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Abstract

Stimulation of oil wells with cyclic pressure pulsing using gases is an IOR method

that is effectively applicable to fractured reservoirs. Fractures provide a large

contact area for the injected gas to diffuse through and penetrate into the low-

permeability matrix. Also, high permeability of the fracture system provides easy

delivery of the injected gas and produced oil. The process attracts operators be-

cause of shorter payback periods and lower investment requirements as compared

to field-scale flooding projects. Designing a cyclic pressure pulsing project requires

optimization of the design parameters such as the amount of injected gas, injec-

tion rate, and lengths of injection, soaking, and production periods. Due to the

computational cost of simulating a large number of scenarios, it is an arduous task

to determine the aforementioned design parameters, and to optimize the process.

In this study, neural-network based proxy models are used to assess the feasi-

bility of these processes in reservoirs with different characteristics, and to develop

optimized design schemes to maximize the efficiency of the process. The method

of approach includes understanding the mechanics of the process via reservoir

simulation studies. Artificial neural network (ANN) based proxy models that ac-

curately mimic the reservoir model efficiently in terms of the computational time

are developed. First, the methodology is tested with the reservoir model of the Big

Andy Field where cyclic CO2 (since 1985) and cyclic N2 (since 1996) injection have

been utilized. Developed proxies were able to estimate the expected magnitudes

of some of the critical performance indicators for a given set of process design

parameters for CO2 and N2 injection. An inverse proxy is developed that goes

beyond the capabilities of a reservoir model by providing optimized combination
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of design parameters for a given set of desired performance characteristics. Then,

the methodology is extended to reservoirs with different characteristics by includ-

ing reservoir properties in the knowledge base. Universal proxies are developed

which can accurately output the performance indicators when the reservoir char-

acteristics and design parameters are input. The hybrid neuro-genetic approach is

utilized for optimization studies. This approach uses the genetic algorithm (GA)

as the optimization tool. GA uses the neural-network based proxy approximator

for evaluation of the specified objective function for computational efficiency. By

changing the design parameters, it searches for the best design scenario that would

maximize/minimize the objective function that is specified based on the nature of

the problem. The reservoir model used in this study is a single-well, composi-

tional reservoir model with a dual-porosity system. A detailed parametric study is

conducted using the reservoir model to develop a better understanding of how op-

erational parameters and reservoir conditions affect the performance of the process.

Peak oil rate, discounted incremental oil production, and net present value (NPV)

are used for performance evaluation. It was observed that the injected gas volume

in each cycle is the most critical parameter in affecting the performance. Injecting

the same volume at a higher rate for a shorter period of time is found to be more

effective than injecting for a longer time at a lower rate. While soaking has little

effect as compared to other design parameters, optimization of soaking would yield

higher recovery and NPV. It was observed that the initial pressure/temperature

of the reservoir, and therefore, the initial fractions of gas/liquid phases affect the

process efficiency significantly.
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Chapter 1

Introduction

With the current world energy demand and supply profile, improved oil recov-

ery (IOR) methods have become significantly important in recent years. There

are many different types of IOR methods that are efficiently applicable in differ-

ent classes of reservoirs. To develop a successful IOR application, selecting the

appropriate IOR method and designing the process are of equally significant im-

portance. Economic success of an IOR project mainly depends on the effectiveness

of the method in that specific reservoir and the way it is designed.

Cyclic pressure pulsing using different types of gases is an IOR method that

is effectively applicable specifically to fractured reservoirs. The process is also

known as huff ‘n’ puff, which was first introduced to define the cyclic steam stim-

ulation process to improve heavy oil recovery. In low-permeability reservoirs that

are dissected by a network of interconnected fractures, solution channels, and vugs,

waterflooding and gas flooding are not fully effective, since the injected fluid tends

to channel through the high conductivity network and bypass the low-permeability,

oil-bearing matrix (Felsenthal and Ferrell, 1967; Raza, 1971). In this type of reser-

voirs, cyclic pressure pulsing with gas has been found to be effective. Fractures

provide a large contact area for the injected gas to diffuse through and penetrate

into the low-permeability matrix. Also, high permeability of fracture system re-

sults in an easy delivery of both the injected gas and produced oil. Because it

is a single-well process, well-to-well connectivity is not required. Another char-
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acteristic of cyclic pulsing process that attracts operators’ attention is that the

payback period is very short as compared to that of field-scale flooding projects.

This makes the single-well cyclic pressure pulsing process low-risk with a relatively

lower initial investment requirement and a shorter payback period. The process is

characterized by three distinct stages as shown in Figure 1.1 with its impact on

the change in oil flow rate with time:

1. Injection period: During this period, the gas is injected into the reservoir.

Length of this period depends on the treatment amount, the capability of

the field unit to provide gas, and the number of wells that are to be treated.

2. Soaking period: After the injection period, the well is shut-in to wait for the

injected gas to interact with reservoir fluids by diffusing from fractures into

the matrix. From the field experience stated in the literature, this period is

typically 2-4 weeks.

3. Production period: After soaking is completed, the well is put on production

to produce oil, water, and gas. Typically, a large amount of gas is produced

at the beginning of the period, while the oil rate starts to rise and reaches

a peak rate. After this point, production may continue until the economic

limits are reached.

The motivation for this study is the limited number of studies concerning this

method in the literature that focus on specific reservoirs and the optimization of

operational conditions that is not broadly investigated. The applicability and effec-

tiveness of the process can vary significantly from one type of reservoir to another

one. Like in any other IOR application, it is a challenging task to consider all vari-

ables involved in the process and develop rule-based guidelines for the practicing

engineer. However, with the significant improvements in the computational power

and development of new effective tools for modeling and optimization in recent

years, it is now possible to develop a better understanding about the applicability

and limitations of the process in different reservoirs and under different operating

conditions. In this dissertation, a comprehensive study of the high-performance

modeling and optimization of cyclic pressure pulsing process is presented. This

study focuses on naturally fractured reservoirs because the recovery mechanism

involved in this process is favorable in fractured systems.
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Figure 1.1. Overview of the cyclic stimulation process and its resulting impact on the
produced oil flow rate.

This dissertation is organized as follows:

• In Chapter 2, a summary of the previous work done on cyclic pressure puls-

ing process is presented. Also, in a separate section a summary of various

reservoir engineering optimization studies that utilized intelligent systems is

given.

• Chapter 3 includes the problem statement and study objectives.

• Chapter 4 includes theoretical background about the methods that are used

in this study. Explanations of artificial neural networks, genetic algorithms,

and how they are incorporated to the study through the hybrid neuro-genetic

approach are discussed. Algorithmic explanations of neural networks and

genetic optimization techniques are presented.

• Chapter 5 includes design and development of reservoir-specific neural net-

work proxy approximators. These models are developed specifically for the
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Big Andy Field in Kentucky. An overview of the study area, description

of the reservoir model, the structures of the networks that are developed,

the problems that are faced, and how they are overcome, are explained. An

application of the methodology to one of the leases in the Big Andy Field is

presented as a guideline to the practicing engineer.

• Chapter 6 includes design and development of universal neural network proxy

approximators. Characterization of the reservoir model to generalize the

methodology presented to different reservoirs is presented. Architectures

and structures of different neural networks for the injected gas, reservoir

fluid, and the design scheme are explained.

• Chapter 7 includes a detailed parametric study that investigates how the

operational parameters and reservoir characteristics affect the performance

of the cyclic pressure pulsing process. Comparative analyses based on the

economics and oil production are presented and discussed.

• Chapter 8 includes the optimization studies that were done with the neuro-

genetic approach, which couples the neural-network based proxies with the

genetic algorithm to perform a stochastic search through the response sur-

face generated by the neural network. Results of optimization studies with

different design schemes and objective functions are presented and discussed.

• Chapter 9 includes a summary of the study, conclusions and recommenda-

tions for future work to improve on the current study.



Chapter 2

Literature Review

Although the cyclic pressure pulsing process is not as popular as other IOR meth-

ods, there are a number of studies that have been presented in the petroleum

engineering literature concerning it since late 1960’s. In this chapter, first, a sum-

mary of these studies is given to present results of experimental and modeling

studies and field applications. Later, some previous examples of the application

of intelligent systems in various reservoir engineering optimization problems are

introduced. The chapter concludes with a summary of all studies that were con-

sidered.

2.1 Cyclic Pressure Pulsing for Improved Oil Re-

covery

The idea of cyclic pressure pulsing has evolved after field-scale cyclic gas injection

applications (Cook, 1957; Crosby and Cochran, 1960), where produced associated

gas is injected into the reservoir from which it was produced. The purpose of this is

pressure maintenance to improve oil recovery. During 1960’s, cyclic pressure puls-

ing method was introduced as an improved method of conventional waterflooding,

because of water channeling and oil bypassing problems in waterflooding of highly-

fractured reservoirs. An experimental study (Owens and Archer, 1966) and results

of an accidental cyclic waterflooding operation in the Grayburg reservoir of Per-

mian Basin (Felsenthal and Ferrell, 1967) were presented in the literature. The
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process was found to be feasible in the sense that injection was sped up from the

slow imbibition rates to injection capacity rates, and a shorter pressuring phase

compared to waterflooding was important for economic considerations. Water and

nitrogen/ethane cycling experiments showed that injecting gas (nitrogen/ethane)

ahead of water could increase the chances of success of the process. They also

stated that pressure pulsing should be applied in high capacity, partially depleted,

fractured reservoirs containing some free gas saturation. Menzie and Nielsen (1963)

and Cook et al. (1967) set forth the initial motivation for cyclic injection of CO2 by

experimenting with its usefulness in vaporizing crude oil for improved oil recovery.

Raza (1971) conducted water and gas cycling experiments using Berea, Bandera

sandstones and Austin chalk limestones. He found out that there is a critical oil

saturation below which cyclic pulsing is ineffective, and this critical saturation

is different for each porous medium. He also stated that gas cycling is better

than water cycling, because it is not dependent on the critical oil saturation. He

compared CO2, N2, and CH4, and he observed that N2 and CH4 both have the

similar effects in increasing the pressure, but higher amounts of CO2 is required

for the same pressure increase because of its higher compressibility.

The first field application utilizing gas huff ‘n’ puff was reported by Shelton

and Morris (1973). They proposed injecting rich hydrocarbon gases to increase

the reservoir energy and reduce the oil viscosity instead of steam, which is not

found to be effective in stimulating deep and thin formations. They stated that

while the increase in reservoir energy is a short-term benefit, viscosity reduction

is a long-term benefit for the future of the well. One of the conclusions that they

made was about the soaking period. They observed that soaking has a significant

effect mainly on the initial production rate (peak rate), and longer soaking would

decrease the peak rate because of dissipation of the pressure.

Stright et al. (1977) conducted a numerical simulation study that used the

variable bubble-point formulation to model cyclic CO2 injection in a bottom-water-

drive reservoir to determine the feasibility of the process. They used some field

data that employed the use of a small slug of CO2 to evaluate the results using

history matching with the numerical model. 1,890 MCF of CO2 was injected over

a 20-hour period, and the well was permitted to soak for 22 days. They concluded

that the process efficiency was poor, and the viscosity reduction effect was offset
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by increased water saturations in the coning region.

During 1980’s, a number of studies were reported about using CO2 huff ‘n’ puff,

instead of steam, for heavy oil recovery. Field applications in southern Arkansas

(Khatib et al., 1981) and in Turkey (Bardon et al., 1986; Göndiken, 1987), labo-

ratory tests (Sankur and Emanuel, 1983; Sayegh and Maini, 1984), and numerical

simulation studies (Patton et al., 1982) indicated favorable improved oil recovery

results due to oil swelling and viscosity reduction caused by CO2. Claridge (1984)

made a summary of these studies explaining the recovery mechanisms involved

in the process. Haskin and Alston (1989) presented results of CO2 huff ‘n’ puff

applications in 28 wells in Texas. They provided a methodology to predict the

incremental oil recovery, and they observed that soaking times longer than 2-3

weeks would not be feasible.

In late-1980’s, heavy-oil huff ‘n’ puff applications started shifting towards light-

oil applications. Hsu and Brugman (1986) conducted a single-well, compositional

simulation study for the Paradis Field in Louisiana by history-matching two cycles,

and predicting the performance of the third cycle. According to the parametric

studies that they have conducted, they observed that the primary mechanisms fa-

voring the process are: 1) vaporization of intermediate components, 2) oil viscosity

reduction, and 3) oil phase swelling. They also observed that soaking has little

effect (from 5 to 40 days), while injected gas amount has the most important effect

on recovery. In their study, contamination of CO2 with up to 20% N2 or CH4 had

little effect. During the second cycle incremental oil significantly dropped, which

showed that the third cycle would not be feasible. Monger and Coma (1988) tested

14 Berea cores from south Louisiana for CO2 to improve the recovery of 32◦ API

light crude oil. They also concluded that the injected gas amount is more impor-

tant than soaking time (18-52 days), and efficacy of the process declines during

the second cycle.

Miller (1990) presented field results of 200 CO2 huff ‘n’ puff treatments (340

to 4,130 MSCF each) over a four-year period in the Big Sinking Field, Kentucky.

Emanuel et al. (1991) analyzed a 120-ton, 2-day CO2 injection process with ana-

lytical decline curve calculations and with a radial, compositional reservoir model.

They observed that the amount of injected gas has the most significant effect and

soaking period beyond 2 weeks does not have a significant effect. Monger et al.
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(1991) conducted laboratory tests and compared them with field results achieving

less than 1 MSCF/STB of efficiency. They concluded that the method is more

feasible in depleted reservoirs rather than water-drive reservoirs.

Thomas and Monger-McClure (1991) performed field production data analy-

sis from 14 fields in Louisiana and Kentucky, to understand how the incremental

production and stimulated oil production rates increase with different design pa-

rameters. They observed that diffusion is important for soaking, and mechanisms

related to diffusion, phase behavior, and relative permeability effects are more

significant than reservoir re-pressurization. They emphasized the benefit of an

extended soak, and concluded that holding back-pressure on producing wells is

favorable, and that the recovery improves with oil swelling. They provided well

selection and operational guidelines. They achieved an average CO2 utilization

factor of 1.3 MSCF/STB.

Towler and Wagle (1992) conducted black-oil modeling study to analyze the

process in low-pressure, solution-gas-drive reservoirs. They observed that relatively

dead oils are more likely to respond than gas-rich live oils, and relative permeability

hysteresis and reservoir pressure increase are significant mechanisms in the success

of the process. Biswas (1993) used a compositional model to evaluate the impact

of different reservoir conditions and process design variables on the recovery after

cyclic CO2 injection in water-drive reservoirs. He observed that while the recov-

ery increases with the slug size, it is a design variable that would be optimized

considering the utilization efficiency. It is stated that the length of the soaking

period does not affect the incremental recovery and it should be minimized such

that the molecular diffusion can take place. It was observed that the process is

not sensitive to the well spacing and is sensitive to the bottom-hole pressure. An

important conclusion is reported that the effect of heterogeneities in the reservoir

is very insignificant. This is due to the fact that the process is a single-well process

and near-wellbore phenomena dominate the process rather than portions of the

reservoir located external to the wellbore.

Bardon et al. (1994) and Miller et al. (1994) presented results of the cyclic

CO2 utilization in the Shoemaker Ridge Field in Kentucky since 1985. The first

treatment included 2 hours of injection of 345-4,140 MSCF CO2, followed by 1-2

weeks of soaking, and resulted in an average utilization of 0.63 MSCF/STB. Since
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it is a low-pressure depleted reservoir, low dissolution of CO2 resulted in a lower

viscosity reduction than other field applications reported previously.

Wolcott et al. (1995) and Shayegi et al. (1996) presented experimental investi-

gations of the process on light crude oil from the Timbalier Field, Louisiana. They

tested mainly CO2 injection, while investigating the benefits of using other types

of gases. Based on the study of Wolcott et al. (1995), cyclic CO2 stimulation can

be successfully employed in steeply-inclined reservoirs, and chasing the CO2 slug

with nitrogen would improve the performance of the process. Shayegi et al. (1996)

compared the results using CO2 with the results using N2 and CH4. In their study,

it was observed that pure N2 would recover half of what could be recovered using

CO2 and CH4. CO2/N2, CO2/CH4 mixtures yielded 2-3 times more recovery than

these obtained using pure gases. They also stated that at high pressures CO2/N2

mixtures gave the best results.

Wehner and Prieditis (1996) used a radial, compositional model to analyze the

process. They observed that main recovery mechanism is gas trapping by hystere-

sis, and majority of the gas trapping occurred during the first cycle (multiple cycles

are not favorable). They have achieved an utilization factor of 10 MSCF/STB.

They found out that the process is not dependent on reservoir heterogeneity and a

longer soak of more than a few days would not help to improve the recovery. As in

other similar studies, they observed that different injection pressures do not affect

the process efficiency, while the most important parameter is the total amount of

gas injected.

Miller and Hamilton-Smith (1998) presented the results of CO2 cyclic injec-

tion in the Big Sinking Field, Kentucky, between 1985-1994 during which, 390

treatments in 240 wells resulted in a utilization efficiency of 1.2 MSCF/STB and

180,000 STB of incremental oil production. Because of the high cost of CO2, they

tried to use rich gas produced from the same reservoir, and exhaust gas (CO2/N2).

They concluded that the exhaust gas is more efficient than the rich gas in terms

of the utilization efficiency, but using rich gas from the reservoir is more economic

than the exhaust gas. Longer soak times are needed when using rich or exhaust

gas rather than using CO2 alone.

In a recent study at Penn State, Abboud (2005) investigated the effect of va-

porization on the recovery by cyclic injection of pure N2 and N2/O2 mixtures with
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laboratory PVT cell tests. A Mid-Continent light crude oil sample from the Big

Andy Ridge Field, Kentucky was used. It is observed that lighter components of

the crude oil were vaporized and oxygen contributed to the increase in the mobil-

ity of the oil. In another recent study, Mohammed-Singh et al. (2006) presented

results of 16 CO2 huff ‘n’ puff treatments in Trinidad and Tobago, together with a

summary of published studies on CO2 cyclic stimulation, and a screening criteria

for these operations. The major conclusions they made were consistent with pre-

vious studies. They stated that viscosity reduction and swelling of oil by CO2 are

the major mechanisms for improved recovery, and the stimulation ratio of the oil

rate mainly depends on the amount of gas that is injected per foot of the pay.

Dong et al. (2006) presented results of experimental and modeling studies of

pressure cycling with methane to increase the heavy-oil recovery from thin reser-

voirs. The process includes injection of methane and water successively to re-

pressure the reservoir and force the gas back into solution. Moussine et al. (2007)

presented an improved cyclic steam injection method in which the injected gas

mixture includes exhaust gases (CO2 and nitrogen). This provides higher recovery

compared to steam alone, as the energy released by the gas-steam generator is

used more efficiently. Also, dissolution of exhaust gases provides additional reduc-

tion in the oil viscosity. They conducted simulation studies to determine optimum

operating conditions of the process. They concluded that the optimum soaking

time varies with the volume of gas injected and effectiveness of the process in-

creases with higher oil-column thickness. In another recent study, Asghari and

Torabi (2007) presented core experiments of CO2 huff-n-puff. They observed that

fractured light-oil reservoirs with high matrix permeability at immiscible and near-

miscible conditions favor the process.

2.2 Intelligent Systems for Reservoir Engineer-

ing Optimization Problems

Since their introduction to the petroleum industry, intelligent systems have been

applied to many different types of optimization problems. Most of these problems

presented in the literature are based on development of artificial neural network
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(ANN) based proxies that can accurately mimic reservoir, or other types of simula-

tion models. Also known as neuro-simulation, applications of this methodology are

found in field development, history matching, design optimization, and candidate

well selection for hydraulic fracturing and treatments. The motivation behind this

process arises from the development of a high-performance response surface that

could provide desired outputs in an efficient manner in terms of the computational

time.

Mohaghegh et al. (1996) presented a study for candidate well selection for

hydraulic fracturing of gas storage wells. They developed a hybrid neuro-genetic

approach, which couples ANN with a genetic algorithm (GA) to evaluate different

wells for hydraulic fracturing and provide a list of candidate wells based on available

data. The intelligent system also provides the optimum fracturing design for the

proposed well.

Many developments have been made for the purpose of optimum field develop-

ment studies. Centilmen et al. (1999), and Doraisamy et al. (2000) developed ANN

proxies that output production profiles for different well placement configurations.

By decreasing the computational time significantly, developed proxies are used to

evaluate a large number of well placement scenarios in a very short time to select

the configuration that maximizes the cumulative oil production. Gökcesu (2005)

developed ANN proxies for the same purpose, and coupled them with GA to search

for optimum well placement strategies to maximize the cumulative oil production.

Güyagüler et al. (2000) and Johnson and Rogers (2001) also coupled proxies with

GA to select the injector wells for a waterflooding operation to maximize the net

present value (NPV).

Yeten et al. (2003) proposed an optimization procedure that utilizes GA with

several acceleration routines that include an artificial neural network, a hill climber,

and a near-well upscaling technique to optimize type, location, and trajectory of

a non-conventional well. Yan and Minsker (2006) proposed an adaptive neural

network genetic algorithm (ANGA) procedure for optimization of water resources

problems. Zangl et al. (2006) used ANN and GA for a gas storage management

application.

As a scheduling application, Patel et al. (2005) used GA to optimize schedul-

ing of cyclic steam injection process in Bakersfield, California. While maximizing
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the process efficiency, they introduced steam availability and transportation con-

straints for a large number of wells to come up with the optimum scheduling of

cyclic steam injection operations.

Ayala and Ertekin (2005) presented a study to develop optimum production

protocols for the implementation of the gas-cycling operations for pressure main-

tenance of gas/condensate reservoirs. They developed both a forward-looking net-

work that mimics a compositional reservoir model, and an inverse-looking network

that outputs design parameters once several performance criteria are provided.

Mohaghegh et al. (2006) presented a methodology to develop surrogate, full-

field reservoir models. They utilized fuzzy pattern recognition to determine the

key performance indicators of the reservoir model to decrease the dimensionality of

the model. They validated the methodology by implementing it to a giant Middle

East oil field. Cullick et al. (2006) and Silva et al. (2007) used neural networks

to develop non-linear proxies that provide accurate predictions that are similar

to a reservoir-simulation model. They presented history-matching applications

with a reduced number of reservoir simulations. Yu et al. (2008) used genetic

programming (GP) to develop proxies to classify reservoir models as good or bad,

in terms of the history-match error to reduce the number of simulations required

for history-matching.

In a recent study at Penn State, Parada (2008) developed a toolbox which

includes a number of neural-network based proxies for different types of IOR

processes. By using this toolbox, it is possible to screen and design miscible injec-

tion, waterflooding, and steam injection processes in different reservoirs.

2.3 Summary

Based on the studies that have been reviewed in the previous sections, we can

conclude that there are significant number of studies that have been done on cyclic

pressure pulsing for improved oil recovery. These studies can be grouped into

three categories: 1) Experimental studies, 2) Modeling studies, 3) Field studies.

Most of the studies have been done on pure CO2 injection and there are studies

that considered using rich hydrocarbon gases, and pure nitrogen, and mixtures

of these gases with CO2. Initial motivation of the cyclic injection process has
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given to the use of CO2 instead of steam to recover heavy oil with applications in

Turkey, California, and Arkansas. Subsequently, its application was considered for

medium and light oils, and successful field applications were reported in Kentucky,

Texas, and Louisiana. The recovery mechanisms in-play can be grouped under two

categories as 1) increased reservoir pressure, and 2) changes in phase behavior.

Mechanisms related to phase behavior include oil viscosity reduction, oil swelling,

vaporization of lighter components, reduction of water permeability due to trapped

gas and reduced water saturation, and reduction of interfacial tensions. Success of

CO2 injection applications are mainly due to viscosity reduction and oil swelling

as the primary mechanisms.

In most of the studies, it was stated that the amount of injected gas has the

most significant effect on the improved recovery. It was observed that soaking

period is necessary for interaction of reservoir fluids with the injected gas, but

soaking more than 2 weeks does not improve the recovery significantly. Soaking

mainly affects the peak oil rate after the injection, and it is due to diffusion.

Reservoir characteristics and operational design parameters are two main com-

ponents that influence the performance of a cyclic injection process. Although

there are many studies that have been done, there is not a complete understand-

ing of how to design these processes for the reservoir of interest to attain maximum

efficiency. Considering studies that utilize intelligent systems for optimization of

petroleum engineering problems, it can be suggested that presented methods can

be applied to develop an understanding of how to design the process for a given

reservoir with certain conditions.



Chapter 3

Problem Statement

In order to achieve success in any IOR application, significant effort must be ex-

pended to design and assess the feasibility of the IOR project. As indicated in

Chapter 2, there have been both successful and unsuccessful applications of gas

cyclic pressure pulsing presented in the literature. This fact points out the impor-

tance of the requirement of a careful consideration to assess the feasibility of the

process in the reservoir of interest. First of all, it needs to be addressed whether

the characteristics of the reservoir would favor this process. Once it is determined

that the reservoir is an ideal candidate, some other decisions must be made to

design the process. At that stage, the following questions should be answered:

• What should be the amount of injected gas?

• What should be the injection rate?

• How long should be the injection, soaking, and production periods?

• For a multi-cycle process, for how many cycles should the process continue?

It is the reservoir engineer’s responsibility to assure that the process is designed

in the most efficient way from the point of view of economics. Maximum efficiency

for a given period of time can be obtained vis-à-vis two important goals:

1. Maximizing the income due to the produced oil

2. Minimizing the operational costs due to the injected gas
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These two economic parameters can be derived from the process design parameters,

and performance indicators, which are the outcomes of the process such as the

cumulative oil production, peak oil rate, time to reach the peak oil rate, cycle oil

production rates, gas-oil-ratio (GOR), etc.

Numerical reservoir simulation is an industry standard to evaluate such projects

with the currently available computer power. After constructing a reservoir model,

the reservoir engineer would use that model to evaluate different design scenarios,

analyze the outcomes mentioned above, and make suggestions on designing the

process with the highest efficiency. However, due to the heavy computational

and laborious work required to make simulation runs for a number of different

scenarios, it is not possible to evaluate all possible scenarios and pick the best one

in confidence in a short period of time.

To overcome the heavy computational work problem, developing proxy (sur-

rogate) models can present a potential solution. These models do not require

heavy computational time and can process a huge number of scenarios within a

fraction of a second. Artificial neural networks (ANN) are excellent candidates

for this type of applications, because of their capabilities in mapping non-linear

input/output relationships of highly sophisticated systems. Neural-network based

proxies are widely used in many fields to mimic computationally-demanding sim-

ulation models. Once a reliable proxy model is developed, it can be coupled with

an optimization tool to search for the best design scenario that would maximize

the efficiency. Evolutionary algorithms (EA) are heuristic optimization techniques

which are analogous to Darwin’s evolution theory of survival of the fittest. Be-

cause of the stochastic behavior of the search process, these algorithms do not get

stuck at the local minima/maxima. This makes them powerful in problems where

the search space is discrete, instead of continuous, where there are many local

minima/maxima that may mislead the optimization algorithm. In this study, we

investigate the usefulness of these methods to develop optimized design scenarios

for cyclic pressure pulsing processes, and to evaluate the effectiveness of the process

for the reservoir of interest. Given this, the ultimate goals of this study are:

1. To understand the fluid flow dynamics of cyclic injection of CO2 and N2 into

fractured reservoirs via reservoir simulation studies.
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2. To develop optimized strategies in designing the process via utilization of

intelligent systems.

Figure 3.1 shows a brief workflow of the process to be followed to achieve the afore-

mentioned objectives. First, a representative reservoir model is to be constructed

for the purpose of analyzing the process by conducting parametric studies. Next,

a number of different design scenarios are to be generated. Then, utilizing the

neuro-simulation methodology, which is explained in Section 4.1.4, two ANN prox-

ies are to be developed: i) a forward proxy that can mimic the reservoir model for

screening purposes, ii) an inverse proxy that can act as an inverse simulator and

go beyond the reservoir model’s capabilities for optimization purposes. The final

step includes utilization of an optimization tool that uses the developed proxies to

search for the best design scenario that would maximize/minimize a pre-defined

objective function, which would be related to the efficiency of the process.

Figure 3.1. Workflow to be followed to achieve the objectives of this study.

Figure 3.2 shows a summary of the proxies that are developed and used for

screening and optimization purposes. In the first part of the study, we are only

looking at how design considerations affect the efficiency of cyclic pressure pulsing

process in the reservoir of interest (upper portion of Figure 3.2). The study area

is the Big Andy Field in Kentucky, where cyclic CO2 (since 1985) and cyclic

N2 (since 1996) have been successfully utilized to improve the oil recovery. The

reservoir model is constructed by using the available data from that field. In the

second part of the study, the methodology is generalized to reservoirs with varying

characteristics. The neural-network based proxies include reservoir characteristics,

as well (lower portion of Figure 3.2).
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Figure 3.2. Development of ANN proxies for screening and optimization studies.



Chapter 4

Theory and Methods

In this chapter, the methods that are used in this study and the theory behind

these methods are explained. First, artificial neural networks (ANN) are intro-

duced, which are used to construct the proxy models. Backpropagation algorithm,

recurrent neural networks, early stopping, and neuro-simulation methodology are

presented. Next, genetic algorithms (GA) are defined and explained. The final sec-

tion covers the hybrid neuro-genetic approach, which couples ANN proxies with

GA for optimization.

4.1 Artificial Neural Networks

Artificial neural networks (ANN) draw much of their inspiration from the biological

nervous system. It is therefore useful to have some knowledge of how these systems

are organized.

Most living creatures, which have the ability to adapt to a changing environ-

ment, need a controlling unit that is able to learn. Higher developed animals and

humans use very complex networks of highly specialized neurons to perform this

task. The control unit (i.e., the brain) can be divided in different anatomic and

functional sub-units, each having certain tasks like vision, hearing, motor and sen-

sor control. The brain is connected by nerves to the sensors and actors in the rest

of the body. The human brain consists of a very large number of neurons, about

1011 on average. These can be seen as the basic building bricks for the central

nervous system (CNS). The neurons are interconnected at points called synapses
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(Haykin, 1998). The complexity of the brain is due to the massive number of

highly interconnected simple units working in parallel, with an individual neuron

receiving input from up to 10,000 others. The neuron contains all structures of

an animal cell. The complexity of the structure and of the processes in a simple

cell is enormous. Even the most sophisticated neuron models in artificial neural

networks seem comparatively toy-like (Haykin, 1998).

Structurally the neuron can be divided in three major parts: the cell body

(soma), the dendrites, and the axon, see Figure 4.1 for an illustration. The den-

drites receive the signals from other neurons. The signals are electrical impulses,

and transmitted with a chemical process. Chemical transmitters modify the incom-

ing signal, which is similar to what weights do in artificial neural networks. The

received signals are then summed up in the soma. If sufficient input is received,

the cell fires (i.e., transmits the signal over its axon, to other cells.). This process

occurs as a result of concentrations of different types of ions such as potassium,

sodium, and chloride.

Figure 4.1. Schematic view of a bi-polar neuron, adapted from Mohaghegh (2000).

Artificial neural networks (ANN) can be broadly defined as information-processing

systems, which mimic the human mind as a mathematical model representation of

biological neural networks. ANN’s have gained an increasing popularity in differ-

ent fields of engineering during the past few decades, because of their capability

to extract complex and non-linear relationships. In many ways, the mechanism

of artificial neural networks have received their motivation from biological neural
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networks. One of the key features is the ability of being fault tolerant, which can

be explained as being able to recognize many different input signals that have

not been seen before, or being tolerant to damages in the neural system (Fausett,

1994).

Figure 4.2. A neuron, reproduced from Mohaghegh (2000).

The simplest unit of a neural network is the neuron (processing element). Fig-

ure 4.2 shows a typical neuron. The basic information processing occurs like the

following; outputs (In) coming from another neuron are multiplied by their corre-

sponding weights (Wn), and summed. An activation function is then applied to

the summation, and the output of that neuron is now calculated and ready to be

transferred to another neuron (Mohaghegh, 2000). The internal state of a neuron

after the activation function is applied, is called its activation. Thus, for the neu-

ron shown in the figure, its activation, y, would be equal to f(
∑

IkWk); where

f(x) can be any activation function.

A neural network can be characterized by its:

1. Pattern of connections between the neurons (i.e., its architecture),

2. Method of determining the weights on the connection links (i.e., its training

algorithm),

3. Activation functions.

Figure 4.3 shows a simple network with 2 inputs, 1 hidden layer of 3 neurons,

and 1 output. Some common activation functions that are used include:

• Logistic (binary sigmoid) function: f(x) = 1
1+e−x

• Tan-sigmoid (bipolar sigmoid) function: f(x) = 2
1+e−2x − 1
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• Hyperbolic tangent function: f(x) = ex−e−x

ex+e−x

• Linear function: f(x) = x

In addition to petroleum engineering and many other engineering disciplines,

artificial neural networks have been used in many different kinds of applications

such as signal processing, control, pattern recognition, medicine, speech recogni-

tion, speech production, and business (Fausett, 1994).

Figure 4.3. A simple network.

4.1.1 Backpropagation Algorithm

Also known as the generalized delta rule, backpropagation algorithm is a gradient

descent method that minimizes the total squared error of the output computed by

the network. It played a major role in the reemergence of neural networks in late

1980’s. It was introduced as a training method of multilayer networks to overcome

the limitations of single-layer networks (Fausett, 1994).

Backpropagation algorithm is a supervised training technique (i.e., mapping a

given set of inputs to a specified set of target outputs), and includes three stages:

1) Feed-forward of the input training pattern, 2) Calculation and back-propagation

of the error, 3) Adjustment of weights. The overall goal is to train the network

such that it can:

• Respond correctly to the input patterns that are used for training (memo-

rization)

• Give reasonable responses to similar, but not identical, input patterns (gen-

eralization)
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Figure 4.4. Architecture of a multilayer network, reproduced from Fausett (1994).

Figure 4.4 shows a multi-layer, fully-connected network with one hidden layer.

There are n input neurons in the input layer, p hidden neurons in the hidden layer,

and m output neurons in the output layer. There are biases also shown in this

figure whose activation value are constant during the training (1, in this case).

While the number of inputs and outputs are based on the nature of the problem

studied, the number of hidden neurons is a part of the network design process and

must be optimized by the designer. In Neuroshell (1998), a rule-of-thumb formula

is presented to calculate the number of the hidden neurons, which is mostly based

on experience:

NHN =
NI + NO

2
+

√
NTP (4.1)

where NI is the number of inputs, NO is the number of outputs, and NTP is

the number of training patterns. It should be noted that this is not a theoretical

formula, and this number would not necessarily be the best estimate of the number

of hidden neurons. However, it can be used as a good start for the optimization

process. Algorithm 1 shows a step-by-step explanation of the backpropagation
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algorithm.

Algorithm 1 Backpropagation Training Algorithm

initialize weights (small random values)
while stopping condition is false do

for each training pair do
Feedforward stage:
- each input unit receives signal, and broadcasts it to all units in the layer
above (hidden units)
- each hidden unit sums its weighted input signals, applies its activation
function to calculate its output, and sends this signal to all units in the
layer above (output layer)
- each output unit sums its weighted input signals, and applies its activation
function to calculate its output
Error backpropagation stage:
for both hidden units and output units do

compute: error, and error information term
compute: weight correction term

end for
Weight adjustment stage:
update weights and biases

end for
test for stopping condition

end while

Let us look at each step in this algorithm. We start with initializing weights

on each link randomly. It is a common practice to initialize the weights randomly

between -0.5 and 0.5. Then, the network is presented with input signals for each

input unit. Input units transmit these signals to the layer above, which is the

hidden layer (or the 1st hidden layer in a multi-hidden-layer network). Each hidden

unit sums its weighted input signals:

zin,j = v0j +
n∑

i=1

xivij (4.2)

Then the activation function is applied to each hidden unit:

zj = f(zin,j) (4.3)

Similarly, output units receive signals from hidden units and sums its weighted
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input signals:

yin,k = w0k +

p∑
j=1

zjwjk (4.4)

Then the activation function is applied to each hidden unit:

yk = f(yin,k) (4.5)

After the activations of output units are calculated, the backpropagation process

starts. The error in each output is calculated by subtracting the output, yk from

the target (actual) output, tk:

ek = tk − yk (4.6)

Then the error information, weight correction, and bias correction terms are cal-

culated:

δk = ekf
′(yin,k) (4.7)

∆wjk = αδkzj (4.8)

∆w0k = αδk (4.9)

where; α is the learning rate. For the weight updates between hidden and output

layers, each hidden unit sums the delta inputs from the units in the layer above:

δin,j =
m∑

k=1

δkwjk (4.10)

Then, the error information, weight correction, and bias correction terms are cal-

culated:

δj = δin,jf
′(zin,j) (4.11)

∆vij = αδjxi (4.12)
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∆v0j = αδj (4.13)

Finally, the weights on links between input and hidden layers, and hidden and

output layers are calculated:

vij(new) = vij(old) + ∆vij (4.14)

wjk(new) = wjk(old) + ∆wjk (4.15)

This process is repeated for all training patterns, until a pre-specified stopping

condition is achieved. Processing of each training data is known as a training event,

or, iteration. When all training data are processed once, one epoch (training cycle)

is completed. Each training data can be processed either by random selection, or

by rotation. After each training event, average mean-squared error is calculated.

Achieving minimum mean-squared errors of outputs and maximum number of

epochs are among most common stopping conditions. The algorithm above is

explained for one hidden layer networks, but it can easily be extended to multi-

hidden-layer networks.

In this study, all forward-looking proxies are trained using the backpropagation

algorithm. The algorithm is successfully applied to both reservoir-specific and

universal proxy models that are presented in Chapters 5 and 6.

4.1.2 Recurrent Neural Networks

First introduced by Jordan (1986), recurrent neural networks were developed to

learn sequential and time-varying patterns. Elman (1990) introduced a partially

recurrent network that has all the connection being feedforward, except having a

specific group units (context layer) that receives feedback signals from the previ-

ous time step. Architecture of these simple recurrent networks are illustrated in

Figure 4.5. The algorithm is the same with the backpropagation algorithm ex-

plained in Algorithm 1, except using the context units. At time t, the activations

of the context units are the activations (output signals) of the hidden units at the

previous time step (i.e., previous training pattern). The weights from the context
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units to the hidden units are trained in exactly the same manner as the weights

from the input units to the hidden units. At each time step, after the activations of

hidden units are calculated, they are copied to the context units for use in the next

training event (Fausett, 1994). A simplified version of backpropogation training

with recurrent connections is explained in Algorithm 2.

Figure 4.5. Architecture of a multilayer network with recurrent connections, reproduced
from Fausett (1994).

Another popular recurrent network was introduced by Rumelhart et al. (1986).

In this network, outputs from the network at one time step become the inputs at

the next time step. These networks can be trained for several time steps by making

copies of the net (with the same weights), training each copy, and then averaging

the weight updates. This process is known as backpropagation in time (Fausett,

1994). Recurrent neural networks are very popular in solving time-dependent

systems. In this study, they are used in the development of inverse proxies. The

usefulness of this algorithm in cyclic injection process and how it is applied is

explained in Section 5.5.
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Algorithm 2 Backpropagation for Networks with Recurrent Connections

initialize weights (small random values)
while stopping condition is false do

for each training pair do
Feedforward stage:
- each input unit receives signal, and broadcasts it to all units in the layer
above (hidden units)
- each hidden unit sums its weighted input signals, applies its activation
function to calculate its output, and sends this signal to all units in the
layer above (output layer)
- each output unit sums its weighted input signals, and applies its activation
function to calculate its output
Feedback stage:
each hidden unit copies its activation to its context unit
Error backpropagation stage:
for both hidden units and output units do

compute: error, and error information term
compute: weight correction term

end for
Weight adjustment stage:
update weights and biases

end for
test for stopping condition

end while

4.1.3 Improving Generalization: Early Stopping

There are several methods, which are used to improve the generalization abilities of

neural networks and to prevent overtraining. Early stopping is the most common

one because of its easy implementation.

In this method, the available data set is divided into three. First dataset is

used for training the network by computing the gradients and updating weights

and biases. Second dataset is the validation dataset. During training, the network

is applied to this data set, and the error is recorded. Typically, during training, the

training error would continuously decrease. Validation error would also decrease

as the training error. However, at some point, the validation error would start

to stabilize and then, would start to increase (Figure 4.6). At this point, the

network would start to overfit the data. Typically, the training should be stopped

after a number of iterations from the point the validation error does not decrease
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(improve). This number is to be inputted by the user.

Third data set is the testing data set and it is not used during training. This

data set is used after the training is completed, to analyze the generalization capa-

bilities of the network in predicting cases that it has not seen before. It is usually

a good practice to plot training, validation, and testing errors continuously during

training. If testing error starts to increase before the validation error increases,

this would show that the data sets are not divided properly (Demuth et al., 2006).

In this study, all neural networks are trained with early stopping.

Figure 4.6. Typical behavior of training and validation errors during training.

4.1.4 Neuro-Simulation Methodology

Neuro-simulation can be defined as the process of coupling simulation models based

on hard computing with artificial neural networks (ANN) to develop approximator

proxies that can mimic simulation models accurately. When an approximator for a

model is constructed, it is aimed to retain the size and scope of the problem, while

capitalizing on the existence of simpler empirical relationships between decision

variables and selected model outcomes (Johnson and Rogers, 2000). In their paper,

Johnson and Rogers (2000) showed that ANN are superior to linear and non-linear

regression equations, since they impose fewer constraints on the functional form of
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the relationships between variables.

In the petroleum engineering literature, there are a number of studies that uses

ANN’s as substitutes for reservoir models. Although they can be never used to

model the actual physical phenomena of reservoir fluid flow dynamics, they can

be developed to map specific input/output relationships of the reservoir system.

Section 2.2 includes example works that utilized this methodology for different

kinds of optimization problems.

Once a reservoir model of the field/well of interest is constructed, this model

can be used to run a number of different design scenarios that are created for a

given problem. Outcomes of the simulation runs, key performance indicators, can

be collected in a knowledge base. This knowledge base, which includes different

design scenarios and corresponding performance indicators can be fed into a neural

network for training. When the network is trained with an appropriate training

method, it can be tested by comparing with simulator outputs to see if it can pro-

vide accurate predictions. If the network is validated and it can make predictions

with a reasonable accuracy, it can be used as a proxy (surrogate) model to evaluate

a number of other design scenarios. A typical flowchart of the neuro-simulation

methodology for proxy construction is shown in Figure 4.7.
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Figure 4.7. Flowchart of the neuro-simulation methodology for proxy construction.
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4.2 Genetic Algorithms

There has been a growing interest in problem solving systems, which are based

on evolution and hereditary. Such systems maintain a population of potential so-

lutions, which have selection processes that are based on fitness of individuals,

and genetic operators that are analogous to Darwin’s evolution theory. These

evolution-based systems are known as evolution programs (EP), and have a struc-

ture like the one shown in Algorithm 3 (Michalewicz, 1994).

Algorithm 3 Evolution Programs
t← 0
initialize P (t)
evaluate P (t)
while stopping condition is false do

t← t + 1
select P (t) from P (t− 1)
alter P (t)

end while

Evolution programs are probabilistic algorithms, which maintain a population

of individuals, P (t) = {xt
1, ..., x

t
n}, at iteration t. Each individual is a potential

solution to the problem in hand. These individuals are represented in a data struc-

ture form, S. Each solution, xt
i, is evaluated to give a measure of its fitness. Then,

a new population, for iteration t + 1, is formed by selecting more fit individuals

(selection). Some members of the new population may undergo transformations

(alteration) via genetic operators to form new individuals (solutions). There are

mutation type transformations, which create new individuals by a small change in

a single individual (mi : S → S). There are also higher-order crossover type trans-

formations, which create new individuals by combining parts from two or more

individuals (cj : S × S...× S → S). After a number of generations, the algorithm

converges to a near-optimum solution (Michalewicz, 1994).

The genetic algorithm (GA) is the most commonly used evolution program

for both constrained and non-constrained optimization problems. While classical

derivative-based optimization algorithms generate a single-point at each iteration,

GAs generate a population of points at each iteration. This makes them a powerful

tool in solving complex optimization problems with discontinuous search spaces
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and having many local extrema. Derivative-based, gradient-following algorithms

become insufficient in finding the global optimum of such kind of problems, where

the objective function is discontinuous, non-differentiable, stochastic, or highly

non-linear (Matlab, 2006).

Potential solutions in GA’s are represented in the form of strings. The lengths

of the strings depend on the range of the parameters (minimum and maximum) and

also the precision with which the solutions are sought within this range. Binary

strings with an alphabet size of two (0 and 1) are common, however any alphabet

size may be employed. Some of the GA vocabulary is shown in Table 4.1, which

would be make it easier to understand the terminology used in the explanation of

GA’s.

Table 4.1. The GA vocabulary (Güyagüler, 2002).

GA vocabulary Engineering vocabulary
environment objective function evaluator
population set of solution vectors
chromosome, string string encoded solution vector
gene an element of the encoded string
fitness function value
individual data structure
generation iteration
reproduce carry on to the next iteration

Implementation of the algorithm starts with creating an initial random popu-

lation. Population size is a parameter that must be defined. At any iteration step,

the population is modified simultaneously, to generate a better population. This

enables the algorithm to search different areas of the parameter space simultane-

ously. The individuals from this population are selected according to their fitness.

Fitness is basically the objective function that is to be maximized/minimized. Indi-

viduals with higher fitness have higher chances to reproduce. The selection process

can be done in different ways. However, most common techniques are stochastic

tournament and roulette (Goldberg and Deb, 1991):

Stochastic tournament - This implementation is suited to distributed appli-

cations. Every time an individual is to be selected for reproduction, two of
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them are chosen randomly, and the best one wins with some fixed probabil-

ity, typically 0.8. This scheme can be enhanced by using more individuals

on the competition.

Roulette - The individuals of each generation are selected for survival into

the next generation according to a probability value that is proportional to

the ratio of the individual fitness over total population fitness. This means

that, on average the next generation will receive copies of an individual in

proportion to the importance of its fitness value.

Elitism is a commonly-used extension to the selection process, which makes the

best individual of the older generation be copied to the next generation without

alteration. In this way, good solutions are not lost during the selection process.

The selected individuals are modified with two genetic operators: crossover

and mutation. Crossover is a recombination operator. There are different ways

of combining two individuals, but the most common one is the single-point cross

over. Two individuals are selected and their strings are crossed over from a ran-

domly selected crossing point. For example, if 01100101 and 10111001 were to be

crossed over from 5th gene, the offsprings would look like 10111101 and 01100001.

Crossover is carried out with the probability, pc, which is usually closer to 1. Mu-

tation is the other operator, which reverses a gene within a string. When using

binary strings, mutated gene would become 0 if it was 1, or vice versa. Muta-

tion is done by the mutation probability, pm, which is usually set at a very low

value (closer to 0). Selection and crossover are processes by which individuals with

good performance are selected and their building blocks are recombined. By this

way, more and more copies of good schemata are created. Mutation is used to

bring back some important bit values (genes) that may be lost during the selection

process. Algorithm 4 shows a simplified explanation of the genetic algorithm as a

modification of the evolution programs algorithm.
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Algorithm 4 Genetic Algorithm
t← 0
initialize P (t)
evaluate P (t)
while stopping condition is false do

t← t + 1
evaluate P (t− 1)
if elitism is on then

copy xt−1
best to P (t)

end if
select P (t) from P (t− 1)
crossover selected individuals
mutate selected individuals
generate the next generation P (t + 1)

end while
return the best individual

4.3 The Hybrid Neuro-Genetic Approach

In this study, a hybrid neuro-genetic approach is used for optimizing the design of

cyclic gas injection processes in a computationally-efficient manner. The hybrid

neuro-genetic approach includes constructing proxy approximators with ANN, and

using these approximators to calculate the objective function in GA. Coupling

ANN with GA has been successfully applied in different kinds of petroleum en-

gineering applications (Mohaghegh et al., 1996; Güyagüler et al., 2000; Johnson

and Rogers, 2001; Yeten et al., 2003; Zangl et al., 2006). Johnson and Rogers

(2000) showed that the ANN can be used as an accurate approximator when they

are used for objective function evaluation. As a fast evaluator, this also makes

it easier and faster to optimize the GA parameters. They also showed that the

optimal solution is insensitive to different compositions of training samples that

are used for network training. Figure 4.8 shows the optimization process. A num-

ber of potential solutions, represented by strings are fed into the neural-network

proxy. Each solution is evaluated based on the proxy output. Next generation of

solutions are created via genetic operators. This method is successfully applied

to optimize the design of the cyclic pressure pulsing process using the developed

proxies. Optimization studies using the neuro-genetic approach are presented in

Chapter 8.
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Figure 4.8. The hybrid neuro-genetic approach for high-performance optimization.



Chapter 5

Development of Reservoir-Specific

Proxies

In this chapter, the design and development of reservoir-specific proxy models for

the cyclic pressure pulsing process are explained. First, an overview of the study

area (Big Andy Field) is given, and the constructed single-well reservoir model

is described. Then, the development of neural network structures, problems that

were faced with, and how they were overcome during the development stage are

presented. Definitions of the parameters are followed by the development of neural

network architectures for forward and inverse problems. The prediction results are

presented for pure N2 and CO2 injections with the relevant discussions. At the end

of the chapter, a case study is presented, and main conclusions are summarized.

5.1 Study Area: The Big Andy Field, Kentucky

5.1.1 Background Information

The Big Sinking Field is located in Eastern Kentucky lying on the Western flank

of the Appalachian Basin. Production started during the early 1900’s, and the

underlying reservoir is pressure depleted with a remaining pressure of about 50 psig.

Having an average water saturation of 50%, the field has an average permeability

of 19 md, and average porosity of 13%. Produced oil is Mid-Continent crude oil

of 36◦ API gravity (Abboud, 2005). The composition of the sampled reservoir oil
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from laboratary analysis is shown in Table 5.1.

Table 5.1. Composition of the oil sample taken from Well-19P (Abboud, 2005).

Component Mole, % Component Mole, %
C1 0.17 C6 5.85
C2 1.11 C7 21.80
C3 5.48 C8 11.20
iC4 1.22 C9 8.87
nC4 8.37 C10+ 20.96
iC5 3.69 N2 0.06
nC5 11.22 CO2 0.00

Most of the wells had been drilled in the early 1980’s with a total of around

800 wells (Miller and Hamilton-Smith, 1998). The Big Sinking Field produces from

three zones of the Silurian age, encountered at depths ranging from 800 ft to 1,200

ft. These three zones are known as the Corniferous 1st pay, 2nd pay, and 3rd pay,

which corresponds respectively to Upper and Lower Lockport and Keefer.

The Big Andy Field is an extension of the Big Sinking Field and is the cur-

rent area of interest for production. It is a shallow (1,300 ft), naturally-fractured

reservoir with a formation thickness of 40 ft. The stripper oil well production at

the Big Andy Field is currently from the 3rd pay zone: Keefer sandstone. The

formation characteristics are listed in Table 5.2.

Table 5.2. Characteristics of the Big Sinking Field (Miller and Hamilton-Smith, 1998).

Depth, ft 1,300
Thickness, ft 40
Drainage area, acres 8
Porosity 0.13
Permeability, md 19
Water saturation 0.50
Pressure, psi 50
Produced gas-oil ratio (GOR), SCF/STB 1,500
Produced water-oil ratio (WOR), STB/STB 8
Temperature, ◦F 68
Oil gravity, ◦API 36
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There is considered to be significant reservoir heterogeneity as a result of frac-

turing along near-vertical small-displacement faults. Figure 5.1 shows the struc-

tural map of depth to the top of Corniferous formation with the wells in the field.

5.1.2 Utilization of Cyclic Pressure Pulsing and Produc-

tion History

Because of depletion, the field was waterflooded during the early 1980s. Wa-

terflooding was ineffective due to presence of a fractured matrix. During 1985,

cyclic gas injection testing was initiated using CO2. With the start of continuous

cyclic injection during 1989, 390 treatments were utilized on 240 wells until 1994

(Miller et al., 1994). A total of 12,200 tons of liquid CO2 was injected, resulting in

180,000 STB of incremental recovery, and 1.2 MSCF/STB of efficiency (Miller and

Hamilton-Smith, 1998). It was observed that efficiency of treatments decreased

with time, and less initial response was observed with larger volumes of CO2. Fig-

ure 5.2 shows the production history of the Big Sinking Field during cyclic CO2

utilization.

As a result of declining cyclic efficiency, and both increasing costs and shortage

of CO2 in the area, the CO2 program was terminated during 1994. An investigation

was made to improve the process with alternative gases. 1900 BTU casing head

rich gas and 80% N2 and 20% CO2 were tested. Both alternatives showed improved

responses after CO2 utilization (Miller and Hamilton-Smith, 1998). In 1996 N2 was

introduced as the primary injection gas for the process. A nitrogen membrane unit

was installed in the field to generate nitrogen on site at a cost much less than that

for other gases. Nitrogen is selected because it has several advantages besides its

cost. It is a user-friendly gas since it is inert, non-corrosive, and environmentally

friendly (Miller and Gaudin, 2000). Since the reservoir pressure was as low as

50 psi because of depletion at that time, it was possible to inject N2 at very low

pressures (around 150 psig). Since it does not dissolve in the oil at low pressures

as CO2 would do, it can move further back into the reservoir, and can penetrate

easier into the rock matrix (Miller and Gaudin, 2000).

Initial tests were undertaken by injecting 5% O2 and 95% N2 at 350 MSCF/d.
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Figure 5.1. Structural depth-to-top map of the Corniferous formation, Big Andy Field
(courtesy of Bretagne, LLC).
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Figure 5.2. Production response during the cyclic CO2 utilization in the Big Sinking
Field, adapted from Miller et al. (1994).

After gaining experience, the injection volume was increased to 750 MSCF/d to

expand the treatment. Nitrogen is injected down the annulus of producing wells

with an injection rate of 20 to 100 MSCF/d per well depending on the stage of

injection (Miller and Gaudin, 2000).

The process has been continuing since 1996. Currently, an average of 12,000

MSCF per lease area is provided by the membrane unit, and the current operating

pressure is around 300 psig. Each well can take around 100 MSCF of gas, and

the treatments continue until all wells are equalized with supply, or until a 30-

day injection period is completed. After the injection, the wells are shut-in for

soaking for a period of around 30 days (Abboud, 2005). Optimum treatment

schemes are to be determined with this study. Figure 5.3 shows the cumulative

production/injection history of N2 utilization in the Big Andy Field. The plot of

efficiency ratio (injection/increase in production) changing with time is shown on

Figure 5.4.
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5.1.3 Available Field Data

A set of available field data from the Big Andy Field have been compiled to con-

struct a reservoir model for the field. The data include production histories, logs,

core and fluid sample analyses for wells, leases, and the field. Table 5.3 shows a

summary of the data.

Table 5.3. Available field data from the Big Andy Field.

Type of Data Explanation
Field Data
Production Cumulative production and

injection history for the field
Lease Data
Reserves Cumulative oil production and

current reserves for 65 leases
Production Production and injection history

for 32 leases
Well Data
Cores Core analyses (porosity, permeability)

from two wells
Fluid samples Fluid hydrocarbon analyses

including PVT and viscosity from 3 wells
Logs Log evaluations (bulk density, thickness,

water saturation, oil-in-place) for approximately 300 wells,
GR, NP, DP, resistivity logs for one well.
A seperate net pay and gross pay thickness
information from 377 wells.

5.2 Reservoir Model

A single-well, compositional, dual-porosity reservoir model is constructed using

a commercial simulator: CMG’s Advanced Compositional Reservoir Simulator

(GEMTM). Reservoir characteristics are from the Big Andy Field. The grid sys-

tem is 9×9 cartesian system, with each block representing 65 ft×65 ft square. This

corresponds to 8 acres of drainage area, which is also a characteristic of the well

spacing in the Big Andy Field. The reservoir characteristics are shown in Table 5.4.
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Table 5.4. Characteristics of the single-well reservoir model.

Depth, ft 1,300
Thickness, ft 40
Drainage area, acres 8
Porosity (matrix) 0.13
Porosity (fracture) 0.01
Permeability, md (matrix) 19, 19, 1 (x, y, z)
Permeability, md (fracture) 100, 100, 1 (x, y, z)
Fracture spacing, ft 10, 10, 10 (x, y, z)
Water saturation 0.50
Pressure, psi 20
Temperature, ◦F 68

Some initial tests have been done on the model to understand the process. A

test case was run at 100 MSCF/d by injecting nitrogen for 53 days, and soaking the

system for 30 days. Figure 5.5 shows the nitrogen mole fraction in the fractures,

during injection and soaking periods.

In this model, gas-phase diffusion is taken into account, which is the most

important factor during the soaking. The effect of soaking is analyzed by vary-

ing soaking time while keeping other parameters constant. Figure 5.6 shows this

analysis, where the peak oil rate and incremental oil production are plotted with

varying soaking times for a cumulative treatment amount of 10,561 MCF. Results

for both CO2 and N2 are shown. These figures show that peak rate and cumula-

tive production of oil increases with soaking time up to a point after which they

start to decline. This is due to the dissipation of pressure with time as also stated

by Shelton and Morris (1973). These plots also show that it is possible to have a

higher peak rate with N2 compared to CO2. On the other hand, higher incremental

oil production is achieved with CO2.

In another analysis, phase behavior effects during the soaking were studied.

Phase envelopes in Figure 5.7 also indicate high solubility of CO2 compared to N2.

After CO2 injection, the pressure at the well block increased to 151.9 psia, while

with N2, a significantly higher pressure, 430.6 psia, was achieved. Changes in the

oil saturation and liquid volume % with soaking time were analyzed with different

amounts of gas injected (150 MSCF/d, 225 MSCF/d, and 300 MSCF/d). It was
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(a) Injection

(b) Soaking

Figure 5.5. Nitrogen mole fraction in the fracture system during injection (100
MSCF/d) and soaking.

observed that in the case of CO2 injection, the liquid volume % and oil saturation

around the wellbore increases as the gas amount increases during soaking due to

high dissolution of CO2 in oil (Figure 5.8). This explains the higher amount of

incremental oil recovery with CO2 as compared to that of N2. These observations

show that mechanisms related to phase behavior are very important for the increase

in oil production in the case of CO2 injection. On the other hand, in the case of

N2 injection, the increase in the reservoir pressure is the major mechanism for

improved oil recovery.
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Figure 5.6. Effect of soaking period on the peak oil rate and incremental oil production
after a treatment amount of 10,561 MSCF.

Figure 5.7. Phase envelopes of the mixtures around the wellbore in the matrix and
fractures after the injection of N2 and CO2.
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5.3 Data Preparation and Design Schemes for

Cyclic Pressure Pulsing

The first step that needs to be taken in constructing proxy approximators is to

define the variables that the proxy is going to use and the ranges of these vari-

ables. In this case, we would like the proxy to be an accurate approximator of

the relationships between the design parameters and the performance indicators

of the cyclic pressure pulsing process. In Chapter 3, some of these parameters are

mentioned. In this section, we go through these variables in detail.

In modeling the multi-cycle cyclic pressure pulsing process, two design schemes

are considered:

Design Scheme-1: Fixed-number-of-cycles scheme with variable injection vol-

umes

Design Scheme-2: Variable-number-of-cycles scheme with constant injection

volumes

The approach to the process design is different in these schemes from the mod-

eling perspective. If the number of cycles to be modeled is known, each individual

cycle can be controlled separately. On the other hand, if the number of cycles is

controlled by other system characteristics, then it would not be possible to specify

cycle design parameters separately. Since both design approaches are applicable

in the field, both are studied to cover a wider range of applications. Figure 5.9

shows an illustration of these schemes with the expected input/output structures.

5.3.1 Design Scheme-1

In this design scheme, we are using a fixed number of cycles (5), so the number

of cycles is not used as a design parameter. Also, we are using pure N2 and

pure CO2 injections, so the composition of the injected gas is not included as a

design parameter. Considering these, the list of the process variables are shown in

Table 5.5.

Although the design parameters are clear, some of the performance indicators

must be defined at this point. Figure 5.10 show a typical oil flow rate change
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Figure 5.9. Design schemes of the cyclic pressure pulsing process.

Table 5.5. Process variables of the Design Scheme-1.

Design Parameters Performance Indicators
Injection rate Cumulative and incremental oil productions
Length of the injection period Oil rates
Length of the soaking period Peak oil rate (and stimulation ratio)
Length of the production period Time to reach the peak rate

Gas-oil-ratio (GOR)
Gas rates

with time during a cycle of injection process. The oil rate immediately before the

injection starts is defined as, qo0. Then the injection starts, and the well is soaked

for a period of time. Typically, the oil rate starts to rise after the well is put on

production. It reaches a peak rate after a period called, time-to-peak, tp, which

may be as short as 1 day or longer depending on the reservoir characteristics. With

the reservoir model of the Big Andy Field, it was observed that it may take from

a week to 2 months for the oil rate to reach the peak. Thus, it was decided to

consider this parameter as a performance indicator as well. The peak oil rate is

defined as qo1. After the peak, the oil production starts to decline like a typical

oil well. The oil rate at the end of the cycle is qo2. Since the well starts producing

gas at the beginning of the cycle, the gas rate peaks as soon as the well is put
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on production. Then, it also declines during the production. Gas rates at the

beginning of the cycle, and at the end of the cycle are defined as qg1, and qg2,

respectively. We are interested in predicting oil flow rates in a cycle to know the

expected decline behavior of the well’s oil production. As it is seen on the right

hand side of Figure 5.10, we set our goal of predicting nine flow rates during the

cycle, which are divided equally in terms of time.

Figure 5.10. Illustrative definitions of performance indicators.

The incremental oil production (Pratz, 1982) is defined as the additional oil

produced above the base cumulative production that would have been achieved

without the IOR process. Thus, in Figure 5.10 the shaded area represents the

incremental oil production. It is a more representative value for the well perfor-

mance since it also considers the time period for injection and soaking where the

production time is lost.

Stimulation ratio is defined as the ratio of the peak oil rate to the oil rate before

injection and represents how much the well is stimulated from its last condition:

SR =
qo1

qo0

(5.1)

After defining these variables, the next step is to define the ranges in which we

want the proxies to be accurate approximators. Based on the operations at the
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Big Andy Field, we determined the ranges of the design parameters for which we

can create our knowledge base. Table 5.6 shows these ranges:

Table 5.6. Ranges of design parameters used in the Design Scheme-1.

Design Parameter Minimum Maximum
Injection rate, MSCF/d 50 100
Injection period, days 7 40
Soaking period, days 7 40
Production period, months 6 25
Amount of gas injected, MSCF 350 4,000

A dataset is created with uniformly-distributed, randomly-selected values of

these variables. A total of 500 cases is generated for five cycles of injection of pure

CO2 and pure N2. These cases were run using the model developed with a com-

mercial reservoir simulator: CMG’s Advanced Compositional Reservoir Simulator

(GEMTM). The outputs of these runs were collected based on the aforementioned

performance characteristics. With the collection of these data, a knowledge base

is created that is to be fed into the neural network for training and to construct

the proxies.

Some analyses were made to identify some characteristics of the cyclic injec-

tion process and develop an understanding of the process. First a 2-layer (in-

put/output) network is developed with no hidden layer. This network is trained

using the hyperbolic-tangent transfer function. Weight matrix of this network is

plotted as a Hinton Diagram (Figure 5.11). In this diagram, each value is repre-

sented by a rectangle whose size is associated with the magnitude, and whose color

indicates the sign (green(+), red(-)). This diagram would show us the influence of

each design parameter on performance indicators. As it can be seen in this plot,

injected gas amount, injection period, and production period have the most influ-

ence. Production period has the most influence on late flow rates, as expected.

Longer production periods provide lower flow rates at the end of the cycle. It is

also observed that soaking period is not as significant as the other parameters.
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Figure 5.11. Hinton Diagram for the weight matrix between design parameters and
performance indicators.

5.3.2 Design Scheme-2

In this design scheme, instead of using a fixed number of cycles, the project length

and the economic oil production rate limit are specified. In this way, we let the

system utilize as many cycles as possible within the specified time period. There-

fore, the number of cycles becomes an outcome of the process as a function of the

specified process design parameters. Since the number of cycles is going to be dif-

ferent in each design scenario, the cumulative oil production of the whole process is

the only performance indicator. The overall list of the process variables are shown

in Table 5.7. Based on the operations at the Big Andy Field, the ranges of the

design parameters for this design scheme are determined as shown in Table 5.8.

The rate limit is specified between 0.1-1.0 STB/d due to the stripper-production

behavior of the field with abandonment rates in the range of 0.3-0.5 STB/d.
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Table 5.7. Process variables of the Design Scheme-2.

Design Parameters Performance Indicators
Injection rate Incremental oil production
Length of the injection period Number of cycles
Length of the soaking period
Economic limit for the oil production rate

Table 5.8. Ranges of design parameters used in the Design Scheme-2.

Design Parameter Minimum Maximum
Injection rate, MSCF/d 50 100
Injection period, days 7 40
Soaking period, days 7 40
Economic limit for the oil rate, STB/d 0.1 1.0
Total project length, years 1 10

5.4 Forward Problem

The forward problem includes developing a neural-network based proxy, which can

accurately mimic the reservoir model. As shown in Figure 3.2, the developed proxy

should provide accurate predictions of performance indicators using given design

parameters. In this way, instead of running the numerical model and waiting for

the results, the developed proxy can provide accurate predictions of the specific

performance criteria in a computationally-efficient manner.

5.4.1 Design Scheme-1

The structure of the proxy of this scheme is shown in Figure 5.12. As can be seen,

we have 4 design parameters and 16 performance indicators. In a neural network,

where we include five injection cycles, we would have 20 design parameters and 80

performance indicators. The network that was developed for this part of the study

had that structure with a single hidden layer of 50 neurons. Tan-sigmoid function

was used for activation in the hidden layer, and a linear function is used in the

output layer. Among 500 cases, 350 were used for training, 100 used for validation,

and 50 were used for testing. The network architecture is shown in Figure 5.13.
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Predictions of performance indicators for pure N2 and pure CO2 injection using

this network are presented next.

Figure 5.12. Structure of the forward proxy with fixed-number-of-cycles: Mapping
from design parameters to performance indicators.

5.4.1.1 Pure N2 Injection Predictions

Figure 5.14 and Figure 5.15 are the cross-plots for the performance predictions for

parameters: time-to-peak, GOR, gas rates, stimulation ratio, cumulative and incre-

mental oil productions. Figure 5.16 shows the oil rates during the cycle (q1,...,q9).

Figure 5.17 and Figure 5.18 are other representations of the flow rate predictions:

comparison with the actual production decline behavior of five cycles in each case.

These plots clearly show that the network was able to accurately predict the pro-

duction performance of the well during five cycles of injection. The correlation

coefficients are also included on top of each plot, each represents a high level of

accuracy with values between 0.96 and 1.00.
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Figure 5.13. Network architecture for the forward problem with fixed-number-of-cycles.

5.4.1.2 Pure CO2 Injection Predictions

Similar plots with the N2 injection case are presented in this section. Figure 5.19

and Figure 5.20 are the cross-plots for the performance predictions for parameters:

time-to-peak, GOR, gas rates, stimulation ratio, cumulative and incremental oil

productions. Figure 5.21 shows the oil rates during the cycle (q1,...,q9). Figure 5.22

and Figure 5.23 are comparisons with the actual production behavior of five cycles

in each case. Predictions are in the same range of accuracy with the N2 injection

case. The network was able to accurately predict the production performance of

the well during five cycles of CO2 injection. The correlation coefficients are also

included on top of each plot, each represents high accuracy with values between

0.98 and 1.00.
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Figure 5.14. Pure N2 injection: performance predictions.
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Figure 5.15. Pure N2 injection: performance predictions (cont’d).
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Figure 5.16. Pure N2 injection: flow rate (q1,...,q9) predictions.
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Figure 5.17. Pure N2 injection: flow rate predictions - comparison with the actual
production curves.
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Figure 5.18. Pure N2 injection: flow rate predictions - comparison with the actual
production curves (cont’d).
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Figure 5.19. Pure CO2 injection: performance predictions.
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Figure 5.20. Pure CO2 injection: performance predictions (cont’d).
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Figure 5.21. Pure CO2 injection: flow rate (q1,...,q9) predictions.
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Figure 5.22. Pure CO2 injection: flow rate predictions - comparison with the actual
production curves.
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Figure 5.23. Pure CO2 injection: flow rate predictions - comparison with the actual
production curves (cont’d).
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5.4.2 Design Scheme-2

The structure of the proxy of this scheme is shown in Figure 5.24. In this case, we

have five design parameters and two performance indicators. The network that was

developed for this part of the study had a simpler structure with a single hidden

layer of 20 neurons. This is due to the fewer number of inputs and outputs. As in

the previous case, tan-sigmoid function was used for activation in the hidden layer,

and a linear function is used in the output layer. Among 500 cases, 350 were used

for training, 100 used for validation, and 50 were used for testing. The network

architecture is shown in Figure 5.25.

Figure 5.24. Structure of the forward proxy with variable-number-of-cycles: Mapping
from design parameters to performance indicators.

Predictions of performance indicators using this network are presented below.

Figure 5.26 is the predictions of incremental oil production and number of cycles

for pure N2 and CO2 injections. Actual vs. network plots for incremental oil

production shows a high correlation coefficient of 0.93 and 0.98 for N2 and CO2
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Figure 5.25. Network architecture for the forward problem with variable-number-of-
cycles.

injection cases, respectively. The histogram charts for the number of cycles show

the number of cases with ±0, 1, and 2 accurate predictions. In the case with N2,

100% of the 100 testing cases were predicted with ±1 accuracy. Predictions with

similar accuracy were obtained with the CO2-injection case with 95% of the cases

having ±1 accuracy for the number-of-cycles predictions.



CHAPTER 5. Development of Reservoir-Specific Proxies 67

 

71

29

0

0 1 2

Number of Cycles (+/-)

100% : +/-1 accuracy

(a) N2 - Number of cycles (± accuracy)

 

54

41

5

0 1 2

Number of Cycles (+/-)

95% : +/-1 accuracy

(b) CO2 - Number of cycles (± accuracy)

500 550 600 650 700 750 800 850 900 950 1000
500

550

600

650

700

750

800

850

900

950

1000

Actual

N
et

w
or

k

Incremental Oil Production, STB | R = 0.93

(c) N2 - Incremental oil production

500 600 700 800 900 1000 1100 1200 1300 1400 1500
500

600

700

800

900

1000

1100

1200

1300

1400

1500

Actual

N
et

w
or

k

Incremental Oil Production, STB | R = 0.988

(d) CO2 - Incremental oil production

Figure 5.26. Incremental oil production and number of cycles predictions of proxies
developed for Design Scheme-2.
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5.5 Inverse Problem

Inverse problems are often ill-posed problems (with no unique solution), where

some model parameter(s) must be obtained from observed data. Thus, they are

rather hard to solve using conventional methods.

In this study, the inverse problem includes developing an ANN proxy, which

can act as an inverse simulator, going beyond the reservoir model’s capabilities.

As shown in Figure 3.2, the developed proxy should provide accurate predictions

of design parameters once the performance indicators are given. In this way, if

one can specify the desired performance from a system, the proxy can provide the

corresponding design parameters (assuming the provided performance characteris-

tics are within the ranges of proxy’s prediction capabilities). The structure of this

proxy would be the reverse of the forward one (Figure 5.27).

Figure 5.27. Structure of the inverse proxy: Mapping from performance indicators to
design parameters.

As presented in the previous section, backpropagation algorithm worked well

with the forward problem. However, in the inverse case backpropagation was not
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as successful as the forward problem. As explained in Section 5.3.1, the amount

of injected gas is the most important parameter that influences the performance

of the well. In addition to that, soaking and injection periods can be counted

together as the actual soaking period, since the soaking process actually starts

immediately following the start of the injection. Because of these complexities,

the backpropagation algorithm had difficulties in separately understanding the

influences of soaking and injection periods, and the effect of the injection rate.

These issues were handled by using output parameters, which are functions of other

parameters (functional links) instead of using the primary design parameters.

For example, by using the summation of soaking and injection periods instead of

one of them (such as soaking), we can still obtain the injection period, which would

be the difference between total time and the soaking period (assuming the network

would be able to accurately predict these two). Similarly, the injected gas amount

could be used instead of injection rate. If we are able to obtain accurate estimates

of the injection period, we would be able to obtain the injection rate from the

amount of injected gas (Injection rate = Amount of gas / Injection period). These

are simple modifications on the network output parameters to help the network

learn the process better, without changing the dimensionality of the problem.

Another problem arose because of not distinguishing between different cycles.

It was observed that the network was able to make accurate predictions when only

the first cycle is presented. However, as the number of cycles that are included

increased, the accuracy of the predictions became worse. This is to a certain degree

expected, because we should consider that with each cycle, we inject some amount

of gas, and perturb the reservoir system. The nature of the system changes with

each cycle, so the effect of the same treatment (i.e., same injection amount, same

injection period, same soaking period) would change in each case based on the

treatments in previous cycles. This problem has not arisen in the forward case,

because the problem was simpler, and the influence of each design parameter was

captured easily by the network even for different cycles of injection.

In order to overcome this problem, we looked for other types of networks that

might be more useful in capturing the physical process. Recurrent neural networks

(RNN) (explained in Section 4.1.2) have been found to be a candidate solution

for a problem of this type, since they are powerful in capturing time-dependent
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relationships. When using RNN, there are options of using a feedback from the

hidden layer or the output layer. Among these two, the latter is more suited to our

problem, which is also known as backpropagation in time. After trying two different

architectures, slightly better predictions were obtained with backpropagation in

time. The structure of this network is shown in Figure 5.28.

Figure 5.28. Structure of the recurrent network (with feedback from output) and the
presentation of cyclic injection data to this network.

The first thing to be considered carefully is the presentation of data, shown

on the right. In the forward case, we provided the network with data from all

five cycles at each training event. In this case, each cycle is a training event

itself. For example, in a given case, data of first cycle are given to the network.

Outputs are the design parameters for that cycle. After updating the weights, the

design parameters for the first cycle are copied to the context layer. Then, while

the training event for the second cycle is executed, the context layer provides the

hidden layer with the design parameters of the previous (first) cycle. In this way,

the network knows that it is actually the second cycle that is being trained, and

there was a cycle before that one (first cycle), which may have influenced the

current cycle. This type of training has two important benefits:

Capturing the physical process - It helps the network to capture that the

data provided it is actually a sequence of events. In this way, the network

takes into consideration that outcomes of each cycle may also be under the

influence of previous cycle(s).
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Simplified network structure - Since we present one cycle at a time, we

only need to have 16 inputs and 4 outputs (Presenting five cycles would have

required 80 inputs and 16 outputs). However, the computational time would

increase because of increased training data (5 times more data are used).

The architecture of the network with recurrent connections is shown in Figure 5.29.

Figure 5.29. Network architecture for the inverse problem with recurrent connections.

Figure 5.30 and Figure 5.31 show the predictions of design parameters for

N2 and CO2 injection, respectively. As can be seen, while the predictions for

the injected gas amount and the production period are good, predictions for the

injection period and the soaking period are less accurate. However, it should be
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noted that correlation coefficient values of higher than 0.92 indicate reasonable

accuracy for all parameters.
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Figure 5.30. Pure N2 injection: performance predictions.
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Figure 5.31. Pure CO2 injection: performance predictions.
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5.6 Case Study: The Sandy Ridge Unit

The Sandy Ridge Unit is one of the leases operated by Bretagne, LLC. in the

Big Andy Field. Cyclic nitrogen utilization started during 1999 and is currently

in the fourth cycle. Lease production is approximately 500 STB/month. It is

aimed to apply the presented methodology to this specific lease area and analyze

the outcomes. This provides an opportunity to go over the guidelines of this

methodology for the practicing engineer.

First, oil production and gas injection histories of the lease are analyzed. The

production history is approximated using decline curves for each cycle of produc-

tion. The scope of the analysis is reduced to one representative well by considering

the number of wells on production with time. Then, a representative reservoir

model is constructed using the available reservoir information and the produc-

tion history. A number of design scenarios are generated using Design Scheme-2

(explained in Section 5.3.2). Injection rate, injection and soaking periods, total

project time, and cycle abandonment rate are varied. After running these scenar-

ios using the reservoir model, outcomes are collected, and NPV for each case is

forecasted. This knowledge base is used to develop a neural-network based proxy,

that can be used to accurately predict the NPV and incremental oil production,

once the design scenario is provided.

5.6.1 Production Data Analyses

Production data analyses were performed on the Sandy Ridge Unit for the purpose

of developing decline behavior that would be representative of the change in oil-

production rates with the number of nitrogen treatments. This lease is currently

in the fourth cycle of cyclic utilization (Figure 5.32). The production history was

approximated with decline curves using the empirical Arps Equation (Arps, 1945):

q(t) =
qi

(1 + qibDi)1/b
(5.2)

where qi is the initial flow rate, Di is the initial decline rate and b is the decline

coefficient. An hyperbolic decline model is obtained for 0 < b < 1. When b = 0

and b = 1, two special cases can be defined as:
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q(t) =


qi

(1+qibDi)
if b = 1 (Harmonic decline),

qie
Dit if b = 0 (Exponential decline).

In this case, since qi, the initial flow rate, is known, Di, and b were estimated man-

ually to get an approximate match between the actual production and estimated

production rates. These parameters are shown in Table 5.9. It is seen that the

decline behavior of each cycle is similar as peak rates vary with the number of cy-

cles. Table 5.10 includes the information regarding the performance of each cycle

such as the peak oil rate, incremental oil production, cycle abandonment rate, and

cycle length.

Table 5.9. Decline curve parameters for the Sandy Ridge Unit production.

Parameter Base Cycle 1 Cycle 2 Cycle 3 Cycle 4
qi 900 1,300 1,800 1,400 1,000
Di 0.02 0.06 0.07 0.05 0.05
b 0.3 1 1 1 1

Table 5.10. Cyclic performance data for the Sandy Ridge Unit.

Parameter Cycle 1 Cycle 2 Cycle 3 Cycle 4
Stimulation ratio 7.88 3.40 1.74 1.39
Peak oil rate, STB/month 1,261 1,810 1,265 1,000
Cycle-end oil rate, STB/month 532 728 720 -
Cycle length, months 28 23 24 -
Incremental oil prod., bbls 16,456 13,558 8,059 2,292

To reduce the scope of the analysis to one representative well, the number of

wells on production at different times were considered (Figure 5.33). Based on

Figure 5.33, 25 wells were determined to approximate the average production for

each well. The monthly production in the lease area were divided by 25 wells

and 30 days to estimate the daily average production for a representative well.

Figure 5.34-a shows the average production history for one well in the Sandy Ridge

Unit. Table 5.11 shows the performance of the individual cycles based on a single

representative well’s production.
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Figure 5.32. Production history of the Sandy Ridge Unit (courtesy of Bretagne, LLC).

Table 5.11. Cyclic performance data for representative well.

Parameter Cycle 1 Cycle 2 Cycle 3 Cycle 4
Stimulation ratio 7.88 3.40 1.74 1.39
Peak oil rate, STB/month 1.68 2.41 1.69 1.33
Cycle-end oil rate, STB/month 0.71 0.97 0.96 -
Cycle length, months 28 23 24 -
Incremental oil prod., bbls 658.3 542.3 322.3 91.7
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well and reservoir model output.
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A single-well reservoir model was constructed to perform optimization studies

by evaluating different design scenarios. Oil composition in Table 5.1 was used

to characterize the reservoir fluid. The nitrogen treatment volumes in the Sandy

Ridge Unit were collected from the database. Average nitrogen volume per well

was determined as 600 MCF for the first cycle and approximately 1,000-1,100

MCF during the second and third cycles, assuming an average of 25 active wells.

Applying these treatments in the model and using a soaking time of 20 days for

each cycle resulted in similar production behaviors of these cycles. Figure 5.34-b

shows the oil production rate history of the well with peak rates around 1.8 STB/d,

2.4 STB/d, and 1.4 STB/d for three cycles.
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5.6.2 Economic Calculations

Economic analyses were performed to understand how design considerations would

affect the project financially and to develop design scenarios that would maximize

the net present value (NPV) of a given cyclic injection project. Parameters used

in the economic analyses are given in Table 5.12. Each project is evaluated by

collecting monthly oil production and nitrogen injection volumes through the life

of the project and calculating the net cash flow, NCF, at a given time:

NCFt = NCFoil,t −NCFN2,t −NCFop,t (5.3)

where NCFoil,t is the income component after paying taxes and royalty interest

from the oil production. NCFN2,t is the nitrogen generation and delivery compo-

nent and NCFop,t is the well operating component. This net cash flow amount at

a future time, t, can be brought to present using:

P = F

(
1

(1 + i)n

)
(5.4)

where P is the present value, F is the future value, i is the interest rate, and n is

the number of periods. In this manner, different projects can be evaluated with

equal conditions at t = 0 by considering the time value of money.

Table 5.12. Parameters used in the economic analysis.

Oil price ...... $ 60.00 per STB of production
Nitrogen cost ...... $ 1.00 per MCF of injection
Operating cost ...... $ 400.00 per well per month
Royalty interest ...... % 12.5 of the gross revenue
Taxes ...... % 6.0 of the net revenue
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5.6.3 Proxy Construction

Using the current reservoir model, a number of design scenarios were created and

run. In these design scenarios, the project life in years, the cycle abandonment

rate, injection rate, period, and soaking period were varied within the ranges shown

in Table 5.13.

Table 5.13. Ranges of scenario design parameters.

Parameter Minimum Maximum
Project life, years 5 10
Cycle abandonment rate, STB/d 0.2 0.5
Injection rate, MCF/d 50 100
Injection period, days 10 40
Injection amount, MCF 500 4,000
Soaking period, days 10 40

Using the outcomes of these scenarios, it was aimed to develop a neural net-

work model that can accurately predict the NPV, and the incremental oil that

can be produced with a given project design scenario was developed. The design

scenarios created within the specified ranges resulted in a NPV varying between

$17,000-$31,000 and incremental production varying between 650-900 STB. The

input/output structure of this network is shown in Figure 5.35.

Figure 5.35. Input/output structure of the neural network model.

The developed network model was able to accurately predict NPV and in-

cremental production with correlation coefficients higher than 0.95 (Figures 5.36

and 5.37).
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5.7 Summary and Conclusions

A single-well, compositional, dual-porosity reservoir model was constructed, which

incorporated reservoir characteristics of the Big Andy Field, Kentucky. Cyclic

injection of N2 and CO2 were utilized in this model. It was observed that while N2

causes a higher peak rate with the same amount of injection, CO2 dissolves into

the oil, increasing the oil saturation, and yielding more cumulative oil recovery.

Soaking period mainly affects the peak oil rate. Longer soaking increases the peak

oil rate up to a point, after which the rate starts to decline due to the dissipation

of the pressure. It can also be stated that soaking process starts as soon as the

injection starts. Thus, it is possible to have a more clear understanding of the effect

of soaking period if these two periods are taken into consideration together. The

amount of injected gas is the most important parameter affecting the incremental

recovery, and the injection rate has a little effect.

Proxy approximators were developed using the neuro-simulation methodology.

The forward proxy provides the critical performance indicators, once the design

parameters are provided. Accurate predictions were obtained for both cases with

nitrogen and CO2. This showed that these proxies can mimic the reservoir model to

output the desired performance indicators as the model would do. Similarly, inverse

proxies were developed that can output the corresponding design parameters for

a given set of performance indicators. These proxies went beyond the capabilities

of the reservoir model, working backwards. The amount of injected gas and the

production period were predicted with a very high accuracy. Injection and soaking

periods were predicted with a less, but reasonable accuracy. This is most probably

due to the physical soaking process, which actually starts with the injection as

mentioned above.

In developing the proxy approximators two design schemes are considered de-

pending on the way the cyclic pressure pulsing process is designed and applied in

the field/model. In Design Scheme-1, a fixed number of cycles (in this case, it is

5) is implemented, and each cycle is designed separately with different injection

characteristics. Injection rate, lengths of injection period, soaking period, and

production period are specified separately for each cycle. This design scheme is

powerful because it allows varying injection design characteristics for each cycle.
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On the other hand, Design Scheme-2 allows different number of cycles in each

case. Process economic production rate limit and process length is specified in de-

signing the process. Production in each cycle is stopped when the oil production

rate reaches the production rate limit. Another cycle of injection/production is

then initiated, and this continues until the total time reaches the project length,

which was also another specified design parameter. This design scheme is powerful

because the number of cycles is not limited. Both design schemes are applicable

in the field. Therefore, to cover a wider range of possibilities both schemes are

implemented, and proxies are successfully developed for each design scheme.

At the end of the chapter, an example case study is presented. The methodology

presented in the chapter is applied to one of the lease areas in the Big Andy Field.

After considering the number of wells on production each month, the actual lease

production history was converted to the production history of one representative

well. 400 different design scenarios with Design Scheme-2 were applied to the

reservoir model and the performance indicators were collected. Together with the

incremental oil production, net present value (NPV) is also calculated for each

design scenario. A neural-network proxy was trained with the knowledge base.

The proxy was able to accurately predict the cumulative oil production and the

NPV. With this case study, a guideline to the practicing engineer is presented to

apply the presented methodology to a given well or lease area.



Chapter 6

Development of Universal Proxies

In this chapter, development and application of universal proxy models for the

cyclic pressure pulsing process are presented. In this part of the study, it is aimed

to generalize the methodology presented in Chapter 5 to reservoirs of different

characteristics. This includes development of more complicated proxies which,

when trained, could capture the influence of reservoir characteristics together with

the operational design scenarios. In this way, the developed proxies can be used

as general screening tools applicable to different reservoirs. In addition to varia-

tions in reservoir rock properties, well drainage area (i.e., well spacing), and initial

conditions of the reservoir; the study is repeated for three different types of oils

to further generalize the approach. These fluids are characterized with composi-

tions found in the literature and defined as black, volatile, and heavy oils with a

conventional naming procedure as used in the petroleum engineering literature.

The chapter starts with description of the reservoir model. The description is

divided into three subsections to describe the initial conditions and well spacing

(Section 6.1.1), rock properties (Section 6.1.2), and fluid properties (Section 6.1.3).

Then, the development of proxies are presented for Design Scheme-1 and Design

Scheme-2, which were described earlier in Section 5.3. A hierarchical diagram

that shows the proxies developed for different design schemes, injected fluids, and

reservoir fluids is shown in Figure 6.1. This represents a total of 12 proxy models

serving for different purposes. The results and discussions are presented through-

out the chapter in this structure. For each design scheme, the prediction results

and discussions are presented for cases with pure N2 and CO2 injection as ap-
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plied to oils with different compositions (volatile, heavy, and black-oil, defined in

Section 6.1.3). Finally, the chapter concludes with the summary and conclusions.

Figure 6.1. Hierarchical diagram of the proxies developed for different purposes in
terms of design, injected fluid, and reservoir fluid.

6.1 Characterization of the Reservoir Model

The reservoir model is constructed using CMG’s Advanced Compositional Reser-

voir Simulator (GEMTM). It is a single-well, single-layer, compositional, dual-

porosity reservoir model with a 17×17 cartesian grid system.

The production/injection well is located at the center of the model. For the

injection well, the injection rate is specified as the well constraint since it is used

as a process design parameter in this study. For the production well, the minimum

bottom-hole pressure is specified as 14.7 psia as the only well production constraint.

Warren-Root’s formulation (Warren and Root, 1963) is used to define the dual-

porosity system. Fully-implicit scheme is used for the numerical solution. The

gas-phase diffusion option is activated to represent the component mass flow from

fractures into the matrix due to the compositional gradients. To construct a knowl-

edge base that would cover a wide range of different reservoir characteristics and

conditions, ranges of various reservoir characteristics and conditions are defined.

While defining these ranges, it is aimed to cover a wide range of cases while consid-

ering the physical occurability of each case. These ranges of various parameters are

shown in Table 6.1. In the following sections, the characterization of the reservoir

will be explained in more details to discuss the ranges of some of the parameters
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and to describe some of the other reservoir characteristics.

Table 6.1. Ranges of reservoir characteristics that are varied to construct universal
proxies.

Parameter Minimum Maximum
Thickness, ft 10 100
Drainage area, acres 5 20
Porosity - matrix 0.12 0.20
Porosity - fracture 0.01 0.03
Permeability - matrix, md - i, j 0.1 100
Permeability - matrix, % - k 1 25
Permeability - fracture - i, j, k 10 10,000
Fracture spacing, ft - i, j, k 10 100
Reservoir temperature, ◦F 80 240
Initial reservoir pressure, psia 20 1,500
Initial water saturation 0.3 0.7

6.1.1 Initial Conditions and Well Spacing

The initial conditions are defined with the average reservoir pressure, temperature

and water saturation. In this study, cyclic pressure pulsing process is investigated

in depleted or partially-depleted reservoirs. Therefore, the average reservoir pres-

sure is varied between 20 psia and 1,500 psia. The constant average reservoir

temperature is varied between 80 F and 240 F. The initial water saturation is var-

ied between 0.30 and 0.70. While incorporating the variations in the well-spacing,

we wanted to narrow-down our analysis to developed fields. Thus, we determined

the limits for the drainage area as 5 and 20 acres.

6.1.2 Rock Properties

Variations in the rock properties are included to have a universal range of for-

mations with different volumetric, storage and transmissibility capacities. These

include variations in the porosity and permeability in both matrix and fracture

systems, thickness of the formation and the fracture spacing (intensity). Ranges of

these parameters are shown in Table 6.1. While generating uniform distributions of
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these parameters, a constraint is defined to assure that the fracture permeability is

larger than the matrix permeability. While including anisotropy in the horizontal

and vertical directions of the matrix permeability, fracture permeability is defined

as an isotropic tensor (kfx=kfy=kfz).

Data analyses were performed during the data preparation stage. Initially, it

was aimed to generate uniformly-distributed data sets to represent a wide range

of different types of reservoir characteristics. It was expected that fracture per-

meability would have a significant effect on the recovery process. Its influence

on the process performance was analyzed. Figure 6.2 shows how the peak oil

rate changes with different fracture permeabilities. It is observed that at low-

permeability regions (less than 2,000 md) the change in the peak oil rate is more

significant than in the high-permeability regions (2,000 md - 10,000 md). There-

fore, in low-permeability regions, dramatic changes in the process performance

would be observed with even small changes in the fracture permeability. Because

of this fact, we included more data from the low-permeability distribution instead

of a uniform distribution. In this case, the neural network could capture the sig-

nificant influence of the fracture permeability, by iterating on more data from the

low-permeability region.
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Figure 6.2. Effect of fracture permeability on the peak oil rate and re-designed his-
togram of generated data sets to capture its effect in both high-permeability and low-
permeability regions.

In characterizing the reservoir rock, variations in the relative permeability

curves are not included. Three-phase relative permeabilities for a sandstone reser-
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voir are used that are generated using the Stone’s Second Model (Stone, 1973)

with an irreducible water saturation of 0.2, and residual oil saturation of 0.1. The

relative permeability curves used in this study and the oil isoperms are shown in

Figures 6.3 and 6.4, respectively.

      

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti

v
e

 p
e

rm
e

a
b

il
it

y
, 

k
r

Water Saturation, Sw

Oil-Water System

krw

krow
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti

v
e

 p
e

rm
e

a
b

il
it

y
, 

k
r

Gas Saturation, Sg

Gas-Oil System

krg

krog

Figure 6.3. Three-phase relative permeability curves used in this study.

6.1.3 Fluid Properties

According to their phase behavior characteristics, a number of classifications of

reservoir fluids have been made in the petroleum industry. Typically, at early

stages of production from a reservoir, the produced reservoir fluid is characterized

and many decisions that are made during the life of the reservoir are based on

that definition (McCain, 1990). In the literature, cyclic pressure pulsing has been

applied to both heavy and light oil reservoirs with both successful and unsuccessful

results. Therefore, in order to generalize our approach, we wanted to extend the

applicability of the universal proxies to different types of oils as a similar approach

followed by Parada (2008). In this study, three different hydrocarbon compositions
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Figure 6.4. Oil isoperms generated using Stone’s Second Model (Stone, 1973).

(heavy, black and volatile) are considered to cover a wide range of oil properties.

Black oil (Rathmell et al., 1971) and volatile oil (Papp et al., 1998) compositions

are from the literature. Heavy oil composition that is used is a real sample taken

from a heavy oil reservoir in the Middle East, which is currently producing under

steam injection (Parada, 2008). These compositions are shown in Table 6.2. Phase

envelopes of these fluids are shown in Figure 6.5. The quality lines are also shown

for different volume fractions of liquid and gas phases inside the 2-phase region.

The black oil’s critical temperature is higher than typical reservoir temperatures

(100-250 F). For the volatile oil, the critical temperature is closer to typical reser-

voir temperatures. 2-phase region’s temperature range is smaller than the one of

black oil. The quality lines of the black oil are distributed uniformly within the

2-phase region. For the volatile oil, the quality lines are displaced upwards toward

the bubble point curve. The phase envelope of the heavy oil is constructed by using

laboratory data obtained from a differential liberation experiment. It is important

to note that the fluid is in liquid phase for pressures above 430 psia. As a typical

characteristic of heavy oil compositions, the bubble-point pressures are very low

as compared to other types of oil compositions (Parada, 2008). In Section 7.2.3, a
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discussion is presented on how the initial pressure/temperature conditions of the

reservoir affects the performance of the cyclic pressure pulsing process.

Table 6.2. Compositions of three fluids used to characterize the reservoir fluid.

Component Black Oil Volatile Oil Heavy Oil
CO2 3.20 0.51 0.11
N2 0.03 1.80 0.69
C1 27.81 46.80 10.78
C2 8.21 8.09 0.12
C3 5.99 10.91 0.42
iC4 0.31 4.26 0.30
nC4 4.10 6.86 0.30
iC5 1.30 3.71 0.29
nC5 2.30 3.81 0.26
C6 4.62 4.73 0.64
C7+ 42.13 8.52 86.09
SG 0.875 0.782 0.925
MW (g) 223.0 156.0 531.8
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Figure 6.5. Phase envelopes of three different reservoir fluids used in this study.
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6.2 Design Scheme-1

As explained in Section 5.3.1, the process is designed with a fixed number of cycles

(5). Therefore, the number of cycles is not used as a process design parameter.

In Section 5.3.1, the list of variables used is presented in Table 5.5. In this part

of the study, the proxies that are developed include variation in reservoir charac-

teristics. Therefore, the set of input parameters for the neural network includes

reservoir characteristics as well as the process design parameters. Table 6.3 shows

the reservoir characteristics that are included as inputs. The list also includes some

parameters that are derived from other reservoir characteristics. These additional

parameters improved the performance of the training of the neural networks.

Table 6.3. Reservoir characteristics that are included in the set of inputs.

Thickness, ft h
Drainage area, acres A
Porosity - matrix φm

Porosity - fracture φf

Permeability - matrix, md - i, j kmx,y

Permeability - matrix, md - k kmz

Permeability - fracture - i, j, k kf

Fracture spacing, ft - i, j, k Xf

Reservoir temparature, ◦F T
Initial reservoir pressure pi

Initial water saturation Swi

Initial oil saturation Soi

Initial relative perm. to water krwi

Initial relative perm. to oil kroi

Fracture/Matrix permability ratio kf/kmx,y

Size of the reservoir, acre-ft Ah
Oil-in-place, acre-ft AhSoφm

Considering the variation in the reservoir characteristics the variety of possible

different reservoir conditions, the ranges of the design parameters are selected as

shown in Table 6.4. The input/output structure of the proposed proxies is shown

in Figure 6.6.
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Table 6.4. Ranges of design parameters used in the Design Scheme-1.

Design Parameter Minimum Maximum
Injection rate, MSCF/d 20 100
Injection period, days 5 50
Soaking period, days 5 50
Production period, months 3 12
Amount of gas injected, MSCF 100 5,000

Figure 6.6. Structure of the universal proxy with Design Scheme-1: Mapping from
reservoir and design characteristics to performance indicators.
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Together with the cumulative oil production for each cycle, nine flow rates

during the production period are selected as target outputs. This provides an

understanding of the production decline behavior after each cycle of injection.

Although the length of the production period is specified as a design parameter,

it is observed that in a number of cases the production does not last until the end

of the specified production period. This results in the collection of flow rates that

asymptotically approach zero, rather than the flow rates of the actual producing

time. To overcome this problem, we defined another performance indicator, which

represents the actual producing time in a given cycle. This time is the actual

producing time before the oil flow rate becomes zero. Accordingly, nine flow rates

are collected at equally-divided time intervals between the time the peak rate is

achieved and the time when the oil flow rate drops to 0 STB/d in each cycle.

Typically, the architecture of an artificial neural network is determined after

careful consideration of the number of inputs, outputs, training patterns, and the

complexity of the problem to be solved. We can recall from Chapter 5 that suc-

cessful mapping from the process design parameters to the process performance

indicators in the same reservoir is achieved using a single-layer network. However,

in this part of the study, we are trying to develop universal proxies that could

work in different reservoirs. We expect that the proxies would capture the influ-

ence of different reservoir characteristics and provide accurate approximations of

the performance of the cyclic pressure pulsing process once the injection design

scenarios are given. Therefore, it is likely that the most optimum network archi-

tecture would be more complex not only because of the higher number of inputs

involved but also, and more importantly, due to the inclusion of a new type of

input set, reservoir characteristics. However, it is also known from practice that

additional hidden layers increase the complexity of the neural network. Higher

than the optimum number of hidden layers typically worsen the training perfor-

mance of a neural network. Therefore, it is necessary to find out the most optimum

architecture with the best training performance and generalization capabilities.

In this case, it is observed that a 2-layer neural network architecture resulted

in better training and testing performance as compared to a single-layer network.

This is expected due to the increased complexity of the problem. While 3-layer

and 4-layer networks were also tested, they did not perform as well as a 2-layer
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network. Therefore, it is concluded that the architecture with two hidden layers

is the more feasible one for this problem. After optimizing the number of neurons

in each layer, the final architecture included 45-74-68-55 neurons in input, hidden

and output layers, respectively. The architecture is illustrated in Figure 6.7.

After considering the memory requirements for storage, scaled conjugate-gradient

backpropagation training algorithm (Demuth et al., 2006) is utilized. It was ob-

served that taking the logarithm of input and output data to reduce the range

of the data improved the performance of networks. Data in the logarithmic scale

then are normalized between -1 and 1. Among a total of 1,700 cases with different

design and reservoir characteristics, 1,200 are used for training, 300 are used for

validation, and 200 are used for testing.

In the next two sections, the prediction results of the developed neural networks

are presented for pure N2 injection and pure CO2 injection, respectively. Cross-

plots of the cumulative oil production and peak oil rate, and flow rate predictions

in different reservoirs are presented. Due to the initial high pressure of the reservoir

the cumulative oil production and the peak oil rate of Cycle 1 is in a higher range

than other cycles. Because of this, crossplots of Cycle-1 are shown separately from

other cycles.

6.2.1 Pure N2 Injection Predictions

After a neural network is trained, weights in the connection links may be analyzed

to understand the contribution of the each individual input to the network. This

essentially gives information about the importance of each input parameter in

predicting the output parameters. Before presenting the prediction results of the

developed neural networks, let us analyze the contribution of each input parameter

on the performance of the cyclic pressure pulsing process using nitrogen. As we

recall, the input set consists of reservoir characteristics and the process design

parameters for five cycles of injection. Table 6.5 shows the contribution factors

of each input parameter on the sum of outputs. The table includes the neural

network models that were trained for heavy, black and volatile oil compositions.

With this analysis, it is possible to make comments on the importance of each

reservoir property in this process.
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Figure 6.7. Network architecture for the universal proxy with Design Scheme-1.

In all three types of oils, fracture permeability, ratio of fracture permeability

to matrix permeability, oil-in-place, area, Ah product, and oil saturation are the

parameters that contributed most. It is interesting to note that while the con-

tribution of matrix permeability itself is not very significant, the ratio of fracture

permeability to matrix permeability is at a very high rank. This ratio defines

the contrast between the two permeabilities. Fracture permeability provides the

delivery of the injected gas to further portions of the reservoir, while the matrix
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permeability defines the rate of diffusion from the fractures to the matrix. Due to

the phase behavior characteristics, contribution of initial pressure and temperature

of the reservoir are more pronounced in the volatile oil than black and heavy oils.

Parameters with a ‘*’ superscript are the design parameters. We see that most

of the contribution comes from the reservoir characteristics. Among the design

parameters, as a confirmation of earlier studies, volume of the injected gas is the

most critical parameter, affecting the performance. Injection period, injection rate,

and production rate are at a comparable rank in all three cases. Soaking period

contributes the least.

Table 6.5. Contribution factors of each input parameter on the sum of outputs for each
neural network model developed for N2 injection.

Heavy Oil Black Oil Volatile Oil
Rank Input C.F. Input C.F. Input C.F.

1 kf 5.08 kroi 4.78 kf 4.96
2 kf/km 3.53 kf 4.53 T 4.63
3 krwi 3.28 kf/km 3.78 kf/km 3.93
4 OIP 3.02 OIP 3.25 kroi 3.93
5 Soi 2.32 Soi 3.07 OIP 3.51
6 Swi 2.16 Ah 1.97 Soi 2.07
7 A 2.09 A 1.96 A 2.01
8 kroi 1.89 T 1.88 pi 1.94
9 Ah 1.80 Swi 1.72 Ah 1.76
10 h 1.59 pi 1.50 h 1.76
11 kmz 1.54 Inj. Vol.* 1.41 Inj. Vol.* 1.52
12 Inj. Vol.* 1.52 krwi 1.37 Swi 1.38
13 Xf 1.36 kmz 1.19 krwi 1.34
14 T 1.34 h 1.19 Inj. Period* 1.09
15 kmx,y 1.31 φm 1.18 kmz 1.13
16 φm 1.29 Inj. Period* 1.17 φm 1.11
17 Inj. Rate* 1.23 Inj. Rate* 1.16 Inj. Rate* 1.01
18 Inj. Period* 1.20 Xf 1.16 Prod. Period* 0.91
19 pi 1.17 Prod. Period* 1.14 kmx,y 0.91
20 Prod. Period* 1.13 kmx,y 0.92 Xf 0.83
21 φf 0.83 Soak. Period* 0.92 Soak. Period* 0.83
22 Soak. Period* 0.80 φf 0.62 φf 0.75
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6.2.1.1 Volatile Oil

The reservoir hydrocarbons may exist both in the gas and liquid phases depending

on the pressure and temperature of the reservoir. Because of the phase behavior

characteristics of the volatile oil (Figure 6.5), the gas saturation may be higher

than the oil saturation within the pressure (less than 1,500 psia) and temperature

(80-240 F) ranges studied in this study. This results in low oil saturation, very

low relative permeability to oil, and low oil production rates. Within the pressure

and temperature ranges that the knowledge base is generated, the oil saturation at

initial conditions are the lowest among the three compositions used in this study.

The average oil saturation of all cases is 0.07 with the highest 0.33 and lowest 0.00.

As a result of this distribution, there were extreme cases with low production rates

outputted by the reservoir model. In reality, it is not practical to produce from

these type of reservoirs, but in this case it is a good practice to train and test the

neural-network proxy with these extreme cases to determine its capabilities.

Table 6.6 shows the correlation coefficients of the predictions of the neural

network when applied to training, validation and testing data sets. Figure 6.8

shows the actual and network-predicted total production time. Figure 6.9 shows

the cross-plots of actual and network-predicted cumulative oil productions and

peak oil rates. Because of the large difference in the range of production amounts

of the first cycle and other cycles, Cycle 1 and Cycle 2-5 are shown in two different

plots. Figure 6.9-a is the cumulative oil production of Cycle-1 and Figure 6.9-b

shows the cumulative oil production of Cycles 2 through 5. Figure 6.9-c is the peak

oil rate of Cycle-1 and Figure 6.9-d shows the peak oil rates of Cycles 2 through 5.

Both correlation statistics and visual plots show that the network is able to predict

the critical performance indicators within high levels of accuracy. In Figures 6.10

through 6.12, comparison of the actual production histories and predicted flow

rates are presented for three different cases. We see that while the order of flow

rates change significantly in each case, the network is still able to capture the

decline behavior of each production cycle. In all of the cases, highest error is seen

in the peak oil rate. Also, in cases with very small rates (e.g., Figure 6.12, Cycle-

5), high error in the predictions is observed. However, at a rate less than 1 STB/d,

the overall effect on the cumulative production is insignificant.
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Table 6.6. Correlation coefficients of N2 injection/Volatile Oil/Design Scheme-1 neural
network model.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Training
Cumulative Oil Production 1.00 0.99 0.99 0.99 0.99
tq>0 0.98 0.99 0.99 0.98 0.98
Flow Rates 0.99 0.99 0.99 0.99 0.99

Validation
Cumulative Oil Production 0.99 0.94 0.98 0.97 0.97
tq>0 0.89 0.89 0.89 0.78 0.80
Flow Rates 0.95 0.97 0.98 0.98 0.97

Testing
Cumulative Oil Production 0.98 0.98 0.98 0.96 0.97
tq>0 0.92 0.83 0.83 0.87 0.88
Flow Rates 0.97 0.98 0.99 0.98 0.98
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Figure 6.8. Pure N2 injection/Volatile Oil/Design Scheme-1: Total production time
predictions.
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Figure 6.9. Pure N2 injection/Volatile Oil/Design Scheme-1: Cumulative oil production
and peak oil rate predictions.
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Figure 6.10. Example Case 1 - Pure N2 injection/Volatile Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.11. Example Case 2 - Pure N2 injection/Volatile Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.12. Example Case 3 - Pure N2 injection/Volatile Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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6.2.1.2 Heavy Oil

As contrasted to volatile and black oils, the liquid portion of heavy-oil hydrocar-

bons dominates over the gas phase. Much higher initial oil saturations are obtained

in the knowledge base ranging between 0.10 and 0.70. The average oil saturation

is 0.48. Therefore, among the three compositions, higher liquid production is ob-

served with heavy oil.

Table 6.7 shows the correlation coefficients of the predictions of the neural

network when applied to training, validation and testing data sets. Figure 6.13

shows the actual and network-predicted total production time. It should be noted

that the total producing time is much longer than the cases with black oil and

volatile oil, which is a direct consequence of the phase behavior characteristics. As

a result of higher liquid saturation, liquid production lasts for a much longer time.

Figure 6.14 shows the cross-plots of actual and network-predicted cumulative

oil productions and peak oil rates. Because of the large difference in the range

of production amounts of the first cycle and other cycles, Cycle 1 and Cycle 2-5

are shown in two different plots. Figure 6.14-a is the cumulative oil production

of Cycle-1 and Figure 6.14-b shows the cumulative oil production of Cycles 2

through 5. Figure 6.14-c is the peak oil rate of Cycle-1 and Figure 6.14-d shows

the peak oil rates of Cycles 2 through 5. Both correlation statistics and visual plots

show that the network is able to predict the critical performance indicators with

a high degree of accuracy. In Figures 6.15 through 6.17, comparison of the actual

production histories and predicted flow rates are presented for three different cases.

It is observed while the magnitude of the flow rates change significantly from one

cycle to another, the network is able to make accurate predictions. Again, the peak

oil rate is the one with highest error due to its instantaneous nature. However, the

predictions are always found to be within a reasonable degree of accuracy.
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Table 6.7. Correlation coefficients of N2 injection/Heavy Oil/Design Scheme-1 neural
network model.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Training
Cumulative Oil Production 0.98 0.97 0.97 0.97 0.96
tq>0 0.95 0.97 0.97 0.96 0.97
Flow Rates 0.98 0.97 0.95 0.94 0.95

Validation
Cumulative Oil Production 0.98 0.96 0.96 0.93 0.78
tq>0 0.91 0.83 0.83 0.82 0.90
Flow Rates 0.97 0.96 0.94 0.92 0.85

Testing
Cumulative Oil Production 0.98 0.95 0.97 0.96 0.81
tq>0 0.91 0.82 0.82 0.77 0.95
Flow Rates 0.97 0.96 0.95 0.92 0.86
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Figure 6.13. Pure N2 injection/Heavy Oil/Design Scheme-1: Total production time
predictions.
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Figure 6.14. Pure N2 injection/Heavy Oil/Design Scheme-1: Cumulative oil production
and peak oil rate predictions.
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Figure 6.15. Example Case 1 - Pure N2 injection/Heavy Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.16. Example Case 2 - Pure N2 injection/Heavy Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.17. Example Case 3 - Pure N2 injection/Heavy Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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6.2.1.3 Black Oil

With the black oil cases, initial oil saturations are obtained in the knowledge

base ranging between 0.01 and 0.62. The average oil saturation is 0.24, which

is at an intermediate level as compared to heavy and volatile oils. Table 6.8

shows the correlation coefficients of the predictions of the neural network when

applied to training, validation and testing data sets. Figure 6.18 shows the actual

and network-predicted total production time. Figure 6.19 shows the cross-plots

of actual and network-predicted cumulative oil productions and peak oil rates.

In Figures 6.20 through 6.22, comparison of the actual production histories and

predicted flow rates are presented for three different cases. It is important to note

that in Example Case-3 where the flow rate after the first cycle is very close to

zero, the neural network output very low flow rates. This shows that the network

is able to provide accurate predictions in rather extreme conditions.

Table 6.8. Correlation coefficients of N2 injection/Black Oil/Design Scheme-1 neural
network model.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Training
Cumulative Oil Production 0.99 0.99 0.98 0.98 0.98
tq>0 0.98 0.99 0.99 0.98 0.98
Flow Rates 0.99 0.97 0.98 0.98 0.98

Validation
Cumulative Oil Production 0.98 0.96 0.89 0.88 0.90
tq>0 0.93 0.91 0.91 0.89 0.93
Flow Rates 0.95 0.91 0.92 0.80 0.80

Testing
Cumulative Oil Production 0.98 0.81 0.88 0.87 0.82
tq>0 0.90 0.92 0.92 0.93 0.91
Flow Rates 0.96 0.95 0.94 0.82 0.80



CHAPTER 6. Development of Universal Proxies 111

 

0

500

1000

1500

2000
Total Production Time, days

R=0.97
Actual

Network

Figure 6.18. Pure N2 injection/Black Oil/Design Scheme-1: Total production time
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Figure 6.19. Pure N2 injection/Black Oil/Design Scheme-1: Cumulative oil production
and peak oil rate predictions.
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Figure 6.20. Example Case 1 - Pure N2 injection/Black Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.21. Example Case 2 - Pure N2 injection/Black Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.22. Example Case 3 - Pure N2 injection/Black Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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6.2.2 Pure CO2 Injection Predictions

Table 6.9 shows the contribution factors of each input parameter on the sum of out-

puts for the cases with pure CO2 injection. Neural network models for heavy, black

and volatile oil compositions are shown in separate columns. The magnitude of

each input’s contribution factor is an indication of the importance of each reservoir

property and process design parameter in the performance of the cyclic pressure

pulsing process. Comparing with the case with nitrogen (Table 6.5), observations

are, in general, similar. Similarly, in all three types of oils, fracture permeability,

ratio of fracture permeability to matrix permeability, oil-in-place, area, Ah prod-

uct, and oil saturation are the parameters that significantly contributed to the

network more. The contribution of matrix permeability itself is limited. Contribu-

tion of initial pressure and temperature of the reservoir are more significant in the

volatile oil than in black and heavy oils. Fracture porosity and fracture spacing

are the other reservoir characteristics that have little contributions. In terms of

the design parameters, volume of the injected gas is the most critical parameter.

Injection period, injection rate, and production rate are at a comparable rank in

all three types of oils. Soaking period is the least contributor.

6.2.2.1 Volatile Oil

Table 6.10 shows the correlation coefficients of the predictions of the neural net-

work when applied to training, validation and testing data sets. Figure 6.23 shows

the actual and network-predicted total production time. Figure 6.24-a is the cu-

mulative oil production of Cycle-1 and Figure 6.24-b shows the cumulative oil

production of Cycles 2 through 5. Figure 6.24-c is the peak oil rate of Cycle-1

and Figure 6.24-d shows the peak oil rates of Cycles 2 through 5. Both correlation

statistics and visual plots show that the network is able to predict the critical

performance indicators with a high accuracy. In Figures 6.25 through 6.27, com-

parison of the actual production histories and predicted flow rates are presented

for three different cases. These results show that a similar level of accuracy is

obtained with the CO2 injection case as with the N2 injection.
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Table 6.9. Contribution factors of each input parameter on the sum of outputs for each
neural network model developed for CO2 injection.

Heavy Oil Black Oil Volatile Oil
Rank Input C.F. Input C.F. Input C.F.

1 kf 4.27 kroi 4.78 kf 4.73
2 kf/km 3.00 kf 4.64 T 3.88
3 krwi 2.97 kf/km 4.02 kf/km 3.75
4 Soi 2.44 OIP 3.09 kroi 3.19
5 OIP 2.26 Soi 2.74 OIP 2.96
6 kroi 2.22 Swi 1.82 A 2.18
7 A 2.22 A 1.80 Soi 2.01
8 Swi 2.19 T 1.79 pi 1.97
9 Ah 1.99 Ah 1.66 Ah 1.73
10 h 1.87 krwi 1.62 krwi 1.67
11 Inj. Volume* 1.53 pi 1.52 h 1.65
12 kmz 1.44 Inj. Volume* 1.41 Inj. Volume* 1.44
13 T 1.35 h 1.40 Swi 1.41
14 pi 1.30 φm 1.39 φm 1.27
15 Inj. Rate* 1.25 kmz 1.36 Xf 1.17
16 Xf 1.24 Inj. Period* 1.15 kmz 1.11
17 Inj. Period* 1.23 Inj. Rate* 1.15 Inj. Rate* 1.11
18 kmx,y 1.21 Prod. Period* 1.13 Inj. Period* 1.09
19 Prod. Period* 1.20 Xf 1.01 Prod. Period* 1.08
20 φm 1.19 Soak. Period* 0.93 kmx,y 0.98
21 Soak. Period* 0.99 kmx,y 0.86 Soak. Period* 0.97
22 φf 0.83 φf 0.67 φf 0.89
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Table 6.10. Correlation coefficients of CO2 injection/Volatile Oil/Design Scheme-1
neural network model.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Training
Cumulative Oil Production 0.99 0.98 0.98 0.98 0.98
tq>0 0.97 0.98 0.98 0.97 0.97
Flow Rates 0.98 0.98 0.99 0.98 0.98

Validation
Cumulative Oil Production 0.98 0.92 0.96 0.97 0.97
tq>0 0.93 0.93 0.93 0.91 0.93
Flow Rates 0.95 0.97 0.97 0.97 0.97

Testing
Cumulative Oil Production 0.98 0.96 0.96 0.97 0.96
tq>0 0.95 0.90 0.90 0.93 0.93
Flow Rates 0.98 0.97 0.97 0.98 0.97
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Figure 6.23. Pure CO2 injection/Volatile Oil/Design Scheme-1: Total production time
predictions.
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Figure 6.24. Pure CO2 injection/Volatile Oil/Design Scheme-1: Cumulative oil pro-
duction and peak oil rate predictions.
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Figure 6.25. Example Case 1 - Pure CO2 injection/Volatile Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.26. Example Case 2 - Pure CO2 injection/Volatile Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.27. Example Case 3 - Pure CO2 injection/Volatile Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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6.2.2.2 Heavy Oil

As in the case with nitrogen, higher oil production is observed with heavy oil be-

cause of the phase behavior characteristics that yield higher liquid hydrocarbon

saturation than volatile and black oils. Correlation coefficients of the predictions of

the trained neural network model are shown in Table 6.11. Correlation coefficients

are shown separately for training, validation and testing data sets. Figure 6.28

shows the actual and network-predicted total production time. Again, a longer

total producing time is observed than with black oil and volatile oil. Figure 6.29

shows the cross-plots of actual and network-predicted cumulative oil productions

and peak oil rates. The cumulative oil production of Cycle-1 is shown in Fig-

ure 6.29-a and Cycles 2 through 5 are shown in Figure 6.29-b. Figure 6.29-c is

the peak oil rate of Cycle-1 and Figure 6.29-d shows the peak oil rates of Cycles 2

through 5. Both correlation statistics and plots show that the network is able to

predict the critical performance indicators with a high degree of accuracy for the

pure CO2 injection case in a heavy oil reservoir. In Figures 6.30 through 6.32, com-

parison of the actual production histories and predicted flow rates are presented

for three different cases. These plots also show that the predicted flow rates are in

good agreement with the actual production histories as output by the simulator.
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Figure 6.28. Pure CO2 injection/Heavy Oil/Design Scheme-1: Total production time
predictions.



CHAPTER 6. Development of Universal Proxies 123

0 1 2 3 4 5 6

x 10
5

0

1

2

3

4

5

6
x 10

5

Actual

N
et

w
or

k

Cum. Oil Prod., STB (Cycle 1) | R = 0.983

(a) Cumulative oil production - Cycle 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Actual
N

et
w

or
k

Cum. Oil Prod., STB (Cycle 2−5) | R = 0.97

 

 
Cycle 2
Cycle 3
Cycle 4
Cycle 5

(b) Cumulative oil production - Cycles 2-5.

0 1 2 3 4 5 6 7 8

x 10
5

0

1

2

3

4

5

6

7

8
x 10

5

Actual

N
et

w
or

k

Peak Oil Rate, STB/d (Cycle 1) | R = 0.985

(c) Peak oil rate - Cycle 1.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Actual

N
et

w
or

k

Peak Oil Rate, STB/d (Cycle 2−5) | R = 0.941

 

 
Cycle 2
Cycle 3
Cycle 4
Cycle 5

(d) Peak oil rate - Cycle 2-5.

Figure 6.29. Pure CO2 injection/Heavy Oil/Design Scheme-1: Cumulative oil produc-
tion and peak oil rate predictions.
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Table 6.11. Correlation coefficients of CO2 injection/Heavy Oil/Design Scheme-1
neural network model.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Training
Cumulative Oil Production 0.98 0.97 0.97 0.96 0.86
tq>0.001 0.95 0.96 0.96 0.94 0.94
Flow Rates 0.98 0.97 0.95 0.94 0.95

Validation
Cumulative Oil Production 0.98 0.95 0.95 0.93 0.86
tq>0.001 0.88 0.84 0.84 0.80 0.80
Flow Rates 0.97 0.94 0.93 0.93 0.90

Testing
Cumulative Oil Production 0.98 0.94 0.95 0.91 0.88
tq>0.001 0.85 0.82 0.82 0.81 0.81
Flow Rates 0.97 0.94 0.94 0.88 0.87
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Figure 6.30. Example Case 1 - Pure CO2 injection/Heavy Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.31. Example Case 2 - Pure CO2 injection/Heavy Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.32. Example Case 3 - Pure CO2 injection/Heavy Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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6.2.2.3 Black Oil

Table 6.12 shows the correlation coefficients of the predictions of the neural network

when applied to training, validation and testing data sets. Figure 6.33 shows the

actual and network-predicted total production time. Figure 6.34 shows the cross-

plots of actual and network-predicted cumulative oil productions and peak oil rates.

In Figures 6.35 through 6.37, comparison of the actual production histories and

predicted flow rates are presented for three different cases. Again, similar levels of

accuracy with the nitrogen injection are obtained in this case.

Table 6.12. Correlation coefficients of CO2 injection/Black Oil/Design Scheme-1 neural
network model.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Training
Cumulative Oil Production 0.99 0.99 0.99 0.98 0.98
tq>0.001 0.98 0.99 0.99 0.98 0.98
Flow Rates 0.99 0.97 0.98 0.98 0.97

Validation
Cumulative Oil Production 0.97 0.86 0.95 0.91 0.92
tq>0.001 0.91 0.94 0.94 0.92 0.90
Flow Rates 0.98 0.80 0.87 0.94 0.93

Testing
Cumulative Oil Production 0.97 0.85 0.89 0.88 0.91
tq>0.001 0.94 0.94 0.94 0.92 0.92
Flow Rates 0.94 0.94 0.84 0.90 0.81
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Figure 6.33. Pure CO2 injection/Black Oil/Design Scheme-1: Total production time
predictions.
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Figure 6.34. Pure CO2 injection/Black Oil/Design Scheme-1: Cumulative oil produc-
tion and peak oil rate predictions.
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Figure 6.35. Example Case 1 - Pure CO2 injection/Black Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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Figure 6.36. Example Case 2 - Pure CO2 injection/Black Oil/Design Scheme-1: flow
rate predictions - comparison with the actual production curves.
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6.3 Design Scheme-2

In this design scheme, the project length and the economic oil production rate limit

are specified to design the process together with the injection rate, injection period,

and soaking period. Length of each cycle’s production period is not specified and

the production stops when the specified production rate limit is achieved in each

cycle. The number of cycles is not specified and the system utilizes as many cycles

as possible within the specified time period. The number of cycles is an outcome

of the other process design parameters and the reservoir characteristics. Since the

number of cycles is going to be different in each design scenario, the cumulative oil

production of the whole process is the only performance indicator. The overall list

of the process variables is shown in Table 5.7. The ranges of the design parameters

are shown in Table 6.13. The input/output structure of the proposed proxies is

shown in Figure 6.38.

Table 6.13. Ranges of design parameters used in the Design Scheme-2.

Design Parameter Minimum Maximum
Injection rate, MSCF/d 20 100
Injection period, days 5 50
Soaking period, days 5 50
Economic limit for the oil rate, STB/d 1 10
Total project length, years 1 5

Although this design scheme has a simpler structure in terms of the number

of inputs and outputs involved, it was observed that inclusion of reservoir charac-

teristics still required a more complex neural-network architecture as opposed to

the ones presented in Chapter 5. After considering the number of inputs, outputs

and training patterns involved in this design scheme, the most optimum neural-

network architecture is determined to have 2 hidden layers with 30 and 20 neurons,

respectively. In hidden layers, hyperbolic tangent transfer function is utilized. The

architecture is shown in Figure 6.39. The input layer consists of reservoir charac-

teristics and the design parameters of the process. The output layer consists of

the cumulative oil production and the number of cycles. For training, Levenberg-

Marquardt backpropagation algorithm (Demuth et al., 2006) is used, which is
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usually preferred for its faster computing characteristics. 1,200 cases are used for

training, 300 for validation, and 200 for testing.

Figure 6.38. Structure of the proxy with variable-number-of-cycles: Mapping from
reservoir and design characteristics to performance indicators.
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Figure 6.39. Network architecture for the universal proxy with Design Scheme-2.
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6.3.1 Pure N2 Injection Predictions

Figure 6.40 shows the histogram of the number-of-cycles predictions in terms of

the accuracy of the prediction (0: correct prediction). Each color represents a

different type of oil composition, and we see that in at least 90% of the cases,

the neural network was able to predict the number of cycles within the ±2 cycles

of accuracy range. Number of cycles is a difficult design parameter to predict,

because it is not related directly to the physics of the process. Also, because of

the way it is implemented in the numerical model (controlled by the oil flow rate

constraint), there is a high chance that obtained number-of-cycles values are in

the range of ± 1 cycle than the actual number of cycles. Considering these, the

obtained accuracy in the predictions is acceptable. Figure 6.41 shows the testing

results for cumulative oil production for heavy, black and volatile oils. These cross-

plots show that correlation coefficients higher than 0.99 are obtained for each type

of oil.
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Figure 6.40. Pure N2 injection/Design Scheme-2: Number of cycles predictions for
heavy, black, and volatile oils.
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Figure 6.41. Pure N2 injection/Design Scheme-2: Cumulative oil production predic-
tions for heavy, black, and volatile oils.
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6.3.2 Pure CO2 Injection Predictions

Figure 6.42 shows the histogram of the number-of-cycles predictions in terms of

the accuracy of the prediction for pure CO2 injection cases. For volatile oil and

black oil, in 94% of the cases and for heavy oil in 87% of the cases, the neural

network was able to predict the number of cycles within the ±2 cycles of accuracy

range. Figure 6.43 shows the testing results for cumulative oil production for heavy,

black and volatile oils. These cross-plots show that correlation coefficients higher

than 0.95 are obtained for each type of oil. We see a relatively higher amount of

dispersion in the case with heavy oil. In this design scheme, convergence problems

were observed in some of the cases with CO2 injection and heavy oil. Therefore, it

is observed that these problems were carried into the training of the network. This

resulted with a relatively higher amount of error in the predictions as compared

to black and volatile oil compositions.
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Figure 6.43. Pure CO2 injection/Design Scheme-2: Cumulative oil production predic-
tions for heavy, black, and volatile oils.
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6.4 Summary and Conclusions

In this chapter, the methodology presented in Chapter 5 is generalized for reservoirs

of varying characteristics. Universal neural-network proxies are developed that

can predict the performance indicators for a given set of reservoir characteristics

and design parameters. 12 neural networks were trained for each injected fluid,

reservoir fluid and design scheme. The prediction results indicate that developed

networks can predict the performance of the cyclic injection process accurately.

The constructed proxy models are incorporated in a graphical-user-interface (GUI)

application, which is presented in the Appendix. Other main conclusions of this

chapter are summarized as follows:

1. When the level of complexity in the neural network architecture is increased

in parallel with the complexity of the problem, the generalization capabilities

of a neural network may improve. After including the reservoir characteristics

as an additional layer of complexity in the problem, a 2-layer neural network

provided better results than a 1-layer neural network. This was confirmed

during the development of neural networks for Design Scheme-2 (Section 6.3).

2. Taking the logarithm of input and output data improved the training perfor-

mance by scaling down the ranges of the data. This helped the network to

predict a wide range of flow rates (significantly high peak oil rates and lower

cycle flow rates).

3. During the data preparation stage, it is important to understand the signif-

icance of each input parameter on the provided outputs. This was possible

in this study, since a reservoir model is used to generate data, which we had

the full control of. After observing that the reservoir system under consid-

eration is highly sensitive to changes in the fracture permeability when it

is less than 2,000 md, re-distribution of the input data improved the neural

network (Section 6.1.2, Figure 6.2).

4. After training the neural network, analyses of weights in connection links

provide valuable information about the influence of each input parameter on

the outputs. If there is a prior knowledge about the problem under consider-
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ation, this can also be used as a way of confirming whether the network was

trained in the right direction or not.

5. Analysis of the connection weights displayed in Tables 6.5 and 6.9 indicate

similarities between CO2 and N2 injection. The common observation is that

the fracture permeability, ratio of fracture permeability to matrix permeabil-

ity, oil-in-place, area, Ah product, and oil saturation are the most critical

parameters that affect the performance. Due to the phase behavior charac-

teristics, contribution of initial pressure and temperature of the reservoir are

more pronounced in the volatile oil than black and heavy oils. Among the

design parameters, volume of the injected gas is the most critical parameter

that affects the performance. Injection period, injection rate, and produc-

tion rate are at a comparable rank in all three cases. Soaking period is the

least contributor. These results confirmed the previous observations about

the design parameters.



Chapter 7

Parametric Studies for

Performance Evaluation

In this chapter, results of parametric studies are presented. First, parametric stud-

ies are performed to develop a better understanding of how operational parameters

affect the process performance in the Big Andy Field. These include analyses of

various design parameters such as the injection rate, lengths of injection and soak-

ing periods, and cycle rate limits. Incremental oil production, peak oil rate and

net present value (NPV) are considered as the performance criteria. Combined

analyses of the design parameters are presented with contour plots. These results

are presented in the first part of the chapter. The second part of the chapter

focuses on the reservoir characteristics. It is aimed to develop a better under-

standing of the reservoir conditions that favor the cyclic pressure pulsing process.

Comparative discussions are presented between cases with CO2 and N2 on different

reservoir fluids (heavy, black and volatile oils). Area, thickness, fracture/matrix

permeabilities, pressure and temperature are the reservoir characteristics that are

studied.

7.1 Analyses of Design Parameters

Using the reservoir model developed for the Big Andy Field, performance of a

cycle of nitrogen injection is analyzed. The objective is to understand how the

net present value (NPV), peak oil rate and incremental oil production would be
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affected using different treatment volumes, injection rates, and soaking periods.

NPV calculations are made based on the formulation given in Section 5.6.2. Eco-

nomic parameters are given in Table 5.12.

7.1.1 Injection Volume

Figures 7.1, 7.2, and 7.3 show how the peak oil rate, incremental oil production,

and net present value change with different injection volumes. These three figures

are for soaking periods of 10, 30, and 50 days, respectively. It is seen that with

higher injection volumes, peak oil rate linearly increases. However, incremental oil

production and net present value increase at a slower rate, and starts to stabilize as

the injection rate approaches 100 MCF/d. When we look towards the vertical axes

for each injection rate (increasing injection periods), we see that the production and

NPV stabilizes towards 50 days of injection. Therefore, we conclude that for this

reservoir up to 50 days of injection at a rate of 100 MCF/d incremental recovery

may be maximized, together with the NPV assuming the economic parameters in

Table 5.12 are valid.

For longer soaking periods of up to 50 days, the result is an increase in the oil

production and net present value. The similarity between the net present value

and incremental production should also be noted. This confirms the fact that

while the initial peak oil rate is important, the cumulative oil production is the

most important criterion from the economics perspective. We also see that as the

soaking time increases from 10 days to 30 and 50 days, we see an increase in the

peak oil rate and the incremental oil production. However, when we look at the

NPV, there is little or no change as we increase the soaking period. This is most

probably due to the fact that the income from increased oil production balances

the lost time of production. With higher oil prices, there is a possibility that the

NPV increase due to the increase in oil production would be more pronounced.
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7.1.2 Injection Rate

To understand the importance of injection rate, the same treatment amount,

800 MCF, is applied with different injection rates (or, injection periods). Fig-

ures 7.4, 7.5, and 7.6 show peak rate, incremental production, and net present

value when the treatment is done in 10, 20, and 40 days. Soaking period is also

varied between 20 days and 50 days. In these plots, it is seen that injecting at a

lower rate and for a longer time results in higher peak rates. However, the injection

rate is low, and resulting pressure gradients do not allow for the gas to penetrate

into further portions of the reservoir. When the well is put on production, initially

a high amount of injected gas is produced. This results in reduced incremental oil

production and thus, reduced net present value. Also, as in the earlier graphs, it

can be observed that soaking of up to 50 days can help to improve the amount of

incremental recovery.
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7.1.3 Soaking

Figure 7.7 shows that it is possible to have higher incremental production (2.5%

more) with longer soaking periods of up to 60 days, and as the treatment volume

increases this increase in production can be more significant as observed in the

previous analyses. Figure 7.8 shows the change in NPV with soaking period for

different treatment volumes. It is seen that for higher volumes of injection, longer

soaking is necessary to maximize the NPV. For 250 MCF of injection, after 20

days of soaking the NPV starts to decrease. This value is around 25-30 days for

300 MCF, and around 50 days for 350 MCF. For 400 MCF, NPV continues to

increase with soaking for 60 days. From these observations, it can be concluded

that a shorter injection period with a high rate is more feasible than lower rate

and longer injection period for the same volume of gas. This was also observed in

the previous analyses (e.g., Figure 7.6). We also conclude that soaking as much as

60 days can increase the net present value of the project when the injected volume

is 400 MCF. This is again due to the fact that the additional production is higher

than the lost production during soaking.
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7.1.4 Combined Analyses for CO2 and N2 Injections

In this section, combined analyses of the following design parameters are analyzed:

• Cycle injection volume

• Soaking period

• Cycle rate limit

• Cumulative injection volume

Analyses are made for both pure N2 and CO2 injection. The performance indica-

tors are the incremental oil production, net present value and current incremental

oil production. current incremental production is calculated by converting the in-

cremental production to today’s value at interest rate, i, using the present value

equation:

IOPcurrent =
IOP

(1 + i)n
(7.1)

Net present value calculations are made using the economic parameters in Ta-

ble 7.1. The cost difference between N2 and CO2 should be noted ($1.00 vs. $4.50).

In these analyses, the knowledge base that was obtained during the application of

Design Scheme-2 on the reservoir model of the Big Andy Field is used.

Table 7.1. Parameters used to calculate the NPV.

Oil price ...... $ 100.00 per STB of production
Nitrogen cost ...... $ 1.00 per MCF of injection
CO2 cost ...... $ 4.50 per MCF of injection
Operating cost ...... $ 500.00 per well per month
Royalty interest ...... % 12.5 of the gross revenue
Taxes ...... % 6.0 of the net revenue
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7.1.4.1 Cycle Injection Volume vs. Soaking Period

Areal distribution plots of incremental production, current incremental production

and NPV with changing soaking period and cycle injection volumes of N2 and

CO2 are shown in Figure 7.9. It is an expected result to see higher incremental

oil production with higher soaking and higher injection volumes in each cycle. We

see the incremental production is maximized at the region of soaking period of

30-40 days and cycle injection volume higher than 3,000-4,000 MCF/cycle. Also,

the higher incremental production with CO2 is an expected result because of the

dissolution of CO2 in the oil.

Distributions in the middle of the page are current incremental oil production

values. In this case, the oil production is converted into today’s value using the

interest formula presented above. In both CO2 and N2, it is observed that the

maximized area shifted toward the intermediate zone for soaking, which is 20-30

days. This is expected because of the loss of production time during the soaking

period. While higher soaking period increases the cumulative oil recovery, the time

value of the oil production comes into the picture and optimum soaking period of

20-30 days is observed. In the case with CO2, we also see higher production when

there is longer soaking than 30 days. This is due to the fact that longer soaking

allows more CO2 to be dissolved. In this case, higher oil production is overcoming

the lost production during the shut-in period. The hot area is still in the high-

injection-volume region since the injected volume is not related to the time value

of the production.

The plots in the last row are the NPV distributions. As expected, they are

consistent with oil productions converted to today’s productions. However, NPV

is a more realistic indicator because of the inclusion of the cost of the injected gas

in the formulation. Since the hot area is still in the high-injection-volume region, it

is clear that the cost of the gas price is not affecting the process NPV significantly

with the given oil price of $100/bbl. Because of the cost difference between CO2

and N2, the ranges of the NPV values are different. With nitrogen ($1/MCF),

NPV changes between $72,000 and $80,000. In the case with CO2, the range is

between $65,000 and $73,000. This indicates that nitrogen is a better choice with

these reservoir conditions and with these oil and gas prices.



CHAPTER 7. Parametric Studies for Performance Evaluation 153

N2 CO2

Soaking Period, days

C
yc

lic
 In

je
ct

io
n 

V
ol

um
e,

 M
C

F
/c

yc
le

Incremental Oil Production (STB)

 

 

10 15 20 25 30 35 40
1000

1500

2000

2500

3000

3500

720

730

740

750

760

770

780

790

800

Soaking Period, days

C
yc

lic
 In

je
ct

io
n 

V
ol

um
e,

 M
C

F
/c

yc
le

Incremental Oil Production (STB)

 

 

10 15 20 25 30 35 40
1000

1500

2000

2500

3000

3500

840

860

880

900

920

940

960

980

1000

1020

1040

Soaking Period, days

C
yc

lic
 In

je
ct

io
n 

V
ol

um
e,

 M
C

F
/c

yc
le

Current Incremental Oil Production (STB)

 

 

10 15 20 25 30 35 40
1000

1500

2000

2500

3000

3500

495

500

505

510

515

520

525

530

535

540

Soaking Period, days

C
yc

lic
 In

je
ct

io
n 

V
ol

um
e,

 M
C

F
/c

yc
le

Current Incremental Oil Production (STB)

 

 

10 15 20 25 30 35 40
1000

1500

2000

2500

3000

3500

580

600

620

640

660

680

700

Soaking Period, days

C
yc

lic
 In

je
ct

io
n 

V
ol

um
e,

 M
C

F
/c

yc
le

Net Present Value ($)

 

 

10 15 20 25 30 35 40
1000

1500

2000

2500

3000

3500

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

x 10
4

Soaking Period, days

C
yc

lic
 In

je
ct

io
n 

V
ol

um
e,

 M
C

F
/c

yc
le

Net Present Value ($)

 

 

10 15 20 25 30 35 40
1000

1500

2000

2500

3000

3500

6.6

6.7

6.8

6.9

7

7.1

7.2

x 10
4

Figure 7.9. Areal distribution plots of incremental production, current (discounted) in-
cremental production and NPV with changing soaking period and cycle injection volumes
of N2 and CO2.



CHAPTER 7. Parametric Studies for Performance Evaluation 154

7.1.4.2 Cycle Injection Volume vs. Cycle Rate Limit

In this section, the analyses are based on the cycle injection volume and the cycle

rate limit. Figure 7.10 shows the areal contour plots of how the performance indi-

cators are changing with the cycle rate limit and cycle injection volume. Because

the reservoir of interest is a stripper-production reservoir, the cycle rate limit is

varied between 0.1 STB/d and 1.0 STB/d. In these plots, it is seen that stopping

the cycle oil production at 1.0 STB/d before starting the next injection maximizes

the oil production. When the injected gas is CO2, the NPV is maximized toward

the middle region where the rate limit is between 0.6 and 0.8 STB/d. However,

it is still close to the higher rate limits rather than lower limits. This brings the

conclusion that the existing energy in the reservoir helps the process to be more

efficient.

7.1.4.3 Cumulative Injection Volume vs. Number of Cycles

In this section, the parameters under consideration are the number of cycles and

the cumulative injection volume rather than cycle injection volume. Number of

cycles is a critical parameter and typically higher number of cycles is not desired

due to increased costs with higher volumes of injected gas. However, it is still an

important parameter to determine how many times the injection process would be

efficient. When the same cumulative volume of gas is considered, the number of

cycles needs to be determined. Figure 7.11 shows the areal contour plots of how

the performance indicators are changing with the number of cycles and cumulative

injected volume. Higher oil production is an expected result of higher number

of cycles and cumulative injection. On the other hand, when we look at current

incremental production, we see that the most optimum number of cycles is 2. It

is important to note that here the cost of the injected gas is not included in the

calculations. When we include the cost of the injected gas and use NPV as our

criterion, we see different results with CO2 and N2. Nitrogen, as a lower cost

gas, provides high NPV’s in a large region where the number of cycles is changing

between 3 and 7, and the cumulative injection is changing between 8,000 and

16,000 MCF. On the other hand, when the injected gas is CO2 a 3-cycle process

is the most optimum. It is still desirable to inject high volumes of gas (between
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Figure 7.10. Areal distribution plots of incremental production, current (discounted)
incremental production and NPV with changing cycle rate limit and cycle injection
volumes of N2 and CO2.
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8,000 and 16,000 MCF). However, since each cycle brings in injection and soaking

periods during when the well is shut-in, each cycle also results in loss of production

time. Therefore, due to the high cost of CO2, this significantly affects the NPV in

a negative way. As a result, we see less number of cycles (3) as the most optimum

number of cycles.
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Figure 7.11. Areal distribution plots of incremental production, current (discounted)
incremental production and NPV with changing number of cycles and cumulative injec-
tion volumes of N2 and CO2.
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7.2 Analyses of Reservoir Characteristics

In this section analyses of critical reservoir characteristics on the process efficiency

are presented. The reservoir characteristics that are investigated are area/thickness,

fracture/matrix permeabilities and initial pressure/temperature of the reservoir.

The performance indicator that is used to compare each case is defined as the uti-

lization factor, the ratio of the incremental production to the volume of injected

gas. The utilization factor is then divided by the Area × Thickness product, to

normalize the result to the size of the reservoir to obtain a representative indicator

per unit volume. Therefore, the utilization factor that is used in this section is

defined as:

U =
IOP

CI × A× h
(7.2)

where IOP is the incremental oil production, and CI is the cumulative volume of

the injected gas. The analyses are presented for heavy, black and volatile oils and

for N2 and CO2 injection cases.

7.2.1 Area/Thickness

Contour plots in Figure 7.12 shows the areal distribution of the utilization factor

changing with different areas and thicknesses. Since the utilization factor was

calculated per acre − ft, these distributions are not biased by the size of the

reservoir. In the case of heavy oil, which is shown at the top, we see a concentration

in the region where the drainage area is at the lowest range (5-8 acres). This is

due to the high viscosity of heavy oil that prevents the oil from being effectively

transported to the well from further portions of the reservoir. Therefore, the cyclic

injection of CO2 and N2 are effective in producing heavy oil from the near vicinity

of the well. We also see that the efficiency of the process is maximum when the

thickness is between 30-50 ft. The similarity between CO2 and N2 is an indication

of the similar effectiveness of these two gases in an heavy oil reservoir.

In the case of black oil, which is shown at the middle, we see a more homoge-

neous distribution especially with the case with CO2. A high-efficiency region is

observed for a thickness range of 30-50 ft for CO2 and 20-40 ft for nitrogen. In

terms of the area, we see a homogeneous distribution as compared to heavy oil.
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High-efficiency regions are observed in a wide range of area values for both N2 and

CO2. The behavior of volatile oil is similar to that of black oil. With both CO2

and N2, high-efficiency regions are distributed in an homogeneous manner in terms

of the area. Also, low-thickness region (20-50 ft) shows better utilization factor.

These results indicate similarities to that of black oil.

As a conclusion, it is observed that, the process is more effective in thin reser-

voirs. In all cases regardless of the type of reservoir fluid and injected gas, thick-

nesses ranging between 20-50 ft produced more favorable results in terms of the

process efficiency. In terms of the area, we see higher efficiency with smaller area

(5-8 ft) with heavy oil. For the cases with volatile and black oil, it is seen that the

process efficiency is not significantly affected by the area significantly.

7.2.2 Matrix/Fracture Permeability

Contour plots in Figure 7.13 show the areal distribution of the utilization factor

changing with different matrix and fracture permeabilities. As in the previous case

for area/thickness analysis, effectiveness of N2 and CO2 in heavy oil results in a very

similar behavior in terms of the matrix and fracture permeabilities. We see that

fracture permeabilities higher than 3,000 md are favorable. Fracture permeability

is an important reservoir property in this process as it is the primary factor in

delivering the injected gas in the further portions of the reservoir from the wellbore,

and in delivering the oil, which flows from the matrix into the fractures. Therefore,

it is expected to see that higher fracture permeabilities improve the efficiency of the

process. In terms of the matrix permeability, while there is a more homogeneous

distribution, there is more concentration of higher values in the region where the

matrix permeability is less than 40 md. If we consider the black oil and volatile

oil, we see a similar but more homogeneous distribution. This indicates that the

effectiveness of the process is less sensitive to the system permeability. However, it

is still observed that higher fracture permeabilities increase the process efficiency.
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Figure 7.12. Areal distribution plots of utilization factor per acre-ft with changing area
and thickness (top: heavy oil, middle: black oil, bottom: volatile oil).
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Figure 7.13. Areal distribution plots of utilization factor per acre-ft with changing
fracture and matrix permeabilities (top: heavy oil, middle: black oil, bottom: volatile
oil).
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7.2.3 Pressure/Temperature

Contour plots in Figure 7.14 show the areal distribution of the utilization factor

that changes at different initial pressure and temperature conditions. These plots

indicate the importance of the liquid/gas mole fraction in the system. The white

lines on these contour plots are the quality lines of the phase envelopes shown in

Figure 6.5. The numbers indicate the liquid volume percentage in the system. In

all cases, we see a strong similarity between N2 and CO2. This shows that the

choice of the injected gas between CO2 and N2 does not change effectiveness of the

process at different pressure/temperature conditions. In the case with heavy oil,

the majority of the pressure/temperature interval that is under consideration is in

the 100% liquid region and almost the whole interval is over 80% liquid quality

line. There is a small low-efficiency region that is under the 80% quality line.

The efficiency of the process increases with the liquid content. The hottest region

is where the temperature is less than 120 F and the pressure is higher than 600

psia. In the case with black oil, there is a wider range of the liquid volume fraction.

Within the pressure and temprature ranges investigated, the liquid volume fraction

changes between 10% and 90%. Again, in both cases with CO2 and N2, we see

a gradual increase in the process efficiency through the low temperature - high

pressure region where the liquid content approaches 90%. In the case with volatile

oil, the distribution is different than the black oil and heavy oil, because of the

high gas content in the reservoir. In the interval of interest, the liquid fraction

varies between 5% and 50%. Although the liquid fraction is very low, the process

efficiency increases as the liquid fraction increases from 5% to 50%. However, the

process is also significantly influenced by the high gas fraction in the system. After

injecting CO2 or nitrogen, partial pressures of the reservoir gas and the injected

gas come into the picture. When there is a higher gas fraction in the reservoir, the

final partial pressure of the reservoir also becomes higher. This forces more gas

to go back into the solution and increase the liquid fraction. Therefore, in cases

where there is a higher initial gas fraction, more gas goes back into the solution

after injecting CO2/nitrogen and soaking. In the contour plot, we see that these

two mechanisms interfere with each other, and the efficiency increases through the

constant quality line. In this case, high pressure and temperature regions become

the favorable regions for volatile oil.
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Figure 7.14. Areal distribution plots of utilization factor per acre-ft with changing
pressure and temperature (white lines indicate liquid volume % quality lines; top: heavy
oil, middle: black oil, bottom: volatile oil).
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7.3 Summary and Conclusions

In this chapter, results of a detailed parametric study are presented. The purpose

of this study was to develop a better understanding on how operational parameters

and reservoir characteristics affect the performance of the cyclic pressure pulsing

process. Comparative discussions are presented among cases with CO2 and N2 on

different reservoir fluids (heavy, black and volatile oils).

The major conclusions of this chapter can be summarized as the following:

1. NPV is mainly a function of incremental oil production as NPVs are affected

in a similar fashion at the same operating conditions. Therefore, while the

initial peak oil rate is important, the cumulative oil production is the most

important criterion from the economics perspective. The peak oil rate in-

creases with the injected gas volume, but the shape of the decline behavior

of the production is dependent on other factors.

2. Injection at a higher rate for a shorter period of time is observed to be more

effective than injecting for a longer time at a lower rate.

3. Based on the injection rate and amount, optimum soaking time can vary. In

the Big Andy Field, for treatments larger than 500 MCF, it was observed

that soaking up to 60 days may result in an increase in the NPV for a given

injection cycle.

4. With the current oil prices, the cost of injected gas becomes insignificant in

the economic considerations. Increased income due to increased oil produc-

tion overcomes the increased costs with higher volumes of gas. Nitrogen,

as a lower-cost gas, was found to be a better choice with higher NPV than

CO2 in the Big Andy Field. Also, because of its low cost, it is not affected

negatively from higher number of cycles as is the case with CO2.

5. The process is found to be more effective in thin reservoirs. Thicknesses

ranging between 20-50 ft produced more favorable results.

6. In terms of the area, we see higher efficiency with smaller area (5-8 ft) with

heavy oil. For the cases with volatile and black oil, it is seen that the process

efficiency is not significantly affected by the area.
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7. Higher fracture permeabilities increase the process efficiency.

8. The phase behavior of the reservoir fluid is very important for the perfor-

mance of the process. Initial pressure/temperature of the reservoir, and

therefore, the initial fractions of gas/liquid phases affect the process signifi-

cantly.

9. The way reservoir characteristics affect the process performance is very simi-

lar in cases with CO2 and N2, but may differ significantly in different reservoir

fluids.



Chapter 8

Optimization Studies

In this part of the study, the goal is to develop optimized design strategies, to

maximize the efficiency of the cyclic injection process. The genetic algorithm (GA)

is used as the optimization tool (explained in Section 4.2). The approach couples

ANN with GA as explained in Section 4.3. In this approach, GA evaluates different

design scenarios by using the forward ANN proxy, and searches for the best design

scenario that maximizes a specified objective function. First, the optimization

tool is tested with simple objective functions, and then more advanced objective

functions are used to optimize the cyclic injection process. These studies are

presented in this section.

8.1 Testing of the Optimization Tool

Before starting the advanced optimization studies, it is aimed to test the optimiza-

tion tool, as well as the accuracy of the ANN proxy approximator. This is done by

specifying simple objective functions that are easy to optimize even without using

an optimization tool (e.g., maximizing the cumulative oil production). An in-house

GA code is used, which is based on base-10 system for string representation. The

characteristics are shown in Table 8.1. The number of variables is 20, since they

represent four primary design parameters for five cycles. These are the variables

which are modified to search for the optimum configuration.

As mentioned above, the first test was made with a simple objective function:

maximizing the cumulative oil production. Although the algorithm provided near-
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Table 8.1. GA parameters.

Population size (No. of individuals), Np 10
Number of variables 20
Number of genes (for each variable) 6
Mutation probability, pm 0.01
Crossover probability, pc 0.9
Max. change in fitness for termination, ε 0.001
Counter for termination 100
Max. number of generations, nmax 1000

optimal solutions, it was observed that the predictions of the ANN approximator

were not accurate. The algorithm was trying to search around the variable limits

that were input, where the ANN approximator failed to provide accurate answers.

This showed that the network was not trained well for cases where the design

parameters get values, which are close to limits. Then, fifty new cases were gen-

erated and fed into the network for training in addition to the previous cases. It

was expected to have the network learn from these cases to provide more accurate

outputs in regions close to variable upper/lower limits.

With the new approximator, the GA was run again to provide the solution for

maximum oil production. The total cumulative oil production of this design was

predicted by the approximator to be 5,362.3 STB, while the maximum value that

was included in the training data was 4,674 STB. This shows that the GA was

able to go beyond the cases that were shown to the ANN, and suggest a scenario

that is better than the ones in the training set. The provided scenario was the

one shown in Table 8.2. Maximum gas injection amount, soaking and production

periods are suggested as an expected result of maximum oil production objective.

Table 8.2. Recommended scenario for maximum oil production.

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 100.0 40 40 25
2 100.0 40 40 25
3 100.0 40 40 25
4 100.0 40 40 25
5 100.0 40 40 25
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To check the performance of the new approximator, its recommendation was

run with the simulator and simulator outputs were checked with the network out-

puts. Figure 8.1 shows the comparison of actual and network outputs of some

critical parameters. X-axis is the cycle number. As can be seen in this figure the

new approximator was able to make predictions with reasonable accuracy.

(a) Stimulation ratio (b) Cumulative oil production

(c) Gas-oil ratio at the end of cycle (d) Time to reach the peak oil rate

Figure 8.1. Comparison of simulator and network outputs for the scenario recom-
mended by GA to maximize the cumulative oil produced.
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Another simple objective function was defined as the ratio of the cumulative

oil produced to the cumulative gas injected. Here, we would like to maximize

the cumulative oil production, while minimizing the cumulative gas injected. Also

known as the utilization factor, this function is an indicator of the overall efficiency

of the process rather than oil production only, since it also accounts for the amount

of gas that is used to produce the oil. As in the previous case, the GA suggestion

provided a ratio of 1.03 STB/SCF, while the maximum value found in the training

set is 0.7 STB/SCF. In this case, the provided solution was the one shown in

Table 8.3.

Table 8.3. Recommended scenario for maximum oil production and minimum gas
injection.

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 50.0 7 40 25
2 50.0 7 40 25
3 50.0 7 40 25
4 50.0 7 40 25
5 50.0 7 40 25

It is seen from the above table that the following are suggested:

• Minimum gas injection amount

• Maximum soaking period

• Maximum production period

As in the previous case, this recommendation was tested using the simulator,

and simulator outputs were checked with the network outputs. Figure 8.2 shows

the comparison of actual and network outputs of some critical parameters. As can

be seen in this figure the new approximator was able to make predictions with

reasonable accuracy.

These studies showed the weakness of the ANN proxy and it was improved by

including more cases, which are close to the limits of the ranges. It was observed

that the optimization tool was able to provide correct solutions once the approxi-

mator is accurate enough to evaluate the objective function. This part of the study
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(a) Stimulation ratio (b) Cumulative oil production

(c) Gas-oil ratio at the end of cycle (d) Time to reach the peak oil rate

Figure 8.2. Comparison of simulator and network outputs for the scenario recom-
mended by GA to maximize the cumulative oil produced and minimize the amount of
gas injected.

was done using the proxy for pure N2 injection. The following sections include the

design optimization of cyclic N2 and CO2 processes with more advanced objective

functions.
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8.2 Optimization in the Big Andy Field

8.2.1 Design Scheme-1

Before beginning an optimization study, it is of crucial importance to determine an

objective, which clearly covers our needs. There may be more than one objective,

and the objective function that is specified must cover all these objectives. As

explained in Chapter 3, maximum efficiency of the cyclic injection process for a

given time period can be obtained vis-à-vis two important goals:

1. Maximizing the income due to the produced oil

2. Minimizing the operational costs due to the injected gas

In order to design the optimization tool in a way that it would provide us with

the design procedures that would make the project achieve these goals, we need to

analyze all variables associated with the process. As previously defined, we have

process design parameters and performance indicators that are associated with

the cyclic injection process. To define our objective function, we need to list all

parameters that are involved in the process to see which ones are contributing to

the efficiency, and which ones are not. Table 8.4 shows all variables involved in

the process and whether they need to be maximized or minimized to achieve the

two goals mentioned above.

Considering these, the following objective function was used to optimize N2

injection:

f =
sum(q) + sum(SR) + sum(COP )

sum(TTP ) + sum(GOR) + sum(IP ) + sum(SP ) + sum(PP ) + sum(INJ)
(8.1)

Sum indicates the summation of these variables for five cycles. With this objec-

tive function, a maximum of 4.36 is obtained, while the training set’s maximum

was 3.67. The recommended design is shown in Table 8.5. Comparison of the

outputs of this configuration are shown in Figure 8.3.
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Table 8.4. Objectives.

Performance indicators
Parameter Objective
Flow rates (q1....q9) maximize
Stimulation ratio (SR) maximize
Cumulative oil production (COP) maximize
Incremental oil production (IOP) maximize
Time-to-reach the peak rate (TTP) minimize
Initial and final gas rates (GR1, GR2) minimize
Final gas-oil-ratio (GOR) minimize

Design parameters
Parameter Objective
Injection Period (IP) minimize
Soaking period (SP) minimize
Production period (PP) minimize
Amount of injected gas (INJ) minimize

Table 8.5. Recommended scenario for Eqn. 8.1.

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 50.0 32 7 6
2 100.0 7 7 6
3 100.0 7 7 6
4 50.0 25 7 6
4 50.0 25 7 6
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(a) Stimulation ratio (b) Cumulative oil production

(c) Gas-oil ratio at the end of cycle (d) Time to reach the peak oil rate

Figure 8.3. Comparison of simulator and network outputs for the scenario recom-
mended by GA for Eqn. 8.1.
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Figure 8.4. Comparison of simulator and network flow rates for the scenario recom-
mended by GA for Eqn. 8.1.

Although this objective function satisfies most of the objectives that were de-

fined, minimization of the production time, and maximization of flow rate sum-

mation requirements forced the algorithm for a design scenario having 6 months

of production in each cycle. For short-term planning of the project this scenario

would be feasible. However, if we look at Figure 8.4, the flow rates at the end

of cycles are all larger than 1.5 STB/d. Currently, in the Big Andy Field, the

wells are produced until they reach an oil production rate of 0.3 STB/d, which

is considered to be economic with current oil prices. Thus, it can be stated that

by the recommendation provided by this objective function, each cycle does not

produce until actual economic limits to comply with the requirement of shorter

production periods with higher rates. Because of that, another objective function

can be defined by removing the flow rate and production period specifications:

f =
sum(SR) + sum(COP )

sum(TTP ) + sum(GOR) + sum(IP ) + sum(SP ) + sum(INJ)
(8.2)

This objective function is used to determine the optimum design of both N2

and CO2 utilization projects. For N2, the maximum value obtained was 0.83,

while the training set’s maximum is 0.58. For CO2, the maximum value obtained

was 0.82, while the training set’s maximum is 0.44. Tables 8.6 and 8.7 show the

recommended designs.
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Table 8.6. Recommended scenario for N2 injection (objective function: Eqn. 8.2).

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 50.0 32 7 24
2 100.0 7 7 24
3 50.0 40 7 24
4 50.0 18 7 24
5 50.0 40 7 24

Table 8.7. Recommended scenario for CO2 injection (objective function: Eqn. 8.2).

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 72.1 7 7 24
2 100.0 40 7 24
3 100.0 7 7 24
4 50.0 40 7 24
5 50.0 40 7 24
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(a) Stimulation ratio (b) Cumulative oil production

(c) Gas-oil ratio at the end of cycle (d) Time to reach the peak oil rate

Figure 8.5. Comparison of simulator and network outputs for the scenario recom-
mended by GA for N2 injection (objective function: Eqn. 8.2).
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Figure 8.6. Comparison of simulator and network flow rates for the scenario recom-
mended by GA for N2 injection (objective function: Eqn. 8.2).



CHAPTER 8. Optimization Studies 178

(a) Stimulation ratio (b) Cumulative oil production

(c) Gas-oil ratio at the end of cycle (d) Time to reach the peak oil rate

Figure 8.7. Comparison of simulator and network outputs for the scenario recom-
mended by GA for CO2 injection (objective function: Eqn. 8.2).
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Figure 8.8. Comparison of simulator and network flow rates for the scenario recom-
mended by GA for CO2 injection (objective function: Eqn. 8.2).
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8.2.2 Design Scheme-2

In this part of the optimization studies, the neural network model, which was

developed with the Design Scheme-2 is used. In this design scheme the performance

indicators used are the NPV and the incremental oil production. NPV is a powerful

objective function because it includes all incomes and costs involved and ties them

to the time value of the money. Therefore, it is a realistic objective function to

evaluate different design scenarios.

Before running the optimization tool, available scenarios in the knowledge base

were analyzed to develop an understanding of the parameters that influence the

NPV. The best thirty design scenarios were analyzed, which resulted in the highest

NPV values among the scenarios. In these cases, it was seen that on average, the

injected gas amount is approximately 2,000-2,500 MCF/cycle, with 80-100 MCF/d

of injection for approximately 30 days, and soaking for approximately 25 days.

The projects’ life time tended to be 5-7 years. The histograms plotted for each

parameter for the thirty best cases are shown in Figure 8.9.

In order to determine the most optimum design scenario that would maximize

the NPV, the genetic algorithm was used to perform a stochastic search over the

response surface that is generated by the neural network model. The recommended

scenario was close to the average values obtained with available design scenarios,

which had higher NPV’s as mentioned above. The recommended design scenario

is shown in Table 8.8. The network model predicted the NPV of this scenario as

$31,793, while the forecasted NPV using the numerical model was $31,595. This

indicates high accuracy in the prediction of the neural network. The recommended

scenario’s oil production history is shown in Figure 8.10-a, with four cycles of

injection. Net cash flow history during the production and injection cycles is shown

in Figure 8.10-b. This design scenario resulted in 933.1 STB of incremental oil

production.
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Figure 8.9. Histograms for the best 30 design scenarios that resulted in a high NPV.

Table 8.8. Recommended scenario to maximize the NPV.

Project life, years 5
Cycle abandonment rate, STB/d 0.5
Injection rate, MCF/d 72.4
Injection period, days 28
Injection volume, MCF 2,026.4
Soaking period, days 24
Forecasted NPV (neural network prediction) $31,793
Forecasted NPV (numerical model) $31,595
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Figure 8.10. Oil production history and net cash flow output of the recommended
design scenario.
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8.3 Optimization in Different Reservoirs

In Chapter 6, design and development of universal proxies are presented. These

proxies are able to accurately predict the performance of the cyclic pressure puls-

ing process for any reservoir that has characteristics in the range these proxies

were trained (Table 6.1). To optimize the design of the process in reservoirs with

different characteristics these proxies can be used for high-performance evaluation

of the objective function. In this section, some examples are presented, where

these proxies are coupled with the genetic algorithm to provide optimized design

scenarios for the reservoir under consideration. To incorporate the time-value of

the money in the objective function the cumulative oil production in each cycle is

converted to today’s (discounted) oil production with the following equation:

CPt=0 =
5∑

n=1

CPn

(1 + i)tn
(8.3)

where n is the cycle number, CP is the cumulative oil production, i is the interest

rate. tn is the total time from t = 0 until the production stops in that cycle.

Therefore, it is defined as the summation of the injection, soaking, and production

periods for all previous cycles and the cycle under consideration:

tn =
n∑

m=1

(tppm + tspm + tipm) (8.4)

where tpp is the length of the production period, tsp is the length of the soaking

period, and tip is the length of the injection period. The objective is to maximize

the cumulative oil production as of today’s value for each MCF of gas injected. In

this way, the costs associated with the injection are to be minimized. Therefore,

the objective function is defined as:

f =
CPt=0

CI
(8.5)

where CI is the cumulative volume of the injected gas. The genetic algorithm is

used with the parameters shown in Table 8.1. The optimization is done for four

different reservoirs. The characteristics of these reservoirs are shown in Table 8.9.
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Table 8.9. Reservoir characteristics of example cases used for optimization.

Example No. 1 2 3 4
Reservoir fluid Volatile Heavy Volatile Volatile
Injected fluid Nitrogen Nitrogen CO2 Nitrogen
A, acres 8 7 16 7
h , ft 93 78 99 91
pi, psia 514 254 251 802
φm 0.15 0.16 0.15 0.14
φf 0.03 0.02 0.01 0.02
kmx,y , md 86 59 35 59
kmz , md 2.58 7.08 7.35 12.39
kf , md 3,623 2,811 3,983 1,011
Xf , ft 14.25 60.8 80.75 71
T , F 137 81 161 235
Swi 0.67 0.47 0.58 0.42

The recommended design scenarios for each reservoir that maximizes the objective

function in Eqn. 8.5 are shown in Table 8.10. The comparison of proxy predic-

tions with the simulation outputs for these recommended scenarios is shown in

Figure 8.11.
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Table 8.10. Recommended scenarios for different reservoirs.

Example Case - 1

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 75 13 30 12
2 55 9 10 4
3 67 21 36 5
4 114 18 8 4
5 116 6 41 6

Example Case - 2

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 184 46 50 12
2 54 34 50 12
3 158 23 7 8
4 191 31 7 12
5 132 40 50 6

Example Case - 3

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 30 37 40 4
2 58 8 10 4
3 71 10 6 6
4 37 37 6 4
5 95 21 6 5

Example Case - 4

Cycle Inj. rate, MSCF/d Inj., days Soak., days Prod., months
1 119 8 6 8
2 37 15 40 4
3 48 13 6 6
4 90 11 10 6
5 123 25 8 7
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Figure 8.11. Comparison of simulator and network outputs for the recommended
scenarios by GA for different reservoirs.
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8.4 Summary and Conclusions

In this chapter, optimization studies are presented. The hybrid neuro-genetic ap-

proach is applied to the cyclic pressure pulsing problem using the ANN-based

proxies to evaluate the specified objective function. These studies showed that the

optimization tool works well with the ANN approximator, achieving the specified

goal (maximizing the specified objective function). It can be stated that GA’s

can be used to validate the robustness of an ANN approximator, since it searches

through regions that may not have been otherwise checked for verification pur-

poses. An important conclusion is that the nature of the problem may change

dramatically by including/excluding some process variables. Therefore, it is very

important to define the problem very clearly, and select the involved variables and

the objective function based on the problem. Excluding some variables may force

the algorithm to miss critical attributes of the problem, while including some un-

necessary variables may mislead the algorithm to different directions during the

search process.

The optimization studies for the Big Andy Field were done for both design

schemes used in this study. Using Design Scheme-1, the process design parameters

were optimized for five cycles of injection. Different objective functions were de-

fined for a preliminary analysis. It was observed that the recommended scenario

changes significantly with different objective functions. Short soaking (7 days)

and long production times (24 months) were found to be the most optimum design

scenario, when the objective function is re-defined considering the field production

rates. While variable cycle injection volumes were recommended for both CO2 and

N2 injection, the average injection volume in each cycle was 1,600 MCF.

To incorporate all the important process variables that have an influence on

the process economics, a neural-network model that predicts the NPV is used with

the second design scheme. The optimum treatments that maximize the NPV are

found to be around 2,000-2,500 MCF/cycle for a multi-cycle process with a rate of

70-100 MCF/d and soaking for 25-30 days. With the recommended scenario, the

project lasted for 4 cycles producing 933.1 STB of incremental oil.

Finally, universal proxies developed in Chapter 6 were used to optimize the

process in reservoirs with different characteristics. Four different reservoirs are
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used as example case studies. The genetic algorithm provided optimum design

scenarios for the objective function defined in Eqn. 8.5. It was observed that the

proxy predictions were in agreement with the simulation outputs.



Chapter 9

Concluding Remarks

In this study, cyclic pressure pulsing processes with pure N2 and pure CO2 are

investigated. The study focuses on naturally fractured reservoirs. Reservoir simu-

lation studies were done to develop a better understanding of the recovery mech-

anisms involved in this process. For modeling, two design schemes using constant

and variable injection volumes were applied. Detailed parametric analyses were

done in a wide range of reservoir characteristics to understand the conditions that

favor the process. Performance assessment was done by using both NPV and

incremental oil production as the performance indicators. A high-performance,

neuro-genetic optimization methodology is used to develop optimized design sce-

narios for the process.

First, the proposed methodology was applied to Big Andy Field in Kentucky.

Neural-network based proxy models were constructed that accurately predict the

process performance for a given set of design parameters in the same reservoir.

Then, universal proxy models were constructed by including variations in reser-

voir characteristics. Optimization was done using the genetic algorithm as the

optimization tool. Developed proxies were used to evaluate the specified objective

function. Using proxies for evaluation improved the computational efficiency of

the optimization process.

In the following sections, the major conclusions and recommendations for future

research are presented.
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9.1 Conclusions

The major conclusions of this study are as follows:

1. Cyclic pressure pulsing is an effective IOR method in fractured reservoirs.

Volume of the injected gas in each cycle is the most critical parameter in

affecting the performance. While soaking has little effect, optimization of

soaking would yield higher recovery and NPV. Injection at a higher rate for

a shorter period of time is observed to be more effective than injecting for a

longer time at a lower rate.

2. The process was found to be more effective in thin reservoirs. Thickness

ranging between 20-50 ft produced more favorable results. In terms of the

area, higher efficiency was observed with smaller area (5-8 acres) with heavy

oil. For the cases with volatile and black oil, it is seen that the process effi-

ciency is not affected by the area significantly. Higher fracture permeabilities

increase the process efficiency.

3. The phase behavior of the reservoir fluid is very important for the perfor-

mance of the process. Initial pressure/temperature of the reservoir, and

therefore, the initial fractions of gas/liquid phases affect the process signifi-

cantly.

4. Artificial neural networks are powerful in constructing proxies to mimic reser-

voir models. As shown in earlier studies they can be used effectively in

screening IOR methods. In this study, they are effectively used in screening

and optimizing cyclic pressure pulsing applications.

5. Inverse networks were developed that go beyond the capabilities of a reservoir

simulator. These networks provided the design parameters once the desired

performance is specified. Development of these networks was more challeng-

ing, and a more complicated training algorithm with recurrent connections

were used to improve the training.

6. Universal proxies were developed using a more complicated neural network

structure to compensate for the additional complexity in the problem for both
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design schemes. Same architectures were used for CO2 and N2 injection and

for heavy, black and volatile oils.

7. Predicted parameters such as the peak oil rate and time-to-peak resulted in

larger errors than other parameters because of their instantaneous behavior.

Neural networks were more successful in predicting flow rates in a smoothly-

declining region where rates do not change sharply from one time-step to

another.

8. Analysis of the weights in connection links provided valuable information

about the networks. The common observation with both N2 and CO2 is that

the following are the most critical reservoir properties affecting the process

performance:

• Fracture permeability

• Ratio of fracture permeability to matrix permeability

• Area

• Oil-in-place

• Ah product

• Oil saturation

9. During data preparation, the fracture-permeability data are distributed in

the data base after considering the sensitivity of the system behavior to

permeability. Using the new distribution rather than using a uniform one for

the training improved the performance and generalization capabilities of the

neural network.

10. The mechanisms involved with N2 and CO2 are very similar, with the only

difference being the dissolution of CO2 in the oil at very low pressures. When

the costs are involved in the analysis, nitrogen was found to be a better

alternative. However, this must be re-evaluated for different prices of oil, N2

and CO2.

11. It was shown that the genetic algorithm worked well with neural-network

proxies. The nature of the problem may change dramatically by includ-
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ing/excluding some process variables, thus yielding different optimum solu-

tions. Therefore, it is very important to define the objective function after

considering all dimensions of the problem.

9.2 Recommendations for Future Work

The current study can be further improved with the following potential research:

• Instead of developing different proxies for different types of gases, injected

gas composition may be included as a design parameter. Other types of gases

such as oxygen and/or natural gas may be included as alternative types of

gases.

• The effectiveness of the process in hydraulically fractured wells can be inves-

tigated and compared with naturally fractured systems.

• The upper pressure limit may be increased and miscibility conditions at

higher pressures may be studied.

• While this study covers a wide range of reservoir characteristics and condi-

tions, the range of parameters studied may be extended even further to cover

extreme conditions.

• The proxy models developed may be coupled with other proxy models, which

were developed for other IOR applications. This may give the practicing

engineer the opportunity to analyze different IOR methods simultaneously

for the reservoir under consideration.

• Other evolutionary optimization algorithms may be used and compared with

the genetic algorithm.
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Appendix A

Graphical-User-Interface

Application for Proxy Models

Constructed proxy models were incorporated in a graphical-user-interface (GUI)

application. The application was developed using Visual Basic 6.0. With this user-

friendly interface, it is possible to evaluate a large number of scenarios and search

for the optimized design scenario easily. In this appendix, features of this GUI

application are presented. The interface includes two main components: screening

and optimization.

Screening

In the screening part (Figure A.1), the forward proxy models provide estimated

production profiles for a given design scenario for five cycles of injection. There

are two main sections to input data:

1. Reservoir Description: Reservoir rock properties, initial conditions, well spac-

ing, and reservoir fluid type are to be inputted in this section. Information

about phase diagrams and compositions of reservoir fluids are stored in an-

other window, and it pops up when the ‘?’ button is clicked.

2. Process Design Description: Design parameters for five cycles of injection

are inputted in this section. To use the same values for all cycles, ‘Copy to

All’ button can be used to copy the design parameters for Cycle-1 to other

cycles. The injected gas (nitrogen or CO2) is also selected in this section.
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After all the data is entered, ‘Fire the Proxy’ is to be clicked to call the appropriate

proxy model for the given injected gas and reservoir fluid type. In the results

section, estimated cumulative productions, peak oil rates, and production times

are printed. In addition to expected performance of each cycle, the expected base

production in this reservoir and the incremental oil that can be produced with the

given design scenario are provided. In the bottom, oil production rate vs. time

plot is displayed.

Figure A.1. Screening.
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Optimization

Optimization part (Figure A.2) includes a genetic algorithm that searches for the

optimized design scenario for the reservoir under consideration. The objective

function is:

f =
IOPt=0

CI
(A.1)

where IOPt=0 is the current incremental oil production, and CI is the cumulative

volume of the injected gas. GA parameters such as the population size, number

of generations, crossover and mutation probabilities can be changed. After the

generations are completed, the recommended design scenario is printed together

with the expected base and incremental oil productions from this reservoir. A

summary of each GA generation is given at the bottom, with the best fitness

values found. The ‘Apply Design’ button can be used to use the recommended

design as input to the proxy model. After clicking the button, the design is applied

and the screening tab is displayed with the expected oil production performance

(Figure A.3).
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Figure A.2. Optimization.
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Figure A.3. Applying the optimized design.
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