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Abstract 

In-situ monitoring of the powder bed fusion additive manufacturing (PBFAM) process is a rapidly 

expanding area of interest because it offers insight into process physics and is potentially a lower 

cost alternative to current post-build nondestructive inspection. Ultimately, sensor data may be 

used as feedback for a real-time fault remediation system. However, it is unclear what defects look 

like in the sensor data and multiple modalities cannot be used together because they are in arbitrary 

frames of reference. The goal of this thesis is to present a framework for automatically registering 

in-situ sensor data to post-build inspection data. This will enable defects found in the post-build 

inspection to be mapped to the sensor data to serve as a ground truth for developing automatic 

defect recognition (ADR) algorithms. 

 

In this work, high resolution images and multispectral point sensor data collected during the build 

are registered to a post-build computed tomography (CT). These sensing modalities can be thought 

of as 2D raster data, 2D point cloud data, and 3D raster data respectively. A unique optimization 

approach for registering each modality to a common frame of reference is presented. The process 

is automated so that large datasets may be generated for use in developing future ADR algorithms. 

Voids that are clearly visible in the CT can be mapped into the in-situ sensing modalities. 
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Introduction 

1.1 Problem Statement 

This work aims to fuse multiple data modalities derived from different sensors to support process 

inspection for powder bed fusion additive manufacturing (PBFAM). In the PBFAM process, a 

high-powered laser fuses metal powder on a build plate to form a single layer of the build. The 

build plate is lowered, new powder is spread across the build plate, and the process is repeated for 

each new layer forming a 3D part. There is growing interest in using sensors to observe the build 

as it takes place, but the data from each is in a different frame of reference. Thus, in order to make 

use of all sensing modalities simultaneously a registration technique is required. 

 

The movement of the laser is known and stored as a set of vectors called the laser scan vectors. 

All data modalities are registered to the laser scan vectors and therefore will be implicitly aligned 

to each other. Registration algorithms are developed for high resolution images, multispectral point 

sensors, and post-build computed tomography (CT). These sensing modalities can be thought of 

as a 2D raster, point cloud, and 3D raster respectively and thus a different registration is required 

for each. 

 

The use of post-build CT is important for developing future process inspection algorithms. One 

defect of interest in the additive manufacturing community is interior voids. These voids are clearly 

visible in the CT scans, but it is not obvious what they look like in other sensing modalities. Once 

registered, voids that are visible in the post-build CT can be mapped into different sensing 

modalities to serve as ground truth data for automatic void detection algorithms. 

 

 

1.2 Related Work 

Process qualification has remained a constant challenge as discontinuities such as lack of fusion, 

porosity, and cracks may arise during the PBFAM process. The authors of [1], [2], and [3] have 

shown that these discontinuities correlate to negative mechanical properties. Therefore, it is 

desirable to detect these discontinuities as they arise during the build process using in-situ sensors. 

 

A common approach to process monitoring is melt pool sensing. The authors of [4] showed that 

an infrared camera can be used to monitor the thermal behavior of the molten metal. Melt pool 

sensors have been incorporated into feedback control systems by [5] and [6]. However, analysis 

of melt pool sensing systems is complicated by the emissivity of the melt pool [7]. 
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An alternative to melt pool sensors is high resolution electro-optical imagery. The authors of [8] 

presented a layerwise monitoring system using a CCD camera which was able to capture process 

irregularities. The authors of [9] utilized a tilt-shift lens to capture images of the build surface at a 

resolution of 32.3 microns per pixel. They were able to correct for the perspective distortion by 

using calibration markers fused on the build surface [10]. 

 

Another promising sensing modality is optical emission spectroscopy (OES). The author of [11] 

showed that spectral emissions vary with processing parameters like laser power or scan speed. 

This work was expanded upon in [12] to show that lack of fusion defects could be detected using 

the line-to-continuum ratio about certain spectral bands. 

 

Despite the work being done on in-situ monitoring, post-build analysis remains the main method 

of certifying parts. The authors of [13] give an overview of non-destructive post-build analysis 

techniques for PBFAM parts, including Archimedes methods, metallographic imaging, and CT. 

Post-build CT is the preferred analysis technique because it enables the quantification of the size 

and shape of interior voids. 

 

 

1.3 Outline 

Chapter 2 presents the necessary background for developing the results in Chapter 3. Each 

registration is formulated as a non-linear least squares optimization, and so Chapter 2 begins by 

introducing the general solution. Next, an overview of signed distance functions is presented, 

which are a useful model representation that is used for registering both the multispectral point 

sensors and post-build CT scan. 

 

Chapter 3 discusses the specific techniques for registering high resolution images, multispectral 

point sensors, and post-build CT to the laser scan vectors. For each modality, the necessary 

background information, pre-processing steps, and specific optimization are presented. 

 

Chapter 4 gives a brief overview of the experimental setup and summarizes the results. The 

registration results for post-build CT, high resolution images, and multispectral point sensors are 

presented and voids from the CT are mapped into both the images and multispectral data. 

 

Chapter 5 offers some conclusions and directions for future work. Appendix A contains additional 

figures for the CT registration and Appendix B contains additional figures for the multispectral 

registration. 
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Background 

This chapter will discuss the relevant background material needed to develop the results in Chapter 

3. Section 2.1 discusses how to solve non-linear least squares problems using the Levenberg-

Marquardt algorithm. This is important because all of the registrations are posed as non-linear 

optimizations. Section 2.2 discusses signed distance functions and how they can be generated from 

the laser scan vectors. Signed distance functions are used in the registration of the multispectral 

point sensors and post-build CT scans. 

 

 

2.1 Non-linear least squares  

Data modalities are registered using non-linear least squares optimization. The cost function and 

parameters being optimized differ for each modality, but when posed as a non-linear least squares 

optimization, they are solved in the same manner. This section discusses the general solution to 

non-linear least squares problems using the Levenberg-Marquardt algorithm [14]. 

 

In non-linear least squares problems, the objective is to minimize a sum of squared residuals. Let 

‍ᶰᴙ  be the parameter vector being optimized and ‐‍ ᶰᴙ  be the residual vector. Then the 

non-linear least squares problem is formulated as 

 

 ÍÉÎὉɼ
ρ

ς
‐‍ ‐‍  (2.1) 

 

The solution to (2.1) is obtained by setting the derivative of Ὁ‍ to zero. Let the Jacobian matrix 

of first derivatives of ‐‍ be given by ὐ Ὠ‐Ὠ‍ϳ ᶰᴙ . Then 

 

 
ὨὉ

Ὠ‍
Ὣ ὐ‐‍ π (2.2) 

 

Equation (2.2) is a non-linear system of equations that can be solved using Newtonôs method. Let 

Ὄ ὐὐᶰᴙ  be the Gauss-Newton approximation of the true Hessian matrix of second 

order derivatives of Ὁ‍. Then given an initial set of parameters ‍  and damping coefficient ‗ 
the update is given by 

 

 

Ὄ ‗ÄÉÁÇὌ ‏ Ὣ 

 

‍ ‍  ‏

(2.3) 
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Updates are only kept if they improve the error and the damping coefficient is varied heuristically 

for each iteration. After each update, if the error improves ‗ is decreased and if the error gets worse 

‗ is increased. For small values of ‗ Levenberg-Marquardt tends towards the Gauss-Newton 

algorithm and for large values of ‗ Levenberg-Marquardt tends towards the method of steepest 

descent. This is ideal because Gauss-Newton converges faster near the minimum and steepest 

descent is more robust far from the minimum. 

 

 

2.2 Signed distance functions 

For certain data modalities, it is desirable to minimize the average distance from a point cloud to 

the laser scan vectors. However, calculating this distance for each point at every iteration is slow 

and intractable for large point clouds and models. To avoid these problems, the distance to the 

model can be precomputed at every point in space. This representation is known as a signed 

distance function (SDF). The laser scan vectors can be transformed into an SDF representation by 

rasterizing them into a binary image and then using the Euclidean distance transform. 

 

SDFs are continuous functions that define the distance to the nearest surface of a given model. 

Thus, the SDF evaluated at the point cloud points can be directly used as a residual for non-linear 

least squares. This section will formally define SDFs, present useful properties of SDFs, and 

discuss how to generate SDFs from the laser scan vectors. 

 

Let ɰὼȡᴙ ᴼᴙ represent the SDF that maps an n-dimensional point to a distance to the model 

ɱṒᴙ . The SDF takes on negative values for points located inside of ɱ and positive values for 

points located outside of ɱ. Now let ‬ɱᶰᴙ  be the boundary of ɱ. Then 

 

 ɰὼ
ÄὼȟЋɱ
Äὼȟ‬ɱ

ὼɴ ɱ
ὼɴ ɱ

 (2.4) 

 

where Äὼȟ‬ɱ is the Euclidean distance from point ὼ to the nearest surface ‬ɱ. 

 

SDFs defined in this manner have several properties that are useful for gradient descent 

optimization: 

 

1. If ɱ has a piecewise smooth boundary, then ɰὼ is differentiable almost everywhere. 

2. The gradient of ɰὼ satisfies the eikonal equation ȿɳɰὼȿ ρ for all ὼ. 

3. The gradient of ɰὼ is always perpendicular to the nearest surface of ɱ. 

 

The first property is important because the Jacobian matrix in equation (2.2) is obtained by taking 

the derivative of the residual, so the residual must be differentiable. The second two properties are 

useful because the gradient vector for a given point will be in the direction of the nearest surface 

and with proper sign. 
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In this work, SDFs are utilized in the registration of the multi-spectral point data and the post-build 

CT. Each modality is registered to the laser scan vectors, so as an intermediate step the scan vectors 

are converted to an SDF. The method used here is to first convert the laser scan vectors into a 

binary image and then use the Euclidean distance transform [15] to obtain the SDF of the binary 

image. The accuracy of this method depends on the chosen pixel/voxel resolution. A pixel/voxel 

is defined as an element of the uniform grid of values that is a discretization of the continuous 

function in 2D or 3D respectively. Higher resolution will improve the accuracy at the cost of 

additional memory. 

 

First, consider the 2D single layer case. The laser scan vectors are composed of two parts: the 

exterior contour and the interior hatching used to fill the contour. A binary raster is obtained by 

overlaying the exterior contours on a grid and filling in each pixel that is contained within the 

polygons formed by the contours. Edge cases are determined by the percentage of the pixel 

contained within the polygon.  

 

The Euclidean distance transform computes the distance to the nearest non-zero pixel for all pixels 

in the binary image. The SDF can be obtained by subtracting the distance transform of the binary 

image from the distance transform of its complement, which yields negative distance inside the 

mask and positive distance outside the mask. Let Ὅ be the binary image and $Ὅ  be the 

Euclidean distance transform of the image. Then the signed distance function ɰὼ is given by 

ɰὼ ὈὍ ὈὍ . Figure 2.1 shows an example of a set of external contour vectors, the 

corresponding binary raster, and distance function obtained from the Euclidean distance transform. 

 

Now instead of a single layer, consider every layer of the build for the 3D case. It is not sufficient 

to simply stack the 2D SDFs from before, because this would not account for the distance in the 

z-direction. Instead, the binary images of each single layer are stacked into a 3D binary volume 

where the voxel size in the z-direction is determined by the physical layer thickness of the PBFAM 

process. Then the Euclidean distance transform is used in the same manner as before to get the full 

3D SDF. 

 

 

 

 

 

 

 

Figure 2.1: Signed distance function from binary raster. Explicitly defined polygon (left), binary raster (middle), 

and SDF obtained from the Euclidean distance transform (right). 
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Data Registration 

This chapter will discuss the registration techniques for each data modality. Section 3.1 will 

discuss the high-resolution images, section 3.2 will discuss the multispectral point sensors, and 

section 3.3 will discuss the post-build CT. Each section will first discuss the transformation that is 

being optimized. Next, the relevant pre-processing steps are outlined. Section 3.1 contains an 

additional discussion on the camera integration and design considerations. Finally, the 

optimization is presented. 

 

 

3.1 High Resolution Images 

A high-resolution camera is used to capture images of the build as each layer is fused. Due to the 

location of the camera, the image plane of the camera is not parallel to the build plate. This 

introduces a projective distortion because the build plate is planar, which can be modeled by a 

planar homography. Typically, a homography would be calculated from feature correspondences 

in the images with features in the laser scan vectors. However, there are no well-defined edges or 

corners in the imagery to choose. A better solution is to directly use the imagery to optimize the 

parameters of the homography. 

 

3.1.1 Camera design considerations 

 

It is desirable to keep the camera outside of the harsh processing environment of the system, but 

this introduces some minimum standoff distance from the build plate. Additionally, the viewing 

angle is off-normal because the laser optics occupy the center of the chamber directly above the 

build plate. With these imposed constraints, the goal is to image the build surface at the highest 

possible resolution. 

 

Resolution is defined as the physical size of a single pixel, which at the center of the image is equal 

to the size of the detector on the camera sensor divided by the magnification. Let Ὢ be the focal 

length of the camera and ί be the distance to the object. Then the magnification can be 

approximated using the Gaussian lens equation [16] 

 

 ὓ
Ὢ

ί Ὢ
 (3.1) 

 

Because the viewing angle is off-normal, the depth of field of the camera must also be taken into 

consideration. The depth of field is defined by the nearest and furthest object distance given by 
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Ὀ  and Ὀ  respectively that appears sharp in the image. An object that is outside of the depth 

of focus will appear blurry in the image. Ὀ  and Ὀ  are given in terms of the hyperfocal 

distance Ὄ  

 

 

Ὀ ί
Ὄ Ὢ

Ὄ ί ςὪ
 

 

Ὀ ί
Ὄ Ὢ

Ὄ ί
 

(3.2) 

 

where Ὀ is the aperture diameter and Ὠ is the physical size of the detector and Ὄ  is given by 

 

 Ὄ
ὈὪ

Ὠ
Ὢ (3.3) 

 

Depth of field is maximized when Ὀ  is small and Ὀ  is large. Analysis of equations (3.2) 

and (3.3) gives three ways to improve the depth of field: decrease the aperture diameter, decrease 

the focal length, or increase the detector size. Decreasing the aperture means less light enters the 

camera, which means the build surface will need to be brighter. Decreasing the focal length will 

decrease the magnification given by equation (3.1). Increasing the detector size is not possible 

without getting a different camera. A better solution to increasing the depth of field is to simply 

til t the plane of focus, which can be achieved using a tilt-shift lens. 

 

The build area is planar, so the entire surface can ideally be aligned with the plane of sharp focus. 

However, this process is complicated because adjusting the focus of the lens changes the plane of 

focus and vice versa. Therefore, an iterative process of adjusting the focus and then the tilt of the 

lens is used until the image is in focus. 

 

Figure 3.1 shows a representative depth of field for the camera and lens with a tilt of πЈ. The lens 

center is placed in its approximate location in the build chamber, the optical axis is σπЈ off-normal 

of the build plate, and the aperture is set to ὪȾσς. The colored line at the bottom of the build 

chamber is the 275mm build plate. Green means the build plate is in focus and red means it is not 

in focus. 

 

Figure 3.2 shows the same scenario as Figure 3.1, but the image plane has been tilted at an angle 

‌ with respect to the lens plane such that the plane of focus coincides with the build plate. The 

Scheimpflug principle [17] states that the image plane, lens plane, and plane of focus intersect at 

a line, which is denoted by Ὓ in Figure 3.2 (shown as a point because the line is perpendicular to 

the image). The depth of field is now a wedge and Ὀ  and Ὀ  intersect at the hinge line ὖ. 

Because the build surface is a plane, the depth of field no longer matters so the aperture diameter 

may be set to a larger value. This increases the amount of light entering the camera which improves 

the signal to noise ratio of the image. 
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3.3.2 Projective Geometry of 2D 

 

Projective distortion arises when a plane is imaged by a perspective camera. Figure 3.3 shows the 

geometry of a camera looking at a planar surface. Note that points on a line in the planar surface 

remain on a line in the image plane, but parallel lines on the surface do not necessarily remain 

parallel in the image. The mapping of the image plane to the planar surface is represented by a 

projective transformation. 

 

Because the build plate is planar, the transformation from the high-resolution images to the laser 

scan vectors is described by 2D projective geometry. The 2D projective geometry is defined by a 

 

Figure 3.1: Depth of field with πЈ tilt (i.e. conventional lens). 

 

 

Figure 3.2: Depth of field with tilt ‌. The plane of focus coincides with the build plate. 
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homography matrix and applied to homogeneous coordinates. Given a set of corresponding points, 

a simple method of estimating the homography is presented. 

 

Homogeneous coordinates enable the non-linear projective transformation to be represented as a 

linear set of equations. Let ὼӶɴᴙ  denote the homogeneous coordinate of ὼ ό ὺ . Then the 

homogeneous projection of ὼӶ is defined as 

 

 

ὼӶ ύό ύὺ ύ  

 

ὼ ÐÒÏÊὼӶ ό ὺ  

(3.4) 

 

A projective transformation is defined as the linear transformation of ὼӶɴᴙ  by the non-singular 

homography Ὄᶰᴙ  such that  

 

 

Ὄ

Ὤ Ὤ Ὤ
Ὤ Ὤ Ὤ
Ὤ Ὤ Ὤ

 

 

ὼӶ ὌὼӶ 

(3.5) 

 

Given a set of ὲ τ point correspondences ὼӶP ὼӶᴂ, the homography that maps points ὼ to ὼᴂ 

can be approximated by an overdetermined set of linear equations. Let Ὤ ρ, which is valid 

because the homogeneous coordinate is scale invariant i.e. a scale factor does not change ό and ὺ 
in equation (3.4). Then the following set of equations holds 

 

 
π π π όύᴂ ὺύᴂ ύύᴂ όὺᴂ όὺᴂ

όύᴂὺύᴂύύᴂ π π π όόᴂ ὺόᴂ
Ὤ

ύὺᴂ

ύόᴂ
 (3.6) 

 

where Ὤ Ὤ Ὤ Ὤ Ὤ Ὤ Ὤ Ὤ Ὤ . The matrices for each point are 

stacked into the full set of equations ὃὬ ὦ where ὃᶰᴙ  and ὦɴ ᴙ . Such an equation 

can then be solved using the standard least-squares solution Ὤ ὃὃ ὃὦ. 

 

Figure 3.3: Projective distortion introduced by non-parallel image plane. 

 



10 

  

3.1.3 Image Construction 

 

There are no well-defined edges or corners in the build imagery to use for point correspondences, 

so a direct image alignment approach is used instead. The direct alignment is done using a filtered 

build image and a synthetic image derived from the laser scan vectors. These images are 

constructed such that they have high intensities where there is fused material and low intensities 

where there is unfused powder. The images must look as similar as possible so that they can be 

aligned by minimizing the difference 

 

The build images are filtered using a local standard deviation filter. A standard deviation filter is 

chosen because the variance of the fused metal is higher than that of the unfused powder. 

Furthermore, the intensity of the unfused powder is normally distributed and has constant variance, 

which can be seen in Figure 3.4. The histogram has a normal shape, which is important because 

when the image is filtered with a standard deviation filter the powder will have a constant value 

that can be subtracted out. The fused material is more specular which leads to bright reflections 

and high variance. 

 

The laser scan vectors are not an image, so a synthetic image must be constructed. Further, the 

synthetic image and filtered build image should look as similar as possible. To construct the 

synthetic image, the laser scan vectors are first rasterized into a binary image using the same 

method discussed in section 2.2. Though the binary image could be used directly, this would not 

account for the filter artifacts induced by the standard deviation filter. Next, the binary 1s in the 

rasterized image are replaced with white noise and the new image is filtered using the same filter 

as the build images. White noise must be added so that the filter response is non-zero. Figure 3.5 

shows examples of the original build image and filtered build image, noisy binary image, and 

filt ered exemplar. 

 

The local standard deviation filter has some window size associated with it that must be large 

enough to obtain a good approximation of the powder variance. However, the size of the window 

also determines how much the edge of the part is dilated. This dilation is implicitly accounted for 

  

Figure 3.4: Histogram of unfused powder. Image of unfused powder (left) and corresponding histogram (right). 
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because the same filter is applied to both images. For the images in this work, a window size of 11 

was empirically chosen to maximize the filter response within the part whilst minimizing the edge 

effects caused by the window size. 

 

3.1.4 Parameter Optimization 

 

The direct image alignment is formulated as a non-linear least squares optimization where the 

difference between the filtered build image and synthetic image is minimized. This section 

presents the error and update equations for the direct image alignment and the construction of the 

Jacobian matrix used in the Levenberg-Marquardt algorithm. 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 3.5: Image construction for registration. Unfiltered build image (a), build image filtered by standard 

deviation filter (b), synthetic binary image with added noise (c), synthetic image filtered by standard deviation filter 

(d). The filtered image (b) and synthetic image (d) are used for direct image alignment. 
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Let Ὅ and Ὅ be the filtered build image and synthetic image derived from the laser scan vectors 

respectively. Also, let Ὄ be the planar homography that maps points from Ὅ to Ὅ. The coefficients 

of Ὄ are optimized by minimizing the sum of squared differences between Ὅ and Ὅ. Then for 

iteration Ὧ, the optimization with respect to ɝὌ is given by 

 

 

Ὡ ÍÉÎ
ρ

ς
ὍÐÒÏÊɝὌὼӶ Ὅ ÐÒÏÊὌ ὼӶ  

 

Ὄ Ὄ ɝὌ  

(3.7) 

 

Note that updates are calculated for the laser scan vector coordinates and then the inverse is applied 

to the build image coordinates, which is referred to as inverse composition. This improves 

performance by enabling the Jacobian to be pre-computed, as will be seen later. 

 

Because updates are iteratively computed, an initial homography Ὄ  must be given. This initial 

alignment may be obtained by having a user roughly hand select point correspondences and then 

applying equation (3.6). Alternatively, a prior calibration can be used if it is available. 

 

To minimize the error Ὡ , the Levenberg-Marquardt algorithm is used. Equation (2.2) is 

derived by applying the chain rule as follows 

 

 
ὨὩ

ὨɝὌ
Ὅὼ Ὅ ÐÒÏÊὌ ὼӶ Ὅɳὼ

ὨÐÒÏÊὌ ὼӶ

ὨɝὌ
 (3.8) 

 

 
ὨÐÒÏÊὌ ὼ

ὨɝὌ

ό ὺ ρ π π π ό όὺ

π π π ό ὺ ρ όὺ ὺ
 (3.9) 

 

where ό and ὺ are the column and row of the exemplar image coordinates. The last two terms of 

(3.8) form the Jacobian ὐᶰᴙ  of a single coordinate. The full Jacobian matrix ὐɴ ᴙ  is 

obtained by stacking all individual Jacobians. Because the inverse composition is used, ὐ does not 

depend on Ὄ  so it does not change between iterations which means it can be pre-computed. 

 

A Laplacian pyramid [18] is used to account for large differences between the filtered image and 

the synthetic image. For each level in the pyramid, the images are down-sampled by a factor of 

two. The homography is optimized for each level starting with the lowest resolution and then 

successively optimized at each layer starting at the lowest resolution layer. The result of the 

previous level is used to initialize the next. This method enables a coarse to fine registration where 

the differences are refined at each level of the pyramid. 
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3.2 Multispectral Point Sensors 

Two photodiodes monitor the process and are sampled in time as the laser fuses a layer. The 

photodiodes are filtered to measure light emissions at two separate wavelengths. The idea is that 

when the laser does not properly fuse the powder, the energy will be diverted somewhere else 

which can be measured by some ratio of the emissions. 

 

The approximate position of the laser at each time instance is known; however, there is some non-

linear transformation that has not been accounted for between the position that is read and the 

actual position. This section will discuss how the transformation can be modeled using a 

polynomial transform and how to directly optimize its parameters using a signed distance function. 

 

Multispectral data is collected for every layer of a build and various signals are read for each time 

instance. Table 3.1 details the properties that are stored for each point. Control signals are 

measured directly and there is some propagation delay that must be accounted for. 

 
Table 3.1: Fields for each multispectral point. 

Property Description 

Time Time of sample instance. 

Position Laser position on the build plane. 

Laser Off/On Laser control signal (binary). 

Photodiode 1 Spectral intensity of photodiode 1. 

Photodiode 2 Spectral intensity of photodiode 2. 

Power 1 Input control signal for laser power. 

Power 2 Measured laser power output. 

 

3.2.1 Polynomial Transformation 

 

The position of each point in the sensor data should correspond to a location on the laser scan 

vectors. However, due to some measurement error and model approximations, the position of each 

point has some unknown non-linear distortion. Because there is no model for how the positions 

are calculated, the distortion is approximated by a general polynomial transformation. 

 

Let ὼᶰᴙ and ώᶰᴙ be the 2D position of the i-th point. Then the polynomial transformation is 

given by ὫὼȟώȠὥȟὦ  ὼᴂώᴂ  where 

 

 ὼὼȟώȠὥ ὥὼώ  ώ ὼȟώȠὦ ὦὼώ  (3.10) 

 

ὓ is the polynomial order and ὥ and ὦ are the polynomial coefficients that will be optimized. 
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A single transformation could be applied to all of the points; however, the polynomial order must 

be large to get a good fit and the number of parameters scales quadratically with the polynomial 

order. This can be circumvented by applying the transformation in a two-stage piecewise fashion. 

The first stage applies a global transformation to all points and the second stage applies a separate 

transformation locally for each individual part. This reduces the number of free parameters and 

improves the overall accuracy. The optimization process is the same for each stage, but a smaller 

subset of points are used for optimizing the second stage. 

 

3.2.2 Data Preprocessing 

 

The parameters of the polynomial transformation are optimized by aligning the contours of the 

multispectral points to the contours of the laser scan vectors. However, the multispectral points do 

not differentiate hatching from contours in their properties. Therefore, the contours must be 

algorithmically extracted in a preprocessing step before they can be used in optimization. 

Preprocessing consists of two steps: removing points where the laser is off and extracting points 

on the outer contour.  

 

When the laser is off, points that lie on a hatch should be contained within the external contour. 

The propagation delay is then chosen so that all points outside the external contour are labeled as 

off. These points are then removed. 

 

Contour points are obtained using an alpha shape [19], which creates a bounding area around a set 

of 2D points. The ‌ parameter is the maximum distance between two points such that the points 

are connected and can be varied to tighten or loosen the fit around the points. Here, ‌ is chosen to 

be the distance between hatches so that there are no gaps between the hatches and each part is a 

solid shape. Once an alpha shape is obtained, the perimeter points are extracted and used for 

optimization. Figure 3.6 shows a subset of multispectral points for a given part before 

preprocessing, after removing points where the laser is off, and after extracting the contour points 

using an alpha shape. 

  

 

   

Figure 3.6: Multispectral point cloud preprocessing. Raw unprocessed points (left), points where the laser is on 

(middle), and extracted contour points (right). 
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3.2.3 Parameter Optimization  

 

The coefficients of the polynomial transformation are optimized by minimizing the distance of the 

multispectral points to the laser contours. This distance is efficiently computed using the signed 

distance function discussed in Chapter 2. This section presents the error and update equations for 

the optimization and the construction of the Jacobian matrix used in the Levenberg-Marquardt 

algorithm. 

 

The points are initially not close to the laser scan vectors, so they are scaled and translated such 

that the bounding box of the points is aligned with the bounding box of the vectors. This gives a 

close enough fit to initialize the optimization. 

 

Let ɰὼ be the signed distance function that represents the Euclidean distance to the contours of 

the laser scan vectors. Then for iteration Ὧ, the optimization with respect to ɝὥ and ɝὦ is given by 

 

 

Ὡ ÍÉÎ
ȟ

ρ

ς
ɰ ὫὼȟώȠὥ ɝὥȟὦ ɝὦ  

 

ὥ ὥ ɝὥ 
 

ὦ ὦ ɝὦ 

(3.11) 

 

This optimization cannot be formulated as an inverse composition because the polynomial 

transformation is not invertible. ὥ  and ὦ  are initialized to the identity ὫὼȟώȠὥ ȟὦ
ὼ ώ , 

 

 ὥ
ρ ὭȟὮ ρȟπ
π ὩὰίὩ

 ὦ
ρ ὭȟὮ πȟρ
π ὩὰίὩ

 (3.12) 

 

As before, the Levenberg-Marquardt algorithm is used to minimize the error Ὡ . Let ὴ
ὼ ώ  be the 2D position of multispectral point Ὥ. Equation (2.2) is derived by applying the 

chain rule as follows 

 

 
ὨὩ

Ὠɝὥȟɝὦ
ȟ

ɰὴ ɝɰὴ
ὨὫὼȟώȠὥ ɝὥȟὦ ɝὦ

Ὠɝὥȟɝὦ
ȟ

 (3.13) 
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ȣ

‬Ὣ

‬ὥ

‬Ὣ

‬ὦ

‬Ὣ

‬ὦ
ȣ
‬Ὣ

‬ὦ
 (3.14) 

 

where ὔ ὓὓ ρȾς and the partial derivatives are given by 
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‬Ὣ

‬ὥ
ὼώ π  

‬Ὣ

‬ὦ
π ὼώ  (3.15) 

 

The exponents Ὦ and Ὧ are given by the linear mapping from ὥ and ὦ, ὰ Ὦ В ὓ ὲ, π

Ὦ ὓ and π Ὧ Ὦ. The last two terms of (3.13) form the Jacobian ὐᶰᴙ  of a single 

coordinate. The full Jacobian matrix ὐɴ ᴙ  is obtained by stacking all individual Jacobians.  

 

 

3.3 Post-Build Computed Tomography 

After a build is completed, parts are scanned in a CT machine. CT penetrates the interior of the 

part and enables embedded defects to be found without destroying the part. It is important to 

register the post-build CT so that these embedded defects can be mapped back into the other 

sensing domains and serve as a ground truth for automatic detection algorithm development. This 

section will discuss how the post-build CT is registered to the laser scan vectors. 

 

3.3.1 Projective Geometry of 3D 

 

The CT scan is initially in some arbitrary frame of reference and must be rotated and translated to 

match the laser scan vectors. This transformation is described by the 3D rigid transformation which 

is a special case of the 3D projective transformation. This section presents the 3D rigid 

transformation and the minimal representation used for optimization. 

 

Similarly to the 2D case, 3D projections can be represented as linear transformations using 

homogeneous coordinates. Let ὴӶɴᴙ  denote the homogeneous coordinate of the 3D point ὴ
ὼ ώ ᾀ . Then the homogeneous projection of ὴӶ is defined as 

 

 

ὴӶ ύὼύώ ύᾀύ  

 

ὴ ÐÒÏÊὴӶ ὼ ώ ᾀ  

(3.16) 

 

The results developed here utilize a special case of the 3D projective transform: the rigid 

transformation. A rigid transformation is composed of a rotation matrix Ὑᶰ3/σ and translation 

vector ὸɴ ᴙ  where Ὓὕσ  Ὑᶰᴙ  ȿ ὙὙ ὍȟÄÅÔὙ ρ is the special orthogonal 

group. The rigid transformation matrix Ὕᶰᴙ  is given by 

 

 

Ὕ
Ὑ ὸ
π ρ

 

 

ὴӶ ὝὴӶ 

(3.17) 
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For optimization, a minimal representation of Ὕ is required. The rotation matrix Ὑ can be 

minimally represented by three Euler angles ‫ᶰᴙ . Here the rotation matrix is given by Ὑ‫
Ὑ ‫ Ὑ ‫ Ὑ ‫  where 

 

 

Ὑ ‫
ρ π π
π ÃÏÓ‫ ÓÉÎ‫
π ÓÉÎ‫ ÃÏÓ‫

 

 

Ὑ ‫
ÃÏÓ‫ π ÓÉÎ‫
π ρ π
ÓÉÎ‫ π ÃÏÓ‫

 

 

Ὑ ‫
ÃÏÓ‫ ÓÉÎ‫ π
ÓÉÎ‫ ÃÏÓ‫ π
π π ρ

 

(3.18) 

 

The translation vector is already a minimal representation. Therefore, Ὕ is minimally represented 

by six parameters ‫ᶰᴙȟὸɴ ᴙ . During optimization, updates are calculated with respect to 

each parameter, but are then composed and accumulated as a full transformation matrix 

 

3.3.2 Point Cloud Extraction 

 

The parameters of the rigid transformation are optimized by minimizing the distance between the 

surface of the part in the CT and the contours of the laser scan vectors. However, the CT is a 3D 

raster, so first the surface of the part in the CT volume is extracted as a 3D point cloud to be used 

for optimization. Because the density of the part is higher than the density of the background, a 

mask of the part is obtained by thresholding the CT volume. The surface points of this mask are 

then extracted. 

 

The threshold is automatically chosen and will differ depending on the type of material used. The 

distribution of intensity values in the CT can be modeled by a two-component Gaussian mixture 

model. The intensity threshold is implicitly defined where the probability of part intensities is 

equal to the probability of non-part intensities. The probability density function Ὢὼ is given by 

the weighted sum of two normal distributions. Let ‰ᶰπȟρ be the mixing coefficient and ‘ and 

„ be the mean and standard deviation of each normal. Then 

 

 ὪὼȠ‰ȟ‘ȟ„ȟ‘ȟ„ ‰ὔὼȠ‘ȟ„ ρ ‰ὔὼȠ‘ȟ„  (3.19) 

  

The parameters of the pdf can be estimated using the expectation maximization algorithm outlined 

in [20]. Once the parameters are obtained, the CT is thresholded to a binary volume as follows. 

Let ὠ be the CT volume. Then the binary mask of the part ὠ  is given by 

 

 ὠ ὼ ρ ρ ‰ὔὠὼȠ‘ȟ„ ‰ὔὠὼȠ‘ȟ„
π ὩὰίὩ

 (3.20) 
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The surface points are given by part voxels ὼ in the mask ὠ ὼ that are next to non-part voxels. 

These points are collected into a point cloud and used for optimization. 

 

Figure 3.7 shows the histogram of intensities for a single part. The distribution of intensities is 

roughly two Gaussians and the mixture model is a good fit. This method allows a threshold to be 

automatically determined regardless of part material. 

 

  

Figure 3.7: Histogram of CT intensities and mixture model pdf. A slice taken from the CT (left) and corresponding 

histogram of intensities (right). The mixture model is plotted as a dashed black line and the histogram is thresholded 

into two regions: part and non-part.  

 

3.3.3 Parameter optimization 

 

The parameters of the rigid transformation are optimized by minimizing the distance of the CT 

point cloud to the laser contours. This distance is efficiently computed using the signed distance 

function discussed in Chapter 2. This section presents the error and update equations for the 

optimization and the construction of the Jacobian matrix used in the Levenberg-Marquardt 

algorithm. 

 

Let Ὕ be the rigid transformation that maps the CT point cloud to the laser scan vectors given in 

equation (3.17). As discussed in section 3.3.1, Ὕ can be minimally represented by six parameters 

‫ᶰᴙȟὸɴ ᴙ . Let ɰὼ be the signed distance function that represents the distance to the laser 

scan vectors. When the CT point cloud is aligned to the scan vectors, the value of ɰὼ will be 

small because the distance to the scan vectors is small. Therefore, the registration is formulated as 

a non-linear least squares optimization where the sum of squared distances is minimized with 

respect to an update ɝ‫ȟɝὸ to the rigid transformation 
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Ὡ ÍÉÎ
ȟ

ρ

ς
ɰ ÐÒÏÊὙɝ‫ ɝὸ

π ρ
Ὕ ὼ  

 

Ὕ Ὑɝ‫ ɝὸ
π ρ

Ὕ  

 

(3.21) 

where Ὧ is the iteration number. Note that updates are calculated with respect to the minimal 

representation but then accumulated in the full transformation matrix Ὕ. 

 

As before, some initial Ὕ  must be given to initialize the algorithm. When the CT operator exports 

the volume, they can choose the orientation of the part. Here, the operator roughly orients the part 

to match the orientation of the laser scan vectors in which case Ὑ Ὅ and ὸ  may be obtained 

by aligning the centroid of the CT surface to the centroid of the laser scan vectors. 

 

The Levenberg-Marquardt algorithm is used to minimize Ὡ . Let ὴ be the i-th point in the CT 

point cloud and ὴ Ὕ ὴ ὼ ώ ᾀ . Equation (2.2) is derived by applying the 

chain rule as follows 
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Ỡ (3.22) 
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ȟ
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ᾀ π ὼ π ρ π
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 (3.23) 

 

The last two terms of (3.22) form the Jacobian ὐᶰᴙ  of a single point. The full Jacobian matrix 

of all terms ὐɴ ᴙ  is obtained by stacking all individual Jacobians. The Jacobian depends on 

the current transformation Ὕ , so it must be recomputed at every iteration.  
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Results 

This chapter presents the registration results for a single build. Section 4.1 gives an overview of 

the experimental setup and build layout. Next, section 4.2 presents a quantitative analysis of the 

CT to laser scan vector registration. Sections 4.3 and 4.4 present registration results for the high 

resolution images and multispectral point sensors respectively. Voids found in the post-build CT 

are then mapped into these sensing modalities. 

 

 

4.1 Experimental Setup 

For this work, all builds were completed on a 3D Systems Prox320 powder bed fusion additive 

manufacturing system. To collect images, the system is outfitted with a Nikon D810 camera with 

a PC-E Micro NIKKOR 45mm f/2.8D ED tilt-shift lens. With this setup the build plate is imaged 

at a resolution of roughly 60 ɛm per pixel. Figure 4.1 shows a cross sectional view of the build 

chamber and the mounted camera. To collect multispectral data, two avalanche photodiodes are 

mounted outside the build chamber. Post-build analysis was completed with a GE phoenix 

v|tome|x m CT scanner. 

 

 

 

Figure 4.1: 3D Systems ProX320 build chamber and integrated camera. 
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A special cylinder was constructed for testing the registration algorithms and developing automatic 

defect detection algorithms. Figure 4.2 shows the design for one such cylinder. A cylinder was 

chosen to minimize reflections in the CT caused by sharp edges and corners. To eliminate 

rotational ambiguity, a small tab was added to the bottom of the cylinder. Additionally, each 

cylinder has a unique number that is printed at the top. 

 

A total of twenty-three cylinders were printed for the test build. These cylinders were printed under 

one of four scenarios: nominal conditions (control), varied laser scan direction relative to gas flow, 

varied hatch-contour overlap distance, or varied machine parameters (laser power, laser speed, 

hatch spacing). Figure 4.3 shows the location of each cylinder on the build plate. 

 

 

 

  

Figure 4.2: Cylinder design used for testing. 

 

 

 

Figure 4.3: Build layout. The gray cylinders are printed under nominal conditions, red with varied scan direction, 

blue with varied hatch-contour overlap, and green with varied machine parameters. 
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400 layers were supposed to be printed, but due to a technical malfunction the camera stopped 

recording images after layer 72. The build itself was then halted prematurely after layer 172. 

Therefore, the cylinders are roughly half the height they are supposed to be. To account for this 

error in the analysis, the laser scan vectors beyond layer 172 are ignored for registration. 

 

 

4.2 Post-Build Computed Tomography 

For the test build, only the nine nominal cylinders were CT scanned. Each of these cylinders was 

registered to the laser scan vectors using the method discussed in section 3.3. Recall that the end 

goal is to map voids found in the CT to the other sensing modalities. Thus, any error in the CT 

registration affects the mapping of voids to all sensing modalities, so it is even more important that 

this registration is as accurate as possible. This section presents the registration of the CT and 

discusses the results. 

 

Figure 4.4 shows a registered point cloud for cylinder 0001. The remaining cylinders are shown in 

Appendix A. The point cloud is colored according to the SDF distance evaluated at each point. 

Note that the point cloud SDF distances are clustered around 100 ɛm. This is because in reality, 

the printed vectors have some non-zero width, so the actual part that is printed has a slightly dilated 

external contour. This width is not accounted for in the SDF so the optimal SDF distance is 

achieved by centering the vectors in the CT surface, which causes the distances of points on the 

side of the cylinder to be some number greater than zero. This phenomenon does not occur in the 

z-direction, so the SDF distances at the top of the cylinder are close to zero. 

 

Additional errors may be caused by either post-build warping or artifacts in the CT scan. Post-

build warping introduces some non-linear transformation of the part that cannot be accurately 

modeled by a rigid transformation. Additionally, artifacts may arise in the CT scan when there are 

sharp corners and edges which cause the CT to be dilated. 

 

 

  

 

Figure 4.4: Registered CT point cloud for cylinder 0001. SDF isosurface (left), registered point cloud (middle), and 

histogram of point cloud SDF values. 
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The root mean squared error for each cylinder is reported in Table 4.1. The average error was 107 

ɛm which is expected due to the laser width. Recall that the resolution of the camera is roughly 60 

ɛm per pixel. This means that voids mapped from the CT to the high-resolution images will be 

ρȢυ pixels from their true position on average. The laser width could be accounted for by dilating 

the external contours by half the laser width (or eroding the CT mask by half the laser width). This 

is difficult because the exact laser width is unknown. 

 
Table 4.1: CT point cloud registration error. 

Part Name RMSE (ɛm) 

0001 - Nominal 103.4210 

0004 - Nominal 109.1089 

0005 - Nominal 106.5773 

0014 - Nominal 109.2762 

0015 - Nominal 108.1504 

0018 - Nominal 99.9308 

0019 - Nominal 95.7102 

0022 - Nominal 107.4913 

0023 - Nominal 122.7757 

 

 

4.3 High Resolution Images 

The camera captures an image of the entire build plate so data for all twenty-three cylinders is 

available. However, since the end goal is to map voids from the CT to the images, the registration 

results are only presented for the nine nominal cylinders. Recall that the registration error being 

minimized is a difference between image intensities. This has no physical meaning, and the exact 

edge in the image cannot be located with a known level of accuracy, so only a qualitative analysis 

is presented. 

 

Figure 4.4 shows images of each of the nominal cylinders for a layer 10 with the laser scan vectors 

overlaid on top. The registration is good if the scan vector contours follow the edge of the part in 

the images. Most of the cylinders align well; however, cylinders 0004 and 0014 are slightly 

misaligned on the bottom edge. This is likely caused by the dark shadow located in this position. 

This shadow will stand out in the standard deviation filter the same way the part would which 

causes the skew. Qualitatively, this misalignment is bounded by four pixels in width and given the 

pixel size is around 60 µm, this means the error is bounded by 240 µm. 

 

Cylinder 0001 illustrates the challenge of the parts not having well defined corners or edges. The 

interior of the part looks very similar to the powder aside from a small number of reflections. 

Despite this, the direct image alignment approach gives good registration results for this part. 

 

Figure 4.6 shows two examples of voids found in the post-build CT that are mapped into the 

images. Patches around void locations in the image domain can now be studied further to see if 
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there is any distinguishing features that can be used for automatic detection algorithms. These 

patches could also be used to train a supervised machine learning algorithm. To ensure that a defect 

is actually contained within the patch, the radius of the patch should be equal to the largest possible 

error. Compounding the CT registration error and image registration error, a patch must be at least 

340 µm wide (six pixels) to guarantee that the void will be contained within it. 

 

 

 

  

 
0001 

 

 
0004 

 

 
0005 

 

 
0014 

 

 
0015 

 

 
0018 

 

 
0019 

 
0022 

 
0023 

Figure 4.5: Registered images with laser scan vectors overlaid in red. 
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4.3 Multispectral Point Sensors 

This section presents the registration results for the multispectral point sensors. As discussed in 

section 3.2, the multispectral data is stored as a point cloud. This work is focused on the registration 

of the 2D position of the points, which is independent of the spectral intensities. Because the points 

are aligned to an SDF, the error that is minimized has a physical meaning. Therefore, a quantitative 

analysis is presented in addition to the qualitative analysis. 

 

Figure 4.7 shows the registered multispectral points for cylinder 0001. The remaining eight 

nominal cylinders are shown in Appendix B. Only the outer contour is shown, because those are 

the points that are used in the optimization. Points are colored according to their SDF distance. 

The registration accuracy is very good with most of the points falling within ρπ ɛm of the laser 
scan vectors and the error is contained mostly within the tab of the cylinder. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 4.6: Voids found in CT mapped to images. (a) and (b) are cylinder 0001 and (c) and (d) are cylinder 0004. 
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Table 4.2 presents the root mean squared error for each of the nominal cylinders. The average 

across all cylinders was 5.6954 ɛm. This is significantly less than the registration error of the CT 

meaning that when voids are mapped into the multispectral domain, the error is almost entirely 

due to the CT registration.  

 
Table 4.2: Multispectral point cloud registration error. 

Part Name RMSE (ɛm) 

0001 - Nominal     4.9066 

0004 - Nominal     5.2680 

0005 - Nominal     6.7046 

0014 - Nominal     5.2806 

0015 - Nominal     6.2074 

0018 - Nominal     5.6023 

0019 - Nominal     5.5841 

0022 - Nominal     5.4295 

0023 - Nominal 6.2756 

 

Figure 4.8 shows two examples of voids found in the post-build CT that are mapped into the 

multispectral point clouds. The point clouds are colored according to the ratio of the intensities of 

the multispectral sensors. 

 
 

 

  

Figure 4.7: Registered multispectral point cloud for cylinder 0001. Point cloud colored according to SDF distance 

(left) and histogram of SDF distances (right). 

 




















