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ABSTRACT 
 

 Material balance is an essential reservoir engineering tool that is used to determine original 

hydrocarbon in place and the production performance of a reservoir. There are several types of 

material-balance approaches developed, each with its own application. Such approaches include 

integral material balance, differential material balance and flowing material balance.  In this thesis, 

a form of differential material balance, similar to the one developed by Muskat for Solution Gas 

Drive Reservoirs, has been derived for unconventional gas-water reservoirs impacted by 

adsorption. Originally, the developed Muskat-type equation is in the pressure domain, but it can 

also be derived in other domains such as the time domain and the cumulative produced fluids 

domains. The resulting system of ordinary differential equations (ODEs) are then solved using 

fourth order Runge-Kutta method which is a traditional ODE solver.  

 The system of two differential equations for the Muskat-type equation in the time domain 

(time as an independent variable), are formulated with pressure and water saturation as the 

dependent variables. These resulting ODEs are then used to forecast and analyze the production 

profiles of a gas-water reservoir considering adsorption. The semi-analytical model is then 

validated internally using finite difference and analytical rate derivative equations, and externally 

by benchmarking it with a numerical simulator. The significant factor that caused the disparity 

between the semi-analytical model proposed in this study and the numerical simulator is the time 

it takes to reach pseudo-steady state flow (𝑡𝑝𝑠𝑠) with lower times producing better results. At 𝑡𝑝𝑠𝑠 

less than 0.111 days1, numerical simulation is almost replaceable in forecasting rates. However, at 

𝑡𝑝𝑠𝑠 less than 0.717 days1, cumulative gas produced can be accurately forecasted.  This is to be 

expected and a reservoir simulator is fully transient, while material balance is based on the pseudo 

steady-state flow regime.  

 This study provided a unique opportunity to investigate the characteristics of the 

production profile such as the peak rate and the observed inflection points while also identifying 

the reservoir parameters that affect them. Moreover, an equation has been developed that can be 

used to identify and describe the peak rate. This equation makes use of the byproduct of the Muskat-

type equation (
𝑑𝑆𝑤

𝑑𝑃
) which can be modified in terms of rock and fluid properties to aid in history 

matching. Furthermore, three well specifications were investigated (constant well pressure, 

                                                   
1 This is not a general recommendation but was based off the limited amount of cases analyzed 

within this thesis. For a more general range of applicability, more cases will need to developed and analyzed. 
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constant drawdown, and constant water production rate) with only two of the three producing a 

peak rate – no peak gas production rate was observed for water rate specified wells. This study also 

showed that material balance can be used to replace decline curve analysis under certain conditions. 

This is mainly due to the reduced time to pseudo-steady state (𝑡𝑝𝑠𝑠) caused by the low total 

compressibility (rock and water), high permeability, low water viscosity, and low drainage area. At 

a threshold of 𝑡𝑝𝑠𝑠 less than 0.178 days1, an accurate late-time forecast can be attained. 

 Since the proposed semi-analytical model provided water saturation values for different 

pressures, a non-iterative methodology has been developed to improve upon King’s (G. R. King, 

1993) iterative integral material balance equation for unconventional reservoirs. 

 Through this study, a number of significant observations were made. It was found that at a 

low rock compressibility, the change in saturation over time can be estimated using the water 

production profile and initial porosity and water formation volume factor. Also, the saturation of 

gas can be estimated using the percentage of water produced from the original water in place 

(OWIP), adjusted for desorption time, at an increasing accuracy as the rock compressibility is 

decreased. Additionally, the cause of a phenomenon known as “dual peaking” which occurs in field 

and simulation data of CBM reservoirs has been identified to be due to the transient-state 

production.  
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Chapter 1  
 

Introduction 

In 1976, the U.S. government funded the Unconventional Gas Research Program in order 

to develop the U.S. domestic natural gas resource base. This step was in response to the OPEC oil 

embargo and as a consequence of the declining gas production. Unlike unconventional gas 

reservoirs, conventional gas reservoirs consist of drilling conventional vertical wells to tap into 

reservoirs of natural gas. In contrast, unconventional gas reservoirs are much more complicated to 

produce from. In order to extract unconventional gas at an economically desirable rate, a 

combination of techniques such as horizontal drilling and hydraulic fracturing needs to be used.  In 

the 1990s, after years of innovation and federal support, these combined techniques became 

economically viable and common practice (American Energy Innovation Council, 2013). Figure 

1-1 shows the historical production before 2012 and the forecasted production of natural gas from 

different sources in the United States. More importantly, Figure 1-1 shows that there is a decline 

in production from conventional reservoirs and a large increase in production from unconventional 

reservoirs, especially from shale gas.  
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 The importance of unconventional gas reserves cannot be stressed enough, and its dramatic 

impact is changing the future energy landscape. Through advancements in technology and the 

development of innovative tools, a better economical output can be achieved from unconventional 

reserves.  

 In this study, a unique approach was attempted to characterize unconventional reservoirs. 

This was done analytically through the use of material balance which is a powerful tool that is used 

to determine original-fluids-in-place (OFIP) and forecast future reservoir performance. Then 

numerically through the utilization of a robust numerical method called Runge-Kutta which is used 

to solve ordinary differential equations (ODEs). Through the proposed model, a quick 

characterization of the reservoir performance and determination of OFIP can be carried out with 

minimal input and computational time. Moreover, this study provides the tools necessary to 

examine unique production profile phenomena that can help reservoir engineers achieve a better 

forecast of future production.

Figure 1-1 - Natural gas production from different sources in the United 
States, in trillion cubic feet. (http://www.eia.gov) 
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Chapter 2  
 

Literature Review 

2.1 Unconventional Gas Reservoirs 

Unconventional reservoirs are characterized by their unique storage and transport 

properties including adsorption and diffusion. Unlike conventional reservoirs, they cannot be easily 

produced at an economically desirable flow rates or volumes to justify the costs of production. This 

is due to their special reservoir rock properties such as the low matrix permeability that makes it 

economically exploitable only with the assistance of stimulation techniques such as “hydraulic 

fracturing”. Typical unconventional reservoirs are tight-gas, coalbed methane, gas shales. 

(Holditch, 2003) 

2.1.1 Coalbed Methane 

Coalbed methane is a form of unconventional gas reservoir that has distinct form of storage 

where most of the gas is stored through a process called adsorption on the organic matter.  It is the 

source and reservoir (self-sourcing reservoir) for methane gas (with a very small amount of heavier 

hydrocarbons and no natural gas condensate). 

Coalbed methane reservoirs are typically modeled as a dual porosity system: they contain 

macro-pore (primary porosity) and micro-pore (secondary porosity) system.  The macro-pore 

system is made up of cleats. There are two types of cleats: face and butt cleats. The face cleats are 

continuous across the coal seam while the butt cleats are discontinuous and usually ends at the 

intersection with another face cleat as depicted in Figure 2-1. Each cleat type is generally 
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perpendicular to each other and they serve the role of transporting the fluids consisting of water 

and gas to the wellbore 

 

 

Figure 2-1 - View of the dual-porosity nature of coal. (Gregory R. King, Ertekin, & Schwerer, 1986) 

 

 On the other hand, the micro-pores are inaccessible to water and serve as the main source 

of gas storage by the effect of adsorption on the coal matrix surface. Free gas can also exist in the 

micro-pores as well as the macro-pores. (Gregory R. King et al., 1986) 

2.2 Adsorption 

 There are several concepts used to capture the process of adsorption. One of the most 

commonly used concepts was introduced by Langmuir in 1918. This simple sorption model is 

defined by the sorption pressure and sorption volume/capacity. The major assumptions in deriving 

the equation that represents this concept are as follow: 

• One gas molecule is adsorbed at a single adsorption site (monolayer adsorption). 
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• An adsorbed molecule does not affect the molecule on the neighboring site. 

• All adsorption sites are equivalent and are indistinguishable by the gas molecule. 

• Adsorption is on an open surface with no resistance to gas access to adsorption site. 

 For coalbed methane (CBM) reservoirs, a Langmuir Adsorption Isotherm is commonly 

used to model the adsorption phenomena (Gregory R. King et al., 1986). The adsorbed gas volume 

at the average reservoir pressure, Vd(Pavg), in standard cubic feet of gas per cubic feet [SCF/ft3] , 

is given by the following equation: 

 𝑉𝑑(𝑃𝑎𝑣𝑔) =  
𝑉𝐿𝑃𝑎𝑣𝑔

𝑃𝐿 + 𝑃𝑎𝑣𝑔
 (2.1) 

 

 Where VL [SCF/ft3] and PL [psia] are constants that correspond to the Langmuir Volume 

and Langmuir Pressure, respectively, and are properties of the coal seam. Langmuir Volume is the 

maximum adsorption capacity of the rock and the Langmuir Pressure is the pressure at which the 

gas content of the rock is equal to half the maximum adsorption capacity (VL). 

2.3 Material Balance 

In petroleum engineering, the Material Balance Equation (MBE), which is based on the 

law of mass conservation, is used to determine original-fluids-in-place (OFIP) and making 

estimated predictions of future reservoir performance based on production and static pressure data. 

It is a model that considers the reservoir to have an isotropic tank behavior at any depth. Hence, the 

reservoir is assumed to have the same fluid properties and pressure at any location within it (Fekete 

Associates Inc., 2012). The MBE is usually represented with a crossplot of 𝑃/𝑧 (pressure over gas 

compressibility factor) vs 𝐺𝑝 (cumulative gas production) which generally results in a straight line 

from which the original-fluid-in-place can be determined (Dake, 1978). However, when 
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considering unconventional reservoirs, alterations and assumptions have to be made, otherwise, 

inaccurate estimations of the OFIP will be made.  

King (G. R. King, 1993) formulated a material balance equation that is applicable to 

unconventional gas reservoirs such as shales and coal seams. The MBE considers the fact that there 

is a dual porosity system made up of matrix and fractures within the reservoir. The equation also 

includes the effects of adsorbed gas.  

Traditional material balance shows the relationship between the average pressure in the 

reservoir and the amount of gas produced. At the beginning, the reservoir is at initial reservoir 

pressure and no gas has been produced. When all the gas has been produced, the pressure in the 

reservoir is zero at which point the original-gas-in-place (OGIP) can be determined. In order to 

perform traditional material balance, the average reservoir pressure must be determined. This 

requires the well to be shut-in to obtain built-up reservoir pressures. This procedure causes the loss 

of valuable production. (Mattar & McNeil, 1998) presents a material balance method that does not 

require the well to be shut-in. This method consists of using “flowing” pressure instead of the 

average “shut-in” reservoir pressure. The method is considered to be very practical and provides 

results within reasonable certainty. 

In 1945, Muskat developed the MBE in a differential form. The equation was given in 

terms of oil saturation as a function of pressure (
𝑑𝑆𝑜

𝑑𝑃
) and was solved using previously known 

pressures and new chosen lower pressure. The average of the two differential values was then used 

to determine the oil saturation at the new pressure. With the oil saturation known, it is possible to 

calculate the cumulative oil production. (Mosobalaje, Onuh, & Seteyeobot, 2015) 
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Chapter 3  
 

Problem Statement 

 

 The objective of this thesis is to develop a differential material balance equation 

(Muskat-type equation) for gas reservoirs impacted by desorption. A MATLAB code will be 

developed to solve the derived system of differential equations using Runge-Kutta; a numerical 

method. This code will then be used to attempt to characterize a water-gas reservoir and the results 

will be benchmarked against a numerical simulator. The deliverables of this thesis are: 

 

• Formulate the Muskat-type equation into a system of equations different domains. 

o Pressure domain. 

o Time domain. 

o Cumulative gas produced and cumulative water produced domain.  

• Apply a traditional ODE solver such as Runge-Kutta to the differential mass balance 

equation in the pressure domain and the system of equations in the time domain. 

• Analyze the production profiles for the gas and water in unconventional gas reservoirs 

using these equations. 

o Develop rate derivative equations (
𝑑𝑞

𝑑𝑡
). 

o Develop semi-analytical equations for time to peak gas production. 

▪ Specified (constant) well pressure, 𝑃𝑤𝑓. 

▪ Specified (constant) water production, 𝑞𝑤. 

▪ Specified (constant) pressure drawdown, (�̅� − 𝑃𝑤𝑓). 
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o Develop methodology for time to peak gas rate. 

▪ Perform similar analysis in other domains. 

• Explore the use of the developed equation as an alternative to decline curve analysis. 

• Explore the use of these equations to develop a non-iterative 
𝑃

𝑍∗ method for integral material 

balance. 

• Explore the possibility of developing a transient version of all equations. 

• Compare the developed equations and Runge-Kutta analysis against a numerical simulator.
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Chapter 4  
 

Coalbed Rock and Fluid Properties 

 Coalbed Methane was selected to be the unconventional reservoir used to evaluate the 

developed model. The reason for this is because adsorption plays a larger role in the production life 

of a coalbed methane reservoir. Also, unlike shale which spend most of its production life in the 

transient state flow regime, coalbed methane has a short transient state period. This provides the 

advantage of being able to model both transient state and pseudo-steady state flow regimes. 

 

4.1 Rock Properties 

4.1.1 Porosity 

Coal is a compressible rock. Therefore, as the reservoir is depleted, porosity decreases 

(Seidle, 2011). This relationship is expressed as a ratio through the following equation: 

 
𝜙

𝜙
𝑖

= 1 + 𝑐𝜙(𝑃 − 𝑃𝑖) (4.1) 

 

Where 

𝜙 = 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑎𝑡 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝜙𝑖 = 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑃 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑝𝑠𝑖𝑎 

𝑃𝑖 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑝𝑠𝑖𝑎 

𝑐𝜙 = 𝑐𝑙𝑒𝑎𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑝𝑠𝑖𝑎−1 

 



10 

 

 It is clear that porosity is a pressure dependent term that is also affected by the 

compressibility of the reservoir rock. Using the developed base case for this thesis, Figure 4-1 has 

been generated to show the changes in porosity with a linear pressure decline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2 Permeability 

 Permeability was evaluated using the cubic power law model. This cubic relation 

between porosity and permeability can be applied to many naturally fractured reservoirs 

such as coals and shales (Liu & Harpalani, 2012). 

Figure 4-1 - Porosity vs pressure using base case values of initial pressure (1540 psia) and rock 
compressibility (0.00001 psia^-1). The red dashed line signifies the initial values. 

Figure 4-1 - Porosity vs pressure using base case values of initial pressure (1540 psia) and rock 
compressibility (0.00001 psia^-1). The red dashed line signifies the initial values. 
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Assuming that the coal matrix is stiff and that the cleat spacing remains constant as 

stress changes, permeability can be expressed using the following equation: 

 
𝑘

𝑘𝑖
= (

𝜙

𝜙
𝑖

)

𝑛

 (4.2) 

Where 

𝑘 = 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑚𝑑 

𝑘𝑖 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑚𝑑 

𝑛 = 𝑝𝑜𝑤𝑒𝑟 𝑙𝑎𝑤 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

 
 The power exponent is usually assumed to be 3 but not necessarily since the exponent is a 

fitting parameter that can be varied accordingly. The porosity ratio model used is the one discussed 

in the previous section. Figure 4-2 shows the permeability changes with a linear pressure decline.  

 

 

 

 

 

 

 

 

 

Figure 4-2 - Permeability vs pressure using base case values for pressure (1540 psia) and rock 
compressibility (0.00001 psia^-1) in the porosity model. The red dashed line signifies the initial values. 
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4.2 Gas Properties 

4.2.1 Gas Compressibility Factor (Z) 

Due to the fact that this problem employs gas in the form of methane, the gas 

compressibility factor (z-factor) needs to be evaluated at different reservoir pressures. The z-factor 

is used to calculate the gas formation volume factor and gas density at different reservoir pressures 

through the real-gas law. It is also used in material balance in order to estimate gas reserves (Dune 

& Bright N, 2012). 

In 1973, Hall and Yarborough developed an accurate correlation to be used to estimate the 

gas compressibility factor (z-factor) for natural gas (Fatoorehchi, Abolghasemi, Rach, & Assar, 

2014). This correlation was designed to fit the Standing-Katz gas compressibility factor charts 

(Dune & Bright N, 2012)The Hall-Yarborough equation is defined through the following 

parameters: 

 𝑡𝑟 =
1

𝑇𝑝𝑟
 (4.3) 

 𝐴 = 0.06125 𝑡𝑟  𝑒−1.2(1−𝑡𝑟)2
 (4.4) 

 𝐵 =  𝑡𝑟  (14.76 − 9.76 𝑡𝑟 + 4.58 𝑡𝑟
2) (4.5) 

 𝐶 =  𝑡𝑟  (90.7 − 242.2 𝑡𝑟 + 42.4 𝑡𝑟
2) (4.6) 

 𝐷 = 2.18 + 2.82 𝑡𝑟  (4.7) 

 

And 

 𝑧 =  
𝐴 𝑃𝑝𝑟

𝑌
 (4.8) 

 
𝑓(𝑌) =  

𝑌 + 𝑌2 + 𝑌3 − 𝑌4

(1 − 𝑌)3
− 𝐴 𝑃𝑝𝑟 − 𝐵 𝑌2 + 𝐶 𝑌𝐷 = 0 (4.9) 
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Pseudo-reduced pressure 𝑃𝑝𝑟 and pseudo-reduced temperature 𝑇𝑝𝑟  can be calculated through the 

following equations: 

 𝑃𝑝𝑟 =
𝑃

𝑃𝑐
 (4.10) 

 
𝑇𝑝𝑟 =

𝑇

𝑇𝑐
 (4.11) 

 

Where 𝑇 and 𝑃 are the reservoir temperature and pressure respectively, and 𝑃𝑐 and 𝑇𝑐 are the gas 

critical values. 

 In order to calculate Y, Newton-Raphson iterative algorithm is generally used. Newton-

Raphson is a powerful iterative algorithm that finds the roots of a real-valued function (Press, 

2007). The Newton-Raphson algorithm is as follows: 

 𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥)

𝑓′(𝑥)
 (4.12) 

 

Where 𝑥𝑖 is the initial guess. The solution is then found through iterating until the error converges 

to a very small number. 

The derivative 𝑓′(𝑌) needed to solve the equation for Y is: 

 𝑓′(𝑌) =
1 + 4 𝑌 + 4 𝑌2 − 4 𝑌3 + 𝑌4

(1 − 𝑌)4
− 2 𝐵 𝑌 + 𝐶 𝐷 𝑌𝐷−1 (4.13) 

 

 A MATLAB function has been developed for this model which takes in pressure and 

temperature values to solve for z-factor. Figure 4-3 shows the changes in z-factor with a linear 

pressure decline and a constant temperature (581°R) derived from the base case that is used in this 

analysis. 
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Figure 4-3 - z-factor vs pressure evaluated using Newton-Raphson with the base case reservoir temperature 
of 581 Rankine. 

Figure 4-3 - z-factor vs pressure evaluated using Newton-Raphson with the base case reservoir temperature 
of 581 Rankine. 
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4.2.2 Gas Viscosity 

In this study, the gas viscosity of methane is a pressure and temperature dependent variable. 

The gas viscosity is obtained by using the Lee-Gonzalez-Eakin empirical correlation (A. L. Lee, 

Gonzalez, & Eakin, 1966). 

 𝜇𝑔 = 𝐾 𝑒
(𝑋 𝜌𝑔

𝑌)
 (4.14) 

 

Where 

 𝐾 =  
(7.77 + 0.0063 𝑀) 𝑇1.5

122.4 + 12.9 𝑀 + 𝑇
 (4.15) 

 
𝑋 = 2.57 +

1941.5

𝑇
+ 0.0095 𝑀 (4.16) 

 𝑌 = 1.11 + 0.04 𝑋 (4.17) 

 

And 

𝜇𝑔 = 𝑔𝑎𝑠 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦, 𝑐𝑝 

𝜌𝑔 = 𝑔𝑎𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑔𝑚/𝑐𝑐 

𝑇 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑅 

𝑀 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 

 

The molecular weight of methane is 16.04. 

 

 The density of gas in g/cc, which is a pressure dependent variable, can be obtained 

from the real-gas law. 

 𝜌𝑔 = 0.00149406 
𝑃 𝑀

𝑧 𝑇
 (4.18) 

 As discussed previously for z-factor, a MATLAB function has been developed that requires 

the inputs of pressure, z-factor for the corresponding pressure, and reservoir temperature to 

calculate the gas viscosity at that specified pressure and temperature. Figure 4-4 shows the changes 
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in gas viscosity with a linear pressure decline and a constant temperature (581°R) derived from the 

base case that is used in this analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 - Gas viscosity vs pressure. 
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4.2.3 Gas Formation Volume Factor 

The real-gas law is used to give the expression for gas formation volume factor 𝐵𝑔 in terms 

of the volume ratio of gas at reservoir conditions and standard conditions (Ertekin, Abou-Kassem, 

& King, 2001). 

 𝐵𝑔 =
𝑃𝑠𝑐  𝑇 𝑧

𝑇𝑠𝑐  𝑃
 (4.19) 

Where 

𝐵𝑔 = 𝑔𝑎𝑠 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑓𝑡3/𝑆𝐶𝐹 

𝑃𝑠𝑐 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑠𝑖𝑎 

𝑇𝑠𝑐 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠, 𝑅 
𝑧 = 𝑔𝑎𝑠 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 - Gas formation volume factor vs pressure. 
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 Figure 4-5 shows the changes in the gas formation volume factor with pressure. It seems 

that at high pressures, the gas has a very low formation volume factor which is expected since 

formation volume factor is a ratio between the volume of gas at standard conditions versus the 

volume of gas in the reservoir. Therefore, at high pressures, the gas is compressed and occupies a 

smaller volume than at low pressures.  

4.3 Water Properties 

 Without loss of generality, in this study, the water compressibility is assumed to be a 

constant of 3.2 ∗ 10−6 [𝑝𝑠𝑖𝑎−1]. Also, water viscosity is assumed to be a constant of 1 [𝑐𝑝]. 

4.3.1 Water Formation Volume Factor 

For slightly compressible fluids, such as water, the water formation volume factor can be 

approximated using the following equation (Ertekin et al., 2001): 

 𝐵𝑤 =
𝐵𝑤𝑖

[1 + 𝑐𝑤(𝑃 − 𝑃𝑖)]
 (4.20) 

Where 

𝐵𝑤 = 𝑤𝑎𝑡𝑒𝑟 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑏𝑏𝑙/𝑆𝑇𝐵 

𝐵𝑤𝑖 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑏𝑏𝑙/𝑆𝑇𝐵 

𝑐𝑤 = 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑝𝑠𝑖𝑎−1 
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Figure 4-6 - Water formation volume factor vs pressure. The red dashed line signifies initial conditions. 
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4.4 Fluids Relative Permeabilities 

Since there are two fluids present during production, the movement of one fluid is restricted 

due to movement of the other. Relative permeabilities are used to quantify the movement of one 

fluid relative to the other. The values of the relative permeability range between 0 and 1 where 1 is 

considered maximum mobility. In this case, modified Brooks-Corey relative permeability model is 

used. This model is also known as the “power-law” model. For a gas-water system, the relationships 

are as follows: 

 𝑘𝑟𝑔 = 𝑘𝑟𝑔,𝑚𝑎𝑥 (
𝑆𝑔 − 𝑆𝑔𝑐

1 − 𝑆𝑤𝑖𝑟 − 𝑆𝑔𝑐
)

𝑁𝑔

 (4.21) 

 
𝑘𝑟𝑤 = 𝑘𝑟𝑤,𝑚𝑎𝑥 (

𝑆𝑤 − 𝑆𝑤𝑖𝑟

1 − 𝑆𝑤𝑖𝑟
)

𝑁𝑤

 (4.22) 

Where 

𝑘𝑟𝑔 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑎𝑠, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

𝑘𝑟𝑔,𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑎𝑠, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

𝑆𝑔 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑎𝑠, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 
𝑆𝑔𝑐 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑎𝑠, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

𝑁𝑔 = 𝑔𝑎𝑠 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

𝑘𝑟𝑤 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 
𝑘𝑟𝑤,𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

𝑆𝑤 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 
𝑆𝑔𝑐 = 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

𝑁𝑤 = 𝑤𝑎𝑡𝑒𝑟 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 
 

 The permeability exponents 𝑁𝑤 and 𝑁𝑔 range from 1 to 6. The maximum relative 

permeability of water (𝑘𝑟𝑤,𝑚𝑎𝑥) is 1 since it is possible to have all the gas adsorbed at some 

point with no fluid in the pore volume except water. As for the maximum relative 

permeability of gas (𝑘𝑟𝑔,𝑚𝑎𝑥), in the base case for this model, it is assumed to be 0.8. The 
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critical saturation of gas (𝑆𝑔𝑐) is the saturation at which gas starts to mobilize. Using base case 

values, Figure 4-7 is generated to show the changes in permeability of a fluid relative to the other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Range of Properties Investigated 

To validate the developed model, different ranges of reservoir properties have been derived 

from literatures. The data have been separated into three ranges; lower range, mid-range (which is 

also the base case), and an upper range. This ensures that the model provides valid results for the 

different range of properties while also exemplifies the effects of the change in properties with the 

results pursued. In this case, the Fruitland formation in the San Juan basin located in western United 

States has been selected to be used as the base case to validate the developed model. This specific 

Figure 4-7 - Relative permeabilities plot with base case values (Swir = 0.2, Nw = 2, Ng = 2, Sgc = 0.02). 



22 

 

selection enables the results from the developed model to be compared with the reported production 

data provided in literatures in order to further validate the results. 

The process for determining the range of properties involved taking a set of data for a given 

property that is reported by literatures. The property values are usually determined from different 

samples from different reservoirs. After that, through MATLAB’s “prctile” function, the 10th 

percentile and 90th percentile of the collective data are calculated and determined to be the 

minimum and maximum values respectively. The way that MATLAB’s “prctile” function works is 

that it sorts the data set in ascending order and then it uses an algorithm and linear interpolation to 

compute the desired percentile. To keep the range symmetric and avoid inconsistency, the base 

case was calculated to be the average of the minimum and maximum range values when 

appropriate. 

Using data sourced from (Seidle, 2011), (Ayers, 2001), (Palmer & Mansoori, 1996) and 

(Mavor, Owen, & Pratt, 1990), the same process in determining the range is applied for other 

reservoir properties such as langmuir pressure and volume. Some of the reservoir parameters such 

as the area of the reservoir and the desorption pressure have been assumed.  

According to (Ayers, 2001), the temperature of the Fruitland formation in San Juan basin 

is less than 140℉. Using this information, a temperature gradient of 0.02℉/𝑓𝑡 has been derived 

using the maximum depth which is stated to be 3600 𝑓𝑡 and corresponds to the maximum 

temperature of 140℉. Ayers also states that the basin contains a mixture of overpressured and 

underpressured zones. For overpressured zones, the bottomhole pressure is equivalent to a simple 

pressure gradient of 0.44 – 0.63 𝑝𝑠𝑖/𝑓𝑡 and it is 0.30 – 0.40 𝑝𝑠𝑖/𝑓𝑡 in the underpressured zones. 

Therefore, for consistency, the bottomhole pressure/initial reservoir pressure is calculated using an 

averaged pressure gradient of 0.5 𝑝𝑠𝑖/𝑓𝑡. 
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Operating conditions such as the well flowing pressure were also assumed. For the well 

flowing pressure, the base case was assumed to be 40% of the initial reservoir pressure while the 

minimum and maximum are 35% and 45% of the initial reservoir pressure respectivily.  

For simplicity, the numerical values were rounded to the nearest integer when appropriate 

and the results are summarized in Table 4-1. 

 

Table 4-1 - Reservoir Parameters' Ranges 

Parameter’s Name Min Base Case Max Unit 

Area A 60 80 100 [𝐴𝑐𝑟𝑒𝑠] 

Depth  2500 3050 3600 [𝑓𝑡] 

Thickness h 30 50 70 [𝑓𝑡] 

Porosity ∅ 0.005 0.01 0.02 [𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛] 

Permeability k 5 32.5 60 [𝑚𝑑] 

Rock Compressibility 𝐶∅ 1 ∗ 10−6 1 ∗ 10−5 1 ∗ 10−4 [𝑝𝑠𝑖𝑎−1] 

Langmuir Pressure 𝑃𝐿 91 309 389 [𝑝𝑠𝑖𝑎] 

Langmuir Volume 𝑉𝐿 611 756 1471 
[
𝑆𝐶𝐹

𝑡𝑜𝑛
] 

Initial Pressure 𝑃𝑖 1265 1540 1815 [𝑝𝑠𝑖𝑎] 

Reservoir Temperature T 116 121 140 [°𝐹] 

Desorption Pressure 𝑃𝑑 1165 1490 1815 [𝑝𝑠𝑖𝑎] 

Well Flowing Pressure 𝑃𝑤𝑓 443 616 817 [𝑝𝑠𝑖𝑎] 
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 The developed model uses correlations in order to calculate relative permeabilities 

for the fluid present in the reservoir. The correlations contain coefficients which vary within a 

certain range. Table 4-2 summarizes the fluid properties and correlation coefficients assumed 

range. 

Table 4-2 - Fluid Parameters' Ranges 

Parameter’s Name Min Base Case Max 

Critical Gas 

Saturation 

𝑆𝑔𝑐 0 2 4 

Irreducible Water 

Saturation 

𝑆𝑤𝑖𝑟  0.15 0.20 0.25 

Exponential 

Coefficient for 

Gas 

𝑁𝑔 3 2 1 

Exponential 

Coefficient for 

Water 

𝑁𝑤 3 2 1 
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Chapter 5  
 

Formulation 

 

This chapter shows the derivation of the Muskat-type equation for pseudo-steady state in 

the pressure domain, and then in the time domain, and in other domains such as the cumulative gas 

and water produced domain. It also shows the derivation of the same equation but for “pseudo-

transient” state with a variable bulk volume and drainage radius as the pressure wave travels across 

the reservoir. 

5.1 Derivation of Muskat-type Equation 

5.1.1 Derivation of Differential Material Balance (Muskat-type) From in Place Volumes 

Starting with the equations for Original Gas in Place (OGIP) and Original Water in Place (OWIP), 

an equation for the production rate can be derived. 

 𝑂𝐺𝐼𝑃 = 𝐺 =  
𝑉𝑏  𝜙𝑖  𝑆𝑔𝑖

𝛼𝑐  𝐵𝑔𝑖
+ 𝑉𝑏𝑉𝑑 (5.1) 

Where 

𝐺 = 𝐺𝑎𝑠 𝑖𝑛 𝑃𝑙𝑎𝑐𝑒, 𝑆𝐶𝐹 

𝑉𝑏 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑏𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒, 𝑓𝑡3 

𝜙
𝑖

= 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

𝑆𝑔𝑖 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

𝐵𝑔𝑖 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑏𝑏𝑙/𝑆𝐶𝐹 

𝑉𝑑 = 𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚, 𝑆𝐶𝐹/𝑓𝑡3 

And 𝛼𝑐 is a conversion factor equal to 5.615 𝑓𝑡3/𝑏𝑏𝑙 in order to maintain consistent units. 
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The Langmuir adsorption isotherm is given by the following equation: 

 

 𝑉𝑑 =
𝑉𝐿 𝑃

𝑃 + 𝑃𝐿
 (5.2) 

Where, 

𝑉𝐿 = 𝐿𝑎𝑛𝑔𝑚𝑢𝑖𝑟 𝑣𝑜𝑙𝑢𝑚𝑒, 𝑆𝐶𝐹/𝑓𝑡3 

𝑃𝐿 = 𝐿𝑎𝑛𝑔𝑚𝑢𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑝𝑠𝑖𝑎 

𝑃 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑝𝑠𝑖𝑎 
 

This isotherm gives a measure of the amount of gas adsorbed on the reservoir rock. 

The rate of gas produced can be linked to the amount of gas available in the reservoir over the time 

of production using the following equation: 

 𝑞𝑔 =
𝑑𝐺𝑝

𝑑𝑡
= −

𝑑𝐺

𝑑𝑡
= −

1

𝛼𝑐

𝑑

𝑑𝑡
(𝑉𝑏 [

 𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑]) (5.3) 

Where 

𝑞𝑔 = 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝑆𝐶𝐹/𝑓𝑡3 

𝑆𝑔 = 𝑔𝑎𝑠 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 

 

 
The same can be done for Original Water in Place (OWIP) to determine the water production rate. 

 𝑂𝑊𝐼𝑃 = 𝑊 =  
𝑉𝑏  𝜙𝑖  𝑆𝑤𝑖

𝛼𝑐 𝐵𝑤𝑖
 (5.4) 

Where 

𝑆𝑤𝑖 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 
 

 𝑞𝑤 =
𝑑𝑊𝑝

𝑑𝑡
= −

𝑑𝑊

𝑑𝑡
= −

1

𝛼𝑐

𝑑

𝑑𝑡
(

𝑉𝑏  𝜙 𝑆𝑤

𝐵𝑤
) (5.5) 

Where 

𝑞𝑤 = 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝑏𝑏𝑙/𝑑𝑎𝑦 

𝑆𝑤 = 𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 
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5.1.2 Derivation of Differential Material Balance (Muskat-type) From the Definition of 

Pseudo-Steady State Flow 

 During pseudo-steady state flow, which generally occurs at the late time region of 

production, the outer boundaries of the reservoir is assumed to be no flow boundaries. Therefore, 

the reservoir can be assumed to behave like a tank and the pressure gradient is constant throughout 

the reservoir. However, the absolute reservoir pressure varies with time (Slider, 1966). This justifies 

the use of the average reservoir pressure when calculating rates using Darcy’s equation. The 

advantage of using pseudo-steady state flow assumption instead of steady-state flow assumption is 

because steady-state flow assumes that the pressure and flow rate throughout the reservoir remain 

constant with time. Basically, the amount of mass entering the reservoir is the same amount of 

leaving the reservoir. This assumption is simply unrealistic. On the other hand, there is unsteady-

state flow which assumes that the rate and pressure do change with time. This assumption is ideal, 

however, the solutions to unsteady-state flow equations are generally very complex and hard to 

apply (Slider, 1966). Instead, pseudo-steady state flow assumption, which is simpler to apply, can 

be used to give an acceptable approximation. 

Equations (5.3) and (5.5) can be modified to represent pseudo-steady state flow. Since it is assumed 

that the pressure wave has reached the boundary of the reservoir and the drainage radius is fixed. 

Thus, the reservoir bulk volume can be moved out of the derivative. 

 𝑞𝑔 = −
𝑉𝑏

𝛼𝑐

𝑑

𝑑𝑡
[(

𝜙 𝑆𝑔

𝐵𝑔
) + 𝑉𝑑] (5.6) 

 
𝑞𝑤 = −

𝑉𝑏

𝛼𝑐

𝑑

𝑑𝑡
(

𝜙 𝑆𝑤

𝐵𝑤
) (5.7) 
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5.1.3 Derivation of Differential Material Balance (Muskat-type) From the Diffusivity 

Equation With Standard Well Test Assumptions 

From mass balance, the continuity equation can be used to describe one-dimensional, radial flow 

in porous media. By introducing Darcy’s flow law into the continuity equation, the resulting 

equation for gas flow is (J. Lee, 1981) 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

 𝜌𝑔  𝑘𝑟𝑔  𝑘

𝜇𝑔

𝑑𝑃

𝑑𝑟
) =

1

𝛼𝑐

𝜕

𝜕𝑡
(𝜌𝑔  𝜙) (5.8) 

Where, 

𝜌𝑔 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑔𝑎𝑠, 𝑙𝑏/𝑓𝑡3 

𝜇𝑔 = 𝑔𝑎𝑠 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦, 𝑐𝑝 

𝑘 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑚𝑑 
 

The goal is to develop the Muskat-type equation from the continuity equation which provides a 

stronger relationship that proves the validity of the Muskat-type equation than that derived using 

fluids in place equations and pseudo-steady state assumptions. This would also prove that the 

Muskat-type equation can be used for transient flow with common assumption used in pressure 

transient analysis which are that the pressure and saturation gradients are small. 

The formation volume factor of gas can be introduced using the following equation: 

 𝜌𝑔 =
𝜌𝑠𝑐𝑔

𝐵𝑔
 (5.9) 

Where 

𝜌𝑠𝑐𝑔 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑔𝑎𝑠 𝑎𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠, 𝑙𝑏/𝑓𝑡3 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

 𝜌𝑠𝑐𝑔  𝑘𝑟𝑔  𝑘

𝐵𝑔  𝜇𝑔

𝜕𝑃

𝜕𝑟
) =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜌𝑠𝑐𝑔  𝜙

𝐵𝑔
) (5.10) 

Since 𝜌𝑠𝑐𝑔 is a constant, it can be eliminated from both sides of the equation. 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

 𝑘𝑟𝑔  𝑘

𝐵𝑔  𝜇𝑔

𝑑𝑃

𝑑𝑟
) =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙

𝐵𝑔
) (5.11) 
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The equation can also be modified further in order to include gas desorption and saturation changes 

over time on the right-hand side of the equation. 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

 𝑘𝑟𝑔  𝑘

𝐵𝑔  𝜇𝑔

𝜕𝑃

𝜕𝑟
) =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.12) 

On the left-hand side of the equation,  𝑘𝑟𝑔 is a saturation dependent term while 
  𝑘

𝐵𝑔  𝜇𝑔
 is a pressure 

dependent term. Defining pressure and saturation dependent functions: 

 𝑓𝑔𝑃 =
𝑘

𝐵𝑔  𝜇𝑔
 (5.13) 

 𝑓𝑔𝑆 = 𝑘𝑟𝑔  (5.14) 

Therefore, 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟 𝑓𝑔𝑆 𝑓𝑔𝑃  

𝜕𝑃

𝜕𝑟
) =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.15) 

First, the left-hand side of the equation can be expanded using the product rule for derivation: 

 
1

𝑟
[𝑟

𝜕

𝜕𝑟
(𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
) + 𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟

𝜕

𝜕𝑟
(𝑟)] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.16) 

 1

𝑟
[𝑟 {𝑓𝑔𝑆  

𝜕

𝜕𝑟
( 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
) +  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟

𝜕𝑓𝑔𝑆

𝜕𝑟
} + 𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.17) 

The derivative of 𝑓𝑔𝑆 is separated in terms of its saturation dependency. 

 
1

𝑟
[𝑟 {𝑓𝑔𝑆  

𝜕

𝜕𝑟
( 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
) +  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟

𝜕𝑓𝑔𝑆

𝜕𝑆

𝜕𝑆

𝜕𝑟
} +  𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.18) 

Expand using product rule again. 

 
1

𝑟
[𝑟 {𝑓𝑔𝑆  ( 𝑓𝑔𝑃

𝜕2𝑃

𝜕𝑟2
+

𝜕𝑃

𝜕𝑟

𝜕𝑓𝑔𝑃

𝜕𝑟
) +  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟

𝜕𝑓𝑔𝑆

𝜕𝑆

𝜕𝑆

𝜕𝑟
} + 𝑓𝑔𝑆  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔

+ 𝑉𝑑) (5.19) 

The derivative of 𝑓𝑔𝑃 is separated again in terms of its saturation dependency. 

 
1

𝑟
[𝑟 {𝑓𝑔𝑆  ( 𝑓𝑔𝑃

𝜕2𝑃

𝜕𝑟2
+

𝜕𝑃

𝜕𝑟

𝜕𝑓𝑔𝑃

𝜕𝑃

𝜕𝑃

𝜕𝑟
) +  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟

𝜕𝑓𝑔𝑆

𝜕𝑆

𝜕𝑆

𝜕𝑟
} +  𝑓𝑔𝑆  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔

+ 𝑉𝑑) (5.20) 
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Simplifying, 

 
1

𝑟
[𝑟 {𝑓𝑔𝑆  [ 𝑓𝑔𝑃

𝜕2𝑃

𝜕𝑟2
+

𝜕𝑓𝑔𝑃

𝜕𝑃
(

𝜕𝑃

𝜕𝑟
)

2

] +  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟

𝜕𝑓𝑔𝑆

𝜕𝑆

𝜕𝑆

𝜕𝑟
} + 𝑓𝑔𝑆  𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔

+ 𝑉𝑑) (5.21) 

Assuming that the pressure gradients are small, then the second order pressure gradients are small 

and can be neglected, thus, (
𝑑𝑃

𝑑𝑟
)

2

can be eliminated. Also, saturation changes are assumed to be 

small as well, therefore, 
𝑑𝑃

𝑑𝑟

𝑑𝑆

𝑑𝑟
 can be considered a second order gradient and can also be eliminated. 

 
1

𝑟
[𝑟 {𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕2𝑃

𝜕𝑟2
} + 𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.22) 

Simplifying, 

 
𝑓𝑔𝑆  𝑓𝑔𝑃

𝑟
[𝑟

𝜕2𝑃

𝜕𝑟2
+  

𝑑𝑃

𝑑𝑟
] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.23) 

Since 

 
𝜕

𝜕𝑟
(𝑟

𝑑𝑃

𝑑𝑟
) = 𝑟

𝜕2𝑃

𝜕𝑟2
+ 

𝜕𝑃

𝜕𝑟
 (5.24) 

Then 

 
𝑓𝑔𝑆 𝑓𝑔𝑃

𝑟
[

𝜕

𝜕𝑟
(𝑟

𝜕𝑃

𝜕𝑟
)] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.25) 

Similarly, an equation can be derived for water flow: 

 
𝑓𝑤𝑆 𝑓𝑤𝑃

𝑟
[

𝜕

𝜕𝑟
(𝑟

𝜕𝑃

𝜕𝑟
)] =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑤

𝐵𝑤
) (5.26) 

 
𝑓𝑤𝑃 =

𝑘

𝐵𝑤 𝜇𝑤
 (5.27) 

 𝑓𝑤𝑆 = 𝑘𝑟𝑤  (5.28) 

Where 

𝜇𝑤 = 𝑤𝑎𝑡𝑒𝑟 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦, 𝑐𝑝 

𝑘𝑟𝑤 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 
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Dividing equation (5.25) by (5.26) yields the gas-water ratio on the right-hand side and the Muskat-

type equation on the left-hand side. 

 
𝑓𝑔𝑆 𝑓𝑔𝑃

𝑓𝑤𝑆 𝑓𝑤𝑃
=

𝜕
𝜕𝑡 (

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑)

𝜕
𝜕𝑡

(
𝜙 𝑆𝑤

𝐵𝑤
)

 (5.29) 

The derivation of left-hand side of equation (5.29) into 
𝑑𝑆𝑤

𝑑𝑃
 (Muskat-type equation) will be shown 

in the section (5.2). 

 The significance of the derivation from the diffusivity equation is that the saturation as a 

function of pressure obtained from the Muskat-type equation is valid for evaluating relative 

permeabilities in pressure transient analysis (Camacho-V, 1991) provided the conditions of 

gradients are achieved. 

5.1.4 Derivation of Differential Material Balance (Muskat-type) From the Diffusivity 

Equation Using the Divergence Theorem 

 The Muskat-type equation can also be evaluated with no restrictions such as the negligible 

pressure gradients assumption used in section (5.1.3) by using the divergence theorem. Equation 

(5.8) can be rewritten in terms of the divergence (Dake, 1978). 

 ∇ ∙ (𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
) =

1

𝛼𝑐

𝜕

𝜕𝑡
(

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑)   (5.30) 

 The divergence theorem states that the volume integral of the divergence is equal to the 

integral of the surface surrounding the bulk volume (Arfken & Weber, 2005).  

 ∫ ∇ ∙  �⃗�
𝑉𝑏

 𝑑𝑉𝑏 =  ∫ �̂� �⃗� 𝑑𝜎
𝜎

 (5.31) 

Where �̂� is the normal vector to the vector field �⃗�. 
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Applying this theorem to the left-hand side of equation (5.30): 

 ∫ ∇ ∙ (𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
)  𝑑𝑉𝑏

𝑉𝑏

= ∫ (𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
)

𝜎

𝑑𝜎 (5.32) 

𝑓𝑔𝑆 𝑓𝑔𝑃
𝑑𝑃

𝑑𝑟
 is basically Darcy’s law in terms of velocity and it is constant over the surface of the 

reservoir. Thus, it can be moved out of the integral. 

 ∫ ∇ ∙ (𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
)  𝑑𝑉𝑏

𝑉𝑏

= (𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
) ∫ 𝑑𝜎

𝜎

 (5.33) 

The integral of the surface of the entire reservoir yields area. 

 ∫ ∇ ∙ (𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
)  𝑑𝑉𝑏

𝑉𝑏

= (𝑓𝑔𝑆 𝑓𝑔𝑃

𝜕𝑃

𝜕𝑟
) 𝐴 (5.34) 

Where A is the area of the reservoir in units squared. 

The right-hand side of the equation is now Darcy’s law in terms of rate since velocity multiplied 

by area yields rate. 

 𝑞𝑔 =   
𝜕

𝜕𝑡
 ∫

1

𝛼𝑐
( 

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑)

𝑉𝑏

𝑑𝑉𝑏 (5.35) 

Multiplying and dividing by 𝑉𝑏 , and exporting the constant 𝛼𝑐 outside the integral and derivative. 

 𝑞𝑔 =  
𝑉𝑏

𝛼𝑐
 

𝜕

𝜕𝑡
 (

1

𝑉𝑏
∫ ( 

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑)

𝑉𝑏

𝑑𝑉𝑏) (5.36) 

Integrating each term separately. 

 𝑞𝑔 =  
𝑉𝑏

𝛼𝑐
 

𝜕

𝜕𝑡
 (

1

𝑉𝑏
[∫

𝜙 𝑆𝑔

𝐵𝑔𝑉𝑏

𝑑𝑉𝑏 + ∫ 𝑉𝑑
𝑉𝑏

𝑑𝑉𝑏]) (5.37) 

Since 

 �̅� =
1

𝑉𝑏
∫ 𝐹 𝑑𝑉𝑏

𝑉𝑏

 (5.38) 
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Then the same can be applied to equation (5.37). 

 𝑞𝑔 =  
𝑉𝑏

𝛼𝑐
 

𝜕

𝜕𝑡
 (

𝜙 𝑆𝑔

𝐵𝑔

̅̅ ̅̅ ̅̅
+  𝑉𝑑

̅̅ ̅) (5.39) 

Where 

 
𝜕

𝜕𝑡
 (

𝜙 𝑆𝑔

𝐵𝑔

̅̅ ̅̅ ̅̅
+ 𝑉𝑑

̅̅ ̅)  ≠  
𝜕

𝜕𝑡
( 

𝜙 𝑆𝑔

𝐵𝑔
+ 𝑉𝑑) (5.40) 

 The difference in the derived Muskat-type equation using the divergence theorem is that it 

is an approximation by using the average of the entire derivative while the previous derivation 

developed in (5.1.3) is evaluated with �̅� and 𝑆̅ only. 

The same method can be applied to derive water rate. 

 𝑞𝑤 =  
𝑉𝑏

𝛼𝑐
 

𝜕

𝜕𝑡
 (

𝜙 𝑆𝑤

𝐵𝑤

̅̅ ̅̅ ̅̅
) (5.41) 

 

5.2 Derivation of Muskat-type Equation for Pseudo-Steady State 

 This section shows the derivation of the Muskat-type equation for pseudo-steady state in 

different domains. 

5.2.1 Pseudo-Steady State in the Time Domain 

 𝑞𝑔 =
𝑉𝑏

𝛼𝑐

𝑑

𝑑𝑡
[(

𝜙 𝑆𝑔

𝐵𝑔
) + 𝑉𝑑] (5.42) 

 
𝑞𝑤 =

𝑉𝑏

𝛼𝑐

𝑑

𝑑𝑡
(

𝜙 𝑆𝑤

𝐵𝑤
) (5.43) 
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Gas production rate can be rewritten to be given in terms of water saturation: 
 

 𝑞𝑔 =
𝑉𝑏

𝛼𝑐

𝑑

𝑑𝑡
[(

𝜙 (1 − 𝑆𝑤)

𝐵𝑔
) + 𝑉𝑑] (5.44) 

To evaluate the derivative present in both production equations, each variable needs to be broken 

down depending on their pressure dependency. 

Using the following derivation method: 

 𝑓 =
𝑎1 𝑎2 𝑎3 …

𝑏1 𝑏2 𝑏3 …
 (5.45) 

Applying natural logarithm to both sides of the equation: 

 ln 𝑓 = ln(
𝑎1 𝑎2 𝑎3 …

𝑏1 𝑏2 𝑏3 …
) (5.46) 

Using logarithm multiplication and division rule, the equation can be rewritten to: 

 ln 𝑓 = ln 𝑎1 + ln 𝑎2 + ln 𝑎3 − ln 𝑏1 − ln 𝑏2 − ln 𝑏3 (5.47) 

Taking the derivative of both sides of the equation: 

 
1

𝑓

𝑑𝑓

𝑑𝑡
=

𝑑

𝑑𝑡
(ln 𝑎1 + ln 𝑎2 + ln 𝑎3 − ln 𝑏1 − ln 𝑏2 − ln 𝑏3) (5.48) 

 1

𝑓

𝑑𝑓

𝑑𝑡
=

1

𝑎1

𝑑𝑎1

𝑑𝑡
+

1

𝑎2

𝑑𝑎2

𝑑𝑡
+

1

𝑎2

𝑑𝑎2

𝑑𝑡
−

1

𝑏1

𝑑𝑏1

𝑑𝑡
−

1

𝑏2

𝑑𝑏2

𝑑𝑡
−

1

𝑏3

𝑑𝑏3

𝑑𝑡
 (5.49) 

 𝑑𝑓

𝑑𝑡
= 𝑓(

𝑎1
′

𝑎1
+

𝑎1
′

𝑎1
+

𝑎1
′

𝑎1
−

𝑏1
′

𝑏1
−

𝑏2
′

𝑏2
−

𝑏3
′

𝑏3
) (5.50) 

Therefore, by applying the same method to equation (5.43) and (5.44). Starting with the water 

production equation: 

 𝑞𝑤 =
𝑉𝑏

𝛼𝑐
(

𝜙 𝑆𝑤

𝐵𝑤
) (

𝜙′

𝜙
+

𝑆𝑤
′

𝑆𝑤
−

𝐵𝑤
′

𝐵𝑤
) (5.51) 

 
𝑞𝑤 =

𝑉𝑏

𝛼𝑐
(

𝜙 𝑆𝑤

𝐵𝑤
) (

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑆𝑤

𝑑𝑆𝑤

𝑑𝑡
−

1

𝐵𝑤

𝑑𝐵𝑤

𝑑𝑃

𝑑𝑃

𝑑𝑡
) (5.52) 
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𝑞𝑤 =

𝑉𝑏

𝛼𝑐
[𝑆𝑤 (

1

𝐵𝑤

𝑑𝜙

𝑑𝑃
− 𝜙

𝑑𝐵𝑤

𝑑𝑃
)

𝑑𝑃

𝑑𝑡
+ 

𝜙

𝐵𝑤

𝑑𝑆𝑤

𝑑𝑡
] (5.53) 

Likewise, the gas production equation can be expanded to the following: 

 𝑞𝑔 =
𝑉𝑏

𝛼𝑐
[(

𝜙 (1 − 𝑆𝑤)

𝐵𝑔
) (

𝜙′

𝜙
+

(1 − 𝑆𝑤)′

(1 − 𝑆𝑤)
−

𝐵𝑔
′

𝐵𝑔
) +

𝑑𝑉𝑑

𝑑𝑃

𝑑𝑃

𝑑𝑡
] (5.54) 

 
𝑞𝑔 =

𝑉𝑏

𝛼𝑐
[(

𝜙 (1 − 𝑆𝑤)

𝐵𝑔
) (

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
−

1

(1 − 𝑆𝑤)

𝑑𝑆𝑤

𝑑𝑡
−

1

𝐵𝑔

𝑑𝐵𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
) +

𝑑𝑉𝑑

𝑑𝑃

𝑑𝑃

𝑑𝑡
] (5.55) 

 
𝑞𝑔 =

𝑉𝑏

𝛼𝑐
{[(1 − 𝑆𝑤) (

1

𝐵𝑔

𝑑𝜙

𝑑𝑃
− 𝜙

𝑑𝐵𝑤

𝑑𝑃
) +

𝑑𝑉𝑑

𝑑𝑃
]

𝑑𝑃

𝑑𝑡
−

𝜙

𝐵𝑔

𝑑𝑆𝑤

𝑑𝑡
} (5.56) 

The two equations can then be presented in a simplified format by grouping up the terms with 

respect to pressure and saturation: 

 𝑞𝑤 = 𝐶𝑤𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑤𝑆

𝑑𝑆𝑤

𝑑𝑡
 (5.57) 

 
𝑞𝑔 = 𝐶𝑔𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑔𝑆

𝑑𝑆𝑤

𝑑𝑡
 (5.58) 

Where 

 𝐶𝑤𝑃 =
𝑉𝑏𝑆𝑤

𝛼𝑐
[

1

𝐵𝑤

𝑑𝜙

𝑑𝑃
− 𝜙

𝑑𝐵𝑤

𝑑𝑃
] (5.59) 

 
𝐶𝑤𝑆 =

𝑉𝑏𝜙

𝛼𝑐𝐵𝑤
 (5.60) 

 
𝐶𝑔𝑃 =

𝑉𝑏

𝛼𝑐
[(1 − 𝑆𝑤) (

1

𝐵𝑔

𝑑𝜙

𝑑𝑃
− 𝜙

𝑑𝐵𝑤

𝑑𝑃
) +

𝑑𝑉𝑑

𝑑𝑃
] (5.61) 

 
𝐶𝑔𝑆 = −

𝑉𝑏∅

𝛼𝑐𝐵𝑔
 (5.62) 

Now, equations (5.57) and (5.58) can be solved simultaneously to derive the two ordinary 

differential equations of pressure and saturation in the time domain. 
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Multiply equation (5.57) by 𝐶𝑔𝑆: 

 𝐶𝑔𝑆 𝑞𝑤 = 𝐶𝑔𝑆  𝐶𝑤𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑔𝑆  𝐶𝑤𝑆

𝑑𝑆𝑤

𝑑𝑡
 (5.63) 

Multiply equation (5.58) by 𝐶𝑤𝑆: 

 𝐶𝑤𝑆  𝑞𝑔 = 𝐶𝑤𝑆  𝐶𝑔𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑤𝑆  𝐶𝑔𝑆

𝑑𝑆𝑤

𝑑𝑡
 (5.64) 

Subtract equation (5.64) from (5.63): 

 𝐶𝑔𝑆  𝑞𝑤 − 𝐶𝑤𝑆 𝑞𝑔 = (𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
𝑑𝑃

𝑑𝑡
 (5.65) 

Therefore, the equation for pressure in the time domain is: 

 
𝑑𝑃

𝑑𝑡
=  

𝐶𝑔𝑆  𝑞𝑤 − 𝐶𝑤𝑆  𝑞𝑔

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
 (5.66) 

The equation can be also written in terms of one production variable by substituting in a gas-water 

ratio which is given by the following equation: 

 𝐺𝑎𝑠 − 𝑊𝑎𝑡𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 =
𝑞𝑔

𝑞𝑤
= 𝑅 =  𝛼𝑐

𝑘𝑟𝑔

𝜇𝑔  𝐵𝑔

𝜇𝑤  𝐵𝑤

𝑘𝑟𝑤
 (5.67) 

Therefore, 

 
𝑑𝑃

𝑑𝑡
=  

(𝐶𝑔𝑆 − 𝐶𝑤𝑆  𝑅)𝑞𝑤

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
 (5.68) 

Likewise, equations (5.57) and (5.58) can be solved to give saturation in the time domain: 

Multiply equation (5.57) by 𝐶𝑔𝑃: 

 𝐶𝑔𝑃  𝑞𝑤 = 𝐶𝑔𝑃  𝐶𝑤𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑔𝑃  𝐶𝑤𝑆

𝑑𝑆𝑤

𝑑𝑡
 (5.69) 

Multiply equation (5.58) by 𝐶𝑤𝑃: 

 𝐶𝑤𝑃  𝑞𝑔 = 𝐶𝑤𝑃  𝐶𝑔𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑤𝑃  𝐶𝑔𝑆

𝑑𝑆𝑤

𝑑𝑡
 (5.70) 
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Subtract equation (5.69) from (5.70): 

 𝐶𝑤𝑃  𝑞𝑔 − 𝐶𝑔𝑃  𝑞𝑤 = (𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
𝑑𝑆𝑤

𝑑𝑡
 (5.71) 

Therefore, the equation for saturation in the time domain is: 

 
𝑑𝑆𝑤

𝑑𝑡
=  

𝐶𝑤𝑃  𝑞𝑔 − 𝐶𝑔𝑃  𝑞𝑤

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
 (5.72) 

Substituting in the gas-water ratio: 

 
𝑑𝑆𝑤

𝑑𝑡
=  

(𝐶𝑤𝑃  𝑅 − 𝐶𝑔𝑃) 𝑞𝑤

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
 (5.73) 

 

5.2.2 Pseudo-Steady-State in the Pressure Domain 

By diving equation (5.66) from (5.72), the Muskat type equation can be derived in order to give 

saturation as a function of pressure.  

 
𝑑𝑆𝑤

𝑑𝑃
=

𝑑𝑆𝑤
𝑑𝑡
𝑑𝑃
𝑑𝑡

=

𝐶𝑤𝑃  𝑞𝑔 − 𝐶𝑔𝑃 𝑞𝑤

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)

𝐶𝑔𝑆 𝑞𝑤 − 𝐶𝑤𝑆  𝑞𝑔

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)

=
𝐶𝑤𝑃  𝑞𝑔 − 𝐶𝑔𝑃  𝑞𝑤

𝐶𝑔𝑆 𝑞𝑤 − 𝐶𝑤𝑆  𝑞𝑔
 (5.74) 

The equation can be rewritten using the gas-water ratio: 

 
𝑑𝑆𝑤

𝑑𝑃
=

𝐶𝑤𝑃  𝑅 − 𝐶𝑔𝑃

𝐶𝑔𝑆 − 𝐶𝑤𝑆  𝑅
 (5.75) 

 

This is especially useful in material balance as it enables the calculation of z* in King’s material 

balance equation in order to evaluate the original-gas-in-place (OGIP) within a reservoir using 

pressure data only. 
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5.2.3 Pseudo-Steady-State in Other Domains 

 The Muskat type equation can also be derived in domains other than pressure and time. It 

can be evaluated in the total gas produced domain. This can prove to be useful in observing the 

effects of pressure and saturation drops on the total gas produced from the reservoir. 

Since the change in the total gas produced over the change in time is the rate of production as 

follows: 

 
𝑑𝐺𝑝

𝑑𝑡
= 𝑞𝑔 (5.76) 

Where 𝐺𝑝 is the total gas produced from the reservoir. 

Then by manipulating the equation, 

 
𝑑𝑃

𝑑𝐺𝑝
=

𝑑𝑃
𝑑𝑡

𝑑𝐺𝑝

𝑑𝑡

= (
1

𝑞𝑔
)

𝑑𝑃

𝑑𝑡
 (5.77) 

 

 
𝑑𝑆𝑤

𝑑𝐺𝑝
=

𝑑𝑆𝑤
𝑑𝑡

𝑑𝐺𝑝

𝑑𝑡

= (
1

𝑞𝑔
)

𝑑𝑆𝑤

𝑑𝑡
 (5.78) 

The same can be done with the total water produced from the reservoir. 

 
𝑑𝑊𝑝

𝑑𝑡
= 𝑞𝑤 (5.79) 

 
𝑑𝑃

𝑑𝑊𝑝
=

𝑑𝑃
𝑑𝑡

𝑑𝑊𝑝

𝑑𝑡

= (
1

𝑞𝑤
)

𝑑𝑃

𝑑𝑡
 (5.80) 

 
𝑑𝑆𝑤

𝑑𝑊𝑝
=

𝑑𝑆𝑤
𝑑𝑡

𝑑𝑊𝑝

𝑑𝑡

= (
1

𝑞𝑤
)

𝑑𝑆𝑤

𝑑𝑡
 (5.81) 
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5.3 Derivation for Pseudo-Transient State 

 During the beginning of production from a reservoir, the pressure wave slowly begins to 

travel outwards with time. At this stage, the pressure wave has not reached the reservoir boundary 

and therefore, the behavior of the pressure is the same as that in an infinite reservoir (Matthews, 

1986). Unlike pseudo-steady state, the pressure gradient is not constant throughout the reservoir 

which makes it difficult, or rather, inaccurate, to assume an average reservoir pressure. The 

difference between both flow states is presented in Figure 5-1. Nevertheless, the “pseudo-

transient” state equation can be derived, and the solution can be compared to pseudo-steady state 

solution to evaluate its accuracy while benchmarked against a numerical simulator. 

 

 

Figure 5-1 - Plot of pressure decline at a well, bounded circular reservoir, constant rate case. (Matthews, 
1986) 
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 As the pressure wave moves outwards during transient state production, essentially, the 

drainage radius is increasing with time. Thus, the bulk volume of the reservoir cannot be assumed 

to be constant as it is in pseudo-steady state. The derivations starts with equations (5.3) and (5.5) 

and the reservoir bulk volume is kept inside the time derivative in order to capture the increasing 

drainage radius over time.  

 𝑞𝑔 =
1

𝛼𝑐

𝑑

𝑑𝑡
[
𝑉𝑏  𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑏  𝑉𝑑] (5.82) 

 
𝑞𝑤 =

1

𝛼𝑐

𝑑

𝑑𝑡
(

𝑉𝑏  𝜙 𝑆𝑤

𝐵𝑤
) (5.83) 

From well testing, the changing radius with time can be expressed using the following equation (J. 

Lee, 1981): 

 𝑟𝑖 = √
24 𝑘 𝑡

948 𝜙 𝜇𝑤  𝑐𝑡
 (5.84) 

Where, 

𝑟𝑖 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛, 𝑓𝑡 

𝑘 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑚𝑑 

𝑡 = 𝑡𝑖𝑚𝑒, ℎ𝑜𝑢𝑟𝑠 

𝑐𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑝𝑠𝑖𝑎−1 

 

 
And the reservoir bulk volume is expressed using the following equation: 

 𝑉𝑏 = 𝜋 𝑟𝑖
2 ℎ (5.85) 

Where, 

ℎ = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟, 𝑓𝑡 
 

The derivative of the reservoir bulk volume (radius of investigation included) with respect to time 

is: 
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𝑑𝑉𝑏

𝑑𝑡
= 2 𝜋 𝑟𝑖  ℎ 

𝑑𝑟𝑖

𝑑𝑡
 (5.86) 

The derivative of the radius of investigation with respect to time can be evaluated using the u-

substitution technique: 

 𝑢 =
24 𝑘 𝑡

948 𝜙 𝜇𝑤 𝑐𝑡
 (5.87) 

 
𝑟𝑖 = 𝑢

1
2 (5.88) 

 𝑑𝑟𝑖

𝑑𝑡
=

1

2
𝑢−

1
2

𝑑𝑢

𝑑𝑡
 (5.89) 

Assuming that the viscosity of water is constant: 

 
𝑑𝑢

𝑑𝑡
=

24

948 𝜇𝑤 𝑐𝑡  

𝑑

𝑑𝑡
(

𝑘 𝑡

𝜙
) (5.90) 

 𝑑𝑢

𝑑𝑡
=

24

948 𝜇𝑤 𝑐𝑡
(

𝑘 𝑡

𝜙
) (

𝑘′

𝑘
+

1

𝑡
−

𝜙′

𝜙
) (5.91) 

 𝑑𝑢

𝑑𝑡
=

24 𝑘 𝑡

948 𝜙 𝜇𝑤  𝑐𝑡
(

1

𝑘

𝑑𝑘

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑡
−

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
) (5.92) 

Substituting equation (5.87) and (5.92) into equation (5.89): 

 𝑑𝑟𝑖

𝑑𝑡
=

1

2
(

24 𝑘 𝑡

948 𝜙 𝜇𝑤 𝑐𝑡
)

−
1
2

[
24 𝑘 𝑡

948 𝜙 𝜇𝑤  𝑐𝑡
(

1

𝑘

𝑑𝑘

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑡
−

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
) ] (5.93) 

Substituting equation (5.93) into equation (5.86): 

 
𝑑𝑉𝑏

𝑑𝑡
= 2 𝜋 𝑟𝑖  ℎ {

1

2
(

24 𝑘 𝑡

948 𝜙 𝜇𝑤 𝑐𝑡
)

−
1
2

[
24 𝑘 𝑡

948 𝜙 𝜇𝑤  𝑐𝑡
(

1

𝑘

𝑑𝑘

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑡
−

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
) ]} (5.94) 

The resulting equation after simplifying is: 

 
𝑑𝑉𝑏

𝑑𝑡
= 𝑉𝑏 (

1

𝑘

𝑑𝑘

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑡
−

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
) (5.95) 
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Evaluating 𝑞𝑔 assuming a time dependent bulk volume: 

 𝑞𝑔 =
1

𝛼𝑐

𝑑

𝑑𝑡
[
𝑉𝑏  𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑏  𝑉𝑑] (5.96) 

 
𝑞𝑔 =

1

𝛼𝑐
[{(

𝑉𝑏  𝜙 (1 − 𝑆𝑤)

𝐵𝑔
) (

𝑉𝑏′

𝑉𝑏
+

𝜙′

𝜙
+

(1 − 𝑆𝑤)′

(1 − 𝑆𝑤)
−

𝐵𝑔
′

𝐵𝑔
)}

+ 𝑉𝑏

𝑑𝑉𝑑

𝑑𝑃

𝑑𝑃

𝑑𝑡
+  𝑉𝑑

𝑑𝑉𝑏

𝑑𝑡
] 

(5.97) 

 
𝑞𝑔 =

1

𝛼𝑐
[{(

𝑉𝑏  𝜙 (1 − 𝑆𝑤)

𝐵𝑔
) (

1

𝑉𝑏

𝑑𝑉𝑏

𝑑𝑡
+

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
−

1

(1 − 𝑆𝑤)

𝑑𝑆𝑤

𝑑𝑡
−

1

𝐵𝑔

𝑑𝐵𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
)}

+ 𝑉𝑏

𝑑𝑉𝑑

𝑑𝑃

𝑑𝑃

𝑑𝑡
+  𝑉𝑑

𝑑𝑉𝑏

𝑑𝑡
] 

(5.98) 

 
𝑞𝑔 =

1

𝛼𝑐
[(

𝜙 (1 − 𝑆𝑤)

𝐵𝑔

𝑑𝑉𝑏

𝑑𝑡
+

𝑉𝑏  (1 − 𝑆𝑤)

𝐵𝑔

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
−

𝑉𝑏  𝜙

𝐵𝑔

𝑑𝑆𝑤

𝑑𝑡
− 𝑉𝑏  𝜙 (1

− 𝑆𝑤)
𝑑𝐵𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
) + 𝑉𝑏

𝑑𝑉𝑑

𝑑𝑃

𝑑𝑃

𝑑𝑡
+  𝑉𝑑

𝑑𝑉𝑏

𝑑𝑡
] 

(5.99) 

Substituting in 
𝑑𝑉𝑏

𝑑𝑡
 from equation (5.95). 

 

𝑞𝑔 =
1

𝛼𝑐
[(

𝜙 (1 − 𝑆𝑤)

𝐵𝑔
𝑉𝑏 (

1

𝑘

𝑑𝑘

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑡
−

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
) −

𝑉𝑏  (1 − 𝑆𝑤)

𝐵𝑔

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡

+
𝑉𝑏  𝜙

𝐵𝑔

𝑑𝑆𝑤

𝑑𝑡
− 𝑉𝑏  𝜙 (1 − 𝑆𝑤)

𝑑𝐵𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
)

+ 𝑉𝑏

𝑑𝑉𝑑

𝑑𝑃

𝑑𝑃

𝑑𝑡
+  𝑉𝑑 𝑉𝑏 (

1

𝑘

𝑑𝑘

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑡
−

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
)] 

(5.100) 

Simplifying, 

 

𝑞𝑔 =
1

𝛼𝑐

{[(1 − 𝑆𝑤) {
𝑉𝑏 

𝐵𝑔

𝑑𝜙

𝑑𝑃
− 𝑉𝑏  𝜙

𝑑𝐵𝑔

𝑑𝑃
+

𝑉𝑏 𝜙

𝐵𝑔

(
1

𝑘

𝑑𝑘

𝑑𝑃
−

1

𝜙

𝑑𝜙

𝑑𝑃
)} + 𝑉𝑏

𝑑𝑉𝑑

𝑑𝑃

+  𝑉𝑑  𝑉𝑏 (
1

𝑘

𝑑𝑘

𝑑𝑃
−

1

𝜙

𝑑𝜙

𝑑𝑃
)]

𝑑𝑃

𝑑𝑡
−

𝑉𝑏 𝜙

𝐵𝑔

𝑑𝑆𝑤

𝑑𝑡
+

𝑉𝑏

𝑡
(

 𝜙 (1 − 𝑆𝑤)

𝐵𝑔

+ 𝑉𝑑)} 

(5.101) 
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𝑞𝑔 =
𝑉𝑏

𝛼𝑐
{[(1 − 𝑆𝑤) {

 𝜙

𝐵𝑔  𝑘

𝑑𝑘

𝑑𝑃
−  𝜙

𝑑𝐵𝑔

𝑑𝑃
} +

𝑑𝑉𝑑

𝑑𝑃
+ 𝑉𝑑  (

1

𝑘

𝑑𝑘

𝑑𝑃
−

1

𝜙

𝑑𝜙

𝑑𝑃
)]

𝑑𝑃

𝑑𝑡

−
𝜙

𝐵𝑔

𝑑𝑆𝑤

𝑑𝑡
+

1

𝑡
(

 𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑑)} 

(5.102) 

Evaluating 𝑞𝑤 assuming a time dependent bulk volume: 

 𝑞𝑤 =
1

𝛼𝑐

𝑑

𝑑𝑡
(

𝑉𝑏  𝜙 𝑆𝑤

𝐵𝑤
) (5.103) 

 
𝑞𝑤 =

1

𝛼𝑐
(

𝑉𝑏  𝜙 𝑆𝑤

𝐵𝑤
) (

𝑉𝑏′

𝑉𝑏
+

𝜙′

𝜙
+

𝑆𝑤
′

𝑆𝑤
−

𝐵𝑤
′

𝐵𝑤
) (5.104) 

 
𝑞𝑤 =

1

𝛼𝑐
(

𝑉𝑏  𝜙 𝑆𝑤

𝐵𝑤
) (

1

𝑉𝑏

𝑑𝑉𝑏

𝑑𝑡
+

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑆𝑤

𝑑𝑆𝑤

𝑑𝑡
−

1

𝐵𝑤

𝑑𝐵𝑤

𝑑𝑃

𝑑𝑃

𝑑𝑡
) (5.105) 

 
𝑞𝑤 =

1

𝛼𝑐
(

𝜙 𝑆𝑤

𝐵𝑤

𝑑𝑉𝑏

𝑑𝑡
+

𝑉𝑏  𝑆𝑤

𝐵𝑤

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

𝑉𝑏  𝜙

𝐵𝑤

𝑑𝑆𝑤

𝑑𝑡
− 𝑉𝑏  𝜙 𝑆𝑤

𝑑𝐵𝑤

𝑑𝑃

𝑑𝑃

𝑑𝑡
) (5.106) 

Substituting in 
𝑑𝑉𝑏

𝑑𝑡
 from equation (5.95). 

 

𝑞𝑤 =
1

𝛼𝑐
(

𝜙 𝑆𝑤

𝐵𝑤
𝑉𝑏 (

1

𝑘

𝑑𝑘

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

1

𝑡
−

1

𝜙

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
) +

𝑉𝑏  𝑆𝑤

𝐵𝑤

𝑑𝜙

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

𝑉𝑏  𝜙

𝐵𝑤

𝑑𝑆𝑤

𝑑𝑡

− 𝑉𝑏  𝜙 𝑆𝑤

𝑑𝐵𝑤

𝑑𝑃

𝑑𝑃

𝑑𝑡
) 

(5.107) 

Simplifying, 

 

𝑞𝑤 =
1

𝛼𝑐
{[(𝑉𝑏  𝑆𝑤) (

1

𝐵𝑤

𝑑𝜙

𝑑𝑃
−  𝜙

𝑑𝐵𝑤

𝑑𝑃
) +

𝜙 𝑆𝑤 𝑉𝑏

𝐵𝑤
(

1

𝑘

𝑑𝑘

𝑑𝑃
−

1

𝜙

𝑑𝜙

𝑑𝑃
)]

𝑑𝑃

𝑑𝑡
 

+
𝑉𝑏  𝜙

𝐵𝑤

𝑑𝑆𝑤

𝑑𝑡
+

𝜙 𝑆𝑤  𝑉𝑏

𝑡 𝐵𝑤
} 

(5.108) 

 
𝑞𝑤 =

1

𝛼𝑐
{(𝑉𝑏  𝑆𝑤) [

𝜙 

𝐵𝑤

1

𝑘

𝑑𝑘

𝑑𝑃
−  𝜙

𝑑𝐵𝑤

𝑑𝑃
]

𝑑𝑃

𝑑𝑡
 +

𝑉𝑏  𝜙

𝐵𝑤

𝑑𝑆𝑤

𝑑𝑡
+

𝜙 𝑆𝑤  𝑉𝑏

𝑡 𝐵𝑤
} (5.109) 

The equation for 𝑞𝑔 and 𝑞𝑤 can then be presented in a simplified format by grouping up the terms 

with respect to pressure and saturation: 

 𝑞𝑔 = 𝐶𝑔𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑔𝑆

𝑑𝑆𝑤

𝑑𝑡
+

𝑉𝑏

𝑡
(

 𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑑) (5.110) 
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𝑞𝑤 = 𝐶𝑤𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑤𝑆

𝑑𝑆𝑤

𝑑𝑡
+

𝜙 𝑆𝑤 𝑉𝑏

𝑡 𝐵𝑤
 (5.111) 

Where, 

 𝐶𝑔𝑃 =
𝑉𝑏

𝛼𝑐
[(1 − 𝑆𝑤) {

𝜙

𝐵𝑔  𝑘

𝑑𝑘

𝑑𝑃
−  𝜙

𝑑𝐵𝑔

𝑑𝑃
} +

𝑑𝑉𝑑

𝑑𝑃
+  𝑉𝑑  (

1

𝑘

𝑑𝑘

𝑑𝑃
−

1

𝜙

𝑑𝜙

𝑑𝑃
)] (5.112) 

 
𝐶𝑔𝑆 = −

𝑉𝑏  𝜙

𝛼𝑐  𝐵𝑔
 (5.113) 

 
𝐶𝑤𝑃 =

𝑉𝑏  𝑆𝑤

𝛼𝑐
(

𝜙 

𝐵𝑤

1

𝑘

𝑑𝑘

𝑑𝑃
−  𝜙

𝑑𝐵𝑤

𝑑𝑃
) (5.114) 

 
𝐶𝑤𝑆 =

𝑉𝑏  𝜙

𝛼𝑐  𝐵𝑤
 (5.115) 

Equations (5.110) and (5.111) can be solved simultaneously to derive the two ordinary differential 

equations of pressure and saturation in the time domain. 

Multiply equation (5.110) by 𝐶𝑤𝑆: 

 𝐶𝑤𝑆 𝑞𝑔 = 𝐶𝑤𝑆 𝐶𝑔𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑤𝑆  𝐶𝑔𝑆

𝑑𝑆𝑤

𝑑𝑡
+ 𝐶𝑤𝑆  

𝑉𝑏

𝑡
(

 𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑑) (5.116) 

Multiply equation (5.111) by 𝐶𝑔𝑆: 

 𝐶𝑔𝑆  𝑞𝑤 = 𝐶𝑔𝑆  𝐶𝑤𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑔𝑆  𝐶𝑤𝑆

𝑑𝑆𝑤

𝑑𝑡
+ 𝐶𝑔𝑆

𝜙 𝑆𝑤  𝑉𝑏

𝑡 𝐵𝑤
 (5.117) 

Subtract equation (5.116) from (5.117): 

 𝐶𝑔𝑆  𝑞𝑤 − 𝐶𝑤𝑆  𝑞𝑔 = (𝐶𝑔𝑆  𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
𝑑𝑃

𝑑𝑡
+ 𝐶𝑔𝑆

𝜙 𝑆𝑤  𝑉𝑏

𝑡 𝐵𝑤

− 𝐶𝑤𝑆  
𝑉𝑏

𝑡
(

 𝜙 (1 − 𝑆𝑤)

𝐵𝑔

+ 𝑉𝑑) (5.118) 

Therefore, the equation for pressure in the time domain is: 

 𝑑𝑃

𝑑𝑡
=

𝐶𝑔𝑆 𝑞𝑤 − 𝐶𝑤𝑆  𝑞𝑔 −
𝑉𝑏
𝑡

[𝐶𝑔𝑆
𝜙 𝑆𝑤
𝐵𝑤

− 𝐶𝑤𝑆  (
 𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑑)]

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
 (5.119) 
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Likewise, equations (5.110) and (5.111) can be solved to give saturation in the time domain: 

Multiply equation (5.110) by 𝐶𝑤𝑃: 

 𝐶𝑤𝑃  𝑞𝑔 = 𝐶𝑤𝑃  𝐶𝑔𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑤𝑃  𝐶𝑔𝑆

𝑑𝑆𝑤

𝑑𝑡
+ 𝐶𝑤𝑃  

𝑉𝑏

𝑡
(

 𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑑) (5.120) 

Multiply equation (5.111) by 𝐶𝑔𝑃: 

 𝐶𝑔𝑃  𝑞𝑤 = 𝐶𝑔𝑃  𝐶𝑤𝑃

𝑑𝑃

𝑑𝑡
+ 𝐶𝑔𝑃  𝐶𝑤𝑆

𝑑𝑆𝑤

𝑑𝑡
+ 𝐶𝑔𝑃

𝜙 𝑆𝑤 𝑉𝑏

𝑡 𝐵𝑤
 (5.121) 

Subtract equation (5.121) from (5.120): 

 

𝐶𝑤𝑃  𝑞𝑔 − 𝐶𝑔𝑃  𝑞𝑤

= (𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
𝑑𝑆𝑤

𝑑𝑡
+ 𝐶𝑤𝑃  

𝑉𝑏

𝑡
(

 𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑑)

− 𝐶𝑔𝑃

𝜙 𝑆𝑤 𝑉𝑏

𝑡 𝐵𝑤
 

(5.122) 

Therefore, the equation for pressure in the time domain is: 

 𝑑𝑆𝑤

𝑑𝑡
=

𝐶𝑔𝑃  𝑞𝑤 − 𝐶𝑤𝑃  𝑞𝑔 −
𝑉𝑏
𝑡

[𝐶𝑔𝑃
𝜙 𝑆𝑤
𝐵𝑤

− 𝐶𝑤𝑃  (
 𝜙 (1 − 𝑆𝑤)

𝐵𝑔
+ 𝑉𝑑)]

(𝐶𝑔𝑆 𝐶𝑤𝑃 − 𝐶𝑤𝑆  𝐶𝑔𝑃)
 (5.123) 

The Muskat-type equation for “pseudo-transient” flow is then given by 

 
𝑑𝑆𝑤

𝑑𝑃
=

𝑑𝑆𝑤
𝑑𝑡
𝑑𝑃
𝑑𝑡

 (5.124) 
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5.4 Runge-Kutta Solution 

 Numerical methods have been previously developed for finding numerical approximations 

to solutions of ordinary differential equations (ODEs). These methods involve numerical 

computation of integrals in order to approximate a numerical solution to ordinary differential 

equations. Such methods include Euler’s method. In this simple, yet least accurate method for 

integrating an ODE, an approximation of a nearby point on the curve can be found by moving a 

“step” along a line tangent to the curve (illustrated in Figure 5-2). The Euler method is expressed 

by the following equation. 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) (5.125) 

 Where ℎ is the step size and the interval at which each new solution is evaluated. The Euler 

method is an example of an explicit method where 𝑦𝑛+1 is evaluated in terms of knowns such as 

𝑦𝑛. Therefore, initial conditions are necessary.

Figure 5-2 - Euler method. Showing the evaluation of an ODE from one interval to another. (Press, 2007) 
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 However, a large disadvantage in using the Euler method is because it is a first-order 

method. This means that the error per step size is proportional to the square of the step size and the 

error at a given time is proportional to the step size (Press, 2007). 

 Carl Runge and Martin Kutta improved upon the Euler method. One of the methods that 

they have developed involved taking a “trial” step to the midpoint of the desired interval and then 

using the x and y evaluated at that midpoint to compute the total step across the whole interval. 

This midpoint method, also known as second-order Runge-Kutta, has a second-order degree of 

accuracy. Figure 5-3 illustrates this idea. 

 

 

 

 

 

 

 

 

 

 

 

This method was further expanded upon to develop the classical fourth-order Runge-Kutta 

method where in each step, the derivative is evaluated four times: Once at the initial point (𝑦𝑛), 

twice at two different midpoints, and finally, at the end point (𝑦𝑛+1) (as shown in Figure 5-4) 

(Press, 2007). This results in a higher degree of accuracy. 

 

 

Figure 5-3 - Midpoint method. Second-order accuracy is obtained by using the initial derivative at each step 
to find a point halfway across the interval, then using the midpoint derivative across the full width of the interval. (Press, 
2007) 
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Fourth-order Runge-Kutta is evaluated using the following equations. 

 𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛) (5.126) 

 
𝑘2 = ℎ𝑓 (𝑥𝑛 +

1

2
ℎ, 𝑦𝑛 +

1

2
𝑘1) (5.127) 

 
𝑘3 = ℎ𝑓 (𝑥𝑛 +

1

2
ℎ, 𝑦𝑛 +

1

2
𝑘2) (5.128) 

 𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3) (5.129) 

 
𝑦𝑛+1 = 𝑦𝑛 +

1

6
𝑘1 +

1

3
𝑘2 +

1

3
𝑘3 +

1

6
𝑘4 + 𝑂(ℎ5) (5.130) 

Where 𝑂 is the error function given at every time step. 

 Fourth-order Runge-Kutta will be used to evaluate the developed Muskat-type equation in 

order to solve for water saturation as a function of pressure. This step-wise process can be modeled 

in MATLAB over a desired number of steps. The number of steps can be viewed as the time period 

for production. One step does not necessarily mean one day of production and can be modified as 

desired. 

Figure 5-4 - Fourth-order Runge-Kutta. (Press, 2007) 
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  Runge-Kutta can also be used to solve the equations for saturation and pressure in the time 

domain (developed in 5.2.1). The two differential equations must be solved simultaneously while 

also including time in the Runge-Kutta formulation. The formulation for this problem is as follows. 

 𝑘1𝑃 = ℎ𝑓𝑃(𝑡, 𝑃𝑛, 𝑆𝑛) (5.131) 

 𝑘1𝑆 = ℎ𝑓𝑆(𝑡, 𝑃𝑛, 𝑆𝑛) (5.132) 

 
𝑘2𝑃 = ℎ𝑓𝑃 (𝑡 +

1

2
ℎ , 𝑃𝑛 +

1

2
𝑘1𝑃ℎ , 𝑆𝑛 +

1

2
𝑘1𝑃ℎ) (5.133) 

 
𝑘2𝑆 = ℎ𝑓𝑆 (𝑡 +

1

2
ℎ , 𝑃𝑛 +

1

2
𝑘1𝑆ℎ , 𝑆𝑛 +

1

2
𝑘1𝑆ℎ) (5.134) 

 
𝑘3𝑃 = ℎ𝑓𝑃 (𝑡 +

1

2
ℎ , 𝑃𝑛 +

1

2
𝑘2𝑃ℎ , 𝑆𝑛 +

1

2
𝑘2𝑃ℎ) (5.135) 

 
𝑘3𝑆 = ℎ𝑓𝑆 (𝑡 +

1

2
ℎ , 𝑃𝑛 +

1

2
𝑘2𝑆ℎ , 𝑆𝑛 +

1

2
𝑘2𝑆ℎ) (5.136) 

 𝑘4𝑃 = ℎ𝑓𝑃(𝑡 + ℎ , 𝑃𝑛 + 𝑘3𝑃ℎ , 𝑆𝑛 + 𝑘3𝑃ℎ) (5.137) 

 𝑘4𝑆 = ℎ𝑓𝑆(𝑡 + ℎ , 𝑃𝑛 + 𝑘3𝑆ℎ , 𝑆𝑛 + 𝑘3𝑆ℎ) (5.138) 

 
𝑃𝑛+1 = 𝑃𝑛 +

1

6
𝑘1𝑃 +

1

3
𝑘2𝑃 +

1

3
𝑘3𝑃 +

1

6
𝑘4𝑃 + 𝑂(ℎ5) (5.139) 

 
𝑆𝑛+1 = 𝑆𝑛 +

1

6
𝑘1𝑆 +

1

3
𝑘2𝑆 +

1

3
𝑘3𝑆 +

1

6
𝑘4𝑆 + 𝑂(ℎ5) (5.140) 

Where 𝑓𝑃 and 𝑓𝑆 are 
𝑑𝑃

𝑑𝑡
 and 

𝑑𝑆

𝑑𝑡
 , respectively. 

 The result is the saturation and pressure at every time period. Saturation as a function of 

pressure can be back calculated using the following equation: 

 
𝑑𝑆𝑤

𝑑𝑃
=

𝑑𝑆𝑤
𝑑𝑡
𝑑𝑃
𝑑𝑡

 (5.141) 
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Chapter 6  
 

Results and Discussion 

Using the equations developed in Chapter 5, a MATLAB code was developed that solves 

the ordinary differential equations (ODEs) using Runge-Kutta. Even though the equations 

developed are fully analytical, the use of Runge-Kutta is not. Thus, this is a semi-analytical model 

and will be referred to as such throughout this thesis. This chapter presents the results of this model 

including the discussion of the results and the observations made. Additional results for the base 

case are presented in Appendix A. 

6.1 Model Validation 

6.1.1 Model Validation Using Analytical Equations and Finite Difference 

Through MATLAB, three functions have been developed using the derived equations in 

chapter 5: water saturation as a function of pressure (
𝑑𝑆𝑤

𝑑𝑃
), water saturation as a function of time 

(
𝑑𝑆𝑤

𝑑𝑡
), and pressure as a function of time (

𝑑𝑃

𝑑𝑡
). Runge-Kutta is then coded and utilized as described 

in section 5.4. Water saturation as a function of pressure (
𝑑𝑆𝑤

𝑑𝑃
) can be solved independently unlike 

pressure and water saturation as a function of time (they have to be solved simultaneously), 

however, pressure values are required to be fed into the Runge-Kutta algorithm. On the other hand, 

for water saturation and pressure as a function of time, time is varied linearly and the results are 

pressure and saturation values for each given time step. 

Using the properties of the base case developed in chapter 4, water saturation and pressure 

in the time domain have been evaluated as discussed earlier. The total time period selected was 10 
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years in intervals of 1-day time steps. The resulting water saturation and pressure plots are presented 

in Figure 6-1 and Figure 6-2 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 - Water saturation vs time using base case properties. 
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In order to validate the developed model and ensure that the code is bug-free, finite 

difference and MATLAB’s gradient function (which essentially performs finite difference) are 

applied on the results. Finite difference is measured by evaluating the y-axis difference between 

the data point of interest and the data points above and below it, and then dividing it by the x-axis 

difference between the two points. It is essentially the derivative or the slope measured at every 

single point on any given plot. However, it is important to note that the first and last data points are 

skipped as they cannot be evaluated due to the unavailability of a data point above or below them. 

Thus, by applying these two methods on the calculated water saturation and pressure values 

presented in Figure 6-3 and Figure 6-4 respectively, the result should give the derivative in terms 

Figure 6-2 - Pressure vs time using base case properties. 
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of time (
𝑑𝑆𝑤

𝑑𝑡
 and 

𝑑𝑃

𝑑𝑡
). A plot comparing the two methods with the original derivative evaluated using 

Runge-Kutta is generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3 - Plot comparing dP/dt calculated from finite diffrence and MATLAB gradient function with 

dP/dt generated from Muskat's equation using Runge-Kutta. 
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As seen from Figure 6-3 and Figure 6-4, the results are almost identical as all the plots 

overlap. This means that the calculated water saturation and pressure values from Runge-Kutta are 

consistent and that there are no bugs in the code performing the analysis. However, it is important 

to note that the first two points were skipped in the 
𝑑𝑃

𝑑𝑡
 comparison due to the large pressure drop 

that occurs initially as seen in Figure 6-2. Including these two points would result in the plot having 

a very large scale that cannot be analyzed. One of the reasons for the large pressure drop is the 

compressibility of the reservoir rock. As soon as production starts, the reservoir is shocked with a 

high-pressure differential between the reservoir pressure and the wellbore pressure. Therefore, 

since the reservoir rock is compressible, it shrinks the pores causing some of the fluid in the 

reservoir pores to be ejected and produced. To visualize, it is the same effect as when a wet sponge 

is squeezed. Also, at the beginning of production, all of the gas in the reservoir is adsorbed on the 

Figure 6-4 - Plot comparing dSw/dt calculated from finite diffrence and MATLAB gradient function with 
dSw/dt generated from Muskat's equation using Runge-Kutta. 
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reservoir rock in this case and will not desorb until the pressure reaches desorption pressure and 

the saturation of gas reaches its critical value. Thus, water is ejected from the pores at a higher rate 

which causes the large drop in the average reservoir pressure. 

Another validation that could be performed is to see if the division of 
𝑑𝑆𝑤

𝑑𝑡
 by 

𝑑𝑃

𝑑𝑡
 yields the 

same results as that achieved by the Muskat-type equation (
𝑑𝑆𝑤

𝑑𝑃
) function developed and analyzed 

using Runge-Kutta independently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-5 confirms that all functions are working as intended with no bugs in the code. 

Moving on, it is also important to validate the production profile. This can be done 

analytically using the results of the aforementioned functions. Figure 6-6 presents the gas 

production over time for the base case. 

Figure 6-5 - dSw/dt analyzed independently with Runge-Kutta compared with the division of water 

saturation and pressure in the time domain. 
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As done previously, finite difference and MATLAB’s gradient function provides the 

derivative of the plot. In this case, it will provide 
𝑑𝑞𝑔

𝑑𝑡
. Also, mathematically, 

𝑑𝑞𝑔

𝑑𝑡
  can also be 

calculated from the following equation: 

 
𝑑𝑞𝑔

𝑑𝑡
=

𝑑𝑞𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

𝑑𝑞𝑔

𝑑𝑆𝑤

𝑑𝑆𝑤

𝑑𝑡
 (6.1) 

 Water saturation and reservoir pressure in the time domain (
𝑑𝑆𝑤

𝑑𝑡
 and 

𝑑𝑃

𝑑𝑡
) are available from 

the Runge-Kutta analysis. What remains is gas rate in the pressure domain and in the water 

saturation domain. This can be evaluated by deriving Darcy’s law for gas rate in each of the two 

domains. Given that Darcy’s law for gas rate in [
𝑆𝐶𝐹

𝑑𝑎𝑦
] is: 

Figure 6-6 - Gas production over a period of 10 years for the base case. 
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 𝑞𝑔 =
𝛼𝑐  𝑘𝑟𝑔  𝑘 ℎ (�̅� − 𝑃𝑤𝑓)

141.2 𝜇𝑔  𝐵𝑔  (ln (
𝑟𝑒

𝑟𝑤
) − 0.5 + 𝑆)

 (6.2) 

Where 

ℎ = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟, 𝑓𝑡 

�̅� = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑝𝑠𝑖𝑎 

𝑟𝑒 = 𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑓𝑡 

𝑟𝑤 = 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑓𝑡 

𝑆 = 𝑠𝑘𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Therefore, the derivative of the gas rate with respect to pressure is: 

 
𝑑𝑞𝑔

𝑑𝑃
=

𝛼𝑐  ℎ 𝑘𝑟𝑔

141.2 (ln (
𝑟𝑒

𝑟𝑤
) − 0.5 + 𝑆)

(
 𝑘 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔  𝐵𝑔
) (

𝑘′

𝑘
+

(�̅� − 𝑃𝑤𝑓)′

(�̅� − 𝑃𝑤𝑓)
−

𝜇𝑔′

𝜇𝑔
−

𝐵𝑔′

𝐵𝑔
) (6.3) 

 𝑑𝑞𝑔

𝑑𝑃
=

𝛼𝑐  ℎ 𝑘𝑟𝑔

141.2 (ln (
𝑟𝑒

𝑟𝑤
) − 0.5 + 𝑆)

(
 𝑘 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔  𝐵𝑔
) (

1

𝑘

𝑑𝑘

𝑑𝑃
+

1

(�̅� − 𝑃𝑤𝑓)
−

1

𝜇𝑔

𝑑𝜇𝑔

𝑑𝑃

−
1

𝐵𝑔

𝑑𝐵𝑔

𝑑𝑃
) 

(6.4) 

 𝑑𝑞𝑔

𝑑𝑃
=

𝛼𝑐  ℎ 𝑘𝑟𝑔

141.2 (ln (
𝑟𝑒

𝑟𝑤
) − 0.5 + 𝑆)

(
 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔  𝐵𝑔

𝑑𝑘

𝑑𝑃
+

 𝑘

𝜇𝑔  𝐵𝑔
−

 𝑘 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔
2  𝐵𝑔

𝑑𝜇𝑔

𝑑𝑃

−
 𝑘 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔  𝐵𝑔
2

𝑑𝐵𝑔

𝑑𝑃
) 

(6.5) 

 This was done by isolating the pressure dependent terms and then deriving them. To find 

the derivative of permeability, gas viscosity and gas formation volume factor with respect to 

pressure, the equations used to evaluate these terms (presented in Chapter 4) will have to be derived. 

The same could be done for the derivative of the gas rate with respect to water saturation, however, 

since there is only one saturation dependent term, it is a fairly simple one. 

 
𝑑𝑞𝑔

𝑑𝑆𝑤
=

𝛼𝑐  𝑘 ℎ (�̅� − 𝑃𝑤𝑓)

141.2 𝜇𝑔  𝐵𝑔  (ln (
𝑟𝑒

𝑟𝑤
) − 0.5 + 𝑆)

𝑑𝑘𝑟𝑔

𝑑𝑆𝑤
 (6.6) 
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 Now, it is possible to evaluate equation (6.1). The result could be compared to that from 

finite difference and MATLAB’s gradient function to validate the analytical approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6-7 confirms the validity of the analytical equation. Further use of this equation 

will be discussed later in this thesis. 

 

 

 

Figure 6-7 - dqg/dt from analytical equation compared to finite difference and MATLAB's gradient 
function. 
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6.1.2 Model Validation Using Numerical Simulator 

 Since the developed model is a semi-analytical model, it is not expected to outperform 

numerical simulation in terms of accuracy. This is because numerical simulation is a rigorous 

computational method that performs calculations at every discrete location of a modeled reservoir, 

each giving a different output (Ertekin et al., 2001). Numerical simulation is computationally 

expensive and requires a lot of inputs in order for it to perform its analysis. In contrast, the 

developed semi-analytical model assumes every part of the reservoir to have the same value and 

output while requiring less inputs. 

 For reasons that will be discussed later in this thesis, the model developed based on the 

derived “pseudo-transient” equations in Chapter 5 did not perform as intended. Therefore, the 

available, working model assumes pseudo-steady state flow only. This gives numerical simulation 

the edge since it is able to model transient-state flow which occurs at the beginning of production. 

Nevertheless, the developed semi-analytical model for pseudo-steady state flow will be 

benchmarked against a numerical simulator. 

 A numerical simulator developed by Dr. Gregory King will be used for this comparison. 

The model is a homogenous, isotropic, CBM reservoir which uses the same correlations used in 

the semi-analytical model in order to calculate parameters such as z factors, gas viscosities and 

relative permeabilities. The developed base case will be used to compare the results of both models. 

However, there is a limitation within the numerical simulator as it does not incorporate a desorption 

pressure. Thus, both models will desorb gas at initial pressure. 

 Initially, the base case had a rock compressibility of 6 ∗ 10−4 𝑝𝑠𝑖𝑎−1 derived from 

literature for San Juan basin (Palmer & Mansoori, 1996). However, the numerical simulator did not 

accept this rock compressibility since it was out of its operating range. Thus, it was tuned to a 

number that falls within the range that is acceptable by the numerical simulator. Through multiple 
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runs with different rock compressibility, it was concluded that rock compressibility was a main 

factor affecting the accuracy of the developed semi-analytical model when compared to the 

numerical simulator. Therefore, five cases with different rock compressibility were conducted and 

compared. Table 6-1 summarizes the cases with their different rock compressibility value. 

 

Table 6-1 - Summary of cases used to compare the developed model against numerical simulation 

Case Number Rock compressibility, 𝒑𝒔𝒊𝒂−𝟏 

1 2 ∗ 10−4 

2 5 ∗ 10−5 

3 1 ∗ 10−5 

4 5 ∗ 10−6 

5 1 ∗ 10−6 

 

 Additionally, two more cases were developed for different permeabilities for reasons that 

will be discussed later on in this thesis. 

Table 6-2 - Cases with modified permeability. 

Case Number Permeability, 𝒎𝒅 

6 5 

7 60 

 

 The main comparison will be based upon the rate of gas produced in [𝑀𝑆𝐶𝐹/𝐷] and the 

cumulative gas produced over 10 years of production in [𝑀𝑀𝑆𝐶𝐹]. The following figures show 

the results of each case for the two models. 
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Figure 6-8 - Case 1 gas rate comparison. 
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Figure 6-9 - Case 1 gas produced comparison. 
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Figure 6-10 - Case 2 gas rate comparison. 
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Figure 6-11 - Case 2 gas produced comparison. 
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Figure 6-12 - Case 3 gas rate comparison. 
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Figure 6-13 - Case 3 gas produced comparison. 
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Figure 6-14 - Case 4 gas rate comparison. 
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Figure 6-15 - Case 4 gas produced comparison. 
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Figure 6-16 - Case 5 gas rate comparison. 
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Figure 6-17 - Case 5 gas produced comparison. 
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Figure 6-18 - Case 6 gas rate comparison. 
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Figure 6-19 - Case 6 gas produced comparison. 
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Figure 6-20 - Case 7 gas rate comparison. 
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Figure 6-21 - Case 7 gas produced comparison. 
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 The results of the comparison show a substantial, positive difference in accuracy as rock 

compressibility is reduced. The reason behind this could mainly be due to the transient-state flow 

that is not considered within the semi-analytical model. It could be possible that in Case 1, where 

the error is very large, the pressure wave does not reach the boundary (to achieve pseudo-steady 

state) as fast as it does in the other cases. On the other hand, the semi-analytical model assumes 

pseudo-steady state from the first day of production. This disparity could be the reason for the large 

error. Fortunately, the time it takes to reach pseudo-steady state can be quantified using the equation 

for the radius of investigation. 

 𝑡𝑝𝑠𝑠 =
39.5 𝜙 𝜇𝑤 𝑐𝑡  𝑟𝑒

2 

𝑘
 (6.7) 

 Where 𝑡𝑝𝑠𝑠 is the time to pseudo-steady state given in [𝑑𝑎𝑦𝑠] (Dake, 1978). The reason 

water viscosity is used in the equation is because at the beginning, the reservoir is fully saturated 

with water. Table 6-3 summarizes the time to pseudo-steady state calculated for every case. 

 

Table 6-3 - Time to pseudo-steady state for each case. 

Case Number Time to Pseudo-Steady State, 𝒅𝒂𝒚𝒔 

1 2.738 

2 0.717 

3 0.178 

4 0.111 

5 0.057 

6 1.156 

7 0.096 
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 This further validates that for lower times to pseudo-steady state, the semi-analytical model 

provided results comparable to a numerical simulator. The advantages of using the semi-analytical 

model over the simulator is the low input and computational power required to characterize a 

homogenous, isotropic, gas reservoir. In addition, Equation (6.7) can be used appropriately to 

determine whether the pseudo-steady state model is valid for a given reservoir. 

6.2 Semi-Analytical Analysis of the Production Profile 

6.2.1 Analysis of Peak Production (qg max) 

 One of the main tasks for a production engineer is to analyze and be able to forecast 

production profiles for a well or a field. In a well’s life, production will reach a peak at some point. 

After that, it will begin to decline until it plateaus. It is not easy to identify the exact pressure, 

saturation or time that the peak production will occur at. However, through our observations, it is 

possible to analytically solve for the peak production using the developed model. It is then possible 

to identify the rock and fluid properties that have control on the peak production. As defined earlier: 

 
𝑑𝑞𝑔

𝑑𝑡
=

𝑑𝑞𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

𝑑𝑞𝑔

𝑑𝑆𝑤

𝑑𝑆𝑤

𝑑𝑡
 (6.8) 

Mathematically, it is known that a maximum or a minimum on a curve has a derivative equal to 

zero. Therefore, at peak production, 
𝑑𝑞𝑔

𝑑𝑡
= 0. 

 0 =
𝑑𝑞𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

𝑑𝑞𝑔

𝑑𝑆𝑤

𝑑𝑆𝑤

𝑑𝑡
 (6.9) 

Now, it is possible to factor out 
𝑑𝑃

𝑑𝑡
 from the equation. 

 0 = (
𝑑𝑞𝑔

𝑑𝑃
+

𝑑𝑞𝑔

𝑑𝑆𝑤

𝑑𝑆𝑤

𝑑𝑃
)

𝑑𝑃

𝑑𝑡
 (6.10) 
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 For any fluid withdrawal from a reservoir, there needs to be a pressure differential to 

support it. Thus, it is known that 
𝑑𝑃

𝑑𝑡
≠ 0 and can be eliminated from the equation. The resulting 

equation for the peak is: 

 0 =
𝑑𝑞𝑔

𝑑𝑃
+

𝑑𝑞𝑔

𝑑𝑆𝑤

𝑑𝑆𝑤

𝑑𝑃
 (6.11) 

 At this point, it is still necessary to solve this equation analytically since 
𝑑𝑆𝑤

𝑑𝑃
 needs to be 

evaluated. However, this form of the equation can be further expanded upon to make it in terms of 

fluid and rock properties using equations (6.5) and (6.6) defined earlier. 

 
𝑑𝑆𝑤

𝑑𝑃
= −

𝑑𝑞𝑔

𝑑𝑃
𝑑𝑞𝑔

𝑑𝑆𝑤

 (6.12) 

Substituting in equations (6.5) and (6.6) for 
𝑑𝑞𝑔

𝑑𝑃
 and 

𝑑𝑞𝑔

𝑑𝑆𝑤
. 

 𝑑𝑆𝑤

𝑑𝑃
= −

𝛼𝑐  ℎ 𝑘𝑟𝑔

141.2 (ln (
𝑟𝑒

𝑟𝑤
) − 0.5 + 𝑆)

(
 (�̅� − 𝑃𝑤𝑓 )

𝜇𝑔 𝐵𝑔

𝑑𝑘
𝑑𝑃

+
 𝑘

𝜇𝑔 𝐵𝑔
−

 𝑘 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔
2  𝐵𝑔

𝑑𝜇𝑔

𝑑𝑃
−

 𝑘 (�̅� − 𝑃𝑤𝑓 )

𝜇𝑔  𝐵𝑔
2

𝑑𝐵𝑔

𝑑𝑃
)

𝛼𝑐  𝑘 ℎ (�̅� − 𝑃𝑤𝑓 )

141.2 𝜇𝑔 𝐵𝑔  (ln (
𝑟𝑒

𝑟𝑤
) − 0.5 + 𝑆)

𝑑𝑘𝑟𝑔

𝑑𝑆𝑤

 (6.13) 

 𝑑𝑆𝑤

𝑑𝑃
= −

𝑘𝑟𝑔

𝑘𝑟𝑔′
[

𝜇𝑔  𝐵𝑔

𝑘 (�̅� − 𝑃𝑤𝑓)
] (

 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔  𝐵𝑔

𝑑𝑘

𝑑𝑃
+

 𝑘

𝜇𝑔  𝐵𝑔

−
 𝑘 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔
2  𝐵𝑔

𝑑𝜇𝑔

𝑑𝑃

−
 𝑘 (�̅� − 𝑃𝑤𝑓)

𝜇𝑔  𝐵𝑔
2

𝑑𝐵𝑔

𝑑𝑃
) 

(6.14) 

 𝑑𝑆𝑤

𝑑𝑃
= −

𝑘𝑟𝑔

𝑘𝑟𝑔′
(

 1

𝑘

𝑑𝑘

𝑑𝑃
+

1

(�̅� − 𝑃𝑤𝑓)
−

1

𝜇𝑔  

𝑑𝜇𝑔

𝑑𝑃
−

 1

𝐵𝑔

𝑑𝐵𝑔

𝑑𝑃
) (6.15) 

The equation can be rearranged to be given in terms of the average reservoir pressure �̅�. 

 �̅� = (
 1

𝐵𝑔

𝑑𝐵𝑔

𝑑𝑃
+

1

𝜇𝑔 

𝑑𝜇𝑔

𝑑𝑃
−

 1

𝑘

𝑑𝑘

𝑑𝑃
−

𝑘𝑟𝑔′

𝑘𝑟𝑔

𝑑𝑆𝑤

𝑑𝑃
)

−1

+ 𝑃𝑤𝑓 (6.16) 
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Where 
𝑑𝑆𝑤

𝑑𝑃
 and the pressure dependent terms are evaluated at the average reservoir pressure �̅�. 

Thus, the pressure at which maximum (or minimum) production will occur are the roots of equation 

(6.16). 

 This equation is only valid at the peak (or minimum) or production. By using this equation 

on the base case of the developed model, it yielded an answer with 0.2% error from the 
𝑑𝑆𝑤

𝑑𝑃
 value 

(at the peak) calculated from the Muskat-type equation and Runge-Kutta. This proves the validity 

of this equation. Now, if history matching is done, it is possible to adjust the properties in this 

equation in order to identify which property is causing the peak. 

 Furthermore, an investigation was conducted using the developed model to explore certain 

production conditions effect on the peak production. These conditions are: 

 

1. Specified (constant) well pressure, 𝑃𝑤𝑓. 

2. Specified (constant) water production, 𝑞𝑤. 

3. Specified (constant) pressure drawdown, (�̅� − 𝑃𝑤𝑓). 

 

 Since the base case involves using a constant well pressure (𝑃𝑤𝑓), it is known that a peak 

will always be present under this condition. This can be seen in Figure 6-6. On the other hand, 

using a constant water production of 10 𝑏𝑏𝑙/𝑑𝑎𝑦,  50 𝑏𝑏𝑙/𝑑𝑎𝑦, and 500 𝑏𝑏𝑙/𝑑𝑎𝑦, a peak was not 

produced in any of the cases. In fact, the production rate kept rising until the well reached 

abandonment pressure. The results are presented in Figure 6-22, Figure 6-23, and Figure 6-24. 
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Figure 6-23 - Gas production profile using a constant water production rate of 50 bbl/day. 

Figure 6-22 - Gas production profile using a constant water production rate of 10 bbl/day. 
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 It seems that if the well has a constant water production during the dewatering phase, a 

peak production will not be achieved as the gas rate will continue to increase until abandonment 

pressure is reached. 

 Finally, for a constant pressure drawdown (�̅� − 𝑃𝑤𝑓), the drawdown pressure was set to 

be the average of the initial reservoir pressure and the well flowing pressure using base case values. 

Figure 6-25 shows the results of this case. 

 

 

 

 

 

Figure 6-24 - Gas production profile using a constant water production rate of 500 bbl/day. 
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 In this case, a peak is present. However, it is broader and peaks at a higher rate than the 

original base case. It also reaches abandonment pressure since it is not restricted by a well flowing 

pressure. Looking further into the cause of the peak, it seems that the pressure drawdown is not the 

dominant term controlling the peak. To further investigate this, the effect of the pressure dependent 

and saturation dependent terms in the gas rate equation needs to be evaluated. The pressure 

dependent terms include the absolute permeability, gas viscosity and gas formation volume factor. 

On the other hand, the only saturation dependent term is the relative permeability of gas. Figure 6-

26 and Figure 6-27 show the value of these terms. 

 

 

 

Figure 6-25 - Gas production profile using a constant pressure drawdown. 
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Figure 6-26 - Pressure dependent terms change over time for the constant pressure drawdown case. 

Figure 6-27 - Relative permeability of gas for the constant pressure drawdown case. 
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 Multiplying both pressure and saturation dependent term. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The trend in Figure 6-28 is almost identical as to that shown in Figure 6-25. This shows 

that indeed, the pressure drawdown is not the most dominant term controlling the peak rate.  

 

 

 

 

 

Figure 6-28 - Pressure dependent terms multiplied by the saturation dependent term for the constant 
pressure drawdown case. 
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6.2.2 Analysis of Inflection Points 

 An inflection point is a point on a curve at which there is a change in the direction of 

curvature. Through the analysis of the production profile resulting from the developed model, there 

are two inflection points present in the gas rate plot against time. The first inflection point occurs 

as the gas rate begins to peak, this is when the slope changes sign from positive to negative. The 

other inflection point occurs when the decline after peaking reaches its most negative value and 

starts becoming less negative. These inflection points can be easily identified as they are the 

maximum and minimum of the derivative of gas rate with respect to time (Figure 6-29). Therefore, 

it is possible to find the time at which they occur. For the base case, Figure 6-30 shows the location 

of the inflection points on the gas rate plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-29 - Inflection points identified on the derivative of gas rate with respect to time plot (d(qg)/dt). 
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 The significance of this observation is that we can study the effect of certain parameters on 

the location of the inflection points. This will be useful when doing history matching to see which 

parameters need to be adjusted in order to get a better history match. In this case, relative 

permeability exponents and Langmuir properties will be adjusted according to the minimum and 

maximum range values identified in Table 4-1. The following figures show the difference between 

each case and their base case value. 

 

 

 

 

 

Figure 6-30 - Inflection points identified on a gas rate vs time plot. 
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Figure 6-31 - Derivative of gas rate with respect to time (d(qg)/dt) using different water relative 
permeability exponents. 

Figure 6-32 - Derivative of gas rate with respect to time (d(qg)/dt) using different gas relative permeability 
exponents. 
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 There is a large difference on the time to the inflection point observed when the 

permeability exponent is changed. Even the peaks (
𝑑𝑞𝑔

𝑑𝑡
= 0) have shifted accordingly. Since this is 

a fitting parameter, it should be selected carefully and can be very effective when doing history 

matching. The gas relative permeability exponent has a more significant effect since it is directly 

involved in the gas production rate equation. In the case of the relative permeability of water 

exponent, the water production has a direct impact on 
𝑑𝑆𝑤

𝑑𝑃
 which in return affects the gas production 

slightly as can be seen in Figure 6-31. 

 

 

 

Figure 6-33 - Derivative of gas rate with respect to time (d(qg)/dt) using different gas and water (equal) 
relative permeability exponents. 
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Figure 6-34 - Derivative of gas rate with respect to time (d(qg)/dt) using different Langmuir volumes. 

Figure 6-35 - Derivative of gas rate with respect to time (d(qg)/dt) using different Langmuir pressures. 
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 Both Langmuir properties had the same effect on the inflection points. The Langmuir 

values used were data driven, meaning they were extracted from literatures. Therefore, the base 

case was not symmetrically placed between both the minimum and maximum values. However, 

the general trend shows a proportional relationship between the properties and the time it takes to 

reach an inflection point. 
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6.3 Decline Curve Analysis 

Decline curve analysis is used widely to predict the future performance of a producing 

well. It is done by fitting a line to a historical production decline curve and then manipulating this 

equation in order to solve for the production rate and cumulative production for future times. The 

advantages of this analysis are that production data is widely available and the method is easy to 

apply with little cost. However, with all that being said, it is still a mathematical relationship that 

does not take into consideration the realistic nature of reservoirs. Production curves can change 

shape due to changes in operating conditions and unforeseen events. Basically, there a lot of 

uncertainties that have to be considered (Poston & Poe, 2007). 

6.3.1 Relationship Between Material Balance and Decline Constant D (Arps) 

Arps developed empirical relations that can be used to express rate-time-cumulative 

production characteristics of production decline curves (Poston & Poe, 2007). One of the constants 

developed expresses the rate of change of the flow rate in terms of the decline rate. The decline 

rate, D, is defined through the following equation: 

 𝐷 = −
1

𝑞𝑔
 
𝑑𝑞𝑔

𝑑𝑡
 (6.17) 

 In order to relate this to material balance and investigate the use of the developed semi-

analytical model as an alternative to decline curves, equation (6.17) can be solved using the results 

of the semi-analytical model. It can also be rewritten and expressed in terms of physical properties. 

 𝐷 = −
1

𝑞
(

𝑑𝑞𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑡
+

𝑑𝑞𝑔

𝑑𝑆𝑤

𝑑𝑆𝑤

𝑑𝑡
) (6.18) 

 

 



84 

 

 Where equations (6.5) and (6.6) can be substituted for 
𝑑𝑞𝑔

𝑑𝑃
 and 

𝑑𝑞𝑔

𝑑𝑆𝑤
 and equation (5.68) and 

(5.72) for 
𝑑𝑃

𝑑𝑡
 and 

𝑑𝑆𝑤

𝑑𝑡
. 

 The beauty of the semi-analytical model is that it provides production rate readings for 

future times as well. Therefore, it is possible to evaluate the decline rate constant at every time. 

However, it is important to note that decline rate analysis is only valid after the second inflection 

point that was discussed earlier in this thesis. This is one of the advantages of the semi-analytical 

model as it provides indication for when the decline starts. 

 Figure 6-36 shows the constant D at every time step after the second inflection point. 

Interestingly enough, the shape of the curve mimics that of the gas production curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 At around 1750 days, the decline stabilizes at a value of 2.99 ∗ 10−3.  
Figure 6-36 - Decline constant D (Arps) change with respect to time evaluated using the developed semi-

analytical model and base case values. 
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6.3.2 Relationship Between Material Balance and Decline Constant b (Arps) 

Arps empirical relationship involves the use of another decline constant. This constant is 

called the b-exponent and is defined as follows (Poston & Poe, 2007): 

 𝑏 =  −
𝑑

𝑑𝑡
(

𝑞

𝑑𝑞
𝑑𝑡

) (6.19) 

It is also related to the D constant using the following relationship: 

 𝑏 =
𝑑

𝑑𝑡
(

1

𝐷
) (6.20) 

Figure 6-37 shows the value of this constant at every time step after the second inflection point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-37 - Decline constant b (Arps) change with respect to time evaluated using the developed semi-
analytical model and base case values. 
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 There are fluctuations present in the data that are not understood. However, they seem to 

be at single data points and can be ignored. The b-exponent seems to be at a higher value at the 

start of the decline (which is at the inflection point) but at the end (around 1750 days) it declines to 

a value very close to zero. This implies that the decline is exponential since the value of the b-

exponent is very close to zero. The average of all the data points is 0.0142. 

6.3.3 Use of Material Balance as an Alternative to Decline Curve Analysis 

 One of the goals of this thesis is to explore the use of differential material balance as an 

alternative to decline curve analysis. This is can be investigated by seeing if the empirical equations 

developed by Arps can be used to fit the decline curve to the production predicted by the developed 

semi-analytical model. The Arps predicted production rate equation is expressed in terms of the 

two constants mentioned earlier. 

 𝑞𝑔2 =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 (6.21) 

 Where 𝑞𝑖 and 𝐷𝑖 are the initial values at the inflection point. Using this equation, a 

predicted production rate is calculated. Figure 6-38 shows the actual production rate from the 

developed semi-analytical model versus the predicted production rate calculated from equation 

(6.21). 
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 The predicted model seems to present a good fit that is comparable to the one generated by 

material balance. However, in this case the b-exponent was varied at every time step. Arps assumes 

that it is a constant. Therefore, another attempt was made by using the average b-exponent for all 

time steps. Figure 6-39 shows the results. 

 

 

 

 

 

 

 

Figure 6-38 - Decline curve analysis rate prediction versus the semi-analytical model with b-exponent 
varied at every time step. 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 By averaging the b-exponent and using it as a constant, a better fit was achieved. It was 

also attempted at lower rock compressibility of 1 ∗ 10−6 𝑝𝑠𝑖𝑎−1 to see if this prediction holds.  

 

 

 

 

 

 

 

 

 

Figure 6-39 - Decline curve analysis rate prediction versus the semi-analytical model with b-exponent 
average. 
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 As expected, this provided a better fit than the base case which had a rock compressibility 

of 1 ∗ 10−5 𝑝𝑠𝑖𝑎−1. The cause of this can again tie up with the fact that a low rock compressibility 

makes the semi-analytical model more accurate due to the less time it takes for it to achieve pseudo-

steady state. As observed previously, the semi-analytical model provided results comparable to that 

of a numerical simulator when the reservoir had a low rock compressibility. However, it is also 

important to observe the late time production and how both the semi-analytical model and the 

numerical simulator compare. To perform this analysis, a plot of the gas rate in the cumulative gas 

produced domain will be generated for the case that provided the best results (case 5).  

 

 

 

Figure 6-40 - Decline curve analysis rate prediction versus the semi-analytical model with rock 
compressibility of 1*10^-6 psia^-1. 
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 Figure 6-41 shows that the semi-analytical model can be used to predict the late time 

production as both rates and gas produced curves line up. This also shows that the derived equations 

in Chapter 5 for the Muskat-type equation in the gas domain can be used to forecast the late time 

production region. 
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Figure 6-41 - Gas rate vs gas produced comparison for case 5. 
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6.4 Comparison of Pseudo-Steady-State vs “Pseudo-Transient” State Analysis 

Unfortunately, the “pseudo-transient” model developed from the equations derived in 

section 5.3 of this thesis did not work as intended. The hypothesis is that the equations developed 

were considered to be stiff equations. This means that the equation is unstable due to the solution 

sought varying very slowly which requires the step size to be reduced to an extremely small value. 

In an attempt to solve this problem, MATLAB’s built-in ODE solvers such as ODE15s and 

ODE23s (which are specifically designed for stiff equations) were used. However, they have also 

failed to solve the developed differential equations. 

One iteration was possible but it produced a solution with a pressure value of −1 ∗

109 𝑝𝑠𝑖𝑎. This led to the hypothesis that the equations developed did not honor mass balance. The 

reason for this is because a highly negative pressure value could mean that the amount of fluid 

being drained from the reservoir is more than what is available within the bulk volume calculated 

at that time step. Therefore, resulting in a highly negative pressure value. To test this theory, we 

have attempted to inject fluids every time step until the pressure wave reaches the boundary and 

pseudo-steady state is achieved. Using a constant volume change and uniform time steps, the 

following equations were used to define the amount of gas and water that needs to be injected in 

order to mimic the expanding bulk volume in transient-state as the pressure wave travels to the 

boundary. For ∆𝑡 = 1:  

 𝑟1 = √
24 𝑘 (1)

(948)𝜇𝑤 𝜙 𝑐𝑡
 (6.22) 

 ∆𝑣𝑜𝑙𝑢𝑚𝑒 = (𝑟1
2 − 𝑟𝑤

2)𝜋 ℎ (6.23) 

 
𝑞𝑤,𝑖𝑛𝑗 =

∆𝑣𝑜𝑙𝑢𝑚𝑒 𝑆𝑤𝑖  𝜙𝑖

𝛼𝑐  𝐵𝑤𝑖  ∆𝑡
 (6.24) 
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𝑞𝑔,𝑖𝑛𝑗 =

∆𝑣𝑜𝑙𝑢𝑚𝑒

∆𝑡
(

𝑆𝑔𝑖  𝜙𝑖

𝐵𝑔𝑖
+ 𝑉𝑑(𝑃𝑖)) (6.25) 

 

 The time step that was used was one day intervals. Also, the amount of gas and water 

injected at every time step is constant since the new bulk volume is considered to be at initial 

reservoir conditions. This is in line with the aforementioned divergence theorem (section 5.1.4) 

since the boundary is considered to be open and allows for mass entering the system. 

 By applying this method, the results were no longer negative. In fact, they were increasing 

away from the initial pressure after every time step. The model worked for a few time steps before 

crashing. No more attempts were made. 
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6.5 Use of Differential Material Balance Equation to Improve Integral Material Balance, 

P/z
* 

 Due to the unique dual-porosity nature of unconventional gas reservoirs impacted by 

adsorption, the conventional material balance equations cannot be used to appropriately estimate 

original gas in place. However, King (G. R. King, 1993) modified and improved upon the 

conventional material balance equation in order to have it include the effects of having a dual-

porosity system (free and adsorbed gas). This new equation utilizes a modified z-factor (gas 

compressibility factor) denoted by 𝑧∗ and is expressed through the following: 

 
𝑧∗ =

𝑧

{[1 − 𝑐𝜙(𝑃𝑖 − 𝑃)](1 − 𝑆𝑤
̅̅̅̅ ) + (

𝑧 𝑅 𝑇 𝑉𝑑

𝜙𝑖  𝑃
)}

 
(6.26) 

The produced gas can then be estimated using the following equation: 

 𝐺𝑝 =
𝑉𝑏2 𝜙𝑖  𝑧𝑠𝑐  𝑇𝑠𝑐

𝑃𝑠𝑐  𝑇
(

𝑃

𝑧𝑖
∗ −

𝑃

𝑧∗
) (6.27) 

Where 

𝐺𝑃 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑔𝑎𝑠, 𝑆𝐶𝐹 

𝑉𝑏2 = 𝑏𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 − 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑓𝑡3 

𝑧𝑠𝑐 = 𝑔𝑎𝑠 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

𝑧𝑖
∗ = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑢𝑛𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

 

 Just as it is in conventional material balance, 𝑃/𝑧∗ should be a straight line when plotted 

against the produced gas 𝐺𝑝. The intercept of the plot will provide the original gas in place. 

However, the bulk volume of the secondary-porosity system 𝑉𝑏2 is unknown in equation (6.27). 

The average water saturation 𝑆𝑤
̅̅̅̅  in equation (6.26) is also unknown since it is dependent on 𝑉𝑏2. 

King provides an iterative graphical method to calculate 𝑉𝑏2 and 𝑆𝑤
̅̅̅̅ . This iterative method can be 

tedious as it requires multiple steps until a converged solution is reached. 

 Meanwhile, the differential (Muskat-type) material balance equation that is solved through 

Runge-Kutta provides an estimation for the average water saturation as a function of average 
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reservoir pressure. These are the exact missing ingredients required to solve King’s integral 

material balance equation without the need of an iterative method to calculate 𝑉𝑏2 and 𝑆𝑤
̅̅̅̅ . Since 

the average reservoir pressure is also available from the differential material balance solution, the 

gas produced can be calculated by simply using Darcy’s law. Thus, eliminates the need to evaluate  

𝐺𝑝 using equation (6.27). 

 To validate this observation, using the base case developed, the original-gas-in-place 

(OGIP) was calculated through King’s material balance equation coupled with differential material  

balance and Runge-Kutta. Figure 6-42 shows the resulting 𝑃/𝑧∗ plot.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 Using the generated plot, there are two ways to calculate the original-gas-in-place (OGIP). 

The first is the traditional way through the value at the intercept of the gas produced axis when 

𝑃/𝑧∗ = 0. Note that it is possible to plot  𝑃/𝑧∗ on the x-axis and the gas produced on the y-axis. In 

Figure 6-42 - P/z* vs gas produced using base case values. 
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fact, this would be easier to evaluate since the known format of the equation of the line would give 

the intercept value. The second way to calculate the original gas in place (OGIP) is through the 

slope of the line. King uses this method since it does not require any extrapolations in order to 

estimate the value at the intercept. The procedure involves calculating the slope of the  𝑃/𝑧∗ plot 

and then using an analytical equation to estimate the bulk volume of the secondary-porosity system. 

 𝑉𝑏2 = −
𝑚𝑃𝑠𝑐𝑇

𝜙𝑖  𝑧𝑠𝑐  𝑇𝑠𝑐
 (6.28) 

 Where 𝑚 is the slope of the 𝑃/𝑧∗ plot. This equation assumes that 𝑃/𝑧∗ is on the x-axis. 

After that, the original-gas-in-place (OGIP) can be calculated volumetrically using equation (5.1) 

defined previously in Chapter 5. In this case, since there is no free gas and only adsorbed gas, then 

the equation for the original-gas-in-place (OGIP) is: 

 𝐺 = 𝑉𝑏2 𝑉𝑑 (6.29) 

 Therefore, to validate the results of the plot (Figure 6-42), both methods will be used and 

compared to the volumetric original-gas-in-place (OGIP) calculated through the known bulk 

volume of the reservoir from the base case.  The results of all methods are summarized in Table 6-

4. 

Table 6-4 – Table summarizing results of original gas in place (OGIP) calculated through different 

methods. 

Method Original Gas in Place (OGIP), MMscf 

Intercept approach 485.87 

Slope approach 495.92 

Volumetric determination  496.56 

 

 The calculation through the intercept of the 𝑃/𝑧∗ plot produced a larger error of 2.15% 

compared to the slope approach which had an error of 0.13% only. Thus, it is suggested to use the 

slope approach for a better estimation of the original-gas-in-place (OGIP). 
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 Moghadam et. al further improved upon the known gas material balance equations by 

combining them into one equation that can be used for all gas reservoirs including conventional, 

overpressured and CBM/shale. This was done by introducing a new variable: 𝑧∗∗. When it is plotted 

as 𝑃/𝑧∗∗ vs. 𝐺𝑝, it yields a straight line which can be extrapolated to identify the original gas in 

place (Moghadam, Jeje, & Mattar, 2011). It is related to King’s 𝑧∗ through the following 

relationship: 

 𝑧∗∗ = 𝑧∗ (
𝑧𝑖

𝑧𝑖
∗) (6.30) 

Where 

𝑧𝑖 = 𝑔𝑎𝑠 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

 
 The difference between 𝑧∗ and 𝑧∗∗ is that 𝑧∗∗ is in the same magnitude as the conventional 

gas compressibility factor 𝑧. Therefore, when 𝑃/𝑧∗∗ is plotted on the same plot with 𝑃/𝑧, it does 

not dwarf the other as 𝑃/𝑧∗ would. This can be seen in Figure 6-43. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-43 - P/z** and P/z on the same plot. 
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6.6 Observations 

6.6.1 Range of Properties Effect 

 A range of all the reservoir parameters have been previously developed and recorded in 

Table 4-1. To investigate the effect of certain parameters on the results of the developed semi-

analytical model, each parameter was changed to their maximum and minimum value 

independently while keeping the other parameters at their base case value. This type of analysis is 

also known as an OVAT (one variable at a time). Four different results were specifically evaluated: 

time to peak rate, maximum gas rate, cumulative gas produced, and cumulative water produced. 

The results were then recorded and represented as a tornado chart to display the difference from 

the base case value. All results are based on the constant flowing pressure, Pwf, for the well 

specification. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-44 - Tornado chart showing the effect of each parameter on the time to peak gas rate in days. 
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Figure 6-45 - Tornado chart showing the effect of each parameter on the maximum gas rate in SCF/D. 

Figure 6-46 - Tornado chart showing the effect of each parameter on the cumulative gas produced in SCF. 
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 From the tornado charts presented above, the effect of each reservoir parameter on the 

specified result is ranked from top to bottom. The length of the bar for each parameter shows the 

sensitivity of the pursued result to a change in that parameter. It is not necessary that the output is 

symmetric if the input is symmetric. In fact, for non-linear problems, such as this, the output is not 

expected to be symmetric. This can be seen in Figure 6-44 where the minimum permeability has a 

much larger effect on the time to peak rate than the maximum even though they are both 27.5 [𝑚𝑑] 

apart from the base case value. 

 Considering that the evaluated case is an undersaturated coalbed methane reservoir (100% 

water saturation initially), the parameters that affect the pore volume has the largest effect on the 

cumulative water produced. These parameters are reservoir area, thickness and porosity. This is 

because the pore volume is directly related to how much water is available in the reservoir. The 

Figure 6-47 - Tornado chart showing the effect of each parameter on the cumulative water produced in bbl. 

* Permeability simulation time was increased to 20 years for a better display of results. 
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more water there is, the more that will be produced and vice versa. Related to this is the cumulative 

gas produced, this is also affected by the pore volume because as water is produced, gas is being 

desorbed to take its place in the pore volume and be produced as well. However, what has a larger 

effect on the cumulative gas produced is the Langmuir properties. The Langmuir volume is the 

maximum amount of gas that can be adsorbed on the rock. Thus, a greater Langmuir volume will 

result in more gas being available to be produced. On the other hand, the Langmuir pressure is the 

pressure at which half of Langmuir volume has desorbed. This is essentially the pressure sensitivity 

of the adsorptive rock. If the Langmuir pressure is low, a higher-pressure drawdown will be 

required to produce more gas. Moreover, the pressure should reach a certain value in order for gas 

to start to desorb. This is called the desorption pressure. From the tornado charts, desorption 

pressure affects gas production in general and particularly, the time to peak gas rate as it is dictated 

by when desorption starts. 

  The well flowing pressure has a large effect on production since it determines the pressure 

drawdown which controls production. However, it does not seem to affect the time to peak rate as 

much.  

 Production is also controlled by the parameters that affect Darcy’s law. These parameters 

include thickness, permeability, initial pressure and well flowing pressure. While the reservoir 

thickness plays a large role in production in general, it does not seem to affect the time to peak gas 

rate as much. This is probably due to doubling thickness would double the production rate, but it 

would also double the OGIP. So, the time to reach the pressure for 𝑞𝑔  𝑚𝑎𝑥 above would roughly 

be the same. On the other hand, permeability has a significant impact on the gas rate and the time 

to peak gas rate, this is obvious. However, what seems odd is that both the increase and decrease 

in permeability had a negative effect on both the cumulative water and gas produced while also 

being not very significant. Essentially, this means is that the area under the rate versus time curve 

is the same for the different permeabilities. To investigate this, plots comparing the effect of 
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different permeabilities on the gas rate, cumulative gas produced, and change in pressure has been 

generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-48 - Cumulative gas produced for different permeability inputs. 
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Figure 6-49 - Gas rate for different permeability inputs. 

Figure 6-50 - Pressure versus time for different permeability inputs. 



103 

 

 It seems that a lower permeability causes a slower drop in pressure (Figure 6-50). This 

results in the drawdown being maintained over a longer period of time and thus, a higher cumulative 

production in the long run. Coincidentally, after 10 years of production, the amount gas that the 

minimum permeability produced is almost equal to the amount produced by the maximum 

permeability. However, judging from Figure 6-48, the minimum permeability should produce 

more and plateau at a higher amount of cumulative gas produced. To examine this, the total 

simulation time is increased to 20 years. Figure 6-51 shows the results for all permeability cases 

after 20 years of production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Indeed, the minimum permeability case produces more gas over a longer period of time 

and plateaus at higher level than the base case.  

Figure 6-51 - Cumulative gas produced for different permeability inputs with 20 years simulation time. 
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 Even though it seemed unlikely that a numerical simulator would produce the same effect, 

these cases were evaluated using a numerical simulator for comparison. However, since the 

numerical simulator being used does not incorporate a desorption pressure, both models were set 

to desorb gas at initial pressure. The results showed agreement between the two models. This led 

to the conclusion that the desorption pressure is the culprit for this odd behavior.  

Figure 6-52 shows the cumulative gas production for the different permeability cases, with 

desorption pressure set to initial pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From Figure 6-52, it can be seen that all permeability cases plateau on approximately the 

same cumulative gas produced. Permeability only affects how fast it will take to reach the plateau 

as can be seen between the maximum case and the base case. It is expected that if the simulation 

Figure 6-52 - Cumulative gas produced for different permeability inputs with 20 years simulation time and 

desorption pressure set at initial pressure. 
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time is increased, the minimum permeability case should also plateau on the same level as the other 

cases. 

 The possible cause for this disparity is because when there is no gas desorbing after 

production starts, only water is being produced. However, the void space in the pore volume that 

is left from the produced water is not being filled up by desorbed gas. This causes a large pressure 

drop which would not occur if gas was desorbing from the beginning of production. Thus, the 

pressure drop causes a loss of drawdown and less cumulative gas is produced by the end of 

production.  

Table 6-5 – Pressure profile for the maximum permeability case with and without desorption pressure. 

Maximum Permeability Case (60 md) 

Time (day) Pressure, psia                                        
(Desorption Pressure = 1490 psia) 

Pressure, psia                                  
(Desorption Pressure = Initial 

Pressure = 1540 psia) 

0 1540.0 1540.0 

1 1234.9 1537.0 

2 1233.9 1534.1 

3 1232.8 1531.3 

4 1231.7 1528.6 

5 1230.7 1525.9 

6 1229.7 1523.1 

7 1228.7 1520.4 

8 1227.7 1517.6 

9 1226.7 1514.7 

10 1225.7 1511.6 
 

 Table 6-5 shows the pressure readings for the maximum permeability case with and 

without desorption pressure. It can be seen that since there is no pressure support from the desorbed 

gas, the pressure drops rapidly. Thus, production is reduced. On the other hand, when the gas is 

desorbing as water is being produced, the pressure drops slightly and the drawdown is maintained 

for more gas to be produced in the long run. Additionally, it seems that the step size which is set as 

1-day time steps might be causing the results to be coarse. This would mean that there is a large 
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amount of error in the calculated pressure value. To validate this observation, additional runs were 

made with 0.1 and 0.01 step sizes in the Runge-Kutta iteration. Table 6-6 summarizes the results. 

 

Table 6-6 - Pressure profile calculated using different step sizes for the maximum permeability case 

with desorption pressure. 

Maximum Permeability Case (60 md) (With Desorption Pressure = 1490 psia) 

Time (day) 
Pressure, psia                                              

(1-day Time Step) 
Pressure, psia                                                     

(0.1-day Time Step) 
Pressure, psia                                  

(0.01-day Time Step) 

0 1540.0 1540.0 1540.0 

1 1234.9 1483.5 1486.6 

2 1233.9 1481.0 1484.1 

3 1232.8 1478.6 1481.7 

4 1231.7 1476.2 1479.3 

5 1230.7 1473.9 1477.0 

6 1229.7 1471.6 1474.6 

7 1228.7 1469.2 1472.3 

8 1227.7 1466.8 1469.9 

9 1226.7 1464.4 1467.4 

10 1225.7 1461.9 1464.8 
 

 The results illustrate that step size selected can be a factor in the accuracy of the model. 

This coincides with what was explained earlier regarding Runge-Kutta. However, reducing the step 

size comes at the cost of computational time. Figure 6-53 illustrates the change in accuracy caused 

by the different time steps. It also shows the difference between having a desorption pressure below 

initial pressure and having desorption pressure at initial pressure.  
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Figure 6-53 - Cumulative gas produced comparison between different time steps. Also, numerical 
simulation is plotted but without desorption pressure. 
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6.6.2 Dual Peaking 

Previous literatures and real field production data reports a unique behavior in gas rate 

curves generated for CBM. This feature is referred to as “dual peaking” (Okeke, 2005). However, 

there was no explanation as to why this behavior occurs. This behavior is also witnessed in the 

numerical simulation used to validate the developed semi-analytical model. Figure 6-54 shows a 

magnified image of the early time where the first peak arises. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As this behavior cannot be observed in the semi-analytical model which assumes pseudo-

steady state from the first day, it is safe to assume that the dual peaking behavior is caused by the 

transient  state production that occurs at the early time region. This can be backed up through 

the derivative of the gas rate over time (
𝑑𝑞𝑔

𝑑𝑡
) from the semi-analytical model that shows the curve 
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Figure 6-54 - Dual peaking behavior in numerical simulation of case 5. 
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having a zero value at a single point only which implies one peak (see Figure 6-29). However, for 

the numerical simulation, there are three points at which the derivative of the gas rate curve has a 

zero value. The first is at a maximum point where the first peak is, the second is at a minimum 

(which also has a derivative/slope of zero), and the third is at another maximum where the second 

peak is. Figure 6-55 shows this observation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-55 - Derivative of the gas rate over time (dqg/dt) for case 5 numerical simulation with annotations 
showing the locations of the maximums (peaks) and the minimum. 
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6.6.3 Prediction of Change of Water Saturation Over Time (
𝒅𝑺𝒘

𝒅𝒕
) 

One of the observations made from the results of the semi-analytical model is that the 

change of water saturation over time (
𝑑𝑆𝑤

𝑑𝑡
) can be estimated using the water rate, initial water 

formation volume factor (𝐵𝑤𝑖) and initial porosity (𝜙𝑖). The basis of this comes from the developed 

water rate equation. 

 𝑞𝑤 =
𝑉𝑏

𝛼𝑐

𝑑

𝑑𝑡
(

𝜙 𝑆𝑤

𝐵𝑤
) (6.31) 

 Assuming that the changes in porosity and water formation volume factor were small, the 

equation can be manipulated to be made in terms of the change in water saturation over time: 

 
𝑑𝑆𝑤

𝑑𝑡
=

𝛼𝑐  𝑞𝑤 𝐵𝑤𝑖

𝑉𝑏  𝜙𝑖
 (6.32) 

 Using the base case, this theory was tested. Figure 6-56 shows the results from both the 

semi-analytical model and equation (6.32). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-56 - dSw/dt from analysis vs prediction. 
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 However, this equation gave accurate predictions only when the rock compressibility is 

low. This is because both the water formation volume factor and porosity equations (equation (4.20) 

and (4.1) respectively) have a rock and compressibility term multiplying the pressure dependency 

term. Since the rock and water compressibility are small, the pressure dependency term is made 

negligible. Thus, the changes in water formation volume factor and porosity are considered to be 

very small and can be assumed to be constant at initial value. 

6.6.4 Prediction of Gas Saturation at the End of Production 

Another observation made shows that at the end of production, the gas saturation was 

approximately equal to the percentage of water produced from the reservoir after desorption 

pressure is achieved.  

 𝑆𝑔 ≈
𝑊𝑝

𝑊
 (6.33) 

 To illustrate this, Table 6-7 shows the results from the semi-analytical model using base 

case values.  

Table 6-7 - Analysis of the Percentage Water Produced Compared to the Gas Saturation at the End of 

Production for Semi-Analytical Model 

Original Water in Place (OWIP) 310312 𝑏𝑏𝑙 

Cumulative Water Produced 140728 𝑏𝑏𝑙 

Percentage of OWIP Produced 45.35% 

Gas Saturation at End of Production 44.9% 

Error Percentage 1.00% 

 

 To validate this observation, the same was done with the five cases developed for numerical 

simulation. 
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Table 6-8 - Analysis of the Percentage Water Produced Compared to the Gas Saturation at the End of 

Production for Numerical Simulator (Case 1) 

Case 1 

Original Water in Place (OWIP) 215664 𝑏𝑏𝑙 

Cumulative Water Produced 124788 𝑏𝑏𝑙 

Percentage of OWIP Produced 57.86% 

Gas Saturation at End of Production 43.93% 

Error Percentage 31.71% 

 

Table 6-9- Analysis of the Percentage Water Produced Compared to the Gas Saturation at the End of 

Production for Numerical Simulator (Case 2) 

Case 2 

Original Water in Place (OWIP) 286647 𝑏𝑏𝑙 

Cumulative Water Produced 139386 𝑏𝑏𝑙 

Percentage of OWIP Produced 48.62% 

Gas Saturation at End of Production 45.76% 

Error Percentage 6.25% 

 
Table 6-10 - Analysis of the Percentage Water Produced Compared to the Gas Saturation at the End of 

Production for Numerical Simulator (Case 3) 

Case 3 

Original Water in Place (OWIP) 305575 𝑏𝑏𝑙 

Cumulative Water Produced 141634 𝑏𝑏𝑙 

Percentage of OWIP Produced 46.35% 

Gas Saturation at End of Production 45.68% 

Error Percentage 1.47% 
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Table 6-11 - Analysis of the Percentage Water Produced Compared to the Gas Saturation at the End of 

Production for Numerical Simulator (Case 4) 

Case 4 

Original Water in Place (OWIP) 307941 𝑏𝑏𝑙 

Cumulative Water Produced 141911 𝑏𝑏𝑙 

Percentage of OWIP Produced 46.08% 

Gas Saturation at End of Production 45.67% 

Error Percentage 0.90% 

 

 
Table 6-12 - Analysis of the Percentage Water Produced Compared to the Gas Saturation at the End of 

Production for Numerical Simulator (Case 5) 

Case 5 

Original Water in Place (OWIP) 309834 𝑏𝑏𝑙 

Cumulative Water Produced 142132 𝑏𝑏𝑙 

Percentage of OWIP Produced 45.87% 

Gas Saturation at End of Production 45.66% 

Error Percentage 0.46% 

 
 

 From the results of this analysis, it is concluded that rock compressibility is a factor when 

it comes to this observation. This could be due to the difference in water production caused by the 

transient-state during early production. This is also backed up by the fact that case 5 has the least 

time to pseudo-steady state and the least error percentage calculated. Also, as the time to pseudo-

steady state decreased, the error percentage decreased. Another explanation for this phenomenon 

is because as the rock and water compressibility decreased (became more incompressible) then for 

every 1 [𝑏𝑏𝑙] of water produced, there is 1 [𝑏𝑏𝑙] of void space in the pore volume for the gas to 
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desorb in. This is because there is no change in pore volume due to the incompressibility of the 

reservoir rock and water. 
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Chapter 7  
 

Summary and Conclusions 

In this thesis, a Muskat-type equation for unconventional gas-water reservoirs impacted by 

adsorption has been derived in different domains; pressure, time, cumulative gas produced, and 

cumulative water produced domains. It has also been derived for different flow regimes such as 

pseudo-steady state and “pseudo-transient” state. A semi-analytical model has been developed in 

MATLAB that solves the Muskat-type ordinary differential equation (ODE) using the Runge-Kutta 

method. Using the original Muskat-type equation in the pressure domain (
𝑑𝑆𝑤

𝑑𝑃
), the semi-analytical 

model generates water saturation values as a function of inputted pressures. However, solving the 

system of two ordinary differential equations for the Muskat-type equation in the time domain (
𝑑𝑃

𝑑𝑡
 

and 
𝑑𝑆𝑤

𝑑𝑡
) results in pressure and saturation values as a function of time. 

Coalbed methane was selected to be the unconventional reservoir used to test the developed 

semi-analytical model. This is due to its remarkable adsorption capabilities and its short transient-

state period during production which allows for pseudo-steady state to be achieved. The semi-

analytical model was tested on a data-driven base case and range of reservoir parameters. 

Unfortunately, the “pseudo-transient” model did not produce any results. It is speculated 

that the resulting equations were too stiff for Runge-Kutta or they did not honor mass balance laws. 

However, the derivations did show that the change in bulk volume during transient-state is constant 

if the permeability and porosity are constant and the time steps are uniform. On the other hand, the 

pseudo-steady state model showed promising results. 

Using the developed base case, the semi-analytical model for pseudo-steady state has been 

validated using finite difference, MATLAB’s gradient function, and analytical equations. It was 
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also benchmarked against a homogenous and isotropic numerical simulator that uses the same 

correlations as the ones used in the semi-analytical model in order to calculate parameters such as 

z-factors, gas viscosities and relative permeabilities. The results showed that the time to pseudo-

steady state is the most significant factor affecting the results produced from the numerical 

simulator. As the time to pseudo-steady state decreased, a better match was found between the 

semi-analytical model and the numerical simulator. The concluded reason for this is because of the 

transient state that takes place within the numerical simulator but not in the developed model which 

assumes pseudo-steady state from the beginning. Thus, decreasing the rock compressibility caused 

a decrease in the time it takes to achieve pseudo-steady state. At 𝑡𝑝𝑠𝑠 less than 0.111 days2, 

numerical simulation is almost replaceable in forecasting rates. However, at 𝑡𝑝𝑠𝑠 less than 0.717 

days2, cumulative gas produced can be accurately forecasted. 

Moreover, an analytical equation has been developed to identify the peak gas rate and the 

time to the peak gas rate. In this equation, the byproduct of the Muskat-type equation which solves 

for saturation as a function of pressure: 
𝑑𝑆𝑤

𝑑𝑃
 , is used. This equation can be rewritten in terms of 

physical parameters such as rock and fluid properties. Therefore, if history matching were to be 

done, each property can be studied to identify those causing the peak. Furthermore, three well 

specifications were constructed to study their effects on the peak production: specified (constant) 

well flowing pressure 𝑃𝑤𝑓, specified (constant) drawdown (�̅� − 𝑃𝑤𝑓) and specified (constant) 

water production 𝑞𝑤. The first two well specifications resulted in a peak gas production rate; while 

the constant water production did not produce such a peak. 

In the gas production profile of the semi-analytical model, two inflection points can be 

analyzed graphically. This was done through the derivative of the gas rate (
𝑑𝑞𝑔

𝑑𝑡
) which produces 

                                                   
2 This is not a general recommendation but was based off the limited amount of cases analyzed 

within this thesis. For a more general range of applicability, more cases will need to developed and analyzed. 
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different maxima and minima signifying a change in the direction of curvature. The first inflection 

point is a maximum in the rate derivative indicating a concave (upward) production curve while 

the second inflection point is a minimum in the rate derivative indicating concave (downward) 

production. Also, the derivative goes through zero once signifying the peak production. The 

inflection point-locations can be altered by changing reservoir and fluid parameters. This could be 

especially useful when doing history matching and testing the impact of various rock and fluid 

properties on the shape of the production profile. Furthermore, if decline curve analysis was to be 

performed using Arps Decline Curves, then it should be done after the second inflection point.  

The solution of the material balance is strongly dependent on the time to pseudo-steady 

state.  Short times to pseudo-steady state are closer to the inherent assumption in the semi-analytical 

model and result in good agreement between the proposed model and numerical simulation.  Long 

times to pseudo-steady state deviate from the assumptions inherent to the proposed model and result 

in less accurate agreement with reservoir simulation. 

With a 𝑡𝑝𝑠𝑠 less than 0.178 days2, material balance can be used to replace decline curve 

analysis. The Muskat-type equation in the cumulative gas and water produced domain was used to 

compare late-time production between the numerical simulation and the results of the developed 

semi-analytical model. 

Using the proposed differential material balance (Muskat-type equation), a non-iterative 

methodology was developed to calculate the original gas in place (OGIP) through King’s integral 

material balance equation. It was also concluded that the use of the slope of the 𝑃/𝑧∗ to calculate 

the OGIP is more accurate than extrapolating for the intercept. 

The dual peaking phenomenon that is observed in CBM field production data and 

numerical simulation that occurs at the early stage of production was concluded to be purely due 

to the transient-state. The reasoning behind this is because this behavior has not been witnessed in 
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the developed semi-analytical model or its derivatives which assumes pseudo-steady state flow 

only.  

At low rock and water compressibility, it is possible to estimate the change in water 

saturation over time (
𝑑𝑆𝑤

𝑑𝑡
) using the water production rate and initial values for water formation 

volume factor and porosity. This is because the pressure dependency term in the porosity and the 

water formation volume factor equations is made negligible due to it being multiplied by the low 

rock compressibility. Therefore, it is safe to assume they are constant at initial values and do not 

change with pressure. 

Also, an observation has been made that shows that the gas saturation at the end of 

production can be estimated using the percentage of water produced after desorption pressure. 

However, the reservoir rock and water compressibility should be very low for an accurate 

prediction. This is because the pore volume should not change to allow for every barrel of water 

produced, one barrel of void pore volume is available for gas to desorb into. This observation holds 

true even in the results of the numerical simulator. 
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Appendix A  
 

 

Appendix A presents different results from the semi-analytical model using base case values. This 

was done by scaling the x-axis to show the relationship between different results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1 – Pressure vs gas rate (base case). 
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Figure A-2 – Pressure vs water saturation (base case). 

Figure A-3 – Cumulative gas produced vs gas rate (base case). 
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Figure A-4 – Cumulative gas produced vs water saturation (base case). 

Figure A-5 – Cumulative gas produced vs pressure (base case). 
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Figure A-6 – Cumulative water produced vs gas rate (base case). 

Figure A-7 – Cumulative water produced vs water saturation (base case). 
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Figure A-8 – Cumulative water produced vs pressure (base case). 


