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ABSTRACT 
 

Additive Manufacturing (AM) is a novel process that uses 3D model data to create 

complex geometry and functional structures by joining materials layer-by-layer. Despite growing 

interest, industry’s adoption of AM has been limited due to challenges in cost-effectiveness, lack 

of subject matter expertise, and disparities amongst commercial software programs that capture 

the full breadth of design inputs and process considerations for AM. Designers have limited tools 

within the 3D modeling (e.g., CAD) environment that inform them on critical design parameters 

and tradeoffs that can impact the overall cost and feasibility of producing a part in AM. 

In this thesis, cost modeling and design tools are examined for Laser-Powder Bed Fusion 

(LPBF). Traditional cost models have estimated that the material cost can range up to 46% of the 

total cost; however, these models have not accounted for the reuse (i.e., recycling) of the un-

melted powder feedstock in LPBF. To capture susceptibilities to chemical contamination, 

diminished powder size distributions, and inconsistent mechanical performance, financial 

depreciation models using Sum-of-the-Years digits and Straight Line are implemented to define 

the value of a powder feedstock as function of each build cycle reuse in LPBF. A case-study is 

presented for an automotive upright designed for production and analyzed using a generic LPBF 

activity-based cost model. Sensitivity analysis revealed that traditional cost models assuming 

infinite material reuse undervalued the cost of build jobs with virgin powder by 3-11% or 13-75% 

depending on the material, feedstock price, and maximum permitted reuses in LPBF. 

 Cost modeling is iterative and estimates will vary as updates are made to the 3D model. 

To aid in informing designers on costs of their parts, a software plug-in is presented using the 

SolidWorks Application Programming Interface (API) that integrates the proposed LPBF cost 

model within the 3D CAD environment. The tool enables designers to generate support structures 

and distinguish from internal and external supports on their part. In addition to querying volume 
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and surface data from the 3D model, the manipulation of the part’s build orientation allows 

designers to concurrently estimate build time, feedstock requirements, and optimize parts for AM 

production while they are being designed in CAD. A case study is presented for an automotive 

upright where results found that varying the support angle by 15 degrees, underpredicted support 

structure volume by 34% and build time by 20%. Furthermore, poor packing of geometries on the 

build platform led to powder depreciation costs being nearly twice the material costs. Based on 

this two-part study, recommendations are made for additional research on LPBF cost modeling, 

post-processing cost modeling, powder feedstock reusability metrics, and CAD-integrated design 

tools with greater inputs, support structure libraries, and considerations for AM processes. 
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Chapter 1  
 

Additive Manufacturing Overview and Research Motivation 

Additive Manufacturing (AM) is a process of “joining materials to make objects from 3D 

model data, usually layer upon layer” [1]. Beginning in 1984 with the patent of Vat 

Photopolymerization [2], AM has grown to seven modalities for producing a 3D object with each 

varying based on their feedstocks, energy sources, and processing techniques for joining each 

layer. Vat Photopolymerization (VP), Material Extrusion (ME), and Powder Bed Fusion (PBF) 

were first applied in “rapid prototyping” for the purpose of examining the “form and fit” of a 

product to aid in design communication and accelerate development cycles. Increased machine 

accuracy and reliability, along with the introduction of Sheet Lamination (SL), Binder Jetting 

(BJ), and Material Jetting (MJ), allowed AM to expand to “rapid tooling” for the production of 

expendable jigs and fixtures, along with the creation of low-cost patterns for casting and injection 

molding. Advancements in laser power density and repeatability in processing metals using PBF 

and Directed Energy Deposition (DED) have now led to AM becoming a promising technology 

for the “direct digital manufacturing” of functional engineering components. The customizability 

of the 3D model and the layer-by-layer fabrication of AM enables designers to explore complex 

geometries, multiple materials, mesostructures, functional features, and consolidated assemblies. 

AM provides a broader solution space and greater design freedom than traditional manufacturing. 

However, modern advancements in AM machines have outpaced the development of software, 

design guidelines, and regulatory standards resulting in limited expertise on the full capabilities, 

limitations, and appropriate applications of AM technology.  
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1.1 Brief History of Metal Additive Manufacturing 

AM for direct metal components was pioneered in 1995 through DED at Sandia National 

Laboratories and later commercialized by Optomec as Laser-Engineering Shape (LENS). Their 

process consisted of propelling metal feedstock, via inert gas, into a melt pool generated by a 

fiber laser focused on a given location on a build substrate [2]. In the same era, BJ was being 

introduced by ExOne [2], where an adhesive agent was selectively deposited to bond layers of 

metal powder and form a “green part” before undergoing a post-build de-binding and sintering 

process to achieve full densification. Early studies in Laser PBF (LPBF) were conducted at 

General Electric by Carter and Jones [3] where they used a Nd:YAG laser to directly sinter a 

component made from an iron feedstock. However, they only achieved “35%” density for the as-

built structure and required a post-build Hot-Isostatic Pressing (HIP) operation to achieve full 

density. Improvements in the LPBF process were achieved by Das et al. [4] where they achieved 

“98.5%” density in processing Ti-6Al-4V alloy and “99.5%” density after HIP. LPBF was most 

widely innovated through the efforts of the Fraunhofer Institute of Laser Technology and their 

developments in “Selective Laser Powder Remelting” (SLPR) shown in Figure 1-1 [5].  

 

 

Figure 1-1: SLPR Prototype at Fraunhofer Institute of Laser Technology [5] 
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SLPR contributed to fundamental advancements in laser hatch/contour strategies, 

matching laser wavelengths to the absorptivity of the metal powder, minimizing beam distortion 

with f-theta lens, mitigating material oxidation through inert gas in the build chamber, and 

anchoring parts to a build substrate to minimize distortion in the AM process [2]. By the early 

2000’s, SLPR was commercialized and marketed by European manufacturers: MTT 

Technologies (now Renishaw), Concept Laser, Phenix (now 3D Systems), and EOS Gmbh. In 

2001, Electron Beam Melting was also commercialized by Arcam [2], providing an alternative to 

LPBF as a technology that used propelled electrons, magnetic lens, and beam splitting to process 

metal parts. 

1.2 Laser-Powder Bed Fusion 

LPBF is an AM process where “thermal energy selectively fuses regions of a powder 

bed” to produce parts [2]. As shown in Figure 1-2, LPBF consists of a powder delivery system, 

where a feed bed (i.e., hopper, dispenser) supplies a layer of powder onto a part bed containing 

the build job geometries. Thermal energy from a laser scans the part bed surface and fully melts a 

region of powder particles to form a solidified cross-section. The powder bed lowers and a 

coating mechanism (i.e., blade, rake, roller) spreads additional powder from the feed bed on top 

of the scanned layer. Energy is applied to the newly recoated surface to solidify the next layer of 

the part, and the AM process repeats for each layer until all geometries have been fabricated. At 

the completion of the build job, parts are removed from the machine, while surrounding un-

melted powder is recovered from the part bed and overflow bin for reuse in later builds. LPBF is 

commonly executed in a build chamber filled with inert gas (e.g., Argon, Nitrogen) or under 

vacuum to mitigate the reactivity of the powder feedstock during the melting of each cross-

section. Technologies that offer LPBF are Direct Metal Laser Sintering (DMLS), Selective Laser 
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Melting (SLM), Direct Metal Laser Melting (DMLM), Direct Metal Printing (DMP), Laser 

Melting (LM), and LaserCUSING [6]. 

 

 

Figure 1-2: Powder Bed Fusion Schematic (left) and Fusing of Powder Particles (right) [2] 

1.3 Design Considerations for Laser-Powder Bed Fusion 

In comparison to polymeric AM processes, LPBF with metal powder feedstocks requires 

extensive operations in order to generate a fully-functional component. In LPBF, build orientation 

and support structure generation are non-trivial tasks with the goal of anchoring [7] the part to the 

build substrate. This design process is critical due to the risk of thermal distortion and mechanical 

delamination during the build which can lead to a part feature colliding with the recoater and 

subsequently failing the build [8]. In contrast, the heated powder bed in EBM mitigates thermal 

distortion; however, the design of support structures is aimed at dissipating heat and minimizing 

curling for fine features [9]. Depending on the application, LPBF parts may have internal voids 

(i.e., porosity) and residual stress, which require thermally post-processing via stress relief, heat 

treatment, annealing, and HIP, in order to meet microstructure and performance requirements 

[10]. Parts may also undergo mechanical post-processing via electrical discharge machining, 

shot-peening, milling, and manual support structure removal. Lastly, end-use parts may require 
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non-destructive testing such as dye-penetrant, computed tomography, white light metrology, 

digital radiography, and CNC probing to validate the surface finish, external dimensions, and 

internal structure. 

1.4 Motivation 

Industry has shown a growing demand for LPBF and metal AM modalities because of the 

capabilities of producing components with complex shapes, functional features, lower part count, 

and minimal labor compared to traditional manufacturing [11]. The 2018 Wohler’s Report found 

that “1768” metal AM machines were sold in 2017, marking a “80 %” increase in sales compared 

to 2016 as shown in Figure 1-3 [12].  

 

 

Figure 1-3: Sales of metal AM machines from 2000-2017 [12] 

 

While interest in metal AM has seen investments, acquisitions, and partnerships to 

expand the capability of the technology [13-15], mass adoption of AM for the production of metal 

components has been limited with few successful examples in industry. In addition to uncertain 
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material properties and limited qualification standards [16], AM technologies have been hindered 

by cost effectiveness [17]. An industry report of 900 global companies by Ernst & Young [18] 

reported that 40% of companies cannot afford the acquisition costs for a generic AM machine, 

ranging from $500-$999k [19], while 20% cannot afford the operating costs and materials. In 

LPBF, the most prevalent feedstock is metal powder, a material which can range in price from 

“$260 to $450 per kg” [20]. Due to this expense, un-melted feedstock is often reused (i.e., 

recycled) in subsequent build jobs to save costs over purchasing additional virgin powder [21]. 

Despite these savings, reused powder endures partial sintering with each build job due to latent 

heat from the melt-pool, leading to subsequent changes in the powder size distribution [22]. This 

phenomenon creates non-spherical particles and satellites leading to porosity and rough surfaces 

[23]. In parallel, the formation of oxides, soot, and exposure to ambient atmosphere can 

disseminate chemical impurities into the feedstock [10, 24]. Contrasting to this inherent 

variability in the process, LPBF cost models have implicitly assumed the powder has infinite 

reusability. Consequently, there are limited studies that have examined how the cost effectiveness 

of LPBF is impacted when accounting for a powder feedstock with a finite quantity of reuses 

before it is no longer permissible in the AM process. 

Additionally, design is another critical activity that influences cost in LPBF. Poorly 

designed components are at risk of recoater collision, thermal distortion, and lengthy build hours 

(e.g., 200-300 h [10]). With machine time being one of the largest cost drivers in LPBF, designers 

can choose to reduce build height, minimize support structures, efficiently pack the build volume, 

or modify design features based on the build orientation [25-27]. However, designers must also 

consider trade-offs between cost and manufacturability. One example being: support structures 

can mitigate the propagation of residual stress during the build, but they may have limited line-of-

sight access during post-processing and removal. Furthermore, designers must ensure that their 
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geometry embodies proper Design for AM (DFAM) principles, examples shown in Figure 1-4, to 

ensure that the component is produced in an effective and feasible manner.  

 

 

Figure 1-4: DFAM guidelines for LPBF [28] 

 

In modern practice, designers apply DFAM and iterate on the geometry through a 

software workflow of multiple programs (i.e., Solid Modeling, Surface Modeling, Finite Element, 
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File Repair, Build Preprocessing, etc.) and multiple file format conversions before outputting an 

STL file. Despite the STL serving as the input to the slicer for an AM machine, this file lacks 

specification data (e.g., units, coordinate system, material data, modeling features, etc.) [29], 

which can significantly hinder the ability to perform future design modification and updating. 

Although the STL’s build orientation and support structures can be adjusted with print 

preparation software, the STL’s dearth of specifications pose a risk for lost design intent which 

can lead to defective parts, variability, and unattended costs later in production [30]. Alternative 

file formats such as 3MF and AMF store more manufacturing metadata (i.e., color, curvature, 

functionally-graded materials, etc.) and have seen recent integration into commercial 3D CAD 

programs [31, 32]. However, these files types are exported as boundary-representations that do 

not possess the underlying solid modeling and feature data for later modification by the designer. 

Beyond 3D-scanning and reverse engineering applications, the 3D CAD model is the 

fundamental starting point for design and development of a component in AM [2]. Therefore, 

design tools must be introduced and integrated with 3D CAD modeling to aid, inform, and guide 

designers on manufacturability, LPBF cost estimates, and DFAM considerations at the earliest 

stage in the development process. 

1.5 Research Objectives 

The goal in this thesis is to answer the following research questions: 1) “How does the 

reusability of a metal powder feedstock impact the total costs in LPBF?” and 2) “What variables 

should designers consider when assessing their geometries with CAD-integrated DFAM tools?” 

To answer the first research question, an existing LPBF cost model is modified by introducing a 

financial depreciation model. Through this model, the value of a powder feedstock is a function 

of the quantity of build cycles reused in LPBF before reaching a terminal value where it is a scrap 
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powder and no longer permitted in the AM process. The second research question is explored by 

introducing a software plug-in using a 3D CAD program’s application programming interface 

(API) to query metadata from a given geometry and provide feedback to the designer on cost, 

build volume constraints, and support structure generation for a given build layout.  

1.6 Thesis Overview 

Beginning with a literature review in Chapter 2, previous work on AM cost modeling and 

powder reusability is summarized along with current research on design tools to support DFAM 

and optimization for LPBF. Chapter 3 introduces the expanded LPBF cost model with powder 

reusability along with the proposed formulas and variables. A case study is presented for an 

automotive upright with sensitivity studies on low-to-high unit price feedstocks, geometry 

replicates in the build chamber, blending of virgin and reused feedstock, and low-to-high unit 

production. Chapter 4 expands the work in Chapter 3 by integrating the proposed cost model with 

a SolidWorks API plug-in that allows designers to examine the impact of powder dosage, 

material selection, support angle, and build layout on total cost. Additionally, ray-trace projection 

is implemented in a macro to automate internal and external support structure generation on the 

geometry followed by particle swarm optimization to determine an optimal build orientation that 

facilitates manufacturability and post-processing. Chapter 5 summarizes the contributions of this 

thesis, limitations in the reported findings, and recommendations for future work. 
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Chapter 2  
 

Literature Review 

Chapter 2 is presented in four sub-sections. Section 2.1 provides an overview of various 

cost models used in AM and fundamental observations on the cost effectiveness of the AM 

process against traditional manufacturing. Section 2.2 delves into related work on metal powder 

reuse in LPBF and notes what researchers have observed in regards to changing feedstock quality 

and properties. Shifting emphasis to design, Section 2.3 reviews previous DFAM tools and their 

common inputs and functions provided in their programs. Lastly, Section 2.4 examines 

optimization practices used in DFAM and is organized based on build orientation optimization 

for component producibility and cost reduction in the AM process. 

2.1 Cost Modeling in Additive Manufacturing 

The earliest cost models for AM were created by Alexander [33], who studied the impact 

of build orientation on the costs of parts produced through VP and ME. Using activity-based 

costing (ABC), Alexander grouped costs into three activities: (1) Prebuild preparation, (2) Build, 

and (3) Post-processing. Alexander’s work determined an interdependence between costs and 

build orientation due to build height, build time, support materials, and post-processing. Further 

work by Hopkinson and Dickens [34] compared Selective Laser Sintering (SLS), VP, and ME 

against Injection Molding. Hopkinson and Dickens demonstrated that these AM technologies are 

most economically competitive in low-volume production due to the near constant cost for AM 

and injection molding’s progressive cost reduction due to distributing tooling cost over a high 

quantity of units. Ruffo et al. [35] expanded Hopkinson and Dicken’s cost model by splitting total 

costs into two categories. (1) Direct costs, a fixed value based on the quantity of materials and 
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part volume, and (2) Indirect costs which are variable and treated as a function of time. Their 

study highlighted that build time in PBF is a summation of the “layer exposure time”, “recoating 

time”, and “time to heat/cool” the bed chamber to a given temperature. They also presented a 

“waste factor” to allocate for feedstock that could not be reclaimed from the build bed. As a 

follow-up, Ruffo et al. [36] studied cost allocation for build jobs with mixed part geometries in 

SLS comparing strategies that allocated cost based on a part’s volume relative to the total volume 

of built parts along with allocation based on a part’s theoretical cost at near-infinite production.      

In cost modeling for LPBF with metal feedstock, Atzeni et al. [37] compared the costs of 

producing end-usable metal parts through DMLS against traditional Die-Casting, and reported a 

similar trend as Hopkinson and Dickinson where AM was most competitive at low-volume 

production. Atzeni et al. assumed that manufacturing took place in Western Europe with an 

operator hourly rate of “20.00 - 30.00 €/hr” and that each part would undergo “heat treatment” 

after the build. Material cost estimates were calculated with an assumed “10% increase in the 

part’s volume” to empirically account for support and waste materials. Baumers et al. [38] 

furthered Atzeni et al. efforts by studying the relationship between build platform utilization 

against energy consumption and build productivity in EBM and DMLS processes. Baumers et al. 

showed that specific energy consumption in DMLS can be reduced from “337 MJ/kg” to “240 

MJ/kg” when conducting a build job with parts fully utilizing the build platform area over 

individually produced parts. Lindemann et al. [39] performed a lifecycle study for production in 

metal AM using Time-driven Activity-Based Costing (ABC). Costs for a generic metal AM 

machine were discretized into an activity workflow of CAD Preparation, Machine Preparation, 

Build Process, Support Removal, and Surface Treatment.  Considering a single part geometry for 

production at 4500 h/year, their cost model found that 74% of total costs can be attributed to 

machine costs, followed by material costs at 12%.  Sensitivity analysis revealed that the material 

costs could vary between 5% and 46% of the total cost based on the value of the feedstock.  
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Rickenbacher et al. [40] expanded the work of Lindemann et al. by proposing a generic 

cost model for SLM.  Rickenbacher et al. used ABC while accounting for multiple geometries 

and part quantities in the same build job.  Costs associated with the build time for a multiple 

geometry build job were evenly divided among all the parts in a layer-wise manner, based on 

their respective build heights. In a case study for three geometries, Rickenbacher et al. found that 

a total cost savings of 41% can be achieved by optimizing the quantity of parts on the build 

platform (i.e., packing density). A recent study by Fera et al. [41] expanded upon the 

Rickenbacher et al. cost model by allocating for energy consumption and introducing an Overall 

Equipment Effectiveness (OEE) index to account for “planned downtime, breakdowns, minor 

stops and production rejects” on the AM machine in a production environment.  

Despite these developments in cost modeling literature for PBF, reviews by Thomas and 

Gilbert [17] and Costabile et al. [42] have noted that limited cost models capture the effect of 

powder reuse. Chan et al. [43] highlighted the assumption of “indefinite (powder) reuse” in their 

AM life cycle assessment but remarked that reuse should be further studied to examine the 

sustainability of metal AM processes. 

In summary, cost modeling in AM is conducted primarily through engineering-based cost 

methods that sum the material, machine, and labor costs while also considering indirect expenses 

such as overhead and consumables. Relatively high machine and material costs limit AM’s cost-

effectiveness to low-volume production. With material costs ranging between 5-46% [39] of the 

total costs in metal AM processes, current cost models are assuming unlimited reusability and 

infinite reuses for the powder feedstock. Consequently, traditional cost models are financially 

valuing reused powder as virgin powder.  These models lack an analytical method for 

determining the value of the reused material and allocating costs as it undergoes physical and 

chemical changes in subsequent reuses in LPBF.  
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2.2 Metal Feedstocks in LPBF 

Having identified that previous cost models assumed infinite reuse for the powder 

feedstock, this section delved into literature that studied metal powder and the impact of reused 

powder on the quality and performance of LPBF applications. To begin, metal powder is defined 

as a substance containing particles of elemental metals or alloys, normally less than 1000 microns 

in size [44]. This substance can be produced through various electro-chemical and thermo-

mechanical processes such as Gas Atomization, Water Atomization, Centrifugal Disintegration 

[45-47]. In metallurgical applications, the powder can be characterized by the Density, Powder 

Size Distribution (PSD), Chemical Composition, Surface Chemistry, Morphology, Crystalline 

Phases, Flowability, and Thermal Properties [24]. Variability in powder properties can occur at 

numerous stages throughout the lifecycle of the material. Axelsson [48] conducted a study on Ti-

6Al-4V powder produced from three independent manufacturers for EBM. Analysis of the 

chemical compositions found Nitrogen, Chlorine, and Yttrium outside ASTM F2924 limits, 

indicating contamination during the feedstock production process. Powder is also sensitive to 

oxidation, a naturally occurring chemical reaction where oxygen atoms undergo diffusion and 

exchange electrons with a metallic element to form oxides [49]. Oxides form surface films that 

can alter the absorptivity and melting of the material [50]. In addition to oxidation, the build 

environment of PBF machines can promote the formation of carbides and nitrides due to 

prolonged durations and reactivity at elevated temperatures [51]. 

Table 2-1 provides a list of AM literature that has studied the implications of reusing 

powder feedstock in PBF. The most common procedure in these studies was to load the AM 

machine with a quantity of virgin powder, complete a build job consisting of test coupons (e.g., 

cubes, tensile bars, etc.), remove all un-melted powder from the machine (e.g., build chamber, 

dispenser, overflow bin), sieve the powders together, reload the machine with the sieved 
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feedstock and then iterate. Studies by Tang et al. [52] and Grainger [53] showed that Ti-6Al-4V 

powder lots can progressively gain oxygen content and exceed chemistry limits with successive 

reuses in the AM process. Despite operating in inert or vacuum environments, the oxygen pick-up 

was attributed to “exposure time” during the melting process, “powder handling”, and “sieving”. 

Tang et al. recommended no more than 4 build cycles in EBM to maintain compliance with 

ASTM F3001 (Grade 23). Grainger’s results showed that the oxygen content could potentially 

exceed Grade 23 limits between 15-35 build cycles; however, the study concluded there was “no 

requirement” to dispose of un-melted powder after it had been reused in a number of build cycles 

due to their study representing a “worst case” production scenario in LPBF. Mechanical 

properties for machined specimens built from reused Ti-6Al-4V ranged from a UTS of 910-1039 

MPa (14-18% elongation) in EBM and 1012-1095 MPa (7-17% elongation) in LPBF. Seyda et al. 

[38] also reported that reuse led to changes in particle morphology which caused surface 

roughness to increase from 92 to 123 microns on the as-built surface.  

 

Table 2-1: Literature on Powder Reuse in PBF 

Ref. Authors Material Machine Reuse Metric Reuses 

[52] Tang et al Ti-6Al-4V Arcam A2 Build Cycles 21 

[53] Grainger Ti-6Al-4V ELI Renishaw AM250 Build Cycles 38 

[54] O’Leary et. al. Ti-6Al-4V ELI Renishaw AM250 Build Cycles 5 

[55] Seyda et al. Ti-6Al-4V  EOSINT M 270 Build Cycles 12 

[24] Slotwinski et al. CoCr MP1 EOSINT M 270 Build Cycles 8 

[24] Slotwinski et al. 17-4 SS GP1 EOSINT M 270 Build Cycles 8 

[56] Jacob et al. 17-4 SS PH1 EOSINT M 270 Build Cycles 11 

[57] Aboulkhair et al. AlSi10Mg Realizer SLM50 - - 

[58] Asgari et al. AlSi10Mg EOSINT M 290 - - 

[59] Ardila et al. IN718 Realizer SLM250 Build Cycles 14 

[60] Samant and 

Lewis 

IN718 EOSINT M 280 Build Cycles 13 

 

When examining additional alloys, the implications of powder reuse differ compared to 

those seen in Ti-6Al-4V. A study by Slotwinski et al. [24] on 17-4 SS GP1 and CoCr MP1 
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observed a similar trend of enlargement of the powder size distribution due to agglomerates and 

non-spherical particles with reuse. Their analysis determined that there was no significant 

difference in the chemical composition of the feedstocks after 8 build cycle reuses but did 

identify excess oxidation on the surface chemistry. A follow-up study by Jacob et al. [56] found 

that 17-4 SS PH1 showed no significant change in the chemical composition, powder 

morphology, and microstructure after 11 build cycles. Mechanical properties ranged from a UTS 

of 1325-1380 MPa (23-27% elongation) which exceeded the minimum values quoted by the PBF 

vendor; however, all of the specimens in their study did undergo machining and heat treatment 

prior to testing. For AlSi10Mg, Aboulkhair et al. [57] reported no significant change in the 

chemical composition while Asgari et al. [58] found that the mechanical properties, particle size, 

microstructure, and morphology were comparable to virgin powder. Despite their conclusions, 

both Aboulkhair et al. and Asgari et al. did not define a reuse metric and appeared to only report 

results after a reuse of one build cycle. Since AlSi10Mg is reactive in the presence of oxygen and 

moisture, their findings may not be applicable to feedstocks that may undergo a high quantity of 

reuses in PBF. Research on IN718 [59, 60] reported stable mechanical, chemical composition, 

and microstructure properties with reuses in LPBF. Given that IN718 is a high-temperature, age-

hardened superalloy, additional studies would have to be conducted to validate these findings for 

reused feedstock in fatigue and high-temperature creep applications. 

Standards by ASTM and NASA [61-67] have provided initial guidance on powder reuse 

in PBF. Both standards recommend sieving the feedstock after each build job along with the 

definition of a reuse metric, agreed upon by the manufacturer and the customer, for tracking a 

powder lot throughout production. ASTM suggests the metric of “times processed in the build 

chamber” (i.e., build cycles). NASA suggests that manufacturers start with the metrics of “1000 

hours of machine operation, 60 days (in the machine), or 30 build operations” for non-reactive 

feedstocks and “500 hours of machine operation, 30 days (in the machine), or 10 build 
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operations” for reactive alloys (e.g. Titanium, Aluminum). One difference is that ASTM 

standards permit the blending of virgin powder and reused powder if they already meet “chemical 

composition” requirements. NASA standards prohibit the “additions (of powder) to a post-

production powder lot for control of PSD or chemistry”. This may be due to the fact that while 

reused powder can be physically sieved by particle diameter, the presence of chemical impurities, 

non-spherical agglomerates, and oxides may not be explicitly removed from the powder lot. Thus, 

under NASA standards, a reused powder could only be blended with other lots if it already met 

the same PSD and chemistry as virgin powder. 

Upon reviewing powder reuse literature, it is difficult to generalize findings across a wide 

variety of PBF technologies. The reusability of a powder feedstock is both alloy and AM machine 

dependent due to the production process of the powder, varied energy-material interaction, 

powder sieving/handling, and build chamber environments. While reactive metals such as Ti-6Al-

4V and AlSi10Mg may attain chemical impurities with subsequent build jobs, other alloys such 

as IN718 and 17-4 SS GP1 may exhibit virtually identical properties compared to virgin powder. 

While some studies have found little to no variation in the tensile properties, the literature is 

limited on the impact of reused powder on fatigue properties and correlating them to mixing 

virgin/reused feedstocks, testing with as-built vs. machined surfaces, heat treated specimens, 

along with parts built with standard or customized process parameter sets (e.g., power, scan 

velocity, offset, hatch spacing, skywriting, tool path).  

2.3 CAD-Integrated Tools for DFAM 

In order to account for the considerations of powder reuse outlined in the previous 

sections and to properly quote a part, CAD-integrated tools must be introduced in order to 

provide designers with early feedback during geometry definition and to aid in iterating towards 
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an acceptable design. Despite this need, AM literature has limited examples of CAD-integrated 

tools that support DFAM with many works deferring to stand-alone analytical cost models. 

Perhaps the most relevant study was an Integrated Design and Manufacturing Infrastructure 

(IDMI) system developed by Rosen et al. [68] to support high school students in collaborative 

design and distributive manufacturing. Using an online web portal, shown in Figure 2-1, the 

workflow began with designing parts in CATIA and exporting an STL into a manufacturing 

assessment program. The AM-Manufacturable module allowed students to vary build orientation 

and observe variations in their part’s build height and support structure volume. Students could 

select an AM process and the program would provide feedback on minimum feature size and 

scaling of the 3D model in the build volume. Next, an AM-Select program directed students to 

select machines and materials from a database. They could specify surface finish, strength, 

accuracy, stiffness requirements, and then compare build time estimates and costs. The build time 

estimates were based on a generalized build time equation for material jetting, material extrusion, 

and PBF processes [69]. Finally, the AM-Request module provided a queue of available 

machines where students scheduled and digitally submitted their files for printing. 
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Figure 2-1: IDMI with AM-Manufacturable, AM-Select, and AM-Request modules [68] 

 

Contemporary CAD programs (e.g., Creo, Solidworks, Netfabb, 3DExperience) have 

begun offering basic AM preparation tools such as positioning 3D models in the build volume, 

visualizing support structures, detecting minimum feature size, and interfacing with an AM 

machine’s slicer [70, 71]. However, these programs have limited machine configuration, build 

time estimation, and cost modeling tools that capture the full fidelity of LPBF. Xometry, an AM 

service provider, launched a SolidWorks plug-in enabling designers to directly quote their models 

using Xometry’s online cost estimation platform [72]. Xometry’s platform allows designers to 

select between a variety of polymer and metal AM technologies, along with traditional milling 

and CNC. Given their focus on prototyping, the Xometry platform provides limited options for 

design modification, build orientation, and support structures. Because their cost model is 

proprietary, they provide minimal information on the parameters and considerations they use 
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when costing parts in AM. Similarly, 3DExperience launched “Marketplace Make” as a software 

plug-in allowing designers to upload 3D CAD models and receive automated quotes from service 

bureaus. Again, the costing and feasibility assessment algorithms are proprietary and lack 

configurability options which may be available to designers that have direct access to AM 

equipment at their facility.  

Overall, CAD-integrated design tools have limited studies conducted for metal AM. 

Rosen et al. [68] presented a web-based co-design platform that aided designers in exploring the 

manufacturability and generic costs for AM parts. Commercial CAD programs have begun 

offering similar tools that enable designers to examine the support structure, part placement, and 

slice file generation. Yet, the functionality of these programs is catered to prototyping and does 

not provide sophisticated cost estimation and manufacturing feasibility modules for assessing 

whether a component is appropriate for AM.  

2.4 Orientation Optimization in DFAM 

 Because of the costliness of LPBF, optimization provides a valuable method for 

achieving objectives such as minimizing mass for a given geometry, reducing support structures, 

or minimizing cost. Although techniques such as topology and shape optimization are widely 

used in DFAM, build orientation shall be the scope of this section due to its direct influence on 

support structure accessibility and compensation modeling for thermal distortion.  

Allen and Dutta [73] conducted early research on build orientation in VP and described 

three categories of faces requiring support structures as: (1) overhangs, (2) floating faces, and (3) 

unstable bases. They evaluated orientations based on minimal support contact area and low center 

of mass. Alexander et al. [33] further examined the impact of build orientation in ME and VP 

with respect to cost and noted a relationship between build time, accuracy, and surface roughness 
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due to staircasing. Hur and Lee [74] suggested optimizing a multi-objective function based on 

build height, support volume, and accuracy, based on the ratio between the cusp area between 

layers and the STL’s facet. Most studies optimizing multi-objective functions have used heuristic 

techniques and evolutionary algorithms to explore a broader solution space and multiple 

candidate orientations [75-81].  

Morgan et al. [82] studied optimizing the orientation of metal components in DMLS and 

highlighted differences in optimization criteria compared to polymer AM processes due to post-

processing, support structure removal, and thermal distortion. Using multiple-starting 

orientations, their model consisted of an unconstrained optimization algorithm that minimized 

total support volume. The computation time for determining a global minimum was correlated to 

the numbers of faces on the STL file, varying from a run-time of 2000 s at 5000 facets, up to 

nearly 12000 s at 20000 facets. Verma et al. [83] presented a framework for optimizing 

orientation in DMLS. STL files were evaluated using a Build Time Index and a Surface 

Inaccuracy Index based on the number of facets perpendicular to the build direction. Optimal 

orientation was determined using sequential quadratic programming and then analyzed in 

subsequent algorithms for adaptive and uniform slicing methods. With the build orientation 

capable of dropping ductility in Ti-6Al-4V from 12% to 7% [84, 85], surrogate-based optimizers 

have been implemented to maximize factor of safety and mechanical properties [86].    

To review, this section found that build orientation impacts build time, support volume, 

surface roughness, and mechanical properties. Multi-objective and heuristic-based optimization 

can be used to determine a build orientation; however, computation time varies based on the 

resolution of the input 3D model. Another gap is the role of orientation on support structure 

removal in metal AM. Vaidya and Anand [87] demonstrated that the accessibility of generic AM 

support structures can be determined along 6 orthogonal and 12 diagonal directions through a 

segmented slice image processing algorithm on the CAD model. Accessing support structures 
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after a metal AM build for removal can demand lengthy post-processing time and should be 

considered when optimizing a geometry or planning the build layout. 

In the next chapter, the implications of powder reuse shall be furthered studied by 

examining a generic cost model for LPBF and introducing a costing methodology to capture the 

variation in the financial value of feedstock as it is reused in subsequent LPBF build jobs.  
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Chapter 3  
 

Cost Modeling for Reused Powder Feedstocks in LPBF 

As discussed in the previous chapter, the reusability of a powder feedstock is not 

explicitly captured in traditional AM cost models. To better account for the limited lifecycle for a 

powder feedstock, two models are presented for determining the financial value of a feedstock as 

it undergoes processing and reuse in LPBF. To evaluate each powder reuse cost model, a case 

study is presented for an automotive upright and assessed using the proposed models along with a 

generic LPBF cost model [40]. Following the case study, a sensitivity analysis is conducted 

examining different costing scenarios for multiple geometry replicates, alternative materials, and 

mass production.  

3.1 Financial Depreciation Model for Reused Powder Feedstock 

Literature [52-60] has shown that the implications of powder reuse varies based on the 

material alloy and the AM technology. Current standards [61-65] state that powder reuse is 

permitted; however, feedstock usage and limitations are subjective and based on agreement 

between the customer and the manufacturer. With no overarching guidance, manufacturers face 

uncertainty as to how one should financially value the feedstock as it is transitions from virgin, to 

reused, to scrap powder. With no definitive costing methodology, manufacturers face the risk of 

overvaluing reused powder as virgin powder, along with the risk of net capital loss due to excess 

scrap powder at the end of production. To correlate the reuses of the input material in LPBF to 

the monetary price of the feedstock, we propose that the powder be valued through a financial 

depreciation model.   
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In accounting practice, depreciation is defined as the “gradual decline in the financial 

value of property due to increasing age and eventual obsolescence” [87].  With the risk of 

porosity, non-uniform powder morphologies, and chemical contamination, the quality of the 

powder feedstock can diminish as it is continually reused in PBF.  Using a depreciation model, 

the systematic loss in a feedstock’s financial value is proportional to the powder’s degraded 

properties and quality over a given duration of time. 

Although depreciation is traditionally used in business accounting for the United States’ 

Internal Revenue System [88], depreciation is proposed strictly in the context of a costing method 

for LPBF.  Depreciation is a function of the maximum allowable duration for the feedstock and 

its salvage value, estimated market value, when it has reached the end of its useful life. As 

discussed previously in Section 2.2, with each powder feedstock having a unique elemental 

composition and LPBF technology, the corresponding duration for reuse will vary based on 

factors related to the build chamber environment, energy-material interaction, and powder 

handling.   

Three common depreciation models are: (1) Straight-Line (SLN), (2) Double Declining 

Balance (DDB), and (3) Sum-of-the-Year’s Digits (SOYD) [53]. SLN assumes a uniform 

reduction in value with each increment in time; however, this linear depreciation is fixed and 

assumes that the powder feedstock loses uniform amounts of value regardless of being at the 

beginning or end of its useful life. DDB presents a more accelerated model where the feedstock 

rapidly loses value at early stages of its useful life and then gradually less; however, since DDB 

applies a constant multiplier for depreciation, the salvage value is not explicitly designated and 

therefore unadaptable to whichever value the user designates for the end-use scrap, unless 

manually corrected.  Serving as a median between SLN and DDB, SOYD exhibits a moderate 

drop in value at early life and less as the material is increasingly reused. One advantage over 

DDB is that the salvage value of SOYD can be specified by the user, making it a more adaptable 
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model for a wide range of materials, with one drawback being that SOYD does not depreciate as 

rapidly as the DDB.   

Given their customizable inputs and moderate depreciation rates, SOYD and SLN were 

considered for this study. Key differences being that SOYD can capture the scenario where virgin 

powder, being at most risk of chemical contamination and oxides, is modeled with a large rate of 

decline in value after initial uses in a LPBF process and then a slower rate of decline as it 

becomes a scrap powder. Whereas SLN can capture the scenario where a feedstock loses value at 

a steady and constant rate with each build, such as the lot being regularly replenished with virgin 

powder. The two models are presented in Figure 3-1. 

 

Figure 3-1: Comparison of Depreciation Methods for Powder Feedstock 

 

With the two depreciation models, units need to be specified for assessing the duration in 

which the powder feedstock is reused.  Build cycles are widely cited in the research [52-60]; 

however, build cycles are an imprecise measure due to variations in the underlying build time, 

build height, part orientation, and quantity of parts.  While an AM build job is typically measured 
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in units of hours [2], this value can be convoluted with the idle time and recoating time of the AM 

machine. Time duration metrics do not provide insight on the explicit process parameters and 

build chamber conditions in which a powder feedstock was processed. Additionally, time 

duration does not provide comparability between builds which have short versus tall build 

heights, demanding differing powder volumes to conduct the build. Jacob et al. [56] proposed one 

powder reuse metric as the “ratio of (laser) exposure hours to the total powder volume in the 

build”. They argued that such a metric can be better generalized, independent of process 

parameters, and allow a comparison of between different LPBF machines. Despite these 

promising aspects, the powder reuse metric from Jacob et al. hasn’t been widely studied to 

validate their claims. 

In spite of the aforementioned limitations, for this cost model, build cycles was selected 

as the unit for measuring the reuse duration of a powder feedstock due to available documentation 

in literature and limited alternatives. Equation 1 is our proposed method for valuing the powder 

feedstock as function of build cycles using SOYD, with Equation 2 for SLN.  For this equation, it 

is assumed that a powder lot is reused on a single AM machine, where the overflow, part bed, and 

feed bed powder are mixed and sieved after each build.  Builds are conducted using consistent 

process parameters, atmosphere, and material handling conditions. 

 

𝐶𝑚𝑢+1
= 𝐶𝑚𝑢 −  (𝐶𝑚0 − 𝑆)  ∙  (

𝑈𝑚𝑎𝑥 − 𝑢 + 1

𝑈𝑚𝑎𝑥(𝑈𝑚𝑎𝑥 + 1)
2

)                                          (1) 

where: 

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used u times ($/kg), 

𝐶𝑚0 is the cost of a virgin powder feedstock ($/kg), 

𝑆 is the salvage value of the powder at the end of its depreciable life ($/kg), 

𝑈𝑚𝑎𝑥 is the maximum quantity of build cycles a powder can be used in LPBF (-),  

𝑢 is the number of build cycles a powder has underwent in LPBF (-). 
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𝐶𝑚𝑢
= 𝐶𝑚0 − 𝑢 ∙

(𝐶𝑚0 − 𝑆)

𝑈𝑚𝑎𝑥

                                                             (2) 

where: 

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used u times ($/kg), 

𝐶𝑚0 is the cost of a virgin powder feedstock ($/kg), 

𝑆 is the salvage value of the powder at the end of its depreciable life ($/kg), 

𝑈𝑚𝑎𝑥 is the maximum quantity of build cycles a powder can be used in LPBF (-),  

𝑢 is the number of build cycles a powder has underwent in LPBF (-). 

3.2. Activity-Based Cost Modeling for LPBF 

The proposed depreciation models are implemented by expanding upon the work of 

Rickenbacher et al. [40] and following a similar workflow to that shown in Figure 3-2.  A built-

up part, Pi, shall consist of geometry, Gi with Ni quantity in a build job for LPBF.  Due to overlap 

with the previous model by Rickenbacher et al., the only presented equations are those that have 

been modified or are unique to this thesis.   

  

 

Figure 3-2: Rickenbacher et al.'s Workflow for LPBF [40] 

 
The first labor activity in this cost model is the preparation of the digital geometry data 

[40].  Upon receiving the customer’s digital model, it is assumed that the geometry meets general 

DFAM rules (e.g., process selection, fully enclosed surfaces, wall thickness, tolerances) [91-93].  
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The tasks in this activity are selecting a build orientation and generating support structures.  

Software packages such as NetFabb and Materialise Magics [94, 95] can automate these 

processes; however, these programs are not robust for metal AM and may produce designs that 

satisfy manufacturing requirements but fail to meet product specifications [96].  Thus, this 

activity is an iterative process that relies on experiential knowledge of the AM designer and must 

be tailored to the given LPBF technology and geometry. 

Once all of the parts have been successfully prepared, the digital geometries are read into 

a build layout program.  The manipulation and placement of geometries on the digital build tray 

can have repercussions regarding the likelihood of build failure (e.g., collision with recoating 

mechanism, curling, surface roughness) [97]. With limited literature and standards for this 

activity, it is also conducted in an iterative manner relying on previous knowledge and past 

experience. The time required for arranging the geometries is a function of the total part 

geometries and replicates present in the AM build job.  

Machine set-up consists of uploading the digital build tray files, selecting process 

parameters, initializing inert gas (or vacuum depending on LPBF technology), and readying 

system hardware.  With metal powders having explosive and physiological hazards [98-100], 

material handling is dangerous, requiring timely and duteous tasks for safe activity.  Additional 

time can occur if the build calls for a different material than the one currently loaded in the 

machine. The total time for changing materials includes the tasks of unloading the current 

powder, cleaning the build chamber, replacing consumables (e.g., filters, inert gas), loading the 

new feedstock, and cleaning all ancillary equipment (i.e., vacuum). While Rickenbacher et al. 

used empirical factors for extra effort under inert environment and material change frequency, 

this has been removed since they are captured in the machine set-up and material change time, 

shown in Equation 3. 

 



28 

 

𝐶𝑠𝑒𝑡𝑢𝑝(𝑃𝑖) = (𝐶𝑜𝑝 + 𝐶𝑀𝑎𝑐ℎ)  ∙  
(𝑇𝑠𝑒𝑡𝑢𝑝 + 𝑇𝑚𝑎𝑡.𝑐ℎ𝑎𝑛𝑔𝑒)

∑ 𝑁𝑖𝑖
                                (3) 

where: 

𝐶𝑠𝑒𝑡𝑢𝑝 is the cost per part for setting up the AM machine ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-), 

𝐶𝑀𝑎𝑐ℎ is the AM machine’s hourly rate ($/h), 

𝐶𝑜𝑝𝑒𝑟 is the operator’s hourly rate ($/hour),  

𝑇𝑠𝑒𝑡𝑢𝑝 is the time for setting up the machine (h), 

𝑇𝑚𝑎𝑡.𝑐ℎ𝑎𝑛𝑔𝑒 is total time for changing and re-loading powder in AM machine (h), 

𝑁𝑖 is the quantity of parts with ith geometry (-). 

 
 

The derivation of a high-fidelity build-time estimator is outside the scope of this paper.  

With commercial solutions available through software and the AM machine’s preprocessors 

[101], we instead defer to a generic formula [102] for calculating individual build times in lieu of 

the previous regression model specific to SLM. For build jobs with multiple parts, this formula 

assumes that the build rate for exposing each voxel is constant and that all latency due to 

positioning the laser between melted powder regions is negligible.  Using the algorithm proposed 

by Rickenbacher et al. [40], the recoating time for build jobs with multiple build heights is 

calculated in a time fraction manner for each part: 

 

 
 

𝑇𝑏𝑢𝑖𝑙𝑑(𝑃𝑖)  =
𝑇𝑖𝑑𝑙𝑒

∑ 𝑁𝑖𝑖
 + 𝑇𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 ∙ ∑ (𝑁𝑖  ∙ 𝑉𝑡𝑜𝑡𝑎𝑙𝑖

)𝑖  +  𝑇𝑟𝑒𝑐𝑜𝑎𝑡(𝑃𝑖)                   (4) 

where: 

𝑇𝑏𝑢𝑖𝑙𝑑 is the total time required for building up a single part in a given build job (h), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),  

𝑇𝑖𝑑𝑙𝑒 is the time when the AM machine is inactive (e.g., heating, cooling) (h), 

𝑇𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 is the average time for AM machine to melt a voxel of powder (ℎ/𝑐𝑚3), 

𝑁𝑖 is the quantity of parts with ith geometry (-), 

𝑉𝑡𝑜𝑡𝑎𝑙𝑖
 is the total volume of the part and support structures for ith geometry (𝑐𝑚3),  

𝑇𝑟𝑒𝑐𝑜𝑎𝑡 is the total recoating time allocated to a single part (h). 

 

 
After estimating the build time, the required amount of feedstock in order to execute the 

build job must be determined. Unique to LPBF is that the part bed lowers by one layer thickness 
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and the feed bed platform rises between “two or three times” [10] the layer thickness to account 

for changes in powder leveling during the melting of each layer.  This ratio of the vertical rise of 

the feed bed to the lowering of the part bed is referred to as dosage (DS) [103], also known as 

“charge”. If DS is set too low, then the build can be prone to powder shorting and insufficient 

coverage of the build plate [104]. With limited equations available in the present literature, 

Equation 5 is proposed as a means for estimating the mass of the powder loaded in the feed bed 

for a generic AM machine using LPBF.  

 

𝑀𝐹𝐵 = 𝐷𝑆 ∙ 𝐷𝑥 ∙ 𝐷𝑦 ∙ 𝐵ℎ(𝑃𝑖) ∙ 𝜌𝑡                                                    (5) 

where: 

𝑀𝐹𝐵 is the total mass of the powder loaded into the AM machine’s feed bed (kg), 

𝐷𝑆 is the vertical rise of the feed bed per layer thickness in the build (-), 

𝐷𝑥 is the length of the dispenser platform in the feed bed (mm),     

𝐷𝑦 is the width of the dispenser platform in the feed bed (mm), 

𝐵ℎ is the build height of the tallest part in the build job (mm), 

𝜌𝑡 is the powder tap density (𝑘𝑔/𝑐𝑚3). 

 

 
Once the operator has completed all hardware and software set-up, then the build job 

commences, and the AM machine proceeds to fabricate the designated part(s). To cost the activity 

of the AM machine throughout this duration, costs are grouped into four categories as shown in 

Equation 6.  Machine costs includes costs pertaining to utilization and inert gas, multiplied by the 

build time allocated to a given part (see Equation 4). Material costs, as presented in Equation 7, 

are related to the mass of the powder feedstock melted by the AM machine to produce the part. In 

Equation 8, the powder depreciation model from Section 3.1 is introduced, where the material 

costs are valued as a function of the build cycles endured by the powder feedstock loaded in the 

AM machine.  For the mass of the part, in Equation 9, empirical factors are included to 

compensate for powder losses due to “particles trapped in the filters” [30] during processing and 

loose powder trapped in hollow support structures.  
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𝐶𝑏𝑢𝑖𝑙𝑑(𝑃𝑖) = 𝐶𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑃𝑖)  + 𝐶𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑃𝑖) + 𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖) + 𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖)   (6) 

where: 

𝐶𝑏𝑢𝑖𝑙𝑑 is the cost per part for building up a part using the AM machine ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-), 

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 is the cost per part for operating the AM machine during a build job ($), 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is cost per part for the melted powder feedstock in AM process ($), 

𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is cost per part for un-melted feedstock in AM process ($), 

𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is cost per part for blending feedstocks into the powder lot ($). 

 

 

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑃𝑖) =  𝑇𝑏𝑢𝑖𝑙𝑑  ∙  (𝐶𝑚𝑎𝑐ℎ + 𝐶𝑔𝑎𝑠)                                           (7) 
where: 

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 is the cost per part for producing a build job in the AM process ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-), 

𝑇𝑏𝑢𝑖𝑙𝑑 is the time for building up the entire job in the AM process (h), 

𝐶𝑚𝑎𝑐ℎ is the AM machine’s hourly operating cost ($/h), 

𝐶𝑔𝑎𝑠 is the cost for inert gas consumption during the build ($/h), 

𝑁𝑖 is the quantity of parts with ith geometry (-). 

 

 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑃𝑖) =  𝑀𝑖 ∙ 𝐶𝑚𝑢                                                      (8) 

where: 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is cost per part for the powder feedstock melted in the AM process ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-), 

𝑀𝑖 is the mass of a part with ith geometry (kg), 

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used in u build cycles ($/kg).  

 

 

𝑀𝑖 = (1 + 𝛼) ∙ 𝜌𝑤 ∙ (𝑉𝑝𝑎𝑟𝑡𝑖
+ 𝑉𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑖

 ) + 𝛾 ∙ 𝜌𝑡 ∙ 𝑉𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑖
                          (9) 

where:  

𝑀𝑖 is the mass of a part with ith geometry (kg), 

𝛼 is the percentage of powder loss due to process inefficiency (%), 

𝛾 is the percentage of powder loss due to being trapped within support structures (%), 

𝑉𝑝𝑎𝑟𝑡𝑖
 is the volume of the part body for the ith geometry (c𝑚3),  

𝑉𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑖
 is the volume of the support structures for the ith geometry (c𝑚3),  

𝜌𝑤  is the powder wrought density (𝑘𝑔/𝑐𝑚3), 

𝜌𝑡 is the powder tap density (𝑘𝑔/𝑐𝑚3). 

 

 
The third cost category in Equation 6 is explained by reviewing the fundamentals of the 

LPBF process. A build job requires an excess of powder feedstock to fill the powder bed and 
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support built-up geometries throughout processing.  Any un-melted powder at the end of a build 

can become degraded by agglomerates, soot, and oxides, which are inherent to the AM process. 

These byproducts diminish the financial value of the feedstock, regardless of subsequent sieving, 

because the un-melted powder becomes populated with impurities that can propagate into future 

layers or builds. Thus, any un-melted powder in the part bed loses the opportunity to be 

implemented as a virgin powder and produce parts with minimal deviation from the base 

material.  To allocate cost for this phenomenon, we propose that the financial value lost by the 

surrounding un-melted powder be charged to all parts produced within the build job.  For this 

third category, the proposed cost is defined as “Powder Depreciation” and cost is calculated using 

Equation 10: 

 

𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖)  =   
𝑀𝑖

∑ (𝑁𝑖 ∙ 𝑀𝑖)𝑖
 ∙  (𝑀𝐹𝐵 − ∑ (𝑁𝑖 ∙ 𝑀𝑖)

𝑖
)  ∙  (𝐶𝑚𝑢 − 𝐶𝑚𝑢+1)             (10) 

 
where: 

𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is the cost per part for un-melted feedstock in the AM process ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-), 

𝑀𝑖 is the mass of a part with ith geometry (kg), 

𝑁𝑖 is the quantity of parts with ith geometry (-), 

𝑀𝐹𝐵 is the total mass of the powder loaded into the AM machine’s feed bed (kg),  

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used in u build cycles ($/kg). 

 

 
In Equation 10, the powder depreciation cost is calculated by taking the mass of the 

feedstock loaded in the feed bed and subtracting the total mass of all built-up parts, including 

their corresponding powder losses. This is multiplied by the difference in financial value of the 

feedstock, at its present amount of build cycles, to the diminished value after one additional build 

cycle.  Parts within the build job are allocated the depreciation cost as a function of their mass 

fractions relative to the total mass of all built-up parts.  Through depreciation, this costing method 

accounts for the melting and, in-parallel, the lost value of un-melted powder feedstock when 

building up a part in PBF.  As previously mentioned in Equation 5, the calculation of the powder 
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mass loaded in the feed bed is non-trivial and must be sufficient to fill the part bed completely 

and build-up the geometries.  The amount of loaded powder feedstock is influenced by the total 

volume of geometries in the part bed, their location on the substrate, the material type, and how 

the LPBF technology accounts for changes in the levelling of a layer as powder regions melt and 

re-solidify. 

Lastly, when there is insufficient mass to continue production, a mixture of powders (e.g., 

80% reused, 20% virgin) may be blended together in order to refill the feed bed. This scenario is 

captured in Equation 11. Under present ASTM standards [61-65], a powder mixture containing 

any used powder, is classified as a “used powder”. Similar to the observations in Equation 10, 

when a small quantity of virgin powder is added to a reused powder lot, that virgin powder loses 

the opportunity to be blended into a lot with other virgin powder and is thus diminished in value. 

Therefore, the value of the blended feedstock, regardless of any additional virgin powder, is 

penalized to the value of the most reused powder within the lot. Equation 11 captures this cost by 

assuming that the majority of the blended powder lot shall consist of reused powder and that any 

newly added powder has less build cycles and is a relatively smaller portion of the total mass in 

the blended lot. 

 

𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖)  =   
𝑀𝑖

∑ (𝑁𝑖 ∙ 𝑀𝑖)𝑖
 ∙  𝛽𝑘 ∙ (𝑀𝐹𝐵 − ∑ (𝑁𝑖 ∙ 𝑀𝑖)

𝑖
) ∙  (𝐶𝑚𝑤 − 𝐶𝑚𝑢+1)   (11) 

 
where: 

𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is cost per part for blending feedstocks into the powder lot ($). 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-), 

𝑀𝑖 is the mass of a part with ith geometry (kg), 

𝑁𝑖 is the quantity of parts with ith geometry (-), 

𝛽𝑘 is the mass percentage of a powder k added to the powder lot (%), 

𝑀𝐹𝐵 is the total mass of the powder loaded into the AM machine’s feed bed (kg),  

𝐶𝑚𝑤 is the cost of the powder feedstock that has been used in w build cycles ($/kg). 

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used in u build cycles ($/kg). 
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Once the AM process has finished building, the build job and all subsequent parts are 

physically removed from the AM machine.  Equation 12 [40] takes the time required for this task 

and evenly divides it among the total number of parts created in the build job.  Activities at this 

stage pertain to removing the build substrate from the machine, collecting all loose un-melted 

powder from the part bed, cleaning the machine, removing all powder from the feed bed and 

overflow bins, sieving the used powder, storage, and documentation.  Empirical factors for extra 

effort under inert environment have been removed from the original model. 

 

𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙(𝑃𝑖) = (𝐶𝑜𝑝 + 𝐶𝑚𝑎𝑐ℎ) ∙
𝑇𝑅𝑒𝑚

∑ 𝑁𝑖𝑖
                                                 (12) 

where: 

𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙 is the cost per part for removing the substrate/parts from the AM machine ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-), 

𝑇𝑅𝑒𝑚 is the time required to remove parts, clean machine, perform all ancillary tasks (h), 

𝐶𝑜𝑝𝑒𝑟 is the operator’s hourly rate ($/hour),  

𝐶𝑀𝑎𝑐ℎ is the AM machine’s hourly operating cost ($/h), 

𝑁𝑖 is the quantity of parts with ith geometry (-). 

 

 
The next step involves separation of parts from the build substrate. Modifying the 

original formula [40], parts produced in a build job using LPBF may have built-up residual stress 

and thus undergo a stress-relief [105] to reduce geometric distortion upon separation.  Once 

completed, wire electrical discharge machining (EDM) is used to physically detach all parts from 

the substrate. The costs for wire EDM are allocated based on the contact area occupied by a part, 

and their support structures, on the substrate as follows in Equation 13.  

 

𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑃𝑖) =
𝐶𝑠𝑡𝑟𝑒𝑠𝑠

∑ 𝑁𝑖𝑖
 +  𝐶𝐸𝐷𝑀 ∙   

𝐴𝑐𝑜𝑛(𝐺𝑖)

∑ 𝑁𝑖 ∙ 𝐴𝑐𝑜𝑛(𝐺𝑖)𝑖
                                (13) 

where: 

𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 is the cost per part for separating a part from the substrate ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),  

𝐶𝑠𝑡𝑟𝑒𝑠𝑠 is the cost for stress-relieving a build plate($),   
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𝐶𝐸𝐷𝑀 is the total cost for separating a part via EDM ($),  

𝐴𝑐𝑜𝑛 is the connected area of a part to the substrate (𝑐𝑚2), 

𝑁𝑖 is the quantity of parts with ith geometry (-). 

 

 
Once all parts have been separated from the build substrate, these components can 

undergo additional post-processing to meet customer requirements.  Due to parts having 

individually-tailored functions and applications, the required operations and sequence of their 

events will vary due to the specifications ordered by the costumer. For Equation 14 [40], cost is 

calculated for post-processing based on support structure removal for an individual part.  The 

time for post-processing is a function of the part’s geometric complexity and can increase if 

additional time or equipment is needed.  For estimation purposes, the equation is broadly defined 

and can be extended to additional post-processing operations as designated by the user.  

 

𝐶𝑝𝑜𝑠𝑡𝑝(𝑃𝑖) = ∑ (𝑇𝑝𝑜𝑠𝑡𝑝(𝐺𝑖) ∙ (𝐶𝑜𝑝 + 𝐶𝑡𝑜𝑜𝑙𝑠))
𝑖

                                     (14) 

where: 

𝐶𝑝𝑜𝑠𝑡𝑝 is the total cost for post-processing ($), 

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),  

𝑇𝑝𝑜𝑠𝑡𝑝 is the time required to post-process a part geometry ($),   

𝐺𝑖 is the ith geometry (-),   

𝐶𝑜𝑝 is the operator’s hourly rate ($/hour),  

𝐶𝑡𝑜𝑜𝑙𝑠 is the hourly rate of tools and machines for post-processing ($).  

 

 
In summary, this cost model consists of 7 activities in the AM workflow (see Figure 7).  

Costs are allocated based on an AM operator’s labor for part preparation, arranging geometries on 

the build tray, setting-up the AM machine, executing the build job, and removing the substrate 

and decommissioning the machine.  Afterwards, post-processing of the build job begins with 

stress-relief, wire EDM, followed last by individual post-processing to produce a fully-functional 

component.  These 7 activities are added together in Equation 15 to produce the total cost for a 

part made using PBF: 
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𝐶𝑇𝑜𝑡𝑎𝑙(𝑃𝑖) = 𝐶𝑝𝑟𝑒𝑝(𝑃𝑖) +  𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏(𝑃𝑖) + 𝐶𝑆𝑒𝑡𝑢𝑝(𝑃𝑖) + 𝐶𝐵𝑢𝑖𝑙𝑑(𝑃𝑖) + 𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙(𝑃𝑖) 

+ 𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑃𝑖) + 𝐶𝑃𝑜𝑠𝑡𝑝(𝑃𝑖)                                                      (15) 

 
where: 

𝐶𝑡𝑜𝑡𝑎𝑙 is the total manufacturing costs ($),     

𝐶𝑝𝑟𝑒𝑝 is the cost per part for preparing the digital geometry data ($), 

𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 is the cost per part for the build tray assembly ($), 

𝐶𝑠𝑒𝑡𝑢𝑝 is the cost for setting up the machine ($), 

𝐶𝑏𝑢𝑖𝑙𝑑 is the cost for building up a part in the AM process ($), 

𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙 is the cost for removing the substrate/parts from the machine ($), 

𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 is the cost for separating a part from the substrate ($), 

𝐶𝑝𝑜𝑠𝑡𝑝 is the total cost for post-processing ($). 

 

 

Lastly, Equation 16 is introduced for calculating the build volume utilization (i.e., 

capacity, packing) [25] to quantify the extent at which all the geometries are occupying space in 

the print bed during a build operation. 

 

𝐵𝑉𝑈𝑖 =
∑ (𝑁𝑖 ∙𝑉𝑡𝑜𝑡𝑎𝑙𝑖

)𝑖

𝑆𝑏𝑥∙𝑆𝑏𝑦∙𝐵ℎ(𝑃𝑖)
                                                    (16) 

where: 

𝐵𝑉𝑈 is the capacity at which a build job occupies the volume within the print bed (%), 

𝑉𝑡𝑜𝑡𝑎𝑙𝑖
 is the total volume of the part and support structures for ith geometry (𝑐𝑚3),  

𝑁𝑖 is the quantity of parts with ith geometry (-), 

𝑆𝑏𝑥 is the length of the build substrate in the part bed (cm),     

𝑆𝑏𝑦 is the width of the build substrate in the part bed (cm), 

𝐵ℎ is the build height of the tallest part in the build job (cm), 
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3.3. Implementation and Case Studies 

To demonstrate our approach against a traditional LPBF cost model, costs were studied 

for two parts designed for and produced by LPBF.  Figures 3-3 and 3-4 show the geometric data 

and build orientation for each of the parts. These parts were selected due to their differences in 

geometry, volumes, and build materials. All parts were manufactured on an EOSINT M280 

DMLS machine at Penn State’s Center for Innovative Materials Processing through Direct Digital 

Deposition (CIMP-3D).  Following the workflow of Rickenbacher et al., STL files were first 

imported into Materialise Magics for digital preparation and support structure generation.  

Geometries were then entered into EOS RP Tools and sliced to form the build job file.  Next, the 

files were entered into EOS PSW, where process parameters were selected, and then the AM 

process commenced.  Once completed, the build substrate was removed from the machine, the 

machine was cleaned, powder was sieved, and build documentation was completed.  Finally, the 

parts and substrate were shipped to a local manufacturer for stress-relief and wire EDM, before 

returning to CIMP-3D for support removal. 

 

 

 

Figure 3-3: Automotive Upright Geometry G1 

 

Figure 3-4: Testing Apparatus Geometry G2 
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All equations from Section 3.2 were written in a MATLAB program and used for costing 

each of the builds.  For this case study, constants for powder losses due to process inefficiency 

(𝛼) and powder trapped in support structures (𝛾) were chosen to be 40% and 25%, respectively, 

based on CIMP-3D staff’s experience from five years of producing metal AM parts at the facility 

[48].  Additionally, a DS of 2.25 was assumed to be sufficient for all build jobs in the case study.  

 
Figure 3-5: Powder Feedstock Value vs. Build Cycles vs. Maximum Build Cycles 

 

The graph in Figure 3-5 shows an example of the cost for a powder feedstock at each of 

the maximum build cycles. Each point represents the financial value of a powder feedstock with 

the given number of accumulated reuses. The salvage value, or estimated resale value, of a 

powder that exceeded the maximum amount of build cycles was assumed to be zero. Since the 

feedstocks have a wide range of permissible reuses, each feedstock was modeled as having 

maximum reuses for up to 10 or 30 build cycles to correspond with recommendations from 

NASA [67] and allow comparison between conservative and moderate reuse limits. Table 3-1 and 

Table 3-2 contains all the constants used in this model, with material data collected from 

datasheets available by the manufacturer [106-109]. Additionally, two prices are considered for 

the virgin powder to highlight scenarios where a manufacturer may conduct a one-time purchase 

of powder lots, generally a more expensive case. In contrast, the second scenario being 
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manufacturers in large-scale production purchasing large allotments of powder which may 

receive a discounted price.  

Table 3-1: Cost Model Constants 

Variable Description Value Units 

𝐶𝑜𝑝𝑒𝑟 Operator’s hourly rate 110 $/h 

𝐶𝑝𝑐 Cost for computer workstation with all software and licenses 100 $/h 

𝐶𝑀𝑎𝑐ℎ AM machine’s hourly rate 60 $/h 

𝐶𝑔𝑎𝑠 Cost for inert gas consumption during the build 10 $/h 

𝑇𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 Time required for arranging all geometries in the build job 1 h 

𝑇𝑠𝑒𝑡𝑢𝑝 Time required to set up the AM machine  2 h 

𝑇𝑚𝑎𝑡.𝑐ℎ𝑎𝑛𝑔𝑒 Time for changing and loading new powder into AM machine  3 h 

𝑇𝑖𝑑𝑙𝑒 Time when AM machine is inactive in build (heating, cooling) - h 

𝑇𝑟𝑒𝑐𝑜𝑎𝑡 𝑟𝑎𝑡𝑒 Average time for AM machine to spread one layer of powder 9 sec 

𝑇𝑟𝑒𝑚 Time required to remove substrate, clean machine after build  3 h 

𝛼 Percentage of powder loss due to process inefficiency 40 % 

𝛾 Percentage of powder loss due to entrapment in supports  25 % 

𝑇𝑅𝑒𝑚 Time required to remove parts, clean machine after build 3 h 

𝐶𝑠𝑡𝑟𝑒𝑠𝑠 Total cost for thermally processing all parts on build substrate 350 $ 

𝐶𝐸𝐷𝑀 Total cost for separating all parts on substrate via EDM 200 $ 

𝐶𝑡𝑜𝑜𝑙𝑠 Cost for work area with tools and machines for post-processing 50 $ 

𝐷𝑆 Vertical rise of the feed bed per layer thickness in the build  2.25 - 

𝐷𝑥 Length of the dispenser platform in the feed bed 228 cm 

𝐷𝑦 Width of the dispenser platform in the feed bed 250 cm 

𝑆𝑏𝑥 Length of the build substrate platform in the part bed 250 cm 

𝑆𝑏𝑦 Width of the build substrate platform in the part bed 250 cm 

 

 

Table 3-2: Material Constants 

 

𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍 
𝝆𝒕 

(𝒈/𝒄𝒎𝟑) 
𝝆𝒘 

(𝒈/𝒄𝒎𝟑) 
𝑳𝑻 

(𝝁𝒎) 
𝑽𝒃𝒖𝒊𝒍𝒅 𝒔𝒑𝒆𝒆𝒅 

(𝒄𝒎𝟑/𝒉) 

𝑪𝒎𝟎 
($/𝒌𝒈) 

𝑺 
($) 

𝑼𝒎𝒂𝒙  
(−) 

Ti64 2.74 4.41 30 13.5 {272, 680} 0 {10, 30} 

GP1 5.3 7.8 20 7.2 {40, 100}  0 {10, 30} 

AlSi10Mg 1.5 2.67 30 26.6 {60, 150} 0 {10, 30} 

IN718 5.1 8.15 40 14.4 {76, 190} 0 {10, 30} 

 

 
Table 3-3 lists the resulting build data for the two example parts. Geometry 𝐺1 had a 

build time of 55 hours, and Geometry 𝐺2 had a build time of 31 hours. The estimated build time 

was over-predicted for both parts by 6%.  This discrepancy is attributed to the assumption that 

𝑇𝑖𝑑𝑙𝑒 is zero for preheating, machine cool-down, and laser positioning between hatches during the 
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build process. 𝐺1 required 61 kg of powder to perform the build, whereas 𝐺2 required 32 kg. The 

next sections highlight costing scenarios that were generated for all material reuses ranging from 

virgin powder, reused powder, and powders that reached their maximum allowable build cycles.  

 

Table 3-3: Labor Time and Build Results 

 

𝑷𝒂𝒓𝒕 

 

𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍 
𝑵𝒊 

(−) 

𝑽𝒕𝒐𝒕𝒂𝒍 

(𝒄𝒎𝟑) 

𝑩𝒉 

(𝒎𝒎) 

𝑻𝒑𝒓𝒆𝒑 

(𝒉) 

𝑻 𝒃𝒖𝒊𝒍𝒅
𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆

 

(𝒉) 

𝑻 𝒃𝒖𝒊𝒍𝒅
𝒂𝒄𝒕𝒖𝒂𝒍

 

(𝒉) 

𝑻𝒑𝒐𝒔𝒕𝒑 

(𝒉) 

𝑴𝒊 

(𝒌𝒈) 

𝑴𝑭𝑩 

(𝒌𝒈) 

𝐺1 Ti64 1 587 172 3 58 55 3 3.9 61 

𝐺2 GP1 1 192 47 2 33 31 2 2.2 32 

3.3.1 Comparison of Depreciation Models 

The first case study was conducted to conceptually highlight differences between a 

traditional LPBF cost model and the proposed powder reuse model using SOYD and SLN. Build 

costs for 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 were estimated for production 

of 10 units of 𝐺1, with Ti-6Al-4V, valued at $272/kg, with a maximum reuse duration of 10 build 

cycles. Production assumed one part per build job. Feedstock blending was assumed to take place 

after every build job with 6.39 % of the feed bed being mixed with virgin powder in order to 

replenish powder that was consumed by the build geometry. Additionally, it was assumed that all 

required feedstock for production, including mixing, was purchased prior to the build, amounting 

to an initial investment of $26,139. The results of the comparison study are shown in Table 3-4 

and Table 3-5. 
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Table 3-4: Costing for SOYD vs. Infinite Reuse 

Sum-of-the-Years Digits Depreciation Traditional  

Build 

Cycle 

𝑪𝒎𝒖 
($/kg) 

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍  
($) 

𝑪 𝒑𝒐𝒘𝒅𝒆𝒓
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

  

($) 

𝑪 𝒎𝒊𝒙𝒊𝒏𝒈 
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

  

($) 

T𝒐𝒕𝒂𝒍 

($) 

𝑪𝒎𝒖 
($/kg) 

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 
($) 

𝑻𝒐𝒕𝒂𝒍 
($) 

1 272 1061 2824 0 3885 272 1061 1061 

2 223 868 2541 193 3602 272 1061 1061 

3 178 694 2259 366 3320 272 1061 1061 

4 138 540 1977 521 3037 272 1061 1061 

5 104 405 1694 656 2755 272 1061 1061 

6 74 289 1412 771 2473 272 1061 1061 

7 49 193 1130 868 2190 272 1061 1061 

8 30 116 847 945 1908 272 1061 1061 

9 15 58 565 1003 1626 272 1061 1061 

10 5 19 282 1042 1343 272 1061 1061 

Total Sum    26139       10610 

Total Net    0      -15529 

 

 

 The results in Table 3-4 show that for the first build, the 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 was $1061 and the 

𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was $2824, nearly 2.6 times the cost of the material. As the number of build 

cycles increased, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 decreased from $2824 to $282, while the powder depreciation rose 

from $0 to $1042 due to the un-melted powder approaching the salvage value of zero as the 

powder was continually reused. In comparison to a traditional LPBF model which assumed 

indefinite reuse, the material cost was $1061 and constant over the production of 10 build cycles, 

but was undervaluing SOYD’s sum of 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 

resulting in a total that was 1.2 to 3.6x smaller. When looking at the net total in comparison to the 

initial investment of $26,139 for all the feedstock, SOYD was able to recuperate all of costs at the 

end of production, whereas the infinite reuse costing approach had a net loss of -$15529. 
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Table 3-5: SLN vs. Traditional Infinite Reuse 

Straight Line Depreciation Traditional  

Build 

Cycle 

𝑪𝒎𝒖 
($/kg) 

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍  
($) 

𝑪 𝒑𝒐𝒘𝒅𝒆𝒓 
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

  

($) 

𝑪 𝒎𝒊𝒙𝒊𝒏𝒈 
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

  

($) 

T𝒐𝒕𝒂𝒍 

($) 

𝑪𝒎𝒖 
($/kg) 

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 
($) 

𝑻𝒐𝒕𝒂𝒍 
($) 

1 272 1061 1553 0 2614 272 1061 1061 

2 245 955 1553 106 2614 272 1061 1061 

3 218 849 1553 212 2614 272 1061 1061 

4 190 743 1553 318 2614 272 1061 1061 

5 163 636 1553 424 2614 272 1061 1061 

6 136 530 1553 530 2614 272 1061 1061 

7 109 424 1553 636 2614 272 1061 1061 

8 82 318 1553 743 2614 272 1061 1061 

9 54 212 1553 849 2614 272 1061 1061 

10 27 106 1553 955 2614 272 1061 1061 

Total Sum    26139       10610 

Total Net    0      -15529 

 

 In SLN, the material cost for the first build was $1061, with a feedstock depreciation of 

$1553. As the quantity of builds increased, the sum of the of 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was constant throughout the build at $2614. Because SLN is a linear 

function, all changes for the of 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 were in equal increments of 

$106 with each build. Unlike SOYD, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was the same value for every build job 

regardless of consisting of a virgin or scrap powder. When compared to traditional costing in 

LPBF, SLN was 2.4x larger but was also constant in value regardless of the whether the build 

was virgin powder or near the end of permitted reuses. Like SOYD, SLN was able to break even 

and recuperate the capital investment of all of the powder in the builds. Based on these two 

tables, it can be determined that SLN and SOYD provide a means of recuperating capital loss for 

feedstock which may have limited reuses in LPBF whereas, a traditional model assuming 

indefinite reuse may risk a net loss due to undervaluing the overall costs for the build with 

respect to un-melted feedstock and any blending prior to the build.  
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3.3.2 Total Costing for Example Parts 

Having completed the comparisons between SLN and SOYD against a traditional LPBF 

cost model, the next case study aimed to understand how the powder reuse cost model would 

impact total costs. This case study examined the total costs for a single build job built with a 

feedstock that had accumulated various amounts of reuses. No feedstock blending was considered 

in these cases. Depreciation was modeled using SOYD. Figure 3-6 shows the range of total costs, 

including all labor activities, for Geometry 𝐺1 as a function of the build cycles endured by the 

feedstock loaded for the build job.  The points along the graph represent the cost for a build job 

loaded with a powder feedstock with the given number of reuses. Powders having a 𝑈𝑚𝑎𝑥 of 10 

build cycles were the most expensive due to having the shortest allowable reuses and therefore 

the most rapid decline in value.  Meanwhile, powders with a 30 build cycle limit had a longer 

reuse duration and thus a slower rate of decline.  

The total cost for manufacturing the part with virgin powder, represented as zero build 

cycle feedstocks, ranged between $10,000 and $16,500 when the feedstock was valued at 

$680/kg. Whereas, total build costs ranged between $8800 and $12,000 when virgin powder was 

valued at $272/kg. The lowest cost scenario was the use of a powder that exceeded the maximum 

amount of permissible build cycles (i.e., powder that is chemically out-of-specification, 

diminished flowability, etc.), and total costs were $6800.  This is because as a powder is 

increasingly reused, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 and 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 decrease in proportion to the diminishing 

financial value of the powder feedstock with each build cycle.  At this lower limit, the feedstock’s 

value has been reduced to the salvage value, zero for this case study.  Hence, the material cost has 

diminished and the depreciation cost has become zero, because of zero difference in the financial 

value of a feedstock that has become a scrap material.  
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Figure 3-6: Total Costs vs. Build Cycles for 

Powder Reuse for Geometry G1 

 

 
Figure 3-7: Cost for Workflow Activities for 

Geometry G2 

 

The previous Rickenbacher et al. model, which assumed unlimited powder reuse, had a 

constant value of $7840 and/or $9400, regardless of the reuses accumulated by the input 

feedstock. In comparison to these calculated cost scenarios, traditional models with unlimited 

reuse cost undervalued the total cost of build jobs with virgin Ti64 powder between 26% and 

75%, when the feedstock was valued at $680/kg, or from 12% to 35%, when valued at $272/kg. 

After 7 and/or 13 build cycles, the Rickenbacher et al. cost model started to overvalue total costs 

and thus, build jobs using a powder that had surpassed these cycles could achieve a cost savings.  

The largest cost savings was a 38% reduction compared to the Rickenbacher et al, specifically 

when using a powder that exceeds its useful life (𝑈𝑚𝑎𝑥). 

Figure 3-7 shows a cost breakdown using virgin powder and each of their maximum 

reuses.  The top three costs were 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒, and 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙. The depreciation 

cost was the largest cost for a powder with a 10 build cycle limit and amounted to 42% of the 

total cost.  When 𝑈𝑚𝑎𝑥 was equal to 30 build cycles, the depreciation cost was overtaken by the 

machine cost, and subsequently minimized to 20% of costs.  In comparison, the depreciation 

costs were more than 2.6 times the value of the material costs.  
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Similar analysis was conducted on Geometry 𝐺2 and displayed in Figures 3-8 and 3-9.  

Builds using virgin GP1 powder had a range between $5000 and $5700. The lower limit for 

builds using powders that exceeded 𝑈𝑚𝑎𝑥 was $4600.  Using the fixed material cost model as the 

reference, which valued the builds at approximately $4900, virgin GP1 powder builds were 

undervalued between 3% and 11%, when the initial feedstock was valued at $100/kg, but was 

only undervalued at 1% and 4%, with virgin powder valued at $40/kg.  Upon surpassing 6 and/or 

11 build cycles, the totals costs became overvalued, and thus a cost savings of 5% could be 

achieved by building with a powder outside the allowable for 𝑈𝑚𝑎𝑥.  The largest cost for 

Geometry 𝐺2 was 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 at 42%, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 at 11%, and 𝐶𝑝𝑜𝑠𝑡𝑝 at 10% of the total 

costs.  Similar to Geometry 𝐺1, when using a 10 build cycle maximum virgin powder, the 

depreciation cost was twice that of the material costs. 

 

 
Figure 3-8: Total Costs vs. Build Cycles 

for Powder Reuse for Geometry G1 

 

 
Figure 3-9: Cost for Workflow Activities for 

Geometry G2 

 

Based on these observations, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was one of the largest costs for 

Geometries 𝐺1 and 𝐺2. It was at most 42% of the total costs for 𝐺1 but only 11% in 𝐺2.  When 

looking specifically at 𝐺1 and its use of Ti-6Al-4V powder, the relatively larger depreciation cost 

in comparison to 𝐺2 is due to 𝐺1 requiring nearly twice as much powder to fill the feed bed due to 

differences in tap densities and part build heights, along with the Ti64 powder being nearly seven 
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times more expensive than GP1.  The machine cost had a relatively higher percentage in GP1 

because of its 20 micron layer thickness and 7.2 h/cm3 build speed, which was half the speed 

when using Ti64.  In both examples, when using a powder with a 𝑈𝑚𝑎𝑥 of 10 build cycles, the 

depreciation cost was greater than twice the cost of the melted material.  One interpretation for 

this result is that the utilized build envelope (i.e., volume packing) is uneconomical for the given 

build since the surrounding un-melted powder is being put at risk of contamination and 

degradation, and thus more costly than the built-up parts produced in the AM process.   

Overall, this section found that 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 was the most pervasive cost for both builds of 

the example parts.  This is due to the volume of the geometries and support structures being 

consolidated during processing, their corresponding build heights, and the build speeds at which 

the DMLS machine can melt the given material.  The labor activities pertaining to 

𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 , 𝐶𝑠𝑒𝑡𝑢𝑝, 𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙, and 𝐶𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 showed no significant cost fluctuation among the 

example parts.  This is because these activities are standardized procedures with average 

completion times based on the skill of the AM operator and independent of the geometries in the 

build.  While 𝐶𝑝𝑟𝑒𝑝 and 𝐶𝑝𝑜𝑠𝑡𝑝 can vary for complex geometries requiring support structures, 

these costs ranged between 3-11% of the costs in all of the builds, due to larger costs being 

attributed to machine time, material, and depreciation. 

3.3.3 Sensitivity to Build Volume Utilization and Material Selection 

Since both example parts were printed as single component build jobs, this scenario may 

not be indicative of industrial applications in mass production. Consequently, single component 

build jobs create a scenario where the depreciation cost of the un-melted powder may exceed the 

cost of melted powder, implying that more cost is being allocated to the un-melted material than 

the material that is being processed. Based on this observation, a sensitivity analysis was 
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conducted by varying the build volume utilization to determine how the material and powder 

depreciation cost change as more part replicates are added to the build plate.  

For this section, 𝐺1was varied from one to three replicates, while 𝐺2 from one to five; the 

quantity of replicates differed due to build volume constraints for the respective geometry. Both 

material and depreciation costs were normalized as percentages of the total cost of their 

respective build jobs to account for subsequent increases in machine time and post-processing 

due to the additional geometries. Secondly, sensitivities pertaining to the build material of the 

parts was explored by modeling the builds with feedstock of Ti-6Al-4V, GP1, IN718 and 

AlSi10Mg to highlight differences due to the build rates and processing of the designated 

material. Build time estimates were produced for these revised build job assemblies generated 

using Equation 5. The generated costs all assume the same value of dosage along with the mass in 

the feed bed for each build job. Each model assumes the builds consisted of a virgin powder 

feedstock with maximum build cycle limits between 10 and 30 build cycles, with no blending. 

Results are shown in Tables 3-6, 3-7, 3-8 and 3-9. Rows were highlighted to identify the 

minimum BVU at which 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 was larger than 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛. 

 

Table 3-6: Ti-6Al-4V Sensitivity for Material vs. Powder Depreciation Costs 

     𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses  

   $680/kg $272/kg $680/kg $272/kg 

 N 

(-) 

BVU 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

 1 5 16 43 10 26 22 21 6 5 

𝑮𝟏 2 11 24 30 14 17 30 13 7 3 

 3 16 29 22 16 12 33 9 8 2 

           

 1 6 13 30 7 16 17 13 4 3 

 2 13 20 21 11 11 24 9 5 2 

𝑮𝟐 3 19 25 15 13 8 27 6 6 1 

 4 26 28 12 14 6 30 4 7 1 

 5 32 30 9 15 4 31 3 7 1 
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Table 3-7: GP1 Sensitivity for Material vs. Powder Depreciation Costs 

     𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses  

   $100/kg $40/kg $100/kg $40/kg 

 N 

(-) 

BVU 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

 1 5 6 17 3 8 6 6 1 1 

𝑮𝟏 2 11 8 10 3 5 8 4 1 1 

 3 16 8 7 4 3 9 3 2 1 

   
        

 1 6 4 11 2 5 5 4 1 1 

 2 13 6 7 3 3 6 3 1 0 

𝑮𝟐 3 19 7 5 3 2 7 2 1 0 

 4 26 7 4 3 2 8 1 1 0 

 5 32 8 3 3 1 8 1 1 0 

 
 

Table 3-8: AlSi10Mg Sensitivity for Material vs. Powder Depreciation Costs 

     𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses  

   $152/kg $60/kg $152/kg $60/kg 

 N 

(-) 

BVU 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

 1 5 6 13 3 6 6 5 1 1 

𝑮𝟏 2 11 8 9 4 4 9 3 2 1 

 3 16 10 7 4 3 10 2 2 0 

           

 1 6 3 7 1 3 3 3 1 0 

 2 13 5 5 2 2 5 2  1  0 

𝑮𝟐 3 19 7 4 3 2 7 1 1 0 

 4 26 7 3 3 1 8 1 1 0 

 5 32 8 2 3 1 8 1 1 0 
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Table 3-9: IN718 Sensitivity for Material vs. Powder Depreciation Costs 

     𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses  

   $192/kg $76/kg $192/kg $76/kg 

 N 

(-) 

BVU 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

𝑪𝒎𝒂𝒕. 

(%) 

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑. 

(%) 

 1 5 12 32 7 18 15 15 3 3 

𝑮𝟏 2 11 18 22 9 11 20 9 4 2 

 3 16 21 16 10 8 23 6 5 1 

           

 1 6 9 20 4 10 10 8 2 2 

 2 13 14 14 7 7 15 5 4 1 

𝑮𝟐 3 19 16 10 8 5 18 4 3 1 

 4 26 18 8 9 4 19 3 4 1 

 5 32 20 6 9 3 20 2 4 0 

 

 
For Ti-6Al-4V and a $680/kg feedstock with a maximum of 10 reuses, powder 

depreciation ranged from 8 to 42% of the total costs. At a build volume utilization between 16 

and 19%, the material cost began to be greater than the powder depreciation costs indicating a 

build job that was more cost efficient than those built with single components. The effects of 

varying feedstock costs from $680/kg to $272/kg, reduced both the material and powder 

depreciation costs by nearly half. For feedstocks with a maximum of 30 reuses, powder 

depreciation ranged from 3 to 20% of the total costs and only a utilization of 5-6% of the build 

volume was needed for the material cost to be greater than depreciation. Consequently, for a 

lower cost feedstock, both material and depreciation costs were reduced by a factor of four. 

GP1 showed a similar trend where a build volume utilization between 16 and 19% saw 

material costs being greater than powder depreciation for a 10 reuse feedstock and 5-6% for 30 

reuse. However, the powder depreciation costs were relatively smaller and only ranged from 2-

16% and 1-6%. This trend was continued in AlSi10Mg. Despite being a more expensive and less 

dense material than GP1, AlSi10Mg ranged in depreciation costs between 2-13% and 1-5%. 

Results for IN718 showed that powder depreciation costs ranged from 5-32% and 2-14%. 
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Additionally, the results exhibited the same behavior as Ti-6Al-4V where a feedstock at a 

reduced price of $76/kg nearly halved or reduced the material and powder depreciation cost by 

four times the value of a full priced feedstock. 

To summarize, this sensitivity analysis explored the effect of increasing build volume 

utilization and changing the build material. In all models with a limit of 10 reuses, a build volume 

utilization larger than 15%, resulted in the material costs being greater than powder depreciation 

costs, regardless of the material type. Whereas, powders with a higher limit, 30 build cycles, only 

required at most 6%. Given that the powder depreciation cost is calculated as the difference 

between the mass of the un-melted powder and the mass of powder melted for the parts, a highly 

packed build tray with a high quantity and large mass of produced parts reduces the overall 

powder depreciation since more of the surrounding powder is melted and consumed during the 

build job. Less un-melted powder remains after the build, and thus, the material costs are greater 

than the powder depreciation; however, post-processing costs may increase as a result of the 

additional part quantities. Ti-6Al-4V and IN718 both showed depreciation costs ranging near 

maximums of 32% and 42%. However, GP1 and AlSi10Mg only had maximums of 13-16%. In 

the case of GP1, this material has a build rate that is the half the speed of Ti-6Al-4V and IN718; 

thus, it will have double the machine time costs. Coupled with a low feedstock price, GP1 shows 

a smaller value of powder depreciation relative to the other materials. For AlSi10Mg, its light tap 

and wrought density is also nearly half compared to the other materials, and therefore it will have 

nearly half the powder depreciation costs. Ti-6Al-4V and IN718 both exhibit high values of 

powder depreciation due to nearly similar build speeds, moderate powder densities, and high unit 

price. The largest effect of the total costs was the interaction between price of powder, going from 

the expensive to the economical price, and increasing reuse limit from 10 to 30 build cycles 

which reduces total costs by nearly a quarter. Given that each alloys has unique chemistry, 

reactivity, and functional requirements, the savings when a feedstock is permitted for up to 30 
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reuses may only be applicable to non-reactive alloys such as IN718 and GP1, as initially 

suggested by NASA.   

3.3.4 Costing at Mass Production 

 The last sensitivity study was to determine how the cost model for powder feedstock 

depreciation would impact total costs for builds in mass production. Using geometries 𝐺1 and 𝐺2, 

costs were modeled for a production range of 1 to 1000 units with 𝐺1 being limited to three parts 

per build platform and 𝐺2 at five. All production was assumed to take place in series on one AM 

machine with no parallel production. For production requiring multiple build jobs, additional time 

for removing the platform, sieving the powders, and starting the next build was allocated to 

𝐶𝑠𝑒𝑡𝑢𝑝 . Additionally, all 𝐶𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 charges for stress relief and wire-EDM was assumed to take 

place in series on a per build platform basis, with no parallel processing. For productions 

requiring multiple build jobs, powder mixing consisted of adding virgin powder to the feed bed 

with 𝛽𝑘 equal to the mass percentage of the total amount of geometries in the build, relative to the 

mass of the loaded feed bed and selected material densities. When any powder exceeded the 

designated 𝑈𝑚𝑎𝑥, the lot was discarded and the next build was initialized with virgin powder. 

Similar to the study in Section 3.3.3, each production scenario was modeled by varying material 

selection and the cost of the feedstock at a baseline and discounted price. To aid in comparison, 

costs were simplified and modeled as the “normalized cost per part”, where the cost per part for a 

given production quantity and depreciation model was divided by the cost per part for a build 

with the same quantity when calculated in a traditional cost model assuming infinite powder 

reuse. The resulting costs are presented in Figures 3-10 and 3-11.  

 Normalized cost per part was largest for builds with one component of production, 

whereas the costs was lowest at a mass production of 1000 parts which is expected given that 
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additional components aid in sharing costs for build file preparation along with labor for machine 

set-up and platform removal. The low-end “valleys” of the plots are associated with production 

requiring full build volume utilization for all the builds and thus minimal powder depreciation 

costs while, the rising “peaks” pertain to production requiring partial utilization which may have 

one unit printing in build job and therefore incurring excess powder depreciation costs. Between 

the range of 100 to 1000 units, the SOYD and SLN cost models began to converge to a constant 

value indicating a limit for how much cost could lower during high unit production. Depreciation 

models that had equal limits for 𝑈𝑚𝑎𝑥, converged to the same normalized cost per part but 

differed when the cost of the feedstock was either a low or high value. Regardless of the number 

of parts, all depreciation models converged to a cost that was larger than the builds with an 

infinitely reusable feedstock indicating that in mass production, builds assuming infinite reuse 

would always be undervalued by a given amount.  

 In Figure 3-10, builds for 𝐺1 with Ti-6Al-4V and IN718 had the largest costs over builds 

with infinite powder, while GP1 and AlSi10Mg were the smallest. Production with Ti-6Al-4V 

priced at $680/kg had the largest range in normalized cost per part valued from “1.72x” to 

“1.15x” for builds with  𝑈𝑚𝑎𝑥 = 10 build cycles, and “1.25x” to “1.05x” for builds with  𝑈𝑚𝑎𝑥 = 

30 build cycles, indicating that builds at high unit production were  undervalued from 5-15%. 

Using a lower priced Ti-6Al-4V powder at $272/kg, the costs halved to ranges of 1.35x to 1.07x 

and 1.12x to 1.02x, respectively. Builds with the lowest normalized cost per part occurred with 

AlSi10Mg between 1.15x and 1.04x for powder with a reuse limit of 10 builds along with costs of 

1.05x to 1.01x for powders with 𝑈𝑚𝑎𝑥 = 30 build cycles. 
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Figure 3-10: Normalized cost per part for production of G1, Automotive Upright 

  

 Similar observations were found in 𝐺2, where builds using Ti-6Al-4V and IN718 had the 

largest costs as opposed to those with AlSi10Mg and GP1. Builds with Ti-6Al-4V and IN718 

ranged from normalized costs of “1.40x” to “1.05x” and “1.24x” to “1.04x” with powders limited 

to a reuse of 10 build cycles. However, lower priced feedstocks and builds of AlSi10Mg and 

GP1, at either full or a discounted price, all converged to normalized cost per parts that were less 

than or equal to “1.02x” indicating only a 2% undervaluing compared to builds assuming infinite 

powder reuse. 
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Figure 3-11: Normalized cost per part for production of G2, Test Apparatus 

 

The findings for this section are that builds with production less than 100 parts (33 and 20 

build jobs for 𝐺1 and 𝐺2 respectively) had the largest normalized costs and were at most “1.75x” 

the cost of the builds with infinite reusable powder, due to high 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 when 

initializing a build with virgin powder. As production quantities increased, non-recurring 

expenses such as 𝐶𝑝𝑟𝑒𝑝 and 𝐶𝑏𝑢𝑖𝑙𝑑 𝑗𝑜𝑏 decreased over time due to a consistent geometry, build 

file, and a high number of replicates. Additionally, cost for 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 decreased due to average 

price for the material depreciating over time based on the reuse limit for the feedstock. Repeating 

expenses that were shared for a build job such as 𝐶𝑠𝑒𝑡𝑢𝑝, 𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 caused cyclical increases in the cost due to additional activities of mixing 

virgin powder to the feed bed lot, reloading powder, and re-prepping the machine for the next 

build in production. While total 𝐶𝑝𝑜𝑠𝑡𝑝 increased with higher quantities of parts, on a per part 
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basis the cost was constant since the time allotted to remove supports was consistent for each 

replicate.  

Increasing the quantity of parts past 100, material selection, and decreasing the price of 

the powder had the largest impact in reducing the normalized cost per part. Ti-6Al-4V and IN718 

had the largest normalized cost per part due to high price of their feedstock and their subsequently 

large 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 expenses. Because 𝐺1 and 𝐺2 have differing 

build volume utilization, both converge to dissimilar normalized cost per parts, with 𝐺1 reaching 

a value of “1.17x” compared to “1.06x” for 𝐺2 in Ti-6Al-4V limited to 10 reuses. GP1 and 

AlSi10Mg had costs less than “1.02” due to, respectively, low powder cost and low tap densities 

leading to low powder depreciation costs. Based on these observations, the results suggest that 

cost modeling with powder reuse estimates an additional 10% or more in costs for productions 

below 100 units with high priced Ti-6Al-4V and IN718, and marginal amounts of additional costs 

for AlSi10Mg, GP1, or lower priced feedstocks in production with over 100 units. 

3.5 Model Limitations 

Uncertainties in the model are the exact number of reuses permitted for each material 

alloy, an open and active area of research in the metal AM community. The parametric analysis 

accounted for two different maximum build cycle limits, but literature and standards are limited 

that provide recommendations on the exact extent for which a reused metal powder can be used to 

produce AM parts in functional engineering applications (e.g., aerospace, biomedical, etc.). With 

the introduction of new LPBF technologies that enable the feedstock to be loaded one-time and 

never removed from the machine, this model may be limited in its applicability towards 

measuring the reuse and depreciation of the powder feedstock as it is recirculated in a LPBF 

machine.  
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The build time estimator was specific to an EOS machine and assumed a constant build 

rate which can fail to capture the dynamic nature of the LPBF process when it is performed on 

single and multiple geometries. Higher fidelity methods could consider the lasing system 

architecture (e.g., gantry, F-theta lens, multiple lasers), scan speeds for a given material parameter 

sets, hatching surfaces, upskin/downskin contours, and the estimated temperature for each voxel 

being melted. Despite the model considering the use of a lower price feedstock, their accessibility 

in industry is often limited to large manufacturing firms that purchase multiple tons of feedstock 

for serial production. Thus, their highly reduced prices may not be accessible to small service 

bureaus. While alternative feedstocks may be ordered from different providers, it also creates the 

risk of voiding machine warranty if improperly used.  

The selection of a depreciation model is highly empirical and is material, product, 

industry, and business model dependent for a manufacturer. SOYD and SLN provide two 

different means of valuing parts that use a depreciating powder feedstock however, they add cost 

which impact overall cost effectiveness in low volume and serial production. Manufacturers 

focused on non-functional prototyping or those requiring less stringent properties may be better 

served assuming infinitely reusable powder. Meanwhile, manufacturers that have limited access 

to virgin powder or firms in highly regulated industries may be able use a cost model with finite 

powder reuse to allocate additional costs to the builds and better recuperate capital for discarding 

scrap powders at their reuse limit.  

Post-processing accounted for the removal of support structures; however, functional 

components may call for more sophisticated processes such as annealing, shot peening, or CT 

(computed tomography) scanning in order to validate the integrity of the part.  While these 

examples considered DMLS, costing for EBM will have differences due to variations in PBF 

technology and required labor activities.  In addition, the empirical waste factors in calculating 

the part mass were specific to an EOSINT M280 and may not be applicable to other PBF 
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processes. Finally, costs for the re-design and engineering of a pre-existing component in order to 

be made using AM were not captured in this model. 

Having observed that LPBF costs can be undervalued when not accounting for reused 

powder, the next chapter shall expand upon these implications by examining how these cost 

estimates can be integrated with a DFAM tool and also highlight how the build geometry, 

orientation, and support structure specifications by the designer can impact cost. 
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Chapter 4  
CAD-Integrated Cost Estimation and Build Orientation Optimization 

The findings from Chapter 3 showed that total cost and powder depreciation vary from 

component to component based on various parameters related to the design of the geometry, 

powder feedstock, maximum permitted reuses, and quantity of replicates for the build. However, 

geometry definition and build orientation selection is an iterative process that can yield numerous 

costing scenarios. To support designers, a CAD-integrated cost estimator was developed as a 

software plug-in for a commercial CAD program to enable early geometry evaluation for LPBF 

and to better capture the influence of machine and design parameters on the overall costs for a 

given design. This chapter provides an overview of the system architecture, coding approach, and 

graphical-user interface (GUI) used in preparing the tool. The plug-in was programmed in 

SolidWorks and demonstrated on an automotive upright. Sensitivities studies are presented along 

with comparison to a comparable commercial tool, 3DXpert. 

4.1 Program Workflow 

As discussed in Section 2.2.3, few scholarly works have focused on CAD-integrated 

DFAM tools and cost modeling for end-use metal AM components. To fill this gap, we propose 

the method shown in Figure 4-1 for estimating costs for part production in a generic metal AM 

system, while modeling in a generic CAD program.  
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Figure 4-1: CAD-Integrated Cost Estimation Framework 

 

 

As seen in the figure, the workflow begins with the designer creating a 3D CAD model 

and then activating the cost-estimation program directly within the CAD software. After 

initialization, a graphical user-interface (GUI) is opened, consisting of multiple tabs for users to 

explore various AM processes. In this work, the AM process is assumed to be a nonspecific 

LPBF machine. Similar to the IMDI from Rosen et al. [68], upon selecting a process, users are 

presented with information regarding their part’s volume, bounding box, build height, and 

dimensions relative to the build volume of the AM machine. The coordinate system is aligned 

with the CAD system and assumes the 3D model’s build height is along the Z-axis. Users select 

an AM machine and are then prompted to select a material for producing their part. The specific 

machine and material data are loaded from an external database connected to the cost estimation 

program. The material’s sub-section in the user-interface provides information on the powder 

feedstock cost, tap density, wrought density, layer thickness, and build rate for the material. Upon 

selecting material, the user-interface updates to provide users with the number of layers to 
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produce their component and the estimated part mass after printing. For simplification, we 

consider all layers to be of uniform thickness. 

After a material is selected, the user navigates to the build parameters subsection in the 

GUI and inputs a value for the charge amount, (i.e., dosage). The program outputs an estimate for 

feed bed mass, 𝑀𝐹𝐵, calculated using Equation 5 from Chapter 3. Next, the user inputs waste 

factors for process inefficiency (𝛼) and powder trapped in support structures (𝛾) leading to an 

output for the component mass, 𝑀𝑖, calculated via Equation 9 from Chapter 3. Finally, in the 

build parameters subsection, the user specifies the hourly machine rate, 𝐶𝑚𝑎𝑐ℎ, for their AM 

machine, the cost for inert gas usage is material-dependent and assumed to be included in the 

machine rate. 

4.2 Support Structure Generation 

After specifying the build parameters, users specify the orientation for building their part. 

Each orientation selected prompts the GUI to update, indicating changes to build height, total 

bounding box, and subsequent changes to mass of the feed bed required to execute the build job. 

Upon reaching a satisfactory orientation, the user can then start the support structure generation 

module by specifying the minimum support angle. This angle is the critical angle at which a face 

can be built at an incline to the build surface and not require support material. The value can vary 

from between 30-45° and depends on the AM process [92, 110]. To generate support structures, 

our framework uses a ray tracing method, similar to the one proposed by Allen and Dutta. Despite 

the availability of more sophisticated techniques such as voxelization, octree-representation, and 

Direct CAD slicing [87, 111, 112], ray tracing was selected due to its efficiency to integrate into 

CAD. 
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The ray tracing is conducted on a uniformly spaced grid based on the dimensions of the 

selected AM machine’s build plate. To initialize the ray tracing, the user specifies a number of 

grid partitions (see Figure 4-2). The points along the partitions are selected as the starting point, 

and a ray is transmitted in the direction of the body. The normal vector is returned from the 

body’s surface at all intersecting points. The difference between the surface normal angle and the 

build direction is calculated to determine if the vector is above or below the user’s designated 

support angle. If the angle is less than the minimum support angle, then the coordinates for the 

point of intersection are stored in an array, and the ray trace continues until the algorithm has 

traversed the bounding dimensions of the part.  

 

 
Figure 4-2: Top-view of component undergoing ray trace 

with 6 grid partitions (left) geometry intersections (right) 
 

 

Upon completion of the ray trace algorithm, the coordinates from the arrays are used to 

form geometric extrusions for all identified overhanging surfaces. Extrusions that connect from 

the body’s surface to the build plate are labeled as external support structures, and extrusions that 

connect the body’s surface to another surface on the body are referred to as internal support 
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structures. To prevent overlapping bodies, all extrusions are generated with standard geometric 

cross-section shapes that fit within the grid (partition) spacing of the ray traces. The part now has 

all of the required support structures from which a volume is determined for estimation purposes. 

After generating the support structures, the program calculates and returns an estimated 

cost for producing the component. Since Chapter 3 demonstrated that machine cost, material cost, 

and feedstock depreciation account for over 60% of the total cost in LPBF, these were the only 

costs calculated in the program due to their inherent variation with the CAD geometry, build 

orientation, and support structures. 𝐶𝑚𝑎𝑐ℎ, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, 

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 𝑇𝑏𝑢𝑖𝑙𝑑 were all calculated using their respective equations from 

Chapter 3. 

4.3 SolidWorks API Programming 

To execute the program framework, a software plug-in was programmed in SolidWorks 

2015. SolidWorks was chosen because of easy access to their Application Programming Interface 

(API) and online reference library of commands and functions [113]. The SolidWorks API 

consisted of a Visual Basic for Applications (VBA) development environment where the tool was 

programmed and executed. A screenshot for the GUI is shown in Figure 4-3 along with a 

terminology for the CAD geometry. Upon initialization, a macro loads the AM machine and 

materials data from a local directory on the host computer. The CAD model’s bounding box 

coordinates are gathered using the GetPartBox function. The volume is queried from an assigned 

ModelDoc2 object using the CreateMassProperty function.  
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Figure 4-3: Cost Estimator GUI (left) and CAD Geometry Visualization (right) 

 

Upon selecting a machine, a macro constructs the build bed volume using the previously 

acquired perimeter coordinates with the CreateLine2 command. It then produces a reference 

plane for the build surface through the CreatePlaneThru3Points3 corresponding to the lowest Z-

coordinates of the part bounding box. For visualization purposes, the build platform is generated 

as a solid-body through a FeatureManager object and the FeatureExtrusion2 command. The 

build orientation is controlled through the InsertMoveCopyBody2 function where the user 

specifies a relative rotation about one of the coordinate axes.  

During support structure generation, the RayIntersections command takes a base point 

and projects it along a vector (i.e., build direction). The ray trace returns a value corresponding to 

the number of entries and exits of the target geometry. If an intersection occurs, then the outward 

normal vector is queried from the CAD model’s surface at the point through 

GetRayIntersectionsPoints. The angle between the surface normal and the build direction is 

calculated using the arccosine relation. Support structures are then created using an IModeler 

object by forming geometric primitives on the build surface or body below an overhang, through 
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the CreateFeatureFromBody3 command. In this case-study, primitives were chosen to be solid-

body cylinders due to their low memory requirements, simple programming, and minimal input 

definitions. 

As shown in Figure 4-4, support structures are color-coded with teal and purple 

corresponding to internal and external support structures, respectively. Computational 

performance is improved by turning off the SolidWorks graphics update, removing dynamic 

highlighting, and running support structure generation in the background. 

 

 

Figure 4-4: Geometry with overhanging surfaces 

4.4 Build Orientation Optimization 

 Particle Swarm Optimization (PSO) was used in searching for an optimal build 

orientation and was selected due to its convergence speed and computational efficiency compared 

to genetic algorithms and robustness in finding global minima compared to gradient descent 

methods [114]. The design variables were the relative rotations of the CAD model about the X 

and Y axes. The constraints ensured that the CAD model did not rotate into an orientation where 

the part geometry extends outside the build volume.  
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To begin, the user specifies an objective function to minimize (i.e. internal support 

volume, external support volume, build time). Upon randomly generating a starting population of 

candidate orientations, particles change their position and trajectories to align with the particle 

with the best objective value. Each particle varies position through a velocity function based on 

their current motion, memory influence, and swarm influence. The algorithm converges upon 

reaching a tolerance specified by the user. More details on the PSO algorithm can be found in 

[114]. 

4.5 Macro Implementation and Examples 

To demonstrate the plug-in’s capabilities, costs were evaluated for the automotive 

upright, 𝐺1. This geometry was selected because of its complex geometry with numerous 

overhanging surfaces and its function as an end-use metal AM component. Previous work by 

Maranan et al. [115] found a tradeoff between manufacturability and costs when printing this 

design. They decided to select the orientation shown in Figure 4-5 because it was easier for 

accessing and removing support structures even though it required a considerably longer build 

time than lying the part flat on the build plate. Consequently, the resulting support volume was 

202.4% greater than the build material. To match their study, production is modeled for an 

EOSINT M280 DMLS machine with a machine rate of $72/hr, assumed to be inclusive of 

machine depreciation, overhead, electricity, and inert gas. The build material is assumed to be 

EOS Ti-6Al-4V powder processed at 30 micron layer thickness, with a build rate of 13.5 cm3/hr 

and a value of $680/kg for virgin powder. The results from applying the macro to this part are 

discussed next. 
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Figure 4-5: Automotive Upright, Magics model with supports (Top), Printed DMLS component 

(bottom) [115] 

4.5.1 Parameter Sensitivity on Cost Estimate 

In order to properly implement the plug-in, a sensitivity analysis was first conducted to 

determine how much error could result from incorrectly defining build parameters during cost 

estimation. The support angle, the maximum angle from the horizontal where support structures 

are required for a surface, was selected due to its wide variation among manufacturers [116]. The 

support angle was parameterized and varied between 60, 45, 30 degrees. Steep support angles at 

60 degrees and above are conservative and are selected to help ensure the production of 

component, whereas shallow angles near 30 degrees are aggressive and are used to save costs 

(material and machine time). The diameter of the support structures was varied from a coarse 

diameter (10mm) to fine (0.625 mm) to determine the effects of inaccuracy and poor resolution. 

Figure 4-6 shows an example of the CAD model for the upright with the generated supports; the 

results are summarized in Table 4-1. 
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Figure 4-6: Automotive Upright with Support Angle: 60° (Left), 45° (Middle), 30° (Right) 

 

Table 4-1: Support Diameter vs. Support Angle 

Support 

Diameter 

Support Angle: 60° Support Angle: 45° Support Angle: 30° 

Support 

Volume 

Build 

Time 

Support 

Volume 

Build 

Time 

Support 

Volume 

Build 

Time 

mm cm3 H cm3 h cm3 H 

10.00 398 56 230 45 191 42 

5.00 411 57 268 48 222 45 

2.50 449 60 298 50 238 46 

1.25 447 60 276 49 230 45 

0.63 439 59 281 49 230 45 

Mean  

(SD) 

429 

(20) 

58  

(2) 

271  

(23) 

48  

(2) 

222  

(16) 

45 

(1) 

Cost 

(SD) 

$1290 

(60) 

$4180  

(140) 

$810  

(70) 

$3460 

(140) 

$670  

(30) 

$3240 

(70) 
*Results from Maranan et. al: Build Time: 54 hours, Support Volume: 410 𝑐𝑚3 

 

Maranan et al.’s automotive upright cost $3890 in machine time, $520 for the direct part, 

and $1480 for the support structures [115]. Costs for powder and mixing depreciation were not 

reported in their study. The analysis revealed that the cost estimate was most sensitive to the 

support angle. These results indicate that: underestimating the support angle by 15 or more 

degrees can under-predict support material costs by 34% and build time by 20%. This is because 

as the support angle becomes steeper, more surfaces on the geometry are treated as overhangs and 

thus, require a larger volume of support structures, which uses more material and build time. The 

coarse and fine support diameter size showed marginal variation as the resolution increased. With 
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metal AM showing promise towards geometrically complex designs, a conservative support angle 

is likely to be appropriate in accounting for thermal deformation and curling concerns. 

This first case study found that the accuracy of the macro is influenced by the support 

angle, which dictates the volume of support structures generated for the 3D CAD model. The 

resolution of the support diameter showed little significant variation with the estimated build time 

and support volume. The lack of variation is due to over-estimation by the coarse-sized support 

structures. Given the complex geometry of this component, the results will change when 

considering multiple orientations where over-estimation at low-resolution may not be as precise 

as higher resolution estimates. 

4.5.2 Consideration for Multiple Replicates 

Although the upright was built alone in the AM process, this practice is not common in 

industry. Often, multiple components are built on the same platform to save costs as demonstrated 

in Section 3.3.3. The manner at which to arrange components to minimize feedstock depreciation 

and post-processing costs is not clear from literature and is geometry dependent. To further 

investigate this relationship, the flat and vertical oriented uprights were modeled in the macro as 

shown in Figure 4-7. The ray trace was executed with a support structure diameter of 2.5 mm and 

a support angle of 60 degrees. Results are given in Table 4-2. The dosage is set to 2.25 per layer 

thickness [55]. Recyclability for the Ti64 powder is presumed for a maximum of 15 build cycles 

[68], with a salvage value of zero. Waste factor for process inefficiency, α, is assumed to be 40% 

and trapped powder is set to 25% based on reported results [24].  
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Figure 4-7: Vertical (left) and Flat (right) Orientation 

Table 4-2: Orientation vs. Part Count vs. Cost 

Variables 
 Vertical  

Orientation 

Flat  

Orientation 

Part Quantity  

Build Time 

- 

H 

1 

60 

3 

151 

1 

29 

2 

52 

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 

$ 

$ 

$ 

4320 

2660 

4850 

10870 

7980 

4250 

2050 

1380 

2040 

3670 

2750 

1870 

Cost per part $ 11,830 7700 5580 4150 

 

 Table 2 shows that the longest build time was for the vertical orientation with 3 uprights 

at 132 hours. The shortest build time was for the flat orientation with a single component at 29 

hours. The flat orientations had the lowest amount of support structures and therefore had lower 

material costs, compared to the vertical orientations. Powder feedstock depreciation costs were 

higher in the vertical builds due to their tall build heights and more powder required to the fill the 

powder bed. Consequently, for builds with a single component, the depreciation of the un-melted 

powder was 1.4x to 1.8x the material cost. These qualities made the vertical build with one 

component as the most expensive build at $11,830 per part. The lowest cost component was the 

two flat uprights due to their relatively low machine and material costs. However, as noted by 

Maranan et al., the flat orientation is not feasible due to the presence of internal support structures 

that are difficult to remove during post-processing.  



69 

 

 Having examined the influence and costing implications for multiple components when 

including depreciation costs for recycled powder, this section revealed that a flat orientation with 

two components was the most economical; however, the manufacturability of the orientation was 

not feasible, as supports could not be accessed for removal. The vertical orientation was feasible 

for producing 3 components but at a cost increase of 66% compared to the flat orientation. Both 

orientations showed that builds with a single component were uneconomical due to high powder 

depreciation costs being nearly twice the cost of the build material consumed in the part. The 

findings suggest that an optimal build will encompass a higher utilization (efficient packing) of 

the build volume with more components, which will increase build time a new design tradeoff 

found in metal AM against powder depreciation costs.  

4.5.3 Build Orientation Optimization 

 To further investigate the role of orientation on costs, the upright was optimized in PSO. 

The objective function was to minimize internal supports to reduce the amount of inaccessible 

supports during post-processing. Each PSO model was conducted with a population of 15 

particles and ran for a total of 40 iterations. Convergence was determined when the deviation in 

the objective function value was equal to a tolerance of zero after 20 iterations. To improve run-

time, the support structure volume was calculated analytically for each orientation through the 

numerical data provided from the ray-trace algorithm. Upon convergence, the geometric 

primitives for the supports were generated for the output orientation and then validated with the 

queried data from the CAD model. Figure 4-8 shows the optimal two orientations found by PSO 

with the full results in Table 4-3.   
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Figure 4-8: Optimal orientations to reduce internal supports. Orientation A (top) and             

Orientation B (bottom) with isometric and top views – rotated to show internal supports 

 

 

Table 4-3: Optimization Results 

 

Orientation 

Build 

Time 

Internal Support 

Volume 

Total Support 

Volume 

Depreciated 

Powder 

Cost per 

Part 

 H cm3 cm3 kg $ 

Flat 29 106 165 24 5580 

A 54 43 422 45 9560 

B 57 34 443 41 9940 

Vertical 60 116 423 56 11,830 
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The most economical orientation was the flat with a cost of $5580 per part. However, in this 

orientation 64% of all support structures were internal. Using the two orientations A and B from 

the PSO, the internal support volume decreased to 7-10% of the total supports. Subsequently, the 

total costs increased due to changes in build time and depreciated powder. In comparison to the 

vertical orientation selected by Maranan et al., the PSO generated orientations reduced total cost 

by 12-16% due to lower powder depreciation costs. The results suggest a tradeoff between total 

cost and internal support structure volume.  

4.5.3 Software Benchmarking 

The last study compares the results estimated by the macro with estimates from 3DXpert, 

a commercial 3D CAD software offering similar capabilities for geometry assessment and build 

planning for AM. Both programs allow users to position and orient geometries on the build 

platform for a selected AM machine. Both provide tools for orientation optimization of the 

geometry based on given objective criteria and support structure generation at various overhang 

angles. Lastly, both provide estimates of build time, material, and machine cost based on user-

defined parameters. One distinct feature of 3DXpert is its library of support structures primitives 

and AM machine build spaces, offering additional options for customization to aid the designer. 

To compare the predictive capability of the CAD-integrated cost estimator’s algorithm with 

3DXpert, the studies from Section 4.5.2 and 4.5.3 were re-run and compared between the 

programs using the same geometry and same build parameters as before with virgin Ti-6Al-4V 

powder, $680/kg, 9 seconds of recoating time, 60 degree support angle, and 13.5 𝑐𝑚3/h build 

rate. To aid in comparison, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 was the direct material cost and factors for lost powder 

during the process and from support structures were not calculated. Both programs optimized the 
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build orientation by using the objective of minimizing internal support structures. Images and 

tables comparing the two are shown in Figure 4-9 along with Tables 4-4 and 4-5.  

 

  

 

 

 

 

 

 
Figure 4-9:Support Structures Generated, CAD-Integrated Cost Estimator (left), 3DXpert (right) 
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Table 4-4: Support Volume vs. Orientation vs. Costs Comparison 

 

 

 

Orientation 

Internal 

Support 

Volume 

Total Support 

Volume 
Build Time 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙* 

  cm3 cm3 H $ $ 

CAD-Integrated 

 Cost Estimator 

Flat 106 165 29 2090 1000 

Optimal 34 443 57 4100 1830 

Vertical 116 423 60 4320 1770 

 Flat 125 206 32 2320 1120 

3DXpert Optimal 40 432 55 4020 1793 

 Vertical 113 519 65 4700 2040 
*Not accounting for powder losses due to filters or supports 

 

Table 4-5: Replicates vs. Support Volume vs. Orientation vs. Costs Comparison 

 

 

 

Orientation 

 

Replicates 

Total 

Support 

Volume 

Build 

Time 
𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ∗ 

   cm3 H $ $ 

CAD-Integrated 

Cost Estimator 

Flat 1 165 29 2090 1500 

Flat 2 330 52 3670 3000 

Vertical 1 423 60 4320 1770 

Vertical 3 1269 151 10870 5310 

3DXpert 

Flat 1 206 32 2320 1120 

Flat 2 413 62 4450 2224 

Vertical 1 519 65 4700 2040 

Vertical 3 1556 167 12000 6170 
*Not accounting for powder losses due to filters or supports 

 

Results from Table 4-4 indicate that for the flat orientation, the cost estimator calculated 

165 cm3 of supports with 3DXpert at 206 cm3 amounting to 20% discrepancy between the two 

estimates. These differences are attributed to 3DXpert using solid supports for the full volume 

under an overhang region versus the cost estimation tool using 2.5 mm diameter cylindrical 

supports to approximate the support volume. The build time was estimated at 29 hours versus 32 

hours resulting in a 10% discrepancy, also attributed to differing estimates in the support structure 

volume. Overall, the material cost and machine time estimates between the two programs varied 

by a most 11% showing a moderate level of agreement.  
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Despite differing support generation methods, when tasked with independently finding 

the optimal build orientation for reducing the number of internal supports, both programs 

converged to similar solutions as shown in Figure 4-10. The plug-in estimated 34 cm3 of internal 

supports which was smaller than the 40 cm3 determined by 3DXpert; however, for the overall 

support volume, both showed strong agreement with only a 3% discrepancy due to slight 

variation in the part orientation and the resolution of the support structures.  

Similar trends from the flat orientation estimates were seen in the vertical orientation  and 

also the replicates builds in Table 4-5, where discrepancies in the estimated support volume were 

20% and 10% for the build time. However, for the vertical orientation with one component, 

Maranan et al. reported that the build time was 54 hours and the support volume: 410 cm3 thus, 

both programs were overpredicting the support volume and build time by 3-26% and 11-20% 

respectively. Based on the observations from Section 4.5.1, the support volume error is a result of 

differences in the support angle which was not reported by Maranan et al. along with build time 

being overgeneralized through the use of an average build rate. 

 

 
 

Figure 4-10: Optimized Solutions for Reducing Internal Support Structures 
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4.5.4 Limitations 

 One limitation to the proposed macro is the computational efficiency of generating the 

support structures. With run times near 1300 seconds for a high resolution of supports with 0.5 

mm diameter, the flexibility to iterate from different oriented designs and generate the feature 

body is limited. The support structures were extruded from points to points, and therefore they do 

not directly intersect the surface, leading to gaps and approximation errors. The ray trace grid was 

also susceptible to aliasing due to a fixed and non-rotating coordinate system aligned with the 

build platform and not the 3D model. The methods used in the macro were selected due to ease of 

implementation and may not be as efficient and robust as those demonstrated in literature [117].  

This discrepancy was apparent when comparing the CAD-integrated cost estimator to 

3DXpert, where the cost estimation tool underpredicted support volume by about 20% 

highlighting the imprecision of the ray trace projection method and limitations of using cylinders 

as a support structure primitive. Both tools used an average volumetric build rate and a recoating 

time to estimate build time, but both showed an error of 11-20% compared to the reported build 

results. As mentioned in Section 3.4.1, improvements can be found through higher fidelity build 

estimators accounting for the geometry, machine parameters, and processing physics or 

potentially through empirical models based on regression analysis and statistical studies similar to 

those conducted by Rickenbacher et. al. 

For a single component, costs for machine time, material, and feedstock depreciation were 

predicted to be $11,830 and $5580 based on orientation. However, an online quote from Sculpteo, 

an AM service provider, estimated total costs as “$4260” [118]. It was unclear whether their 

quote included overhead, labor, margin or whether they were using highly reused powder or 

assuming steep support angles.  
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In all, this chapter contextually emphasized metal AM; however, the implemented macro was 

only metal AM specific in regards to the cost model. The demonstrated CAD-integrated cost 

estimation approach can be generalized to any AM process requiring support structures. 

Additional tailoring for metal AM would have to account for surface roughness and thermal 

distortion inherent to the given material, build orientation, along with the post-processing 

required for finishing the part. 

  



77 

 

Chapter 5  
Conclusions and Closing Remarks 

5.1 Thesis Summary 

 This thesis examined the cost effectiveness of AM by studying how powder feedstock 

reusability can impact total costs in LPBF while integrating the proposed model within a CAD-

integrated design tool. Sum-of-the-Years Digits and Straight Line depreciation were introduced to 

model the financial value of powder feedstock as it was reused in LPBF. Equations for 

𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 were presented to allocate costs for the un-melted 

powder in the LPBF process and costs for blending reused and virgin powder lots. Cost was 

modeled for an automotive upright and test apparatus component. The feedstock was modeled as 

having 10 and 30 build cycles of reuse and compared against a traditional cost model that 

assumed infinite powder reuse. A sensitivity study was conducted to examine how build volume 

utilization can decrease 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and increase 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙. Costs was also modeled for 

the mass production of 1000 units and compared for the depreciation models using a “normalized 

cost per part” against a traditional cost model. 

 Following the demonstration of the powder depreciation cost model, a CAD-integrated 

design tool was developed to apply the proposed cost model into a software plug-in embedded in 

a 3D CAD program. The plug-in modeled the build volume and position of the component on the 

substrate for a LPBF machine. The tool’s GUI provided options for querying geometric data, 

specifying build parameters, generating support structures, optimizing build orientation, and 

conducting a simplified cost estimate. Ray-trace projection and grid partitions were used to 

identify intersections on the build geometry and generate internal and external support structures. 

A case study was presented using the automotive upright to demonstrate the capability of the 

plug-in. Sensitivity analysis was conducted by varying the support angle, orientation of parts on 
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the build platform, and optimizing the build orientation by searching for the orientation that 

reduced internal support structures through particle swarm optimization. 

5.2 Contributions 

 The key contributions of this work include the SOYD and SLN depreciation cost models 

for valuing a powder feedstock as it is reused in LPBF, the equations for 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and 

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, along with the results from the case studies. The most prominent results 

were that traditional cost models with unlimited powder reuse undervalued build jobs with virgin 

powder by 13-75% in Ti-6Al-4V and 3-11% for GP1.  Upon exceeding 13 build cycles in Ti-6Al-

4V, 11 for GP1, the total costs for build jobs achieved a cost savings of 38% or 5% when using a 

highly reusable powder or powder feedstock exceeding 𝑈𝑚𝑎𝑥. Regardless of material type and 

geometry, it was found that 16-19% of the build volume utilization was the minimal quantity 

needed in order for 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 to exceed 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛. In mass production, high priced 

materials such as IN718 and Ti-6Al-4V can produced “normalized cost per part” that are 10% or 

more than traditional cost for productions with less than 100 parts (i.e., 33 and 20 build jobs 

respectively). In constrast, builds with lower priced feedstock such as AlSi10Mg and GP1 

converge to costs that were only “1.04x” or “1.02x” traditional costs after 1000 parts. 

 Additional contributions include the framework and customizable code for a CAD-

integrated cost estimator in SolidWorks 2015. Key findings were that the cost estimate was 

sensitive to the support angle, which could over-underestimate support material costs by 34% and 

build time by 20%. The resolution and diameter of the support structures showed no notable 

impact on the accuracy and precision of the cost estimate. A build with two parts oriented flat on 

the build plate had the lowest cost at $4150 per part. The orientation was infeasible, but the 

production of vertical components provided an alternative at $7700 per part. The optimal build 
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orientation found from particle swarm optimization reduced the internal support volume from 116 

𝑐𝑚3 to 34 𝑐𝑚3. Benchmarking with 3DXpert revealed 20% discrepancy in the support volume 

estimation and 10% discrepancy in the build time estimate but only 3% discrepancy for the 

support volume and build time for the optimized orientation that reduced internal supports. 

5.3 Highlighted Limitations 

For cost modeling with reused powder feedstock, it is uncertain what is the proper reuse 

limit and metric for measuring the duration for which a powder can be reused in LPBF. Although 

10 and 30 build cycles were used in the model, feedstocks may be post-processed to remove 

chemical impurities, improve powder size distribution, and subsequently be recertified for future 

production use. Additionally, the rate of decline and salvage value designated for the powder 

feedstock will vary from manufacturer based on the component’s industry of use and regulatory 

restrictions. A 2.25 dosage amount is very aggressive and is typically larger for builds consisting 

of higher build volume utilizations which can lead to higher feedstock depreciation costs. Mass 

production with LPBF faces lengthy build times which may be susceptible to power outages and 

build restarts which can add further build setup and labor costs. Additionally, mass production 

can demand large quantities of powder feedstock and require the feed bed to be refilled with extra 

powder during the build in order to produce all parts and fully complete the build process. 

 In the plug-in, accuracy of the estimated support structure volume was heavily dependent 

on the specified support angle and geometry of the supports. The ray-trace projection and grid 

partitioning algorithm were susceptible to aliasing as the parts was being rotated due to alignment 

with the build platform. Cylindrical supports were applied at each intersection point and were not 

organized by overhang regions which resulted in over 100 individual solid bodies in the part 
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history and run times in excess of 1300 seconds for high resolution supports hindering the speed 

and flexibility of analyzing multiple part configurations. 

5.3 Future Work 

 Powder feedstock reusability can be better studied by identifying which properties impact 

fatigue and functional performance in as-built, machined, and heat-treated components. 

Generalized metrics for powder reuse and duration limits can be studied to better compare how 

parts differ than those produced with virgin powder and with differing LPBF machines. 

Improvements to the LPBF cost model could be found through a regression-based build time 

estimator that examines similar LPBF technologies (e.g. power, layer thickness, recoat speed, 

quantity of lasers, etc.) across multiple build jobs with varying geometries, replicates, and build 

heights. Mass production cost studies in LPBF could be performed to better highlight the rate of 

build failure, power outages, and build restarts that occur in a production environment.   

  For the CAD-integrated cost estimator, the macro’s ray-trace projection can be revised 

with high precision techniques such as octree and voxelization. Speed can improved by querying 

surface tessellation data and coordinates from the graphics body displayed by the CAD program. 

The support structure primitives can be expanded from cylinders to a library of different shapes 

including hollow, solid, tree, and scaffolding supports. Additional functions can be added to the 

macro including analyzing and positioning multiple bodies along with having the capability to 

generate slice files directly from the CAD geometry. 
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Appendix A 

Cost Model for Powder Feedstock Depreciation MATLAB Code I 

%% Cost Modeling for Reused Powder Feedstocks in Laser Powder Bed Fusion 

% Michael W. Barclift - Penn State University - University Park, PA 16801 

% mzb5747@psu.edu | mwb81@vt.edu | 

% SAE Upright Individual Cost Modeling Code 

%% 

 

clc 

clear all 

close all 

format long g 

 

%% Initilization 

xmax = 250.8; %Buildplate width on EOS M280 (mm) 

ymax = 250.8; %Buildplate length on EOS M280 (mm)    

 

dxmax = 250.8; %Dispenser width on EOS M280 (mm) 

dymax = 227.80625; %Dispenser length on EOS M280 (mm) 

 

Mat.wden = [7.8,8.15,2.67,4.41]; %Density of solidified powder feedstock (g/cm^3) 

Mat.tapden = [5.3, 5.1, 1.5,2.74]; %Density of un-melted powder feedstock (g/cm^3) 

Mat.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3) 

Mat.layer = [20,40,30,30]; %Layer Thickness (microns) 

Mat.vprice = [105, 192,152,680]; %Price of virgin powder feedstock ($/kg) 

Mat.salvage = 0; %Estimated value of powder feedstock at end of useful life (hr) 

Mat.life = 0; %Estimated useful life of powder feedstock in build cycles (-) 

Mat.use1 = 0; %Selected cycle in life of powder feedstock 

Mat.waste = 0.4; %Percentage of powder lost during AM build process (%) 

Mat.trapped = 0.25; %Percentage of powder trapped in Support Structures 

Mat.charge = 2.25; %Amount of excess powder added per layer 

 

Cost.oper = 110; %AM machine operator's cost ($/hr) 

Cost.pc = 100; %Cost of the computer workstation ($/hr) 

Cost.mach = 60; %Cost of the AM machine during build operation ($/hr) 

Cost.stress = 350; %Cost to stress relief components on build substrate ($) 

Cost.EDM = 200; %Cost to wire-EDM components on AM build substrate ($) 

Cost.gas = 10; %Cost to use inert gas during AM build process ($/hr) 

Cost.tools = 50; %Cost to use post-processing tools/equipment ($/hr) 

 

Time.prep = [3]; %Time to generate support structures for digital models (hr) 

Time.buildjob = 1; %Time to compile and arrange geometries on the build tray 

Time.setup = 2; %Time to setup AM machine, gas, software, and pre-processes (hr) 

Time.change = 0; %Time to change loaded powder, clean machine, filters, and reload (hr) 

Time.recoat = 9; %Time AM machine needs to spread a new layer of powder (sec) 

Time.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3) 

Time.removal = 3; %Time to remove build substrate from AM machine, sieve powder, clean, and documentation (hr) 

Time.postp = 3; %Time required to post-process individual parts (hr) 

 

%% User Inputs 

Part.zheight = [172]; %Build height of parts (mm) 

Part.vol = [175]; %Part geometric volume (cm^3) 

Part.supports = [412]; %Part goemetric volume for supports (cm^3) 

Part.totalvol = Part.vol + Part.supports; %Total volume (cm^3) 

%Part.dispvol = Mat.charge*[2484.375,2484.375,2506.88]; %Volume to fill build chamber (cm^3) 

%Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3) 

Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3) 
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%------------------EDIT HERE TO CHANGE NUMBER OF PARTS-------------------- 

%  for mchoice = 1:4 %Material choice 

    pcc_count = 0; 

%     for pcc = 1:3 %Part count cases selector 

        Part.count.cases = [1,2,4,6,8]; %Scenarios of part count cases 

         

%         Part.N = Part.count.cases(pcc)*[3,3,3]; %Number of replicates for a geometry (-) 

        Part.N = [1]; 

         

        Part.postp = [1]; %Parts needing to be post-processing (True (1) False (0)) 

        i = 1; %Selected Part Volume 

        p = 1; %Selected Part Geometries to Include in Cost Analysis 

        j = 1; %Selected AM Process 

         

        %------------------EDIT HERE TO CHANGE MATERIAL-------------------- 

           mchoice = 4; 

        k = mchoice; %Selected Material [GPI - 1, IN718 - 2, AlSi10Mg -3, Ti64 -4] 

         

        %% Build Time Estimate for Powder Be Fusion 

        %1. Complie build tray - part data 

        PartData = [Part.zheight;Part.totalvol;Part.dispvol;Part.N]; 

         

        %2. Sort all part data by increasing z-height 

        PartData = sortrows(PartData',1)'; 

         

        %3. Convert z-height to layers 

        PartData(1,:) = round(PartData(1,:)*1000/Mat.layer(k)); 

         

        %4. Calculate layerwise recoating time allocation 

        layer = PartData(1,1:p); 

        Time.rc = zeros(1,p); 

         

        for u = 0:(p-1) 

            if u == 0 

                Time.rc(1,u+1) = 1/60*1/60*Time.recoat*(layer(u+1)-0)./sum(PartData(4,(u+1):p)); 

            elseif u > 0 

                Time.rc(1,u+1) = Time.rc(1,u) + 1/60*1/60*Time.recoat*(layer(u+1)-layer(u))./sum(PartData(4,(u+1):p)); 

            end 

        end 

         

        Time.trc = Time.recoat*layer(u+1)*1/60*1/60; %Total recoating time for the buildjob (hr) 

         

        %-------Editing Build Time Estimate to be for whole build-------- 

        %Time.exp = Part.N*PartData(2,1:p).*1/Mat.buildrate(k); %Total time for solidfying each part volume (hr) 

        Time.exp = PartData(2,1:p).*1/Mat.buildrate(k); 

         

        Time.delay = 0/sum(PartData(4,1:p)); %Total time for heat, cooling, inactive (hr) 

         

          Time.buildt = (Time.rc + Time.exp);%CHANGE(Time.rc.*Pmax)+(Time.exp.*Pmax); 

        %% Part Mass Calculation 

        Part.vol = PartData(2,1:p); 

        Part.bed = PartData(3,1:p); 

         

        %% Iterative Loop Structure 

        Mat.lifecases = [1,1,1,1]; 

         

        for index = 1:length(Mat.lifecases) 

            Mat.lifecases = [10,30,10,30]-0*[1,1,1,1]; %Scenarios of Estimated Life for Powder Feedstock 
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            count = 1; 

            Mat.life = Mat.lifecases(index); 

             

            %% Depreciation Cost Calculation 

            % SLN 

            %    Dep = @(cmo,S,U,u) (cmo)-(u).*cmo/(U); 

            %    Mat.value = Mat.vprice(k); 

            %    for u = 2:Mat.life 

            %        Mat.value(u) = Dep(Mat.value(1),Mat.salvage,Mat.life,(u-1)); 

            %    end 

            %    Mat.value(u+1) = 0; 

             

            % SOYD DEPRECIATION METHOD 

            Dep = @(cmu,cmo,S,U,u) cmu-(cmo-S)*(U-u+1)./(U*(U+1)/2); 

            Mat.value = Mat.vprice(k); 

             

            if index>2 

                Mat.value=Mat.value*0.4; 

            end 

             

            for u = 2:Mat.life 

                Mat.value(u) = Dep(Mat.value(u-1),Mat.value(1),Mat.salvage,Mat.life,(u-1)); 

            end 

            Mat.value(u+1) = 0; 

             

            % Double Declining Balance Method 

            Dep = @(cmu,U,u) cmu - 2/U.*(cmu); 

            Mat.value3 = Mat.vprice(k); 

            for u = 2:Mat.life 

                Mat.value3(u) = Dep(Mat.value3(u-1),Mat.life,(u-1)); 

            end 

            Mat.value3(u+1)=0; 

             

             

            for index2 = 1:Mat.life 

                Mat.use1 = index2; 

                 

                %% Calculation of Costing 

                Part.bedmass = Part.bed(1:p).*Mat.tapden(k)/1000; 

                Part.bedmass = unique(Part.bedmass)'; 

                %Cost.dep = (Part.bedmass(p)-sum(Part.mass.*Part.N(1:p))).*(Mat.value(1)-Mat.value(2)); 

                 

                %% Calculate Part Volumes Partitions for Layerwise Depreciation 

                 

                Part.volp = length(Part.bedmass); %Minimum of number volume partitions 

                Part.volpi = zeros(Part.volp,p); %Intialize Part Volume Partitions Input 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

                % USER MUST INPUT DATA FOR VOLUME AT PARTITIONS 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

                 

                % DATA FOR PENCIL THRUSTERS 

                %  Part.volpi = [15.615,15.698,9.40;0,0,0.05]; %User Input Partition Data 

                %  %OLD DATA WITH SUPPORTS STILL IN VOLUME 

%                 Part.volpi = [14.91, 15.39,9.40;0,0,0.05]; 

%                 Part.supports = [0.705,0.308,0;0,0,0]; 
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                 Part.volpi = Part.totalvol; 

                 Part.volpi = Part.vol-Part.supports; 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

                 

                Part.N = PartData(4,1:p); 

                Part.mass = 1/1000*((1+Mat.waste)*(Part.volpi + Part.supports))*Mat.wden(k) + 

1/1000*(Mat.trapped*Part.supports)*Mat.tapden(k); 

                Part.N = logical(Part.volpi).*repmat(Part.N,Part.volp,1); 

                 

                %------THIS PART CALCULATES DEPRECIATION FOR POWDER IN THE BED AND PARTS------ 

                %------Calculated via Conversation of Mass and Equal Depreciation 

                %------Method is volume agnostic with no penalty for large/small parts as of 5/25/2016 

                % %         ====OLD METHOD===== 5/26/2016 

                %         for s = 0:(Part.volp-1) 

                %         if s == 0 

                %             Part.depmass(s+1,:) = (Part.bedmass(s+1)-0) - sum(Part.mass(s+1,:).*Part.N(s+1,:)); %Mass of 

Depreciated Powder in the Bed 

                %             Part.depma(s+1,:) = Part.depmass(s+1,:)./sum(Part.N(s+1,:)); %Mass of Depreciated Powder 

Allocated to each parts 

                %         elseif s >0 

                %             Part.depmass(s+1,:) = (Part.bedmass(s+1)-Part.bedmass(s)) - sum(Part.mass(s+1,:).*Part.N(s+1,:)); 

%Mass of Depreciated Powder in the Bed 

                %             Part.depma(s+1,:) = Part.depmass(s+1,:)./sum(Part.N(s+1,:)); %Mass of Depreciated Powder 

Allocated to each parts 

                %         end 

                %         end 

                % 

                %         if Mat.use1 == 0 

                %         Part.dep = Part.depmass.*(Mat.value(0+1)-Mat.value(1+1)); 

                %         Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p); 

                %         Part.depma = Part.depma.*(Mat.value(0+1)-Mat.value(1+1)); 

                %         Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p); 

                % 

                %         else 

                %         Part.dep = Part.depmass.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1)); 

                %         Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p); 

                %         Part.depma = Part.depma.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1)); 

                %         Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p); 

                % 

                %         end 

                % 

                %         Part.depma = sum(Part.depma); %Depreciation Cost Allocated to Each Individual Part 

                %         %=====END OF OLD METHOD===== 5/26/2016 

                 

                %% NEW METHOD 

                %=====NEW METHOD BASED ON MASS (volumes assume air voids which add error to model)==== 

5/26/2016 

                for s = 0:(Part.volp-1) 

                    if s == 0 

                        Part.depmass(s+1,:) = (Part.bedmass(s+1)-0) - sum(Part.mass(s+1,:).*Part.N(s+1,:)); %Mass of 

Depreciated Powder in the Bed 

                    elseif s >0 

                        Part.depmass(s+1,:) = (Part.bedmass(s+1)-Part.bedmass(s)) - sum(Part.mass(s+1,:).*Part.N(s+1,:)); 

%Mass of Depreciated Powder in the Bed 

                    end 

                end 
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                Part.depma = (Part.N.*Part.mass)./sum(Part.N.*Part.mass); %This is the percentage of depreciated mass 

allocated to each part based on mass 

%                 Part.depma = repmat(Part.depmass,1,p).*Part.depma; %This is the actual depreciated mass allocated 

            

                if Mat.use1 == 0 

                    Part.dep = Part.depmass.*(Mat.value(0+1)-Mat.value(1+1)); 

                    % Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p); 

%                     Part.depma = Part.depma.*(Mat.value(0+1)-Mat.value(1+1)); 

                    % Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p); 

                     

                else 

                     

                    if length(Mat.value)==1 

                        Mat.value = [Mat.value,0]; 

                    end 

                     

                    Part.dep = Part.depmass.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1)); 

                    % Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p); 

%                     Part.depma = Part.depma.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1)); 

                    % Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p); 

                end 

                 

                Part.dep = (Part.dep.*Part.depma)./Part.N; 

                 

%                 Part.depma = sum(Part.depma); %Depreciation Cost Allocated to Each Individual Part 

                 

                %% Activity-Cost Calculations 

                Pmax = Part.N(1,:); 

                Pmax_v = sum(Pmax)*ones(1,length(Pmax)); 

                Cost.prep = (Cost.oper + Cost.pc)*Time.prep./Pmax; 

                Cost.buildjob = (Cost.oper + Cost.pc)*Time.buildjob./Pmax_v; 

                Cost.setup = (Cost.oper + Cost.mach)*(Time.setup + Time.change)./Pmax_v; 

                 

               

                 

                Cost.build.mach = (Cost.mach+Cost.gas)*Time.buildt; 

                 

                if Mat.use1 == 0 

                    Cost.build.mat = Part.mass*Mat.value(Mat.use1); 

%                     Cost.build.mat = sum(Part.mass)*Mat.value(Mat.use1+1); 

                else 

                    Cost.build.mat = Part.mass*Mat.value(Mat.use1); 

%                     Cost.build.mat = sum(Part.mass)*Mat.value(Mat.use1); 

                end 

                 

                %CHANGE sum(Part.mass)*Mat.value(1).*Pmax; 

                Cost.build.dep = Part.dep; %CHANGE Part.depma.*Pmax; 

                Cost.build.total = Cost.build.mach+Cost.build.mat+Cost.build.dep; 

                Cost.removal = (Cost.oper + Cost.mach)*(Time.removal)./Pmax_v; 

                Cost.substrate = Cost.stress./Pmax_v + Cost.EDM./Pmax_v; 

                 

                % FIX POST PROCESSING COSTS FOR EACH MODEL 

                Cost.postp = Time.postp*(Cost.oper+Cost.tools).*Part.postp; 

                 

                Cost.total = [Cost.prep; Cost.buildjob; Cost.setup; Cost.build.total; Cost.removal; Cost.substrate; Cost.postp] 

                Cost.total2 = [Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.build.mat; Cost.build.dep; 

Cost.removal; Cost.substrate; Cost.postp] 

                 

                %Individual Part Costing stored for each use case [5,10,15,20] 

                if index ==1 
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                    Ind_5(:,:,Mat.use1) = Cost.total2; 

                elseif index == 2 

                    Ind_10(:,:,Mat.use1) = Cost.total2; 

                elseif index == 3 

                    Ind_15(:,:,Mat.use1) = Cost.total2; 

                elseif index == 4 

                    Ind_20(:,:,Mat.use1) = Cost.total2; 

                end 

                 

                %Total Build Costing stored for each use case [5,10,15,20] 

                if index ==1 

                    tb_5(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2); 

                elseif index == 2 

                    tb_10(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2); 

                elseif index == 3 

                    tb_15(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2); 

                elseif index == 4 

                    tb_20(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2); 

                end 

                 

                Cost.total3 = sum(Cost.total2')'; 

                 

                if index ==1 

                Cost.totalzero = sum(sum([Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.removal; 

Cost.substrate; Cost.postp])*Pmax'); 

                end 

                 

                datatotal(index,Mat.use1) = sum(sum(round(Cost.total2,2)*Pmax')); 

                 

                %Percentage based Material and Depreciation Costing stored for each use case [5,10,15,20] 

                if index ==1 

                    % 6/17/16 - This method is better and less manual ---> mvd5_test(Mat.use1,:) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                    mvd_5(Mat.use1,:) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                     

                    %     mvd_5(:,:,Mat.use1) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                elseif index == 2 

                    mvd_10(Mat.use1,:) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                     

                    %    mvd_10(:,:,Mat.use1) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                elseif index == 3 

                    mvd_15(Mat.use1,:) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                    %   mvd_15(:,:,Mat.use1) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                elseif index == 4 

                    mvd_20(Mat.use1,:) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 
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                    %  mvd_20(:,:,Mat.use1) = 

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)]; 

                end 

                 

                mass_all = 

[sum(Part.mass).*Pmax,sum(sum(Part.mass).*Pmax),max(Part.bedmass),sum(sum(Part.mass).*Pmax)./max(Part.bedm

ass)]; 

                vol_all = 

[Part.vol.*Pmax,sum(Part.vol.*Pmax),max(Part.bed/Mat.charge),sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge)]; 

                 

                Cost.build.mat = Part.mass*Mat.value(1); 

                 

                 if index ==1 

                Cost.inf = sum(sum([Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.build.mat; Cost.removal; 

Cost.substrate; Cost.postp])*Pmax'); 

                 end 

                 

                if index ==3 

                Cost.inf2 = sum(sum([Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.build.mat; Cost.removal; 

Cost.substrate; Cost.postp])*Pmax'); 

                 end 

                  

                if k == 1 

%             mvd_all_1(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

            bmu_1(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of 

parts over mass of powder used. 

            bvu_1(pcc_count+1,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - volume 

of part over volume of bed. 

        elseif k == 2 

%             mvd_all_2(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

              bmu_2(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of 

parts over mass of powder used. 

            bvu_2(pcc_count+1,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - volume 

of part over volume of bed. 

        elseif k == 3 

%             mvd_all_3(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

              bmu_3(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of 

parts over mass of powder used. 

            bvu_3(pcc_count+1,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - volume 

of part over volume of bed. 

        elseif k == 4 

%             mvd_all_4(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

              bmu_4(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of 

parts over mass of powder used. 

            bvu_4(pcc_count+1,:) = sum(Part.vol.*Pmax)/(xmax*ymax*max(Part.zheight)/(10^3)); %Build Volume 

Utilization - volume of part over volume of bed. 

        end 

                 

                %% Clearing of Data 

                Part.depmass = []; %Clearing variables for re-calculation 

                Part.depma = []; %Clearing variables for re-calculation 

                Part.dep = []; %Clearing variables for re-calculation 

                s = []; %Clearing variables for re-calculation 

                Part.N = []; %Clearing variables for re-calculation 

                Part.mass = []; %Clearing variables for re-calculation 

            end 

            count = count + 1; 

        end 
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        uses = [10,30,10,30]; 

          for d = 1:4    

        plot(0:uses(d),[datatotal(d,1:uses(d)),Cost.totalzero]) 

        hold on 

          end 

         

         

            plot([0,Mat.life],[Cost.inf,Cost.inf]) 

          hold on 

           plot([0,Mat.life],[Cost.inf2,Cost.inf2]) 

        plot([0,Mat.life],[Cost.totalzero, Cost.totalzero]) 

     

         

        if mchoice == 1 

        title('Material: GP1') 

        elseif mchoice == 2 

        title('Material: IN718') 

        elseif mchoice == 3  

        title('Material: AlSi10Mg') 

        elseif mchoice == 4 

        title('Material: Ti64') 

        end 

     

    legend('U_m_a_x = 10 Build Cycles ($680/kg)','U_m_a_x = 30 Build Cycles ($680/kg)','U_m_a_x = 10 Build 

Cycles ($272/kg)','U_m_a_x = 30 Build Cycles ($272/kg)','Rickenbacher et al. ($680/kg)','Rickenbacher et al. 

($272/kg)','Powder exceeds U_m_a_x') 

        xlabel('Build Cycles (-)') 

        ylabel('Total Costs ($)') 

 

 

       

     

         

        % Cost Break down code----------- 

        figure 

        colormap jet 

         

        tb_5(:,:,1) = tb_5(:,:,1)./sum(tb_5(:,:,1))*100 

        tb_10(:,:,1) = tb_10(:,:,1)./sum(tb_10(:,:,1))*100 

        tb_15(:,:,1) = tb_15(:,:,1)./sum(tb_15(:,:,1))*100 

        tb_20(:,:,1) = tb_20(:,:,1)./sum(tb_20(:,:,1))*100 

         

        bar([tb_5(:,:,1)';tb_10(:,:,1)';tb_15(:,:,1)';tb_20(:,:,1)'],'stacked') 

        legend('C-prep','C-buildjob','C-setup','C-build-machine','C-build-material','C-build-depreciation','C-removal','C-

substrate','C-postp') 

%         legend('C_p_r_e_p','C_b_u_i_l_d_j_o_b','C_s_e_t_u_p','C_b_u_i_l_d_-_m_a_c_h_i_n_e','C_b_u_i_l_d_-

_m_a_t_e_r_i_a_l','C_b_u_i_l_d_-

_d_e_p_r_e_c_i_a_t_i_o_n','C_r_e_m_o_v_a_l','C_s_u_b_s_t_r_a_t_e','C_p_o_s_t_p') 

        ylabel('Percentage of Costs (%)') 

        ylim([0 100]) 

         

        ax = gca; 

        ax.XTickLabel = {'U_m_a_x = 10','U_m_a_x = 30','U_m_a_x = 10','U_m_a_x = 30'}; 

        xlabel('$680/kg                             $272/kg') 

         

         if mchoice == 1 

        title('Material: GP1') 

        elseif mchoice == 2 

        title('Material: IN718') 

        elseif mchoice == 3 
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        title('Material: AlSi10Mg') 

        elseif mchoice == 4 

        title('Material: Ti64') 

        end 

%         --------------- 

         

          

         

%          

%          if k == 1 

%              mvd_all_1(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

% %             bmu_1(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass 

of parts over mass of powder used. 

% %             bvu_1(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - 

volume of part over volume of bed. 

%          elseif k == 2 

%              mvd_all_2(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

% %               bmu_2(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass 

of parts over mass of powder used. 

% %             bvu_2(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - 

volume of part over volume of bed. 

%          elseif k == 3 

%              mvd_all_3(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

% %               bmu_3(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass 

of parts over mass of powder used. 

% %             bvu_3(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - 

volume of part over volume of bed. 

%          elseif k == 4 

%              mvd_all_4(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)]; 

% %               bmu_4(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass 

of parts over mass of powder used. 

% %             bvu_4(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - 

volume of part over volume of bed. 

%          end 

%     

%     

% figure 

% hold on 

% j = 1; 

%  

%  

% C = [1 .5 0]; 

%  

%      

% for i = 1:2:length(mvd_all_4) 

% %     if mod(j/2,1)>0 

%     if i == 1; 

%     plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[1 0 0],'linewidth',1.5) 

%      plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[1 0 0],'linewidth',1.25) 

%     elseif i == 3; 

%         

%            plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[0.9 0.75 0],'linewidth',1.5) 

%      plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[0.9 0.75 0],'linewidth',1.25) 

%  

%         elseif i == 5; 

%      

%          plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[0 0.5 0],'linewidth',1.5) 

%      plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[0 0.5 0],'linewidth',1.25) 

%         elseif i == 7; 

%          
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%         plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[0.25 0.25 1],'linewidth',1.5) 

%      plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[0.25 0.25 1],'linewidth',1.25) 

%     end 

%     j = j +1; 

% end 

 

% title('Material: Ti64'); 

% legend('U_m_a_x = 10 Build Cycles | Material Cost','U_m_a_x = 10 Build Cycles | Depreciation Cost' , 'U_m_a_x = 

30 Build Cycles | Material Cost','U_m_a_x = 20 Build Cycles | Depreciation Cost', 'U_m_a_x = 30 Build Cycles | 

Material Cost','U_m_a_x = 30 Build Cycles | Depreciation Cost','U_m_a_x = 40 Build Cycles | Material 

Cost','U_m_a_x = 40 Build Cycles | Depreciation Cost') 

 

% grid on 

% xlabel('Build Volume Utilization (%)'); 

% ylabel('Percentage of Total Costs (%)'); 
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Appendix B 

Cost Model for Powder Feedstock Depreciation MATLAB Code II 

%% Cost Modeling for Reused Powder Feedstocks in Laser Powder Bed Fusion 

% Michael W. Barclift - Penn State University - University Park, PA 16801 

% mzb5747@psu.edu | mwb81@vt.edu | 

% Mass Production of SAE Upright from 1-1000 Units Cost Modeling Code 

 

%% 

clc 

clear all 

close all 

format long g 

 

%% Initilization 

xmax = 250.8; %Buildplate width on EOS M280 (mm) 

ymax = 250.8; %Buildplate length on EOS M280 (mm)    

 

dxmax = 250.8; %Dispenser width on EOS M280 (mm) 

dymax = 227.80625; %Dispenser length on EOS M280 (mm) 

 

Mat.wden = [7.8,8.15,2.67,4.41]; %Density of solidified powder feedstock (g/cm^3) 

Mat.tapden = [5.3, 5.1, 1.5,2.74]; %Density of un-melted powder feedstock (g/cm^3) 

Mat.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3) 

Mat.layer = [20,40,30,30]; %Layer Thickness (microns) 

Mat.vprice = [105, 192,152,680]; %Price of virgin powder feedstock ($/kg) 

Mat.salvage = 0; %Estimated value of powder feedstock at end of useful life (hr) 

Mat.life = 0; %Estimated useful life of powder feedstock in build cycles (-) 

Mat.use1 = 0; %Selected cycle in life of powder feedstock 

Mat.waste = 0.4; %Percentage of powder lost during AM build process (%) 

Mat.trapped = 0.25; %Percentage of powder trapped in Support Structures 

Mat.charge = 2.25; %Amount of excess powder added per layer 

 

Cost.oper = 110; %AM machine operator's cost ($/hr) 

Cost.pc = 100; %Cost of the computer workstation ($/hr) 

Cost.mach = 60; %Cost of the AM machine during build operation ($/hr) 

Cost.stress = 350; %Cost to stress relief components on build substrate ($) 

Cost.EDM = 200; %Cost to wire-EDM components on AM build substrate ($) 

Cost.gas = 10; %Cost to use inert gas during AM build process ($/hr) 

Cost.tools = 50; %Cost to use post-processing tools/equipment ($/hr) 

 

Time.prep = [3]; %Time to generate support structures for digital models (hr) 

Time.buildjob = 1; %Time to compile and arrange geometries on the build tray 

Time.setup = 2; %Time to setup AM machine, gas, software, and pre-processes (hr) 

Time.change = 0; %Time to change loaded powder, clean machine, filters, and reload (hr) 

Time.recoat = 9; %Time AM machine needs to spread a new layer of powder (sec) 

Time.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3) 

Time.removal = 3; %Time to remove build substrate from AM machine, sieve powder, clean, and documentation (hr) 

Time.postp = 3; %Time required to post-process individual parts (hr) 

 

%% User Inputs 

Part.zheight = [172]; %Build height of parts (mm) 

Part.vol = [175]; %Part geometric volume (cm^3) 

Part.supports = [412]; %Part goemetric volume for supports (cm^3) 

Part.totalvol = Part.vol + Part.supports; %Total volume (cm^3) 

%Part.dispvol = Mat.charge*[2484.375,2484.375,2506.88]; %Volume to fill build chamber (cm^3) 

%Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3) 

Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3) 
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%------------------EDIT HERE TO CHANGE NUMBER OF PARTS-------------------- 

%  for mchoice = 1:4 %Material choice 

    pcc_count = 0; 

%     for pcc = 1:3 %Part count cases selector 

        Part.count.cases = [1,2,4,6,8]; %Scenarios of part count cases 

         

%         Part.N = Part.count.cases(pcc)*[3,3,3]; %Number of replicates for a geometry (-) 

        Part.N = [1000]; 

%         blendrate = 0.2; 

         

        Part.postp = [1]; %Parts needing to be post-processing (True (1) False (0)) 

        i = 1; %Selected Part Volume 

        p = 1; %Selected Part Geometries to Include in Cost Analysis 

        j = 1; %Selected AM Process 

         

        %------------------EDIT HERE TO CHANGE MATERIAL-------------------- 

           mchoice = 4; 

        k = mchoice; %Selected Material [GPI - 1, IN718 - 2, AlSi10Mg -3, Ti64 -4] 

         

        %% Build Time Estimate for Powder Be Fusion 

        %1. Complie build tray - part data 

        PartData = [Part.zheight;Part.totalvol;Part.dispvol;Part.N]; 

         

        %2. Sort all part data by increasing z-height 

        PartData = sortrows(PartData',1)'; 

         

        %3. Convert z-height to layers 

        PartData(1,:) = round(PartData(1,:)*1000/Mat.layer(k)); 

         

        %4. Calculate layerwise recoating time allocation 

        layer = PartData(1,1:p); 

        Time.rc = zeros(1,p); 

         

        for u = 0:(p-1) 

            if u == 0 

                Time.rc(1,u+1) = 1/60*1/60*Time.recoat*(layer(u+1)-0)./sum(PartData(4,(u+1):p)); 

            elseif u > 0 

                Time.rc(1,u+1) = Time.rc(1,u) + 1/60*1/60*Time.recoat*(layer(u+1)-layer(u))./sum(PartData(4,(u+1):p)); 

            end 

        end 

         

        Time.trc = Time.recoat*layer(u+1)*1/60*1/60; %Total recoating time for the buildjob (hr) 

         

        %-------Editing Build Time Estimate to be for whole build-------- 

        %Time.exp = Part.N*PartData(2,1:p).*1/Mat.buildrate(k); %Total time for solidfying each part volume (hr) 

        Time.exp = PartData(2,1:p).*1/Mat.buildrate(k); 

         

        Time.delay = 0/sum(PartData(4,1:p)); %Total time for heat, cooling, inactive (hr) 

         

          Time.buildt = (Time.rc + Time.exp);%CHANGE(Time.rc.*Pmax)+(Time.exp.*Pmax); 

        %% Part Mass Calculation 

        Part.vol = PartData(2,1:p); 

        Part.bed = PartData(3,1:p); 

         

        %% Iterative Loop Structure 

%         Mat.lifecases = [1,1,1,1]; 

         Mat.lifecases = [10,10,30,30,10,10,30,30];  
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        for index = 1:length(Mat.lifecases) 

                   

% Mat.lifecases = [10,30,10,30]-0*[1,1,1,1]; %Scenarios of Estimated Life for Powder Feedstock 

            count = 1; 

            Mat.life = Mat.lifecases(index); 

             

            %% Depreciation Cost Calculation 

            % SLN 

            %    Dep = @(cmo,S,U,u) (cmo)-(u).*cmo/(U); 

            %    Mat.value = Mat.vprice(k); 

            %    for u = 2:Mat.life 

            %        Mat.value(u) = Dep(Mat.value(1),Mat.salvage,Mat.life,(u-1)); 

            %    end 

            %    Mat.value(u+1) = 0; 

             

            % SOYD DEPRECIATION METHOD 

            Dep = @(cmu,cmo,S,U,u) cmu-(cmo-S)*(U-u+1)./(U*(U+1)/2); 

            Mat.value = Mat.vprice(k); 

             

            if rem(index,2)==0 

                Mat.value=Mat.value*0.4; 

            end 

             

            for u = 2:Mat.life 

                Mat.value(u) = Dep(Mat.value(u-1),Mat.value(1),Mat.salvage,Mat.life,(u-1)); 

            end 

            Mat.value(u+1) = 0; 

             

            if index>4 

               Mat.value = fliplr(0:Mat.value/Mat.lifecases(index):Mat.value);  

            end 

             

%             % Double Declining Balance Method 

%             Dep = @(cmu,U,u) cmu - 2/U.*(cmu); 

%             Mat.value3 = Mat.vprice(k); 

%             for u = 2:Mat.life 

%                 Mat.value3(u) = Dep(Mat.value3(u-1),Mat.life,(u-1)); 

%             end 

%             Mat.value3(u+1)=0; 

             

             

%             for index2 = 1:length(Mat.lifecases) 

                 Mat.use1 = 1; 

                 

                %% Calculation of Costing 

                Part.bedmass = Part.bed(1:p).*Mat.tapden(k)/1000; 

                Part.bedmass = unique(Part.bedmass)'; 

                %Cost.dep = (Part.bedmass(p)-sum(Part.mass.*Part.N(1:p))).*(Mat.value(1)-Mat.value(2)); 

                 

                %% Calculate Part Volumes Partitions for Layerwise Depreciation 

                 

                Part.volp = length(Part.bedmass); %Minimum of number volume partitions 

                Part.volpi = zeros(Part.volp,p); %Intialize Part Volume Partitions Input 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

                % USER MUST INPUT DATA FOR VOLUME AT PARTITIONS 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

                 

                % DATA FOR PENCIL THRUSTERS 

                %  Part.volpi = [15.615,15.698,9.40;0,0,0.05]; %User Input Partition Data 

                %  %OLD DATA WITH SUPPORTS STILL IN VOLUME 

%                 Part.volpi = [14.91, 15.39,9.40;0,0,0.05]; 

%                 Part.supports = [0.705,0.308,0;0,0,0]; 

                 

                 Part.volpi = Part.totalvol; 

                 Part.volpi = Part.vol-Part.supports; 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

                 

                Part.N = PartData(4,1:p); 

                Part.mass = 1/1000*((1+Mat.waste)*(Part.volpi + Part.supports))*Mat.wden(k) + 

1/1000*(Mat.trapped*Part.supports)*Mat.tapden(k); 

                Part.N = logical(Part.volpi).*repmat(Part.N,Part.volp,1); 

 

            Cost.total = zeros(Part.N,10); 

            totalN = Part.N; 

            blendrate = (3*Part.mass)./Part.bedmass; 

             

            for zz=1:totalN 

                                

                 builds = ceil(zz/3); 

                  

                  if zz<=3 

                    Part.N = zz; 

                    Part.depmass = (Part.bedmass-Part.N*Part.mass); %Mass of Depreciated Powder in the Bed 

                    Part.depma = (Part.N.*Part.mass)./sum(Part.N.*Part.mass); %This is the percentage of depreciated mass 

allocated to each part based on mass 

                    Part.dep = Part.depmass.*(Mat.value(0+1)-Mat.value(1+1)); 

                    Cost.build.mat = Part.N*Part.mass*Mat.value(Mat.use1); 

                    Cost.infmat = Part.N*Part.mass*Mat.value(1); 

                    Time.exp = Part.N*Part.vol.*1/Mat.buildrate(k);        

                    Time.buildt = (Time.trc + Time.exp); 

                     

                    Cost.mix = blendrate*Part.bedmass*(Mat.value(1)-Mat.value(Mat.use1)); 

                     

                    Cost.build.mach = (Cost.mach+Cost.gas)*Time.buildt; 

                  else 

                      Cost.build.mach = 0; 

                      Cost.build.mat = 0; 

                      Cost.infmat = 0; 

                      Cost.mix=0; 

                      Part.dep=0; 

                       

                      Mat.use1 = 1; 

                       

                      for bb=1:builds 

                           

%                           if (Mat.use1-1)==Mat.lifecases(index) 

%                           Mat.use1 = 1; 

                          if bb>1 

                              if rem((bb-1),Mat.lifecases(index))==0 

                              Mat.use1=1; 

                              else 
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                              Mat.use1=Mat.use1+1; 

                              end 

                          end 

                           

                          if bb==builds 

                          Part.N=rem(zz,3); 

                           

                            if Part.N==0 

                              Part.N=3; 

                            end 

                           

                          else 

                          Part.N = 3; 

                          end 

                           

                          Part.depmass = (Part.bedmass-Part.N*Part.mass); %Mass of Depreciated Powder in the Bed 

                          Part.dep = Part.dep + Part.depmass.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1)); 

                          Cost.build.mat = Cost.build.mat + Part.N*Part.mass*Mat.value(Mat.use1); 

                          Cost.infmat = Cost.infmat + Part.N*Part.mass*Mat.value(1); 

                          Time.exp = Part.N*Part.vol.*1/Mat.buildrate(k);        

                          Time.buildt = (Time.trc + Time.exp); 

                          Cost.mix = Cost.mix + blendrate*Part.bedmass*(Mat.value(1)-Mat.value(Mat.use1));                    

                          Cost.build.mach = Cost.build.mach + (Cost.mach+Cost.gas)*Time.buildt; 

                      end      

                  end 

                                 

                Cost.prep(zz) = (Cost.oper + Cost.pc)*Time.prep;               

                Cost.buildjob(zz) = (Cost.oper + Cost.pc)*Time.buildjob; 

                Cost.setup(zz) = (Cost.oper + Cost.mach)*(Time.setup + Time.change)*(ceil(zz/3));              

                Cost.deptotal(zz) = Part.dep; 

                Cost.buildmat(zz) = Cost.build.mat; 

                Cost.mixtotal(zz) = Cost.mix; 

                Cost.infm(zz) = Cost.infmat; 

                Cost.buildmach(zz) = Cost.build.mach;                

                Cost.removal(zz) = (Cost.oper + Cost.mach)*(Time.removal)*(ceil(zz/3)); 

                Cost.substrate(zz) = (Cost.stress+ Cost.EDM)*(ceil(zz/3)); 

                 

                % FIX POST PROCESSING COSTS FOR EACH MODEL 

                Cost.postp(zz) = Time.postp*(Cost.oper+Cost.tools).*zz; 

                 

                Cost.total(zz,:) = 

[Cost.prep(zz),Cost.buildjob(zz),Cost.setup(zz),Cost.buildmat(zz),Cost.deptotal(zz),Cost.mixtotal(zz),Cost.buildmach(

zz),Cost.removal(zz),Cost.substrate(zz),Cost.postp(zz)]; 

                Cost.inf(zz,:) = 

[Cost.prep(zz),Cost.buildjob(zz),Cost.setup(zz),Cost.infm(zz),Cost.buildmach(zz),Cost.removal(zz),Cost.substrate(zz),

Cost.postp(zz)]; 

 

            end 

             

                c1(:,:,index)=Cost.total; 

                c2(:,:,index)=Cost.inf; 

             

                %% Clearing of Data 

                Part.depmass = []; %Clearing variables for re-calculation 

                Part.depma = []; %Clearing variables for re-calculation 

                Part.dep = []; %Clearing variables for re-calculation 

                s = []; %Clearing variables for re-calculation 

                Part.N = []; %Clearing variables for re-calculation 

                Part.mass = []; %Clearing variables for re-calculation 

%             end 
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            count = count + 1; 

        end 

         

 

        t=sum(Cost.total,2)'; 

        semilogx(t./(1:totalN),'r'); 

        xlabel('Number of Units') 

        ylabel('Cost per Part($)') 

         

        hold on 

         

        p=sum(Cost.inf,2)'; 

        semilogx(p./(1:totalN),'b'); 

         

        grid on 

   

        data = [Cost.total(1,:)',Cost.total(10,:)'/10,Cost.total(100,:)'/100,Cost.total(totalN,:)'/totalN];  

        g = sum(data); 

        data2 = [data(:,1)./g(1),data(:,2)./g(2),data(:,3)./g(3),data(:,4)./g(4)]*100; 

        figure 

         

        colormap('jet') 

        bar(flip(data2)','stacked') 

         

        figure 

        semilogx(sum(c1(:,:,1),2)'./(1:totalN),'r') 

        hold on 

        semilogx(sum(c1(:,:,2),2)'./(1:totalN),'r--') 

        semilogx(sum(c1(:,:,3),2)'./(1:totalN),'b') 

        semilogx(sum(c1(:,:,4),2)'./(1:totalN),'b--') 

         

        semilogx(sum(c1(:,:,5),2)'./(1:totalN),'c') 

        semilogx(sum(c1(:,:,6),2)'./(1:totalN),'c--')       

        semilogx(sum(c1(:,:,7),2)'./(1:totalN),'m') 

        semilogx(sum(c1(:,:,8),2)'./(1:totalN),'m--') 

         

         

        semilogx(sum(c2(:,:,1),2)'./(1:totalN),'g') 

        semilogx(sum(c2(:,:,2),2)'./(1:totalN),'g--')     

        grid on 

        xlabel('Number of Units') 

        ylabel('Cost per Part($)') 

         

        grid on 

         

        colormap('jet') 

 

figure 

 

subplot(1,2,1,'XScale','log') 

box on 

xlim([1,totalN]); 

hold on 

 

ratio1(1,:) = (sum(c1(:,:,1),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN)); 

ratio1(2,:) = (sum(c1(:,:,3),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN)); 

ratio1(3,:) = (sum(c1(:,:,5),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN)); 

ratio1(4,:) = (sum(c1(:,:,7),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN)); 

ratio1(5,:) = (sum(c2(:,:,1),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN)); 
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semilogx(ratio1(1,:),'r','LineWidth',1.5) 

semilogx(ratio1(2,:),'b','LineWidth',1.5) 

semilogx(ratio1(3,:),'c','LineWidth',1.5) 

semilogx(ratio1(4,:),'m','LineWidth',1.5) 

semilogx(ratio1(5,:),'color',[0 0.5 0],'LineWidth',1.5) 

 

yscale = ylim; 

 

legend('U_m_a_x = 10 Build Cycles | SOYD',... 

    'U_m_a_x = 30 Build Cycles | SOYD',... 

    'U_m_a_x = 10 Build Cycles | SLN',... 

    'U_m_a_x = 30 Build Cycles | SLN',... 

    'U_m_a_x = \infty') 

 

grid on 

title('Ti64 - $680/kg') 

xlabel('Number of Parts') 

ylabel('Normalized Cost per Part')  

 

% figure 

subplot(1,2,2,'XScale', 'log') 

box on 

hold on 

 

ratio1(1,:) = (sum(c1(:,:,2),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN)); 

ratio1(2,:) = (sum(c1(:,:,4),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN)); 

ratio1(3,:) = (sum(c1(:,:,6),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN)); 

ratio1(4,:) = (sum(c1(:,:,8),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN)); 

ratio1(5,:) = (sum(c2(:,:,2),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN)); 

 

% semilogx(ratio1') 

semilogx(ratio1(1,:),'r','LineWidth',1.5) 

semilogx(ratio1(2,:),'b','LineWidth',1.5) 

semilogx(ratio1(3,:),'c','LineWidth',1.5) 

semilogx(ratio1(4,:),'m','LineWidth',1.5) 

semilogx(ratio1(5,:),'color',[0 0.5 0],'LineWidth',1.5) 

ylim(yscale) 

 

legend('U_m_a_x = 10 Build Cycles | SOYD',... 

    'U_m_a_x = 30 Build Cycles | SOYD',... 

    'U_m_a_x = 10 Build Cycles | SLN',... 

    'U_m_a_x = 30 Build Cycles | SLN',... 

    'U_m_a_x = \infty') 

 

xlim([1,totalN]); 

grid on 

title('Ti64 - $272/kg') 

xlabel('Number of Parts') 

ylabel('Normalized Cost per Part') 
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Appendix C 

CAD-Integrated Cost Estimator Macro Initialize Code 

Dim swApp As Object 

Sub main() 

 

Set swApp = Application.SldWorks 

UserForm2.Show vbModeless 

 

End Sub 
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Appendix D 

CAD-Integrated Cost Estimator Userform Code 

Option Explicit 
'============================================================================ 
'CAD-INTEGRATED COST ESTIMATOR FOR ADDITIVE MANUFACTURING 
' Michael Barclift 
' Pennsylvania State University 
' July 16, 2018 
' mzb5747@psu.edu 
 
'CONTRIBUTORS 
'Andrew Armstrong 
 
'REVIEWERS 
'Timothy Simpson 
'Nicholas Meisel 
'Sanjay Joshi 
'============================================================================= 
 
 
' --------------Variable Definitions----------------- 
 
    Dim swApp As SldWorks.SldWorks 
    Dim swModel As SldWorks.ModelDoc2 
    Dim swModel_part As SldWorks.ModelDoc2 
    Dim swModDocExt As SldWorks.ModelDocExtension 
    Dim swMass As SldWorks.MassProperty 
    Dim swSupports As SldWorks.MassProperty 
    Dim swSelMgr As SldWorks.SelectionMgr 
    Dim swSelData As SldWorks.SelectData 
    Dim swPlane As SldWorks.RefPlane 
    Dim swSketch As SldWorks.Sketch 
    Dim bv_corners(6) As Double 
    Dim swModelView As ModelView 
    Dim support_volume As Double 
    Dim support_volume_raw As Double 
    Dim support_volume_actual As Double 
    Dim Body As Variant 
    Dim optim As Boolean 
    Dim k As Integer 
    Dim supportsurfaces As Integer 
     
    Dim cboxnum As Double 
    Dim partvolume As Double 
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    Public matdensity As Double 
    Public matcost As Double 
     
    Dim FilePath As String 
    Dim uuni As Boolean 
    Dim massi As Boolean 
    Dim LineFromFile As String 
    Dim LineItems As Variant 
    Dim am_machine As String 
    Dim am_material As String 
    Dim num As Integer 
    Dim corners(6) As Double 
    Dim swSketchPt(8) As SldWorks.SketchPoint 
    Dim swSketchSeg(12) As SldWorks.SketchSegment 
     
    Dim boolstatus As Boolean 
    Dim bRet As Boolean 
    Dim parea As Double 
    Dim xmax As Double 
    Dim ymax As Double 
    Dim zmax As Double 
    Dim partvol As Double 
    Dim slice As Integer 
    Dim layert As Double 
    Dim pratio As Double 
     
    Dim count As Integer 
    Dim xrotv As Double 
    Dim yrotv As Double 
    Dim zrotv As Double 
    Dim numnum As Integer 
    Dim SpptCount As Integer 
    Dim startval As Integer 
     
    Dim X_max               As Double 
    Dim X_min               As Double 
    Dim Y_max               As Double 
    Dim Y_min               As Double 
    Dim Z_max               As Double 
    Dim Z_min               As Double 
     
    '================================= 
    'Variables for Support Generation 
    '================================= 
        Dim Y_gap As Double 
    Dim Support_Radius As Double 
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    Dim Support_Rad_Y As Double 
    Dim Support_Rad_X As Double 
    Dim swSketchSegment As SldWorks.SketchSegment 
    Dim swSketchMgr As SldWorks.SketchManager 
    Dim Min As String 
    Dim T As Single 
    Dim Y_inc As Double 
    Dim swBodySelect As Variant 
    Dim num_in_scan As Integer 
    Dim Rp As Integer 
     
    'Definition of dynamic arrays 
    Dim xc_array() As Double 
    Dim yc_array() As Double 
    Dim xc_array_up() As Double 
    Dim yc_array_up() As Double 
    Dim zc_array_up() As Double 
    Dim zc_array_h() As Double 
    Dim SpptCount2 As Integer 
    Dim X_inc As Double 
    Dim X_gap As Double 
    Dim Zray As Double 
    Dim res As Double 
    Dim Build_Direction(2) As Double 
    Dim itr As Integer 
     
    'Ray Trace Projectors 
    Dim shoot_center(2) As Double 
         
        Const hitRadius As Double = 0.0000095 
        Const offset As Double = 0.0000001 
        Dim center_vPts As Variant 
         
        'Center points 
        Dim xc As Double 
        Dim yc As Double 
        Dim zc As Double 
         
        'Vector Z values 
        Dim hit_center As Integer 
        Dim oangle As Double 
        Dim oangle2 As Double 
        Dim p As Integer 
         
        Dim myFeature As Object 
        Dim color As Variant 
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        Dim swFeat2 As Object 
        Dim skSegment As Object 
        Dim support As Object 
        Dim swFeat As SldWorks.Feature 
        Dim calc_sv As Double 
        Dim totalheight() 
        Dim totalheight2() 
        Dim tempvar(8) As Double 
         
        Dim swModeler As SldWorks.Modeler 
        Dim swBody As SldWorks.Body2 
            Dim dblData(8) As Double 
         
 
 
Private Sub Label543_Click() 
 
End Sub 
 
    Private Sub UserForm_initialize() 
     
    Set swApp = Application.SldWorks 
    Set swModel = swApp.ActiveDoc 
    Set swModelView = swModel.GetFirstModelView 
    Set swModDocExt = swModel.Extension 
    Set swMass = swModDocExt.CreateMassProperty 
    Set swModeler = swApp.GetModeler 
 
    swModelView.EnableGraphicsUpdate = False 
    boolstatus = swModel.Extension.HideFeatureManager(True) 
     
    eos_rr.Value = 10 
     
' --------------Load Material Data---------------- 
    'FilePath = "X:\Downloads\AM_Material_Data.csv" 
    FilePath = "C:\AM_Costing_Tool\AM_Material_Data.csv" 
    Open FilePath For Input As #1 
    num = 0 
    numnum = 0 
     
    Do Until EOF(1) 
    Line Input #1, LineFromFile 
    LineItems = Split(LineFromFile, ",") 
     
' --------------Populate Data Fields---------------- 
    am_machine = LineItems(0) 
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    am_material = LineItems(4) 
    count = 0 
     
    If num = 0 Then 
    ElseIf num > 0 Then 
     
    If am_machine = "EOSINT M280" Then 
    eos_mat.AddItem (CStr(am_material)) 
     
    eos_bpx.Value = CStr(LineItems(1)) 
    eos_bpy.Value = CStr(LineItems(2)) 
    eos_bpz.Value = CStr(LineItems(3)) 
     
    eos_mp.AddItem (CStr(LineItems(5))) 
    eos_br.AddItem (CStr(LineItems(8))) 
    eos_lt.AddItem (CStr(LineItems(6))) 
    eos_td.AddItem (CStr(LineItems(7))) 
    eos_wd.AddItem (CStr(LineItems(9))) 
     
    'ElseIf am_machine = "Arcam S12" Then 
    'arcam_mat.AddItem (CStr(am_material)) 
 
    'arcam_bpx.Value = CStr(LineItems(1)) 
    'arcam_bpy.Value = CStr(LineItems(2)) 
    'arcam_bpz.Value = CStr(LineItems(3)) 
     
    'arcam_mp.AddItem (CStr(LineItems(5))) 
    'arcam_br.AddItem (CStr(LineItems(8))) 
    'arcam_lt.AddItem (CStr(LineItems(6))) 
    'arcam_td.AddItem (CStr(LineItems(7))) 
     
    'ElseIf am_machine = "Optomec MR-7" Then 
    'opto_mat.AddItem (CStr(am_material)) 
     
    'opto_bpx.Value = CStr(LineItems(1)) 
    'opto_bpy.Value = CStr(LineItems(2)) 
    'opto_bpz.Value = CStr(LineItems(3)) 
     
    'opto_mp.AddItem (CStr(LineItems(5))) 
    'opto_mfr.AddItem (CStr(LineItems(8))) 
    'opto_td.AddItem (CStr(LineItems(7))) 
     
    End If 
     
    End If 
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    'Old code to remove redundancy 
    'If num > 2 Then 
    'If wordsold <> words Then 
    'mbox.AddItem (CStr(words)) 
    'matbox.AddItem (CStr(words2)) 
    'Else 
    'matbox.AddItem (CStr(words2)) 
    'End If 
    'End If 
     
    num = num + 1 
    Loop 
 
Close #1 
        
    deleteall 
        
    startval = 0 
   swModel.ClearSelection 
   boolstatus = swModel.Extension.SelectByID2("Build Volume", "SKETCH", 0, 0, 0, False, 0, 
Nothing, 0) 
    If boolstatus Then 
    startval = startval + 1 
    End If 
     
    swModel.ClearSelection 
    boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, False, 
0, Nothing, 0) 
    If boolstatus Then 
    startval = startval + 1 
    End If 
     
    boolstatus = swModel.Extension.SelectByID2("Support Structures", "BODYFEATURE", 0, 0, 0, 
False, 0, Nothing, 0) 
    If boolstatus Then 
    startval = startval + 1 
 
    End If 
   swModel.ClearSelection 
    
   'Global Definition of Part Volume 
    partvolume = swMass.Volume 
   partvolume = (partvolume * 100 * 100 * 100) '1615.91 volume of substrate 
   partvolume = Format(partvolume, "0.00") 
   eos_compv.Value = partvolume 
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   If startval > 2 Then 
   QuickDataInitialize 
   Else 
   ModelInitialize 
    DataInitialize 
   End If 
    
   SpptCount = 0 
   swModelView.EnableGraphicsUpdate = True 
   boolstatus = swModel.Extension.HideFeatureManager(False) 
 
 End Sub 
    Function ModelInitialize() 
     
    swModel.SetDisplayWhenAdded False 
    BoundingBoxCode 
    buildplate 
    swModel.SetDisplayWhenAdded True 
     
    End Function 
     
    Function DataInitialize() 
    
' -----------Read Geometry Bounding Box---------------------- 
   xmax = (corners(3) - corners(0)) * 1000 
   ymax = (corners(4) - corners(1)) * 1000 
   zmax = (corners(5) - corners(2)) * 1000 
     
   xmax = Format(xmax, "0.00") 
   ymax = Format(ymax, "0.00") 
   zmax = Format(zmax, "0.00") 
     
   eos_compx.Value = xmax 
   eos_compy.Value = ymax 
   eos_compz.Value = zmax 
    
   parea = (xmax * eos_compy.Value) / (eos_bpx.Value * eos_bpy.Value) 
   parea = Format(parea, "0.00") 
   eos_compa.Value = parea * 100 
    
   ' -----------Read Geometry Data---------------------- 
   'Stop using default units 
   'swMass.UseSystemUnits = False 
   'uuni = 
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitSystem, 
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swUserPreferenceOption_e.swDetailingNoOptionSpecified, 
swUnitSystem_e.swUnitSystem_Custom) 
   'massi = 
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitsMassPropLe
ngth, swUserPreferenceOption_e.swDetailingNoOptionSpecified, swLengthUnit_e.swMETER) 
    
   pratio = 100 * partvolume / (xmax * ymax * zmax / 10 / 10 / 10) 
   pratio = Format(pratio, "0.00") 
   eos_pack.Value = pratio 
     
    End Function 
    Function QuickDataInitialize() 
     
    Const MaxDouble         As Double = 1.79769313486231E+308 
    Const MinDouble         As Double = -1.79769313486231E+308 
 
    X_max = MinDouble 
    X_min = MaxDouble 
    Y_max = MinDouble 
    Y_min = MaxDouble 
    Z_max = MinDouble 
    Z_min = MaxDouble 
 
    ' Solid body 
 
    Dim vBodies             As Variant 
   
    vBodies = swModel.GetBodies2(swSolidBody, False) 
     
    Dim i                   As Long 
 
   ProcessBodies vBodies, X_max, X_min, Y_max, Y_min, Z_max, Z_min 
     
    'Actual Corners of Part Bounding Box 
    corners(0) = X_min 
    corners(1) = Y_min 
    corners(2) = Z_min 
    corners(3) = X_max 
    corners(4) = Y_max 
    corners(5) = Z_max 
     
    DataInitialize 
     
    End Function 
     
Function BoundingBoxCode() 
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'=========================== 
'Perfect Bounding Box Code 
'=========================== 
 
    boolstatus = swModel.Extension.SelectByID2("Build Volume", "SKETCH", 0, 0, 0, False, 0, 
Nothing, 0) 
    If boolstatus = True Then 
    swModel.EditDelete 
    End If 
     
    'Get point data for bounding box along XYZ axes 
    'corners = swModel.GetPartBox(True) - Old Method 1/9/2017 
    swModel.Insert3DSketch2 True 
    swModel.SetAddToDB True 
 
    Const MaxDouble         As Double = 1.79769313486231E+308 
    Const MinDouble         As Double = -1.79769313486231E+308 
 
    X_max = MinDouble 
    X_min = MaxDouble 
    Y_max = MinDouble 
    Y_min = MaxDouble 
    Z_max = MinDouble 
    Z_min = MaxDouble 
 
    ' Solid body 
 
    Dim vBodies             As Variant 
   
    vBodies = swModel.GetBodies2(swSolidBody, False) 
     
    Dim i                   As Long 
 
   ProcessBodies vBodies, X_max, X_min, Y_max, Y_min, Z_max, Z_min 
 
    'Corners for Build Volume 
    corners(0) = (X_min + X_max) / 2 - 0.125 
    corners(1) = (Y_min + Y_max) / 2 - 0.125 
    corners(2) = (Z_min - 0.002) 
    corners(3) = (X_min + X_max) / 2 + 0.125 
    corners(4) = (Y_min + Y_max) / 2 + 0.125 
    corners(5) = Z_min + 0.304 
     
    'Build Volume Corners for Global Reference 
    bv_corners(0) = corners(0) 
    bv_corners(1) = corners(1) 
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    bv_corners(2) = corners(2) 
    bv_corners(3) = corners(3) 
    bv_corners(4) = corners(4) 
    bv_corners(5) = corners(5) 
 
     
' --------------Draw Bounding Box Code----------------- 
' REFERENCE: Bounding Box Code originally coded by Wayne Tiffany, Oct 12, 2004 - Updated 
10/15/04 
' Accessed and Modified by Michael Barclift, on Dec 7, 2015 at 
www.soldworks.com/forums/APIHelp 
' START OF BOUNDING BOX-DRAW CODE HERE 
 
  'Draw points at each corner of bounding box 
  Set swSketchPt(0) = swModel.CreatePoint2(corners(3), corners(1), corners(5)) 
  Set swSketchPt(1) = swModel.CreatePoint2(corners(0), corners(1), corners(5)) 
  Set swSketchPt(2) = swModel.CreatePoint2(corners(0), corners(1), corners(2)) 
  Set swSketchPt(3) = swModel.CreatePoint2(corners(3), corners(1), corners(2)) 
  Set swSketchPt(4) = swModel.CreatePoint2(corners(3), corners(4), corners(5)) 
  Set swSketchPt(5) = swModel.CreatePoint2(corners(0), corners(4), corners(5)) 
  Set swSketchPt(6) = swModel.CreatePoint2(corners(0), corners(4), corners(2)) 
  Set swSketchPt(7) = swModel.CreatePoint2(corners(3), corners(4), corners(2)) 
   
  ' Now draw bounding box 
  Set swSketchSeg(0) = swModel.CreateLine2(swSketchPt(0).x, swSketchPt(0).Y, swSketchPt(0).Z, 
swSketchPt(1).x, swSketchPt(1).Y, swSketchPt(1).Z) 
  Set swSketchSeg(1) = swModel.CreateLine2(swSketchPt(1).x, swSketchPt(1).Y, swSketchPt(1).Z, 
swSketchPt(2).x, swSketchPt(2).Y, swSketchPt(2).Z) 
  Set swSketchSeg(2) = swModel.CreateLine2(swSketchPt(2).x, swSketchPt(2).Y, swSketchPt(2).Z, 
swSketchPt(3).x, swSketchPt(3).Y, swSketchPt(3).Z) 
  Set swSketchSeg(3) = swModel.CreateLine2(swSketchPt(3).x, swSketchPt(3).Y, swSketchPt(3).Z, 
swSketchPt(0).x, swSketchPt(0).Y, swSketchPt(0).Z) 
  Set swSketchSeg(4) = swModel.CreateLine2(swSketchPt(0).x, swSketchPt(0).Y, swSketchPt(0).Z, 
swSketchPt(4).x, swSketchPt(4).Y, swSketchPt(4).Z) 
  Set swSketchSeg(5) = swModel.CreateLine2(swSketchPt(1).x, swSketchPt(1).Y, swSketchPt(1).Z, 
swSketchPt(5).x, swSketchPt(5).Y, swSketchPt(5).Z) 
  Set swSketchSeg(6) = swModel.CreateLine2(swSketchPt(2).x, swSketchPt(2).Y, swSketchPt(2).Z, 
swSketchPt(6).x, swSketchPt(6).Y, swSketchPt(6).Z) 
  Set swSketchSeg(7) = swModel.CreateLine2(swSketchPt(3).x, swSketchPt(3).Y, swSketchPt(3).Z, 
swSketchPt(7).x, swSketchPt(7).Y, swSketchPt(7).Z) 
  Set swSketchSeg(8) = swModel.CreateLine2(swSketchPt(4).x, swSketchPt(4).Y, swSketchPt(4).Z, 
swSketchPt(5).x, swSketchPt(5).Y, swSketchPt(5).Z) 
  Set swSketchSeg(9) = swModel.CreateLine2(swSketchPt(5).x, swSketchPt(5).Y, swSketchPt(5).Z, 
swSketchPt(6).x, swSketchPt(6).Y, swSketchPt(6).Z) 
  Set swSketchSeg(10) = swModel.CreateLine2(swSketchPt(6).x, swSketchPt(6).Y, 
swSketchPt(6).Z, swSketchPt(7).x, swSketchPt(7).Y, swSketchPt(7).Z) 
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  Set swSketchSeg(11) = swModel.CreateLine2(swSketchPt(7).x, swSketchPt(7).Y, 
swSketchPt(7).Z, swSketchPt(4).x, swSketchPt(4).Y, swSketchPt(4).Z) 
 
Set swSketch = swModel.GetActiveSketch2 
  swSketch.Name = "Build Volume" 
  swModel.Insert3DSketch2 False 
     
    'Actual Corners of Part Bounding Box 
    corners(0) = X_min 
    corners(1) = Y_min 
    corners(2) = Z_min 
    corners(3) = X_max 
    corners(4) = Y_max 
    corners(5) = Z_max 
     
    bRet = swSketchPt(3).Select4(True, swSelData): Debug.Assert bRet 
    bRet = swSketchPt(6).Select4(True, swSelData): Debug.Assert bRet 
    bRet = swSketchPt(2).Select4(True, swSelData): Debug.Assert bRet 
 
    Set swPlane = swModel.CreatePlaneThru3Points3(True) 
     
    swPlane.Name = "Build Surface" 
     
  swModel.SetAddToDB False 
     
' END OF BOUNDING BOX-DRAW CODE HERE ------------------------ 
 
End Function 
     
Private Sub Label540_Click() 
    Dim swApp As SldWorks.SldWorks 
    Dim swModel As SldWorks.ModelDoc2 
    Dim swPart As SldWorks.PartDoc 
    Dim vBodies As Variant 
    Set swApp = Application.SldWorks 
    Set swModel = swApp.ActiveDoc 
       
    Set swPart = swModel 
    vBodies = swPart.GetBodies2(swSolidBody, False) 
    If IsEmpty(vBodies) Then Exit Sub 
    Debug.Print UBound(vBodies) + 1 
End Sub 
 
Function buildplate() 
'=============================== 
' Creates EOS M280 Build Plate 
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'=============================== 
 
Dim swFeatureManager As Object 
Dim swModelDocExt As Object 
Dim boolstatus As Boolean 
 
Set swApp = Application.SldWorks 
Set swModel = swApp.ActiveDoc 
Set swFeatureManager = swModel.FeatureManager 
Set swModelDocExt = swModel.Extension 
 
'Delete the Old Material 
swModel.ClearSelection 
boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, False, 0, 
Nothing, 0) 
    If boolstatus = True Then 
    swModel.EditDelete 
    End If 
 
boolstatus = swModel.Extension.SelectByID2("Build Plate", "SKETCH", 0, 0, 0, False, 0, Nothing, 
0) 
    If boolstatus = True Then 
    swModel.EditDelete 
    End If 
 
boolstatus = swModel.Extension.SelectByID2("Build Surface", "PLANE", 0, 0, 0, False, 0, Nothing, 
0) 
swModel.SketchManager.InsertSketch True 
swModel.ClearSelection2 True 
 
'Dim xmax As Double 
'Dim ymax As Double 
'Dim zmax As Double 
 
'boolstatus = 
swModel.Extension.SetUserPreferenceToggle(swUserPreferenceToggle_e.swSketchAddConstTo
RectEntity, swUserPreferenceOption_e.swDetailingNoOptionSpecified, True) 
'boolstatus = 
swModel.Extension.SetUserPreferenceToggle(swUserPreferenceToggle_e.swSketchAddConstLin
eDiagonalType, swUserPreferenceOption_e.swDetailingNoOptionSpecified, True) 
'Dim vSkLines As Variant 
'vSkLines = swModel.SketchManager.CreateCenterRectangle(c1, c2, c3, c1 + 0.125, c2 + 0.125, 
c3) 
 
Dim skPoint As Object 
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Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(0), bv_corners(1), 0#) 
Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(0), bv_corners(4), 0#) 
Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(3), bv_corners(1), 0#) 
Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(3), bv_corners(4), 0#) 
 
swModel.SetPickMode 
swModel.ClearSelection2 True 
Dim skSegment As Object 
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(0), bv_corners(1), 0#, 
bv_corners(3), bv_corners(1), 0#) 
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(3), bv_corners(1), 0#, 
bv_corners(3), bv_corners(4), 0#) 
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(3), bv_corners(4), 0#, 
bv_corners(0), bv_corners(4), 0#) 
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(0), bv_corners(4), 0#, 
bv_corners(0), bv_corners(1), 0#) 
 
Dim swSketch As SldWorks.Sketch 
Set swSketch = swModel.GetActiveSketch2 
swSketch.Name = "Build_Plate" 
 
'swModel.EditRebuild3 
 
'swModel.SketchManager.InsertSketch False 
'swModel.ClearSelection2 True 
swModel.SketchManager.InsertSketch False 
swModel.ClearSelection2 True 
 
boolstatus = swModel.Extension.SelectByID2("Build_Plate", "SKETCH", 0, 0, 0, False, 0, Nothing, 
0) 
swModel.ClearSelection2 True 
boolstatus = swModel.Extension.SelectByID2("Build_Plate", "SKETCH", 0, 0, 0, False, 4, Nothing, 
0) 
Dim swFeat As SldWorks.Feature 
Set swFeat = swModel.FeatureManager.FeatureExtrusion2(True, False, True, 0, 0, 0.0254, 
0.00254, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False, 
False, False, False, True, True, 0, 0, False) 
 
'boolstatus = swModel.Extension.SelectByID2("Build Plate", "SKETCH", 0, 0, 0, False, 4, Nothing, 
0) 
'Dim name As Object 
'Set myFeature = swModel.FeatureManager.FeatureExtrusion2(True, False, True, 0, 0, 0.0254, 
0.00254, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False, 
False, False, False, True, True, 0, 0, False) 
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'Set myFeature = swModel.FeatureManager.FeatureExtrusion2(True, False, False, 2, 0, 0.01, 
0.01, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False, 
False, False, False, True, True, 0, 0, False) 
'name = myFeature.GetID 
 
Dim swSelMgr As SldWorks.SelectionMgr 
'Dim featName As String, featType As String 
'Set swFeat = swModel.FeatureManager.FeatureExtrusion2(True, False, True, 0, 0, 0.0254, 
0.00254, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False, 
False, False, False, True, True, 0, 0, False) 
'swModel.EditRebuild3 
 
If swSelMgr Is Nothing Then 
 
Else 
swFeat.Name = "Build Platform" 
 
swModel.ClearSelection 
swModel.SelectionManager.EnableContourSelection = False 
 
Set swSelMgr = swModel.SelectionManager 
                      
boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, False, 0, 
Nothing, 0) 
                     
Set swFeat = swSelMgr.GetSelectedObject6(1, -1) 
                       
Dim color As Variant 
                             
'color = swFeat.GetMaterialPropertyValues2(swInConfigurationOpts_e.swThisConfiguration, "") 
color = swFeat.GetMaterialPropertyValues2(1, Empty) 
                     
                            color(0) = 1 
                            color(1) = 1 
                            color(2) = 0 
                            color(3) = 1 
                            color(4) = 1 
                            color(5) = 0.8 
                            color(6) = 0.3215 
                            color(7) = 0 
                            color(8) = 0 
                             
swFeat.SetMaterialPropertyValues2 color, swAllConfiguration, Empty 
                             
swModel.ClearSelection2 True 
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End If 
 
'Set swSelMgr = swModel.SelectionManager 
 
'Set swFeat = swSelMgr.GetSelectedObject6(1, -1) 
'swFeat.name = "Build Platform" 
 
'1/16/2017 
 
swModel.ClearSelection 
swModel.EditRebuild3 
 
End Function 
 
 
Private Sub CommandButton7_Click() 
 
If eos_pe.Value = vbNullString Then 
 
totalcost.Value = vbNullString 
 
'ElseIf eos_pw.Value = vbNullString Then 
 
totalcost.Value = vbNullString 
 
ElseIf eos_mc.Value = vbNullString Then 
 
totalcost.Value = vbNullString 
 
Else 
 
totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) * 
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value) 
'totalcost.value = (eos_compmass.value) * eos_mp.value + (eos_mw.value / 100) * 
eos_compmass.value * eos_mp.value + (eos_mr.value * eos_bt.value) 
totalcost.Value = Format(totalcost.Value, "0") 
 
End If 
 
End Sub 
 
Private Sub arcam_mat_Change() 
count = arcam_mat.ListIndex 
 
arcam_mp.ListIndex = count 
arcam_lt.ListIndex = count 
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arcam_td.ListIndex = count 
arcam_br.ListIndex = count 
End Sub 
 
Private Sub ComboBox1_Change() 
 
'eos_compmass.value = eos_wrotd.value * eos_compv.value / 1000 
'eos_compmass.value = Format(eos_compmass.value, "0.00") 
 
End Sub 
 
Function GetMax(Val1, Val2, Val3, Val4) 
 
' Finds maximum of four values 
 
    GetMax = Val1 
 
     
 
    If Val2 > GetMax Then 
 
        GetMax = Val2 
 
    End If 
 
    If Val3 > GetMax Then 
 
        GetMax = Val3 
 
    End If 
 
    If Val4 > GetMax Then 
 
        GetMax = Val4 
 
    End If 
 
End Function 
 
Function GetMin(Val1, Val2, Val3, Val4) 
 
 
' Finds minimum of four values 
 
    GetMin = Val1 
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    If Val2 < GetMin Then 
 
        GetMin = Val2 
 
    End If 
 
    If Val3 < GetMin Then 
 
        GetMin = Val3 
 
    End If 
 
    If Val4 < GetMin Then 
 
        GetMin = Val4 
 
    End If 
 
End Function 
 
Function ProcessTessTriangles(vTessTriangles, X_max, X_min, Y_max, Y_min, Z_max, Z_min) 
 
Dim i                   As Long 
 
    For i = 0 To UBound(vTessTriangles) / (1 * 9) - 1 
 
'        ' Debugging output only 
 
'        Debug.Print "Pt(" + Str(i) + ") = " 
 
'        Debug.Print " (" + _ 
 
'            Str(vTessTriangles(9 * i + 0)) + "," + _ 
 
'            Str(vTessTriangles(9 * i + 1)) + "," + _ 
 
'            Str(vTessTriangles(9 * i + 2)) + ")" 
 
'        Debug.Print " (" + _ 
 
'            Str(vTessTriangles(9 * i + 3)) + "," + _ 
 
'            Str(vTessTriangles(9 * i + 4)) + "," + _ 
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'            Str(vTessTriangles(9 * i + 5)) + ")" 
 
'        Debug.Print " (" + _ 
 
'            Str(vTessTriangles(9 * i + 6)) + "," + _ 
 
'            Str(vTessTriangles(9 * i + 7)) + "," + _ 
 
'            Str(vTessTriangles(9 * i + 8)) + ")" 
 
             
 
        X_max = GetMax((vTessTriangles(9 * i + 0)), (vTessTriangles(9 * i + 3)), (vTessTriangles(9 * i 
+ 6)), X_max) 
 
        X_min = GetMin((vTessTriangles(9 * i + 0)), (vTessTriangles(9 * i + 3)), (vTessTriangles(9 * i + 
6)), X_min) 
 
         
 
        Y_max = GetMax((vTessTriangles(9 * i + 1)), (vTessTriangles(9 * i + 4)), (vTessTriangles(9 * i 
+ 7)), Y_max) 
 
        Y_min = GetMin((vTessTriangles(9 * i + 1)), (vTessTriangles(9 * i + 4)), (vTessTriangles(9 * i + 
7)), Y_min) 
 
         
 
        Z_max = GetMax((vTessTriangles(9 * i + 2)), (vTessTriangles(9 * i + 5)), (vTessTriangles(9 * i 
+ 8)), Z_max) 
 
        Z_min = GetMin((vTessTriangles(9 * i + 2)), (vTessTriangles(9 * i + 5)), (vTessTriangles(9 * i + 
8)), Z_min) 
 
    Next i 
 
'Finished with iterations 
 
End Function 
 
Sub ProcessBodies(vBodies, X_max, X_min, Y_max, Y_min, Z_max, Z_min) 
 
Dim i                   As Long 
Dim swBodyZ             As SldWorks.Body2 
Dim swFace              As SldWorks.Face2 
Dim vTessTriangles      As Variant 
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    ' Probably empty if no reference surfaces 
 
    If IsEmpty(vBodies) Then Exit Sub 
 
    For i = 0 To UBound(vBodies) 
 
        Set swBodyZ = vBodies(i) 
 
        Set swFace = swBodyZ.GetFirstFace 
 
        While Not swFace Is Nothing 
 
            vTessTriangles = swFace.GetTessTriangles(True) 
 
            ProcessTessTriangles vTessTriangles, X_max, X_min, Y_max, Y_min, Z_max, Z_min 
 
            Set swFace = swFace.GetNextFace 
 
        Wend 
 
    Next i 
 
End Sub 
 
Private Sub CommandButton10_Click() 
 
boolstatus = generate_supports(eos_sangle.Value, eos_sres.Value) 
 
 End Sub 
Function deletesup() 
 
'---------------------------------------------------------- 
'Delete Previous Support Structures (Internal and External) 
'---------------------------------------------------------- 
 
Dim longstatus As Long 
Dim DeleteOption As Long 
 
swApp.CommandInProgress = True 
 
boolstatus = swModel.Extension.SelectByID2("Internal Support Structures", "FTRFOLDER", 0, 0, 
0, True, 0, Nothing, 0) 
boolstatus = swModel.Extension.SelectByID2("External Support Structures", "FTRFOLDER", 0, 0, 
0, True, 0, Nothing, 0) 



132 

 

DeleteOption = SwConst.swDelete_Absorbed 
longstatus = swModel.Extension.DeleteSelection2(DeleteOption) 
 
'swModel.EditDelete 
swModel.ClearSelection 
 
 
Dim itr As Integer 
itr = 0 
boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr), "BODYFEATURE", 
0, 0, 0, False, 0, Nothing, 0) 
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4, 
Nothing, 0) 
 'boolstatus = swModel.Extension.SelectByID2("Inner_", "SKETCH", 0, 0, 0, False, 4, Nothing, 0) 
            
While boolstatus 
longstatus = swModel.Extension.DeleteSelection2(DeleteOption) 
swModel.EditDelete 
itr = itr + 1 
boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr), "BODYFEATURE", 
0, 0, 0, False, 0, Nothing, 0) 
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4, 
Nothing, 0) 
Wend 
'swModel.EditDelete 
 
itr = 0 
boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr), "BODYFEATURE", 
0, 0, 0, False, 0, Nothing, 0) 
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4, 
Nothing, 0) 
 'boolstatus = swModel.Extension.SelectByID2("Inner_", "SKETCH", 0, 0, 0, False, 4, Nothing, 0) 
            
While boolstatus 
longstatus = swModel.Extension.DeleteSelection2(DeleteOption) 
swModel.EditDelete 
itr = itr + 1 
boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr), "BODYFEATURE", 
0, 0, 0, False, 0, Nothing, 0) 
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4, 
Nothing, 0) 
Wend 
 
swApp.CommandInProgress = False 
'swModel.EditDelete 
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End Function 
 
Function generate_supports(sangle, sres) 
 
'============================================================================ 
'DIRECT SUPPORT STRUCTURE GENERATION CODE FOR CAD-INTEGRATED COST ESTIMATOR 
' 
' Michael Barclift 
' Andrew Armstrong 
' 
' Version 1.0 - Date: 9/29/2016 - Ray-Trace Projection - Height Method 
' Version 2.0 - Date: 10/19/2016 - Ray-Trace Projection - Next Body 
' Version 3.0 - Date: 1/28/2017 - Ray-Trace Normals - Internal Supports 
' Version 4.0 - Date: 2/14/2017 - Temporary Bodies 
' 
'============================================================================= 
     
    'Performance Tune-Up 
    UserForm2.Hide 
 '   DoEvents 
     
    'Combination 1 Works 
    swApp.UserControl = False 
    swModel.Visible = False 
    'swApp.Visible = False 
    boolstatus = swModel.Extension.HideFeatureManager(True) 
    swModelView.EnableGraphicsUpdate = False 
    'swApp.Frame.KeepInvisible = True 
    'swModel.Visible = False 
     
    'Combination 2 
    'swModelView.EnableGraphicsUpdate = False 
    'boolstatus = swModel.Extension.HideFeatureManager(True) 
     
     
If sangle = vbNullString Then 
    MsgBox ("Define Support Angle") 
    ElseIf sres = vbNullString Then 
    MsgBox ("Define Support Resolution") 
    Else 
 
T = Timer 
 
    sangle = Abs(180 - sangle) 
     
    Set swApp = CreateObject("SldWorks.Application") 
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    Set swModel = swApp.ActiveDoc 
    Set swSelMgr = swModel.SelectionManager 
    Set swSelData = swSelMgr.CreateSelectData 
     
    swModel.ClearSelection 
     
    'Delete the Old Material 
    If SpptCount > 0 Then 
        deletesup 
        End If 
 
    'X_max = corners(3) 
    'X_min = corners(0) 
    'Y_max = corners(4) 
    'Y_min = corners(1) 
    'Z_max = corners(5) 
    'Z_min = corners(2) 
     
    X_max = bv_corners(3) 
    X_min = bv_corners(0) 
    Y_max = bv_corners(4) 
    Y_min = bv_corners(1) 
    Z_min = corners(2) 
 
    num = 0 
     
    'Set Radius on supports 
    slice = sres 
    Y_gap = (Y_max - Y_min) / slice 
    Support_Rad_Y = Abs(Y_gap / 2) 
    num_in_scan = 0 
     
    swModel.ClearSelection2 True 
    swBodySelect = swModel.GetBodies2(swSolidBody, False) 
    swModel.ClearSelection2 True 
     
    SpptCount = 0 'Restored in 1/14/2017 
    SpptCount2 = 0: 
    ReDim totalheight(0) 
    ReDim totalheight2(0) 
     
    'ZRay prevents ray trace from starting at the body edge 
    Zray = Z_min - 0.00001 'gap between 2mm offset 
    X_gap = (X_max - X_min) / slice 
    Support_Rad_X = Abs(X_gap / 2) 
    'Z direction update 01 July 
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        'Grid Definition for Support Radii 
         'If Support_Rad_Y <= Support_Rad_X Then 
            Support_Radius = Support_Rad_Y 
            X_gap = Y_gap 
            X_inc = X_min + Support_Rad_Y '- 2 / 2 / 2017 
            Y_inc = Y_min + Support_Rad_Y '- 2 / 2 / 2017 
         'Else 
         '   Support_Radius = Support_Rad_X 
         '   Y_gap = X_gap 
         '   X_inc = X_min + Support_Rad_X 
         '   Y_inc = Y_min + Support_Rad_X 
         'End If 
         
'************************************************* 
'================START OF LOOP==================== 
'************************************************* 
 
        'Y_inc = Y_inc + Y_gap 
 
'Go to Y where part exists to limit computing 
While Y_inc <= corners(1) 
Y_inc = Y_inc + Y_gap 
Wend 
Y_inc = Y_inc - Y_gap 
 
 
While X_inc <= corners(0) 
X_inc = X_inc + X_gap 
Wend 
X_min = X_inc - X_gap 
X_inc = X_min 
 
Do Until Y_inc > (Y_max * 0.99) 
 
    Do Until X_inc > X_max * 0.99 
    'If num = 0 Then 
    'ElseIf num > 0 Then 
        'Uniform Grid 
        'Y_inc = Y_inc + Y_gap 
        'Hexagonal Packed Grid 
        'Y_inc = Y_inc + Y_gap * 0.86126809 + 0.0001 
    'End If 
     
'=====================NEW CODE FOR POINTS INTERSECTIONS ======================= 
'================3D MATLAB CODE - 10/14/2016 - Michael Barclift================= 
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'--------------------------Ray Trace Projection Vectors---------------------------- 
 
    'Starts on current point 
        shoot_center(0) = X_inc: shoot_center(1) = Y_inc: shoot_center(2) = Zray 
 
     'Comparison to Directional Normal in Z 
        Build_Direction(0) = 0: Build_Direction(1) = 0: Build_Direction(2) = 1# 
 
 '       'Visualize Grid 
 '       swModel.ClearSelection2 True 
  '    bRet = swModel.Extension.SelectByID2("Grid_Points", "SKETCH", 0, 0, 0, False, 0, Nothing, 0) 
  '      swModel.Insert3DSketch2 True 
        'swModel.EditSketch 
  '      Set swSketchPt(0) = swModel.CreatePoint2(X_inc, Y_inc, Z_min) 
        'swModel.EditSketch False 
   '     swModel.Insert3DSketch2 False 
 
        oangle = 0 
        hit_center = swModel.RayIntersections(swBodySelect, shoot_center, Build_Direction, 
swRayPtsOptsNORMALS, hitRadius, offset) 
        'Debug.Print swModel.RayIntersections(swBodySelect, shoot_center, Build_Direction, 
swRayPtsOptsNORMALS, hitRadius, offset) 
        center_vPts = swModel.GetRayIntersectionsPoints 
     
    If hit_center > 0 Then 
 
            'Debug.Print center_vPts(0), center_vPts(1), center_vPts(2), center_vPts(3), 
center_vPts(4), center_vPts(5), center_vPts(6), center_vPts(7), center_vPts(8) 
            oangle = Arccos(center_vPts(8)) * 180 / 3.14159265359 
 
            If oangle > sangle Then 
                xc = center_vPts(3) 
                yc = center_vPts(4) 
             
                If SpptCount > 0 Then 
                ReDim Preserve xc_array(SpptCount) 
                ReDim Preserve yc_array(SpptCount) 
                xc_array(SpptCount) = xc 
                yc_array(SpptCount) = yc 
                 
                totalheight(UBound(totalheight)) = center_vPts(5) - (Z_min - 0.002) '2mm accounts for 
raft on build surface 
                ReDim Preserve totalheight(UBound(totalheight) + 1) 
                'Debug.print xc_array(0); "and"; xc_array(1) 
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                'Debug.print yc_array(0); "and"; yc_array(1) 
                Else 
                ReDim xc_array(SpptCount) 
                ReDim yc_array(SpptCount) 
                xc_array(SpptCount) = xc 
                yc_array(SpptCount) = yc 
                 
                totalheight(UBound(totalheight)) = center_vPts(5) - (Z_min - 0.002) 
                ReDim Preserve totalheight(UBound(totalheight) + 1) 
                End If 
                 
                SpptCount = SpptCount + 1 
 
            End If 
             
            If hit_center > 2 Then 
                    p = 2 
                    While p < hit_center 
                    oangle2 = Arccos(center_vPts(9 * p + 8)) * 180 / 3.14159265359 
                     
                    If oangle2 > sangle Then 
                         
                        xc = center_vPts(9 * p + 3) 
                        yc = center_vPts(9 * p + 4) 
                        zc = center_vPts(9 * p + 5) 
                         
                        If SpptCount2 > 0 Then 
                        ReDim Preserve xc_array_up(SpptCount2) 
                        ReDim Preserve yc_array_up(SpptCount2) 
                        ReDim Preserve zc_array_up(SpptCount2) 
                        ReDim Preserve zc_array_h(SpptCount2) 
                        xc_array_up(SpptCount2) = xc 
                        yc_array_up(SpptCount2) = yc 
                        zc_array_up(SpptCount2) = center_vPts(9 * (p - 1) + 5) 
                        zc_array_h(SpptCount2) = (zc - center_vPts(9 * (p - 1) + 5)) 
                         
                        totalheight2(UBound(totalheight2)) = zc_array_h(SpptCount2) 
                        ReDim Preserve totalheight2(UBound(totalheight2) + 1) 
                         
                        Else 
                        ReDim xc_array_up(SpptCount2) 
                        ReDim yc_array_up(SpptCount2) 
                        ReDim zc_array_up(SpptCount2) 
                        ReDim zc_array_h(SpptCount2) 
                        xc_array_up(SpptCount2) = xc 
                        yc_array_up(SpptCount2) = yc 
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                        zc_array_up(SpptCount2) = center_vPts(9 * (p - 1) + 5) 
                        zc_array_h(SpptCount2) = (zc - center_vPts(9 * (p - 1) + 5)) 
                         
                        totalheight2(UBound(totalheight2)) = zc_array_h(SpptCount2) 
                        ReDim Preserve totalheight2(UBound(totalheight2) + 1) 
                        End If 
                 
                        SpptCount2 = SpptCount2 + 1 
 
                        End If 
                     
                    p = p + 2 
                    Wend 
            End If 
             
                
            End If 
             
        num_in_scan = num_in_scan + 1 
         
      'Z-Direction Update 01 July 
        'If num_in_scan = 0 Then 'And (num Mod 2) = 1 Then 
            'X_inc = X_min + X_gap 
        'ElseIf num_in_scan = 0 And (num Mod 2) = 0 Then 
            'X_inc = X_min + X_gap / 2 
        'ElseIf num_in_scan > 0 Then 
        If num_in_scan > 0 Then 
            X_inc = X_inc + X_gap 
        End If 
         
        If X_inc > corners(3) Then 
        X_inc = X_max 
        End If 
         
    Loop 
        
    'swPlane.Show = True 
    'Debug.Assert Not swPlane Is Nothing 
  
    num = num + 1 
    num_in_scan = 0 
    X_inc = X_min 
     
        'Uniform Grid 
        Y_inc = (Y_inc + Y_gap) 
        'Hexagonal Packed Grid 
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        'Y_inc = Y_inc + Y_gap * 0.86126809 + 0.0001 
         
        If Y_inc > corners(4) Then 
        Y_inc = (Y_max + 1) 'Added +1 to help termination criteria be more decisive 
        End If 
         
     
Loop 
 
                If virtualsup.Value Then 
                '================================= 
                'Calculate Analytical Support Volume 
                '================================== 
                itr = 0 
                calc_sv = 0 
                supportsurfaces = UBound(totalheight) + UBound(totalheight2) 
                 
                'External Supports 
                'While itr < UBound(totalheight) 
                'calc_sv = calc_sv + 3.14159265359 * Support_Radius * Support_Radius * 
totalheight(itr) * 0.9801 'due to 0.99 for clearancing 
                'itr = itr + 1 
                'Wend 
                 
                'Internal Supports 
                'itr = 0 
                'While itr < UBound(totalheight2) 
                'calc_sv = calc_sv + 3.14159265359 * Support_Radius * Support_Radius * 
totalheight2(itr) * 0.9801 
                'itr = itr + 1 
                'Wend 
                 
 
                eos_svol.Value = Format(calc_sv * 100 * 100 * 100, "0.00") 
                Erase totalheight 
                Erase totalheight2 
                Erase xc_array_up 
                Erase yc_array_up 
                Erase zc_array_up 
                Erase zc_array_h 
                Erase xc_array 
                Erase yc_array 
                 
                'If Not optim And eos_slice.Value <> vbNullString Then 
                If eos_slice.Value <> vbNullString Then 
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                'Build Time 
                tempvar(0) = eos_rr.Value 
                tempvar(1) = eos_slice.Value 
                tempvar(2) = eos_br.Value 
                tempvar(3) = eos_svol.Value 
                tempvar(4) = eos_compv.Value 
                tempvar(5) = eos_mw.Value / 100 
                eos_bt.Value = (tempvar(0) * tempvar(1)) * (1 / 60 * 1 / 60) + 1 / tempvar(2) * 
(tempvar(3) + tempvar(4)) 
                eos_mc.Value = eos_bt * eos_mr.Value 
                 
                'Component Mass 
                eos_smass.Value = (1 + tempvar(5)) * tempvar(3) * eos_wd.Value / 1000 
                eos_pe.Value = tempvar(4) * (1 + tempvar(5)) * eos_wd.Value * eos_mp.Value / 1000 
                eos_scost.Value = (CDbl(eos_smass)) * CDbl(eos_mp.Value) 
                 
                '85 is powder depreciation for 15 use Ti64 powder 
                'eos_pdep.Value = 85 * (eos_pfk - eos_smass - (1 + tempvar(5)) * tempvar(4) / 1000) 
                'eos_pdep.Value = 0 
                 
                tempvar(6) = (CDbl(eos_pe.Value) + CDbl(eos_scost.Value) + CDbl(eos_mc.Value)) '+ 
CDbl(eos_pdep)) 
                 
                totalcost.Value = tempvar(6) 
                 
                totalcost.Value = Format(totalcost.Value, "0") 
                eos_bt.Value = Format(eos_bt.Value, "0") 
                eos_mc.Value = Format(eos_mc.Value, "0") 
                eos_pe.Value = Format(eos_pe.Value, "0") 
                eos_scost.Value = Format(eos_scost.Value, "0") 
                eos_smass.Value = Format(eos_smass.Value, "0.00") 
                End If 
                 
                Else 
                '================================ 
                'Create Circle as base for support 
                '================================ 
                itr = 0 
                 
                swModel.ClearSelection2 (True) 
                Set swSketchMgr = swModel.SketchManager 
                swSketchMgr.AddToDB = True 
                swSketchMgr.DisplayWhenAdded = False 
                swApp.CommandInProgress = True 
                  
            '========================== 



141 

 

            'Loop for internal supports 
            '========================== 
            If SpptCount2 > 0 Then 
             
            itr = 0 
             
            If Hollow.Value Then 
             
                         
            Else 
                         
            Do Until itr > (SpptCount2 - 1) 
        
                            dblData(0) = xc_array_up(itr) 
                            dblData(1) = yc_array_up(itr) 
                            dblData(2) = zc_array_up(itr) 
                            dblData(3) = 0 
                            dblData(4) = 0 
                            dblData(5) = 1 
                            dblData(6) = Support_Radius * 0.99 
                            dblData(7) = zc_array_h(itr) 
                            dblData(8) = zc_array_h(itr) 
                                
                            'Set swBody = swModeler.CreateBodyFromBox(dblData) 
                            Set swBody = swModeler.CreateBodyFromCyl(dblData) 
                            Set support = swModel.CreateFeatureFromBody3(swBody, False, 0) 
                                             
                            color = 
support.GetMaterialPropertyValues2(swInConfigurationOpts_e.swThisConfiguration, "") 
                            color = support.GetMaterialPropertyValues2(1, Empty) 
                     
                            color(0) = 0 '249 / 256 
                            color(1) = 1 '66 / 256 
                            color(2) = 1 '58 / 256 
                            color(3) = 1 
                            color(4) = 1 
                            color(5) = 0.8 
                            color(6) = 0.3215 
                            color(7) = 0 
                            color(8) = 0 
                             
                            support.SetMaterialPropertyValues2 color, swAllConfiguration, Empty 
             
             
            swModel.SelectionManager.EnableContourSelection = False 
            swModel.ClearSelection 
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            support.Name = "Internal_Support_" + CStr(itr) 
             
            itr = itr + 1 
            Loop 
             
            End If 
                         
            Erase xc_array_up 
            Erase yc_array_up 
            Erase zc_array_up 
            Erase zc_array_h 
                         
            itr = 0 
            boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr), 
"BODYFEATURE", 0, 0, 0, False, 4, Nothing, 0) 
             
            Do Until itr > (SpptCount2 - 1) 
            itr = itr + 1 
            boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr), 
"BODYFEATURE", 0, 0, 0, True, 4, Nothing, 0) 
            Loop 
 
            Set myFeature = 
swModel.FeatureManager.InsertFeatureTreeFolder2(swFeatureTreeFolderType_e.swFeatureTre
eFolder_Containing) 
            boolstatus = swModel.SelectedFeatureProperties(0, 0, 0, 0, 0, 0, 0, 1, 0, "Internal Support 
Structures") 
        End If 
             
            swModel.ClearSelection 
                 
                 
               If SpptCount > 0 Then 
                        itr = 0 
                     Do Until itr > (SpptCount - 1) 
        
                            dblData(0) = xc_array(itr) 
                            dblData(1) = yc_array(itr) 
                            dblData(2) = (Z_min - 0.002) 
                            dblData(3) = 0 
                            dblData(4) = 0 
                            dblData(5) = 1 
                            dblData(6) = Support_Radius * 0.99 
                            dblData(7) = totalheight(itr) 
                            dblData(8) = totalheight(itr) 
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                            'Set swBody = swModeler.CreateBodyFromBox(dblData) 
                            Set swBody = swModeler.CreateBodyFromCyl(dblData) 
                            Set support = swModel.CreateFeatureFromBody3(swBody, False, 0) 
                                             
                            color = 
support.GetMaterialPropertyValues2(swInConfigurationOpts_e.swThisConfiguration, "") 
                            color = support.GetMaterialPropertyValues2(1, Empty) 
                            color(0) = 1 
                            color(1) = 0 
                            color(2) = 1 
                            color(3) = 1 
                            color(4) = 1 
                            color(5) = 0.8 
                            color(6) = 0.3215 
                            color(7) = 0 
                            color(8) = 0 
                             
                            support.SetMaterialPropertyValues2 color, swAllConfiguration, Empty 
             
                            swModel.SelectionManager.EnableContourSelection = False 
                            swModel.ClearSelection 
                             
                            support.Name = "External_Support_" + CStr(itr) 
                             
                        itr = itr + 1 
                        Loop 
                     
                     
                            Erase xc_array 
                            Erase yc_array 
                            Erase totalheight 
                         
                            itr = 0 
                            boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr), 
"BODYFEATURE", 0, 0, 0, False, 4, Nothing, 0) 
                             
                            Do Until itr > (SpptCount - 1) 
                            itr = itr + 1 
                            boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr), 
"BODYFEATURE", 0, 0, 0, True, 4, Nothing, 0) 
                            Loop 
                             
                            Set myFeature = 
swModel.FeatureManager.InsertFeatureTreeFolder2(swFeatureTreeFolderType_e.swFeatureTre
eFolder_Containing) 
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                            boolstatus = swModel.SelectedFeatureProperties(0, 0, 0, 0, 0, 0, 0, 1, 0, "External 
Support Structures") 
                         
                End If 
             
                Min = Format((Timer - T), "0.00") 
                 
                MsgBox "Code ran in " & Min & " seconds", vbInformation 
                 
                swApp.CommandInProgress = False 
                swSketchMgr.DisplayWhenAdded = True 
                swSketchMgr.AddToDB = False 
 
    swModel.ForceRebuild3 (True) 
 
    Set swSupports = swModel.Extension.CreateMassProperty 
    
    support_volume_raw = swSupports.Volume 
    support_volume_actual = (support_volume_raw * 100 * 100 * 100) 
    support_volume_actual = support_volume_actual - partvolume 
    support_volume = support_volume_actual - 1587.5 '1615.91 volume of substrate 
    support_volume = Format(support_volume, "0.00") 
    eos_svol.Value = support_volume 
     
                If eos_slice <> vbNullString Then 
                 
                'Build Time 
                tempvar(0) = eos_rr.Value 
                tempvar(1) = eos_slice.Value 
                tempvar(2) = eos_br.Value 
                tempvar(3) = eos_svol.Value 
                tempvar(4) = eos_compv.Value 
                tempvar(5) = eos_mw.Value / 100 
                eos_bt.Value = (tempvar(0) * tempvar(1)) * (1 / 60 * 1 / 60) + 1 / tempvar(2) * 
(tempvar(3) + tempvar(4)) 
                eos_mc.Value = eos_bt * CDbl(eos_mr.Value) 
                 
                'Component Mass 
                eos_smass.Value = (1 + tempvar(5)) * tempvar(3) * eos_wd.Value / 1000 
                eos_pe.Value = tempvar(4) * (1 + tempvar(5)) * eos_wd.Value * eos_mp.Value / 1000 
                eos_scost.Value = (CDbl(eos_smass)) * CDbl(eos_mp.Value) 
                 
                '85 is powder depreciation for 15 use Ti64 powder 
                'eos_pdep.Value = 85 * (eos_pfk - eos_smass - (1 + tempvar(5)) * tempvar(4) / 1000) 
                'eos_pdep.Value = 0 
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                tempvar(6) = (CDbl(eos_pe.Value) + CDbl(eos_scost.Value) + CDbl(eos_mc.Value)) '+ 
CDbl(eos_pdep)) 
                 
                totalcost.Value = tempvar(6) 
                 
                totalcost.Value = Format(totalcost.Value, "0") 
                eos_bt.Value = Format(eos_bt.Value, "0") 
                eos_mc.Value = Format(eos_mc.Value, "0") 
                eos_pe.Value = Format(eos_pe.Value, "0") 
                eos_scost.Value = Format(eos_scost.Value, "0") 
                eos_smass.Value = Format(eos_smass.Value, "0.00") 
                End If 
     
End If 
End If 
 
'Performance Tune-Up 
 
    'swApp.UserControl = True 
    swModel.Visible = True 
    'swApp.Visible = True 
    boolstatus = swModel.Extension.HideFeatureManager(False) 
    swModelView.EnableGraphicsUpdate = True 
    'swApp.Frame.KeepInvisible = False 
       
    If Not optim Then 
    UserForm2.Show vbModeless 
    End If 
     
End Function 
 
Function deleteall() 
 
boolstatus = swModel.Extension.SelectByID2("Build Volume", "SKETCH", 0, 0, 0, False, 0, 
Nothing, 0) 
boolstatus = swModel.Extension.SelectByID2("Build Surface", "PLANE", 0, 0, 0, True, 0, Nothing, 
0) 
boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, True, 0, 
Nothing, 0) 
boolstatus = swModel.Extension.SelectByID2("Internal Support Structures", "FTRFOLDER", 0, 0, 
0, True, 0, Nothing, 0) 
boolstatus = swModel.Extension.SelectByID2("Support Structures", "BODYFEATURE", 0, 0, 0, 
True, 0, Nothing, 0) 
swModel.EditDelete 
swModel.ClearSelection 
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deletesup 
 
itr = 0 
boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4, 
Nothing, 0) 
 'boolstatus = swModel.Extension.SelectByID2("Inner_", "SKETCH", 0, 0, 0, False, 4, Nothing, 0) 
            
While boolstatus 
swModel.EditDelete 
itr = itr + 1 
boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4, 
Nothing, 0) 
Wend 
 
End Function 
 
Private Sub CommandButton3_Click() 
 
    Set swApp = Application.SldWorks 
    Set swModel = swApp.ActiveDoc 
    Set swSelMgr = swModel.SelectionManager 
    Set swSelData = swSelMgr.CreateSelectData 
    num = 0 
    slice = TAP.Value 
    'layert = 0.02 ----- SolidWorks is working in meters as default therefore this is 20 mm 
    'layert = 0.001 
    layert = (zmax / 1000) / slice 
     
    Do Until num = slice 
    If num = 0 Then 
    ElseIf num > 0 Then 
    corners(1) = corners(1) + layert 
    End If 
     
    swModel.Insert3DSketch2 True 
    swModel.ClearSelection2 True 
     
    Set swSketchPt(0) = swModel.CreatePoint2(corners(3), corners(1), corners(5)) 
    Set swSketchPt(1) = swModel.CreatePoint2(corners(0), corners(1), corners(5)) 
    Set swSketchPt(2) = swModel.CreatePoint2(corners(0), corners(1), corners(2)) 
     
    swModel.Insert3DSketch2 False 
     
    bRet = swSketchPt(0).Select4(True, swSelData): Debug.Assert bRet 
    bRet = swSketchPt(1).Select4(True, swSelData): Debug.Assert bRet 
    bRet = swSketchPt(2).Select4(True, swSelData): Debug.Assert bRet 
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    Set swPlane = swModel.CreatePlaneThru3Points3(True) 
     
    swPlane.Name = "AM_Slice_Plane_" & CStr(num) 
     
    'swPlane.Show = True 
    'Debug.Assert Not swPlane Is Nothing 
  
    num = num + 1 
    Loop 
 
'swModel.Insert3DSketch2 True 
'swModel.Rebuild (1) 
'hello 
'swModel.Insert3DSketch2 True 
'swModel.Rebuild (2) 
 
swModel.ForceRebuild3 (True) 
 
End Sub 
 
Private Sub CommandButton4_Click() 
 
boolstatus = rotate_part(xrot.Value, yrot.Value, zrot.Value) 
 
If eos_slice.Value <> vbNullString Then 
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value 
/ 10) / 1000 * eos_ca.Value / 100 
End If 
 
eos_svol.Value = vbNullString 
 
End Sub 
 
Function rand(ubd, lbd) As Integer 
Randomize 
rand = Int((ubd - lbd + 1) * Rnd + lbd) 
End Function 
Function rotate_part_fast(Xangle, Yangle, Zangle) 
 
Dim swApp As Object 
Dim swModel As Object 
Dim swFeatureManager As Object 
Dim swModelDocExt As Object 
Dim status As Boolean 
Dim boolstatus As Boolean 
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Dim buildorientation As Object 
Dim vBodyArr As Variant 
Dim swBody As SldWorks.Body2 
 
'Sub main() 
Set swApp = Application.SldWorks 
Set swModel = swApp.ActiveDoc 
Set swFeatureManager = swModel.FeatureManager 
Set swModelDocExt = swModel.Extension 
 
    'Performance Tune-Up 
    swApp.UserControl = False 
    swApp.Visible = False 
    boolstatus = swModel.Extension.HideFeatureManager(True) 
    'swApp.DocumentVisible False, swDocumentTypes_e.swDocPART 'Open files in memory 
    'swModel.Visible = False 'Loads part into memory 
    swModelView.EnableGraphicsUpdate = False 
 
    'Delete Old Support Structures, Bounding Box, Build Surface, Build Platform 
    'deletesup 
    deleteall 
                     
    status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum), 
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0) 
    If status = True Then 
    swModel.EditDelete 
    End If 
 
    If numnum > 0 Then 
    status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum - 1), 
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0) 
    If status = True Then 
    swModel.EditDelete 
    End If 
    End If 
     
    numnum = numnum + 1 
     
Body = swModel.GetBodies2(swSolidBody, True) 
 
status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, True, 0, Nothing, 0) 
 
swModel.ClearSelection2 True 
 
status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, False, 1, Nothing, 0) 
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If Xangle = vbNullString Then 
xrot.Value = 0 
End If 
 
If Yangle = vbNullString Then 
yrot.Value = 0 
End If 
 
If Zangle = vbNullString Then 
zrot.Value = 0 
End If 
 
xrotv = Xangle / 180 * 3.14159265359 
yrotv = Yangle / 180 * 3.14159265359 
zrotv = Zangle / 180 * 3.14159265359 
 
Set buildorientation = swFeatureManager.InsertMoveCopyBody2(0, 0, 0, 0, 0, 0, 0, zrotv, yrotv, 
xrotv, False, 1) 
 
swModel.ClearSelection2 True 
 
buildorientation.Name = "AM_Rotated_Orientation_" & CStr(numnum) 
 
swModel.ClearSelection2 True 
 
swModel.ForceRebuild3 (True) 
 
    swModel.SetDisplayWhenAdded False 
    BoundingBoxCode 
    swModel.SetDisplayWhenAdded True 
 
DataInitialize 
 
If eos_slice.Value <> vbNullString Then 
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value 
/ 10) / 1000 * eos_ca.Value / 100 
End If 
 
    'Performance Tune-Up 
    swApp.UserControl = True 
    swApp.Visible = True 
    boolstatus = swModel.Extension.HideFeatureManager(False) 
    'swApp.DocumentVisible True, swDocumentTypes_e.swDocPART 
    swModelView.EnableGraphicsUpdate = True 
 
End Function 
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Function rotate_part(Xangle, Yangle, Zangle) 
 
Dim swApp As Object 
Dim swModel As Object 
Dim swFeatureManager As Object 
Dim swModelDocExt As Object 
Dim status As Boolean 
Dim boolstatus As Boolean 
Dim buildorientation As Object 
Dim vBodyArr As Variant 
Dim swBody As SldWorks.Body2 
 
'Sub main() 
Set swApp = Application.SldWorks 
Set swModel = swApp.ActiveDoc 
Set swFeatureManager = swModel.FeatureManager 
Set swModelDocExt = swModel.Extension 
 
    'Performance Tune-Up 
    swApp.UserControl = False 
    swApp.Visible = False 
   boolstatus = swModel.Extension.HideFeatureManager(True) 
    'swApp.DocumentVisible False, swDocumentTypes_e.swDocPART 'Open files in memory 
    'swModel.Visible = False 'Loads part into memory 
    swModelView.EnableGraphicsUpdate = False 
 
    'Delete Old Support Structures 
    deletesup 
    deleteall 
                     
    status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum), 
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0) 
    If status = True Then 
    swModel.EditDelete 
    End If 
 
    If numnum > 0 Then 
    status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum - 1), 
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0) 
    If status = True Then 
    swModel.EditDelete 
    End If 
    End If 
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Body = swModel.GetBodies2(swSolidBody, True) 
 
status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, True, 0, Nothing, 0) 
 
swModel.ClearSelection2 True 
 
status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, False, 1, Nothing, 0) 
 
    If Xangle = vbNullString Then 
    xrot.Value = 0 
    Xangle = 0 
    End If 
     
    If Yangle = vbNullString Then 
    yrot.Value = 0 
    Yangle = 0 
    End If 
     
    If Zangle = vbNullString Then 
    zrot.Value = 0 
    Zangle = 0 
    End If 
 
xrotv = Xangle / 180 * 3.14159265359 
yrotv = Yangle / 180 * 3.14159265359 
zrotv = Zangle / 180 * 3.14159265359 
 
Set buildorientation = swFeatureManager.InsertMoveCopyBody2(0, 0, 0, 0, 0, 0, 0, zrotv, yrotv, 
xrotv, False, 1) 
 
swModel.ClearSelection2 True 
 
buildorientation.Name = "AM_Rotated_Orientation_" & CStr(numnum) 
 
swModel.ClearSelection2 True 
 
numnum = numnum + 1 
 
swModel.ForceRebuild3 (True) 
 
ModelInitialize 
DataInitialize 
 
    'Performance Tune-Up 
    swApp.UserControl = True 
    swApp.Visible = True 
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    boolstatus = swModel.Extension.HideFeatureManager(False) 
    'swApp.DocumentVisible True, swDocumentTypes_e.swDocPART 
    swModelView.EnableGraphicsUpdate = True 
 
End Function 
 
Private Sub CommandButton5_Click() 
'============================== 
'Build Orientation Optimization 
'============================== 
 
    'Performance Speed-Up 
    'swModel.Visible = False 
     
    optim = True 
    virtualsup.Value = True 
 
'Minimize: Build Height, Support Volume, Build Area, Bounding Box Volume 
Dim obj_bh() 'Build Height 
Dim obj_sv() 'Support Volume 
 
ReDim obj_sv(1) 
ReDim obj_bh(1) 
 
'Subject to constraints: 
'1) Part bounding box must be inside print volume 
'2) Angles for X,Y,Z rotations must be between 0 and 360 degrees 
 
Dim rotx_ul As Double 'Rotation along x - Upper Limit 
Dim roty_ul As Double 'Rotation along y - Upper Limit 
Dim rotz_ul As Double 'Rotation along z - Upper Limit 
Dim rotx_ll As Double 'Rotation along x - Lower Limit 
Dim roty_ll As Double 'Rotation along y - Lower Limit 
Dim rotz_ll As Double 'Rotation along z - Lower Limit 
 
Dim pop_size As Integer 'Samples for each iterations 
Dim max_gen As Integer 'Maximum number of iterations 
Dim j As Integer 'Index 
Dim popx() 'Population of x angles array 
Dim popy() 'Population of y angles array 
Dim popz() 'Population of z angles array 
Dim rpopx() 'Regenerated Population of x angles array 
Dim rpopy() 'Regenerated Population of y angles array 
Dim rpopz() 'Regenerated Population of z angles array 
Dim mutants As Integer 'Number of mutants per population 
Dim m1 As Double 'Mutation Factor 1 
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Dim m2 As Double 'Mutation Factor 2 
Dim popmean As Double 'Population Mean 
 
Dim converged As Boolean 
Dim tol As Double 
Dim tolv As Double 
 
ReDim popx(1) 
ReDim popy(1) 
ReDim popz(1) 
 
'============== 
'Pre-Processing 
'============== 
'Rotation Constraints 
rotx_ll = -180 
roty_ll = -180 
rotz_ll = -180 
rotx_ul = 180 
roty_ul = 180 
rotz_ul = 180 
 
'********************* 
'Optimization Settings 
'********************* 
pop_size = 15 'Starts at zero base 
max_gen = 40 'Starts at zero base 
 
'Convergence Criteria 
tol = 5 'Tolerance on volume difference 
tolv = 200 'Tolerance on average population 
 
'Excel Worksheet Set-Up and Connection 
Dim exApp As Excel.Application 
Dim sheet As Excel.Worksheet 
 
    Set exApp = CreateObject("Excel.Application") 
    exApp.Visible = True 
    exApp.Workbooks.Add 
    Set sheet = exApp.ActiveSheet 
 
    sheet.Cells(1, 1).Value = "Iteration" 
    sheet.Cells(1, 2).Value = "Angle X" 
    sheet.Cells(1, 3).Value = "Angle Y" 
    sheet.Cells(1, 4).Value = "Angle Z" 
    sheet.Cells(1, 5).Value = "Support Volume" 
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    sheet.Cells(1, 6).Value = "Build Height" 
    sheet.Cells(1, 7).Value = "Top Two" 
    sheet.Cells(1, 8).Value = "Population Mean" 
 
'================== 
'Particle Swarm Optimization Algorithm 
'================== 
Dim feasible_rotx(): ReDim feasible_rotx(1) 
Dim feasible_roty(): ReDim feasible_roty(1) 
Dim feasible_rotz(): ReDim feasible_rotz(1) 
 
Dim gen_max_sv(): ReDim gen_max_sv(1) 
Dim gen_max_bh(1) 
Dim gen_max_valx(): ReDim gen_max_valx(1) 
Dim gen_max_valy(): ReDim gen_max_valy(1) 
Dim gen_max_valz(): ReDim gen_max_valz(1) 
 
Dim k1 As Integer 
Dim k2 As Integer 
Dim n As Integer: n = 0 
 
Dim deltavx(): ReDim deltavx(pop_size) 
Dim old_deltavx(): ReDim old_deltavx(pop_size) 
Dim deltavy(): ReDim deltavy(pop_size) 
Dim old_deltavy(): ReDim old_deltavy(pop_size) 
Dim deltavz(): ReDim deltavz(pop_size) 
Dim old_deltavz(): ReDim old_deltavz(pop_size) 
 
Dim childx(0) 
Dim childy(0) 
Dim childz(0) 
Dim bit As Integer 
Dim md As Double 'Randomly Selected Mutation Factor 
 
Dim Pbest(): ReDim Pbest(pop_size) 
Dim Pbest_x(): ReDim Pbest_x(pop_size) 
Dim Pbest_y(): ReDim Pbest_y(pop_size) 
Dim Pbest_z(): ReDim Pbest_z(pop_size) 
 
Dim w1 As Double: w1 = 0.5 
Dim c1 As Double: c1 = 1.5 
Dim c2 As Double: c2 = 1.5 
 
'swModel.Visible = False 
 
'Generate Random Population 
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For j = 0 To pop_size 
popx(j) = rand(rotx_ll, rotx_ul) 
popy(j) = rand(roty_ll, roty_ul) 
popz(j) = rand(rotz_ll, rotz_ul) 
 
ReDim Preserve popx(UBound(popx) + 1) 
ReDim Preserve popy(UBound(popy) + 1) 
ReDim Preserve popz(UBound(popz) + 1) 
Next j 
 
'Calculate Fitness and Feasibility of Population 
While n < max_gen And converged = False 
         
        For j = 0 To pop_size 
         
            boolstatus = rotate_part_fast(popx(j), popy(j), popz(j)) 
             
        If Abs(corners(0)) > Abs(bv_corners(0)) Or Abs(corners(1)) > Abs(bv_corners(1)) Or 
Abs(corners(2)) > Abs(bv_corners(2)) Or Abs(corners(3)) > Abs(bv_corners(3)) Or Abs(corners(4)) 
> Abs(bv_corners(4)) Or Abs(corners(5)) > Abs(bv_corners(5)) Then 
             
            sheet.Cells(j + 2 + n * (pop_size + 1), 1).Value = n 
            sheet.Cells(j + 2 + n * (pop_size + 1), 2).Value = "NOT FEASIBLE" 
             
            Else 
         
            boolstatus = generate_supports(eos_sangle.Value, eos_sres.Value) 'Input support angle 
and resolution of supports 
             
            feasible_rotx(UBound(feasible_rotx) - 1) = popx(j) 
            feasible_roty(UBound(feasible_roty) - 1) = popy(j) 
            feasible_rotz(UBound(feasible_rotz) - 1) = popz(j) 
            obj_sv(UBound(obj_sv) - 1) = CDbl(supportsurfaces) 'Objective Function 
            obj_bh(UBound(obj_bh) - 1) = CDbl(eos_compz.Value) 
             
            sheet.Cells(j + 2 + n * (pop_size + 1), 1).Value = n 
            sheet.Cells(j + 2 + n * (pop_size + 1), 2).Value = popx(j) 
            sheet.Cells(j + 2 + n * (pop_size + 1), 3).Value = popy(j) 
            sheet.Cells(j + 2 + n * (pop_size + 1), 4).Value = popz(j) 
            sheet.Cells(j + 2 + n * (pop_size + 1), 5).Value = CDbl(supportsurfaces) 'Objective Function 
            sheet.Cells(j + 2 + n * (pop_size + 1), 6).Value = CDbl(eos_compz.Value) 
         
            ReDim Preserve feasible_rotx(UBound(feasible_rotx) + 1) 
            ReDim Preserve feasible_roty(UBound(feasible_roty) + 1) 
            ReDim Preserve feasible_rotz(UBound(feasible_rotz) + 1) 
            ReDim Preserve obj_sv(UBound(obj_sv) + 1) 
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            ReDim Preserve obj_bh(UBound(obj_bh) + 1) 
         
        End If 
         
        Next j 
         
        '===Replace old personal bests=== 
        If n = 0 Then 
            ReDim Pbest(UBound(obj_sv)) 
            Pbest = obj_sv 
            Pbest_x = popx 
            Pbest_y = popy 
            Pbest_z = popz 
             
        Else 
            k1 = 0 
            While k1 < (UBound(obj_sv) - 1) 
                If obj_sv(k1) < Pbest(k1) Then 
                Pbest(k1) = obj_sv(k1) 
                Pbest_x(k1) = popx(k1) 
                Pbest_y(k1) = popy(k1) 
                Pbest_z(k1) = popz(k1) 
                End If 
                k1 = k1 + 1 
            Wend 
        End If 
         
        '===Find global best=== 
        k1 = 0 
        k2 = 1 
        While k2 < (UBound(obj_sv) - 1) 
            If obj_sv(k1) > obj_sv(k2) Then 
            k1 = k2 
            End If 
            k2 = k2 + 1 
        Wend 
        sheet.Cells(k1 + 2 + n * (pop_size + 1), 7).Value = "1" 
         
        '===Store global best=== 
        If n = 0 Then 
        gen_max_sv(n) = obj_sv(k1) 
        gen_max_valx(n) = feasible_rotx(k1) 
        gen_max_valy(n) = feasible_roty(k1) 
        gen_max_valz(n) = feasible_rotz(k1) 
         
        ElseIf n > 0 And gen_max_sv(n - 1) > obj_sv(k1) Then 
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        gen_max_sv(n) = obj_sv(k1) 
        gen_max_valx(n) = feasible_rotx(k1) 
        gen_max_valy(n) = feasible_roty(k1) 
        gen_max_valz(n) = feasible_rotz(k1) 
         
        ElseIf n > 0 Then 
        gen_max_sv(n) = gen_max_sv(n - 1) 
        gen_max_valx(n) = gen_max_valx(n - 1) 
        gen_max_valy(n) = gen_max_valy(n - 1) 
        gen_max_valz(n) = gen_max_valz(n - 1) 
        End If 
         
        ReDim Preserve gen_max_sv(UBound(gen_max_sv) + 1) 
        ReDim Preserve gen_max_valx(UBound(gen_max_valx) + 1) 
        ReDim Preserve gen_max_valy(UBound(gen_max_valy) + 1) 
        ReDim Preserve gen_max_valz(UBound(gen_max_valz) + 1) 
        sheet.Cells(j + 2 + n * (pop_size + 1), 9).Value = gen_max_sv(n) 
         
        '===Population Mean Calculation=== 
        popmean = 0 
        k = 0 
        Do Until k > UBound(obj_sv) 
        popmean = popmean + obj_sv(k) 
        k = k + 1 
        Loop 
        popmean = popmean / (UBound(obj_sv) + 1) 
        sheet.Cells(j + 2 + n * (pop_size + 1), 8).Value = popmean 
         
        '================= 
        'Post-Processing 
        '================ 
         
        'Check for convergence 
 
        If n > 20 Then 
            tol = gen_max_sv(n) - gen_max_sv(n - 10) 
            converged = (tol <= 1) 
             
            If converged = True Then 
            popx(0) = gen_max_valx(n) 
            popy(0) = gen_max_valy(n) 
            popz(0) = gen_max_valz(n) 
            MsgBox ("Solution Converged") 
            End If 
         
        Else 
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        For j = 0 To pop_size 
        deltavx(j) = w1 * old_deltavx(j) + c1 * (CDbl(rand(0, 1000)) / 1000) * (Pbest_x(j) - popx(j)) + 
c2 * (CDbl(rand(0, 1000)) / 1000) * (gen_max_valx(n) - popx(j)) 
        deltavy(j) = w1 * old_deltavy(j) + c1 * (CDbl(rand(0, 1000)) / 1000) * (Pbest_y(j) - popy(j)) + 
c2 * (CDbl(rand(0, 1000)) / 1000) * (gen_max_valy(n) - popy(j)) 
        deltavz(j) = w1 * old_deltavz(j) + c1 * (CDbl(rand(0, 1000)) / 1000) * (Pbest_z(j) - popz(j)) + 
c2 * (CDbl(rand(0, 1000)) / 1000) * (gen_max_valz(n) - popz(j)) 
         
            'Check if X angle is feasible 
            popx(j) = popx(j) + deltavx(j) 
            If (popx(j) < rotx_ll) Then 
                popx(j) = rotx_ll 
                deltavx(j) = 0 
            ElseIf (popx(j) > rotx_ul) Then 
                popx(j) = rotx_ul 
                deltavx(j) = 0 
            End If 
             
            'Check if Y angle is feasible 
            popy(j) = popy(j) + deltavy(j) 
            If (popy(j) < roty_ll) Then 
                popy(j) = roty_ll 
                deltavy(j) = 0 
            ElseIf (popy(j) > roty_ul) Then 
                popy(j) = roty_ul 
                deltavy(j) = 0 
            End If 
             
            'Check if Z angle is feasible 
            popz(j) = popz(j) + deltavz(j) 
            If (popz(j) < rotz_ll) Then 
                popz(j) = rotz_ll 
                deltavz(j) = 0 
            ElseIf (popz(j) > rotz_ul) Then 
                popz(j) = rotz_ul 
                deltavz(j) = 0 
            End If 
         
        'Reassign old velocities 
        old_deltavx(j) = deltavx(j) 
        old_deltavy(j) = deltavy(j) 
        old_deltavz(j) = deltavz(j) 
         
        Next j 
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        ReDim feasible_rotx(1) 
        ReDim feasible_roty(1) 
        ReDim feasible_rotz(1) 
        ReDim obj_sv(1) 
        ReDim obj_bh(1) 
         
        End If 
        n = n + 1 
Wend 
 
    If n = max_gen Then 
        popx(0) = gen_max_valx(n) 
        popy(0) = gen_max_valy(n) 
        popz(0) = gen_max_valz(n) 
    End If 
 
'==================== 
'Optimization Complete 
'===================== 
boolstatus = rotate_part(popx(0), popy(0), popz(0)) 
boolstatus = generate_supports(eos_sangle.Value, eos_sres.Value) 
optim = False 
 
xrot.Value = Int(popx(0)) 
yrot.Value = Int(popy(0)) 
zrot.Value = Int(popz(0)) 
 
'Deallocate Memory 
Erase feasible_rotx() 
Erase feasible_roty() 
Erase feasible_rotz() 
Erase obj_sv() 
Erase obj_bh() 
Erase popx() 
Erase popy() 
Erase popz() 
Erase old_deltavx() 
Erase old_deltavy() 
Erase old_deltavz() 
Erase deltavx 
Erase deltavy 
Erase deltavz 
 
'swModel.Visible = True 
     
UserForm2.Show 
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End Sub 
Private Sub CommandButton6_Click() 
 
Dim swApp As Object 
Dim swModel As Object 
Dim swFeatureManager As Object 
Dim swModelDocExt As Object 
Dim status As Boolean 
Dim buildorientation As Object 
Dim vBodyArr As Variant 
 
'Sub main() 
Set swApp = Application.SldWorks 
Set swModel = swApp.ActiveDoc 
Set swFeatureManager = swModel.FeatureManager 
Set swModelDocExt = swModel.Extension 
 
If numnum = 0 Then 
 
MsgBox ("Model is already at original state.") 
 
Else 
status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum - 1), 
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0) 
If status = True Then 
swModel.EditDelete 
End If 
 
deleteall 
 
numnum = numnum - 1 
 
ModelInitialize 
DataInitialize 
End If 
 
End Sub 
 
Private Sub eos_br_Change() 
 
If eos_mr.Value = vbNullString Then 
 
ElseIf eos_bt.Value = vbNullString Then 
Else 
eos_mc = eos_mr.Value * eos_bt.Value 
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End If 
 
If eos_rr.Value = vbNullString Then 
Else 
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value * 
(eos_compv.Value) 
eos_bt.Value = Format(eos_bt.Value, "0") 
End If 
 
End Sub 
 
Private Sub eos_bt_Change() 
If eos_mr.Value = vbNullString Then 
ElseIf eos_bt.Value = vbNullString Then 
Else 
eos_mc = eos_mr.Value * eos_bt.Value 
End If 
End Sub 
 
Private Sub eos_ca_Change() 
If eos_ca.Value = vbNullString Then 
Else 
 
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value 
/ 10) / 1000 * (eos_ca.Value / 100) 
eos_pfk.Value = Format(eos_pfk.Value, "0") 
eos_pfb.Value = eos_mp.Value * eos_pfk.Value 
End If 
 
'10/25/2016 - Addition 
If eos_pe.Value = vbNullString Then 
 
totalcost.Value = vbNullString 
'ElseIf eos_pw.Value = vbNullString Then 
totalcost.Value = vbNullString 
ElseIf eos_mc.Value = vbNullString Then 
totalcost.Value = vbNullString 
 
Else 
 
totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) * 
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value) 
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) + 
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) + 
(eos_mr.value * eos_bt.value) 
totalcost.Value = Format(totalcost.Value, "0") 
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End If 
 
End Sub 
 
Private Sub eos_compz_Change() 
 
If eos_lt.Value = vbNullString Then 
Else 
 
eos_slice.Value = (zmax * 1000) / eos_lt.Value 
eos_slice.Value = Format(eos_slice.Value, "0") 
End If 
 
If eos_svol.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_compmass.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_slice.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_rr.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_br.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_mp.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_mw.Value = vbNullString Then 
'eos_pe.value = vbNullString 
 
eos_pe.Value = (eos_compmass.Value) * eos_mp.Value 
eos_pe.Value = Format(eos_pe.Value, "0") 
 
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value * 
(eos_compv.Value + eos_svol.Value) 
eos_bt.Value = Format(eos_bt.Value, "0") 
 
ElseIf eos_compmass.Value = vbNullString Then 
 
eos_pe.Value = vbNullString 
 
Else 
 
eos_pe.Value = (eos_compmass.Value) * eos_mp.Value 
eos_pe.Value = Format(eos_pe.Value, "0") 
 



163 

 

'eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value * 
(eos_compv.Value + eos_svol.Value) 
'eos_bt.Value = Format(eos_bt.Value, "0") 
 
'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value * 
eos_mp.value * (1 + eos_ss.value / 100) 
'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) * 
eos_mp.Value 
'eos_pw.Value = Format(eos_pw.Value, "0") 
 
End If 
 
 
 
If eos_pe.Value = vbNullString Then 
totalcost.Value = vbNullString 
'ElseIf eos_pw.Value = vbNullString Then 
totalcost.Value = vbNullString 
ElseIf eos_mc.Value = vbNullString Then 
totalcost.Value = vbNullString 
 
Else 
 
totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) * 
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value) 
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) + 
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) + 
(eos_mr.value * eos_bt.value) 
totalcost.Value = Format(totalcost.Value, "0") 
 
End If 
 
 
End Sub 
 
Private Sub eos_lt_Change() 
eos_slice.Value = (zmax * 1000) / eos_lt.Value 
eos_slice.Value = Format(eos_slice.Value, "0") 
 
End Sub 
 
Private Sub eos_mat_Change() 
count = eos_mat.ListIndex 
 
eos_mp.ListIndex = count 
eos_lt.ListIndex = count 
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eos_td.ListIndex = count 
eos_br.ListIndex = count 
eos_wd.ListIndex = count 
 
If eos_ca.Value = vbNullString Then 
 
Else 
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value 
/ 10) / 1000 * (eos_ca.Value / 100) 
eos_pfk.Value = Format(eos_pfk.Value, "0") 
eos_pfb.Value = eos_mp.Value * eos_pfk.Value 
End If 
 
 
If totalcost.Value <> vbNullString Then 
                'Build Time 
                tempvar(0) = eos_rr.Value 
                tempvar(1) = eos_slice.Value 
                tempvar(2) = eos_br.Value 
                tempvar(3) = eos_svol.Value 
                tempvar(4) = eos_compv.Value 
                tempvar(5) = eos_mw.Value / 100 
                eos_bt.Value = (tempvar(0) * tempvar(1)) * (1 / 60 * 1 / 60) + 1 / tempvar(2) * 
(tempvar(3) + tempvar(4)) 
                eos_mc.Value = eos_bt * CDbl(eos_mr.Value) 
                 
                'Component Mass 
                eos_smass.Value = (1 + tempvar(5)) * tempvar(3) * eos_wd.Value / 1000 
                eos_pe.Value = tempvar(4) * (1 + tempvar(5)) * eos_wd.Value * eos_mp.Value / 1000 
                eos_scost.Value = (CDbl(eos_smass)) * CDbl(eos_mp.Value) 
                 
                '85 is powder depreciation for 15 use Ti64 powder 
                'eos_pdep.Value = 85 * (eos_pfk - eos_smass - (1 + tempvar(5)) * tempvar(4) / 1000) 
                'eos_pdep.Value = 0 
                 
                tempvar(6) = (CDbl(eos_pe) + CDbl(eos_scost) + CDbl(eos_mc)) '+ CDbl(eos_pdep)) 
                 
                totalcost.Value = tempvar(6) 
                 
                totalcost.Value = Format(totalcost.Value, "0") 
                eos_bt.Value = Format(eos_bt.Value, "0") 
                eos_mc.Value = Format(eos_mc, "0") 
                eos_pe.Value = Format(eos_pe.Value, "0") 
                eos_scost.Value = Format(eos_scost.Value, "0") 
                eos_smass.Value = Format(eos_smass.Value, "0.00") 
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End If 
 
End Sub 
 
Private Sub eos_mc_Change() 
 
'If totalcost.value = vbNullString Then 
'totalcost.value = vbNullString 
 
'If eos_pe.Value = vbNullString Then 
'totalcost.Value = vbNullString 
'ElseIf eos_pw.Value = vbNullString Then 
'totalcost.Value = vbNullString 
'ElseIf eos_mc.Value = vbNullString Then 
'totalcost.Value = vbNullString 
 
'Else 
 
'totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) * 
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value) 
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) + 
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) + 
(eos_mr.value * eos_bt.value) 
'totalcost.Value = Format(totalcost.Value, "0") 
 
'End If 
 
End Sub 
 
Private Sub eos_mp_Change() 
If eos_mw.Value = vbNullString Then 
'eos_pw.Value = vbNullString 
 
ElseIf eos_compmass.Value = vbNullString Then 
'eos_pw.Value = vbNullString 
ElseIf eos_smass.Value = vbNullString Then 
'eos_pw.Value = vbNullString 
 
Else 
 
'Waste due to Powder Splattering in the AM Process 
'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) * 
eos_mp.Value 
'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value * 
eos_mp.value 
'eos_pw.Value = Format(eos_pw.Value, "0") 
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End If 
 
If eos_ca.Value = vbNullString Then 
 
Else 
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value 
/ 10) / 1000 * (eos_ca.Value / 100) 
eos_pfk.Value = Format(eos_pfk.Value, "0") 
eos_pfb.Value = eos_mp.Value * eos_pfk.Value 
End If 
 
If eos_mw.Value = vbNullString Then 
 
'eos_pw.Value = vbNullString 
 
ElseIf eos_compmass.Value = vbNullString Then 
'eos_pw.Value = vbNullString 
ElseIf eos_smass.Value = vbNullString Then 
 
'eos_pw.Value = vbNullString 
 
Else 
'Powder Waste 
'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) * 
eos_mp.Value 
 
'1/9/2017 - eos_pw.value = (eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + 
eos_ss.value / 100) 
 
'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value * 
eos_mp.value 
'eos_pw.Value = Format(eos_pw.Value, "0") 
 
End If 
 
If eos_smass.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_compmass.Value = vbNullString Then 
eos_pe.Value = vbNullString 
 
Else 
'Component Mass 
eos_pe.Value = (eos_smass.Value + CDbl(eos_compmass.Value)) * CDbl(eos_mp.Value) 
eos_pe.Value = Format(eos_pe.Value, "0.00") 
End If 
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End Sub 
 
Private Sub eos_mr_Change() 
If eos_mr.Value = vbNullString Then 
ElseIf eos_bt.Value = vbNullString Then 
Else 
eos_mc = eos_mr.Value * eos_bt.Value 
 
End If 
 
End Sub 
 
Private Sub eos_mw_Change() 
If eos_mw.Value = vbNullString Then 
'eos_pw.Value = vbNullString 
ElseIf eos_compmass.Value = vbNullString Then 
'eos_pw.Value = vbNullString 
 
ElseIf eos_smass.Value = vbNullString Then 
'eos_pw.Value = vbNullString 
 
Else 
 
'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) * 
eos_mp.Value 
'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value * 
eos_mp.value 
'eos_pw.Value = Format(eos_pw.Value, "0") 
 
End If 
 
If eos_smass.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_compmass.Value = vbNullString Then 
eos_pe.Value = vbNullString 
 
Else 
 
eos_pe.Value = (eos_smass.Value * eos_compmass.Value) * eos_mp.Value 
eos_pe.Value = Format(eos_pe.Value, "0") 
 
End If 
 
'10/25/2016 - TotalCost 
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If eos_pe.Value = vbNullString Then 
totalcost.Value = vbNullString 
'ElseIf eos_pw.Value = vbNullString Then 
 
totalcost.Value = vbNullString 
ElseIf eos_mc.Value = vbNullString Then 
totalcost.Value = vbNullString 
 
Else 
 
totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) * 
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value) 
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) + 
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) + 
(eos_mr.value * eos_bt.value) 
totalcost.Value = Format(totalcost.Value, "0") 
 
End If 
 
End Sub 
 
 
Private Sub eos_rr_Change() 
If eos_rr.Value = vbNullString Then 
ElseIf eos_svol.Value = vbNullString Then 
 
Else 
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value * 
(eos_compv.Value + eos_svol.Value) 
eos_bt.Value = Format(eos_bt.Value, "0") 
End If 
 
 
 
'10/25/2016 - Addition 
 
 
If eos_pe.Value = vbNullString Then 
totalcost.Value = vbNullString 
 
'ElseIf eos_pw.Value = vbNullString Then 
totalcost.Value = vbNullString 
 
ElseIf eos_mc.Value = vbNullString Then 
totalcost.Value = vbNullString 
 



169 

 

Else 
 
totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) * 
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value) 
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) + 
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) + 
(eos_mr.value * eos_bt.value) 
totalcost.Value = Format(totalcost.Value, "0") 
 
End If 
 
End Sub 
 
Private Sub eos_ss_Change() 
'eos_pe.value = 0 
'If Not IsEmpty(eos_compmass.value) Then 
'MsgBox ("Select Material") 
'Else 
 
If eos_ss.Value = vbNullString Then 
eos_pe.Value = vbNullString 
ElseIf eos_compmass.Value = vbNullString Then 
 
eos_pe.Value = vbNullString 
 
ElseIf eos_slice.Value = vbNullString Then 
eos_pe.Value = vbNullString 
 
ElseIf eos_rr.Value = vbNullString Then 
eos_pe.Value = vbNullString 
 
ElseIf eos_br.Value = vbNullString Then 
eos_pe.Value = vbNullString 
 
ElseIf eos_mp.Value = vbNullString Then 
eos_pe.Value = vbNullString 
 
ElseIf eos_mw.Value = vbNullString Then 
 
'eos_pe.value = vbNullString 
eos_pe.Value = (1 + eos_ss.Value / 100) * eos_compmass.Value * eos_mp.Value 
eos_pe.Value = Format(eos_pe.Value, "0") 
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value * 
(eos_compv.Value) * (1 + eos_ss.Value / 100) 
eos_bt.Value = Format(eos_bt.Value, "0") 
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ElseIf eos_compmass.Value = vbNullString Then 
eos_pe.Value = vbNullString 
 
Else 
 
eos_pe.Value = (1 + eos_ss.Value / 100) * eos_compmass.Value * eos_mp.Value 
eos_pe.Value = Format(eos_pe.Value, "0") 
 
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value * 
(eos_compv.Value) * (1 + eos_ss.Value / 100) 
eos_bt.Value = Format(eos_bt.Value, "0") 
 
'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value * 
eos_mp.value * (1 + eos_ss.value / 100) 
'eos_pw.Value = (eos_mw.Value / 100) * eos_compmass.Value * eos_mp.Value * (1 + 
eos_ss.Value / 100) 
'eos_pw.Value = Format(eos_pw.Value, "0") 
 
End If 
 
 
'10/25/2016 Addition 
 
If eos_pe.Value = vbNullString Then 
totalcost.Value = vbNullString 
'ElseIf eos_pw.Value = vbNullString Then 
totalcost.Value = vbNullString 
ElseIf eos_mc.Value = vbNullString Then 
totalcost.Value = vbNullString 
Else 
 
totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) * 
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value) 
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) + 
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) + 
(eos_mr.value * eos_bt.value) 
totalcost.Value = Format(totalcost.Value, "0") 
 
End If 
 
End Sub 
 
Private Sub eos_td_Change() 
 
'eos_pfk.value = eos_td.value * (zmax / 10) * (eos_bpx.value / 10) * (eos_bpy.value / 10) / 100 
'eos_pfk.value = Format(eos_pfk.value, "0") 
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'eos_pfb.value = eos_mp.value * eos_pfk.value 
'eos_compmass.value = eos_td.value * eos_compv.value / 1000 
'eos_compmass.value = Format(eos_compmass.value, "0.00") 
 
End Sub 
 
Private Sub eos_wd_Change() 
eos_compmass.Value = eos_wd.Value * eos_compv.Value / 1000 
eos_compmass.Value = Format(eos_compmass.Value, "0.00") 
 
End Sub 
 
 
Private Sub MultiPage1_Change() 
 
arcam_compx.Value = eos_compx.Value 
arcam_compy.Value = eos_compy.Value 
arcam_compz.Value = eos_compz.Value 
 
opto_compx.Value = eos_compx.Value 
opto_compy.Value = eos_compy.Value 
opto_compz.Value = eos_compz.Value 
 
arcam_compv.Value = eos_compv.Value 
arcam_compv.Value = eos_compv.Value 
arcam_compv.Value = eos_compv.Value 
 
opto_compv.Value = eos_compv.Value 
opto_compv.Value = eos_compv.Value 
opto_compv.Value = eos_compv.Value 
 
opto_pack.Value = eos_pack.Value 
arcam_pack.Value = eos_pack.Value 
 
End Sub 
 
Private Sub opto_mat_Change() 
count = opto_mat.ListIndex 
 
opto_mp.ListIndex = count 
opto_td.ListIndex = count 
opto_mfr.ListIndex = count 
 
End Sub 
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Private Sub CommandButton1_Click() 
' --------------SolidWorks Macro Initialization----------------- 
 
    Set swApp = Application.SldWorks 
    Set swModel = swApp.ActiveDoc 
    'Set swSelMgr = swModel.SelectionManager 
    'Set swSelData = swSelMgr.CreateSelectData 
    Set swModDocExt = swModel.Extension 
    Set swMass = swModDocExt.CreateMassProperty 
     
' --------------Document Configuration----------------- 
   'Stop using default units 
    swMass.UseSystemUnits = False 
     
    'Set units to custom system 
    uuni = 
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitSystem, 
swUserPreferenceOption_e.swDetailingNoOptionSpecified, 
swUnitSystem_e.swUnitSystem_Custom) 
     
    'Set volume units to a given value 
    'massi = 
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitsMassPropVo
lume, swUserPreferenceOption_e.swDetailingNoOptionSpecified, 
swUnitsMassPropVolume_e.swUnitsMassPropVolume_Meters3) 
     
    'Set length units in mass to a given value 
    massi = 
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitsMassPropLe
ngth, swUserPreferenceOption_e.swDetailingNoOptionSpecified, swLengthUnit_e.swMETER) 
      
' --------------Get Model Property Data----------------- 
    partvolume = swMass.Volume 
    ' Use only 7 decimal places 
     
    partvolume = Round(partvolume, 7) 
    ' value = Format(value, "0.00") 
 
    ' Check if data is in correct format 
    MsgBox ("Your Name is " & partvolume) 
 
    'TextBox1.value = value 
    'MsgBox ("Your Name is " & TextBox1) 
 
    cboxnum = partvolume * matdensity 
    cmassbox.Value = cboxnum 
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    cboxnum = partvolume * matcost 
    mcostbox.Value = cboxnum 
 
    ' Label3.Caption = TextBox1 
    ' Label4.Caption = TextBox2 
     
    ' TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorSelectAll 
     
    mcostbox.Locked = True 
    cmassbox.Locked = True 
     
    ' Debug.Print Label3.Caption 
    ' Debug.Print Label4.Caption 
    ' Debug.Print TextBox1 
    ' Debug.Print TextBox2 
 
End Sub 
 
    Private Sub denbox_Change() 
 
End Sub 
 
Private Sub matbox_Change() 
 
    If matbox.Text = "Stainless Steel" Then 
    matdensity = 3 
    matcost = 5 
 
    ElseIf matbox.Text = "Inconel 718" Then 
    matdensity = 6 
    matcost = 10 
    ElseIf matbox.Text = "Ti-6Al-4V" Then 
    matdensity = 9 
    matcost = 15 
    End If 
    denbox.Value = matdensity 
End Sub 
 
Private Sub mbox_Change() 
If mbox.Text = "EOSINT M280" Then 
End If 
End Sub 
 
 


