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ABSTRACT 
 

Piezoelectric materials are widely utilized in small devices, and low loss is essential for 

further miniaturization with desired power density. Due to large piezoelectric loss, the mechanical 

quality factor of Pb(Zr,Ti)O3 (PZT) ceramics at antiresonance frequency is much higher than the 

one at resonance frequency. Thus, driving the piezoelectric resonator at the antiresonance 

frequency is recommended to reduce the required electric power for generating the same level of 

mechanical vibration. Unfortunately, piezoelectric loss has not been studied intensively, and the 

physical origin is yet unclear. Assuming the origin of loss is from domain dynamics, it is essential 

to understand the piezoelectric loss behavior by polarization orientation. 

The change in the piezoelectric loss factors by polarization orientation was investigated 

using a conventional characterization method with effective k31 and k33 mode structures. 1% Nb-

doped PZT ceramics (PNZT) were prepared in tetragonal rhombohedral and MPB structure with 0, 

15, 30, 45, 60, 75 and 90 degree polarization angles in collaboration with PI Ceramics, Germany. 

As a result, it was determined that the intensive piezoelectric loss increases more than intensive 

dielectric and elastic losses by angling the polarization. However, two serious issues were found in 

the k33 structure with small motional capacitance, which are: 

1. Large relative error from indirect calculation and large structural impedance of the k33 

rod. 

2. Error in 3dB method used to define the mechanical quality factor. 

Consequently, a new analysis procedure to obtain anisotropic loss tensors is proposed using 

effective vibration modes of ceramic bar with canted polarization. The proposed methodology 

contains 1) off-resonance dielectric measurements, 2) effective k31 mode analysis, 3) off-resonance 

d33 measurements and 4) effective k15 mode analysis. The effective k31 and k15 vibration mode 

should be separated from other modes to use the method.  
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A bandwidth between maximum and minimum susceptance and reactance, which is known 

as the quadrantal bandwidth, is suggested as the half-power bandwidth to determine the mechanical 

quality factors at resonance and antiresonance, respectively. ATILA/FEA (Micromechatronics Inc., 

PA, USA) simulation was made with the change of piezoelectric d constant. The new method 

showed better accuracy of the quality factor and loss determination especially in the low coupling 

condition. 

The independent intensive properties of prepared PNZT are obtained with the suggested 

methodology. Piezoelectric loss showed larger anisotropy in all structures compared to the 

dielectric or elastic loss. Using the rotation matrix, polarization angle dependent effective 

properties were calculated. Although the elastic and piezoelectric properties differ from the result 

obtained with the conventional method, the piezoelectric loss showed the largest changes by 

canting the polarization. 

Considering 3-dimensionally clamped and electrically open-circuited condition of material, 

extensive loss parameters were additionally obtained. Negative extensive piezoelectric loss was 

discovered in a tetragonal PNZT with largely angled polarization and electric field, for both k31 and 

k15 vibration mode. In is known that positive piezoelectric loss is considered to compensate the 

dielectric and elastic losses, thus the heat generation under anti-resonant drive is less than the one 

under resonant drive when the piezoelectric loss is large. The negative extensive piezoelectric loss 

contributes to the overall phase lag, which could be observed in the contribution of extensive loss 

factors to the intensive elastic loss. 

The negative piezoelectric loss may be related with the domain wall dynamics and could 

motivate theoretical physicists to a new understanding.  
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Background 

1.1 Piezoelectricity 

 The piezoelectric effect is a linear conversion effect between mechanical and electrical 

energy. The direct effect was discovered by Pierre and Jacques Curie in 1880 [1] and the converse 

effect was demonstrated by Gabriel Lippmann in 1881 [2]. In 1947, Shepard Roberts observed 

longitudinal and transverse piezoelectricity in electrically-poled BaTiO3 polycrystalline ceramics 

[3]. With following studies on similar perovskite ABO3 structures, Pb(Zr,Ti)O3 (PZT) was 

developed in 1954 by Bernard M. Jaffe [4]. With high piezoelectricity and Curie temperature, PZT-

based ceramics have been widely utilized in various applications [5]–[11]. 

 Piezoelectricity originates from the symmetry of crystalline matter. Under applied stress 

(X), the uneven displacement of cations and anions results in charge development (dielectric 

displacement, D), that is the direct piezoelectric effect. Under an applied electric field (E), the 

equilibrium position of the positively (anions) and negatively charged atoms (cations) changes 

leading to elastic deformation (strain, x), that is converse piezoelectric effect [12]. 

Assuming only temperature (T), entropy (S), E, D, X, and x determines the thermal, 

dielectric and elastic behavior of the piezoelectric materials, the differential forms of 

thermodynamic potentials can be expressed using the following equations, where U is the internal 

energy, H the enthalpy, A the Helmholtz free energy and G the Gibbs free energy [13]. 

 

𝑑𝑈 = 𝑇𝑑𝑆 + 𝐸𝑑𝐷 + 𝑋𝑑𝑥 (1.1.1) 
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𝑑𝐻 = 𝑇𝑑𝑆 − 𝐷𝑑𝐸 − 𝑥𝑑𝑋 (1.1.2) 

 

𝑑𝐴 = −𝑆𝐷𝑇 + 𝐸𝑑𝐷 + 𝑋𝑑𝑥 (1.1.3) 

 

𝑑𝐺 = −𝑆𝐷𝑇 − 𝐷𝑑𝐸 − 𝑥𝑑𝑋 (1.1.4) 

 

Assuming infinitesimal change of properties, linear equations of state can be considered. 

To discuss intensive properties which are scale invariant, assume T, X and E are independent 

variables. Then, the appropriate thermodynamic potential is the Gibbs free energy and the variables 

become: 

 

−𝑆 = (
𝜕𝐺

𝜕𝑇
)
𝑋,𝐸

, −𝐷 = (
𝜕𝐺

𝜕𝐸
)

𝑇,𝑋
, −𝑥 = (

𝜕𝐺

𝜕𝑋
)

𝑇,𝐸
(1.1.5) 

 

The differential form of the variables become: 

 

d𝑆 = (
𝜕𝑆

𝜕𝑇
)
𝑋,𝐸

d𝑇 + (
𝜕𝑆

𝜕𝐸
)

𝑇,𝑋
d𝑋 + (

𝜕𝑆

𝜕𝑋
)

𝑇,𝐸
d𝑋 (1.1.6) 

 

d𝐷 = (
𝜕𝐷

𝜕𝑇
)
𝑋,𝐸

d𝑇 + (
𝜕𝐷

𝜕𝐸
)

𝑇,𝑋
d𝐸 + (

𝜕𝐷

𝜕𝑋
)

𝑇,𝐸
d𝑋 (1.1.7) 

 

d𝑥 = (
𝜕𝑥

𝜕𝑇
)
𝑋,𝐸

d𝑇 + (
𝜕𝑥

𝜕𝐸
)

𝑇,𝑋
d𝐸 + (

𝜕𝑥

𝜕𝑋
)

𝑇,𝐸
d𝑋 (1.1.8) 
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Considering isothermal conditions (no temperature change), the constitutive equations for 

the direct and converse piezoelectric effect can be expressed in addition to the dielectric and elastic 

behavior as equations 1.1.9 and 1.1.10, respectively. 

 

𝐷𝑖 = 𝜀0𝜀𝑖𝑙
𝑋𝐸𝑙 + 𝑑𝑖𝑗𝑘𝑋𝑗𝑘 (1.1.9) 

 

𝑥𝑚𝑛 = 𝑑𝑙𝑚𝑛𝐸𝑙 + 𝑠𝑚𝑛𝑗𝑘
𝐸 𝑋𝑗𝑘 (1.1.10) 

 

Here ε0 is the vacuum permittivity, εX the relative dielectric permittivity under constant 

stress (mechanically-free condition), sE the elastic compliance under constant electric field 

(electrically short-circuited condition) and d the piezoelectric charge or strain constant. The tensors 

in the equations are governed by following equations. Note that when i=l, j=m and k=n, equations 

1.1.13 and 1.1.14 are equivalent.  

 

𝜀0𝜀𝑖𝑙
𝑋 = (

𝜕𝐷𝑖

𝜕𝐸𝑙
)

𝑇,𝑋

= (
𝜕𝐺2

𝜕𝐸𝑖𝜕𝐸𝑙
)

𝑇,𝑋

(1.1.11) 

 

𝑠𝑚𝑛𝑗𝑘
𝐸 = (

𝜕𝑥𝑚𝑛

𝜕𝑋𝑗𝑘
)

𝑇,𝐸

= (
𝜕𝐺2

𝜕𝑋𝑚𝑛𝜕𝑋𝑗𝑘
)

𝑇,𝐸

(1.1.12) 

 

𝑑𝑖𝑗𝑘 = (
𝜕𝐷𝑖

𝜕𝑋𝑗𝑘
)

𝑇,𝐸

= (
𝜕𝐺2

𝜕𝐸𝑖𝜕𝑋𝑗𝑘
)

𝑇

(1.1.13) 

 

𝑑𝑙𝑚𝑛 = (
𝜕𝑥𝑚𝑛

𝜕𝐸𝑙
)

𝑇,𝑋

= (
𝜕𝐺2

𝜕𝐸𝑙𝜕𝑋𝑚𝑛
)

𝑇

(1.1.14) 
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By contrast, extensive properties which are directly proportional to the system size can also 

be considered. Assuming T, x and D are independent variables, the appropriate thermodynamic 

potential is the Helmholtz free energy and the variables become: 

 

−𝑆 = (
𝜕𝐴

𝜕𝑇
)
𝑥,𝐷

, 𝐸 = (
𝜕𝐴

𝜕𝐷
)

𝑇,𝑥
, 𝑋 = (

𝜕𝐴

𝜕𝑥
)

𝑇,𝐷
(1.1.15) 

 

The differential form of the variables become: 

 

d𝑆 = (
𝜕𝑆

𝜕𝑇
)
𝑥,𝐷

d𝑇 + (
𝜕𝑆

𝜕𝐷
)

𝑇,𝑥
d𝐷 + (

𝜕𝑆

𝜕𝑥
)

𝑇,𝐷
d𝑥 (1.1.16) 

 

d𝐸 = (
𝜕𝐸

𝜕𝑇
)
𝑥,𝐷

d𝑇 + (
𝜕𝐸

𝜕𝐷
)

𝑇,𝑥
d𝐷 + (

𝜕𝐸

𝜕𝑥
)

𝑇,𝐷
d𝑥 (1.1.17) 

 

d𝑋 = (
𝜕𝑋

𝜕𝑇
)
𝑥,𝐷

d𝑇 + (
𝜕𝑋

𝜕𝐷
)

𝑇,𝑥
d𝐷 + (

𝜕𝑋

𝜕𝑥
)

𝑇,𝐷
d𝑥 (1.1.18) 

 

For isothermal conditions, the piezoelectric constitutive equations can be additionally 

expressed as equations 1.1.19 and 1.1.20, respectively. 

 

𝐸𝑖 = (𝜅𝑖𝑙
𝑥/𝜀0)𝐷𝑙 − ℎ𝑖𝑗𝑘𝑥𝑗𝑘 (1.1.19) 

 

𝑋𝑚𝑛 = −ℎ𝑙𝑚𝑛𝐷𝑙 + 𝑐𝑚𝑛𝑗𝑘
𝐷 𝑥𝑗𝑘 (1.1.20) 

Here κx is the inverse dielectric permittivity under constant strain (mechanically-clamped 

condition), cD the elastic stiffness under constant dielectric displacement (electrically open-
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circuited condition), and h the inverse piezoelectric constant. Note the negative sign in the 

piezoelectric coupling term. The tensors in the equations are governed by following equations. Note 

that when i=l, j=m and k=n, equations 1.1.23 and 1.1.24 are equivalent.  

 

𝜅𝑖𝑙
𝑥/𝜀0 = (

𝜕𝐸𝑖

𝜕𝐷𝑙
)

𝑇,𝑥

= (
𝜕𝐴2

𝜕𝐷𝑖𝜕𝐷𝑙
)

𝑇,𝑥

(1.1.21) 

 

𝑐𝑚𝑛𝑗𝑘
𝐷 = (

𝜕𝑋𝑚𝑛

𝜕𝑥𝑗𝑘
)

𝑇,𝐷

= (
𝜕𝐴2

𝜕𝑥𝑚𝑛𝜕𝑥𝑗𝑘
)

𝑇,𝐷

(1.1.22) 

 

ℎ𝑖𝑗𝑘 = −(
𝜕𝐸𝑖

𝜕𝑥𝑗𝑘
)

𝑇,𝐷

= −(
𝜕𝐴2

𝜕𝐷𝑖𝜕𝑥𝑗𝑘
)

𝑇

(1.1.23) 

 

ℎ𝑙𝑚𝑛 = −(
𝜕𝑋𝑚𝑛

𝜕𝐷𝑙
)

𝑇,𝑥

= −(
𝜕𝐴2

𝜕𝐷𝑙𝜕𝑥𝑚𝑛
)

𝑇

(1.1.24) 

 

The linear relations in isentropic condition can also be considered using the internal energy 

or enthalpy. 

To numerically determine the efficiency of energy conversion, the electro-mechanical 

coupling factor k2 is defined as stored converted energy per input energy. Thus, k is always smaller 

than 1. Considering an applied electric field that is converted to mechanical strain (xjk = dijkEi), 

electric field and dielectric displacement in the same direction (Di = εiiEi), and stress and strain in 

the same direction (Xjk = sjkjkxjk), the coupling factor can be represented as: 
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𝑘𝑖𝑗𝑘
2 =

1
2

𝑥𝑗𝑘
2

𝑠𝑗𝑘𝑗𝑘
𝐸

1
2 𝜀0𝜀𝑖𝑖

𝑋𝐸𝑖
2

=
𝑑𝑖𝑗𝑘

2

𝜀0𝜀𝑖𝑖
𝑋𝑠𝑗𝑘𝑗𝑘

𝐸
(1.1.25) 

 

Considering the direct effect (Di = dijkXjk),, the coupling factor can also be defined as: 

 

𝑘𝑖𝑗𝑘
2 =

1
2

𝐷𝑖
2

𝜀0𝜀𝑖𝑖
𝑋

1
2 𝑠𝑗𝑘𝑗𝑘

𝐸 𝑋𝑗𝑘
2

=
𝑑𝑖𝑗𝑘

2

𝜀0𝜀𝑖𝑖
𝑋𝑠𝑗𝑘𝑗𝑘

𝐸
(1.1.26) 

 

Similarly, taking into account Xjk = -hijkDi or Ei = -hijkxjk under constant x and D condition, 

the electro-mechanical coupling factor becomes as shown in equation 1.1.27.  

 

𝑘𝑖𝑗𝑘
2 =

1
2

𝑋𝑗𝑘
2

𝑐𝑗𝑘𝑗𝑘
𝐷

1
2

𝜅𝑖𝑗
𝑥

𝜀0 
𝐷𝑖

2
=

1
2

𝜀0 
𝜅𝑖𝑗

𝑥 𝐸𝑖
2

1
2 𝑐𝑗𝑘𝑗𝑘

𝐷 𝑥𝑗𝑘
2

=
ℎ𝑖𝑗𝑘

2

(𝜅𝑖𝑖
𝑥/𝜀0) ∙ 𝑐𝑗𝑘𝑗𝑘

𝐷
(1.1.27) 

 

Unlike purely dielectric materials, there exists two mechanical resonance states in 

piezoelectric materials which are known as A- (resonance frequency, fA) and B-type resonance 

(antiresonance frequency, fB) as shown in Figure 1.1.1.  
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Figure 1.1.1. Illustration of typical admittance and phase spectrum for dielectric and piezoelectric 

materials 

 

Figure 1.1.2 (a) and (b) shows the ideal displacement and strain distribution along the 

length direction (x11) of a k311 mode bar with large electro-mechanical coupling (k311 ≈ 1) at 

fundamental resonance and antiresonance, respectively. When loss is neglected, the resonance is 

achieved where the admittance becomes infinite while the antiresonance is achieved where the 

admittance becomes zero. Considering zero displacement at the center by the symmetry, tip 

displacement is maximum at the resonance frequency, creating a half wavelength along the 

vibration direction from induced motional capacitance, which is the capacitance change due to the 

generated strain. In contrast, the motional capacitance at the antiresonance frequency cancels out 

due to the created full wavelength along the vibration direction resulting in a tip displacement of 

zero. For a typical electro-mechanical coupling for PZT ceramics (k311 ≈ 0.3), relatively large 

damped (static) capacitance partially compensates the motional capacitance and the displacement 

distribution becomes closer to the resonance mode, as shown in Figure 1.1.2 (c). Thus, the 

antiresonance frequency vibration is determined by the resonance frequency and the electro-

mechanical coupling factor for the k311 mode resonator.  
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Figure 1.1.2. Illustration of displacement and strain distribution of k311 resonator in resonant or 

antiresonant state. 

 

1.2 Non-zero properties by symmetry 

 Ferroelectric polycrystalline ceramics have P6mm equivalent symmetry where the rotation 

axis is parallel to the remanent polarization. A 60 degree transformation matrix Aij for the 6-fold 

rotational symmetry is provided as equation 1.2.1. 

 

A𝑖𝑗 =

(

 
 

cos
𝜋

3
sin

𝜋

3
0

− sin
𝜋

3
cos

𝜋

3
0

0 0 1)

 
 

(1.2.1) 

 

 With the matrix element aij, the dielectric, elastic and piezoelectric tensor component 

satisfies the following condition with 60 degree rotated coordinates. 

 

𝜀𝑖𝑗
𝑋 = ∑𝑎𝑖𝑘𝑎𝑗𝑙𝜀𝑘𝑙

𝑋

𝑘,𝑙

(1.2.2) 

 

𝑑𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑙𝑎𝑗𝑚𝑎𝑘𝑛𝑑𝑙𝑚𝑛

𝑙,𝑚,𝑛

(1.2.3) 
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𝑠𝑖𝑗𝑘𝑙
𝐸 = ∑ 𝑎𝑖𝑚𝑎𝑗𝑛𝑎𝑘𝑜𝑎𝑙𝑝𝑠𝑚𝑛𝑜𝑝

𝐸

𝑚,𝑛,𝑜,𝑝

(1.2.4) 

 

Since physical properties along crystallographically equivalent directions should be the 

same, the independent tensor parameters can be reduced by the symmetry. In addition to the 

reduction, the tensor suffixes for stress and strain can be simplified in matrices as shown in Table 

1.2.1 for convenience. For instance, X1=X11 and X5=2X13. Note the matrix notation for shear 

properties (i.e. X5) connotes two equivalent tensors (X13=X31) [14]. 

 

Table 1.2.1. Matrix notation for stress and strain tensors. 

Tensor notation 11 22 33 23, 32 13, 31 12, 21 

Matrix notation 1 2 3 4 5 6 

 

The independent tensor properties of the piezoelectric polycrystalline is shown in the 

following three matrices.  

 

𝜀𝑋 = [

𝜀11
𝑋 0 0

0 𝜀11
𝑋 0

0 0 𝜀33
𝑋

] (1.2.5) 

 

𝑑 = [

0 0 0 0 𝑑15 0
0 0 0 𝑑15 0 0

𝑑31 𝑑31 𝑑33 0 0 0
] (1.2.6) 
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𝑠𝐸 =

[
 
 
 
 
 
 
𝑠11

𝐸 𝑠12
𝐸 𝑠13

𝐸 0 0 0

𝑠12
𝐸 𝑠11

𝐸 𝑠13
𝐸 0 0 0

𝑠13
𝐸 𝑠13

𝐸 𝑠33
𝐸 0 0 0

0 0 0 𝑠55
𝐸 0 0

0 0 0 0 𝑠55
𝐸 0

0 0 0 0 0 2(𝑠11
𝐸 − 𝑠12

𝐸 )]
 
 
 
 
 
 

(1.2.7) 

 

Piezoelectric vibrators have different vibration modes upon the geometry and dimension. 

Typical geometries for the reduced piezoelectric d constant in equation 1.2.6 are illustrated in Table 

1.2.2 with the primary properties and boundary conditions. 

 

Table 1.2.2. The primary properties for various vibration modes. 

 

   

Dielectric 

permittivity 
 𝜀33

𝑋   𝜀33
𝑥_3

  𝜀11
𝑋  

Elastic 

compliance 
 𝑠11

𝐸   𝑠33
𝐷   𝑠55

𝐷  

EM coupling 

factor 
𝑘31

2 =
𝑑31

2

𝜀0𝜀33
𝑋 𝑠11

𝐸  𝑘33
2 =

𝑑33
2

𝜀0𝜀33
𝑋 𝑠33

𝐸  𝑘15
2 =

𝑑15
2

𝜀0𝜀11
𝑋 𝑠55

𝐸  

Frequency 

parameter Ω 
𝛺𝐵,31 =

π

2

𝑓𝐵,31

𝑓𝐴,31
 𝛺𝐴,33 =

π

2

𝑓𝐴,33

𝑓𝐵,33
 𝛺𝐴,15 =

π

2

𝑓𝐴,15

𝑓𝐵,15
 

Effective 

coupling  

𝑘31
2

1 − 𝑘31
2 = −𝛺𝐵,31 cot 𝛺𝐵,31 𝑘33

2 = 𝛺𝐴,33 cot 𝛺𝐴,33 𝑘15
2 = 𝛺𝐴,15 cot 𝛺𝐴,15 

 

 The relations for different boundary conditions are shown in Figure 1.2.1 [15]. For the 

converse piezoelectric effect, the applied electric energy is equivalent to the sum of the electrical 

energy from purely dielectric behavior under mechanically clamped conditions (constant x) and the 

converted mechanical energy, as expressed in equation 1.2.8. 
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Figure 1.2.1. Conceptual figures for explaining the relation of properties in different boundary 

conditions. 

 

𝜀0𝜀
𝑋 = 𝜀0𝜀

𝑥 +
𝑑2

𝑠𝐸
(1.2.8) 

 

 Consequently, for the direct piezoelectric effect, the applied mechanical energy is 

equivalent to the sum of mechanical energy from purely elastic behavior where dielectric 

displacement is constant (electrically open-circuited) and the converted electrical energy, as 

expressed in equation 1.2.9. 

 

𝑠𝐸 = 𝑠𝐷 +
𝑑2

𝜀0𝜀
𝑋

(1.2.9) 



12 

 Hence, following relations with the electro-mechanical coupling factor can be obtained. 

 

𝜀𝑥

𝜀𝑋
= 1 − 𝑘2 (1.2.10) 

 

𝑠𝐷

𝑠𝐸
= 1 − 𝑘2 (1.2.11) 

 

 From the directly-obtainable physical properties, the definition of electro-mechanical 

coupling factor for the k33 or k15 mode in Figure 1.2.1 can be rewritten as equation 1.2.12. 

 

𝑘2

(1 − 𝑘2)2
=

𝑑2

𝜀0𝜀33
𝑥 𝑠33

𝐷
(1.2.12) 

 

1.3 Mechanical quality factor and the loss factors 

 The mechanical quality factor (Qm) is a dimensionless parameter indicating how the 

resonator damps, which is defined as equation 1.3.1. When the quality factor is large, the damping 

is small. 

 

𝑄m = 2𝜋 ∙
Energy stored cycle⁄

Energy lost cycle⁄
=

resonance frequency

half power bandwidth
(1.3.1) 

 

It is known that energy loss is dissipated as a form of heat and is inversely proportional to 

the Qm [16]. The losses in piezoelectric ceramics in the ferroelectric region (below the Curie 

temperature) are mainly believed to occur from domain wall motion [17]–[22]. The energy loss is 
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hypothesized to have three components due to the dielectric, elastic and piezoelectric behaviors 

[23]–[27]. In general, the electrical and mechanical losses are described using equations 1.3.2 and 

1.3.3, respectively.  

 

𝜀𝑋∗ = 𝜀𝑋(1 − 𝑗 tan 𝛿′) (1.3.2) 

 

𝑠𝐸∗ = 𝑠𝐸(1 − 𝑗 tan𝜙′) (1.3.3) 

 

Here j is the imaginary notation, tanδ' the intensive dielectric loss and tanϕ' the intensive elastic 

loss. Note the extrinsic parameters such as X or E are constant. The piezoelectric loss is generally 

neglected, assuming no phase lag of the piezoelectric constant [28], as indicated in the IEEE 

standard of piezoelectricity. It seems reasonable for Rochelle salt [29]. However, a large 

piezoelectric phase lag was discovered in PZT-based ceramics [30]–[32] and efforts to represent 

the piezoelectric loss in equivalent circuits have been made [33], [34]. The piezoelectric loss tanθ' 

can be treated as equation 1.3.4. 

 

𝑑∗ = 𝑑(1 − 𝑗 tan𝜃′) (1.3.4) 

 

The phase delay of each behavior is indicated in each hysteresis loop sketched in Figure 

1.3.1. The area of the dielectric and elastic hysteresis loops corresponds to energy density units 

(J/m3). However, a scale factor should be multiplied to the area of the piezoelectric hysteresis to 

reach energy density units. Thus, the piezoelectric loss should be coupled with other loss factors. 

The scale unit for x-E and D-X loop is d/s and d/ε0ε, respectively. Then, the coupled loss for d2/s 

and d2/ε0ε becomes 2tanθ’- tanϕ’ and 2tanθ’- tanδ’, respectively.  
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Figure 1.3.1. Conceptual representations of intensive loss parameters in hysteresis curves. 

 

Considering the completely clamped condition for a state inside a material, the extensive 

loss parameters are introduced as: 

 

𝜅𝑥∗ = 𝜅𝑥(1 + 𝑗 tan 𝛿) (1.3.5) 

 

𝑐𝐷∗ = 𝑐𝐷(1 + 𝑗 tan𝜙) (1.3.6) 

 

ℎ∗ = ℎ(1 + 𝑗 tan𝜃) (1.3.7) 

 

Here tanδ is the extensive dielectric loss, tanϕ the extensive elastic loss and tanθ the 

extensive piezoelectric loss. The negative phase lags (+ sign) are set to indicate D or x is induced 

by the applied E or X. The schematic hysteresis loops of extensive loss parameters are shown in 

Figure 1.3.2. Here, the scale factors for E-x and X-D loops should be hε0/κ and h/c and the coupled 

loss becomes 2tanθ- tanδ and 2tanθ- tanϕ, respectively.  
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Figure 1.3.2. Conceptual representations of extensive loss parameters in hysteresis curves. 

 

In lead-based piezoelectric resonators, the quality factor in B-type resonance (QB) is much 

higher than the one in A-type resonance (QA) due to the large intensive piezoelectric loss [31], [32]. 

This means that it could be more efficient to drive piezoelectric transducers at antiresonance 

frequency rather than at the resonance frequency [35], [36]. Integrating all loss factors in the 

admittance equation, Yuan Zhuang et al. proposed a loss determination methodology to derive all 

loss factors in various structures from the off-resonance dielectric properties, A- and B-type 

resonance frequencies and the corresponding quality factors [37]–[39]. A typical structure for a 

mechanically free condition is the k31 vibration mode. The relations of QA,31 and QB,31 are shown in 

equation 1.3.9 with the intensive loss parameters. 

 

1

𝑄𝐴,31
=

1

tan𝜙31
′ (1.3.8) 

 

1

𝑄𝐵,31
=

1

𝑄𝐴,31
−

2

1 + (
1

𝑘31
− 𝑘31)

2

𝛺𝐵,31
2

∙ (2 tan 𝜃31
′ − tan𝜙31

′ − tan𝛿31
′ ) (1.3.9)

 

 

A typical structure for a mechanically clamped condition is the k15 vibration mode with 

wave propagation along the thickness direction (thickness shear). The relations of QA,15 and QB,15 

are shown in equation 1.3.11 along with the extensive loss parameters.  



16 

1

𝑄𝐴,15
=

1

tan𝜙55

(1.3.10) 

 

1

𝑄𝐴,15
=

1

𝑄𝐵,15
+

2

𝑘15
2 − 1 +

𝛺𝐴,15
2

𝑘15
2

∙ (tan𝜙55 + tan𝛿11 − 2 tan𝜃15) (1.3.11)
 

 

Considering a one-dimensional model, the intensive and extensive loss parameters satisfy 

the following relationship where K is an involutory matrix.  

 

[
tan 𝛿′

tan𝜙′

tan 𝜃′

] = 𝐾 [
tan 𝛿
tan𝜙
tan𝜃

] (1.3.12) 

 

𝐾 =
1

1 − 𝑘2 [
1 𝑘2 −2𝑘2

𝑘2 1 −2𝑘2

1 1 −1 − 𝑘2

] (1.3.13) 

 

1.4 Piezoelectricity with canted polarization 

 In 1982, Jun Kuwata et al. reported large piezoelectricity of 0.91Pb(Zn1/3Nb2/3)O3 – 

0.09PbTiO3 single crystals when it is in rhombohedral symmetry poled along a pseudo-cubic [001] 

axis [40]. The enhancement was explained with conversion coordinates in section 1.2. Xiao-Hong 

Du et al. reported a similar enhancement of piezoelectricity with canted-polarization in 

rhombohedral PZT single crystals [41] and polycrystalline ceramics with strong shear properties 

[42]. This phenomena can be observed not only in PZT-based materials, but also in various 

compositions [43]–[47]. 



17 

Although the electro-mechanical coupling can be enhanced with canted polarization, recent 

studies on rhombohedral piezoelectric single crystals indicates larger loss with electric field angled 

from the remanent polarization direction. Shujun Zhang et al. reported higher electrical and 

mechanical losses in a <001> oriented rhombohedral single crystal compared to a <111> oriented 

one. [48]. However, the piezoelectric loss has not been discussed yet in terms of polarization 

orientation due to its uncertainty of physical origin. 
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Dissertation objectives and structures 

2.1 Objectives 

 Due to the existence of large piezoelectric loss, driving the piezoelectric resonator at 

antiresonance frequency is recommended for high power applications.  Unfortunately, the physical 

origin of the piezoelectric loss is yet unclear. Assuming the origin of losses arise from domain 

dynamics, it is essential to understand the piezoelectric loss behavior as a function of polarization 

orientation.  

 Tetragonal, rhombohedral and morphotropic phase boundary (MPB) PZT exhibit different 

anisotropy of properties, thus it is anticipated that the polarization orientation dependence could 

vary. In this study, the polarization orientation dependence of piezoelectric loss of 1% Nb-doped 

PZT (PNZT) near MPB was studied with respect to their anisotropic properties.  

 One of the most important requisites for the study is reliable analysis. There has been strong 

interest in the piezoelectric society to determine the complex piezoelectric parameters accurately,  

and various methods were proposed [49]–[54].  

2.2 Structures 

  This first chapter describes the fundamental background related to the dissertation, 

including an introduction to piezoelectricity, property anisotropy and loss factors. Research on 

polarization-canted structures is also introduced. Based on the background, this chapter provides 

objectives of this study with its constituent elements.  
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 Chapter 3 shows the preliminary research on the polarization orientation dependence of the 

piezoelectric properties. The PNZT polycrystalline ceramics with canted polarization were 

prepared in collaboration with PI Ceramics, Germany. The IEEE standard of piezoelectricity and 

conventional 3dB method were used to analyze real and imaginary parameters for effective k31 and 

k33 mode vibration.  A linear fitting was made for the changes of loss factors in terms of the 

polarization-canted angle. A large change of piezoelectric loss was observed with angled 

polarization compared to other  losses, especially in tetragonal PNZT. 

The preliminary research induces several arguments on the analysis reliability. Chapter 4 

discusses the arguments, including the measurement error in k33 mode structures due to the indirect 

calculation, definition of mechanical quality factor and spurious modes near the shear mode. In 

addition to the discussion, solutions are proposed to overcome the issues.  

Using the solution provided, a new methodology to obtain anisotropic properties in 

polycrystalline ceramic is provided in chapter 5. Three polarization-canted k31 structures are needed 

in the method. With off-resonance, near k31 mode and near k15 mode analysis, all necessary 

parameters for k31, k33 and k15 vibration modes could be derived.  

Chapter 6 presents the anisotropic properties obtained with the proposed analysis method. 

Vibration mode separation was additionally studied to support the method. Based on the anisotropic 

properties, the polarization orientation dependence of properties is reconsidered.  

In chapter 7, extensive loss parameters are calculated to represent the completely clamped 

condition inside of a material. The contribution of extensive loss factors on the intensive elastic 

loss is provided for discussion. A negative loss phenomenon is discovered in tetragonal PNZT and 

a clockwise hysteresis model is provided for an explanation.  

The final chapter summarizes the contents of the dissertation. In addition, a possible future 

work is suggested.  
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Polarization dependence of properties in k31 and k33 vibration mode 

3.1 Preparation of the polarization canted structure 

In collaboration with PI Ceramics GmbH (Germany), 1% Nb-doped PZT ceramics (PNZT) 

were prepared. A soft material composition with low Qm was chosen to enhance the loss change 

with polarization angle. The PbZrO3 (PZ) to PbTiO3 (PT) ratio was controlled to be (50/50), (53/47) 

or (56/44) to obtain tetragonal, MPB and rhombohedral structures; these were verified with x-ray 

diffraction patterns recorded on an Empyrean XRD with Cu-Kα radiation (λ = 1.5406 A) over a 2θ 

range of 20 to 60 degrees as shown in Figure 3.1.1. 

 

 

Figure 3.1.1. X-ray diffraction patterns of the prepared 1% Nb doped PZT ceramics. 

 

A flow chart for conventional ceramic processing and the post processing to produce 

polarization-canted structures is shown in Figure 3.1.2. Piezoelectric blocks were prepared in a 

dimension of 44x20x23mm and poled under 4kV/mm DC field in an oil bath. The blocks were then 
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diced into 1×3×15mm bars with water-cooled diamond tools to have polarization-canted angles of 

0, 15, 30, 45, 60, 75 and 90 degrees. Finally, 50nm Cr and 600nm CuNi45 electrodes were sputtered 

at 100mbar and 100°C to demonstrate effective k33 and k31 vibration modes. Consequently, ten of 

each geometry illustrated in Figure 3.1.3 were produced.  

 

 

Figure 3.1.2. Schematic diagram of polarization-canted sample preparation process conducted 

with PI Ceramics GmbH, Germany. 
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Figure 3.1.3.  Illustration of produced (a) effective k31 and (b) k33 mode structures. 

 

Due to a concern about potential damage during post-dicing processing, ATILA/GiD 

(Micromechatronics Inc., PA, USA) finite element simulations were conducted to help quantify 

any impact from damaged surfaces. 20 micron thick damaged layers with no piezoelectricity were 

applied to the general k31 structure with standard PZT5A properties as shown in Figure 3.1.4. The 

dielectric and elastic loss factors are exaggerated to be 120% of the undamaged properties to 

simulate the worst conditions.  

 

 

Figure 3.1.4.  FEA model with damaged surfaces. 
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The results with damaged surfaces are compared to the undamaged ones in Table 3.1.1. 

Considering errors from sample process and the exaggerated condition, the damage is negligible. 

 

Table 3.1.1. FEA simulation results of k31 mode PZT5A with and without damaged surfaces. 

 QA QB s11
E k31 

Damaged surface 76.2 83.3 1.64E-11 55.3% 

Undamaged sample 77.0 83.2 1.65E-11 56.3% 

 

The densities of the ceramics (ρ) were measured by a water-immersion technique (ASTM 

STD C373-72). All samples were boiled in distilled water and cooled down before the measurement. 

Table 3.1.2 shows the obtained density from equation 3.1.1.  

 

Table 3.1.2. Measured density of 1% Nb-doped PZT near MPB. 

Structure Tetragonal MPB Rhombohedral 

Density (kg/m3) 7700 7670 7640 

Relative density (%) 96.1 95.6 95.0 

 

𝜌 =
𝑊𝑑

𝑊𝑓 − 𝑊𝑤
∙ 𝜌𝑤 (3.1.1) 

 

Here, ρw is the density of the deionized-water, Ww the wet weight measured in the water, 

Wf the filled weight measured out of the water before drying (where pores are filled with water), 

and Wd the weight dried measured out of the water after being completely dried.  

The impedance spectrum and its phase are analyzed from 50kHz to 1.5MHz with 

impedance analyzer HP4294A (Agilent Technologies, CA, USA) to assure vibration mode 

separation. The effective transvers (k31) or longitudinal (k33) vibration modes were observed around 

100kHz while the effective shear (k15) vibration mode was observed near 1MHz range, as shown 

in Figure 3.1.5. Since the effective vibration modes are well separated due to the designed 
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dimensions, it is possible to analyze the effective properties of each mode, in terms of the angle 

between polarization and applied electric field.  

 

 

 

Figure 3.1.5. Vibration mode separation of (a) transverse and (b) longitudinal modes (~100 kHz) 

from shear mode (~1 MHz). 

 

3.2 Experimental procedure and results 

By excluding the k15 mode with spurious peaks, the k31 and k33 mode properties were 

analyzed. The capacitance under constant stress and intensive dielectric loss of effective k31-k15 
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samples were measured under 100 Hz with an LCR meter SR715 (Stanford Research Systems Inc., 

CA, USA), because the dielectric properties near resonance are similar to the off-resonance 

properties[55]. The obtained dielectric permittivity and loss are shown in Figure 3.2.1. The box 

chart indicates minimum, maximum, quartiles and median values for ten of each sample per 

geometry.  

 

 

Figure 3.2.1. (a) Effective dielectric permittivity and (b) corresponding loss under constant stress 

condition. 

 

The MPB structure shows the highest compliance property (highest permittivity) as 

expected [56]. Compared to the permittivity perpendicular to the polarization, the permittivity 

along the polarization is larger in tetragonal PNZT and smaller in rhombohedral PNZT, similar to 

previously reported PZT ceramics [57]–[59]. The phenomenology is generally understood in terms 

of domain clamping mechanism from remaining domains. When the structure exhibits low  

domains clamping in the unpoled state, the permittivity along the poling direction decreases, 
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resulting in the lower permittivity along the polarization than the perpendicular one [60]. When the 

structure exhibits significant amount of 180° domains clamping in unpoled state, most of the 180° 

domains along the polarization direction are removed upon poling, while a large amount remains 

perpendicular to the polarization. Consequently, the permittivity along the net polarization 

direction could be higher than the perpendicular one [61], [62]. It is interesting to note that the 

dielectric loss is always higher with larger polarization-canted angle, regardless of the real 

parameters.  

The impedance spectra near 100kHz were obtained with an impedance analyzer HP4294A 

(Agilent Technologies, CA, USA). The resonance and antiresonance frequencies were determined 

from the minimum and maximum peak of impedance magnitude. The corresponding quality factors 

were obtained from the 3dB up/down method [38]. The frequencies and quality factors for effective 

k31 and k33 mode vibration are shown in Figure 3.2.2 (a) and (b), respectively. Note that some of 

the parameters cannot be obtained for higher angle ranges, because the resonance and antiresonance 

peaks are too small. 
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Figure 3.2.2. Resonance frequencies and quality factors for (a) Effective k31 and (b) k33 mode. 
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With diminished electro-mechanical coupling from canted polarization, the resonance and 

antiresonance frequencies become closer to each other. The declining tendency of the resonance 

frequency fA in the k31 mode and antiresonance frequency fB in the k33 mode is due to a higher elastic 

compliance with canted polarization. The QB is larger than QA regardless of the polarization angle 

in the k31 vibration mode. The QA and QB gets closer to each other with the canted polarization due 

to the diminution of the effective coupling factor, leaving only the intensive elastic loss to result in 

the quality factors. It can be predicted that QA = QB when the coupling factor is zero using equation 

1.3.8 or 1.3.9. A large measurement error is suspected for the k33 mode due to the small capacitance. 

The error will be discussed in section 4.1. 

The effective elastic compliance of the effective k31 and k33 modes were obtained with 

equations in Table 1.2.2 with respect to their boundary condition. The effective elastic compliances 

were calculated as follows: 

 

𝑠11,eff
𝐸 (𝛾) =

𝑣11,eff
2 (𝛾)

𝜌
=

1

4𝑓A,31,eff
2 (𝛾)𝐿2𝜌

(3.2.1) 

 

𝑠33,eff
𝐷 (𝛾) =

𝑣33,eff
2 (𝛾)

𝜌
=

1

4𝑓b,33,eff
2 (𝛾)𝑇2𝜌

(3.2.2) 

 

𝑠33,eff
𝐸 (𝛾) =

𝑠33,eff
𝐷 (𝛾)

1 − 𝑘33,eff
2 (𝛾)

(3.2.3) 

 

Here v11,eff (γ) and v33,eff (γ) is the effective sound velocity along the vibration direction of 

each mode. The corresponding intensive elastic losses are obtained as: 
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tan𝜙11,eff
′ (𝛾) =

1

𝑄𝐴,31,eff(𝛾)
(3.2.4) 

 

tan𝜙33,eff
′ (𝛾) =

1

𝑄𝐵,33,eff(𝛾)
                                                                                                      

                           + (
1

𝑄𝐴,33,eff(𝛾)
−

1

𝑄𝐵,33,eff(𝛾)
) ∙

𝑘33,eff
4 (𝛾) − 𝑘33,eff

2 (𝛾) + 𝛺𝐴,33,eff
2 (𝛾)

2 (1 − 𝑘33,eff
2 (𝛾))

(3.2.5)
 

 

The obtained elastic properties are shown in Figure 3.2.3.  

 



30 

 

Figure 3.2.3. Elastic compliance and corresponding loss under constant electric field condition for 

(a) Effective k31 and (b) k33 mode. 
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Here, the MPB shows the most compliant properties while tetragonal structures are the 

stiffest. The effective elastic compliance for the k31 mode changes from s11
E to s33

E with increase in 

the canting angle. The elastic loss is in a similar range excluding the samples with largely canted 

polarization. 

The electro-mechanical coupling factor for both effective k31 and k33 modes were calculated 

at the resonance and antiresonance frequencies. Figure 3.2.4 (a) and (b) shows the degradation of 

the effective coupling factor with angled polarization in effective k31 and k33 vibration modes, 

respectively. Here, the coupling enhancement by canted polarization for rhombohedral PNZT was 

observed only in the effective k31 mode but not in the effective k33 mode.  

 

 

Figure 3.2.4. Effective electro-mechanical coupling factors with angled polarization in tetragonal, 

MPB and rhombohedral PNZT for the (a) k31 and (b) k33 vibration modes.  
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The piezoelectric d constant and corresponding losses are calculated as: 

 

𝑑31,eff(𝛾) = −√𝑘31,eff
2 (𝛾)𝑠11,eff

𝐸 (𝛾)𝜀0𝜀33,eff
𝑋 (𝛾) (3.2.6) 

 

tan 𝜃31,eff
′ (𝛾) = (

1

𝑄𝐴,31,eff(𝛾)
−

1

𝑄𝐵,31,eff(𝛾)
) ∙

1 + (
1 − 𝑘31,eff

2 (𝛾)

𝑘31,eff(𝛾)
)

2

∙ 𝛺𝐵,31,eff
2 (𝛾)

4

+
tan𝜙11,eff

′ (𝛾) + tan 𝛿33,eff
′ (𝛾)

2
                                     (3.2.7)

 

 

𝑑33,eff(𝛾) = √𝑘33,eff
2 (𝛾)𝑠33,eff

𝐸 (𝛾)𝜀0𝜀33,eff
𝑋 (𝛾) (3.2.8) 

 

tan 𝜃33,eff
′ (𝛾) =

tan𝜙33,eff
′ (𝛾)

2𝑘33,eff
2 (𝛾)

+
tan 𝛿33,eff

′ (𝛾)

2
−

1 − 𝑘33,eff
2 (𝛾)

2𝑘33,eff
2 (𝛾) ∙ 𝑄𝐵,33,eff(𝛾)

(3.2.9) 

 

The obtained piezoelectric parameters are shown in Figure 3.2.5. An enhancement of 

piezoelectric d constant in rhombohedral PNZT could be found in both k31 and k33 modes, unlike 

the electro-mechanical coupling factor. The major reason for the different phenomena is due to the 

increase of dielectric permittivity and elastic compliance with angled polarization. With largely 

canted polarization, the effective d constant degrades and become zero when the polarization is 

perpendicular to the applied electric field. In the k31 vibration mode, the piezoelectric loss 

dramatically increases on changing the angle (more than 50% when 45 degree canted). In the k33 

vibration mode, larger piezoelectric loss with canted polarization could only be observed in 

tetragonal PNZT.  
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Figure 3.2.5. Effective piezoelectric parameters under (a) k31 and (b) k33 vibration mode.  
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Finally, all three loss factors are plotted together in Figure 3.2.6 with a linear fitting curve. 

The change of intensive piezoelectric loss is dominant compared to other loss factors by canting 

the polarization, meaning that the piezoelectric loss depends more on the polarization angle than 

the dielectric or elastic losses. Comparing the ceramics, the piezoelectric loss change is largest for 

the tetragonal PNZT [63]. 

 

 

 

Figure 3.2.6. Intensive loss factors by polarization orientation under (a) k31 and (b) k33 vibration 

mode. 
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Review on the conventional characterization method 

In Chapter 3, a significant change of piezoelectric loss with polarization orientation was 

observed. However, the result induces several questions. Since accurate analysis is essential to 

discuss material behavior [64], this chapter introduces the issues with proposed solutions. 

 

4.1 Ambiguity in elastic compliance and losses 

In general, the elastic properties are obtained from the sound velocity calculated from the 

resonance frequency of k31 mode structure and the antiresonance frequency of k33 mode structure 

where the half-wave is generated along the vibration direction. However, by structural constraint, 

a significant difficulty is experienced occasionally in determining the intensive elastic compliance 

and the corresponding loss in the k33 mode [65]–[67]. The error can be easily found in the 

polarization-canted structure. As illustrated in Figure 4.1.1, the elastic compliance along the 11-

direction with canted polarization of 90 – γ degrees should be the same as the compliance along 

the 33-direction with canted polarization of γ degrees. Note the s33
E should be indirectly calculated 

from s33
D and the electro-mechanical coupling factor as shown in equation 3.2.3.  
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Figure 4.1.1. Illustration of the elastic compliance of effective (a) k31 and (b) k33 vibration mode.  

 

Figure 4.1.2 shows the s33
E obtained from the effective (a) k31 and (b) k33 modes for 

rhombohedral PNZT.   

 

 

Figure 4.1.2. The s33
E of rhombohedral PNZT obtained from effective (a) k31 and (b) k33 vibration 

modes.  

 

Large measurement error necessarily comes from the sample structure due to a very small 

current and capacitance compared to effective k31 mode samples. The high structural impedance 

from the low capacitance induces large measurement error in the overall electrical response. The 

errors are amplified due to indirect calculation of the properties from the assumed boundary 

conditions which are mechanically-free condition along the 3 axis (stress X3 constant) or an 
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electrically-open circuit (electric displacement D3 constant) condition. The relative error in the 

elastic compliance and loss for a standard k33 mode rod is shown in equation 4.1.1 and 4.1.2, 

respectively [67]. 

 

∆𝑠33
E

𝑠33
E

=
∆𝑠33

D

𝑠33
D

+ 2(
∆𝑘33

𝑘33
)(

𝑘33
2

1 − 𝑘33
2 ) (4.1.1) 

 

∆ tan𝜙′
33

tan𝜙′
33

≈ −
∆ tan𝛿′

33

tan 𝛿′
33

− 2(
∆𝑘33

𝑘33
)(

1

1 − 𝑘33
2 ) (4.1.2) 

 

Any error in the electro-mechanical coupling factor dramatically increases the error of s33
E 

and tanϕ'33. Note that the relative errors from the electro-mechanical coupling factor in real and 

imaginary parameters have opposite signs. Although the relative error must be accepted inevitably 

at present using the conventional rod geometry, higher accuracy in the real and imaginary 

parameters is needed. 

A solution to obtain k33 mode properties can be provided using standard k31 mode structures 

in addition to γ and π/2- γ degree polarization-canted structures where 0<γ<π/4 as illustrated in 

Figure 4.1.3 [67].  

 

 

Figure 4.1.3. Illustration of essential structures of proposed method to obtain k33 mode elastic 

properties. 
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The canted polarization can be expressed in rotated coordinates with the transformation 

matrix in equation 4.1.3. Thus, the effective elastic compliance with canted polarization in k31 mode 

shown in Figure 4.1.3 (b) is given by equation 4.1.4.  

 

𝐴 = (
cos 𝛾 0 sin 𝛾

0 1 0
− sin 𝛾 0 cos 𝛾

) (4.1.3) 

 

𝑠11,eff
E (𝛾) = cos4(𝛾)𝑠11

E + cos2(𝛾)sin2(𝛾)(2𝑠13
E + 𝑠55

E ) + sin4(𝛾)𝑠33
E (4.1.4) 

 

 From the difference of Figure 4.1.3 (b) and (c), the elastic compliance s13
E and s55

E can be 

canceled out, leaving only s11
E and s33

E. s11
E, s11,eff

E(π/2-γ) and s11,eff
E(γ) can be obtained from 

measured resonance frequencies of the effective k31 modes and the elastic compliance s33
E becomes: 

 

𝑠33
E = 𝑠11

E +
𝑠11,eff

E (
π
2 − 𝛾) − 𝑠11,eff

E (𝛾)

cos2𝛾
(4.1.5) 

 

 Taking into account the phase lag in equation 4.1.6, the effective elastic loss with canted 

polarization in the k31 mode can be expressed as shown in equation 4.1.7: 

 

𝑠eff
E,∗(𝜃) = 𝑠eff

E (𝜃)(1 − 𝑗 tan𝜙′
eff

(𝜃)) (4.1.6) 

 

tan𝜙′
11,eff

(𝜃) =

[
cos4𝜃𝑠11

E tan𝜙′
11 + sin4𝜃𝑠33

E tan𝜙′
33          

+cos2𝜃sin2𝜃(2𝑠13
E tan𝜙′

13 + 𝑠55
E tan𝜙′

55)
]

𝑠11,eff
E (𝜃)

(4.1.7)
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 Accordingly, from Figure 4.1.3 (b) and (c) samples, tanϕ’13 and tanϕ’55 can be canceled out 

and the intensive elastic loss in k33 mode (tanϕ’33) can be derived from measured effective 

parameters as in equation 4.1.8: 

 

tan𝜙′
33 =

𝑠11
E tan𝜙′

11 +

[[
𝑠11,eff

E (
π
2

− 𝛾) tan𝜙′
11,eff (

π
2

− 𝛾)

−𝑠11,eff
E (𝛾) tan𝜙′

11,eff
(𝛾)

]]

cos 2𝛾

𝑠33
E

(4.1.8)

 

 

 Therefore, the real and imaginary intensive elastic parameters of k33 vibration mode are 

obtainable from measurements of effective k31 samples. The feasibility of the proposed method was 

checked for the rhombohedral PNZT samples prepared as described in chapter 3. The sample 

capacitance of k31 mode structure, 0.24 nF, is L2/t2 times higher than 1.0 pF of the k33 mode sample; 

thus structural impedance can be neglected.  

 Frequency vs. voltage/current response was observed with a high-power characterization 

system (HiPoCSTM) at a constant vibration velocity of 5 mm/sec where the heat generation is low 

enough to prevent peak distortion near the resonance and antiresonance frequencies [68], [69]. A 

schematic diagram of the HiPoCSTM is shown in Figure 4.1.4. 

 

 

Figure 4.1.4. HiPoCSTM developed in International Center for Actuators and Transducers. 
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 The effective elastic compliance and loss were derived from the measured resonance 

frequency and corresponding 3dB bandwidth on the voltage spectrum and compared with the 

results in chapter 3. The predicted effective elastic compliances by angled polarization along with 

the 95% confidence intervals are plotted in Figure 4.1.5 (a) (b) and (c) with the measured 

parameters in Figure 4.1.5 (b). Note the effective elastic compliance for k31 vibration mode changes 

from s11
E to s33

E. The s33
E calculated with IEEE standard is plotted in Figure 4.1.5 (d) for comparison. 

The s33
E derived from the proposed method and IEEE standard is 14.82 μm2/N ±0.13% and 13.59 

μm2/N ±0.43%, respectively. The relative error found in the real parameter was -8.3%; the IEEE 

Standard underestimates the elastic compliance. 

 

 

Figure 4.1.5. Elastic compliance (a) s11
E, (b) effective s11

E by polarization angle, (c) s33
E derived 

from the proposed method and (d) s33
E calculated with IEEE standard. 

 

 Figure 4.1.6 (a), (b) and (c) shows the predicted effective elastic loss with angled 

polarization in 95% confidence intervals. In comparison with, the loss calculated from the k33 

geometry is plotted in Figure 4.1.6 (d). The tanϕ’33 derived from the proposed method is 0.0096 

±0.0003 (2.6%) where the loss with the conventional method is 0.017 ± 0.002 (9.1%). The relative 
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error found in the imaginary parameter was 74%; the conventional method overestimates the elastic 

loss. 

 

 

Figure 4.1.6. Elastic loss (a) tanϕ’11, (b) effective tanϕ’11 by polarization angle, (c) tanϕ’33 derived 

from the proposed method and (d) tanϕ’33 calculated with conventional method. 

 

 The relative error in the real and imaginary parts of the intensive elastic parameter have 

opposite signs, as predicted in the calculation of relative error. The measured effective elastic 

parameters mostly fit in the 95% confidence zone. Considering the material property deviation in 

each sample from ceramic processing, the deviation of derived method is acceptable and the 

accuracy of the obtained elastic parameters is high. 

 

4.2 Errors of mechanical quality factors 

 Although there exists controversy in determination of quality factors [51]–[54], [70], 3dB 

down and up bandwidth from the maximum and minimum peak of admittance spectra is 
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conventionally utilized to calculate the half-power bandwidth for QA and QB, respectively. The 

problem is, the definition of half-power bandwidth contains an error when the electro-mechanical 

coupling is small where the damped capacitance cannot be neglected with respect to the small 

motional capacitance. In the case, the 3dB bandwidth doesn’t provide half of the motional 

admittance or impedance, but overestimates the bandwidth as shown in Figure 4.2.1.  

 

 

Figure 4.2.1. 3dB bandwidth in low and high coupling condition shown in (a) lYl and (b) lZl 

circle for QA and QB, respectively. 

 

The problem can be encountered in some recent research focused on piezoelectric polymers, 

composites, thin films or lead-free materials with low electro-mechanical coupling factors [71]. 

Since the polarization-canted samples also have low electro-mechanical coupling with largely 

canted angle where the effective polarization is small, the error should not be neglected to 

accurately analyze the effect of polarization orientation on piezoelectric properties.  

As a solution, using the quadrantal bandwidth from the admittance or impedance circle is 

proposed. This gives the frequency bandwidth in between the maximum and minimum susceptance 

B or reactance X as shown in Figure 4.2.2. 
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Figure 4.2.2. Suggested quadrantal bandwidth in (a) lYl and (b) lZl circle for QA and QB, 

respectively. 

 

ATILA/GiD finite element simulation of PZT5A in k31 mode was conducted with 

controlled inputs of piezoelectric d31 constant and fixed loss parameters to demonstrate the errors 

in conventional compared to the suggested bandwidth in low coupling conditions. The elastic and 

piezoelectric loss calculated from the conventional 3dB method and proposed quadrantal method 

are shown in Figure 4.2.3 with respect to the piezoelectric d31 constant.  

 

 

Figure 4.2.3. (a) Elastic and (b) piezoelectric loss calculated from conventional 3dB method and 

the proposed quadrantal method. 
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  Owing to the overestimated half power bandwidth in the conventional 3dB method, the 

mechanical quality factor is underestimated; thus the elastic loss is overestimated. Similarly, the 

piezoelectric loss is also overestimated with the conventional method. Some difficulties of loss 

reproduction in FEA simulations are reported in several studies [72], [73]. 

The analysis result shows that the proposed quadrantal method is much more accurate and 

the FEA can reproduce the losses accurately even when the electro-mechanical coupling is small. 

 

4.3 Spurious modes near the shear vibration 

The most challenging issue in k15 mode analysis is the spurious peaks appearing near the 

shear vibration mode. With the spurious peaks, the resonance/antiresonance frequencies and 

corresponding half-power bandwidth cannot be accurately obtained. However, with various 

polarization-canted structures, the issue can be resolved. With the change of effective elastic 

properties and coupling factor for samples with canted polarization, the resonance or antiresonance 

frequency can be moved far from the spurious peaks. To verify this idea, ATILA/GiD simulation 

was made for PZT5A with the parameters in Table 4.3.1.  

 

Table 4.3.1. PZT5A properties used to simulate spurious modes near the shear vibration mode in 

ATILA/GiD software. 

ρ s11
E s12

E s13
E s33

E s55
E tanϕ ’ 

7750 

kg/m3 

16.4 

μm2/N 

-5.74  

μm2/N 

-7.22  

μm2/N 

18.8  

μm2/N 

47.5  

μm2/N 

0.010 

 

d15  d31 d33 tanθ ’ ε11
X ε33

X tanδ ’ 

584 

pC/N 

-171 

pC/N 

374 

pC/N 

0.015 1730 1700 0.020 

 

The loss factors are set as isotropic parameters for the convenience of calculation. The 

piezoelectric loss was set as the average of dielectric and elastic loss as indicated in the IEEE 
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standard of piezoelectricity. Thus, regardless of the polarization orientation, the quality factors 

should be given by equation 4.3.1. 

 

𝑄A,15 = 𝑄B,15 =
1

tan𝜙′
= 100 (4.3.1) 

 

The dimensions were set to 15, 3 and 1mm for the length, width and thickness, the same 

as the measured samples. For various polarization orientations, the admittance/impedance was 

simulated from 600 to 1100 kHz. The result shows that spurious peaks could be separated from the 

motional admittance / impedance by changing the polarization angle, as shown in Figure 4.3.1 (a) 

and (b).  

 

 

 

Figure 4.3.1. Spurious peaks separating from the (a) motional admittance and (b) impedance by 

changing the polarization orientation. 
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To verify the assumption that there is no distortion of the shear vibration when the spurious 

mode is moved away from the motional admittance / impedance forming clean half-circle, QA,15 

and QB,15 were calculated for the various orientations in Figure 4.3.1. The results are shown in Table 

4.3.2. 

 

Table 4.3.2. Calculated QA and QB with various polarization orientations in Figure 4.3.1. 

π/2-γ 34° 36° 39°  π/2-γ 33° 35° 38° 

QA,15 55.4 62.6 102  QB,15 19.8 18.1 99.6 

 

With the spurious mode separated from the half-power bandwidth of the shear vibration 

(39 degrees for the resonance peak and 38 degrees for the antiresonance peak), the quality factors 

could be accurately calculated with less than 2 percent error. Finding the most undistorted half-

circles are essential for further analysis. 
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Proposed characterization method 

5.1 Introduction 

Resolving the characterization issues with the solutions provided in Chapter 4, an advanced 

characterization method is proposed to obtain the anisotropic intensive parameters for the k31, k33 

and k15 vibration modes. Effective k31-k15 structures with canted polarization as illustrated in Figure 

5.1.1 are suggested for the characterization. More than three different geometries of canting angle 

(γ1 ≠ γ2 ≠ γ3) are necessary. The proposed methodology contains 1) off-resonance dielectric 

measurements, 2) effective k31 mode analysis, 3) off-resonance d33 measurements and 4) effective 

k15 mode analysis.  

 

 

Figure 5.1.1. Illustration of effective k31-k15 structure with canted polarization. 

 

The effective dielectric, elastic and piezoelectric properties for the structure can be 

expressed with the independent parameters in equations 5.1.2 to 5.1.4 using the rotational transition 

matrix A. From analysis of the effective parameters, independent material properties can be 

obtained.  
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A = (𝑎𝑖𝑗) = (
cos 𝛾 0 sin 𝛾

0 1 0
− sin𝛾 0 cos 𝛾

) (5.1.1) 

 

𝜀𝑖𝑗,𝑒𝑓𝑓
∗,𝑋 (𝛾) = ∑𝑎𝑖𝑘𝑎𝑗𝑙𝜀𝑘𝑙

𝑋

𝑘,𝑙

(1 − 𝑗 tan 𝛿′
𝑘𝑙) (5.1.2) 

 

𝑠𝑖𝑗𝑘𝑙,𝑒𝑓𝑓
∗,𝐸 (𝛾) = ∑ 𝑎𝑖𝑚𝑎𝑗𝑙𝑎𝑘𝑜𝑎𝑙𝑝𝑠𝑚𝑛𝑜𝑝

𝐸

𝑚,𝑛,𝑜,𝑝

(1 − 𝑗 tan𝜙′
𝑚𝑛𝑜𝑝) (5.1.3) 

 

𝑑𝑖𝑗𝑘,𝑒𝑓𝑓
∗ (𝛾) = ∑ 𝑎𝑖𝑙𝑎𝑗𝑚𝑎𝑘𝑛𝑑𝑙𝑚𝑛

𝑙,𝑚,𝑛

(1 − 𝑗 tan𝜃′
𝑙𝑚𝑛) (5.1.4) 

 

5.2 Off-resonance dielectric measurements 

There is no issue in the IEEE standard of piezoelectricity for the dielectric measurements. 

However, the reliability of the measurements can be dramatically enhanced with additional analysis. 

Using the effective k31-k15 structure, the intensive dielectric permittivity and corresponding losses 

along the 33-direction and 11-direction can be obtained with the following equations, where 

0≤γ1<γ2≤π/2. 

 

𝜀33 
𝑋 =

sin2(𝛾2) 𝜀33,𝑒𝑓𝑓 
𝑋 (𝛾1) − sin2(𝛾1) 𝜀33,𝑒𝑓𝑓 

𝑋 (𝛾2)

sin(𝛾2 + 𝛾1) sin(𝛾2 − 𝛾1)
(5.2.1) 

 

𝜀11 
𝑋 =

cos2(𝛾1) 𝜀33,𝑒𝑓𝑓 
𝑋 (𝛾2) − cos2(𝛾2) 𝜀33,𝑒𝑓𝑓 

𝑋 (𝛾1)

sin(𝛾2 + 𝛾1) sin(𝛾2 − 𝛾1)
(5.2.2) 
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tan 𝛿′
33 =

[
sin2(𝛾2) 𝜀33,𝑒𝑓𝑓 

𝑋 (𝛾1) tan 𝛿′
33,𝑒𝑓𝑓 (𝛾1)

− sin2(𝛾1) 𝜀33,𝑒𝑓𝑓 
𝑋 (𝛾2) tan 𝛿′

33,𝑒𝑓𝑓 (𝛾2)
]

𝜀33 
𝑋 sin(𝛾2 + 𝛾1) sin(𝛾2 − 𝛾1)

(5.2.3)
 

 

tan 𝛿′
11 =

[
cos2(𝛾1) 𝜀33,𝑒𝑓𝑓 

𝑋 (𝛾2) tan 𝛿′
33,𝑒𝑓𝑓 (𝛾2)

− cos2(𝛾2) 𝜀33,𝑒𝑓𝑓 
𝑋 (𝛾1) tan 𝛿′

33,𝑒𝑓𝑓 (𝛾1)
]

𝜀11 
𝑋 sin(𝛾2 + 𝛾1) sin(𝛾2 − 𝛾1)

(5.2.4)
 

 

5.3 Effective k31 mode analysis 

The next step is to analyze the effective k31 vibration mode. Defining the effective 

quadrantal resonance frequency (fAq,31,eff (γ)) where the conductivity G is maximum [12], [74], the 

effective s11
E with γ degree canted polarization (s11,eff

E (γ)) can be obtained via equation 5.3.1. When 

setting the vibration length to 15mm, the effective k31 mode should occur near 100kHz for typical 

PZT-based ceramics, similar to the results in Chapter 3.  

 

𝑠11,eff
𝐸 (𝛾) =

𝑣11,eff
2 (𝛾)

𝜌
=

1

4𝑓Aq,31,eff
2 (𝛾)𝐿2𝜌

(5.3.1) 

 

The elastic compliance along the 11- and 33- directions can be obtained from equation 

5.3.2 and 5.3.3 where 0≤γ1<γ2<γ3<π/2. Here (i) mod (n) is a modulus function which is equal to the 

remainder of i divided by n, where i, n and (i) mode (n) are natural numbers. The modulus function 

is used to simplify the equations. Although the s11
E can be directly obtained from standard k31 mode 

structure, the equations below give more reliability in the analysis.  
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𝑠11
𝐸 =

∑ [

sin2(𝛾(𝑖)𝑚𝑜𝑑(3)+1) sin2(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 + 𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 − 𝛾(𝑖)𝑚𝑜𝑑(3)+1) 𝑠11,𝑒𝑓𝑓
𝐸 (𝛾𝑖) 

]3
𝑖=1  

∑ [
cos4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1) sin2(𝛾𝑖) sin2(𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 + 𝛾𝑖) sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 − 𝛾𝑖)
]3

𝑖=1

(5.3.2)
 

 

𝑠33
𝐸 =

∑ [

cos2(𝛾(𝑖)𝑚𝑜𝑑(3)+1) cos2(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 + 𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 − 𝛾(𝑖)𝑚𝑜𝑑(3)+1) 𝑠11,𝑒𝑓𝑓
𝐸 (𝛾𝑖) 

]3
𝑖=1  

∑ [
cos4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1) sin2(𝛾𝑖) sin2(𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 + 𝛾𝑖) sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 − 𝛾𝑖)
]3

𝑖=1

(5.3.3)
 

 

The simplified solution in Chapter 4 is identical with the above equations when γ1=0 and γ 

=γ2=π/2- γ3. 

The next step is to obtain the piezoelectric d31 constant. The effective electro-mechanical 

coupling factor can be calculated, thus the effective piezoelectric d31 constant can be obtained. The 

piezoelectric d31 constant can be calculated with equation 5.3.4 where 0≤γ1<γ2<π/2. 

 

𝑑31 =

[
cos(𝛾2) sin2(𝛾2) 𝑑31,𝑒𝑓𝑓(𝛾1)

− cos(𝛾1) sin2(𝛾1) 𝑑31,𝑒𝑓𝑓(𝛾2)
]

cos(𝛾1) cos(𝛾2) sin(𝛾2 + 𝛾1) sin(𝛾2 − 𝛾1)
(5.3.4)

 

 

Additionally, the following values can be obtained for further analysis. 
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2𝑠13
𝐸 + 𝑠55

𝐸 =

∑ [

{sin4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1) cos4(𝛾(𝑖)𝑚𝑜𝑑(3)+1)

− sin4(𝛾(𝑖)𝑚𝑜𝑑(3)+1) cos4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)}

∙ 𝑠11,𝑒𝑓𝑓
𝐸 (𝛾𝑖) 

]3
𝑖=1  

∑ [

cos2(𝛾(𝑖)𝑚𝑜𝑑(3)+1) cos2(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin4(𝛾(𝑖)) sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 + 𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 − 𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

]  3
𝑖=1

(5.3.5) 

 

𝑑33 − 𝑑15 =
cos3(𝛾2) 𝑑31,𝑒𝑓𝑓(𝛾1) − cos3(𝛾1) 𝑑31,𝑒𝑓𝑓(𝛾2)

cos(𝛾1) cos(𝛾2) sin(𝛾1 + 𝛾2) sin(𝛾1 − 𝛾2)
(5.3.6) 

 

Next, the loss factors were analyzed. From the effective QA,31, the effective intensive elastic 

loss along 11-direction can be calculated as: 

 

tan𝜙′
11,𝑒𝑓𝑓

(𝛾) =
1

𝑄𝐴,31,𝑒𝑓𝑓(𝛾)
(5.3.7) 

 

Then, the independent elastic loss parameter along the 11- and 33-directions can be 

obtained with equation 5.3.8 and 5.3.9 respectively where 0≤γ1<γ2<γ3<π/2. 

 

tan𝜙′
11 =

∑

[
 
 
 
 
sin2(𝛾(𝑖)𝑚𝑜𝑑(3)+1) sin2(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 + 𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 − 𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ 𝑠11,𝑒𝑓𝑓
𝐸 (𝛾𝑖) tan𝜙′

11,𝑒𝑓𝑓
(𝛾𝑖) ]

 
 
 
 

3
𝑖=1  

𝑠11
𝐸 ∑ [

cos4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1) sin2(𝛾𝑖) sin2(𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 + 𝛾𝑖) sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 − 𝛾𝑖)
]  3

𝑖=1

(5.3.8)
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tan𝜙′
33 =

∑

[
 
 
 
 
cos2(𝛾(𝑖)𝑚𝑜𝑑(3)+1) cos2(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 + 𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1 − 𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ 𝑠11,𝑒𝑓𝑓
𝐸 (𝛾𝑖) tan𝜙′

11,𝑒𝑓𝑓
(𝛾𝑖) ]

 
 
 
 

3
𝑖=1  

𝑠33
𝐸 ∑  3

𝑖=1 [
cos4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1) sin2(𝛾𝑖) sin2(𝛾(𝑖)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 + 𝛾𝑖) sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 − 𝛾𝑖)
]

(5.3.9)

 

 

From the effective QB,31, the effective piezoelectric loss for effective k31 vibration can be 

calculated. Then, the independent piezoelectric loss tangent can be calculated with (5.3.10) where 

0≤γ1<γ2<π/2. 

 

tan 𝜃′
31 =

[
cos(𝛾2) sin2(𝛾2) 𝑑31,𝑒𝑓𝑓(𝛾1) tan 𝜃′

31,𝑒𝑓𝑓 (𝛾1)

− cos(𝛾1) sin2(𝛾1) 𝑑31,𝑒𝑓𝑓(𝛾2) tan 𝜃′
31,𝑒𝑓𝑓 (𝛾2)

]

𝑑31 cos(𝛾1) cos(𝛾2) sin(𝛾2 + 𝛾1) sin(𝛾2 − 𝛾1)
(5.3.10)

 

 

The following values can be obtained for further analysis. 

 

2𝑠13
𝐸 tan𝜙′

13 + 𝑠55
𝐸 tan𝜙′

55  =

∑ [

{sin4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1) cos4(𝛾(𝑖)𝑚𝑜𝑑(3)+1)

− sin4(𝛾(𝑖)𝑚𝑜𝑑(3)+1) cos4(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)}

∙ 𝑠11,𝑒𝑓𝑓
𝐸 (𝛾𝑖) tan𝜙′

11,𝑒𝑓𝑓
(𝛾𝑖)

]3
𝑖=1  

∑ [

cos2(𝛾(𝑖)𝑚𝑜𝑑(3)+1) cos2(𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin4(𝛾(𝑖)) sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 + 𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

∙ sin(𝛾(𝑖)𝑚𝑜𝑑(3)+1 − 𝛾(𝑖+1)𝑚𝑜𝑑(3)+1)

]  3
𝑖=1

(5.3.11) 

 

𝑑33 tan 𝜃′
33 − 𝑑15 tan 𝜃′

15  =

[
cos3(𝛾2) 𝑑31,𝑒𝑓𝑓(𝛾1) tan 𝜃′

31,𝑒𝑓𝑓 (𝛾1)

− cos3(𝛾1) 𝑑31,𝑒𝑓𝑓(𝛾2) tan 𝜃′
31,𝑒𝑓𝑓 (𝛾2)

]

cos(𝛾1) cos(𝛾2) sin(𝛾1 + 𝛾2) sin(𝛾1 − 𝛾2)
(5.3.12)
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5.4 Effective d33 measurement 

 Next, with measurement of the effective d33 constant in the effective k31-k15 geometry, the 

d33 constant can be obtained using equation 5.4.1. 

 

𝑑33 = 𝑑33,𝑒𝑓𝑓(0) =

[
cos(𝛾2) sin2(𝛾2) 𝑑33,𝑒𝑓𝑓(𝛾1)

− cos(𝛾1) sin2(𝛾1) 𝑑33,𝑒𝑓𝑓(𝛾2)
]

cos(𝛾1) cos(𝛾2) sin(𝛾1 + 𝛾2) sin(𝛾1 − 𝛾2)
(5.4.1)

 

 

 Then, the piezoelectric d15 constant can be obtained with equation 5.3.6 or 5.4.2. 

 

𝑑15 = −𝑑31 +
cos2(𝛾2) 𝑑33,𝑒𝑓𝑓(𝛾1) − cos2(𝛾1) 𝑑33,𝑒𝑓𝑓(𝛾2)

cos(𝛾1) cos(𝛾2) sin(𝛾2 + 𝛾1) sin(𝛾2 − 𝛾1)
(5.4.2) 

 

 In this way, all the real parameters essential for the k31, k33 and k15 vibration modes are 

obtained. The next step is to analyze the imaginary parameters. 

 

5.5 Effective k15 analysis 

 Assume that a clear half-circle of motional admittance and impedance could be obtained 

at polarization angles of γA and γB, respectively. At first, with the obtained antiresonance frequency 

of the effective shear vibration with γB canted polarization, the effective electro-mechanical 

coupling factor can be obtained from equation 5.5.2.  

 

𝑠55,𝑒𝑓𝑓
𝐷 (𝛾𝐵) =

1

4𝑡2𝜌𝑓𝐵,𝑒𝑓𝑓
2 (𝛾𝐵)

(5.5.1) 
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𝑘15,𝑒𝑓𝑓
2 (𝛾𝐵)

1 − 𝑘15,𝑒𝑓𝑓
2 (𝛾𝐵)

=
𝑑15,𝑒𝑓𝑓

2 (𝛾𝐵)

𝜀0𝜀11,𝑒𝑓𝑓
𝑋 (𝛾𝐵) ∙ 𝑠55,𝑒𝑓𝑓

𝐷 (𝛾𝐵)
(5.5.2) 

 

 Then, s13
E and s55

E can be obtained from equation 5.3.5 and 5.5.3.  

 

𝑠55,𝑒𝑓𝑓
𝐷 (𝛾𝐵)

1 − 𝑘15,𝑒𝑓𝑓
2 (𝛾𝐵)

= sin2(2𝛾𝐵) (𝑠11
𝐸 + 𝑠33

𝐸 − 2𝑠13
𝐸 ) + cos2(2𝛾𝐵) 𝑠55

𝐸 (5.5.3) 

 

 The effective QB(γB) satisfies the following relation with the effective coupling factor and 

loss parameters. 

 

1 − 𝑘15,𝑒𝑓𝑓
2 (𝛾𝐵)

𝑘15,𝑒𝑓𝑓
2 (𝛾𝐵)

∙
1

𝑄𝐵,𝑒𝑓𝑓(𝛾𝐵)
= tan 𝛿′

11,𝑒𝑓𝑓 (𝛾𝐵) − 2 tan𝜃′
15,𝑒𝑓𝑓 (𝛾𝐵) +

tan𝜙′
55,𝑒𝑓𝑓

(𝛾𝐵)

𝑘15,𝑒𝑓𝑓
2 (𝛾𝐵)

(5.5.4) 

 

 From the resonance frequency obtained from the γA polarization-canted structure, the 

corresponding anti-resonance frequency can be predicted from equations 5.5.5 and 5.5.6. Thus, the 

effective electro-mechanical coupling factor can be obtained. 

 

𝑘15,𝑒𝑓𝑓
2 (𝛾𝐴) =

𝑑15,𝑒𝑓𝑓
2 (𝛾𝐴)4𝑡2𝜌𝑓𝐵,𝑒𝑓𝑓

2 (𝛾𝐴)

𝑑15,𝑒𝑓𝑓
2 (𝛾𝐴)4𝑡2𝜌𝑓𝐵,𝑒𝑓𝑓

2 (𝛾𝐴) + 𝜀0𝜀11,𝑒𝑓𝑓
𝑋 (𝛾𝐴)

(5.5.5) 

 

𝑘15,𝑒𝑓𝑓
2 (𝛾𝐴) =

𝜋

2

𝑓𝐴,𝑒𝑓𝑓(𝛾𝐴)

𝑓𝐵,𝑒𝑓𝑓(𝛾𝐴)
cot [

𝜋

2

𝑓𝐴,𝑒𝑓𝑓(𝛾𝐴)

𝑓𝐵,𝑒𝑓𝑓(𝛾𝐴)
] (5.5.6) 

 

 Then, the effective QA(γA) satisfies the following relation as a function of the effective 

coupling factor, A- and B-type resonance frequencies and loss parameters.  
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1 − 𝑘15,𝑒𝑓𝑓
2 (𝛾𝐴)

𝑄𝐴,𝑒𝑓𝑓(𝛾𝐴)
∙ [𝑘15,𝑒𝑓𝑓

2 (𝛾𝐴) − 1 + tan2 {
𝜋

2

𝑓𝐴,𝑒𝑓𝑓(𝛾𝐴)

𝑓𝐵,𝑒𝑓𝑓(𝛾𝐴)
}]

= [𝑘15,𝑒𝑓𝑓
4 (𝛾𝐴) + 𝑘15,𝑒𝑓𝑓

2 (𝛾𝐴) + {
𝜋

2

𝑓𝐴,𝑒𝑓𝑓(𝛾𝐴)

𝑓𝐵,𝑒𝑓𝑓(𝛾𝐴)
}

2

− 2] tan 𝛿′
11,𝑒𝑓𝑓 (𝛾𝐵)

+ [3𝑘15,𝑒𝑓𝑓
2 (𝛾𝐴) + tan2 {

𝜋

2

𝑓𝐴,𝑒𝑓𝑓(𝛾𝐴)

𝑓𝐵,𝑒𝑓𝑓(𝛾𝐴)
} − 3] tan𝜙′

55,𝑒𝑓𝑓
(𝛾𝐵)  

+ [4 − 2𝑘15,𝑒𝑓𝑓
4 (𝛾𝐴) − 2𝑘15,𝑒𝑓𝑓

2 (𝛾𝐴)

− 2 {
𝜋

2

𝑓𝐴,𝑒𝑓𝑓(𝛾𝐴)

𝑓𝐵,𝑒𝑓𝑓(𝛾𝐴)
}

2

] tan 𝜃′
15,𝑒𝑓𝑓 (𝛾𝐵)                                                   (5.5.7) 

 

 Since the effective loss parameters are functions of the independent loss parameters as 

indicated in equation 5.1.2 to 5.1.4, tanϕ’13, tanϕ’55, tanθ’33 and tanθ’15 can be obtained from 

equation 5.3.11, 5.3.12, 5.5.4 and 5.5.7. Resultingly, the intensive loss parameters for k31, k33 and 

k15 vibration mode can be separately derived. 
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Anisotropic properties with proposed methodology 

6.1 The vibration mode separation 

As a prerequisite of the proposed analysis, it should be verified that mode coupling does 

not occur near the effective k31 and k15 vibrations [75], [76]. An intensive study of each vibration 

mode was conducted. Impedance and phase spectrum were analyzed from 50kHz to 4MHz 

(5.2MHz for rhombohedral PNZT) with the HiPoCSTM under a constant voltage of 0.5V for each 

structure as shown in Figure 6.1.1 (a), (b) and (c). 
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Figure 6.1.1. Impedance and phase spectrum of (a) tetragonal, (b) MPB and (c) rhombohedral 

PNZT measured with HiPoCSTM and (d) PZT5A simulated with ATILA/GiD. 
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 ATILA/GiD simulations of PZT-5A were conducted to analyze the vibration modes as 

shown in Figure 6.1.1 (d). The vibration modes are consistent in simulation and measurements and 

the effective k31 and k15 mode were separated from other vibration modes. The effective vibration 

modes labeled in Figure 6.1.1 are the ① k31 mode, ② 2nd order k31 mode, ③ k32 mode, ④ k15 mode, 

⑤ sub-mode of coupled kt and 2nd order k32 mode, ⑥ 2nd order k32 mode, ⑦ kt mode and ⑧ 2nd 

order k15 mode. The 2nd order k32 mode and kt mode are calculated to occur at higher frequency 

than the k15 mode, however it is interesting to observe a sub-vibration mode which is a coupled 

mode of kt and the 2nd order k32 mode. The displacement distribution of important vibration modes 

are simulated with ATILA/GiD software as shown in Figure 6.1.2. Since the necessary vibration 

modes are separated, further analysis could be made. 

 

 

Figure 6.1.2. Simulated displacement distributions of vibration modes shown in Figure 6.1.1. 

  

6.2 The independent parameters 

Now, the anisotropic properties were obtained with the proposed methodology in Chapter 

5. Figure 6.2.1 shows the obtained dielectric properties. The results of dielectric properties are in 

good agreement with the measured data in Chapter 3. 
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Figure 6.2.1. Histogram of dielectric properties obtained with the proposed method. 

 

 The elastic properties calculated from the effective k31 mode data are shown in Figure 6.2.2. 

The elastic compliance along the polarization direction is higher than the one perpendicular to the 

polarization especially in MPB and rhombohedral PNZT. It is usual for PZT ceramics that 

s55>s33>s11 due to the P6mm symmetry achieved from poling [77]. It is known that poled 

rhombohedral ceramics have greater elastic anisotropy than the tetragonal ceramics in spite of the 

smaller distortion of the crystal from cubic symmetry [58], [78]–[80]. The intensive elastic loss 

shows larger anisotropy in the rhombohedral than tetragonal phase, similar to the real parameter. 

However, the elastic loss could be considered as constant for the two directions regardless of the 

structure, compared to the dielectric loss anisotropy.  
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Figure 6.2.2. Histogram of elastic properties obtained from effective k31 structures. 

   

 Next, the effective d33 were measured at 110Hz with a PM200 d33 meter (Piezotest, UK) 

under a static force of 10N and dynamic force of 0.25N. Consequently, the piezoelectric d constants 

could be obtained as shown in Figure 6.2.3. The piezoelectric anisotropy is largest in rhombohedral 

and smallest in tetragonal PNZT as shown in Table 6.2.1. 
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Figure 6.2.3. Histogram of obtained piezoelectric d constants. 

 

Table 6.2.1. Piezoelectric anisotropy ratios of PNZT. 

 Tetragonal MPB Rhombohedral 

d15/d33 1.38  1.52  1.77  

-d15/d31 3.59  4.01  4.95  

-d33/d31 2.60  2.64  2.80  

 

 The intensive piezoelectric loss for k31 mode is shown in Figure 6.2.4. The transverse 

piezoelectric loss is largest in rhombohedral and smallest in tetragonal PNZT. Considering the 

dielectric and elastic loss factors, the mechanical quality factor difference between the transverse 

resonance and antiresonance frequencies is the highest for rhombohedral PNZT due to the large 

piezoelectric loss. 

 

 

Figure 6.2.4. Histogram of obtained piezoelectric loss tanθ’31. 
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Now, the independent elastic and piezoelectric loss of k15 and k33 mode should be obtained. 

The effective shear modes were analyzed with HiPoCSTM under a 0.1mW of constant power 

condition to avoid peak distortion, since the shear vibration could not be accurately traced with the 

laser Doppler vibrometer. The admittance / impedance near resonance and antiresonance 

frequencies were measured at 1Hz interval and the distortion of the half-circle was analyzed. Figure 

6.2.5 shows the motional admittance and impedance in the range of 0.93 to 1.33MHz of 

rhombohedral with various polarization orientations. As indicated in the figure, the half circle with 

the least distortion was observed at γ = 60° and 75° for motional admittance and impedance, 

respectively.  

 

 

 

Figure 6.2.5. (a) Admittance and (b) impedance circle near effective k15 shear mode where the 

angle between polarization and applied electric field is 90, 75 or 60 degrees. 

 

Table 6.2.2 shows the angle between the polarization and applied electric field for the most 

undistorted geometries for each structure and the resulting effective resonance frequencies and 

corresponding quality factors. For the admittance circle, the conductance of the frequencies where 
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the susceptance is maximum or minimum needs to be in a similar range when undistorted. For the 

impedance circle, the resistance of the frequencies where the reactance is maximum or minimum 

needs to be in a similar range when undistorted. Then, assigning an imaginary center of the circles, 

the standard deviation of the relative radius was checked, and the least distorted measurement data 

were taken from ten samples of each. The measured errors were 0.1%, 5%, 0.2% and 10% for fA, 

QA, fB and QB, respectively. 

 

Table 6.2.2. The obtained effective shear mode properties of the least distorted geometries. 

 Tetragonal MPB Rhombohedral 

 A-type B-type A-type B-type A-type B-type 

γ (degree) 90 60 90 90 60 75 

Resonance 

frequency (kHz) 

1027.4 1137.5 860.25 1136.5 994.38 1227.2 

Quality factor 57.2 105 47.5 106 90.5 109 

 

Consequently, the intensive elastic and piezoelectric loss factors for k33 and k15 mode could 

be obtained. The obtained independent parameters are shown in Table 6.2.3. Note the only 

remaining unknown parameter s12
E and the corresponding elastic loss can be obtained from kp mode 

structures with the standard method, if necessary. 
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Table 6.2.3. The independent parameters obtained with the proposed method. 

Tetragonal ε33
X 1213 ε11

X 1079 s13
E (μm2/N) -3.72 

tanδ’33 (%) 1.11 tanδ’11 (%) 1.46 tanϕ’13 (%) 4.52 

s11
E (μm2/N) 12.77 s33

E (μm2/N) 12.84 s55
E (μm2/N) 32.83 

tanϕ’11 (%) 0.91 tanϕ’33 (%) 0.90 tanϕ’55 (%) 1.88 

d31 (pC/N) -90 d33 (pC/N) 233 d15 (pC/N) 322 

tanθ’31 (%) 1.51 tanθ’33 (%) 3.03 tanθ’15 (%) 3.10 

MPB ε33
X 1455 ε11

X 1516 s13
E (μm2/N) -8.01 

tanδ’33 (%) 1.48 tanδ’11 (%) 1.62 tanϕ’13 (%) 4.40 

s11
E (μm2/N) 16.09 s33

E (μm2/N) 18.06 s55
E (μm2/N) 51.41 

tanϕ’11 (%) 0.96 tanϕ’33 (%) 1.04 tanϕ’55 (%) 2.19 

d31 (pC/N) -148 d33 (pC/N) 391 d15 (pC/N) 593 

tanθ’31 (%) 1.73 tanθ’33 (%) 2.63 tanθ’15 (%) 2.50 

Rhombohedral ε33
X 604 ε11

X 950 s13
E (μm2/N) -5.13 

tanδ’33 (%) 2.11 tanδ’11 (%) 2.67 tanϕ’13 (%) 1.64 

s11
E (μm2/N) 12.15 s33

E (μm2/N) 14.75 s55
E (μm2/N) 37.48 

tanϕ’11 (%) 0.74 tanϕ’33 (%) 0.89 tanϕ’55 (%) 1.30 

d31 (pC/N) -77 d33 (pC/N) 217 d15 (pC/N) 383 

tanθ’31 (%) 2.04 tanθ’33 (%) 1.28 tanθ’15 (%) 2.24 

 

 Figure 6.2.6 shows the piezoelectric loss for different vibration modes. It is interesting to 

note that the piezoelectric loss appeared to be the smallest in rhombohedral and the largest in 

tetragonal PNZT in the k33 and k15 vibration modes. In contrast, the piezoelectric loss appeared to 

be the largest in rhombohedral and the smallest in tetragonal PNZT for the k31 vibration. According 

to the results, the vibration mode should be considered as an important variable to discuss the 

piezoelectric loss anisotropy. 
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 Figure 6.2.6. Piezoelectric loss in various PNZT crystal structures for k31, k33 and k15 vibration 

modes. 

  

 Table 6.2.4 compares the piezoelectric loss of measured PNZT to the conventional studies. 

Note that the conventional studies contain large measurement error in k33 and k15 modes due to the 

small capacitance and spurious peaks. Miguel Alguero et al. reported the anisotropic piezoelectric 

loss in Navy type II (PZ27) ceramics by analyzing the admittance and impedance at length, shear, 

thickness and radial resonance [81]. Here, the larger piezoelectric loss was reported with larger 

piezoelectric d constant, similar to the tetragonal PNZT. The author noted an additional limitation 

of analysis due to the inconsistent poling in different geometries. Yuan Zhuang et al. reported the 

loss anisotropy in soft (APC850) [39] and hard (APC841) [82] piezoelectric ceramics using the 

3dB method [38]. It is notable that in APC 841 and APC 850 ceramics have smaller piezoelectric 

loss under k33 vibration than k31 vibration, similar to the rhombohedral PNZT.  
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Table 6.2.4. The anisotropic piezoelectric parameters of PNZT, PZ27, APC850 and APC841.  

 -d31 

(pC/N) 

tanθ’31 

(%) 

d33 

(pC/N) 

tanθ’33 

(%) 

d15 

(pC/N) 

tanθ’15 

(%) 

Tetragonal PNZT 90 1.51 233 3.03 322 3.10 

Rhombohedral PNZT 77 2.04 217 1.28 383 2.24 

MPB PNZT 148 1.73 391 2.63 593 2.50 

PZ27 [81] 160 1.94 336 2.14 396 6.62 

APC 850 [39] 196 1.84 416 1.78 649 2.96 

APC 841 [82]  109 3.7 300 2.5 450 - 

 

6.3 Polarization dependence of properties 

 From the obtained independent parameters, a transformation matrix was used to analyze 

the polarization dependence of the dielectric, elastic and piezoelectric properties. The intensive 

dielectric properties as a function of polarization orientation are shown in Figure 6.3.1. Note that 

the shear mode properties are plotted from 90 to 0 degrees since the 90 degree angled polarization 

from the applied field is the standard geometry for the shear vibration. The results of dielectric 

properties are in good agreement with the standard analysis in Chapter 3. The effective dielectric 

permittivity or loss gradually changes from ε33
X or tanδ’33 to ε11

X or tanδ’11 by increasing the angle 

between polarization and electric field.  
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Figure 6.3.1. Intensive dielectric properties by polarization orientation. 

 

 In figure 6.3.2, the intensive elastic properties by polarization orientation are shown for the 

effective k31, k33 and k15 vibration modes. The imaginary parameters of k33 mode differs from the 

preliminary analysis in chapter 3 by resolving the relative error and giving a physical picture that 

the intensive elastic compliance for linear vibration changes in between s11
E to s33

E depending on 

the polarization orientation. It is interesting to note that the elastic shear property becomes more 

compliant in tetragonal PNZT while it is stiffer in rhombohedral and MPB PNZT with a canted 

polarization. The major reason is from the property anisotropy where (s11
E+s33

E-2s13
E)/s55

E is larger 

than 1 in the tetragonal phase, while it is smaller than 1 in rhombohedral and MPB PNZT. It is also 

interesting to note that the elastic loss for transverse and longitudinal modes shows a maximum 

while the loss for the shear mode shows a minimum when the polarization angle is canted near 45 

degrees.  
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Figure 6.3.2. Intensive elastic properties by polarization orientation. 

 

 The degradation of piezoelectric d constants with angled polarization is shown in Figure 

6.3.3. A slight enhancement of d31 was observed in rhombohedral PNZT due to the high value of 

(d33-d15)/d31.  More piezoelectric loss was observed when the polarization is canted for linear 

vibration as opposed to the shear vibration mode. The change of piezoelectric loss was smallest in 

MPB PNZT, which is the most isotropic. Tetragonal PNZT showed the largest polarization 

orientation dependence of the piezoelectric loss for the k31 vibration mode, while rhombohedral 

PNZT showed the largest polarization orientation dependence of the piezoelectric loss for the k15 

vibration mode.  
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Figure 6.3.3. Intensive piezoelectric properties by polarization orientation. 



70 

 

  
 

Polarization dependence of extensive loss factors  

7.1 Introduction 

 Considering the internal state of ceramics, the boundary conditions are mechanically 

clamped (constant x) and electrically open-circuited (constant D), corresponding to the extensive 

parameters. Since the extensive loss parameters are occasionally employed to explain the origin of 

losses [83], it is important to understand the extensive loss behaviors with respect to the polarization 

orientation. As introduced in section 1.3, the extensive loss parameters in the k15 vibration mode is 

directly obtainable, while the extensive losses in the k31 mode could be calculated from the directly 

obtained intensive loss parameters assuming the 1-dimensional reciprocal relation, c11
D=1/s11

D. In 

k33 mode, the boundary condition is generally considered as strain constant along the polarization 

direction. However, the assumption is only valid when the coupling factor k33 is near 100%. Neither 

stress nor strain are constant in the k33 mode for a typical piezoelectric ceramic. Thus, the 

measurable parameters of the k33 mode are neither intensive nor extensive loss factors, but 

intermediate values. Therefore, only the extensive loss parameters in the k31 and k15 modes will be 

discussed. 

 

7.2 Extensive loss parameters by polarization orientation 

The extensive loss parameters were calculated using the K matrix consist of the effective 

intensive loss parameters and the effective electro-mechanical coupling factor, as shown in Figure 
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7.2.2. The maximum, minimum and average measured data for each geometry for effective k31 

mode is plotted for comparison.  

 

 

Figure 7.2.1. Extensive loss parameters for effective k31 and k15 vibration. 
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Considering an open-circuit condition, due to the different charge development in different 

vibration modes, the effective dielectric loss varies (tanδ11(γ)≠tanδ33(π/2-γ)). Note that in the short-

circuited condition where the charge could be well distributed, the effective dielectric loss is mode-

independent (tanδ’11(γ)=tanδ’33(π/2-γ)). A similar phenomenon is observed for the elastic loss 

factor.  

The extensive dielectric and elastic loss are mostly higher when the polarization is angled 

from the standard structure of each resonator, except for the shear mode in rhombohedral PNZT. 

The piezoelectric loss is more related with the angle between polarization and applied electric field. 

The piezoelectric loss is smaller when the angle is larger, meaning the compensation to the 

dielectric and elastic loss is smaller when the polarization is canted from the applied field. This 

phenomenon could be a very important point for further study on domain dynamics. The changes 

are least in MPB PNZT, which is the most isotropic. In the effective k31 mode, the change of 

extensive piezoelectric loss is the largest in tetragonal PNZT which is the least isotropic. In the 

effective k15 mode, the change of extensive piezoelectric loss is the largest in rhombohedral PNZT 

which has the strongest relative shear property, as indicated in Table 6.2.1.  

It is interesting to note that the extensive piezoelectric loss becomes negative in tetragonal 

PNZT when the polarization is strongly canted with respect to the applied electric field. The 

negative piezoelectric loss will be discussed further in the following section. 

 

7.3 Extensive loss contribution to intensive elastic loss 

 Dragan Damjanovic provided a thermodynamically possible explanation for a negative 

piezoelectric loss in [84]. Unlike dielectric or elastic hysteresis, which always rotates 

counterclockwise for a positive compliance, the piezoelectric hysteresis could rotate 
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counterclockwise or clockwise, since the hysteresis does not have energy-density units. The 

counterclockwise or clockwise hysteresis corresponds to the positive or negative piezoelectric loss. 

A schematic illustration of the hysteresis is shown in Figure 7.3.1.  

 

 

Figure 7.3.1. Hysteresis loop for positive and negative extensive piezoelectric loss. 

 

 A negative loss at low frequency model has been studied [85] through a bi-layer structure. 

However, this dissertation is the first report of a negative piezoelectric loss at high-frequencies near 

resonance (~100kHz for k31 mode and ~1MHz for k15 mode). From equation 1.1.7, the phase lag of 

the electro-mechanical coupling factor becomes: 

 

𝑘′′

𝑘′
=

−2tan𝜃 + tan𝛿 + tan𝜙

2
(7.3.1) 

 

Here, k’ and k’’ are the real and imaginary parameters of the electro-mechanical coupling 

factor. This phase lag results in the difference of QA and QB in equations 1.3.8 and 1.3.9. Here, the 

piezoelectric loss compensates the elastic and dielectric loss when all parameters are positive. 

However when the piezoelectric loss is negative, the piezoelectric loss is added to the phase lag, 

resulting in an increase of the total loss. This phenomenon could be obtained by segmenting the 
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intensive elastic loss with extensive loss parameters using the K matrix. Figure 7.3.2 shows the 

contribution of extensive loss factors for the intensive elastic loss in effective k31 and k15 mode.  

 

 

Figure 7.3.2. Extensive loss contribution to intensive elastic loss in effective k31 and k15 vibration. 

 

 It is shown in most structures that the piezoelectric loss tends to compensate other losses, 

acting to lower the overall intensive elastic loss. However in tetragonal PNZT with a strongly 

canted-polarization, the piezoelectric loss adds more phase lags to boost the overall intensive elastic 
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loss. With the diminishing electro-mechanical coupling, the intensive and extensive elastic loss 

becomes the same. 
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Summary and future work 

8.1 Summary 

Loss in ferroelectric and piezoelectric media is a challenging topic which is still rather 

superficially quantified if not understood. Assuming the origin of loss is from domain dynamics, it 

is essential to understand the piezoelectric loss behavior by polarization orientation.  

In this dissertation, the polarization orientation dependence of piezoelectric loss factors 

was studied for the k31, k33 and k15 vibration modes from the phenomenological viewpoint. 

Tetragonal, MPB and rhombohedral PNZT ceramics were prepared in collaboration with PI 

Ceramic GmbH, Germany. Conventional ceramic processing was followed by angled dicing of 

poled blocks to build canted-polarization structures. It was verified with ATILA/GiD simulation 

that the post-dicing process has a negligible effect on the bulk property. By sputtering electrodes, 

ten of each effective k31-k15 and k33-k15 structures with canted polarization of 0, 15, 30, 45, 60, 75 

and 90 degree angles were produced and analyzed [63].  

Although a large change in the piezoelectric loss was observed as a function of the 

polarization angle, there are serious problems in the conventional characterization method (IEEE 

standard for real parameters and 3dB method for imaginary parameters) obstructing the reliability 

of the analysis. The first is a relative error from k33 mode structures due to the indirect calculation 

and large structural impedance. An approach using effective k31 mode vibration is suggested to 

obtain the elastic properties of the k33 mode since s11
E(π/2-γ)=s33

E(γ). The feasibility of 

transformation matrix was verified for the elastic loss. As a result, highly reliable characterization 

could be made. Another shortcoming comes from the definition of quality factor using the 3dB 
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bandwidth as the half-power bandwidth. For the polarization-canted structures, the motional 

capacitance is relatively smaller than the standard samples and thus the damped capacitance cannot 

be neglected. The motional capacitance in piezoelectric ceramics with largely canted polarization 

is relatively smaller than the standard samples and thus damped capacitance cannot be neglected. 

Using only the motional part of admittance / impedance circle is suggested by taking quadrantal 

frequencies for the half-power bandwidth. The simulated results of ATILA/GiD simulation shows 

the extraordinary accuracy on loss calculations especially when the electro-mechanical coupling is 

small. Thus, the new definition of damping should be used for further research in loss. 

Additionally, the shear mode could be separated from spurious modes, forming a clean 

half-circle of admittance / impedance with specific angle of polarization. The reason for this 

phenomenon is due to the change of effective compliance with polarization angle. Consequently, 

the effective shear mode properties could be analyzed without a concern of errors from spurious 

modes. 

Using the aforementioned solutions, a new methodology to obtain anisotropic piezoelectric 

losses was proposed. Three effective k31-k15 structures are essential for the method including 

selected angles of polarization for unaffected shear vibration. The proposed method is more reliable 

and not less convenient than analyzing the three samples of standard k31, k33 and k15 structures. All 

independent dielectric, elastic and piezoelectric parameters including s13
E and corresponding elastic 

loss are obtainable except s12
E and tanϕ’12 which are irrelevant to the changes of piezoelectric loss 

factors by polarization orientation in polycrystalline samples. 

To use the proposed method, the vibration modes were studied with ATILA/GiD FEA and 

compared to the measured impedance spectrum to assure that the effective k31 and k15 vibration 

modes are separated from other modes. Although the kt mode and second order k32 mode appears 

at a much higher frequency range than fundamental shear mode, an additional coupled sub-mode 

of the kt mode and second order k32 mode could be observed above the frequency range of shear 
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vibration. Thus, by choosing appropriate dimensions, the vibration mode separation was assured in 

all compositions. Consequently, all necessary anisotropic properties could be obtained. It was found 

that the anisotropy of piezoelectric loss is largest and elastic loss is the smallest. The dielectric loss 

is always smaller in the direction of polarization, regardless of the real parameter. However, the 

piezoelectric loss strongly depends on the vibration mode. The piezoelectric loss for the k31 mode 

is smallest in tetragonal and largest in rhombohedral PNZT. In contrast, the piezoelectric loss for 

k33 and k15 vibration is smallest in rhombohedral and largest in tetragonal PNZT. From the obtained 

anisotropic parameters, the polarization dependence of the loss factors is analyzed for k31, k33 and 

k15 vibration modes. The dielectric loss gradually increases when the polarization is angled with 

respect to the applied electric field. The elastic loss is maximum in transverse or longitudinal 

vibration mode and minimum in the shear mode when the polarization angle is canted near 45 

degrees. More piezoelectric loss was observed when the polarization is canted from the applied 

electric field, regardless of the vibration mode. The change of piezoelectric loss was smallest for 

the MPB PNZT, which is the most isotropic. It is noteworthy that in the standard vibration modes, 

the piezoelectric loss of the MPB PNZT is an interval value of the losses of the tetragonal and 

rhombohedral phases. Tetragonal PNZT showed the largest polarization orientation dependence of 

the piezoelectric loss for the k31 vibration mode while rhombohedral PNZT showed the largest for 

the k15 vibration mode. 

The extensive loss parameters were calculated depicting the internal state of the material. 

Only k31 and k15 vibration modes were studied due to the boundary conditions to utilize the K matrix. 

Consequently, a negative extensive piezoelectric loss was discovered in tetragonal PNZT with 

strongly angled polarization with respect to the applied field. A schematic diagram of a clockwise 

hysteresis loop was shown to understand the negative loss. The negative loss has an important 

meaning that the piezoelectric loss does not compensate the elastic and dielectric losses but adds to 

the overall electro-mechanical coupling loss. The contribution of extensive dielectric, elastic and 
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piezoelectric losses on intensive elastic loss was studied. The extensive piezoelectric loss 

compensating or enhancing the intensive elastic loss is observed in tetragonal phase depending on 

the polarization orientation. The contribution of each loss factors differ by crystal structure and 

polarization orientation provides a scientific vista of loss mechanism.  

8.2 Future work 

In this dissertation, a methodology to obtain independent material properties were proposed 

using the effective k31 and k15 vibration modes. The effective shear parameters could be analyzed 

without concern about the spurious peaks. It could be achieved using a sample with a specific angle 

of polarization having resonance or antiresonance frequencies separated from unwanted modes. 

However, it solely depends on the measurement on one specific polarization orientation. The 

neglected error shown in Table 4.3.2 may result in an inaccurate analysis on the loss parameters in 

both k33 and k15 modes. Thus, additional samples with different polarization angle are needed. 

Another approach to separate the shear mode from the unwanted spurious peaks was indicated in 

the work in [86], which proposes to control the ratio of dimensions to improve the electro-

mechanical coupling factor in the shear mode. A dimension optimization was conducted with 

changing the dimension ratios using a PZT-5A ceramic. Although the width (refer to Figure 3.1.3) 

does not influence the resonance and antiresonance frequencies of the shear mode, a suitable ratio 

of width-to-thickness or width-to-length is required to prevent mode coupling between the shear 

mode and unwanted modes. Combining the work into this dissertation, more reliable analysis on 

the anisotropic properties can be achieved. The width of each orientations with different 

polarization-canted angles can be controlled to separate the shear mode from the unwanted modes. 

Consequently, the effective shear properties for various polarization orientations could be measured 

and the reliability of the data could be improved. As a requisite, the dielectric permittivity should 
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be measured to assure consistent poling in different dimensions, especially for the rhombohedral 

PNZT which has the large permittivity anisotropy.  

It is well known that the dielectric and piezoelectric constant is enhanced near the MPB 

due to the high degree of alignment and enhanced polarizability [57]. Using the proposed 

methodology in this dissertation, the anisotropic properties of the tetragonal, MPB and 

rhombohedral PNZT were obtained. An enhancement of the dielectric and piezoelectric constants 

could be observed in the MPB PNZT. However, the dielectric and piezoelectric losses in MPB 

PNZT showed an intermediate value between the losses in tetragonal and rhombohedral phases. A 

similar phenomenon for the dielectric properties was reported for a PZT ceramic by Takashi 

Yamamoto in [87], as shown in Figure 8.2.1. Here, the ε33
T/ε0 is the free dielectric permittivity after 

poling, εr the permittivity before poling, and tanδ the intensive dielectric loss. The author pointed 

out the different coercive field value for the tetragonal and rhombohedral phases. Small coercive 

field values result in a more compliant movements of domains by the applied electric field, which 

is accompanied by dielectric loss. A hypothesis can be made that the piezoelectric loss near the 

MPB is directly related to the content of tetragonal and rhombohedral phases. Additional PNZT 

samples with various PZ to PT ratio near MPB can be studied to verify the hypothesis. The intensity 

of XRD peaks should be studied to clarify the content of tetragonal and rhombohedral phases.  It 

is necessary to consider the piezoelectric loss as a function of vibration modes. The changes of 

piezoelectric loss with respect to the PZ/PT ratio would be the largest in the k33 mode as indicated 

in Figure 6.3.3. It is also notable that the maximum d31 and d33 constants are known to occur in 

different PZ/PT ratios [88]. 
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Figure 8.2.1. Compositional dependence of dielectric permittivity and the corresponding loss of a 

PZT ceramic reported in  [87]. 

 

The loss factors analyzed in this dissertation is limited to the low power regime assuming 

no heat generation. However, it is essential to know the high-power characteristics to utilize the 

resonators in high-power devices such as ultrasonic motors or underwater transducers. It is 

challenging to characterize the high-power properties due to the changes in temperature [89]. 

Recently, a burst methodology was developed by Husain Shekhani et al. to separate the effects of 

the temperature rise and characterize the piezoelectric loss as a function of the vibration level [53]. 

A large excitation voltage is applied to the sample at its resonance frequency for a couple of cycles. 

Leaving the sample electrically short- or open-circuited, the oscillation rings down at the resonance 

or antiresonance frequencies. The signal decays of the current and vibration velocity can be 

measured in the short-circuited condition, which are proportional to each other. The signal decay 

of the voltage and vibration amplitude can be measured in the open-circuited condition, which are 

proportional to each other. Then, using the rates of signal decay, the loss factors can be analyzed 

with respect to the vibration level. Note that the few cycles of excitation doesn’t induce heat 

generation in the system, thus the temperature rise can be neglected. Figure 8.2.2 shows the 

preliminary results on the QA of MPB PNZT in effective k31 mode. Similar to the result in section 
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6.3, the QA is minimum (the maximum intensive elastic loss) where the polarization angle is canted 

near 45 degrees at the high vibration level. The problem of this method is the large measurement 

error in the small vibration level. Thus, the data should be combined with results of the low-power 

characterization proposed in this dissertation. In addition, the large burst excitation can incur a 

possible change of the remanent polarization. Hence, the effective polarization should be checked 

before and after the measurement. The dielectric permittivity can be used for the analysis since it 

gradually changes from ε33 to ε11 depending on the effective polarization.   

 

  

Figure 8.2.2. Changes of the effective QA with respect to the polarization-canted angle and 

vibration velocity measured with the burst method. 

 

In Chapter 7, the extensive loss parameters in the effective k31 mode was calculated using 

the K matrix assuming c11
D=1/s11

D near resonance frequency. The relation of elastic stiffness and 
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elastic compliance in k31 is shown in equation 8.2.1. Here, the elastic compliance s12 and s13 is an 

order smaller than s11 and s33. Thus, the reciprocal relation can be assumed in the k31 mode. 

 

𝑐11 =
𝑠11𝑠33 − 𝑠13

2

𝑠11
2 𝑠33 − 𝑠12

2 𝑠33 + 2𝑠12𝑠13
2 − 2𝑠11𝑠13

2 ≈
1

𝑠11

(8.2.1) 

 

The assumption was validated in [90], [91], with a PIC144 ceramic. A new methodology using a 

partially electroded k31 sample shown in Figure 8.2.3 was suggested to directly measure the 

extensive elastic loss in the k31 mode. A small portion of electrode, which is 10% of the total length, 

was applied in the center to mechanically actuate the ceramic. ATILA/GiD FEA simulations were 

conducted to verify that the partial electrode configuration is tolerably equivalent to the fully non-

electroded condition. Using the sample, the extensive elastic loss could be calculated from the 

mechanical quality factor at the antiresonance frequency (1/QB,31=tanϕ11). The results showed good 

agreement to the parameters calculated with the K matrix using a standard k31 mode sample. Thus, 

the K matrix is applicable in the k31 vibration mode. Due to the boundary condition of the k33 mode, 

neither intensive nor extensive loss parameters can be directly measured. However, the intensive 

loss parameters of the k33 mode obtained in this dissertation is independent to the boundary 

condition of the standard k33 mode samples. It is notable that equation 8.2.2 could be assumed in 

the k33 mode.  

 

𝑐33 =
𝑠11 + 𝑠12

𝑠11𝑠33 + 𝑠12𝑠33 − 2𝑠13
2 ≈

1

𝑠33

(8.2.2) 
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An analytical review should be made to determine if the K matrix can be utilized to calculate the 

fundamental extensive loss parameters of the k33 mode. If possible, the complete set of extensive 

loss behaviors could be analyzed and aid the future study on piezoelectric loss mechanism.  

 

  

Figure 8.2.3. Partial electrode configurations of a k31 mode sample to directly obtain the extensive 

loss parameters. 
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Appendix A 

 

Noise treatment for the electrical measurements 

The electrical characterization in low power level induces large measurement error. 17 

loops of wire was used to measure the small current more accurately. A wire holder is 3D-printed 

with nonconductive materials as shown in Figure A1.1 to support the wire loops. The improvements 

are shown in Figure A1.2. 

 

 
Figure A1.1. 3D-printed wire holder. 

 

  
Figure A1.2. Improved current signal with the wire loops. 

 

 The measurement interval for effective k31 mode and effective k15 mode was set to 1Hz and 

10Hz, respectively. Figure A1.3 shows an example of the VBA code to determine the resonance 

frequency and the corresponding half-power bandwidth. Cell G and H are filled with Conductance 

and Susceptance, respectively. 

 

under 5mm/s vib. velocity under 10mm/s vib. velocity 
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Figure A1.3. Part of VBA code used to calculate the quality factors. 
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Appendix B 

 

Electro-mechanical coupling loss 

Although the electro-mechanical coupling loss has not been introduced, there could be a 

possibility to consider it as the origin of losses in piezoelectricity. The electro-mechanical coupling 

loss is expressed with extensive loss parameters in equation 7.3.1. However, using equation 1.1.6, 

the coupling loss can be also introduced with the intensive loss parameters as: 

 

𝑘′′

𝑘′
=

2tan𝜃′ − tan𝛿′ − tan𝜙′

2
(A2.1) 

 

Figure A2.1 is the polar plot of the coupling loss in effective k31 mode, showing the possible 

relation with crystal anisotropy. 

 

  
Figure A2.1. Electro-mechanical coupling loss in effective k31 mode. 
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