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Abstract

The first part of this thesis deals with factorial designs where each subject

is observed at several time points with part of the data missing. A nonparametric

approach for estimating the marginal cumulative distribution function at each

time point is proposed and used to test for factor effects and interactions. Es-

timation uses more general and flexible donor sets which leads to a new type of

nonparametric imputation. In particular, the donor sets allow use of univariate

kernel methods even with higher dimensional data, avoiding thus the curse of

dimensionality. The classical missing at random assumption is not tailored for

the present nonparametric analysis. The notion of the missingness conditionally

at random Comparisons with ML indicate that the proposed method fares well

when the data are normal and homoscedastic, and outperforms it in other cases.

The second part of this thesis considers testing for covariate-adjusted

main effects and interactions in the context of the fully nonparametric ANCOVA

model. The test procedures of Akritas, Arnold and Du (2000) are based on

consistent estimation of the conditional distributions and as such they involve

the cumbersome task of bandwidth determination. The proposed methodology

does not require such consistent estimation. Asymptotic theory and numerical

results, indicate that nearest neighbor windows of fixed (small) size perform well.

This makes the applicability of the fully nonparametric methodology in real-life

situations easily feasible.
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Chapter 1

INTRODUCTION

1.1 Missing Data Analysis Background

In a wide range of applied studies it is almost inevitable missing values to

appear in the data sets. Data with missing values causes difficulties to scientific

research because of ambiguities regarding the appropriate method of analysis.

Depending on the design of the study, missing information can be partially re-

covered from the observed data. For doing so, we have to consider whether

or not missingness is related to the data. Therefore, missing data analyses are

based on assumptions about the processes that create the missing values. The

simplest such assumption is that there is no relation between data and miss-

ingness, i.e. that missingness is completely at random (MCAR). It has been

found, however, that MCAR is often violated in practice. Moreover, methods

that rely on MCAR give biased results when this assumption does not hold.

Thus, the recent literature deals with more general assumptions. In the fol-

lowing we review such assumptions and procedures considering parametric and

nonparametric approaches separately.

1.1.1 Parametric Approaches

From the parametric point of view, there is a well developed theory for

missing data problems which is nicely described in Schafer (1997). The two

1
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main classes of parametric procedures, maximum likelihood (ML) and multiple

imputation (MI) are built upon the assumption of ignorability (Little and Rubin,

1987), which states that the data are missing at random (MAR) (Rubin, 1976)

and that the parameter space of the full data model and the parameter space of

the missingness mechanism are distinct. To describe the MAR assumption let Y

denote the random variables we wish to observe, and let ∆ denote corresponding

variables indicating whether or not each variable in Y is observed. Moreover,

let Yobs and Ymis be the observed and missing parts of Y respectively. Then,

we have MAR if for any value of the parameter φ of the missingness mechanism

(not necessarily a scalar),

P (∆ = δ|Yobs = yobs,Ymis, φ) = P (∆ = δ|Yobs = yobs, φ), (1.1.1)

where δ and yobs are realizations of ∆ and Yobs in the sample. Note that at the

theoretical level, (1.1.1) is not required to hold for values of ∆ and Yobs other

than the observed ones. In words, MAR allows the probabilities of missingness

to depend on the observed data but not on the missing data. The simpler

MCAR assumption is a special case of MAR obtained by assuming that these

probabilities do not depend on the observed data either. Denoting the parameter

of the data model with θ (not necessarily a scalar),

P (∆,Yobs| θ, φ) =

∫
P (∆,Y| θ, φ)dYmis =

∫
P (∆| Y, φ)P (Y| θ)dYmis

= P (∆|Yobs, φ)

∫
P (Y| θ)dYmis = P (∆|Yobs, φ)P (Yobs| θ),

where the third equality holds under the MAR assumption. If the parameter

spaces of θ and φ are separable, this factorization of the observed data (Y and

∆) likelihood implies that likelihood based inference for θ can be performed

ignoring the missing data mechanism since

L(θ|Yobs) ∝ P (Yobs|θ).
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Little and Rubin refers to P (Yobs|θ) as the likelihood ignoring the missing-data

mechanism, and Schafer (1997) as the observed-data likelihood. Rubin (1976)

demonstrated that (1.1.1) is the weakest general condition under which we may

ignore the missingness mechanism in likelihood or Bayesian analysis.

As in the analysis of complete data, ML procedures have appealing the-

oretical properties in incomplete data cases as well. Little and Rubin (1987)

provide full details for this analysis provided the parametric model is correct.

The form of the observed data likelihood, is complicated, and except special

cases, there are no close form expressions for the ML estimates of θ. Hence ap-

plication of the ML method require specialized algorithms. Dempster, Laird and

Rubin (1977) introduced the EM algorithm to solve this type of optimization

problems. Little and Rubin (1987) and Schafer (1997) give nice overviews of

the EM algorithm. Normal based ML procedure with unstructured covariance

matrix is implemented in several programs; e.g. SPSS (Norusis, 2000), EMCOV

(Graham and Hofer, 1991), NORM (Schafer, 1999). ML is also available for

normal models with structured or unstructured covariance matrices; e.g. SAS

procedure PROC MIXED (Little et. al., 1996), nlme package in S-plus and R

(Pinheiro and Bates, 2000). These procedures are designed to be used for unbal-

anced repeated measures data sets, where unbalanced refers also to units being

measured at different time points. In particular the documentation of these

procedures does not mention missing values, but missingness can be considered

as imbalance occurring by design. Collins, Schafer and Kam (2001) pointed out

that ML analysis under the MAR assumption for normal models with structured

covariance matrix (but same covariance matrix in all groups) can be carried out

by ignoring all missing values and feeding the observed data in the SAS PROC

MIXED procedure. Equivalent analysis can be performed using the nlme pack-
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age in S-plus or R.

Multiple imputation is an alternative parametric approach to missing

data problems proposed by Rubin (1987). The main difference from the ML

methods is that missingness is treated in a separate stage before the analysis

stage. In MI, each missing value is replaced by a list of M > 1 values, producing

M complete data sets. Then, each of the data sets is analyzed using standard

complete data sets methods, and finally, the M sets of results are combined based

on some rules. In order to generate the imputations first one needs to specify, in

addition to the parametric model for the complete data, a prior distribution for

the parameters, and then use Bayesian arguments to simulate independent draws

from the distribution of Ymis given Yobs. In most of the cases this is carried out

using MCMC computational techniques.

In the simplest case of a single scalar parameter Rubin (1987) proposed

using the average of the M point estimators and rules for combing their stan-

dard errors. When interest lies in higher dimensional parameters, as in the case

in the analysis of factorial designs which we consider, the MI approach is not

so straightforward and the available solutions not very satisfactory. Li, Raghu-

nathan and Rubin (1991), who considered this problem, proposed again the use

of the average of the M point estimators but their proposal for combining the co-

variance matrices works well only under the stringent condition that the fractions

of missing information for all components of the higher-dimensional parameter

are equal (see also Schafer, 1997, pp. 113, 114). The expression ’works well’ in

the above statements refers to the use of the covariance matrix for constructing

Wald-type test statistics. As a way out of this difficulty, Li, Meng, Raghunathan

and Rubin (1991) considered approaches to testing based on direct combination

of either complete data p-values or test statistics. However, they pointed out that
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the results are not very accurate and thus recommended that this approach be

used only as an exploratory tool; in particular, they recommend looking at half

and double the p-value obtained before reaching a conclusion. We are not aware

of subsequent work improving the state of the art of MI with higher-dimensional

parameters.

There are many computer programs available for MI: For imputations

under the multivariate normal with unstructured covariance matrix (but same

in all groups) see NORM, which is also implemented in SAS PROC MI, in S-

plus Amelia library (Schimert et. al., 2001) and in R norm package. The S-plus

function PAN (Schafer, 2001) also implements normal based imputations with

a structured covariance matrix. For multivariate categorical data and mixed

data sets (continuous and categorical variables) Schafer’s CAT and MIX S-plus

libraries are implement in the S-plus missing-data module (Schimert et. al.,

2001).

Collins, Schafer and Kam (2001) present a nice comparison of the ML and

MI procedures when interest lies in a scalar paramter. They pointed out that

when the same model is used for imputation and analysis, the MI procedures

yields similar results to the ones of ML procedure using the same model.

It should also be mentioned that recent research activity considers the

case that missingness is not at random (MNAR), i.e. the probabilities of miss-

ingness depend on both Yobs and Ymis. This type of missingness has applications

in several clinical trials were the drop out is closely related to the variable being

measured. There are two main ways to perform data analysis assuming MNAR,

selection models and pattern mixture models. In both of these analyses one must

specify the missingness mechanism which often is a complicated problem. Rubin

(1995) is reviewing selection models and pattern mixture models for longitudinal
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studies. Recently, Tang, Little and Raghunathan (2003) considered multivari-

ate regression analysis with nonignorable missingness. Their method does not

require specification of the form of the nonresponse mechanism.

1.1.2 Nonparametric Approaches

There are two veins of nonparametric approaches with missing data, one

which aims to extend complete data (mid-)rank testing procedures and another

which aims to relax the parametric assumptions in the parametric imputation

methods through the use of smoothing techniques.

In the first vein belong the complete and available cases methods (see

Brunner, Munzel and Puri, 1999) which, however, are valid under the rather

restrictive MCAR assumption. In the second vein there is a more extended liter-

ature. Titterington and Mill (1983) introduced kernel methods for imputation of

missing values. To briefly describe this method let X = (X1, . . . , Xk) denote the

variables one would like to observe. They considered a nonparametric estimation

of the joint distribution of X using kernel methods to recover the missing infor-

mation. For every case with missing values the complete cases are playing the

role of the ’donor set’ since the smoothing is done using the observed values of the

incomplete case and the corresponding values of these variables in the complete

cases. This theory is valid under a missingness assumption stronger than MAR,

which coincides with the MAR only in the simpler case where X = (X1, X2)

and X1 is always observed. Chen (1994), considered cases where X1, . . . , Xk−1

are fully observed, and Xk = Y is missing under the strongly ignorable MAR

proposed by Rosenbaum and Rubin (1983) (see Remark 1.1.1). They derived

nonparametric estimation of mean functionals of Y based on nonparametric es-

timation of the mean of the conditional density of Y given the X’s. Cheng and
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Chum (1996) complement this theory by estimating the marginal cdf of Y .

Remark 1.1.1. The strongly ignorable MAR assumption states that the miss-

ingness mechanism is conditionally independent from the variables that are sub-

ject to missingness given the variables that are always observed. For example,

consider a data set consisted by independent replications of the random vector

X = (X1, . . . , Xk). If X1, . . . , Xm are always observed and Xm+1, . . . , Xk are

subject to missingness, then

P (∆|X) = P (∆|X1, . . . , Xk) = P (∆|X1, . . . , Xm),

where ∆ is the missingness indicator random vector (∆1, . . . , ∆k) =

(1, . . . , 1, ∆m+1, . . . , ∆k). In general, nonparametric methods are derived as-

suming strongly ignorable MAR since in contrast to the MAR assumption, is a

probabilistic rule. However, a lot of the authors make no distinction between the

two assumptions.

Titterington and Sedransk (1989) used kernel density estimation in com-

bination with a nonparametric bootstrap for imputing missing values. This

method is considering multiple imputations in contrast to the single imputation

methodology proposed in the aforementioned nonparametric procedures. This

method does not directly account for the relationship between variables since the

missing values for one variable are imputed using either bootstrap or smoothed

bootstrap involving its observed values. Efron (1994) developed a nonparamet-

ric analogue to the approximate Bayesian bootstrap idea proposed by Rubin

(1987). Efron’s method handles only nominal categorical variables and it does

not use any smoothing techniques. Aerts et. al. (2002) considered nonparamet-

ric smoothing methods to obtain MI estimators in a non-Bayesian framework in

the sense of Efron’s (1994) bootstrap. Their method deals with cases where some



8

of the variables are fully observed and they assume strongly ignorable MAR. In

this paper they consider the simpler case where there is one fully observed covari-

ate and a univariate response incompletely observed and of interest is a marginal

parameter the response. The extension of this method to cases with more than

one fully observed covariates demands the use of high dimension kernels which

results to curse of dimensionality problems. In the simpler bivariate situation,

for every case with missing response the donor set is the complete cases set and

this is going to be true in the multi-covariate case with a univariate response.

Even though the idea of nonparametric imputation is not new, to the best

of our knowledge the use of this idea to construct rank or other type test statis-

tics is first proposed in Akritas, Osgood and Kuha (2002). In fact, until recently,

there was a common perception that it is not possible to implement nonpara-

metric testing procedures without assuming MCAR. Akritas et. al. (2002) have

shown that it is possible to relax this assumption in the case where subjects are

observed at two follow up times when no other factors are involved. However, the

classical MAR assumption are not suitable for the proposed nonparametric anal-

ysis, and thus Akritas et. al. (2002) introduced a new missingness assumption

which we call missing conditionally at random (MCR). The MCR assumption is

the weakest condition needed for nonparametric analysis, i.e. nonparametric im-

putation and estimation of the underlying population distributions. The MCR

assumption and the MAR assumption are qualitatively different and do not im-

ply each other. In this thesis the ideas of Akritas et. al. (2002) are extended to

factorial designs with repeated measurements when some of the data is missing.

The main contribution in the literature of nonparametric imputation is

relaxing the assumption of strong ignorability. This is achieved though a repre-

sentation of the marginal distributions, which allowed the use of more general
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and flexible donor sets in our nonparametric imputation.

1.2 Fully Nonparametric Methods for Complete Data

The models for different analyses presented in this thesis are based on

fully nonparametric procedures that were developed for complete data. In this

section we are giving a short introduction to some fully non-parametric models

relevant to methods proposed in the later chapters.

1.2.1 Analysis of Repeated Measure Designs

Akritas and Arnold (1994) first introduced fully nonparametric analysis

for multivariate repeated measures designs. For simplicity, in the case of a two-

way crossed design the nonparametric model only specifies that Yijk ∼ Fij for

all i and j. Denoting

Fij(y) =
1

2
[P (Yij < y) + P (Yij ≤ y)],

and defining accordingly the empirical distribution function, allows a unified

formulation of (mid-) rank statistics and test procedures for all ordinal data.

This general model is fully nonparametric, does not require homoscedasticity,

and it can treat continuous and ordinal data. Basically, this fully nonparametric

approach replaces the vector of expectation, which is used in the theory of linear

models, by the vector of marginal distribution functions. Thus, main effects and

interactions are defined by a linear decomposition of the distribution functions,

similar to that of the means. Similar to the classical ANOVA decomposition Fij

can be uniquely decomposed to

Fij(x) = M(x) + Ai(x) + Bj(x) + Cij(x), (1.2.1)
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where
∑

i Ai =
∑

j Bj = 0,
∑

i Cij = 0, for all j and
∑

j Cij = 0 for all j. In fact,

M(x) = F̄..(x), Ai(x) = F̄i.(x) − F̄..(x), Bj(x) = F̄j.(x) − F̄..(x), and Cij(x) =

Fij(x) − F̄i.(x) − F̄j.(x) + F̄..(x).

Based on this decomposition the following hypotheses of no main effects

and no interaction are formed

H0(A) : Ai(x) = 0, ∀i,

H0(B) : Bj(x) = 0, ∀j,

H0(AB) : Cij = 0, ∀ i, j.

The test statistics proposed to test these hypotheses are the rank trans-

form versions of the classical statistics for testing hypotheses in repeated mea-

sures designs. Note that even thought the rank transform method in some cases

is inappropriate for testing parametric hypotheses (Akritas, 1990) is always valid

for testing the nonparametric hypotheses. This nonparametric hypotheses and

the corresponding tests statistics are invariant under monotone transformations

of the response which is an appealing feature especially in the case of ordinal

data. Also it should be noted that the nonparametric effects imply their para-

metric counterparts.

Throughout the last decade there were several developments of this non-

parametric analysis to different directions. This work was based on the main

idea of the nonparametric model to only specify the distribution function of

each combination of values of the explanatory variables. The rank transform

versions of the classical statistics used in Akritas and Arnold (1994) can handle

only homoscedastic data, in the later papers this restriction is relaxed by using

Walt-type (mid)-rank statistics. Akritas, Arnold and Brunner (1997) developed

nonparametric analysis for factorial designs with independent data, and Akritas
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and Brunner (1997) presented a general framework dealing with arbitrary mixed

models.

1.2.2 Analysis of Covariance

Akritas, Arnold and Du (2000) introduced a nonparametric ANCOVA

model with one covariate. This model only assumes conditional independence

of the response given the covariate with conditional distribution function. For

example, consider a one-way ANCOVA model with a groups. Suppose we observe

(Yij, Xij), i = 1, . . . , a, j=1,. . . ,ni, where Yij and Xij represent the response and

the covariate in the jth observation of the ith group. With this notation, and

denoting

Fi(y|x) = Fix(y) =
1

2
[P (Yij ≤ y|Xij = x) + P (Yij < y|Xij = x)] . (1.2.2)

the fully nonparametric model assumes only that

Yij|Xij = x ∼ Fix , (1.2.3)

i.e., that conditionally on Xij = x, Yij has distribution function that depends

on i and x. Note that model (1.2.3) does not specify how the response distribu-

tion changes when the levels, or covariate value changes, and does not assume

continuity of the conditional distributions. Thus it is completely nonparametric

(also nonlinear and non-additive). In order to define effects and hypotheses in

this nonparametric context, let G (x) be the distribution of the covariate pooled

over the whole population and set

F i· (y) =

∫
Fix (y) d G (x) , and F ·x (y) =

1

a

a∑

i=1

Fix (y) .

Using this notation, the conditional distribution function is uniquely decomposed

as follows

Fix(y) = M(y) + Ai(x) + Dx(y) + Cix(y),
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where M(y) = a−1
∑a

i=1

∫
Fix(y)dG(x), Ai(y) = F i·(y) − M(y), Dx(y) =

F ·x (y) − M(y), Cix(y) = Fix(y) − M(y) − Ai(y) − Dx(y). In this decompo-

sition, Ai are the covariate-adjusted nonparametric main effects of the factor,

Dx is the nonparametric covariate effect and Cix the nonparametric interaction

between the factor and the covariate. Akritas, Arnold and Du (2000) proposed

a test for the hypothesis of no main factor effect, Ai = 0, for all i.

Their approach relies on consistent estimation (using kernel methods) of

the conditional distribution functions Fix. By its nature, application of this

approach requires determination of the window bandwidth which is particularly

cumbersome in this context. (In Akritas, Arnold and Du (2000) the bandwidth

choice was based on resampling from the data in a way that imitates the null

hypothesis.) Akritas, Antoniou, and Wang (2004) considered an alternative test

procedure for the same hypotheses. The main novelty of the new procedure is

that it does not require consistent estimation of the Fix and the estimator is

obtained using nearest neighbor windows of fixed size.

Tsangari and Akritas (2003) generalized the methodology of Akritas,

Arnold and Du (2000) to include ANCOVA designs with two and three co-

variates. However, curse of dimensionality effects prevent further generalization

to more covariates. Since the methodology presented in Akritas, Antoniou, and

Wang (2004) uses fixed window sizes, it will be less affected by the curse of

dimensionality and thus holds the promise of extendability to more than three

covariates. This will be investigated in a forthcoming paper.

1.3 Thesis Outline

This thesis is mainly divided in two parts. The first part is dealing with

ANCOVA analysis for complete data and in the second part, the ideas of Akritas
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et. all (2000) are extended to factorial designs with repeated measurements when

some of the data is missing.

Factorial designs with paired data subject to missingness are presented

in Chapter 2. Here the MCR assumption introduced by Akritas et. al (2002)

is generalized for cases were there are more than two repeated measurements

per subject. This chapter contains asymptotic results for testing main and in-

teraction effects as well as simulation studies and real data analysis using the

model proposed. Generalization of this theory to factorial designs with more

than two repeated measurements, related simulation studies and data analysis

are presented in Chapter 3.

Chapter 4 describes the nonparametric ANCOVA model. This includes

defining the model, construction of the test statistics, main results regarding the

asymptotic distribution of the test statistics under the null and local alternative

hypotheses and their proofs. Also, simulation studies conducted to evaluate the

performance of this analysis are presented in this chapter.

Combining the two main methodologies presented in this thesis, mixed

effects models with missing data and ANCOVA, there is a potential to devel-

oped an ANCOVA model with depended data subject to missingness. In order

to develop the later analysis there are are several intermediate models to be

investigated. Chapter 5 is the conclusion of this thesis summarizing these new

methodologies and discussing future research directions.

Finally, note that in order to achieve a unified presentation of the models

and test procedures for all ordinal data, in the rest of this thesis all distribu-

tion functions (also conditional ones) are the average of their left- and right-

continuous version, F (x) = 1
2
[F+(x) + F−(x)].



Chapter 2

Factorial Designs with MCR Paired Data

2.1 Introduction

In social sciences and medical research, data are often longitudinal and

as such they typically contain missing values. Methods for missing data are

most often based on parametric models and assumptions. Recently developed

nonparametric models and hypotheses for factorial designs with complete data

have made it possible to extend the popular Mann-Whitney-Wilcoxon rank sum

test and the Kruskal-Wallis test to multifactor designs; see Akritas and Arnold

(1994), Akritas et.al. (1997) and Akritas and Brunner (1997). These multifactor

extensions share the good power properties and the protection against outliers

that the one-factor rank statistics are known for.

The use of rank test statistics with data containing missing values is

much less common than in the complete-data case. Their use is often limited

to complete-case analysis, which is both inefficient and overly restrictive in its

assumptions. In this chapter we consider in detail the case where subjects are ob-

served at two follow-up times, and construct rank statistics for factor effects and

interactions under a new missingness assumption, called missingness condition-

ally at random (MCR), which is neither stronger nor weaker than the classical

missingness at random (MAR) assumption Rubin (1976).

14
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The particular application we will consider (see Section 2.5) concerns the

study of incarcerated boys in Michigan juvenile correction institutions by Gold

and Osgood (1992). The boys were 12-18 years old when entering the insti-

tutions. 91% of them participated in a first interview within 10 days of their

arrival at the institution. 97% completed an interview four months after their

arrival, 91% completed another shortly before departure, and 75% completed

another six months later. To address the question of whether apparent prosocial

change during incarceration maintains after reentering the community, we ana-

lyzed measures of delinquent values obtained when boys left the institutions and

six months later. The boys are categorized according to race, the number of prior

placements and length of the most recent stay at an institution. All variables

are dichotomized. The data set has N = 336 observations, out of which both

measurements are missing for 24 subjects and the first and second measurements

are missing for 6 and 59 subjects, respectively.

Let (Y 0
i1k, Y

0
i2k), k = 1, . . . , Ni, be independent repetitions of the pair of

variables of interest Y0
i = (Y 0

i1, Y
0
i2), where the possibly vector index i denotes

the factor-level combinations, excluding the factor time which is denoted by the

second subscript. We will work with a completely nonparametric marginal model

that only specifies

Y 0
ijk ∼ Fij, for all i, j and k. (2.1.1)

Thus the nonparametric model assumes only that the marginal distribution of

an observation in group i at time point j depends only on i and j.

In this nonparametric context, main effects and interactions are defined

through a decomposition of the distribution functions introduced in Akritas and
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Arnold (1994). For univariate i, this decomposition is

Fij(y) = M(y) + Ai(y) + Bj(y) + Cij(y), (2.1.2)

and the decomposition is unique under a set of constraints such as
∑

i Ai(y) = 0,
∑

i Bj(y) = 0,
∑

i Cij(y) = 0, and
∑

i Cij(y) = 0 for all i, j and x. The func-

tions Ai, Bj and Cij are, respectively, the nonparametric main effects for factor,

main effect for time, and factor-time interaction. The nonparametric hypothe-

ses of no main effects and no interactions simply specify that the corresponding

nonparametric effects are zero.

Assume we observe

Zik = (Yi1k, ∆i1k, Yi2k, ∆i2k), k = 1, . . . , Ni, (2.1.3)

where ∆i1k = 1 if Y 0
i1k is observed, in which case Yi1k = Y 0

i1k, and ∆i1k = 0 if Y 0
i1k

is missing, in which case Yi1k is set to some arbitrary value. The variables ∆i2k

and Yi2k are defined analogously. Also, for each factor-level combination i let

ni =

Ni∑

k=1

{∆i1k + ∆i2k(1 − ∆i1k)}, nij =

Ni∑

k=1

∆ijk, i = 1, 2, nci =

Ni∑

k=1

∆i1k∆i2k

denote the number of observations with at least one non-missing observation, the

number of non-missing observations for each of the two variables, and the number

of complete pairs, respectively. Finally, we set N =
∑

i Ni and nc =
∑

i nci.

The key ingredient for testing hypotheses regarding the nonparametric

effects in (2.1.2) is estimation of Fij. In the case of complete observations, this

is accomplished by the usual empirical distribution function. If missingness is

completely at random, i.e. (∆i1k, ∆i2k) is independent of (Y 0
i1k, Y

0
i2k), this estima-

tion is also easily accomplished by the usual empirical distribution function of

the available observations. The real challenge with missing data is to estimate
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Fij when missingness is not completely at random. For example, the empirical

distribution function of the observed Y 0
i1k’s,

F̂i1 (y|∆i1 = 1) = n−1
i1

Ni∑

k=1

∆i1kc(Yi1k, y), (2.1.4)

where

c(y, x) =
1

2
{I(y ≤ x) + I(y < x)} , (2.1.5)

and I denotes an indicator function, is always an unbiased estimator of

Fi1 (y|∆i1 = 1) =
1

2
{P (Yi1 ≤ y|∆i1 = 1) + P (Yi1 < y|∆i1 = 1)}.

If the missingness is completely at random then Fi1 (y|∆i1 = 1) = Fi1(y) and

thus the empirical distribution in (2.1.4) also estimates Fi1. This is the basic rea-

son why the aforementioned complete-case analysis works under the assumption

that missingness is completely at random. Even then, however, this estimator

uses only part of the information in the data. In addition, the assumption of

missing completely at random is more restrictive than necessary. The proposed

nonparametric approach will remedy both of these shortcomings.

It turns out that the MAR assumption is not suitable for nonparametric

analysis. Instead, we will use an alternative missingness assumption, MCR.

It will be seen that under MCR, consistent estimation of Fi1 is accomplished

by a type of nonparametric imputation that integrates conditional distributions

instead of imputing values from them.

The MCR assumption and the method for estimating Fij are described in

Section 2.2. In Sections 2.3, a general test statistic for nonparametric hypotheses

involving an arbitrary number of factors is presented and its asymptotic distri-

bution obtained. Results from simulations studies are presented in Section 2.4.
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Analyses of the sociological data set are given in Section 2.5, and finally the

proofs are presented in Section 2.6.

2.2 MCR and Nonparametric Imputation

In this section we will introduce the MCR assumption and give an esti-

mator of Fij using nonparametric imputation. Let Y0
i = (Y 0

i1, Y
0
i2) be the pair

of variables of interest, as before. The MCR assumption specifies that, for each

factor level combination i,

P (∆i1 = 0, ∆i2 = 0|Y0
i ) = P (∆i1 = 0, ∆i2 = 0) (2.2.1)

P (∆i1 = 1|∆i2 = 1,Y0
i ) = P (∆i1 = 1|∆i2 = 1, Y 0

i2) (2.2.2)

P (∆i2 = 1|∆i1 = 1,Y0
i ) = P (∆i2 = 1|∆i1 = 1, Y 0

i1). (2.2.3)

Remark 2.2.1. Let Yobs and Ymis denote those values of the variables that are

observed and missing in a sample, and let ∆ denote the vector of missingness

indicators (∆i1k, ∆i2k) for the whole sample. Then the classical MAR states that

P (∆ = δ|Yobs = Yobs,Ymis) = P (∆ = δ|Yobs = Yobs), (2.2.4)

where δ and Yobs are the realizations of ∆ and Yobs in the sample actually

observed. This is the weakest general condition under which the missingness

mechanism can be ignored in a likelihood-based analysis. Because (2.2.4) refers

only to the exact values of δ and Yobs in the data at hand, it allows missingness

mechanisms that are highly specific to a given set of observations. Often it is

more natural to think of MAR in the following more restrictive form. Let ∆i =

(∆i1, ∆i2), and let Yi,obs and Yi,mis denote the observed and missing components

of Y0
i for a given observation. Then the more restrictive version of MAR states

that

P (∆i|Y0
i ) = P (∆i|Yi,obs) (2.2.5)
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for all observations, with ∆i for different observations assumed conditionally

independent. Comparing (2.2.1)–(2.2.3) with (2.2.5), it is seen that the MCR

assumption mainly differs from the classical one in that a component of the ∆i

vector is part of the conditioning information. Thus (2.2.5) states that condi-

tionally on Yi,obs, ∆i is independent from Yi,mis, whereas (2.2.3) states that

∆i2 is independent from Y 0
i2 given the value of Y 0

i1 and the fact that ∆i1 = 1.

Finally, (2.2.1) simply says that the pairs with both variables missing do not

contain information about the joint distribution of Y0
i and can thus be ignored.

This assumption is also implicit in both forms of the MAR assumption.

The MCR assumption is neither stronger nor weaker than the full form

of MAR. Thus (2.2.4) allows for missingness mechanisms which do not satisfy

(2.2.1)–(2.2.3), but MCR also allows models which violate (2.2.4). However,

in some cases the assumptions coincide. In the simulations of Section 2.4 we

consider two missingness models which satisfy both MCR and the stricter MAR

(2.2.5). The first of these is the missing completely at random (MCAR) case

where ∆i is independent of Yi, and the second is the situation where only Y 0
i2

may be missing, with the probability of missingness depending on Y 0
i1.

The nonparametric estimation of Fi1 is based on the decomposition

Fi1(y) = Fi1(y|∆i1 = 1 or ∆i2 = 1)

= Fi1(y|∆i1 = 1) P (∆i1 = 1|∆i1 = 1 or ∆i2 = 1)

+ Fi1(y|∆i2 = 1, ∆i1 = 0) P (∆i2 = 1, ∆i1 = 0|∆i1 = 1 or ∆i2 = 1) (2.2.6)

where Fi1(y|∆i2 = 1, ∆i1 = 0) denotes the conditional distribution of Y 0
i1

given ∆i2 = 1, ∆i1 = 0. Note that the first equality is due to (2.2.1) which

implies that the event {∆i1 = 0, ∆i2 = 0}, and thus also its complement
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{∆i1 = 1 or ∆i2 = 1}, is independent from (Y 0
i1, Y

0
i2). Since Fi1(y|∆i1 = 1) is

estimated by (2.1.4), and the probabilities P (∆i1 = 1|∆i1 = 1 or ∆i2 = 1) and

P (∆i2 = 1, ∆i1 = 0|∆i1 = 1 or ∆i2 = 1) are readily estimated by ni1/ni and

(ni2 − nci)/ni, respectively, it follows that estimation of Fi1 through (2.2.6) can

be achieved if we can estimate Fi1(y|∆i2 = 1, ∆i1 = 0). Estimation of the distri-

bution of Y 0
i1 conditional on the set where only Y 0

i2 is observed, can in principle be

accomplished by utilizing the information that Y 0
i2 carries about Y 0

i1. Utilization

of such information nonparametrically is called nonparametric imputation. Our

version of nonparametric imputation is based on the relations

Fi1(y|∆i2 = 1, ∆i1 = 0) =
∫

Fi1(y|Y 0
i2 = x, ∆i2 = 1, ∆i1 = 0)dFi2(x|∆i2 = 1, ∆i1 = 0), (2.2.7)

where

Fi1(y|Y 0
i2 = x, ∆i2 = 1, ∆i1 = 0) = Fi1(y|Y 0

i2 = x, ∆i2 = 1, ∆i1 = 1). (2.2.8)

Here (2.2.8) follows from (2.2.2) since, as already mentioned in Remark 2.2.1, an

equivalent restatement of (2.2.2) is that ∆i1 is conditionally independent from

Y 0
i1, given Y 0

i2 and ∆i2 = 1. Thus, (2.2.2) is the weakest assumption under which

(2.2.8) holds. Clearly, (2.2.8) is critical to our nonparametric imputation since

it reduces the problem to estimating Fi1(y|Y 0
i2 = x, ∆i2 = 1, ∆i1 = 0), to that

of estimating Fi1(y|Y 0
i2 = x, ∆i2 = 1, ∆i1 = 1). The latter is feasible because it

calls for estimating the distribution of Y 0
i1 in a set where Y 0

i1 is observed. Note

that the MAR assumption is not tailored for nonparametric imputation, because

(2.2.4) does not in general imply (2.2.2).

Estimation of Fi1(y|Y 0
i2 = x, ∆i2 = 1, ∆i1 = 1), and hence of

Fi1 (y|Y 0
i2 = x, ∆i2 = 1, ∆i1 = 0), can be readily done using smoothing tech-
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niques:

F̂i1

(
y|Y 0

i2 = x, ∆i2 = 1, ∆i1 = 0
)

=
∑

k

wi2k(x)c(Yi1k, y), (2.2.9)

where the function c is defined in (2.1.5) and

wi2k(x) =
Kbi2

(x − Yi2k)∆i2k∆i1k∑
l Kbi2

(x − Yi2l)∆i2l∆i1l

, (2.2.10)

where Kb(x) = b−1K(x/b), K is a symmetric kernel function and b is the band-

width (see, e.g., Wand and Jones (1995) and Akritas et. al. (2000)). Using this,

relation (2.2.7) implies that

F̂i1 (y|∆i2 = 1, ∆i1 = 0)

=
1

ni2 − nci

Ni∑

k=1

∆i2k(1 − ∆i1k)F̂i1(y|Y 0
i2 = Yi2k, ∆i2 = 1, ∆i1 = 0). (2.2.11)

Finally, relation (2.2.6) implies that

F̂i1(y) =
1

ni

Ni∑

k=1

{∆i1kc (Yi1k, y)

+ ∆i2k(1 − ∆i1k)F̂i1

(
y|Y 0

i2 = Yi2k, ∆i2 = 1, ∆i1 = 0
)}

(2.2.12)

is a consistent estimator of Fi1. A consistent estimator F̂i2 of Fi2 is defined

similarly.

Remark 2.2.2. (a) This version of nonparametric imputation is slightly dif-

ferent than the standard one, in that we do not impute values of Y 0
i1k from the

conditional distribution in (2.2.9). Instead, we average (integrate) these condi-

tional distributions over all observed values of Y 0
i2k with ∆i2k = 1, ∆i1k = 0.

(b) If the missingness is completely at random then Fi1(y|∆i2 = 1, ∆i1 = 0) =

Fi1(y), and thus (2.2.11) also estimates Fi1(y). Of course, even under the as-

sumption that the missingness if completely at random, one would use (2.2.12),
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which combines the estimators in (2.1.4) and in (2.2.11), in order to use all the

information contained in the sample. Simulations performed under missingness

completely at random in Section 2.4 indicate that tests based on (2.2.12) are

indeed more powerful that the complete-case analysis which uses only (2.1.4).

2.3 Test procedures

Consider the data notation introduced in Section 2.1, and the fully non-

parametric model and hypotheses described in (2.1.1) and (2.1.2), and let F

denote the vector of the marginal cumulative distribution functions Fij. A uni-

fied presentation of test procedures for any such nonparametric hypothesis is

made possible from the observation that they can all be expressed in the form

H0 : CF = 0, (2.3.1)

where C is a contrast matrix. For example, in the case of univariate index i,

F = (F11, F12, . . . , FI1, FI2)
′, where I denotes the total number of factor levels.

In this case, the hypotheses of interest are given in terms of the effects in the

decomposition (2.1.2):

H0(F ) : Ai = 0; H0(T ) : Bj = 0; H0(TF ) : Cij = 0

H0(T |F ) : Ai + Cij = 0; H0(F |T ) : Bj + Cij = 0

for all i and j. Letting Md = (1d−1|Id−1) where 1d−1 denotes the (d − 1) × 1

vector of ones, and Id−1 is the d − 1 dimensional identity matrix, the contrast

matrices for the four hypotheses above are given by C(F ) = MI ⊗(1
2
1′), C(T ) =

(I−11′
I) ⊗M2, C(TF ) = MI ⊗M2, C(T |F ) = II ⊗M2 and C(F |T ) = MI ⊗ I2

respectively.

The test procedures we will consider for these hypotheses are extensions

of the rank procedures in Akritas and Arnold (1994) and Akritas and Brunner
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(1997) with complete data. For i = 1, . . . , I, let F̂i1 be as defined in (2.2.12) and

F̂i2 be defined similarly, let n·· =
∑I

i=1

∑2
j=1 nij, and set

Ĥ(y) =
1

n··

I∑

i=1

2∑

j=1

Ni∑

k=1

∆ijkc(Yijk, y) (2.3.2)

for the empirical distribution function obtained from all data. The proposed test

statistic for the hypothesis H0 given in (2.3.1) is based on TC = C
∫

Ĥ(y)dF̂(y).

In this section we will derive the asymptotic distribution of TC. As a first step

we note that under the null hypothesis (2.3.1), this is equal to

TC = C

∫
Ĥ(y)d

{
F̂(y) − F(y)

}
. (2.3.3)

In view of the form (2.3.3) it follows that a unified theory for test statistics for

the nonparametric hypotheses in factorial designs with arbitrarily many factors

is possible from the asymptotic distribution of the vector

∫
Ĥ(y)d

{
F̂(y) − F(y)

}
. (2.3.4)

Proposition 2.3.1. Let Ĥ be defined by (3.3.1) and set H = E(Ĥ). Also let F̂ij

be the estimator defined in (2.2.12). Then, for each i = 1, . . . , I and j = 1, 2,

and under Assumptions A1-A3 stated in Section 2.6,

N1/2

∫ (
Ĥ − H

)
d
(
F̂ij − Fij

)
→ 0,

in probability, as N → ∞.

The proof is given in Section 2.6.

Proposition 2.3.1 implies that
∫
{Ĥ(y) − H(y)}d

{
F̂(y) − F(y)

}
=

op(N
−1/2), and thus the asymptotic distribution of (2.3.4) follows from that of

∫
H(y)d

{
F̂(y) − F(y)

}
. (2.3.5)
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Note that the elements of F̂ consist of (F̂i1, F̂i2), i = 1, . . . , I, and these pairs are

independent. Thus, the asymptotic distribution of (2.3.5) is implied by that of

(∫
H(y)d

{
F̂i1(y) − Fi1(y)

}
,

∫
H(y)d

{
F̂i2(y) − Fi2(y)

})
,

which is given in Corollary 2.3.3. First we need the following representation.

Theorem 2.3.2. Let F̂ij be the estimator defined in (2.2.12). Then, for each

i = 1, . . . , I and j = 1, 2, and under Assumptions A1-A3 stated in Section 2.6,

∫
H(y)d

{
F̂i1(y) − Fi1(y)

}

=
1

ni

Ni∑

k=1

{∆i1k + ∆i2k(1 − ∆i1k)}
[
H(Y 0

i1k) − E{H(Y 0
i1k)}

]

+
1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)
[
E∗

1{H(Y 0
i1)|Yi2k} − H(Y 0

i1k)
]

+
2

nci

Ni∑

k=1

H1,1(Zik) + op

(
N−1/2

)
,

as N → ∞, where Zik is defined in (2.1.3),

E∗
1{H(Y 0

i1)|Yi2k} = E{H(Y 0
i1)|Y 0

i2 = Yi2k, ∆i1 = 0, ∆i2 = 1},

H1,1(Zik) = E {H1 (Zik,Zil) |Zik} with

H1 (Zik,Zil) =
1

2

{
H̃1 (Zik,Zil) + H̃1 (Zil,Zik)

}
, where

H̃1 (Zik,Zil) = ∆i2k(1 − ∆i1k)
Kbi2

(Yi2k − Yi2l)∆i1l∆i2l

fi2(Yi2k|∆i1∆i2 = 1)

×
[
H(Y 0

i1l) − E∗
1{H(Y 0

i1)|Yi2l}
]
,

and fi2(Yi2k|∆i1∆i2 = 1) is the conditional density of Yi2 given ∆i1∆i2 = 1

evaluated at Yi2k.
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The proof is given in Section 2.6.

Define now

hi1(Zik) = {∆i1k + ∆i2k(1 − ∆i1k)}
[
H(Y 0

i1k) − E{H(Y 0
i1k)}

]
(2.3.6)

+∆i2k(1 − ∆i1k)
[
E∗

1{H(Y 0
i1)|Yi2k} − H(Y 0

i1k)
]
+ 2

ni

nci

H1,1(Zik),

hi2(Zik) = {∆i2k + ∆i1k(1 − ∆i2k)}
[
H(Y 0

i2k) − E{H(Y 0
i2k)}

]
(2.3.7)

+∆i1k(1 − ∆i2k)
[
E∗

2{H(Y 0
i2)|Yi1k} − H(Y 0

i2k)
]
+ 2

ni

nci

H2,1(Zik),

where E∗
2{H(Y 0

i2)|Yi1k} = E{H(Y 0
i2)|Y 0

i1 = Yi1k, ∆i1 = 1, ∆i2 = 0}, and

H2,1(Zik) is defined in a way analogous to the definition of H1,1(Zik) given

in Theorem 2.3.2; i.e. H2,1(Zik) = E {H2 (Zik,Zil) |Zik} with H2 (Zik,Zil) =

1
2

{
H̃2 (Zik,Zil) + H̃2 (Zil,Zik)

}
, where

H̃2 (Zik,Zil) = ∆i1k(1 − ∆i2k)
Kbi1

(Yi1k − Yi1l)∆i2l∆i1l

fi1(Yi1k|∆i1∆i2 = 1)

×
[
H(Y 0

i2l) − E∗
2{H(Y 0

i2)|Yi1l}
]
,

and fi1(Yi1k|∆i1∆i2 = 1) is the conditional density of Yi1 given ∆i1∆i2 = 1

evaluated at Yi1k. With this notation we have

Corollary 2.3.3. Let the assumptions of Theorem 2.3.2 hold, and let

hij(Zik), j = 1, 2, be defined in (2.3.6).

1. Let Σi be the 2 × 2 covariance matrix with elements σ11i = var {hi1(Zik)},
σ22i = var {hi2(Zik)}, σ12i = cov {hi1(Zik), hi2(Zik)}. Then,

n
1/2
i

(∫
H(y)d

{
F̂i1(y) − Fi1(y)

}
,

∫
H(y)d

{
F̂i2(y) − Fi2(y)

})

→ N(0,Σi).

2. Let (N/ni) → λi, as N → ∞, i = 1, . . . , I, and let V be the block diagonal

covariance matrix with the i-th block being λiΣi. Then, as N → ∞,

N1/2

∫
Ĥ(y)d

{
F̂(y) − F(y)

}
→ N(0,V),
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in distribution.

To obtain a consistent estimator of V, we first obtain consistent estima-

tors of hij(Zik), j = 1, 2, and then we estimate Σi by the sample covariance

matrix of (hi1(Zik), hi2(Zik)), k = 1, . . . , ni. Consistent estimation of

hi1(Zik) = ∆i1kH(Yi1k) − {∆i1k + ∆i2k(1 − ∆i1k)}E{H(Y 0
i1)}

+∆i2k(1 − ∆i1k)E
∗
1{H(Y 0

i1)|Yi2k} + 2
ni

nci

H1,1(Zik)

can be done by consistently estimating each of its terms. The first term can

be consistently estimated by ∆i1kĤ(Yi1k), where Ĥ(y) is defined in (3.3.1). The

expectation in the second term can be consistently estimated by

Ê{H(Y 0
i1)} =

∫
Ĥ(y)dF̂i1(y)

=
1

ni

Ni∑

l=1

{
∆i1lĤ(Yi1l) + ∆i2l(1 − ∆i1l)

Ni∑

m=1

wi2m(Yi2l)Ĥ(Yi1m)

}
,

the expectation in the third term can be consistently estimated by

Ê∗
1{H(Y 0

i1)|Yi2k} =

∫
Ĥ(y)dF̂i1(y|Y 0

i2 = Yi2k, ∆i1 = 0, ∆i2 = 1)

=

Ni∑

l=1

wi2l(Yi2k)Ĥ(Yi1l),

and finally, a consistent estimator of H1,1(Zik) is

Ĥ1,1(Zik) =
1

2ni

Ni∑

l=1

{
̂̃
H1 (Zik,Zil) +

̂̃
H1 (Zil,Zik)

}

where

̂̃
H1 (Zik,Zil) = ∆i2k(1 − ∆i1k)

Kbi2
(Yi2k − Yi2l)∆i1l∆i2l

f̂i2(Yi2k|∆i1∆i2 = 1)

×
[
Ĥ(Yi1l) − Ê∗

1{H(Y 0
i1)|Yi2l}

]
,
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with f̂i2(y|∆i1∆i2 = 1) = 1
nc

∑Ni

m=1 ∆i1m∆i2mKbi2
(y − Yi2m). Similarly, we can

obtain a consistent estimator for hi2(Zik).

Let Σ̂i, denote the aforementioned estimator of Σi, and set V̂ for the

block diagonal matrix with diagonal elements (N/ni)Σ̂i.

Corollary 2.3.4. Consider the notation and assumptions of Corollary 2.3.3,

and let C be any r × I full row rank contrast matrix. Then as N → ∞,

N

{∫
Ĥ(y)dF̂′(y)C′

}
(CV̂C′)−1

{
C

∫
Ĥ(y)dF̂(y)

}
→ χ2

r,

in distribution.

2.4 Simulations

When the data are MAR, the likelihood is obtained by collapsing the

joint distribution of the observed, Yobs, and the missing parts of the data over the

missing part. This is called the likelihood ignoring the missing data mechanism

(Little and Rubin, 1987) or the observed data likelihood (Schafer, 1997). With our

assumption that the pairs (Yi1k, Yi2k) follow a bivariate normal distribution with

E(Yijk) = µij, V ar(Yijk) = σ2
ij, and Cov(Yi1k, Yi2k) = σi,12, for i = 1, . . . , I, j =

1, 2, k = 1, . . . , Ni, the logarithm of the observed data likelihood is

l(Θ ; Yobs) =
I∑

i=1

Ni∑

k=1

[∆i1k∆i2k log f(Yi1k, Yi2k; θi1, θi2, σi,12)

+∆i1k(1 − ∆i2k) log f(Yi1k; θi1)

+ ∆i2k(1 − ∆i1k) log f(Yi2k; θi2)] , (2.4.1)

where we set θij = (µij, σ
2
ij), Θ = (θ11, . . . , θI2, σ1,12, . . . , σI,12) and, with self-

understood notation, f denotes both the bivariate and univariate normal density.

We will apply the likelihood ratio test for testing hypotheses of the form Hµ
0 :
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Cµ = 0, where C is a contrast matrix and µ = (µ11, . . . , µI2)
′. Note that such

hypotheses are implied by their nonparametric counterparts (2.3.1), and that

the common hypotheses of no main group effect, no main time effect, and no

interaction, are of this form.

In our simulations we consider a one-factor design with two levels. Thus

we have I = 2 groups crossed with the two time points. The likelihood ratio

statistic

2
[
l(Θ̂a ; Yobs) − l(Θ̂0 ; Yobs)

]
,

where Θ̂a and Θ̂0 are the maximizers of (2.4.1) over the parameter space de-

fined by the alternative and the null hypotheses respectively, was constructed un-

der the additional hypothesis of homoscedasticity across time points and across

groups, that is σ2
ij = σ2, and σi,12 = σ12, i = 1, 2, j = 1, 2. Thus under each null

hypothesis, the corresponding likelihood ratio statistic follows a χ2-distribution

with one degree of freedom.

In the following simulation study we consider two families of joint dis-

tributions to generate the pairs (Yi1k, Yi2k), for i = 1, 2, k = 1, . . . , Ni. The

first family is a bivariate normal distribution with means µi1 = 0, µi2 =

τ [(N1 + N2)/2]−1/2, variances σ2
i1 = σ2

i2 = 1, and correlation ρi, for i = 1, 2.

The second family is bivariate gamma distribution such that the marginal dis-

tributions of Yi1k, Yi2k are Gamma, with location parameters µi1 = 1, and

µi2 = 1 + τ [(N1 + N2)/2]−1/2 respectively, scale parameters equal to one, and

Corr(Yi1k, Yi2k) = ρi, i = 1, 2, k = 1, . . . , Ni. Note that τ = 0 corresponds

to the null hypotheses and values away from zero generate alternatives to the

hypothesis of no main time main effect. Under both families of distributions we

consider cases where ρ1 = ρ2 = .25, ρ1 = ρ2 = .75, and ρ1 = .25, ρ2 = .75.
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We consider two models to create missingness patterns satisfying both the

MCR and the MAR assumptions. Under the first model, we presume the data

is missing completely at random with P (∆ijk = 0) = pi, for i = 1, 2, j = 1, 2,

and k = 1, . . . , ni. We considered cases where p1 = p2 = 0.1, p1 = p2 = 0.3,

and p1 = 0.1, p2 = 0.3. Under the second model, only observations from the

second time point are missing with a probability depending on the value of the

first time point. More specifically, P (∆i2j = 0) = 0.6− 0.2|Yi1k| if |Yi1k| < 3 and

0.1 otherwise.

Simulations indicated that the assumption of compact support for the

kernel function is not critical for the performance of the procedure, and we chose

the normal density kernel for our simulations. In all cases we consider in the

simulation study the nominal level is α = .1. The R statistical package was used

and all the results are based on 1000 runs. Tables 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6

report Type I error rates for the competing procedures and all null hypotheses.

For the proposed nonparametric test we used the bandwidths b1 = b2 = .5,

b1 = b2 = 1 and b1 = b2 = 2. Power comparisons were done only for main time

effect alternatives, and the results are presented in Figures 2.1-2.10.

Cases with same correlation in both of the groups, ρ1 = ρ2, and same

proportion of missingness in both of the groups, p1 = p2, are summarized in

Table 2.1 for normal cases and in Table 2.2 for gamma cases, whereas Table

2.3 summarizes the results for cases with ρ1 = .25, ρ2 = .75 and different

combinations of proportions of missingness in each group. For cases generated

under the MCR scheme, cases with same correlation in both of the groups,

ρ1 = ρ2 are summarized in Table 2.4 for normal distribution and in Table 2.5 for

gamma distribution, and results for cases with ρ1 = .25, ρ2 = .75 are summarized

in Table 2.6.
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Normal 20% Incomplete Pairs 60% Incomplete Pairs

Dist. LR CP NP.5 NP1 NP2 LR CP NP.5 NP1 NP2

ρ Eff. N1 = 30 N2 = 30

0.25 T 0.100 0.111 0.106 0.102 0.101 0.111 0.116 0.123 0.121 0.115

G 0.100 0.116 0.101 0.099 0.103 0.114 0.123 0.129 0.121 0.124

TG 0.112 0.109 0.112 0.109 0.107 0.130 0.120 0.149 0.132 0.129

0.75 T 0.108 0.112 0.112 0.108 0.106 0.127 0.117 0.136 0.118 0.119

G 0.104 0.112 0.102 0.107 0.101 0.100 0.105 0.119 0.123 0.128

TG 0.110 0.104 0.105 0.105 0.098 0.135 0.122 0.148 0.132 0.128

ρ Eff. N1 = 50 N2 = 50

0.25 T 0.091 0.094 0.090 0.092 0.090 0.108 0.108 0.116 0.104 0.100

G 0.100 0.105 0.104 0.107 0.105 0.107 0.118 0.118 0.113 0.111

TG 0.107 0.108 0.105 0.104 0.104 0.115 0.103 0.101 0.106 0.106

0.75 T 0.094 0.091 0.092 0.085 0.091 0.097 0.102 0.108 0.097 0.096

G 0.100 0.101 0.112 0.111 0.111 0.112 0.119 0.117 0.126 0.123

TG 0.097 0.113 0.111 0.102 0.101 0.099 0.107 0.100 0.093 0.095

ρ Eff. N1 = 100 N2 = 100

0.25 T 0.104 0.098 0.106 0.107 0.110 0.118 0.113 0.118 0.119 0.117

G 0.109 0.110 0.107 0.110 0.107 0.112 0.106 0.112 0.115 0.116

TG 0.097 0.105 0.113 0.114 0.109 0.104 0.109 0.111 0.099 0.099

0.75 T 0.099 0.103 0.101 0.091 0.094 0.119 0.113 0.118 0.104 0.104

G 0.105 0.098 0.101 0.103 0.097 0.094 0.103 0.091 0.105 0.108

TG 0.115 0.108 0.116 0.114 0.112 0.118 0.114 0.119 0.111 0.106

ρ Eff. N1 = 50 N2 = 100

0.25 T 0.134 0.114 0.117 0.112 0.110 0.127 0.117 0.116 0.103 0.098

G 0.129 0.115 0.101 0.102 0.106 0.134 0.125 0.121 0.126 0.124

TG 0.108 0.104 0.097 0.096 0.098 0.121 0.107 0.117 0.108 0.103

0.75 T 0.132 0.112 0.109 0.100 0.104 0.147 0.116 0.127 0.117 0.113

G 0.123 0.107 0.108 0.112 0.111 0.130 0.131 0.117 0.121 0.120

TG 0.127 0.116 0.112 0.106 0.100 0.128 0.105 0.117 0.104 0.097

Table 2.1: Type I error rates at nominal α = 0.1 in simulations with MCAR;
same ρ and proportion of missingness in the two groups. Here and all tables
T , G, TG denote the hypotheses of no main time effect, no main group effect,
no interaction effect, and LR, CP , NPb denote the likelihood ratio test, the
complete pairs test, the proposed nonparametric test with bandwidths b1 = b2 =
b.
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Gamma 20% Incomplete Pairs 60% Incomplete Pairs

Dist. LR CP NP.5 NP1 NP2 LR CP NP.5 NP1 NP2

ρ Eff. N1 = 30 N2 = 30

0.25 T 0.110 0.091 0.097 0.092 0.092 0.117 0.113 0.109 0.100 0.101

G 0.103 0.113 0.113 0.114 0.115 0.094 0.113 0.117 0.117 0.116

TG 0.102 0.114 0.115 0.111 0.111 0.122 0.115 0.132 0.121 0.116

0.75 T 0.110 0.118 0.113 0.109 0.107 0.121 0.117 0.128 0.121 0.122

G 0.110 0.111 0.110 0.115 0.119 0.113 0.106 0.127 0.126 0.120

TG 0.093 0.093 0.098 0.103 0.107 0.108 0.109 0.117 0.110 0.104

ρ Eff. N1 = 50 N2 = 50

0.25 T 0.105 0.106 0.102 0.095 0.097 0.092 0.079 0.095 0.087 0.086

G 0.091 0.098 0.097 0.094 0.100 0.116 0.101 0.112 0.107 0.106

TG 0.105 0.098 0.109 0.109 0.108 0.115 0.097 0.113 0.107 0.106

0.75 T 0.101 0.101 0.085 0.080 0.082 0.107 0.119 0.112 0.098 0.092

G 0.102 0.094 0.113 0.109 0.106 0.110 0.107 0.124 0.130 0.127

TG 0.099 0.108 0.109 0.096 0.094 0.114 0.115 0.125 0.107 0.106

ρ Eff. N1 = 100 N2 = 100

0.25 T 0.095 0.089 0.085 0.086 0.086 0.108 0.095 0.104 0.099 0.096

G 0.091 0.088 0.098 0.095 0.090 0.089 0.101 0.095 0.093 0.090

TG 0.122 0.106 0.111 0.108 0.106 0.116 0.100 0.109 0.101 0.096

0.75 T 0.107 0.096 0.097 0.091 0.092 0.128 0.105 0.104 0.101 0.111

G 0.107 0.113 0.120 0.123 0.121 0.122 0.101 0.116 0.120 0.118

TG 0.098 0.098 0.099 0.091 0.088 0.104 0.097 0.103 0.103 0.091

ρ Eff. N1 = 50 N2 = 100

0.25 T 0.126 0.107 0.107 0.103 0.103 0.133 0.112 0.112 0.113 0.108

G 0.192 0.107 0.103 0.103 0.106 0.208 0.103 0.121 0.119 0.120

TG 0.125 0.113 0.126 0.123 0.122 0.112 0.114 0.115 0.111 0.109

0.75 T 0.116 0.104 0.109 0.100 0.096 0.130 0.114 0.112 0.094 0.093

G 0.195 0.119 0.122 0.123 0.122 0.195 0.120 0.133 0.136 0.136

TG 0.117 0.104 0.113 0.104 0.101 0.133 0.113 0.120 0.103 0.100

Table 2.2: Type I error rates at nominal α = 0.1 in simulations with MCAR;
same ρ and proportion of missingness in the two groups.
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Normal Distribution Gamma Distribution

p1, p2 Eff. LR CP NP.5 NP1 NP2 LR CP NP.5 NP1 NP2

.1, .1 T 0.198 0.104 0.100 0.099 0.105 0.204 0.102 0.104 0.099 0.102

G 0.106 0.121 0.104 0.111 0.114 0.188 0.105 0.100 0.105 0.108

TG 0.178 0.101 0.098 0.091 0.096 0.189 0.127 0.121 0.117 0.116

.3, .3 T 0.192 0.111 0.114 0.102 0.100 0.169 0.098 0.112 0.112 0.105

G 0.118 0.121 0.122 0.127 0.123 0.192 0.103 0.106 0.102 0.104

TG 0.188 0.105 0.121 0.111 0.105 0.227 0.116 0.130 0.118 0.113

.1, .3 T 0.149 0.110 0.107 0.105 0.101 0.138 0.096 0.103 0.095 0.096

G 0.111 0.115 0.112 0.116 0.118 0.166 0.102 0.104 0.108 0.102

TG 0.130 0.095 0.092 0.090 0.093 0.141 0.109 0.116 0.114 0.114

Table 2.3: Type I error rates at nominal α = 0.1 in simulations with MCAR;
N1 = 50, N2 = 100, ρ1 = .25 and ρ2 = .75.

Normal ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Distr. LR CP NP.5 NP1 NP2 LR CP NP.5 NP1 NP2

Eff. N1 = 30 N2 = 30

T 0.096 0.102 0.107 0.101 0.097 0.090 0.097 0.109 0.100 0.100

G 0.115 0.123 0.121 0.121 0.119 0.104 0.126 0.115 0.130 0.125

TG 0.120 0.121 0.137 0.124 0.122 0.119 0.112 0.132 0.120 0.115

Eff. N1 = 50 N2 = 50

T 0.091 0.112 0.096 0.094 0.089 0.100 0.112 0.107 0.091 0.092

G 0.105 0.101 0.097 0.101 0.102 0.100 0.108 0.103 0.113 0.112

TG 0.100 0.099 0.116 0.104 0.097 0.098 0.099 0.110 0.106 0.111

Eff. N1 = 100 N2 = 100

T 0.099 0.088 0.102 0.099 0.098 0.101 0.101 0.095 0.101 0.107

G 0.105 0.120 0.110 0.113 0.113 0.094 0.104 0.115 0.124 0.119

TG 0.096 0.112 0.100 0.099 0.097 0.095 0.100 0.092 0.106 0.124

Eff. N1 = 50 N2 = 100

T 0.119 0.092 0.107 0.101 0.096 0.117 0.107 0.118 0.108 0.111

G 0.138 0.111 0.124 0.120 0.119 0.132 0.102 0.112 0.127 0.120

TG 0.127 0.097 0.115 0.105 0.106 0.121 0.102 0.116 0.113 0.114

Table 2.4: Type I error rates at nominal α = 0.1 in simulations with MCR; same
ρ in the two groups.
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Gamma ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Dist. LR CP NP.5 NP1 NP2 LR CP NP.5 NP1 NP2

Eff. N1 = 30 N2 = 30

T 0.108 0.254 0.111 0.105 0.116 0.111 0.168 0.132 0.173 0.261

G 0.104 0.095 0.116 0.108 0.109 0.113 0.097 0.123 0.127 0.117

TG 0.122 0.101 0.127 0.120 0.115 0.126 0.110 0.137 0.123 0.113

Eff. N1 = 50 N2 = 50

T 0.080 0.339 0.121 0.115 0.117 0.113 0.180 0.113 0.209 0.356

G 0.112 0.101 0.106 0.097 0.104 0.088 0.087 0.106 0.108 0.103

TG 0.112 0.097 0.097 0.093 0.093 0.109 0.111 0.121 0.114 0.111

Eff. N1 = 100 N2 = 100

T 0.102 0.542 0.099 0.100 0.116 0.096 0.264 0.141 0.315 0.561

G 0.094 0.087 0.093 0.092 0.090 0.100 0.104 0.099 0.098 0.091

TG 0.102 0.101 0.096 0.095 0.092 0.101 0.096 0.102 0.097 0.101

Eff. N1 = 50 N2 = 100

T 0.117 0.401 0.110 0.113 0.124 0.131 0.214 0.140 0.241 0.419

G 0.198 0.096 0.109 0.110 0.104 0.174 0.110 0.119 0.121 0.116

TG 0.142 0.116 0.120 0.115 0.111 0.108 0.101 0.103 0.104 0.100

Table 2.5: Type I error rates at nominal α = 0.1 in simulations with MCR; same
ρ in the two groups.
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ρ1 = .25 Normal Distribution Gamma Distribution

ρ2 = .75 LR CP NP.5 NP1 NP2 LR CP NP.5 NP1 NP2

Eff. N1 = 30 N2 = 30

T 0.105 0.104 0.113 0.101 0.098 0.124 0.201 0.129 0.137 0.158

G 0.103 0.120 0.116 0.122 0.119 0.115 0.113 0.102 0.104 0.111

TG 0.133 0.116 0.124 0.123 0.121 0.126 0.124 0.117 0.111 0.116

Eff. N1 = 50 N2 = 50

T 0.096 0.118 0.101 0.093 0.090 0.104 0.258 0.110 0.128 0.183

G 0.105 0.097 0.107 0.107 0.105 0.121 0.134 0.116 0.115 0.115

TG 0.112 0.100 0.108 0.103 0.105 0.171 0.147 0.120 0.120 0.129

Eff. N1 = 100 N2 = 100

T 0.098 0.104 0.107 0.103 0.102 0.115 0.438 0.131 0.165 0.253

G 0.102 0.116 0.116 0.114 0.121 0.155 0.134 0.128 0.135 0.133

TG 0.111 0.105 0.106 0.105 0.101 0.179 0.191 0.102 0.111 0.139

Eff. N1 = 50 N2 = 100

T 0.178 0.101 0.114 0.110 0.102 0.199 0.286 0.115 0.137 0.184

G 0.129 0.109 0.122 0.124 0.115 0.187 0.114 0.102 0.117 0.127

TG 0.187 0.088 0.104 0.105 0.107 0.234 0.138 0.113 0.111 0.125

Table 2.6: Type I error rates at nominal α = 0.1 in simulations with MCR;
ρ1 = .25 and ρ2 = .75.
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The results in the tables indicate that the complete pairs analysis per-

forms very well under MCAR missingness, and even under MAR missingness in

the normal case. This may be due to the fact that the probability of missingness

in the second time point is symmetric around zero as a function of the values

of the first time point. However, when the joint distribution is gamma, the

probability of missingness is no longer symmetric and the procedure is liberal

especially for the test of no main time effect.

When the groups have equal sample sizes and ρ1 = ρ2 the achieved α-level

of the likelihood ratio test is satisfactory with both normal and gamma data.

However, when the group sizes are not equal, the results are more liberal in all

of the cases; this behavior is more severe in cases where the joint distribution is

gamma, when ρ1 6= ρ2 or when the data is MCR.

The proposed nonparametric test has satisfactory Type I error rate in

all cases, for at least one of the bandwidth values. In all MCAR cases and

all normal distribution cases the performance of the test is pretty robust to

bandwidth selection since bandwidths of .5, 1 or 2 perform well for a variety of

sample sizes, correlations, and probabilities of missingness. In the MCR cases

with gamma distribution, however, the bandwidth of .5 seems to give consistently

better results.

The power simulations, which are summarized in the following figures,

are all for the balanced case with N1 = N2 = 50, and bandwidth of .5 for the

proposed test. Figures 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 pertain to the MCAR cases,

while Figures 2.7, 2.8, 2.9, 2.10 pertain to the MCR cases. It can be seen that

the power of the complete pairs analysis is always lower than the power of the

proposed nonparametric test and the difference in the performance of the two

is larger in the MCR gamma cases (Figures 2.8, 2.10). In all normal cases,
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the power of the proposed nonparametric test is almost identical to that of the

likelihood ratio test (Figures 2.1, 2.3, 2.5, 2.7, and 2.9). On the other hand, the

proposed test outperforms the likelihood ratio test in all gamma cases (Figures

2.2, 2.4, 2.6, 2.8, and 2.10).
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Figure 2.1: Normal MCAR case, ρ1 = ρ2 = .75, and p1 = p2 = .3.
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Figure 2.2: Gamma MCAR case, ρ1 = ρ2 = .75, and p1 = p2 = .3.
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Figure 2.3: Normal MCAR case, ρ1 = .25, ρ2 = .75, and p1 = p2 = .3.
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Figure 2.4: Gamma MCAR case, ρ1 = .25, ρ2 = .75, and p1 = p2 = .3.
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Figure 2.5: Normal MCAR case, ρ1 = .25, ρ2 = .25, and p1 = .1, p2 = .3.



38

0 1 2 3 4
0.

2
0.

4
0.

6
0.

8
1.

0

tau

Le
ve

l

NP
LL
CP

Figure 2.6: Gamma MCAR case, ρ1 = .25, ρ2 = .25, and p1 = .1, p2 = .3.
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Figure 2.7: Normal MCR case, ρ1 = ρ2 = .75.
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Figure 2.8: Gamma MCR case, ρ1 = ρ2 = .75.
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Figure 2.9: Normal MCR case, ρ1 = .25, ρ2 = .75.
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Figure 2.10: Gamma MCR case with, ρ1 = .25, ρ2 = .75.
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2.5 Data analysis

As a practical application we will consider a study of incarcerated boys in

Michigan juvenile correction institutions by Gold and Osgood (1992). The boys

participated in a series of interviews trying to asses the institutional satisfaction

and measure delinquent values. The interviews took place within 10 days of

their arrival, after being there four months, just before leaving, six months after

leaving and 36 months after leaving. During the institutional stay the response

rates remained high, with 99%, 96%, 91% for the first three interviews, and 75%,

60% for the later two interviews after the boys returned to the community.

Our analysis focuses on analyzing a measure of delinquent values obtained

just before leaving the institution and six months later. This pair of time points

has sufficient missing data to provide good illustration of our method and it also

addresses the question of whether the apparent positive change during incarcer-

ation maintains after reentering the community. The measure of delinquency is

composed of eight items asking how much the respondent would admire youths

who engage in delinquent behaviors versus conventionally approved behaviors.

The measure of delinquency variable appears left skewed (see Figure 2.11), re-

flecting disapproval of delinquent acts.

In addition to the time effect, it is also of interest to study the effect of

four other factors on the response: length of the most resent placement (ranges

from four months to two years), type of institution (state or private), number of

prior placements (ranges from zero to four) and race (African American or not).

In order to have sufficient number of boys in each factor level combination we

dichotomized the length of the most resent placement (up to a year or more than

a year) and the number of prior placements (0, > 0). Moreover it turned out

that the factor length of most recent stay has absolutely no effect. This is so in
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Figure 2.11: Box plots of the delinquent values of the first and the second time
points we consider in our analysis.

all possible models, i.e. combinations of factors, and all methods of analysis we

consider. Thus the final analysis considers only three binary factors, resulting

in a = 8 factor level combinations, in addition to the time factor.

Out of the 338 pairs of observations 26 have both measurements missing,

6 have the first measurement missing and 60 have the second one missing. Table

2.7 summarizes the sample sizes in each of the eight factor level combinations.

Table 2.7: Sample sizes for each factor level combination.

i Institution Afr. American Placements Ni ni1 ni2

1 State No 0 43 36 34
2 ≥ 1 35 26 22
3 Yes 0 32 27 23
4 ≥ 1 17 15 14
5 Private No 0 43 40 33
6 ≥ 1 69 66 53
7 Yes 0 73 72 53
8 ≥ 1 26 24 20

312 306 252
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In our analysis we considered four tests: the normal based likelihood-

ratio test, the nonparametric complete-cases test and our proposed test with two

different bandwidths, and normal kernel. We also considered the Epanechikov

kernel but the results were very similar. The bandwidth values we used are

bi = νsp, i = 1, . . . , 8, where sp denotes the pooled, across the factor level

combinations, standard deviation of the observed data and ν = .5 and 1. The

analysis for the likelihood-ratio test was performed using the nmle package in

R which analyzes linear mixed effects according to Laird and Ware (1982). For

more details see Pinheiro and Bates (2000). Table 2.8 gives p-values for the tests

of main effects and interactions for all analyses.

Effects LR CP NP.5 NP1

Institution (I) 0.342 0.061 0.083 0.061

Afr. American (A) 0.886 0.368 0.354 0.410

Prev. Placements (P) 0.038 0.306 0.196 0.219

Time (T) < .001 < .001 < .001 < .001

(IA) 0.180 0.055 0.024 0.022

(IP) 0.090 0.406 0.346 0.380

(IT) 0.115 0.750 0.858 0.747

(AP) 0.423 0.104 0.149 0.151

(AT) 0.906 0.986 0.793 0.877

(PT) 0.193 0.553 0.444 0.371

(IAP) 0.222 0.096 0.069 0.056

(IAT) 0.767 0.809 0.963 0.887

(IPT) 0.756 0.904 0.870 0.940

(APT) 0.943 0.479 0.701 0.664

(IAPT) 0.201 0.466 0.307 0.336

Table 2.8: p-values for main effects and interactions using different methods. LR,
CP , and NPν denote the likelihood ratio test, the complete cases test and the
proposed nonparametric test with bi = νsp, i = 1, . . . , 8. (See text for details.)

The main time effect is highly significant with all methods. This is clear
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evidence that the measure of delinquent values increased after the boys left the

institutions and rejoined life in their home communities. The methods are also

in agreement regarding the non-significance of the main race effect, and most of

the interactions. The main effect of the number of previous placements appears

significant according to the LR test but not according to the nonparametric

tests, while the main institution effect is significant at the 0.1 level accord-

ing to the nonparametric tests. The nonparametric methods, particularly the

proposed, indicate significant interaction between race and institution. This

significance could have practical implications. Of practical interest might also

be the moderate significance, according to the nonparametric methods, of the

institution-race-placements interaction, as well as the moderate significance, ac-

cording to the LR method of the institution-placements interaction. The above

differences between the normal-based and nonparametric analyses may be due

to the skewness of the response and the unbalancedness of the design.

2.6 Proofs

The proofs will be presented under the following technical assumptions.

Assumption A1 (i) As N → ∞, Ni/N stay bounded away from zero for all

i = 1, . . . , I.

(ii) If Y 0
ij is continuous, the corresponding bandwidth sequence bij, see

(2.2.10), satisfies Nb4
ij → 0 and Nb3+2δ

ij (log N)−1 → ∞, as N → ∞, for

some δ > 0.

(iii) If Y 0
ij is discrete, bij is only required to converge to zero.

Assumption A2 (i) The probability density function K is symmetric and has

compact support.
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(ii) The probability density function K has bounded second derivative and

satisfies
∫

uK(u)du = 0.

Assumption A3 (i) If Y 0
ij is discrete, then

(a) for each j = 1, 2, the set Cij of mass points or atoms of the distribution

of Y 0
ij is the same for all i;

(b) the conditional probability mass function fij(y|∆i1∆i2 = 1) of Y 0
ij

given ∆i1∆i2 = 1 satisfies min{fij(y|∆i1∆i2 = 1); y ∈ Cij} > 0, for all i, j.

(ii) If Y 0
ij is continuous, then

(a) the support Sij of Y 0
ij is bounded for all i, j;

(b) the conditional density fij(y|∆i1∆i2 = 1) of Y 0
ij given ∆i1∆i2 = 1

satisfies inf{fij(y|∆i1∆i2 = 1); y ∈ Sij} > 0, for all i, j.

(c) Let F̃i2(y) and F ∗
i1 (y|Yi2k) denote Fi2{y|∆i2(1 − ∆i1) = 1} and

Fi1{y|Y 0
i2 = Yi2k, ∆i2(1 − ∆i1) = 1}, respectively. The first two derivatives

Ḟ ∗
i1{y|F̃−1

i2 (u)} and F̈ ∗
i1{y|F̃−1

i2 (u)} of F ∗
i1{y|F̃−1

i2 (u)} with respect to u exist

and are bounded for all u, y and i. Similarly for F̃i1(y) and F ∗
i2 (y|Yi1k).

(d) Let gi2(y) = fi2{y|∆i2(1 − ∆i1)}. The first two derivatives of gi2(y)

exist and are bounded. Similarly for gi1(y).

Proof of Proposition 2.3.1. It suffices to show this for j = 1. For

simplicity in notation we will let F̂ ∗
i1 (y|Yi2k) and F ∗

i1 (y|Yi2k) denote

F̂i1 (y|Y 0
i2 = Yi2k, ∆i2 = 1, ∆i1 = 0) and Fi1 (y|Y 0

i2 = Yi2k, ∆i2 = 1, ∆i1 = 0),

respectively. Note that by assumption (2.2.2) we have F ∗
i1(y|Yi2k) =
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Fi1 (y|Y 0
i2 = Yi2k, ∆i2 = 1). Using (2.2.12) and (2.2.9) we write

F̂i1(y) − Fi1(y)

=
1

ni

Ni∑

k=1

{∆i1kc(Y
0
i1k, y) + ∆i2k(1 − ∆i1k)F̂

∗
i1 (y|Yi2k)} − Fi1(y)

=
1

ni

Ni∑

k=1

{∆i1k + ∆i2k(1 − ∆i1k)}{c(Y 0
i1k, y) − Fi1(y)}

+
1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k){F ∗
i1(y|Yi2k) − c(Y 0

i1k, y)}

+
1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

[
Ni∑

l=1

wi2l(Yi2k){c(Y 0
i1l, y) − F ∗

i1(y|Yi2l)}
]

+
1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

[
Ni∑

l=1

wi2l(Yi2k){F ∗
i1(y|Yi2l) − F ∗

i1(y|Yi2k)}
]

. (2.6.1)

Note that the first term on the right hand side of (2.6.1) is centered by the

fact that {∆i1k + ∆i2k(1−∆i1k) = 1} = {∆i1k = 1 or ∆i2k = 1} and assumption

(2.2.1) according to which [∆i1k = 1 or ∆i2k = 1] is independent from (Y 0
i1k, Y

0
i2k).

Also, the second term is easily seen to be centered by conditioning on Y 0
i2 =

Yi2k, ∆i2k = 1, ∆i1k = 0. The third term on the right hand side of (2.6.1) is

seen to be centered by conditioning on those (Yi2l, ∆i2l) pairs for which ∆i2l = 1,

since, by assumption (2.2.2) Y 0
i1l is independent from ∆i1l, conditionally on Yi2l

and ∆i2l = 1. Thus, it is centered also unconditionally. The final term on the

right hand side of (2.6.1) is the bias term.

Using the integration by parts formula found, e.g. in Hewitt and

Stromberg (1969, p. 419), we have
∫ (

Ĥ − H
)

d
(
F̂i1 − Fi1

)
= −

∫ (
F̂i1 − Fi1

)
d
(
Ĥ − H

)
,

which we can write as

−
I∑

i′=1

2∑

j=1

nij

n..

∫ (
F̂i1 − Fi1

)
d
(
Ĥi′j − Hi′j

)
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where Ĥi′j(y) = (1/ni′j)
∑N ′

i
k=1 ∆i′jkc(Yi′jk, y) and E(Ĥi′j) = Hi′j. Thus in or-

der to show that N1/2
∫ (

Ĥ − H
)

d
(
F̂i1 − Fi1

)
→ 0, it suffices to show that

N1/2
∫ (

F̂i1 − Fi1

)
d
(
Ĥi′j − Hi′j

)
→ 0 for each i′, j. By (2.6.1), this entails

showing

1

ni

Ni∑

k=1

{∆i1k + ∆i2k(1 − ∆i1k)}
∫ {

c(Y 0
i1k, y) − Fi1(y)

}
d
{

Ĥi′j(y) − Hi′j(y)
}

= op

(
N−1/2

)
(2.6.2)

1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

∫ {
F ∗

i1(y|Yi2k) − c(Y 0
i1k, y)

}
d
{

Ĥi′j(y) − Hi′j(y)
}

= op

(
N−1/2

)
(2.6.3)

1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

Ni∑

l=1

wi2l(Yi2k)

∫ {
c(Y 0

i1l, y) − F ∗
i1(y|Yi2l)

}

d
{

Ĥi′j(y) − Hi′j(y)
}

= op

(
N−1/2

)
(2.6.4)

1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

Ni∑

l=1

wi2l(Yi2k)

∫
{F ∗

i1(y|Yi2l) − F ∗
i1(y|Yi2k)}

d
{

Ĥi′j(y) − Hi′j(y)
}

= op

(
N−1/2

)
. (2.6.5)

That (2.6.2) and (2.6.3) hold follows by straightforward variance cal-

culations. To show (2.6.4) and (2.6.5) we first note that the denomina-

tor, ncif̂i2(Yi2k|∆i1∆i2 = 1) of the weight function can be replaced with

ncifi2(Yi2k|∆i1∆i2 = 1). In what follows we assume that this replacement has

been made, and we write w̃ijk(x) for the weights resulting from this substitution.

We will first show (2.6.5). Set

qi1
kl(Yi′jm) = ∆i′jmF ∗

i1(Yi′jm|Yi2l) − ∆i′jmF ∗
i1(Yi′jm|Yi2k)

−
∫

{F ∗
i1(y|Yi2l) − F ∗

i1(y|Yi2k)} dHi′j(y),
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and let T1 denote the left-hand side of (2.6.5). Noting that E{qi1
kl(Yi′jm)|∆i′jm =

1,Zk,Zl} = 0 if k, l 6= m, we have that E(NT 2
1 ) is equal to

NE

{
1

n2
i

Ni∑

k1,k2

∆i2k1(1 − ∆i1k1)∆i2k2(1 − ∆i1k2)

Ni∑

l1,l2

w̃i2l1(Yi2k1)w̃i2l2(Yi2k2)

× 1

n2
i′j

ni′j∑

m1,m2

qi1
k1l1

(Yi′jm1)q
i1
k2l2

(Yi′jm2)

}

= NE

[
1

n2
i

Ni∑

k1,k2

∆i2k1(1 − ∆i1k1)∆i2k2(1 − ∆i1k2)

Ni∑

l1,l2

w̃i2l1(Yi2k1)w̃i2l2(Yi2k2)

× 1

n2
i′j

Ni∑

m1,m2

E
{
qi1
k1l1

(Yi′jm1)q
i1
k2l2

(Yi′jm2)|Zk1 ,Zk2 ,Zl1 ,Zl2

}
]

= NE

(
1

n2
i

Ni∑

k1,k2

∆i2k1(1 − ∆i1k1)∆i2k2(1 − ∆i1k2)

Ni∑

l1,l2

w̃i2l1(Yi2k1)w̃i2l2(Yi2k2)

× 1

n2
i′j

[
Ni∑

m=1

E
{
qi1
k1l1

(Yi′jm)qi1
k2l2

(Yi′jm)|Zk1 ,Zk2 ,Zl1 ,Zl2

}
+ Rk1,k2,l1,l2

])

where

Rk1,k2,l1,l2 =
∑

m1,m2

qi1
k1l1

(Yi′jm1)q
i1
k2l2

(Yi′jm2)I {m1,m2 ∈ {k1, k2, l1, l2}, m1 6= m2} ,

are uniformly bounded random variables. With a one-term Taylor expan-

sion and using assumption A3(ii)(c), it follows that |qi1
k1l1

(Yi′jm)qi1
k2l2

(Yi′jm)| ≤

C|Yi2k1 − Yi2l1 ||Yi2k2 − Yi2l2 |, for some constant C. Thus, taking into account the

proximity of Yi2k1 and Yi2l1 , which is implied by the weight functions w̃i2l1(Yi2k1),

w̃i2l2(Yi2k2), it is easily seen that E(NT 2
1 ) = O(b2

i2). This completes the proof of

(2.6.5).
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Let T2 denote the left hand side of (2.6.4). Write

T2 =
1

ni

Ni∑

k=1

Ni∑

l=1

[
∆i2k(1 − ∆i1k)w̃i2l(Yi2k)

1

ni′j

Ni′∑

m=1

∆i′jm

{
c(Yi1l, Yi′jm)

−F ∗
i1(Yi′jm|Yi2l) − 1 + Hi′j(Yi1l) +

∫
F ∗

i1(y|Yi2l)dHi′j(y)

}]

=

Ni∑

l=1

[
1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

{
w̃i2l(Yi2k) −

∫
w̃i2l(x)gi2(x)dx

}]

×
[

1

ni′j

Ni′∑

m=1

∆i′jm

{
c(Yi1l, Yi′jm) − F ∗

i1(Yi′jm|Yi2l) − 1 + Hi′j(Yi1l)

+

∫
F ∗

i1(y|Yi2l)dHi′j(y)

}]

+
1

ni′j

Ni′∑

m=1

Ni∑

l=1

1

nci

gi2(Yi2l)∆i1l∆i2l

fi2(Yi2l|∆i1∆i2 = 1)
∆i′jm

{
c(Yi1l, Yi′jm)

−F ∗
i1(Yi′jm|Yi2l) − 1 + Hi′j(Yi1l) +

∫
F ∗

i1(y|Yi2l)dHi′j(y)

}

+Op

(
b2
i2

ni1

)
, (2.6.6)

where gi2(x) is defined in assumption A3(d) and the second equality used the

relation
∫

w̃i2l(x)gi2(x)dx =
1

nci

{
gi2(Yi2l)∆i1l∆i2l

fi2(Yi2l|∆i1∆i2 = 1)
+ O(b2

i2)

}
,

which follows by a change of variable and a two term Taylor expansion. We will

first show that

1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

{
w̃i2l(Yi2k) −

∫
w̃i2l(x)gi2(x)dx

}

= op{(ncibi2)
−1N−1/2}, (2.6.7)

1

ni′j

Ni′∑

m=1

∆i′jm

{
c(Yi1l, Yi′jm) − F ∗

i1(Yi′jm|Yi2l) − 1 + Hi′j(Yi1l)

+

∫
F ∗

i1(y|Yi2l)dHi′j(y)

}
= op{(log N)1/2N−1/2} (2.6.8)
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uniformly in l which will imply that the first term on the right hand side of

(2.6.6) is Op{(log N)1/2/(Nbi2)} = op(N
−1/2) . To show relation (2.6.7) we use

Bernstein’s inequality Uspensky (1937). to obtain

P

[
max

1≤l≤Ni

∣∣∣∣∣
ncibi2N

1/2

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

{
w̃i2l(Yi2k) −

∫
w̃i2l(x)gi2(x)dx

}∣∣∣∣∣ > ǫ

]

= P

[
max

1≤l≤Ni

∣∣∣∣∣
N1/2

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

{
w∗

i2l(Yi2k) −
∫

w∗
i2l(x)gi2(x)dx

}∣∣∣∣∣ > ǫ

]

≤
Ni∑

l=1

P

[ ∣∣∣∣∣
N1/2

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

{
w∗

i2l(Yi2k) −
∫

w∗
i2l(x)gi2(x)dx

}∣∣∣∣∣ > ǫ

]

≤ Ni2 exp

(
− N−1n2

i ǫ
2

Nibi2C1 + C2N−1/2niǫ

)
→ 0, as N → ∞,

where w∗
i2l(x) = nciw̃i2l(x) = ∆i1l∆i2lKbi2

(Yi2l−x)/fi2(x|∆i1∆i2 = 1), and C1, C2

are some positive constants. Relation (2.6.8) is shown by a similar application

of Bernstein’s inequality.

The second term of the right hand side of (2.6.6) can be written in the

form of a U -statistic, namely as (ni′jnci)
−1
∑

m

∑
l φ(Zil,Zi′m), where the defi-

nition of the kernel φ is implicit. It is easily verified that E{φ(Zil,Zi′m)|Zil} =

E{φ(Zil,Zi′m)|Zi′m} = 0. Thus, from the theory of U -statistics it follows that

this term is Op(N
−1) and so oP (N−1/2). This completes the proof of (2.6.6) and

of Proposition 2.3.1.
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Proof of Theorem 2.3.2. According to (2.6.1), the theorem will be established

by showing

1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

Ni∑

l=1

wi2l(Yi2k)
[
H(Y 0

i1l) − E∗
i1{H(Y 0

i1)|Yi2l}
]

=
2

nci

Ni∑

k=1

H1,1(Zik) + op

(
N−1/2

)
(2.6.9)

1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

Ni∑

l=1

wi2l(Yi2k)

∫
H(y) d{F ∗

i1(y|Yi2l) − F ∗
i1(y|Yi2k)}

= op(N
−1/2). (2.6.10)

First (2.6.10) follows by arguments similar to those used in (2.6.5). Next

we show (2.6.9):

1

ni

Ni∑

k=1

∆i2k(1 − ∆i1k)

Ni∑

l=1

wi2l(Yi2k)
[
H(Y 0

i1l) − E∗
i1{H(Y 0

i1)|Yi2l}
]

=
1

ni

Ni∑

k=1

Ni∑

l=1

∆i2k(1 − ∆i1k)

nci

{
fi2(Yi2k|∆i1∆i2 = 1)

1
nci

∑
m Kbi2

(Yi2k − Y2jm)∆2jm∆1jm

− 1 + 1

}

×Kbi2
(Yi2k − Yi2l)∆i2l∆i1l

fi2(Yi2k|∆i1∆i2 = 1)

[
H(Y 0

i1l) − E∗
i1{H(Y 0

i1)|Yi2l}
]

=
1

ni

1

nci

Ni∑

k=1

Ni∑

l=1

∆i2k(1 − ∆i1k)

{
fi2(Yi2k|∆i1∆i2 = 1)

1
nci

∑
m Kbi2

(Yi2k − Y2jm)∆2jm∆1jm

− 1

}

×Kbi2
(Yi2k − Yi2l)∆i2l∆i1l

fi2(Yi2k|∆i1∆i2 = 1)

[
H(Y 0

i1l) − E∗
i1{H(Y 0

i1)|Yi2l}
]

+
1

ni

1

nci

Ni∑

k=1

Ni∑

l=1

∆i2k(1 − ∆i1k)
Kbi2

(Yi2k − Yi2l)∆i2l∆i1l

fi2(Yi2k|∆i1∆i2 = 1)

×
[
H(Y 0

i1l) − E∗
i1{H(Y 0

i1)|Yi2l}
]
.
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Using the notation introduced in the statement of the theorem, the first and

second terms on the right hand side of the above relation are, respectively,

1

ni

1

nci

Ni∑

k=1

Ni∑

l=1

H̃1(Zik,Zil)

{
fi2(Yi2k|∆i1∆i2 = 1)

1
nci

∑
m Kbi2

(Yi2k − Y2jm)∆2jm∆1jm

− 1

}
, (2.6.11)

1

ni

1

nci

Ni∑

k=1

Ni∑

l=1

H̃1(Zik,Zil). (2.6.12)

Direct variance calculations using the fact that H̃1(Zik,Zil) has zero conditional

expectation given the pairs (Yi2k, ∆i2k) for which ∆i2k = 1, and assumption

A3(i)(b) for the discrete case, or A3(ii)(b) together with the uniform consistency

of the kernel density estimator Silverman (1978) in the continuous case, show

that the term in (2.6.11) is op

(
N

−1/2
i

)
, conditionally on the pairs (Yi2k, ∆i2k) for

which ∆i2k = 1, and thus also unconditionally. Consider now (2.6.12), and recall

the notation H1(Zik,Zil) introduced in the statement of the theorem. Keeping in

mind that H̃1(Zik,Zil) = 0 if k = l, and also that we are essentially working with

the ni pairs having at least one non-missing observation (thus, the summation

indices in (2.6.12) extend to Ni only in order to avoid awkward renumbering of

the data), (2.6.12) equals

1

ni

1

nci

Ni∑

k=1

Ni∑

l=1

H1(Zik,Zil) =
1

ni

1

nci

ni(ni − 1)

{
2

ni(ni − 1)

∑

k<l

H1(Zik,Zil)

}

=
ni − 1

nci

{
2

ni

∑

k

H1,1(Zik) + op

(
n
−1/2
i

)}
=

2

nci

Ni∑

k=1

H1,1(Zik) + op

(
N−1/2

)
,

where the second equality above follows from standard theory for U -statistics.

This completes the proof of the theorem.



Chapter 3

Factorial Designs with MCR Repeated

Measurements

3.1 Introduction and Notation

In this chapter we extend the ideas introduced in Chapter 2 for cases

were there are more than two repeated measurements per subject. We propose a

general notation to describe different missingness patterns and extend the MCR

assumption for arbitrary number of time points. With the testing procedures

prosed here we reanalyze the delinquency data using the information from four

interviews for each boy.

Let (Y 0
i1k, . . . , Y

0
iJk), k = 1, . . . , Ni, be independent replications of the

variables of interest (Y 0
i1, . . . , Y

0
iJ), where the index i denotes the factor-level

combinations, excluding the factor time which is denoted by the second subscript.

For example, in the incarcerated boys application, if we consider only the factors

prior placement (yes or no) and length of most recent stay, their are four factor

levels enumerated as 1: yes & up to a year, 2: yes & more than a year, 3: no &

up to a year, 4: no & more than a year, and (Y 0
i1k, . . . , Y

0
i4k) are the measures of

delinquency in the four interviews for the k-th boy with factor-level combination

i. Since some of these variables are missing, for each subject we observe

Zik = (Yi1k, ∆i1k, . . . , YiJk, ∆iJk), k = 1, . . . , Ni, (3.1.1)

52
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where ∆ijk = 1 if Y 0
ijk is observed, in which case Yijk = Y 0

ijk and ∆ijk = 0 if Y 0
ijk

is missing, in which case Yijk is arbitrary.

Similarly as in the paired data case, we only assume

Y 0
ijk ∼ Fij, for all i, j, and k. (3.1.2)

and hypotheses in the context of this nonparametric model are defined as Akritas

and Arnold (1994). (For more details see Chapter 2.)

We are also introducing the notation for the simpler case of no factors

(besides the time factor), which will be used for the discussion in Sections 3.2 and

3.3. Since there are no factors, the index i is dropped, and we have (Y 0
1k, . . . , Y

0
Jk)

for k = 1 . . . , N , independent replications of the variables (Y 0
1 , . . . , Y 0

J ), where

Y 0
j ∼ Fj for j = 1, . . . , J . The hypothesis of interest in this case is

H0 : F1 = . . . = FJ . (3.1.3)

⇔ H0 : CF = 0, (3.1.4)

where F = (F1, . . . , FJ)′ and C is the contrast matrix of full row rank C =

(1a−1| − Ia−1), for 1d = (1, . . . , 1)′ is a d-dimensional vector of ones, and Id

denotes the d-dimensional unit matrix.

Finally, similar to (3.1.1), assume we observe

Zk = (Y1k, ∆1k, . . . , YIk, ∆Ik), k = 1, . . . , N, (3.1.5)

where ∆jk = 1 if Y 0
jk is observed, in which case Yjk = Y 0

jk and ∆jk = 0 if Y 0
jk is

missing, in which case Yjk is arbitrary.

To test the null hypothesis (3.1.3) nonparametrically we must be able

to estimate Fj nonparametrically. We will consider estimation of Fj under the

general MCR assumption, that accounts for more than two time points, which
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will be specified later. For now we will only use the part of it that guarantees

that cases whose variables are all missing contain no useful information. This

implies

Fj(y) = Fj(y|at least one variable is observed)

= Fj(y| ∪J
s=1 [∆s = 1]). (3.1.6)

The plan to do so is to first decompose the event ∪J
s=1 [∆s = 1] into J disjoint

events each of which specifies that a particular coordinate is observed, and then

use, on each of the disjoint events, the observed coordinate for the imputation.

Let Sj
1, . . . , S

j
J denote the partition of ∪J

s=1 [∆s = 1] which will be used for esti-

mating Fj. We will use the relation

Fj(y| ∪J
s=1 [∆s = 1]) = Fj

(
y|Sj

1

)
P (Sj

1| ∪J
s=1 [∆s = 1])

+Fj

(
y|Sj

2

)
P (Sj

2| ∪J
s=1 [∆s = 1])

...

+Fj

(
y|Sj

J

)
P (Sj

J | ∪J
s=1 [∆s = 1]).

Clearly, the probabilities P (Sj
r | ∪ [∆j = 1]) can be estimated with nj

r/n, for nj
r

the number of cases with missingness pattern Sj
r and n the number of cases with

at least one observed variable. To describe the estimation of Fj(y|Sj
r), we need

to be more specific about the events Sj
r . Let j, j2, . . . , jJ be a permutation of

{1, . . . , J} whose first element is j and set

Sj
1 = [∆j = 1]

Sj
2 = [∆j = 0] ∩ [∆j2 = 1]

Sj
3 = [∆j = 0] ∩ [∆j2 = 0] ∩ [∆j3 = 1] (3.1.7)

...

Sj
J = [∆j = 0] ∩ . . . [∆j(a−1)

= 0] ∩ [∆jJ
= 1].
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Note that jr is the coordinate index which is specified to be observed on Sj
r .

Since Sj
1 = [∆j = 1], Fj(y|Sj

1), is the marginal distribution of Y 0
j given that

it is observed, and so it is consistently estimated by the empirical distribution

function of the observed Y 0
j ’s. Less obvious is the estimation of Fj(y|Sj

r), r =

2, . . . , J, since Y 0
j is missing on events Sj

r , r = 2, . . . , J . Basically, Fj(y|Sj
r) is

estimated by nonparametric imputation based on the coordinate Y 0
jr

which is

guaranteed to be observed on Sj
r .

Remark 3.1.1. A sensible way to choose the permutation j, j2, . . . , jJ for each

j is to let j2 be the time point closest to j (with preference to the time point on

the left), j3 to be the second closest time point to j end so on. For example, if

a = 6, a reasonable set of permutations is the following

j j j2 j3 j4 j5 j6

1 1 2 3 4 5 6

2 2 1 3 4 5 6

3 3 2 4 1 5 6

4 4 3 5 2 6 1

5 5 4 6 3 2 1

6 6 5 4 3 2 1

Thus, for estimating F4 we choose the permutation 4,3,5,2,6,1. This

means that if Y 0
4 is missing, we first consider the set of cases where Y 0

3 is ob-

served and perform nonparametric imputation based on it. Next we consider the

set of cases where Y 0
5 is observed and perform nonparametric imputation based

on it, and so on. This way, imputation is always based on the nearest observed

variable.
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Remark 3.1.2. The sets Sj
r , r = 1, . . . , J will also be thought as a partition of

the set of all subsets. For example, Sj
1 is the subset of subjects with ∆jk = 1, Sj

2

is the subset of subjects with ∆jk = 0, and ∆j2 = 1, and so on; see (3.1.7).

The theory of this analysis under the framework of simple repeated mea-

surement design, (i.e. only time factor) is presented in Sections 3.2 and 3.3. In

Section 3.4 we extend the results to higher way factorial designs. Results from

simulation studies are presented in Section 3.5 and analysis of the sociological

data set introduced in the previous chapter is given in Section 3.6. Finally, in

Section 3.7 we present the proofs of the main results given in this chapter.

3.2 Estimation of the marginal distribution functions

As we have seen in the introduction, based on (3.1.6) and the fact that

{Sj
r}J

r=1 is a partition of ∪J
s=1[∆s = 1] , we have the following decomposition of

the cumulative distribution function of Y 0
j

Fj(y) =
J∑

r=1

Fj

(
y|Sj

r

)
P (Sj

r | ∪J
s=1 [∆s = 1]). (3.2.1)

As already mentioned, the probabilities P (Sj
r |∪ [∆j = 1]) are estimated by nj

r/n,

and Fj

(
y|Sj

1

)
is estimated by

F̂j

(
y|Sj

1

)
= F̂j (y|∆j = 1) =

1

nj

N∑

k=1

∆jkc(Yjk, y) (3.2.2)

where the function c as defined in (2.1.5) and nj is the number of cases with Y 0
j

observed.

Since on Sj
r , r = 2, . . . , J , Y 0

j is missing, Fj(y|Sj
r) will be estimated by

nonparametric imputation using an appropriate set of ”donor”. Deciding on the

set of donors essentially determines the MCR assumptions. We now define a
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particular set of MCR assumptions and identify the corresponding donor sets.

In words, these MCR assumptions state that given the value of the nearest

nonmissing observation, Y 0
j and ∆j are independent. Formally, we have

Fj(y|Yjr = v, Sj
r) = Fj(y|Yjr = v, S̃j

r), for r = 2, . . . , J (3.2.3)

where Sj
r is as defined in (3.1.7) and

S̃j
r = [∆j = 1] ∩ [∆j2 = 0] ∩ . . . [∆j(r−1)

= 0] ∩ [∆jr = 1], for r = 2, . . . , J.

In other words, thinking of the Sj
r as subsets of the set of subjects (see

Remark 3.1.2), S̃j
r is the set of donors for missing pattern Sj

r .

Remark 3.2.1. An alternative sequence of donor sets might be of the form

S̆j
r = [∆j = 1] ∩ [∆jr = 1], for r = 2, . . . , J.

These donor sets might be preferred over the S̃j
r in cases with not very large data

sets, since the donor sets S̆j
r are larger than S̃j

r . Even though the choice of S̆j
r

sets will imply stronger MCR assumptions than the one defined in (3.2.3), these

assumptions are still weaker than the strongly ignorable MAR assumption.

Using (3.2.3), we have that

Fj

(
y|Sj

r

)
=

∫
Fj

(
y|Y 0

jr
= v, Sj

r

)
dFjr

(
v|Sj

r

)

=

∫
Fj

(
y|Y 0

jr
= v, S̃j

r

)
dFjr

(
v|Sj

r

)
. (3.2.4)

Recall that jr is the coordinate index which is specified to be observed on Sj
r ,

and thus Fjr(v|Sj
r) is readily estimated by a corresponding empirical distribution

function on the observed Y 0
jr

values from the Sj
r -cases.
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Estimation of Fj

(
y|Y 0

jr
= v, S̃j

r

)
is accomplished using smoothing tech-

niques involving a symmetric kernel function K and a bandwidth b. Basi-

cally, this conditional distribution function is estimated using the values Yjk

in the S̃j
r -cases, based on how ”close” is Yjrk to v. More specifically, denoting

Kb(x) = K(x/b)/b, and under some smoothing assumptions we have

F̂j

(
y|Y 0

jr
= v, S̃j

r

)
=

N∑

k=1

wj
r.k(v)c(Yjk, y), r = 2, . . . , J

where

wj
r.k(v) =

Kb(v − Yjrk)I(∆k ∈ S̃j
r)∑N

l=1 Kb(v − Yjrl)I(∆l ∈ S̃j
r)

, ∆k = (∆1k, . . . , ∆ak).

Note that the bandwidth can vary for different j, r combination. So the correct

notation for the bandwidths used in the wj
r.k(v) weights is bj

r. However, here and

in the next section we suppress j and r indices and we denote all the bandwidths

with b to simplify the notation.

From (3.2.4) it follows that

F̂j

(
y|Sj

r

)
=

1

nj
r

N∑

k=1

I(∆k ∈ Sj
r)F̂j

(
y|Y 0

jr
= Yjrk, S̃

j
r

)
, r = 2, . . . , J. (3.2.5)

Hence, Fj (y|Sj
r) , r = 2, . . . , J, will be estimated by averaging

F̂j

(
y|Y 0

jr
= Yjrk, S̃

j
r

)
over all the cases in the sample with missingness pat-

tern Sj
r .

Finally, plugging in the estimators in (3.2.1), we get

F̂j(y) =
1

n

N∑

k=1

[
∆jkc(Yjk, y) +

J∑

r=2

I(∆k ∈ Sj
r)F̂j

(
y|Y 0

jr
= Yjrk, S̃

j
r

)]
(3.2.6)

for j = 1, . . . , J .
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Remark 3.2.2. The MCR assumption is defined through equations of condi-

tional cumulative distribution functions. Expressing the assumption in this form

led to a smoother derivation of the nonparametric imputation. However, there is

an equivalent expression of the MCR assumption using conditional probabilities,

which enable easier comparison with the classical MAR assumption.

In particular , equation (3.1.6) is equivalent to

P
[
(∆1, . . . , ∆J) = 0|Y 0

1 , . . . , Y 0
J

]
= P [(∆1, . . . , ∆J) = 0] ,

and the set of equations (3.2.3) is equivalent to

P (∆j|{Sj
r ∪ S̃j

r}, Y 0
1 , . . . , Y 0

J ) = P (∆j|{Sj
r ∪ S̃j

r}, Y 0
jr

), r = 2, . . . , J.

It can be seen that, perhaps the most basic difference between the two

assumptions is that the set on which the MCR assumption condition contains

information on the indexes of the observed coordinates as well as on the values

of some ∆ coordinates.

3.3 Test Statistic and Asymptotic Results

Let

Ĥ(y) =
1

n.

J∑

j=1

N∑

k=1

∆jkc(Yjk, y), where n. =
J∑

j=1

nj.

to denote the empirical distribution function obtained from all data.

Considering the null hypothesis defined in (3.1.4), the proposed test

statistic is of the form

TC = C

∫
Ĥ(y)dF̂(y), (3.3.1)

where, F̂ = (F̂1, . . . , F̂J), for F̂j given by (3.2.6).
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More explicit,

TC = C




∫
Ĥ(y)dF̂1(y)

...
∫

Ĥ(y)dF̂J(y)




where,

∫
Ĥ(y) d F̂j(y) =

1

n

N∑

k=1

[
∆kĤ(Yjk) +

J∑

r=2

I(∆jk ∈ Sj
r)

×
∫

Ĥ(y)dF̂j(y|Y 0
jr

= Yjrk, S̃
j
r)

]

=
1

n

N∑

k=1

[
∆jkĤ(Yjk) +

J∑

r=2

I(∆k ∈ Sj
r)

N∑

l=1

wj
r,l(Yjrk)Ĥ(Yjl)

]
(3.3.2)

Derivation of the asymptotic distribution of TC is achieved following sim-

ilar steps as deriving the one for the paired data case in Chapter 2. First note

that under the null hypothesis

TC = C

∫
Ĥ(y)d

(
F̂(y) − F(y)

)
, (3.3.3)

therefore, the main goal is to derive the asymptotic theory of the vector
∫

Ĥ(y)d
(
F̂(y) − F(y)

)
. (3.3.4)

The approach for doing so consists of two stages. First we show that

Ĥ can be replaced by H in (3.3.4) (Proposition 3.3.1) and then we derive the

asymptotic distribution of
∫

H(y)d(F̂(y) − F(y)) (Theorem 3.3.2 and Corollary

3.3.3).

Proposition 3.3.1. For H = E(Ĥ) and F̂j as in (3.2.6), under Assumptions

A1-A3 stated in Section 3.7, for j = 1, . . . , J

√
N

∫
(Ĥ − H)d(F̂j − Fj)

p→ 0, as N → ∞.
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This implies that,

∫
(Ĥ − H)d(F̂ − F) = op(N

−1/2)

and the asymptotic distribution of
∫

Ĥ(y)d(F̂(y)−F(y)), follows from the asymp-

totic distribution of
∫

H(y)d(F̂(y) − F(y)).

Theorem 3.3.2. Let F̂j be the estimator defined in (3.2.6), under Assumptions

A1-A3 stated in Section 3.7, for each j = 1, . . . , J

∫
H(y)d(F̂j(y) − Fj(y)) =

1

n

N∑

k=1

hj(Zk) + op(N
−1/2)

where

hj(Zk) =
[
H(Y 0

jk) − E{H(Y 0
j )}
] J∑

r=1

I(∆k ∈ Sj
r)

+
J∑

r=2

I(∆k ∈ Sj
r)
[
E{H(Y 0

j )|Y 0
jr

= Yjrk, S
j
r} − H(Y 0

jk)
]

+2n
J∑

r=2

Hj
r,1(Zk)

ñj
r

for ñj
r the number of cases out of N with missingness pattern S̃j

r and

Hj
r,1(Zk) = E{Hj

r (Zk,Zl)|Zk}

Hj
r (Zk,Zl) =

1

2

[
H̃j

r (Zk,Zl) + H̃j
r (Zk,Zl)

]

H̃j
r (Zk,Zl) = I(∆k ∈ Sj

r)
Kb(Yjrk − Yjrl)I(∆l ∈ S̃j

r)

fjr(Yjrk|S̃j
r)

×
[
H(Yjl) − E{H(Y 0

j )|Y 0
jr

= Yjrl, S
j
r}
]

Proof. The proof of this theorem uses direct variance calculations, uni-

form consistency of the kernel density estimator and standard asymptotic theory

for U-statistics. The proof is given in Section 3.7.
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Corollary 3.3.3. Let hj(Zk) defined as defined in Theorem 3.3.2and Σ be the

J × J covariance matrix with elements σjj′ = Cov(hj(Zk), hj′(Zk)).

1. Under Assumptions A1-A3 stated in Section 3.7,

√
n

∫
H(y)d(F̂(y) − F(y))

d→ N(0,Σ).

2. Let N/n → λ, as N → ∞. Then, under Assumptions A1-A3 stated in

Section 3.7,

√
N

∫
Ĥ(y)d(F̂(y) − F(y))

d→ N(0, λΣ).

To obtain a consistent estimator of Σ, we first obtain consistent esti-

mators of hj(Zk), j = 1, . . . , J and the we estimate vSigma by their sample

covariance matrix. Note that

hj(Zk) =
[
H(Y 0

jk) − E
(
H(Y 0

j )
)] J∑

r=1

I(∆k ∈ Sj
r)

+
J∑

r=2

I(∆k ∈ Sj
r)
[
E{H(Y 0

j )|Y 0
jr

= Yjrk, S
j
r} − H(Y 0

jk)
]

+2n
J∑

r=2

Hj
r,1(Zk)

ñj
r

= I(∆k ∈ Sj
1)H(Yjk) +

J∑

r=2

I(∆k ∈ Sj
r)E{H(Y 0

j )|Y 0
jr

= Yjrk, S
j
r}

−E
[
H(Y 0

j )
] J∑

r=1

I(∆k ∈ Sj
r) + 2n

J∑

r=2

Hj
r,1(Zk)

ñj
r

Consistent estimation of hj(Zk) can be done by consistently estimating

each of its terms. The first term can be consistently estimated by I(∆k ∈
Sj

1)Ĥ(Yjk), since Yjk is observed in these cases. For the second term, note that,

E{H(Y 0
j )|Y 0

jr
= Yjrk, S

j
r} =

∫
H(y)dFj(y|Y 0

jr
= Yjrk, S

j
r)

=

∫
H(y)dFj(y|Y 0

jr
= Yjrk, S̃

j
r)
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where the second equality holds under the MCR assumption. This can be con-

sistently estimated by

Ê{H(Y 0
j )|Y 0

jr
= Yjrk, S

j
r} =

J∑

l=1

wj
r,l(Yjrk)Ĥ(Yjl). (3.3.5)

In the third term, E
{
H(Y 0

j )
}

can be consistently estimated by
∫

Ĥ(y)dF̂j(y)

(see (3.3.2)). Finally, we have a consistent estimator of Hj
r,1(Zk)

Ĥj
r,1(Zk) =

1

2n

N∑

l=1

[
̂̃
Hj

r (Zk,Zl) +
̂̃
Hj

r (Zl,Zk)

]
,

where

̂̃
Hj

r (Zu,Zv) = I(∆u ∈ Sj
r)

Kb(Yjru − Yjrv)I(∆v ∈ S̃j
r)

f̂jr(Yjru|S̃j
r)

×
[
Ĥ(Yjv) − Ê{H(Y 0

j )|Y 0
jr

= Yjrv, S
j
r}
]

for f̂jr(Yjru|S̃j
r) = 1

ñj
r

∑N
q=1 I(∆q ∈ S̃j

r)Kb(Yjru − Yjrq).

Let Σ̂ to denote the sample covariance matrix of the consistent estimators

of hj(Zk), j = 1, . . . , J .

Corollary 3.3.4. Under Assumptions A1-A3 stated in Section 3.7, and under

the null hypothesis 3.1.4, as N → ∞,

N

λ

[
C

∫
Ĥ(y)dF̂(y)

]′ (
CΣ̂C′

)−1
[
C

∫
Ĥ(y)dF̂(y)

]
d→ χ2

J−1.

3.4 Extensions to higher-way factorial designs

In terms of our real data example, what we have seen so far in this

chatpter is how to estimate the marginal distribution of the measure of delinquent

is each of the four interviews, (F1, . . . , F4). However, we did not take under

consideration the information given for each boy regarding prior placements or
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length of most recent stay at the institution. When the factors are present,

we categorize each subject to one distinct factor-level combination (group), and

basically estimate the marginal distribution in each group as described in Section

3.2. To describe this we need to have an additional index in our notation, in this

section we consider the Zik, k = 1, . . . , Ni vectors defined in (3.1.1) to denote

our data.

Under this framework, we need to estimate the marginal distribution of

the response at the j-th interview of boys in the i-th group, Fij, i = 1, . . . , I,

j = 1, . . . , J , for J = 4. Fij is estimated using the same procedure described in

Section 3.2, considering only the Ni observations in the i-th group as our sample.

Letting ni denote the number of boys in the i-th group participating in at least

one interview, similar to (3.2.6) we have

F̂ij(y) =
1

ni

Ni∑

k=1

[
∆ijkc(Yijk, y) +

J∑

r=2

I(∆ik ∈ Sj
r)F̂ij

(
y|Y 0

ijr
= Yijrk, S̃

j
r

)]

for i = 1, . . . , I j = 1, . . . , J , where

F̂ij

(
y|Y 0

ijr
= v, S̃j

r

)
=

Ni∑

k=1

wj
r.ik(v)c(Yijk, y), r = 2, . . . , J

with

wj
r.ik(v) =

Kbi
(v − Yijrk)I(∆ik ∈ S̃j

r)∑Ni

l=1 Kb(v − Yijrl)I(∆il ∈ S̃j
r)

, ∆ik = (∆i1k, . . . , ∆iak).

It should be pointed out that the bandwidth can vary for different i, j, r

combination. The correct notation for the bandwidths used in the wj
r.ik(v)

weights is bj
r.i. However, we suppress j, r and i indices denoting all the band-

widths with b, as we did in the previous sections, to simplify the notation.

Note that Sj
r and S̃j

r , r = 1, . . . , J remain the same events as in the

simple case with no factors since they represents case-wise missingness patterns

and they depend only on j.
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We define the empirical distribution function obtained from all data to

be

Ĥ(y) =
1

n..

I∑

i=1

J∑

j=1

Ni∑

k=1

∆ijkc(Yijk, y),

where n.. =
∑I

i=1

∑J
j=1 nij, for nij to be the number of boys in the i-th group

participating in the j-th interview .

Here we might be interested in testing the hypotheses of no main effects

for the time factor, and for the other factors as well as the hypotheses of no

interactions among the factors. Letting F = (F11, . . . , F1J , . . . , FI1, . . . , FIJ)′,

these hypotheses are all of the form

H0 : CF = 0.

The proposed test statistic is the (I.J × 1) vector

TC = C

∫
Ĥ(y)dF̂(y).

Denoting Fi = (Fi1, . . . , FiJ)′, i = 1, . . . , I, then F = (F′
1, . . . ,F

′
I)

′ and similarly

we have F̂ = (F̂′
1, . . . , F̂

′
I)

′. Using this notation, the test statistic is the (IJ × 1)

vector

TC = C

∫
Ĥ(y)dF̂(y) = C




∫
Ĥ(y)dF̂1(y)

...
∫

Ĥ(y)dF̂b(y)




The asymptotic distribution of
∫

Ĥ(y)d(F̂i(y) − Fi(y)) can be derived

using the asymptotic theory presented in the previous section. We have that

√
N

∫
Ĥ(y)d(F̂i(y) − Fi(y))

d→ N(0, λiΣi),

where (N/ni) → λi, as N → ∞, i = 1, . . . , I, and N =
∑I

i=1 Ni.
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Note that the vectors
∫

Ĥ(y)d(F̂i(y) − Fi(y)), i = 1, . . . , I, are indepen-

dent, since each subject can be categorized in a distinct factor-level combination,

and observations between subjects are independent. Therefore, letting V to be

a block diagonal covariance matrix with the i-th block being λiΣi, as N → ∞
√

N

∫
Ĥ(y)d(F̂(y) − F(y))

d→ N(0,V).

Let Σ̂i denote the estimator of Σ̂i obtained with similar steps as Σ de-

scribed in the previous sections, and let V̂ be the block diagonal matrix with

diagonal elements λiΣ̂i.Then, under the null hypothesis, as N → ∞

N

[
C

∫
Ĥ(y)dF̂(y)

]′ (
CV̂C′

)−1
[
C

∫
Ĥ(y)dF̂(y)

]
d→ χ2

ν ,

where ν = rank(C).

3.5 Simulation Results

In this section we examine the the achieved Type I error probability of

the proposed test statistic under different bandwidth sizes, and investigate its

power properties. We compare its performance with the normal-based linear

mixed effects models proposed by Laird and Ware (1982) and the nonparametric

complete-cases approach which consists of applying the statistics of Akritas and

Brunner (1997) to the complete cases.

The linear mixed effects models have the form

Yk = Xkβ + Zkbk + ǫk (3.5.1)

where Yk the vector of responses for subject k whose length might vary among

units, Xk and Zk are known covariate matrices, β is a vector of fixed effects,

bk ∼ N(0,Ψ) is a vector of random effects of subject k and ǫk ∼ N(0, σ2I) is
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a vector of residual errors. These models are fitted using EM-type algorithms.

Although the EM iterations usually bring the parameters into the region of

optimum very quickly the progress towards the optimum tends to be slow. Bates

and Pinherio (1998) proposed a hybrid approach which it starts by performing

a moderate number of EM iterations and then switching to Newton-Raphson

iterations which close to the optimum converges very quickly. See Pinheiro and

Bates (2000) for a discussion on the implementation of (3.5.1) using the nlme

package in S-plus or R, but the same analysis can be carried out with the SAS

PROC MIXED procedure. This model is also suitable for the analysis of missing

data. As Collins, Schafer and Kam (2001) point out, ML analysis under the MAR

assumption can be carried out by ignoring all missing values and feeding the

observed data in, e.g., the SAS PROC MIXED procedure. Equivalent analysis

can be performed using the nlme package in S-plus or R.

In our simulations we consider an one-factor design with two levels, thus

we have I = 2 groups crossed with J time points. We consider some cases with

three and some cases with four time points.

We consider three families of joint distributions to generate the vectors

Yik = (Yi1k, . . . , YiJk)
′, for i = 1, 2, k = 1, . . . , Ni. The first family is a multivari-

ate normal distribution with E(Yi1k) = 0, E(Yijk) = τ(J − j + 1)−1(n../2)−1/2,

for j = 2, . . . , J and Cov(Yijk, Yij′k) = ρ
|j−j′|
i , for j, j′ = 1, . . . , J . For example,

for J = 4,

Yik ∼ N4







0

τ/(3
√

n../2)

τ/(2
√

n../2)

τ/
√

n../2




,




1 ρi ρ2
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i

ρ2
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The second family we consider for the vectors have marginal log-normal dis-

tributions and the data are generated as Yijk = eXi1k where (Xi1k, . . . , XiJk)

are generated from the multivariate normal distribution described above. The

third family is multivariate gamma distribution such that the marginal distri-

butions of Yi1k, . . . , YiJk are Gamma, with location parameters µi1 = 1, and

µij = 1 + τ(J − j + 1)−1(n../2)−1/2, for j = 2, . . . , J , scale parameters equal to

one, and Corr(Yijk, Yij′k) = ρi, i = 1, 2, k = 1, . . . , Ni. Note that τ = 0 corre-

sponds to the null hypotheses and values away from zero generate alternatives to

the hypothesis of no main time main effect. Under all of the distribution families

we consider cases where ρ1 = ρ2 = .25, ρ1 = ρ2 = .75, and ρ1 = .25, ρ2 = .75.

We consider two models to create missingness patterns satisfying. The

first model is MCAR and is applied with J = 4. In particular P (∆ijk = 0) = pij,

where pi1 = 0, pi2 = 0.1, pi3 = .2, and pi4 = .3 for i = 1, 2. The second model

is MCR and is applied with J = 3. In particular, we have that P (∆i1k = 0) = 0

for all i and k, and

P (∆ijk = 0) =
{
1 + exp[−(β0 + β1Yi(j−1)k)]

}−1
∆i(j−1)k + pij(1 − ∆i(j−1)k),

for j = 2, 3, where β1 = log2 and β0 is such that
{
1 + exp[−(β0 + β1Yi(j−1)k)]

}−1

evaluated at the mean value of Yi(j−1)k under the null hypothesis (τ = 0) is equal

to pij, where p11 = 0, p12 = p13 = .1 and p21 = 0, p22 = p23 = .2.

Simulations indicated that the assumption of compact support for the

kernel function is not critical for the performance of the procedure, and we chose

the normal density kernel for our simulations. In all cases we consider in the

simulation study the nominal level is α = .1. The R statistical package was used

and all the results are based on 1000 runs. Tables 3.1 - 3.6, report Type I error

rates for the competing procedures under all null hypotheses (i.e. τ = 0) for the
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cases where the data are MCAR, and Tables 3.7 - 3.12, for the cases where the

data are MCR.

For the proposed nonparametric test we used bij = .5, bij = 1 and bij =

2, where bij denotes the bandwidth used for estimating the corresponding Fij.

Power comparisons were done only for main time effect alternatives, for τ =

0, 1, 2, 3, 4. Figures 3.1 and 3.2present the results for the normal and log-normal

cases, in Figures 3.1 and 3.2.

The results in the Tables 3.1 - 3.6 indicate that the complete cases anal-

ysis (CC) performs well under MCAR missingness in terms of Type I error,

especially when the sample size is fairly large (for the cases where (N1, N2) =

(100, 100), (100, 200), (200, 200)). Even though the CC test is unbiased for

MCAR data, when pi1 = 0, pi2 = 0.1, pi3 = .2, and pi4 = .3 for i = 1, 2,

approximately 50% of the cases will have at least one missing observation and

therefore disregarded for this analysis. Tables 3.7- 3.12 show that the CC analy-

sis can perform very poorly in terms of Type I error when the data are generated

under MCR. sNote that the Type I error for the CC analysis for interaction is

satisfactory, inspite of the biases in estimating the Fij’s. This is due to the fact

that, for the MCR model used in the simulations, these biases cancel out in the

interaction contrasts, while they add up in the main effects contrasts.

When ρ1 = ρ2 the achieved α-level of the F-tests for main factor and

interaction effects using the linear mixed effects model (FT) is satisfactory in

terms of Type I error for both normal and non-normal cases. However, when

ρ1 6= ρ2 the results are liberal in all of the cases; this behavior is more severe in

non-normal cases, when N1 6= N2 or when the data is MCR.

The proposed nonparametric test (NP) has satisfactory Type I error

rate in all cases, for at least one of the bandwidth values when the sample
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size is sufficiently large ((N1, N2) = (100, 100), (100, 200), (200, 200)). When

(N1, N2) = (50, 50) and in most of the cases where (N1, N2) = (50, 100) the

results are liberal. Note that the results in the simulation study in Chapter 2

indicate that for (N1, N2) = (50, 50)or(50, 100) the NP-method performed well

in the case of two time points. As the number of time points increases, the

number of possible missingness patterns increases as well, and since the NP-test

requires consistent estimation of the conditional distribution functions given any

missingness pattern the sample size should be larger.

In all MCAR cases the performance of the test is pretty robust to band-

width selection since bandwidths of .5, 1 or 2 perform well for a variety of

sample sizes, distribution families and correlations. In the MCR cases, however,

the bandwidth selection is more crucial, especial when the data are highly cor-

related (ρi = .75). When ρ1 = ρ2 = .75 or ρ1 = .25, ρ2 = .75 bandwidth of of .5

seems to give consistently better results in all of the cases.

The power simulations, which are summarized in Figures 3.1 and 3.2 are

all for the balanced case with N1 = N2 = 100. Figure 3.1 summarizes the results

for MCAR normal and log-normal data for the cases ρ1 = ρ2 = .25, ρ1 = ρ2 = .75

and ρ1 = .25, ρ2 = .75. Similarly, Figure 3.2 summarizes the results for MCR

cases. In all of this cases the power of the FT is very low compared to the power

of the other tests. Figure 3.1 shows that the power of the CC test is always lower

than the one of the NP-test. In the MCR cases the CC-test is highly biased and

thus the power results are not of interest.
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ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Eff. FT CC NP.5 NP1 NP2 FT CC NP.5 NP1 NP2

N1 = 50 N2 = 50 N1 = 50 N2 = 50

T 0.095 0.124 0.137 0.131 0.131 0.107 0.128 0.133 0.128 0.128
G 0.096 0.104 0.094 0.095 0.097 0.100 0.097 0.097 0.102 0.099

TG 0.102 0.128 0.146 0.134 0.137 0.104 0.127 0.147 0.142 0.133

N1 = 50 N2 = 100 N1 = 50 N2 = 100

T 0.105 0.116 0.129 0.118 0.120 0.112 0.120 0.116 0.111 0.117
G 0.096 0.094 0.124 0.122 0.122 0.103 0.098 0.106 0.113 0.108

TG 0.101 0.121 0.126 0.120 0.119 0.109 0.133 0.141 0.144 0.143

N1 = 100 N2 = 100 N1 = 100 N2 = 100

T 0.103 0.114 0.116 0.111 0.102 0.104 0.118 0.117 0.102 0.098
G 0.094 0.107 0.105 0.104 0.106 0.100 0.105 0.103 0.106 0.107

TG 0.093 0.102 0.105 0.100 0.097 0.094 0.111 0.111 0.113 0.117

N1 = 100 N2 = 200 N1 = 100 N2 = 200

T 0.101 0.127 0.123 0.122 0.124 0.112 0.127 0.122 0.119 0.111
G 0.089 0.109 0.115 0.112 0.108 0.097 0.102 0.105 0.113 0.106

TG 0.101 0.137 0.126 0.121 0.114 0.099 0.125 0.119 0.123 0.115

N1 = 200 N2 = 200 N1 = 200 N2 = 200

T 0.092 0.098 0.096 0.097 0.102 0.104 0.090 0.096 0.091 0.088
G 0.095 0.099 0.104 0.103 0.101 0.100 0.102 0.094 0.101 0.101

TG 0.094 0.116 0.109 0.105 0.105 0.102 0.110 0.103 0.095 0.097

Table 3.1: Type I error rates at nominal α = 0.1 in simulations with MCAR
Normal data; Here and all tables in this Chapter T , G, TG denote the hypotheses
of no main time effect, no main group effect, no interaction effect, and FT , CC,
NPb denote the F -test test, the complete pairs test, the proposed nonparametric
test with bandwidths bij = b.
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ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Eff. FT CC NP.5 NP1 NP2 FT CC NP.5 NP1 NP2

N1 = 50 N2 = 50 N1 = 50 N2 = 50

T 0.095 0.124 0.137 0.131 0.131 0.107 0.128 0.133 0.128 0.128
G 0.096 0.104 0.094 0.095 0.097 0.100 0.097 0.097 0.102 0.099

TG 0.102 0.128 0.146 0.134 0.137 0.104 0.127 0.147 0.142 0.133

N1 = 50 N2 = 100 N1 = 50 N2 = 100

T 0.105 0.116 0.129 0.118 0.120 0.112 0.120 0.116 0.111 0.117
G 0.096 0.094 0.124 0.122 0.122 0.103 0.098 0.106 0.113 0.108

TG 0.101 0.121 0.126 0.120 0.119 0.109 0.133 0.141 0.144 0.143

N1 = 100 N2 = 100 N1 = 100 N2 = 100

T 0.103 0.114 0.116 0.111 0.102 0.104 0.118 0.117 0.102 0.098
G 0.094 0.107 0.105 0.104 0.106 0.100 0.105 0.103 0.106 0.107

TG 0.093 0.102 0.105 0.100 0.097 0.094 0.111 0.111 0.113 0.117

N1 = 100 N2 = 200 N1 = 100 N2 = 200

T 0.101 0.127 0.123 0.122 0.124 0.112 0.127 0.122 0.119 0.111
G 0.089 0.109 0.115 0.112 0.108 0.097 0.102 0.105 0.113 0.106

TG 0.101 0.137 0.126 0.121 0.114 0.099 0.125 0.119 0.123 0.115

N1 = 200 N2 = 200 N1 = 200 N2 = 200

T 0.092 0.098 0.096 0.097 0.102 0.104 0.090 0.096 0.091 0.088
G 0.095 0.099 0.104 0.103 0.101 0.100 0.102 0.094 0.101 0.101

TG 0.094 0.116 0.109 0.105 0.105 0.102 0.110 0.103 0.095 0.097

Table 3.2: Type I error rates at nominal α = 0.1 in simulations with MCAR
log-normal data.
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ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Eff. FT CC NP.5 NP1 NP2 FT CC NP.5 NP1 NP2

N1 = 50 N2 = 50 N1 = 50 N2 = 50

T 0.109 0.125 0.145 0.142 0.140 0.105 0.159 0.130 0.126 0.135
G 0.090 0.104 0.112 0.106 0.103 0.071 0.084 0.077 0.078 0.075

TG 0.097 0.124 0.125 0.126 0.121 0.100 0.128 0.116 0.108 0.110

N1 = 50 N2 = 100 N1 = 50 N2 = 100

T 0.109 0.124 0.132 0.125 0.119 0.114 0.119 0.131 0.132 0.126
G 0.101 0.120 0.122 0.121 0.121 0.096 0.119 0.123 0.114 0.113

TG 0.107 0.133 0.116 0.117 0.115 0.110 0.136 0.126 0.123 0.119

N1 = 100 N2 = 100 N1 = 100 N2 = 100

T 0.109 0.102 0.111 0.108 0.107 0.104 0.127 0.136 0.138 0.129
G 0.118 0.082 0.106 0.100 0.096 0.112 0.098 0.117 0.120 0.114

TG 0.105 0.118 0.112 0.113 0.112 0.099 0.109 0.112 0.102 0.096

N1 = 100 N2 = 200 N1 = 100 N2 = 200

T 0.091 0.122 0.137 0.129 0.134 0.083 0.125 0.110 0.113 0.097
G 0.105 0.104 0.094 0.096 0.095 0.080 0.104 0.108 0.107 0.109

TG 0.088 0.118 0.081 0.085 0.086 0.090 0.103 0.100 0.091 0.087

N1 = 200 N2 = 200 N1 = 200 N2 = 200

T 0.097 0.108 0.096 0.099 0.097 0.100 0.110 0.096 0.101 0.101
G 0.080 0.101 0.101 0.102 0.104 0.089 0.098 0.095 0.099 0.103

TG 0.095 0.097 0.077 0.075 0.077 0.117 0.104 0.116 0.120 0.128

Table 3.3: Type I error rates at nominal α = 0.1 in simulations with MCAR
gamma data.
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ρ1 = .25, ρ2 = .75 Effect FT CC NP.5 NP1 NP2

N1 = 50, N2 = 50 T 0.128 0.130 0.120 0.113 0.109
G 0.100 0.107 0.107 0.111 0.109

TG 0.097 0.132 0.150 0.140 0.135

N1 = 50, N2 = 100 T 0.143 0.128 0.141 0.133 0.132
G 0.112 0.092 0.114 0.117 0.113

TG 0.133 0.138 0.141 0.141 0.144

N1 = 100, N2 = 100 T 0.137 0.132 0.121 0.116 0.110
G 0.103 0.112 0.110 0.112 0.117

TG 0.099 0.123 0.119 0.112 0.117

N1 = 100, N2 = 200 T 0.160 0.119 0.122 0.115 0.111
G 0.104 0.120 0.107 0.104 0.102

TG 0.140 0.138 0.130 0.125 0.126

N1 = 200, N2 = 200 T 0.114 0.105 0.107 0.099 0.103
G 0.097 0.093 0.099 0.098 0.095

TG 0.105 0.107 0.102 0.098 0.091

Table 3.4: Type I error rates at nominal α = 0.1 in simulations with MCAR
normal data; ρ1 = .25 and ρ2 = .75.

ρ1 = .25, ρ2 = .75 Effect FT CC NP.5 NP1 NP2

N1 = 50, N2 = 50 T 0.121 0.131 0.160 0.148 0.137
G 0.090 0.099 0.108 0.109 0.109

TG 0.112 0.146 0.169 0.155 0.155

N1 = 50, N2 = 100 T 0.138 0.138 0.122 0.119 0.116
G 0.093 0.102 0.118 0.113 0.111

TG 0.125 0.130 0.144 0.135 0.132

N1 = 100, N2 = 100 T 0.130 0.100 0.115 0.103 0.105
G 0.093 0.103 0.107 0.103 0.100

TG 0.105 0.126 0.118 0.109 0.105

N1 = 100, N2 = 200 T 0.143 0.112 0.117 0.112 0.115
G 0.114 0.113 0.125 0.126 0.121

TG 0.118 0.145 0.136 0.137 0.132

N1 = 200, N2 = 200 T 0.123 0.114 0.102 0.101 0.097
G 0.113 0.099 0.099 0.102 0.099

TG 0.106 0.111 0.125 0.125 0.121

Table 3.5: Type I error rates at nominal α = 0.1 in simulations with MCAR
log-normal data; ρ1 = .25 and ρ2 = .75.
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ρ1 = .25, ρ2 = .75 Effect FT CC NP.5 NP1 NP2

N1 = 50, N2 = 50 T 0.138 0.119 0.141 0.133 0.132
G 0.095 0.096 0.109 0.108 0.109

TG 0.101 0.120 0.118 0.113 0.115

N1 = 50, N2 = 100 T 0.218 0.151 0.162 0.156 0.148
G 0.113 0.095 0.109 0.099 0.100

TG 0.188 0.146 0.139 0.134 0.133

N1 = 100, N2 = 100 T 0.134 0.129 0.107 0.104 0.104
G 0.093 0.087 0.096 0.093 0.098

TG 0.090 0.115 0.106 0.096 0.099

N1 = 100, N2 = 200 T 0.200 0.130 0.113 0.112 0.112
G 0.119 0.096 0.121 0.124 0.124

TG 0.168 0.114 0.110 0.110 0.110

N1 = 200, N2 = 200 T 0.150 0.103 0.100 0.111 0.117
G 0.103 0.106 0.116 0.119 0.116

TG 0.095 0.114 0.098 0.096 0.091

Table 3.6: Type I error rates at nominal α = 0.1 in simulations with MCAR
gamma data; ρ1 = .25 and ρ2 = .75.
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ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Eff. FT CC NP.5 NP1 NP2 FT CC NP.5 NP1 NP2

N1 = 50 N2 = 50 N1 = 50 N2 = 50

T 0.103 0.177 0.112 0.109 0.110 0.115 0.137 0.131 0.145 0.183
G 0.098 0.147 0.120 0.117 0.117 0.114 0.158 0.109 0.111 0.112

TG 0.110 0.130 0.112 0.108 0.111 0.105 0.113 0.118 0.112 0.11

N1 = 50 N2 = 100 N1 = 50 N2 = 100

T 0.094 0.198 0.109 0.112 0.112 0.100 0.148 0.119 0.160 0.217
G 0.094 0.143 0.092 0.100 0.104 0.093 0.163 0.101 0.102 0.110

TG 0.087 0.120 0.100 0.097 0.099 0.091 0.113 0.112 0.104 0.100

N1 = 100 N2 = 100 N1 = 100 N2 = 100

T 0.106 0.235 0.110 0.111 0.122 0.111 0.171 0.109 0.153 0.240
G 0.091 0.179 0.119 0.122 0.124 0.095 0.191 0.104 0.111 0.115

TG 0.109 0.117 0.101 0.099 0.101 0.120 0.121 0.119 0.119 0.122

N1 = 100 N2 = 200 N1 = 100 N2 = 200

T 0.087 0.272 0.093 0.091 0.102 0.094 0.180 0.106 0.156 0.269
G 0.089 0.172 0.106 0.105 0.109 0.082 0.226 0.103 0.110 0.109

TG 0.087 0.124 0.099 0.093 0.096 0.087 0.120 0.106 0.117 0.118

N1 = 200 N2 = 200 N1 = 200 N2 = 200

T 0.098 0.349 0.104 0.105 0.115 0.098 0.224 0.127 0.217 0.384
G 0.100 0.202 0.100 0.099 0.104 0.097 0.254 0.098 0.112 0.113

TG 0.090 0.111 0.088 0.087 0.088 0.087 0.109 0.094 0.097 0.114

Table 3.7: Type I error rates at nominal α = 0.1 in simulations with MCR
normal data.



77

ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Eff. FT CC NP.5 NP1 NP2 FT CC NP.5 NP1 NP2

N1 = 50 N2 = 50 N1 = 50 N2 = 50

T 0.105 0.273 0.148 0.117 0.112 0.104 0.166 0.132 0.126 0.197
G 0.101 0.143 0.137 0.124 0.125 0.105 0.153 0.130 0.127 0.136

TG 0.109 0.140 0.127 0.109 0.103 0.118 0.150 0.141 0.112 0.109

N1 = 50 N2 = 100 N1 = 50 N2 = 100

T 0.093 0.295 0.141 0.127 0.122 0.106 0.177 0.137 0.149 0.241
G 0.101 0.149 0.134 0.123 0.120 0.098 0.172 0.117 0.116 0.121

TG 0.103 0.108 0.128 0.111 0.103 0.097 0.104 0.128 0.118 0.106

N1 = 100 N2 = 100 N1 = 100 N2 = 100

T 0.108 0.382 0.141 0.128 0.124 0.125 0.203 0.130 0.153 0.302
G 0.092 0.159 0.111 0.106 0.107 0.102 0.166 0.111 0.108 0.108

TG 0.087 0.105 0.119 0.106 0.093 0.116 0.107 0.116 0.102 0.097

N1 = 100 N2 = 200 N1 = 100 N2 = 200

T 0.095 0.473 0.119 0.105 0.100 0.115 0.245 0.116 0.148 0.348
G 0.111 0.176 0.118 0.110 0.106 0.101 0.191 0.115 0.110 0.114

TG 0.104 0.126 0.139 0.121 0.112 0.105 0.116 0.122 0.113 0.116

N1 = 200 N2 = 200 N1 = 200 N2 = 200

T 0.097 0.612 0.130 0.104 0.105 0.094 0.300 0.121 0.175 0.444
G 0.099 0.195 0.119 0.110 0.111 0.098 0.229 0.112 0.110 0.120

TG 0.087 0.127 0.147 0.124 0.112 0.100 0.118 0.119 0.116 0.129

Table 3.8: Type I error rates at nominal α = 0.1 in simulations with MCR
log-normal data.
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ρ1 = ρ2 = .25 ρ1 = ρ2 = .75

Eff. FT CC NP.5 NP1 NP2 FT CC NP.5 NP1 NP2

N1 = 50 N2 = 50 N1 = 50 N2 = 50

T 0.110 0.165 0.127 0.115 0.114 0.107 0.143 0.125 0.147 0.191
G 0.107 0.123 0.109 0.105 0.099 0.092 0.144 0.090 0.108 0.112

TG 0.103 0.132 0.132 0.124 0.118 0.113 0.109 0.117 0.117 0.124

N1 = 50 N2 = 100 N1 = 50 N2 = 100

T 0.090 0.172 0.111 0.108 0.107 0.110 0.130 0.115 0.141 0.216
G 0.090 0.120 0.103 0.100 0.093 0.099 0.138 0.096 0.097 0.096

TG 0.080 0.118 0.115 0.109 0.106 0.111 0.116 0.129 0.116 0.121

N1 = 100 N2 = 100 N1 = 100 N2 = 100

T 0.101 0.204 0.106 0.098 0.095 0.086 0.150 0.122 0.164 0.264
G 0.094 0.135 0.108 0.106 0.102 0.094 0.150 0.096 0.094 0.100

TG 0.110 0.119 0.115 0.112 0.104 0.097 0.120 0.118 0.108 0.109

N1 = 100 N2 = 200 N1 = 100 N2 = 200

T 0.114 0.232 0.128 0.120 0.121 0.096 0.142 0.127 0.189 0.310
G 0.110 0.146 0.101 0.094 0.095 0.098 0.161 0.103 0.111 0.108

TG 0.109 0.139 0.121 0.113 0.111 0.088 0.117 0.116 0.117 0.129

N1 = 200 N2 = 200 N1 = 200 N2 = 200

T 0.099 0.278 0.114 0.113 0.110 0.096 0.134 0.123 0.222 0.439
G 0.080 0.173 0.108 0.104 0.104 0.103 0.218 0.102 0.109 0.107

TG 0.089 0.134 0.112 0.106 0.099 0.110 0.106 0.102 0.112 0.115

Table 3.9: Type I error rates at nominal α = 0.1 in simulations with MCR
gamma data.
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ρ1 = .25, ρ2 = .75 Effect FT CC NP.5 NP1 NP2

N1 = 50, N2 = 50 T 0.142 0.150 0.124 0.138 0.148
G 0.103 0.218 0.110 0.117 0.121

TG 0.105 0.120 0.122 0.114 0.119

N1 = 50, N2 = 100 T 0.165 0.177 0.113 0.122 0.139
G 0.113 0.259 0.106 0.112 0.124

TG 0.140 0.121 0.102 0.108 0.103

N1 = 100, N2 = 100 T 0.147 0.188 0.116 0.129 0.164
G 0.087 0.304 0.104 0.120 0.140

TG 0.122 0.111 0.107 0.111 0.126

N1 = 100, N2 = 200 T 0.162 0.200 0.095 0.118 0.152
G 0.112 0.409 0.115 0.131 0.143

TG 0.141 0.112 0.119 0.119 0.142

N1 = 200, N2 = 200 T 0.146 0.249 0.105 0.148 0.217
G 0.101 0.451 0.102 0.118 0.138

TG 0.115 0.097 0.086 0.103 0.134

Table 3.10: Type I error rates at nominal α = 0.1 in simulations with MCAR
normal data; ρ1 = .25 and ρ2 = .75.

ρ1 = .25, ρ2 = .75 Effect FT CC NP.5 NP1 NP2

N1 = 50, N2 = 50 T 0.149 0.202 0.131 0.120 0.127
G 0.099 0.241 0.141 0.134 0.139

TG 0.122 0.123 0.114 0.113 0.120

N1 = 50, N2 = 100 T 0.179 0.204 0.139 0.131 0.145
G 0.122 0.278 0.130 0.123 0.132

TG 0.150 0.116 0.122 0.112 0.114

N1 = 100, N2 = 100 T 0.176 0.273 0.127 0.122 0.174
G 0.112 0.345 0.112 0.108 0.119

TG 0.132 0.124 0.137 0.132 0.127

N1 = 100, N2 = 200 T 0.235 0.299 0.112 0.121 0.178
G 0.128 0.449 0.106 0.115 0.136

TG 0.213 0.118 0.137 0.128 0.138

N1 = 200, N2 = 200 T 0.208 0.409 0.120 0.128 0.207
G 0.114 0.538 0.118 0.129 0.171

TG 0.165 0.128 0.135 0.135 0.172

Table 3.11: Type I error rates at nominal α = 0.1 in simulations with MCR
log-normal data; ρ1 = .25 and ρ2 = .75.
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ρ1 = .25, ρ2 = .75 Effect FT CC NP.5 NP1 NP2

N1 = 50, N2 = 50 T 0.145 0.125 0.125 0.132 0.149
G 0.106 0.176 0.106 0.112 0.113

TG 0.111 0.116 0.131 0.135 0.143

N1 = 50, N2 = 100 T 0.221 0.145 0.101 0.101 0.123
G 0.122 0.208 0.108 0.115 0.128

TG 0.181 0.127 0.098 0.100 0.108

N1 = 100, N2 = 100 T 0.149 0.148 0.118 0.129 0.158
G 0.101 0.253 0.106 0.116 0.126

TG 0.093 0.119 0.105 0.106 0.121

N1 = 100, N2 = 200 T 0.212 0.137 0.105 0.116 0.167
G 0.127 0.305 0.107 0.115 0.133

TG 0.179 0.105 0.096 0.111 0.128

N1 = 200, N2 = 200 T 0.156 0.172 0.106 0.141 0.202
G 0.089 0.369 0.109 0.115 0.143

TG 0.100 0.118 0.103 0.122 0.150

Table 3.12: Type I error rates at nominal α = 0.1 in simulations with MCR
gamma data; ρ1 = .25 and ρ2 = .75.
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Figure 3.1: MCAR cases, N1 = N2 = 100 and for NP method, b = 1.
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Figure 3.2: MCR cases, N1 = N2 = 100 and for NP method, b = .5.
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3.6 Data Analysis

As an application we will consider the study of incarcerated boys in Michi-

gan juvenile correction institutions that is described in Section ??. Recall that

the interviews took place within 10 days of their arrival, after being there four

months, just before leaving, six months after leaving and 36 months after leaving.

During the institutional stay the response rates remained high, with 99%, 96%,

91% for the first three interviews, and 75%, 60% for the later two interviews

after the boys returned to the community.

Our analysis focuses on analyzing a measure of delinquent values obtained

in the first four interviews considering three binary factors type of institution

(state or private), number of prior placements (0, > 0) and race (African Amer-

ican or not).

In our analysis we considered four tests: the F-test of the normal based

linear mixed effect model, the nonparametric complete-cases test and our pro-

posed test with two different bandwidths, and normal kernel. We also considered

the Epanechikov kernel but the results were very similar. The bandwidth values

we used are bi = νsp, i = 1, . . . , 8, where sp denotes the pooled, across the factor

level combinations, standard deviation of the observed data and ν = .5 and 1.

The analysis for the F-test was performed using the nmle package in R which

analyzes linear mixed effects according to Laird and Ware (1982). Table 3.13

gives p-values for the tests of main effects and interactions for all analyses.

The tests appear in agreement regarding the significance or not of most

main effects and interactions. Discrepancies appear in the main for the number

of previous placements and, perhaps more interesting from the scientific point

of view, in the race-institution interaction effect. Given the discreteness of the
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Effects FT CC NP.5 NP1

Institution (I) 0.429 0.930 0.766 0.817

Afr. American (A) 0.546 0.236 0.167 0.179

Prev. Placements (P) 0.001 0.056 0.013 0.015

Time (T) < .001 < .001 < .001 < .001

(IA) 0.150 0.074 0.033 0.031

(IP) 0.293 0.618 0.774 0.796

(IT) < .001 0.006 0.006 0.004

(AP) 0.925 0.568 0.530 0.535

(AT) 0.380 0.896 0.921 0.919

(PT) 0.015 0.743 0.350 0.305

(IAP) 0.453 0.265 0.198 0.191

(IAT) 0.571 0.930 0.992 0.993

(IPT) 0.723 0.171 0.091 0.087

(APT) 0.143 0.455 0.475 0.480

(IAPT) 0.422 0.327 0.157 0.162

Table 3.13: p-values for main effects and interactions using different methods.
FT , CC, and NPν denote the linear mixed effects F -test, the complete cases
test and the proposed nonparametric test with bi = νsp, i = 1, . . . , 8. (See text
for details.)

data and the probable inappropriateness of the MCAR assumption, the signifi-

cance (p-value≃ 0.03) indicated by our nonparametric procedures appears more

credible than that indicated by the other two procedures.

3.7 Outline of the Proofs

The proofs of the results presented in Section 3.3 will be presented under

the following technical assumptions.

Assumption A1 (i) If Y 0
j is continuous, the corresponding bandwidth sequence

bj
r, satisfies N(bj

r)
4 → 0 and N(bj

r)
3+2δ(log N)−1 → ∞, as N → ∞, for
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some δ > 0.

(iii) If Y 0
ij is discrete, (bj

r) is only required to converge to zero.

Assumption A2 (i) The probability density function K is symmetric and has

compact support.

(ii) The probability density function K has bounded second derivative and

satisfies
∫

uK(u)du = 0.

Assumption A3 (i) If Y 0
j is discrete, then

fj(y|S̃j
r) of Y 0

j given S̃j
r satisfies min{fj(y|S̃j

r); y ∈ Cj)} > 0, for all r and

j, where Cj is the set of mass points or atoms of the distribution of Y 0
j .

(ii) If Y 0
j is continuous, then for all j,

(a) The support Sj of Y 0
j is bounded for all j;

(b) the conditional density fj(y|S̃j
r) satisfies inf{fj(y|S̃j

r); y ∈ Sj} > 0, for

all j and r;

(c) The first two derivatives of Fj(y|F−1
jr

(u|Sj
r), Y

0
jr

= Yjrk, S
j
r) with re-

spect to u exist and are bounded for all u, y, r and j.

(d) Let gj.r(y) = fjr{y|Sj
r). The first two derivatives of gj.r(y) exist and

are bounded for all r and j.

Proof of Proposition 3.3.1.For notation simplification, let I(Sj
r.k) = I(∆k ∈

Sj
r) and I(S̃j

r.k) = I(∆k ∈ S̃j
r). Using (3.2.5) and (3.2.6), we have the following
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decomposition of F̂j − Fj

F̂j(y) − Fj(y) =
1

n

N∑

k=1

[
∆jkc(Yjk, y) +

J∑

r=2

I(Sj
r.k)F̂j(y|Y 0

jr
= Yjrk, S̃

j
r)

]
− Fj(y)

=
1

n

N∑

k=1

[c(Yjk, y) − Fj(y)]
J∑

r=1

I(Sj
r.k)

+
1

n

J∑

r=2

N∑

k=1

I(Sj
r.k)
[
Fj(y|Y 0

jr
= Yjrk, S̃

j
r) − c(Y 0

jk, y)
]

+
1

n

J∑

r=2

N∑

k=1

I(Sj
r.k)

[
N∑

l=1

wj
r.l(Yjrk)

{
c(Yjl, y) − Fj(y|Y 0

jr
= Yjrl, S̃

j
r)
}]

+
1

n

J∑

r=2

N∑

k=1

I(Sj
r.k)

[
N∑

l=1

wj
r.l(Yjrk)

{
Fj(y|Y 0

jr
= Yjrl, S̃

j
r)

− Fj(y|Y 0
jr

= Yjrk, S̃
j
r)
} ]

Note that the first term on the right hand side is centered, since using the

first part of the MCR assumption,(3.1.6), (Yj1, . . . , YjJ) and
∑J

r=1 I(Sj
r.k) are

independent. The second and the third term on the right hand side are centered

conditionally on Yjrk’s, and thus also unconditionally. The final term is the bias

term.

Using the integration by parts formula, we have

∫
(Ĥ − H)d(F̂j − Fj) = −

∫
(F̂j − Fj)d(Ĥ − H)

Thus in order to show that N1/2
∫

(Ĥ − H)d(F̂j − Fj) → 0 it suffices to show

that

N1/2

∫
Tqd(Ĥ − H) → 0, for q = 1, . . . , 4, (3.7.1)

where T1, T2, T3 and T4 are the first, second third and fourth term on the right

hand side of the decomposition of F̂j − Fj.
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The proof uses similar arguments as the proof of Proposition 2.3.1. and

thus is omitted. The only difference is the generalization of the notation to

accommodate the different missingness patterns

Proof of Theorem 3.3.2. Using the decomposition of F̂j − Fj given in the

proof of Proposition (3.3.1) we have that

∫
H(y) d (F̂j − Fj) =

1

n

N∑

k=1

[
H(Y 0

jk) − E{H(Y 0
j )}
] J∑

r=1

I(Sj
r.k)

+
1

n

N∑

k=1

J∑

r=2

I(Sj
r.k)
[
E{H(Y 0

j )|Y 0
jr

= Yjrk, S
j
r} − H(Y 0

jk)
]

+
1

n

N∑

k=1

J∑

r=2

I(Sj
r.k)

[
N∑

s=1

wj
r.s(Yjrk){H(Yjs) − E(H(Y 0

j )|Y 0
jr

= Yjrs, S̃
j
r)}
]

+
1

n

N∑

k=1

J∑

r=2

I(Sj
r.k)

N∑

s=1

wj
r.s(Yjrk)

∫
H(y)d

{
Fj(y|Y 0

jr
= Yjrs, S

j
r)

− Fj(y|Y 0
jr

= Yjrk, S
j
r)
}

+ op(N
−1/2).

therefore it suffices to show that

1

n

J∑

r=2

N∑

k=1

I(Sj
r.k)

[
N∑

s=1

wj
r.s(Yjrk){H(Yjs) − E(H(Y 0

j )|Y 0
jr

= Yjrs, S̃
j
r)}
]

= 2
N∑

k=1

J∑

r=2

Hj
r,1(Zk)

ñj
r

+ op(N
−1/2)

and

1

n

J∑

r=2

N∑

k=1

I(Sj
r.k)

N∑

s=1

wj
r.s(Yjrk)

∫
H(y)d{Fj(y|Y 0

jr
= Yjrs, S

j
r)

−Fj(y|Y 0
jr

= Yjrk, S
j
r)} = op(N

−1/2).

The proof follows using similar steps as in the proofs of (2.6.9) and (2.6.10).



Chapter 4

Fully Nonparametric ANCOVA with Fixed

Window Sizes

4.1 Introduction

The method of analysis of covariance is among the most commonly used

statistical procedures in scientific investigation. The classical analysis of covari-

ance model imposes quite restrictive assumptions, such as the response variable

has normal distribution, the conditional variances are constant, and the condi-

tional mean is a linear function of the covariate. These assumptions are not

always valid in practice. In response to these restrictions, Akritas, Arnold and

Du (2000) proposed the following fully nonparametric model for nonlinear anal-

ysis of covariance. Suppose we observe (Yij, Xij), i = 1, . . . , a, j=1,. . . ,ni, where

Yij and Xij represent the response and the covariate in the jth observation of

the ith group. With this notation, the fully nonparametric model assumes only

that

Yij|Xij = x ∼ Fix , (4.1.1)

where Fix is defined in (1.2.2). Note that model (4.1.1) does not specify how

the response distribution changes when the levels, or covariate value changes,

and does not assume continuity of the conditional distributions. Thus it is

completely nonparametric (also nonlinear and non-additive). In order to define

88
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effects and hypotheses in this nonparametric context, we choose a distribution

function G (x) and set

F i· (y) =

∫
Fix (y) dG (x) , and F ·x (y) =

1

a

a∑

i=1

Fix (y) . (4.1.2)

If the Xij are fixed, or for an analysis conditional on the observed covariate

values, Akritas, Arnold and Du (2000) recommend that G be taken as Ĝ(x) =

N−1
∑a

i=1

∑ni

j=1 I (Xij ≤ x), where N =
∑a

i=1 ni, and I(A) denotes the indicator

function of the event A, while if the Xij are random, they recommend G (x) =

E
[
Ĝ(x)

]
. Note that if the covariate has the same distribution in all groups,

F i·(y) is the marginal distribution function of Yij.

Akritas, Arnold and Du (2000) considered weighted (mid-)rank proce-

dures for testing hypotheses of interest regarding the F i·. For example, if i

enumerates the levels of only one factor it is of interest to test that F i· does

not depend on i (no covariate-adjusted main factor effect), but their formulation

also includes testing for no covariate-adjusted interactions when i enumerates

the levels of two or more factors; see Akritas, Arnold and Du (2000) for details.

Their approach relies on consistent estimation (using kernel methods) of

the conditional distribution functions Fix. By its nature, application of this

approach requires determination of the window bandwidth which is particularly

cumbersome in this context. Here we consider an alternative test procedure

for the same hypotheses. The proposed procedure does not require consistent

estimation of the Fix. and in particular, is using nearest neighbor windows of

fixed size. Simulations show that window sizes of 5 and 7 perform well in a

variety of situations. This is of great importance for the practical applicability

of the fully nonparametric methodology. At the theoretical level, the asymptotic

theory uses many elegant and novel arguments.



90

We also remark that Tsangari and Akritas (2003) generalized the method-

ology of Akritas, Arnold and Du (2000) to include ANCOVA designs with two

and three covariates. However, curse of dimensionality effects prevent further

generalization to more covariates. Since the methodology presented here uses

fixed window sizes, it will be less affected by the curse of dimensionality and thus

holds the promise of extendability to more than three covariates. Also the pro-

posed ANCOVA procedure is dealing with cases without missing observations.

In Chapter 5 we discuss a some ideas about how to extend this methodology to

cases with more than one covariate and with missing data.

The basic idea underlying the proposed methodology is to think of the

covariate as another factor, and consider test statistics used in ANOVA when one

of the factors has many levels; see Wang and Akritas (2002). The procedures

used in ANOVA with many factor levels are not directly applicable because

they require at least two observations per factor level combination. The way

this difficulty is overcome is described in the next section. The asymptotic

distribution of the test statistic is derived under both the null and the alternative

hypotheses, with the covariate being either random or non-random. In order to

keep the arguments simple, we consider test statistics based on the original

observations rather than the ranks.

A different perspective of the one-way design, which allows easy general-

ization to multi-way designs, is obtained via the unique decomposition:

Fix(y) = M(y) + Ai(y) + Dx(y) + Cix(y), (4.1.3)

where M(y) = a−1
∑a

i=1

∫
Fix(y)dG(x), Ai(y) = F i·(y) − M(y), Dx(y) =

F ·x (y) − M(y) and Cix(y) = Fix(y) − M(y) − Ai(y) − Dx(y). In this decom-

position, Ai are the covariate-adjusted nonparametric main effects of the factor,
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Dx is the nonparametric covariate effect and Cix the nonparametric interaction

between the factor and the covariate. The aforementioned hypothesis of no main

factor effect is equivalent to Ai = 0, for all i. It is important to keep in mind

that this hypothesis (as well as any other hypothesis involving the F i·, such as

no covariate adjusted main effects and interactions in multi-factor ANCOVA)

can be represented in the form

H0(C) : CA = 0, where A is the vector of all A(i), (4.1.4)

and C is a contrast matrix. For example the one-way hypothesis of equality of

all F i· (or that all Ai in (4.1.3) are zero) corresponds to C = (1a−1| − Ia−1),

where 1a is an a-dimensional vector of 1’s and Ia is the a × a identity matrix.

For additional examples see Akritas, Arnold and Brunner (1997).

The rest of the chapter is organized as the following. We introduce the

test statistic in Section 4.2. In Section 4.3, the asymptotic distributions of

the test statistic under the null and local alternative hypotheses are presented.

Numerical simulations are given in Section 4.4. Proofs of the main results are

given in Section 4.5.1, while some auxiliary results and technical derivations are

given in the Section 4.5.2

4.2 Construction of Test Statistics

Consider the ANCOVA model in the preceding section with one contin-

uous covariate. Without loss of generality, we may assume that the covariate

values are distinct, that in each group the observation pairs have been ordered

by the covariate values and the current indices represent such ordering.

The basic idea for constructing a test statistic is to treat the covariate as

a factor with many levels. Consider for simplicity a one-way ANCOVA design.



92

Then, the ANCOVA design is thought of as an a×N ANOVA design. Note that,

with the suggested choices of G in (4.1.2), the main row effects in the hypothetical

ANOVA design coincide with the main factor effects of the ANCOVA design if

the Xij are fixed (or for conditional analysis), and do so asymptotically if the Xij

are random. However, since there is only one observation per covariate value,

this hypothetical two-way ANOVA design has at most one observation per cell

and thus we cannot have a test statistic. To remedy this, we use smoothness

assumptions and augment the cells with observations falling in a window around

each covariate value. In particular, we first pool the covariates Xij in ascending

order and relabel them: X1, X2, . . . , XN . These form labels for the column levels

in the hypothetical ANOVA design. For the i-th factor level (i.e. i-th row in

the hypothetical ANOVA design), windows Wir of size k with the center Xr

are created, r = 1, . . . , N . The window Wir is formed from the k observations

(Yij, Xij) whose covariate values Xij are nearest to Xr among Xi1, . . . , Xini
. By

nearest to Xr we mean that their rank in X1, X2, ..., XN is closest to that of Xr.

More explicitly, Yij belongs in the window Wir if

|Ĝi(Xij) − Ĝi(Xr)| ≤
k − 1

2ni

, (4.2.1)

where Ĝi(x) = (ni)
−1
∑ni

j=1 I (Xij ≤ x) is the empirical distribution function of

the covariate in the i-th group. In what follows the windows Wir will also be

understood as sets containing the indices j of the covariate values in the i-th

group that belong to that window, that is

Wir =

{
j : I

[
|Ĝi(Xij) − Ĝi(Xr)| ≤

k − 1

2ni

]}
. (4.2.2)

We also note that Wi,Xi′j′
will be also used instead of Wir if Xi′j′ = Xr. For

simplicity we may take k to be odd. To distinguish between the augmented

ANOVA values and the truly observed data values, we label the t-th observation
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in the (i, r)-th cell of the augmented hypothetical two-way ANOVA Zirt, more

specifically, Zirt = Yij iff (4.2.1) is satisfied and
∑ni

l=1 I(Xil ≤ Xij, l ∈ Wir) = t.

This leads us to consider

Z.. = (Z1.., Z2.., . . . , Za..)
′, where Zi.. =

1

Nk

N∑

r=1

k∑

t=1

Zirt, (4.2.3)

as the random vector on which a statistic for testing the nonparametric hypoth-

esis of no treatment effects can be based. Note that the dependence of Z.. on k

is not made explicit.

Remark 4.2.1. The results of Bhattacharya (1974) indicate that even before

augmentation, the observations in the same row are only conditionally indepen-

dent (but not conditionally identically distributed). Zirt are the so-called induced

(or concomitant) order statistic.

According to the discussion in Section 4.1, extension to multi-factor de-

signs is immediately possible by thinking of i as enumerating the level combi-

nations of several factors. For convenience, we will keep the one-way notation

as representative for all designs. Recall that all possible hypotheses that we

will consider are given by a contrast matrix C. The actual test statistic for a

hypothesis represented by contrast matrix C is of the form

Qk(C) = N(CZ..)
′(CV̂C′)−1(CZ..),

where k is the window size and V̂ is a suitable estimator of the asymptotic

covariance matrix of Z... In the next section it will be shown that Qk(C) has an

asymptotic χ2 distribution as N → ∞, for both the fixed and random covariate

cases. In all derivations the window size k remains fixed.
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4.3 Main Results

For convenience, all the conditions required for the main results are stated

here.

Assumption A1. For each i, λ̂i = ni

N
→ λi ∈ (0, 1) as ni → ∞.

Assumption A2. The Xi are continuous random variables with cumulative

distribution functions Gi and density function gi, which have common bounded

support S, i = 1, . . . , a. The gi are differentiable and are bounded away from 0

on S uniformly in i. In the fixed design case, the covariate are assumed to be

a regular sequence generated from design density gi in the sense of Sacks and

Ylvisaker(1970), the design densities are assumed to have the same properties

as above.

Assumption A3. The E
(
Y 4

ij |Xij = x
)

are uniformly bounded in i, x.

Assumption A4. The σ2
i (x) = V ar(Yij|Xij = x), are bounded away from 0 on

S uniformly in i, x.

Assumption A5. The E(Yij|Xij = x), are Lipschitz continuous in x.

The next two propositions are needed for the proof of the main results.

The first proposition pertains to both random and fixed design.

Proposition 4.3.1. Assume assumptions A.1-A.4, then, with Zi.. defined in

(4.2.3),

(
N1/2(Z1.. − E(Z1..|X)), . . . , N1/2(Za.. − E(Za..|X))

)′ → Na(0, diag(c1, . . . , ca)),

in distribution conditionally on X, where defining g =
∑a

i=1 λigi,

ci =
λi

k2

∫
σ2

i (x) dGi(x) +
k − 1

k2

∫
σ2

i (x)
g(x)

gi(x)
dGi(x)

+
k(k − 1)

λik2

∫
σ2

i (x)
g2(x)

g2
i (x)

dGi(x).
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The proof of Proposition 4.3.1 is given in the next section.

Proposition 4.3.2. Under assumptions A1, A2 for the random design case,

N1/2

(∫
y d

∫
F1x(y)d(Ĝ(x) − G(x)), . . . ,

∫
y d

∫
Fax(y)d(Ĝ(x) − G(x))

)

→ Na(0,Σ),

where G(x) = E
[
Ĝ(x)

]
, Σ is an a × a matrix with diagonal elements σ2

1,i =

V ar [E(Yij|X)] and off-diagonal elements σ1,i1i2 = Cov (E(Yi1j|X), E(Yi2j|X)).

The proof of Proposition 4.3.2 follows by a straightforward application of

the multivariate CLT.

Proposition 4.3.3. Consistent estimators of σ2
1,i, σ1,i1i2 and ci, defined in

Propositions 4.3.1, 4.3.2, are

σ̂2
1,i =

1

N

N∑

r=1

(
Zir. − Zi..

)2
,

σ̂1,i1,i2 =
1

N

N∑

r1=1

N∑

r2=1

(
Zi1r. − Zi1..

) (
Zi2r. − Zi2..

)
,

ĉi =
λ̂i

k2ni

ni∑

j=1

σ̂2
i (Xij) +

k − 1

k2ni

ni∑

j=1

σ̂2
i (Xij)

ni

kN

N∑

r=1

I

[
|Ĝi(Xij) − Ĝi(Xr)| ≤

k − 1

2ni

]

+
k(k − 1)

k2

1

λ̂ini

ni∑

j=1

σ̂2
i (Xij)

{
ni

kN

N∑

r=1

I

[
|Ĝi(Xij) − Ĝi(Xr)| ≤

k − 1

2ni

]}2

where

σ̂2
i (Xij) =

k

k − 1

{
1

k

ni∑

l=1

Y 2
il I

[
|Ĝi(Xil) − Ĝi(Xij)| ≤

k − 1

2ni

]

−
(

1

k

ni∑

l=1

YilI

[
|Ĝi(Xil) − Ĝi(Xij)| ≤

k − 1

2ni

])2


 .
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The proof of Proposition 4.3.3 is not very difficult and thus it is omitted.

We do remark, however, that the proof relies on the small bias (of order 1/ni)

of the smoothed quantities. For example, Zir. is not a consistent estimator of

E(Yij|Xij = Xr) due to the fact that the window size k does not tend to infinity.

Additional insight into the estimator of ci can be gained from

1

k

∫
I

[
|Gi(Xij) − Gi(x)| ≤ k − 1

2ni

]
dG(x) =

g(Xij)

nigi(Xij)
+ op(N

−1/2)

which follows easily, first by a change of variable and then using Taylor expansion.

Theorem 4.3.4. Let a be the total number of factor level combinations in an

ANCOVA design with random covariate, and let assumptions A.1-A.5, for the

random design case, hold. Then, under the null hypothesis (4.1.4),

N(CZ..)
′(CV̂C′)−1(CZ..) → χ2

ν as N → ∞,

where C is a full row-rank ν × a contrast matrix, and V̂ is an a× a matrix with

diagonal elements σ̂2
1,i+ ĉi and off-diagonal elements are σ̂1,i1i2, which are defined

in Proposition 4.3.3.

Theorem 4.3.5. Let a be the total number of factor level combinations in an

ANCOVA design with nonrandom covariate, and let assumptions A.1-A.5, for

the fixed design case, hold. Then, under the null hypothesis (4.1.4),

N(CZ..)
′(CV̂∗C′)−1(CZ..) → χ2

ν as N → ∞,

where C is a full row-rank ν × a contrast matrix, and V̂∗ = diag(ĉ1, . . . , ĉa),

where the ĉi are defined in Proposition 4.3.3.

Next, we consider the asymptotic behavior of the test statistic under local

alternatives. A contiguous sequence of alternatives to the null hypothesis (4.1.4)
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is

FN,i(y|x) = FN,ix(y) = Fix(y) +
1√
N

Rix(y), for all x, y, and i = 1, . . . , a,(4.3.1)

where Fix(y), i = 1, . . . , a, satisfy the null hypothesis in (4.1.4) and Rix(y),

i = 1, . . . , a, are functions of bounded variation measuring the departure from

the null hypothesis.

The following theorem pertains to both the random and fixed design

cases.

Theorem 4.3.6. Assuming assumptions A.1-A.5, and consider the sequence

of alternatives given in (4.3.1). It is further assumed that the Rix(y) are

such that
∫

y2dRix(y) are uniformly bounded for all i and x. Define δi =
∫

yd
[∫

Rix(y)g(x)dx
]
, i = 1, . . . , a, and δ = (δ1, . . . , δa)

′. Then, as N → ∞, we

have

N(CZ..)
′(CV̂C′)−1(CZ..)

d→ χ2
a−1 (η1) , if the covariates are random, and

N(CZ..)
′(CV̂∗C′)−1(CZ..)

d→ χ2
a−1 (η2) , if the covariates are nonrandom

where η1 = δ′C′(CVC′)−1Cδ and η2 = δ′C′(CV∗C′)−1Cδ, with V, V⋆ being

the covariance matrices that are estimated by V̂, V̂∗ given in Theorems 4.3.4,

4.3.5, respectively.

4.4 Numerical Simulations

The purpose of the simulation study in this section is to examine the

performance of the proposed test statistic, in terms of the achieved type I error

probability, under different window sizes, and to investigate its power properties.

The R statistical package was used and all the results are based on 5000 runs.
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In order to have k observations in each window, we adjust Wir in the case

the rank of Xr within group i is less than k/2 or greater than ni − k/2. That is,

if the rank of Xr within group i is less than k/2, Wir is set to be j = 1, . . . , k,

and when greater than ni − k/2, Wir is set to be j = (ni − k), . . . , ni.

A balanced design with three groups is used throughout, and the common

group size will be denoted by n. In the first part of the simulation study we

examine the level of the test for different values of k, for n =30, 50 and 80.

In the second part we investigate the power properties using k = 7, which was

one of the values that performed well in terms of type I error (k = 5 performed

equally well), with 50 and 80 observations per group.

For the first part, the response variable and the covariate are generated

under the following distributions:

Random Covariate

Case R1: In this case Xij are iid U(0, 1) for i = 1, 2, 3, Y1j = 2X1j + ǫ1j,

Y2j = 2 − 2X2j + ǫ2j and Y3j = 1 + ǫ3j, where ǫij ∼ N(0, 1), independent.

Case R2: In this case X1j are iid U(10,20), and with B2 ∼ Beta(3, 3),

B3 ∼ Beta(5, 5), X2j are iid distributed as 10 + 10B2, and X3j are iid

distributed as 10 + 10B3. Finally Yij = 1 + .3Xij + ǫij, i = 1, 2, 3 and

j = 1, . . . , n, where ǫij ∼ N(0, 1), independent.

Fixed Covariate.

Case F1: The design points are generated by xij = j/(n+1) for i = 1, 2, 3,

j = 1, . . . , n, while the responses are Y1j = x1j/x+ǫ1j, Y2j = 2−x2j/x+ǫ2j

and Y3j = 1+ ǫ3j where x is the overall mean of the xij’s and ǫij ∼ N(0, 1),

independent.



99

Case F2: Here the design points for each group are generated from U(0, 1)

and are held fixed in all simulation runs. As a result, xij’s are different in

each group and now, not equally spaced. Responses are generated as in

case F1.

Case F3: Let b1j, b2j and b3j, j = 1, . . . , n, be the percentiles of U(0, 1),

Beta(3, 3) and Beta(5, 5), respectively, such that they have equal proba-

bility spacings, and set xij = 10 + 10bij, i = 1, 2, 3, j = 1, . . . , n. The

response is generated as Yij = 1 + .3Xij + ǫij, i = 1, 2, 3 and j = 1, . . . , n,

where ǫij ∼ N(0, 1), independent.

The achieved alpha levels for the two random covariate cases in Table

4.1 and for the three fixed covariate cases are summarized in Table 4.2. In all

cases the nominal level is α = 0.05, the results for α = 0.01 are similar and are

omitted.

Case R1 Case R2

n n

k 30 50 80 30 50 80

5 0.0474 0.0452 0.0412 0.0444 0.0452 0.0376

7 0.0526 0.0440 0.0448 0.0492 0.0424 0.0438

9 0.0544 0.0546 0.0406 0.0470 0.0450 0.0434

11 0.0602 0.0476 0.0456 0.0422 0.0490 0.0488

13 0.0630 0.0530 0.0482 0.0484 0.0438 0.0538

15 0.0616 0.0516 0.0510 0.0482 0.0458 0.0440

17 0.0568 0.0536 0.0462 0.0476 0.0492 0.0442

Table 4.1: Choice of k for cases with random X and no group effect.

In the case of a random covariate, we can see that for Case R1, the test

is getting more liberal for smaller sample sizes, and for large values of k. For
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Case F1.1 Case F1.2 Case F2

n n n

k 30 50 80 30 50 80 30 50 80

5 0.0460 0.0476 0.0458 0.0486 0.0450 0.0460 0.0480 0.0472 0.0476

7 0.0460 0.0470 0.0478 0.0462 0.0476 0.0508 0.0448 0.0486 0.0480

9 0.0482 0.0496 0.0482 0.0456 0.0492 0.0504 0.0454 0.0468 0.0480

11 0.0470 0.0496 0.0488 0.0470 0.0490 0.0492 0.0416 0.0478 0.0464

13 0.0476 0.0498 0.0496 0.0460 0.0486 0.0506 0.0390 0.0454 0.0484

15 0.0460 0.0506 0.0504 0.0462 0.0482 0.0514 0.0368 0.0442 0.0468

17 0.0436 0.0470 0.0518 0.0448 0.0468 0.0478 0.0336 0.0426 0.0466

Table 4.2: Choice of k for cases with fixed X and no group effect.

k = 7 the results obtained for each sample size are satisfactory. In Case R2, we

can see that the simulated alpha values are pretty robust with respect to sample

size and k.

From Table 4.2, we can see that for the first two cases, F1.1 and F1.2, the

results are similar and that the achieved alpha level is pretty robust with respect

to the choice of k. Furthermore, we observe that for smaller samples, n = 30

or 50, smaller values of k, k = 7 or 9 work slightly better than larger values.

For sample size 80, k = 13 and 15 seem to be the optimal choices, however

the results for smaller values of k are very satisfactory. In Case F2, we observe

similar trends.

Overall, the simulated alpha levels tend to be conservative; however, they

are pretty satisfactory.

Finally, we perform simulations to investigate the power properties of the

proposed test. In this case, the response is simulated independently of the co-

variate. In the case of a random covariate, X is simulated from U(0, 1) ; while in

the case of a fixed covariate, the design points for each group are equally spaced
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on (0,1). The response is generated from a standard normal or a lognormal dis-

tribution. For comparison purposes, we also report the results from the classical

analysis of covariance, denoted by CF on the table, using equal slopes in each

group.

We are using linear factor effects, and as expected, the classical analysis

of variance is performing well. Recall from the previous results we have seen that

k = 7 lead to satisfactory alpha levels regardless the sample size. Therefore, we

used k = 7 for both sample sizes that are used in this study (n = 50 and n = 80).

From Tables 4.3 and 4.4, we can see that our method, denoted by New-χ2 on the

table, behaves similar to the ANCOVA method for both covariate cases. Our

method appears to have a slightly lower power for the normal case and slightly

higher power in the lognormal case.

Random: X ∼ U(0, 1)

ǫij ∼ N(0, 1) ǫij ∼ exp(N(0, 1))

τ New-χ2 CF New-χ2 CF

0.0 0.0464 0.0460 0.0516 0.0372

n = 50 0.1 0.1228 0.1230 0.0772 0.0648

k = 7 0.2 0.4022 0.4086 0.1578 0.1338

0.3 0.7434 0.7574 0.2878 0.2598

0.4 0.9512 0.9560 0.4608 0.4398

0.5 0.9966 0.9964 0.6516 0.6240

0.0 0.0442 0.0454 0.0436 0.0418

n = 80 0.1 0.1748 0.1880 0.0846 0.0736

k = 7 0.2 0.5942 0.6104 0.2026 0.1952

0.3 0.9226 0.9294 0.4000 0.3890

0.4 0.9942 0.9960 0.6140 0.5908

0.5 1.0000 1.0000 0.7954 0.7780

Table 4.3: Power Study; 3 groups of equal size n = 50 and n = 80 and α = 0.05.
Yij = (i − 1)τ + ǫij



102

Fixed: xij = j/(n + 1)

ǫij ∼ N(0, 1) ǫij ∼ exp(N(0, 1))

τ New-χ2 CF New-χ2 CF

0.0 0.0468 0.0524 0.0472 0.0396

n = 50 0.1 0.1140 0.1316 0.0668 0.0618

k = 7 0.2 0.3640 0.4072 0.1386 0.1328

0.3 0.6858 0.7466 0.2608 0.2612

0.4 0.9228 0.9486 0.4320 0.4446

0.5 0.9914 0.9950 0.5970 0.6022

0.0 0.0450 0.0486 0.0418 0.0422

n = 80 0.1 0.1592 0.1916 0.0768 0.0754

k = 7 0.2 0.5438 0.6138 0.1838 0.1968

0.3 0.8876 0.9320 0.3662 0.3804

0.4 0.9928 0.9968 0.5780 0.5892

0.5 1.0000 1.0000 0.7630 0.7742

Table 4.4: Power Study; 3 groups of equal size n = 50 and n = 80 and α = 0.05.
Yij = (i − 1)τ + ǫij

4.5 Proofs

In the first part of this section presents the proofs of the main results

given in Section 4.3 and the second part presents some useful lemmas and the

proof of a step in the proof of Proposition 4.3.1 containing auxiliary results.

4.5.1 Main Proofs

Proof of Proposition 4.3.1. By the independence of the Z i·· it is suffi-

cient to show convergence of each coordinate T̂i = Zi.. − E(Zi..|X) to the corre-

sponding marginal distribution. Thus, using Z i.. = (Nk)−1
∑N

r=1

∑ni

j=1 YijI(j ∈

Wir), we need to show that

N1/2T̂i =
N1/2

Nk

N∑

r=1

ni∑

j=1

(Yij − E(Yij|X))I(j ∈ Wir) = N1/2

ni∑

j=1

tij → N(0, ci), (4.5.1)
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in distribution conditionally on X, where

tij = (Yij − E(Yij|X))

(
1

Nk

N∑

r=1

I(j ∈ Wir)

)
.

Relation (4.5.1) will be shown if we show that

V ar
(
N1/2T̂i|X

)
p→ ci, and

T̂i[
V ar

(
T̂i|X

)]1/2
→ N(0, 1), (4.5.2)

in distribution, conditionally on X. For both parts we need to find a suitable

expression for V ar
(
T̂i|X

)
. Noting that conditionally on X, tij are independent,

we have

V ar
(
T̂i|X

)
=

ni∑

j=1

V ar(tij|X)

=

ni∑

j=1

E((Yij − E(Yij|X))2|X)

(
1

Nk

N∑

r=1

I(j ∈ Wir)

)2

.

Next, write
∑N

r=1 I(j ∈ Wir) =
∑a

i′=1

∑ni

j′=1 I(j ∈ Wi,Xi′j′
), the number of win-

dows that contain each j. Since the indexes in Wir correspond only to covariate

values from group i, it follows that
∑ni

j′=1 I(j ∈ Wi,Xij′
) = k. However, due to

the randomness of the design points the count cannot be exact when the window

is centered at a covariate value that does not belong in group i. Thus we will

employ Lemmas 4.5.1, 4.5.2, which provide sufficient tools for proving (4.5.2).

In particular, Lemma 4.5.2 implies that, for all 0 < δ < 1,

k ≤
N∑

r=1

I(j ∈ Wir) = k +
a∑

i′ 6=i

n′
i∑

j′=1

I(j ∈ Wi,Xi′j′
) ≤ CN δ,

for some positive constant C. For the second part of (4.5.2), we use the above

lower and upper bounds to obtain

max1≤j≤ni
V ar(tij|X)∑ni

j=1 V ar(tij|X)
≤ C∗N2δ−1 → 0,
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for some positive constant C∗ > 0, ∀ 0 < δ < 1/2. Thus, the condition of

Theorem 2.7.4 (Lehmann, 1998) holds and the second part of (4.5.2) is shown.

The first part of (4.5.2) will follow by showing

(i) E(ξi) → ci, and (ii) ξi − E(ξi)
p→ 0, (4.5.3)

where ci is defined in Proposition 4.3.1, and

ξi = V ar(
√

NT̂i|X) =
1

Nk2

ni∑

j=1

σ2
i (Xij)

[
N∑

r=1

I(j ∈ Wir)

]2

. (4.5.4)

Consider first (4.5.3)(i). Expanding the square in the expression for ξi we have

E(ξi) =
ni

Nk2
E

[
σ2

i (Xij)
N∑

r=1

I(j ∈ Wir)

]

+
ni

Nk2
E

[
σ2

i (Xij)
N∑

r1 6=r2

I(j ∈ Wir1 ∩ Wir2)

]

=
ni

Nk2
[Q1 + Q2], say, (4.5.5)

where the dependence of Q1 and Q2 on i is suppressed. Write

Q1 = E

{
E

[
σ2

i (Xij)
N∑

r=1

I(j ∈ Wir)|Xi

]}

= E





σ2
i (Xij)E



∑

Xr∈
group i

I(j ∈ Wir)|Xi


+ σ2

i (Xij)E



∑

Xr /∈
group i

I(j ∈ Wir)|Xi








= E
{
σ2

i (Xij)Q11,j(Xi) + σ2
i (Xij)Q12,j(Xi)

}
, (4.5.6)

where the definition of Q11,j(Xi) and Q12,j(Xi) should be clear from the context.

It is obvious that Q11,j(Xi) = k. Using (4.5.26), and two Taylor expansions we
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have

Q12,j(Xi) =
∑

i1 6=i

ni1

∫ Xi,j+p

Xi,j−p

gi1(x)dx =
∑

i1 6=i

ni1

∫ Xij+Uij

Xij−Lij

gi1(x)dx

=
∑

i1 6=i

ni1

[
gi1(Xij)(Uij + Lij) + O(U2

ij) + O(L2
ij)
]

=
∑

i1 6=i

ni1

[
gi1(Xij)

Gi(Xij + Uij) − Gi(Xij − Lij)

gi(Xij)
+ O(U2

ij) + O(L2
ij)

]
,(4.5.7)

where p = (k − 1)/2 and Uij, Lij are the upper, lower p spacings from Xij.

Moreover, if Dij(k − 1) = Gi(Xij + Uij) − Gi(Xij − Lij), then results of Pyke

(1965) imply

E [Dij(k − 1)|Xij] =
k − 1

ni + 1
, E

[
Dij(k − 1)2|Xij

]
=

k(k − 1)

(ni + 1)(n1 + 2)
. (4.5.8)

Note that the second relation in (4.5.8) implies that E(U2
ij|Xij) = Op(N

−2) =

E(L2
ij|Xij). Combining the above with (4.5.6) we get

Q1 = kE[σ2
i (Xij)] + E{σ2

i (Xij)E[Q12,j(Xi)|Xij]}

= kE[σ2
i (Xij)] + E

{
σ2

i (Xij)
∑

i1 6=i

ni1gi1(Xij)

gi(Xij)

k − 1

ni + 1
+ Op(N

−1)

}
.(4.5.9)

Now consider Q2. Notice that

E

[
N∑

r1 6=r2

I(j ∈ Wir1 ∩ Wir2)|Xi

]
= Q21,j(Xi) + Q22,j(Xi) + Q23,j(Xi),

where Q21,j(Xi), Q22,j(Xi) and Q23,j(Xi) correspond to the sums when

Xr1 , Xr2 ∈ group i, Xr1 ∈ group i,Xr2 /∈ group i or vice versa, and

Xr1 , Xr2 /∈ group i, respectively. It is obvious that Q21(Xij) = k(k − 1).

Next,

Q22,j(Xi) = 2E




∑

Xr1∈group i

I(Xij ∈ Wir1)
∑

Xr2 /∈group i

I(Xij ∈ Wir2)|Xi




= 2kQ12,j(Xi).
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Finally, using (4.5.26) it is easily seen that when (i1, j1) 6= (i2, j2), I(j ∈ Wi,Xi1j1
),

I(j ∈ Wi,Xi2j2
) are conditionally independent given Xi. Thus, since I(j ∈ Wir1 ∩

Wir2) = I(j ∈ Wi,Xi1j1
)I(j ∈ Wi,Xi2j2

), it follows

Q23,j(Xi) =
∑

r1 6=r2;Xr1 /∈group i,

Xr2 /∈group i

E [I(j ∈ Wir1)|Xi] E [I(j ∈ Wir2)|Xi]

= Q12,j(Xi)
2 −

∑

Xr /∈group i

E[I(j ∈ Wi,Xr)|Xi]
2. (4.5.10)

Using two Taylor expansions as was done in (4.5.7) and the results of Pyke (1965)

stated in (4.5.8), we have that E
{∑

Xr /∈group i E[I(j ∈ Wi,Xr)|Xi]
2
}

= O(N−1).

Combining the above with the definition of Q2, we have

Q2 = E
{
σ2

i (Xij)[k(k − 1) + 2kQ12,j(Xi) + Q12,j(Xi)
2]
}

+ O(N−1). (4.5.11)

Since E [σ2
i (Xij)Q12,j(Xi)] was evaluated above, see (4.5.9), it remains to evalu-

ate E {σ2
i (Xij) Q12,j(Xi)

2} = E {σ2
i (Xij)E [Q12,j(Xi)

2|Xij]}. Using (4.5.7) and

(4.5.8) we have

E
{
Q12,j(Xi)

2|Xij

}

= E

{
∑

i1,i2 6=i

ni1ni2

[
gi1(Xij)

Gi(Xij + Uij) − Gi(Xij − Lij)

gi(Xij)
+ O(U2

ij) + O(L2
ij)

]

×
[
gi2(Xij)

Gi(Xij + Uij) − Gi(Xij − Lij)

gi(Xij)
+ O(U2

ij) + O(L2
ij)

]
|Xij

}

=
∑

i1,i2 6=i

[
ni1ni2gi1(Xij)gi2(Xij)

g2
i (Xij)

k(k − 1)

(ni + 1)(ni + 2)
+ Op(N

−1)

]
. (4.5.12)
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Using (4.5.5) and the subsequent derivations we have

E(ξi) = E

[
λiσ

2
i (Xij) +

(2k + 1)(k − 1)

k2
σ2

i (Xij)
∑

i1 6=i

λi1gi1(Xij)

gi(Xij)

+
k(k − 1)

k2
σ2

i (Xij)
∑

i1 6=i

∑

i2 6=i

λi1λi2gi1(Xij)gi2(Xij)

λig2
i (Xij)

]
+ o(1)

= E

[
λiσ

2
i (Xij) +

(2k + 1)(k − 1)

k2
σ2

i (Xij)
g(Xij) − λigi(Xij)

gi(Xij)

+
k(k − 1)

k2
σ2

i (Xij)
[g(Xij) − λigi(Xij)]

2

λig2
i (Xij)

]
+ o(1)

=
λi

k2

∫
σ2

i (x)gi(x)dx +
k − 1

k2

∫
σ2

i (x)g(x)dx

+
k(k − 1)

λik2

∫
σ2

i (x)
g2(x)

gi(x)
dx + o(1)

= ci + o(1).

Finally, we need to prove (4.5.3)(ii). This is deferred to Section 4.5.2. Thus the

first part of (4.5.2) is also shown and this completes the proof.2

Proof of Theorem 4.3.4. To obtain the asymptotic χ2 limiting

result, we will first establish the asymptotic normality, under H0(A), of

C(Z1.., . . . , Za..)
′. Because under H0(A),

C

(∫
yd

[∫
F1x(y)dG(x)

]
, . . . ,

∫
yd

[∫
Fax(y)dG(x)

])′

= 0a×1, (4.5.13)

it suffices consider the asymptotic normality of

C

(
Z1.. −

∫
yd

[∫
F1x(y)dG(x)

]
, . . . , Za.. −

∫
yd

[∫
Fax(y)dG(x)

])′

,

or simply of
(
Z1.. −

∫
yd
[∫

F1x(y)dG(x)
]
, . . . , Za.. −

∫
yd
[∫

Fax(y)dG(x)
])′

.
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The i-th coordinate of this random vector decomposes in two terms

Zi.. −
∫

yd

[∫
Fix(y)dG(x)

]

= Zi.. − E(Zi..|X) + E(Zi..|X) −
∫

yd

[∫
Fix(y)dG(x)

]

= Zi.. − E(Zi..|X) +

∫
yd

[∫
Fix(y)d(Ĝ(x) − G(x))

]
+ op(N

−1/2),(4.5.14)

where the last equality follows from

E(Zi..|X) =
1

N

N∑

r=1

E

[
1

k

k∑

t=1

Zirt|X
]

=
1

N

N∑

r=1

E

[
1

k

ni∑

j=1

YijI(j ∈ Wir)|X
]

=
1

N

N∑

r=1

[
1

k

ni∑

j=1

E(Yij|Xij)I(j ∈ Wir)

]
=

1

N

N∑

r=1

E(Yij|Xr) + Op(
1

N
)

=

∫
E(Yij|x)dĜ(x) + Op(

1

N
) =

∫
yd

[∫
Fix(y)dĜ(x)

]
+ Op(

1

N
), (4.5.15)

Notice that the fourth equality in (4.5.15) follows by an application of Lemma A.3

of Akritas and Wang (2002), using Assumption A5. According to decomposition

(4.5.14) we have
√

N
(
Z1.. −

∫
yd
∫

F1x(y)dG(x), ..., Za.. −
∫

yd
∫

Fax(y)dG(x)
)′

= H1(X,Y) + H2(X), where

H1(X,Y) =
√

N
(
Z1.. − E(Z1..|X), . . . , Za.. − E(Za..|X)

)′
,

H2(X) =
√

N

(∫
yd

∫
F1x(y)d(Ĝ(x) − G(x)), ...,

∫
yd

∫
Fax(y)d(Ĝ(x) − G(x))

)′

.

Using Lemma 4.5.3, Proposition 4.3.1 and Proposition 4.3.2 we have that under

H0(A)

N1/2

(
Z1.. −

∫
yd

[∫
F1x(y)dG(x)

]
, . . . , Za.. −

∫
yd

[∫
Fax(y)dG(x)

])′

→ Na(0,V),



109

as N → ∞, where V = diag(c1, . . . , ca) + Σ. Finally, we obtain the asymptotic

χ2 distribution in Theorem 4.3.4 using the fact that C is a full row-rank ν × a

matrix, and that V̂ is a consistent estimator of V, see Proposition 4.3.3. 2

Proof of Theorem 4.3.5. Notice that in the fixed covariate case, under

H0(A) we have,

C

(∫
yd

[∫
Fi1x(y)dĜ(x)

]
, . . . ,

∫
yd

[∫
Fiax(y)dĜ(x)

])′

= 0a×1, (4.5.16)

Furthermore, form (4.5.15) we have

Zi.. −
∫

yd

[∫
Fix(y)dĜ(x)

]
=
[
Zi.. − E(Zi..|X)

]
+ Op(N

−1).

Thus, applying Proposition 4.3.1 we have

N1/2

(
Z1.. −

∫
yd

[∫
Fi1x(y)dĜ(x)

]
, . . . , Za.. −

∫
yd

[∫
Fiax(y)dĜ(x)

])′

→ Na(0,V∗),

as N → ∞, where V∗ = diag(c1, . . . , ca).

The result of Theorem 4.3.5 follows using (4.5.16), and that V̂∗ is a

consistent estimator of V∗, see Proposition 4.3.3. 2

Proof of Theorem 4.3.6. Write CZ.. as

C

(
Z1.. −

∫
yd

[∫
FN,i1x(y)dG(x)

]
, . . . , Za.. −

∫
yd

[∫
FN,iax(y)dG(x)

])′

+ C

(∫
yd

[∫
FN,i1x(y)dG(x)

]
, . . . ,

∫
yd

[∫
FN,iax(y)dG(x)

])′

= C

(
Z1.. −

∫
yd

[∫
FN,i1x(y)dG(x)

]
, . . . , Za.. −

∫
yd

[∫
FN,iax(y)dG(x)

])′

+ N−1/2Cδ′ + op(N
−1/2).(4.5.17)

Thus, in order to derive the results in Theorem 4.3.6, we will first consider the

asymptotic distribution of

N1/2

(
Z1.. −

∫
yd

[∫
FN,i1x(y)dG(x)

]
, . . . , Za.. −

∫
yd

[∫
FN,iax(y)dG(x)

])′

.
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Let EN(·) denote the expectation under FN,ix defined in (4.3.1). Then,

following similar steps as in (4.5.15),

EN(Zi..|X) =

∫
yd

[∫
FN,ix(y)dĜ(x)

]
+ op(N

−1/2). (4.5.18)

Hence, by adding and subtracting EN(Zi..|X) we can write

Zi.. −
∫

yd

[∫
FN,ix(y)dG(x)

]

= Zi.. − EN(Zi..|X) +

∫
yd

∫
FN,ix(y)d(Ĝ(x) − G(x)) + op(N

−1/2).(4.5.19)

We will first show that

N1/2
(
Z1.. − EN(Z1..|X), ..., Za.. − EN(Za..|X)

)
→ Na(0, diag(c1, ..., ca)), (4.5.20)

as N → ∞, conditionally on X where ci are defined in Proposition 4.3.1. Note

that by the independence of the Zi.., to prove (4.5.20) it is sufficient to show

convergence of each coordinate T̂N,i = Zi.. − EN(Zi..|X) to the corresponding

marginal distribution. Let V arN(.) to denote the variance under FN,ix de-

fined in (4.3.1). Following the same steps as in the proof of the second part

of (4.5.2), we can show that the asymptotic distribution of T̂N,i/V arN

(
T̂N,i|X

)

conditioned on X is N(0, 1). Hence, to prove (4.5.20), it suffices to show that

ξN,i = V arN

(
N1/2T̂N,i|X

)
p→ ci. To do so, we will show that

(i) E(ξN,i) → ci and (ii) ξN,i − E(ξN,i)
p→ 0. (4.5.21)

Writing T̂N,i =
∑N

r=1

∑n1

j=1 [Yij − EN(Xij)] I(j ∈ Wir), using (4.5.23) we have
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that

E(ξN,i) =
1

Nk2

ni∑

j=1

E



σ2

N,i(Xij)

[
N∑

r=1

I(j ∈ Wir)

]2




=
ni

Nk2
E


σ2

N,i(Xij)E





(
N∑

r=1

I(j ∈ Wir)

)2

|Xi








=
ni

Nk2
E


σ2

i (Xij)E





(
N∑

r=1

I(j ∈ Wir)

)2

|Xi






+ O(N−1/2),

= E(ξi) + O(N−1/2) (4.5.22)

where ξi is defined in (4.5.4). For the third equality we used

σ2
N,i(Xij) = V arN(Yij|Xij) = EN(Y 2

ij |Xij) − [EN(Yij|Xij)]
2

=

∫
y2dFix(y) +

1√
N

∫
y2dRix(y) −

[∫
ydFix(y)

]2

−
[

1√
N

∫
ydRix(y)

]2

− 2√
N

∫
ydFix(y)

∫
ydRix(y)

= σ2
i (Xij) + Op(N

−1/2), (4.5.23)

where σ2
N,i(Xij) is the conditional variance under the sequence of alter-

natives defined in (4.3.1), and σ2
i (Xij) under the null, and the fact that

E

{(∑N
r=1 I(j ∈ Wir)

)2
}

is bounded, (see proof of Proposition 4.3.1). Finally,

a combination of (4.5.22) and (4.5.3)(i) completes the proof of (4.5.21)(i). The

proof of (4.5.21)(ii) follows by steps similar to those of the proof of (4.5.3)(ii).

This completes the proof of (4.5.20).

Next, we will show that

N1/2

(∫
yd

∫
FN,1x(y)d(Ĝ(x) − G(x)), . . . ,

∫
yd

∫
FN,ax(y)d(Ĝ(x) − G(x))

)′

→ Na(0,Σ), (4.5.24)
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as N → ∞, where G(x) and Σ are defined in Proposition 4.3.2. Noting that
∫

yd

∫
FN,ix(y)d(Ĝ(x) − G(x))

=

∫
yd

∫
Fix(y)d(Ĝ(x) − G(x)) +

1√
N

∫ [∫
ydRix(y)

]
d(Ĝ(x) − G(x))

= yd

∫
Fix(y)d(Ĝ(x) − G(x)) + op(1),

since
∫

ydRix(y) is bounded and from Assumption A2 we have that G(x) has

bounded support. Thus, (4.5.24) follows using the result in Proposition 4.3.2.

Now using (4.5.20), (4.5.24) and Lemma 4.5.3, we have that the right

hand side of (4.5.19) is asymptotically normally distributed with mean zero and

variance V = diag(c1, . . . , ca) + Σ). Using (4.5.17) and the fact that V̂ is a

consistent estimator of V, we obtain the result of Theorem 4.3.6 for random

covariates.

The result for the nonrandom covariate case, follows from the fact that Ĝ

replaces G in (4.5.17), from (4.5.18), (4.5.20), and the fact that ĉi is consistent

a estimator of ci for i = 1, . . . , a.2

4.5.2 Some Useful Lemmas and Auxiliary Results

Lemma 4.5.1. Let Xi1, . . . , Xini
be order statistics of the covariate from group

i, then ∀ 0 < δ < 1, and ∀ j = 1, . . . , ni − 1, Xi,j+1 − Xij = o
(
n
−(1−δ)
i

)
, almost

surely.

Proof. Set Sj = Gi(Xi,j+1) − Gi(Xij), j = 1, . . . , ni − 1, where Gi(·) is

the distribution function of the covariate in group i. Thus, the Sj are spacings of

a sample of size ni from U(0, 1). By the result of Pyke (1965), the distribution

function of Sj is

FSj
(u) = 1 − (1 − u)ni , ∀ j. (4.5.25)
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To show Xi,j+1 − Xij = o
(
n
−(1−δ)
i

)
, almost surely, we will first show that Sj =

o
(
n
−(1−δ)
i

)
almost surely. Indeed, for any ǫ > 0, we have

∞∑

ni=1

P

(∣∣∣∣∣
Sj

n
−(1−δ)
i

∣∣∣∣∣ > ǫ

)
=

∞∑

ni=1

P
(
Sj > ǫn

−(1−δ)
i

)
=

∞∑

ni=1

(
1 − ǫ

n1−δ
i

)ni

< ∞,

since
(
1 − ǫ/n1−δ

i

)ni ∼ e−ǫnδ
i . By the mean value theorem, Sj = gi(X

∗
ij)(Xi,j+1 −

Xi,j) for some X∗
ij ∈ (Xij, Xi,j+1). Since gi(·) is uniformly bounded away from

0, our conclusion follows. 2

Lemma 4.5.2. Let X11, . . . , X1n1 be a random sample from a population with

density g1(x) and distribution function G1(x), X21, . . . , X2n2 be a random sample

from a population with density g2(x) and distribution function G2(x). Assume

that the two samples are independent, n1/(n1+n2) → λ ∈ (0, 1), and g1(x), g2(x)

are differentiable, with common bounded support. For an arbitrary element X1j

from the first sample,

Nj =

n2∑

j′=1

I(X1j ∈ W1,X2j′
) ≤ C1n

δ
2,

∀ 0 < δ < 1, for some positive constant C1 almost surely, for n2 large enough,

where W1,X2j′
is the nearest neighborhood window of size k formed around center

X2j′ using observations from the first sample.

Proof. Letting An2 = [Nj ≤ C1n
δ
2], we need to show that

P ({An2 , for all n2 except a finite number) = P (∪∞
n2=1 ∩∞

k=n2
Ak) = 1,

or, equivalently that P (∩∞
n2=1 ∪∞

k=n2
Ac

k) = 0. By the Borel-Cantelli Lemma, it is

sufficient to show
∑∞

n2=1 P (Ac
n2

) < ∞. Note that with p = (k − 1)/2,

I(X1j ∈ W1,X2j′
) = I(X2j′ ∈ [X1,j−p, X1,j+p]). (4.5.26)
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Thus, Nj =
∑n2

j′=1 I(X2j′ ∈ [X1,j−p, X1,j+p]) ∼ Binomial(n2, P2), where

P2 = G2(X1,j+p) − G2(X1,j−p) = g2(X
∗
1,j)(X1,j+p − X1,j−p) = o(n

−(1−δ)
1 ),

almost surely, by Lemma 4.5.1. Note that the above relation implies the existence

of a constant C1 > 0 such that C1n
δ
2 > n2P2 + nδ

2. Hence

P (Ac
n2

) = P (Nj > C1n
δ
2) ≤ P (Nj − n2P2 > nδ

2)

≤ P
(
|Nj − n2P2| > nδ

2

)
≤ 2exp

(
− n2δ

2

2P2(1 − P2) + 2
3
nδ

2

)
≤ 2exp

(
− nδ

2

2C1 + 2
3

)
,

where the second inequality is an application of Bernstein’s inequality for the

binomial case. Since
∑∞

n2=1 exp
(
− nδ

2

2C1+ 2
3

)
< ∞, the lemma follows. 2

Lemma 4.5.3. Consider pairs of observations (Xi, Yi), i = 1, . . . , n, and set

X = (X1, . . . , Xn)′, Y = (Y1, . . . , Yn)′. Let H1(X,Y) and H2(X) be statistics

such that

H1(X,Y)|X → Na1(0,Σ1), H2(X) → Na2(0,Σ2),

where Σ1 and Σ2 are constant nonnegative definitive covariance matrices. Then

 H1(X,Y)

H2(X)


→ Na1+a2




 0

0


 ,


 Σ1 0

0 Σ2




 .

Proof. For any t1 ∈ Ra1 and t2 ∈ Ra2 , we have

P (H1(X,Y) ≤ t1, H2(X) ≤ t2) = EP (H1(X,Y) ≤ t1, H2(X) ≤ t2|X)

= E [P (H1(X,Y) ≤ t1|X)I(H2(X) ≤ t2)] ,

since

P (H1(X,Y) ≤ t1, H2(X) ≤ t2|X) =





0, if H2(X) > t2,

P (H1(X,Y) ≤ t1|X), if H2(X) ≤ t2.
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Let Z1 ∼ Na1(0,Σ1), then we have

E [P (H1(X,Y) ≤ t1|X)I(H2(X) ≤ t2) − P (Z1 ≤ t1)I(H2(X) ≤ t2)]

= E[(P (H1(X,Y) ≤ t1|X) − P (Z1 ≤ t1))I(H2(X) ≤ t2)] → 0

by the dominated convergence theorem, and the assumed convergence in condi-

tional distribution. Thus

lim P (H1(X,Y) ≤ t1, H2(X) ≤ t2) = lim{P (Z1 ≤ t1)E [I(H2(X) ≤ t2)]}

= P (Z1 ≤ t1) lim P (H2(X) ≤ t2) = P (Z1 ≤ t1)P (Z2 ≤ t2),

where Z2 ∼ Na2(0,Σ2), and hence the result follows. 2

Proof of (4.5.3)(ii)

By Chebyshev’s inequality it suffices to show V ar(ξi) → 0. This will

follow by showing

(i) V ar(ξi|Xi) → 0 and (ii) E(ξi|Xi) → ci. (4.5.27)

Indeed, (4.5.27) implies E(ξ2
i |Xi) → c2

i , and thus by the dominated convergence

theorem we have E(ξ2
i ) → c2

i . Combining this with (4.5.3)(i), V ar(ξi) → 0

follows. Write

V ar(ξi|Xi) =
1

N2k4

ni∑

j=1

V ar



σ2

i (Xij)

[
N∑

r=1

I(j ∈ Wir)

]2

|Xi





+
1

N2k4

ni∑

j1 6=j2

Cov



σ2

i (Xij1)

[
N∑

r=1

I(j1 ∈ Wir)

]2

,

σ2
i (Xij2)

[
N∑

r=1

I(j2 ∈ Wir)

]2

|Xi



 . (4.5.28)

We will show first that the variances and covariances appearing in (4.5.28) are fi-

nite. This will follow from the finiteness of E

{
σ4

i (Xij)
[∑N

r=1 I(j ∈ Wir)
]4

|Xi

}
,
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which we now show. By assumption A3 it suffices to consider the expectation of
[

N∑

r=1

I(j ∈ Wir)

]4

=
N∑

r=1

I(j ∈ Wir) +

(
4

2

) ∑

r1 6=r2

I(j ∈ Wir1)I(j ∈ Wir2)

+

(
4

3

) ∑

r1, r2, r3
are distinct

I(j ∈ Wir1)I(j ∈ Wir2)I(j ∈ Wir3)

+
∑

r1,r2,r3,r4
are distinct

I(j ∈ Wir1)I(j ∈ Wir2)I(j ∈ Wir3)I(j ∈ Wir4).

According to the notation in (4.5.6), E
(∑N

r=1 I(j ∈ Wir)|Xi

)
= Q11,j(Xi) +

Q12,j(Xi) and E
(∑N

r1 6=r2
I(j ∈ Wir1 ∩ Wir2)|Xi

)
= Q21,j(Xi) + Q22,j(Xi) +

Q23,j(Xi), whose expected values were shown there to be finite. The finite-

ness of the expectations of the other two terms can be seen exactly the same

way. Thus, the variances and covariances in (4.5.28) are finite, which also shows

that the first term in (4.5.28) tends to zero. To show that the second term of

(4.5.28) tends to zero, we first note that it suffices to replace the double sum
∑

j1 6=j2
in this term by

∑
|j1−j2|>k. Also note that by assumption A3,

∣∣∣∣∣∣
Cov



σ2

i (Xij1)

[
N∑

r=1

I(j1 ∈ Wir)

]2

, σ2
i (Xij2)

[
N∑

r=1

I(j2 ∈ Wir)

]2

|Xi





∣∣∣∣∣∣

≤ C4

∣∣∣∣∣∣
Cov





[
N∑

r=1

I(j1 ∈ Wir)

]2

,

[
N∑

r=1

I(j2 ∈ Wir)

]2

|Xi





∣∣∣∣∣∣
,

for some positive constant C4. Thus, we must evaluate Cov(Γ2
i (j1), Γ

2
i (j2)|Xi),

where

Γi(j1) =
N∑

r=1

I(j1 ∈ Wir) = k +
a∑

i′ 6=i

Γii′(j1),

Γi(j2) =
N∑

r=1

I(j2 ∈ Wir) = k +
a∑

i′ 6=i

Γii′(j2),

with Γii′(j1) =
∑ni′

j=1 I(j1 ∈ Wi,Xi′j
), Γii′(j2) =

∑ni′

j=1 I(j2 ∈ Wi,Xi′j
). Since

Γii′(j1) and Γii′(j2) are conditionally independent given Xi if i′1 6= i′2,
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Cov(Γ2
i (j1), Γ

2
i (j2)|Xi) is a finite sum of terms like Cov(Γii′(j1), Γii′(j2)|Xi),

Cov(Γii′(j1)
2, Γii′(j2)|Xi), Cov(Γii′(j1), Γii′(j2)

2|Xi), Cov(Γii′(j1)
2, Γii′(j2)

2|Xi),

and Cov(Γii′1
(j1)Γii′2

(j1), Γii′1
(j2)Γii′2

(j2)|Xi).

Because we are considering only the case that |j1 − j2| > k, it follows

that the set of windows containing Xij1 is distinct from that containing Xij2 .

Thus, if we define Γii′(j1, j2) =
∑ni′

j=1 I(j1 /∈ Wi,Xi′j
, j2 /∈ Wi,Xi′j

), the vector

(Γii′(j1), Γii′(j2), Γii′(j1, j2)) has the trinomial distribution. According to Lemma

4.5.1, the probabilities for each of the three outcomes are π1 = o(n
−(1−δ)
i′ ), π2 =

o(n
−(1−δ)
i′ ) and π3 = 1−π1−π2. With this observation all of the above covariances

can be obtained from the trinomial moment generating function M(t) = (π1e
t1 +

π2e
t2 + (1 − π1 − π2)e

t3)ni′ . For example,

Cov(Γ2
ii′(j1), Γ

2
ii′(j2)|Xi) =

∂M(t)

∂t21t
2
2

|t1=t2=t3=0 −
(

∂M(t)

∂t21
|t1=t2=t3=0

)

×
(

∂M(t)

∂t22
|t1=t2=t3=0

)

= O(ni′π1π2) = O(n
−(1−2δ)
i′ ).

It follows that N−2
∑

|j1−j2|>k Cov(Γ2
i (j1), Γ

2
i (j2)|Xi) = o(1), completing the

proof of (4.5.27)(i). Now we proceed with the proof of (4.5.27)(ii). Noting

that

E(ξi|Xi) =
1

Nk2

ni∑

j=1

σ2
i (Xij) [Q11,j(Xi) + Q12,j(Xi) + Q21,j(Xi) + Q22,j(Xi) + Q23,j(Xi)] ,

it suffices to show

1

Nk2

ni∑

j=1

σ2
i (Xij)Qm,j(Xi) = ci,m + o(1), ∀ m ∈ I = {11, 12, 21, 22, 23},(4.5.29)



118

where

ci,11 =
ci,21

k − 1
=

λi

k
E
{
σ2

i (Xij)
}

,

ci,12 =
ci,22

2k
=

k − 1

k2
λiE

{
σ2

i (Xij)
g(Xij) − λigi(Xij)

gi(Xij)

}
,

ci,23 =
k(k − 1)

k2
E

{
σ2

i (Xij)
[g(Xij) − λigi(Xij)]

2

λig(Xij)

}
,

because
∑

m∈I ci,m = ci. However, by the proof of relation (4.5.3)(i), we already

have that (Nk2)−1E
{∑ni

j=1 σ2
i (Xij)Qm,j(Xi)

}
= ni(Nk2)−1E {σ2

i (Xij)Qm,j(Xi)} =

ci,m + o(1), ∀ m ∈ I = {11, 12, 21, 22, 23}. Thus, (4.5.29) will follow if we show

that the variance of (Nk2)−1
∑ni

j=1 σ2
i (Xij)Qm,j(Xi) tends to zero. In view of its

aforementioned expectation, this is equivalent to

E





[
1

Nk2

ni∑

j=1

σ2
i (Xij)Qm,j(Xi)

]2


 = c2

i,m + o(1), ∀ m ∈ I. (4.5.30)

Noting that,

1

N2
E





[
ni∑

j=1

σ2
i (Xij)

]2


 =

1

N2
E

{[
ni∑

j=1

σ4
i (Xij) +

∑

j1 6=j2

σ2
i (Xij1)σ

2
i (Xij2)

]}

=
1

N2

{
niE

[
σ4

i (Xij)
]
+ ni(ni − 1)

{
E
[
σ2

i (Xij)
]}2
}

= λ2
i

{
E
[
σ2

i (Xij)
]}2

+ o(1),

and using the fact that Q11,j = k, Q21,j = k(k − 1), we have that (4.5.30) is true
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for m = 12 and m = 21. Next we consider the case with m = 12. We have

E





[
1

Nk2

ni∑

j=1

σ2
i (Xij)Q12,j(Xi)

]2




=
1

N2k4
E

[
∑

j1 6=j2

σ2
i (Xij1)σ

2
i (Xij2)Q12,j1(Xi)Q12,j2(Xi)

]
+ o(1)

=
1

N2k4

∑

j1 6=j2

∑

i1,i2 6=i

ni1ni2E
[

σ2
i (Xij1)σ

2
i (Xij2)gi1(Xij1)gi2(Xij2)

×Dij1(k − 1)Dij2(k − 1)

gi(Xij1)gi(Xij2)

]
+ o(1)

=
1

N2k4

∑

j1 6=j2

∑

i1,i2 6=i

ni1ni2E

[
σ2

i (Xij1)σ
2
i (Xij2)gi1(Xij1)gi2(Xij2)

gi(Xij1)gi(Xij2)

×E {Dij1(k − 1)Dij2(k − 1)|Xij1 , Xij2}
]

+ o(1), (4.5.31)

where Dij(k−1) = Gi(Xij +Uij)−Gi(Xij−Lij). The first equality is obtained by

the fact that E {σ4(Xij)Qj,12(Xi)
2} is bounded, which follows from assumption

A3 and (4.5.12). The second equality is obtained using (4.5.7). To evaluate

E {Dij1(k − 1)Dij2(k − 1)|Xij1 , Xij2} we note that in the case |j1 − j2| ≥ k − 1,

Dij1(k−1) and Dij2(k−1) have no common spacings, and in the case |j1− j2| <

k−1, Dij1(k−1) and Dij2(k−1) have k−1−|j1−j2| common spacings. Applying

a result of Pyke (1965) we have

E {Dij1(k − 1)Dij2(k − 1)|Xij1 , Xij2} =
(k − 1)2

(ni + 1)(ni + 2)

+
min {(k − 1 − |j1 − j2|), 0}

(ni + 1)(ni + 2)
. (4.5.32)

Since the number of j1, j2 pairs which differ by less than k is O(ni), it suffices

to replace
∑

j1 6=j2
, in expression (4.5.31), by

∑
|j1−j2|≥k. With this substitution,
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and using (4.5.32), (4.5.31) equals

(k − 1)2

N2k4

∑

i1,i2 6=i

ni1ni2

n2
i

∑

|j1−j2|≥k

E

[
σ2

i (Xij1)σ
2
i (Xij2)gi1(Xij1)gi2(Xij2)

gi(Xij1)gi(Xij2)

]
+ o(1)

=
(k − 1)2

N2k4

∑

i1,i2 6=i

ni1ni2E

[
σ2

i (Xij1)gi1(Xij1)

gi(Xij1)

]
E

[
σ2

i (Xij2)gi2(Xij2)

gi(Xij2)

]
+ o(1)

=
(k − 1)2

k4

{
E

[
σ2

i (Xij)
g(Xij) − λigi(Xij)

gi(Xij)

]}2

+ o(1) = c2
i,12 + o(1).

Next, we can obtain (4.5.30) for m = 22, using the fact that Qj,22(Xi) =

2kQj,12(Xi).

It remains to show (4.5.30) for m = 23. In order to do so we need to

need formulas for the expectations of uniform spacings raised to a power greater

than 2, which are not contained in Pyke (1965). Define the sequence of uniform

spacings S1, . . . , Sn such that S1 = U1, Si = Ui − Ui−1 for 2 ≤ i ≤ (n − 1)

and Sn = 1 − Sn−1, where U1, . . . , Un are the order statistics of n independent

uniform random variables on (0, 1). It can be shown that

E(Sa
i ) = E(Sa

1 ) =

(
n + a

a

)−1

(4.5.33)

E(S2
1S

2
2) =

2

n(n + 1)
E
[
S2

1(1 − S1)
2
]

(4.5.34)

E(S2
1S2S3) =

1

n(n − 1)
E
[
S2

1(1 − S1)
2
]
− 1

n − 1
E(S2

1S
2
2) (4.5.35)

E(S1S2S3S4) =
E [S1(1 − S1)(3S

2
1 − 5S1 + 1)]

n(n − 1)(n − 2)
− E(S2

1S
2
2)

(n − 1)(n − 2)
. (4.5.36)
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Now Consider the term in (4.5.30) with m = 23

E





[
1

Nk2

ni∑

j=1

σ2
i (Xij)Q23,j(Xi)

]2




= E





[
1

Nk2

ni∑

j=1

σ2
i (Xij)Q12,j(Xi)

2

]2


+ o(1)

=
1

N2k4
E

{
∑

j1 6=j2

σ2
i (Xij1)σ

2
i (Xij2)Q12,j1(Xi)

2Q12,j2(Xi)
2

}
+ o(1)

=
1

N2k4
E

{
∑

j1 6=j2

σ2
i (Xij1)σ

2
i (Xij2)

[
∑

i1,i2 6=i

ni1ni2

(
gi1(Xij1)gi2(Xij1)

Dij1(k − 1)2

gi(Xij1)
2

)]

×
[
∑

i3,i4 6=i

ni3ni4

(
gi3(Xij2)gi4(Xij2)

Dij2(k − 1)2

gi(Xij2)
2

)]}
+ o(1)

=
1

N2k4

∑

i1,i2 6=i
i3,i4 6=i

ni1ni2ni3ni4

∑

j1 6=j2

E

{
σ2

i (Xij1)σ
2
i (Xij2)

gi1(Xij1)gi2(Xij1)

gi(Xij1)
2

×gi3(Xij2)gi4(Xij2)

gi(Xij2)
2

E
[
Dij1(k − 1)2Dij2(k − 1)2|Xij1 , Xij2

] }
+ o(1). (4.5.37)

The first equality follows by (4.5.10). The second equality is justified since

we have shown that E[σ2
i (Xij1)Q12,j(Xi)

2] is bounded, see (4.5.9), and thus

E[σ4
i (Xij1)Q12,j(Xi)

4] is bounded. In the cases where |j1 − j2| ≥ k − 1, using

(4.5.33)-(4.5.36), we have

E
[
Dij1(k − 1)2Dij2(k − 1)2|Xij1 , Xij2

]

= (k − 1)2E(S2
1S

2
2) + 2(k − 1)2(k − 2)E(S2

1S2S3) + (k − 1)2(k − 2)2E(S1S2S3S4)

=
2(k − 1)2

ni(ni − 1)
E(S2

1) +
2(k − 1)2(k − 2)

ni(ni − 1)
E(S2

1) +
(k − 1)2(k − 2)2

ni(ni − 1)(ni − 2)
E(S1) + o(n−4

i )

=
k2(k − 1)2

n4
i

+ o(n−4
i ). (4.5.38)

Since the number of pairs (j1, j2) which differ by less than k is O(ni), and

E [Dij1(k − 1)2 Dij2(k − 1)2|Xij1 , Xij2 ] = O(n−4
i ), it suffices to replace

∑
j1 6=j2
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in (4.5.37), by
∑

|j1−j2|≥k. With this substitution, and using (4.5.38), (4.5.37)

becomes

k2(k − 1)2

n4
i N

2k4

∑

i1,i2 6=i
i3,i4 6=i

ni1ni2ni3ni4

∑

|j1−j2|≥k

E

{
σ2

i (Xij1)
gi1(Xij1)gi2(Xij1)

gi(Xij1)
2

×σ2
i (Xij2)

gi3(Xij2)gi4(Xij2)

gi(Xij2)
2

}
+ o(1)

=
n2

i k
2(k − 1)2

n4
i N

2k4

{
E

[
σ2

i (Xij1)
∑

i1,i2 6=i

ni1ni2gi1(Xij1)gi2(Xij1)

gi(Xij1)
2

]}2

+ o(1)

=
k2(k − 1)2

k4

{
E

[
σ2

i (Xij1)
∑

i1,i2 6=i

λi1λi2gi1(Xij1)gi2(Xij1)

λigi(Xij1)
2

]}2

+ o(1)

= c2
i,23 + o(1).

This completes the proof. 2



Chapter 5

Summary and Future Research

5.1 Summary and Conclusions

In conclusion, this thesis provides new approaches to fully nonparametric

testing procedures in the cases of factorial designs with repeated measurements

MCR and in ANCOVA. The proposed methodologies are valid for ordinal or

continuous data and the hypotheses we consider are functional nonparametric

hypotheses, which have the advantage of being invariant under monotone trans-

formation of the data and do not depend on any modelling assumptions

The first part of the thesis, Chapters 2 and 3, provides a new perspective

of dealing with missing data problems with a fully nonparametric approach.

First we extend the simple matched pairs analysis proposed by Akritas et. al.

(2002) to factorial designs with paired observations and then we generalize this

method to factorial designs with more than two repeated measurements. This is

the first time (mid-) rank testing procedures are applied to missing data without

assuming the data are MCAR. The methodology also includes a contribution

in the literature of nonparametric imputation by relaxing the assumption of

strong ignorability. This is achieved though a representation of the marginal

distributions, which allowed the use of more general and flexible donor sets in

our nonparametric imputation. The donor set selection basically determines the

assumptions regarding the missingness pattern. In the paired data cases the

123
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choice of donor set is straightforward but in cases with more than two repeated

measurements this choice can vary depending on the nature of the data set,

sample size limitations e.t.c. We investigated the performance of these tests in

terms of achieved Type I error and power using different simulation schemes

comparing it with ML method and the nonparametric complete cases method.

We also present a real data application, both for a case of paired data and for a

case of four repeated measurements.

The second part of the thesis, Chapter 4, provides nonparametric meth-

ods for ANCOVA. We consider the fully nonparametic ANCOVA model proposed

by Akritas, Arnold and Du (2000) which avoids the strong assumptions required

for the classical ANCOVA, such as the restrictive assumption of normality, ho-

moscedasticity and linearity. Their approach relies on consistent estimation (us-

ing kernel methods) of the conditional distribution functions Fix. By its nature,

application of this approach requires determination of the window bandwidth

which is particularly cumbersome in this context. (In Akritas, Arnold and Du

(2000) the bandwidth choice was based on resampling from the data in a way

that imitates the null hypothesis.) Here we considered an alternative test proce-

dure for the same hypotheses. The main novelty of the new procedure is that it

does not require consistent estimation of the Fix and the estimator is obtained

using nearest neighbor windows of fixed size. The basic idea for the proposed

testing procedure is to think of the covariate as another factor with infinitely

many levels, and consider test statistics used in two way ANOVA when one of

the factors has many levels; see Wang and Akritas (2002). Since there is only

one observation per covariate value, this hypothetical two-way ANOVA design

has at most one observation per cell. To remedy this, we use smoothness as-

sumptions and augment the cells with observations falling in a window around
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each covariate value. We remark that the artificial ANOVA design will have de-

pendent observations, since each observation will belong to several groups, but

this creates only a minor theoretical problem which is overcome by the use of a

suitable central limit theorem for dependent observations. The asymptotic dis-

tribution of the test statistic is derived under both the null and the alternative

hypotheses, with the covariate being either random or non-random. Simulation

results indicate that the model is effective in term of achieved Type I error and

power, both for random and non-random covariates.

5.2 Future Research

Fully nonparametric testing procedures for missing data is a new research

area and there are many issues that could be addressed in future research. One

important direction is to consider designs with a large number of repeated mea-

surements. Thus one has a response curve for each subject, and the resulting

data are also called functional data. The condition of identical observation time

points for all subjects is unrealistic in such data sets. One way of dealing with

not identical time points is to consider the set of all time points as common for

all subjects and treat the resulting slots (time points) as missing observations.

This is one case where the assumption of MCAR is realistic. Of course we can

have truly missing observations wither in designs with identical time points or

not. For this type of designs nonparametric imputation can use not only between

subjects information (donor sets) but also within subject information using in-

dividual response curve. We note that Wang and Akritas (2004) consider the

case of a large number of measurements per subject at identical time points with

complete observations. Their methodology uses a CLT for α-mixing processes

and thus it relies on a large number if observations per subject instead of a large
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number of subjects.

Another interesting direction is to investigate designs where there are

a few repeated measurements subject to missingness and a large number of

factor levels. This designs have applications in cases where there are a few

factors of primary interest and a lot of factors which are not of primary interest.

Factors not of primary interest may include auxiliary factors making the MCR

assumption more realistic. To give a brief description of the basic idea consider

the simpler case with paired data, the first time point fully observed and collapse

all auxiliary factors into one factor with large number of levels (so the only factor

of primary interest is time). Thus for each subject we have Yik = (Yi1k, Yi2k),

with Yijk ∼ Fij, for i = 1, . . . , I, j = 1, 2 and k = 1, . . . , ni. To test the time

effect we will need to consistently estimate the
∫

H(y)d F̄.j, where F̄.j(y) =

1/I
∑

i Fij(y), for j = 1, 2. With some asymptotic results this problem reduces

to the one of consistently estimating the marginal distribution functions F̄.j.

For the first time point, where the data is fully observed, F̄.1 is consistently

estimated by the average of the empirical distribution functions F̂i1, i = 1, . . . , I.

The challenge in this problem is to achieve consistent estimation of F̄.2. By a

decomposition similar to that used before, under MCR we have

Fi2(y) = P (∆i2 = 1) Fi2(y|∆i2 = 1)

+ P (∆i2 = 0)

∫
Fi2(y|Yi1 = x, ∆i2 = 1)d Fi1(x|∆i2 = 0),

Because individual estimates of each Fi2 will be averaged to produce consistent

estimate of F̄.2, the individual estimates need not be consistent. However, they

need to be unbiased (or the bias to tend to zero suitably fast). Since we condition

on the Yi1 values with ∆i2 = 0, we cannot have unbiased estimator of Fi2(y|Yi1 =

x, ∆i2 = 1) even with window containing only one observation. The challenge is
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to find the lowest rate at which the ni → ∞ resulting in consistent estimator of

F̄.2.

Fully nonparametric analysis of covariance is a relatively new research

area which is very important in a lot of applications. In this thesis we made a

step towards the further development of this model based on new methodologies.

The next step to be considered is to apply the proposed procedure to the (mid-)

rank transformed data rather than on the original observations. This will make

out methodology more attractive and more robust to extreme data behavior.

Some other designs with a lot of applications are ANCOVA with depen-

dent data and ANCOVA with more than one covariates. The first extension,

to dependent data, it is a rather simple step from the simple ANCOVA design

we presented in Chapter 4. The proposed method is promising for extensions to

designs to more than one covariates without coming across with the ”curse of

dimensionality”.

Moreover we plan to apply the ANCOVA methodology to missing data.

Thus we will considering the covariate with many levels and extend the pre-

viously described results to this case. Preliminary investigations suggest that

smoothing assumption (which are not appropriate in the previously described

problem with many factors) will allow as to produce consistent estimator of the

need nonparametic quantities using windows of fixed size.

L
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Appendix A

R CODES FOR SIMULATIONS

A.1 Code for Generating Missing data

##------------------------------------------------------------------------

## FUNCTION FOR SIMULATING MISSING DATA

## It can handle:

## - DIFFERENT % MISS. IN EACH CELL (pm.mat)

## - HETEROSCEDASTISITI (m.mat,v.mat)

## - DIFFERENT RHO’S IN EACH GROUP (rho.vec)

##------------------------------------------------------------------------

## -----------------------------------------------------------------------

## Function to create AR cov matrix.

AR <- function(a,rho){

Sigma <- matrix(rep(0,a*a),a,a,)

for(k in 0:(a-1))for(i in 1:(a-k))Sigma[i,i+k] <- Sigma[i+k,i] <- rho^k

Sigma

}

## pm.mat = probability of missigness in each cell

## m.mat = means in every cell (Default: mu_ij=0 for Normal, =1 for Gamma)

## v.mat = var in every cell (Default: v_ij=1 for Normal, not used for Gamma)

## mp = 1 -> MCAR, mp = 2 -> MAR

## dist =0 -> Normal, dist =1 ->lognormal dist =2 -> Gamma (m>0)

smd <- function(a,N.vec,mp,dist,rho.vec,pm.mat,m.mat,v.mat,tau.m){

result <- list()

I <- length(N.vec)

if(missing(tau.m))tau.m <- matrix(rep(0,(a*I)),I,a)

if(missing(m.mat))m.mat <- matrix(rep(0,(a*I)),I,a) + 1*(dist==2)

if(missing(v.mat))v.mat <- matrix(rep(1,(a*I)),I,a)

m.mat <- m.mat+tau.m/sqrt(sum(N.vec)/I)

for(i in 1:I){

m <- m.mat[i,]

129
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rho <- rho.vec[i]

N <- N.vec[i]

s <- AR(a,rho.vec[i])

diag(s) <- v.mat[i,]

s <-t(chol(s))

if(dist==0) Y <- t(sapply(rep(a,N.vec[i]),function(x)s%*%rnorm(x)+m))

if(dist==1){

Y <- t(sapply(rep(a,N.vec[i]),function(x)exp(s%*%rnorm(x)+m)))

Y[(Y > 10)] <- 10

}

if(dist==2){# for bivariate gamma, m>0

a0 <- rho.vec[i]*sqrt(prod(m))

beta <- 1;

Y0 <- rgamma(N.vec[i], a0)

Y <- numeric()

for(j in 1:a){

aj <- beta*m[j] -a0

Yj <- rgamma(N.vec[i], aj)

Y <- cbind(Y, Y0+Yj)

}

}

## ##################################

## Create the missigness mechanism. #

## ##################################

if(mp==1){ ## MCAR...

d <- matrix(rep(1,a*N.vec[i]),N.vec[i],a); it <- 0

pm <- as.matrix(pm.mat[i,])

ne0 <- sum(pm>0)

while(nrow(unique(d[!(apply(d,1,sum)==0),])) < 2^ne0-1*(ne0==a)){

d <- apply(1-pm,1,rbinom,n=N.vec[i],size=1)

it <- it+1

}

Y[d==0] <- NA

Y <- Y[(apply(d,1,sum)>0),]

d <- d[(apply(d,1,sum)>0),]

result[[i]] <- list("Y"=Y,"d"=d)

}

if(mp==2){ ## MAR ...

d <- matrix(rep(1,a*N.vec[i]),N.vec[i],a); it <- 0

pm <- as.matrix(pm.mat[i,])

ne0 <- sum(pm>0)

while(nrow(unique(d[!(apply(d,1,sum)==0),])) < 2^ne0-1*(ne0==a)){
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dd <- matrix(rep(1,a*N.vec[i]),N.vec[i],a)

dd[,1] <- rbinom(n=N.vec[i],size=1,prob=(1-pm[1]))

b1 <-log(2)

for(j in 2:a){

p <- pm[j]

n0 <- sum(dd[,(j-1)]==0)

d0 <- rbinom(n=n0,size=1,prob=(1-p))

y1 <- Y[(dd[,(j-1)]==1),(j-1)]

b0 <- log(p/(1-p))-b1*mean(y1)

p1 <- exp(apply(cbind(1,y1),1,function(v)v%*%c(b0,b1)))

p1 <- as.matrix(p1/(1+p1))

d1 <- apply(1-p1,1,rbinom,n=1,size=1)

dd[(dd[,(j-1)]==0),j] <- d0

dd[(dd[,(j-1)]==1),j] <- d1

}

d <- dd

it <- it+1

}

Y[d==0] <- NA

Y <- Y[(apply(d,1,sum)>0),]

d <- d[(apply(d,1,sum)>0),]

result[[i]] <- list("Y"=Y,"d"=d)

}

if(mp==21){ ## MAR ...

d <- matrix(rep(1,a*N.vec[i]),N.vec[i],a); it <- 0

pm <- as.matrix(pm.mat[i,])

ne0 <- sum(pm>0)

while(nrow(unique(d[!(apply(d,1,sum)==0),])) < 2^ne0-1*(ne0==a)){

dd <- matrix(rep(1,a*N.vec[i]),N.vec[i],a)

dd[,1] <- rbinom(n=N.vec[i],size=1,prob=(1-pm[1]))

for(j in 2:a){

p <- pm[j]

n0 <- sum(dd[,(j-1)]==0)

d0 <- rbinom(n=n0,size=1,prob=(1-p))

y1 <- Y[(dd[,(j-1)]==1),(j-1)]

p1 <- as.matrix(apply(as.matrix(y1),1,function(v){

(.6-.2*abs(v))*(abs(v)<3)+.1*(abs(v)>=3)}))

d1 <- apply(1-p1,1,rbinom,n=1,size=1)

dd[(dd[,(j-1)]==0),j] <- d0

dd[(dd[,(j-1)]==1),j] <- d1

}
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d <- dd

it <- it+1

}

Y[d==0] <- NA

Y <- Y[(apply(d,1,sum)>0),]

d <- d[(apply(d,1,sum)>0),]

result[[i]] <- list("Y"=Y,"d"=d)

}

}

result

}

A.2 Code for Mixed-Effects Models with MCR Data

## ############################################################

## SIMULATION STUDY FUNCTIONS

## FACTORIAL DESIGNS

## - Time Factor ( for j=1,..., a; a>=2)

## - Group Factor (i = 1,...,I; I>=1)

## ############################################################

## -------------#

## Indices i_r #

## -------------#

Q2 <- matrix(c(1,2,2,1),2,2)

Q3 <- t(matrix(c(1,2,3,2,1,3,3,2,1),3,3))

Q4 <- matrix(c(1,2,3,4,2,1,2,3,3,3,4,2,4,4,1,1),4,4)

##------------------------------------#

## FUNCTION USED IN CONTARST MATRICES #

##------------------------------------#

M.fun <- function(v){

if(v==2)result <- t(c(1,-1))

if(v>2)result <- cbind(rep(1,(v-1)),diag(rep(-1,(v-1))))

result

}

## -----------------#

## Kernel Functions #

## -----------------#

K.normal <- function(x,b)1/b*1/sqrt(2*pi)*exp(-(x/b)^2/2)
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K.epanechnikov <- function(x,b)(3/4)*(1-(x/b)^2*(abs(x/b)<1))

## ---------------------------------------------------------------------#

## Data Arrangement based on missigness patterns S^j_r and tilde(S^j_r) #

## ---------------------------------------------------------------------#

fS <- function(Y,d,i,r,a,Q){

if(r==1){

result <- Y[(d[,i]*d[,Q[i,2]]==1),Q[i,]]

if(a > 2){

for(r1 in 3:a)

result <- rbind(result,Y[(apply(cbind(d[,i],(1-d[,Q[i,2:(r1-1)]]),

d[,Q[i,r1]]),1,sum)==r1),Q[i,]])

}

result <- rbind(result,Y[(apply(cbind(d[,i],

(1-d[,Q[i,2:a]])),1,sum)==a),Q[i,]])

## to avoid vector form if only one case.

result <- matrix(as.vector(result),length(result)/a,a)

}

else result <- Y[(apply(cbind((1-d[,Q[i,1:(r-1)]]),d[,Q[i,r]]),1,sum)

==r),Q[i,r]]

as.matrix(result)

}

## Always for r>1!

fs <- function(Y,d,i,r,Q){

if(r==2)result <- Y[(d[,i]*d[,Q[i,r]]==1),c(i,Q[i,r])]

if(r>2)result <- Y[(apply(cbind(d[,i],(1-d[,Q[i,2:(r-1)]]),d[,Q[i,r]]),

1,sum)==r), c(i,Q[i,r])]

## to avoid vector form if only one case.

result <- matrix(as.vector(result),length(result)/2,2)

result

}

## -----------------------------------------------------------------------------#

## estimation function: #

## - Returns the test statistic vector and Covariance matrix for ONE group. #

## - group.data.list[[1]] = Y, data in one group #

## [[2]] = d, corresponding d (0 if NA, 1 otherwise) #

## [[3]] = H(Y) #

## [[4]] = b, bandwidth to be used for this group. #

## - a = number of time points #

## - Q = matrix of j_r indices #

## - ir = indices combination list used as a function argument (see Test fun.) #
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## -----------------------------------------------------------------------------#

estimation.function <- function(group.data.list,a,Q,ir,kernel){

if(kernel==0) K <- K.normal

if(kernel==1) K <- K.epanechnikov

Y <- group.data.list[[1]]

d <- group.data.list[[2]]

HY <- group.data.list[[3]]

b <- group.data.list[[4]]

## ---------------------------------------------------------

## Create the data lists/rank lists based on miss. patterns:

## ---------------------------------------------------------

YS <- Ys <- HYS <- HYs <- list()

for(i in 1:a){temp.S <- temp.s <- list()

for(r in 1:a)temp.S[[r]] <- fS(Y,d,i,r,a,Q)

for(r in 2:a)temp.s[[r]] <- fs(Y,d,i,r,Q)

YS[[i]] <- temp.S; Ys[[i]] <- temp.s

for(r in 1:a)temp.S[[r]] <- fS(HY,d,i,r,a,Q)

for(r in 2:a)temp.s[[r]] <- fs(HY,d,i,r,Q)

HYS[[i]] <- temp.S; HYs[[i]] <- temp.s

}

## ----------------------------------------------

nYS <- lapply(YS,function(v)lapply(v,nrow))

nYs <- lapply(Ys,function(v)lapply(v,nrow))

nobs <- sum(d)

n <- nrow(Y) ## no {NA,...,NA}- cases in Y (removed in smd.fun)

##----------------------#

## Test Statistic #

##----------------------#

##---------------------------------------------------#

## ehc.fun - Returns the vector of E(H(Yi)|Yr, S^i_r)#

## - x = c(i,r) #

##---------------------------------------------------#

ehc.fun <- function(x){

i <- x[1]; r <- x[2]

n01 <- nYS[[i]][[r]]

n11 <- nYs[[i]][[r]]

result <- numeric(0)

if(n01>0 & n11>0){

temp <- cbind(rep(HYs[[i]][[r]][,1],n01),

rep(Ys[[i]][[r]][,2],n01),

rep(YS[[i]][[r]],rep(n11,n01)))

k <- as.matrix(K(temp[,2]-temp[,3],b))
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sum.k <- rowsum(k,rep(1:n01,rep(n11,n01))) # lenght= n01

sum.k <- rep(sum.k,rep(n11,n01))

w.vec <-k/sum.k

result <- rowsum(temp[,1]*w.vec,rep(1:n01,rep(n11,n01))) #length = n01

}

result

}

ehc <- lapply(ir,function(v)lapply(v,ehc.fun))

EH <- list()

for(i in 1:a) {

temp <- HYS[[i]][[1]][,1]

for(q in 1:(a-1)) temp <- c(temp,ehc[[i]][[q]])

EH[[i]] <- temp

}

HdF <- as.numeric(lapply(EH,mean))

##------------------------------------------#

## COVARIANCE CALCULATION - get the h(z)’s #

##------------------------------------------#

##---------------------------------------------------------#

## eH1.fun: Returns E(H(Yi)|Ys=x,di=0,...,di_r=1,...) #

## - single value x #

## - !!! r > 1 !!! #

##---------------------------------------------------------#

eH1.fun <- function(x,i,r){

result <- numeric(0)

if(length(Ys[[i]][[r]])>0){

temp <- K(x-Ys[[i]][[r]][,2],b)

temp <- temp/sum(temp)

result <- HYs[[i]][[r]][,1]%*%temp

}

result

}

##---------------------------------------------------------#

## Ht.fun: Returns the vector of Ht.r^i(Zk,Zl) #

## for Yl in Ys(i,r) , constant k and r > 1. #

##---------------------------------------------------------#

Ht.fun <- function(p){

i <- p[1] ; r <- p[2]

n01 <- nYS[[i]][[r]]

n11 <- nYs[[i]][[r]]
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result <- numeric(0)

if(n01>0 & n11>0){

A <- (HYs[[i]][[r]][,1]

-apply(as.matrix(Ys[[i]][[r]][,2]),1,eH1.fun,i=i,r=r))

result <- apply(YS[[i]][[r]],1,

function(x){

temp <- K(x-Ys[[i]][[r]][,2],b)

temp <- temp/sum(temp) #mean...

c(temp*A,0)

}) #ADD ZERO FOR DIMENTION PURPOSES

}

result

}

Ht <- lapply(ir,function(v)lapply(v,Ht.fun))

## Create H11(Z) vector to be used to calculate h(Z) vector.

## Arrange the values of H11(zj) in a vector matching the EH vector.

## for Di=1, H11(Z) splits up in the cases (11_), (101) & (100)

## (i.e. in cases Ys(i,1),...,Ys(i,a),Y[di=1, dr=0 for r>1]).

## -for Ys_type cases, H11(Zj)=sum_k(Htilta(Zk,Zj)) (vector tmp1)

## -for Y[di=1, dr=0 for r>1], H11(Z)=0

## for Di=0, are the YS-type cases. (vector tmp2)

H11 <- matrix(rep(0,a*n),n,a)

for(i in 1:a){

tmp1 <- tmp2 <- numeric(0)

dd <- d[,i]

for (r in 2:a){

dd <- dd*(1-d[,Q[i,r]])

tmpr <- rep(0,nYs[[i]][[r]])

if(length(YS[[i]][[r]])>0 & length(Ys[[i]][[r]])>0){

tmpr <- apply(Ht[[i]][[r-1]],1,sum)

tmpr <- tmpr[-length(tmpr)] # to remove the dummy 0 zero.

## tmp2 <- c(tmp2,apply(Ht[[i]][[r-1]],2,sum))

}

tmp1 <- c(tmp1,tmpr)

}

H11[1:length(tmp1),i] <- tmp1

##H11[,i]<- c(tmp1,rep(0,sum(dd)),tmp2) ## theoretically this is =0.

}

## ##############################################################
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## Create the h.mat matrix, using the EH list and H11 matrix #

## ##############################################################

h.mat <- matrix(rep(0,a*n),n,a)

for(i in 1:a) h.mat[,i] <- EH[[i]]-mean(EH[[i]])+H11[,i]

pos <- 1:n

track <- numeric()

for(i in 1:a){

temp <- pos[(d[,i]*d[,Q[i,2]]==1)]

if (a > 2 )

for(r1 in 3:a)temp <- c(temp,pos[(apply(cbind(d[,i],(1-d[,Q[i,2:(r1-1)]]),

d[,Q[i,r1]]),1,sum)==r1)])

temp <- c (temp,pos[(apply(cbind(d[,i],(1-d[,Q[i,2:a]])),1,sum)==a)])

for ( r in 2:a )

temp <- c(temp,pos[(apply(cbind((1-d[,Q[i,1:(r-1)]]),d[,Q[i,r]]),

1,sum)==r)])

track <- cbind(track, temp)

}

h.mat1 <- matrix(rep(0,n*a),n,a)

for(i in 1:a) h.mat1[track[,i],i] <- h.mat[,i]

h.mat <- h.mat1

## N is deleted with N in the quadratic form, n=ni and h=hi.

V <- (1/n)*cov(h.mat) # n in this case is equal to n_i

result <- list(HdF,V)

result

}

##------------------------------------------------------------------------------#

## NP.Test Fucntion: Returns the proportions of rejection for alpha = 1% and 5% #

## #

## Arguments: a= number of time points #

## N.vec = (N1,...,NI) #

## Q = matrix of j_r indices #

## smd.fun = function for simulation missng data #

## b = vector of bandwidths in each group #

## M = number of simultion runs #

## kernel = 0 -> Normal, 1-> Epanechnikov #

##------------------------------------------------------------------------------#

NP.Test <- function(a,N.vec,Q,smd.fun,b,M,kernel){

if(missing(kernel)) kernel <- 0
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## Create indices combination list to be used as a function argument.

## Use list form to avoid binding same length vectors into a matrix in ehc list.

ir <-list()

for(i in 1:a){

temp <- list()

for(r in 1:(a-1))temp[[r]]<- c(i,r+1)

ir[[i]] <- temp

}

I <- length(N.vec)

if(length(b) ==1) b <- rep(b,I) # for same b in everyt group.

## ------------------

## Contrast Matrices:

## ------------------

## F should be of the form: (F11,...,FIa)

C.ls <- list()

C.ls[[1]] <- kronecker(diag(rep(1,I)),M.fun(a)) # simple Time effect

if(I>1){

C.ls[[2]] <- kronecker(M.fun(I),diag(rep(1,a))) # simple Group effect

C.ls[[3]] <- kronecker(M.fun(I),M.fun(a)) # Group by Time effect

}

Cmain.ls <- list()

Cmain.ls[[1]] <- kronecker(t(rep(1/I,I)),M.fun(a)) # main Time effect

if(I>1){

Cmain.ls[[2]] <- kronecker(M.fun(I),t(rep(1/a,a))) # main Group effect

Cmain.ls[[3]] <- kronecker(M.fun(I),M.fun(a)) # Group by Time effect

}

C.ls <- Cmain.ls # comment out for simple effects.

df.vec <-numeric()

for(l in 1:length(C.ls)){

df.vec[l] <- nrow(C.ls[[l]])

}

TS.mat <- numeric() # an Mx(number of tests) matrix of the TS-values.

## ----------------------- M- Simulation Runs ---------------------------

for(m in 1:M){

data.list <- smd.fun(a,N.vec)

Y.temp <- NULL; d.temp <- NULL; n.vec <- numeric()

for (i in 1:I){

Y.temp <- rbind(Y.temp,data.list[[i]][[1]])

d.temp <- rbind(d.temp,data.list[[i]][[2]])

n.vec <- c(n.vec,nrow(data.list[[i]][[1]]))
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}

HY.temp <- matrix(as.vector(rank(Y.temp)),sum(n.vec),a)-1/2

HY.temp[HY.temp > sum(d.temp)] <- NA

HY.temp <- HY.temp/sum(d.temp)

data.list[[1]][[3]] <- HY.temp[1:n.vec[1],]

data.list[[1]][[4]] <- b[1]

if(I>1)for(i in 2:I){

data.list[[i]][[3]] <- HY.temp[(sum(n.vec[1:i-1])+1):sum(n.vec[1:i]),]

data.list[[i]][[4]] <- b[i]

}

estimates.list <- lapply(data.list,estimation.function,a=a,Q=Q,ir=ir,

kernel=kernel)

HdF <- numeric()

V <- matrix(rep(0,(a*I)^2),a*I,a*I)

for(i in 1:I){

HdF[((i-1)*a+1):(i*a)]<- estimates.list[[i]][[1]]

V[((i-1)*a+1):(i*a),((i-1)*a+1):(i*a)] <- estimates.list[[i]][[2]]

}

## N in the enumarator is deleted with the N in the V-matrix.

TS.mat <- rbind(TS.mat,sapply(C.ls,function(X)

t(X%*%HdF)%*%solve(X%*%V%*%t(X))%*%X%*%HdF))

}

## -------------------------------------------------------------------------

PR <- numeric()

for(l in 1:length(C.ls)){

PR <- rbind(PR,c(sum((TS.mat[,l]>=qchisq(0.95,df.vec[l])))/M,

sum((TS.mat[,l]>=qchisq(0.90,df.vec[l])))/M))

}

TS.info <- t(apply(TS.mat,2,function(x)c(mean(x),var(x))))

if(I == 1){

dimnames(PR) <- list(c("T"), c("alpha=0.05","0.1"))

dimnames(TS.info) <- list(c("T"), c("Mean(TS)" ," Var(TS)"))

}

if(I >1){

dimnames(PR) <- list(c("T","G","TxG"), c("alpha=0.05","0.1"))

dimnames(TS.info) <- list(c("T","G","TxG"), c("Mean(TS)" ," Var(TS)"))

}

result <- list(PR,TS.info)

result[[1]][,2]

}
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A.3 Code for ANCOVA Simulations

############################

## X= unif, sd(errors) =1 ##

############################

ws <- 1:12

B <- 5000

sizes30 <- c(30,30,30)

sdv <- 1

x.function <- function(sizes)runif(sum(sizes))

y.function <- function(x,mx,group,sdv){

my <- apply(cbind(group,x),1,

function(v)v[2]/mx *(v[1]==1)+(2-v[2]/mx)*(v[1]==2)+1*(v[1]==3))

my+rnorm(length(group),0,sdv)

}

ANCOVA <- function(sizes,ws,B,sdv){

N <- sum(sizes) # sample size

k <- length(sizes) # number of groups

group <- rep(1:k,sizes) # (1,...,1,2,...,2,...,k,...k) 1XN

allsizes <- rep(sizes,sizes) # (n1,...,n1,...,nk,...,nk) 1xN

## Create an NxN matrix, each column=the rank of the ordered Xi’s within group.

## each column out of N is equal to : (1,...,n1,1,...,n2,...,1,...,nk)’

## rij.mat is the same for all the simulation runs...get it outside for-loop.

rij.mat <-NULL

for( i in 1:k){

rij.mat <-c(rij.mat,1:sizes[i])

}

rij.mat <- matrix(rij.mat,N,N)

if (k>2) ctr.mat <- cbind(rep(1,k-1),diag(rep(-1,k-1)))

if (k==2) ctr.mat <- matrix(c(1,-1),1,2) # C=(1, -1)

PR <- NULL

##---------------------------------------------------------------#

## First FOR-LOOP, different values of n #

##---------------------------------------------------------------#

for(m in ws){

n <- m*2+1 # window size

Q <-numeric() # a vector to store the values of the Q-form
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##---------------------------------------------------------------#

## Second FOR-LOOP, B-runs #

##---------------------------------------------------------------#

for(b in 1:B){

x <- x.function(sizes)

mx <- mean(x)

## Sort the data within each group, based on x.

temp <- cbind(group,x)

temp2 <- NULL

for( i in 1:k){

temp1 <- temp[temp[,1]==i,]

temp2 <- rbind(temp2,temp1[sort.list(temp1[,2]),])

}

x <- temp2[,2]

## Calculate the rank of X <- r among each group, ni* G <- i(X <- r) ;

x.mat <- t(matrix(x,N,N)) # each row is x’=(x11,...,xknk)=(x1,...,xN)

temp <- (x.mat-x)

# the columns are:(x1-x), ...(xN-x), i.e.all the dist.

temp <- sign(temp)

temp <- replace(temp, temp==0,1)

temp <- (temp+1)/2

# "-" =0 for xij>xr and "+"=1 for xij<=xr

temp <- rowsum(temp,group)

# ni*G <- i(X <- r), dim=kxN, "ranks within each group"

## correction for the two edges

temp <- replace(temp, temp<n/2,(n+1)/2)

temp <- sizes-temp+1

temp <- replace(temp, temp<n/2,(n+1)/2)

temp <- sizes-temp+1

rr.mat <- apply(temp,2,rep,times=sizes) # NxN matrix

## K.mat

k.mat <-1*(2*abs(rij.mat-rr.mat)/(n-1)<=1)

y <- y.function(x,mx,group,sdv)

##---------------------------------------------------------------#

## Calculation of the test statistic;

##---------------------------------------------------------------#

## Obtain the Zrij’s and the test statistic.

Zrij.mat <- k.mat*y
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# an NxN matrix, in each column only k*n elemnts != 0

Zrit.mat <- matrix(Zrij.mat[!(Zrij.mat==0)],k*n,N)

# remove 0’s...get an (n*k)xN matrix.

group1 <- rep(1:k,rep(n,k)) # (1,...,1,....,k,...,k) 1x(n*k)

Zri.mat <- rowsum(Zrit.mat,group1)/n # kxN, {\bZri.} r=1,...,N, i=1,...,k

Zi.vec <- apply(Zri.mat,1,mean) # kx1, {\bZ.i.} i=1,...,k

##---------------------------------------------------------------#

## calculate \hat \sigma <- {1,i}^2 and

## \hat \sigma <- {1,i <- 1,i <- 2},i=1,...,k

##---------------------------------------------------------------#

v1.mat<- var(t(Zri.mat)) #*(N-1)/N # for s-plus var=sd^2

##---------------------------------------------------------------#

## calculate ci = temp1,i + temp2,i , i=1,...,k

##---------------------------------------------------------------#

temp <- Zrit.mat[1:n,1:sizes[1]]

for(qq in 2:k){

temp <- cbind(temp,Zrit.mat[((qq-1)*n)+(1:n),dim(temp)[2]+(1:sizes[qq])])

}

temp <- t(temp)

sigma.x <- apply(temp,1,var) #(n-1)/n* ... sigma <- i^2(Xij), Nx1 vector

uij.vec <-(apply(k.mat,1,mean)/n )^2 # g/gi term, Nx1

temp1 <- sigma.x*uij.vec

temp1 <- N*rowsum(temp1,group)

#v2.mat <- diag(temp1)

temp2 <- k.mat

temp2[1:sizes[1],1:sizes[1]]=0

for(qq in 2:k){

tmp1 <- sum(sizes[1:qq-1])+1

tmp2 <- sum(sizes[1:qq])

temp2[tmp1:tmp2,tmp1:tmp2]

}

temp2 <- apply(temp2,1,sum)

temp2 <- temp2*sigma.x

temp2<- rowsum(temp2,group)/(n^2*N)

##---------------------------------------------------------------#

## calculate the estimate of the covariance matrix

##---------------------------------------------------------------#
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V <-diag(temp1+temp2) # for fixed X, V= diag(c1,...,ck)

V <- v1.mat + V # for random X (comment out for ficxed)

##---------------------------------------------------------------#

## calculate the statistic

##---------------------------------------------------------------#

ta <- ctr.mat%*%Zi.vec # get CT

cvc.mat <- solve(ctr.mat%*%V%*%t(ctr.mat)) # get [CVC’]^-1

## QF - store the value in each run

Q[b]<-N*t(ta)%*%cvc.mat%*%ta

} #for B

## Probabilities of rejection

temp <- cbind(table(Q>=qchisq(0.90,k-1))[2]/B,

table(Q>=qchisq(0.95,k-1))[2]/B,

table(Q>=qchisq(0.99,k-1))[2]/B)

PR <- rbind(PR,temp)

} # for m in const

PR <- cbind(2*ws+1,PR)

dimnames(PR) <- list(NULL,c("n","a=0.1","a=0.05","a=0.01"))

result <- list("Sample sizes, Number of sim.runs, seeds"

=c("n"=sizes,"B"=B),

"Prob. of Rejection (alpha=.1, .05 & .01)"=PR)

result

}

#################################################################

temp30 <- ANCOVA(sizes30,ws,B,sdv)

temp30
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