration is the cumulative expression of the circular

Bragg phenomenon observed with normally [9] and obliquely [27] incident plane waves.

As the fields radiated by a Beltrami source configuration can be decomposed into an
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angular spectrum of CP plane waves, the angular–spread features of the circular Bragg

phenomenon coalesce to create the wedge or the double–fang feature in the radiation

pattern.

Although the chiral STF is definitely axially excited by x– and y–directed sources, it is

not axially excited when the dipolar sources are z–directed. In the latter case, the dipolar

radiation is broadside, not endfire [101]. Therefore, the radiation patterns in Figure 8.3

do not contain evidence of the circular Bragg phenomenon in the form of substantially

diverse responses of the chiral STF to the two Beltrami source configurations.

Slanted Chiral STF

For slanted chiral STFs, α 6= 0. Figures 8.4 and 8.5 show the dipolar radiation patterns

in the presence of the slanted chiral STF with α = 5◦, when us = ux and us = uy,

respectively. The wavelength was chosen λ0 = λBr
0

∣

∣

∣

θp
i =0

= 724 nm for α = 5◦. The charac-

teristic features of these radiation patterns are tailored by the circular Bragg phenomenon

discussed in Chapters 3 and 4 for the slanted chiral STF. Noticeably, both (i) the wedge

in the transmission half–space for the co–handed Beltrami source configuration and (ii)

the double–fang in the reflection half–space for the cross–handed Beltrami source config-

uration are located asymmetrically in the xz plane about the z axis. In contrast, the

radiation patterns are symmetric in the yz plane about the z axis, just as for the chiral

STF. The reason seems clear by virtue of the fact that the circular Bragg phenomenon is

significantly circularly asymmetric about the z axis and sensitive to the plane of planewave

incidence when α 6= 0. No wonder, there is a vast difference between the radiation pattern

in the xz plane for us = ux (Figure 8.4(b)) and that in the yz plane for us = uy (Figure

8.5(d)).

In order to interpret the radiation patterns further, let the angle ζρ ∈ [−180◦, 180◦) be
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introduced and determined by

r

|r| =











uxcosζρ + uzsinζρ , r • uy = 0

uycosζρ + uzsinζρ , r • ux = 0

. (8.22)

In Figures 8.4(b) and 8.5(b), the wedge is centered at ζρ < 90◦; but it is centered at

ζρ = 90◦ in Figures 8.4(d) and 8.5(d). The reason is that, although the circular Bragg

phenomenon shifts in the +θp
i direction as |α| increases in the plane of incidence ψp

i = 0,

it does not shift at all in the plane of incidence ψp
i = 90◦, as indicated in Figure 4.3.

Even though the dominant remittances for an incident cross–handed CP plane wave

are always specular — as exemplified by Figure 4.2 — the double–fangs in Figures 8.4(a)

and 8.5(a) have rotated counterclockwise with respect to that in Figure 8.2(a) These three

figures contain the radiation patterns in the xz plane; while the corresponding radiation

patterns in the yz plane (in Figures 8.2(c), 8.4(c), and 8.5(c)) are symmetric with respect

to the z axis, regardless of the value of α. The attributes of the circular Bragg phenomenon

versus α 6= 0 — as indicated in Figure 4.3 — also explain the foregoing features of the

radiation patterns.

An increase in |α| can affect the wedge and the double–fang feature even more dras-

tically than in Figures 8.4 and 8.5, for which α = 5◦. For example, when α rises to 10◦,

Figure 8.6 shows that the wedge expands and rotates clockwise so much that there is no

transmission for ζρ ∈ (0, 90◦) in the xz plane — when the Beltrami source configuration

is co–handed and x–directed.

The circular Bragg phenomenon being frequency–selective, the wavelength of radiation

in relation to the Bragg regime also affects the radiation pattern. Clearly, because of the

blue–shift of the Bragg regime for oblique incidence, the wedge and the double–fang tend to

be obliquely oriented when λ0 is lower than λBr
0

∣

∣

∣

θp
i =0

. This is exemplified by the radiation

patterns in Figure 8.7 for which λ0 = 670 nm, and the Beltrami source configuration is

co–handed and x–directed. The wedge is located in the yz plane in the ζρ–neighborhoods
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of both 45◦ and 135◦ for α = 5◦ (Figure 8.7(b)) and α = 10◦ (Figure 8.7(d)) as well.

Incidentally, in Figure 8.7(c), enhanced radiation is evident in the xz plane, near the

surface of the slanted chiral STF for α = 10◦. Unfortunately, the computation does not

seem to be accurate because the asymptotic evaluation procedure is invalid in the vicinity

of the slanted chiral STF.

8.3.3 Response to Perpendicular Beltrami Source Configurations

Because the fields emitted by a perpendicular dipolar source (i.e., us = uz) are of the end–

fire type with respect to the slanted chiral STF, the radiation patterns may not evince

any trace of the circular Bragg phenomenon when |α| is small — as suggested by the

limiting case of α = 0 in Figure 4. However, for larger |α|, a significant broadside aspect

to the interaction between the dipolar source and the thin film is possible. Figure 8.8

presents the radiation patterns for α = 15◦ and z–directed dipolar sources radiating at

λ0 = λBr
0

∣

∣

∣

θp
i =0

= 702 nm. Although the plots labeled (a), (c), and (d) in Figure 8.8 look

very similar to their counterparts in Figure 8.3 (α = 0), a contrast between Figures 8.3(b)

and 8.8(b) is evident. A wedge is located in the regime ζρ ∈ (0, 45◦) in Figure 8.8(b), but

not in Figure 8.3(b). Thus, even for perpendicular Beltrami source configurations, the

circular Bragg phenomenon can come into play when α 6= 0.

8.4 Concluding Remarks

In conclusion,

• the appearance of either wedge or double–fang in radiation patterns, and

• the radiation spread being spatially asymmetric for α 6= 0

are two remarkable features of the dipolar response of slanted chiral STFs.
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z = d

Free space
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z = d'

Figure 8.1: Schematic of the irradiation of a slanted chiral STF of thickness d by a dipolar

source located at r′ = d′uz, d
′ < 0.
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Figure 8.2: Computed values of |e(r)|2 in the xz and yz planes, for x–directed Beltrami

source configurations radiating at λ0 = λBr
0

∣

∣

∣

θp
i =0

= 727 nm in the presence of a structurally

right–handed chiral STF. The Beltrami source configuration is left–handed for the left plots

(a, c), and right–handed for the right plots (b, d). Whereas d′ = −10λ0 and |r| = 105λ0;

see Figure 4.1 for other parameters.
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Figure 8.3: Same as Figure 8.2, but for z–directed Beltrami source configurations.
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Figure 8.6: Computed values of |e(r)|2 in the xz and yz planes, for right–handed Beltrami

source configuration radiating at λ0 = λBr
0

∣

∣

∣

θp
i =0

= 716 nm. The Beltrami source configu-

ration is (a, b) x–directed, and (c, d) y–directed. The slant angle α = 10◦; see Figure 8.4

for other parameters.
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Chapter 9

Conclusion

In this thesis, slanted chiral STFs were proposed to couple the characteristic optical re-

sponses of volume and diffraction gratings in thin films. The optical framework for slanted

chiral STFs was substantiated by theoretical investigations of the optical responses of these

nanomaterials to several types of excitation sources, such as plane waves, optical beams,

and dipoles. A robust numerical solution procedure was devised in Chapter 2 for compu-

tation of planewave diffraction by slanted chiral STFs. This numerical solution procedure

was applied to determine the planewave response of slanted chiral STFs in Chapters 3

and 4, respectively, under normal–incidence and oblique–incidence conditions. The same

solution procedure was employed to analyze the optical response of a slanted chiral STF

with a central twist defect in Chapter 5. A remarkable crossover phenomenon was found

in slanted chiral STFs for a wave resonance initiated by the twist defect. The genesis of

the crossover phenomenon in chiral STFs was mathematically elucidated in Chapter 6, by

an application of the coupled–wave theory.

The next step of theoretical investigations involved planewave representations of optical

beams and dipole radiations. An optical beam was represented as an angular spectrum of

plane waves; while the dipolar radiation was formulated in terms of spectral representations
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of dyadic Green functions. Then, the response of slanted chiral STFs to optical beams

was examined in Chapter 7, with emphasis on lateral shifts of optical beams on reflection.

Finally, the radiation pattern of a dipolar source in the presence of a slanted chiral STF

was presented in Chapter 8. The conclusions drawn from the studies discussed in the

preceding chapters are summarized in the following sections.

9.1 Response of Slanted Chiral STFs to Plane Waves

• The circular Bragg phenomenon becomes partly nonspecular when the slant angle

α 6= 0, such that the co–handed Bragg reflection occurs in the Floquet–harmonic

of order n = ±2 for α ≷ 0. This characteristic can be harnessed to design slanted

chiral STFs as circular–polarization beamsplitters and couplers.

• The Bragg regime blue–shifts as |α| increases, and the width of the Bragg regime

decreases to zero due to the influence of a Rayleigh–Wood anomaly of order n = ±2

for α ≷ 0.

• The angular spread of the Bragg regime is significantly asymmetric because of the

subversion of the circular Bragg phenomenon by the Rayleigh–Wood anomaly.

• The angular spread is affected by the refractive index nhs of the ambient dielectric

medium, such that it is highly constrained by the occurrence of total reflection.

9.2 Spectral Holes in Slanted Chiral STFs

In the presence of a central twist defect, spectral holes emerge within the Bragg regime,

thereby indicating the occurrence of wave resonance therein. The remarkable features of

the spectral holes are as follows:
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• Two types of spectral holes are excitable by circularly polarized plane waves — one

is the co–handed reflectance hole, and the second is the cross–handed transmittance

hole.

• There is a crossover phenomenon associated with the evolution of the two types of

spectral holes with the increase of thickness of the chiral STF: When the thickness

is small, a co–handed reflectance hole occurs in the Bragg regime; as the thickness

increases, the co–handed reflectance hole diminishes to vanish eventually, and is

replaced by a cross–handed transmittance hole.

• The bandwidth of the cross–handed transmittance hole is significantly smaller than

that of the co–handed reflectance hole.

• The co–handed reflectance hole is nonspecular for α 6= 0, while the cross–handed

transmittance hole is always specular.

• The spectral holes occur in the center of the Bragg regime, when the twist angle

φ = moπ
2 (mo is an odd integer); they are shifted towards the edges of the Bragg

regime when φ 6= mπ
2 (m ∈ Z).

• The spectral holes are accompanied by the spectral peaks in the corresponding trans-

mittance and reflectance spectrums. In contrast to the co–handed transmittance

peak which is always specular for α 6= 0, the cross–handed reflectance peak happens

in Floquet harmonics of different orders as α 6= 0 changes.

• Even for weakly dissipative slanted chiral STFs, the cross–handed hole is accompa-

nied by substantial attenuation in transmission.
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9.3 Analytic Approach to the Crossover Phenomenon in

Chiral STFs

An approximate but closed–form solution for axial wave propagation in a chiral STF with

a central 90◦–twist defect is obtained in terms of a CWT 4 × 4 transmission matrix.

• The genesis of the crossover phenomenon in the chiral STF is mathematically elu-

cidated by the spectral characteristics of the transmission matrix: As it can be

decomposed into two terms, the first term favors total transmission in the middle

of the Brag regime, while the second term favors total reflection in the whole Bragg

regime. When the thickness of the chiral STF is relatively small, the first term dom-

inates and gives rise to a co–handed reflectance hole in the center of Bragg regime.

As the thickness of the chiral STF increases, the second term becomes significant

and interferes with the first term such that the transmission matrix is isomorphic to

that of a defect–free chiral STF — except in a tiny wavelength–regime (λ0 = λp
0CWT

)

wherein the two terms become identical to each other in the L∞–norm sense to en-

gender the total–reflection feature. Hence, the co–handed reflectance hole diminishes

to vanish eventually as the thickness increases, and is replaced by a cross–handed

transmittance hole.

• The bandwidth of the cross–handed transmittance hole, although saturated for the

thickness beyond the crossover value, increases exponentially with the local birefrin-

gence. In contrast, the bandwidth of the co–handed reflectance hole, which increases

exponentially with the thickness, increases linearly with the local birefringence.
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9.4 Lateral Shifts of Optical Beam on Reflection by Slanted

Chiral STFs

There are two types of lateral shifts of optical beams on reflection by slanted chiral STFs.

One is the lateral shift of a co–handed optical beam that is mostly reflected due to the

circular Bragg phenomenon. The other is the Goos–Hänchen shift that occurs when the

beam is totally reflected. Four remarkable features of the two types of lateral shifts of

optical beams are as follows:

• The lateral shift of a co–handed beam on Bragg reflection can be either forward or

backward when α 6= 0, depending on the directionality of incidence.

• The Goos–Hänchen shift is affected by both slantedness and structural handedness

of the slanted chiral STF, when the post–critical angle of incidence (i.e., |θb
i | ≥ θb

ic)

is small.

• When the incident beam is circularly polarized and three–dimensional, both in–plane

and out–of–plane Goos–Hänchen shifts occur on total reflection. In particular, the

out–of–plane Goos–Hänchen shift increases in amplitude as the angle of incidence

decreases, and it can be either forward or backward.

• Lateral shift of each type at low–ultraviolet and longer wavelengths is large enough

in magnitude to be significant for nanotechnology.

9.5 Response of Slanted Chiral STFs to Dipolar Radiation

The dipolar response of slanted chiral STFs to Beltrami source configurations is charac-

terized in terms of the radiation pattern in the far–field limit. The remarkable features of

the radiation pattern are as follows:
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• Wedge and double–fang features appear in the radiation pattern, which expresses

the spatial sense of the circular Bragg phenomenon.

• The radiation spread is spatially asymmetric for α 6= 0, and wedge and double–fang

features rotate towards the horizontal direction as |α| increases.

9.6 Future Work

Now that the concept of slanted chiral STFs has been proposed and its optical ramifications

examined, experimental realization of this type of nanomaterials is needed. Along with

that, slanted chiral STFs need to be characterized experimentally to obtain accurate con-

stitutive data for different deposited materials. Both microscopic and phenomenological

models for structure–property relationships need to be verified experimentally. Exper-

imental studies of the optical response of slanted chiral STFs are to be carried out to

demonstrate the coupling of two types of optical periodicities in these nanomaterials.

As of now, slanted chiral STFs have not been fabricated. It is possible that actual

slanted chiral STFs may not conform exactly to (1.15). However, the rigorous coupled–

wave analysis of Chapter 2 is robust enough to accommodate χs as a periodic function

along the helical axis. Furthermore, such a change is not going to qualitatively influence

the deleterious effect of Rayleigh–Wood anomaly on the circular Bragg phenomenon, as

delineated in this thesis.

Further research is warranted for the development of optical devices for slanted chiral

STFs. The uses of slanted chiral STFs as optical beamsplitters and couplers, spectral–

hole filters, and biosensors have been suggested in this thesis, and need to be implemented

experimentally.

Photonic–band–gap materials can be formed by lithographically patterning slanted

chiral STFs on 2D regular lattices. Therefore, photonic waveguides and fibers and lasers
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can be designed on the architecture of slanted chiral STFs.

Finally, slanted chiral STFs as optical pulse–shapers require investigation. Due to the

circular Bragg phenomenon, a femtosecond CP pulsed beam of finite spectral width has

the possibility to experience the temporal superresolution on transmission throughout the

slanted chiral STF [102]. As a result, femtosecond pulse compression will happen, which

should be circular–polarization–sensitive.
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