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Abstract
UO2 fuel properties such as the temperature profile, fracture, fission gas release, and
volumetric changes are partially determined by the fuel microstructure. The initial fuel
microstructure is created during the sintering process used to manufacture the UO2 fuel
pellets. A mechanistic microstructural model of sintering can help predict the initial fuel
microstructure for various sintering conditions and predict additional densification that
occurs during reactor operation.

This work describes the formulation of a grand potential sintering model, the model’s
verification, and comparisons to existing UO2 experimental data. The model improves
upon existing microstructural models by relying more on the thermodynamic and kinetic
driving forces of sintering and less on fitting parameters.

Once the model is developed, it is used to gain additional insight into two additional
forms of UO2 microstructure evolution: doped sintering and irradiation-enhanced densifi-
cation. Doped sintering is a manufacturing method where chemical dopants are used to
increase the density and grain size of sintered UO2. The grand potential model is used to
verify a proposed mechanism for the impact of dopants in UO2 and compare the density
change and grain size to experimental data. Irraidation-enhanced densification is a form
of sintering that occurs during the early stages of the fuel lifetime inside the reactor. The
model is modified to include irradiation-enhanced densification mechanisms, making it
the only microstructural densification model. It is then used in several small simulations
to gain additional insight into the bulk behavior of densification.

The findings of this work are as follows: The grand potential sintering model is
consistent with sintering theory, but high uncertainties in UO2 material properties reduce
the accuracy compared to experimental data. In addition, the relative sintering behavior
of doped UO2 compared to undoped UO2 as predicted by the model is very similar to the
relative behavior shown in experiments. This result helps validate the proposed dopant
mechanism. The model behavior in irradiation-enhanced densification is also consistent
with experimental observations. Simulations show that the evacuation of small pores is
enhanced by fission events more than large pores or grain boundary pores. The model
also predicts that grain size is not a direct controlling factor in the pore evacuation rate.
It is more likely that grain size indirectly controls the densification effect by increasing
the average pore size.
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Chapter 1 |
Introduction

1.1 Motivation

Current fuel performance codes for light water reactors (LWRs) use experimental data
empirically coupled to the fuel burnup to predict fuel properties such as heat conductivity
and fission gas release. This results in simple, computationally efficient codes that give
high-accuracy results as long as the operating conditions match those used to inform the
empirical equations. However, these empirical models cannot be extrapolated to operating
conditions that do not match. This means that load following reactors, accident-tolerant
fuels (ATFs), and next-generation reactor designs cannot be accurately modeled using
empirical models developed using data from constant power operation of traditional
LWRs.

To improve the fidelity of fuel performance models outside of experimental data
ranges, the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, has
been working to develop a new set of mechanistic fuel performance codes that rely on the
underlying physics to make predictions about fuel behavior. The NEAMS approach is to
couple fuel performance properties to microstructural properties such as porosity and
grain size distribution. Therefore, the fuel microstructure evolution and history must be
well understood and quantified in order to inform fuel performance models.

The microstructure of fresh UO2 fuel is determined by the sintering process used to
manufacture it. Sintering is a process where a powder compact is placed under high
temperatures (around 1900 K for UO2) and the particles fuse together into a dense, porous
solid. Within the reactor environment, the fuel pellets continue to densify, accelerated
by irradiation. This is known as irradiation-enhanced densification (IED). In order to
accurately capture the microstructure evolution of UO2 fuel, a mechanistic microstructural
model of sintering and IED must be developed.
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1.2 Overview of Work

This work details the development of a mechanistic microstructural sintering model and
its application to UO2 sintering and IED. Each chapter in this work is a self-contained
investigation which builds on the preceding chapters. As such, some information is
repeated.

Chapter 2 is a comprehensive, introductory literature review of sintering and IED
theory, experimental data, and existing computational models. The work in this chapter
has been previously published by the Journal of Nuclear Materials [1].

Chapter 3 details the development and validation of a new, mechanistic microstructural
model of sintering. This model is based on the grand potential formulation of the phase
field method and improves upon previous microstructural sintering models through an
increased reliance on the thermodynamic and kinetic driving forces of sintering and
less reliance on fitting parameters. Once the model is developed, it is validated via
comparisons to analytical models and it is also compared to experimental data.

Chapter 4 applies the model to doped-UO2 in order to validate a newly-proposed
charged-interstitial mechanism of dopant behavior. Based on this mechanism and these
simulation results, a previously unstudied dopant is suggested as a viable near-term
deployable ATF.

Chapter 5 modifies the model in order to account for the effects of IED and uses test
simulations to gain additional insight into the roles that pore size and grain boundaries
play in IED behavior.

Finally, in Chapter 6, conclusions are presented and future work is proposed in order
to continue the development of mechanistic fuel performance models.
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Chapter 2 |
Literature Review

2.1 Introduction

UO2 is ubiquitous in light water nuclear power reactors due to its stability in water and its
excellent radiation tolerance. In light water reactors, UO2 is formed into pellets that are
typically about one centimeter in diameter and have a height just above one centimeter.
UO2 is a ceramic, and therefore the pellets are manufactured via sintering. Starting
from the initial powder compact and through its initial time in a reactor, UO2 undergoes
gradual densification until the fuel begins to swell. These density changes significantly
impact the performance of the fuel rods [2–7]. In this work, this densification of UO2

is discussed, including thermal densification during sintering and irradiation-enhanced
densification during the early stages of fuel life in a reactor.

Sintering refers to the manufacturing process used to create a UO2 fuel pellet. UO2

powder is compacted into a highly porous pellet [8]). This powder compact is then heated
to high temperatures until the original particles coalesce [6]. The overall volume of the
pellet decreases and the density increases, creating a dense, porous pellet.

The term “densification” is often used synonymously with “sintering”, but for the
purposes of this work, the term “densification” will be used to describe irradiation-
enhanced densification (also called irradiation-enhanced sintering). This is a separate
phenomenon that occurs once the fuel pellet is placed in a reactor and begins to undergo
fission. The volume decreases and density increases, similar to sintering. However, the
fission process causes densification to occur faster than sintering under similar conditions
outside of a nuclear reactor [9, 10].

For the purposes of reactor design and safety, densification must be modeled in fuel
performance codes and this model should be accurate over a wide range of operating
conditions including normal operation, startup, shutdown, and accident scenarios. How-
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ever, there are several major challenges in the development of the model. Sintering and
densification involve complex interactions between the atomistic, meso-, and engineering
scales [11]. Densification also occurs simultaneously with swelling, which has the opposite
effect to densification. Early in the fuel lifetime, densification is the dominant effect, while
after moderate burnup swelling takes over. Even though only one can be observed at a
time, both continue to occur throughout the fuel lifetime, partially negating one another.
For this reason, and because both are caused by fission within the fuel, densification and
swelling cannot be completely isolated experimentally.

This chapter has several purposes:

1. Introduce the physical mechanisms which control sintering and densification; these
mechanisms are discussed in Sections 2.3.1 and 2.4.1, respectively.

2. Review experimental data on sintering and densification. Data were collected from
multiple sources and compared to determine the mechanisms which play the largest
roles. This is done for sintering in Section 2.3.2 and for densification in Section 2.4.2.

3. Examine the models used for predicting sintering and densification. In the case of
sintering, three well-developed models are commonly used, which are summarized
in Section 2.3.3. The models for densification are less developed and more have
been presented in the literature. These are summarized in Section 2.4.3. Section 2.2
discusses how the models are categorized for the purposes of this chapter.

2.2 Types of Models

The models discussed in this chapter will be separated into three categories: empirical,
semi-empirical, and mechanistic.

Empirical models are equations with parameters chosen to fit existing data. They
are easy to develop, easy to use, and accurate as long as they are within the bounds
of experimental conditions. However, empirical models are unreliable outside of these
conditions [7, 12, 13]. This limits their usefulness in situations such as accident scenarios,
where there may not be sufficient data to fit a model. Empirical models also give no
insight into the underlying physics which cause the changes they describe. This further
limits their usefulness when trying to improve or optimize fuel performance [14].

Semi-empirical models rely on equations that are based on the underlying physics,
but still require some parameters to be fit to data. There are several reasons to use
semi-empirical models. They may:
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• Give more accurate forms for empirical models. This is done by basing the form of
the equation on the underlying physics rather than just finding any equation that
can be made to fit the data.

• Improve the computational efficiency of mechanistic models. Complex physics that
would be computationally expensive to solve can be glossed over and replaced by
terms which were fit to data.

• Act as intermediate steps in the development of mechanistic models

• Stand in for processes which are not fully understood. If there is a phenomenon
which is not yet physically understood, this can be accounted for using a fitting
parameter.

Mechanistic models are based primarily on a physical description of the phenomena
taking place. They use material properties, such as lattice constants or defect formation
energies, and some may also include model parameters that need to be determined by
fitting to data. Their basis on a physical description makes mechanistic models the
hardest to develop because the physics must be well understood and quantified.

This basis in physics makes mechanistic models the most computationally expensive
[15]. However, because they rely on an understanding of the physics, validated mechanistic
models are more likely to be valid in situations where little or no experimental data
have been gathered [12, 16]. Ideally, a mechanistic model would account for all of
the necessary physics to be valid in all situations. However, such accuracy would be
impossible to guarantee in practice. These considerations mean that mechanistic models
are highly valuable in preliminary development of new fuel or cladding concepts, as well
as in accident scenario modeling, but they should be backed up with experimental data
whenever possible.

Mechanistic models can be further subdivided into continuous models and microstruc-
tural models [15]. Continuous models describe changes on the engineering scale with
a set of equations. They typically accomplish this by making simplifying assumptions
about the microstructure. Some common assumptions are that the microstructure is
continuous, or that microstructure features such as grains and voids are spherical [17, 18].

Microstructural models, on the other hand, spatially resolve the microstructure
evolution. They do not directly calculate engineering-scale parameters, but these can be
determined based on the microstructural results. For example, to calculate the effective
thermal conductivity of a microstructure, the local thermal conductivities of the bulk,
grain boundaries, and pores are averaged in a physically consistent manner. This makes
microstructural models powerful, accurate, and flexible because they reduce the necessary

5



number of assumptions. However, the smaller scale of microstructural models also makes
them the most computationally expensive type of model considered in this chapter.
Typically they can only model a small section of a single fuel pellet rather than an entire
reactor like an engineering-scale model.

No one model or type of model is appropriate for all scenarios. It is up to researchers
to determine which type of model is best suited to the systems they are simulating. To
facilitate this decision, this chapter compares models based on type, the physics they
account for, the variable they solve for, and, in the case of widely used models, governing
equations and major assumptions.

2.3 Sintering

Sintering has been widely studied for many years. As such, it is too wide of a subject for
a single chapter to cover in-depth. Therefore, this section is meant to be an introduction
to sintering rather than a comprehensive review. Additional review papers on sintering
may be found in Refs. [6, 19–22].

2.3.1 Overview of Sintering

Sintering is a common ceramic and metallurgic manufacturing process. In standard
thermal sintering, a powder is first pressed into a highly porous pellet; 50–60% of the
maximum theoretical density. This powder compact, or “green pellet”, is heated, causing
the pellet to densify [6,23]. Sintering time varies based on material and desired properties,
but typically lasts between several hours and several days [6]. There are many methods
of sintering including two-phase sintering [25], microwave sintering [26], spark-plasma
sintering [27,28], and oxidative sintering [34]. Additionally, the sintering atmosphere can
be controlled or changed during sintering to give further control [29,30]. Sintering is used
to manufacture UO2 fuel pellets because the high melting temperature of UO2 makes
other techniques such as casting uneconomical. UO2 is sintered at a temperature around
1700 °C for several hours [27] until it reaches a density greater than 95% of its theoretical
maximum density [17,27,31].

The theoretical maximum density is what the density would be if there were no pores
or other defects in the fuel. It is calculated based on the lattice arrangement of the
atoms [32,33], giving a value of 10.97 g

cm3 .
There are many parameters that control the sintering behavior. Some of these

parameters within the UO2 powder that affect the sintered properties are:

• Variation of the oxygen to uranium (O/U) ratio: UO2 is typically sintered with
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an excess of oxygen. Changing the amount of excess oxygen can change the self-
diffusion coefficients for vacancies and oxygen atoms. It does this by changing
the ionic charge of some of the uranium atoms from U4+ to U5+ or U6+ in order
to maintain neutral charge. Since the U5+ and U6+ atoms have fewer electrons,
they are slightly smaller, and there is more room for atoms to diffuse through the
lattice [33]. They can also introduce new phases such as U3O8 and U4O9, which
have different properties [34]. For example, U4O9 sinters faster than UO2 [30].
However, the optimum O/U ratio for the thermal conductivity of the fuel is exactly
2.

• The presence of impurities: impurities can enhance or impede grain growth based
on their chemical interactions with the lattice [8, 35,36].

• Variations in particle geometry: changing particle sizes and shapes affects the
amount of contact area, the contact angle, and the initial porosity [6, 7]. This can
also be impacted by the chemical history of the UO2 powder. There are two primary
chemical paths to get UO2, which yield different particle size distributions [37].

Properties can also be affected by varying sintering parameters such as temperature [8],
pressure [6], time, and the sintering atmosphere [34], which can affect the surface energy,
the O/U ratio, and internal pressure in the UO2.

Most sintering processes are designed to optimize mechanical properties such as yield
strength and plastic deformation [6, 38]. However, in the case of UO2, thermal properties
such as heat conduction are more important [4, 31].

Sintering is caused and controlled by self-diffusion of atoms in the crystal lattice [6,23].
In all crystalline solids, atoms diffuse randomly through the lattice by moving into
adjacent vacant lattice sites, called vacancies. If an atom jumping to a vacant lattice site
would increase the energy of the lattice, then it is less likely to occur. Conversely, if an
atom migrating to a lattice site lowers the energy of the lattice, it is less likely to migrate
away from that location and the site is preferred. Atoms on the surface of particles have
higher energies than the atoms in the particle interiors. Generally, this energy is lower
if the particle is in contact with another particle of the same material than if it is in
contact with the atmosphere or a different material. Therefore, lattice sites that increase
the contact area between particles are preferred. Such sites are found around the edges
of the contact area.

However, when atoms move out of the bulk and to the contact area, they leave
behind vacancies within the bulk. The overall energy change of an atom diffusing to the
contact area is the difference of the energy reduced by increasing the surface area and

7



the energy increased by creating a vacancy. This net energy change is also referred to as
the sintering stress [15]. The magnitude of the sintering stress depends on the contact
angle between the particles, known as the dihedral angle. Sharper contact angles reduce
the overall energy. However, as the contact area increases the dihedral angle naturally
widens. Figure 2.1 demonstrates the progression of the dihedral angle, ψ, during sintering.
Eventually it reaches a wide enough angle that the sintering stress is zero and sintering
ceases. This angle is the equilibrium dihedral angle, ψe. Because of the limit on the
dihedral angle, it is possible for sintering to reach equilibrium with pores still present in
the material [19].

The rate at which sintering occurs is controlled by the diffusion rate and sintering
stress. The diffusion rate, in turn, is affected by the defect concentration and temperature.
More defects mean more atoms can diffuse simultaneously, while higher temperatures
allow individual atoms to diffuse faster. This is why sintering is done at high temperature.
Additionally, the strain from forming the powder compact can lead to the production of
additional vacancies. The sintering stress depends on the contact angle as well as the
relative energy differences between the grain interiors, grain boundaries, and free surfaces.

Sintering is often divided into three stages based on the microstructure [38]. Stage one
consists of the powder particles increasing their contact areas through the formation of

Figure 2.1. Demonstration of sintering theory. A) Powder particles in contact prior to sintering.
B) As sintering occurs the particles begin to coalesce. The dihedral angle is the angle of contact
between particles and controls the sintering rate. C) Eventually the dihedral angle is wide enough
that there is no energy change from neck growth and the particles reach equilibrium [19].
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necks [15,19,39]. It ends once neck growth ceases to be the major mechanism. Stage two
is where the overall density increases as the pores decrease in size [19,23,40]. The contact
areas grow into planes called grain boundaries [38]. The pores become more columnar in
shape as they shrink into tunnel systems on grain boundaries and triple junctions. Stage
three begins when pores become closed off to the surface [38]. Grain boundary motion
begins as the lattice continues to decrease its overall energy by decreasing the surface area
between grains [11,40,41]. Large grains grow at the expense of smaller grains [38]. As the
grain boundaries move, they can pick up vacancies, impurity atoms, and even small pores.
These small pores can come in contact with one another as grains are eliminated. This is
called grain boundary sweeping and it is shown in Fig. 2.2 [41]. It reduces the number of
pores as well as the defect concentration in regions near moving grain boundaries.

Early sintering models distinguished between the different stages and often only
focused on a single stage [23,24]. However, because the distinctions between stages are
not always clear, and because of the development of models that include all three stages,
single stage models have become less common. The stages are still commonly used when
discussing sintering qualitatively.

During the final stage of sintering, atmospheric pressure becomes important. Since
the pores are closed off from the surface, gas is trapped in the pores. As the pores
decrease in volume the pressure inside the pore increases, pushing back against further
pore shrinkage [38]. In fact, if the temperature is raised suddenly, reverse sintering, in
which the pores increase in volume, has been observed for short periods of time [38]. The
gas will diffuse into the solid lattice, relieving pressure and allowing sintering to continue.
At this point the rate of sintering depends on the gas solubility in UO2 [38].

Figure 2.2. Grain boundary motion sweeps pores towards one another and causes them to
coalesce [41].
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2.3.2 Sintering Experiments and Data

Figure 2.3 shows experimental results from multiple published papers. These papers
examined a wide range of parameters and their effects on sintering, including

• Temperature profile [28,29,36,42]

• Sintering time [37]

• Sintering atmosphere and oxidation potential [29, 33,42,43]

• O/U ratio [29,32,33]

• UO2 chemical history [37]

• Presence of dopants: Gd2O3 [32,33,43] can be added as a burnable poison while
NbO2 [42] and Cr2O3 [36] can be added to control the microstructure

• Green density [8, 29,36,37]

• Particle size distribution [8]

• Alternative sintering techniques including additional atmospheric stages [28, 30, 34].

While sintering time and temperature are clearly important factors, the results show that
they are certainly not the only parameters that control sintering. Sintering atmosphere
plays a very important role, while particle size distribution does not. The density change
caused by additives appears to be rather small. The results of [32, 33, 36] show very little
variation in final density. The results of [42] do show a large variation. However, this
study looked at the effects of the atmosphere as well as a NbO2 dopant.

In order to examine the effects of atmosphere more closely, we took the data from [29],
which used several different atmospheres while sintering for two hours. This paper started
with high O/U ratios ranging from 2.08 to 2.67. Those data are shown in Fig. 2.4 colored
by the various atmospheres used. The more inert atmospheres of argon, CO2, nitrogen,
and a vacuum performed very well, despite the potential oxidation effects of CO2. The
oxidizing atmospheres of wet H2 and partially dried H2 performed a little better than the
reducing atmosphere of dry H2. At higher temperatures all of the various atmospheres
would be expected to converge near maximum density. This demonstrates both that
there is an optimum O/U ratio that yields the higher densities, and that the sintering
atmosphere is an important factor in sintering behavior.
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Figure 2.3. Sintering data from [8,29,32,33,36,37,42]. Sintering time and temperature play a
large role in final density, but they are clearly not the only important parameters as the results
are rather noisy. Sintering atmosphere plays a large effect (see Fig. 2.4). The dopants Gd2O3,
NbO2, and Cr2O3 do not have large effects on sintering rate. Neither do variations in the particle
size distribution.

2.3.3 Sintering Models

The most common approach used to describe sintering is the Master Sintering Curve
(MSC), which is a semi-empirical model. Other models exist (including a continuous
mechanistic model [44]), but they are not widely used. In addition, two microstructural
approaches are typically used to model sintering. The Monte Carlo Potts (MCP) model
simulates the random diffusion within a material. The phase field sintering model is
based on diffusion theory. It is the most recently developed of the models and has shown
promising results.

Note that the final solution of a microstructural sintering model could act as the
initial condition of similar microstructural densification models. Coupling of this kind can,
in theory, improve the accuracy of microstructural models by using an initial condition
based on sintering physics rather than a condition based on averaged values.

2.3.3.1 Master Sintering Curve

The MSC model began in 1992 when Hansen et al. developed a single model to describe
all three stages of sintering [45]. It was refined by Su and Johnson in 1996 [46]. Later,
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Figure 2.4. Sintering results from [29] colored by sintering atmosphere. Each sample was sintered
for two hours. The trends become much more clear as inert and oxidizing atmospheres perform
better than reducing atmospheres [29].

easier methods to fit empirical data were added in 2006 [47] and 2008 [48]. Now it is widely
used for a large variety of sintering methods and materials [25, 28, 49–71]. Figure 2.5
shows one example of a MSC compared to experimental results for ThO2 mixed with
some UO2 [65].

The MSC model is a semi-empirical model. It is based on sintering theory, but
relies on several fitting parameters to simplify the equation and get the correct shape.
These parameters allow it to reduce to a single equation rather than a system of coupled
equations. The fitting parameters allow it to account for low-effect variables such as
minor impurities and small variations in the atmosphere’s oxygen potential. It also
allows simplification by considering only bulk diffusion and ignoring diffusion along free
surfaces and grain boundaries. However, it also means that new fitting parameters must
be developed for each set of sintering conditions.

The dependent variable is the relative density of the material. In other words, the
MSC equation solves for the density compared with what the density would be if there
were no pores. The governing equation is derived from the PDE

1
3ρ
dρ

dt
= γΩ
kT

(ΓvDv

G3 + ΓbδDb

G4

)
, (2.1)
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Figure 2.5. Master sintering curves for ThO2 with 4% UO2 compared to experimental results
for four different heating rates [65].

where ρ is the relative density, γ is the surface energy, Ω is the atomic volume, k is the
Boltzmann constant, G is the mean grain diameter, δ is the grain boundary width, and T
is temperature. Dv and Db are the diffusion coefficients for volume and grain boundaries,
respectively, while Γv and Γb are associated fitting parameters.

The solution to Eq. (2.1) is

k

γΩD0

∫ ρ

ρ0

[G(ρ)]n

3ρΓ(ρ) dρ =
∫ t

0

1
T

exp(− Q

RT
)dt, (2.2)

where D0 is the initial grain boundary diffusion coefficient, ρ0 is the initial relative density,
n = 3, R is the universal gas constant, Q the activation energy of diffusion, and Γ is a
fitting parameter.

In most conditions the MSC is a very useful and powerful model. It is able to take a
given starting powder and predict how different densities, pore size distributions, and
grain sizes can be achieved by modifying the sintering parameters. The major assumptions
of the MSC are

1. The vacancy concentration is in equilibrium [45]

2. The microstructure is continuous and only depends on density [46]
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3. Sintering is dominated by a single mechanism [46].

These assumptions are not always valid. Assumption 1 means that the MSC is not valid
as a densification model since one of the characteristics of densification is a higher vacancy
concentration. Assumption 3 means that the MSC may not be accurate if the sintering
time is extremely long. Assumption 2 has the largest effect. In reality, the microstructure
depends on other parameters besides density, such as the sintering atmosphere and the
chemical history of the UO2. Therefore, the model only predicts sintering behavior if the
initial condition closely matches the initial condition of the experimental data it was fit
to [46].

2.3.3.2 Monte Carlo Potts

The Monte Carlo Potts (MCP) method has been in use since it was first developed in
1990 [15, 21, 72–110]. It is a mesh-based microstructural model which relies on Monte
Carlo simulations. These simulations are designed to approximate the random diffusion
of atoms in the crystal lattice. Each point on the mesh has a value that represents either
a void or a particular grain orientation. Typically voids are represented with 0 or −1
while positive integers represent the grain orientations. The grain boundaries and free
surfaces are represented as sharp interfaces between two mesh points with different values.
The energy associated with each mesh site is based on the number of neighbors to that
site with the same value according to the equation [100]

E = 1
2

n∑
j=1

Jij(1− δ(qi, qj)), (2.3)

where n is the number of neighbors for site i, Jij is the neighbor interaction energy
between sites i and j, qi is the value of site i, and δ(qi, qj) is the Kronecker delta function

δ(qi, qj) =

1, qi = qj

0, qi 6= qj
. (2.4)

At each time step, a random site is chosen to either switch values randomly or swap with
a neighboring site, depending on how the simulation is set up [15,86,100]. The change in
the free energy from this change, ∆E, is calculated. The probability of the change being

14



accepted is given by [100]

P =

exp
(
−∆E

kT

)
, ∆E > 0

1, ∆E ≤ 0
, (2.5)

where kT approximates the Boltzmann constant multiplied with the temperature, but is
actually a chosen constant to get the desired behavior [74,78,100].

An example simulation covering 900 time steps is shown in Figs. 2.6 and 2.7 [110].
Fig. 2.6 shows the microstructure. It begins with obviously defined particles closely
packed together and shows the contact area between them increasing until they have
formed a single multi-grain solid with pores. Fig. 2.7 shows the relative density of the
same simulation. The density increases rapidly at first, but as it approaches equilibrium,
the sintering rate decreases.

Figure 2.6. Example of a Monte Carlo Potts simulation progression. From left to right:
Simulation at 1, 50, 300, and 900 Monte Carlo steps. The system evolves from multiple particles
to a porous polycrystalline solid [110].

Figure 2.7. Density Measurement associated with Fig. 2.6. The density begins by increasing
steadily, but as the driving force decreases the system approaches equilibrium [110].

The major assumption in MCP is that the mesh sites behave like atomic lattice sites.
In truth the mesh sites are much larger than the lattice sites. So, like all microstructure
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methods, a finer mesh will yield more accurate results.
Like all Monte Carlo methods, MCP has no built-in time scale. The times are given in

Monte Carlo steps. However, several techniques exist to approximate the real time [111].

2.3.3.3 Phase Field Sintering

Phase field is a common method for simulating microstructure evolution. Like the MCP
model, it is a mesh-based microstructural model that uses variable values to describe
different microstructural regions. However, while the MCP model relies on sharp interfaces
between grains, the phase field method uses diffuse interfaces, which allows the variables
to be continuous. For a more complete discussion on the basics of the phase field method,
see references [112,113].

Generally, the phase field method relies on two governing equations. The Cahn-
Hilliard equation is derived from the diffusion equation and describes variables subject to
conservation laws such as mass or energy [115]:

∂ρ

∂t
= ∇ ·M∇δF

δρ
, (2.6)

where ρ is the conserved variable, F is a function giving the energy of the system, and
M is the mobility parameter for ρ. The Allen-Cahn equation describes variables that are
not subject to conservation laws [116]:

∂η

∂t
= −LδF

δη
, (2.7)

where η represents an non-conserved variable such as grain orientation or phase, and L is
the mobility of η.

The total energy F is defined as

F =
∫ [

f(ρ, η) + κρ(∇ρ)2 + κη(∇η)2
]
dV, (2.8)

where f is the free energy function of the material and the κ terms are gradient energy
coefficients chosen to control the interface widths. It is possible to add any number of
conserved and non-conserved variables by adding gradient energy terms and including
them in the free energy function.

Researchers began attempting to apply phase field to sintering in 1999 [117, 118].
However, these initial simulations were not able to capture sintering without an additional
driving force to account for rigid body motion of the particles due to the sintering
stress [117]. It was only in 2006 that Wang fully incorporated rigid body motion into a
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phase field model [119]. The model increased in popularity in 2014 and has been getting
wide use since [39,120–128,176].

Wang’s model works by modifying Eqs (2.6) and (2.7) to include rigid body velocity,
~vadv [119]:

∂ρ

∂t
= ∇ ·

(
D∇δF

δρ
− ρ~vadv

)
, (2.9)

∂η

∂t
= −LδF

δη
−∇ · (η~vadv). (2.10)

It is generally accepted that inclusion of the rigid body velocity improves the accuracy of
the simulation [39,117]. However, some studies have produced similar behavior without
including the rigid body velocities [129].

In this model, the conserved variable represents the relative density of the material
being sintered with respect to a fully dense material at any point on the mesh. Non-
conserved variables may be used to represent grain orientations and/or the individual
powder particles. The free energy function is set up to make sure the non-conserved
variables prefer to overlap with the conserved variables.

Figure 2.8 gives an example of a phase field sintering simulation with eight particles
being sintered together for 156 seconds. The behavior is similar to Fig. 2.6 in that it
begins with individual particles and ends with a single mass [39].

The major assumptions in the phase field method are that the processes are driven by
diffusion and the boundaries are diffuse. Thinner boundaries tend to improve accuracy
over wide boundaries, but require a finer mesh and can have convergence problems. The
researcher must balance the computational time with the accuracy of the simulation. In

Figure 2.8. Example of phase field sintering simulation using eight particles. The times shown
are a) 0 s, b) 2 s, c) 20 s, d) 100 s, e) 125 s, f) 156 s [39].
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addition, the phase field method uses a continuum approximation of a material, where
the individual atoms are described by the density and their configuration is described by
order parameters. This approximation is accurate when the interface width is significantly
larger than the lattice constant. Therefore, it is important to maintain an interface width
that is much larger than the lattice constant.

2.4 Densification

2.4.1 Overview of Densification

Densification is an in-reactor phenomenon where fresh fuel increases in density as pores
left over from sintering are evacuated. It impacts fuel performance in several ways. In
the fuel, densification improves thermal conductivity and speeds up grain growth. In the
gap, the decreasing volume increases the gap width and lowers the gap conductivity. The
overall effect is generally to increase the centerline temperature of the fuel. Therefore, it
is an important phenomenon to understand and model.

Densification has been studied since the early 1970’s [10, 17]. It was initially believed
to be a continuation of final-stage sintering [10, 130]. However, it occurs faster than
sintering would under the same conditions without fission [9, 10].

This increase in sintering speed is caused by fission fragment collisions occurring
within the fuel during reactor operation [17, 131, 132]. The fission chain reaction that
powers nuclear power plants produces large amounts of energy. Most of the energy is
carried as kinetic energy in the fission fragments. These fragments collide with atoms
in the fuel lattice, which transfers energy to the lattice atoms and knocks them out of
their lattice sites. The fission product continues to collide with more atoms even as those
atoms knock other atoms out of lattice sites in a chain reaction. This is called a collision
cascade and it results in a large section of lattice where atoms are displaced and diffusing
at a highly accelerated rate [133].

Collision cascades speed up the sintering rate in three ways:

1. Accelerated localized diffusion: within the cascades the atoms diffuse incredibly
quickly as the energy liquefies the region for a few picoseconds [134]. Since sintering
is caused by diffusion, this fast diffusion speeds up sintering.

2. Increased defect production: as a collision cascade ends, the atoms that were
displaced return to the lattice, but not all of them manage to reach an empty lattice
site. These atoms are left as interstitials. They also leave a vacancy somewhere
nearby in the lattice [135]. This pair of defects is called a Frenkel pair. Since point
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defects are necessary for diffusion, Frenkel pairs speed up diffusion within the grain
in general [11, 133]. The exact change in the diffusion rate has been a subject of
study for many years [9, 136,137].

3. Pore damage: if a collision cascade occurs close enough to a pore, it will scatter
some of the pore volume into the lattice as vacancies [11]. Large pores will be
damaged and decrease in volume, but most of the vacancies will find their way
back to the pore, causing minimal densification. Small pores will be completely
destroyed, forcing the vacancies to migrate farther. This directly decreases the
volume of the pores in the UO2 [17]. Therefore, small pores contribute more to
densification than large pores.

2.4.2 Densification Experiments and Data

The most common research goal in densification experiments is to determine the thermal
and irradiation stability of fuel pellets. Researchers have used different manufacturing
methods and additives to try to minimize the amount of densification in the fuel to less
than 1% [10].

Factors that control densification include:

• Temperature [130]

• Burnup [130,138]

• Fission gas release and swelling [139]

• Pore size distribution [10,130]

• Grain size distribution [140]

Pore and grain size distributions, as well as pellet density, are in turn dependent on the
sintering conditions used to manufacture the pellet. Therefore, it is also important to
understand the pellet’s manufacturing history.

The most challenging part of densification experimentation is isolating the effect.
Swelling is a process caused by fuel fissioning and radiation damage in which solid and
gaseous fission products cause the fuel to swell and pores to expand. The gaseous fission
products combine with vacancy clusters formed by collision cascades to form fission gas
bubbles. Because both effects are caused by fission, swelling is impossible to isolate
from densification. The best researchers are able to do is to run experiments at low
temperatures and burnups where swelling is less prominent [10, 130]. However, even
doing this it is not possible to fully remove the effects of swelling from the experimental
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Figure 2.9. Experimental data collected from [10,130,138]. It compares the fuel burnup to the
ratio of final to initial porosity. Ratios greater than 1 show swelling while ratios below 1 show
densification. Data are colored based on the temperature range of the samples. While it is clear
that high temperature and high burnup lead to swelling, swelling can still be observed even at
very low temperatures and burnups. In order to compare results from the various papers, density
data from all three were converted to the units shown while burnup data from [138] was converted
from MW d

kg to the units shown.

results [139]. This can be observed in Fig. 2.9. We collected densification measurements
from several papers and again arranged them to determine the parameters that exhibit
the most control over densification. The x-axis is fuel burnup and the y-axis is the ratio
of the final porosity to the initial porosity, such that values below 1 show densification
while values greater than 1 show swelling. The data were marked based on temperature.
The average center temperatures of the different samples were divided into quartiles
and distinguished by marker shape and color. The results show that high burnup and
temperature do indeed lead to higher rates of swelling. However, even at low temperature
and burnup it can be difficult to isolate the effects.

Though sintering and densification are related behaviors, differences in the objectives
of research in the two areas is clearly evident by comparing Figs. 2.3 and 2.4 with
Fig. 2.9. Researchers in sintering identify the conditions (temperature, sintering time,
etc.) required to fabricate a sample with a specified geometry. Researchers in densification
are concerned with the continuous reduction in volume of the fuel with time (typically
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measured in terms of burnup), until swelling dominates and the volume begins to increase.
Several parameters are very important to consider in densification, especially

• Burnup [138]

• Fuel temperature [130]

• Fission rate

• Initial fuel density [130]

• Pore size distribution: fuels with small pores undergo densification significantly
faster than fuels with large pores. This is both because collision cascades destroy
small pores and because small pores sinter faster.

• Grain size distribution: large-grained fuels may exhibit more densification. This is
believed to have less to do with densification and more to do with slowing down
swelling by not allowing fission products to gather at grain boundaries [140].

2.4.3 Densification Models

Despite similarities to sintering, densification models are less developed than sintering
models. This is likely because of densification is a smaller field of study, it has been
studied for a shorter period of time, and it adds additional complex physics which must
be considered. Though the models are less developed, more models are reviewed here
than in Section 2.3.3 because none are used by the majority of researchers in the area. It
is worth noting that all of the models summarized here are empirical or semi-empirical;
our review found no mechanistic models for densification.

The most commonly employed models are empirical models. A typical empirical
model, the ESCORE model, is summarized below. The first successful semi-empirical
densification model was the Assmann and Stehle model. It was the first to identify
collision cascades as the source for increased diffusion [17, 131, 132]. Although it is no
longer used, all of later semi-empirical models are based on the Assmann and Stehle
model [11,141,142], and for this reason it is summarized below.

2.4.3.1 ESCORE

A common empirical model in is the ESCORE model [12, 13]. It has a wide range of
experimental data to back it up and is among the simplest models currently used. It uses
only a single equation,

εD = ∆ρ0

(
exp

(
Bu ln(0.1)
CDBuD

))
. (2.11)
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εD is the densification strain. ∆ρ0 is the total densification that can occur. Bu and BuD
are the burnup and the burnup at which densification is complete, respectively. CD is
given by the equation

CD =

7.2− 0.0086(T − 25), 25 ≤ T ≤ 750

1, T > 750
(2.12)

where T is temperature in units of °C.

2.4.3.2 Assmann and Stehle

The Assmann and Stehle model was developed between 1974 and 1978 [17,131,132]. It
is a semi-empirical model which relies on experimental results to fill gaps in difficult-
to-calculate parameters. It considers sintering, vacancy generation from cascades near
pores, pore damage, and vacancy diffusion. However, it does not include Frenkel pair
production.

Some of the major assumptions in the model are

• Pores are spherical

• Pores come in groups of discrete sizes

• Each group of pores can be clearly labeled as fine or coarse based on their volume

• Only one effect contributes to densification at a time

• The temperature determines which effect contributes.

The sizing of pores can present difficulties with this model. First of all, the shape of the
size distribution may be unknown [143]. Also, there may not be a clear cutoff to separate
fine and coarse pores.

The model breaks densification into four temperature regions shown in Table 2.1 [17].
Each region has its own governing equation for the behavior of coarse pores. Fine pores
behave the same in each region, so have only one governing equation.

The governing equations are

(∆V
V0

)c
I,II

= −
∑
i

P c0,i

1−
(

1− (Dth
v +Dirr

v )CSt
r2

0,i

)3/2
 (2.13)

(∆V
V0

)c
III

= −
∑
i

P c0,i

1−
(

1− λωGCSt

3r0,i

)3
 (2.14)
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(∆V
V0

)c
IV

= −
∑
i

P c0,i

[
6ΩγD(x)t
kTr3

0,i

]
. (2.15)

(∆V
V0

)f
= −f∗P f0 (1− exp(−η∗ΩSGt)) (2.16)

where
(

∆V
V0

)
is the relative density change, c and f represent the effects from coarse and

fine pores, respectively, and the roman numerals correspond to the regions in Table 2.1.
The rest of the parameters are summarized in Table 2.2.

This model is based on a stage 3 sintering model, but specifically considers pores
that are smaller than grains and according to their radii. The sintering MSC model, by
contrast, looks at pores that are both larger and smaller than the grains and measures the
overall density. These differences cause the governing equations to look different. However,
in stage IV, the Assmann and Stehle model is controlled by sintering so Eq. (2.15) is
the most similar to Eq. (2.2). In addition, sintering models are focused on predicting
the final state of the sintered material as a function of the sintering conditions, while
densification models predict the increase in density with time.

2.4.3.3 Other Densification Models

Table 2.3 summarizes five additional densification models that have been developed. The
models are presented by model name, year, and type. Additionally, Table 2.3 compares
the models based on the dependent variable and what physics are included in each model.
None of the semi-empirical models are widely used. Most fuel performance codes use
empirical models [143, 144]. The MFPR code does rely on semi-empirical models, but
their corresponding densification model seems to have been developed for the individual
code [11].

2.4.3.4 Guidance for Future Model Development

Development of a microstructural densification model would be easiest by making ad-
justments to the microstructural sintering models discussed in Section 2.3.3. However,

Region Temperature Range Vacancy Generation Vacancy Migration
I ≤ 450°C Athermal Athermal
II 450→ 750°C Athermal Thermal∗
III 750→ 1300°C Athermal∗ Thermal
IV ≥ 1300°C Thermal Thermal

Table 2.1. Temperature regions for Assmann and Stehle model. Thermal refers to sintering.
Athermal refers to irradiation-enhanced densification. * = Rate controlling mechanism [17].
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these models would have to be adjusted to consider the impact of radiation damage on
the microstructure behavior, including accelerated localized diffusion, increased defect
production, and pore damage. The MCP model could possibly be adjusted to include
events that mimic collision cascades by alternating the values of a region of mesh points
rather than just a single point. The phase field sintering model could be adjusted by
adding stochastic terms to consider the collision cascade; e.g. that add the impact of
defect generation, local temperature increases, and dispersement of defects around pores.
The rigid body velocity would also be removed. These alterations would require time
and space averaging to make the collision cascades fit on the mesh point and last for a
time step during a simulation.

Once a microstructural model is developed and validated, it could be used in the
development of an engineering-scale model by allowing researchers to separate densification
from swelling within the model, or allow examination of the fuel microstructure while under
irradiation. Such data, combined with experimental data, could give researchers valuable
insights into which parameters are the most important for predicting densification.

Variable Physical Description
CS Saturation concentration of vacancies in UO2
D(x) Self-Diffusion coefficient of uranium in UO2+x
Dirr
v Vacancy diffusion coefficient from irradiation

Dth
v Vacancy diffusion coefficient from heat
G Fission rate (fissions cm−3s−1)
f∗ Fraction of vacancies captured by coarse pores
i Denotes a set of coarse pores with the same radius
k Boltzmann constant
P c0,i Initial pore volume fraction for a set of coarse pores
P f0 Initial fine pore volume fraction
r0,i Initial radius for a set of coarse pores
T Temperature
t Time
η∗ Vacancies per encounter that escape from fine pores
λ Viable track length of fission fragments
ω Atomic volume of UO2
Ω Vacancy volume

ΩS Collision cascade volume

Table 2.2. Descriptions of parameters used in the Assmann and Stehle model.
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2.5 Conclusions

Reactor fuel pellets are fabricated using sintering, in which powder compacts densify
to form fuel pellets. During reactor operation, fuel pellets continue to densify, but at a
faster rate than would be expected in thermal sintering under the same conditions. This
is caused by the effects of radiation. Eventually, enough fission products build up and
cause the fuel to swell. This leads to a net increase in fuel volume. Sintering determines
the porosity and microstructure at the beginning of fuel life, while densification must be
accounted for in order to accurately model dimensional changes in UO2.

Of the two effects, sintering is better understood. It is controlled primarily by the
sintering temperature, the sintering time, the O/U ratio of the fuel, and the sintering
atmosphere. Sintering modeling has converged to three models in wide use. The MSC is
the most common model and is a semi-empirical equation that is simple to use. However,
changes to the initial conditions such as the fuel’s chemical history or its O/U ratio
require the development of new curves. The MCP model and the phase field sintering
models are both microstructurally resolved mechanistic models. These do not rely on
fits to data, which makes them potentially more flexible and better equipped to handle
different sintering conditions. However, the models are complex and computationally
expensive, limiting the amount of material that can be modeled. Additionally, these
models have not yet been fully validated against experimental data. Their accuracy is
still in doubt.

Densification is a combination of sintering and irradiation damage from collision
cascades. It is less understood both because the physics are more complex and experi-
mental data are harder to obtain. However, it is known that the primary factors are the
burnup, temperature, density, and pore size distribution. Densification primarily relies on
empirical models. These models are very simple and accurate, but limited by the range of
experimental data, which can be difficult to obtain. Several semi-empirical models exist.

Model Name Year Type Dependent
Variable

Included Physics RefsTS DG DD PD EP
Macewen & Hastings 1975 S Pore Radius X X X [135]
Dollins & Nichols 1978 S Pore Volume X X X X [141]
Bouguerra & Si-Ahmed 1991 S Pore Radius X X X X [142]
MATPRO 1993 E Strain [144,145]
MFPR 2014 S Pore Volume X X X X [11]

Table 2.3. Comparison of several densification models based on the type, dependent variables,
and the physics included in each one. Key: TS = Thermal Sintering, DG = Defect Generation,
DD = Defect Diffusion, PD = Pore Damage, EP = Equilibrium pores. E = Empirical, S =
Semi-Empirical.
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These models are more complex, but also give more insight into the underlying physics.
However, there is not currently any mechanistic models of densification. We recommend
that a mechanistic densification model should be developed in order to improve the
physical understanding of the process as well as to add another tool to be used in fuel
and cladding design. One straightforward way to accomplish this would be to find a way
to include radiation damage to the already existing MCP or phase field sintering models.
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Chapter 3 |
Grand Potential Sintering
Model Development and
Verification

3.1 Introduction

Bulk material properties, such as thermal conductivity, strength, and resistance to
fracture are largely determined by the material microstructure. In sintered materials,
the microstructure is determined by the sintering conditions [6]. Sintering is a common
manufacturing process in metals and ceramics in which a highly-porous powder compact
(the green body) is heated so that the particles coalesce into a dense, polycrystalline
solid. Sintering occurs due to vacancy diffusion, which causes the total surface area to
decrease by forming grain boundaries (GBs) [19]. The material densifies as vacancies
diffuse along GBs from interior pores to to external surfaces [146,177]. In addition, the
GBs migrate to reduce the total GB area in a process known as coarsening; this GB
migration is slowed by interactions with pores [1, 125](Chapter 2). The sintering process
is shown schematically in Fig. 3.1.

Determining the proper sintering conditions to produce desired properties requires
the ability to quantitatively predict microstructure evolution during the sintering process.
There are four governing mechanisms which must be accounted for in any quantitative
microstructural sintering model:

• Sintering stress—The driving force for densification during sintering is the energy
difference between surfaces and GBs. As a GB is formed at the neck of two particles,
it reduces the free surface area while increasing the GB area, thus reducing the
overall surface energy and increasing the overall GB energy [1](Chapter 2). Only
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Figure 3.1. Simple demonstration of sintering theory. A: Four particles inside a powder compact.
Vacancies diffuse from contact regions between particles to free surfaces, increasing the particle
contact area and changing particle shape. Arrows show the direction of vacancy motion. B:
Particle contact regions grow into necks of width Lneck to form GBs. There is a material-specific
dihedral angle, θ, observed where GBs meet surfaces. C: Necks fully form into GBs. The neck
width and dihedral angle are also shown. GB motion consumes small grains at the expense of
large ones. Additional arrows show the direction of GB motion. The dihedral angle remains
constant throughout grain growth.

when the surface energy is larger than the GB energy is there a thermodynamic
driving force for sintering. The energy difference between surfaces and GBs is
known as the sintering stress. The surface and GB energies interact when GBs
intersect surfaces, resulting in a contact (or dihedral) angle θ, shown in Fig. 3.1,
that is controlled by the ratio of the GB to surface energy.

• GB/vacancy interaction—GBs play a major role in the elimination of vacancies
that results in densification. The effect of GBs can be considered in two ways, both
of which result in densification. The first is that vacancies are annihilated by GBs
and the second is that GBs serve as rapid diffusion paths for vacancies to reach
free surfaces.

• Non-uniform diffusion—The kinetics of densification during sintering are governed
by the rate at which vacancies diffuse through the material. However, diffusion
does not occur at a uniform rate throughout the material. It is accelerated on GBs
and surfaces because there is more empty space for atomic vibrations. Thus, GB
and surface diffusion are rate-controlling factors for sintering kinetics [119].
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• Grain coarsening—The driving force for coarsening is the reduction in the total
grain boundary energy as large grains grow and small grains shrink. The kinetics
are dictated by the GB mobility and by the interactions with pores.

There are several models available to describe sintering. Macroscale descriptions,
such as the master sintering curve, predict the overall density and porosity change of the
green body, but do not predict the evolution of the microstructure [1](Chapter 2). There
are also analytical models based entirely on sintering theory [119] that exist for specific
idealized cases involving only a few particles. They cannot predict the density change of
the green body, but they are useful for describing sintering mechanics and verifying more
advanced models. Microstructural sintering models resolve the individual particles of a
green body and predict both the densification and microstructure evolution [1](Chapter
2). Due to the large computational cost of resolving individual particles, microstructural
models are not typically used to model an entire green body.

Two microstructural sintering models are in common use [1](Chapter 2). The first
is the Monte Carlo (MC) Potts method; originally developed in 1990 [72, 73, 87]. This
is a stochastic MC method that represents three processes: GB migration, migration
of pores by surface diffusion and vacancies by GB diffusion, and vacancy annihilation
at GBs. The domain is represented by a computational grid, with the state at the
grid points representing either voids or grains. Grid point states are randomly varied,
and the probability that the new state is accepted depends on the resultant change
in the free energy of the system. The MC Potts model provides a powerful means of
modeling large numbers of particles in both 2D and 3D, and model predictions have been
directly compared against experimental data [100]. However, while the MC Potts model
quantitatively predicts the thermodynamics of a given material, it cannot quantitatively
predict the kinetics because, like all MC models, it does not have a built-in timescale.

The other microstructural sintering model uses the phase field method [119]. The phase
field method represents the microstructure using continuous variable fields [112,113] that
evolve according to partial differential equations to minimize the free energy. Interfaces
between microstructural features are represented by regions where variables smoothly
transition between equilibrium values. Early attempts to apply the phase field method to
sintering found that it under-predicted sintering rates [117]. Wang corrected this in 2006
with the Rigid Body Motion model [119], which speeds up densification by introducing a
rigid body force that represents vacancy annihilation by GBs. The model is qualitative
and not material specific, and the rigid body force adds computational complexity. Others
have applied this model to study densification kinetics [39], though no comparisons have
been made to experimental data.
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In this work, a new phase field model for sintering is presented that is fully quantitative
and material specific. It provides complete control over the surface and grain boundary
energies to properly describe the sintering stress. It separately describes diffusion through
the bulk, along GBs, and along surfaces, and it accurately captures grain coarsening. It
builds on many recent developments in phase field modeling [125,147–149], including the
grand potential model [150,151], to accurately describe densification rates without rigid
body motion physics. The new grand potential sintering model is derived is Sec. 3.2. Then
the model is verified against analytical expressions and the thermodynamic and kinetic
behavior is investigated in Sec. 3.3. In Sec. 3.4, initial comparisons against sintering data
for UO2 green bodies are carried out.

3.2 Model Description

The grand potential sintering model quantitatively describes microstructure evolution
during sintering, including densification and coarsening. In the model, the surface and
GB energies for a specific material are defined, which quantifies the sintering stress. The
model assumes vacancies segregate to GBs and then rapidly diffuse along them to surfaces.
The diffusion coefficients for bulk, GB and surface diffusion are defined, and GB and
surface diffusion occur only within their planes. Finally, the GB mobility is defined, and
its value, along with void interactions, control the coarsening kinetics.

This section provides the mathematical basis for the model. In Sec. 3.2.1, the governing
equations for the phase field method are described. In Sec. 3.2.2, the phase field model is
converted to a grand potential formulation. In Sec. 3.2.3, the assignment of parameter
values to make a quantitative sintering model is described. Finally, in Sec. 3.2.4, values
are assigned to properties in order to model the well-studied material UO2.

3.2.1 Phase Field Method Formulation

There are two regions in the model. The solid region is represented by the subscript s and
the void region is represented by the subscript v. There are n order parameter variables
associated with the solid region, ~η = {η1, η2, ..., ηn}. These distinguish the various grains.
There is one order parameter variable associated with the void region, φ, which represents
all pores and the external void region. The order parameters are not subject to any
conservation law, and are therefore controlled by the Allen-Cahn equation [116]:

∂ηi
∂t

= −Ls
δF

δηi
,
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∂φ

∂t
= −Lv

δF

δφ
, (3.1)

where L is the order parameter mobility and F is the total free energy of the system. As
is commonly done to simplify polycrystal simulations, it is assumed that all GB properties
are isotropic [113], such that L is constant. The order parameter values are constant
within a region, but smoothly transition between values across interfaces. The various
regions of the domain are defined by these variables as follows:

• A grain is a region where ηi = 1, ηj = 0 for all j 6= i, and φ = 0.

• A void is a region where φ = 1 and ~η = 0.

• A GB is a region where 0 < ηi < 1, 0 < ηj < 1 for some j 6= i, and φ = 0.

• A surface is a region where 0 < ηi < 1, ηj = 0 for all j 6= i, and 0 < φ < 1.

To represent the fraction of lattice sites occupied by vacancies, which are subject to
conservation of mass, the conservation variable field c is used. This is governed by the
Cahn-Hilliard equation [114]:

∂c

∂t
= ∇ ·M∇δF

δc
, (3.2)

where M is the phase field mobility tensor for c. The total free energy, F is defined
according to:

F =
∫
V

[fb(~η, φ) + fgr(∇~η,∇φ) + hsfs(c) + hvfv(c)] dV, (3.3)

where fb is the bulk energy, fgr is the gradient energy, fs and fv are the energies of the
solid and void regions, respectively, and hs and hv are switching functions that interpolate
smoothly between values corresponding to the two regions. The switching functions have
the constraint hs + hv = 1.

The bulk energy ensures that the order parameters have the correct values in the
different regions and is calculated according to the equation [147]

fb(~η, φ) = ε

(φ4

4 −
φ2

2

)
+

n∑
i=1

(
η4
i

4 −
η2
i

2

)
+ γ

φ2
n∑
i=1

η2
i +

n∑
i=1

n∑
j>i

η2
i η

2
j

+ 1
4

 , (3.4)

where ε is the free energy barrier coefficient and γ is the interface profile coefficient. The
gradient energy is calculated as [112,113]

fgr(∇~η,∇φ) = 1
2κ
[
(∇φ)2 +

n∑
i=1

(∇ηi)2
]
, (3.5)
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where κ is the gradient energy coefficient. The region energies are assumed to be
parabolic [151]:

fs(c) = 1
2ks (c− ceqs )2 ,

fv(c) = 1
2kv (c− ceqv )2 , (3.6)

where ceqs and ceqv are the equilibrium vacancy concentrations in the two regions and ks
and kv are parabolic energy coefficients. ε and κ define additional energy added to the
system within the region interfaces.

One issue with this formulation occurs within interfaces transitioning from solid
regions to void regions. In such regions, c is transitioning between ceqs and ceqv , and is
out of equilibrium with both phases, resulting in large values for fs and fv that make
it difficult to quantitatively assign a value for the surface energy. Here, this issue is
remedied by converting to the grand potential formulation. However, other models, like
the Kim-Kim-Suzuki model [152], could also be used to remedy the issue.

3.2.2 Conversion to Grand Potential Model

Grand potential conversions were developed by Plapp for parabolic energy functions as
well as the dilute species and ideal solution cases [150]. The grand potential formulation
used in this work is based on the model developed by Aagesen et al. [151], which in
turn relies on the thermodynamic analysis of Moelans [147]. A different grand potential
formulation was also proposed by Choundhury et al. [153], but is not used in this work.

In the grand potential model, the evolution equations are derived from a functional
of the grand potential density:

Ω =
∫
V

[fb(~η, φ) + fgr(∇~η,∇φ) + hsωs(µ) + hvωv(µ)] dV, (3.7)

where Ω is the total grand potential and ωs and ωv are the grand potential densities for
the solid and void phases, respectively. Eq. (3.7) is used in Eq. (3.1) in place of Eq. (3.3):

∂ηi
∂t

= −Ls
δΩ
δηi

,

∂φ

∂t
= −Lv

δΩ
δφ
. (3.8)

To convert from the phase field model to a grand potential model, the variable c is
removed as an independent variable and replaced with the chemical potential µ. The
first step of this process is to define vacancy concentration variables for each phase: cs
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and cv. The chemical potential is derived from the Hemholtz free energies (Eq. (3.6)) as:

µ = Va
∂fs(cs)
∂cs

= Va
∂fv(cv)
∂cv

,

= Vaks (cs − ceqs ) = Vakv (cv − ceqv ) , (3.9)

where Va is the atomic volume of the species. Eq. (3.9) is then inverted to give:

cs = µ

Vaks
+ ceqs ,

cv = µ

Vakv
+ ceqv , (3.10)

c = hs

(
µ

Vaks
+ ceqs

)
+ hv

(
µ

Vakv
+ ceqv

)
. (3.11)

Eq. (3.6) is replaced with the potential density equations according to:

ωs(µ) = fs(cs(µ))− cs(µ) µ
Va

= −1
2
µ2

V 2
a ks
− ceqs

µ

Va
,

ωv(µ) = fv(cv(µ))− cv(µ) µ
Va

= −1
2

µ2

V 2
a kv
− ceqv

µ

Va
. (3.12)

Since c is no longer an independent variable, Eq. (3.2) is replaced by an evolution
equation for the chemical potential:

∂µ

∂t
= 1
χ

[
∇ · (χD∇µ)− 1

Va

(
∂c

∂φ

∂φ

∂t
+

n∑
i=1

∂c

∂ηi

∂ηi
∂t

)]
, (3.13)

where D is the diffusivity tensor, χ is the susceptibility

χ = 1
Va

∂c

∂µ
= 1
V 2
a

(
hs
ks

+ hv
kv

)
, (3.14)

and M = χD.
It is worth noting that Eq. (3.13) can be derived by applying Eq. (3.11) to the

continuity equation
∂c

∂t
= −∇ · j, (3.15)

where j is the vacancy flux. This ensures that vacancies will still be conserved.

3.2.3 Quantitative Parameter Assignment

To make the grand potential model quantitative and material specific, it is necessary
to go into more detail about the assignment of individual parameter values. These
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values and their partial derivatives were implemented in the implicit finite element code
MARMOT [154]. Not only do partial derivatives show up in the governing equations such
as Eqs. (3.8) and (3.13), but additional derivatives are required to derive the Jacobian
matrix. However, for the sake of brevity, calculations of derivatives are left to the reader.

First, the energy coefficients from Eqs. (3.4) and (3.5) can be defined as

ε = hSεS + hGBεGB,

κ = hSκS + hGBκGB,

γ = 1.5, (3.16)

where hS and hGB are functions that switch between surface and grain-boundary interfaces,
and εS , εGB, κS , and κGB are corresponding constant values on those interfaces. The
value for γ is 1.5 to yield symmetric interfaces [147]. The values for εS , εGB , κS , and κGB
can be defined in terms of the width of the diffuse interface l, the isotropic GB energy
σGB and the isotropic surface energy σS following the approach from Moelans [147]:

εS = 6σS
`
, κS = 3

4σS`,

εGB = 6σGB
`
, κGB = 3

4σGB`. (3.17)

There are now four switching functions (hs, hv, hS , hGB), all of which need to be
included along with their partial derivatives in order to solve Eqs. (3.8) and (3.13). For
simplicity, all are based on the same second-order continuous piecewise polynomial:

H(φ, φ0) =


0, φ ≤ 0

6
(
φ
φ0

)5
− 15

(
φ
φ0

)4
+ 10

(
φ
φo

)3
, 0 < φ < φ0

1, φ ≥ φ0

, (3.18)

where 0 < φ0 ≤ 1. The piecewise components of Eq. (3.18) ensure that the switching
functions are limited to the domain [0, 1] even in the case of numerical noise causing φ to
leave these limits. The individual switching functions are then defined as

hv = H(φ, 1), hs = 1− hv,

hS = H(φ, φ0 < 1), hGB = 1− hS . (3.19)

These definitions give several advantages. First, since they rely on only a single variable,
fewer partial derivatives are needed. Second, the functions and their derivatives are
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continuous and defined throughout the entire domain. This is very important for implicit
solvers because it helps keep the Jacobian matrix stable; any undefined values or sudden
jumps can cause convergence problems. However, there is also a drawback in that hS
goes to zero before the end of the interface, depending on the value of φ0. Thus, some
error will be introduced to the surface energy. This error is quantified in Sec. 3.2.4. An
alternate form for the switching function was proposed by Moelans [155] that is constant
across surface interfaces but has undefined regions that may caused convergence problems
in implicit codes.

The diffusivity tensor is defined as [148]:

D = DB + DGB + DS , (3.20)

DB = DBI, (3.21)

DGB = DGB

n∑
i=1

∑
j 6=i

ηiηjTij
GB, (3.22)

DS = DSφ
2(1− φ)2TS , (3.23)

Tij
GB = I− ∇ηi −∇ηj

|∇ηi −∇ηj |
⊗ ∇ηi −∇ηj
|∇ηi −∇ηj |

, (3.24)

TS = I− ∇φ
|∇φ|

⊗ ∇φ
|∇φ|

. (3.25)

DB, DGB, and DS are the diffusivity tensors for the bulk, GB, and surface regions,
respectively. DB, DGB, and DS are the diffusivity magnitudes. I is the identity tensor,
and Tij

GB and TS are the GB and surface directional tensors. The form of DB assumes
isotropic bulk diffusion, and the forms of DGB and DS only allow diffusion along GBs
and surfaces, respectively. If known, DB , DGB , and DS can be used directly. If not, then
DGB and DS can be approximated by adding weights to the bulk diffusivity according to:

DGB = wGBDB,

DS = wSDB, (3.26)

where DB is calculated using the standard Arrhenius equation:

DB = D0 exp
(
− EBm
kBT

)
. (3.27)

D0 is the diffusivity prefactor, EBm is the migration energy of vacancies in the bulk, kB is
Boltzmann’s constant, and T is the absolute temperature.

The order parameter mobilities depend on the phase mobilities and interface width
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according to:

Ls = 4
3
Ms

`
,

Lv = 4
3
Mv

`
. (3.28)

The solid phase, or GB, mobility is defined as:

Ms = M0 exp
(
− Q

kBT

)
, (3.29)

where M0 is the mobility prefactor and Q is the mobility activation energy. The void
phase mobility is required for the model, but does not represent a physical quantity.
Voids are as mobile as the solids around them. Therefore, the requirement for the void
mobility is that it is large enough not to impede diffusion in the solid. It can be estimated
by multiplying the solid mobility by an additional factor:

Mv = mMs. (3.30)

The equilibrium concentrations from Eq. (3.12) also need to be determined. Vacancies
are missing atoms in the crystal lattice; therefore, having vacancies in unstructured
regions such as voids or GBs does not make sense physically. However, for the sake of
conserving mass, these regions must have vacancy concentrations within the model. In
this model, vacancies may be thought of as a specific volume of empty space. By this
logic, the equilibrium vacancy concentration within void regions is ceqv = 1. For the solid
phase, more behavior must be accounted for. Vacancies segregate to GBs and move to the
external surfaces via GB diffusion. In order to account for this, the solid phase vacancy
concentration is defined as

ceqs = ceqB + 4ceqGB (1− λ)2 , where

λ =
n∑
i=1

η2
i

ceqB = exp
(
− Ef
kBT

)
. (3.31)

Here, λ < 1 identifies GBs, ceqB is the bulk vacancy concentration, ceqGB represents additional
vacancy concentration on GBs, and Ef is the vacancy formation energy in the bulk.

This grand potential sintering model includes all of the governing mechanisms listed in
Sec. 3.1. It includes the sintering stress by separately defining the surface and GB energies.
Vacancy segregation to GBs is included using the solid phase vacancy concentration
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ceqs . Non-uniform diffusion is accounted for through the diffusivity tensor D, which
distinguishes between bulk, surface, and GB diffusion both in terms of direction and
magnitude. Thus, the vacancies can diffuse along GBs and surfaces faster than through
the bulk. Grain coarsening is a well-established feature of the phase field method [112,113]
and has also been observed in the grand potential formulation this work is based on [151].

3.2.4 Material Properties

In order to compare this model to experimental data, the material properties must be
chosen to match a real material. For this work, the material uranium dioxide (UO2) is
used. The vacancy concentration describes U vacancies, since U-lattice vacancies are
much less mobile than the O-lattice vacancies and limit the overall diffusion rate [156].
Many of the UO2 vacancy property values can be taken directly from the literature.
These values are listed in Table 3.1. Some discussion, however, is necessary on the values
for σGB and σS .

According to Hall et al. [157], the GB and surface energies are difficult to measure
experimentally and depend heavily on the experimental setup. Therefore, the experimental
values from the literature have significant scatter. However, the ratio of surface to GB
energy remains relatively constant at σS/σGB = 2 no matter the experimental setup.
For this reason, it was decided to use a GB energy σGB value obtained via atomistic
simulation [158] for a Σ5 tilt boundary and define the surface energy σS = 2σGB. Since
the GB energy value was only calculated at a single temperature, any temperature
dependence in the GB energy is neglected.

The diffusivities are calculated according to Eqs. (3.26) and (3.27). However, the
bulk, GB, and surface diffusivities are also subject to an extremely large experimental
error. Various values from experiments and atomistic simulations from the literature
are shown in Fig. 3.2. At the lowest temperature shown, the bulk diffusivities vary
by a factor of 1015. Matzke et al. [156] found in 1987 that experiments prior to 1975
had a systemic error causing their results to be several orders of magnitude too large.

Parameter Value Units Ref.
Va 0.04092 nm3 [159]
σGB 9.86 eV/nm2 [158]
σS 2σGB eV/nm2 [157]
M0 1.476×109 nm4/eV s [160]
Q 2.77 eV [160]
Ef 2.69 eV [161]

Table 3.1. UO2 constant material parameters taken from the literature.
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Figure 3.2. Various experimental values for bulk [156, 162, 163, 165, 166], GB [162, 164–166],
and surface [167–169] diffusivities. Before 1975 there was a systemic error in the methods
used to measure diffusivities, causing results to be several orders of magnitude too high [156].
Measurements from before 1975 are shown in red and more recent measurements are shown in
blue. The values used in the simulation are shown in black. They fall somewhere near the center
of the blue measurements and about 10 orders of magnitude below the red measurements.

But even discounting those values, the bulk diffusivities still vary by up to a factor of
1010. Therefore, the value used in the sintering model was calculated based on the three
diffusivities taken since 1987 [156,162,163] by using the average bulk migration energy
(EBm) and the log-average diffusivity prefactor (D0). The values used are EBm = 3.608 eV
and D0 = 8.33×109 nm2/s. The GB weight was chosen to be wGB = 106 in order to keep
it approximately average between two GB diffusivities calculated since 1975 [162,164].
A literature review did not find post-1975 values for the surface diffusion. Additionally,
convergence problems began to manifest in the model when the surface diffusion weight
was too large. Therefore, the surface diffusion weight was chosen to be a large enough
value to be approximately consistent with the other weights and not too large to cause
convergence problems: wS = 109.

The phase mobility multiplication factor was chosen to be m = 40 because it was the
lowest value at which the void phase mobility did not significantly affect the simulation
results.

To determine a value for the additional vacancy equilibrium concentration on GBs
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ceqGB, the free volume at GBs was assumed to be caused by U-vacancies. Brutzel and
Vincent-Aublant found that GBs take up 15% more volume than the same number of
atoms in the bulk [170] and Freyss et al. found that vacancies are 31% smaller than U
atoms [171]. From these findings, the GB equilibrium concentration is determined to be

ceqGB = x(1− cGBU ) = VU
Vv

(
1− VB

VGB

)
= 0.189, (3.32)

where x is the number density ratio of U vacancies to U atoms and cGBU is the concentration
of U atoms on GBs.

The value for parabolic free energy coefficient ks was determined by fitting a parabolic
curve to the ideal solution model [150] from c = 0 to c = 1 at various sintering temperatures.
The parabolas were then fit to a linear temperature equation:

ks

〈
eV

nm3

〉
= 157.16− 0.0025T 〈K〉 . (3.33)

Since voids do not have a measurable energy, kv is not an easily obtained value. So it is
assumed that kv = 10ks in order to ensure that the void phase equilibrium concentration
is always near its equilibrium value, which is set to ceqv = 1.

The value of the interface width ` and the temperature T vary between simulations. `
is a modeling parameter that is set depending on the size of the domain being modeled. It
is selected to be as small as possible but still allow simulations to complete in a reasonable
time (three to five elements should cover the distance `). The value of T depends on the
conditions being modeled.

To determine the switching value for the S/GB interface φ0, an investigation was
carried out to determine the relationship between the error and the value of φ0. To do
this, a set of 1D simulations was used with a single surface interface using ` = 50 nm,
T = 1700 K, a domain size of 200 nm, and 400 elements across the domain. The initial
condition put the interface in the center of the domain with a cosine-profile interface. The
simulations ran until MARMOT detected steady-state conditions. The surface energy
was determined by numerically integrating Eq. (3.3). The phase energies were converted
from functions of c to functions of µ using Eq. (3.11). First, a simulation using constant
values was used to verify that the integrated surface energy matched σS for the condition
ε = εS and κ = κS . Then simulations were performed using Eq. (3.16) and values of
φ0 ranging from 0.1 to 0.6. The relative errors were calculated based on the difference
between the value of σS used in Eq. (3.17) and the value calculated by the integral.
The relative memory was calculated based on the increased memory used by MARMOT
compared to the case which used the least memory. The relative error and the memory
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used in the simulations were then plotted for these values in Fig. 3.3. The results show
that, as expected, smaller values of φ0 produce less error at the expense of increasing the
memory usage. The value of φ0 = 0.3 keeps the error below 5% and the memory increase
below 10%. Considering the high uncertainty already in the surface energy value [172],
this level of error was deemed acceptable.

All of the material properties for UO2 have now been defined. These values will be
used in the rest of the work, except where otherwise specified.

3.3 Model Verification

Now that the model is established, it must be verified that it behaves as expected and
is implemented correctly. This is done in two ways. First, in Sec. 3.3.1 the model is
compared with two analytical models to verify that it behaves consistently with the
established sintering theory. Then in Sec. 3.3.2, the model behavior is tested against the
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Figure 3.3. Selection of the value for φ0 using a 1D surface interface calculation. TOP:
Quantification of surface energy error introduced by Eqs. (3.16), (3.18) and (3.19). Small values
of φ0 reduce the error. BOTTOM: Quantification of memory usage compared to the simulation
which used the least amount of total memory. Small values of φ0 increase memory usage. φ0 =
0.3 was chosen to keep the error below 5% and the memory increase below 10%.
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governing mechanisms listed in Sec. 3.1. The results of these comparisons are discussed
in Sec. 3.3.3.

3.3.1 Comparison to Analytical Description

In certain idealized test cases, sintering theory allows for problems to be solved analytically
and without the use of numerical methods. Two of these problems involve the behavior
of two spherical or circular particles as they sinter together. The first of these is the
time-evolution of the neck region. The neck width can be expressed in both 2D and 3D
cases as [119]: (

Lneck
D

)n
= Kt, (3.34)

where Lneck is the neck width (first used in Fig. 3.1), D is the original particle diameter,
t is the sintering time, K is a fitting parameter depending on the material and problem
scale, and n is a parameter which depends on the rate-controlling diffusion process. For
GB-controlled diffusion, n = 6. For surface-controlled diffusion, several values have been
proposed for n including 3, 6, and 7 [119].

The second model describes the equilibrium contact angle (dihedral angle) of the
sintered material. This is a vital expression both in experiments and simulations [172].
The relationship between dihedral angle and the ratio of GB to surface energy is [119,173]:

σGB
σS

= 2 cos
(
θ

2

)
, (3.35)

where θ is the dihedral angle. When Hall et al. reviewed surface energy data [157], they
found that not only did the dihedral angle measurements vary significantly, but that the
effect of temperature changed depending on the experimental setup. However, two of the
major trendlines crossed at 1816 K where the dihedral angle was measured as θ = 163°.
This temperature and angle represent the most reliable experimental data on dihedral
angles for UO2.

3.3.1.1 Simulation Descriptions

For both analytical model comparisons, the same basic simulation setup was used. Two
2D particles with a diameter of 300 nm were placed side by side in a 680 nm×580 nm
mesh. Mesh adaptivity was used, with the coarsest mesh having an element size of (20
nm)2 and the finest with an element size of (5 nm)2. The interface width was set to
` = 20 nm and the temperature was set to T = 1816 K. The initial condition interface
used a hyperbolic tangent profile of thickness `, which is a reasonable approximation to
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the actual interface profile [155].
Three simulations were performed to test the neck-growth behavior. The first was

a GB-controlled diffusion case with the surface diffusion weight from Eq. (3.26) set to
wS = 1 and the second was a surface-controlled case with the GB diffusion weight set to
wGB = 1. The third case included both effects. The neck width was measured by looking
at φ along the line x = 340 nm and measuring the distance between the two locations
where φ = 0.5. If the points fell between two mesh elements, then the exact position was
estimated using linear interpolation. The neck width evolution was fit to a power law
Lneck = atb and solved for K and n according to n = 1

b and K =
(
a
D

)n.
Three cases were likewise compared to test the effects of interface energies on the

dihedral angle. The value of σS was changed according to σS = σGB, σS = 2σGB, and
σS = 3σGB. For each case, the simulation ran until t = 50 s and the angle was measured
by hand along the line φ = 0.5.

3.3.1.2 Simulation Results

An example of the simulation evolution is given in Fig. 3.4. Also shown are a white line
along the contour of φ = 0.5 and the measured dihedral angle.

Fig. 3.5 shows how the neck width evolved in the three cases discussed in Sec. 3.3.1.1.
For the GB-controlled case, Eq. (3.34) was fit to parameters K = 2.99 × 10−6 and
n = 7.42. For the surface-controlled case, Eq. (3.34) was fit to parameters K = 0.037
and n = 6.35. The case with both GB and surface diffusion active behaved identically
to the surface-controlled case. The GB-controlled case saw neck growth proceed at a
significantly lower rate than the other cases. Considering the large difference between wS
and wGB for UO2 this is not surprising.

The first two seconds of the GB-controlled case requires further discussion. While
the hyperbolic tangent profile used in the initial condition is a reasonable approximation,
there is always an adjustment period at the beginning of a simulation. In many cases
this has a negligible effect on the simulation results. But in the case of the GB-controlled
simulation it caused some perturbation in the neck-width measurements.

Fig. 3.6 shows the results of the dihedral angle measurements from the simulation
compared to the analytical expression in Eq. (3.35) and the experimental value for the
given temperature. The maximum difference in the measured angle and the analytical
expression is 15° at σS/σGB = 1. As the ratio increases, the agreement improves. Two
factors play into this trend in the error. First, in Sec. 3.2.4 it was established that there
is an inherit error in the surface energy caused by the surface–GB switching function
used for implicit solvers. Theoretically this error should increase as σS/σGB increases.
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Figure 3.4. Demonstration of the two-particle symmetric simulation results. Coloring is according
to the variable λ =

∑
η2

i , with a white line showing the position of φ = 0.5. Based on the φ
contour, the dihedral angle and neck width were measured. The dihedral angle stayed consistent
once it reached equilibrium, even as the neck continued to grow. All images are taken from the
case using the material parameters for UO2, with similar microstructure evolution shown in the
other cases. TOP: 0 s, MIDDLE: 1.8 s, BOTTOM: 3.5 s.

This would cause the trend to be less accurate angle measurements as σS/σGB increases.
Another source of error in the angle measurement comes from the fact that the angle
is measured by hand on a diffuse interface. As the angle sharpens the measurements
become more difficult, causing the error to increase. This matches the trend seen in the
results. It is also worth noting that the model predicted an angle of 156° for σS/σGB = 2,
the energy ratio for UO2, which is in good agreement with the measured angle for UO2

of 163° [157].

3.3.2 Verification of Thermodynamics and Kinetics

In Sec. 3.1, it was established that two mechanisms which must be captured in sintering
are the sintering stress and accelerated diffusion on GBs and surfaces. In this section,
these behaviors are verified. The ability of the phase field model to accurately represent
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Figure 3.6. Dihedral angle measurements compared to the analytical expression which is a
function of the surface to GB energy ratio (σS/σGB) and experimental measurement of dihedral
angle. The simulated angle shows reasonable agreement with both the analytical expression and
the experimental measurement for this temperature.

grain coarsening is well established and will not be investigated here [147, 151]. The
sintering stress is primarily controlled by the surface and GB energies and non-uniform
diffusion is controlled through the surface and GB diffusion weights. The effects of
changing both of these factors will be quantified to determine if they change the sintering
rate as expected.

This section also quantifies the difference these effects have in 2D and 3D simulations.
3D simulations are more accurate to real-world geometry, but 2D simulations have
been commonly used in sintering models because they are computationally cheaper
[39,107,108,117,119,174]. The effects of dimensionality are quantified by replicating each
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simulation in both 2D and 3D and comparing the results.

3.3.2.1 Simulation Descriptions

The first set of simulations tested the effects of changing the surface to GB energy ratio,
σS/σGB . The difference between these two energies is the driving force for sintering, and
therefore should affect the densification rate. The 2D simulations were set up with four
circular particles with a uniform diameter of 300 nm arranged in a square formation.
This created a closed pore in the center of the domain. The mesh was (680 nm)2 with
` = 40 nm and T = 1600 K. Mesh adaptivity was used with elements ranging from (10
nm)2 to (40 nm)2. The simulation time was 400 seconds.

The 3D simulations used the same conditions described for the 2D simulations with
some additions. Eight spherical particles were arranged in a cube formation. This creates
an open pore, unlike the closed pore in the 2D simulations. The height of the mesh was
300 nm such that only half of each particle was inside the mesh. Zero-flux boundary
conditions ensured that the top and bottom planes remained symmetry planes. This
arrangement was chosen for three reasons:

• A smaller mesh reduces the computational cost

• The 2D simulation setup is equivalent to four 3D cylinders of infinite length. This
3D symmetric setup is also infinite in length.

• A direct comparison of the area of the closed pore in 2D and the volume of the open
pore in 3D is not possible. Therefore, rather than measure the total pore volume,
the 3D simulation measures the pore cross-sectional area along the top plane of
symmetry. This area is equal to the 2D pore area at the initial condition, which
allows for the areas to be determined in the same manner for direct comparison.
The cross-sectional area will be referred to as the pore area to simplify discussion
of the results.

Several different values of σS were used while σGB was held constant. A total of six
simulations were performed. A pair (2D and 3D) of simulations with σS/σGB = 1, a pair
with σS/σGB = 2 (correct value for UO2), and a pair with σS/σGB = 3 were carried out.

The second set of simulations used the same setup as the first set. However, rather
than test the thermodynamic driving force, they tested the kinetic effects of the surface
and GB diffusivities. Four additional simulation pairs were performed. In one 2D /
3D pair the surface diffusivity weight was set to wS = 1 in order to isolate the effects
of GB diffusivity. In the other pair the GB diffusivity was similarly set to wGB = 1

45



to isolate surface diffusivity. These were then compared to the pair with both surface
and GB effects, which is the second pair from the previous set of simulations. The GB
diffusion-only case is not expected to sinter in either 2D or 3D. The shape evolution of
particles relies on surface diffusion, and since this is retarded, the particles should not be
able to pack together any tighter than their initial packing. The surface diffusion-only
case is expected to sinter in 3D, but not in 2D. Vacancies from closed pores migrate
primarily via GB diffusion. Without accelerated GB diffusion, the closed 2D pore would
not be able to evacuate its vacancies. But the 3D open pore vacancies will still have a
surface path that allows the pore to close.

The third set of simulations primarily examined the effect of geometry on grain
coarsening during sintering. The 2D simulation had two non-uniform circular particles
with diameters of 300 nm and 200 nm placed horizontally in a (580 nm)2 mesh. The
interface width was ` = 40 nm and the temperature was T = 1816 K. The 3D simulation
was based on the 2D setup with the additions that the particles were hemispheres which
used the plane of symmetry to reduce computational cost and the mesh height was 300
nm. The simulation terminated once the order parameter for the smaller particle had
a maximum value below 0.5. The GB position was determined from the x-coordinate
where η1 = η2 ≈ 0.5 along the line y = 290, z = 0.

3.3.2.2 Simulation Results

Fig. 3.7 shows an example of microstructure evolution of the four-particle 2D simulations
and the eight-particle 3D simulations used to quantify the effects of thermodynamics and
kinetics. White circles in the center images show the pore areas that were measured in
each simulation.

Fig. 3.8 shows plots of the pore area with time for the different energy ratios. The
linear region of each curve was fit to a linear function of the form A = p1t+ p2 where A is
the pore area and t is the simulation time. The fits are also shown in Fig. 3.8. The slopes
are plotted vs energy ratio in Fig. 3.9. The slope magnitude increased as the energy ratio
increased. This is the expected result and shows that the sintering stress is acting as a
thermodynamic driving force for sintering.

The results for the set of simulations that tested the effects of diffusivity are given in
Fig. 3.10. The red lines correspond to the black lines in Fig. 3.8. The 3D surface-controlled
case exactly matches the 3D combined case, which suggests that the overall pore closure
rate is surface-controlled. This behavior matches Fig. 3.5 which shows neck growth to be
surface controlled. As expected, both the 3D GB-controlled diffusion case and the 2D
surface-controlled diffusion case showed no pore closure. The most surprising result is
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Figure 3.7. Demonstration of 2D and 3D pore closure simulations using σS/σGB = 2. TOP:
3D 8-particle simulation of pore closure. The bottom domain’s surface is shown along with the
region φ ≤ 0.2. BOTTOM: 2D 4-particle simulation of pore closure. In both cases the coloration
represents the variable λ from Eq. (3.31). From left to right both rows show an initial condition,
an intermediate stage, and the point of pore closure. The 2D pore area was compared against the
3D pore cross-section on the top surface of the domain. Both areas are circled in white in the two
center images. The time of each image is given. Similar microstructures were produced for the
other cases.
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Figure 3.8. Pore area measurements for the 2D 4-particle and 3D 8-particle sintering stress
simulations. In these simulations the surface to GB energy ratio, σS/σGB was varied to verify
that the energy difference is acting as the driving force. The rate of pore closure increases as
σS/σGB increases. Also shown are fits to the linear regions of each curve.

47



1 1.5 2 2.5 3

S
/

GB

-500

-400

-300

-200

-100

0

S
lo

p
e

 (
n

m
2
/s

)

2D

3D

Figure 3.9. Slopes of the linear fits in Fig. 3.8 as a function of the surface to GB energy ratio.
The change appears to be linear in 2D and nearly linear in 3D, but more data are needed to verify
the trend.

0 25 50 75 100 125 150

time (s)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

P
o
re

 a
re

a
 (

n
m

2
)

2D GB-controlled

3D GB-controlled

2D Surface-controlled

3D Surface-controlled

2D Combined

3D Combined
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GB diffusion weight was changed to wGB = 1 in order to make the process surface-controlled.
The third pair used the weights described in Sec. 3.2.4 in order to include both effects. The third
pair corresponds to the black lines in Fig. 3.8.

that the 2D GB-controlled case actually increased the pore area. The volume change
was too large and long-lived to be explained by interface adjustments. Rather, it appears
that the model decreased the overall energy of the system by diffusing vacancies from the
exterior void to the interior pore along GBs. The causes of this result will be discussed
more in depth in Sec. 3.3.3.

The linear fits for these simulations were not calculated because the red line fits are
already included in Fig. 3.8, the black line fits have a slope of 0 in 2D and match the red
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line in 3D, and the blue line fit for 3D also has a slope of 0. The only line where a slope
fit would be yield new information is the one line with the positive slope.

Results for the simulations using asymmetric particles to measure grain coarsening
are shown in Fig. 3.11. The microstructure evolution of the 2D and 3D cases are both
shown at several intermediate times and the GB location as a function of time is also
included. These results show that grain coarsening occurs much faster in 3D than in
2D. In 3D, the smaller grain has been completely consumed within 9.2 seconds; while in
2D, it takes 24.3 seconds. The larger surface area for vacancies to diffuse through in 3D
appears to more than compensate for the increased volume that must be transported.
However, the GB itself does not move as far in 3D. This appears to be related to the
geometry. The radius for a circle with the area of two smaller circles is

r =
√
r2

1 + r2
2, (3.36)

and the radius of a sphere with the volume of two smaller spheres is likewise

r = 3
√
r3

1 + r3
2. (3.37)

Based on these equations and the values used in the simulation, one would expect the
GB to end near x = 370 nm in 2D and x = 354 nm in 3D. Each of these is slightly lower
than the measured GB position, which is reasonable since the center of the particle is not
fixed nor is the resulting particle perfectly spherical.

3.3.3 Discussion

A total of five sets of simulations have been used to verify that the grand potential model
is accurately capturing sintering effects. The model makes reasonable predictions of the
neck growth rate and the dihedral angle, compared to analytical models. In addition, the
behavior of the sintering stress was consistent with expectations. Interestingly, the rate of
the decrease in the pore area varied close to linearly with the GB to surface energy ratio.
However, additional data would be needed to draw firm conclusions. The impact of the
GB and surface diffusion also behaved as expected for most of the simulations. Also note
that the behavior of surface and GB diffusion would be different in larger systems. Both
open and closed pores exist in real compacts, such that both GB and surface diffusion
are controlling the densification.

The only unexpected result was that a closed-pore 2D simulation of GB-only diffusion
showed the void increase in size. Reverse sintering like this is a documented phenomenon
[38]. However, the physics necessary for reverse sintering to be observed in experiments,
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Figure 3.11. Results from 2-particle simulations using asymmetric particles. The particle radii
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∑
η2

i .

such as high gas pressure and sudden temperature changes, were not present in the
simulation. To study this further, the 2D GB-controlled case was simulated again, but
allowed to continue until the pore closed. During the simulation, the total free energy of
the system was calculated, as were the total bulk, surface, and GB energies, as shown in
Fig. 3.12. Pore growth ceased after about 1,000 seconds and the pore closed after 10,800
seconds.

Interestingly, Fig. 3.12 shows that the surface energy decreased even as the pore
area was increasing. This indicates that the pore shape change increased the pore area
but decreased the amount of surface, thus being energetically favorable to the system.
Fig. 3.12 also shows the microstructure at several times during the simulation. Unlike
Fig. 3.7, the primary shape change occurs at the GBs, creating an X-shape at the end of
the simulation rather than a circular shape. This is reasonable because the GBs are the
major source of diffusion for the system. The GB motion may have helped the initially
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Figure 3.12. 2D GB-controlled case from Fig. 3.10 performed a second time for a longer time
period. The black line shows the pore area over time. Pore growth occurs for the first 1,000
seconds before the pore begins to close. The blue lines show the bulk, GB, surface, and total
energy of the simulation. The microstructure of the simulation is shown at four times with arrows
pointing to their corresponding times on the graph. The pore changes from a concave shape at
the initial condition to a convex shape. This causes the pore perimeter to decrease, which reduces
the surface energy, while increasing the pore area. The microstructure evolution is much different
than Fig. 3.7 where the final shape is a circle.

concave pore to form a convex shape with a larger area but smaller perimeter.
Based on the results of all of the simulations in this section, several conclusions can

be drawn. First, the UO2 parameters clearly exhibit surface diffusion-controlled kinetics.
Not only is the surface diffusivity 1,000 times larger than the GB diffusivity, but both sets
of simulations that compared surface-only diffusion to surface and GB diffusion showed
identical results. Second, 3D effects are vitally important to get realistic results. All of
the simulations that compared 2D and 3D behaviors showed 3D progressed significantly
faster in terms of pore closure and GB motion. One cause for this is that pores that are
closed off from the external surface in a 2D domain may be open to the external surface
in a 3D domain. Since surface diffusion is the rate-controlling effect, this means that 2D
domains will underestimate the closure rates of these pores Because of these geometric
effects, any attempt at validating the model against experimental results will require 3D
simulations.
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3.4 Comparison Against Experiments

All computational models should be validated against experimental data to ensure their
accuracy. While macroscale models like the master sintering curve have been well-
validated [28], validation of microstructural models is more difficult. The MC Potts model
has only been compared to data once [100] and no comparison to data has been carried
out for phase field sintering models [1](Chapter 2).

There are three challenges when validating microstructural sintering models. First,
a method is needed to create the structure of the initial powder compact. In a green
body there are millions of individual particles of various sizes arranged in an unorganized
lattice, and a method is needed to create a simulated compact with similar characteristics.
Second, a method is needed for determining the compact volume that is similar to the
approaches used in experiments. Third, the computational cost of representing the
large number of particles found in actual green bodies is too high, and therefore the
microstructural model represents the behavior in a much smaller body. Methods for
handling the first two challenges are presented here, and the consequences of the third
challenge are discussed.

In this section, an attempt is made to begin validating the grand potential sintering
model using experimental data available in the literature. First, the approach taken to
create the initial condition is described in Sec. 3.4.1 and the approach for measuring the
volume in Sec. 3.4.2. The simulation is then described in Sec. 3.4.3 and the results are
presented in Sec. 3.4.4. The results are discussed in Sec. 3.4.5.

3.4.1 Initial Condition Generation

A sintering simulation will not yield realistic results unless the initial condition (IC) meets
the following criteria:

• The IC contains a reasonably large number of particles,

• The particles follow a realistic size distribution,

• The particles contact one another to form a single body without any particle overlap,

• The bulk density is approximately the same as real powder compacts,

• The particles do not form an organized lattice.

A particle packing algorithm was developed to generate ICs based on these criteria. It is
demonstrated in Fig. 3.13. First, spherical particles are randomly sized according to a
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Figure 3.13. Demonstration of the algorithm used to generate ICs for sintering simulations. A:
The particles are randomly placed such that no two overlap and all are completely inside the
domain. B: A potential field pulls all of the particles down, and penalties are applied to prevent
overlap and exits from the domain. C: Particles begin to gather at the bottom of the domain. D:
The script finishes when no particle is able to move and minimize its potential. Any particles
that are not in contact with the larger body (such as the one seen on the bottom right edge of D)
are removed.

predetermined size distribution. Then, particles are placed, largest to smallest, in the
domain at random positions one at a time. If a particle overlaps with a pre-existing
particle, then the new particle is moved to a new location until one is found in which it
does not overlap any other particles.

Once all of the particles are placed, a potential field is applied to the domain. The
potential is lowest at the bottom and highest at the top. One at a time, the particles
attempt to move a set distance down the potential gradient to lower their potential. If
this movement causes the particle to leave the domain or overlap another particle, then a
penalty is applied which increases the potential. The particle may then attempt to push
other particles out of the way, calculate a new gradient which accounts for the field and
the penalty and move again, or return to its original position. Particles continue cycling
through this process until none of the particles can move.

Once the cycle is finished, particles that are not in contact with the main body of
particles can be manually removed. Finally, the particle positions and radii are output to
a text file that can be read by MARMOT and used to generate the simulation’s IC.
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3.4.2 Density Approximation

In experiments, there are typically two methods used to measure pellet volumes for
density calculations [8]. First there is liquid immersion. A pellet is submerged in a liquid
such as water and the volume change of the liquid is measured. The other method is to
measure the pellet dimensions with a caliper or similar tool and calculate the volume.
Both of these methods are difficult to replicate in a microstructural simulation. In the
case of liquid immersion, the simplest computational method to replicate this would be a
flood algorithm, which colors regions according to the dominant continuous variable [149].
Internal pores could then be separated from external pores based on continuousness.
However, the initial condition method described above generates a completely open
microstructure. A flood algorithm would classify the interconnected porosity as a single
pore. In actual experiments, forces such as surface tension and gas bubbles would prevent
complete wetting of the material, but a flood algorithm does not consider these effects.

Replicating a caliper measurement is complicated by the small number of particles,
and thus the small length-scale, used in the phase field simulations. These very small
green bodies will have a large amount of surface variation, as shown in Fig. 3.13. Caliper
volume measurements will have a certain level of error based on the surface roughness
of the pellet. For a typical green body, this error is negligible. However, for the small
green bodies used in phase field simulations, this error becomes large. Any method to
approximate the density based on the simulated microstructure must mitigate some of
the effects of surface roughness.

A method was developed to approximate the density during simulated sintering. In
the method, the volumes and centroids of each particle/grain are used to generate a
sphere that has an equivalent centroid and volume. A convex hull is drawn around the
centroids, eliminating surface roughness from the system. Finally, a MC integration
technique is used to estimate the density [175] inside the convex hull. Points inside the
hull are randomly sampled and the number of points that fall within the spheres are
counted. Points that that fall within multiple spheres (since they only approximate the
actual structure, and could thus overlap) are counted once for each of the overlapping
spheres. This method is demonstrated in Fig. 3.14 by overlaying an image of the MC
integration over an image of the microstructure.

3.4.3 Simulation Description

The simulation was designed to replicate the 1983 experiment described by Burk et al. [8].
This paper was chosen because it included particle size distribution measurements for
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Figure 3.14. Demonstration of the MC density estimation technique created by overlaying an
image of a convex hull and MC points over an image of the microstructure. A convex hull is
wrapped around the grain centroids. Black regions are grains and white regions are voids. The
hull is shown in green. Points inside the hull are randomly sampled. Points that fall within grains
are marked in red and points in voids are marked as blue. The relative density is calculated by
dividing the number of red points by the total number of points.

green pellets. Green pellets of stoichiometric UO2 were heated at a rate of 4 K/min to
1973 K, held at this temperature for two hours, then cooled at a rate of 5 K/min back to
room temperature. The particle size distribution was estimated based on the bimodal
log-normal distribution from the paper [8]. The initial density was approximately 5.5
g/cm3 (50.1%) and the final density was approximately 10.7 g/cm3 (97.5%).

An IC was generated as described above using 120 particles randomly sampled from
the distribution. Seven particles had to be removed because they were not in contact
with the larger body of particles, resulting in a group of 113 particles inside a 5.52 µm by
5.52 µm by 6.48 µm domain. The interface width was set to ` = 120 nm and a minimum
diameter for the initial particles was set to 200 nm. Only 24 solid order parameters were
used to represent the 113 particles to reduce computational cost, and the Grain Tracker
algorithm in MARMOT [149] was used to avoid coalescence of particles.

3.4.4 Simulation Results

The evolution of the 113 particles was simulated using the same temperature conditions
as the experiment, and all particles were maintained at the same temperature. The
microstructure evolution of the simulation is shown in Fig. 3.15. The initial density was
an exact match with the data. The particles coalesced and sintered as expected. However,
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Figure 3.15. Evolution of the 113 particle sintering simulation. The microstructure is shown in
gray. The back edge of the simulation domain is shaded by temperature. Some particles broke off
from the main body, signifying the initial condition may have been a poor compact.

there are several particles that break from the main body. The smallest ones then shrink
via mass diffusion through the void space, which is unphysical. This breakage suggests
that the intial condition was a poor quality powder compact. In the initial compact,
the small particles tended to be at the bottom of the simulation domain while larger
particles tended to be near the top. This unequal distribution may help account for the
poor compact quality.

The estimated density along with experimental data and the temperature profile are
given in Fig. 3.16. All pores were eliminated before reaching the sintering temperature
and the system spent the second half of the simulation at 100% theoretical density. The
final relative density from the experiment was 97.5%.
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Figure 3.16. Relative density during the 113 particle sintering simulation, where the density was
approximated using the method discussed in Sec. 3.4.2. The measured initial and final relative
densities and the temperature profile from Ref. [8] are included for reference. The simulation had
the correct initial density but the simulated body reached 100% density, while the experimental
body only reached 97.5% density.

3.4.5 Discussion

The MC density approximation worked as intended, but it appears that the IC needs
additional development. Some particles separated from the main body, and although
the initial density was reasonable, the particles self-sorted by size. The mechanism of
self-sorting is readily apparent. Small particles can travel through the spaces between
the large particles, which allows them to reach the bottom of the domain where the
potential field is lowest. However, self-sorting by size is not observed in experimental
powder compact. It is possible that more mixing is necessary in the initial condition to
more accurately capture the sintered microstructure.

The sintering rate of the simulation was physically reasonable, though the simulated
body reached 100% relative density while the experiments did not. In addition, Fig. 3.16
shows that the body reached 100% density quickly, even before the end of the temperature
ramp. One likely reason for this rapid densification is the small number of particles
used in the simulation. Fewer particles means a higher fraction of open pores, which
densify faster than closed pores, as well as shorter distances for vacancies to diffuse before
reaching external surfaces, which also speeds up the kinetics. Using more particles for
future simulations would result in a larger simulation domain and slower densification,
but also higher computational cost. However, in our simulation, the small particles that
resulted from the smaller side of the bimodal distribution combined with larger grains
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quickly. By the time that significant densification started, at around 300 minutes, all
grains with initial sizes less than 400 nm (about half of all the initial particles) had
already been consumed. Thus, future simulations could sample particle sizes only from
the larger half of the distribution, resulting in a larger domain with the same number of
particles. An alternative approach to validating the model is to compare against data
collected using small particle compacts, as done by Tikare et al. [100]. They compared
against data from copper sintering of cylindrical green bodies with diameters of 40 to 60
µm that were characterized using X-ray synchrotron irradiation.

Another likely reason for the rapid densification is the large uncertainty in the
measured property values that inform the diffusivity (see Fig. 3.2). The values used
in this work may not have accurately described the diffusion behavior occurring in
the experiments. If the diffusivity were lower, then the sintering rate would decrease.
Uncertainty quantification needs to be carried out to quantify the impact of this property
uncertainty on the density change predicted by the model.

The results from the new grand potential sintering model are promising. They show
that the model does not experience the under-prediction of the densification rate found
in previous phase field models without the Rigid Body Motion model. The results
also indicate where modifications can be made to improve future predictions, mainly in
increasing the size of the domain modeled and understanding the impact of the large
parameter uncertainty. Once this improvements are made, future comparisons to data
are needed to fully validate the model.

3.5 Conclusions and Future Work

A quantitative grand potential sintering model has been presented that captures the four
driving mechanisms of sintering: sintering stress, vacancy/GB interaction, rapid diffusion
on GBs and surfaces, and grain coarsening. Small test simulations were used to verify
that these mechanisms are accurately captured in the model. Additional test simulations
compared the model’s behavior with analytical relations derived from sintering theory.
In these tests, the model performed reasonably well.

Comparisons were also made to experimental data. First, the approaches taken for
generating the IC and for quantifying the density were presented. However, the IC
appears to have resulted in a poor initial compact, as some particles detached from the
densifying body. The sintering rate was reasonable, clearly demonstrating that the grand
potential model can accurately capture the sintering rate without requiring the Rigid
Body Motion model. However, while the simulated final body reached 100% relative
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density, the experiment only reached 98% density. In addition, the densification occurred
too quickly. The cause of this is unclear, though it is likely related to the small size
of the green body used in the simulation and the large uncertainty in the measured
diffusion properties. The size of the green body could be increased without increasing the
computational cost by neglecting small particles, which disappear quickly. Comparisons
could also be made to data collected on green bodies that are the same size represented
in the simulations. To reduce the property uncertainty, future experimental work and
atomistic simulations should seek to determine these values with greater accuracy.
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Chapter 4 |
Grand Potential Simulations of
Doped-UO2

4.1 Introduction

Multiple experimental studies have found that sintered UO2 fuel pellets doped with
chromium (Cr) are more dense and have larger grains than undoped fuels [36,178–184].
Furthermore, it is known that both high density and large grains improve the behavior
of in-pile UO2 by reducing fission gas release and mechanical interactions with the
cladding [185]. A fuel that reduces the plenum gap pressure and mechanical interactions
with the cladding qualifies as a type of accident-tolerant fuel (ATF) [186]. Cr-doped
UO2 is an ATF concept that has been studied for near-term deployment in commercial
nuclear reactors [180]. It is believed that reduced swelling will reduce interactions with
the cladding [186] and the reduced fission gas release will lower the plenum gap pressure
and reduce the likelyhood of cladding failure [187]. While Cr is the most widely studied
dopant for UO2, others have been identified and studied in experiments such as titanium
(Ti) [178, 188,189], magnesium (Mg) [178,190], aluminum (Al) [178], iron (Fe) [178], and
vanadium (V) [178]. Despite these studies, thermodynamic and kinetic mechanisms that
cause the effects of the dopants have not been widely discussed or agreed upon [36,191].

Recently, an explanation involving charged-interstitial defects was proposed for these
dopant effects and was simulated using atomistic methods [191]. It was shown that at
high temperatures the positively charged dopant ions can occupy interstitial lattice sites.
In response to the extrinsic positive charge introduced by the interstitials and to maintain
charge neutrality the Fermi level of the system is increased, enhancing the electron
population. This change in the Fermi level enhances the concentrations of all negatively
charged defects in the system, including U vacancies. The increased concentration of
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U vacancies increases atomic self-diffusion; the principle driver of densification during
sintering [1](Chapter 2). Multiple potential dopants were identified and simulated on the
atomistic scale, including all of those listed above and manganese (Mn). These simulations
found that V was the most efficient at increasing the U vacancy concentrations, followed
by Mn and then Cr.

Unlike Cr and V, Mn has only previously been examined as a dopant in the oxide
mixture MnO-Al2O3 for its low melting temperature in two-phase sintering [192, 193].
Solid-solution Mn-doped sintering experiments have not been reported in the literature.

In this chapter, we use the results of these atomistic studies to predict the microstruc-
tural sintering behavior of undoped, Cr-, and Mn-doped UO2 fuels. To do this, we use
the recently-developed grand potential sintering model (Chapter 3). The undoped and
Cr-doped cases are used to qualitatively compare against existing experimental results.
The Mn-doped case is included to determine the relative behavior of this potential dopant.
V is not included in this study despite being the strongest dopant from Ref. [191] because
it (a) has been studied in the past, and (b) is chemically dissimilar from Cr and Mn. This
chemical difference would make accurate comparisons much more difficult to simulate. In
Sec. 4.2, the atomistic results are used to extract the necessary vacancy concentrations
for the undoped and doped comparisons. In Sec. 4.3, the grand potential sintering model
is summarized and applied to this study. Secs. 4.4, 4.5, and 4.6 discuss the simulations
used to compare the charged-defect predictions against experimental results.

4.2 Equilibrium Vacancy Concentrations

Fig. 6 of Ref. [191] shows the doped vacancy concentration to undoped vacancy concen-
tration ratio as a function of temperature. These ratios were determined using the Busker
potentials for vibrational entropy, which includes a description of Cr-O interactions.
Fitting Arrhenius functions to these ratios for Cr and Mn yields the functions

cBcr
cBun

=

1.0, 300K < T < 1803K

8.78× 1019 exp
(
−7.134eV
kBT

)
, 1803K < T < 2000K

(4.1)

cBmn
cBun

=

1.0, 300K < T < 1776K

4.65× 1021 exp
(
−7.617eV
kBT

)
, 1776K < T < 2000K

(4.2)

where cBX is the equilibrium bulk U-vacancy concentration of species X (where X can be
un for undoped, cr for Cr-doped, or mn for Mn-doped), T is the temperature, and kB is
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Boltzmann’s constant.
The undoped U-vacancy equilibrium concentration was calculated using density

functional theory (DFT) and the Cooper-Rushton-Grimes (CRG) potential for vibrational
entropy, which provides a better description of the host UO2 lattice and predicts higher
uranium vacancy concentrations than the Busker potential [194–196]. That was then
combined with Eqs. (4.1) and (4.2) to give

cBun =

1.1185× 10−4 exp
(

0.2134eV
kBT

)
, 1000K < T < 1263K

1.1772× 10−15 exp
(

2.971eV
kBT

)
, 1263K < T < 2000K

, (4.3)

cBcr =

c
B
un, 1000K < T < 1803K,

1.0335× 105 exp
(
−4.163eV
kBT

)
, 1803K < T < 2000K

, (4.4)

cBmn =

c
B
un, 1000K < T < 1776K,

5.4800× 106 exp
(
−4.646eV
kBT

)
, 1776K < T < 2000K

. (4.5)

Note that the defect concentration analysis results in positive exponents in the undoped
case. This is because the oxidation energy is exothermic (negative) for UO2 with an
oxygen molecule as reference and because the model assumes a fixed partial pressure of
oxygen, which results in more reducing conditions for increasing temperature. This has a
large effect on the sintering rate in UO2 [1](Chapter 2).

In addition to the bulk equilibrium concentrations, a grain boundary (GB) equilibrium
concentration is also needed for the grand potential model (Chapter 3). We have previously
assumed a constant, temperature independent value (Chapter 3). However, for the
purposes of comparing the effects of various vacancy concentrations, assigning a uniform
value to the rate-controlling equilibrium vacancy concentration would not be appropriate.
Instead we assume a form of the GB equilibrium concentration that is a function of the
bulk equilibrium concentration. A simple equation to accomplish this utilizes a constant
positive GB segregation energy, EGB, to attract additional vacancies:

cGBX = cBX exp
(
EGB
kBT

)
. (4.6)

Since no value for EGB has been determined through experiments or atomistic simulations,
it is necessary to assume a value. We assumed a value of EGB = 1.5 eV because this
value gives physically reasonable results in the sintering temperature region. However, it
gives unrealistically high concentrations at low temperatures. Therefore, an additional
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constraint is placed on the GB equilibrium concentrations to mitigate these unrealistic
values:

cGBX =

c
B
X exp

(
1.5eV
kBT

)
, cBX exp

(
1.5eV
kBT

)
< 0.1,

0.1, otherwise
. (4.7)

Fig. 4.1 shows the equilibrium bulk and GB concentrations using these equations for the
undoped, Cr-doped, and Mn-doped cases.
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Figure 4.1. Equilibrium bulk and GB vacancy concentrations for undoped, Cr-doped, and
Mn-doped cases. Dopants do not affect the vacancy concentration until high temperatures. The
GB concentrations are capped at a value of 0.1 to prevent unrealistic concentrations at low
temperatures.

One barrier to a direct comparison against experimental results is that Ref. [191] does
not provide any set dopant concentrations. Rather, it assumes an ideal concentration in
which all of the dopant dissolves into the lattice. This concentration was calculated from
the point defect framework and varies with both dopant and temperature. Therefore, a
relative comparison will be used to compare test simulations with experiments rather
than a direct replication of experiments.

4.3 Grand Potential Model Description

The grand potential sintering model was defined in Chapter 3. It is based primarily on
the grand potential model of Aagesen et al. [151], but also relies heavily on the works
of Moelans [147] and Plapp [150]. This section gives an overview of the model without
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including derivations or detailed descriptions. For more complete descriptions of the
derivation of the grand potential model, see the cited works.

4.3.1 Governing Equations

The grand potential model is based on the phase field method. It utilizes continuous
variable fields bounded by the values 0 and 1 with diffuse interfaces. There are two
phases in the model. The solid phase, representing the UO2 matrix, is described by
n order parameters ~η = {η1, η2, ..., ηn}. Each η order parameter represents a unique
crystal grain. The void phase, representing pores and voids, is described by a single order
parameter φ. Order parameters are non-conserved variables governed by the Allen-Cahn
Equation [116],

∂ηi
∂t

= −Ls
δΩ
δηi

,

∂φ

∂t
= −Lv

δΩ
δφ
, (4.8)

where Ls and Lv are the phase field mobilities of the solid and void phases and Ω is the
grand potential function. Surfaces are the interfaces between φ and one or more η’s while
GBs are the interfaces between two or more η’s.

The vacancies are defined in terms of their chemical potential µ, which is governed by
the equation

χ(φ)∂µ
∂t

= ∇ · χ(φ)D(φ, ~η,∇φ,∇~η)∇µ−
(
∂ρ(µ, φ, ~η)

∂φ

∂φ

∂t
+

n∑
i=1

∂ρ(µ, φ, ~η)
∂ηi

∂ηi
∂t

)
, (4.9)

where χ is the susceptibility, D is the diffusivity tensor, and ρ is the atomic number
density of vacancies. The grand potential function takes the form:

Ω =
∫
V

[
ε(φ)fB(φ, ~η) + κ(φ)fgrad(∇φ,∇~η) + hv(φ)ωv(µ) + (1− hv(φ))ωs(µ)

]
dV, (4.10)

where fB is the bulk free energy function, fgrad is the gradient energy function, and ε
and κ are the bulk and gradient energy coefficient terms, respectively. hv is a switching
function that determines the current phase. ωv and ωs are the local potential densities
for the void and solid phases, respectively. The bulk free energy function is defined as
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fB(φ, ~η) =
(
φ4

4 −
φ2

2

)
+

n∑
i=1

(
η4
i

4 −
η2
i

2

)
+ 3

2

n∑
i=1

η2
i

φ2 +
n∑
j>i

η2
j

+ 1
4 , (4.11)

the gradient energy function is

fgrad(∇φ,∇~η) = 1
2

[
(∇φ)2 +

n∑
i=1

(∇ηi)2
]
, (4.12)

and the local potential densities are

ωv(µ) = −1
2

µ2

V 2
a kv,X

− ceqv
µ

Va

ωs(µ, ~η) = −1
2

µ2

V 2
a ks,X

− ceqs,X(~η) µ
Va

(4.13)

where Va is the atomic volume of U, ks,X and kv,X are parabolic constants, and ceqs,X and
ceqv are the equilibrium atomic vacancy concentrations for both phases. Note that atomic
densities and atomic concentrations are interchangeable according to c = Vaρ.

4.3.2 Quantitative Parameters

There are two vacancy number densities, one for each phase, which are calculated
according to

ρs(µ, ~η) = µ

V 2
a ks,X

+ ceqs (~η)
Va

ρv(µ) = µ

V 2
a kv,X

+ ceqv
Va

ρ(µ, φ, ~η) = hv(φ)ρv(µ) + (1− hv(φ))ρs(µ, ~η) (4.14)

The susceptibility from Eq. (4.9) is defined as

χ(φ) = 1
V 2
a

(
hv(φ)
kv,X

+ 1− hv(φ)
ks,X

)
. (4.15)

The bulk and gradient energy coefficients are

ε(φ) = hS(φ)εS + (1− hS(φ))εGB
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κ(φ) = hS(φ)κS + (1− hS(φ))κGB (4.16)

where hS is a switching function that distinguishes between solid/void surfaces and
solid/solid grain boundaries. εS and κS are coefficients that depend on the surface energy
and εGB and κGB depend on the GB energy. These can be calculated according to

εS = 6σS
`

εGB = 6σGB
`

κS = 3
4σS` κGB = 3

4σGB` (4.17)

where σS and σGB are the surface and GB energies, respectively, and ` is the phase field
interface width. In reality, σGB depends on the degree of misorientation between the two
grains, but it is assumed constant for the sake of simplifying the model [113].

The switching functions hv and hS are both based on the same function:

H(φ, φ0) =


0, φ ≤ 0

1, φ ≥ φ0

6
(
φ
φ0

)5
− 15

(
φ
φ0

)4
+ 10

(
φ
φ0

)3
, 0 < φ < φ0

(4.18)

where φ0 is a constant between 0 and 1. The two switching functions are then hv(φ) =
H(φ, 1) and hS(φ) = H(φ, 0.3).

The equilibrium vacancy concentration for the solid phase has two values. Eqs. (4.3),
(4.4), and (4.5) give values for the bulk concentrations with the various dopants, while
Eq. (4.7) modifies them for GBs. Therefore, ceqs,X must distinguish between grain interiors
and GBs. We do this with the function:

ceqs,X(~η) = cBX + 4
(
cGBX − cBX

)
(1− λ(~η))2 , (4.19)

λ(~η) =
n∑
i=1

η2
i . (4.20)

The void vacancy equilibrium concentration, on the other hand, is simply set to ceqv = 1.
This formulation will also increase the equilibrium vacancy concentration on surfaces.
This should have a small effect on the profile, however, due to the high equilibrium vacancy
concentration in the void phase. However, it may also increase the surface diffusion rate.
The effects of dopants on surface diffusion have not been studied experimentally, so this
behavior may or may not be physically accurate.
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The phase field mobilities are defined as

Ls = 4
3
ceqs,X
ceqs,un

MGB

`
,

Lv = 40Ls, (4.21)

where MGB is the solid-phase GB mobility in the undoped solid. It is known that higher
vacancy concentrations increase the GB mobility [197]. The GB mobility is a linear
function of the self-diffusion coefficient, which for UO2 is a linear function of the fraction
of lattice sites occupied by vacancies [198]. Therefore, in Eq. (4.21), we assume there is a
linear relationship between Ls and ceqs,X . We also assume that the presence of dopants
does not affect the GB mobility through any other mechanism. Also, the void phase
mobility, Lv, is not a physical parameter. It is needed for the phase field method to
describe the evolution of the void phase, but the only constraint is that it is large enough
not to artificially slow the evolution of the solid phase. Therefore, it is set to be larger
than Ls by a factor of 40. MGB is calculated according to the Arrhenius function:

MGB = M0 exp
( −Q
kBT

)
, (4.22)

where M0 is the mobility prefactor and Q is GB mobility activation energy.
The diffusivity tensor from Eq. (4.9) enables the model to represent accelerated

diffusion along GBs and surfaces. It is taken from Ahmed et al. [148]:

D(φ, ~η,∇φ,∇~η) = DB + DGB(~η,∇~η) + DS(φ,∇φ)

DB = DBI

DGB(~η,∇~η) = wGBDB

n∑
i=1

n∑
j 6=i

ηiηjTij
GB(∇ηi,∇ηj)

DS(φ,∇φ) = wSDBφ
2(1− φ)2TS(∇φ), (4.23)

where DB, DGB, and DS are the bulk, GB, and surface diffusion tensors, respectively.
wGB and wS are weights used to estimate the GB and surface diffusion magnitudes based
on the bulk diffusion magnitude, DB. We assume that the dopants do not affect the
self-diffusion coefficient directly, and we can thus use the same diffusion values for each
case. I is the identity tensor, Tij

GB is the normalized GB directional tensor for the ηi/ηj
GB, and TS is the normalized surface directional tensor. These two directional tensors
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are defined as

Tij
GB(∇ηi,∇ηj) = I− ∇ηi −∇ηj

|∇ηi −∇ηj |
⊗ ∇ηi −∇ηj
|∇ηi −∇ηj |

,

TS(∇φ) = I− ∇φ
|∇φ|

⊗ ∇φ
|∇φ|

. (4.24)

Finally, the bulk diffusion magnitude is an Arrhenius function:

DB = D0 exp
(−Em
kBT

)
, (4.25)

where D0 is the diffusivity prefactor and Em is the vacancy migration energy.
This model and its derivatives are implemented in the implicit FEM phase field code

MARMOT [154]. MARMOT is used to perform all of the following simulations.

4.3.3 Material Values

Most of the values used for this model are available in the literature. These are given
in Table 4.1. The parabolic constants, however, must be calculated separately. The
constants come from the parabolic free energy curves [150]. Parabolic curves are used
because they are more forgiving of rounding error than the ideal solution free energy
or the dilute species free energy. We obtained the values by doing a least-squares fit
against the ideal solution model for each species according to the equations in [150]. We
calculated ks,X in this manner for all three species and a variety of temperatures across
the temperature region, then fit them to linear curves of the form ks,X = mXT + bX .
The parameters obtained from the curve fits are shown in Table 4.2. The void phase does
not have an ideal energy, so the void versions are assumed to be kv,X = 10ks,X . This
ensures the void phase stays near equilibrium.

Name Value Units Ref
σGB 9.86 eV/nm2 [158]
σS 19.7 eV/nm2 [157]
Va 0.04092 nm3 [159]
M0 1.4759× 109 nm4/eVs [160]
Q 2.77 eV [160]
D0 8.33× 109 nm2/s Chapter 3
Em 3.608 eV Chapter 3
wGB 106 – Chapter 3
wS 109 – Chapter 3

Table 4.1. Constant values associated with UO2 used with the present model
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X mX (eV nm−3s−1) bX (eV nm−3) Temperature (K)
un 0.051 -15.40 1000 – 1263
un 0.211 -217.35 1263 – 2000
cr -0.104 340.02 1803 – 2000
mn -0.104 340.02 1776 – 2000

Table 4.2. Linear fit parameters for parabolic energy coefficients of the form ks,X = mXT + bX .
The values are based on a least-squares fit to the ideal solution model. The two dopants have the
same fit because their ideal solution free energies are very similar.

The parameters ` and T are not given here as they vary based on the specific problem.
They are given in the descriptions of the individual simulations.

4.4 Dopant Effects on Pore Closure Rate

According to results from Bourgeois et al. [36] and Arborelius et al. [180], Cr-doped fuel
densifies at a slightly higher rate than undoped fuel at sintering temperatures. At the
end of heating, Bourgeois et al. found that Cr-doped fuel was about 2% more dense.
Arborelius et al. similarly found that after sintering, Cr-doped fuel was about 1% more
dense than undoped fuel. It is therefore necessary to determine the effect of dopants on
the sintered density according to the grand potential sintering model.

4.4.1 Simulation Setup

Eight uniform spherical particles, 300 nm in diameter, are arranged in a cube formation.
The interface initial condition (IC) is set to match a hyperbolic profile, which is a good
approximation for the actual profile of phase field interfaces [155]. The interface thickness
is set to 40 nm and the simulated temperature to 1900 K. The domain is a cube with
side lengths of 680 nm. Mesh adaptivity is used with the individual mesh elements side
lengths ranging from 10 to 40 nm.

The pore is the space at the center of the 8 particles. In the IC, the pore is open
to the external void surrounding the particles. In order to estimate the volume of the
open pore, a 300 nm cubic box is defined with corners at the IC sphere centers. The pore
volume is estimated by integrating over the void variable within this box according to

Vpore =
∫
Vbox

φdV. (4.26)

Each simulation is allowed to continue until Vpore = 0.
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4.4.2 Simulation Results

Fig. 4.2 shows an example of the simulation progression with the pore visibility increased
by removing two particles. In every case, at or around two seconds of simulation time,
the particles have coalesced to the point of closing off the pore from the exterior void. At
this point the kinetics of the simulation changes. When the pore is open to the external
void, vacancy diffusion is rate-controlled by surface diffusion (Chapter 3). Once the pore
is closed there is no surface path to the external surface, and the vacancy diffusion is
rate-controlled by GB diffusion. Fig. 4.3 shows the measured pore volume for all three
simulations. The transition from S- to GB-controlled kinetics is plainly visible.

0.00 s

6.25 s4.03 s2.48 s1.97 s

1.16 s0.20 s0.01 s

300 nm

Figure 4.2. Demonstration of 8-particle pore-closure simulations. Two of the particles are not
shown so that the pore is more clearly visible. These images are taken from the Cr-doped case at
the times shown. The undoped and Mn-doped cases yield similar microstructures, but evolve at
different rates. The pore volume is calculated according to Eq. (4.26).

In addition to the simulations, Fig. 4.3 also shows linear fits to the pore volume
change based on the two kinetic-control regions. The linear fit parameters are given in
Table 4.3.

Surface-controlled GB-controlled
X mX (nm3s−1) bX (nm3) mX (nm3s−1) bX (nm3)
un −3.339× 106 1.289× 107 −1.027× 106 7.614× 106

cr −3.870× 106 1.294× 107 −1.216× 106 7.698× 106

mn −3.918× 106 1.291× 107 −1.377× 106 7.817× 106

Table 4.3. Fitting parameters of the form Vpore = mXt + bX for the 8-particle pore closure
simulations. Two sets of parameters are calculated: One for the surface mobility-controlled region
and another for the GB mobility-controlled region.

70



0 2 4 6 8

Time (s)

0

5

10

15

P
o

re
 V

o
lu

m
e

 (
1

0
6
 n

m
3
)

Undoped

Cr-doped

Mn-doped

Linear Fits

Figure 4.3. Measured pore volume of 8-particle pore closure simulation for undoped, Cr-doped,
and Mn-doped simulations. Initially, the rate is controlled by the surface diffusivity. However,
after about two seconds the particles coalesce to the point where the pore is closed and the rate
transitions to GB diffusivity-controlled. Linear fits were calculated for both regions with the
fitting parameters given in Table 4.3.

4.4.3 Discussion

The pore closure rate for the Cr-doped case is 15.9% faster than the undoped case in the
surface-controlled region and 18.4% faster in the GB-controlled region. The rates for the
Mn-doped case are 17.3% and 34.1%, respectively. These increased rates are a result of
the charged-interstitial mechanism increasing the vacancy concentration in the doped
cases. To convert to a density measurement, the ratio of solid to total sintered volume is
used:

ρ∗ = Vsolid
Vsolid + Vpore

(4.27)

where Vsolid is the combined volume of the eight particles. This equation converts Fig. 4.3
to density measurements as shown in Fig. 4.4. The spread of relative density is much
smaller than the range of pore volumes and appear to agree well with experiments.

The results are encouraging. However, these small simulations are poor comparisons
to experimental data. As was discussed in Chapter 3, effects such as surface roughness
make accurate density measurements difficult, even for much larger simulations. For
example, if the density was measured only inside the same box used to measure Vpore,
then the relative densities would have a much greater spread. Additionally, these are
small particles at constant high temperature that sinter very quickly. If the particles
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Figure 4.4. Conversion of Fig. 4.3 to a density calculation using Eq. (4.27).

were larger or the temperature lower, then the results could be affected. Thus, before any
firm conclusions can be drawn about the densification rate, a larger simulation should be
performed. First, though, we measure the grain growth rate.

4.5 Dopant Effects on Grain Growth

While the densification rate is only slightly affected by dopants, the grain growth rate is
greatly affected. Bourgeois et al. found that the optimum Cr concentration increased the
grain size by up to a factor of 7 during constant-temperature annealing [36]. Arborelius
et al. found that the size could increase by up to a factor of 5 during annealing [180].
Even the atomistic simulations from Ref. [191] found that at 1900 K the presence of Cr
should increase the grain size by a factor of 2.1 and that Mn should increase it by a factor
of 3.9 [191]. Therefore, a set of simple 2D grain growth simulations are used to estimate
the grain size during annealing.

4.5.1 Simulation Setup

To estimate grain growth, a fully-dense single phase simulation is set up. Using a single
phase allows the model to be significantly simplified to the point of being a standard
phase field simulation. Since there is no void phase, vacancies do not need to be tracked
explicitly, and the variables φ and µ can be removed. This completely negates the need
for Eqs. (4.9), (4.13), (4.14), (4.15), (4.18), (4.19), (4.23), (4.24), and (4.25). In addition,
Eq. (4.10) is simplified to
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Ω =
∫
V

[εGBfB(~η) + κGBfgrad(∇~η)] dV, (4.28)

with

fB(~η) =
n∑
i=1

(
η4
i

4 −
η2
i

2

)
+ 3

2

n∑
i=1

n∑
j>i

η2
i η

2
j + 1

4 (4.29)

fgrad(∇~η) = 1
2

n∑
i=1

(∇ηi)2 . (4.30)

The simulations use a square domain with a sidelength of 35 µm, periodic boundary
conditions, and 4, 000 grains randomly generated using a Voronoi tessellation. All three
simulations use the same initial condition. The temperature starts at 1200 K and increases
linearly such that after 400 seconds the temperature is 1900 K. The temperature remains
at 1900 K for the remainder of the simulation. The short heating period provides time
for the formation of the diffusion interface from the initially sharp interfaces that result
from the tessellation.

The interface width is set to ` = 100 nm. Mesh adaptivity is again used with square
elements ranging in size from 25 nm to 200 nm. Only 10 order parameters are used, with
grain coalescence prevented by the GrainTracker algorithm built into MARMOT [149].
GrainTracker also counts the number of grains, both inside the domain and across the
periodic boundaries. The average grain area is calculated as Aavg = (35 µm)2/ngrains.
The average grain size is then calculated as dX =

√
4Aavg/π.

4.5.2 Simulation Results

The average grain size for the undoped, Cr-doped, and Mn-doped simulations are shown
in Fig. 4.5 starting at 400 seconds when the simulations reaches constant temperature.
The grain sizes are fitted to curves of the form dX = aX

√
t+ bX , where dX is the grain

size of case X. The fitting parameters are given in Table 4.4. This form was chosen
because the measured grain area showed highly linear behavior and calculating the grain
size requires taking the square root of the grain area. The doped cases obviously grow
significantly faster than the undoped case. Images of the microstructures at the initial
condition and at 530 s (the maximum time reached by the Mn-doped simulation) are
shown in Fig. 4.6. These images also show a stark difference in the grain size between
the different cases.
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Figure 4.5. Average grain size for undoped, Cr-doped, and Mn-doped grain growth simulations at
1900 K. The Cr-doped and Mn-doped cases both see highly accelerated grain growth. Functional
fits are included for each curve in order to compare the relative grain sizes.

X aX (nm s−1) bX (nm)
un 32.85 -59.54
cr 176.5 -2,724
mn 414.2 -7,308

Table 4.4. Fitting parameters of the form dgrain = aX

√
t+ bX for the average grain size in the

three grain growth simulation cases.

4.5.3 Discussion

In order to compare the relative grain sizes, we take the limit

lim
t→∞

dX
dun

= aX
aun

, (4.31)

where dX is the grain size associated with dopant X, and aX is the fitting parameter
from Table 4.4. According to this, the Cr-doped case is expected to have a grain size
5.4 times larger than the undoped case. For the Mn-doped case the ratio is 12.6. The
charged-interstitial model increases the grain growth rate because the increased vacancy
concentration also increases the GB mobility (see Eq. (4.21)). This result for the Cr-doped
case is consistent with the results of Bourgeois et al. [36] and Arborelius et al. [180].

It is important to note two factors which are not being accounted for in this simulation.
First of all, it is a 2D simulation. Important dimensional effects are not being included,
which has been shown to affect the results (Chapter 3). These simulations also do not
include the effects of pores, which inhibit grain growth [1, 125](Chapter 2). Therefore, it
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10 μm

Figure 4.6. Simulated microstructure comparison from the 2D grain growth simulations at 1900
K. A: The initial condition used for all three simulations. The final grain structure after 530
seconds for the undoped case (B), Cr-doped case (C), and Mn-doped case (D).

is better to simulate sintering in 3D with pores present to eliminate this assumption. We
do this in the following section.

4.6 Dopant Effects on Sintering

We have now examined the effects of Cr and Mn dopants on pore closure and grain
growth. In the case of pore closure, we found that the relative difference between Cr-
doped and undoped UO2 are consistent with experiments and Mn appears to increase
the densification rate even further. In the case of grain growth, the acceleration due to
the Cr dopants is once again consistent with experiments and Mn accelerates the growth
even further. However, both of those simulations are limited. The pore closure simulation
used very few particles, maintained constant temperature, and had only a single pore.
The grain growth simulation was 2D and did not include pores. To improve upon both of
these results, a 3D sintering simulation using a non-constant temperature and a relatively
large number of particles and pores is used to investigate the impact of the dopants.

4.6.1 Simulation Setup

The purpose of these simulations is a direct comparison of the relative effects of dopants
on sintering. We do this by heating a powder compact from 973 K to 1973 K over 12,000
s (200 min) and measuring the density and grain size. The heating ramp also serves
to improve the interface profile like in the grain growth simulations above. However, it
should be noted that in experiments, the bulk density is measured during heating, but
the average grain size is measured during constant temperature annealing [36, 180]. The
interface thickness is set to ` = 200 nm. The initial condition is generated in the same
manner as Chapter 3 except that a uniform size distribution is used. 100 particles, each
with a diameter of 700 nm, are allowed to fall randomly into a box-shaped space without
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being allowed to overlap. The domain is 4.1 µm by 4.1 µm by 4.3 µm in the z-direction.
Mesh adaptivity is used with elements ranging in size from 48.8 nm to 195.2 nm.

These sintering conditions are simulated for undoped, Cr-doped, and Mn-doped UO2.
However, since the dopants do not begin to impact the equilibrium vacancy concentration
until they reach elevated temperature, as shown in Fig. 4.1, the behavior of the three
simulations are identical until they reach these dopant transition temperatures (1803 K
for Cr-doped and 1776 K for Mn-doped). Therefore, to reduce computational expense,
only the undoped case was run at the lower temperatures. Then, once the dopant
transition temperature was reached, the undoped simulation results were used as the
initial condition for the two doped cases.

Two measurements are taken: the density, measured using the Monte Carlo integration
technique from Chapter 3, and the grain size, measured using the GrainTracker algorithm
built into MARMOT [149]. Both of these measurements are somewhat noisy. The
Monte Carlo integration technique has noise from its stochastic nature as well as sudden
jumps when a particle/grain on the outer edge is consumed by a neighboring grain. The
GrainTracker algorithm relies on a threshold value to find and count grains. While a
grain is being eliminated, its max value can hover near the threshold, causing the number
of grains counted by GrainTracker to fluctuate.

4.6.2 Simulation Results

The microstructure evolutions of the three cases are shown in Fig. 4.7. The first two rows
show the evolution of the low temperature region and the undoped case. The third and
fourth rows show the evolution of the Cr-doped case and Mn-doped cases, respectively, at
times that match the second row. One quarter of the microstructure has been removed
in the images so that the interior microstructure can be seen. The density measurements
are shown in Fig. 4.8, with the three cases distinguished by color. The average grain size
is shown in Fig. 4.9, with similar coloration.

Fig. 4.7 shows how grain growth is accelerated by the dopants. The undoped case
at 12,000 seconds looks very similar to the Cr-doped case at 11,000 seconds. However,
Fig. 4.9 shows that the Cr-doped case in fact has larger grains by that time. Meanwhile,
the Cr-doped case at 12,000 seconds looks very similar to the Mn-doped case at 11,000
seconds.

Both in terms of density and grain size, all three cases reach the maximum possible
value before the end of the simulation. This limits the region of the simulation where
useful comparisons can be made between the cases and suggests that additional particles
should be used in future simulations.
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Figure 4.7. Microstructure evolution of the 100-particle sintering simulations. In each image
the region where φ ≤ 0.3 is shown with one quarter of the domain removed to show the interior.
Boxes show the outline of the entire domain. The images are colored based on Eq. (4.20). A:
The undoped case. Dopants do not affect behavior at low temperature, so the initial heating is
identical for all three cases. B: The Cr-doped case during the last quarter of the simulation. C:
The Mn-doped case during the last quarter of the simulation. The Cr- and Mn-doped cases do
not diverge from the undoped case until 9,948 s and 9,583.2 s, respectively.
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Figure 4.8. Relative density for the 100-particle sintering simulations. The simulations are split
into regions based on the dopant according to Eqs. (4.3), (4.4), and (4.5). At the times they reach
maximin density, the Cr-doped case and the Mn-doped case are 0.74% and 1.32% more dense
than the undoped case, respectively.
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Figure 4.9. Average grain size for the 100-particle sintering simulations. The simulations are
split into regions based on the dopant accourding to Eqs. (4.3), (4.4), and (4.5). At the times
they reach maximum grain size, the Cr- and Mn-doped average grain sizes are 2.31 and 2.33 times
larger than the undoped grains.

4.6.3 Discussion

While most of the microstructure evolution occurs prior to the dopants taking effect, the
dopants have a measurable effect in both density and grain size. Quantifying these effects
is somewhat difficult because they are limited by reaching both maximum density and
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maximum grain size. However, measurable differences do exist in the three cases. At the
time they reach maximum density, the Cr- and Mn-doped cases are 0.74% and 1.32%
more dense than the undoped case, respectively. This result is similar to the expected
results from experiments and consistent with the results from Sec. 4.4. When they reach
the maximum grain size, the Cr- and Mn-doped cases are 2.31 and 2.33 times larger
than the undoped case. This is somewhat lower than the rates found in experiments and
Sec. 4.5, but similar to the values predicted by ideal grain growth models informed by
atomistic simulations [191].

There are several important differences between the simulations in Sec. 4.5 and this
section that must be explored to determine the reason for the change in relative grain
sizes. The previous simulations were 2D with more grains, no pores, and constant
temperature. This set of simulations is in 3D, has fewer grains, includes pores, and
occurs in a temperature ramp. Let us examine each of these differences. We have shown
previously that 2D and 3D geometries can give different results using this model (Chapter
3). However, the effect was to reduce the sintering rate in 2D and was relatively linear.
This would not be expected to reduce the relative effect of dopants in 3D.

It would be reasonable to assume that the relatively small number of grains in the
3D simulation reduced the accuracy. Had the grains been able to continue to grow, the
average grain size ratio may have continued to increase. To test this hypothesis, we
recreate the simulation from Sec. 4.5 with 100 grains on a (5,550 nm)2 domain. The
simulations were allowed to continue until they reduced to a single grain. The resulting
fit functions, however, were unchanged from those listed in Table 4.4. We can therefore
conclude that the difference is not caused by the number of grains in the simulation.

It is known that pores inhibit grain growth [1,125](Chapter 2). However, the presence
of pores does not appear to be a major factor in the grain size discrepancy for the simple
reason that the final pore disappears from the microstructure before the majority of grain
growth occurs (see Figs. 4.8 and 4.9).

This leaves the different temperature profiles. Temperature is one of the largest
driving forces of sintering [1](Chapter 2). To look at the effect of temperature profile, we
measured the average grain sizes from Sec. 4.5 prior to reaching the maximum temperature
at 400 s. The results are shown in Fig. 4.10. Rather than the square root-curve in Fig. 4.5,
this region shows exponential behavior that will diverge as heating continues. The
temperature profile appears to be the most likely reason for the different behavior of the
relative grain size measurements in this section and Sec. 4.5.
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Figure 4.10. Average grain size during the heating ramp prior to Fig. 4.5 for undoped, Cr-doped,
and Mn-doped cases. The behavior profile is exponential so that it appears the relative grain
sizes will diverge as heating continues.

4.7 Conclusion

In this chapter we have added the impact of dopants into the grand potential sintering
model by changing the vacancy equilibrium concentration in the manner predicted by the
proposed charged-defect mechanism [191]. We then compared the predictions of model
to experimental data on Cr-doped UO2. The grand potential model predicts relative
behavior very similar to that recorded in the literature [36, 180, 191]. Both small- and
medium-scale sintering simulations predicted a Cr-doped to undoped density ratio that
is consistent with experiments. 2D large-scale grain growth simulations additionally
predicted a relative grain size difference which was consistent with experiments. However,
a 3D medium-scale sintering simulation found a grain size difference which was smaller
than experiments. It appears this discrepancy is caused by the temperature profile
used in the simulation, which matched the temperature profile used in experiments to
measure the density change, but not the profile used when measuring the average grain
size. Experimental measurements of the average grain size were made after constant-
temperature annealing, while the simulated grain growth measurements were made during
heating. These results support the proposed charged-interstitial mechanism as a valid
theory of dopant behavior. Additionally, we tested the predictions of Mn as a dopant
and found that it does indeed act as a stronger dopant than Cr. Thus, Mn-doped UO2

appears to be a new ATF concept for near-term deployment that could yield larger grains
and denser pellets than undoped or Cr-doped UO2 fuel.
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The next step is to run sintering experiments on undoped, Cr-doped, and Mn-doped
UO2 to see if our predictions hold true. If the predictions do hold, then that will validate
the charged-interstitial mechanism as an accurate model of dopant behavior in UO2. It
will also begin development of a new Mn-doped ATF concept.

81



Chapter 5 |
Grand Potential Simulations of
Irradiation-Enhanced
Densification

5.1 Introduction

Irradiation-enhanced densification (IED) is a phenomenon that occurs in sintered nuclear
fuels—typically UO2. Early in the fuel lifetime the volume of the fuel decreases, which
increases the distance between the fuel and the cladding, or plenum gap width. The
plenum gap has poor thermal conductivity. So increasing the gap width increases the
centerline temperature of the fuel [1](Chapter 2). IED must be understood and quantified
in order to maintain fuel temperature and safety standards in existing fuels as well as
accident-tolerant and next-generation fuel concepts. In the present work, we apply recent
advances in computational sintering models to create a microstructural IED model and
verify that the model is working through the use of test cases designed to isolate specific
mechanisms or physical effects. These test cases provide additional insight into how
increased point defect densities and collision cascade mixing effects contribute to the rate
of pore shrinkage in IED.

A porous material in a high temperature environment will sinter and become more
dense [6]. UO2 fuel pellets are manufactured via sintering; and as a result have a non-
negligible level of porosity. Upon powering the reactor, the pellets sinter and increase in
density. Initially, it was believed that that densification occurred at the same rate in the
reactor as it did during sintering [130]. However, it was later found that the fuel volume
decreased faster in reactors than they did in experiments with similar temperatures but
no fission [9]. Thus, IED is is accelerated by fission within the fuel [1, 10](Chapter 2).
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The energy released by fission is carried primarily by the fission fragments as kinetic
energy. The fragments collide with atoms in the fuel’s crystal lattice, distributing the
energy into the lattice and briefly liquefying a small portion of the crystal in events called
“collision cascades” [1](Chapter 2). Within a few picoseconds the energy dissipates enough
for the atoms to recrystallize [133].

Modern IED theory identifies three driving mechanisms that increase the sintering
rate [1](Chapter 2):

• Collision cascade mixing—Within the liquefied portion of the crystal, the atoms
diffuse at accelerated rates. The bulk effect of this is accelerated diffusion of the
point defects throughout the crystal lattice.

• Increased point defect density—Once the cascade cools and recrystallizes, some U
atoms do not reach lattice sites, and instead become interstitial point defects. This
leaves a nearby vacancy, thus generating a pair of point defects known as a Frenkel
pair. Increased point defect densities increase the self-diffusion rate of U atoms in
the material, which increases the sintering rate.

• Pore damage—If a collision cascade occurs on the edge of a pore, atoms from the
lattice can be dispersed into the pore, partially filling in the pore while increasing
the number of vacancies in the lattice [132]. This causes the overall volume of the
pore to decrease and the point defect density in the lattice to increase.

The primary bulk effect of IED is to increase the evacuation rate of small pores [10, 130]
(less than 1 µm in diameter [132]). The accepted reason for this size dependence is that
large pores act as stronger sinks, which allows them to reabsorb vacancies expelled by
pore damage [1](Chapter 2).

The overall difference in the rate of density change between IED and sintering depends
on the pore size distribution, the temperature (it is primarily observed at temperatures
below 1,300 °C [1, 130]), and the grain size distribution (IED has a larger effect in
small-grain structures [10]). However, there are still several important questions that
remain unanswered about the IED mechanics. First, do the three driving mechanisms
contribute to densification equally, or does one dominate the others? Experimental
studies have been unable to address this question because the mechanisms cannot be
separated experimentally. Second, both intragranular and grain boundary (GB) pores
exist in sintered UO2. Does the location of the pore affect its IED behavior? Third,
how do grain boundaries interact with collision cascades such that small-grain structures
densify faster? This question was considered by Bai et al. [133], who found that GBs
facilitate vacancy and interstitial recombination. However, this would suggest that grain

83



boundaries slow down densification by suppressing the defect density, which contradicts
the findings of Freshley et al. [10].

Recent studies have proposed using dopants to increase the UO2 density and average
grain size to improve fuel performance [191](Chapter 4). The modified microstructures
in doped fuels could impact IED behavior, though the dopants themselves are unlikely
to affect the densification at reactor operating temperatures [191](Chapter 4). However,
existing empirical models are not equipped to accurately predict the IED behavior of
such fuels because no densification data is available from doped fuels [1](Chapter 2). A
mechanistic microstructural model could predict the IED behavior in the doped fuels
with a greater level of fidelity than empirical models [1](Chapter 2).

In this work we use recent advances in microstructural sintering models (Chapters 3
and 4) to build an IED model and examine some of the effects of collision cascades on the
pore evacuation rate as well as effects of the microstructure on the IED rate in UO2. A
recent review paper found no microstructural IED models in current use [1](Chapter 2),
so this model fills a gap in computational capabilities related to IED. We have previously
used the grand potential sintering model to simulate sintering of UO2 (Chapter 3) and to
validate a proposed mechanism for doped sintering (Chapter 4). In sintering, the density
of U-interstitials is so low that they can be ignored. But due to Frenkel pair generation,
interstitials should be included in the IED model. To account for this we derive the model
with both vacancy and interstitial terms along with terms to account for the generation
and annihilation of point defects. An additional term is also added to represent increased
self-diffusion from collision cascade mixing. Direct pore damage is not currently included
in the model.

5.2 Derivation of Grand Potential Model

This grand potential formulation is based on the quantitative and flexible multi-phase
grand potential model derived by Aagesen et al. [151]. It is based on the works of
Moelans [147,155] and Plapp [150]. It is applied to UO2 sintering in Chapters 3 and 4.
Some modifications need to be made to apply the model to IED. As is commonly done in
phase field models, we assume that all GB properties are isotropic.

5.2.1 Equations governing the matrix and bubble phases

There are n order parameters, ~η = {η1, η2, ..., ηn}, which represent individual grains in
the matrix phase. There is one order parameter, φ, which represents the bubble phase.
The bubble phase includes the void—the space on the exterior of the fuel pellet—and
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the pores—empty spaces inside the fuel pellet which are completely isolated from the
void and contribute to the fuel porosity. These order parameters are governed by the
Allen-Cahn equation [116]:

∂ηi
∂t

= −Lm
δΩ
δηi

∂φ

∂t
= −Lb

δΩ
δφ

(5.1)

where Lm and Lb are the matrix and bubble phase Allen-Cahn mobilities, respectively,
and Ω is the grand potential functional:

Ω =
∫
V

[εfB + κfgrad + hmωm + (1− hm)ωb] dV, (5.2)

where fB is the bulk free energy, fgrad is the gradient free energy, ε and κ are energy
coefficients, hm is a switching function that transitions between 1 in the matrix phase and
0 in the bubble phase, and ωm and ωb are grand potential densities for the two phases.
The bulk free energy has the form:
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(
φ4

4 −
φ2

2

)
+

n∑
i=1

(
η4
i

4 −
η2
i

2

)
+ 3

2

φ2
n∑
i=1

η2
i +

n∑
i=1

n∑
j>i

η2
i η

2
j

+ 1
4 . (5.3)

This function ensures that having exactly one order parameter equal to 1 while the others
are equal to 0 is energetically preferred. The gradient energy has the form:

fgrad = 1
2

(
(∇φ)2 +

n∑
i=1

(∇ηi)2
)
. (5.4)

This formulation applies an energy penalty if the order parameter gradients are too high,
which ensures a diffuse interface. The grand potential densities depend on the point
defects and will be explained in Sec. 5.2.2.

5.2.2 Equations governing the vacancy and interstitial point defect densities

The diffusivity of U atoms is much lower than the diffusivity for O atoms, making U
the rate-limiting species (Chapter 3). Therefore, the model only considers the U atoms.
There are two conserved U point defect atomic densities for the vacancy and interstitial
species, represented by the variables ρv and ρi, respectively. These are governed by the
equation
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∂ρν
∂t

= ρ̇ν,diff + ρ̇gen − ρ̇ann + ρ̇ν,mix, (5.5)

where ν = {i, v}, ρ̇ν,diff is the change in atomic density from defect self-diffusion, ρ̇gen
is the change in atomic density from defect generation, ρ̇ann is the change from defect
annihilation, and ρ̇ν,mix is the change from collision cascade mixing. The time-derivative
term can be expanded by the chain rule to

∂ρν
∂t

= ∂ρν
∂µν

∂µν
∂t

+ ∂ρν
∂φ

∂φ

∂t
+

n∑
i=1

∂ρν
∂ηi

∂ηi
∂t
, (5.6)

where µν is the chemical potential of species ν. ρ̇ν,diff is calculated based on the conserved
diffusion equation

ρ̇ν,diff = −∇ ·~jν ,

= ∇ ·Dν∇ρν ,

= ∇ ·Dν
∂ρν
∂µν
∇µν , (5.7)

where ~jν and Dν are the flux and the diffusion tensor for species ν, respectively.
The defect generation term depends on the fission rate, ḟ , according to

ρ̇gen = ḟ ξNcNdhm, (5.8)

where Nc is the number of collision cascades per fission, Nd is the number of Frenkel
pairs generated per cascade, hm is a switching function that determines the matrix phase,
and ξ is a random noise term that accounts for the random positions of collision cascades.
Defect annihilation occurs when a vacancy and interstitial recombine. Therefore, the
annihilation term represents recombination [199]:

ρ̇ann = arρiρv,

ar = hmVaZ|Di|
a2

0
, (5.9)

where ar is the recombination rate, Va is the defect atomic volume, Z is the recombination
number, a0 is the atomic jump distance, and |Di| is the scalar magnitude of Di.

Collision cascade mixing occurs as the lattice atoms within the collision cascade mix
at a highly-accelerated rate [1](Chapter 2). The bulk effect of this can be approximated
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by athermal diffusion [142]. This is demonstrated in Fig. 5.1. A 1D Monte Carlo (MC)
simulation is used to approximate collision cascade mixing in a system with no other
evolution effects. Collision cascades are approximated as regions of a set size where the
defect density is instantly homogenized. At each MC step, a point is randomly chosen
for a collision cascade. The accumulation of collision cascades drives the evolution of the
defect density. This is overlayed with a nondimensionalized diffusion simulation. The
two simulations show very similar defect profile evolutions.

Figure 5.1. 1D nondimensionalized demonstration of an athermal diffusion approximation for
collision cascade mixing. The red dashed line uses a Monte Carlo approximation of collision
cascade mixing. At each time step, a location for a cascade is randomly chosen and the defect
density within the cascade region is set to the average defect density within the region. The
black line begins with the same initial condition, but evolves by solving the diffusion equation.
Throughout the simulation the two lines match very well.

Using an athermal diffusion approximation, the collision cascade mixing term becomes

ρ̇ν,mix = ∇ ·Dmix∇ρν ,
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= ∇ · ∂ρν
∂µν

Dmix∇µν , (5.10)

where Dmix is the athermal diffusion coefficient of collision cascade mixing.
We now introduce the susceptibility of species ν, χν :

χν = ∂ρν
∂µν

(5.11)

Combining Eqs. (5.5)–(5.11) yields the chemical potential evolution equation:

χν
∂µν
∂t

= ∇ · χν (Dν +Dmix)∇µν + hm

(
ḟ ξNcNd −

VaZ|Di|
a2

0
ρiρv

)
− ∂ρν

∂φ

∂φ

∂t
−

n∑
i=1

∂ρν
∂ηi

∂ηi
∂t
. (5.12)

Eq. (5.12) is the governing equation for the chemical potential variables.
The phase-independent chemical potential is a function of the atomic defect density

µν = ∂fν,m
∂ρν,m

= ∂fν,b
∂ρν,b

, (5.13)

where fν,α is the free energy of species ν in phase α = {m, b} and ρν,α is the atomic
density of species ν in phase α. The free energies for each species and phase are estimated
as parabolic curves:

fν,α = 1
2kν,α

(
ρν − ρ∗ν,α

)2
, (5.14)

where kν,α is a parabolic coefficient and ρ∗ν,α is the equilibrium atomic density of species
ν in phase α. The density can now be converted to a function of chemical potential by
using Eq. (5.14) to invert Eq. (5.13):

ρν,α = µν
V 2
a kν,α

+ ρ∗ν,α,

ρν = hmρν,m + (1− hm)ρν,b. (5.15)

The susceptibility from Eq. (5.11) now becomes:

χν = 1
V 2
a

(
hm
kν,m

+ 1− hm
kν,b

)
. (5.16)
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Now it is possible to define the grand potential densities from Eq. (5.2) using Eq. (5.14):

ωα = fv,α − ρv,αµv + fi,α − ρi,αµi

= −1
2

µ2
v

V 2
a kv,α

− µvρ∗v,α −
1
2

µ2
i

V 2
a ki,α

− µiρ∗i,α (5.17)

This formulation defines the effects of increased point defect density by including the
generation and annihilation terms ρ̇gen and ρ̇ann. It also defines collision cascade mixing
via the term ρ̇ν,mix. Since it is based on an established sintering model (Chapter 3) and
includes two of the IED mechanisms, this model should capture IED behavior. However,
this formulation does not capture direct pore damage.

5.2.3 Definitions of Quantitative Terms

We calculate the Allen-Cahn mobilities from Eq. (5.1) according to (Chapter 3):

Lm = 4
3
MGB

`
,

Lb = 40Lm, (5.18)

where ` is the interface width and MGB is the GB mobility. MGB is calculated according
to the Arrhenius equation:

MGB = M0 exp
( −Q
kBT

)
, (5.19)

where M0 is the mobility prefactor, Q is the GB mobility activation energy, kB is
Boltzmann’s constant, and T is the absolute temperature.

The energy coefficients, ε and κ, from Eq. (5.2) are functions of the interface energies
for surfaces and GBs, σS and σGB, respectively, as well as the interface width:

ε = hSεS + (1− hS)εGB,

κ = hSκS + (1− hS)κGB,

εβ = 6σβ
`
,

κβ = 3σβ`
4 , (5.20)

where hS is a switching function that distinguishes surface regions from GBs, β represents
the interface according to β = {S,GB}, and εβ and κβ are the constant interface values.
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The switching functions hm and hS both take the same form:

H(φ, φ0) =


0, φ ≤ 0

6
(
φ
φ0

)5
− 15

(
φ
φ0

)4
+ 10

(
φ
φ0

)3
, 0 < φ < φ0

1, φ ≥ φ0

,

hm = 1−H(φ, 1),

hS = H(φ, 0.3). (5.21)

The parameter φ0 is set to a value between 0 and 1. Lower values increase the accuracy
of the energy profiles and the computational expense of the simulations. A value of 0.3
keeps the error below 5% (Chapter 3).

The diffusion tensors take the form proposed by Ahmed et al. [148]:

Dν = DB,νI +DGB,ν

n∑
i=1

n∑
j 6=i

ηiηjTi,j
GB +DS,νφ

2(1− φ)2TS ,

Ti,j
GB = I− ∇ηi −∇ηj

|∇ηi −∇ηj |
⊗ ∇ηi −∇ηj
|∇ηi −∇ηj |

,

TS = I− ∇φ
|∇φ|

⊗ ∇φ
|∇φ|

, (5.22)

where DB,ν , DGB,ν , and DS,ν are the bulk, GB, and surface diffusion magnitudes for
species ν. I is the identity tensor, while Ti,j

GB and TS are normalized directional tensors
of the GB and surface interfaces, respectively. The diffusion magnitudes are estimated
according to

DB,ν = D0,ν exp
(
−EBν
kBT

)
,

DGB,ν = wGBDB,ν ,

DS,ν = wSDB,ν , (5.23)

where D0,ν and EBν are the Arrhenius prefactor and migration energy for species ν in the
bulk, and wGB and wS are multiplier weights for GBs and surfaces, respectively (Chapter
3).

The computational expense of this model is lowered by replacing the tensor Di with
its magnitude |Di|, as shown in Eq. (5.9). Since an interstitial will tend to approach a
vacancy in the direction of fastest diffusion, the interstitial diffusion directional component
can be neglected.
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We estimate the athermal diffusion coefficient for collision cascade mixing as

Dmix = ḟ ξNctcVcDc, (5.24)

where tc is the length of time of a collision cascade, Vc is the volume of a collision cascade,
and Dc is the diffusion coefficient within a collision cascade.

The treatment of vacancies in the bulk requires some additional explanation. Some
models treat GBs and surfaces as point defect sinks where the point defects are annihilated.
Our model uses accelerated diffusion along GBs to transport the point defects away from
the bulk to the external surface (Chapter 3). This requires a higher defect density on
GBs than in the bulk. Therefore, the equilibrium matrix phase point defect density from
Eq. (5.14) is defined as

ρ∗ν,m = ρBν,m + 4(ρGBν,m − ρBν,m)(1− λ)2, (5.25)

λ =
n∑
i=1

η2
i , (5.26)

where ρBν,m is the atomic equilibrium density for species ν in grain interiors and ρGBν,m is
the atomic equilibrium density on grain boundaries.

5.2.4 Assignment of Parameter Values

First we assign the material-specific parameters. These are listed in Table 5.1 along with
references where applicable. The matrix phase parabolic coefficients, kν,m are chosen
by setting the second derivative of the phase energy ∂2fν,m/∂ρ

2
ν,m equal to the ideal

solution’s model [150] second derivative at ρν,m = ρ∗ν,m. This way, small deviations from
the equilibrium values result in accurate energy, while ensuring that rounding errors
are easily manageable by the computer code. The bubble phase coefficient values are
assumed to be equal to the matrix phase parabolic coefficients.

The athermal diffusion coefficient, Dc, is chosen such that in a simulation of the
volume of a collision cascade, Vc, the defects could diffuse to near-equilibrium within the
time of a collision cascade, tc.

There are a few other parameters which must be assigned or assumed. First, the
temperature is chosen to be 1200 K for all simulations. The interface width is likewise
assigned to be 20 nm except for one simulation which will be specified. The fission rate
is set to 10−8 nm−3s−1 and ξ is a uniform random noise function which varies between
0.5 and 1.5.
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Name Value Units Ref.
a0 0.25 nm [199]
Dc 1012 nm2s−1 –
D0,i 1013 nm2s−1 [156]
D0,v 8.33×109 nm2s−1 Chapter 3
EBi 2 eV [156]
EBv 3.608 eV Chapter 3
ki,b 3.6×1021 eV nm−3 –
ki,m 3.6×1021 eV nm−3 –
kv,b 26.8 eV nm−3 –
kv,m 26.8 eV nm−3 –
Nc 2 – –
Nd 5 – [133]
Q 2.77 eV [160]
tc 10−11 s [133]
Va 0.04092 nm3 [159]
Vc 268 nm3 [133]
wGB 106 – Chapter 3
wS 109 – Chapter 3
Z 250 – [199]
ρ∗i,b 0 nm−3 –
ρBi,m 2.566×10−28 nm−3 [171]
ρGBi,m 2.282×10−3 nm−3 [171] Chapter 4
ρ∗v,b 24.438 nm−3 Chapter 4
ρBv,m 0.02282 nm−3 Chapter 4
ρGBv,m 2.444 nm−3 Chapter 4
σGB 19.7 eV/nm2 [157]
σS 9.86 eV/nm2 [158]

Table 5.1. Constant parameters used in the IED model to represent in-reactor UO2 with units
and references.

5.3 Model Verification

We begin with a set of 1D simulations to show that the model is working correctly.
We want to examine the steady state behavior of vacancy and interstitial point defects.
Adding defect generation should increase the point defect densities, and adding the defect
annihilation term should allow them to reach a semi-steady state (true steady state is
not likely because of the noise term, ξ). Adding the collision cascade mixing should
cause additional diffusion among the point defects and decrease the overall density by
increasing the recombination rate.

The simulations use a 1 µm 1D domain with 500 elements. One grain takes up the
right half of the domain while a void takes up the left half. The simulations run until the
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interface is stable. Except where otherwise specified the simulations use the parameters
given in Sec. 5.2.3 except for the interface width, which is increased to 100 nm to give a
highly accurate interface profile.

The first simulation is a baseline sintering simulation with a fission rate of 0. The
second simulation uses the sintering rate from Sec. 5.2.3. The third simulation increases
the fission rate by a factor of 100 to exaggerate the effects of IED. The fourth and fifth
simulations use the increased fission rate. The fourth simulation removes the defect
generation and annihilation terms to isolate the effects of collision cascade mixing, and
the fifth simulation removes the athermal diffusion term to isolate the effects of defect
generation.

The results of this study are shown in Fig. 5.2. Order parameter profiles are shown
along with the vacancy and interstitial point defect densities. The first simulation is
shown in blue in all graphs for comparison to the effects of IED.

Adding defect generation and annihilation increases the defect density; which most
easily seen in the behavior of ρi. Adding collision cascade mixing not only decreases the
maximum point defect density, but also causes the chemical potentials to become more
diffuse. The effect of this is actually to slightly narrow the order parameter interfaces as
they adjust to match the profile of the switching function hm (see Eq. (5.15)). Collision
cascade mixing has the larger effect on vacancies, but point defect generation has more
of an effect on interstitials.

These results show that the model is behaving as expected and that our IED terms
are able to affect the microstructure at steady state. Next we need to run simulations
testing the kinetic effects of IED on pore evacuation.

5.4 IED Simulations

5.4.1 Relative strengths of defect density and collision cascade mixing mech-
anisms

This set of simulations is designed to examine the individual effects of point defect
generation and collision cascade mixing on the pore evacuation rate. The domain is
shown in Fig. 5.3 and consists of a 2D rectangle with a circular pore 100 nm in diameter
separated from an external void. The domain is 450 nm by 100 nm with 90×20 elements.
Only half of the pore is defined to make use of the plane of symmetry. The external void
takes up the last 200 nm of the domain, and the center of the pore is 150 nm away from
the surface interface.

Four simulations are used. First is a baseline sintering simulation without radiation
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Figure 5.2. Results of 1D IED study. Each figure compares a baseline sintering simulation
(ḟ = 0) with an IED simulation. Each row plots from left to right: The order parameter values,
the vacancy defect density on a log-scale, and the interstitial defect density. (A) Simulation using
the parameters from Sec. 5.2.3 and an interface width of ` = 100 nm. (B) Simulation which
increased the fission rate by a factor of 100. (C) Simulation which increased the fission rate by
a factor of 100, but without any point defect generation or annihilation. (D) Simulation which
increased the fission rate by a factor of 100, but without any athermal diffusion from collision
cascade mixing.

effects. The second simulation includes IED effects, but with the fission rate increased by
a factor of 100, similar to Sec. 5.3, to exaggerate the effects of radiation. The last two
cases keep the exaggerated fission rate, but remove the effects of point defect generation
and collision cascade mixing, respectively. This set of simulations lets us examine the
relative strength of increased point defect density and of collision cascade mixing.
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100 nm

Figure 5.3. Example initial condition used in set of 2D simulations designed to compare the
relative strengths of point defect changes and collision cascade mixing.

The results of this set of simulations are shown in Fig. 5.4. The point defect generation
and annihilation case almost perfectly overlaps the baseline sintered case. Likewise, the
collision cascade mixing case almost perfectly matches the IED case with both mechanisms.
This suggests that collision cascade mixing is increasing the self-diffusion rate much more
than the increased point defect concentration. Therefore, collision cascade mixing is the
dominant effect.
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Figure 5.4. Results of 2D simulations separating the effects of point defect generation and
collision cascade mixing. Collision cascade mixing accounts for almost all of the effect from IED.

This may help explain the apparent contradiction between Freshley et al. [10] and
Bai et al. [133]. Freshley et al. found that small-grained systems are more affected by
IED, but Bai et al. found that grain boundaries reduce the accumulation of point defects.
If the point defect densities are not a significant driver of IED, then lowering the defect
densities will not decrease the pore evacuation rate.

5.4.2 Intragranular Pores

This set of simulations examines the evacuation rate of intragranular pores. One quarter
of a spherical pore is surrounded by a 100 nm thick spherical grain. Four pore sizes are
used with sizes of 100, 200, 400, and 800 nm. The 3D simulation domain varies to adapt
to the size of the pore, with a 40 nm buffer region between the edge of the grain and the
edge of the domain. Elements are 5 nm cubes. An example domain is shown in Fig. 5.5.
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100 nm

Figure 5.5. Example initial condition used for 3D simulations to examine the effects of intra-
granular pore size. This is the 200 nm pore case. There are also 100, 400, and 800 nm cases. In
each case the grain radius is 100 nm larger than the pore radius.

Each pore size listed above is used in two simulations; one baseline sintering simulation
and one with IED effects. The pore size evolution is shown in Fig. 5.6, normalized by
taking the difference between the initial pore size and the measured pore size. IED is
clearly increasing the pore evacuation rate in all cases.
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Figure 5.6. Results of evacuation simulations using intragranular pores. The pore size is
normalized by taking the difference between the initial pore size and the measured pore size.
Smaller pores evacuate faster than large pores.

To quantify the correlation between pore size and the relative effect of IED, we
measure the average slope of each line from Fig. 5.6, and then take the ratio of the IED
slope with the baseline sintered slope to calculate an IED multiplier. The values of this
multiplier are plotted against the original pore size in Fig. 5.7. This IED multiplier
is the same whether measuring the diameter change or the volume change of the pore.
This figure shows that the effect of IED on the evacuation rate decreases as the pore
size increases, possibly as an exponential-decay function. This finding is consistent with
experiments and IED theory and further verifies that our IED model is capturing the
correct physics. However, most pores are not intragranular [11]. It is worth replicating
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Figure 5.7. Ratio of the evacuation rates for IED and sintered simulations. When subjected to
collision cascade damage, the 100 nm pore evacuates nearly 10 times faster. The 800 nm pore
evacuates at a rate about two times faster.

this study on GB pores to see if the behavior is the same or if GBs affect the IED kinetics.

5.4.3 Grain Boundary Pores

The setup for this set of simulations is similar to Sec. 5.4.2, except that two grains are
used with a GB down the center of the domain. The pore size is measured along the GB
plane. A sample initial condition is shown in Fig. 5.8.

100 nm

Figure 5.8. Initial condition used for 3D simulations to examine the effects of grain boundary
pores size. The pore size was measured along the width of the grain boundary. This is the 200
nm case.

The results of this simulation are shown in Fig. 5.9. During the simulation, the GB
would decrease in thickness as the pores became lenticular. In the 400 and 800 nm pore
simulations, this went so far as to force the grains to split apart, making the results
unusable. Therefore, Fig. 5.9 only includes the 100 and 200 nm pore sizes. Unlike Fig. 5.6,
the pore size is not normalized, so the size of the pore is represented by where the lines
cross the y-axis.

Unlike the intragranular pores, there is no significant difference between the sintered
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Figure 5.9. Results of evacuation simulations using grain boundary pores. There is no significant
difference between sintered and IED simulations.

case and the IED case. Both pores close completely within a matter of hours. This
suggests that GB pores are not as affected by IED as intragranular pores. The kinetics
of the sintering model show why. Thermal diffusion is 10,000 times faster on GBs than
through the bulk; while the largest IED multiplier was 8.9. Thus, on GBs, the kinetic
effects of IED are being overwhelmed by the thermal GB kinetics.

There are some important limitations that should be considered with this result.
First, the GB system represented here is not accurate to real microstructures. Both bulk
and GB diffusion will occur faster in these test cases than in real UO2 because of the
small sizes of the pores and the short distance between the pore and the external void.
The length of the GB that can be simulated is limited by the computational cost of
the domain. However, a longer GB will be examined in Sec. 5.4.4. Also note that this
simulation uses a single temperature. If the temperature lowers further, sintering kinetics
may slow to the point that GB pores are affected by IED kinetics. Finally, intragranular
pores are more likely to be of the small size associated with IED to begin with [6]. The
energy associated with forming a pore is lower on GBs than in the bulk, so GB pores grow
larger faster [18]. This GB effect on IED may have never been noticed before because
the GB kinetics are primarily affecting pores that are too large to be affected by IED to
begin with.

5.4.4 Sink Distance

We now examine the effect of grain size on IED. The average grain size of doped fuel can
be many times larger than undoped UO2 [36, 180], and therefore knowing the impact of
grain size is critical to understand densification in doped fuel. We developed a stable
microstructure with a GB passing close to a pore before connecting with an external
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void. This way, the GB acts as fast diffusion path to the external void. A 100 nm pore is
positioned 800 nm away from the void. Perpendicular to the surface is a GB that runs
past the pore. Symmetry is used to keep the GB stable so that it does not migrate. This
results in two pores and the microstructure shown in Fig. 5.10. The domain is 1,250 nm
× 150 nm × the distance necessary to facilitate the requisite GB to pore distance. Once
again the element are 5 nm cubes. The distance between the GB and the pore is set
to one of five options: 0 nm, 50 nm, 100 nm, 200 nm, and 400 nm. The 0 nm case has
the pore placed on the GB. The 100 nm case is shown as an example in Fig. 5.10. The
behavior for each distance was simulated with and without radiation, making a total of
ten simulations.

100 nm

Figure 5.10. Initial condition used to examine the effect of sink distance on the evacuation rate
of pores. In this case the distance between the pore and the GB is 100 nm.

The 0 nm GB distance case is used to compare the effects of the GB distance to the
sink against the 100 nm pore case from Fig. 5.9. In both simulations, a 100 nm GB pore
is allowed to evacuate. In one case the distance from the pore to the sink is 100 nm,
in the other case the distance is 800 nm. The comparison is not perfect since one is a
curved surface and the other is a flat surface, but the primary factor should still be the
distance between the pore and the sink. Both cases are simulated with and without IED
effects. The result of these simulations are shown in Fig. 5.11. Increasing the pore to
sink distance decreased the pore evacuation rate, but the IED effect is still negligible.

The non-GB pore results are shown in Fig. 5.12. Note the different time scales in
Figs. 5.11 and 5.12. The GB pore still evacuates significantly faster than the intragranular
pores. All of the IED cases have faster pore evacuation than the sintered cases. However,
for both sintering and IED, the 100 nm, 200 nm, and 400 nm cases overlap completely
such that the distance to the GB has no effect beyond 50 nm.

There are two possible explanations for this result. One is that the GB distance
does not affect the pore evacuation rate except when the pore is very close to the GB.
The other explanation is that the external void is a much stronger sink, and its effects
are overpowering the effects of the GB despite being much farther away. To test the
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Figure 5.11. Comparison of 100 nm GB pores with different distances between the pore and
the sink. One set of simulations has a GB to void distance of 100 nm, while in the other set the
distance is 800 nm. The IED effect is again negligible. However, the effect of increasing the GB
to void distance significantly slows down the evacuation rate.
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Figure 5.12. Results of varying the distance between intragranular pores and grain boundaries.
Adding IED effects and being very close to the grain boundary both increased the evacuation
rate. However, beyond 50 nm the distance had no effect.

second possibility, we run additional simulations using the geometry from Sec. 5.4.1, but
varying the distance from the pore to the void to match those used above. The results
are not shown, but the behavior was very similar to Fig. 5.12, suggesting that the first
explanation is the correct one. However, while it is reasonable to suppose that there is
a distance t which pores are able to interact with GBs, in a phase field simulation this
distance is determined by the interface thickness, not the atomistic diffusion properties.
As such, these results should not be used to determine the pore and GB interaction
distance, because it is likely they are an effect of the phase field properties rather than
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the material properties.
This result appears to contradict the findings of Freshley et al. [10]. However, a

correlation between the grain size distribution and the pore size distribution could explain
both effects. Kingery and François [41] found such a correlation when they examined the
effects of pore sweeping by grain boundaries. As GBs migrate, they pick up intragranular
pores and carry them along, causing pores to combine into ever-larger GB pores. If this
is the case, then grain size indirectly influences the IED effect by increasing the average
pore size and the GB pore fraction.

5.4.5 Neighboring Pore Interactions

Current models assume that pores within the same grain do not interact with one
another [11,142]. However, it is possible that one pore would act as a sink for the other,
affecting their evacuation rates. The results of the previous simulation showed that the
distance between the pore and a GB sink does not affect the evacuation rate, which
increases confidence in this assumption. However, it is still possible that a nearby pore
could bridge the gap between a pore and a GB. The final set of IED simulations is used
to check if this affects the overall pore evacuation rate.

The simulation setup is demonstrated in Fig. 5.13. Three simulations are used: one
with a 100 nm pore positioned 50 nm away from the surface, one with the pore positioned
200 nm away from the surface, and a third with both pores present so that the distance
between them is 50 nm. Placing one pore directly in the diffusion path of the other pore
and setting the distance between them to 50 nm should maximize the strength of any
interaction.

100 nm

Figure 5.13. Initial condition used to examine pore-pore interactions. This case has both pores
present, but the other cases include only one pore or the other.

The simulation results are shown in Fig. 5.14. The pore farther from the surface
evacuates faster when the closer pore is also present, but the closer pore evacuates slower.
We averaged the results for the individual cases and the combined case, and found that
the overall effect is to reduce the average pore evacuation rate by 5.8%. Considering the
relatively small effect even among this idealized geometry, the assumption that pores do
not interact is likely justifiable.
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Figure 5.14. Results of two-pore IED interaction simulations. Having both pores causes the
farther pore to evacuate faster and the closer pore to evacuate slower.

5.5 Conclusions and Future Work

We have proposed a mechanistic microstructural model to predict irradiation-enhanced
densification in nuclear fuels. Once the model is validated, it should be able to provide
physically reasonable predictions of non-standard fuel structures (such as large-grained
doped-UO2) without needing to be fit to experimental data. We verified that the model
is capturing the effects of IED by examining the interactions of the two mechanisms that
were accounted for in the model: increased point defect densities and collision cascade
mixing. Both effects are behaving as expected. We were also able to capture accelerated
evacuation of small pores, which is a well-established feature of IED.

We used a series of simulations to examine some physical mechanisms of IED. Our
results indicate that collision cascade mixing plays a larger role than the generation
of point defects in the bulk. We found that GB pores are not affected by IED at the
simulated temperature because thermal GB kinetics are already accelerated enough to
overpower the effect. Additionally, it appears that grain size does not have a direct effect
on IED. Rather, we suggest that larger-grained microstructures may be less affected
because they have fewer small intragranular pores than small-grained microstructures.
Therefore, large-grained UO2 pellets manufactured via doped sintering may reduce the
effects of IED, but this would be due to a reduction in small porosity not the large grain
size. Finally, we found that the effects of pore-pore interactions are small, such that the
assumption made in existing models that pores do not interact is probably valid.

None of these results are, by themselves, conclusive. First of all, the model does not
capture direct pore damage by collision cascades, so the effect of that mechanism is not
being considered. Additionally, too few simulations are used here to give an accurate
quantification of any of these effects.
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Future work should first focus on further development of the model to capture pore
damage. Then the focus should be to give a more complete quantification of the relation
between pore size, temperature, fission rate, and the pore evacuation rate via sensitivity
analysis. Once this is done, the model can be used in conjunction with experimental data
to develop a mechanistic macroscale IED model.
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Chapter 6 |
Conclusions and Future Work

6.1 Summary and Contributions

This work details the development of the grand potential sintering model and its ap-
plication to three types of UO2 sintering. It improves upon previous models through a
greater reliance on the four thermodynamic and kinetic driving forces of sintering and
less reliance on fitting parameters. It’s formulation also decouples the interface width
from the interface energy, allowing for lower computational costs without affecting the
thermodynamics.

In Chapter 3 the model is developed and applied to standard thermal sintering. The
model is verified by adjusting the model parameters that relate to the sintering driving
forces and by showing that the model predictions change in a realistic manner. By
comparing to analytical models it is shown that the grand potential sintering model is
giving reasonable behavior compared to sintering theory. The model is also compared to
experimental data [8]. It over-predicts the sintering rate, likely caused by uncertainty in
the material properties used in the model and the small size of the simulation. These
results suggest that the model accurately captures sintering physics, but that more data
are needed to accurately represent material properties.

Chapter 4 applies the model to the study of doped-UO2. The vacancy concentrations
are adjusted based on atomistic simulations of undoped, Cr-doped, and Mn-doped UO2.
Then, the relative behavior of these dopants is tested in terms of both the sintering rate
and the grain growth rate. In small-scale test simulations, the relative effect of dopants
on both the sintering rate and grain growth rate are consistent with experiments [36,180].
However, in a large 100-particle simulation, the relative grain growth rates does not
match experiments. Further study shows that this is likely caused by the temperature
profile of the simulation, which does not match the isothermal annealing used to measure

104



grain growth in experiments. These results predict that Mn-doped UO2 will enhance the
microstructural properties of UO2 even more than Cr-doped UO2 and may be a viable
near-term deployable accident-tolerant fuel.

In Chapter 5, additional terms are added to capture two of the three major drivers of
irradiation-enhanced densification (IED). The adjusted model is verified by analyzing the
pseudo-steady state behavior of 1D simulations to verify that the vacancy and interstitial
defect concentrations behave as expected. It is also verified that the multiplier effect of
IED is greater on small pores, as is expected based on experimental data [1](Chapter 2).
The model is then used to study IED pore and grain boundary interactions using several
small-scale test simulations. Results show that small, intragranular pores are affected
by IED, while grain boundary pores see no change in behavior. It is also shown that
grain size does not affect IED directly, but likely affects it indirectly by reducing the
number of small intragranular pores. Simulations also show that the interactions between
neighboring pores are unlikely to affect the overall densification rate. These results
should simplify future macroscale IED model development for fuel performance codes by
eliminating point defect concentration and grain size from the controlling variables.

6.2 Suggestions for Future Work

The results presented in this work are neither finished nor conclusive. Model validation
has not been completed, in part because of poor experimental data. Therefore, addi-
tional experiments should be performed to more accurately measure the diffusivity of
UO2. Model validation may then proceed for UO2 as well as other sintered materials.
Experiments are also necessary to validate the conclusion that Mn-doped UO2 results in
larger grains and improves fuel performance over undoped or Cr-doped UO2.

Additional simulations are necessary to better quantify the relationships between pore
size, grain boundaries, temperature, and IED. Once these relationships are quantified, and
their findings supported by experiments, they can be used to develop a new mechanistic
fuel performance model for IED that is better equipped to predict densification behavior
of new fuel or reactor concepts than the existing empirical models.
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Appendix A|
Initial Condition Generation
Code

This is the necessary MATLAB scripts to generate the initial condition described in
Sec. 4.6. It was written in MATLAB R2017a. Save the files to the MATLAB environment
and run input_3D.m.

A.1 input_3D.m
%%

% *INPUT SCRIPT FOR INITIAL CONDITION GENERATION*

% BOILER PLATE

% 3 dimensional

% 100 particles

% constant particle size distribution

% Box free energy function

clear

close all

%%

% *USER INPUTS*

% PROBLEM SETUP

N = 100; % number of particles to simulate

dim = 3; % number of dimensions

b_lower = 0 * ones(1, dim); % lower bounds in (x, y, z) directions

b_upper = [3700, 3700, 14000]; % upper bounds in (x, y, z) directions

v_size = [10, 10, 400, 1000]; % corner positions of figure
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% SOLVING PARAMETERS

ovrlp = 200 * ones(1, N); % weighting to penalize particle overlap

d = 60; % distance particles travel every step

n_ic = 1000; % number of retries to make initial particle

% position non-overlapping

n_steps = 800; % maximum number of time steps to take

n_it = 3; % max number of steps to take to lower energy

% each time step

n_moves = 10; % number of tries to move particle before

% skipping it

min_radius = 100;

% INPUT FUNCTIONS

% Function inputs

h_max = 50; % maximum height of free energy function

% Energy and energy gradient functions

Energy = @(p, n) boxE(n, p, b_upper, b_lower, h_max, ovrlp(n));

grad_Energy = @(p, n) grad_boxE(n, p, b_upper, b_lower, h_max, ovrlp(n));

% Particle size distribution function

part_dist = @(x) 350 * ones(size(x));

%part_dist = @(x) 400 + 1000 * sort(x, ’descend’);

% Energy reducer function

E_red = @(p, n, n_it, Dx) pusher_box(p, n, n_it, Dx, b_upper, b_lower, h_max, ovrlp(n));

% OUTPUT PARAMETERS

file_name = ’3D_doped3.txt’; % text file name

movie = true; % output a movie file?

movie_file =’3D_doped3.avi’; % movie file name

plot_E = false; % plot the energy function (only in 2D)

%%

% *RUN INPUT SCRIPT*

%Plot the energy function

if plot_E == true

n_pts = 201;

eee(1).r = 0;

x_E = linspace(b_lower(1), b_upper(1), n_pts);

y_E = linspace(b_lower(2), b_upper(2), n_pts);

E_E = zeros(length(x_E), length(y_E));

for i = 1:n_pts
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for j = 1:n_pts

eee(1).x = [x_E(i), y_E(j)];

E_E(j,i) = Energy(eee, 1);

end

end

end

Driver

A.2 Driver.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script builds a series of 3D contacting spherical %

% particles. It builds on the work of Bruce Berry of the %

% University of Arkansas. This file must be run from an %

% input file which gives a list of paramters to control the %

% simulation. %

% %

% Sphere coordinates (x, y, z) and radii are output to a %

% .txt file where they can be read in by MOOSE %

% %

% Coded by Ian Greenquist %

% Penn State University %

% Department of Mechanical and Nuclear Engineering %

% Last updated on 02/01/2018 %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

% *INSERT DEFAULT VALUES TO INPUT VARIABLES*

if exist(’n_moves’, ’var’) == 0

n_moves = 4;

end

if exist(’n_it’, ’var’) == 0

n_it = 3;

end

if exist(’min_radius’, ’var’) == 0

min_radius = 0;

end

if exist(’dim’, ’var’) == 0

dim = 2;
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end

if exist(’movie’, ’var’) == 0

movie = false;

end

if exist(’n_ic’, ’var’) == 0

n_ic = N;

end

if exist(’v_size’, ’var’) == 0

v_size = [10, 10, 650, 600];

end

%%

% *INITIALIZE PARTICLES*

n = 1;

it = 0;

r_def = false;

x_rnd = rand(N, 1);

r_list = part_dist(x_rnd);

rmin_frac = sum(r_list<=min_radius) / N;

disp([’Minimum radius fraction = ’, num2str(rmin_frac)])

while n <= N

% Define particle radius

if r_def == false %has the particle radius already been defined?

p(n).r = r_list(n); %particle radius distribution

if p(n).r < min_radius

p(n).r = min_radius;

end

r_def = true;

p(n).moves = n_moves; %Defines how mobile the particle is

end

cont = true;

% Define position

for i = 1: dim

p(n).x(i) = (b_upper(i) - b_lower(i) -...

2 * p(n).r) * rand + b_lower(i) + p(n).r;

end

% check if position overlaps

for i = 1: n-1

if it >= n_ic
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error([’Can not find space for ’,...

num2str(N), ’ particles in domain.’])

end

r = norm(p(n).x - p(i).x);

if r < (p(n).r + p(i).r)

it = it + 1;

cont = false;

break

end

end

% Continue to next particle

if cont == true

n = n + 1; %move to the next particle

r_def = false;

end

end %while n <= N

%%

% *INITIAL ENERGY CALCULATION*

clear r_def cont it r_def n_ic

% Calculate Initial Energy

for n = 1: N

p(n).E = Energy(p, n);

end

t = 0;

if plot_E == true

plotfunction(p, b_lower, b_upper, v_size, x_E, y_E, E_E)

else

plotfunction(p, b_lower, b_upper, v_size)

end

if movie == true

frame(1) = getframe;

end

%%

% *ADJUST POSITIONS TO REDUCE ENERGY*

% Time steps

for t = 1: n_steps

E_new = 0;

moves_max = 0;

% Move particles
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for n = 1: N

if p(n).moves > 0 %only move the particles that are still mobile

x_last = p(n).x;

E_last = p(n).E;

stp = false; %stop trying to reduce the particle’s energy?

it = 0; %number of iterations

while stp == false

it = it + 1;

gradE = grad_Energy(p, n);

Dx = d * gradE / norm(gradE);

p(n).x = p(n).x - Dx;%move the particle to minimize energy

p(n).E = Energy(p, n);

if p(n).E < E_last %the energy has been reduced

stp = true; %stop moving it

p(n).moves = n_moves;%reset the number of moves

elseif it >= n_it %the energy could not be reduced

stp = true; %reset to its original position

p(n).E = E_last;

p(n).x = x_last;

p(n).moves = p(n).moves - 1;%take away a move

else

%moving the particle increased the energy, try to reduce it

p = E_red(p, n, n_it, Dx);

end

end %while stp == false

end %if p(n).moves > 0

if p(n).moves > moves_max

moves_max = p(n).moves;

end

end

if plot_E == true

plotfunction(p, b_lower, b_upper, v_size, x_E, y_E, E_E)

else

plotfunction(p, b_lower, b_upper, v_size)

end

if movie == true

frame(t+1) = getframe;

end

if moves_max <= 0

%none of the particles are mobile so end the simulation

break

end

end %for t = 1: n_steps
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%%

% *SAVE TO FILE

A = zeros(N, 3);

R = zeros(2, 3);

if dim == 1

for n = 1:N

A(n, 1) = p(n).x(1);

end

elseif dim == 2

for n = 1:N

A(n,1) = p(n).x(1);

A(n,2) = p(n).x(2);

end

else

for n = 1:N

A(n,1) = p(n).x(1);

A(n,2) = p(n).x(2);

A(n,3) = p(n).x(3);

end

end

R(1,:) = min(A);

R(2,:) = max(A);

fileID = fopen(file_name, ’w’);

fprintf(fileID, ’%8s %12s %12s %8s\n’, ’x’, ’y’, ’z’, ’r’);

for n = 1:N

fprintf(fileID, ’%12.6f %12.6f %12.6f %8.4f\n’,...

A(n,1), A(n,2), A(n,3), p(n).r);

end

%%

% *MAKE MOVIE

if movie == true

mov = VideoWriter(movie_file);

mov.FrameRate = 5;

open(mov);

for n = 1:t+1

writeVideo(mov, frame(n).cdata);

end

close(mov);

end
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A.3 boxE.m
function [ E ] = boxE( n, p, b_upper, b_lower, E_max, E_ovr )

%BOXE It’s like particle-in-a-box, but with more particles and fewer waves.

% INPUTS:

% n = The current particle number

% p = All particle information

% b_upper = Upper bounds on domain

% b_lower = Lower bounds on domain

% E_max = Maximum Energy reached in the corners of the domain

% E_ovr = Overlap energy coefficient

% OUTPUTS:

% E = particle n’s energy

%Constants

dim = length(b_upper);

N = length(p);

%Function Energy

FE = p(n).x(dim) / b_upper(dim) * E_max;

%Box Energy

BE = 0;

for i = 1:dim

if p(n).x(i) - p(n).r < b_lower(i)

d = 1.0 + b_lower(i) + p(n).r - p(n).x(i);

BE = BE + E_ovr * d;

elseif p(n).x(i) + p(n).r > b_upper(i)

d = 1.0 + p(n).x(i) + p(n).r - b_upper(i);

BE = BE + E_ovr * d;

end

end

%Overlap Energy

% Determine Overlap Energy

OE = 0;

for m = 1:N

if m ~= n

r = norm(p(n).x - p(m).x);

d = p(n).r + p(m).r;
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if r < d

OE = OE + E_ovr * (1 + d - r);

end

end

end

E = FE + BE + OE;

end

A.4 grad_boxE.m
function [ gradE ] = grad_boxE( n, p, b_upper, b_lower, E_max, E_ovr )

%GRAD_BOXE Pseudogradient of boxE energy function

dim = length(b_upper);

N = length(p);

gradFE = zeros(size(b_upper));

gradBE = gradFE;

gradOE = gradFE;

gradFE(dim) = E_max / b_upper(dim);

for i = 1:dim

if p(n).x(i) - p(n).r < b_lower(i)

gradBE(i) = -E_ovr;

elseif p(n).x(i) + p(n).r > b_upper(i)

gradBE(i) = E_ovr;

end

end

for m = 1:N

if m ~= n

r = norm(p(n).x - p(m).x);

if r < p(n).r + p(m).r

gradOE = gradOE + (p(m).x - p(n).x) / r;

end

end

end

gradE = gradFE + gradBE + gradOE;

end
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A.5 pusher_box.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script attempts to allow %

% particles to push off eachother. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function p_new = pusher_box(p, n, n_it, Dx, b_upper, b_lower, E_max, w_o)

%disp([’Called function pusher, n = ’, num2str(n)])

p_new = p;

N = length(p);

i = 0;

stp = false;

m = 0;

while stp == false

i = i + 1;

if i ~= n

D_r = p(n).r + p(i).r;

D_x = norm(p(n).x - p(i).x);

if D_x < D_r

stp = true;

m = i;

end

end

if i == N

stp = true;

end

end

if m ~= 0

p_new(m).x = p(m).x - Dx;

p_new(n).E = boxE(n, p, b_upper, b_lower, E_max, w_o);

p_new(m).E = boxE(m, p, b_upper, b_lower, E_max, w_o);

DE = p_new(n).E + p_new(m).E - p(n).E - p(m).E;

if DE > 0 && n_it > 1

p_new = pusher_box(p_new, m, n_it - 1, Dx, b_upper,...

b_lower, E_max, w_o);

DE = p_new(n).E + p_new(m).E - p(n).E - p(m).E;

end

if DE > 0

p_new = p;
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end

end

end

A.6 plotfunction.m
%%

% PlotFunction: This script plots the current distribution of circles or

% spheres from Driver.m. Rewritten on 9/15/17 by Ian Greenquist

%%

function plotfunction(p, b_lower, b_upper, v_size, x_E, y_E, E_matrix)

% User parameters

res = 31; %resolution to use for circles and spheres

pause_time = 0.02; %time to pause between frames in s

set(gcf, ’units’, ’points’, ’position’, v_size)

% Information from array

n_part = length(p); %number of particles

dim = length(p(1).x); %dimensions of system

% The nature of the plot changes depending on the dimension

if dim == 1

theta = linspace(0, 2*pi, res);

r_max = 0;

for i = 1:n_part

% check that lengths are uniform

if length(p(i).r) ~= 1

error([’Particle number ’, num2str(i),...

’ must be a one-dimensional value.’])

end

if length(p(i).x) ~= 1

error([’Particle number ’, num2str(),...

’ is not one-dimensional.’])

end

% get maximum radius

if p(i).r > r_max

r_max = p(i).r;

end

% Convert to polar coordinates

x = p(i).x + p(i).r * cos(theta);
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y = p(i).r * sin(theta);

% Plot

plot(x, y);

hold on

end

axis([b_lower, b_upper, -1.1*r_max, 1.1*r_max])

elseif dim == 2

if exist(’x_E’, ’var’)

contourf(x_E, y_E, E_matrix, 50, ’edgecolor’, ’none’)

colorbar

hold on

end

theta = linspace(0, 2*pi, res);

for i = 1:n_part

% check that lengths are uniform

if length(p(i).r) ~= 1

error([’Particle number ’, num2str(i), ...

’ must be a one-dimensional value.’])

end

if length(p(i).x) ~= 2

error([’Particle number ’, num2str(), ...

’ is not two-dimensional.’])

end

% Convert to polar coordinates

x = p(i).x(1) + p(i).r * cos(theta);

y = p(i).x(2) + p(i).r * sin(theta);

if exist(’x_E’, ’var’)

plot(x, y, ’w’, ’linewidth’, 2)

else

plot(x, y, ’k’, ’linewidth’, 2)

end

hold on

end

axis([b_lower(1), b_upper(1), b_lower(2), b_upper(2)])

axis equal

% set(gca, ’fontsize’, 14)

elseif dim == 3

for i = 1:n_part

% check that lengths are uniform

if length(p(i).r) ~= 1

error([’Particle number ’, num2str(i), ...
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’ must be a one-dimensional value.’])

end

if length(p(i).x) ~= 3

error([’Particle number ’, num2str(),...

’ is not three-dimensional.’])

end

% generate sphere

[x, y, z] = sphere(res);

x = p(i).r * x + p(i).x(1);

y = p(i).r * y + p(i).x(2);

z = p(i).r * z + p(i).x(3);

surfl(x, y, z)

shading flat

colormap(’bone’);

hold on

end

axis manual

axis equal

axis([b_lower(1), b_upper(1), b_lower(2), b_upper(2),...

b_lower(3), b_upper(3)])

else

warning(’The system cannot be plotted with the current dimensions.’);

end

hold off

pause(pause_time)

end
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Appendix B|
Monte Carlo Density
Measurement Code

This is an example of the code used to measure sintered density using Monte Carlo integration.

%% Boiler Plate

clear all

close all

%% Inputs

dim = 3;

path = ’path/to/csv/files/’;

time_files = {’postprocessor_file_1.csv’, ’postprocessor_file_2.csv’};

tcol = 1;

grain_files = {’vectorpostprocessor_base_file_1_’,...

’vectorpostprocessor_base_file_2_’};

lgd_txt = {’name_1’, ’name_2’};

file_last = [999; 999]; %last vectorpostprocessor file to search for

varcol = 1; %column number of variable in vectorpostprocessors

Vcol = 2; %column number of volume in vectorpostprocessors

xyzcol = [4, 5, 6]; %column numbers of centroid coordinates in

% vectorpostprocessors

pt_density = 1e-6; %MC point density

lineopts = {’-.b’, ’-b’}; %line styles for plot

%% Setup

if dim == 2

f_r = @(V) sqrt(V ./ pi);

elseif dim == 3

f_r = @(V) (3 * V ./ 4 ./ pi) .^ (1/3);

end
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figure(1)

hold on

%% Calculate Densities

for sim = 1 : length(time_files)

%for sim = 4 : 4

% Time

tfile = importdata([path, time_files{sim}]);

if isstruct(tfile)

results(sim).t = tfile.data(:, tcol);

elseif isa(tfile, ’double’)

results(sim).t = tfile(:, tcol);

end

nt = length(results(sim).t);

% Density

i = 0;

rho = zeros(nt, 1);

for fnum = 0 : file_last(sim)

% Import data

filename = generatefilename([path, grain_files{sim}], fnum);

if exist(filename, ’file’) == 2

i = i + 1;

grainfile = importdata(filename);

var = grainfile.data(:, varcol);

V = grainfile.data(:, Vcol);

x = grainfile.data(:, xyzcol);

V = V(var >= 0);

x = x(var >= 0, :);

r = f_r(V);

% Number of MC points

Vtot = 1;

for j = 1 : dim

Vtot = Vtot * (max(x(:, j)) - min(x(:, j)));

end

n_mc = uint32(Vtot * pt_density);

% Calculate density

results(sim).rho(i) = mchulldensity(x, r, n_mc);

if results(sim).rho(i) > 1.0

results(sim).rho(i) = 1.0;

end

end

end
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% Plot results

if results(sim).rho(end) == 0

results(sim).t(end) = [];

results(sim).rho(end) = [];

end

imin = find(results(sim).rho <= min(results(sim).rho * 1.05));

plot(results(sim).t(imin(1):end) / 60,...

results(sim).rho(imin(1):end) * 100, lineopts{sim}, ’linewidth’, 3)

end

m_fit = [2.136e-4, 4.066e-4, 3.251e-4];

b_fit = [-1.371, -3.278, -2.497];

t_fit_end = [1.1212e4, 1.212e4, 1.212e4];

%% Finalize Plot

grid on

xlabel (’Time (min)’)

ylabel(’Relative Density (%)’)

lgd = legend(lgd_txt);

set(gca, ’fontsize’, 15)

set(lgd, ’location’, ’best’)

set(gcf, ’units’, ’inches’, ’position’, [1, 1, 6, 4])

xlim([0, 200])

ylim([0, 100])
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