
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

SOFTWARE AND HARDWARE OPTIMIZATIONS FOR NOC-BASED CHIP

MULTIPROCESSORS

A Thesis in

Computer Science and Engineering

by

Feihui Li

c© 2007 Feihui Li

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2007



This thesis of Feihui Li was reviewed and approved* by the following:

Mahmut Kandemir

Associate Professor of Computer Science and Engineering

Thesis Adviser

Chair of Committee

Mary Jane Irwin

Evan Pugh Professor of Computer Science and Engineering

and A. Robert Noll Chair in Engineering

Yuan Xie

Assistant Professor of Computer Science and Engineering

Kenan Unlu

Professor of Mechanical and Nuclear Engineering

Raj Acharya

Professor of Computer Science and Engineering

Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School.



iii

Abstract

When semiconductor technology scales into the deep sub-micro regime, billions of tran-

sistors can pack into a single chip. It turns out that traditional monolithic processor architectures

scale poorly with technology due to diminishing improvements in clock rates and the increasing

interconnect delay. Such architectures cannot efficiently transform the fertile on-chip resources

into computing capability. Chip Multiprocessors (CMPs), integrating multiple relatively sim-

ple processing cores on a single chip, are becoming the trend for microprocessor design, as

witnessed by both industry and academia.

Processors, interconnection networks, and memories constitute the three major compo-

nents of a CMP architecture. This thesis optimizes two of these components, namely, intercon-

nection network and memory subsystem. When the number of processing nodes of CMPs scales

up, a new type of interconnection network, Network-on-Chip (NoC), is normally employed.

Thus, we study the emerging interconnection network for CMPs: NoC, and a critical component

of the memory subsystem for CMPs: the on-chip, level-2 (L2) Non-Uniform Cache Architec-

ture (NUCA). Targeting these components, this thesis proposes a set of hardware and software

optimization schemes.
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The first part of this thesis uses compiler-directed approaches to reduce the energy con-

sumption of NoCs. Three compiler approaches are proposed, including proactive communica-

tion link turn-on/off, compiler-directed voltage selection for communication links, and profile-

driven message rerouting. The experimental results with array/loop-intensive applications demon-

strate that the compiler-directed approaches are more efficient in reducing the NoC energy con-

sumption than pure hardware-based power management schemes.

The second part of this thesis targets the design of high-performance L2 NUCA design

and optimization for CMPs. The contribution of this part includes both a novel 3D NoC-bus

hybrid NUCA design and a migration-based NUCA design. We demonstrate, through extensive

experiments, that the 3D circuit technology is quite efficient in shortening the wire delay and

thus reduces the L2 NUCA access latency. The other NUCA proposal is a careful migration

scheme (eviction-triggered migration and access-triggered migration), aiming at finding a proper

physical location for each cache line in L2. The experimental results show that this scheme

generates significant improvements in L2 cache performance.

Overall, this thesis demonstrates that it is possible to reduce power consumption and

improve performance of NoC-based CMPs through hardware and software directed optimization

schemes.
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Chapter 1

Introduction

1.1 Chip Multiprocessors

The rapid scaling of semiconductor technology into the deep sub-micron regime has

been accompanied by a dramatic increase in transistor density. Packing billions of transistors on

a single chip is now a reality. The challenge for designing billion-transistor processors is how

to efficiently utilize the fertile on-chip resources. Conventional monolithic superscalar archi-

tectures, which feature sophisticated microarchitectural functions such as dynamic scheduling,

speculative execution, and dynamic branch prediction, scale poorly with technology [3] due to

the diminishing improvements in clock rates and the continuing increase in interconnect de-

lays. As a result, superscalar architectures cannot provide sustained performance growth that

has been achieved during the past decades. Chip Multiprocessors (CMPs) [69, 33] emerge as

a promising alternative for fully utilizing the increasing integration density of microprocessor

chips. Compared to traditional monolithic architectures, CMPs integrate multiple relatively sim-

ple processing cores on a single die.

As stated by Hammond et al [33], CMPs are favorable (over conventional monolithic ar-

chitectures) due to the advantages in speed, design complexity, execution parallelism, and other

issues. First, CMPs dramatically reduce, and sometimes even completely avoid, the complex-

ity of some microarchitectural components, such as the branch predictors and the issue queues.

Consequently, processing cores of CMPs are relatively small and simple, and thus can operate
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with quite high clock rates. Simple and fast processing cores also indicate accelerated design

and validation cycles. Second, CMPs can employ thread-level and/or process-level parallelism.

Having multiple threads of control in parallel is effective in hiding cache-miss penalties, since

the execution of some threads can overlap with the stalls of others. superscalar architectures

have only a single thread of control. They extract parallel instructions at the cost of complicated

hardware, while the instruction level parallelism (ILP) is quite limited due to true dependencies

and control dependencies. Simultaneous Multi-Threading (SMT) processors [99] support mul-

tiple concurrent threads on a single core. However, SMTs are still monolithic and suffer the

same scaling problem as superscalar processors. For example, one important issue for SMTs

is the contention among different threads to the single shared primary cache. CMPs normally

assign independent primary caches to different processing cores and eliminate the contention.

Besides these issues, CMPs are also preferable from the wire delay viewpoint. The wire delay

is becoming dominant, since it scales much more slowly than the logic gate delay when tech-

nology scales. This fact affects the design of tradition superscalar processors. However, CMPs

accommodate to such a trend very well because of their naturally partitioned structures. That is,

frequently communicating components are clustered closely, while less relevant components are

apart from each other. Finally, CMPs are arguably simpler than complex monolithic systems in

terms of validation and verification.

Currently almost all major CPU manufacturers are producing commercial CMP chips.

Sun’s UltraSPARC T1 (formerly code named Niagara) [54] is an 8-core CMP, supporting up

to four threads per core. This architecture targets workloads with high thread-level parallelism

such as web server applications. Intel’s Core Duo processor [42], a dual-core architecture, has

versions for desktop, laptop and mobile applications. Orienting game/multimedia applications,
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Sony, Toshiba and IBM (STI) [46] designed Cell processor. It incorporates a dual-threaded two-

way-issue Power architecture and eight synergistic processing elements. Broadcom’s BCM1480

[13], consisting of four Broadcom SB-1 MIPS64 CPUs, targets the next-generation computing,

storage and networking applications. These CMP chips are clearly signaling the growing popu-

larity of CMP architectures.

1.2 Network-on-Chip: Interconnection of Future CMPs

Most current CMPs employ conventional interconnects such as buses and crossbars for

connecting processing cores. Buses, however, suffer from the resource contention issue. When

the number of nodes on a bus increases, performance may degrade due to excessive conflicts.

Therefore, buses are not considered appropriate for systems of more than 10 nodes [9]. Cross-

bars, although performing well with a reasonably large number of cores, become not favorable

when the size of CMPs increases, due to their high costs.

A segmented network fabric, namely, the Network-on-Chip (NoC) [26, 10], is emerging

as a solution to chip-level communications. The structure of an NoC resembles that of a tra-

ditional macro network. That is, an NoC is composed of on-chip routers and communication

links. Each processing core is attached a router, which interfaces it to the entire network through

neighboring routers. The data to be exchanged among on-chip processing cores (homogeneous

or heterogeneous) are transmitted along routers and communication links. As in a traditional

macro network, the transmitted data is assembled into packets. Each packet includes both the

header field (containing destination information and etc.) and the actual data.

The adoption of NoC architecture is driven by its predictability, scalability, and paral-

lelism. From the physical design point of view, NoCs can be built at the early design stage,
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and their speed and power can be estimated as well, because of the regular, well controlled

structure. NoC-based systems can also properly accommodate multiple asynchronous clocking

through network protocols. From the perspective of microarchitecture, NoC-based systems are

easy to expand by adding more routers, links and processing cores. The contention problem

of centralized interconnects such as buses is alleviated in an NoC, as all the links in an NoC

can operate simultaneously for transmitting different messages. Further, according to the com-

puter community, “From a system design viewpoint, with the advent of multi-core processor

systems, a network is a natural architectural choice. An NoC can provide separation between

computation and communication, support modularity and IP reuse via standard interfaces, han-

dle synchronization issues, serve as a platform for system test, and, hence, increase engineering

productivity.”[67] TeraFlop [40], a research CMP chip proposed by Intel, consists of 80 cores

and connects these cores through a mesh-based NoC. Several CMP chips from academia, for ex-

ample, RAW [94] and TRIPS [81] processors, also employ NoCs as their main communication

fabric. In this thesis, our focus is on next-generation NoC-based CMP architectures.

1.3 Non-Uniform Cache Architecture: Memory Subsystem of CMPs

Besides the interconnection, memory subsystem is another critical factor for the success

of CMP systems. With multiple cores residing on a single die, CMPs require higher memory

bandwidth than traditional processors. Consequently, they usually need to incorporate large on-

chip (level-2) L2 and/or (level-3) L3 caches. For example, Sun’s Ultrasparc T1 contains 3MB of

on-chip L2 cache, and Intel’s Dual Core Itanium 2 includes 2.5MB of on-die L2 cache and 24MB

of on-die L3 cache. When the number of processing cores on a CMP increases, the demand for

memory bandwidth also increases, leading to even larger on-chip L2/L3 caches [38].
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Traditional memory hierarchy design assumes each cache level has a constant access

latency. However, the large size of on-chip L2 caches and the increasing wire delay make the L2

cache access latency not a constant any more. Instead, the latency is dependent on the distance

between the accessing processor and the requested cache line. To employ this variance in L2

cache access latencies for improving L2 performance, Kim et al designed Non-Uniform Cache

Architecture (NUCA) [48]. NUCA partitions the L2 cache into multiple individually addressable

banks and connects these banks using Network-on-Chip. Cache banks exhibit different access

latencies, which are determined by the relative locations to the processor. Data migration is

employed in NUCA to move frequently accessed cache lines closer to the processor.

Prior NUCA designs for CMPs include a purely shared L2 cache [8], a purely private

L2 cache [52] and a set of alternatives between purely shared and purely private caches [39, 22,

106, 7, 17]. Basically, all of these studies focus on minimizing the average L2 hit latency and/or

maximizing the effective on-chip L2 capacity (i.e., minimizing the off-chip accesses), with an

attempt to achieve an overall L2 performance enhancement.

1.4 Thesis Scope

This thesis focuses on optimizations targeting NoC-based CMPs. Specifically, we target

two critical components of CMPs: interconnection (Network-on-Chip) and memory subsystem

(shared NUCA-based L2).

Regarding Network-on-Chip, we focus on reducing the power consumption without af-

fecting performance excessively. Prior studies [10, 100] indicate that, although an NoC archi-

tecture provides high communication bandwidth, it consumes a significant portion of the overall

chip power due to the amount of NoC components (routers and links) and the communication
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data volume. For example, in the case of the MIT RAW processor, the NoC connecting 16 on-

chip tiles consumes 36% of the entire chip power, with each router consuming 40% of the per tile

power [100, 94]. This observation motivates for research targeting the NoC power management.

Most prior NoC power management schemes are hardware based [90, 76]. That is,

they adjust unused NoC components or NoC components under low utilization into low power

modes based on the history utilization information. In contrast, in this thesis, we propose three

compiler-directed approaches for reducing NoC power consumption. The first two approaches

analyze the communication pattern of a parallel application and insert explicit network power

control commands at proper points in the parallel code. The optimized parallel code will set

NoC components to appropriate power modes at suitable time points during execution. The first

approach we propose [57] assumes only two power modes (power-on and power off) and inserts

proactive communication link showdown and activation commands. In comparison, our sec-

ond approach [19] analyzes the critical paths within a parallel code in order to assign a suitable

voltage level for each communication link. The third approach proposed [58] is profile-driven.

Based on communication traces, the compiler reroutes messages by clustering messages into a

small subset of communication links. The goal of this approach is to increase the idle periods of

communication links and thus enhance the effectiveness of a pure hardware-based link shutdown

scheme.

CMPs, with multiple cores on a single chip, impose a continuously increasing demand

for memory bandwidth. Without sufficient memory bandwidth, different cores will compete

with each other on using the limited set of pins and this might invalidate potential advantages

of CMPs. In a CMP-based execution scenario, the latency of accessing off-chip memories is an

order of magnitude higher than that of accessing on-chip memories. Therefore, the design of an
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efficient on-chip cache system is crucial for achieving the potential performance of CMPs. The

second part of this thesis focuses on the performance of the shared level-2 (L2) NUCA for CMPs.

In this category, two micro-architectural schemes are proposed in this thesis. The first approach

proposed employs the three-dimensional (3D) integration technology [27, 63] to design the high

performance NUCA for CMPs, because the 3D technology decreases the lengths of cross-chip

wires dramatically. The existing NUCA design [48, 8] is adapted to the 3D scenario. Our second

approach focuses on a migration-based NUCA design for CMPs. This approach proposes two

types of data migrations: eviction-triggered migration and access-triggered migration, aiming at

finding a proper physical position for each cache line such that the average L2 access latency is

minimized.

This thesis is organized as follows. Chapter 2 discusses three compiler-directed schemes

for reducing NoC power consumption. We introduce the architecture abstraction and the NoC

power model, explain the proposal details, and show the experimental results. In Chapter 3, a

3D NUCA architecture and a migration-based NUCA design for CMPs are presented. Further,

we provide the details of these two schemes and the associated simulation results in this chapter.

Finally, Chapter 4 concludes this thesis, and provides points for future research.
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Chapter 2

Compiler-Directed Power Management for Network-on-Chip

2.1 Background

As the power consumption of interconnection networks is becoming an important con-

cern [94, 81], we have witnessed several efforts devoted to optimizing the NoC energy consump-

tion. We classify these related works into three categories: hardware-based, compiler-based, and

task mapping.

The hardware-based NoC energy optimizations usually depend on adjusting link and

buffer power modes according to NoC utilization. Based on the technique of voltage/frequency

scalable links proposed by Kim and Horowitz [50], Shang et al [82] evaluated a history-based

dynamic voltage scaling (DVS) scheme for communication links. The hardware is enhanced to

lower down the voltage of the communication links in low utilization. Kim et al [49] designed

a link shutdown scheme that minimized the number of power-on links while maintaining the

connectivity of the network. They proposed an adaptive routing algorithm, and compared their

scheme against a link voltage scaling approach. Soteriou and Peh [90] explored the design space

for communication link turn-on/off. In their scheme, the decisions of turning off communication

links are also based on the past message traffic observed. Besides these works, several low power

NoC circuit design techniques [76] are also proposed.
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Within the area of low power design, many compiler optimizations that target the func-

tional units, register files, or cache/memory hierarchies were proposed [16, 47, 73, 2, 62]. Con-

sidering the general domain of optimizing communication and locality of communicated data in

distributed-memory message-passing architectures, representative locality-oriented studies in-

clude [53, 15, 6, 32]. The main idea behind these studies is to minimize the inter-processor

data communication. Until now, much less attention is paid to compiler works for low power

CMPs. Prior compiler works [55, 56, 66] on CMPs target mainly at extracting and employing

parallelism. Two closely related works include [18] and [89], where [18] optimized the en-

ergy consumption of NoCs using compiler-directed communication link allocation, and [89] is a

software-directed link DVS technique based on off-line profiling.

Besides hardware-based and compiler-based schemes, another approach to reducing the

NoC energy consumption was based on task mapping. Shin and Kim [84] used genetic algo-

rithms to determine task assignment, tile mapping, routing path allocation, task scheduling, and

link speed assignment for applications running on NoC-based systems. Asica et al. [4] pro-

posed another genetic algorithm that allowed users to specify a particular optimization goal,

such as performance or energy consumption. Hu and Marculescu [37] proposed an algorithm

that mapped a given set of IP blocks onto a generic regular NoC and constructed a deadlock-free

routing function such that the total communication energy consumption was minimized.

In addition, regarding NoC energy optimization, Benini and De Micheli [10] also iden-

tified possible approaches for energy savings, including node-centric and network-centric tech-

niques. Simunic and Boyd [86] later implemented several of these techniques using a closed-loop

control model.
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Our proposed approaches are different from all the prior efforts in that they are compiler-

directed NoC power management. Specifically, they use compiler-based (automated) commu-

nication analysis to identify the active/idle or communication slack patterns for communication

links, and insert explicit link power management calls, i.e., link turn on/off or setting link volt-

age levels in the application code. Or we use profiling information to restrict the routing paths

so as to shutdown more communication links. To the best of our knowledge, these are the first

study of using compiler support to manage interconnection network power. In comparison, the

prior hardware-based network power optimizations, cannot be as effective as our approaches for

loop-intensive applications running on small size networks.

2.2 Architecture Abstraction

In the work aiming at managing the NoC power consumption, we assume that the ap-

plication code is parallelized using message-passing directives. The resulting parallel program

consists of a number of processes that are to be executed in parallel and communicate with each

other through message passing. A message-passing based computing system (Figure 2.1) con-

sists of a set of computing nodes (N ) and a set of switches (S). Figure 2.2(a) shows the structure

of a computing node (Ni ∈ N ), which contains a processor, a memory module, an outgoing

message port (out-port), and an incoming message port (in-port). The out-port and in-port of

a computation node are connected to an in-port and out-port of a switch, respectively. Fig-

ure 2.2(b) shows the structure of a switch. Each switch (Si ∈ S) has p in-ports and q out-ports.

Each out-port of a switch is connected to an in-port of either another switch or a computing

node; each in-port of a switch is connected to an out-port of either another switch or a comput-

ing node. A message sent by the application is first split into a set of fix-sized data packets. A
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data packet flows into the switch through one of the p in-ports. The crossbar interconnect in the

switch forwards this packet to an out-port of this switch based on the destination of this packet

and the routing algorithm used by the network. From this out-port, the packet will be sent to an

in-port of another switch, or the in-port of the destination computing node.

Fig. 2.1. A message-passing based parallel computing system consisting of computation nodes

and a set of switches.

A packet received by an in-port is first stored in the buffer of this in-port. For a com-

putation node, the in-port buffer can hold multiple packets. These packets in the buffer are first

assembled into messages before being passed to the application. For a switch, however, an in-

port buffer can hold only one packet at any given time. An in-port of a switch does not need a

large buffer because the packet received by the in-port will be forwarded to an out-port immedi-

ately. The out-port that is trying to send a packet to an in-port is stalled if there is no free slot in

the buffer of the targeted in-port. Each out-port has a FIFO (First-In-First-Out) buffer that can

hold up to n packets.
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(a) A computation node consisting of a CPU, a memory module, an in-port and an out-port.

(b) A switch with p (p = 4) in-ports and q (q = 4) out-ports. The buffer in each in-port can contain only one

packet; the buffer in each out-port can contain up to n packets. The crossbar can forward packets from any

in-port to any out-port.

Fig. 2.2. Internal structures of a computation node and a switch.

Fig. 2.3. A mesh-based network architecture.
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We focus on an M ×N (M rows, N columns) mesh architecture.1 Figure 2.3 shows an

example mesh. The nodes in the M ×N mesh are numbered from 0 to MN − 1. We use pi to

denote the ith node in the mesh. A pair of nodes, pi and pj , are adjacent to each other if and

only if the following condition holds:

|i mod N − j mod N | + |⌊i/N⌋ − ⌊j/N⌋| = 1.

Each pair of adjacent nodes, pi and pj , are connected by a pair of links, i→ j and j → i.

Link i→ j (j → i) transfers messages from pi (pj) to pj (pi). We see from Figure 2.3 that each

computation node is bond with a switch in this mesh architecture. Without misunderstanding,

when we mention a node in this work, we mean a node consisting of a processor, a memory

module, and a switch (router).

We assume the system runs a single embedded application at a given time. This appli-

cation consists of a set of parallel processes (i.e., it is parallelized to be executed over the mesh

nodes). Each node in the mesh executes at most one process. A process running on a node, pi,

can send messages to a process running on another node, pj , through connection pi
∗→ pj . If pi

and pj are adjacent, connection pi
∗→ pj contains only one link. On the other hand, if pi and pj

are not adjacent, pi
∗→ pj contains multiple links, that is, a “multi-hop” connection. The set of

links involved in a connection is determined by the specific routing algorithm used. In this work,

we assume a static (deterministic) X-Y routing algorithm [30]. In this algorithm, a message is

first continuously passed in x-dimension and then in y-dimension until it reaches its destination.

1Our approaches can be adapted to be used with other types of architectures.
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2.3 Power Model

The increasing NoC energy consumption has motivated works on modeling NoC power

consumption. Orion [101], an architectural-level power-performance simulator for interconnec-

tion networks, assesses different network architectures and the impact of different communica-

tion patterns on energy consumption. It enables the exploration for power-performance trade-

offs for interconnection network design. LUNA [31], a high-level power analysis framework

for on-chip networks, gives the spatial and temporal power profile of the network by using link

utilization as a high level power metric. Patel et al [70] have focused on the power constrained

design of interconnection networks and proposed power models for routers and links in the net-

work.

We use an interconnection network power model proposed in [31, 101], which can be

represented as follows:

Enetwork = Elink + Eswitch

= Elink + Ecrossbar +Earbitration + Ebuffer,

This means that the links and switches are the two main energy consuming components in an

interconnection network. The energy consumed by the switches can be further classified into the

energy consumption of crossbar, arbitration logic, and buffers. In this work for managing the

network power, we focus only on the link energy consumption and model it in detail using the

approach described in [90], which is to be elaborated in later analysis. The energy optimizations

for the switches can be found in [49, 70, 100].
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The energy consumed by the link circuitry turns out to be a significant portion of the

total network energy consumption, which is pointed out by many previous studies [21, 82, 90].

In [21], the authors provide the on-chip link/router power numbers, showing that in many cases

the link power consumption is larger than that of the router. The off-chip communication links

consume an even higher portion of the total network power budget [90]. Therefore, one can ex-

pect significant power savings through optimizing the power consumption of the communication

links.

2.4 Compiler-Directed Proactive Link Turnoff and Activation

Figure 2.4 illustrates our first proposal for optimizing power consumption of NoCs. The

proposed compiler algorithm (proactive link energy optimizer) analyzes the communication pat-

tern of parallel applications, and decides which links to shut down/activate and when to shut

down/activate. Based on the decisions, the algorithm modifies the original parallel codes by in-

serting link turnoff and pre-activation instructions at proper positions and generates an energy

optimized parallel program. Please note that the focus of this work is on the proactive link energy

optimizer in stead of application parallelization and communication optimization.

Fig. 2.4. High level view of proactive link energy optimization.
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2.4.1 Hardware Support for Link Turnoff and Activation

Figure 2.5 depicts the structure of a link and associated switch components that supports

link shutdown and activation. A time-out counter in the sender node monitors the link utilization

by decreasing its value at each clock tick when the link is not in use (once the link is used, the

counter is reset to the maximum value). When the value reaches 0, link components (Tx and Rx)

are turned off to conserve energy. Power control logic inside the sender node is responsible for

link activation as well. When the link reactivates, a small link state monitor in the receiver node

detects it and turns on Rx.

To support compiler-directed link turnoff and activation, we extend both the hardware

design and the message format. A 1-bit “SHARED” flag is added into power control logic. We

use this flag to indicate whether multiple connections share this link. When SHARED is set

to 0 (not shared), the associated link can be turned off by a passing message. Each message

extends by adding two one-bit link control flags: “HOLD” and “LAST”. Setting flag LAST to 1

indicates that the sending node will not send messages for a relatively long period of time after

sending this message. Therefore, the links involved for transferring this message can turn off to

conserve energy if SHARED is 0. The link turnoff in this situation is regardless of the time-out

counter value. However, if SHARED is 1, indicating other messages need this link, a message

with flag LAST as 1 cannot turn off the link. Setting flag HOLD of a message to 1 indicates

that the sender will use the connection again in the near future. Thus, sending a message with

HOLD = 1 sets SHARED flags of all links passed by the message to 1, in order to prevent other

nodes from turning off these links. A link with SHARED = 1 still turns off when the time-

out counter reaches zero. When a link is reactivated from the power-down mode, its SHARED
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flag is initialized to 0. Table 2.1 summarizes how the flags of a message affect the state of a

communication link.

Fig. 2.5. The architecture supporting link shutdown and activation. Output buffer, Tx, Rx, and

input buffer can turn off to conserve energy. HOLD and LAST are flags in the message header.

Using these control flags, we can control the states of links along the path from source

node to destination node. This mechanism is especially important when the source and destina-

tion nodes of a given message are not adjacent to each other (when we have only the nearest-

neighbor type of communication as in the case of stencil computations [80], the calculation of

these flags can be significantly simplified). By making use of flag LAST, a program can turn

off idle links earlier than a pure time-out based hardware mechanism would. Similarly, by uti-

lizing flag HOLD in the message and SHARED associated with each link, the program can

prevent a node from turning off links still needed by other nodes, and thus reduces potential

performance/energy penalties.
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Table 2.1. Controlling link state by using flags HOLD and LAST of a message and flag

SHARED of the link. X: don’t care; Reset: reset the time-out counter to the maximum value;

−: the state (value) is not changed. Whenever there is a message coming and its targeting link

is power-off, this link will reactivate.
Message Flags Current State State After Message Transmission

HOLD LAST SHARED Counter Link SHARED Counter Link

0 0 X X On - Reset On

0 1 0 X On - X Off

0 1 1 X On - - On

1 0 X X On 1 Reset On

2.4.2 Link Turnoff

Targeting loop-intensive, message-passing based parallelized embedded programs, the

task of our compiler algorithm is to set flags HOLD and LAST properly for each message-

sending operation inside the program. The input program is already parallelized and optimized

using techniques such as [34, 98, 103]. For ease of discussion, we assume that the program con-

tains only one loop nest L. For a message-sending command “sendk(p, m)” (the kth message-

sending command m to processor p), if flag LAST message m is set to 1, links used to transfer

message m turn off once m has been delivered. Besides, setting flag HOLD of message m to

1 prevents links passed by message m from being turned off by other nodes. Flags HOLD and

LAST do not affect the correctness of the program, however, by setting their values properly, one

can intelligently shut down the communication links without waiting until the time-out counter

reaches 0.

The below example illustrates the code transformation performed by our compiler:
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for ~I = ~L to ~U {

...

send
k

(p(~I), m);

...

}

=⇒

for ~I = ~L to ~U {

...

if(~I ∈ H
k,i

) m.HOLD = 1;

else m.HOLD = 0;

if(~I ∈ G
k,i

) m.LAST = 1;

else m.LAST = 0;

send
k

(p(~I), m);

...

}

In this abstract code fragment, i is the ID of the node executing this code fragment, ~L and ~U are

the lower and upper bound vectors for the loop nest, and ~I is the iteration vector.2 At iteration ~I ,

“send(p(~I),m)” sends message m to the target node p(~I). Hk,i is the set of loop iterations where

“sendk(p(~I), m)” sends messages with HOLD= 1. Similarly, Gk,i is the set of loop iterations

where “sendk(p(~I), m)” sends messages with LAST= 1. The compiler computes iteration sets

Hk,i and Gk,i for each message instruction executed on each node. In this work, we assume

that both Hk,i and Gk,i can be expressed in Presburger formulas.

In stead of finding optimal Hk,i and Gk,i, which is very hard if not impossible, we

consider a heuristic. Before presenting the details, we define several auxiliary functions:

• connection(i, j): the set of links used in the connection from node pi to pj . This function

is determined by the used routing algorithm.

2
Vector ~I keeps the loop indices from the outermost position to the innermost position. ~L and ~U are

also defined as vectors and each contains an entry for each loop index, again from the outer most position

to the inner most position.
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• targets(i, ~I): the set of nodes to which node pi sends messages at iteration ~I of loop nest

L.

• links(i, ~I): the set of links used by node pi at iteration ~I of loop nest L. This function

can be computed as:

links(i, ~I) =
⋃

j∈targets(i,~I)
connection(i, j).

• use(i, ~I, ~δ): the set of links used by node pi during the period from iteration ~I to ~I + ~δ

of loop nest L. ~δ is the threshold, which is determined by the power consumption of a

link in different states and the energy penalty for turning on a power-off link. The time for

executing all the loop iterations enclosed by range [~I, ~I+~δ] is equal to T , the shortest idle

period during which the energy saving by turning off the link can amortize the reactivation

penalty. This function can be computed as:

use(i, ~I, ~δ) =
⋃~I+~δ
~J=~I ′

links(i, ~J), where ~I ′ is the next iteration following ~I.

Based on the auxiliary functions, we giveHk,i andGk,i for command “sendk(p(~I),m)”:

Hk,i = {~I | |connection(i, p(~I))| > 1 ∧ connection(i, p(~I)) ⊆ use(i, ~I, ~δ)};

Gk,i = {~I | connection(i, p(~I)) ∩ use(i, ~I, ~δ) = φ}.

The explanation for set Gk,i is straightforward — flag LAST of message m is set to 1 if all

the links for transferring m will not be used by source node i in the near future, i.e., during the
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iterations ~I through ~I + ~δ. Explaining set Hk,i, however, is a little involved. flag HOLD of

message m is set to 1 only when both of the following criteria are satisfied: (1) transferring m

requires multiple hops, and (2) links used for transferring m will be used by the source node

of m in the near future, i.e., during the loop iterations ~I through ~I + ~δ. The rationale behind

these two criteria includes two parts. First, a connection connecting two communicating nodes

is likely to share some links with another connection with another pair of nodes. If a node sends

messages again along one of the connections soon, we do not want any link in this connection

turned off by another node. A message with HOLD = 1 marks all the links along its way from

the source node to the target node as “shared” (by setting SHARED flags of these links to 1) so

that these links will not be mistakenly turned off. Second, we do not set flags HOLD to 1 for

messages whose source and target nodes are neighbors. The reason is that, if a link used by two

adjacent nodes is shared by a connection between two non-adjacent nodes, flag SHARED of this

link will be set by the latter connection; if the link used by two adjacent nodes not shared by any

other connections, keeping SHARED of this link at 0 allows us turn off the link immediately

when we are sure that the source node will not use it for a certain period of time.

For a typical message-based parallel program, most communications take place between

adjacent nodes. The compiler based scheme focuses on turning off idle links not shared by mul-

tiple connections promptly since the compiler can predict the behavior of these links accurately.

As shared links has more complex behavior, which is harder for the compiler to predict, we do

not turn off shared links in the compiler algorithm.
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2.4.3 Link Pre-activation

A power-off communication link must be turned on (i.e., reactivated) before it can be

used. Reactivation incurs both performance and energy penalties. We cannot avoid the energy

cost due to reactivation, however, the performance penalty, however, can be hidden by pre-

activation,. That is, we can turn on a power-off link a certain number of cycles before it is

actually needed. The compiler performs pre-activation by inserting pre-activation instructions

into the application program.

We first define attach(i) = {l1, l2, .., ln} as the set of links that connect node pi with

its neighbors. Since node pi cannot directly control links not belonging to attach(i), in this

work, node pi only pre-activates links in its own attach(i) set. For ease of discussion, we define

Qj,i is the set of iterations (executed on node i) using link lj . The set of iterations in which we

pre-activate link lj is:

Aj,i = {~I | [~I − ~β1,
~I + ~β2] ∩Qj,i = φ},

where ~β1 and ~β2 are two constant vectors.

Figure 2.6 explains the meaning of ~β1 and ~β2. Specifically, the overall execution time

for loop iterations within [~I − ~β1,
~I + ~β2] is equal to TD, the time-out period of the links; and,

the overall execution time for the loop iterations within [~I, ~I + ~β2] is equal to TP , the delay due

to reactivating a turned off link. In this work, we express set Aj,i in Presburger formulas. The

below example shows the link pre-activation code inserted by our compiler:
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for ~I = ~L to ~U {

...

send
k

(p(~I), m);

...

}

=⇒

for ~I = ~L to ~U {

if(~I ∈ A
1,i

) pre-activate link l
1

;

if(~I ∈ A
2,i

) pre-activate link l
2

;

... ...

if(~I ∈ A
n,i

) pre-activate link l
n

;

...

send
k

(p(~I), m);

...

}

Fig. 2.6. Both ~β1 and ~β2 are constant vectors. The overall execution time for loop iterations

within [~I − ~β1,
~I + ~β2] is equal to the time-out period of links; the overall execution time the

loop iterations within [~I, ~I + ~β2] is equal to the delay due to activating a power-off link.

Pre-activation is in a sense similar to prefetching [64, 71], a commonly-used latency-

hiding mechanism for cache memories. In prefetching, data/instructions are brought into cache

memory before needed, in an attempt to hide memory access latency. Similarly, in pre-activation,

a communication link is activated (actually reactivated) before it is needed to hide the associated
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reactivation latency. We want to reiterate at this point that a wrong placement of the link shut-

down or pre-activation commands by the compiler does not affect program correctness. It can

only cause extra performance and/or power penalties.

2.4.4 Experiments

In this section, we present the experimental evaluation of our compiler-based, proactive

approach for managing network power. We first introduce the experimental setup and then show

experimental results.

We employed the link power model in [90]. Links consume constant power regardless of

the utilization due to link signaling features. That is, even when a link is not transmitting data,

it consumes the same power, Pon. When a link is turned off, its power consumption is assumed

to Poff . When a link is reactivated from power-off state to power-on state, it incurs an energy

penalty EP during the transition period TP . As in [90], the power during this transition period

is equal to that in power-on state. Therefore, the total link energy consumption Elink can be

expressed as:

Elink =
N∑

i=1

(Pon · Ton
i
+ Poff · Toff

i
+ ni ·EP ),

where Ton
i

and Toff
i

are, respectively, the lengths of total power-on and power-off time peri-

ods for link i, ni is the number of times link i has been reactivated, and N is the total number

of links in the mesh network. In other words, the total energy consumption of links is obtained

by aggregating the energy consumption of all the links in the network. Each link’s energy con-

tains energies spent in power-on state, power-off state, and the power-off to power-on transition
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period. Based on the assumption of Poff = 0 as in [90, 49] , the expression above becomes:

Elink =

N∑

i=1

(Pon · Ton
i
+ ni ·EP ).

Our simulation framework is a SimpleScalar [5] based execution engine. Multiple sim-

ulation processes communicate with each other through a network simulation process. The net-

work simulation process captures all the data communications across the network during the

whole execution time, simulates the turn-on/off behavior of each link, and then calculates the

overall link energy consumption. The network simulator is adapted from a high-level network

power analysis framework, LUNA [31], which has been validated against Orion [101], a cycle-

accurate network simulator.

As mentioned earlier, this approach targets loop-intensive applications. The benchmark

codes used in our study are extracted from Spec and Perfect Club benchmarks. We give impor-

tant characteristics of these codes in Table 2.2. Note that “jacobi”, “lu”, “mxm”, and “red-black

SOR” are frequently used codes in embedded multimedia processing. We hand-parallelized

these codes. All the arrays in the benchmarks are decomposed into 9 parts (3 × 3) and dis-

tributed over the corresponding processors in the 3 × 3 mesh. The computation-to-processor

assignment is performed using the owner-computes rule [79]. The last column of Table 2.2 gives

the link energy consumption under the pure hardware-based link power management scheme.

As mentioned earlier, in our experiments, we normalize all the energy results with respect to

these hardware optimized values.

Table 2.3 gives the default values of important parameters used in our simulation. The

power values of links is obtained from the power estimates for an on-chip router and its links
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Table 2.2. Benchmark codes.

Input Number of Volume of Link

Name array size messages messages energy

eflux 25.2MB 7546 220.6KB 330.6µJ

jacobi 180MB 18960 151.7KB 737.6µJ

lu 1.4MB 431233 280.8MB 232.8mJ

mxm 1.1MB 178200 142.6MB 149.1mJ

red-black SOR 90MB 18884 94.2KB 722.4µJ

tomcatv 25.2MB 14890 357.7KB 582.0µJ

tsf 112MB 18884 150.7KB 734.2µJ

(0.07µm, 1GHz) in [21]. We also present results when varying the values of some parameters.

For most experiments, we assume a 3 × 3 two-dimensional mesh network.

Figure 2.7 shows the normalized link energy consumption values for the proposed compiler-

based approach and the hardware-based approach. Each bar is broken into two components:

“Link Power-on” and “Link Reactivation”. “Link Power-on” represents the link energy con-

sumed in the link power-on states, while “Link Reactivation” is the energy penalty for link

reactivations. Each benchmark contains two bars, “HW” and “SW”, which correspond to the

hardware-based approach and the compiler-based approach, respectively. The results of “SW”

are normalized with respect to the corresponding “HW” results.

Our main observation from this bar-chart is that the compiler-based scheme saves more

energy than the hardware-based scheme for all the seven benchmarks. The reason is that the

compiler can shut down a communication link proactively. First, when the compiler decides to

turn off a link, the link does not need to wait for some time (e.g., TD in the hardware-based ap-

proach). Thus, it can obtain further energy savings over the hardware-based approach. Note that,

during this waiting period in the hardware scheme, the links still consume power. Second, since
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Table 2.3. Default system configuration parameters.

Link frequency 1GHz

Power of the links for one on-chip switch 0.1446W

Link reactivation delay (T
P

) 1000 cycles

Link reactivation energy (E
P

) 36.2nJ

Link turnoff threshold for the compiler (T ) T
P

Processor frequency 1GHz

Packet header size (flits) 3

Flit size (bits) 39

Buffer size (flits) 64

Fig. 2.7. Normalized link energy consump-

tion. HW: hardware-based approach; SW: our

compiler-based approach.

Fig. 2.8. Performance penalty of the

hardware-based approach (over the case when

no power optimization is performed).
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the compiler is proactive instead of reactive, it can assess the benefits of a link turnoff more accu-

rately. In contrast, the time-out based hardware approach cannot make sure that a link turnoff is

really beneficial from the energy perspective. Consequently, sometimes, in the hardware-based

link turnoff case, the energy spent for reactivating a link cannot be amortized by the energy

saved through turning off this link. As a result, we see an average 18.3% link energy saving

obtained by the compiler-based approach over the hardware-based approach. For benchmarks

“lu” and “mxm”, hardware-based and compiler-based approaches give similar power savings,

because these two benchmarks feature frequent communications and large exchanged data vol-

umes. Both approaches cannot execute many link turnoffs.

While our compiler-based scheme performs better than the pure hardware-based one

from the power consumption angle, we also need to consider performance for a fair evalua-

tion. We found in our experiments that, as expected, the compiler scheme does not cause any

observable performance degradation. This is because it can pre-activate a link which is in the

power-off state before it is actually needed. The hardware scheme, on the other hand, does incur

some performance penalty, as illustrated by the bar-chart in Figure 2.8. The average communi-

cation latency increase it brings is 6.6%. Our base case hardware approach does not incorporate

an adaptive routing algorithm when a packet requires a power-off link. This could be one reason

why we observe this latency penalty for the hardware-based approach. However, even in [90]

that exploits a fully adaptive routing algorithm Opt-Y, the hardware approach incurs an aver-

age network latency penalty of 3.5% under the same link reactivation delay. Therefore, we can

conclude that the compiler-based scheme is preferable over the hardware based scheme from

the performance angle as well. This is particularly true for embedded on-chip networks, where

adaptive routing is not typically employed due to its high energy costs [37].
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We next perform sensitivity studies by changing the default mesh size and the input data

size. Figure 2.9 illustrates the results with different mesh sizes. Only results for benchmark “ja-

cobi” are presented because the trends observed with other benchmarks are very similar. We see

that, with different mesh sizes, link energy behavior is quite stable. One can expect our approach

to be successful even with large meshes. Results with different data sizes are in Figure 2.10.

Besides this default size, denoted as 1X, we made experiments with data sizes X/4, X/2, 2X,

and 4X. In this figure, the link energy values achieved by the compiler-based approach are still

normalized to that of the hardware scheme. We see that the relative energy savings achieved by

the compiler-based approach over the hardware scheme are quite consistent.

Fig. 2.9. The impact of mesh size (bench-

mark: jacobi).
Fig. 2.10. The impact of data size.
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2.5 Compiler-Directed Voltage Scaling on Communication Links

2.5.1 Motivation

With voltage scalable communication links inside NoCs, there exist chances to scale

down the link voltage in a in a performance sensitive manner. Figure 2.11 depicts two example

scenarios. In the first scenario (Figure 2.11(a)), a pair of processors in different NoC nodes com-

municate with each other using non-blocking send and blocking receive operations. Note that

the amounts of data sent between them are different. Consequently, the communication from

processor 2 to processor 1 can be performed more slowly than that from processor 1 to processor

2. One can potentially scale down the voltage and frequency on the communication channel

from processor 2 to processor 1, thereby reducing power. To prevent any performance penalty,

the scaling factor should be determined based on the difference between the magnitudes of the

communication volumes. In the second scenario (Figure 2.11(b)), a pair of processors first send

data to each other and subsequently perform some computation. Let us assume that, while the

data volumes in the two communications are the same, the amount of computation performed by

processor 2 is much larger than that performed by processor 1. As a result, one can scale down

the voltage/frequency on the communication channel from processor 1 to processor 2. These two

scenarios illustrate that the opportunities to scale down voltages can come from the differences

between the communication volumes on channels and/or from the differences between the com-

putation volumes on NoC nodes; and both of these variances can be exploited through voltage

scaling to reduce NoC power consumption without significantly affecting performance. In this

work, we do not apply voltage scaling to processors; our focus is on NoC communication links.
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(a)

(b)

Fig. 2.11. Two example scenarios.

Fig. 2.12. High level view of compiler-directed channel voltage scaling.
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The voltage/frequency scaling approach proposed in this section has three major compo-

nents. The first component analyze the input code, builds a graph called the Interprocess Com-

munication Graph (IPCG), which captures the communication behavior of the parallel applica-

tion at hand. The second component, a voltage scaling algorithm, apply critical path analysis

to this graph, identifies the voltage scaling opportunities, and determines the channel frequen-

cies and voltages. The last component modifies the input code to insert explicit voltage scaling

instructions. Figure 2.12 shows the high level view of our approach. We assume that the in-

put application code has already been parallelized (either manually or through a compiler) for

message-passing communication, and inter-processor communications have been optimized us-

ing known techniques such as message vectorization and message coalescing [98]. We also that

the process-to-node mapping has already been performed.

The rest of this section is structured as follows. The next section presents our graph-based

representation. Section 2.5.3 illustrates our algorithm that analyzes the graph and identifies the

opportunities for voltage scaling. Section 2.5.4 discusses the necessary code modifications. An

experimental evaluation of our approach is presented in Section 2.5.5.

Let us assume, without loss of generality, that a communication channel can work at

m different voltage levels (and corresponding frequencies), namely v1, v2, ..., vm, such that

v1 > v2 > ... > vm. We further assume that it provides data rate λ when working at the highest

voltage v1 and the maximum frequency. The maximum data rate that can be provided at voltage

vi is assumed to be kiλ, where 0 < ki ≤ 1. We refer to ki as the scaling factor for voltage

vi. Thus, k1 = 1. When a communication channel works at higher voltage, it provides higher

data rate, and consumes more per-bit energy and dissipates more heat. The upper bound of the

performance of a given application can be achieved by operating all the communication channels
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used by this application at the highest voltage level available. However, this can be an overkill

for many applications. For these applications, some communication channels can be operated

at lower voltages to reduce energy consumption while not affecting the overall performance

significantly. Our goal is to find the the lowest voltage level for each communication channel

used by a given application such that the overall performance degradation incurred is within

a given bound, as compared to the performance achieved by operating all the communication

channels in NoC at the highest available voltage level. To achieve this goal, we need to answer

two important questions: (1) which communication channels are non-critical, and (2) to which

extent their speeds (and thus voltages) can be reduced without exceeding a preset performance

penalty bound.

2.5.2 Inter-Process Communication Graph

In this section, we introduce the Inter-Process Communication Graph (IPCG), an ab-

stract representation that captures the communication behavior of a message-passing based par-

allel program in a concise manner. In order to simplify our analysis, we make the following

assumptions about the application code being analyzed:

• An application process uses “send(p, m)” to send message m to process p, and uses in-

struction “receive(p, m)” to receive message m from process p. For each send or receive

instruction, the value p and the size of message, m, can be determined at compilation

time.3

3
We can handle the cases where the process id (p) in a send/receive instruction is expressed as a

function of the id of the process which executes that send/receive instruction.
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• The message send/receive relationships can be statically captured at compilation time.

That is, for each message send instruction, the compiler can determine which receive

instruction receives the messages sent by that send instruction; and for each receive in-

struction, the compiler can statically determine the send instruction that sends the corre-

sponding messages.

• A send instruction is blocked if the previous message sent by the same process has not

been delivered to the buffer of the target process.4 A receive instruction is blocked if its

message is not ready in the buffer of the receiver node.

An IPCG is a weighted directed graph, and can be defined for a given message-passing

parallel program P as:

G(P) = (V (P), E(P), α, β),

where V (P) is the set of vertices, E(P) ⊆ V (P) × V (P) is the set of edges, and α and β are

the weight functions for the edges. Vertex set V (P) can be expanded as:

V (P) = X(P) ∪B(P) ∪ S(P) ∪D(P) ∪R(P),

where X(P), B(P), S(P), D(P), and R(P) are defined as follows:

• X(P): A vertex x ∈ X(P) corresponds to a loop in P; and x represents the entry point

of this loop.

4
To be accurate, a send instruction is blocked when the previous message sent by the same process

has not left the buffer of the sender router. However, in an NoC that employs wormhole routing [68],

the incurred propagation delay is typically negligible. Therefore, the difference between the time points

when the last bit of a message leaves the buffer of the source node and when it is delivered to the buffer

of its destination node is normally very small.
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• B(P): A vertex b ∈ B(P) corresponds to a loop in P; and b represents the back-jump

point of this loop.

• S(P): A vertex s ∈ S(P) corresponds to a send instruction in P; and s represents the

point at which the message is sent.

• D(P): A vertex d ∈ D(P) corresponds to a send instruction in P; and d represents the

point at which the message is delivered to its destination.

• R(P): A vertex r ∈ R(P) corresponds to a receive instruction in P; and r represents the

point at which the message is used by the application.

Note that an inter-process communication in our NoC involves three stages. At the first

stage, the sender invokes the send instruction, which copies the message into the buffer of the

sender node. The sender process is blocked if this buffer is occupied. Our IPCG captures this

using the vertices in S(P). At the second stage, the NoC transfers the message to the receiver

(the destination node). This stage completes when all the bits of of this message have been

delivered to the receiver and stored in a temporary buffer. At the third stage, the receiver invokes

a receive instruction to read the contents of the message in the buffer. Note that there may be a

gap between the point when a message is delivered to the receiver node and the point when this

message is actually accessed by the receiver process. In order to capture this, our IPCG denotes

these two points using different vertices. Specifically, the vertices in D(P) represent the point

when a message is delivered to the receiver node, and the vertices in R(P) represent the point

when a message is accessed by the receiver process.

In this work, we refer to both message send and message receive instructions as com-

munication instructions; both communication instructions and back-jumps as instructions, and
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both instructions and loops as execution units. We use the term “execution unit v”, where

v ∈ V (P), to refer to the execution unit in program P that corresponds to vertex v. Further,

we use b(x) ∈ B(P) to denote the back-jump instruction of loop x; d(s) ∈ D(P), where

s ∈ S(P), to denote the delivery point of sending instruction s; ψ(v), where v ∈ V (P), to

denote the id of the process to which execution unit v belongs.

We write “x |= v” (where x ∈ X(P) and v ∈ V (P)) if and only if loop x directly

encloses execution unit v. More specifically, if v ∈ B ∪ S ∪ R, instruction v is in the body of

loop x and it is not enclosed by any other loop nested within loop x. If v ∈ X, loop v is nested

within loop x and there is no other nested loop between loop x and v. In particular, if vertex v is

not enclosed by any loop, we write “φ |= v”.

E(P) is the edge set of IPCG G(P). The edges of an IPCG can be classified into seven

categories; therefore, we have:

E(P) = E1(P) ∪E2(P) ∪ E3(P) ∪ E4(P) ∪ E5(P) ∪ E6(P) ∪E7(P),

where E1(P) through E7(P) are defined as follows:

• E1(P) = {(s, d(s))|s ∈ S(P)}. An edge (s, d(s)) ∈ E1(P) is referred to as a communi-

cation edge.

• E2(P) ⊆ X(P)×V (P). An edge (x, v) is in E2(P) if x |= v and v is the first execution

unit in the body of loop x.
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• E3(P) ⊆ V (P)×V (P). An edge (u, v) is in E3(P) if both u and v are directly enclosed

by the same loop x (i.e., ∃x ∈ X(P) : x |= u, v) and v is executed immediately after u at

each iteration of loop x.

• E4(P) = {(b(x), x)|x ∈ X(P)}. An edge (b(x), x) ∈ E4(P) is referred to as the

back-jump edge.

• E5(P) ⊆ D(P) × S(P). An edge (d(s), s′) is in E5(P) if s and s′ are directly enclosed

by the same loop, and s′ is the first send instruction that is executed after s at each loop

iteration. Edge (d(s), s′) indicates that send instruction s′ is blocked by send instruction s

which is executed at same loop iteration. Such an edge is referred to as an intra-iteration

blocking edge.

• E6(P) ⊆ D(P) × S(P). An edge (d(s), s′) is in E6(P) if s and s′ are directly enclosed

by the same loop, and s and s′ are the last and first send instructions in each loop iteration,

respectively. Note that, if this loop contains only one send instruction, we have s = s′.

Edge (d(s), s′) indicates that send instruction s′ is blocked by send instruction s which

is executed by a previous loop iteration. Such an edge is referred to as an inter-iteration

blocking edge.

• E7(P) ⊆ D(P) × R(P). An edge (d(s), r) is in E7(P) if the messages sent by send

instruction s is received by receive instruction r.

Each edge inE1(P) represents a communication task, while each edge inE2(P)∪E3(P)

represents a computation task. Therefore, the edges inE1(P)∪E2(P)∪E3(P) are referred to as

the task edges. For a task edge (u, v), α(u, v) and β(u, v) represent, respectively, the compiler-

estimated lower and upper bounds of the length of task (u, v), i.e., the time it takes to complete
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this task. The length of a computation task (u, v) is determined by the sum of the latencies

of the instructions between the start points of execution units u and v. The values of α(u, v)

and β(u, v) can be obtained by either profiling or through a static analysis based approach such

as the one proposed in [102]. In comparison, the length of a communication task (u, d(u)) is

determined as follows:

α(u, d(u)) =
lmin
λ

and β(u, d(u)) =
lmax
λ

,

where lmin and lmax are the minimum and maximum sizes of the messages sent by instruction

u, respectively; and λ is the maximum available data rate of a communication channel in NoC.

On the other hand, the edges in E4(P) ∪ E5(P) ∪ E6(P) ∪ E7(P) do not represent any real

task. They are simply introduced to enforce the timing constraints among instructions, and

hence they are referred to as the control edges. Consequently, for a control edge (u, v), we have

α(u, v) = β(u, v) = 0.

An edge (u, v) indicates that the execution unit v is executed after execution unit u.

Further, an edge (u, v) ∈ E4(P) ∪ E6(P) indicates that u and v are executed in different loop

iterations. So, we refer to the edges in set E4(P) ∪ E6(P) as the inter-iteration edges. On the

other hand, an edge (u, v) 6∈ E4(P) ∪ E6(P) specifies that u and v are executed within the

same loop iteration. Therefore, we call the edges not in set E4(P) ∪ E6(P) the intra-iteration

edges. Note that the graph obtained by eliminating the inter-iteration edges fromG(P) is acyclic.

Therefore, the intra-iteration edges in G(P) determine a partial order among the vertices.

When drawing an IPCG, we use different symbols to represent the different types of

vertices, as shown in Figure 2.13. Also, we use dashed arrows to represent inter-iteration edges,
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and solid arrows to represent intra-iteration edges. A task edge (captured by a thick solid arrow)

from u to v is labeled with “α(u, v)/β(u, v)”. We omit the labels for the control edges.

(a) (b) (c) (d) (e)

Fig. 2.13. Symbols used for different IPCG vertices. (a) Start point of loop xi. (b) Back-jump

instruction bi. (c) Send instruction si. (d) Delivery point di. (e) Receive instruction ri.

As an example, Figure 2.14(b) shows the IPCG for the message-passing parallel code

given in Figure 2.14(a). One can observe from this IPCG that the parallel program consists of

four loops: x1, x2, x3, and x4. Loop x2 is nested within loop x1. The execution of instruction

r2 follows that of loop x2. We assume that loop x2 contains at least one iteration; therefore, we

have α(x2, r2) = 120, where 120 is conservative estimation of the per-iteration execution time

of loop x2, which can be computed as the length of the longest path from x2 to b2, without using

any inter-iteration edge. Since the number of iterations of loop x2 is assumed to be unknown at

compilation time, we have β(x2, r2) = ∞.

We say loops xi and xj (ψ(xi) 6= ψ(xj)) communicate with each other (denoted as

xi ↔ xj) if an instruction directly enclosed by one of them sends message to an instruction

directly enclosed by the other. Further, we write xi
∗↔ xj if xi ↔ xj or there exists an xk

such that xi
∗↔ xk and xj

∗↔ xk. A vertex set H is a parallel group if H ⊆ X(P) such that

we have xi ↔ xj for any pair of xi and xj in H , and, for any H ′ ⊃ H , there exits at least an
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xi ∈ H ′ and an xj ∈ H ′ such that xi ↔ xj does not hold. Note that a parallel group represents

a set of loops that are executed in parallel and communicate with each other. Our voltage scaling

optimization is carried out at the parallel group granularity; i.e., we process the parallel groups

one by one. We define L(H), the loop communication graph (LCG) for parallel group H , as the

subgraph of IPCG G(P) induced by H∗, where

H∗ = {v|∃x ∈ H : x |= v} ∪ {d(v)|∃x ∈ H, v ∈ S(P) : x |= v}.

Similar to IPCGG(P) which captures the communication behavior of parallel program P, LCG

L(H) captures the communication behavior of the loops in H . For example, the IPCG shown

in Figure 2.14(b) includes two parallel groups: H1 = {x1, x3} and H2 = {x2, x4}, whose

corresponding LCGs are shown in Figures 2.14(c) and (d), respectively.

2.5.3 Critical Path Analysis

Recall that our approach assumes that the input code has already been parallelized and

process-to-node mapping has been performed. Therefore, for a given process pair, we know

the set of communication channels that will be used for transferring messages between them.

Our goal now is to analyze the LCGs determined in the previous step one by one and identify

the communication channels that can be voltage/frequency-scaled and the amount of scaling

to be applied. The proposed approach reduces the NoC energy consumption by changing the

frequencies/voltage levels of some communication channels and does not change the behavior

of the application itself. Therefore, while inaccuracy in our analysis (e.g., in assigning α(u, v)
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//Process 1
x
3

: for(...) {
r
1

: receive(2, ...)

computing: 20∼25 cycles;
s
2

: send(2, ...)

}

//Process 2
x
1

: for(...) {
s
1

: send(1, ...);

x
2

: for(...) {
computing: 10 cycles;
s
3

: send(3, ...);

computing: 10∼15 cycles;
s
4

: send(3, ...);

computing: 80∼90 cycles;
r
5

: receive(3, ...);

computing: 20 cycles;
}
r
2

: receive(1, ...)

}

//Process 3
x
4

: for(...) {
computing: 10 cycles;
r
3

: receive(2, ...)

computing: 15 cycles;
r
4

: receive(2, ...)

computing: 40∼50 cycles;
s
5

: send(2, ...)

}

(a)

(b)

(c) (d)

Fig. 2.14. (a) Code for a message-passing parallel program; “x ∼ y” indicates that a com-
putation task can take minimum x and maximum y cycles to complete. (b) The IPCG for the
code shown in (a). (c) The LCG for parallel group {x1, x3}. (d) The LCG for parallel group
{x2, x4}.
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and β(u, v) values) may affect the performance and the energy consumption of the application,

it does not create any correctness issue.

For a given parallel group H = {x1, x2, ..., xn}, let us use ti,j to represent the earliest

time that the jth iteration of loop xi can start, and we have ti,0 = 0 (i = 0, 1, ..., n). q is the

minimum number such that there exists a constant R ≥ 1 such that:

t1,q+R − t1,q = t2,q+R − t2,q = ... = tn,q+R − tn,q = T. (2.1)

The start time of the (q + mR + k)th iteration of loop xi, where 0 ≤ k < R and m ≥ 0, is

ti,q+k +mT . Therefore, R can be thought as the re-occurring period of the timing behavior of

parallel groupH . The timing behavior of parallel group H during its entire execution time can be

represented by the behavior during the period from the qth iteration through the (q + R − 1)th

iteration. Therefore, we refer to these iterations as representative iterations. Representative

iterations are important because our approach uses them for determining scaling factors.

As an example, Figure 2.15 shows timing for four loops executed in parallel on four

NoC nodes. The first iteration (i = 0) of each loop starts at the same time (i.e., t1,0 = t2,0 =

t3,0 = t4,0 = 0). However, due to load imbalance and timing constraints exhibited by inter-

process communications, the first iterations of these loops are not necessarily completed at the

same time; consequently, the start times of the second iterations (t1,1, t2,1, t3,1 and t3,1) of

these loops may differ from each other. In this example, constants q is 1 and R is 3 such that

ti,j+R = ti,j + T for all j ≥ q, where T is a constant.
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Fig. 2.15. Timing for an example parallel execution. In this particular example, there exist

constants q = 1 and R = 3 such that ti,j = ti,j+R + T for all j ≥ q, where T is a constant.

Figure 2.16, Figure 2.17, and Figure 2.18 together present our algorithm for determining

the scaling factors for connections used by a given parallel group H . For an application contain-

ing multiple parallel groups, we analyze these parallel groups individually. Our algorithm takes

L(H), the LCG for the given parallel group H , as input. It computes k[i, j], the scaling factor

for the communication channels in the connection from process i to process j, such that the

overall percentage performance degradation due to voltage/frequency scaling does not exceed δ,

where δ is a user-specified constant, as compared to the performance achieved by operating all

the communication channels in NoC at the highest available voltage/frequency level.

The algorithm works in three phases. In the first phase, it computes tα[i, j], the earliest

time vi at the jth iteration can be reached, assuming all the tasks are finished in their shortest

times. The values of tα[i, j]s are the minimum values that satisfy the following expressions:

∀i : t
α
[i, 0] = 0, (2.2)

∀(k, i) ∈ E
+

: t
α
[i, j] ≥ t

α
[k, j] + α(k, i), (2.3)

∀(k, i) ∈ E
−

: t
α
[i, j] ≥ t

α
[k, j − 1], (2.4)
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where E+ is the set of intra-iteration edges, and E− is the set of inter-iteration edges. One can

observe from Figure 2.16 that the first phase contains a repeat-until loop. At the Qth iteration

of this loop, we use Expression (2.3) to compute tα[i,Q] for each vertex vi in the LCG. After

that, we check if there exist a constant q (0 ≤ q < Q) and a constant T such that, for all

vi ∈ H , we have tα[i,Q] − tα[i, q] = T . Note that the qth through (Q− 1)th iterations are the

representative iterations. If we cannot find such a q and T , we use Expression (2.4) to compute

the initial values of tα[i,Q + 1] for the next iteration. We repeat this procedure until we find a

suitable q and T . In order to limit compilation time, the algorithm terminates if we cannot not

find suitable q and Q values within the first Q∗ iterations. The computational complexity for

each iteration of this phase is O(m + n), where m and n are the number of edges and vertices

in the LCG under consideration, respectively. Therefore, the computational complexity of this

phase is O(Q∗(m+ n)).

In the second phase, we compute the worst case execution time for representative iter-

ations, assuming that each task takes the longest time to complete and all the communication

channels work at the highest data rate. The worst case start time for each vertex in V is the

minimum value of tβ [i, j] that satisfies the following expressions:

∀i : t
β
[i, q] = t

α
[i, q], (2.5)

∀(k, i) ∈ E
+

: t
β
[i, j] ≥ t

β
[k, j] + β(k, i), (2.6)

∀(k, i) ∈ E
−

: t
β
[i, j] ≥ t

β
[k, j − 1], (2.7)

The worst execution time for representative iterations of loop vi ∈ H can be computed as

tβ [i,Q]− tβ [i, q]. The computational complexity for this phase is O((m+n)(Q−q)), where m
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and n are the number of the edges and the vertices in the LCG under consideration, respectively,

and the values of q and Q are as determined in the previous phase.

In the third phase, we try to maximize the scaling factor k[i, j] (0 < k[i, j] ≤ 1) for each

communication channel exercised by connection [[i,j]] under the following constraints:

∀i : t[i, q] = t
α
[i, q], (2.8)

∀(k, i) ∈ E
+

: t[i, j] ≥ t[k, j] + β(k, i)/k[ψ(v
k
), ψ(v

i
)], (2.9)

∀(k, i) ∈ E
−

: t[i, j] ≥ t[k, j − 1], (2.10)

∀v
i
∈ H : t[i, Q] ≤ t[i, q] + max{(1 + δ)T, t

β
[i, Q] − t

β
[i, q]} (2.11)

In this phase, we assume all the tasks are finished in their longest time. Expression (2.11) means

that, for a loop whose worst case overall execution time for the representative iterations does

not exceed (1 + δ)T , we can tolerate a percentage performance degradation up to δ. On the

other hand, for a loop whose worst case overall execution time for the representative iterations

is already longer than (1 + δ)T , we do not allow any further performance degradation. As a re-

sult, the overall performance degradation due to scaling the voltage/frequency of communication

channels is within δ.

Phase 3 shown in Figure 2.18 contains a “repeat-until” loop. At each iteration of this

loop, we select a connection and reduce the data rate of the communication channels in this

connection by one level. After that, we estimate the execution time for each loop. If the esti-

mated performance degradation exceeds the limit set by Expression (2.11), the data rate of the

selected connection cannot be reduced. We repeat this procedure until there is no connection

whose data rate can be further reduced. Note that, at each step, instead of scaling down the

voltage/frequency of the selected connection aggressively, we reduce its voltage/frequency by
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only one level. This choice allows us to scale down the speeds of more connections. As will be

discussed later, a group of connections working at similar speeds is more desirable than a group

of connections whose speeds differ from each other significantly if these connections share some

communication channels. The computational complexity of this phase is O(vc(m+n)(Q− q)),

where c is the number of connections used, v is the number of available frequency/voltage levels

for a communication channel, m is the number of edges, n is the number of the vertices in the

LCG under consideration, and the values of q and Q are as determined in phase 1. Therefore,

the overall complexity of our algorithm is O((m+ n)(vc(Q− q) +Q∗)).

We now explain how our algorithm operates using an example. Figure 2.19(a) shows a

parallel program with three processes and Figure 2.19(b) shows the corresponding IPCG. This

IPCG contains only one LCG. Figure 2.20 shows how our algorithm computes tα and tβ for each

vertex in this LCG. At the beginning of phase 1, the values of all tα[i, 0]s are initialized to 0, as

shown in Figure 2.20(a). At the first iteration of phase 1, we compute the value of tα[i, 0] for each

vertex, and then initialize the values of tα[x1, 1], tα[x2, 1], tα[x3, 1], tα[s1, 1], tα[s2, 1], and

tα[s3, 1] based on the values of tα[b1, 0], tα[b2, 0], tα[b3, 0], tα[d1, 0], tα[d2, 0], and tα[d3, 0],

respectively, as specified by Expression (2.4). After that, we start the second iteration. Figure

2.20(b) shows the values of tαs at the beginning of this iteration. Similarly, we compute the

values of tα[i, 1]s and initialize the values of tα[x1, 2], tα[x2, 2], tα[x3, 2], tα[s1, 2], tα[s2, 2],

and tα[s3, 2] for the third iteration. Figure 2.20(c) illustrates the state at the beginning of the

third iteration. We repeat this procedure until we reach the state shown in Figure 2.20(d), where

we have T = tα[xi, 4]− tα[xi, 3] = 50 for i = 1, 2, 3. At this point, we can also determine that

q = 3, Q = 4, and R = 1.
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Global Variables:

L(H) — the LCG of parallel groupH ;

V — the set of vertices in LCG L(H). The vertices in V has been sorted in the

partial order determined by the intra-iteration edges, i.e., for all v
i
, v

j
∈ V ,

we have i < j if (v
i
, v

j
) is an intra-iteration edge.

t
α
[i, j], t

β
[i, j] — the best and the worst start times of vertex v

i
in the j

th
iteration.

k[i, j] — the scaling factor for connection [[i, j]];
0 < k[i, j] ≤ 1; particularly; k[i, j] = 1 if i = j.

q,Q, T — ∀i ∈ H : T = t[i, Q] − t[i, q]

// Initialization

set all t
α
[i, j], t

β
[i, j], and t[i, j] to 0; set all k[i, j] to 1; Q = 0; T = −1;

// Phase 1: Computing t
α
[i, j], q, Q, and T

repeat{
for i = 1 to |V |

for each intra-iteration edge (v
i
, v

j
) where t

α
[j,Q] < t

α
[i, Q] + α(v

i
, v

j
)

t
α
[j,Q] = t

α
[i, Q] + α(v

i
, v

j
);

Q = Q+ 1;

for each inter-iteration control edge (v
i
, v

j
) where t

α
[j,Q] < t

α
[i, Q− 1]

t
α
[j,Q] = t

α
[i, Q− 1];

for q = Q− 1 to 0
if(∀v

i
, v

j
∈ H : t

α
[i, Q]− t

α
[i, q] 6= t

α
[j,Q] − t

α
[j, q]) {

T = t
α
[i, Q]− t

α
[i, q] where v

i
∈ H ;

break; // the values of T , Q, and q have been determined.

}
} until (Q ≥ Q

∗
or T > 0);

if(T = −1) {terminate with failure;}

Fig. 2.16. Algorithm for critical path analysis: Phase 1.
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// Phase 2: Computing t
β
[i, j]

for r = q to Q { for each v
i
∈ V { t

β
[i, r] = t

α
[i, r]; } }

for r = q to Q {
for i = 1 to |V |

for each intra-iteration edge (v
i
, v

j
) where t

β
[j, r] < t

β
[i, r] + β(v

i
, v

j
)

t
β
[j, r] = t

β
[i, r] + β(v

i
, v

j
);

for each inter-iteration control edge (v
i
, v

j
) where t

β
[j, r + 1] < t

β
[i, r]

t
β
[j, r + 1] = t

β
[i, r];

}

Fig. 2.17. Algorithm for critical path analysis: Phase 2.

// Phase 3: Computing t[i, j] and Determining k[i, j]
for all connection [[i, j]] { g[i, j] = 0; }
repeat {

for each connection [[i, j]] where g[i, j] = 0 {
k
′
= k[i, j]; // back up k[i, j]

decrease k[i, j] to the next scaling level;

for r = q to Q { for each v
i
∈ V { t[i, r] = t

α
[i, r]; } }

for r = q to Q {
for i = 1 to |V |

for each intra-iteration edge (v
i
, v

j
)

where t[j, r] < t[i, r] + α(v
i
, v

j
)/k[ψ(v

i
), ψ(v

j
)]

t[j, r] = t[i, r] + α(v
i
, v

j
)/k[ψ(v

i
), ψ(v

j
)];

for each inter-iteration control edge (v
i
, v

j
) where t[j, r + 1] < t[i, r]

t[j, r + 1] = t[i, r];
}
if(∃v

i
∈ H : t[i, Q] − t[i, q] > max{(1 + δ)T, t

β
[Q, i]− t

β
[q, i]}) {

k[i, j] = k
′
; // restore k[i, j] to its previous value.

g[i, j] = 1; // this connection cannot be scaled any further.

}
}

} until g[i, j] = 1 for all connection [[i, j]];

Fig. 2.18. Algorithm for critical path analysis: Phase 3.
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In phase 2, we compute the value of tβ for each vertex based on Expressions (2.5), (2.6),

and (2.7). Figure 2.20(e) shows the result of this phase. Note that, since we have q = 3 and

Q = 4, we only need to compute the values of tβ [i, 3]s. After that, we compute the values

of tα[x1, 4], tα[x2, 4], and tα[x3, 4], based on the values of tα[b1, 3], tα[b2, 3], and tα[b3, 3],

respectively, as captured by Expression (2.7).

With a performance degradation of 10%, i.e., δ = 10%, since in phase 1 we computed

that q = 3, Q = 4, and T = 50, we have:

t[x
1
, Q] ≤ t[x

1
, q] + max{(1 + δ)T, t

β
[x

1
, Q] − t

β
[x

1
, q]} = 170,

t[x
2
, Q] ≤ t[x

2
, q] + max{(1 + δ)T, t

β
[x

2
, Q] − t

β
[x

2
, q]} = 210,

t[x
3
, Q] ≤ t[x

3
, q] + max{(1 + δ)T, t

β
[x

3
, Q] − t

β
[x

3
, q]} = 190.

That is, as specified by Expression (2.11), after scaling the voltages/frequencies of the commu-

nication channels, the start times of the Qth iterations of loops x1, x2, and x3 cannot be later

than 170, 210, and 190, respectively.

Figure 2.21 shows how the third phase of our algorithm determines k[1, 2], k[2, 3], and

k[3, 1], the scaling factors for connections [[1, 2]], [[2, 3]], and [[3, 1]], respectively. At each step

of this phase, we try to reduce the scaling factor of one connection. The tables in (a) through

(f) show the values of k and t at each step. First, we try the combination where k[1, 2] =

0.8, k[2, 3] = 1, and k[3, 1] = 1. Based on these scaling factors, we compute the values of

t[i, 3] as shown in Figure 2.21(a). It is not difficult to verify that all the constraints specified by

Expressions (2.8), (2.9), (2.10), and (2.11) are satisfied. In the next step, we try the combination

of k[1, 2] = 0.8, k[2, 3] = 0.8, and k[3, 1] = 1. We see from the table in Figure 2.21(b) that, after

scaling, we have t[x3, Q] = 196.25 > 190, which violates the constraint captured by Expression
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(2.11). Therefore, k[2, 3] is restored to 1. We next try the combination of k[1, 2] = 0.8, k[2, 3] =

1, and k[3, 1] = 0.8, and find that it fails due to t[x1, Q] = 176.25 > 170. Figures 2.21(d),

(e), and (f) depict the next three steps. Phase 3 terminates after the step shown in (f) since we

cannot find any other possible values for the scaling factors. Therefore, the scaling factors for

connections [[1, 2]], [[2, 3]], and [[3, 1]] are determined as k[1, 2] = 0.4, k[2, 3] = 1, and k[3, 1] = 1,

respectively.

2.5.4 Code Modification

At compilation time, we assign an id to each loop such that loops executing simulta-

neously (not necessarily in the same parallel group) have the same id. In order to set volt-

age/frequency levels of communication channels used by connection [[i, j]], source node i sends

a voltage/frequency control message to destination node j. This message contains the id of the

loop and the desirable voltage/frequency level for connection [[i, j]], as determined by our algo-

rithm. This message is transferred along the communication channels on the path from node i to

node j. Each communication channel has a small memory space that keeps the loop id of the last

voltage/frequency control message transferred. When the hardware of a communication channel

detects that the message being transferred is a voltage/frequency message, it compares the loop

id contained in this message against the one kept in the memory associated with this communi-

cation channel. If these two ids are different, the hardware of the communication channel sets

its supply voltage to the voltage level specified in the message, and updates the id stored in the

corresponding memory space. On the other hand, if these two ids are identical, the hardware

of the communication channel compares its present voltage level (v) against the voltage level

(v′) specified in the message. If v < v′, the hardware adjusts its voltage level to v′; otherwise,
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x
1

: for(...) {
s
1

: send(2, ...);

computing: 20∼25 cycles;

r
1

: receive(3, ...);

computing: 10 cycles;

}

x
2

: for(...) {
s
2

: send(3, ...);

computing: 25∼30 cycles;

r
2

: receive(1, ...);

computing: 25∼30 cycles;

}

x
3

: for(...) {
s
3

: send(1, ...);

computing: 15∼20 cycles;

r
3

: receive(2, ...);

computing: 15 cycles;

}
(a)

(b)

Fig. 2.19. An example parallel code (a) and its IPCG (b).
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t
α
[i, 0]

x
1

0

s
1

0

d
1

0

r
1

0

b
1

0

x
2

0

s
2

0

d
2

0

r
2

0

b
2

0

x
3

0

s
3

0

d
3

0

r
3

0

b
3

0

t
α
[i, 0] t

α
[i, 1]

x
1

0 30

s
1

0 20

d
1

20 0

r
1

20 0

b
1

30 0

x
2

0 50

s
2

0 20

d
2

20 0

r
2

25 0

b
2

50 0

x
3

0 35

s
3

0 20

d
3

20 0

r
3

20 0

b
3

35 0

t
α
[i, 0] t

α
[i, 1] t

α
[i, 2]

x
1

0 30 65

s
1

0 30 50

d
1

20 50 0

r
1

20 55 0

b
1

30 65 0

x
2

0 50 100

s
2

0 50 70

d
2

20 70 0

r
2

25 75 0

b
2

50 100 0

x
3

0 35 85

s
3

0 35 55

d
3

20 55 0

r
3

20 70 0

b
3

35 85 0

(a) (b) (c)

t
α
[i, 0] t

α
[i, 1] t

α
[i, 2] t

α
[i, 3] t

α
[i, 4]

x
1

0 30 65 115 165

s
1

0 30 65 115 -

d
1

20 50 85 135 -

r
1

20 55 105 155 -

b
1

30 65 115 165 -

x
2

0 50 100 150 200

s
2

0 50 100 150 -

d
2

20 70 120 170 -

r
2

25 75 125 175 -

b
2

50 100 150 200 -

x
3

0 35 85 135 185

s
3

0 35 85 135 -

d
3

20 55 105 155 -

r
3

20 70 120 170 -

b
3

35 85 135 185 -

t
β
[i, 3] t

β
[i, 4]

x
1

115 170

s
1

115 -

d
1

140 -

r
1

160 -

b
1

170 -

x
2

150 210

s
2

150 -

d
2

175 -

r
2

180 -

b
2

210 -

x
3

135 190

s
3

135 -

d
3

160 -

r
3

175 -

b
3

190 -

(d) (e)

Fig. 2.20. Computing tα and tβ for the IPCG shown in Figure 2.19. (a) At the beginning of

phase 1, all tα[i, 0]s are initialized to 0. (b) The situation at the beginning of the second iteration
of phase 1. (c) The tα value for each vertex the beginning of the third iteration of phase 1. (d)
The tα value at the end of phase 1. (e) The tβ value for each vertex computed in phase 2.
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k[1, 2] = 0.8 k[1, 2] = 0.8 k[1, 2] = 0.8
k[2, 3] = 1 k[2, 3] = 0.8 k[2, 3] = 1
k[3, 1] = 1 k[3, 1] = 1 k[3, 1] = 0.8

t[i, 3] t[i, 4]
x
1

115 170

s
1

115 -

d
1

146.25 -

r
1

160 -

b
1

170 -

x
2

150 210

s
2

150 -

d
2

175 -

r
2

180 -

b
2

210 -

x
3

135 190

s
3

135 -

d
3

160 -

r
3

175 -

b
3

190 -

t[i, 3] t[i, 4]
x
1

115 170

s
1

115 -

d
1

146.25 -

r
1

160 -

b
1

170 -

x
2

150 210

s
2

150 -

d
2

181.25 -

r
2

180 -

b
2

210 -

x
3

135 196.25

s
3

135 -

d
3

160 -

r
3

181.25 -

b
3

196.25 -

t[i, 3] t[i, 4]
x
1

115 176.25

s
1

115 -

d
1

146.25 -

r
1

166.25 -

b
1

176.25 -

x
2

150 210

s
2

150 -

d
2

175 -

r
2

180 -

b
2

210 -

x
3

135 190

s
3

135 -

d
3

166.25 -

r
3

175 -

b
3

190 -

Success. Failure. Failure.
(a) (b) (c)

k[1, 2] = 0.6 k[1, 2] = 0.4 k[1, 2] = 0.2
k[2, 3] = 1 k[2, 3] = 1 k[2, 3] = 1
k[3, 1] = 1 k[3, 1] = 1 k[3, 1] = 1

t[i, 3] t[i, 4]
x
1

115 170

s
1

115 -

d
1

156.67 -

r
1

160 -

b
1

170 -

x
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2
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d
2
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2
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b
2

210 -

x
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3
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d
3
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3
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b
3

190 -

t[i, 3] t[i, 4]
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s
1
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d
1
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r
1
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1
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2
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d
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2

210 -

x
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135 190

s
3
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d
3

160 -
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3
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b
3

190 -

t[i, 3] t[i, 4]
x
1

115 170

s
1

115 -

d
1

240 -

r
1

160 -

b
1

170 -

x
2

150 270

s
2

150 -

d
2

175 -

r
2

240 -

b
2

270 -

x
3

135 190

s
3

135 -

d
3

160 -

r
3
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b
3
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Success. Success. Failure.
(d) (e) (f)

Fig. 2.21. Determining scaling factors k[1, 2], k[2, 3], and k[3, 1] assuming δ = 10%. At each
step of Phase 3, we try to reduce the scaling factor of one connection. The tables in (a) through
(f) show the values of k and t at each step.
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it remains at its present voltage (v). A voltage/frequency control message is discarded upon its

arrival at its destination node.

Based on the hardware support discussed above, the task of our code modification module

is to insert instructions that send voltage/frequency control messages before the entry of each

loop. Let us assume that loop x is in process p0 and that it sends messages to processes p1, p2,

..., pn. Our compiler inserts the following instructions before the entry of loop x:

send(p
1
, {CTRL, id(x), f(k[p

0
, p

1
])});

send(p
2
, {CTRL, id(x), f(k[p

0
, p

2
])});

... ... ... ...

send(p
n

, {CTRL, id(x), f(k[p
0
, p

2
])});

x: for(...) { ... }

The function id(x) gives the id of loop x; the function f(k[p0, pi]) maps k[p0, pi], the scaling

factor of connection [[p0, pi]], to the corresponding frequency/voltage level; and the flag “CTRL”

in the header of the message indicates that this is a voltage/frequency control message. As an

example, Figure 2.22 gives the modified code for the program shown in Figure 2.19(a). This

code contains only one parallel group whose id is 1.

send(2, {CTRL, 1, f(0.4)});
x
1

: for(...) {
s
1

: send(2, ...);

computing: 20∼25 cycles;
r
1

: receive(3, ...);

computing: 10 cycles;
}

send(3, {CTRL, 1, f(1)});
x
2

: for(...) {
s
2

: send(3, ...);

computing: 25∼30 cycles;
r
2

: receive(1, ...);

computing: 25∼30 cycles;
}

send(1, {CTRL, 1, f(1)});
x
3

: for(...) {
s
3

: send(1, ...);

computing: 15∼20 cycles;
r
3

: receive(2, ...);

computing: 15 cycles;
}

Fig. 2.22. An example parallel code with voltage/frequency control instructions inserted.
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2.5.5 Experiments

To test the effectiveness of our approach, we implemented it using the SUIF infrastructure

[93] and performed experiments with 12 embedded benchmark codes. An important character-

istic of these benchmarks is that we were able to parallelize them using our compiler and apply

known optimizations such as message vectorization and message coalescing. Our paralleliza-

tion module takes a sequential program and generates an MPI-based parallel code. The average

increase in compilation time due to our voltage scaling approach (over the case when the appli-

cation is parallelized but no power optimization is performed) was about 68% (when we set the

value of Q∗ to 50).

Table 2.4(a) gives the default simulation parameters used in our experiments and Ta-

ble 2.4(b) lists the relevant values for the voltage/frequency levels used. Energy/performance

values in Tables 2.4(a) and (b) are from [89, 49] and represent typical values for an NoC. The

simulated NoC architecture is a two-dimensional mesh, though our approach can work with any

other regular NoC topology.

We focus on two metrics: energy consumption and execution cycles. We obtain NoC en-

ergy consumption values using an enhanced version of LUNA [31] that supports voltage scaling.

More specifically, we used the multi-processor system simulator SIMICS [1] to simulate parallel

execution and enhance SIMICS with LUNA NoC power models. The energy consumption in

memory components and CPUs has been estimated using Wattch based high-level power models

[14]. To sum up, the processor execution is simulated using SIMICS and network traffic is sim-

ulated using LUNA. While we report only the energy consumption numbers for NoC channels

and routers (with their buffers), our experimentation found that the energy consumption of these
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components constitutes about 44% of the total energy consumption of an NoC node, assuming

a two-issue embedded CPU with 20KB software-managed on-chip local memory per node (that

stores both instructions and data).

Table 2.4. (a) Default values of our major simulation parameters. (b) Available link volt-

age/frequency levels.
Parameter Value

NoC Topology 5 × 5 2D mesh
Idle Channel Energy Consumption 8.5 pJ/cycle

Overheads for Voltage Switch 1020pJ, 120 cycles
Processor 1 GHz, 2-issue

Local Node Memory 20KB
Packet Header Size 3 Flits

Flit Size 39 Bits

Voltage Rate Energy
(V) (bps) (pJ/bit)
0.7 200M 4.21
0.9 660M 5.25
1.1 1.33G 6.49
1.3 1.93G 8.31
1.5 2.50G 10.21

(a) (b)

Table 2.5 gives information on the benchmarks used in this study. The last three appli-

cations are the only codes in MediaBench and MiBench that we could parallelize automatically.

The third column of Table 2.5 shows the number of LCGs for each benchmark. The fourth col-

umn gives the NoC energy consumption when no power optimization is applied. But, even in this

case, if a communication channel is not used, it is kept in the off-state to save energy. Therefore,

any savings our approach achieves over the default case comes from voltage/frequency scaling.

The last column gives the total execution cycles (not just communication cycles) taken when

no power optimizations (other than communication channel shutdown) are applied. The energy

and performance results reported below are normalized with respect to the corresponding values

in these two columns. The number of voltage/scaling instructions inserted in the benchmarks

varied between 37 and 153, and their impact on execution cycles and power were negligible. In
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Table 2.5. Benchmarks and their important characteristics.

Number NoC Energy Total
Benchmark Explanation [Source] of without Opt. Cycles

LCGs (mJ) (M)

Morph2 Morphological operations 54 231.4 446.6
Disc Speech/music discriminator 49 194.4 380.9
Jpeg Lossy compression 67 296.5 571.2

Viterbi Viterbi decoder 78 308.0 761.5
Rasta Speech recognition 34 187.8 322.1

3Step-log Logarithmic search motion est. 28 126.6 209.3
Full-search Full search motion est. 34 133.4 207.1

Hier Hierarchical motion est. 28 130.7 211.7
Phods Parallel hierarchical motion est. 34 119.0 203.4

Epic Image data compression 44 188.7 366.5
Lame MP3 encoder 37 173.4 352.0

FFT Fast Fourier transform 41 192.1 372.3

any case, energy/performance results presented below include the overheads due to (1) the exe-

cution of these scaling instructions in the CPUs, (2) the latency incurred and extra power spent

in the network during voltage/frequency scaling, and (3) increased code size which increases the

number of accesses to the local memories.

The first two bars for each benchmark in Figure 2.23 give the normalized energy con-

sumption results with a hardware-based voltage scaling scheme and our compiler-directed scheme.

Our approach is run under δ = 0%, i.e., no performance penalty is allowed (however, we still

incur some negligible performance penalty due to inaccuracies in determining voltage/frequency

levels). The hardware scheme used is from [82], in which a hardware circuit is employed to con-

stantly monitor the traffic in the NoC and dynamically adapt the voltage/frequency of the com-

munication channels based on the collected traffic statistics. The results show that the compiler

based approach saves on average 17.21% energy over the hardware based scheme. The main



58

reason for this is that the compiler accurately predicts allowable extra latencies for communica-

tion channels and selects appropriate voltage levels accordingly. In comparison, the hardware

based approach relies on the history information which cannot capture the changes in usage fre-

quency of different channels. Our experiments also showed that the hardware based approach

incurs around 7.2% performance degradation on average when considering all 12 benchmarks.

In comparison, the performance penalty incurred by our approach was less than 1% for all the

benchmarks. Based on these results, we see that the compiler-based approach is preferable over

the hardware-based scheme from both performance and power angles. The stacked bar chart

in Figure 2.24 shows the percentage of energy spent at different voltage levels as well as the

overhead energy incurred by doing voltage transitions. Our approach exercises all voltage levels

available during execution.

Fig. 2.23. Normalized NoC energy consumption.
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Fig. 2.24. NoC energy consumption break-

down.
Fig. 2.25. Accuracy of voltage selection.

While the results discussed so far show the success of the compiler-based scheme, it is

also important to measure how close our energy savings come to optimal savings. In order to

obtain the values of the maximum savings, we analyzed the execution trace of each benchmark,

and manually tuned the voltage level for each communication channel used by each parallel

group in each benchmark. The normalized energy savings with this optimal scheme are given

as the third bar for each benchmark in Figure 2.23 under δ = 0%. The difference between

our compiler scheme and the optimal scheme is only 6.14% on average. To explain why our

approach generates results that are very close to the optimal savings, we study in Figure 2.25 the

accuracy of our approach in identifying the correct voltage levels for communication channels

with respect to the voltage levels used by the optimal scheme. For ease of discussion, we refer to

an instance where a communication channel transfers a data packet as a communication activity.

The segment of a bar marked with 0 in Figure 2.25 captures the percentage of communication

activities where the voltage level selected by the compiler is the same as the optimal level,

whereas ∓x corresponds to the case where the compiler-predicted voltage is x levels lower

(higher) than the optimal level. These results clearly show that our approach is very accurate in
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determining the optimal voltage levels to use most of the time, which explains why it gets so

close to the optimal energy savings. Specifically, on average, 82.94% of the time the compiler-

based approach selects the optimal voltage level. And, about 13.69% of the time, the voltage

selected by the compiler is either one level below or above the optimal voltage level.

2.6 Profile-driven Message Rerouting

2.6.1 Motivation

Using communication link shutdown or voltage/frequency scaling can significantly re-

duce NoC power consumption as demonstrated by previous research and our two proposals

presented in Section 2.4.4 and Section 2.5.5. Such techniques, while very effective in reducing

power consumption in certain cases, work best when communication links have long idle pe-

riods, which allow compensation for performance/power overheads due to switching between

voltage levels and between link shut-down/turn-on states. Specifically, long idle periods are

preferable from the viewpoint of maximizing power savings through link shutdown.

This proposal focuses a profile-driven compiler optimization for increasing the length of

idle periods of communication links for a two-dimensional, on-chip, mesh network. The pro-

posed compiler-directed approach achieves its goal by maximizing communication link reuse.

That is, this approach clusters the required data communications into a small set of links at any

given time, increasing the idle periods for the remaining communication links in the network.

Clearly, this scheme needs to occur in a performance-sensitive manner. Therefore the goal is to

reduce network energy consumption as much as possible without causing extra link contention

and significantly degrading network performance.
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The targeted application domain is array/loop-intensive embedded programs, and the tar-

geted NoC is a two-dimensional mesh used by a single application at a time. This paper proposes

a profile-driven static message routing scheme that maximizes link reuse between different exe-

cution states of a given application. We introduce a novel data structure called “communication

graph” to capture different network states during application execution and a new abstraction,

the “link signature”, to capture link utilization in a given network state.

The remainder of this section is organized as follows. Section 2.6.2 introduces the hard-

ware support for compiler-directed message routing. Section 2.6.3 explains how link signatures

and the communication graph derive from an automated compiler analysis and Section 2.6.4

describes the link reuse optimization algorithm. Section 2.6.6 presents the experimental results.

2.6.2 Hardware Support for Compiler-Directed Message Routing

We focus on a power-aware NoC that has a hardware-controlled link shutdown scheme.

As discussed in 2.4.1, each communication link in the network, as well as its corresponding

buffers, can be turned off when they remain idle for a certain period of time. The powered-off

components re-activate on demand, i.e., they turn on only when needed.

Our goal is to determine the most appropriate routing for each message at compilation

time thereby allowing maximized link reuse across different messages. Thus, the compiler must

have a way of providing routing information, which may be different from the default X-Y rout-

ing, to each message. We propose to let the compiler attach routing information to each message-

send operation in the code, requiring the packets of all the messages issued by a message-send

operation to follow the same route (the message-send operations considered here are source
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level communication commands such as MPI Send in the MPI Library [95]). Please note that

the selection of the communication library to use is orthogonal to the focus of this work.

To support the compiler-directed message routing, we extend the switch design to handle

two types of routing schemes: default X-Y routing and compiler-directed routing. The header

of each packet contains a flag bit, indicating which routing mechanism to use for a given packet

(0: X-Y routing; 1: compiler-directed routing). A packet using the default X-Y routing has the

identification (ID) of the destination node in its header, as shown in the upper part of Figure 2.26.

When a switch receives such a packet, it forwards the packet according to the X-Y routing

algorithm.

Fig. 2.26. Fields in the header of a packet (Top: default X-Y routing; Bottom: compiler-directed

routing).

On the other hand, the header of a packet that employs the compiler-directed routing

contains three fields (see the lower part of Figure 2.26): the hop counter (4 bits), the orientation

(2 bits), and the routing command sequence (13 bits). Assuming that node, Pi, sends packet, p,

to node, Pj , for each switch, Sk, on the path of this packet, a corresponding bit in the routing

command sequence of the packet tells the switch to which output port to forward this packet.
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Table 2.6. Routing decisions based on orientation and routing command bits (N: North; S:

South; W: West; E: East).
Orientation 00 00 01 01 10 10 11 11

Routing command 0 1 0 1 0 1 0 1

Routing decision N E N W S E S W

The meaning of a routing command bit, however, is interpreted along with the value of the

orientation field. This means that the compiler can only choose an alternate path from among

the set of possible shortest paths. Once the orientation of a path is known (Northwestern: 01;

Southwestern: 11; Northeastern: 00; and Southeastern: 10), only a single bit of the routing

command, indicating the dimension (X: 1; Y: 0), can determine the routing decision (North,

South, West, or East). Table 2.6 provides the meaning of routing commands for different values

of the orientation field. The node sending a given packet sets the value of the hop counter of

that packet. As the packet moves forward from one switch to another, the hop counter number

decreases by one. When the counter value becomes zero, the packet has arrived at its destination.

Due to the limited number of bits available in a packet header in the current implementation, the

compiler-directed routing mechanism is not applicable for a packet whose source and destination

nodes are more than 13 hops apart. For such a packet, the default X-Y routing mechanism

applies.

2.6.3 Link Signature and Communication Graph

Assume that a parallel program executing on the mesh-based NoC architecture consists of

n parallel threads, P1,P2, ...,Pn, and thread Pp is scheduled to run on the pth mesh node. These
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threads send messages to each other using communication commands (send operations). We de-

note the set of communication commands in thread Pp using Cp = {M1,p,M2,p, ...,Mk,p, ...,Mq,p},

where q is the total number of communication commands in the program code of thread Pp and

Mk,p is the kth communication command in the code of Pp. For this study, all the messages

sent by a given Mk,p follow the same route in the NoC. At a given point in execution, multiple

messages may be undergoing transmission on the mesh. Representing the network state using a

set of message-send operations, Si, is:

Si = {Mk,p | A message sent by Mk,p is in transmission over the mesh}.

S0 = φ represents a state in which no message is in transmission.

Given a specific network state, a further determination of link utilization at this state is

necessary. The link utilization vector (LUV) for a given send operation, Mk,p, is a vector ~uk,p,

the jth element of which gives the number of packets sent by Mk,p and transferred through

the jth communication link of the mesh. Thus, a link signature (LS), ~si, to represent the link

utilization at a network state Si, is:

~si =
∑

M
k,p

∈S
i

~uk,p,

where
∑

denotes element-wise vector addition operator.

Given a vector, ~w (which can be either an LUV or an LS), function θ(~w) returns the set

of links used by the message(s) captured by ~w. Figure 2.27 gives an example link signature
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calculation. The network state S1 = {M1,0,M1,1,M1,2} in this example indicates a gather

type of communication. Three concurrent 20-packet messages, m1,0, m1,1 and m1,2, are sent

by commands M1,0, M1,1, and M1,2, respectively, as shown in Figure 2.27(a). The first task

is to obtain the LUVs for the corresponding send operations and then add them to compute

the corresponding LS for this state, as shown in Figure 2.27(b). Applying function θ to this link

signature, we obtain θ(~s1) = {l0,1, l2,3, l1,3}, which means that this state has only three links in

use. From the resulting signature, one can also see that link l1,3 has the highest communication

load (40 packets).

The network state changes during the course of execution. More specifically, the network

transitions from a state, Si, to another state, Sj , in two situations:

• A new message is sent by communication command, Mk,p. In this case, Sj = Si ∪

{Mk,p}.

• A message sent by communication command Mk,p arrives at its destination node. In this

case, Sj = Si − {Mk,p}.

A communication graph (CG) captures the communication behavior of a program. A

communication graph is an undirected graph, in which each vertex corresponds to a network

state and, each edge (Si, Sj) indicates the transition between states, Si and Sj . Wi,j , the weight

attached to edge, (Si, Sj), gives the number of transitions taking place between states, Si and

Sj , during the execution of this program.

We use profiling to build the CG of a parallel program. Specifically, we instrument

the target program to notify a profiler each time a node sends a message or when a message

arrives its destination node. The profiler keeps track of the current network state, Si. When
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(a) A gather type of communication in a two-by-two mesh (Target node: P3).

Links: l0,1 l1,0 l2,3 l3,2 l0,2 l2,0 l1,3 l3,1
~u1,0: (20 0 0 0 0 0 20 0)

~u1,1: (0 0 0 0 0 0 20 0)

~u1,2: (0 0 20 0 0 0 0 0)

~s1: (20 0 20 0 0 0 40 0)

(b) Link utilization vectors (~u1,0, ~u1,1, and ~u1,2) and link signature (~s1) for the scenario in

(a) (assuming all messages have a size of 20 packets).

Fig. 2.27. A link signature calculation example.
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the profiler receives a notification from the instrumented program, it computes the new state,

Sj , and increases the value of Wi,j , which represents the number of transitions between Si

and Sj . After the program completes its execution, we construct its CG based on the computed

network states, the state transitions, and the values of Wi,j . Figure 2.28(a) illustrates an example

communication graph.

(a) A communication graph. (b) Processing order by Scheme

I.

(c) Processing order by Scheme

II.

Fig. 2.28. Two different approaches traversing a CG (a shaded vertex indicates the correspond-

ing link signature NOT modified at the current step).

Based on the concepts of link signature and communication graph, we present a high

level view of our compiler-based approach in Figure 2.29. This approach profiles the parallel

application code to be optimized and builds a communication graph, which captures the com-

munication pattern of the entire parallel program. Given a communication graph, a link reuse

optimizer statically re-routes the pre-determined message routing paths to increase link reuse.

The output of the link reuse optimizer is a modified communication graph. Subsequently, the
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code rewriter module annotates each message-send operation in the application code with the

determined message routing information and generates an optimized parallel code.

Fig. 2.29. Compiler-directed link reuse optimization scheme. Each vertex of the communication

graph captures a network state.

2.6.4 Optimizing Link Reuse

The problem of increasing link reuse can express as one of maximizing link reuse be-

tween adjacent vertices in a communication graph. That is, when going from one state to another

at runtime, the desire is to reuse the same set of links as much as possible. Each vertex in a CG

has a default link signature, obtained using the default X-Y routing for messages sent by the

communication commands in that vertex. The compiler’s task is to re-assign link signatures to

those vertices, with an attempt to maximize communication link reuse.

1) Traversing Communication Graph. It is necessary to determine an order in which

we traverse network states to assign them new link signatures, as assigning a signature to a given
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vertex (network state) will affect the selection of the signatures for its neighbors in the CG. At

least two different ways of traversing a CG exist. The first approach starts with the edge having

the largest weight and performs signature re-assignment to associated vertices. After that, this

approach considers the edge with the next largest weight among the edges incident on selected

vertices. Since one of the vertices of the edge under consideration has an assigned signature,

signature assignment is for the other vertex only. This step repeats until all the vertices are pro-

cessed. This approach, referred to as Scheme I, expands the selected set of edges at each step

by considering only the neighbors. The second approach, referred to as Scheme II, starts the

same way as Scheme I. However, after selecting the edge with the largest weight and assigning

new signatures to corresponding vertices, the next edge selection considers all the remaining

edges (i.e., not just those that are incident on the previously selected vertices). To illustrate

the differences between Scheme I and Scheme II, let us consider the example CG shown in

Figure 2.28(a). The pairs of vertices considered by Scheme I and Scheme II at each step (for sig-

nature re-assignment) appear in Figure 2.28(b) and Figure 2.28(c), respectively. Figure 2.30(a)

and Figure 2.30(b) are the pseudo-codes for the compiler algorithms that implement Scheme I

and Scheme II, respectively.

2) Routing Flexibility. Re-routing (the messages sent by) communication commands

can achieve improvement in communication link reuse. In the present scheme, only the shortest

paths are considered for re-routing messages since this typically causes less energy consumption

than using longer paths. Even with this restriction, in many cases a certain re-routing flexibility

is available. Consider a two-dimensional mesh where a message, m, is to be sent from a source

node, (xs, ys), to a destination node, (xd, yd). If m = |xd − xs| and n = |yd − ys|, this

message has Cm
m+n

possible, unique, shortest paths. Recall from Section 2.6.3 that the defined
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Input:
A communication graph CG(V,E,W );

Output:
~u
i,p

for each M
i,p

in the program;

P — the set of network states that have been processed;
R — the set of communication commands whose LUVs

have been determined;
C — the set of candidate edges;

P = φ; R = φ; C = φ;
while(P 6= V ) {

if(C = φ)
C = {(S

x
, S

y
)} if W

x,y
is maximum;

select (S
i
, S

j
) ∈ C with maximum W

i,j
;

call reroute(S
i
, S

j
, R);

P = P ∪ {S
i
, S

j
}; // processed S

i
and S

j
R = R ∪ S

i
∪ S

j
; // determined LUVs for S

i
and S

j

C
′
= {(S

a
, S

b
)|S

a
∈ P ∧ S

b
∈ (V − P )};

C = (C − {(S
i
, S

j
)}) ∪ C′

;

}

(a) Scheme I.

Input:
A communication graph CG(V,E,W );

Output:
~u
i,p

for each M
i,p

in the program;

P — the set of network states that have been processed;
R — the set of communication commands whose LUVs

have been determined;
C — the set of candidate edges;

P = φ; R = φ; C = E;
while(P 6= V ) {

select a (S
i
, S

j
) ∈ C if W

i,j
is maximum;

call reroute(S
i
, S

j
, R);

P = P ∪ {S
i
, S

j
}; // processed S

i
and S

j
R = R ∪ S

i
∪ S

j
; // determined LUVs for S

i
and S

j
C = C − {(S

i
, S

j
)};

}
(b) Scheme II.

Fig. 2.30. Pseudo codes for two CG traversing schemes (Scheme I and Scheme II).
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link utilization vector represents the path taken by a message. Now, a set of alternate link

utilization vectors (ALUV), Ai,p, can represent all the alternate (shortest) paths available to a

message sent by the communication command, Mi,p. Therefore, re-routing a message can be

thought of replacing the current LUV of an associated Mi,p with a new LUV selected from

the corresponding ALUV set. The number of alternate link utilization vectors in an ALUV set

(i.e., |Ai,p|) thus represents the routing flexibility for (the messages sent by) communication

command, Mi,p.

3) Problem Formulation. Formulating the problem of optimizing the communication

link reuse between two neighboring vertices in a CG focuses on two vertices, Sa and Sb, as

shown in Figure 2.31. Each communication command, e.g., Ma3,p3 in state Sa, has a set of

alternate link utilization vectors, which represent the alternate, shortest paths for the correspond-

ing message. A single communication command is likely to appear in multiple network states.

However, we can change the associated routing only once (i.e., all the messages sent by it are

always transferred through the same path). Therefore, when optimizing states, Sa and Sb, the

possibility exists that some communication commands have already been assigned new routes

during the previous steps (such as Ma4,p4 and Ma5,p5 in state, Sa, and Mb3,p3 in state, Sb)

and these routes cannot be further changed. The goal is to choose a new LUV for each send

operation (except those already assigned new LUVs) in Sa and Sb minimizing the number of

unique links used in Sa and Sb (i.e., maximizing the link reuse).

Selecting the new utilization vectors should not degrade the performance of the de-

fault routing scheme. However, selecting alternate re-routings can increase the network con-

tention. Therefore, some sort of performance constraint should be introduced for selecting the

re-routings. In one network state, the communication link with the highest load often heavily
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Fig. 2.31. Link reuse optimization between two network states, Sa and Sb.

influences the latency of transmitting messages. The link with the highest load corresponds to

the largest entry in the link signature associated with a given state. The higher the value of the

largest entry, the more likely there will be severe link contention. Therefore, in optimizing link

reuse, and in order to avoid degrading network latency, increasing the value of the largest entry

in any original link signature is undesirable (although the largest value may be permitted to shift

to another link). For example, given the default link signature (10, 40, 10, 10, 0, 0, 0, 0) of a

network state, from the performance perspective, an alternate signature such as (10, 50, 0, 10,

0, 0, 0, 0) is inexpedient. However, for another alternate signature (40, 20, 10, 0, 0, 0, 0, 0),

the compiler has difficulty judging its impact on latency as compared to the default, (10, 40, 10,

10, 0, 0, 0, 0). The current implementation accepts this second alternate signature. Since the

proposed approach is built within a compiler in a modular fashion, it is very flexible. That is,

if desired, one can easily explore more strict performance constraints. We want to emphasize,

however, that judging the latency behavior of a network state based on its signature at compile

time is a very difficult problem in general. This is the reason for adopting a simple compile-time
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heuristic, based on the assumption that the link with the largest load typically forms the main

latency bottleneck.

4) Heuristic. We present a heuristic for calculating the routings for (the messages sent

by) the communication commands. The pseudo code for our heuristic is given in Figure 2.32.

First, for each Mi,p unassigned with a new routing in network states Sa and Sb, we

calculate its LUV and ALUV. Also, we obtain the link signatures for states, Sa and Sb. Based

on the signatures, we compute num links, the total number of the links used in Sa and Sb com-

bined. The goal is to reduce the value of this variable as much as possible under performance

constraints. We sort the communication commands in these two states into a sequence with as-

cending routing flexibilities (represented by |Ai,p|). We start with the communication command

that has the lowest routing flexibility and assign a proper route to it. The reason for starting with

the command with the lowest flexibility is that deciding the routing of this command early in the

optimization process is ultimately more beneficial. Otherwise, due to its limited routing flexibil-

ity, difficulties may arise for assigning a new LUV to it after many other send operations have

their routing paths fixed. We assign the appropriate routes to the communication commands,

one-by-one, until processing all commands in Sa and Sb is complete.

The method for choosing a route for a communication command Mi,p (recall that all

the messages sent by the same Mi,p follow the same path in the NoC) requires some expla-

nation. Without losing generality, assuming that the send operation to be re-routed belongs to

state Sa, the heuristic selects a new LUV for operation Mi,p by considering all the re-routing

options captured in Ai,p. For each alternate re-routing, the heuristic algorithm checks whether

the performance constraint is satisfied with respect to state Sa. If the performance constraint is

met, the new link signature is computed for state Sa. Subsequently, using this new signature,
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Input:

S
a

, S
b

— two network states;

R — the set of communication commands whose LUVs have been determined
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~u
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— LUV for each M
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) −R).
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i,p

∈ (S
a
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b
−R) by routing flexibility |A

i,p
|

for each M
i,p

∈ (S
a
∪ S

b
−R){

for each ~v ∈ A
i,p

{
if M

i,p
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a
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i,p
∈ S

b
{

calculate ~s
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a
)) continue;

if(max(~s
b new

) > max(~s
b
)) continue;

if(|θ(~s
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)| ≥ num links) continue;
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) ∩ θ(~s
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)| ≤ |θ(~s
a
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continue;

replace ~u
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;

num links = |θ(~s
a
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b
)|;

} else {
if(M

i,p
∈ S

a
) { x = a; y = b; }

else { x = b; y = a; }
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) continue;
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continue;
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~s
x

= ~s
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;

num links = |θ(~s
x
) ∪ θ(~s

y
)|;

}
}

}
}

}
function max(~v) { return the value of the largest entry of ~v; }

Fig. 2.32. Communication link reuse optimization heuristic.
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denoted ~sa new, and the current signature of state Sb (~sb), the heuristic re-calculates the total

number of links used by the messages in Sa and Sb. This total number of links is num links.

Among all the alternatives in the set, Ai,p, that satisfy the performance constraint, the heuristic

selects the one that leads to the minimum num links value. If num links cannot be reduced

with any alternate utilization vector, the choice is for the alternate LUV that maximizes the num-

ber of links reused by the two states (i.e., |θ(~sa) ∩ θ(~sb)| is maximized). The utilization vector

for this communication command is then fixed, and the routing assignment for this command is

complete at this point. Once a communication command is given a new LUV, this command is

not considered again when processing the other vertex-pairs. When all the send operations have

been assigned new routes, the thread codes are annotated with the corresponding LUVs.

The computational complexity of the heuristic is O(N ∗ K ∗ Cm
m+n

), where N is the

number of network states, K is the number of send operations, and Cm
m+n

represents the largest

routing flexibility in an m× n mesh, as mentioned earlier.

5) Example. We use an example here to illustrate how the link reuse optimization

scheme works. Since the steps traversing a communication graph are relatively simple, we

only present the link reuse optimization between two adjacent network states. The focus is

on a four-by-four mesh network and two neighboring network states in a CG: Sa and Sb. The

goal is to maximize link reuse between them, assuming that Sa = {M1,3,M1,7,M1,11}, and

Sb = {M2,3,M2,7}. Figure 2.33(a) and Figure 2.33(b) illustrate the default routings of the

messages sent by these communication commands in Sa and Sb, respectively. We assume that

message mi,j is sent by the send operation Mi,j . For example, message m2,7 is sent by the

send operation, M2,7, which is the second send operation in the code of thread P7 that runs on

mesh node 7. The target node of this send operation is node 14. We further assume, for clarity of
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presentation, the size of each message is 20 packets. One can calculate the LUV for each send

operation and the LS for each network state, as shown in Figure 2.33(d), under the default rout-

ings. The ALUV sets for the send operations are also calculated, although they are not shown

here due to space limitations. However, the routing flexibility, given within the parentheses

associated with the corresponding message, appears in Figure 2.33(a) and Figure 2.33(b).

The task is to select new LUVs for send operations, with the assumption that no send

operation in these two states has fixed its LUV in the previous optimization steps (i.e., when

processing the other state pairs). Thus, considering all the operations in the two states, we start

from M2,3, which has the lowest routing flexibility. With a flexibility of 1, it has no alternate

LUV. Consequently, the route for this message is easily fixed, as shown in Figure 2.33(c) (this

example uses the routings of the corresponding messages to represent the selected LUVs). Next,

M1,11 has a routing flexibility of 2. However, no beneficial alternate LUV for this communi-

cation exists, and the approach maintains its default LUV, as is shown in Figure 2.33(e). The

next send operation to process is M2,7. Since using any alternate LUV for it would violate the

performance constraint in state Sb (for example, using either of the two alternate LUVs, link

l7,11 would overload), this operation is also fixed with its default LUV. This step completes the

processing of all the send operations in state Sb. For each communication command in state, Sb,

our approach decides to employ the default LUV, and the resulting routings are the same as those

in Figure 2.33(b). Thus, we do not show the result of step III in Figure 2.33. In the following two

steps, the heuristic returns beneficial re-routings for operations M1,7 and M1,3, as illustrated

in Figure 2.33(f) and Figure 2.33(g), respectively. Each step reduces the total number of links

used in the two network states (i.e., improves link reuse). Figure 2.33(g) gives the final routings

for all the communication commands in state Sa. The modified LUVs and LSs returned by this
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(d) LUVs and link signatures with default X-Y routing. Omitted LUV entries are zeros.
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(h) LUVs and link signatures after re-routing.

Fig. 2.33. An example illustrating how our approach works. (a) and (g) are default routings

and compiler-determined routings for Sa, respectively. (b) shows default routings of state Sb
(routings of Sb not changed in this example).
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method are given in Figure 2.33(h). Clearly, the total number of links used in states Sa and Sb

decreases from 16 to 12.

2.6.5 Code Rewriter

Code rewriter in our approach (see Figure 2.29) is responsible for providing a version of

the message send operation, which incorporates the compiler-determined routing information.

The code fragments shown in Figure 2.34 correspond to the example in Figure 2.33. After apply-

ing our algorithm, the default message send operations, send1,3(12,mi) and send1,7(13,mi),

are replaced with the operations including specific routing information, i.e., send1,3(12,mi,

P1,3) and send1,7(13,mi, P1,7), respectively. These versions of send operations assemble mes-

sage headers by inserting routing paths according to Figure 2.26 and Table 2.6. Therefore, all

the messages sent by operation send1,3 have the message header: 10110110001110000000;

whereas all the messages sent by operation send1,7 have the header: 10100111010000000000.

The other message send operations remain unchanged, i.e., for those remaining messages, the

flags in their message headers are zeros, and the default X-Y routing determines the routing

paths.

2.6.6 Experiments

To conduct the experiments, we implemented a flit-level on-chip interconnection network

simulator. The network, parametrized similar to that in [21, 26], is in a five-by-five configuration.

The link speed is set to 1Gb/sec. Each switch input port has a buffer that can hold 64 flits; each

flit is 128 bits wide (packet size is 16 flits). The communication links in this network can be

shutdown independently, using a time-out based mechanism as described in [90]. The time-out



79

L
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...
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...

}

(a) Code running on node 3.

L
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: for i = i
L

to i
U

{ ...
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1,7
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i
, P

1,7
);

...

}
...

L
2

: for j = j
L

to j
U

{ ...

send
2,7

(14,m
j
);

...

}

(b) Code running on node 7.

L
1

: for i = i
L

to i
U

{ ...

send
1,11

(14,m
i
);

...

}
...

(c) Code running on node 11.

Fig. 2.34. Code rewriting for the example in Figure 2.33.

counter threshold for the hardware-based scheme is set to 1.5µsec based on some preliminary

analysis. The time taken to switch a link from the power-down state to the active state is set

as 1µsec, and the energy overhead of this switching is 140µJ, based on prior research [21, 90].

When a link is turned off, it consumes zero leakage energy. Under the simulation parameters

mentioned earlier, the leakage energy (which includes the leakage in the links as well as in

the switches) contributes to about 41% of the total network energy consumption (leakage plus

dynamic), on average, under the 65nm process technology. In order to accurately quantify the

performance impact of this approach, we also connected the network simulator to SIMICS [1].

Each node of the architecture is an 800 MHz, embedded in-order, CPU with 32KB instruction

and data caches.

The compiler component for this approach uses the Paradigm compiler infrastructure

[96]. We modified the original front-end of the compiler to accept C codes (in addition to For-

tran codes). Input code is optimized such that, for each loop nest, the outermost loop that does
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not carry any loop-carried data dependencies is parallelized and the inter-processor commu-

nication is hoisted to the highest loop level possible using message vectorization. This is a

well-known communication optimization. The communication library used for generating com-

munication calls is MPI [95]. Having determined the code fragment that will be executed by

each processor, invoking the approach proposed in this study follows. This approach determines

link signatures, builds the communication graph, and performs message re-routing. Both com-

munication graph traversal schemes (Scheme I and Scheme II), discussed in Section 2.6.4, are

implemented. The experimental methodology includes performing experiments with three dif-

ferent versions for each benchmark. The first version is the one that employs the default routing,

i.e., the X-Y routing and uses the underlying hardware-based link shutdown scheme, modeled

after the schemes described in [90, 49, 21]. In this implementation, parameters are selected

such that the energy savings achieved by link shutdown are maximized without unnecessarily

hurting network latency. In the rest of this section, this scheme with the default routing and

link shutdown hardware is the base scheme. The other two schemes evaluated for this study are

Scheme I and Scheme II. Both schemes run on top of the same link shutdown hardware used

in the base scheme, and the main goal in this experimental evaluation is discovering how much

additional energy savings our compiler-directed re-routing approach generates over that of the

hardware-based link shutdown approach.

The information about the applications used in this study appears in Table 2.7. A com-

mon characteristic of these benchmarks is their array/loop-intensive embedded application na-

ture. The code sizes of these benchmarks range from 63 to 8,612 C lines, while their dataset sizes

are within the range of 68.9KB-1,866.4KB. The third and fourth columns present the number of

nodes and edges in the communication graph the proposed approach builds for each benchmark.
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The table indicates that the number of nodes is not excessively large. The fifth column gives the

leakage energy consumption in the network under the base scheme, as described earlier. The

values within the parentheses show the leakage saving percentages achieved by this base scheme

over an alternate scheme that does not perform any network power management. Finally, the

sixth column indicates network latency of the base scheme (that is, the total number of cycles

spent in the network). The values within parentheses in this column show the percentage degra-

dation in network latency as compared to a case with no power optimization. The fifth and sixth

columns show that the base scheme saves 52.2% leakage power on an average, and incurs 8.4%

additional latency over a case with no power optimization.

Energy and performance results presented in the rest of this section are with respect

to the absolute values listed in the fifth and sixth columns of Table 2.7, respectively. That is,

results are normalized with respect to the corresponding results of the base case hardware-based

link shutdown scheme. The presented performance and energy results include all extra network

overheads incurred by the proposed approach (e.g., those due to augmented message headers).

The increase in compilation time due to our optimization ranged between 89% (3Step-log) and

Lame 236% (Lame), including time spent profiling. Since both profiling and compilation are

essentially off-line activities, these increases are within acceptable range.

Figure 2.35 presents the average link utilization (the fraction of the cycles in which the

links are used for transferring packets), which varies between 10.6% and 32.3%, averaging

21.4%. In other words, link utilization is not very high. The main reason for this is that ap-

plications in our experimental suite are optimized through several source-level communication

optimizations that minimize inter-processor data communication. That is, the compiler is very
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Table 2.7. Benchmarks from experiments and their important characteristics. Energy values are

in mJ, and the latency values are in million cycles.

Benchmark Brief CG Size Network Network

Name Description Node Edge Energy Latency

Morph2 Morphological operations 338 1081 75.5(64.9%) 380.4(8.8%)

Disc Speech/music discriminator 816 2937 99.2(46.3%) 123.6(6.9%)

Jpeg Compression for still images 524 1729 92.7(55.8%) 445.1(10.3%)

Viterbi A graphical Viterbi decoder 622 2239 72.5(32.9%) 150.8(9.8%)

Rasta Speech recognition 498 1424 118.1(50.7%) 219.5(6.2%)

3Step-log Logarithmic search motion est. 127 396 15.2(62.4%) 107.4(5.7%)

Full-search Full search motion est. 136 448 13.5(48.0%) 95.6(12.3%)

Hier Hierarchical motion est. 138 503 20.4(56.3%) 151.9(7.3%)

Phods Parallel hierarchical motion est. 128 440 16.7(66.6%) 111.3(10.4%)

Epic Image data compression 1144 4516 103.9(30.7%) 420.4(6.1%)

Lame MP3 encoder 2062 7526 80.1(55.0%) 272.1(9.0%)

FFT Fast Fourier transform 416 1747 87.2(55.9%) 253.3(7.4%)

Fig. 2.35. Link utilization.
Fig. 2.36. Percentage reductions in leakage

energy consumption.
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(a) Default routing. (b) Re-routing (Scheme I).

Fig. 2.37. CDF for link idle periods.

successful in reducing the amount of inter-processor communication. This, in turn, reduces the

average link utilization in the 5 × 5 mesh (a network that is not very large).

The next set of results, presented in Figure 2.36, show the percentage reduction in leak-

age energy consumption when using the proposed approach. Each bar in this bar-chart gives

the leakage energy saving over the base scheme. Each application has two bars, one for each

edge selection scheme: Scheme I and Scheme II. From these results, the average leakage energy

savings, when applying the compiler-directed message re-routing, are 37.30% and 39.56% for

Scheme I and Scheme II, respectively. This means that both edge selection schemes are suc-

cessful in reducing the leakage energy consumption, with neither being clearly superior. These

results clearly show that the compiler-directed link reuse optimization can improve the behavior

of the hardware-based link shutdown scheme. To explain why message re-routing brings further

savings over the base scheme alone, Figures 2.37(a) and (b) present the CDF (cumulative distri-

bution function) curves for the link idle periods with the base scheme and the compiler-directed

message re-routing approach (Scheme I). An (x,y) point on a given curve in these graphs indi-

cates that y*100 percent of the total link idle periods are equal or less than x cycles. One can see
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Fig. 2.38. Percentage increases in network cycles and overall execution time.

Fig. 2.39. Leakage energy consumptions.
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that the message re-routing increases the link idle periods significantly. The resulting increase in

idle times, in turn, allows the hardware-based link shutdown scheme to be used more effectively.

The percentage increases in the network cycles (network latency) and overall execution

time over the base scheme are in Figure 2.38 (the network latency increases due to the base

scheme itself appear in the last column of Table 2.7). The average network latency increase with

Scheme I and Scheme II (over the base scheme) are 1.21% and 1.29%, respectively. In other

words, the network overhead brought by the new approach, over the base scheme, is very small.

This overhead is attributable to the link contention created by the approach during the optimiza-

tion of the link signatures. A very small fraction of this increase is also due to the additional

latency imposed by the augmented message headers. Also observable from Figure 2.38 is that

the average increase in overall execution time is less than 0.5% for both Scheme I and Scheme

II.

Figure 2.39 summarizes the normalized leakage energy consumptions with the different

schemes. The results are normalized with respect to a scheme that does not employ any power

management. For each application, the first bar in this graph gives the best (minimum) possible

leakage consumption. “Best” in this context means that a link and the corresponding switch

are turned off as soon as they become idle and turned on (without any penalty) upon the next

request. The second bar for an application gives the normalized leakage consumption from the

base scheme. The last two bars on the other hand are for this study’s Scheme I and II. These

results show that the average normalized leakage consumption values for the best case, the base

scheme, Scheme I and Scheme II are 21.40%, 47.85%, 30.00% and 28.92%, respectively. That

is, the base scheme, Scheme I and Scheme II reduce leakage energy consumption by 52.15%,

70.00% and 71.08%, respectively. This means that Scheme I and II save significant amounts of
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leakage energy as compared to the base scheme. When considering the dynamic energy as well

(in addition to leakage), we found that the total (average) energy savings achieved by the base

scheme, Scheme I and Scheme II are 21.37%, 27.49% and 27.94%, respectively, including the

impact of augmented message headers. These total energy savings resulting from the proposed

schemes are quite significant, considering the fact that the best scheme can save, at most, 32.22%

of the total network energy.

Besides the above results, we also conducted sensitivity studies either by varying the

number of mesh nodes or by changing the input sizes. We tested mesh sizes from 15 nodes to

50 nodes and found that leakage energy savings obtained from different mesh sizes are similar.

When the number of nodes increases, slight increases in savings occur. Exploring the effect of

input size on energy savings is important because the proposed approach is profile-based and

a different input set can generate different network states than those obtained by profiling. Our

results indicate that energy savings are quite consistent as inputs change. This is because a differ-

ent input does not significantly affect the inter-processor communication pattern of a compiler-

parallelized application, although it can sometimes change the control flow of the application.

As a result, little variance results from the input used to execute the application.

2.7 Summary

Reducing the power consumption of NoCs is an important optimization goal for NoC-

based CMPs. Most of prior efforts on network power optimization are hardware-based schemes.

These schemes are reactive by definition as they control communication link status based on

the observations made in the past. The main contribution of this chapter are three compiler-

directed communication power optimization. In the first two approaches, the compiler analyzes
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a parallel application code, identifies the program points in the code for inserting link power

control commands (either shut down/turn on or voltage scale up/down), and then modifies the

code by inserting link power control function calls. Thus, the generated parallel code are power-

optimized. The third approach is profile-driven, which reroutes messages to use only a subset of

the links at a given time in order to increase idle periods of the remaining links. This approach

enhances the effectiveness of a pure hardware-based link turn-on/off scheme dramatically. Our

results demonstrate the success of these three approaches in reducing NoC energy.
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Chapter 3

Non-Uniform Cache Architecture

for Chip Multiprocessors

3.1 Background

Emerging CMPs contain large level-two (L2) and/or level-three (L3) caches on the pro-

cessor die. For example, IBM’s Power5 [87] has a 1.875MB on-chip L2 cache, Sun’s Ultrasparc

T1 contains 3MB of on-chip L2 cache, and Intel’s dual core Itanium2 includes 2.5MB of on-die

L2 cache and 24MB of on-die L3 cache. The increasing number of on-chip processing cores and

the associated increasing demand for memory bandwidth will make the sizes of on-chip L2/L3

caches continue to increase [38].

Traditional memory subsystem design has assumed that each level in the memory hierar-

chy has a single, uniform access time. However, diminutive feature sizes exacerbate the impact

of interconnect delay [35, 3, 78], making access times in large caches dependent on the physical

location of the requested cache line. That is, cache access times will be transformed into variable

latencies based on the distance between the requesting processor core and the target cache line.

Kim et al. [48] introduced the concept of Non-Uniform Cache Architectures (NUCA)

based on the above observation. Under uniprocessor scenario, they divided a NUCA-typed L2

into multiple, individually-addressable banks in order to employ the property of variant cache

access latencies for improving L2 performance. Different cache banks have different access

latencies, which are dependent on the distances to the processor. They employed a gradual
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migration policy to place frequently-accessed cache lines closer to the processor. A switched in-

terconnection network (i.e., NoC) is found superior than private per-bank channels in connecting

cache banks and the processor.

Designing an NoC-based NUCA architecture under CMP scenarios is more challenging,

since multiple processing cores may share and/or contend the on-chip caches. Two premium L2

cache designs for CMPs are a purely shared L2 cache [8] and a purely private L2 cache [52]. For

a purely shared L2 cache, the aggregate on-chip L2 caches can be accessed by any processor on

chip. Each cache line inside L2 cache is unique, that is, no replicates exist. The purely shared L2

cache maximizes the on-chip cache capacity, and thus minimizes the number of off-chip mem-

ory accesses. However, with non-uniform cache accesses, a purely shared cache can exhibit a

large average L2 hit latency, since frequently accessed cache lines might be placed far from the

accessing processor(s). The increased L2 hit latency can offset the benefit from decreased off-

chip accesses. Therefore, for a purely shared L2 cache design, some cache line placement or

migration policies must be available to avoid the increase in L2 hit latencies. [8] is a representa-

tive purely shared L2 NUCA for CMPs. Beckmann and Wood adapted the NUCA design for a

uniprocessor [48] to a shared L2 NUCA for a 8-core CMP. Specifically, they dispersed multiple

ways within the same logic cache set across the entire chip and used cache line migration to

move frequently accessed cache lines towards the requesting processor(s).

On the other hand, a purely private L2 cache [52] means that each processor has its own

L2 cache, and the processor cannot directly access other processors’ L2 caches. Such a purely

private L2 cache design requires the maintenance of the coherence among different private L2

caches. The purely private L2 cache design provides relatively lower L2 hit latencies, since each

processor has its data placed in its local L2 cache. However, the private L2 cache design does
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not utilize on-chip cache capacity efficiently since each shared cache line may have a replicate

inside the local L2 cache of each requesting processor. Such duplicates decrease the effective

aggregate L2 cache size and leads to more off-chip memory accesses, which are detrimental

to performance. Another problem with the private L2 cache is that it cannot accommodate

imbalanced memory requirements from different processors, since the size of each private L2

cache is fixed at design time.

A set of research efforts studied alternate CMP NUCA designs between the purely shared

and the purely private caches. These studies targeted minimizing the average L2 hit latency

and/or maximizing the effective on-chip L2 capacity (i.e., minimizing the off-chip accesses).

Huh et al [39] proposed a flexible CMP shared cache design by varying the degree of sharing,

i.e., by changing the sizes of processor clusters, in which the processors share their local pri-

vate L2 caches. Chishti et al [22] introduced CMP-NuRAPID, which employed controlled copy

of read-only data, fast in-situ communication for read-write sharing and capacity stealing from

neighbors. CMP-NuRapid architectures featured a flexible data placement at the cost of main-

taining tag-data pointers. Zhang and Asanovic [106] designed a victim replication mechanism

by duplicating L1 victims at local L2 spaces, aiming at reducing the L2 hit latency. [7] proposed

a controlled adaptive selective replication mechanism with an attempt to replicate frequently

accessed read-only data and thus reduce the L2 access latency without increasing L2 miss rate

significantly. Chang and Sohi [17] presented a scheme of cooperative caching for CMPs based

on private L2 caches through a central coherence engine. This scheme supported a spectrum of

capacity sharing points between the purely private cache and the purely shared cache. To handle

data sharing among processors, they modified the cache coherence protocol to maintain a data

owner for each on-chip cache line and let the owner (rather than the off-chip memory hierarchy)
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provide the cache line whenever another processor could not find this cache line in the local L2

space. Most of these studies replicated cache lines inside the shared L2 space, which required a

proper L2 cache coherence mechanism.

Other works around caches in CMPs (not necessarily NUCA) were cache fair sharing and

overall throughput maximization. Yeh and Reinman [104] presented the PDAS (Performance-

Driven Adaptive Sharing) cache architecture for CMPs. This scheme dynamically partitioned a

shared NUCA through monitoring the performance of each core. The objective was to maximize

the throughput and to guarantee a minimum performance level for each thread at the same time.

An OS level shared cache management scheme for CMPs was proposed in [75], which provided

a set of cache quota management policies on top of a hardware cache quota enforcement scheme.

In [52], the authors studied fair sharing and partitioning of a traditional shared L2 cache (with

a constant access latency). Targeting the traditional shared cache as well, a framework, CQoS,

was proposed in [43]. With an attempt to reduce the interferences among heterogeneous threads,

this framework assigned different priorities to different memory access streams and employed

three mechanisms (cache set partitioning, selective cache allocation, and heterogeneous cache

regions) to enforce these priorities. Other works on CMP caches included the management of

traffics between L2 and L3 caches [91] and the OS-directed data mapping from pages to L2

cache slices [23].

In this chapter, we focus on the NUCA design for CMPs and present two proposals.

First, we observe that the introduction of three-dimensional (3D) circuits [27, 63] provides an

opportunity to reduce wire lengths. Considering the characteristics of 3D integration technology,

we propose the design of a 3D NoC-based NUCA architecture for CMPs in Section 3.2.4. We

adapt the available NUCA [48] architecture into the new 3D scenario, and give shared L2 NUCA
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management policies, which benefit from both [8] and [22]. Second, by tracing the access pattern

of a shared L2 cache in a 8-core CMP, we observe that private cache lines (accessed by only one

processor), dominate the L2 cache space, while accesses to shared cache lines (accessed by two

or more processors) dominate the overall L2 accesses. Thus, in Section 3.3.4, we propose a

migration-based L2 NUCA design, which employs an initial cache line placement policy and a

migration scheme for hot shared cache lines.

3.2 Employing 3D Integration for CMP NUCAs

3.2.1 Motivation

A three dimensional (3D) chip is a stack of multiple device layers with direct vertical

interconnects tunneling through them [27, 63]. The benefits of 3D ICs include: 1) higher packing

density due to the addition of a third dimension to the conventional two-dimensional layout, 2)

higher performance due to reduced average interconnect length, and 3) lower interconnect power

consumption due to the reduction in total wiring length [44]. Joyner et al. [44] have shown that

three-dimensional architectures reduce wiring length by a factor of the square root of the number

of layers used. For example, a 4-layer 3D NoC would have, on average, ≈
√

4 = 2 times shorter

wiring length, as illustrated in Figure 3.1. Consequently, 3D technology can be useful in reducing

the access latencies to remote cache banks of a NUCA architecture.

Researchers for 3D technology have so far focused on physical aspects, low-level process

technologies, and developing automated design and placement tools [27, 29, 24]. Research at

the architectural level has also surfaced [12, 97]. Specific to 3D memory design, [74, 105] have
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Fig. 3.1. Wiring scales in length as the square root of the number of layers in three dimensions.

studied multi-bank uniform cache structures. In our work, we focus our attention on the design

of a 3D NoC-based non-uniform L2 cache architecture.

3.2.2 3D NoC-Bus Hybrid Architecture

There are currently various 3D technologies being explored in industry and academia,

but the two most promising ones are Wafer-Bonding [27] and Multi-Layer Buried Structures

(MLBS) [45]. Wafer-bonding technology processes each active device layer separately and then

connects the layers in a single entity. For MLBS, the front-end processing is repeated on a single

wafer to build multiple device layers, before the back-end process builds interconnects among

the devices. Since MLBS is not compatible with current manufacturing processes, it is not as

appealing as wafer bonding techniques [12, 41]. There are also two primary wafer orientation

schemes, Face-To-Face [12] and Face-To-Back [41, 29]. While the former provides the greatest

layer-to-layer via density, it is suitable for two-layer organizations, since additional layers would
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have to employ back-to-back placement using larger and longer vias. Face-To-Back, on the other

hand, provides uniform scalability to an arbitrary number of layers, despite a reduced inter-layer

via density. Hence, to provide scalability and easy manufacturability, we assume in this work

the use of Face-To-Back Wafer-Bonding.

Our proposed architecture for multiprocessor systems with large shared L2 caches in-

volves placement of CPUs on several layers of a 3D chip with the remaining space filled with L2

cache banks. Most 3D IC designs observed in the literature so far have not exceeded 5 layers,

mostly due to manufacturability issues, thermal management, and cost. As previously men-

tioned, the most valuable attribute of 3D chips is the very small distance between the layers. A

distance on the order of tens of microns is negligible compared to the distance traveled between

two network on-chip routers in 2D (1500 µm on average for a 64 KB cache bank implemented

in 70 nm technology). This characteristic makes traveling in the vertical (inter-layer) direction

very fast as compared to the horizontal (intra-layer).

One inter-layer interconnect option is to extend the NoC into three dimensions. This

requires the addition of two more links (up and down) to each router. However, adding two extra

links to an NoC router will increase its complexity (from 5 links to 7 links). This, in turn, will

increase the blocking probability inside the router since there are more input links contending

for an output link. Moreover, the NoC is, by nature, a multi-hop communication fabric, thus

it would be unwise to place traditional NoC routers on the vertical path because the multi-hop

delay and the delay of the router itself would overshadow the ultra fast propagation time.

It is not only desirable, but also feasible, to have single-hop communication amongst

the layers because of the short distance between them. To that effect, we propose the use of

dynamic Time-Division Multiple Access (dTDMA) buses as “Communication Pillars” between
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the wafers, as shown in Figure 3.2. These vertical bus pillars provide single-hop communication

between any two layers, and can be interfaced to a traditional NoC router for intra-layer traversal

using minimal hardware, as will be shown later. Furthermore, hybridization of the NoC router

with the bus requires only one additional link (instead of two) on the NoC router. This is the case

because the bus is a single entity for communicating both up and down. Due to technological

limitations and router complexity issues, not all NoC routers can include a vertical bus, but the

ones that do form gateways to the other layers. Therefore, those routers connected to vertical

buses have a slightly modified architecture, as to be explained in this section.

Communication

Pillar (b-bit 
dTDMA Bus 

spanning all 

layers)

Cache Bank 

or CPU Node

Pillar Node

Layers of 
3D Chip

4 Communication Pillars 
assumed here

Fig. 3.2. Proposed 3D Network-in-Memory architecture
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3.2.2.1 Using dTDMA Bus as Communication Pillars

The dTDMA bus architecture [77] eliminates the transactional character commonly as-

sociated with buses, and instead employs a bus arbiter which dynamically grows and shrinks

the number of timeslots to match the number of active clients. Single-hop communication and

transaction-less arbitrations allow for low and predictable latencies. Dynamic allocation always

produces the most efficient timeslot configuration, making the dTDMA bus nearly 100% band-

width efficient. Each pillar node requires a compact transceiver module to interface with the bus.

Details of the operation of this module can be found in [77]. The total number of wires required

by the control signals from the arbiter to each layer is 3n+ log2(n), for n layers. Because of its

very small size, the dTDMA bus interface is a minimal addition to the NoC router.

The presence of a centralized arbiter is another reason why the number of vertical buses,

or pillars, in the chip should be kept low. An arbiter is required for each pillar with control

signals connecting to all layers, as shown in Figure 3.3. The arbiter should be placed in the

middle layer of the chip to keep wire distances as uniform as possible. The area occupied by the
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arbiter and the transceivers is much smaller compared to the NoC router, thus fully justifying

our decision to use this scheme as the vertical gateway between the layers. The area and power

numbers of the dTDMA components and a generic 5-port (North, South, East, West, local node)

NoC router (all synthesized in 90 nm technology) are shown in Table 3.1. Clearly, both the area

and power overheads due to the addition of the dTDMA components are orders of magnitude

smaller than the overall budget. Therefore, using the dTDMA bus as the vertical interconnect

is of minimal area and power impact. A 7-port NoC router was considered and eliminated in

the design search due to prohibitive contention issues, multi-hop communication in the vertical

direction, and substantially increased area/power overhead due to an enlarged crossbar and more

complicated switch arbiters. The dTDMA bus was observed to be better than an NoC for the

vertical direction as long as the number of device layers was less than 9 (bus contention becomes

an issue beyond that).

The length of vertical interconnect between two layers is assumed to be 10 µm. Accord-

ing to [28], the parasitics of inter-tier vias have a small effect on power and delay, because of

their small length (i.e. low capacitance) and large cross-sectional area (i.e. low resistance).

Table 3.1. Area and power overhead of dTDMA bus.
Component Power Area

Generic NoC Router (5-port) 119.55 mW 0.3748 mm
2

dTDMA Bus Rx/Tx (2 per client) 97.39 µW 0.00036207 mm
2

dTDMA Bus Arbiter (1 per bus) 204.98 µW 0.00065480 mm
2
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Table 3.2. Area overhead of inter-wafer wiring for different via pitch sizes.
Bus Width Inter-Wafer Area (due to dTDMA Bus wiring)

10 µm 5 µm 1 µm 0.2 µm

128 bits(+42 control) 62500 µm
2

15625 µm
2

625 µm
2

25 µm
2

The density of the inter-layer vias determines the number of pillars which can be em-

ployed. Table 3.2 illustrates the area occupied by a pillar consisting of 170 wires (128-bit bus +

3x14 control wires required in a 4-layer 3D SoC) for different via pitch sizes. In Face-To-Back

3D implementations, the pillars must pass through the active device layer [74], implying that the

area occupied by the pillar translates into wasted device area. This is the reason why the number

of inter-layer connections must be kept to a minimum. However, as via density increases, the

area occupied by the pillars becomes smaller, and, at the state-of-the-art via pitch of 0.2 µm,

becomes negligible compared to the area occupied by the NoC router (see Table 3.1 and Table

3.2). However, as previously mentioned, via densities are still limited by via pad sizes, which

are not scaling as fast as the actual via sizes. As shown in Table 3.2, even at a pitch of 5 µm,

a pillar induces an area overhead of around 4% to the generic 5-port NoC router, which is not

overwhelming. These results indicate that, for the purposes of our 3D architecture, adding extra

dTDMA bus pillars is feasible.

Via density, however, is not the only factor limiting the number of pillars. Router com-

plexity also plays a key role. As previously mentioned, adding an extra vertical link (dTDMA

bus) to an NoC router will increase the number of ports from 5 to 6, and since contention proba-

bility within each router is directly proportional to the number of competing ports, an increase in

the number of ports increases the contention probability. This, in turn, will increase congestion
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within the router, since more flits will be arbitrating for access to the router’s crossbar. Thus,

arbitrarily adding vertical pillars to the NoC routers adversely affects the performance of each

pillar router. Hence, the number of high-contention routers (pillar routers) in the network in-

creases, thereby increasing the latency of both intra-layer and inter-layer communication. On

the other hand, there is a minimum acceptable number of pillars. In this work, we place each

CPU on its own pillar.

3.2.2.2 NoC Router Architecture

A generic NoC router consists of four major components: the routing unit (RT), the

virtual channel allocation unit (VA), the switch allocation unit (SA), and the crossbar (XBAR).

In the mesh topology, each router has five physical channels (PC): North, South, East, and West,

and one for the connection with the local processing element (CPU or cache bank). Each physical

unit has a number of virtual channels (VC) associated with it. These are first-in-first-out (FIFO)

buffers which hold flits from different pending messages. In our implementation, we used 3 VCs

per PC, each 1 message deep. Each message was chosen to be 4 flits long. The width of the

router links was chosen to be 128 bits. Consequently, a 64B cache line can fit in a packet (i.e., 4

flits/packet x 128 bits/flit = 512 bits/packet = 64 B/packet).

The most basic router implementations are 4-stage ones, i.e., they require a clock cycle

for each component within the router. In our L2 architecture, low network latency is of utmost

importance, thereby necessitating a faster router. Lower-latency router architectures have been

proposed which parallelize the RT, VA and SA using a method known as speculative allocation

[72]. This method predicts the winner of the VA stage and performs SA based on that. Moreover,

a method known as look-ahead routing can also be used to perform routing one step ahead
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(perform the routing of node i+1 at node i). These two modifications can significantly improve

the performance of the router. Two stage, and even single-stage [65], routers are now possible

which parallelize the various stages of operation. In our proposed architecture, we use a single-

stage router to minimize latency.

Routers connected to pillar nodes are different, as an interface between the dTDMA pillar

and the NoC router must be provided to enable seamless integration of the vertical links with the

2D network within the layers. The modified router is shown in Figure 3.4. An extra physical

channel (PC) is added to the router, which corresponds to the vertical link. The extra PC has its

own dedicated buffers, and is indistinguishable from the other links to the router operation. The

router only sees an additional physical channel.

3.2.2.3 CPU Placement

The dTDMA pillars provide rapid communication between layers of the chip. We have

a dedicated pillar associated with each processor to provide fast inter-layer access, as shown in

Figure 3.2. Such a configuration gives each processor instant access to the pillar, additionally

providing them with rapid access to all cache banks that are adjacent to the pillar. By placing

each processor directly on a pillar, its memory locality (the number of banks with low access

latency) is increased in the vertical direction (potentially both above and below), in addition to

the pre-existing locality in the 2D plane. This is illustrated in Figure 3.5. Such an increase in

the number of cache banks with low access latency can significantly improve the performance of

applications. The relative sizing of L2 cache banks and CPU+L1 cache, as shown in Figure 3.5,

is meant to be illustrative. Our placement approach works even when a CPU+L1 cache span the

size of multiple L2 cache banks.
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Stacking CPUs directly on top of each other would give rise to thermal issues. Increased

temperatures due to layer stacking is a major challenge in 3D design [12], and is often a major

determining factor in component placement. Since the CPUs are expected to consume the over-

whelming majority of power (they are constantly active, unlike the cache banks), it would be

thermally-unwise to stack any two or more processors in the same vertical plane. Furthermore,

stacking processors directly on top of each other on the same pillar would affect the perfor-

mance of the network as well, as it would create high congestion on the pillar. Processors are

the elements which generate most of the L2 traffic (there is also some traffic generated by the

migration algorithm, as explained in Section 3.2.3); therefore, forcing them to share a single link

would create excessive traffic. Our simulations in later sections will validate this argument. To

avoid thermal and congestion problems, CPUs can be offset in all three dimensions (maximal

offsetting), as shown in Figure 3.6.

8 Communication Pillars, 
8 CPUs, 1 CPU per Pillar

CPUs offset in all three 
dimensions to avoid hotspots

Fig. 3.6. Hotspots can be avoided by offsetting

CPUs in all three dimensions.
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3.2.3 Cache Management Policies

In this section, we present our organization of processor and L2 cache banks, and then

detail our L2 cache management policies.

3.2.3.1 Processor and L2 Cache Organization

Figure 3.7 illustrates the organization of the processors and L2 caches in our design.

Similar to CMP-DNUCA [8], we separate cache banks into multiple clusters. Each cluster con-

tains a set of cache banks and a separate tag array for all the cache lines within the cluster. Some

clusters have processors placed in the middle of them, while others do not. All the banks in a

cluster are connected through a network-on-chip for data communication, while the tag array has

a direct connection to the local processor in the cluster. Note that even though it is not explicitly

shown in Figure 3.7, each processor has its own private L1 cache and an associated tag array for

L2 cache banks within its local cluster. For a cluster without a local processor, the tag array is

connected to a customized logic block which is responsible for receiving a cache line request,

searching the tag array and forwarding the request to the target cache bank. This organization of

processors and caches can be scaled by changing the size and/or number of the clusters.

3.2.3.2 Cache Management Policies

Based on the organization of processors and caches given in the previous subsection,

we developed our cache management policies, consisting of a cache line search policy, a cache

placement and replacement policy, and a cache line migration policy, all of which are detailed as

follows.
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Our cache line search strategy is a two-step process. In the first step, the processor

searches the local tag array in the cluster to which it belongs and also sends requests to search

the tag array of its neighboring clusters. All the vertically neighboring clusters receive the tag

that is broadcast through the pillar. If the cache line is not found in either of these places,

then the processor multicasts the requests to the remaining clusters. If the tag match fails in

all the clusters, then it is considered as an L2 miss. On a tag match in any of the clusters, the

corresponding data is routed to the requesting processor through the network on chip.

We use cache placement and replacement policies similar to those of CMP-DNUCA [8].

Initially a cache line is placed according to the low-order bits of its cache tag, that is, these

bits determine the cluster in which the cache line will be placed initially. The low-order bits of

the cache index indicate the bank in the cluster into which the cache line will be placed. The

remaining bits of the cache index determine the location in the cache bank. The tag entry of the

cluster is also updated when the cache line is placed. The placement policy can only be used to

determine the initial location of a cache line as when cache lines start migrating, the lower order

bits of the cache tag can no longer indicate the cluster location. Finally, we use a pseudo-LRU

replacement policy to evict a cache line to service a cache miss.

Similar to prior approaches, our strategy attempts to migrate data closer to the accessing

processor. However, our policy is tailored to the 3D architecture and migrations are treated

differently based on whether the accessed data lies in the same or different layer as the accessing

processor. For data located within the same layer, the data is migrated gradually to a cluster

closer to the accessing processor. When moving the cache lines to a closer cluster, we skip

clusters that have processors (other than the accessing processor) placed in them since we do not

want to affect their local L2 access patterns and get the cache lines to the next closest cluster
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without a processor. Eventually, if the data is accessed repeatedly by only a single processor,

it migrates to the local cluster of the processor. Figure 3.7(a) illustrates this intra-layer data

migration.

For data located in a different layer, the data is migrated gradually closer to the pillar clos-

est to the accessing processor (see Figure 3.7(b)). Since clusters accessible through the vertical

pillar communications are considered to be in local vicinity, we never migrate the data across the

layers. This decision has the benefit of reducing the frequency of cache line migrations, which

in turn reduces power consumption.

To avoid false misses (misses caused by searches for data in the process of migration),

we employ a lazy migration mechanism as in CMP-DNUCA [8].

3.2.4 Experiments

We simulated the 3D CMP architecture by using Simics [61] interfaced with a 3D NoC

simulator. A full-system simulation of an 8-processor CMP architecture running Solaris 9 was

performed. Each processor uses in-order issue and executes the SPARC ISA. The processors

have private L1 caches and share a large L2 cache. The default configuration parameters for

processors, memories and Network-in-Memory are given in Table 3.3. Some of the parameters

in this table are modified for studying different configurations. The shown cache bank and tag

array access latencies are extracted using Cacti 3.2 [85].

To model the latency of the three-dimensional, hybrid NoC/bus interconnect, we devel-

oped a cycle-accurate simulator in C, based on an existing 2D NoC simulator [51]. For this work,

the 2D simulator was extended to three dimensions, and the dTDMA bus was integrated as the
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vertical communication channel. The 3D NoC simulator produces, as output, the communication

latency for cache access.

In our cache model, private L1 caches of different processors are maintained coherent by

implementing a distributed directory-based protocol. Each processor has a directory tracking the

states of the cache lines within its L1 cache. L1 access events (such as read misses) cause state

transitions and updates to directories, based on the MSI protocol. The traffic due to L1 cache

coherence is taken into account in our simulation.

We simulated nine SPEC OMP benchmarks [92] with our simulation platform. These

benchmarks are listed in Table 3.4. For each benchmark, we marked an initialization phase in

the source code. The cache model is not simulated until this initialization completes. This is

reflected as the fastforward cycles for each benchmark shown in the second row of Table 3.4.

After that, each application runs 500 million cycles for warming up the L2 caches. We then

collected statistics for the next 2 billion cycles following the cache warm-up period. The third

row in Table 3.4 gives the total number of L2 cache accesses (including data read, data write, and

instruction fetch) within the sampling period for each benchmark. We see that the benchmarks

mgrid, swim and wupwise exhibit many more L2 accesses than the others, as a result of higher

L1 miss rates.

We first introduce the schemes compared in our experiments. We refer to the scheme with

perfect search from [8] as CMP-DNUCA. We name our 2D and 3D schemes as CMP-DNUCA-

2D and CMP-DNUCA-3D, respectively. Note that our 2D scheme is just a special case of our

3D scheme discussed in the paper, with a single layer. Both of these schemes employ cache line

migration. To isolate the benefits due to 3D technology, we also implemented our 3D scheme

without cache line migration, which is called CMP-SNUCA-3D.
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Table 3.3. Default system configuration parameters (L2 cache is organized as 16 clusters of size

16x64KB).
Processor Parameters

Number of Processors 8

Issue Width 1

Memory Parameters

L1 (split I/D) 64KB, 2-way, 64B line, 3-cycle, write-through

L2 (unified) 16MB (256x64KB), 16-way, 64B line, 5-cycle bank access

Tag Array (per cluster) 24KB, 4-cycle access

Memory 4GB, 260 cycle latency

Network Parameters

Number of Layers 2

Number of Pillars 8

Routing Scheme Dimension-Order

Switching Scheme Wormhole

Flit Size 128 bits

Router Latency 1 cycle

Table 3.4. Our benchmarks.
Benchmarks Fastforward (million cycles) L2 Transactions

ammp 3,633 24,508,715

apsi 4,453 27,013,447

art 3,523 25,638,435

equake 21,538 27,502,906

fma3d 18,535 12,599,496

galgel 3,665 38,181,613

mgrid 3,533 204,815,737

swim 4,306 164,762,040

wupwise 18,777 141,499,738
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Fig. 3.8. Average L2 hit latency values under

different schemes.

Fig. 3.9. Number of block migrations for

CMP-DNUCA and CMP-DNUCA-3D, nor-

malized with respect to CMP-DNUCA-2D.

Fig. 3.10. IPC values under different

schemes.

Fig. 3.11. Average L2 hit latency values un-

der different schemes.

Fig. 3.12. Impact of the number of pillars (the

CMP-DNUCA-3D scheme).
Fig. 3.13. Impact of the number of layers (the

CMP-SNUCA-3D scheme).
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Our first set of results give the average L2 hit latency numbers under different schemes.

The results are presented in Figure 3.8. We observe that our 2D scheme (CMP-DNUCA-2D)

generates competitive results with the prior 2D approach (CMP-DNUCA [8]). Our 2D scheme

shows slightly better IPC results for several benchmarks because we place processors not on the

edges of the chip, as in CMP-DNUCA, but instead surround them with cache banks as shown

in Figure 3.7. Our results with 3D schemes reiterate the expected benefits from the increase in

locality. It is interesting to note that CMP-SNUCA-3D, which does not employ migration, still

outperforms the 2D schemes that employ migration. On the average, L2 cache latency reduces

by 10 cycles when we move from CMP-DNUCA-2D to CMP-SNUCA-3D. Further gains are

also possible in the 3D topology using data migration. Specifically, CMP-DNUCA-3D reduces

average L2 latency by 7 cycles as compared to the static 3D scheme. Further, we note that even

when employing migration, as shown in Figure 3.9, 3D exercises it much less frequently com-

pared to 2D, due to the increased locality (see Figure 3.5). The reduced number of migrations

in turn reduces the traffic on the network and the power consumption. These L2 latency savings

translate to IPC improvements commensurate with the number of L2 accesses. Figure 3.10 il-

lustrates that the IPC improvements brought by CMP-DNUCA-3D (CMP-SNUCA-3D) over our

2D scheme are up to 37.1% (18.0%). The IPC improvements are higher with mgrid, swim and

wupwise since these applications exhibit higher number of L2 accesses.

We next study the impact of larger cache sizes on our savings using CMP-DNUCA-2D

and CMP-DNUCA-3D. When we increase the size of the L2 cache, we increase the size of each

cluster, while maintaining the 16-way associativity. Figure 3.11 shows the average L2 latency

results with 32MB and 64MB L2 caches for four representative benchmarks (art and galgel with

low L1 miss rates and mgrid and swim with high L1 miss rates). We observe that L2 latencies
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increase with the large cache sizes albeit at a slower rate with the 3D configuration (on average

7 cycles for 2D versus 5 cycles for 3D), indicating that 3D topology is a more scalable option

when we move to larger L2 sizes.

Next we make experiments by modifying some of the parameters in the underlying 3D

topology. The results with the CMP-DNUCA-3D scheme using different numbers of pillars to

capture the effect of the different inter-layer via pitches are given in Figure 3.12. As the number

of pillars reduces, the contention for the shared resource (pillar) increases to service inter-layer

communications. Consequently, average L2 latency increases by 1 to 7 cycles when we move

from 8 to 2 pillars. Also, when the number of layers increases from 2 to 4, the L2 latency

decreases by 3 to 8 cycles, primarily due to the reduced distances in accessing data, as illustrated

in Figure 3.13 for the CMP-SNUCA-3D scheme.

3.3 Migration-based NUCA design

3.3.1 Motivation

3.3.1.1 Shared L2 Access Pattern

To characterize the usage characteristics of a large on-chip shared L2 cache, we simulate

the SPECOMP benchmarks [92] targeting a CMP platform with 8 processors. Each processor is

modeled as a simple in-order architecture executing the SPARC ISA. There are separate private

L1 data/instruction caches associated with each processor. All 8 processors share one large

on-chip L2 cache. Section 3.3.4 provides a more detailed description of our major simulation

parameters and experimental setup.
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Figure 3.14 presents the distribution of the private and shared L2 cache lines. If a cache

line is only accessed by one processor during its lifetime (from its fetch from the off-chip mem-

ory to its eviction from the on-chip L2), we call it a private cache line; otherwise, it is tagged as

shared. A shared cache line may have a different number of requestors, which we classified into

four categories as illustrated in Figure 3.14. One can observe from this graph that, for all our

benchmarks, the percentage of private cache lines dominates, which is within the range 66.6%-

99.9%, averaging in 92.2%. Besides the cache line distribution, we also record the cache line

access distribution, and the results are given in Figure 3.15. We see that, although the private

cache lines dominate the requested lines (see Figure 3.14), most of the line accesses are to shared

ones (see Figure 3.15); that is, shared lines are used more frequently than the private ones. When

averaged across our benchmark codes, 62.1% of the L2 accesses are to the shared cache lines.

We also need to mention that the trends captured by these two graphs are consistent with the

observations made by previous research [59, 7]. To summarize, shared lines play an important

role in determining the access patterns exhibited by the L2 cache. Consequently, their placement

within the L2 space (in a NUCA L2 architecture) can be an important factor in determining

overall performance.

One approach along this direction is to try to replicate the shared cache lines around the

vicinity of the requesting processors so that the access latency to frequently accessed shared

cache lines can be reduced [7, 106]. However, maintaining multiple replicas inside the L2 space

requires the implementation of an L2 cache coherence scheme (to organize parallel accesses to

shared data), which complicates the cache design and impacts the performance/power charac-

teristics of the L2 cache. Note that, for a NUCA-based L2 organization, which keeps only one
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Fig. 3.14. Distribution of different types of

L2 cache lines (Private: private L2 cache lines;

SharedN : L2 cache lines shared by N proces-

sors).

Fig. 3.15. Distribution of different types of

L2 cache accesses (Private: accesses to pri-

vate L2 cache lines; SharedN : accesses to L2

cache lines, which are shared by N proces-

sors).

Fig. 3.16. Distribution of shared L2 cache

lines (RW D: read-write data; RO D: read-

only data; RO I: instructions).

Fig. 3.17. Distribution of accesses to shared

L2 cache lines (RW D: accesses to read-write

data; RO D: accesses to read-only data; RO I:

accesses to instructions).
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copy of a cache line in L2, there is no coherence issue for L2, although L1 private caches need

to be kept coherent with each other.

Prior studies also proposed duplicating read-only L2 caches lines [7, 106] to avoid the L2

coherence problem based on the observation that the shared read-only accesses are a significant

portion of the shared accesses. This can be observed from our collected statistics as well, as

shown in Figures 3.16 and 3.17. However, such a scheme would work well only if we could

identify the read-only cache lines correctly and quickly, which is not an easy task in practice.

From Figures 3.16 and 3.17, we see that, although the read-only accesses to shared lines are

frequent (on average 44.7%), a large percentage of them are to data rather than instructions.

Without significant extra effort, it would be very hard (if not impossible) to determine whether

a data cache line will remain as read-only during its entire lifetime or not. This and similar

concerns motivate us for searching for alternate solutions to managing shared L2 lines.

Without duplicating shared L2 cache lines, the only remaining option is to determine

an ideal position (location) for each shared line within the L2 space so that the overall access

cost (performance/power) to this line is optimized. We assume that, for each L2 miss, we place

the newly-fetched cache line close to its first (original) requestor. This placement would be

suitable for a private cache line as its first requesting processor is also its only requestor. The

question is whether this initial position is also appropriate for the shared cache lines. Figure 3.18

provides the percentage of the cases in which the first requestor is also the most active requestor

(issuing the most requests among all requestors of that line) for all the shared cache lines. If

this percentage is large, the initial position might be good enough for the shared cache lines as

well. Otherwise, we need to explore different methods for deciding where the shared cache lines

should be placed at any given time during execution. Unfortunately, according to Figure 3.18,
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this percentage is only 52.9% on average. This means that, after a processor fetches an off-chip

line (data block) to the on-chip L2 cache, with around 50% probability, there is another processor

(or multiple other processors) that uses this cache line more heavily than this processor (the

original requestor). Based on above observations, in the remainder of this paper, we propose and

evaluate a scheme that determines the position of each cache line (either private of shared).

Fig. 3.18. Percentage of shared cache lines

for which the first requestor is also the most

active requestor. Fig. 3.19. A NUCA-based mesh CMP (L2C:

L2 controller).

3.3.1.2 Motivation for Migration-based NUCAs

As originally proposed in [48], the main idea behind a NUCA organization is to distribute

the multiple “ways” (cache lines) of a given cache set across the entire chip in such a way that

they have different distances from the viewpoint of a given processor and thus exhibit different

access latencies. Figure 3.20 illustrates this proposal in the context of a single CPU system.

In this case, a large L2 cache is divided into multiple clusters based on the distance from the
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processor. Usually, the cache associativity is chosen to be equal to the number of clusters so that

each cache set has exactly one “way” mapped into each cluster (it is also possible to increase the

cache associativity to map two or more ways into one cluster).

Fig. 3.20. NUCA for a uniprocessor architecture.

In order to place the frequently accessed cache lines closer to the processor, cache line

migration can be used. Once a cache line is accessed, it can be migrated from its current cluster

to another one, which is closer to the processor. A migration in this context essentially involves

swapping two cache lines. For example, if the processor in Figure 3.20 accesses a cache line

in cluster 2, it can be migrated to cluster 1, which means a cache line needs to be evicted from

cluster 1. Consequently, we need to select a victim line in cluster 1. The NUCA migration policy

in [48] chooses to put this evicted cache line back to cluster 2. We see that, when the number

of clusters is equal to the cache associativity, such a migration scheme arranges the cache lines

within the same set (across the clusters) as an LRU queue, with more recently accessed lines

being placed closer to the processor. Thus, when we fetch a new cache line from the off-chip
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memory, the corresponding cache line in cluster 3 (the least recently used cache line in the

specific set) becomes the natural victim and can be evicted from the on-chip L2 cache.

Beckmann and Wood [8] adapt the NUCA concept to Chip Multiprocessors (CMPs).

This work inherits the main idea from the NUCA concept in the single processor case. Specif-

ically, multiple ways within the same set are still placed across the entire chip and cache line

migration is employed in moving the frequently accessed cache lines towards their requesting

processors. There is an important difference between the single CPU based and CMP based

NUCA schemes though. In a CMP NUCA, line migration can become very tricky, as it may not

always improve access latencies due to data sharing among multiple processors. When multiple

processors request the same cache line and pull this cache line in different directions (in the 2D

space), a ping-pong effect can occur and this can easily lead to excessive migrations. As stated

in [8], this is also the main reason for false misses (a requested cache line is in migration). Lazy

migration [8] is proposed to eliminate false sharing, which lets the cache line wait for 1000 cy-

cles before really migrating it. If, during this time period, there is a request from some other

processor, the pending migration is canceled. Lazy migration eliminates many shared cache line

migrations and can significantly reduce the false miss rate.

We observe that there are three issues with the cache migration scheme described in [8].

First, sharing pattern among different processors may lead to excessive cache line migrations.

Proposed lazy migration [8] may not be an acceptable solution, because it eliminates many

migrations of shared cache lines and focuses on improving the access latencies of private cache

lines. As illustrated in Section 3.3.1.1 however, the access percentage of the private cache lines is

much lower than that of the shared cache lines. Second, tracking the access pattern of each cache

line (the accessing processors and the elapsed cycles for triggering lazy migration) increases
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the hardware implementation complexity, and this can incur significant overheads in terms of

both memory requirements and power consumption. Third, [8] does not study in detail the

replacement policy of NUCA for CMPs. In the case of NUCA for a single processor, the cache

line at the farthest cluster is the natural victim as the migration gradually puts the least recently

used cache lines in there. In the context of CMPs, however, there is no such a natural LRU queue.

A pseudo-LRU replacement policy [88] may not be appropriate for CMP NUCA, as cache sets

are spread across the whole L2 space. Maintaining global LRU bits for each set requires many

L2 cache accesses to traverse the whole chip to update the access pattern (LRU bits). It is easy to

see that this can be very costly from the performance angle. Beckmann and Wood [8] use the low

order bits of the cache tag to select an initial position (a victim) for the cache line. This policy

clearly gives an equal treatment to the physically-spread cache lines of a logical set. Although

this seems to work reasonably well for their workloads, there is no study targeting the evaluation

of the replacement policies for CMP NUCA.

The issues raised above on NUCA design for CMPs as well as the access pattern of shared

L2 cache motivate us to explore a way of determining an optimal position for each L2 cache line

to reduce the average memory access latency. Our proposal consists of two components: The

first component includes our baseline NUCA organization and placement/replacement policies,

which are explained in the next section (Section 3.3.2); the second component is an optimization

scheme built upon our baseline NUCA design, targeting the frequently accessed shared cache

lines, which is detailed in Section 3.3.3.
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3.3.2 Migration-Based NUCA Baseline Design

Our baseline NUCA organization for CMPs builds upon the prior efforts [8, 48]. As

shown in Figure 3.19, the processors and cache banks are organized in a mesh topology. We

classify the L2 cache banks into multiple clusters and choose the number of the clusters such

that the shared L2 cache associativity is a multiples of the number of clusters. Therefore, we

map a fixed number of cache lines from a logical set to each physical cluster, making it possible

for any cache line to reside in any cluster in the chip. In the architecture shown in Figure 3.19,

each processor has one closest L2 cache cluster, which we call this processor’s local L2 cache

space. We call a processor together with its local L2 cache cluster a processor-cache cluster, and

we refer to an L2 cache cluster not attached to any processor as the pure cache cluster. These

two types of clusters represent two different types of mesh nodes, which are connected through

a Network-on-Chip (NoC). The pure cache clusters are controlled by a local L2 controller (also

referred to as agent in this paper). This controller contains the tag array for all the cache lines

within the cluster. It is in charge of managing all the accesses to the cache lines in this cluster

by sequentially inquiring the local tag array and local data banks. The sequential access speeds

up the decision for an L2 hit or miss, since, at the tag access step, the local L2 controller knows

whether the requested cache line is currently in its space.

The main difference between our baseline NUCA design and the previous proposals is

on the cache management policy, which includes both initial placement of lines into the L2 space

and replacement policies. Regarding the initial placement for a newly-fetched line, we choose

to place it into the local cache space of the requesting processor. Since we know that most of

the cache lines are private ones (see Figure 3.14), it makes sense to place a private cache line
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closer to its only requestor, rather than a randomly-chosen location (and then gradually migrate it

towards its requestor), as has been suggested in [8]. We expect that this careful initial placement

can save most of the potential migrations of the private cache lines. And, it also eliminates the

need for tracking the access pattern of each L2 cache line, as required by lazy migration.

It needs to be noted that the initial placement also involves a replacement policy, which

may in turn trigger cascade migrations. Within a processor’s local cache space, there are only

a limited number of possible locations (= L2 cache associativity / number of L2 cache clusters)

for a cache line. Placing a cache line in a cache cluster requires the eviction of a local cache

line from these allowable locations. There are at least two questions to be answered to solve this

replacement problem. (1) How are we going to determine such a victim? and (2) Are we going

to evict this victim from the entire on-chip cache space?

Compared to an equal treatment of the physically-scattered lines in a logical set and

random selection of a victim from among them, we maintain LRU bits for each subset1 in the

local cache cluster (of course, only when the subset size is larger than 1). Thus, we can employ

the conventional pseudo-LRU replacement policy [88] to select a local victim. Therefore, for the

victim determination, the local cache cluster works like a private cache, as it does not consider

all the remaining remote lines in the same logical set as potential victim candidates.

The next question to address is whether we directly evict such a victim to the off chip

memory? If the answer is yes, the CMP NUCA behaves like multiple private L2 caches, as, for

each processor, its private data can only reside within its local L2 space (or off-chip). This clearly

reduces the utilization of the aggregate L2 space, e.g., a processor with a large working set cannot

1
We define a cache subset as a part of a cache set, which consists of the local cache lines belonging to

the same logical set.
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make use of the cache capacity of a neighboring node, which happens to run a less memory-

intensive process. Therefore, we need to design a scheme to handle such victims carefully. Our

proposal is to determine the location of the victim based on the L2 miss intensities, i.e., how

many L2 misses occur during a unit time, of both the local processor and other processors,

as we believe that the metric of L2 miss intensity of a processor represents the degree of the

memory access intensity of its current running thread. Based on the L2 cache size, the number

of processors, and the characteristics of the workloads, we determine a threshold for the L2 miss

intensity, T . When the L2 miss intensity of a processor is higher than T , we set its cluster priority

as the highest one (which is 2). If the L2 miss intensity is in the range of [0, T ), the priority

level is set to 1. Since we have several pure cache clusters without an attached processor, we

propagate the priorities of these processor-cache clusters to the remaining pure cache clusters.

We use a waveform-like algorithm to set a priority for each cluster; the pseudo-code of this

algorithm is given in Figure 3.21. Figure 3.23 illustrates an example priority setting. Once we

know the priorities of the processor-cache clusters (the top row and the bottom row according to

Figure 3.19), we can propagate them and set a priority for each pure cache cluster, in the hope

of specifying whether it can accommodate a victim from another cluster.

The combination of the local and remote cluster priorities determines the migration target

for a victim cache line. The pseudo-code for our migration policy is given in Figure 3.22. The

idea is that, if the cluster evicting a cache line has higher priority, it has higher ability of keeping

its victim on chip by checking more clusters’ status and asking one of them to accommodate

this victim if possible. If the evicting cluster has the lowest priority 0, its victim will be evicted

directly from the entire on-chip cache (accompanied with a possible write back to the off-chip

memory if it has been modified while residing in L2).
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clear priority, flags set and sent, setClusters
if (there exists a local processor p

j
) {

set priority according to p
j
.L2miss;

set = 1;
broadcast(set);

}
repeat {
msg = receive();
if (msg = a broadcast set message) {
setClusters+ +;

}
if (msg = neighborPriority) {

if (set = 0) {
priority = neighborPriority > 0 ?

neighborPriority − 1 : 0;
broadcast(set);

}elsif (priority < neighborPriority − 1) {
priority = neighborPriority − 1;

}
}
if ( set = 1 and sent = 0 ) {

send priority to all neighbors;
sent = 1;

}
} until (setClusters = n)

Fig. 3.21. A distributed algorithm for updat-

ing the cluster priority (n is the total number

of clusters).

Input: Cluster C
s

that throws the victim

Output: Destination cluster C
d

for the victim

if (C
s
.priority = 0) {

C
d

= NULL; // evict to off-chip

} elsif(C
s
.priority = 1) {

if (∃C
i
, d(C

i
− C

s
) = 1 ∧ C

i
.priority = 0) {

C
d

= C
i
;

} elsif(∃C
i
, C

i
.priority = 0) {

C
d

= C
i
;

} else {
C

d
= NULL; // evict to off-chip

}
} elsif(C

s
.priority = 2) {

if (∃C
i
, d(C

i
− C

s
) = 1 ∧ C

i
.priority = 0 ) {

C
d

= C
i
;

} elsif(∃C
i
, d(C

i
− C

s
) = 1 ∧ C

i
.priority = 1) {

C
d

= C
i
;

} elsif(∃C
i
, C

i
.priority = 0) {

C
d

= C
i
;

} elsif (∃C
i
, C

i
.priority = 1) {

C
d

= C
i
;

} else {
C

d
= NULL; // evict to off-chip

}
}

Fig. 3.22. Migration policy implementation

for a victim cache line (function d(Ci − Cj)

gives the Manhattan Distance between Ci and

Cj).
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Maintaining a priority for each cluster is not expected to incur excessive overhead. We

only need to reserve a two-bit flag for each cluster to store its priority level. The updates to

this flag are triggered by the local L2 cache miss intensity monitor for a processor, which can

be built using the performance counters available today in many modern CPUs [36]. We set a

large monitoring time window to avoid frequently invocation of the whole-chip priority setting

algorithm shown in Figure 3.21.

Fig. 3.23. An example of setting the cluster

priority levels and determining the eviction-

based cache line migration according to the al-

gorithm in Figure 3.22.

Fig. 3.24. Motivating examples for determin-

ing suitable locations for the hot shared cache

lines.

How to locate a cache line in the large shared on-chip L2 cache is an important issue.

Since a cache line can reside in any cluster, we need a multi-step checking scheme to first check

the local and neighboring clusters and then send requests (if necessary) to remote clusters until

we determine whether we have an L2 cache hit or miss. With our initial placement policy and
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replacement scheme (triggered by the initial placement) presented above, we know that most

private cache lines are close to their requestors and the requests for such lines can be satisfied

quickly. Consequently, the average access latency for the private cache lines is expected to

be reasonably small. The issue, however, is more problematic with the shared lines, as their

initial locations (inside the first requestor’s local cache cluster) might be far away from other

dominating requestors (as discussed in Section 3.3.1.1). The problem is critical as we know

that accesses to shared lines dominate private accesses (see Figure 3.15). Aiming at reducing

the average access latencies to the shared cache lines, we next investigate how to determine an

appropriate position for the hot shared cache lines.

3.3.3 Migration Algorithm for Shared Cache Lines

3.3.3.1 Problem Formulation

Proper management of the frequently-accessed shared cache lines is critical in extracting

good performance from large shared L2 caches. Without duplicating hot shared L2 cache lines,

there is only one option left to optimize the accesses to them, which is to place such hot lines

into ideal positions within the cache space. As shown in Figure 3.24, if a shared cache line A

residing in cluster 12 is also accessed by the processor inside cluster 10 (we call it P10) and P10

exhibits a much higher access frequency compared to the first requestor, P12, e.g., 300 vs. 5, we

may want to migrate cache line A to cluster 10 to reduce average access latency to that cache

line in the future. In another scenario, if a cache line B in cluster 4 is also accessed by both P3

and P15 with comparable access frequencies, it would be beneficial to move the line into cluster

7, an acceptable position for both the requestors.
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For a given shared cache line, its average access latency can be estimated as:

lat =
∑

i∈R
c ∗ fi ∗ d(i, j)/

∑

i∈R
fi,

where j is the ID of the cache cluster where this cache line currently resides, i is the ID of the

requesting cluster (which belongs to a set, R), and fi is the number of requests to this cache

line issued by cluster i. Function d(i, j) gives the Manhattan Distance between requestor i and

cluster j, and c represents the per hop access latency.

Although this equation does not consider the effect of network contention (since c is

assumed to be constant) and could not give a very accurate average access latency value, it can

be used as a first-degree optimization metric for the shared cache lines. Note that, if we can

reduce the value of this metric, the real average access latencies will also be decreased most of

the time.

Migrating a shared cache line to an appropriate position has the potential of reducing the

L2 access latencies. This means, if the cache line owner cluster is changed from j to j′, the

average access latency for this cache line becomes:

lat′ =
∑

i∈R
c ∗ fi ∗ d(i, j

′)/
∑

i∈R
fi,

under the assumption of no contention in the network.

Note that lat′ might be higher or lower than the original lat. Thus, our goal is to find a

proper target cluster j′ for this cache line so that lat′ is minimized. Since the constant c and the

total access requests
∑
i∈R fi do not change with different j′s, we can remove these two terms
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and obtain:

Cost =
∑

i∈R
fi ∗ d(i, j

′
).

Our optimization goal then becomes one of determining a cluster j′ so that Cost is minimized. It

turns out that this problem is a post-office location problem: there are n input points p1, p2, ..., pn

with associated weights w1, w2, ..., wn and we need to find a point p (not necessarily one of the

input points) that minimizes the sum
∑n
i=1

wid(p, pi), where d(p, pi) is the distance between

points p and pi. According to [25], for the one-dimensional post-office location problem, that is,

the n distinct points are at x1, x2, ..., xn, and their weights are w1, w2, ..., wn, respectively, the

optimal point p is the weighted median of these n numbers (weights). The important property of

weighted median, xk, is that xk satisfies both
∑
x
i
<x

k
wi <

∑n
i=1

wi/2 and
∑
x
i
>x

k
wi ≤

∑n
i=1

wi/2.

Our optimization problem corresponds to the two-dimensional post office problem. Let

us assume that there are n requestors, from p1 to pn, each of which can be represented by its

X and Y coordinates, that is, node pi is represented by (xi, yi). Each node pi has an associated

weight wi, which is equal to the number of access requests issued by it, fi. Our goal is to find

a node p
j′

, which minimizes Cost =
∑n
i=1

fi ∗ d(i, j′). Since our CMP architecture is based

on a two-dimensional mesh topology, the distance between two nodes i and j′ is the Manhattan

Distance, i.e., d(pi, pj′) = |xi − x
j′
| + |yi − y

j′
|. Therefore, we can express our optimization

target as:

Cost =

n∑

i=1

fi ∗ |xi − x
j′
| +

n∑

i=1

fi ∗ |yi − y
j′
|.

Both parts on the right hand side of this equation are non-negative. Thus, we can determine

the location of migration target j′ by searching the weighted medians at the X and Y directions
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separately and independently. The two weighted medians, x and y, constitute the coordinates of

the final migration target. For each direction, a simple linear algorithm given in Figure 3.25 is

employed to obtain the weighted median in one dimension, as we know the exact locations of

all the nodes in a mesh. Note that, since the searching for weighted medians is done separately

and the X and Y coordinates are independent, the obtained migration target may not necessarily

be one of the requestors of the line in question. For example, if there are three requestors (3,4),

(4,3) and (8,8) and their access frequencies are the same, the algorithm in Figure 3.25 determines

the final target as (4,4), which is not one of the three requestors.

3.3.3.2 Hardware Implementation

We know that the weighted medians of both coordinates (X and Y) together determine a

theoretically ideal position for the shared cache line. Implementing it directly in a real NUCA

L2 cache hardware however would involve saving all the numbers of accesses (to the cache line

in question) from the different requestors and performing a long sequence of calculations. This

would typically require considerable storage and incur significant computational overhead.

Since the percentage of shared cache lines is small (see Figure 3.14), we propose to

utilize the available cache space to store their access patterns. As shown in the upper part of

Figure 3.26, we extend each cache line of L2 by adding two 1-bit flags: Pattern and Shared, and

a 4-bit migration limit. If Pattern flag is set to 1, this means that the current cache line does not

store any data, but is used to represent the access patterns of a shared cache line. The location

of a shared cache line’s pattern line is determined by (index + set num/2)%set num. As an

example, let us consider Figure 3.27. If there are 16 sets in the cache and there is a shared line at
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index 2, its access pattern line will reside at index 10. However, it can be any line in the subset

with index 10, which will be determined by the replacement policy of the local cluster.

Input: The number of clusters per row (X direction)m, access
array f [0 . . .m− 1], the overall access number F
Output: X coordinateX

d
of the migration target cluster

half = F / 2;
w = 0;
for (i = 0 to m− 1) {

if (w < half and w + f [i] ≥ half ) {
X

d
= i;

break;
}else {
w = w + f [i];

}
}

Fig. 3.25. The algorithm for computing the X coordinate of the target cluster for a shared

cache line. The Y coordinate can be computed similarly.

When a cache line is first fetched, its Pattern and Shared flags are both set to zeros,

indicating that it is a private line. When this cache line is later accessed by a remote requestor,

its Shared flag is changed to 1, indicating that it has become a shared cache line (Shared flag

will remain as 1 until the replacement). At the same time, we choose a cache line at the position

(index+set num/2)%set num inside the same cluster for allocating an access pattern line for

this shared line.2 The selected line will have its Pattern flag set to 1 and replace its tag with the

tag of the corresponding shared cache line. The data portion of this selected pattern line is used

2
Clearly, allocating a pattern line may result in a victim, which is handled in the same way as that for

the victim when placing a new cache line.
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Fig. 3.26. Hardware support for tracking the access patterns of shared cache lines.

Fig. 3.27. Allocating a pattern line for a shared cache line.
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for storing the access patterns. Note that both the shared cache line and its pattern line belong to

a local cluster and can be evicted by the local replacement policy. We also enforce an additional

rule, which states that when a shared cache line is evicted, its pattern line must be invalidated to

avoid a dangling pattern line. A pattern line however can be evicted independently.

So far we discussed where we store the access patterns for the shared cache lines. There

are still two questions to address: (1) How can we track the access patterns such that the calcu-

lations of migration targets are simplified? and, (2) How should the migration of a shared cache

line be triggered?

Based on Figure 3.25, we need to track the number of accesses made from each cluster.

Consequently, we maintain the access pattern as shown in Figure 3.26. The widths for all seg-

ments are the same, i.e., R bits. The maximum value of R we can maintain is LineSize/(1 +

m + n), where m/n are the row/column sizes for an m × n mesh. For example, in our default

configuration, the cache line size is 64-byte and the mesh is 4x4, which means that we can re-

serve a maximum of 7 bytes for each segment (sufficient for tracking the number of accesses).

Every time when a processor P i requests this cache line, the three corresponding segments, “To-

tal”, “X i”, “Y i”, are increased by 1. This format of access pattern is amicable for applying the

algorithm in Figure 3.25. Once the value of segment “Total” reaches a preset “Hot” threshold,

the computation for migration target is triggered. If the calculated migration target is not the

current host cluster, this cache line will be migrated.

A shared cache line can be accessed very frequently. Therefore, keeping track of its

access pattern during its entire lifetime would cause significant overheads in terms of counter

sizes and power consumption. We propose an adaptive tracking and migrating scheme for the

hot shared cache lines. The idea is that we use a migration limit for the shared cache lines.
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Every time when the computation for migration target is triggered, its migration limit number

is reduced by one whether it is practically migrated or not (after the computation, all the access

numbers in the pattern lines are cleared to zeros). When this number becomes zero, we disable

the further access pattern tracking and any future migration for that line. When a shared cache

line is migrated, its access pattern line in the local cache cluster is invalidated. If it does not reach

its migration limit, a new access pattern line is allocated in its migration target. By adjusting this

preset migration limit, we can capture the access patterns of shared cache lines during their

lifetimes without incurring significant overhead.

3.3.4 Experiments

We built our simulation platform on top of Simics [61], which is a commercial full-

system simulator. An 8-processor CMP architecture with private L1 caches and a shared L2

NUCA (shown in Figure 3.19) is simulated. The default configuration parameters are listed

in Table 3.5, though we also perform several sensitivity studies by varying the default values

of some of our simulation parameters. The proposed migration-based NUCA design is imple-

mented as an extended cache module in Simics.

We tested our approach using ten SPECOMP benchmarks [92]. For each benchmark

code, we simulated 3 billion cycles. The important statistics for these benchmarks are shown in

Table 3.6.

To compare our proposal with prior studies, we also made experiments with the scheme

named CMP-DNUCA proposed by [8], which we apply to our mesh based topology shown in

Figure 3.19. We refer to our migration-based NUCA design as M-NUCA. The number that

follows “M-NUCA” indicates the migration limit (see the last paragraph of Section 3.3.3.2).
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Table 3.5. Default system configuration parameters.
Processor

8 single-issue processors

L1 Cache

Split I/D, each 32KB, 2-way, 64B line, 3-cycle latency, write-back

L2 Cache

Unified, 16MB, 32-way, 64B line, 22-cycle per cluster latency

Number of Clusters 16

Priority Setting Threshold T: 350 (misses per Million cycles)

Hot Threshold 40 accesses

Main Memory

4GB, 300-cycle latency

Network

Per Hop Latency 4 cycles

Table 3.6. Our benchmarks.
Benchmarks ammp applu apsi art equake fma3d galgel mgrid swim wupwise

L2 accesses / million cycle 7593 16202 29092 18658 12879 2607 8505 19300 28229 10447

L2 misses / million cycle 436 2413 3291 1298 893 1394 305 3582 4456 2277

L2 miss rates 5.7% 14.9% 11.3% 7.0% 6.9% 53.5% 3.6% 18.6% 15.8% 21.8%
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For example, M-NUCA-0 means the baseline M-NUCA design discussed in Section 3.3.2, in

which we neither track accesses to shared cache lines nor perform access-triggered migrations

as described in Section 3.3.3. Note that, in M-NUCA-0, there are still migrations triggered

by cache line placement/replacement, which we call eviction-triggered migrations. When the

number attached to “M-NUCA” is larger than zero, the access-triggered migrations, in addition

to the eviction-triggered migrations may take place; in this case, the access-triggered migrations

have a migration limit for each shared cache line. For example, M-NUCA-1 means we can

migrate a shared cache line based on its access pattern by at most once and M-NUCA-4 indicates

that a shared line can change its location in L2 cache by responding to processor requests by up

to 4 times.

Both our baseline M-NUCA policies and access-triggered migrations for the hot shared

cache lines target at choosing a suitable location for each cache line for reducing access latencies.

Therefore, the first set of results we are interested in are on the average L2 hit latencies, and are

given in Figure 3.28. We observe a significant reduction in L2 cache hit latencies when moving

from CMP-DNUCA to M-NUCA-0. This improvement is achieved by the placement policy

adopted by M-NUCA, in which a cache line is initially placed around its first requestor. This

favors the private cache lines from the access latency perspective. For a shared cache line, there

is still around 50% probability that its first requestor is a dominating requestor (see Figure 3.18).

Thus, this initial position is also suitable for many shared cache lines as well. When we move

from M-NUCA-0 to M-NUCA-1, we observe further reduction on the average L2 hit latency

for most benchmarks, which is brought by the access-triggered migrations of the hot shared

cache lines. In two benchmarks, “equake” and “galgel”, however, we observe a slight increase

in average L2 hit latency under M-NUCA-1, compared to M-NUCA-0. We believe that the
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reason for this behavior is the potential contention at the migration target when access-triggered

migrations are used. When a shared cache line reaches the “Hot” threshold, the computation

of migration target is triggered and this line is then sent to the migration target cluster. Since

there is no handshaking between the local cluster and the target cluster, it may happen that all the

victim candidates at the migration target are accessed frequently by a nearby processor. When

this happens, one of these candidates is evicted to a farther location in the L2 space, which may

result in an access latency increase if the benefits brought by shared cache line migration are

not large enough. We also observe that there is no specific trend when we change the migration

limit for hot shared cache lines. This indicates in our opinion that the access pattern of a shared

cache line does not vary significantly along with time. Therefore, setting the maximum allowable

number for the access-triggered migrations to 1 or 2 is sufficient for our parallel benchmarks.

The average L2 hit latency itself cannot determine the performance of an L2 NUCA

design, as, from the L2 point of view, the average access latency of L2 cache is:

AverageL2HitLatency + L2MissRate×MemoryAccessLatency.

M-NUCA design modifies the placement and replacement policies; thus, we also need to study

its effect on L2 miss rate. The L2 miss rate results are presented in Figure 3.29. We see that M-

NUCA-0 brings consistent and impressive improvements in L2 miss rates across all the bench-

marks. This improvement is achieved through our cache line placement and replacement poli-

cies. Specifically, at each L2 miss, we do not randomly choose a victim and directly kick it out

from on-chip L2 space. Instead, we choose a victim from the requestor’s local L2 space. If the

requestor has a non-zero priority (not the lowest priority), we try to keep this victim on chip
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by asking other available clusters to hold it. With respect to allowing only eviction-triggered

migrations in M-NUCA-0, adding the access-triggered migrations for the hot shared cache lines

does not increase the L2 miss rate significantly. This is because our access-triggered migrations

actually swap two cache lines in question; there is no cache line evicted from the on-chip cache

space. Also, since we know that the percentage of shared cache lines is small, the capacity

needed for maintaining the access patterns (see Figure 3.27) is limited, having no significant

impact on L2 miss rate. In some benchmarks, e.g., “applu”, “equake”, “galgel”, and “wupwise”,

we even observe a slight reduction in the L2 miss rates when moving from M-NUCA-0 to M-

NUCA-1. We think that this is due to the interference between the eviction-triggered migration

and the access-triggered migration, as the latter changes the local victim candidates for place-

ment/replacement. To sum up, we see from Figure 3.29 that our scheme does not affect the L2

miss rate negatively (none of our schemes exhibits a higher L2 miss rate than CMP-DNUCA). As

a result, in Figure 3.30 (which gives the average L2 access latency values including both hits and

misses), we see that our M-NUCA scheme consistently yields a better overall L2 performance.

M-NUCA-0, M-NUCA-1, M-NUCA-2, M-NUCA-4, and M-NUCA-8 generate the reduction in

the L2 access latency of 25.8%, 27.7%, 28.5%, 29.3%, and 24.1%, respectively, when averaging

over all benchmarks.

For a migration based CMP NUCA architecture, both the migration frequency and the

migration distance are important metrics, as they directly affect the power consumption (while

some of the migration latency can be hidden by parallel execution, power consumed due to

migrations cannot be). Figure 3.31 presents the normalized migration counts (the base case is

CMP-DNUCA) with the different schemes. We can observe that the number of migrations is

reduced considerably with respect to CMP-DNUCA (M-NUCA-1 has only 22.9% migrations on
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Fig. 3.28. Average L2 hit latency.
Fig. 3.29. L2 cache miss rate under the dif-

ferent schemes.

Fig. 3.30. Average L2 access latency (includ-

ing both hits and misses).

Fig. 3.31. Number of migrations performed

(normalized with respect to the number of mi-

grations under the CMP-DNUCA scheme).
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average compared to CMP-DNUCA). The reason for this is that we only migrate cache lines at

L2 misses (placement/replacement) and at times when a cache line becomes actively shared by

multiple requestors. In the latter case, we set a migration limit to prevent the future migrations.

Recall from our first set of results on the L2 performance (Figure 3.30) that setting the migration

limit to 1 or 2 is sufficient for most of the cases. Another interesting metric to study is the

average number of hops traversed per migration, since our migration policy can move a local

cache line to any cluster within the L2 space, which might be far away. Figure 3.32 gives the

average number of hops traversed per migration, which is less than 1.5 hops for every benchmark

(note that CMP-DNUCA always migrates between neighbors, so the value of this metric under

CMP-DNUCA is always 1). Overall, we see that our schemes do not incur excessive global

movements of cache lines across the chip, and thus, they are not expected to cause significant

power consumption.

Fig. 3.32. Average number of hops a migra-

tion traverses.

Fig. 3.33. Average L2 access latency under

different cache associativities (migration limit

is 2).
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In addition to the results above, we also conducted several sensitivity studies to evaluate

our proposal under varying configuration parameters. The first parameter we study is the asso-

ciativity of the L2 NUCA. Since our scheme can perform local replacements, it is possible to

design a globally high set-associative NUCA, which is in essence composed of multiple locally

low set-associative clusters. To study the impact of associativity, we changed its value from the

default globally 32-way set-associative to globally 16-way and 64-way. The results are shown

in Figure 3.33. Note that, in order to focus on the effects of the different organizations, we as-

sume the same local cluster access latency, i.e., 22 cycles, for all the three configurations.3 We

observe that, although no specific associativity works best for all the benchmarks, many bench-

marks exhibit improvements on average L2 access latency when associativity is increased. This

is because a higher associativity provides more flexibility for cache line allocation and migration

in our scheme, and this helps to reduce the L2 latency. Another reason is that high associative

caches usually have lower miss rates due to reduced conflict misses. On average, we achieved

27.2% and 29.1% reduction in the average L2 access latency over CMP-DNUCA, with 16-way

and 64-way set associative caches, respectively.

As stated in Section 3.3.2, our scheme employs the concept of priority, trying to differ-

entiate the memory-intensive thread phases with other concurrent thread phases. The L2 miss

intensity of each processor is used to classify its cluster priority. Our default threshold for set-

ting the priority of a processor-cache cluster to the highest value (i.e., 2) was 350 L2 misses per

million cycles. We also conducted experiments with the threshold values of 35 and 3500 L2

misses per million cycles. Figure 3.34 gives the average L2 access latencies under the different

thresholds. We observe that, the performance of M-NUCA does not change much really with

3
From a circuit angle, changing the associativity may lead to a different access latency.
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the different priority setting thresholds. This is because our benchmarks are multi-threaded par-

allel applications. The threads have similar behavior and do not compete much for the shared

L2 cache. For heterogeneous applications, in which threads exhibit different memory require-

ments, changing the priority setting thresholds or directly setting the priority levels would be

potential options for adjusting cache sharing among those threads. It will be studied in as a

part of our future work. Another metric of interest in this work is the threshold for triggering

a shared cache line, as it may affect the access pattern prediction accuracy. As illustrated in

Figure 3.35, increasing this trigger threshold has a minor impact on the overall performance for

most benchmarks.

Fig. 3.34. Average L2 access latency under

different priority setting thresholds (migration

limit: 2; default: 350 L2 misses per million

cycles; Threshold 1: 35 L2 misses per million

cycles; Threshold 2: 3500 L2 misses per mil-

lion cycles).

Fig. 3.35. The average L2 access latency with

different thresholds for triggering the migra-

tion of shared cache line migration (migration

limit: 2; default: 40 accesses; Threshold 1:

400 accesses; Threshold 2: 4000 accesses).
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3.4 Summary

Design a high performance on-chip memory hierarchy for CMPs is an open challenge.

This chapter presented two proposals aiming to achieve a high performance shared NUCA for

CMPs. The first proposal was a 3D NUCA design based on a novel hybrid bus/NoC fabric.

The hybrid interconnect fabric efficiently exploited the fast vertical interconnects in 3D circuits.

We further discussed processor placement and L2 data management issues, and presented an

extensive experimental evaluation of the proposed architecture as well as its comparison to 2D

L2. Our experiments showed that the proposed 3D architecture reduced the average L2 access

latency significantly over 2D topologies and this in turn brought IPC benefits. In addition, our

results showed that moving from a 2D topology to a 3D topology can provide more latency re-

ductions than incorporating sophisticated data migration strategies into the 2D topology. The

results indicated the importance of considering 3D technology in designing future chip multi-

processors.

The second proposal was motivated by the sharing pattern of multi-threading applica-

tions. Our statistics showed that most of cache lines in a shared L2 cache are accessed by only

one processor, but a large percentage of L2 accesses are to the small set of shared cache lines.

We proposed two types of migrations, eviction-triggered migration and access-triggered migra-

tion, for private and shared cache lines, respectively. The goal was to find a proper physical

location for each cache line such that the average L2 access latency was minimized. The experi-

mental results showed that the migration schemes separated the data sets for different processors

successfully and generated up to 29.3% L2 latency improvement.
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Chapter 4

Concluding Remarks and Future Work

Chip Multiprocessors (CMPs), integrating multiple cores on a single die, become the

trend of microprocessor design, as witnessed by both industrial and academic worlds. Designing

relatively simple cores for CMPs indicates higher clock rates, lower per core design and veri-

fication costs, and better scalability, compared to designing a single monolithic, sophisticated

processor. However, CMPs face other challenges. First, the multiple cores on chip need to

communicate with each other and require an efficient on-chip interconnection network. Second,

having multiple cores on a sing chip exacerbates the demand for memory bandwidth. Designers

must carefully design the memory subsystem for CMPs in order to achieve the potential comput-

ing capability of CMPs. Motivated by these observations, this thesis focused on the two critical

components of CMPs: interconnection and memory subsystem. Specifically, we explored the

optimizations for Network-on-Chip, an emerging choice of interconnection for CMPs, and the

optimizations for the shared L2 Non-Uniform Cache Architecture (NUCA).

The first part of this thesis aimed at reducing the energy consumption of Network-on-

Chip. We proposed and evaluated three compiler-directed schemes:

• Compiler-directed proactive communication link turn-on/off

• Compiler-directed voltage level selection for communication links

• Profile-driven message re-routing
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These schemes targeted array/loop-intensive embedded applications. A common feature of these

schemes was that they all modified the parallel code to achieve NoC energy savings. The first

approach, based on static program analysis, inserted communication link turn-on or turn-off

commands into parallel codes. The generated parallel code was able to proactively set the power

states of communication links. Thus, this scheme was able to immediately shut down commu-

nication links that were not needed any more and to pre-activate communication links before

they were required. This approach achieved an average of 18.3% link energy saving over a

pure hardware-based link on/off approach, while with negligible performance penalties. The

second approach proposed a novel graph-based representation of the parallel program, Inter-

Process Communication Graph (IPCG). An IPCG included both computations and communica-

tions within the parallel code. We designed algorithms to analyze the critical paths in a IPCG

and to determine a appropriate frequency/voltage level for each communication link. The code

modification module inserted voltage control functions before the entry of each loop. The experi-

mental results showed that this scheme was much more effective than a pure hardware-based link

voltage scaling scheme and came very close to an optimal voltage scaling scheme. In the third

approach, we proposed the concept of Communication Graph (CG) to capture the communica-

tion behavior of a parallel program based on profiling information. We developed an algorithm

for determining the routing path of each message-sending operation in an attempt to maximize

the link reuse between neighboring network states of a CG. With this algorithm, the link usage

was restricted to a small set of links at a given time and the remaining links were turned off to

save power. The experimental results showed that this approach enhanced the effectiveness of a
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hardware-based link turn-on/off scheme significantly (on average about 35% more energy sav-

ings). The success of these three compiler-directed approaches demonstrated that the compiler

can play an important role in reducing the NoC energy consumption.

The second part of this thesis focused on the shared level-2 NUCA for CMPs. We built

and simulated the following two NUCAs:

• A 3D NoC-bus hybrid L2 NUCA design

• A migration-based L2 NUCA design

The first NUCA design adapted the shared L2 NUCA design for 2D topologies to 3D architec-

tures. Specifically, a novel hybrid bus/NoC fabric was proposed to efficiently employ the fast

vertical interconnects in 3D circuits. We studied the placement of processors and cache banks

in the 3D scenario. We conducted extensive experiments and demonstrated that a 3D L2 mem-

ory architecture generated much better results than the conventional 2D design under different

numbers of layers and vertical (inter-wafer) connections. In particular, a 3D architecture with-

out data migration gave better performance than a 2D architecture with dynamic data migration.

The second NUCA design was motivated by the sharing pattern of multi-threading applications,

that is, private cache lines dominated the L2 cache space while accesses to shared cache lines

dominated the accesses to L2 cache. We presented a migration-based NUCA design, includ-

ing both a careful initial placement policy (eviction-triggered migration) and sharing-aware data

location determination (access-triggered migration). The two migration schemes determined a

proper physical location for each cache line in L2 cache such that the average L2 access latency

was reduced. We demonstrated, through experiments, that the migration-based NUCA design

generated up to 29.3% better results than the previous NUCA design with gradual migrations.
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4.1 Future Work

This thesis work has initiated several new ideas regarding the design and optimization of

NoC-based Chip Multiprocessors. Specifically, we believe that the three problems listed below

are very interesting and may worth paying attention to.

First, we can extend the compiler-directed NoC voltage scaling scheme to handle both

processor cores and NoCs if processors are voltage scalable as well. According to [60], the

energy reduction rates of both processors and communication links show a slowing down trend

when the voltage level continues to scale down. That means, instead of aggressively scaling

down the voltage of processors only or NoCs only, we prefer coordinated voltage scaling of

processors and NoCs in order to achieve maximum energy reduction. The coordinated voltage

scaling involves properly allocating the slack time to processors and communication links such

that the energy reduction is maximized without significant performance degradation. To accu-

rately estimate the slack time, we can employ static program analysis and/or program profiling

to obtain the execution time (both computation and communication) of a parallel program.

Second, reliability is now an important design issue for NoCs, just as for other com-

ponents of a computer system. This is due to the continuously scaling-down feature size and

the coming along vulnerability to different types of noises [83, 20]. Normally, reliability is not

the only design constraint for a system. It needs to be considered together with performance and

power consumption. In the scenario of NoCs, researchers found that combining message retrans-

mission and an error detection scheme is an energy-efficient way to design reliable NoCs [11].

This interesting observation motivates us to think about several questions: what can we do if a

message is lost and does not arrive the destination? which routing path should the retransmitted
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message go through? For example, on the one hand, if a duplicated message chooses the same

routing path as that of the original message, the remaining communication links are more likely

to remain idle and to be powered off. However, if a failed link exists along the routing path, this

scheme cannot deliver this message correctly. Thus, we see that this scheme is favored from the

perspective of power consumption, but not from the reliability angle. On the other hand, if a

duplicate message selects an entirely non-overlapped routing path with that of the original mes-

sage, it decreases the opportunities of link shutdown, but strengthens the NoC error resilience.

Besides considering the reliability issue of NoCs only, NoC-based CMPs have the redundancy

for providing the reliability of the entire architecture. For example, classifying the critical por-

tion of a program, dynamically detecting the underutilized processors, and scheduling replicated

threads to these underutilized processors might be a promising way to improve the reliability of

an NoC-based CMP.

Third, regarding the on-chip storage, the latency is still a concern due to the increasing

on-chip memory capacity and the long wire delay. Besides the data placement, replacement

and migration policies proposed in this thesis, importing the idea of prefetch into on-chip data

management may be a promising method to reduce the access latency. Since there is spatial

locality in memory accesses, we can predict cache lines that are needed in the near future and

proactively migrate these cache lines toward the requesting processors. In this way, we expect

most of the data accesses to be satisfied by the local on-chip memories. In addition, compared to

optimizing the access latency, less attention has been paid to the energy consumption of on-chip

memory design for CMPs. It would be interesting to evaluate the energy behavior of different

on-chip cache organizations and management policies.
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