
The Pennsylvania State University

The Graduate School

ESSAYS ON TIME INCONSISTENCY AND INDUSTRIAL

ORGANIZATION

A Thesis in

Economics

by

Elif Incekara Hafalir

c© 2007 Elif Incekara Hafalir

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2007



The thesis of Elif Incekara Hafalir was reviewed and approved∗ by the following:

Kalyan Chatterjee

Distinguished Professor of Economics and Management Science

Thesis Advisor, Chair of Committee

Edward Green

Professor of Economics

Mark Roberts

Professor of Economics

Abdullah Yavas

Elliott Professor of Business Administration

Neil Wallace

Professor of Economics

Director of Graduate Studies

∗Signatures are on file in the Graduate School.



Abstract

This thesis consists of two chapters. In the first chapter, we provide an explanation
for the common observation in the market for upgrades, which is that firms tend
to offer small upgrades very frequently instead of significant ones less frequently.
We explain this problem using the time-inconsistent behavior of consumers. We
examine cases in the presence of naive hyperbolic preferences and sophisticated
hyperbolic preferences separately. We show that it is optimal for the monopolist
to offer the upgrades more frequently to more hyperbolic consumers under certain
circumstances.

In the second chapter, we show that naive hyperbolic consumers might be
unresponsive to interest rates and credit limits of credit card offers by companies
because the offers have a grace period. Consequently, we demonstrate that there
might be no competition on the interest rate and credit limit, even if more than one
firm is in the market and even if the consumer accepts only one card. We determine
whether the credit card companies can exploit time-inconsistent consumers and
gain positive expected profits. We show that in fact there are circumstances in
which both zero and positive expected profits could be possible.

iii



Table of Contents

List of Figures vi

Acknowledgments vii

Chapter 1
Time Inconsistency of Consumers and Excessive Upgrades by
Durable Good Monopoly 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Analysis of the Model with an Endogenous Interest Rate . . . . . . 5

1.3.1 Naive Hyperbolic Consumer . . . . . . . . . . . . . . . . . . 5
1.3.2 Sophisticated Hyperbolic Consumer . . . . . . . . . . . . . . 14
1.3.3 Naive versus Sophisticated Consumers . . . . . . . . . . . . 20

1.4 Exogenous Interest Rate . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Welfare Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 2
Credit Card Competition and Naive Hyperbolic Consumers 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 The Consumer . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 The Companies and the Class of Contracts . . . . . . . . . . 35
2.2.3 Strategic Interaction . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 The Consumer’s Behavior with no Default Option . . . . . . 37

iv



2.3.2 The Consumer’s Decision on Default . . . . . . . . . . . . . 38
2.3.3 The Credit Card Companies’ Behavior and Best Responses . 41
2.3.4 Description of the Equilibria . . . . . . . . . . . . . . . . . . 43

2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.1 Consumer’s Welfare . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 Endogenous Grace Period . . . . . . . . . . . . . . . . . . . 51
2.4.3 The Model with Uncertainty . . . . . . . . . . . . . . . . . . 52

2.5 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



List of Figures

2.1 Example of best responses when C is infinitely high . . . . . . . . . 44
2.2 Positive profit equilibria without competition . . . . . . . . . . . . . 45
2.3 Zero profit equilibria without competition . . . . . . . . . . . . . . 46
2.4 Zero profit equilibria with competition . . . . . . . . . . . . . . . . 46
2.5 Multiple equilibria 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Multiple equilibria 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Multiple equilibria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 Multiple equilibria 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



Acknowledgments

I am most grateful and indebted to my thesis advisor, Kalyan Chatterjee, for his
advice, guidance and support. I am also grateful and indebted to Edward Green,
Susanna Esteban, Isa Hafalir, Mark Roberts, Jeremy Tobacman, Neil Wallace, and
Abdullah Yavas for their advice and numerous discussions. I would like to thank
my husband for his support and encouragement.

vii



Dedication

For my dear parents and sister, and my beloved husband who filled my life with
happiness.

viii



Chapter 1
Time Inconsistency of Consumers

and Excessive Upgrades by Durable

Good Monopoly

1.1 Introduction

This paper explains the common observation in the market for upgrades by monop-

olists that they offer very frequent small upgrades instead of less frequent signif-

icant ones. Examples of this practice might be found in software, computer, and

personal electronics. In the software industry, there are frequent upgrades that

provide little extra value to the consumer. For example, consumers commonly

complain about rushed and immature upgrades of Office by Microsoft. They be-

lieve that Microsoft is offering upgrades that are not tested enough and that do

not have significant new features.1

We explain this problem by the time-inconsistent behavior of consumers. Ac-

cording to many laboratory and field studies, discount rates are much greater in

the short run than in the long run, as reported by Harris and Laibson (2001).

As illustrated by O’Donoghue and Rabin (1999), people update their discount

rates as time passes and give more weight to the earlier days, as they get closer.2

1See the articles, ”Office XP to ship just under the wire” by Mary Joe Foley and ”Microsoft
seeks revenue boost with rush Office release” by Joe Wilcox.

2O’Donoghue and Rabin (1999) write that ”For example, when presented a choice between
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Economists use different discounting functions to model this kind of behavior, one

of which is hyperbolic discounting. In this paper, we use hyperbolic discounting

to model the time-inconsistent behavior of consumers.

Strotz (1956) claims that people would not obey their optimal plan of the

present moment if they would be allowed to reconsider their earlier plans at later

dates. Because people are impatient, they give more weight to the earlier time as it

gets closer, which causes time-inconsistent behavior. There is significant evidence

that consumers’ preferences are time inconsistent.3 Loewenstein and Prelec (1992)

stated that the discount function for the hyperbolic preferences is a generalized

hyperbola, φ(t) = (1 + αt)−β/α, α, β > 0 and t is the time distance to the event.

Therefore, as t decreases the discount factor increases. Laibson (1997) uses the

so-called β − δ discount function which is given by {1, βδ, βδ2, βδ3, ..}to model

hyperbolic behavior. Since the β − δ discount function is a common way to model

discrete time hyperbolic discounting, we use that method in our model.

There are papers about product upgrades for durable goods in the literature.

Fudenberg and Tirole (1998) analyze the monopoly pricing of overlapping gener-

ations of a durable good. They state results describing when a monopolist would

continue to sell the older version of a product along with the new one, and when

they would offer discounts to the previous version owners to buy the new version

of the product. Ellison and Fudenberg (2000) analyze two reasons for a monopoly

supplier of software to offer upgrades more often than social optimal when the

upgrades are backward compatible

Our model based on that of Fishman and Rob (2000) which analyzes ”product

innovation by a durable-good monopoly.” Basically, they compared the frequency

of product innovations with the social optimum under different cases: giving dis-

counts to existing customers, planned obsolescence, and the case for which neither

of these is possible. In their model, the utility the consumers get by the consump-

tion of a good depends on the quality of that good. On the production side, a

monopolist has to have an R&D stage to produce a new model; the quality of

doing seven hours of an unpleasant activity on April 1 versus eight hours on April 15, if asked
on February 1 virtually everyone would prefer the seven hours on April 1. But come April 1,
given the same choice, most of us apt to put off the work until April 15... When considering
trade-offs between two future moments, present-biased preferences give stronger relative weight
to the earlier moment as it gets closer”

3See Loewenstein and Thaler (1989), Ainslie (1991), and DellaVigna and Malmendier (2002)
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the new model depends on the allocated time for R&D and the expenditures. So,

the quality is given by a function that depends on R&D time and expenditures.

Another important feature of their model is that the previous product forms a

technological base for the development of the new product. In addition to R&D

expenditures there is a fixed cost which they call ”implementation cost”, to be

paid each time a new product is introduced.

In this paper, our aim is to explain a common observation, frequent and small

upgrades. While others have explained this phenomenon as being due to network

effects, we demonstrate, using the simplest possible model, that the time inconsis-

tency of consumers also provides an explanation. Since we use the simplest model

to explain the observed phenomenon, we do not attempt to accomplish a technical

advancement. There are papers in the literature on the study of durable good

upgrades or on the study of time inconsistency, but there has been no previous

study about durable goods upgrades of a monopolist facing hyperbolic consumers.

1.2 The Model

Our model is based on that of Fishman and Rob (2000). There are two agents in

the model: a time consistent profit maximizer monopolist and a time inconsistent

consumer. The monopolist offers infinitely durable upgrades in a certain frequency

for his product to the consumer who already had that product on hand.4 The cost

of creating upgrades is given by a linear function c(.).5 The monopolist also incurs

a fixed cost every time she offers an upgrade, F . We can think of this fixed cost

as advertisement. Fishman & Rob (2000) interprets F as the cost of harnessing

new knowledge into the present product. The monopolist discounts the future

exponentially at the rate of δ and sells his upgrades to the consumer at price p

by offering a payment plan of three equal payments to the consumer such that

the consumer has to pay p/3 in the first period, the second period, and the third

period.6 If the consumer does not pay the designated amount in the first or second

4The model would be simpler if the upgrades were not durable. However, this assumption
would not fit in software example.

5This is not a crucial assumption. This assumption is just to keep calculations easier and we
suspect that our results will hold with convex cost functions as well. In fact, we have an example
in which the results hold for a strictly convex cost.

6See Section 1.6 for the discussion of three period equal payments.
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period, he delays it to the next periods with the interest rate r. For example, if the

consumer fails to pay p/3 in the first period, he pays (1+r)p/3+p/3 in the second

period such that (1 + r)p/3 accrues from the first period with the interest rate r,

and p/3 is the designated amount he needs to pay in the second period. If the

consumer delays in the first and second periods, he pays (1+r)2p/3+(1+r)p/3+p/3

in the third period such that (1 + r)2p/3 and (1 + r)p/3 accrues from the first and

second periods respectively, and p/3 is the designated amount he needs to pay in

the third period. In our model, the consumer is not allowed to delay payments

after the second period, which means he has to pay all he owes at the end of the

third period.

There is an infinitely lived consumer who wants to maximize his lifetime utility

when he decides to buy or not to buy an upgrade. The consumer’s per period utility

from an upgrade is given by a concave function v(.). The consumer is a hyperbolic

discounter with δ − β discount factor as in Laibson (1997). In other words, the

sequence of discount factors for the hyperbolic consumer is {1, βδ, βδ2, βδ3, ...} .

Note that as β increases, the consumer gets closer to being an exponential dis-

counter with discount factor δ. If the consumer decides to buy a certain amount of

upgrade today, he will buy the same amount of upgrade every time it is offered.

In other words, our problem is stationary. Since the upgrades are durable, the

next time the consumer buys the same amount of upgrade, he adds that upgrade

onto the previous one. This reflects the reality especially in the software market

such that every time the software on hand is upgraded, new features/upgrades are

added to the existing features/upgrades. If the consumer buys the upgrade, which

payments he delays and which ones he pays on time depend on the interest rate

and discount factors.

The monopolist offers the upgrades either in every period or in every two pe-

riods. Whenever an upgrade is offered, at the first period the consumer decides

whether to buy the upgrade and then whether to delay his first payment. At

the second period, he decides whether to delay his second payment together with

his delayed first payment if there is any. At the third period, the consumer pays

everything he owes.

We analyze this model first by assuming that the interest rate is endogenous

and then under competitive financial markets implying a fixed interest rate. Under
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each of these cases, we study both naive and sophisticated hyperbolic consumers.

We focus on pure strategy subgame perfect equilibrium of this game.

1.3 Analysis of the Model with an Endogenous

Interest Rate

In this section, we assume that the monopolist is free to choose the interest rate

for late payments.

1.3.1 Naive Hyperbolic Consumer

If the consumer is a naive hyperbolic discounter, at any time period his sequence of

discount factors are {1, βδ, βδ2, βδ3, ...}, but he thinks that tomorrow his sequence

of discount factors will be {1, δ, δ2, δ3, ...} , which causes the consumer to make

time-inconsistent decisions. There are three different possible cases:

• Case 1: 1 > δ(1 + r)

In this case, the consumer prefers to delay all the payments to the third

period. In the first period, the consumer decides whether to pay the first

payment in the designated period, which is the first period or to delay it

until the second period. If he pays the first payment on time, he pays p/3,

and if he delays it until the second period, the present value of his payment

is βδ(1 + r)p/3. Since 1 > βδ(1 + r), he prefers to delay the first payment to

the second period. Then he decides whether to delay the amount he owes at

the second period to the third period. If he pays that amount in the second

period, he pays (1 + r)p/3 + p/3 and the present value of that payment is

βδ((1+r)p/3+p/3). If he decides to delay the amount he owes in the second

period to the third period, he pays (1+r)2p/3+(1+r)p/3 in the third period

with the present value of βδ2((1 + r)2p/3 + (1 + r)p/3). Since 1 > δ(1 + r),

accordingly βδ((1 + r)p/3 + p/3) > βδ2((1 + r)2p/3 + (1 + r)p/3), he prefers

to delay all payments to the third period.

• Case 2: 1 < βδ(1 + r)
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In this case, the consumer pays all payments in the designated periods. In

the first period, the consumer decides whether to pay the first payment on

time. If he pays the first payment on time he pays p/3, although if he delays

it to the second period, the present value of his payment is βδ(1 + r)p/3.

Since 1 < βδ(1 + r), he prefers to pay the first payment on time. After this,

he decides whether to delay the second period payment to the third period.

If he pays it in the second period, he pays p/3 with a present value of βδp/3.

If he delays it, he pays (1 + r)p/3 in the third period with the present value

of βδ2(1 + r)p/3. Since 1 < δ(1 + r), accordingly βδp/3 < βδ2(1 + r)p/3, he

prefers to pay the second payment on time, too. So, he pays all the payments

in the designated periods.

• Case 3: 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r)

In this case, the consumer delays the first payment to the second period,

but pays the second payment on time. In the first period, the consumer

decides whether to delay the first payment to the second period. Due to

the same reasoning we mentioned under Case 1, he delays it to the second

period. After this, he decides whether to delay the second period payment

to the third period. If he does not delay it, he pays (1 + r)p/3 + p/3 with

the present value of βδ((1 + r)p/3 + p/3). If he delays it, he pays (1 +

r)2p/3 + (1 + r)p/3 in the third period with the present value of βδ2((1 +

r)2p/3 + (1 + r)p/3). Since 1 ≤ δ(1 + r), accordingly βδ((1 + r)p/3 + p/3) ≤
βδ2 ((1 + r)2p/3 + (1 + r)p/3), he prefers not to delay the amount he owes in

the second period to the third period. This payment strategy of the consumer

is based on his beliefs in the first period. According to this plan, he believes

that the present value of the total amount he will pay is [βδ(2 + r + δ)] p/3.

However, in reality his total payment will be more than βδ(2+ r + δ). (From

now on, for convenience, when we say total payment, it means the present

value of the total payment.) The consumer delays the first payment to the

second period as we explained above, and there is no time inconsistency

problem at this point. However, as soon as he reaches the second period, his

discount factors becomes {1, βδ, βδ2, ...} again as opposed to his first period

belief. Therefore, when he reaches the second period, he updates his plan and
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decides to delay the second payment to the third period too. In this case, his

total payment is [βδ2(r2 + 3r + 3)] p/3 instead of [βδ(2 + r + δ)] p/3. Note

that [βδ2(r2 + 3r + 3)] p/3 is always bigger than [βδ(2 + r + δ)] p/3 under

the condition of 1 ≤ δ(1 + r). Since he has to decide whether to buy the

upgrade or not in the first period, if the present value of utility he will get

from the upgrade is greater than or equal to his total payment, he decides to

buy the upgrade. However, the problem is that the consumer underestimates

his total payment. He thinks he will pay [βδ(2 + r + δ)] p/3, but in reality

he will pay [βδ2(r2 + 3r + 3)] p/3. Since the monopolist gets all the surplus,

the monopolist offers such a quality level of upgrade that the utility the

consumer gets from that upgrade is equal to [βδ(2 + r + δ)] p/3, which is the

total payment the consumer believes to make. Since the utility he gets from

that upgrade is equal to the amount he believes to pay, he chooses to buy the

upgrade. However, in reality since the consumer is a hyperbolic discounter,

when he reaches the second period, he delays the second period payment to

the third period as well, and ends up paying more than he expected and

more than the total utility he gets from that upgrade.

We summarize these observations in the following lemma.

Lemma 1. If the consumer is a naive hyperbolic discounter, the behavior of the

consumer, depending on the discount factors, δ, β, and the interest rate, r, can be

summarized as follows:

if 1 > δ(1 + r) =⇒ the consumer delays all payments to the third period and

the present value of his total payment is [βδ2(r2 + 3r + 3)] p/3,

if 1 < βδ(1+r) =⇒ the consumer pays all payments in the designated periods

and the present value of his total payments is [1 + βδ + βδ2] p/3, and

if 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r) =⇒ although the consumer believes in the first

period that he delays the first payment but not the second one, he ends up delaying

all payments to the third period. Moreover, although he believes that his total

payment is [βδ(2 + r + δ)] p/3, his actual total payment is [βδ2(r2 + 3r + 3)] p/3,

which is more than what he expected.

Our aim is to see whether the frequency of the upgrades change if the consumer

is hyperbolic discounter instead of exponential. In order to see this, we compare
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the total payoff if the upgrades are frequent and the total payoff if the upgrades

are less frequent. For simplicity, we take every period upgrades as the frequent

upgrades, and every two periods upgrades as the less frequent ones.

First, assume that the monopolist offers durable upgrades in every period and

the amount of the upgrade is given by x. The per period value of that upgrade for

the consumer is given by value function v(.). Since the upgrade is durable and the

consumer is infinitely lived, the total present value of x amount of upgrade for the

hyperbolic consumer is (1 + βδ 1
1−δ

)v(x).

Lemma 2. If the consumer is a naive hyperbolic discounter and the monopolist

offers the same amount of upgrade every period, we can write the payoff function

of the monopolist as follows:

if 1 > δ(1 + r)

=⇒ payoff1,case1 = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) 1

β
− c(x)− F

]
,

if 1 < βδ(1 + r)

=⇒ payoff1,case2 = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) 1+δ+δ2

1+βδ+βδ2 − c(x)− F
]

, and

if 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r)

=⇒ payoff1,case3 = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) δ

β
r2+3r+3
2+r+δ

− c(x)− F
]
.

Proof. Since we know the present value of the possible total payment of the con-

sumer for the upgrade in each possible case from proposition 1 and the present

value of the total utility the consumer gets, it is possible to find the price for the

upgrade. Since the consumer buys the upgrade only if the utility he gets from

that is higher than or equal to his total payment and the monopolist get the entire

surplus, the optimal price the monopolist charges under Case 1 is as follows:

[
βδ2(r2 + 3r + 3)

]
p/3 = (1 + βδ

1

1− δ
)v(x) =⇒ p/3 =

(1 + βδ 1
1−δ

)v(x)

[βδ2(r2 + 3r + 3)]
(1.1)

Since the monopolist receives all the payments at the third period with interests,

she gains [(1 + r)2p/3 + (1 + r)p/3 + p/3] in the third period. Since the monopolist

is an exponential discounter with δ factor, the present value of her revenue is

δ2 [r2 + 3r + 3] p/3. By ??, the present value of the revenue is:
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revenuecase1 = δ2
[
r2 + 3r + 3

] (1 + βδ 1
1−δ

)v(x)

[βδ2(r2 + 3r + 3)]
= v(x)(1 + βδ

1

1− δ
)
1

β

Since the cost of an upgrade is c(x) and the fixed cost is F, we can write the

monopolist’s payoff from one upgrade as follows:

payoffcase1 =

[
v(x)(1 + βδ

1

1− δ
)
1

β
− c(x)− F

]
If the monopolist offers the same amount of upgrade every period, the present

value of the total payoff is:

payoff1,case1 =
1

1− δ

[
v(x)(1 + βδ

1

1− δ
)
1

β
− c(x)− F

]
For Case 2, by following the same steps as above, we can find the present value

of the total payoff as follows:

[
1 + βδ + βδ2

]
p/3 = (1 + βδ

1

1− δ
)v(x) =⇒ p/3 =

(1 + βδ 1
1−δ

)v(x)

[1 + βδ + βδ2]

revenuecase2 =
[
1 + δ + δ2

] (1 + βδ 1
1−δ

)v(x)

[1 + βδ + βδ2]
= v(x)(1 + βδ

1

1− δ
)

1 + δ + δ2

1 + βδ + βδ2

payoff1,case2 =
1

1− δ

[
v(x)(1 + βδ

1

1− δ
)

1 + δ + δ2

1 + βδ + βδ2
− c(x)− F

]
For Case 3, in the first period the consumer believes that his total payment will

be [βδ(2 + r + δ)] p/3, so the optimal price to be charged can be found as follows:

[βδ(2 + r + δ)] p/3 = (1 + βδ
1

1− δ
)v(x) =⇒ p/3 =

(1 + βδ 1
1−δ

)v(x)

[βδ(2 + r + δ)]

Then the revenue and payoff can be written as follows:
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revenuecase3 = δ2
[
r2 + 3r + 3

] (1 + βδ 1
1−δ

)v(x)

[βδ(2 + r + δ)]
= v(x)(1+βδ

1

1− δ
)
δ

β

r2 + 3r + 3

2 + r + δ

payoff1,case3 =
1

1− δ

[
v(x)(1 + βδ

1

1− δ
)
δ

β

r2 + 3r + 3

2 + r + δ
− c(x)− F

]

Lemma 3. If the consumer is a naive hyperbolic discounter and the monopolist

offers the same amount of upgrade in every two periods, we can write the payoff

function of the monopolist as follows:

if 1 > δ(1 + r)

=⇒ payoff2,case1 = 1
1−δ2

[
v(y)(1 + βδ 1

1−δ
) 1

β
− δc(y)− F

]
,

if 1 < βδ(1 + r)

=⇒ payoff2,case2 = 1
1−δ2

[
v(y)(1 + βδ 1

1−δ
) 1+δ+δ2

1+βδ+βδ2 − δc(y)− F
]
, and

if 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r)

=⇒ payoff2,case3 = 1
1−δ2

[
v(y)(1 + βδ 1

1−δ
) δ

β
r2+3r+3
2+r+δ

− δc(y)− F
]
.

Proof. For case 1, we know the present value of the revenue from the proof of the

previous lemma:

revenuecase1 = v(y)(1 + βδ
1

1− δ
)
1

β

The monopolist can spread the cost over two periods optimally if she offers

the upgrades in every two periods, and since the cost function is linear, it will be

optimal for her to produce the upgrade in the second period. The timing of this

is as follows: at the beginning of the first period the monopolist knows that she

will offer the upgrade at the end of the second period and according to that, she

decides to create the upgrade in the second period. So the present value of the

cost is δc(y).Then we can write the payoff from one upgrade as follows:

payoffcase1 =

[
v(y)(1 + βδ

1

1− δ
)
1

β
− δc(y)− F

]
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If the monopolist offers the same amount of upgrade in every two periods, the

present value of the total payoff is:

payoff2,case1 =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)
1

β
− δc(y)− F

]
In the same way, the total payoff for Case 2 and Case 3 can be written as:

payoff2,case2 =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)

1 + δ + δ2

1 + βδ + βδ2
− δc(y)− F

]

payoff2,case3 =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)
δ

β

r2 + 3r + 3

2 + r + δ
− δc(y)− F

]

Remark 1. Note that the only difference between the payoff functions in every

period (every two periods) upgrade is the first term in the parenthesis. So, we can

write the payoff functions of case i as follows:

payoff1,casei = 1
1−δ

[v(x)Ai − c(x)− F ]

payoff2,casei = 1
1−δ2 [v(y)Ai − δc(y)− F ]

for i = 1, 2 or 3, and Ai depends on β, δ and r.

Lemma 4. The optimal values of x and y are given by v′(x)Ai = c′(x) and

v′(y)Ai = δc′(y).

Proof. max
x

payoff1,casei = 1
1−δ

[v(x)Ai − c(x)− F ]

max
y

payoff2,casei = 1
1−δ2 [v(y)Ai − δc(y)− F ]

From the first order conditions

v′(x)Ai = c′(x)

v′(y)Ai = δc′(y)

The second order condition is satisfied as v(.) is concave and c(.) is linear.

Lemma 5. The optimal value of r is equal to 1−βδ
βδ

.

Proof. When the monopolist offers upgrades every period, the payoff function is:

payoff1,casei = 1
1−δ

[v(x)Ai − c(x)− F ] , such that Ai is in terms of β, δ and r.
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According to the above expression, the payoff is increasing with A. So, the

monopolist chooses to create Case i if Ai ≥ Aj, Ak i 6= j 6= k by choosing the

appropriate value for r.
1
β
≥ 1+δ+δ2

1+βδ+βδ2 =⇒ A1 ≥ A2

δ
β

r2+3r+3
2+r+δ

≥ 1
β
, for r values such that 1 ≥ βδ(1+r) & 1 ≤ δ(1+r) is true. =⇒

A3 > A1

So, the monopolist always chooses r such that 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r), is

the condition for Case 3. Then we can write the payoff function with every period

upgrades as follows:

payoff1,case3 = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) δ

β
r2+3r+3
2+r+δ

− c(x)− F
]

For the same reason as given above, we can write the payoff function with every

two period upgrades as follows:

payoff2,case3 = 1
1−δ2

[
v(y)(1 + βδ 1

1−δ
) δ

β
r2+3r+3
2+r+δ

− δc(y)− F
]

From now on, for convenience we will denote payoff1,case3 as payoff1 and

payoff2,case3 as payoff2. Since the expression r2+3r+3
2+r+δ

is increasing with r, then

payoff1 and payoff2 are increasing with r. Since the monopolist chooses the

biggest r within the range given by 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r), the optimal

value of r is 1−βδ
βδ

.

Lemma 6. There is a cutoff δ∗ such that payoff2 − payoff1 is increasing with β

for δ > δ∗.

Proof. Let’s first write the difference between the payoffs:

payoff2 − payoff1 =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)
δ

β

r2 + 3r + 3

2 + r + δ
− δc(y)− F

]
− 1

1− δ

[
v(x)(1 + βδ

1

1− δ
)
δ

β

r2 + 3r + 3

2 + r + δ
− c(x)− F

]

payoff2 − payoff1 =
1

1− δ2

(1 + βδ
1

1− δ
)
δ

β

r2 + 3r + 3

2 + r + δ︸ ︷︷ ︸
A

(v(y)− (1 + δ)v(x))


+

1

1− δ2
[−δc(y) + (1 + δ)c(x) + δF ]
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∂ (payoff2 − payoff1)

∂β
=

1

1− δ2
A

[
v′(y)

∂y

∂β
− (1 + δ)v′(x)

∂x

∂β

]
+

1

1− δ2
[v(y)− (1 + δ)v(x)]

∂A

∂β

+
1

1− δ2

[
−δc′(y)

∂y

∂β
+ (1 + δ)c′(x)

∂x

∂β

]
If we write v′(y) in terms of c′(y) and v′(x) in terms of c′(x) by utilizing Lemma

4:

∂ (payoff2 − payoff1)

∂β
=

1

1− δ2
[v(y)− (1 + δ)v(x)]

∂A

∂β

Since A = (1 + βδ 1
1−δ

) δ
β

r2+3r+3
2+r+δ

or A = (1 + βδ 1
1−δ

) 1+βδ+(βδ)2

β2(1+βδ+βδ2)

∂A

∂β
< 0

∂ (payoff2 − payoff1)

∂β
=

1

1− δ2
[v(y)− (1 + δ)v(x)]

∂A

∂β︸︷︷︸
−

The limit of y(δ) as δ goes to 1 is equal to the limit of x(δ) as δ goes to 1.

At this limit, [v(y)− (1 + δ)v(x)] is strictly negative and equal to −v(x) since

y(δ) and x(δ) are continuous in δ. This means that there is a cutoff δ∗ such that

[v(y)− (1 + δ)v(x)] is negative for δ > δ∗; consequently payoff2 − payoff1 is

increasing with β for δ > δ∗. On the other hand, payoff2 − payoff1 is decreasing

with β for δ < δ∗.

Remark 2. Since the value function, v(.) is concave,

v′(x) = c′(x)
A

=⇒ Av(x) > c(x)

v′(y) = δc′(y)
A

=⇒ Av(y) > δc(y)

Proposition 1. If the exponential discount factor δ is big enough, there are some

F and β∗ which depends on F such that for β < β∗, the monopolist offers upgrades

every period, and for β > β∗ she offers upgrades in every two periods. This means

that the monopolist offers upgrades more frequently to more hyperbolic consumers

for some fixed cost values if the exponential discount factor is high enough.
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Proof. Write the difference of the payoff functions as:

payoff2 − payoff1 = 1
1−δ2 [A(v(y)− (1 + δ)v(x))− δc(y) + (1 + δ)c(x) + δF ]

The limit of y(δ) is equal to the limit of x(δ) as δ goes to 1. At this limit,

[v(y)− (1 + δ)v(x)] is equal to −v(x), and [−δc(y) + (1 + δ)c(x)] is equal to c(x),

so [A(v(y)− (1 + δ)v(x))− δc(y) + (1 + δ)c(x)] is equal to [−Av(x) + c(x)] since

y(δ) and x(δ) are continuous in δ. We know that [−Av(x) + c(x)] is less than zero

from the previous remark. So, [A(v(y)− (1 + δ)v(x))− δc(y) + (1 + δ)c(x)] is less

than zero for δ > δ. If δ > max{δ∗, δ}, payoff2− payoff1 is increasing with β and

for some F values, payoff2−payoff1 < 0 for β < β∗ and payoff2−payoff1 > 0 for

β > β∗. This means that if δ is big enough, for some F values, the monopolist offers

the upgrades more frequently to more hyperbolic consumers and less frequently to

less hyperbolic consumers.

Below we provide an example showing the cutoff points and the result.

Example 1. Let v(x) =
√

x and c(x) = mx
∂payoff2−payoff1

∂β
= 1

1−δ2 [v(y)− (1 + δ)v(x)] ∂A
∂β

∂payoff2−payoff1

∂β
=

1

1− δ2︸ ︷︷ ︸
+

 A

2m︸︷︷︸
+

(
1− δ − δ2

δ

)
︸ ︷︷ ︸

?

 ∂A

∂β︸︷︷︸
−

if δ > 0.61803 =⇒ payoff2 − payoff1 is increasing with β

payoff2 − payoff1 = 1
1−δ2

[
1−δ−δ2

δ
A2

4m
+ δF

]
For δ > 0.61803, there are some F values and a β∗ cutoff value which depend

on each F value such that the monopolist offers upgrades every period for β < β∗

and she offers upgrades in every two periods for β > β∗.

1.3.2 Sophisticated Hyperbolic Consumer

We now derive the results for the sophisticated hyperbolic consumer. These corre-

spond to those derived already for the naive hyperbolic consumer. If the consumer

is sophisticated hyperbolic, at any time period his sequence of discount factors are

{1, βδ, βδ2, βδ3, ...} as in the naive hyperbolic consumer, but the sophisticated hy-

perbolic consumer is aware of his time inconsistency. In other words he knows that

tomorrow his discount factors will be {1, βδ, βδ2, βδ3, ...} instead of {1, δ, δ2, δ3, ...} .



15

For the sophisticated hyperbolic consumer, there are three possible cases with two

subcases under Case 3.

• Case 1: 1 > δ(1 + r)

In this case, the consumer prefers to delay all the payments to the third

period. The payoffs for the monopolist are:

payoff1,case1 = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) 1

β
− c(x)− F

]
payoff2,case1 = 1

1−δ2

[
v(y)(1 + βδ 1

1−δ
) 1

β
− δc(y)− F

]
• Case 2: 1 < βδ(1 + r)

In this case, the consumer chooses to pay all payments in the designated

periods. The payoffs for the monpolist are:

payoff1,case2 = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) 1+δ+δ2

1+βδ+βδ2 − c(x)− F
]

payoff2,case2 = 1
1−δ2

[
v(y)(1 + βδ 1

1−δ
) 1+δ+δ2

1+βδ+βδ2 − δc(y)− F
]

• Case 3: 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r)

In this case, since the consumer is sophisticated, he knows that he will update

his discount factors when he reaches the second period. Consequently, he

knows that he will delay the second period payment to the third period. Now,

he needs to determine whether to delay the first payment. Since he delays

whatever he owes in the second period to the third period, delaying the first

payment to the second period means delaying the first payment to the third

period automatically. Since the sophisticated consumer is aware of this, he

compares the amount he needs to pay if he does not delay the first payment

and the amount he ends up paying if he delays the first payment until the

third period. If he does not delay the first payment, he needs to pay p/3. If he

delays the first payment, the present value of his payment is βδ2(1 + r)2p/3.

When we compare p/3 and βδ2(1 + r)2p/3, under the conditions of 1 ≥
βδ(1 + r) and 1 ≤ δ(1 + r), we can see that p/3 ≤ βδ2(1 + r)2p/3 for β ≥ β

such that β is between 0 and 1. This means that the consumer does not delay

his first payment if β ≥ β, but delays it to the third period β < β . As a

result, we can write two subcases of Case 3:
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Subcase 3a: 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r) & β ≥ β, 0 < β < 1

The sophisticated hyperbolic consumer does not delay the first payment,

but delays the second payment until the third period. Therefore, the total

payment of the consumer is [1 + βδ2(1 + r) + βδ2] p/3. Since the total utility

he gets from the upgrade is (1 + βδ 1
1−δ

)v(x), the optimal price charged can

be written as follows:

[1 + βδ2(1 + r) + βδ2] p/3 = (1 + βδ 1
1−δ

)v(x) =⇒ p/3 =
(1+βδ 1

1−δ
)v(x)

[1+βδ2(1+r)+βδ2]

Revenue and payoffs are:

revenuesubcase3a = v(x)(1 + βδ 1
1−δ

) 1+2δ2+δ2r
1+2βδ2+βδ2r

payoff1,subcase3a = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) 1+2δ2+δ2r

1+2βδ2+βδ2r
− c(x)− F

]
payoff2,subcase3a = 1

1−δ2

[
v(y)(1 + βδ 1

1−δ
) 1+2δ2+δ2r

1+2βδ2+βδ2r
− δc(y)− F

]
Subcase 3b: 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r) & β < β, 0 < β < 1

The sophisticated hyperbolic consumer delays all the payments until the third

period. Therefore, the total payment of the consumer is βδ2 [r2 + 3r + 3] p/3

and the total utility he gets is (1 + βδ 1
1−δ

)v(x). As a result, we can find the

optimal price charged as follows:

βδ2 [r2 + 3r + 3] p/3 = (1 + βδ 1
1−δ

)v(x) =⇒ p/3 =
(1+βδ 1

1−δ
)v(x)

βδ2[r2+3r+3]

Revenue and payoffs are:

revenuesubcase3b = v(x)(1 + βδ 1
1−δ

) 1
β

payoff1,subcase3b = 1
1−δ

[
v(x)(1 + βδ 1

1−δ
) 1

β
− c(x)− F

]
payoff2,subcase3b = 1

1−δ2

[
v(y)(1 + βδ 1

1−δ
) 1

β
− δc(y)− F

]
We can summarize these observations in the following lemma:

Lemma 7. If the consumer is a sophisticated hyperbolic discounter, the behavior

of the consumer depending on the discount factors, δ, β, and the interest rate, r,

and the payoff function of the monopolist can be summarized as follows:
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if 1 > δ(1+ r) =⇒ the consumer delays all payments until the third period and

payoff1,case1 =
1

1− δ

[
v(x)(1 + βδ

1

1− δ
)
1

β
− c(x)− F

]

payoff2,case1 =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)
1

β
− δc(y)− F

]
if 1 < βδ(1 + r) =⇒ the consumer pays all payments on the designated periods

and

payoff1,case2 =
1

1− δ

[
v(x)(1 + βδ

1

1− δ
)

1 + δ + δ2

1 + βδ + βδ2
− c(x)− F

]

payoff2,case2 =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)

1 + δ + δ2

1 + βδ + βδ2
− δc(y)− F

]
if 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r) & β ≥ β, 0 < β < 1 =⇒ the consumer pays

the first payment on time but delays the second payment until the third period and

payoff1,subcase3a =
1

1− δ

[
v(x)(1 + βδ

1

1− δ
)

1 + 2δ2 + δ2r

1 + 2βδ2 + βδ2r
− c(x)− F

]

payoff2,subcase3a =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)

1 + 2δ2 + δ2r

1 + 2βδ2 + βδ2r
− δc(y)− F

]
if 1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r) & β < β, 0 < β < 1 =⇒ the consumer delays

all the payments until the third period and

payoff1,subcase3b =
1

1− δ

[
v(x)(1 + βδ

1

1− δ
)
1

β
− c(x)− F

]

payoff2,subcase3b =
1

1− δ2

[
v(y)(1 + βδ

1

1− δ
)
1

β
− δc(y)− F

]
Lemma 8. The optimal value of r is either less than 1−δ

δ
or equal to 1−δ

δ
.

Proof. First, we can write the payoff functions as follows:

payoff1,casei =
1

1− δ
[v(x)Ai − c(x)− F ]
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payoff2,casei =
1

1− δ2
[v(y)Ai − δc(y)− F ]

such that Ai is in terms of β, δ and r

According to above expression, we can say that the monopolist’s payoff is in-

creasing with A. So, the monopolist will choose to create case i if Ai ≥ Aj, Ak

i 6= j 6= k by choosing appropriate value for r.
1
β
≥ 1+2δ2+δ2r

1+2βδ2+βδ2r
& 1

β
≥ 1+δ+δ2

1+βδ+βδ2 =⇒ A3b ≥ A3a, A1 ≥ A2 and A1 = A3b

So, the monopolist either chooses r < 1−δ
δ

to create Case 1 or chooses 1−δ
δ
≤

r ≤ 1−βδ
βδ

with the condition β < β to create Case 3b. If the monopolist chooses r

such that 1−δ
δ
≤ r ≤ 1−βδ

βδ
is true, she either creates Subcase 3a if β ≥ β or creates

Subcase 3b if β < β. Since Subcase 3b gives a higher payoff than Subcase 3a, the

monopolist wants to increase the possibility of Subcase 3b. In order to increase

the possibility of Subcase 3b, she makes β as big as possible. Remember that in

Case 3 the following condition holds:

1 ≥ βδ(1 + r) & 1 ≤ δ(1 + r)

and

1 > [βδ(1 + r)]︸ ︷︷ ︸
≤1

[δ(1 + r)]︸ ︷︷ ︸
≥1

for β < β

if r = 1−δ
δ

=⇒ 1 > [βδ(1 + r)] [δ(1 + r)] for β < β = 1

Therefore, in order to make β as big as possible, the monopolist should choose

r = 1−δ
δ

. As a result, the optimal value of r is either less than 1−δ
δ

or equal to
1−δ

δ
.

Lemma 9. There is a cutoff value δ∗∗ such that payoff2− payoff1is increasing

with β for δ > δ∗∗.

Proof. From the proof of Lemma 6:

∂payoff2 − payoff1

∂β
=

1

1− δ2
[v(y)− (1 + δ)v(x)]

∂A

∂β

If the consumers are sophisticated, the monopolist would choose either r <
1−δ

δ
or r = 1−δ

δ
. In both cases, A is equal to 1

β
. We know that ∂A

∂β
= − 1

β2 < 0,
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consequently the sign of ∂payoff2−payoff1

∂β
depends on the sign of [v(y)− (1 + δ)v(x)] .

The limit of y(δ) is equal to the limit of x(δ) as δ goes to 1. At this limit,

[v(y)− (1 + δ)v(x)] is strictly negative and equal to −v(x) since y(δ) and x(δ) are

continuous in δ. This means that for a cutoff δ∗∗, [v(y)− (1 + δ)v(x)] is negative

for δ > δ∗∗; consequently payoff2 − payoff1 is increasing with β for δ > δ∗∗ and

decreasing with β otherwise.

Proposition 2. If the exponential discount factor δ is big enough, there are some F

and β∗∗ which depends on F such that the monopolist offers upgrades every period

for β < β∗∗, and she offers upgrades in every two periods for β > β∗∗. This means

that the monopolist offers upgrades more frequently to more hyperbolic consumers

for some fixed cost values if the exponential discount factor is high enough.

Proof. Let’s write the difference of the payoff functions:

payoff2 − payoff1 =
1

1− δ2
[A(v(y)− (1 + δ)v(x))− δc(y) + (1 + δ)c(x) + δF ]

The limit of y(δ) is equal to the limit of x(δ) as δ goes to 1. At this limit,

[v(y)− (1 + δ)v(x)] is equal to −v(x), and [−δc(y) + (1 + δ)c(x)] is equal to c(x),

so [A(v(y)− (1 + δ)v(x))− δc(y) + (1 + δ)c(x)] is equal to [−Av(x) + c(x)] since

y(δ) and x(δ) are continuous in δ. We know that [−Av(x) + c(x)] is less than zero.

So we can say that [A(v(y)− (1 + δ)v(x))− δc(y) + (1 + δ)c(x)] is less than zero

for δ > δ̃. If δ > max{δ∗∗, δ̃}, payoff2− payoff1 is increasing with β and for some

F values, payoff2 − payoff1 < 0 for β < β∗∗ and payoff2 − payoff1 > 0 for

β > β∗∗. This means that the monopolist will offer the upgrades more frequently

to more hyperbolic consumers for some F values if δ is high enough.

If we look at the same example we gave before, but with a sophisticated hyper-

bolic consumer instead of naive hyperbolic consumer, we can see that the cutoff

values for δ are the same, which does not have to hold always.

Example 2. Let v(x) =
√

x and c(x) = mx This is the same example as example

1, with the only difference being the expression for A.
∂payoff2−payoff1

∂β
= 1

1−δ2 [v(y)− (1 + δ)v(x)] ∂A
∂β
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∂payoff2−payoff1

∂β
=

1

1− δ2︸ ︷︷ ︸
+

 A

2m︸︷︷︸
+

(
1− δ − δ2

δ

)
︸ ︷︷ ︸

?

 ∂A

∂β︸︷︷︸
−

if δ > 0.61803 =⇒ payoff2 − payoff1 is increasing with β

payoff2 − payoff1 = 1
1−δ2

[
1−δ−δ2

δ
A2

4m
+ δF

]
For δ > 0.61803, there are some F values and a β∗∗ cutoff value which depends

on each F value such that for β < β∗∗ the monopolist offers upgrades every period

and for β > β∗∗ she offers upgrades in every two periods.

In this example, although the cutoff values for δ are the same for both naive

and sophisticated consumers, we know that the cutoff values for β will be different,

which is discussed in the following section.

1.3.3 Naive versus Sophisticated Consumers

For naive and sophisticated hyperbolic consumers, we found that if the δ is greater

than some cutoff value the monopolist changes her strategy depending on the

level of hyperbolicity of the consumer. This means that the monopolist offers

the upgrades more frequently to more hyperbolic consumers, who have smaller β

discount factors. An interesting question might be what would happen if the only

difference is whether the consumer is naive or sophisticated. In other words, there

are two possible kinds of consumers with the same discount factors and the only

difference between them is whether they are naive of sophisticated.

Proposition 3. The monopolist’s strategy does not only depend on the level of the

time inconsistency of the consumers, but also depends on whether the consumer is

aware of his time-inconsistent behavior. For some β values, the monopolist offers

upgrades more frequently to a naive hyperbolic consumer than to a sophisticated

hyperbolic consumer, although the level of time inconsistency is the same for both.

Proof. Remember the expression for the difference of the payoffs:

payoff2 − payoff1 =
1

1− δ2

A(v(y)− (1 + δ)v(x))− δc(y) + (1 + δ)c(x)︸ ︷︷ ︸
R

+ δF


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Since the monopolist chooses the r value, we know AN and AS from the previous

findings,7

AN = (1 + βδ
1

1− δ
)

1 + βδ + (βδ)2

β2 (1 + βδ + βδ2)
,

AS = (1 + βδ
1

1− δ
)
1

β
,

therefore AN > AS.

We can find how the R part of the expression for difference of payoffs changes

with A.

∂R

∂A
= (v(y)− (1 + δ)v(x)) + A

(
v′(y)

∂y

∂A
− (1 + δ)v′(x)

∂x

∂A

)
−δc′(y)

∂y

∂A
+ (1 + δ)c′(x)

∂x

∂A

From the first order conditions given in Lemma 4, we can write ∂R/∂A as

follows:

∂R

∂A
= (v(y)− (1 + δ)v(x))

If the consumer is a naive hyperbolic consumer,

(v(y)− (1 + δ)v(x)) < 0, and

payoff2 − payoff1 is increasing with β for δ > max{δ∗, δ}

If the consumer is a sophisticated hyperbolic consumer,

(v(y)− (1 + δ)v(x)) < 0, and

payoff2 − payoff1 is increasing with β for δ > max{δ∗∗, δ̃}
7Subscript N and S denote naive and sophisticated consumers respectively.
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R part of the expression in the difference of the payoffs is decreasing with A

for δ > max{δ∗, δ∗∗} :

AN > AS =⇒ RN < RS

=⇒ [payoff2 − payoff1]N < [payoff2 − payoff1]S

Let’s assume that there is an F such that [payoff2 − payoff1]N < 0 and

[payoff2 − payoff1]S < 0 for δ > max{δ∗, δ, δ∗∗, δ̃} and β is very small. Since δ >

max{δ∗, δ∗∗}, both [payoff2 − payoff1]N and [payoff2 − payoff1]S increase with

β and [payoff2 − payoff1]N is always less than [payoff2 − payoff1]S . This means

that [payoff2 − payoff1]S reaches zero (at β = β∗∗) before [payoff2 − payoff1]N

reaches zero (at β = β∗), as β increases.

For δ > max{δ∗, δ, δ∗∗, δ̃}, there are F, β∗, and β∗∗ for naive and sophisticated

hyperbolic consumers respectively such that:

1. If β∗∗ < β < β∗ =⇒ the monopolist offers upgrades every period for

a naive consumer although she offers upgrades in every two periods for a

sophisticated consumer.

2. If β < β∗∗ =⇒ she offers upgrades every period for both kinds of consumers.

3. If β∗ < β =⇒ she offers upgrades in every two periods for both kinds of

consumers.

Different cutoff values for naive and sophisticated consumers suggest that the

monopolist’s strategy does not only depend on the hyperbolic behavior of the

consumer but also on whether the consumer is aware of his time inconsistency.

1.4 Exogenous Interest Rate

In this section we analyze the case in which there is a competitive financial market,

implying a fixed interest rate. In this case the monopolist cannot choose the interest

rate. Since our concern is to see whether there can be a change in the strategy of

the monopolist if there are time-inconsistent consumers, we only analyze the cases

in which we observe time inconsistency in the consumer’s behavior. Therefore, the
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case we analyze is Case 3 such that 1 ≥ βδ(1 + r) and 1 ≤ δ(1 + r) is true. Since

we only get results for Case 3 under naive hyperbolic consumer and Subcase 3b

under sophisticated hyperbolic consumer, we have a partial result if the interest

rate is exogenous.

First, we solve the problem if the consumer is naive hyperbolic. From the

previous findings we know that A = (1 + βδ 1
1−δ

) δ
β

r2+3r+3
2+r+δ

if the consumer is naive

hyperbolic and if 1 ≥ βδ(1 + r) and 1 ≤ δ(1 + r) is true. Since ∂A
∂β

< 0, Lemma 6

and Proposition 1 holds for this case as well. As a result, we get the same result

we found in Section 1.3.1.

Now, we analyze the problem if the consumer is sophisticated hyperbolic. Again

we consider Case 3 in which 1 ≥ βδ(1 + r) and 1 ≤ δ(1 + r) holds. We know that

there are two subcases if the consumer is sophisticated. If Subcase 3b occurs, A is

equal to (1+βδ 1
1−δ

) 1
β

and ∂A
∂β

< 0. Consequently Lemma 9 and Proposition 2 hold

for this case as well and we get the same result we found in Section 1.3.2.

1.5 Welfare Analysis

In this section, we determine what frequency of upgrades, either every period or in

every two periods, is socially better. Moreover, we show that sometimes monopolist

offers upgrades every period although to offer the upgrades in every two periods

is socially better. We evaluate the consumer’s welfare with long term preferences

in the sense that β = 1. This welfare measure is used by O’Donoghue & Rabin

(2001) and Della Vigna & Malmendier (2004).

Proposition 4. When the consumer is naive hyperbolic, if the exponential discount

factor δ is big enough, there are some F and β, which depends on F such that for

β < β, the monopolist offers the upgrades every period although to offer upgrades

in every two periods is socially better.

Proof. Define the consumer welfare of a consumer with β− δ discount factor every

time he buys an upgrade as:

1

1− δ
v(x)− p
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such that p is the total price he pays. This is the welfare evaluated with long-

term preferences. We can write the welfare of the monopolist every time he offers

the upgrades when he offers it every period and in every two periods as follows:

p− (c(x) + F )

p− (δc(y) + F )

If the monopolist offers upgrades every period, the social welfare is:

w1 =
1

1− δ

[
1

1− δ
v(x)− (c(x) + F )

]
If the monopolist offers upgrades in every two periods, the social welfare is:

w2 =
1

1− δ2

[
1

1− δ
v(y)− (δc(y) + F )

]
Lets write down the difference of the social welfare in each case:

w2 − w1 =
1

1− δ2

[
1

1− δ
[v(y)− (1 + δ)v(x)]− δc(y) + (1 + δ)c(x) + δF

]

Note that w2−w1 does not depend on β since ∂(w2−w1)
∂β

= 0. Remember that we

can write the difference of the payoffs when the monopolist offers upgrades every

period and in every two period as:

p2 − p1 =
1

1− δ2


(1 + βδ

1

1− δ
)
δ

β

r2 + 3r + 3

2 + r + δ︸ ︷︷ ︸
A

(v(y)− (1 + δ)v(x))

−δc(y) + (1 + δ)c(x) + δF


We already showed that ∂(p2−p1)

∂β
> 0 for δ > δ∗. Note that the only difference

between (w2 − w1) and (p2 − p1) is the factor of (v(y) − (1 + δ)v(x)). Let β = 1,

then we can show that there is a δ̂ such that for δ > δ̂, A > 1
1−δ

. Since ∂A
∂β

< 0, for

0 < β < 1, A > 1
1−δ

is always true. Therefore, there is δ̃ = max{δ∗, δ̂} such that
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for δ > δ̃, the following holds:

p2 − p1 < w2 − w1

From proposition (1), we know that for some F values, payoff2− payoff1 < 0

for β < β∗ and payoff2 − payoff1 > 0 for β > β∗.Therefore, there are some F

and β, which depends on F such that for β < β, the monopolist will offer the

upgrades in every period although it is socially better to offer upgrades in every

two periods.

Proposition 5. When the consumer is sophisticated hyperbolic, if the exponential

discount factor δ is big enough, there are some F and β̂, which depends on F such

that for β < β̂, the monopolist offers the upgrades every period although to offer

upgrades in every two periods is socially better.

Proof. The proof is similar to the proof of proposition (4) with the difference on

expression A. We can write p2 − p1 as follows:

p2 − p1 =
1

1− δ2

 (1 + βδ
1

1− δ
)
1

β︸ ︷︷ ︸
A

(v(y)− (1 + δ)v(x))

−δc(y) + (1 + δ)c(x) + δF


For all δ and β, A ≥ 1

1−δ
. For high enough values of δ, the following holds

p2 − p1 < w2 − w1

From proposition (2), we know that for some F values, payoff2− payoff1 < 0

for β < β∗∗ and payoff2 − payoff1 > 0 for β > β∗∗.Therefore, there are some

F and β̂, which depends on F such that for β < β̂, the monopolist will offer the

upgrades in every period although it is socially better to offer upgrades in every

two periods.

1.6 Conclusion and Discussion

In this paper, using a simple model, we explain frequent and small upgrades ob-

served in the market for certain goods such as software. Our model assumes that
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the upgrades are build on each other. This assumption is very close to the one in

Fishman and Rob (2000).

In our model, we assume the monopolist divides the total price of the upgrade

into three equal payments because three periods are minimal to see the time-

inconsistent behavior of hyperbolic agents. For more than three periods, we would

get the same results but with more complicated calculations. Therefore, for the

sake of simplicity we assume the monopolist divides the payments into three equal

ones.

There might be a question about the optimal number of payments that the

monopolist offers. In fact, it is not optimal for the monopolist to divide the pay-

ments into three if she determines the value of r and if the consumer is naive

hyperbolic. Because in that case, the monopolist will choose r such that the naive

hyperbolic consumer believes that he will delay the first payment but not the sec-

ond, although he will end up delaying both the first and the second payments until

the third period. In such a situation, the consumer ends up paying more than

what he was planning. The more division of the payment the monopolist offers,

the more the consumer pays. Therefore, the monopolist would prefer to offer as

large a number of payments (maybe infinite) as possible to the consumer and use

him as a money pump if the consumer does not have a budget constraint. In our

model, the monopolist and the consumer have δ exponential discount factor and

the consumer has additional β hyperbolic discount factor. If the discount factor

for the monopolist is less than δ, then we cannot expect the monopolist to offer an

infinite number of payments. As the consumer delays the payments, the amount

the monopolist gets will be discounted more severely. As a result, we can say that

as the discount factor of the monopolist decreases, the optimal number of payments

the monopolist offers also decreases. The other case is if the monopolist determines

the value of r and if the consumer is a sophisticated hyperbolic. In this case, the

number of periods of payment does not change the monopolist’s profit, as long as

it is more than one. This is quite intuitive. Since the consumer is a sophisticated,

the monopolist cannot use him as a money pump and get more profit by making

him delay more. Even if the monopolist makes him delay more by giving more

periods to delay, the sophisticated consumer will be able to calculate correctly how

much he will end up paying as opposed to the naive hyperbolic consumer.
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Another question might be about the optimal division of payments. If the

monopolist determines the value of r and if the consumer is naive hyperbolic, it

is not optimal to divide the payments equally. In that scenario the consumer will

end up delaying all payments until the last period. Since the more the consumer

delays, the more the monopolist earns, the monopolist maximizes her profit by

offering the consumer to pay the entire amount in the first period but giving him

the flexibility to delay it with a determined number of periods. Now, consider

the case in which the monopolist determines the value of r and if the consumer is

sophisticated hyperbolic. As explained in the previous paragraph, the monopolist

does not get more or less profit by making the consumer delay more or less, as long

as he delays at least one period. Division of payments will give the same profit to

the monopolist.

In our model, although we solved the case for durable upgrades, we would get

the same result if the upgrades were not durable but with different cutoff values

for δ and β.
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Chapter 2
Credit Card Competition and Naive

Hyperbolic Consumers

2.1 Introduction

The credit card industry has evoked much interest in the last few years because of

the conjunction of persistent high interest rates and what appears to be vigorous

competition among credit card providers (Ausubel, 1991). The two questions that

have been most puzzling are, first, why interest rates stay high despite the competi-

tion and, second, why consumers continue to borrow at these high rates. Moreover,

there is no agreement in the literature as to whether the banks/companies earn

competitive profits in this market (Evans & Schmalensee, 2000). Motivated by

these questions, we present a theoretical model of credit card competition to de-

termine the possibility of positive expected profits in the market equilibrium. The

main features of the model are time-inconsistent consumers and a grace period

offer in credit card contracts.1 We, therefore, also contribute to the debate as to

whether time-inconsistent consumers are ”money pumps” or whether competition

1Strotz (1956) claims that people would not obey their optimal plan of the present moment if
they were allowed to reconsider their plans in future periods. Because people are impatient; they
give more weight to the earlier time as it gets closer, and this causes time inconsistent behavior.
There is a significant amount of evidence for the existence of time-inconsistent preferences. See
Hausman (1979), Loewenstein and Thaler (1989), Ainslie (1991), and DellaVigna and Malmendier
(2002).
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effectively eliminates the disadvantage from this inconsistency.2

We show that there are multiple equilibria with zero and positive expected

profits for some parameter values. We also find that there is a unique positive profit

equilibrium for some other parameter values, and a unique zero profit equilibrium

for still some other parameter values.

In our model, there is an initial period for contracting, followed by three con-

sumption periods. Two credit card companies simultaneously offer contracts that

are defined by the interest rate and the credit limit and these contracts have a

grace period. We allow the consumer to accept more than one contract in the con-

tracting period and to declare bankruptcy. The consumer is time inconsistent and

has a constant income at each period. We model time inconsistency using quasi-

hyperbolic discount structure of Laibson (1997). A time-inconsistent consumer

underestimates his future debt at any given period. If the contracting between the

consumer and a company occurs before the consumption takes place (e.g. the con-

sumer is allowed to borrow on his new card after the contracting period only) and

if the contract includes a grace period offer, then these circumstances may cause

the consumer to believe that he will not pay interest on his credit card debt; that

is, he believes that he is just a convenience user.3 If the consumer believes that

he is just a convenience user, then he is indifferent among different interest rates

on different credit card contracts. This indifference eliminates the competition on

the interest rate. In addition, the consumer would be indifferent to credit limit

variations if all the credit limits offered are higher than his believed amount of

future debt in any period.

In the literature, there are experimental and empirical studies that analyze con-

sumer behavior in the credit card market.4 There are also a few theoretical papers

that provide alternative explanations for the phenomenon we consider. Parlour

and Rajan (2001) construct a model in which the competing firms cannot sus-

tain zero-profit equilibria under certain conditions. In their model, there are three

stages. In the first stage, companies offer contracts with a credit line and interest

2See Laibson and Yariv (2004)
3A grace period is a period in which the consumer may pay his debt without interest. The

consumer who always pays his debt within the grace period is called a convenience user.
4See Calem and Mester (1995), Ausubel (1999), Laibson, Repetto and Tobacman (2001) and

Ausubel and Shui (2004)
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rate, and in the second stage the consumer decides which credit card contracts to

accept and whether to default. If he is going to default, he accepts all contracts

offered in the second stage. In Parlour and Rajan’s (2001) model, the consumer

has an incentive to default given by α ≥ 0 such that αd is the amount of the

consumer’s shielded assets from bankruptcy when he defaults on total loans of d.

If the incentive to default is high enough and if there is multiple contracting, they

show that there are positive profits. Moreover, the interest rates are sticky and

above the risk-adjusted cost of funds. Parlour and Rajan’s (2001) results depend

on a moral hazard problem because the consumer decides whether to default or

not at the second stage when he decides which offers to accept.

In our model, as opposed to that of Parlour and Rajan (2001), the consumer

may decide to default in later periods and the result does not depend on the

moral hazard problem. We also include the cost of bankruptcy for the consumer

because of the costly bankruptcy procedure, as well as future costs of declaring

bankruptcy—e.g. a bad credit score.

Dellavigna and Malmendier (2004) analyze the firms’ profit-maximizing con-

tract design when the consumers are partially naive hyperbolic discounters. They

show that in the optimal two-part tariff, firms price ”investment goods” less than

the marginal cost and ”leisure goods”—e.g. credit card financed consumptions—

higher than the marginal cost. They also show that this result is robust to com-

petition. However, the company earns more than a competitive profit only under

a monopoly case.

We show the possibility of more than marginal cost pricing in a different model

than that of Dellavigna and Malmendier (2004), although we suggest the same

phenomenon —consumer’s time inconsistency—as an explanation. We do not re-

strict the contracts with two-part tariffs so that the consumer has a preference on

the credit limit as well. We also include the risk of bankruptcy and show that a

positive expected profit equilibrium might be possible even if there is competition.

Brito and Hartley (1995) show that rational individuals may choose to pay

interest on a credit card rather than pay the transaction costs on regular bank

loans. They show that the demand for credit card debts is likely to be less sensitive

to a change in credit card interest rates than to a change in interest rates of

alternative loans. Since a decrease in cost of funds will decrease the interest rates
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in alternative loans, existing customers’ demand for the credit card debts will

decrease, consequently the banks will seek additional customers with higher risk

of default and the credit card interest rates will reflect this higher risk.

In contrast to the approach of Brito and Hartley (1995), we look at the com-

petition among credit card companies rather than the competition between credit

card financing and other forms of financing. Moreover, the explanation we provide

for the lack of competition on the interest rate does not depend on the consumers

with high risk of default.

Eliaz and Spiegler (2006) characterize the menu of contracts when a princi-

pal faces dynamically inconsistent heterogenous consumers. They show, under a

monopoly case, that a principal can exploit more naive consumers more intensely.

They also provide some examples, including the credit card ”teaser rates”, for the

application of their results.

In our model, we include the grace period feature of the credit card market.

To the best of our knowledge, this feature was not included in the previous credit

card competition models. The interest rate would have affected the consumer’s

decision had we not include the grace period in our model. In reality, however, the

interest rate does not affect the decision of a convenience user.

Summarizing our contribution, we show that the naive hyperbolic consumer

might be unresponsive to the interest rate and the credit limit of the credit card

offers by companies because the offers have a grace period. We determine whether

the credit card companies can exploit time-inconsistent consumers and gain posi-

tive expected profits. We show that in fact there are circumstances in which both

zero and positive expected profits could be possible.

2.2 The Model

There are three periods of consumption preceded by an initial period/period zero

which is for contracting only (We need at least three periods in order to see an

interest bearing debt). There is one good at each consumption period. There are

three agents in the model: one consumer and two companies who compete against

each other for the credit card business of the consumer. Companies know the

consumer’s type so that this is a model of competition for each different type of
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consumer.

2.2.1 The Consumer

Following Phelps and Pollak (1968) and Laibson (1997), we use hyperbolic dis-

counting to model the time-inconsistent consumer. In the hyperbolic discounting

literature, starting with Strotz (1956), two kinds of consumers are discussed. The

first kind is called ”naive” as he is not aware of his time inconsistency. Specif-

ically, he knows that his future discounting today is {1, βδ, βδ2, βδ3, ..}, and be-

lieves that from tomorrow on it will be {1, δ, δ2, δ3, ..}, although in reality it will be

{1, βδ, βδ2, βδ3, ..} again. The second, called ”sophisticated,” is aware of his time

inconsistency. He knows that his future discounting today is {1, βδ, βδ2, βδ3, ..},
and he correctly anticipates that it will be {1, βδ, βδ2, βδ3, ..} from tomorrow on.

O’Donoghue and Rabin (2001) introduce a model to represent a partially naive

hyperbolic consumer, who is aware of his time inconsistency but underestimates

its severity. According to O’Donoghue and Rabin (2001), the partially naive hy-

perbolic consumer knows that his future discounting today is {1, βδ, βδ2, βδ3, ..},
and he incorrectly believes that it will be {1, β′δ, β′δ2, β′δ3, ..} from tomorrow on

such that β < β′.

In our model, we analyze the naive hyperbolic consumer only with β ∈ [0, 1).

This consumer chooses contracts at the initial period and consumes the consump-

tion good in the following three consumption periods. There is an arbitrarily small

cost for accepting a contract at period zero. The consumer’s total utility is also

affected by whether he defaults in the last period.

At each period t = 0, 1, 2, the consumer aims to maximize Ut, where

U0 = βδ
[
u(c0

1) + δu(c0
2) + δ2u(c0

3) + δ2v(d0
1, d

0
2)
]
,

U1 = u(c1
1) + βδu(c1

2) + βδ2u(c1
3) + βδ2v(d1

1, d
1
2),

and

U2 = u(c2
2) + βδu(c2

3) + βδv(d2
1, d

2
2).

Here ct
τ ∈ R+ is the time t plan for consumption at time τ, and dt

j ∈ {−1, 0}
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is the default decision: dt
j = −1 denotes default and dt

j = 0 denotes no default.

The function u is strictly increasing and concave, and satisfies the standard Inada

conditions. The function v satisfies v(−1, 0) = v(0,−1) = v(−1,−1) = −C and

v(0, 0) = 0, where C > 0 is the exogenous cost of default. We interpret this cost

as the cost of bankruptcy proceedings and of having unfavorable terms in any

contract in the future after declaring bankruptcy. As the consumer becomes more

of a risky prospect, the cost of bankruptcy will be lower for the consumer.

We do not need to write U3 because period three is the terminal period which

implies that the period two plan is implemented.

The consumer chooses a trade yt
j = (sj0, n

t
j1, p

t
j2, n

t
j2, p

t
j3, d

t
j) for each company’s

card j = 1, 2 at each period. Here sj0 ∈ {0, 1}, where sj0 = 1 denotes the contract

is signed with company j at period zero and sj0 = 0 denotes it is rejected; nt
jτ ∈ R+

is the time t plan for the amount of new debt from company j at time τ ; pt
jτ ∈ R+

is the time t plan for the repayment to company j at time τ. At each consumption

period, the consumer receives an income of m.

These trades of the consumer determine the consumption:

ct
1 = m +

2∑
j=1

sj0n
t
j1; t = 0, 1.

ct
2 = m +

2∑
j=1

sj0

(
nt

j2 − pt
j2

)
; t = 0, 1, 2.

ct
3 = m−

[(
1 + dt

1

) (
1 + dt

2

)] 2∑
j=1

sj0p
t
j3; t = 0, 1, 2, 3.

The consumer chooses the trades sequentially. The time t plan does not affect

the subsequent period’s plan except for the trades completed at time t —those for

which t = τ .

2.2.2 The Companies and the Class of Contracts

For simplicity, we assume that the only source of revenue is from the interest

payments. Company j′s profit is Πj =
(
1 + d3

j

)
(n1

j1−p2
j2)rj +d3

j

(
n1

j1 + n2
j2 − p2

j2

)
.

Informally, each credit card company j charges an interest rate of rj for loans

for more than one period, although it is not permitted to charge interest for only
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one-period loans. A credit card company loses everything lent if the consumer

defaults.

The company’s strategy set is not the set of all contracts but consists only of

contracts specified by a credit limit l and interest rate r ∈ [0, 1],5 which have the

following form:

nj1 ≤ lj

nj1 + nj2 − pj2 ≤ lj

which means that the consumer’s total debt cannot be greater than his credit

limit lj at any period. Also,

pj2 ≤ min{m, nj1}

pj3 ≤ min{m, (nj1 − pj2)(1 + rj) + nj2}

which means that the consumer’s payment cannot be higher than his income

or his total debt at any period.

2.2.3 Strategic Interaction

The two companies make simultaneous contract offers and the consumer decides

which to choose at the initial period; subsequently the consumer makes two se-

quential decisions as described in Section 2.2.1. Therefore, the only strategic game

between the companies and the consumer takes place at period zero.

We focus on the pure strategy subgame perfect equilibria of this game.6 From

this point on we will examine only the subgame perfect equilibria with three tie

breaking conventions. One is on consumer’s decision and two on the companies’

credit limit offers;

• if the consumer wants to choose one contract and is indifferent between the

5Our results would not change as long as the upper bound is finite.
6Players act optimally at each decision node. However, as a difference from the standard

SPNE, a naive hyperbolic consumer has wrong beliefs about his future decisions.
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contracts, then each choice is equally likely;

• if a company is indifferent among two credit limits which are higher than m,

the company chooses the lower one;

• if a company is indifferent among two credit limits which are lower than m,

the company chooses the higher one.

2.3 Analysis

We first determine how the consumer chooses the contract(s) given that he does

not default. Our approach is as if there is only one interest rate affecting the

consumer’s problem. We later confirm that in equilibrium only one interest rate is

relevant for the consumer even if he has two different contracts. Second, we analyze

the consumer’s decision on default. Third, we explain the companies’ objective

functions and determine the best responses under two different cases; under the

first case, one contract is chosen and under the second case, both contracts are

chosen. Fourth, we show the existence of the equilibrium by construction. We

assume that a particular case holds and calculate the best responses, and then

check whether the strategies are consistent with that assumed case. If not, we do

the same exercise for the other case.

2.3.1 The Consumer’s Behavior with no Default Option

In this model, we analyze only the first-period debt because interest revenue comes

only from the first-period debt. Since it is a dominant strategy for the consumer

to pay as much of his debt as possible within the grace period, we can write the

consumer’s repayment in each period in terms of his income and total debt of the

previous period. In particular, if n1 ≤ m, then p2 = n1 and p3 = n2; if n1 > m,

then p2 = m and p3 = (n1 −m) (1 + r) .

At each period, the consumer underestimates the future period debts. There-

fore, the initial-period self’s believed amount of debt for the first period, n0
1, is

always less than the actual amount of debt, n1
1.

7

7In the hyperbolic discounting literature, the consumer in different periods is considered as
different selves of the consumer.
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Proposition 6. There is a cutoff exponential discount factor δ′ such that

for all δ ≥ δ′, n0
1 ≤ m.

There is another cutoff exponential discount factor δ′′ ≥ δ′ and a cutoff hyper-

bolic discount factor β′ such that

for all (δ, β) where δ > δ′′ and β < β′, n0
1 ≤ m < n1

1.

Proof. See the appendix for the proof of the proposition

Accordingly, the initial-period self believes that he can pay the first-period

debt within the grace period without interest, therefore he is not responsive to

interest rates. However, the consumer ends up paying interest as opposed to the

initial-period self’s belief.

We consider the consumer with discount factors δ > δ′′ and β < β′ only. Since

there is an arbitrarily small cost for accepting a contract, the consumer will choose

only one contract if there is at least one company offering enough credit limit.

Suppose the equilibrium credit limits are l1 and l2,

• if max {l1, l2} ≥ max{n0
1, n

0
2} ≡ n0 > min{l1, l2}, then the consumer accepts

only the contract with higher credit limit;

• if min {l1, l2} ≥ n0, then the consumer accepts one contract randomly;

• if max {l1, l2} < n0, then the consumer accepts both contracts.

2.3.2 The Consumer’s Decision on Default

At each period, the consumer compares his total utility from defaulting and not

defaulting, which gives three different cutoff cost of default values, namely C0, C1,

and C2. If the consumer’s exogenously given cost of default (C) is higher than

these cutoffs, he chooses not to default.

The relevant cutoff (the highest one of the three) depends on the number of

contracts chosen. Suppose l1 and l2 are in appropriate ranges that the consumer

chooses only one contract. For convenience, we take the first company as the
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chosen company with interest rate r if there is only one contract chosen. The

cutoffs and the relation among them are then given in the following two lemmas.

Lemma 10. When only one contract is accepted, the cutoff cost of default for each

period is as follows8:

C0 =
1

δ2

 max
n1≤l1+l2

[u(m + n1) + δu(m + l1 + l2 − n1) + δ2u(m)]

− max
n1≤m,n2

[u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)]


C1 =

1

βδ2

 max
n1≤l1

[u(m + n1) + βδu(m + l1 − n1) + βδ2u(m)]

− max
n1≤l1,n2

[u(m + n1) + βδu(n2) + βδ2u(m− (n1 −m)(1 + r)− n2)]


C2 =

1

βδ

 [u(m + l1 − n1) + βδu(m)]

−max
n2

[u(n2) + βδu(m− (n1 −m)(1 + r)− n2)]


Proof. See the appendix for the proof of the lemma.

There are two entities which make the consumer closer to default: higher credit

limit to default on, and spending more than anticipated amount because of time

inconsistency. If the consumer had only one card to default on at each period, then

we could easily say that C2 is the highest among the three because the second-

period self spends more than what the previous-period selves expected. However,

the total credit limit to default on is not the same at each period; it is l1 + l2 at

the initial period and only l1 at later periods. Therefore C0 might be higher than

C2 depending on the value of l2.

Lemma 11. If the consumer accepts only one contract, then C1 < C2, therefore

relevant cutoff C ′ = max{C0(l1, l2), C2(l1, r)}.

Proof. See the appendix for the proof of the lemma.

Suppose l1 and l2 are in appropriate ranges that the consumer chooses both of

the contracts. When the consumer chooses both contracts and if the total credit

limit offered is more than m, it is a dominant strategy for the consumer to pay his

8When the credit limit of the accepted contract is less than m,then C1 and C2 expressions
will be different. However, the Lemma 11 would still hold.
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debt on the higher interest rate card first. Note that the consumer is able to pay all

his debt on the higher interest rate card within the grace period. This is because

the credit limit is less than the income. Therefore, there will be no interest revenue

for the higher interest rate card. For convenience, we take the first company as

the company with lower interest rate (r) if both contracts are chosen. The cutoffs

and the relation among them are then given in the following two lemmas.

Lemma 12. When both contracts are accepted, the cutoff cost of default for each

period is as follows9:

C0 =
1

δ2

 max
n1≤l1+l2

[u(m + n1) + δu(m + l1 + l2 − n1) + δ2u(m)]

− max
n1≤m,n2

[u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)]


C1 =

1

βδ2

 max
n1≤l1+l2

[u(m + n1) + βδu(m + l1 + l2 − n1) + βδ2u(m)]

− max
n1≤l1+l2,n2

[u(m + n1) + βδu(n2) + βδ2u(m− (n1 −m)(1 + r)− n2)]


C2 =

1

βδ

 [u(m + l1 + l2 − n1) + βδu(m)]

−max
n2

[u(n2) + βδu(m− (n1 −m)(1 + r)− n2)]


Proof. The proof of this lemma is the same as the proof of Lemma 10 except that

the credit limit at periods one and two will be l1 + l2 instead of only l1.

The credit limit to default on is the same at each period, therefore we can easily

show that the highest and the relevant cutoff is C2.

Lemma 13. If the consumer accepts both contracts, then C0 < C1 < C2, therefore

C ′ = C2(l1, l2, r).

Proof. See the appendix for the proof of the lemma.

9When the total credit limit is less than m,then C1 and C2 expressions will be different.
However, the Lemma 13 would still hold.
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2.3.3 The Credit Card Companies’ Behavior and Best Re-

sponses

Under the first case (when only one contract is chosen), the consumer’s interest

bearing debt is l1 on the first contract if l1 > m, and zero otherwise. We can write

the first company’s objective function as follows:

max
l1,r

(l1 −m)r (2.1)

s.t.

m ≤ l ≤ n1
1 (2.2)

max{C0(l1, l2), C2(l1, r)} ≤ C (2.3)

Note that l2 affects the first company’s decision only when C0(l1, l2) is the

relevant cutoff.

Lemma 14. Let us denote the first company’s proft maximizing credit limit with

l∗1 for l2 = 0. Given that only one contract is chosen, the best response of the first

company is:

• a straight line at l∗1 for l2 < l′′2 ,

• a decreasing line with −1 slope for l′′2 ≤ l2 < l′′′2 ,

• zero for l′′′2 ≤ l2.

Proof. Given that only one contract is chosen, if l2 = 0, then C0 < C2. We already

know that C1 < C2 and we can show that C0 < C1 by following the steps in the

proof of Lemma 13, consequently C0 < C2.

For l2 = 0, the relevant cutoff is C2. Note that l2 does not affect C2, but C0 :

∂C0

∂l2
=

u′(m + l1 + l2 − n1)

δ
> 0

Therefore, there is a cutoff l′2 such that:

if l2 < l′2, then C0 < C2 and the relevant cutoff is C2
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if l′2 ≤ l2, then C2 ≤ C0 and the relevant cutoff is C0

For l2 ≤ l′2, the best response is a straight line at l∗1 since the relevant cutoff

C2 is not affected by the second company’s credit limit. Once the relevant cutoff

becomes C0, this cutoff increases with l2 and starts to bind the consumer’s cost of

default at some l′′2 . The best response stays as a straight line for l′2 ≤ l2 < l′′2 since

default constraint (2.3) is not binding in this region.

Note that the relevant cutoff C0 is not affected by the interest rate but by the

credit limits, specifically 0 < ∂C0

∂l1
= ∂C0

∂l2
. Therefore, the best response decreases

with −1 slope for l′′2 ≤ l2—to satisfy the binding default constraint.

Once the best response becomes zero at l2 = l′′′2 , it stays as zero for l′′′2 ≤ l2.

Under the second case (when both contracts are chosen), the consumer’s in-

terest bearing debt is (min{l1 + l2, n
1
1} −m) on the lower interest rate card if

l1 + l2 ≥ m, and zero otherwise. We can write the first company’s objective

function as follows:

max
l1,r

(
min{l1 + l2, n

1
1} −m

)
r (2.4)

s.t

m ≤ l1 + l2

C2(l1, l2, r) ≤ C (2.5)

Both companies offer an interest rate of zero. This is because of one of the

following two reasons:

• if l1+l2 > m, then there will not be an interest revenue for the higher interest

rate card, which will create competition and drive the interest rates down to

zero,

• if l1 + l2 ≤ m, then none of the companies will get interest revenue. Since we

consider only the higher credit limit when a company is indifferent between

any two credit limits less than m, the interest rate of the contract with
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the highest credit limit would be zero among the ones which give the same

revenue (zero revenue).10

Now, we determine the best responses in the following lemma.

Lemma 15. Let us denote the first company’s profit maximizing credit limit with

l∗1 < n0 if l2 = 0. Given that both contracts are chosen, the best response of the

first company is:

• a decreasing line with −1 slope for l2 < l′′′2 ,

• zero for l′′′2 ≤ l2.

Proof. Given that both contracts are chosen, the relevant cutoff is C2. The reason

for not offering credit limit more than n0 is the binding default constraint. There-

fore, as the second company’s credit limit increases, the first company should

decrease the credit limit since the interest rate is already zero. From the expres-

sion for C2 given in Lemma 12, we know that 0 < ∂C0

∂l1
= ∂C0

∂l2
. Therefore, the best

response is a decreasing straight line with −1 slope until it hits zero at l′′′2 , and

stays at zero for l′′′2 ≤ l2.

2.3.4 Description of the Equilibria

In this section, we show the existence of the positive profit equilibria and zero profit

equilibria. Before showing that, we provide, first, a numerical example which gives

a unique positive profit equilibrium if the consumer’s cost of default is infinitely

high and, second, another example which gives a unique zero profit equilibrium if

the consumer’s cost of default is zero.

Example 3. If the consumer’s cost of default is infinitely high, the default con-

straint will never be binding (l′′2 = ∞), and the best response of each company will

be a straight line at the profit maximizing credit limit.11 Let us take the utility

10If an interest rate were a positive value, then the corresponding credit limit could be increased
by decreasing the interest rate.

11The cost of default does not have to be infinitely high in order to have a unique positive
profit equilibrium.
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function as u(x) = x1/2 and the discount factors as δ = 0.7 and β = 0.65. Then,

believed amount of first period debt, n0
1 = 0.73m,

believed amount of second period debt, n0
2 = 0.58m,

minimum credit limit required for only one contract to be chosen, n0 = 0.73m,

actual amount of first period debt, n1
1 = 1.14m,

profit maximizing interest rate, r = 0.13,

profit maximizing minimum credit limit, l = 1.14m,

the profit for the chosen company, Π = 0.0182m.

We show the best responses as follows:

Figure 2.1. Example of best responses when C is infinitely high

Example 4. If the consumer’s cost of default is zero, then any contract with a

positive credit limit would trigger default. Therefore, there is unique zero profit

equilibrium with zero credit limit offers.

We now demonstrate three basic equilibria and show more complicated ones in

two examples later in this section.

Proposition 7. If the best response li of the company i is greater than m for

lj ≤ m, ({i, j} = {1, 2}), then there is positive expected profit equilibria without

competition on interest rate.

Proof. In this case, the consumer chooses only one contract. As we explained

above, the best response of each company is a linear line first, then a decreasing
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line with −1 slope and then zero. The best response curves are depicted in Figure

2.2.

Figure 2.2. Positive profit equilibria without competition

Since there is no competition on the interest rate and the consumer chooses

the contract with a credit limit higher than the income with a positive probability,

there are positive expected profit equilibria.

Proposition 8. If the best response li ∈ [n0, m] for lj ≤ n0, then there is zero

profit equilibria without competition on interest rate.

Proof. The consumer chooses only one contract and the best response of each

company is as we explained above.

If the best response li ∈ [n0, m] for lj = 0, this means that the default constraint

is binding (i.e. C = C2 > C0 for lj < l′j), otherwise the company i would offer

a credit limit more than m. We know that C = C2 = C0 at lj = l′j. Note that

l′′j denotes the cutoff at which C starts to bind the consumer’s cost of default C0.

Therefore l′j = l′′j . As a result, the best response curves are as follows:

Since the consumer chooses only one contract and the offered credit limit is

less than m, there is no interest revenue generated for the chosen company. As a

result, there is zero profit equilibria.

Proposition 9. If the best response li of the company i is less than n0 for lj = 0,

then there is zero profit equilibria with competition on the interest rate
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Figure 2.3. Zero profit equilibria without competition

Proof. Since none of the companies offer more than n0, the consumer accepts two

contracts. Therefore, each company offers a zero interest rate as we explained at

the beginning of this section. If the profit maximizing credit limit of the company

i is less than n0 even for lj = 0, that would be because of the binding default

constraint, specifically C = C2 (C2 is always greater than C0 from Lemma 13).

Therefore, as lj increases, the company i’s best response should decrease starting

from lj = 0. In other words, l′′j = 0. The best response curves are as follows:

Figure 2.4. Zero profit equilibria with competition

Since l1 + l2 < m and r = 0, the equilibria give zero profit.

There may be cases in which more than one of these three equilibria are possible

under the same parameter values.
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Example 5. Let l∗i denote the profit maximizing credit limit for company i for

lj = 0. Let us denote the best response curves with B1 and B2 for company 1 and

2 respectively under the first case:

Figure 2.5. Multiple equilibria 1

Note that li < n0 for l′′′′j < lj < n0. This means that the consumer should

have accepted both contracts when l′′′′j < lj < n0, and consequently Bi cannot be

the best response in lj ∈ (l′′′j , n0). We need to draw another best response, B′
i, in

lj ∈ (l′′′j , n0) under the second case.

For l′′′′j ≤ lj ≤ n0, B′
i is always under Bi. This is because of the following

relation among the cutoff cost of defaults:

Cr
0 = C0

0 < C0
2

Bi is a decreasing line in (l′′′′j , n0), which means C binds the consumer’s cost of

default, C = Cr
0 . Since Cr

0 < C0
2 , B′

i should give a lower value than Bi in (l′′′′j , n0)

to satisfy the default constraint.

As a result, we can draw the best responses together with B′
i in (l′′′′j , n0) as

follows:

In this case, both zero and positive profit equilibria are possible.

Note that B′
i values may not be in (l′′′′i , n0) for lj ∈ (l′′′′j , n0) In that case, zero

profit equilibrium with competition does not exist, but there are other equilibria.

Example 6. Let the profit maximizing credit limit for company i is l∗i = n0 for

lj = 0. Let us denote the best response curves with B1 and B2 under the first case:
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Figure 2.6. Multiple equilibria 2

Figure 2.7. Multiple equilibria 3

Because of the same reasoning we explained in the previous example, B1 and

B2 cannot be the best responses in the area of (l′′′′2 , n0)× (l′′′′1 , n0). We need to draw

best responses B′
1 and B′

2 in that area under the second case. Therefore, the best

responses are as in either of the following graphs.

In the first graph, there are zero profit equilibria at (n0, l′′′′1 ) and (l′′′′2 , n0). In

the second graph, there are additional zero profit equilibria in the region (l′′′′2 , n0)×
(l′′′′1 , n0).

2.4 Extensions

We first determine whether the consumer would have been better off had we re-

stricted the credit limits to the income. Second, we check whether the equilibria in
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Figure 2.8. Multiple equilibria 4

the original model would survive if the grace period interest rate were endogenous.

Third, we examine the equilibria by allowing for uncertainty on the consumer’s

cost of default.

2.4.1 Consumer’s Welfare

We calculate the consumer’s welfare according to the initial-period self.12 Whether

he is better off with the restriction on the credit limits depends on the utility

function and discount factors δ and β. We provide an example for both sides.

Example 7. Let us take the utility function as u(x) = x1/2. For δ = 0.61 and β =

0.8, if the consumer’s cost of default is high enough and if we do not restrict credit

limits, we find the total utility according to the initial-period self as follows:

profit maximizing interest rate ⇒ r = 0.11

believed amount of debt ⇒ n0
1 = 0.986021m

actual amount of debt ⇒ n1
1 = 1.12491m

total utility ⇒ U ′
0 = 2.11778m1/2

If we restrict credit limits with the income, then the total utility according to

12Welfare calculations are different for each different self of the consumer.
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the initial-period self is as follows:

actual amount of debt with max credit limit of m ⇒ k1
1 = m

total utility with restriction on credit limit ⇒ U ′′
0 = 2.12737m1/2

Since U ′
0 = 2.11778m1/2 < U ′′

0 = 2.12737m1/2, the consumer would have been

better off had we restricted the credit limits to the income.

The company’s profit by offering this contract is:

Π = 0.0137401m

Example 8. Let us take the same utility function u(x) = x1/2 and the same

exponential discount factor δ = 0.61, but a different hyperbolic discount factor

β = 0.9. If the consumer’s cost of default is high enough and if we do not restrict

credit limits, we find the total utility according to the initial-period self as follows:

profit maximizing interest rate ⇒ r = 0.05

believed amount of debt ⇒ n0
1 = 0.986021m

actual amount of debt ⇒ n1
1 = 1.05996m

total utility ⇒ U ′
0 = 2.12624m1/2

If we restrict credit limits with the income, then the total utility according to

the initial-period self is as follows:

actual amount of debt with max credit limit of m ⇒ k1
1 = m

total utility with restriction on credit limit ⇒ U ′′
0 = 2.12586m1/2

Since U ′
0 = 2.12624m1/2 > U ′′

0 = 2.12586m1/2, the consumer would not have

been better off had we restricted credit limits to the income.

The company’s profit by offering this contract is:

Π = 0.002998m
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2.4.2 Endogenous Grace Period

Our base model treats the introductory interest rate as an exogenous value set

to be zero, which corresponds to the grace period. However, incorporating the

competition on the introductory interest rate is something left to future research.

In this section, we determine which of the equilibria would survive if the intro-

ductory interest rate were endogenous as well. We specify each contract j with a

credit limit lj, interest rate rj1—introductory— for one-period loans and interest

rate rj2—regular— for two-period loans, and we write the company j′s profit as

Πj = min{n1
j1rj1, p

2
j2}/δ +

(
1 + d3

j

)
(n2

j1(1 + rj1)− p2
j2)rj2 + d3

j

(
n1

j1 + n2
j2 − p2

j2

)
as

opposed to Πj =
(
1 + d3

j

)
(n1

j1 − p2
j2)rj + d3

j

(
n1

j1 + n2
j2 − p2

j2

)
. Note that interest

revenue from one-period loans is possible in this endogenous introductory interest

rate case. Moreover, the introductory interest rate may also affect the number of

cards to be accepted in addition to credit limits. We divide the discussion by the

following three cases.

Claim 1. The positive expected profit equilibrium without competition on the in-

terest rate survives when we endogenize the introductory interest rate.

Solution 1. Let ((l1, 0, r12) , (l2, 0, r22)) denote a positive profit equilibrium with

l1, l2 > m and check whether there is any profitable deviation from this equilib-

rium. If a company offers an introductory interest rate higher than zero, then the

probability of that contract being chosen will be zero. Therefore, the expected profit

for that company will be zero. As a result, there is no profitable deviation from the

current state and the positive expected profit equilibrium survives.

Claim 2. The zero profit equilibrium without competition on the interest rate sur-

vives when we endogenize the introductory interest rate if both of the credit limits

are higher than n0
1. On the other hand, the zero profit equilibrium does not survive

if one of the credit limits is less than n0
1 and the other is more than n0

1.

Solution 2. Let ((l1, 0, r12) , (l2, 0, r22)) denote a zero profit equilibrium without

competition on the interest rate such that m > l1, l2 ≥ n0
1. We want to check

whether there is a profitable deviation from this equilibrium. If a company offers

an introductory interest rate of more than zero, then the consumer does not choose
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this company with a positive probability anymore. Therefore, a profitable deviation

is not possible and the current equilibrium survives.

Let ((l1, 0, r12) , (l2, 0, r22)) denote a zero profit equilibrium without competition

on the interest rate such that m > l1 ≥ n0
1 > l2. Let us check the possibility

of a profitable deviation from this equilibrium. If the first company increases its

introductory interest rate more than zero, then it increases its interest revenue.

This is because the other company’s credit limit is not enough for the consumer,

and therefore he has to accept both contracts and pay interest on the first credit

card. Therefore, a profitable deviation is possible and this equilibrium does not

survive.

Claim 3. The zero profit equilibrium with competition on the interest rate does

not survive when we endogenize the introductory interest rate.

Solution 3. Let ((l1, 0, 0) , (l2, 0, 0)) denote a zero profit equilibrium with compe-

tition on the interest rate such that l1, l2 < n0
1. We want to check whether there

is a profitable deviation from this equilibrium. If a company offers an introductory

interest rate higher than zero, then this company can increase its interest revenue

from zero to a positive number. This is because the other company cannot sat-

isfy the consumer’s borrowing need alone, so accordingly the consumer borrows the

rest of the amount he needs from the company with a positive introductory interest

rate. Therefore, zero profit equilibrium with competition on the interest rate does

not survive.

2.4.3 The Model with Uncertainty

In this section, we analyze the model with uncertainty such that the companies

know only the distribution of the consumer’s cost of default rather than its actual

value. In this case, we can write the first company’s optimization problem under

the first case as follows:

max
l1,r

M = (l1 −m)r(1− F (C))− l1F (C) (2.6)

s.t.

m ≤ l1 ≤ n1
1
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C = max{C0, C2}

The first company’s problem under the second case is:

max
l1,r

M = (min{l1 + l2, n
1
1} −m)r(1− F (C))− δ3l1F (C) (2.7)

s.t.

m ≤ l1 + l2

C = C2

We can make two comments on this model of uncertainty. Firstly, there is

no contract offer with a credit limit in the range of [n0, m] in equilibrium. If a

company offers such a contract, the consumer chooses that contract alone with a

positive probability, but the chosen company does not gain any interest revenue.

Moreover, the positive probability of the default creates a negative expected profit.

Note that the term −l1F (C) captures the effect of the default on the profit.

Secondly, if both companies offer a contract with a credit limit in the range of

(0, n0) and if the equilibrium exists, then it is zero profit equilibrium. The consumer

accepts both contracts if both companies offer a credit limit less than n0. Once the

consumer has two credit cards on hand, the competition will drive the interest rates

down. To determine how far the interest rates decrease because of this competition,

we need to analyze the objective function (2.7) for each company j = 1, 2. Note

that the company with a lower credit limit can decrease his interest rate more.

Therefore, competition for the consumer also decreases credit limits until expected

profits become zero. Note that a decrease in the interest rate diminishes the

probability of default as well as the interest revenue. Therefore, a decrease in the

credit limit offers is not because of the more risky consumer but because of the

less profitable consumer.

There is no intuitive evidence against the possibility of the contracts with a

credit limit that is more than the consumer’s income in equilibrium. However, we

have not been able to show the existence of equilibrium in this model of uncertainty

since the problem is analytically not tractable.
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2.5 Discussion & Conclusion

In our model, we focus on two aspects of a credit card contract, the interest rate

and the credit limit. Cash back and reward points are other aspects of credit card

contracts that were not common 10 years ago. If we would include these aspects

as well, then positive expected profits might not be possible, even if there were no

competition on the interest rate.

Consumer’s time inconsistency and naivete, and credit card companies’ grace

period offer are essential to have a positive expected profit equilibrium. If the

introductory interest rate is not zero (no grace period), then there would be no

convenience users in the credit card market and everybody would be responsive to

the interest rate. The small cost of applying for a credit card makes the consumer

choose only one card when the offered credit limits are higher than the consumer’s

believed amount of debt, and eliminates competition for the chosen card.

The consumer chooses one of the contracts randomly when he wants to choose

only one contract and when he is indifferent among the offered contracts. If the

consumer believes that he might make a mistake and borrows more than his in-

come, then he would choose the contract with lower interest rate and our result of

noncompetitive interest rates and positive profit equilibrium would not hold. One

might describe this as the ”trembling-hand perfectness” problem with our equi-

libria, though there is no universally accepted definition of such a concept in the

infinite strategy space setting of this paper. An alternative concept in the extensive

form, also defined for finite games, has been discussed by van Damme (1987) and

Perea (2001). This concept, known as ”quasi-perfectness” appears to have some

nice features in terms of eliminating some of the anomalies between normal form

and extensive form notions. The definition of quasi-perfect equilibrium assumes

that a player, when moving at a particular node, assumes that he will always fol-

low the given strategy with probability 1 in the future, though the other players

are believed to be constrained to put positive probability on all their actions at

all their succeeding information sets. The heuristic transfer of this concept to our

framework appears to be consistent with the behavior of the consumer we have

modeled in this paper.

In our model, the consumer’s cost of bankruptcy is exogenously given. With
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the recent changes in the bankruptcy law, we expect this cost to increase for the

consumer.13 If this cost (C) increases, the consumer is less likely to default and

credit card companies are more likely to get positive expected profits.

Since our results depend on the consumer’s wrong belief about his future con-

sumption, we can easily get the same results for more than three periods of con-

sumption with appropriate δ and β. Moreover, because of exactly the same rea-

soning, we can produce similar results with partially naive hyperbolic consumers

as well.

In our model, we do not allow contracting after the initial period. If we did, our

results would hold in this three periods of consumption model, because applying

for a lower interest rate card does not decrease the interest payment on the first-

period debt since the consumer can only start using the new card in the following

period. As a result, the only consumer who applies for a new card in the first

period is the one planning to default. Therefore, there would be no credit card

offers to this consumer after the initial period.

Now let us consider the case of more than three periods of consumption. When

we allow contracting after the initial period, we suspect that positive expected

profits may still be possible, depending on the severity of the consumer’s time

inconsistency. Although applying for a lower interest rate card does not help to

decrease the interest payment on the current period’s debt, it helps to decrease

the interest payment on future periods’ debt. If the consumer cannot foresee the

interest payments for future periods because of the severe time inconsistency, then

he does not apply for a lower interest rate card and our results still hold. On

the other hand, if he can foresee his future period interest payments, then there

are two different possible outcomes. Firstly, if the initially chosen company can

prevent other companies from offering contracts after the initial period by giving

a high credit limit to the consumer and accordingly increasing the consumer’s risk

of default, then positive profits may still be possible. Secondly, if we allow the

initially chosen company to change his interest rate at the first period, then the

competition drives the interest rates down to zero. Note that there is first-mover

advantage and the companies do not need to compete on the interest rate in order

13More strict bankruptcy proceedings such as more strict conditions to file under chapter 7
and mandatory financial management education program.
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to be the first-mover in any of these cases. As a result, positive profit equilibria

may still exist.

2.6 Appendix

Proof of Proposition 1. 1. if n1 =
2∑

j=1

nj1 ≤ m ⇒
2∑

j=1

pj2 = n1 and
2∑

j=1

pj3 =

2∑
j=1

nj2 = n2. Therefore, we can write the objective function of the consumer

at t = 0 as follows:

max
n1, n2

βδ
[
u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)

]
s.t. (2.8)

n1 ≤ m (2.9)

−n1 ≤ 0 (2.10)

−n2 ≤ 0 (2.11)

FOCs if the constraints are not binding:

u′(m− n0
1 + n0

2) = δu′(m− n0
2) (2.12)

u′(m + n0
1) = δu′(m− n0

1 + n0
2) (2.13)

We know that n0
1 = n0

2 = 0, when δ = 1. In order to see how n0
1 and n0

2

change with δ, we can take the derivative of (2.12) and (2.13) with respect

to δ :

u′′(m− n0
1 + n0

2)(−
∂n0

1

∂δ
+

∂n0
2

∂δ
) = u′(m− n0

2) + δu′′(m− n0
2)(−

∂n0
2

∂δ
) (2.14)
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u′′(m + n0
1)

∂n0
1

∂δ
= u′(m− n0

1 + n0
2) + δu′′(m− n0

1 + n0
2)(−

∂n0
1

∂δ
+

∂n0
2

∂δ
) (2.15)

• If
∂n0

1

∂δ
> 0 ⇒ (−∂n0

1

∂δ
+

∂n0
2

∂δ
) > 0 and

∂n0
2

∂δ
> 0 by (2.15). However, the signs of

these derivatives give a contradiction in (2.14). Therefore,
∂n0

1

∂δ
< 0 must be

correct.

• Given that
∂n0

1

∂δ
< 0 , if

∂n0
2

∂δ
> 0 ⇒ (−∂n0

1

∂δ
+

∂n0
2

∂δ
) > 0. However, the sign of

these derivatives give a contradiction in (2.14). Therefore,
∂n0

2

∂δ
< 0 must be

also correct.

From (2.12):

n0
2 >

n0
1

2
(2.16)

As δ decreases, n0
1 and n0

2 increase. We know that n0
2 will never be greater

than m from the first order condition. Moreover, if we do not allow n0
2 to

be greater than m/2, by (2.16) we can make sure that n0
1 will not be greater

than m. So, there is a lower bound for δ, namely δ∗, such that for δ > δ∗ the

constraint (2.9) will not be binding and the consumer believes that he will

not keep a positive balance on his credit card. Moreover, from the definition

of the maximum, we can write the following inequality for δ > δ∗ :

max
n1<m, n2

βδ
[
u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)

]
(2.17)

> max
n1=m, n2

βδ
[
u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)

]

2. if n1 =
2∑

j=1

nj1 ≥ m =⇒
2∑

j=1

pj2 = m and
2∑

j=1

pj3 =

(
2∑

j=1

nj1 −m

)
(1 + r).

Therefore the objective function is:

max
n1, n2

βδ

[
u(m + n1) + δu(n2)

+δ2u(m− (n1 −m) (1 + r)− n2)

]
(2.18)

s.t.

−n1 ≤ −m (2.19)
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−n1 ≤ 0 (2.20)

−n2 ≤ 0 (2.21)

FOCs if the constraints are not binding:

u′(n0
2) = δu′(m(2 + r)− n0

1(1 + r)− n0
2) (2.22)

u′(m + n0
1) = δ(1 + r)u′(n0

2) (2.23)

From (2.23), we can say that there will be a cutoff δ∗∗ such that for δ > δ∗∗,

the following inequality will be true:14

n0
1 < n0

2

Since we know that n0
2 cannot be higher than m from (2.22), the following

inequality will also be true for δ > δ∗∗ :

n0
1 < m

This means that the constraint (2.19) will be binding for δ > δ∗∗ and we can

write the objective function of the consumer as follows:

max
n2

βδ
[
u(2m) + δu(n2) + δ2u(m− n2)

]
(2.24)

As a result, for δ > δ′ = max{δ∗, δ∗∗}, from (2.17) and (2.24):

max
n1<m, n2

βδ
[
u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)

]
> max

n1=m, n2

βδ
[
u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)

]
= max

n2

βδ
[
u(2m) + δu(n2) + δ2u(m− n2)

]
14For example, take δ ≥ 1/ (1 + r) . For those δ values it is easy to see that m + n0

1 < n0
2,

consequently n0
1 < n0

2.
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This means that the consumer will believe that he will not pay interest on

his credit card debt when he is at the initial period.

3. We showed that a consumer with an exponential discount factor δ > δ′ =

max{δ∗, δ∗∗} believes that he will not keep a positive balance. In order to

show that this consumer will keep a positive balance and pay interest, we

will analyze the consumer with δ > δ′ only.

When the consumer comes to the first period, his objective function will be

as follows:

max u(m + n1) + βδu(m− p2 + n2) + βδ2u(m− p3)

if n1 ≤ m =⇒ p2 = n1, p3 = n2. Therefore, the problem is as follows:

max
n1, n2

u(m + n1) + βδu(m− n1 + n2) + βδ2u(m− n2) (2.25)

s.t.

n1 ≤ m (2.26)

−n1 ≤ 0 (2.27)

−n2 ≤ 0 (2.28)

FOCs if the constraints are not binding:

u′(m− n1
1 + n1

2) = δu′(m− n1
2) (2.29)

u′(m + n1
1) = βδu′(m− n1

1 + n1
2) (2.30)

For δ > δ′, in order to determine how n1
1 and n1

2 change with β, we take the

derivative of (2.29) and (2.30) with respect to β:

u′′(m− n1
1 + n1

2)(−
∂n1

1

∂β
+

∂n1
2

∂β
) = δu′′(m− n2)(−

∂n1
2

∂β
) (2.31)
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u′′(m+n1
1)

∂n1
1

∂β
= δu′(m−n1

1 +n1
2)+βδu′′(m−n1

1 +n1
2)(−

∂n1
1

∂β
+

∂n1
2

∂β
) (2.32)

• If
∂n1

1

∂β
> 0 ⇒ (−∂n1

1

∂β
+

∂n1
2

∂β
) > 0 and

∂n1
2

∂β
> 0 by (2.32). However, these

inequalities do not satisfy (2.31). Therefore,
∂n1

1

∂β
< 0 must be true.

• Given that
∂n1

1

∂β
< 0, if

∂n1
2

∂β
> 0, these inequalities do not satisfy (2.31).

Therefore,
∂n1

2

∂β
< 0 must be also true.

As a result, as β decreases, n1
1 and n2

2 increases.

Write down the difference between the left- and right-hand side of the inside

of the utility function in (2.29) as ε1:

−n1
1 + n1

2 + n1
2 = ε1 =⇒ n1

1 = 2n2
2 − ε1

For any β as δ → 1, then ε1 → 0, n1
1 → 2n1

2.

So, we can write (2.30) as:

u′(m + 2n1
2) = βu′(m− n1

2)

As β → 0,
u′(m+2n1

2)

u′(m−n1
2)
→ 0, then n1

2 → m, since the denominator will be infinity

and the numerator will be a finite number. Consequently, n1
1 → 2m and we

can say that there will be a δ̃ and β∗ such that for δ > δ̃ and β < β∗ the

constraint (2.26) will be binding. Then, for those δ and β values, we can

write the objective function as follows:

max
n1=m, n2

u(m + n1) + βδu(m− n1 + n2) + βδ2u(m− n2) (2.33)

4. if n1 ≥ m =⇒ p2 = m & p3 = (n1 −m) (1 + r) + n2

problem is

max
n1, n2

[
u(m + n1) + βδu(n2)

+βδ2u(m− (n1 −m) (1 + r)− n2)

]
(2.34)

s.t.
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−n1
1 ≤ −m (2.35)

−n1
1 ≤ 0 (2.36)

−n1
2 ≤ 0 (2.37)

FOCs if the constraints are not binding:

u′(n1
2) = δu′(m(2 + r)− n1

1(1 + r)− n1
2) (2.38)

u′(m + n1
1) = βδ(1 + r)u′(n1

2) (2.39)

For δ > δ′, in order to determine how n1
1 and n1

2 change with β, we take the

derivative of (2.38) and (2.39) with respect to β:

u′′(n1
2)(

∂n1
2

∂β
) = δu′′(m(2 + r)− n1

1(1 + r)− n1
2)(−

∂n1
1

∂β
(1 + r)− ∂n1

2

∂β
) (2.40)

u′′(m + n1
1)(

∂n1
1

∂β
) = δ(1 + r)u′(n1

2) + βδ(1 + r)u′′(n1
2)

∂n1
2

∂β
(2.41)

• If
∂n1

1

∂β
> 0 ⇒ ∂n1

2

∂β
> 0 by (2.41). However, these inequalities do not

satisfy (2.40). Therefore,
/∂n1

1

∂β
< 0 must be true.

• Given that
∂n1

1

∂β
< 0, if

∂n1
2

∂β
< 0, the equation (2.40) gives a contradiction.

Therefore,
∂n1

2

∂β
> 0 must be also true.

As a result, n1
1 decreases and n1

2 increases with β.

Write down the difference between the left- and right-hand side of the inside

of the utility function in (2.38) as γ1:

n1
2 −m(2 + r) + n1

1(1 + r) + n1
2 = γ1 =⇒ n1

1 =
γ1−2n1

2+m(2+r)

1+r

For any β as δ → 1, then γ1 → 0, n1
1 →

−2n1
2+m(2+r)

1+r

So, we can write (2.39) as:
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u′(m +
−2n1

2+m(2+r)

1+r
) = β(1 + r)u′(n1

2)

As β → 0,
u′

„
−2n1

2+m(2+r)

1+r

«
u′(n1

2)
→ 0, then n1

2 → 0, since the denominator will

be infinity and the numerator will be a finite number. Consequently, n1
1 →

m2+r
1+r

> m. Therefore, we can say that there will be a δ̂ and β∗∗ such that

for δ > δ̂ and β < β∗∗, the constraint (2.35) will not be binding. From the

definition of the maximum, we can write the following inequality for δ > δ̂

and β < β∗∗ :

max
n1>m, n2

[
u(m + n1) + βδu(n2)

+βδ2u(m− (n1 −m) (1 + r)− n2)

]
(2.42)

> max
n1=m, n2

[
u(m + n1) + βδu(n2)

+βδ2u(m− (n1 −m) (1 + r)− n2)

]

As a result, for δ > δ′′ = max{δ′, δ̃, δ̂} and β < β′ = min{β∗, β∗∗}, from

(2.33) and (2.42):

max
n1>m, n2

u(m + n1) + βδu(n2) + βδ2u(m− (n1 −m) (1 + r)− n2)

> max
n1=m, n2

u(m + n1) + βδu(n2) + βδ2u(m− (n1 −m) (1 + r)− n2)

= max
n1=m, n2

u(m + n1) + βδu(m− n1 + n2) + βδ2u(m− n2)

This means that the consumer will end up paying interest on his credit card

debt as opposed to his belief at the initial period that he would not.

Proof of Lemma 1. 1. At the initial period

The consumer’s total utility if he plans not to default and if he plans to

default is as follows:
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max
n1≤m, n2

βδ
[
u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)

]
max

n1

βδ
[
u(m + n1) + δu(m + l1 + l2 − n1) + δ2u(m)

]
Therefore, the cutoff cost of default in order not to plan to default at the

first period can be found as follows:

C0 =
1

δ2

 max
n1

[u(m + n1) + δu(m + l1 + l2 − n1) + δ2u(m)]

max
n1≤m, n2

[u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)]


2. At the first period

When the consumer reaches the first period, he realizes that his actual debt

is more than his income and consequently he will pay interest. In this case,

his first period debt will be more than his income if he plans to default as

well. Therefore, the consumer’s total utility if he plans not to default and if

he plans to default respectively is as follows:

max
n1≤l1, n2

[
u(m + n1) + βδu(n2) + βδ2u(m− (n1 −m)(1 + r)− n2)

]
max
n1≤l1

[
u(m + n1) + βδu(m + l1 − n1) + βδ2u(m)

]
Therefore, the cutoff cost of default in order not to plan to default at the

first period can be found as follows:

C1 =
1

βδ2


max
n1≤l1

[u(m + n1) + βδu(m + l1 − n1) + βδ2u(m)]

− max
n1≤l1, n2

[
u(m + n1) + βδu(n2)

+βδ2u(m− (n1 −m)(1 + r)− n2)

] 
3. At the second period
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When the consumer comes to the second period, the consumer’s total utility

if he plans not to default and if he plans to default respectively as follows:

max
n2

[u(n2) + βδu(m− (n1 −m)(1 + r)− n2)]

[u(m + l1 − n1) + βδu(m)]

Therefore, we can find the cutoff cost of default in order not to plan to default

at the second period as follows:

C2 =
1

βδ

 [u(m + l1 − n1) + βδu(m)]

−max
n2

[u(n2) + βδu(m− (n1 −m)(1 + r)− n2)]



Proof of Lemma 2. If β would be equal to 1 from the second period on as the

first-period self believes, then the consumer would not be time inconsistent and

C2 would be equal to C1. Therefore, it will be enough to look at how C2 changes

with β to find out the relation between C1 and C2 since we know that C2 is equal

to C1 when β = 1.

∂C2

∂β
=


(
u′ (m + l1 − n1)

(
−∂n1

∂β

)
+ δu(m)

)
−

 δu(m− (n1 −m)(1 + r)− n∗2)

+βδu′ (m− (n1 −m) (1 + r)− n∗2) (1 + r)
(
−∂n1

∂β

) 
 βδ

(βδ)2

−

(
[u(m + l1 − n1) + βδu(m)]

− [u(n∗2) + βδu(m− (n1 −m)(1 + r)− n∗2)]

)
δ

(βδ)2

such that n∗2 represents the profit maximizing n2 in case of planning not to

default. If we simplify the previous equation:
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∂C2

∂β
=

(
−∂n1

∂β

)
[u′ (m + l1 − n1)− βδu′ (m− (n1 −m) (1 + r)− n2) (1 + r)] βδ

(βδ)2

− [u(m + l1 − n1)− u(n∗2)] δ

(βδ)2

We know that
(
−∂n1

∂β

)
> 0 from the proof of Proposition 2. From the definition

of n∗2 :

u′(n∗2) = βδu′ (m− (n1 −m) (1 + r)− n∗2) (2.43)

In period two, if the consumer plans to default, he borrows more than the

optimal amount if he plans not to default:

m + l1 − n1 ≥ n∗2 (2.44)

From (2.43) and (2.44):

u′ (m + l1 − n1) < βδu′ (m− (n1 −m) (1 + r)− n∗2)

⇒ [u′ (m + l1 − n1)− βδu′ (m− (n1 −m) (1 + r)− n2) (1 + r)] < 0

⇒

(
−∂n1

∂β

)[ u′ (m + l1 − n1)

−βδu′ (m− (n1 −m) (1 + r)− n2) (1 + r)

]
βδ

(βδ)2 < 0 (2.45)

From (2.44):

u(m + l1 − n1) ≥ u(n∗2)

⇒ − [u(m + l1 − n1)− u(n∗2)] δ

(βδ)2 < 0 (2.46)

From (2.45) and (2.46):

∂C2

∂β
< 0

Accordingly,
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C2 > C1 for β < 1

Finally, we can define the cutoff C ′ as follows:

C ′ = max{C0, C2}

Proof of Lemma 4. If β = 1, then C1 would be written as follows:

C1 =
1

δ2


max

n1≤l1+l2
[u(m + n1) + δu(m + l1 + l2 − n1) + δ2u(m)]−

max
m≤n1≤l1+l2,n2

[
u(m + n1) + δu(n2)

+δ2u(m− (n1 −m)(1 + r)− n2)

]  (2.47)

In order to compare C0 and C1, let’s rewrite the expression for C0 below:

C0 =
1

δ2

 max
n1≤l1+l2

[u(m + n1) + δu(m + l1 + l2 − n1) + δ2u(m)]

− max
n1≤m,n2

[u(m + n1) + δu(m− n1 + n2) + δ2u(m− n2)]

 (2.48)

When we carefully analyze (2.47) and (2.48), we can see that the first expres-

sions in brackets are the same for both. Therefore, any possible difference between

C0 and C1 is because of the second expressions in the brackets. From Proposition

1, we know that the profit maximizing n1 is less than m for δ > δ′. Therefore, the

second expression in the bracket of (2.48) is greater than the second expression in

the bracket of (2.47) for δ > δ′. Consequently C0 < C1.

Now, if we show how C1 changes with β, then we might be able to compare C0

and C1.

∂C1

∂β
=

[
[δu(m + l1 + l2 − n∗1) + δ2u(m)]

− [δu(n∗∗2 ) + δ2u(m− (n∗∗1 −m)(1 + r)− n∗∗2 )]

]
βδ2

(βδ2)2
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−

(
[u(m + n∗1) + βδu(m + l1 + l2 − n∗1) + βδ2u(m)]

− [u(m + n∗∗1 ) + βδu(n∗∗2 ) + βδ2u(m− (n∗∗1 −m)(1 + r)− n∗∗2 )]

)
δ2

(βδ2)2

such that n∗1, n∗∗1 and n∗∗2 represent the profit maximizing n1 and n2 in case

of planning default and not to default respectively. If we simplify the previous

equation as:

∂C1

∂β
= − [u(m + n∗1)− u(m + n∗∗1 )] δ2

(βδ2)2 < 0

Accordingly;

C1 > C0 for β ≤ 1

Finally, we can write C ′ = C2 since we already know that C2 > C1 from the

previous proof.

2.7 References

1. Ainslie, George W., ”Derivation of ‘Rational’ Economic Behavior from Hy-

perbolic Discount Curves,” The American Economic Review, May 1991,

81(2), pp. 334-40.

2. Ausubel, Lawrence M., ”The Failure of Competition in the Credit Card

Market,” American Economic Review, March 1991, pp. 50-81.

3. Ausubel, Lawrence M., ”Adverse Selection in the Credit Card Market,”

Working Paper, University of Maryland, 1999.

4. Ausubel, Lawrence M., and Haiyan Shui, ”Time inconsistency in the Credit

Card Market,” Working Paper, University of Maryland, 2004.

5. Brito, Dagobert L., and Peter R. Hartley, ”Consumer Rationality and Credit

Cards,” The Journal of Political Economy, April 1995, 103(2), pp. 400-433.



68

6. Calem, Paul S., and Loretta J. Mester, ”Consumer Behavior and the Stick-

iness of Credit-Card Interest Rates,” The American Economic Review, De-

cember 1995, 85(5), pp.1327-1336.

7. Chakravorti, Sujit., ”Theory of Credit Card Networks: A Survey of the Lit-

erature,” Review of Network Economics, June 2003, 2(2).

8. Dellavigna, Stefano, and Ulrike Malmendier, ”Contract Design and Self Con-

trol,” Quarterly Journal of Economics, May 2004, pp.353-402.

9. DellaVigna, Stefano, and Ulrike Malmendier, ”Overestimating Self-Control:

Evidence from the Health Club Industry,” mimeo, October 2002.

10. Eliaz, Kfir, and Ran Spiegler, ”Contracting with Diversely Naive Agents,”

Review of Economics Studies, June 2006, 73, pp. 689-714.

11. Evans, David S., and Richard Schmalensee, Paying with Plastic: The Digital

Revolution in Buying and Borrowing, Cambridge, Mass.: MIT press, 2005.

12. Hausman, Jerry A., ”Individual Discount Rates and the Purchase and Uti-

lization of Energy-Using Durables,” The Bell Journal of Economics, 1979,

10(1), pp. 33-54.

13. Laibson, David., ”Golden Eggs and Hyperbolic Discounting,” The Quarterly

Journal of Economics, 112(2), May 1997, pp. 443-77.

14. Laibson, David, Andrea Repetto, and Jeremy Tobacman, ”A Debt Puzzle,”

mimeo, September 2001.

15. Laibson, David, and Leeat Yariv, ”Safety in Markets: An Impossibility The-

orem for Dutch Books,” mimeo, May 2004.

16. Loewenstein, George., and Richard H. Thaler, ”Anomalies: Inter-temporal

Choice,” Journal of Economics Perspectives, 1989, 3, pp. 181-93.

17. Parlour, Christine, and Uday Rajan, ”Competition in Loan Contracts,”

American Economic Review, 2001, pp. 1311-1328.



69

18. Phelps, Edmund S., and Robert A. Pollak, ”On Second-Best National Saving

and Game-Equilibrium Growth,” Review of Economic Studies, 35, pp. 185-

99.

19. O’Donoghue, Ted, and Matthew Rabin, ”Choice and Procrastination,” Quar-

terly Journal of Economics, 2001, 116(1), pp. 121-160.

20. Perea, Andres, Rationality in Extensive Form Games, Boston/ Dordrecht/

London: Kluwer Academic Publishers, 2001.

21. Strotz, Robert H., ”Myopia and Inconsistency in Dynamic Utility Maximiza-

tion,” Review of Economic Studies, 1956, 23, pp. 165-80.

22. Van Damme, Eric, Stability and Perfection of Nash Equilibria, Berlin:

Springer-Verlag, 1987.

23. ”Bill Summary & Status for the 109th Congress,” Thomas, 24 October 2005,

<http://thomas.loc.gov/cgi-bin/bdquery/z?d109:SN00256:@@@L&summ2

=m&|TOM:/bss/d109query.html|>

24. ”Building a Better Credit Report,” May 2005, Federal Trade Commission, 10

October 2005, <http://www.ftc.gov/bcp/conline/pubs/credit/bbcr.htm>

25. Consumer Federation of America and FairIsaac, (2005), Your Credit Scores

[Brochure]



Vita

Elif Incekara Hafalir

Elif Incekara Hafalir was born on March 11, 1979, in Kutahya, Turkey. She
earned her B.S. degree in Industrial Engineering in 2001 from Bilkent University,
Ankara, Turkey. Since then, she has continued her studies at Penn State University
as a graduate student. Her Ph.D. thesis has focused on game theory and behavioral
economics.


