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ABSTRACT 

 Maximizing airline profit is challenging as several costs, such as fuel or 

manpower, have been increasing. Fierce competition has forced airlines to drastically 

reconsider their economic policy. Traditionally, revenue management techniques such as 

overbooking or dynamic pricing have been utilized to improve profit of the airline 

industry. Recently, the use of financial options theory offers a different approach to 

airline revenue maximization. 

The purpose of this thesis is to apply financial option theory in order to maximize 

the expected revenue of the airline per flight. An option-based model to maximize the 

airline revenue under uncertainty and a numerical search method are presented. The 

demand distribution and the random walk of a ticket price cause uncertainty in the 

booking process. The proposed model assumes that the evaluation periods are discrete 

and uses the Cross-Ross-Rubinstein model (1979) to price the options. The complexity of 

the expected revenue expression does not allow for the utilization of calculus to 

maximize the airline’s profit. Therefore, a numerical search method is used to determine 

the optimal values for the decisions variables, which are the initial number of call and put 

options and the respective strike prices, for a given distribution of demand.  A numerical 

example is presented and sensitivity analysis is performed to test the behavior of the 

model when changing input parameters (skewness of demand distribution and up and 

down moves of the ticket price). It is found that changing the skewness of the distribution 

has a significant effect on the expected revenue. Moreover, we show that the parameters 
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of the random walk (the drift and its variance) directly affect the utilization of options, 

because these have a direct effect on the probability that the ticket price increases. Our 

analysis demonstrates the importance of accurate forecasting of demand and the precise 

estimation of the random walk parameters. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Revenue management is the integrated control of capacity and price. Companies 

selling perishable goods or services often face the problem of selling a fixed capacity of a 

product over a finite horizon. If the market is characterized by customers willing to pay 

different prices for the product, it is often possible to target different customer segments 

by the use of product differentiation. Together with distribution, it represents one of the 

core competencies of modern airline operations. Revenue management involves utilizing 

passenger demand forecasting and fare mix optimization techniques to maximize profit 

for an airline. An airline typically offers tickets for many origin-destination itineraries in 

various fare classes. These fare classes not only include first, business or economy class, 

which are “physically” different, but also fare classes for which the difference in price 

can be explained by cancellation options, etc. Therefore seats on a flight are products 

targeting different passenger segments for different fares. A seat is no longer profitable 

once the aircraft has taken off, tickets are perishable products. Therefore, when 

considering the airline industry, revenue management can be defined as the practice of 

managing the booking requests with an objective of increasing airline revenue.  

Airline revenue management is focused on the seat inventory control problem. 

This last problem concerns the allocation of finite seat inventory to the demand that 

occurs over time before the flight departs, with the objective of maximizing the revenue 
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of the airline by finding the right combination of passengers - fare class on the flight. In 

order to decide whether or not to accept a booking request, the opportunity cost of losing 

the seats taken up by the booking or charging a higher price later has to be evaluated and 

compared to the revenue generated by accepting the booking request.  Solution methods 

for the seat inventory control problem are concerned with approximating these 

opportunity costs and incorporating them in a booking control policy such that expected 

revenue is maximized.  

Airline revenue management has also directed attention to demand forecasting. 

Demand forecasting is the activity of estimating the quantity of a ticket that consumers 

will purchase. It involves techniques including both informal methods, such as educated 

guesses, and quantitative methods, such as the use of historical sales data or current data 

from test markets. Demand forecasting may be used in making pricing decisions and in 

assessing future capacity requirements and these are of critical importance because  

airline booking control policies use demand forecasts to determine the optimal booking 

control strategy. Poor demand estimates result in a booking control strategy that will 

perform badly.  

Another issue is the consideration of no-shows, cancellations and denied-

boarding. In order to prevent a flight from taking off with empty seats  (“empty” 

designates a seat that has been cancelled prior the departure, including the passengers that 

did not show up), airline revenue management has used overbooking. Thus, airlines 

routinely overbook flights to compensate for no-shows: people who reschedule or opt not 

to fly. An empty seat on a plane means a loss of revenue. Historical data show a lot of 

last-minute cancellations or rescheduling (for example, business men are known to 
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reschedule as meetings happen to last longer). If everyone shows up, the overbooking 

will cause an over-sale. The airline then asks for volunteers to give up their seats or may 

refuse boarding to certain passengers, in exchange for a compensation, known as denied 

boarding costs (which may include an additional free ticket or an upgrade in a later 

flight). Despite the denied barding costs, overbooking is still more profitable for the 

airline than the flight taking off with empty seats. Some airlines, such as JetBlue 

Airways, do not overbook as a policy that provides incentive, and consequently avoid 

customer dissatisfaction. These airlines target a different customer segment, mostly 

tourists, with non-refundable tickets, and so most passengers show up. By and large, only 

economy class deals with overbooking while higher classes (business and first) do not, 

allowing the airline to upgrade some privileged passengers (such as  “faithful” very 

frequent flyers) to otherwise unused seats. 

Price is obviously a key variable when computing the revenues of an airline. Price 

differentiation is the starting point of any revenue management policy. Pricing is the 

manual or automatic process of applying prices to purchase and sales orders, based on 

factors such as the date of ticket purchase, the number of tickets purchased, the place 

where the tickets are bought (on the internet, through a travel agent), the cancellation 

options of the tickets and the refund possibility (fully or partially). Pricing leads to price 

differentiation, the foundation of revenue management. Price discrimination requires 

market segmentation in order to target different passenger types (last minute travelers, 

passengers who book their tickets months in advance, passengers who have flexible 

flying dates) and some means to discourage discount customers from becoming resellers 

and, by extension, competitors. This usually entails using one or more means of 
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preventing any resale, keeping the different price groups separate, making price 

comparisons difficult, or restricting pricing information. The airline set up the rate fence, 

which is the boundary that separates segments. Pricing is thus a very common topic of 

research when considering airline revenue management; it is also one of the most 

complicated ones because of the diversity of parameters to take into account. 

The contribution of revenue management is very difficult to evaluate, yet different 

revenue management techniques are said, according to Smith et al. (1992), to have 

increased American Airlines revenues by $ 500 million annually from 1989 to 1992. In 

2004. Using similar techniques, Delta in 2004 announced an additional revenue of $ 300 

million per year.  

Economic conditions have been worsening since 2001, with emphasized effect on 

airline industry. Significant economic pressures from record fuel prices and intense 

competition, particularly from discount carriers and global airlines, have fundamentally 

transformed the airline industry in recent decades. This new environment has resulted in 

diminished profits, restructuring, more than 150,000 lost jobs and financial losses of over 

$ 29 billion among U.S. network carriers since 2001. Airlines have thus merged to 

become stronger, as Delta and Northwest did in 2008 or Air France and KLM did in 

2004. The recent sharp increase of oil prices has challenged the airlines and revenue 

management has become a key tool to maintain profitability. 

Effective revenue management can save airlines hundreds of millions of dollars a 

year. According to Klophaus and Polt (2006), for Lufthansa German Airline, 4.9 millions 

passengers in 2005 were declared as no-shows or cancellations, equivalent to 12,500 full 

Boeing 747s. Yet revenue management, or, more precisely overbooking, allowed 
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Lufthansa to carry more than 570,000 additional passengers, leading to a revenue 

increase of $ 105,000,000 (denied boarding cost included), as compared to the revenue 

without revenue management.   

 

1.2 Literature Review 

Revenue management applied to Airline industry has been widely studied in 

literature, our review presents an overview of these studies. It also displays the recent 

ideas introduced in revenue management, that have led to the model, which will be 

presented. 

 

1.2.1 Techniques used in Airline Booking Process 

 The seat inventory control problem in airline revenue management concerns the 

allocation of a finite seat inventory to the demand that occurs over time. In order to 

decide whether or not to accept a booking request, the airline must compare the 

opportunity cost of losing the seat taken up by the booking or charging a higher fare later 

with the revenue generated by accepting the booking request. Solving the seat inventory 

control problem consists in approximating these opportunity costs and incorporating them 

in a booking control policy such that expected future revenues are maximized. The airline 

seat allocation problem confronts two major challenges: lack of an accurate demand 

forecast and the difficulty in solving large-scale dynamic programming problems, as the 

computation can become very complex and lengthy. 
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 In single-leg seat inventory, booking control policies for various flight legs are 

made independently of each other. There are two categories of single-leg solution 

methods: static and dynamic.  In the static model, booking limits per each period and 

each class are defined in the beginning of the airline booking process. Therefore, the 

static model does not consider the current booking status during the process. On the other 

hand, in the dynamic model, the booking limits are updated through the airline booking 

process, according to the actual status of booking. Dynamic models are therefore more 

accurate than static ones but more difficult to compute.  

 

1.2.1.1 Static Solution method 

 Littlewood (1972) was the first to develop an Expected Marginal Seat Revenue 

(EMSR) approach to find an approximation to an optimal policy for the single-leg, 

double-fare problem. Thus, his EMSR is the basis of most research in airline revenue 

management. He proposes that an airline should continue to reduce the protection level 

for class-1 seats as long as the fare for class-2 (discount) seats satisfies: 

 

where   is the fare (or average revenue) of the ith class (class-1 is the full-fare class and 

class-2 is the discount-fare class),  is the full-fare demand,  is the full-fare protection 

level and Pr[.] denotes probability. The airline therefore accepts the immediate return 

from selling an additional discount seat as long as the discount revenue equals or exceeds 

the expected full-fare revenue from the seat. Belobaba (1987a, 1987b, 1989) enhances 

Littlewood’s work by developing an EMSR approach for a multi-fare problem. The 
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heuristic proposed by Belobaba (EMSR-a and EMSR-b) are the ones mostly used in 

practice. Brumelle and McGill (1993) define optimality conditions for the airline seat 

allocation problem when multiple fare classes are booked into a common seating pool in 

the aircraft (amongst the same cabin) and when the following assumptions are made:  

(1) they consider a single-leg flight  

(2) the demands for different fare classes are stochastically independent  

(3) the reservation requests arrive sequentially in order of increasing fare level, that is 

low fare booking requests come in before high fare booking requests  

(4) cancellations, no-shows and overbooking are not considered  

(5) inside the Economy class (which includes several fare classes), any fare class can be 

booked into seats not taken by lower fare class (this approach is called “nested classes”).  

 

 Van Ryzin and McGill (2000) present a Robbins-Monro (1951) stochastic 

approximation scheme that exploits simulation in order to solve the single-leg problem 

and they incorporate forecasting as an integral part of the solution, which is a distinct 

advantage. The approach uses only historical observations of the relative frequencies of 

certain seat-filling events to guide direct adjustments of the seat protection levels in 

accordance with the optimality conditions of Brumelle and McGill (1993). Stochastic 

approximation theory is used to prove the convergence of this adaptive algorithm to the 

optimal protection levels. The simulation study compares the revenue performance of this 

adaptive approach to a more traditional method that combines a censored forecasting 

method with a common seat allocation heuristic (EMSR-b). 
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1.2.1.2 Dynamic Solution Method and Bid-Price Controls 

For overbooking policies and bid-price controls, we refer to Lee and Hersh 

(1993), Feng and Gallego (1995) and Talluri and van Ryzin (1999). Bid-price controls 

consist in setting threshold (or bid) prices for seats on flight legs; then each ticket for a 

specific itinerary and fare class is sold only if the offered fare exceeds the sum of the 

threshold prices of the flight legs needed to supply the specific ticket.  For example, Lee 

and Hersh (1993) use discrete time dynamic programming in order to develop optimal 

rules for the single-leg problem when demand in each fare class is modeled as a 

stochastic process. Feng and Gallego (1995) derive optimal threshold rules when demand 

in each fare class is modeled as a continuous time stochastic process. In general, the 

incremental control approach implements a maximum number of additional reservations 

to be taken, based on the reservations already taken for that flight and the historical 

patterns for the flight. Several airlines use a level control approach in which reservations 

are accepted until the total number of reservations exceeds specified or authorization 

levels.  

Chatwin (1998) proposes two dynamic models (stationary-fares and 

nonstationary-fares) to deal with a multi-period overbooking problem for a single-leg 

flight with a single service class and use the model to calculate the optimal booking 

limits. Cancellations may occur at any time, including no-shows at flight departure time. 

At departure time, the airline may also bump passengers in excess of flight capacity and 

pay denied-boarding costs. Deriving conditions on the fares, refunds and on the denied-

boarding penalty function (that ensure that a booking-limit policy is optimal), and 

estimating distributions of passenger demand for reservations and cancellations in each 
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period, Chatwin computes the optimal booking limits. The model is applied to the 

discount allocation problem in which lower fare classes book prior to higher fare classes. 

Subramanian, Lautenbacher and Stidham (1999) develop a discrete time, finite horizon 

Markov decision process, and solve it by backward induction on the number of periods 

remaining before departure. Their model allows cancellations, overbooking and 

discounting; it solves for the single-leg problem. They assume a Poisson process for 

cancellations and equal cancellation probabilities for all classes. Biyalogorsky, Carmon, 

Fruchter and Gerstne (1999) propose that a strategy using overbooking with opportunistic 

cancellations can increase expected profits and improve allocation efficiency; their work 

results in deriving a new optimal rule of allocating capacity to consumers. Under their 

strategy, the seller can oversell capacity when high-paying consumers show up, even if 

capacity has already been fully booked. Then, the seller will cancel the sale to some low-

paying customers while providing them with appropriate compensation. Karaesmen and 

van Ryzin (2004) consider an overbooking problem with multiple reservation and 

inventory classes, in which the multiple inventory classes may be used as substitutes to 

satisfy the demand of a given reservation class. They determine overbooking levels for 

the reservation classes, taking into account the substitution options. They model this as a 

two-period optimization problem: in the first period, reservations are accepted given only 

a probabilistic knowledge of cancellations, whereas in the second period, cancellations 

are realized and surviving customers are assigned to the various fare classes to maximize 

the net benefit of assignments. Using a stochastic gradient algorithm (Spall, 2003), they 

find the joint optimal overbooking levels and when numerically comparing the decisions 

of their model to those produced by common heuristics, they show that accounting for 
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substitution when setting overbooking levels has a small, but still significant, impact on 

revenues and costs. 

 

1.2.1.3 Recent Methods 

 Recently new techniques have been used to solve revenue management problems. 

As computers become more powerful, simulation plays a bigger role in solving airline 

revenue management problems, and has recently allowed “model-free” simulation 

approach. Gosavi, Ozkaya and Kahraman (2007) have developed a model-free 

simulation-based optimization model to solve the seat allocation problem. (By “model-

free”, these authors mean that it does not require knowledge of the structure of the 

stochastic system; all that is required is a numerical value of the objective function.) 

Their model accommodates the following realistic assumptions:  

(1) random customer arrivals for booking 

(2) random cancellations 

(3) change in arrival rates with time 

(4) concurrent (non sequential order) arrivals of passengers, i.e., arrivals do not follow 

any particular order such as low fare classes first, etc.  

 A main advantage of using a discrete-event simulator along with a numerical 

optimization method (these authors use a gradient-ascent technique) is that it requires 

only estimated numerical values of the objective function, values which can be easily 

provided by a discrete-event simulator. Yet, the number of simulations required per 

iteration grows proportionately with the number of decision variables.  The model 

developed by Gosavi et al. (2007) captures the dynamic of cancellations and 
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overbooking, and finally proves to produce robust solutions. 

 Ching, Li, Siu and Wu (2007) propose an option-based revenue management model 

that maximizes the travel agent’s profit. Travel agents purchase a call option from their 

customers while selling them air tickets.  The call option premium appears in the form of 

a discount off the regular airfare. A call option is a financial contract between a buyer and 

a seller. The buyer of the option has the right, but not the obligation to buy an agreed 

quantity of a particular commodity from the seller of the option by a certain time for a 

certain price, called the strike price. The seller is obligated to sell the commodity should 

the buyer so decide, and the buyer pays a fee (called a premium) for this right. The call 

option premium appears in the form of a discount off the regular airfare. Customers who 

are flexible regarding all aspects of their trips and have the possibility of changing their 

travel plans would be willing to accept the deal. In this case, in exchange for a 

compensation (the strike price), travel agents can call back these tickets when some other 

customers have an obligation to travel or purchase air tickets at much higher prices 

shortly before departure. Ching et al. compute the call option price according to the 

Black-Scholes pricing model (1973), for a discounted airfare for both American and 

European options. 

 An exhaustive literature search yields to only one paper (Akgunduz, Turkmen and 

Bulgak , 2007) on financial options theory applied to the airline booking system. In their 

work, the authors present a model where call options are used to sell cheap recallable 

tickets when the expected demand is higher than the capacity and put options are used to 

deal with travel agents to ensure a number of tickets to be sold when the expected 

demand is low. A put option is a contract between the seller, and the buyer of the option. 
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The put option allows the buyer the right but not the obligation to sell a commodity to the 

seller at a certain time for a certain strike price The seller has the obligation to purchase 

the underlying asset at that strike price, if the buyer exercises the option. Akgunduz et al. 

(2007) assume normal demand and overbooking with a binomial probability of no-shows 

and consider a multiple-fare-classes single-leg system. Using simulation, they prove for 

different scenarios that using financial options in airline booking is more efficient than 

using “regular” overbooking model, that is, it gives superior revenues. The model of 

Akgunduz et al. largely inspires the model described in this thesis.  

 

 A comprehensive literature review on the revenue management problem is provided 

by McGill and Van Ryzin (1999) and later by Chiang, Chen and Xu (2007).  In addition, 

several books on the topic have been published recently. For instance, Robert Philips’s 

Pricing and Revenue Optimization (2005) provides a comprehensive introduction of 

pricing and revenue management. 

 

1.2.2 Options Analysis and Revenue Management 

 In recent years a new theory of pricing and operating assets has been developed 

when uncertainty and managerial flexibility in operating strategies are involved, this is 

the theory of real options (Dixit and Pindyck, 1994). Amram and Kulatilaka (1999) have 

studied analytical approaches applying real options. In general, financial options are used 

to minimize the risk exposure of a firm. Yet, there is a limited amount of literature 

concerning the issue of controlling risk in revenue management when the price of the 

underlying commodity, such as the ticket price or the capacity, fluctuates randomly over 
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time.  

 Law, MacKay and Nolan (2004) use financial options to hedge rail transportation 

capacity. They describe a market for derivative securities (for example, futures or 

options) on rail car capacity within a completely deregulated rail industry. Their model is 

illustrated with the example of coal transportation, where they use the standard binomial 

option pricing model (cf. Cox, Ross and Rubinstein, 1979) to calculate the prices of 

European call options for transporting coal by train. The underlying asset is a unit of rail 

car capacity suitable for coal transportation.    

 Gallego and Philips (2004) define revenue management of a flexible product, a set 

of two or more alternatives serving the same market such that the purchase of the flexible 

product will be assigned to one of the alternatives by the seller at a later date. For 

instance, if there were three flights from A to B during the day, the customer purchasing a 

flexible ticket is guaranteed service by one of the three alternatives but the airline would 

not assign a specific flight until a later date. These flexible products present the 

advantage of increasing overall demand and enabling better capacity utilization at the 

cost of potentially cannibalizing high-fare demand for specific products. The work of 

Gallego and Philips (2004) derives conditions and algorithms for a single flexible product 

consisting of two alternatives, and a numerical example illustrates the benefits of offering 

flexible products. The approach is very similar to a real option-based model. 

 Traditionally, the main focus of the literature on revenue management concerns 

profit enhancement or profit maximization for industries, such as the airline industry or 

the car rental industry, with fluctuating commodity prices. Anderson, Davison and 

Rasmussen (2004) are pioneers into introducing the financial options theory in the 
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revenue management booking system. They present a novel real options approach to 

revenue management that is specifically suited to the car rental business. A numerical 

example with actual car rental data illustrates their model, which produces minimally 

acceptable prices and inventory release quantities (number of cars available for rent at a 

given price) as a function of remaining time and available inventory. The price to rent a 

car is modeled as following a random walk (Enders, 1995, p. 4); with analogy with the 

financial options theory, Anderson et al. derive a Black-Scholes-like partial differential 

equation and provide an approach that includes competitive effects in revenue 

management settings. For commodity based service businesses, like car rentals (where 

customer switching costs are low), the approach is related to the well-known swing 

options (options that permit the holder to repeatedly exercise the right to receive greater 

or smaller amounts of energy; see Jaillet, Ronn and Tompaidis, 2003) used in the power 

industry. Modeling price as a stochastic differential equation defines then a novel 

approach to including these competitive effects in revenue management applications.  

 But as mentioned before, the utilization of financial options in the airline booking 

system has only been studied by Akgunduz et al. (2007). In their work, Akgunduz, 

Turkmen and Bulgak present a model involving two kinds of financial options: (1) call 

options, which the airline buys from the willing passenger who agrees to buy a therefore 

cheaper but recallable ticket (at a certain date in the future), and (2) put options, which 

the airline buys from a travel agent who accepts to purchasing an agreed-upon number of 

tickets at a certain date in the future. In their model, call and put options are mutually 

exclusive, as the airline considers call options when the expected total demand is higher 

than the capacity of the aircraft, and considers put options in the other case. The maturity 
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date (time where the airline decides to exercise its option) and the strike price are decided 

when the airline and the passenger or travel agent agrees on the contract, i.e., the airline 

buys the options. As a call (put) option is a right but not an obligation, the airline can 

decide to recall tickets from the customer (to sell the tickets to the travel agent) up to the 

number of options purchased. Alternatively, the airline can also decide to let its call (put) 

option expire and try to sell its remaining tickets in the market. Their model incorporates 

no-show probabilities and denied-boarding, and they derive the expected revenue and 

detail a simulation methodology to explore effectiveness: 

 

 In the above 

 j indexes periods j=1,…t ,  

i indexes the fare class i=1,…n,  

bij is the booking limit of class i and period j,  

 is the fare of class i (assumed to be constant over time),  

nC and nP  are respectively the initial number of call and put options purchased by the 

airline,  

pC and pP are respectively the premiums (price paid by the airline per option purchased) 

of call and put options,  

ndb and cdb are respectively the number of passengers who are denied boarding and the 

denied boarding cost per bumped passenger,  

 is the number of call options exercised  

 is the exercise price of call options.  
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1.3 Thesis Research Objectives and Contribution 

The objective of this research is to develop a model with call and put options that 

can be used by the airlines in order to maximize their revenues. Though this work is 

inspired by the model of Akgunduz et al. (2007), it is different in the following:  

(1) a single-fare class is studied,  

(2) ticket price in the fare class is assumed to follow a random walk and has 

therefore an associated distribution, and 

 (3) a binomial options pricing model is used to derive the premiums of both types 

of options. 

This work provides some important features, as this type of model maximizes the 

expected revenue by finding the optimal values of six decision variables: the initial 

numbers of purchased call and put options, the premiums of these options (paid by the 

airline) as well as the optimal strike prices for both types of options. But in this model, 

the options are priced according to the binomial option pricing model (BOPM), resulting 

in reducing the number of decision variables from six to four (initial numbers of options 

purchased and strike prices). (BOPM is an options valuation method developed by Cox, 

Ross, and Rubinstein in 1979. It is an iterative procedure, allowing for the specification 

of nodes, or points in time, during the time span between the valuation date and the 

option's expiration date. The model reduces the likelihood of price changes, removes the 

possibility for arbitrage, attempt to profit by exploiting price differences, assumes a 

perfectly efficient market, and shortens the duration of the option. Thus, it is a 
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mathematical valuation of the option at each point in time specified.) Moreover, 

introducing uncertainty for the ticket price at each period makes the model more realistic. 

A single-leg single-fare class flight is studied, yet different prices associated with 

different probabilities, according to the assumptions of the random walk model, are 

computable during one period; introducing several classes would only make 

computations more complex as demand between fare classes are assumed independent. 

So, a methodology is proposed to compute the local optima of the decisions variables in 

order to maximize the expected revenue of the airline. A numerical example is given to 

explain the methodology and sensitivity analysis of the example is conducted to examine 

the effect on the optimal solution to variations in the parameters of the random walk and 

the skewness of the demand distribution. 

 

1.4 Overview of Thesis 

The research presented in this thesis is categorized according to the following: 

• Chapter 2 provides a description of the model presented in this thesis and derives 

the objective function. It also derives the binomial option pricing of the call and 

put options utilized in the model described earlier. 

 

• Chapter 3 provides a numerical methodology to solve the model presented in 

Chapter 2. A numerical example is used to illustrate the method presented. 

Sensitivity analysis is performed to demonstrate how changing some of the 

parameter values affects the objective function. 
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• Future work and concluding remarks are addressed in Chapter 4. 



 

CHAPTER 2 

MODEL FORMULATION 

This chapter presents a model for computing the expected revenue of an airline 

when using call and put options. These financial options are used to hedge risk due to 

demand the airline is experiencing when booking tickets. After describing the model, the 

price of the option used is computed using the binomial options pricing model. 

 

2.1 Model 

2.1.1 Description of the model 

The time interval between the beginning of airline booking and the flight 

departure is divided in J periods (of length h). A single-class, single-leg flight is 

considered. During the first period, the airline sells tickets to customers and travel agents 

with call and put options. The options expire at the beginning of period J, at time T, 

which is called “expiration or maturity date”. From the first through the penultimate 

period, the airline sells tickets “regularly”, i.e. without options, at a price Sj depending on 

the market conditions for period j = 1,…, J-1. The price Sj of tickets at period j is a 

random walk. The price of tickets at the beginning of period 1 is denoted by S0. The 

model uses European options, i.e. the options cannot be exercised before the expiration 

date. 

 

 



20 

Description of the model with call options 

At the beginning of the first period, n0C tickets are sold with call options, which 

means that these n0C tickets sold during the first period can be recalled by the airline if 

needed at the expiration date T of the option. The airline pays the option price (which is 

also called option premium) cS to the passenger, and hence the passenger buying a ticket 

with a call option pays only S0 - cS (discounted price) to the airline. A call option is a 

contract, which gives the airline the right to recall the ticket at time T. When buying the 

tickets sold with a call option, the customer agrees to sell the tickets back to the airline at 

price K if the airline decides to exercise its right to recall the ticket. This price K is called 

strike price or exercise price, and is decided upfront when the contract is settled.   

If the airfare at time T (maturity date) is greater than the exercise price K, then the 

airline will recall the tickets and resell them at the market price SJ, and hence the net cash 

flow at the beginning of period 1 (time 0) to the airline for this ticket which is recalled is 

S0 - cS + Br(J)  (SJ  - K), where Br(J)  is the discount factor of J periods. It is assumed that 

the cash flow occurs at the end of period J. If SJ is smaller than the exercise price K, then 

the airline will not exercise the option and will not recall the tickets. The loss to the 

airline is only the premium paid for the lowest fare tickets (cS), resulting in a net cash 

flow of S0 - cS at the beginning of the first period. The two possible net profits at time 0 

from one ticket hedged with a call option are displayed in Figure 2.1. 
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Recall at T  S0 - cS + Br(J) (SJ  - K) 

  

    No recall at T S0 - cS 

Figure 2.1: Possible net profit from one ticket with call option 

 

Description of the model with put options 

At the beginning of the first period (beginning of the airline booking process), the 

airline purchases n0P put options from one (several) travel agent(s) at price pS per ticket, 

which is called the premium of put option. As having one or several travel agents does 

not change the following, they will be referred as one entity. By hedging n0P tickets with 

put option, the airline pays a price of pS per ticket to the travel agent, which gives the 

airline the right, at time T, to sell up to n0P tickets to this travel agent at a price L per 

ticket. This price L is called “exercise or strike price” and is decided upfront when the 

airline buys the put options from the travel agent. 

If SJ < L at time T, then the airline will exercise its right to sell the ticket to the 

travel agent at the strike price L, resulting in a net cash flow of Br(J) L - pS. It is assumed 

that the cash flow occurs at the end of period J. If SJ > L, then the airline will not exercise 

the right to sell the ticket to the travel agent and will sell the ticket in the market at price 

SJ, resulting in a cash flow of Br(J) SJ - pS. The two possible net profits from one ticket 

hedged with a put option are displayed in Figure 2.2. 
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exercised at T  Br(J) L - pS  

        

    not exercised at T  Br(J) SJ - pS 

Figure 2.2: Possible net profit from one ticket with put option 

 

From the above description of the model, it follows that if the airline expects the 

total demand to be greater than the capacity of the aircraft, it will purchase call options on 

some low-fare tickets, which could be recalled and sold at a higher price. On the other 

hand, if the airline expects the total demand to be lower than the capacity of the aircraft, 

it will purchase put options to ensure the sale of some remaining tickets. By definition, 

the call and put options are mutually exclusive. 

 

2.1.2 Assumptions 

• The airline determines the number of call and put options to be purchased, 

respectively n0C and n0P. 

• The probability of a passenger not showing up, s, is assumed to be constant, and is 

called the probability of no-shows. 

• A single class flight is considered in this research. 

• Demand is a random variable modeled by a discrete distribution. Demands between 

periods are independent.  
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• Fare per class evolves according to changes following a random walk; an analogy can 

be made between stock price and ticket price. The distribution of the price is detailed 

in section 2.4.  

• The binomial option pricing model is used to price the call and put option premiums, 

as described in section 2.4. 

• Cash flows are assumed to occur at the end of each period.  

• Overbooking is allowed. 

• The model uses European options, that is the options are exercised only at maturity 

date, if exercised. 

 

2.1.3 Variables 

To build the model of airline booking using financial options, it is essential to 

define the following variables:  

• S0 is the price paid for each ticket per customer at the beginning of the airline 

booking process. 

• Sj is the random variable characterizing the price paid for each ticket per customer 

during period j of the booking process, j=1, …, J. Specifically, SJ is the expected 

price per unit of ticket during the last period J, so this is also the price per unit of 

ticket at time T.  
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• dj is the demand during period j, j=1,…, J and follows the discrete distribution 

. 

• s is the probability of a no-show. 

• nj is the number of tickets sold by the airline during period j, j=1,… , J-1, at price 

Sj. As introduced by Akgunduz et al. (2007), an authorization level, aj, is 

computed to limit the number of tickets sold per period j, that is, 

for j =1,… , (J – 1),    nj 
 
= min(dj, aj),           [2.1] 

where for  j =1,… , (J – 1),  aj = (1 + s) E[dj]   

and s is the probability of a no-show. 

• nJ
C is the number of tickets sold by the airline during the last period at price SJ in 

the call option model. 

• nJ
P is the number of tickets sold by the airline  during the last period at price SJ in 

the put option model. 

• nJ is the number of tickets sold during the last period: nJ = nJ
C + nJ

P. 

• cS  is the premium of one call option. 

• pS is the premium of one put option. 

• K is the strike price associated with a call option to compensate the customer from 

whom the ticket is recalled at time T. 

•  L is the strike price associated with a put option, at which the airline sells the 

tickets to the travel agent at time T. 
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• n0C is the number of tickets sold with a call option to the customers by the airline 

at the beginning of the airline booking process (t=0).  

• n0P is the number of units of put options purchased from the agent by the airline  

at the beginning of the airline booking process (t=0). 

• m is the number of units of tickets sold in the market from the first period until the 

end of the penultimate period (j = 1,..., J-1) of the airline booking process: 

 .            [2.2] 

• C is the capacity of the plane (number of seats available). 

• T is the expiration or maturity date of the option. 

• nC
e is the number of tickets recalled from the customers. 

• nP
e is the number of tickets under put options sold to the travel agent. 

• ndb is the number of passengers who are denied boarding. 

• cdb is the cost of denying boarding to a passenger. 

• Br(j) is the discount factor between time the initiation of the booking process and 

period j, where  and r is the nominal interest rate (continuous 

compounding). 

• µ and σ are the random walk parameters 

• u and d are the binomial parameters 
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In order to formulate the model more easily, the two mutually exclusive types of 

options are presented separately to give birth to two sub-models described in the two 

following sections. The two derived models will then be gathered into a single one, as it 

will be shown in section 2.5. 

 

2.2 Call Options Modeling 

In this section, it is assumed that at the beginning of the booking process (time 0) 

the total expected demand is higher than the capacity of the aircraft; only call options are 

considered. 

The number of tickets recalled from the customers is nC
e, if the airline decides to 

recall the tickets at maturity date T at price K per ticket. If the strike price K is smaller 

than the market price SJ, then the airline recalls tickets at price K and sells them directly 

in the market during the last period at price SJ per ticket. The number of tickets recalled 

nC
e, at the expiration date T, depends on the number of tickets the airline has sold until 

time T , and the expected demand in period J ( E[dJ] ). As nC
e cannot exceed 

the initial number of tickets hedged with call options (n0C), it follows that: 

       [2.3] 

It is assumed in [2.3] that the sum of the number of tickets sold until period J-1 and the 

expected demand in period J would be greater than or equal to the capacity of the aircraft, 

that is, 
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 .        [2.4] 

If m + E[dJ] – C < 0, that is if the airline expects to have its flight depart with empty 

seats,  the airline will not recall any of the n0C
  tickets (nC

e = 0). Therefore as the number 

of tickets recalled must be non-negative, it can be defined as following: 

 .      [2.5] 

There are two possible scenarios regarding the number of tickets sold in the last period J, 

nJ
C, at price SJ  per ticket:: 

(i) If , that is, if the sum of the number of tickets sold until the end of 

period J-1 and the expected demand in period J is greater than or equal to the 

aircraft capacity, then the airline recalls nC
e
  tickets hedged with call options (nC

e 

was defined in [2.5]) that are sold in the market during the last period. Moreover, 

the airline is also selling at price SJ the number of remaining seats, which is C - 

n0C – m.  Yet, no more tickets than demanded can be sold, so the number of tickets 

sold during the last period at price SJ is: 

    .        [2.6] 

(ii) If , that is if the airline expects the sum of the tickets sold until the 

end of period J-1 and the expected demand of tickets during period J to be smaller 

than the aircraft capacity, then the company will not recall the tickets (from [2.5], 

nC
e = 0), and the number of tickets sold during the last period is the minimum of 

the demand during period J, dJ, and the remaining seats  

(C - n0C  – m), that is, 
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nJ
C  =min{ C - n0C  - m, dJ. } .      [2.7] 

Combining [2.6] and [2.7], the expression for the number of tickets sold during the last 

period, nJ
C, is derived, as follows: 

   .       [2.8] 

Therefore, in this last period J, the net cash flow for the airline is the sum of the inflow 

generated by the sale of the nJ  tickets at price SJ during period J and the cost of recalling 

nC
e tickets at price K at time T:       

 .        [2.9] 

Moreover, without considering any type of options, the expected net income earned from 

the first period until the end of the penultimate period R0 is 

  .    [2.10] 

     .    [2.11] 

The objective function is to maximize the expected profit to the airline. 

Considering only call options and including the net cash flow at time 0 ( n0C (S0 - cS) ) 

and during period J (defined in [2.9]), the objective function is therefore defined by 

,   [2.12] 

which is equal to  

 .   [2.13] 
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2.3 Put Options Modeling 

In this section, it is assumed that at the beginning of the booking process (time 0) 

the total expected demand is smaller than the capacity of the aircraft; only put options are 

considered and call options are not used.  

The number of tickets under a put option sold to the travel agent at time T is nP
e, 

as the airline has bought n0P put options from the travel agent at the beginning of the 

airline booking process. It is important to remind the reader that the airline will only 

decide to sell nP
e tickets to the travel agent at maturity date T at price L, if the strike price 

L is greater than the price of the market SJ.  

If, at time T, the sum of the tickets sold until the end of the penultimate period and 

the expected demand of period J is less than the capacity of the aircraft (m + E[dJ ] < C), 

then the airline will require the travel agent to buy nP
e  tickets hedged with put options. A 

first expression of nP
e can thus be derived, as follows: 

 .      [2.14]
 

Yet, the airline cannot force the travel agent to buy more than n0P tickets at price L. 

Therefore [2.14] becomes: 

     .    [2.15]  
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If C – m - E[dJ] < 0, that is, if at time T the expected total number of tickets sold 

at the end of period J is greater than the capacity of the aircraft, then the airline will not 

exercise its option to sell any of the n0P tickets to the travel agent:  

nP
e = 0 .      [2.16] 

Now combining the two outcomes (C – m - E[dJ] < 0 and C – m - E[dJ] ≥ 0) 

[2.15] and [2.16] leads to derive a single expression of nP
e , as follows : 

 .   [2.17] 

There are two possible scenarios regarding the number, nJ
P, of tickets sold in the last 

period J at price SJ  per ticket: 

(i) If, at time T, the sum of the tickets sold until the end of period J - 1 and the 

expected demand of period J is less than the capacity of the aircraft  

(m + E[dJ ]< C), then the airline will sell nP
e tickets to the travel agent at the 

exercise price L. After selling these nP
e to the travel agent, the airline sells the 

remaining empty seats ( C – m - nP
e ) in the market at price SJ , during the last 

period. Yet the airline cannot sell more tickets at price SJ than the demand dJ 

during period J ( ). Hence, the number of tickets directly 

sold in the market is 

 .    [2.18] 

(ii) If C ≤ m + E[dJ], that is, if the sum of tickets sold until the end of period J - 1 and 

the expected demand in period J is greater than or equal to the capacity of the 
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aircraft,  then the company will not exercise its put options (nP
e = 0 from [2.16]), 

but will sell the remaining tickets in the market, and the number of tickets sold 

during the last period is  

nJ
P  =max{0, min { dJ, C – m} } .    [2.19] 

Combining the two scenarios ((i) and (ii)), the definition of nJ
P   is as follows: 

 .    [2.20] 

The utilization of the maximum function is due to the fact that nJ
P is a positive 

variable: if there are no remaining seats after selling the nP
e tickets to the travel agent, 

that is if C – m - nP
e ≤ 0, then the airline will not sell  any ticket to the customers at price 

SJ during last period J (nJ
P = 0). 

Therefore, in this last period J, the net cash flow for the airline is 

 .     [2.21] 

The objective is to maximize the profit to the airline. Only considering put options, and 

including the net cash flow at time 0 ( - n0P pS ) and during period J (see [2.21]), the 

objective function is defined by: 

 ,    [2.22] 

where E[R0] is the expected revenue from period 1 up to and including period J-1 and 

was given in [2.11]. 
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2.4 Overbooking and Denied Boarding Costs 

The authorization levels defined in [2.1] allow underbooking and overbooking, as 

the total number of tickets sold can differ from the capacity of the aircraft. The options 

introduced in this model hedge the risk of underbooking or overbooking a flight, because 

(i) By buying put options, the airline reduces the risk of underbooking as it can 

ensure the sale of some of its tickets. 

(ii) By buying call options, the airline controls the overbooking. 

Yet, because of the uncertainty of demand, underbooking and overbooking are still 

possible. Underbooking costs the airline revenue, but it is not a negative cash flow. On 

the other hand, the cost per seat overbooked is the extra compensation, cdb, the airline 

pays to the dissatisfied customer who is bumped. The number of denied boardings, ndb, is 

the difference between the number of passengers showing up for boarding the flight and 

the capacity of the aircraft. Therefore the total cost of overbooking is the cost of denying 

boarding to ndb passengers.  

In order to define the expression of the total number of tickets sold during the 

booking process, with call options or put options, we examine the two models separately. 

Call option model 

In the call option model described in section 2.2, the total number of seats sold 

from the beginning of the first period until the beginning of the last period is m + n0C. 

During the last period, the airline sells nJ
C tickets at price SJ . Therefore, during the total 
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length of the booking process, from time 0 until the end of period J, the total number of 

tickets sold is 

NC = n0C +  m + nJ
C .   [2.23] 

Put option model 

In the put option model described in section 2.3, the total number of seats sold 

from the beginning of the first period until the beginning of the last period is m. During 

the last period, the airline sells nJ
P tickets at price SJ and nP

e tickets at price L. Therefore, 

during the total length of the booking process, from time 0 until the end of period J, the 

total number of tickets sold is: 

NP = m + nP
e + nJ

P .   [2.24] 

General denied boarding 

The two models are mutually exclusive, because 

- call options are used if, at the beginning of the booking process, the airline 

expects the total demand to be larger than the capacity of the flight. 

- put options are used if, at the beginning of the booking process, the airline expects 

the total demand to be smaller than the capacity of the flight. 

The number of tickets sold during period J at price SJ is denoted by nJ and can be derived 

by nJ = nJ
C + nJ

P, when considering a single expression.  
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The total number of tickets sold during the entire booking process can be defined with a 

unique expression, as follows: 

     N = n0C + m + nP
e + nJ  .         [2.25] 

If the total number of passengers showing up for boarding happens to be larger 

than the capacity of the aircraft, then denied boarding costs are involved. As the 

proportion of no-shows is s, the number of passengers with tickets who show up for a 

given flight is 
 
where N is defined in [2.25]. Hence the number of passenger who 

are denied boarding, ndb, is as follows: 

        .        [2.26] 

The cost of denying a passenger to board the aircraft is cdb; thus, the total 

expected cost of denied boarding for the airline is 

 ,       [2.27] 

where ndb is was defined in [2.26]. 

 

2.5 Objective Function 

The two scenarios described in sections 2.2 and 2.3 are mutually exclusive; 

therefore, when eliminating the redundancy between [2.13] and [2.20], one single 

objective function can be derived. The total denied boarding cost for the airline, derived 

in [2.27], must be introduced, and discounted from the Jth period.  
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Thus, the expression for the objective function is the following:  

.

 

  [2.28] 

After factorization, [2.28] becomes: 

 

. 

            [2.29] 

In the next section, the decision variables cS and pS will be shown to be functions 

of two other decision variables, K and L. 

 

2.6 Binomial options pricing 

In the expected revenue expression derived in [2.29], it is essential to derive not 

only the distribution of the ticket price but also the premiums of both call and put options, 

cS and pS, in order to reduce the number of decision variables. In order to do so, we use 

the binomial option pricing. 
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2.6.1 The Binomial Option Pricing Model (BOPM) 

BOPM is an options valuation method developed by Cox et al. (1979). The model 

uses a "discrete-time" model of the varying price of the underlying asset over the time 

span between time 0 and the expiration date T and traces the evolution of the underlying 

price via a binomial tree. This option valuation method is an iterative process that works 

backwards through the tree to the first node (valuation date), where the calculated result 

is the value of the option. Thus, it is a mathematical valuation of the price of the 

underlying asset and of the option at each point in time. 

Because of the assumption of continuously compounded returns, although the 

price of the ticket may go up and down, even cumulative down movements will never 

cause the price to be negative. Modeling the ticket price as a random walk is realistic, 

because over the length of the booking process, the ticket price of a same fare class is 

subject to variations, due to the influence of various factors. 

 

2.6.2 Distribution of the ticket price, Sj 

2.6.2.1 Evolution of the ticket price, Sj 

The price of the ticket at time 0 is S0, and Sj , j = 1,…, J is the price of the ticket 

during period j. Let uj and dj be the binomial parameters used to quantify the increase and 

decrease of the ticket price, Sj, over period j. In each time interval, Sj may increase in 

value to ujSj (with uj>1) with a probability pj or it may decrease in value to djSj (with  

0 ≤ dj <1) with probability 1- pj. This process is described with Figure 2.3. 
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Sj+1 = uj Sj  ,   with probability pj , 

Sj 

Sj+1 = dj Sj   ,            with probability (1-pj). 

Figure 2.3: Ticket Price Evolution 

 

The risk-free interest rate for period j, j = 1, …, J , is rj, and we assume that Sj 

behaves as described in Figure 2.3. Assuming continuous compounding, the discount 

factor relative to the interest rate, rj, for one binomial step, is , where h is the 

length of a period. After the time interval h, there are two possible outcomes that are 

discounted in the following tree: 

uj Sj   ,  with probability pj, 

Sj 

dj Sj   ,            with probability (1-pj). 

Figure 2.4: Possible discounted revenues for one ticket 

 

It is assumed (Cox, Ross and Rubinstein, 1979) that the price of a ticket during period j, 

Sj, is equal to the discounted value of Sj+1, and, hence, 

  ,    [2.30] 
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from which pj is obtained: 

      .      [2.31] 

 

2.6.2.2 Recombinant trees 

To derive the distribution of the ticket price and to compute the option premiums, uj and 

dj are now assumed to be constant, i.e., for j=1, …, J,  uj = u, and  

dj = d. Moreover, it is assumed that the interest rate rj is constant over time; hence for j=1, 

…, J, rj  = r  and , denoted by Br. Therefore, the parameter p is constant, pj = p, 

and: 

       [2.32] 

 

The number of possible nodes is now significantly reduced and the tree is said to 

recombine, as shown in Figure 2.5. 
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         Probability 

  uuuS0  p3 

uuS0 

uS0      uudS0  2 p2 (1-p) 

S0      udS0 

dS0        uddS0 2 p (1-p)2 

  ddS0 

             dddS0  (1-p)3 

Figure 2.5: Recombinant tree 

 

During period j, after k increases and j-k decreases, k = 0, …, j, the price of the ticket is 

defined as follows: 

 .      [2.33] 

The probability that there are exactly k price increases and j - k price decreases out of j 

moves (periods), j = 1, …, J and k = 0, …, j, is 

  .    [2.34]  
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Hence, this is the probability that the price of the ticket, starting with the value S0, 

undergoes k price increases in j periods (as defined in [2.33]):  

  
,
    

[2.35] 

with  j = 1, …, J and k = 0, …, j.  

 

2.6.3 European Options Pricing 

In our model, we decide to use European call and put options, that is the options 

are exercised only at maturity date T, if exercised.  

Assuming the call and put options have the same maturity date but different 

exercise prices (K and L), the values of the call option and put option at time T, beginning 

at period J,  are the following: 

     [2.36] 

     [2.37] 

After k price increases, the price of the ticket, SJ, during period J is , 

as seen in [2.33]. This will occur with probability PJ,p(k), k = 0, …, J, as defined in 

[2.34].  
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Therefore, the expected values for the call and the put European options are  

 ,    [2.38] 

  .   [2.39] 

Hence, at time 0, with Br(J) the discount factor for J periods, the respective premiums cS 

and pS, of the European call and put options are defined as follows:  

  ,   [2.40] 

   .   [2.41]   

 So, it can be seen that for optimizing E[R] as defined in [2.29] requires only 

solving for K, L, n0C, and n0P , as two decision variables cS and pS can be expressed as 

functions of K and L. 

 

2.6.4 Derivation of the binomial parameters u and d 

The binomial parameters u and d play a key role in pricing options. For a given 

pair of parameters (u, d), the distribution of the ticket price and the premiums of the call 

and put options are known. Yet, although we assumed that u and d are constant over time 

until the last period, the binomial parameters u and d are difficult to estimate for the 
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airline. This is why, from the assumption of continuously compounding of the BOPM,  

the drift, µ, and the standard deviation, σ, are introduced (see Cox et al. , 1979), as 

follows: 

 ,      [2.42] 

        .      [2.43] 

The drift, µ, is a deterministic term expressing that the sale of the ticket should 

have a positive return in the long term, that is, the mean of the random walk of the prices 

is positive and increasing with time. As shown in Equation [2.42], the drift, µ, is the 

logarithmic change of the ticket price over J periods. The binomial parameters u and d 

can be expressed as functions of µ and σ. It seems easier for the airline to estimate the 

logarithmic change in price, using historical data, than to evaluate directly the binomial 

parameters u and d. 

Cox et al. (1979) prove that the binomial parameters u and d are solutions of a 

non-linear system and solve for u and d in linear order of h, where h is the length of a 

period. In the solution they propose, the drift µ does not explicitly affect u and d. Yet, 

when deriving u and d in this case, it seems relevant to introduce the mean of the random 

walk, µ, which the ticket price follows. Hence, in the model presented in this thesis, the 

binomial parameters, u and d, as proposed by Jarrow and Rudd (1982) are used.  
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The derivation of the binomial parameters u and d is presented in an intuitive 

form, as follows:  

     ,     [2.44] 

      .     [2.45] 

     

2.7 Final problem definition 

Using the expressions [2.40] and [2.41] derived from the option pricing reduces 

the decision variables from n0C, n0P, K, L, cS, and pS to n0C, n0P, K, and L. Substituting cS 

and pS in [2.29], the expected revenue can be expressed as follows: 

.

  

            [2.46] 

 

The values of the binomial parameters u and d, which characterize the ticket price 

value and the premiums of call and put options, are defined in [2.44] ad [2.45]. With 

historical data, the airline can estimate σ (standard deviation of the price change per 

period) and µ (risk-neutral drift, i.e., average mean of the price changes over J periods). 
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The objective is to find the optimal values of the decision variables (namely the 

initial number of call and put options, n0C and n0P, purchased by the airline, and the 

respective exercise prices K and L) that maximize the expected revenue defined in [2.46], 

for a given initial price of the ticket S0, and price and demand distributions. Yet, the 

objective function defined in Equation [2.46] is difficult to solve to obtain a closed-form 

solution for the optimal values of the decision variables. Thus, numerical methods have 

to be utilized. In this thesis, a numerical search procedure is used to obtain the optimal 

solution. This will be described in Chapter 3, using a numerical example.  



 

CHAPTER 3 

NUMERICAL EXAMPLE 

This chapter illustrates the model of chapter 2 with a numerical example. After 

the method of implementation is presented, a numerical example is used to illustrate how 

the method would be applied. Finally, sensitivity analysis is conducted on the example to 

examine the objective function’s sensitivity to variations in some of the input parameters. 

 

3.1 Proposed method 

3.1.1 Description  

The formulation of the expected revenue is complex, because there is a 

distribution for the demand for each period and the ticket price changes, following a 

random walk model. Moreover, the numbers of options purchased or exercised have to be 

integers. Therefore, taking partial derivatives of the objective function, with respect of 

the decision variables, and setting them to zero cannot solve this problem. We 

recommend a numerical search methods. 

The chart in Figure 3.1 presents the methodology suggested when financial 

options are used to compute the expected revenue of the airline. 
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Initial parameters and decision variables 

 

 

Determine parameters u and d            Authorization levels aj 

 

 

Probability Distribution of ticket price Sj  Distribution of  
        from period 1 to J  number of tickets sold          

nj  from period 1 to J-1 
 
 
 
Distribution of number of options  
to exercise nC

e or nP
e Expected revenue 

from period 1 to J-1 
 
 
Distribution of the number of tickets  nJ Options premiums cS and pS 
to be sold during the last period 
 

 

Distribution of revenue of last period  CJ  

 

 

Expected number of denied boarding E[ndb]   Expected revenue 
from  period 1 to J,  E[R] 

Figure 3.1: Computation of the expected revenue 

 

Initial parameters: number of periods J, length of one period h, capacity C, demand dj (j=1,…, J), initial 
price S0, mean drift µ and its standard deviation σ, interest rate r, probability of no-show s, denied boarding 

cost cdb.  

Decision variables: numbers of options initially purchased n0C and n0P, strike prices K and L 
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First, the user would forecast the distribution of demand for each period. Then the 

user computes the authorization levels for each period, to determine the distribution of 

the number of tickets sold per period. Logically, if the total expected number of tickets 

sold exceeds the capacity of the aircraft, call options are used; otherwise put options are 

used. The method can calculate the call and put option premiums for input call and put 

strike prices. At the same time, the distribution of the ticket price is computed for each 

period. Then, the user can compute the distribution of the revenue until the beginning of 

last period, not including the options. Also the demand of last period is considered, and, 

consequently, the distribution of the number of exercised options is derived at the 

considered strike price. Then the user can compute the distribution of the revenue of the 

last period, and, consequently, the expected revenue. In order to maximize the revenue, a 

numerical optimization method is implemented, changing not only the initial numbers of 

call and put options purchased, but also the strike prices at which the options will be 

exercised. The user selects the maximum improvement in the expected revenue to 

determine when to stop the search. 

In the numerical example presented in this thesis, an optimization algorithm is 

coded in Microsoft Visual Basic for Applications. An Excel Workbook is used to enter 

the input parameters and display the results. The code can be found in Appendix A. 

We decide that the demand distribution is identical for each period. The binomial 

parameters u and d are initially calculated (when the ticket price increases over a 

binomial step, it is multiplied by u; otherwise it decreases and it is multiplied by d). The 

initial number of call and put options to be utilized is set to 0. Then the expected revenue 

is computed. The optimization algorithm consists in changing the strike prices K and L 
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respectively by ΔK and ΔL and the number of options by Δn0C and Δn0P. For each trial 

(change in one of the decision variables), the expected revenue is calculated (see Figure 

3.1) and it is considered improved if it results in a minimal increase (ΔE[R]) of the 

expected revenue, E[R], as compared to the expected revenue computed with the 

previous combination of the decision variables. If not, the optimization algorithm stops 

and the decision variables are said to be optimal.   

 

3.1.2 Two examples with financial options 

Two numerical examples are computed with and without financial options to 

show the efficiency of financial options. Initially, before any optimization, the numbers 

of call and put options purchased by the airline are set to zero, with the respective strike 

prices for the call and put options K = $ 50 and L = $ 200. Moreover, it is decided to stop 

the process if the improvement of the expected revenue is less than or equal to ΔE[R] = 

0.01%. The incremental step in the number of options are Δn0C = 1 and Δn0P = 1. 

Concerning the exercised prices, the incremental step are ΔK = ΔL = $ 5. In both 

examples, the initial price of the ticket is S0 = $ 250, the demand distribution is assumed 

to be the same for each period and is according to Table 3.1.  

Demand 30 40 50 60 70 80 

Probability 0.05 0.15 0.3 0.3 0.15 0.05 

Table 3.1: Demand distribution for each period 
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It is also decided that the exercised price, L, cannot be greater than S0, because the 

travel agent would not agree to buy the tickets at a higher price than the initial ticket 

price. Therefore, the exercise price for put options must meet the following constraint:  

L ≤  $ 250.  

The average return per change in the ticket price is µ = 0.11 and the standard 

deviation is σ = 0.167, resulting in the following binomial parameters: u = 1.1 and  

d = 0.95. The input parameters are summarized in Table 3.2. 

 

Number of periods J=5 

Length of interval time h=1/5=0.20 time units 

Denied boarding cost cdb = $ 200 

Initial exercise price of call options K = $ 50 

Initial exercise price of put options L = $ 200 

Initial ticket price S0 = $ 250 

Binomial parameters µ = 0.11 
σ = 0.167 

Probability of no-shows s =0.1 

Risk-free interest rate r = 5% 

Table 3.2: Input parameters used to illustrate the efficiency of the model 
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3.1.2.1 Numerical illustration of the efficiency of call options 

When the capacity of the aircraft is 200 passengers, the expected demand is 

greater than the capacity of the aircraft (by 50 seats), and logically call options should be 

used. To prove the efficiency of the call options, the expected revenue is first computed 

without call options, and then with the optimal number of call options found through the 

optimization algorithm. The results are displayed in Table 3.3. 

 

Number of call options purchased by the airline Expected Revenue 

Without call options  

n0C = 0 

K = $ 50 

n0P = 0 

L = $ 200 

E[R] = $ 51,437.68 

With call options  

n0C* = 60 

K* = $ 50 

n0P* = 0 

L* = $ 200 

E[R]* = $ 59,917.48 

Table 3.3: Optimization and comparison for call options 

 

Therefore, by comparison with the expected revenue without any option, using 

call options when the expected demand is larger than the capacity of the airplane (by 50 

seats) results in an improvement of the expected revenue of 16.48% when the optimal 

number of call options is 60. 
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3.1.2.2 Numerical illustration of the efficiency of put options 

When the capacity of the aircraft is 300 passengers, the expected demand is lower 

than the capacity of the aircraft (by 50 seats), and logically put options should be used. 

To prove the efficiency of the put options, the expected revenue is first computed without 

put options; then the optimization algorithm is run and the expected revenue is then 

computed with the optimal number of put options initially purchased.  The results are 

displayed in Table 3.4. 

 

Number of put options purchased by the airline Expected Revenue 

Without put options  

n0C = 0 

K = $ 50 

n0P = 0 

L = $ 200 

E[R] = $ 77,497.63 

With put options  

n0C* = 0 

K* = $ 50 

n0P* = 45 

L* = $ 250 

E[R]* = $ 94,886.86 

Table 3.4: Optimization and comparison for put options 

 

Therefore, by comparison with the expected revenue without any option, using 

put options when the expected demand is lower than the capacity of the airplane results in 
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an improvement of the expected revenue of 22.44% when the optimal number of put 

options is 45. 

 

3.2 Sensitivity analysis 

We conduct a sensitivity analysis on the example presented in section 3.1.2.2. The 

capacity of the aircraft is C = 300. The initial price of the ticket (at the beginning of the 

airline booking process) is set at S0 = $ 250. At the beginning of each period, the ticket 

price is subject to the following variations: it can go up by 10% (resulting in u=1.1) or it 

can go down by 5% (resulting in d=0.95). 

 

3.2.1 Sensitivity analysis conducted on the demand distribution 

The sensitivity to the skewness of the demand distribution is studied. Three 

different scenarios are compared. 

Symmetric demand 

The first scenario considered is the one studied in section 3.1.2.2, where the 

demand, described by Table 3.1 and Figure 3.2 (see below), is symmetrical. 



53 

 

 

In this case, the optimal number of options to be used is 55 put options, so that the 

revenue is increased from $ 77,497.63 to $ 94,886.84 or by 22.44%. 

Left-skewed demand 

The second scenario observed is for a left-skewed demand, as described in Table 

3.5 and Figure 3.3.  

 

Demand 30 40 50 60 70 80 

Probability 0.14 0.15 0.16 0.17 0.18 0.2 

Table 3.5: Left-skewed demand distribution  
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The total expected demand is 285 seats, which is less than the capacity of the 

aircraft (C = 300). The results are displayed in Table 3.6.  

 

Configuration of decision variables Expected Revenue 

Without put options 

n0C = 0 

n0P = 0 

K = $ 50 

L = $ 200 

E[R]= $ 80,043.97 

With put options 

n0C* = 0 

n0P* = 50 

K* = $ 50 

L* = $ 250 

E[R]*= $ 94,194.17 

Table 3.6: Results for left-skewed demand distribution 
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The optimal scenario results in a total increase of the expected revenue of 

17.68%. The results are consistent with the model, as they do not involve any call 

options. 

Right-skewed demand 

The third scenario observed if for a right-skewed demand, as described by Table 

3.7 and Figure 3.4.  

 

Demand 30 40 50 60 70 80 

Probability 0.2 0.18 0.17 0.16 0.15 0.14 

Table 3.7: Right-skewed demand distribution 
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The total expected demand is 265 seats, which is smaller than the capacity of the 

aircraft. The results are displayed in Table 3.8. 

 

Configuration of decision variables Expected Revenue 

Without put options 

n0C = 0 

n0P = 0 

K = $ 50 

L = $ 200 

E[R]= $ 75,064.61 

With put options 

n0C* = 0 

n0P* = 67 

K* = $ 50 

L* = $ 250 

E[R]*= $ 97,944.28 

Table 3.8: Results for left-skewed demand distribution 

 

The optimal scenario results in a total increase of expected revenue of 30.48%. 

The results are consistent with the model, as they do not involve any call options.  

Analysis of the three cases 

It may be noticed that even though the optimal value of L is $ 250 in all three 

cases, it is more likely that the travel agent will negotiate a price less than $ 250. In the 

sensitivity analysis conducted, the ticket price is more likely to drop, as the value of p 

used is 0.402, and the expected demand is lower than the capacity of the aircraft. For 
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each distribution, the model shows an increase in expected revenue by purchasing call 

options at the beginning of the booking process when the total expected demand is 

smaller than the capacity of the aircraft. In Figure 3.5, the “optimal” expected revenues 

(with optimal values of the decision variables) for each demand skewness are shown. 

 

 

 

As shown in Figure 3.6, the sensitivity analysis to demand skewness demonstrates 

that the percentage increase in the expected revenue is larger when the demand is right-

skewed, that is, when the probability of a low demand is higher than for a high demand. 

In this case, the improvement of the expected revenue using the model proposed is 

higher.  
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The reader can also notice that, because in the cases studied in this sensitivity 

analysis where the total expected demand is always smaller than the capacity, C, of the 

aircraft, the optimization process never used call options, which confirms the mutually 

exclusivity property of the two types of options. 

 

3.2.2 Sensitivity analysis conducted on the parameters µ  and σ  

A sensitivity analysis is also conducted on the parameters µ and σ. Because the 

parameters directly influence the binomial parameters u and d (see Equations [2.44] and 

[2.45]), they influence not only the price probability distribution (see Equation [2.35]), 

but also the call and put option premiums (price at which the airline buys the options), as 

shown by Equations [2.40] and [2.41]. The changes in the parameters µ and σ are  

∆µ = 0.1, for 0.11 ≤ µ ≤ 0.41, and ∆σ  = 0.1, for 0.167 ≤ σ ≤ 0.467. 
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The results for different pairs (µ, σ) are displayed in Table 3.9. As, for each trial, 

no call options are involved, the optimal initial number of call options, n0C*, and the 

optimal strike price, K*, are not shown in the table. For each case, n0C* = 0,   

K* = $ 50, and cS = $ 178.65.  

 

µ  σ  d u 

Expected 
revenue 
E[R]* 

($) 

optimal 
initial 

put 
n0P* 

optimal 
strike 

price L* 
($) 

put 
premium 

pS* ($) 

probability 
p 

0.110 0.167 0.949 1.102 89110.74 45 250 21.178 0.271 

0.110 0.267 0.907 1.152 97621.81 55 250 29.275 0.339 

0.110 0.367 0.868 1.205 97150.11 55 250 39.441 0.364 

0.110 0.467 0.830 1.260 95749.48 45 250 49.293 0.373 

0.210 0.167 0.968 1.124 74703.16 0 200 0.000 0.142 

0.210 0.267 0.926 1.175 88728.06 45 250 29.907 0.259 

0.210 0.367 0.885 1.229 88478.88 45 250 38.369 0.305 

0.210 0.467 0.846 1.285 88224.97 45 250 45.633 0.328 

0.310 0.167 0.987 1.146 74706.59 0 200 0.000 0.017 

0.310 0.267 0.944 1.199 79937.31 35 200 4.366 0.180 

0.310 0.367 0.903 1.254 88355.91 45 250 38.526 0.248 

0.310 0.467 0.863 1.311 88053.46 45 250 47.598 0.283 

0.410 0.267 0.963 1.223 74700.57 0 200 0.000 0.103 

0.410 0.367 0.921 1.279 88378.45 45 250 35.193 0.192 

0.410 0.467 0.881 1.338 87985.08 45 250 47.048 0.239 

Table 3.9: Sensitivity analysis on µ  and σ . 
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Changing µ and σ influences the probability p that the price will go up. When the 

probability p ≤  0.142, n0P* = 0, and the expected revenue for the airline will not improve 

significantly (increase of 0.01%). It is also observed that the expected revenue E[R] is an 

increasing function of L for p > 0.180, that is, when the probability that the ticket price 

will decrease at each period, 1- p <  0.82.  

 

Sensitivity analysis with respect to σ  

The sensitivity analysis with respect to σ is conducted for different values of µ, as 

follows: 

• If µ = 0.11 (Figure 3.7) 
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• If µ = 0.21 (Figure 3.8) 

 

 

•  If µ = 0.31 (Figure 3.9) 
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• If µ = 0.41 (Figure 3.10) 

 

In this case, there are no data for σ = 0.167, because σ = 0.167 led to a negative 

probability p that the price will increase and thus was infeasible. 

 

The sensitivity analysis conducted on σ for different values of µ demonstrates that 

the expected revenue behaves the same way for each value of µ, as shown in the charts. 

The expected revenue is maximized for the following range of σ :   

0.267 ≤ σ  ≤ 0.367.  
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Sensitivity analysis with respect to µ  

The sensitivity analysis with respect to µ is conducted for different values of σ, as 

follows: 

• If σ = 0.167 (Figure 3.11) 

 

 

• If σ = 0.267 (Figure 3.12) 
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• If σ = 0.367 (Figure 3.13) 

 

 

• If σ = 0.467 (Figure 3.14) 
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The expected revenue is a decreasing function of µ, as shown in Figures 3.11, 

3.12, 3.13 and 3.14. This property is all the more emphasized when σ = 0.267 (see Figure 

3.12).  

 

The sensitivity analysis emphasizes the importance of accuracy in the parameters 

µ and σ when the airline must decide upon a strategy. For instance, according to Table 

3.9, holding everything constant and when µ = 0.21, but increasing σ from 0.167 to 0.267 

changes the airline’s strategy as follows: 

• if σ  = 0.167, put options are not recommended,  

• if σ  = 0.267, the model recommends the use of 45 put options with a strike price 

of L* = $ 200, which results in an increase in the expected revenue of 18.77%, as 

compared to the previous scenario. 

Likewise, holding everything constant and when σ  = 0.167, but increasing µ 

from 0.21 to 0.31, changes the airline’s strategy to the following: 

• if µ = 0.21, it is recommended to use 45 put options with a strike price  

L* = $ 250, 

• if µ = 0.31, the model recommends 35 put options with a strike price  

L* = $ 200, which results in a decrease in the expected revenue of 9.91%, as 

compared to the previous scenario. 
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This sensitivity analysis shows that the airline must be careful in the input data it 

uses, in order to make the model as accurate as possible. Estimating µ and σ must be 

considered a very important issue, in addition to forecasting the demand distribution. 

 



 

CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

4.1 Summary and Conclusions 

The review of current research in airline revenue management revealed the need 

for a method that could more accurately account for the uncertainty of demand and ticket 

price and offer more flexibility to the airline. The work done by others in use of the 

options in other areas of revenue management has also been examined.  

The model we present incorporates call and put options in order to provide the 

airline with flexibility in the management of an aircraft capacity. The two types of 

options are by definition mutually exclusive. When, at the beginning of the booking 

process, the total expected demand is greater than the capacity of the aircraft, the airline 

hedges with call options. These tickets can be recalled and resold in the market at a 

higher fare, one period before the flight departs. When, at the beginning of the booking 

process, the total expected demand is smaller than the capacity of the aircraft, the airline 

hedges with put options. These tickets can then be sold to the travel agent, one period 

before the flight departs. The initial number of options purchased to hedge some tickets, 

the option premiums, and the exercise prices (prices at which the airline will either recall 

the “call-optioned” tickets or sell the “put-optioned” tickets to a travel agent) are 

important decision variables. The assumption of the ticket price of a fare class following 

a random walk allows the application of the binomial option pricing model (BOPM), 

resulting in reducing the number of decision variables to four: the two numbers of options 

purchased and the two exercise prices. The numerical search method proposed aims at 
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finding the optimal values of the decision variables that maximize the expected revenue 

of the airline for a specific flight. 

We give a numerical example to illustrate the application of the model and 

method proposed and we show the efficiency of using call and put options. Based on the 

data used in the example, a sensitivity analysis is performed to determine how responsive 

the results obtained from the method to changes in some variables. We find that changing 

the skewness of the distribution has a significant effect on the expected revenue. 

Moreover, the numerical example shows that the strike price (for the put option model) 

does not have a major influence in the optimization process, as the expected revenue is an 

increasing function of it, and thus will most often be set at its upper bound. It has also 

been shown that the parameters µ (drift of the random walk) and σ  (standard deviation of 

the logarithmic change in the ticket price) directly affect the utilization of options, 

because they have a direct effect on the probability that the ticket price will increase. It is 

therefore essential for the airline to have accurate historical data in order to estimate µ 

and σ. 

 

4.2 Future research 

A number of areas exists in which future work could extend the effectiveness and 

utilization of our model. Incorporation of uncertainty in the binomial parameters would 

be a valuable addition. Moreover, we opted for European options, which can only be 

exercised at the maturity date; yet American options, which offer more flexibility in the 
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exercise date (anytime between the purchasing date and the expiration date), would be an 

interesting extended research.  

Moreover, the model could be modified so that margins (i.e., collaterals) could be 

introduced, allowing the airline to use both types of options when the expected demand is 

slightly different from the capacity of the aircraft. The probability of no-show could be 

considered as a random variable, in order to be more realistic. Different fare classes could 

be easily considered and more complex overbooking techniques could be introduced. 

Finally, this thesis has shown, through sensitivity analysis, the importance of an 

accurate estimation of the random walk parameters µ and σ. Forecasting techniques could 

be implemented in order to further refine the accuracy of the model. 
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APPENDIX A 

VISUAL BASIC FOR APPLICATIONS CODE 

'/* Declare global variables */ 

Option Explicit 

Option Base 1 

Dim thesisup As Excel.Workbook 

Private initial_put As Integer 

Private initial_call As Integer 

Private exercised_put(6 ^ 4) As Integer 

Private exercised_call(6 ^ 4) As Integer 

Private recalled_tickets As Integer 

Private sell_on_market As Integer 

Private sell_to_travel_agent As Integer 

Private lastsoldc(6 ^ 5) As Integer 

Private lastsoldp(6 ^ 5) As Integer 

Private lastsold(2, 6 ^ 5) As Single 

Private capacity As Integer 

Private noperiods As Integer 

Private mu As Single 

Private sigma As Single 

Private d(6) As Integer 

Private p(6) 

Private a(5) As Integer 

Private N(6, 5) As Integer 

Private h As Single 

Private strike_L As Integer 

Private strike_K As Integer 

Private rate As Single 

Private R As Single 
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Private jj As Integer 

Private lastdemand(6) As Integer 

Private lastdemand_p(6) As Single 

Private s As Single 

Private m As Integer 

Private dd As Single 

Private uu As Single 

Private arr_stdrev(2, 155521) As Single 

'Private one_revenue(2, 6 * 30 ^ 4) 

'Private exp_revenue(6 * 30) 

Private expected_revenue As Single 

Private Br As Single 

Private p_price As Single 

Private ticketprice(2, 5, 6) As Single 

Private rev_per(2, 4, 30) 

Private denied_boarding_cost As Integer 

Private call_op_price As Single 

Private Put_op_price As Single 

Private index_mu As Integer 

Private index_dd As Integer 

Private numberm(2, 6 ^ 4) As Single 

Private nb_denied_boarding As Single 

Private one_Revenue As Single 

Private one_Revenue_prob As Single 

Private expected_lastdemand As Single 

Private expected_R0 As Single 

Private column As Long 

Private line As Long 

Private expected_exercised_call As Single 

Private expected_exercised_put As Single 
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Private mm As Integer 

Private last_revenue As Single 

'Private kk As Long 

 

Private Sub musensitivity() 

sigma = Worksheets("Code").Range("sigma") 

mu = 0.11 

index_mu = 2 

 

    '/* Read input parameters */ 

    jj = Worksheets("Code").Range("numberofperiods").Value 

    capacity = Worksheets("Code").Range("capacity").Value 

    h = Worksheets("Code").Range("time_h").Value 

    rate = Worksheets("Code").Range("rate").Value 

    s = Worksheets("code").Range("initial_price").Value 

    Br = Exp(rate * h) 

    uu = Exp(mu * h + sigma * Sqr(h)) 

    dd = Exp(mu * h - sigma * Sqr(h)) 

    p_price = (Br ^ (-1) - dd) / (uu - dd) 

    initial_call = Worksheets("code").Range("initial_call").Value 

    initial_put = Worksheets("code").Range("initial_put").Value 

    strike_K = Worksheets("code").Range("strike_K").Value 

    strike_L = Worksheets("code").Range("strike_L").Value 

    denied_boarding_cost = Worksheets("code").Range("denied_boarding_cost").Value 

Do 

    Call optima 

    Call reportmu 

    Call sigmasensitivity 

    mu = mu + 0.1 

    uu = Exp(mu * h + sigma * Sqr(h)) 



76 

    dd = Exp(mu * h - sigma * Sqr(h)) 

    p_price = (Br ^ (-1) - dd) / (uu - dd) 

Loop While mu < 0.5 

End Sub 

 

Private Sub sigmasensitivity() 

sigma = 0.067 

'mu = Worksheets("Code").Range("mu") 

uu = Exp(mu * h + sigma * Sqr(h)) 

dd = Exp(mu * h - sigma * Sqr(h)) 

p_price = (Br ^ (-1) - dd) / (uu - dd) 

Do 

    Call optima 

    Call reportsigma 

    sigma = sigma + 0.1 

    uu = Exp(mu * h + sigma * Sqr(h)) 

    dd = Exp(mu * h - sigma * Sqr(h)) 

    p_price = (Br ^ (-1) - dd) / (uu - dd) 

Loop While sigma < 0.5 

End Sub 

 

Private Sub optima() 

    '/* Read input parameters */ 

    'jj = Worksheets("Code").Range("numberofperiods").Value 

    'capacity = Worksheets("Code").Range("capacity").Value 

    'mu = Worksheets("Code").Range("mu").Value 

    'sigma = Worksheets("Code").Range("sigma").Value 

    'h = Worksheets("Code").Range("time_h").Value 

    'rate = Worksheets("Code").Range("rate").Value 

    's = Worksheets("code").Range("initial_price").Value 
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    'Br = Exp(-rate * h) 

    'uu = Exp(mu * h + sigma * Sqr(h)) 

    'dd = Exp(mu * h - sigma * Sqr(h)) 

    'dd = Worksheets("Code").Range("price_down") 

    'uu = Worksheets("Code").Range("price_up") 

    'p_price = (Br ^ (-1) - dd) / (uu - dd) 

    initial_call = Worksheets("code").Range("initial_call").Value 

    initial_put = Worksheets("code").Range("initial_put").Value 

    strike_K = Worksheets("code").Range("strike_K").Value 

    strike_L = Worksheets("code").Range("strike_L").Value 

    'denied_boarding_cost = Worksheets("code").Range("denied_boarding_cost").Value 

    Dim revenue1 As Double 

    Dim revenue2 As Double 

    Dim revenue3 As Double 

    Dim revenue4 As Double 

    Dim rev1 As Double 

    Dim rev2 As Double 

    Dim rev3 As Double 

    Dim rev4 As Double 

    Call last_period_demand 

    Call Numbersold 

    Call ticketsold 

    Call priceofticket 

    Call stdrevenue(s, jj - 1) 

    Call Revenue 

    Do 

        Do 

            Do 

                Do 

                    revenue1 = expected_revenue 
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                    strike_L = strike_L + 5 

                    If (strike_L > 250) Then 

                        strike_L = strike_L - 5 

                        Exit Do 

                    End If 

                    Call Revenue 

                    rev1 = expected_revenue 

                    If rev1 < 1.001 * revenue1 Then 

                        strike_L = strike_L - 5 

                    End If 

                Loop While (rev1 > 1.001 * revenue1) 

                revenue2 = revenue1 

                strike_K = strike_K + 5 

                If (strike_K > 150) Then 

                    strike_K = strike_K - 5 

                    Exit Do 

                End If 

                Call Revenue 

                rev2 = expected_revenue 

                If rev2 < 1.001 * revenue2 Then 

                    strike_K = strike_K - 5 

                End If 

            Loop While (rev2 > 1.001 * revenue2) 

            revenue3 = revenue2 

            initial_put = initial_put + 1 

            If (initial_put > 150) Then 

                initial_put = initial_put - 1 

                Exit Do 

            End If 

            Call Revenue 
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            rev3 = expected_revenue 

            If rev3 < 1.001 * revenue3 Then 

                initial_put = initial_put - 1 

            End If 

        Loop While (rev3 > 1.001 * revenue3) 

        revenue4 = revenue3 

        initial_call = initial_call + 1 

        If (initial_call > 150) Then 

            initial_call = initial_call - 1 

            Exit Do 

        End If 

        Call Revenue 

        rev4 = expected_revenue 

        If rev4 < 1.001 * revenue4 Then 

            initial_call = initial_call - 1 

        End If 

    Loop While (rev4 > 1.001 * revenue4) 

    expected_revenue = revenue4 

    Call report 

End Sub 

 

Private Sub Revenue() 

    '/* Read input parameters */ 

    'jj = Worksheets("Code").Range("numberofperiods").Value 

    'capacity = Worksheets("Code").Range("capacity").Value 

    'mu = Worksheets("Code").Range("mu").Value 

    'sigma = Worksheets("Code").Range("sigma").Value 

    'h = Worksheets("Code").Range("time_h").Value 

    'rate = Worksheets("Code").Range("rate").Value 

    's = Worksheets("code").Range("initial_price").Value 
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    'initial_call = Worksheets("code").Range("initial_call").Value 

    'initial_put = Worksheets("code").Range("initial_put").Value 

    'Br = Exp(-rate * h) 

    'uu = Exp(mu * h + sigma * Sqr(h)) 

    'dd = Exp(mu * h - sigma * Sqr(h)) 

    'dd = Worksheets("Code").Range("price_down") 

    'uu = Worksheets("Code").Range("price_up") 

    'p_price = (Br ^ (-1) - dd) / (uu - dd) 

    'strike_K = Worksheets("code").Range("strike_K").Value 

    'strike_L = Worksheets("code").Range("strike_L").Value 

    'denied_boarding_cost = Worksheets("code").Range("denied_boarding_cost").Value 

    Dim l As Integer 

    Dim k As Integer 

    expected_exercised_call = 0 

    expected_exercised_put = 0 

    'Call Numbersold 

    'Call ticketsold 

    'Call priceofticket 

    'Call stdrevenue(s, jj - 1) 

    'Call last_period_demand 

    Call call_op 

    Call Put_op 

 

    Call last_cashflow 

        expected_revenue = initial_call * (s - call_op_price) - initial_put * Put_op_price + expected_R0 + 
Exp(-5 * h * rate) * last_revenue - strike_K * expected_exercised_call + strike_L * 
expected_exercised_put - nb_denied_boarding * denied_boarding_cost 

        'Call report 

End Sub 

 

'/* minimum  function*/ 
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Function Min(x As Variant, y As Variant) 

   '/* Dim x As Single 

   '/* Dim y As Single 

    If x < y Then Min = x Else Min = y 

End Function 

 

'/* maximum  function*/ 

Function Max(x As Variant, y As Variant) 

    If x < y Then Max = y Else Max = x 

End Function 

 

'/* compute the binomial coefficient */ 

Function binoCoeff(J, k) 

          Dim i As Integer 

          Dim b As Double 

             b = 1 

          For i = 0 To k - 1 

                    b = b * (J - i) / (k - i) 

          Next i 

          binoCoeff = b 

End Function 

 

'/* compute the price of call option */ 

Private Sub call_op() 

    Dim k As Integer 

    Dim bicomp As Single 

    Dim sumbi As Single 

    Dim Jk As Double 

    Dim firstBicomp As Single 
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call_op_price = 0 

    

    For k = 0 To jj 

        Jk = binoCoeff(jj, k) 

        bicomp = Jk * (p_price ^ k) * ((1 - p_price) ^ (jj - k)) * (s * (uu ^ k) * (dd ^ (jj - k)) - strike_K) 

        If bicomp < 0 Then 

            bicomp = 0 

        End If 

        sumbi = sumbi + bicomp 

    Next k 

   call_op_price = sumbi / (Br ^ jj) 

End Sub 

 

'/* compute the price of put option */ 

Private Sub Put_op() 

    Dim k As Integer 

    Dim bicomp1 As Single 

    Dim sumbi1 As Single 

    Dim Jk As Double 

    Dim firstBicomp1 As Single 

Put_op_price = 0 

    For k = 0 To jj 

        Jk = binoCoeff(jj, k) 

        bicomp1 = Jk * (p_price ^ k) * ((1 - p_price) ^ (jj - k)) * (strike_L - (s * (uu ^ k) * (dd ^ (jj - k)))) 

        If bicomp1 < 0 Then 

            bicomp1 = 0 

        End If 

        sumbi1 = sumbi1 + bicomp1 

    Next k 

   Put_op_price = sumbi1 / (Br ^ jj) 
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End Sub 

 

'/* compute the price Sj associated dwith the probability pj*/ 

Private Sub priceofticket() 

    '/*Dim J As Integer 

    Dim k As Integer 

    Dim J As Integer 

     

    '/*Dim p As Single 

    Dim Jk As Double 

    For J = 1 To jj 

        For k = 1 To J + 1 

            Jk = binoCoeff(J, (k - 1)) 

            ticketprice(1, J, k) = (uu) ^ (k - 1) * (dd) ^ (J - (k - 1)) * s 

            ticketprice(2, J, k) = Jk * p_price ^ (k - 1) * (1 - p_price) ^ (J - k + 1) 

        Next k 

    Next J 

 

End Sub 

 

'/* compute the standard revenue from period 1 to period jj-1 */ 

Private Sub stdrevenue(s, J) 

    '/*Dim s As Single 

    '/*Dim J As Integer 

    Dim number As Long 

    Dim i As Integer 

    Dim q As Integer 

    Dim m As Integer 

    Dim k As Integer 

    Dim sum As Double 
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    Dim l As Integer 

    Dim ll As Integer 

    Dim prob As Double 

    Dim sum1 As Double 

    Dim prob1 As Double 

     

expected_R0 = 0 

number = 1 

l = 1 

sum = 0 

prob = 1 

For k = 1 To J 

    number = 1 

    For l = 1 To k + 1 

        For i = 1 To 6 

            rev_per(1, k, number) = ticketprice(1, k, l) * N(i, k) 

            rev_per(2, k, number) = ticketprice(2, k, l) * p(i) 

            number = number + 1 

        Next i 

    Next l 

Next k 

number = 1 

For i = 1 To 12 

    For k = 1 To 18 

        For l = 1 To 24 

            For ll = 1 To 30 

                arr_stdrev(1, number) = Exp(-rate * h) * rev_per(1, 1, i) + Exp(-2 * rate * h) * rev_per(1, 2, k) + 
Exp(-3 * rate * h) * rev_per(1, 3, l) + Exp(-4 * rate * h) * rev_per(1, 4, ll) 

                arr_stdrev(2, number) = rev_per(2, 1, i) * rev_per(2, 2, k) * rev_per(2, 3, l) * rev_per(2, 4, ll) 

                expected_R0 = expected_R0 + arr_stdrev(1, number) * arr_stdrev(2, number) 

                number = number + 1 
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            Next ll 

        Next l 

    Next k 

Next i 

End Sub 

 

Private Sub last_cashflow() 

    'Dim m As Integer 

    last_revenue = 0 

    mm = 0 

    Do While mm < 6 

        mm = mm + 1 

            Call exercised_options 

            Call updatelastsold 

         For m = 1 To 6 ^ 5 

            last_revenue = last_revenue + lastsold(1, m) * lastsold(2, m) * ticketprice(1, 5, mm) * ticketprice(2, 
5, mm) 

        Next m 

    Loop 

End Sub 

 

Private Sub alevel() 

Dim k As Integer 

For k = 1 To jj 

a(k) = Worksheets("ticketsold").Cells(k + 1, 2).Value 

Next k 

End Sub 

 

Private Sub Numbersold() 

Call demandarray 

Call alevel 
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Dim k As Integer 

Dim i As Integer 

For i = 1 To jj 

    For k = 1 To 6 

    N(k, i) = Min(d(k), a(i)) 

    Next k 

Next i 

End Sub 

 

Private Sub demandarray() 

Dim k As Integer 

'Dim Arr_new(2, 11) 

For k = 1 To 6 

d(k) = Worksheets("Demand").Cells(k + 1, 1).Value 

p(k) = Worksheets("Demand").Cells(k + 1, 2).Value 

Next k 

'Arr = Arr_new 

End Sub 

 

Private Sub ticketsold() 

Dim number As Long 

Dim i As Integer 

Dim k As Integer 

Dim l As Integer 

Dim ll As Integer 

number = 1 

For i = 1 To 6 

    For k = 1 To 6 

        For l = 1 To 6 

            For ll = 1 To 6 
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                numberm(1, number) = N(i, 1) + N(k, 2) + N(l, 3) + N(ll, 4) 

                numberm(2, number) = p(i) * p(l) * p(k) * p(ll) 

                number = number + 1 

            Next ll 

        Next l 

    Next k 

Next i 

End Sub 

 

Private Sub last_period_demand() 

Dim k As Integer 

Dim number1 As Integer 

Dim kk As Integer 

expected_lastdemand = 0 

 

For k = 1 To 6 

    lastdemand(k) = Worksheets("LastDemand").Cells(k + 1, 1).Value 

    lastdemand_p(k) = Worksheets("LastDemand").Cells(k + 1, 2).Value 

    expected_lastdemand = expected_lastdemand + lastdemand(k) * lastdemand_p(k) 

Next k 

End Sub 

 

Private Sub exercised_options() 

Dim number1 As Integer 

For number1 = 1 To 6 ^ 4 

    'no call option should be exercised if out-of-the-money 

    If strike_K > ticketprice(1, 5, mm) Then 

        exercised_call(number1) = 0 

    Else 

        exercised_call(number1) = Max(Min(numberm(1, number1) + expected_lastdemand - capacity, 
initial_call), 0) 
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    End If 

     'no put option should be exercised if out-of-the-money 

    If strike_L < ticketprice(1, 5, mm) Then 

        exercised_put(number1) = 0 

    Else 

        exercised_put(number1) = Max(Min(capacity - (numberm(1, number1) + expected_lastdemand), 
initial_put), 0) 

    End If 

    expected_exercised_put = expected_exercised_put + numberm(2, number1) * exercised_put(number1) 

    expected_exercised_call = expected_exercised_call + numberm(2, number1) * exercised_call(number1) 

Next number1 

    'Call updatelastsold 

End Sub 

  

Private Sub updatelastsold() 

     Dim k As Integer 

     Dim number1 As Integer 

     Dim kk As Integer 

     nb_denied_boarding = 0 

     kk = 1 

     For number1 = 1 To 6 ^ 4 

        For k = 1 To 6 

               lastsoldc(kk) = Max(0, Min(lastdemand(k), capacity - initial_call - numberm(1, number1) + 
exercised_call(number1))) 

               lastsoldp(kk) = Max(0, Min(capacity - numberm(1, number1) - exercised_put(number1), 
lastdemand(k))) 

               lastsold(1, kk) = lastsoldc(kk) + lastsoldp(kk) 

               lastsold(2, kk) = numberm(2, number1) * lastdemand_p(k) 

               nb_denied_boarding = nb_denied_boarding + lastsold(2, kk) * numberm(2, number1) * Max(0, 
initial_call + numberm(1, number1) + exercised_put(number1) + lastsold(1, kk) - capacity) 

               kk = kk + 1 

        Next k 
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      Next number1 

End Sub 

 

'/*report the result */ 

Private Sub report() 

Dim k As Long 

    With Worksheets("Code") 

        .Cells(20, 2) = expected_revenue 

        .Cells(21, 2) = initial_call 

        .Cells(22, 2) = initial_put 

        .Cells(23, 2) = strike_K 

        .Cells(24, 2) = strike_L 

        .Cells(25, 2) = call_op_price 

        .Cells(26, 2) = Put_op_price 

    End With 

End Sub 

 

Private Sub reportmu() 

    With Worksheets("sensitivity") 

    index_mu = index_mu + 1 

        .Cells(index_mu, 1) = mu 

        .Cells(index_mu, 2) = sigma 

        .Cells(index_mu, 3) = dd 

        .Cells(index_mu, 4) = uu 

        .Cells(index_mu, 5) = expected_revenue 

        .Cells(index_mu, 6) = initial_call 

        .Cells(index_mu, 7) = strike_K 

        .Cells(index_mu, 8) = initial_put 

        .Cells(index_mu, 9) = strike_L 

        .Cells(index_mu, 10) = call_op_price 
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        .Cells(index_mu, 11) = Put_op_price 

        .Cells(index_mu, 12) = p_price 

    End With 

End Sub 

 

Private Sub reportsigma() 

    With Worksheets("sensitivity") 

    index_mu = index_mu + 1 

        .Cells(index_mu, 1) = mu 

        .Cells(index_mu, 2) = sigma 

        .Cells(index_mu, 3) = dd 

        .Cells(index_mu, 4) = uu 

        .Cells(index_mu, 5) = expected_revenue 

        .Cells(index_mu, 6) = initial_call 

        .Cells(index_mu, 7) = strike_K 

        .Cells(index_mu, 8) = initial_put 

        .Cells(index_mu, 9) = strike_L 

        .Cells(index_mu, 10) = call_op_price 

        .Cells(index_mu, 11) = Put_op_price 

        .Cells(index_mu, 12) = p_price 

    End With 

End Sub 
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APPENDIX B 

GLOSSARY OF THE FINANCIAL OPTIONS TERMINOLOGY USED 

American option: option that can be exercised any time before or at the maturity date. 

Binomial parameter: parameter that multiplies the price, which follows a random walk, 
at each binomial step. 

Call option: right for the owner of the option to buy the underlying asset at the strike 
price before or at the maturity date. 

Drift: mean of the logarithmic change of the price over the lifetime of the option. 

European option: option that can be exercised only at maturity date. 

Exercise price: price paid buy the owner of the option to exercise it. 

Expiration date: date at which the option expires. 

Maturity date: see expiration date. 

Margin: collateral that the holder of a position in options has to deposit to cover the 
credit risk of his counterparty. 

Option: financial instrument that convey the right, but not the obligation, to engage in a 
future transaction on some underlying asset. 

Premium: price paid to buy an option. 

Put option: right for the owner of the option to sell the underlying asset at the strike 
price before or at the maturity date. 

Random walk parameter: drift and volatility. 

Strike price: see exercise price. 

Volatility: standard deviation of the logarithmic change of the price over the lifetime of 
the option. 
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APPENDIX C 

ALPHABETICAL LIST OF VARIABLES 

aj : authorization level to limit the number of tickets sold per period j, j=1,… , J-1. 

Br(j) : discount factor between time the initiation of the booking process and period j.  

C : capacity of the plane. 

cdb : cost of denying boarding to a passenger. 

cS : premium of one call option. 

d : binomial parameter when the ticket price decreases. 

dj : demand during period j, j=1,…, J. 

K : strike price associated with a call option.  

L : strike price associated with a put option. 

m : number of tickets from the first period until the end of the penultimate period  
( j = 1,..., J-1 ).  

µ  : drift  of the random walk. 

n0C : number of call options purchased from the customers by the airline at the beginning 
of the airline booking process (t=0).  

n0P : number of put options purchased from the agent by the airline at the beginning of 
the airline booking process (t=0). 

nC
e : number of tickets recalled from the customers. 

ndb : number of passengers who are denied boarding. 

nj : number of tickets sold by the airline during period j, j=1,… , J-1, at price Sj. 

nJ : number of tickets sold during the last period: nJ = nJ
C + nJ

P. 

nJ
C : number of tickets sold by the airline during the last period at price SJ in the call 

option model. 

nJ
P : number of tickets sold by the airline  during the last period at price SJ in the put 

option model. 
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nP
e : number of tickets under put options sold to the travel agent. 

pS : premium of one put option. 

r : nominal interest rate (continuous compounding). 

s : probability of a no-show. 

S0 : price paid for each ticket per customer at the beginning of the airline booking 
process. 

σ  : standard deviation of the price logarithmic change. 

Sj : price paid for each ticket per customer during period j of the booking process,  
j =1, …, J.   

T : expiration or maturity date of the option. 

u : binomial parameter when the ticket price increases. 

ΔK : change in the strike price K in the optimization process. 

ΔL : change in the strike price L in the optimization process. 

Δn0C : change in the number of call options purchased n0C. 

Δn0P : change in the number of call options purchased n0P. 

∆µ  : change in the parameter µ. 

∆σ  : change in the parameter σ. 

  


