
The Pennsylvania State University

The Graduate School

Department of Mechanical and Nuclear Engineering

COST MODELING AND DESIGN TOOLS FOR ADDITIVE MANUFACTURING

WITH LASER POWDER BED FUSION

A Thesis in

Mechanical Engineering

by

Michael W. Barclift

© 2018 Michael W. Barclift

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2018

The thesis of Michael W. Barclift was reviewed and approved* by the following:

Timothy W. Simpson

Paul Morrow Professor of Engineering Design and Manufacturing

Thesis Advisor

Nicholas Meisel

Assistant Professor of Engineering Design

Karen A. Thole

Professor of Mechanical Engineering

Head of the Department of Mechanical and Nuclear Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

Additive Manufacturing (AM) is a novel process that uses 3D model data to create

complex geometry and functional structures by joining materials layer-by-layer. Despite growing

interest, industry’s adoption of AM has been limited due to challenges in cost-effectiveness, lack

of subject matter expertise, and disparities amongst commercial software programs that capture

the full breadth of design inputs and process considerations for AM. Designers have limited tools

within the 3D modeling (e.g., CAD) environment that inform them on critical design parameters

and tradeoffs that can impact the overall cost and feasibility of producing a part in AM.

In this thesis, cost modeling and design tools are examined for Laser-Powder Bed Fusion

(LPBF). Traditional cost models have estimated that the material cost can range up to 46% of the

total cost; however, these models have not accounted for the reuse (i.e., recycling) of the un-

melted powder feedstock in LPBF. To capture susceptibilities to chemical contamination,

diminished powder size distributions, and inconsistent mechanical performance, financial

depreciation models using Sum-of-the-Years digits and Straight Line are implemented to define

the value of a powder feedstock as function of each build cycle reuse in LPBF. A case-study is

presented for an automotive upright designed for production and analyzed using a generic LPBF

activity-based cost model. Sensitivity analysis revealed that traditional cost models assuming

infinite material reuse undervalued the cost of build jobs with virgin powder by 3-11% or 13-75%

depending on the material, feedstock price, and maximum permitted reuses in LPBF.

 Cost modeling is iterative and estimates will vary as updates are made to the 3D model.

To aid in informing designers on costs of their parts, a software plug-in is presented using the

SolidWorks Application Programming Interface (API) that integrates the proposed LPBF cost

model within the 3D CAD environment. The tool enables designers to generate support structures

and distinguish from internal and external supports on their part. In addition to querying volume

iv

and surface data from the 3D model, the manipulation of the part’s build orientation allows

designers to concurrently estimate build time, feedstock requirements, and optimize parts for AM

production while they are being designed in CAD. A case study is presented for an automotive

upright where results found that varying the support angle by 15 degrees, underpredicted support

structure volume by 34% and build time by 20%. Furthermore, poor packing of geometries on the

build platform led to powder depreciation costs being nearly twice the material costs. Based on

this two-part study, recommendations are made for additional research on LPBF cost modeling,

post-processing cost modeling, powder feedstock reusability metrics, and CAD-integrated design

tools with greater inputs, support structure libraries, and considerations for AM processes.

v

TABLE OF CONTENTS

List of Figures .. vii

List of Tables ... ix

Acknowledgements .. x

Chapter 1 Additive Manufacturing Overview and Research Motivation 1

1.1 Brief History of Metal Additive Manufacturing .. 2
1.2 Laser-Powder Bed Fusion .. 3
1.3 Design Considerations for Laser-Powder Bed Fusion ... 4
1.4 Motivation .. 5
1.5 Research Objectives ... 8
1.6 Thesis Overview .. 9

Chapter 2 Literature Review .. 10

2.1 Cost Modeling in Additive Manufacturing .. 10
2.2 Metal Feedstocks in LPBF ... 13
2.3 CAD-Integrated Tools for DFAM ... 16
2.4 Orientation Optimization in DFAM ... 19

Chapter 3 Cost Modeling for Reused Powder Feedstocks in LPBF .. 22

3.1 Financial Depreciation Model for Reused Powder Feedstock 22
3.2. Activity-Based Cost Modeling for LPBF ... 26
3.3. Implementation and Case Studies ... 36

3.3.1 Comparison of Depreciation Models .. 39
3.3.2 Total Costing for Example Parts ... 42
3.3.3 Sensitivity to Build Volume Utilization and Material Selection 45
3.3.4 Costing at Mass Production ... 50

3.5 Model Limitations .. 54

Chapter 4 CAD-Integrated Cost Estimation and Build Orientation Optimization 57

4.1 Program Workflow .. 57
4.2 Support Structure Generation ... 59
4.3 SolidWorks API Programming .. 61
4.4 Build Orientation Optimization.. 63
4.5 Macro Implementation and Examples ... 64

4.5.1 Parameter Sensitivity on Cost Estimate .. 65
4.5.2 Consideration for Multiple Replicates .. 67
4.5.3 Build Orientation Optimization ... 69
4.5.3 Software Benchmarking .. 71

4.5.4 Limitations .. 75

Chapter 5 Conclusions and Closing Remarks .. 77

vi

5.1 Thesis Summary ... 77
5.2 Contributions .. 78
5.3 Highlighted Limitations ... 79
5.3 Future Work ... 80

References .. 81

Appendix A Cost Model for Powder Feedstock Depreciation MATLAB Code I 95

Appendix B Cost Model for Powder Feedstock Depreciation MATLAB Code II 105

Appendix C CAD-Integrated Cost Estimator Macro Initialize Code 112

Appendix D CAD-Integrated Cost Estimator Userform Code .. 113

vii

LIST OF FIGURES

Figure 1-1: SLPR Prototype at Fraunhofer Institute of Laser Technology [5] 2

Figure 1-2: Powder Bed Fusion Schematic (left) and Fusing of Powder Particles (right)

[2] ... 4

Figure 1-3: Sales of metal AM machines from 2000-2017 [12] .. 5

Figure 1-4: DFAM guidelines for LPBF [28] .. 7

Figure 2-1: IDMI with AM-Manufacturable, AM-Select, and AM-Request modules [68] 18

Figure 3-1: Comparison of Depreciation Methods for Powder Feedstock 24

Figure 3-2: Rickenbacher et al.'s Workflow for LPBF [40] .. 26

Figure 3-3: Automotive Upright Geometry G1 .. 36

Figure 3-4: Testing Apparatus Geometry G2 ... 36

Figure 3-5: Powder Feedstock Value vs. Build Cycles vs. Maximum Build Cycles 37

Figure 3-6: Total Costs vs. Build Cycles for Powder Reuse for Geometry G1 43

Figure 3-7: Cost for Workflow Activities for Geometry G2 .. 43

Figure 3-8: Total Costs vs. Build Cycles for Powder Reuse for Geometry G1 44

Figure 3-9: Cost for Workflow Activities for Geometry G2 .. 44

Figure 3-10: Normalized cost per part for production of G1, Automotive Upright 52

Figure 3-11: Normalized cost per part for production of G2, Test Apparatus 53

Figure 4-1: CAD-Integrated Cost Estimation Framework ... 58

Figure 4-2: Top-view of component undergoing ray trace .. 60

Figure 4-3: Cost Estimator GUI (left) and CAD Geometry Visualization (right) 62

Figure 4-4: Geometry with overhanging surfaces .. 63

Figure 4-5: Automotive Upright, Magics model with supports (Top), Printed DMLS

component (bottom) [115] ... 65

Figure 4-6: Automotive Upright with Support Angle: 60° (Left), 45° (Middle), 30°

(Right) .. 66

Figure 4-7: Vertical (left) and Flat (right) Orientation .. 68

viii

Figure 4-8: Optimal orientations to reduce internal supports. Orientation A (top) and

Orientation B (bottom) with isometric and top views – rotated to show internal

supports .. 70

Figure 4-9:Support Structures Generated, CAD-Integrated Cost Estimator (left), 3DXpert

(right) ... 72

Figure 4-10: Optimized Solutions for Reducing Internal Support Structures 74

ix

LIST OF TABLES

Table 2-1: Literature on Powder Reuse in PBF ... 14

Table 3-1: Cost Model Constants .. 38

Table 3-2: Material Constants .. 38

Table 3-3: Labor Time and Build Results .. 39

Table 3-4: Costing for SOYD vs. Infinite Reuse ... 40

Table 3-5: SLN vs. Traditional Infinite Reuse ... 41

Table 3-6: Ti-6Al-4V Sensitivity for Material vs. Powder Depreciation Costs....................... 46

Table 3-7: GP1 Sensitivity for Material vs. Powder Depreciation Costs................................. 47

Table 3-8: AlSi10Mg Sensitivity for Material vs. Powder Depreciation Costs 47

Table 3-9: IN718 Sensitivity for Material vs. Powder Depreciation Costs 48

Table 4-1: Support Diameter vs. Support Angle .. 66

Table 4-2: Orientation vs. Part Count vs. Cost .. 68

Table 4-3: Optimization Results .. 70

Table 4-4: Support Volume vs. Orientation vs. Costs Comparison ... 73

Table 4-5: Replicates vs. Support Volume vs. Orientation vs. Costs Comparison 73

x

ACKNOWLEDGEMENTS

I would like to thank Dr. Timothy Simpson for serving on my committee and for being

my advisor throughout my time at Penn State. His advising style forced me to seek out answers

for myself, explore new ways of thinking, and critically analyze conclusions. I appreciate his

knowledge, encouragement, expertise, and deep care for his students. He is a true evangelist for

the Additive Manufacturing and Design field, and has created a rich culture of exploring new

ideas, challenging old conventions, and learning together with fellow students. Thank you, Dr.

Nicholas Meisel for serving on my committee and mentoring me from our earliest days back at

Virginia Tech. Even though I’ve known Dr. Meisel for many years, I always learn something new

every time I see him. Thank you, Dr. Richard Martukanitz and Dr. Sanjay Joshi for your wide

breadth of knowledge and profound insight on laser processing and additive manufacturing

technologies. Additionally, I appreciate the staff at CIMP-3D for their openness, suggestions, and

critiques which helped me develop my research. Specifically, I would like to recognize Corey

Dickman, Ken Meinert, Abdalla Nassar, and Wes Mitchell. I would also like to acknowledge

Eduard Romaguera and Andrew Armstrong for their contributions and support for this research. I

am grateful for the members of EDOG, Made by Design Lab, Brite Lab, PSU 3D Printing Club,

MEGA, and BGSA for the many great friendships formed during my time at the university.

Lastly, I also want to thank my family for their endless love and support. Most importantly, I

want to recognize my father, Wayne E. Barclift, who unfortunately passed away during my time

in the program. He was one of the most selfless and whole-hearted people I knew, and he is one

of the many reasons why I became an engineer. I hope to continue to grow as a person and live a

life of character and principles just like he did. You will be missed. We will always love you.

1

Chapter 1

Additive Manufacturing Overview and Research Motivation

Additive Manufacturing (AM) is a process of “joining materials to make objects from 3D

model data, usually layer upon layer” [1]. Beginning in 1984 with the patent of Vat

Photopolymerization [2], AM has grown to seven modalities for producing a 3D object with each

varying based on their feedstocks, energy sources, and processing techniques for joining each

layer. Vat Photopolymerization (VP), Material Extrusion (ME), and Powder Bed Fusion (PBF)

were first applied in “rapid prototyping” for the purpose of examining the “form and fit” of a

product to aid in design communication and accelerate development cycles. Increased machine

accuracy and reliability, along with the introduction of Sheet Lamination (SL), Binder Jetting

(BJ), and Material Jetting (MJ), allowed AM to expand to “rapid tooling” for the production of

expendable jigs and fixtures, along with the creation of low-cost patterns for casting and injection

molding. Advancements in laser power density and repeatability in processing metals using PBF

and Directed Energy Deposition (DED) have now led to AM becoming a promising technology

for the “direct digital manufacturing” of functional engineering components. The customizability

of the 3D model and the layer-by-layer fabrication of AM enables designers to explore complex

geometries, multiple materials, mesostructures, functional features, and consolidated assemblies.

AM provides a broader solution space and greater design freedom than traditional manufacturing.

However, modern advancements in AM machines have outpaced the development of software,

design guidelines, and regulatory standards resulting in limited expertise on the full capabilities,

limitations, and appropriate applications of AM technology.

2

1.1 Brief History of Metal Additive Manufacturing

AM for direct metal components was pioneered in 1995 through DED at Sandia National

Laboratories and later commercialized by Optomec as Laser-Engineering Shape (LENS). Their

process consisted of propelling metal feedstock, via inert gas, into a melt pool generated by a

fiber laser focused on a given location on a build substrate [2]. In the same era, BJ was being

introduced by ExOne [2], where an adhesive agent was selectively deposited to bond layers of

metal powder and form a “green part” before undergoing a post-build de-binding and sintering

process to achieve full densification. Early studies in Laser PBF (LPBF) were conducted at

General Electric by Carter and Jones [3] where they used a Nd:YAG laser to directly sinter a

component made from an iron feedstock. However, they only achieved “35%” density for the as-

built structure and required a post-build Hot-Isostatic Pressing (HIP) operation to achieve full

density. Improvements in the LPBF process were achieved by Das et al. [4] where they achieved

“98.5%” density in processing Ti-6Al-4V alloy and “99.5%” density after HIP. LPBF was most

widely innovated through the efforts of the Fraunhofer Institute of Laser Technology and their

developments in “Selective Laser Powder Remelting” (SLPR) shown in Figure 1-1 [5].

Figure 1-1: SLPR Prototype at Fraunhofer Institute of Laser Technology [5]

3

SLPR contributed to fundamental advancements in laser hatch/contour strategies,

matching laser wavelengths to the absorptivity of the metal powder, minimizing beam distortion

with f-theta lens, mitigating material oxidation through inert gas in the build chamber, and

anchoring parts to a build substrate to minimize distortion in the AM process [2]. By the early

2000’s, SLPR was commercialized and marketed by European manufacturers: MTT

Technologies (now Renishaw), Concept Laser, Phenix (now 3D Systems), and EOS Gmbh. In

2001, Electron Beam Melting was also commercialized by Arcam [2], providing an alternative to

LPBF as a technology that used propelled electrons, magnetic lens, and beam splitting to process

metal parts.

1.2 Laser-Powder Bed Fusion

LPBF is an AM process where “thermal energy selectively fuses regions of a powder

bed” to produce parts [2]. As shown in Figure 1-2, LPBF consists of a powder delivery system,

where a feed bed (i.e., hopper, dispenser) supplies a layer of powder onto a part bed containing

the build job geometries. Thermal energy from a laser scans the part bed surface and fully melts a

region of powder particles to form a solidified cross-section. The powder bed lowers and a

coating mechanism (i.e., blade, rake, roller) spreads additional powder from the feed bed on top

of the scanned layer. Energy is applied to the newly recoated surface to solidify the next layer of

the part, and the AM process repeats for each layer until all geometries have been fabricated. At

the completion of the build job, parts are removed from the machine, while surrounding un-

melted powder is recovered from the part bed and overflow bin for reuse in later builds. LPBF is

commonly executed in a build chamber filled with inert gas (e.g., Argon, Nitrogen) or under

vacuum to mitigate the reactivity of the powder feedstock during the melting of each cross-

section. Technologies that offer LPBF are Direct Metal Laser Sintering (DMLS), Selective Laser

4

Melting (SLM), Direct Metal Laser Melting (DMLM), Direct Metal Printing (DMP), Laser

Melting (LM), and LaserCUSING [6].

Figure 1-2: Powder Bed Fusion Schematic (left) and Fusing of Powder Particles (right) [2]

1.3 Design Considerations for Laser-Powder Bed Fusion

In comparison to polymeric AM processes, LPBF with metal powder feedstocks requires

extensive operations in order to generate a fully-functional component. In LPBF, build orientation

and support structure generation are non-trivial tasks with the goal of anchoring [7] the part to the

build substrate. This design process is critical due to the risk of thermal distortion and mechanical

delamination during the build which can lead to a part feature colliding with the recoater and

subsequently failing the build [8]. In contrast, the heated powder bed in EBM mitigates thermal

distortion; however, the design of support structures is aimed at dissipating heat and minimizing

curling for fine features [9]. Depending on the application, LPBF parts may have internal voids

(i.e., porosity) and residual stress, which require thermally post-processing via stress relief, heat

treatment, annealing, and HIP, in order to meet microstructure and performance requirements

[10]. Parts may also undergo mechanical post-processing via electrical discharge machining,

shot-peening, milling, and manual support structure removal. Lastly, end-use parts may require

5

non-destructive testing such as dye-penetrant, computed tomography, white light metrology,

digital radiography, and CNC probing to validate the surface finish, external dimensions, and

internal structure.

1.4 Motivation

Industry has shown a growing demand for LPBF and metal AM modalities because of the

capabilities of producing components with complex shapes, functional features, lower part count,

and minimal labor compared to traditional manufacturing [11]. The 2018 Wohler’s Report found

that “1768” metal AM machines were sold in 2017, marking a “80 %” increase in sales compared

to 2016 as shown in Figure 1-3 [12].

Figure 1-3: Sales of metal AM machines from 2000-2017 [12]

While interest in metal AM has seen investments, acquisitions, and partnerships to

expand the capability of the technology [13-15], mass adoption of AM for the production of metal

components has been limited with few successful examples in industry. In addition to uncertain

6

material properties and limited qualification standards [16], AM technologies have been hindered

by cost effectiveness [17]. An industry report of 900 global companies by Ernst & Young [18]

reported that 40% of companies cannot afford the acquisition costs for a generic AM machine,

ranging from $500-$999k [19], while 20% cannot afford the operating costs and materials. In

LPBF, the most prevalent feedstock is metal powder, a material which can range in price from

“$260 to $450 per kg” [20]. Due to this expense, un-melted feedstock is often reused (i.e.,

recycled) in subsequent build jobs to save costs over purchasing additional virgin powder [21].

Despite these savings, reused powder endures partial sintering with each build job due to latent

heat from the melt-pool, leading to subsequent changes in the powder size distribution [22]. This

phenomenon creates non-spherical particles and satellites leading to porosity and rough surfaces

[23]. In parallel, the formation of oxides, soot, and exposure to ambient atmosphere can

disseminate chemical impurities into the feedstock [10, 24]. Contrasting to this inherent

variability in the process, LPBF cost models have implicitly assumed the powder has infinite

reusability. Consequently, there are limited studies that have examined how the cost effectiveness

of LPBF is impacted when accounting for a powder feedstock with a finite quantity of reuses

before it is no longer permissible in the AM process.

Additionally, design is another critical activity that influences cost in LPBF. Poorly

designed components are at risk of recoater collision, thermal distortion, and lengthy build hours

(e.g., 200-300 h [10]). With machine time being one of the largest cost drivers in LPBF, designers

can choose to reduce build height, minimize support structures, efficiently pack the build volume,

or modify design features based on the build orientation [25-27]. However, designers must also

consider trade-offs between cost and manufacturability. One example being: support structures

can mitigate the propagation of residual stress during the build, but they may have limited line-of-

sight access during post-processing and removal. Furthermore, designers must ensure that their

7

geometry embodies proper Design for AM (DFAM) principles, examples shown in Figure 1-4, to

ensure that the component is produced in an effective and feasible manner.

Figure 1-4: DFAM guidelines for LPBF [28]

In modern practice, designers apply DFAM and iterate on the geometry through a

software workflow of multiple programs (i.e., Solid Modeling, Surface Modeling, Finite Element,

8

File Repair, Build Preprocessing, etc.) and multiple file format conversions before outputting an

STL file. Despite the STL serving as the input to the slicer for an AM machine, this file lacks

specification data (e.g., units, coordinate system, material data, modeling features, etc.) [29],

which can significantly hinder the ability to perform future design modification and updating.

Although the STL’s build orientation and support structures can be adjusted with print

preparation software, the STL’s dearth of specifications pose a risk for lost design intent which

can lead to defective parts, variability, and unattended costs later in production [30]. Alternative

file formats such as 3MF and AMF store more manufacturing metadata (i.e., color, curvature,

functionally-graded materials, etc.) and have seen recent integration into commercial 3D CAD

programs [31, 32]. However, these files types are exported as boundary-representations that do

not possess the underlying solid modeling and feature data for later modification by the designer.

Beyond 3D-scanning and reverse engineering applications, the 3D CAD model is the

fundamental starting point for design and development of a component in AM [2]. Therefore,

design tools must be introduced and integrated with 3D CAD modeling to aid, inform, and guide

designers on manufacturability, LPBF cost estimates, and DFAM considerations at the earliest

stage in the development process.

1.5 Research Objectives

The goal in this thesis is to answer the following research questions: 1) “How does the

reusability of a metal powder feedstock impact the total costs in LPBF?” and 2) “What variables

should designers consider when assessing their geometries with CAD-integrated DFAM tools?”

To answer the first research question, an existing LPBF cost model is modified by introducing a

financial depreciation model. Through this model, the value of a powder feedstock is a function

of the quantity of build cycles reused in LPBF before reaching a terminal value where it is a scrap

9

powder and no longer permitted in the AM process. The second research question is explored by

introducing a software plug-in using a 3D CAD program’s application programming interface

(API) to query metadata from a given geometry and provide feedback to the designer on cost,

build volume constraints, and support structure generation for a given build layout.

1.6 Thesis Overview

Beginning with a literature review in Chapter 2, previous work on AM cost modeling and

powder reusability is summarized along with current research on design tools to support DFAM

and optimization for LPBF. Chapter 3 introduces the expanded LPBF cost model with powder

reusability along with the proposed formulas and variables. A case study is presented for an

automotive upright with sensitivity studies on low-to-high unit price feedstocks, geometry

replicates in the build chamber, blending of virgin and reused feedstock, and low-to-high unit

production. Chapter 4 expands the work in Chapter 3 by integrating the proposed cost model with

a SolidWorks API plug-in that allows designers to examine the impact of powder dosage,

material selection, support angle, and build layout on total cost. Additionally, ray-trace projection

is implemented in a macro to automate internal and external support structure generation on the

geometry followed by particle swarm optimization to determine an optimal build orientation that

facilitates manufacturability and post-processing. Chapter 5 summarizes the contributions of this

thesis, limitations in the reported findings, and recommendations for future work.

10

Chapter 2

Literature Review

Chapter 2 is presented in four sub-sections. Section 2.1 provides an overview of various

cost models used in AM and fundamental observations on the cost effectiveness of the AM

process against traditional manufacturing. Section 2.2 delves into related work on metal powder

reuse in LPBF and notes what researchers have observed in regards to changing feedstock quality

and properties. Shifting emphasis to design, Section 2.3 reviews previous DFAM tools and their

common inputs and functions provided in their programs. Lastly, Section 2.4 examines

optimization practices used in DFAM and is organized based on build orientation optimization

for component producibility and cost reduction in the AM process.

2.1 Cost Modeling in Additive Manufacturing

The earliest cost models for AM were created by Alexander [33], who studied the impact

of build orientation on the costs of parts produced through VP and ME. Using activity-based

costing (ABC), Alexander grouped costs into three activities: (1) Prebuild preparation, (2) Build,

and (3) Post-processing. Alexander’s work determined an interdependence between costs and

build orientation due to build height, build time, support materials, and post-processing. Further

work by Hopkinson and Dickens [34] compared Selective Laser Sintering (SLS), VP, and ME

against Injection Molding. Hopkinson and Dickens demonstrated that these AM technologies are

most economically competitive in low-volume production due to the near constant cost for AM

and injection molding’s progressive cost reduction due to distributing tooling cost over a high

quantity of units. Ruffo et al. [35] expanded Hopkinson and Dicken’s cost model by splitting total

costs into two categories. (1) Direct costs, a fixed value based on the quantity of materials and

11

part volume, and (2) Indirect costs which are variable and treated as a function of time. Their

study highlighted that build time in PBF is a summation of the “layer exposure time”, “recoating

time”, and “time to heat/cool” the bed chamber to a given temperature. They also presented a

“waste factor” to allocate for feedstock that could not be reclaimed from the build bed. As a

follow-up, Ruffo et al. [36] studied cost allocation for build jobs with mixed part geometries in

SLS comparing strategies that allocated cost based on a part’s volume relative to the total volume

of built parts along with allocation based on a part’s theoretical cost at near-infinite production.

In cost modeling for LPBF with metal feedstock, Atzeni et al. [37] compared the costs of

producing end-usable metal parts through DMLS against traditional Die-Casting, and reported a

similar trend as Hopkinson and Dickinson where AM was most competitive at low-volume

production. Atzeni et al. assumed that manufacturing took place in Western Europe with an

operator hourly rate of “20.00 - 30.00 €/hr” and that each part would undergo “heat treatment”

after the build. Material cost estimates were calculated with an assumed “10% increase in the

part’s volume” to empirically account for support and waste materials. Baumers et al. [38]

furthered Atzeni et al. efforts by studying the relationship between build platform utilization

against energy consumption and build productivity in EBM and DMLS processes. Baumers et al.

showed that specific energy consumption in DMLS can be reduced from “337 MJ/kg” to “240

MJ/kg” when conducting a build job with parts fully utilizing the build platform area over

individually produced parts. Lindemann et al. [39] performed a lifecycle study for production in

metal AM using Time-driven Activity-Based Costing (ABC). Costs for a generic metal AM

machine were discretized into an activity workflow of CAD Preparation, Machine Preparation,

Build Process, Support Removal, and Surface Treatment. Considering a single part geometry for

production at 4500 h/year, their cost model found that 74% of total costs can be attributed to

machine costs, followed by material costs at 12%. Sensitivity analysis revealed that the material

costs could vary between 5% and 46% of the total cost based on the value of the feedstock.

12

Rickenbacher et al. [40] expanded the work of Lindemann et al. by proposing a generic

cost model for SLM. Rickenbacher et al. used ABC while accounting for multiple geometries

and part quantities in the same build job. Costs associated with the build time for a multiple

geometry build job were evenly divided among all the parts in a layer-wise manner, based on

their respective build heights. In a case study for three geometries, Rickenbacher et al. found that

a total cost savings of 41% can be achieved by optimizing the quantity of parts on the build

platform (i.e., packing density). A recent study by Fera et al. [41] expanded upon the

Rickenbacher et al. cost model by allocating for energy consumption and introducing an Overall

Equipment Effectiveness (OEE) index to account for “planned downtime, breakdowns, minor

stops and production rejects” on the AM machine in a production environment.

Despite these developments in cost modeling literature for PBF, reviews by Thomas and

Gilbert [17] and Costabile et al. [42] have noted that limited cost models capture the effect of

powder reuse. Chan et al. [43] highlighted the assumption of “indefinite (powder) reuse” in their

AM life cycle assessment but remarked that reuse should be further studied to examine the

sustainability of metal AM processes.

In summary, cost modeling in AM is conducted primarily through engineering-based cost

methods that sum the material, machine, and labor costs while also considering indirect expenses

such as overhead and consumables. Relatively high machine and material costs limit AM’s cost-

effectiveness to low-volume production. With material costs ranging between 5-46% [39] of the

total costs in metal AM processes, current cost models are assuming unlimited reusability and

infinite reuses for the powder feedstock. Consequently, traditional cost models are financially

valuing reused powder as virgin powder. These models lack an analytical method for

determining the value of the reused material and allocating costs as it undergoes physical and

chemical changes in subsequent reuses in LPBF.

13

2.2 Metal Feedstocks in LPBF

Having identified that previous cost models assumed infinite reuse for the powder

feedstock, this section delved into literature that studied metal powder and the impact of reused

powder on the quality and performance of LPBF applications. To begin, metal powder is defined

as a substance containing particles of elemental metals or alloys, normally less than 1000 microns

in size [44]. This substance can be produced through various electro-chemical and thermo-

mechanical processes such as Gas Atomization, Water Atomization, Centrifugal Disintegration

[45-47]. In metallurgical applications, the powder can be characterized by the Density, Powder

Size Distribution (PSD), Chemical Composition, Surface Chemistry, Morphology, Crystalline

Phases, Flowability, and Thermal Properties [24]. Variability in powder properties can occur at

numerous stages throughout the lifecycle of the material. Axelsson [48] conducted a study on Ti-

6Al-4V powder produced from three independent manufacturers for EBM. Analysis of the

chemical compositions found Nitrogen, Chlorine, and Yttrium outside ASTM F2924 limits,

indicating contamination during the feedstock production process. Powder is also sensitive to

oxidation, a naturally occurring chemical reaction where oxygen atoms undergo diffusion and

exchange electrons with a metallic element to form oxides [49]. Oxides form surface films that

can alter the absorptivity and melting of the material [50]. In addition to oxidation, the build

environment of PBF machines can promote the formation of carbides and nitrides due to

prolonged durations and reactivity at elevated temperatures [51].

Table 2-1 provides a list of AM literature that has studied the implications of reusing

powder feedstock in PBF. The most common procedure in these studies was to load the AM

machine with a quantity of virgin powder, complete a build job consisting of test coupons (e.g.,

cubes, tensile bars, etc.), remove all un-melted powder from the machine (e.g., build chamber,

dispenser, overflow bin), sieve the powders together, reload the machine with the sieved

14

feedstock and then iterate. Studies by Tang et al. [52] and Grainger [53] showed that Ti-6Al-4V

powder lots can progressively gain oxygen content and exceed chemistry limits with successive

reuses in the AM process. Despite operating in inert or vacuum environments, the oxygen pick-up

was attributed to “exposure time” during the melting process, “powder handling”, and “sieving”.

Tang et al. recommended no more than 4 build cycles in EBM to maintain compliance with

ASTM F3001 (Grade 23). Grainger’s results showed that the oxygen content could potentially

exceed Grade 23 limits between 15-35 build cycles; however, the study concluded there was “no

requirement” to dispose of un-melted powder after it had been reused in a number of build cycles

due to their study representing a “worst case” production scenario in LPBF. Mechanical

properties for machined specimens built from reused Ti-6Al-4V ranged from a UTS of 910-1039

MPa (14-18% elongation) in EBM and 1012-1095 MPa (7-17% elongation) in LPBF. Seyda et al.

[38] also reported that reuse led to changes in particle morphology which caused surface

roughness to increase from 92 to 123 microns on the as-built surface.

Table 2-1: Literature on Powder Reuse in PBF

Ref. Authors Material Machine Reuse Metric Reuses

[52] Tang et al Ti-6Al-4V Arcam A2 Build Cycles 21

[53] Grainger Ti-6Al-4V ELI Renishaw AM250 Build Cycles 38

[54] O’Leary et. al. Ti-6Al-4V ELI Renishaw AM250 Build Cycles 5

[55] Seyda et al. Ti-6Al-4V EOSINT M 270 Build Cycles 12

[24] Slotwinski et al. CoCr MP1 EOSINT M 270 Build Cycles 8

[24] Slotwinski et al. 17-4 SS GP1 EOSINT M 270 Build Cycles 8

[56] Jacob et al. 17-4 SS PH1 EOSINT M 270 Build Cycles 11

[57] Aboulkhair et al. AlSi10Mg Realizer SLM50 - -

[58] Asgari et al. AlSi10Mg EOSINT M 290 - -

[59] Ardila et al. IN718 Realizer SLM250 Build Cycles 14

[60] Samant and

Lewis

IN718 EOSINT M 280 Build Cycles 13

When examining additional alloys, the implications of powder reuse differ compared to

those seen in Ti-6Al-4V. A study by Slotwinski et al. [24] on 17-4 SS GP1 and CoCr MP1

15

observed a similar trend of enlargement of the powder size distribution due to agglomerates and

non-spherical particles with reuse. Their analysis determined that there was no significant

difference in the chemical composition of the feedstocks after 8 build cycle reuses but did

identify excess oxidation on the surface chemistry. A follow-up study by Jacob et al. [56] found

that 17-4 SS PH1 showed no significant change in the chemical composition, powder

morphology, and microstructure after 11 build cycles. Mechanical properties ranged from a UTS

of 1325-1380 MPa (23-27% elongation) which exceeded the minimum values quoted by the PBF

vendor; however, all of the specimens in their study did undergo machining and heat treatment

prior to testing. For AlSi10Mg, Aboulkhair et al. [57] reported no significant change in the

chemical composition while Asgari et al. [58] found that the mechanical properties, particle size,

microstructure, and morphology were comparable to virgin powder. Despite their conclusions,

both Aboulkhair et al. and Asgari et al. did not define a reuse metric and appeared to only report

results after a reuse of one build cycle. Since AlSi10Mg is reactive in the presence of oxygen and

moisture, their findings may not be applicable to feedstocks that may undergo a high quantity of

reuses in PBF. Research on IN718 [59, 60] reported stable mechanical, chemical composition,

and microstructure properties with reuses in LPBF. Given that IN718 is a high-temperature, age-

hardened superalloy, additional studies would have to be conducted to validate these findings for

reused feedstock in fatigue and high-temperature creep applications.

Standards by ASTM and NASA [61-67] have provided initial guidance on powder reuse

in PBF. Both standards recommend sieving the feedstock after each build job along with the

definition of a reuse metric, agreed upon by the manufacturer and the customer, for tracking a

powder lot throughout production. ASTM suggests the metric of “times processed in the build

chamber” (i.e., build cycles). NASA suggests that manufacturers start with the metrics of “1000

hours of machine operation, 60 days (in the machine), or 30 build operations” for non-reactive

feedstocks and “500 hours of machine operation, 30 days (in the machine), or 10 build

16

operations” for reactive alloys (e.g. Titanium, Aluminum). One difference is that ASTM

standards permit the blending of virgin powder and reused powder if they already meet “chemical

composition” requirements. NASA standards prohibit the “additions (of powder) to a post-

production powder lot for control of PSD or chemistry”. This may be due to the fact that while

reused powder can be physically sieved by particle diameter, the presence of chemical impurities,

non-spherical agglomerates, and oxides may not be explicitly removed from the powder lot. Thus,

under NASA standards, a reused powder could only be blended with other lots if it already met

the same PSD and chemistry as virgin powder.

Upon reviewing powder reuse literature, it is difficult to generalize findings across a wide

variety of PBF technologies. The reusability of a powder feedstock is both alloy and AM machine

dependent due to the production process of the powder, varied energy-material interaction,

powder sieving/handling, and build chamber environments. While reactive metals such as Ti-6Al-

4V and AlSi10Mg may attain chemical impurities with subsequent build jobs, other alloys such

as IN718 and 17-4 SS GP1 may exhibit virtually identical properties compared to virgin powder.

While some studies have found little to no variation in the tensile properties, the literature is

limited on the impact of reused powder on fatigue properties and correlating them to mixing

virgin/reused feedstocks, testing with as-built vs. machined surfaces, heat treated specimens,

along with parts built with standard or customized process parameter sets (e.g., power, scan

velocity, offset, hatch spacing, skywriting, tool path).

2.3 CAD-Integrated Tools for DFAM

In order to account for the considerations of powder reuse outlined in the previous

sections and to properly quote a part, CAD-integrated tools must be introduced in order to

provide designers with early feedback during geometry definition and to aid in iterating towards

17

an acceptable design. Despite this need, AM literature has limited examples of CAD-integrated

tools that support DFAM with many works deferring to stand-alone analytical cost models.

Perhaps the most relevant study was an Integrated Design and Manufacturing Infrastructure

(IDMI) system developed by Rosen et al. [68] to support high school students in collaborative

design and distributive manufacturing. Using an online web portal, shown in Figure 2-1, the

workflow began with designing parts in CATIA and exporting an STL into a manufacturing

assessment program. The AM-Manufacturable module allowed students to vary build orientation

and observe variations in their part’s build height and support structure volume. Students could

select an AM process and the program would provide feedback on minimum feature size and

scaling of the 3D model in the build volume. Next, an AM-Select program directed students to

select machines and materials from a database. They could specify surface finish, strength,

accuracy, stiffness requirements, and then compare build time estimates and costs. The build time

estimates were based on a generalized build time equation for material jetting, material extrusion,

and PBF processes [69]. Finally, the AM-Request module provided a queue of available

machines where students scheduled and digitally submitted their files for printing.

18

Figure 2-1: IDMI with AM-Manufacturable, AM-Select, and AM-Request modules [68]

Contemporary CAD programs (e.g., Creo, Solidworks, Netfabb, 3DExperience) have

begun offering basic AM preparation tools such as positioning 3D models in the build volume,

visualizing support structures, detecting minimum feature size, and interfacing with an AM

machine’s slicer [70, 71]. However, these programs have limited machine configuration, build

time estimation, and cost modeling tools that capture the full fidelity of LPBF. Xometry, an AM

service provider, launched a SolidWorks plug-in enabling designers to directly quote their models

using Xometry’s online cost estimation platform [72]. Xometry’s platform allows designers to

select between a variety of polymer and metal AM technologies, along with traditional milling

and CNC. Given their focus on prototyping, the Xometry platform provides limited options for

design modification, build orientation, and support structures. Because their cost model is

proprietary, they provide minimal information on the parameters and considerations they use

19

when costing parts in AM. Similarly, 3DExperience launched “Marketplace Make” as a software

plug-in allowing designers to upload 3D CAD models and receive automated quotes from service

bureaus. Again, the costing and feasibility assessment algorithms are proprietary and lack

configurability options which may be available to designers that have direct access to AM

equipment at their facility.

Overall, CAD-integrated design tools have limited studies conducted for metal AM.

Rosen et al. [68] presented a web-based co-design platform that aided designers in exploring the

manufacturability and generic costs for AM parts. Commercial CAD programs have begun

offering similar tools that enable designers to examine the support structure, part placement, and

slice file generation. Yet, the functionality of these programs is catered to prototyping and does

not provide sophisticated cost estimation and manufacturing feasibility modules for assessing

whether a component is appropriate for AM.

2.4 Orientation Optimization in DFAM

 Because of the costliness of LPBF, optimization provides a valuable method for

achieving objectives such as minimizing mass for a given geometry, reducing support structures,

or minimizing cost. Although techniques such as topology and shape optimization are widely

used in DFAM, build orientation shall be the scope of this section due to its direct influence on

support structure accessibility and compensation modeling for thermal distortion.

Allen and Dutta [73] conducted early research on build orientation in VP and described

three categories of faces requiring support structures as: (1) overhangs, (2) floating faces, and (3)

unstable bases. They evaluated orientations based on minimal support contact area and low center

of mass. Alexander et al. [33] further examined the impact of build orientation in ME and VP

with respect to cost and noted a relationship between build time, accuracy, and surface roughness

20

due to staircasing. Hur and Lee [74] suggested optimizing a multi-objective function based on

build height, support volume, and accuracy, based on the ratio between the cusp area between

layers and the STL’s facet. Most studies optimizing multi-objective functions have used heuristic

techniques and evolutionary algorithms to explore a broader solution space and multiple

candidate orientations [75-81].

Morgan et al. [82] studied optimizing the orientation of metal components in DMLS and

highlighted differences in optimization criteria compared to polymer AM processes due to post-

processing, support structure removal, and thermal distortion. Using multiple-starting

orientations, their model consisted of an unconstrained optimization algorithm that minimized

total support volume. The computation time for determining a global minimum was correlated to

the numbers of faces on the STL file, varying from a run-time of 2000 s at 5000 facets, up to

nearly 12000 s at 20000 facets. Verma et al. [83] presented a framework for optimizing

orientation in DMLS. STL files were evaluated using a Build Time Index and a Surface

Inaccuracy Index based on the number of facets perpendicular to the build direction. Optimal

orientation was determined using sequential quadratic programming and then analyzed in

subsequent algorithms for adaptive and uniform slicing methods. With the build orientation

capable of dropping ductility in Ti-6Al-4V from 12% to 7% [84, 85], surrogate-based optimizers

have been implemented to maximize factor of safety and mechanical properties [86].

To review, this section found that build orientation impacts build time, support volume,

surface roughness, and mechanical properties. Multi-objective and heuristic-based optimization

can be used to determine a build orientation; however, computation time varies based on the

resolution of the input 3D model. Another gap is the role of orientation on support structure

removal in metal AM. Vaidya and Anand [87] demonstrated that the accessibility of generic AM

support structures can be determined along 6 orthogonal and 12 diagonal directions through a

segmented slice image processing algorithm on the CAD model. Accessing support structures

21

after a metal AM build for removal can demand lengthy post-processing time and should be

considered when optimizing a geometry or planning the build layout.

In the next chapter, the implications of powder reuse shall be furthered studied by

examining a generic cost model for LPBF and introducing a costing methodology to capture the

variation in the financial value of feedstock as it is reused in subsequent LPBF build jobs.

22

Chapter 3

Cost Modeling for Reused Powder Feedstocks in LPBF

As discussed in the previous chapter, the reusability of a powder feedstock is not

explicitly captured in traditional AM cost models. To better account for the limited lifecycle for a

powder feedstock, two models are presented for determining the financial value of a feedstock as

it undergoes processing and reuse in LPBF. To evaluate each powder reuse cost model, a case

study is presented for an automotive upright and assessed using the proposed models along with a

generic LPBF cost model [40]. Following the case study, a sensitivity analysis is conducted

examining different costing scenarios for multiple geometry replicates, alternative materials, and

mass production.

3.1 Financial Depreciation Model for Reused Powder Feedstock

Literature [52-60] has shown that the implications of powder reuse varies based on the

material alloy and the AM technology. Current standards [61-65] state that powder reuse is

permitted; however, feedstock usage and limitations are subjective and based on agreement

between the customer and the manufacturer. With no overarching guidance, manufacturers face

uncertainty as to how one should financially value the feedstock as it is transitions from virgin, to

reused, to scrap powder. With no definitive costing methodology, manufacturers face the risk of

overvaluing reused powder as virgin powder, along with the risk of net capital loss due to excess

scrap powder at the end of production. To correlate the reuses of the input material in LPBF to

the monetary price of the feedstock, we propose that the powder be valued through a financial

depreciation model.

23

In accounting practice, depreciation is defined as the “gradual decline in the financial

value of property due to increasing age and eventual obsolescence” [87]. With the risk of

porosity, non-uniform powder morphologies, and chemical contamination, the quality of the

powder feedstock can diminish as it is continually reused in PBF. Using a depreciation model,

the systematic loss in a feedstock’s financial value is proportional to the powder’s degraded

properties and quality over a given duration of time.

Although depreciation is traditionally used in business accounting for the United States’

Internal Revenue System [88], depreciation is proposed strictly in the context of a costing method

for LPBF. Depreciation is a function of the maximum allowable duration for the feedstock and

its salvage value, estimated market value, when it has reached the end of its useful life. As

discussed previously in Section 2.2, with each powder feedstock having a unique elemental

composition and LPBF technology, the corresponding duration for reuse will vary based on

factors related to the build chamber environment, energy-material interaction, and powder

handling.

Three common depreciation models are: (1) Straight-Line (SLN), (2) Double Declining

Balance (DDB), and (3) Sum-of-the-Year’s Digits (SOYD) [53]. SLN assumes a uniform

reduction in value with each increment in time; however, this linear depreciation is fixed and

assumes that the powder feedstock loses uniform amounts of value regardless of being at the

beginning or end of its useful life. DDB presents a more accelerated model where the feedstock

rapidly loses value at early stages of its useful life and then gradually less; however, since DDB

applies a constant multiplier for depreciation, the salvage value is not explicitly designated and

therefore unadaptable to whichever value the user designates for the end-use scrap, unless

manually corrected. Serving as a median between SLN and DDB, SOYD exhibits a moderate

drop in value at early life and less as the material is increasingly reused. One advantage over

DDB is that the salvage value of SOYD can be specified by the user, making it a more adaptable

24

model for a wide range of materials, with one drawback being that SOYD does not depreciate as

rapidly as the DDB.

Given their customizable inputs and moderate depreciation rates, SOYD and SLN were

considered for this study. Key differences being that SOYD can capture the scenario where virgin

powder, being at most risk of chemical contamination and oxides, is modeled with a large rate of

decline in value after initial uses in a LPBF process and then a slower rate of decline as it

becomes a scrap powder. Whereas SLN can capture the scenario where a feedstock loses value at

a steady and constant rate with each build, such as the lot being regularly replenished with virgin

powder. The two models are presented in Figure 3-1.

Figure 3-1: Comparison of Depreciation Methods for Powder Feedstock

With the two depreciation models, units need to be specified for assessing the duration in

which the powder feedstock is reused. Build cycles are widely cited in the research [52-60];

however, build cycles are an imprecise measure due to variations in the underlying build time,

build height, part orientation, and quantity of parts. While an AM build job is typically measured

25

in units of hours [2], this value can be convoluted with the idle time and recoating time of the AM

machine. Time duration metrics do not provide insight on the explicit process parameters and

build chamber conditions in which a powder feedstock was processed. Additionally, time

duration does not provide comparability between builds which have short versus tall build

heights, demanding differing powder volumes to conduct the build. Jacob et al. [56] proposed one

powder reuse metric as the “ratio of (laser) exposure hours to the total powder volume in the

build”. They argued that such a metric can be better generalized, independent of process

parameters, and allow a comparison of between different LPBF machines. Despite these

promising aspects, the powder reuse metric from Jacob et al. hasn’t been widely studied to

validate their claims.

In spite of the aforementioned limitations, for this cost model, build cycles was selected

as the unit for measuring the reuse duration of a powder feedstock due to available documentation

in literature and limited alternatives. Equation 1 is our proposed method for valuing the powder

feedstock as function of build cycles using SOYD, with Equation 2 for SLN. For this equation, it

is assumed that a powder lot is reused on a single AM machine, where the overflow, part bed, and

feed bed powder are mixed and sieved after each build. Builds are conducted using consistent

process parameters, atmosphere, and material handling conditions.

𝐶𝑚𝑢+1
= 𝐶𝑚𝑢 − (𝐶𝑚0 − 𝑆) ∙ (

𝑈𝑚𝑎𝑥 − 𝑢 + 1

𝑈𝑚𝑎𝑥(𝑈𝑚𝑎𝑥 + 1)
2

) (1)

where:

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used u times ($/kg),

𝐶𝑚0 is the cost of a virgin powder feedstock ($/kg),

𝑆 is the salvage value of the powder at the end of its depreciable life ($/kg),

𝑈𝑚𝑎𝑥 is the maximum quantity of build cycles a powder can be used in LPBF (-),

𝑢 is the number of build cycles a powder has underwent in LPBF (-).

26

𝐶𝑚𝑢
= 𝐶𝑚0 − 𝑢 ∙

(𝐶𝑚0 − 𝑆)

𝑈𝑚𝑎𝑥

 (2)

where:

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used u times ($/kg),

𝐶𝑚0 is the cost of a virgin powder feedstock ($/kg),

𝑆 is the salvage value of the powder at the end of its depreciable life ($/kg),

𝑈𝑚𝑎𝑥 is the maximum quantity of build cycles a powder can be used in LPBF (-),

𝑢 is the number of build cycles a powder has underwent in LPBF (-).

3.2. Activity-Based Cost Modeling for LPBF

The proposed depreciation models are implemented by expanding upon the work of

Rickenbacher et al. [40] and following a similar workflow to that shown in Figure 3-2. A built-

up part, Pi, shall consist of geometry, Gi with Ni quantity in a build job for LPBF. Due to overlap

with the previous model by Rickenbacher et al., the only presented equations are those that have

been modified or are unique to this thesis.

Figure 3-2: Rickenbacher et al.'s Workflow for LPBF [40]

The first labor activity in this cost model is the preparation of the digital geometry data

[40]. Upon receiving the customer’s digital model, it is assumed that the geometry meets general

DFAM rules (e.g., process selection, fully enclosed surfaces, wall thickness, tolerances) [91-93].

27

The tasks in this activity are selecting a build orientation and generating support structures.

Software packages such as NetFabb and Materialise Magics [94, 95] can automate these

processes; however, these programs are not robust for metal AM and may produce designs that

satisfy manufacturing requirements but fail to meet product specifications [96]. Thus, this

activity is an iterative process that relies on experiential knowledge of the AM designer and must

be tailored to the given LPBF technology and geometry.

Once all of the parts have been successfully prepared, the digital geometries are read into

a build layout program. The manipulation and placement of geometries on the digital build tray

can have repercussions regarding the likelihood of build failure (e.g., collision with recoating

mechanism, curling, surface roughness) [97]. With limited literature and standards for this

activity, it is also conducted in an iterative manner relying on previous knowledge and past

experience. The time required for arranging the geometries is a function of the total part

geometries and replicates present in the AM build job.

Machine set-up consists of uploading the digital build tray files, selecting process

parameters, initializing inert gas (or vacuum depending on LPBF technology), and readying

system hardware. With metal powders having explosive and physiological hazards [98-100],

material handling is dangerous, requiring timely and duteous tasks for safe activity. Additional

time can occur if the build calls for a different material than the one currently loaded in the

machine. The total time for changing materials includes the tasks of unloading the current

powder, cleaning the build chamber, replacing consumables (e.g., filters, inert gas), loading the

new feedstock, and cleaning all ancillary equipment (i.e., vacuum). While Rickenbacher et al.

used empirical factors for extra effort under inert environment and material change frequency,

this has been removed since they are captured in the machine set-up and material change time,

shown in Equation 3.

28

𝐶𝑠𝑒𝑡𝑢𝑝(𝑃𝑖) = (𝐶𝑜𝑝 + 𝐶𝑀𝑎𝑐ℎ) ∙
(𝑇𝑠𝑒𝑡𝑢𝑝 + 𝑇𝑚𝑎𝑡.𝑐ℎ𝑎𝑛𝑔𝑒)

∑ 𝑁𝑖𝑖
 (3)

where:

𝐶𝑠𝑒𝑡𝑢𝑝 is the cost per part for setting up the AM machine ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝐶𝑀𝑎𝑐ℎ is the AM machine’s hourly rate ($/h),

𝐶𝑜𝑝𝑒𝑟 is the operator’s hourly rate ($/hour),

𝑇𝑠𝑒𝑡𝑢𝑝 is the time for setting up the machine (h),

𝑇𝑚𝑎𝑡.𝑐ℎ𝑎𝑛𝑔𝑒 is total time for changing and re-loading powder in AM machine (h),

𝑁𝑖 is the quantity of parts with ith geometry (-).

The derivation of a high-fidelity build-time estimator is outside the scope of this paper.

With commercial solutions available through software and the AM machine’s preprocessors

[101], we instead defer to a generic formula [102] for calculating individual build times in lieu of

the previous regression model specific to SLM. For build jobs with multiple parts, this formula

assumes that the build rate for exposing each voxel is constant and that all latency due to

positioning the laser between melted powder regions is negligible. Using the algorithm proposed

by Rickenbacher et al. [40], the recoating time for build jobs with multiple build heights is

calculated in a time fraction manner for each part:

𝑇𝑏𝑢𝑖𝑙𝑑(𝑃𝑖) =
𝑇𝑖𝑑𝑙𝑒

∑ 𝑁𝑖𝑖
 + 𝑇𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 ∙ ∑ (𝑁𝑖 ∙ 𝑉𝑡𝑜𝑡𝑎𝑙𝑖

)𝑖 + 𝑇𝑟𝑒𝑐𝑜𝑎𝑡(𝑃𝑖) (4)

where:

𝑇𝑏𝑢𝑖𝑙𝑑 is the total time required for building up a single part in a given build job (h),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝑇𝑖𝑑𝑙𝑒 is the time when the AM machine is inactive (e.g., heating, cooling) (h),

𝑇𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 is the average time for AM machine to melt a voxel of powder (ℎ/𝑐𝑚3),

𝑁𝑖 is the quantity of parts with ith geometry (-),

𝑉𝑡𝑜𝑡𝑎𝑙𝑖
 is the total volume of the part and support structures for ith geometry (𝑐𝑚3),

𝑇𝑟𝑒𝑐𝑜𝑎𝑡 is the total recoating time allocated to a single part (h).

After estimating the build time, the required amount of feedstock in order to execute the

build job must be determined. Unique to LPBF is that the part bed lowers by one layer thickness

29

and the feed bed platform rises between “two or three times” [10] the layer thickness to account

for changes in powder leveling during the melting of each layer. This ratio of the vertical rise of

the feed bed to the lowering of the part bed is referred to as dosage (DS) [103], also known as

“charge”. If DS is set too low, then the build can be prone to powder shorting and insufficient

coverage of the build plate [104]. With limited equations available in the present literature,

Equation 5 is proposed as a means for estimating the mass of the powder loaded in the feed bed

for a generic AM machine using LPBF.

𝑀𝐹𝐵 = 𝐷𝑆 ∙ 𝐷𝑥 ∙ 𝐷𝑦 ∙ 𝐵ℎ(𝑃𝑖) ∙ 𝜌𝑡 (5)

where:

𝑀𝐹𝐵 is the total mass of the powder loaded into the AM machine’s feed bed (kg),

𝐷𝑆 is the vertical rise of the feed bed per layer thickness in the build (-),

𝐷𝑥 is the length of the dispenser platform in the feed bed (mm),

𝐷𝑦 is the width of the dispenser platform in the feed bed (mm),

𝐵ℎ is the build height of the tallest part in the build job (mm),

𝜌𝑡 is the powder tap density (𝑘𝑔/𝑐𝑚3).

Once the operator has completed all hardware and software set-up, then the build job

commences, and the AM machine proceeds to fabricate the designated part(s). To cost the activity

of the AM machine throughout this duration, costs are grouped into four categories as shown in

Equation 6. Machine costs includes costs pertaining to utilization and inert gas, multiplied by the

build time allocated to a given part (see Equation 4). Material costs, as presented in Equation 7,

are related to the mass of the powder feedstock melted by the AM machine to produce the part. In

Equation 8, the powder depreciation model from Section 3.1 is introduced, where the material

costs are valued as a function of the build cycles endured by the powder feedstock loaded in the

AM machine. For the mass of the part, in Equation 9, empirical factors are included to

compensate for powder losses due to “particles trapped in the filters” [30] during processing and

loose powder trapped in hollow support structures.

30

𝐶𝑏𝑢𝑖𝑙𝑑(𝑃𝑖) = 𝐶𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑃𝑖) + 𝐶𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑃𝑖) + 𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖) + 𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖) (6)

where:

𝐶𝑏𝑢𝑖𝑙𝑑 is the cost per part for building up a part using the AM machine ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 is the cost per part for operating the AM machine during a build job ($),

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is cost per part for the melted powder feedstock in AM process ($),

𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is cost per part for un-melted feedstock in AM process ($),

𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is cost per part for blending feedstocks into the powder lot ($).

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑃𝑖) = 𝑇𝑏𝑢𝑖𝑙𝑑 ∙ (𝐶𝑚𝑎𝑐ℎ + 𝐶𝑔𝑎𝑠) (7)
where:

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 is the cost per part for producing a build job in the AM process ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝑇𝑏𝑢𝑖𝑙𝑑 is the time for building up the entire job in the AM process (h),

𝐶𝑚𝑎𝑐ℎ is the AM machine’s hourly operating cost ($/h),

𝐶𝑔𝑎𝑠 is the cost for inert gas consumption during the build ($/h),

𝑁𝑖 is the quantity of parts with ith geometry (-).

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑃𝑖) = 𝑀𝑖 ∙ 𝐶𝑚𝑢 (8)

where:

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is cost per part for the powder feedstock melted in the AM process ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝑀𝑖 is the mass of a part with ith geometry (kg),

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used in u build cycles ($/kg).

𝑀𝑖 = (1 + 𝛼) ∙ 𝜌𝑤 ∙ (𝑉𝑝𝑎𝑟𝑡𝑖
+ 𝑉𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑖

) + 𝛾 ∙ 𝜌𝑡 ∙ 𝑉𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑖
 (9)

where:

𝑀𝑖 is the mass of a part with ith geometry (kg),

𝛼 is the percentage of powder loss due to process inefficiency (%),

𝛾 is the percentage of powder loss due to being trapped within support structures (%),

𝑉𝑝𝑎𝑟𝑡𝑖
 is the volume of the part body for the ith geometry (c𝑚3),

𝑉𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑖
 is the volume of the support structures for the ith geometry (c𝑚3),

𝜌𝑤 is the powder wrought density (𝑘𝑔/𝑐𝑚3),

𝜌𝑡 is the powder tap density (𝑘𝑔/𝑐𝑚3).

The third cost category in Equation 6 is explained by reviewing the fundamentals of the

LPBF process. A build job requires an excess of powder feedstock to fill the powder bed and

31

support built-up geometries throughout processing. Any un-melted powder at the end of a build

can become degraded by agglomerates, soot, and oxides, which are inherent to the AM process.

These byproducts diminish the financial value of the feedstock, regardless of subsequent sieving,

because the un-melted powder becomes populated with impurities that can propagate into future

layers or builds. Thus, any un-melted powder in the part bed loses the opportunity to be

implemented as a virgin powder and produce parts with minimal deviation from the base

material. To allocate cost for this phenomenon, we propose that the financial value lost by the

surrounding un-melted powder be charged to all parts produced within the build job. For this

third category, the proposed cost is defined as “Powder Depreciation” and cost is calculated using

Equation 10:

𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖) =
𝑀𝑖

∑ (𝑁𝑖 ∙ 𝑀𝑖)𝑖
 ∙ (𝑀𝐹𝐵 − ∑ (𝑁𝑖 ∙ 𝑀𝑖)

𝑖
) ∙ (𝐶𝑚𝑢 − 𝐶𝑚𝑢+1) (10)

where:

𝐶𝑃𝑜𝑤𝑑𝑒𝑟 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is the cost per part for un-melted feedstock in the AM process ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝑀𝑖 is the mass of a part with ith geometry (kg),

𝑁𝑖 is the quantity of parts with ith geometry (-),

𝑀𝐹𝐵 is the total mass of the powder loaded into the AM machine’s feed bed (kg),

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used in u build cycles ($/kg).

In Equation 10, the powder depreciation cost is calculated by taking the mass of the

feedstock loaded in the feed bed and subtracting the total mass of all built-up parts, including

their corresponding powder losses. This is multiplied by the difference in financial value of the

feedstock, at its present amount of build cycles, to the diminished value after one additional build

cycle. Parts within the build job are allocated the depreciation cost as a function of their mass

fractions relative to the total mass of all built-up parts. Through depreciation, this costing method

accounts for the melting and, in-parallel, the lost value of un-melted powder feedstock when

building up a part in PBF. As previously mentioned in Equation 5, the calculation of the powder

32

mass loaded in the feed bed is non-trivial and must be sufficient to fill the part bed completely

and build-up the geometries. The amount of loaded powder feedstock is influenced by the total

volume of geometries in the part bed, their location on the substrate, the material type, and how

the LPBF technology accounts for changes in the levelling of a layer as powder regions melt and

re-solidify.

Lastly, when there is insufficient mass to continue production, a mixture of powders (e.g.,

80% reused, 20% virgin) may be blended together in order to refill the feed bed. This scenario is

captured in Equation 11. Under present ASTM standards [61-65], a powder mixture containing

any used powder, is classified as a “used powder”. Similar to the observations in Equation 10,

when a small quantity of virgin powder is added to a reused powder lot, that virgin powder loses

the opportunity to be blended into a lot with other virgin powder and is thus diminished in value.

Therefore, the value of the blended feedstock, regardless of any additional virgin powder, is

penalized to the value of the most reused powder within the lot. Equation 11 captures this cost by

assuming that the majority of the blended powder lot shall consist of reused powder and that any

newly added powder has less build cycles and is a relatively smaller portion of the total mass in

the blended lot.

𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑃𝑖) =
𝑀𝑖

∑ (𝑁𝑖 ∙ 𝑀𝑖)𝑖
 ∙ 𝛽𝑘 ∙ (𝑀𝐹𝐵 − ∑ (𝑁𝑖 ∙ 𝑀𝑖)

𝑖
) ∙ (𝐶𝑚𝑤 − 𝐶𝑚𝑢+1) (11)

where:

𝐶𝑀𝑖𝑥𝑖𝑛𝑔 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 is cost per part for blending feedstocks into the powder lot ($).

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝑀𝑖 is the mass of a part with ith geometry (kg),

𝑁𝑖 is the quantity of parts with ith geometry (-),

𝛽𝑘 is the mass percentage of a powder k added to the powder lot (%),

𝑀𝐹𝐵 is the total mass of the powder loaded into the AM machine’s feed bed (kg),

𝐶𝑚𝑤 is the cost of the powder feedstock that has been used in w build cycles ($/kg).

𝐶𝑚𝑢 is the cost of the powder feedstock that has been used in u build cycles ($/kg).

33

Once the AM process has finished building, the build job and all subsequent parts are

physically removed from the AM machine. Equation 12 [40] takes the time required for this task

and evenly divides it among the total number of parts created in the build job. Activities at this

stage pertain to removing the build substrate from the machine, collecting all loose un-melted

powder from the part bed, cleaning the machine, removing all powder from the feed bed and

overflow bins, sieving the used powder, storage, and documentation. Empirical factors for extra

effort under inert environment have been removed from the original model.

𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙(𝑃𝑖) = (𝐶𝑜𝑝 + 𝐶𝑚𝑎𝑐ℎ) ∙
𝑇𝑅𝑒𝑚

∑ 𝑁𝑖𝑖
 (12)

where:

𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙 is the cost per part for removing the substrate/parts from the AM machine ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝑇𝑅𝑒𝑚 is the time required to remove parts, clean machine, perform all ancillary tasks (h),

𝐶𝑜𝑝𝑒𝑟 is the operator’s hourly rate ($/hour),

𝐶𝑀𝑎𝑐ℎ is the AM machine’s hourly operating cost ($/h),

𝑁𝑖 is the quantity of parts with ith geometry (-).

The next step involves separation of parts from the build substrate. Modifying the

original formula [40], parts produced in a build job using LPBF may have built-up residual stress

and thus undergo a stress-relief [105] to reduce geometric distortion upon separation. Once

completed, wire electrical discharge machining (EDM) is used to physically detach all parts from

the substrate. The costs for wire EDM are allocated based on the contact area occupied by a part,

and their support structures, on the substrate as follows in Equation 13.

𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑃𝑖) =
𝐶𝑠𝑡𝑟𝑒𝑠𝑠

∑ 𝑁𝑖𝑖
 + 𝐶𝐸𝐷𝑀 ∙

𝐴𝑐𝑜𝑛(𝐺𝑖)

∑ 𝑁𝑖 ∙ 𝐴𝑐𝑜𝑛(𝐺𝑖)𝑖
 (13)

where:

𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 is the cost per part for separating a part from the substrate ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝐶𝑠𝑡𝑟𝑒𝑠𝑠 is the cost for stress-relieving a build plate($),

34

𝐶𝐸𝐷𝑀 is the total cost for separating a part via EDM ($),

𝐴𝑐𝑜𝑛 is the connected area of a part to the substrate (𝑐𝑚2),

𝑁𝑖 is the quantity of parts with ith geometry (-).

Once all parts have been separated from the build substrate, these components can

undergo additional post-processing to meet customer requirements. Due to parts having

individually-tailored functions and applications, the required operations and sequence of their

events will vary due to the specifications ordered by the costumer. For Equation 14 [40], cost is

calculated for post-processing based on support structure removal for an individual part. The

time for post-processing is a function of the part’s geometric complexity and can increase if

additional time or equipment is needed. For estimation purposes, the equation is broadly defined

and can be extended to additional post-processing operations as designated by the user.

𝐶𝑝𝑜𝑠𝑡𝑝(𝑃𝑖) = ∑ (𝑇𝑝𝑜𝑠𝑡𝑝(𝐺𝑖) ∙ (𝐶𝑜𝑝 + 𝐶𝑡𝑜𝑜𝑙𝑠))
𝑖

 (14)

where:

𝐶𝑝𝑜𝑠𝑡𝑝 is the total cost for post-processing ($),

𝑃𝑖 is the built-up AM part corresponding to ith geometry (-),

𝑇𝑝𝑜𝑠𝑡𝑝 is the time required to post-process a part geometry ($),

𝐺𝑖 is the ith geometry (-),

𝐶𝑜𝑝 is the operator’s hourly rate ($/hour),

𝐶𝑡𝑜𝑜𝑙𝑠 is the hourly rate of tools and machines for post-processing ($).

In summary, this cost model consists of 7 activities in the AM workflow (see Figure 7).

Costs are allocated based on an AM operator’s labor for part preparation, arranging geometries on

the build tray, setting-up the AM machine, executing the build job, and removing the substrate

and decommissioning the machine. Afterwards, post-processing of the build job begins with

stress-relief, wire EDM, followed last by individual post-processing to produce a fully-functional

component. These 7 activities are added together in Equation 15 to produce the total cost for a

part made using PBF:

35

𝐶𝑇𝑜𝑡𝑎𝑙(𝑃𝑖) = 𝐶𝑝𝑟𝑒𝑝(𝑃𝑖) + 𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏(𝑃𝑖) + 𝐶𝑆𝑒𝑡𝑢𝑝(𝑃𝑖) + 𝐶𝐵𝑢𝑖𝑙𝑑(𝑃𝑖) + 𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙(𝑃𝑖)

+ 𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑃𝑖) + 𝐶𝑃𝑜𝑠𝑡𝑝(𝑃𝑖) (15)

where:

𝐶𝑡𝑜𝑡𝑎𝑙 is the total manufacturing costs ($),

𝐶𝑝𝑟𝑒𝑝 is the cost per part for preparing the digital geometry data ($),

𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 is the cost per part for the build tray assembly ($),

𝐶𝑠𝑒𝑡𝑢𝑝 is the cost for setting up the machine ($),

𝐶𝑏𝑢𝑖𝑙𝑑 is the cost for building up a part in the AM process ($),

𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙 is the cost for removing the substrate/parts from the machine ($),

𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 is the cost for separating a part from the substrate ($),

𝐶𝑝𝑜𝑠𝑡𝑝 is the total cost for post-processing ($).

Lastly, Equation 16 is introduced for calculating the build volume utilization (i.e.,

capacity, packing) [25] to quantify the extent at which all the geometries are occupying space in

the print bed during a build operation.

𝐵𝑉𝑈𝑖 =
∑ (𝑁𝑖 ∙𝑉𝑡𝑜𝑡𝑎𝑙𝑖

)𝑖

𝑆𝑏𝑥∙𝑆𝑏𝑦∙𝐵ℎ(𝑃𝑖)
 (16)

where:

𝐵𝑉𝑈 is the capacity at which a build job occupies the volume within the print bed (%),

𝑉𝑡𝑜𝑡𝑎𝑙𝑖
 is the total volume of the part and support structures for ith geometry (𝑐𝑚3),

𝑁𝑖 is the quantity of parts with ith geometry (-),

𝑆𝑏𝑥 is the length of the build substrate in the part bed (cm),

𝑆𝑏𝑦 is the width of the build substrate in the part bed (cm),

𝐵ℎ is the build height of the tallest part in the build job (cm),

36

3.3. Implementation and Case Studies

To demonstrate our approach against a traditional LPBF cost model, costs were studied

for two parts designed for and produced by LPBF. Figures 3-3 and 3-4 show the geometric data

and build orientation for each of the parts. These parts were selected due to their differences in

geometry, volumes, and build materials. All parts were manufactured on an EOSINT M280

DMLS machine at Penn State’s Center for Innovative Materials Processing through Direct Digital

Deposition (CIMP-3D). Following the workflow of Rickenbacher et al., STL files were first

imported into Materialise Magics for digital preparation and support structure generation.

Geometries were then entered into EOS RP Tools and sliced to form the build job file. Next, the

files were entered into EOS PSW, where process parameters were selected, and then the AM

process commenced. Once completed, the build substrate was removed from the machine, the

machine was cleaned, powder was sieved, and build documentation was completed. Finally, the

parts and substrate were shipped to a local manufacturer for stress-relief and wire EDM, before

returning to CIMP-3D for support removal.

Figure 3-3: Automotive Upright Geometry G1

Figure 3-4: Testing Apparatus Geometry G2

37

All equations from Section 3.2 were written in a MATLAB program and used for costing

each of the builds. For this case study, constants for powder losses due to process inefficiency

(𝛼) and powder trapped in support structures (𝛾) were chosen to be 40% and 25%, respectively,

based on CIMP-3D staff’s experience from five years of producing metal AM parts at the facility

[48]. Additionally, a DS of 2.25 was assumed to be sufficient for all build jobs in the case study.

Figure 3-5: Powder Feedstock Value vs. Build Cycles vs. Maximum Build Cycles

The graph in Figure 3-5 shows an example of the cost for a powder feedstock at each of

the maximum build cycles. Each point represents the financial value of a powder feedstock with

the given number of accumulated reuses. The salvage value, or estimated resale value, of a

powder that exceeded the maximum amount of build cycles was assumed to be zero. Since the

feedstocks have a wide range of permissible reuses, each feedstock was modeled as having

maximum reuses for up to 10 or 30 build cycles to correspond with recommendations from

NASA [67] and allow comparison between conservative and moderate reuse limits. Table 3-1 and

Table 3-2 contains all the constants used in this model, with material data collected from

datasheets available by the manufacturer [106-109]. Additionally, two prices are considered for

the virgin powder to highlight scenarios where a manufacturer may conduct a one-time purchase

of powder lots, generally a more expensive case. In contrast, the second scenario being

38

manufacturers in large-scale production purchasing large allotments of powder which may

receive a discounted price.

Table 3-1: Cost Model Constants

Variable Description Value Units

𝐶𝑜𝑝𝑒𝑟 Operator’s hourly rate 110 $/h

𝐶𝑝𝑐 Cost for computer workstation with all software and licenses 100 $/h

𝐶𝑀𝑎𝑐ℎ AM machine’s hourly rate 60 $/h

𝐶𝑔𝑎𝑠 Cost for inert gas consumption during the build 10 $/h

𝑇𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 Time required for arranging all geometries in the build job 1 h

𝑇𝑠𝑒𝑡𝑢𝑝 Time required to set up the AM machine 2 h

𝑇𝑚𝑎𝑡.𝑐ℎ𝑎𝑛𝑔𝑒 Time for changing and loading new powder into AM machine 3 h

𝑇𝑖𝑑𝑙𝑒 Time when AM machine is inactive in build (heating, cooling) - h

𝑇𝑟𝑒𝑐𝑜𝑎𝑡 𝑟𝑎𝑡𝑒 Average time for AM machine to spread one layer of powder 9 sec

𝑇𝑟𝑒𝑚 Time required to remove substrate, clean machine after build 3 h

𝛼 Percentage of powder loss due to process inefficiency 40 %

𝛾 Percentage of powder loss due to entrapment in supports 25 %

𝑇𝑅𝑒𝑚 Time required to remove parts, clean machine after build 3 h

𝐶𝑠𝑡𝑟𝑒𝑠𝑠 Total cost for thermally processing all parts on build substrate 350 $

𝐶𝐸𝐷𝑀 Total cost for separating all parts on substrate via EDM 200 $

𝐶𝑡𝑜𝑜𝑙𝑠 Cost for work area with tools and machines for post-processing 50 $

𝐷𝑆 Vertical rise of the feed bed per layer thickness in the build 2.25 -

𝐷𝑥 Length of the dispenser platform in the feed bed 228 cm

𝐷𝑦 Width of the dispenser platform in the feed bed 250 cm

𝑆𝑏𝑥 Length of the build substrate platform in the part bed 250 cm

𝑆𝑏𝑦 Width of the build substrate platform in the part bed 250 cm

Table 3-2: Material Constants

𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍
𝝆𝒕

(𝒈/𝒄𝒎𝟑)
𝝆𝒘

(𝒈/𝒄𝒎𝟑)
𝑳𝑻

(𝝁𝒎)
𝑽𝒃𝒖𝒊𝒍𝒅 𝒔𝒑𝒆𝒆𝒅

(𝒄𝒎𝟑/𝒉)

𝑪𝒎𝟎
($/𝒌𝒈)

𝑺
($)

𝑼𝒎𝒂𝒙
(−)

Ti64 2.74 4.41 30 13.5 {272, 680} 0 {10, 30}

GP1 5.3 7.8 20 7.2 {40, 100} 0 {10, 30}

AlSi10Mg 1.5 2.67 30 26.6 {60, 150} 0 {10, 30}

IN718 5.1 8.15 40 14.4 {76, 190} 0 {10, 30}

Table 3-3 lists the resulting build data for the two example parts. Geometry 𝐺1 had a

build time of 55 hours, and Geometry 𝐺2 had a build time of 31 hours. The estimated build time

was over-predicted for both parts by 6%. This discrepancy is attributed to the assumption that

𝑇𝑖𝑑𝑙𝑒 is zero for preheating, machine cool-down, and laser positioning between hatches during the

39

build process. 𝐺1 required 61 kg of powder to perform the build, whereas 𝐺2 required 32 kg. The

next sections highlight costing scenarios that were generated for all material reuses ranging from

virgin powder, reused powder, and powders that reached their maximum allowable build cycles.

Table 3-3: Labor Time and Build Results

𝑷𝒂𝒓𝒕

𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍
𝑵𝒊

(−)

𝑽𝒕𝒐𝒕𝒂𝒍

(𝒄𝒎𝟑)

𝑩𝒉

(𝒎𝒎)

𝑻𝒑𝒓𝒆𝒑

(𝒉)

𝑻 𝒃𝒖𝒊𝒍𝒅
𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆

(𝒉)

𝑻 𝒃𝒖𝒊𝒍𝒅
𝒂𝒄𝒕𝒖𝒂𝒍

(𝒉)

𝑻𝒑𝒐𝒔𝒕𝒑

(𝒉)

𝑴𝒊

(𝒌𝒈)

𝑴𝑭𝑩

(𝒌𝒈)

𝐺1 Ti64 1 587 172 3 58 55 3 3.9 61

𝐺2 GP1 1 192 47 2 33 31 2 2.2 32

3.3.1 Comparison of Depreciation Models

The first case study was conducted to conceptually highlight differences between a

traditional LPBF cost model and the proposed powder reuse model using SOYD and SLN. Build

costs for 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 were estimated for production

of 10 units of 𝐺1, with Ti-6Al-4V, valued at $272/kg, with a maximum reuse duration of 10 build

cycles. Production assumed one part per build job. Feedstock blending was assumed to take place

after every build job with 6.39 % of the feed bed being mixed with virgin powder in order to

replenish powder that was consumed by the build geometry. Additionally, it was assumed that all

required feedstock for production, including mixing, was purchased prior to the build, amounting

to an initial investment of $26,139. The results of the comparison study are shown in Table 3-4

and Table 3-5.

40

Table 3-4: Costing for SOYD vs. Infinite Reuse

Sum-of-the-Years Digits Depreciation Traditional

Build

Cycle

𝑪𝒎𝒖
($/kg)

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍
($)

𝑪 𝒑𝒐𝒘𝒅𝒆𝒓
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

($)

𝑪 𝒎𝒊𝒙𝒊𝒏𝒈
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

($)

T𝒐𝒕𝒂𝒍

($)

𝑪𝒎𝒖
($/kg)

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍
($)

𝑻𝒐𝒕𝒂𝒍
($)

1 272 1061 2824 0 3885 272 1061 1061

2 223 868 2541 193 3602 272 1061 1061

3 178 694 2259 366 3320 272 1061 1061

4 138 540 1977 521 3037 272 1061 1061

5 104 405 1694 656 2755 272 1061 1061

6 74 289 1412 771 2473 272 1061 1061

7 49 193 1130 868 2190 272 1061 1061

8 30 116 847 945 1908 272 1061 1061

9 15 58 565 1003 1626 272 1061 1061

10 5 19 282 1042 1343 272 1061 1061

Total Sum 26139 10610

Total Net 0 -15529

 The results in Table 3-4 show that for the first build, the 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 was $1061 and the

𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was $2824, nearly 2.6 times the cost of the material. As the number of build

cycles increased, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 decreased from $2824 to $282, while the powder depreciation rose

from $0 to $1042 due to the un-melted powder approaching the salvage value of zero as the

powder was continually reused. In comparison to a traditional LPBF model which assumed

indefinite reuse, the material cost was $1061 and constant over the production of 10 build cycles,

but was undervaluing SOYD’s sum of 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛

resulting in a total that was 1.2 to 3.6x smaller. When looking at the net total in comparison to the

initial investment of $26,139 for all the feedstock, SOYD was able to recuperate all of costs at the

end of production, whereas the infinite reuse costing approach had a net loss of -$15529.

41

Table 3-5: SLN vs. Traditional Infinite Reuse

Straight Line Depreciation Traditional

Build

Cycle

𝑪𝒎𝒖
($/kg)

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍
($)

𝑪 𝒑𝒐𝒘𝒅𝒆𝒓
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

($)

𝑪 𝒎𝒊𝒙𝒊𝒏𝒈
𝒅𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏

($)

T𝒐𝒕𝒂𝒍

($)

𝑪𝒎𝒖
($/kg)

𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍
($)

𝑻𝒐𝒕𝒂𝒍
($)

1 272 1061 1553 0 2614 272 1061 1061

2 245 955 1553 106 2614 272 1061 1061

3 218 849 1553 212 2614 272 1061 1061

4 190 743 1553 318 2614 272 1061 1061

5 163 636 1553 424 2614 272 1061 1061

6 136 530 1553 530 2614 272 1061 1061

7 109 424 1553 636 2614 272 1061 1061

8 82 318 1553 743 2614 272 1061 1061

9 54 212 1553 849 2614 272 1061 1061

10 27 106 1553 955 2614 272 1061 1061

Total Sum 26139 10610

Total Net 0 -15529

 In SLN, the material cost for the first build was $1061, with a feedstock depreciation of

$1553. As the quantity of builds increased, the sum of the of 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was constant throughout the build at $2614. Because SLN is a linear

function, all changes for the of 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 were in equal increments of

$106 with each build. Unlike SOYD, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was the same value for every build job

regardless of consisting of a virgin or scrap powder. When compared to traditional costing in

LPBF, SLN was 2.4x larger but was also constant in value regardless of the whether the build

was virgin powder or near the end of permitted reuses. Like SOYD, SLN was able to break even

and recuperate the capital investment of all of the powder in the builds. Based on these two

tables, it can be determined that SLN and SOYD provide a means of recuperating capital loss for

feedstock which may have limited reuses in LPBF whereas, a traditional model assuming

indefinite reuse may risk a net loss due to undervaluing the overall costs for the build with

respect to un-melted feedstock and any blending prior to the build.

42

3.3.2 Total Costing for Example Parts

Having completed the comparisons between SLN and SOYD against a traditional LPBF

cost model, the next case study aimed to understand how the powder reuse cost model would

impact total costs. This case study examined the total costs for a single build job built with a

feedstock that had accumulated various amounts of reuses. No feedstock blending was considered

in these cases. Depreciation was modeled using SOYD. Figure 3-6 shows the range of total costs,

including all labor activities, for Geometry 𝐺1 as a function of the build cycles endured by the

feedstock loaded for the build job. The points along the graph represent the cost for a build job

loaded with a powder feedstock with the given number of reuses. Powders having a 𝑈𝑚𝑎𝑥 of 10

build cycles were the most expensive due to having the shortest allowable reuses and therefore

the most rapid decline in value. Meanwhile, powders with a 30 build cycle limit had a longer

reuse duration and thus a slower rate of decline.

The total cost for manufacturing the part with virgin powder, represented as zero build

cycle feedstocks, ranged between $10,000 and $16,500 when the feedstock was valued at

$680/kg. Whereas, total build costs ranged between $8800 and $12,000 when virgin powder was

valued at $272/kg. The lowest cost scenario was the use of a powder that exceeded the maximum

amount of permissible build cycles (i.e., powder that is chemically out-of-specification,

diminished flowability, etc.), and total costs were $6800. This is because as a powder is

increasingly reused, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 and 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 decrease in proportion to the diminishing

financial value of the powder feedstock with each build cycle. At this lower limit, the feedstock’s

value has been reduced to the salvage value, zero for this case study. Hence, the material cost has

diminished and the depreciation cost has become zero, because of zero difference in the financial

value of a feedstock that has become a scrap material.

43

Figure 3-6: Total Costs vs. Build Cycles for

Powder Reuse for Geometry G1

Figure 3-7: Cost for Workflow Activities for

Geometry G2

The previous Rickenbacher et al. model, which assumed unlimited powder reuse, had a

constant value of $7840 and/or $9400, regardless of the reuses accumulated by the input

feedstock. In comparison to these calculated cost scenarios, traditional models with unlimited

reuse cost undervalued the total cost of build jobs with virgin Ti64 powder between 26% and

75%, when the feedstock was valued at $680/kg, or from 12% to 35%, when valued at $272/kg.

After 7 and/or 13 build cycles, the Rickenbacher et al. cost model started to overvalue total costs

and thus, build jobs using a powder that had surpassed these cycles could achieve a cost savings.

The largest cost savings was a 38% reduction compared to the Rickenbacher et al, specifically

when using a powder that exceeds its useful life (𝑈𝑚𝑎𝑥).

Figure 3-7 shows a cost breakdown using virgin powder and each of their maximum

reuses. The top three costs were 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒, and 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙. The depreciation

cost was the largest cost for a powder with a 10 build cycle limit and amounted to 42% of the

total cost. When 𝑈𝑚𝑎𝑥 was equal to 30 build cycles, the depreciation cost was overtaken by the

machine cost, and subsequently minimized to 20% of costs. In comparison, the depreciation

costs were more than 2.6 times the value of the material costs.

44

Similar analysis was conducted on Geometry 𝐺2 and displayed in Figures 3-8 and 3-9.

Builds using virgin GP1 powder had a range between $5000 and $5700. The lower limit for

builds using powders that exceeded 𝑈𝑚𝑎𝑥 was $4600. Using the fixed material cost model as the

reference, which valued the builds at approximately $4900, virgin GP1 powder builds were

undervalued between 3% and 11%, when the initial feedstock was valued at $100/kg, but was

only undervalued at 1% and 4%, with virgin powder valued at $40/kg. Upon surpassing 6 and/or

11 build cycles, the totals costs became overvalued, and thus a cost savings of 5% could be

achieved by building with a powder outside the allowable for 𝑈𝑚𝑎𝑥. The largest cost for

Geometry 𝐺2 was 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 at 42%, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 at 11%, and 𝐶𝑝𝑜𝑠𝑡𝑝 at 10% of the total

costs. Similar to Geometry 𝐺1, when using a 10 build cycle maximum virgin powder, the

depreciation cost was twice that of the material costs.

Figure 3-8: Total Costs vs. Build Cycles

for Powder Reuse for Geometry G1

Figure 3-9: Cost for Workflow Activities for

Geometry G2

Based on these observations, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 was one of the largest costs for

Geometries 𝐺1 and 𝐺2. It was at most 42% of the total costs for 𝐺1 but only 11% in 𝐺2. When

looking specifically at 𝐺1 and its use of Ti-6Al-4V powder, the relatively larger depreciation cost

in comparison to 𝐺2 is due to 𝐺1 requiring nearly twice as much powder to fill the feed bed due to

differences in tap densities and part build heights, along with the Ti64 powder being nearly seven

45

times more expensive than GP1. The machine cost had a relatively higher percentage in GP1

because of its 20 micron layer thickness and 7.2 h/cm3 build speed, which was half the speed

when using Ti64. In both examples, when using a powder with a 𝑈𝑚𝑎𝑥 of 10 build cycles, the

depreciation cost was greater than twice the cost of the melted material. One interpretation for

this result is that the utilized build envelope (i.e., volume packing) is uneconomical for the given

build since the surrounding un-melted powder is being put at risk of contamination and

degradation, and thus more costly than the built-up parts produced in the AM process.

Overall, this section found that 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 was the most pervasive cost for both builds of

the example parts. This is due to the volume of the geometries and support structures being

consolidated during processing, their corresponding build heights, and the build speeds at which

the DMLS machine can melt the given material. The labor activities pertaining to

𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 , 𝐶𝑠𝑒𝑡𝑢𝑝, 𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙, and 𝐶𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 showed no significant cost fluctuation among the

example parts. This is because these activities are standardized procedures with average

completion times based on the skill of the AM operator and independent of the geometries in the

build. While 𝐶𝑝𝑟𝑒𝑝 and 𝐶𝑝𝑜𝑠𝑡𝑝 can vary for complex geometries requiring support structures,

these costs ranged between 3-11% of the costs in all of the builds, due to larger costs being

attributed to machine time, material, and depreciation.

3.3.3 Sensitivity to Build Volume Utilization and Material Selection

Since both example parts were printed as single component build jobs, this scenario may

not be indicative of industrial applications in mass production. Consequently, single component

build jobs create a scenario where the depreciation cost of the un-melted powder may exceed the

cost of melted powder, implying that more cost is being allocated to the un-melted material than

the material that is being processed. Based on this observation, a sensitivity analysis was

46

conducted by varying the build volume utilization to determine how the material and powder

depreciation cost change as more part replicates are added to the build plate.

For this section, 𝐺1was varied from one to three replicates, while 𝐺2 from one to five; the

quantity of replicates differed due to build volume constraints for the respective geometry. Both

material and depreciation costs were normalized as percentages of the total cost of their

respective build jobs to account for subsequent increases in machine time and post-processing

due to the additional geometries. Secondly, sensitivities pertaining to the build material of the

parts was explored by modeling the builds with feedstock of Ti-6Al-4V, GP1, IN718 and

AlSi10Mg to highlight differences due to the build rates and processing of the designated

material. Build time estimates were produced for these revised build job assemblies generated

using Equation 5. The generated costs all assume the same value of dosage along with the mass in

the feed bed for each build job. Each model assumes the builds consisted of a virgin powder

feedstock with maximum build cycle limits between 10 and 30 build cycles, with no blending.

Results are shown in Tables 3-6, 3-7, 3-8 and 3-9. Rows were highlighted to identify the

minimum BVU at which 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 was larger than 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛.

Table 3-6: Ti-6Al-4V Sensitivity for Material vs. Powder Depreciation Costs

 𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses

 $680/kg $272/kg $680/kg $272/kg

 N

(-)

BVU

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

 1 5 16 43 10 26 22 21 6 5

𝑮𝟏 2 11 24 30 14 17 30 13 7 3

 3 16 29 22 16 12 33 9 8 2

 1 6 13 30 7 16 17 13 4 3

 2 13 20 21 11 11 24 9 5 2

𝑮𝟐 3 19 25 15 13 8 27 6 6 1

 4 26 28 12 14 6 30 4 7 1

 5 32 30 9 15 4 31 3 7 1

47

Table 3-7: GP1 Sensitivity for Material vs. Powder Depreciation Costs

 𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses

 $100/kg $40/kg $100/kg $40/kg

 N

(-)

BVU

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

 1 5 6 17 3 8 6 6 1 1

𝑮𝟏 2 11 8 10 3 5 8 4 1 1

 3 16 8 7 4 3 9 3 2 1

 1 6 4 11 2 5 5 4 1 1

 2 13 6 7 3 3 6 3 1 0

𝑮𝟐 3 19 7 5 3 2 7 2 1 0

 4 26 7 4 3 2 8 1 1 0

 5 32 8 3 3 1 8 1 1 0

Table 3-8: AlSi10Mg Sensitivity for Material vs. Powder Depreciation Costs

 𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses

 $152/kg $60/kg $152/kg $60/kg

 N

(-)

BVU

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

 1 5 6 13 3 6 6 5 1 1

𝑮𝟏 2 11 8 9 4 4 9 3 2 1

 3 16 10 7 4 3 10 2 2 0

 1 6 3 7 1 3 3 3 1 0

 2 13 5 5 2 2 5 2 1 0

𝑮𝟐 3 19 7 4 3 2 7 1 1 0

 4 26 7 3 3 1 8 1 1 0

 5 32 8 2 3 1 8 1 1 0

48

Table 3-9: IN718 Sensitivity for Material vs. Powder Depreciation Costs

 𝑼𝒎𝒂𝒙 = 10 reuses 𝑼𝒎𝒂𝒙 = 30 reuses

 $192/kg $76/kg $192/kg $76/kg

 N

(-)

BVU

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

𝑪𝒎𝒂𝒕.

(%)

𝑪𝒑𝒐𝒘𝒅𝒆𝒓 𝒅𝒆𝒑.

(%)

 1 5 12 32 7 18 15 15 3 3

𝑮𝟏 2 11 18 22 9 11 20 9 4 2

 3 16 21 16 10 8 23 6 5 1

 1 6 9 20 4 10 10 8 2 2

 2 13 14 14 7 7 15 5 4 1

𝑮𝟐 3 19 16 10 8 5 18 4 3 1

 4 26 18 8 9 4 19 3 4 1

 5 32 20 6 9 3 20 2 4 0

For Ti-6Al-4V and a $680/kg feedstock with a maximum of 10 reuses, powder

depreciation ranged from 8 to 42% of the total costs. At a build volume utilization between 16

and 19%, the material cost began to be greater than the powder depreciation costs indicating a

build job that was more cost efficient than those built with single components. The effects of

varying feedstock costs from $680/kg to $272/kg, reduced both the material and powder

depreciation costs by nearly half. For feedstocks with a maximum of 30 reuses, powder

depreciation ranged from 3 to 20% of the total costs and only a utilization of 5-6% of the build

volume was needed for the material cost to be greater than depreciation. Consequently, for a

lower cost feedstock, both material and depreciation costs were reduced by a factor of four.

GP1 showed a similar trend where a build volume utilization between 16 and 19% saw

material costs being greater than powder depreciation for a 10 reuse feedstock and 5-6% for 30

reuse. However, the powder depreciation costs were relatively smaller and only ranged from 2-

16% and 1-6%. This trend was continued in AlSi10Mg. Despite being a more expensive and less

dense material than GP1, AlSi10Mg ranged in depreciation costs between 2-13% and 1-5%.

Results for IN718 showed that powder depreciation costs ranged from 5-32% and 2-14%.

49

Additionally, the results exhibited the same behavior as Ti-6Al-4V where a feedstock at a

reduced price of $76/kg nearly halved or reduced the material and powder depreciation cost by

four times the value of a full priced feedstock.

To summarize, this sensitivity analysis explored the effect of increasing build volume

utilization and changing the build material. In all models with a limit of 10 reuses, a build volume

utilization larger than 15%, resulted in the material costs being greater than powder depreciation

costs, regardless of the material type. Whereas, powders with a higher limit, 30 build cycles, only

required at most 6%. Given that the powder depreciation cost is calculated as the difference

between the mass of the un-melted powder and the mass of powder melted for the parts, a highly

packed build tray with a high quantity and large mass of produced parts reduces the overall

powder depreciation since more of the surrounding powder is melted and consumed during the

build job. Less un-melted powder remains after the build, and thus, the material costs are greater

than the powder depreciation; however, post-processing costs may increase as a result of the

additional part quantities. Ti-6Al-4V and IN718 both showed depreciation costs ranging near

maximums of 32% and 42%. However, GP1 and AlSi10Mg only had maximums of 13-16%. In

the case of GP1, this material has a build rate that is the half the speed of Ti-6Al-4V and IN718;

thus, it will have double the machine time costs. Coupled with a low feedstock price, GP1 shows

a smaller value of powder depreciation relative to the other materials. For AlSi10Mg, its light tap

and wrought density is also nearly half compared to the other materials, and therefore it will have

nearly half the powder depreciation costs. Ti-6Al-4V and IN718 both exhibit high values of

powder depreciation due to nearly similar build speeds, moderate powder densities, and high unit

price. The largest effect of the total costs was the interaction between price of powder, going from

the expensive to the economical price, and increasing reuse limit from 10 to 30 build cycles

which reduces total costs by nearly a quarter. Given that each alloys has unique chemistry,

reactivity, and functional requirements, the savings when a feedstock is permitted for up to 30

50

reuses may only be applicable to non-reactive alloys such as IN718 and GP1, as initially

suggested by NASA.

3.3.4 Costing at Mass Production

 The last sensitivity study was to determine how the cost model for powder feedstock

depreciation would impact total costs for builds in mass production. Using geometries 𝐺1 and 𝐺2,

costs were modeled for a production range of 1 to 1000 units with 𝐺1 being limited to three parts

per build platform and 𝐺2 at five. All production was assumed to take place in series on one AM

machine with no parallel production. For production requiring multiple build jobs, additional time

for removing the platform, sieving the powders, and starting the next build was allocated to

𝐶𝑠𝑒𝑡𝑢𝑝 . Additionally, all 𝐶𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 charges for stress relief and wire-EDM was assumed to take

place in series on a per build platform basis, with no parallel processing. For productions

requiring multiple build jobs, powder mixing consisted of adding virgin powder to the feed bed

with 𝛽𝑘 equal to the mass percentage of the total amount of geometries in the build, relative to the

mass of the loaded feed bed and selected material densities. When any powder exceeded the

designated 𝑈𝑚𝑎𝑥, the lot was discarded and the next build was initialized with virgin powder.

Similar to the study in Section 3.3.3, each production scenario was modeled by varying material

selection and the cost of the feedstock at a baseline and discounted price. To aid in comparison,

costs were simplified and modeled as the “normalized cost per part”, where the cost per part for a

given production quantity and depreciation model was divided by the cost per part for a build

with the same quantity when calculated in a traditional cost model assuming infinite powder

reuse. The resulting costs are presented in Figures 3-10 and 3-11.

 Normalized cost per part was largest for builds with one component of production,

whereas the costs was lowest at a mass production of 1000 parts which is expected given that

51

additional components aid in sharing costs for build file preparation along with labor for machine

set-up and platform removal. The low-end “valleys” of the plots are associated with production

requiring full build volume utilization for all the builds and thus minimal powder depreciation

costs while, the rising “peaks” pertain to production requiring partial utilization which may have

one unit printing in build job and therefore incurring excess powder depreciation costs. Between

the range of 100 to 1000 units, the SOYD and SLN cost models began to converge to a constant

value indicating a limit for how much cost could lower during high unit production. Depreciation

models that had equal limits for 𝑈𝑚𝑎𝑥, converged to the same normalized cost per part but

differed when the cost of the feedstock was either a low or high value. Regardless of the number

of parts, all depreciation models converged to a cost that was larger than the builds with an

infinitely reusable feedstock indicating that in mass production, builds assuming infinite reuse

would always be undervalued by a given amount.

 In Figure 3-10, builds for 𝐺1 with Ti-6Al-4V and IN718 had the largest costs over builds

with infinite powder, while GP1 and AlSi10Mg were the smallest. Production with Ti-6Al-4V

priced at $680/kg had the largest range in normalized cost per part valued from “1.72x” to

“1.15x” for builds with 𝑈𝑚𝑎𝑥 = 10 build cycles, and “1.25x” to “1.05x” for builds with 𝑈𝑚𝑎𝑥 =

30 build cycles, indicating that builds at high unit production were undervalued from 5-15%.

Using a lower priced Ti-6Al-4V powder at $272/kg, the costs halved to ranges of 1.35x to 1.07x

and 1.12x to 1.02x, respectively. Builds with the lowest normalized cost per part occurred with

AlSi10Mg between 1.15x and 1.04x for powder with a reuse limit of 10 builds along with costs of

1.05x to 1.01x for powders with 𝑈𝑚𝑎𝑥 = 30 build cycles.

52

Figure 3-10: Normalized cost per part for production of G1, Automotive Upright

 Similar observations were found in 𝐺2, where builds using Ti-6Al-4V and IN718 had the

largest costs as opposed to those with AlSi10Mg and GP1. Builds with Ti-6Al-4V and IN718

ranged from normalized costs of “1.40x” to “1.05x” and “1.24x” to “1.04x” with powders limited

to a reuse of 10 build cycles. However, lower priced feedstocks and builds of AlSi10Mg and

GP1, at either full or a discounted price, all converged to normalized cost per parts that were less

than or equal to “1.02x” indicating only a 2% undervaluing compared to builds assuming infinite

powder reuse.

53

Figure 3-11: Normalized cost per part for production of G2, Test Apparatus

The findings for this section are that builds with production less than 100 parts (33 and 20

build jobs for 𝐺1 and 𝐺2 respectively) had the largest normalized costs and were at most “1.75x”

the cost of the builds with infinite reusable powder, due to high 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 when

initializing a build with virgin powder. As production quantities increased, non-recurring

expenses such as 𝐶𝑝𝑟𝑒𝑝 and 𝐶𝑏𝑢𝑖𝑙𝑑 𝑗𝑜𝑏 decreased over time due to a consistent geometry, build

file, and a high number of replicates. Additionally, cost for 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 decreased due to average

price for the material depreciating over time based on the reuse limit for the feedstock. Repeating

expenses that were shared for a build job such as 𝐶𝑠𝑒𝑡𝑢𝑝, 𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 caused cyclical increases in the cost due to additional activities of mixing

virgin powder to the feed bed lot, reloading powder, and re-prepping the machine for the next

build in production. While total 𝐶𝑝𝑜𝑠𝑡𝑝 increased with higher quantities of parts, on a per part

54

basis the cost was constant since the time allotted to remove supports was consistent for each

replicate.

Increasing the quantity of parts past 100, material selection, and decreasing the price of

the powder had the largest impact in reducing the normalized cost per part. Ti-6Al-4V and IN718

had the largest normalized cost per part due to high price of their feedstock and their subsequently

large 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 expenses. Because 𝐺1 and 𝐺2 have differing

build volume utilization, both converge to dissimilar normalized cost per parts, with 𝐺1 reaching

a value of “1.17x” compared to “1.06x” for 𝐺2 in Ti-6Al-4V limited to 10 reuses. GP1 and

AlSi10Mg had costs less than “1.02” due to, respectively, low powder cost and low tap densities

leading to low powder depreciation costs. Based on these observations, the results suggest that

cost modeling with powder reuse estimates an additional 10% or more in costs for productions

below 100 units with high priced Ti-6Al-4V and IN718, and marginal amounts of additional costs

for AlSi10Mg, GP1, or lower priced feedstocks in production with over 100 units.

3.5 Model Limitations

Uncertainties in the model are the exact number of reuses permitted for each material

alloy, an open and active area of research in the metal AM community. The parametric analysis

accounted for two different maximum build cycle limits, but literature and standards are limited

that provide recommendations on the exact extent for which a reused metal powder can be used to

produce AM parts in functional engineering applications (e.g., aerospace, biomedical, etc.). With

the introduction of new LPBF technologies that enable the feedstock to be loaded one-time and

never removed from the machine, this model may be limited in its applicability towards

measuring the reuse and depreciation of the powder feedstock as it is recirculated in a LPBF

machine.

55

The build time estimator was specific to an EOS machine and assumed a constant build

rate which can fail to capture the dynamic nature of the LPBF process when it is performed on

single and multiple geometries. Higher fidelity methods could consider the lasing system

architecture (e.g., gantry, F-theta lens, multiple lasers), scan speeds for a given material parameter

sets, hatching surfaces, upskin/downskin contours, and the estimated temperature for each voxel

being melted. Despite the model considering the use of a lower price feedstock, their accessibility

in industry is often limited to large manufacturing firms that purchase multiple tons of feedstock

for serial production. Thus, their highly reduced prices may not be accessible to small service

bureaus. While alternative feedstocks may be ordered from different providers, it also creates the

risk of voiding machine warranty if improperly used.

The selection of a depreciation model is highly empirical and is material, product,

industry, and business model dependent for a manufacturer. SOYD and SLN provide two

different means of valuing parts that use a depreciating powder feedstock however, they add cost

which impact overall cost effectiveness in low volume and serial production. Manufacturers

focused on non-functional prototyping or those requiring less stringent properties may be better

served assuming infinitely reusable powder. Meanwhile, manufacturers that have limited access

to virgin powder or firms in highly regulated industries may be able use a cost model with finite

powder reuse to allocate additional costs to the builds and better recuperate capital for discarding

scrap powders at their reuse limit.

Post-processing accounted for the removal of support structures; however, functional

components may call for more sophisticated processes such as annealing, shot peening, or CT

(computed tomography) scanning in order to validate the integrity of the part. While these

examples considered DMLS, costing for EBM will have differences due to variations in PBF

technology and required labor activities. In addition, the empirical waste factors in calculating

the part mass were specific to an EOSINT M280 and may not be applicable to other PBF

56

processes. Finally, costs for the re-design and engineering of a pre-existing component in order to

be made using AM were not captured in this model.

Having observed that LPBF costs can be undervalued when not accounting for reused

powder, the next chapter shall expand upon these implications by examining how these cost

estimates can be integrated with a DFAM tool and also highlight how the build geometry,

orientation, and support structure specifications by the designer can impact cost.

57

Chapter 4
CAD-Integrated Cost Estimation and Build Orientation Optimization

The findings from Chapter 3 showed that total cost and powder depreciation vary from

component to component based on various parameters related to the design of the geometry,

powder feedstock, maximum permitted reuses, and quantity of replicates for the build. However,

geometry definition and build orientation selection is an iterative process that can yield numerous

costing scenarios. To support designers, a CAD-integrated cost estimator was developed as a

software plug-in for a commercial CAD program to enable early geometry evaluation for LPBF

and to better capture the influence of machine and design parameters on the overall costs for a

given design. This chapter provides an overview of the system architecture, coding approach, and

graphical-user interface (GUI) used in preparing the tool. The plug-in was programmed in

SolidWorks and demonstrated on an automotive upright. Sensitivities studies are presented along

with comparison to a comparable commercial tool, 3DXpert.

4.1 Program Workflow

As discussed in Section 2.2.3, few scholarly works have focused on CAD-integrated

DFAM tools and cost modeling for end-use metal AM components. To fill this gap, we propose

the method shown in Figure 4-1 for estimating costs for part production in a generic metal AM

system, while modeling in a generic CAD program.

58

Figure 4-1: CAD-Integrated Cost Estimation Framework

As seen in the figure, the workflow begins with the designer creating a 3D CAD model

and then activating the cost-estimation program directly within the CAD software. After

initialization, a graphical user-interface (GUI) is opened, consisting of multiple tabs for users to

explore various AM processes. In this work, the AM process is assumed to be a nonspecific

LPBF machine. Similar to the IMDI from Rosen et al. [68], upon selecting a process, users are

presented with information regarding their part’s volume, bounding box, build height, and

dimensions relative to the build volume of the AM machine. The coordinate system is aligned

with the CAD system and assumes the 3D model’s build height is along the Z-axis. Users select

an AM machine and are then prompted to select a material for producing their part. The specific

machine and material data are loaded from an external database connected to the cost estimation

program. The material’s sub-section in the user-interface provides information on the powder

feedstock cost, tap density, wrought density, layer thickness, and build rate for the material. Upon

selecting material, the user-interface updates to provide users with the number of layers to

59

produce their component and the estimated part mass after printing. For simplification, we

consider all layers to be of uniform thickness.

After a material is selected, the user navigates to the build parameters subsection in the

GUI and inputs a value for the charge amount, (i.e., dosage). The program outputs an estimate for

feed bed mass, 𝑀𝐹𝐵, calculated using Equation 5 from Chapter 3. Next, the user inputs waste

factors for process inefficiency (𝛼) and powder trapped in support structures (𝛾) leading to an

output for the component mass, 𝑀𝑖, calculated via Equation 9 from Chapter 3. Finally, in the

build parameters subsection, the user specifies the hourly machine rate, 𝐶𝑚𝑎𝑐ℎ, for their AM

machine, the cost for inert gas usage is material-dependent and assumed to be included in the

machine rate.

4.2 Support Structure Generation

After specifying the build parameters, users specify the orientation for building their part.

Each orientation selected prompts the GUI to update, indicating changes to build height, total

bounding box, and subsequent changes to mass of the feed bed required to execute the build job.

Upon reaching a satisfactory orientation, the user can then start the support structure generation

module by specifying the minimum support angle. This angle is the critical angle at which a face

can be built at an incline to the build surface and not require support material. The value can vary

from between 30-45° and depends on the AM process [92, 110]. To generate support structures,

our framework uses a ray tracing method, similar to the one proposed by Allen and Dutta. Despite

the availability of more sophisticated techniques such as voxelization, octree-representation, and

Direct CAD slicing [87, 111, 112], ray tracing was selected due to its efficiency to integrate into

CAD.

60

The ray tracing is conducted on a uniformly spaced grid based on the dimensions of the

selected AM machine’s build plate. To initialize the ray tracing, the user specifies a number of

grid partitions (see Figure 4-2). The points along the partitions are selected as the starting point,

and a ray is transmitted in the direction of the body. The normal vector is returned from the

body’s surface at all intersecting points. The difference between the surface normal angle and the

build direction is calculated to determine if the vector is above or below the user’s designated

support angle. If the angle is less than the minimum support angle, then the coordinates for the

point of intersection are stored in an array, and the ray trace continues until the algorithm has

traversed the bounding dimensions of the part.

Figure 4-2: Top-view of component undergoing ray trace

with 6 grid partitions (left) geometry intersections (right)

Upon completion of the ray trace algorithm, the coordinates from the arrays are used to

form geometric extrusions for all identified overhanging surfaces. Extrusions that connect from

the body’s surface to the build plate are labeled as external support structures, and extrusions that

connect the body’s surface to another surface on the body are referred to as internal support

61

structures. To prevent overlapping bodies, all extrusions are generated with standard geometric

cross-section shapes that fit within the grid (partition) spacing of the ray traces. The part now has

all of the required support structures from which a volume is determined for estimation purposes.

After generating the support structures, the program calculates and returns an estimated

cost for producing the component. Since Chapter 3 demonstrated that machine cost, material cost,

and feedstock depreciation account for over 60% of the total cost in LPBF, these were the only

costs calculated in the program due to their inherent variation with the CAD geometry, build

orientation, and support structures. 𝐶𝑚𝑎𝑐ℎ, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛,

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, and 𝑇𝑏𝑢𝑖𝑙𝑑 were all calculated using their respective equations from

Chapter 3.

4.3 SolidWorks API Programming

To execute the program framework, a software plug-in was programmed in SolidWorks

2015. SolidWorks was chosen because of easy access to their Application Programming Interface

(API) and online reference library of commands and functions [113]. The SolidWorks API

consisted of a Visual Basic for Applications (VBA) development environment where the tool was

programmed and executed. A screenshot for the GUI is shown in Figure 4-3 along with a

terminology for the CAD geometry. Upon initialization, a macro loads the AM machine and

materials data from a local directory on the host computer. The CAD model’s bounding box

coordinates are gathered using the GetPartBox function. The volume is queried from an assigned

ModelDoc2 object using the CreateMassProperty function.

62

Figure 4-3: Cost Estimator GUI (left) and CAD Geometry Visualization (right)

Upon selecting a machine, a macro constructs the build bed volume using the previously

acquired perimeter coordinates with the CreateLine2 command. It then produces a reference

plane for the build surface through the CreatePlaneThru3Points3 corresponding to the lowest Z-

coordinates of the part bounding box. For visualization purposes, the build platform is generated

as a solid-body through a FeatureManager object and the FeatureExtrusion2 command. The

build orientation is controlled through the InsertMoveCopyBody2 function where the user

specifies a relative rotation about one of the coordinate axes.

During support structure generation, the RayIntersections command takes a base point

and projects it along a vector (i.e., build direction). The ray trace returns a value corresponding to

the number of entries and exits of the target geometry. If an intersection occurs, then the outward

normal vector is queried from the CAD model’s surface at the point through

GetRayIntersectionsPoints. The angle between the surface normal and the build direction is

calculated using the arccosine relation. Support structures are then created using an IModeler

object by forming geometric primitives on the build surface or body below an overhang, through

63

the CreateFeatureFromBody3 command. In this case-study, primitives were chosen to be solid-

body cylinders due to their low memory requirements, simple programming, and minimal input

definitions.

As shown in Figure 4-4, support structures are color-coded with teal and purple

corresponding to internal and external support structures, respectively. Computational

performance is improved by turning off the SolidWorks graphics update, removing dynamic

highlighting, and running support structure generation in the background.

Figure 4-4: Geometry with overhanging surfaces

4.4 Build Orientation Optimization

 Particle Swarm Optimization (PSO) was used in searching for an optimal build

orientation and was selected due to its convergence speed and computational efficiency compared

to genetic algorithms and robustness in finding global minima compared to gradient descent

methods [114]. The design variables were the relative rotations of the CAD model about the X

and Y axes. The constraints ensured that the CAD model did not rotate into an orientation where

the part geometry extends outside the build volume.

64

To begin, the user specifies an objective function to minimize (i.e. internal support

volume, external support volume, build time). Upon randomly generating a starting population of

candidate orientations, particles change their position and trajectories to align with the particle

with the best objective value. Each particle varies position through a velocity function based on

their current motion, memory influence, and swarm influence. The algorithm converges upon

reaching a tolerance specified by the user. More details on the PSO algorithm can be found in

[114].

4.5 Macro Implementation and Examples

To demonstrate the plug-in’s capabilities, costs were evaluated for the automotive

upright, 𝐺1. This geometry was selected because of its complex geometry with numerous

overhanging surfaces and its function as an end-use metal AM component. Previous work by

Maranan et al. [115] found a tradeoff between manufacturability and costs when printing this

design. They decided to select the orientation shown in Figure 4-5 because it was easier for

accessing and removing support structures even though it required a considerably longer build

time than lying the part flat on the build plate. Consequently, the resulting support volume was

202.4% greater than the build material. To match their study, production is modeled for an

EOSINT M280 DMLS machine with a machine rate of $72/hr, assumed to be inclusive of

machine depreciation, overhead, electricity, and inert gas. The build material is assumed to be

EOS Ti-6Al-4V powder processed at 30 micron layer thickness, with a build rate of 13.5 cm3/hr

and a value of $680/kg for virgin powder. The results from applying the macro to this part are

discussed next.

65

Figure 4-5: Automotive Upright, Magics model with supports (Top), Printed DMLS component

(bottom) [115]

4.5.1 Parameter Sensitivity on Cost Estimate

In order to properly implement the plug-in, a sensitivity analysis was first conducted to

determine how much error could result from incorrectly defining build parameters during cost

estimation. The support angle, the maximum angle from the horizontal where support structures

are required for a surface, was selected due to its wide variation among manufacturers [116]. The

support angle was parameterized and varied between 60, 45, 30 degrees. Steep support angles at

60 degrees and above are conservative and are selected to help ensure the production of

component, whereas shallow angles near 30 degrees are aggressive and are used to save costs

(material and machine time). The diameter of the support structures was varied from a coarse

diameter (10mm) to fine (0.625 mm) to determine the effects of inaccuracy and poor resolution.

Figure 4-6 shows an example of the CAD model for the upright with the generated supports; the

results are summarized in Table 4-1.

66

Figure 4-6: Automotive Upright with Support Angle: 60° (Left), 45° (Middle), 30° (Right)

Table 4-1: Support Diameter vs. Support Angle

Support

Diameter

Support Angle: 60° Support Angle: 45° Support Angle: 30°

Support

Volume

Build

Time

Support

Volume

Build

Time

Support

Volume

Build

Time

mm cm3 H cm3 h cm3 H

10.00 398 56 230 45 191 42

5.00 411 57 268 48 222 45

2.50 449 60 298 50 238 46

1.25 447 60 276 49 230 45

0.63 439 59 281 49 230 45

Mean

(SD)

429

(20)

58

(2)

271

(23)

48

(2)

222

(16)

45

(1)

Cost

(SD)

$1290

(60)

$4180

(140)

$810

(70)

$3460

(140)

$670

(30)

$3240

(70)
*Results from Maranan et. al: Build Time: 54 hours, Support Volume: 410 𝑐𝑚3

Maranan et al.’s automotive upright cost $3890 in machine time, $520 for the direct part,

and $1480 for the support structures [115]. Costs for powder and mixing depreciation were not

reported in their study. The analysis revealed that the cost estimate was most sensitive to the

support angle. These results indicate that: underestimating the support angle by 15 or more

degrees can under-predict support material costs by 34% and build time by 20%. This is because

as the support angle becomes steeper, more surfaces on the geometry are treated as overhangs and

thus, require a larger volume of support structures, which uses more material and build time. The

coarse and fine support diameter size showed marginal variation as the resolution increased. With

67

metal AM showing promise towards geometrically complex designs, a conservative support angle

is likely to be appropriate in accounting for thermal deformation and curling concerns.

This first case study found that the accuracy of the macro is influenced by the support

angle, which dictates the volume of support structures generated for the 3D CAD model. The

resolution of the support diameter showed little significant variation with the estimated build time

and support volume. The lack of variation is due to over-estimation by the coarse-sized support

structures. Given the complex geometry of this component, the results will change when

considering multiple orientations where over-estimation at low-resolution may not be as precise

as higher resolution estimates.

4.5.2 Consideration for Multiple Replicates

Although the upright was built alone in the AM process, this practice is not common in

industry. Often, multiple components are built on the same platform to save costs as demonstrated

in Section 3.3.3. The manner at which to arrange components to minimize feedstock depreciation

and post-processing costs is not clear from literature and is geometry dependent. To further

investigate this relationship, the flat and vertical oriented uprights were modeled in the macro as

shown in Figure 4-7. The ray trace was executed with a support structure diameter of 2.5 mm and

a support angle of 60 degrees. Results are given in Table 4-2. The dosage is set to 2.25 per layer

thickness [55]. Recyclability for the Ti64 powder is presumed for a maximum of 15 build cycles

[68], with a salvage value of zero. Waste factor for process inefficiency, α, is assumed to be 40%

and trapped powder is set to 25% based on reported results [24].

68

Figure 4-7: Vertical (left) and Flat (right) Orientation

Table 4-2: Orientation vs. Part Count vs. Cost

Variables
 Vertical

Orientation

Flat

Orientation

Part Quantity

Build Time

-

H

1

60

3

151

1

29

2

52

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛

$

$

$

4320

2660

4850

10870

7980

4250

2050

1380

2040

3670

2750

1870

Cost per part $ 11,830 7700 5580 4150

 Table 2 shows that the longest build time was for the vertical orientation with 3 uprights

at 132 hours. The shortest build time was for the flat orientation with a single component at 29

hours. The flat orientations had the lowest amount of support structures and therefore had lower

material costs, compared to the vertical orientations. Powder feedstock depreciation costs were

higher in the vertical builds due to their tall build heights and more powder required to the fill the

powder bed. Consequently, for builds with a single component, the depreciation of the un-melted

powder was 1.4x to 1.8x the material cost. These qualities made the vertical build with one

component as the most expensive build at $11,830 per part. The lowest cost component was the

two flat uprights due to their relatively low machine and material costs. However, as noted by

Maranan et al., the flat orientation is not feasible due to the presence of internal support structures

that are difficult to remove during post-processing.

69

 Having examined the influence and costing implications for multiple components when

including depreciation costs for recycled powder, this section revealed that a flat orientation with

two components was the most economical; however, the manufacturability of the orientation was

not feasible, as supports could not be accessed for removal. The vertical orientation was feasible

for producing 3 components but at a cost increase of 66% compared to the flat orientation. Both

orientations showed that builds with a single component were uneconomical due to high powder

depreciation costs being nearly twice the cost of the build material consumed in the part. The

findings suggest that an optimal build will encompass a higher utilization (efficient packing) of

the build volume with more components, which will increase build time a new design tradeoff

found in metal AM against powder depreciation costs.

4.5.3 Build Orientation Optimization

 To further investigate the role of orientation on costs, the upright was optimized in PSO.

The objective function was to minimize internal supports to reduce the amount of inaccessible

supports during post-processing. Each PSO model was conducted with a population of 15

particles and ran for a total of 40 iterations. Convergence was determined when the deviation in

the objective function value was equal to a tolerance of zero after 20 iterations. To improve run-

time, the support structure volume was calculated analytically for each orientation through the

numerical data provided from the ray-trace algorithm. Upon convergence, the geometric

primitives for the supports were generated for the output orientation and then validated with the

queried data from the CAD model. Figure 4-8 shows the optimal two orientations found by PSO

with the full results in Table 4-3.

70

Figure 4-8: Optimal orientations to reduce internal supports. Orientation A (top) and

Orientation B (bottom) with isometric and top views – rotated to show internal supports

Table 4-3: Optimization Results

Orientation

Build

Time

Internal Support

Volume

Total Support

Volume

Depreciated

Powder

Cost per

Part

 H cm3 cm3 kg $

Flat 29 106 165 24 5580

A 54 43 422 45 9560

B 57 34 443 41 9940

Vertical 60 116 423 56 11,830

71

The most economical orientation was the flat with a cost of $5580 per part. However, in this

orientation 64% of all support structures were internal. Using the two orientations A and B from

the PSO, the internal support volume decreased to 7-10% of the total supports. Subsequently, the

total costs increased due to changes in build time and depreciated powder. In comparison to the

vertical orientation selected by Maranan et al., the PSO generated orientations reduced total cost

by 12-16% due to lower powder depreciation costs. The results suggest a tradeoff between total

cost and internal support structure volume.

4.5.3 Software Benchmarking

The last study compares the results estimated by the macro with estimates from 3DXpert,

a commercial 3D CAD software offering similar capabilities for geometry assessment and build

planning for AM. Both programs allow users to position and orient geometries on the build

platform for a selected AM machine. Both provide tools for orientation optimization of the

geometry based on given objective criteria and support structure generation at various overhang

angles. Lastly, both provide estimates of build time, material, and machine cost based on user-

defined parameters. One distinct feature of 3DXpert is its library of support structures primitives

and AM machine build spaces, offering additional options for customization to aid the designer.

To compare the predictive capability of the CAD-integrated cost estimator’s algorithm with

3DXpert, the studies from Section 4.5.2 and 4.5.3 were re-run and compared between the

programs using the same geometry and same build parameters as before with virgin Ti-6Al-4V

powder, $680/kg, 9 seconds of recoating time, 60 degree support angle, and 13.5 𝑐𝑚3/h build

rate. To aid in comparison, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 was the direct material cost and factors for lost powder

during the process and from support structures were not calculated. Both programs optimized the

72

build orientation by using the objective of minimizing internal support structures. Images and

tables comparing the two are shown in Figure 4-9 along with Tables 4-4 and 4-5.

Figure 4-9:Support Structures Generated, CAD-Integrated Cost Estimator (left), 3DXpert (right)

73

Table 4-4: Support Volume vs. Orientation vs. Costs Comparison

Orientation

Internal

Support

Volume

Total Support

Volume
Build Time 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙*

 cm3 cm3 H $ $

CAD-Integrated

 Cost Estimator

Flat 106 165 29 2090 1000

Optimal 34 443 57 4100 1830

Vertical 116 423 60 4320 1770

 Flat 125 206 32 2320 1120

3DXpert Optimal 40 432 55 4020 1793

 Vertical 113 519 65 4700 2040
*Not accounting for powder losses due to filters or supports

Table 4-5: Replicates vs. Support Volume vs. Orientation vs. Costs Comparison

Orientation

Replicates

Total

Support

Volume

Build

Time
𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ∗

 cm3 H $ $

CAD-Integrated

Cost Estimator

Flat 1 165 29 2090 1500

Flat 2 330 52 3670 3000

Vertical 1 423 60 4320 1770

Vertical 3 1269 151 10870 5310

3DXpert

Flat 1 206 32 2320 1120

Flat 2 413 62 4450 2224

Vertical 1 519 65 4700 2040

Vertical 3 1556 167 12000 6170
*Not accounting for powder losses due to filters or supports

Results from Table 4-4 indicate that for the flat orientation, the cost estimator calculated

165 cm3 of supports with 3DXpert at 206 cm3 amounting to 20% discrepancy between the two

estimates. These differences are attributed to 3DXpert using solid supports for the full volume

under an overhang region versus the cost estimation tool using 2.5 mm diameter cylindrical

supports to approximate the support volume. The build time was estimated at 29 hours versus 32

hours resulting in a 10% discrepancy, also attributed to differing estimates in the support structure

volume. Overall, the material cost and machine time estimates between the two programs varied

by a most 11% showing a moderate level of agreement.

74

Despite differing support generation methods, when tasked with independently finding

the optimal build orientation for reducing the number of internal supports, both programs

converged to similar solutions as shown in Figure 4-10. The plug-in estimated 34 cm3 of internal

supports which was smaller than the 40 cm3 determined by 3DXpert; however, for the overall

support volume, both showed strong agreement with only a 3% discrepancy due to slight

variation in the part orientation and the resolution of the support structures.

Similar trends from the flat orientation estimates were seen in the vertical orientation and

also the replicates builds in Table 4-5, where discrepancies in the estimated support volume were

20% and 10% for the build time. However, for the vertical orientation with one component,

Maranan et al. reported that the build time was 54 hours and the support volume: 410 cm3 thus,

both programs were overpredicting the support volume and build time by 3-26% and 11-20%

respectively. Based on the observations from Section 4.5.1, the support volume error is a result of

differences in the support angle which was not reported by Maranan et al. along with build time

being overgeneralized through the use of an average build rate.

Figure 4-10: Optimized Solutions for Reducing Internal Support Structures

75

4.5.4 Limitations

 One limitation to the proposed macro is the computational efficiency of generating the

support structures. With run times near 1300 seconds for a high resolution of supports with 0.5

mm diameter, the flexibility to iterate from different oriented designs and generate the feature

body is limited. The support structures were extruded from points to points, and therefore they do

not directly intersect the surface, leading to gaps and approximation errors. The ray trace grid was

also susceptible to aliasing due to a fixed and non-rotating coordinate system aligned with the

build platform and not the 3D model. The methods used in the macro were selected due to ease of

implementation and may not be as efficient and robust as those demonstrated in literature [117].

This discrepancy was apparent when comparing the CAD-integrated cost estimator to

3DXpert, where the cost estimation tool underpredicted support volume by about 20%

highlighting the imprecision of the ray trace projection method and limitations of using cylinders

as a support structure primitive. Both tools used an average volumetric build rate and a recoating

time to estimate build time, but both showed an error of 11-20% compared to the reported build

results. As mentioned in Section 3.4.1, improvements can be found through higher fidelity build

estimators accounting for the geometry, machine parameters, and processing physics or

potentially through empirical models based on regression analysis and statistical studies similar to

those conducted by Rickenbacher et. al.

For a single component, costs for machine time, material, and feedstock depreciation were

predicted to be $11,830 and $5580 based on orientation. However, an online quote from Sculpteo,

an AM service provider, estimated total costs as “$4260” [118]. It was unclear whether their

quote included overhead, labor, margin or whether they were using highly reused powder or

assuming steep support angles.

76

In all, this chapter contextually emphasized metal AM; however, the implemented macro was

only metal AM specific in regards to the cost model. The demonstrated CAD-integrated cost

estimation approach can be generalized to any AM process requiring support structures.

Additional tailoring for metal AM would have to account for surface roughness and thermal

distortion inherent to the given material, build orientation, along with the post-processing

required for finishing the part.

77

Chapter 5
Conclusions and Closing Remarks

5.1 Thesis Summary

 This thesis examined the cost effectiveness of AM by studying how powder feedstock

reusability can impact total costs in LPBF while integrating the proposed model within a CAD-

integrated design tool. Sum-of-the-Years Digits and Straight Line depreciation were introduced to

model the financial value of powder feedstock as it was reused in LPBF. Equations for

𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and 𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 were presented to allocate costs for the un-melted

powder in the LPBF process and costs for blending reused and virgin powder lots. Cost was

modeled for an automotive upright and test apparatus component. The feedstock was modeled as

having 10 and 30 build cycles of reuse and compared against a traditional cost model that

assumed infinite powder reuse. A sensitivity study was conducted to examine how build volume

utilization can decrease 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and increase 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙. Costs was also modeled for

the mass production of 1000 units and compared for the depreciation models using a “normalized

cost per part” against a traditional cost model.

 Following the demonstration of the powder depreciation cost model, a CAD-integrated

design tool was developed to apply the proposed cost model into a software plug-in embedded in

a 3D CAD program. The plug-in modeled the build volume and position of the component on the

substrate for a LPBF machine. The tool’s GUI provided options for querying geometric data,

specifying build parameters, generating support structures, optimizing build orientation, and

conducting a simplified cost estimate. Ray-trace projection and grid partitions were used to

identify intersections on the build geometry and generate internal and external support structures.

A case study was presented using the automotive upright to demonstrate the capability of the

plug-in. Sensitivity analysis was conducted by varying the support angle, orientation of parts on

78

the build platform, and optimizing the build orientation by searching for the orientation that

reduced internal support structures through particle swarm optimization.

5.2 Contributions

 The key contributions of this work include the SOYD and SLN depreciation cost models

for valuing a powder feedstock as it is reused in LPBF, the equations for 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 and

𝐶𝑚𝑖𝑥𝑖𝑛𝑔 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛, along with the results from the case studies. The most prominent results

were that traditional cost models with unlimited powder reuse undervalued build jobs with virgin

powder by 13-75% in Ti-6Al-4V and 3-11% for GP1. Upon exceeding 13 build cycles in Ti-6Al-

4V, 11 for GP1, the total costs for build jobs achieved a cost savings of 38% or 5% when using a

highly reusable powder or powder feedstock exceeding 𝑈𝑚𝑎𝑥. Regardless of material type and

geometry, it was found that 16-19% of the build volume utilization was the minimal quantity

needed in order for 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 to exceed 𝐶𝑝𝑜𝑤𝑑𝑒𝑟 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛. In mass production, high priced

materials such as IN718 and Ti-6Al-4V can produced “normalized cost per part” that are 10% or

more than traditional cost for productions with less than 100 parts (i.e., 33 and 20 build jobs

respectively). In constrast, builds with lower priced feedstock such as AlSi10Mg and GP1

converge to costs that were only “1.04x” or “1.02x” traditional costs after 1000 parts.

 Additional contributions include the framework and customizable code for a CAD-

integrated cost estimator in SolidWorks 2015. Key findings were that the cost estimate was

sensitive to the support angle, which could over-underestimate support material costs by 34% and

build time by 20%. The resolution and diameter of the support structures showed no notable

impact on the accuracy and precision of the cost estimate. A build with two parts oriented flat on

the build plate had the lowest cost at $4150 per part. The orientation was infeasible, but the

production of vertical components provided an alternative at $7700 per part. The optimal build

79

orientation found from particle swarm optimization reduced the internal support volume from 116

𝑐𝑚3 to 34 𝑐𝑚3. Benchmarking with 3DXpert revealed 20% discrepancy in the support volume

estimation and 10% discrepancy in the build time estimate but only 3% discrepancy for the

support volume and build time for the optimized orientation that reduced internal supports.

5.3 Highlighted Limitations

For cost modeling with reused powder feedstock, it is uncertain what is the proper reuse

limit and metric for measuring the duration for which a powder can be reused in LPBF. Although

10 and 30 build cycles were used in the model, feedstocks may be post-processed to remove

chemical impurities, improve powder size distribution, and subsequently be recertified for future

production use. Additionally, the rate of decline and salvage value designated for the powder

feedstock will vary from manufacturer based on the component’s industry of use and regulatory

restrictions. A 2.25 dosage amount is very aggressive and is typically larger for builds consisting

of higher build volume utilizations which can lead to higher feedstock depreciation costs. Mass

production with LPBF faces lengthy build times which may be susceptible to power outages and

build restarts which can add further build setup and labor costs. Additionally, mass production

can demand large quantities of powder feedstock and require the feed bed to be refilled with extra

powder during the build in order to produce all parts and fully complete the build process.

 In the plug-in, accuracy of the estimated support structure volume was heavily dependent

on the specified support angle and geometry of the supports. The ray-trace projection and grid

partitioning algorithm were susceptible to aliasing as the parts was being rotated due to alignment

with the build platform. Cylindrical supports were applied at each intersection point and were not

organized by overhang regions which resulted in over 100 individual solid bodies in the part

80

history and run times in excess of 1300 seconds for high resolution supports hindering the speed

and flexibility of analyzing multiple part configurations.

5.3 Future Work

 Powder feedstock reusability can be better studied by identifying which properties impact

fatigue and functional performance in as-built, machined, and heat-treated components.

Generalized metrics for powder reuse and duration limits can be studied to better compare how

parts differ than those produced with virgin powder and with differing LPBF machines.

Improvements to the LPBF cost model could be found through a regression-based build time

estimator that examines similar LPBF technologies (e.g. power, layer thickness, recoat speed,

quantity of lasers, etc.) across multiple build jobs with varying geometries, replicates, and build

heights. Mass production cost studies in LPBF could be performed to better highlight the rate of

build failure, power outages, and build restarts that occur in a production environment.

 For the CAD-integrated cost estimator, the macro’s ray-trace projection can be revised

with high precision techniques such as octree and voxelization. Speed can improved by querying

surface tessellation data and coordinates from the graphics body displayed by the CAD program.

The support structure primitives can be expanded from cylinders to a library of different shapes

including hollow, solid, tree, and scaffolding supports. Additional functions can be added to the

macro including analyzing and positioning multiple bodies along with having the capability to

generate slice files directly from the CAD geometry.

81

References

[1] ASTM F2792 - 12a “Standard Terminology for Additive Manufacturing Technologies.”

ASTM International, Web. Oct. 14, 2015. <https://www.astm.org/Standards/F2792.htm>

[2] Gibson, I., Rosen, D. and Stucker, B., 2015. Additive Manufacturing Technologies. Springer,

New York, NY.

[3] Carter, W.T. and Jones, M.G., 1993, August. “Direct laser sintering of metals.” Proceedings

of Solid Freeform Fabrication Symposium, pp. 51-59.

[4] Das, S., Wohlert, M., Beaman, J.J. and Bourell, D.L., 1998. “Producing metal parts with

selective laser sintering/hot isostatic pressing.” JoM, 50(12), pp.17-20.

[5] Meiners, W., Over, C., Wissenbach, K. and Poprawe, R., 1999. “Direct generation of metal

parts and tools by selective laser powder remelting (SLPR).” Proceedings of Solid Freeform

Fabrication Symposium, pp. 655-662.

[6] Frazier, W.E., 2014. “Metal additive manufacturing: a review.” Journal of Materials

Engineering and Performance, 23(6), pp.1917-1928.

[7]] Hussein, A., Hao, L., Yan, C., Everson, R. and Young, P., 2013. “Advanced lattice support

structures for metal additive manufacturing.” Journal of Materials Processing Technology,

213(7), pp.1019-1026.

[8] Sochalski-Kolbus, L.M., Payzant, E.A., Cornwell, P.A., Watkins, T.R., Babu, S.S., Dehoff,

R.R., Lorenz, M., Ovchinnikova, O. and Duty, C., 2015. “Comparison of residual stresses in

Inconel 718 simple parts made by electron beam melting and direct laser metal sintering.”

Metallurgical and Materials Transactions A, 46(3), pp.1419-1432.

[9] Béraud, N., Vignat, F., Villeneuve, F. and Dendievel, R., 2014. “New trajectories in Electron

Beam Melting manufacturing to reduce curling effect.” Procedia CIRP, 17, pp.738-743.

82

[10] Moylan, S.P., Slotwinski, J.A., Cooke, A.C., Jurrens, K. and Donmez, M.A., 2013. “Lessons

Learned in Establishing the NIST Metal Additive Manufacturing Laboratory.” NIST. Web.

Aug. 13, 2018. <https://nvlpubs.nist.gov/nistpubs/technicalnotes/nist.tn.1801.pdf>

[11] Kinsella, M. E., 2008, "Additive Manufacturing of Superalloys for Aerospace Applications,"

Metals Branch, Ceramics and NDE Division, Editor.

[12] Wohlers, T., 2018. “Wohlers Report 2018.” Wohlers Associates, Inc. Web. Aug. 13, 2018.

<https://wohlersassociates.com/2018report.htm>

[13] "GE Plans to Invest $1.4B to Acquire Additive Manufacturing Companies Arcam and

SLM”. GE Aviation. Web. Sep. 6, 2016. <https://www.geaviation.com/press-release/other-

news-information/ge-plans-invest-14b-acquire-additive-manufacturing-companies>

[14] "Audi and EOS: Development Partnership Focuses on Holistic Approach for Metal-Based

Additive Manufacturing," EOS Gmbh. Web. Jan. 24, 2017.

<https://www.eos.info/press/development-partnershi-between-audi-and-eos>

[15] Mahon, L., 2016. "Alcoa Opens 3D Printing Metal Powder Plant," 3D Printing Industry.

<https://3dprinting industry.com/news/alcoa-opens-3d-printing-metal-powder-plant-84522/>

[16] Seifi, M., Salem, A., Beuth, J., 2016, "Overview of Materials Qualification Needs for Metal

Additive Manufacturing," JoM, 68(3) pp. 747-764.

[17] Thomas, D.S. and Gilbert, S.W., 2014. “Costs and cost effectiveness of additive

manufacturing”. NIST Special Publication, 1176, p.12. Web. Aug. 13, 2018.

< https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1176.pdf>

[18] Müller, A., and Karevska, S., 2016, "How will 3D printing make your company the strongest

link in the value chain?". Ernst & Young, Web. Aug. 13, 2018. <

https://www.ey.com/Publication/vwLUAssets/ey-global-3d-printing-report-2016-full-

report/$FILE/ey-global-3d-printing-report-2016-full-report.pdf>

[19] “Senvol Database”. Senvol, Web. Jan. 24, 2017. <http://senvol.com/database>.

83

[20] Medina, F., 2013. “Reducing metal alloy powder costs for use in powder bed fusion additive

manufacturing: Improving the economics for production.” Department of Metallurgical,

Materials, and Biomedical Engineering. Ph.D. Dissertation, University of Texas, El Paso, El

Paso, TX.

[21] Dawes, J., Bowerman, R. and Trepleton, R., 2015. “Introduction to the additive

manufacturing powder metallurgy supply chain.” Johnson Matthey Technology Review,

59(3), pp.243-256.

[22] Slotwinski, J.A., Garboczi, E.J., Stutzman, P.E., Ferraris, C.F., Watson, S.S. and Peltz, M.A.,

2014. “Characterization of metal powders used for additive manufacturing.” Journal of

Research of the National Institute of Standards and Technology, 119, pp. 460-493.

[23] Slotwinski, J.A. and Garboczi, E.J., 2015. “Metrology needs for metal additive

manufacturing powders.” JOM, 67(3), pp.538-543.

[24] Slotwinski, J.A., Garboczi, E.J. and Hebenstreit, K.M., 2014. “Porosity measurements and

analysis for metal additive manufacturing process control.” Journal of Research of the

National Institute of Standards and Technology, 119, pp. 494-528.

[25] Baumers, M., Tuck, C., Wildman, R., "Energy Inputs to Additive Manufacturing: Does

Capacity Utilization Matter?" Proceedings of Solid Freeform Fabrication Symposium, pp. 30-

40.

[26] Cheng, W., Fuh, J., Nee, A., 1995, "Multi-Objective Optimization of Part-Building

Orientation in Stereolithography," Rapid Prototyping Journal, 1(4), pp. 12-23.

[27] Byun, H. S., and Lee, K. H., 2005, "Determination of the Optimal Part Orientation in

Layered Manufacturing using a Genetic Algorithm," International Journal of Production

Research, 43(13), pp. 2709-2724.

[28] Redwood, B., Schöffer, F., and Gerret, B., 2017, “The 3D Printing Handbook: Technologies,

Design and Applications,” 3D Hubs B.V. New York, NY.

84

[29] Hiller, J. D., and Lipson, H., 2009, "STL 2.0: a proposal for a universal multi-material

Additive Manufacturing File format," Proceedings of Solid Freeform Fabrication

Symposium, pp. 266-278.

[30] Zelinski, P., 2015, "Additive's Idiosyncrasies," Additive Manufacturing, Web. Aug. 15,

2018. <http://www.Additivemanufacturinginsight.Com/Articles/Additives-Idiosyncrasies>

[31] "3MF Consortium Signs New Members 3D Systems, Materialise, Siemens PLM Software

and Stratasys," Computer Business Week, pp. 147.

[32] "Standard Specification for Additive Manufacturing File Format (AMF) Version 1.2,". Web.

Aug. 13, 2018. < https://www.astm.org/Standards/ISOASTM52915.htm>

[33] Alexander, P., Allen, S. and Dutta, D., 1998. Part orientation and build cost determination in

layered manufacturing. Computer-Aided Design. Vol 30 No. 5, pp- 343-356.

[34] Hopkinson, N., and P. Dickens. 2003. “Analysis of Rapid Manufacturing—using Layer

Manufacturing Processes for Production.” Institution of Mechanical Engineers, Part C:

Journal of Mechanical Engineering Science. 217 (1). pp. 31–39.

[35] Ruffo, M., Tuck, C. and Hague, R. (2006). Cost estimation for rapid manufacturing - laser

sintering production for low to medium volumes. Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, pp. 1417–1427.

[36] Ruffo, M., and R. Hague, 2007. "Cost estimation for rapid manufacturing simultaneous

production of mixed components using laser sintering." Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221, pp.1585-1591.

[37] Atzeni, E., and A. Salmi, 2012. "Economics of additive manufacturing for end-usable metal

parts." The International Journal of Advanced Manufacturing Technology, 62, pp. 1147-

1155.

[38] Baumers, M., 2012. “Economic Aspects of Additive Manufacturing: Benefits, Costs, and

Energy Consumption.” Doctoral Thesis. Loughborough University.

85

[39] Lindemann, C., Jahnke, U., Moi, M. and Koch, R., 2012. “Analyzing product lifecycle costs

for a better understanding of cost drivers in additive manufacturing.” Proceedings of Solid

Freeform Fabrication Symposium, pp. 177-188.

[40] Rickenbacher, L., Spierings, A. and Wegener, K., 2013. “An integrated cost-model for

selective laser melting (SLM).” Rapid Prototyping Journal, 19 (3), pp. 208-214.

[41] Fera, M., Macchiaroli, R., Fruggiero, F. and Lambiase, A., 2018. “A new perspective for

production process analysis using additive manufacturing—complexity vs production

volume.” The International Journal of Advanced Manufacturing Technology, 95 (1), pp. 673-

685.

[42] Costabile, G., Fera, M., Fruggiero, F., Lambiase, A. and Pham, D., 2017. Cost models of

additive manufacturing: A literature review. International Journal of Industrial Engineering

Computations, 8 (2), pp. 263-283.

[43] Chan, R., Manoharan, S. and Haapala, K.R., 2017. “Comparing the Sustainability

Performance of Metal-Based Additive Manufacturing Processes.” ASME 2017 International

Design Engineering Technical Conference. American Society of Mechanical Engineers,

2017. pp. V004T05A039-V004T05A039

[44] ASTM B243 - 13 Standard Terminology for Powder Metallurgy. ASTM International, 7 Jan.

2015. Web. Aug. 13, 2018.

<https://www.astm.org/DATABASE.CART/HISTORICAL/B243-13.htm>

[45] Maringer, R. and Patel, A., "Patent WO1989000471A1 - Centrifugal Disintegration." World

Intellectual Property Organization, 26 Jan. 1989. Web. 4 Jan. 2016.

[46] Howells, R., Stoner, G. and Stockumas, J., "Patent: US4880162 - Gas Atomization Nozzle

for Metal Powder Production." USPTO Patent Database. 14 Nov. 1989.

[47] Sidney, I., Clark, R., and Baltrukovicz, B., "Patent US4080126 - Water Atomizer for Low

Oxygen Metal Powders." USPTO Patent Database. 21 Mar. 1978.

86

[48] Axelsson, S., 2012. “Surface Characterization of Titanium Powders with X-ray

Photoelectron Spectroscopy.” Doctoral dissertation, Chalmers University of Technology,

Gothenburg, Sweden.

[49] Silberberg, M.S., Duran, R., Haas, C.G. and Norman, A.D., 2006. Chemistry: The molecular

nature of matter and change (Vol. 4). New York: McGraw-Hill.

[50] Watkins, K.G., Steen, W. and Mazumder, J., 2010. Laser Material Processing. Springer,

New York, NY.

[51] Jamshidinia, M., Sadek, A., Wang, W. and Kelly, S., 2015. “Additive manufacturing of steel

alloys using laser powder-bed fusion.” Advanced Materials & Processes, 173 (1), pp. 20-24.

[52] Tang, H.P., Qian, M., Liu, N., Zhang, X.Z., Yang, G.Y. and Wang, J., 2015. “Effect of

powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam

melting.” JOM, 67 (3), pp. 555-563.

[53] Grainger, L. “Investigating the effects of multiple re-use of Ti6Al4V powder in additive

manufacturing (AM),” Renishaw plc, UK. Web. Accessed: 26 June 2016.

<http://www.renishaw.com/en/blog-post-how-much-can-you-recycle-metal-additive-

manufacturing-powder--38882>

[54] O'Leary, R., Setchi, R. and Prickett, P.W., 2015. “An investigation into the recycling of Ti-

6Al-4V powder used within SLM to improve sustainability.” International Conference on

Sustainable Design and Manufacturing, pp. 377-388.

[55] Seyda, V., Kaufmann, N. and Emmelmann, C., 2012. “Investigation of aging processes of

Ti-6Al-4 V powder material in laser melting.” Physics Procedia, 39, pp.425-431.

[56] Jacob, G., Brown, C., Donmez, A., Watson, S. and Slotwinski, J., 2017. “Effects of powder

recycling on stainless steel powder and built material properties in metal powder bed fusion

processes.” NIST. Web. Aug. 13, 2018.

<https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.100-6.pdf>

87

[57] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I. and Tuck, C., 2014. “Reducing porosity in

AlSi10Mg parts processed by selective laser melting.” Additive Manufacturing, 1, pp.77-86.

[58] Asgari, H., Baxter, C., Hosseinkhani, K. and Mohammadi, M., 2017. On microstructure and

mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder.

Materials Science and Engineering, 707, pp. 148-158.

[59] Ardila, L.C., Garciandia, F., González-Díaz, J.B., Álvarez, P., Echeverria, A., Petite, M.M.,

Deffley, R. and Ochoa, J., 2014. “Effect of IN718 recycled powder reuse on properties of

parts manufactured by means of selective laser melting.” Physics Procedia, 56, pp. 99-107.

[60] Samant, R., Lewis, B., “Metal Powder Recycling and Reconditioning in Additive

Manufacturing.” Web Accessed. 1 Dec. 2017. < https://ewi.org/paper-metal-powder-

recycling-and-reconditioning-in-additive-manufacturing/>

[61] ASTM F2924 – 14 “Standard Specification for Additive Manufacturing Titanium-6

Aluminum-4 Vanadium with Powder Bed Fusion." ASTM International. Web. Dec. 1, 2017.

< https://www.astm.org/Standards/F2924.htm>

[62] ASTM F3001 – 14 “Standard Specification for Additive Manufacturing Titanium-6

Aluminum-4 Vanadium ELI with Powder Bed Fusion." ASTM International. Web. Dec. 1,

2017. <https://www.astm.org/Standards/F3001.htm>

[63] ASTM F3055-14a “Standard Specification for Additive Manufacturing Nickel Alloy (UNS

N07718) with Powder Bed Fusion." ASTM International. Web. Dec. 1, 2017.

<https://www.astm.org/Standards/F3055.htm>

[64] ASTM F3056 – 14e1 “Standard Specification for Additive Manufacturing Nickel Alloy

(UNS N06625) with Powder Bed Fusion." ASTM International. Web. Dec. 1, 2017.

<https://www.astm.org/Standards/F3056.htm>

88

[65] ASTM F3184-16 “Standard Specification for Additive Manufacturing Stainless Steel Alloy

(UNS S31603) with Powder Bed Fusion” ASTM International. Web. Dec. 1, 2017.

<https://www.astm.org/Standards/F3184.htm>

[66] MSFC-STD-3716 “Standard for Additively Manufactured Spaceflight Hardware By Laser

Powder Bed Fusion In Metals” National Aeronautics and Space Administration. Web. Dec. 1,

2017. <https://www.nasa.gov/sites/default/files/atoms/files/msfcstd3716baseline.pdf>

[67] MSFC-STD-3717 “Specification for Control and Qualification of Laser Powder Bed Fusion

Metallurgical Processes” National Aeronautics and Space Administration. Web. Dec. 1,

2017. <https://www.nasa.gov/sites/default/files/atoms/files/msfcspec3717baseline.pdf>

[68] Rosen, D. W., Schaefer, D., and Schrage, D., 2012, "GT MENTOR: A high school education

program in systems engineering and additive manufacturing," Proceedings of Solid Freeform

Fabrication Symposium, pp. 62-80.

[69] Yim, S., and Rosen, D., 2012, "Build time and cost models for additive manufacturing process

selection," ASME 2012 International Design Engineering Technical Conferences and

Computers and Information In Engineering Conference, DETC2012-70940, pp. 375-382.

[70] Guignard, V. "SolidWorks Print3D Tool," Web. Apr. 27, 2017.<http://www.javelin-

tech.com/blog/2017/04 /solidworks- print-3d-tool/>

[71] "PTC and Stratasys Collaborate to Define and Deliver Design for Additive Manufacturing,"

Web. Jun. 8, 2015. PTC. <https://www.ptc.com/en/news/2015/ptc-stratasys-design-for-

additive-manufacturing>

[72] "Xometry - the Manufacturing on-Demand Platform - Launches Dassault Systemes

SOLIDWORKS(R) Integration," Web. Jul. 14, 2016 < http://www.prnewswire .com/news-

releases/xometry---the-manufacturing-on-demand-platform---launches-dassault-systemes-

solidworks-integration-300298668.html>

89

[73] Allen, S., and Dutta, D., 1994, "On the computation of part orientation using support

structures in layered manufacturing," Proceedings of Solid Freeform Fabrication Symposium,

pp. 259-269.

[74] Hur, J., and Lee, K., 1998, "The Development of a CAD Environment to Determine the

Preferred Build-Up Direction for Layered Manufacturing," The International Journal of

Advanced Manufacturing Technology, 14 (4) pp. 247-254.

[75] Li, Y., and Zhang, J., 2013, "Multi-Criteria GA-Based Pareto Optimization of Building

Direction for Rapid Prototyping," The International Journal of Advanced Manufacturing

Technology, 69(5-8) pp. 1819-1831.

[76] Phatak, A. M., and Pande, S. S., 2012, "Optimum Part Orientation in Rapid Prototyping

using Genetic Algorithm," Journal of Manufacturing Systems, 31(4) pp. 395-402.

[77] Canellidis, V., Giannatsis, J., and Dedoussis, V., 2009, "Genetic-Algorithm-Based Multi-

Objective Optimization of the Build Orientation in Stereolithography," The International

Journal of Advanced Manufacturing Technology, 45 (7-8), pp. 714-730.

[78] Ghorpade, A., Karunakaran, K. P., and Tiwari, M. K., 2007, "Selection of Optimal Part

Orientation in Fused Deposition Modelling using Swarm Intelligence," Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221 (7),

pp. 1209-1219.

[79] Thrimurthulu, K., Pandey, P. M., and Reddy, N. V., 2004, "Optimum Part Deposition

Orientation in Fused Deposition Modeling," International Journal of Machine Tools and

Manufacture, 44 (6), pp. 585-594.

[80] Liu, Y., Yang, Y., and Wang, D., 2016, "A Study on the Residual Stress during Selective

Laser Melting (SLM) of Metallic Powder," The International Journal of Advanced

Manufacturing Technology, 87 (1-4), pp. 647-656.

90

[81] Kruth, J., Badrossamay, M., Yasa, E., 2010, "Part and material properties in selective laser

melting of metals," Proceedings of The 16th International Symposium on Electromachining.

[82] Morgan, H. D., Cherry, J. A., Jonnalagadda, S., 2016, "Part Orientation Optimisation for the

Additive Layer Manufacture of Metal Components," The International Journal of Advanced

Manufacturing Technology, 86 (5-8), pp. 1679-1687.

[83] Verma, A., Tyagi, S., and Yang, K., 2015, "Modeling and Optimization of Direct Metal

Laser Sintering Process," The International Journal of Advanced Manufacturing Technology,

77 (5-8), pp. 847-860.

[84] Simonelli, M., Tse, Y. Y., and Tuck, C., 2014, "Effect of the Build Orientation on the

Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V," Materials Science and

Engineering, 616, pp. 1-11.

[85] Wauthle, R., Vrancken, B., Beynaerts, B., 2015, "Effects of Build Orientation and Heat

Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted

Ti6Al4V Lattice Structures," Additive Manufacturing, 5, pp. 77-84.

[86] Ulu, E., Korkmaz, E., Yay, K., 2015, "Enhancing the Structural Performance of Additively

Manufactured Objects through Build Orientation Optimization," Journal of Mechanical

Design, 137 (11), pp. 111410.

[87] Vaidya, R., and Anand, S., 2016, "Image Processing Assisted Tools for Pre-and Post-

Processing Operations in Additive Manufacturing," Procedia Manufacturing, 5, pp. 958-973.

[88] Gale Encyclopedia of American Law. 2010. Depreciation. Donna Batten, Ed. 3rd ed. Vol. 3.

Detroit, MI: Gale. 427-428. Gale Virtual Reference Library. Web. Oct. 17, 2015.

<https://www.cengage.com/search/productOverview.do?Ntt=encyclopedia+of+american+law

%7C%7C145964951916623178552140337707275530874&N=197&Ntk=APG%7C%7CP_E

PI&Ntx=mode%2Bmatchallpartial>

91

[89] Internal Revenue System, “Overview of Depreciation," U.S. Department of Treasury. Web.

Oct. 17, 2015. <https://www.irs.gov/publications/p946/ch01.html#en_US_2013_

publink1000107337>

[90] Newnan, D.G., Eschenbach, T. and Lavelle, J.P., 2004. “Engineering economic analysis.”

Oxford University Press, Oxford, UK.

[91] Samperi, M., “Development of Design Guidelines for Metal Additive Manufacturing and

Process Selection.” M.S. Thesis, Mechanical Engineering, The Pennsylvania State University.

June 2014.

[92] “EOS GmbH, Basic Design Rules for Additive Manufacturing.” Electro Optical Systems,

Germany. Web. Oct. 15, 2015.

<https://cdn0.scrvt.com/eos/public/ab4f0542d66453fc/5f889ab7e3f72bd3d44b22205ba8b68b

/EOS-Basic-Design-Rules_Additive-Manufacturing_EN.pdf>

[93] Kannan, T., “Design for Additive Manufacturing.” Geometric Global. Web. Oct. 15, 2015.

<https://dfmpro.geometricglobal.com/files/2017/05/Whitepaper-Design-for-Additive-

Manufacturing.pdf>

[94] “netfabb Support Structures.” netfabb Gmbh. Web. Jan. 3, 2016.

<http://www.netfabb.com/support_structures.php>.

[95] “Magics SG+ Module” Materialise NV. Web. Jan. 3, 2016.

<http://software.materialise.com/magics-sg-plus-module>.

[96] Wright, S. 2015, "A Story of Failure and Success in Metal AM: The Reality of Developing a

Titanium Bike Part." Metal Additive Manufacturing Magazine. 1 (3). pp. 41-50.

[97] Vayre, B., Vignat, F. and Villeneuve, F., 2013. “Identification on some design key

parameters for additive manufacturing: application on electron beam melting.” Procedia

CIRP, 7, pp. 264-269.

92

[98] Office of Environmental Health and Safety, Waste Management Log Book, The

Pennsylvania State University. Web. Aug. 30, 2016. < http://abe.psu.edu/safety/lab-safety-

plan/chemical-waste/chemical-waste-log-book>.

[99] Oller, A.R., Kirkpatrick, D.T., Radovsky, A. and Bates, H.K., 2008. “Inhalation

carcinogenicity study with nickel metal powder in Wistar rats.” Toxicology and applied

pharmacology, 233(2), pp.262-275.

[100] Jacobson, M., Cooper, A.R. and Nagy, J., 1964. Explosibility of metal powders. U.S.

Bureau of Mines, Washington, D.C.

[101] Wright, Spencer. "Notes on Magics." 18 Aug. 2015. Web. Accessed: 15 Jan. 2016.

<http://pencerw.com/feed/2015/8/18/notes-on-magics>.

[102] Baumers, M., C. Tuck, R. Wildman, I. Ashcroft, E. Rosamond, and R. Hague., 2012.

"Combined Build-Time, Energy Consumption and Cost Estimation for Direct Metal Laser

Sintering." Proceedings of Solid Freeform Fabrication Symposiu, pp. 932-944.

[103] Mindt, H.W., Desmaison, O., Megahed, M., Peralta, A. and Neumann, J., 2018. “Modeling

of powder bed manufacturing defects.” Journal of Materials Engineering and Performance,

27(1), pp. 32-43.

[104] Foster, B.K., Reutzel, E.W., Nassar, A.R., Hall, B.T., Brown, S.W. and Dickman, C.J.,

2015. “Optical, layerwise monitoring of powder bed fusion.” Proceedings of Solid Freeform

Fabrication Symposium. pp. 295-307.

[105] Thöne, M., Leuders, S., Riemer, A., Tröster, T. and Richard, H.A., 2012. “Influence of

heat-treatment on selective laser melting products–eg Ti6Al4V.” Proceedings of Solid

Freeform Fabrication Symposium, pp. 492-498.

[106] “EOS Stainless Steel GP1”, Material Data Sheet, Germany. Web. Oct. 15, 2015.

<https://cdn0.scrvt.com/eos/public/5f84f5d2c88ac900/05fb1582834a38c85ef6dd859733a230/

EOS_StainlessSteel-GP1_en.pdf>

93

[107] “EOS Titanium Ti64”, Material Data Sheet, EOS GmbH – Electro Optical Systems,

Germany. Web. Oct. 15, 2015.

<https://cdn.eos.info/d27ce4e4388315f2/7bed25543c76/Ti64ELI_M290_Material_data_sheet

_06-16_en.pdf>

[108] “EOS Nickel Alloy IN718”, Material Data Sheet, EOS GmbH – Electro Optical Systems,

Germany. Web. Oct. 15, 2015. < http://ip-saas-eos-

cms.s3.amazonaws.com/public/4528b4a1bf688496/ff974161c2057e6df56db5b67f0f5595/EO

S_NickelAlloy_IN718_en.pdf>

[109] “EOS Aluminum AlSi10Mg”, Material Data Sheet, EOS GmbH – Electro Optical Systems,

Germany. Web. Oct. 15, 2015.

<https://cdn0.scrvt.com/eos/public/8837de942d78d3b3/4e099c3a857fdddca4be9d59fbb1cd74

/EOS_Aluminium_AlSi10Mg_en.pdf>

[110] Poyraz, Yasa, E., Akbulut, G., 2015. "Investigation of Support Structures for Direct Metal

Laser Sintering (DMLS) Of In625 Parts,", Proceedings of Solid Freeform Fabrication

Symposium, pp. 560-574.

[111] Marschallinger, R., Jandrisevits, C., and Zobl, F., 2015, "A Visual LISP Program for

Voxelizing AutoCAD Solid Models," Computers & Geosciences, 74, pp. 110-120.

[112] Kerbrat, O., Mognol, P., and Hascot, J., 2011, "A New DFM Approach to Combine

Machining and Additive Manufacturing," Computers in Industry, 62 (7), pp. 684-692.

[113] "2015 SolidWorks API Help,". Web. Jan. 22, 2017. Dassault Systemes.

<http://help.solidworks.com/2016/English/api/sldworksapiprogguide/Welcome.htm>

[114] Hassan, R., Cohanim, B., De Weck, O. and Venter, G., 2005, April. “A comparison of

particle swarm optimization and the genetic algorithm.” In 46th AIAA / ASME / ASCE / AHS /

ASC Structures, Structural Dynamics and Materials Conference, pp. 1897 - 1909.

94

[115] Maranan, V., Simpson, T. W., Palmer, T., 2016, "Application of Topology Optimization

and Design for Additive Manufacturing Guidelines on an Automotive Component," ASME

2016 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, pp. V02AT03A030.

[116] Brackett, D., Ashcroft, I. and Hague, R., 2011. “Topology optimization for additive

manufacturing.” Proceedings of Solid Freeform Fabrication Symposium, pp. 348-362.

[117] Huang, P., Wang, C.C. and Chen, Y., 2014. “Algorithms for Layered Manufacturing in

Image Space.” Advances in Computers and Information in Engineering Research, Volume 1.

ASME Press, New York, NY.

[118] “Sculpteo” Web. Aug. 15, 2018. < https://www.sculpteo.com/en/>

95

Appendix A

Cost Model for Powder Feedstock Depreciation MATLAB Code I

%% Cost Modeling for Reused Powder Feedstocks in Laser Powder Bed Fusion

% Michael W. Barclift - Penn State University - University Park, PA 16801

% mzb5747@psu.edu | mwb81@vt.edu |

% SAE Upright Individual Cost Modeling Code

%%

clc

clear all

close all

format long g

%% Initilization

xmax = 250.8; %Buildplate width on EOS M280 (mm)

ymax = 250.8; %Buildplate length on EOS M280 (mm)

dxmax = 250.8; %Dispenser width on EOS M280 (mm)

dymax = 227.80625; %Dispenser length on EOS M280 (mm)

Mat.wden = [7.8,8.15,2.67,4.41]; %Density of solidified powder feedstock (g/cm^3)

Mat.tapden = [5.3, 5.1, 1.5,2.74]; %Density of un-melted powder feedstock (g/cm^3)

Mat.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3)

Mat.layer = [20,40,30,30]; %Layer Thickness (microns)

Mat.vprice = [105, 192,152,680]; %Price of virgin powder feedstock ($/kg)

Mat.salvage = 0; %Estimated value of powder feedstock at end of useful life (hr)

Mat.life = 0; %Estimated useful life of powder feedstock in build cycles (-)

Mat.use1 = 0; %Selected cycle in life of powder feedstock

Mat.waste = 0.4; %Percentage of powder lost during AM build process (%)

Mat.trapped = 0.25; %Percentage of powder trapped in Support Structures

Mat.charge = 2.25; %Amount of excess powder added per layer

Cost.oper = 110; %AM machine operator's cost ($/hr)

Cost.pc = 100; %Cost of the computer workstation ($/hr)

Cost.mach = 60; %Cost of the AM machine during build operation ($/hr)

Cost.stress = 350; %Cost to stress relief components on build substrate ($)

Cost.EDM = 200; %Cost to wire-EDM components on AM build substrate ($)

Cost.gas = 10; %Cost to use inert gas during AM build process ($/hr)

Cost.tools = 50; %Cost to use post-processing tools/equipment ($/hr)

Time.prep = [3]; %Time to generate support structures for digital models (hr)

Time.buildjob = 1; %Time to compile and arrange geometries on the build tray

Time.setup = 2; %Time to setup AM machine, gas, software, and pre-processes (hr)

Time.change = 0; %Time to change loaded powder, clean machine, filters, and reload (hr)

Time.recoat = 9; %Time AM machine needs to spread a new layer of powder (sec)

Time.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3)

Time.removal = 3; %Time to remove build substrate from AM machine, sieve powder, clean, and documentation (hr)

Time.postp = 3; %Time required to post-process individual parts (hr)

%% User Inputs

Part.zheight = [172]; %Build height of parts (mm)

Part.vol = [175]; %Part geometric volume (cm^3)

Part.supports = [412]; %Part goemetric volume for supports (cm^3)

Part.totalvol = Part.vol + Part.supports; %Total volume (cm^3)

%Part.dispvol = Mat.charge*[2484.375,2484.375,2506.88]; %Volume to fill build chamber (cm^3)

%Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3)

Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3)

96

%------------------EDIT HERE TO CHANGE NUMBER OF PARTS--------------------

% for mchoice = 1:4 %Material choice

 pcc_count = 0;

% for pcc = 1:3 %Part count cases selector

 Part.count.cases = [1,2,4,6,8]; %Scenarios of part count cases

% Part.N = Part.count.cases(pcc)*[3,3,3]; %Number of replicates for a geometry (-)

 Part.N = [1];

 Part.postp = [1]; %Parts needing to be post-processing (True (1) False (0))

 i = 1; %Selected Part Volume

 p = 1; %Selected Part Geometries to Include in Cost Analysis

 j = 1; %Selected AM Process

 %------------------EDIT HERE TO CHANGE MATERIAL--------------------

 mchoice = 4;

 k = mchoice; %Selected Material [GPI - 1, IN718 - 2, AlSi10Mg -3, Ti64 -4]

 %% Build Time Estimate for Powder Be Fusion

 %1. Complie build tray - part data

 PartData = [Part.zheight;Part.totalvol;Part.dispvol;Part.N];

 %2. Sort all part data by increasing z-height

 PartData = sortrows(PartData',1)';

 %3. Convert z-height to layers

 PartData(1,:) = round(PartData(1,:)*1000/Mat.layer(k));

 %4. Calculate layerwise recoating time allocation

 layer = PartData(1,1:p);

 Time.rc = zeros(1,p);

 for u = 0:(p-1)

 if u == 0

 Time.rc(1,u+1) = 1/60*1/60*Time.recoat*(layer(u+1)-0)./sum(PartData(4,(u+1):p));

 elseif u > 0

 Time.rc(1,u+1) = Time.rc(1,u) + 1/60*1/60*Time.recoat*(layer(u+1)-layer(u))./sum(PartData(4,(u+1):p));

 end

 end

 Time.trc = Time.recoat*layer(u+1)*1/60*1/60; %Total recoating time for the buildjob (hr)

 %-------Editing Build Time Estimate to be for whole build--------

 %Time.exp = Part.N*PartData(2,1:p).*1/Mat.buildrate(k); %Total time for solidfying each part volume (hr)

 Time.exp = PartData(2,1:p).*1/Mat.buildrate(k);

 Time.delay = 0/sum(PartData(4,1:p)); %Total time for heat, cooling, inactive (hr)

 Time.buildt = (Time.rc + Time.exp);%CHANGE(Time.rc.*Pmax)+(Time.exp.*Pmax);

 %% Part Mass Calculation

 Part.vol = PartData(2,1:p);

 Part.bed = PartData(3,1:p);

 %% Iterative Loop Structure

 Mat.lifecases = [1,1,1,1];

 for index = 1:length(Mat.lifecases)

 Mat.lifecases = [10,30,10,30]-0*[1,1,1,1]; %Scenarios of Estimated Life for Powder Feedstock

97

 count = 1;

 Mat.life = Mat.lifecases(index);

 %% Depreciation Cost Calculation

 % SLN

 % Dep = @(cmo,S,U,u) (cmo)-(u).*cmo/(U);

 % Mat.value = Mat.vprice(k);

 % for u = 2:Mat.life

 % Mat.value(u) = Dep(Mat.value(1),Mat.salvage,Mat.life,(u-1));

 % end

 % Mat.value(u+1) = 0;

 % SOYD DEPRECIATION METHOD

 Dep = @(cmu,cmo,S,U,u) cmu-(cmo-S)*(U-u+1)./(U*(U+1)/2);

 Mat.value = Mat.vprice(k);

 if index>2

 Mat.value=Mat.value*0.4;

 end

 for u = 2:Mat.life

 Mat.value(u) = Dep(Mat.value(u-1),Mat.value(1),Mat.salvage,Mat.life,(u-1));

 end

 Mat.value(u+1) = 0;

 % Double Declining Balance Method

 Dep = @(cmu,U,u) cmu - 2/U.*(cmu);

 Mat.value3 = Mat.vprice(k);

 for u = 2:Mat.life

 Mat.value3(u) = Dep(Mat.value3(u-1),Mat.life,(u-1));

 end

 Mat.value3(u+1)=0;

 for index2 = 1:Mat.life

 Mat.use1 = index2;

 %% Calculation of Costing

 Part.bedmass = Part.bed(1:p).*Mat.tapden(k)/1000;

 Part.bedmass = unique(Part.bedmass)';

 %Cost.dep = (Part.bedmass(p)-sum(Part.mass.*Part.N(1:p))).*(Mat.value(1)-Mat.value(2));

 %% Calculate Part Volumes Partitions for Layerwise Depreciation

 Part.volp = length(Part.bedmass); %Minimum of number volume partitions

 Part.volpi = zeros(Part.volp,p); %Intialize Part Volume Partitions Input

%%%

%%%%%%%%%%%%%%%%%

 % USER MUST INPUT DATA FOR VOLUME AT PARTITIONS

%%%

%%%%%%%%%%%%%%%%%

 % DATA FOR PENCIL THRUSTERS

 % Part.volpi = [15.615,15.698,9.40;0,0,0.05]; %User Input Partition Data

 % %OLD DATA WITH SUPPORTS STILL IN VOLUME

% Part.volpi = [14.91, 15.39,9.40;0,0,0.05];

% Part.supports = [0.705,0.308,0;0,0,0];

98

 Part.volpi = Part.totalvol;

 Part.volpi = Part.vol-Part.supports;

%%%

%%%%%%%%%%%%%%%%%

 Part.N = PartData(4,1:p);

 Part.mass = 1/1000*((1+Mat.waste)*(Part.volpi + Part.supports))*Mat.wden(k) +

1/1000*(Mat.trapped*Part.supports)*Mat.tapden(k);

 Part.N = logical(Part.volpi).*repmat(Part.N,Part.volp,1);

 %------THIS PART CALCULATES DEPRECIATION FOR POWDER IN THE BED AND PARTS------

 %------Calculated via Conversation of Mass and Equal Depreciation

 %------Method is volume agnostic with no penalty for large/small parts as of 5/25/2016

 % % ====OLD METHOD===== 5/26/2016

 % for s = 0:(Part.volp-1)

 % if s == 0

 % Part.depmass(s+1,:) = (Part.bedmass(s+1)-0) - sum(Part.mass(s+1,:).*Part.N(s+1,:)); %Mass of

Depreciated Powder in the Bed

 % Part.depma(s+1,:) = Part.depmass(s+1,:)./sum(Part.N(s+1,:)); %Mass of Depreciated Powder

Allocated to each parts

 % elseif s >0

 % Part.depmass(s+1,:) = (Part.bedmass(s+1)-Part.bedmass(s)) - sum(Part.mass(s+1,:).*Part.N(s+1,:));

%Mass of Depreciated Powder in the Bed

 % Part.depma(s+1,:) = Part.depmass(s+1,:)./sum(Part.N(s+1,:)); %Mass of Depreciated Powder

Allocated to each parts

 % end

 % end

 %

 % if Mat.use1 == 0

 % Part.dep = Part.depmass.*(Mat.value(0+1)-Mat.value(1+1));

 % Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p);

 % Part.depma = Part.depma.*(Mat.value(0+1)-Mat.value(1+1));

 % Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p);

 %

 % else

 % Part.dep = Part.depmass.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1));

 % Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p);

 % Part.depma = Part.depma.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1));

 % Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p);

 %

 % end

 %

 % Part.depma = sum(Part.depma); %Depreciation Cost Allocated to Each Individual Part

 % %=====END OF OLD METHOD===== 5/26/2016

 %% NEW METHOD

 %=====NEW METHOD BASED ON MASS (volumes assume air voids which add error to model)====

5/26/2016

 for s = 0:(Part.volp-1)

 if s == 0

 Part.depmass(s+1,:) = (Part.bedmass(s+1)-0) - sum(Part.mass(s+1,:).*Part.N(s+1,:)); %Mass of

Depreciated Powder in the Bed

 elseif s >0

 Part.depmass(s+1,:) = (Part.bedmass(s+1)-Part.bedmass(s)) - sum(Part.mass(s+1,:).*Part.N(s+1,:));

%Mass of Depreciated Powder in the Bed

 end

 end

99

 Part.depma = (Part.N.*Part.mass)./sum(Part.N.*Part.mass); %This is the percentage of depreciated mass

allocated to each part based on mass

% Part.depma = repmat(Part.depmass,1,p).*Part.depma; %This is the actual depreciated mass allocated

 if Mat.use1 == 0

 Part.dep = Part.depmass.*(Mat.value(0+1)-Mat.value(1+1));

 % Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p);

% Part.depma = Part.depma.*(Mat.value(0+1)-Mat.value(1+1));

 % Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p);

 else

 if length(Mat.value)==1

 Mat.value = [Mat.value,0];

 end

 Part.dep = Part.depmass.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1));

 % Part.dep = logical(Part.volpi).*repmat(Part.dep,1,p);

% Part.depma = Part.depma.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1));

 % Part.depma = logical(Part.volpi).*repmat(Part.depma,1,p);

 end

 Part.dep = (Part.dep.*Part.depma)./Part.N;

% Part.depma = sum(Part.depma); %Depreciation Cost Allocated to Each Individual Part

 %% Activity-Cost Calculations

 Pmax = Part.N(1,:);

 Pmax_v = sum(Pmax)*ones(1,length(Pmax));

 Cost.prep = (Cost.oper + Cost.pc)*Time.prep./Pmax;

 Cost.buildjob = (Cost.oper + Cost.pc)*Time.buildjob./Pmax_v;

 Cost.setup = (Cost.oper + Cost.mach)*(Time.setup + Time.change)./Pmax_v;

 Cost.build.mach = (Cost.mach+Cost.gas)*Time.buildt;

 if Mat.use1 == 0

 Cost.build.mat = Part.mass*Mat.value(Mat.use1);

% Cost.build.mat = sum(Part.mass)*Mat.value(Mat.use1+1);

 else

 Cost.build.mat = Part.mass*Mat.value(Mat.use1);

% Cost.build.mat = sum(Part.mass)*Mat.value(Mat.use1);

 end

 %CHANGE sum(Part.mass)*Mat.value(1).*Pmax;

 Cost.build.dep = Part.dep; %CHANGE Part.depma.*Pmax;

 Cost.build.total = Cost.build.mach+Cost.build.mat+Cost.build.dep;

 Cost.removal = (Cost.oper + Cost.mach)*(Time.removal)./Pmax_v;

 Cost.substrate = Cost.stress./Pmax_v + Cost.EDM./Pmax_v;

 % FIX POST PROCESSING COSTS FOR EACH MODEL

 Cost.postp = Time.postp*(Cost.oper+Cost.tools).*Part.postp;

 Cost.total = [Cost.prep; Cost.buildjob; Cost.setup; Cost.build.total; Cost.removal; Cost.substrate; Cost.postp]

 Cost.total2 = [Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.build.mat; Cost.build.dep;

Cost.removal; Cost.substrate; Cost.postp]

 %Individual Part Costing stored for each use case [5,10,15,20]

 if index ==1

100

 Ind_5(:,:,Mat.use1) = Cost.total2;

 elseif index == 2

 Ind_10(:,:,Mat.use1) = Cost.total2;

 elseif index == 3

 Ind_15(:,:,Mat.use1) = Cost.total2;

 elseif index == 4

 Ind_20(:,:,Mat.use1) = Cost.total2;

 end

 %Total Build Costing stored for each use case [5,10,15,20]

 if index ==1

 tb_5(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2);

 elseif index == 2

 tb_10(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2);

 elseif index == 3

 tb_15(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2);

 elseif index == 4

 tb_20(:,:,Mat.use1) = sum(round(Cost.total2,2)*Pmax',2);

 end

 Cost.total3 = sum(Cost.total2')';

 if index ==1

 Cost.totalzero = sum(sum([Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.removal;

Cost.substrate; Cost.postp])*Pmax');

 end

 datatotal(index,Mat.use1) = sum(sum(round(Cost.total2,2)*Pmax'));

 %Percentage based Material and Depreciation Costing stored for each use case [5,10,15,20]

 if index ==1

 % 6/17/16 - This method is better and less manual ---> mvd5_test(Mat.use1,:) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 mvd_5(Mat.use1,:) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 % mvd_5(:,:,Mat.use1) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 elseif index == 2

 mvd_10(Mat.use1,:) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 % mvd_10(:,:,Mat.use1) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 elseif index == 3

 mvd_15(Mat.use1,:) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 % mvd_15(:,:,Mat.use1) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 elseif index == 4

 mvd_20(Mat.use1,:) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

101

 % mvd_20(:,:,Mat.use1) =

100*[sum(sum(round(Cost.build.mat,2)*Pmax'))./datatotal(index,Mat.use1),sum(sum(round(Cost.build.dep,2)*Pmax'))

./datatotal(index,Mat.use1)];

 end

 mass_all =

[sum(Part.mass).*Pmax,sum(sum(Part.mass).*Pmax),max(Part.bedmass),sum(sum(Part.mass).*Pmax)./max(Part.bedm

ass)];

 vol_all =

[Part.vol.*Pmax,sum(Part.vol.*Pmax),max(Part.bed/Mat.charge),sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge)];

 Cost.build.mat = Part.mass*Mat.value(1);

 if index ==1

 Cost.inf = sum(sum([Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.build.mat; Cost.removal;

Cost.substrate; Cost.postp])*Pmax');

 end

 if index ==3

 Cost.inf2 = sum(sum([Cost.prep; Cost.buildjob; Cost.setup; Cost.build.mach; Cost.build.mat; Cost.removal;

Cost.substrate; Cost.postp])*Pmax');

 end

 if k == 1

% mvd_all_1(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

 bmu_1(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of

parts over mass of powder used.

 bvu_1(pcc_count+1,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - volume

of part over volume of bed.

 elseif k == 2

% mvd_all_2(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

 bmu_2(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of

parts over mass of powder used.

 bvu_2(pcc_count+1,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - volume

of part over volume of bed.

 elseif k == 3

% mvd_all_3(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

 bmu_3(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of

parts over mass of powder used.

 bvu_3(pcc_count+1,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization - volume

of part over volume of bed.

 elseif k == 4

% mvd_all_4(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

 bmu_4(pcc_count+1,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass of

parts over mass of powder used.

 bvu_4(pcc_count+1,:) = sum(Part.vol.*Pmax)/(xmax*ymax*max(Part.zheight)/(10^3)); %Build Volume

Utilization - volume of part over volume of bed.

 end

 %% Clearing of Data

 Part.depmass = []; %Clearing variables for re-calculation

 Part.depma = []; %Clearing variables for re-calculation

 Part.dep = []; %Clearing variables for re-calculation

 s = []; %Clearing variables for re-calculation

 Part.N = []; %Clearing variables for re-calculation

 Part.mass = []; %Clearing variables for re-calculation

 end

 count = count + 1;

 end

102

 uses = [10,30,10,30];

 for d = 1:4

 plot(0:uses(d),[datatotal(d,1:uses(d)),Cost.totalzero])

 hold on

 end

 plot([0,Mat.life],[Cost.inf,Cost.inf])

 hold on

 plot([0,Mat.life],[Cost.inf2,Cost.inf2])

 plot([0,Mat.life],[Cost.totalzero, Cost.totalzero])

 if mchoice == 1

 title('Material: GP1')

 elseif mchoice == 2

 title('Material: IN718')

 elseif mchoice == 3

 title('Material: AlSi10Mg')

 elseif mchoice == 4

 title('Material: Ti64')

 end

 legend('U_m_a_x = 10 Build Cycles ($680/kg)','U_m_a_x = 30 Build Cycles ($680/kg)','U_m_a_x = 10 Build

Cycles ($272/kg)','U_m_a_x = 30 Build Cycles ($272/kg)','Rickenbacher et al. ($680/kg)','Rickenbacher et al.

($272/kg)','Powder exceeds U_m_a_x')

 xlabel('Build Cycles (-)')

 ylabel('Total Costs ($)')

 % Cost Break down code-----------

 figure

 colormap jet

 tb_5(:,:,1) = tb_5(:,:,1)./sum(tb_5(:,:,1))*100

 tb_10(:,:,1) = tb_10(:,:,1)./sum(tb_10(:,:,1))*100

 tb_15(:,:,1) = tb_15(:,:,1)./sum(tb_15(:,:,1))*100

 tb_20(:,:,1) = tb_20(:,:,1)./sum(tb_20(:,:,1))*100

 bar([tb_5(:,:,1)';tb_10(:,:,1)';tb_15(:,:,1)';tb_20(:,:,1)'],'stacked')

 legend('C-prep','C-buildjob','C-setup','C-build-machine','C-build-material','C-build-depreciation','C-removal','C-

substrate','C-postp')

% legend('C_p_r_e_p','C_b_u_i_l_d_j_o_b','C_s_e_t_u_p','C_b_u_i_l_d_-_m_a_c_h_i_n_e','C_b_u_i_l_d_-

_m_a_t_e_r_i_a_l','C_b_u_i_l_d_-

_d_e_p_r_e_c_i_a_t_i_o_n','C_r_e_m_o_v_a_l','C_s_u_b_s_t_r_a_t_e','C_p_o_s_t_p')

 ylabel('Percentage of Costs (%)')

 ylim([0 100])

 ax = gca;

 ax.XTickLabel = {'U_m_a_x = 10','U_m_a_x = 30','U_m_a_x = 10','U_m_a_x = 30'};

 xlabel('$680/kg $272/kg')

 if mchoice == 1

 title('Material: GP1')

 elseif mchoice == 2

 title('Material: IN718')

 elseif mchoice == 3

103

 title('Material: AlSi10Mg')

 elseif mchoice == 4

 title('Material: Ti64')

 end

% ---------------

%

% if k == 1

% mvd_all_1(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

% % bmu_1(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass

of parts over mass of powder used.

% % bvu_1(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization -

volume of part over volume of bed.

% elseif k == 2

% mvd_all_2(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

% % bmu_2(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass

of parts over mass of powder used.

% % bvu_2(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization -

volume of part over volume of bed.

% elseif k == 3

% mvd_all_3(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

% % bmu_3(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass

of parts over mass of powder used.

% % bvu_3(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization -

volume of part over volume of bed.

% elseif k == 4

% mvd_all_4(pcc_count,:) = [mvd_5(1,:),mvd_10(1,:),mvd_15(1,:),mvd_20(1,:)];

% % bmu_4(pcc_count,:) = sum(sum(Part.mass).*Pmax)./max(Part.bedmass); %Build Mass Utilization - mass

of parts over mass of powder used.

% % bvu_4(pcc_count,:) = sum(Part.vol.*Pmax)/max(Part.bed/Mat.charge); %Build Volume Utilization -

volume of part over volume of bed.

% end

%

%

% figure

% hold on

% j = 1;

%

%

% C = [1 .5 0];

%

%

% for i = 1:2:length(mvd_all_4)

% % if mod(j/2,1)>0

% if i == 1;

% plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[1 0 0],'linewidth',1.5)

% plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[1 0 0],'linewidth',1.25)

% elseif i == 3;

%

% plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[0.9 0.75 0],'linewidth',1.5)

% plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[0.9 0.75 0],'linewidth',1.25)

%

% elseif i == 5;

%

% plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[0 0.5 0],'linewidth',1.5)

% plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[0 0.5 0],'linewidth',1.25)

% elseif i == 7;

%

104

% plot(100*[bvu_4],mvd_all_4(:,i),':d','color',[0.25 0.25 1],'linewidth',1.5)

% plot(100*[bvu_4],mvd_all_4(:,i+1),'--x','color',[0.25 0.25 1],'linewidth',1.25)

% end

% j = j +1;

% end

% title('Material: Ti64');

% legend('U_m_a_x = 10 Build Cycles | Material Cost','U_m_a_x = 10 Build Cycles | Depreciation Cost' , 'U_m_a_x =

30 Build Cycles | Material Cost','U_m_a_x = 20 Build Cycles | Depreciation Cost', 'U_m_a_x = 30 Build Cycles |

Material Cost','U_m_a_x = 30 Build Cycles | Depreciation Cost','U_m_a_x = 40 Build Cycles | Material

Cost','U_m_a_x = 40 Build Cycles | Depreciation Cost')

% grid on

% xlabel('Build Volume Utilization (%)');

% ylabel('Percentage of Total Costs (%)');

105

Appendix B

Cost Model for Powder Feedstock Depreciation MATLAB Code II

%% Cost Modeling for Reused Powder Feedstocks in Laser Powder Bed Fusion

% Michael W. Barclift - Penn State University - University Park, PA 16801

% mzb5747@psu.edu | mwb81@vt.edu |

% Mass Production of SAE Upright from 1-1000 Units Cost Modeling Code

%%

clc

clear all

close all

format long g

%% Initilization

xmax = 250.8; %Buildplate width on EOS M280 (mm)

ymax = 250.8; %Buildplate length on EOS M280 (mm)

dxmax = 250.8; %Dispenser width on EOS M280 (mm)

dymax = 227.80625; %Dispenser length on EOS M280 (mm)

Mat.wden = [7.8,8.15,2.67,4.41]; %Density of solidified powder feedstock (g/cm^3)

Mat.tapden = [5.3, 5.1, 1.5,2.74]; %Density of un-melted powder feedstock (g/cm^3)

Mat.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3)

Mat.layer = [20,40,30,30]; %Layer Thickness (microns)

Mat.vprice = [105, 192,152,680]; %Price of virgin powder feedstock ($/kg)

Mat.salvage = 0; %Estimated value of powder feedstock at end of useful life (hr)

Mat.life = 0; %Estimated useful life of powder feedstock in build cycles (-)

Mat.use1 = 0; %Selected cycle in life of powder feedstock

Mat.waste = 0.4; %Percentage of powder lost during AM build process (%)

Mat.trapped = 0.25; %Percentage of powder trapped in Support Structures

Mat.charge = 2.25; %Amount of excess powder added per layer

Cost.oper = 110; %AM machine operator's cost ($/hr)

Cost.pc = 100; %Cost of the computer workstation ($/hr)

Cost.mach = 60; %Cost of the AM machine during build operation ($/hr)

Cost.stress = 350; %Cost to stress relief components on build substrate ($)

Cost.EDM = 200; %Cost to wire-EDM components on AM build substrate ($)

Cost.gas = 10; %Cost to use inert gas during AM build process ($/hr)

Cost.tools = 50; %Cost to use post-processing tools/equipment ($/hr)

Time.prep = [3]; %Time to generate support structures for digital models (hr)

Time.buildjob = 1; %Time to compile and arrange geometries on the build tray

Time.setup = 2; %Time to setup AM machine, gas, software, and pre-processes (hr)

Time.change = 0; %Time to change loaded powder, clean machine, filters, and reload (hr)

Time.recoat = 9; %Time AM machine needs to spread a new layer of powder (sec)

Time.buildrate = [7.2,14.4,26.6,13.5]; %Average time needed by AM machine to solidfy a voxel (hr/cm^3)

Time.removal = 3; %Time to remove build substrate from AM machine, sieve powder, clean, and documentation (hr)

Time.postp = 3; %Time required to post-process individual parts (hr)

%% User Inputs

Part.zheight = [172]; %Build height of parts (mm)

Part.vol = [175]; %Part geometric volume (cm^3)

Part.supports = [412]; %Part goemetric volume for supports (cm^3)

Part.totalvol = Part.vol + Part.supports; %Total volume (cm^3)

%Part.dispvol = Mat.charge*[2484.375,2484.375,2506.88]; %Volume to fill build chamber (cm^3)

%Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3)

Part.dispvol = Mat.charge*[Part.zheight.*dxmax*dymax]/10^3; %Volume to fill build chamber (cm^3)

106

%------------------EDIT HERE TO CHANGE NUMBER OF PARTS--------------------

% for mchoice = 1:4 %Material choice

 pcc_count = 0;

% for pcc = 1:3 %Part count cases selector

 Part.count.cases = [1,2,4,6,8]; %Scenarios of part count cases

% Part.N = Part.count.cases(pcc)*[3,3,3]; %Number of replicates for a geometry (-)

 Part.N = [1000];

% blendrate = 0.2;

 Part.postp = [1]; %Parts needing to be post-processing (True (1) False (0))

 i = 1; %Selected Part Volume

 p = 1; %Selected Part Geometries to Include in Cost Analysis

 j = 1; %Selected AM Process

 %------------------EDIT HERE TO CHANGE MATERIAL--------------------

 mchoice = 4;

 k = mchoice; %Selected Material [GPI - 1, IN718 - 2, AlSi10Mg -3, Ti64 -4]

 %% Build Time Estimate for Powder Be Fusion

 %1. Complie build tray - part data

 PartData = [Part.zheight;Part.totalvol;Part.dispvol;Part.N];

 %2. Sort all part data by increasing z-height

 PartData = sortrows(PartData',1)';

 %3. Convert z-height to layers

 PartData(1,:) = round(PartData(1,:)*1000/Mat.layer(k));

 %4. Calculate layerwise recoating time allocation

 layer = PartData(1,1:p);

 Time.rc = zeros(1,p);

 for u = 0:(p-1)

 if u == 0

 Time.rc(1,u+1) = 1/60*1/60*Time.recoat*(layer(u+1)-0)./sum(PartData(4,(u+1):p));

 elseif u > 0

 Time.rc(1,u+1) = Time.rc(1,u) + 1/60*1/60*Time.recoat*(layer(u+1)-layer(u))./sum(PartData(4,(u+1):p));

 end

 end

 Time.trc = Time.recoat*layer(u+1)*1/60*1/60; %Total recoating time for the buildjob (hr)

 %-------Editing Build Time Estimate to be for whole build--------

 %Time.exp = Part.N*PartData(2,1:p).*1/Mat.buildrate(k); %Total time for solidfying each part volume (hr)

 Time.exp = PartData(2,1:p).*1/Mat.buildrate(k);

 Time.delay = 0/sum(PartData(4,1:p)); %Total time for heat, cooling, inactive (hr)

 Time.buildt = (Time.rc + Time.exp);%CHANGE(Time.rc.*Pmax)+(Time.exp.*Pmax);

 %% Part Mass Calculation

 Part.vol = PartData(2,1:p);

 Part.bed = PartData(3,1:p);

 %% Iterative Loop Structure

% Mat.lifecases = [1,1,1,1];

 Mat.lifecases = [10,10,30,30,10,10,30,30];

107

 for index = 1:length(Mat.lifecases)

% Mat.lifecases = [10,30,10,30]-0*[1,1,1,1]; %Scenarios of Estimated Life for Powder Feedstock

 count = 1;

 Mat.life = Mat.lifecases(index);

 %% Depreciation Cost Calculation

 % SLN

 % Dep = @(cmo,S,U,u) (cmo)-(u).*cmo/(U);

 % Mat.value = Mat.vprice(k);

 % for u = 2:Mat.life

 % Mat.value(u) = Dep(Mat.value(1),Mat.salvage,Mat.life,(u-1));

 % end

 % Mat.value(u+1) = 0;

 % SOYD DEPRECIATION METHOD

 Dep = @(cmu,cmo,S,U,u) cmu-(cmo-S)*(U-u+1)./(U*(U+1)/2);

 Mat.value = Mat.vprice(k);

 if rem(index,2)==0

 Mat.value=Mat.value*0.4;

 end

 for u = 2:Mat.life

 Mat.value(u) = Dep(Mat.value(u-1),Mat.value(1),Mat.salvage,Mat.life,(u-1));

 end

 Mat.value(u+1) = 0;

 if index>4

 Mat.value = fliplr(0:Mat.value/Mat.lifecases(index):Mat.value);

 end

% % Double Declining Balance Method

% Dep = @(cmu,U,u) cmu - 2/U.*(cmu);

% Mat.value3 = Mat.vprice(k);

% for u = 2:Mat.life

% Mat.value3(u) = Dep(Mat.value3(u-1),Mat.life,(u-1));

% end

% Mat.value3(u+1)=0;

% for index2 = 1:length(Mat.lifecases)

 Mat.use1 = 1;

 %% Calculation of Costing

 Part.bedmass = Part.bed(1:p).*Mat.tapden(k)/1000;

 Part.bedmass = unique(Part.bedmass)';

 %Cost.dep = (Part.bedmass(p)-sum(Part.mass.*Part.N(1:p))).*(Mat.value(1)-Mat.value(2));

 %% Calculate Part Volumes Partitions for Layerwise Depreciation

 Part.volp = length(Part.bedmass); %Minimum of number volume partitions

 Part.volpi = zeros(Part.volp,p); %Intialize Part Volume Partitions Input

%%%

%%%%%%%%%%%%%%%%%

 % USER MUST INPUT DATA FOR VOLUME AT PARTITIONS

108

%%%

%%%%%%%%%%%%%%%%%

 % DATA FOR PENCIL THRUSTERS

 % Part.volpi = [15.615,15.698,9.40;0,0,0.05]; %User Input Partition Data

 % %OLD DATA WITH SUPPORTS STILL IN VOLUME

% Part.volpi = [14.91, 15.39,9.40;0,0,0.05];

% Part.supports = [0.705,0.308,0;0,0,0];

 Part.volpi = Part.totalvol;

 Part.volpi = Part.vol-Part.supports;

%%%

%%%%%%%%%%%%%%%%%

 Part.N = PartData(4,1:p);

 Part.mass = 1/1000*((1+Mat.waste)*(Part.volpi + Part.supports))*Mat.wden(k) +

1/1000*(Mat.trapped*Part.supports)*Mat.tapden(k);

 Part.N = logical(Part.volpi).*repmat(Part.N,Part.volp,1);

 Cost.total = zeros(Part.N,10);

 totalN = Part.N;

 blendrate = (3*Part.mass)./Part.bedmass;

 for zz=1:totalN

 builds = ceil(zz/3);

 if zz<=3

 Part.N = zz;

 Part.depmass = (Part.bedmass-Part.N*Part.mass); %Mass of Depreciated Powder in the Bed

 Part.depma = (Part.N.*Part.mass)./sum(Part.N.*Part.mass); %This is the percentage of depreciated mass

allocated to each part based on mass

 Part.dep = Part.depmass.*(Mat.value(0+1)-Mat.value(1+1));

 Cost.build.mat = Part.N*Part.mass*Mat.value(Mat.use1);

 Cost.infmat = Part.N*Part.mass*Mat.value(1);

 Time.exp = Part.N*Part.vol.*1/Mat.buildrate(k);

 Time.buildt = (Time.trc + Time.exp);

 Cost.mix = blendrate*Part.bedmass*(Mat.value(1)-Mat.value(Mat.use1));

 Cost.build.mach = (Cost.mach+Cost.gas)*Time.buildt;

 else

 Cost.build.mach = 0;

 Cost.build.mat = 0;

 Cost.infmat = 0;

 Cost.mix=0;

 Part.dep=0;

 Mat.use1 = 1;

 for bb=1:builds

% if (Mat.use1-1)==Mat.lifecases(index)

% Mat.use1 = 1;

 if bb>1

 if rem((bb-1),Mat.lifecases(index))==0

 Mat.use1=1;

 else

109

 Mat.use1=Mat.use1+1;

 end

 end

 if bb==builds

 Part.N=rem(zz,3);

 if Part.N==0

 Part.N=3;

 end

 else

 Part.N = 3;

 end

 Part.depmass = (Part.bedmass-Part.N*Part.mass); %Mass of Depreciated Powder in the Bed

 Part.dep = Part.dep + Part.depmass.*(Mat.value(Mat.use1)-Mat.value(Mat.use1+1));

 Cost.build.mat = Cost.build.mat + Part.N*Part.mass*Mat.value(Mat.use1);

 Cost.infmat = Cost.infmat + Part.N*Part.mass*Mat.value(1);

 Time.exp = Part.N*Part.vol.*1/Mat.buildrate(k);

 Time.buildt = (Time.trc + Time.exp);

 Cost.mix = Cost.mix + blendrate*Part.bedmass*(Mat.value(1)-Mat.value(Mat.use1));

 Cost.build.mach = Cost.build.mach + (Cost.mach+Cost.gas)*Time.buildt;

 end

 end

 Cost.prep(zz) = (Cost.oper + Cost.pc)*Time.prep;

 Cost.buildjob(zz) = (Cost.oper + Cost.pc)*Time.buildjob;

 Cost.setup(zz) = (Cost.oper + Cost.mach)*(Time.setup + Time.change)*(ceil(zz/3));

 Cost.deptotal(zz) = Part.dep;

 Cost.buildmat(zz) = Cost.build.mat;

 Cost.mixtotal(zz) = Cost.mix;

 Cost.infm(zz) = Cost.infmat;

 Cost.buildmach(zz) = Cost.build.mach;

 Cost.removal(zz) = (Cost.oper + Cost.mach)*(Time.removal)*(ceil(zz/3));

 Cost.substrate(zz) = (Cost.stress+ Cost.EDM)*(ceil(zz/3));

 % FIX POST PROCESSING COSTS FOR EACH MODEL

 Cost.postp(zz) = Time.postp*(Cost.oper+Cost.tools).*zz;

 Cost.total(zz,:) =

[Cost.prep(zz),Cost.buildjob(zz),Cost.setup(zz),Cost.buildmat(zz),Cost.deptotal(zz),Cost.mixtotal(zz),Cost.buildmach(

zz),Cost.removal(zz),Cost.substrate(zz),Cost.postp(zz)];

 Cost.inf(zz,:) =

[Cost.prep(zz),Cost.buildjob(zz),Cost.setup(zz),Cost.infm(zz),Cost.buildmach(zz),Cost.removal(zz),Cost.substrate(zz),

Cost.postp(zz)];

 end

 c1(:,:,index)=Cost.total;

 c2(:,:,index)=Cost.inf;

 %% Clearing of Data

 Part.depmass = []; %Clearing variables for re-calculation

 Part.depma = []; %Clearing variables for re-calculation

 Part.dep = []; %Clearing variables for re-calculation

 s = []; %Clearing variables for re-calculation

 Part.N = []; %Clearing variables for re-calculation

 Part.mass = []; %Clearing variables for re-calculation

% end

110

 count = count + 1;

 end

 t=sum(Cost.total,2)';

 semilogx(t./(1:totalN),'r');

 xlabel('Number of Units')

 ylabel('Cost per Part($)')

 hold on

 p=sum(Cost.inf,2)';

 semilogx(p./(1:totalN),'b');

 grid on

 data = [Cost.total(1,:)',Cost.total(10,:)'/10,Cost.total(100,:)'/100,Cost.total(totalN,:)'/totalN];

 g = sum(data);

 data2 = [data(:,1)./g(1),data(:,2)./g(2),data(:,3)./g(3),data(:,4)./g(4)]*100;

 figure

 colormap('jet')

 bar(flip(data2)','stacked')

 figure

 semilogx(sum(c1(:,:,1),2)'./(1:totalN),'r')

 hold on

 semilogx(sum(c1(:,:,2),2)'./(1:totalN),'r--')

 semilogx(sum(c1(:,:,3),2)'./(1:totalN),'b')

 semilogx(sum(c1(:,:,4),2)'./(1:totalN),'b--')

 semilogx(sum(c1(:,:,5),2)'./(1:totalN),'c')

 semilogx(sum(c1(:,:,6),2)'./(1:totalN),'c--')

 semilogx(sum(c1(:,:,7),2)'./(1:totalN),'m')

 semilogx(sum(c1(:,:,8),2)'./(1:totalN),'m--')

 semilogx(sum(c2(:,:,1),2)'./(1:totalN),'g')

 semilogx(sum(c2(:,:,2),2)'./(1:totalN),'g--')

 grid on

 xlabel('Number of Units')

 ylabel('Cost per Part($)')

 grid on

 colormap('jet')

figure

subplot(1,2,1,'XScale','log')

box on

xlim([1,totalN]);

hold on

ratio1(1,:) = (sum(c1(:,:,1),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN));

ratio1(2,:) = (sum(c1(:,:,3),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN));

ratio1(3,:) = (sum(c1(:,:,5),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN));

ratio1(4,:) = (sum(c1(:,:,7),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN));

ratio1(5,:) = (sum(c2(:,:,1),2)'./(1:totalN))./(sum(c2(:,:,1),2)'./(1:totalN));

111

semilogx(ratio1(1,:),'r','LineWidth',1.5)

semilogx(ratio1(2,:),'b','LineWidth',1.5)

semilogx(ratio1(3,:),'c','LineWidth',1.5)

semilogx(ratio1(4,:),'m','LineWidth',1.5)

semilogx(ratio1(5,:),'color',[0 0.5 0],'LineWidth',1.5)

yscale = ylim;

legend('U_m_a_x = 10 Build Cycles | SOYD',...

 'U_m_a_x = 30 Build Cycles | SOYD',...

 'U_m_a_x = 10 Build Cycles | SLN',...

 'U_m_a_x = 30 Build Cycles | SLN',...

 'U_m_a_x = \infty')

grid on

title('Ti64 - $680/kg')

xlabel('Number of Parts')

ylabel('Normalized Cost per Part')

% figure

subplot(1,2,2,'XScale', 'log')

box on

hold on

ratio1(1,:) = (sum(c1(:,:,2),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN));

ratio1(2,:) = (sum(c1(:,:,4),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN));

ratio1(3,:) = (sum(c1(:,:,6),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN));

ratio1(4,:) = (sum(c1(:,:,8),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN));

ratio1(5,:) = (sum(c2(:,:,2),2)'./(1:totalN))./(sum(c2(:,:,2),2)'./(1:totalN));

% semilogx(ratio1')

semilogx(ratio1(1,:),'r','LineWidth',1.5)

semilogx(ratio1(2,:),'b','LineWidth',1.5)

semilogx(ratio1(3,:),'c','LineWidth',1.5)

semilogx(ratio1(4,:),'m','LineWidth',1.5)

semilogx(ratio1(5,:),'color',[0 0.5 0],'LineWidth',1.5)

ylim(yscale)

legend('U_m_a_x = 10 Build Cycles | SOYD',...

 'U_m_a_x = 30 Build Cycles | SOYD',...

 'U_m_a_x = 10 Build Cycles | SLN',...

 'U_m_a_x = 30 Build Cycles | SLN',...

 'U_m_a_x = \infty')

xlim([1,totalN]);

grid on

title('Ti64 - $272/kg')

xlabel('Number of Parts')

ylabel('Normalized Cost per Part')

112

Appendix C

CAD-Integrated Cost Estimator Macro Initialize Code

Dim swApp As Object

Sub main()

Set swApp = Application.SldWorks

UserForm2.Show vbModeless

End Sub

113

Appendix D

CAD-Integrated Cost Estimator Userform Code

Option Explicit
'==
'CAD-INTEGRATED COST ESTIMATOR FOR ADDITIVE MANUFACTURING
' Michael Barclift
' Pennsylvania State University
' July 16, 2018
' mzb5747@psu.edu

'CONTRIBUTORS
'Andrew Armstrong

'REVIEWERS
'Timothy Simpson
'Nicholas Meisel
'Sanjay Joshi
'===

' --------------Variable Definitions-----------------

 Dim swApp As SldWorks.SldWorks
 Dim swModel As SldWorks.ModelDoc2
 Dim swModel_part As SldWorks.ModelDoc2
 Dim swModDocExt As SldWorks.ModelDocExtension
 Dim swMass As SldWorks.MassProperty
 Dim swSupports As SldWorks.MassProperty
 Dim swSelMgr As SldWorks.SelectionMgr
 Dim swSelData As SldWorks.SelectData
 Dim swPlane As SldWorks.RefPlane
 Dim swSketch As SldWorks.Sketch
 Dim bv_corners(6) As Double
 Dim swModelView As ModelView
 Dim support_volume As Double
 Dim support_volume_raw As Double
 Dim support_volume_actual As Double
 Dim Body As Variant
 Dim optim As Boolean
 Dim k As Integer
 Dim supportsurfaces As Integer

 Dim cboxnum As Double
 Dim partvolume As Double

114

 Public matdensity As Double
 Public matcost As Double

 Dim FilePath As String
 Dim uuni As Boolean
 Dim massi As Boolean
 Dim LineFromFile As String
 Dim LineItems As Variant
 Dim am_machine As String
 Dim am_material As String
 Dim num As Integer
 Dim corners(6) As Double
 Dim swSketchPt(8) As SldWorks.SketchPoint
 Dim swSketchSeg(12) As SldWorks.SketchSegment

 Dim boolstatus As Boolean
 Dim bRet As Boolean
 Dim parea As Double
 Dim xmax As Double
 Dim ymax As Double
 Dim zmax As Double
 Dim partvol As Double
 Dim slice As Integer
 Dim layert As Double
 Dim pratio As Double

 Dim count As Integer
 Dim xrotv As Double
 Dim yrotv As Double
 Dim zrotv As Double
 Dim numnum As Integer
 Dim SpptCount As Integer
 Dim startval As Integer

 Dim X_max As Double
 Dim X_min As Double
 Dim Y_max As Double
 Dim Y_min As Double
 Dim Z_max As Double
 Dim Z_min As Double

 '=================================
 'Variables for Support Generation
 '=================================
 Dim Y_gap As Double
 Dim Support_Radius As Double

115

 Dim Support_Rad_Y As Double
 Dim Support_Rad_X As Double
 Dim swSketchSegment As SldWorks.SketchSegment
 Dim swSketchMgr As SldWorks.SketchManager
 Dim Min As String
 Dim T As Single
 Dim Y_inc As Double
 Dim swBodySelect As Variant
 Dim num_in_scan As Integer
 Dim Rp As Integer

 'Definition of dynamic arrays
 Dim xc_array() As Double
 Dim yc_array() As Double
 Dim xc_array_up() As Double
 Dim yc_array_up() As Double
 Dim zc_array_up() As Double
 Dim zc_array_h() As Double
 Dim SpptCount2 As Integer
 Dim X_inc As Double
 Dim X_gap As Double
 Dim Zray As Double
 Dim res As Double
 Dim Build_Direction(2) As Double
 Dim itr As Integer

 'Ray Trace Projectors
 Dim shoot_center(2) As Double

 Const hitRadius As Double = 0.0000095
 Const offset As Double = 0.0000001
 Dim center_vPts As Variant

 'Center points
 Dim xc As Double
 Dim yc As Double
 Dim zc As Double

 'Vector Z values
 Dim hit_center As Integer
 Dim oangle As Double
 Dim oangle2 As Double
 Dim p As Integer

 Dim myFeature As Object
 Dim color As Variant

116

 Dim swFeat2 As Object
 Dim skSegment As Object
 Dim support As Object
 Dim swFeat As SldWorks.Feature
 Dim calc_sv As Double
 Dim totalheight()
 Dim totalheight2()
 Dim tempvar(8) As Double

 Dim swModeler As SldWorks.Modeler
 Dim swBody As SldWorks.Body2
 Dim dblData(8) As Double

Private Sub Label543_Click()

End Sub

 Private Sub UserForm_initialize()

 Set swApp = Application.SldWorks
 Set swModel = swApp.ActiveDoc
 Set swModelView = swModel.GetFirstModelView
 Set swModDocExt = swModel.Extension
 Set swMass = swModDocExt.CreateMassProperty
 Set swModeler = swApp.GetModeler

 swModelView.EnableGraphicsUpdate = False
 boolstatus = swModel.Extension.HideFeatureManager(True)

 eos_rr.Value = 10

' --------------Load Material Data----------------
 'FilePath = "X:\Downloads\AM_Material_Data.csv"
 FilePath = "C:\AM_Costing_Tool\AM_Material_Data.csv"
 Open FilePath For Input As #1
 num = 0
 numnum = 0

 Do Until EOF(1)
 Line Input #1, LineFromFile
 LineItems = Split(LineFromFile, ",")

' --------------Populate Data Fields----------------
 am_machine = LineItems(0)

117

 am_material = LineItems(4)
 count = 0

 If num = 0 Then
 ElseIf num > 0 Then

 If am_machine = "EOSINT M280" Then
 eos_mat.AddItem (CStr(am_material))

 eos_bpx.Value = CStr(LineItems(1))
 eos_bpy.Value = CStr(LineItems(2))
 eos_bpz.Value = CStr(LineItems(3))

 eos_mp.AddItem (CStr(LineItems(5)))
 eos_br.AddItem (CStr(LineItems(8)))
 eos_lt.AddItem (CStr(LineItems(6)))
 eos_td.AddItem (CStr(LineItems(7)))
 eos_wd.AddItem (CStr(LineItems(9)))

 'ElseIf am_machine = "Arcam S12" Then
 'arcam_mat.AddItem (CStr(am_material))

 'arcam_bpx.Value = CStr(LineItems(1))
 'arcam_bpy.Value = CStr(LineItems(2))
 'arcam_bpz.Value = CStr(LineItems(3))

 'arcam_mp.AddItem (CStr(LineItems(5)))
 'arcam_br.AddItem (CStr(LineItems(8)))
 'arcam_lt.AddItem (CStr(LineItems(6)))
 'arcam_td.AddItem (CStr(LineItems(7)))

 'ElseIf am_machine = "Optomec MR-7" Then
 'opto_mat.AddItem (CStr(am_material))

 'opto_bpx.Value = CStr(LineItems(1))
 'opto_bpy.Value = CStr(LineItems(2))
 'opto_bpz.Value = CStr(LineItems(3))

 'opto_mp.AddItem (CStr(LineItems(5)))
 'opto_mfr.AddItem (CStr(LineItems(8)))
 'opto_td.AddItem (CStr(LineItems(7)))

 End If

 End If

118

 'Old code to remove redundancy
 'If num > 2 Then
 'If wordsold <> words Then
 'mbox.AddItem (CStr(words))
 'matbox.AddItem (CStr(words2))
 'Else
 'matbox.AddItem (CStr(words2))
 'End If
 'End If

 num = num + 1
 Loop

Close #1

 deleteall

 startval = 0
 swModel.ClearSelection
 boolstatus = swModel.Extension.SelectByID2("Build Volume", "SKETCH", 0, 0, 0, False, 0,
Nothing, 0)
 If boolstatus Then
 startval = startval + 1
 End If

 swModel.ClearSelection
 boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, False,
0, Nothing, 0)
 If boolstatus Then
 startval = startval + 1
 End If

 boolstatus = swModel.Extension.SelectByID2("Support Structures", "BODYFEATURE", 0, 0, 0,
False, 0, Nothing, 0)
 If boolstatus Then
 startval = startval + 1

 End If
 swModel.ClearSelection

 'Global Definition of Part Volume
 partvolume = swMass.Volume
 partvolume = (partvolume * 100 * 100 * 100) '1615.91 volume of substrate
 partvolume = Format(partvolume, "0.00")
 eos_compv.Value = partvolume

119

 If startval > 2 Then
 QuickDataInitialize
 Else
 ModelInitialize
 DataInitialize
 End If

 SpptCount = 0
 swModelView.EnableGraphicsUpdate = True
 boolstatus = swModel.Extension.HideFeatureManager(False)

 End Sub
 Function ModelInitialize()

 swModel.SetDisplayWhenAdded False
 BoundingBoxCode
 buildplate
 swModel.SetDisplayWhenAdded True

 End Function

 Function DataInitialize()

' -----------Read Geometry Bounding Box----------------------
 xmax = (corners(3) - corners(0)) * 1000
 ymax = (corners(4) - corners(1)) * 1000
 zmax = (corners(5) - corners(2)) * 1000

 xmax = Format(xmax, "0.00")
 ymax = Format(ymax, "0.00")
 zmax = Format(zmax, "0.00")

 eos_compx.Value = xmax
 eos_compy.Value = ymax
 eos_compz.Value = zmax

 parea = (xmax * eos_compy.Value) / (eos_bpx.Value * eos_bpy.Value)
 parea = Format(parea, "0.00")
 eos_compa.Value = parea * 100

 ' -----------Read Geometry Data----------------------
 'Stop using default units
 'swMass.UseSystemUnits = False
 'uuni =
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitSystem,

120

swUserPreferenceOption_e.swDetailingNoOptionSpecified,
swUnitSystem_e.swUnitSystem_Custom)
 'massi =
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitsMassPropLe
ngth, swUserPreferenceOption_e.swDetailingNoOptionSpecified, swLengthUnit_e.swMETER)

 pratio = 100 * partvolume / (xmax * ymax * zmax / 10 / 10 / 10)
 pratio = Format(pratio, "0.00")
 eos_pack.Value = pratio

 End Function
 Function QuickDataInitialize()

 Const MaxDouble As Double = 1.79769313486231E+308
 Const MinDouble As Double = -1.79769313486231E+308

 X_max = MinDouble
 X_min = MaxDouble
 Y_max = MinDouble
 Y_min = MaxDouble
 Z_max = MinDouble
 Z_min = MaxDouble

 ' Solid body

 Dim vBodies As Variant

 vBodies = swModel.GetBodies2(swSolidBody, False)

 Dim i As Long

 ProcessBodies vBodies, X_max, X_min, Y_max, Y_min, Z_max, Z_min

 'Actual Corners of Part Bounding Box
 corners(0) = X_min
 corners(1) = Y_min
 corners(2) = Z_min
 corners(3) = X_max
 corners(4) = Y_max
 corners(5) = Z_max

 DataInitialize

 End Function

Function BoundingBoxCode()

121

'===========================
'Perfect Bounding Box Code
'===========================

 boolstatus = swModel.Extension.SelectByID2("Build Volume", "SKETCH", 0, 0, 0, False, 0,
Nothing, 0)
 If boolstatus = True Then
 swModel.EditDelete
 End If

 'Get point data for bounding box along XYZ axes
 'corners = swModel.GetPartBox(True) - Old Method 1/9/2017
 swModel.Insert3DSketch2 True
 swModel.SetAddToDB True

 Const MaxDouble As Double = 1.79769313486231E+308
 Const MinDouble As Double = -1.79769313486231E+308

 X_max = MinDouble
 X_min = MaxDouble
 Y_max = MinDouble
 Y_min = MaxDouble
 Z_max = MinDouble
 Z_min = MaxDouble

 ' Solid body

 Dim vBodies As Variant

 vBodies = swModel.GetBodies2(swSolidBody, False)

 Dim i As Long

 ProcessBodies vBodies, X_max, X_min, Y_max, Y_min, Z_max, Z_min

 'Corners for Build Volume
 corners(0) = (X_min + X_max) / 2 - 0.125
 corners(1) = (Y_min + Y_max) / 2 - 0.125
 corners(2) = (Z_min - 0.002)
 corners(3) = (X_min + X_max) / 2 + 0.125
 corners(4) = (Y_min + Y_max) / 2 + 0.125
 corners(5) = Z_min + 0.304

 'Build Volume Corners for Global Reference
 bv_corners(0) = corners(0)
 bv_corners(1) = corners(1)

122

 bv_corners(2) = corners(2)
 bv_corners(3) = corners(3)
 bv_corners(4) = corners(4)
 bv_corners(5) = corners(5)

' --------------Draw Bounding Box Code-----------------
' REFERENCE: Bounding Box Code originally coded by Wayne Tiffany, Oct 12, 2004 - Updated
10/15/04
' Accessed and Modified by Michael Barclift, on Dec 7, 2015 at
www.soldworks.com/forums/APIHelp
' START OF BOUNDING BOX-DRAW CODE HERE

 'Draw points at each corner of bounding box
 Set swSketchPt(0) = swModel.CreatePoint2(corners(3), corners(1), corners(5))
 Set swSketchPt(1) = swModel.CreatePoint2(corners(0), corners(1), corners(5))
 Set swSketchPt(2) = swModel.CreatePoint2(corners(0), corners(1), corners(2))
 Set swSketchPt(3) = swModel.CreatePoint2(corners(3), corners(1), corners(2))
 Set swSketchPt(4) = swModel.CreatePoint2(corners(3), corners(4), corners(5))
 Set swSketchPt(5) = swModel.CreatePoint2(corners(0), corners(4), corners(5))
 Set swSketchPt(6) = swModel.CreatePoint2(corners(0), corners(4), corners(2))
 Set swSketchPt(7) = swModel.CreatePoint2(corners(3), corners(4), corners(2))

 ' Now draw bounding box
 Set swSketchSeg(0) = swModel.CreateLine2(swSketchPt(0).x, swSketchPt(0).Y, swSketchPt(0).Z,
swSketchPt(1).x, swSketchPt(1).Y, swSketchPt(1).Z)
 Set swSketchSeg(1) = swModel.CreateLine2(swSketchPt(1).x, swSketchPt(1).Y, swSketchPt(1).Z,
swSketchPt(2).x, swSketchPt(2).Y, swSketchPt(2).Z)
 Set swSketchSeg(2) = swModel.CreateLine2(swSketchPt(2).x, swSketchPt(2).Y, swSketchPt(2).Z,
swSketchPt(3).x, swSketchPt(3).Y, swSketchPt(3).Z)
 Set swSketchSeg(3) = swModel.CreateLine2(swSketchPt(3).x, swSketchPt(3).Y, swSketchPt(3).Z,
swSketchPt(0).x, swSketchPt(0).Y, swSketchPt(0).Z)
 Set swSketchSeg(4) = swModel.CreateLine2(swSketchPt(0).x, swSketchPt(0).Y, swSketchPt(0).Z,
swSketchPt(4).x, swSketchPt(4).Y, swSketchPt(4).Z)
 Set swSketchSeg(5) = swModel.CreateLine2(swSketchPt(1).x, swSketchPt(1).Y, swSketchPt(1).Z,
swSketchPt(5).x, swSketchPt(5).Y, swSketchPt(5).Z)
 Set swSketchSeg(6) = swModel.CreateLine2(swSketchPt(2).x, swSketchPt(2).Y, swSketchPt(2).Z,
swSketchPt(6).x, swSketchPt(6).Y, swSketchPt(6).Z)
 Set swSketchSeg(7) = swModel.CreateLine2(swSketchPt(3).x, swSketchPt(3).Y, swSketchPt(3).Z,
swSketchPt(7).x, swSketchPt(7).Y, swSketchPt(7).Z)
 Set swSketchSeg(8) = swModel.CreateLine2(swSketchPt(4).x, swSketchPt(4).Y, swSketchPt(4).Z,
swSketchPt(5).x, swSketchPt(5).Y, swSketchPt(5).Z)
 Set swSketchSeg(9) = swModel.CreateLine2(swSketchPt(5).x, swSketchPt(5).Y, swSketchPt(5).Z,
swSketchPt(6).x, swSketchPt(6).Y, swSketchPt(6).Z)
 Set swSketchSeg(10) = swModel.CreateLine2(swSketchPt(6).x, swSketchPt(6).Y,
swSketchPt(6).Z, swSketchPt(7).x, swSketchPt(7).Y, swSketchPt(7).Z)

123

 Set swSketchSeg(11) = swModel.CreateLine2(swSketchPt(7).x, swSketchPt(7).Y,
swSketchPt(7).Z, swSketchPt(4).x, swSketchPt(4).Y, swSketchPt(4).Z)

Set swSketch = swModel.GetActiveSketch2
 swSketch.Name = "Build Volume"
 swModel.Insert3DSketch2 False

 'Actual Corners of Part Bounding Box
 corners(0) = X_min
 corners(1) = Y_min
 corners(2) = Z_min
 corners(3) = X_max
 corners(4) = Y_max
 corners(5) = Z_max

 bRet = swSketchPt(3).Select4(True, swSelData): Debug.Assert bRet
 bRet = swSketchPt(6).Select4(True, swSelData): Debug.Assert bRet
 bRet = swSketchPt(2).Select4(True, swSelData): Debug.Assert bRet

 Set swPlane = swModel.CreatePlaneThru3Points3(True)

 swPlane.Name = "Build Surface"

 swModel.SetAddToDB False

' END OF BOUNDING BOX-DRAW CODE HERE ------------------------

End Function

Private Sub Label540_Click()
 Dim swApp As SldWorks.SldWorks
 Dim swModel As SldWorks.ModelDoc2
 Dim swPart As SldWorks.PartDoc
 Dim vBodies As Variant
 Set swApp = Application.SldWorks
 Set swModel = swApp.ActiveDoc

 Set swPart = swModel
 vBodies = swPart.GetBodies2(swSolidBody, False)
 If IsEmpty(vBodies) Then Exit Sub
 Debug.Print UBound(vBodies) + 1
End Sub

Function buildplate()
'===============================
' Creates EOS M280 Build Plate

124

'===============================

Dim swFeatureManager As Object
Dim swModelDocExt As Object
Dim boolstatus As Boolean

Set swApp = Application.SldWorks
Set swModel = swApp.ActiveDoc
Set swFeatureManager = swModel.FeatureManager
Set swModelDocExt = swModel.Extension

'Delete the Old Material
swModel.ClearSelection
boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, False, 0,
Nothing, 0)
 If boolstatus = True Then
 swModel.EditDelete
 End If

boolstatus = swModel.Extension.SelectByID2("Build Plate", "SKETCH", 0, 0, 0, False, 0, Nothing,
0)
 If boolstatus = True Then
 swModel.EditDelete
 End If

boolstatus = swModel.Extension.SelectByID2("Build Surface", "PLANE", 0, 0, 0, False, 0, Nothing,
0)
swModel.SketchManager.InsertSketch True
swModel.ClearSelection2 True

'Dim xmax As Double
'Dim ymax As Double
'Dim zmax As Double

'boolstatus =
swModel.Extension.SetUserPreferenceToggle(swUserPreferenceToggle_e.swSketchAddConstTo
RectEntity, swUserPreferenceOption_e.swDetailingNoOptionSpecified, True)
'boolstatus =
swModel.Extension.SetUserPreferenceToggle(swUserPreferenceToggle_e.swSketchAddConstLin
eDiagonalType, swUserPreferenceOption_e.swDetailingNoOptionSpecified, True)
'Dim vSkLines As Variant
'vSkLines = swModel.SketchManager.CreateCenterRectangle(c1, c2, c3, c1 + 0.125, c2 + 0.125,
c3)

Dim skPoint As Object

125

Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(0), bv_corners(1), 0#)
Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(0), bv_corners(4), 0#)
Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(3), bv_corners(1), 0#)
Set skPoint = swModel.SketchManager.CreatePoint(bv_corners(3), bv_corners(4), 0#)

swModel.SetPickMode
swModel.ClearSelection2 True
Dim skSegment As Object
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(0), bv_corners(1), 0#,
bv_corners(3), bv_corners(1), 0#)
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(3), bv_corners(1), 0#,
bv_corners(3), bv_corners(4), 0#)
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(3), bv_corners(4), 0#,
bv_corners(0), bv_corners(4), 0#)
Set skSegment = swModel.SketchManager.CreateLine(bv_corners(0), bv_corners(4), 0#,
bv_corners(0), bv_corners(1), 0#)

Dim swSketch As SldWorks.Sketch
Set swSketch = swModel.GetActiveSketch2
swSketch.Name = "Build_Plate"

'swModel.EditRebuild3

'swModel.SketchManager.InsertSketch False
'swModel.ClearSelection2 True
swModel.SketchManager.InsertSketch False
swModel.ClearSelection2 True

boolstatus = swModel.Extension.SelectByID2("Build_Plate", "SKETCH", 0, 0, 0, False, 0, Nothing,
0)
swModel.ClearSelection2 True
boolstatus = swModel.Extension.SelectByID2("Build_Plate", "SKETCH", 0, 0, 0, False, 4, Nothing,
0)
Dim swFeat As SldWorks.Feature
Set swFeat = swModel.FeatureManager.FeatureExtrusion2(True, False, True, 0, 0, 0.0254,
0.00254, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False,
False, False, False, True, True, 0, 0, False)

'boolstatus = swModel.Extension.SelectByID2("Build Plate", "SKETCH", 0, 0, 0, False, 4, Nothing,
0)
'Dim name As Object
'Set myFeature = swModel.FeatureManager.FeatureExtrusion2(True, False, True, 0, 0, 0.0254,
0.00254, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False,
False, False, False, True, True, 0, 0, False)

126

'Set myFeature = swModel.FeatureManager.FeatureExtrusion2(True, False, False, 2, 0, 0.01,
0.01, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False,
False, False, False, True, True, 0, 0, False)
'name = myFeature.GetID

Dim swSelMgr As SldWorks.SelectionMgr
'Dim featName As String, featType As String
'Set swFeat = swModel.FeatureManager.FeatureExtrusion2(True, False, True, 0, 0, 0.0254,
0.00254, False, False, False, False, 1.74532925199433E-02, 1.74532925199433E-02, False, False,
False, False, False, True, True, 0, 0, False)
'swModel.EditRebuild3

If swSelMgr Is Nothing Then

Else
swFeat.Name = "Build Platform"

swModel.ClearSelection
swModel.SelectionManager.EnableContourSelection = False

Set swSelMgr = swModel.SelectionManager

boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, False, 0,
Nothing, 0)

Set swFeat = swSelMgr.GetSelectedObject6(1, -1)

Dim color As Variant

'color = swFeat.GetMaterialPropertyValues2(swInConfigurationOpts_e.swThisConfiguration, "")
color = swFeat.GetMaterialPropertyValues2(1, Empty)

 color(0) = 1
 color(1) = 1
 color(2) = 0
 color(3) = 1
 color(4) = 1
 color(5) = 0.8
 color(6) = 0.3215
 color(7) = 0
 color(8) = 0

swFeat.SetMaterialPropertyValues2 color, swAllConfiguration, Empty

swModel.ClearSelection2 True

127

End If

'Set swSelMgr = swModel.SelectionManager

'Set swFeat = swSelMgr.GetSelectedObject6(1, -1)
'swFeat.name = "Build Platform"

'1/16/2017

swModel.ClearSelection
swModel.EditRebuild3

End Function

Private Sub CommandButton7_Click()

If eos_pe.Value = vbNullString Then

totalcost.Value = vbNullString

'ElseIf eos_pw.Value = vbNullString Then

totalcost.Value = vbNullString

ElseIf eos_mc.Value = vbNullString Then

totalcost.Value = vbNullString

Else

totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) *
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value)
'totalcost.value = (eos_compmass.value) * eos_mp.value + (eos_mw.value / 100) *
eos_compmass.value * eos_mp.value + (eos_mr.value * eos_bt.value)
totalcost.Value = Format(totalcost.Value, "0")

End If

End Sub

Private Sub arcam_mat_Change()
count = arcam_mat.ListIndex

arcam_mp.ListIndex = count
arcam_lt.ListIndex = count

128

arcam_td.ListIndex = count
arcam_br.ListIndex = count
End Sub

Private Sub ComboBox1_Change()

'eos_compmass.value = eos_wrotd.value * eos_compv.value / 1000
'eos_compmass.value = Format(eos_compmass.value, "0.00")

End Sub

Function GetMax(Val1, Val2, Val3, Val4)

' Finds maximum of four values

 GetMax = Val1

 If Val2 > GetMax Then

 GetMax = Val2

 End If

 If Val3 > GetMax Then

 GetMax = Val3

 End If

 If Val4 > GetMax Then

 GetMax = Val4

 End If

End Function

Function GetMin(Val1, Val2, Val3, Val4)

' Finds minimum of four values

 GetMin = Val1

129

 If Val2 < GetMin Then

 GetMin = Val2

 End If

 If Val3 < GetMin Then

 GetMin = Val3

 End If

 If Val4 < GetMin Then

 GetMin = Val4

 End If

End Function

Function ProcessTessTriangles(vTessTriangles, X_max, X_min, Y_max, Y_min, Z_max, Z_min)

Dim i As Long

 For i = 0 To UBound(vTessTriangles) / (1 * 9) - 1

' ' Debugging output only

' Debug.Print "Pt(" + Str(i) + ") = "

' Debug.Print " (" + _

' Str(vTessTriangles(9 * i + 0)) + "," + _

' Str(vTessTriangles(9 * i + 1)) + "," + _

' Str(vTessTriangles(9 * i + 2)) + ")"

' Debug.Print " (" + _

' Str(vTessTriangles(9 * i + 3)) + "," + _

' Str(vTessTriangles(9 * i + 4)) + "," + _

130

' Str(vTessTriangles(9 * i + 5)) + ")"

' Debug.Print " (" + _

' Str(vTessTriangles(9 * i + 6)) + "," + _

' Str(vTessTriangles(9 * i + 7)) + "," + _

' Str(vTessTriangles(9 * i + 8)) + ")"

 X_max = GetMax((vTessTriangles(9 * i + 0)), (vTessTriangles(9 * i + 3)), (vTessTriangles(9 * i
+ 6)), X_max)

 X_min = GetMin((vTessTriangles(9 * i + 0)), (vTessTriangles(9 * i + 3)), (vTessTriangles(9 * i +
6)), X_min)

 Y_max = GetMax((vTessTriangles(9 * i + 1)), (vTessTriangles(9 * i + 4)), (vTessTriangles(9 * i
+ 7)), Y_max)

 Y_min = GetMin((vTessTriangles(9 * i + 1)), (vTessTriangles(9 * i + 4)), (vTessTriangles(9 * i +
7)), Y_min)

 Z_max = GetMax((vTessTriangles(9 * i + 2)), (vTessTriangles(9 * i + 5)), (vTessTriangles(9 * i
+ 8)), Z_max)

 Z_min = GetMin((vTessTriangles(9 * i + 2)), (vTessTriangles(9 * i + 5)), (vTessTriangles(9 * i +
8)), Z_min)

 Next i

'Finished with iterations

End Function

Sub ProcessBodies(vBodies, X_max, X_min, Y_max, Y_min, Z_max, Z_min)

Dim i As Long
Dim swBodyZ As SldWorks.Body2
Dim swFace As SldWorks.Face2
Dim vTessTriangles As Variant

131

 ' Probably empty if no reference surfaces

 If IsEmpty(vBodies) Then Exit Sub

 For i = 0 To UBound(vBodies)

 Set swBodyZ = vBodies(i)

 Set swFace = swBodyZ.GetFirstFace

 While Not swFace Is Nothing

 vTessTriangles = swFace.GetTessTriangles(True)

 ProcessTessTriangles vTessTriangles, X_max, X_min, Y_max, Y_min, Z_max, Z_min

 Set swFace = swFace.GetNextFace

 Wend

 Next i

End Sub

Private Sub CommandButton10_Click()

boolstatus = generate_supports(eos_sangle.Value, eos_sres.Value)

 End Sub
Function deletesup()

'--
'Delete Previous Support Structures (Internal and External)
'--

Dim longstatus As Long
Dim DeleteOption As Long

swApp.CommandInProgress = True

boolstatus = swModel.Extension.SelectByID2("Internal Support Structures", "FTRFOLDER", 0, 0,
0, True, 0, Nothing, 0)
boolstatus = swModel.Extension.SelectByID2("External Support Structures", "FTRFOLDER", 0, 0,
0, True, 0, Nothing, 0)

132

DeleteOption = SwConst.swDelete_Absorbed
longstatus = swModel.Extension.DeleteSelection2(DeleteOption)

'swModel.EditDelete
swModel.ClearSelection

Dim itr As Integer
itr = 0
boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr), "BODYFEATURE",
0, 0, 0, False, 0, Nothing, 0)
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4,
Nothing, 0)
 'boolstatus = swModel.Extension.SelectByID2("Inner_", "SKETCH", 0, 0, 0, False, 4, Nothing, 0)

While boolstatus
longstatus = swModel.Extension.DeleteSelection2(DeleteOption)
swModel.EditDelete
itr = itr + 1
boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr), "BODYFEATURE",
0, 0, 0, False, 0, Nothing, 0)
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4,
Nothing, 0)
Wend
'swModel.EditDelete

itr = 0
boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr), "BODYFEATURE",
0, 0, 0, False, 0, Nothing, 0)
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4,
Nothing, 0)
 'boolstatus = swModel.Extension.SelectByID2("Inner_", "SKETCH", 0, 0, 0, False, 4, Nothing, 0)

While boolstatus
longstatus = swModel.Extension.DeleteSelection2(DeleteOption)
swModel.EditDelete
itr = itr + 1
boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr), "BODYFEATURE",
0, 0, 0, False, 0, Nothing, 0)
'boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4,
Nothing, 0)
Wend

swApp.CommandInProgress = False
'swModel.EditDelete

133

End Function

Function generate_supports(sangle, sres)

'==
'DIRECT SUPPORT STRUCTURE GENERATION CODE FOR CAD-INTEGRATED COST ESTIMATOR
'
' Michael Barclift
' Andrew Armstrong
'
' Version 1.0 - Date: 9/29/2016 - Ray-Trace Projection - Height Method
' Version 2.0 - Date: 10/19/2016 - Ray-Trace Projection - Next Body
' Version 3.0 - Date: 1/28/2017 - Ray-Trace Normals - Internal Supports
' Version 4.0 - Date: 2/14/2017 - Temporary Bodies
'
'===

 'Performance Tune-Up
 UserForm2.Hide
 ' DoEvents

 'Combination 1 Works
 swApp.UserControl = False
 swModel.Visible = False
 'swApp.Visible = False
 boolstatus = swModel.Extension.HideFeatureManager(True)
 swModelView.EnableGraphicsUpdate = False
 'swApp.Frame.KeepInvisible = True
 'swModel.Visible = False

 'Combination 2
 'swModelView.EnableGraphicsUpdate = False
 'boolstatus = swModel.Extension.HideFeatureManager(True)

If sangle = vbNullString Then
 MsgBox ("Define Support Angle")
 ElseIf sres = vbNullString Then
 MsgBox ("Define Support Resolution")
 Else

T = Timer

 sangle = Abs(180 - sangle)

 Set swApp = CreateObject("SldWorks.Application")

134

 Set swModel = swApp.ActiveDoc
 Set swSelMgr = swModel.SelectionManager
 Set swSelData = swSelMgr.CreateSelectData

 swModel.ClearSelection

 'Delete the Old Material
 If SpptCount > 0 Then
 deletesup
 End If

 'X_max = corners(3)
 'X_min = corners(0)
 'Y_max = corners(4)
 'Y_min = corners(1)
 'Z_max = corners(5)
 'Z_min = corners(2)

 X_max = bv_corners(3)
 X_min = bv_corners(0)
 Y_max = bv_corners(4)
 Y_min = bv_corners(1)
 Z_min = corners(2)

 num = 0

 'Set Radius on supports
 slice = sres
 Y_gap = (Y_max - Y_min) / slice
 Support_Rad_Y = Abs(Y_gap / 2)
 num_in_scan = 0

 swModel.ClearSelection2 True
 swBodySelect = swModel.GetBodies2(swSolidBody, False)
 swModel.ClearSelection2 True

 SpptCount = 0 'Restored in 1/14/2017
 SpptCount2 = 0:
 ReDim totalheight(0)
 ReDim totalheight2(0)

 'ZRay prevents ray trace from starting at the body edge
 Zray = Z_min - 0.00001 'gap between 2mm offset
 X_gap = (X_max - X_min) / slice
 Support_Rad_X = Abs(X_gap / 2)
 'Z direction update 01 July

135

 'Grid Definition for Support Radii
 'If Support_Rad_Y <= Support_Rad_X Then
 Support_Radius = Support_Rad_Y
 X_gap = Y_gap
 X_inc = X_min + Support_Rad_Y '- 2 / 2 / 2017
 Y_inc = Y_min + Support_Rad_Y '- 2 / 2 / 2017
 'Else
 ' Support_Radius = Support_Rad_X
 ' Y_gap = X_gap
 ' X_inc = X_min + Support_Rad_X
 ' Y_inc = Y_min + Support_Rad_X
 'End If

'***
'================START OF LOOP====================
'***

 'Y_inc = Y_inc + Y_gap

'Go to Y where part exists to limit computing
While Y_inc <= corners(1)
Y_inc = Y_inc + Y_gap
Wend
Y_inc = Y_inc - Y_gap

While X_inc <= corners(0)
X_inc = X_inc + X_gap
Wend
X_min = X_inc - X_gap
X_inc = X_min

Do Until Y_inc > (Y_max * 0.99)

 Do Until X_inc > X_max * 0.99
 'If num = 0 Then
 'ElseIf num > 0 Then
 'Uniform Grid
 'Y_inc = Y_inc + Y_gap
 'Hexagonal Packed Grid
 'Y_inc = Y_inc + Y_gap * 0.86126809 + 0.0001
 'End If

'=====================NEW CODE FOR POINTS INTERSECTIONS =======================
'================3D MATLAB CODE - 10/14/2016 - Michael Barclift=================

136

'--------------------------Ray Trace Projection Vectors----------------------------

 'Starts on current point
 shoot_center(0) = X_inc: shoot_center(1) = Y_inc: shoot_center(2) = Zray

 'Comparison to Directional Normal in Z
 Build_Direction(0) = 0: Build_Direction(1) = 0: Build_Direction(2) = 1#

 ' 'Visualize Grid
 ' swModel.ClearSelection2 True
 ' bRet = swModel.Extension.SelectByID2("Grid_Points", "SKETCH", 0, 0, 0, False, 0, Nothing, 0)
 ' swModel.Insert3DSketch2 True
 'swModel.EditSketch
 ' Set swSketchPt(0) = swModel.CreatePoint2(X_inc, Y_inc, Z_min)
 'swModel.EditSketch False
 ' swModel.Insert3DSketch2 False

 oangle = 0
 hit_center = swModel.RayIntersections(swBodySelect, shoot_center, Build_Direction,
swRayPtsOptsNORMALS, hitRadius, offset)
 'Debug.Print swModel.RayIntersections(swBodySelect, shoot_center, Build_Direction,
swRayPtsOptsNORMALS, hitRadius, offset)
 center_vPts = swModel.GetRayIntersectionsPoints

 If hit_center > 0 Then

 'Debug.Print center_vPts(0), center_vPts(1), center_vPts(2), center_vPts(3),
center_vPts(4), center_vPts(5), center_vPts(6), center_vPts(7), center_vPts(8)
 oangle = Arccos(center_vPts(8)) * 180 / 3.14159265359

 If oangle > sangle Then
 xc = center_vPts(3)
 yc = center_vPts(4)

 If SpptCount > 0 Then
 ReDim Preserve xc_array(SpptCount)
 ReDim Preserve yc_array(SpptCount)
 xc_array(SpptCount) = xc
 yc_array(SpptCount) = yc

 totalheight(UBound(totalheight)) = center_vPts(5) - (Z_min - 0.002) '2mm accounts for
raft on build surface
 ReDim Preserve totalheight(UBound(totalheight) + 1)
 'Debug.print xc_array(0); "and"; xc_array(1)

137

 'Debug.print yc_array(0); "and"; yc_array(1)
 Else
 ReDim xc_array(SpptCount)
 ReDim yc_array(SpptCount)
 xc_array(SpptCount) = xc
 yc_array(SpptCount) = yc

 totalheight(UBound(totalheight)) = center_vPts(5) - (Z_min - 0.002)
 ReDim Preserve totalheight(UBound(totalheight) + 1)
 End If

 SpptCount = SpptCount + 1

 End If

 If hit_center > 2 Then
 p = 2
 While p < hit_center
 oangle2 = Arccos(center_vPts(9 * p + 8)) * 180 / 3.14159265359

 If oangle2 > sangle Then

 xc = center_vPts(9 * p + 3)
 yc = center_vPts(9 * p + 4)
 zc = center_vPts(9 * p + 5)

 If SpptCount2 > 0 Then
 ReDim Preserve xc_array_up(SpptCount2)
 ReDim Preserve yc_array_up(SpptCount2)
 ReDim Preserve zc_array_up(SpptCount2)
 ReDim Preserve zc_array_h(SpptCount2)
 xc_array_up(SpptCount2) = xc
 yc_array_up(SpptCount2) = yc
 zc_array_up(SpptCount2) = center_vPts(9 * (p - 1) + 5)
 zc_array_h(SpptCount2) = (zc - center_vPts(9 * (p - 1) + 5))

 totalheight2(UBound(totalheight2)) = zc_array_h(SpptCount2)
 ReDim Preserve totalheight2(UBound(totalheight2) + 1)

 Else
 ReDim xc_array_up(SpptCount2)
 ReDim yc_array_up(SpptCount2)
 ReDim zc_array_up(SpptCount2)
 ReDim zc_array_h(SpptCount2)
 xc_array_up(SpptCount2) = xc
 yc_array_up(SpptCount2) = yc

138

 zc_array_up(SpptCount2) = center_vPts(9 * (p - 1) + 5)
 zc_array_h(SpptCount2) = (zc - center_vPts(9 * (p - 1) + 5))

 totalheight2(UBound(totalheight2)) = zc_array_h(SpptCount2)
 ReDim Preserve totalheight2(UBound(totalheight2) + 1)
 End If

 SpptCount2 = SpptCount2 + 1

 End If

 p = p + 2
 Wend
 End If

 End If

 num_in_scan = num_in_scan + 1

 'Z-Direction Update 01 July
 'If num_in_scan = 0 Then 'And (num Mod 2) = 1 Then
 'X_inc = X_min + X_gap
 'ElseIf num_in_scan = 0 And (num Mod 2) = 0 Then
 'X_inc = X_min + X_gap / 2
 'ElseIf num_in_scan > 0 Then
 If num_in_scan > 0 Then
 X_inc = X_inc + X_gap
 End If

 If X_inc > corners(3) Then
 X_inc = X_max
 End If

 Loop

 'swPlane.Show = True
 'Debug.Assert Not swPlane Is Nothing

 num = num + 1
 num_in_scan = 0
 X_inc = X_min

 'Uniform Grid
 Y_inc = (Y_inc + Y_gap)
 'Hexagonal Packed Grid

139

 'Y_inc = Y_inc + Y_gap * 0.86126809 + 0.0001

 If Y_inc > corners(4) Then
 Y_inc = (Y_max + 1) 'Added +1 to help termination criteria be more decisive
 End If

Loop

 If virtualsup.Value Then
 '=================================
 'Calculate Analytical Support Volume
 '==================================
 itr = 0
 calc_sv = 0
 supportsurfaces = UBound(totalheight) + UBound(totalheight2)

 'External Supports
 'While itr < UBound(totalheight)
 'calc_sv = calc_sv + 3.14159265359 * Support_Radius * Support_Radius *
totalheight(itr) * 0.9801 'due to 0.99 for clearancing
 'itr = itr + 1
 'Wend

 'Internal Supports
 'itr = 0
 'While itr < UBound(totalheight2)
 'calc_sv = calc_sv + 3.14159265359 * Support_Radius * Support_Radius *
totalheight2(itr) * 0.9801
 'itr = itr + 1
 'Wend

 eos_svol.Value = Format(calc_sv * 100 * 100 * 100, "0.00")
 Erase totalheight
 Erase totalheight2
 Erase xc_array_up
 Erase yc_array_up
 Erase zc_array_up
 Erase zc_array_h
 Erase xc_array
 Erase yc_array

 'If Not optim And eos_slice.Value <> vbNullString Then
 If eos_slice.Value <> vbNullString Then

140

 'Build Time
 tempvar(0) = eos_rr.Value
 tempvar(1) = eos_slice.Value
 tempvar(2) = eos_br.Value
 tempvar(3) = eos_svol.Value
 tempvar(4) = eos_compv.Value
 tempvar(5) = eos_mw.Value / 100
 eos_bt.Value = (tempvar(0) * tempvar(1)) * (1 / 60 * 1 / 60) + 1 / tempvar(2) *
(tempvar(3) + tempvar(4))
 eos_mc.Value = eos_bt * eos_mr.Value

 'Component Mass
 eos_smass.Value = (1 + tempvar(5)) * tempvar(3) * eos_wd.Value / 1000
 eos_pe.Value = tempvar(4) * (1 + tempvar(5)) * eos_wd.Value * eos_mp.Value / 1000
 eos_scost.Value = (CDbl(eos_smass)) * CDbl(eos_mp.Value)

 '85 is powder depreciation for 15 use Ti64 powder
 'eos_pdep.Value = 85 * (eos_pfk - eos_smass - (1 + tempvar(5)) * tempvar(4) / 1000)
 'eos_pdep.Value = 0

 tempvar(6) = (CDbl(eos_pe.Value) + CDbl(eos_scost.Value) + CDbl(eos_mc.Value)) '+
CDbl(eos_pdep))

 totalcost.Value = tempvar(6)

 totalcost.Value = Format(totalcost.Value, "0")
 eos_bt.Value = Format(eos_bt.Value, "0")
 eos_mc.Value = Format(eos_mc.Value, "0")
 eos_pe.Value = Format(eos_pe.Value, "0")
 eos_scost.Value = Format(eos_scost.Value, "0")
 eos_smass.Value = Format(eos_smass.Value, "0.00")
 End If

 Else
 '================================
 'Create Circle as base for support
 '================================
 itr = 0

 swModel.ClearSelection2 (True)
 Set swSketchMgr = swModel.SketchManager
 swSketchMgr.AddToDB = True
 swSketchMgr.DisplayWhenAdded = False
 swApp.CommandInProgress = True

 '==========================

141

 'Loop for internal supports
 '==========================
 If SpptCount2 > 0 Then

 itr = 0

 If Hollow.Value Then

 Else

 Do Until itr > (SpptCount2 - 1)

 dblData(0) = xc_array_up(itr)
 dblData(1) = yc_array_up(itr)
 dblData(2) = zc_array_up(itr)
 dblData(3) = 0
 dblData(4) = 0
 dblData(5) = 1
 dblData(6) = Support_Radius * 0.99
 dblData(7) = zc_array_h(itr)
 dblData(8) = zc_array_h(itr)

 'Set swBody = swModeler.CreateBodyFromBox(dblData)
 Set swBody = swModeler.CreateBodyFromCyl(dblData)
 Set support = swModel.CreateFeatureFromBody3(swBody, False, 0)

 color =
support.GetMaterialPropertyValues2(swInConfigurationOpts_e.swThisConfiguration, "")
 color = support.GetMaterialPropertyValues2(1, Empty)

 color(0) = 0 '249 / 256
 color(1) = 1 '66 / 256
 color(2) = 1 '58 / 256
 color(3) = 1
 color(4) = 1
 color(5) = 0.8
 color(6) = 0.3215
 color(7) = 0
 color(8) = 0

 support.SetMaterialPropertyValues2 color, swAllConfiguration, Empty

 swModel.SelectionManager.EnableContourSelection = False
 swModel.ClearSelection

142

 support.Name = "Internal_Support_" + CStr(itr)

 itr = itr + 1
 Loop

 End If

 Erase xc_array_up
 Erase yc_array_up
 Erase zc_array_up
 Erase zc_array_h

 itr = 0
 boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr),
"BODYFEATURE", 0, 0, 0, False, 4, Nothing, 0)

 Do Until itr > (SpptCount2 - 1)
 itr = itr + 1
 boolstatus = swModel.Extension.SelectByID2("Internal_Support_" + CStr(itr),
"BODYFEATURE", 0, 0, 0, True, 4, Nothing, 0)
 Loop

 Set myFeature =
swModel.FeatureManager.InsertFeatureTreeFolder2(swFeatureTreeFolderType_e.swFeatureTre
eFolder_Containing)
 boolstatus = swModel.SelectedFeatureProperties(0, 0, 0, 0, 0, 0, 0, 1, 0, "Internal Support
Structures")
 End If

 swModel.ClearSelection

 If SpptCount > 0 Then
 itr = 0
 Do Until itr > (SpptCount - 1)

 dblData(0) = xc_array(itr)
 dblData(1) = yc_array(itr)
 dblData(2) = (Z_min - 0.002)
 dblData(3) = 0
 dblData(4) = 0
 dblData(5) = 1
 dblData(6) = Support_Radius * 0.99
 dblData(7) = totalheight(itr)
 dblData(8) = totalheight(itr)

143

 'Set swBody = swModeler.CreateBodyFromBox(dblData)
 Set swBody = swModeler.CreateBodyFromCyl(dblData)
 Set support = swModel.CreateFeatureFromBody3(swBody, False, 0)

 color =
support.GetMaterialPropertyValues2(swInConfigurationOpts_e.swThisConfiguration, "")
 color = support.GetMaterialPropertyValues2(1, Empty)
 color(0) = 1
 color(1) = 0
 color(2) = 1
 color(3) = 1
 color(4) = 1
 color(5) = 0.8
 color(6) = 0.3215
 color(7) = 0
 color(8) = 0

 support.SetMaterialPropertyValues2 color, swAllConfiguration, Empty

 swModel.SelectionManager.EnableContourSelection = False
 swModel.ClearSelection

 support.Name = "External_Support_" + CStr(itr)

 itr = itr + 1
 Loop

 Erase xc_array
 Erase yc_array
 Erase totalheight

 itr = 0
 boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr),
"BODYFEATURE", 0, 0, 0, False, 4, Nothing, 0)

 Do Until itr > (SpptCount - 1)
 itr = itr + 1
 boolstatus = swModel.Extension.SelectByID2("External_Support_" + CStr(itr),
"BODYFEATURE", 0, 0, 0, True, 4, Nothing, 0)
 Loop

 Set myFeature =
swModel.FeatureManager.InsertFeatureTreeFolder2(swFeatureTreeFolderType_e.swFeatureTre
eFolder_Containing)

144

 boolstatus = swModel.SelectedFeatureProperties(0, 0, 0, 0, 0, 0, 0, 1, 0, "External
Support Structures")

 End If

 Min = Format((Timer - T), "0.00")

 MsgBox "Code ran in " & Min & " seconds", vbInformation

 swApp.CommandInProgress = False
 swSketchMgr.DisplayWhenAdded = True
 swSketchMgr.AddToDB = False

 swModel.ForceRebuild3 (True)

 Set swSupports = swModel.Extension.CreateMassProperty

 support_volume_raw = swSupports.Volume
 support_volume_actual = (support_volume_raw * 100 * 100 * 100)
 support_volume_actual = support_volume_actual - partvolume
 support_volume = support_volume_actual - 1587.5 '1615.91 volume of substrate
 support_volume = Format(support_volume, "0.00")
 eos_svol.Value = support_volume

 If eos_slice <> vbNullString Then

 'Build Time
 tempvar(0) = eos_rr.Value
 tempvar(1) = eos_slice.Value
 tempvar(2) = eos_br.Value
 tempvar(3) = eos_svol.Value
 tempvar(4) = eos_compv.Value
 tempvar(5) = eos_mw.Value / 100
 eos_bt.Value = (tempvar(0) * tempvar(1)) * (1 / 60 * 1 / 60) + 1 / tempvar(2) *
(tempvar(3) + tempvar(4))
 eos_mc.Value = eos_bt * CDbl(eos_mr.Value)

 'Component Mass
 eos_smass.Value = (1 + tempvar(5)) * tempvar(3) * eos_wd.Value / 1000
 eos_pe.Value = tempvar(4) * (1 + tempvar(5)) * eos_wd.Value * eos_mp.Value / 1000
 eos_scost.Value = (CDbl(eos_smass)) * CDbl(eos_mp.Value)

 '85 is powder depreciation for 15 use Ti64 powder
 'eos_pdep.Value = 85 * (eos_pfk - eos_smass - (1 + tempvar(5)) * tempvar(4) / 1000)
 'eos_pdep.Value = 0

145

 tempvar(6) = (CDbl(eos_pe.Value) + CDbl(eos_scost.Value) + CDbl(eos_mc.Value)) '+
CDbl(eos_pdep))

 totalcost.Value = tempvar(6)

 totalcost.Value = Format(totalcost.Value, "0")
 eos_bt.Value = Format(eos_bt.Value, "0")
 eos_mc.Value = Format(eos_mc.Value, "0")
 eos_pe.Value = Format(eos_pe.Value, "0")
 eos_scost.Value = Format(eos_scost.Value, "0")
 eos_smass.Value = Format(eos_smass.Value, "0.00")
 End If

End If
End If

'Performance Tune-Up

 'swApp.UserControl = True
 swModel.Visible = True
 'swApp.Visible = True
 boolstatus = swModel.Extension.HideFeatureManager(False)
 swModelView.EnableGraphicsUpdate = True
 'swApp.Frame.KeepInvisible = False

 If Not optim Then
 UserForm2.Show vbModeless
 End If

End Function

Function deleteall()

boolstatus = swModel.Extension.SelectByID2("Build Volume", "SKETCH", 0, 0, 0, False, 0,
Nothing, 0)
boolstatus = swModel.Extension.SelectByID2("Build Surface", "PLANE", 0, 0, 0, True, 0, Nothing,
0)
boolstatus = swModel.Extension.SelectByID2("Build Platform", "BODYFEATURE", 0, 0, 0, True, 0,
Nothing, 0)
boolstatus = swModel.Extension.SelectByID2("Internal Support Structures", "FTRFOLDER", 0, 0,
0, True, 0, Nothing, 0)
boolstatus = swModel.Extension.SelectByID2("Support Structures", "BODYFEATURE", 0, 0, 0,
True, 0, Nothing, 0)
swModel.EditDelete
swModel.ClearSelection

146

deletesup

itr = 0
boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4,
Nothing, 0)
 'boolstatus = swModel.Extension.SelectByID2("Inner_", "SKETCH", 0, 0, 0, False, 4, Nothing, 0)

While boolstatus
swModel.EditDelete
itr = itr + 1
boolstatus = swModel.Extension.SelectByID2("Inner_" + CStr(itr), "SKETCH", 0, 0, 0, False, 4,
Nothing, 0)
Wend

End Function

Private Sub CommandButton3_Click()

 Set swApp = Application.SldWorks
 Set swModel = swApp.ActiveDoc
 Set swSelMgr = swModel.SelectionManager
 Set swSelData = swSelMgr.CreateSelectData
 num = 0
 slice = TAP.Value
 'layert = 0.02 ----- SolidWorks is working in meters as default therefore this is 20 mm
 'layert = 0.001
 layert = (zmax / 1000) / slice

 Do Until num = slice
 If num = 0 Then
 ElseIf num > 0 Then
 corners(1) = corners(1) + layert
 End If

 swModel.Insert3DSketch2 True
 swModel.ClearSelection2 True

 Set swSketchPt(0) = swModel.CreatePoint2(corners(3), corners(1), corners(5))
 Set swSketchPt(1) = swModel.CreatePoint2(corners(0), corners(1), corners(5))
 Set swSketchPt(2) = swModel.CreatePoint2(corners(0), corners(1), corners(2))

 swModel.Insert3DSketch2 False

 bRet = swSketchPt(0).Select4(True, swSelData): Debug.Assert bRet
 bRet = swSketchPt(1).Select4(True, swSelData): Debug.Assert bRet
 bRet = swSketchPt(2).Select4(True, swSelData): Debug.Assert bRet

147

 Set swPlane = swModel.CreatePlaneThru3Points3(True)

 swPlane.Name = "AM_Slice_Plane_" & CStr(num)

 'swPlane.Show = True
 'Debug.Assert Not swPlane Is Nothing

 num = num + 1
 Loop

'swModel.Insert3DSketch2 True
'swModel.Rebuild (1)
'hello
'swModel.Insert3DSketch2 True
'swModel.Rebuild (2)

swModel.ForceRebuild3 (True)

End Sub

Private Sub CommandButton4_Click()

boolstatus = rotate_part(xrot.Value, yrot.Value, zrot.Value)

If eos_slice.Value <> vbNullString Then
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value
/ 10) / 1000 * eos_ca.Value / 100
End If

eos_svol.Value = vbNullString

End Sub

Function rand(ubd, lbd) As Integer
Randomize
rand = Int((ubd - lbd + 1) * Rnd + lbd)
End Function
Function rotate_part_fast(Xangle, Yangle, Zangle)

Dim swApp As Object
Dim swModel As Object
Dim swFeatureManager As Object
Dim swModelDocExt As Object
Dim status As Boolean
Dim boolstatus As Boolean

148

Dim buildorientation As Object
Dim vBodyArr As Variant
Dim swBody As SldWorks.Body2

'Sub main()
Set swApp = Application.SldWorks
Set swModel = swApp.ActiveDoc
Set swFeatureManager = swModel.FeatureManager
Set swModelDocExt = swModel.Extension

 'Performance Tune-Up
 swApp.UserControl = False
 swApp.Visible = False
 boolstatus = swModel.Extension.HideFeatureManager(True)
 'swApp.DocumentVisible False, swDocumentTypes_e.swDocPART 'Open files in memory
 'swModel.Visible = False 'Loads part into memory
 swModelView.EnableGraphicsUpdate = False

 'Delete Old Support Structures, Bounding Box, Build Surface, Build Platform
 'deletesup
 deleteall

 status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum),
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0)
 If status = True Then
 swModel.EditDelete
 End If

 If numnum > 0 Then
 status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum - 1),
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0)
 If status = True Then
 swModel.EditDelete
 End If
 End If

 numnum = numnum + 1

Body = swModel.GetBodies2(swSolidBody, True)

status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, True, 0, Nothing, 0)

swModel.ClearSelection2 True

status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, False, 1, Nothing, 0)

149

If Xangle = vbNullString Then
xrot.Value = 0
End If

If Yangle = vbNullString Then
yrot.Value = 0
End If

If Zangle = vbNullString Then
zrot.Value = 0
End If

xrotv = Xangle / 180 * 3.14159265359
yrotv = Yangle / 180 * 3.14159265359
zrotv = Zangle / 180 * 3.14159265359

Set buildorientation = swFeatureManager.InsertMoveCopyBody2(0, 0, 0, 0, 0, 0, 0, zrotv, yrotv,
xrotv, False, 1)

swModel.ClearSelection2 True

buildorientation.Name = "AM_Rotated_Orientation_" & CStr(numnum)

swModel.ClearSelection2 True

swModel.ForceRebuild3 (True)

 swModel.SetDisplayWhenAdded False
 BoundingBoxCode
 swModel.SetDisplayWhenAdded True

DataInitialize

If eos_slice.Value <> vbNullString Then
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value
/ 10) / 1000 * eos_ca.Value / 100
End If

 'Performance Tune-Up
 swApp.UserControl = True
 swApp.Visible = True
 boolstatus = swModel.Extension.HideFeatureManager(False)
 'swApp.DocumentVisible True, swDocumentTypes_e.swDocPART
 swModelView.EnableGraphicsUpdate = True

End Function

150

Function rotate_part(Xangle, Yangle, Zangle)

Dim swApp As Object
Dim swModel As Object
Dim swFeatureManager As Object
Dim swModelDocExt As Object
Dim status As Boolean
Dim boolstatus As Boolean
Dim buildorientation As Object
Dim vBodyArr As Variant
Dim swBody As SldWorks.Body2

'Sub main()
Set swApp = Application.SldWorks
Set swModel = swApp.ActiveDoc
Set swFeatureManager = swModel.FeatureManager
Set swModelDocExt = swModel.Extension

 'Performance Tune-Up
 swApp.UserControl = False
 swApp.Visible = False
 boolstatus = swModel.Extension.HideFeatureManager(True)
 'swApp.DocumentVisible False, swDocumentTypes_e.swDocPART 'Open files in memory
 'swModel.Visible = False 'Loads part into memory
 swModelView.EnableGraphicsUpdate = False

 'Delete Old Support Structures
 deletesup
 deleteall

 status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum),
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0)
 If status = True Then
 swModel.EditDelete
 End If

 If numnum > 0 Then
 status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum - 1),
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0)
 If status = True Then
 swModel.EditDelete
 End If
 End If

151

Body = swModel.GetBodies2(swSolidBody, True)

status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, True, 0, Nothing, 0)

swModel.ClearSelection2 True

status = swModelDocExt.SelectByID2(Body(0).Name, "SOLIDBODY", 0, 0, 0, False, 1, Nothing, 0)

 If Xangle = vbNullString Then
 xrot.Value = 0
 Xangle = 0
 End If

 If Yangle = vbNullString Then
 yrot.Value = 0
 Yangle = 0
 End If

 If Zangle = vbNullString Then
 zrot.Value = 0
 Zangle = 0
 End If

xrotv = Xangle / 180 * 3.14159265359
yrotv = Yangle / 180 * 3.14159265359
zrotv = Zangle / 180 * 3.14159265359

Set buildorientation = swFeatureManager.InsertMoveCopyBody2(0, 0, 0, 0, 0, 0, 0, zrotv, yrotv,
xrotv, False, 1)

swModel.ClearSelection2 True

buildorientation.Name = "AM_Rotated_Orientation_" & CStr(numnum)

swModel.ClearSelection2 True

numnum = numnum + 1

swModel.ForceRebuild3 (True)

ModelInitialize
DataInitialize

 'Performance Tune-Up
 swApp.UserControl = True
 swApp.Visible = True

152

 boolstatus = swModel.Extension.HideFeatureManager(False)
 'swApp.DocumentVisible True, swDocumentTypes_e.swDocPART
 swModelView.EnableGraphicsUpdate = True

End Function

Private Sub CommandButton5_Click()
'==============================
'Build Orientation Optimization
'==============================

 'Performance Speed-Up
 'swModel.Visible = False

 optim = True
 virtualsup.Value = True

'Minimize: Build Height, Support Volume, Build Area, Bounding Box Volume
Dim obj_bh() 'Build Height
Dim obj_sv() 'Support Volume

ReDim obj_sv(1)
ReDim obj_bh(1)

'Subject to constraints:
'1) Part bounding box must be inside print volume
'2) Angles for X,Y,Z rotations must be between 0 and 360 degrees

Dim rotx_ul As Double 'Rotation along x - Upper Limit
Dim roty_ul As Double 'Rotation along y - Upper Limit
Dim rotz_ul As Double 'Rotation along z - Upper Limit
Dim rotx_ll As Double 'Rotation along x - Lower Limit
Dim roty_ll As Double 'Rotation along y - Lower Limit
Dim rotz_ll As Double 'Rotation along z - Lower Limit

Dim pop_size As Integer 'Samples for each iterations
Dim max_gen As Integer 'Maximum number of iterations
Dim j As Integer 'Index
Dim popx() 'Population of x angles array
Dim popy() 'Population of y angles array
Dim popz() 'Population of z angles array
Dim rpopx() 'Regenerated Population of x angles array
Dim rpopy() 'Regenerated Population of y angles array
Dim rpopz() 'Regenerated Population of z angles array
Dim mutants As Integer 'Number of mutants per population
Dim m1 As Double 'Mutation Factor 1

153

Dim m2 As Double 'Mutation Factor 2
Dim popmean As Double 'Population Mean

Dim converged As Boolean
Dim tol As Double
Dim tolv As Double

ReDim popx(1)
ReDim popy(1)
ReDim popz(1)

'==============
'Pre-Processing
'==============
'Rotation Constraints
rotx_ll = -180
roty_ll = -180
rotz_ll = -180
rotx_ul = 180
roty_ul = 180
rotz_ul = 180

'*********************
'Optimization Settings
'*********************
pop_size = 15 'Starts at zero base
max_gen = 40 'Starts at zero base

'Convergence Criteria
tol = 5 'Tolerance on volume difference
tolv = 200 'Tolerance on average population

'Excel Worksheet Set-Up and Connection
Dim exApp As Excel.Application
Dim sheet As Excel.Worksheet

 Set exApp = CreateObject("Excel.Application")
 exApp.Visible = True
 exApp.Workbooks.Add
 Set sheet = exApp.ActiveSheet

 sheet.Cells(1, 1).Value = "Iteration"
 sheet.Cells(1, 2).Value = "Angle X"
 sheet.Cells(1, 3).Value = "Angle Y"
 sheet.Cells(1, 4).Value = "Angle Z"
 sheet.Cells(1, 5).Value = "Support Volume"

154

 sheet.Cells(1, 6).Value = "Build Height"
 sheet.Cells(1, 7).Value = "Top Two"
 sheet.Cells(1, 8).Value = "Population Mean"

'==================
'Particle Swarm Optimization Algorithm
'==================
Dim feasible_rotx(): ReDim feasible_rotx(1)
Dim feasible_roty(): ReDim feasible_roty(1)
Dim feasible_rotz(): ReDim feasible_rotz(1)

Dim gen_max_sv(): ReDim gen_max_sv(1)
Dim gen_max_bh(1)
Dim gen_max_valx(): ReDim gen_max_valx(1)
Dim gen_max_valy(): ReDim gen_max_valy(1)
Dim gen_max_valz(): ReDim gen_max_valz(1)

Dim k1 As Integer
Dim k2 As Integer
Dim n As Integer: n = 0

Dim deltavx(): ReDim deltavx(pop_size)
Dim old_deltavx(): ReDim old_deltavx(pop_size)
Dim deltavy(): ReDim deltavy(pop_size)
Dim old_deltavy(): ReDim old_deltavy(pop_size)
Dim deltavz(): ReDim deltavz(pop_size)
Dim old_deltavz(): ReDim old_deltavz(pop_size)

Dim childx(0)
Dim childy(0)
Dim childz(0)
Dim bit As Integer
Dim md As Double 'Randomly Selected Mutation Factor

Dim Pbest(): ReDim Pbest(pop_size)
Dim Pbest_x(): ReDim Pbest_x(pop_size)
Dim Pbest_y(): ReDim Pbest_y(pop_size)
Dim Pbest_z(): ReDim Pbest_z(pop_size)

Dim w1 As Double: w1 = 0.5
Dim c1 As Double: c1 = 1.5
Dim c2 As Double: c2 = 1.5

'swModel.Visible = False

'Generate Random Population

155

For j = 0 To pop_size
popx(j) = rand(rotx_ll, rotx_ul)
popy(j) = rand(roty_ll, roty_ul)
popz(j) = rand(rotz_ll, rotz_ul)

ReDim Preserve popx(UBound(popx) + 1)
ReDim Preserve popy(UBound(popy) + 1)
ReDim Preserve popz(UBound(popz) + 1)
Next j

'Calculate Fitness and Feasibility of Population
While n < max_gen And converged = False

 For j = 0 To pop_size

 boolstatus = rotate_part_fast(popx(j), popy(j), popz(j))

 If Abs(corners(0)) > Abs(bv_corners(0)) Or Abs(corners(1)) > Abs(bv_corners(1)) Or
Abs(corners(2)) > Abs(bv_corners(2)) Or Abs(corners(3)) > Abs(bv_corners(3)) Or Abs(corners(4))
> Abs(bv_corners(4)) Or Abs(corners(5)) > Abs(bv_corners(5)) Then

 sheet.Cells(j + 2 + n * (pop_size + 1), 1).Value = n
 sheet.Cells(j + 2 + n * (pop_size + 1), 2).Value = "NOT FEASIBLE"

 Else

 boolstatus = generate_supports(eos_sangle.Value, eos_sres.Value) 'Input support angle
and resolution of supports

 feasible_rotx(UBound(feasible_rotx) - 1) = popx(j)
 feasible_roty(UBound(feasible_roty) - 1) = popy(j)
 feasible_rotz(UBound(feasible_rotz) - 1) = popz(j)
 obj_sv(UBound(obj_sv) - 1) = CDbl(supportsurfaces) 'Objective Function
 obj_bh(UBound(obj_bh) - 1) = CDbl(eos_compz.Value)

 sheet.Cells(j + 2 + n * (pop_size + 1), 1).Value = n
 sheet.Cells(j + 2 + n * (pop_size + 1), 2).Value = popx(j)
 sheet.Cells(j + 2 + n * (pop_size + 1), 3).Value = popy(j)
 sheet.Cells(j + 2 + n * (pop_size + 1), 4).Value = popz(j)
 sheet.Cells(j + 2 + n * (pop_size + 1), 5).Value = CDbl(supportsurfaces) 'Objective Function
 sheet.Cells(j + 2 + n * (pop_size + 1), 6).Value = CDbl(eos_compz.Value)

 ReDim Preserve feasible_rotx(UBound(feasible_rotx) + 1)
 ReDim Preserve feasible_roty(UBound(feasible_roty) + 1)
 ReDim Preserve feasible_rotz(UBound(feasible_rotz) + 1)
 ReDim Preserve obj_sv(UBound(obj_sv) + 1)

156

 ReDim Preserve obj_bh(UBound(obj_bh) + 1)

 End If

 Next j

 '===Replace old personal bests===
 If n = 0 Then
 ReDim Pbest(UBound(obj_sv))
 Pbest = obj_sv
 Pbest_x = popx
 Pbest_y = popy
 Pbest_z = popz

 Else
 k1 = 0
 While k1 < (UBound(obj_sv) - 1)
 If obj_sv(k1) < Pbest(k1) Then
 Pbest(k1) = obj_sv(k1)
 Pbest_x(k1) = popx(k1)
 Pbest_y(k1) = popy(k1)
 Pbest_z(k1) = popz(k1)
 End If
 k1 = k1 + 1
 Wend
 End If

 '===Find global best===
 k1 = 0
 k2 = 1
 While k2 < (UBound(obj_sv) - 1)
 If obj_sv(k1) > obj_sv(k2) Then
 k1 = k2
 End If
 k2 = k2 + 1
 Wend
 sheet.Cells(k1 + 2 + n * (pop_size + 1), 7).Value = "1"

 '===Store global best===
 If n = 0 Then
 gen_max_sv(n) = obj_sv(k1)
 gen_max_valx(n) = feasible_rotx(k1)
 gen_max_valy(n) = feasible_roty(k1)
 gen_max_valz(n) = feasible_rotz(k1)

 ElseIf n > 0 And gen_max_sv(n - 1) > obj_sv(k1) Then

157

 gen_max_sv(n) = obj_sv(k1)
 gen_max_valx(n) = feasible_rotx(k1)
 gen_max_valy(n) = feasible_roty(k1)
 gen_max_valz(n) = feasible_rotz(k1)

 ElseIf n > 0 Then
 gen_max_sv(n) = gen_max_sv(n - 1)
 gen_max_valx(n) = gen_max_valx(n - 1)
 gen_max_valy(n) = gen_max_valy(n - 1)
 gen_max_valz(n) = gen_max_valz(n - 1)
 End If

 ReDim Preserve gen_max_sv(UBound(gen_max_sv) + 1)
 ReDim Preserve gen_max_valx(UBound(gen_max_valx) + 1)
 ReDim Preserve gen_max_valy(UBound(gen_max_valy) + 1)
 ReDim Preserve gen_max_valz(UBound(gen_max_valz) + 1)
 sheet.Cells(j + 2 + n * (pop_size + 1), 9).Value = gen_max_sv(n)

 '===Population Mean Calculation===
 popmean = 0
 k = 0
 Do Until k > UBound(obj_sv)
 popmean = popmean + obj_sv(k)
 k = k + 1
 Loop
 popmean = popmean / (UBound(obj_sv) + 1)
 sheet.Cells(j + 2 + n * (pop_size + 1), 8).Value = popmean

 '=================
 'Post-Processing
 '================

 'Check for convergence

 If n > 20 Then
 tol = gen_max_sv(n) - gen_max_sv(n - 10)
 converged = (tol <= 1)

 If converged = True Then
 popx(0) = gen_max_valx(n)
 popy(0) = gen_max_valy(n)
 popz(0) = gen_max_valz(n)
 MsgBox ("Solution Converged")
 End If

 Else

158

 For j = 0 To pop_size
 deltavx(j) = w1 * old_deltavx(j) + c1 * (CDbl(rand(0, 1000)) / 1000) * (Pbest_x(j) - popx(j)) +
c2 * (CDbl(rand(0, 1000)) / 1000) * (gen_max_valx(n) - popx(j))
 deltavy(j) = w1 * old_deltavy(j) + c1 * (CDbl(rand(0, 1000)) / 1000) * (Pbest_y(j) - popy(j)) +
c2 * (CDbl(rand(0, 1000)) / 1000) * (gen_max_valy(n) - popy(j))
 deltavz(j) = w1 * old_deltavz(j) + c1 * (CDbl(rand(0, 1000)) / 1000) * (Pbest_z(j) - popz(j)) +
c2 * (CDbl(rand(0, 1000)) / 1000) * (gen_max_valz(n) - popz(j))

 'Check if X angle is feasible
 popx(j) = popx(j) + deltavx(j)
 If (popx(j) < rotx_ll) Then
 popx(j) = rotx_ll
 deltavx(j) = 0
 ElseIf (popx(j) > rotx_ul) Then
 popx(j) = rotx_ul
 deltavx(j) = 0
 End If

 'Check if Y angle is feasible
 popy(j) = popy(j) + deltavy(j)
 If (popy(j) < roty_ll) Then
 popy(j) = roty_ll
 deltavy(j) = 0
 ElseIf (popy(j) > roty_ul) Then
 popy(j) = roty_ul
 deltavy(j) = 0
 End If

 'Check if Z angle is feasible
 popz(j) = popz(j) + deltavz(j)
 If (popz(j) < rotz_ll) Then
 popz(j) = rotz_ll
 deltavz(j) = 0
 ElseIf (popz(j) > rotz_ul) Then
 popz(j) = rotz_ul
 deltavz(j) = 0
 End If

 'Reassign old velocities
 old_deltavx(j) = deltavx(j)
 old_deltavy(j) = deltavy(j)
 old_deltavz(j) = deltavz(j)

 Next j

159

 ReDim feasible_rotx(1)
 ReDim feasible_roty(1)
 ReDim feasible_rotz(1)
 ReDim obj_sv(1)
 ReDim obj_bh(1)

 End If
 n = n + 1
Wend

 If n = max_gen Then
 popx(0) = gen_max_valx(n)
 popy(0) = gen_max_valy(n)
 popz(0) = gen_max_valz(n)
 End If

'====================
'Optimization Complete
'=====================
boolstatus = rotate_part(popx(0), popy(0), popz(0))
boolstatus = generate_supports(eos_sangle.Value, eos_sres.Value)
optim = False

xrot.Value = Int(popx(0))
yrot.Value = Int(popy(0))
zrot.Value = Int(popz(0))

'Deallocate Memory
Erase feasible_rotx()
Erase feasible_roty()
Erase feasible_rotz()
Erase obj_sv()
Erase obj_bh()
Erase popx()
Erase popy()
Erase popz()
Erase old_deltavx()
Erase old_deltavy()
Erase old_deltavz()
Erase deltavx
Erase deltavy
Erase deltavz

'swModel.Visible = True

UserForm2.Show

160

End Sub
Private Sub CommandButton6_Click()

Dim swApp As Object
Dim swModel As Object
Dim swFeatureManager As Object
Dim swModelDocExt As Object
Dim status As Boolean
Dim buildorientation As Object
Dim vBodyArr As Variant

'Sub main()
Set swApp = Application.SldWorks
Set swModel = swApp.ActiveDoc
Set swFeatureManager = swModel.FeatureManager
Set swModelDocExt = swModel.Extension

If numnum = 0 Then

MsgBox ("Model is already at original state.")

Else
status = swModelDocExt.SelectByID2("AM_Rotated_Orientation_" & CStr(numnum - 1),
"BODYFEATURE", 0, 0, 0, True, 0, Nothing, 0)
If status = True Then
swModel.EditDelete
End If

deleteall

numnum = numnum - 1

ModelInitialize
DataInitialize
End If

End Sub

Private Sub eos_br_Change()

If eos_mr.Value = vbNullString Then

ElseIf eos_bt.Value = vbNullString Then
Else
eos_mc = eos_mr.Value * eos_bt.Value

161

End If

If eos_rr.Value = vbNullString Then
Else
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value *
(eos_compv.Value)
eos_bt.Value = Format(eos_bt.Value, "0")
End If

End Sub

Private Sub eos_bt_Change()
If eos_mr.Value = vbNullString Then
ElseIf eos_bt.Value = vbNullString Then
Else
eos_mc = eos_mr.Value * eos_bt.Value
End If
End Sub

Private Sub eos_ca_Change()
If eos_ca.Value = vbNullString Then
Else

eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value
/ 10) / 1000 * (eos_ca.Value / 100)
eos_pfk.Value = Format(eos_pfk.Value, "0")
eos_pfb.Value = eos_mp.Value * eos_pfk.Value
End If

'10/25/2016 - Addition
If eos_pe.Value = vbNullString Then

totalcost.Value = vbNullString
'ElseIf eos_pw.Value = vbNullString Then
totalcost.Value = vbNullString
ElseIf eos_mc.Value = vbNullString Then
totalcost.Value = vbNullString

Else

totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) *
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value)
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) +
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) +
(eos_mr.value * eos_bt.value)
totalcost.Value = Format(totalcost.Value, "0")

162

End If

End Sub

Private Sub eos_compz_Change()

If eos_lt.Value = vbNullString Then
Else

eos_slice.Value = (zmax * 1000) / eos_lt.Value
eos_slice.Value = Format(eos_slice.Value, "0")
End If

If eos_svol.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_compmass.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_slice.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_rr.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_br.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_mp.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_mw.Value = vbNullString Then
'eos_pe.value = vbNullString

eos_pe.Value = (eos_compmass.Value) * eos_mp.Value
eos_pe.Value = Format(eos_pe.Value, "0")

eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value *
(eos_compv.Value + eos_svol.Value)
eos_bt.Value = Format(eos_bt.Value, "0")

ElseIf eos_compmass.Value = vbNullString Then

eos_pe.Value = vbNullString

Else

eos_pe.Value = (eos_compmass.Value) * eos_mp.Value
eos_pe.Value = Format(eos_pe.Value, "0")

163

'eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value *
(eos_compv.Value + eos_svol.Value)
'eos_bt.Value = Format(eos_bt.Value, "0")

'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value *
eos_mp.value * (1 + eos_ss.value / 100)
'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) *
eos_mp.Value
'eos_pw.Value = Format(eos_pw.Value, "0")

End If

If eos_pe.Value = vbNullString Then
totalcost.Value = vbNullString
'ElseIf eos_pw.Value = vbNullString Then
totalcost.Value = vbNullString
ElseIf eos_mc.Value = vbNullString Then
totalcost.Value = vbNullString

Else

totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) *
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value)
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) +
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) +
(eos_mr.value * eos_bt.value)
totalcost.Value = Format(totalcost.Value, "0")

End If

End Sub

Private Sub eos_lt_Change()
eos_slice.Value = (zmax * 1000) / eos_lt.Value
eos_slice.Value = Format(eos_slice.Value, "0")

End Sub

Private Sub eos_mat_Change()
count = eos_mat.ListIndex

eos_mp.ListIndex = count
eos_lt.ListIndex = count

164

eos_td.ListIndex = count
eos_br.ListIndex = count
eos_wd.ListIndex = count

If eos_ca.Value = vbNullString Then

Else
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value
/ 10) / 1000 * (eos_ca.Value / 100)
eos_pfk.Value = Format(eos_pfk.Value, "0")
eos_pfb.Value = eos_mp.Value * eos_pfk.Value
End If

If totalcost.Value <> vbNullString Then
 'Build Time
 tempvar(0) = eos_rr.Value
 tempvar(1) = eos_slice.Value
 tempvar(2) = eos_br.Value
 tempvar(3) = eos_svol.Value
 tempvar(4) = eos_compv.Value
 tempvar(5) = eos_mw.Value / 100
 eos_bt.Value = (tempvar(0) * tempvar(1)) * (1 / 60 * 1 / 60) + 1 / tempvar(2) *
(tempvar(3) + tempvar(4))
 eos_mc.Value = eos_bt * CDbl(eos_mr.Value)

 'Component Mass
 eos_smass.Value = (1 + tempvar(5)) * tempvar(3) * eos_wd.Value / 1000
 eos_pe.Value = tempvar(4) * (1 + tempvar(5)) * eos_wd.Value * eos_mp.Value / 1000
 eos_scost.Value = (CDbl(eos_smass)) * CDbl(eos_mp.Value)

 '85 is powder depreciation for 15 use Ti64 powder
 'eos_pdep.Value = 85 * (eos_pfk - eos_smass - (1 + tempvar(5)) * tempvar(4) / 1000)
 'eos_pdep.Value = 0

 tempvar(6) = (CDbl(eos_pe) + CDbl(eos_scost) + CDbl(eos_mc)) '+ CDbl(eos_pdep))

 totalcost.Value = tempvar(6)

 totalcost.Value = Format(totalcost.Value, "0")
 eos_bt.Value = Format(eos_bt.Value, "0")
 eos_mc.Value = Format(eos_mc, "0")
 eos_pe.Value = Format(eos_pe.Value, "0")
 eos_scost.Value = Format(eos_scost.Value, "0")
 eos_smass.Value = Format(eos_smass.Value, "0.00")

165

End If

End Sub

Private Sub eos_mc_Change()

'If totalcost.value = vbNullString Then
'totalcost.value = vbNullString

'If eos_pe.Value = vbNullString Then
'totalcost.Value = vbNullString
'ElseIf eos_pw.Value = vbNullString Then
'totalcost.Value = vbNullString
'ElseIf eos_mc.Value = vbNullString Then
'totalcost.Value = vbNullString

'Else

'totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) *
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value)
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) +
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) +
(eos_mr.value * eos_bt.value)
'totalcost.Value = Format(totalcost.Value, "0")

'End If

End Sub

Private Sub eos_mp_Change()
If eos_mw.Value = vbNullString Then
'eos_pw.Value = vbNullString

ElseIf eos_compmass.Value = vbNullString Then
'eos_pw.Value = vbNullString
ElseIf eos_smass.Value = vbNullString Then
'eos_pw.Value = vbNullString

Else

'Waste due to Powder Splattering in the AM Process
'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) *
eos_mp.Value
'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value *
eos_mp.value
'eos_pw.Value = Format(eos_pw.Value, "0")

166

End If

If eos_ca.Value = vbNullString Then

Else
eos_pfk.Value = eos_td.Value * (eos_compz.Value / 10) * (eos_bpx.Value / 10) * (eos_bpy.Value
/ 10) / 1000 * (eos_ca.Value / 100)
eos_pfk.Value = Format(eos_pfk.Value, "0")
eos_pfb.Value = eos_mp.Value * eos_pfk.Value
End If

If eos_mw.Value = vbNullString Then

'eos_pw.Value = vbNullString

ElseIf eos_compmass.Value = vbNullString Then
'eos_pw.Value = vbNullString
ElseIf eos_smass.Value = vbNullString Then

'eos_pw.Value = vbNullString

Else
'Powder Waste
'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) *
eos_mp.Value

'1/9/2017 - eos_pw.value = (eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 +
eos_ss.value / 100)

'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value *
eos_mp.value
'eos_pw.Value = Format(eos_pw.Value, "0")

End If

If eos_smass.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_compmass.Value = vbNullString Then
eos_pe.Value = vbNullString

Else
'Component Mass
eos_pe.Value = (eos_smass.Value + CDbl(eos_compmass.Value)) * CDbl(eos_mp.Value)
eos_pe.Value = Format(eos_pe.Value, "0.00")
End If

167

End Sub

Private Sub eos_mr_Change()
If eos_mr.Value = vbNullString Then
ElseIf eos_bt.Value = vbNullString Then
Else
eos_mc = eos_mr.Value * eos_bt.Value

End If

End Sub

Private Sub eos_mw_Change()
If eos_mw.Value = vbNullString Then
'eos_pw.Value = vbNullString
ElseIf eos_compmass.Value = vbNullString Then
'eos_pw.Value = vbNullString

ElseIf eos_smass.Value = vbNullString Then
'eos_pw.Value = vbNullString

Else

'eos_pw.Value = (eos_mw.Value / 100) * (eos_compmass.Value + eos_smass.Value) *
eos_mp.Value
'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value *
eos_mp.value
'eos_pw.Value = Format(eos_pw.Value, "0")

End If

If eos_smass.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_compmass.Value = vbNullString Then
eos_pe.Value = vbNullString

Else

eos_pe.Value = (eos_smass.Value * eos_compmass.Value) * eos_mp.Value
eos_pe.Value = Format(eos_pe.Value, "0")

End If

'10/25/2016 - TotalCost

168

If eos_pe.Value = vbNullString Then
totalcost.Value = vbNullString
'ElseIf eos_pw.Value = vbNullString Then

totalcost.Value = vbNullString
ElseIf eos_mc.Value = vbNullString Then
totalcost.Value = vbNullString

Else

totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) *
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value)
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) +
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) +
(eos_mr.value * eos_bt.value)
totalcost.Value = Format(totalcost.Value, "0")

End If

End Sub

Private Sub eos_rr_Change()
If eos_rr.Value = vbNullString Then
ElseIf eos_svol.Value = vbNullString Then

Else
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value *
(eos_compv.Value + eos_svol.Value)
eos_bt.Value = Format(eos_bt.Value, "0")
End If

'10/25/2016 - Addition

If eos_pe.Value = vbNullString Then
totalcost.Value = vbNullString

'ElseIf eos_pw.Value = vbNullString Then
totalcost.Value = vbNullString

ElseIf eos_mc.Value = vbNullString Then
totalcost.Value = vbNullString

169

Else

totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) *
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value)
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) +
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) +
(eos_mr.value * eos_bt.value)
totalcost.Value = Format(totalcost.Value, "0")

End If

End Sub

Private Sub eos_ss_Change()
'eos_pe.value = 0
'If Not IsEmpty(eos_compmass.value) Then
'MsgBox ("Select Material")
'Else

If eos_ss.Value = vbNullString Then
eos_pe.Value = vbNullString
ElseIf eos_compmass.Value = vbNullString Then

eos_pe.Value = vbNullString

ElseIf eos_slice.Value = vbNullString Then
eos_pe.Value = vbNullString

ElseIf eos_rr.Value = vbNullString Then
eos_pe.Value = vbNullString

ElseIf eos_br.Value = vbNullString Then
eos_pe.Value = vbNullString

ElseIf eos_mp.Value = vbNullString Then
eos_pe.Value = vbNullString

ElseIf eos_mw.Value = vbNullString Then

'eos_pe.value = vbNullString
eos_pe.Value = (1 + eos_ss.Value / 100) * eos_compmass.Value * eos_mp.Value
eos_pe.Value = Format(eos_pe.Value, "0")
eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value *
(eos_compv.Value) * (1 + eos_ss.Value / 100)
eos_bt.Value = Format(eos_bt.Value, "0")

170

ElseIf eos_compmass.Value = vbNullString Then
eos_pe.Value = vbNullString

Else

eos_pe.Value = (1 + eos_ss.Value / 100) * eos_compmass.Value * eos_mp.Value
eos_pe.Value = Format(eos_pe.Value, "0")

eos_bt.Value = (eos_rr.Value * eos_slice.Value) * (1 / 60 * 1 / 60) + 1 / eos_br.Value *
(eos_compv.Value) * (1 + eos_ss.Value / 100)
eos_bt.Value = Format(eos_bt.Value, "0")

'eos_pw.value = (eos_mw.value / 100) * (1 + eos_mw.value / 100) * eos_compmass.value *
eos_mp.value * (1 + eos_ss.value / 100)
'eos_pw.Value = (eos_mw.Value / 100) * eos_compmass.Value * eos_mp.Value * (1 +
eos_ss.Value / 100)
'eos_pw.Value = Format(eos_pw.Value, "0")

End If

'10/25/2016 Addition

If eos_pe.Value = vbNullString Then
totalcost.Value = vbNullString
'ElseIf eos_pw.Value = vbNullString Then
totalcost.Value = vbNullString
ElseIf eos_mc.Value = vbNullString Then
totalcost.Value = vbNullString
Else

totalcost.Value = (eos_compmass.Value) * eos_mp.Value + (eos_mw.Value / 100) *
eos_compmass.Value * eos_mp.Value + (eos_mr.Value * eos_bt.Value)
'totalcost.value = ((1 + eos_ss.value / 100) * eos_compmass.value * eos_mp.value) +
((eos_mw.value / 100) * eos_compmass.value * eos_mp.value * (1 + eos_ss.value / 100)) +
(eos_mr.value * eos_bt.value)
totalcost.Value = Format(totalcost.Value, "0")

End If

End Sub

Private Sub eos_td_Change()

'eos_pfk.value = eos_td.value * (zmax / 10) * (eos_bpx.value / 10) * (eos_bpy.value / 10) / 100
'eos_pfk.value = Format(eos_pfk.value, "0")

171

'eos_pfb.value = eos_mp.value * eos_pfk.value
'eos_compmass.value = eos_td.value * eos_compv.value / 1000
'eos_compmass.value = Format(eos_compmass.value, "0.00")

End Sub

Private Sub eos_wd_Change()
eos_compmass.Value = eos_wd.Value * eos_compv.Value / 1000
eos_compmass.Value = Format(eos_compmass.Value, "0.00")

End Sub

Private Sub MultiPage1_Change()

arcam_compx.Value = eos_compx.Value
arcam_compy.Value = eos_compy.Value
arcam_compz.Value = eos_compz.Value

opto_compx.Value = eos_compx.Value
opto_compy.Value = eos_compy.Value
opto_compz.Value = eos_compz.Value

arcam_compv.Value = eos_compv.Value
arcam_compv.Value = eos_compv.Value
arcam_compv.Value = eos_compv.Value

opto_compv.Value = eos_compv.Value
opto_compv.Value = eos_compv.Value
opto_compv.Value = eos_compv.Value

opto_pack.Value = eos_pack.Value
arcam_pack.Value = eos_pack.Value

End Sub

Private Sub opto_mat_Change()
count = opto_mat.ListIndex

opto_mp.ListIndex = count
opto_td.ListIndex = count
opto_mfr.ListIndex = count

End Sub

172

Private Sub CommandButton1_Click()
' --------------SolidWorks Macro Initialization-----------------

 Set swApp = Application.SldWorks
 Set swModel = swApp.ActiveDoc
 'Set swSelMgr = swModel.SelectionManager
 'Set swSelData = swSelMgr.CreateSelectData
 Set swModDocExt = swModel.Extension
 Set swMass = swModDocExt.CreateMassProperty

' --------------Document Configuration-----------------
 'Stop using default units
 swMass.UseSystemUnits = False

 'Set units to custom system
 uuni =
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitSystem,
swUserPreferenceOption_e.swDetailingNoOptionSpecified,
swUnitSystem_e.swUnitSystem_Custom)

 'Set volume units to a given value
 'massi =
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitsMassPropVo
lume, swUserPreferenceOption_e.swDetailingNoOptionSpecified,
swUnitsMassPropVolume_e.swUnitsMassPropVolume_Meters3)

 'Set length units in mass to a given value
 massi =
swModDocExt.SetUserPreferenceInteger(swUserPreferenceIntegerValue_e.swUnitsMassPropLe
ngth, swUserPreferenceOption_e.swDetailingNoOptionSpecified, swLengthUnit_e.swMETER)

' --------------Get Model Property Data-----------------
 partvolume = swMass.Volume
 ' Use only 7 decimal places

 partvolume = Round(partvolume, 7)
 ' value = Format(value, "0.00")

 ' Check if data is in correct format
 MsgBox ("Your Name is " & partvolume)

 'TextBox1.value = value
 'MsgBox ("Your Name is " & TextBox1)

 cboxnum = partvolume * matdensity
 cmassbox.Value = cboxnum

173

 cboxnum = partvolume * matcost
 mcostbox.Value = cboxnum

 ' Label3.Caption = TextBox1
 ' Label4.Caption = TextBox2

 ' TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorSelectAll

 mcostbox.Locked = True
 cmassbox.Locked = True

 ' Debug.Print Label3.Caption
 ' Debug.Print Label4.Caption
 ' Debug.Print TextBox1
 ' Debug.Print TextBox2

End Sub

 Private Sub denbox_Change()

End Sub

Private Sub matbox_Change()

 If matbox.Text = "Stainless Steel" Then
 matdensity = 3
 matcost = 5

 ElseIf matbox.Text = "Inconel 718" Then
 matdensity = 6
 matcost = 10
 ElseIf matbox.Text = "Ti-6Al-4V" Then
 matdensity = 9
 matcost = 15
 End If
 denbox.Value = matdensity
End Sub

Private Sub mbox_Change()
If mbox.Text = "EOSINT M280" Then
End If
End Sub

