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ABSTRACT

Piezoelectric materials are widely utilized in small devices, and low loss is essential for
further miniaturization with desired power density. Due to large piezoelectric loss, the mechanical
quality factor of Pb(Zr,Ti)Os (PZT) ceramics at antiresonance frequency is much higher than the
one at resonance frequency. Thus, driving the piezoelectric resonator at the antiresonance
frequency is recommended to reduce the required electric power for generating the same level of
mechanical vibration. Unfortunately, piezoelectric loss has not been studied intensively, and the
physical origin is yet unclear. Assuming the origin of loss is from domain dynamics, it is essential
to understand the piezoelectric loss behavior by polarization orientation.

The change in the piezoelectric loss factors by polarization orientation was investigated
using a conventional characterization method with effective ks; and ks; mode structures. 1% Nb-
doped PZT ceramics (PNZT) were prepared in tetragonal rhombohedral and MPB structure with 0,
15, 30, 45, 60, 75 and 90 degree polarization angles in collaboration with Pl Ceramics, Germany.
As a result, it was determined that the intensive piezoelectric loss increases more than intensive
dielectric and elastic losses by angling the polarization. However, two serious issues were found in
the ks structure with small motional capacitance, which are:

1. Large relative error from indirect calculation and large structural impedance of the ka3
rod.

2. Error in 3dB method used to define the mechanical quality factor.

Consequently, a new analysis procedure to obtain anisotropic loss tensors is proposed using
effective vibration modes of ceramic bar with canted polarization. The proposed methodology
contains 1) off-resonance dielectric measurements, 2) effective ks mode analysis, 3) off-resonance
dss measurements and 4) effective kis mode analysis. The effective ki1 and kis vibration mode

should be separated from other modes to use the method.



A bandwidth between maximum and minimum susceptance and reactance, which is known
as the quadrantal bandwidth, is suggested as the half-power bandwidth to determine the mechanical
guality factors at resonance and antiresonance, respectively. ATILA/FEA (Micromechatronics Inc.,
PA, USA) simulation was made with the change of piezoelectric d constant. The new method
showed better accuracy of the quality factor and loss determination especially in the low coupling
condition.

The independent intensive properties of prepared PNZT are obtained with the suggested
methodology. Piezoelectric loss showed larger anisotropy in all structures compared to the
dielectric or elastic loss. Using the rotation matrix, polarization angle dependent effective
properties were calculated. Although the elastic and piezoelectric properties differ from the result
obtained with the conventional method, the piezoelectric loss showed the largest changes by
canting the polarization.

Considering 3-dimensionally clamped and electrically open-circuited condition of material,
extensive loss parameters were additionally obtained. Negative extensive piezoelectric loss was
discovered in a tetragonal PNZT with largely angled polarization and electric field, for both ks; and
kis vibration mode. In is known that positive piezoelectric loss is considered to compensate the
dielectric and elastic losses, thus the heat generation under anti-resonant drive is less than the one
under resonant drive when the piezoelectric loss is large. The negative extensive piezoelectric loss
contributes to the overall phase lag, which could be observed in the contribution of extensive loss
factors to the intensive elastic loss.

The negative piezoelectric loss may be related with the domain wall dynamics and could

motivate theoretical physicists to a new understanding.
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Chapter 1

Background

1.1 Piezoelectricity

The piezoelectric effect is a linear conversion effect between mechanical and electrical
energy. The direct effect was discovered by Pierre and Jacques Curie in 1880 [1] and the converse
effect was demonstrated by Gabriel Lippmann in 1881 [2]. In 1947, Shepard Roberts observed
longitudinal and transverse piezoelectricity in electrically-poled BaTiOs polycrystalline ceramics
[3]. With following studies on similar perovskite ABOs structures, Pb(Zr,Ti)Os (PZT) was
developed in 1954 by Bernard M. Jaffe [4]. With high piezoelectricity and Curie temperature, PZT-
based ceramics have been widely utilized in various applications [5]-[11].

Piezoelectricity originates from the symmetry of crystalline matter. Under applied stress
(X), the uneven displacement of cations and anions results in charge development (dielectric
displacement, D), that is the direct piezoelectric effect. Under an applied electric field (E), the
equilibrium position of the positively (anions) and negatively charged atoms (cations) changes
leading to elastic deformation (strain, x), that is converse piezoelectric effect [12].

Assuming only temperature (T), entropy (S), E, D, X, and x determines the thermal,
dielectric and elastic behavior of the piezoelectric materials, the differential forms of
thermodynamic potentials can be expressed using the following equations, where U is the internal

energy, H the enthalpy, A the Helmholtz free energy and G the Gibbs free energy [13].

dU = TdS + EdD + Xdx (1.1.1)



dH = TdS — DE — xdX (1.1.2)
dA = —SDT + EdD + Xdx (1.1.3)
dG = —SDT — DdE — xdX (1.1.4)

Assuming infinitesimal change of properties, linear equations of state can be considered.
To discuss intensive properties which are scale invariant, assume T, X and E are independent
variables. Then, the appropriate thermodynamic potential is the Gibbs free energy and the variables

become:

G (66) D (66) _ (66) (1.1.5)
~\oT )y i’ ~\0E/)rx’ *=\ox) 1 s -

The differential form of the variables become:

ds = (as) dT + <as) dx + <as) dx (1.1.6)
- \oT/x g OE /1 x 0X/) 1 "

dD = ((30) dT + ((30) dE + (aD) dx (1.1.7)
-~ \aT/xg 0E ) 1.x 0X/) g o

dx = (6x> dT+(ax) dE+<ax) dx (1.1.8)
*=\or) e 9E) 1 x X )1 i .
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Considering isothermal conditions (no temperature change), the constitutive equations for
the direct and converse piezoelectric effect can be expressed in addition to the dielectric and elastic

behavior as equations 1.1.9 and 1.1.10, respectively.

Di = 808”XE[ + diijjk (119)

Xmn = diymnEy + ngijjk (1.1.10)

Here & is the vacuum permittivity, ¢* the relative dielectric permittivity under constant
stress (mechanically-free condition), st the elastic compliance under constant electric field
(electrically short-circuited condition) and d the piezoelectric charge or strain constant. The tensors
in the equations are governed by following equations. Note that when i=l, j=m and k=n, equations

1.1.13 and 1.1.14 are equivalent.

X (aDi) [ 09G*? (1111)
ot = \9E ), ~ \9EE x -
ox 0G?
sE = <_m”> = <—> (1.1.12)
mujk =\ 89X re \0Xmn0Xc),
g = (22} _ 9G* (1.1.13)
YT \0X ). \0Ei0Xp ) o

0Xmn 0G?
dpy = (—) - (m>T (1.1.14)
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By contrast, extensive properties which are directly proportional to the system size can also
be considered. Assuming T, x and D are independent variables, the appropriate thermodynamic

potential is the Helmholtz free energy and the variables become:

=) () xe(® a1
N aT x,D' N aD T,x' N ax T,D o

The differential form of the variables become:

ds = (65) dr + <as> dD + (65) d (1.1.16)
- oT x,D oD Tx 0x T.D x o

dE = (aE) dT + (aE> dD + (aE) d (1.1.17)
N aT x,D aD Tx ax T,D x o

dx = <ax> dr + (ax) dD + (ax) d 1.1.18
- oT x,D aD T.x 0x T,D x ( o )

For isothermal conditions, the piezoelectric constitutive equations can be additionally

expressed as equations 1.1.19 and 1.1.20, respectively.

E; = (xy" /€0)Dy — hijieXjge (1.1.19)

Xinn = —hmnDy + ComjkXjk (1.1.20)

Here «* is the inverse dielectric permittivity under constant strain (mechanically-clamped

condition), c® the elastic stiffness under constant dielectric displacement (electrically open-
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circuited condition), and h the inverse piezoelectric constant. Note the negative sign in the
piezoelectric coupling term. The tensors in the equations are governed by following equations. Note

that when i=l, j=m and k=n, equations 1.1.23 and 1.1.24 are equivalent.

o (6Ei> [ 0A? (11.21)
k™ /%0 = \gp, e \0D@D;) o
)¢ 9A2
- <_m"> - <—> (1.1.22)
mnjk ax]'k D axmnaxjk D
R = (aE"> = < 047 ) (1.1.23)
Lk ank T.D aDiaxjk T o
0Xmn 0A?
Pumn = _( aD, )T'x T <6Dlaxmn>T (1.1.24)

The linear relations in isentropic condition can also be considered using the internal energy
or enthalpy.

To numerically determine the efficiency of energy conversion, the electro-mechanical
coupling factor k? is defined as stored converted energy per input energy. Thus, k is always smaller
than 1. Considering an applied electric field that is converted to mechanical strain (xjx = dijEi),
electric field and dielectric displacement in the same direction (Di = &iEi), and stress and strain in

the same direction (Xj = SjkikXjk), the coupling factor can be represented as:



1 i
2 _ jkjk ijk
ke =1 —= vy (1.1.25)

Considering the direct effect (D; = diX),, the coupling factor can also be defined as:

1 D?
100 ,
K2, = e _ ik (1.1.26)
ik lSE X2 soei}fsﬁqk
2 SjkjicXjk

= -hijXjx under constant x and D condition,

Similarly, taking into account Xj = -hijDi or E;

the electro-mechanical coupling factor becomes as shown in equation 1.1.27.

1 XJ%C 1
_CD ] ? on ELZ hZ
K2, = — ok _ CRyT Lk (1.1.27)
Y 1 Kl]x 1 D .2 (Kfci/go) ’ Cﬁcjk

Unlike purely dielectric materials, there exists two mechanical resonance states in

piezoelectric materials which are known as A- (resonance frequency, fa) and B-type resonance

(antiresonance frequency, fg) as shown in Figure 1.1.1.
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Figure 1.1.1. lllustration of typical admittance and phase spectrum for dielectric and piezoelectric
materials

Figure 1.1.2 (a) and (b) shows the ideal displacement and strain distribution along the
length direction (x11) of a ks;x mode bar with large electro-mechanical coupling (ksix = 1) at
fundamental resonance and antiresonance, respectively. When loss is neglected, the resonance is
achieved where the admittance becomes infinite while the antiresonance is achieved where the
admittance becomes zero. Considering zero displacement at the center by the symmetry, tip
displacement is maximum at the resonance frequency, creating a half wavelength along the
vibration direction from induced motional capacitance, which is the capacitance change due to the
generated strain. In contrast, the motional capacitance at the antiresonance frequency cancels out
due to the created full wavelength along the vibration direction resulting in a tip displacement of
zero. For a typical electro-mechanical coupling for PZT ceramics (ksi1 = 0.3), relatively large
damped (static) capacitance partially compensates the motional capacitance and the displacement
distribution becomes closer to the resonance mode, as shown in Figure 1.1.2 (c). Thus, the
antiresonance frequency vibration is determined by the resonance frequency and the electro-

mechanical coupling factor for the ks1; mode resonator.



(a) Resonance (b) Antiresonance (c) Antiresonance
(high coupling) (low coupling)
I |
Displacement [ | [ = \ (A== |

Straih ‘ — — — ‘ I—J — &-—‘ Alﬁ — — — d

Figure 1.1.2. Illustration of displacement and strain distribution of ksi; resonator in resonant or
antiresonant state.

1.2 Non-zero properties by symmetry

Ferroelectric polycrystalline ceramics have P6mm equivalent symmetry where the rotation
axis is parallel to the remanent polarization. A 60 degree transformation matrix A;; for the 6-fold

rotational symmetry is provided as equation 1.2.1.

T T
cos§ sin§ 0
Ajj = o T (1.2.1)
— — - 0
sin 3 cos 3
0 0 1

With the matrix element a;, the dielectric, elastic and piezoelectric tensor component

satisfies the following condition with 60 degree rotated coordinates.

& = z ik A1 ey (1.2.2)
Kl
dijk = Z Qi1 Ajm Akn Aimn (1.2.3)

Imn



E _ E
Sijkl = Z AimAjnAroAipSmnop (1.2.4)

mn,o,p

Since physical properties along crystallographically equivalent directions should be the
same, the independent tensor parameters can be reduced by the symmetry. In addition to the
reduction, the tensor suffixes for stress and strain can be simplified in matrices as shown in Table
1.2.1 for convenience. For instance, X;=Xi11 and Xs=2Xi:3. Note the matrix notation for shear

properties (i.e. Xs) connotes two equivalent tensors (X13=Xz1) [14].

Table 1.2.1. Matrix notation for stress and strain tensors.

Tensor notation 11 22 33 23, 32 13,31 12,21

Matrix notation 1 2 3 4 5 6

The independent tensor properties of the piezoelectric polycrystalline is shown in the

following three matrices.

g 0 0
=10 &5 o0 (1.2.5)
0 0 £f

d=10 0 0 ds 0 0 (1.2.6)



E E
S12 S13
E E
S11 S13
E E
S13 533

S O © © ©

5
0 2(5{51 - sz)-
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(1.2.7)

Piezoelectric vibrators have different vibration modes upon the geometry and dimension.

Typical geometries for the reduced piezoelectric d constant in equation 1.2.6 are illustrated in Table

1.2.2 with the primary properties and boundary conditions.

Table 1.2.2. The primary properties for various vibration modes.

(@) kyymode (b) k33mode (c) kysmode
P o glo Ao
1 J i ‘ f —
Dielectric X £X3 eX
permittivity 33 33 H
Elastic E D D
: s s
compliance S11 33 >5
. 2
EM coupling K2 — d3 K2 = d3s K2 = dis
31 — X E 33 — X E 15 — X E
factor £0€33511 €0€33533 €0€11555
Frequency 0o = o3 0 = Tfass 0, .. = fais
parameter Q B30 fast 4337 2 faas 41572 fas
- 2
Effective k31 2 2
coupling 1— k2. —Qpzicotflpsy ki3 = Qy33c0t0y33 kis = f24,15 cotfly 15
31

The relations for different boundary conditions are shown in Figure 1.2.1 [15]. For the

converse piezoelectric effect, the applied electric energy is equivalent to the sum of the electrical

energy from purely dielectric behavior under mechanically clamped conditions (constant x) and the

converted mechanical energy, as expressed in equation 1.2.8.



Applied Electrical Stored Electrical
Energy = %EOEXE% Energy = %sost%
+ o+ + +

9|

74| T = T

Applied Mechanical Stored Mechanical
Energy = %SEX% Energy = %SDX%

<4 current

\ \

11

Stored Mechanical

1 d
Energy = 33

§y L |

2
2
EEO

t

Stored Electrical

Energy = >

1 d?
—. X
cgeX 10

2

t

+ + + +

F@i @f
\ 4

4 current

Figure 1.2.1. Conceptual figures for explaining the relation of properties in different boundary

conditions.

d?
X x
EgE” = gyET +
0 0 SE

(1.2.8)

Consequently, for the direct piezoelectric effect, the applied mechanical energy is

equivalent to the sum of mechanical energy from purely elastic behavior where dielectric

displacement is constant (electrically open-circuited) and the converted electrical energy, as

expressed in equation 1.2.9.

dZ
sE=sP+

goeX

(1.2.9)
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Hence, following relations with the electro-mechanical coupling factor can be obtained.

€ 2

== 1-k (1.2.10)
SD

—=1-k? (1.2.11)
S

From the directly-obtainable physical properties, the definition of electro-mechanical

coupling factor for the kss or kis mode in Figure 1.2.1 can be rewritten as equation 1.2.12.

k? d?
(1—k2)2  goe¥,sl,

(1.2.12)

1.3 Mechanical quality factor and the loss factors

The mechanical quality factor (Qm) is a dimensionless parameter indicating how the
resonator damps, which is defined as equation 1.3.1. When the quality factor is large, the damping

is small.

Energy stored/cycle  resonance frequency

Q= 21 (1.3.1)

Energylost/cycle  half power bandwidth

It is known that energy loss is dissipated as a form of heat and is inversely proportional to
the Qm [16]. The losses in piezoelectric ceramics in the ferroelectric region (below the Curie

temperature) are mainly believed to occur from domain wall motion [17]-[22]. The energy loss is
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hypothesized to have three components due to the dielectric, elastic and piezoelectric behaviors
[23]-[27]. In general, the electrical and mechanical losses are described using equations 1.3.2 and

1.3.3, respectively.

¥ =¢eX(1—jtand") (1.3.2)

st*=sF(1—jtang’) (1.3.3)

Here j is the imaginary notation, tand' the intensive dielectric loss and tang' the intensive elastic
loss. Note the extrinsic parameters such as X or E are constant. The piezoelectric loss is generally
neglected, assuming no phase lag of the piezoelectric constant [28], as indicated in the IEEE
standard of piezoelectricity. It seems reasonable for Rochelle salt [29]. However, a large
piezoelectric phase lag was discovered in PZT-based ceramics [30]-[32] and efforts to represent
the piezoelectric loss in equivalent circuits have been made [33], [34]. The piezoelectric loss tanég'

can be treated as equation 1.3.4.

d*=d(1—jtan@") (1.3.49)

The phase delay of each behavior is indicated in each hysteresis loop sketched in Figure
1.3.1. The area of the dielectric and elastic hysteresis loops corresponds to energy density units
(I/m3). However, a scale factor should be multiplied to the area of the piezoelectric hysteresis to
reach energy density units. Thus, the piezoelectric loss should be coupled with other loss factors.
The scale unit for x-E and D-X loop is d/s and d/ece, respectively. Then, the coupled loss for d?/s

and d?/eee becomes 2tand’- tang’ and 2tand’- tand”’, respectively.
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Figure 1.3.1. Conceptual representations of intensive loss parameters in hysteresis curves.

Considering the completely clamped condition for a state inside a material, the extensive

loss parameters are introduced as:

Kk** = k*(1+ jtand) (1.3.5)
c?* =cP(1 +jtan¢) (1.3.6)
h*=h(1+jtanB) (1.3.7)

Here tano is the extensive dielectric loss, tang the extensive elastic loss and tané the
extensive piezoelectric loss. The negative phase lags (+ sign) are set to indicate D or x is induced
by the applied E or X. The schematic hysteresis loops of extensive loss parameters are shown in
Figure 1.3.2. Here, the scale factors for E-x and X-D loops should be heo/x and h/c and the coupled

loss becomes 2tand- tand and 2tand- tang, respectively.
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Figure 1.3.2. Conceptual representations of extensive loss parameters in hysteresis curves.

In lead-based piezoelectric resonators, the quality factor in B-type resonance (Qg) is much
higher than the one in A-type resonance (Qa) due to the large intensive piezoelectric loss [31], [32].
This means that it could be more efficient to drive piezoelectric transducers at antiresonance
frequency rather than at the resonance frequency [35], [36]. Integrating all loss factors in the
admittance equation, Yuan Zhuang et al. proposed a loss determination methodology to derive all
loss factors in various structures from the off-resonance dielectric properties, A- and B-type
resonance frequencies and the corresponding quality factors [37]-[39]. A typical structure for a
mechanically free condition is the ks vibration mode. The relations of Qa3 and Qg1 are shown in

equation 1.3.9 with the intensive loss parameters.

— - — (1.3.8)
Qaz1 tangs, 2
1 1 2 , , ,
Q531 Qusi 1 ;— (2tan 63, — tan¢3; — tan83;) (1.3.9)
B,31 ,31

1+ (k_31 - k31) 0531

A typical structure for a mechanically clamped condition is the kis vibration mode with
wave propagation along the thickness direction (thickness shear). The relations of Qa5 and Qsg,1s

are shown in equation 1.3.11 along with the extensive loss parameters.
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t _ 1 (1.3.10)
Qa15 tangss o
1 1
+ >— (tan ¢55 + tan 671 — 2 tan O;5) (1.3.11)

QA,15 QB,15

Considering a one-dimensional model, the intensive and extensive loss parameters satisfy

the following relationship where K is an involutory matrix.

tan g’ tan §
[tanqﬁ’ = K |tan (;b] (1.3.12)
tan 9’ tan @
1 1 k2 —2k?
K = - [kz 1 —2k? ] (1.3.13)
1 1 —-1-k2

1.4 Piezoelectricity with canted polarization

In 1982, Jun Kuwata et al. reported large piezoelectricity of 0.91Pb(Zn1;sNb2;3)0s —
0.09PbTiOs single crystals when it is in rhombohedral symmetry poled along a pseudo-cubic [001]
axis [40]. The enhancement was explained with conversion coordinates in section 1.2. Xiao-Hong
Du et al. reported a similar enhancement of piezoelectricity with canted-polarization in
rhombohedral PZT single crystals [41] and polycrystalline ceramics with strong shear properties
[42]. This phenomena can be observed not only in PZT-based materials, but also in various

compositions [43]-[47].
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Although the electro-mechanical coupling can be enhanced with canted polarization, recent
studies on rhombohedral piezoelectric single crystals indicates larger loss with electric field angled
from the remanent polarization direction. Shujun Zhang et al. reported higher electrical and
mechanical losses in a <001> oriented rhombohedral single crystal compared to a <111> oriented
one. [48]. However, the piezoelectric loss has not been discussed yet in terms of polarization

orientation due to its uncertainty of physical origin.
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Chapter 2

Dissertation objectives and structures

2.1 Objectives

Due to the existence of large piezoelectric loss, driving the piezoelectric resonator at
antiresonance frequency is recommended for high power applications. Unfortunately, the physical
origin of the piezoelectric loss is yet unclear. Assuming the origin of losses arise from domain
dynamics, it is essential to understand the piezoelectric loss behavior as a function of polarization
orientation.

Tetragonal, rhombohedral and morphotropic phase boundary (MPB) PZT exhibit different
anisotropy of properties, thus it is anticipated that the polarization orientation dependence could
vary. In this study, the polarization orientation dependence of piezoelectric loss of 1% Nb-doped
PZT (PNZT) near MPB was studied with respect to their anisotropic properties.

One of the most important requisites for the study is reliable analysis. There has been strong
interest in the piezoelectric society to determine the complex piezoelectric parameters accurately,

and various methods were proposed [49]-[54].

2.2 Structures

This first chapter describes the fundamental background related to the dissertation,
including an introduction to piezoelectricity, property anisotropy and loss factors. Research on
polarization-canted structures is also introduced. Based on the background, this chapter provides

objectives of this study with its constituent elements.
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Chapter 3 shows the preliminary research on the polarization orientation dependence of the
piezoelectric properties. The PNZT polycrystalline ceramics with canted polarization were
prepared in collaboration with Pl Ceramics, Germany. The IEEE standard of piezoelectricity and
conventional 3dB method were used to analyze real and imaginary parameters for effective ks; and
kss mode vibration. A linear fitting was made for the changes of loss factors in terms of the
polarization-canted angle. A large change of piezoelectric loss was observed with angled
polarization compared to other losses, especially in tetragonal PNZT.

The preliminary research induces several arguments on the analysis reliability. Chapter 4
discusses the arguments, including the measurement error in ks mode structures due to the indirect
calculation, definition of mechanical quality factor and spurious modes near the shear mode. In
addition to the discussion, solutions are proposed to overcome the issues.

Using the solution provided, a new methodology to obtain anisotropic properties in
polycrystalline ceramic is provided in chapter 5. Three polarization-canted ks; structures are needed
in the method. With off-resonance, near ks; mode and near kis mode analysis, all necessary
parameters for ks, ks3 and kis vibration modes could be derived.

Chapter 6 presents the anisotropic properties obtained with the proposed analysis method.
Vibration mode separation was additionally studied to support the method. Based on the anisotropic
properties, the polarization orientation dependence of properties is reconsidered.

In chapter 7, extensive loss parameters are calculated to represent the completely clamped
condition inside of a material. The contribution of extensive loss factors on the intensive elastic
loss is provided for discussion. A negative loss phenomenon is discovered in tetragonal PNZT and
a clockwise hysteresis model is provided for an explanation.

The final chapter summarizes the contents of the dissertation. In addition, a possible future

work is suggested.
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Chapter 3

Polarization dependence of properties in ka1 and kss vibration mode

3.1 Preparation of the polarization canted structure

In collaboration with PI Ceramics GmbH (Germany), 1% Nb-doped PZT ceramics (PNZT)
were prepared. A soft material composition with low Qmn was chosen to enhance the loss change
with polarization angle. The PbZrO; (PZ) to PbTiO; (PT) ratio was controlled to be (50/50), (53/47)
or (56/44) to obtain tetragonal, MPB and rhombohedral structures; these were verified with x-ray

diffraction patterns recorded on an Empyrean XRD with Cu-Ka radiation (A = 1.5406 A) over a 26

range of 20 to 60 degrees as shown in Figure 3.1.1.

P = =) —
o -~ — ~— ~—
= | = 3 o p
T | = = = S = S
o |3 2 = ~ & N
| € - T g8 5 =
2 = S Zr/Ti
< Tetragonal M = 5050
>
= MPB JJL...__
& —J‘L k J\/L e 53747
9 Rhombohedral ﬂ A_‘J\ A
£ 56/44
I I |
20 30 40 50 60

26 (degrees)

Figure 3.1.1. X-ray diffraction patterns of the prepared 1% Nb doped PZT ceramics.

A flow chart for conventional ceramic processing and the post processing to produce
polarization-canted structures is shown in Figure 3.1.2. Piezoelectric blocks were prepared in a

dimension of 44x20x23mm and poled under 4kV/mm DC field in an oil bath. The blocks were then
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diced into 1x3x15mm bars with water-cooled diamond tools to have polarization-canted angles of
0, 15, 30, 45, 60, 75 and 90 degrees. Finally, 50nm Cr and 600nm CuNi45 electrodes were sputtered
at 100mbar and 100°C to demonstrate effective kss and ks; vibration modes. Consequently, ten of

each geometry illustrated in Figure 3.1.3 were produced.

| Batch (1% Nb-doped PzT)  |@|  Ball-milling (6-8hr in water) |&| Drying (150°C) }—‘
’—¢| Calcination (850°C / 24hr) |¢| Ball-milling (6-8hr in water) |¢| Drying (150°C) }—‘
’—Q| Pressing (~ 150MPa) |¢| Sintering (900-1400°C / 2hr) |¢| Electroding (Ag paste) h
’—Q Poling (~4kV/mm) = Dicing (1x3x15mm) @ re-Electroding (Cr + CuNi)
[ Electrode
[ Ceramic
>
7
/ ,
-~ ~
N

<8

[

o N\
‘ \,‘.'
| & P T —

)

Figure 3.1.2. Schematic diagram of polarization-canted sample preparation process conducted
with Pl Ceramics GmbH, Germany.
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Figure 3.1.3. Illustration of produced (a) effective ks; and (b) ka3 mode structures.

Due to a concern about potential damage during post-dicing processing, ATILA/GIiD
(Micromechatronics Inc., PA, USA) finite element simulations were conducted to help quantify
any impact from damaged surfaces. 20 micron thick damaged layers with no piezoelectricity were
applied to the general ks; structure with standard PZT5A properties as shown in Figure 3.1.4. The
dielectric and elastic loss factors are exaggerated to be 120% of the undamaged properties to

simulate the worst conditions.

Damaged layers

Figure 3.1.4. FEA model with damaged surfaces.
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The results with damaged surfaces are compared to the undamaged ones in Table 3.1.1.

Considering errors from sample process and the exaggerated condition, the damage is negligible.

Table 3.1.1. FEA simulation results of ks; mode PZT5A with and without damaged surfaces.

Qa Qs suF Ka1
Damaged surface 76.2 83.3 1.64E-11 55.3%
Undamaged sample 77.0 83.2 1.65E-11 56.3%

The densities of the ceramics (p) were measured by a water-immersion technique (ASTM

STD C373-72). All samples were boiled in distilled water and cooled down before the measurement.

Table 3.1.2 shows the obtained density from equation 3.1.1.

Table 3.1.2. Measured density of 1% Nb-doped PZT near MPB.

Structure Tetragonal MPB Rhombohedral
Density (kg/m®) 7700 7670 7640
Relative density (%) 96.1 95.6 95.0
Wa
p= p (3.1.1)
Wr—W, "

Here, pw is the density of the deionized-water, W, the wet weight measured in the water,
Wi the filled weight measured out of the water before drying (where pores are filled with water),
and Wy the weight dried measured out of the water after being completely dried.

The impedance spectrum and its phase are analyzed from 50kHz to 1.5MHz with
impedance analyzer HP4294A (Agilent Technologies, CA, USA) to assure vibration mode
separation. The effective transvers (ks1) or longitudinal (kss) vibration modes were observed around
100kHz while the effective shear (kis) vibration mode was observed near LMHz range, as shown

in Figure 3.1.5. Since the effective vibration modes are well separated due to the designed
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dimensions, it is possible to analyze the effective properties of each mode, in terms of the angle

between polarization and applied electric field.
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Figure 3.1.5. Vibration mode separation of (a) transverse and (b) longitudinal modes (~100 kHz)
from shear mode (~1 MHz).

3.2 Experimental procedure and results

By excluding the kis mode with spurious peaks, the ks; and ks3 mode properties were

analyzed. The capacitance under constant stress and intensive dielectric loss of effective ksi-kis
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samples were measured under 100 Hz with an LCR meter SR715 (Stanford Research Systems Inc.,
CA, USA), because the dielectric properties near resonance are similar to the off-resonance
properties[55]. The obtained dielectric permittivity and loss are shown in Figure 3.2.1. The box

chart indicates minimum, maximum, quartiles and median values for ten of each sample per

geometry.
Tetragonal MPB Rhombohedral
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Figure 3.2.1. (a) Effective dielectric permittivity and (b) corresponding loss under constant stress
condition.

The MPB structure shows the highest compliance property (highest permittivity) as
expected [56]. Compared to the permittivity perpendicular to the polarization, the permittivity
along the polarization is larger in tetragonal PNZT and smaller in rhombohedral PNZT, similar to
previously reported PZT ceramics [57]-[59]. The phenomenology is generally understood in terms
of domain clamping mechanism from remaining domains. When the structure exhibits low

domains clamping in the unpoled state, the permittivity along the poling direction decreases,



26

resulting in the lower permittivity along the polarization than the perpendicular one [60]. When the
structure exhibits significant amount of 180° domains clamping in unpoled state, most of the 180°
domains along the polarization direction are removed upon poling, while a large amount remains
perpendicular to the polarization. Consequently, the permittivity along the net polarization
direction could be higher than the perpendicular one [61], [62]. It is interesting to note that the
dielectric loss is always higher with larger polarization-canted angle, regardless of the real
parameters.

The impedance spectra near 100kHz were obtained with an impedance analyzer HP4294A
(Agilent Technologies, CA, USA). The resonance and antiresonance frequencies were determined
from the minimum and maximum peak of impedance magnitude. The corresponding quality factors
were obtained from the 3dB up/down method [38]. The frequencies and quality factors for effective
ks1 and kss mode vibration are shown in Figure 3.2.2 (a) and (b), respectively. Note that some of
the parameters cannot be obtained for higher angle ranges, because the resonance and antiresonance

peaks are too small.
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With diminished electro-mechanical coupling from canted polarization, the resonance and
antiresonance frequencies become closer to each other. The declining tendency of the resonance
frequency fa in the ks1 mode and antiresonance frequency fs in the kss mode is due to a higher elastic
compliance with canted polarization. The Qg is larger than Qa regardless of the polarization angle
in the ks; vibration mode. The Qa and Qg gets closer to each other with the canted polarization due
to the diminution of the effective coupling factor, leaving only the intensive elastic loss to result in
the quality factors. It can be predicted that Qa = Qg When the coupling factor is zero using equation
1.3.8 or 1.3.9. A large measurement error is suspected for the ki3 mode due to the small capacitance.
The error will be discussed in section 4.1.

The effective elastic compliance of the effective ks; and kss modes were obtained with
equations in Table 1.2.2 with respect to their boundary condition. The effective elastic compliances

were calculated as follows:

2

E 1711,eff()’) 1
s ) = = (3.2.1)

11,eff p 4f,§,3 1,eff(Y)L2P

D ( ) v?%B,eff(y) 1 (3 2 2)
s y) = = 2.
33eff p 4fb2,33,eff(V)T2P

D
$33,ef¢(¥)
s5s et (V) = —o (3.2.3)

1- k'gs,eff(y)

Here viaet () and vasers () is the effective sound velocity along the vibration direction of

each mode. The corresponding intensive elastic losses are obtained as:
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tan ¢ (y)=—— 3.2.4
Prreirly Qaz1,erf(¥) ( )
tan ¢’ yY)=———
Pa3errly Qp33,err(¥)
1 1 k§3,eff(y) - k32’3,eff()’) + Q§,33,eff(y)
+ — . (3.2.5)
Qaz3eff(¥Y)  Qp33err(¥) 2 (1 — k2, eff(y))

The obtained elastic properties are shown in Figure 3.2.3.
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Here, the MPB shows the most compliant properties while tetragonal structures are the
stiffest. The effective elastic compliance for the ks1 mode changes from s1:% to ss3t with increase in
the canting angle. The elastic loss is in a similar range excluding the samples with largely canted
polarization.

The electro-mechanical coupling factor for both effective ks; and kss modes were calculated
at the resonance and antiresonance frequencies. Figure 3.2.4 (a) and (b) shows the degradation of
the effective coupling factor with angled polarization in effective ks; and kss vibration modes,

respectively. Here, the coupling enhancement by canted polarization for rhombohedral PNZT was

observed only in the effective ks; mode but not in the effective ks; mode.

(a)

P-E Angle (deg.)

P-E Angle (deg.)

P-E Angle (deg.)

Tetragonal MPB Rhombohedral
30° 30 _—\'\,\ 30 ;’ug\xi
S X
i’\: 20 -\\.\‘i 20 20 N
3 \ \\ \\
=
2 10 N0 L \
= \ \ \"\
0+— ‘ ‘ 0+— ‘ - \ 00— . :
0 30 60 90 0 30 60 90 0 30 60 90
P-E Angle (deg.) P-E Angle (deg.) P-E Angle (deg.)
(b) Tetragonal MPB Rhombohedral
60- 60 g‘i\x 60 ?R
3 \
S 40 %\g\* 40 N 40 N
g 201 w20 T | 20 *
qu \\\ \\ \
\ \ \
0 0 0 -
0 30 60 90 0 30 60 90 0 30 60 90

Figure 3.2.4. Effective electro-mechanical coupling factors with angled polarization in tetragonal,
MPB and rhombohedral PNZT for the (a) ks1 and (b) kss vibration modes.
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The piezoelectric d constant and corresponding losses are calculated as:

d31ere(¥) = _\/k32,1,eff(y)SfLeff(V)goEé(&eff(V) (3.2.6)

2
1- kEs%l eff(y) 2
L4 (L ke MY,
- ! ) < k31,e6(¥) 8,31,eft(V)

tan 6 = —
31,eff ) (QA,31,eff(V) QB,31,eff(V) 4
N tan @14 egr (V) + tan 833 o5 (¥)

2.7
> (3.2.7)
s = [ (V)5 e oo en?) (3.28)
) tan ¢3s oer (¥)  tan 833 e (¥) 1= k33ei(¥)
tan 6 ) = : . — : (3.2.9)
33eff 2k32»3,eff()/) 2 2k32‘3,eff(y) : QB,33,eff(V)

The obtained piezoelectric parameters are shown in Figure 3.2.5. An enhancement of
piezoelectric d constant in rhombohedral PNZT could be found in both ks; and ks; modes, unlike
the electro-mechanical coupling factor. The major reason for the different phenomena is due to the
increase of dielectric permittivity and elastic compliance with angled polarization. With largely
canted polarization, the effective d constant degrades and become zero when the polarization is
perpendicular to the applied electric field. In the ks: vibration mode, the piezoelectric loss
dramatically increases on changing the angle (more than 50% when 45 degree canted). In the k3
vibration mode, larger piezoelectric loss with canted polarization could only be observed in

tetragonal PNZT.
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Figure 3.2.5. Effective piezoelectric parameters under (2) ks1 and (b) kss vibration mode.
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Finally, all three loss factors are plotted together in Figure 3.2.6 with a linear fitting curve.
The change of intensive piezoelectric loss is dominant compared to other loss factors by canting
the polarization, meaning that the piezoelectric loss depends more on the polarization angle than

the dielectric or elastic losses. Comparing the ceramics, the piezoelectric loss change is largest for

the tetragonal PNZT [63].
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mode.
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Chapter 4

Review on the conventional characterization method

In Chapter 3, a significant change of piezoelectric loss with polarization orientation was
observed. However, the result induces several questions. Since accurate analysis is essential to

discuss material behavior [64], this chapter introduces the issues with proposed solutions.

4.1 Ambiguity in elastic compliance and losses

In general, the elastic properties are obtained from the sound velocity calculated from the
resonance frequency of ks; mode structure and the antiresonance frequency of kss mode structure
where the half-wave is generated along the vibration direction. However, by structural constraint,
a significant difficulty is experienced occasionally in determining the intensive elastic compliance
and the corresponding loss in the ks3 mode [65]-[67]. The error can be easily found in the
polarization-canted structure. As illustrated in Figure 4.1.1, the elastic compliance along the 11-
direction with canted polarization of 90 — y degrees should be the same as the compliance along
the 33-direction with canted polarization of y degrees. Note the ss3F should be indirectly calculated

from s33P and the electro-mechanical coupling factor as shown in equation 3.2.3.
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Figure 4.1.1. lllustration of the elastic compliance of effective (a) ks1 and (b) kss vibration mode.

Figure 4.1.2 shows the s33t obtained from the effective (a) ks: and (b) kss modes for
rhombohedral PNZT.
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3 error
= 124
mm
(b)
10 T T T T T T
0 30 60 a0

Polarization Angle (deg.)

Figure 4.1.2. The ss3F of rhombohedral PNZT obtained from effective (a) ks: and (b) kss vibration
modes.

Large measurement error necessarily comes from the sample structure due to a very small
current and capacitance compared to effective ks; mode samples. The high structural impedance
from the low capacitance induces large measurement error in the overall electrical response. The
errors are amplified due to indirect calculation of the properties from the assumed boundary

conditions which are mechanically-free condition along the 3 axis (stress Xs constant) or an
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electrically-open circuit (electric displacement Ds constant) condition. The relative error in the
elastic compliance and loss for a standard kss mode rod is shown in equation 4.1.1 and 4.1.2,

respectively [67].

AS'E:«; _ AS% 42 (Ak33>< k323 > (4.1.1)
553 5?3 kss /\1— k323
Atan¢’,, __Atan &'33 5 (Ak33> 1 41.2)
tan ¢,33 tan 6,33 k33 1-— k323 o

Any error in the electro-mechanical coupling factor dramatically increases the error of ssst
and tang'ss. Note that the relative errors from the electro-mechanical coupling factor in real and
imaginary parameters have opposite signs. Although the relative error must be accepted inevitably
at present using the conventional rod geometry, higher accuracy in the real and imaginary
parameters is needed.

A solution to obtain ks3 mode properties can be provided using standard ks; mode structures
in addition to y and m/2- y degree polarization-canted structures where 0<y<sm/4 as illustrated in

Figure 4.1.3 [67].

M Electrode
[ Ceramic

@ () (9
P 0y w2y

(b) E

(a) (0)

Figure 4.1.3. lllustration of essential structures of proposed method to obtain kss mode elastic
properties.
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The canted polarization can be expressed in rotated coordinates with the transformation
matrix in equation 4.1.3. Thus, the effective elastic compliance with canted polarization in ks mode

shown in Figure 4.1.3 (b) is given by equation 4.1.4.

cosy 0 siny
A:( 0 1 0 ) (4.1.3)

—siny 0 cosy
sELerr(¥) = cos*(¥)sfy + cos?(1)sin? () (2sF; + sBs ) + sin*(y)sks (4.1.49)
From the difference of Figure 4.1.3 (b) and (c), the elastic compliance s15F and sssF can be

canceled out, leaving only si:® and ssst. s115, Si1.e(m/2-y) and siu1e(y) can be obtained from

measured resonance frequencies of the effective ks; modes and the elastic compliance ss3t becomes:

i1
N ST eff (7 — V) — s11er(¥)
cos2y

S33 = S11 (4.1.5)

Taking into account the phase lag in equation 4.1.6, the effective elastic loss with canted

polarization in the ks; mode can be expressed as shown in equation 4.1.7:

552 (8) = sE(0)(1 — jtan ¢’ () (4.1.6)

cos*@sitang’, | + sin*fsistang’
+cos?0sin®0(2sfstang’, , + sEstang’ )

Sfl,eff(e)

tand)’ll’eff(e) = (4.1.7)
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Accordingly, from Figure 4.1.3 (b) and (c) samples, tang’13 and tang’ss can be canceled out
and the intensive elastic loss in ks3 mode (tang’ss) can be derived from measured effective

parameters as in equation 4.1.8:

ST1,eff (g - V) tan ¢’y o (g - )/)

E , _Sfl,eff(y) tan ¢’11,eff (Y)

, sjptang’y, + cos 2y
tang’,, = 5 (4.1.8)
S33

Therefore, the real and imaginary intensive elastic parameters of ksz vibration mode are
obtainable from measurements of effective ki1 samples. The feasibility of the proposed method was
checked for the rhombohedral PNZT samples prepared as described in chapter 3. The sample
capacitance of ks; mode structure, 0.24 nF, is L2/t? times higher than 1.0 pF of the kss mode sample;
thus structural impedance can be neglected.

Frequency vs. voltage/current response was observed with a high-power characterization
system (HiPoCS™) at a constant vibration velocity of 5 mm/sec where the heat generation is low
enough to prevent peak distortion near the resonance and antiresonance frequencies [68], [69]. A

schematic diagram of the HiPoCS™ is shown in Figure 4.1.4.

[ E

Function generator Current probe Amplifier
SDG 1025 TCPA 300, TCP 305 NF 4010
I
Computer Laser vibrometer [ |
with Labview PolyTec OFV 3001, OFV 511 Sample
|
Oscilloscope Voltage Probe Thermal cam
TDS 4000 Tek P1500 Flir A40

Figure 4.1.4. HiPoCS™ developed in International Center for Actuators and Transducers.
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The effective elastic compliance and loss were derived from the measured resonance
frequency and corresponding 3dB bandwidth on the voltage spectrum and compared with the
results in chapter 3. The predicted effective elastic compliances by angled polarization along with
the 95% confidence intervals are plotted in Figure 4.1.5 (a) (b) and (c) with the measured
parameters in Figure 4.1.5 (b). Note the effective elastic compliance for ks; vibration mode changes
from s11F to s33t. The sa3F calculated with IEEE standard is plotted in Figure 4.1.5 (d) for comparison.
The sz3F derived from the proposed method and IEEE standard is 14.82 um?%N +0.13% and 13.59
um?/N +0.43%, respectively. The relative error found in the real parameter was -8.3%); the IEEE

Standard underestimates the elastic compliance.

(a) (b) (c) (d)

E ‘ E c .
S5, effective s, S5, S5,
12.25 15 16 15

£ predicted ——
£ predicted error zone 8
=2 ? 144 s measured L g =
8 3 =
c 2 _ 7]
o g - |2
g =S 2 5
E 13 Lo1ad T 1u{ = |3
Q 1'] [
(5] |
o w
3 | Y
< 12.00 12 : | : :

0 30 60 ' 90
P ZE angle (deg.)

Figure 4.1.5. Elastic compliance (a) s1:%, (b) effective s1:F by polarization angle, (c) sss° derived
from the proposed method and (d) sssF calculated with IEEE standard.

Figure 4.1.6 (a), (b) and (c) shows the predicted effective elastic loss with angled
polarization in 95% confidence intervals. In comparison with, the loss calculated from the kss
geometry is plotted in Figure 4.1.6 (d). The tang’s3 derived from the proposed method is 0.0096

10.0003 (2.6%) where the loss with the conventional method is 0.017 + 0.002 (9.1%). The relative
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error found in the imaginary parameter was 74%; the conventional method overestimates the elastic

loss.
(a) (b) (c) (d)
tang', effective tan¢',, tang',, tand',,
1.0 20 2.0 2.0
—— predicted
< ] predicted error zone -] 3 1 ¢
P 16 * measured 18 & 8
12} £ 5
2 o] Q
— 0.8 2 B
3 — | 121 L1271 8 [ 12] E
: ® \(.'LL k
.g ¢ B ; =
2 0.8 Z - 0.8 0.8
0.6 T T
0 30 60 90

P ZE angle (deg.)

relative error

Figure 4.1.6. Elastic loss (a) tang’11, (b) effective tang’11 by polarization angle, (c) tang’ss derived
from the proposed method and (d) tang’ss calculated with conventional method.

The relative error in the real and imaginary parts of the intensive elastic parameter have

opposite signs, as predicted in the calculation of relative error. The measured effective elastic

parameters mostly fit in the 95% confidence zone. Considering the material property deviation in

each sample from ceramic processing, the deviation of derived method is acceptable and the

accuracy of the obtained elastic parameters is high.

4.2 Errors of mechanical quality factors

Although there exists controversy in determination of quality factors [51]-[54], [70], 3dB

down and up bandwidth from the maximum and minimum peak of admittance spectra is
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conventionally utilized to calculate the half-power bandwidth for Qa and Qg, respectively. The
problem is, the definition of half-power bandwidth contains an error when the electro-mechanical
coupling is small where the damped capacitance cannot be neglected with respect to the small
motional capacitance. In the case, the 3dB bandwidth doesn’t provide half of the motional

admittance or impedance, but overestimates the bandwidth as shown in Figure 4.2.1.

(a) (b)
B a - 3dB up of IYl,;,
fa s A N
2,8 5 | R
R \
- | B fe
3dBdownoflIvl, X

v

Figure 4.2.1. 3dB bandwidth in low and high coupling condition shown in (a) I'Yl and (b) 1ZI
circle for Qa and Qg, respectively.

The problem can be encountered in some recent research focused on piezoelectric polymers,
composites, thin films or lead-free materials with low electro-mechanical coupling factors [71].
Since the polarization-canted samples also have low electro-mechanical coupling with largely
canted angle where the effective polarization is small, the error should not be neglected to
accurately analyze the effect of polarization orientation on piezoelectric properties.

As a solution, using the quadrantal bandwidth from the admittance or impedance circle is
proposed. This gives the frequency bandwidth in between the maximum and minimum susceptance

B or reactance X as shown in Figure 4.2.2.
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Figure 4.2.2. Suggested quadrantal bandwidth in (a) I'Yl and (b) 1ZI circle for Qa and Qsg,
respectively.

ATILA/GID finite element simulation of PZT5A in ks mode was conducted with
controlled inputs of piezoelectric ds; constant and fixed loss parameters to demonstrate the errors
in conventional compared to the suggested bandwidth in low coupling conditions. The elastic and
piezoelectric loss calculated from the conventional 3dB method and proposed quadrantal method

are shown in Figure 4.2.3 with respect to the piezoelectric ds constant.

@ 45 (B) 42
n
|

m calculated with 9
_ 30. 3dB method _ 1 = calculated with
= S 3dB method
e e 6
- ®  Vcalculated with -
- S : S s Vcalculated with
c 159 e IYIvC|r<':Ie inethc d c _/./ 1Yl circle methgd
= v = 3 v v v v v\v_v

FEA input: tan¢ ', =0.013 FEA input: tan6°,,=0.03

0.0 . . - 0 . . .
-150 -100 -50 0 -150 -100 -50 0
31 nput (PC/N) Ay ot (PCIN)

Figure 4.2.3. (a) Elastic and (b) piezoelectric loss calculated from conventional 3dB method and
the proposed quadrantal method.
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Owing to the overestimated half power bandwidth in the conventional 3dB method, the
mechanical quality factor is underestimated; thus the elastic loss is overestimated. Similarly, the
piezoelectric loss is also overestimated with the conventional method. Some difficulties of loss
reproduction in FEA simulations are reported in several studies [72], [73].

The analysis result shows that the proposed quadrantal method is much more accurate and

the FEA can reproduce the losses accurately even when the electro-mechanical coupling is small.

4.3 Spurious modes near the shear vibration

The most challenging issue in kis mode analysis is the spurious peaks appearing near the
shear vibration mode. With the spurious peaks, the resonance/antiresonance frequencies and
corresponding half-power bandwidth cannot be accurately obtained. However, with various
polarization-canted structures, the issue can be resolved. With the change of effective elastic
properties and coupling factor for samples with canted polarization, the resonance or antiresonance
frequency can be moved far from the spurious peaks. To verify this idea, ATILA/GiD simulation

was made for PZT5A with the parameters in Table 4.3.1.

Table 4.3.1. PZT5A properties used to simulate spurious modes near the shear vibration mode in
ATILA/GID software.

p s11E s1° 513" s33° 555" tang ’
7750 16.4 -5.74 -7.22 18.8 47.5 0.010
kg/m? um?/N um?/N um?/N um?/N um?/N
dis ds dx3 tan@’ 811X 833X tand ’
584 -171 374 0.015 1730 1700 0.020
pC/N pC/N pC/N

The loss factors are set as isotropic parameters for the convenience of calculation. The

piezoelectric loss was set as the average of dielectric and elastic loss as indicated in the IEEE
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standard of piezoelectricity. Thus, regardless of the polarization orientation, the quality factors
should be given by equation 4.3.1.

1
—— =100 43.1
tan ¢’ ( )

Qa1s = 015 =

The dimensions were set to 15, 3 and 1mm for the length, width and thickness, the same

as the measured samples. For various polarization orientations, the admittance/impedance was
simulated from 600 to 1100 kHz. The result shows that spurious peaks could be separated from the

motional admittance / impedance by changing the polarization angle, as shown in Figure 4.3.1 (a)

and (b).

(a) # Resonance  9—4¢ Half-power bandwidth (2 Spurious mode
4 4 4
2, _ 2, 2
) 4
o 0 3% 0 0
g | 1 W ()
m -2 =24 = -2
| n/2-y= 34" | m/2-y= 36" mf2-y=39°
-4 -4 -4
0 2 4 6 0 2 4 6 0 2 4 6
G (107 8)
(b) # Anti-resonance 9—4> Half-power bandwidth () Spurious mode
4 4 4
24 24 2
—_— 1 |
g o \_/ 0 £/ N\ 0
<. \J AN . w
| T nf2p=33 | nf2-y=35 nf2-y=38"
-4 -4 -4 -
0 2 4 6 0 2 4 6 0 2 4 6
R (kQ)

Figure 4.3.1. Spurious peaks separating from the (a) motional admittance and (b) impedance by
changing the polarization orientation.
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To verify the assumption that there is no distortion of the shear vibration when the spurious
mode is moved away from the motional admittance / impedance forming clean half-circle, Qa s
and Qg,15 were calculated for the various orientations in Figure 4.3.1. The results are shown in Table

4.3.2.

Table 4.3.2. Calculated Qa and Qg with various polarization orientations in Figure 4.3.1.

/2-y 34° 36° 39° /2-y 33° 35° 38°
Onis 55.4 62.6 102 Os.is 19.8 18.1 99.6

With the spurious mode separated from the half-power bandwidth of the shear vibration
(39 degrees for the resonance peak and 38 degrees for the antiresonance peak), the quality factors
could be accurately calculated with less than 2 percent error. Finding the most undistorted half-

circles are essential for further analysis.
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Chapter 5

Proposed characterization method

5.1 Introduction

Resolving the characterization issues with the solutions provided in Chapter 4, an advanced
characterization method is proposed to obtain the anisotropic intensive parameters for the ki, Ks3
and kis vibration modes. Effective ksi-kis structures with canted polarization as illustrated in Figure
5.1.1 are suggested for the characterization. More than three different geometries of canting angle
(y1 # y2 # ys) are necessary. The proposed methodology contains 1) off-resonance dielectric
measurements, 2) effective ka1 mode analysis, 3) off-resonance ds3 measurements and 4) effective

kis mode analysis.
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Figure 5.1.1. lllustration of effective ksi-kis structure with canted polarization.

The effective dielectric, elastic and piezoelectric properties for the structure can be
expressed with the independent parameters in equations 5.1.2 to 5.1.4 using the rotational transition
matrix A. From analysis of the effective parameters, independent material properties can be

obtained.
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cosy 0 siny
A=(ay) = < 0 1 0 ) (5.1.1)

—siny 0 cosy
7500 = Y anayels (1 - jtand'y) (5.12)

k1
Stitersr ) = Z Aim @1 Qo Up Smnop (1 —jtan ¢'mnop) (5.1.3)
mmn,o,p
Aijeerr (V) = Z Qi1 Am Andimn (1 — j tan 0’y (5.1.4)
Lmn

5.2 Off-resonance dielectric measurements

There is no issue in the IEEE standard of piezoelectricity for the dielectric measurements.
However, the reliability of the measurements can be dramatically enhanced with additional analysis.
Using the effective ksi-kis structure, the intensive dielectric permittivity and corresponding losses
along the 33-direction and 11-direction can be obtained with the following equations, where

0<y1<y2<m/2.

X _ sin?(y,) €33 077 (V1) — SIN*(¥1) €33 071 (¥2)

€ - . (5.2.1)
33 sin(y, + v1) sin(yz — y1)

cos?(y1) €35 55 (¥2) — c082(v2) €35 057 (1)
551 _ V1) €337 (V2 Y2) €33.er7 (V1 (5.2.2)

sin(y, + v1) sin(yz — v1)
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[sin2 (r2) E§(3,eff (y1) tan 8’33 055 (1)
— Sin2 (yl) g?i{B,eff ()/2) tan 8,33_eff ()/2)

tand's5 = : . (5.2.3)
- £33 sin(yz +y1) sin(yz — 1)
[COSZ(V1) 53),(3,eff (r2)tan 6’33 ¢r7 (v2)
— cos? &% tan s’
tan 'y, = (r2) 33,eff (r1) 33.erf (V1) (5.2.4)

e sin(y, +y1) sin(y; — y1)

5.3 Effective ks mode analysis

The next step is to analyze the effective ks vibration mode. Defining the effective
quadrantal resonance frequency (fagawefr (7)) Where the conductivity G is maximum [12], [74], the
effective si1® with y degree canted polarization (Si1r° () can be obtained via equation 5.3.1. When
setting the vibration length to 15mm, the effective ks; mode should occur near 100kHz for typical

PZT-based ceramics, similar to the results in Chapter 3.

1712 1,eff (Y) _ 1
p 4fA2q,31,eff()/)L2p

51E1,eff()/) = (5.3.1)

The elastic compliance along the 11- and 33- directions can be obtained from equation
5.3.2 and 5.3.3 where 0<y1<y.<ys<m/2. Here (i) mod (n) is a modulus function which is equal to the
remainder of i divided by n, where i, n and (i) mode (n) are natural numbers. The modulus function
is used to simplify the equations. Although the s1:15 can be directly obtained from standard ks mode

structure, the equations below give more reliability in the analysis.
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[sin?(Y(iymoaz)+1) SIN? (¥ (14 1)mod(3)+1)

| sin(Yarnmoay+1 + Yymoa@)+1)
oF, = i Sill(y(i+1)mod(3)+1 - ?/(i)mod(';s’.)+1) Strerr (Vi) (532)
5 [c0s* (¥ 1ymoacsy+1) SN2 (¥y) sin?(¥ (iymoa(s)+1)
= sin(Yymoaezyss + Vi) SNV ymoay+1 — Vi)
-COSZ(V(i)mod(3)+1) COSZ(Y(i+1)mod(3)+1)
2| sin(Yarymoa@)+1 + Y(iymoa3)+1)
oF, = § 5111(Y(i+1)mod(3)+1 - ?/(i)mod(?i)+1) Stierr (Vi) (533)
5 [cos* (Vs nymoacy+1) SN2 () sin?(¥ ymod(s)+1)
= sin(yymoay+1 + ¥1) Sin(Yomoaz+1 — Vi)

The simplified solution in Chapter 4 is identical with the above equations when y:=0 and y
=yo=n/2- vs.

The next step is to obtain the piezoelectric ds1 constant. The effective electro-mechanical
coupling factor can be calculated, thus the effective piezoelectric dsi constant can be obtained. The

piezoelectric ds; constant can be calculated with equation 5.3.4 where 0<y;<y,<w/2.

cos(y,) sin®(y,) d31,eff(7/1)
— cos(yy) sin®(y;) d31,eff (r2)

= cos(y,) cos(y,) sin(y, + ¥1) sin(y, — y1) (5.3.4)

31

Additionally, the following values can be obtained for further analysis.
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{sin* (¥ i+ ymoda3)+1) €0S* (¥ (tymoa(3)+1)
Y3 |- sin*(Yymoay+1) €0t (Vir1ymoazy+1)}
) Sfl,eff(yi)

2573 + sg5 = - - (5.3.5)
Cos (V(i)mod(3)+1) cos (V(i+1)mod(3)+1)
Y3 | sin* () sin(Yymoaczy+1 + Y(i+1)ymoa3)+1)
-sin(¥Y (iymoa(3)+1 — Y (i+1)mod(3)+1)
cos3 d — cos3 d
dys — dys = (r2) 31,eff()’1) (r1) 31,eff(]/2) (5.3.6)

cos(y1) cos(yz) sin(yy +v2) sin(y1 — v2)

Next, the loss factors were analyzed. From the effective Qa s1, the effective intensive elastic

loss along 11-direction can be calculated as:

tan ¢,11,eff ) = (5.3.7)

Qa3z1e fr 62)

Then, the independent elastic loss parameter along the 11- and 33-directions can be

obtained with equation 5.3.8 and 5.3.9 respectively where 0<y;1<y,<ys<m/2.

[$in?(¥ @ymoaa)+1) SIN? (¥ i+ 1ymoa(3)+1)|
3 1 Sin(V(i+1)mod(3)+1 + V(i)mod(3)+1)
=1 [ SIn(¥ (4 1ymod(3)+1 — ¥(mod(3)+1)
E 1
“Strerr(yi) tan ¢ (ve)
tang’,, = 4119ff L 11_,e1;f Y . (5.3.8)
E w3 [COS (y(i+1)m0d(3)+1) sin?(y;) sin (V(i)mod(3)+1)

S11 = . .
S Sln(Y(i)moa(3)+1 + Vi) Sln(V(i)moa(3)+1 - Vi)
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[COSZ(V(i)mod(3)+1) cos® (V(i+1)mod(3)+1)]
s | Sin(¥ (i+1)moa@)+1 + ¥ (ymod(3)+1)
=1 [ Sin()/(i+1)mod(3)+1 - V(i)mod(3)+1) J
tan ', = Shierr (DN 1107, 00 (5:3.9)
o [cos (Y(i+Dmodaczy+1) SIn?(¥) sz(y(i)mod(3)+1)]
=1 . sin(y(i)mod(3)+1 + yi) Sin(y(i)mod(3)+1 - Vi)

From the effective Qg a1, the effective piezoelectric loss for effective ks: vibration can be
calculated. Then, the independent piezoelectric loss tangent can be calculated with (5.3.10) where

O0<y1<y<n/2.

cos(y;) sin®(y,) d31,err (Y1) tan 8'zq 0rr (1)
—cos(y1) sin®(y1) daepr(¥2) tan 0’34 o (v2)
d3q cos(yy) cos(yz) sin(y, + y1) sin(y, — v1)

tan 0’31 = (5.3.10)

The following values can be obtained for further analysis.

{sin* (¥ (14 1ymoda3)+1) €OS* (¥ (ymoa(3)+1)
21| sin*(Yymoazy+1) €0s* (¥ (i+1)ymoaz)+1)}
E ’
“S11err (Vi) tang )
2stztang’ .+ séstang’ . = 211 e 112’eff : (5.3.11)
Cos (V(i)mod(3)+1) Cos (V(i+1)mod(3)+1)
.l Sin“’()/(i)) Sin(y(i)mod(3)+1 + V(i+1)mod(3)+1)

-sin(¥ (iymoa(3)+1 — Y (i+1)mod(3)+1)

c0s®(¥,) dz1err(y1) tan 6'sq o (v1)
—cos*(y,) A31,erf(Y2) tan 8’34 orr (v2)
cos(yy) cos(yy) sin(y; + v2) sin(y; —v2)

d33 tan0,33 - d15 tan 9’15 = (5312)
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5.4 Effective ds3 measurement

Next, with measurement of the effective ds; constant in the effective ksi-kis geometry, the

dss constant can be obtained using equation 5.4.1.

cos(y,) sin®(y;) d33,eff()’1)
—cos(yy) sin? (r1) d33,eff (r2)

d3z=d 0) = _ ; (5.4.1)
37Tt cos(y1) cos(yz) sin(y1 +v2) sin(ys — v2)
Then, the piezoelectric dis constant can be obtained with equation 5.3.6 or 5.4.2.
cos? d —cos?(yy) d
dys = —dy, (r2) 33,eff()’1) (r1) 33,eff(V2) (5.4.2)

cos(y1) cos(y2) sin(yz + y1) sin(yz — 1)

In this way, all the real parameters essential for the ka1, ka3 and kis vibration modes are

obtained. The next step is to analyze the imaginary parameters.

5.5 Effective kis analysis

Assume that a clear half-circle of motional admittance and impedance could be obtained
at polarization angles of ya and ys, respectively. At first, with the obtained antiresonance frequency
of the effective shear vibration with yg canted polarization, the effective electro-mechanical

coupling factor can be obtained from equation 5.5.2.

1

— (5.5.1)
4t2Pf32,eff(VB)

SSDS,eff(yB) =
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ka,eff(VB) _ d%s,eff(yB) (5.5.2)
1—kZs i () €088 err(VB) " S5 orp(¥8) -
15eff\VB 0€11,eff\YB) " S55.£7 VB
Then, s13F and sss& can be obtained from equation 5.3.5 and 5.5.3.
D
s
517 (V) = sin?(2yp) (sE, + s& — 25E) + cos?(2yp) s& (5.5.3)

1- k125,eff(VB)

The effective Qg(ys) satisfies the following relation with the effective coupling factor and

loss parameters.

1—kiserr(vp) 1 tan 'y o (V)
' : = tan 6’ (y) — 2tan@’ (r) + :
kiserr(¥s)  Qaerr(¥a) Hherr i B K sy ()

(5.5.4)

From the resonance frequency obtained from the ya polarization-canted structure, the
corresponding anti-resonance frequency can be predicted from equations 5.5.5 and 5.5.6. Thus, the

effective electro-mechanical coupling factor can be obtained.

diserr (V) A4t?pfgerr(Va)

e o (5.5.5)
B A e o VA2 DFE o (V) + E08R o (1)
7 faerr(Ya) [n faerr(Va)
2 T cot|® 5.5.6
15erf (Va) 2 foerr(va) (2 fperr(va) oo

Then, the effective Qa(ya) satisfies the following relation as a function of the effective

coupling factor, A- and B-type resonance frequencies and loss parameters.
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1- k125,eff(VA)

n fA,eff ()’A)}]
Qae fr (Ya)

- | ki — 1+ tan?
15,eff(YA) an {2 fB,eff(VA)
an,eff(VA)

2
= —2|tané’ vg)
ZfB,eff(YA)} ] 1eff WV

= kfs,eff(yA) + k125,eff(VA) + {

EfA,eff(yA)

2 fB,eff(VA)} - 3] tan ¢,55.eff (vs)

+ Skfs,eff(yA) + tan? {

+ 4 — 2kis orr (Va) — 2kfs opr (Ya)

_9 {E fA,eff()’A)
2 fperr(Ya)

2
} ] tan 0’15057 (v5) (5.5.7)
Since the effective loss parameters are functions of the independent loss parameters as
indicated in equation 5.1.2 to 5.1.4, tang’13, tang’ss, tan@’ss and tand’1s can be obtained from
equation 5.3.11, 5.3.12, 5.5.4 and 5.5.7. Resultingly, the intensive loss parameters for k1, kss and

kis vibration mode can be separately derived.
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Chapter 6

Anisotropic properties with proposed methodology

6.1 The vibration mode separation

As a prerequisite of the proposed analysis, it should be verified that mode coupling does
not occur near the effective ks1 and kis vibrations [75], [76]. An intensive study of each vibration
mode was conducted. Impedance and phase spectrum were analyzed from 50kHz to 4MHz
(5.2MHz for rhombohedral PNZT) with the HiPoCS™ under a constant voltage of 0.5V for each

structure as shown in Figure 6.1.1 (a), (b) and (c).
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Figure 6.1.1. Impedance and phase spectrum of (a) tetragonal, (b) MPB and (c) rhombohedral
PNZT measured with HiPoCS™ and (d) PZT5A simulated with ATILA/GID.
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ATILA/GID simulations of PZT-5A were conducted to analyze the vibration modes as
shown in Figure 6.1.1 (d). The vibration modes are consistent in simulation and measurements and
the effective ks; and kis mode were separated from other vibration modes. The effective vibration

modes labeled in Figure 6.1.1 are the D ks; mode, 2 2nd order ks; mode, 3 ks, mode, @ kis mode,
(® sub-mode of coupled k: and 2nd order ks, mode, ® 2nd order ks, mode, (@ k: mode and ® 2nd

order kis mode. The 2nd order ks, mode and k: mode are calculated to occur at higher frequency
than the kis mode, however it is interesting to observe a sub-vibration mode which is a coupled
mode of k;: and the 2nd order ks, mode. The displacement distribution of important vibration modes
are simulated with ATILA/GID software as shown in Figure 6.1.2. Since the necessary vibration

modes are separated, further analysis could be made.

e T e ‘ @RISmOde

f BT 7T O, mode

e

(5 sub-mode of coupled
@ k32 mode kt and k32 mode

O =0 O

Figure 6.1.2. Simulated displacement distributions of vibration modes shown in Figure 6.1.1.

6.2 The independent parameters

Now, the anisotropic properties were obtained with the proposed methodology in Chapter
5. Figure 6.2.1 shows the obtained dielectric properties. The results of dielectric properties are in

good agreement with the measured data in Chapter 3.
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Figure 6.2.1. Histogram of dielectric properties obtained with the proposed method.

The elastic properties calculated from the effective ks mode data are shown in Figure 6.2.2.
The elastic compliance along the polarization direction is higher than the one perpendicular to the
polarization especially in MPB and rhombohedral PNZT. It is usual for PZT ceramics that
S55>533>511 due to the P6mm symmetry achieved from poling [77]. It is known that poled
rhombohedral ceramics have greater elastic anisotropy than the tetragonal ceramics in spite of the
smaller distortion of the crystal from cubic symmetry [58], [78]-[80]. The intensive elastic loss
shows larger anisotropy in the rhombohedral than tetragonal phase, similar to the real parameter.
However, the elastic loss could be considered as constant for the two directions regardless of the

structure, compared to the dielectric loss anisotropy.
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Figure 6.2.2. Histogram of elastic properties obtained from effective ka; structures.

Next, the effective dss were measured at 110Hz with a PM200 dss meter (Piezotest, UK)

under a static force of 10N and dynamic force of 0.25N. Consequently, the piezoelectric d constants

could be obtained as shown in Figure 6.2.3. The piezoelectric anisotropy is largest in rhombohedral

and smallest in tetragonal PNZT as shown in Table 6.2.1.
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Figure 6.2.3. Histogram of obtained piezoelectric d constants.

Table 6.2.1. Piezoelectric anisotropy ratios of PNZT.

Tetragonal MPB Rhombohedral

dis/ds3 1.38 1.52 1.77
-d15/d31 3.59 4.01 4.95
-d33/da1 2.60 2.64 2.80

The intensive piezoelectric loss for ka1 mode is shown in Figure 6.2.4. The transverse

piezoelectric loss is largest in rhombohedral and smallest in tetragonal PNZT. Considering the

dielectric and elastic loss factors, the mechanical quality factor difference between the transverse

resonance and antiresonance frequencies is the highest for rhombohedral PNZT due to the large

piezoelectric loss.
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Figure 6.2.4. Histogram of obtained piezoelectric loss tan&’s;.
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Now, the independent elastic and piezoelectric loss of kis and kss mode should be obtained.
The effective shear modes were analyzed with HiPoCS™ under a 0.1mW of constant power
condition to avoid peak distortion, since the shear vibration could not be accurately traced with the
laser Doppler vibrometer. The admittance / impedance near resonance and antiresonance
frequencies were measured at 1Hz interval and the distortion of the half-circle was analyzed. Figure
6.2.5 shows the motional admittance and impedance in the range of 0.93 to 1.33MHz of
rhombohedral with various polarization orientations. As indicated in the figure, the half circle with
the least distortion was observed at y = 60° and 75° for motional admittance and impedance,

respectively.

(@ y=90' y=175" 20 y = 60°
15 (\
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m
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X (kQ)
X (kQ)

R (kQ) R (kQ) R (kQ)
Figure 6.2.5. (a) Admittance and (b) impedance circle near effective kis shear mode where the
angle between polarization and applied electric field is 90, 75 or 60 degrees.
Table 6.2.2 shows the angle between the polarization and applied electric field for the most
undistorted geometries for each structure and the resulting effective resonance frequencies and

corresponding quality factors. For the admittance circle, the conductance of the frequencies where
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the susceptance is maximum or minimum needs to be in a similar range when undistorted. For the
impedance circle, the resistance of the frequencies where the reactance is maximum or minimum
needs to be in a similar range when undistorted. Then, assigning an imaginary center of the circles,
the standard deviation of the relative radius was checked, and the least distorted measurement data
were taken from ten samples of each. The measured errors were 0.1%, 5%, 0.2% and 10% for fa,

Qa, fs and Qs, respectively.

Table 6.2.2. The obtained effective shear mode properties of the least distorted geometries.

Tetragonal MPB Rhombohedral

A-type B-type A-type B-type A-type B-type

vy (degree) 90 60 90 90 60 75

Resonance 1027.4 1137.5 860.25 1136.5 994.38 1227.2
frequency (kHz)

Quality factor 57.2 105 47.5 106 90.5 109

Consequently, the intensive elastic and piezoelectric loss factors for ks; and kis mode could
be obtained. The obtained independent parameters are shown in Table 6.2.3. Note the only
remaining unknown parameter s:.F and the corresponding elastic loss can be obtained from k, mode

structures with the standard method, if necessary.
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Tetragonal 33" 1213 e11” 1079 | s13% (um%N) -3.72
tand’ss (%) 1.11 tand’ 11 (%) 1.46 tang’13 (%) 4.52

suE (WmZ/N) 1277 | sg® (um¥N)  12.84 | ssf (um?/N)  32.83

tang’11 (%) 0.91 tang’ss (%) 0.90 tang’ss (%) 1.88

da1 (pC/N) -90 da3 (pC/N) 233 dis (pC/N) 322

tand’s1 (%) 1.51 tand’ss (%) 3.03 tand’1s (%) 3.10

MPB £33° 1455 e’ 1516 | si3- (um?/N) -8.01
tand’ss (%) 1.48 tand’ 11 (%) 1.62 tang’13 (%) 4.40

st (um?/N)  16.09 | ss (um¥N)  18.06 | st (um?/N)  51.41

tang’11 (%) 0.96 tang’ss (%) 1.04 tang’ss (%) 2.19

da1 (pC/N) -148 da3 (pC/N) 391 dis (pC/N) 593

tand’s1 (%) 1.73 tand’ss (%) 2.63 tand’1s (%) 2.50

Rhombohedral £33" 604 e11% 950 | s15F (um?/N) -5.13
tand’ss (%) 2.11 tand’11 (%) 2.67 tang’13 (%) 1.64

suf (um?/N) 1215 | sg (um¥N) 1475 | st (um?/N)  37.48

tang’11 (%) 0.74 tang’ss (%) 0.89 tang’ss (%) 1.30

ds1 (pC/N) -77 ds3 (pC/N) 217 dis (pC/N) 383

tand’s1 (%) 2.04 tand’ss (%) 1.28 tand’1s (%) 2.24

Figure 6.2.6 shows the piezoelectric loss for different vibration modes. It is interesting to

note that the piezoelectric loss appeared to be the smallest in rhombohedral and the largest in

tetragonal PNZT in the ki3 and kis vibration modes. In contrast, the piezoelectric loss appeared to

be the largest in rhombohedral and the smallest in tetragonal PNZT for the ks; vibration. According

to the results, the vibration mode should be considered as an important variable to discuss the

piezoelectric loss anisotropy.
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Figure 6.2.6. Piezoelectric loss in various PNZT crystal structures for ka1, ks and kis vibration
modes.

Table 6.2.4 compares the piezoelectric loss of measured PNZT to the conventional studies.
Note that the conventional studies contain large measurement error in ka3 and kis modes due to the
small capacitance and spurious peaks. Miguel Alguero et al. reported the anisotropic piezoelectric
loss in Navy type Il (PZ27) ceramics by analyzing the admittance and impedance at length, shear,
thickness and radial resonance [81]. Here, the larger piezoelectric loss was reported with larger
piezoelectric d constant, similar to the tetragonal PNZT. The author noted an additional limitation
of analysis due to the inconsistent poling in different geometries. Yuan Zhuang et al. reported the
loss anisotropy in soft (APC850) [39] and hard (APC841) [82] piezoelectric ceramics using the
3dB method [38]. It is notable that in APC 841 and APC 850 ceramics have smaller piezoelectric

loss under ka3 vibration than ks; vibration, similar to the rhombohedral PNZT.
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Table 6.2.4. The anisotropic piezoelectric parameters of PNZT, PZ27, APC850 and APC841.

-O31 tand’s; das tané’s;3 dis tanéd’ s

(pC/N) (%) (PCIN) (%) (PCIN) (%)

Tetragonal PNZT 90 1.51 233 3.03 322 3.10
Rhombohedral PNZT 77 2.04 217 1.28 383 2.24
MPB PNZT 148 1.73 391 2.63 593 2.50

PZ27 [81] 160 1.94 336 2.14 396 6.62

APC 850 [39] 196 1.84 416 1.78 649 2.96

APC 841 [82] 109 3.7 300 2.5 450 -

6.3 Polarization dependence of properties

From the obtained independent parameters, a transformation matrix was used to analyze

the polarization dependence of the dielectric, elastic and piezoelectric properties. The intensive

dielectric properties as a function of polarization orientation are shown in Figure 6.3.1. Note that

the shear mode properties are plotted from 90 to 0 degrees since the 90 degree angled polarization

from the applied field is the standard geometry for the shear vibration. The results of dielectric

properties are in good agreement with the standard analysis in Chapter 3. The effective dielectric

permittivity or loss gradually changes from e33* or tand’ss to e11* or tand’11 by increasing the angle

between polarization and electric field.
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Figure 6.3.1. Intensive dielectric properties by polarization orientation.

In figure 6.3.2, the intensive elastic properties by polarization orientation are shown for the
effective ka1, kss and kis vibration modes. The imaginary parameters of ka3 mode differs from the
preliminary analysis in chapter 3 by resolving the relative error and giving a physical picture that
the intensive elastic compliance for linear vibration changes in between s3;" to s33® depending on
the polarization orientation. It is interesting to note that the elastic shear property becomes more
compliant in tetragonal PNZT while it is stiffer in rhombohedral and MPB PNZT with a canted
polarization. The major reason is from the property anisotropy where (s115+s335-25155)/ss5° is larger
than 1 in the tetragonal phase, while it is smaller than 1 in rhombohedral and MPB PNZT. It is also
interesting to note that the elastic loss for transverse and longitudinal modes shows a maximum
while the loss for the shear mode shows a minimum when the polarization angle is canted near 45

degrees.
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Figure 6.3.2. Intensive elastic properties by polarization orientation.
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The degradation of piezoelectric d constants with angled polarization is shown in Figure

6.3.3. A slight enhancement of ds; was observed in rhombohedral PNZT due to the high value of

(d33-d15)/da1.

More piezoelectric loss was observed when the polarization is canted for linear

vibration as opposed to the shear vibration mode. The change of piezoelectric loss was smallest in

MPB PNZT, which is the most isotropic. Tetragonal PNZT showed the largest polarization

orientation dependence of the piezoelectric loss for the ks vibration mode, while rhombohedral

PNZT showed the largest polarization orientation dependence of the piezoelectric loss for the kis

vibration mode.
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Figure 6.3.3. Intensive piezoelectric properties by polarization orientation.
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Chapter 7

Polarization dependence of extensive loss factors

7.1 Introduction

Considering the internal state of ceramics, the boundary conditions are mechanically
clamped (constant x) and electrically open-circuited (constant D), corresponding to the extensive
parameters. Since the extensive loss parameters are occasionally employed to explain the origin of
losses [83], it is important to understand the extensive loss behaviors with respect to the polarization
orientation. As introduced in section 1.3, the extensive loss parameters in the kis vibration mode is
directly obtainable, while the extensive losses in the ks; mode could be calculated from the directly
obtained intensive loss parameters assuming the 1-dimensional reciprocal relation, c1;°=1/s1:°. In
kss mode, the boundary condition is generally considered as strain constant along the polarization
direction. However, the assumption is only valid when the coupling factor kaz is near 100%. Neither
stress nor strain are constant in the ks3 mode for a typical piezoelectric ceramic. Thus, the
measurable parameters of the ks3 mode are neither intensive nor extensive loss factors, but
intermediate values. Therefore, only the extensive loss parameters in the ks and kis modes will be

discussed.

7.2 Extensive loss parameters by polarization orientation

The extensive loss parameters were calculated using the K matrix consist of the effective

intensive loss parameters and the effective electro-mechanical coupling factor, as shown in Figure
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7.2.2. The maximum, minimum and average measured data for each geometry for effective ks;

mode is plotted for comparison.
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Figure 7.2.1. Extensive loss parameters for effective ks; and kis vibration.
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Considering an open-circuit condition, due to the different charge development in different
vibration modes, the effective dielectric loss varies (tandi1(y)#tandss(n/2-y)). Note that in the short-
circuited condition where the charge could be well distributed, the effective dielectric loss is mode-
independent (tand’11(y)=tand’ss(n/2-y)). A similar phenomenon is observed for the elastic loss
factor.

The extensive dielectric and elastic loss are mostly higher when the polarization is angled
from the standard structure of each resonator, except for the shear mode in rhombohedral PNZT.
The piezoelectric loss is more related with the angle between polarization and applied electric field.
The piezoelectric loss is smaller when the angle is larger, meaning the compensation to the
dielectric and elastic loss is smaller when the polarization is canted from the applied field. This
phenomenon could be a very important point for further study on domain dynamics. The changes
are least in MPB PNZT, which is the most isotropic. In the effective ks; mode, the change of
extensive piezoelectric loss is the largest in tetragonal PNZT which is the least isotropic. In the
effective kis mode, the change of extensive piezoelectric loss is the largest in rhombohedral PNZT
which has the strongest relative shear property, as indicated in Table 6.2.1.

It is interesting to note that the extensive piezoelectric loss becomes negative in tetragonal
PNZT when the polarization is strongly canted with respect to the applied electric field. The

negative piezoelectric loss will be discussed further in the following section.

7.3 Extensive loss contribution to intensive elastic loss

Dragan Damjanovic provided a thermodynamically possible explanation for a negative
piezoelectric loss in [84]. Unlike dielectric or elastic hysteresis, which always rotates

counterclockwise for a positive compliance, the piezoelectric hysteresis could rotate
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counterclockwise or clockwise, since the hysteresis does not have energy-density units. The
counterclockwise or clockwise hysteresis corresponds to the positive or negative piezoelectric loss.

A schematic illustration of the hysteresis is shown in Figure 7.3.1.

Positive extensive piezoelectric loss Negative extensive piezoelectric loss
h  x h E h  x
N
A \ -
D N x D
clamped y Open-circuit clamped \\ open-circuit
condition condition condition condition

Figure 7.3.1. Hysteresis loop for positive and negative extensive piezoelectric loss.

A negative loss at low frequency model has been studied [85] through a bi-layer structure.
However, this dissertation is the first report of a negative piezoelectric loss at high-frequencies near
resonance (~100kHz for ks; mode and ~1MHz for kis mode). From equation 1.1.7, the phase lag of

the electro-mechanical coupling factor becomes:

k' —2tanf + tand + tan¢g

— = 7.3.1
o > (7.3.1)

Here, k> and k’’ are the real and imaginary parameters of the electro-mechanical coupling
factor. This phase lag results in the difference of Qa and Qg in equations 1.3.8 and 1.3.9. Here, the
piezoelectric loss compensates the elastic and dielectric loss when all parameters are positive.
However when the piezoelectric loss is negative, the piezoelectric loss is added to the phase lag,

resulting in an increase of the total loss. This phenomenon could be obtained by segmenting the
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intensive elastic loss with extensive loss parameters using the K matrix. Figure 7.3.2 shows the

contribution of extensive loss factors for the intensive elastic loss in effective ks; and kis mode.
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Figure 7.3.2. Extensive loss contribution to intensive elastic loss in effective ks; and kis vibration.

It is shown in most structures that the piezoelectric loss tends to compensate other losses,

acting to lower the overall intensive elastic loss. However in tetragonal PNZT with a strongly

canted-polarization, the piezoelectric loss adds more phase lags to boost the overall intensive elastic
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loss. With the diminishing electro-mechanical coupling, the intensive and extensive elastic loss

becomes the same.
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Chapter 8

Summary and future work

8.1 Summary

Loss in ferroelectric and piezoelectric media is a challenging topic which is still rather
superficially quantified if not understood. Assuming the origin of loss is from domain dynamics, it
is essential to understand the piezoelectric loss behavior by polarization orientation.

In this dissertation, the polarization orientation dependence of piezoelectric loss factors
was studied for the ka1, ka3 and kis vibration modes from the phenomenological viewpoint.
Tetragonal, MPB and rhombohedral PNZT ceramics were prepared in collaboration with Pl
Ceramic GmbH, Germany. Conventional ceramic processing was followed by angled dicing of
poled blocks to build canted-polarization structures. It was verified with ATILA/GID simulation
that the post-dicing process has a negligible effect on the bulk property. By sputtering electrodes,
ten of each effective ksi-kis and kss-kis structures with canted polarization of 0, 15, 30, 45, 60, 75
and 90 degree angles were produced and analyzed [63].

Although a large change in the piezoelectric loss was observed as a function of the
polarization angle, there are serious problems in the conventional characterization method (IEEE
standard for real parameters and 3dB method for imaginary parameters) obstructing the reliability
of the analysis. The first is a relative error from kss mode structures due to the indirect calculation
and large structural impedance. An approach using effective ks: mode vibration is suggested to
obtain the elastic properties of the kss mode since siif(n/2-y)=sssF(y). The feasibility of
transformation matrix was verified for the elastic loss. As a result, highly reliable characterization

could be made. Another shortcoming comes from the definition of quality factor using the 3dB
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bandwidth as the half-power bandwidth. For the polarization-canted structures, the motional
capacitance is relatively smaller than the standard samples and thus the damped capacitance cannot
be neglected. The motional capacitance in piezoelectric ceramics with largely canted polarization
is relatively smaller than the standard samples and thus damped capacitance cannot be neglected.
Using only the motional part of admittance / impedance circle is suggested by taking quadrantal
frequencies for the half-power bandwidth. The simulated results of ATILA/GID simulation shows
the extraordinary accuracy on loss calculations especially when the electro-mechanical coupling is
small. Thus, the new definition of damping should be used for further research in loss.

Additionally, the shear mode could be separated from spurious modes, forming a clean
half-circle of admittance / impedance with specific angle of polarization. The reason for this
phenomenon is due to the change of effective compliance with polarization angle. Consequently,
the effective shear mode properties could be analyzed without a concern of errors from spurious
modes.

Using the aforementioned solutions, a new methodology to obtain anisotropic piezoelectric
losses was proposed. Three effective ksi-kis structures are essential for the method including
selected angles of polarization for unaffected shear vibration. The proposed method is more reliable
and not less convenient than analyzing the three samples of standard ka1, kss and ks structures. All
independent dielectric, elastic and piezoelectric parameters including si3F and corresponding elastic
loss are obtainable except s12F and tang’1, which are irrelevant to the changes of piezoelectric loss
factors by polarization orientation in polycrystalline samples.

To use the proposed method, the vibration modes were studied with ATILA/GiD FEA and
compared to the measured impedance spectrum to assure that the effective ks and kis vibration
modes are separated from other modes. Although the ki mode and second order ks, mode appears
at a much higher frequency range than fundamental shear mode, an additional coupled sub-mode

of the k; mode and second order ks, mode could be observed above the frequency range of shear
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vibration. Thus, by choosing appropriate dimensions, the vibration mode separation was assured in
all compositions. Consequently, all necessary anisotropic properties could be obtained. It was found
that the anisotropy of piezoelectric loss is largest and elastic loss is the smallest. The dielectric loss
is always smaller in the direction of polarization, regardless of the real parameter. However, the
piezoelectric loss strongly depends on the vibration mode. The piezoelectric loss for the ks; mode
is smallest in tetragonal and largest in rhombohedral PNZT. In contrast, the piezoelectric loss for
kss and kis vibration is smallest in rhombohedral and largest in tetragonal PNZT. From the obtained
anisotropic parameters, the polarization dependence of the loss factors is analyzed for k1, kss and
kis vibration modes. The dielectric loss gradually increases when the polarization is angled with
respect to the applied electric field. The elastic loss is maximum in transverse or longitudinal
vibration mode and minimum in the shear mode when the polarization angle is canted near 45
degrees. More piezoelectric loss was observed when the polarization is canted from the applied
electric field, regardless of the vibration mode. The change of piezoelectric loss was smallest for
the MPB PNZT, which is the most isotropic. It is noteworthy that in the standard vibration modes,
the piezoelectric loss of the MPB PNZT is an interval value of the losses of the tetragonal and
rhombohedral phases. Tetragonal PNZT showed the largest polarization orientation dependence of
the piezoelectric loss for the ks; vibration mode while rhombohedral PNZT showed the largest for
the kis vibration mode.

The extensive loss parameters were calculated depicting the internal state of the material.
Only kz1 and kis vibration modes were studied due to the boundary conditions to utilize the K matrix.
Consequently, a negative extensive piezoelectric loss was discovered in tetragonal PNZT with
strongly angled polarization with respect to the applied field. A schematic diagram of a clockwise
hysteresis loop was shown to understand the negative loss. The negative loss has an important
meaning that the piezoelectric loss does not compensate the elastic and dielectric losses but adds to

the overall electro-mechanical coupling loss. The contribution of extensive dielectric, elastic and
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piezoelectric losses on intensive elastic loss was studied. The extensive piezoelectric loss
compensating or enhancing the intensive elastic loss is observed in tetragonal phase depending on
the polarization orientation. The contribution of each loss factors differ by crystal structure and

polarization orientation provides a scientific vista of loss mechanism.

8.2 Future work

In this dissertation, a methodology to obtain independent material properties were proposed
using the effective ks and kis vibration modes. The effective shear parameters could be analyzed
without concern about the spurious peaks. It could be achieved using a sample with a specific angle
of polarization having resonance or antiresonance frequencies separated from unwanted modes.
However, it solely depends on the measurement on one specific polarization orientation. The
neglected error shown in Table 4.3.2 may result in an inaccurate analysis on the loss parameters in
both k33 and kis modes. Thus, additional samples with different polarization angle are needed.
Another approach to separate the shear mode from the unwanted spurious peaks was indicated in
the work in [86], which proposes to control the ratio of dimensions to improve the electro-
mechanical coupling factor in the shear mode. A dimension optimization was conducted with
changing the dimension ratios using a PZT-5A ceramic. Although the width (refer to Figure 3.1.3)
does not influence the resonance and antiresonance frequencies of the shear mode, a suitable ratio
of width-to-thickness or width-to-length is required to prevent mode coupling between the shear
mode and unwanted modes. Combining the work into this dissertation, more reliable analysis on
the anisotropic properties can be achieved. The width of each orientations with different
polarization-canted angles can be controlled to separate the shear mode from the unwanted modes.
Consequently, the effective shear properties for various polarization orientations could be measured

and the reliability of the data could be improved. As a requisite, the dielectric permittivity should
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be measured to assure consistent poling in different dimensions, especially for the rhombohedral
PNZT which has the large permittivity anisotropy.

It is well known that the dielectric and piezoelectric constant is enhanced near the MPB
due to the high degree of alignment and enhanced polarizability [57]. Using the proposed
methodology in this dissertation, the anisotropic properties of the tetragonal, MPB and
rhombohedral PNZT were obtained. An enhancement of the dielectric and piezoelectric constants
could be observed in the MPB PNZT. However, the dielectric and piezoelectric losses in MPB
PNZT showed an intermediate value between the losses in tetragonal and rhombohedral phases. A
similar phenomenon for the dielectric properties was reported for a PZT ceramic by Takashi
Yamamoto in [87], as shown in Figure 8.2.1. Here, the e33'/eo is the free dielectric permittivity after
poling, & the permittivity before poling, and tano the intensive dielectric loss. The author pointed
out the different coercive field value for the tetragonal and rhombohedral phases. Small coercive
field values result in a more compliant movements of domains by the applied electric field, which
is accompanied by dielectric loss. A hypothesis can be made that the piezoelectric loss near the
MPB is directly related to the content of tetragonal and rhombohedral phases. Additional PNZT
samples with various PZ to PT ratio near MPB can be studied to verify the hypothesis. The intensity
of XRD peaks should be studied to clarify the content of tetragonal and rhombohedral phases. It
is necessary to consider the piezoelectric loss as a function of vibration modes. The changes of
piezoelectric loss with respect to the PZ/PT ratio would be the largest in the ka3 mode as indicated
in Figure 6.3.3. It is also notable that the maximum ds; and ds3 constants are known to occur in

different PZ/PT ratios [88].
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Figure 8.2.1. Compositional dependence of dielectric permittivity and the corresponding loss of a
PZT ceramic reported in [87].

The loss factors analyzed in this dissertation is limited to the low power regime assuming
no heat generation. However, it is essential to know the high-power characteristics to utilize the
resonators in high-power devices such as ultrasonic motors or underwater transducers. It is
challenging to characterize the high-power properties due to the changes in temperature [89].
Recently, a burst methodology was developed by Husain Shekhani et al. to separate the effects of
the temperature rise and characterize the piezoelectric loss as a function of the vibration level [53].
A large excitation voltage is applied to the sample at its resonance frequency for a couple of cycles.
Leaving the sample electrically short- or open-circuited, the oscillation rings down at the resonance
or antiresonance frequencies. The signal decays of the current and vibration velocity can be
measured in the short-circuited condition, which are proportional to each other. The signal decay
of the voltage and vibration amplitude can be measured in the open-circuited condition, which are
proportional to each other. Then, using the rates of signal decay, the loss factors can be analyzed
with respect to the vibration level. Note that the few cycles of excitation doesn’t induce heat
generation in the system, thus the temperature rise can be neglected. Figure 8.2.2 shows the

preliminary results on the Qa of MPB PNZT in effective ks: mode. Similar to the result in section
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6.3, the Qa is minimum (the maximum intensive elastic loss) where the polarization angle is canted
near 45 degrees at the high vibration level. The problem of this method is the large measurement
error in the small vibration level. Thus, the data should be combined with results of the low-power
characterization proposed in this dissertation. In addition, the large burst excitation can incur a
possible change of the remanent polarization. Hence, the effective polarization should be checked
before and after the measurement. The dielectric permittivity can be used for the analysis since it

gradually changes from e33 to e11 depending on the effective polarization.
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Figure 8.2.2. Changes of the effective Qa with respect to the polarization-canted angle and
vibration velocity measured with the burst method.

In Chapter 7, the extensive loss parameters in the effective ks1 mode was calculated using

the K matrix assuming c11°=1/s1:° near resonance frequency. The relation of elastic stiffness and
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elastic compliance in ks is shown in equation 8.2.1. Here, the elastic compliance si» and sz is an

order smaller than s11 and sss. Thus, the reciprocal relation can be assumed in the ks mode.

2
$11533 — S13 1
€11 = ~— (8.2.1)
2 _ o2 +2 2 _ 2 2 S
S$11533 — 512533 $12513 $11513 11

The assumption was validated in [90], [91], with a PIC144 ceramic. A new methodology using a
partially electroded ki1 sample shown in Figure 8.2.3 was suggested to directly measure the
extensive elastic loss in the ks; mode. A small portion of electrode, which is 10% of the total length,
was applied in the center to mechanically actuate the ceramic. ATILA/GiD FEA simulations were
conducted to verify that the partial electrode configuration is tolerably equivalent to the fully non-
electroded condition. Using the sample, the extensive elastic loss could be calculated from the
mechanical quality factor at the antiresonance frequency (1/Qss1=tan¢i1). The results showed good
agreement to the parameters calculated with the K matrix using a standard ks, mode sample. Thus,
the K matrix is applicable in the ks: vibration mode. Due to the boundary condition of the ks mode,
neither intensive nor extensive loss parameters can be directly measured. However, the intensive
loss parameters of the kss mode obtained in this dissertation is independent to the boundary
condition of the standard ks; mode samples. It is notable that equation 8.2.2 could be assumed in

the ksz mode.

S11 + S12 1
Cag = o~ — (8.2.2)
511533 T S12533 — 2S{3  S33
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An analytical review should be made to determine if the K matrix can be utilized to calculate the
fundamental extensive loss parameters of the ks3 mode. If possible, the complete set of extensive

loss behaviors could be analyzed and aid the future study on piezoelectric loss mechanism.

ﬁ
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T

Figure 8.2.3. Partial electrode configurations of a ks; mode sample to directly obtain the extensive
loss parameters.
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Appendix A

Noise treatment for the electrical measurements

The electrical characterization in low power level induces large measurement error. 17
loops of wire was used to measure the small current more accurately. A wire holder is 3D-printed
with nonconductive materials as shown in Figure Al.1 to support the wire loops. The improvements

are shown in Figure A1.2.

Figure ALl 3D-printed wire holder.

< <
E 01 £ 0.1+
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Figure A1.2. Improved current signal with the wire loops.

The measurement interval for effective ks mode and effective kis mode was set to 1Hz and
10Hz, respectively. Figure A1.3 shows an example of the VBA code to determine the resonance
frequency and the corresponding half-power bandwidth. Cell G and H are filled with Conductance

and Susceptance, respectively.
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Figure A1.3. Part of VBA code used to calculate the quality factors.
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Appendix B

Electro-mechanical coupling loss

Although the electro-mechanical coupling loss has not been introduced, there could be a
possibility to consider it as the origin of losses in piezoelectricity. The electro-mechanical coupling
loss is expressed with extensive loss parameters in equation 7.3.1. However, using equation 1.1.6,

the coupling loss can be also introduced with the intensive loss parameters as:

k' 2tanf’ —tand’ — tang’
k' 2

(A2.1)

Figure A2.1is the polar plot of the coupling loss in effective ks1 mode, showing the possible

relation with crystal anisotropy.
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Figure A2.1. Electro-mechanical coupling loss in effective ks mode.
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