
The Pennsylvania State University
The Graduate School
College of Engineering

TEMPORAL AND STRUCTURAL MACHINE LEARNING FROM

TRANSPORTATION DATA

A Dissertation in
Computer Science and Engineering

by
Hongyuan Zhan

© 2019 Hongyuan Zhan

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2019

The dissertation of Hongyuan Zhan was reviewed and approved∗ by the following:

Kamesh Madduri
Associate Professor of Computer Science and Engineering
Dissertation Advisor, Chair of Committee

Jesse Barlow
Professor of Computer Science and Engineering

Wang-Chien Lee
Associate Professor of Computer Science and Engineering

Necdet Serhat Aybat
Associate Professor of Industrial and Manufacturing Engineering

Kesheng Wu
Senior Staff Scientist, Lawrence Berkeley National Laboratory
Special Member

Xiaoye Sherry Li
Senior Staff Scientist, Lawrence Berkeley National Laboratory
Special Member

Gabriel Gomes
Research Engineer, California Partners for Advanced Transportation Tech-
nology, University of California Berkeley
Special Member

Chita R. Das
Professor of Computer Science and Engineering
Graduate Program Chair, Computer Science and Engineering

∗Signatures are on file in the Graduate School.

ii

Abstract

Transportation is arguably speaking one of the most critical functions of human
society. It has been an important societal problem since the ancient age, yet the
solution is still far from perfect in the twenty-first century. The needs for efficient
and safe transportation are ever-growing, due to prolonging life expectancy and
diminishing reserves of fossil fuels which most transportation modes rely on in the
present day.

At the same time, we are facing unprecedented growth of data. Can the
society utilize data, a cyber-resource, to solve the physical challenges in modern
transportation needs? This question motivates the research in my dissertation.
Machine learning, broadly speaking, are algorithms that aim to generalize a set of
rules from existent data for describing the data generating process, predicting future
events, and producing informed decision making. This dissertation studies previous
machine learning methods, improves upon them, and develops new algorithms to
contribute in essential aspects of transportation systems. Two important topics
in transportation systems are addressed in this dissertation, traffic flow prediction
and traffic safety analysis.

Traffic flow prediction is a fundamental component in an intelligent transporta-
tion system. Accurate traffic predictions are building blocks to achieve efficient
routing, smart city planing, reduced energy consumption and among others. Traffic
flows are multi-modal and possibly non-stationary due to unusual events. Hence,
the learning algorithms for traffic flow prediction need to be robust and adaptive. In
addition, the models must be able to learn from latest traffic flow without severely
comprising the computational efficiency, in order to meet real-time computation
requirements during online deployment. Therefore, learning algorithms for traffic
flow prediction developed in this dissertation are designed with the goal to achieve
robustness, adaptiveness, and computational efficiency.

Traffic safety in transportation systems is as important as efficiency. Rather than
predicting the outcome of crashes, it is more valuable to prevent future accidents
by learning from past experiences. The second theme in this dissertation studies

iii

machine learning models for analyzing factors contributing to the outcome of crashes.
The same accident factor may have diverse degrees of influence on different people,
due to the unobserved individual heterogeneity. Capturing heterogeneous effect is
difficult in general. A viable approach is to impose structure on the unobserved
heterogeneity of different individuals. Under some structural assumptions, it is
possible to account for the individual differences with respect to accident factors.

Temporal learning addressed problems arisen from traffic flow prediction. Struc-
tural learning is an approach for modeling individual heterogeneity, aiming to
quantify the influence of accident factors.

iv

Table of Contents

List of Figures ix

List of Tables xii

Acknowledgments xiv

Chapter 1
Introduction 1

Chapter 2
Review of Statistical Learning for Traffic Flow Prediction 6
2.1 Recursive ARMAX . 8
2.2 Partial Least Squares . 8
2.3 Support Vector Regression . 10
2.4 Kernel Ridge Regression . 11
2.5 Gaussian Process Regression . 12

Chapter 3
Variance Regularized Ensemble Learning Model 14
3.1 Ensemble Model . 14

3.1.1 Bias-Variance-Covariance Decomposition 17
3.1.2 Covariance Matrix . 18
3.1.3 Optimization . 18
3.1.4 Unsupervised Pruning . 19

3.2 Experiments . 20
3.2.1 Data Description . 20
3.2.2 Experimental Procedure . 20
3.2.3 Automatic Hyperparameter Search 21
3.2.4 Overview of Results . 23
3.2.5 Baseline and Experimental Goals 24

v

3.2.6 Effect of Pruning . 26
3.2.7 Effect of Hyperparameters 27
3.2.8 Compare with Other Multi-Model Methods 29
3.2.9 Discussion on Computational Time 31

3.3 Chapter Conclusion . 32

Chapter 4
Online Hyperparameter Optimization for Traffic Flow Prediction 33
4.1 Common Hyperparameter Tuning Algorithms 36

4.1.1 Grid Search . 36
4.1.2 Random Search . 36
4.1.3 Gradient-based hyperparameter optimization 37
4.1.4 Bayesian optimization methods 37

4.2 Multiple-Kernel Ridge Regression 38
4.3 Hyperparameter Learning . 40

4.3.1 Hyper-Gradient Computation for Kernels 40
4.3.2 Our Method: Online Hyperparameter Learning 42
4.3.3 Complexity . 42

4.4 Theoretical Analysis with Local Regret 43
4.5 Experiments . 50

4.5.1 Synthetic data . 50
4.5.2 I-210 Traffic Data . 52

4.5.2.1 Data and Setup . 52
4.5.2.2 Computational Efficiency Comparisons 53
4.5.2.3 Prediction Accuracy 54

4.6 Conclusions . 56

Chapter 5
Stochastic Gradient Optimization for Mixed Logit Model 58
5.1 Related Work . 59
5.2 Background . 61

5.2.1 Logit Model . 61
5.2.2 Parameter Estimation . 62
5.2.3 Optimization . 63
5.2.4 Limitation . 65

5.3 Stochastic Optimization for Logit Models 65
5.3.1 Stochastic Gradient Method 65
5.3.2 Stochastic Gradient with Sample Average Approximation . . 67
5.3.3 Choice of Step-size Sequence and Practical Implementation . 68

5.4 Case Studies . 70

vi

5.4.1 Data . 71
5.4.2 Convergence Behavior . 71
5.4.3 Correlation Clustering Analysis 77

5.5 Conclusion . 81

Chapter 6
Convex Latent Effect Logistic Regression via Low-Rank and

Sparse Decomposition 83
6.1 Low-rank and sparse decomposition 85
6.2 Why Low-Rankness? . 86

6.2.1 Gaussian mixing with low-rank covariance 86
6.2.2 Latent clustered heterogeneity 87
6.2.3 Latent matrix factorization 87

6.3 Convex Optimization . 88
6.3.1 Convex relaxation . 88
6.3.2 Proximal Gradient algorithm 88
6.3.3 Acceleration and practical implementation 90

6.4 Greedy Local Continuation for Pathwise Solutions 91
6.4.1 Prediction for new observations 92
6.4.2 Greedy local continuation 93

6.5 Experiments . 94
6.5.1 Computation efficiency . 94
6.5.2 Accident factor analysis . 95

6.6 Conclusion . 99

Chapter 7
Matrix Factorization for Network Analysis 100
7.1 Mathematical Formulation . 101
7.2 Connections to Prior Work . 103
7.3 Solution to Matrix Factorization . 104

7.3.1 Connection to Nonnegative Least Squares 104
7.3.2 Solution Upper Bound and Interpretation 106
7.3.3 Coordinate Descent solution strategy 108
7.3.4 A faster solution method . 109

7.4 Empirical Evaluation . 111
7.4.1 Experimental Setup . 111
7.4.2 Synthetic graph experiments 113
7.4.3 LFR graph experiments . 115
7.4.4 LiveJournal experiments . 119
7.4.5 Running time Comparison 122

vii

7.5 Chapter Conclusion . 123

Chapter 8
Graph Sparsification as a Knapsack Problem 124
8.1 Transforming Prior Methods to GSK 125

8.1.1 Backbone Extraction. 125
8.1.2 Similarity Filters for Clustering. 126
8.1.3 Local Degree Filter. 127
8.1.4 Other Related Sparsification Methods. 127

8.2 A Fast Approximation Scheme . 128
8.3 Constructing New Sparsification Schemes 130
8.4 Empirical Evaluation . 132

8.4.1 Solver Performance. 133
8.4.2 Comparing Sparsification Methods. 134

8.5 Chapter Conclusion . 136

Chapter 9
Conclusions and Future Work 140
9.1 Summary of Contributions . 140
9.2 Future Directions . 141

9.2.1 Hyperparameter optimization for non-smooth problems . . . 141
9.2.2 Theoretical investigations of the latent effect model 142
9.2.3 Latent graphical inference for mixed logit 142

Bibliography 143

viii

List of Figures

Figure 3.1 Overview of the consensus ensemble method proposed in this
chapter. α and {βm}Mm=1 are ensemble parameters learned from data. 15

Figure 3.2 Area plot of percentage of best predictions by each method.
Area of the strips are proportional to the percentage. 24

Figure 3.3 Predicted flow values and the true flow in three consecutive
days. Despite a wide range of base predictions, the ensemble is
closer to the true flow. 25

Figure 3.4 Percentage Reduction in MAE and StdAE of ensemble methods
with pruning (γ = 5), compared to the best base method. Higher
values are better for both metricscd. 27

Figure 4.1 Comparing OHL and FIXED on synthetic data. Left: squared
exponential kernel, Right: Combination of periodicity and linear kernel.
OHL (red line) has a self-correcting behavior towards ground truth, even
when the initial hyperparameters are mis-specified. 51

Figure 4.2 Comparing total time and hyperparameter tuning time for OHL,
HOAG, and RDS. Each bar indicates the time taken for a detector, and
the labels above bars indicate average time for 13 detectors. Detectors
are ordered by total time using OHL. 52

Figure 4.3 Prediction RMSE comparison for traffic flow data, OHL vs other
hyperparameter tuning algorithms. 55

Figure 5.1 Objective value after each dataset pass for multinomial logit
model. 73

Figure 5.2 Objective value of mixed logit model after each pass over the
dataset. 74

Figure 5.3 `2 norm of gradient after each pass of the dataset. 76
Figure 5.4 Objective values of mixed logit model against time budgets

given to the optimization algorithms. 76

ix

Figure 5.5 Correlation matrices in mixed logit model for random effects
of accident factors in fatal crashes. Rows and columns are reordered
according to the cluster membership output by best spectral clus-
tering results. 78

Figure 5.6 Correlation matrices in mixed logit model for random effects
of accident factors in severe injury crashes. Rows and columns
are reordered according to the cluster membership output by best
spectral clustering results. 79

Figure 6.1 Graphical illustration of Greedy Local Continuation search.
λ1 and λ2 are optimized alternatively with warm-starting strategy. . 94

Figure 6.2 Time per iteration (seconds) of FAPGAR implemented in
MATLAB. 95

Figure 6.3 Objective value after each iteration, FAPGAR vs Proximal
Gradient. 96

Figure 6.4 Greedy Local Continuation search on the traffic accident
dataset, 2012-2013. A cycle is detected after three iterations. 96

Figure 6.5 Cross-validation direct pseudo-elasticity over a path of λ1.
Vertical line marked with ‘CV’ correspond to the λ1 with best F-1
score from cross-validation. 97

Figure 6.6 Latent heterogeneity υn inferred from the train data. rank(Υ) =
2. Each point is represented by the first two principal component
scores. 98

Figure 7.1 Syn-test1: 8.03% noise level, 2% missing edges, 8.05% reconst.
error. 113

Figure 7.2 Syn-test2: 15.77% noise level, 8.73% missing edges, 13.95%
reconst. error. 113

Figure 7.3 Syn-test3: 25.82% noise level, 17.45% missing edges, 19.02%
reconst. error. 113

Figure 7.4 Syn-test3: Recovered weights sorted by non-decreasing mag-
nitudes in Dtrue. 113

Figure 7.5 LFR-test1: Varying mixing edge percentage and uniform Dtrue. 115
Figure 7.6 LFR-test1: Varying mixing edge percentage and normal Dtrue. 115
Figure 7.7 LFR-test2: Varying missing edge percentage and uniform

Dtrue. 116
Figure 7.8 LFR-test2: Varying missing edge percentage and normal Dtrue. 116
Figure 7.9 LFR-test1: 40% mixing edges. 119
Figure 7.10 LFR-test2: 40% missing edges. 119
Figure 7.11 LJ-test1: uniform Dtrue. 120

x

Figure 7.12 LJ-test2: normal Dtrue. 120
Figure 7.13 LJ-test1: Comparing obtained ranking to other community

structure metrics. 120

Figure 8.1 Solver running time on various graphs. 133
Figure 8.2 Spearman’s rank coefficient of degree for the original graph

and sparsified graph, at various sparsification thresholds. 135
Figure 8.3 The fraction of vertices that overlap in the top 10% PageRank-

ordered vertex sets in the original and the sparsified graph, at various
sparsification thresholds. 136

Figure 8.4 Comparing Jaccard similarity-based sparsifier performance
on the com-LiveJournal graph. 136

Figure 8.5 Deviation of average clustering coefficient at various sparsifi-
cation thresholds. 137

xi

List of Tables

Table 1.1 Overview of Dissertation Structure 5

Table 2.1 Notation used for different time indices. All variables are
positive integers. 7

Table 3.1 Comparison of consensus and base predictors. Lower values
are better for both metrics. Best values for each detector are shown
in bold font. 28

Table 3.2 Average percentage reductions in MAE and StdAE of ensemble
methods with pruning, compared to no pruning (γ =∞). 29

Table 3.3 Average and maximum percentage reductions in MAE and
StdAE of ensemble methods with pruning, compared to the best
base method. Higher values are better for both metrics. Best values
for each detector are shown in bold font. 29

Table 3.4 Ten-run-averaged Running time (seconds) spent by different
components of the system for one-hour-ahead forecast, model fitting
and prediction combined. Results measured on a Intel i5 2.40 GHz
dual core processor. 31

Table 4.1 RMSE percentage improvement relative to FIXED hyperpa-
rameters. Larger values are better. OHL achieves similar accuracy
to HOAG, and nearly 7× faster (see Figure 4.2). 56

Table 5.1 Accident-related features used in the experiment 72
Table 5.2 Number of observations in each two-year period between 2003

and 2013. 72
Table 5.3 Average standard deviation of individual parameters in the

intercept α, mean µ, and covariance Γ, and Likelihood Ratio index
(McFadden’s pseudo-R2) achieved after 50 pass of 2012-2013 data.
Higher LR index corresponds to better goodness-of-fit. 77

xii

Table 8.1 Graphs used in empirical evaluation. 132
Table 8.2 Problem (GSK)-based graph sparsification strategies used in

empirical evaluation. 132
Table 8.3 Unconstrained sparsification strategies used in empirical eval-

uation. 132

xiii

Acknowledgments

My graduate school journey would not be possible without the help, encouragement,
and mental support from many people. I owe to them.

I am grateful to my advisor, Dr. Kamesh Madduri, for offering me the opportu-
nity to pursue my doctoral study. Kamesh is a great supervisor in cruise-controlled
style. He gives me the freedom to look for research topics of my interests, but
always provides constructive guidance when I seek out for help. I have known
Kamesh since I was an undergraduate student. My journey to pursue a doctoral
degree in computer science would not be started without him.

I am also thankful for my committee members. I can never save words on
praising Dr. Jesse Barlow as the go-to person for questions related to numerical
linear algebra, and as a kind senior faculty when I seek out for academic suggestions.
Dr. Necdet Serhat Aybat gave me many inspiring lectures on convex optimization.
It is always fun to talk to Serhat and learn about new optimization techniques. Dr.
Wang-chien Lee provided many practical suggestions for future work.

The collaboration with the special committee members from Berkeley largely
shapes the topics in this dissertation. I owe to Dr. Kesheng (John) Wu, Dr. Sherry
Xiaoye Li, and Dr. Gabriel Gomes for the good summers in Berkeley. John and
Sherry gave me many advices on interdisciplinary research in machine learning.
Gabriel introduced me into transportation and to many great people in the PATH
institute at UC Berkeley.

I want to express my gratitude to Dr. Venkataraman Shankar at Texas Tech
University for providing many valuable insights from transportation econometrics
perspective. The projects lead to Chapter 5 and Chapter 6 in this dissertation are
initiated from the collaborations with Dr. Shankar.

Graduate school life would be much less fun without my friends and lab mates,
I want to thank them.

I am indebted to my parents and grandparents. My dad’s entrepreneur mindset
constantly provides me the encouragement to pursue my goals. My mom is always
proud of me. I am motivated to achieve my career objectives in return for my

xiv

parent’s unconditional love. I feel guilty to my grandparents for not being able to
accompany with them and taking care of them. Not only they have never blamed
me, but also being supportive of me for pursuing my goals. I want to thank my
wife, Bowang, for staying with me side-by-side and taking care of me in the past
few years.

Work performed in this dissertation was supported in part by the U.S. National
Science Foundation grants ACI-1253881, OCI-0821527, CCF-1439057, and by the
Office of Science of the U.S. Department of Energy under contract No. DE-AC02-
05CH11231, and by a Penn State College of Engineering seed grant. Any opinions,
findings, and conclusions or recommendations expressed in this dissertation are my
own and do not necessarily reflect the views of the U.S. National Science Foundation,
the U.S. Department of Energy, and the Pennsylvania State University.

xv

Dedication

I dedicate this dissertation to my father Songmao Zhan and mother Chuanbin Ji.
This dissertation is also dedicated to my grandparents for their forever love.

xvi

Chapter 1 |
Introduction

Transportation efficiency and safety impacts life of everyone in the society. Intel-
ligent transportation systems (ITS) aims to develop and improve transportation
systems with synergistic technologies and systems engineering principles [1, 2]. The
availability of Big Data fosters data-driven methodologies for ITS. Modern sensors
generate large amounts of time series data. Large datasets of traffic accident obser-
vations also became available. Therefore, motivated from Intelligent Transportation
Systems applications, this dissertation studies prediction and structural learning
problems on time series and observational data from transportation domain.

The first theme in this dissertation focuses on time series predictions on traffic
flow data. Traffic flow prediction is a key component of an Intelligent Transportation
System. Accurate traffic flow prediction provides a foundation to other tasks such
as signal coordination and travel time forecasting. Sensors are widely deployed to
collect real-time traffic information. Traffic flow is noisy, multi-modal, and possibly
non-stationary. Moreover, the computation required for making the predictions has
to be efficient enough to produce timely forecast. These aspects motivate the design
of methodologies in this dissertation. Chapter 3 addresses the robustness aspect
for traffic flow prediction by developing an ensemble learning algorithm, which
captures multi-modality through the combination of different sub-models, exploits
the temporal characteristics of the data, and enhance the robustness through a
covariance-regularizer. Learning or parameter inference in machine learning models
are often formulated as optimization problems. Nearly all models require users to
tune additional parameters, known as hyperparameters. Since the distribution of
traffic flow may change gradually, keeping the hyperparameters static may result
in sub-optimal performance of the prediction model. This problem is addressed in

1

Chapter 4. In Chapter 4, hyperparameter tuning is formulated as a bi-level opti-
mization problem [3–8]. An efficient online hyperparameter optimization algorithm
is developed for multiple-kernel ridge regression [9,10]. This method enables fast
model tuning to mitigate the impact of non-stationary traffic observations.

The second theme in this dissertation concerns about parameter optimization
and structural learning on logistic models with mixed effect (mixed logit) and
latent effect. Structural learning refers to generate hypothesis from data with rich
internal structure [11]. Mixed logit model is widely used in demand modeling
and transportation safety studies [12–18]. It is a flexible model to describe latent
heterogeneity across individuals. Traffic safety researchers often apply mixed logit
to model the probability of suffering different severity classes in accidents. It
allows researchers to impose personalized heterogeneity for each variables. For
example, the effect of age on accident severity is often regarded as heterogeneous,
since health conditions of people of the same age may vary a lot. In the mixed
logit model, structure of the individual heterogeneity is captured by the mixing
distribution. The flexibility of mixed logit model comes at the price of solving
an optimization problem with high-dimensional integrals. Chapter 5 develops
a scalable approach mixed logit parameter learning based on a combination of
simulation-based optimization and stochastic gradient method [19–24]. Traditional
formulations of mixed logit model is non-convex [12, 15, 16, 25]. Therefore, the
flexibility for capturing heterogeneity comes at the cost of less stable estimates
due to the inherent non-convexity. A convex alternative to mixed logit model is
proposed in Chapter 6, with the goal to capture the data heterogeneity without
losing the convexity of a model. The distributional assumptions in the heterogeneity
is relaxed. We show that low dimensional structure is a generalized description
of the latent effect under several different settings. A convex learning model is
proposed via a low-rank and sparse decomposition between the homogeneous and
heterogeneous effects in the parameters.

Chapter 2 provides a literature review on statistical learning methods applied
to traffic flow prediction.

Chapter 3 studies ensemble learning schemes to integrate different existent
models. This chapter aims to improve the accuracy and robustness of traffic flow
prediction by model combination. Time series observations are correlated, recent
data may be more representative than older ones. Therefore, an ensemble model is

2

proposed in this chapter to exploit the temporal correlation of observations. The
predictions from different base models are also intrinsically correlated. However,
the correlation between models indicates some redundant information are produced.
Hence, another contribution in this chapter is designing a covariance-regularizer
to balance the accuracy and diversity of sub-models. Finally, a pruning scheme is
applied to remove anomalous predictions from different base models. Experiments
show this ensemble learning model outperforms several other model-combination
methods for arterial traffic flow prediction.

Chapter 4 studies model hyperparameter selection problems in streaming
setting during the online operations of machine learning models. Machine learn-
ing models typically have additional hyperparameters to be tuned, before fitting
the model on data. Grid search and random search [26] are two most common
methods for tuning hyperparameters. During operations, the hyperparameters
are tuned sporadically because the tuning process is computationally expensive.
However, when the time series is non-stationary or when the characteristics of
data change, the model can be sensitive to hyperparameters and requires frequent
hyperparameter tuning. Hence, this chapter is motivated to develop an efficient
online hyperparameter learning algorithm with theoretical guarantees. In particular,
this algorithm is illustrated on multi-kernel ridge regression model [9, 10]. The
proposed online algorithm is analyzed under the non-convex regret minimization
framework [27–30]. We show this algorithm achieves the optimal local regret for
measuring performance of non-convex online optimization algorithms. Experiments
on traffic flow prediction demonstrates the proposed online hyperparameter op-
timization method has significant savings in computation time relative to other
hyperparameter selection procedures, while achieving a similar prediction quality.

Chapter 5 studies parameter optimization in mixed logit model under simulation-
based inference framework. The computational issues in parameter estimation for
mixed logit model is addressed using a two-stage stochastic method. A Stochas-
tic Gradient with Sample Average approximation algorithm is proposed. It first
approximates the marginal likelihood estimator with Monte Carlo approxima-
tion [15, 25, 31, 32], then applies the Stochastic Gradient Descent algorithm to
optimize the approximated objective function. Under the simulation-based frame-
work, many authors solved the simulated problem in the second stage by variants
of BFGS algorithm [33–36] or trust-region methods [37]. Stochastic gradient al-

3

gorithm is a first-order method, which has been shown effective and scalable to
solve deterministic finite-sum problems in machine learning [19–24]. This chapter
demonstrates that stochastic descent is a scalable alternative to be used inside the
simulation-based inference framework as a two-stage stochastic method. This work
enables the analysis of factors related to traffic accidents on large datasets.

Chapter 6 introduces a convex formulation for logistic regression with latent
effect. The mixed logit model described in the previous chapter leads to a non-
convex optimization problem and can be unstable. The goal of the present chapter
is to propose an alternative model formulation allowing parameter heterogeneity
while preserving convexity. In many big data problems, researchers have discovered
that the data can be embedded in intrinsic low dimensional space despite of the
high dimensionality of observations [38–42]. It is not surprise to impose low-rank
structural assumptions in the latent heterogeneity. We show that low-rankness
in the individual heterogeneity is a general result under different data generating
process. Therefore, a latent effect logistic model is developed via a decomposition
between the sparse common effect and the low-rank heterogeneous effect. The
underlying convex optimization problem from the parameter inference is solved by
an efficient first-order method using accelerated proximal gradient algorithm [43–47].
We further describe a greedy local continuation scheme to compute the solution of
the problem over a path of the hyperparameters to enable efficient exploration.

Chapter 7 and Chapter 8 consist of my research on network analysis during
the early stage of my doctoral study. Transportation data can be represented by
networks. For example, traffic flow are collected on network of sensors, therefore
traffic flows form multivariate network time series. In addition, the relation between
accident observations and attributes can be visualized and analyzed by constructing
a bipartite graph, where each node represents either an accident or a factor related
to the crash. A matrix factorization method for analyzing clustering structure in
networks is proposed in Chapter 7. This method can be used for analyzing location-
attribute graph constructed on transportation data. Chapter 8 presents a fast graph
sparsification strategy via a knapsack formulation on graph. The knapsack problem
is solved by a greedy approximation algorithm. Graph sparsification is helpful for
identifying and visualizing structurally important connections on transportation
networks.

4

Table 1.1. Overview of Dissertation Structure
Chapters Keywords Motivating applications

Ch. 3 Ensemble Learning
Time Series Prediction Traffic Flow Prediction

Ch. 4 Hyperparameter Optimization
Online Learning Traffic Flow Prediction

Ch. 5
Structural Learning via Latent Variables
Simulation-based Optimization
Large Scale Optimization

Traffic Accident Analysis
Transportation Choice Modeling

Ch. 6
Structural learning via Latent Variables
Low-rank and Sparse Decomposition
Large Scale Optimization

Traffic Accident Analysis
Transportation Choice Modeling

Ch. 7 Matrix Factorization
Network Analysis Data Analysis on Graphs

Ch. 8 Graph Sparsification Data Analysis on Graphs
Data Compression

Ch. 9 Conclusion

5

Chapter 2 |
Review of Statistical Learning
for Traffic Flow Prediction

In this chapter, several important statistical learning models for traffic flow predic-
tion are reviewed. These methods are selected representatively from the following
categories: 1. time series models 2. latent variable models 3. maximum-margin
machine learning methods 4. kernel learning methods 5. Bayesian models.

Let [y1, y2, · · · , yt̂] denote a time series of historical observations of the traffic
flow. Predictions for the upcoming measurements [yt̂+1, yt̂+2, · · · , yt̂+l] are of interest.
We assume that there is an underlying autoregressive function f such that

yt+1 = f(xt) + εt+1

where xt = [yt−p+1, yt−p+2, · · · , yt]T ∈ Rp

The measurement yt+1 is a mapping from past values with additive i.i.d. Gaussian
white noise εt+1 ∼ N (0, σ2

ε). The function f and its order p is unknown. The
following notations are used in this chapter.

xt = [yt−p+1, · · · , yt]T ∈ Rp

X = [xt̂−T−1, · · · ,xt̂−1]T ∈ RT×p

yt = [yt+1, · · · , yt+l]T ∈ RT

Y = [yt̂−l−T+1,yt̂−l−T+2, · · · ,yt̂−l]T ∈ RT×l.

(X, Y) comprises the training data for each model. A row of X uses the p past
observations as the explanatory variables, and the responses are collected in Y . T

6

Table 2.1. Notation used for different time indices. All variables are positive integers.
Variable Description

t Indices for time
t̂ Present time
l maximum forecasting horizon
p Dimension of xt
T Number of past observations used

for training

denotes the number of flow samples used for training. Also let {Xk}k=1,··· ,p ∈ RT

be columns of X, and {Yk}k=1,··· ,l ∈ RT be columns of Y . The notations for time
indices used in the subsequent sections are given in Table 2.1.

There are two main paradigms for multi-step ahead forecasts, the recursive
strategy and direct strategy [48]. In the recursive forecasting paradigm, a prediction
model f(xt−1; Θ) with parameter Θ ∈ Rd is learned to approximate yt. The
parameter Θ is obtained typically by solving

Θ∗ = argmin
Θ

t̂∑
t=t̂−T

` (yt, f(xt−1; Θ)) + λR(Θ) (2.1)

where ` : R→ R is a loss function on the prediction, R : Rd → R is a regularizer
on Θ to penalize the complexity of Θ and prevent overfitting. λ > 0 is a constant
balances the trade-offs between training loss and model complexity. In recursive
prediction strategies, after obtaining Θ∗, the h-step-ahead from now forecast is
computed by applying model

f(x̂t̂+h; Θ∗), (2.2)

where x̂t̂+h ∈ Rp is constructed recursively by

x̂t̂+h := [yt̂−p+1, yt̂−p+2, · · · , yt̂, f(x̂t̂; Θ∗), · · · , f(x̂t̂+h−2; Θ∗)]T . (2.3)

In the recursive scheme, the unknown values from t̂ to t̂+ h− 1 are replaced
by predictions. Hence, the accumulated prediction error grows exponentially.
In contrast to recursive methods, the direct prediction strategies train a model
fh(xt−1; Θ) for each forecasting horizon h. For every 1 ≤ h ≤ l, the model

7

parameters are learned by

Θ∗h = argmin
Θ

t̂∑
t=t̂−T

` (yt, f(xt−h; Θ)) + λR(Θ) (2.4)

An h-step-ahead from now prediction is produced by f(xt̂−h; Θ∗h). Direct predic-
tions provide flexible ways to model multi-step ahead values and possibly avoid
exponentially growing prediction error, at the cost of training multiple models.

2.1 Recursive ARMAX
The AutoRegressive-Moving-Average model with eXogenous inputs (ARMAX) for
traffic flow prediction was studied in [49]. The ARMAX model describes the
evolution of traffic flows over time via the stochastic difference equation

A(q−1)yt = B(q−1)ut + C(q−1)wt, (2.5)

where yt is the traffic flow at time step t, ut is the historical sample average
flow value at the same time of day. wt is assumed to be a zero-mean innovation
sequence such that E (wtwt−j) = 0 for all 0 ≤ j ≤ t. Here q−1 is the backward shift
operator defined by q−1yt = yt−1, A(q−1), B(q−1), C(q−1) are scalar polynomials in
the backward shift operators

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na

B(q−1) = 1 + b1q
−1 + · · ·+ bnbq

−nb

C(q−1) = 1 + c1q
−1 + · · ·+ cncq

−nc ,

where the order na, nb, nc are hyperparameters. Coefficients of the polynomial are
estimated via the recursive least squares adaptation algorithm [49,50]. This method
belongs to the recursive estimation paradigm.

2.2 Partial Least Squares
Coogan et al. [51] recently applied the Partial Least Squares (PLS) technique to
short-term traffic flow prediction. The key idea of PLS is to maximally exploit

8

the covariance between flows in the prediction horizon and flows in the memory
window. Let x̄ ∈ Rp be the sample mean in X, and ȳ ∈ Rl be the sample mean in
Y . Subtract x̄T from each row of X and denote the result as X̃ ∈ RT×p. Similarly,
denote Ỹ ∈ RT×l the matrix obtained by removing the sample mean ȳT from each
row of Y . PLS exploits covariance by finding a pair of vectors (r∗, s∗) ∈ Rp × Rl,
such that

(r∗, s∗) = argmax
(r, s)

rT (X̃T Ỹ)s, s. t. ‖r‖2
2 = ‖s‖2

2 = 1, (2.6)

Notice that X̃T Ỹ ∈ Rp×l is the sample covariance matrix of flows across different
times. Intuitively, we seek a pair of projection directions (r∗, s∗) in Eq. (2.6), which
maximizes the sample covariance after the projection. The optimization problem
in Eq. (2.6) could be solved by a partial SVD of X̃T Ỹ ; the optimal projection
direction (r∗, s∗) are the first left and right singular vectors respectively. Define
w := X̃r∗ ∈ RT . The orthogonal projection of column vector X̃k and Ỹk onto w are

pk := 〈X̃k,w〉
‖w‖2

2
, k = 1, · · · , p

ck := 〈Ỹk,w〉
‖w‖2

2
, k = 1, · · · , l

(2.7)

respectively. Collectively we have p = X̃Tw
‖w‖2

2
and c = Ỹ Tw

‖w‖2
2
, which are called the

first predictor component and first prediction component respectively [51]. The
outer-product wpT provides a rank-one approximation to X̃, and similarly wcT is
a rank-one approximation to Ỹ . Next, X̃ and Ỹ are deflated to remove the effects
contributed by the rank-one matrices,

X̃ ← X̃ −wpT , Ỹ ← Ỹ −wcT . (2.8)

Equation (2.6) and (2.7) and the deflation (2.8) is repeatedly applied until we
get N predictor and prediction components, i.e., a predictor component matrix
P ∈ Rp×N and a prediction component matrix C ∈ Rl×N . To make predictions for
time t̂ + h, where 1 ≤ k ≤ l, first project flows in the memory window onto the

9

latent component matrix P :

ŵ = argmin
w
‖xt̂ − x̄− Pw‖2

2. (2.9)

The PLS predicted flow is then computed by

[fpls,t̂+1, · · · , fpls,t̂+l]T = ȳ + Cŵ ∈ Rl, (2.10)

The formulation we apply here is essentially the NIPALS-based PLS [52].

2.3 Support Vector Regression
Support vector machine (SVM) is one of the most successful machine learning
methods. The variant of SVM for the regression setting is called the Support Vector
Regression (SVR) [53, 54]. Traffic flow prediction with SVR has been previously
studied in [55, 56]. In this section, the direct prediction strategy with SVR is
described.

The regression model for h-step-ahead prediction is given by

fh,svr(xt) = φ(xt)Twh + bh, (2.11)

where φ is a user-defined function that maps the flows during the memory window
into features in higher dimension, and bh is a bias term for h-step-ahead forecasts.
The SVR models are trained separately for each prediction time-step {t̂− 1 +h}lh=1.
The SVR objective function at time t̂+ h is

(wh, bh) = argmin
wh,bh

t̂∑
t=t̂−T

`ε(fh,svr(xt−h)− yt) + λ‖wh‖2. (2.12)

This is called the structural risk minimization framework [57], where the term
`ε(fsvr(xt−h)− yt) is the empirical loss we want to minimize from the training data,
λ‖wh‖2 controls the complexity of the model to avoid overfitting. λ ∈ R+ is a
hyperparameter balancing the two terms.

10

The loss function used in SVR is defined by

`ε(fh,svr(x)− y) =

0, if |fh,svr(x)− y| < ε

|fh,svr(x)− y| − ε otherwise.
(2.13)

Therefore, using `ε, we allow the learned model to deviate from the true data by
a margin ε without penalty, where ε ≥ 0 is supplied by the user. Equation (2.12)
can be transformed into a quadratic programming formulation by introducing slack
variables [53, 58]. Many state-of-the-art solvers for SVR use sequential minimal
optimization (SMO)-type algorithms [59,60]. After the optimal w∗h and b∗h for time
t̂+ h is learned, the SVM predicted flow is produced by

fsvr,t̂+h = φ(xt̂)Tw∗h + b∗h. (2.14)

2.4 Kernel Ridge Regression
In kernel ridge regression (KRR), traffic flows in the memory window are first
transformed by a mapping xt 7→ φ(xt), then future flows {yt+h}lh=1 are modeled
by linear combinations of φ(xt). For simplicity, we assume that xt and yt are
mean-centered by subtracting the sample average flows from each data point. In the
direct prediction scheme, the Ridge Regression model for h-step-ahead prediction is

w∗h = argmin
wh

t̂∑
t=t̂−T

(
yt − φ(xt−h)Twh

)2
+ λ‖wh‖2

2, (2.15)

where λ ∈ R+ is a hyperparameter. The regularization term λ‖wh‖2
2 prevents

overfitting of the model. By the Representer theorem [9], there is a vector α ∈ RT ,
such that the optimal solution vector w∗h for Eq. (2.15) can be expressed as

w∗h =
t̂∑

t=t̂−T−1
αtφ(xt−h) = ΦTα, (2.16)

11

where ΦT = [φ(xt̂−h−1), φ(xt̂−h−2), · · · , φ(xt̂−h−T−1)]. Substituting the weight rep-
resentation in Eq. (2.16) into Eq. (2.15), we have

min
α

t̂∑
t=t̂−T

(
yt − φ(xt−h)TΦTα

)2
+ λαΦΦTα

= min
α
‖Y − ΦΦTα‖2

2 + λαΦΦTα

= min
α
‖Y −Kα‖2

2 + λαKα,

(2.17)

where Y ∈ RT is a vector of flows [yt]t̂t=t̂−T−1, and K := ΦΦT . Notice that we can
avoid explicitly constructing the transformed explanatory variables φ(xt) in equation
(2.17) by specifying a kernel function k such that Kij = k(xi,xj) = φ(xi)Tφ(xj). In
addition, Eq. (2.17) is unconstrained and convex, which allows an analytic solution.
Setting the gradient of the objective function with respect to α to zero, the optimal
solution is given by

α∗ =
(
K + λI

)−1
Y. (2.18)

After α∗ is obtained, the optimal solution to equation (2.15) can be computed as
w∗h = ΦTα∗. The time t̂− 1 + h prediction is

fkrr,t̂+h = φ(xt̂)T
(
ΦTα∗

)
=

t̂∑
t=t̂−T

α∗tk(xt̂,xt−h). (2.19)

Again, the mapping φ does not come into play directly, the computation can be
entirely done via the kernel.

2.5 Gaussian Process Regression
Gaussian process regression (GPR) is a non-parametric Bayesian method closely
related to kernel ridge regression. Xie et al. applied Gaussian process regression for
inter-state highway flow prediction [61]. GPR differs from kernel ridge regression
mainly from the model derivation procedure and the use of Bayesian posterior
distribution. In this work, we use the Gaussian process regression model described

12

in [58, 62]. For time t̂+ h, the flow is modeled by

yt̂+h = fgpr,t̂+h(xt̂) + ε

fgpr,t̂+h ∼ GP
(

0, k(x,x′)
)

ε
i.i.d.∼ N (0, σ2)

(2.20)

where GP
(

0, k(x,x′)
)
denotes a Gaussian process with covariance matrix parametrized

by the kernel function k(x,x′). We assume the residual ε is independent of fgpr,t̂+h.
The zero-mean Gaussian process is used here, since, without loss of generality, the
sample mean of flow values can be subtracted from yt [61]. Under model (2.20),
the covariance between traffic flows at t and t′ is

cov(yt, yt′) = σfk(xt,xt′) + σ2δtt′ , (2.21)

where δtt′ is a Kronecker delta function which equals 1 if t = t′, and 0 otherwise.
The joint distribution between historical flows Yk and the modeled flow fgpr,t̂+h(xt̂)
is Yk

fgpr,t̂+h

 ∼ N
0,

k(X,X) + σ2I k(X,xt̂)
k(xt̂, X) k(xt̂,xt̂)

 . (2.22)

The posterior predictive distribution [62] of fgpr,t̂+h, conditional on xt̂ and historical
flows, is

p
(
fgpr,t̂+h|xt̂, Yk, X

)
= N

(
µgpr,t̂+h, cov

(
fgpr,t̂+h

))
There are closed-form formulas to compute the posterior mean µgpr,t̂+h and posterior
covariance cov

(
fgpr,t̂+h

)
[62]. We use the posterior mean µgpr,t̂+h as Gaussian process

point estimation for flows at time k, i.e., fgpr,t̂+h := µgpr,t̂+h.

13

Chapter 3 |
Variance Regularized Ensemble
Learning Model

Several traffic flow forecasting methods are reviewed in Chapter 2. In practice,
it will often be necessary to select a single forecast. Therefore, combining the
results from individual predictors will be valuable in practice - a consensus outcome
potentially improves robustness and prediction accuracy. In this Chapter, a new
consensus ensemble learning model is proposed with the following algorithmic
contributions:

1. a time-dependent loss function exploiting the temporal data characteristics;

2. a new covariance-based regularizer to balance model diversity and accuracy
to learn the parameters;

3. a pruning scheme to safe-guard against prediction anomaly.

Work performed in [63] leads to this chapter.

3.1 Ensemble Model
Traditionally, consensus ensemble methods build a meta-model by convex combina-
tion of the base models. Use {fmt}Mm=1 to denote a collection of forecasts from M

models at time t.

f̄ =
M∑
m=1

βmfm,
M∑
m=1

βm = 1, βm ≥ 0 ∀m

14

αct +
M∑
m=1

βmfm

Learning ensemble parameters

f1

f2

...

fM

Pruning by
Algorithm 1

ct
Error-

correction term

f̄
Ensemble
prediction

output from M base predictors

Figure 3.1. Overview of the consensus ensemble method proposed in this chapter. α
and {βm}Mm=1 are ensemble parameters learned from data.

Stack regression is a classical consensus ensemble methods in machine learning for
computing the weights {βm}Mm=1. In many machine learning applications, stack
regression implicitly assumes that samples in the training set and test set are
independently distributed. The training data is shuffled and partitioned. Parts of
the training set is used for fitting the sub-models, and the left-out training data is
used for computing the ensemble weights.

In the traffic flow time series prediction setting, due to inherent seasonality
and other temporal correlations, the shuffling and leave-out operations change the
empirical distribution. It is not reasonable to remove some observations yt<t̂ and
train the base models using samples before and after the removed observations.
Therefore, it is necessary to modify stack regression by building the meta-training
set in a sequential manner, without data shuffling. We describe a rolling training
procedure in more detail in section 3.2.2. In addition, recent data might be more
representative than older ones in a temporal prediction task. Finally, the prediction
errors may be correlated over time. With these concerns in mind, I now describe
the ensemble model for consensus traffic prediction. Figure 3.1 provides an overview
of the proposed ensemble learning method.

The model proposed here exploits possible temporally correlated prediction
errors. Denote f̄t the consensus forecast for flows at time t. Define the error-
correction term

ct :=
∑t−1
t′=t−T ′ w(t′; θ)

(
yt′ − f̄t′

)
∑t−1
t′=t−T ′ w(t′; θ)

, (3.1)

where T ′ is the number of time-steps used to compute ct from historical predictions
and observations. In equation (3.1), the decay-function w(·; θ) is a monotonically
non-increasing function in the first argument, which down-weights the difference
yt′−f̄t′ for large t′. θ is the decay-rate hyperparameter which controls how fast w(·; θ)

15

decreases. There are many decay-functions proposed in the literature, for example,
the exponential decay defined by wexp(t; θ) := exp(−tθ) and the polynomial decay
wpoly(t; θ) := (1 + t)−θ [64]. For both decay-functions, setting θ = 1 is equivalent to
placing equal weights for all samples, whereas larger θ discriminate against older
ones. The proposed ensemble model is parametrized by

f̄t = αct +
M∑
m=1

βmfmt. (3.2)

ct is a removing average of differences between actual flow values and ensemble
predictions from the most recent T ′ observations, which serves as a error correction
term. α, {βm} are parameters to be optimized in the model. We proposed the
Time Decay Error-Correction Ensemble to learn the model parameters α, {βm}

min
α,{βm}

t̂−1∑
t=t̂−T

w(t; θ)
(
yt − αct −

M∑
m=1

βmfmt

)2

+ λ

∑
m

β2
mv̂ar(fm) +

∑
m

∑
m′ 6=m

βmβm′ ĉov(fm, fm)

subject to
M∑
m=1

βm = 1, βm ≥ 0 ∀m, L ≤ α ≤ U.

(TDEC)

Here T is another user-given hyperparameter to control the number of training
samples supplied to the ensemble model. The loss function in TDEC also weights
the training samples by a decay term w(t; θ). The minimization spells more on
the loss due to recent data. The term involving λ in the objective is a regularizer.
Intuitively, we are seeking for {βm} to balance between the weighted `2 loss and
variance of the ensemble model. ĉov(fm, fm′) is the estimated covariance between
model m and m′. The choice of ĉov is important, but accurate estimation of the
covariance is difficult. We described the principle behind the covariance-regularizer
and the choice of ĉov in the following section. The bounds L and U prevent
overfitting by the error-correction term. We discuss how to select hyperparameters
θ and λ, and the number of time-steps T ′ in the error-correction term in section
3.2.

16

3.1.1 Bias-Variance-Covariance Decomposition

The intuition behind the covariance-regularizer in TDEC is explained in this section.
The goal of statistical learning is to select a function f̂ to minimize the expected
generalization error of a loss function L,

min
f̂

E
(
L(y, f̂(x))

)
.

The expectation here is averaged over all possible randomness, including the
unknown data distribution (y,x) and random training set T . In regression problems,
when L(y, f̂(x)) = (y − f̂(x))2, the generalization error conditional on an input x
could be decomposed by

Eε,T
(
(yt − f̂(x))2

)
=σ2

ε +
(
Eε,T f̂(x)− f(x)

)2
+ Eε,T

(
f̂(x)− Eε,T (f̂(x))

)2

=σ2
ε + bias2(f̂(x)) + var(f̂(x)),

(3.3)

where subscripts under the expectation operator denote the random variables. This
is called the bias-variance decomposition [65] and it holds for all data distributions
and estimated models f̂ . For an ensemble model given by f̄ = ∑

m βmfm, the
variance term reduces to

var(f̄(x)) =
∑
m

β2
m var(fm) +

∑
m

∑
m′ 6=m

βmβm′ cov(fm, fm′). (3.4)

Therefore, purpose of the regularizer in TDEC is to strike the right balance
between the bias and variance of the ensemble model and achieve a lower expected
generalization error. Since the true data generating distribution (y,x) is not known
a priori, the minimization of expected `2 error is replaced by empirical weighted
`2 error from the past T time-steps in TDEC. Similarly, Ex

(
var f̄(x)

)
needs to

be estimated. Recall that cov(fm(x), fm′(x)) includes randomness in the training
set which produced fm. Therefore, a straightforward estimation of the covariance
between base learners is to retrain the model using different training data and
compute the sample covariance of predictions for each x. However, this approach
is computationally expensive. Note that the error-correction term is not considered
as a predictor and the coefficient α does not enter covariance-regularizer and the

17

sum-to-one equality constraint.

3.1.2 Covariance Matrix

Based on the above discussion, choice of the covariance matrix is described below.
Let t̂ be the current time,

ĉov(fm, fm′) =
∑t̂−1
t=t̂−T w(t; θ)(fmt − µm)(fm′t − µm′)∑t̂−1

t=t̂−T w(t; θ)
, (3.5)

where µm is an extension of the definition of simple mean, defined by

µm =
∑t̂−1
t=t̂−T w(t; θ)fmt∑t̂−1
t=t̂−T w(t; θ)

. (3.6)

This definition of ĉov takes time-stamps into account and reduces the influence of
older predictions. We define the estimated covariance matrix Σ̂ ∈ RM×M as

Σ̂mm′ = ĉov(fm, fm′). (3.7)

Σ̂ is symmetric and positive semi-definite. Note that the covariance (and variance)
function in TDEC is not restricted to be the one in equation (3.5). In general, better
approximations to Ex [cov(fm(x), fm′(x))] may serve as more effective regularizers.

3.1.3 Optimization

In this section, I demonstrate how to solve TDEC via transformation into a convex
quadratic programming problem.

Define
w := [α, β1, · · · , βM]T ∈ RM+1,

y := [yt̂−T , yt̂−T+1, · · · , yt̂−1]T ∈ RT ,

P :=

ct̂−T f1t̂−T · · · fMt̂−T

ct̂−T+1 f1t̂−T+1 · · · fMt̂−T+1
...

ct̂−1 f1t̂−1 · · · fMt̂−1

18

Λ := diag
(
w(t̂− T ; θ), · · · , w(t̂− 1; θ)

)
∈ RT×T

S :=
 0 0TM

0M Σ̂

 ∈ R(M+1)×(M+1),

where 0M ∈ RM . Also, let 1M be a vector of ones, and IM×M be the identity matrix
of size M . TDEC can then be written as a quadratic programming problem

min
w

(y− Pw)T Λ (y− Pw) + λwTSw[
0 1TM

]
w = 1[

0M IM×M
]
w ≥ 0(M+1)[

1 0TM
]
w ≥ L[

1 0TM
]
w ≤ U.

(TDEC-QP)

Therefore, solving TDEC-QP is not a more difficult problem than stack regression.

3.1.4 Unsupervised Pruning

The ensemble model described above uses supervised learning approach to compute
the model parameters from data. Each base prediction method has its own degree
of robustness against noise and corruptions in the data. Some base learners may
occasionally produce unexpected abnormal predictions due to observation noise. A
base model may behave well in training, but make an anomalous prediction due
to noise or corruptions in the most recently collected data. Any nonzero weight
βm assigned to this base predictions will cause anomalous result in the ensemble
prediction as well. This reflects a key assumption behind the consensus approach:
the individual members in the ensemble should produce “reasonable” results. Hence,
a simple rule-based pruning step is applied before solving TDEC-QP as a safe-guard
against prediction outliers.

The pruning (algorithm 1) takes a threshold γ as input. It then discards pre-
dicted values that are outside of an interval about the median with size proportional
to γ. This pruning scheme is similar to scoring rules used in many sports. For
example in synchronized swimming, the highest score and the lowest score are
cancelled, and the team’s final score is based on the average of the remaining. The
experiments show the ensemble predictions are much more robust with the help of

19

Algorithm 1 Pruning prediction outliers
1: function Pruning(γ, {fmt}Mm=1)
2: fmax := max{fmt,m = 1, · · · ,M}
3: fmin := min{fmt,m = 1, · · · ,M}
4: fmedian := median{fmt,m = 1, · · · ,M}
5: if fmax > γ ∗ fmedian then
6: remove fmax at this timestep
7: else if fmin < (1/γ) ∗ fmedian then
8: remove fmin at this timestep
9: end if

10: end function

pruning.

3.2 Experiments
To assess the performance of consensus ensemble prediction, the base methods
described in Chapter 2 and different ensemble methods are tested on arterial traffic
flow. Arterial flow forecasting is a more difficult task than freeway flow forecasting,
because of its more variable road conditions.

3.2.1 Data Description

We conducted experiments on traffic flow data collected from arterial sensors in
Arcadia, CA in 2015. The raw data is processed into traffic flow time series whose
consecutive measurements are separated by a fifteen minute interval, measured in
number of cars per hour.

3.2.2 Experimental Procedure

Traffic control centers receive flow measurements periodically. Using historical data
and sensor readings from the recent past, traffic operators wish to make multi-step
traffic forecasts into the near future. The experiments study a case in which traffic
flow measurements are sent to the control center every hour, and forecasts for
the following hour is desired. Hence, each prediction consists of four time-steps
separated by intervals of fifteen minutes. For instance, using historical data and
today’s traffic flow up to 7 AM, the flow predictions at 7:15 AM, 7:30 AM, 7:45

20

AM and 8:00 AM are computed. After that, the true flow at these times are
“observed” by the algorithms, and predictions for the next hour are made. Using
the notation from the previous sections, the verification and prediction horizon
is l = 4 in this setting. Notice that under this rolling procedure, flows after the
forecasting time-step are never fed into the prediction algorithms.

In the proposed consensus prediction system, there are two levels of training
required - one for the base methods and additional training for the ensemble TDEC.
For each prediction step t, the base models are trained and predictions for this step
are produced. Next, the pruning procedure (Algorithm 1) removes anomalous base
forecasts. After that, historical flow observations and the past T base predictions
are queried to formulate problem TDEC. Optimal solutions from TDEC-QP are
then used to construct the consensus forecast. The base model parameters and
ensemble parameters α, {βm}Mm=1 are updated in every time-step.

The following metrics are used for comparing the performance of different base
methods and the consensus method. The absolute error of method m at time t is
defined as

AE(t) = |yt − fmt|

which quantifies for the magnitude of the prediction error. The mean absolute
error (MAE) is the mean of AE in all tested time steps. In addition to the mean, the
standard deviation of absolute error is of interest:

StdAE =
√ ∑

t(AE(t)− MAE)2

number of steps evaluated− 1 .

StdAE provides a view on the robustness of a model. When the MAE of two models
are close, the one with lower StdAE is preferred.

3.2.3 Automatic Hyperparameter Search

We now describe the selection of hyperparameters in TDEC. In general, hyperpa-
rameter optimization is expensive and requires repeated model evaluation. We use
two hyperparameter search strategies, grid search and random search. Given the
traffic flow time series, let tH be a cut-off time such that measurements before tH
are used for constructing the hyperparameter validation set V , and measurements
after tH are use for testing. Note that with the rolling training process described

21

in section 3.2.2, there is a cold-start period, which is the minimum number of
time-steps needed to train the base models, plus an additional T steps needed to
verify the base predictions and build the consensus model.

In grid search, a set of candidate hyperparameters are specified. DenoteH(θ) the
set of decay rate hyperparameters, H(λ) the set of regularization hyperparameters
in TDEC, and H(T ′) the number of time-steps used to compute the error-correction
term in equation (3.1). In the experiments, let

Hgrid = H(θ)×H(λ)×H(T ′),

H(θ) = {0, 0.05, 0.1, 0.15},

H(λ) = {0, 1, 3, 5},

H(T ′) = {8, 40, 80}.

(3.8)

Grid search evaluates all configurations in Hgrid. The ensemble model enumerates
all possible hyperparameter configurations in the grid search space Hgrid and uses
the exponential decay-function wexp(t; θ) = exp(−tθ). For each hyperparameter
choice, the MAE on validation set V is recorded. The one that achieves minimum MAE
on V is chosen. Hyperparameter grid search in high dimension is computationally
expensive. For N hyperparameters and each with c possible values, grid search
procedure results in O(|V|cN) model evaluations. Random search is an alternative
to grid search, which does not enumerate all possible hyperparameter settings.
Rather, each pass over the validation set randomly selects a configuration from
the search space. Many researchers have suggested that random search is very
competitive in high dimension, due to the curse of dimensionality [26]. Recall that
the decay-function appears in the error-correction term (equation (3.1)), in the
weighted `2 loss term of TDEC, and in the estimated covariance matrix (equation
(3.5)). The dimension of hyperparameters are expanded if each component is
allowed to adapt its own parametrization of decay-function w(·; θ) and decay-rate
θ. In addition, the lower bound L and upper bound U for the error-correction
coefficient could also be tuned. We apply random search for hyperparameters from

22

the following search space:

Hrandom = H(wloss)×H(wec)×H(wcov)

×H(θloss)×H(θec)×H(θcov)

×H(λ)×H(T ′)×H(L,U),

H(wloss),H(wec),H(wcov) = {exp(−tθ), (1 + t)−θ}

H(θloss),H(θec),H(θcov) = {0, 0.05, 0.1, 0.15},

H(λ) = {0, 1, 3, 5},

H(T ′) = {8, 40, 80},

H(L,U) = {L,U ∈ [0, 1], L ≤ U}.

(3.9)

Similar to grid search, the hyperparameter configurations producing the lowest MAE
from the random search will be used in the testing set. In the experiments, 50
uniform random draws from Hrandom are made. Note that the embedding dimension
p for xt, and the training set size T̂ , T may also be tuned. For comparison in later
sections, p is set to 48 (12 hours), T̂ is 120 ∗ 24 ∗ 4 (120 days), T = 20 ∗ 4 (80 hours).

The function fitrsvm for SVM and fitrgp for GPR from MATLAB Machine
Learning and Statistics toolbox with their heuristic default values for the hyperpa-
rameters [66,67] are used in the experiments in this chapter. Additionally, PLS and
KRR are implemented in MATLAB, and similar default heuristics for hyperparam-
eter configuration are applied. The tables and figures reported here are obtained
from base methods with their default hyperparameters.

3.2.4 Overview of Results

One of the motivations for developing a consensus method is that it is unlikely that
a single base prediction could consistently outperform others all the time. We verify
this hypothesis by comparing the absolute error obtained by the base methods
across different time and on different detectors. For each prediction step, a method
is marked as the winner if it achieves the lowest absolute error. We compare the
percentage of testing days achieving the lowest absolute error by each method at
different time. The result is visualized by the area plot in figure 3.2, in which
each method is represented by a shaded strip. The width and area of each strip
is proportional to the percentage of testing days won by the respective method.

23

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

Time of Day

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
 o

f
B

e
s
t

P
re

d
ic

ti
o

n
s

ARMAX PLS SVR GPR KRR

Figure 3.2. Area plot of percentage of best predictions by each method. Area of the
strips are proportional to the percentage.

From figure 3.2, there is no single strip whose area dominates the plot. In addition,
the strips are in zig-zag shapes. It is not easy to identify a base method that
consistently won over a continuous portion of the day. This motivates us to study a
model combination approach for flow prediction. Figure 3.3 displays a showcase of
the results on three consecutive days randomly selected on a detector. Despite wide
ranges of base predictions around the morning rush hours, the ensemble predictions
TDEC closely aligned with the actual value of flows.

3.2.5 Baseline and Experimental Goals

Model combination has been studied in many domains, for example, machine
learning [65, 68, 69] and econometrics [70–72]. Despite a large body of literature in
this area, a common empirical observation in many areas is that the simple average
combination which assigns equal weights for the base methods often outperforms
complicate combination schemes [71,73]. This is known as the “forecast combination
puzzle” in the statistical forecasting literature [71, 73]. Some authors suggested
that the weights learned from historical data are unstable and unreliable, as a

24

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time of Day

0

200

400

600

800

1000

1200

F
lo

w
 V

al
ue

20-Oct-2015

prediction range true flow TDEC

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time of Day

0

200

400

600

800

1000

F
lo

w
 V

al
ue

21-Oct-2015

prediction range true flow TDEC

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time of Day

0

200

400

600

800

1000

F
lo

w
 V

al
ue

22-Oct-2015

prediction range true flow TDEC

Figure 3.3. Predicted flow values and the true flow in three consecutive days. Despite a
wide range of base predictions, the ensemble is closer to the true flow.

consequence of overfitting [72,73]. Therefore, simple average combination is used as
a baseline. A second baseline is the base method achieving the lowest MAE and StdAE
for each detector. We are interested in 1. examining whether the proposed ensemble
prediction improves over the simple average combination and best base method.

25

2. studying which components in the proposed ensemble model contribute to the
performance improvement or decline. The ensemble learning method proposed
in this chapter is also compared with two multi-model combination methods in
traffic flow forecasting literature in section 3.2.8. Note that I do not compare the
performance of TDEC with bagging and random forest [74, 75], since this study
focus on multi-model combination schemes, whereas random forest uses the same
“weak learner” together with data sub-sampling strategy.

3.2.6 Effect of Pruning

In the proposed ensemble system, the pruning scheme may be applied prior to solving
the optimization problem TDEC in each time-step. We run the rolling experiments
to compare the performance with and without the pruning step. The motivation of
unsupervised pruning step is to safeguard the procedure against unrealistic base
predictions. Table 3.1 displays the mean absolute error and standard deviation
for the following methods: • TDEC-rs, model TDEC where the hyperparameters
are automatically selected by the random search procedure outlined in section
3.2.3 • TDEC-gs such that the hyperparameters are set by grid search • SR, Stack
regression [76] applied to the rolling experiment setting • AVG, simple average
combination of the base methods. In addition, the sub-columns marked by γ = 5
indicate threshold of the pruning scheme, γ =∞ indicate no pruning.

For each detector, the lowest MAE is achieved either by TDEC-gs or TDEC-rs. On
12 out of 14 detectors, TDEC (-gs and -rs combined) obtained the smallest StdAE.
Table 3.2 lists the percentage reductions in MAE and StdAE with different values of
γ, compared to no pruning for each method, averaged from all tested detectors. A
positive percentage change denotes an improvement, a negative percentage implies
decline in performance. The pruning criterion is designed to be less sensitive with
larger γ. Note that there are improvements to the MAE and StdAE with all three
values of γ.

In table 3.1, TDEC-rs and TDEC-gs with γ = 5 outperforms simple average
combination with γ = 5 in almost all the detectors. However, if the pruning scheme
is removed, TDEC-gs with γ =∞ produced higher standard deviation than AVG
with γ =∞ in 5 of 14 cases. Therefore, the pruning scheme is necessary to produce
stable results and consistent improvements over simple average combination. In

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-5

0

5

10

15

20

StdAE

Detector ID

Pe
rc

en
ta

ge
re

du
ct

io
n

ov
er

be
st

ba
se

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-5

0

5

10

15

20

MAE

Pe
rc

en
ta

ge
re

du
ct

io
n

ov
er

be
st

ba
se

TDEC-rs AVG Ridge

Figure 3.4. Percentage Reduction in MAE and StdAE of ensemble methods with pruning
(γ = 5), compared to the best base method. Higher values are better for both metricscd.

addition, TDEC (-rs and -gs combined) with the pruning step achieved lower mean
and standard deviation of absolute error on all detectors compared to the best base
method. This shows that the proposed ensemble model could indeed be used to
integrate existent base methods.

3.2.7 Effect of Hyperparameters

The upper panel in Table 3.3 displays the average percentage reductions in MAE
and StdAE obtained by each ensemble method combined with the pruning scheme
compared to the best base model on all detectors, the lower panel shows the maxi-
mum improvement of MAE and StdAE among the fourteen tested detectors. A higher
value indicates greater improvements. On average, TDEC, with hyperparameters
selected either by random search (-rs) or grid search (-gs), outperformed stack
regression (SR) and simple average combination (AVG). The improvements by the
ensemble methods are less pronounced when γ = 10. In addition, TDEC with
random search resulted in greater improvements over the best base model than
TDEC with grid search scheme, likely due to the enlarged hyperparameter search

27

Table 3.1. Comparison of consensus and base predictors. Lower values are better for
both metrics. Best values for each detector are shown in bold font.

Mean Absolute Error MAE

IDTDEC-rs TDEC-gs SR AVG Ridge Lasso Best Base
γ = 5 γ = 5 γ =∞ γ = 5 γ =∞ γ = 5 γ =∞ γ = 5 γ =∞ γ = 5 γ =∞

1 126.6 126.8 128.2 127.9 129.1 129.2 141.3 131.2 133.3 152 154.3 135.2 KRR

2 55.8 56.2 60.3 56.7 60.9 57.1 64.8 59.2 62.4 73.1 75.5 57.1 KRR

3 42.4 42.4 46.7 42.8 47.5 44.1 46.5 43.1 47.8 47.2 51.5 45.7 KRR

4 45.2 45.2 47.5 45.5 47.7 46.7 59 47.3 49.7 63.4 66.5 45.2 KRR

5 45.1 45.1 47.3 45.2 47.7 45.4 51.8 46.3 48.7 62.7 64.8 45.1 SVR

6 35.2 35.3 34.6 35.9 34.8 39.9 39.8 36.4 35.9 60.2 60.2 42 KRR

7 35 35.1 34.8 35.2 34.9 36.1 35.9 35.8 35.7 42.3 42.1 37.4 KRR

8 34.3 34.5 34.5 34.3 34.3 35.2 35.4 35.5 35.5 37.1 37.2 36.6 KRR

9 29.4 29.5 31.5 30.1 31.9 30.3 35.2 30.7 32.7 33.5 34.9 30.7 KRR

10 29.2 29.2 31.2 29.3 30.9 29.5 31.1 30.2 32.1 31.1 32.6 30.3 SVR

11 17.3 17.4 18.2 17.4 18.1 17.3 17.9 17.7 18.3 23.6 24.2 17.6 SVR

12 10.4 10.4 10.5 10.4 10.5 10.4 10.5 10.6 10.7 12.7 12.8 10.8 SVR

13 9.7 9.7 9.8 9.7 9.8 9.8 9.8 9.9 10 12.2 12.3 9.9 GPR

14 8.4 8.5 8.4 8.5 8.4 8.6 8.6 8.6 8.5 9.9 9.8 9 SVR

Standard Deviation of Absolute Error StdAE

IDTDEC-rs TDEC-gs SR AVG Ridge Lasso Best Base
γ = 5 γ = 5 γ =∞ γ = 5 γ =∞ γ = 5 γ =∞ γ = 5 γ =∞ γ = 5 γ =∞

1 131.2 131.6 146.6 133.4 147.5 138.2 562.4 135.2 155 165.3 177.5 146.8 KRR

2 54.3 55 153.8 55.6 160.1 56.9 157.3 56.7 133.6 66.1 111.3 55.3 KRR

3 38.7 38.4 264.2 39.2 298.9 41.5 156.5 39.5 297.7 41.8 257.3 44.3 KRR

4 42.1 43.5 67.4 44 62.9 45.6 228.3 45.9 68.6 56.5 66.7 44 KRR

5 39.2 39.1 86.6 39.3 110.8 39.6 355.9 40 112.5 51.6 109.1 39.3 SVR

6 45.6 46.3 45.3 47.4 45.2 52.6 49.1 47 46.2 56.6 56.7 54.7 KRR

7 32 32.2 31.8 32.6 31.8 33.8 32.6 33.5 33 38.6 37.9 35.7 KRR

8 32.6 32.3 32.4 32.6 32.6 34.7 35.3 33.4 35.5 33.4 33.4 39 KRR

9 32.5 32.8 63.2 33.5 62.2 33.3 155.2 34.2 63.5 36.6 53.5 33.6 KRR

10 32.9 33.2 142.1 33.3 134.2 32.9 120.6 34.3 131.3 34.4 112.6 33.6 SVR

11 15.9 16.2 52 15.9 45.5 15.6 36.1 16.3 38.7 20.2 39.6 16.2 SVR

12 8.6 8.7 10.3 8.6 10.4 8.7 9 8.8 10.5 10.6 11.7 9.2 SVR

13 7.8 7.9 8.7 7.9 8.5 7.9 8.5 7.9 8.5 9.7 10.1 8 GPR

14 6.9 7 6.9 7.1 6.9 7.1 6.9 7.1 7 8.1 8 7.3 SVR

space allowed. In the experiment, 50 random draws from the search space Hrandom

are used. As a result, this requires 50|V| model evaluations of TDEC, where |V|
is the number of time-steps in the hyperparameter validation set V. Note that
grid search from Hgrid requires |V| × 32 × 42 model evaluations. Hence, random

28

Table 3.2. Average percentage reductions in MAE and StdAE of ensemble methods with
pruning, compared to no pruning (γ =∞).

MAE StdAE
γ TDEC-rs TDEC-gs SR AVG TDEC-rs TDEC-gs SR AVG
3 3.3 3 2.9 6.1 33.2 33.2 32.7 42.1
5 3.4 3 2.8 5.8 33.3 33.1 32.6 42.1

10 2.9 2.5 2.5 5.1 31.8 31.8 31.5 41.5

Table 3.3. Average and maximum percentage reductions in MAE and StdAE of ensemble
methods with pruning, compared to the best base method. Higher values are better for
both metrics. Best values for each detector are shown in bold font.

Average Percentage Reduction
MAE StdAE

γ TDEC-rs TDEC-gs SR AVG TDEC-rs TDEC-gs SR AVG
3 4.6 4.5 4 2.5 6.5 6 5.3 3.4
5 4.7 4.4 3.9 2.1 6.6 5.9 5.1 3

10 4.3 4 3.6 1.3 4.2 3.3 3.2 0.5
Maximum Percentage Reduction
MAE StdAE

γ TDEC-rs TDEC-gs SR AVG TDEC-rs TDEC-gs SR AVG
3 15.6 15.9 14.5 6.5 16.7 16.9 16.2 10.6
5 16.3 15.9 14.6 5.1 16.3 17 16.3 10.8

10 16.3 16.2 15.3 8.7 15.9 17 16.4 9.4

search is more efficient and effective than grid search for selecting hyperparameters
in the experiments. This observation is consistent with others in the literature
on hyperparameter optimization. Some theoretical analysis suggests that because
models typically have non-homogeneous sensitivity with respect to different hyper-
parameters and data distributions, grid search spends too much time exploiting
less sensitive hyperparameters [26].

3.2.8 Compare with Other Multi-Model Methods

The proposed ensemble learning model TDEC is compared with other multi-model
combination strategies for traffic forecasting to further evaluate its performance.
The Ridge Regression Ensemble and Lasso Ensemble were proposed by Li et al. [77]

29

for freeway traffic estimation. This work shares the same motivation with the
studies in this chapter, that “any models existing are imperfect and have their own
strengths and weakness”. Using the same notations from section 3.1.3, the Ridge
Regression Ensemble solves

min
w
‖y− Pw‖2

2 + λridge ‖w‖2
2 , (3.10)

and Lasso Ensemble solves

min
w
‖y− Pw‖2

2 + λlasso ‖w‖1 , (3.11)

to obtain the ensemble weights. In Ridge Regression Ensemble, the penalty term
λridge ‖w‖2

2 forces shrinkage of the solution to avoid overfitting. The l1-norm penalty
in Lasso Ensemble produces a sparse solution, hence fewer base methods will be
selected in the ensemble than the one obtained from a least square fitting. Com-
paring method TDEC-QP and equation (3.10) in Ridge Regression Ensemble, the
covariance penalty term in TDEC-QP could be viewed as a generalization to the
euclidean norm penalty. Also, it is noteworthy to point out that neither Ridge
Regression Ensemble nor Lasso Ensemble requires the weights to be summed-to-one
and non-negative. We run the same base methods and compute the ensemble
prediction with equation (3.10) and equation (3.11), with the regularization pa-
rameter λridge and λlasso selected via grid search from {0.1, 1, 3, 5} on the validation
data. Both ensemble methods are tested with and without applying the pruning
procedure (Algorithm 1). The MAE and StdAE for each detector under the Ridge
Regression Ensemble and Lasso Ensemble are listed in Table 3.1. The Lasso Ensem-
ble predictions, somewhat surprisingly, underperformed the best base method in all
detectors; however, this result is consistent with the one reported in [77], in which
the authors found Lasso Ensemble improves freeway traffic density (in vehicles
per kilometer per lane) estimate but worsen flow rate prediction in many cases.
The relative improvements of TDEC-QP, simple averaged combination, and Ridge
Regression Ensemble over the best base method for each detector are displayed
in figure 3.4. For each bar, positive value denotes improvement and higher is
better, vice versa. Our method outperforms Ridge Regression Ensemble and simple
averaging in almost all the detectors in both MAE and StdAE. Moreover, TDEC-QP
offers improvement over the best base method even when the other two multi-model

30

methods fail (detector 2, 4, 9, 10, 11). In addition, simple averaging performs better
than Ridge Regression Ensemble in more than half of the cases. This observation
confirms simple average combination is indeed a very strong baseline [71, 73].

3.2.9 Discussion on Computational Time

There are two major computational stages when running the ensemble system
proposed in this chapter. The first stage is to train the base models and gener-
ate predictions from each of them. The second stage is to obtain the ensemble
parameters via solving a convex quadratic programming problem TDEC-QP. The
first stage is common for most multi-model based ensemble methods, for exam-
ple, Ridge Regression Ensemble [77] discussed in the previous section. Table 3.4
shows the running time in seconds spent by different components of the proposed
system in a one-hour-ahead traffic forecast scenario. The numbers reported are
the average from ten runs. In the problem setting (section 3.2.2) described earlier,
the base models and ensemble model TDEC-QP are refitted every hour. Four
predictions spanning one hour are produced after the model fitting. Solving convex
quadratic programming based problem is much more efficient than parameter opti-
mization in neural network, which makes the ensemble method computationally
more feasible than neural network-based ensemble model for online traffic flow
forecast [75, 78]. In the Matlab implementation, the total time needed to finish an
ensemble four-step-prediction is in the order of seconds (table 3.4). The running
time for solving TDEC-QP is 0.02 seconds on average. Therefore in real operation,
the computational time attributed to model fitting and predictions is only a tiny
fraction of the one hour time budget. Obtaining a solution for Ridge Regression
Ensemble takes only 0.003 seconds on average, since there is a closed-form formula
available. A non-smooth convex optimization problem needs to be solved for Lasso
Ensemble. On average, the running time with Matlab built-in lasso function takes
0.02 seconds.

Table 3.4. Ten-run-averaged Running time (seconds) spent by different components of
the system for one-hour-ahead forecast, model fitting and prediction combined. Results
measured on a Intel i5 2.40 GHz dual core processor.

ARMAX PLS SVM KRR GPR TDEC-QP Total

0.09 0.32 0.42 0.38 1.19 0.02 2.42

31

3.3 Chapter Conclusion
This chapter addressed an important practical problem in traffic flow prediction:
how to combine the advantage of multiple flow forecasting models to yield a result
that is at least as accurate and stable as the best one. An ensemble learning model
was proposed to this end. The method described in this chapter was based on three
core ideas: 1. learning from mistakes in the recent past, 2. balancing model diversity
and accuracy, and 3. applying a pruning scheme to remove extreme forecasts. On
the tested arterial traffic sensors, the proposed ensemble model achieved as much
as 16.3% and 17% improvements, and on average 4.7% and 6.6% improvements,
respectively in mean and standard deviation of absolute error over the best base
model. The ensemble learning model TDEC consistently outperformed two recently
published ensemble prediction schemes based on Ridge Regression and Lasso, and
produced more accurate and robust predictions even in scenarios which the other
ensemble methods backfire. In addition, the proposed framework does not have
restrictions on the type of sub-models used.

32

Chapter 4 |
Online Hyperparameter Optimiza-
tion for Traffic Flow Prediction

Modern sensors generate large amounts of timestamped measurement data. These
data sets are critical in a wide range of applications including traffic flow predic-
tion, transportation management, GPS navigation, and city planning. Machine
learning-based prediction algorithms typically adjust their parameters automatically
based on the data, but also require users to set additional parameters, known as
hyperparameters. For example, in a kernel-based regression model, the (ordinary)
parameters are the regression weights, whereas the hyperparameters include the
kernel scales and regularization constants.

These hyperparameters have a strong influence on the prediction accuracy.
Often, their values are set based on past experience or through time-consuming
grid searches. In applications where the characteristics of the data change, such
as unusual traffic pattern due to upcoming concert events, these hyperparameters
have to be adjusted dynamically in order to maintain prediction quality. In this
paper, we use the term hyperparameter learning, hyperparameter optimization,
and hyperparameter selection/tuning interchangeably, referring to the process of
configuring the model specification before model fitting.

Existing hyperparameter optimization approaches [3–6,26,79–86] are designed
for offline applications where the data are split into training and validation sets,
making them unsuitable for online applications. Therefore, we aim to construct
online hyperparameter learning strategies.

This work was motivated by online traffic flow prediction problem. In this
context as is many others, a set of learning algorithms are used in the traffic stream

33

Algorithm 2 A rolling hyperparameter tuning and model fitting protocol for
deploying machine learning model for time series prediction. For simplicity, we
show the 1-step-ahead prediction setting here, but multistep settings are similar.
Input: ModelM, hyperparameter tuning interval n (time-steps), model fitting
interval m (time-steps).
Output: Predictions ŷt, t = 0, 1, 2, . . . , T .
1: for t = 0 to T do
2: if ((t mod n) = 0) then
3: Vt ← Historical Data for Model Evaluation
4: λ← Hyperparameter Tuning(M, Vt) . costly
5: end if
6: if ((t mod m) = 0) then
7: St ← Historical Data for Model Training(t)
8: θ∗(λ)← Train Model(M, St, λ)
9: end if
10: ŷt ← Predict(M, θ∗(λ))
11: Observe yt
12: end for

prediction engine, and the model hyperparameters are often reset periodically. The
model re-training is scheduled according to the operation cycle. We summarize this
deployment protocol in Algorithm 2 (for 1-step-ahead prediction due to simplicity,
multi-steps-ahead are similar). Under this protocol, operators re-select the model
hyperparameters every n time-steps, and retrain the model every m time-steps.
Note that hyperparameter tuning is much more time-consuming than model fitting.
For example, the widely-used grid search strategy selects different hyperparameter
configurations based on trial-and-error over the validation data Vt (line 4 in Algo-
rithm 2). In each trial of hyperparameters, the model needs to be re-trained and
re-evaluated.

The implication of the high computation cost of most hyperparameter tuning
methods is that traffic controllers cannot afford frequent adjustments on hyperpa-
rameters. Since the distribution of traffic flow may change gradually, keeping the
hyperparameters static may result in sub-optimal performance of the prediction
model. However, traffic sensors collect data at a high frequency and the data stream
arrives at the control center continuously, the serial correlation of measurements
suggest there is a potential for optimizing the hyperparameters in an online man-
ner. Therefore, this work proposes an online method for hyperparameter learning

34

motivated by the need for efficient traffic time series prediction.
Online optimization [27–30] emerged as powerful tools to reduce the computa-

tional complexity of model fitting and provide theoretical guarantees. However,
when online optimization techniques applied on streaming prediction problems, one
often assumes that either the learnerM has no hyperparameters or the hyperparam-
eters are fixed in advance. Despite of the advances in online convex optimization,
the rolling prediction scheme outlined in Algorithm 2 is still widely used in practice
since almost any learning models can be deployed in this manner. Given the
justification that cost of hyperparameter search dominates cost of model learning,
speeding up hyperparameter selection will be very useful in practice. Much of the
existing work in online optimization are designed for convex objective functions,
while the relationship between hyperparameters and prediction accuracy is generally
unknown and very unlikely to be convex. Therefore, a key challenge to address is
the development of an online optimization strategy for non-convex functions. The
major contribution of this work is an online hyperparameter learning algorithm
(called OHL) for Kernel Ridge Regression. The algorithm can also be applied to
certain class of models where the objective functions satisfies some smoothness as-
sumptions. We analyze our algorithm in non-convex regret minimization framework
and prove that it achieves the optimal local regret [30] under suitable assumptions.

We make the following contributions in this paper:

• We design a Multiple-Kernel Ridge Regression approach for short-term traffic
time time series prediction, which aims to learn the long-term periodicity,
short-term deviation and trending of traffic flows simultaneously via the
combination of kernels (section 4.2).

• To learn the model hyperparameters effectively and efficiently, we propose
an online hyperparameter learning (OHL) algorithm. Our strategy is to
adaptively update the model hyperparameters with streaming data (section
4.3.1)

• We first provide an abstraction of the OHL algorithm for a class of models
where the objective function satisfies some smoothness requirements, and on
which the hyper-gradients can be computed. We then analyze the algorithm
under regret minimization framework and show the optimality of the algorithm
in terms of local regret (section 4.4).

35

• We tested the multiple-kernel model with the proposed OHL algorithm for
traffic flow prediction on I-210 highway, and compared the performance
of Multiple-Kernel Ridge Regression under other popular hyperparameter
tuning methods. Our method achieves similar and sometimes better prediction
accuracy compared to a state-of-art hyperparameter tuning method, while
using one-seventh of the computation time (section 4.5).

Work presented in this chapter are based on the paper [8,87] I published during
my doctoral study.

4.1 Common Hyperparameter Tuning Algorithms

4.1.1 Grid Search

Grid Search is the simplest and most widely used hyperparameter tuning strategy.
Given a validation set Vt and training set St from the historical data, grid search
enumerates a user-provided list of hyperparameter settings. For each configuration,
the model is fitted on St and evaluated on Vt. The configuration yields the best
performance on Vt is selected. Suppose there are c possible choices for each
hyperparameter, the cost of grid search is O(cd · cost(θ∗(λ))), where cost(θ∗(λ))
is the cost of obtaining θ∗(λ). Hence the computational cost of grid search grows
exponentially. When grid search is applied periodically in every n steps (Algorithm
2), the accumulated cost of hyperparameter tuning is

O
(
T

n
· cd · cost(θ∗(λ))

)
, (4.1)

where T is the total number of predictions made, d is the dimension of hyperpa-
rameters.

4.1.2 Random Search

Random Search has been shown to be effective in high dimensions despite being
intuitively simple [26]. Given a budget of R random draws per hyperparameter
selection period, instead of enumerating a pre-defined list of configurations, random
search trials different hyperparameters. Following the analysis in [26], let the

36

volume of the hyperparameter space be Vol(H), and let volume containing targeted
hyperparameters be Vol(T), the probability of finding a target out of R random
draws is: 1−

(
1− Vol(T)

Vol(H)

)R
. Suppose the hyperparameters offering good predictions

lie in a hyper-rectangle occupying 5% of the search space [26], i.e., Vol(T)
Vol(H) = 0.05,

the probability that at least one draw from 50 trials positioned inside the target
hyper-rectangle is more than 90%. The accumulated computational cost of random
search is

O
(
T

n
·R · cost(θ∗(λ))

)
. (4.2)

4.1.3 Gradient-based hyperparameter optimization

Gradient-based hyperparameter optimization methods for offline problems were
studied in [3–7, 79–81]. In the offline setting, using a training set S and a hold-
out validation set V , one may apply gradient-based algorithm with (4.17) by
alternatively fitting θ∗(λ) on S and computing the update direction of hyperpa-
rameters on V . When the hyper-gradient is available, [4, 81] demonstrate the
superior prediction performance of gradient-based tuning. The complexity is
O
(
I ·
(
cost(∇λf) + cost (θ∗(λ))

))
, where I is the number of iterations taken. In

general, I = Ω
(

1
ε

)
for non-strongly convex functions [88], where ε is the conver-

gence threshold. When this approach is deployed online via the rolling protocol
(Algorithm 2), the accumulated cost of hyperparameter tuning becomes

O
(
T

n
· 1
ε
·
(
cost(∇λf) + cost (θ∗(λ))

))
. (4.3)

4.1.4 Bayesian optimization methods

Bayesian optimization [89] is also a popular hyperparameter tuning paradigm. It
has been shown that Bayesian optimization can produce state-of-art results for
tuning deep learning models. Ironically, Bayesian optimizer itself uses kernels and
involves (hyper)-hyperparameters. Therefore, we exclude these approaches in the
Experiments section due to the complications in applying the methods.

Note that there is a common factor of T
n
in equation (4.1), (4.2), and (4.3) due

to the periodic nature in rolling hyperparameter tuning scheduled in every n steps.
In section 4.3.1, we propose an online hyperparameter optimization algorithm which

37

removes this factor. The theoretical performance guarantees of the algorithm will
be analyzed in section 4.4.

4.2 Multiple-Kernel Ridge Regression
Traffic flow time series is dynamic and hard to predict for a number of reasons.
Despite having an approximately AM/PM and weekday/weekend periodic pattern,
the short term traffic variation from the mean can be significant. This can be due
to traffic accidents, weather, nearby events, and other factors. In addition, traffic
measurements can be very noisy due to inherent uncertainties and measurement
error.

We use Multiple-Kernel Ridge Regression to simultaneously capture the peri-
odicity pattern and short-term distortion of traffic data. Kernel methods provide
expressive tools to model the periodicity and the short-term nonlinear deviation. At
each model learning step τ , let y ∈ RN denote a vector collecting past N data points.
For each yt, let xt := [ys]t−1

s=t−p ∈ Rp be a vector of p past flow observations that
are used as predictor variables for yt. The training set Sτ consists of pairs of past-
present observations {(xt, yt)}τt=τ−N . In Kernel Ridge Regression, φλK : Rp → Rq

is a feature mapping from the raw observations to another feature space, indexed
by hyperparameters λK . The Kernel Ridge Regression problem [9,10,65] finds a
weight vector w ∈ Rq that solves

min
w

τ∑
t=τ−N

(
yt − φλK (xt)T w

)2
+ λR ‖w‖2 , (4.4)

where λR > 0 is a regularization hyperparameter to be selected, which controls the
variance of estimation. By the Representer Theorem [9,10], there is θ := [θj]Nj=1 ∈
RN , such that the optimal solution w∗ can be written as w∗ = ∑N

j=1 θjφλK (xτ+1−j).
Hence, instead of optimizing over w, Eqn. (4.4) can be equivalently solved by

argmin
θ

(
y−KλKθ

)T(
y−KλKθ

)
+ λRθ

TKλKθ, (4.5)

where KλK ∈ RN×N , [KλK]ij = [φ(xi)Tφ(xj)], i, j = 1, · · · , N. Therefore, instead
of explicitly constructing the feature mapping φλK (·), one may work directly with
suitable kernels KλK (·, ·) : Rp×Rp → R. Roughly speaking, kernel methods express

38

the similarity between the N training samples with a positive semi-definite kernel
matrix KλK ∈ RN×N , where λK is a vector of hyperparameters that determine the
kernel.

The hyperparameters of the Kernel Ridge Regression model are denoted by
λ := [λK , λR]. Throughout the paper, we use θ∗(λ) to denote the optimal solution
of (4.5), highlighting its dependence on λ. The optimal solution θ∗(λ) can be
written in closed-form:

θ∗(λ) =
(
KλK + λRI

)−1
y. (4.6)

Different choices of kernels capture different aspects of the data. We model the
periodicity of traffic flows as a function of time, and model the short-term deviation
from strict periodicity by considering the memory effect from recent traffic. With
slight abuse of notation, we also use KλK (·, ·) : Rp × Rp → R to denote a pairwise
kernel function on two data points. Let yt, yt′ be the traffic volume at time-stamp
t, t′ respectively. The periodic kernel proposed by Mackay [90] determines the
periodicity pattern by the time difference |t− t′| between two observations,

Kprd
ν,ω (t, t′) := exp

(
− ν sin2

(π|t− t′|
ω

))
. (4.7)

In Kprd
ν,ω , ω > 0 is a hyperparameter controlling the period of recurrence, ν > 0

is another hyperparameter deciding the scale1 of “wiggles” in traffic flow. The
short-term nonlinear effect is modelled by a squared exponential kernel using
autoregressive feature xt,

Kse
ν (xt,xt′) := exp

(
− ν ‖xt′ − xt‖2

2

)
. (4.8)

The kernel scale hyperparameter ν in Kse
ν has similar qualitative effects as the one

in Kprd
ν,ω , but their values can be different and remain to be chosen. The automatic

relevance determination (ARD) kernel is a generalization of Kse
ν allowing each

component of the feature to have a different length scale,

Kard
ν (xt,xt′) := exp

(
−

p∑
i=1

νi
(
yt−i − yt′−i

))
. (4.9)

1most literature refer l = ν−1 as the length scale, we use the reciprocal for ease of differentiation
later.

39

The number of hyperparameters in the ARD kernel increases with the number of
features, hence it is usually infeasible to optimize them with grid search. A valid
kernel function gives rise to a positive semi-definite kernel matrix, where each entry
is computed from the kernel function on two data points. Any linear combination
between kernels produce a new one. Using this property, given M different kernels,
Multiple-Kernel Ridge Regression uses an composite kernel function:

KλK = β1K
(1)
λK1

+ β2K
(2)
λK2

+ · · ·+ βMK
(M)
λKM

, (4.10)

where ∑M
i=1 βi = 1, βi ≥ 0. We consider the coefficients {βm}Mm=1 as hyperparame-

ters, since they determine the final kernel matrix used in equation (4.5). (4.10) can
be viewed as an ensemble learning model from different kernels [63, 68, 69]. The
composite kernel is a function of time and the autoregressive feature:

KλK

(
(t,xt), (t′,xt′)

)
= β1K

prd
ν,ω (t, t′) + β2K

ard
ν (xt,xt′) (4.11)

After computing θ∗(λ) through equation (4.6), to make a prediction for time t, let
the vector of pairwise kernel mappings between (t,xt) and (t′,xt′) in the training
set Sτ be kλK :=

[
KλK

(
(t,xt), (t′,xt′)

)]
(t′,xt′)∈Sτ

∈ RN . The prediction is given by

ŷt(θ∗(λ)) = kTλKθ
∗(λ) (4.12)

To summarize, λK in Multiple-Kernel Ridge Regression includes the hyperparame-
ters for each kernel and the kernel combination coefficients {βm}Mm=1. λK and the
regularization constant λR must be set properly to balance the effects of periodicity
in traffic flow, near-term nonlinear distortion due to unusual events, and estimation
variance ˘ resulting in a hyperparameter optimization problem.

4.3 Hyperparameter Learning

4.3.1 Hyper-Gradient Computation for Kernels

The dimension of λ can range from tens to hundreds when an automatic relevance
kernel is used with high dimensional features. Periodic hyperparameter re-selection
brings heavy computational burden for an online operations. This motivates the

40

development of online methods to adaptively learn the hyperparameters. We apply
the `2 loss function to obtain the prediction error for time-step t:

` (yt, ŷt(θ∗(λ))) =
(
yt − kTλKθ

∗(λ)
)2

:= ft(λ). (4.13)

Notice that given yt and the training set, the prediction error is a non-convex
function of λ. Even though the loss function is convex, the nested nature of λ in
θ∗(λ) and the kernel kλK creates non-convexity. Using the chain rule, the partial
derivative of ft(λ) with respect to the kernel hyperparameters λK is:

∂ft(λK)
∂λK

=− 2
(
yt − ŷt(θ∗(λ))

)(
∂kλK
∂λK

θ∗(λ)
)

− 2
(
yt − ŷt(θ∗(λ))

)(
kTλK

∂θ∗(λ)
∂λK

)
,

(4.14)

and the partial derivative with respect to the regularization constant λR is:

∂ft(λK)
∂λR

= −2
(
yt − ŷt(θ∗(λ))

)(
kTλK

∂θ∗(λ)
∂λR

)
. (4.15)

Let λR ∈ [L,U] ⊂ R+, since KλK is positive semi-definite, A(λ) :=
(
KλK + λRI

)
is non-singular. Therefore, A(λ)−1 is differentiable. Let λ(i) denote the i-th
hyperparameter. Then

∂A−1(λ)
∂λ(i) = −A−1(λ)∂A(λ)

∂λ(i) A
−1(λ) (4.16)

Consequently,
∂θ∗(λ)
∂λ(i) = ∂A−1(λ)

∂λ(i) y = −A−1(λ)∂A(λ)
∂λ(i) θ

∗(λ) (4.17)

Equation (4.17) along with (4.14) and (4.15) provide the gradient w.r.t hyperpa-
rameters (hyper-gradient) given the loss at yt. In the next subsection, we described
a state-of-art gradient-based hyperparameter optimization method [4], and our
rational for improving the method.

41

4.3.2 Our Method: Online Hyperparameter Learning

We propose an online projected hyper-gradient descent algorithm to address the
computational burden of applying gradient-based hyperparameter tuning algorithms.
The idea is to compute the hyperparameter gradients ∇λft(λ) on-the-fly when a
new datum yt is observed, then average the historical hyper-gradients to make
a smoothed update on λ before fitting θ∗(λ) (every m steps). The entire rolling
hyperparameter re-selection cycle is removed and replaced by incremental learning
procedure. In addition, to speed up the computation of hyperparameter gradients,
the terms in equation (4.14) and (4.15) shared with subsequent hyper-gradients are
pre-computed and stored after an update.

The projected gradient update to the hyperparameters in every m steps is:

λnew = ΠC

(
λold − η

m

τ−1∑
t=τ−m

∇λft(λ)
)

(4.18)

where ΠC(·) is the orthogonal projection operator defined by ΠC(u) = argmin
v∈C

‖u− v‖2
2.

The hyperparameter space for Multiple-Kernel Ridge Regression is C = [U,L] ∪∆,
such that λ(i) ∈ [Ui, Li] if λ(i) is not {βj}Mj=1, and {βj}Mj=1 ∈ ∆ := {βT1 = 1,β ≥
0} enforces the simplex constraints on the kernel weights. The Online Hyperparam-
eter Learning (OHL) algorithm for Multiple-Kernel Ridge Regression is presented
in Algorithm 3.

4.3.3 Complexity

Lines 4, 7, 14, and 15 in Algorithm 3 are used for adjusting hyperparameters. Line 6
for computing θ∗(λ) is a common step for all rollingly-trained Kernel Ridge methods,
and thus not additionally introduced by Algorithm 3. The cost of computing the
Jacobian matrix for a hyperparameter in Line 7 via eqn (4.17) is O(N2) due to
matrix-vector multiplications, since the inverse kernel design matrix A−1(λ) has
been obtained in computing θ∗(λ). Also, this cost only occurs in every m steps.
The cost of computing the partial derivative for each hyperparameter in Line 14
via eqn (4.14) and (4.14) reduces to a O(N) inner product operation with a column
in the pre-computed Jacobian matrix. Thus, Algorithm 3 efficiently computes the
hyperparameter gradients online. Projection onto simplex Π∆(·) for the kernel

42

Algorithm 3 Online Hyperparameter Learning (OHL) and Prediction with Multi-
ple Kernels.
Input: Update window m, learning rate η, convex feasible set C, initial λ0 ∈ C,
number of training samples N , total prediction time-steps T .
Output: Predictions ŷt, t = 0, . . . , T − 1.
1: for t = 0 : T − 1 do
2: if ((t mod m) = 0) then
3: if t > 0 then
4: λt = ΠC

(
λt−1 − η m−1gt

)
. update λ

5: end if
6: St = Historical Data for Model Training(t)
7: θ∗(λt) =

(
Kλt,K + λt,RI

)−1
y . fit model

8: J = compute Jacobian matrix using Eqn. (4.17)
9: gt = 0

10: else
11: λt = λt−1
12: end if
13: ŷt = kλt,K (t,xt)T θ∗(λt) . prediction
14: Observe yt
15: ∇λft(λt) = compute hyperparameter gradient using Eqn. (4.14), Eqn. (4.15)

and pre-computed J
16: gt+1 = gt +∇λft(λt) . hyper-gradient
17: end for

coefficients {β}Mi=1 can be computed in O(M logM) time [91], and projection onto
box constraints is a linear time operation on the number of hyperparameters. Hence
the update step in line 4 can also be done efficiently. Therefore, the complexity of
OHL applied on Multiple-Kernel Ridge Regression is

O
(
T

m
·
(
N2d+M logM

)
+ TNd

)
(4.19)

4.4 Theoretical Analysis with Local Regret
We now present the theoretical analysis under online learning framework for non-
convex functions. Algorithm 4 is an abstraction of Algorithm 3 for general non-
convex function ft, where the subscript t represents the the time-varying nature of
the hyperparameter optimization problem due to dependence on the rolling training

43

Algorithm 4 Online Projected Gradient Descent with Lazy Updates.
Input: Update window m, learning rate η, convex feasible set C, initial z0 ∈ C,
timesteps T .
Output: Iterates zt, t = 0, . . . , T − 1.
1: for t = 0 : T − 1 do
2: if mod (t,m) = 0 then
3: if t > 0 then
4: zt = ΠC

(
zt−1 − η m−1gt

)
5: end if
6: gt = 0
7: else
8: zt = zt−1
9: end if

10: Submit zt
11: Observe cost function ft : C → R
12: Compute ∇zft(zt)
13: gt+1 = gt +∇zft(zt)
14: end for

set St. Note that since Algorithm 3 is a specific implementation of Algorithm 4, the
result extends to our hyperparameter learning problem. Online learning models the
iterates {zt}T−1

t=0 and the functions {ft}T−1
t=0 as a repeated game of T rounds. At each

time t, the learner selects an iterate zt ∈ C, where C ⊂ Rn is a compact convex set.
After zt has been chosen, a cost function ft : C → R is revealed to the learner and
the learner suffers a loss ft(zt). We make the following assumptions on the cost
function ft. These assumptions are satisfied for kernel method hyperparameter
learning problem, i.e., when ft(·) = `(yt, ŷt(θ∗(·))). Let ‖·‖ to denote the Euclidean
norm throughout the rest of the paper.

A1. supz∈C |ft(z)| ≤M for all t.

A2. ft is L-Lipschitz: |ft(z)− ft(v)| ≤ L ‖z − v‖.

A3. ft has Q-Lipschitz gradient:

‖∇ft(z)−∇ft(v)‖2 ≤ Q ‖z − v‖ .

44

The performance of {zt}T−1
t=0 with respect to {ft}T−1

t=0 is studied by the measure of
regret. For convex cost functions, the regret is typically defined by

T−1∑
t=0

ft(zt)−min
z∈C

T−1∑
t=0

ft(z),

which is the difference between the choices {z}T−1
t=0 and the best fixed decision in

hindsight [27, 29]. However, when the cost functions are non-convex, searching
for global minimum is NP-hard in general even in the offline case where a static
f : C → R is known in advance. Furthermore, due to the convex constraint z ∈ C, a
large number of gradient evaluations are required to discover a stationary point [30].
Thus, for offline problems, a relaxed criterion is to minimize the (C, η)-projected
gradient [30, 92]:

P (z,∇f(z), η) := 1
η

(
z − ΠC

(
z − η∇f(z)

))
. (4.20)

It is easy to see that P (z,∇f(z), η) mimics the role of gradient in a projected
gradient update:

zt+1 := ΠC

(
zt − η∇f(zt)

)
= zt − ηP (zt,∇f(zt), η). (4.21)

Since C ⊂ Rn is compact and convex, and assuming f satisfies A1-3, then there
exists a point z∗ ∈ C such that P (z∗,∇f(z∗), η) = 0 [30]. Therefore, as a natural
extension from the offline criterion of vanishing projected gradients, the local regret
for non-convex online learning is defined as follows.

Definition 1. The local regret [30] for loss functions {ft}T−1
t=0 and sequence of

iterates {zt}T−1
t=0 is

RT =
T−1∑
t=0
‖P (zt,∇ft(zt), η)‖2 . (4.22)

Definition 1 was first used by Hazan et al. [30]. The following theorem shows
the optimal local regret is lower bounded by Ω(T).

Theorem 1. Define C = [−1, 1]. For any T ≥ 1 and η ≤ 1, there exists a
distribution D of loss functions {ft}T−1

t=0 satisfying assumption A1-3, such that for

45

any online algorthms, the local regret satisfies

ED
(
RT

)
≥ Ω(T). (4.23)

Proof. See Theorem 2.7 in Hazan et al. [30].

A time-smoothed follow-the-leader (FTL) algorithm was proposed in [30], achiev-
ing the optimal local regret bound O(T) for non-convex functions. This algorithm
computes the gradients {∇ft−i(zt)}mi=1 and updates the iterate zt in every step. For
the hyperparameter learning problem considered in this paper, when z represents
hyperparameter λ, a change from λt to λt+1 will require model refitting to update
θ∗(·) from θ∗(λt) to θ∗(λt+1) in every step. Besides, the historical gradients are not
reused in the time-smoothed FTL algorithm [30], since ∇ft−i(·) is re-evaluated at
latest zt in every step. Hence, the method in [30] becomes impractical for online
hyperparameter learning given a computational budget. In contrast, Algorithm 4
accumulates the gradients and produces an update every m-steps, which dramat-
ically reduces the amount of gradient computation and model-refitting on θ∗(λ).
As a price paid for the speed-up, we need the following additional assumption
characterizing the variation of cost functions to achieve optimal regret bounds. Let
[r] denote [0, r] ∩ Z.

A4. Assume there is a constant w ∈ Z independent of T , for all m ∈ [w]\{0},
there is a constant Vm ∈ R+, such that for any t, the variation of gradients
from the average within m steps is bounded:

sup
z∈C

m−1∑
i=0
‖∇ft+i(z)−∇Ft,m(z)‖2 ≤ Vm,

where Ft,m(z) := 1
m

m∑
i=0

ft+i(z).
(4.24)

In the convex setting, variations defined similar to (4.24) have also been studied
[93–95]. However, the variation used in [93] defines m = T , whereas in (4.24) m is a
constant independent of T . Note that the quadratic variation in (4.24) also implies

sup
z∈C

m−1∑
i=0
‖∇ft+i(z)−∇Ft,m(z)‖ ≤

√
mVm. (4.25)

46

Corollary 1. There exists a distribution D of loss functions satisfying assumption
A1-3, and A4, such that for any iterates {zt}Tt=1, the lower bound ED

(
RT

)
≥ Ω(T)

still applies.

Proof. See Theorem 2.7 in Hazan et al. [30], construction of D in Theorem 1 also
satisfies assumption A4.

We need a few properties of projected gradients before establishing the regret
bound for algorithm 4.

Lemma 1. For any z ∈ C, ∇f(z), and ∇g(z),

‖P (z,∇f(z), η)− P (z,∇g(z), η)‖2 ≤ ‖∇f(z)−∇g(z)‖2 (4.26)

Proof. An application of Lemma 2 in Ghadimi et al. [92].

Lemma 2. For any z ∈ C and ∇f(z),

〈∇f(z), P (z,∇f(z), η)〉 ≥ ‖P (z,∇f(z), η)‖2
2 . (4.27)

Proof. See Lemma 1 in [92] and Lemma 3.2 in [30].

We now bound the local regret RT of the whole sequence by the projected
gradients of its subsequence. Recall that Algorithm 4 updates the iterate zt every m
steps. Without loss of generality, assume s = T/m ∈ Z. Let τj, j = 1, · · · , s denote
the steps at which an increment will occur, i.e., 0, · · · , T − 1 can be represented as

τ0, τ0 + 1, · · · , τ0 +m− 1, τ1, · · · , τs, τs + 1, · · · , τs +m− 1.

Moreover, zτj = zτj+i for any j ∈ [s] and i ∈ [m− 1].

Proposition 1. Let {τj}sj=0 denote the steps at which an increment to the iterates
will occur in Algorithm 4. Suppose m in Algorithm 4 is chosen such that m ≤ w in

47

assumption A4, the local regret satisfies

RT ≤
s∑
j=0

∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥2

+

+2
√
mVm

s∑
j=0

∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥+ (s+ 1)Vm.

(4.28)

Proof. Recall Ft,m(z) = m−1∑m−1
i=0 ft+i(z) from equation (4.24),

RT =
s∑
j=0

m−1∑
i=0

∥∥∥P (zτj+i,∇fτj+i(zτj+i), η)
∥∥∥2

=
s∑
j=0

m−1∑
i=0

(∥∥∥P (zτj+i,∇fτj+i(zτj+i), η)− P (zτj ,∇Fτj ,m(zτj), η) + P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥)2

≤
s∑
j=0

m−1∑
i=0

(∥∥∥P (zτj ,∇fτj+i(zτj), η)− P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥+

∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥)2

(4.29)
where the last line follows from zτj+i = zτj for i ∈ [m− 1] and triangle inequality.
From Lemma 1,

RT ≤
s∑
j=0

m−1∑
i=0

(∥∥∥∇fτj+i(zτj)−∇Fτj ,m(zτj)
∥∥∥+

∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥)2

≤
s∑
j=0

m−1∑
i=0

(∥∥∥∇fτj+i(zτj)−∇Fτj ,m(zτj)
∥∥∥2

+
∥∥∥P (zτj ,∇Fτj ,m(zτj), η)

∥∥∥2

+ 2
∥∥∥∇fτj+i(zτj)−∇Fτj ,m(zτj)

∥∥∥ ∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥)

(4.30)

Applying assumption A4 and its implication (4.25) yields the claim.

Proposition 1 has a very intuitive meaning: when the variation of gradients
of the loss functions are bounded, the local regret is bounded by the projected
gradients of loss at the updating steps τj, j ∈ [s]. We now state the main theorem
on the asymptotic growth of local regret in Algorithm 4.

Theorem 2. Let w be the constant in assumption A4, choosing the update period
m ≤ w, learning rate η ∈ (0, 2

Q
) in Algorithm 4, the local regret satisfies

RT ≤ O(T). (4.31)

48

Proof. From assumption A3, ∇ft(z) is Q-Lipschitz, therefore ∇Ft,m(z) is also
Q-Lipschitz for all t,m. For any τj,

Fτj ,m(zτj+1) ≤ Fτj ,m(zτj)− η
〈
∇Fτj ,m(zτj), P

(
zτj ,∇Fτj ,m(zτj), η

)〉
+ Qη2

2
∥∥∥P (zτj ,∇Fτj ,m(zτj), η)

∥∥∥2

2

(4.32)

Applying Lemma 2,

Fτj ,m(zτj+1) ≤ Fτj ,m(zτj)− η
∥∥∥P (zτj ,∇Fτj ,m(zτj), η)

∥∥∥2

2
+ Qη2

2
∥∥∥P (zτj ,∇Fτj ,m(zτj), η)

∥∥∥2

2
(4.33)

Rearrange the terms,

∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥2

2
≤

[
Fτj ,m(zτj)− Fτj ,m(zτj+1)

]
(η − Qη2

2)
(4.34)

From assumption A2, Fτj ,m(z) is L-Lipschitz. Since C ⊂ Rn is compact, let
D := maxu,v∈C ‖u− v‖2 denote the diameter of C. We have

∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥2

2
≤ LD(η − Qη2

2)−1 (4.35)

∥∥∥P (zτj ,∇Fτj ,m(zτj), η)
∥∥∥

2
≤ L1/2D1/2(η − Qη2

2)−1/2 (4.36)

Summing up all j = 0 to s, plugging the bounds (4.35) and (4.36) into Proposition
1, and from assumption A4,

RT ≤ (T/m)LD(η − Qη2

2)−1 + (2T
√
Vm/
√
m)L1/2D1/2(η − Qη2

2)−1/2 + TVm/m

≤ O(T).
(4.37)

Hence the regret bound is proved as claimed.

49

4.5 Experiments
We conduct experiments to evaluate the proposed online hyperparameter learning
method on synthetic and real data. On the real data, we perform 15-minutes-ahead
traffic flow prediction on 13 randomly-selected sensors of different types, distributed
along the I-210 [96] highway in California. The primary goals of the experiments
are to

1. Test whether our proposed Online Hyperparameter Learning (OHL) method
can adaptively learn the hyperparameters, given a misspecified starting point.

2. Examine the computational efficiency of OHL against other model tuning
methods.

3. Compare the traffic flow prediction accuracy of OHL with other hyperparam-
eter tuning strategies with multiple kernel models.

4.5.1 Synthetic data

A stochastic process with periodicity and linear trends is generated using the
following scheme:

y(t) = 1 + c1AR(20) + c2 sin(t/ω) + ε (4.38)

Here, c1 = c2 = 0.5, ω = 5, ε ∼ N (0, 0.3). The autoregressive coefficients
are αi/2 ‖α‖ with αi = i. One-step-ahead predictions are produced by kernel
methods under fixed hyperparameters and under the proposed OHL algorithm.
The predictions are compared against the ground-truth. In both cases, the initial
hyperparameters are the same. m = 10 and η = 0.001 in Algorithm 3.

Two kernels are used in the tests, a squared exponential kernel and the combi-
nation of a linear kernel and a periodic kernel. The initial kernel scale is ν = 0.1 for
the square exponential kernel. When this choice of kernel scale is fixed and used
for the rest of learning, the prediction produces a zigzagging line, indicating the
kernel scale is misspecified (green line in Figure 4.1). The predictions produced by
squared exponential With OHL overlap with the fixed hyperparameter case initially,
given the same starting hyperparameters, but aligns much closer to ground truth
after time step 400. OHL is tested for multi-kernel learning using periodicity and

50

200 300 400 500 600
time

10

12

14

16

18

20
va

lu
e

squared exponential kernel

true
fixed
OHL

Ground Truth vesus Prediction

200 300 400 500 600
time

10

12

14

16

18

20

va
lu

e

squared exponential kernel

noisy observation
true
fixed
OHL

Ground Truth vesus Prediction

200 300 400 500 600
time

8

10

12

14

16

18

20

va
lu

e

periodicity kernel + linear kernel

true
fixed
OHL

Ground Truth vesus Prediction

200 300 400 500 600
time

8

10

12

14

16

18

20

va
lu

e

periodicity kernel + linear kernel

noisy observation
true
fixed
OHL

Ground Truth vesus Prediction

Figure 4.1. Comparing OHL and FIXED on synthetic data. Left: squared exponential
kernel, Right: Combination of periodicity and linear kernel. OHL (red line) has a self-
correcting behavior towards ground truth, even when the initial hyperparameters are
mis-specified.

linear kernel. The initial hyperparameters are βprd = 1, period ω = 5 and scale
ν = 10 for the periodicity kernel, and βlin = 0 for the linear kernel. Hence, it is
expected in the fixed hyperparameter case, periodicity can be reproduced but linear
trend will be hard to capture. As seen in the bottom panels of Figure 4.1, there
is an equidistant gap between the ground truth and the predictions under fixed
hyperparameters. With OHL, the learner soon discovers the autoregressive drift
term and the predictions are perfectly aligned with ground truth (bottom panels
of Figure 4.1). The synthetic experiments demonstrate that OHL can perform
adaptive learning, which allows the users to initiate the system without the costly
tuning process.

51

4.5.2 I-210 Traffic Data

4.5.2.1 Data and Setup

The I-210 highway is a vital route in the San Gabriel Valley region of the Los
Angeles metropolitan area [96]. We use sensor data from thirteen randomly selected
locations covering both mainline detectors and ramp detectors. Measurements
from January 1 to May 16 of 2017 are used. The raw data were binned using a 15
minute time window. Hence, there are 96 observations per day. 15-minutes-ahead
predictions are tested.

0

50

100

150

200

OHL HOAG RDS

Total time (minutes)

20 min

138 min

157 min

0

50

100

150

200

OHL HOAG RDS

Hyperparameter tuning time (minutes)

3.2 min

120 min

139 min

Figure 4.2. Comparing total time and hyperparameter tuning time for OHL, HOAG,
and RDS. Each bar indicates the time taken for a detector, and the labels above bars
indicate average time for 13 detectors. Detectors are ordered by total time using OHL.

We compare the computational efficiency and prediction accuracy of hyperpa-
rameter configurations tuned by OHL versus other algorithms on multiple kernel
regression. A linear combination of the ARD kernel and periodic kernel is used.
Flow data from past 20 time-steps are used as autoregressive features. The feasibility
sets for the hyperparameters are [1.5∗10−2, 1.5∗10−6] for kernel scales, [96/2, 96∗7]
for periodicity in the periodic kernel, [0.03, 3] for regularization constant. The
following hyperparameter tuning algorithms are tested:

• The Online Hyperparameter Learning (OHL) proposed in this paper.

• Hyperparameter Optimization with Approximate Gradient (HOAG) [4], a
state-of-art gradient-based hyperparameter optimization method.

• Random Search (RDS) [26].

52

• Grid Search and fixed hyperparameters (FIXED), a baseline.

Our experimental procedure aims to mimic the application scenario of a traffic
prediction engine. Note that both HOAG and RDS are offline tuning strategies.
Therefore, to apply HOAG and RDS in a running environment, the traffic operators
need to re-run these tuning strategies periodically, as described in the rolling
protocol (Algorithm 2) in the introduction. Hence, we set the hyperparameter
optimization interval for HOAG and RDS as n = 96 ∗ 7, which corresponds to
weekly model tuning. At each hyperparameter tuning step, the validation set Vt
consists of observations in the past one month, and these are given to the tuning
algorithm. The tuning algorithms HOAG and RDS then perform backtesting on
the validation data Vt. HOAG uses hyperparameter gradient information to guide
the search for optimal hyperparameters on Vt [4]. RDS experiments with previously
selected configuration and 50 additional random configurations on the validation
dataset Vt; the one offering the best backtesting accuracy is used for the next
period.
RDS is simple to implement and often produces good hyperparameter tuning

results. It is thus widely used in practice [26]. After the model hyperparameters
are selected for the weekly interval, the model is trained with a training set of
|St| = 2880 time-steps.
OHL is an online method, taking the streaming data and adaptively updating

the hyperparameters. Therefore, it does not require backtesting with the validation
data Vt. The hyperparameter learning rate is set to η = 10−4 in OHL, and m is set
to 96. Therefore, OHL computes the hyperparameter gradient online and makes
an adaptive update every 96 steps. We keep the training frequency and amount of
training data the same for all methods.

4.5.2.2 Computational Efficiency Comparisons

Figure 4.2 gives the total time and the hyperparameter tuning time for the methods
OHL, HOAG, and RDS, and for the 13 detectors. Overall, OHL is nearly 7× faster
than HOAG and RDS. The speedup is mainly due to the faster hyperparameter
tuning in OHL compared to HOAG and RDS. The average hyperparameter tuning
times for OHL and HOAG are 3.2 and 120 minutes, respectively, indicating a
tuning speedup of 37.5×. The time spent on hyperparameter selection in OHL is a

53

small percentage of the total running time, and hence additional computational
overheads are not introduced compared to predictions under FIXED hyperparame-
ters. The dramatic speedup in OHL over the slow execution of HOAG and RDS
is expected: although HOAG and RDS are both good hyperparameter tuning
algorithms for I.I.D. setting, the rolling procedure for time-series prediction applies
the tuning algorithms periodically according to the operation schedule (weekly in
our experiments). Each run of the hyperparameter optimization algorithms requires
backtesting on the validation set, which also in turn involves multiple parameter
fitting steps corresponding to different hyperparameters. Even though HOAG uses
gradient-based optimization, the algorithm searches for the optimal solution of
hyperparameters on Vt during each tuning stage. In comparison, OHL extracts the
hyper-gradient knowledge adaptively from the streaming data, and making a single
projected-gradient update to the hyperparameters before re-training the model.
Further, the overall times (average across 13 detectors) for OHL and HOAG are 20
and 138 minutes, indicating a 6.9× speedup.

4.5.2.3 Prediction Accuracy

We use Root Mean Squared Error (RMSE) to measure the traffic flow prediction
accuracy with different hyperparameter optimization algorithms. In order to
examine the variation of RMSE over time, we also report the RMSE as a function
of time-step t:

RMSE(t) :=

√√√√1
t

t∑
τ=0

(yτ − ŷτ)2,

Thus, RMSE(t) summarizes the average prediction error from the start to time-
step t. Due to space limit, we only show the evolution of RMSE(t) over the
testing period for six detectors in Figure 4.3. The X axis in Figure 4.3 is the
prediction time-step and the Y axis corresponds to the RMSE up to that time-step.
OHL, HOAG, and RDS have lower RMSE compared to the result with FIXED
hyperparameters. This is an indication of suboptimal hyperparameters selected
and then fixed by grid search. The prediction accuracy of OHL is similar to HOAG
in most cases, and sometimes better. For example, on detector 1 and detector
2 (first two charts in the top row of Figure 4.3), RDS has the lowest RMSE in
the beginning phrase of testing, but OHL gradually improves and outperforms

54

0 1000 2000 3000 4000 5000 6000 7000 8000
Time stamps

70

75

80

85

90

95
R

M
S

E

Detector 1

OHL
HOAG
RDS
FIXED

0 1000 2000 3000 4000 5000 6000 7000
Time stamps

80

85

90

95

100

105

110

115

R
M

S
E

Detector 2

OHL
HOAG
RDS
FIXED

0 1000 2000 3000 4000 5000 6000 7000
Time stamps

75

80

85

90

95

100

R
M

S
E

Detector 10

OHL
HOAG
RDS
FIXED

0 2000 4000 6000 8000
Time stamps

85

90

95

100

105

110

115

120

R
M

S
E

Detector 7

OHL
HOAG
RDS
FIXED

0 1000 2000 3000 4000 5000 6000
Time stamps

75

80

85

90

95

100

105

R
M

S
E

Detector 8

OHL
HOAG
RDS
FIXED

0 2000 4000 6000 8000
Time stamps

90

95

100

105

110

115

R
M

S
E

Detector 9

OHL
HOAG
RDS
FIXED

0 2000 4000 6000 8000
Time stamps

85

90

95

100

105

110

R
M

S
E

Detector 11

OHL
HOAG
RDS
FIXED

0 1000 2000 3000 4000 5000 6000 7000
Time stamps

135

140

145

150

155

160

165

170

175

R
M

S
E

Detector 3

OHL
HOAG
RDS
FIXED

0 1000 2000 3000 4000 5000 6000 7000
Time stamps

40

50

60

70

80

90

100

R
M

S
E

Detector 12

OHL
HOAG
RDS
FIXED

0 1000 2000 3000 4000 5000 6000
Time stamps

70

75

80

85

90

95

100

105

110

R
M

S
E

Detector 6

OHL
HOAG
RDS
FIXED

0 2000 4000 6000 8000
Time stamps

100

105

110

115

120

125

130

135

R
M

S
E

Detector 4

OHL
HOAG
RDS
FIXED

0 2000 4000 6000 8000
Time stamps

95

100

105

110

115

120

125

130

R
M

S
E

Detector 5

OHL
HOAG
RDS
FIXED

0 1000 2000 3000 4000 5000 6000 7000
Time stamps

65

70

75

80

85

90

R
M

S
E

Detector 13

OHL
HOAG
RDS
FIXED

Figure 4.3. Prediction RMSE comparison for traffic flow data, OHL vs other hyperpa-
rameter tuning algorithms.

others over time. Meanwhile, OHL is also computationally the cheapest among the
three hyperparameter tuning strategies. The similar prediction accuracy between
HOAG and OHL in most cases are expected (Table 4.1), since both use gradient-

55

based optimization on hyperparameters. However, HOAG periodically applies
the gradient-based iterations until convergence on the validation dataset, which
makes the overall computation costly. In contrast, OHL achieves the same result
with adaptive updates. On some detectors, RMSE of the model tuned by OHL
algorithm is lower than HOAG - an offline gradient-based counter part. There are
two reasons that can explain why an online HO algorithm performs better than an
offline one. The optimal hyperparameters on validation set underperform in future
data, suggesting that either there is overfitting by hyperparameters or the data
distribution is not stationary. On the contrary, OHL enables timely hyperparameter
updates adapted to the latest observations.

Table 4.1. RMSE percentage improvement relative to FIXED hyperparameters. Larger
values are better. OHL achieves similar accuracy to HOAG, and nearly 7× faster (see
Figure 4.2).

RMSE Improvements
4000 time-steps final

ID OHL HOAG RDS OHL HOAG RDS
1 12% 11% 12% 13% 12% 13%
2 15% 15% 15% 15% 14% 11%
3 2% 2% -11% 3% 3% -8%
4 8% 7% 4% 9% 9% 4%
5 8% 6% 3% 9% 8% 1%
6 11% 11% 5% 11% 11% 4%
7 9% 10% 9% 11% 12% 11%
8 8% 9% 7% 8% 9% 6%
9 8% 9% 2% 9% 10% 3%
10 7% 9% 9% 8% 10% 9%
11 8% 8% 4% 8% 9% 5%
12 7% 7% 6% 7% 8% 5%
13 14% 15% 14% 15% 16% 14%

4.6 Conclusions
Motivated by the need for hyperparameter optimization in traffic time series
prediction, we proposed the OHL algorithm and applied it on Multiple-Kernel
Ridge Regression. The proposed OHL algorithm achieves optimal local regret. In
the traffic flow prediction experiments, OHL is nearly 7× faster than other rolling

56

hyperparameter tuning methods, while achieving similar prediction accuracy. In
addition, we observed a consistent improvement in accuracy compared to predictions
produced with static hyperparameters.

There are possible extensions to this work: efficient online hyper-gradient approx-
imation methods for a general class of models can expand the application scope
of OHL. One direction of improvement is combining our OHL algorithm with the
reverse-mode and forward-mode computation of hyper-gradients [6].

57

Chapter 5 |
Stochastic Gradient Optimiza-
tion for Mixed Logit Model

The probability distribution of multinomial response conditioned on the features can
be modeled by logistic (logit) models. The two most common applications of logit
models in transportation are traffic accident analysis [97–101] and transportation
demand modeling [16, 102–104]. In traffic safety analysis, multinomial logit is used
for modeling the probability of different injury outcomes in an accident, given a
vector of factors or features describing the accident characteristics. For example,
researchers have applied multinomial logit model to understand the significance
of gender and age effects of the victim, effect of speed and road condition on
the accident. A fixed vector of parameters are estimated in multinomial logistic
regression. The estimation procedure is often carried out via (penalized) maximum
likelihood [105] approach. The resulting negative log-likelihood functions is convex.
In multinomial logit, a shared vector of parameters across the population are
fitted in the model. The model implies that different victims, given the same
observed accident factors, will always suffer the same degree of injury. In reality,
the nature of accident severity cannot be fully specified. There are many unobserved
factors that influence the outcome of an accident. For example, effect of age may
depend health conditions of individuals. However, information such as prior health
conditions are typically not collected in the accident report, creating unobserved
heterogeneity. The unobserved heterogeneity can lead to diverse accident outcomes.
Therefore, accounting for the effect of unobserved heterogeneity on severity of
crashes is an important issue in analyzing accident data [106]. Incorporating
randomness in the parameters is a way to account for the unobserved heterogeneity.

58

Instead of fitting fixed parameters across the population, the mixed logit model
assumes the parameters also follow a distribution. Therefore, given a same vector
of observed factors, the randomness in the parameters in different samples give rise
to a diverse range of potential severity levels. Analyzing the fitted distributions of
the parameters in mixed effect logistic model assists in the discovery of population
heterogeneity with respect to different accident factors. For instance, when Gaussian
assumptions is placed on the parameters, a small variance implies the effect of a
factor does not vary much in the population.

Fitting fixed effect or mixed effect logit model is usually performed by optimizing
the log-likelihood or marginal log-likelihood function. In this paper, we focus
on scalable algorithms to solve the underlying optimization problem from logit
model parameter estimation on big datasets. The optimization problem is often
overlooked in traffic safety domain, despite of the popularity in applying this models
for analyzing accident data. Although many nonlinear optimization algorithms
can be adapted to solve the problem arisen from parameter estimation for logit
models, not all of them are scalable to large datasets. Stata [107], NLOGIT [108],
and LIMDEP [108] are arguably the most commonly chosen software packages
for estimating logit models for traffic safety analytic usages. Newton’s method
or Quasi-Newton method with BFGS or BHHH algorithms [33–36] are used as
the optimization routines in these packages. While Newton’s method and Quasi-
Newton methods enjoys superlinear convergence rate, the computational complexity
per iteration for these algorithms grows with the sample size in the dataset due
to the need for computing gradient directions from each sample. Therefore not
surprisingly, overall running time for fitting logit models with these algorithm will
be dependent on the size of datasets. Large accident samples are available today
due to advances in data collection technologies. Gaining insights into big data
may confirm or invalidate findings from small samples. Supporting scalable model
estimation is a fundamental step for studying traffic crash factors on big datasets.

5.1 Related Work
Research in mixed logit estimation roughly fall into two broad categories, studying
different estimators and improving the optimization efficiency given a type of
estimators as the objective function. This paper belongs to the second category.

59

There is a large body work in different statistical estimators for mixed logit model,
see [12–18,25,31,32,101,109–111] and the references therein. Mixed logit models are
typically fitted with simulation-assisted estimation under either the frequentist or the
Bayesian paradigm. Due to the presence of unobserved random effects in the model,
marginalization of the random effects by simulation are one of the most popular
approaches. The Maximum Simulated Likelihood (MSL) estimator is based on this
idea [15,25,31,32]. Solving the optimization problem arisen from the estimator is
equally important as the estimator itself. In this work, we focus on the optimization
aspect for the Maximum Simulated Likelihood estimation. MSL uses simulation to
approximate the high dimensional integrals resulting from marginalization of the
random effects. In general, the approximation accuracy increases with the number
of samples generated by the simulator. At the same time, the computational cost
for solving the optimization problem grows with both the simulation size and the
sample size of dataset. With the same number of simulation draws, controlling
the approximation error for the expectation operator requires trade-offs between
bias and variance of the simulator. There is a large body of work on Quasi-Monte
Carlo methods [112–115] (and the references therein), which aims to reduce the
variance of simulation and makes less number of draws required in practice. In
addition to producing better simulation procedures, several authors considered
optimization algorithms tailored to the Maximum Simulated Likelihood objective,
and compared the optimization efficiency of different algorithms. These papers are
close to ours in spirit. Bastin et al. proposed an adaptive Trust-Region Monte
Carlo algorithm for estimating mixed logit from the MSL objective, where each
trust-region subproblem is constructed with varying number of simulations [116].
The optimization performance of variants of trust-region method and Quasi-Newton
algorithms are compared in [117] and [118]. In [116–118], the algorithms were
tested on datasets with a few thousands observations. We aim to scale mixed logit
estimation on much larger datasets. In addition, the models in [116–118] are specified
for choice analysis from survey data. Therefore, the covariates are alternative-
specific but parameters are universal for all choices. On the contrary, there are no
alternative-specific covariates in accident records typically, and alternative-specific
parameters need to be specified. Therefore, the dimension of optimization variables
are larger in the latter case. Multiple local maxima (or minima) may exists, due to
the non-convexity of Maximum Simulated Likelihood. Hole and Yoo studied the

60

impact of initialization by the use of heuristic algorithms [119].

5.2 Background

5.2.1 Logit Model

We describe the fixed effect and mixed effect multinomial logit models in this section.
Given N observations of vehicle crashes, let the set {1, · · · , I} represent different
injury classes of the accident outcome. Let P (nc = k) denote the probability
of accident n resulting in severity category k. For each observation, xn ∈ Rp is
a p-dimensional vector of variables describing the accident characteristics. For
example, xn can be gender and age of victims, alcohol influence, weather conditions,
and other information about the accident. In the multinomial logit models, the
probability of suffering injury severity class k in an accident given xn is

P (nc = k|Vnj,xn) = exp (Vnk)
I∑
j=1

exp (Vnj)
(5.1)

where {Vnj}Ij=1 are linear predictors for each injury class. In the fixed effect case,

Vnj = α(j) + β(j)Txn, (5.2)

where α(j), j = 1, · · · , I are unknown class-specific intercepts, β(j) ∈ Rp are class-
specific parameters to be estimated. Since {β(j)}Ij=1 are shared across different
observations, accidents with the same observed vector x will result in identical
distribution of injury probability, despite that distinct consequences from accidents
may be suffered even under the same observed crash situation. To remove this
restriction, the mixed logit model allows randomness in the parameters to capture
the individual heterogeneity,

Vnj = α(j)
n + β(j)

n

Txn,

where βn : = [β(1)
n , · · · ,β(I)

n] ∈ RpI ,

αn : = [α(1)
n , · · · , α(I)

n] ∈ Rp,

(αn,βn) ∼ f(α,β|Ψ)

(5.3)

61

αn and βn ∈ RpI are random intercepts and random parameters for each observation
n. The joint distribution of αn and βn is specified by the mixing distribution
f(α,β|Ψ), where Ψ is an unknown parameter for the mixing distribution f . The
randomness in βn captures the unobserved heterogeneity in an accident, such that
two observations are allowed to have different outcomes even if xn = xn′ . The
differences in crash severity outcome can be due to unique factors in each accident
that are not observed by the analyst. For example, the health condition for people
of the same age may vary, but these information are typically not collected in
the accident report. In this paper, we make the following blockwise Gaussian
assumptions in the mixing distribution:

β(i)
n ⊥ β(j)

n , if i 6= j

β(i)
n ∼ N (µ(i),Σ(i))

(5.4)

We further assume the intercept α are non-random variables. Gaussian, truncated
Gaussian, log-normal, triangular, uniform distribution are among the popular
choices of mixing distributions used in traffic safety research. We focus on blockwise
Gaussian mixing distribution in this paper, though the method can be applied to
any distributions listed above.

5.2.2 Parameter Estimation

Estimation for multinomial logit model is typically carried out via the Maximum
Likelihood Estimator.

L(α,β) =
N∏
n=1

I∏
j=1

P (nc = j|α,β)tnj , (5.5)

where tnj = 1 if severity outcome j is observed on accident n, and tnj = 0 otherwise.
The estimator (α̂∗, β̂∗) for parameters in fixed effect logit model is obtained from

(α̂∗, β̂∗) ∈ argmax logL(α,β). (5.6)

Note that in the mixed effect case, the conditional probability P (nc|α,βn,Ψ)
depends on unobserved random parameters βn. In traffic safety analysis, researchers
typically care about the distribution of β in order to understand the degree of

62

heterogeneity in the population with respect to different accident factors. Therefore,
βn is integrated out to yield the marginal probability:

P (nc = j|α,Ψ) = E[P (nc = j|α,β,Ψ)] =
∫
P (nc = j|α,β,Ψ)f(β|Ψ)dβ. (5.7)

Accordingly, the marginal likelihood for mixed logit model based on (5.7) is

L(α,Ψ) =
N∏
n=1

I∏
j=1

P (nc = j|α,Ψ)tnj . (5.8)

The estimator for the mixing distribution parameters are obtained by

(α̂∗, Ψ̂∗) ∈ argmax logL(α,Ψ) (5.9)

Equation (5.7) contains an high dimensional integral without closed-form solutions,
which requires approximation. In the next section, we review the popular Maximum
Simulated Likelihood as an approximation to (5.9).

5.2.3 Optimization

In this section, we briefly describe popular optimization methods used by traffic
safety modeler for optimizing the objective function arisen from fitting fixed effect
logit model (5.6) and mixed logit model (5.9). Note that the maximization problem
can be written as minimizing −L. For subsequent presentation, we adapt the
equivalent minimization problem. In the fixed effect logit model, let

(α̂∗, β̂∗) ∈ argmin
N∑
n=1

`n(α,β), (5.10)

where `n(α,β) = − logP (nc = tn|α,β), tn is the severity result for observation n.
The optimization objective function (5.10) is a finite sum of N partial objective
functions contributed from each accident sample (xn, tn). Let Θ = {α,β}, the
Newton-Raphson iteration for solving (5.10) is

Θt+1 = Θt −
(N∑
n=1

H`n(Θt)
)−1(N∑

n=1
∇`n(Θt)

)
. (5.11)

63

Here, H`n(Θt) is the Hessian matrix of `n with respect to Θt. In Quasi-Newton
methods, the Hessian matrices H`n(Θt) are approximated by the BFGS formula
or the BHHH formula [33–36] instead of being computed exactly to reduce the
computational cost. Both the BFGS and the BHHH updates are supported in
Stata [107] and NLogit [108] and widely used. The optimization procedure discussed
above is not limited to fixed effect logit model. These methods are also applied
on fitting mixed logit model with the help of simulation, as we will show in the
following. Recall the mixed logit model defined in equation (5.3) and (5.4). Θ is
specified by a distribution instead of a fixed value. Therefore, the goal is to fit
the parameter Ψ governing the distribution of β. Since β ∼ N (µ,Σ), β can be
decomposed as

β = µ+ Γη, η ∼ N (0, I), ΓΓT = Σ, (5.12)

where Γ ∈ RpI×pI is the Choleskey factor of the covariance matrix. Therefore, the
high-dimensional intergral in the marginal probability (5.7) can be approximated
via Sample Average Approximation (SAA):

P̃ (nc = k|α,µ,Γ) = 1
R

R∑
r=1

exp
(
α(k) +

(
µ(k) + Γ(k)η(k)

n,r

)T
xn
)

I∑
j=1

exp
(
α(j) +

(
µ(j) + Γ(j)η(j)

n,r

)T
xn
) (5.13)

where {η(j)
n,r}Rr=1, j = 1, · · · , I are random draws from N (0, Ip×p). Quasi-random

simulations [112, 113] may also be used, without affecting the representation in
(5.13). Hence, instead of optimizing the marginal log-likelihood (5.9), the Maximum
Simulated Likelihood (MSL) is used:

(α̂∗, µ̂∗, Γ̂∗) ∈ argmin
N∑
n=1
− log P̃ (nc = tn|α,µ,Γ) :=

N∑
n=1

˜̀
n(α,µ,Γ). (5.14)

Newton’s method or Quasi-Newton method with BFGS approximation discussed ear-
lier in this section can be now applied on (5.14) to obtain the estimated parameters
for mixed logit model.

64

5.2.4 Limitation

Newton’s method and Quasi-Newton methods enjoy superlinear convergence rate.
However, the complexity per iteration grows with the number of samples in the
dataset due to the computation cost of the gradients:

cost of computing
(N∑
n=1
∇`n

)
≈ N × cost of computing

(
∇`n

)
. (5.15)

Therefore, despite of the potential superlinear convergence rate from using Newton
or Quasi-Newton methods, the time per iteration will be excessively long for large
N . Hence, the total complexity of Newton’s method and Quasi-Newton methods are
dependent on the sample size and difficult to scale up on large datasets. Finite-sum
optimization, similar to (5.10), frequently ocurrs in machine learning problems.
Stochastic Gradient Method (SGM) gains extensive study in machine learning
literature recently, due to its low complexity per iteration for minimizing finite-sum
of objective functions [19–24]. In the next section, we explain SGM on fixed effect
logit model. We then propose a combination of Sample Average Approximation
and Stochastic Gradient for mixed logit model estimation.

5.3 Stochastic Optimization for Logit Models

5.3.1 Stochastic Gradient Method

Stochastic Gradient Method was originally proposed by Robbins and Monro [120]
in stochastic approximation literature. Despite of the large body of work on SGM
for machine learning applications [19–24] (and references therein), this approach is
still largely ignored in traffic safety logit modeling and discrete choice literature.
To the best of our knowledge, stochastic optimization algorithms for estimating
logit/discrete choice models in transportation was studied only in [121]. In addition,
unlike most machine learning models, the objective function arisen from mixed logit
estimation depends on Monte Carlo simulation (5.14). Hence, it is important to
perform empirically examination of the performance of SGM applied on simulation-
based problems, such as Maximum Simulated Likelihood optimization. We describe
SGM in this section.

65

In stochastic optimization, the goal is to solve

min{F (Θ) := E[f(Θ, ξ)]} (5.16)

where ξ is a random vector from an unknown distribution. Even though the
distribution which generates ξ is unknown, we assume that:

(A1) It is possible to generate i.i.d samples ξ1, ξ2, ..., of the realization of ξ.

(A2) For every given ξ and Θ, f(Θ, ξ) can be computed. Moreover, for each ξ and
Θ, the stochastic gradient g(Θ, ξ) := ∇f(Θ, ξ) is well defined and unbiased,
i.e., E[g(Θ, ξ)] = ∇F (Θ).

These are standard assumptions in stochastic optimization literature [19,22,122].
Stochastic Gradient Method (SGM) performs the following iteration:

Θt+1 = Θt − γtg(Θt, ξt), t = 1, 2, ... (5.17)

where ξt’s are i.i.d. observations of the random variable ξ sampled at iteration t,
{γt}∞t=1 is the step-size sequence. In addition to update Θt from the stochastic
gradient computed from a single observation of ξ, a mini-batch gradient from
multiple samples {ξt,i}Bi=1 is also valid since the average of |B| stochastic gradients
is also unbiased:

Θt+1 = Θt −
γt
|B|

B∑
i=1

g(Θt, ξt,i), t = 1, 2, ... (5.18)

Problem in (5.10) and (5.14) are can be casted as stochastic optimization problems
solvable by SGM due to the finite-sum nature of the objective functions. To see
that,

argmin
N∑
n=1

`n = argminN−1
N∑
n=1

`n = argminE[`n] (5.19)

where `n are sampled from {`n}Nn=1 uniformly at random. Moreover,

∇E[`n] = ∇
(
N−1

N∑
n=1

`n

)
= N−1

N∑
n=1
∇`n = E[∇`n] (5.20)

Therefore, assumption (A1) and (A2) are both satisfied. SGM for solving the fixed

66

Algorithm 5 Stochastic Gradient Method
Input: number of iterations T , step-size sequence {γ}Tt=0
Output: an approximate solution for (5.10).
1: for t = 0 to T do
2: subsample a data (tit ,xit) from the dataset
3: Θt+1 = Θt − γt∇`it(Θt)
4: end for

Algorithm 6 Stochastic Gradient with Sample Average Approximation for Mixed
Logit Parameter Estimation
Input: number of iterations T , step-size sequence {γ}Tt=0, simulation size R
Output: an approximate solution for (5.14).
1: for t = 0 to T do
2: subsample a data (tit ,xit) from the dataset
3: simulate random draws {η(j)

it,r}Ij=1 ∼ N
(
0, I

)
, r = 1, ..., R

4: Θt+1 = Θt − γt∇ ˜̀it(Θt)
5: end for

effect logit parameter estimation problem is given in Algorithm (5).
For strongly-convex functions f , SGM with step-sizes γt = O

(
1
t

)
requires O

(
1
ε

)
iterations to reach ε accuracy, i.e., E[f(Θ, ξ) − f(Θ∗, ξ)] ≤ ε [122]. In compar-
ison, (deterministic) gradient descent requires log

(
1
ε

)
iterations and Newton’s

method only requires only log
(

log
(

1
ε

))
iterations [37]. However, gradient descent,

Newton’s method and Quasi-Newton methods (5.11) require O(N) computations
of the gradients ∑N

n=1∇`n and additional computational cost on the Hessian or
approximate Hessian matrix for Newton-variants. In contrast, the number of
gradient computations per iteration with SGM is independent of the size of the
dataset (Algorithm 5). Therefore, SGM brings advantage over Newton’s method

or Quasi-Newton methods when N ≥ Ω
((
ε log log

(
1
ε

))−1)
, i.e., on large datasets.

Note that estimation of the multinomial logit model by maximum likelihood gives
rise to a convex objective (5.10), and estimation via Ridge estimator (`2-penalized
likelihood) [105,123] results in a strongly-convex formulation.

5.3.2 Stochastic Gradient with Sample Average Approximation

We now extend the Stochastic Gradient Method introduced in the last section
to mixed logit model, where the objective function involves high-dimensional

67

integrals. We propose a combination of stochastic gradient and Sample Average
Approximation (SAA). The pseudo-code is provided in Algorithm (6). There are
two different options in the implementation of the simulation step in line 3 of
Algorithm (6). The first option is to keep the same random sequence {η(j)

n,r}Ij=1

for each n ∈ {1, ..., N} (but different sequences if n1 6= n2). Another options is to
generate a new independent sequence in each iteration, and independent of the
data (tit ,xit) at which the stochastic gradient is computed on. The first option is
essentially first transforming (5.9) into the Maximum Simulated Likelihood problem
(5.14), then solving the sample average approximated problem with SGM. The
second option is equivalent to applying SGM and produce Monte Carlo simulation
dynamically to approximate the sub-sampled objectives on-the-fly independent of
previous draws. We left the convergence analysis of SGM with dynamic Monte
Carlo approximation to future work.

5.3.3 Choice of Step-size Sequence and Practical Implementa-
tion

For convex but non-strongly-convex functions f(·, ξ), SGM with step-size sequences
γt = O

(
1√
t

)
finds a solution Θ such that E[f(Θ, ξ)−f(Θ∗, ξ)] ≤ ε in O(1

ε2
) iterations

[122,124]. For non-convex functions, [22] show that SGM achieves the first order
optimality condition E[‖∇f(Θ, ξ)‖2] ≤ ε in O

(
1
ε2

)
iterations, by applying either

the constant step-size policy or decreasing step-size policy. Although the theoretical
convergence rate is established for any step-sizes meeting the aforementioned
requirements, in practice the convergence speed can be significantly impacted by
the specific step-size scheme being used. In the implementation, we use without
replacement sampling to obtain the stochastic gradients. Choices of step-size
sequence is discussed below.
Decreasing step-size per iteration: a popular choice of step-sizes is setting

γt = c/(1 + t)z for 0 < z ≤ 1 and c > 0, where t denotes the current iteration.
Although the O

(
1
ε2

)
iterations required for convergence mentioned above is obtained

for the diminishing step-size rules, the iterates can be stalled to reach the optimality
conditions in practice. Suppose Θ∗ ∈ C, such that ‖∇`n(Θ)‖ ≤M for all Θ ∈ C,
for all n ∈ {1, ..., N}. When a decreasing step-size sequence {γt}∞t=1 is applied on

68

SGM, after the t-th iteration such that

‖γt∇`it(Θt)‖ ≤ γt ‖∇`it(Θt)‖ ≤ εmach (5.21)

where εmach is the machine precision, the iterate Θt+1 is indistinguishable from
Θt and the iterations are stalled. This does not necessary certifies the first order
optimality. The update can become arbitrarily small simply due to the shrinking
step-size γt.
Decreasing step-size per epoch: In the implementation of Algorithm (5) and

Algorithm (6), we can group the iterations into epochs such that each epoch consists
of N iterations. Therefore, each epoch performs N gradient computations chosen
in stochastic manner, which is equivalent to the number of gradient computations
performed in an iteration of a deterministic algorithm. The step-size is reduced
after each epoch instead of each iteration. An epoch-wise decreasing schedule
preserves the asymptotic of step-sizes used in the theoretical analysis, but delays
the iterates from reaching the stalling stage.
Phase transition and function value adaptive step-sizes: In many prob-

lems, practitioners have observed fast reduction in the objective value in the early
iterations of Stochastic Gradient Method, followed by a phase when the convergence
slows down and the objective value moves in non-monotone directions [19, 125].
This is due to the stochastic nature of the algorithm. Formally, suppose a constant
step-size γ for SGM is used, and suppose the objective function is convex (satisfied
by eqn. (5.10)) and meets some smoothness assumptions, then for each iterate Θt,
it holds that

E[‖Θt −Θ∗‖2] ≤ E[‖Θ0 −Θ∗‖2] exp
(
− Aγt

)
+Bγ (5.22)

where Θ∗ is the global minimum of objective function, Aγ is a positive constant
depending on the step-size γ and the objective function, B is a positive constant
independent of γ. Proof for equation (5.22) has been given by several authors,
see [20, 126, 127]. When constant step-size is used with SGM, (5.22) implies the
phase-transition phenomenon during the optimization process. Initially, the iterate
Θt converges to Θ∗ exponentially fast, suggested by the term exp

(
− Aγt

)
. The

error term Bγ does not decrease with t and dominates the right hand side of (5.22)
when ‖Θt −Θ∗‖2 is sufficiently small, suggesting the iteration enters a stationary

69

phase. Equation (5.22) also suggests the following adaptive step-size strategy:
keeping a constant step-size within each epoch and monitor the objective function
values at the end of an epoch. Halving the step-size if the function value increases
compared to the previous epoch, otherwise the step-size is unchanged. The intuition
behind the adaptive strategy is to gain the benefit of exponentially fast convergence
of SGM before the stationary phase, but reducing the step-size in order to make
progress once the iterates are stalled. More theoretical analysis on this adaptive
strategy is given by [128].

5.4 Case Studies
In this section, we compare different optimization algorithms for estimating multino-
mial logit model (5.2) and mixed logit model (5.4) on large traffic accident datasets
across multiple years. The following algorithms are tested.
For multinomial logit model estimation:

• Stochastic Gradient Method (SGM) with different step-size schemes:

– constant step-size scheme.

– decreasing step-size after each iteration, i.e., γt = 1
1+t .

– decreasing step-size after each epoch, i.e., γt = 1
1+epoch .

– adaptive step-size according to the objective function value at the end
of each epoch (section 5.3.3).

We implement SGM in C++ and MATLAB.

• Nesterov Accelerated Gradient Descent (AGD), an optimal first-order
method for convex optimization [129]. For general convex problems, AGD
requires O

(
1√
ε

)
iterations to find a solution no greater than ε from the

optimum. We implement AGD in C++. Constant step-size is used.

• BFGS Quasi-Newton with line search (BFGS): this method is com-
monly used in statistical packages, for example, Stata [107], NLOGIT [108],
and LIMDEP [108], and open-source MATLAB package supplied in [18]. To
obtain various experimental measurements during the optimization process,
we use the fminunc function in MATLAB with algorithm set to bfgs [130].

70

We tested the following algorithms for estimating mixed logit model:

• Stochastic Gradient Method + Sample Average Approximation
(SGM-SAA). Different step-size schemes are tested.

• Non-convex Accelerated Gradient + Sample Average Approxima-
tion (AGD-SAA). Nesterov Accelerated Gradient Descent was proposed
for convex functions. Here we tested a modification of AGD designed for
non-convex situations [131].

• BFGS Quasi-Newton + Sample Average Approximation (BFGS-
SAA): fminunc solver in MATLAB is used [130]. Pseudo-random standard
normal distributions are generated by mvnrnd function in MATLAB [130].

The boost library is used for pseudo-random number generation [132] in the C++
code.

5.4.1 Data

Traffic accident records from The Statewide Integrated Traffic Records System
(SWITRS) [133] in California are used in the experiment. It has been reported
that single-vehicle crashes account for nearly 30% of all vehicle crashes in the
United States in 2015 [134]. We estimated multinomial logit and mixed logit
models on single-vehicle crash accident cases from 2003 to 2013 extracted from
SWITRS. The set of injury categories are {no injury or only complaint of
pain, visible injury, severe injury, fatal}. The models are estimated
with seventeen variables listed in Table 5.1. All variables are processed into binary
vector xn’s using dummy coding, in which variable xni is 0 if it belongs to the
reference level in Table 5.1, and 1 otherwise. The number of observations in each
two-year period are shown in Table 5.2.

5.4.2 Convergence Behavior

The empirical convergence behavior during the optimization process in different
algorithms is studied in this section. Note that in stochastic gradient-based algo-
rithms, each iteration requires computation of gradients on a single observation
chosen at random, i.e., ∇`it , where as an iteration of deterministic gradient-based

71

feature ID 0 1 2 3 4 5 6 7

Description
victim
gen-
der

victim
age

seat-
belt
used

alcohol
used

cell-
phone
used

wrong
side
of
road

improper
tuning

over
speed

reference level female 25-64 false false false false false false

feature ID 8 9 10 11 12 13 14 15 16

Description weather lightconditions
wet
road

drug
used

vehicle
age

AM
peak

PM
peak

week
-end

season

reference level clear daylight false false 0-10 false false false spring/
summer

Table 5.1. Accident-related features used in the experiment

years 03-04 04-05 05-06 06-07 07-08

N 90307 138363 134729 129187 122142

years 08-09 09-10 10-11 11-12 12-13

N 114579 109121 104040 100783 95111

Table 5.2. Number of observations in each two-year period between 2003 and 2013.

algorithm consists of gradient computation over the entire dataset, i.e., ∑N
n=1∇`n.

Therefore, we measure the progress of different algorithms based on number of
passes over the dataset:

A pass over dataset := N computations of ∇`n, for arbitrary n ∈ {1, 2, ..., N}.

We aim to compare the convergence behavior under a computational budget
constraint, where the budget is measured by the number of times an algorithm
processes the dataset or computation time. As described in section 5.3.3, the
stochastic iterations are combined into unit of epochs. Each epoch consumes
the computational budget of one pass over the dataset. The objective value
1
N

∑
n=1 `n(Θ) is recorded after each full pass. The objective value represents the

negative log-likelihood averaged over the number of observations for multinomial
logit model, and is the averaged negative simulated log-likelihood for mixed logit
model. Note that the 1

N
factor does not change the estimator or optimal parameters

72

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18
fu

nc
tio

n
va

lu
e

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

fu
nc

tio
n

va
lu

e

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

fu
nc

tio
n

va
lu

e

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

fu
nc

tio
n

va
lu

e

Figure 5.1. Objective value after each dataset pass for multinomial logit model.

since N is a constant for each dataset, but standardized the range of function values
on different subsets of data. The initial step-size γ0 for all variants of SGM, and
the step-size for AGD requires tuning. We trial different initial step-sizes among
{0.1, 0.5, 0.8, 1}, and use the one with lowest objective values after five dataset
passes to continue the experiments. Each algorithm is run for ten times. Figure 5.1
shows the mean of objective values for multinomial logit at the end of each dataset
pass for accidents datasets between 2009 and 2013. The mean of objective values
versus number of passes over the dataset for mixed logit model is shown in Figure
5.2.

For the convex optimization problem arisen from multinomial logit model estima-
tion, BFGS with line-search, SGM with epoch-wise decreasing step-sizes and SGM
with adaptive step-sizes converge to the same function value within 50 dataset
passes. The objective value descents in the first few epochs for SGM with de-
creasing step-size per iteration, but gradually flattens above the optimum. This

73

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.96

0.98

1

1.02

1.04

1.06

1.08

fu
nc

tio
n

va
lu

e

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.96

0.98

1

1.02

1.04

1.06

1.08

fu
nc

tio
n

va
lu

e

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.96

0.98

1

1.02

1.04

1.06

1.08

fu
nc

tio
n

va
lu

e

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.98

1

1.02

1.04

1.06

1.08

fu
nc

tio
n

va
lu

e

Figure 5.2. Objective value of mixed logit model after each pass over the dataset.

is not surprising, due to the shrinking step-sizes as suggested in equation (5.21).
SGM with constant step-sizes exhibits noisy fluctuations above the optimum, albeit
offering an initial descent. This implies the iterates have entered a stationary phase,
corresponds to equation (5.22). AGD also fails to converge within the first 50 passes
over the datast, and the convergence slows down after reaching function values at
a similar range to which SGM with constant step-sizes becomes noisy. SGM with
adaptive step-sizes experiences large initial descent, followed by a brief phase when
the function value moves in noisy directions compared to epoch-wise decreasing
step-sizes, but eventually converges smoothly. Although BFGS gradually reaches
the same objective value as the two converging SGM variants, the reduction in
function value is smaller than the SGM variants within the first 40 dataset passes.
The comparison between BFGS and SGM under the same computational budget
demonstrates the trade-off between complexity per iteration and convergence rate.
The complexity per iteration in SGM is independent of N . Each pass of the dataset

74

in SGM produces N iterations, whereas only one BFGS iteration can be computed
in a full pass of dataset. Therefore, when N is large and the computational budget
is restricted, the optimization error of SGM variants is smaller than BFGS.
The optimization problem for mixed logit estimation is non-convex and the

objective function depends on Monte Carlo simulation. When the experiments
were run on the datasets in Table 5.2, a single test run of the bfgs algorithm in
MATLAB with maximum 50 iterations and R = 500 Monte Carlo draws takes more
than 20 hours to complete. Therefore, in order to keep the overall computational
budget reasonable, we sub-sampled 20000 observations from each dataset to perform
the experiments for optimizing mixed logit model. The objective value in mixed
logit model versus number of dataset passes are displayed in Figure 5.2. For this
non-convex problem, SGM with constant step-sizes yields diminishing function
values after each epoch in the first 50 dataset passes, but at a slower rate compared
to SGM with epoch-wise decreasing step-size or adaptive step-size. Unlike in the
convex case, SGM with adaptive step-size descents smoothly. Note that if the step-
size adaptation criterion is not triggered at all, adaptive step-sizes rule will produce
the same iterates as constant step-sizes in expectation. The gaps between SGM with
adaptive step-sizes and with constant step-sizes in Figure 5.2 indicate that adjusting
the step-sizes according to the function value criterion indeed helps the empirical
convergence speed for mixed logit estimation. In addition, adaptive step-size SGM
found the lowest objective value after 50 passes over the dataset among the methods,
but the differences are small. This is a sign that different optimizers converge to flat
regions where the gradient magnitude is small, as demonstrated in Figure 5.3, and
further descent becomes slow. Similar to the multinomial logit case, SGM-variants
reduce the function value faster than BFGS (except for dataset 2009-2010 after
25 passes), given the same number of passes allowed to process the dataset. The
objective values against computation time budgets are shown in Figure 5.4. Due
to the light computation complexity per iteration, Stochastic Gradient Method
achieves lower objective values given a fixed amount of time compared to BFGS
Quasi-Newton method and Accelerated Gradient Descent. Stochastic gradient-
based algorithms brings additional stochasticity into the estimation, in addition to
the randomness due to Monte Carlo simulation in the objective function. Therefore,
it is not surprise to find higher variance in the estimates obtained by SGM. To
quantify the stochasticity introduced by SGM, the standard deviation of estimated

75

parameter from ten independent runs of SGM-SAA and AGD-SAA are computed.
The average standard deviation of estimated parameters in the intercept α, mean
µ, and covariance matrix Σ are given in Table 5.3. The Likelihood Ratio index
(McFadden’s pseudo-R2), i.e., 1− log L̃(Θ̂)/ log L̃(0) [16,135,136], from different
algorithms after 50 passes over the dataset are also reported in Table 5.3. SGM-SAA
variants suffer higher variance of estimates compared to deterministic Accelerated
Gradient Descent, although the SGM-based optimizers exited at solutions with
better goodness-of-fit on average. Therefore, the improved optimization efficiency
of SGM for large N are gained at the cost of less stable estimates.

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

5 10 15 20 25 30 35 40 45 50
number of passes over the dataset

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 5.3. `2 norm of gradient after each pass of the dataset.

50 100 150 200 250 300 350 400 450 500
seconds

0.96

0.98

1

1.02

1.04

1.06

1.08

fu
nc

tio
n

va
lu

e

50 100 150 200 250 300 350 400 450 500
seconds

0.98

1

1.02

1.04

1.06

1.08

fu
nc

tio
n

va
lu

e

Figure 5.4. Objective values of mixed logit model against time budgets given to the
optimization algorithms.

76

SGM-SAA
adaptive γt

SGM-SAA
epoch-wise γt

AGD-SAA
constant γt

R = 100

α std. 0.9672 0.4209 0.0144
µ std. 0.8053 0.4808 0.0088
Γ std. 2.6007 1.6379 0.0436
LR index mean 0.2921 0.2902 0.2834
LR index std. 9.4× 10−4 6.4× 10−4 2.9× 10−4

R = 500

α std. 0.9295 0.2704 0.0252
µ std. 0.4769 0.3204 0.0067
Γ std. 1.6878 1.1187 0.0234
LR index mean 0.2898 0.2889 0.2815
LR index std. 8.3× 10−4 5.0× 10−4 2.6× 10−4

R = 1000

α std. 0.9418 0.2396 0.0101
µ std. 0.4551 0.3156 0.0062
Γ std. 1.4240 1.0321 0.0166
LR index mean 0.2883 0.2876 0.2813
LR index std. 8.5× 10−4 4.5× 10−4 6.4× 10−5

Table 5.3. Average standard deviation of individual parameters in the intercept α, mean
µ, and covariance Γ, and Likelihood Ratio index (McFadden’s pseudo-R2) achieved after
50 pass of 2012-2013 data. Higher LR index corresponds to better goodness-of-fit.

5.4.3 Correlation Clustering Analysis

In this section, we present analysis based on the fitted covariance matrix of random
effects for different accident factors in mixed logit model. The covariance matrix
fitted by Stochastic Gradient Method with adaptive step-sizes and Monte Carlo
simulation are studied, since this algorithm obtained the best likelihood value
among all the tested methods. The covariance matrix Σ̂ is estimated by the average
of 10 independent runs of SGM. For easier interpretation, we transformed the
covariance matrix Σ̂ into correlation matrix ρ̂, ρ̂ij = Σ̂ij/

√
Σ̂iiΣ̂jj. We aim to

understand the correlation between different accident factors. In most applications
of mixed logit model for traffic accident analysis, the random effects are assumed
to be independent. However, accident factors are known to be correlated. For
example, young males are the most likely to speed for drivers involved in fatal
crashes [137]. Therefore, under independence assumption, clustering structure does
not exist in the correlation matrix of random effects. Each factor forms a singleton
cluster. In comparison, correlation between random effects within each outcome

77

al
co

ho
l

lig
ht

w
et

dr
ug

w
ee

ke
nd

ge
nd

er

ag
e

ce
llp

ho
ne

im
pr

op
er

 tu
ni

ng

ov
er

 s
pe

ed

A
M

 p
ea

k

se
at

be
lt

w
ro

ng
 s

id
e

w
ea

th
er

ve
hi

cl
e

ag
e

P
M

 p
ea

k

se
as

on

alcohol
light
wet

drug
weekend

gender
age

cellphone
improper tuning

over speed
AM peak
seatbelt

wrong side
weather

vehicle age
PM peak

season -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ge
nd

er

ag
e

al
co

ho
l

w
ro

ng
 s

id
e

im
pr

op
er

 tu
ni

ng

ov
er

 s
pe

ed

w
ea

th
er

lig
ht

dr
ug

ve
hi

cl
e

ag
e

A
M

 p
ea

k

w
ee

ke
nd

se
as

on

se
at

be
lt

ce
llp

ho
ne w
et

P
M

 p
ea

k

gender
age

alcohol
wrong side

improper tuning
over speed

weather
light
drug

vehicle age
AM peak
weekend

season
seatbelt

cellphone
wet

PM peak -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ag
e

se
at

be
lt

w
ro

ng
 s

id
e

ov
er

 s
pe

ed

lig
ht

w
et

dr
ug

P
M

 p
ea

k

w
ee

ke
nd

ge
nd

er

al
co

ho
l

im
pr

op
er

 tu
ni

ng

ce
llp

ho
ne

w
ea

th
er

ve
hi

cl
e

ag
e

A
M

 p
ea

k

se
as

on
age

seatbelt
wrong side
over speed

light
wet

drug
PM peak
weekend

gender
alcohol

improper tuning
cellphone

weather
vehicle age

AM peak
season -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ge
nd

er

ag
e

al
co

ho
l

ce
llp

ho
ne

im
pr

op
er

 tu
ni

ng

ov
er

 s
pe

ed

dr
ug

w
ee

ke
nd

se
as

on

se
at

be
lt

w
ro

ng
 s

id
e

w
ea

th
er

lig
ht

w
et

ve
hi

cl
e

ag
e

A
M

 p
ea

k

P
M

 p
ea

k

gender
age

alcohol
cellphone

improper tuning
over speed

drug
weekend

season
seatbelt

wrong side
weather

light
wet

vehicle age
AM peak
PM peak -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.5. Correlation matrices in mixed logit model for random effects of accident
factors in fatal crashes. Rows and columns are reordered according to the cluster
membership output by best spectral clustering results.

category are possible in the model definition (5.3) and (5.4). We analyzed whether
there are clustering structure for the random effects of different accident factors
emerged from possible correlation. We formulate this objective as a correlation
clustering problem on p variables.

(
k∗, {C∗i }ki=1

)
∈ arg max

1≤k≤p
max

Ci∩Cj=∅
∪ki=1|Ci|=p

k∑
l=1

∑
i,j∈Cl

ρ̂ij −
k∑

l,r=1
l 6=r

∑
i∈Cl,
j∈Cr

ρ̂ij. (5.23)

The optimization objective in (5.23) seeks for the partitions of factors, such that
positive correlation among factors within each cluster and negative correlation
cross different clusters are encouraged. Vice versa, negative correlation within the
clusters and positive correlation across different clusters are penalized. Note that
both the optimal number of clusters k∗ and the partition {C∗i }ki=1 are optimization

78

ge
nd

er

ag
e

al
co

ho
l

w
ro

ng
 s

id
e

im
pr

op
er

 tu
ni

ng

ov
er

 s
pe

ed

w
ea

th
er

lig
ht

w
et

dr
ug

ve
hi

cl
e

ag
e

P
M

 p
ea

k

w
ee

ke
nd

se
as

on

se
at

be
lt

ce
llp

ho
ne

A
M

 p
ea

k

gender
age

alcohol
wrong side

improper tuning
over speed

weather
light
wet

drug
vehicle age

PM peak
weekend

season
seatbelt

cellphone
AM peak -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ag
e

al
co

ho
l

w
ro

ng
 s

id
e

w
ea

th
er

lig
ht

w
et

ve
hi

cl
e

ag
e

w
ee

ke
nd

se
as

on

ge
nd

er

se
at

be
lt

ce
llp

ho
ne

im
pr

op
er

 tu
ni

ng

ov
er

 s
pe

ed

dr
ug

A
M

 p
ea

k

P
M

 p
ea

k

age
alcohol

wrong side
weather

light
wet

vehicle age
weekend

season
gender

seatbelt
cellphone

improper tuning
over speed

drug
AM peak
PM peak -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ag
e

im
pr

op
er

 tu
ni

ng

w
ea

th
er

w
et

dr
ug

ve
hi

cl
e

ag
e

A
M

 p
ea

k

se
as

on

ge
nd

er

al
co

ho
l

ov
er

 s
pe

ed

P
M

 p
ea

k

w
ee

ke
nd

se
at

be
lt

ce
llp

ho
ne

w
ro

ng
 s

id
e

lig
ht

age
improper tuning

weather
wet

drug
vehicle age

AM peak
season
gender
alcohol

over speed
PM peak
weekend
seatbelt

cellphone
wrong side

light -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ge
nd

er

ag
e

ce
llp

ho
ne

im
pr

op
er

 tu
ni

ng

w
ea

th
er

lig
ht

w
et

dr
ug

ve
hi

cl
e

ag
e

se
at

be
lt

al
co

ho
l

w
ro

ng
 s

id
e

ov
er

 s
pe

ed

A
M

 p
ea

k

P
M

 p
ea

k

w
ee

ke
nd

se
as

on

gender
age

cellphone
improper tuning

weather
light
wet

drug
vehicle age

seatbelt
alcohol

wrong side
over speed

AM peak
PM peak
weekend

season -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.6. Correlation matrices in mixed logit model for random effects of accident
factors in severe injury crashes. Rows and columns are reordered according to the cluster
membership output by best spectral clustering results.

variables. We adapt the following definition of clusterability.

Definition 2. A correlation matrix or correlation graph of p factors is clusterable
if the optimal k∗ in (5.23) is less than p.

Problem (5.23) is NP-Hard and computationally infeasible to find the exact
solution. Therefore, we apply graph spectral clustering technique for each value
of k, and select the best solution among the them. Intuitively, the factors and
correlation between them can be represented by a weighted graph, where each node
represents a factor and the edges are weighted by the correlation between nodes.
Spectral clustering is a popular clustering method on graphs with non-negative
edge weights. To apply spectral clustering, we shift the center of the correlation

79

matrix and rescale it. Define the weighted adjacency matrix

ω = 1
2(ρ+ 1). (5.24)

Elements of the resulting matrix ω is bounded between 0 and 1, but encodes the
same information as the original matrix ρ. Further, the Laplacian matrix of a
graph is defined by

L = D − ω, (5.25)

where L is a diagonal matrix and Lii := ∑
ij ωij . The algorithm is briefly described

here, please see [138] for additional details. The spectral clustering algorithm
requires the users to select the number of clusters k to be found.

• First, the smallest k-th eigenvectors {vi}ki=1 of the Laplacian matrix L are
computed, and let V ∈ Rp×k denote the matrix whose columns are the
eigenvectors.

• Let Vi be the i-th row of V , Vi is used as a representation of factor i on the
graph.

• run k-means clusering algorithm on V ∈ Rp×k with k clusters, and output
the cluster membership for each factor.

Note that the k-means algorithm used in spectral clustering requires the number
k of clusters as input, and the algorithm solves a non-convex optimization problem.
We apply spectral clustering for each value of 1 ≤ k ≤ p. For each k, the objective
value of the original correlation clustering problem (5.23) is computed according to
the cluster membership output from spectral clustering. To mitigate the variation
introduced by the non-convexity of k-means, we repeat k-means 100 times for each
value of k and compute the average score of the objective function (5.23). Finally,
the k̂ with highest score for (5.23) and the partitioning with k̂ clusters is used as
an approximate solution. Moreover, spectral clustering always returns p singleton
clusters if the k is set to the maximal number of clusters p. Let v∗ denote the
optimal objective value of (5.23), and va be the objective value associated with
clustering result a. We have vsingleton ≤ vk̂ ≤ v∗. Therefore, according to the
Definition 2 for clusterability, the decision of whether the factors are clusterable is
unaffected by the spectral clustering approximation once the certificate vsingleton < vk̂

80

is found. The correlation matrix between random effects of accident factors in
fatal category and severe injury category are displayed in Figure 5.5 and Figure 5.6
respectively. To assist the visualization, we reorder the rows and columns of each
correlation matrix by grouping together factors belonging to the same cluster. For
both fatal injury and severe injury, the cluster pattern of the correlation matrix
can be immediately informed by visual inspection. The best spectral clustering
results are much less than p in all cases. However, the clustering structure is not
temporally stable, as seen by the changing correlation clustering pattern across
years. Temporal instability in highway accidents data are also studied recently by
Mannering. [139]. For fatal injuries, the random effects of gender and age have
strong positive correlation when the model is estimated on accidents occurred
between 2009 and 2010, between 2010 and 2011, and between 2012 and 2013, but
negatively correlated on the 2011-2012 dataset.

5.5 Conclusion
Deterministic gradient-based methods, such as BFGS Quasi-Newton algorithm,
are usually used for logit model estimation in transportation research. However,
deterministic gradient-based methods suffer scalability issue on large datasets, due
to the growing cost of gradient computation proportional to the number of samples
in the dataset. In order to perform model estimation on large datasets under
realistic computational budget constraints, one has to choose algorithms that offer
light weight computation per iteration and optimize the estimators as good as
possible within the computational budget limit. Stochastic Gradient Method is a
candidate solution meeting the aforementioned requirements. To apply Stochastic
Gradient Method on mixed logit estimation where the objective function involves
high dimensional integrals, we described a combination of Monte Carlo simulation
and Stochastic Gradient Method. The optimization performance of deterministic
versus stochastic gradient-based algorithms are evaluated on estimating multinomial
logit and mixed logit model with a correlated Gaussian mixing distribution on
traffic accident data collected in SWITRS from multiple years. Under the same
computational budget, variants of Stochastic Gradient Method are able to reach
solutions with better goodness-of-fit on average compared to Accelerated Gradient
Descent and Quasi-Newton BFGS method. However, SGM variants suffer higher

81

variance of estimated parameters due to the stochasticity from both the iteration
and the simulation of objective functions. Users of SGM for estimating mixed
logit model should be aware of this downside. In our case study using a mixed
logit model with block-wise correlated Gaussian mixing distribution, we found
that the random effects of accident factors can be grouped into clusters and the
number of clusters is much less than the number of factors. However the clustering
structure may not be stable due to non-convexity of the estimator, stochasticity of
the algorithm, and the intrinsic temporal variation of high-way data.

82

Chapter 6 |
Convex Latent Effect Logistic
Regression via Low-Rank and
Sparse Decomposition

The mixed logit model described in Chapter 5 gains its popularity in transportation
research due to its flexibility to incorporate individual heterogeneity. In the mixed
logit model, the heterogeneity is modeled by randomness in the parameters, i.e.,
for each observation n ∈ {1, 2, · · · , N}, the model parameter

βn ∼ f(β|Ψ) (6.1)

for some mixing distribution f . For example, when f is the Gaussian distribution,
βn ∈ RpI can be decomposed as

βn = µ+ Γηn, (6.2)

where µ ∈ RpI and Γ ∈ RpI×pI is the mean and the Choleskey factor of covariance
matrix respectively. Chapter 5 described an efficient stochastic optimization algo-
rithm based on a combination of Monte Carlo simulation and stochastic gradient to
estimate µ and Γ. Although the scalability issue for model estimation is addressed,
the Maximum Simulated Likelihood objective function is inherently non-convex
and leads to unstable estimates. The present chapter aims to develop a convex
alternative to mixed logit model, allowing parameter heterogeneity while preserving
convexity. We first revisit the regularized multinomial logistic regression with only

83

fixed effects,

(α̂, β̂) ∈ argmin 1
N

N∑
n=1

`
(
xn, tn;α,β

)
+ λR(β), (6.3)

where α ∈ RI ,β ∈ RpI , R(β) is a penalty term with non-negative regularization
constant λ, ` is the multinomial loss function

`
(
xn, tn;α,β

)
= − log

 exp
(
α(tn) + β(tn)Txn

)
∑I
j=1 exp

(
α(j) + β(j)Txn

)
. (6.4)

The penalty R(β) is useful for incorporating prior knowledge into the estimation
process, and restricting the model complexity to aid interpretation and prevent
overfitting. The degrees of freedom in the model can be limited by the support
constraint, by solving

min 1
N

N∑
n=1

`
(
xn, tn;α,β

)
subject to

pI∑
i=1

I(βi 6= 0) (6.5)

where I is the indicator function. However, optimization with cardinality constraint
in (6.5) becomes a NP-hard discrete problem. The `1-norm penalty ‖β‖1 is a
well-known convex surrogate to the cardinality function. In the Lagrangian form,
the `1-regularized logit model is

(α̂, β̂) ∈ argmin 1
N

N∑
n=1

`
(
xn, tn;α,β

)
+ λ ‖β‖1 . (6.6)

When the penalty constant λ is small, the optimal solutions to problem (6.6)
occur at the vertices of the `1 ball, and force some components of β̂ into zeros.
Therefore, problem (6.6) produces sparse solutions. Although the solution from the
`1-penalized problem is sparse, it is possible that β̂(j)

i = 0 and β̂(k)
i 6= 0 for some

j 6= k. In these cases, variable xi affects the linear predictor function for category j
but not for category k. Interpreting sparsity as variable selection is often desired,
such that β̂(j)

i = 0 for all j ∈ {1, 2, · · · , I} if xi is dropped from the model. Let

B := [β(1),β(2), · · · ,β(I)] ∈ Rp×I

84

be a matrix appending β(j)s as columns, and let {bi}pi=1 ∈ RI be the rows in B.
The group `1 regularized problem

(α̂, B̂) ∈ argmin 1
N

N∑
n=1

`
(
xn, tn;α,B

)
+ λ

p∑
i=1
‖Bi‖2 (6.7)

promotes the entire rows Bi to be zero vectors, and yields group sparsity. Thus
Bi = 0 implies variable i is not selected in the model. Since the multinomial
logistic loss function (6.4) is convex, problem (6.3) is convex when convex penalties
R(β) are used, as in the case of (6.6) and (6.7). So far our discussion focuses on
regularized fixed effect models. The parameters {β(j)}Ij=1 are shared across all
individuals. Compared to the mixed logit model (5.9), problem (6.6) and (6.7)
have the advantages of being convex with efficient algorithms to solve them, and
can be interpreted as built-in variable selection methods. In this chapter, our goal
is to develop a convex formulation with possible variable selection, and consider
individual heterogeneity at the same time. A naive approach is to parameterize
each observation separately, fitting heterogeneous {βn}Nn=1 for each individual:

min 1
N

N∑
n=1
− log

 exp
(
α(tn) + β(tn)

n

Txn
)

∑I
j=1 exp

(
α(j) + β(j)

n

Txn
)
. (6.8)

(6.8) is a saturated model with N × p× I + I free parameters on N observations.
The over-parametrization can overfit the data with little statistical power.

6.1 Low-rank and sparse decomposition
To avoid over-parametrization and extract the common effect from the observations,
we propose the following modification

βn = µ+ υn. (6.9)

We separate the individual parameter βn into µ for the homogeneous effect and
υn for the heterogeneous effect of observation n. Without other constraints, the
representation in (6.9) fits (N + 1) × p × I parameters on N data points and
identifying the decomposition from data is in general impossible without other

85

conditions. Therefore, we further impose that

p∑
i=1
‖Ui‖2 ≤ τ1

rank(Υ) ≤ τ2

(6.10)

where
Υ := [υ1,υ2, · · · ,υN] ∈ RpI×N

is a matrix with the heterogeneous parameters υn as columns,

U = [µ(1),µ(2), · · · ,µ(I)] ∈ Rp×I

is a matrix collecting the common effects, and the i-th row of U is denoted by
Ui ∈ RI . The following problem is considered.

min
α,U,Υ

1
N

N∑
n=1
− log

 exp
(
α(tn) + µ(tn)Txn + υ(tn)

n

Txn
)

∑I
j=1 exp

(
α(j) + µ(j)Txn + υ(j)

n
T
xn
)

subject to
p∑
i=1
‖Ui‖2 ≤ τ1

rank(Υ) ≤ τ2.

(6.11)

In (6.11), the group `1 norm produces group sparse U and effectively reduces
the degrees of freedom of the homogeneous effect. When τ2 � min(pI,N), the
heterogeneity effects [υn]Nn=1 are constrained in a low-rank space. In the next
section, we explain why imposing low-rank structural assumptions helps uncovering
the separation between homogeneous and heterogeneous effect.

6.2 Why Low-Rankness?
In this section, we explain situations where low-rank heterogeneous effect arises.

6.2.1 Gaussian mixing with low-rank covariance

The homogeneous-heterogeneous effect decomposition in (6.9) resembles the linear
representation for Gaussian mixing variables in (6.2), where the mean of the

86

Gaussian distributions corresponds to the homogeneous effect, and

Υ = ΓH (6.12)

where H := [η1,η1, · · · ,ηN] ∈ RpI×N ,ηn ∼ N (0, I). Low-rank mixing effect Υ
occurs when the covariance matrix is (approximately) low-rank. This happens
when the covariance matrix is a superposition of a low-rank component and a
sparse components [140–144], or when the covariance matrix has a block diagonal
structure where the variables within each block are highly correlated [145,146].

6.2.2 Latent clustered heterogeneity

Suppose the population forms clusters, such the accident factors have identical
or similar influence on individuals belonging to the same cluster. Let {Cl}τp=1 be
a partition of the data, i.e., Cl ∩ C = ∅ if l 6= l′, ∪τl=1|Cl| = N . If the individual
heterogeneities are identical on each cluster, then

υi = υj ∀ i, j ∈ Cl, l = 1, · · · , τ. (6.13)

Therefore, observations in the same cluster have identical columns in Υ. As a
result, rank(Υ) ≤ τ . (6.13) can be relaxed slightly, consider

‖υi − υj‖`p ≤ ε ∀ i, j ∈ Cl, l = 1, · · · , τ. (6.14)

(6.14) leads to grouping of the heterogeneous effect, and forces the latent effects in
the same group are stays close. Υ can be approximated by a low-rank matrix in
this case.

6.2.3 Latent matrix factorization

Suppose rank(Υ) = τ with τ ≤ min(pI,N). Υ can be equivalently expressed as

Υ = WVT , (6.15)

where W ∈ RpI×τ , V ∈ RN×τ and both W and V has full column-rank. The matrix
V is usually interpreted as latent loadings, and W are scores for each of the basis

87

in V. This is sometimes referred as a matrix factorization representation [147–152].
Under this interpretation, individual heterogeneities are created through different
linear combinations of the same latent sources.

6.3 Convex Optimization

6.3.1 Convex relaxation

Optimization with matrix rank constraints is NP-Hard. Finding the exact solutions
to problem (6.11) is difficult and can be unpractical. Therefore, we use a convex
program to approximate the original formulation. Let ‖A‖∗ be the nuclear norm
for matrix A define as following.

‖A‖∗ =
τ∑
i=1

σi, (6.16)

where τ is the rank of A and σi is the i-th largest singular value of A. The nuclear
norm ‖A‖∗ is a convex relaxation for the rank function rank(A) [153–155] and
has been successfully applied on many problems involving the rank function as
objective or constraints [38–42, 140–144] (and references therein). Therefore, we
solve the following convex program

min
α,U,Υ

1
N

N∑
n=1
− log

 exp
(
α(tn) + µ(tn)Txn + υ(tn)

n

Txn
)

∑I
j=1 exp

(
α(j) + µ(j)Txn + υ(j)

n
T
xn
)
+λ1

p∑
i=1
‖Ui‖2+λ2 ‖Υ‖∗ .

(6.17)
(6.17) reformulates (6.11) by first transforming the original problem into the
Lagrangian form, then applying the nuclear norm relaxation to rank (Υ). (6.17)
is the addition of three convex functions and therefore the convexity is preserved.
λ1, λ2 ∈ R+ are non-negative hyperparameters correspond to the upper bound τ1

and τ2 in the hard-constraint version.

6.3.2 Proximal Gradient algorithm

Algorithm to solve (6.17) is described in this section. The main steps in the
algorithm are to deal with the non-smooth terms ∑p

i=1 ‖Ui‖2 and ‖Υ‖∗. Problem

88

(6.17) has the form
min
θ
{F (θ) ≡ f(θ) + h(θ)},

where f is a smooth convex part corresponds to the multinomial loss, h is convex but
non-smooth part consists of

(
λ1
∑p
i=1 ‖Ui‖2+λ2 ‖Υ‖∗

)
. Proximal Gradient method

(PG) [43–47] is an efficient first-order algorithm to handle the non-smoothness in h.
It performs the following simple iteration

θt+1 = Proxst,h
(
θt − st∇f(θt)

)
(6.18)

where st is the step-size and Prox(·) is the proximal operator associated with st
and h(·) defined below.

Proxst,h(θ) = argmin
ω

{1
2 ‖ω − θ‖

2
2 + sth(θ)

}
. (6.19)

The Proximal Gradient method closely resembles the iterations in Gradient Descent,
especially when the proximal operator admits close-form solutions. Let (αt,Ut,Υt)
denote the iterates after the t-th PG iteration (6.18). Applying (6.18) on (6.17)
leads to the following update steps using intermediate variables (α̂t, Ût, Υ̂t)

(α̂t, Ût, Υ̂t) = (αt,Ut,Υt)−
st
N

N∑
n=1
∇`
(
xn, tn;αt,Ut,Υt

)
(6.20)

αt+1 = α̂t (6.21)

(Ut+1,Υt+1) = argmin
U,Υ

{1
2

(∥∥∥Ût −U
∥∥∥2

F
+
∥∥∥Υ̂t −Υ

∥∥∥2

F

)
+st

(
λ1

p∑
i=1
‖Ui‖2+λ2 ‖Υ‖∗

)}
(6.22)

The sub-problem from the proximal operator (6.22) can be decoupled into two
separate optimization problem without changing the results.

Ut+1 = argmin
U

{1
2
∥∥∥Ût −U

∥∥∥2

F
+ stλ1

p∑
i=1
‖Ui‖2

}
(6.23a)

Υt+1 = argmin
Υ

{1
2
∥∥∥Υ̂t −Υ

∥∥∥2

F
+ stλ2 ‖Υ‖∗

}
(6.23b)

Moreover, both (6.23a) and (6.23b) has closed-form solutions. The optimal solution
to (6.23a) can be obtained by solving the proximal operator independently over

89

each row {Ui}pi=1. The sub-problems with respect to Ui are essentially the proximal
operation arisen from the group-Lasso penalty [47,156]. For each i = 1, 2, · · · , p,

Proxst,λ1‖·‖2

(
Ui

)
=
(
1− stλ1

‖Ui‖
)

+
Ui, (6.24)

where the operator (·)+ denotes a+ = max(0, a). The closed-form solution for the
proximal operator associated with nuclear norm penalty λ2 ‖·‖∗ and step-size st
can be obtained via a generalization of the soft-thresholding procedure in (6.24).
Suppose the Singular Value Decomposition (SVD) for Υ is

Υ = PΣVT , (6.25)

where Σ = diag({σi}τi=1) is the diagonal matrix of singular values of Υ and
rank (Υ) = τ . The closed-form solution to (6.23b) is given by the Singular-Value
Thresholding operator [44–46],

Proxst,λ2‖·‖∗(Υ) = PTstλ2(Σ)VT , Tstλ2(Σ) = diag {(σi − stλ2)+}τi=1. (6.26)

(6.24) and (6.26) together provide the solutions to (6.22).

6.3.3 Acceleration and practical implementation

We apply several simple techniques to improve the convergence speed of Proximal
Gradient algorithm described in the previous section. Nesterov’s momentum
method is a well-known technique to derive optimal convergence rate for first-order
optimization methods on smooth convex problems [129]. The extension to accelerate
the convergence on non-smooth objectives via proximal operators are developed
by Beck and Teboulle [43], known as the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA). The acceleration technique is applied in our implementation.

To ensure, the convergence of Proximal Gradient and FISTA, it is required that
the smooth part f(θ) has Lipschitz continuous gradient, i.e.,

‖∇f(θ1)−∇f(θ2)‖ ≤ L ‖θ1 − θ2‖

for all θ1,θ2 ∈ dom (f). The Proximal Gradient algorithm has O
(

1
t

)
convergence

90

rate and FISTA achieves improved rate of O
(

1
t2

)
. The convergence can be es-

tablished by using a fixed step-size st = 1/L, when the Lipschitz constant L is
known. In practice, the Lipschitz constant might be unknown or hard to compute.
Backtracking line search is a common strategy to decide the step-size st when
the Lipschitz constant is unknown. Backtracking line search requires computing
the proximal operator over a range of different step-sizes. Since the intermediate
variable Υ̂t changes due to different trial step-size st during the line search process,
the Singular Value Decomposition of Υ̂t needs to be re-computed in each trial step
in order to obtain Proxst,λ2‖·‖∗(Υ̂t). Therefore backtracking line search becomes
costly due to multiple computations of SVD in each iteration. Hence we use an
adaptive step-size scheme as a surrogate to line search. After each iteration, the
objective value of (6.17) is measured, the step-size is halved if the objective value
increases compared to the previous iteration. Note that Accelerated Proximal
Gradient (APG) is not a strictly descent method, as oppose to Gradient Descent,
therefore temporally increments of the function value do occur. This phenomenon
is referred as the Nesterov ripples in the literature [129,157]. Further, we employ
a function value-based restarting criterion introduced in [157]. The algorithm is
restarted with the current iterates as re-initialization when ripples are detected, and
the step-size is halved. The acceleration momentums are reset at each restart. The
Fast Accelerated Proximal Gradient with Adaptive Restart (FAPGAR) algorithm
combining these features is listed in Algorithm 7. In addition, to scale SVD on
large datasets, FAPGAR uses the randomized SVD algorithm [158] to compute the
Singular-Value Thresholding operator.

6.4 Greedy Local Continuation for Pathwise Solutions
Algorithm 7 solves one instance of problem (6.17), given λ1 and λ2. Chapter 4
introduced a gradient-based method for hyperparameter optimization, viewing
hyperparameter tuning as a bi-level optimization problem. However, the objective
function in (6.17) is non-smooth, therefore it is difficult to compute the hyperpa-
rameter gradient. Hence, we solve (6.17) over a range of λ1 and λ2, then choose the
regularization constants by some predictability criteria. Suppose the search space
in each λ is discretized into c points. Grid search requires calling Algorithm 7 c2

times in order to obtain the solution over the two dimensional grids. This can be

91

Algorithm 7 Fast Accelerated Proximal Gradient with Adaptive Restart
Input: number of iterations T , initial step-size s0, initialization α0,U0,Υ0, toler-
ance εtol, tuning parameters λ1, λ2 ∈ R+
Output: solution to (6.17).
1: q1 = 1
2: α̃1 = α0
3: Ũ1 = U0
4: Υ̃1 = Υ0
5: for t = 1 to T do
6: (αt, Ût, Υ̂t) = (αt,Ut,Υt)− st

N

∑N
n=1∇`

(
xn, tn; α̃t, Ũt, Υ̃t

)
7: for i = 1 to p do . proximal operator for group `1 penalty
8: (Ui)t =

(
1− stλ1

‖(Ûi)t‖
)

+
(Ûi)t

9: end for
10: Υt = RandomizedSVT(Ût, stλ2) . proximal operator for nuclear norm
11: if F (αt,Ut,Υt) > F (αt−1,Ut−1,Υt−1) then
12: qt = 1 . restart
13: α̃t+1 = αt
14: Ũt+1 = Ut

15: Υ̃t+1 = Υt

16: st+1 = st/2 . adjust step-size
17: else
18: qt+1 = 1+

√
1+4q2

t

2 . acceleration
19: α̃t+1 = αt +

(
qt−1
qt+1

)(
αt −αt−1

)
20: Ũt+1 = Ut +

(
qt−1
qt+1

)(
Ut −Ut−1

)
21: Υ̃t+1 = Υt +

(
qt−1
qt+1

)(
Υt −Υt−1

)
22: st+1 = st
23: end if
24: if ‖αt −αt−1‖2 + ‖Ut −Ut−1‖F + ‖Υt −Υt−1‖F < εtol then
25: break
26: end if
27: end for

prohibitive. In this section, we describe a fast strategy via greedy local search and
continuation method to establish the solution over a range of tuning constants.

6.4.1 Prediction for new observations

Given a new unseen sample xn ∈ Rp, the latent heterogeneous effect υn needs to be
decided. As show in section 6.2, clustering is one of the situations causing low-rank

92

latent effect. Therefore, we query the k-nearest neighbors of xn, where the distance
is calculated by one minus the cosine similarity wij = 〈xi,xj〉

‖xi‖‖xj‖ . The heterogeneous
effect for the new test sample is set to the weighted average of heterogeneous
effect of observations belonged to the neighborhood N of the new test sample, i.e.,
υn = ∑

j∈N wjυj/
∑
j∈N wj.

6.4.2 Greedy local continuation

For Lasso or other `1 type penalized fixed effect generalized linear models, Friedman
et al. [159,160]. showed that ‖β(λ)‖1 forms a continuous path of the regularization
constant λ. Therefore, the model parameters stay close when change in the penalty
constant is small enough. Based on this observation, Friedman et al. proposed
warm start strategy to compute the solution over the entire path of regularization
hyperparameters, where the optimal solution from a neighboring λ is used as
initialization [159, 160]. This idea is extended to the nuclear norm penalized
problem in [46].
This warm start continuation strategy can also be applied on top of FAPGAR

(Algorithm 7), when either λ1 or λ2 is fixed. Although it is possible to produce
the solution path over the entire two dimensional grids generated by the Cartesian
product λ1

⊗
λ2 with warm-starting strategy, the computation cost becomes large

since card (λ1) × card (λ2) calls of Algorithm 7 is required. Here card (λ) is the
cardinality of grids in λ. Hence, we develop a greedy strategy with continuation
method to avoid the computation over the entire search space. We propose a
coordinate-wise search strategy. λ1 and λ2 is optimized alternatively using the
continuation scheme while the other is being fixed. After a solution path over λ1 is
computed for a fixed λ2, we pick the value of λ1 yielding the best prediction on a
separate validation set. After λ1 is selected, the solution path for λ2 is computed
with the warm-start continuation strategy. The process continuous and search
for λ1 and λ2 alternatively. Let (λ(t)

1 , λ
(t)
2) denote the constants selected after t

coordinate-wise outer iterations. A cycle is a configuration (λ(t)
1 , λ

(t)
2) such that

(λ(t)
1 , λ

(t)
2) = (λ(t′)

1 , λ
(t′)
2) for some t′ < t. The search process stops when a cycle is

detected. Figure 6.1 provides an illustration of the Greedy Local Continuation
search.

93

Figure 6.1. Graphical illustration of Greedy Local Continuation search. λ1 and λ2 are
optimized alternatively with warm-starting strategy.

6.5 Experiments
Experimental evaluations on the proposed low-rank and sparse decomposition-based
latent effect model (6.17) and the solution algorithm FAPGAR are described in
this section.

6.5.1 Computation efficiency

Computational efficiency of Algorithm 7 is examined. The running time of Algo-
rithm 7 is measured on the traffic accident dataset described in section 5.4.1. We
implement Algorithm 7 in MATLAB and perform the experiments on a MacOS
system with 2.4 GHz Intel Core i5 processor and 4 GB 1600 MHz DDR3 memory.
Data from 2012-2013 are sub-sampled to create training sets with different sizes
(N) in order to study the scalability of Algorithm 7. The average running time
per iteration are shown in Figure 6.2. The computation time per iteration in
FAPGAR scales linearly with the number of samples in the dataset. The FAPGAR
algorithm is compared with the Proximal Gradient method with constant step-sizes.
The objective value of (6.17) after each iteration is shown in Figure 6.3. Figure
6.3 clearly demonstrates the advantage of employing the adaptive acceleration
techniques.

To start the Local Greedy Continuation search for λ1 and λ2, we fist run group-`1

94

regularized logistic regression over a range of λ1s using software GLMNET [159,160].
Note that the result of group-`1 regularized logistic regression is equivalent to our
proposed model (6.17) with λ2 set to a large value, which yields a matrix of zeros
for the latent heterogeneity Υ. For each λ1 on the solution path of group-`1

regularized logistic regression, we classify the samples on a separate validation set
by choosing the class with largest estimated probability as the output category for
each validation sample. For each hyperparameter configuration, the F-1 score is
computed:

F-1 score def=
(recall−1 + precision−1

2
)−1

. (6.27)

The λ1 value on the group-`1 regularized logistic regression path with highest
F-1 score is taken as initialization for the Local Greedy Continuation search. The
progress of the greedy search process is visualized in Figure 6.4. The search process
terminated after three iterations due to the occurrence of a cycle. The selected
λ1 = 0.0028, λ2 = 0.01.

0 2 4 6 8 10

104

0

0.5

1

1.5

2

2.5

tim
e

pe
r

ite
ra

tio
n

(s
ec

on
ds

)

Figure 6.2. Time per iteration (seconds) of FAPGAR implemented in MATLAB.

6.5.2 Accident factor analysis

The latent effect model (6.17) is applied for analyzing traffic accident data in this
section. The analysis is performed on N = 10000 randomly sampled accidents
from the 2012-2013 dataset described in section 5.4.1. The average direct pseudo-
elasticity is a metrics for quantifying the influence of a factor [97–99,106,161–166]
(and references therein). This metric is frequently utilized in transportation research.
Given a binary feature vector x, the average direct pseudo-elasticity measures the

95

50 100 150 200 250 300 350 400 450 500
iterations

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

fu
nc

tio
n

va
lu

e

Figure 6.3. Objective value after each iteration, FAPGAR vs Proximal Gradient.

0 0.005 0.01 0.015
0

0.002

0.004

0.006

0.008

0.01

Hyperparameters coordinates tested during
Greedy Local Continuation search procedure

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

Figure 6.4. Greedy Local Continuation search on the traffic accident dataset, 2012-2013.
A cycle is detected after three iterations.

change in the probability of suffering class k injury outcome, when a feature xi
switches from zero to one. The direct pseudo-elasticity for observation n on class k
due to the change of xi can be computed by

E (k)
ni

def= P (tn = k|θ̂,xn\i, xi = 1)− P (tn = k|θ̂,xn\i, xi = 0)
P (tn = k|θ̂,xn\i, xi = 0)

, (6.28)

where θ̂ denotes the estimated parameters for a model, xn\i ∈ Rp−1 is a sub-vector
of features from xn ∈ Rp excluding the i-th variable. In transportation literature,
the average of E (k)

ni from the training set is calculated. Note that since the parameter
θ̂ is fitted from the training set, E (k)

ni is in fact conditioned on the training set. The
purpose of computing the average of E (k)

ni is to achieve better estimation of the

96

Cross-validation pseudo-elasticities
along the regularization path for complain of pain or no injury

cv

0.
12

0.

85

2.

46

3.

85

4.

96

6.

11

6.

98

8.

01

9

9.
85

10
.2

4
10

.9
2
11

.0
9

gender
age

seatbelt
alcohol

cellphone
wrong side

improper tuning
over speed

weather
light
wet

drug
vehicle age

AM peak
PM peak
weekend

season

-1.5

-1

-0.5

0

0.5

ps
eu

do
-e

la
st

ic
ity

Cross-validation pseudo-elasticities
along the regularization path for visible injury

cv

0.
12

0.

85

2.

46

3.

85

4.

96

6.

11

6.

98

8.

01

9

9.
85

10
.2

4
10

.9
2
11

.0
9

gender
age

seatbelt
alcohol

cellphone
wrong side

improper tuning
over speed

weather
light
wet

drug
vehicle age

AM peak
PM peak
weekend

season

-1

-0.5

0

0.5

1

ps
eu

do
-e

la
st

ic
ity

Cross-validation pseudo-elasticities
along the regularization path for severe injury

cv

0.
12

0.

85

2.

46

3.

85

4.

96

6.

11

6.

98

8.

01

9

9.
85

10
.2

4
10

.9
2
11

.0
9

gender
age

seatbelt
alcohol

cellphone
wrong side

improper tuning
over speed

weather
light
wet

drug
vehicle age

AM peak
PM peak
weekend

season
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ps
eu

do
-e

la
st

ic
ity

Cross-validation pseudo-elasticities
along the regularization path for fatal injury

cv

0.
12

0.

85

2.

46

3.

85

4.

96

6.

11

6.

98

8.

01

9

9.
85

10
.2

4
10

.9
2
11

.0
9

gender
age

seatbelt
alcohol

cellphone
wrong side

improper tuning
over speed

weather
light
wet

drug
vehicle age

AM peak
PM peak
weekend

season -1

-0.5

0

0.5

1

1.5

2

2.5

ps
eu

do
-e

la
st

ic
ity

Figure 6.5. Cross-validation direct pseudo-elasticity over a path of λ1. Vertical line
marked with ‘CV’ correspond to the λ1 with best F-1 score from cross-validation.

direct pseudo-elasticity in the population, i.e.,

En∼D
(
ES∼D[E (k)

ni |S]
)
, (6.29)

where D denotes the population, and S denotes the training data randomly sampled
from D. Therefore, we propose an extension to the average pseudo-elasticity by
incorporating the cross-validation procedure:

1. Shuffle the dataset randomly and separate it into s folds. Let S\i denote the
subset of data with the i-th fold removed, and Si be the remaining data.

2. estimate a model on S\i, and compute the average pseudo-elasticity on Si.

3. compute the mean of average pseudo-elasticity estimated from Si, i = 1, · · · , s.

We name the estimated direct pseudo-elasticity from this procedure as the cross-
validation direct pseudo-elasticity (CV-DPE). We compute CV-DPE of (6.17) over

97

a path of λ1, and fix λ2 = 0.01 obtained from the Greedy Local Continuation
search. The results for each injury outcome category are displayed in Figure 6.5.
Since the model parameters change when λ1 varies, Figure 6.5 provides a visual
inspection of CV-DPE with different degrees of freedom in the model. From the
CV-DPE analysis, alcohol increases the probability of suffering severe and fatal
injuries. Meanwhile, the probability of experiencing only visible injuries and the
chance of free from injuries in an accident is greatly reduce. In addition, alcohol is
the first factor selected into the model, when λ1 decreases. This is an indication
about the importance of alcohol factor in predicting the accident results. On the
contrary, wearing seatbelt improves the chance of no injury or suffering only visible
injuries from accidents by more than 50%, reducing the odds of suffer severe injuries
or fatality by more than 50% according to the CV-DPE result from the estimated
model with best F-1 score. Consumption of drugs increases the likeliness of fatality
by more than 200% according to the model selected by the cross-validation, while
reducing the chance of all other injury categories. Factors related to violation of
traffic laws, i.e., over-speeding, improper tuning, wrong side of road, all lead to
greater chance of fatality, but relatively less impactful compared to the influence of
drug and alcohol.

-1.5 -1 -0.5 0 0.5 1 1.5
First principal component scores

-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt
 s

co
re

s

Visualization by first two principal component scores of
the two dimensional latent effects for each observation

no injury
visible injury
severe injury
fatal

Figure 6.6. Latent heterogeneity υn inferred from the train data. rank(Υ) = 2. Each
point is represented by the first two principal component scores.

The latent effect model (6.17) also has the advantages of providing insights into
the individual heterogeneity. The rank of Υ deceases as λ2 increases. Hence, (6.17)
can be used as a dimensional reduction tool. The resulting Υ learned from model
(6.17) has rank two at the λ2 selected from the Local Greedy Continuation search

98

process. Hence, each υ can be visualized by a two dimensional vector, represented
by their principal component scores. The first two principal component scores of
the latent heterogeneity {υn}Nn=1 inferred from each training point are shown in
Figure 6.6. There are four well identified clusters, each cluster is dominated by
samples from one injury category. This is an indication of the clustering effect in
the individual heterogeneity. Moreover, the cluster with majority of severe injury
accidents and the cluster comprises mostly fatality cases are overlapped with each
other.

6.6 Conclusion
We present a latent effect logistic model based on sparse and low-rank decomposition
between the homogeneous effect and heterogeneous effect of observations. The
formulation has the advantages of preserving model convexity while capturing the
latent individual heterogeneity. The optimization problem from the model is solved
by a Fast Accelerated Proximal Gradient with Adaptive Restarting algorithm. A
Greedy Local Continuation search process is developed to enable efficient exploration
of model hyperparameters. We demonstrate that low-rankness is a result of different
data-generating process, and validate through experiments clustering gave rise to the
low-rankness of latent the heterogeneity in accident observations. The usefulness of
the model is demonstrated on analyzing traffic accident factors. From the analysis,
drug and alcohol are found to be the factors with largest impact on the probability
of suffering fatality in an accident, whereas the usage of seatbelt greatly improves
the chance of avoiding injuries.

99

Chapter 7 |
Matrix Factorization for Network
Analysis

This chapter describes a technique for analyzing network structure based on matrix
factorization. The problem of ranking vertices in large-scale networks is a well-
studied, interdisciplinary topic. There are several characterizations of vertex
and edge centrality, and these can be used to assess the global importance of
individual entities in a network. PageRank [167], for instance, is a popular centrality
measure that was initially motivated by web search, but is now widely used for
network analysis [168]. Automated community identification [169] is another popular
computation in network science. Ranking or centrality analysis of communities [170]
is relatively less-studied. Since communities are now frequently used to characterize
networks, methods that analyze or rank the importance of communities aid in the
component-level centrality analysis of a network.

In this work, a new unsupervised method to analyze the community or clustering
structure in a weighted network is presented. Assume that edge weights denote
the strength of interactions between vertices. Our method generates weights
corresponding to each community, that aim to explain how well the the currently-
available community information explain the strength of interactions between
vertices. The sorted ordering of weights can also be used for ranking communities.
For example, in an online social network data with friendship links, weights of links,
and user-community information, this method can be used to identify the most active
communities, or the global contribution of the communities in explaining friendship
links. Given a co-authorship network and community structure information for
individual authors, we can apply our proposed method to identify important author

100

communities. Networks can be constructed on traffic accident observational datasets.
Given the crash observations, the geographical regions and accident factors can
be represented by nodes on a bipartite graph, where the edges between locations
and factors are weighted by the number of accidents occurred in a region with the
factors recorded.

Our method is based on a factorization, in an approximate sense, of the adjacency
matrix corresponding to the weighted network. An advantage of this factorization
is that it has a clear combinatorial interpretation. We assume that community
structure is the driving factor for forming links between vertices. The factorization
and the weights obtained determine important communities. This chapter is based
on the work in [171].

7.1 Mathematical Formulation
Consider an undirected, weighted network G(V,E,W) with n vertices (set V), m
edges (edge set E), p communities, and positive real-valued edge weights (an n× n
matrix W). Assume that the community membership information is encoded in a
binary association matrix A ∈ Rn×p:

Aik =

1 if vertex i belongs to community k

0 otherwise

Let W denote the adjacency matrix of the weighted network. Observe that the
n× n matrix C = AAT gives valuable structural information about the network
G: specifically, Cij gives the number of communities common to both i and j.
Therefore, the network corresponding to matrix C could be thought of as a weighted
graph, where the edge weights denote the number of common communities that
two vertices belong to. C also has self loops giving the number of communities
that a vertex belongs to. We will call the weighted network represented by C the
community structure network.

Let ak denote the kth column of A.

C = AAT =
p∑

k=1
akaTk .

101

Each of these rank-one matrices akaTk also have a useful combinatorial interpretation:

(akaTk)ij =

1 if both node i and node j

belong to community k

0 otherwise

Therefore, the rank-one matrix akaTk provides information about the community
structure for the kth community. This is illustrated via the following example on a
graph with 4 vertices and 3 communities:

Example.

C = AAT =
3∑

k=1
akaTk

=
(1

0
1
0

) (
1 0 1 0

)
︸ ︷︷ ︸

community 1

+
(0

1
1
0

) (
0 1 1 0

)
︸ ︷︷ ︸

community 2

+
(1

0
0
1

) (
1 0 0 1

)
.︸ ︷︷ ︸

community 3

Now suppose each community has an associated nonnegative weight dkk, such
that more important communities receive higher weights. ∑p

k=1 dkkakaTk generates
a reweighted community structure matrix, in which the ijth entry takes into account
both the number of common communities connecting vertices i and j, and the
importance of these communities in the global sense. Since the common notion
of a cluster or a community is that there are stronger intra-cluster edge links
than inter-cluster links, it is reasonable to assume that the global structure and
connectivity of the network G(V,E,W) can be largely explained by the community
structure and intra-cluster links. In addition, assume that edge weights Wij in the
network reflect both the number of common community labels between i and j,
and the weights of those communities. We could decompose the weighted adjacency
matrix W as

W = ADAT +R =
p∑

k=1
dkkakaTk +R, (7.1)

where D is a diagonal matrix with nonnegative diagonal elements dkk. ADAT

explains the contribution of community structure to W (with the ideal community
being a clique), and R is the residual portion. The community weights D are
computed by approximating the weighted adjacency matrix W by the reweighted

102

community structure matrix and minimizing R, via the following optimization
problem:

min
D∈Rp×p

‖W − ADAT‖2
F ,

subject to D being a nonnegative diagonal matrix.
(P1)

We comment on the combinatorial interpretation of the values in the optimal
solution matrix D∗ in Section 7.3.2. In particular, for the case when A encodes non-
overlapping communities, the solution to the optimization problem P1 corresponds
to the average internal interaction strength between nodes in each community.

7.2 Connections to Prior Work
This chapter addresses a graph analytic problem via matrix factorization. Specifi-
cally, given a list of potential communities, we want to analyze which communities
are more important in terms of generating the observed links. Our problem is
related, but not identical to the community detection problem on networks. The
method presented here could be considered as a post-processing step to analyze the
outcome of a clustering algorithm. There is a large body of literature on matrix
decomposition approach for graph clustering and community detection.

The optimization problem we propose is related to binary biclustering methods
and nonnegative matrix factorizations. Li [172] proposes a method for biclustering
binary matrices. Given an m × f binary entity-feature association matrix S,
whose rows correspond to entities, columns correspond to features, the binary
biclustering problem aims to simultaneously group entities into K clusters, and
features into L clusters, by factorizing S as S = PXQT + R. Here, P , Q, X
are unknown matrices to be solved, and R is the reconstruction residual. The
m × K matrix P is binary, designating cluster memberships for the data. The
rows of P record data entries and columns represent cluster labels, and so P

itself is also an association matrix between data and data clusters. Similarly, the
f × L binary association matrix L designates feature cluster memberships for each
feature. X ∈ RK×L is a dense matrix mapping both the cluster memberships
of entities and cluster memberships of features to approximate S. Although
both this method and our approach factorize a matrix into a binary association

103

matrix, the formulation by Li [172] is created for purpose of clustering, and the
matrix X does not yield any combinatorial information. Nonnegative Matrix
Factorization (NMF) [173, 174] is a well-known method for principal component
analysis, with restrictions that both the data factor and the component factor
have to be nonnegative. NMF is widely used in image analysis and computer
vision. However, directly applying NMF on adjacency matrices corresponding
to networks does not convey information about combinatorial properties of the
adjacency matrix, whereas our factorization in problem P1 gives new insights.
The Bounded Nonnegative Matrix Tri-Factorization [175] is a method proposed
for overlapping community detection. Mathematically, it factorizes the weighted
adjacency matrix W into UBUT , where Uij represents the probability that node i
belongs to community j. The matrix B here is not restricted to be a diagonal matrix,
and it models the interaction between communities. Wang et al. [176] formulated
an optimization problem similar to ours for community detection purpose.

Our work is also related to literature on understanding community structure in
networks [177–179]. Yang and Leskovec [180] studied scoring functions to define
a good community. We take an optimization approach to produce the goodness
scores.
We next show that our optimization problem P1 can be transformed into a

nonnegative least squares (NNLS) problem. NNLS is often used as a subroutine in
solving matrix approximation problems involving nonnegative constraints [181,182].

7.3 Solution to Matrix Factorization

7.3.1 Connection to Nonnegative Least Squares

The key idea in reducing optimization problem P1 to an NNLS problem is to decou-
ple ADAT into matrix-vector products and transform W into a vector accordingly.
Minimizing ‖W − ADAT‖2

F is the same as minimizing the squared l2-norm of the
differences over each column.
Since ADAT = ∑p

k=1 dkkakaTk , the ith column of ADAT is equal to the linear
combination of the ith columns of the rank-one matrices akaTk . Collect the the
ith columns of each rank-one matrix akaTk into a matrix, and define the following

104

matrixize operator:

Mati(A) =
[
(a1aT1)i, (a2aT2)i, (a3aT3)i, · · · , (apaTp)i

]
. (7.2)

Note that the dimensions of Mati(A) are n× p.
Since D ∈ Rp×p is a diagonal matrix, we could also store the p diagonal elements

as a column vector. Define the vectorization operator over the diagonal matrix to
be

x := vec-diag(D) =
[
d11, d22, · · · , dpp

]T
Then, we have

Mati(A)x =
n∑
k=1

dkk
(
akaTk

)
i

=
(
ADAT

)
i
.

Hence, ‖wi −Mati(A)x‖2
2 gives the l2-norm difference in the ith column. Using the

column-wise vectorization operator, we could write vec(W) =
[
w1; w2; · · · ; wm

]
:=

v, and

M =
[
vec

(
a1aT1

)
, vec

(
a2aT2

)
, · · · , vec

(
apaTp

)]
.

We obtain
‖W − ADAT‖2

F = ‖v−Mx‖2
2.

Therefore, we have transformed problem P1 to an equivalent Nonnegative Least
Squares (NNLS) problem:

min ‖v−Mx‖2
2, subject to x ≥ 0. (P1-NNLS)

NNLS is a well-studied optimization problem. The Active-Set method by Lawson
and Hanson [183] is a well-known algorithm. Luo et al. recently improved the Active-
Set method with QR update/downdates [184]. Another popular method for solving
large-scale sparse NNLS problems is the Coordinate Descent method [185–187].
We describe how Coordinate Descent can be applied to this problem in the next
section. Since A is a sparse binary matrix, the transformed matrix M is also sparse
and binary. This fact allows us to optimize the Coordinate Descent method and
provide an upper bound on the solution. We outline the overall ranking scheme in
Algorithm 8.

105

Algorithm 8 ADAT ranking.
Input: Weighted adjacency matrixW , binary association matrix A with community
information.
Output: Community weights/ranks given by Drec.
1: v← vec-diag(W) . vectorized W column by column.
2: for k = 1 : p do
3: Compute vec

(
akaTk

)
4: end for
5: M ←

[
vec

(
a1aT1

)
, vec

(
a2aT2

)
, · · · , vec

(
apaTp

)]
6: x← NNLS-Coordinate-Descent(M , v, threshold)
7: Sort x to produce a ranking.
8: Drec ← diag(x), Wrec = ADrecA

T

7.3.2 Solution Upper Bound and Interpretation

Theorem. Let D∗ be the optimal solution to problem P1. Let nk denote the number
of members in community Ck, and define δijk as follows:

δijk =

 1 if i ∈ Ck and j ∈ Ck
0 otherwise.

We have the following upper bound on each component of D∗:

d∗kk ≤

n∑
j=1

n∑
i=1

δijkwij

n2
k

(7.3)

=

∑
i∈Ck

∑
j∈Ck

wij

n2
k

(7.4)

Proof. Let x∗ denote the optimal solution to P1-NNLS, i.e., d∗kk = x∗k. The
component-wise upper bound to the solution of NNLS problem x∗ = arg minx≥0 ‖v−
Mx‖2

2 (Theorem 7 in [188]) is

x∗k ≤ max
(

0, mT
k v

mT
kmk

)
.

106

Recall v = vec(W), and

M =
[
vec

(
a1aT1

)
, vec

(
a2aT2

)
, · · · , vec

(
apaTp

)]
,

the kth column of M is the vectorization of akaTk column-by-column. Hence,
mk =

[(
akaTk

)
1

;
(
akaTk

)
2

; · · · ;
(
akaTk

)
n

]
; we have

mT
k v =

n∑
j=1

(
akaTk

)T
j

wj

=
n∑
j=1

n∑
i=1

(
akaTk

)
ij
wij =

n∑
i=1

n∑
j=1

δijkwij.

Also, using the fact that akaTk is a binary matrix,

mT
kmk = nnz(mk)

=
n∑
j=1

nnz
((

akaTk
)
j

)

=
n∑
j=1

n∑
i=1

(
akaTk

)
ij

= n2
k

Notice that mT
k v

mT
k

mk
is nonnegative, and so the result follows.

The above theorem says that the weight for community k is upper-bounded by
the sums of weight of all links 〈i, j〉 that belong to community k, divided by the
total number of possible links (including self loops 〈i, i〉). In addition, the upper
bound is tight when A encodes non-overlapping communities. For non-overlapping
communities, we may rearrange the nodes so that in the adjacency matrix W ,
nodes of the same community are indexed sequentially. We also rearrange the rows
of A accordingly. After row rearrangements,

ADAT =

d111n1 ··· ··· 0

0 d221n2 ··· 0
... ···

... 0
0 ··· ··· dpp1np

 ,
where 1nk is a block matrix of ones of size nk×nk (recall nk is the number of nodes
belonging to community k), and ADAT is a block diagonal matrix. Therefore, for
non-overlapping communities, the minimization problem P1 can be decomposed

107

into minimization over each block,

arg min ‖W − ADAT‖ = arg min
p∑

k=1

∑
i∈Ck

∑
j∈Ck

(wij − dkk)2.

The analytical solution in each component dkk is precisely the upper bound in
Equation (7.4).

7.3.3 Coordinate Descent solution strategy

NNLS is a quadratic optimization problem and could be reformulated as

arg min
x≥0
‖v−Mx‖2

2 = arg min
x≥0

1
2xTMTMx− xTMTv.

When fixing all coordinates of x but one, the objective function is univariate
quadratic, and therefore has an analytical solution [186],

arg min
xk≥0
‖v−Mx‖2

2 = max
0, xk −

(
MTMx−MTv

)
k

(MTM)kk

 (7.5)

The Coordinate Descent method iteratively updates one variable at a time
until convergence. The univariate quadratic problem has a unique minimum with
analytical form in Equation (7.5), and therefore the iterative scheme is guaranteed
to converge to a stationary point. In our case, P1-NNLS is a convex problem, and
hence the stationary point is also a global minimum. During the (t+ 1)th iteration,
the update to xk+1 depends on the quantity u := MTMx−MTv. After optimizing
xk in the (t + 1)th iteration, the only update to u comes from the change in the
kth column of MTMx. Therefore, as in [186], we could initialize u to −MTv, and
keep track of this quantity by computing

unew ← uold + (xk,new − xk,old)MTmk,

after optimizing the kth coordinate during the (t+ 1)th iteration. The pseudocode
for NNLS-Coordinate-Descent method is provided in Algorithm 9.
NNLS-Coordinate-Descent takes an input ε for determining the termination

criterion. The algorithm consists of an outer while loop until termination, and an

108

Algorithm 9 NNLS-Coordinate-Descent algorithm.
Input: M , v, ε (threshold).
Output: x = arg minx≥0 ‖v −Mx‖2

2.
1: x← 0, µ← −MTv
2: MaxChange ← value greater than ε
3: while MaxChange > ε do
4: MaxChange ← 0
5: for k = 1 : p do
6: xnewk ← max

(
0, xk − µk

(MTM)kk

)
7: u← u + (xk,new − xk)MTmk

8: if |xk,new − xk| > MaxChange then
9: MaxChange ← |xk,new − xk|

10: end if
11: xk ← xk,new
12: end for
13: end while

inner iteration over each coordinate. The maximum change over all coordinates
is recorded in each inner loop iteration. Once MaxChange is smaller than ε,
the algorithm terminates. Note that the dimensions of M are n2 × p, therefore
Algorithm 9 requires Θ(n2p) memory if there are no optimizations exploiting the
problem structure. The arithmetic cost for updating line 7 is Θ(n2p), and the per
iteration complexity of the while-loop is Θ(n2p2). If this problem fits in memory,
we could precompute and store MTM instead of doing the matrix-vector products
every iteration. The precomputation takes Θ(n2p2). We refer to this as the baseline
Coordinate Descent method (BaselineCD). In the next section, we describe an
optimized implementation to reduce the time complexity and memory footprint.

7.3.4 A faster solution method

We now describe a faster, memory-reducing modification to BaselineCD to speed
up the solution to our optimization problem. This method exploits the special
matrix structure of M to reduce the work performed in the matrix-vector products.
The inputs to the original matrix approximation problem P1 are the graph

adjacency matrix W ∈ Rn×n and the community association matrix A ∈ Rn×p.
We created a larger matrix M ∈ Rn2×p after the transformation to an NNLS
problem. However, we now show that we can avoid explicitly computing M . The

109

matrix-vector multiplication MTmk in line 7 of Algorithm 9 could instead be done
with A. Observe that we need the values mT

j mk for all columns (1 ≤ j ≤ p). From
the results in Section 7.3.1, we have mk = vec(akaTk). Hence

mT
j mk =

∑
r,c

(
ajaTj

)
rc

(
akaTk

)
rc

:=
(
ajaTj

)
·
(
akaTk

)
,

where the operation denoted with · is sometimes called the Frobenius product of
two matrices.

Again, recall
(
ajaTj

)
rc

= 1 iff both r and c are members of community j. Hence,(
ajaTj

)
c
is a non-zero column iff c is a member of community j, and we have

nnz(aj) (note that nnz(L) indicates the number of non-zeros in L) duplicate non-
zero columns. Moreover, if column c is a non-zero column of the rank-one matrix
ajaTj , then

(
ajaTj

)
c
is aj. Therefore,

∑
r,c

(
ajaTj

)
rc

(
akaTk

)
rc

=
(
aTj ak

)2
. (7.6)

We give a small example to illustrate Equation 7.6:
Let aj =

[
1 0 1 0 0 1

]
, ak =

[
1 0 1 1 0 1

]
.

(
ajaTj

)
·
(
akaTk

)
=
 1 0 1 0 0 1

0 0 0 0 0 0
1 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 1 0 0 1

 ·
 1 0 1 1 0 1

0 0 0 0 0 0
1 0 1 1 0 1
1 0 1 1 0 1
0 0 0 0 0 0
1 0 1 1 0 1

 = 9.

In this example, only the first, third, and sixth columns of the two matrices add
a positive value to their Frobenius product. For each of these columns, only the
first, third, and sixth rows have nonzero elements in the same component. Hence
we have

mT
j mk =

(
aTj ak

)2
. (7.7)

Therefore, we do not have to store or compute M ∈ Rn2×p. Both the memory and
computational complexity depend only on A ∈ Rn×p and W ∈ Rn×n.
Moreover, to store a sparse binary vector, one only needs to record the non-

zero indices of the vector in sorted order. Suppose x,y ∈ Rm are two sparse
binary vectors, then computing xTy is equivalent to finding the number of common
elements in the non-zero index lists for x and y. Denote nnz(x), nnz(y) to be
the number of non-zero values in x, y. A simple implementation of the array
intersection operation for computing xTy takes only Θ (nnz(x) + nnz(y)), which is

110

Algorithm 10 FastInnerProduct algorithm.
Input: Sorted index arrays corresponding to vectors ai and aj, denoted as ai.nzl
and aj.nzl.
Output: mT

i mj

1: p← 1, q ← 1 . initialize iterators
2: product ← 0
3: while p ≤ nnz(ai) and q ≤ nnz(aj) do
4: if ai.nzl[p] == aj.nzl[q] then
5: Increment product
6: Increment p and q
7: else if ai.nzl[p] < aj.nzl[q] then
8: Increment p
9: else

10: Increment q
11: end if
12: end while
13: mT

i mj ← product2

faster than Θ(n) if the size of the largest community is significantly smaller than n.
We use this special vector multiplication operation and the identity in Equation 7.7
to develop the FastInnerProduct algorithm (see Algorithm 10).

Using FastInnerProduct(aj,ak), updating line 7 in Algorithm 9 without precom-
puting MTM takes Θ (pnc) time, where nc is the size of the largest community.
Therefore, the per-iteration computational complexity is much lower than Base-
lineCD without precomputation. Similarly, the computational cost of precomputing
MTM becomes Θ (p2nc). In addition, storing MTM requires Θ (pγ), where γ is
the maximum number of overlapping nodes between any pair of communities.

7.4 Empirical Evaluation

7.4.1 Experimental Setup

Communities in real-world networks deviate significantly from the ideal clique
notion of a community that we assume in our problem formulation. We show in
Section 7.1 that the product AAT gives a matrix whose ijth entry is equal to the
number of common communities i and j belong to. However, the fact that i and j
belong to the same community need not guarantee the existence of edge 〈i, j〉 in

111

W . We term the locations of W where we would expect edges due to community
structure, but there are actually no edges in the real data, as missing edges. The
missing edge count is a measure of intra-community edge density. Also, vertices i
and j may be linked in W even if they do not share any communities in common.
We consider these edges as the second kind of noise and refer to them as mixing
edges. The cumulative mixing edge count for a community corresponds to the
number of inter-community edges. Due to these two reasons, the sparsity pattern
of W and ADAT will not match. We evaluate the proposed method by varying
the percentage of missing edges and mixing edges. We would like to empirically
identify proportions of missing and mixing edges that are significant enough to
alter the global network structure and obtained rankings.
To evaluate the proposed method, we conduct three sets of experiments. The

first set of experiments are on small synthetic networks where we generate both W
and A, and these serve as sanity and correctness checks. We obtain insight into the
impact of noisy edges on the overall result quality from these experiments. The
next set of experiments is on the graphs generated using the LFR benchmark [189].
LFR benchmark graphs are random graphs with ground-truth community structure.
There are several configurable parameters to generate these graphs, such as the
number of nodes with multiple community labels, and the community mixing
rate. The third set of experiments are performed on subgraphs extracted from a
LiveJournal crawl [180], where ground truth information of community membership
is available. Since LFR and LiveJournal are unweighted graphs, edge weights in
these two sets of graphs are generated synthetically.

We implement the optimized NNLS-Coordinate-Descent method with the FastIn-
nerProduct (Algorithm 10) in C++ (code available at https://psu.box.com/s/
8o0n2ybxol7rri0g7xamvj70vptwtsh6), and primarily present results using this
code. We have also implemented the baseline approach (Algorithm 9) in MATLAB.
We compare the running time and solutions of our implementation with the C++
code for Active-Set method with QR updating/downdating by Luo et al. [184].
Because of the significant memory requirements of the unoptimized Coordinate
Descent and the Active-Set methods, it is infeasible to run these algorithms on
graphs larger than 4000 vertices. We obtain results on a single server of Cyberstar,
a Penn State compute cluster. The server we run our programs on is a dual-socket
quad-core Intel Nehalem system (Intel Xeon X5550 processor) with 32 GB main

112

0 10 20 30

True ranking

0

5

10

15

20

25

30

R
e

c
o

v
e

re
d

 r
a

n
k
in

g
recovered ranking true ranking

Figure 7.1. Syn-test1: 8.03% noise
level, 2% missing edges, 8.05% reconst.
error.

0 10 20 30

True ranking

0

5

10

15

20

25

30

R
e

c
o

v
e

re
d

 r
a

n
k
in

g

recovered ranking true ranking

Figure 7.2. Syn-test2: 15.77% noise
level, 8.73% missing edges, 13.95% re-
const. error.

0 10 20 30

True ranking

0

5

10

15

20

25

30

R
e

c
o

v
e

re
d

 r
a

n
k
in

g

recovered ranking true ranking

Figure 7.3. Syn-test3: 25.82% noise
level, 17.45% missing edges, 19.02% re-
const. error.

0 10 20 30

True ranking

0

20

40

60

80

100

 w
e

ig
h

ts

recovered weights true weights

Figure 7.4. Syn-test3: Recovered
weights sorted by non-decreasing magni-
tudes in Dtrue.

memory.

7.4.2 Synthetic graph experiments

We generate synthetic data using the following procedure:

• Initialize a diagonal matrixDtrue whose entries are drawn uniformly at random

113

from (0, 100).

• Initialize a binary matrix A, whose entries are drawn from Bernoulli distribu-
tion Bern(0.5).

• Let Wtrue = ADtrueA
T .

• Set Wnoise = Wtrue + ε, where ε are Gaussian white noises added to non-zero
entries of Wtrue to mimic the noisy observations on the edge weights. We
later tuned the standard deviation of ε to adjust the noise level.

• For each nonzero ijth and jith entries ofWnoise, delete ijth and jith by Bernoulli
distribution to capture the effect of missing edges.

Wnoise is used as the observed network and Drec is recovered from Wnoise. The
noise level is defined as ‖Wnoise−Wtrue‖2/‖Wnoise‖2, and the reconstruction error is
computed to be ‖ADrecA

T −Wtrue‖2/‖Wtrue‖2. We create graphs with 300 vertices,
30 communities, and with various noise levels and percentage of missing edges.

We compare rankings given by Dtrue and Drec with varying noise levels and
missing edges in Figures 7.1–7.3. The circles in these plots indicate the computed
rankings, and the true rankings are sorted. Hence, if all rankings are successfully
recovered, the circles will lie on the straight line. The noise level and the percentage
of missing edges increases from Syn-test1 to Syn-test3.

The results show that when the noise level and the percentage of missing edges
are not very high (Figures 7.1 and 7.2), the proposed method is able to recover
most of the exact rankings of the communities. However, when the percentage of
missing edges is higher than 15%, and the noise level is around 25%, the results
worsen (Figure 7.3).

To further analyze these results, we compare the weights in Drec and Dtrue for
the Syn-test3 data. The weights in Dtrue are sorted in non-decreasing order and
the component indices of Drec are rearranged according to the non-decreasing order
in Dtrue in Figure 7.4. The line plot for weights in Dtrue is monotonically non-
decreasing. The dots corresponding to weights in Drec are not monotone, but still
follow the trend of the red curve. This indicates that the ranking mismatches are
caused by the non-monotone portions of the blue dotted curve, due to communities
with close weights in Dtrue. This observation aligns with intuition: when two

114

communities have different but close weights, it is difficult to distinguish them in
terms of the proposed ranking.

7.4.3 LFR graph experiments

The LFR benchmark graphs [189] are often used for testing community detection
algorithms. The LFR random graphs are extensions of the planted partition model,
which incorporates power-law distributions over node degrees and community sizes,
and allows overlapping clusters. The list of ground truth communities provides
information to construct the association matrix A. Before generating the benchmark
graphs, one could configure the number of nodes in the network that have more
than one community label, and the number of community labels for these nodes.
In addition, one could also supply the mixing parameter µ ∈ [0, 1], which is the
proportion of edges from a vertex that are inter-community edges. Therefore, µ = 0
means that edges would be formed only between vertices in the same community, and
thus there would be no noise due to mixing edges in the network. Other configuration
parameters include the number of nodes in the network, as well as upper and lower
bounds on the community size. The LFR network also contains noise due to
missing edges. Note that in the LFR graph generator (we use the code provided at
https://sites.google.com/site/andrealancichinetti/Home), increasing the
mixing coefficient µ simultaneously increases the percentage of mixing and missing
edges.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bins

m
a

tc
h

in
g

 r
a

ti
o

 (
p

re
c
is

io
n

)

40% mixing edges

48% mixing edges

Figure 7.5. LFR-test1: Varying mix-
ing edge percentage and uniform Dtrue.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bins

m
a

tc
h

in
g

 r
a

ti
o

 (
p

re
c
is

io
n

)

40% mixing edges

48% mixing edges

Figure 7.6. LFR-test1: Varying mix-
ing edge percentage and normal Dtrue.

To understand the effect of noisy edges, we perform experiments on the following
benchmark graph with overlapping communities: we generate a network with 3000

115

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bins

m
a

tc
h

in
g

 r
a

ti
o

 (
p

re
c
is

io
n

)

40% missing edges

48% missing edges

Figure 7.7. LFR-test2: Varying miss-
ing edge percentage and uniform Dtrue.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bins

m
a

tc
h

in
g

 r
a

ti
o

 (
p

re
c
is

io
n

)

40% missing edges

48% missing edges

Figure 7.8. LFR-test2: Varying miss-
ing edge percentage and normal Dtrue.

vertices and 76 communities. 600 vertices have more then one community label,
and each of these 600 vertices belongs to 3 communities. We examined the effect of
increasing mixing edges when there are no missing edges (i.e, all intra-community
edges were artificially added back). Also, in another experiment, we evaluated
the influence of missing edges, where all the mixing edges across communities
were removed. To summarize, LFR-test1 : increase mixing edges, add back all the
missing edges, and LFR-test2 : increase missing edges, filter out all the mixing
edges.

In evaluating the efficacy of our method in the subsequent experiments, we split
the result ranking of communities into coarser-grained bins.

Definition. Suppose the true community weights Dtrue are known. Let Drec denote
the weights of communities recovered by our factorization. Define the kth bin (k = 1
to 10) to be the set of communities belonging to the percentile range (10(k− 1), 10k]
according to the sorted order of Dtrue. We define the kth bin matching ratio to be
the proportion of communities in the kth bin whose ranks are in the percentile range
(10(k − 1), 10k] according to the sorted order of Drec.

For example, the 1st bin matching ratio is the number of communities that rank
in the first 10% in both Dtrue and Drec, divided by the size of the bin. We will
describe the construction of the ground-truth Dtrue in each experiment. If the
ranking problem is viewed as a multi-class classification problem, and each bin is
regarded as a class, the bin matching ratio is equivalent to the precision of each
bin. In addition, we will use Spearman’s rank correlation coefficient ρ to measure
the overall ranking quality: ρ = 1− 6∑p

i=1 d
2
i /p(p2 − 1), where di is the difference

116

in rankings of Dtrue and Drec for community i.
We constructed LFR-test1 using the following steps:

• Generate unweighted version of the LFR benchmark networks, WLFR.

• Create ground-truth community weights Dtrue, where the community weights
are drawn from a known distribution.

• Compute V = ADtrueA
T .

• If Vij > 0, assign Wij = Vij.

Let µ, σ be the mean and standard deviation of values in {Vij | Vij > 0}. If
〈p, q〉 ∈ ELFR and Vpq = 0, i.e, a mixing edge, we draw a random weight r
from a normal distribution N (µ2 ,

σ
2), and set Wpq = r. This procedure of edge

weight construction serves two purposes: first, it reflects our assumption that link
interaction strength between two nodes is predominantly explained by community
structure and weights. Second, since there are no accepted methods for community
rankings, pre-specifying Dtrue and using it as ground truth allows us to analyze our
method and do control-variated experiments. In addition, in the fourth step, all
the missing edges within communities are added back, hence all the communities
become cliques in the network. The last step assigns edge weights to mixing edges,
assuming mixing edges represent weaker connection strengths since they link across
communities.
We first vary the percentage of mixing edges and repeat the experiment ten

times using uniformly-distributed and normally-distributed community weights in
Dtrue. The average bin matching ratios under these two distributions are shown
in Figures 7.5 and 7.6. The precision are over 0.9 in all bins for both uniformly-
distributed and normally-distributed ground truth community weights. There are no
substantial distortions on retrieving the true cluster rankings when the percentage
of mixing edges increased. Also, the Spearman rank correlation coefficient ρ was
close to 1 in all the cases. This experiment shows that when the communities in
the network are actually cliques and explain most of the edge weights, our method
is robust against noise due to mixing edges. For LFR-test2, the graph generation
process is as follows:

• Generate unweighted version of the LFR benchmark networks, WLFR.

117

• Create ground-truth community weights Dtrue, where the community weights
are drawn from a known distribution.

• Compute ADtrueA
T .

• Let WLFR
ij = (ADtrueA

T)ij if 〈i, j〉 ∈ ELFR, WLFR
ij = 0 otherwise. Hence, if

(ADtrueA
T)ij = 0 then Wij = 0, and all mixing edges are filtered out.

The first three steps are identical to the previous test. In addition, the percentage
of missing edges in this test are the same as the percentage of mixing edges in the
previous test. The results are shown in Figures 7.7 and 7.8.

When there are no mixing edges across communities in the graph, but with the
same percentage of missing edges as the percentage of mixing edges in the previous
experiment, the matching ratios in each bin deteriorate significantly. Moreover, we
observe that the precision is higher for low-range bins (0-40%) and high-range bin
(90-100%) in LFR-test2. This is more pronounced when the ground truth community
weights are normally-distributed: the bar heights in Figure 7.8 follow a clear U-
shaped curve. The spearman’s ρ on LFR graph with 40% missing edges and 48%
missing edges are 0.9728 and 0.9703 respectively for uniformly distributed weights,
0.9641 and 0.9589 for normally distributed weights. One possible explanation is
that the weights for the highest-ranked and lowest-ranked communities are the
ones that are farthest from the mean. Therefore, the ranking of communities
with more extremal weights, which corresponds to highest-ranked and lowest-
ranked communities, will be most effectively recovered. For normally-distributed
community weights, most of the true community weights are concentrated around
the mean, and there are less extremal weights. As a result, the precisions for the
middle range bins in Figure 7.8 underperform the precisions for the highest and
lowest bins by a significant margin.
We further investigate the distributions of the recovered weights. The weights

in Dtrue are sorted in non-descending order and the component indexes of Drec

are rearranged according to the weight orderings in Dtrue. Figure 7.9 plots the
recovered weights versus the normally-distributed true weights when there are 40%
mixing edges in the graph in sorted order. Similarly, Figure 7.10 shows the weight
comparison when there are 40% missing edges, but without any mixing edges. In
the second case, there are larger discrepancies between the true weights and the

118

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

true rankings

w
e
ig

h
ts

true weights

reconstructed weights

Figure 7.9. LFR-test1: 40% mixing
edges.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

true rankings

w
e
ig

h
ts

true weights

reconstructed weights

Figure 7.10. LFR-test2: 40% missing
edges.

recovered weights. The recovered weights also oscillate when the true weights are
sorted monotonically.
To summarize these two control-variated tests, each network has the same

percentages of noisy edges in LFR-test1 and LFR-test2; however in LFR-test1,
all noise is attributed to mixing edges and in LFR-test2, all noise is attributed
to missing edges. Therefore, the experiments indicate that our method is more
robust against noise due to mixing edges, but less effective in the presence of a
large proportion of missing edges. The community weight and ranking recovery is
most effective when the communities in the network are cliques.

7.4.4 LiveJournal experiments

We now run experiments on a snapshot of the LiveJournal network with ground-
truth communities [180]. LiveJournal is a user-user network with ground-truth
communities defined by interest groups that users have joined. From the data
provided by Yang and Leskovec, we extracted 3818 communities, ranging in size
from 5 to 50 users per group. There are 51367 users in all, and the extracted graph is
the one induced by these 51367 users. Therefore,W ∈ R51367×51367, A ∈ R51367×3818.
In this experiment, we compare our method to a baseline method. To the best of
our knowledge, there is no prior work on optimization-based community ranking
similar to what we propose. However, there is a lot of prior research on ranking
individual nodes in the network based on algebraic, graph-theoretic, and geometric
centralities. We define our baseline method to use a straightforward extension of
node centrality to groups. For each community, we sum up the individual centrality

119

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bins

m
a
tc

h
in

g
 r

a
ti
o
 (

p
re

c
is

io
n
)

ADA
T
 decomposition

Degree Centrality

Figure 7.11. LJ-test1: uniform Dtrue.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bins

m
a
tc

h
in

g
 r

a
ti
o
 (

p
re

c
is

io
n
)

 ADA
T
 decomposition

 Degree Centrality

Figure 7.12. LJ-test2: normal Dtrue.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Expansion

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

In
te

rn
a

l
D

e
n

s
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlapping Ratio

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

In
te

rn
a

l
D

e
n

s
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Expansion

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

O
v
e

rl
a

p
p

in
g

 R
a

ti
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7.13. LJ-test1: Comparing obtained ranking to other community structure
metrics.

scores for all nodes belonging to that community. The node centrality measure we
used is degree centrality for weighted graphs, defined as: c(i) = ∑

j∈V wij.
We specify the ground-truth weight distribution Dtrue as before. We set Wij =(
ADtrueA

T
)
ij
if both

(
ADtrueA

T
)
ij
> 0 and 〈i, j〉 ∈ ELJ . Therefore, we did not

reintroduce any missing edges. There are 52% missing edges in this network. For
mixing edges, we assign random weights from a normal distribution N (µ2 ,

σ
2), where

µ and σ are the mean and standard deviation of the weights on other edges. Again,
this setup allows us to determine the efficacy of our method. Unlike the previous
experiments, we now use a real-world graph topology. Bin matching ratios for
different community weight distributions are given in Figure 7.11 and Figure 7.12.
Although the matching ratios are not as high as the LFR networks, our factor-

ization still outperforms the degree centrality ranking method. The low values
for some bins are a result of the large percentage of missing edges in the network
(52%). It also indicates that community ranking is a non-trivial task, and that
a straightforward extension of node centrality to rank communities is ineffective.
The Spearman’s rank correlation coefficient ρ using the proposed ranking method

120

is 0.7244 for uniformly distributed community weights and 0.6061 for normally
distributed weights. These are also significantly higher than those obtained using
the baseline method (0.2942 and 0.1829, respectively). Therefore, even though our
proposed method does not perform very well locally on each bin of this data set,
the ρ values are all above 0.5, which shows that globally, it produces a reasonable
outcome.

We compare the community scores obtained from P1 to traditional cluster quality
metrics. When formulation P1 is applied on unweighted graphs (assuming a self-
loop on each node), Theorem states that the cluster scores we obtained in the
optimal solution degenerates to internal density for non-overlapping communities.
We want to understand the scores and hence rankings for other situations. For
each community S in the LiveJournal crawl, we computed the following scores:

• internal density [178],
e(S)
|S|2

,

where e(S) is number of edges whose end points are both inside the cluster S.

• overlapping ratio,
|v ∈ S,∃S ′s.t.v ∈ S ′|

|S|
,

which measures the percentage of vertices in S that are shared with another
community.

• expansion [178],

|〈u, v〉 ∈ E, u ∈ S, v /∈ S|
|〈u, v〉 ∈ E, u ∈ S, v /∈ S|+ |〈u, v〉 ∈ E, u, v ∈ S| ,

which is the percentage of mixing edges among all edges attached to S.

All these three community quality metrics are between 0 and 1. Each of the above
three measurements is then split into ten equally spaced intervals and zero. For
every pair of these metrics, the communities are assigned into the corresponding
box bounded their values. The average value of the community scores from P1 is
computed for each box. The results are displayed by heatmaps in Figure 7.13. The
color intensity in most areas in the heatmaps are gradually changing. Note that if

121

there are no communities fall in certain boxes of the metrics, the average values
are set to 0.
The leftmost heatmap in Figure 7.13 shows the relation between community

scores learned from P1 and internal density and expansion ratio. The higher P1
community scores are concentrated on the upper-left corner. The scores gradually
reduce as the expansion ratio increases or the internal density decreases.

The center heatmap in Figure 7.13 conveys how internal density and overlapping
ratio affect scores in P1. Again, higher community scores learned by P1 are
distributed on the upper-left corner of the heatmap. The averaged scores of
communities gradually reduce in lower-right portion of the heatmap. It also
confirms the result of Theorem , that the scores learned by P1 are equal to the
internal density for the case of non-overlapping communities.
The relation between the overlapping ratio, expansion ratio, and P1 scores is

visualized in the rightmost heatmap. The averaged community scores in P1 decrease
from bottom-left to upper-right. Communities that correspond to the first two
columns of the heatmap have low expansion ratios. Note that P1 assigns high
scores to communities within the first two columns of the heatmap, even some
of them have high overlapping ratio. For example, communities with overlapping
ratio of 0.4 in the first two columns are those sharing a large fraction of their nodes
with other communities, but have a relatively low percentage of edges connecting
to nodes outside their communities.

7.4.5 Running time Comparison

In this section, we present some results comparing running time of our optimized
version of Coordinate Descent (OptCD), BaselineCD, and the Active-set based
code of Luo et al. (ActiveQR) [184]. We solve the optimization problem on an LFR
network with 3000 nodes, 76 communities, and 67744 edges, without reintroducing
any missing edges or filtering of the mixing edges. The running times of the three
methods are 0.49 seconds, 99 seconds, and 130 seconds, respectively. This result is
an indicator of the considerable speedup achieved with our optimization. For larger
graphs with millions of vertices and edges, it is infeasible to apply BaselineCD
or ActiveQR due to memory restrictions, but OptCD still runs to completion in
the order of minutes. The running time of OptCD is mainly dominated by the

122

computation of the matrix-vector product MTmk in line 7 of Algorithm 9.

7.5 Chapter Conclusion
This chapter introduces a new community ranking scheme that is based on fac-
torization of the adjacency matrix. This community ranking scheme has a simple
combinatorial interpretation: using community structure to reconstruct the network,
and distributing the internal interaction strength among overlapping communi-
ties. The interpretation of this ranking formulation is derived via analyzing the
solution upper bound and the special case when communities has disjoint node
sets. I show that the optimization problem reduces to Nonnegative least squares,
and design a fast and memory-efficient solution strategy for this problem. The
solution strategy exploits the sparsity structure inherent in the input matrices. The
empirical evaluation reveals scenarios when this method is readily applicable. I find
that synthetically-initialized rankings can be recovered with high precision if the
intra-cluster weight/edge densities in the network being considered are sufficiently
high. This scheme is also quite robust to addition of inter-cluster edges. The
rankings of communities can be recovered even with a very high percentage of
inter-cluster edges (greater than 50% in some cases) in the graph, provided the
clusters have high intra-cluster density. The ranking scheme is also evaluated on
two virtual social networks with known ground-truth community information and
interpretations of results are presented.

123

Chapter 8 |
Graph Sparsification as a Knap-
sack Problem

A simple formulation for graph sparsification based on the 0/1 knapsack problem
is presented in this chapter. Informally, the 0/1 knapsack problem can be stated as
follows: given a collection of items, each with an associated weight and value, the
goal is to choose a subset of the items such that the cumulative value of the chosen
items is maximized, and the total weight of the selected subset of items is less than
or equal to a user-specified weight budget. The main idea of our GSK formulation
is to treat each edge in the graph as an item and to associate weights and values to
them, so that sparsification strategies can be appropriately defined.
When sparsifying a graph, we would like to preserve structural or statistical

properties of the original graph as much as possible, but reduce the number of edges.
We assume that the vertex set V remains the same. Let G̃(V, Ẽ) denote the graph
after sparsification. We would like to minimize the loss of information, modeled
by an appropriate loss function L(G, G̃). Since the set of vertices is unchanged,
we may write minL(G, G̃) as max f(Ẽ) for some function f . User-defined edge
weights or costs {ce | e ∈ E} provide fine-grained control over whether an edge
should be included or not. A user-specified knapsack cost upper bound W can also
be set appropriately, in the same units as c, to control the sparsity of the simplified
network. When f is a linear function, i.e., associating a set of profits or values
{pe | e ∈ E} with edges, graph sparsification can be written as a linear knapsack
problem:

124

max
Ẽ⊆E

∑
e∈Ẽ

pe subject to
∑
e∈Ẽ

ce ≤ W. (GSK)

A natural way to use this problem formulation would be to set profits to computed
global or local edge centrality values. Edge centrality values attempt to quantita-
tively rank edges. Sparsification using the above knapsack formulation would then
mean filtering low centrality edges, while satisfying user-specified linear constraints.
This chapter makes the following contributions: In Section 8.1, we show that

a number of prior edge sparsification methods can be expressed as special cases
of the problem (GSK). We implement a fast solution strategy for this problem,
discussed in Section 8.2. In Section 8.3, we perform a preliminary exploration
of the design space enabled by our knapsack formulation, by encoding pairs of
complementary edge centrality values as profits and costs. We also empirically
evaluate these sparsification strategies and the performance of our solver on several
test graph instances in Section 8.4. Graph sparsification can be used for identifying
important routes on transportation networks, and eliminating roads with little
traffics for informative visualization. Work performed in this chapter leads to the
paper in [190].

8.1 Transforming Prior Methods to GSK
Graph edge sparsification is performed for a variety of reasons. The motivations
for each of the following strategies are briefly discussed here. I then describe how
they can be recast as instances of our proposed knapsack-based problem.

8.1.1 Backbone Extraction.

A large collection of relational data sets can be modeled as weighted graphs.
Backbone extraction refers to the problem of determining a reduced representation
of the original network with fewer edges. The backbone highlights the structure
of the network and preserves key characteristics. Serrano et al. [191] propose
a method to extract backbones from weighted graphs. First, edge weights are
normalized locally. Let zij denote the weight of edge 〈i, j〉. The weight is changed
to wij = zij/

∑
{k|〈i,k〉∈E} zik. The denominator is the sum of the weights of all

edges connected to vertex i. In case of undirected graphs, each edge is considered

125

twice, and weights are normalized according to vertices i and j separately. In
the next step, a statistical test against a null model of a normalized edge weight
distribution is used to determine edges that are statistically significant. The null
model assumes that normalized edge weights of a degree-k vertex are proportional
to random assignments of k sub-intervals from [0, 1]. Under this null model,
the probability of observing an edge with normalized weight of at least wij is
αij

def= 1− (k − 1)
∫ wij

0 (1− x)k−2dx. A local significance level α is selected, and if
αij < α, the observed edge is considered to be statistically significant and retained.
Other edges are filtered.
Foti et al. [192] consider a related approach using a non-parametric statistical

test. The same weight normalization step is performed, but the statistical test is
replaced by αij = 1− 1

di

∑
{k|〈i,k〉∈E} 1{wik ≤ wij}. Here, 1{·} denotes the indicator

function, which equals 1 if the expression in the bracket is true, and 0 otherwise. di
denotes the degree of vertex i. αij is considered to be the probability of empirically
observing an edge with normalized weight at least wij locally at vertex i. These
two backbone extraction methods can be viewed as a special case of the knapsack
problem:

max
Ẽ⊆E

∑
i∈V

∑
〈i,j〉∈Ẽ

(α− αij).

The above problem can be considered a Lagrangian relaxation of problem (GSK),
and with no constraints. This problem can be easily solved by selecting edges with
positive profits, i.e., α− αij > 0.

8.1.2 Similarity Filters for Clustering.

Satuluri et al. [193] use edge sparsification as a preprocessing step to enhance
scalability of graph vertex clustering algorithms. The goal is not to sacrifice the
quality of clustering results with the sparsified graph. Each edge 〈i, j〉 is evaluated
based on the similarity of vertices i and j. Similarity is defined using the Jaccard
score:

Jacij = |N(i) ∩N(j)|
|N(i) ∪N(j)| ,

where N(i) refers to the set of neighboring vertices of i. The authors propose two
sparsification schemes based on the Jaccard score. The global similarity method
first ranks each edge in the network using Jac; then the top s% edges ranked by

126

Jac are retained in the sparsified network. Therefore, the global similarity method
could be viewed as problem (GSK) with unit edge weights, i.e., a edge cardinality
constraint:

max
Ẽ⊆E

∑
e∈Ẽ

Jace subject to |Ẽ| ≤ W.

In addition to filtering edges globally, the authors also consider ranking edges locally
at each vertex similar to [191] and [192]. Starting with a network of the same vertex
set and an empty edge set, for each vertex i ∈ V , the top ddαi e (exponent α ∈ (0, 1))
of the incident edges in the original network ranked by similarity score Jacij are
added back. The intuition is that similar vertices are more likely to reside in the
same cluster, and so intra-cluster edges are retained. This problem can be viewed
as an unconstrained knapsack problem by setting the profit values of edges that
are to be filtered to zero, and the profit values for the edges to be retained to their
Jaccard scores. We could impose additional filtering constraints to complement
this local similarity filter, as we will discuss in Section 8.3.

8.1.3 Local Degree Filter.

Lindner et al. [194] recently evaluate a degree-based sparsification strategy. Similar
to the Local Similarity filter method, each edge is first rated using a score function,
and then a filtering threshold is applied locally at each vertex. For each edge 〈i, j〉
incident on vertex i, the score function Degij chosen here is the degree of vertex
j. For each vertex i, the top-ranked ddαi e of attached edges are retained. The
motivation behind using vertex degree for filtering is to preserve key graph vertices,
or hub vertices, after sparsification. Analogous to the Local Similarity method, this
method can be written as a special unconstrained case of problem (GSK).

8.1.4 Other Related Sparsification Methods.

Graph sparsification has been studied in several different contexts. Cut sparsi-
fiers [195,196] aim at creating a graph with the same set of vertices, but with fewer
edges, such that every cut on the graph is preserved up to a multiplicative factor.
Spectral sparsifiers by Spielman and Teng [197] is another well-known line of work.
The goal here is to preserve the spectral properties of the graph Laplacian. Bonchi
et al. [198] define the problem of activity-preserving graph simplification. Their

127

approach requires additional information on activity traces in the network. The
goal is to preserve observed activity traces while simplifying the graph.
A recent paper by Wilder and Sukthankar [199] formulates a sparsification

method for social networks which aims to preserve the stationary distribution of
random walks. Their method can be expressed as a nonlinear optimization problem
with linear knapsack constraints [200,201]:

max
Ẽ⊆E

f(Ẽ) subject to
∑
e∈Ẽ

ce ≤ W. (GSK-NL)

Optimization problems of the form (GSK-NL) have been studied and applied
to other problems related to network analysis. Leskovec et al. [202] studied the
problem of selecting a subset of vertices in a network for sensor placement under
budget constraints. This application could also be viewed as a vertex-filtering based
graph sparsification problem.

8.2 A Fast Approximation Scheme
In this section, we discuss our implementation of a fast approximation algorithm
for the 0/1 knapsack problem. Note that the sparsification methods discussed in
the prior section – backbone extraction [191,203], Local Similarity Filter [193], and
Local Degree Filter [194] – are straightforward to implement and do not need to be
solved under the knapsack formulation. We want to create a general sparsification
framework that permits global or local edge centrality-based filtering, with the
flexibility of introducing user-defined linear constraints.
Given integer profits and weights, the problem (GSK) can be solved exactly

in pseudopolynomial time using a dynamic programming-based scheme [204–206].
However, this approach is prohibitively expensive for large graphs, and in our
sparsification scenarios, it is not guaranteed that profits and weights are integers.
Approximation algorithms for the 0/1 knapsack problem and variants have been
studied extensively [207–214]. There are two main kinds of approximation algo-
rithms for knapsack: fully-polynomial time approximation schemes (FPTAS) that
can achieve a result that is 1− ε of the optimal value for all input error tolerance
values ε [207,211–213]; linear-time greedy approximation algorithms that have ap-
proximation quality guarantees as a fixed percentage of the optimal value [208–210].

128

The complexity of FPTAS algorithms is independent of the knapsack cost bound
W , but polynomial in the number of items. In this section, we apply a greedy
approximation algorithm based on [202, 208, 214] and explain how it can be im-
plemented in O(|E|) time. We assume that the profits {pe|e ∈ E} and the costs
{ce|e ∈ E} are precomputed.

The commonly-used greedy approximation method for the knapsack problem [208,
210,214] starts with an empty set EF0 , and expands EFk to EFk+1 = EFk ∪ {eFk } by
adding the edge eFk that gives the maximal “efficiency”,

eFk = max
e∈E\EF

k

pe
ce
,

until reaching the kF such that ∑kF−1
i=0 ceFi ≤ W <

∑kF

i=0 ceFi . Selecting ∪
kF−1
i=0 eFi or

{eFkF} that corresponds to max{∑kF−1
i=0 peFi , peFkF

} gives a 2-approximation to the
knapsack problem [208,210,214]. However, in the context of graph simplification
formulation (GSK), if peF

kF
>
∑kF−1
i=0 peFi , constructing a simplified graph G̃ =

(V, {eFkF}) with just a single edge {eFkF} may not be really usable in the context
of graph sparsification. However, since the linear objective f(Ẽ) = ∑

e∈Ẽ pe is
a submodular function with f(EA ∪ {e}) − f(EA) = f(EB ∪ {e}) − f(EB) =
pe, the greedy algorithm for submodular function maximization under knapsack
constraints [202,215] could be applied here. Analogous to expanding the edge set
based on the greedy efficiency rule, the greedy profit rule initializes EP0 = ∅ and
selects ePk in the kth iteration that gives the largest profit:

ePk = max
e∈E\EP

k

pe

until the iteration kP such that adding ePkP will exceed the knapsack weight constraint
in problem (GSK). Leskovec et al. [202] show that using max{∑kF−1

i=0 peFi ,
∑kP−1
i=0 pePi }

results in a solution that is at least 1
2(1− 1/e) of the optimal solution for general

non-decreasing submodular functions. Hence, this result is applicable to problem
(GSK) as well. The case of a single edge being retained is unlikely to occur for
graphs we consider and when using edge centrality measures such as the Jaccard
score.
The edge sets {eFi }k

F−1
i=0 and {ePi }k

P−1
i=0 can be determined by sorting {pe}e∈E

and {pe/ce}e∈E. A faster method that avoids sorting is to use the weighted medi-

129

ans.Given a list of profits {pe|e ∈ E} and nonnegative costs {ce|e ∈ E}, define the
weighted median profit to be the profit p∗ ∈ {pe|e ∈ E} such that

∑
e:pe>p∗

ce < W ≤
∑

e:pe≥p∗
ce.

Similarly, let fe = pe/ce, and define the weighted median efficiency to be the
f ∗ ∈ {fe|e ∈ E} satisfying

∑
e:fe>f∗

ce < W ≤
∑

e:fe≥f∗
ce

Using a slight modification of the selection sort algorithm, we can find the
weighted medians p∗ and f ∗ in O(|E|) time [206, 214, 216]. After obtaining the
weighted medians p∗ and f ∗, the set {eFi }k

F−1
i=0 and {ePi }k

P−1
i=0 of selected edges can

be decided in two passes over the set of all edges. We describe this procedure for the
greedy profit strategy. Let EP denote the set of edges selected by the greedy profit
rule. In one pass over E, we partition the edges into {e | pe > p∗}, {e | pe = p∗}
and {e | pe < p∗}. All edges in {e | pe > p∗} can be added safely to EP and all
edges in {e | pe < p∗} can be disregarded by the greedy rule. During the first pass,
the remainder weight R = W − ∑e:pe>p∗ ce is computed. The second pass over
{e | pe = p∗} can be performed in arbitrary order until the remainder weight R is
exhausted. Therefore, the running time is O(|E|). The greedy efficiency rule can
be implemented in a similar manner. The pseudocode for the full solver is provided
in Algorithm 11.

8.3 Constructing New Sparsification Schemes
We now discuss approaches to set the edge profits {pe | e ∈ E} and costs {ce | e ∈ E}
in the GSK formulation. We have two goals in mind: First, the profits should
attempt to preserve a structural property. Second, we want to reuse precomputed
vertex/edge centrality scores or other information available apriori in order to set
the edge costs. For example, in case of online social network analysis, suppose the
PageRank scores for each vertex have been already computed. How can we use this
information to sparsify the graph and perform additional network analysis tasks?
Ideally, we might wish that after sparsification, the set of top-ranked vertices using

130

PageRank remains the same, and additionally other properties such as clustering
coefficient distribution or community structure are also preserved. More generally,
given a set of precomputed vertex centrality scores {s(u) | u ∈ V }, we devise a
heuristic to construct a set of edge scores {s(u, v) | u ∈ V, 〈u, v〉 ∈ E}. If our
primary interest is to preserve the centrality rankings, then the edge scores could
be used directly as profits. Otherwise, the edge scores could be transformed into
costs, which would discriminate the edges based on their contribution to the vertex
centralities in the original network.
We propose using a simple method for constructing edge scores that works

on both directed and undirected graphs. For directed graphs, on each vertex
u ∈ V , the centrality score s(u) is distributed among its outgoing (or incoming)
edges {〈u, v〉 ∈ E}. Each outgoing edge e = 〈u, v〉 obtains a fraction of s(u),
proportional to d(v)/∑〈u,z〉∈E d(z). The intuition for distributing the centrality
scores on outgoing edges is that the influence of a vertex is more likely to propagate
along its high-degree neighbors. For undirected graphs, we duplicate each edge
e ∈ E to create two directed links 〈u, v〉 and 〈v, u〉. This operation enlarges size of
the knapsack decision variables from |E| to 2|E|. After solving problems (GSK),
an edge e is retained in the simplified network if at least one of 〈u, v〉 and 〈v, u〉
is selected in the knapsack solution. We summarize this process of assigning edge
scores in Algorithm 12.

Let DPRij denote the score on edge 〈i, j〉 when Algorithm 12 is applied to generate
edge scores based on PageRank. Since DPRij ∈ (0, 1], 1 − DPRij could be used as
edge costs, so that a weak edge in the sense of contribution to PageRank has a
large cost in problem (GSK). We extend the Jaccard score-based Local Similarity
method and Global Similarity methods of Satuluri et al. [193] to use (1− DPRij) as
edge costs, and enforcing constraints

∑
i∈V

∑
〈i,j〉∈Ẽ

(1− DPRij) ≤ W,

where W is a user-supplied parameter. W is set to be a percentage of 2|E|, since∑
i∈V

∑
〈i,j〉∈E(1−DPRij) = 2|E|−1. We also devise a new method that uses DPRij as

the profit for edge 〈i, j〉, and enforces the unit-cost constraint ∑i∈V
∑
〈i,j〉∈Ẽ 1 ≤ W .

The motivation of this method is to preserve the vertices with top PageRank scores
after sparsification.

131

Table 8.1. Graphs used in empirical evaluation.
Name |V | (×106) |E| (×106)
com-Amazon [217] 0.335 0.9
com-DBLP [217] 0.32 1.05
com-Youtube [217] 1.13 3
roadNet-CA [218] 1.97 5.53
as-Skitter [218] 1.7 11
com-LiveJournal [217] 4 34.68
com-Orkut [217] 3.07 117

Table 8.2. Problem (GSK)-based graph sparsification strategies used in empirical
evaluation.
Label p(i, j) Constraint Motivation

JLPR 1
di

∑
{k|〈i,k〉∈Ẽ} 1{Jacik ≤ Jacij}

∑
i∈V

∑
〈i,j〉∈Ẽ(1− DPRij) ≤ W

local similarity
+PageRank

JGPR Jacij
∑
i∈V

∑
〈i,j〉∈Ẽ(1− DPRij) ≤ W

similarity
+PageRank

PR DPRij
∑
i∈V

∑
〈i,j〉∈Ẽ 1 ≤ W PageRank

JG Jacij
∑
i∈V

∑
〈i,j〉∈Ẽ 1 ≤ W similarity [193]

8.4 Empirical Evaluation
In this section, we empirically evaluate six sparsification methods that can be
expressed in the form of either problem (GSK) or its simpler unconstrained version.
We used seven sparse graphs from the Stanford large network dataset collection
SNAP [219], listed in Table 8.1. We implemented the approximate knapsack
solution scheme in C+ and verified correctness with several test instances. The
six sparsification methods considered are summarized in Tables 8.2 and 8.3. All

Table 8.3. Unconstrained sparsification strategies used in empirical evaluation.
Label p(i, j) Motivation
DL retain top ddαi e edges ranked by Degij locally hub vertices [194]
JL retain top ddαi e edges ranked by Jacij locally local similarity [193]

132

0 20 40 60 80 100 120

0

50

100

150

200

number of edges (millions)

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

com−Amazon
com−DBLP
com−Youtube
roadNet−CA
as−Skitter
com−LiveJournal
com−Orkut

Figure 8.1. Solver running time on various graphs.

experiments were run on a single server of Cyberstar, a Penn State compute cluster.
The server we run our programs on is a dual-socket quad-core Intel Nehalem system
(Intel Xeon X5550 processor) with 32 GB main memory.

8.4.1 Solver Performance.

We evaluate performance of the solver for the problem (GSK). Unlike the exact
pseudopolynomial dynamic programming approach, the running time of Algo-
rithm 11 is independent of the user-supplied weight parameter W and the actual
settings for the edge profits {pe|e ∈ E} and costs {ce|e ∈ E}. We computed the
execution time of the solver for the seven graphs in Table 8.1. The graph sizes
differ by nearly two orders of magnitude, going from com-Amazon to com-Orkut.
Figure 8.1 gives the running times. As the number of graph edges increases, the
execution time appears to increase linearly. This empirical evaluation is one way
of demonstrating the practical efficacy of the solver. Note that this figure only
gives the solver execution time, and does not include the time taken to compute
profits and costs. Our current implementations for PageRank and Jaccard scores
are straightforward and untuned. For com-DBLP, the running times of JLPR for
PageRank computation (costs), Jaccard score computation (profits), and the greedy
approximation are 0.21, 2.28, and 2.1 seconds, respectively.

133

8.4.2 Comparing Sparsification Methods.

We now apply the solver to the six problem formulations in Tables 8.2 and 8.3.
In addition, we sparsify the graphs using uniform random edge (RE) sampling as
a baseline. The abbreviations used in the figures correspond to the methods in
Tables 8.2 and 8.3. The knapsack bound W is user-supplied. We set the prob-
lem parameters to achieve various sparsification ratios of |Ẽ|/|E|. We use three
structural properties to evaluate the sparsification schemes: vertex degree distri-
bution, top-ranked PageRank vertices and average clustering coefficient. We use
Spearman’s rank correlation coefficient [220] to compute correlation between vertex
degree rankings in the sparsified graph and in the original graph. This value will be
close to 1 if the degree rankings are highly correlated. For PageRank, we evaluate
the methods based on the proportion of the top 10% PageRank-ordered vertices in
the original graph that are preserved after sparsification. We report experimental
results on com-Amazon, com-DBLP, com-Youtube and com-LiveJournal.

Figure 8.2 plots the Spearman’s correlation for vertex degree rankings at various
sparsification ratios. There is no single method that consistently outperforms
others. In [194], the authors perform a similar experiment, for vertex degree
ranking using Spearman’s rank correlation coefficient, over a large collection of
social networks. Their results show that DL and RE consistently outperform JL. In
our experiments, RE, PR, DL, and JLPR all perform qualitatively similarly on the
social network com-LiveJournal. However, the performance diverges on the other
graphs. PR’s performance is also noteworthy: it performs significantly worse than
RE for com-Amazon and com-DBLP, but better than all methods for com-Youtube.
Results showing the overlap ratio of top 10% PageRank-ordered vertices after

applying a sparsification method are shown in Figure 8.3. As expected, PR
consistently outperforms the other methods, since in PR, the edge profit DPR is
based on the vertex PageRank scores. DL and JLPR give similar results for the
overlap ratio in all four graphs, and slightly underperform PR. JGPR sparsification
significantly distorts the top 10% PageRank-ordered vertex set in all experiments.
The comparison of JL, JLPR, JG, and JGPR on the Spearman’s correlation

of degrees and the overlap ratio of top 10% PageRank vertices are displayed in
Figure 8.4. For all the graphs, the difference between JL and JLPR, and the
difference between JG and JGPR is very small. Hence we do not show JL and JG

134

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

S
p
e
a
rm

a
n
‘s

 c
o
rr

e
la

ti
o
n
 o

f
D

e
g
re

e

com−Amazon

RE
PR
DL
JLPR
JGPR

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

S
p
e
a
rm

a
n
‘s

 c
o
rr

e
la

ti
o
n
 o

f
D

e
g
re

e

com−DBLP

RE
PR
DL
JLPR
JGPR

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

S
p
e
a
rm

a
n
‘s

 c
o
rr

e
la

ti
o
n
 o

f
D

e
g
re

e

com−LiveJournal

RE
PR
DL
JLPR
JGPR

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

S
p
e
a
rm

a
n
‘s

 c
o
rr

e
la

ti
o
n
 o

f
D

e
g
re

e

com−Youtube

RE
PR
DL
JLPR
JGPR

Figure 8.2. Spearman’s rank coefficient of degree for the original graph and sparsified
graph, at various sparsification thresholds.

results in Figures 8.2 and 8.3.
We report the deviation of average clustering coefficient Ave-CC from the original

graph after sparsification on com-DBLP and com-Amazon in Figure 8.5. The deviation
is computed as Ave-CC(G̃)− Ave-CC(G). The average clustering coefficients for
com-DBLP and com-Amazon are 0.6324 and 0.3967, respectively. These two graphs
have the largest average clustering coefficient among the ones listed in Table 8.1.
Surprisingly, PR causes the least deviation of average clustering coefficient on
com-DBLP. JLPR and JGPR, which aim to preserve intra-cluster edges, produce
positive deviations at some sparsification thresholds on com-Amazon. RE reduces
the average clustering coefficient linearly on decreasing the number of retained
edges, an observation also pointed out in [194].

135

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

P
a
g
e
R

a
n
k
−

o
rd

e
re

d
 v

e
rt

e
x
 o

v
e
rl
a
p
 r

a
ti
o

com−Amazon

RE
PR
DL
JLPR
JGPR

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

P
a
g
e
R

a
n
k
−

o
rd

e
re

d
 v

e
rt

e
x
 o

v
e
rl
a
p
 r

a
ti
o

com−DBLP

RE
PR
DL
JLPR
JGPR

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

P
a
g
e
R

a
n
k
−

o
rd

e
re

d
 v

e
rt

e
x
 o

v
e
rl
a
p
 r

a
ti
o

com−LiveJournal

RE
PR
DL
JLPR
JGPR

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

P
a
g
e
R

a
n
k
−

o
rd

e
re

d
 v

e
rt

e
x
 o

v
e
rl
a
p
 r

a
ti
o

com−Youtube

RE
PR
DL
JLPR
JGPR

Figure 8.3. The fraction of vertices that overlap in the top 10% PageRank-ordered
vertex sets in the original and the sparsified graph, at various sparsification thresholds.

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

S
p
e
a
rm

a
n
‘s

 c
o
rr

e
la

ti
o
n
 o

f
D

e
g
re

e

com−LiveJournal

JL
JLPR
JG
JGPR

50% 60% 70% 80% 90% 100%

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Retained Edges

P
a
g
e
R

a
n
k
−

o
rd

e
re

d
 v

e
rt

e
x
 o

v
e
rl
a
p
 r

a
ti
o

com−LiveJournal

JL
JLPR
JG
JGPR

Figure 8.4. Comparing Jaccard similarity-based sparsifier performance on the
com-LiveJournal graph.

8.5 Chapter Conclusion
In this work, I explore using the knapsack problem for graph edge sparsification.
Sparsifying large graphs aids in graph visualization and serves as a speedup technique

136

50% 60% 70% 80% 90% 100%

−0.4

−0.3

−0.2

−0.1

0

0.1

Percentage of Retained Edges

D
e
v
ia

ti
o
n
 o

f
A

v
e
ra

g
e
 C

lu
s
te

ri
n
g
 C

o
e
ff
ic

ie
n
t

com−DBLP

RE
PR
DL
JLPR
JGPR

50% 60% 70% 80% 90% 100%

−0.4

−0.3

−0.2

−0.1

0

0.1

Percentage of Retained Edges

D
e
v
ia

ti
o
n
 o

f
A

v
e
ra

g
e
 C

lu
s
te

ri
n
g
 C

o
e
ff
ic

ie
n
t

com−Amazon

RE
PR
DL
JLPR
JGPR

Figure 8.5. Deviation of average clustering coefficient at various sparsification thresholds.

for graph computations such as community detection and centrality analysis. The
proposed knapsack-based sparsification permits both global and local centrality-
based edge filtering, and additionally lets us specify fine-grained linear constraints.
A greedy linear-time approximation solution scheme is implemented for this problem.
This sparsification scheme may be used for scalable graph visualization and as a
general speedup strategy in the future.

137

Algorithm 11 Pseudocode for the GSK problem solver.
Input: G(V,E), profits {pe|e ∈ E}, costs {ce|e ∈ E}, weight constraint W .
Output: Ẽ
1: EP ← ∅
2: S(P)← 0 . greedy profit rule solution value
3: R(P)← W . remainder weight
4: Set p∗ to computed weighted median profit
5: Initialize array T (P)
6: for e ∈ E do . O(|E|)
7: if pe > p∗ then
8: add e to EP
9: S(P)← S(P) + pe
10: R(P)← R(P)− ce
11: else if pe = p∗ then
12: add e to T (P)
13: end if
14: end for
15: add e ∈ T (P) to EP until R(P) is exhausted
16: for e ∈ E do
17: Compute efficiency fe ← pe/ce
18: end for
19: EF ← ∅
20: S(F)← 0 . greedy efficiency rule solution value
21: R(F)← W . remainder weight
22: Set f ∗ to computed weighted median efficiency
23: Initialize array T (F)
24: for e ∈ E do . O(|E|)
25: if fe > f ∗ then
26: add e to EF
27: S(F)← S(F) + pe
28: R(F)← R(F)− ce
29: else if fe = f ∗ then
30: add e to T (F)
31: end if
32: end for
33: add e ∈ T (F) to EF until R(F) is exhausted
34: if S(P) ≥ S(F) then
35: return EP

36: else
37: return EF

38: end if

138

Algorithm 12 DistributeCentrality
Input: network G(V,E), centrality {s(u)|u ∈ V }
Output: edge scores {s(u, v)|u ∈ V, 〈u, v〉 ∈ E}
1: if G is undirected then
2: for e ∈ E do
3: u, v ← end points of e
4: create directional edges 〈u, v〉 and 〈v, u〉
5: end for
6: end if
7: for u ∈ V do
8: for ∀〈u, v〉 attached to u do
9: s(u, v)←

(
d(v)/∑〈u,z〉∈E d(z)

)
s(u)

10: end for
11: end for

139

Chapter 9 |
Conclusions and Future Work

9.1 Summary of Contributions
This dissertation studies temporal prediction problems on traffic flow data and ma-
chine learning with structural knowledge for accident factor analysis. Optimization
is an recurring theme throughout the development of different methods. We focus
on the robustness, multi-modality, and non-stationary aspects in the development
of learning algorithms for traffic flow prediction. Many existent methods have been
proposed in the literature for traffic flow prediction [49,51,221–224] (additionally,
see [225] and references therein). To avoid the selection of a particular method
at the price of discarding others, a consensus ensemble learning approach which
robustly combines the result from different models was developed in Chapter 3. The
ensemble learning scheme utilizes a covariance-regularizer to balance the trade-offs
between the predictive accuracy and mutual dependency among different models.
Computational efficiency and non-stationarity is viewed as an integrated problem
in Chapter 4. In the presence of non-stationary observations, computationally
efficient model adaptation to data is an alternative strategy to statistical removal
of the non-stationary trends. An online hyperparameter optimization algorithm
was proposed in Chapter 4. Theoretical guarantees based on regret minimization
framework [27–30] was provided. This algorithm enables adaptive hyperparameter
tuning in data streaming environment and much outperforms models with statically
pre-selected hyperparameters.
We took a structural learning approach to model the latent heterogeneity in

traffic accidents and assist the analysis of factors influencing the severity of crashes.

140

Structural learning refers to generate hypothesis from data with rich internal
structure [11]. Often, we have a broad prior knowledge about the structure of
latent heterogeneity among the observations. For example, by the Central Limit
Theorem, it is natural to assume that individual differences with respect to the
degree of injury given some accident factors follow a Gaussian distribution. The
parameters of the latent distribution is unknown and will be inferred from data via an
optimization formulation. This approach is known as the mixed logit modeling [12–
18] in transportation literature. A scalable stochastic optimization algorithm was
developed in Chapter 5 to solve the mixed logit parameter estimation problem. On
the other hand, relaxing the distribution assumptions on the individual heterogeneity
improves the robustness, from both modeling and optimization perspective. In
many problems, researchers have found that intrinsic low dimension structure exists
despite that the observed data is noisy and possibly with missing values [38–42]
(and references therein). It is not surprise if the latent heterogeneous effect resides
in low-rank space. Therefore, a latent effect logistic regression model was developed
in Chapter 6 requiring no distributional priors on the latent parameters, only
assuming the existence of low-rank structure. Chapter 7 and Chapter 8 introduced
pre-processing techniques for exploratory analysis on network data.

9.2 Future Directions

9.2.1 Hyperparameter optimization for non-smooth problems

In Chapter 4, hyperparameter optimization is formulated as a bi-level programming
problem [3–8]. The analytical hyper-gradient is available in the case of kernel
models. In general, analytical hyper-gradient is not available. When the nested
problem, i.e., the training objective function in the model, is smooth, the gradient
with respect to the hyperparameters can be computed via implicit differentiation.
However, implicit differentiation techniques required the computation of second
derivative matrices. An interesting extension is to use approximate Hessian matrices
in the computation of hyper-gradient. For example, applying the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [34,35,37] formula or Barzilai-Borwein (BB) [226] method.
Implicit differentiation cannot be applied directly if the inner problem is non-
smooth. Another extension is developing hyperparameter optimization method

141

with smoothing techniques [88] for the inner problem.

9.2.2 Theoretical investigations of the latent effect model

In Chapter 6, a convex formulation for logistic regression with heterogeneous
latent effect was proposed. This model is constructed based on the following
ideas: modeling heterogeneity without losing the convexity of objective function,
separation of sparse common effect from low-rank heterogeneous effect. Chapter
6 focused on the model proposal and the computational aspects. Theoretical
investigations on the model and analysis on its connections to other low-rank and
sparse decompositions [38–42] is important. In addition, empirical risk minimization
setup with other loss functions is a natural extension to the latent logistic regression
model. The theoretical study should consider the statistical properties under general
convex loss functions.

9.2.3 Latent graphical inference for mixed logit

The latent effect logistic regression via low-rank and sparse decomposition described
in Chapter 6 relaxes the distributional assumptions on the heterogeneous effects.
Sometimes, practitioners do want to impose distributional restrictions to assist the
interpretation of results. However, as we shown in Chapter 5, Gaussian mixing
distribution with Maximum Simulated Likelihood estimation leads to a non-convex
problem and can be unstable. A possible direction to perform convex optimization
with mixing distributions is to follow a two stage strategy. In the first stage, latent
effect for each observation is inferred using the low-rank and sparse decomposition-
based logistic model described in Chapter 6. In the second stage, once Gaussian
assumptions are placed on the latent effects, we can perform convex Gaussian
graphical model inference [227–230] given the heterogeneous effects obtained from
the first step.

142

Bibliography

[1] IEEE Transactions on Intelligent Transportation Systems Ed-
itorial Board, “Aim and Scope,” https://ieeexplore.ieee.org/xpl/
aboutJournal.jsp?punumber=6979#AimsScope, accessed: 2018-09-30.

[2] United States Department of Transportation, “ITS Research Fact
Sheets - Benefits of Intelligent Transportation Systems,” https://www.its.
dot.gov/factsheets/benefits_factsheet.htm, accessed: 2018-09-30.

[3] Maclaurin, D., D. Duvenaud, and R. Adams (2015) “Gradient-based
hyperparameter optimization through reversible learning,” in Proc. ICML.

[4] Pedregosa, F. (2016) “Hyperparameter optimization with approximate
gradient,” in Proceedings of the 33rd International Conference on Machine
Learning, pp. 737–746.

[5] Luketina, J., M. Berglund, K. Greff, and T. Raiko (2016) “Scalable
Gradient-Based Tuning of Continuous Regularization Hyperparameters,” in
Proceedings of The 33rd International Conference on Machine Learning (M. F.
Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of Machine
Learning Research, PMLR, New York, New York, USA, pp. 2952–2960.

[6] Franceschi, L., M. Donini, P. Frasconi, and M. Pontil (2017) “For-
ward and Reverse Gradient-Based Hyperparameter Optimization,” in Proceed-
ings of the 34th International Conference on Machine Learning (D. Precup
and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research,
PMLR, International Convention Centre, Sydney, Australia, pp. 1165–1173.

[7] Franceschi, L., P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil
(2018) “Bilevel Programming for Hyperparameter Optimization and Meta-
Learning,” in Proceedings of the 35th International Conference on Machine
Learning (J. Dy and A. Krause, eds.), vol. 80 of Proceedings of Machine
Learning Research, PMLR, StockholmsmÃďssan, Stockholm Sweden, pp.
1568–1577.

143

[8] Zhan, H., G. Gomes, X. S. Li, K. Madduri, and K. Wu (2018) “Efficient
Online Hyperparameter Learning for Traffic Flow Prediction,” in 2018 IEEE
21th International Conference on Intelligent Transportation Systems (ITSC),
IEEE, pp. 1–6.

[9] Schölkopf, B., R. Herbrich, and A. J. Smola (2001) “A general-
ized representer theorem,” in Proceeding of the International Conference on
Computational Learning Theory (COLT).

[10] Schlkopf, B., A. J. Smola, and F. Bach (2018) “Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond,” .

[11] Dietterich, T. G., P. Domingos, L. Getoor, S. Muggleton, and
P. Tadepalli (2008) “Structured machine learning: the next ten years,”
Machine Learning, 73(1), p. 3.

[12] McFadden, D. (1989) “A method of simulated moments for estimation
of discrete response models without numerical integration,” Econometrica:
Journal of the Econometric Society, pp. 995–1026.

[13] Train, K. (2001) “A comparison of hierarchical Bayes and maximum sim-
ulated likelihood for mixed logit,” University of California, Berkeley, pp.
1–13.

[14] Hensher, D. A. and W. H. Greene (2003) “The mixed logit model: the
state of practice,” Transportation, 30(2), pp. 133–176.

[15] Hole, A. R. (2007) “Estimating mixed logit models using maximum simu-
lated likelihood,” Stata Journal, 7(3), pp. 288–401.

[16] Train, K. E. (2009) Discrete choice methods with Simulation, 2 ed., Cam-
bridge University Press.

[17] Park, S. and S. Gupta (2012) “Comparison of SML and GMM estimators
for the random coefficient logit model using aggregate data,” Empirical
Economics, 43(3), pp. 1353–1372.

[18] Train, K. (2016) “Mixed logit with a flexible mixing distribution,” Journal
of choice modelling, 19, pp. 40–53.

[19] Bottou, L. (2010) “Large-Scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010, Springer, pp. 177–186.

[20] Moulines, E. and F. R. Bach (2011) “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning,” in Advances in Neural
Information Processing Systems, pp. 451–459.

144

[21] Sra, S., S. Nowozin, and S. J. Wright (2012) Optimization for machine
learning, Mit Press.

[22] Ghadimi, S. and G. Lan (2013) “Stochastic first-and zeroth-order methods
for nonconvex stochastic programming,” SIAM Journal on Optimization,
23(4), pp. 2341–2368.

[23] Johnson, R. and T. Zhang (2013) “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in neural information
processing systems, pp. 315–323.

[24] Schmidt, M., N. Le Roux, and F. Bach (2017) “Minimizing finite sums
with the stochastic average gradient,” Mathematical Programming, 162(1-2),
pp. 83–112.

[25] Gourieroux, C. and A. Monfort (1990) “Simulation based inference
in models with heterogeneity,” Annales d’Economie et de Statistique, pp.
69–107.

[26] Bergstra, J. and Y. Bengio (2012) “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, 13(Feb), pp. 281–305.

[27] Zinkevich, M. (2003) “Online convex programming and generalized in-
finitesimal gradient ascent,” in Proc. ICML.

[28] Cesa-Bianchi, N. and G. Lugosi (2006) Prediction, learning, and games,
Cambridge university press.

[29] Hazan, E. (2012) “The convex optimization approach to regret minimization,”
in Optimization for Machine Learning (S. Sra, S. Nowozin, and S. J. Wright,
eds.), chap. 10, MIT Press, pp. 287–304.

[30] Hazan, E., K. Singh, and C. Zhang (2017) “Efficient Regret Minimization
in Non-Convex Games,” in Proceedings of the 34rd International Conference
on Machine Learning.

[31] Lee, L.-F. (1992) “On efficiency of methods of simulated moments and max-
imum simulated likelihood estimation of discrete response models,” Econo-
metric Theory, 8(4), pp. 518–552.

[32] Hajivassiliou, V. A. and P. A. Ruud (1994) “Classical estimation methods
for LDV models using simulation,” Handbook of econometrics, 4, pp. 2383–
2441.

[33] Goldfarb, D. (1970) “A family of variable-metric methods derived by
variational means,” Mathematics of computation, 24(109), pp. 23–26.

145

[34] Shanno, D. F. (1970) “Conditioning of quasi-Newton methods for function
minimization,” Mathematics of computation, 24(111), pp. 647–656.

[35] Broyden, C. G. (1970) “The convergence of a class of double-rank min-
imization algorithms 1. general considerations,” IMA Journal of Applied
Mathematics, 6(1), pp. 76–90.

[36] Fletcher, R. (1970) “A new approach to variable metric algorithms,” The
computer journal, 13(3), pp. 317–322.

[37] Nocedal, J. and S. Wright (2006) Numerical Optimization, Springer
Series in Operations Research and Financial Engineering.

[38] Candès, E. J. and B. Recht (2009) “Exact matrix completion via convex
optimization,” Foundations of Computational mathematics, 9(6), p. 717.

[39] Candès, E. J., X. Li, Y. Ma, and J. Wright (2011) “Robust principal
component analysis?” Journal of the ACM (JACM), 58(3), p. 11.

[40] Soltanolkotabi, M., E. Elhamifar, E. J. Candes, et al. (2014)
“Robust subspace clustering,” The Annals of Statistics, 42(2), pp. 669–699.

[41] Aybat, N. S., D. Goldfarb, and S. Ma (2014) “Efficient algorithms for
robust and stable principal component pursuit problems,” Computational
Optimization and Applications, 58(1), pp. 1–29.

[42] Udell, M. and A. Townsend (2018) “Why are Big Data Matrices Ap-
proximately Low Rank?” SIAM Mathematics of Data Science (SIMODS), to
appear, 1705.07474.

[43] Beck, A. and M. Teboulle (2009) “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM journal on imaging sciences,
2(1), pp. 183–202.

[44] Cai, J.-F., E. J. Candès, and Z. Shen (2010) “A singular value threshold-
ing algorithm for matrix completion,” SIAM Journal on Optimization, 20(4),
pp. 1956–1982.

[45] Toh, K.-C. and S. Yun (2010) “An Accelerated Proximal Gradient Al-
gorithm for Nuclear Norm Regularized Least Squares Problems,” Pacific
Journal of Optimization, 6.

[46] Ma, S., D. Goldfarb, and L. Chen (2011) “Fixed point and Bregman
iterative methods for matrix rank minimization,” Mathematical Programming,
128(1-2), pp. 321–353.

146

[47] Jenatton, R., J. Mairal, G. Obozinski, and F. Bach (2011) “Proxi-
mal methods for hierarchical sparse coding,” Journal of Machine Learning
Research, 12(Jul), pp. 2297–2334.

[48] Taieb, S. B. and R. Hyndman (2014) “Boosting multi-step autoregressive
forecasts,” in International Conference on Machine Learning, pp. 109–117.

[49] Wu, C.-J., T. Schreiter, R. Horowitz, and G. Gomes (2014) “Traffic
Flow Prediction Using Optimal Autoregressive Moving Average with Exoge-
nous Input-Based Predictors,” Transportation Research Record: Journal of
the Transportation Research Board, 2421, pp. 125–132.

[50] Lai, T. L. (1993) “Recursive estimation in ARMAX models,” in New Direc-
tions in Time Series Analysis: Part II (D. Brillinger, P. Caines, J. Geweke,
E. Parzen, M. Rosenblatt, and M. S. Taqqu, eds.), pp. 263–288.

[51] Coogan, S., C. Flores, and P. Varaiya (2017) “Traffic Predictive Control
from Low-Rank Structure,” Transportation Research Part B: Methodological,
97, pp. 1–22.

[52] Wold, S., A. Ruhe, H. Wold, and W. J. Dunn, III (1984) “The collinear-
ity problem in linear regression. The partial least squares (PLS) approach to
generalized inverses,” Journal on Scientific and Statistical Computing, 5(3),
pp. 735–743.

[53] Drucker, H., C. J. Burges, L. Kaufman, A. J. Smola, and V. Vap-
nik (1997) “Support vector regression machines,” in Advances in neural
information processing systems (NIPS), pp. 155–161.

[54] Vapnik, V., S. E. Golowich, and A. Smola (1996) “Support vector
method for function approximation, regression estimation, and signal process-
ing,” in Advances in Neural Information Processing Systems (NIPS).

[55] Zhang, Y. and Y. Xie (2008) “Forecasting of short-term freeway volume
with v-support vector machines,” Transp. Res. Rec., 2024, pp. 92–99.

[56] Wei, D. and H. Liu (2013) “An adaptive-margin support vector regression
for short-term traffic flow forecast,” Journal of Intelligent Transportation
Systems, 17(4), pp. 317–327.

[57] Vapnik, V. N. (1998) Statistical learning theory, Wiley New York.

[58] Bishop, C. M. (2006) Pattern Recognition and Machine Learning, Springer-
Verlag New York.

147

[59] Chang, C.-C. and C.-J. Lin (2011) “LIBSVM: a library for support vector
machines,” Transactions on Intelligent Systems and Technology, 2(3), pp.
27:1–27:27.

[60] Fan, R.-E., P.-H. Chen, and C.-J. Lin (2005) “Working set selection using
second order information for training support vector machines,” Journal of
Machine Learning Research, 6, pp. 1889–1918.

[61] Xie, Y., K. Zhao, Y. Sun, and D. Chen (2010) “Gaussian processes
for short-term traffic volume forecasting,” Transportation Research Record:
Journal of the Transportation Research Board, 2165, pp. 69–78.

[62] Rasmussen, C. E. and C. K. I. Williams (2006) Gaussian Processes for
Machine Learning, MIT Press.

[63] Zhan, H., G. Gomes, X. S. Li, K. Madduri, A. Sim, and K. Wu (2018)
“Consensus Ensemble System for Traffic Flow Prediction,” IEEE Transactions
on Intelligent Transportation Systems, pp. 1–12.

[64] Cormode, G., V. Shkapenyuk, D. Srivastava, and B. Xu (2009)
“Forward decay: A practical time decay model for streaming systems,” in
Proc. Int’l. Conf. on Data Engineering (ICDE).

[65] Hastie, T., R. Tibshirani, and J. Friedman (2009) The Elements of
Statistical Learning, Springer-Verlag New York.

[66] “MathWorks® Documentation, fitrgp,” https://www.mathworks.com/help/
stats/fitrgp.html, accessed: 2017-09-14.

[67] “MathWorks® Documentation, fitrsvm,” https://www.mathworks.com/
help/stats/fitrsvm.html, accessed: 2017-09-14.

[68] Wolpert, D. H. (1992) “Stacked generalization,” Neural Networks, 5(2),
pp. 241–259.

[69] Zhou, Z.-H. (2012) Ensemble methods: foundations and algorithms, Chap-
man and Hall/CRC.

[70] Granger, C. W. J. and R. Ramanathan (1984) “Improved methods of
combining forecasts,” Journal of Forecasting, 3(2), pp. 197–204.

[71] Smith, J. and K. F. Wallis (2009) “A simple explanation of the forecast
combination puzzle,” Oxford Bulletin of Economics and Statistics, 71(3), pp.
331–355.

148

[72] Genre, V., G. Kenny, A. Meyler, and A. Timmermann (2013) “Com-
bining expert forecasts: Can anything beat the simple average?” International
Journal of Forecasting, 29(1), pp. 108–121.

[73] Clemen, R. T. (1989) “Combining forecasts: A review and annotated
bibliography,” International Journal of Forecasting, 5(4), pp. 559–583.

[74] Hou, Y., P. Edara, and C. Sun (2015) “Traffic flow forecasting for urban
work zones,” IEEE Transaction on Intelligent Transportation Systems, 16(4),
pp. 1761–1770.

[75] Sun, S. (2009) “Traffic flow forecasting based on multitask ensemble learning,”
in Proc. ACM/SIGEVO Summit on Genetic and Evolutionary Computation
(GEC).

[76] Breiman, L. (1996) “Stacked regressions,” Machine Learning, 24(1), pp.
49–64.

[77] Li, L., X. Chen, and L. Zhang (2014) “Multimodel ensemble for freeway
traffic state estimations,” IEEE Transaction on Intelligent Transportation
Systems, 15(3), pp. 1323–1336.

[78] Tan, M.-C., S. C. Wong, J.-M. Xu, Z.-R. Guan, and P. Zhang
(2009) “An aggregation approach to short-term traffic flow prediction,” IEEE
Transaction on Intelligent Transportation Systems, 10(1), pp. 60–69.

[79] Bengio, Y. (2000) “Gradient-based optimization of hyperparameters,” Neu-
ral computation, 12(8), pp. 1889–1900.

[80] Seeger, M. (2007) “Cross-Validation Optimization for Large Scale Hierar-
chical Classification Kernel Methods,” in Advances in Neural Information
Processing Systems 19 (B. Schölkopf, J. C. Platt, and T. Hoffman, eds.), MIT
Press, pp. 1233–1240.

[81] Foo, C.-s., C. B. Do, and A. Y. Ng (2008) “Efficient multiple hyperparam-
eter learning for log-linear models,” in Proceedings of the 21nd International
Conference on Neural Information Processing Systems.

[82] Bergstra, J. S., R. Bardenet, Y. Bengio, and B. Kégl (2011) “Algo-
rithms for hyper-parameter optimization,” in Advances in neural information
processing systems, pp. 2546–2554.

[83] Kandasamy, K., J. Schneider, and B. Póczos (2015) “High dimensional
Bayesian optimisation and bandits via additive models,” in International
Conference on Machine Learning, pp. 295–304.

149

[84] Klein, A., S. Falkner, S. Bartels, P. Hennig, and F. Hutter (2017)
“Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
Datasets,” in Artificial Intelligence and Statistics, pp. 528–536.

[85] Jamieson, K. and A. Talwalkar (2016) “Non-stochastic best arm iden-
tification and hyperparameter optimization,” in Artificial Intelligence and
Statistics, pp. 240–248.

[86] Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal-
walkar (2017) “Hyperband: A novel bandit-based approach to hyperparam-
eter optimization,” The Journal of Machine Learning Research, 18(1), pp.
6765–6816.

[87] Zhan, H., G. Gomes, X. S. Li, K. Madduri, and K. Wu (2018) “Efficient
Online Hyperparameter Optimization for Kernel Ridge Regression with Appli-
cations to Traffic Time Series Prediction,” arXiv preprint arXiv:1811.00620.

[88] Rockafellar, R. T. (2015) Convex analysis, Princeton university press.

[89] Snoek, J., H. Larochelle, and R. P. Adams (2012) “Practical bayesian
optimization of machine learning algorithms,” in Advances in neural infor-
mation processing systems, pp. 2951–2959.

[90] MacKay, D. J. C., “Introduction to Gaussian processes,” http://www.
inference.org.uk/mackay/gpB.pdf, last accessed Oct 2017.

[91] Wang, W. and M. A. Carreira-Perpinán (2013) “Projection onto the
probability simplex: An efficient algorithm with a simple proof, and an
application,” arXiv preprint arXiv:1309.1541.

[92] Ghadimi, S., G. Lan, and H. Zhang (2016) “Mini-batch stochastic approx-
imation methods for nonconvex stochastic composite optimization,” Mathe-
matical Programming, 155(1-2), pp. 267–305.

[93] Hazan, E. (2008) “Extracting certainty from uncertainty: Regret bounded
by variation in costs,” in Proceeding of the International Conference on
Computational Learning Theory (COLT).

[94] Hazan, E. and S. Kale (2009) “On stochastic and worst-case models for
investing,” in Proceedings of the 22nd International Conference on Neural
Information Processing Systems, Curran Associates Inc., pp. 709–717.

[95] Chiang, C.-K., T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and
S. Zhu (2012) “Online optimization with gradual variations,” in Proceeding
of the International Conference on Computational Learning Theory (COLT).

150

[96] Connected Corridors, “I-210 Pilot ICM Project,” http://ccdocs.
berkeley.edu, last accessed Oct 2017.

[97] Shankar, V. and F. Mannering (1996) “An exploratory multinomial
logit analysis of single-vehicle motorcycle accident severity,” Journal of safety
research, 27(3), pp. 183–194.

[98] Carson, J. and F. Mannering (2001) “The effect of ice warning signs
on ice-accident frequencies and severities,” Accident Analysis & Prevention,
33(1), pp. 99–109.

[99] Ulfarsson, G. F. and F. L. Mannering (2004) “Differences in male and
female injury severities in sport-utility vehicle, minivan, pickup and passenger
car accidents,” Accident Analysis & Prevention, 36(2), pp. 135–147.

[100] Khorashadi, A., D. Niemeier, V. Shankar, and F. Mannering (2005)
“Differences in rural and urban driver-injury severities in accidents involving
large-trucks: an exploratory analysis,” Accident Analysis & Prevention, 37(5),
pp. 910–921.

[101] Bhat, C. R. (2011) The MACML estimation of the normally-mixed multi-
nomial logit model, Tech. rep., University of Texas at Austin, Department of
Civil, Architectural and Environmental Engineering, Austin, Texas.

[102] McFadden, D. (1981) “Econometric Models of Probabilistic Choice,” in
STRUCTURAL ANALYSIS OF DISCRETE DATA WITH ECONOMETRIC
APPLICATIONS (C. Manski and D. McFadden, eds.), chap. 5, MIT Press,
pp. 198–272.

[103] McFadden, D. and K. Train (2000) “Mixed MNL models for discrete
response,” Journal of Applied Econometrics, 15, pp. 447–470.

[104] McFadden, D. (2001) “Economic choices,” The American economic review,
91(3), pp. 351–378.

[105] Le Cessie, S. and J. C. Van Houwelingen (1992) “Ridge estimators in
logistic regression,” Applied statistics, pp. 191–201.

[106] Mannering, F. L. and C. R. Bhat (2014) “Analytic methods in accident
research: Methodological frontier and future directions,” Analytic methods in
accident research, 1, pp. 1–22.

[107] StataCorp (2015) Stata 15 Base Reference Manual.

151

[108] Hilbe, J. (2006) “A Review of LIMDEP 9.0 and NLOGIT 4.0,” The Ameri-
can Statistician, 60, pp. 187–202.
URL https://EconPapers.repec.org/RePEc:bes:amstat:v:60:y:2006:
m:may:p:187-202

[109] Regier, D. A., M. Ryan, E. Phimister, and C. A. Marra (2009)
“Bayesian and classical estimation of mixed logit: an application to genetic
testing,” Journal of health economics, 28(3), pp. 598–610.

[110] Hadfield, J. D. et al. (2010) “MCMC Methods for Multi-Response
Generalized Linear Mixed Models: The MCMCglmm R Package,” Journal of
Statistical Software, 33(i02).

[111] Steele, F., E. Washbrook, C. Charlton, and W. J. Browne (2016)
“A longitudinal mixed logit model for estimation of push and pull effects in
residential location choice,” Journal of the American Statistical Association,
111(515), pp. 1061–1074.

[112] Train, K. (2000) Halton Sequences for Mixed Logit, Tech. rep., University
of California Berkeley, Department of Economics, Berkeley, California.

[113] Bhat, C. R. (2001) “Quasi-random maximum simulated likelihood estima-
tion of the mixed multinomial logit model,” Transportation Research Part B:
Methodological, 35(7), pp. 677–693.

[114] Bastin, F., C. Cirillo, and P. L. Toint (2004) “Estimating mixed logit
models with quasi-Monte Carlo sequences allowing practical error estimation,”
in the European Transport Conference, Strasbourg, France.

[115] Munger, D., P. L’Ecuyer, F. Bastin, C. Cirillo, and B. Tuffin
(2012) “Estimation of the mixed logit likelihood function by randomized
quasi-Monte Carlo,” Transportation Research Part B: Methodological, 46(2),
pp. 305–320.

[116] Bastin, F., C. Cirillo, and P. L. Toint (2006) “Application of an
adaptive Monte Carlo algorithm to mixed logit estimation,” Transportation
Research Part B: Methodological, 40(7), pp. 577–593.

[117] Bastin, F., C. Cirillo, and S. Hess (2005) “Evaluation of optimization
methods for estimating mixed logit models,” Transportation Research Record:
Journal of the Transportation Research Board, (1921), pp. 35–43.

[118] Mai, A. T., F. Bastin, and M. Toulouse (2014) On Optimization Algo-
rithms for Maximum Likelihood Estimation, Tech. rep., CIRRELT, Montréal,
Canada.

152

[119] Hole, A. R. and H. I. Yoo (2017) “The use of heuristic optimization
algorithms to facilitate maximum simulated likelihood estimation of random
parameter logit models,” Journal of the Royal Statistical Society: Series C
(Applied Statistics), 66(5), pp. 997–1013.

[120] Robbins, H. and S. Monro (1985) “A stochastic approximation method,”
in Herbert Robbins Selected Papers, Springer, pp. 102–109.

[121] Lederrey, G., V. Lurkin, and M. Bierlaire (2018) “SNM: Stochastic
Newton Method for Optimization of Discrete Choice Models,” in 2018 IEEE
21th International Conference onIntelligent Transportation Systems (ITSC),
IEEE, pp. 1–6.

[122] Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009) “Ro-
bust stochastic approximation approach to stochastic programming,” SIAM
Journal on optimization, 19(4), pp. 1574–1609.

[123] Hoerl, A. E. and R. W. Kennard (1970) “Ridge regression: Biased
estimation for nonorthogonal problems,” Technometrics, 12(1), pp. 55–67.

[124] Lan, G. (2012) “An optimal method for stochastic composite optimization,”
Mathematical Programming, 133(1-2), pp. 365–397.

[125] Bottou, L. (2012) “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade, Springer, pp. 421–436.

[126] Needell, D., R. Ward, and N. Srebro (2014) “Stochastic gradient
descent, weighted sampling, and the randomized Kaczmarz algorithm,” in
Advances in Neural Information Processing Systems, pp. 1017–1025.

[127] Chee, J. and P. Toulis (2018) “Convergence diagnostics for stochastic
gradient descent with constant learning rate,” in International Conference on
Artificial Intelligence and Statistics, pp. 1476–1485.

[128] Bottou, L., F. E. Curtis, and J. Nocedal (2018) “Optimization methods
for large-scale machine learning,” SIAM Review, 60(2), pp. 223–311.

[129] Nesterov, Y. (1983) “A method of solving a convex programming problem
with convergence rate O(1/k2),” Soviet Mathematics Doklady, 27(a), pp.
372–376.

[130] MATLAB (2018) version 9.5.0 (R2010b), The MathWorks Inc., Natick,
Massachusetts.

[131] Li, Q., Y. Zhou, Y. Liang, and P. K. Varshney (2017) “Convergence
Analysis of Proximal Gradient with Momentum for Nonconvex Optimization,”
in International Conference on Machine Learning, pp. 2111–2119.

153

[132] Boost (2018), “Boost C++ Libraries,” http://www.boost.org/, last ac-
cessed 2018-11-21.

[133] The California Highway Patrol (2014), “Statewide Integrated Traffic
Records System,” .
URL \url{http://iswitrs.chp.ca.gov/Reports/jsp/userLogin.jsp}

[134] NHTSA (2017) TRAFFIC SAFETY FACTS 2015, Tech. rep., National
Highway Traffic Safety Administration, Washington, DC.
URL \url{https://crashstats.nhtsa.dot.gov/}

[135] McFadden, D. (1974) “Conditional Logit Analysis of Qualitative Choice
Behavior,” Frontiers in Econometrics, pp. 105–142.

[136] Revelt, D. and K. Train (1998) “Mixed logit with repeated choices:
households’ choices of appliance efficiency level,” Review of economics and
statistics, 80(4), pp. 647–657.

[137] NHTSA (2007) TRAFFIC SAFETY FACTS 2007, Tech. rep., National
Highway Traffic Safety Administration, Washington, DC.
URL \url{https://crashstats.nhtsa.dot.gov/Api/Public/
ViewPublication/810993}

[138] Von Luxburg, U. (2007) “A tutorial on spectral clustering,” Statistics and
computing, 17(4), pp. 395–416.

[139] Mannering, F. (2018) “Temporal instability and the analysis of highway
accident data,” Analytic methods in accident research, 17, pp. 1–13.

[140] Chandrasekaran, V., P. A. Parrilo, A. S. Willsky, et al. (2012)
“Latent variable graphical model selection via convex optimization,” The
Annals of Statistics, 40(4), pp. 1935–1967.

[141] Richard, E., P.-A. Savalle, and N. Vayatis (2012) “Estimation of
Simultaneously Sparse and Low Rank Matrices,” in Proceedings of the 29th
International Coference on International Conference on Machine Learning,
ICML’12, USA, pp. 51–58.

[142] Meng, Z., B. Eriksson, and A. Hero (2014) “Learning latent variable
Gaussian graphical models,” in Proceedings of the 31st International Confer-
ence on Machine Learning (ICML-14), pp. 1269–1277.

[143] Oymak, S., A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi (2015)
“Simultaneously Structured Models With Application to Sparse and Low-Rank
Matrices,” IEEE Transactions on Information Theory, 61(5), pp. 2886–2908.

154

[144] Chen, Y., Y. Chi, and A. J. Goldsmith (2015) “Exact and stable covari-
ance estimation from quadratic sampling via convex programming,” IEEE
Transactions on Information Theory, 61(7), pp. 4034–4059.

[145] Saunderson, J., V. Chandrasekaran, P. A. Parrilo, and A. S.
Willsky (2012) “Diagonal and low-rank matrix decompositions, correla-
tion matrices, and ellipsoid fitting,” SIAM Journal on Matrix Analysis and
Applications, 33(4), pp. 1395–1416.

[146] Liutkus, A. and K. Yoshii (2017) “A diagonal plus low-rank covariance
model for computationally efficient source separation,” in Machine Learning
for Signal Processing (MLSP), 2017 IEEE 27th International Workshop on,
IEEE, pp. 1–6.

[147] Lee, D. D. and H. S. Seung (1999) “Learning the parts of objects by
non-negative matrix factorization,” Nature, 401(6755), p. 788.

[148] ——— (2001) “Algorithms for non-negative matrix factorization,” in Advances
in neural information processing systems, pp. 556–562.

[149] Ding, C., X. He, and H. D. Simon (2005) “On the equivalence of nonneg-
ative matrix factorization and spectral clustering,” in Proceedings of the 2005
SIAM International Conference on Data Mining, SIAM, pp. 606–610.

[150] Ding, C., T. Li, and W. Peng (2008) “On the equivalence between non-
negative matrix factorization and probabilistic latent semantic indexing,”
Computational Statistics & Data Analysis, 52(8), pp. 3913–3927.

[151] Abdi, H. and L. J. Williams (2010) “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, 2(4), pp. 433–459.

[152] Gillis, N. (2014) “The why and how of nonnegative matrix factorization,”
Regularization, Optimization, Kernels, and Support Vector Machines, 12(257).

[153] Fazel, M., H. Hindi, and S. P. Boyd (2001) “A rank minimization
heuristic with application to minimum order system approximation,” in
American Control Conference, 2001. Proceedings of the 2001, vol. 6, IEEE,
pp. 4734–4739.

[154] Recht, B., W. Xu, and B. Hassibi (2008) “Necessary and sufficient
conditions for success of the nuclear norm heuristic for rank minimization,”
in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, IEEE,
pp. 3065–3070.

[155] Recht, B., M. Fazel, and P. A. Parrilo (2010) “Guaranteed minimum-
rank solutions of linear matrix equations via nuclear norm minimization,”
SIAM review, 52(3), pp. 471–501.

155

[156] Yuan, M. and Y. Lin (2006) “Model selection and estimation in regression
with grouped variables,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 68(1), pp. 49–67.

[157] OâĂŹdonoghue, B. and E. Candes (2015) “Adaptive restart for acceler-
ated gradient schemes,” Foundations of computational mathematics, 15(3),
pp. 715–732.

[158] Halko, N., P.-G. Martinsson, and J. A. Tropp (2011) “Finding struc-
ture with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions,” SIAM review, 53(2), pp. 217–288.

[159] Friedman, J., T. Hastie, H. Höfling, R. Tibshirani, et al. (2007)
“Pathwise coordinate optimization,” The Annals of Applied Statistics, 1(2),
pp. 302–332.

[160] Friedman, J., T. Hastie, and R. Tibshirani (2010) “Regularization paths
for generalized linear models via coordinate descent,” Journal of statistical
software, 33(1), p. 1.

[161] Shankar, V., R. Albin, J. Milton, and F. Mannering (1998) “Evaluat-
ing median crossover likelihoods with clustered accident counts: An empirical
inquiry using the random effects negative binomial model,” Transportation
Research Record: Journal of the Transportation Research Board, (1635), pp.
44–48.

[162] Anastasopoulos, P. C. and F. L. Mannering (2009) “A note on mod-
eling vehicle accident frequencies with random-parameters count models,”
Accident Analysis & Prevention, 41(1), pp. 153–159.

[163] Kim, J.-K., G. F. Ulfarsson, V. N. Shankar, and F. L. Mannering
(2010) “A note on modeling pedestrian-injury severity in motor-vehicle crashes
with the mixed logit model,” Accident Analysis & Prevention, 42(6), pp. 1751–
1758.

[164] Anastasopoulos, P. C. and F. L. Mannering (2011) “An empirical
assessment of fixed and random parameter logit models using crash-and
non-crash-specific injury data,” Accident Analysis & Prevention, 43(3), pp.
1140–1147.

[165] Morgan, A. and F. L. Mannering (2011) “The effects of road-surface
conditions, age, and gender on driver-injury severities,” Accident Analysis &
Prevention, 43(5), pp. 1852–1863.

156

[166] Kim, J.-K., G. F. Ulfarsson, S. Kim, and V. N. Shankar (2013) “Driver-
injury severity in single-vehicle crashes in California: a mixed logit analysis
of heterogeneity due to age and gender,” Accident Analysis & Prevention, 50,
pp. 1073–1081.

[167] Brin, S. and L. Page (1998) “The anatomy of a large-scale hypertextual
Web search engine,” Computer Networks and ISDN Systems, 30, pp. 107–117.

[168] Gleich, D. F. (2015) “PageRank Beyond the Web,” SIAM Review, 57(3),
pp. 321–363.

[169] Fortunato, S. (2010) “Community detection in graphs,” Physics Reports,
486(3), pp. 75–174.

[170] Everett, M. G. and S. P. Borgatti (1999) “The centrality of groups
and classes,” Journal of Mathematical Sociology, 23(3), pp. 181–201.

[171] Zhan, H. and K. Madduri (2017) “Analyzing Community Structure in
Networks,” in 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), IEEE, pp. 1540–1549.

[172] Li, T. (2005) “A General Model for Clustering Binary Data,” in Proc. ACM
SIGKDD Int’l. Conf. on Knowledge Discovery and Data Mining (KDD).

[173] Lee, D. D. and H. S. Seung (1999) “Learning the parts of objects by
non-negative matrix factorization,” Nature, 401, pp. 788–791.

[174] ——— (2001) “Algorithms for Non-negative Matrix Factorization,” in Ad-
vances in Neural Information Processing Systems (NIPS) 13 (T. K. Leen,
T. G. Dietterich, and V. Tresp, eds.), MIT Press, pp. 556–562.

[175] Zhang, Y. and D.-Y. Yeung (2012) “Overlapping community detection
via bounded nonnegative matrix tri-factorization,” in Proc. ACM SIGKDD
Int’l. Conf. on Knowledge Discovery and Data Mining (KDD).

[176] Wang, F., T. Li, X. Wang, S. Zhu, and C. Ding (2011) “Community dis-
covery using nonnegative matrix factorization,” Data Mining and Knowledge
Discovery, 22(3), pp. 493–521.

[177] Newman, M. E. (2006) “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, 103(23), pp. 8577–8582.

[178] Radicchi, F., C. Castellano, F. Cecconi, V. Loreto, and D. Parisi
(2004) “Defining and identifying communities in networks,” Proceedings of
the National Academy of Sciences of the United States of America, 101(9),
pp. 2658–2663.

157

[179] Fortunato, S. (2010) “Community detection in graphs,” Physics Reports,
486(3), pp. 75–174.

[180] Yang, J. and J. Leskovec (2015) “Defining and evaluating network com-
munities based on ground-truth,” Knowledge and Information Systems, 42(1),
pp. 181–213.

[181] Paatero, P. and U. Tapper (1994) “Positive matrix factorization: A
non-negative factor model with optimal utilization of error estimates of data
values,” Environmetrics, 5(2), pp. 111–126.

[182] Yu, H.-F., C.-J. Hsieh, S. Si, and I. S. Dhillon (2014) “Parallel matrix
factorization for recommender systems,” Knowledge and Information Systems,
41(3), pp. 793–819.

[183] Lawson, C. L. and R. J. Hanson (1974) Solving least squares problems,
SIAM.

[184] Luo, Y. and R. Duraiswami (2011) “Efficient parallel nonnegative least
squares on multicore architectures,” SIAM Journal on Scientific Computing,
33(5), pp. 2848–2863.

[185] Bertsekas, D. P. (1999) Nonlinear programming, Athena Scientific.

[186] Franc, V., V. Hlaváč, and M. Navara (2005) “Sequential coordinate-
wise algorithm for the non-negative least squares problem,” in Computer
Analysis of Images and Patterns (A. Gagalowicz and W. Philips, eds.), vol.
3691 of Lecture Notes in Computer Science, Springer, pp. 407–414.

[187] Hsieh, C.-J. and I. S. Dhillon (2011) “Fast coordinate descent methods
with variable selection for non-negative matrix factorization,” in Proc. ACM
SIGKDD Int’l. Conf. on Knowledge Discovery and Data Mining (KDD).

[188] Johansson, B., T. Elfving, V. Kozlov, Y. Censor, P.-E. Forssén,
and G. Granlund (2006) “The application of an oblique-projected Landwe-
ber method to a model of supervised learning,” Mathematical and computer
modelling, 43(7), pp. 892–909.

[189] Lancichinetti, A., S. Fortunato, and F. Radicchi (2009) “Benchmark
graphs for testing community detection algorithms,” Physical Review E, 78,
p. 046110.

[190] Zhan, H. and K. Madduri (2016) “GSK: Graph Sparsification as a Knap-
sack Problem Formulation,” in Proc. 3rd SDM Workshop on Mining Networks
and Graphs (MNG).

158

[191] Serrano, M. Á., M. Boguná, and A. Vespignani (2009) “Extracting
the multiscale backbone of complex weighted networks,” Proceedings of the
National Academy of Sciences (PNAS), 106(16), pp. 6483–6488.

[192] Foti, N. J., J. M. Hughes, and D. N. Rockmore (2011) “Nonparametric
sparsification of complex multiscale networks,” PLoS ONE, 6(2), p. e16431.

[193] Satuluri, V., S. Parthasarathy, and Y. Ruan (2011) “Local graph
sparsification for scalable clustering,” in Proc. ACM SIGMOD Int’l. Conf.
on Management of Data (SIGMOD), ACM, pp. 721–732.

[194] Lindner, G., C. L. Staudt, M. Hamann, H. Meyerhenke, and
D. Wagne (2015) “Structure-Preserving Sparsification of Social Networks,”
in Proc. IEEE/ACM Int’l. Conf. on Advances in Social Networks Analysis
and Mining (ASONAM), IEEE/ACM, pp. 448–454.

[195] Fung, W. S., R. Hariharan, N. J. Harvey, and D. Panigrahi (2011)
“A general framework for graph sparsification,” in Proc. 43rd Annual ACM
Symp. on Theory of Computing (STOC), ACM, pp. 71–80.

[196] Benczúr, A. A. and D. R. Karger (2015) “Randomized Approximation
Schemes for Cuts and Flows in Capacitated Graphs,” SIAM Journal on
Computing, 44(2), pp. 290–319.

[197] Spielman, D. A. and S.-H. Teng (2011) “Spectral sparsification of graphs,”
SIAM Journal on Computing, 40(4), pp. 981–1025.

[198] Bonchi, F., G. D. F. Morales, A. Gionis, and A. Ukkonen (2013) “Ac-
tivity preserving graph simplification,” Data Mining and Knowledge Discovery,
27(3), pp. 321–343.

[199] Wilder, B. and G. Sukthankar (2015) “Sparsification of Social Networks
Using Random Walks,” in Proc. 8th ASE Int’l. Conf. on Social Computation
(SocialCom), ASE.

[200] Bretthauer, K. M. and B. Shetty (2002) “The nonlinear knapsack
problem–algorithms and applications,” European Journal of Operational
Research, 138(3), pp. 459–472.

[201] Sharkey, T. C., H. E. Romeijn, and J. Geunes (2011) “A class of
nonlinear nonseparable continuous knapsack and multiple-choice knapsack
problems,” Mathematical Programming, 126(1), pp. 69–96.

[202] Leskovec, J., A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance (2007) “Cost-effective outbreak detection in networks,” in
Proc. 13th ACM SIGKDD Int’l. Conf. on Knowledge discovery and data
mining (KDD), ACM, pp. 420–429.

159

[203] Slater, P. B. (2009) “Multiscale Network Reduction Methodologies: Bis-
tochastic and Disparity Filtering of Human Migration Flows between 3,000+
US Counties,” arXiv preprint arXiv:0907.2393.

[204] Bellman, R. (1956) “Notes on the theory of dynamic programming IV-
Maximization over discrete sets,” Naval Research Logistics Quarterly, 3(1-2),
pp. 67–70.

[205] Kleinberg, J. M. and Éva Tardos (2006) Algorithm Design, first ed.,
Addison-Wesley.

[206] Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2009)
Introduction to Algorithms (3. ed.), MIT Press.
URL http://mitpress.mit.edu/books/introduction-algorithms

[207] Sahni, S. (1975) “Approximate algorithms for the 0/1 knapsack problem,”
Journal of the ACM, 22(1), pp. 115–124.

[208] Balas, E. and E. Zemel (1980) “An algorithm for large zero-one knapsack
problems,” operations Research, 28(5), pp. 1130–1154.

[209] Pisinger, D. (1999) “Linear time algorithms for knapsack problems with
bounded weights,” Journal of Algorithms, 33(1), pp. 1–14.

[210] Fayard, D. and G. Plateau (1982) “An algorithm for the solution of the
0–1 knapsack problem,” Computing, 28(3), pp. 269–287.

[211] Ibarra, O. H. and C. E. Kim (1975) “Fast approximation algorithms for
the knapsack and sum of subset problems,” Journal of the ACM, 22(4), pp.
463–468.

[212] Lawler, E. L. (1979) “Fast approximation algorithms for knapsack prob-
lems,” Mathematics of Operations Research, 4(4), pp. 339–356.

[213] Kellerer, H. and U. Pferschy (1999) “A new fully polynomial time
approximation scheme for the knapsack problem,” Journal of Combinatorial
Optimization, 3(1), pp. 59–71.

[214] Korte, B. and J. Vygen (2008) Combinatorial optimization: Theory and
algorithms, fourth ed., Springer-Verlag Berlin Heidelberg.

[215] Krause, A. and D. Golovin (2012) “Submodular function maximization,”
Tractability: Practical Approaches to Hard Problems, 3, p. 19.

[216] Blum, M., R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan
(1973) “Time bounds for selection,” Journal of computer and system sciences,
7(4), pp. 448–461.

160

[217] Yang, J. and J. Leskovec (2015) “Defining and evaluating network com-
munities based on ground-truth,” Knowledge and Information Systems, 42(1),
pp. 181–213.

[218] Leskovec, J., J. Kleinberg, and C. Faloutsos (2005) “Graphs over
time: densification laws, shrinking diameters and possible explanations,” in
Proc. 11th ACM SIGKDD Int’l. Conf. on Knowledge discovery and data
mining (KDD), ACM, pp. 177–187.

[219] “SNAP Stanford Large Network Dataset Collection,” http://snap.
stanford.edu/data/index.html, last accessed Jan 2016.

[220] Spearman, C. (1904) “The Proof and Measurement of Association between
Two Things,” The American journal of psychology, 15(1), pp. 72–101.

[221] Ghosh, B., B. Basu, and M. O’Mahony (2009) “Multivariate short-term
traffic flow forecasting using time-series analysis,” IEEE Transactions on
Intelligent Transportation Systems, 10(2), pp. 246–254.

[222] Pascale, A. and M. Nicoli (2011) “Adaptive Bayesian NETWORK FOR
TRAFFIC FLOW PREDICTION,” in Proceeding of the IEEE Statistical
Signal Processing (SSP) Workshop.

[223] Cremer, M. and H. Keller (1987) “A new class of dynamic methods for
the identification of origin-destination flows,” Transportation Research Part
B: Methodological, 21(2), pp. 117–132.

[224] Polson, N. and V. Sokolov (2018) “Bayesian particle tracking of traffic
flows,” IEEE Transactions on Intelligent Transportation Systems, 19(2), pp.
345–356.

[225] Seo, T., A. M. Bayen, T. Kusakabe, and Y. Asakura (2017) “Traffic
state estimation on highway: A comprehensive survey,” Annual Reviews in
Control, 43, pp. 128–151.

[226] Barzilai, J. and J. M. Borwein (1988) “Two-point step size gradient
methods,” IMA journal of numerical analysis, 8(1), pp. 141–148.

[227] Meinshausen, N. and P. Bühlmann (2006) “High-dimensional graphs and
variable selection with the lasso,” The annals of statistics, pp. 1436–1462.

[228] Yuan, M. and Y. Lin (2007) “Model selection and estimation in the Gaussian
graphical model,” Biometrika, 94(1), pp. 19–35.

161

[229] Banerjee, O., L. E. Ghaoui, and A. dâĂŹAspremont (2008) “Model
selection through sparse maximum likelihood estimation for multivariate
gaussian or binary data,” Journal of Machine learning research, 9(Mar), pp.
485–516.

[230] Friedman, J., T. Hastie, and R. Tibshirani (2008) “Sparse inverse
covariance estimation with the graphical lasso,” Biostatistics, 9(3), pp. 432–
441.

162

Vita
Hongyuan Zhan

Hongyuan Zhan is a PhD candidate in the Computer Science and Engineering
department at The Pennsylvania State University, University Park. He received
the Bachelor degree in Mathematics with Honors from Penn State in 2014. His
research interests are at the intersection of machine learning for time-series and
optimization, with applications to intelligent transportation and finance.

