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ABSTRACT 

The goal of this thesis is to develop a supply chain model that integrates several 

common supply chain modeling techniques into a realistic and comprehensive general model.  

The model addresses production, transportation, and inventory decisions, which are often 

considered separately.  Supply chain modeling problems tend to be inherently multi-criteria 

problems in that the optimization of several objectives simultaneously is required in order to 

develop the most efficient supply chain.  In this thesis up to three criteria are considered 

simultaneously and are used to develop a multi-criteria optimization model.  The three 

criteria are profit, customer service, and inventory capital.  The solution to the model can be 

used as a supply chain management tool to determine the quantities and scheduling related to 

the production and distribution of products across a supply chain in order to best optimize the 

objectives. 

 The model developed is for a four-stage, centralized supply chain in which two 

products are being produced and distributed.  There are several suppliers, manufacturers, 

warehouses, and retailers at each stage and each manufacturer has three production lines.  

Two modes of transportation are available between each stage of the supply chain and a 

freight rate function is utilized.  The freight rate function follows an All-Units discount cost 

structure that depends on the weight of shipments and the transportation mode being used.  

The demand at the retailers drives the supply chain and is deterministic and independent 

among the retailers.  The supply chain is modeled as a mixed integer linear program that is 

solved using GAMS (General Algebraic Modeling System).  The multi-criteria model is 

solved using goal programming, a multi-criteria modeling technique that aims to minimize 

the total deviation of the objective values from their goals.  The problems are solved either as 
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a preemptive goal program or non-preemptive goal program, depending on how the criteria 

preference information is specified. 

 An illustrative example is used to demonstrate the implementation of goal 

programming and the overall use of the model.  Two bi-criteria cases are modeled in which 

profit and customer service are maximized.  Additionally, a third case addresses changes in 

the solution when a third objective, the minimization of inventory capital, is added to the 

model.  The solutions to all three cases are compared and differences among preemptive and 

non-preemptive solutions are identified, as well as the differences between the bi-criteria and 

multi-criteria models.  The model not only incorporates several supply chain modeling 

techniques into a single model, it also addresses multiple criteria simultaneously in an 

attempt to develop a realistic supply chain model that can be used as a tool to improve supply 

chain efficiency. 
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Chapter 1 Introduction 

1.1 The General Supply Chain  

Maximizing profit is often thought to be the key to success for businesses in a 

competitive market.  Although a simple concept to grasp, achieving a maximum profit tends 

to be a daunting task that requires the synergy of all components of a company.  From new 

product development and the product‟s supply chain, to effective management, marketing, 

and advertising; all aspects need to be operating efficiently to maximize profit.  In dealing 

with straightforward revenue and cost though, supply chain management is imperative to 

success.  The largest contributors to supply chain costs are those associated with inventory 

and transportation.  Ideally the direct revenue of the product balances these costs resulting in 

a profit for a company.  Although inventory and transportation costs are the leading supply 

chain drivers, there is limited literature and modeling for supply chains that include both 

important components due to the complexity of the cost functions. 

 With supply chain management at the forefront of industry today, the development 

and analysis of realistic models is important when dealing with profit and responsiveness of a 

supply chain.  A supply chain includes all stages in the production and distribution of a 

product in response to customer demand.  A supply chain is typically broken down into 

stages where a four stage supply chain typically includes suppliers, manufacturers, 

warehouses, and retailers.  A serial supply chain will have one party in each of these stages 

as shown in Figure 1.1.   
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Figure 1.1: A four stage serial supply chain 

However, it is often more realistic to include multiple parties at each stage and multiple 

modes of transportation between stages to create a supply chain network.  This thesis will 

model a supply chain network consisting of multiple suppliers, manufacturers, warehouses, 

and retailers with multiple modes of transportation between each stage.  A general supply 

chain with ‘k’ suppliers, ‘m’ manufacturers, „n’ warehouses, and ‘r’ retailers is shown in 

Figure 1.2. 

 

 

 

 

 

 

 

Figure 1.2: Four stage supply chain network with two modes of transportation 

Supply chain management (SCM) involves determining the appropriate quantities to 

ship to and from each stage, the right time for each shipment, and the best mode of 

transportation for the product while still turning a profit.  Chopra and Meindl explain: 

“Effective supply chain management involves the management of supply chain assets and 

product, information, and fund flows to maximize total supply chain profitability”          
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(2007, pp. 6).  By optimizing a supply chain, the best quantities are determined for both 

product flows and inventory levels to meet a certain objective like maximizing profit. 

In multiple stage supply chains, ownership of each stage may be shared by the same 

company or a different party may control each stage.  In this thesis, a centralized supply 

chain is considered implying one company has ownership of all stages and can access 

information including inventory, supply, and demand levels across the entire supply chain.  

Although the suppliers can be a second party vendor in the model included in this thesis, the 

materials for the final product require only the supplies available and therefore the decisions 

regarding the distribution of the supplies are made by the single owner of the other three 

stages.   

1.2 Multi-Criteria Optimization 

It is common for optimization models to consider just one objective at time.  

However, to accurately model a problem, multiple objectives, or criteria, are more 

appropriate.  In addition to the maximization of profit, the responsiveness of a supply chain is 

also a key to a successful business.  The responsiveness of a supply chain reflects how well it 

can respond to demand by providing the products on time to customers regardless of demand 

uncertainty.  This can be controlled in several ways including the location of facilities and the 

amount of product in inventory.  Maximization of responsiveness aims to balance the costs of 

customer dissatisfaction and the cost of holding extra products in inventory while limiting the 

number of lost sales.  Profit typically considers the difference between the revenue and the 

costs of the supply chain.  When focusing on just customer responsiveness, transportation 

and holding costs may be disregarded in order to maintain a high enough inventory level to 
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accommodate for unexpected spikes in demand.  Consequently the idea of limiting lost sales 

can increase transportation and inventory costs, resulting in a conflicting objective with 

profit. 

When dealing with a supply chain problem, multiple criteria such as the 

maximization of profit and maximizing responsiveness produce conflicting solutions for 

consideration.  Masud and Ravindran (2008) describe the concept of Multiple Criteria 

Decision Making (MCDM), where several conflicting criteria are considered simultaneously 

and the optimal solution is the alternative that best balances the tradeoffs among the 

conflicting criteria.  For example, with the two objectives of maximizing profit and 

responsiveness at the same time, one alternative may be to produce a large amount of a 

product to ensure demand can always be satisfied.  Although this alternative may maximize 

responsiveness, it may not be the most profitable solution due to holding costs of inventory 

and the cost of overproduction of a product.  The opposite case, which is another alternative, 

is to maximize profit by producing as little as possible so minimal inventory is held.  

However, this increases the risk of not satisfying demand which decreases customer 

responsiveness and can result in the loss of customers and goodwill.  Consequently, both 

profit and responsiveness should be considered simultaneously to produce the best 

compromise solution. 

Constraints on the model are also considered along with the objectives in a decision 

making problem.  The constraints may include limited capacity at a warehouse, a 

transportation cost budget, and demand requirements, among others.  The goal of a supply 

chain optimization problem is to best satisfy all of the objectives while adhering to the 
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constraints.  The objectives and constraints are included in the general form of a Multiple 

Criteria Mathematical Program (MCMP) as follows:  

Maximize  𝑓1 𝑥 ,𝑓2 𝑥 ,… , 𝑓𝑘 𝑥   

Subject to: 𝑔𝑗  𝑥 ≤ 0, 𝑗 = 1, 2, … , 𝑚 

𝑥 ≥ 0   

Where f1, f2,…, fk are the objective functions and gj(x) is the set of constraints.  Each 

alternative is represented as an x vector where x = {xi | i = 1,2,…,n}. 

Definitions 

Ideal Solution: The ideal solution is the best value achievable for each objective ignoring 

other objectives.  This is the solution to the problem when only one objective function is 

considered. 

Efficient Solution: An efficient solution is an alternative for which an objective can only be 

improved at the expense of at least one other objective.  An efficient solution is also known 

as a non-dominated solution. 

Dominated Solution: A dominated solution is an alternative for which an objective can be 

improved without losing achievements in other objectives.  This solution will not be the 

optimal solution since this solution is dominated by other solutions that have improved 

objective values. 
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Methodology for MCMP 

When solving MCMPs, a decision maker (DM) is identified to provide information about 

their preferences for how the problem is to be solved.  This information includes how 

important each criterion is in relation to the others, as well as what level of satisfaction 

certain constraints must meet, among other preferences.  There is typically only one DM in a 

centralized supply chain while decentralized supply chains can involve input from several 

DMs before a final solution is reached.   

There are three categories for problem solving under Multiple Criteria Mathematical 

Programming: All information about the objectives and the problem is pre-specified by the 

DM; All information from the DM is retrieved after a set of efficient solutions has been 

found; Interactive approaches that use information and preferences that are revealed 

progressively by the DM or DMs throughout the solution and analysis processes.  Since the 

focus of this thesis is a centralized supply chain, it will be assumed that all of the DMs 

preferences have been pre-specified.  Under this category, there are several solution methods 

available (Masud & Ravindran, 2008). 

Goal Programming 

Goal programming is a solution method commonly used in practice to convert a multiple 

objective program into a solvable single objective program.  Goal programming requires that 

the DM specifies a goal for each criterion.  It may not be possible to achieve all the specified 

goals simultaneously.  Therefore, the sum of the weighted deviations from the preset goals is 

minimized during the optimization.  Depending on how the DM is asked to specify their goal 
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preferences, the goal program can be identified as either a non-preemptive or preemptive 

goal programming. 

Non-preemptive goal programming uses pre-specified weights for the criteria.  These 

weights represent the decision maker‟s tradeoffs among the goals.  Sometimes assigning a 

value to the tradeoffs can be a difficult task for the DM so deriving the weights is 

complicated.  These weights are used to reduce the formulation to a single objective problem 

that can then be solved with linear programming optimization techniques.  Single objective 

optimization problems can be solved rather quickly and efficiently with current optimization 

software.  However, non-preemptive goal programming requires scaling of all criteria and 

assumes a linear utility function.  Alternatively, preemptive goal programming allows the 

decision maker to assign priority to certain goals over others, which is sometimes easier than 

assigning weights to criteria.  Then, goals with higher priority must be satisfied as much as 

possible before lesser priority goals are considered.  This type of problem is solved in a 

sequential fashion with multiple single objective problems being solved one at a time.  

Scaling of criteria values is not required.  However, the drawback of this method is the 

intensity and duration of the solution process (Masud & Ravindran, 2008; Charnes & 

Cooper, 1977).   

1.3 Thesis Overview 

The goal of this thesis is to expand on existing supply chain models to develop a 

multi-criteria, multi-period model that more closely resembles a real world centralized supply 

chain with a focus on the maximization of profit and maximization of responsiveness 

simultaneously.  In addition to the model development, several scenarios will be solved and 
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analyzed with a focus on tradeoffs and changes in inventory and shipment quantities while 

the satisfaction of the objectives is considered.  This analysis will be possible due to the fact 

that both inventory and transportation cost structures will be modeled and included together 

in the problem.  This thesis will be an extension and integration of theses published by 

Vijayaragavan (2008), Mysore (2005), and Difilippo (2003). 

 In this thesis, a four stage centralized supply chain will be modeled with the inclusion 

of inventory and transportation decisions.  The two main objectives of maximizing cost while 

maximizing responsiveness will be used and a third objective to minimize the capital in 

inventory will be added in certain cases.  Two modes of transportation, ground and air, will 

be available along all possible paths for transportation of material and finished goods.  This 

supply chain structure will be based on the general four stage supply chain with two modes 

of transportation that was presented in Figure 1.2.   

Quantity discounts will be available on the shipment of the products so tradeoffs 

between transportation costs and holding costs of inventory will need to be balanced.  The 

demand at each retailer will be deterministic and predefined for several periods.  Lastly, the 

most unique aspect of this thesis is the inclusion of two products flowing along the supply 

chain.  The products have some shared raw materials, and all other parties in the supply chain 

will handle both products, but each retailer will have a separate demand for each product.   

The goal will be to determine the optimal values for the quantities of each product 

moving from stage to stage and the identification of what transportation mode to use when.  

Consequently, the optimal production schedule for all periods will be determined along with 

inventory levels at the warehouse.  Each manufacturing facility will have multiple production 

lines available for the production of each product.  The model will also determine dedicated 
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lines which will be used for certain products and flexible lines which will be turned on or off 

or need to transfer from product to product depending on production needs.  

 Chapter 2 of this thesis will include a detailed literature review of work related to the 

topic and model presented in this thesis.  In Chapter 3, the general model will be developed 

in detail.  Here, all decision variable definitions will be provided, along with a presentation of 

the objective goal specifications and objective function construction.  In addition, the 

constraints of the model will be explained and presented.  Chapter 4 will include an 

illustrative example of the model where all costs, selling prices, and constraint values such as 

demands for each product will be quantified.  Lastly, Chapter 5 will be a conclusion 

including a complete analysis and discussion of the results from the illustrative example as 

well as suggestions for future work.   
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Chapter 2 Literature Review 

2.1 Supply Chain Performance Measures 

The acknowledgement of Supply Chain Management has made it apparent for many 

companies that their goal is to create the most efficient supply chain possible.  However, it is 

often unclear how to evaluate a supply chain.  In order to reach the goal of achieving an 

efficient system, supply chain performance measures are used to evaluate the effectiveness of 

a supply chain and where there is room for improvement.  Beamon (1999) discussed the 

difficulties faced in developing and utilizing performance measures.  Two common 

quantitative performance measures that have been used extensively in the literature are cost 

and customer responsiveness.  Costs can include a wide range of categories such as inventory 

and operating costs, whereas customer responsiveness includes lead times, stockout 

probability, and fill rate.  Other qualitative performance measures such as customer 

satisfaction, information flow, and risk management may be valuable but are hard to model 

and measure and therefore literature surrounding them is much more limited.   

Many models only consider cost and perhaps one other measure and therefore have 

been declared non inclusive and may not provide all of the information necessary for a 

company to achieve its strategic goals.  Consequently, research available tends to focus on 

the development of a complete framework for measuring supply chain performance.  

Beamon (1999) stressed the importance of the performance measure selection step in 

developing a supply chain model and emphasized a focus on complete and accurate analysis.  

A comprehensive overview of previous literature surrounding supply chain performance 

measures was also presented throughout the article.   
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 Gunasekaran et al. (2001) stressed the development of a balanced approach for 

developing supply chain measures and metrics.  The approach covered strategic, tactical, and 

operational levels as well as covering financial and non-financial measures.  The supply 

chain was then addressed from beginning to end and various types of measures were 

presented for each stage.  For example, the total order cycle time was the focus for the 

procurement stage of the supply chain.  In addition, measures for the production and delivery 

processes were presented, as well as how to address customer service and satisfaction.  

Gunasekaran et al. (2001) stated that “perhaps the most important research concerning 

logistics that is going on is in the area of designing efficient and cost-effective distribution 

systems” (2001, p, 78).  Distribution costs stem from inventory, transportation costs, and 

distribution methodology, including transportation mode selection.  Thomas and Griffin 

(1996) stated that transportation costs can account for 50% of the total logistics costs.  This 

emphasis on the reduction of transportation and inventory costs as supported by the 

consideration of both costs structures in the model presented in this thesis.      

2.2 Inventory Control and Transportation Decisions 

 With the large role of transportation costs incurred throughout a supply chain, the 

efficient movement and storage of materials and products is imperative to limiting the total 

costs for a company.  When considering the movement of materials, Cohen and Lee (1989) 

explained that the locations and capacities of each site in the whole supply chain network 

must be considered.  Cohen and Moon (1990) extended this work and presented results 

surrounding the influence of supply chain transportation costs on the overall supply chain 

strategy for a firm.  The location of manufacturing facilities and the distribution policy of a 
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supply chain network are directly affected by transportation costs.  Supply chain design with 

a constrained cost minimization problem that allows for variation of inputs such as fixed 

costs, transportation costs, and production costs was analyzed.  The model then provided 

information regarding the opening and closing of sites, order quantities, production 

quantities, and specifics about the transportation modes and quantities to operate at minimum 

costs.  This analysis provided an overall evaluation of supply chain strategies with a focus on 

transportation modes and costs (Cohen and Moon, 1990). 

Langley (1980) was one of the first researchers to use estimated and actual freight 

rate functions to more accurately calculate transportation costs.  An enumeration technique 

was used to determine break points and an appropriate value for Q, the optimal order 

quantity, in an Economic Order Quantity (EOQ) inventory model.  A similar technique was 

implemented by Carter and Ferrin (1996) while actual freight rate functions were used.  The 

focus of the model was again the minimization of transportation costs.  

In the work by Swenseth and Godfrey (2002), the derivation of an accurate freight 

rate function in models that incorporate inventory and transportation decisions was discussed.  

The freight rate function was used to model the transportation costs based on weight of 

shipments.  Companies often offer discounts on larger or heavier shipments.  Because of this, 

it is important that the cost of a shipment depends directly on the weight or quantity shipped 

from site to site in a supply chain.  Five freight rate models from literature were presented 

and analyzed in an attempt to determine which functions best emulate actual costs.  The 

strategy of identifying breakpoints where it is appropriate to over-declare a shipment in order 

to incur a lower per-unit cost is a common practice in industry and an appropriate strategy for 

doing so was presented in the paper. 



13 
 

Terminology surrounding inventory control, as well as a description of common 

modeling practices, as presented in a review of inventory control papers through 1971 by 

Clark (1972).  The idea of multi-echelon inventory problems considers supply chains that 

have two or more facilities involved in the response to customer demand.  Several variations 

of multi-echelon inventory models were compared such as deterministic vs. stochastic 

demand, and continuous vs. period review policies.  Chopra and Meindl (2007) emphasized 

the importance of inventory and transportation cost tradeoffs.  Inventory aggregation is 

achieved by physically aggregating inventories in one location to reduce the safety inventory 

and the number of warehouses.  Although this reduces facility and holding costs, there is a 

tradeoff with the increase in transportation costs caused by moving all product quantities 

through fewer locations as opposed to having more warehouses closer to the final 

destinations.  Consequently, a recent focus on incorporating both inventory and 

transportation decisions into the same model has created an extensive library of work 

available in the literature. 

The following is a review of key work in the area of simultaneous inventory and 

transportation decisions with a focus on relevant work for this thesis.  Baumol and Vinod 

(1970) developed the inventory theoretic model.  This was the first attempt to integrate both 

transportation and inventory costs in the same model.  Transportation costs were calculated 

as the constant shipping rate multiplied by the number of products shipped.  As expected, 

when multiple modes of transportation were available, the selection of a mode that will not 

only be dependable, but will be most efficient in cost and time was important.  The model 

addressed the question, what is the advantage of speed in transportation?  Choosing a fast 

transportation mode limited the amount of freight-in-transit and the lead-time of an order, 
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this in turn limited cost.  However, there are trade-offs between speed, dependability, and 

cost of transportation which Baumol and Vinod (1970) discussed in detail.  The inventory 

held in warehouses in case demand exceeds expectation or to compensate for a lack of 

dependability of transportation is referred to as safety stock (Chopra and Meindl, 2007).  To 

compensate for the lack of speed and dependability of a cheaper form of transportation, the 

amount of safety stock must increase which increases holding costs.  All costs and tradeoffs 

were considered together in the inventory theoretic model for which deterministic demand 

was used to derive an optimal solution for quantities and costs (Baumol and Vinod, 1970). 

 Constable and Whybark (1978) further extended the work of Baumol and Vinod to 

include backorders in a model that again, included multiple modes of transportation, 

transportation costs, and inventory costs when determining the minimum cost solution.  By 

focusing on the interaction of transportation and inventory costs within a model, it was 

identified that the lowest cost transportation mode was favored as the lowest cost alternative.  

Therefore it was concluded that it is rational to use the transportation cost ratio for separating 

the transportation and inventory decisions. 

 The joint determination of an appropriate transportation mode and an optimal 

inventory control policy in supply chain management was presented by Tyworth and Zeng 

(1998).  The transit time was dependent upon the transportation mode and was part of lead 

time which is the time it takes to process an order and ship it to its destination.  Sensitivity 

analysis of the effect of transit time on the logistics costs was performed and discussed in the 

article.   
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 The inventory theoretic model by Baumol and Vinod (1970) is used as a basis for a 

model in which freight rate discounts are combined with the both transportation and 

inventory decisions by Tersine et al. (1989).  Algorithms were developed to use freight rate 

discounts while determining optimal inventory and transportation decisions and order sizes to 

minimize the total cost.  The assumptions of the model included a single product with 

independent, deterministic demand, no stockouts allowed, infinite replenishment rates, and 

constant lead times.  Two different algorithms were developed to solve the model with either 

an all-units freight-rate discount cost structure or an incremental freight rate discount cost 

structure based on shipment weight.  In the all-units structure, the per-unit cost that 

corresponds to the bracket that the total quantity falls within is applied to the entire quantity.  

In the incremental cost structure, the per-unit cost corresponding to a bracket is applied to the 

portion of the quantity that falls within that cost bracket.  The value of algorithms that can 

solve the minimum cost problems with the inclusion of these structures in the market today 

was stressed due to the increasing demand for improved operations and the best utilization of 

a company‟s assets. 

 The savings resulting from logistics cost savings initiatives at General Motors (GM) 

were presented by Blumenfeld et al. (1987).  GM has a large network consisting of 2500 

suppliers worldwide, 130 GM parts plants, and 30 assembly plants.  A typical GM vehicle 

will require approximately 13,000 parts total.  Due to the complexity of this supply chain 

problem, reduction in costs is very important to companies with distribution networks of this 

size.  A research group at GM incorporated transportation and inventory decisions with an 

estimated freight rate function in a model of the supply chain network.  The tool resulted in a 
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26% reduction in total annual logistics costs which was equal to a $2.9 million savings per 

year at a single division of GM.   

A more general description of distribution strategies that optimized the tradeoffs 

between transportation and inventory costs was presented by Burns et al. (1985).  

Researchers at the General Motors Research Laboratories conducted analysis on distribution 

methods comparing costs of direct shipping routes to peddling routes.  In the direct shipping 

routes a separate truck is sent directly to each customer, whereas “peddling routes,” or “milk 

runs,” utilize one truck to service several customers.  The order quantities derived using the 

EOQ model were most efficient in a direct route distribution network.  Conversely, a full 

truck load was the optimal shipment for peddling routes.  This conclusion was contingent 

upon the number of customers being serviced though.  Formulas for the necessary 

calculations to draw these conclusions were developed and presented in an attempt to 

simplify distribution problems that consider both transportation and inventory costs. 

 Mysore (2005) developed a single objective model for a three stage centralized 

supply chain for which profit was to be maximized.  The model was unique in that it 

incorporated both inventory and transportation cost structures while also implementing all-

unit and incremental freight rate shipping discount structures.  Typically supply chain models 

only incorporate one type of discount structure whereas in the thesis by Mysore (2005), a 

different cost structure was used for transportation and inventory quantities.  The model 

offered an option for a leased warehouse if the company owned warehouse was used to 

capacity and multiple modes of transportation were available between each stage of the 

supply chain.  A mixed integer nonlinear program was developed and was then converted to 

a linear program to determine the optimal shipping modes, quantities, and timing of orders 
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over multiple periods.  With the program developed, two scenarios were compared.  One 

scenario modeled a low dollar value product while the second scenario considered a high 

dollar value product.  The influence of this change on transportation and inventory decisions 

was analyzed.  This thesis utilizes the all-units discount structure implemented by Mysore 

(2005).  However, a four stage supply chain with multiple objectives and multiple products is 

modeled. 

2.3 Multi-Criteria Optimization 

 The work reviewed thus far has considered formulations focused on single objective 

models.  The field of multiple criteria optimization focuses on finding the best alternative 

while considering multiple conflicting criteria, or objectives, at the same time.  Most 

decisions are inherently multi-objective, however early mathematical models in literature 

simply chose one main objective and relied on the constraints of a model to account for the 

other goals of the model.  Some examples of inherently multi-objective models include: 

project management problems, inventory planning problems, capacity expansion problems, 

and facility location problems (Evans, 1984).  Terminology and problem definitions 

surrounding multi-criteria mathematical problems were presented in full by Evans (1984) and 

Masud and Ravindran (2008).  Both sources also discussed the three options for the 

elicitation of information from the decision maker (DM): before the problem is modeled, 

throughout the solution process, or after all efficient solutions have been identified.  With 

each of these categories came several solution methodologies. 

 When objective targets and preferences are pre-specified by the Decision Maker 

(DM), the problem can be solved using Goal Programming.  Preemptive Goal Programming 



18 
 

allows the DM to assign a priority level to each objective and goals with higher priorities 

must be satisfied as far as possible before the next lower priority goal is considered.  Non-

preemptive Goal Programming requires that the DM assigns a weight to each goal which 

reflects its importance and the DM‟s trade-offs among the goals.  The weights can be derived 

using ranking methods such as Borda Count, pair wise comparison, or the Analytical 

Hierarchy Process (Masud and Ravindran, 2008).  The Partitioning Algorithm for Goal 

Programming (PAGP), used for solving preemptive Goal Programming problems, utilizes the 

objective priorities to partition the goal constraints.  This constraint partitioning, along with 

variable elimination, facilitates the efficient derivation of the solution to the original problem 

(Arthur and Ravindran, 1980).  A variation of the Simplex Method for goal programming 

was developed by Lee (1972).  In this approach, the preemptive goal priorities specified by 

the DM are incorporated into the single objective function and the deviational variables 

indicating the distance from the goal, along with the decision variables, are manipulated 

iteratively until the optimal solution is found.  

When the DM is not asked for information before the solution process then all 

efficient solutions are generated first and presented to the DM.  Then the DM is asked for 

information regarding which, of all of the solutions, they prefer.  Geoffrion‟s Theorem is 

used for parametric programming for this class of problems (Geoffrion, 1968). Compromise 

Programming, developed by Zeleny, can also be used to derive all of the possible solutions to 

a Multi-Criteria Mathematical Program (MCMP) (Zeleny, 1982). 

Interactive methods for solving MCMPs require that the DM progressively articulates 

their preferences as solutions are presented to them until the best compromise solution is 

reached.  One alternative is the STEM/STEP method for which an initial efficient solution is 
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derived.  From there the DM is asked how much they are willing to give up on the objectives 

that have been previously satisfied.  This flexibility was introduced by Benyayoun et al. 

(1971) and allowed additional objectives to be satisfied until an acceptable compromise 

solution had been reached.  The Ziont-Wallenius Method and the Paired Comparison Method 

are other interactive solution algorithms that utilize a utility function to represent the DMs 

preferences (Zionts and Wallenius, 1976; Sadagopan and Ravindran, 1982).   A complete 

overview of interactive methods is available in the work by Shin and Ravindran (1991).  

2.4 Multi-Criteria Optimization in Supply Chain 

Many supply chain optimization problems are focused on one objective, minimizing 

cost.  However, a more realistic representation of overall supply chain management is 

modeled with multi-criteria mathematical programs.  Bookbinder and Chen (1992) made the 

original contribution to literature by applying multi-criteria techniques to a two-stage serial 

supply chain consisting of a retailer and warehouse.  The distribution and inventory systems 

were optimized and both deterministic and stochastic demand cases were evaluated.  In the 

deterministic case, the first objective was the minimization of inventory costs which included 

holding and ordering costs.   The second objective was the minimization of transportation 

costs.  This problem was formulated as a non-linear multi-criteria optimization problem and 

was solved using an analytical algorithm to arrive at the optimal non-dominated solution.  In 

the stochastic case, the third objective of maximizing customer service measured by the 

number of stockouts a year was introduced.  Non-linear optimization algorithms were 

developed for two cases with this multi-criteria structure.    The solutions to these models 

were presented while tradeoffs between various supply chain measures were identified. 
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An interactive approach to a stochastic multi objective problem was presented by 

Agrell (1995).  Here the need for multiple criteria decision making (MCDM) in inventory 

control systems was explained.  In the system presented, a continuous review inventory 

policy was in place for a single product with deterministic lead time and stochastic lead time 

demand.  The three objectives were the minimization of the expected total annual cost, the 

number of stockouts annually, and the number of items stocked out.  An algorithm called 

IDEM (Interactive Decision Exploration Method) was employed to derive the optimal 

solution based on the DMs preferences.  First the ideal solutions for each objective 

individually were obtained.  Then the multi-criteria problem was optimized.  The optimal 

solution was then presented to the DM and the DM expressed their opinions on 

improvements, sacrifices, and tradeoffs related to each objective.  These preferences were 

then implemented in the mathematical program to derive the final optimal solution. 

Difilippo (2003) incorporated transportation costs into an inventory model for a two-

stage supply chain and a multi-criteria problem was solved.  The supply chain consisted of 

one wholesaler and multiple retailers, for which deterministic demand for a single product 

was known and lead time was fixed.  The three objectives to be minimized were the capital 

invested in inventory, the annual number of orders, and the annual transportation costs.  In 

addition, an interactive method specific to the problems was developed to solve both the 

centralized and decentralized supply chain cases.  Various inventory policies such as 

common replenishment and different replenishment times were also compared.  A fixed 

order policy was implemented into the decentralized system and it outperformed both of the 

centralized policies, a conclusion that was attributed to the freight rate structure of the 

problem.  This thesis will also use these criteria for minimizing the capital invested in 
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inventory.  However, goal programming will be used to solve the multiple criteria model for 

a four stage supply chain instead. 

Natarajan (2007) published work on several supply chain models that focused on 

inventory planning including transportation costs.  A freight rate function and a quantity 

discount model were incorporated in which breakpoints and indifference points were used to 

determine what per-unit cost was applied to each shipment.  Shipments could be full truck 

load (TL) or less than truck load (LTL) quantities and each type had different cost structures.  

The supply chain modeled consisted of a warehouse servicing several customers under 

decentralized control.  Initially, a single objective model was used to manage inventory at the 

warehouse while meeting customer demand.  That model was then extended into a multi-

criteria model in which the DM evaluated the optimal solution and the tradeoffs necessary to 

reach alternative solutions.  The DM‟s preferences among these solutions were used to derive 

the optimal solution that best satisfied the DM.  The three objectives were to minimize the 

capital invested in inventory, the annual number of orders, and the annual transportation 

costs.  This model was then extended to a third model in which stochastic demand and 

random lead time were incorporated as well as a fourth criterion, fill rate, which reflected the 

customer satisfaction.  All of the models were solved using Excel so the models can serve as 

a tool in industry.  The transportation cost modeling used by Natarajan is incorporated into 

this thesis where a similar freight rate function is used and indifference points are calculated 

and applied in the model. 

The work done by Mysore (2005) was extended by Vijayaragavan (2008) to include a 

supplier stage in the supply chain and add a second criterion to the model.  Vijayaragavan 

(2008) modeled a single-product centralized four stage supply chain with multiple suppliers, 
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one manufacturer, one warehouses, and multiple retailers.  The two objectives were to 

minimize cost while maximizing customer responsiveness.  Customer responsiveness was 

quantified as the total number of backorders that occurred over the entire time horizon.  One 

product composed of raw materials from the suppliers would travel along the supply chain 

where four transportation modes were available between each member of each stage.  

Incremental quantity discounts were available for each transportation mode.  The model was 

solved with both preemptive and non-preemptive goal programming.  The optimal solution 

minimized the sum of the deviations from the goals specified by the DM.  The solution 

indicated the optimal shipment quantities, transportation modes, and inventory levels over 

multiple periods.  This thesis will produce a similar type of solution through goal 

programming as well and the objective of maximizing the customer responsiveness will also 

be included.  It is assumed that customer responsiveness is measured as the total number of 

lost sales across the time horizon.  Any amount of demand that cannot be satisfied at the 

retailer is assumed to result in lost potential sales so the terms “customer responsiveness” and 

“lost sales” are interchangeable throughout this thesis.  The model presented in this thesis 

will extend the work done by Vijayaragavan (2008) by including multiple products, multiple 

manufacturers with several manufacturing lines, and multiple warehouses.  In addition, the 

second and third objectives will differ.  Lastly, an all-units discount structure will be used for 

the freight rate function instead of an incremental quantity discounts structure. 

2.5 Multiple Product Supply Chain Modeling 

 Although extensive work has been done on modeling single product system, it is 

common in industry for one company to own several products.  Similar to the combination of 
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inventory and transportation cost management into one model, it can be advantageous to 

merge multiple products into one supply chain to save costs.  However, there is limited 

literature on multiple product supply chain management.  This thesis will address a multiple 

product supply chain and will utilize previously presented modeling techniques, as well as 

techniques developed in the following work, to optimize the supply chain. 

When dealing with multiple products in one manufacturing facility, it is important to 

implement a production strategy that promotes efficiency.  Graves and Tomlin (2003) 

discussed the importance of flexible configurations in manufacturing facilities for 

multiproduct supply chains.  By analyzing the entire supply chain, the presence of 

bottlenecks specific to multi-stage supply chains was observed to decrease the effectiveness 

of supply chain configuration.  Therefore new supply chain configurations unique to multi-

stage supply chains were presented and it was observed that the overall efficiency was 

improved.  Federgruen and Katalan (1998) focused on the development of minimum cost 

production schedules in manufacturing facilities that produce multiple products.  In the 

model several products competed for production time on shared machines which had a fixed 

capacity.  The explanation and inclusion of the setup costs when a machine was converted to 

produce a different product was an important part of the model that influenced production 

costs.  A heuristic was developed for the production sequencing required to minimize system 

wide costs for the system presented. 

 Aggarwal and Dhavale (1975) modeled a complex multi-echelon inventory 

distribution system and analyzed the effects of variations on several input parameters.  The 

system consisted of one warehouse that received material from multiple suppliers and then 

distributed the material to five regional distribution centers.  From there the products were 
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distributed to their respective retailers.  To keep the problem within reasonable size limits, 

four products were modeled.  The independent variables in the model were demand, lead 

time and cost-rate structure while the dependent variables included five management criteria.  

These criteria, or performance measures, were average inventory investment, average annual 

number of reorders within the system, average shortage cost per year, average reordering cost 

per year, and average annual inventory carrying cost.  Analysis of variance was used to 

investigate the influence of each independent variable on the performance criteria and the 

findings were presented.   

Lenard and Roy (1995) focused on inventory control in systems where multiple items 

were managed simultaneously. An original approach was developed that did not focus solely 

on costs, but also on the grouping of items in to “families” that share attributes to more 

effectively model inventory.  Several different attributes were used for these groupings such 

as how the items were store and the minimum lead-times required for each item.  Each 

family was then assigned an aggregated item.  For example, there may be a functional group, 

or family, of items that are all used for one activity and without all of them available, the 

activity cannot commence.  These items would be assigned one aggregate item to represent 

the group.  The suggested strategy involved significant input from the decision maker 

regarding the standards for each family.  Once the families were formed, the decision maker 

was asked to specify the number of allowable shortages and a suggested period length for 

each family.  Their knowledge of the existing system to not only group the items, but also to 

define the attributes of the family was needed to develop the improved inventory 

management structure.  Subsequently, an efficient policy surface based on the number of 

shortages and the average stock levels was identified for the aggregated items and was 
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presented to give the manager a better view of the complete inventory system and aid in their 

decisions. 

 Viswanathan and Mathur (1997) addressed a single warehouse, multiple retailer 

distribution system.  There were several products with independent demands at each retailer.  

A peddling routing system was in place where vehicles left from the warehouse and 

distributed products to several retailers via an efficient route.  The goal was to determine a 

replenishment policy that minimized the long run average inventory and transportation costs.  

They developed a new heuristic that could handle multiple products and generate the optimal 

policy which was a stationary nested joint replenishment policy. 

 Qu et al. (1999) extended distribution system management models based on inventory 

and transportation decisions, to incorporate more than one product.  A traveling-salesman 

approach was used to develop a modified periodic-review inventory policy for a system.  The 

demand was stochastic, and inventory and transportation decisions were made 

simultaneously in the model.  The model considered a central warehouse that obtained 

materials from several suppliers.  A heuristic that decomposed the problem into a separate 

inventory and transportation problem first, and then iteratively merged the two decisions to 

minimize the long-run total average costs was proposed. 

 This thesis will address a multiproduct supply chain.  The modeling techniques for 

efficient production of multiple products at a manufacturer are incorporated as well as 

combined shipment methods.  Combining multiple products in one shipment provides a way 

to reduce transportation costs to promote overall supply chain efficiency.  
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Chapter 3 Problem Statement and Model Formulation 

3.1 Problem Statement 

 The problem solved in this thesis deals with a centralized, four stage supply chain for 

which the production plan, transportation modes and quantities, and inventory levels over 

several periods are solved for and specified in the presented solution.  In the interest of 

illustration during the model development, specific values will be assigned to the parameters 

of the problem.  In section 3.6, the general model will then be presented.  An illustrative 

example of the general model will then be presented in Chapter 4 with results and 

conclusions in Chapter 5.   

The centralized supply chain used to illustrate the model has five suppliers, two 

manufacturers, two company owned warehouses, and six retailers and fits the general supply 

chain network shown in Figure 3.1.  Each product, „p‟, is made up of up to „k‟ raw materials, 

where k is also equal to the number of suppliers in the supply chain.  Each supplier supplies 

on unique raw material to contribute to the manufacturing of the products.  The number of 

each raw material required for each product is defined as a ratio.  Production of a product 

will commence when all of the required raw material quantities have reached the 

manufacturer.  Each manufacturer has three production lines available to produce the two 

products that have independent demands at each retailer.  There are two modes of 

transportation, air and ground, available between each stage of the supply chain.  Each 

transportation mode takes a specified number of time periods, called lead time, to reach a 

location.  A freight-rate function that follows an All-Units discount cost structure, specific to 

each mode of transportation, is available for each transportation path.  In this cost structure, 
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the per-unit cost that corresponds to the cost bracket that the total quantity falls within is 

applied to the total quantity.  

 

 

 

 

 

 

 

Figure 3.1: The general supply chain network modeled in this thesis 

The goal is to determine the optimal quantities of material or product to ship between 

each stage, the most efficient mode of transportation for these shipments, and the optimal 

number of products to produce at each manufacturer and with which production lines.  These 

decisions are all driven by the deterministic demand for each product at each retailer.  The 

resulting inventory levels from this production and transportation schedule are specified.  

The schedule covers T time periods of production and demand.  The objectives of the model 

are to maximize profit and maximize customer responsiveness simultaneously.  Customer 

responsiveness is measured as the total number of lost sales across the entire time horizon in 

this thesis.  A third objective to minimize the amount of capital in inventory is then added 

and the problem is solved again.  This problem is modeled as a mixed-integer linear program 

that is solved using Goal Programming.  Preemptive and non-preemptive methods are used to 

construct the objective functions.  The weighted sum of the deviational variables that 
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represent the distance between the solution and the goal are minimized to optimize the 

problem.  The solutions for the preemptive and non-preemptive methods are then compared. 

3.2 Model Assumptions 

 A multi-period, four-stage, centralized supply chain is considered 

 The production of „P‟ products is modeled where p = {1,2,…,P} 

 There are „T’ time periods considered where t = {1,2,…,T} 

 The supply chain has ‘k’ suppliers, ‘m’ manufacturer, ‘n’ warehouses, and ‘r’ retailers 

 ‘K’ raw materials are available, one supplied by each supplier where k = {1,2,…,K} 

 Each product is made up of up to ‘K’ raw materials in a specified ratio represented by 

{r1p,r2p,…,rkp} 

 Two modes of transportation (e.g. air and ground) are available, denoted by i = {1,2} 

which also represents their respective lead times 

 The transportation modes are used to transport materials and products between each 

supplier and each manufacturer, each manufacturer and each warehouse, and each 

warehouse and each retailer 

 Shipment and delivery times vary depending on the transportation mode and are 

represented by the value of ‘i’ 

 Each transportation mode has a unique freight rate function that utilizes the All-Unit 

discount cost structure 

 Each manufacturing facility has ‘L’ production lines available where l = {1,2,…,L} 
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 Manufacturing of a product does not begin until all required quantities of each 

necessary raw material, based on the raw material ratios, have arrived at the 

manufacturer 

 Manufacturing of each product can be completed in 1 time period 

 Once a product has been manufactured it is shipped to one of the company owned 

warehouses 

 Inventory holding costs occur at the manufacturers and warehouses and vary at each 

location 

 Inventory holding costs are applied to products once they arrive at the location until 

they are shipped 

 Inventory costs are calculated based on the inventory levels at the end of each period 

 Inventory holding costs are no longer incurred after the product leaves the warehouse 

(i.e. FOB – Origin for the customer) 

 Products are retrieved from a warehouse and shipped to a retailer to satisfy expected 

demand 

 Demand for each product at each retailer is independent and deterministic  

 Lost sales can only occur at the retailers 
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3.3 Model Variables and Parameters 

The index sets used in the model formulation are:  

 c - index for transportation weight cost brackets for air shipments 

 d - index for adjusted transportation weight cost brackets for air shipments used for 

the All-Units discount cost structure 

e – index for transportation weight cost brackets for ground shipments 

f – index for adjusted transportation weight cost brackets for ground shipments used 

for the All-Units discount cost structure 

p – set of products being modeled 

i - set of transportation modes defined by their lead time being „i‟ time periods  

k - set of suppliers (also equal to the number of raw materials available)       

l – set of production lines available at each manufacturer 

m - set of manufacturers  

n - set of warehouses  

 r - set of retailers   

 t - set of time periods 

 u – set of objective functions 

 T – total length of the planning horizon 
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VARIABLES 

The following variables are used in the model:  

Xk m i t – quantity of raw material „k‟ shipped from supplier „k‟ to manufacturer „m‟ 

using transportation mode „i‟ in period „t‟ 

Yp m n i t – quantity of finished product „p‟ shipped from manufacturer „m‟ to 

warehouse „n‟ using transportation mode „i‟ in period „t‟ 

TYm n i t – total quantity of finished products shipped from manufacturer „m‟ to 

warehouse „n‟ using transportation mode „i‟ in time period „t‟ 

Zp n r i t – quantity of finished product „p‟ shipped from warehouse „n‟ to retailer „r‟ 

using transportation mode „i‟ in period „t‟ 

TZn r i t – total quantity of finished products shipped from warehouse „n‟ to retailer „r‟ 

using transportation mode „i‟ in time period „t‟ 

TRMk m t – total amount of raw material „k‟ from supplier „k‟ at manufacturer „m‟ in 

time period „t‟ 

RMk p m t – total amount of raw material „k‟ from supplier „k‟ used to manufacture 

product „p‟ at manufacturer „m‟ starting in time period „t‟ 

FPp m l t – total number of finished product „p‟ produced at manufacturer „m‟ on 

production line „l‟ at the end of time period „t‟ 

α p m l t – binary variable (0,1) indicating whether line „l‟ at manufacturing facility „m‟ 

is used for production of product „p‟ in time period „t‟ 
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TFPMp m t – total amount of finished product „p‟ available to ship from manufacturer 

„m‟ at the end of time period „t‟ 

WINVp n t – inventory of product „p‟ stored at warehouse „n‟ at the end of time    

period „t‟ 

TFPWp n t – total amount of finished product „p‟ received from all manufacturers at 

warehouse „n‟ in time period „t‟ 

TFPRp r t – total amount of finished product „p‟ shipped to retailer „r‟ in time period „t‟ 

from all the warehouses  

LOSTp r t – number of lost sales or unfilled demand of product „p‟ at retailer „r‟ at the 

end of time period „t‟ 

ρk m i t – binary variable (0,1) indicating whether a shipment of raw material „k‟ to 

manufacturer „m‟ using transportation mode „i‟ in time period „t‟ occurs 

τm n i t – binary variable (0,1) indicating whether a shipment from manufacturer „m‟ to 

warehouse „n‟ using transportation mode „i‟ in time period „t‟ occurs 

σn r i t – binary variable (0,1) indicating whether a shipment from warehouse „n‟ to 

retailer „r‟ using transportation mode „i‟ in time period „t‟ occurs 

δd – binary variable (0,1) indicating whether a portion of the weight of an air 

transportation shipment falls within cost bracket „d‟ 

TRMWAk m t – total weight of raw material shipment using air transportation from 

supplier „k‟ to manufacturer „m‟ in time period „t‟ 
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TRMWASk m t d – portion of total weight of raw material shipment using air 

transportation from supplier „k‟ to manufacturer „m‟ in time period „t‟ that 

lies in cost bracket „d‟ 

δ0k m t d – binary variable (0,1) indicating whether a portion of the weight of an air 

transportation shipment of raw materials from supplier „k‟ to manufacturer 

„m‟ in time period „t‟ falls within cost bracket „d‟ 

TRMWGk m t – total weight of raw material shipment using ground transportation from 

supplier „k‟ to manufacturer „m‟ in time period „t‟ 

TRMWGSk m t f  – portion of total weight of raw material shipment using ground 

transportation from supplier „k‟ to manufacturer „m‟ in time period „t‟ that 

lies in cost bracket „f‟ 

θ0k m t f  – binary variable (0,1) indicating whether a portion of the weight of a ground 

transportation shipment of raw materials from supplier „k‟ to manufacturer 

„m‟ in time period „t‟ falls within cost bracket „f‟ 

TFPWA1m n t – total weight of finished product shipment using air transportation from 

manufacturer „m‟ to warehouse „n‟ in time period „t‟ 

TFPWAS1m n t d – portion of total weight of finished product shipment using air 

transportation from manufacturer „m‟ to warehouse „n‟ in time period „t‟ 

that lies in cost bracket „d‟ 
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δ1m n t d – binary variable (0,1) indicating whether a portion of the weight of an air 

transportation shipment of finished products from manufacturer „m‟ to 

warehouse „n‟ in time period „t‟ falls within cost bracket „d‟ 

TFPWG1m n t – total weight of finished product shipment using ground transportation 

from manufacturer „m‟ to warehouse „n‟ in time period „t‟ 

TFPWGS1m n t f  – portion of total weight of finished product shipment using ground 

transportation from manufacturer „m‟ to warehouse „n‟ in time period „t‟ 

that lies in cost bracket „f‟ 

θ1m n t f  – binary variable (0,1) indicating whether a portion of the weight of a ground 

transportation shipment of finished products from manufacturer „m‟ to 

warehouse „n‟ in time period „t‟ falls within cost bracket „f‟ 

TFPWA2n r t – total weight of finished product shipment using air transportation from 

warehouse „n‟ to retailer „r‟ in time period „t‟ 

TFPWAS2n r t d – portion of total weight of finished product shipment using air 

transportation from warehouse „n‟ to retailer „r‟ in time period „t‟ that lies in 

cost bracket „d‟ 

δ2n r t d – binary variable (0,1) indicating whether a portion of the weight of an air 

transportation shipment of finished products from warehouse „n‟ to retailer 

„r‟ in time period „t‟ falls within cost bracket „d‟ 

TFPWG2n r t – total weight of finished product shipment using ground transportation 

from warehouse „n‟ to retailer „r‟ in time period „t‟ 
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TFPWGS2n r t f – portion of total weight of finished product shipment using ground 

transportation from warehouse „n‟ to retailer „r‟ in time period „t‟ that lies in 

cost bracket „f‟ 

θ2n r t f  – binary variable (0,1) indicating whether a portion of the weight of a ground 

transportation shipment of finished products from warehouse „n‟ to retailer 

„r‟ in time period „t‟ falls within cost bracket „f‟ 

µac – indifference point for cost bracket „c‟ 

µbe – indifference point for cost bracket „e‟ 

d – the number of cost brackets for air shipments in the cost structure including 

indifference points 

DMAX – the number of adjusted cost brackets that consider indifference points for air 

shipments 

f – the number of cost brackets for ground shipments in the cost structure including 

indifference points 

FMAX – the number of adjusted cost brackets that consider indifference points for 

ground shipments 

CAPAd – capacity of cost bracket „d‟ used for air shipment weights 

CAPGf – capacity of cost bracket „f‟ used for ground shipment weights 

TOTALCd – Total cost of an air shipment of total weight that falls into cost       

bracket „d‟ 
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TSOLDp r t – total number of units of product „p‟ sold at retailer „r‟ in time period „t‟ 

IDEALu – ideal solution found when objective „u‟ is solved independently from the 

other conflicting objectives 

TARGETu – target value, or goal, for objective „u‟ used in the goal programming 

formulation 

INPUT DATA  

The input parameters, which remain constant, of the problem are: 

INITRMk m – initial quantity of raw material „k‟ assumed to be available at 

manufacturer „m‟ at the beginning of the planning horizon 

rk p  - quantity of raw material „k‟ required to produce one unit of product „p‟ 

OPERCp m l – operating cost of production of product „p‟ on production line „l‟ at 

manufacturer „m‟ for one time period 

PRODCp m l t – the per-unit cost of production of product „p‟ at manufacturer „m‟ on 

line „l‟ in time period „t‟ 

MCAPp m l – maximum production capacity for product „p‟ on line „l‟ at manufacturer 

„m‟ in a single time period 

INVCRMk – inventory holding cost of raw material „k‟ held at a manufacturer per unit 

per time period 
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INITFPWp n – initial quantity of finished product „p‟ assumed to be available at 

warehouse „n‟ at the beginning of the planning horizon 

WCAPn – total finished product inventory capacity at warehouse „n‟ 

RDp r t – demand for product „p‟ at retailer „r‟ at the beginning of time period „t‟ 

INVCFPp – inventory holding cost of finished product „p‟ held at a warehouse per 

unit per time period 

INITFPRp r – initial quantity of finished product „p‟ assumed to be available at retailer 

„r‟ at the beginning of the planning horizon 

MINRM i – minimum quantity for shipments of raw material using transportation 

mode „i‟ 

MAXRM i – maximum quantity for shipments of raw material using transportation 

mode „i‟ 

MINFPi – minimum quantity for shipments of finished product using transportation 

mode „i‟ 

MAXFPi – maximum quantity for shipments of finished product using transportation 

mode „i‟ 

aLB – lower bound for weight of air shipments 

ac – upper bound on air shipments in cost bracket „c‟ 

bLB  - lower bound for weight of ground shipments 
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be –upper bound on ground shipments in cost bracket „e‟ 

AIRCc – the per hundredweight cost of air shipments in cost bracket „c‟ 

GROUNDCe – the per hundredweight cost of ground shipments in cost bracket „e‟ 

RMWk – per-unit weight (in CWT) of raw material „k‟ 

FPWp – per-unit weight (in CWT) of finished product „p‟ 

CMAX – the number of cost brackets available for air shipments 

EMAX – the number of cost brackets available for ground shipments 

REVp – revenue generated per unit sold of product „p‟ 

3.4 Constraints and Objectives of the Model 

3.4.1 Manufacturer Constraints and Costs 

3.4.1.1 Product Flow Constraints at the Manufacturers 

Two modes of transportation, air and ground, are available.  It is assumed that air has 

a lead time of one time period, and ground has a lead time of two time periods.  The time 

periods can take any base period such as days, weeks, or months depending on the problem 

being modeled.  The manufacturing and transport times are an integer multiple of this base 

period.  Transportation mode „i‟ takes „i‟ time periods to arrive at its destination.  Therefore 

the raw materials shipped with transportation mode „i‟ in time period „t-i‟ will arrive at the 

manufacturer at time period „t‟.   
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It is assumed that this is a model of an existing supply chain.  Therefore it is 

unrealistic to assume that there aren‟t existing materials in-transit on their way to the 

suppliers before time period 2, when the first scheduled shipments by this model arrive by 

air.  Therefore in time period 1, an initial amount of each raw material is assumed to be 

available at each manufacturer.  INITRMk m is assumed to be equal to the total quantity of 

each raw material in-transit and scheduled to arrive at manufacturer „m‟ in time period 1.   

Accordingly: 

 𝑇𝑅𝑀𝑘  𝑚  𝑡 = 𝐼𝑁𝐼𝑇𝑅𝑀𝑘  𝑚     ∀𝑘, 𝑚, 𝑡    𝑤𝑒𝑛 𝑡 = 1 

When t = 2, the only raw material that would be available at the manufacturers would have 

been shipped in time period 1 by air to the manufacturer.  Any other shipments would not 

have arrived yet.  Therefore:  

𝑇𝑅𝑀𝑘  𝑚  𝑡 = 𝑋𝑘  𝑚  1 (𝑡−1)   ∀𝑘, 𝑚, 𝑡    𝑤𝑒𝑛 𝑡 = 2 

After enough time has passed so all transportation modes are possible, then the 

material shipped with each mode is summed to determine how much material is arriving in 

time period „t‟.  Since there are only two modes of transportation available, the total amount 

of raw material  „k‟ at manufacturer „m‟ in time period „t‟ had to be shipped either one or two 

time periods previously.  Accordingly, when there are two modes of transportation available,                        

𝑇𝑅𝑀𝑘  𝑚  𝑡 =  𝑋𝑘  𝑚  1  𝑡−1 + 𝑋𝑘  𝑚  2  𝑡−2             ∀ 𝑚, 𝑘, 𝑡     𝑤𝑒𝑛 𝑡 ≥ 3 

To simplify the notation for shipments leaving each manufacturing facility, the 

following constraints define the total amount of finished product „p‟ available to leave 

manufacturing facility „m‟ at the end of time period „t‟ which is equal to the sum of the 
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finished product „p‟ finished on each production line „l‟.  It is assumed that it takes one time 

period to manufacture finished products so the first time period products are available is time 

period 2.  Before that the total finished product available is set to zero. 

𝐹𝑃𝑝  𝑚  𝑙 𝑡 =  0    ∀𝑝, 𝑚, 𝑙, 𝑡    𝑤𝑒𝑛 𝑡 = 1 

𝑇𝐹𝑃𝑀𝑝  𝑚  𝑡 =   𝐹𝑃𝑝  𝑚  𝑙 𝑡

𝑙

    ∀𝑝, 𝑚, 𝑡 

When three production lines are available (l = 3), the preceding equation would become: 

𝑇𝐹𝑃𝑀𝑝  𝑚  𝑡 = 𝐹𝑃𝑝  𝑚  1 𝑡 + 𝐹𝑃𝑝  𝑚  2 𝑡 + 𝐹𝑃𝑝  𝑚  3 𝑡      ∀𝑝, 𝑚, 𝑡 

It is assumed that shipments throughout the supply chain can consist of combinations 

of products.  The following constraints assure that once a product has completed 

manufacturing it is sent to a warehouse immediately since the manufacturers do not have 

storage room for finished product inventories.  The total amount of finished product „p‟ 

available for shipment from manufacturer „m‟ in time period „t‟ is distributed among 

quantities shipped to all of the warehouses „n‟ using all transportation modes „i‟.   

𝑇𝐹𝑃𝑀𝑝  𝑚  𝑡 =   𝑌𝑝  𝑚  𝑛  𝑖 𝑡

𝑖𝑛

    ∀𝑝, 𝑚, 𝑡 

3.4.1.2 Manufacturing Constraints  

It will be necessary to break up the raw material allocation among the products.    

RMk p m t is used to represent the amount of raw material „k‟ used to produce product „p‟ at 

manufacturer „m‟ starting in time period „t‟.  Therefore the following constraints define the 
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total amount of raw material „k‟ at manufacturer „m‟ in time period „t‟ that is to be used to 

manufacture each product.  

𝑇𝑅𝑀 𝑘  𝑚  𝑡 =  𝑅𝑀𝑘  𝑝  𝑚  𝑡

𝑝

      ∀𝑘, 𝑚, 𝑡 

When two products are being modeled,  

𝑇𝑅𝑀 𝑘  𝑚  𝑡 = 𝑅𝑀𝑘  1 𝑚  𝑡 + 𝑅𝑀𝑘  2 𝑚  𝑡        ∀𝑘, 𝑚, 𝑡 

Each product requires a unique blend of raw materials necessary for production at the 

manufacturers.  The variable rk p represents the quantity of raw material „k‟ required to 

produce one unit of product „p‟.  Let the raw material ratio for product 1 be represented by 

r11:r21:…:rK1.  For example, if the ratio for product 1 was 1:2:3:0:0 for the five raw materials 

available, then in order to produce 100 units of product 1, there would need to be 100 units of 

raw material 1, 200 units of raw material 2, and 300 units of raw material 3 available for 

product 1 production at a particular manufacturing facility.  It will be assumed that the 

manufacturing facilities operate under a Just In Time (JIT) environment.  Therefore, as soon 

as materials arrive at the manufacturer they are sent for production immediately.   

The products being modeled can all be manufactured within one time period.  Since it 

takes 1 time period to manufacture product „p‟, the raw material that arrives at the 

manufacturer in time period „t‟ and is used for product „p‟ will result in the finished product 

„p‟ at „t+1‟.  Once the materials arrive at the manufacturer, they are assigned a production 

line.  Each manufacturing facility is assumed to have three production lines (l = 1, 2, 3), all 

capable of producing all products, however only one product can be produced on a line at a 

time.  Therefore binary variables are used to control when materials can be processed on 
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certain lines depending on whether the product has been allotted production time on the 

production line.  The combination of the production ratios, and the total number of finished 

products possible create the constraints that implement the raw material ratios and ensure that 

a JIT environment is maintained at the manufacturing facilities.  The total quantity of each 

raw material required in period „t‟ can be written as follows, assuming three production lines 

are available at each manufacturer: 

𝑅𝑀1 𝑝  𝑚  𝑡 = 𝑟1 𝑝 ∗ 𝐹𝑃𝑝  𝑚  1  𝑡+1 + 𝑟1 𝑝 ∗ 𝐹𝑃𝑝  𝑚  2  𝑡+1 + 𝑟1 𝑝 ∗ 𝐹𝑃𝑝  𝑚  3  𝑡+1  

𝑅𝑀2 𝑝  𝑚  𝑡 = 𝑟2 𝑝 ∗ 𝐹𝑃𝑝  𝑚  1  𝑡+1 + 𝑟2 𝑝 ∗ 𝐹𝑃𝑝  𝑚  2  𝑡+1 + 𝑟 ∗ 𝐹𝑃𝑝  𝑚  3 (𝑡+1) 

⋮ 

𝑅𝑀𝐾 𝑝  𝑚  𝑡 = 𝑟𝐾 𝑝 ∗ 𝐹𝑃𝑝  𝑚  1  𝑡+1 + 𝑟𝐾 𝑝 ∗ 𝐹𝑃𝑝  𝑚  2  𝑡+1 + 𝑟𝐾 𝑝 ∗ 𝐹𝑃𝑝  𝑚  3 (𝑡+1) 

In general, all of the preceding constraints can be simplified with the following expression 

where T is the index for the last time period being modeled:  

𝑅𝑀𝑘  𝑝  𝑚  𝑡 =  (𝑟𝑘  𝑝 ∗ 𝐹𝑃𝑝  𝑚  𝑙 (𝑡+1))

𝑙

 ∀𝑘, 𝑝, 𝑚, 𝑡 𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑇 − 1 

Binary variables are used in conjunction with the finished product quantities to limit 

production to only lines that have been turned on.  The variable αp m l t is a binary variable that 

is equal to one when production line „l‟ at manufacturer „m‟ is used to manufacture product 

„p‟ in time period „t‟, and equal to 0 otherwise.  Since manufacturing of each product can be 

completed within one time period, the decision whether a production line is set up for a 

particular product „p‟ must be made at the beginning of each time period „t‟.  When a line is 

turned off, or not available for production of product „p‟, the finished product quantity on 
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that line is forced to zero.  It is assumed that each manufacturer has a fixed production 

capacity for each product on each line in a single time period.  Therefore, the number of 

finished products produced in time period t cannot exceed the production capacity of that line 

for that product, MCAPp m l t.   

The following constraint relates the line operation and capacity to the finished product 

quantity:  

𝛼𝑝  𝑚  𝑙 𝑡 ∗ 𝑀𝐶𝐴𝑃𝑝  𝑚  𝑙 ≥ 𝐹𝑃𝑝  𝑚  𝑙 𝑡     ∀𝑝, 𝑚, 𝑙, 𝑡 

Each line can only be set up to produce at most one product at a time in each time period.  

Consequently the following constraint is necessary: 

 𝛼𝑝  𝑚  𝑙 𝑡 ≤ 1       ∀𝑚, 𝑙, 𝑡

𝑝

 

The above constraint allows a line to be idle if necessary. 

3.4.1.3 Manufacturing Costs 

A fixed operating cost exists for each line, OPERCp m l t, independent of the amount 

produced.  Therefore, the total operating cost of the production lines at the manufacturing 

facilities across the entire time horizon is: 

    (𝑂𝑃𝐸𝑅𝐶𝑝  𝑚  𝑙 𝑡 ∗ 𝛼𝑝  𝑚  𝑙 𝑡)

𝑡𝑙𝑚𝑝

 

 A variable operating cost per unit of product „p‟ produced at manufacturer „m‟ on line 

„l‟ in time period „t‟ exists at the manufacturing facilities.  This cost, PRODCp m l t, is applied 
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to the number of finished products, to determine the total production cost across the entire 

time horizon: 

    (𝑃𝑅𝑂𝐷𝐶𝑝  𝑚  𝑙 𝑡 ∗ 𝐹𝑃𝑝  𝑚  𝑙 𝑡)

𝑡𝑙𝑚𝑝

 

3.4.1.4 Inventory Holding Costs at the Manufacturer 

Although the manufacturing facilities operate in a JIT environment, the raw materials 

remain at the manufacturer throughout the manufacturing process.  During this time an 

inventory holding cost is incurred for the work in process.  Since the manufacturing process 

only takes one time period the inventory holding cost at manufacturer „m‟ incurred in time 

period „t‟ is given by: 

  (𝑅𝑀𝑘  𝑝  𝑚  𝑡 ∗ 𝐼𝑁𝑉𝐶𝑅𝑀𝑘

𝑝𝑘

) 

The total raw material inventory holding cost at all manufacturers across the entire time 

horizon is: 

    (𝑅𝑀𝑘  𝑝  𝑚  𝑡 ∗ 𝐼𝑁𝑉𝐶𝑅𝑀𝑘)

𝑡𝑚𝑝𝑘

 

3.4.2 Warehouse Constraints and Costs 

3.4.2.1 Product Flow Constraints at the Warehouses 

All shipments of product „p‟ arriving at warehouse „n‟ in time period „t‟ that were 

shipped using transportation mode „i‟ had to be shipped in time period „t-i‟.  Similar to the 
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initial raw material quantities, initial finished product inventories are available at the 

warehouses at t = 1 and 2.  The first shipments to the warehouses can begin from t = 2 since 

it takes one time period to manufacture products.  In addition, the shortest lead time is one 

time period by air, so the earliest shipments scheduled by this model will arrive at the 

warehouses in time period 3.  Therefore, shipments leaving the manufacturers can be 

summarized by the following general constraints, which follow a similar format as the 

product flow constraints at the manufacturer:  

𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 = 𝐼𝑁𝐼𝑇𝐹𝑃𝑊𝑝  𝑛     ∀𝑝, 𝑛, 𝑡   𝑤𝑒𝑛 𝑡 = 1, 2 

𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 =  𝑌𝑝  𝑚  𝑛  1 𝑡−1

𝑚

    ∀𝑝, 𝑛, 𝑡   𝑤𝑒𝑛 𝑡 = 3    (Received by air) 

𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 =   𝑌𝑝  𝑚  𝑛  𝑖 𝑡−𝑖

𝑖𝑚

    ∀𝑝, 𝑛, 𝑡   𝑤𝑒𝑛 𝑡 ≥ 4     Received by air and ground  

The total amount of finished product „p‟ available for shipment from warehouse „n‟ in time 

period „t‟, including the existing inventory of product „p‟ at warehouse „n‟ from the end of 

time period „t-1‟, is distributed among quantities shipped to all of the retailers „r‟ using all 

transportation modes „i‟ as follows: 

𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 =   (𝑍𝑝  𝑛  𝑟  𝑖 𝑡)

𝑖𝑟

+ 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡     ∀𝑝, 𝑛, 𝑡    𝑤𝑒𝑛 𝑡 = 1 

Then the following general formula can be used: 

𝑇𝐹𝑃𝑊𝑝 𝑛  𝑡 + 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡−1 =   (𝑍𝑝  𝑛  𝑟  𝑖 𝑡)

𝑖𝑟

+ 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡     ∀𝑝, 𝑛, 𝑡    𝑤𝑒𝑛 𝑡 ≥ 2 
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Each warehouse has limited space, or capacity, for its inventory.  Therefore a maximum 

capacity constraint on the total inventory held over a time period at a warehouse is required. 

 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡

𝑝

≤ 𝑊𝐶𝐴𝑃𝑛     ∀𝑛, 𝑡 

3.4.2.2 Inventory Holding Costs at the Warehouse 

 The finished product stored at the warehouses incurs a per-period inventory holding 

cost.  The inventory holding cost is applied at the end of each time period to the number of 

products held in inventory until the next time period.  Therefore the total inventory holding 

cost at warehouse „n‟ at the end of time period „t‟ is: 

  (𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡 ∗ 𝐼𝑁𝑉𝐶𝐹𝑃𝑝)

𝑡𝑝

   ∀𝑛 

The total inventory holding cost at all warehouses across the entire time horizon is: 

   (𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡 ∗ 𝐼𝑁𝑉𝐶𝐹𝑃𝑝
𝑡𝑛𝑝

) 

3.4.3 Retailer Constraints and Costs 

3.4.3.1 Product Flow Constraints at the Retailers 

Initial inventory of finished products is available at the retailers before the first 

shipment scheduled by this model from the warehouses arrives.  Therefore the following 

constraints ensure the product flow out of the warehouses to the retailers.   
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𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 = 𝐼𝑁𝐼𝑇𝐹𝑃𝑅𝑝  𝑟     ∀𝑝, 𝑟, 𝑡   𝑤𝑒𝑛 𝑡 = 1 

𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 =  𝑍𝑝  𝑛  𝑟  1 𝑡−1

𝑛

    ∀𝑝, 𝑟, 𝑡   𝑤𝑒𝑛 𝑡 = 2 

𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 =   𝑍𝑝  𝑛  𝑟  𝑖 𝑡−𝑖

𝑖𝑛

    ∀𝑝, 𝑟, 𝑡   𝑤𝑒𝑛 𝑡 ≥ 3 

The demand at the retailers drives shipments from the warehouses in each time 

period.  It is assumed that inventory cannot be held at the retailers, however retailer demands 

may not be fulfilled during a time period.  If there is not enough product at a retailer to 

satisfy the demand, the quantity of demand that is not filled is classified as lost sales.  In a 

supply chain model, sometimes unfulfilled demand is intentional because it is not profitable 

to satisfy the demand.  In other cases the lack of product at the retailer is not intentional and 

therefore results in potential sales being lost.  This quantity, regardless of whether the 

unfulfilled demand was intentional or not, is called lost sales in this model.   Thus, the 

demand constraint at the retailers is written as follows:  

𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 + 𝐿𝑂𝑆𝑇𝑝  𝑟  𝑡 = 𝑅𝐷𝑝  𝑟  𝑡     ∀𝑝, 𝑟, 𝑡 

3.4.4 Transportation Quantity Constraints 

The transportation modes in this model have a specified minimum and maximum 

shipment quantity due to available capacity.  These limits depend on the transportation mode 

and whether raw material or finished products are being shipped.  This setup is used because 

it is assumed that the raw materials are all of similar size and weight.  The same assumption 

holds true for the finished products.  A minimum shipment is often imposed by transportation 



48 
 

companies to ensure that they carry enough product to charge a reasonable per-unit cost to 

offset their fixed operating costs.  The maximum shipment quantity is necessary because of 

capacity constraints of the transportation mode as well as weight limits.  Tables 3.1 and 3.2 

summarize the parameters regarding transportation mode and quantity limits for raw 

materials and finished products respectively. 

Table 3.1: Shipping limits on raw material shipments 

Transportation 

Mode 

Minimum Shipping 

Quantity for Raw Material k 

Maximum Shipping 

Quantity for Raw Material k 

i MINRM i MAXRM i 

 

Table 3.2: Shipping limits on finished product shipments 

Transportation 

Mode 

Minimum Finished Product 

Shipping Quantity 

Maximum Finished Product 

Shipping Quantity 

i MINFPi MAXFPi 

 

The following constraints ensure that all shipping quantities for each transportation 

mode meet the appropriate levels for transport from suppliers to manufacturers.  Xk m i t 

represents the quantity of raw material „k‟ shipped from supplier „k‟ to manufacturer „m‟ 

using transportation mode „i‟ in time period „t‟.  The constraint is enforced using the binary 

variable ρk m i t, when the shipment quantities are larger than 0.  Otherwise the quantity 

remains 0.  Therefore the constraints on the quantity of raw material shipped from suppliers 

to manufacturers are: 

𝜌𝑘  𝑚  𝑖 𝑡 ∗ 𝑀𝐼𝑁𝑅𝑀 𝑖 ≤ 𝑋𝑘  𝑚  𝑖 𝑡 ≤ 𝜌𝑘  𝑚  𝑖 𝑡 ∗ 𝑀𝐴𝑋𝑅𝑀 𝑖         ∀𝑘, 𝑚, 𝑖, 𝑡 
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M is assumed to be a large integer: 

𝑋𝑘  𝑚  𝑖 𝑡 ≤ 𝑀 ∗ 𝜌𝑘  𝑚  𝑖 𝑡    ∀𝑘, 𝑚, 𝑖, 𝑡 

Finished products are produced at the manufacturing stage and are then shipped to the 

warehouses and then to the retailers.  Although the production process and demands are 

independent for each product „p‟, it is assumed that the finished products can be combined 

during shipments.  Therefore, the limits regarding finished product shipments must consider 

the total number of finished products in a shipment regardless of the quantity of each 

individual product.  TYm n i t represents the total number of finished products shipped from 

manufacturer „m‟ to warehouse „n‟ using transportation mode „i‟ in time period „t‟ and is 

represented by:   

𝑇𝑌𝑚  𝑛  𝑖 𝑡 =  𝑌𝑝  𝑚  𝑛  𝑖 𝑡     ∀ 𝑚, 𝑛, 𝑖, 𝑡

𝑝

 

The constraints to enforce the shipping quantity limits on these quantities are represented by: 

τm n i t ∗ 𝑀𝐼𝑁𝐹𝑃 𝑖 ≤ 𝑇𝑌𝑚  𝑛  𝑖 𝑡 ≤ τm n i t ∗ 𝑀𝐴𝑋𝐹𝑃 𝑖         ∀𝑚, 𝑛, 𝑖, 𝑡 

 

M is assumed to be a large integer: 

𝑇𝑌𝑚  𝑛  𝑖 𝑡 ≤ 𝑀 ∗ 𝜏𝑚  𝑛  𝑖 𝑡         ∀𝑚, 𝑛, 𝑖, 𝑡 

Shipments from the warehouses to retailers can consist of multiple product types as 

well.  The total amount of finished products being shipped from warehouse „n‟ to retailer „r‟ 

using transportation mode „i‟ in time period „t‟ is defined by: 
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𝑇𝑍𝑛  𝑟  𝑖 𝑡 =  𝑍𝑝  𝑛  𝑟  𝑖 𝑡     ∀ 𝑛, 𝑟, 𝑖, 𝑡

𝑝

 

The constraints restricting the shipping quantities from stage 2 to stage 1 in the supply chain 

are: 

        σ𝑛  𝑟  𝑖 𝑡 ∗ 𝑀𝐼𝑁𝐹𝑃 𝑖 ≤ 𝑇𝑍𝑛  𝑟  𝑖 𝑡  ≤ σ𝑛  𝑟  𝑖 𝑡 ∗ 𝑀𝐴𝑋𝐹𝑃 𝑖         ∀𝑛, 𝑟, 𝑖, 𝑡 

 

M is assumed to be a large integer: 

𝑇𝑍𝑛  𝑟  𝑖 𝑡 ≤ 𝑀 ∗ 𝜎𝑛  𝑟  𝑖 𝑡         ∀𝑛, 𝑟, 𝑖, 𝑡 

3.4.5 Freight Rate Function 

3.4.5.1 Cost Structure Notation 

 The freight rate function for the transportation modes in this model follows an All-

Units discount cost structure.  Similar to a minimum shipment quantity requirement, many 

transportation companies try to offset fixed costs by making larger shipments more cost 

effective for companies purchasing the transportation.  The transportation companies often 

incur the same large fixed cost for a shipment regardless of the weight or quantity.  For 

example, the difference in cost to drive an empty truck compared to a full truck from New 

York to Ohio is minimal compared to the fixed cost of fuel, the truck, the driver, and the 

time.  Therefore, many companies offer an All-Units discount cost structure to try to force 

full truck load (TL) shipments rather than less than truck load (LTL) shipments in order to 

incur the large fixed cost less often.  It is common to define a TL shipment as a shipment that 
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achieves the maximum weight allowance for the transportation mode.  In addition, a 

minimum weight can be used to offset the fixed cost of the transportation mode.  Shipment 

weights in this thesis are measured in hundredweight units (CWT), or 100lbs of shipment.

 Transportation companies give incentives to shippers by offering a lower per CWT 

cost for heavier, and therefore fuller, shipments.  Shippers will then opt to aggregate their 

orders into fewer complete orders rather than ordering just a few items rather frequently.  In 

the All-Units discount cost structure, the per-CWT cost is applied to the entire order quantity.  

This is different than the Incremental discount cost structure, in which the lower cost is only 

applied to the units that fall within a certain cost bracket.  An example of a general All-Units 

discount cost structure where X represents the total shipment weight in CWT is presented in 

Table 3.3.  In the example, if 4,000 CWT are shipped, the shipping cost will be (4000)*(0.75) 

= $3,000. 

Table 3.3: An example of an All-Units discount cost structure  

Per-Unit Cost Weight Limits (CWT) 

$1.00 0 ≤ X ≤ 999 

$0.90 1,000 ≤ X ≤ 2,999 

$0.75 3,000 ≤ X ≤ 5,999 

$0.55 6,000 ≤ X ≤ 10,000 

 It is more common to have weight restrictions with air shipments than ground.  

Binary indicator variables used in the constraints for shipments between each stage of this 

model are δ0c, δ1c, δ2c, θ0e, θ1e, and θ2e, depending on which stages the shipments are 

between.  The indicator variables are equal to 1 when the shipment weight falls within the 

weight limits for cost bracket „c‟ or „e‟.  Tables 3.4 and 3.5 display the notation for the 

parameters surrounding the All-Units cost structure for air and ground transportation 
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respectively.  In this notation, the index denotes the cost bracket.  The indicator variables are 

generalized as just δc or θe in the tables.  The variable δEc is used for the example. 

Table 3.4: All-Units discount cost structure for air transportation 

Bracket Index 

(c) 
Per-CWT Cost 

Air Shipment       

Weight Limits (CWT) 
Indicator Variable (δc) 

1 AIRC1 aLB ≤ X ≤ a1 δ1 

2 AIRC2 (a1+1) ≤ X ≤ a2 δ2 

3 AIRC3 (a2+1) ≤ X ≤ a3 δ3 

4 AIRC4 (a3+1) ≤ X ≤ a4 δ4 

Table 3.5: All-Units discount cost structure for ground transportation 

Bracket Index 

(e) 
Per-CWT Cost 

Ground Shipment 

Weight Limits (CWT) 
Indicator Variable (θe) 

1 GROUNDC1 bLB ≤ X ≤ b1 θ1 

2 GROUNDC2 (b1+1) ≤ X ≤ b2 θ2 

3 GROUNDC3 (b2+1) ≤ X ≤ b3 θ3 

4 GROUNDC4 (b3+1) ≤ X ≤ b4 θ4 

As incentive for the company purchasing the transportation mode, heavier shipments will 

incur a smaller per-CWT cost, so AIRC1 > AIRC2 > AIRC3 > AIRC4 in this cost structure.  

The costs for ground shipments, represented by GROUNDCe, follow the same decreasing 

structure as weights get higher.  The cost structure is represented graphically in Figure 3.2. 
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Figure 3.2: Graphical representation of an All-Units discount cost structure 

 The cost function for the All-Units discount cost structure summarized in Table 3.4 is 

represented with the following cost function: 

𝑓 𝑥 =  

𝑋 ∗ 𝐴𝐼𝑅𝐶1     𝑤𝑒𝑛 𝑎𝐿𝐵 ≤ 𝑋 ≤ 𝑎1

𝑋 ∗ 𝐴𝐼𝑅𝐶2     𝑤𝑒𝑛 (𝑎1 + 1) ≤ 𝑋 ≤ 𝑎2

𝑋 ∗ 𝐴𝐼𝑅𝐶3

𝑋 ∗ 𝐴𝐼𝑅𝐶4

    𝑤𝑒𝑛
    𝑤𝑒𝑛

(𝑎2 + 1) ≤ 𝑋 ≤ 𝑎3

(𝑎3 + 1) ≤ 𝑋 ≤ 𝑎4

  

Consequently, the total cost of an air shipment of weight X would be: 

𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 =   (𝐴𝐼𝑅𝐶𝑐 ∗ 𝑋 ∗ 𝛿𝐸𝑐

𝑐

) 

This equation for the shipment cost is now nonlinear.  Nonlinear problems are difficult to 

solve and there is a risk of identifying a local maxima or minima as the optimal solution 

instead of the global maxima or minima.  Consequently, the above equation must be 

converted to a linear function so linear optimization software and solution procedures can be 

used to identify the global solution.  This transformation is discussed in section 3.4.6.3.1. 

AIRC1 
AIRC2 AIRC3 AIRC4 

Shipment Weight X (CWT) 

aLB 

Cost f(x) 

a1 a2 a3 
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3.4.5.2 Shipment Weight Constraints 

 The cost brackets in this model will depend on shipments weights in CWT units.  The 

constant RMWk represents the per-unit weight (in CWT) of raw material „k‟ and FPWp 

represents the per-unit weight (in CWT) of finished product „p‟.  These per-unit weights are 

multiplied by the shipment quantity to define the total weight (in CWT) of shipments.  These 

total weights are used to define the value of X, the total shipment weight, which determines 

the cost bracket a shipment falls into.  Since shipments in this model consist of just raw 

materials or just finished products, two different sets of transportation constraints are 

necessary for each transportation mode.  The total weight of a raw material shipment of 

material „k‟ from supplier „k‟ to manufacturer „m‟ using air transportation in time period „t‟ 

is defined as follows:  

𝑇𝑅𝑀𝑊𝐴𝑘  𝑚  𝑡 = (𝑅𝑀𝑊𝑘 ∗ 𝑋𝑘  𝑚  1 𝑡)       ∀𝑘, 𝑚, 𝑡 

Similarly, the total raw material weight of a ground shipment is: 

𝑇𝑅𝑀𝑊𝐺𝑘  𝑚  𝑡 = (𝑅𝑀𝑊𝑘 ∗ 𝑋𝑘  𝑚  2 𝑡)       ∀𝑘, 𝑚, 𝑡 

 Finished product shipments can consist of combinations of quantities of all products 

„p‟.  Consequently the total weight of a finished product shipment requires the summation of 

each product‟s weight multiplied by the number of that product in a shipment.  Therefore the 

total weight of finished product shipments from either manufacturers to warehouses, or 

warehouses to retailers, are defined as follows: 
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𝑇𝐹𝑃𝑊𝐴1𝑚  𝑛  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑌𝑝  𝑚  𝑛  1 𝑡)       ∀𝑚, 𝑛, 𝑡 

𝑇𝐹𝑃𝑊𝐺1𝑚  𝑛  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑌𝑝  𝑚  𝑛  2 𝑡)       ∀𝑚, 𝑛, 𝑡 

𝑇𝐹𝑃𝑊𝐴2𝑛  𝑟  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑍𝑝  𝑛  𝑟  1 𝑡)       ∀𝑛, 𝑟, 𝑡 

𝑇𝐹𝑃𝑊𝐺2𝑛  𝑟  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑍𝑝  𝑛  𝑟  2 𝑡)       ∀𝑛, 𝑟, 𝑡 

The cost brackets will depend on the previously defined total weight quantities. 

3.4.5.3 Breakpoints and Indifference Points 

 In the interest of illustration, the discussion in sections 3.4.6.2 and 3.4.6.3 will refer 

mostly to the example of the All-Units cost structure presented in Table 3.3.  It will be 

assumed that an air shipment of weight X CWT is being modeled and there are four original 

cost brackets.  The extension of the modeling to the variables used in this model is presented 

in section 3.4.6.4. 

 Since larger shipments yield a lower per-unit cost, the practice of over-declaring 

shipments becomes very relevant in an All-Units discount model.  At times it may be 

advantageous to artificially inflate a shipment weight to achieve a lower per-CWT cost for 

the entire shipment.  To determine when it is economical to over-declare a shipment, the 

company purchasing the shipments must decide where the indifference and breakpoints are.  

The indifference point is the weight which, when multiplied by the per-CWT cost in the next 

cost bracket, yields the same total cost as the total cost of the minimum weight at the next 
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breakpoint.  The breakpoint is the minimum weight of the next cost bracket and is the weight 

that should be declared once a shipment weight surpasses the indifference point.  It is 

appropriate to over-declare a shipment when the actual shipment weight lies between the 

indifference point and the breakpoint.  The following notation corresponds to the example 

provided in Tables 3.4 and 3.5.  The indifference point for air shipments is defined with the 

following equation: 

𝜇𝑎 𝑐−1 =  
(𝐴𝐼𝑅𝐶𝑐 ∗ (𝑎𝑐−1 + 1))

𝐴𝐼𝑅𝐶 𝑐−1 
       ∀𝑐    𝑤𝑒𝑟𝑒 𝑐 > 1 

c = cost bracket index 

AIRCc = per-hundredweight cost of an air shipment in cost bracket „c‟ 

ac-1+1 = lower quantity breakpoint for bracket „c‟ 

µac = indifference point for cost bracket „c‟ 

 

The indifference points for ground shipments are similarly defined. 

𝜇𝑏 𝑒−1 =  
(𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ (𝑏𝑒−1 + 1))

𝐺𝑅𝑂𝑈𝑁𝐷𝐶 𝑒−1 
       ∀𝑒  𝑤𝑒𝑟𝑒 𝑒 > 1 

e = cost bracket index 

GROUNDCe = per-hundredweight cost of a ground shipment in cost bracket „e‟ 

be-1+1 = lower quantity breakpoint for bracket „e‟ 

µbe = indifference point for cost bracket „e‟ 

Table 3.6 summarizes the same costs and weight limits presented in Table 3.3 along with 

total cost of the orders and assumes they correspond with air transportation.  
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Table 3.6: Example of an All-Units cost structure for air shipments 

Cost Bracket 

Index 
Per-CWT Cost 

Weight Limits 

(CWT) 

Fixed cost calculated at 

lower limit 

1 $1.00 0 ≤ X ≤ 999 $0 + part thereof 

2 $0.90 1,000 ≤ X ≤ 2,999 $900 + part thereof 

3 $0.75 3,000 ≤ X ≤ 5,999 $2,250 + part thereof 

4 $0.55 6,000 ≤ X ≤ 10,000 $3,300 + part thereof 

For example, using the values from Table 3.3 presented earlier, the following equations 

would be used to calculate the indifference point for an air shipment and cost bracket 2: 

𝜇𝑎1 =
(𝐴𝐼𝑅𝐶2 ∗ (𝑎1 + 1))

𝐴𝐼𝑅𝐶1
=

(0.9 ∗ 1,000)

1.00
= 900 

 Therefore, if the air shipment weight is between 900 and 1,000 it should be declared 

as 1,000 to get the lower per-unit cost of cost bracket 2.  The total cost of a shipment weight 

that falls between 900 and 1,000 will then always be $0.9*1,000 = $900.  This is proven to 

be advantageous to the company purchasing the shipment because if 901 CWT‟s was 

declared, the total cost would be $1.00*901 = $901, which is more expensive than the cost of 

the over-declared weight of 1,000.  This is true for any shipment weight from 901 to 999 that 

is not over-declared.  The identification and use of the indifference points yield significant 

savings on transportation costs to the shippers.  When calculating indifference points, if the 

resulting weight is a decimal it should always be rounded down to the nearest integer.  The 

indifference points and total cost for the example are presented in Table 3.7. 
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Table 3.7: Example of indifference points and costs for All-Units discounts model 

Weight Limits 

(CWT) 
Indifference Point 

0 ≤ X ≤ 999 900 

1,000 ≤ X ≤ 2,999 2,250 

3,000 ≤ X ≤ 5,999 3,300 

6,000 ≤ X ≤ 10,000 N/A 

Table 3.8 summarizes the final cost structure of the example with consideration for the 

indifference points.  The capacity of each cost bracket, denoted by CAPAd for air shipments, 

is also included.  

Table 3.8: Example of final cost structure with indifference points 

Cost 

Bracket 

Index 

Per-CWT 

Cost 

(AIRCadjd) 

Weight Limits 

(CWT) 

Bracket 

Capacity 

(CAPAd) 

Total Cost 

(TotalCd) 

Indicator 

Variable 

(δEd) 

1 $1.00 0 ≤ X ≤ 900 900 $1.00*X δE1 

2 $0.90 901≤ X ≤999 98 $900 δE2 

3 $0.90 1,000 ≤ X ≤ 2,500 1,400 $0.9*X δE3 

4 $0.75 2,501 ≤ X ≤ 2,999 498 $2,250 δE4 

5 $0.75 3,000 ≤ X ≤ 4,400 1,400 $0.75*X δE5 

6 $0.55 4,401 ≤ X ≤ 5,999 1,598 $3,300 δE6 

7 $0.55 6,000 ≤ X ≤ 10,000 4,000 $0.55*X δE7 
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The resulting cost structure from Table 3.8 with the weights labeled is displayed in Figure 

3.3.      

Figure 3.3: Graphical representation of cost structure including indifference points 

 The graphical representation is a piece-wise linear function.  As weight increases 

costs still decrease, but in a piecewise manner which reflects the „economies-of-scale‟ trend 

often implemented in discount structures.  The dashed line represents the trend line of the 

graph.  The slope of the trend line decreases as quantity increases supporting the lower per-

CWT costs of higher weight shipments. The flat portions of the graph represent the quantities 

between the indifference point and the following breakpoint.  The indifference point is the 

left point of a flat portion and the next breakpoint is the right point.  The total cost in this 

range is constant by over-declaring the weight as the lower weight limit of the subsequent 

cost bracket therefore represented by a flat curve.  If the shipment weight is greater than or 

equal to the breakpoint but less than the next indifference point, the cost function is 

increasing depending on the variable cost which accounts for the weight above the 

breakpoint.  However, if the weight falls between the indifference point and the cost bracket 

breakpoint, then the weight should be over-declared and the total cost defined as a constant.  
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For example, if the shipment weight is 4,000 units, then the exact shipment weight is 

declared and the total cost is ($0.75)*(4,000) = $3,000.  However, if the shipment weight is 

2,800 units, it is economical to over-declare the shipment as 3,000 CWT‟s and incur a cost of 

($0.75)*(3,000) = $2,250. 

3.4.5.4 Modeling the Freight Rate Function 

 As seen in the example, the number of cost brackets necessary to model the All-Units 

discount model is larger than the original number of cost brackets.  Given that the index „c‟ 

was used to represent the original number of cost brackets for air transportation, the 

following constraint defines the number of cost brackets necessary to accurately model the 

All-Units discount cost structure while taking into account the indifference points.  CMAX is 

the largest value of the index „c‟ and DMAX is the largest value of the index „d‟.   

𝑑 = 2𝑐 − 1 

And so,  

𝐷𝑀𝐴𝑋 = (2 ∗ 𝐶𝑀𝐴𝑋) − 1 

Given „e‟ represents the original cost brackets for ground transportation, the number of cost 

brackets necessary for the All-Units discount cost structure is „f‟.  EMAX is the largest value 

of the index „e‟ and FMAX is the largest value of the index „f‟. 

𝑓 = 2𝑒 − 1 

Similarly, 

𝐹𝑀𝐴𝑋 =  2 ∗ 𝐸𝑀𝐴𝑋 − 1 
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 The original data presents the costs and breakpoints for each transportation mode.  

However, the costs incurred must depend on the indifference points.  Therefore new 

variables are dedicated to the adjusted costs and weight limits to include the indifference 

points.  Table 3.9 represents the same information as Table 3.8, however the values are 

displayed as variable names and air transportation is still assumed. 

Table 3.9: Variables for example of cost structure with indifference points 

Bracket 

Index (d) 

Per-CWT Cost 

(AIRCadjd) 

Weight Limits 

(CWT) 

Bracket Capacity 

(CAPAd) 

Total Cost 

(TotalCd) 

Indicator 

Variable 

(δEd) 

1 AIRC1 aLB ≤ X ≤ µa1 µa1 – aLB AIRC1*X δE1 

2 AIRC2 (µa1+1)≤ X ≤ a1 a1 – (µa1+1) (a1+1)*AIRC

2 

δE2 

3 AIRC2 (a1+1) ≤ X ≤ µa2 µa2 – (a1+1) AIRC2*X δE3 

4 AIRC3 (µa2+1) ≤ X ≤ a2 a2 – (µa2+1) (a2+1)*AIRC

3 
δE4 

5 AIRC3 (a2+1) ≤ X ≤ µa3 µa3 – (a2+1) AIRC3*X δE5 

6 AIRC4 (µa3+1) ≤ X ≤ a3 a3 – (µa3+1) (a3+1)*AIRC

4 
δE6 

7 AIRC4 (a3+1) ≤ X ≤ a4 a4 – (a3+1) AIRC4*X δE7 

The capacity of each cost bracket in the adjusted model can be defined generally as follows: 

𝐶𝐴𝑃𝐴2𝑐−1 = 𝜇𝑎𝑐 − 𝑎𝐿𝐵    𝑤𝑒𝑛 𝑐 = 1 

𝐶𝐴𝑃𝐴2𝑐−1 = 𝜇𝑎𝑐 − (𝑎𝑐−1 + 1)    ∀ 𝑐 𝑤𝑒𝑛 2 ≤ 𝑐 ≤ 𝐶𝑀𝐴𝑋 − 1 

𝐶𝐴𝑃𝐴2𝑐−1 = 𝑎𝑐 − (𝑎𝑐−1 + 1)    𝑤𝑒𝑛 𝑐 = 𝐶𝑀𝐴𝑋 

𝐶𝐴𝑃𝐴2𝑐 = 𝑎𝑐 − (𝜇𝑎𝑐 + 1)    𝑤𝑒𝑛 𝑐 = 1 

𝐶𝐴𝑃𝐴2𝑐 = 𝑎𝑐 − (𝜇𝑎𝑐 + 1)    ∀ 2 ≤ 𝑐 ≤ 𝐶𝑀𝐴𝑋 − 1 
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The variable CAPGf  is used to represent the capacity of the cost brackets for ground 

shipments.  Therefore the following constraints define the capacities: 

𝐶𝐴𝑃𝐺2𝑒−1 = 𝜇𝑏𝑒 − 𝑏𝐿𝐵    𝑤𝑒𝑛 𝑒 = 1 

𝐶𝐴𝑃𝐺2𝑒−1 = 𝜇𝑏𝑒 − (𝑏𝑒−1 + 1)    ∀𝑒 𝑤𝑒𝑛 2 ≤ 𝑒 ≤ 𝐸𝑀𝐴𝑋 − 1 

𝐶𝐴𝑃𝐺2𝑒−1 = 𝑏𝑒 − (𝑏𝑒−1 + 1)    𝑤𝑒𝑛 𝑒 = 𝐸𝑀𝐴𝑋 

𝐶𝐴𝑃𝐺2𝑒 = 𝑏𝑒 − (𝜇𝑏𝑒 + 1)    𝑤𝑒𝑛 𝑒 = 1 

𝐶𝐴𝑃𝐺2𝑒 = 𝑏𝑒 − (𝜇𝑏𝑒 + 1)    ∀𝑒 𝑤𝑒𝑛 2 ≤ 𝑒 ≤ 𝐸𝑀𝐴𝑋 − 1 

 As noted previously, the transportation cost is represented by: 

 (𝐴𝐼𝑅𝐶𝑐 ∗ 𝑋 ∗ 𝛿𝑐)

𝑐

 

Xd is used to represent the shipment weight (in CWT) that falls within the weight limits of the 

adjusted cost bracket „d‟.  Therefore, using the adjusted cost structure presented in Table 3.9, 

the total cost of an air shipment of weight X is: 
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𝐴𝐼𝑅𝐶1 ∗ 𝑋1 ∗ 𝛿𝐸1 + 𝐴𝐼𝑅𝐶2 ∗ 𝑋2 ∗ 𝛿𝐸2 + 𝐴𝐼𝑅𝐶2 ∗ 𝑋3 ∗ 𝛿𝐸3 + 𝐴𝐼𝑅𝐶3 ∗ 𝑋4 ∗ 𝛿𝐸4 + 𝐴𝐼𝑅𝐶3

∗ 𝑋5 ∗ 𝛿𝐸5 + 𝐴𝐼𝑅𝐶4 ∗ 𝑋6 ∗ 𝛿𝐸6 + 𝐴𝐼𝑅𝐶4 ∗ 𝑋7 ∗ 𝛿𝐸7 

Subject to, 

𝑋 =  𝑋𝑑

𝑑

 

 𝛿𝐸𝑑 = 1

𝑑

 

𝑋𝑑 ≥ 0    ∀𝑑 

𝛿𝐸𝑑  𝜖  0,1    ∀𝑑 

Since the cost function is nonlinear due to the multiplication of variables, the linearization of 

the cost structure using indifference points is necessary. 

3.4.5.4.1 Linearization of Freight Rate Function 

 Each cost bracket presented in Table 3.8 has an adjusted weight range based on the 

breakpoints and indifference points.  The difference between the upper and lower limits of 

the range is referred to as the capacity of the bracket, CAPAd.  The cost bracket itself will be 

considered to be a „bucket‟ of fixed capacity.  The shipment weight is distributed among the 

buckets, filling them in order and to capacity before moving on to the next bucket.  Based on 

the example, the first cost bracket would have a bucket of capacity 900 - 0 = 900 CWT‟s 

(CAPA1).  The price per CWT in this bucket is $1.00, or AIRCadj1.  The total cost of a 

shipment that has a weight that can be held by this bucket is equal to the actual weight 

multiplied by $1.00 for every CWT.  The second cost bracket would have a bucket of 

capacity 999 – 901 = 98 CWT‟s (CAPA2).  However, unlike bucket 1, the total cost of a 
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weight that extends into this bucket is fixed at $900, regardless of how full bucket 2 gets.  It 

is important to note that bucket 2 cannot be filled until bucket 1 is filled to capacity.  

Therefore, there would be a set of buckets lined up next to each other, which are to be filled 

sequentially.  Once one bucket is filled to its maximum weight, or capacity, the remaining 

weight pours over into the next bucket and so on.  For example bucket 4 cannot begin to be 

filled until buckets 1, 2, and 3 are filled completely.   

 The total cost of shipments then depends on what bucket the weight quantity reaches.  

Some buckets, where the index „d‟ is even, have a fixed cost for the shipment.  The other 

buckets, where the index „d‟ is odd, have a cost that is calculated by multiplying the quantity 

in that bucket (Xd) by the price per hundredweight (AIRCadjd) of items in that bucket.  The 

indicator variables δEd are equal to 1 when bucket „d‟ contains a portion of the total shipment 

went, and 0 otherwise.  This is true for the indicator variables δ0c, δ1c, δ2c, θ0e, θ1e, and θ1e, 

in the actual model.  With this structure, the transportation of a shipment using the cost 

structure in Table 3.8 can be represented linearly as follows: 
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𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡

=  𝑋1 ∗ 𝐴𝐼𝑅𝐶𝑎𝑑𝑗1 +  900 ∗ 𝛿𝐸2 + 𝑋3 ∗ 𝐴𝐼𝑅𝐶𝑎𝑑𝑗3 + 2250 ∗ 𝛿𝐸4 + 𝑋5

∗ 𝐴𝐼𝑅𝐶𝑎𝑑𝑗5 + 3300 ∗ 𝛿𝐸6 + 𝑋7 ∗ 𝐴𝐼𝑅𝐶𝑎𝑑𝑗7 

Subject to, 

𝑋1 ≤ 900 ∗ 𝛿𝐸1 

𝑋1 ≥ 900 ∗ 𝛿𝐸2 

𝑋2 ≤ 98 ∗ 𝛿𝐸2 

𝑋2 ≥ 98 ∗ 𝛿𝐸3 

𝑋3 ≤ 1400 ∗ 𝛿𝐸3 

𝑋3 ≥ 1400 ∗ 𝛿𝐸4 

𝑋4 ≤ 498 ∗ 𝛿𝐸4 

𝑋4 ≥ 498 ∗ 𝛿𝐸5 

𝑋5 ≤ 1400 ∗ 𝛿𝐸5 

𝑋5 ≥ 1400 ∗ 𝛿𝐸6 

𝑋6 ≤ 1598 ∗ 𝛿𝐸6 

𝑋6 ≥ 1598 ∗ 𝛿𝐸7 

𝑋7 ≤ 4000 ∗ 𝛿𝐸7 

𝑋 =  𝑋𝑑

7

𝑑=1

 

𝑋𝑑 ≥ 0    ∀𝑑 = 1,2, … ,7 

𝛿𝐸𝑑  𝜖  0,1    ∀𝑑 = 1,2, … ,7 
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Generally, the preceding constraints are represented by: 

𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 =  (𝑋2𝑐−1 ∗ 𝐴𝐼𝑅𝐶𝑎𝑑𝑗2𝑐−1) +  (𝑇𝑜𝑡𝑎𝑙𝐶2𝑐 ∗ 𝛿𝐸2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

Subject to, 

𝑋𝑑 ≤ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿𝐸𝑑)    ∀𝑑 

𝑋𝑑 ≥ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿𝐸𝑑+1)    ∀𝑑 ≤ 𝐷𝑀𝐴𝑋 − 1 

𝑋 =  𝑋𝑑

𝑑

 

𝑋𝑑 ≥ 0    ∀𝑑 

𝛿𝐸𝑑  𝜖  0,1    ∀𝑑 

The shipment cost equation can be revised to implement the original per hundredweight costs 

and the fixed costs in the adjusted model to include the indifference point as follows: 

𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 =  (𝑋2𝑐−1 ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿𝐸2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

3.4.5.5 Cost Structure for Shipments from Suppliers to Manufacturers 

 As presented earlier, the total weight (in CWT) of a raw material air shipment is 

represented by TRMWAk m t.  This total weight is broken down into the amount of the weight 

distributed in each cost bracket „d‟ as follows: 

𝑇𝑅𝑀𝑊𝐴𝑘 𝑚  𝑡 =  𝑇𝑅𝑀𝑊𝐴𝑆𝑘 𝑚  𝑡  𝑑

𝑑

    ∀𝑘, 𝑚, 𝑡 
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For example, the total weight of material 3 shipped to manufacturer 2 using air transportation 

in time period 5 is split up into the weight shipped in each cost bracket.  Assuming there 

were 4 original cost brackets (c = 4) that resulted in 7 (d = 7) adjusted cost brackets, the 

following constraint summarizes the breakdown of the total shipment weight 

𝑇𝑅𝑀𝑊𝐴𝑆3 2 1 5

=  𝑇𝑅𝑀𝑊𝐴𝑆3 2 5 1 + 𝑇𝑅𝑀𝑊𝐴𝑆3 2 5 2+ 𝑇𝑅𝑀𝑊𝐴𝑆3 2 5 3+ 𝑇𝑅𝑀𝑊𝐴𝑆3 2 5 4

+ 𝑇𝑅𝑀𝑊𝐴𝑆3 2 5 5 + 𝑇𝑅𝑀𝑊𝐴𝑆3 2 5 6+ 𝑇𝑅𝑀𝑊𝐴𝑆3 2 5 7    

Since each shipment from each supplier to each manufacturer during each time period is 

unique, a different binary indicator variable is required for each instance.  Therefore the 

binary variables used in this portion of the model are δ0k m t d and θ0k m t f.  Using this notation, 

the total cost of all air shipments of raw materials is expressed as follows: 

𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡

=         (𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡 (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐)

𝐶𝑀𝐴𝑋

𝑐𝑡𝑚𝑘

+  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿0𝑘  𝑚  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

  

The following constraints are necessary to ensure the All-Units discount cost structure is 

implemented correctly. 

𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  𝑑 ≤ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿0𝑘  𝑚  𝑡  𝑑)    ∀𝑘, 𝑚, 𝑡, 𝑑 

𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  𝑑 ≥ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿0𝑘  𝑚  𝑡  (𝑑+1))    ∀𝑘, 𝑚, 𝑡, 𝑑     𝑤𝑒𝑟𝑒 𝑑 ≤ 𝐷𝑀𝐴𝑋 − 1 

𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  𝑑 ≥ 0    ∀𝑘, 𝑚, 𝑡, 𝑑 

𝛿0𝑘  𝑚  𝑡  𝑑  𝜖  0,1    ∀𝑘, 𝑚, 𝑡, 𝑑 
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Similarly, the total raw material weight of a ground shipment is broken down as follows: 

𝑇𝑅𝑀𝑊𝐺𝑘  𝑚  𝑡 =  𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  𝑓

𝑓

    ∀𝑘, 𝑚, 𝑡 

These variables are used in the equation for the total cost of ground shipments of raw 

materials across the entire time horizon. 

𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡

=         (𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡 (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒)

𝐸𝑀𝐴𝑋

𝑒𝑡𝑚𝑘

+  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃0𝑘  𝑚  𝑡  2𝑒)

𝐸𝑀𝐴𝑋−1

𝑒

  

The following constraints are necessary to ensure the total cost incorporates the All-Units 

discount cost structure appropriately: 

𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  𝑓 ≤ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃0𝑘  𝑚  𝑡  𝑓)    ∀𝑘, 𝑚, 𝑡, 𝑓 

𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡 𝑓 ≥ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃0𝑘  𝑚  𝑡 (𝑓+1))    ∀𝑘, 𝑚, 𝑡, 𝑓     𝑤𝑒𝑟𝑒 𝑓 ≤ 𝐹𝑀𝐴𝑋 − 1 

𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  𝑓 ≥ 0    ∀𝑘, 𝑚, 𝑡, 𝑓 

𝜃0𝑘  𝑚  𝑡  𝑓  𝜖  0,1    ∀𝑘, 𝑚, 𝑡, 𝑓 

3.4.5.6 Cost Structure for Shipments from Manufacturers to Warehouses 

The binary indicator variables used for shipments from manufacturers to warehouses are     

δ1m n t d and θ1m n t f.  The total weight of finished product shipments from manufacturers to 

warehouses is broken down as follows: 
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𝑇𝐹𝑃𝑊𝐴1𝑚  𝑛  𝑡 =  𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  𝑑

𝑑

    ∀𝑚, 𝑛, 𝑡 

𝑇𝐹𝑃𝑊𝐺1𝑚  𝑛  𝑡 =  𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  𝑓

𝑓

    ∀𝑚, 𝑛, 𝑡 

Accordingly, the total cost of shipments from all manufacturers to warehouses is: 

𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡

=          (𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡 (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐)

𝐶𝑀𝐴𝑋

𝑐𝑡𝑛𝑚

+  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿1𝑚  𝑛  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

 

+   (𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡 (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒)

𝐸𝑀𝐴𝑋

𝑒

+  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃1𝑚  𝑛  𝑡  2𝑒)

𝐸𝑀𝐴𝑋−1

𝑒

   

The following constraints ensure the All-Units discount cost structure is properly 

implemented: 

𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  𝑑 ≤ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿1𝑚  𝑛  𝑡  𝑑)    ∀𝑚, 𝑛, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡 𝑑 ≥ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿1𝑚  𝑛  𝑡 (𝑑+1))    ∀𝑚, 𝑛, 𝑡, 𝑑     𝑤𝑒𝑟𝑒 𝑑 ≤ 𝐷𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡 𝑑 ≥ 0    ∀𝑚, 𝑛, 𝑡, 𝑑 

𝛿1𝑚  𝑛  𝑡 𝑑  𝜖  0,1      ∀𝑚, 𝑛, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  𝑓 ≤ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃1𝑚  𝑛  𝑡  𝑓)    ∀𝑚, 𝑛, 𝑡, 𝑓 

𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  𝑓 ≥ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃1𝑚  𝑛  𝑡  (𝑓+1))    ∀𝑚, 𝑛, 𝑡, 𝑓     𝑤𝑒𝑟𝑒 𝑓 ≤ 𝐹𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡 𝑓 ≥ 0    ∀𝑚, 𝑛, 𝑡, 𝑓 

𝜃1𝑚  𝑛  𝑡  𝑓  𝜖  0,1      ∀𝑚, 𝑛, 𝑡, 𝑓 
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3.4.5.7 Cost Structure for Shipments from Warehouses to Retailers 

 The binary indicator variables used for shipments from warehouses to retailers are δ2n r t d 

and θ2n r t f.  The total weight of finished product shipments from warehouses to retailers is 

broken down as follows: 

𝑇𝐹𝑃𝑊𝐴2𝑛  𝑟  𝑡 =  𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  𝑑

𝑑

    ∀𝑛, 𝑟, 𝑡 

𝑇𝐹𝑃𝑊𝐺2𝑛  𝑟  𝑡 =  𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  𝑓

𝑓

    ∀𝑛, 𝑟, 𝑡 

Accordingly, the total cost of shipments from all warehouses to retailers is: 

𝑆𝑖𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡

=          (𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐)

𝐶𝑀𝐴𝑋

𝑐𝑡𝑟𝑛

+  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿2𝑛  𝑟  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

 

+   (𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒)

𝐸𝑀𝐴𝑋

𝑒

+  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃2𝑛  𝑟  𝑡  2𝑒)

𝐸𝑀𝐴𝑋−1

𝑒

   

 

 

 

 

 



71 
 

The following constraints ensure the All-Units discount cost structure is properly 

implemented: 

𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  𝑑 ≤ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿2𝑛  𝑟  𝑡  𝑑)    ∀𝑛, 𝑟, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡 𝑑 ≥ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿2𝑛  𝑟  𝑡  (𝑑+1))    ∀𝑛, 𝑟, 𝑡, 𝑑     𝑤𝑒𝑟𝑒 𝑑 ≤ 𝐷𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  𝑑 ≥ 0    ∀𝑛, 𝑟, 𝑡, 𝑑 

𝛿2𝑛  𝑟  𝑡 𝑑  𝜖  0,1    ∀𝑛, 𝑟, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡 𝑓 ≤ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃2𝑛  𝑟  𝑡  𝑓)    ∀𝑛, 𝑟, 𝑡, 𝑓 

𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  𝑓 ≥ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃2𝑛  𝑟  𝑡 (𝑓+1))    ∀𝑛, 𝑟, 𝑡, 𝑓     𝑤𝑒𝑟𝑒 𝑓 ≤ 𝐹𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  𝑓 ≥ 0    ∀𝑛, 𝑟, 𝑡, 𝑓 

𝜃2𝑛  𝑟  𝑡  𝑓  𝜖  0,1    ∀𝑛, 𝑟, 𝑡, 𝑓 

3.5 Objective Functions 

Two objective functions are implemented into the first model solved in this thesis.  

The first objective, Obj1, is to maximize profit and the second objective, Obj2, is to maximize 

the customer responsiveness.  Each product has a fixed revenue per unit sold.  Profit is 

defined as total revenue minus total cost.  It is assumed that all shipments that arrive at a 

retailer are sold in that time period since inventory storage is not available at the retailer.  

Therefore the total number of units of product „p‟ sold at retailer „r‟ in time period „t‟ is equal 

to the variable TFPRp r t.  The revenue generated per unit sold of product „p‟ is defined as 

REVp.  Therefore, the total revenue generated across the entire time horizon is: 

   (𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 ∗ 𝑅𝐸𝑉𝑝)

𝑡𝑟𝑝
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The costs in this model come from manufacturing costs, inventory costs, and shipping costs 

between each stage.  The total profit is then defined as follows: 

𝑂𝐵𝐽1 =     (𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 ∗ 𝑅𝐸𝑉𝑝)

𝑡𝑟𝑝

−  𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 

−  𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 −   𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠  

Using the previously presented cost functions, Obj1 is expanded to the following expression: 

𝑂𝑏𝑗1 =    (𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 ∗ 𝑅𝐸𝑉𝑝) −

𝑡𝑟𝑝

      𝑂𝑃𝐸𝑅𝐶𝑝  𝑚  𝑙  𝑡 ∗ 𝛼𝑝  𝑚  𝑙 𝑡 + (𝑃𝑅𝑂𝐷𝐶𝑝  𝑚  𝑙  𝑡 ∗ 𝐹𝑃𝑝  𝑚  𝑙 𝑡)

𝑡𝑙𝑚𝑝

 

−      (𝑅𝑀𝑘  𝑝  𝑚  𝑡 ∗ 𝐼𝑁𝑉𝐶𝑅𝑀𝐾)

𝑡𝑚𝑝𝑘

+    (𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡 ∗ 𝐼𝑁𝑉𝐶𝐹𝑃𝑝)

𝑡𝑛𝑝

 

−         (𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿0𝑘  𝑚  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

𝑡𝑚𝑘

+   (𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃0𝑘  𝑚  𝑡  2𝑒

𝐸𝑀𝐴𝑋−1

𝑒

)

𝐸𝑀𝐴𝑋

𝑒

   

+        (𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿1𝑚  𝑛  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

𝑡𝑛𝑚

+   (𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃1𝑚  𝑛  𝑡  2𝑒)

𝐸𝑀𝐴𝑋−1

𝑒

𝐸𝑀𝐴𝑋

𝑒

   

+        (𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿2𝑛  𝑟  𝑡  2𝑐

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

) 

𝑡𝑟𝑛

+   (𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃2𝑛  𝑟  𝑡  2𝑒

𝐸𝑀𝐴𝑋−1

𝑒

𝐸𝑀𝐴𝑋

𝑒

)     

The second objective is to maximize the customer responsiveness which is achieved by 

minimizing the number of lost sales, or unsatisfied demand, over the entire time horizon.  A 

lost sale implies that the company not only misses out on potential profit, but they also suffer 
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goodwill loss due to unsatisfied customers.  As discussed earlier, unsatisfied demand may be 

intentional or unintentional.  In this model, regardless of intent, it is assumed that unsatisfied 

demand is quantified as the number of lost sales.  Therefore minimizing the number of lost 

sales is essential to achieving good customer responsiveness. 

𝑂𝑏𝑗2 =    𝐿𝑂𝑆𝑇𝑝  𝑟  𝑡

𝑡𝑟𝑝

 

The goal of this thesis is to find the solution that optimizes both objectives at the same time.   

Solution Procedure 

Solving for both objectives at the same time creates a bi-criteria mathematical 

programming problem.  In this case, maximizing profit is a conflicting objective with 

maximizing responsiveness because limiting the number of lost sales requires more inventory 

which is costly.  This competes with the goal of maximizing profit.  Therefore, a single 

optimal solution that maximizes both objectives simultaneously does not exist.  Goal 

Programming is an approach for multi-criteria mathematical programs that allows a decision 

maker to set goals or target levels for each objective.  Then the problem is solved by finding 

an optimal solution that comes as close as possible to each of those goals.  It is required that 

the goal or target information is specified before the solution procedure begins.  Although 

some goals may not be achievable, they will still offer a direction to work towards when 

deriving the optimal solution.  The following problem (3.1) is an example of a multi-criteria 

mathematical program, where it is assumed that there are „s‟ objectives and „t‟ constraints. 
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Maximize  𝑓1 𝑥 ,𝑓2 𝑥 ,… , 𝑓𝑠 𝑥      (3.1) 

Subject to: 𝑔𝑣 𝑥 ≤ 0, 𝑣 = 1, 2, … , 𝑡 

𝑥 ≥ 0   

Where f1, f2,…, fs are the objective functions and gv(x) is the set of constraints.  Each 

alternative is represented as an x vector, where x = (x1, x2, ..., xm).  We will assign the 

variable TARGETu to the value of the goal for objective „u‟, for u = 1, 2, …, S.  In addition, 

wu will represent the weight of each goal and du
+ 

and du
-
 will represent the positive and 

negative deviations from goal „u‟.  du
+ 

represents the over achievement of the u
th

 goal and du
- 

represents the underachievement.   The objective of the goal programming formulation is 

minimize the sum of the deviational variables, in other words, find a solution that minimizes 

the total weighted distance from all of the goals.  Thus, problem (3.1) is converted to the 

following goal programming problem (3.2): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =   (𝑤𝑢 ∗  𝑑𝑢
+ + 𝑑𝑢

− 𝑢 )   (3.2) 

Subject to, 

𝑓𝑢 𝑥 + 𝑑𝑢
− − 𝑑𝑢

+ = 𝑇𝐴𝑅𝐺𝐸𝑇𝑢      𝑓𝑜𝑟 𝑢 = 1, … , 𝑠 

𝑔𝑣 𝑥 ≤ 0,     𝑓𝑜𝑟 𝑣 = 1, … , 𝑡 

𝑥, 𝑑𝑢
+, 𝑑𝑢

− ≥ 0   𝑓𝑜𝑟 𝑢 = 1, … , 𝑠 

For example, if we are maximizing the responsiveness of the supply chain, which is 

equivalent to minimizing the number of lost sales (objective 2: u = 2), the goal for this 

objective could be 0, or TARGET2=0.  Therefore an optimal solution would minimize the 

number of lost sales by minimizing the deviational variable, du
+
, which represents the 

deviation from the actual number of lost sales from zero.  If there were 50 lost sales, then f2 = 
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50 and d2
+
 would be equal to 50 and d2

-
 would be 0.  The wu assigned to this goal would 

indicate how important it was to satisfy this goal when addressing the problem as a whole.  

The weights, wu, can be either ordinal or cardinal, depending on whether the goal 

programming problem is preemptive or non-preemptive respectively. 

 Preemptive goal programming compares goals to each other and assigns a priority 

variable, or an ordinal weight, to the goal.  The priorities are represented by the vector (P1, 

P2,…,Ps).  Therefore the goals are put in order of most important first and least important last 

and are solved sequentially with the most important goal being satisfied as far as possible 

before moving on to the next goal, or objective.  First, just the goals affiliated with P1 are 

satisfied.  Then, attempts are made to improve P2 goals without destroying the achievement 

levels of P1 goals.  Essentially, preemptive goal programming solves a sequence of single 

objective problems.  

 Non-preemptive goal programming uses cardinal weights, where a value is assigned 

to the goal.  These weights should reflect the decision maker‟s tradeoffs between the 

objectives.  For example, if w1 = 2 and w2 = 1, this indicates that goal one is two times more 

important than goal two.  These weights are multiplied by the deviational variables in the 

objective so a deviation from goal one will carry more weight and influence in the problem, 

than a deviation from goal two.  The notation (w1,w2, …,wu) is used to represent the weights 

of each goal.  These weights are used in the objective to reduce the problem to a single 

objective optimization problem.  Since the units of measure may differ between the 

objectives, their values have to be scaled in this method so the weights are applied to similar 

metrics in the objective.  To do this, the optimal solutions are first identified for each 

objective optimized individually while ignoring the other objectives.  This solution is defined 
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as the ideal value for that objective.  Then the objective value in the goal programming 

problem is divided by the ideal solution of that objective to scale it on a 0 to 1 scale. 

 In the multi-criteria problem modeled in this thesis some objectives are to be 

maximized while others require minimization.  Instead of choosing goals arbitrarily, the ideal 

solutions are used to set a reasonable upper or lower bound for each objective.  Then the 

targets are set values within these ranges.  A certain percent increase or decrease is used to 

relax the ideal values to the target values of the goal program.  For example, if IDEAL is set 

equal to the ideal solution for a maximum objective, and the percent relaxation for objective 

1 is set to 10%, then the goal for objective 1 would be to come within 10% of the ideal 

solution.  Since the objective is a maximization, the target would be lower than the ideal 

solution, so the target is set to 0.9*IDEAL.  However, for the minimization objectives, the 

target would be 10% larger than the ideal value.  Therefore the target for minimization 

objectives is set equal to 1.1*IDEAL.  The following steps are used to solve the preemptive 

and non-preemptive goal programs: 

1. Solve for the ideal solutions by solving for each objective individually while ignoring 

the other objectives.   

2. The upper or lower bounds for the objectives are identified by finding the ideal 

solutions for the objective.  The upper bound for maximization objectives is their 

ideal solution while the lower bound is the lowest value for that objective among the 

other ideal solutions.  The lower bound for minimization objectives is the ideal 

solution for that objective.  That same objective‟s upper bound is the largest value for 

that objective in the other ideal solutions.  For example, suppose we have two 

objectives, objective one is to be maximized and objective two is to be minimized.  



77 
 

The value of the objectives is presented as (Obj1, Obj2).  Assume the ideal solution 

for objective one is (100,50) and the ideal solution for objective two is (60,0).  

Objective one would have a lower bound of 60 and an upper bound of 100.  Similarly, 

objective two would have a lower bound of 0 and an upper bound of 50.  The ideal 

solution to the entire problem is identified as (100,0).  The optimal solution would 

minimize the deviation of objective one from the target based on 100 and objective 

two from the target based on 0. 

3. Solve the preemptive goal program by implementing the pre-specified goal priorities.  

Solve the non-preemptive goal program by first scaling the objective function values 

using the ideal solutions and then incorporating the weights to the single objective 

problem. 
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Step 1: Identify the ideal solutions 

Objective 1: Maximize profit while ignoring customer responsiveness, 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗1 =    (𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 ∗ 𝑅𝐸𝑉𝑝)

𝑡𝑟𝑝

−      𝑂𝑃𝐸𝑅𝐶𝑝  𝑚  𝑙 𝑡 ∗ 𝛼𝑝  𝑚  𝑙 𝑡 + (𝑃𝑅𝑂𝐷𝐶𝑝  𝑚  𝑙 𝑡 ∗ 𝐹𝑃𝑝  𝑚  𝑙  𝑡)

𝑡𝑙𝑚𝑝

 

−      (𝑅𝑀𝑘  𝑝  𝑚  𝑡 ∗ 𝐼𝑁𝑉𝐶𝑅𝑀𝐾)

𝑡𝑚𝑝𝑘

+    (𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡 ∗ 𝐼𝑁𝑉𝐶𝐹𝑃𝑝)

𝑡𝑛𝑝

 

−         (𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿0𝑘  𝑚  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

𝑡𝑚𝑘

+   (𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃0𝑘  𝑚  𝑡  2𝑒

𝐸𝑀𝐴𝑋−1

𝑒

)

𝐸𝑀𝐴𝑋

𝑒

   

+        (𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿1𝑚  𝑛  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

𝑡𝑛𝑚

+   (𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃1𝑚  𝑛  𝑡  2𝑒)

𝐸𝑀𝐴𝑋−1

𝑒

𝐸𝑀𝐴𝑋

𝑒

   

+        (𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿2𝑛  𝑟  𝑡  2𝑐

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

) 

𝑡𝑟𝑛

+   (𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃2𝑛  𝑟  𝑡  2𝑒

𝐸𝑀𝐴𝑋−1

𝑒

𝐸𝑀𝐴𝑋

𝑒

)     

Subject to all previously mentioned constraints as listed in the general model in section 3.6 

Let IDEAL1 be the ideal solution for the first objective. 
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Objective 2: Maximize customer responsiveness by minimizing the total number of lost 

sales, or unsatisfied demand, ignoring profit. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗2 =    𝐿𝑂𝑆𝑇𝑝  𝑟  𝑡

𝑡𝑟𝑝

  

Subject to all previously mentioned constraints as listed in the general model in section 3.6 

Let IDEAL2 be the ideal solution for the second objective. 

Step 2: Identify Targets for each objective 

Allow dec1 be the percentage decrease from the ideal solution for the objective 1 target. 

𝑇𝐴𝑅𝐺𝐸𝑇1 =
(100 − 𝑑𝑒𝑐1)

100
∗ 𝐼𝐷𝐸𝐴𝐿1 

Let inc2 be the percentage increase from the ideal solution for the objective 2 target. 

𝑇𝐴𝑅𝐺𝐸𝑇2 =
(100 + 𝑖𝑛𝑐1)

100
∗ 𝐼𝐷𝐸𝐴𝐿2 

Step 3: Solve the goal programs 

Method 1: Preemptive Goal Programming 

Goal constraint for profit, 

𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 𝑇𝐴𝑅𝐺𝐸𝑇1 

Goal constraint for customer responsiveness, 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 𝑇𝐴𝑅𝐺𝐸𝑇2 
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Since goal 1 is a maximization goal, d1
-
 will be the deviational variable to be minimized.  

Whereas for goal 2, which is ultimately a minimization goal, d2
+
 is to be minimized. 

Goal Programming Objective: 

Case 1: Prioritize profit over customer responsiveness 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑1
− + 𝑃2(𝑑2

+) 

Case 2: Prioritize customer responsiveness over profit 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑2
+ + 𝑃2(𝑑1

−) 

Method 2: Non-Preemptive Goal Programming 

The objective values and goals are divided by the ideal values to normalize the data 

so the weights are applied to similar metrics.  If the objective is equal to the target, the goal 

has been reached and the fractions will be equal and the deviational variables will be equal to 

zero.  The deviational variables in this model represent the percentage that the actual value of 

the objective misses the goal by. 

Goal constraint for the profit, 

𝑂𝑏𝑗1

𝐼𝐷𝐸𝐴𝐿1
+ 𝑑1

− − 𝑑1
+ =

𝑇𝐴𝑅𝐺𝐸𝑇1

𝐼𝐷𝐸𝐴𝐿1
 

Goal constraint for customer responsiveness, 

𝑂𝑏𝑗2

𝐼𝐷𝐸𝐴𝐿2
+ 𝑑2

− − 𝑑2
+ =

𝑇𝐴𝑅𝐺𝐸𝑇2

𝐼𝐷𝐸𝐴𝐿2
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Goal Programming Objective: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑤1(𝑑1
−) + 𝑤2(𝑑2

+) 

A third objective, which is added as an option to the model, is to minimize the 

amount of capital in inventory.  It is important to minimize the amount of money tied up in 

inventory because inventory holding costs are usually low enough that the marginal profit of 

each item in inventory reveals monetary assets to the company that can be applied elsewhere 

in the supply chain.  In addition, items held in inventory can become outdated and 

consequently less profitable the longer they sit in inventory unused.  Consequently, the 

minimization of capital in inventory is a goal of supply chain management.  However, this 

objective conflicts with the responsiveness of the supply chain because limiting inventory 

often increases the number of lost sales.  Due to cost of over producing products and holding 

extra products that don‟t get used, the objective of minimizing capital in inventory also 

conflicts with maximizing profit.  The capital in inventory in this model is simplified to the 

selling price, or revenue, of the finished products multiplied by the number of that finished 

product being stored at the warehouses.  Therefore the third objective is defined as: 

𝑂𝑏𝑗3 =     (𝑊𝐼𝑁𝑉𝑝 𝑛  𝑡 ∗ 𝑅𝐸𝑉𝑝)

𝑡𝑛𝑝

 

Since this is a minimization objective, the ideal solution for objective 3 while ignoring all 

other objectives is, 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗3 =    (𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡 ∗ 𝑅𝐸𝑉𝑝
𝑡𝑛𝑝

) 

Subject to all previously mentioned constraints as listed in the general model in section 3.6 
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Let IDEAL3 be the ideal solution for this objective and inc3 be the percent increase allowed 

for the target value for objective 3.  The ideal solution is set as the goal for this objective, 

𝑇𝐴𝑅𝐺𝐸𝑇3 =
(100 + 𝑖𝑛𝑐1)

100
∗ 𝐼𝐷𝐸𝐴𝐿3 

Method 1: Preemptive Goal Programming 

Additional goal constraint for capital in inventory, 

𝑂𝑏𝑗3 + 𝑑3
− − 𝑑3

+ = 𝑇𝐴𝑅𝐺𝐸𝑇3 

Since objective 3 is a minimization objective, the deviational variable d3
+
 will be minimized 

and appear in the objective functions. 

Goal Programming Objective: 

Scenario 1: Prioritize profit > customer responsiveness > capital in inventory 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑1
− + 𝑃2 𝑑2

+ + 𝑃3(𝑑3
+) 

Scenario 2: Prioritize profit > capital in inventory > customer responsiveness 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑1
− + 𝑃2 𝑑3

+ + 𝑃3(𝑑2
+) 

Scenario 3: Prioritize customer responsiveness > profit > capital in inventory 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑2
+ + 𝑃2 𝑑1

− + 𝑃3(𝑑3
+) 

Scenario 4: Prioritize customer responsiveness > capital in inventory > profit  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑2
+ + 𝑃2 𝑑3

+ + 𝑃3(𝑑1
−) 
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Scenario 5: Prioritize capital in inventory > profit > customer responsiveness 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑3
+ + 𝑃2 𝑑1

− + 𝑃3(𝑑2
+) 

Scenario 6: Prioritize capital in inventory > customer responsiveness> profit 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑3
+ + 𝑃2 𝑑2

+ + 𝑃3(𝑑1
−) 

Method 2: Non-Preemptive Goal Programming 

Additional goal constraint for the inventory in capital, 

𝑂𝑏𝑗3

𝐼𝐷𝐸𝐴𝐿3
+ 𝑑3

− − 𝑑3
+ =

𝑇𝐴𝑅𝐺𝐸𝑇3

𝐼𝐷𝐸𝐴𝐿3
 

Goal Programming Objective: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑤1 𝑑1
− + 𝑤2 𝑑2

+ + 𝑤3(𝑑3
+) 
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3.6 General Model 

Maximize Profit: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗1 =    (𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 ∗ 𝑅𝐸𝑉𝑝)

𝑡𝑟𝑝

−      𝑂𝑃𝐸𝑅𝐶𝑝  𝑚  𝑙 𝑡 ∗ 𝛼𝑝  𝑚  𝑙 𝑡 + (𝑃𝑅𝑂𝐷𝐶𝑝  𝑚  𝑙 𝑡 ∗ 𝐹𝑃𝑝  𝑚  𝑙  𝑡)

𝑡𝑙𝑚𝑝

 

−      (𝑅𝑀𝑘  𝑝  𝑚  𝑡 ∗ 𝐼𝑁𝑉𝐶𝑅𝑀𝐾)

𝑡𝑚𝑝𝑘

+    (𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡 ∗ 𝐼𝑁𝑉𝐶𝐹𝑃𝑝)

𝑡𝑛𝑝

 

−         (𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿0𝑘  𝑚  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

𝑡𝑚𝑘

+   (𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃0𝑘  𝑚  𝑡  2𝑒

𝐸𝑀𝐴𝑋−1

𝑒

)

𝐸𝑀𝐴𝑋

𝑒

   

+        (𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿1𝑚  𝑛  𝑡  2𝑐)

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

 

𝑡𝑛𝑚

+   (𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃1𝑚  𝑛  𝑡  2𝑒)

𝐸𝑀𝐴𝑋−1

𝑒

𝐸𝑀𝐴𝑋

𝑒

   

+        (𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  (2𝑐−1) ∗ 𝐴𝐼𝑅𝐶𝑐) +  (𝜇𝑎𝑐 ∗ 𝐴𝐼𝑅𝐶𝑐 ∗ 𝛿2𝑛  𝑟  𝑡  2𝑐

𝐶𝑀𝐴𝑋−1

𝑐

𝐶𝑀𝐴𝑋

𝑐

) 

𝑡𝑟𝑛

+   (𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  (2𝑒−1) ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒) +  (𝜇𝑏𝑒 ∗ 𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ 𝜃2𝑛  𝑟  𝑡  2𝑒

𝐸𝑀𝐴𝑋−1

𝑒

𝐸𝑀𝐴𝑋

𝑒

)     

 

Maximize Customer Responsiveness (Minimize the number of lost sales): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗2 =    𝐿𝑂𝑆𝑇𝑝  𝑟  𝑡

𝑡𝑟𝑝

 

Minimize Capital in Inventory (Optional objective): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗3 =    (𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡 ∗ 𝑅𝐸𝑉𝑝)

𝑡𝑛𝑝
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Subject to, 

Manufacturer Constraints: 

𝑇𝑅𝑀𝑘  𝑚  𝑡 = 𝐼𝑁𝐼𝑇𝑅𝑀𝑘     ∀𝑘, 𝑚, 𝑡    𝑤𝑒𝑛 𝑡 = 1 

𝑇𝑅𝑀𝑘  𝑚  𝑡 = 𝑋𝑘  𝑚  1 (𝑡−1)   ∀𝑘, 𝑚, 𝑡    𝑤𝑒𝑛 𝑡 = 2 

𝑇𝑅𝑀𝑘  𝑚  𝑡 =  𝑋𝑘  𝑚  𝑖 (𝑡−𝑖)

𝑖

   ∀ 𝑘, 𝑚, 𝑡 𝑤𝑒𝑛 𝑡 ≥ 3 

𝐹𝑃𝑝  𝑚  𝑙 𝑡 =  0    ∀𝑝, 𝑚, 𝑙, 𝑡    𝑤𝑒𝑛 𝑡 = 1 

𝑇𝐹𝑃𝑀𝑝  𝑚  𝑡 =   𝐹𝑃𝑝  𝑚  𝑙 𝑡

𝑙

    ∀𝑝, 𝑚, 𝑡 

𝑇𝐹𝑃𝑀𝑝  𝑚  𝑡 =   𝑌𝑝  𝑚  𝑛  𝑖 𝑡

𝑖𝑛

    ∀𝑝, 𝑚, 𝑡 

𝑇𝑅𝑀 𝑘  𝑚  𝑡 =  𝑅𝑀𝑘  𝑝  𝑚  𝑡

𝑝

      ∀𝑘, 𝑚, 𝑡 

𝑅𝑀𝑘  𝑝  𝑚  𝑡 =  (𝑟𝑘  𝑝 ∗ 𝐹𝑃𝑝  𝑚  𝑙  𝑡+1 )

𝑙

 ∀𝑘, 𝑝, 𝑚, 𝑡 𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑇 − 1 

𝛼𝑝  𝑚  𝑙 𝑡 ∗ 𝑀𝐶𝐴𝑃𝑝  𝑚  𝑙 ≥ 𝐹𝑃𝑝  𝑚  𝑙 𝑡     ∀𝑝, 𝑚, 𝑙, 𝑡 

 𝛼𝑝  𝑚  𝑙 𝑡 ≤ 1       ∀𝑚, 𝑙, 𝑡

𝑝

 

𝛼𝑝  𝑚  𝑙 𝑡 ∈  0,1    ∀𝑝, 𝑚, 𝑙, 𝑡 

Warehouse Constraints: 

𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 = 𝐼𝑁𝐼𝑇𝐹𝑃𝑊𝑝  𝑛     ∀𝑝, 𝑛, 𝑡   𝑤𝑒𝑛 𝑡 = 1, 2 

𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 =  𝑌𝑝  𝑚  𝑛  1 𝑡−1

𝑚

    ∀𝑝, 𝑛, 𝑡   𝑤𝑒𝑛 𝑡 = 3 
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𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 =   𝑌𝑝  𝑚  𝑛  𝑖 𝑡−𝑖

𝑖𝑚

    ∀𝑝, 𝑛, 𝑡   𝑤𝑒𝑛 𝑡 ≥ 4 

𝑇𝐹𝑃𝑊𝑝  𝑛  𝑡 =   (𝑍𝑝  𝑛  𝑟  𝑖 𝑡)

𝑖𝑟

+ 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡     ∀𝑝, 𝑛, 𝑡    𝑤𝑒𝑛 𝑡 = 1 

𝑇𝐹𝑃𝑊𝑝 𝑛  𝑡 + 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡−1 =   (𝑍𝑝  𝑛  𝑟  𝑖 𝑡)

𝑖𝑟

+ 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡     ∀𝑝, 𝑛, 𝑡    𝑤𝑒𝑛 𝑡 ≥ 2 

 𝑊𝐼𝑁𝑉𝑝  𝑛  𝑡

𝑝

≤ 𝑊𝐶𝐴𝑃𝑛     ∀𝑛, 𝑡 

Retailer Constraints: 

𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 = 𝐼𝑁𝐼𝑇𝐹𝑃𝑅𝑝  𝑟     ∀𝑝, 𝑟, 𝑡   𝑤𝑒𝑛 𝑡 = 1 

𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 =  𝑍𝑝  𝑛  𝑟  1 𝑡−1

𝑛

    ∀𝑝, 𝑟, 𝑡   𝑤𝑒𝑛 𝑡 = 2 

𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 =   𝑍𝑝  𝑛  𝑟  𝑖 𝑡−𝑖

𝑖𝑛

    ∀𝑝, 𝑟, 𝑡   𝑤𝑒𝑛 𝑡 ≥ 3 

𝑇𝐹𝑃𝑅𝑝  𝑟  𝑡 + 𝐿𝑂𝑆𝑇𝑝  𝑟  𝑡 = 𝑅𝐷𝑝  𝑟  𝑡     ∀𝑝, 𝑟, 𝑡 

Transportation Quantity Constraints: 

𝜌𝑘  𝑚  𝑖 𝑡 ∗ 𝑀𝐼𝑁𝑅𝑀 𝑖 ≤ 𝑋𝑘  𝑚  𝑖 𝑡         ∀𝑘, 𝑚, 𝑖, 𝑡 

𝑋𝑘  𝑚  𝑖 𝑡 ≤ 𝜌𝑘  𝑚  𝑖 𝑡 ∗ 𝑀𝐴𝑋𝑅𝑀 𝑖         ∀𝑘, 𝑚, 𝑖, 𝑡 

𝑋𝑘  𝑚  𝑖 𝑡 ≤ 𝑀 ∗ 𝜌𝑘  𝑚  𝑖 𝑡         ∀𝑘, 𝑚, 𝑖, 𝑡 

𝜌𝑘  𝑚  𝑖 𝑡 ∈  0,1    ∀𝑘, 𝑚, 𝑖, 𝑡 

𝑇𝑌𝑚  𝑛  𝑖 𝑡 =  𝑌𝑝  𝑚  𝑛  𝑖 𝑡     ∀ 𝑚, 𝑛, 𝑖, 𝑡

𝑝
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τm n i t ∗ 𝑀𝐼𝑁𝐹𝑃 𝑖 ≤ 𝑇𝑌𝑚  𝑛  𝑖 𝑡          ∀𝑚, 𝑛, 𝑖, 𝑡 

𝑇𝑌𝑚  𝑛  𝑖 𝑡 ≤ τm n i t ∗ 𝑀𝐴𝑋𝐹𝑃 𝑖         ∀𝑚, 𝑛, 𝑖, 𝑡 

𝑇𝑌𝑚  𝑛  𝑖 𝑡 ≤ 𝑀 ∗ 𝜏𝑚  𝑛  𝑖 𝑡         ∀𝑚, 𝑛, 𝑖, 𝑡 

𝜏𝑚  𝑛  𝑖 𝑡 ∈  0,1    ∀𝑚, 𝑛, 𝑖, 𝑡 

𝑇𝑍𝑛  𝑟  𝑖 𝑡 =  𝑍𝑝  𝑛  𝑟  𝑖 𝑡     ∀ 𝑛, 𝑟, 𝑖, 𝑡

𝑝

 

       σn r i t ∗ 𝑀𝐼𝑁𝐹𝑃 𝑖 ≤ 𝑇𝑍𝑛  𝑟  𝑖 𝑡          ∀𝑛, 𝑟, 𝑖, 𝑡 

𝑇𝑍𝑛  𝑟  𝑖 𝑡  ≤ σn r i t ∗ 𝑀𝐴𝑋𝐹𝑃 𝑖        ∀𝑛, 𝑟, 𝑖, 𝑡 

𝑇𝑍𝑛  𝑟  𝑖 𝑡 ≤ 𝑀 ∗ 𝜎𝑛  𝑟  𝑖 𝑡        ∀𝑛, 𝑟, 𝑖, 𝑡 

𝜎𝑛  𝑟  𝑖 𝑡 ∈  0,1    ∀𝑛, 𝑟, 𝑖, 𝑡 

Shipment Weight Constraints: 

𝑇𝑅𝑀𝑊𝐴𝑘  𝑚  𝑡 = (𝑅𝑀𝑊𝑘 ∗ 𝑋𝑘  𝑚  1 𝑡)       ∀𝑘, 𝑚, 𝑡 

𝑇𝑅𝑀𝑊𝐺𝑘  𝑚  𝑡 = (𝑅𝑀𝑊𝑘 ∗ 𝑋𝑘  𝑚  2 𝑡)       ∀𝑘, 𝑚, 𝑡 

𝑇𝐹𝑃𝑊𝐴1𝑚  𝑛  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑌𝑝  𝑚  𝑛  1 𝑡)       ∀𝑚, 𝑛, 𝑡 

𝑇𝐹𝑃𝑊𝐺1𝑚  𝑛  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑌𝑝  𝑚  𝑛  2 𝑡)       ∀𝑚, 𝑛, 𝑡 

𝑇𝐹𝑃𝑊𝐴2𝑛  𝑟  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑍𝑝  𝑛  𝑟  1 𝑡)       ∀𝑛, 𝑟, 𝑡 
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𝑇𝐹𝑃𝑊𝐺2𝑛  𝑟  𝑡 =  (𝐹𝑃𝑊𝑝

𝑝

∗ 𝑍𝑝  𝑛  𝑟  2 𝑡)       ∀𝑛, 𝑟, 𝑡 

 All-Units Discount Model Constraints: 

𝜇𝑎 𝑐−1 =  
(𝐴𝐼𝑅𝐶𝑐 ∗ (𝑎𝑐−1 + 1))

𝐴𝐼𝑅𝐶 𝑐−1 
   ∀𝑐,   𝑤𝑒𝑛 𝑐 > 1 

𝜇𝑏 𝑒−1 =  
(𝐺𝑅𝑂𝑈𝑁𝐷𝐶𝑒 ∗ (𝑏𝑒−1 + 1))

𝐺𝑅𝑂𝑈𝑁𝐷𝐶 𝑒−1 
   ∀𝑒,   𝑤𝑒𝑛 𝑒 > 1 

𝑑 = 2𝑐 − 1 

𝐷𝑀𝐴𝑋 = (2 ∗ 𝐶𝑀𝐴𝑋) − 1 

𝑓 = 2𝑒 − 1 

𝐹𝑀𝐴𝑋 =  2 ∗ 𝐸𝑀𝐴𝑋 − 1 

𝐶𝐴𝑃𝐴2𝑐−1 = 𝜇𝑎𝑐 − 𝑎𝐿𝐵    𝑤𝑒𝑛 𝑐 = 1 

𝐶𝐴𝑃𝐴2𝑐−1 = 𝜇𝑎𝑐 − (𝑎𝑐−1 + 1)     𝑤𝑒𝑛 2 ≤ 𝑐 ≤ 𝐶𝑀𝐴𝑋 − 1 

𝐶𝐴𝑃𝐴2𝑐−1 = 𝑎𝑐 − (𝑎𝑐−1 + 1)    𝑤𝑒𝑛 𝑐 = 𝐶𝑀𝐴𝑋 

𝐶𝐴𝑃𝐴2𝑐 = 𝑎𝑐 − (𝜇𝑎𝑐 + 1)    𝑤𝑒𝑛 𝑐 = 1 

𝐶𝐴𝑃𝐴2𝑐 = 𝑎𝑐 − (𝜇𝑎𝑐 + 1)    ∀    𝑤𝑒𝑛 2 ≤ 𝑐 ≤ 𝐶𝑀𝐴𝑋 − 1 

𝐶𝐴𝑃𝐺2𝑒−1 = 𝜇𝑏𝑒 − 𝑏𝐿𝐵    𝑤𝑒𝑛 𝑒 = 1 

𝐶𝐴𝑃𝐺2𝑒−1 = 𝜇𝑏𝑒 − (𝑏𝑒−1 + 1)    𝑤𝑒𝑛 2 ≤ 𝑒 ≤ 𝐸𝑀𝐴𝑋 − 1 

𝐶𝐴𝑃𝐺2𝑒−1 = 𝑏𝑒 − (𝑏𝑒−1 + 1)    𝑤𝑒𝑛 𝑒 = 𝐸𝑀𝐴𝑋 
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𝐶𝐴𝑃𝐺2𝑒 = 𝑏𝑒 − (𝜇𝑏𝑒 + 1)    𝑤𝑒𝑛 𝑒 = 1 

𝐶𝐴𝑃𝐺2𝑒 = 𝑏𝑒 − (𝜇𝑏𝑒 + 1)    ∀   2 ≤ 𝑒 ≤ 𝐸𝑀𝐴𝑋 − 1 

𝑇𝑅𝑀𝑊𝐴𝑘  𝑚  𝑡 =  𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  𝑑

𝑑

    ∀𝑘, 𝑚, 𝑡 

𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  𝑑 ≤ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿0𝑘  𝑚  𝑡  𝑑)    ∀𝑘, 𝑚, 𝑡, 𝑑 

𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  𝑑 ≥ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿0𝑘  𝑚  𝑡  (𝑑+1))    ∀𝑘, 𝑚, 𝑡, 𝑑     𝑤𝑒𝑛 𝑑 ≤ 𝐷𝑀𝐴𝑋 − 1 

𝑇𝑅𝑀𝑊𝐴𝑆𝑘  𝑚  𝑡  𝑑 ≥ 0    ∀𝑘, 𝑚, 𝑡, 𝑑 

𝛿0𝑘  𝑚  𝑡  𝑑  𝜖  0,1    ∀𝑘, 𝑚, 𝑡, 𝑑 

𝑇𝑅𝑀𝑊𝐺𝑘  𝑚  𝑡 =  𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  𝑓

𝑓

    ∀𝑘, 𝑚, 𝑡 

𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  𝑓 ≤ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃0𝑘  𝑚  𝑡  𝑓)    ∀𝑘, 𝑚, 𝑡, 𝑓 

𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  𝑓 ≥ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃0𝑘  𝑚  𝑡 (𝑓+1))    ∀𝑘, 𝑚, 𝑡, 𝑓     𝑤𝑒𝑛 𝑓 ≤ 𝐹𝑀𝐴𝑋 − 1 

𝑇𝑅𝑀𝑊𝐺𝑆𝑘  𝑚  𝑡  𝑓 ≥ 0    ∀𝑘, 𝑚, 𝑡, 𝑓 

𝜃0𝑘  𝑚  𝑡  𝑓  𝜖  0,1    ∀𝑘, 𝑚, 𝑡, 𝑓 

𝑇𝐹𝑃𝑊𝐴1𝑚  𝑛  𝑡 =  𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  𝑑

𝑑

    ∀𝑚, 𝑛, 𝑡 

𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  𝑑 ≤ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿1𝑚  𝑛  𝑡  𝑑)    ∀𝑚, 𝑛, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡  𝑑 ≥ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿1𝑚  𝑛  𝑡  (𝑑+1))    ∀𝑚, 𝑛, 𝑡, 𝑑     𝑤𝑒𝑛 𝑑 ≤ 𝐷𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐴𝑆1𝑚  𝑛  𝑡 𝑑 ≥ 0    ∀𝑚, 𝑛, 𝑡, 𝑑 
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𝛿1𝑚  𝑛  𝑡 𝑑  𝜖  0,1      ∀𝑚, 𝑛, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐺1𝑚  𝑛  𝑡 =  𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  𝑓

𝑓

    ∀𝑚, 𝑛, 𝑡 

𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  𝑓 ≤ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃1𝑚  𝑛  𝑡  𝑓)    ∀𝑚, 𝑛, 𝑡, 𝑓 

𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡  𝑓 ≥ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃1𝑚  𝑛  𝑡 (𝑓+1))    ∀𝑚, 𝑛, 𝑡, 𝑓     𝑤𝑒𝑛 𝑓 ≤ 𝐹𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐺𝑆1𝑚  𝑛  𝑡 𝑓 ≥ 0    ∀𝑚, 𝑛, 𝑡, 𝑓 

𝜃1𝑚  𝑛  𝑡  𝑓  𝜖  0,1      ∀𝑚, 𝑛, 𝑡, 𝑓 

𝑇𝐹𝑃𝑊𝐴2𝑛  𝑟  𝑡 =  𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  𝑑

𝑑

    ∀𝑛, 𝑟, 𝑡 

𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  𝑑 ≤ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿2𝑛  𝑟  𝑡  𝑑)    ∀𝑛, 𝑟, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡 𝑑 ≥ (𝐶𝐴𝑃𝐴𝑑 ∗ 𝛿2𝑛  𝑟  𝑡  (𝑑+1))    ∀𝑛, 𝑟, 𝑡, 𝑑     𝑤𝑒𝑛 𝑑 ≤ 𝐷𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐴𝑆2𝑛  𝑟  𝑡  𝑑 ≥ 0    ∀𝑛, 𝑟, 𝑡, 𝑑 

𝛿2𝑛  𝑟  𝑡 𝑑  𝜖  0,1    ∀𝑛, 𝑟, 𝑡, 𝑑 

𝑇𝐹𝑃𝑊𝐺2𝑛  𝑟  𝑡 =  𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  𝑓

𝑓

    ∀𝑛, 𝑟, 𝑡 

𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡 𝑓 ≤ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃2𝑛  𝑟  𝑡  𝑓)    ∀𝑛, 𝑟, 𝑡, 𝑓 

𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  𝑓 ≥ (𝐶𝐴𝑃𝐺𝑓 ∗ 𝜃2𝑛  𝑟  𝑡 (𝑓+1))    ∀𝑛, 𝑟, 𝑡, 𝑓     𝑤𝑒𝑛 𝑓 ≤ 𝐹𝑀𝐴𝑋 − 1 

𝑇𝐹𝑃𝑊𝐺𝑆2𝑛  𝑟  𝑡  𝑓 ≥ 0    ∀𝑛, 𝑟, 𝑡, 𝑓 

𝜃2𝑛  𝑟  𝑡  𝑓  𝜖  0,1    ∀𝑛, 𝑟, 𝑡, 𝑓 
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Chapter 4 Illustrative Example and Analysis 

4.1 Illustrative Example 

The model presented in Chapter 3 was implemented with an example for this chapter 

to illustrate the use of the model and results.  The goal of the model is to develop a 

production and distribution schedule for two products in a four-stage centralized supply 

chain.  Multiple objectives were implemented to drive the solution process.   

4.1.1 Parameters 

Since real time data is not readily available, the values in this example are either 

assumed or based on the data used in the work by Mysore (2005).  The demand pattern 

across the 24 time periods is identical to the pattern used in Mysore‟s work.  However, the 

number of retailers in this example is six, compared to the two that Mysore used, so assumed 

demand values were created for the remaining retailers.  The products in this example 

generate higher revenue than those used in Mysore‟s work.  Therefore the transportation and 

operating costs were scaled to realistically balance the total revenue.  All other values were 

assumed and scaled appropriately for the example.  In the illustrative example, the following 

specific values for inputs and the supply chain configuration are used: 

 2 products: p = {1,2} 

 2 transportation modes: i = {1,2} 

o i = 1 = air transportation with a lead time of 1 time period 

o i = 2 = ground transportation with a lead time of 2 time periods 
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 5 suppliers and raw materials: k = {1,2,…,5} 

 3 manufacturing lines at each manufacturer: l = {1,2,3} 

 2 manufacturing facilities: m = {1,2} 

 2 warehouses: n = {1,2} 

 6 retailers: r = {1,2,…,6} 

 24 time periods: t = {1,2,…,24} 

o 3 total objectives: u = {1,2,3} 

 Product 1 has a raw material ratio of: 2:3:5:0:0 

 Product 2 has a raw material ratio of: 0:0:1:4:2 

This configuration results in the following model size: 

 17,432 variables 

o 10,904 continuous variables 

o 6,528 binary variables 

 34,376 constraints 

A diagram of the supply chain network used in the illustrative example is presented in Figure 

4.1. 
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Figure 4.1: The supply chain network for the illustrative example 

The following assumed inputs are used in the illustrative example:  

  

Transportation Mode:   Air  Ground 

(Stage 4) (Stage 3) (Stage 2) (Stage 1) 

Supplier 2 

Supplier 3 

Supplier 4 

Supplier 5 

Supplier 1 

Manufacturer 1 

Manufacturer 2 

Warehouse 1 

Retailer 1 

Retailer 2 

Retailer 3 

Retailer 4 

Retailer 5 

Retailer 6 

Warehouse 2 
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Table 4.1: Retailer demands for product 1 

Time 

period 
1 2 3 4 5 6 7 8 9 10 11 12 

Retailer 1 3000 2000 1000 1500 1800 2000 750 1300 1300 2200 4200 5000 

Retailer 2 3500 2500 1000 1200 2000 1500 1250 1300 1200 2000 4500 5500 

Retailer 3 3200 2000 1200 1300 1600 1700 1250 1000 1500 2000 4000 5200 

Retailer 4 3000 2200 1300 1000 1700 1700 800 1500 1250 2100 4300 5500 

Retailer 5 3100 2500 1500 1200 1500 1500 1000 1300 1000 2000 4400 5000 

Retailer 6 3000 1400 1400 1200 1450 1400 900 1200 1000 1900 4200 4800 

 

Time 

period 
13 14 15 16 17 18 19 20 21 22 23 24 

Retailer 1 3000 2000 1000 1500 1800 2000 750 1300 1300 2200 4200 5000 

Retailer 2 3500 2500 1000 1200 2000 1500 1250 1300 1200 2000 4500 5500 

Retailer 3 3200 2000 1200 1300 1600 1700 1250 1000 1500 2000 4000 5200 

Retailer 4 3000 2200 1300 1000 1700 1700 800 1500 1250 2100 4300 5500 

Retailer 5 3100 2500 1500 1200 1500 1500 1000 1300 1000 2000 4400 5000 

Retailer 6 3000 1400 1400 1200 1450 1400 900 1200 1000 1900 4200 4800 
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Table 4.2: Retailer demands for product 2 

Time 

period 
1 2 3 4 5 6 7 8 9 10 11 12 

Retailer 1 1800 1500 1650 1000 1200 1000 600 950 1000 1500 1800 2000 

Retailer 2 1700 1400 1800 900 1000 1200 650 1000 900 1100 1750 2100 

Retailer 3 1600 1500 1800 1200 1200 1100 500 900 950 1200 1900 2000 

Retailer 4 1500 1300 1600 1000 1100 1000 500 850 900 1400 1800 2100 

Retailer 5 1600 1200 1500 900 1000 800 400 800 800 1200 1800 2000 

Retailer 6 1500 1100 1400 900 1000 700 400 700 750 1100 1700 1900 

 

Time 

period 
13 14 15 16 17 18 19 20 21 22 23 24 

Retailer 1 1800 1500 1650 1000 1200 1000 600 950 1000 1500 1800 2000 

Retailer 2 1700 1400 1800 900 1000 1200 650 1000 900 1100 1750 2100 

Retailer 3 1600 1500 1800 1200 1200 1100 500 900 950 1200 1900 2000 

Retailer 4 1500 1300 1600 1000 1100 1000 500 850 900 1400 1800 2100 

Retailer 5 1600 1200 1500 900 1000 800 400 800 800 1200 1800 2000 

Retailer 6 1500 1100 1400 900 1000 700 400 700 750 1100 1700 1900 

 

Table 4.3: Operating costs for each manufacturing line per period 

Product 

(p) 

Manufacturer 

(m) 

Line 1 

(OPERCpm1) 

Line 2 

(OPERCpm2) 

Line 3 

(OPERCpm3) 

1 
1 $4,000 $4,000 $5,000 

2 $4,500 $4,000 $5,000 

2 
1 $3,000 $3,500 $4,000 

2 $3,000 $4,000 $3,000 
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The production costs in this example are assumed to only depend on the product. 

Table 4.4: Per-unit production costs 

Product 

(p) 

Per-unit 

Production Cost 

(PRODCp) 

1 $10 

2 $15 

 

Table 4.5: Manufacturing production line capacities per period 

Product 

(p) 

Manufacturer 

(m) 

Line 1 

(MCAPpm1) 

Line 2 

(MCAPpm2) 

Line 3 

(MCAPpm3) 

1 
1 10000 7000 8000 

2 6000 5000 5000 

2 
1 10000 7000 8000 

2 5000 6000 6000 

 

Table 4.6: Raw material inventory holding costs per unit per period  

Raw Material 

(k) 

Cost 

(INVCRMk) 

1 $2.00 

2 $1.00 

3 $0.50 

4 $1.00 

5 $2.00 

 

Each warehouse has a capacity of 40,000 units. 

Inventory holding cost for product 1 = $5.00 per unit per time period 

Inventory holding cost for product 2 = $10.00 per unit per time period 
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Table 4.7: Raw material shipment quantity requirements 

Transportation Mode 

(i) 

Minimum Quantity 

(MINRMi)  

Maximum Quantity 

(MAXRMi) 

1 1 100,000 

2 1 100,000 

 

Table 4.8: Finished product shipment quantity requirements 

Transportation Mode 

(i) 

Minimum Quantity 

(MINFPi) 

Maximum Quantity 

(MAXFPi) 

1 200 7,000 

2 180 7,000 

 

Table 4.9: All-Units cost structure for shipping  

Transportation 

Mode 

Mode Index 

(Lead Time) 

(i) 

Cost 

Bracket 

Weight Range 

(CWT) 
Cost 

Cost 

Variable 

Air 1 
1 0-50 $35/CWT AIRC1 

2 51-200 $25/CWT AIRC2 

Ground 2 

1 0-100 $20/CWT GROUND1 

2 101-400 $15/CWT GROUND2 

3 401-800 $10/CWT GROUND3 

 

Table 4.10: Raw material weights per unit 

Raw Material 

(k) 

Weight (CWT) 

(RMWk) 

1 0.02 

2 0.01 

3 0.01 

4 0.02 

5 0.02 
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Table 4.11: Finished product weights per unit 

Finished Product 

(p) 

Weight (CWT) 

(FPWp) 

1 0.12 

2 0.13 

 

Selling price of product 1 = $100/unit 

Selling price of product 2 = $150/unit 

4.1.1.1 Initialization of the model 

It is unrealistic to assume that the supply chain being modeled in this thesis only 

functions from time period 1 to 24.  A company with this supply chain is most likely already 

processing materials and finished products and is looking to improve its efficiency with 

optimization modeling.  Therefore, initial quantities of raw materials at each manufacturer 

and initial quantities of finished products at each warehouse and retailer were used to 

initialize the model.  It was assumed that the initial quantities of raw material and finished 

product at the retailer allowed for the demand in time period 1 to be satisfied.  The initial 

quantities at the warehouse were sufficient for the satisfaction of the demand in the second, 

third, and fourth time periods with extra supply in some cases available for storage at the 

warehouse.  This was because the first products produced, using the initial shipments of raw 

material scheduled by the model, do not reach the retailer until time period 5 because of the 

one period for manufacturing time and the minimum of three total periods of transportation 

time between each stage. 
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For example, if the fastest mode of transportation is used for all shipments, then the 

raw material shipments that are scheduled in time period 1 will not arrive at the manufacturer 

until time period 2.  These raw materials are converted into finished products available for 

shipment from the manufacturer at the beginning of time period 3.  These finished product 

shipments can then reach the warehouse at time period 4 and can then be shipped to the 

retailers to arrive at the beginning of time period 5.   

It was assumed that any excess inventory from the initialization quantities represented 

the finished product inventory that already existed in the supply chain before the model was 

implemented.   In addition, unless the company goes completely bankrupt and the supply 

chain ceases to exist after time period 24, the quantities in the last few time periods will most 

likely be inaccurate because they do not account for demand after the 24
th

 time period.   

A solution to the complications of a fixed time horizon is to solve the model on a 

moving time horizon basis.  With this option the initialization of the supply chain is still 

necessary for the first model run, but thereafter the initial quantities and input parameters of 

the supply chain, such as demand, can be updated based on previous results and the supply 

chain model can be run again.  This process continues throughout the time period of interest.  

The moving time horizon approach is more realistic and useful in eliminating any bias or 

unrealistic initialization values, as well as giving a company the option to update inputs such 

as demand values that may become more accurate with forecasting as time progresses.  In 

addition, supply chain models take several time periods to get product moving and therefore 

do not reach steady state immediately.  The values of the variables when the supply chain is 

in steady state are usually the most accurate and realistic solution values.  Therefore, the 

initialization time period is required but does not necessarily produce accurate variable 
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values for the solution immediately.  For the purpose of illustration and solution time, only 

one model run for time periods 1 through 24 was analyzed and the initial values were based 

solely on first period demand and demand averages.  However the influence of the initial 

values and the immediate end of the time horizon are addressed in the discussion. 

The initial values for raw materials and finished products at the retailer were derived 

based on the demand in time period 1.  The total demand at all six retailers in time period 1 

was divided in two, to assume that both manufacturing facilities share equal responsibility.  

Therefore, the initial raw material quantities only depend on the raw material, k, and were 

equal for each production facility.  Since the total quantity of product 1 in period 1 at all of 

the retailers is 18,800, the initial quantity of product 1 assumed to be manufactured at each 

manufacturer was calculated to be 9,400 units.  The following equation from the model was 

used to calculate the assumed initial values for raw materials for manufacturing each product. 

𝑅𝑀𝑘  𝑝  𝑚  𝑡 = 𝑟𝑘  𝑝 ∗ 𝑇𝐹𝑃𝑀𝑝  𝑚  𝑡       ∀𝑘, 𝑝, 𝑚, 𝑡 

For example, the equation to calculate the amount of raw material 1 necessary to 

manufacture 9,400 units of product 1 is: 

𝑅𝑀1 1 𝑚  𝑡 = 2 ∗ 9,400 = 18,800 

The remaining initial raw materials quantities for manufacturing were calculated similarly 

and were as follows: 
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Table 4.12: Initial raw material requirements to produce 9,400 units of product 1 

Raw 

Material  

Required 

Quantity  

1 18,800 

2 28,200 

3 47,000 

4 0 

5 0 

 

Table 4.13: Initial raw material requirements to produce 4,850 units of product 2 

Raw 

Material 

Required 

Quantity 

1 0 

2 0 

3 4,850 

4 19,400 

5 9,700 

 

These quantities were added together to derive the total final initialization values: 

Table 4.14: Total raw material initialization values 

Raw Material 

(k) 

Initial Quantity 

(INITRMk) 

1 18,800 

2 28,200 

3 51,850 

4 19,400 

5 9,700 

 

The initial quantities of finished products at each warehouse were used to cover the 

demand for the second, third, and fourth time periods.  The total demand of finished product 

1 over those three time periods was 27,400 and the total demand for product 2 was 23,650.  
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These values were rounded up to 30,000 and assumed to be divided equally among the two 

warehouses.  Therefore 15,000 units of each product were assumed to be available at each 

warehouse initially.  Lastly, the initial quantities of finished products at each retailer were 

assumed to be equal to the demand so lost sales were not incurred at the end of the first time 

period.  All subsequent time periods were solved by using the optimization model. 

4.2 Solution Procedure and Results 

The illustrative example model was solved using the General Algebraic Modeling 

System (GAMS) with a CPLEX processor.  The problems were solved on a cluster of eight 

computers with a total of four AMD Opteron 8222 SE Dual-Core 3.0 GHz processors.  The 

total memory available in the cluster was 128 GB and all problems solved in less than three 

minutes.  First, the bi-criteria model, with Profit and Customer Responsiveness as objectives, 

was solved.  Customer Responsiveness is measured in terms of Lost Sales in the model. 

4.2.1 Bi-Criteria Example 

To find the ideal solution, the problem was solved as a single objective optimization 

problem.  Solving for just Maximize Profit produced Solution 1.  For Solution 1 the objective 

value was set equal to the ideal for objective 1, so the max profit is: IDEAL1 = $43,300,606.  

The maximization of profit for Solution 1 resulted in a total number of lost sales of 19,285.  

Solving for just Minimize Lost Sales produced a total number of lost sales for Solution 2 as 

IDEAL2 = 2,008 lost sales.  When Lost Sales was the only objective the total profit was 

$42,023,284.  These two solutions were used to set the bounds for each objective.  The 

maximum profit was $43,300,606, and the minimum profit was set to $42,023,284.  
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Similarly, the minimum number of lost sales was 2,008, and the maximum number of lost 

sales was set to 19,285.  The Ideal Solution to the bi-criteria problem, expressed as        

(Obj1, Obj2), was ($43300606, 2008). 

In Solution 1, profit was the only objective included in the optimization.  Therefore 

the profit was maximized regardless of lost sales.  Consequently the number of lost sales 

neared 20,000.  However, when the minimization of lost sales was the only objective, 

regardless of profit, the number of lost sales was minimized to 2,008.  This required a 

sacrifice of profit as it decreases by over one million dollars from $43,300,606 to 

$42,023,384.  This trade-off behavior is typical of multi-criteria problems when each 

objective is solved for individually.  When both objectives are included at the same time in 

the multi-criteria model, the ideal solution could not be achievable if the two objectives 

conflicted with each other.  Many multi-criteria problems have conflicting criteria so the Best 

Compromise Solution is identified as the optimal solution.  The Best Compromise Solution is 

the efficient solution to the multi-criteria problem that maximizes the Decision Maker‟s 

Utility/Value function.   

For the goal programming model, the bounds on each objective are used to determine 

the targets for each objective.  In order to stay within the range of the profit values, the profit 

target was set to 98% of the Ideal value.  Thus, dec1 was set to 2 and, 

𝑇𝐴𝑅𝐺𝐸𝑇1 =
(100 − 𝑑𝑒𝑐1)

100
∗ 𝐼𝐷𝐸𝐴𝐿1 =

(100 − 2)

100
∗ 43,300,606 = $42,434,594 
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Similarly, objective 2 was relaxed by 2% also, so inc2 = 2.  (Note: Objective 2 is a 

minimization objective) 

𝑇𝐴𝑅𝐺𝐸𝑇2 =
(100 + 𝑖𝑛𝑐1)

100
∗ 𝐼𝐷𝐸𝐴𝐿2 =

(100 + 2)

100
∗ 2,008 = 2,048 

The deviational variables, du
-
 and du

+
, were used to represent the deviations between the 

actual objective value and its target in the goal programming models.  The overall goal was 

then to minimize the total deviations from the goals, or targets.  For the preemptive goal 

programming model, the objectives were assigned a priority. 

The preemptive goal programs were solved for two cases for which the importance of 

one objective in relation to the other were as follows: 

Case 1: Profit has a higher priority over Lost Sales 

Case 2: Lost Sales have a higher priority over Profit 

Preemptive Goal Programming Solution to Case 1: 

The preemptive goal program was solved first for the two cases.  The additional goal 

constraints in preemptive goal programming model were: 

𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 𝑇𝐴𝑅𝐺𝐸𝑇1 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 𝑇𝐴𝑅𝐺𝐸𝑇2 

To solve for Case 1 the objective function was: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑1
− + 𝑃2(𝑑2

+) 
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In this formulation, 𝑑1
− represented the amount that the profit deviated, or underachieved, its 

goal of TARGET1.  The deviational variable d2
+
 was equal to the number of lost sales that 

exceeded the goal for the minimum number of lost sales.  The problem was solved iteratively 

so the following single objective problem was solved first. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑑1
− 

Subject to, 

𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 42,434,594 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 2,048 

𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+ ≥ 0 

[All real constraints in the general model] 

The objective values and deviational variables for the solution to the first single 

objective model for Case 1 in the preemptive model are summarized in Table 4.15. 

Table 4.15: First solution – Case 1: Preemptive model 

 Value du
+ 

du
- 

TARGETu IDEALu 

Obj1: Max Profit 42,434,594 0 0 42,434,594 43,300,606 

Obj2: Min Lost Sales 19,285 17,237 0 2,048 2,008 

 

As expected, the profit goal was achieved, but the lost sales (19,285) were higher than 

the target value (2,048).  The solution to this single objective problem was then implemented 

in the next single objective problem by adding a constraint that restricted the value for 

Objective 1 to be larger than or equal to $42,434,594.  This ensured that the value of 
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objective 1, the Profit, was not worsened from the preceding optimal value.  This led to the 

derivation of the best compromise solution.  The principle that the first goal is satisfied as far 

as possible before the second goal is implemented is imperative to preemptive goal 

programming.  The best compromise solution will not take away from the previous 

achievements of the higher priority objectives.  The second single objective problem for the 

preemptive goal programming solution was:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑑2
+ 

Subject to, 

𝑶𝒃𝒋𝟏 ≥ 𝟒𝟐, 𝟒𝟑𝟒, 𝟓𝟗𝟒 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 2,048 

𝑑2
−, 𝑑2

+ ≥ 0 

[All real constraints in the general model] 

The solution to this second single objective problem was the overall solution to the 

preemptive goal program and was labeled Solution 3.  Solution 3 was the optimal solution to 

the goal program and the objective and deviational variable values are presented in Table 

4.16. 

Table 4.16: Final Solution 3 – Case 1: Preemptive model 

 Value du
+ 

du
- 

TARGETu IDEALu 

Obj1: Max Profit 42,875,386 440,792 0 42,434,594 43,300,606 

Obj2: Min Lost Sales 2,048 0 0 2,048 2,008 
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 The progression of the solutions in this iterative approach to a bi-criteria model was 

logical.  The first solution disregarded the lost sales and only optimized profit.  Therefore, the 

target profit was achieved and the number of lost sales was far from its target.  However, 

when the lost sales were added to the model objective, the number of lost sales went down 

and achieved the target value. 

The deviational variables indicating a target was not met in this model are d1
-
 and d2

+
.  

Since both of these were 0, the targets for this model were met.  However, d1
+
 became 

positive in the final solution for Case 1 in the preemptive model.  This indicates that the 

profit exceeded the target, although it was still less than the ideal value.  Since both targets 

were met with this model and profit exceeded its target, the solution may be a dominated 

solution.  If it is, at least one objective can be improved upon without losing achievements in 

the other objectives.  In addition, dominated solutions are not optimal for a model.  

Therefore, the targets for this model were reset to the ideal values, IDEALu, and the problem 

was solved again using the same solution procedure.  The final results are presented in Table 

4.17.   

Table 4.17: Final Solution 3 – Case 1: Preemptive model with IDEAL targets 

 Value du
+ 

du
- 

TARGETu IDEALu 

Obj1: Max Profit 43,300,606 0 0 43,300,606 43,300,606 

Obj2: Min Lost Sales 2,008 0 0 2,008 2,008 

 

Ultimately, the ideal solution for the problem was achieved and is optimal.  This is an 

indication that the two objectives in this model, maximize profit and minimize the number of 

lost sales, are not conflicting.  This can most likely be attributed to the large profit margin 
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since the individual product revenues are high.  Therefore the ideal profit can still be met 

even when lost sales are limited.  In this model profit is generated by selling enough product 

to counteract the total costs of the model.  Therefore maximizing profit would involve 

minimizing the number of lost sales and so the ideal solution would be optimal.  This 

solution is not a dominated solution because each objective was at its ideal, which is the 

optimal solution for each individual objective value.  Therefore, neither objective can be 

improved upon.  Ultimately, for the preemptive model for Case 1, the ideal solution was 

achievable and identified as the optimal solution.  Because of this, the targets were set to the 

ideal values in the remaining models for the example. 

Preemptive Goal Programming Solution to Case 2: 

The same solution process with the ideal values for the targets for the preemptive goal 

programming was implemented for Case 2.  The first single objective linear program was: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑑2
+ 

Subject to, 

𝑂𝑏𝑗
1

+ 𝑑1
− − 𝑑1

+ = 43,300,606 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 2,008 

𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+ ≥ 0 

[All real constraints in the general model] 
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The solution is summarized in Table 4.18. 

Table 4.18: First Solution – Case 2: Preemptive model with IDEAL targets 

 Value du
+ 

du
- 

TARGETu IDEALu 

Obj1: Max Profit 42,729,990 0 570,616 43,300,606 43,300,606 

Obj2: Min Lost Sales 2,008 0 0 2,008 2,008 

 

This solution was used in the next single objective problem as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑑1
− 

Subject to, 

𝑶𝒃𝒋𝟐 ≤ 𝟐, 𝟎𝟎𝟖 

𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 43,300,606 

𝑑1
−, 𝑑1

+ ≥ 0 

[All real constraints in the general model] 

The solution to this second single objective problem was identical to the solution for the 

preemptive problem in Case 1.  The solution for Case 2, which is again the ideal solution, is 

summarized in Table 4.17.  This was expected since both targets were achievable and 

reversing priorities did not affect the optimal solution. 

Non-Preemptive Goal Programming Solution 

Non-preemptive goal programming requires a numerical weight to be assigned to the 

deviational variables to form the objective function so the model can be formulated as a 
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single objective problem.   However, the use of numerical weights requires that the 

objectives are scaled properly.  We scaled the objectives using Ideal values.  Since the targets 

in this problem were set equal to the ideal values, the right side of the equation became 1.  

The following goal constraints were used in the non-preemptive goal program: 

𝑂𝑏𝑗1

𝐼𝐷𝐸𝐴𝐿1
+ 𝑑1

− − 𝑑1
+ =

𝑇𝐴𝑅𝐺𝐸𝑇1

𝐼𝐷𝐸𝐴𝐿1
= 1 

𝑂𝑏𝑗2

𝐼𝐷𝐸𝐴𝐿2
+ 𝑑2

− − 𝑑2
+ =

𝑇𝐴𝑅𝐺𝐸𝑇2

𝐼𝐷𝐸𝐴𝐿2
= 1 

The non-preemptive goal programming objective was: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑤1(𝑑1
−) + 𝑤2(𝑑2

+) 

For Case 1 the weights for the objectives were w1 = 5 and w2 = 1 indicating that Obj1, or 

Profit, is five times as important as Obj2, which is Lost Sales.  Therefore the Case 1 goal 

program became: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  (5 ∗ 𝑑1
−) + (𝑑2

+) 

Subject to, 

𝑂𝑏𝑗1

43,300,606
+ 𝑑1

− − 𝑑1
+ = 1 

𝑂𝑏𝑗2

2,008
+ 𝑑2

− − 𝑑2
+ = 1 

𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+ ≥ 0 

[All real constraints in the general model] 
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The solution to the goal program with the preceding objective was the same as the solution to 

the preemptive solution for Case 1 and is summarized in Table 4.17.  Once again, this was 

expected since both targets were achievable. 

In Case 2 the weights were reversed and w1 was 1 while w2 was 5.  The goal 

programming problem for this case was:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  (𝑑1
−) + (5 ∗ 𝑑2

+) 

Subject to, the goal constraints and real constraints as before.   

The optimal solution was the same as both targets were achievable and changing the weights 

had no impact on the optimal solution. 

Discussion of solutions for Case 1 and Case 2 using IDEAL values for targets 

Case 1 and Case 2 both resulted in the achievement of the ideal solution as the 

optimal solution using the preemptive approach.  However, the progression of the solutions 

differed.  The first solution for Case 1 allowed the profit, which was the prioritized objective, 

to reach its ideal value.  In this first solution, the number of lost sales was large.  Then, when 

the second objective was added to the model, the number of lost sales decreased to its ideal 

value and profit remained optimal.  The opposite progression occurred when Case 2 was 

solved.  In Case 2, lost sales were prioritized over profit.  In this case, the first solution 

optimized just objective 2 to 2,008 lost sales and profit was less than its ideal.  Then 

objective 1 was added to the model and the profit was maximized to its ideal, thereby 

resulting in the overall ideal solution. 
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 In the non-preemptive model the same final solution was derived for Cases 1 and 2 

using the weights 5 and 1, depending on which objective had priority.  It was found that the 

same solution was derived when the weights are 2 and 1 as well.   

Since the ideal solution was feasible, the two objectives, Profit and Lost Sales, are not 

completely conflicting.  Neither of them had to be compromised to reach optimality.  Hence 

priority ranking of the objectives in the preemptive case and the choice of weights in the non-

preemptive case did not make any difference on the final optimal solution.  Since revenue is 

generated in this model by selling as many products as possible, it is not surprising that 

minimizing the number of lost sales would also maximize profit.  A third objective, which 

wants to minimize inventory capital, was then added to the model and the solutions were 

derived with a similar solution process.   

4.2.2 Multi-Criteria Model 

The results for all three objectives for Solution 1, where Profit was the only objective 

and Solution 2, where Customer Responsiveness was the only objective, are presented in 

Table 4.19.   Solution 4 was identified as the solution to the problem when Inventory Capital 

was the single objective.  The objective values that resulted when the objectives were solved 

individually are included in Table 4.19. 

Table 4.19: Results for all objectives for single objective models: Solutions 1, 2 and 4 

 Solution 1 Solution 2 Solution 4 

(max) Obj1 $43,300,606 $42,023,284 $17,614,024 

(min) Obj2 19,285 2,008 313,120 

(min) Obj3 $50,984,172 $81,583,502 $47,732,917 
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The ideal solution, in bold face, for the three objectives was ($43300606, 2008, $47732917).  

A graphical representation of the data in Table 4.19 is presented in Figure 4.2.  

 

Figure 4.2: Graphical representation of results for all objectives for Solutions 1, 2, and 4 

For all three objectives, the ideal value was set as the target.  Therefore, IDEAL3 was 

set to $47,732,917.  The bounds on the objectives, which were the overall maximum or 

minimum values from Solutions 1, 2, and 4, were: MINObj1 = $17,614,024, MAXObj2 = 

313,120, MAXObj3 = $81,583,502.  Additionally, the objective expressions in the general 

model, including the expression for Obj3 were written as goal constraints in the model and set 

equal to the variables Obj1, Obj2, Obj3.   

Discussion of solutions for single objective problems: Solutions 1, 2, and 4 

It can be noted that the bounds on the objectives were relaxed in this model compared 

to the two-objective model.  This was a result of the solution when Inventory Capital was the 

only objective.  Minimizing Inventory Capital resulted in more lost sales because there was 
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less product available in inventory to compensate for unexpected spikes in the demand.  In 

the solution for minimizing the inventory capital, there were not any shipments of raw 

material from the suppliers.  Therefore, the only finished products manufactured or shipped 

in this model were a direct result of the initialization values.  This minimized the inventory 

quantities and inventory capital.  Although inventory holding costs were limited, profit was 

lowest in this solution because the revenues were significantly decreased due to a lack of 

product at the retailers.  This resulted in the maximum number of lost sales across the three 

solutions as well.  The inventory level progression across the time horizon for each solution 

is summarized in Figure 4.3. 

 

 

Figure 4.3: Total warehouse inventory levels when objectives were solved individually 
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Figure 4.3 shows the total inventory maintained throughout the model in which lost 

sales were minimized (Solution 2), exceeds the inventory in the other two solutions.  

Additionally, when inventory capital was minimized (Solution 3), the total warehouse 

inventory levels were the lowest compared to the other solutions.  When profit was 

maximized (Solution 1), the total inventory levels were similar to those when inventory 

capital was minimized.  This can be attributed to the inclusion of an inventory holding cost 

and not a cost for lost sales in the model in the profit equation.   

When three objectives were considered, just one case was analyzed.  The optimal 

solutions found so far have all utilized the warehouse inventory frequently.  Therefore we 

will examine the changes in the solutions when Inventory Capital is included as an objective 

and prioritized over the other two objectives.  The following case indicates the importance of 

each objective over the others. 

Case 3: Inventory Capital > Profit > Lost Sales 

The objective for Case 3 was represented as Scenario 5 in Chapter 3 and is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑃1 𝑑3
+ + 𝑃2 𝑑1

− + 𝑃3(𝑑2
+) 

Preemptive Goal Programming: 

In the preemptive goal programming problem, Case 3 was implemented by solving three 

single objective problems.  The first single objective only minimized the deviation from the 

third objective, Inventory Capital, as follows:  
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑑3
+ 

Subject to, 

𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 43,300,606 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 2,008 

𝑂𝑏𝑗3 + 𝑑3
− − 𝑑3

+ = 47,732,917 

𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+, 𝑑3
−, 𝑑3

+ ≥ 0 

[All real constraints in the general model] 

The solution to the first single objective problem in the preemptive goal programming is 

summarized in Table 4.20. 

Table 4.20: First solution – Case 3: Preemptive model with IDEAL targets 

 Value du
+ 

du
- 

TARGETu 

Obj1: Max Profit 17,613,210 0 25,686,396 43,300,606 

Obj2: Min Lost Sales 312,777 310,769 0 2,008 

Obj3: Min Inventory Capital 47,732,917 0 0 47,732,917 

 

The ideal solution for objective three was achieved in the first problem and the objective 

value of the first single objective program was implemented as a constraint in the second 

single objective program as follows: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑑1
− 

Subject to, 

𝑶𝒃𝒋𝟑 ≤ 𝟒𝟕, 𝟕𝟑𝟐, 𝟗𝟏𝟕 

𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 43,300,606 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 2,008 

𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+ ≥ 0 

[All real constraints in the general model] 

The solution to the second single objective problem in the preemptive goal program is 

summarized in Table 4.21. 

Table 4.21: Second solution – Case 3: Preemptive model with IDEAL targets 

 Value du
+ 

du
- 

TARGETu 

Obj1: Max Profit 43,300,606 0 0 43,300,606 

Obj2: Min Lost Sales 16,690 14,682 0 2,008 

Obj3: Min Inventory Capital 47,732,917 0 0 47,732,917 

 

The ideal solutions for objectives 1 and 3 were achieved.  The solution from this previous 

problem was implemented as a constraint in the third, and last, single objective problem for 

which the deviational variable for lost sales was minimized. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑑2
+ 

Subject to, 

𝑶𝒃𝒋𝟑 ≤ 𝟒𝟕, 𝟕𝟑𝟐, 𝟗𝟏𝟕 

𝑶𝒃𝒋𝟏 ≥ 𝟒𝟑, 𝟑𝟎𝟎, 𝟔𝟎𝟔 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 2,008 

𝑑2
−, 𝑑2

+ ≥ 0 

[All real constraints in the general model] 

The resulting solution was Solution 5 and is presented in Table 4.22. 

Table 4.22: Final Solution 5 – Case 3: Preemptive model with IDEAL targets 

 Value du
+ 

du
- 

TARGETu 

Obj1: Max Profit 43,300,606 0 0 43,300,606 

Obj2: Min Lost Sales 2,129 121 0 2,008 

Obj3: Min Inventory Capital 47,732,917 0 0 47,732,917 

 

The progression of the objective values is displayed in Figure 4.4.  As each objective 

was added to the model, the objective value improved.  The initial solution for the inventory 

in capital remained unchanged as the first and second objectives were added to the model.  

Initially profit was lower than the ideal value but once included as part of the objective, it 

reached the ideal level.  Lastly, the number of lost sales was very large initially, but it 

continued to decrease as the preemptive model progressed.  Ultimately, the number of lost 

sales came closer to the ideal value of 2,008, but did not achieve the ideal.  It was not 



119 
 

possible to achieve all three ideal values simultaneously therefore the ideal solution for Case 

3 was not feasible.  The best compromise solution was derived with the preemptive case and 

the smallest number of lost sales possible was 2,129 while the ideal solutions were achieved 

for objectives 1 and 3, at $43,300,606 and $47,732,917 respectively.   

 

Figure 4.4: Progression of objective values for Case 3 – Preemptive Model 

Non-Preemptive Goal Programming 

In the non-preemptive goal programming problem, the first set of weights used in the 

objective was: w1 = 2, w2 = 1, w3 = 4.  These weights indicated that Profit, Obj1, was two 

times as important as Lost Sales, Obj2.  Additionally, Inventory Capital, which was Obj3, was 

twice as important as Profit, and consequently four times as important as Lost Sales.  Since 

the target was set to the ideal value, the following goal constraint was necessary for objective 

3: 
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𝐼𝐷𝐸𝐴𝐿3
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− − 𝑑3
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= 1 
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The objective for the non-preemptive program with three objectives was: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑤1 𝑑1
− + 𝑤2 𝑑2

+ + 𝑤3(𝑑3
+) 

The following problem formulation was implemented for this scenario:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 2 𝑑1
− +  𝑑2

+ + 4(𝑑3
+) 

Subject to, 

𝑂𝑏𝑗1

43,300,606
+ 𝑑1

− − 𝑑1
+ = 1 

𝑂𝑏𝑗2

2,008
+ 𝑑2

− − 𝑑2
+ = 1 

𝑂𝑏𝑗3

47,732,917
+ 𝑑3

− − 𝑑3
+ = 1 

𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+, 𝑑3
−, 𝑑3

+ ≥ 0 

[All real constraints in the general model] 

The final solution to the non-preemptive problem was slightly different than the optimal 

solution obtained in the preemptive case.  The final solution to the non-preemptive model for 

Case 3 with the corresponding objective weights was identified as Solution 6 and is 

summarized in Table 4.23.  The solution to the non-preemptive model for Case 3 

underachieved the targets for both Objective 2 and Objective 3.  However, profit was 

maximized to its ideal value. 
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Table 4.23: Final Solution 6 – Case 3: Non-Preemptive model with IDEAL targets 

 
Objective 

Weight (wu) 
Value du

+ 
du

- 
TARGETu 

Obj1: Max Profit 2 43,300,606 0 0 43,300,606 

Obj2: Min Lost Sales 1 2,119 0.0554 0 2,008 

Obj3: Min Inventory Capital 4 47,788,462 0.0012 0 47,732,917 

Discussion of solutions for Case 3 using IDEAL values for targets 

The solution to the non-preemptive model was different than the solution to the 

preemptive model; however both models achieved the ideal value for the first objective.  

Although Objective 3, the minimization of inventory capital, had the largest objective 

weight, it did not reach its ideal value in the optimal solution.  The value of d3
+
 was 0.0012 

indicating the value of objective 3 was 0.12% larger than the ideal value.  Additionally, the 

optimal value for lost sales exceeded the ideal value by 5.54%.   

It is often challenging to match the solution of the preemptive goal program with the 

solution to a non-preemptive goal program.  This is because the determination of the 

objective weights is challenging and can produce varying results.  Table 4.24 summarizes the 

preemptive solution for Case 3 and several non-preemptive solutions for Case 3 with 

different objective weights.  The weights for the non-preemptive solutions are summarized as 

(w1, w2, w3) in the table. 
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Table 4.24: Final Solutions for Case 3 

   Non-Preemptive Solutions 

 
TARGET 

Value 

Preemptive 

Solution 
(2,1,3) (2,1,4) (5,1,10) 

Obj1  43,300,606 43,300,606 43,300,606 43,300,606 43,300,606 

Obj2  2,008 2,129 2,008 2,119 2,129 

Obj3 47,732,917 47,732,917 48,578,200 47,788,462 47,732,917 

d1
+ 

  - 0 0 0 0 

d1
- 
  - 0 0 0 0 

d2
+
  - 121 0 0.0554 0.0602 

d2
-
  - 0 0 0 0 

d3
+
  - 0 0.0177 0.0012 0 

d3
-
  - 0 0 0 0 

 

The difficulty in choosing weights accurately caused differences in the optimal 

solutions for the non-preemptive model.  As shown in Table 4.24, different weight 

combinations for the objectives produced different solutions.  The ideal solution for objective 

3, the objective with the highest weight, was not achieved with the objective weight 

combinations (2, 1, 3) or (2, 1, 4).  However, it was achieved when the weight combination 

was (5, 1, 10).  This combination produced the same solution as the preemptive solution for 

Case 3.  Therefore, the weights of the prioritized objectives have to exceed the weight of the 

least important objective by a significant amount in this model to derive the same solution as 

an iterative approach to the implementation of objective priorities.   

It is also observed that the number of lost sales achieved the ideal value if a sacrifice 

on inventory capital was allowed to be incurred.  In the solution with the (2, 1, 4) weight 

combination, the only objective that achieved the ideal value was objective 1, while the other 

two objectives underachieved their goals by a small percentage.  Although the non-
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preemptive approach may be faster, since just one single objective problem needs to be 

solved, the derivation of appropriate weights is a difficult task.  Not only does the Decision 

Maker (DM) have to quantify their preference for each objective, but the determination of an 

appropriate range or scale for the weights is ambiguous.  In the preemptive case, the DM just 

had to choose which objectives had priority over the others and ordinal scaling is used.  This 

is usually easier than attempting to quantify a preference.  It can be noted that none of the 

solutions presented in Table 4.24 were dominated solutions because each time a single 

objective was improved a sacrifice was made on the achievement of another objective. 

Since the total inventory capital was the third objective being added to the model, the 

total warehouse inventory levels for the bi-criteria model were compared to the multiple-

criteria model with three objectives.  Solution 3 was the optimal solution for the preemptive 

and non-preemptive models for Cases 1 and 2.  It is compared to Solution 5, which was the 

optimal solution for Case 3 for which the preemptive and non-preemptive cases matched.  

This required that the non-preemptive weights were w1 = 5, w2 = 1, w3 = 10.  As displayed in 

Figure 4.5, the total inventory was consistently lower when the inventory capital objective 

was added to the model and was the most prioritized objective.   



124 
 

 

Figure 4.5: Inventory levels for bi-criteria solution and multi-criteria solution 

It is important to note the total warehouse inventory levels were significantly larger in 

the first few time periods and then diminish significantly in both solutions.  Additionally, the 

inventory level after time period 22 is zero for both models.  These results can most likely be 

attributed to the effects of the initialization of the model and the lack of demand after time 

period 24.  As discussed previously, these skewed results could be remedied with a moving 

time horizon solution process. 

The values of all of the variables defined in the model are part of the solution when 

the model is solved.  The variable values define the production and shipping schedule, which 

modes and cost brackets to use for transportation, and the inventory and product quantities at 

each stage of the supply chain.  With all of these values a company can identify the exact 

schedules and quantities necessary to obtain the objective values desired.   
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Chapter 5 Conclusion 

 Supply Chain Management (SCM) is used to develop and utilize supply chain models 

to maximize the efficiency of supply chains.  Accurate supply chain modeling requires 

consideration of all aspects of the production and distribution of a product.  The integration 

of inventory and transportation decisions in one model is not covered extensively in the 

literature.  In addition, multiple production lines at manufacturing facilities and multiple 

products flowing along a supply chain are aspects of real-world supply chains that are not the 

focus of many existing supply chain models. In this thesis, a model that aims to reflect a real-

world supply chain accurately and extensively is developed.   

The model was for a two product, four-stage, centralized supply chain.  Each stage 

had more than one entity, as well as three available production lines at each manufacturing 

facilities.  Multiple modes of transportation were available between each stage and a freight 

rate function that reflected the all-units quantity discount cost structure on shipments was 

included in the model.  The model considered transportation and inventory decisions, as well 

as manufacturing decisions related to the utilization of production lines.  The supply chain 

model was used to determine the appropriate production and distribution quantities and the 

timing of production and shipments that optimize the objectives of the model.   

The goals implemented in the model were the maximization of profit, maximization 

of customer responsiveness, and minimization of the capital in inventory.  Multi-Criteria 

mathematical programming was used to either optimize a bi-criteria model or to optimize all 

three criteria simultaneously.  In multi-criteria models, the criteria are often conflicting, so 
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the best compromise solution which best satisfies all of the objectives while satisfying the 

constraints of the model must be identified. 

The methods implemented to solve the mathematical programs developed for the 

model were variations of goal programming.  In goal programming, a goal for each objective 

is defined.  Then the total deviation from all of the goals is minimized.  Preemptive and non-

preemptive goal programming were used to solve the multi-criteria models developed in this 

thesis.  In the preemptive problems, the priority of each objective compared to the others was 

specified.  Then single objective models were solved iteratively to arrive at the final optimal 

solution.  On the contrary, in the non-preemptive problems, weights are assigned to each 

objective and a single objective model was solved.  The weights reflected the preference of 

each objective and how much it was to be prioritized over the others.  Weights in non-

preemptive programming are difficult to derive since preference information is hard to 

quantify.  In addition, the determination of the range and scale of the weights for multi-

criteria problems is ambiguous. 

Three different cases were modeled preemptively and non-preemptively.  The first 

two cases were applied to the bi-criteria model in which one criterion was prioritized over the 

other.  For example, in the first case, profit was prioritized over customer service, whereas in 

the second case, customer service was prioritized over profit.  The third case identified 

preferences among three criteria for the multi-criteria problem.  In case 3, the amount of 

capital in inventory was the highest priority objective, then profit, and lastly customer 

responsiveness.  The problems in this thesis were solved using GAMS (General Algebraic 

Modeling System) optimization software.  The optimal solutions to the models were derived 

and key aspects of the solutions were identified.   
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In the bi-criteria models, the ideal solution was achievable with preemptive and non-

preemptive goal programming for cases 1 and 2.  This indicated that the two objectives, 

maximize profit and maximize customer responsiveness, were not completely conflicting.  

The optimal objective value identified when each criteria was solved independently was 

defined as the ideal value for the objective.  In the ideal solution, each criterion was equal to 

its ideal value even though both criteria were included in the model indicating the objectives 

were not conflicting.  The ideal solution was not feasible for the model that incorporated all 

three objectives though.  In this solution, the objectives for profit and inventory in capital 

reached were the two prioritized objectives and they achieved their ideal values.  However, 

customer responsiveness was identified as the least important objective and did not equal its 

ideal value.  This indicated that there were conflicts among the ideal solutions for each 

objective when solved individually so when all three were incorporated into one model, some 

sacrifices were necessary to reach optimality.   

The third objective that was added to form the multi-criteria model was the 

minimization of capital in inventory which reflected the maximization of customer 

responsiveness.  It was observed that the addition and prioritization of this objective led to 

overall lower inventory levels.  Even with minimal inventory, the profit was still maximized.  

However a sacrifice to the customer responsiveness was made, resulting in more lost sales.  

In supply chain management, it is common to observe increased lost sales as a result of 

minimal inventory levels since excess inventory, or safety stock, is not available to 

compensate for unexpected spikes in demand.   

The complete solutions to the model identify when and where to ship materials and 

finished products between each stage of the supply chain and which transportation modes to 
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use for the shipments.  Additionally, the scheduling of the production lines to a particular 

product during each time period is specified.  These solutions, along with the objective 

values for the model developed in this thesis, can be a useful supply chain management tool.    

The efficient operation of the supply chain can lead to increased profits and savings, as well 

as the elimination of excessive production or spending.  Ultimately, the goal is to use the 

model developed as a management tool to optimize a supply chain so it operates efficiently.  

The model developed in this thesis extends existing models by adding a second product and 

more entities at each stage of the supply chain in addition to solving the model with multiple 

criteria to more realistically depict a real-world supply chain.  By extending existing models 

in literature, this model provides a better fit for real-world supply chains, and therefore 

provides a better supply chain management tool to derive a complete solution to a realistic 

supply chain problem. 

Despite the extensions and additions to this model, there are several ways the model 

can be extended further to enhance it or create an even more realistic representation of an 

existing real-world supply chain.  For example, inflation rate can be added to the model to 

reflect the progression of prices and costs over time.  Although this thesis extends previous 

models by adding facilities at each stage of the model, further extension of this concept could 

result in a direct replication of a real-world supply chain since they typically include many 

more suppliers, manufacturers, warehouses, and retailers.  Another attempt to accurately 

model a realistic supply chain would be to generalize the model for „n‟ products, and „m‟ 

transportation modes.  The manufacturing and lead times are fixed in this model whereas 

realistically the manufacturing times may depend on the product and multiple lead times 

could be available for each mode of transportation (i.e. 2-day and 5-day ground shipping).  
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On this same note, the model requires that products are shipped from the manufacturer as 

soon as they complete manufacturing.  However, realistically the time period may be set as 

small as several hours and shipments may be aggregated throughout a day before a shipment 

goes out.  Therefore revisions on product flow constraints at the manufacturer would be 

required.   

Lastly, goal programming was used to solve the multi-criteria aspect of the model.  

Alternative solution methods for goal programming are available such as the Partitioning 

Algorithm and the Simplex Method for goal programming.  Goal programming requires that 

all preference information is specified before the solution process.  Other multi-criteria 

methods such as Compromise Programming and the STEM/STEP method utilize preference 

information differently.  All of these methods could be used to solve the multi-criteria model 

developed in this thesis a different way. 
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