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ABSTRACT 

Epilepsy is the fourth largest neurological disorder characterized by recurrent unprovoked 

seizures. The usual brain activity is disturbed for the duration of the seizure which can 

last a few seconds up to a few minutes. About one-third of the people suffer from 

medically refractory seizures. This means that medication alone cannot make the patient 

seizure free. These patients are often evaluated for surgery where the focus of the 

epileptogenic zones (EZs) are resected. Identification of these EZs is made easy by 

subjecting the patients to an invasive EEG monitoring method, where multiple intra-

cerebral depth electrodes are used to capture the electrical activity of the brain. In this 

thesis, an alternate method named Transfer Entropy (TE) is proposed over the standard 

method of evaluating these signals by visually identifying the changes in the EEG signal. 

This method accurately accounts for non-linearity and dynamic interactions between the 

systems involved. By applying this method to the EEG data of four epileptic patients, the 

location of EZs for each patient was identified. In addition to this, investigation on the 

changes in the TE calculations by changing parameters such as the bin size and the order 

of the Markov processes has been studied. Computation and comparison of both the 

linear (Correlation) and non-linear (TE) calculations have been shown to show why this 

particular method proves to be more useful. 
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Chapter 1 
 

Introduction 

1.1 Epilepsy: 

Epilepsy is the fourth most common neurological disorder after migraine, stroke and 

Alzheimer’s disease. World health organization defines Epilepsy as ‘a disorder of the 

brain characterized by an enduring predisposition to generate epileptic seizures, and by 

the neurobiological, cognitive, psychological and social consequences of this condition. 

The definition of epilepsy requires the occurrence of at least one epileptic seizure’[1][2]. 

The seizures are caused by excessive electrical discharges from a group of brain cells. 

The characteristics of the seizure vary depending on where in the brain the seizure starts 

and how far it spreads. As of 2016, approximately 50 million people worldwide currently 

live with epilepsy and about 70% of people respond positively to the Anti-epileptic drugs 

(AEDs).   

 

Drug resistant epilepsy is defined by the International League Against Epilepsy (ILAE) 

as ‘failure of adequate trials of two tolerated, appropriately chosen and used antiepileptic 

drug schedules (whether as monotherapies or in combination) to achieve sustained 

seizure freedom’[3]. Epilepsy surgery is a safe and effective alternate treatment option. 

Therefore, epileptic surgery is often considered when two or more drugs do not control 

the seizures, and the origin of the seizures can be identified and localized to one 

particular area, epileptogenic zones (EZs)[4], [5], of the brain which can be safely 
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resected. The concept of EZs was first described by Lüders as ‘the minimum amount of 

cortex that must be resected (or completely disconnected) surgically to produce seizure 

freedom’[6][7]. This implies that epileptologists and neurosurgeons that perform the 

surgery must perform various examinations to determine the EZ. However, oftentimes 

recorded data maybe too long and too subtle to be identified as a seizure by the human 

eye. Hence interactions between different areas of the brain can be useful to determines 

the EZs prior to surgery[6]. Therefore, in this thesis we will discuss the use and accuracy 

of transfer entropy (TE), a quantity that can measure the interactions between systems 

while also considering the non-linear and dynamic nature of the systems involved.  

 

Neural disorders are generally studied through Electroencephalography (EEG) signals as 

they offer an inexpensive and easy way to read the brain activity. Both scalp and intra-

cerebral EEG signals[8] are used to convey the activity of the brain during the 

observation period of the patient [9]. In the context of epilepsy, EEG signals can be used 

to answer two major questions. Firstly, they determine if the patient has epilepsy. 

Secondly, they can be used to identify the EZs. Interictal epileptiform discharges (IEDs) 

in EEG differentiates between an epileptic and non-epileptic brain wave. The presence of 

these abnormalities are often used to define the epileptic condition, determine the 

diagnostic and therapeutic approaches as well as provide prognostic information[10]. 

Rarely does the EEG show false-positive for a normal individual[11]. 
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1.2 EEG Signals: 

Electroencephalography (EEG) is a method of monitoring the electrical activity of the 

brain. It reproduces the cortical activity, which is quite small and measured in microvolts 

(mV). The recordings are generally noninvasive and collected from the electrodes placed 

on the scalp. There are also invasive electrodes that are sometimes employed which 

require surgical placement of the electrodes[12]. EEG electrodes capture the change in 

voltage caused by the ionic current from the neurons of the brain. They are recorded 

simultaneously from multiple locations over a period of time.  

 

EEG is important for the diagnosis and treatment of mental and brain neuro-degenerative 

diseases and abnormalities as well as many neurological disorders. It helps physicians to 

give an accurate diagnosis. Quantitative EEG is a study of the mathematical processing to 

the electroencephalogram[13]. Techniques like Independent Component Analysis (ICA) 

and source localization techniques are used by researchers interested in understanding the 

source of EEG signals. Neuromodulation, allows the control of EEG signals through 

audio or visual feedback loops, proved helpful for ADHD and medication aid. Recently, 

EEG signals are used as a biomarker for neurogenerative diseases. EEG based 

neuromodulation together with brain stimulation have been proposed for stroke 

rehabilitation. EEG is popular in brain-computer interface (BCI) applications. EEG 

signals are also used to study event-related potentials or the spectral content of the EEG. 

While event-related potentials (ERP) study the small voltages generated in the brain in 

response to specific events or stimuli[14], spectral analysis is a method used to 

characterize and analyze the data.  
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The best-known application of EEG signals is in the detection of epileptic seizures for the 

localization of the epileptogenic zones (EZs). EEG signal is a combination of different 

categories of data. Since the data is generally very large, automated methods are 

necessary to analyze and classify the data. Visual inspection of the EEG signals proves 

lacking as there are no standard criteria, time-consuming and often results in errors. Thus, 

provides another challenge in terms of extracting important features for classification. 

 

1.3 Problem Statement: 

For drug resistant epilepsies, the location of the origin of the seizure in the brain tells a lot 

about the kind of treatment that will best suit the seizure type. Based on the onset of the 

seizures, epileptic seizure zones can be classified into two groups, partial and 

generalized. As the names suggest, partial seizures affect one particular area of the brain 

while generalized seizures affect both sides of the brain or a large group of cells at the 

same time. Thus, it becomes very important for a physician to determine the category of 

seizures the patient falls under. Locating the area of the brain that is responsible for the 

seizure makes it easier for surgeons to surgically resect that part of the brain or to place 

neurostimulators. 

 

The epileptogenic zones consist of five different cortical zones: symptomatogenic, 

irritative, Ictal onset, epileptogenic lesion and functional deficit zones. A brief summary 

of the zones along with the respective diagnostic techniques is described in the Table 1-1. 

It is very easy to identify the epileptogenic zones when all the fine zones point to the 

same location. However, these five zones are not always present at the same location. 
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Thus, deciding on the ‘true’ epileptogenic zone is still a very challenging problem. In this 

thesis, work has been done on using  Transfer Entropy to determine the location of 

epileptogenic zones in patients. The proposed method is a probabilistic approach to the 

information transfer between two signals. 

 

 

 

 

Table 1-1. Definitions of the epileptogenic zones and associated diagnostic [13] 
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1.4 Thesis Organization: 

Chapter 1 provides an overview of Epilepsy, EEG signals and the problem statement of 

this thesis which is the use of a non-linear information transfer technique called the 

transfer entropy to identify Epileptogenic zones. A review of the existing literature on 

identifying EZs and the advantages provided by using TE are also discussed. Chapter 2 

provides the mathematics approach towards the computation of TE and the study of 

parameters involved in its calculation. Chapter 3 provides the information on the patients 

that were studied as a part of this thesis. In chapter 4, the data obtained after processing 

the EEG signals of the patients is explained and the signals of interest are analyzed. A 

detailed discussion on the effect of changes in parameters and a comparison with 

correlation matrix is also provided.  Chapter 5 summarizes the thesis and provides some 

discussion on future work. 

 

1.5 Literature Review 

Over the past decade, there has been a tremendous increase in the study of neural 

assemblies [15]–[18] and finding techniques to compute the information transfer[19] and 

functional connectivity between neurons[20]–[24]. Traditionally these were measured in 

terms of correlation or mutual information. Correlation measures the similarities between 

two signals but does not take into account the effect of higher order moments. Mutual 

information on the other hand accounts for these higher order moments but fails to give 

any indication of direction of the flow of information due to its symmetry[25]. Therefore, 

an alternative method called Transfer Entropy was developed which introduces the 

concept of directed information transfer using a probabilistic approach. It estimates the 
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activity of the neuron that is independent of its own past activity but dependent on the 

past activity of another neuron. This method quantifies information flow without any 

constraints on the underlying model[26], [27] or characteristics of the systems involved. 

It also incorporates the dynamics of individual system[28]. Thus, making it an effective 

tool for computing complex neural networks. In the past decade experiments have been 

conducted where transfer entropy was used in the analysis of EEG signals in both animals 

and humans. Directed information method also claims to accurately identify the seizure 

zones[29],[30]. However, for the course of this thesis we will explore Transfer entropy 

and its accuracy in localizing EZs. 

 

Some work involving depth electrodes has been done to capture artifact free signals for 

analysis, from the brains of guinea pigs and cats over a small observational window, in 

addition to looking at EEG signals from the surface of the brain. In the experiment 

involving auditory cortical neurons in cats[31]–[33], the activity recorded from an array 

of 16 electrodes in the auditory cortex is analyzed. The results from this experiment show 

NTE can be used to investigate integration memory as well as information transfer in 

neural assemblies. Part of this experiment also involves the study of spike train in 

response to various stimuli which shows that the network remains unchanged with regard 

to the stimulus used. The experiments involving the epileptic signals in guinea pigs[34], 

improvements to the TE estimation were made by introducing greedy strategy. This 

approach however introduces an order-estimated measure to detect connectivity in 

intercranial EEG signals. TE proved effective in establishing nonlinear information 

transfer between cortex and basal ganglia for Parkinson’s disease[35]. It also plays a 
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significant role in the identification of biomarkers to identify Mild cognitive impairment 

(MCI) and Alzheimer's disease (AD) by providing distinguishable features[36]. Research 

on applying Transfer entropy with self-prediction optimality and graph theory parameters 

to distinguish between an autistic youth and a healthy youth shows positive results[37]. 

 

In this thesis, TE analysis for the data collected from patients with epilepsy is performed. 

The data is collected by using depth electrodes as we are more interested in locating the 

focus of the seizure, which generally starts deeper in the brain and spreads outwards. 

With this presurgical analysis, we aim to identify the seizure zone[38]–[42]. All the 

patients in this experiment either suffer from a broad generalized location of seizure or 

from multifocal seizures. Since in these cases epileptic surgery is out of the picture, 

alternative treatment options like neuro-stimulation devices -responsive neuro-

stimulation (RNS) if there are two distinct foci or Vagus nerve stimulation if there are 

more than two foci or the foci are not well identified can be considered. Thus, making it 

essential to have a precise idea of the origin of these seizures. 
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Chapter 2 
 

Transfer Entropy 

It is important to measure the extent to which an individual component contributes to 

information production and the rate at which they exchange information among each 

other for a multi component system. This given information about the structure of the 

systems involved. Therefore, a measure that quantifies the statistical coherence between 

systems becomes essential. Transfer entropy introduces these components in a 

probabilistic approach and quantifies the directional information transfer between two 

signals. No constraints are imposed on either the model or the characteristics of the 

signal, making it an effective tool for nonlinear computations of complex neurological 

circuits. The mathematical expressions that are used to derive at transfer entropy are 

discussed in this chapter[43]–[45]. 

 

2.1 Discussion of Transfer Entropy: 

2.1.1 Transfer Entropy: 

Consider a stochastic system where any random variable relies only on the variable 

preceding it and is conditionally independent of all the other preceding random variables. 

This system can be approximated as a stationary Markov process of order 𝑘, this implies 

that the conditional probability to find 𝑋 in state 𝑥𝑛+1 at time 𝑛 + 1 is independent of the 

state 𝑥𝑛−𝑘. 𝑝(𝑥𝑛+1|𝑥𝑛, … , 𝑥𝑛−𝑘+1) = 𝑝(𝑥𝑛+1|𝑥𝑛, … , 𝑥𝑛−𝑘+1, 𝑥𝑛−𝑘) 

We will use the notation 𝑥𝑛(𝑘) =  (𝑥𝑛+1|𝑥𝑛, … , 𝑥𝑛−𝑘+1) for words of length 𝑘. 

(Eq 2.1) 
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When this system is extended to two processes (𝑋, 𝑌) and we measure the deviation from 

the generalized Markov property that in the absence of information flow from 𝑌 to 𝑋, the 

state 𝑌 has no influence on the transition probabilities on system 𝑋. When the above 

Markov expression is extended to two independent random processes x and y we get 𝑝(𝑥𝑡+1|𝑥𝑡𝑘) = 𝑝(𝑥𝑡+1|𝑥𝑡𝑘, 𝑦𝑡𝑙) 

The values of the parameters 𝑘 and 𝑙 are the orders of the Markov process for the two 

coupled process 𝑋 and 𝑌 respectively. Where  𝑥𝑡 𝑘 = (𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑘+1)𝑇and 𝑦𝑡 𝑙 = (𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑙+1)𝑇 are the state vectors at time t. 

 

The variability of the future state given the past state is given by 𝑙𝑜𝑔 ( 1𝑝(𝑥𝑡+1|𝑥𝑡𝑘)). When 

substituted into the Shannon entropy equation 

𝐻(𝑥𝑡+1|𝑥𝑡𝑘) =  ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡𝑘)log ( 1𝑝(𝑥𝑡+1|𝑥𝑡𝑘)) 

Transfer entropy computes the deviation from the assumption that the dynamics of the 

process 𝑋 is explained by its own past and that no influence from the dynamics of process 𝑌 is observed on the information gathered from 𝑋. It measures the amount of mutual 

information transfer from X to Y. This is derived using the Kullback-Leibler divergence: 𝑇𝐸𝑌→𝑋 =  𝐻(𝑥𝑡+1|𝑥𝑡𝑘) −  𝐻(𝑥𝑡+1|𝑥𝑡𝑘 , 𝑦𝑡𝑙) 

𝑇𝐸𝑌→𝑋 =  ∑ ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡𝑘 , 𝑦𝑡𝑙)𝑙𝑜𝑔 𝑝(𝑥𝑡+1|𝑥𝑡𝑘, 𝑦𝑡𝑙)𝑝(𝑥𝑡+1|𝑥𝑡𝑘)𝑦𝑥  

=  ∑ ∑ 𝑝(𝑥𝑡+1, 𝑋𝑡𝑘, 𝑌𝑡𝑙)𝑙𝑜𝑔 𝑝(𝑥𝑡+1, 𝑥𝑡𝑘, 𝑦𝑡𝑙)𝑝(𝑥𝑡𝑘)𝑝(𝑥𝑡+1, 𝑥𝑡𝑘)𝑝(𝑥𝑡+1, 𝑥𝑡𝑘)𝑦𝑥  

(Eq 2.2) 

(Eq 2.3) 

(Eq 2.4) 
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where, 𝑇𝐸𝑌→𝑋 measures the predictability of the future values of 𝑋 that are given by the 

past values of 𝑋 and 𝑌. This can only be done after removing the dependencies between 

the future and past values of  𝑋.  

   

2. 1.2 Normalized Transfer Entropy: 

We define the normalized transfer function (NTE) by 

𝑁𝑇𝐸𝑌→𝑋 =  𝑇𝐸𝑌→𝑋 − 𝑇𝐸𝑌→𝑋𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑𝐻(𝑥𝑡+1|𝑥𝑡𝑘)  ∈ [0,1] 
The NTE represents a fraction of information in X explained by its own past which is not 

explained by the past of Y.  We normalized the data obtained from calibrating TE to 

reduce data redundancy and to increase the data integrity.  

 

As a part of this thesis, I have computed NTE values at different time shifted values of 

the two signals to estimate the direction of information flow at different time lags. For 

example, the value of NTE in the case of two identical signals as well as in the case of 

two independent signals will always result in zero; indicating no information transfer 

between the two signals. But the introduction of a delay factor between the two signals 

could increase the value of NTE for the two identical signals from zero to some small 

positive value while the value of NTE for two independent signals still remains at zero. 

For simplicity of most of the calculations in this thesis I assume k = l =1 unless it has 

been specified. The probability density functions (PDFs) obtained from the data is 

classified into 10 bins spanning the dynamic range of the signals. I chose 10 bins to allow 

a good trade-off between PDF resolution and sufficiently large bin count (unless 

(Eq 2.5) 
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specified otherwise). To account for artifacts and external disturbances during the 

collection of electrical signals from the brain the estimated mean of the transfer entropy 

of the time-shuffled versions is subtracted from each individual value. 

 

2.2 Improving the Computation of Transfer Entropy: 

A finite dataset is used to analyze transfer entropy, therefore the selection of values for 

the parameters such as 𝑘 and 𝑙 play an important role in getting reliable values[46]. There 

is a dependence on the rate of sampling that is used to coarse grain the signals captured 

from the brain. Changing the bin size also has a significant effect on the output obtained.  

   

2.2.1 Selection of 𝒌: 
The value of 𝑘 (order of the driven process) used in the transfer entropy calculation 

represents the dependence of the current state 𝑥𝑡+1 on its past 𝑘 states. Many approaches 

such as Akaike information criterion (AIC)[47], partial mutual information[48], delayed 

mutual information, etc. were applied to select a suitable value for the order of the 

Markov process. Delayed mutual information proves to be a better approach because AIC 

suffers from overestimation and partial mutual information proves effective for 

unidirectional flow. Using delayed mutual information, the delay 𝑑 at which the mutual 

information of 𝑋 reaches the maximum for the first time is calculated. This delay 

corresponds to a period of time when the two states of 𝑋 are dynamically correlated. This 

value of 𝑑 minimizes the KL divergence between the 𝑑𝑡ℎ and the higher order 

probabilities of 𝑋. This implies that there is minimum information gained about the future 

of 𝑋 by using more than 𝑑 steps in the past. A more practical approach of this method is 
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to select the order of the driven process based on correlation time constant 𝑡𝑒. It can be 

defined as the time required for any autocorrelation function (AF) to decrease to 1 𝑒⁄  of 

its maximum value (where maximum value of AF is 1).  

 

2.2.2 Selection of 𝒍: 
The value of 𝑙 (order of the driving system) was considered to be equal to 1. The reason 

for this assumption was that the current state of the system produces a significant change 

in the dynamics of the driven system in a single time step. Larger values of 𝑙 (l = 2) was 

also explored in this thesis. 

 

2.2.3 Selection of bin size: 

The data obtained from the EEG of the brain is classified into bins that span the dynamic 

range of the signals. The bin size of the normalized histograms is selected in such a way 

that it provides a good trade-off between the resolution and large bin counts. In this thesis 

we found that a bin size of 10 gives a reliable value for transfer entropy. We have also 

analyzed the effect that increase or decrease in bin size has on value of transfer entropy.  
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Chapter 3 
 

Experimental Setup 

3.1 Patient 1: 

This patient suffers from non-lesion temporal lobe epilepsy with bi-temporal independent 

interictal spikes. He showed symptoms of epilepsy despite surgery. To identify the cause 

of the seizures, the patient was subjected to Stereo-EEG monitoring. Eight depth 

electrodes were surgically implanted into the brain and the EEG collected from these 

electrodes were used for further analysis. The electrodes were symmetrically placed in 

both hemispheres in the amygdala and hippocampus regions. Visual inspection of the 

EEG identified seizure activity in the right amygdala and hippocampus. However, on 

calculating the NTE no visual peaks are observed between any electrodes in the depth of 

the brain or neocortical surface electrodes on the right hemisphere. In contrast, clear 

peaks were seen near two points on depth electrodes in the left hemisphere.  

 

 

Figure 3-1. Position of depth electrodes in the patient 1 (a) Frontal view, (b) Top view 

(a) (b)
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Figure 3-1. gives the position of the eight electrodes in the brain of the patient. Since they 

are placed symmetrically there are 40 points on information in both hemispheres. Each of 

the eight electrodes have ten points of contact. The details about the electrodes and their 

positions are included in Table 3-1. The position of point 1 of the electrode is at the 

deepest part of the brain of that particular electrode and point 10 is near the surface of the 

brain (cortex). This way each signal can be associated with a point of origin in the brain. 

The spike trains captured from these points can be easily converted into a form that can 

be processed by the computer. 

 

 

 

 

Table 3-1. Details of electrodes in patient 1 

S No Name of electrode No of contact Locations 

1. Left Amygdala (LA) 10 1-10 

2. Left Anterior Hippocampus (LAH) 10 11-20 

3. Left Posterior Hippocampus (LPH) 10 21-30 

4. Left Orbitofrontal (LOF) 10 31-40 

5. Right Amygdala (RA) 10 41-50 

6. Right Anterior Hippocampus (RAH) 10 51-60 

7. Right Posterior Hippocampus (RPH) 10 61-70 

8. Right Orbitofrontal (ROF) 10 71-80 
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3.2 Patient 2 

This patient has constantly experienced seizures since the age of three. He was diagnosed 

with Mesial temporal sclerosis (MTS) as a result of examining his magnetic resonance. 

MTS was thought to be the cause of his temporal lobe epilepsy with partial seizure focus. 

He was initially put on anti-epileptic drugs. Despite changes to his dosage and diet but he 

still showed symptoms of seizure. Based on the findings from the surface EEG and 

clinical evaluations, he underwent a standard surgery of the temporal lobe. However, it 

failed to control his seizures. Before he underwent a second epilepsy surgery he was 

placed under invasive video-EEG monitoring where multiple electrodes were placed in 

his brain. All the electrodes were placed on his right hemisphere as the seizures were 

observed on that side.  

 

 

Figure 3-2 Position of depth electrodes in the patient 2 
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The electrodes, figure 3-2, used in this case have different no of contacts at different 

depths and locations in the brain. The distance between two points in the electrode is 

always the same, therefore the length of the electrodes depends on the total distance that 

the information travels from deeper parts of the brain to the surface. Which implies that if 

an electrode has higher number of contacts, then the electrode used itself will be longer. 

The information on the electrodes used for this patient are shown in Table 3-2. The 

patient was monitored for a total of 19 days.  

 

 

 

 

Table 3-2. Details of electrodes in patient 2 

S No Name of electrode No of contact Locations 

1. Angular Gyrus (AG) 4 1-4 

2. Anterior orbitofrontal (AFO) 8 5-12 

3. Face motor (FM) 6 15-20 

4. Frontopolar -cingulate (FPC) 8 21-28 

5. Face sensory (FS) 8 29-36 

6. Hand motor-cingulate (HMC) 10 37-46 

7. Hand sensory-cingulate (HSC) 10 47-56 

8. Insula (INS) 14 55-70 

9. Posterior basal temporal (PBT) 8 71-78 

10. Premotor (PM) 10 79-88 
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3.3 Patient 3 

This patient has experienced seizures from the age of 2. This patient suffers from left arm 

dystonia and loss of speech caused by seizure episodes. Noninvasive EEG monitoring 

(Table 3-3) showed seizure activity in the right frontotemporal region. However, PET 

EEG and MRI showed activity in the left hippocampus region. Due to this ambiguity, 

invasive EEG was recommended for this patient. The seizure pattern in this patient were 

classified as complex partial (focal impaired awareness) with secondary generalization 

(bilateral tonic-clonic seizure).  

 

 

 

Table 3-3. Details of electrodes in patient 3 

S No Name of electrode No of contact Locations 

1. Left Amygdala (LA) 12 1-12 

2. Left Anterior Hippocampus (LAH) 12 13-24 

3. Left Posterior Hippocampus (LPH) 10 25-34 

4. Left Superior Temporal Gyrus (LSTG) 8 35-42 

5. Left Temporal Pole (LTPOL) 8 43-50 

6. Right Amygdala (RA) 12 51-62 

7. Right Anterior Hippocampus (RAH) 10 63-72 

8. Right Posterior Hippocampus (RPH) 10 73-82 

9. Right Superior Temporal Gyrus (RSTG) 8 83-90 

10. Right Temporal Pole (RTPOL) 10 90-100 
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3.4 Patient 4 

This patient suffers from partial epilepsy arising from the left hemisphere since 2001. His 

symptoms involve blurry vision, scared feeling and funny feeling. Invasive monitoring 

shows that the patient’s seizures appear on the left temporal (mesial and neocortical) and 

parietal regions. The information on the electrodes for this patient is shown in Table 3-4. 

 

Table 3-4. Details of electrodes in patient 4 

S No Name of electrode No of contact Locations 

1. Left Anterior Hippocampus (LAH) 10 1-10 

2. Left Posterior Hippocampus (LPH) 10 11-20 

3. 
Anterior Superior Temporal Gyrus (ATI) 6 21-26 

4. Mid Superior Temporal Gyrus (MTI) 6 27-32 

5. Posterior Superior Temporal Gyrus (PTI) 8 33-40 

6. Angular Gyrus (AG) 12 41-52 

7. Supramarginal Gyrus (SMG) 14 53-66 

8. Superior Parietal (SP) 10 67-76 

9. Hand Motor (FM) 12 77-88 

10. Face Motor (FM) 6 89-94 

11. Face Sensory (FS) 14 95-108 

12. Hand Sensory (HS) 14 109-122 

13. Insula (INS) 14 123-136 

14. Isthmus Cingulate Gyrus (ICG) 12 137-148 
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Chapter 4 
 

Results and Discussion 

4.1 Discussion of data grids 

The NTE values for each possible pair of signals is computed. The maximum of the NTE 

values for each pair is selected and a grid of data is generated. This grid shows amount of 

information transferred during the epileptic seizure. We want to capture electrodes that 

tend to discharge high erratic electrical signals in the brain. When the intensity of such 

interactions is plotted, spots that are in deep red or orange shades show highest levels of 

interaction while dark blue spots represent low levels of interactions. The deep red or 

orange spots can be interpreted as the point of seizure origin. Finally, the individual 

signal interactions are plotted to confirm the findings. 

 

4.1.1 Discussion of data grid for patient 1 

The data grid that is obtained from patient 1 is shown in figure 4-1 (a). The data is 

arranged in such a way that the first forty signals on both the axes are collected on the left 

hemisphere of the brain and the next forty from the right hemisphere. Points 1-10 are 

contacts of electrode LA, 11-20 of LAH, 21-30 of LPH, 31-40 of LOF, 41-50 of RA, 51-

60 of RAH, 61-70 of RPH and 71-80 of ROF. If the grid were to be divided into smaller 

portions, the top left 40*40 matrix would represent the interaction between the signals in 

the left hemisphere, similarly the top right shows the interactions of the left hemisphere 

with right hemisphere, the bottom left shows the interactions between right hemisphere 
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with left hemisphere and the bottom right shows the interactions between signals in the 

right hemisphere. 

 

It can be observed that there are no interactions on the top right or the bottom left portion 

of the grid. This can be interpreted as no interaction between the two hemispheres. Most 

of the activity is concentrated within the left or right hemisphere. Figure 4-1 (b) shows 

three clusters of deep red or orange spots can be seen near the diagonal of the matrix. 

Two of the three are seen on the left hemisphere and one on the right hemisphere. 

Investigating these spots further, we look into the individual interaction of signals in that 

cluster. In figure 4-2 (a), (b) we study the interactions in the first cluster which is the 

interaction of the LPH1 electrode with other electrodes. The peaks present in these 

signals show higher interactions between the pair of signals considered. Peaks are also 

observed for the inverse of the same pair of signals. Taking a closer look at cluster 1, the 

 

(a)                                                                                           (b)   

Figure 4-1. (a) Data grid obtained from patient 1, (b) Data grid showing clusters in patient 1 
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reason for high interactions on both 

sides can be attributed to symmetry in the cluster. Similarly, the second cluster (figure 4-

2 (c), (d)) shows the interaction of the LOF1 electrode with other electrodes. Observing 

Figure 4-2. (a) Signal showing interactions between LPH1 and other electrodes in cluster 1,  

  (b) Signal showing interactions between other electrodes in cluster 1 and LPH1, 

  (c) Signal showing interactions between LOF1 and other electrodes in cluster 2,  

 (d) Signal showing interactions between other electrodes in cluster 2 and LOF1 

                (e), (f) Signal showing interactions between electrodes on the right hemisphere in cluster 3  

 

(a) (b)

(c) (d)

(e) (f)
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the third cluster (figure 4-2 (e), (f)) on the right hemisphere however shows no peaks in 

the NTE calculations. This suggests the presence of noise from artifacts interacting with 

the signal during capture. Due to the presence of multiple spots on the grid, this patient 

shows multifocal epilepsy.  

 

The correlation matrix for this patient is shown in figure 4-3. There appears to be no 

linear interactions between the contacts of the electrodes. No information could be 

inferred from this matrix, suggests that the information transfer is non-linear. 

 

 

 

 

Figure 4-3. Correlation matrix of patient 1  
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4.1.2 Discussion of data grid for patient 2 

The data grid that is obtained from patient 2 is shown in figure 4-4 (a). The data follows 

the order 1-4 of electrode AG, 5-12 of electrode AFO, 15-20 of electrode FM, 21-28 of 

electrode FPC, 29-36 of electrode FS, 37-46 of electrode HMC, 47-56 of electrode HSC, 

55-70 of electrode INS, 71-78 of electrode PBT, 79-88 of electrode PM, 89-96 of 

electrode PFO, 97-102 of electrode POI, 102-106 of electrode PT and 107-110 of 

electrode TI on both the axes. 

 

As can be seen from the figure 4-4 (b), three deep red cluster regions are be observed. 

Taking a closer look at cluster 1, these dark points are the interactions between deep 

contacts of FS electrode with surface contacts of HCM (Figure 4-5 (b)), deep contacts of 

HCM with surface contacts of HSC (Figure 4-5 (c)), surface contacts of HCM with deep 

 
Figure 4-4. (a) Data grid obtained from patient 2, (b) Data grid showing clusters in patient 2 

 

(a) (b)



25 

contacts of INS (Figure 4-5 (d)). We see that the inverse of these interactions shows no 

 

peaks. This proves the directionality of the information flow. The dark points in cluster 2 

is the interactions between all the points of contact on the AOF electrode with one of the 

surface contact of the AG electrode (AG4) (Figure 4-5 (a)). Here, we are more focused 

on analyzing cluster 1 as it points to a large area of the brain. Since there is generalized 

area of the brain that is responsible for the seizure, this patient has no isolated EZ that 

could be resected. Correlation matrix is shown in figure 4-6. 

 

Figure 4-5. (a) Signal showing interactions between AG4 and all points on electrode AOF,  

(b) Signal showing interactions between deep FS contacts and surface HCM contacts, 

(c) Signal showing interactions between deep HCM contacts and Surface HSC contacts,  

(d) Signal showing interactions between deep HCM contacts and Surface INS contacts 

 

(a) (b)

(c)
(d)
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4.1.3 Discussion of data grid for patient 3 

The data grid that is obtained from patient 3 is shown in figure 4-7 (a). The data is 

arranged in such a way that the first fifty signals on both the axes are collected on the left 

hemisphere of the brain and the next fifty from the right hemisphere. Points 1-12 are 

contacts of electrode LA, 13-24 of LAH, 25-34 of LPH, 35-42 of LSTG,43-50 of 

LTPOL, 41-50 of RA, 51-60 of RAH, 61-70 of RPH and 71-80 of ROF. If the grid were 

to be divided into smaller portions, the top left 50*50 matrix would represent the 

interaction between the signals in the left hemisphere, similarly the top right shows the 

interactions of the left hemisphere with right hemisphere, the bottom left shows the 

 

Figure 4-6. Correlation matrix of patient 2  
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interactions between right hemisphere with left hemisphere and the bottom right shows 

the interactions between signals in the right hemisphere. 

 

It can be observed that there are no interactions on the top right or the bottom left portion 

of the grid. This can be interpreted as no interaction between the two hemispheres. Most 

of the activity is concentrated within the left hemisphere. Figure 4-7 (b) shows three 

clusters of deep red or orange spots can be seen near the diagonal of the matrix. All of 

them are observed on the left hemisphere. Taking a closer look (figure 4-8 (a), (b), (c)), 

all three clusters are formed by interactions between the depth electrodes of LAH (6-11), 

LSTG (4-6) and LTPOL (4-8) respectively. The presence of three spots which show 

positive seizure activity lead to a conclusion that this patient has multifocal epilepsy. The 

Correlation matrix for this patient is shown in figure 4-8 (d). 

 

Figure 4-7. (a) Data grid obtained from patient 3, (b) Data grid showing clusters in patient 3 

 

(a) (b)
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4.1.4 Discussion of data grid for patient 4 

The data grid that is obtained from patient 4 is shown in figure 4-9. The data is collected 

from the left hemisphere of the brain. The points are arranged as 1-10 are from electrode 

LAH, 11-20 from electrode LPH, 21-26 from electrode ATI, 27-32 from electrode MTI, 

33-40 from electrode PTI, 41-52 from electrode AG, 53-66 from electrode SMG, 67-76 

from electrode SP, 77-88 from electrode FM, 89-94 from electrode FM, 95-108 from 

 

Figure 4-8. (a) Signal showing interactions between LAH 6-11,  

(b) Signal showing interactions between LSTG 4-6, 

(c) Signal showing interactions between LTPOL 4-8,  

(d) Correlation matrix for patient 3 

 

(a) (b)

(c) (d)
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electrode FS, 109-122 from electrode HS, 123-136 from electrode INS and 136-158 from 

electrode ICG.  

 

From the figure 4-9 it can be observed that only one electrode interacts (HS9) with all 

other electrodes (Figure 4-10 (a), (b)). Figure 4-10 (c) shows interactions between HS9 

and FS contacts, since the figure doesn’t show high interactions (yellow spots instead of 

red spots) there are no peaks observed here.  Due to evidence of seizure on multiple 

electrode, this patient is not considered for resective surgery, however he may benefit 

from responsive neurostimulation. The aim in this case is to identify the region 

responsible for the seizures. 

 

Figure 4-9. Data grid obtained from patient 4 
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Figure 4-10. (a) Signal showing interactions between HS9 and LAH contacts,  

(b) Signal showing interactions between HS9 and PTI contacts, 

(c) Signal showing interactions between HS9 and FS contacts,  

(d) Correlation matrix for patient 4 

 

(a) (b)

(c) (d)
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4.2 Changing bin sizes     

The ideal bin size of 10 was considered thus far in evaluating the NTE data.  Exploring 

the effect of change in bin size is a part of this thesis. The experiment was conducted on 

patient 1 for varying values of bin size (8,20,25). The corresponding data grids are shown 

in figure 4-11. As seen, there is not much difference in the data that is obtained in each 

case. Thus, concluding that there is not much effect of bin size on the data. 

 

 

 

 

 

Figure 4-11. Data grid for different bin sizes (a) bin size = 10, (b) bin size = 8, (c) bin size =20, (d) bin size = 25 

(a) (b)

(c) (d)
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4.3 Changing k, l parameters 

We have considered two cases while changing the parameters. Case 1, k=2 and l=1 

(figure 4-12 (a)). For this case the NTE of the future value of x depends on previous two 

states of x and one previous state of y. The grid is shown in figure. Every contact shows 

high interactions. Inferring from the figure, NTE is sensitive to the change in the 

parameter k.   Case 2, l=2 and k=1 (figure 4-12 (b)).  For this case the NTE of the future 

value of x depends on previous two states of y and one previous state of x. The grid is 

shown in figure. There is no major difference that is observed in the calculation of NTE. 

Thus, our initial assumption k=1 and l=1 is a good assumption for calculation of NTE. 

 

 

 

 

 

 

Figure 4-12. Data grid for different Markov order(a) k=2, l=1, (b) k=1, l=2 

(a) (b)
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Chapter 5 
 

Summary and Future work 

 

5.1 Summary 

In this research, we study the use of non-linear information transfer technique called 

Transfer Entropy on Epileptic EEG signals. We used deep intra-cerebral to collect the 

electrical activity of the brain. These electrodes provide a much clear picture of the 

activity of the brain when compared to surface EEG monitoring. With this data we 

intended to locate the Epileptogenic zones that are responsible for the seizure. We apply 

the NTE algorithm to the data obtained, when the computed results are pulled together in 

a grid, we look for points on that grid that interact highly with the other points and 

identify them as epileptogenic zones. With this information we hope to reduce the cost of 

expensive treatment or surgeries that can be avoided. 

 

As a part of this thesis, we study this method on four different patients of epilepsy. The 

data for two of the patients showed multiple spots that were highly active during the 

seizure, thus leading to the conclusion that patient 1 and patient 3 suffer from multi-focal 

epilepsy. The other two patients had a large cluster of points that were responsible for the 

seizure. These cases can be classified as generalized epilepsy. These clusters are too large 

to be considered for surgery, hence alternative treatment in terms of Vagus nerve 

stimulation can be offered. We also analyzed the effect of changing the parameters such 

as the bin size and the order of the Markov processes involved. The result of this analysis 
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proves that our initial assumption on the calculation of NTE has no bias and this model 

will hold true for all conditions.  

 

5.2 Future Work 

With the increase in research interest in neural networks, NTE or any other non-linear 

information transfer matric will provide a better understanding on the functional 

connectivity of the brain. This method can be extended to understand similar neurological 

disorders like Parkinson’s[35], Autism[37], disorder of consciousness[49], etc. There can 

be considerable amount of work done in identifying the electrodes that have captured the 

seizure using Short-term Fourier Transform (STFT)[50], wavelet[51] or sparse analysis 

on the EEG data. This will considerably reduce the amount of time that is taken to 

compute the NTE values for the contacts that do not show any kind of seizure activity.  

Lastly, to visualize the seizure a 3D model can be constructed of the seizure over the 

observation time to see the pattern in which seizure spreads in the brain of a patient 
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