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Abstract

In-situ monitoring of the powder bed fusion additive manufacturing (PBFAM) process is a rapidly
expanding area of interest because it offers insight into process physics and iallyotelotver

cost alternative to current pestiild nondestructive inspectioklltimately, sensor data may be

used as feedback for a re¢mhe fault remediation systerHowever, it is unclear whalkefects look

like in the sensor datnd multiple modaligs cannot be used together because they are in arbitrary
frames of referencdhe goal of this thesis is to present a frameworlat@omaticallyregistering

in-situ sensor datéo postbuild inspection datalhis will enable defects found in the pdmstild
inspection to be mapped to the sensor data to serve as a ground truth for developing automatic
defectrecognition (ADR)algorithms.

In this work, high resolution images and multispectral point sensor data collected during the build
are registered to aptbuild computed tomography (CT). These sensing modalities can be thought
of as 2D raster data, 2D point cloud data, and 3D raster data respectively. A unique optimization
approach for registering each modatitya common frame of referenisepresentedlhe process

is automatedo that large datasets may be generated for use in deveiopireADR algorithms.

Voids that are clearly visible in the CT can be mapped into th&ursensing modalities



Contents

LISt Of FIQUIES......eiiiiiiiiiiiii ettt emme et e e e e e e e e e e e s s s s smnne s s s e ssnnnnnnnnnneee N
IS A ) = o] =S P UOUOSSPPRRRRRRR 1
LISt OF SYMDIOIS. ...t s s e e e e e e e e e e e Vil
Chapter 1 INTrOTUCTION..........uviiiiii i rm e e e e e 1
I 0] o= g ] = =1 0 1 T=7 5 ) P PUPPRRR 1
1.2 REIAEA WOTK ...ttt e e e e e e e e e e e e enees s e e e e e e e eeeeeeeeees 1
I X 11 1 1 =SSP 2
Chapter 2 BaCKGIOUNG. .........oiiiiiiiii e ree e e e 3
2.1 NORINEAr €8T SQUAIES.......ooi it e e e eeees bbb r e e e e e e e e e e e e s emmee e 3
2.2 Signed diStanCe fUNCLIOMS. . ......ooiiiiiiiiieei e ee e enenees 4
Chapter 3 Data RegISIratioN............ooiiiiiiiiiiieereie e renrre e e smmee e 6
3.1 High ReBIULION IMAGES......cccieiiiieeeeeeee et e e e e e e e e e e amaea s 6
3.1.1 Camera design CONSIAEIAtIONS............coeiiiiicc e e e e e e e e e e e e e e e aeeeaeeas 6
3.3.2 Projective GEOMELIY OF 2D......coiiiiiiiiiiiiiiee et e e e 8
3.1.3 IMAGE CONSIIUCHION.......cci i i i e e e e e e e e e e e e e e e e aeeaaaaeeeeeaeeeassaassaassennnnnne 10
3.1.4 Parameter OPtIMIZAtIONL.........uuuuiiiiiiiiieiieeeeee e e e e e e e arerreeeees 11

3.2 Multispectral POINT SENSOIS........uuiiiiiiiiiiiiii et 13
3.2.1 Polynomial TranSformation............coeoiiiiiiiiieeie e e e 13
3.2.2DAt8 PrEPIOCESSING ... .eeeeiiiiitttitteeeaaattt et e e e e e ettt e e e e e e e e e et e e e e s bbb e e e e e e e e asbnne e e e e e e e annreees 14
3.2.3 Parameter OPtMIZAtIONL.........uuuuiiiiiiiiieiieeeiee e e e e e e e e s aeeaaeeees 15

3.3 PostBuild Computed TOmMOGraphy.........ccoooiiiiiiiiiiieeee e 16
3.3.1 Projective GEOMELIY OF BD........uuuiiiiiiiiiiiiiiiiiieeieer e e e e e e e e e e e e e e e e s e e annraaees 16

B TRC T2 o1 A O (o 18 o I e = Vo 1o ) 1P 17
3.3.3 Parameter OPLtimMIZatiQml.........ccccciiuiiriiiiiiiiiiiie e e e e e e e e e e aaeeeeeee e e e s e e eassessaasaaannnanennee 18
Chapter 4 RESUILS ...t e e e e e e e e e e e e e e e e aeneees 20
4.1 EXperimental SEIUR........cooiiiiiii e e enen 20
4.2 PostBuild Computed TOmMOGraphy.........couuuuiiiiiiiiiiiiiee e eeeanes 22
4.3 High ReSOIULION IMAQJES......cciiiiiiiii et eemr e e e e et e e e s aeenes 23
4.3 Multispectral POINt SENSOLS......cciiiiiiie ittt e et emme et e e e e ae e e aeees 25
Chapter 5 CONCIUSION. ......uuiiiiiiiiiie oo e e e 28
Appendix A Registered CT Point ClOUdS..........ccoooviiiiiiiieeeecceie e eeeee e 29
Appendix B Registered Multispectral Point Clouds...........ccooooiiiiiiicciiii e 32
RETEIENCES. ... e e e e e e e e e e eeee e s e e e e e e e e e e e e e e e e eeeananas 35



List of Figures

Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:

Signed distae function from biNaryaster...........ccccceveiiiiiiiiccc e 5
Depth of field WItht Jilt ..............ooiiiiiee e e 8
Depth of field WIth LIt .......ccooerieee e 8
Projective distortion introded by norparallel image plane...........ccccceeevieeiiiennees 9

3D Systems ProX320 lhdhamber and integrated camera.................ocoooeeeee. 20
Cylinder design used for teSTNG. ........ccuuurriiiieiiereriii e 21
BUIID TAYOUL. ...t 21
Rgistered CT point cloud for cylinder O001...........cooovviiiiiiiincceeieeeeeee s 22
Registered images withdascan vectors overlaid................cccccvvvieeeei 24
Voids found in CT mapped t0 IMAGES........uuuuruririiiiiieeerieiiieeeeeieeeeeee e e e e e e aeeeees 25

Figure 4.7: Registered multispedtpdint cloud for cylinder 0001..............ccoovvviiiiiicceeeeennn. 26
Figure 4.8: Voids found in CT mapped to multiSpectral.............c.ueevviiieemiiiiiiiiiiiiieieeeeeenn 27
Figure A.1: Registered CT point cloud for cylin@&04...............ooooiiiiiiiiiien e 29
Figure A.2: Registered CT point cloud for cylinder 0QQ5..............coooiiimmre e 29
Figure A.3: Registered CT point cloud for cylinder 0Q14.............ooovvviiieemeeeeeeiieeeeeiiiiiinns 30
Figure A.4: Registered CT point cloud for cylinder 0Q1A.............ooovvviiimeeeieeieeeeeii, 30
Figure A.5: Registered CT point cloud for cylinder 0QL8...............oovvviiemeeeeeiieeeeeeiiies 30
Figure A.6: Registered CT point cloud for cylinder 0Q19...............oovviriiemeeeeiiiieeeeiii, 31
Figure A.7: Registered CT point cloud for cylinder 0Q22................oovvviieemeeeeieiieeeiiiiiiinnn, 31
Figure A.8: Registered CT point cloud for cylinder 0Q23...............oovviiiimeeeeeeeeeeeeiiiees 31
Figure A.9: Registered multispectral point cloud for cylinder QQQ4.................coovreeeennnnn.. 32
Figure A.10: Registered multispedtpmint cloud for cylinder 0005................oovvvvviviieemnnne.. 32
Figure A.11: Registered multispectral point cloud for cylinder 0014...................vvveeeeeee. 33
Figure A.12: Registered multispectral point cloud for cylinder Q015..................vvvieeeeee.. 33
Figure A.13: Registered multispectral point cloud for cylinder 0018..................c.cvveeeeeee.. 33
Figure A.14: Registered multispectral point cloud for cylinder Q019..............coooviiiiceenen. 34
Figure A.15: Registered multispeait point cloud for cylinder 0022..............ccccooeeeiiiicaceenen. 34
Figure A.16: Registered multispectral point cloud for cylinder Q023.............ccccoeviieaeeenen. 34



List of Tables

Table 3.1: Fields for each multispectral POINt............ooooiiiiiirc e 13
Table 4.1: CT point cloud registration ErfOl...........couiiiiiiiiiiicce e 23
Table 4.2: Multispectral point cloud registration error............ooooeiiiiemme e 26

Vi



List of Symbols

I Vector of parameters being optimized
1 LevenbergMarquardt update to
- Residual

LevenbergMarquardt damping factor
‘ Vector of mixture means

Vector of mixture variances
Mixture weight

Signed distance function

Vector of Euler angles

Set that definemodel

Vector of polynomial coefficients for thecoordinate
Vector of polynomial coefficients for thecoordinate
Depth of farthest object in focus
Depth of nearest object in focus
Sum of squaredesiduals

Focal length

Polynomial transformation

Vector of homography components
Homography

Hessian of with respect td

Hessian ofOwith respect td
GaussNewton approximation 6D
Hyperfocal distance

Filtered build image

Synthetic image

Jacobian matrix of first derivatives
Jacobian of with respect to

Lens magnification

Rotation matrix

Rotation about the-axis

Rotation about the-gxis

Rotation about the-axis

Translation vector

Transformation matrix

CT volume

Binary mask of the CT

J—

EEL0< << 555000085500 0ee3 £ ®*

vii



Chapter 1

Introduction

1.1 Problem Statement

This work aims to fuse multiple data modalities derived from different sensors to support process
inspection for powder bed fusion additive manufacturing (PBFAM). In the PBFAM process, a
high-poweredlaser fuses metal paler on a build plate to form a single layer of the build. The
build plate is lowered, new powder is spread across the build plate, and the process is repeated for
each new layer forming a 3D pafthere is growing interest in usirsgnsordo observe the tild

as it takes place, bthie data from each is in a different frame of referembes, in order to make

use of all sensing modalities simultaneously a registration technique is required.

The movement of the laser is known and stored as a set ofs/eeltad the laser scan vectors.

All data modalities are registered to the laser scan vectors and theveiftieimplicitly aligned

to each other. Registration algorithms are developed for high resolution images, multispectral point
sensors, and pebuild computed tomography (CT). These sensing modalities can be thought of
as a 2D raster, point cloud, and 3D raster respectively and thus a different registration is required
for each.

The use of podbuild CT is important for developing future processpiection algorithms. One
defect ofinterestin the additive manufacturing community is interior voids. These voids are clearly
visible in the CTscansbput it is not obvious what they look like in other sensing modalities. Once
registered, voids that ardsible in the posbuild CT can be mapped into different sensing
modalities to serve as ground truth data for autorvaiit detection algorithms.

1.2 Related Work

Process qualificatioimasremaired a constant challenges dscontinuities such as lack @fsion,
porosity, and cracks may arise during the PBFAM procEss.authors of1], [2], and[3] have
shown that these discontinuities correlate to negative mecharmpérties.Therefore,it is
desirable to detethese discontinuities as they arise during the build prassgin-situ sensors.

A common approach to process monitoring is melt pool senshmgy authors ofd] showed that

an infrared camera can be used to monitor the thermal behavior of the molten metal. Melt pool
sensors have been incorporated into feedback control systefsdnd[6]. However,analysis

of melt pool sensing systems is complicated by the emissivity of the meli7pool



An alternative to melt pool sensors is high resolution elemtaal imageryThe authors 0f3]
presented a layerwise monitoring system using a CCD camera which was able to capture process
irregularities. The authors {d] utilized a tiltshift lens to capture images of the build surface at a
resoltion of 32.3microns per pixel. They were able to correct for the perspective distortion by
using calibration markers fused on the build surfa®é

Another promising sensing modality ipt@wal emission spectroscof@ES) The author of11]

showed that spectral emissions vary with processing parameters like laser power or scan speed.
This work was expanded upon][it2] to show that lack of fusion defects could béeded using

the lineto-continuum ratio about certain spectral bands.

Despite the work being done onsitu monitoring, posbuild analysis remains the main method

of certifying parts. The authors @3] give an overview ohondestructivepostbuild analysis
techniques for PBFAM parts, includidgchimedes methods, metallographic imaging, and CT.
Postbuild CT is the preferred analysis technique because it enables the quantification of the size
and shape of interior voids.

1.3 Outline

Chapter 2 presents the necessary background for developing the results in Ché&aten 3.
registration is formulated as a nbnear least squares optimization, and so Chapter 2 begins by
introducing the general solutioext, an overview fosigned distance functions is presented
which are a useful model representation that is used for registeoinghe multispectral point
sensors and pesuild CT scan.

Chapter 3 discusses the specific techniquesegistering fgh resolution images, multispectral
point sensa; and posbuild CT to the laser scan vectorBor each modality, the necessary
background information, prerocessing steps, and specific opsation are presented.

Chapter 4gives abrief overview of the experimental setapd summarizes the resuliBhe
registration results for pe$iuild CT, high resolution images, and multispectral point sensors are
presented and voids from the CT are magpexboth the images and multispectral data.

Chapter 5 offers some conclusions and directions for future ikppgendix A contains additional
figures for the CT registration and Appendix B contains additional figures for the multispectral
registration.



Chapter 2

Background

This chapter will discuss the relevant background material needed to develop the results in Chapter
3. Section 2.1 discusses how to solve-hoear least squares problems using the Levenberg
Marquardt algorithm. This is important becauseoélthe registrations are posed as 4tioear
optimizations. Section 2.2 discusses signed distance functions and how they can be generated from
the laser scan vectors. Signed distance functions arerusiegl registration of the multispectral

point sensorand postuild CT scans.

2.1 Nonlinear least squares

Data modalities are registered using {lioear least squares optimizatiorhe cost function and
parameters being optimized differ for each modality, but when posed adiagwarieast squares
optimization, they are solved in the same manner. This section discusses the general solution to
nortlinear least squares problems using the Levenbngjuardt algorithnj14].

In nonlinear least squares problentse objectivas to minimize a sum of squared residudlst
I N a bethe parameter vector beiogtimizedand- | N a be the residual vector. Then the
nortlinear least squares problem is formulated as

i ETOr =-1 -7 (2.1

The solution td2.1) is obtained by setting the derivative©ff to zero. Let the Jacobian matrix
of first derivatives of T be givenby Q3 Qf~N a .Then
Q0

a Q U-1 T (2.2

Equation(2.2) is a nonlinear system of equationsh at can be sol vedletusi ng
O vOoNgA be the Gausdlewton approximation of the true Hessian matrix of second

order derivaties ofOf . Then given an initial set of parametersand damping coefficient
the update is given by

0 _AEAXC Q
(2.3



Updates are only kept if they improve #reorandthe damping coefficient is varied heuristically
for each ieration. After each updatéthe error improves is decreased and if the error gets worse
_is increased. For small values ofLevenbergMarquardt tends towards the Gaddswton
algorithm and for large values of LevenbergMarquardt tends towards the method of steepest
descent. This is ideal because Gahssvton converges faster near the minimum and steepest
descents more robustar from the minimum.

2.2 Signeddistance functiors

For certain data modalities, it is desirable to minimize the average distance from a point cloud to
the laser scan vectotdowever, calculating this distance for each point at every iteration is slow
and intractable for large point cloudad models.To avoid these problems, the distance to the
model can be precomputed at every point in spa@bes representation is known assigned
distance function (SDFY.he laser scan vectors can be transformed into an SDF representation by
rasterizing them into a binary image and then using the Euclidean distance transform.

SDFsare continuous functions thdefinethe distance to theearest surface of a given model.
Thus, the SDF evaluated at the point cloud points can be directly used as a residualif@anon
least squaresThis section will formally define SDFgresentuseful properties of SDFs, and

discusshow to generate SDFsom the laser scan vectors.

Letwy wdg © a represent th&DFthat mapsan ndimensional pointo a distancéo themodel
mO a . The SDF takes on negative values for points located insidgafl positive values for
points located outside of Now lett mN a be the boundary ofy Then

‘ A Gfifm o~ m
W w Aclim o m (2.4)

whereA ¢fl m is the Euclidean distance from pointo the nearest surfaten

SDFs defined in this manner have several properties that are useful for gradient descent
optimization:

1. If mhas a piecewise smooth boundary, the is differentiablealmosteverywhere.
2. The gradient ofy w satisfies the eikonal equatighy ws p for all w
3. The gradient ofy w is always perpendicular to the nearest surfagg of

The first property is important because the Jacobian mateguation(2.2) is obtained by taking

the derivative of the residual, so the residual must be differentitidesecond two properties are
useful because ¢hgradient vector for a given point will be in the direction of the nearest surface
andwith proper sign



In this work,SDFs are utilized in the registration of the masltiectral point data and the pdstild

CT. Each modality is registered to the las@an vectors, so as an intermediate step the scan vectors
are converted to an SDFhe method usetereis to first convert the laser scan vectors into a
binary image and then use the Euclidean distance trangiéijnto obtainthe SDF of the binary
image. The accuracy of this method depends on the chosen pixel/voxel resélytivel/voxel

is defined as an element of the uniform grid of values that is a discretization of the continuous
function in 2D or 3D respectivel\Higher resolution will improve the accuracy at the cost of
additionalmemory.

First, consider the 2D single layer casée laser scan vectors are composed of two parts: the
exterior contour and the interior hatching used to fillecbatour. A binary rastesiobtained by
overlaying theexteriorcontours on a grid and filling in eaglixel that is contained within the
polygors formed by the contosr Edge cases are determined by the percentage of the pixel
contained within the polygon.

The Euclidean distand¢eansform computes the distance to the neai@sizero pixel for all pixels

in the binary image. Th8DFcan be obtained by subtracting the distance transform of the binary
image from the distandeansformof its complementwhich yields negative distaa inside the

mask and positive distance outside the mask 'O be the binary image anl 'O be the
Euclidean distance transforaf the image Then the signed distance functiepw is given by

Ww OO0 0O0.Figure2.1shows an example of a set@fternalcontour vectors, the
corresponding binary raster, and distance function obtained from the Euclidean distance transform.

Now instead of a single layer, consider every layer of the build for the 3Ditc@seot sufficient

to simply stack the 2D SDFs from before, because this would not account for the distance in the
z-direction.Instead, the binary images of each singietaare stacked into a 3D binary volume
where the voxel size in thedirection is determined by the physical layer thickness of the PBFAM
processThen the Euclidean distance transform is used in the same naariyvedoreo get thefull

3D SDF.

oL

Figure2.1: Signed distance function from binary raster. Explicitly defined polygon (left), binary raster (mi
and SDF obtained from the Euclidean distance transform (right).

5

o MR 3

A



Chapter 3

Data Registration

This dhapter will discuss the registration techniques for each data modality. Section 3.1 will
discuss thénigh-resolutionimages, section 3.2 will discuss the multispectral point sensors, and
section 3.3 will discuss the pdstiild CT. Each section will firstidcuss the transformation that is
being optimizedNext, the relevant pr@rocessing steps are outlingsection 3.1 contains an
additional discussion on the camera integration and design considerations., Fihally
optimization is presented.

3.1High Resolution Images

A high-resolutioncamera is used to capture images of the build as each layer is fused. Due to the
location of the camera, the image plane of the camera is not parallel to the bigldlpis
introduces a projective distortion because the build plate is planar, wdndie modeled by a
planar homographylypically, a homography would be calculatedm feature correspondences

in the images with features the laser scan vectors. However, there are nededihed edges or
corners inthe imagery to choosé@ better solubn is to directly use the imagery to optimize the
parameters of the homography.

3.1.1 Camera design considerations

It is desirable to keep the camera outside of the harsh processing environment of the system, but
this introduces some minimum standofétdince from the build plate. Additionally, the viewing

angle is offnormal because the laser optics occupy the center of the chamber directly above the
build plate. With these imposed constraints, thd goto image the build surfacd the highest
possble resolution.

Resolution is defined as the physical size of a single pixel, which at the center of the image is equal
to the size of the detector on the camera sensor divided by the magnificatit@bé éte focal

length of the camera and be the dstance to the object. Then the magnification can be
approximated using the Gaussian lens equti6h

0 — (3.1)

Because the viewing angle is -oférmal, the depthfdield of the camera must also be taken into
consideration. The depth of field is defined by the nearest and furthest object distance given by

6



O andO respectively that appears sharp in the image. An object that is outside of the depth
of focuswill appear blurry in the imagéO and’O are given in terms of the hyperfocal
distancéO

, 0 "0
© 'O 1 o
32)
, 0 0
0 i 5

whereQ s the aperture diameter afds the physical size of the detector &ddis given by

0Q .

" 3.3
@) 5 Q (3.3)

Depth of field is maximized whe® is small andO is large. Analysis of agptions(3.2)

and(3.3) gives three ways to improve the depth of field: decreasepeeure diameter, decrease

the focal length, or increase the detector size. Decreasing the aperture means less light enters the
camera, which means the build surface will need to be brighter. Decreasing the focal length will
decrease the magnification giv by equatior{3.1). Increasing the detector size is not possible
without getting a different camera. A better solutiorincreasing the depth of field is to simply

tilt the plane of focus, which can be achieved using-aHift lens.

The build area is planar, so the entire surface can ideally be aligned with the plane of sharp focus
However, this proceds complicated because adjusting the focus of the lens changes the plane of
focus and vice versdahereforean iterative process of adjusting the focus and then the tilt of the
lens is used until the image is in focus.

Figure3.1 shows a representative depth of field for the camera and lens with atiltTdfe lens
center is placed in its approximate location in the build chamber, the optical @xi®f§-normal

of the build plate, and the aperture is set(f@ ¢ The colored line at the bottom of the build
chamber is the 275mm build pla@reen means the build plate is in focus and red means it is not
in focus.

Figure3.2 shows the same scenarioFagure3.1, but the image plane has been tilted at an angle

| with respect to the lens planechuthat the plane of focus coincides with the build plate. The
Scheimpflug principlg17] states that the image plane, lens plane, and plane of focus intersect at
a line, which is denoted byin Figure3.2 (shown as a point because the line is perpendicular to

the image) The depth of field is now a wedge @@d and’O intersect at the hinge line.

Because the build surfaceaglane, the depth of field no longer matters so the aperture diameter
may be set to a larger value. This increases the amount of light entering the camera which improves
the signal to noise ratio of the image.



far

Figure3.1: Depth of field withrt' tilt (i.e. conventional lens).

/ Dnear

/f
~ Dfar

Figure3.2: Depth of field with tilf . The plane of focus coincides with the build plate.

3.32 Projective Geometry of 2D

Projective distortion arises when a plane is imaged by a perspective ciigera3.3 shows the
geometry of a camera looking at a planar sigfdote that points on a line in the planar surface
remain on a line in the image plane, but parallel lines on the surface do not necessarily remain
parallel in the image. The mapping of the image plane to the planar surface is represented by a
projectivetransformation.

Because the build plate is planar, the transformation frorhitheresolutionimages to the laser
scan vectors is described by 2D projective geométrg. 2D projective geometry is defined by a



Figure3.3: Projective distortion introduced by nqarallel image plane.

homography matrix and applied to homogerseoaprdinatesGiven a set of corresponding points,
a simple method of estimating the homography is presented.

Homogeneous coordinates enable the-lnogar projective transformation to be represented as a
linear set of equations. Lef* 51 denote the homogeneous coordinatéof 6 0 . Then the
homogeneous projection afis defined as

of VO OU O
i (3.4)
w DOIGE o v

A projective transformation is defined as the linear transformatiogiofi by the norsingular
homographyON g such that

0 0 Q
O Q 0 0
0 0 0 (3.5)

Given a set of 1 pointcorrespondenced ® afgethe homography that maps poidisto wae
can be approximatelly an overdetermined set of linear equatidres Q  p, which is valid
because the horgeneous coordinate scale invariante. a scale factor does not chargandv
in equation(3.4). Then the followingset of equationkolds

T T T O0& LUu&® VLUl&e 6lae olee, 0088(36)
OLxeLLxLLae T T T 00® ULbO 06x
where' Q Q@ Q@ ™ Q Q Q Q@ "Q . The matrices for each point are
stacked into the full set of equation) wwhered N a andwn 5 . Such an equation

can then be solved using the standard {eqsares solutiol? 0 0 0

9



3.13 Image Construction

There are no welllefined edges or corners in the build imagery to use for point correspondences,
so a direct image alignment approach is used instéeddirect alignment is done using a filtered

build image anda synthetic imagealerived from the lasercan vectors. These images are
constructed such that they have high intensities where there is fused material and low intensities
where there is unfused powder. The images must look as similar as possibletiseyticah be
aligned by minimizing the diffence

The build images are filtered using a local standard deviation filter. Aatleviation filter is
chosenbecause the variance of the fused metal is higher than that of the unfused powder.
Furthermore, the intensity of the unfused powder is ndyrdatributedand hagonstant variange

which can be seen irigure3.4. The histogram has mormalshapewhich is important because
when the image is filtered with gasdard deviation filter the powder will have a constant value
thatcan be subtracted outhe fused material is more specular which leads to bright reflections
and high variance.

The laser scan vectors are not an image, so a synthetic image must be constructed.heurther, t
synthetic imageand filtered build image should look as similar as possible. To construct the
synthetic imaggethe laser scan vectors diest rasterized into a binary imagesing the same
method discussed in section 2Though the binary image could bsed directly, this would not
account for thdilter artifactsinduced by the standard deviation filtBlext, the binary 1s in the
rasterized image are replaced with white noise and the new image is filtered using the same filter
as the build image$Vhite noise must be added so that the filter response igerorFigure3.5

shows examples of the originauild imageand filtered build image, noisy binary image, and

filt ered exemplar.

The local standard deviation filter has some window size associated whtt inust be large
enough to obtain a good approximation of the powder variance. However, the size of the window
also determines how much the edge of the partasedi. This dilation is implicitly accounted for

Figure3.4: Histogram of unfused powder. Image of unfused powder (left) and corresponding histogram (|

10



(b)

(d)

Figure 3.5: Image construction for registration. Unfiltered build image falijd image filtered by standar
deviation filter(b), synthetichinary image with added noise (synthetic image filtered by standard deviation fil
(d). The filtered imagéb) andsynthetic imagéd) are used for direct image alignment.

because the same filter is applied to both images. For the images in this work, a window size of 11
was empirically choseto maximize the filter response within the part whilst minimizing the edge
effects aused by the window size.

3.14 Parameter Optimization
The direct image alignment is formulated as a-loear least squares optimization where the
difference between the filtered build image and synthetic image is mininilzesl.section

presents the error and update equations for the direct image aligenmdethie construction of the
Jacobian matrix used in the Levenb&tgrquardt algorithm.

11



Let 'O andObe the filtered build image arsynthetic imagelerived from the laser scan vectors
respectivelyAlso, letObe the planar homography that mapgts fromOto "Q The coefficients
of 'O are optimized by minimizing the sum of squared differences beti@andQ Then for
iteration’Q) the optimization with respect 830is given by

Q =

N+

OPOBEBYf O bOTCE of
(3.7)
(o) "0 30

Note that updates are calculated for the laser scan vector coordinates and then the inverse is applied
to the build image coordinates, which is referred to as invesseposition. This improves
performance by enabling the Jacobian to becpraputed, as will be seen later.

Because updates are iteratively computed, an initial homogi@phynust be given. This initial
alignmentmay beobtained by having a user roughignd select point correspondences and then
applying equatior§3.6). Alternatively,a prior calibration can be usédt is available

To minimize the erroiQ , the LevenbergMarquardt algorithm is usedequation(2.2) is
derived by applying the chain rule as follows

[00) 06 O BOTE d  10d ™ OTCE of 2

@0 @ o @ &0 (38)

™ OTCE ® 6 VU pm T MW O 60 (39)
[(0:5@) m mmo O p 0OV 0 '

where6 andu arethe column and row of the exemplarage coordinat The last two terms of
(3.8) form the Jacobiam N 5 of a single coordinate. The full Jacobian matrix s is
obtained by stacking all individldacobiansBecause the inverse composition is usedoes not
depend orilO so it does not change between iterations whielans it can be pr@mputed

A Laplacian pyramid18] is used to account for large differences betweeriilteeed image and

the synthetic imageFor each level in the pyramid, the images are dsampled by a factor of

two. The homography is optimized for each level starting with the lowest resolutiomemd t
successively optimized at each layer starting at the lowest resolution Tderesult of the
previous levels used to initialize the next. This method enables a coarse to fine registration where
thedifferences are refined at each level of the pyda

12



3.2 Multispectral Point Sensors

Two photodiodes monitor the procemsd are sampled in times the laser fuses a layehel
photodiodes are filtered to measure light emissions at two separate wavelengths. The idea is that
when the laser doasot properly fuse the powder, the energy will be diverted somewhere else
which can be measured by some ratio of the emissions.

The approximate position of the laser at each time instance is known; however, there is some non
linear transformatiorthat hasnot been accounted fixetween the position that is read and the
actual position This section will discuss howhe transformation can be modeled using a
polynomial transfornand how to directly optimize its parametasing a signed distance function

Multispectral data is collected for every layer of a build @atbussignals are read for each time
instance Table 3.1 details the properties that are stored for each point. Control signals are
measured directly and there is some propagation delay that must be accounted for.

Table3.1: Fields for each multispectral point

Property Description

Time Time of samplenstance.

Position Laser position on the build plane.
Laser Off/On Laser control signal (binary).
Photodiode 1 Spectral intensity gbhotodiode 1.
Photodiode 2 Spectral intensity of photodiode 2
Power 1 Input control signal for laser powe
Power 2 Measured laser power output.

3.2.1Polynomial Transformation
The position of each poinih the sensor data should correspond to a location on the laser scan
vectors. However, due some measurement error anddel approximations, thosition of each
point hassome unknown nafinear distortion. Becaugtere is nanodel for how the positions
are calculated, the distortion is approximated by a general polynomial transformation.
Letw N A andw N g be the2D position of the-th point. Then the polynomial transformatisn
given by Qohoidn  dee wae where
o oo SRS © ol W W (3.10)

0 is the polynomial ordeand ¢ and & are he polynomiakoefficients that will be optimized.
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A single transformation could be applied to all of the points; however, the polynomial order must
be large to get a good fit and the number of parameters sgeadsaticallywith the polynomial

order. This can be cimenvented by applying the transformation itwa-stagepiecewise fashion.

The first stage applies a global transformation to all points and the second stage applies a separate
transformation locally for each individual part. This reduces the number gpdraeneters and
improves the overall accuracy. The optimization process is the same for each stage, but a smaller
subset of points are used for optimizing the second stage.

3.2.2 Data Preprocessing

The parameters of the polynomial transformation are optimized by aligning the contours of the
multispectral points to the contours of the laser scan vectors. However, the multispectral points do
not differentiate hatching from contours in their propertilserefore, the contours must be
algorithmically extracted in a preprocessing step before they can be used in optimization.
Preprocessing consists of two steps: removing points where the laser is off andnepraictis

on the outer contour.

When the dser is off, points that lie on a hatch should be contained within the external contour.
The propagation delay is then chosen so that all points outside the external contheladeas
off. These points ardnen removed.

Contour points are obtaineding an alpha shagé9], whichcreates a bounding area around a set

of 2D points. The¢ parameters the maximum distance between two points such that the points
are connectedndcan be varied to tighten or loosen the fittard the points. Herg, is chosen to

be thedistance between hatches so tihare are no gaps between the hatches and each part is a
solid shapeOnce an alpha shape is obtained, the perimeter points are extracted and used for
optimization. Figure 3.6 shows a subset of multispectral points for a given part before
preprocessing, afteemoving points where the laser is,a@hd afteextractingthe contour points

using an kpha shape.

Figure 3.6: Multispectral point cloud preprocessing. Raw unprocessed points (left), points where the las
(middle), and extracted contour points (right).
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3.2.3 ParameterOptimization

The coefficients of the polynomial transformation are optimized by minimizing the distance of the
multispectral points to thiasercontours. This distance is efficiently computed using the signed
distance function discussed in Chapter 2sH@ction presents the error and update equations for
the optimization and the construction of the Jacobian matrix used in the Levdfdrepgardt
algorithm.

The points are initiallynot close to the laser scaactors,so they arescaled and translatedch
that the bounding box of the points is aligned with the bounding box of the vadi@gives a
close enough fit to initialize the optimization.

Letwy w be the signed distance function that represents the Euclidean distance to the contours of
thelaser scan vectors. Then for iterati@rthe optimization with respect taband3®is given by

Q i ng W Qoonpd 3 3o
. . . (311)
0 N 30

This optimization cannot be formulated as an inverse composition because the polynomial
transformation is not invertibleéd andc are initialized to the identifQowhod  Fo
) o ‘HQ pht . p 0 i
() N W i~ 3.12
m Qai Q m Qai Q (312

As before, the Levenbeddarquardt algorithm is used to minimize the erftdr . Letn
W W be the 2D position of multispectral poi@@Equation(2.2) is derived by applying the
chain rule as follows

BB0 ﬁ wn 3wn BT - (313
00 Core tarare 1o
B0 B Te o e e g (3.14)

where0 0 0 p 7¢ andthe partial derivatives are given by
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Theexponent&andQare given by the linear mappifgm and®, &8 Q B 0 ¢ .1
0 0 andm Q "QThe last two terms of3.13) form the Jacobiamy ¥ s of a single
coordinate. The full Jacobian matix s is obtained by stacking all individual Jacobians.

3.3 PostBuild Computed Tomography

After a build is corpleted, parts are scanngda CT machine. CT penetrates the interior of the

part and enables embedded defects to be fewtiobut destroying the partt is important to
register the podbuild CT so that these embedded defects can be mapped back imtihnehe
sensing domains and serve as a ground truth for automatic detection algorithm development. This
section will discuss how the pestiild CT is registered to the laser scan vectors

3.3.1 Projective Geometry of 3D

The CT scan is initially in someladtrary frame of reference and must be rotated and translated to
match the laser scan vectors. This transformation is described by the 3D rigid transformation which
is a special case of the 3D projective transformation. This section presents the 3D rigid
transformation and the minimal representation used for optimization.

Similarly to the 2D case, 3D projections can be represented as linear transformations using
homogeneous coordinates. I'gt¥ a1 denote the homogeneous coordinate of the 3D ppint
W @ & .Then the homogeneous projectiom$ defined as

A 0600 0a
(3.16)
n DOME @® @ &

The results developetere utilize a special case of the 3D projective transform: the rigid
transformationA rigid transformation is composed @fotation matriXyN 3 / o andtranslation
vectorovn 4 where"Y(o Yva  sYY ‘®AAY p is the special orthogonal
group Therigid transformatiommatrix “YN q is given by

w Y 0
TP (3.17)
nt ™M
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For optimization, a minimal representation ‘ofis required. The rotation matri%¥ can be
minimally represented by three Euler angle’s a . Here the rotation matrix is given by
Y1 Y1 Y71 where

p T T
Y n AilO  OET
n OBT ANO
ANd mn OEIl
Y ] L1 p T (3.18)
OFElT m ARO

ANO OET n
Y] OET ANO m
Tt Tt 0]

The translation vector is already a minimal representation. Theré¥tgeninimally represented
by six parameter§ N s N A . During optimizationupdates are calculated with respect to
each paameter, but are then composed and accumulated as a full transformation matrix

3.32 Point Cloud Extraction

The parameters of the rigid transformation are optimized by minimizing the distance between the
surface of the part in the CT and the contours of the laser scan veldwaever, the CT is a 3D
raster, so firsthte surface of the part in the CT volumexgracted as a 3D point cloud to be used

for optimization. Because the density of the part is higher than the density of the background, a
mask of the part is obtained by thresholding the CT volume. The surface points of this mask are
then extracted.

The tresholds automatically chosen andll differ depending on the type of material usethe
distribution of intensity valuem the CTcan be modeled by a taadmponent Gaussian mixture
model. The intensity threshold is implicitly defined where the proldap of part intensities is
equal tothe probability of nospart intensities. The probability density functi@w is given by
the weighted sum of two normal distributioh®t %N Tdp be the mixing coefficient and and

» be the mean and standard deviation of each normal. Then

"Qaiwét h, R h, %00 6i] h, 0 %0 ol h (3.19

The parameters of the pdf candstimated using the expectation maxirti@aalgorithm outline
in [20]. Once the parameters are obtained, the<dfresholded to a binary volunas follows
Let wbe the CT volumeThen the binary mask of the past  is given by

6 o P P %0 oon h %0 @ N h,

o~ sy (3.20
T Qai Q
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The surface points are given by part voxeis the masko  that are next to nepart voxels.
These points are collected into a point cloud and used for optimization.

Figure 3.7 showsthe histogram of intensities for a single pafte distribution of intensities is
roughly two Gaussians and the mixture model is a good fit. This method allows a threshold to be
automatically determined regardless of part material.

I ron-part
N part

= = =mixture model pdf| ]

Figure3.7: Histogram of CT intensities and mixture model pdf. A slice taken from the CT (left) and corresp
histogram of intensities (rightfhe mixture model is plotted as a dashed black linetantistogram ithresholded
into two regions: part and negrart.

3.33 Parameter optimization

The parameter®f the rigid transformation are optimized by minimizing the distance of the CT
point cloud to the laser contours. This distance is efficiently computed h&rgigned distance
function discussed in Chapter 2. This section presents the error and update equations for the
optimization and the construction of the Jacobian matrix used in the Levevibeggardt
algorithm.

Let “Ybe the rigid transformation that psmthe CT point cloud to the laser scan vecgiren in
equation(3.17). As discussed isection 3.3.1"Ycan be minimally represented by six parameters

1 Na oy a . Letw & be the signed distance function that represents the distance to the laser
scan vectors. When the CT point cloud is aligned to the scan vectors, the vajue afill be
smallbecause the distance to the scan vectors is.shii@tefore, the regtration is formulated as

a nonlinear least squares optimization where the sum of squared distances is minimized with
respect to an updatei B0 to the rigid transformation

18
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whereQis the iteration numbemote that updates are calculateith respect to the minimal
representation but then accumulated in the full transformation ni#trix

As before, some initldY must be given to initialize the algorithm. When the CT operator exports
the volume, they can choose the orientation of the part. Here, the operator roughly orients the part
to match the orientation of the laser scan vectors in whichtase ‘Gndo may be obtained

by aligning the centroid of the CT surface to the centroid of the laser scan vectors

The LevenbergMarquardt algorithm is used toinimizeQ . Letn) be the ith point in the CT
point cloud and) Y 1 @ () o . Equation(2.2) is derived byapplying the
chain ruleas follows

50 ol E ‘?r‘] ~
‘ ‘ &
& oo wn 3wn & oo (322
" & i O
® O ¥ 3 30 f 11 a W p T T
Q;T F&bp a n o mwop m (323
ﬁ W [ T T T P

The last twoérms 0f(3.22) form the Jacobiaa ¥ 1 of a single point. The full Jacobian matrix
of all termsuN g is obtained by stacking all individual Jacobiaibe Jacobian depends on
the current transformatio’Y , so it must be recomputed at every iteration.
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Chapter 4

Results

This chapter presents the registration results for a single build. Section 4.1 gives an overview of
the experimental setugnd build layout. Next, section 4.2 presents a quantitative anafyie

CT to laser scan vector registration. Sections 4.3 and 4.4 present registration results for the high
resolution images and multispectral point sensors respectively. Voids found in tieijcb €T

are then mapped into these sensing modalities.

4.1 Experimental Setup

For this work all builds were completed on a 3D Systems Prox320 powder bed fusion additive
manufacturing systenT.o collect images, thgystem is outfitted with a Nikon D810 camevih
aPGE Micro NIKKOR 45mm 1/2.8D ED tikshift lens With this setup the build plate is imaged

at a resoluti on o fFigoredd ghowsya crésd sectional yesvrof the bude |
chamber and the mountedmaera.To collect multispectral data, two avalanche photodiodes are
mounted outside the build chambé&wostbuild analysis was completed with a Gi#oenix
v|tome|x m CT scanner.

Nikon D810
Integrated Camera

Location of
Avalanche Photodiodes

Figure4.1: 3D Systems ProX320 build chamber and integrated camera.
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A special cylinder was constructed for testing the registratgorithmsand developing automatic
defect detection algorithmg&igure 4.2 shows the design for one such cylind&rcylinder was
chosen to minimize reflections in the CT caused by sharp edges and cdmezminate
rotational ambiguity, a small tab was added to libdom of the cylinderAdditionally, each
cylinder has a unique numbiliat is printed at the top.

A total oftwenty-threecylinders were printed for the test build. These cylinders were printed under
one of four scenarios: nominal conditions (contnadyjed laser scan direction relative to gas flow,
varied hatckcontour overlap distance, or varied machine parameters (laser power, laser speed,
hatch spacing)rigure4.3 shows the location of each cylinder on the build plate.

Figure4.3: Build layout. The gragylinders are printed under nominal conditions, red with varied scan dire
blue with varied hatclcontour overlap, and green with varied machine parameters.
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400 layers were supposed to be printed, but due to a technical malfunctmanmée stopgd
recording images after layer 72. The build itself was then halted prematurely after layer 172.
Therefore the cylinders are roughly half the height they are supposed fokeccount for this

error in the analysighe laser scan vectors beyond layé? are ignored for registration.

4.2 PostBuild Computed Tomography

For the test build, only the nine nominal cylinders were CT scanned. Each of these cylinders was
registered to the laser scan vectors using the method discusssdiam 3.3Recall that the end

goal is to map voids found in the CT to the other sensing modalitiess, any error in the CT
registration affects the mapping of voids to all sensing modalities, so it is even more important that
this registration is as accurate as possibles sectionpresents the registration of the CT and
discusses the results.

Figure4.4 shows a registered point cloud for cylinder 00He remaining cylinders are shown in

Appendix A The point cloud is colored according to the SD§tatice evaluatedt each point.

Note that the point cloud SDF distances are clustered af@el m. Thi s ireanlitypec au s
theprintedvectors have somen-zero width so the actual part that is printieds a slightly dilated

external contourThis width is not accounted for inghSDF so the optimal SDF distanise

achieved by centering the vectors in the CT surface, which causes the distances of points on the
side of the cylinder to be some number greater than Thr® phenomenon does not occur in the
z-direction, so the SDF sliances at the top of the cylinder are close to zero.

Additional errors may be caused by either gmstd warping or artifacts in the CT scan. Post
build warping introduces some ndinear transformation of the part that cannot be accurately
modeled by a rigid transformatioAdditionally, artifacts may arise in the CT scan when there are
sharp corners and edges which cause the CT to be dilated.

4000
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Figure4.4: Registered CT point cloud for cylinder 0001. SDF isosurface (left), registered point cloud (middl
histogram of point cloud SD¥alues.
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The root mean squared error for each cylinder is reportédhle4.1. The average error wa7

em whi ch dustothelgser witdifReatall that the resolution of the camera is roughly 60

em per pixel. Thi s means t highresoludonichagyes mill pep e d f r
p® pixels from their true position on averagée laser width could be accounted for by dilating

the extenal contours by half the laser widibr eroding the CT mask by half the laser widit)is

is difficult because the exact laser widtlurknown

Table4.1: CT point cloud registration error.

Part Name RMSE( € n
0001- Nominal 103.4210
0004- Nominal 109.1089
0005- Nominal 106.5773
0014- Nominal 109.2762
0015- Nominal 108.1504
0018- Nominal 99.9308
0019- Nominal 95.7102
0022- Nominal 107.4913
0023- Nominal 122.7757

4.3 High Resolution Images

The camera captures an image of the entire build plate so data ieemti-threecylinders is
available. However, since the end goal is to map voids from the CT to the images, the registration
resultsare only presented for the nine nominal cylind&scall that the registration error being
minimized is a difference between imageemdities. This has no physicakaningand the exact

edge in the image cannot be located with a known level of accuracy, so only a qualitative analysis
is presented

Figure4.4 shows images of each of the nominal cylinders fayar 10with the laser scan vectors
overlaid on topThe registration is good if the scan vector contours follow the edge of the part

the images. Most of the cylinders align well; however, cylinders 0004 and 0014 are slightly
misaligned on the bottom edge. This is likely caused by the dark shadow located in this position.
This shadow will stand out in the standard deviation filter the saayethe part would which
causes the skew. Qualitatively, this misalignmebbisnded byour pixels in width and given the

pixel size is around 6am, thismeans the error is bounded 240 um.

Cylinder 0001 illustrates the challenge of the parts noinigawvell defined corners or edges. The
interior of the part looks very similar to the powder aside from a small number of reflections.
Despite this, the direct image alignment approach gives good registration results for this part.

Figure 4.6 shows two examples of voids found in the gosid CT that are mapped into the
images.Patches around void locations in the image domain can now be studied further to see if
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0019

Figure4.5: Registered images with laser scan vectors oveiriaied

there isany distinguishing featurekat can be used for automatic detection algorithhmese
patchesouldalso be used to train a supeed machine learning algorithm. To ensure that a defect
is actually contained within the patch, tlagius of the patch shtd be equal to the largest possible
error. Compounding the CT registration error and image registration error, a patdbenati$tast
340um wide (six pixels}o guarantee that the void will be contained within it.
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() (d)

Figure4.6: Voids found in CT mapped to images. (a) and (b) are cylinder 0001 and (c) and (d) are cylinde

4.3 Multispectral Point Sensors

This section presents the registration results for the multispectral point sésdiscussed in
section 3.2the multispectral data is stored as a point cloud. This work is focused on the registration
of the 2D position of the points, which is indepentof thespectral intensities. Because the points
are aligned to an SDF, the error that is minimized has a physical meEmémgforea quantitative
analysis is presented in addition to the qualitative analysis.

Figure 4.7 shows the registered multispectral points for cylinder 000 remaining eight
nominal cylinders are shown in Appendix Bnly the outer contour is shown, because those are
the points that are used the optimization. Points are coloredcarding to their SDF distance.
The registration accuracy is very good with most of the points falling witpime m of t he
scan vectorand theerror is contained mostly within the tab of the cylinder.
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Figure4.7: Registered multispectral point cloud for cylinder 0001. Point cloud colored according to SDF d
(left) and histogram of SDF distances (right).

Table 4.2 presents the root mean squared error for each of the nominal cylinders. The average
across all cylinders was 5.tlee9eyigtraon emor oftheiC8 i s s
meaning that when voids are mapped into the multispectral domain, the error is almost entirely
due to the CT registration.

Table4.2: Multispectral point cloud registration error.

Part Nane RMSE (
0001- Nominal 4.9066
0004- Nominal 5.2680
0005- Nominal 6.7046
0014- Nominal 5.2806
0015- Nominal 6.2074
0018- Nominal 5.6023
0019- Nominal 5.5841
0022- Nominal 5.4295
0023- Nominal 6.2756

Figure 4.8 shows two examples of voids found in the posiid CT that are mapped into the
multispectral point clouds. The point clouds are colored according to the ratio of the intensities of
themultispectral sensors.
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