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Abstract

We have witnessed rapid emergence of cyber-physical systems (CPS), which in-
tegrate control systems with advanced technologies of sensing, computation and
communication. Many CPS consist of a population of agents which operate in het-
erogeneous spatial and temporal scales, and interact with one another in various
ways. Thus, it is mandatory to develop practical distributed control methodolo-
gies for agents, which provide autonomous decision making given local information,
while guaranteeing satisfactory network-wide performance. This dissertation con-
tributes to the broad field of distributed control of CPS and investigates three
emerging problems: cyber-physical security, cyber-physical economics, and smart
grid.

Cyber-physical security. CPS inherit the vulnerabilities of Information and
Communications Technology (ICT) systems to cyber-attacks. Attackers can by-
pass existing cyber defenses and cause irreparable damage to the physical world.
We study two specific problems: attack-resilient estimation and attack-resilient
machine learning. In the attack-resilient estimation, we consider the scenario that
switched nonlinear stochastic systems are threatened by both of signal attacks and
switching attacks. The attack-resilient estimation problem is formulated as the
simultaneous estimation of states, attack vectors and hidden modes. We propose
a multi-mode algorithm where each mode is associated with an estimator and the
most likely mode is chosen to generate the estimates of system states and attacker
vectors. It is formally proven that the estimation errors of states and attack vectors
of the true mode satisfy Practically Exponentially Stable in probability (PESp) like
properties, when the hidden mode is fixed but remains unknown. Lastly, the devel-
oped theory is validated by numerical simulations on power systems and real-world
experiments on mobile robots and connected vehicles.

In the attack-resilient machine learning, we aim to learn the system function of
a nonlinear stochastic system subject to signal injection attacks. The problem is
formulated as to estimate state and attack vectors as well as the unknown system
function. In the proposed algorithm, Gaussian process regression (GPR) is utilized
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to learn the system function using estimated states and attack vectors. The func-
tion estimates are then used to generate the estimates of state and attack vectors
using input and state estimation technique. We show that the estimation errors of
states and attack vectors satisfy PESp-like property, average case learning errors of
the function approximation are diminishing if the number of state estimates whose
estimation errors are non-zero is bounded. The developed algorithm is applied to
power systems to demonstrate its performance.

Cyber-physical economics. In some CPS, agents act to maximize their own in-
terests. It is interesting to bridge the gap between social welfare and individual
interests. We propose a bi-level lottery, where a social planner at the high level
announces a reward and, sequentially, agents at the low level jointly find a Nash
equilibrium in response to the reward. We introduce user’s heterogeneity parame-
ter and social planner’s perturbation parameter, and formulate an optimal bi-level
lottery design problem where the Nash equilibrium of the lottery game is coin-
cident with the socially optimal payoff or a greater payoff with least reward and
perturbations. Through the analytical results on Nash equilibrium, we derive a
convex approximation of the optimal bi-level lottery design problem, and identify
that the approximation is exact under mild sufficient conditions. We verify the
results via a case study on demand response in smart grid.

Smart grid. We investigate distributed frequency control of multi-machine
power systems with unknown net loads. Proposed distributed frequency controllers
leverage synchronous generators and demand response to handle fast changing and
hard-to-predict net loads. In particular, local (adaptive) internal models recon-
struct net loads, and reconstructed signals are assigned to synchronous generators
and demand response to track or filter. We show that the system states are asymp-
totically convergent to the desired signals. Numerical simulations on the IEEE 68-
bus test system as well as the Minni-WECC system demonstrate the effectiveness
of the controllers and performance under a three-phase fault and load-switching
during light/peak loads.
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Chapter 1 |
Introduction

We have witnessed rapid emergence of cyber-physical systems (CPS), which in-
tegrate control systems with advanced technologies of sensing, computation and
communication. CPS are uniquely featured by the strong coupling between the
physical world and the cyber space. Such strong coupling enables highly dis-
tributed, complex and collaborative applications such as smart grid, self-driving
cars, intelligent transportation systems, smart and connected communities and so
on. The significance of CPS is emphasized in a report to President Obama [4].
Moreover, the US National Science Foundation (NSF) determines CPS as a key
research area. We have experienced substantial progress in advancement of CPS
technologies. This satisfies the continuously growing demands for specifications,
and induces a driving force for a set of applications. There, however, is a lack of sci-
entific and mathematical methodologies to control and optimize CPS, preventing
efficient and effective management and realization of the projected applications.
Thus, the opportunities for CPS are far-reaching and many challenges remain un-
solved.

Distributed control is essential for many CPS. In particular, many CPS consist
of a population of agents which operate in heterogeneous spatial and temporal
scales, and interact with one another in various ways. Hence, it is mandatory
to develop practical distributed control methodologies for agents, which provide
autonomous decision-making given local information, while guaranteeing satisfac-
tory network-wide performance. Distributed control has several advantages over
the traditional centralized control methodology. First of all, it requires only local
information obtained by communicating with neighboring agents. This feature en-
hances scalability to large-scale networked systems, and reduces the needs of com-
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municational bandwidths. Secondly, decision-making and control are performed
locally without any centralized coordination. As a consequence, computational
burden is shared by multiple agents, and the systems are robust to failures of
individual agents. The development of distributed control methodologies faces
significant challenges as well. Firstly, CPS embed inherent complexities. In par-
ticular, CPS are composed of a huge number of agents who may have limited
knowledge about global networks, although the agents’ dynamics are coupled with
others via physical and cyber layers. Even more, the agents may be heteroge-
neous and seek subobjectives which may not be aligned with network-wide goals.
Secondly, CPS operate in dynamic, uncertain and even hostile environments. En-
vironmental complexities could significantly degrade system performance and even
cause mission failures. Distributed control of CPS has been receiving substantial
attention [5–8]. Fundamental issues include consensus [9], distributed optimiza-
tion [10, 11] and game-theoretic learning [12, 13]. Fundamental theory has been
applied to power systems [14, 15], mobile robotic networks [16–18], sensor net-
works [19,20], smart buildings [21], etc. This dissertation contributes to this broad
research area. In particular, we focus on three emerging problems: cyber-physical
security, cyber-physical economics and smart grid.

1.1 Cyber-physical security
Cyber-physical systems (CPS) are emerging with the integration of traditional
Information and Communications Technology (ICT) systems with physical com-
ponents. Inherent vulnerabilities of ICT systems subject to cyber-attacks impose
significant security risks on CPS. Therefore, it becomes a top-priority issue to pro-
tect CPS from cyber-attacks. In the security community, there have been abundant
research on security of ICT systems. Based on the audit sources, traditional in-
trusion detection systems (IDS) can be categorized into two classes: host-based
and network-based. Host-based IDS monitor [22, 23] in-and-out data packets and
system files of a single host. Network-based IDS [24–26] check network traffic of a
strategic point in the network. Since ICT systems are a part of CPS, traditional
security techniques are necessary. However, they are not sufficient because they do
not take into account physical systems of CPS. For example, traditional IDS for
ICT systems monitor cyber-space misbehaviors only. Attacks launched through
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physical channels do not trigger abnormal cyberspace behavior, and thus do not
raise any alarm. Furthermore, traditional IDS usually require information of attack
types and channels, which is difficult to obtain in advance, especially for zero-day
attacks. New methodologies are needed to complement existing solutions for ICT
systems. In CPS, regardless of the attack types and channels, the attacker targets
physical systems and aims to abort the missions of physical systems or produce
damage on them. In this case, the attacks can always be considered as external
disturbances (or uncertainties) on physical systems. Control theory has a long
history to deal with uncertainties such as robust control [27], adaptive control [28],
stochastic control [29], etc. These control-theoretic methodologies provide valuable
insights to ensure CPS security.

1.1.1 Attack-resilient estimation

Literature review. In CPS security, one research direction is to identify fun-
damental limitations of attack detectors. Paper [30] shows that sensor attacks
against state estimation in electric power grids are able to induce arbitrary esti-
mation errors, if injected signals are in the column space of the output matrix.
It is shown in [31] that, for linear descriptor systems, signal injection attacks are
not detectable if and only if attack signals excite zero dynamics. Another research
direction is to design attack detectors against signal attacks and switching attacks.
Papers [31, 32] formulate attack detection problems as `0/`∞ optimization prob-
lems. The problems, however, are non-convex and NP-hard in general [31]. To
overcome the computational complexity, paper [32] proposes convex relaxations of
the optimization problems. Paper [33] studies robustness of state estimator based
on `0 optimization with respect to modeling errors (sampling, computation/actu-
ation jitter, and synchronization). The Kalman filter is adopted in [34] to conduct
attack-resilient state estimation in the presence of stochastic noises. A multi-modal
Luenberger observer is designed in [35], where its memory usage increases linearly
with the number of states and outputs. All aforementioned papers are limited to
linear systems.

Contributions. In Chapter 2, we consider the scenario that switched non-
linear stochastic systems are threatened by both of signal attacks and switching
attacks. The attack-resilient estimation problem is formulated as the simultaneous
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estimation of states, attack vectors and hidden modes. We propose a multi-mode
algorithm to solve the problem, where the algorithm associates an estimator to
each mode and the estimators share the same structure. Each estimator calculates
the estimates of states and attack vectors, recursively. The differences between ob-
tained outputs and predicted outputs represent mode probabilities, and the mode
estimator selects the most likely one. It is formally proven that the estimation er-
rors of states and attack vectors of the true mode satisfy Practically Exponentially
Stable in probability (PESp) like properties, when the hidden mode is fixed but
remains unknown. Furthermore, we discuss a mode reduction method to reduce
the computational complexity for switched linear stochastic systems, remaining
the minimal number of modes to maintain the same detection capabilities as the
power set. Towards our best knowledge, this is the first time that systematically
studies unknown input, state, and mode estimation of switched nonlinear stochas-
tic systems. In Chapter 3, we conduct numerical simulations on the IEEE 68-bus
test system to demonstrate the effectiveness of the proposed algorithm on time-
varying modes with a regular mode set and a reduced mode set. We also conduct
real world experiments on mobile robots to show the performance of the proposed
estimator. Lastly, we extend the results to distributed settings and conduct ex-
periments on urban connected vehicles, where the vehicles collaboratively detect
attacks.

1.1.2 Attack-resilient machine learning

Literature review. Attack-resilient machine learning is closely related to ma-
chine learning in the presence of training data errors. Different from our goal,
related works (fault tolerant learning [37, 38], and adversarial learning [39, 40])
study probably approximately correct (PAC) learning in the presence of (mali-
cious) noises. It has been shown in [37] that the random classification noise model
is PAC-learnable. Robustness of PAC-learning algorithms is studied in [38]. The
paper also shows that there is no tolerant algorithm in the presence of random at-
tribute noises. Adversarial learning [39,40] studies worst-case error and robustness
of learning algorithms when the attacker can choose a fixed random probability of
errors. Since the papers focus on learning algorithms tolerating (malicious) errors
rather than rejecting the effect of attacks, the performance of the machine learning
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algorithms degrades in the presence of attacks.
Attack-resilient machine learning is also related to data-driven estimation of

unknown dynamic systems using Gaussian process regression (GPR). GPR has
been combined with extended Kalman filter [41], unscented Kalman filter [41,42],
and Cubature Kalman filter [43] to overcome a lack of knowledge of dynamic
systems. However, no existing techniques can perform attack-resilient estimation
or handle actuator attacks. No theoretic guarantee is provided in this set of papers.

Contributions. In Chapter 4, we consider to learn the system function of a
partially unknown stochastic nonlinear system subject to signal injection attacks.
The problem is formulated as a joint estimation of state, attack vectors, and sys-
tem function estimation problem. We propose an algorithm which overcomes the
limitation on knowledge of the system function by fusing Gaussian process regres-
sion with unknown input and state estimation technique. The system function is
learned by GPR using estimated states and outputs. Then, the function estimates
are incorporated to input and state estimation technique to obtain the estimates
of state and attack vectors. It is formally proven that estimation errors of system
states and attack vectors satisfy PESp-like property, and average case learning
errors of system function approximation are diminishing if the number of state
estimates whose estimation errors are non-zero is bounded. Numerical simulations
on power systems show the effectiveness of the proposed algorithm.

The results of Chapters 2, 3 and 4 are based on the following publications.

(JP-1) H. Kim, P. Guo, M. Zhu, and P. Liu, Attack-resilient Estimation of Switched
Nonlinear Stochastic Cyber-Physical Systems. In Automatica, Submitted

(CP-1) H. Kim, P. Guo, M. Zhu, and P. Liu, Attack-resilient Machine Learning of
Dynamic Systems using Gaussian Process Regression. In the 2019 American
Control Conference, In preparation.

(CP-2) P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu. RoboADS: Anomaly
Detection against Sensor and Actuator Misbehaviors in Mobile Robots. In
2018 IEEE/IFIP International Conference on Dependable Systems and Net-
works, pages 574-585, 2018.

(CP-3) P. Guo, H. Kim, M. Zhu, and P. Liu. VCIDS: Collaborative Intrusion
Detection of Sensor and Actuator Attacks on Connected Vehicles. In 13th
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International Conference on Security and Privacy in Communication Net-
works, pages 377-396, 2017.

(CP-4) H. Kim, P. Guo, M. Zhu, and P. Liu, Attack-resilient Estimation of Switched
Nonlinear Cyber-Physical Systems. In the 2017 American Control Confer-
ence, pages 4328-4333, 2017.

1.2 Cyber-physical economics
In many practical scenarios, control authorities in CPS are non-cooperative and
seek for heterogeneous (or even conflicting) subobjectives. For example, power con-
sumers compete over limited power generations, and Internet users share network
bandwidths. This leads to competitions over limited resources and the degradation
of network-wide performance. It is vital to eliminate the gaps between individual
interests and network-wide goals such that the networked system can operate at
an optimal level.

Literature review. To address the above issue, a common practice is to
adopt methodologies in microeconomics and design mechanisms to align agents’
preferences via side payments/pricing with social welfare. In an auction, bidders
submit bids of the items, and an auctioneer sequentially determines item price and
allocation. Vickrey-Clarke-Groves (VCG) auction [44–46] is the most well-known
mechanism, and it has been shown that VCG is efficient and incentive compati-
ble [47, 48]. Contract theory [49] is another type and has purpose of construction
of a contract in the presence of asymmetric information of the agents. Contract
theory has three types of models; i.e., moral hazard [50] (hidden information after
the contract), adverse selection [51] (hidden information before the contract), and
signaling [52] (some credential information provided by the agents). Optimal tax-
ation [53] and trading [54] are other classes of mechanism design. Incentive design
has two dynamic extensions. Algorithmic mechanism design is directed incentive
design where principal incentivizes agents to follow specified algorithms or solve
computation problems [55–57]. Incentive control is indirected where agents’ choses
are affected by rewards/prices determined by principal [58, 59].

Contributions. In some CPS, agents act to maximize their own interests. It
is interesting to bridge the gap between social welfare and individual interests. In
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Chapter 5, we propose a bi-level lottery, where a social planner at the high level
announces a reward and, sequentially, agents at the low level jointly find a Nash
equilibrium in response to the reward. It has been known that competitions among
the agents results in efficiency losses in current lottery schemes, and social optimum
is coincident with Nash equilibrium only when an infinite reward is given [60]. To
mitigate the issue, we introduce user’s heterogeneity parameter and social planner’s
perturbation parameter, and formulate an optimal bi-level lottery design problem
where the Nash equilibrium of the lottery game is coincident with the socially
optimal payoff or a greater payoff with least reward and perturbations. We formally
analyze the properties of low-level Nash equilibrium, the price of anarchy, and the
behavior of public goods and Nash equilibrium with respect to the reward and
perturbations. Through the analytical results, we derive a convex approximation
of the optimal bi-level lottery design problem, and identify that the approximation
is exact under mild sufficient conditions. We verify the results via a case study on
demand response in smart grid.

The results of Chapter 5 are based on the following publications.

(JP-2) H. Kim and M. Zhu. Optimal Bi-level Lottery Design for Multi-agent Net-
works. In Automatica, Submitted.

(CP-5) H. Kim and M. Zhu. Optimal Incentive Design for Distributed Stabilizing
Control of Nonlinear Dynamic Networks. In IEEE Conference on Decision
and Control, pages 2289-2294, 2015.

1.3 Smart grid
Smart grid is an important application of CPS. Centralized generating facilities
are being distributed integrating small energy resources; e.g., photovoltaic sys-
tems, fuel cells, storage and electric vehicles. This tendency is likely to accelerate.
Worldwide 144 countries now have their own political targets for increasing shares
of renewable energy generations and especially European Union targets 20% of
renewable energy shares by 2020 [61]. Integrating new technologies to power grid
allows a more flexible and efficient management. However, renewable generation
as well as other small energy resources are hard to predict, and an increasing pro-
liferation imposes significant challenges to the operation and management of the
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power grid. It becomes imperative to maintain grid stability and reliability despite
the disturbances induced by renewable generation.

Literature review. There are many efforts made to control of the power grid
under a variety of external disturbances. Representative techniques include Riccati
equation [62], and H2/H∞ control [63, 64]. This set of papers aims to attenuate
external disturbance; i.e., the impacts of external disturbances are reduced but not
completely eliminated. On the other hand, disturbance rejection instead pursues to
completely eliminate external disturbances and recover perfect stability. There are
limited literature on disturbance rejection. Paper [65] develops distributed internal
model controllers to ensure optimal frequency synchronization despite uncertain
and time-varying loads.

Contributions. In Chapter 6, we study the frequency control of multi-machine
power systems subject to uncertain and dynamic net loads, where the net loads con-
tains power loads and renewable generation. Under the assumption that each net
load consists of a set of sinusoidal functions, we design distributed controllers for
the following two cases: (1) robust adaptive frequency control, where the frequencies
of net loads are unknown; (2) robust frequency control, where the frequencies of net
loads are known, with general dynamic systems. The proposed controllers recon-
struct unknown disturbance signals using internal model, and utilize synchronous
generators and demand response to filter them out. We formally show the sta-
bility of frequency via Lyapunov analysis and conduct numerical simulations on
the IEEE 68-bus power system and Minni-WECC system. To our best knowledge,
it is the first time to study distributed adaptive internal model control to handle
external disturbances with unknown frequencies. As a byproduct of the analysis,
we develop a new distributed constrained small-gain theorem, which is interesting
on its own.

The results of Chapter 6 are based on the following publications.

(JP-3) H. Kim, M. Zhu, and J. Lian. Distributed Robust Adaptive Frequency
Control of Power Systems with Dynamic Loads. In IEEE Transactions on
Automatic Control, provisionally accepted.

(CP-6) H. Kim and M. Zhu. Distributed Robust Frequency Regulation of Smart
Power Grid with Renewable Integration. In American Control Conference,
pages 2347-2352, 2015.
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Chapter 2 |
Cyber-physical security: Attack-
resilient estimation (Theory)

2.1 Introduction
Cyber-Physical Systems (CPS) are systems which integrate control systems with
advanced technologies of sensing, computation and communication. Security is
of vital importance for CPS. Especially, because of the couplings between the
cyber layer and physical layer, CPS bear vulnerabilities to cyberattacks which
may cause irreparable damage to the physical layer [66]. For example, a natural
gas flow control system in Russia was temporarily seized in 2000 and a sewage
control system in Australia was attacked in the same year [67]. According to early
studies on CPS security, the types of possible attacks on CPS can be categorized
into signal attacks and switching attacks. Signal attacks include sensor attacks
which tamper with sensor readings and actuator attacks which tamper with control
commands. While signal attacks modify the magnitudes or timings [68, 69] of
signals, switching attacks alter system structures [36, 70]. The attacks can be
launched via communication jamming and malware; e.g., Trojan.

As discussed in Chapter 1, control-theoretic approaches to CPS security attract
lots of attention. Papers [30,33–35] handle sensor attacks only, and papers [31,32]
handle both sensor and actuator attacks. Recent paper [36] designs an attack-
resilient estimator for stochastic linear systems when there are sensor attacks,
actuator attacks, and switching attacks. All aforementioned papers are limited to
linear systems.
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Our attack-resilient estimator design method is based on simultaneous unknown
Input and State Estimation (ISE). Early research of this area focuses on state es-
timation without estimating unknown inputs [71, 72]. Unbiased and minimum
variance unknown input and state estimators are designed for linear systems with-
out direct feedthrough matrix [73] and with full-column rank direct feedthrough
matrix [74,75], and with rank-deficient direct feedthrough matrix [76]. Noticeably,
this set of papers is restricted to linear systems.

Chapter organization. A motivating example of CPS model and attack
model is introduced in Section 2.2. Section 2.3 introduces system model, attack
model and defender’s knowledge. Moreover, the state, attack vector, and mode
estimation problem is formulated in the same section. We propose Nonlinear un-
known Input, State and Mode Estimator (NISME) to solve the estimation problem
in Section 2.4. The stability of the proposed estimator is formally analyzed in Sec-
tion 2.5. Section 2.6 discusses justifications of the assumptions, connections to
existing works, and a way to reduce computational complexity caused by unknown
signal attack locations, for switched stochastic linear systems.

Notations. Given a vector ak, we use âk and ãk to denote an estimate of ak and
induced estimation error ãk = ak − âk, respectively. Its error covariance is defined
by P a

k , E[ãkãTk ], and cross error covariance with bk is P ab
k , E[ãkb̃Tk ] = (P ba

k )T .
We use the following definition for filter stability of nonlinear systems.

Definition 2.1.1 Stochastic process x(t) is said to be Practically Exponentially
Stable in probability (PESp) if for any γ ∈ (0, 1), there exist positive constants α,
b, c, and δ such that, for any ‖x(0)‖ ≤ δ, the following holds for all t ≥ 0:

P (‖x(t)‖ < αe−bt‖x(0)‖+ c) ≥ 1− γ.

PESp is a special case of stochastic input-to-state stability [77] when input is
absent and class KL function is exponential in t and linear in ‖x(0)‖. In addition,
PESp is also extended from global asymptotic stability in probability (Definition
3.1 in [78]). Notice that the stability notions in [77, 78] are global and PESp is
local.

As for linear systems, one of the sufficient conditions for filter stability is uni-
form observability.

Definition 2.1.2 [79] The pair (Ck, Ak) is uniformly observable if and only if

10



there exist positive constants a, b, l, for all k ≥ 0, such that, for all k ≥ 0, aI ≤
Mk+l,k ≤ bI where Mk+l,k ,

∑k+l
i=k Φi,kCiC

T
i ΦT

i,k is the observability gramian and
Φk1,k0 is the state transition matrix.

Uniform observability reduces to observability if the linear system is time-invariant.

2.2 Motivating example
A power network is represented by undirected graph (V , E) with the set of buses
V , {1, · · · , N} and the set of transmission lines E ⊆ V×V . The set of neighboring
buses of i ∈ V is Si , {l ∈ V \ {i}|(i, l) ∈ E}. Each bus is either a generator bus
i ∈ G, or a load bus i ∈ L. The dynamic of bus i with attacks is described as the
following switched nonlinear system:

θ̇i(t) = fi(t) + w1,i(t)

ḟi(t) = − 1
mi

(
Difi(t) +

∑
l∈Si

P
jil(t)
il (t)− (PMi

(t) + da,i(t)) + PLi(t)
)

+ w2,i(t) (2.1)

with the output model

yi,k = [Peleci,k, θi,k, fi,k]T + ds,i,k + vi,k (2.2)

adopted from Chapter 9 in [80] adding a phase angle measurement as [81, 82].
System states θi(t), fi(t) are phase angle and angular frequency, respectively. Mode
index jil(t) ∈ {0, 1} represents on/off of the power line connection between buses
i and l; i.e., power flow is P 1

il(t) = −P 1
li(t) = til sin(θi(t) − θl(t)), and P 0

il(t) =
−P 0

li(t) = 0. The values PLi(t), and Peleci(t) = PLi(t) + Difi(t) denote power
demand, and electrical power output, respectively. Since power demand PLi(t)
can be obtained by many load forecasting methods [83, 84], it is assumed to be
known.

Mechanical power PMi
(t) is the control input for i ∈ G and is assumed to

be zero at load bus i ∈ L. Power demand can be divided into elastic demand
PE
Li

(t) and inelastic demand P IE
Li

(t) as shown in [85]; i.e., PLi(t) = PE
Li

(t) +P IE
Li

(t).
Elastic demand PE

Li
(t) can be controlled via power pricing. Since we assume that

the current load is known, we simplify that load bus i ∈ L uses PLi(t) as load
controller.
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The measurements are sampled at discrete instants due to hardware constraints.
We use subscript k ∈ Z≥0 to denote an instantaneous value at the discrete sampling
time tk; e.g., fi(tk) = fi,k.

An attacker is assumed to be able to modify the sensor measurements, control
commands, and trigger the power flow line switches. The possible attacks are mod-
eled as vectors ds,i,k ∈ R, da,i(t) ∈ R, and hidden mode switch jil(t) which represent
sensor attacks [31,34], actuator attacks [31,32,69], and circuit breaking/switching
attacks [36,70], respectively.

2.3 Problem formulation
System model. Consider the hidden-mode nonlinear stochastic system

ẋ(t) = f ′(x(t), u(t) + da(t), w′(t), j(t), t), x(t) ∈ Cj(t)

(x(t), j(t))+ = Ω′(x(t), j(t)), x(t) ∈ Dj(t)

yk = h(xk, uk + da,k, v
′
k, jk, tk) + ds,k (2.3)

where x(t) ∈ Rn, yk ∈ Rm, u(t) ∈ Rs, and j(t) ∈MI are state, output, input, and
hidden-mode, respectively. We use subscript k ∈ Z≥0 to denote an instantaneous
value at the discrete sampling time tk. Vectors da(t) ∈ Rs, and ds,k ∈ Rm are
actuator attack vector and sensor attack vector, respectively. Sets Cj(t), Dj(t) ⊆ Rn

denote flow set and jump set, respectively, and Ω is a mode transition function.
For each mode, process noise w′(t) ∈ Rs1 and measurement noise v′k ∈ Rs2 are
uncorrelated with each other. The system is a continuous-discrete system because,
while the physical dynamic evolves in continuous time, sensor measurements are
obtained at their corresponding sampling instants due to hardware constraints.
We define a uniform sampling period as ε = tk − tk−1. It is assumed that the
system (2.3) has a unique solution. One of the sufficient condition for the unique
solution is weak one-sided local Lipschitz condition on function f ′(·) in the open
time interval of each mode duration [86] and other conditions can be found in the
references therein. The system model (2.3) includes the power system model (2.1)
with (2.2) as a special case.

Attack model. Signal attacks are comprised of signal magnitude attacks (i.e.,
the attacker injects attack signals), and signal location attacks (i.e., the attacker
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chooses targeted sensors/actuators). Signal attacks are modeled by da(t) and ds,k
where zero values indicate that the corresponding actuators and sensors are free
of attacks and non-zero values represent attack magnitudes. Switching attacks
change system modes following Ω′.

Knowledge of the defender. The defender is unaware of which actua-
tors/sensors are under attacks and what the current mode is. The defender knows
dynamic system model and output model (2.4) for each mode but not the mode
transition function Ω′. Mode set MI is also known to the defender. The attack
vectors da(t), ds,k, mode j(t) and its transitions are inaccessible to the defender.
Noise vectors w′(t), v′k are unknown but their auto covariance matrices are known.

Objective. The defender aims to answer the following three questions:
(a) if any sensor, actuator, or switch is attacked;
(b) if so, which ones are attacked, and how much sensor readings and control
commands are tampered with;
(c) what current system states and mode are.
The above problem can be formulated as a joint estimation of states, attack vectors
and modes of hidden-mode switched systems (2.3).

2.4 Estimator design
In order to reflect real world, system (2.3) models the attacks from the attacker’s
point of view and captures attack sources. In order to solve the estimation problem,
we need to model the attacks from the defender’s point of view and captures attack
consequences. In particular, we rewrite system (2.3) as follows:

ẋ(t) = f(x(t), u(t), d(t), w′(t), j(t), t), x(t) ∈ Cj(t)

(x(t), j(t))+ = Ω(x(t), j(t)), x(t) ∈ Dj(t)

yk = h(xk, uk, v′k, jk, tk) +Hjkdk (2.4)

where d(t) = [dTa (t), d′Ts (t)]T ∈ Rs+m, d′s,k = h(xk, uk + da,k, v
′
k, jk, tk)−h(xk, uk, v′k,

jk, tk)+ds,k, f(x(t), u(t), d(t), w′(t), j(t), t) = f ′(x(t), u(t)+Sj(t)d(t), w′(t), j(t), t),
Sj(t) = [Kj(t)

S , 0s×m] ∈ {0, 1}s×(s+m) and Hjk = [0m×s, Kjk
H ] ∈ {0, 1}m×(s+m). The
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defender models the signal location attacks as mode j(t) of diagonal matrix

Kj ,

 Sj

Hj

 =
 Kj

S 0s×m

0m×s Kj
H

 ∈ {0, 1}(s+m)×(s+m)

where Kj(i, i) = 1 if mode j assumes that the ith location is under attack; other-
wise, Kj(i, i) = 0. Thus, j(t) ∈M = MA ×MI stands for the both signal location
attacks MA and switching attacks MI .

Remark 2.4.1 we will consider arbitrary Kj ∈ R(s+m)×(s+m) in the remaining of
this section and Sections 2.5, for the sake of generality. �

To solve the problem, we propose Nonlinear unknown Input, State and Mode Es-
timator (NISME). The NISME consists of a bank of Nonlinear unknown Input
and State estimators (NISE) and a mode estimator as shown in Figure 2.1. Each

Figure 2.1: Scheme of NISME.

NISE is associated with a particular mode and recursively estimates the states and
attack vectors under the fixed mode. The mode estimator calculates the posteriori
probabilities of the modes by observing output discrepancies from predicted out-
puts, and chooses the most likely one. Lastly, the NISME outputs the estimates
of the states and the attack vectors of the selected mode.

We first introduce some preliminaries for the NISE in Section 2.4.1. The NISME
is presented in Section 2.4.2.
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2.4.1 Preliminaries

In this section, we introduce an output decomposition used in the NISE. Since
each NISE is associated with a particular mode, we omit the mode index j(t) for
notational simplicity.

We first discretize and linearize system (2.4) as follows with constant sampling
period ε:

xk+1 = xk + εf(xk, uk, dk, w′k, tk) + ερk

' xk + ε(Akxk +Bkuk +Gkdk + ρk + wk)

yk ' Ckxk +Dkuk +Hdk + vk (2.5)

where ερk ,
∫ tk+1
tk f(x(τ), u(τ), d(τ), w′(τ), τ)dτ−εf(xk, uk, dk, w′k, tk) refers to dis-

cretization error, and wk = Jkw
′
k, vk = Ekv

′
k,

Ak ,
∂fk
∂x

∣∣∣
x̂k|k,uk,d̂k,0,tk

, Bk ,
∂fk
∂u

∣∣∣
x̂k|k,uk,d̂k,0,tk

,

Gk ,
∂fk
∂d

∣∣∣
x̂k|k,uk,d̂k,0,tk

, Jk ,
∂fk
∂w′

∣∣∣
x̂k|k,uk,d̂k,0,tk

,

Ck ,
∂hk
∂x

∣∣∣
x̂k|k−1,uk,0,tk

, Dk ,
∂hk
∂u

∣∣∣
x̂k|k−1,uk,0,tk

,

Ek ,
∂hk
∂v′

∣∣∣
x̂k|k−1,uk,0,tk

.

We define the autocovariance matrices for noise vectors as E[wkwTk ] = Qk ≥ 0, and
E[vkvTk ] = Rk > 0.

Now we introduce two coordinate transformations. The first one is based on
the singular value decomposition

H =
[
U1 U2

]  Σ 0
0 0

 V T
1

V T
2


where Σ is a full rank diagonal matrix. The first coordinate transformation Tk is
defined by

Tk =
 T1,k

T2

 =
 I −UT

1 RkU2(UT
2 RkU2)−1

0 I

 UT
1

UT
2

 . (2.6)
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Likewise, the singular value decomposition

T2CkGk−1V2 =
[
Ū1,k Ū2,k

]  Σ̄k 0
0 0

 V̄ T
1,k

V̄ T
2,k


with full-rank diagonal matrix Σ̄k induces the second coordinate transformation

T̄k = [T̄ T1,k, T̄ T2,k]T =
 I −ŪT

1,kR̄kŪ2,k(ŪT
2,kR̄kŪ2,k)−1

0 I

  ŪT
1,k

ŪT
2,k

 (2.7)

where R̄k , T2RkT
T
2 . From coordinate transformations (2.6) and (2.7), the output

yk in (2.5) can be decomposed as follows:

y1,k = T1,kyk ' C1,kxk +D1,kuk +H1d1,k + v1,k

y2,k = T̄1,kT2yk ' C2,kxk +D2,kuk + v2,k

' C2,k(xk−1 + ε(Ak−1xk−1 +Bk−1uk−1 +Gk−1dk−1 + wk−1)) +D2,kuk + v2,k

y3,k = T̄2,kT2yk ' C3,kxk +D3,kuk + v3,k (2.8)

where H1,k = Σk and C2,kGk−1V2,k−1V̄1,k = Σ̄k. Note that d1,k and d2,k are different
from d′s,k and da,k, and introduced for the purpose of analysis. Attack vector
dk is decomposed into a sum of d1,k , V T

1,kdk, d2,k , V̄ T
1,k+1V

T
2,kdk and d3,k ,

V̄ T
2,k+1V

T
2,kdk where they are orthogonal to each other. In this case, it holds that

Gkdk = G1,kd1,k + G2,kd2,k + G3,kd3,k with G1,k , GkV1,k, G2,k , GkV2,kV̄1,k+1 and
G3,k , GkV2,kV̄2,k+1.

Output y1,k is the portion of yk which is attacked at k; i.e., y1,k includes d1,k

in (2.8). Outputs y2,k and y3,k are the portions of yk and are free of attacks at
k, where output y2,k reflects d2,k indirectly because C2,kGk−1dk−1 = Σ̄. Thus,
decomposed outputs y1,k, y2,k, and y3,k are used to estimate d1,k, d2,k−1, and xk,
respectively.

Because d2,k−1 is not measured by yk−1, output y2,k = C2,kG2,k−1d2,k−1 + ...

in (2.8) is instead used to estimate d2,k−1; i.e., matrices C2,k and G2,k−1 must be
known to estimate attack vector d2,k−1. However, in (2.5), matrixG2,k−1 is obtained
by linearizing f(·) using d̂2,k−1, and matrix Ck is obtained by linearizing h(·) using
x̂k|k−1, where these linearizations cannot be done without knowing d̂2,k−1. Thus,
we impose the following assumption on system (2.3) and its justification is given
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in Section 2.6.

Assumption 2.4.1 Dynamic system model (2.4) can be expressed as

ẋ(t) = f(x(t), u(t), d1(t), w′(t), t) +G2(t)d2(t)

y1,k = T1,kyk = h1(xk, uk, v′1,k, tk) +H1d1,k

y2,k = T̄1,kT2,kyk = C2,kxk + h2(uk, v′2,k, tk)

y3,k = T̄2,kT2,kyk = h3(xk, uk, v′3,k, tk) (2.9)

where dim(d3,k) = 0.

With Assumption 2.4.1, the dynamic system (2.5) becomes

xk+1 = xk + εf(xk, uk, d1,k, w
′
k, tk) + εG2,kd2,k + ερk

' xk + ε(Akxk +Bkuk +G1,kd1,k +G2,kd2,k + ρk + wk) (2.10)

where matrices Ak, Bk, G1,k, and Jk can be obtained before having an estimate
for d2,k. Output equation (2.9) is linearized into (2.8) where noises v1,k = E1,kv

′
1,k,

v2,k = E2,kv
′
2,k, v3,k = E3,kv

′
3,k are uncorrelated with each other and

C1,k ,
∂h1,k

∂x

∣∣∣
x̂k|k−1,uk,0,tk

, C3,k ,
∂h3,k

∂x

∣∣∣
x̂k|k−1,uk,0,tk

,

D1,k ,
∂h1,k

∂u

∣∣∣
x̂k|k−1,uk,0,tk

, D2,k ,
∂h2,k

∂u

∣∣∣
uk,0,tk

,

D3,k ,
∂h3,k

∂u

∣∣∣
x̂k|k−1,uk,0,tk

, E1,k ,
∂h1,k

∂v′1

∣∣∣
x̂k|k−1,uk,0,tk

,

E2,k ,
∂h2,k

∂v′2

∣∣∣
uk,0,tk

, E3,k ,
∂h3,k

∂v′3

∣∣∣
x̂k|k−1,uk,0,tk

.

2.4.2 Algorithm statement

Consider the NISE (Algorithm 1) as well as Figure 2.2 whose derivation is presented
in Appendix 2.8.1 in details. All the estimates of states and attack vectors are
best linear unbiased estimates (BLUE); i.e., the estimator gains are chosen such
that the estimates are unbiased and the norms of the error covariance matrices
are minimized. Since attack vector d2,k−1 does not influence output yk−1 directly,
output yj2,k is used to estimate attack vector d2,k−1 (line 2) by using previous
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Figure 2.2: The recursive estimation scheme of the NISE.

estimate of attack vector d1,k−1. Error covariance matrix P d2,j
k−1 of attack vector

estimate d̂j2,k−1 is derived in line 3. Applying the previous state and attack vector
estimates to dynamic system (2.4), the current state is predicted (line 4). Error
covariance matrix P x,j

k|k−1 of the predicted state x̂jk|k−1 is found in line 5 and the
matrices in line 5 are defined by Q̄j

k−1 , E[w̄jk−1(w̄jk−1)T ],

w̄jk−1 , ε(I − εGj
2,k−1M

j
2,kC

j
2,k)(w

j
k−1 −G

j
1,k−1M

j
1v

j
1,k−1)− εGj

2,k−1M
j
2,kv

j
2,k

Ājk−1 , (I − εGj
2,k−1M

j
2,kC

j
2,k)(I + εAjk−1 − εG

j
1,k−1M

j
1C

j
1,k−1). (2.11)

We correct the predicted state using the measurement bias (line 7) between the
measured output and the predicted output. Error covariance matrix P x,j

k|k−1 of state
prediction x̂jk|k−1 is updated in line 8. Attack vector d1,k is estimated from output
yj1,k (line 10). Error covariance matrix P d1,j

k−1 of attack vector estimate d̂j1,k, and
cross error covariance matrix P xd1,j

k with x̂jk|k are found in lines 11-12. Lastly,
the NISE generates the priori probability N j

k (line 15) of the mode to find the
most likely mode, where nj , Rank(P̄ j

k|k−1). For this purpose, the discrepancy
between the measured output yj3,k and the predicted output is used to validate
the mode (line 13) because they should match if j is the true mode. Since the
system is nonlinear, the discrepancy νjk may not be Gaussian. We approximate νjk
as a Gaussian random vector because it is a typical practice to approximate an
unknown noise as a Gaussian distribution as [87]. Moreover, νjk is Gaussian when
the system is linear and noises wjk and vjk are Gaussian. Covariance matrix P̄ j

k|k−1

of the discrepancy νjk is found in line 14.
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Algorithm 1 NISE
Input: j, x̂jk−1|k−1, d̂

j
1,k−1, P

x,j
k−1, P

d1,j
k−1 , P

xd1,j
k−1 , yk, u(t) for t ∈ [tk−1, tk];

1: . Attack vector dj2,k−1 estimation
2: M j

2,k = (εCj
2,kG

j
2,k−1)−1 (or M j

2,k = 0 if Rank(Σ̄k) = 0);
3: d̂j2,k−1 = M j

2,k(y
j
2,k − Cj

2,k(x̂
j
k−1|k−1 + εf(x̂jk−1|k−1, uk−1, d̂

j
1,k−1, 0, j, tk−1)) −

h2(uk, 0, j, tk));
4: P d2,j

k−1 = M j
2,kC

j
2,k(I+εAjk−1)P j

k−1 (M j
2,kC

j
2,k(I+εAjk−1))T +ε2M j

2,kC
j
2,kQ

j
k−1(M j

2,k

Cj
2,k)T + M j

2,kR
j
2,k (M j

2,k)T + ε2Cj
2,kG

j
1,k−1P

d1,j
k−1 (Cj

2,kG
j
1,k−1)T + εM j

2,kC
j
2,k(I +

εAjk−1)P xd1,j
k−1 (Cj

2,kG
j
1,k−1)T + εCj

2,kG
j
1,k−1P

d1x,j
k−1 (M j

2,kC
j
2,k(I + εAjk−1))T ;

5: . State prediction
6: ˙̂xj(t) = f(x̂j(t), u(t), d̂j1,k−1, 0, j, t) +Gj

2,k−1d̂
j
2,k−1 with initial condition x̂jk−1|k−1

for t ∈ (tk−1, tk] to have x̂jk|k−1 at t = tk;
7: P x,j

k|k−1 = Ājk−1P
x,j
k−1(Ājk−1)T + Q̄j

k−1;
8: . State estimation
9: Ljk = P x,j

k|k−1(Cj
3,k)T (Cj

3,kP
x,j
k|k−1(Cj

3,k)T +Rj
3,k)−1;

10: x̂jk|k = x̂jk|k−1 + Ljk(y
j
3,k − h3(x̂jk|k−1, uk, 0, j, tk));

11: P x,j
k = (I − LjkC

j
3,k)P

x,j
k|k−1(I − LjkC

j
3,k)T + LjkR

j
3,k(L

j
k)T ;

12: . Attack vector dj1,k estimation
13: M j

1 = (Hj
1)−1 (or M j

1 = 0 if Rank(Σ) = 0);
14: d̂j1,k = M j

1 (yj1,k − h1(x̂jk|k, uk, 0, j, tk));
15: P d1,j

k = M j
1C

j
1,kP

x,j
k (M j

1C
j
1,k)T +M j

1R
j
1,k(M

j
1 )T ;

16: P xd1,j
k = −P x,j

k (M j
1C

j
1,k)T ;

17: . The priori probability of the mode
18: νjk = yj3,k − h3(x̂jk|k−1, uk, 0, j, tk);
19: P̄ j

k|k−1 = Cj
3,kP

j
k|k−1(Cj

3,k)T +Rj
3,k;

20: N j
k = 1

(2π)nj/2|P̄ j
k|k−1|

1/2 exp(−
(νj
k
)T (P̄ j

k|k−1)−1νj
k

2 );

Return: x̂jk|k, d̂
j
1,k, d̂

j
2,k−1, P

x,j
k , P d2,j

k−1 , P
d1,j
k , P xd1,j

k , N j
k .
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Algorithm 2 NISME
Input: x̂j0|0 = E[x0], P x,j

0 = P0, µj0 = 1
|M| , d̂

j
1,0 = (Σj)−1(yj1,0 − h1(x̂j0|0, u0, 0, j, 0))

for ∀j ∈M; Choose 0 < δ � 1
|M| , 0 < α1 < 1, 0 < α2 < 1 (significance levels);

1: for k = 1 : N do
2: Read sensor output yk, and control input u(t) for t ∈ [tk−1, tk];
3: for j ∈M do
4: Run the NISE with input (j, x̂jk−1|k−1, d̂

j
1,k−1,

P x,j
k−1, P

d1,j
k−1 , P

xd1,j
k−1 , yk, u(t) for t ∈ [tk−1, tk]) to generate output (x̂jk|k, d̂j1,k,

d̂j2,k−1, P
x,j
k , P d2,j

k−1 , P
d1,j
k , P xd1,j

k , N j
k );

5: end for
6: . Mode estimator
7: for j ∈M do
8: µ̄jk = max{ N j

k
µj
k−1∑|M|

i=1N
i
k
µi
k−1
, δ};

9: end for
10: for j ∈M do
11: µjk = µ̄j

k∑|M|
i=1 µ̄

i
k

;
12: end for
13: Set ĵk = argmaxj µ

j
k;

14: Obtain χ2
|d̂ĵk1,k|

(α1) and χ2
|d̂ĵk2,k−1|

(α2);

15: if (d̂ĵk1,k)T (P d1,ĵk
k )−1d̂ĵk1,k < χ2

|d̂ĵk1,k|
(α1) and (d̂ĵk2,k−1)T (P d2,ĵk

k−1 )−1d̂ĵk2,k−1 <

χ2
|d̂ĵk2,k−1|

(α2) then

16: Set ĵtruek as signal attack-free mode of ĵk;
17: d̂ĵk1,k = d̂ĵk2,k−1 = 0;
18: end if
19: Return:

ĵ(t) = ĵtruek for t ∈ (tk−1, tk], x̂(t) = x̂ĵkk|k, t ∈ (tk−1, tk],

d̂1(t) = d̂ĵk1,k for t ∈ [tk, tk+1), d̂2(t) = d̂ĵk2,k−1 for t ∈ (tk−1, tk].

20: end for

Now consider the NISME (Algorithm 2) which is derived in Section 2.8.2. The
NISME runs the NISE for each mode j ∈ M in parallel to generate the state
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and attack vector estimates along with the priori probability for each mode (line
4). After then, the algorithm identifies the most likely mode (lines 6-11). By the
Bayes’ theorem, the posteriori probability µjk is updated by a linear combination
of the priori probabilities (line 7). It is not desirable that some mode probabilities
vanish over time because the true modes might be time-varying. A lower bound δ
is adopted in line 7 to prevent the vanishment of the mode probabilities. After the
lower bound is applied, the mode probability is normalized in line 10. The mode
with the largest posteriori probability µjk is chosen as a current mode (line 12),
and the attack vectors of the current mode are tested by Chi-square hypothesis
tests (p.354 in [88]) with significance levels α1, α2 to determine whether they are
statistically significant or not (line 14). Specifically, we have the following null-
hypothesis and alternative hypothesis

H0 : d1,k = 0 and d2,k−1 = 0, H1 : d1,k 6= 0 or d2,k−1 6= 0

with samples d̂ĵk1,k and d̂ĵk2,k−1. Chi-square value is presented as χ2
df (α) where df

and α are the degree of freedom and significance level, respectively. If it is not
statistically significant, the algorithm chooses the signal attack-free mode as a
current mode. The corresponding state and attack vector estimates are returned
(line 18). Due to limited measurements over the continuous-time dynamic system
model, we use the approximation that the attack vector estimates are constants
during a sampling period, in lines 2,4,10 of the NISE, and lines 18 of the NISME.
We, however, will consider approximation errors in the analysis.

2.5 Analysis
We consider the linearization errors φk, ψ1,k, ψ2,k, and ψ3,k defined by

f(xk, uk, d1,k, w
′
k, tk)− f(x̂k|k, uk, d̂1,k, 0, tk)

= Akx̃k|k +G1,kd̃1,k + wk + φk(x̂k|k, xk, uk, w′k, v′k)

h1(xk, uk, v′k, tk)− h1(x̂k|k, uk, 0, tk) = C1,kx̃k|k + v1,k + ψ1,k(x̂k|k, xk, uk, v′k)

h2(uk, v′k, tk)− h2(uk, 0, tk) = v2,k + ψ2,k(uk, v′k)

h3(xk, uk, v′k, tk)− h3(x̂k|k−1, uk, 0, tk) = C3,kx̃k|k−1 + v3,k + ψ3,k(x̂k|k−1, xk, uk, v
′
k)
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where φk is a function of d̃1,k and d̃1,k is a function of xk, x̂k|k and v′k. We omit
the arguments of the linearization errors in the rest of the paper for notational
simplicity. The following set of assumptions is needed to ensure the stability of
the NISE algorithm, and justified in Section 2.6.1.

Assumption 2.5.1 Attack vector d(t) is continuous, and its slopes are uniformly
bounded; i.e., there exists d̄ > 0 such that supt1,t2≥0 ‖(d(t1)− d(t2))/(t1− t2)‖ ≤ d̄.

Assumption 2.5.2 There exist ā′, c̄3, q′, r3 > 0 such that the following holds for
k ≥ 0:

‖Ak‖ ≤ ā′, ‖C3,k‖ ≤ c̄3, q
′ ≤ Qk, r3I ≤ R3,k.

If rk(Σk) 6= 0, there exist c̄1, ḡ1, m̄1 > 0 such that the following holds for k ≥ 0:

‖C1,k‖ ≤ c̄1, ‖G1,k‖ ≤ ḡ1, ‖Σ−1
k ‖ ≤ m̄1.

If rk(Σ̄k) 6= 0, there exist c̄2, g2, ḡ2, m2, m̄2, r2 > 0 such that the following holds
for k ≥ 0:

‖C2,k‖ ≤ c̄2, g2 ≤ ‖G2,k‖ ≤ ḡ2, m2 ≤ ‖Σ̄−1
k ‖ ≤ m̄2, r2I ≤ R2,k.

Assumption 2.5.3 For any εφ, εψ1 , εψ2 , εψ3 > 0, there exists δ > 0 such that

‖φk‖ ≤ εφ‖xk − x̂k|k‖2, ‖ψ1,k‖ ≤ εψ1‖xk − x̂k|k‖2

‖ψ2,k‖ ≤ εψ2‖xk − x̂k|k‖2, ‖ψ3,k‖ ≤ εψ3‖xk − x̂k|k‖2

hold for all ‖xk − x̂k|k‖ ≤ δ and k ≥ 0.

Assumption 2.5.4 There exist p, p̄ > 0 such that pI ≤ P x
k ≤ p̄I for k ≥ 0.

Let us denote the discretization error for the state prediction as

ρ̂k ,
∫ tk+1

tk

f(x̂(τ), u(τ), d̂1,k, 0, τ)dτ − εf(x̂k|k, uk, d̂1,k, 0, tk).

Assumption 2.5.5 There exist ερ, δρ > 0 such that ‖ρk‖ ≤ ε2ερ and ‖ρ̂k‖ ≤ ε2ερ

for all ε ≤ δρ and k ≥ 0, where ρk is defined in (2.5).
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Under the above assumptions, the following theorem ensures PESp-like properties
for the estimation errors.

Theorem 2.5.1 Consider the NISE algorithm, provided that Assumptions 2.4.1,
2.5.1, 2.5.2, 2.5.3, 2.5.4 and 2.5.5 hold. For any γ ∈ (0, 1), there exists a set of
positive constants αx, αd1, αd2, bx, bd1, bd2, cx, cd1, cd2, δ, q̄′, r̄1, r̄2, r̄3, and ε̄ such
that, if Qk ≤ q̄′I, R1,k ≤ r̄1I, R2,k ≤ r̄2I, R3,k ≤ r̄3I, and ε ≤ ε̄, then the following
properties hold:

P (‖x̃k|k‖ < αxe
−bxk‖x̃0|0‖+ cx) ≥ 1− γ,

P (‖d̃1(t)‖ < αd1e
−bd1 t‖x̃0|0‖+ cd1) ≥ 1− γ,

P (‖d̃2(t)‖ < αd2e
−bd2 t‖x̃0|0‖+ cd2) ≥ 1− γ

for all ‖x̃0|0‖ ≤ δ, k ≥ 0 and t ≥ 0.

Theorem 2.5.1 is formally proven in Appendix 2.8.3.

Remark 2.5.1 The set of constants in Theorem 2.5.1 can be obtained in the proof.
For ease of presentation, we omit the procedure to find these constants. �

2.6 Discussion

2.6.1 Assumption justification

The proposed NISE algorithm is an extension of ISE for linear systems in [89–91] to
nonlinear systems. It is also an extension of the EKF in [92–95] to include unknown
inputs. Thus, the assumptions in Theorem 2.5.1 are similar to the assumptions
therein.

In Assumption 2.4.1, dim(d3,k) = 0 (or equivalently, rk(C2,kG2,k−1) = p −
dim(d1,k−1)) is a required condition for the stability of ISE for linear systems (The-
orem 5 in [89]). Assumption 2.4.1 also requires that the system function is partially
linear. Its justification is given below. Since dim(d3,k) = 0, unknown input dk−1 is
decomposed into two orthogonal vectors d1,k−1 and d2,k−1. From (2.8), one can see
that d1,k−1 is included in y1,k−1 and thus yk−1, but d2,k−1 is not. Then one needs
to estimate d2,k−1 from y2,k. In particular, y2,k includes the term C2,kGk−1dk−1

which can be decomposed as C2,kGk−1dk−1 = C2,kG1,k−1d1,k−1 + C2,kG2,k−1d2,k−1.
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However, in system (2.5), we obtain matrix G2,k−1 by linearizing f ′ using d̂2,k−1

and transforming Gk−1 by (2.6) and (2.7). We get matrix C2,k by linearizing h
using x̂k|k−1 and transforming Ck by (2.6) and (2.7), where state prediction x̂k|k−1

needs unknown input estimate d̂2,k−1 in line 7. These linearizations cannot be
done without d̂2,k−1. Thus, Assumption 2.4.1 requires that nonlinear function f

is independent of d2(t) and the function including d2(t) is linear. Furthermore,
Assumption 2.4.1 is satisfied either Hk in system (2.3) has full-column rank, or
system (2.3) is in the following form:

ẋ(t) = f(x(t), u(t), w′(t), t) +G(t)d(t)

yk = Ckxk + h′(uk, v′k, tk) +Hkdk.

A sufficient condition for Assumption 2.5.1 is Assumption 1 in [90] where d(t)
is assumed to be differentiable for all t and its gradients are uniformly bounded.

Assumptions 2.5.2, 2.5.3 and 2.5.4 reduce to Assumption 3.1 in [93] when sys-
tem (2.3) becomes a discrete time system; i.e., ρk = ρ̂k = 0, and unknown input
d(t) is absent. A sufficient condition for Assumptions 2.5.2 is that functions f ′

and h satisfy bi-Lipschitz continuity (p.10 in [96]), and covariance matrices of
noise vectors w′k and v′k are uniformly lower bounded by positive definite matrices.
Assumptions 2.5.3 can be verified if functions f ′ and h satisfy Holder continuity
(p.136 in [97]) with exponent 2. Uniform observability of the pair (C3,k, Āk) is a
sufficient condition for Assumption 2.5.4, as shown in Lemma 2.6.1. Recall that
C3,k and Āk are defined in (2.8) and (2.11).

Lemma 2.6.1 Consider the NISE algorithm. Under Assumptions 2.4.1, 2.5.2,
and 2.5.3, if the pair (C3,k, Āk) is uniformly observable and P x

0 ≥ 0, there exist
p, p̄ > 0 such that pI ≤ P x

k ≤ p̄I for all k ≥ 0. Moreover, if there exist q̄′, r̄1,
r̄2 ≥ 0 such that Qk ≤ q̄′I, R1,k ≤ r̄1I, and R2,k ≤ r̄2I, then there exist p̄d1 , p̄d2 > 0
such that 0 ≤ P d1

k ≤ p̄d1I, 0 ≤ P d2
k ≤ p̄d2I for all k ≥ 0.

Lemma 2.6.1 is proven in Appendix 2.8.3. Lemma 2.6.1 does not require As-
sumptions 2.5.1 and 2.5.5 because the update law of error covariance matrices
depends only on known system matrices and covariance matrices of the noises.

Assumption 2.5.5 is fulfilled if f ′ is Lipschitz and bounded, and u(t), d(t), w′(t)
are Lipschitz in the small (Definition 2.14 in [98]).
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2.6.2 Connections to existing results

Connections to the EKF. If system (2.3) is a discrete time system and unknown
input d(t) is absent, then the NISE algorithm reduces to the EKF [93,94,99,100].

Connections to the ISE for linear systems. If system (2.3) is a discrete
time linear system and unknown input d2(t) is absent, then the NISE algorithm
reduces to the filter in [89]. As the EKF, we design the NISE algorithm such
that the estimates are optimal as if system (2.3) is linear. To be specific, let
dim(d3,k) = 0 and initial estimate x̂0|0 be unbiased. Then, state estimate x̂k|k and
unknown input estimates d̂1,k, d̂2,k are the minimum variance unbiased estimates
among all the linear estimates, if functions f ′ and h are linear. The proof is similar
to that of Lemma 3 in [89].

2.6.3 Mode reduction

When there are s+m signal attack locations, mode set MA includes all the combi-
nations of the attack locations; i.e., |MA| = 2s+m. As the number of signal attack
location increases, computational complexity increases exponentially. We, in this
section, discuss how to alleviate computational complexity by reducing the number
of modes induced by MA, and how to estimate the true mode from the estimation
results of a reduced mode set for hidden-mode switched linear systems. Finding a
reduced mode set presented in this section, and finding a true mode presented in
Section 2.6.4 are both on-line procedures. The former is conducted before running
the NISE, and the latter will replace the hypothesis test (line 13-17) in the NISME.
The complete algorithm for the NISME with reduced mode set is presented in Sec-
tion 2.6.4, where we consider the special case with |MI | = 1. In Section 2.6.5, we
extend the results to any MI .

Let us consider the special case where the dynamic for each mode j is linear
and switching, and |MI | = 1:

ẋ(t) = A(t)x(t) +B(t)(u(t) + Sj(t)d(t)) + w(t), x(t) ∈ Cj(t)

(x(t), j(t))+ = Ω(x(t), j(t)), x(t) ∈ Dj(t)

yk = Ckxk +Dkuk +Hjkdk + vk (2.12)

where Sj(t), and Hjk are defined in (2.4). We remind Kj = [(Sj)T , (Hj)T ]T , and
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define Kj
1 , {i = 1, · · · , n+m|Kj(i, i) = 1}.

Mode reduction is based on the following two ideas. Firstly, we maintain
the modes such that uniform observability over finite time-horizon [c1, c2] (Def-
inition 2.6.1) holds. Secondly, we remove modes whose assumptions on attack
locations are strictly restrictive than those of others.

Definition 2.6.1 The pair (Ck, Ak) is uniformly observable over [c1, c2] if and only
if there exist positive constants a, b, and l < c2 − c1 such that aI ≤ Mk+l,k ≤ bI

for k = c1, c1 + 1, · · · , c2 − l.

The first idea is motivated by the sufficient condition for Lemma 2.6.1; uniform
observability. To check uniform observability, the defender is required to have
information on pairs (Cj

3,k, Ā
j
k) for k = 0, 1, · · · . This information is hard to gather

at initial time. We instead adopt an approximation, Definition 2.6.1, which only
requires the system matrices for a few next steps. Uniform observability over [c1, c2]
reduces to uniform observability as c2 →∞ with fixed c1.

To justify the second idea, consider a pair of modes j, j′ ∈ MA such that
Kj′

1 ⊂ Kj
1, and (Cj

3,k, Ā
j
k), (Cj′

3,k, Ā
j′

k ) are uniformly observable over [c1, c2]. The
relation Kj′

1 ⊂ Kj
1 indicates that mode j′ imposes a more restrictive assumption on

attack locations than mode j. In this sense, mode j′ is said to be redundant and
it could be ruled out to reduce computational complexity.

Intuitively speaking, the above ideas allow the minimal number of modes to
provide the same attack capability as the power set. The reduced mode set is
defined by Md

[c1,c2] = {j ∈ Mob
[c1,c2]|@j′ ∈ Mob

[c1,c2] s.t. Kj
1 ⊂ Kj′

1 } where Mob
[c1,c2] ,

{j ∈ MA|(Cj
3,k, Ā

j
k) is uniformly observable over [c1, c2]}. It can be found by

Algorithm 3 where MA
i , {j ∈ MA||Kj

1| = i}. Without the mode reduction, the
worst upper bound of |MA| is 2s+m, but Md

[c1,c2] could be as low as 1 (see case
study 2). It is worthy to emphasize that the defender needs to know (Cj

3,k, Ā
j
k)

over [c1, c2] in order to verify uniform observability in the interval.
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Algorithm 3 Mode reduction (finding Md
[c1,c2]).

Input: MA, Ak, Ck for k = c1, c1 + 1, · · · , c2 (or corresponding A(t), C(t)), Gj,
Hj for ∀j ∈MA;

1: Md
[c1,c2] = ∅;

2: for i = s+m : 1 do
3: for j ∈MA

i do
4: if (Cj

3,k, Ā
j
k) is uniformly observable over [c1, c2], and @j′ ∈

Md
[c1,c2] s.t. Kj

1 ⊂ Kj′

1 then
5: Md

[c1,c2] = Md
[c1,c2] ∪ {j};

6: end if
7: end for
8: end for

Return: Md
[c1,c2].

Remark 2.6.1 Mode reduction Algorithm 3 is not applicable to nonlinear systems
because uniform observability is determined by where linearization is performed.
This information cannot be obtained in advance. �

2.6.4 True mode estimation

We discuss how to estimate the true mode from the outputs of the NISME under
the reduced mode set. It might be noticed that the reduced mode set might not
include true modes, since some of the modes are removed. Given mode estimate
ĵ(t) from the reduced mode set Md

[c1,c2], the idea is to conduct two-tailed z-test [88]
for each attack location i ∈ Kĵ(t)

1 to determine whether the attack size is statistically
significant. To be specific, we test the null hypothesis that ith elements of d1,k or
d2,k−1 are zero:

H0 : d1,k(i− s) = 0 if i > s, H0 : d2,k−1(i) = 0 if i ≤ s

and d̂ĵk1,k(i−s) or d̂
ĵk
2,k−1(i) are regarded as samples. If the null hypothesis is rejected,

then we accept alternative hypothesis

H1 : d1,k(i− s) 6= 0 if i > s, H1 : d2,k−1(i) 6= 0 if i ≤ s
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i.e., there exists an attack on ith location. Algorithm 4 presents the pseudo code
for true mode estimation. z-value is presented as z(α) where α is the significance
level. Hypothesis tests are conducted in lines 6 and 13 for actuator attacks, and
sensor attacks, respectively.

2.6.5 NISME with reduced mode set

Algorithm 5 shows the NISME with reduced mode sets. The core of the algorithm
is identical to that of the NISME, and some differences are explained as follows. We
apply the mode reduction technique and true mode estimation technique to each
i ∈MI . The algorithm calculates reduced mode set every T steps for every i ∈MI

(line 4). This requires the defender to have knowledge on system matices for next
T −1 steps. Based on the fact that the reduced mode set might not include the true
mode, we test attack vectors element-wise to identify the true mode (line 19). As
T decreases in Algorithm 5, lesser knowledge on system matrices is required, but
computational complexity induced by Algorithm 3 increases. When system (2.12)
is time-invariant, T =∞.
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Algorithm 4 Mode estimation with mode reduction

Input: ĵk, d̂ĵk1,k, d̂
ĵk
2,k−1, P

d1,ĵk
k , P d2,ĵk

k−1 , α1, α2 (significance levels);
1: Obtain z-values z(α1) and z(α2) from z-test table;
2: K ĵtruek = 0(s+m)×(s+m);
3: l1 = l2 = 1;
4: for i ∈ Kĵk

1 do
5: if i ≤ s then

6: if |d̂ĵk2,k−1(l2)|√
P
d2,ĵk
k−1 (l2,l2)

> z(α2) then

7: K ĵtruek (i, i) = 1, d̂ĵ
true
k

2,k−1(l2) = d̂ĵk2,k−1(l2);
8: else
9: d̂

ĵturek
2,k−1(l2) = 0;

10: end if
11: l2 = l2 + 1;
12: else
13: if |d̂ĵk1,k(l1)|√

P
d1,ĵk
k

(l1,l1
> z(α1) then

14: K ĵtruek (i, i) = 1, d̂ĵ
true
k

1,k (l1) = d̂ĵk1,k(l1);
15: else
16: d̂

ĵtruek
1,k (l1) = 0;

17: end if
18: l1 = l1 + 1;
19: end if
20: end for
21: Obtain ĵtruek for corresponding K ĵtruek ;
Return: ĵtruek , d̂ĵ

ture
k

1,k , d̂ĵ
ture
k

2,k−1.
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Algorithm 5 NISME with reduced mode set
Input: x̂j0|0 = E[x0], P x,j

0 = P0, µj0 = 1
|M| , d̂

j
1,0 = (Σj)−1(yj1,0−T j1,0h(x̂j0|0, u0, 0, j, 0))

for ∀j ∈M; Choose 0 < δ � 1
|M| , 0 < α1 < 1, 0 < α2 < 1, and T ;

1: for q = 0 : N do
2: c1 = 1 + qT , c2 = (q + 1)T , MD

[c1,c2] = ∅;
3: for i ∈MI do
4: Run Algorithm 3 with (MA, Aik, Ci

k for k = c1, c1 + 1, · · · , c2, Gj, Hj for
∀j ∈MA) to obtain Md,i

[c1,c2];
5: MD

[c1,c2] = MD
[c1,c2] ∪Md,i

[c1,c2];
6: end for
7: for k = c1 : c2 do
8: Read sensor output yk, and control input u(t) for t ∈ [tk−1, tk];
9: for j ∈MD

[c1,c2] do
10: Run the NISE with input (j, x̂jk−1|k−1, d̂

j
1,k−1,

P x,j
k−1, P

d1,j
k−1 , P

xd1,j
k−1 , yk, u(t) for t ∈ [tk−1, tk]) to generate output (x̂jk|k, d̂j1,k,

d̂j2,k−1, P
x,j
k , P d2,j

k−1 , P
d1,j
k , P xd1,j

k , N j
k );

11: end for
12: . Mode estimator
13: for j ∈MD

[c1,c2] do

14: µ̄jk = max{ N j
k
µj
k−1∑|MD[c1,c2]|

i=1 N i
k
µi
k−1

, δ};

15: end for
16: for j ∈MD

[c1,c2] do

17: µjk = µ̄j
k∑|MD[c1,c2]|

i=1 µ̄i
k

;

18: end for
19: Set ĵk = argmaxj µ

j
k;

20: Run Algorithm 4 with (ĵk, d̂ĵk1,k, d̂
ĵk
2,k−1, P

d1,ĵk
k , P d2,ĵk

k−1 , α1, α2) to obtain
(ĵtruek , d̂ĵ

ture
k

1,k , d̂ĵ
ture
k

2,k−1);
21: Return:

ĵ(t) = ĵtruek for t ∈ (tk−1, tk], x̂(t) = x̂ĵkk|k, t ∈ (tk−1, tk],

d̂1(t) = d̂
ĵturek
1,k for t ∈ [tk, tk+1), d̂2(t) = d̂

ĵturek
2,k−1 for t ∈ (tk−1, tk].

22: end for
23: end for
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2.7 Conclusion
We formulate the attack-resilient estimation of a class of switched nonlinear stochas-
tic systems as the problem of joint estimation of the states, attack vectors and
modes. The proposed estimator, the NISME, consists of multiple NISE and a
mode estimator. Each NISE is able to generate state and attack estimates for a
particular mode and the mode estimator chooses the most likely one. Lastly, the
NISME uses the estimates of the selected mode as outputs. We formally analyze
the stability of estimation errors in probability for the proposed estimator asso-
ciated with the true mode under the time-invariant hidden mode. We propose a
way to alleviate computational complexity by reducing the number of modes.

2.8 Appendix: Estimator derivation and analysis
Section 2.8.1 derives the NISE algorithm. The proofs of Theorem 2.5.1 and
Lemma 2.6.1 are presented in Section 2.8.3. Gauss Markov Theorem will be used
in the derivation of the NISE algorithm.

Theorem 2.8.1 (Gauss Markov Theorem [103]) Estimate x̂ = (H∗H)−1H∗y is
the unbiased linear estimate with smallest variance (among all linear and unbiased
estimates) for the model y = Hx+ v where v is a zero-mean random variable with
unit variance and H has full column rank.

2.8.1 Derivation of the NISE algorithm

Covariance matrices used in the NISE algorithm are positive (semi) definite as
shown in the following lemma.

Lemma 2.8.1 If P x
0 ≥ 0, then, for all k ≥ 1, P x

k|k−1 ≥ 0, and the following matri-
ces induced by the NISE algorithm are positive definite: P̄k|k−1 , C3,kP

x
k|k−1C

T
3,k +

R3,k, R̃1,k , C1,kP
x
kC

T
1,k +R1,k (if rk(Σk) 6= 0), and

R̃2,k

, C2,k(I + εAk−1 − εG1,k−1M1,kC1,k−1)P x
k−1(I + εAk−1 − εG1,k−1M1,kC1,k−1)TCT

2,k

+ ε2C2,kG1,k−1M1,kR1,k−1M
T
1,kG

T
1,k−1C

T
2,k + ε2C2,kQk−1C

T
2,k +R2,k
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(if rk(Σ̄k) 6= 0).

PROOF. We first prove that P x
k−1 ≥ 0, and P x

k|k−1 ≥ 0 for all k ≥ 1 by induction.
It holds that P x

0 ≥ 0. Since P x
0 ≥ 0 and Q̄0 ≥ 0, it holds that P x

1|0 ≥ 0 in line
8 of the NISE algorithm. Assume P x

k−1 ≥ 0, and P x
k|k−1 ≥ 0 for some k ≥ 1. It

follows from R3,k > 0 that Lk is well-defined. This implies that P x
k ≥ 0 in line 11,

and P x
k+1|k ≥ 0 in line 8 of the NISE algorithm. By induction, we conclude that

P x
k−1 ≥ 0, and P x

k|k−1 ≥ 0 for all k ≥ 1.
Pick any k ≥ 1. Since R1,k (if rk(Σk) 6= 0), R2,k (if rk(Σ̄k) 6= 0), and R3,k

are positive definite, it holds that P̄k|k−1, R̃1,k, and R̃2,k are positive definite. This
completes the proof. �

Attack vector d1,k−1 estimation. Given x̂k−1|k−1, attack vector d1,k−1 can
be estimated by y1,k−1 in (2.9):

d̂1,k−1 = M1,k(y1,k−1 − h1(x̂k−1|k−1, uk−1, 0, tk−1))

= M1,k(C1,k−1x̃k−1|k−1 +H1,kd1,k−1 + v1,k−1 + ψ1,k−1) (2.13)

where h1 is linearized. Assuming E[x̃k−1|k−1] = 0, ψ1,k−1 = 0, and normalizing the
covariance matrix of the right hand side of (2.13), we can choose gain matrix M1,k

by the Gauss Markov theorem (Theorem 2.8.1):

M1,k = (HT
1,kR̃

−1
1,k−1H1,k)−1HT

1,kR̃
−1
1,k−1 = H−1

1,k

where R̃1,k−1 is nonsingular by Lemma 2.8.1 if rk(Σk) 6= 0. Estimation error d̃1,k−1

is obtained by

d̃1,k−1 = −M1,k(C1,k−1x̃k−1|k−1 + v1,k−1 + ψ1,k−1) (2.14)

where the property M1,kH1,k = I is used.
Attack vector d2,k−1 estimation. Attack vector d2,k−1 can be estimated by

y2,k in (2.9) as follows:

d̂2,k−1 = M2,k(y2,k − h2(uk, 0, tk)− C2,k(x̂k−1|k−1

+ εf(x̂k−1|k−1, uk−1, d̂1,k−1, 0, tk−1)))

= M2,k(C2,k(I + εAk−1)x̃k−1|k−1 + C2,kρk−1 + εC2,kG1,k−1d̃1,k−1 + εC2,kG2,k−1d2,k−1
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+ εC2,kwk−1 + εC2,kφk−1 + v2,k + ψ2,k)

where functions h2 and f are linearized. Again, assuming that φk−1 = ρk−1 =
ψ2,k = 0, E[x̃k−1|k−1] = 0, and E[d̃1,k−1] = 0, we choose gain matrix M2,k by the
Gauss Markov theorem (Theorem 2.8.1) as follows:

M2,k = (ε2GT
2,k−1C

T
2,kR̃

−1
2,kC2,kG2,k−1)−1εGT

2,k−1C
T
2,kR̃

−1
2,k = (εC2,kG2,k−1)−1 = (εΣ̄k)−1

where Σ̄k and R̃2,k are nonsingular by Lemma 2.8.1. Estimation error of d2,k−1 is
given by

d̃2,k−1 = −M2,k(C2,k(I + εAk−1)x̃k−1|k−1 + εC2,kG1,k−1d̃1,k−1 + εC2,kwk−1

+ εC2,kφk−1 + v2,k + ψ2,k + C2,kρk−1) (2.15)

where the property εM2,kC2,kG2,k−1 = I is used.
State prediction. Generate state prediction x̂k|k−1 by simulating system (2.9)

for t ∈ (tk−1, tk] as follows:

˙̂x(t) = f(x̂(t), u(t), d̂1,k−1, 0, t) +G2,k−1d̂2,k−1 (2.16)

where initial condition is x̂(tk−1) = x̂k−1|k−1 and state prediction is x̂k|k−1 = x̂(tk).
Or equivalently,

x̂k|k−1 = x̂k−1|k−1 + εf(x̂k−1|k−1, uk−1, d̂1,k−1, 0, tk−1) + εG2,k−1d̂2,k−1 + ρ̂k−1.

Let ρ̃k−1 , ρk−1 − ρ̂k−1. Using (2.10), the state estimation error becomes

x̃k|k−1 = (I + εAk−1)x̃k−1|k−1 + εG1,k−1d̃1,k−1 + εG2,k−1d̃2,k−1 + εwk−1 + εφk−1

+ ρ̃k−1. (2.17)

Substitution (2.14) and (2.15) into (2.17) leads to

P x
k|k−1 = Āk−1P

x
k−1(Āk−1)T + Q̄k−1 (2.18)

where we assume φk−1 = ψ1,k−1 = ψ2,k = ρ̃k−1 = ρk−1 = 0.
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State estimation. Update state prediction x̂k|k−1 as

x̂k|k = x̂k|k−1 + Lk(y3,k − h3(x̂k|k−1, uk, 0, tk)). (2.19)

By substituting y3,k in (2.9) into (2.19) and linearizing h3 as (2.8), the state esti-
mation error becomes

x̃k|k = (I − LkC3,k)x̃k|k−1 − Lkv3,k − Lkψ3,k. (2.20)

Its error covariance matrix is

P x
k = (I − LkC3,k)P x

k|k−1(I − LkC3,k)T + LkR3,kL
T
k (2.21)

by assuming ψ3,k = 0. Minimizing error covariance tr(P x
k ) with decision variable

Lk is an unconstrained optimization problem. We can find the minimizer by taking
derivative of tr(P x

k ) and setting it equal to zero ∂ tr(Pxk )
∂Lk

= 2((C3,kP
x
k|k−1 (C3,k)T +

R3,k)LTk − C3,kP
x
k|k−1) = 0. The solution is Lk = P x

k|k−1C
T
3,k(C3,kP

x
k|k−1(C3,k)T +

R3,k)−1 which is well defined as P x
k|k−1 ≥ 0 by Lemma 2.8.1, and R3,k > 0. Substi-

tution of (2.18) into (2.21) yields the error covariance update law:

P x
k = (I − LkC3,k)Āk−1P

x
k−1Ā

T
k−1(I − LkC3,k)T + (I − LkC3,k)Q̄k−1(I − LkC3,k)T

+ LkR3,kL
T
k . (2.22)

Substituting (2.14), (2.15), and (2.17) into (2.20) yields the following update law
for the state estimation error:

x̃k|k = (I − LkC3,k)(Āk−1x̃k−1|k−1 + w̄k−1 + φ̄k−1 + ρ̄k−1)− Lk(v3,k + ψ3,k) (2.23)

where Āk−1 and w̄k−1 are defined in (2.11), and

φ̄k−1 , ε(I − εG2,k−1M2,kC2,k)(φk−1 −G1,k−1M1,kψ1,k−1)− εG2,k−1M2,kψ2,k

ρ̄k−1 , −εG2,k−1M2,kC2,kρk−1 + ρ̃k−1.

The priori probability of the mode. The priori probability of the mode is
derived and explained in the following section.
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2.8.2 Derivation of the mode estimator

It is natural that the predicted output must be matched with the measured output
if the mode j is the true mode. For ∀j ∈M, we quantify the discrepancy between
the predicted output and the measured output as follows

νjk = yj3,k − h3(x̂jk|k−1, uk, 0, j, tk).

We approximate the output error νjk as a multivariate Gaussian random variable.
Then, the likelihood function is given by

N j
k , P(yk|j = true) = N (νjk; 0, P̄ j

k|k−1) =
exp(−(νjk)T (P̄ j

k|k−1)−1νjk/2)
(2π)nj/2|P̄ j

k|k−1|1/2

where P̄ j
k|k−1 = Cj

3,kP
j
k|k−1(Cj

3,k)T + Rj
3,k is the error covariance matrix of νjk and

nj = Rank(P̄ j
k|k−1). The likelihood function is well-defined since P̄ j

k|k−1 > 0 as
shown in Lemma 2.8.1. By the Bayes’ theorem, the posterior probabilities are µjk ,
P(j = true|yk, · · · , y0) = P(yk|j=true)P(j=true|yk−1,··· ,y0)∑|M|

i=1 P(yk|i=true)P(i=true|yk−1,··· ,y0)
= N j

k
µj
k−1∑|M|

i=1N
i
k
µi
k−1

. However,

such update might allow that some µjk converge to zero. To prevent this, we modify
the posterior probability update to µjk = µ̄j

k∑|M|
i=1 µ̄

i
k

, where µ̄jk = max{ N j
k
µj
k−1∑|M|

i=1N
i
k
µi
k−1
, δ}

and δ > 0 is a pre-selected small constant preventing the vanishment of the mode
probabilities. The last step is to generate the state, attack vector, and mode
estimates of the mode having the maximum posteriori probability.

2.8.3 Stability analysis of the NISE algorithm

Without loss of generality, consider constants c̄1 = ḡ1 = m̄1 = 0, if rk(Σk) = 0
in Assumption 2.5.2. Likewise, if rk(Σ̄k) = 0, consider constants c̄2 = g2 = ḡ2 =
m2 = m̄2 = r2 = 0 in this section.

Proof of Theorem 2.5.1. We choose the Lyapunov function candidate
Vk(x̃k|k) , x̃Tk|k(P x

k )−1x̃k|k where 0 < pI ≤ P x
k ≤ p̄I. Substituting (2.23) into

Vk(x̃k|k), we have

Vk(x̃k|k) = x̃Tk−1|k−1Ā
T
k−1(I − LkC3,k)T (P x

k )−1(I − LkC3,k)Āk−1x̃k−1|k−1

+ v̄Tk (P x
k )−1(2(I − LkC3,k)Āk−1x̃k−1|k−1 + v̄k + 2ψ̄k)

35



+ ψ̄Tk (P x
k )−1(2(I − LkC3,k)Āk−1x̃k−1|k−1 + ψ̄k) (2.24)

where ψ̄k , (I−LkC3,k)(φ̄k−1 + ρ̄k−1)−Lkψ3,k and v̄k , (I−LkC3,k)w̄k−1−Lkv3,k.
Assumption 2.5.2 implies that ‖Āk‖ ≤ ā , (1 + ḡ2c̄2m̄2)(1 + εā′ + εḡ1c̄1m̄1), and
qI ≤ Q̄k ≤ q̄I where q , max{g2

2m
2
2r2, ε

2q′} and q̄ , ε2(1+ḡ2c̄2m̄2)2(q̄′+ḡ1m̄1r̄1)2+
ḡ2

2m̄
2
2r̄2.
Claims 1-3 derive bounds for the first to third terms in (2.24), respectively.
Claim 1: There exists constant α′ , (1 + q

ā2p̄
)−1 ∈ (0, 1) such that ĀTk−1(I −

LkC3,k)T (P x
k )−1(I − LkC3,k) Āk−1 < α′(P x

k−1)−1.

PROOF. It follows from Assumptions 2.5.2 and 2.5.4 that

Q̄k−1 ≥ qI,
P x
k−1
p̄
≤ I. (2.25)

Since Āk−1Ā
T
k−1 is symmetric, it holds that

Āk−1Ā
T
k−1 ≤ λmax(Āk−1Ā

T
k−1)I = ā2I. (2.26)

Thus, by (2.25) and (2.26), we have

Q̄k−1 ≥
q

ā2 Āk−1Ā
T
k−1 ≥

q

ā2p̄
Āk−1P

x
k−1Ā

T
k−1. (2.27)

Substitution of (2.27) to (2.22) yields

P x
k ≥ (I − LkC3,k)Āk−1P

x
k−1Ā

T
k−1(I − LkC3,k)T (1 +

q

ā2p̄
) + LkR3,kL

T
k .

This implies P x
k − (I − LkC3,k)Āk−1P

x
k−1Ā

T
k−1(I − LkC3,k)T ≥ 0. Since P x

k−1 > 0,
and then

(1 +
q

ā2p̄
)P x

k−1 + (1 +
q

ā2p̄
)2P x

k−1Ā
T
k−1(I − LkC3,k)T

× (P x
k − (I − LkC3,k)Āk−1P

x
k−1Ā

T
k−1(I − LkC3,k)T )(I − LkC3,k)Āk−1P

x
k−1

≥ (1 +
q

ā2p̄
)P x

k−1 > 0.
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By the matrix inversion lemma [101], it follows that

((1 +
q

ā2p̄
)−1(P x

k−1)−1 − ĀTk−1(I − LkC3,k)T (P x
k )−1(I − LkC3,k)Āk−1)−1 > 0.

It establishes the statement with α′ = (1 + q

ā2p̄
)−1. �

Claim 2: There exists constant ε1 > 0 such that

E[v̄Tk (P x
k )−1(2(I − LkC3,k)Āk−1x̃k−1|k−1 + v̄k + 2ψ̄k)] ≤ ε1.

PROOF. Noises wk−1, v1,k−1, v2,k, and v3,k are uncorrelated and thus we have

E[v̄Tk (P x
k )−1(2(I − LkC3,k)Āk−1x̃k−1|k−1 + v̄k + 2ψ̄k)]

= E[v̄Tk (P x
k )−1v̄k] ≤ ε2p(1 + l̄c̄3)2((1 + ḡ2m̄2c̄2)2(q̄rk(Qk−1) + ḡ2

1m̄
2
1r̄1rk(R1,k−1))

+ ḡ2
2m̄

2
2r̄2rk(R2,k)) + pl̄2r̄3rk(R3,k) , ε1

where we apply ‖v1,k‖2 = tr(vT1,kv1,k) = tr(v1,kv
T
1,k) ≤ r̄1rk(R1,k) and the similar

relations for ‖wk−1‖2, ‖v2,k‖2, and ‖v3,k‖2. �

Claim 3: There exist constants δ, δρ, λ, ε2 > 0 such that, for ∀‖x̃k−1|k−1‖ ≤ δ

and ε ≤ δρ, the following holds:

ψ̄Tk (P x
k )−1(2(I − LkC3,k)Āk−1x̃k−1|k−1 + ψ̄k) ≤ λ‖x̃k−1|k−1‖3 + ε2.

PROOF. By Assumptions 2.5.2, 2.5.3 and 2.5.5, it holds that

‖ψ̄k‖ = ‖(I − LkC3,k)(φ̄k−1 + ρ̄k−1)− Lkψ3,k‖

≤ (1 + l̄c̄3)(ε((1 + ḡ2c̄2m̄2)(εφ + εψ1 ḡ1m̄1) + ḡ2m̄2εψ2)‖x̃k−1|k−1‖2

+ ε2ερ(ḡ2m̄2c̄2 + 2)) + l̄εψ3‖x̃k−1|k−1‖2

, λ′‖x̃k−1|k−1‖2 + ε′2

for all ‖x̃k−1|k−1‖ ≤ δ, and ε ≤ δρ. Hence,

ψ̄Tk (P x
k )−1(2(I − LkC3,k)Āk−1x̃k−1|k−1 + ψ̄k)

≤ (λ′‖x̃k−1|k−1‖2 + ε′2)(P x
k )−1(2(a+ l̄c̄3)ā‖x̃k−1|k−1‖+ λ′‖x̃k−1|k−1‖2 + ε′2)

≤ 2λ′p(1 + l̄c̄3)ā‖x̃k−1|k−1‖3 + λ′2pδ‖x̃k−1|k−1‖3 + ε′2p(2(1 + l̄c̄3)āδ + 2λ′δ2 + ε′2)
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, λ‖x̃k−1|k−1‖3 + ε2

where ‖x̃k−1|k−1‖ ≤ δ is applied in the last inequality. �

By Claims 1-3, recursion (2.24) becomes

E[Vk(x̃k|k)] ≤ α′E[x̃Tk−1|k−1(P x
k−1)−1x̃k−1|k−1] + λE[‖x̃k−1|k−1‖3] + (ε1 + ε2)

for ∀‖x̃k−1|k−1‖ ≤ δ and ε ≤ δρ. Notice that λ tends to zero as εφ, εψ1 , εψ2 , εψ3

tend to zero. Thus, there exists a sufficiently small tuple (εφ, εψ1 , εψ3) such that
λδ < α′p̄−1. Then,

E[Vk(x̃k|k)] ≤ αE[Vk−1(x̃k−1|k−1)] + c (2.28)

for ‖x̃k−1|k−1‖ ≤ δ where 0 < α < 1 and c , ε1 + ε2. Remind that ε1 tends to zero
as q̄′, r̄1, r̄2 and r̄3 tend to zero, and constant ε2 tends to zero as ε tends to zero.
For any constant c′ > 0, there exists a sufficiently small tuple (q̄′, r̄1, r̄2, r̄3, ε̄) such
that c < c′ holds for all ε ≤ ε̄. The following claim shows the PESp-like property
for state estimation error x̃k|k.

Claim 4: For any γ ∈ (0, 1), there exist αx, bx, cx, δ > 0 and tuple (q̄′, r̄1, r̄2,
r̄3, ε̄) such that if Qk ≤ q̄′I, R1,k ≤ r̄1I, R2,k ≤ r̄2I, R3,k ≤ r̄3I, and ε ≤ ε̄, then
the following properties hold, for all ‖x̃0|0‖ ≤ δ and k ≥ 0:

P (‖x̃k|k‖ < αxe
−bxk‖x̃0|0‖+ cx) ≥ 1− γ.

PROOF. Consider any γ ∈ (0, 1) and γ1 < γ. Then, there exists sufficiently small
constant δ < δ and tuple (q̄′, r̄1, r̄2, r̄3, ε̄) such that p̄δ2 + c

1−α ≤ γ1pδ
2 holds. Since

V0(x̃0|0) ≤ p̄‖x̃0|0‖2, we have, for all ‖x̃0|0‖ ≤ δ,

V0(x̃0|0) + c

1− α ≤ p̄‖x̃0|0‖2 + c

1− α ≤ γ1pδ
2. (2.29)

We choose any ‖x̃0|0‖ ≤ δ. Define the first exit time µ , inf{tk > 0|‖x̃k|k‖ > δ},
and µ ∧ k , min{µ, k} for any k > 0. We have

pδ2P (µ ≤ k) ≤ E[Vµ(x̃µ|µ)I[µ≤k]] ≤ E[Vµ∧k(x̃µ∧k|µ∧k)]
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≤ αµ∧kV0(x̃0|0) + c
µ∧k−1∑
i=0

αi (2.30)

where indicator function I[µ≤k] satisfies I[µ≤k] = 1 if µ ≤ k, otherwise I[µ≤k] = 0.
The first inequality holds because pδ2 < p‖x̃µ|µ‖2 ≤ Vµ(x̃µ|µ). The third inequality
can be obtained by recursively applying (2.28). It follows from (2.29) and (2.30)
that

P (µ ≤ k) ≤ γ1
αµ∧kV0(x̃0|0) + c

∑µ∧k−1
i=0 αi

V0(x̃0|0) + c
1−α

≤ γ1. (2.31)

Letting k → ∞, we also have P (‖x̃k|k‖ ≤ δ) ≥ 1 − γ1. Again consider any k with
µ ∧ k, and γ2 , γ − γ1. Markov’s inequality (p.455 [102]) derives

P (Vµ∧k(x̃µ∧k|µ∧k) ≥
αµ∧kV0(x̃0|0) + c

1−α
γ2

) ≤ γ2
E[Vµ∧k(x̃µ∧k|µ∧k)]
αµ∧kV0(x̃0|0) + c

1−α

≤ γ2
αµ∧kV0(x̃0|0) + c

∑µ∧k−1
i=0 αi

αµ∧kV0(x̃0|0) + c
1−α

≤ γ2.

Equivalently, P (Vµ∧k(x̃µ∧k|µ∧k) <
αµ∧kV0(x̃0|0)+ c

1−α
γ2

) ≥ 1− γ2. This implies that, by
Minkowski inequality,

P (‖x̃µ∧k|µ∧k‖ < βx(‖x̃0|0‖, µ ∧ k) + cx) ≥ 1− γ2 (2.32)

where βx(‖x̃0|0‖, µ ∧ k) ,
√

p̄
γ2p
α(µ∧k)/2‖x̃0|0‖ and cx ,

√
c

(1−α)(pγ2)). By (2.31)
and (2.32), we can obtain

P (‖x̃k|k‖ < βx(‖x̃0|0‖, k) + cx)

= P (‖x̃k|k‖ < βx(‖x̃0|0‖, k) + cx|µ > k)P (µ > k)

+ P (‖x̃k|k‖ < βx(‖x̃0|0‖, k) + cx|µ ≤ k)P (µ ≤ k)

≥ P (‖x̃µ∧k|µ∧k‖ < βx(‖x̃0|0‖, µ ∧ k) + cx|µ > k)P (µ > k)

= P (‖x̃µ∧k|µ∧k‖ < βx(‖x̃0|0‖, µ ∧ k) + cx)

− P (‖x̃µ∧k|µ∧k‖ < βx(‖x̃0|0‖, µ ∧ k) + cx|µ ≤ k)P (µ ≤ k)

≥ 1− γ2 − γ1 = 1− γ. (2.33)
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We are now in a position to prove PESp-like property for d̃1(t) and d̃2(t). The
NISE algorithm treats attack vectors as constants d̂1(t) = d̂1,k and d̂2(t) = d̂2,k for
t ∈ [tk, tk+1). Let us define constant approximation errors d1,e(t) , d1(t)−d̂1,k−d̃1,k

and d2,e(t) , d2(t)− d̂2,k − d̃2,k for t = [tk, tk+1).
Claim 5: The constant approximation errors are bounded: ‖d1,e(t)‖ ≤ εd̄,

‖d2,e(t)‖ ≤ εd̄.

PROOF. Notice that d1,e(t) and d2,e(t) satisfy ‖d1,e(tk)‖ = ‖d2,e(tk)‖ = 0 for ∀k
because new estimates are obtained at the sampling instants. Since attack vector
d(t) is continuous, the error bound of d1,e(t) is given by

‖d1,e(t1)‖ ≤ (t1 − tk) sup
t∈[tk,tk+1)

‖d(t)− d(tk)
t− tk

‖ ≤ εd̄

where Assumption 2.5.1 and t1 − tk ≤ ε are applied. The proof for d2,e(t) is
analogous to that for d1,e(t). �

Without loss of generality, consider γ, γ1, and x̃0|0 used in Claim 4. Consider
mean square error of d̂1(t) for t ∈ [tk, tk+1), with (2.14) and ‖d1,e(t)‖ ≤ εd̄ by Claim
5:

E[‖d̃1(µ ∧ t)‖2] = E[‖d̃1,µ∧k + d1,e(µ ∧ t)‖2]

≤ m̄2
1(E[c̄2

1‖x̃µ∧k|µ∧k‖2 + c̄1εd̄‖x̃µ∧k|µ∧k‖+ ‖v1,µ∧k‖2 + ‖ψ1,µ∧k‖2

+ 2c̄1‖x̃µ∧k|µ∧k‖‖ψ1,µ∧k‖+ εd̄‖ψ1,µ∧k‖]) + ε2d̄2

where Cauchy-Schwarz inequality is applied. Since ‖x̃µ∧k|µ∧k‖ ≤ δ, it follows that

E[‖d̃1(µ ∧ t)‖2] ≤ m̄2
1(c̄2

1 + 2εψ1 c̄1δ + ε2ψ1(δ2 + εd̄))E[‖x̃µ∧k|µ∧k‖2]

+ m̄2
1(c̄1εd̄δ + r̄1rk(R1,µ∧k)) + ε2d̄2

where ‖v1,µ∧k‖2 ≤ r̄1rk(R1,µ∧k), and ‖ψ1,µ∧k‖ ≤ εψ1‖x̃µ∧k|µ∧k‖2 are applied. Ap-
plying ε ≤ c and E[‖x̃µ∧k|µ∧k‖2] ≤ αµ∧k

p
V0(x̃0|0) + c

p

∑µ∧k−1
i=0 αi obtained in (2.30), it

follows that

E[‖d̃1(µ ∧ t)‖2] ≤ β1(‖x̃0|0‖2, µ ∧ k) + c1
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where β1(‖x̃0|0‖2, µ ∧ k) , m̄2
1(c̄2

1 + 2εψ1 c̄1δ + ε2ψ1(δ2 + cd̄))αµ∧k
p
p̄‖x̃0|0‖2 and c1 ,

m̄2
1(c̄2

1 +2εψ1 c̄1δ+ε2ψ1(δ2 +cd̄)) c
p(1−α) +m̄2

1(c̄1cd̄δ+ r̄1rk(R1,µ∧k))+ε2d̄2. By Markov’s
inequality, for t ∈ [tk, tk+1), we have

P (‖d̃1(µ ∧ t)‖2 ≥
β1(‖x̃0|0‖2, µ ∧ k) + c1

γ3
) ≤ γ3

for any γ3 ∈ (0, 1). Analogous to (2.33), we have

P (‖d̃1(t)‖2 <
β1(‖x̃0|0‖2, k) + c1

γ3
)

≥ P (‖d̃1(µ ∧ t)‖2 <
β1(‖x̃0|0‖2, µ ∧ k) + c1

γ3
|µ > k)P (µ > k)

= P (‖d̃1(µ ∧ t)‖2 <
β1(‖x̃0|0‖2, µ ∧ k) + c1

γ3
)

− P (‖d̃1(µ ∧ t)‖2 <
β1(‖x̃0|0‖2, µ ∧ k) + c1

γ3
|µ ≤ k)P (µ ≤ k)

≥ 1− γ3 − γ1 ≥ γ

for t ∈ [tk, tk+1) and for some γ ∈ (0, 1). By applying Minkowski inequality
to β1(‖x̃0|0‖2,k)+c1

γ3
, we show PESp-like property for d̃1(t). The proof of PESp-like

property for d̃2(t) is similar to that for d̃1(t). We omit its details. �

Proof of Lemma 2.6.1. To prove the statement, we first formally establish
the equivalence of the NISE algorithm and the EKF by expressing the attack
vector estimates as functions of state estimates. Due to such connection, we apply
existing results on the analysis of the EKF [93] to the NISE algorithm to prove the
rest of the part. By expressing d̃1,k−1 and d̃2,k−1 as functions of x̃k−1|k−1, we find
the update law of state estimation (2.23) and its error covariance (2.22). They are
identical to those of the EKF problem for the following continuous-discrete system:

ẋ(t) = f̄(x(t), u(t), w̄′(t), t)

y3,k = h̄(xk, uk, v′k, tk) (2.34)

where its linearized system is given by

xk+1 = xk + εf̄(xk, uk, w̄′k, tk) + ρ̄k
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' xk + ε(Ākxk + B̄kuk) + ρ̄k + w̄k

y3,k ' C3,kxk +D3,kuk + v3,k

as shown in Claim 6; i.e., the two problems are equivalent to each other.
Claim 6: Under Assumption 2.4.1, state estimation error update law and

its error covariance update law of the continuous-discrete EKF problem (2.34) is
identical to (2.23) and (2.22) of system (2.3). Moreover, the optimal estimate gain
matrices Lk are identical.
PROOF. Consider (2.34). State prediction x̂k|k−1 can be obtained by setting
x̂k|k−1 = x(tk) where

˙̂x(t) = f̄(x̂(t), u(t), 0, t)

for t ∈ (tk−1, tk] with initial condition x̂(tk−1) = x̂k−1|k−1. Or equivalently, x̂k|k−1 =
x̂k−1|k−1 + εf̄(x̂k−1|k−1, uk−1, 0, tk−1) + ρ̄k−1. Its error dynamic is given by, from the
linearization of f̄ ,

x̃k|k−1 = (I + εĀk−1)x̃k−1|k−1 + w̄k−1 + φ̄k−1.

State estimate is

x̂k|k = x̂k|k−1 + Lk(y3,k − h̄(xk|k−1, uk, 0, tk))

with its error dynamic

x̃k|k = (I − LkC3,k)x̃k|k−1 − Lkv3,k − Lkψ3,k

= Āk−1x̃k−1|k−1 + w̄k−1 + φ̄k−1 + ρ̄k−1

− Lk(C3,k(Āx̃k−1|k−1 + w̄k−1 + φ̄k−1 + ρ̄k−1) + v3,k + ψ3,k).

which is identical to (2.23). We can find error covariance update (2.22) by the same
argument for the NISE algorithm, ignoring unknown terms ρ̄k−1, φ̄k−1 and ψ3,k.
Moreover, it should be emphasized that finding the optimal gain matrices Lk for
the EKF is the same unconstrained optimization problem of the NISE algorithm.
�

We are now in a position to verify that all the assumptions on the EKF in [93]
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are satisfied. As shown in Claim 6, the NISE algorithm satisfies that process
noise w̄′(t) and measurement noise v′k are uncorrelated in the equivalent EKF
problem (2.34). Assumption 2.5.2 implies that ‖Āk‖ ≤ ā, qI ≤ Q̄k and uniform
observability of the pair (C3,k, Āk). The above conditions with Assumptions 2.5.2,
and 2.5.3 suffice the conditions of Theorem 4.5 in [93]. Because of the equivalence
of the EKF and the NISE algorithm, Theorem 4.5 of [93] implies that pI ≤ P x

k =
E[x̃kx̃Tk ] ≤ p̄I of the NISE algorithm for some positive constants p and p̄.

Now we proceed to prove the boundedness of P d1
k and P d2

k−1. Let us consider
the following instrumental claim.

Claim 7: If 0 ≤ pI ≤ P ≤ p̄I and ‖F‖ ≤ F̄ , then 0 ≤ F TP x
k F ≤ p̄F̄ 2I.

PROOF. Consider any v and choose v′ = Fv. Then,

v′T (P x
k − p̄I)v′ ≤ 0, v′T (P x

k − pI)v′ ≥ 0.

Hence,

vT (F TP x
k F − p̄F TF )v ≤ 0, vT (F TP x

k F − pF TF )v ≥ 0.

Since F TF is symmetric, we have

vTF TP x
k Fv ≤ p̄λmax(F TF )‖v‖2,

vTF TP x
k Fv ≥ pλmin(F TF )‖v‖2.

Notice that λmax(F TF ) = ‖F‖2 ≤ F̄ 2 and λmin(F TF ) ≥ 0. Thus 0 ≤ F TP x
k F ≤

p̄F̄ 2I. �

Substitute P xd1
k−1 into P d2

k−1 and apply Claim 7 with 0 ≤ R1,k−1 ≤ r̄1I, 0 ≤ R2,k ≤
r̄2I, 0 ≤ Qk−1 ≤ q̄′I, and pI ≤ P x

k ≤ p̄I. Then, we have 0 ≤ P d2
k−1 ≤ p̄d2I for some

p̄d2 ≥ 0. Likewise, by Claim 7, there exists non-negative constant p̄d1 such that
0 ≤ P d1

k ≤ p̄d1I. The above arguments hold for all k ≥ 0. �
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Chapter 3 |
Cyber-physical security: Attack-
resilient estimation (Applications)

We in this chapter present applications of the NISME designed in Chapter 2 on
power systems, mobile robots, and vehicle networks. In particular, we extend the
intrusion detection systems into distributed settings in Section 3.3 in which a fleet
of vehicles collaborates each other to accomplish attack detection.

3.1 Power systems
In Section 2.5, a set of properties is shown for the true mode under the time-
invariant hidden mode. However, we do not have formal guarantees for the cases
of time-varying modes. Moreover, the effectiveness of a set of reduced modes
discussed in Section 2.6.3 remains unclear. In this section, we will use the IEEE 68-
bus test system to empirically illustrate them. The NISME is applied to the IEEE
68-bus test system shown in Figure 3.1. In the network, there are 16 generator
buses (|G| = 16), and 52 load buses (|L| = 52). Each local bus is described by (2.1)
(as [104]), and (2.2) with ε = 0.01s. It is assumed that noises w(t) and vk are zero
mean Gaussian with covariance matrices Qi(t) = 0.012I, and Ri,k = 0.014I. The
parameters are adopted from page 598 in [105]: Di = 1, and tij = 1.5 for ∀i ∈ V .
Angular momentums are mi = 10s for i ∈ G and a larger value mi = 100s for load
buses i ∈ L. Backstepping inspired stabilizing distributed controllers [106] are
applied to the power system. We choose δ = 3.3% as a lower bound of probabilities.
The attacker could launch 3 sensor attacks, 3 actuator attacks, and 2 switching
attacks described in Figure 3.1.
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Figure 3.1: Locations of the attacks (Figure from [1]).

We consider the attack scenario where the system is under the time-varying
attacks: sensor attacks 0.01 cos(0.12t) for t = [0, 10), actuator attacks 0.1 −
0.6 sin(0.3t) for t = [10, 20), and switching attacks for t = [20, 30). For t ≥ 30, the
system would be attack-free.

The goals of case study 1 and 2 are to verify the performance of the NISME for
time-varying modes with a regular mode set, and a reduced mode set, respectively.

Case study 1: Consider the following four modes.
Mode 0: Attack-free.
Mode 1: Sensors (electrical power outputs) 26, 53 and 54 are attacked.
Mode 2: Actuators 14, 15, and 16 are attacked.
Mode 3: Line switches {56, 57}, and {59, 60} are attacked.

If the sizes of the estimated attack vectors are not statistically significant, mode
0 will be chosen, as described in Algorithm 2.

Remark 3.1.1 The power system under the mode 1,2 and 3 satisfies Assump-
tions 2.4.1, 2.5.1, 2.5.2, 2.5.3 and uniform observability condition for all three
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modes. This is because the system is time invariant and the linearization error is
O(‖x̃k|k‖2) for ‖x̃k|k‖ ≤ 1. �

Significance levels α1 = α2 = 0.75 are applied with corresponding chi-square
values χ2

3(0.75) = 4.11. The mode probabilities and estimation results are shown
in Figure 3.2 where the estimates are coincident with the true modes. Mode
estimation is inaccurate near 10 sec. This is because the sizes of attack vectors
are small (the second and third subfigure in Figure 3.3) during this time and
thus the attack vector estimates are not considered statistically significant. Mode
probabilities of mode 1 and 2 are oscillating for t > 30, because both modes 1 and
2 with zero attack vectors would represent attack-free mode (mode 0).

The outputs of the NISME and the real attack signals are presented in Fig-
ure 3.3. The first subfigure indicates that the state estimation errors satisfy
PESp-like property. Although the frequency fluctuates due to the actuator attack
t ∈ [10, 20), its estimates are accurate. The additive sinusoidal sensor attack for
t ∈ [0, 10) is well estimated as shown in the second subfigure. The third subfigure
shows the estimates and real vectors of actuator attack; the sinusoidal actuator at-
tacks for t ∈ [10, 20) on the control inputs. Around 10 sec, attack vector estimates
are set to zero because d̂j=2

a,14 is not considered statistically significant.
Case study 2: There are 6 potential signal attack locations with 2 possible

switching attacks, and thus we have |MI | = 22, |MA| = 26, and |M| = 26×22 = 256.
We, however, could reduce the number of modes by lines 3-6 in Algorithm 5 with
T = ∞ into four; i.e., MD

[1,∞] = {j1, j2, j3, j4}, where each mode associates with
one j ∈ MI . All the four modes assume that sensors (electrical power outputs)
26, 53, 54 and actuators 14, 15, and 16 are attacked. Their assumptions on line
switching attacks are described as below:
Mode j1: There is no line switching attack.
Mode j2: Line switches {56, 57}, and {59, 60} are attacked.
Mode j3: Line switch {56, 57} is attacked.
Mode j4: Line switch {59, 60} is attacked.

Note that the systems under the new modes satisfy Assumptions 2.4.1, 2.5.2,
and 2.5.3 and uniform observability condition as well as the rest of the assumptions
in Theorem 2.5.1. True mode estimation is essential because none of the above
modes is true.

We conduct the simulation for Algorithm 5, using confidence levels α1 = α2 =
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Figure 3.2: Mode estimates and probabilities of each mode.

0.8 with corresponding z-values z(α1) = z(α2) = 1.28. As case 1, the true modes
are among modes 0 to 3, defined in case 1. This is unknown to the defender
and the defender remains to consider 256 possible modes in Algorithm 4. For the
presentation purpose, we project the modes other than modes 0 to 3 into mode 4;
i.e., if mode 4 is chosen, mode estimation is incorrect.

The estimation results are shown in Figure 3.4, and 3.5, which are consistent
with the results of the case 1 shown in Figure 3.2, and 3.3. The first subfigure in
Figure 3.4 provides a true mode estimation described in Section 2.6.3. As case 1,
mode estimates are erroneous near 10 sec because the sizes of attack vectors are
small and thus the attack vectors are not regarded statistically significant. After
30 sec, mode probabilities oscillate between two modes in case study 1, but not in
case study 2. In case study 1, two modes 1 and 2 are true with zero signal attacks,
but mode 3 cannot be a true mode. In case study 2, only mode j1 is true with zero
signal attacks, but modes j2, j3 or j4 cannot be a true mode.

The modes in the reduced mode set have less restrictive assumptions on attack
locations than those of the original mode set, but shows similar estimation results.
This simulation, thus, validates the performance of the NISME for the minimal
number of modes discussed in Section 2.6.3.
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Figure 3.3: Real signals and estimated signals (top to bottom); (a) state estimation
of angular frequency at bus 16; (b) sensor attack estimation of bus 53; (c) actuator
attack estimation on the control input of bus 14.

3.2 Mobile robots
Figure 3.6 shows an image of the robot system. It consists of Khepera III [107]
deferential drive robot mounted with KoreBot II [108] extension chip. Khepera
is actuated by setting the speeds of the two wheels on its chassis. KoreBot runs
OpenEmbedded Linux, which enables in-robot programming and control. The
robot is equipped with three sensors: a wheel encoder, a laser range finder (Li-
DAR), and an indoor positioning system (IPS). The wheel encoder calculates the
traveled distance of each wheel in a short period of time. Given its previous state,
the traveled distance is further processed into its current position and orientation.
LiDAR scans laser beams in 240 degrees of angle, and receives reflection to obtain
distances from surrounding objects. IPS is powered by Vicon motion capturing
system (see Figure 3.6). Multiple cameras on the roof track the positions of the
reflective markers on the robot, and calculates its position.

In the real world, wheel encoder, ranger finder and positioning system (e.g.
GPS, GLONASS) are common sensor settings for many ground vehicles [109,110]
in applications such as localization, obstacle avoidance, navigation, etc. Typically.
positioning system serves as the primary navigation source, and wheel encoder
serves as secondary source when position system is not available (e.g. in tunnels).
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Figure 3.4: Mode estimates and probabilities of each mode with reduced mode set.

LiDAR detects nearby obstacles and redirects the robot to avoid them. We believe
that our testbed reflects features of real world robots.

For comparison purpose, we use an identical path generated from RRT* for all
scenarios in the experiments. In each experiment, Khepera travels from a starting
point at (0m,−1.2m) to a target point (0m, 1m) inside a 3m× 4m confined space
shown in Figure 3.6, with constant 7000 speed units1. Three 0.8m × 0.2m ×
0.2m cube-shaped obstacles reside on the ground between the starting and target
location. RRT* algorithm generates a path that avoids the obstacles, and Khepera
follows the path using PID (P = 0.8, I = 0, D = 0.001) control. We identify
sensor measurement noise covariance matrix R and the process noise covariance
matrix Q by referring to the data sheets of the sensors along with some empirical
experiments. (refer to [111] for more systematic approaches.) NISME generates
detection results under confidence level of 0.05 for actuator attacks, and 0.005 for

1Speed ratio 144010 units per m/s, 7000 units is approximately 0.05m/s.
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Figure 3.5: Performance of the NISE for the reduced mode set. Detailed descrip-
tions on the other subfigures are identical to those of Figure 3.3.

Figure 3.6: Khepera robot testbed and indoor positioning system.

sensor attacks. We choose 2 positives out of 2 windows as the decision criteria for
sensor attacks, and choose 3 positives out of 6 windows as the decision criteria for
actuator attacks.

Mission. Khepera has a planned path from the starting position to the target
position as shown in Figure 3.7, while avoiding static obstacles. Khepera imple-
ments PID control to achieve the goal.

Attack setup. We conduct multiple attack scenarios during the mission. The
complete list of the attacks are described in Table 3.1. We intend to demonstrate
that NISME works well regardless of the attack channels or the target components
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Table 3.1: Attack scenarios launched against Khepera mobile robot.

Attack Scenario Attack Scenario Description

Wheel controller logic bomb Logic bomb in actuator utility lib that alters
the control commands to be executed

Wheel jamming Physically jamming a particular wheel
so that it will stuck

IPS logic bomb Logic bomb in IPS data processing lib
that alters the authentic positioning data

IPS spoofing IPS signal that overpowers authentic source and
sends out fake positioning data

Wheel encoder logic bomb Logic bomb in wheel encoder data processing lib
that alters its readings

LiDAR sensor blocking Physically blocking laser ejection and
reception channels in particular directions with masks

LiDAR DOS Denial of service by cutting off
LiDAR sensor wire connection with the robot

Wheel controller
and IPS logic bombs

Altering both wheel control commands
and IPS readings through logic bombs

LiDAR DOS
and wheel encoder logic bomb

Blocking LiDAR readings and
altering wheel encoder readings

IPS spoofing and LiDAR DOS Altering IPS readings and blocking LiDAR readings

IPS and wheel encoder logic bombs Altering both IPS and wheel encoder readings
through logic bombs

in the robot platform. The attack scenarios target on different sensing or actuation
workflows of the robot, and launch actuator and sensor attacks through different
channels including cyber and physical channels. We inject several logic bombs
into the data processing libraries of the IPS and the wheel encoder. The logic
bombs can be triggered at certain time after the mission start, and continuously
alter the authentic sensor readings afterwards. For instance, we can trigger the
logic bomb to stealthily shift the positioning data received from IPS by a certain
distance along the X axis. A logic bomb is also injected into the wheel controller
library to add extra control commands to the two wheels. Wheel jamming attack
is launched by physically jamming a wheel, so that the wheel stops moving. IPS
spoofing attack is launched by overriding authentic IPS signals from the Vicon
system and sending fake positioning data. IPS spoofing is analogous to real world
GPS spoofing attacks. For LiDAR, we launch sensor attack by blocking the signal
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Figure 3.7: Khepera mission.

ejection and reception channel in certain directions. Besides, we launch the at-
tack that sabotages the signal transmission by physically cutting off its wires. To
evaluate the detectabiliy of NISME when multiple sensing workflows or actuation
workflows are under attack, we launch several attack scenarios where several of
the aforementioned attacks are combined. Table 3.3 shows quantitative informa-
tion about the details of attack scenarios. In addition to attack scenarios, we also
conduct 9 scenarios when the mission is finished without intrusion.

NISME aims at detecting as well as identifying attacks in robots. To evaluate
the effectiveness of NISME, we define true positive as a time instant that 1) raise
an alarm if the robot is under attack, and 2) identify the correct attack target
case; i.e., which sensor or actuation workflow(s) are attacked. Otherwise, positive
detection result is considered as false positive. False negative is defined as a time
instant when NISME does not raise alarm when any workflow is under attack. If
all workflows are free of attacks and NISME does not raise any alarm, the time
instant is referred to as true negative. The detection result column in Table 3.3
shows identification of attack types and attack target case for different scenarios.
Note that some scenarios (e.g. #7) are not provided with quantitative description
on the attack vector because some experiments are difficult to describe. From the
11 attack scenarios, we observe that both types of attacks launched from different
channels can be successfully detected and identified. Scenario #1, #2 and #8
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involves actuator attacks launched from different channels, and #8 is also mixed
with sensor attacks. Scenario #3 and #4, #6 and #7 are two pairs of attacks
launched to the same sensors. Scenario #8, #9 and #10 are mixed sensor attacks
where two sensors are compromised.
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Figure 3.8: No attack scenario. The eight plots in each subfigure are: (1) estimated
sensor attack vector on IPS; (2) estimated sensor attack vector on wheel encoder;
(3) estimated sensor attack vector on LiDAR; (4) estimated actuator attack vector
for the wheels; (5) sensor attack Chi-square hypothesis test statistic and threshold
under confidence level α = 0.005; (6) sensor attack target case selection; (7) ac-
tuator attack Chi-square hypothesis test statistic and threshold under confidence
level α = 0.05; (8) actuator attack target case selection.
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Figure 3.9: Attack scenario #1: wheel controller logic bomb.

Detection Results. For the ease of presenting classification results, Table 3.2
defines the attack target cases for actuator and sensor attacks. Note that sensor
attack target case S4, S5 and S6 represent cases when multiple sensor readings
are corrupted and only one sensor returns uncorrupted value. In each iteration we
also calculate the deviation between reference sensor readings and estimated sensor
readings using state estimates so that we can see the estimation for all sensors.

Figures 3.8-3.12 present graphical details of the detection results for several
attack scenarios. Each figure includes eight plots that elaborate the outputs of
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Figure 3.10: Attack scenario #3: IPS logic bomb.
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Figure 3.11: Attack scenario #8: Wheel controller and IPS logic bomb.

NISME in each experiment: 1) estimated sensor attack vector on IPS; 2) estimated
sensor attack vector on wheel encoder; 3) estimated sensor attack vector on LiDAR;
4) estimated actuator attack vector for the wheels; 5) sensor attack Chi-square
hypothesis test statistic and threshold under confidence level α = 0.005; 6) sensor
attack target case selection; 7) actuator attack Chi-square hypothesis test statistic
and threshold under confidence level α = 0.05; 8) actuator attack target case
selection. Figure 3.8 shows the detection output when there is neither actuator
attack nor sensor attack. Estimation results in plot 1-4 show nearly zero estimated
attack vectors with noises. The Chi-square test statistics shown in plot 5 and 7
indicate both actuator and sensor attack remain under predetermined threshold,
except some occasional spikes caused by noises. After the sliding window filtering,
plot 6 and 8 indicates an attack silence. Figure 3.11 shows a scenarios when
wheel controller control commands and IPS sensor readings are tampered by logic
bombs at different time instants. Around 4s, sensor attack vector estimates on
the X axis of IPS readings surges (plot 1). Accordingly, sensor attack test statistic
surges above the threshold (plot 5), and sensor attack target case selection (plot 6)
indicates that the robot is under IPS sensor attack. Around 10s, actuator attack
vector estimates on left and right wheel significantly deviate from 0. Accordingly,
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Figure 3.12: Attack scenario #10: IPS spoofing and LiDAR DOS.

Figure 3.13: Mission execution under attack scenario #11. Khepera travels from
the start location (left side) to a target location (right side). The green background
indicates the time window when there is no attack. The red background indicates
the time window after an attack is launched/revoked and before RIDS correctly
identifies the change. The yellow background indicates the time window under
attack and RIDS correctly identifies the attack.

we notice an oscillating surge over the threshold for actuator attack (plot 7), and
actuator attack target case selection (plot 8) indicates that the robot is under
actuator attack. During the experiment, both sensor attack estimates for wheel
encoder and LiDAR remain silent. Figure 3.12 shows a scenario where attacks
against multiple sensors are launched/revoked at four different time instants. We
observe that the detection results are highly consistent with the scenario design.

We examine the false positive and false negative time instants occurred in the
experiments. Majority of false classifications are introduced by the sliding window
for the purpose of denoising. False positives and false negatives are inevitable at
the edge when attacks become active or revoked, and the choice of window size and
decision criteria determine the number of false classifications. For sensor attack
false positives, we observe only a small portion is caused by attack target case

1False positive rate and false negative rate (%).
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Table 3.2: Sensor and actuator attack target case definition.

Sensor Attack
Target Case # Robot Attack Status

S0 under no sensor attack
S1 under IPS sensor attack
S2 under wheel encoder sensor attack
S3 under LiDAR sensor attack
S4 under wheel encoder and LiDAR sensor attack
S5 under IPS and LiDAR sensor attack
S6 under IPS and wheel encoder sensor attack

ActuatorAttack
Target Case # Robot Attack Status

A0 under no actuator attack
A1 under actuator attack

selection errors, while majority is caused by bogus test statistics increases. The
average false positive rate and false negative rate are 0.86% and 0.97%, respectively.
Therefore, the NISME is considered effective in detecting and identifying both
actuator attacks and sensor attacks targeted in our testbed.

Detection Delay. Detection delay indicates the time between when specific
attack is launched/revoked, and when NISME captures the change. Theoretically,
in each control iteration, attack vectors can be revealed in the very next iteration
after launch time from NISE. However, we add a sliding window in the decision
maker to eliminate noise impact. Hence, detection delays will depend on the
decision making algorithm and parameter choice. In our experiment, we choose
sliding window as the detection making algorithm. Specifically, we choose 2/2 and
3/6 as the decision criteria and sliding window size. The detection delay for each
attack scenario is shown in Table 3.3. We observe that the detection delays are
quite small. Specifically, average detection delay for sensor attacks is 0.35s, and
the counterpart for actuator attacks is 0.61s. The average delays are consistent
with our parameter selection for actuator and sensor attacks. Through our analysis
on the detection statistics, we notice that NISME raises alarm mostly in the next
iteration after attack occurs. Most delays are incurred by the sliding window
decision making.

Once the magnitude of an attack exceed predetermined threshold, the maximal
detection delay is a constant multiple of control iterations. The frequency of con-
trol iteration is determined by hardware configurations (e.g. CPU frequency) and
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Table 3.3: Attack scenarios and detection results from NISME.

# Attack Scenario Launch
Time

Attack
Type

(Channel)

Attack
Description

Dete-
ction
Delay

FPR
/FNR2

1 Wheel controller
logic bomb

16.0 Actuator
(cyber)

-6000 units on vL

+6000 units on vR

0.49 A: 0/0.83
S: 1/-

2 Wheel jamming 5.3 Actuator
(physical)

0 unit on vL 0.76 A: 0/3.1
S: 0/-

3 IPS logic bomb 19.0 Sensor
(cyber)

shift +0.07m on X 0.30 A: 0/-
S: 1.6/0.24

4 IPS spoofing 26.0 Sensor
(physical)

shift −0.1m on X 0.24 A: 2.24/-
S: 1.55/1.39

5 Wheel encoder
logic bomb

16.0 Sensor
(cyber)

increment 100 steps
on left wheel encoder

0.43 A: 1.4/-
S: 0/0.45

6 LiDAR DOS 0.0 Sensor
(physical)

received distance
reading is 0m

in each direction
0.23 A: 0/-

S: 0/0

7 LiDAR sensor
blocking

7.0 Sensor
(physical)

received distance
reading to the left
wall is erroneous

0.55 A: 0.22/-
S: 0/0.80

8 Wheel controller &
IPS logic bomb

W: 10.0
I: 3.8

Sensor
&Actuator
(cyber)

∓6000 units on vL, vR

shift +0.07m on X
W: 0.59
I: 0.50

A: 0/1.8
S: 0/0.24

9
LiDAR DOS &
wheel encoder
logic bomb

W: 16.0
L: 25.0

Sensor
(cyber

&physical)

increment 100 steps
on left wheel

0m in each direction
from LiDAR

W: 0.43
L: 0.29

A: 0/-
S: 0.48/0.72

10 IPS spoofing &
LiDAR DOS

L: 10.0
I: 17.0
L: 25.0

Sensor
(physical)

0m in each direction
from LiDAR

shift +0.07m on X
LiDAR readings are
restored to normal

L: 0.36
I: 0.29
L: 0.30

A: 0.25/-
S: 0.25/0.58

11
IPS &

wheel encoder
logic bomb

W: 10.0
I: 28.0

Sensor
(cyber)

increment 100 steps
on left wheel

shift +0.1m on X

W: 0.33
I: 0.31

A: 0/-
S: 0.25/0.33

control algorithm design, which is chosen to meet the specifications of robots and
operational needs. Fast moving robots should have higher frequency of control cy-
cles to ensure timely sensor data processing and actuation. For instance, to operate
in a harsh field environment under a relatively high speed, Boston Dynamics Big-
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Dog [112] is designed with a frequency of 200HZ to facilitate robot balancing and
steering. In our testbed, the frequency of the control iteration is 100HZ. We ob-
serve that the detection is much earlier than the collision. Security administrative
has plenty of time for attack response. Moreover, since certain safety policies are
usually enforced into a mission (e.g. safety minimum distance from obstacles for
ground vehicles, safety minimum altitude for UAVs), we believe that our NISME
can quickly detect attacks before they cause significant damage to the robot or the
environment.

Attack Vector Quantification. Actuator attack and sensor attack vector es-
timation provides quantitative information of the attacks, which can assist security
administrative for further diagnosis and attack response. For instance, after sensor
attack detection in scenario #9, IPS sensor attack estimate on X axis is +0.069m
with standard deviation of ±0.002m. Average error between estimated vector and
the ground truth (+0.07m) is 1.91%. After actuator attack detection, average
actuator attack estimates on the left wheel and right wheel are −5975.4 ± 1188
units and +5892.4 ± 1091 units, respectively. Average error between estimated
vector and the ground truth (∓6000 units) are 0.41% and 1.79%, respectively. We
observe that the estimation results are fairly accurate for both actuator and sensor
attack vector estimation.

3.3 Connected vehicles
We consider a multi vehicle system, where each vehicle equips GPS, wheel encoders,
and IMU (Inertial Measurement Unit) for navigation, and LiDAR (Light Detection
And Ranging sensor) to observe the states of neighboring vehicles (see Figure 3.14).
A vehicular ad hoc network in Figure 3.15 is established to connect nearby vehicles
in a decentralized and self-organizing manner.

We consider adversaries that can launch active attacks on the vehicles in a
connected vehicle network in order to deviate the vehicle from its normal operation.
The adversaries can observe real-time vehicle states and has knowledge about
vehicle sensing, actuation, and computing systems. They are capable of launching
sensor attacks or actuator attacks through different channels, including physical
damage (e.g. jamming wheels), signal interference (e.g. GPS spoofing), or cyber
breach (e.g. root-kit) on one or multiple vehicles.
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Figure 3.14: Scaled autonomous vehicle testbed and indoor positioning system.
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Figure 3.15: Vehicle collaborative intrusion detection system overview.

The VCIDS (Vehicle Collaborative Intrusion Detection System) consists of the
intra-vehicle IDS (Intrusion Detection System) and inter-vehicle IDS as shown
in Figure 3.15. In particular, the intra-vehicle IDS module is dedicated for the
purpose of detecting local sensor and actuator attacks, as well as generate state
estimates using local data. The intra-vehicle IDS applies the NISME on the local
data collected from the monitor. The inter-vehicle IDS is dedicated to confirm the
attacks detected from the intra-vehicle IDS, and identify a boarder range of attacks
by the NISME. The key audit data source is the observation sensor readings from
nearby vehicles. Once the new state estimates is generated, a vehicle can estimate
the state of nearby vehicles within the range of its observation sensors. After that,
each vehicle receives the state estimates of itself from nearby vehicles. Note that
the number of observed vehicles can be different from the number of received state
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estimates. Then, the received state estimates are treated as sensor readings from
external sources and fed into the multi-mode estimation algorithm along with the
clean sensor readings identified from the intra-vehicle IDS. Finally, the detection
results for the received observations are broadcasted, and receive the corresponding
results for decision making.

We evaluate the VCIDS on the scaled autonomous vehicle testbed against var-
ious attacks and demonstrate its security capabilities. We intend to answer two
research questions for the detection system: 1) what benefits does the VCIDS offer
in terms of security capabilities? 2) To what extent does the VCIDS influence
the detection performance, i.e., effectiveness and efficiency? We present the detec-
tion results generated from the VCIDS nodes and compare the detection results
between deploying intra-vehicle IDS only and deploying both IDSs.

The three vehicles in the testbed travel in the indoor environment. For the
ease of presentation, we label the three vehicles with fixed numbering. In each
experiment, vehicle 1 and vehicle 2 circle around the environment in a predefined
two-lane road with an identical constant speed of 6cm/s as shown in Figure 3.16.
Vehicle 3 stays on the roadside without moving, but all onboard sensors are work-
ing. During the mission, the three vehicles communicate with each other through
V2V communication and collaboratively detect attacks.

Figure 3.16: Scaled autonomous vehicle execution in the indoor environment. At-
tack scenarios. Scenario 1: Encoder logic bomb and left wheel jamming. Scenario
2: LiDAR driver logic bomb. Scenario 3: System hijacking. Scenario 4: Rogue
nodes.

Attack Setup. To demonstrate the effectiveness of our detection system, we
consider the following four attack scenarios where attacks are launched on different
targets. The attack scenarios are conducted independently with each other.
Wheel encoder logic bomb & wheel jamming. The attack is launched by re-
placing the wheel encoder sensor data processing library with a customized library
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in vehicle 1. Instead of returning states obtained from motion of the wheel shafts,
the customized library returns the sensor readings with a constant sensor attack
vector that shifts the vehicle by −10cm on the X axis. A plastic stick is placed
in the left rear wheel of vehicle 1. The stick adds friction in the wheel and slows
down the movement of the wheel. The actuator attack adds a inconstant attack
vector on the wheel.
LiDAR driver logic bomb. Analogous to the wheel encoder sensor logic bomb
attack, we replace the driver program of the LiDAR observation sensor driver with
a customized sensor driver of vehicle 1. The customized driver alters the relative
distances and angle measurements of nearby vehicles.
System hijacking. For advanced attackers, it has been demonstrated to be pos-
sible that attackers can hijack into the vehicle system. Hence, it is possible that
attackers could corrupt all sensor readings simultaneously. In order to avoid de-
tection, an advanced attacker would try to achieve their attack goal while avoiding
the detection. To do this, the attacker could modify all sensor readings in a con-
sistent manner. For instance, an attacker could shift all sensor readings on Y axis
by +10cm. During the intra-vehicle detection phase, the multi-mode estimation
algorithm does not have a clean sensor as the reference sensor. Moreover, since
the sensor readings are corrupted consistently, the hypothesis tests would not gen-
erate positive results due to the lack of significant deviation. Here we consider an
advanced attacker who carefully crafts all sensor data in vehicle 1 and makes them
consistent with each other.
Rogue nodes. Attackers can setup rogue nodes that broadcast fake messages to
nearby vehicles that are intended to cause wrong decision making for vehicles. In
this scenario, we assume that a rogue node is set up by the roadside which intend
to broadcast fake observations. The rogue node broadcasts large amount of fake
observations of vehicle 1 that contain shifted observations.

Detection Results. In order to demonstrate the security capability of the
collaborative detection system over a standalone intra-vehicle IDS, We compare the
detection results generated from the intra-vehicle IDS and the complete VCIDS.
Table 3.4 shows the detection results generated from the four attack scenarios we
launched in the testbed. We observe that the intra-vehicle IDS can only detect the
first attack scenario when a subset of navigation sensors are under attack. On the
contrary, the VCIDS detects all attack scenarios. When the navigation sensor is
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under attack (Scenario 2), state estimation for nearby vehicles are corrupted. When
vehicle 2 and vehicle 3 receives the corrupted observation from vehicle 1, their
inter-vehicle IDSs raise sensor attack alarm and send the results back to vehicle 1.
When all sensor readings in vehicle 1 are corrupted consistently (Scenario 3), the
intra-vehicle IDS of vehicle 1 does not raise alarm. However, the observations from
vehicle 2 and vehicle 3 used in the inter-vehicle IDS of vehicle 1 can discover such
attacks. Under rogue nodes attack (scenario 4) when fake nodes are broadcasting
erroneous observations, the inter-vehicle IDS can detect the attack.

Table 3.4: Attack scenarios and corresponding detection results from intra-vehicle
IDS and final results of the VCIDS.

Attack Scenario Attack Type
(Channel)

Detected by
Intra-vehicle IDS

Detected by
VCIDS

Wheel encoder logic
bomb+wheel jamming

sensor+actuator
(cyber+physical) Yes Yes

LiDAR driver
logic bomb

sensor
(cyber) No Yes

System
hijacking

sensor
(cyber) No Yes

Rogue
nodes

sensor
(cyber) No Yes

Figure 3.17: Detection performance comparison between results from intra-vehicle
IDS and VCIDS.

To investigate the detection performance in terms of the detection delay and
detection accuracy, we conduct some experiments launched with attack cases that
can be detected by the standalone IDS. In the detection results, a false positive
is defined as a time instant that raises alarm for an uncorrupted sensor, and a
false negative is defined as a time instant that alarms is not raised when a sensor
is corrupted. Figure 3.17 shows the comparison for detection delay, false positive
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rate and false negative rate. We notice that detection delays increase since the
VCIDS requires more steps after the intra-vehicle detection. We also notice a
slight increase on the false positive rate and a decrease on the false negative rate.
Both rates remain under 4%.
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Chapter 4 |
Cyber-physical security: Attack-
resilient machine learning

4.1 Introduction
Machine learning is increasingly used in cyber-physical systems (CPS) for a broad
area of applications such as image recognition in self-driving vehicles [113], con-
trol of energy systems [114], and healthcare systems [115]. These data-driven
techniques are well suited for complex systems whose models are challenging to
obtain using first-principles. However, machine learning systems are threatened
by cyber-attacks. It has been shown in [116,117] that structural properties of ma-
chine learning can be used to generate adversarial samples in image recognition.
Paper [118] shows that, regardless of their structures, machine learning systems
including traffic sign learning systems fail under black-box attacks, which inject
small perturbation to legitimate samples. Protecting machine learning systems
from cyber-attacks is imperative.

There is a wealth of literature on cyber-attack detection of CPS. The fun-
damental limitations of attack detection in linear systems are identified in [31].
Paper [119] derives reachable regions of internal states driven by sensor attacks
where the attacks can bypass a Chi-square test based on Kalman filter. A number
of attack detectors against signal attacks have been proposed. In particular, at-
tack detection problems for deterministic linear systems are formulated as `0/`∞
optimization problems [31, 32], which are NP-hard in general. To address the
computational challenges, paper [32] proposes convex relaxations of the optimiza-
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tion problems. Paper [33] studies attack-resilient state estimation in the presence
of modeling errors, and identifies a bound of state estimation errors induced by
modeling errors. Paper [91] designs an attack-resilient estimator for stochastic
linear systems in the presence of sensor attacks, actuator attacks, and switching
attacks. The papers mentioned above focus on linear systems, and Chapter 2 ex-
tends the results in paper [91] to accommodate a class of nonlinear systems. All
the aforementioned papers presume knowledge on dynamic system models. This
key assumption is relaxed in the current chapter using data-driven techniques.

Chapter organization. Section 4.2 formulates the attack-resilient machine
learning problem for a class of nonlinear systems. Notations, notions, and Gaus-
sian process are introduced in Section 4.3 as preliminaries. In Section 4.4, we
design the attack-resilient Gaussian process regression to address the problem.
Section 4.5 analyzes average case learning errors of the proposed regression algo-
rithm. In Section 4.6, numerical simulations on the IEEE 68 bus test system show
the performance of the proposed algorithm.

4.2 Problem formulation
Consider the nonlinear stochastic system

xk = f(xk−1, uk−1 + da,k−1) + wk−1

yk = Ckxk + ds,k + vk (4.1)

where xk ∈ Rn, yk ∈ Rm, uk ∈ Ra, da,k ∈ Ra and ds,k ∈ Rm are state, output,
input, actuator attack vector, and sensor attack vector, respectively. We assume
that noise vectors wk ∈ Rn and vk ∈ Rm are independent and identically dis-
tributed zero-mean Gaussian, with their covariance matrices Q = E[wkwTk ] and
R = E[vkvTk ]. We assume that R is a diagonal matrix.

Attack model. Signal injection attacks are comprised of signal magnitude
attacks; i.e., the attacker injects attack signals, and signal location attacks; i.e.,
the attacker chooses targeted sensors and actuators. Signal injection attacks are
modeled by actuator attack da,k and sensor attack ds,k where zero value of either
attack vector indicates that the corresponding actuator or sensor is free of attack,
and a non-zero value indicates the magnitude of the attack.
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Knowledge of the defender. System function f in (4.1) is unknown to the
defender while output matrix Ck is known. The defender is accessible to input uk
and output yk but is unaware of the attack vectors da,k and ds,k, as well as which
actuators/sensors are under attacks. Noise vectors wk, vk and autocovariance Q
are unknown but R is known.

Objective. The defender aims to recursively estimate internal state xk, attack
vectors da,k, ds,k and system function f in the presence of sensor attacks and
actuator attacks.

4.3 Preliminaries
This section summarizes the notations and notions used throughout the chapter.
It also discusses classic GPR following the presentation in [2].

4.3.1 Notations and notions

Hat notation over a variable denotes an estimate of the variable. In particular,
x̂k|k−1 is a predicted state (an estimate without the current output); x̂k is a state
estimate (an estimate with the current output); d̂k is an estimate of attack vector
of dk; and f̂ is an approximation of function f . Also, ãk , ak − âk denotes the
estimation error and P a

k , E[ãkãTk ] denotes the error covariance of ak. Let dim(v)
denote the dimension of vector v. Gaussian distribution is denoted by N (µ,Σ),
where µ is mean and Σ is variance.

Definition 4.3.1 (Definition 6.1 in [2]) Let H be a Hilbert space of real functions
f defined on X . Then, H is called a reproducing kernel Hilbert space (RKHS)
endowed with an inner product 〈·, ·〉H if there exists a unique function g such that
for every x ∈ X , g(x, x′) as a function of x′ belongs to H, and g has the reproducing
property 〈f(·), g(·, x)〉H = f(x). �

In the above definition, function g is called kernel, and ‖f‖H ,
√
〈f, f〉H is a norm

induced by the inner product. An example of RKHS is the space of bandlimited
continuous functions H = {f ∈ C(R)|supp(F ) ⊂ [−a, a]} where C(R) is the set
of continuous functions, F is the Fourier transform of f , and a is the band limit.
Corresponding kernel is g(x, x′) = a

π
sinc(a(x−x′)) and inner product is defined by

〈f, g〉 ,
∫
f(x)ḡ(x)dx.
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Figure 4.1: Illustrative example of GPR borrowed from [2]. Left: Random func-
tions drawn by GP prior and actual outputs f(x) (dots). Right: Random functions
drawn by GP posterior from 5 noise-free observations indicated by +. Shaded area
is point-wise 95% confidence region.

4.3.2 Gaussian process regression

GPR is a regression algorithm by GP implementation and has several advantages
over parametric regression techniques such as linear and nonlinear regressions.
First of all, it is non-parametric regression, and does not require prior knowledge
of target functions such as structural properties. Second, GP prediction interpo-
lates missing observations, providing empirical confidence intervals. Moreover, it
is easy for users to provide interpretations of data correlations by choosing a kernel
function.

Illustrative example. Consider simple noise-free equation z = f(x), where
function f : R→ R is a continuous regression function. We would like to approx-
imate f and obtain test output f(x∗), given test input x∗. GPR approximation
consists of two steps; prior prediction and posterior prediction. In the prior predic-
tion step, no information is available and the regression function is assumed to be
GP. In other words, any finite collection of outputs of f are multi-variate Gaussian.
In the left subfigure in Figure 4.1, the shaded area is point-wise 95% confidence
region. Two solid lines are random functions drawn by GP prior, and we could
draw infinitely many functions. Once we observe several pairs of inputs and out-
puts of f , GP prior is updated to GP posterior by incorporating the observations.
In particular, the regression function must pass by the observed pairs because the

67



observations are noise-free. Moreover, if a test input is close enough to one of
the observed inputs, the output of the test input is expected to be close enough
to the corresponding observed output, having small output uncertainty. Posterior
uncertainties are smaller than prior uncertainties. Under this information update,
we could redraw observed points +, and point-wise 95% confidence region in the
right subfigure in Figure 4.1. The solid lines in the subfigure are random functions
drawn by GP posterior. Information update can be seen as a procedure to reject
functions (drawn from prior) which do not agree with the observations.

Gaussian process regression. Consider the regression model

z = f(x) + w (4.2)

with input x ∈ Rn and scalar output z ∈ R where w ∈ R is zero-mean Gaussian
noise with variance σ2. We will extend the result to the case with vector output
z ∈ Rm later.

We are going to approximate function f in (4.2), given a set of input-output
observations. A pair xi, zi of input-output observation is called training data. A
set D = 〈X,Z〉 of training data is given where

X = [x1, · · · ,xi, · · · ,xN ], Z = [z1, · · · , zi, · · · , zN ]

and N is the number of the training data pairs, and index i represents ith training
data. GPR aims to approximate function f in (4.2) by utilizing the training
data set D under the assumption that f is a zero-mean GP. Furthermore, given
test input x∗, we desire to estimate test output z∗ = f(x∗) using the function
approximation.

Definition 4.3.2 Stochastic process f is Gaussian if [f(x1), · · · , f(xN)]T is a mul-
tivariate Gaussian random variable, for any finite set of points X = [x1, · · · ,xN ]
(p.540 in [120]).

Remark 4.3.1 Multivariate Gaussian assumption on function f is used to in-
terpolate missing observations, providing empirical confidence intervals. Although
function f is assumed to be zero-mean in the prior GP prediction, a posterior dis-
tribution will not be zero-mean and the zero-mean prior assumption will be over-
whelmed by a set of large training data. �
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Under the GP assumption, [f(x1), · · · , f(xN)]T is multivariate Gaussian and we
denote its covariance matrix by (kernel matrix) G(X,X), where (i, i′) element of G
is denoted by kernel g(xi, xi′). Kernel represents a similarity between the outputs.
Please refer to Table 4.1 in [2] for commonly used kernel functions, including linear,
Gaussian, exponential, etc.

Since [f(x1), · · · , f(xN)]T and [w1, · · · , wN ] are both zero-mean Gaussian, a
collection of outputs Z follows zero-mean Gaussian distribution

p(Z) = N (0, G(X,X) + σ2I).

Given test input x∗, the training outputs Z and the test output z∗ are jointly
Gaussian:  Z

z∗

 ∼ N
0,

 G(X,X) + σ2I G(X,x∗)
G(x∗,X) g(x∗,x∗) + σ2

 .
According to p.200 in [2], the Gaussian predictive distribution over test output z∗
has mean

µ(x∗, D) = gT∗ (G(X,X) + σ2I)−1Z (4.3)

and variance

Σ(x∗, D) = g(x∗,x∗)− gT∗ (G(X,X) + σ2I)−1g∗ + σ2 (4.4)

where g∗ = G(X,x∗). We call them as GPR mean and GPR variance, respectively.
GPR mean (4.3) can be seen as a weight average of training outputs zi with
corresponding weight vector gT∗ (G(X,X) + σ2I)−1. Since GPR variance Σ(x∗, D)
is the posterior variance, it is smaller than the prior variance; i.e., Σ(x∗, D) <
g(x∗,x∗) + σ2.

If output z ∈ Rm in (4.2) is multi-dimensional, then GPR is conducted for
each output element of z. Let µ(x∗, D(i)) and Σ(x∗, D(i)) denote the GP for the
ith element of z where D(i) = 〈X,Z(i)〉 and Z(i) = [z1(i), · · · , zN(i)]T . Then, we
define the Gaussian process function GPR as below

[µ̄(x∗, D), Σ̄(x∗, D)] = GPR(x∗, D) (4.5)
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where mean function µ̄(x∗, D) = [µ(x∗, D(1)), · · · , µ(x∗, D(n))]T and variance
function Σ̄(x∗, D) = diag(Σ(x∗, D(1)), · · · ,Σ(x∗, D(n))) denote the approxima-
tion of function f and its covariance, respectively.

This chapter utilizes Gaussian kernel, where it is more flexible than other ker-
nels because the RKHS induced by a Gaussian kernel consists of analytic functions
whose nth derivative may be non-zero. As shown in (4.3), a different kernel deter-
mines different weight shapes. In Gaussian kernel, (i, i′) element of G is described
by

Gij = g(xi,xj) = σ2
he
− 1

2 (xi−xj)TW (xi−xj). (4.6)

Diagonal matrix W represents the length scale of each input, and σ2
h is a variance.

Informally speaking, the length scale 1
Wll

is a required distance in input space to
decouple the output correlation of two inputs. A set of parameters

θ = [W,σh, σ] (4.7)

is called hyper-parameters and they show the user’s interpretation of the regression
function. They may be chosen by maximizing the log-likelihood of the training
output so that the choice of hyper-parameters is optimal in some sense:

θmax = argmaxθ(log(p(Z|X, θ)))

as in [2] and [121] where

log(p(Z|X, θ)) = −1
2Z

T (G(X,X) + σ2I)−1Z− 1
2 log |G(X,X) + σ2I| − 1

2N log 2π.

In the above equation, the first term is used for data fitting by measurement Z.
The second term denotes the complexity penalty. The last term is a normalization
constant. Numerical optimization could be performed to find θmax such as con-
jugate gradient descent but there may exist multiple local maxima. To solve the
optimization problem, each partial derivative with respect to ith hyper-parameter
can be found by ∂ log(p(Z|X,θ))

∂θi
= 1

2tr(Ḡ
−1(X,X)Z(Ḡ−1(X,X)Z)T ∂Ḡ(X,X)

∂θi
) where

Ḡ(X,X) = G(X,X) + σ2I,
∂Ḡ(X,X)

∂σh
= 2
σh
G(X,X)
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∂Ḡij

∂Wll

= −1
2(xi(l)− xj(l))2Gij

∂Ḡ(X,X)
∂σ

= 2σI.

Jacobian matrix. Jacobian matrix of GPR is defined by a partial derivative
of the mean function with respect to the test input:

∂µ̄(x∗, D)
∂x∗

= ∂gT∗ (G(X,X) + σ2I)−1Z
∂x∗

= ∂gT∗
∂x∗

(G(X,X) + σ2I)−1Z.

The Jacobian matrix of GPR will be used to linearize the GPR mean function,
and is an approximation of the Jacobian matrix ∂f(x)

∂x of the regression function.

4.4 Attack-resilient Gaussian process regression
We, in this section, derive a data-driven attack-resilient estimation algorithm to
address the problem described in Section 4.2. In Section 4.4.1, we discuss prelimi-
nary steps. Then, a description of training data set is given in Section 4.4.2. Sec-
tion 4.4.3 presents the solution, the Attack-resilient Gaussian Process Regression
(ArGPR) algorithm. The proposed algorithm is derived in detail in Section 4.4.4.

4.4.1 Output decomposition, mode, and system transformation

This section discusses two inherent difficulties and tricks to deal with them. First of
all, the defender is unaware of the sensor attack locations; i.e., it is unknown which
set of sensors is free of attacks. Thus, the defender needs to consider all possible
combinations of sensor attack locations. We formulate each possible combination
as a hypothetical mode. Let J denote the set of hypothetical modes, and each
mode j ∈ J assumes that a particular subset of sensors may be corrupted by sensor
attacks, and the others are free of sensor attacks. We denote yj1,k the outputs of
the corrupted sensors and yj2,k the outputs of the clean sensors. Given mode j,
output yk in (4.1) is decomposed into

yj1,k = Cj
1,kxk + dj1,k + vj1,k

yj2,k = Cj
2,kxk + vj2,k. (4.8)
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Let s ≤ m be the number of sensors, then the number of modes is the permuta-
tion of the number of sensors |J | = 2p, where each mode is associated with the
corresponding output model (4.8).

Second, state estimation errors and function approximation errors are depen-
dent. To break the interdependency, we let actuator attack vector estimate com-
pensate the actuator attack and the errors of the function approximation. Then,
function approximation errors no longer induce errors in state estimation. In par-
ticular, we rewrite system (4.1) as follows:

xk = f(xk−1, uk−1) + d′2,k−1 + wk−1 (4.9)

where d′2,k−1 = f(xk−1, uk−1+da,k−1)−f(xk−1, uk−1). Given function approximation
f̂k(·) = µ̄(·, D̂k) in (4.5) and state estimate x̂k−1, system model (4.8) and (4.9)
becomes

xk = f̂k([xTk−1, u
T
k−1]T ) + d2,k−1 + wk−1

yj1,k = Cj
1,kxk + dj1,k + vj1,k

yj2,k = Cj
2,kxk + vj2,k (4.10)

Our estimation algorithm will utilize linearization to track covariance matrices.
Linearization of system (4.10) around the estimates becomes

xk = Ak−1xk−1 +Bk−1uk−1 + d2,k−1 + wk−1

yj1,k = Cj
1,kxk + dj1,k + vj1,k

yj2,k = Cj
2,kxk + vj2,k

where  Ak−1

Bk−1

 = ∂f̂([x̂Tk−1, u
T
k−1]T )

∂[x̂Tk−1, u
T
k−1]T

4.4.2 Training data set

To regress function f , it is required to know input-output observations according
to Section 4.3.2. Let us define x+

k , f(xk, uk) + wk. The desired training data set
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available at time k is given by:

Dk , 〈Xk,X+
k 〉 (4.11)

where

Xk =
[
x1 · · · xN(k)

]
,

 x0 · · · xk−2

u0 · · · uk−2

 ,
X+
k =

[
x+

1 · · · x+
N(k)

]
,
[
x+

0 · · · x+
k−2

]
where N(k) is the number of input-output pairs in the training data set. However,
unlike Section 4.3.2, xk and x+

k in (4.11) are unavailable. Instead, we will use
their estimates to perform function regression. The available training data set D̂k

is given by: Since we will find estimates x̂k and d̂2,k of the current state xk and
attack vector d2,k at each k, we are able to construct a collection of input-output
(estimation) data, where the previous state estimate [x̂Tk−1, u

T
k−1]T be input and

the next state estimate minus attack vector estimate x̂k − d̂2,k be output.

D̂k , 〈X̂k, X̂
+
k 〉 (4.12)

where

X̂k =
[
x̂1 · · · x̂N(k)

]
,

 x̂0 · · · x̂k−2

u0 · · · uk−2

 ,
X̂

+
k = [x̂+

1 , · · · , x̂
+
N(k)] , [x̂1 − d̂0, · · · , x̂k−1 − d̂k−2]. Although training data set D̂k

contains estimation errors, we will derive an algorithm as if D̂k has no estimation
errors (certainty equivalence principle [122]). The errors in the training data set
will be considered in the analysis section.

4.4.3 Algorithm statement

ArGPR algorithm utilizes Gaussian process regression to approximate unknown
dynamic systems, which is then used to estimate the current internal state by
unknown input and state estimation technique in Chapter 2. In particular, ArGPR
algorithm (Algorithm 6) consists of a bank of ArE algorithm 7 (lines 2-4) for
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Algorithm 6 Attack-resilient Gaussian Process Regression (ArGPR)

1: Input: x̂k−1, P x
k−1, D̂k, ε and µjk−1 for j ∈ J ;

2: for j ∈ J do
3: [x̂jk, d̂

j
2,k−1, d̂

j
1,k, P

xj

k , P
dj2
k−1, P

dj1
k ,N

j
k ] = ArE(x̂k−1, P

x
k−1, D̂k);

4: end for
. Mode selection

5: µ̄jk = max{N j
kµ

j
k−1, ε};

6: µjk = µ̄jk/
∑|J |
i=1 µ̄

i
k;

7: ĵk = argmaxj(µ
j
k);

. Training data set update
8: D̂k+1 = D̂k ∪ 〈[x̂Tk−1, u

T
k−1]T , x̂ĵkk − d̂

ĵk
2,k−1〉;

9: f̂k([xT , uT ]T ) = µ̄([xT , uT ]T , D̂k);

10: Return: x̂ĵkk , d̂
ĵk
2,k−1, d̂

ĵk
1,k, P xĵk

k , P d
ĵk
2

k−1, P
d
ĵk
1

k , D̂k+1, and f̂k([xT , uT ]T ).

each hypothetical mode as well as a mode estimator (lines 5-7) and a system
function estimator (training set updater, line 8). The ArE algorithm can be seen an
extension of the extended Kalman filter with two extensions; first, it incorporates
attack vector estimation in Chapter 2; second, the unknown system function is
replaced by GPR function approximation. The ArE algorithm recursively produces
state estimate x̂jk, attack vector estimates d̂j2,k−1, d̂1,k, and prior probability N j

k of
the associated mode j. The following section presents the algorithm derivation in
details.

4.4.4 Derivation of the ArE algorithm

System learning. Given D̂k, we are able to find approximation f̂k(·) = µ̄(·, D̂k) of
system function f and covariance Q̂k = Σ̄(·, D̂k) via GPR([xT , uT ]T , Dk) in (4.5).
The approximations will be used as if they are the ground truth.

Actuator attack d2,k−1 estimation. Assuming that there is no actuator
attack, we can predict the current state (line 2) as

x̂′k|k−1 = f̂k([x̂Tk−1, u
T
k−1]T ).

From this estimation, actuator attack d2,k−1 can be estimated by yj2,k in (4.8) as
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Algorithm 7 Attack-resilient Estimation (ArE)
1: Input: x̂k−1, P x

k−1, Dk;
. Actuator attack dj2,k−1 estimation

2: [x̂′k|k−1, Q̂k−1] = GPR([x̂Tk−1, u
T
k−1]T , Dk);

3: [ATk−1, B
T
k−1]T = ∂µ̄([x̂Tk−1,u

T
k−1]T ,Dk)

∂[x̂T
k−1,u

T
k−1]T ;

4: ŷ′j2,k = Cj
2,kx̂

′
k|k−1;

5: R̃j
2,k = Cj

2,kAk−1P
x
k−1A

T
k−1(Cj

2,k)T +Rj
2 + Cj

2,kQ̂k−1(Cj
2,k)T ;

6: M j
k = ((Cj

2,k)T (R̃j
2,k)−1Cj

2,k)−1(Cj
2,k)T (R̃j

2,k)−1;
7: d̂j2,k−1 = M j

k(yj2,k − ŷ
′j
2,k);

8: P dj2
k−1 = M j

kC
j
2,kAk−1P

x
k−1(M j

kC
j
2,kAk−1)T +M j

kR
j
2(M j

k)T +
M j

kC
j
2,kQ̂k−1(M j

kC
j
2,k)T ;

. State prediction
9: x̂jk|k−1 = f̂k([x̂Tk−1, u

T
k−1]T ) + d̂j2,k−1;

10: Q̄j
k−1 = (I −M j

kC
j
2,k)Q̂k−1(I −M j

kC
j
2,k)T +M j

kR
j
2(M j

k)T ;
11: Ājk−1 = (I −M j

kC
j
2,k)Ak−1;

12: P xj

k|k−1 = Ājk−1P
x
k−1(Ājk−1)T + Q̄j

k−1;
. State estimation

13: Ljk = (P xj

k|k−1(Cj
2,k)T − M j

kR
j
2) (Cj

2,kP
xj

k|k−1(Cj
2,k)T + Rj

2 − Cj
2,kM

j
kR

j
2

−Rj
2(M j

k)T (Cj
2,k)T )−1;

14: x̂jk = x̂jk|k−1 + Ljk(y
j
2,k − C

j
2,kx̂k|k−1);

15: P xj

k = (I−LjkC
j
2,k)P xj

k|k−1(I−LjkC
j
2,k)T +LjkR

j
2(Ljk)T +(I−LjkC

j
2,k)M

j
kR

j
2(Ljk)T +

LjkR
j
2(M j

k)T (I − LjkC
j
2,k)T ;

. Sensor attack dj1,k estimation
16: d̂j1,k = yj1,k − C

j
1,kx̂

j
k;

17: P dj1
k = Cj

1,kP
xj

k (Cj
1,k)T +Rj

1;
. The priori probability of mode

18: νjk = yj2,k − ŷ
j
2,k;

19: P̄ j
k|k−1 = Cj

2,kP
xj

k|k−1(Cj
2,k)T +Rj

2;

20: N j
k =

exp(−(νj
k
)T (P̄ j

k|k−1)−1νj
k
/2)

(2π)
dim(yj2,k)/2

|P̄ j
k|k−1|

1/2
;

21: Return: x̂jk, d̂
j
2,k−1, d̂

j
1,k, P xj

k , P dj2
k−1, P

dj1
k , ηjk.

follows (line 7):

d̂j2,k−1 = M j
k(yj2,k − C

j
2,kx̂

′
k|k−1)
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'M j
k(Cj

2,kAk−1x̃k−1 + Cj
2,kd2,k−1 + Cj

2,k−1wk−1 + vj2,k)

where function f̂k([x̂Tk−1, u
T
k−1]T ) is linearized. Assuming that E[x̃k−1] = 0, we

choose gain matrix M j
k by the Gauss Markov theorem (Theorem 2.8.1) as follows

(line 6):

M j
k = ((Cj

k,2)T (R̃j
2,k)−1Cj

2,k)−1(Cj
2,k)T (R̃j

2,k)−1

where R̃j
2,k , Cj

2,kAk−1P
x
k−1A

T
k−1(Cj

2,k)T +Cj
2,kQ̂k−1(Cj

2,k)T +Rj
2,k. Estimation error

of d2,k−1 is given by

d̃j2,k−1 = −M j
k(Cj

2,kAk−1x̃k−1 + Cj
2,kwk−1 + vj2,k) (4.13)

where the property M j
kC

j
2,k = I is used. Error covariance matrix is found by

P
dj2
k−1 = M j

kC
j
2,kAk−1P

x
k−1(M j

kC
j
2,kAk−1)T + M j

kC
j
2,kQ̂k−1(M j

kC
j
2,k)T + M j

kR
j
2,k(M

j
k)T

(line 8).
State prediction. Generate state prediction x̂jk|k−1 by simulating system (4.1)

as follows (line 9):

x̂jk|k−1 = f̂k([x̂Tk−1, u
T
k−1]T ) + d̂j2,k−1 (4.14)

The state estimation error becomes

x̃jk|k−1 ' Ak−1x̃k−1 + d̃j2,k−1 + wk−1 (4.15)

where function f̂k is linearized. Substitution (4.13) into (4.15) leads to (line 12)

P xj

k|k−1 = Ājk−1P
x
k−1(Ājk−1)T + Q̄j

k−1. (4.16)

where Q̄j
k−1 , (I −M j

kC
j
2,k)Q̂k−1(I −M j

kC
j
2,k)T +M j

kR
j
2,k(M

j
k)T , and Ājk−1 , (I −

M j
kC

j
2,k)Ak−1.

State estimation. Update state prediction x̂jk|k−1 as (line 14)

x̂jk = x̂jk|k−1 + Ljk(y
j
2,k − C

j
2,kx̂

j
k|k−1). (4.17)
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By substituting yj2,k in (4.8) into (4.17), the state estimation error becomes

x̃jk ' (I − LjkC
j
2,k)x̃

j
k|k−1 − L

j
kv

j
2,k. (4.18)

Its error covariance matrix is (line 15)

P xj

k = (I − LjkC
j
2,k)P xj

k|k−1(I − LjkC
j
2,k)T + LjkR

j
2,k(L

j
k)T + (I − LjkC

j
2,k)M

j
kR

j
2,k(L

j
k)T

+ LjkR
j
2,k(M

j
k)T (I − LjkC

j
2,k)T (4.19)

Minimizing error covariance tr(P xj

k ) with decision variable Ljk is an unconstrained
optimization problem. We can find the minimizer by taking derivative of tr(P xj

k )
and setting it equal to zero

∂ tr(P xj

k )
∂Ljk

= 2((Cj
2,kP

xj

k|k−1(Cj
2,k)T −R

j
2,k(M

j
k)T (Cj

2,k)T

− Cj
2,kM

j
kR

j
2,k +Rj

2,k)(L
j
k)T +Rj

2,k(M
j
k)T − Cj

2,kP
xj

k|k−1).

The solution is Ljk = (P xj

k|k−1(Cj
2,k)T−M

j
kR

j
2,k)(R

j
2,k+C

j
2,kP

xj

k|k−1(Cj
2,k)T−C

j
2,kM

j
kR

j
2,k−

Rj
2,k(M

j
k)T (Cj

2,k)T )−1 (line 13).
Sensor attack dj1,k estimation. Given x̂jk, and the assumption that E[x̃jk] = 0,

sensor attack dj1,k can be estimated by yj1,k in (4.8) (line 16):

d̂j1,k = yj1,k − C
j
1,kx̂k = Cj

1,kx̃
j
k + dj1,k + vj1,k. (4.20)

Estimation error d̃j1,k is obtained by

d̃j1,k = −(Cj
1,kx̃

j
k + vj1,k) (4.21)

with error covariance matrix P dj1
k = Cj

1,kP
xj

k (Cj
1,k)T +Rj

1,k (line 17).
The probability of mode. It is natural that the predicted output must be

matched with the measured output if the mode j is the true mode. For ∀j ∈ J ,
we quantify the difference between the predicted output and the measured output
as follows (line 18)

νjk = yj2,k − C
j
2,kx̂

j
k|k−1.
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The output error νjk is a multivariate Gaussian random variable. The likelihood
function is given by (line 20)

N j
k , p(yk|j = true) = N (νjk; 0, P̄ j

k|k−1) =
exp(−(νjk)T (P̄ j

k|k−1)−1νjk/2)

(2π)dim(yj2,k)/2|P̄ j
k|k−1|

1
2

where P̄ j
k|k−1 = Cj

2,kP
j
k|k−1(Cj

2,k)T + Rj
2,k is the error covariance matrix of νjk (line

19).
Mode selection (ArGPR). By the Bayes’ theorem, the posterior probability

is

µjk , p(j = true|yk, · · · , y0) = p(yk|j = true)p(j = true|yk−1, · · · , y0)∑|J |
i=1 p(yk|j = true)p(j = true|yk−1, · · · , y0)

= N j
kµ

j
k−1∑|J |

i=1N
j
kµ

j
k−1

.

However, such update might allow that some µjk converge to zero. To prevent
this, we modify the posterior probability update to (lines 5-6) µjk = µ̄j

k∑|J |
i=1 µ̄

i
k

, where

µ̄jk = max{N j
kµ

j
k−1, ε} and 0 < ε < 1

|J | is a pre-selected small constant preventing
the vanishment of the mode probability. The most likely mode is chosen as the
current mode ĵk = argmaxj(µ

j
k) (line 7).

Training data set update (ArGPR). Lastly, we construct a new training
data pair and add it to the training data set (line 8)

Dk+1 = Dk ∪ 〈[x̂Tk−1, u
T
k−1]T , x̂ĵk − d̂

ĵk
2,k−1〉.

Then, the algorithm returns estimates of system function and output function from
the updated training data set as follows

f̂k([xT , uT ]T ) = µ̄([xT , uT ]T , Dk). (4.22)

4.5 Analysis
We study stability of estimation errors and function approximation errors, given
that |J | = 1 and J is known. Since |J | = 1, we drop index j in this section.
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Section 4.5.1 studies stability of state estimation errors, where the analysis is in-
dependent of function approximation errors because the function approximation
errors do not influence state estimation errors. Section 4.5.2 presents an analysis
of function approximation errors. In particular, average case learning of GPR is
discussed.

4.5.1 Estimation error analysis

We consider linearization error φk defined by

f̂k([xTk−1, u
T
k−1]T )− f̂k([x̂Tk−1, u

T
k−1]T ) = Ak−1x̃k−1 + φk−1(x̂k−1, xk−1, uk−1).

The following set of assumptions is needed to ensure the stability of the ArE
algorithm.

Assumption 4.5.1 Matrix C2,k has full column rank.

Assumption 4.5.2 There exist ā, c̄1, c̄2, q, r2 > 0 such that the following holds
for k ≥ 0:

‖Ak‖ ≤ ā, ‖C1,k‖ ≤ c̄1, c2 ≤ ‖C2,k‖ ≤ c̄2, q ≤ Q̂k, r2I ≤ R2,k.

Assumption 4.5.3 For any εφ > 0, there exists δ > 0 such that

‖φk(x̂k, xk, uk)‖ ≤ εφ‖xk − x̂k‖2

holds for all ‖xk − x̂k‖ ≤ δ and k ≥ 0.

In Assumption 4.5.2, ‖Ak‖ ≤ ā holds if f̂k is Lipschitz. Assumption 4.5.3 holds if
f̂k is Holder continuous (p.136 in [97]) with exponent 2.

Theorem 4.5.1 (Stability in the presence of modeling uncertainties) Consider the
ArGPR algorithm, provided that Assumptions 4.5.1, 4.5.2, and 4.5.3. For any
γ ∈ (0, 1), there exists a set of positive constants αx, αd1, αd2, bx, bd1, bd2, cx, cd1,
cd2, δ, q̄′, r̄1, r̄2, and ε̄ such that, if Q̂k ≤ q̄′I, R1,k ≤ r̄1I, R2,k ≤ r̄2I, and ε ≤ ε̄,
then the following properties hold:

P (‖x̃k‖ < αxe
−bxk‖x̃0‖+ cx) ≥ 1− γ,
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P (‖d̃1,k‖ < αd1e
−bd1k‖x̃0‖+ cd1) ≥ 1− γ,

P (‖d̃2,k‖ < αd2e
−bd2k‖x̃0‖+ cd2) ≥ 1− γ

for all ‖x̃0‖ ≤ δ and k ≥ 0.

PROOF. The proof is similar to that of Theorem 2.5.1 in Chapter 2. We omit its
details. �

Theorem 4.5.1 shows that estimation errors are stable in probability. Since
d2,k−1 = d′2,k−1 + f̃k(xk−1, uk−1), stability of d̃2,k implies that d2,k estimate both
actuator attacks and function approximation errors; i.e., d̂2,k compensates those
uncertainties. If the function approximation errors are sufficiently small, d̂2,k rep-
resents actuator attacks. The following section studies how the function approxi-
mation error behaves.

4.5.2 Average case learning of GPR

We, in this section, analyze how average case learning of GPR behaves. In partic-
ular, the error

f(xk−1, uk−1)− f̂k([x̂Tk−1, u
T
k−1]T )

is the point of interest. The above error becomes f̃k(xk−1, uk−1) if xk−1 = x̂k−1.
Training data set. Let us define the errors in the training data set as follows:

x̃i = xi− x̂i, X̃k = Xk− X̂k, x̃+
i = x+

i − x̂
+
i , and X̃+

k = X+
k − X̂

+
k . Using the above

notations, training data set D̂k in (4.12) becomes

D̂k , 〈X̂k, X̂
+
k 〉

= 〈X̂k, f(X̂k) + wk − f(X̂k) + f(Xk)− X̃+
k 〉

= 〈X̂k, Ẑk − f(X̂k) + f(Xk)− X̃+
k 〉

= 〈X̂k, Ẑk + Z̃k〉 (4.23)

where f(X̂k) = [f(x̂1), · · · , f(x̂N(k))] and Ẑk = f(X̂k) + wk. In the analysis, we
use X̂k and Ẑk as the input and output to learn function f as the classic GPR
in Section 4.3.2. Correspondingly, we consider Z̃k = [z̃1, · · · , z̃N(k)] = −f(X̂k) +
f(Xk)− X̃+

k be the output errors.
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Analysis in Reproducing Kernel Hilbert Space. Most widely used ker-
nels, including Gaussian kernel (4.6), satisfy the following assumption.

Assumption 4.5.4 Kernel g is continuous symmetric and positive definite. Ker-
nel is time-invariant.

Hyper-parameter θ in (4.7) is chosen time-invariant to satisfy Assumption 4.5.4.
Under Assumption 4.5.4, there exists a unique Reproducing Kernel Hilbert Space
H (RKHS) by the Moore-Aronszajn theorem (Theorem 6.1 in [2]).

Now consider the minimization of functional

Jk[f̂ ] = 1
2‖f̂‖

2
H + 1

2σ2

N(k)∑
i=1

(x̂+
i − f̂(x̂i))2 (4.24)

where σ is the variance of w in (4.2). The second term works for data fitting
and the first term smooths the solution, called regularizer. According to Section
6.2.2 in [2], the minimizer of functional (4.24) is the GPR mean function (4.3). In
particular, the minimizer of the above functional is in the form of

f̂(x∗) =
N(k)∑
i=1

αig(x∗, x̂i) (4.25)

by the representer theorem [123]. Utilizing (4.25), functional (4.24) becomes

Jk[α] = 1
2α

TG(X̂k, X̂k)α + 1
2σ2‖X̂

+
k −G(X̂k, X̂k)α‖2

where α = [α1, · · · , αN(k)]T . By taking its derivative with respect to vector α and
setting it equal to zero, we can obtain the solution α = (G(X̂k, X̂k) + σ2I)−1X̂

+
k .

The complete solution f̂(x∗) = gT∗ (x∗)(G(X̂k, X̂k) + σ2I)−1X̂
+
k is identical to the

GPR mean function in (4.5). Motived by this property, let us define

f̃k|Jk(xk−1, uk−1, x̂k−1) , f(xk−1, uk−1)− f̂k|Jk(x̂k−1)

where f̂k|Jk = argminf̂ Jk[f̂ ]. Note that f̃k|Jk = f̃k and f̂k|Jk = f̂k, provided that
D̂k is known and x̂k−1 = xk−1 holds. We will analyze average case GPR learning
f̂k|E[Jk] under the following assumptions.

Assumption 4.5.5 The regression function f is in RKHS H.
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Since g ∈ H, any linear combination of g is in RKHS H. Thus, function f is in
RKHS H if and only if there exist a set of xi ∈ Rn+a, and βi ∈ R such that

f(x) =
∞∑
i=1

βig(xi,x). (4.26)

Comparing (4.26) with (4.25), Assumption 4.5.5 implies that the chosen kernel can
perform sufficiently well to approximate the regression function.

Assumption 4.5.6 Input X̂k and output Ẑk in training data are sampled from
probability distributions with corresponding probability measure µ(x̂, ẑ). State esti-
mation errors X̃k, X̃+

k are independent of Xk and Ẑk, respectively.

Under Assumption 4.5.4, according to Mercer’s theorem (Theorem 4.2 in [2]),
there is a set of orthonormal eigenfunctions {φj} and nonnegative eigenvalues
{λj} corresponding to the kernel such that g(x,x′) = ∑∞

j=1 λjφj(x)φj(x′) where∑∞
j=1 λj < ∞. Under Assumption 4.5.5, there exists a set of constants cj ∈ R

such that f(x∗) = ∑∞
j=1 cjφj(x∗). There are infinitely many set of orthonomal

eigenfunctions. Of them, we choose one such that Assumption 4.5.7 holds; e.g.,
φj(x) = e

√
−12

jx (Fourier transform).

Assumption 4.5.7 Eigenfunctions satisfy φj(x + x̃) = φj(x)φj(x̃).

Theorem 4.5.2 Under Assumptions 4.5.4, 4.5.5, 4.5.6 and 4.5.7, it holds that

f̂k|E[Jk](x∗) =
∞∑
j=1

[ λj
λj + σ2/N(k)

1
N(k)

N(k)∑
i=1

(cjφj(−x̃i)

+ x̃i
∫
φj(x̂)dµ(x̂))φj(x∗)

]
.

PROOF. Consider functional E[Jk] and let f̂k = f̂k|E[Jk] in this proof for notational
simplicity. Probability measure µ(x̂, ẑ) is accosiated with random distributions of
x̂, and ẑ.

Since x̂+
i − f̂(x̂i) = ẑi − f(x̂i) + f(xi)− x̃+

i − f̂(x̂i), we have

E[(x̂+
i − f̂(x̂i))2] =

∫
(zi − x̃+

i − f̂(x̂i))2dµ(x̂i, ẑi)

=
∫

(ẑi − f(x̂i))2dµ(x̂i, ẑi) +
∫

(f(xi)− f̂(x̂i))2dµ(x̂i, ẑi)
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+
∫

(x̃+
i )2dµ(x̂i, ẑi) +

∫
2(ẑi − f(x̂i))(f(xi)− f̂(x̂i))dµ(x̂i, ẑi)

−
∫

2x̃+
i (ẑi − f(x̂i) + f(xi)− f̂(x̂i))dµ(x̂i, ẑi).

Since
∫
dµ(x̂i, ẑi) =

∫ ∫
µ(ẑi|x̂i)µ(x̂i),

∫
(ẑi − f(x̂i))2dµ(ẑi|x̂i) = σ2 and

∫
ẑi −

f(x̂i)dµ(ẑi|x̂i) = 0, the above equation becomes

E[(x̂+
i − f̂(x̂i))2] =

∫
(f(xi)− f̂(x̂i))2dµ(x̂i) + (x̃+

i )2 +
∫
σ2dµ(x̂i)

− x̃+
i

∫
2(f(xi)− f̂(x̂i))dµ(x̂i) (4.27)

where (x̃+
i )2, and

∫
σ2dµ(x̂i) are independent of f̂ . Substituting (4.27) without

those independent terms into E[J [f̂ ]], we have the functional to minimize:

E′[J [f̂ ]] = 1
2‖f̂‖

2
H + 1

2σ2

N(k)∑
i=1

(
∫

(f(xi)− f̂(x̂i))2dµ(x̂i)

− x̃+
i

∫
2(f(xi)− f̂(x̂i))dµ(x̂i)). (4.28)

Since f and f̂ are in RKHS, it can be expressed using eigenfunctions

f(x) =
∞∑
j=1

cjφj(x) =
∞∑
j=1

cjφj(x̂)φj(x̃),

f̂(x̂) =
∞∑
j=1

ĉjφj(x̂). (4.29)

Note that 〈f, f ′〉H = ∑∞
j=1

cjc
′
j

λj
. Also, the eigenfunctions are orthogonal to each

other
∫
φi(x̂)φj(x̂)dµ(x̂) = δij where δij is Kronecker delta. By substituting (4.29)

into (4.28), we have

E′[J [ĉ]] = 1
2

∞∑
j=1

ĉ2
j

λj
+ 1

2σ2

N(k)∑
i=1

(
∫

(
∞∑
j=1

(cjφj(x̃i)− ĉj)φj(x̂))2dµ(x̂)

− 2x̃+
i

∫ ∞∑
j=1

(cjφj(x̃i)− ĉj)φj(x̂)dµ(x̂))

= 1
2

∞∑
j=1

ĉ2
j

λj
+ 1

2σ2

N(k)∑
i=1

(
∞∑
j=1

(cjφj(x̃i)− ĉj)2 − 2x̃+
i

∞∑
j=1

(cjφj(x̃i)− ĉj)
∫
φj(x̂)dµ(x̂))
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where ĉ = [c1, · · · , cN(k)]T . It is a convex optimization problem with respect to
decision variables ĉ. By taking derivative with respect to ĉj and setting it equal to
zero, we have

ĉj
λj

+ 1
σ2

N(k)∑
i=1

(−cjφj(x̃i) + ĉj + x̃+
i

∫
φj(x̂)dµ(x̂)) = 0.

The solution is

ĉj = λj
λj + σ2/N(k)

1
N(k)

N(k)∑
i=1

(cjφj(x̃i)− x̃+
i

∫
φj(x̂)dµ(x̂)).

Plugging the solution into f̂(x) = ∑∞
i=1 ĉiφi(x), we have the desired result. �

Interpretation of Theorem 4.5.2. According to Theorem 4.5.2, identifica-
tion error is described by

f̃k|E[Jk](xk−1, uk−1, x̂k−1) = f(xk−1)− f̂k|E[Jk](x̂k−1)

= f(xk−1)− f̂k|E[Jk](xk−1) + f̂k|E[Jk](xk−1)− f̂k|E[Jk](x̂k−1)

=
∞∑
j=1

(cj −
λj

λj + σ2/N(k)cj)φj(xk−1)

+
∞∑
j=1

λj
λj + σ2/N(k)(cj − cj

1
N(k)

N(k)∑
i=1

φj(x̃i))φj(xk−1)

−
∞∑
j=1

λj
λj + σ2/N(k)

∫
φj(x̂)dµ(x̂) 1

N(k)

N(k)∑
i=1

x̃+
i φj(x̂k−1)

+
∞∑
j=1

λj
λj + σ2/N(k)

1
N(k)

N(k)∑
i=1

(cjφj(x̃i)− x̃+
i

∫
φj(x̂)dµ(x̂))

× (φj(xk−1)− φj(x̂k−1)).

The first term indicates the function identification error provided that X̃k = 0 and
X̃+
k = 0. This error decreases as N(k) → ∞, where limk→∞N(k) = limk→∞ k +

N(0) =∞.
The second term is the error induced by X̃k. Note that φi(0) = 1 under

Assumption 4.5.7. Thus, this error is zero if X̃k = 0. If there is the finite number
of indices i such that x̃i 6= 0, then limN(k)→∞ cj − cj 1

N(k)
∑N(k)
i=1 φj(x̃i) = 0; i.e., the

finite number of errors are overwhelmed by a number of correct training data.
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Table 4.1: Variables and parameters of IEEE 68-bus test system.

System variables
f angular frequency θ phase angle
PM mechanical power Pij power flow
PC controllable load PL net load
Pelec electrical power output
System parameters
D damping constant m angular momentum
tij tie-line stiffness

Similarly, the third term represents the error induced by X̃+, and vanishes if
x̃+
i = 0. Also, limN(k)→∞

1
N(k)

∑N(k)
i=1 x̃+

i = 0 if there is the finite number of indices
such that x̃+

i 6= 0.
The last term indicates the error induced by the current input. This term is

zero as long as x̂k−1 = xk−1.

4.6 Simulation
We, in this section, present the simulations on the IEEE 68-bus test system (Fig-
ure 4.2) to demonstrate the performance of the ArGPR algorithm. The estimation
results of the ArGPR algorithm are compared with those of the GP-EKF algorithm
in [43,124].

System model. We consider a power network represented by an undirected
graph (V , E) where V , {1, · · · , 68} and E ⊆ V × V are the set of buses and the
set of transmission lines, respectively. Let us denote Si , {l ∈ V \ {i}|(i, l) ∈ E}
the set of neighboring buses of i ∈ V . Each bus is either a generator bus i ∈ G or
a load bus i ∈ L and V = G ∪ L. The dynamic system of a generator bus i ∈ G
with attacks is described as the following nonlinear system [80]:

∆θ̇i(t) = ∆fi(t) + w1,i(t)

∆ḟi(t) = − 1
mi

(
Di∆fi(t) +

∑
j∈Si

∆Pij(t)−∆PMi
(t) + da,i(t) + ∆PLi(t)

)
+ w2,i(t)

yi,k =[∆θi,k,∆fi,k,∆Peleci,k]T + [0, dTs,i,k]T + vi,k (4.30)

where ∆Pij(t) = tij sin(∆θi(t) −∆θj(t)) and ∆Peleci,k = ∆PLi(t) + Di∆fi(t). Ta-
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ble 4.1 summarizes the system variables and parameters and ∆ denotes the distance
from nominal value. Vectors da,i(t) ∈ R and ds,i,k ∈ R2 denote actuator attack
and sensor attack, respectively. The dynamic system for i ∈ L is

∆θ̇i(t) = ∆fi(t) + w1,i(t)

∆ḟi(t) = − 1
mi

(
Di∆fi(t) +

∑
j∈Si

∆Pij(t) + ∆PCi(t) + da,i(t) + ∆PLi(t)
)

+ w2,i(t)

yi,k = [∆θi,k,∆fi,k,∆Peleci,k]T + [0, dTs,i,k]T + vi,k. (4.31)

We will use functions Fi and Hi to express system (4.30) compactly; i.e., (4.30)
becomes

ẋi(t) = Fi(xi(t), [∆PMi
(t), {∆θj(t)}j∈Si ]) + wi(t)

yi,k = Hi(xi,k) + vi,k

where xi(t) , [∆θi(t),∆fi(t)]T .
We assume that power demand ∆PLi(t) is known because it can be predicted by

load forecasting methods [83,84]. Mechanical power ∆PMi
(t) and controllable load

∆PCi(t) are considered known inputs of each bus, and we implement backstepping
based stabilizing distributed controllers [106] for frequency control.

Simulation settings. Noises wi(t) and vi,k are zero-mean Gaussian with co-
variance Qi(t) = 0.012I, and Ri,k = 0.012I. Sampling period is ε = 0.1s. The
system parameters are adopted from page 598 in [105], where Di = 1, tij = 1.5,
and mi = 10 for ∀i ∈ V .

We consider a scenario where the systems (4.30) and (4.31) for ∀i are subject
to both actuator attacks da,i(t) = 30 sin( i·t

π
) + i

100 for t > 1 and sensor attacks
ds,i,k = [2 + 0.3 cos(0.1i · t), 0]T for t > 7.

Distributed implementation. The power system includes 204 sensors. The
centralized implementation of the ArGPR algorithm requires 2204 modes, which is
not practical. To address this problem, we implement the ArGPR algorithm in a
distributed way.

Each bus is associated with a local defender. At time k, each local defender
i measures yi,k and receives ∆θ̂j,k−1 from j ∈ Si. For the ArGPR algorithm,
mechanical power ∆PMi

(t) (controllable load ∆PCi(t), resp.) as well as the es-
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Figure 4.2: IEEE 68-bus test system (Figure from [1]).

timate of neighboring states θ̂j,k are treated as inputs for i ∈ G (i ∈ L); i.e.,
ui,k = [∆PMi,k, {∆θ̂j,k}j∈Si ]T (ui,k = [∆PCi,k, {∆θ̂j,k}j∈Si ]T ). Each local defender
is assumed to know the true hypothetical mode. We use only 1 randomly cho-
sen training pair for the initial estimation. The GP-EKF algorithm in [43, 124] is
implemented with the same settings for comparison.

Simulation results. Figure 4.3 summarizes the simulation results. In the two
subfigures on the left hand side of Figure 4.3, the bold line represents the ArGPR
algorithm, the dashed line represents the GP-EKF algorithm, and the solid thin line
represents the ground truth. The first subfigure shows that state estimation errors
of the ArGPR algorithm diminish, while those of the GP-EKF algorithm remain
large. The second subfigure shows that frequency estimates of bus 16 converge to
the ground truth. On the other hand, the GP-EKF algorithm fails to estimate
states attack-resiliently. The right hand side of Figure 4.3 presents attack vector
estimates d1,i,k = ds,i,k and d2,i,k = [0,−da,i(tk)/mi]T = [0,−3 sin( i·t

π
) − i

1000 ]T ,
and function approximation errors f̃16,k of bus 16. Attack vector estimates follow
sinusoidal signals. Function approximation errors tend to decrease over time.
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Figure 4.3: State estimation errors ∑i∈V ‖xi − x̂i‖2 in log-scale, where xi =
[∆θi,∆fi]T ; frequency estimates of bus 16; attack vector estimates d̂1,16,k; the first
element of attack vector estimates d̂2,16,k; and function approximation errors f̃16,k
of bus 16.

4.7 Discussion
This section discusses comparisons with the most recent literature, and future
works.

Comparison. The current chapter deals with partially known dynamic sys-
tems, where the system function is unknown but output function is known. This is
the sharp difference from Chapter 2, which assumes perfect knowledge on systems.
With the difference that follows, the current chapter incorporates a regression
technique to solve the new problem, and analyze function approximation errors.

If attack vectors da,k and ds,k are absent, the ArGPR algorithm reduces to the
GP-EKF algorithm [43,124] with known output equation. When system model is
known, the ArGPR algorithm becomes a modification of the nonlinear unknown
input and state estimation algorithm (Algorithm 1 in Chapter 2), where outputs
are decomposed into three parts instead of two.

Mode convergence. Theorems 4.5.1 and 4.5.2 prove stability of estimation
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errors and average case learning errors of function approximations under the as-
sumption |J | = 1. To relax the assumption |J | = 1, convergence analysis of
mode estimator (lines 5-7 in Algorithm 6) must be preceded because failing mode
estimation degrades the performance of estimations and approximations.

Relaxing Assumption 4.5.1. The assumption implies that all components
of actuator attack d2,k−1 is measured by clean output yj2,k. Assumption 4.5.1 is a
sufficient condition of that used in the unknown input and output estimation for
fully-known linear systems (Theorem 5 in [89]). Assumption 4.5.1 can be relaxed
to a weaker one by replacing d2,k−1 with Gk−2d2,k−1 in (4.10).

4.8 Conclusion
In this chapter, we study attack-resilient estimation of unknown nonlinear cyber-
physical systems against both sensor attacks and actuator attacks. To solve the
problem, we propose a new estimation algorithm by incorporating our recently
developed unknown input and state estimation technique into the Gaussian process
regression algorithm. We empirically demonstrate that the proposed algorithm
estimates internal state attack-resiliently, outperforming the GP-EKF algorithm.
Unlike existing attack detectors, the proposed algorithm does not require system
models.

4.9 Appendix: GPR from linear regression
The objective of this appendix is to provide intuitions of GPR by deriving GPR
from linear regression problem. This appendix is written based on [2].

Consider linear regression problem with Gaussian noise

z = f(x) + w, f(x) = xTa (4.32)

where z ∈ R, and x ∈ Rn. Vector a ∈ Rn is a weight of the linear function
f . Noise w follows independently identically distributed Gaussian distribution
w ∼ N (0, σ2).

The objective of the linear regression is to find the posterior distribution of
the weight vector p(a|D) by Baysian inference, given a set of input-output pair
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observations D = 〈X,Z〉, called training data set, where

X = [x1, · · · ,xN ], Z = [z1, · · · , zN ].

The posterior distribution p(a|D) can be found by Bayes’s rule

p(a|D) = p(Z|X, a)p(a)
p(Z|X)

where

p(Z|X, a) = N (XTa, σ2I), p(Z|X) =
∫
p(Z|X, a)p(a)da

if prior distribution p(a) is given. In GPR, we assume

a ∼ N (0,Σ) (4.33)

where Σ is the covariance matrix. This assumption suffices that f(x) is GP. Under
the assumption, we have

p(a|D) ∼ N ( 1
σ2 (XXT

σ2 + Σ−1)−1XZ, (XXT

σ2 + Σ−1)−1).

For a given testing input x∗, output f∗ = f(x) follows

p(f∗|x∗, D) =
∫
p(f∗|x∗, a)p(a|D)da

= N ( 1
σ2x

T
∗ (XXT

σ2 + Σ−1)−1XZ,xT∗ (XXT

σ2 + Σ−1)−1x∗).

Feature space. The approach used for (4.34) is limited to a class of linear
functions. In (4.34), we had applied weights to the input vector x directly. A
simple extension is to apply weights to a set of basis functions φ(x) (feature vector)
instead of directly to x; i.e., function f is expressed as

f(x) = φ(x)Ta

where φ : Rn → Rm. For example, φ(x) = [1,x,x2, logx]T . A natural question is
how to choose basis function φ. We will revisit this question later.
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Under the assumption that a follows zero mean Gaussian prior (4.33), we can
follow a similar procedure to obtain posterior distribution of a:

p(a|D) ∼ N ( 1
σ2 (Φ(X)Φ(X)T

σ2 + Σ−1)−1Φ(X)Z, (Φ(X)Φ(X)T
σ2 + Σ−1)−1)

where Φ(X) is a collection of φ(xi) for i = 1, · · · , N . For a given testing input x∗,
output f∗ = f(x) follows

p(f∗|x∗, D)

= N ( 1
σ2φ(x∗)T (Φ(X)Φ(X)T

σ2 + Σ−1)−1Φ(X)Z, φ(x∗)T (Φ(X)Φ(X)T
σ2 + Σ−1)−1x∗).

With new variables g(x, x′) = φ(x)TΣσ(x′) and G(X,X′) = Φ(X)TΣΦ(X′), the
above posterior distribution becomes

p(f∗|x∗, D) = N (φ(x∗)TΣΦ(X)(G(X,X) + σ2I))−1Z,

− φ(x∗)TΣΦ(X)(G(X,X) + σ2I))−1Φ(X)TΣφ(x∗))

= N (g∗(G(X,X) + σ2I))−1Z, g(x∗)− g∗(G(X,X) + σ2I))−1gT∗ ) (4.34)

where g∗ = G(x∗,X)φ(x∗)TΣΦ(X). Please note that (4.34) is identical to GPR
regression obtained in (4.3) and (4.4). Function g(x, x′) = φ(x)TΣφ(x′) is called
a kernel. Since Σ is positive definite, we can express the kernel as a dot product
g(x, x′) = ψ(x)Tψ(x′) where ψ(x) = Σ1/2φ(x).

The posterior distribution is found by inner products in input space, and we
can replace the basis function φ by changing kernel g. This is called the kernel
trick. In the kernel trick, choosing basis function φ is equivalent to choosing
corresponding kernel g. Thus, one can simply choose a positive definite kernel for
GPR without explicitly investigate a set of basis functions. Moreover, a kernel
potentially exhibits an infinite dimensional basis functions.
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Chapter 5 |
Incentive design

5.1 Introduction
Advanced information and communication technologies have been stimulating rapid
emergence of multi-agent networks where a large number of spatially distributed
agents interact with each other to accomplish complex missions. Substantial effort
has been spent on analysis, design and control of multi-agent networks [5–9]. In
many practical scenarios, agents are non-cooperative and seek for heterogeneous
(or even conflicting) subobjectives. This leads to competitions over limited re-
sources and the degradation of network-wide performance. To mitigate the issue,
a common practice is incentive or mechanism design which modifies agents’ prefer-
ences via side payments/pricing so that individual interests are aligned with social
welfare.

As one kind of incentive design, fixed prize lotteries have been applied to sev-
eral field experiments and proven to be effective to stimulate agents’ or players’
investments. INSINC project in Singapore [125] is an ongoing real-world imple-
mentation of a lottery scheme for commuters, who use public transportation, to
travel off peak hours. The lottery scheme successfully reduces around 7.5% of
peak time demand. A similar project named INSTANT [126] is conducted in In-
dia and results in more than 20% of commuter shifts. Research [127] uses the
boarding passes of local public transportation as lottery tickets, showing that the
lottery increases the provision of public goods and reduces free riders. In [128–130],
experiments are conducted to show that lottery based incentives can effectively in-
crease survey response rates. Moreover, lottery based incentives have been used
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in demand response in the smart grid [131, 132], mobile crowd sensing for traffic
congestion and air pollution [133] and Internet congestion [134].

Substantial effort has been exerted to develop fundamental theory of lotteries.
Seminal paper [60] studies that fixed prize lotteries alleviate the free-rider problem,
and nudge higher levels of public good provisions as well as aggregate payoff than
voluntary contributions. A larger reward results in a greater public good and
aggregate payoff. The results have been extended by many researchers. In [135],
a multi-prize lottery is studied with considering risk preferences; i.e., risk neutral
versus risk averse. A sequential lottery is investigated in [136] in which it can sale
more tickets than one-level lottery. Paper [137] conducts public good analysis on
player size, and extends the results to a rival public good case; i.e., each player
gets benefits from a portion of public goods.

Chapter organization. In Section 5.2, we introduce a classic bi-level lottery
scheme with its limitation. To alleviate the fundamental limitation of efficiency
losses, we introduce a new perturbed bi-level lottery model and formulate the
optimal bi-level lottery design problem in Section 5.3. In Section 5.4, we formally
analyze properties of low-level Nash equilibrium. Based on the properties, we relax
the optimal bi-level lottery design problem as a convex optimization problem in
Section 5.5. Lastly, we conduct a case study on demand response in Section 5.6.

5.2 Preliminaries
We introduce a classic bi-level lottery scheme proposed in [60] and outline its pro-
cedure in Section 5.2.1 to 5.2.3. Section 5.2.4 discusses its limitation and motivates
our problem.

5.2.1 Payoff model

Consider a social planner who holds a lottery and a set of players V = {1, 2, · · · , N}.
In particular, the social planner chooses a reward R from an action set R = (0,∞).
Each player i invests si to the lottery from an action set Si = [0, wi] and is associ-
ated with a payoff function ui : S → R where wi denotes the amount of investable
wealth of player i, and S , S1 × · · · × SN denotes the joint action set. The action
profile s = {si}i∈V ∈ S can be expressed as {si, s−i} where s−i denotes the action
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profile other than player i; i.e., s−i = {sj}j∈V\{i}. Given reward R, payoff function
ui is described by:

ui(s, R) ,


si
s̄
R + hi(s̄−R)− si, for s̄ ≥ R

0, otherwise
(5.1)

where s̄ , ∑
i∈V si. If s̄ = 0, then ui(s, R) = 0. The first term si

s̄
R represents

the portion of profit from the lottery, which is proportional to investment over the
total investment. The last term −si denotes the cost of player i. Marginal benefit
function hi : R≥0 → R≥0 satisfies the following:

Assumption 5.2.1 The function hi is twicely differentiable, strictly increasing,
strictly concave, hi(0) = 0, ∑i∈V

∂hi(0)
∂G

> 1, and limG→∞
∂hi(G)
∂G

= 0.

Payoff function (5.1) indicates that the lottery holds only when total investment
s̄ exceeds or equals to reward R; otherwise, the social planner cancels the lottery
and returns the investments to the players.

5.2.2 Low-level decision making - Nash equilibrium

Given R and s−i, player i chooses si to maximize its own payoff as follows:

max
si∈Si

ui(s, R).

The collection of local optimization problems induces a non-cooperative game
among the players and the game is parameterized by R. Nash equilibrium [138]
defines the solution of the game.

Definition 5.2.1 Given R, the action profile s∗(R) is a (pure) Nash equilibrium
if ui(s′i, s∗−i(R), R) ≤ ui(s∗(R), R) for ∀s′i ∈ Si,∀i ∈ V.

Note that Nash equilibrium s∗(R) highlights its dependency on reward R.

5.2.3 High-level decision making - Social optimum

The lottery is a bi-level decision making (or a hierarchical optimization) problem
where the social planner at the high level selects reward first and, sequentially,
the players at the low level jointly determine a Nash equilibrium given the reward.
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The social planner aims to choose reward R to maximize the aggregate payoff of
the players at the induced Nash equilibrium:

max
R∈R

∑
i∈V

ui(s∗(R), R) = max
R∈R

∑
i∈V

hi(G(R))−G(R) (5.2)

where G(R) , s̄∗(R)−R is referred to as the public good and represents a marginal
benefit of the social planner. The hierarchical nature of the problem requires the
social planner to predict the low-level Nash equilibrium when making decisions at
the high level.

5.2.4 Limitation

Under Assumption 5.2.1, there exists a unique socially optimal public good (Propo-
sition 2.1 in [60])

G∗ = argmaxG∈[0,∞)
∑
i∈V

hi(G)−G,

where G∗ > 0 is the solution of

∑
i∈V

∂hi(G∗)
∂G

= 1 (5.3)

due to strict concaveness of hi. The socially optimal public good maximizes the
aggregate payoff, and we define the aggregate payoff

∑
i∈V

hi(G∗)−G∗

as the socially optimal payoff. However, the socially optimal public good (as well
as socially optimal payoff) is achieved only when R → ∞ (Theorem 2 in [60]).
An infinite reward is apparently impractical. The chapter aims to address the
limitation.
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5.3 Problem formulation
This section introduces a practical scheme to achieve the socially optimal payoff.
In particular, a perturbed lottery model is introduced in Section 5.3.1 and lower-
level decision-making is presented in Section 5.3.2. A new problem for the social
planner is introduced in Section 5.3.3. We highlight the differences from those
introduced in Section 5.2.

5.3.1 Perturbed payoff model

Consider the following perturbed payoff model for player i:

Ui(s, R, c) ,


si−ci
s̄−c̄ R + hi(s̄−R)− βisi, for s̄ ≥ R

0, otherwise
(5.4)

where βi and ci are heterogeneity parameter and perturbation parameter, respec-
tively, with c = {ci}i∈V and c̄ = ∑

i∈V ci. Heterogeneity parameter 0 < βi ≤ 1
is determined by player i before playing the game. It represents valuation on
investments, or willingness of voluntary investments.

Assumption 5.3.1 The parameters βi for ∀i ∈ V satisfy N − 1 < β̄ ≤ N , and
0 < βi ≤ 1.

In (5.4), (R, c) is chosen by the social planner from a set R × C where C , C1 ×
· · · × CN , and Ci = [0,∞). Perturbation parameter c introduces an offset to the
odd of winning but the aggregate portion remains one; i.e., ∑i∈V

si−ci
s̄−c̄ = 1. We

show later in (P2) of Theorem 5.4.1 that s̄ 6= c̄.

5.3.2 Low-level decision making - Nash equilibrium

Given R, c, and s−i, player i chooses si to maximize its own payoff as follows:

max
si∈Si

Ui(s, R, c),

where Si = [0,∞). Nash equilibrium s∗(R, c) is dependent on R and c. If the
reward term s∗i (R,c)−ci

s̄∗(R,c)−c̄ R is negative, player i is assumed to pay a fine − s∗i (R,c)−ci
s̄∗(R,c)−c̄ R

to the social planner.
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5.3.3 High-level decision making - Social optimum

As problem (5.2), a natural problem for the social planner is to maximize the
aggregate of perturbed payoffs as follows:

max
(R,c)∈R×C

∑
i∈V

(hi(G(R, c)) + (1− βi)s∗i (R, c))−G(R, c). (5.5)

For the case with βi = 1 for ∀i, there could be multiple optimal solutions for prob-
lem (5.5). So the social planner may want to choose the one induced by minimal
reward and perturbation. For the case with βi 6= 1 for some i, problem (5.5) is not
well-defined. In particular, we will show in (P3) of Theorem 5.4.1 that s∗i (R, c)
approaches infinity as R goes to infinity. For this case, the social planner may
want to choose a pair of small R and c such that the induced aggregate payoff is
not smaller than the socially optimal payoff of problem (5.2). With the above two
cases, problem (5.5) is reformulated as the following bi-level optimization problem:

min
(R,c)∈R×C

R + αc̄

s.t. g(s∗(R, c), R, c) ≤ 0, c̄ ≤ min{GU , R}∑
i∈V

hi(G(R, c))−G(R, c) +
∑
i∈V

(1− βi)s∗i (R, c) ≥
∑
i∈V

hi(G∗)−G∗ (5.6)

where constant α ≥ 0 represents a weight on c̄, and the dependency of public
good G(R, c) , s̄∗(R, c) − R on R and c is emphasized. The constraint c̄ ≤
min{GU , R} is imposed due to a technical reason, and the value GU is the solution
of ∑i∈V

∂hi(GU )
∂G

= β̄ + 1−N . We include a new inequality constraint g(s∗, R, c) ≤
0 where g : S × R × C → Rm is a vector of convex functions g`(s∗, R, c) for
` = 1, 2, · · · ,m. The new constraint might express physical constraints as shown
in Section 5.6, or planner’s interests.

Assumption 5.3.2 Function g`(s∗, R, c) is convex with respect to its arguments
s∗, R, and c for ` = 1, 2, · · · ,m.

To clarify the relation between problem (5.2) and problem (5.6), let us distin-
guish two cases.

Case 1. βi = 1 for ∀i.
When the first two constraints are absent, problem (5.6) returns the pair of minimal
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R and c which can induce G∗ as well as the socially optimal payoff of problem (5.2).
Case 2. βi 6= 1 for some i.

Since (1 − βi)s∗i (R, c) ≥ 0, the optimal solution of problem (5.6) may not induce
G∗. Yet, it is still able to induce an aggregate payoff which is not smaller than the
socially optimal payoff of problem (5.2).

Notice that the feasible set of problem (5.6) is always non-empty when the new
constraint g(s∗(R, c), R, c) ≤ 0 is not considered in the unperturbed lottery. The
proof of the following lemma is presented in Appendix 5.8.

Lemma 5.3.1 Under Assumptions 5.2.1, and 5.3.1, the feasible set of problem (5.6)
is non-empty if constraint g(s∗(R, c), R, c) ≤ 0 is absent.

5.4 Analysis of low-level Nash equilibrium
In this section, we study the properties of Nash equilibrium given a pair of R and
c which satisfies Assumption 5.4.1.

Assumption 5.4.1 Social planner’s action pair (R, c) ∈ R × C satisfies c̄ ≤
min{GU , R}.

Theorem 5.4.1 summarizes the derived properties, and these properties are es-
sential to solve bi-level optimization problem (5.6). Further, the properties reduce
to those of unperturbed lottery in Section 5.2 when ci = 0 and βi = 1. In particu-
lar, (P1) shows the existence and uniqueness of Nash equilibrium. (P2) indicates
that public good G(R, c) is lower bounded by a function of c and upper bounded by
a function of β, and it is increasing in (R, c) when all the players are active. (P3)
shows that all the players are active if reward R is greater than a certain threshold,
and there exists a lower bound of s∗i (R, c), which is a strictly increasing function in
R. Moreover, in some cases, s∗i (R, c) is strictly increasing in (R, c). (P4) quantifies
the price of anarchy [139] which is the ratio between the socially optimal payoff
and the aggregate payoff induced by the corresponding Nash equilibrium. The
lower and upper bounds of the price of anarchy reveal possible efficiency losses due
to selfishness of players, and they can be quantified without explicitly calculating
Nash equilibrium.

The following notations are used in Theorem 5.4.1. The value RL(c) is the
unique solution of RL(c)

RL(c)+GU−c̄ = maxi∈V{βi − ∂hi(GU )
∂G
}. Define player i who in-
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vests non-zero wealth s∗i (R, c) > 0 as an active player and define Va(R, c) , {i ∈
V|s∗i (R, c) > 0} as the set of all the active players. Lastly,

G(R, c) , H−1((|V̄a(R, c)| − 1)(Ḡ(R, c)− c̄)
R +GU − c̄

+ 1)

Ḡ(R, c) , H−1((N − 1)(G∗ − c̄)
R

+ 1)

where H(G) , ∑
i∈V

∂hi(G)
dG

and V̄a(R, c) is the number of players who satisfy
R

R+GU−c̄ + ∂hi(GU )
∂G

− 1 > 0. Note that H : R≥0 → Y is invertible on codomain
Y , (0, H(0)] because H is a strictly decreasing and continuous.

Theorem 5.4.1 Under Assumptions 5.2.1, 5.3.1, and 5.4.1, the following prop-
erties hold at Nash equilibrium.

(P1) Given any ci ≥ 0, and 0 < βi ≤ 1 for ∀i ∈ V, there is a unique Nash
equilibrium s∗(R, c);

(P2) It holds that c̄ ≤ G(R, c) ≤ GU . If |Va(R, c)| = N , then dG(R,c)
dR

≥ 0, and
dG(R,c)
dci

> 0 where equality holds if and only if c̄ = GU ;

(P3) If R > RL(c), then s∗i (R, c) ≥ ci + R
(

R
R+GU−c̄ + ∂hi(GU )

∂G
− βi

)
> 0 where

the lower bound is strictly increasing in R without bound. If |Va(R, c)| = N ,
there is some i ∈ V such that ds∗i (R,c)

dR
> 0. Moreover, if |Va(R, c)| = N ,

hi = hj, and βi = βj for ∀i, j ∈ V, then ds∗i (R,c)
dR

≥ 1
N
, and ds∗i (R,c)

dci
> 0 for ∀i;

(P4) If βi = 1 for ∀i ∈ V and R > 0, price of anarchy PoA(R, c) , maxs∈S
∑

i∈V Ui(s)∑
i∈V Ui(s

∗(R,c),R,c)
is characterized by

∑
i∈V hi(G∗)−G∗∑

i∈V hi(G(R, c))−G(R, c) ≤ PoA(R, c) ≤
∑
i∈V hi(G∗)−G∗∑

i∈V hi(Ḡ(R, c))− Ḡ(R, c)
.

If c = ~0 , it holds that PoA > 1 for any R <∞ and limR→∞ PoA(R,~0 ) = 1.

PROOF. In the proof, we will drop the dependency of G, G, Ḡ, s∗, Ui, Va, RL

and PoA on R and c.
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We first introduce the first order condition which must be satisfied at a Nash
equilibrium:

∂Ui(s∗, R, c)
∂si

= R
s̄∗ − c̄− (s∗i − ci)

(s̄∗ − c̄)2 + ∂hi(s̄∗ −R)
∂G

− βi ≤ 0 (5.7)

for ∀i ∈ V . If player i is active; i.e., s∗i > 0, then equality holds. To prove the first
order condition by contradiction, assume that ∂Ui(s∗,R,c)

∂si
= ε > 0. Then, by the

Taylor series expansion, there exists a sufficiently small constant δ > 0 such that

Ui(s∗i + εδ, s∗−i, R, c) > Ui(s∗i , s∗−i, R, c) + εδ.

This leads to a contradiction to the definition of Nash equilibrium. The remaining
part can be proven in a similar way.

(P1) Choose any β. Since hi is strictly increasing and strictly concave, there
is ξL > 0 such that ∂hi(ξ)

∂G
< 1 for all ξ ≥ ξL. Consider any R, c and s−i. If si is

sufficiently large, then Ui(s) < 0. So there is Bi(R, c) > 0 such that s∗i (R, c) <
Bi(R, c). Hence, s∗(R, c) is identical to the maximizer of the game: maxsi Ui(s)
s.t. si ∈ [0, Bi(R, c)]. In this problem, the payoff functions are concave and the
decision variables lie in compact sets. Hence, s∗(R, c) exists. The remaining part
can be proven by similar arguments of Lemma 3 in [60].

(P2) The aggregate of the first order conditions (5.7) becomes

∑
i∈V

∂Ui(s∗)
∂si

= R(N − 1)
R +G− c̄

+
∑
i∈V

∂hi(G)
∂G

− β̄ ≤ 0. (5.8)

Assume G < c̄, then (5.8) yields

∑
i∈V

∂hi(G)
∂G

< β̄ + 1−N =
∑
i∈V

∂hi(GU)
∂G

.

This implies GU < G < c̄ due to strict concaveness of hi, which contradicts As-
sumption 5.4.1, and thus c̄ ≤ G. Now consider the aggregate of the first order
conditions (5.7) of active players:

∑
i∈Va

∂Ui(s∗)
∂si

= R(|Va| − 1)
R +G− c̄

+
∑
i∈V\Va(s∗i − ci)
(R +G− c̄)2 R +

∑
i∈Va

∂hi(G)
∂G

−
∑
i∈Va

βi = 0.
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Note that s∗i = 0 for i ∈ V \Va. By the fact that hi is a strictly increasing function,
it becomes

∑
i∈V

∂hi(G)
∂G

≥ −R(|Va| − 1)
R +G− c̄

+
∑
i∈Va

βi +
∑
i∈V\Va ci

(R +G− c̄)2R

= (|Va| − 1)(G− c̄)
R +G− c̄

+
∑
i∈Va

βi + 1− |Va|+
∑
i∈V\Va ci

(R +G− c̄)2R

≥ (|Va| − 1)(G− c̄)
R +G− c̄

+
∑
i∈V

∂hi(GU)
∂G

+
∑
i∈V\Va ci

(R +G− c̄)2R. (5.9)

Because (|Va|−1)(G−c̄)
R+G−c̄ ≥ 0 and ci ≥ 0, (5.9) implies G ≤ GU by strict concaveness

of hi. Thus, c̄ ≤ G ≤ GU .
Now we consider the case with |Va| = N . Since all the players are active the

aggregate first order condition (5.8) holds with equality where ∑i∈V
∂Ui(s∗)
∂si

can
be regarded as an implicit function of (s∗, R, c). We apply the implicit function
theorem (Theorem 1.3.1 in [140]) to (5.8)

−
∂(∑i∈V

∂Ui(s∗)
∂si

)
∂G

dG

dR
=
∂(∑i∈V

∂Ui(s∗)
∂si

)
∂R

and obtain

dG

dR
= − (G− c̄)(N − 1)

(R +G− c̄)2∑
i∈V

∂2hi(G)
∂G2 −R(N − 1)

≥ 0. (5.10)

It holds that dG
dR

= 0 if and only if G = c̄.
We will show that G = c̄ if and only if c̄ = GU . If c̄ = GU , then G = c̄ because

c̄ ≤ G ≤ GU . We now prove that if G = c̄ then c̄ = GU . Assume G = c̄, then
aggregate first order condition (5.8) yields

∑
i∈V

∂Ui(s∗)
∂si

= N − 1 +
∑
i∈V

∂hi(c̄)
∂G

− β̄ = 0.

The unique solution is c̄ = GU .
We proceed to prove dG

dci
> 0. By applying the implicit function theorem
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to (5.8), we have

−
∂(∑i∈V

∂Ui(s∗)
∂si

)
∂G

dG

dci
=
∂(∑i∈V

∂Ui(s∗)
∂si

)
∂ci

and obtain

dG

dci
= − R(N − 1)

(R +G− c̄)2∑
i∈V

∂2hi(G)
∂G2 −R(N − 1)

> 0. (5.11)

(P3) By G ≤ GU and concaveness of hi, first order condition (5.7) yields

∂Ui(s∗)
∂si

= R
s̄∗ − c̄− (s∗i − ci)

(s̄∗ − c̄)2 + ∂hi(s̄∗ −R)
∂G

− βi

≥ R

s̄∗ − c̄
−R s∗i − ci

(s̄∗ − c̄)2 + ∂hi(GU)
∂G

− βi. (5.12)

Assume s∗i < ci, then with R > RL,

∂Ui(s∗)
∂si

>
RL

RL +GU − c̄
+ ∂hi(GU)

∂G
− βi = 0.

This contradicts the first order condition, and thus s∗i ≥ ci. With G ≥ c̄, (5.12)
becomes

∂Ui(s∗)
∂si

≥ R

R +GU − c̄
− s∗i − ci

R
+ ∂hi(GU)

∂G
− βi.

If s∗i < ci + R
(

R
R+GU−c̄ + ∂hi(GU )

∂G
− βi

)
, then ∂Ui(s∗)

∂si
> 0, a contradiction to the

first order condition. Therefore s∗i ≥ ci +R
(

R
R+GU−c̄ + ∂hi(GU )

∂G
− βi

)
and the lower

bound is strictly positive, because R > RL.
We now proceed to prove that the bound Li(R, c) , ci +R

(
R

R+GU−c̄ + ∂hi(GU )
∂G

−
βi
)
is a strictly increasing function of R without bound. By taking derivative of

the bound, we have

∂Li
∂R

= R

R +GU − c̄
+ ∂hi(GU)

∂G
− βi +R

GU − c̄
(R +GU − c̄)2

which is strictly greater than 0 since GU ≥ c̄ and R > RL. Moreover, function Li
keeps increasing without bound as R increases because limR→∞

∂Li
∂R

= 1+ ∂hi(GU )
∂G

−
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βi > 0.
Now we will consider the case with |Va| = N . We will show that there is at

least one i such that ds∗i
dR

> 0 holds. Since all the players are active, the first order
condition (5.7) holds with equality ∂Ui(s∗)

∂si
= 0 where ∂Ui(s∗)

∂si
can be regarded as an

implicit function of (s∗, R, c). By the implicit function theorem, relation

−


∂2U1(s∗)
∂s2

1
· · · ∂2U1(s∗)

∂s1∂sN
... . . . ...

∂2UN (s∗)
∂sN∂s1

· · · ∂2UN (s∗)
∂s2
N




ds∗1
dR
...

ds∗N
dR

 =


∂2U1(s∗)
∂s1∂R...

∂2UN (s∗)
∂sN∂R


holds where

∂2Ui(s∗)
∂s2

i

= −2Rs̄
∗ − c̄− (s∗i − ci)

(s̄∗ − c̄)3 + ∂2hi(s̄∗ −R)
∂G2 < 0

∂2Ui(s∗)
∂si∂sj

= −Rs̄
∗ − c̄− 2(s∗i − ci)

(s̄∗ − c̄)3 + ∂2hi(s̄∗ −R)
∂G2

∂2Ui(s∗)
∂si∂R

= s̄∗ − c̄− (s∗i − ci)
(s̄∗ − c̄)2 − ∂2hi(s̄∗ −R)

∂G2 > 0.

If we choose k = argmini∈V s∗i , it holds that
∂2Uk(s∗)
∂sk∂sj

≤ 0 because s∗k > ck. There-
fore, the relation

−
∑
j∈V

∂2Uk(s∗)
∂sk∂sj

ds∗j
dR

= ∂2Uk(s∗)
∂sk∂R

> 0

implies that there is at least one j such that ds∗j
dR

> 0.
We now proceed to prove the remaining part. Assume that hi = hj, and βi = βj

for ∀i, j ∈ V . Since all the players are active and thus first order condition (5.7)
yields

s∗i = ci +R +G− c̄+ (R +G− c̄)2

R
(∂hi(G)

∂G
− βi). (5.13)

Using the chain rule,

ds∗i
dR

= ∂s∗i
∂R

+ ∂s∗i
∂G

dG

dR

103



where ∂s∗i
∂R

and ∂s∗i
∂G

can be found from (5.13), and dG
dR

is in (5.10). One can show
that ds∗i

dR
= ds∗j

dR
. Since dG

dR
≥ 0, we have

dG

dR
= −1 +

∑
i∈V

ds∗i
dR

= −1 +N
ds∗i
dR
≥ 0.

Therefore, ds
∗
i

dR
≥ 1

N
.

The chain rule yields

ds∗i
dci

= ∂s∗i
∂ci

+ ∂s∗i
∂G

dG

dci
,
ds∗j
dci

=
∂s∗j
∂ci

+
∂s∗j
∂G

dG

dci
.

where ∂s∗i
∂ci

and ∂s∗i
∂G

can be found by (5.13) and dG
dci

is in (5.11). One can show that
∂s∗i
∂ci

= ∂s∗j
∂ci

+1 and ∂s∗i
∂G

= ∂s∗j
∂G

. Thus, it holds that ds∗i
dci

= ds∗j
dci

+1. Assume ∂s∗i
∂ci
≤ 0, then

∂s∗j
∂ci

< 0 and dG
dci

= ∑
j∈V

ds∗j
dci

< 0. This contradicts to (5.11). Therefore, ∂s
∗
i

∂ci
> 0.

(P4) It holds that

(|Va| − 1)(G− c̄)
R +G− c̄

+
∑
i∈Va

βi + 1− |Va|+
R
∑
i∈V\Va ci

(R +G− c̄)2

≤
∑
i∈V

∂hi(G)
∂G

≤ (N − 1)(G− c̄)
R +G− c̄

+ β̄ + 1−N (5.14)

where the lower bound can be found from (5.9) and the upper bound can be
obtained from (5.8):

∑
i∈V

∂hi(G)
∂G

≤ − R(N − 1)
R +G− c̄

+ β̄ ≤ (N − 1)(G− c̄)
R +G− c̄

+ β̄ + 1−N.

If i ∈ V̄a, then i ∈ Va because it holds that s∗i ≥ ci+ (G+R−c̄)2

R

(
R

R+G−c̄+ ∂hi(G)
∂G
−1

)
≥

ci + R
(

R
R+GU−c̄ + ∂hi(GU )

∂G
− 1

)
by equation (5.12). Remind that β̄ = N , and

equation (5.14) implies that Ḡ ≤ G ≤ G becauseH is a strictly decreasing function.
It holds that G ≤ G∗ because G∗ = H−1(1) and H−1 is also strictly decreasing.
Since ∑i∈V hi(G) − G is strictly increasing in G ∈ [0, G∗] and has a maximum at
G = G∗, we have

∑
i∈V

hi(Ḡ)− Ḡ ≤
∑
i∈V

Ui(s∗) ≤
∑
i∈V

hi(G)−G. (5.15)
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Dividing

max
s∈S

∑
i∈V

Ui(s) = max
s∈S

∑
i∈V

hi(s̄−R)− (s̄−R) =
∑
i∈V

hi(G∗)−G∗

by (5.15) yields the desired result.
Now we proceed to prove that PoA > 1 with any R < ∞ if c = ~0 , but

limR→∞ PoA(R,~0 ) = 1. It can be shown that G = H−1( (|V̄a|−1)Ḡ
R+GU−c̄ + 1) < H−1(1) =

G∗ where Ḡ 6= 0. Therefore, 1 <
∑

i∈V hi(G
∗)−G∗∑

i∈V hi(G)−G ≤ PoA with any R < ∞. More-
over, as R→∞, it holds that limR→∞ Ḡ = limR→∞G = H−1(1) = G∗. Therefore,
we can conclude that limR→∞ PoA = 1. �

(P2) shows that there payoff (5.4) does not have discontinuity because s̄(R, c) >
s̄(R, c)−R ≥ c̄. Remind that PoA(R, c) = 1 if and only if G(R, c) = G∗. So (P4)
indicates that it is impossible to achieve optimality G(R, c) = G∗ with a finite
reward when perturbations are not allowed; i.e., there is no finite maximizer of
problem (5.2). Price of anarchy is identical to Price of stability [141] which repre-
sents the ratio between the socially optimal payoff and the aggregate payoff induced
by the best Nash equilibrium because there exists a unique Nash equilibrium by
(P1). (P3) shows that problem (5.5) is not well-defined neither because s∗i (R, c)
increases unbounded as R increases.

Some properties of Theorem 5.4.1 reduce to those in [60] where perturbations
are absent. In particular, (P1) reduces to Proposition 2 of [60] where an unper-
turbed lottery has a unique Nash equilibrium. (P4) is consistent with Theorem 2
in [60]; i.e., given any ε > 0, there exists R such that PoA(R,~0 ) ≤ 1 + ε. The
lower and upper bounds of price of anarchy are newly derived in this chapter and
they can be calculated without finding the Nash equilibrium. Additionally, (P2),
and (P3) are new and reveal the properties regarding public goods and investment,
respectively.

5.5 Convex approximation of high-level social opti-
mum
Problem (5.6) is a bi-level optimization problem. In general, this class of prob-
lems is computationally challenging. In particular, papers [142–144] show that
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bi-level linear programs are NP-hard. Given the computational hardness, certain
relaxations of problem (5.6) are needed in order to find computationally efficient
solvers. We will leverage Theorem 5.4.1 to show that the following problem is
a convex over-approximation for problem (5.6). We will also show that, under
certain mild conditions, the approximation gap is zero.

min
(R,c)∈R×C

R + αGU

s.t. c̄ = GU , R ≥ GU

g(c1 +R
∂h1(GU)
∂G

+R(1− β1), · · · , cN +R
∂hN(GU)

∂G
+R(1− βN), R, c) ≤ 0,

∑
i∈V

(1− βi)(ci +R
∂hi(GU)
∂G

+R(1− βi)) ≥
∑
i∈V

hi(G∗)−G∗ − (
∑
i∈V

hi(GU)−GU)

(5.16)

The problem (5.16) is convex. The objective function is affine, constraints c̄ = GU

and R ≥ GU are also affine. Constraint

g(c1 +R
∂h1(GU)
∂G

+R(1− β1), · · · , cN +R
∂hN(GU)

∂G
+R(1− βN), R, c) ≤ 0

(5.17)

is convex because a composition of convex function with affine functions preserves
convexity where g is a convex function by Assumption 5.3.2 and ci + R∂hi(GU )

∂G
+

R(1 − βi) is an affine function. The last constraint is also an affine function in
(R, c). Feasible set R× C is convex because R = (0,∞), Ci = [0, GU ] are convex
sets and Cartesian products preserve convexity.

Set notations F(5.6), and F(5.16) denote the feasible sets of problems (5.6),
and (5.16) respectively. Likewise, we define p∗(5.6), and p∗(5.16) as the optimal values
of problems (5.6), and (5.16) respectively. The following theorem shows that prob-
lem (5.16) is a convex over-approximation of problem (5.6) and the approximation
is exact under certain mild conditions.

Theorem 5.5.1 Under Assumptions 5.2.1, 5.3.1, and 5.3.2, the followings hold:

• If βi = 1 for ∀i, then F(5.16) = F(5.6) and p∗(5.16) = p∗(5.6);

• If βi 6= 1 for some i, then F(5.16) ⊆ F(5.6) and p∗(5.16) ≥ p∗(5.6). Moreover, if

106



g(s∗(R, c), R, c) ≤ 0 implies c̄ = GU , then F(5.16) = F(5.6) and p∗(5.16) = p∗(5.6).

PROOF. In the proof, we will drop the dependency of G, s∗, and Ui on R and c.
The proofs are divided into three claim statements.

Claim 1. F(5.16) is a subset of F(5.6).
PROOF. Assume that F(5.16) is non-empty and we pick any (R, c) ∈ F(5.16).
We will show that such the pair (R, c) satisfies all the constraints in (5.6); i.e.,
(R, c) ∈ F(5.6).

The constraint c̄ = GU implies that GU = c̄ ≤ G ≤ GU by (P2). Therefore, it
holds that G = GU .

Using s̄∗ −R = GU = c̄, the first order condition yields

∂Ui(s∗)
∂si

= R
s̄∗ − c̄− (s∗i − ci)

(s̄∗ − c̄)2 + ∂hi(s̄∗ −R)
∂G

− βi

= 1− s∗i − ci
R

+ ∂hi(GU)
∂G

− βi ≤ 0. (5.18)

This equation implies that

s∗i ≥ ci +R
∂hi(GU)
∂G

+R(1− βi) > 0 (5.19)

because R ≥ GU > 0. Since the players are active, equality holds in the first order
condition (5.18) as well as (5.19):

s∗i = ci +R
∂hi(GU)
∂G

+R(1− βi). (5.20)

Therefore, constraint (5.17) implies

g(s∗, R, c) ≤ 0. (5.21)

By substituting relation (5.20) to the last constraint in (5.16)

∑
i∈V

(1− βi)(ci +R
∂hi(GU)
∂G

+R(1− βi))

=
∑
i∈V

(1− βi)s∗i ≥
∑
i∈V

hi(G∗)−G∗ −
∑
i∈V

hi(GU) +GU

we have the last constraint in (5.6).
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Lastly, the constraint c̄ ≤ min{GU , R} holds obviously. Therefore, (R, c) ∈
F(5.6). The statement holds because we pick arbitrary (R, c) ∈ F(5.16). �

Claim 1 shows that F(5.16) ⊆ F(5.6) for any set of β. The objective function
of (5.16) is min(R,c) R + αGU = min(R,c) R + αc̄. Therefore, solution p∗(5.16) is an
overestimate of p∗(5.6). We now proceed to prove that F(5.6) ⊆ F(5.16) if βi = 1 and
thus p∗(5.6) = p∗(5.16).

Claim 2. F(5.6) is a subset of F(5.16) if βi = 1 for ∀i ∈ V.
PROOF. Assume that F(5.6) is non-empty and we pick any (R, c) ∈ F(5.6). We
will show that the pair satisfies all the constraints in (5.16).

If βi = 1 for ∀i, constraint

∑
i∈V

hi(G(R, c))−G(R, c) +
∑
i∈V

(1− βi)s∗i =
∑
i∈V

hi(G(R, c))−G(R, c)

≥
∑
i∈V

hi(G∗)−G∗

holds only when G = G∗ because G∗ is a unique maximizer of the aggregate payoff
of unperturbed lottery. Therefore, the relation G = G∗ holds.

We now prove c̄ = G∗ by contradiction. Assume that there exist pair (R, c)
such that G = G∗ but c̄ 6= G∗. By (5.14),

(|Va| − 1)(G− c̄)
R +G− c̄

+ 1 +
R
∑
i∈V\Va ci

(R +G− c̄)2 ≤
∑
i∈V

∂hi(G)
∂G

.

Since ∑i∈V
∂hi(G∗)
∂G

= 1, it must hold that |Va| = 1. First order condition (5.7) for
i ∈ Va must hold with equality. However, we have

∂Ui(s∗)
∂si

= −R c̄− ci
(G∗ +R− c̄)2 + ∂hi(G∗)

∂G
− 1 < 0

which contradicts to the first order condition. Therefore, c̄ = G∗. Note that if
c̄ = G∗, then G = G∗ by (P2).

First order condition with c̄ = G∗

∂Ui(s∗)
∂si

= −s
∗
i

R
+ ci
R

+ ∂hi(G∗)
∂G

≤ 0

implies s∗i > 0, which holds for ∀i ∈ V ; i.e., |Va| = N .
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Using the first order condition (5.19), we can derive

s∗i = ci +R
∂hi(G∗)
∂G

(5.22)

where equality holds because all the players are active. By plugging (5.22) into
constraint (5.21), we obtain (5.17).

With βi = 1 and GU = G∗, the both sides of the constraint in (5.16)

∑
i∈V

(1− βi)(ci +R
∂hi(GU)
∂G

+R(1− βi)) ≥
∑
i∈V

hi(G∗)−G∗ − (
∑
i∈V

hi(GU)−GU)

become zero. Therefore, it holds always. Constraint R ≥ G∗ is satisfied since
R ≥ c̄ = G∗. Therefore, (R, c) ∈ F(5.16). The statement holds because we pick
arbitrary (R, c) ∈ F(5.6). �

If βi = 1 for ∀i, F(5.6) = F(5.16) by Claim 1 and Claim 2, and the objective
functions are equivalent to each other because c̄ = G∗ for the both feasible sets.
Thus it holds that p∗(5.6) = p∗(5.16). Lastly, we proceed to prove that F(5.6) ⊆ F(5.16)

if βi 6= 1 and g(s∗(R, c), R, c) ≤ 0 implies c̄ = GU . This will implies p∗(5.6) = p∗(5.16)

because of the equivalence of the objective functions.
Claim 3. F(5.6) is a subset of F(5.16) if βi 6= 1 for some i, and g(s∗(R, c), R, c) ≤

0 implies c̄ = GU .
PROOF. Assume that F(5.6) is non-empty and we pick any (R, c) ∈ F(5.6). We
will show that the pair satisfies all the constraints in (5.16).

First order condition becomes

∂Ui(s∗)
∂si

= (1− βi)−
si − ci
R

+ ∂hi(G∗)
∂G

≤ 0 (5.23)

which holds only if s∗i > 0 for ∀i; i.e., |Va| = N . Therefore, equality holds in (5.23)
which yields

s∗i = ci +R
∂hi(G∗)
∂G

+R(1− βi).

By substituting the above relation with c̄ = GU to the constraints, we obtain all
the constraints in (5.16). �

By Claim 1 and Claim 3, F(5.6) = F(5.16), if βi 6= 1 for some i, and g(s∗(R, c),
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R, c) ≤ 0 implies c̄ = GU . It also holds that p∗(5.6) = p∗(5.16) because c̄ = GU for the
both feasible sets. �

In Theorem 5.5.1, non-convex optimization problem (5.6) is approximated
by (or equivalent to) a convex optimization problem (5.16). In particular, with
c̄ = GU , we could obtain a constant public good G(R, c) = GU by (P2) in Theo-
rem 5.4.1, which sequentially results in the replacement of potentially non-concave
function s∗i (R, c) with a linear function (5.20). We show that this condition is a
sufficient and necessary condition for the social optimum when βi = 1 for ∀i, or
g(s∗(R, c), R, c) ≤ 0 implies c̄ = GU . On the other hand, it is a sufficient condition
when βi 6= 1 for some i because a sufficiently large reward R with c̄ 6= GU can
induce the optimal aggregate payoff or a greater one as shown in (P3).

5.6 Simulation
In this section, we will apply our perturbed lottery to demand response in the
smart grid. Demand response involves a load serving entity (LSE) and a set of
end-users. The LSE is the social planner and wants to incentivize the end-users
to shift their peak-time demand to off-peak time. The end-users participate the
lottery by shifting a portion of their shiftable demands.

Consider a power transmission network described by (G, E) where G and E
denote the set of buses and the set of transmission lines, respectively. In particular,
V ⊆ G, and P ⊆ G denote the set of load buses with non-zero demand (end-users),
and the set of generator buses, respectively. Each line l ∈ E has power flow capacity
fmax
l ∈ R≥0 and fmax = [fmax

1 , · · · , fmax
|E| ]T .

With the perturbed lottery, each end-user has payoff function (5.4) where de-
cision variable si denotes shifted demand in monetary value. Heterogeneity pa-
rameter βi denotes the dis-utility incurred by shifting a unit demand. Function hi
represents any impetus from the marginal benefit; e.g., utility discount, additional
rewards, public good made by the LSE. The LSE solves problem (5.6), in which
convex constraints represent three physical constraints; i.e., the end-users cannot
shift more than the demand, and the total adjusted demand after shifting cannot
exceed the total power generation, and the line capacities are enforced:

L− s∗(R, c) ≥ ~0 ,
∑
i∈V

(Li − s∗i (R, c)) ≤
∑
j∈P

Pj,
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Figure 5.1: IEEE 30-bus test system [3].

− fmax ≤ HpP −Hl(L− s∗(R, c)) ≤ fmax (5.24)

where L ∈ R|V|≥0 and P ∈ R|P|≥0 denote power demand and power generation, respec-
tively. Matrix H ∈ [−1, 1]|E|×|G| is the injection shift factor matrix where (a, b)
entry of H represents the active power change on line a with respect to change
in power injection at bus b. Matrices Hl ∈ [−1, 1]|E|×|V| and Hp ∈ [−1, 1]|E|×|P|

are the collections of columns i ∈ V and i ∈ P of H, respectively. Since L, P ,
fmax are constants at the given time, constraints (5.24) are convex and thus satisfy
Assumption 5.3.2.

We conduct case studies using IEEE 30-bus test system shown in Figure 5.1
where |P| = 6, |V| = 20, and |E| = 41. The system parameters are obtained from
MATPOWER [145]. Money/power exchange rate $0.1/kWh is applied and 1 hour
time frame is considered; e.g., the generator at bus 1 generates 23.54MW × 1h×
$0.1/kWh = $2354. We intentionally increase the power demand of each load bus
by 30% without changing power generations, so that demand shifts are inevitable.

We choose hi(s̄ − R) = (100 + i) log(s̄ − R + 1) for bus i ∈ V ; e.g., bus
30 ∈ V has h30(s̄−R) = 130 log(s̄−R+ 1). One can see that function hi satisfies
Assumption 5.2.1. The logarithmic model of provision of public good hi is based
on Cobb-Douglas utility function [146]. Recent papers [147–149] use such function
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Figure 5.2: (βi = 1) Optimal solution c∗i with R∗ = $3358 and the corresponding
Nash equilibrium s∗i .

to express the benefit from a public good. We choose α = 1.
The socially optimal public good G∗ = $2317 of unperturbed lottery is calcu-

lated by (5.3). The socially optimal payoff is obtained by∑i∈V hi(G∗)−G∗ = $7142.
Case study 1 (βi = 1). We solve problem (5.6) by CVX [150], and generate

optimal value $5675 with solution (R∗, c∗) presented in Figure 5.2. The figure also
presents the induced Nash equilibrium of the optimal lottery game. The aggregate
payoff induces the socially optimal public good s̄∗(R∗, c∗)−R∗ = $5675− $3358 =
$2317 = G∗, and the socially optimal payoff ∑

i∈V hi(G∗) − G∗ = $15644. Con-
vex program (5.16) generates a large reward R∗ = $3358 > $2317 = G∗ to
satisfy the physical constraints. Note that c̄ = G∗ with R ≥ G∗ is a suffi-
cient and necessary condition for the optimality, according to Theorem 5.5.1.
By Theorem 5.5.1, the solution is identical to that of problem (5.6) and satis-
fies all the physical constraints described in (5.24). The left hand side of Fig-
ure 5.3 visualizes that the first constraint is satisfied where the shifted demand
never exceeds the power demand. The second constraint is also satisfied because∑
j∈P Pj = ∑

i∈V(Li − s∗i (R∗, c∗)) = $18921. The right hand side of Figure 5.3
shows that power flow at each transmission line never exceeds its capacity.

Case study 2 (βi 6= 1). We choose βi = 0.99 for the first 10 end-users and βi =
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Figure 5.3: (βi = 1) Power demand and adjusted demand after shifting, and
percentage of power flow used in each line.

Figure 5.4: (βi 6= 1) Optimal solution c∗i with R∗ = $3100.4 and the corresponding
Nash equilibrium.

1 for the remaining end-users. Value GU = $2574.6 is found by ∑i∈V
∂hi(GU )
∂G

= 0.9.
The optimal value of problem (5.6) is found by $5675 and its solution is presented
in Figure 5.4. The Nash equilibrium is also presented in the same figure, and
it induces the public good s̄∗(R∗, c∗) − R∗ = $5675 − $3100.4 = $2574.6 = GU ,
as designed. The aggregate payoff ∑i∈V hi(GU) − GU + ∑

i∈V(1 − βi)s∗i (R∗, c∗) =
$15631 + $3058.5 is greater than that of the socially optimal payoff $15644 as
desired. Since g(s∗(R, c), R, c) ≤ 0 does not imply c̄ = GU , the solution might
be sub-optimal, but all the physical constraints (5.24) are satisfied. As Case 1,
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Figure 5.5: (βi 6= 1) Power demand and adjusted demand after shifting and per-
centage of power flow used in each line.

Figure 5.6: Difference of Nash equilibriums of Case 1 and Case 2; s∗i (Case2) −
s∗i (Case1).

Figure 5.5 shows that the shifted demand does not exceed the power demand, and
the amount of power flow in line is below its limit. Lastly, the total adjusted
demand after shifting is ∑j∈P Pj = ∑

i∈V(Li − s∗i (R∗, c∗)) = $18921. The Nash
equilibriums of Case 1 and 2 are different although the aggregate shifted demand
is identical. It is mainly because they have heterogeneous payoff functions in each
case. In particular, βi < 1 implies a willingness to shift more demand; i.e., the
first 10 end-users in Case 2 are more likely to shift demand than the others. Thus,
even with a smaller reward than that in Case 1, the LSE is able to induce the
same amount of shifted demand. The difference of Nash equilibriums is visualized
in Figure 5.6 where the first 10 users shift more demands in Case 2 than in Case
1.
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5.7 Conclusion
In this chapter, we study an optimal bi-level lottery design problem where a social
planner aims to achieve the social optimum through least reward and perturba-
tions. We approximate the problem via a convex relaxation and identify mild
sufficient conditions under which the approximation is exact. The results are ver-
ified via a case study on demand response in the smart grid.

5.8 Appendix
Proof of Lemma 5.3.1. We prove the statement by construction. We will
show that a pair (R, c) such that ci = GU

N
, R = max{RL + 1, GU , R̄}, satisfies∑

i∈V hi(G)−G+∑i∈V(1−βi)s∗i ≥
∑
i∈V hi(G∗)−G∗ where R̄ will be defined later.

By (P2), c̄ = G = GU . If βi = 1 for ∀i, then GU = G∗ and thus the pair satisfies
the constraint with R̄ = 0.

Assume βi 6= 1 for some i. It holds that s∗i ≥ ci +R
(

R
R+GU−c̄ + ∂hi(GU )

∂G
− βi

)
by

(P3) where the lower bound is a strictly increasing function in R without bound.
Therefore, there always exists sufficiently large R̄ such that

∑
i∈V

(1− βi)s∗i ≥
∑
i∈V

hi(G∗)−G∗ −
∑
i∈V

hi(GU)−GU

which satisfies the constraint. �
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Chapter 6 |
Frequency control

6.1 Introduction
The traditional power grid is modernized into the smart grid. The wide deploy-
ment of advanced information and communications technologies facilitates real-
time pricing and demand response. In addition, centralized generating facilities
are giving way to small distributed energy resources; e.g., photovoltaic systems,
fuel cells, storage and electric vehicles. Moreover, renewable energy; e.g., wind,
solar and wave energy, has been increasingly adopted due to its cleanness and
profitability.

While the integration allows flexible and efficient management of the grid, it
leaves uncertainties on the smart grid as well. In particular, uncertain renewable
generation as well as uncontrollable (unknown) loads can be seen as external dis-
turbances to the smart grid. As discussed in Chapter 1, existing papers focus
on control methodologies for disturbance attenuation where the impact of distur-
bances reduces but does not completely disappear. In disturbance attenuation,
the impact increases as the disturbance increases. Since the smart grid integrates
numerous uncertain components, it is imperative to study disturbance rejection
where the impact of disturbance is completely removed, regardless of the size of
disturbance. We, in this chapter, study frequency control in the presence of un-
certain disturbances, and design disturbance rejecting distributed controllers.

Chapter organization. We consider frequency control problems in the pres-
ence of uncertain net loads. Power system model with synchronous generator and
loads is introduced in Section 6.2.1. In the same section, robust frequency con-
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trol problem and robust adaptive frequency control problem are illustrated. We
propose distributed controllers to address the problems in Sections 6.3 and 6.4.
Stability of the designed controllers are analyzed and their proofs are presented
in Section 6.5. Lastly, numerical simulations demonstrate the performance in Sec-
tion 6.6.

Notations. Denote ‖x‖[t1,t2] , supt1≤t≤t2 ‖x(t)‖. Let |S| be the cardinality
of a set S. Matrix In denotes the n × n identity matrix. Let diag(A1, · · · , An)
denote a block matrix having A1 to An as main diagonal blocks. For v ∈ Rn,
sgn(v) ∈ {−1, 0, 1}n is a sign function, where sgn(vi) = −1 if vi < 0, sgn(vi) = 0
if vi = 0, and sgn(vi) = 1 if vi > 0. Norm ‖ · ‖F denotes Frobenius norm.

6.2 Problem formulation
In this section, we present a model of power systems, and frequency control prob-
lems.

6.2.1 System model

Table 6.1 summarizes the notations used in the model. We use ∆ to represent
deviations from nominal values; e.g., ∆w(t) = w(t)−w∗, where w∗ is the nominal
value of w(t).

Power network model The power network is described by the undirected
graph (V , E) where V , {1, · · · , N} denotes the set of buses and E ⊆ V × V
denotes the set of transmission lines between the buses. The set Ni denotes the
set of neighboring buses of i ∈ V ; i.e., Ni , {j ∈ V \ {i}|(i, j) ∈ E}. Each bus is
either a generator bus i ∈ G, or a load bus i ∈ L where G and L denote the sets
of corresponding buses, respectively. Each bus i is associated with a local control
authority.

Load model An electrical load can be divided to a controllable load and an
uncontrollable load [85, 151, 152]. Controllable load ∆PCi(t) is governed by the
demand response [85]:

∆ṖCi(t) = bi + ci∆PCi(t)−∆λi(t) (6.1)

where bi + ci∆PCi(t) is marginal benefit with ci < 0 and real-time electricity price
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Table 6.1: System variables and parameters.

System variables
w angular frequency θ phase angle
PM mechanical power Pij power flow
Pv steam valve position Pref reference power
PC controllable load PL net load
System parameters
D damping constant m angular momentum
TCH charging time const. tij tie-line stiffness
TG governor time const. R feedback loop gain
Km turbine gain Ke governor gain

∆λi(t) is used as the input for i ∈ L.
For i ∈ L, net load ∆PLi(t) represents the difference between the uncontrollable

load and renewable generation. For i ∈ G, net load ∆PLi(t) represents renewable
generation. Notice that uncontrollable loads and renewable generation are hard to
predict. We regard net loads ∆PLi(t) as external disturbances to the power sys-
tem. According to the spectral decompositions of wind generation [153, 154] and
load pattern [155], we approximate each net load as the sum of a finite number of
distinct sinusoidal functions as in [65]. In addition, any periodic function can be
represented by a Fourier series. If a function is continuous, absolutely integrable
and its derivative is absolutely integrable, then its Fourier series converges uni-
formly to the function (Theorem on p.86 in [156]). As output regulation [157,158],
the following marginally stable exosystem is used to generate ∆PLi(t):

χ̇i(t) = Φi(ρi)χi(t), ∆PLi(t) = Ψiχi(t) (6.2)

where χi(t) = [χi,1(t), χ̇i,1(t), · · ·, χi,`i(t), χ̇i,`i(t)]T ∈ R2`i ,

Φi(ρi) , diag(Φi,1, · · · ,Φi,`i), Φi,l ,

 0 1
−(ρi,l)2 0

 .
Each state χi,l(t) is a sinusoidal function with frequency ρi,l. The output ∆PLi(t)
is then a linear combination of sinusoidal functions with frequencies ρi = {ρi,1, · · · ,
ρi,`i}.

Assumption 6.2.1 The pair (Ψi,Φi(ρi)) is observable.

Dynamic model of the generator buses Consider the synchronous power
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generator from [80]:

∆θ̇i(t) = ∆wi(t)

∆ẇi(t) = − 1
mi

(
(DGi +DLi)∆wi(t) +

∑
j∈Ni

∆Pij(t) + ∆PLi(t)−∆PMi
(t)
)

∆ṖMi
(t) = − 1

TCHi

(
∆PMi

(t)−Kmi∆Pvi(t)
)

∆Ṗvi(t) = − 1
TGi

(
∆Pvi(t) + Kei

Ri

∆wi(t)−∆Pref i(t)
)

(6.3)

for i ∈ G, where DGi is mechanical damping constant, and DLi is load damping
constant corresponding to net load (renewable generation). Power flow ∆Pij(t) is
described by ∆Pij(t) = tij(∆θi(t) −∆θj(t)). The first equation in (6.3) indicates
the evolution of phase angle ∆θi(t). The second equation is referred to as swing
dynamics, indicating frequency fluctuations due to power imbalances. The third
and fourth equations represent turbine governor dynamics with reference input
∆Prefi(t).

Dynamic model of the load buses A load bus i ∈ L can be modeled by the
following phase angle dynamics and swing dynamics [104], where mi is the effective
moment of a postulated load model:

∆θ̇i(t) = ∆wi(t)

∆ẇi(t) = − 1
mi

(
DLi∆wi(t) +

∑
j∈Ni

∆Pij(t) + ∆PCi + ∆PLi(t)
)

(6.4)

where DLi is load damping constant corresponding to net load which is the differ-
ence between the uncontrollable load and renewable generation.

Outputs and inputs Control authority i can access ∆yi(t) = [∆wi(t), ∆PMi
(t),∆Pvi(t),∆PNi(t)]T

for i ∈ G, and ∆yi(t) = [∆wi(t),∆PCi(t),∆PNi(t)]T for i ∈ L, where ∆PNi(t) ,∑
j∈Ni ∆Pij(t). Local inputs are ui(t) = ∆Prefi(t) for i ∈ G, and ui(t) = ∆λi(t) for

i ∈ L.

6.2.2 Frequency control problems

In this chapter, we investigate the frequency control; i.e., controlling ∆wi(t) to
zero, and discuss two cases where the frequencies ρi of net loads are known or
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unknown. We drop ∆ in the rest of the chapter for notational simplicity. Also, we
use Di = DGi +DLi for i ∈ G and Di = DLi for i ∈ L.

Case 1: Robust frequency control. To stabilize the frequencies, each
generator bus i ∈ G aims to approach the following manifolds:

w∗i = 0, P ∗Mi
(t) = PLi(t) + PNi(t),

P ∗vi(t) = TCHi

Kmi

Ṗ ∗Mi
(t) + 1

Kmi

P ∗Mi
(t)

P ∗ref i(t) = TGiṖ
∗
vi

(t) + P ∗vi(t) (6.5)

which can be easily derived from system (6.3). Similarly, each load bus i ∈ L is
expected to stay on the following manifolds:

w∗i = 0, P ∗Ci(t) = −PLi(t)− PNi(t),

λ∗i (t) = bi + ciP
∗
Ci

(t)− Ṗ ∗Ci(t) (6.6)

which can be derived from systems (6.1) and (6.4). Superscript ∗ denotes the man-
ifold; e.g., λ∗i (t) denotes the manifold of ∆λi(t). We desire to design a distributed
controller which steers the system states and inputs to their manifolds (6.5) and (6.6).
In this case, control authority i knows ρi, Ψi and Φi(ρi) but is unaware of initial
state χi(0) and state χi(t) of exosystem (6.2). That is, control authority i knows
the number of sinusoidal signals, and their frequencies, but not their phase shifts
and magnitudes.

Assumption 6.2.2 All the frequencies ρi,1, · · · , ρi,`i in (6.2) of net load PLi(t) are
known to local control authority i.

Case 2: Robust adaptive frequency control. There are a couple of dis-
tinctions from Case 1. First, control authority i is unaware of frequencies ρi and
Assumption 6.2.2 is weakened into the following one:

Assumption 6.2.3 Control authority i knows the value `i and an upper bound
ρmax ≥ maxi,l ρi,l.

Secondly, we use the following simplified synchronous generator model [80]:

θ̇i(t) = wi(t)
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ẇi(t) = − 1
mi

(
Diwi(t) +

∑
j∈Ni

Pij(t) + PLi(t)− PMi
(t)
)

(6.7)

and simplified demand response model; i.e., local control authority i controls PCi(t)
directly. Remark 6.4.1 in Section 6.4.3 discusses why the simplified models are
needed for Case 2. For this case, the corresponding manifolds are

w∗i = 0, P ∗Mi
(t) = PLi(t) + PNi(t), i ∈ G

w∗i = 0, P ∗Ci(t) = −PLi(t)− PNi(t), i ∈ L. (6.8)

6.3 Controller synthesis for robust frequency control
In this section, we present a solution of the robust frequency control described in
Section 6.2.2.

6.3.1 Local internal models

Net loads PLi(t) cannot be measured and thus manifolds (6.5) and (6.6) cannot
be used for feedback control. We adopt the methodology of internal models to
tackle this challenge [158,159]. Recall that PLi(t) is the output of exosystem (6.2).
Hence, for i ∈ G, the second equation in (6.5) can be written as:

P ∗Mi
(t)− PNi(t) = PLi(t) = Ψiχi(t). (6.9)

Under Assumption 6.2.1, for any controllable pair (Mi, Ni) with Mi ∈ R2`i×2`i

being Hurwitz and Ni ∈ R2`i , there exists a non-singular matrix Ti(ρi) ∈ R2`i×2`i

as the unique solution of the following Sylvester equation [160]:

Ti(ρi)Φi(ρi)−MiTi(ρi) = NiΨi. (6.10)

With ϑi(t) , Ti(ρi)χi(t), (6.9) becomes

P ∗Mi
(t)− PNi(t) = Ψiχi(t) = ΨiT

−1
i (ρi)ϑi(t).

121



Now consider a local internal model candidate:

η̇i(t) = Miηi(t) +Ni(PMi
(t)− PNi(t)) (6.11)

where ηi(t) ∈ R2`i . Internal model (6.11) behaves as an estimator and its states
ηi(t) are expected to asymptotically track unmeasurable exosystem states ϑi(t).
The manifolds of ηi(t) are η∗i (t) = ϑi(t) in this case. It is expected to stabilize
the dynamics of error ηi(t) − ϑi(t). According to the certainty equivalence prin-
ciple [122], internal model states ηi(t) are used to replace ϑi(t) in manifolds (6.5)
and then in feedback control.

For load bus i ∈ L, we derive a similar internal model candidate by replacing
PMi

(t) with −PCi(t):

η̇i(t) = Miηi(t)−Ni(PCi(t) + PNi(t)). (6.12)

For notional simplicity, we will use the augmented states xi(t) = [xi,1(t), xi,2(t),
xi,3(t), xTi,4(t)]T = [wi(t), PMi

(t), Pvi(t), ηTi (t)]T and manifolds x∗i (PLi(t), t) = [x∗i,1(t),
x∗i,2(t), x∗i,3(t), (x∗i,4(t))T ]T = [w∗i (t), P ∗Mi

(PLi(t), t), P ∗vi(PLi(t), t), ϑ
T
i (t)]T for i ∈ G

and use the augmented states xi(t) = [xi,1(t), xi,2(t), xTi,4(t)]T = [wi(t), PCi(t),
ηTi (t)]T and manifolds x∗i (PLi(t), t) = [x∗i,1(t), x∗i,2(t), (x∗i,4(t))T ]T = [w∗i (t), P ∗Ci(PLi(t),
t), ϑTi (t)]T for i ∈ L, where the dependency of x∗i on PLi(t) is emphasized.

6.3.2 Controller design

We first conduct a coordinate transformation to convert the frequency control
problem into a global stabilization problem of the error dynamics with respect to
manifolds (6.5) and (6.6). We make use of its unique lower triangular structure
and apply a backstepping technique [161] to stabilize the error dynamics from the
outer state to the inner state progressively.

Since internal model states ηi(t) are expected to track ϑi(t) asymptotically for
∀i ∈ V , the estimation errors ‖ΨiT

−1
i (ρi)ηi(t)−ΨiT

−1
i (ρi)ϑi(t)‖ are expected to di-

minish. By the certainty equivalent principle, we use the known term ΨiT
−1
i (ρi)ηi(t)

to replace unknown PLi(t) = ΨiT
−1
i (ρi)ϑi(t) when constructing the error dynamics.
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Let us defined the tracking errors as follows:

x̃i(t) , xi(t)− x∗i (ΨiT
−1
i (ρi)ηi(t), t) (6.13)

for ∀i ∈ V . Error dynamics for i ∈ G become

˙̃xi,1(t) = − 1
mi

(Dix̃i,1(t)−ΨiT
−1
i (ρi)x̃i,4(t)− x̃i,2(t))

˙̃xi,2(t) = − 1
TCHi

(x̃i,2(t)−Kmix̃i,3(t))

˙̃xi,3(t) = − 1
TGi

(x̃i,3(t) + Kei

Ri

x̃i,1(t)− P̃refi(t))

+
∑
j∈Ni

tij(ΨiT
−1
i (ρj)x̃i,4(t)−ΨjT

−1
j (ρj)x̃j,4(t))

˙̃xi,4(t) = Φi(ρi)x̃i,4(t) +Nix̃i,3(t) (6.14)

where P̃refi(t) , Prefi(t) − P ∗refi(ΨiT
−1
i (ρi)xi,4(t), t). All the eigenvalues of Φi(ρi)

are on the imaginary axis. Coordinate transformation x̂i,4(t) , x̃i,4(t) − x̂∗i,4(t)
leads to

˙̂xi,4(t) = Mix̂i,4(t) + (miMi +DiI2`i)Nix̃i,1(t)

where x̂∗i,4(t) = miNixi,1(t). Since matrix Mi is Hurwitz, the subsystem x̂i,4(t) is
input-to-state stable (ISS) regarding x̃i,1(t) as an external input.

Consider subsystem x̃i,l−1(t) in (6.14) for l = 2, 3 and regard x̃i,l(t) as an
external input. Tracking error x̃i,l(t) is designed to stabilize x̃i,l−1(t); i.e., the
manifold x̂∗i,l(t) of x̃i,l(t) cancels all the measurable terms in the dynamics of x̃i,l−1(t)
and stabilizes it via −ki,l−1x̃i,l−1(t). Apply the same idea to i ∈ L, then we have

x̂i(t) , x̃i(t)− x̂∗i (t) (6.15)

and inputs

Prefi(t) = P ∗refi(ΨiT
−1
i (ρi)xi,4(t), t) + (Kei

Ri

+ TCHi
Kmi

TGi(e∗i + ki,1)(e∗i + ki,2)

× (Di −miΨiT
−1
i (ρi)Ni))xi,1(t)− TCHi

Kmi

TGi(e∗i + ki,1)(e∗i + ki,2)(xi,2(t)− x∗i,2(t))
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+ TGi(
1

Kmi

− TCHi
Kmi

(e∗i + ki,1 + ki,2))(ẋi,2(t)− ẋ∗i,2(t)) + (xi,3(t)− x∗i,3(t))

− ki,3TGix̂i,3(t)

λi(t) = λ∗i (ΨiT
−1
i (ρi)xi,4(t), t) +mi(e∗i + ki,1)(ci + ki,1)xi,1(t)

+ (ci + e∗i + ki,1 + ki,2)x̂i,2(t) (6.16)

where e∗i , ΨiT
−1
i (ρi)Ni − Di

mi
, x̂∗i,1(t) = 0, x̂∗i,2(t) = −mi(e∗i + ki,1)xi,1(t), and

x̂∗i,3(t) = −mi
TCHi
Kmi

(e∗i + ki,1)(e∗i + ki,2)xi,1(t)− ( 1
Kmi
− TCHi

Kmi
(e∗i + ki,1 + ki,2))(xi,2(t)−

x∗i,2(t)). Through transformations (6.13), (6.15) and input (6.16), the augmented
system, including (6.1), (6.3), (6.4), (6.11) and (6.12), becomes

˙̂xi(t) = Aix̂i(t) +
∑
j∈Ni

Bijx̂j,4(t) (6.17)

where

Ai =


−ki,1 1/mi 0 ΨiT−1

i (ρi)
mi

0 −ki,2 Kmi/TCHi Ai(2, 4)
0 0 −ki,3 Ai(3, 4)

Ai(4, 1) 02`i×1 02`i×1 Mi

 , i ∈ G

Ai =


−ki,1 1/mi ΨiT

−1
i (ρi)/mi

0 −ki,2 Āi(2, 4)
Ai(4, 1) 02`i×1 Mi

 , i ∈ L
Ai(2, 4) = −(e∗i + ki,1)ΨiT

−1
i (ρi),

Ai(4, 1) = (miMi +DiI2`i)Ni,

Ai(3, 4) = − 1
Kmi

(TCHi(e∗i + ki,1)(e∗i + ki,2) +
∑
j∈Ni

tij)ΨiT
−1
i (ρi),

Bij = [0T1×2`i ,0
T
1×2`i ,−

tij
Kmi

(ΨjT
−1
j (ρj))T ,0T2`i×2`i ]

T , for i ∈ G

Bij = 0(2`i+1)×1, for i ∈ L. (6.18)

By the backstepping technique, the ki submatrix in (6.18) is an upper-triangular
Hurwitz matrix and Mi is Hurwitz. This property is crucial for the stability of
system (6.17).

The network-wide system becomes ˙̂x(t) = Ax̂(t) where x̂(t) = [x̂T1 (t), · · · , x̂TN(t)]T .
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Since x̂∗i (t) in (6.15) does not change the origin, the exponential stability of x̂i(t) im-
plies that the original system states xi(t), and inputs ui(t) in (6.1), (6.3), (6.4), (6.11)
and (6.12) exponentially track their manifolds (6.5), (6.6) and ϑi(t).

6.3.3 Frequency stability guarantee

The following theorem summarizes the exponential stability of system states xi(t)
under distributed internal model controller (6.11), (6.12) and (6.16) with respect
to their manifolds (6.5), (6.6) and ϑi(t).

Theorem 6.3.1 Consider distributed control law (6.11), (6.12) and (6.16). Un-
der Assumptions 6.2.1 and 6.2.2, system states x(t) are exponentially stable with
respect to their manifolds (6.5), (6.6) and ϑi(t) if matrix A is Hurwitz. In addition,
there always exists a set of matrices Mi, Ni and gains ki,1, ki,2, ki,3 such that matrix
A is Hurwitz.

In the proof, we provide Algorithm 8 to identify a set of gains and matrices in
a distributed way such that A is Hurwitz.

6.4 Controller synthesis for robust adaptive frequency
control
In this section, we study the case where the frequencies ρi in exosystem (6.2) are
unknown. Internal models (6.11) and (6.12) will be used, but T−1

i (ρi) in (6.10) is
uncertain to control authority i due to the unknown frequencies ρi. To address the
challenge, we propose a new distributed adaptive internal model controller.

Let us define the augmented state xi(t) = [xi,1(t), xi,2(t), xTi,3(t)]T = [wi(t),
PMi

(t), ηTi (t)]T (or xi(t) = [xi,1(t), xi,2(t), xTi,3(t)]T = [wi(t), PCi(t), ηTi (t)]T for i ∈
L) and corresponding manifolds x∗i (t).

6.4.1 Controller design

Like Section 6.3.2, a coordinate transformation is conducted to convert the global
control problem into a global stabilization problem of the error dynamics. Also,
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a backstepping approach is applied to ensure the stability of the error dynamics.
Consider the transformation

x̂i(t) , xi(t)− x∗i (Λi(t)xi,2(t), t)− x̂∗i (t) (6.19)

where x̂∗i,1(t) = 0, x̂∗i,2(t) = miNixi,1(t). The first two terms in (6.19) define the
tracking error and the third term is introduced by a backstepping technique to
stabilize the error dynamics as (6.15). Consider inputs

PMi
(t) = P ∗Mi

(Λi(t)xi,3(t), t)−mi(ki −
Di

mi

)xi,1(t)

PCi(t) = P ∗Ci(Λi(t)xi,3(t), t) +mi(ki −
Di

mi

)xi,1(t). (6.20)

Under coordinate transformation (6.19), the frequency control problem is trans-
formed to a stabilization problem for the same reason as (6.15). The difference is
that we use estimated vector Λi(t) instead of true vector Λ∗i (ρi) = ΨiT

−1
i (ρi). The

origin of the error dynamics does not change by x̂∗i (t).
Through coordinate transformation (6.19) and input (6.20), systems (6.4), (6.7)

and internal model (6.11) become

˙̂xi(t) = Ai(Λ∗i (ρi))x̂i(t) +Bi(Λ̂i(t))xi,3(t) (6.21)

for ∀i ∈ V where Λ̂i(t) , Λi(t)− Λ∗i (ρi) is the estimation error and

Ai(Λ∗i (ρi)) =
 −ki + Λ∗i (ρi)Ni

1
mi

Λ∗i (ρi)
(miMi +DiI)Ni Mi

 ,
Bi(Λ̂i(t)) =

 Λ̂i(t)
mi

02`i×2`i

 .

6.4.2 Projected parameter estimator

The quantity Λi(t) is an estimate of Λ∗i (ρi) and its update law is given by:

Λ̇T
i (t) = Ji(t)− (‖Ji(t)‖+ γi)(sgn(Λi(t)− ‖

(ρ2
max + 1)`i + ‖Mi‖F

‖Ni‖
‖12`i×1)/2
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+ sgn(Λi(t) + ‖(ρ2
max + 1)`i + ‖Mi‖F

‖Ni‖
‖12`i×1)/2) (6.22)

where Ji(t) = − x̂i,1(t)
mi

xi,3(t) and γi > 0 is an arbitrary constant. The first term
Ji(t) in (6.22) is designed to cancel cross term Λ̂i(t) x̂i,1(t)

mi
xi,3(t) by Λ̂i(t) ˙̂ΛT

i (t) in
the Lyapunov analysis. The additional terms in (6.22) speed up the convergence
rate by restricting the parameter estimates within ‖Λi(t)‖ ≤

√
2`i((ρ2

max + 1)`i +
‖Mi‖F )/‖Ni‖. The bound is shown in Claim B in the proof of Theorem 6.4.1.

6.4.3 Frequency stability guarantee

The following theorem summarizes the asymptotic convergence of system states
xi(t) to their manifolds (6.8) and ϑi(t). Consider matrix

Āi =
 Āi(1, 1) ((miMi +DiI)Ni)T/2

(miMi +DiI)Ni/2 (Mi +MT
i )/2 + 2I2`i×2`i


Āi(1, 1) = −ki + (ρ2

max + 1)`i + ‖Mi‖F + ((ρ2
max + 1)`i + ‖Mi‖F )2/(4m2

i ‖Ni‖2).
(6.23)

Theorem 6.4.1 Consider distributed control law (6.11), (6.12) and (6.20) and
adaptive law (6.22). Under Assumptions 6.2.1 and 6.2.3, system states x(t) are
asymptotically convergent to their manifolds (6.8) and ϑi(t), if matrix Āi is negative
definite for ∀i ∈ V. In addition, there always exists a set of matrices Mi, Ni and
gain ki such that matrix Āi is negative definite.

In the proof, we provide Algorithm 9 to identify a set of control gain and
matrices in a distributed way such that Āi is negative definite.

Remark 6.4.1 Simplified synchronous generator model (6.7) (as well as the sim-
plified controllable load model) prevent potential problems where the adaptive law
relies on unmeasurable values ϑi(t) and T−1

i (ρi) to eliminate cross terms. �

6.5 Analysis
This section presents the proofs of Theorem 6.3.1 and 6.4.1.
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Algorithm 8 Distributed selection of control gains
1: for i ∈ V do
2: Choose a controllable pair (Mi, Ci) such that Mi is Hurwitz and
λmax(Mi+MT

i

2 ) < −3.5− |Ni|/(|Ni|+ 2)2;

3: Choose 0 < αi <
2(−λmax(

Mi+M
T
i

2 )−3.5− |Ni|
(|Ni|+2)2 )

1
2

‖(miMi+DiI2`i )Ci‖
;

4: Ni = αiCi;
5: Find the solution T−1

i (ρi) of Sylvester equation (6.10);
6: end for
7: for i ∈ V do
8: Choose ki,1, ki,2, ki,3 sequentially such that
9: ki,1 > ‖ΨiT

−1
i (ρi)‖2/(4m2

i ) + 1/(4m2
i ) + 1.5,

10: ki,2 >
K2
mi

4T 2
CHi

+ (e∗i + ki,1)2‖ΨiT
−1
i (ρi)‖2/4 + 1.5,

11: ki,3 > T 2
CHi

(e∗i + ki,1)2(e∗i + ki,2)2‖ΨiT
−1
i (ρi)‖2/(4K2

mi
) + ∑

j∈Ni t
2
ij(|Ni| +

2)2(‖ΨiT
−1
i (ρi)‖2 + ‖ΨjT

−1
j ‖2)/(4K2

mi
) + 1.5.

12: end for

6.5.1 Proof of Theorem 6.3.1

Assume that A is Hurwitz. Then, linear time invariance system ˙̂x(t) = Ax̂(t)
is exponentially stable. Since coordinate transformation x̂∗i (t) in (6.15) does not
change the origin, this further implies that x(t) in (6.3) is exponentially stable
with respect to their manifolds (6.5), (6.6) and ϑi(t). One can prove the necessity
part by reversing the steps above.

Now we proceed to prove the existence of control gains and matrices by con-
struction. Consider system (6.17) where matrices and control gains are chosen
by Algorithm 8. We will show that A is Hurwitz by verifying that the system is
exponentially stable. Consider Lyapunov function candidate Vi(t) = 1

2‖x̂i(t)‖
2 for

∀i ∈ V . Since x̂Ti (t)Aix̂i(t) ∈ R, x̂Ti (t)Aix̂i(t) = (x̂Ti (t)Aix̂i(t))T . Hence, the Lie
derivative of Lyapunov function candidate along the trajectories of system (6.17)
becomes

V̇i(t) = x̂Ti (t)Aix̂i(t) +
∑
j∈Ni

x̂i(t)Bijx̂j,4(t)

= x̂Ti (t)Ai + ATi
2 x̂i(t) +

∑
j∈Ni

x̂i(t)Bijx̂j,4(t).
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Since x̂i(t)Bijx̂j,4(t) ≤ δ
2‖x̂i,3(t)‖2 + ‖Bij‖2

2δ ‖x̂j,4(t)‖2 with δ = tij
Kmi

(|Ni|+2)2‖ΨjT
−1
j

(ρj)‖/2, we have

V̇i(t) ≤ x̂Ti (t)Āix̂i(t) +
∑
j∈Ni

x̂Tj (t)B̄ijx̂j(t)

where

Āi = Ai + ATi
2 +


02×2 02×1 02×2`i

01×2 Pi(2, 2) 01×2`i

02`i×2 02`i×1 02`i×2`i



and Pi(2, 2) = ∑
j∈Ni

t2ij
K2
mi

(|Ni| + 2)2‖ΨjT
−1
j (ρj)‖2/4 for i ∈ G and Āi = Ai+ATi

2 for
i ∈ L, and ‖B̄ij‖ ≤ 1

(|Ni|+2)2 .
Claim A: It holds that x̂Ti (t)Āix̂i(t) ≤ −0.5‖x̂i(t)‖2.

PROOF. Since x̂Ti,l(t)Āi(l, p)x̂i,p(t) ≤ δ
2‖x̂i,l(t)‖

2 + ‖Āi(l,p)‖2

2δ ‖x̂i,p(t)‖2 for any δ >
0 and x̂Ti,4(t)Mix̂i,4(t) = x̂Ti,4(t)(Mi+MT

i

2 )x̂i,4(t) ≤ λmax(Mi+MT
i

2 )‖x̂i,4(t)‖2 by the
Rayleigh quotient [162], we have

x̂Ti (t)Āix̂i(t) ≤ x̂Ti (t)A′ix̂i(t) (6.24)

whereA′i = diag(A′i(1, 1), A′i(2, 2), A′i(3, 3), A′i(4, 4)) for i ∈ G andA′i = diag(A′i(1, 1),
A′i(2, 2), A′i(4, 4)) for i ∈ L, and

A′i(1, 1) = −k1,k + ‖ΨiT
−1
i (ρi)‖2

4m2
i

+ 1
4m2

i

+ 1

A′i(2, 2) = −k2,k +
K2
mi

4T 2
CHi

+ (e∗i + ki,1)2‖ΨiT
−1
i (ρi)‖2

4 + 1

A′i(3, 3) = −k3,k + 1 + T 2
CHi

(e∗i + ki,1)2(e∗i + ki,2)2‖ΨiT
−1
i (ρi)‖2/(4K2

mi
)

+
∑
j∈Ni

t2ij
4K2

mi

(|Ni|+ 2)2(‖ΨiT
−1
i (ρi)‖2 + ‖ΨjT

−1
j (ρj)‖2)

A′i(4, 4) = (λmax(Mi +MT
i

2 ) + ‖(miMi +DiI2`i)Ni‖2

4 + 3 + |Ni|/(|Ni|+ 2)2)I2`i .

Algorithm 8 ensures A′i(l, l) < −0.5, and thus λmax(A′i) < −0.5 because A′i is a
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diagonal matrix. Hence, by (6.24) and the Rayleigh quotient,

x̂Ti (t)Āix̂i(t) ≤ λmax(A′i)‖x̂i(t)‖2 ≤ −0.5‖x̂i(t)‖2.

�

By Claim A,

V̇i(t) ≤ −Vi(t) +
∑
j∈Ni

‖x̂j(t)‖2

(|Ni|+ 2)2 .

Consider Ui(t) = 1
2‖x̂i(t)‖

2 and U̇i(t) = −Ui(t)+∑j∈Ni
‖x̂j(t)‖2

(|Ni|+2)2 . By the comparison
lemma (Lemma 3.4 [163]), it holds that Vi(t) ≤ Ui(t) for t ≥ 0 when Vi(0) ≤ Ui(0).
The general solution Ui(t) of the linear differential equation satisfies

Ui(t) = e−tUi(0) +
∑
j∈Ni

∫ t

0
e−(t−τ) ‖x̂j(τ)‖2

(|Ni|+ 2)2dτ

≤ e−tUi(0) +
∑
j∈Ni

‖x̂j‖2
[0,t]

(|Ni|+ 2)2

∫ t

0
e−(t−τ)dτ

≤ e−tUi(0) +
∑
j∈Ni

‖x̂j‖2
[0,t]

(|Ni|+ 2)2 (1− e−t)

≤ e−tUi(0) +
∑
j∈Ni

‖x̂j‖2
[0,t]

(|Ni|+ 2)2 .

Given Vi(0) = Ui(0), it follows from Vi(t) ≤ Ui(t) that

Vi(t) ≤ e−tVi(0) +
∑
j∈Ni

‖x̂j‖2
[0,t]

(|Ni|+ 2)2 .

By taking norm, Cauchy-schwarz inequality and square-root to the above inequal-
ity, we have

‖x̂i(t)‖ ≤ e−0.5t‖x̂(0)‖+
∑
j∈Ni

‖x̂j‖[0,t]

|Ni|+ 2

≤ max{(|Ni|+ 1)e−0.5t‖x̂i(0)‖, |Ni|+ 1
|Ni|+ 2 max

j∈Ni
{‖x̂j‖[0,t]}}. (6.25)

Inequality (6.25) implies that x̂i(t) is input-to-state stable (ISS) [164] with respect
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to each x̂j(t) with a contractive linear gain. By distributed constrained small-gain
theorem 6.8.1, x̂(t) is exponentially stable. The exponential stability of x̂(t) implies
that matrix A is Hurwitz. �

6.5.2 Proof of Theorem 6.4.1

Consider Lyapunov function candidate

V (t) = 1
2‖x̂(t)‖2 + 1

2
∑
i∈V
‖Λ̂i(t)‖2.

The Lie derivative of Lyapunov function candidate along the trajectories of sys-
tem (6.21) becomes

V̇ (t) = x̂T (t)A(Λ∗(ρ))x̂(t) +
∑
i∈V

Λ̂i(t)( ˙̂ΛT
i (t)− Ji(t)) (6.26)

where A(Λ∗(ρ)) = diag(A1(Λ∗i (ρi)), · · · , A|V|(Λ∗i (ρi))). Claim B identifies an upper
bound of uncertain term Λ∗i (ρi).

Claim B: ‖Λ∗i (ρi)‖ ≤ ((ρ2
max + 1)`i + ‖Mi‖F )/‖Ni‖.

PROOF. By post-multiplying T−1
i (ρi) and taking Frobenius norm on both sides

of Sylvester equation (6.10), we have

‖NiΛ∗i (ρi)‖F ≤ ‖Ti(ρi)Φi(ρi)T−1
i (ρi)‖F + ‖Mi‖F . (6.27)

By the definition of Frobenius norm, it holds that

‖NiΛ∗i (ρi)‖F =

√√√√√ 2`i∑
p=1

2`i∑
l=1

N2
i,p(Λ∗i,l(ρi))2

=

√√√√√(
2`i∑
p=1

N2
i,p)(

2`i∑
l=1

(Λ∗i,l(ρi))2) = ‖Ni‖F‖Λ∗i (ρi)‖F . (6.28)

By (6.28) and ‖ · ‖F ≤ ‖ · ‖tr (Lemma 10 in [165]), (6.27) becomes

‖Ni‖F‖Λ∗i (ρi)‖F ≤ ‖Ti(ρi)Φi(ρi)T−1
i (ρi)‖tr + ‖Mi‖F

= ‖Φi(ρi)‖tr + ‖Mi‖F ≤ (ρ2
max + 1)`i + ‖Mi‖F .

131



Note that ‖ · ‖F = ‖ · ‖2 for a vector. �

Claim C shows that Λ̂i(t)( ˙̂ΛT
i (t)− Ji(t)) is non-positive.

Claim C: Λ̂i(t)( ˙̂ΛT
i (t)− Ji(t)) ≤ 0.

PROOF. If |Λ̂i,l(t)| < ‖ (ρ2
max+1)`i+‖Mi‖F

‖Ni‖ ‖ for all l, then Λ̂i(t)( ˙̂ΛT
i (t) − Ji(t)) = 0.

Assume there exists l such that |Λ̂i,l(t)| ≥ ‖ (ρ2
max+1)`i+‖Mi‖F

‖Ni‖ ‖. Let S+
i,l(t) denote a

set of indices l such that Λ̂i,l(t) ≥ ‖ (ρ2
max+1)`i+‖Mi‖F

‖Ni‖ ‖. Likewise, S−i,l(t) , {l|Λ̂i,l(t) ≤
−‖ (ρ2

max+1)`i+‖Mi‖F
‖Ni‖ ‖}. Then, we have

Λ̂i(t)( ˙̂ΛT
i (t)− Ji(t)) ≤ (

∑
l∈S+

i,l
(t)

−Λ̂i,l(t)(‖Ji(t)‖+ γi) +
∑

l∈S−
i,l

(t)

Λ̂i,l(t)(‖Ji(t)‖+ γi))

≤ −γi(
∑

l∈S+
i,l

(t)

|Λ̂i,l(t)|+
∑

l∈S−
i,l

(t)

|Λ̂i,l(t)|) ≤ 0

where Λ̂i,l(t) = |Λ̂i,l(t)| for l ∈ S+
i,l(t) and Λ̂i,l(t) = −|Λ̂i,l(t)| for l ∈ S−i,l(t) are

applied. �

By Claim B, we have

‖x̂Ti,1(t)Λ∗i (ρi)x̂i,3(t)‖ ≤ ‖x̂Ti,1(t)‖‖Λ∗i (ρi)x̂i,3(t)‖

≤ (ρ2
max + 1)`i + ‖Mi‖F

‖Ni‖
(δ‖x̂i,1(t)‖2

2 + ‖x̂i,3(t)‖2

2δ )

and then

x̂T (t)A(Λ∗(ρ))x̂(t) ≤ x̂T (t)Āx̂(t) (6.29)

Symmetric matrix Ā = diag(Ā1, · · · , Ā|V|) is negative definite where Āi is defined
in (6.23). Thus, Claim C and (6.29) lead (6.26) to

V̇ (t) ≤ x̂T (t)Āx̂(t) ≤ λmax(Ā)‖x̂(t)‖2. (6.30)

Take the integral from 0 to t on both sides of (6.30), then

−λmax(Ā)
∫ t

0
‖x̂(τ)‖2dτ ≤ −

∫ t

0
V̇ (τ)dτ ≤ V (0) <∞

where V (t) ≥ 0 is applied. Since
∫ t

0 ‖x̂(τ)‖2dτ is non-decreasing and upper bounded
by −V (0)/λmax(Ā), the limit limt→∞

∫ t
0 ‖x̂(τ)‖2dτ exists. Moreover, ‖x̂(t)‖2 is
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uniformly continuous as shown in Claim D.
Claim D: ‖x̂(t)‖2 is uniformly continuous.

PROOF. Recall V̇ (t) is non-positive. There exists a constant U > 0 such that
‖x̂(t)‖ ≤ U for t ∈ [0,∞). Consider

|‖x̂(t+ s)‖2 − ‖x̂(t)‖2| =
∑
i∈V
|

3∑
l=1

(‖x̂i,l(t+ s)‖2 − ‖x̂i,l(t)‖2)|

≤
∑
i∈V
|

3∑
l=1
|‖x̂i,l(t+ s)‖2 − ‖x̂i,l(t)‖2| |. (6.31)

The term x̂i,l(t + s) is given by x̂i,l(t + s) = x̂i,l(t) +
∫ t+s
t

˙̂xi,l(τ)dτ . By uniform
boundedness of all x̂i,l(t), for l = 1, 2 and any s > 0, we have

x̂i,l(t)− ai,ls ≤ x̂i,l(t+ s) ≤ x̂i,l(t) + ai,ls

where ai,1 is a positive constant and ai,2 = a[1, · · · , 1]T is a vector with a positive
constant a. Therefore,

|‖x̂i,l(t+ s)‖2 − ‖x̂i,l(t)‖2| ≤ ‖2aTi,lx̂i,l(t)s‖+ ‖aTi,lai,ls2‖

≤ ‖2ai,ls‖U + ‖aTi,lai,ls2‖

where the right hand side is strictly increasing in s and lims→0 ‖2ai,ls‖U+‖aTi,lai,ls2‖
= 0. By applying the above bound to (6.31), we can prove the uniform continuity
of ‖x(t)‖2; i.e., for any ε > 0, there always exists δ > 0 such that for all t and
0 ≤ s ≤ δ, |‖x(t+ s)‖2 − ‖x(t)‖2| ≤ ε. �

It has been shown that ‖x̂(t)‖2 is uniformly continuous, and limt→∞
∫ t

0 ‖x̂(τ)‖2dτ

exists and is finite. By the Barbalat’s lemma (Lemma 8.2 in [163]), ‖x̂(t)‖2 asymp-
totically converges to zero.

Now we proceed to prove the existence of matrices and control gain such that
matrix Āi is negative definite by construction. Consider a set of matrices and con-
trol gain by Algorithm 9. Since x̂Ti,l(t)Āi(l, p)x̂i,p(t) ≤ δ

2‖x̂i,l(t)‖
2+ ‖Āi(l,p)‖

2

2δ ‖x̂i,p(t)‖2

for any δ > 0 and x̂Ti,2(t)Mix̂i,2(t) = x̂Ti,2(t)Mi+MT
i

2 x̂i,2(t) ≤ λmax(Mi+MT
i

2 )‖x̂i,2(t)‖2,
we have

x̂Ti (t)Āix̂i(t) ≤ x̂Ti (t)A′ix̂i(t)
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Algorithm 9 Distributed selection of control gains
1: for i ∈ V do
2: Choose a controllable pair (Mi, Ci) such that Mi is Hurwitz and
λmax(Mi+MT

i

2 ) < −1;

3: Choose 0 < αi <
2(−λmax(

Mi+M
T
i

2 )−1)
1
2

‖(miMi+DiI2`i )Ci‖
;

4: Ni = αiCi;
5: Choose ki such that ki > (ρ2

max + 1)`i + ((ρ2
max+1)`i+‖Mi‖F )2

4m2
i ‖Ni‖2 + 1 + ‖Mi‖F .

6: end for

where A′i = diag(A′i(1, 1), A′i(2, 2)) and A′i(1, 1) = −ki+ (ρ2
max + 1)`i+‖Mi‖F + 1 +

((ρ2
max+1)`i+‖Mi‖F )2

4m2
i ‖Ni‖2 , A′i(2, 2) = (λmax(Mi+MT

i

2 ) + ‖(miMi+IDi)Ni‖2

4 + 1)I2`i . Algorithm 9
ensures A′i(l, l) < 0, and thus diagonal matrix A′i is negative definite. This implies
that Āi is also negative definite. �

6.6 Simulation
In this section, we present simulations to show the performance of the proposed
distributed controllers. Although the proposed controllers are designed under the
assumption that voltages remain constants, we have taken into account voltage
dynamics through the following power flow model (simplified from (6.101) in [105]):

Pij(t) = |Vi(t)||Vj(t)|Bij sin(θi(t)− θj(t))

Qij(t) = |Vi(t)||Vj(t)|(−Bij cos(θi(t)− θj(t))). (6.32)

Variables Pij(t) and Qij(t) are active power flow and reactive power flow, respec-
tively. Coefficient Bij is an element in Y-matrix.

There are five simulations including 1. No fault case, 2. Three-phase fault,
3. Load-switching (light load), 4. Load-switching (peak load) and 5. Minni-
WECC system [166–168]. The first four simulations are applied to the single line
diagram of the IEEE 68-bus test system topology shown in [169, 170], and the
last simulation is applied to the Minni-WECC system. All of the parameters
are adopted from [85, 105]. We assume that each generator/load bus i ∈ G,L
has (unknown) local net load PLi(t) = 0.05 sin(0.1t) + 0.05 sin(0.2t) with Ψi =
[1, 0, 1, 0]. Frequency upper bound is given by ρmax = 0.9.
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Figure 6.1: Case1: Simulation results of no fault case.

System and controller parameters. The generator parameters are adopted
from page 598 in [105]: Ri = 0.05, TCHi = 0.3, TGi = 0.2, Kmi = 1 and Kei = 1
for ∀i ∈ G, and mi = 10, Di = 1 and Bij = 1.5 for ∀i ∈ V . Demand response
parameters bi = (40$/MWh)/(150s) and ci = (−0.8$/MW 2h)/(150s) for i ∈ L
are borrowed from [85].

For the robust frequency control, we choose ki = [1, 26, 99]T and matrices

Mi =


−5.9 −2.1 −0.1 1.5
2.4 −6.3 −0.2 2.9
0.8 0.9 −6.6 2.5
1.6 0.3 0.8 −7

 , Ni =


0.11
−0.1
0.12
0.12


which satisfy that matrix A is Hurwitz in Theorem 6.3.1. For the robust adaptive
frequency control problem, we choose ki = 45.5 and the above matrices, which
guarantee that Āi is negative definite in Theorem 6.4.1.

1. No fault. The first simulation is designed to show error tracking perfor-
mance of the proposed controllers. The initial condition of the current simulation
is intentionally chosen larger than that of the other simulations. Figure 6.1 summa-
rizes the results for the robust frequency control. In each subfigure, the horizontal
axis represents time in log-scale or linear-scale, and the vertical axis represents cor-
responding values in per unit. The first subfigure shows that the total state errors
‖x̂(t)‖1 are exponentially stable; i.e., the designed distributed controller achieves
the objective and eventually steers network-wide frequency deviations to 0. This
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Figure 6.2: Case2: Simulation results of no fault case.

implies that the trajectories of controllable load PCi(t) of bus i ∈ L and mechanical
power PMi

(t) for i ∈ G track desired signals; e.g., mechanical power PM68(t) for
68 ∈ G tracks net loads as shown in the third and fourth subfigures. Moreover, all
the frequency errors ∆wi(t) are stable; e.g., frequency of bus 68 is shown in the
second subfigure.

Figure 6.2 summarizes the results for the robust adaptive frequency control. The
first subfigure shows that network-wide state errors converge to zero, implying that
the angular frequencies are controlled to 60Hz; e.g., the second subfigure, and PCi(t)
and PMi

(t) balance the local power demand and generation (as well as incoming
and outgoing power).

The transient performance of the both cases in Figure 6.1 and 6.2 look similar
to each other, while their theoretic guarantees in the theorems are different. The
theoretic guarantees are valid for the worst case. That is, no matter what system
parameters are, the robust controller always ensures exponential stability and the
robust adaptive controller always ensures asymptotic stability. However, there
could be some instances where the robust adaptive controller performs as good as
or even better than the robust controller. The simulation in the paper is actually
one of these cases and two controllers both achieve exponential stability. These
cases do not violate the theorems.

2. Three-phase fault. In this simulation, bus 1 ∈ L is assumed to have
a three-phase fault with normal-clearing time (5 cycles). To simulate the three-
phase fault, we set the corresponding voltage of bus 1 to a very low value; i.e.,
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Figure 6.3: Case1: Three-phase fault at t = 5.

Figure 6.4: Case2: Three-phase fault at t = 5.

V1(t) = 0.1 p.u. for t ∈ [5, 5 + 5
60 ]. We present the results in Figures 6.3 and 6.4.

The fault induces a sudden increase in errors at t = 5 but the system restores
stability without large deviations. This is because all local controllers are designed
to collaborate together to stabilize the system by reducing their local errors.

3. Load-switching (light load). In this simulation, bus 1 suddenly discon-
nects a part of the load (0.5 p.u.) as well as net loads PL1(t) for t > 5. At the same
time, bus 1 loses control of the price. Figures 6.5 and 6.6 represent the results.
Load-switching and loss of pricing control induce persistent errors in voltages as
shown in the firth subfigure of Figures 6.5 and 6.6. This then increases total errors
in the first subfigure. Voltages are slowly restored in Case 1, while they remain
constant in Case 2. Although the local controllers are not particularly designed to
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Figure 6.5: Case1: Load-switching at t = 5 during light load.

Figure 6.6: Case2: Load-switching at t = 5 during light load.

reduce errors of the neighboring buses, controllers in the neighboring buses of bus
1 collaborate to reduce errors of bus 1 through adaptively changing tie-line flow
P1j(t).

4. Load-switching (peak load). We simulate the same load-switching case
as simulation 3; i.e., bus 1 loses net load (0.5 p.u.) and loses pricing control.
On top of this, bus 1 continuously has net loads PLi(t), and, in the other buses,
the amount of controllable load PCi(t) and mechanical power PMi

(t) are restricted
to [−0.12, 0.12] p.u. Figures 6.7 and 6.8 show the results of this simulation.
The operating condition is worse than that of simulation 3, but the distributed
controllers successfully restrict the errors in low level as shown in the first subfigure
of Figures 6.7 and 6.8. Overall oscillations come from persistent net loads in bus
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Figure 6.7: Case1: Load-switching at t = 5 during peak load.

Figure 6.8: Case2: Load-switching at t = 5 during peak load.

1, which are not rejected and act as a source of unknown disturbances.
5. Minni-WECC system. The Minni-WECC model [166–168] is a reduced-

order model of western electricity coordinating council (WECC) by applying gen-
erator equivalences and merging transmission paths. We conduct a no fault simula-
tion on the Minni-WECC model, and the results are shown in Figures 6.9 and 6.10.
The results are similar to that of simulation 1. The proposed distributed con-

trollers do not distinguish the topologies of the systems. Thus, the performance of
the controllers remain similar even when the network changes.
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Figure 6.9: Case1: Simulation on the Minni-WECC model.

Figure 6.10: Case2: Simulation on the Minni-WECC model.

6.7 Conclusion
We have investigated the frequency control of multi-machine power systems sub-
ject to uncertain and dynamic net loads. The proposed distributed internal model
controllers coordinate synchronous generators and demand response to ensure fre-
quency stability. Simulations on the IEEE 68-bus test system demonstrate the
performance of the controllers.
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6.8 Appendix: Distributed constrained small-gain the-
orem
Distributed constrained small-gain theorem is introduced in this appendix. The
theorem is an extension of constrained small-gain theorem in [171] to a network
set-up.

Consider an undirected graph (V , E) and set Ni , {j ∈ V \{i}|(i, j) ∈ E}. The
dynamic system associated with node i is given by

ẋi(t) = fi(x(t), di(t), t) (6.33)

where xi(t) and di(t) denote system state and uncertainty respectively.

Assumption 6.8.1 The system (6.33) is input-to-state stable with respect to neigh-
boring states. Equivalently, there exist class KL function βi and class K functions
γid and γij such that for ∀t ≥ t0 and ∀i ∈ V,

‖xi(t)‖ ≤ max{βi(‖xi(t0)‖, t− t0), γid(‖di‖[t0,t]),max
j∈Ni
{γij(‖xj‖[t0,t])}}. (6.34)

Assumption 6.8.2 Gain functions γij are contraction mappings for (i, j) ∈ E;
i.e., γij(s) < s for all s > 0.

Theorem 6.8.1 (Distributed constrained small-gain theorem) Under As-
sumptions 6.8.1 and 6.8.2, the system (6.33) is ISS with respect to d. Equiva-
lently, there exists class KL function β and class K function γid such that for all
xi(t0) ∈ X̂i and ‖d‖[t0,∞) < ∆̂d, the solution of (6.33) exists and for ∀t ≥ t0,

‖x(t)‖ ≤ max{β(‖x(t0)‖, t− t0), γid(‖d(t)‖[t0,t]). (6.35)

Moreover, the function β(x, t) = |V|∑i∈V βi(|V|
∑
k∈V βk(x, 0), t

(2L)|V|−1 ) is a class
KL function candidate of β(·) in (6.35) where L > 1 is a constant.

PROOF. For the notational simplicity in the sequent proof, we assume that V is
complete; i.e., Ni = V \{i}. If (i, j) /∈ E , then γij(s) = s. We divide the remaining
of the proof into three claims.
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Claim E: The following hold for i ∈ S` , {1, · · · , `}:

‖xi‖[t0,T ] ≤ max{βi(‖xi(t0)‖, 0),

max
(i,i1,··· ,iκ)∈Piiκ
i1,··· ,iκ∈S`

γii1 ◦ · · · ◦ γiκ−1iκ ◦ γiκd(‖diκ‖[t0,T ]),

max
j∈S`\{i}

max
(j,iκ,··· ,i)∈Pji
i1,··· ,iκ∈S`

γii1 ◦ γi1i2 ◦ · · · ◦ γiκj ◦ βj(‖xj(t0)‖, 0),

max
j /∈S`

max
(i,i1,··· ,iκ,j)∈Pij
i1,··· ,iκ∈S`

γii1 ◦ · · · ◦ γiκj(‖xj‖[t0,T ])}. (6.36)

PROOF. By (6.34), one can see that

‖x1‖[t0,T ] ≤max{β1(‖x1(t0)‖, 0), γ1d(‖d1‖[t0,T ]),max
j 6=1
{γ1j(‖xj‖[t0,T ])}}, (6.37)

and

‖x2‖[t0,T ] ≤max{β2(‖x2(t0)‖, 0), γ2d(‖d2‖[t0,T ]),max
j 6=2
{γ2j(‖xj‖[t0,T ])}}. (6.38)

Substitute (6.38) into (6.37), and it renders the following:

‖x1‖[t0,T ] ≤max{β1(‖x1(t0)‖, 0), γ1d(‖d1‖[t0,T ]),

γ12 ◦ β2(‖x2(t0)‖, 0), γ12 ◦ γ2d(‖d2‖[t0,T ]),

max
j 6=2
{γ12 ◦ γ2j(‖xj‖[t0,T ])}, max

j /∈{1,2}
{γ1j(‖xj‖[t0,T ])}}. (6.39)

Since γ12 ◦ γ21 is a contraction mapping, it follows from (6.39) that

‖x1‖[t0,T ] ≤max{β1(‖x1(t0)‖, 0), γ1d(‖d1‖[t0,T ]),

γ12 ◦ β2(‖x2(t0)‖, 0), γ12 ◦ γ2d(‖d2‖[t0,T ]),

max
j /∈{1,2}

{max{γ1j, γ12 ◦ γ2j}(‖xj‖[t0,T ])}}. (6.40)

By symmetry, one can show a similar property to (6.40) for ‖x2‖[t0,T ]. So (6.36)
holds for the case of ` = 2. Now assume that (6.36) holds for some ` < n. Similar
to (6.37), we have

‖x`+1‖[t0,T ] ≤ max{β`+1(‖x`+1(t0)‖, 0),
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γ(`+1)d(‖d`+1‖[t0,T ]), max
j 6=(`+1)

{γ(`+1)j(‖xj‖[t0,T ])}}. (6.41)

Following analogous steps above, one can show that (6.37) holds for ` + 1. By
induction, we complete the proof. �

Claim F: The solution to (6.33) exists and it is bounded.
PROOF. A direct result of Claim E is that the following holds for all i ∈ V :

‖xi‖[t0,T ] ≤ max{βi(‖xi(t0)‖, 0),

max
(i,i1,··· ,iκ)∈Piiκ

i1,··· ,iκ∈V

γii1 ◦ · · · ◦ γiκ−1iκ ◦ γiκd(‖diκ‖[t0,T ]),

max
j 6=i

max
(j,iκ,··· ,i)∈Pji
i1,··· ,iκ∈V

γii1 ◦ γi1i2 ◦ · · · ◦ γiκj ◦ βj(‖xj(t0)‖, 0)}. (6.42)

Since all the gain functions γij are contraction mappings, (6.42) renders the fol-
lowing:

‖xi‖[t0,T ] ≤ max{βi(‖xi(t0)‖, 0),

max
j∈Ni

γij ◦ γjd(‖dj‖[t0,T ]),max
j∈Ni

βj(‖xj(t0)‖, 0)}. (6.43)

Because of the choice of xi(t0) and the bound on d, the relation (6.42) holds for
any T . It implies that

‖xi(t)‖ ≤ max{βi(‖xi(t0)‖, 0), ∆̂d,max
j∈Ni

βj(‖xj(t0)‖, 0)}.

for all t ≥ t0 and thus is uniformly bounded. It completes the proof. �

Claim G: System (6.33) is ISS; i.e., the following holds for all i ∈ S` ,

{1, · · · , `}:

‖xi(t)‖ ≤ max{β̃[`−1]
i (‖x‖∞, t− t0), γ[`−1]

i (‖d‖[t0,t]),

max
j /∈S`

max
(i,i1,··· ,iκ,j)∈Pij
i1,··· ,iκ∈S`

γii1 ◦ · · · ◦ γiκj(‖xj‖[t0,t])}, (6.44)

for some class KL function β̃[`−1]
i where ‖x‖∞ , sup{‖x(t)‖ | t ∈ [t0,∞]}.
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PROOF. Let ` = 2. Note that for any constant L > 1,

‖x1(t0 + T )‖ ≤ max{β1(‖x1(t0 + 2L − 1
2L T )‖, 1

2LT ),

γ1d(‖d1‖[t0+ 2L−1
2L T,t0+T ]),max

j 6=1
γ1j(‖xj‖[t0+ 2L−1

2L T,t0+T ])}

≤ max{β1(‖x‖∞,
1

2LT ), γ1d(‖d1‖[t0+ 2L−1
2L T,t0+T ]),

max
j 6=1
{γ1j(‖xj‖[t0+ 2L−1

2L T,t0+T ])}}. (6.45)

For any τ2 ∈ [2L−1
2L T, T ], it holds that

‖x2(t0 + τ2)‖ ≤ max{β2(‖x2(t0 + 2L − 2
2L T )‖, τ2 −

2L − 2
2L T ),

γ2d(‖d2‖[t0+ 2L−2
2L T,t0+τ ]),max

j 6=2
{γ2j(‖xj‖[t0+ 2L−2

2L T,t0+τ ])}}

≤ max{β2(‖x‖∞,
1
L
T ), γ2d(‖d2‖[t0+ 2L−2

2L T,t0+T ]),max
j 6=2
{γ2j(‖xj‖[t0+ 2L−2

2L T,t0+T ])}}.

(6.46)

So (6.46) implies that

‖x2‖[t0+ 2L−1
2L T,t0+T ] ≤ max{β2(‖x‖∞,

1
L
T ), γ2d(‖d2‖[t0+ 2L−2

2L T,t0+T ]),

max
j 6=2
{γ2j(‖xj‖[t0+ 2L−2

2L T,t0+T ])}}. (6.47)

Substitute (6.47) into (6.45), and we have

‖x1(t0 + T )‖ ≤ max{β1(‖x‖∞,
1

2LT ), γ1d(‖d1‖[t0+ 2L−2
2L T,t0+T ]),

γ12 ◦ β2(‖x‖∞,
1
L
T ), γ12 ◦ γ2d(‖d2‖[t0+ 2L−2

2L T,t0+T ]),

γ12 ◦ γ21(‖x1‖[t0+ 2L−2
2L T,t0+T ]),max

j /∈S2
max{γ1j, γ12 ◦ γ2j}(‖xj‖[t0+ 2L−2

2L T,t0+T ])}. (6.48)

Since γ12 ◦ γ21(·) is a contraction mapping, there is class KL function β̃1 such that

‖x1(t)‖ ≤ max{β̃1(‖x‖∞, t− t0), γ1d(‖d1‖[t0,t]), γ12 ◦ γ2d(‖d2‖[t0,t]),

max
j /∈S2

max{γ1j, γ12 ◦ γ2j}(‖xj‖[t0,t])}. (6.49)
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By symmetry, there is class KL function β̃2 such that

‖x2(t)‖ ≤ max{β̃2(‖x‖∞, t− t0), γ2d(‖d2‖[t0,t]), γ21 ◦ γ1d(‖d1‖[t0,t]),

max
j /∈S2

max{γ2j, γ21 ◦ γ1j}(‖xj‖[t0,t])}. (6.50)

Hence, we have shown that (6.44) holds for ` = 2. Now assume (6.44) holds for
some ` < n. Recall that

‖x`+1(t)‖ ≤ max{β`+1(‖x`+1(t0)‖, t− t0), γ`+1(‖d`+1‖[t0,t]), max
j 6=`+1

γij(‖xj‖[t0,t])}.

(6.51)

By using similar arguments towards the case of ` = 2, one can show (6.44) holds
for ` + 1. Now we proceed to find a relation between ‖x‖∞ and ‖d‖∞. Because
‖xi(t0)‖ ≤ ‖x(t0)‖, note that

‖xi‖∞ ≤max{βi(‖x(t0)‖, 0), γid(‖di‖[t0,t]),max
j 6=i
{γij(‖xj‖∞)}}.

Similar to (6.44), one can show by induction that there are class K functions ρi
and ρid such that

‖xi‖∞ ≤ max{ρi(‖x(t0)‖), ρid(‖di‖[t0,t])}. (6.52)

The combination of (6.52) and (6.44) achieves the desired result. �

Now proceed with the proof that function

β(x, t) = |V|
∑
i∈V

βi(|V|
∑
k∈V

βk(x, 0), t

(2L)|V|−1 )

is a candidate of class KL function β in (6.35). We first find candidates of func-
tions β̃[`−1]

i in (6.44) and ρi in (6.52) and then combine them together. Note that
by substituting (6.47) into (6.45), we have equation (6.48). Consider class KL
functions in equation (6.48):

‖x1(t0 + T )‖ ≤ max{β1(‖x‖∞,
1

2LT ), γ12 ◦ β2(‖x‖∞,
1
L
T )}

≤ max{β1(‖x‖∞,
1

2LT ) + β2(‖x‖∞,
1

2LT )}.
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This implies that, in (6.49), β̃1(x, t) = ∑2
k=1 βk(x, t

2L) is a KL function candidate.
Likewise, in (6.44),

β̃
[`−1]
i (x, t) =

∑̀
k=1

βk(x,
t

(2L)`−1 ) (6.53)

is a KL function candidate for ∀i ∈ S` because we conduct ` − 1 times of the
substitutions. In a similar way, one can show that, in (6.52),

ρi(x) =
∑̀
k=1

βk(x, 0) (6.54)

is a class K function candidate for ∀i ∈ S`. Now we proceed to find a relation
between β̃[`−1]

i and ρi when S` = V . With equation (6.52),

‖x‖∞ ≤
∑
i∈V
‖xi‖∞ ≤ |V|max

i∈V
{ρi(‖x(t0)‖), ρid(‖di‖[t0,t])}. (6.55)

By combining (6.44) and (6.55),

‖xi(t)‖ ≤ max{β̃[|V|−1]
i (|V|max

k∈V
ρk(‖x(t0)‖), t− t0), γ[`−1]

i (‖d‖[t0,t])}.

This implies that

β(x, t) = |V|max
i∈V

β̃
[|V|−1]
i (|V|max

k∈V
ρk(x), t) (6.56)

is one of the class KL function candidates. By applying (6.53) and (6.54) to (6.56),
we have the result. �

Remark 6.8.1 If functions βi(·) in (6.34) for ∀i ∈ V are βi(x, t) = a
−pi(t)
i ri(x),

then β(·) in (6.35) is also in the same form: β(x, t) = a−p(t)r(x) where a, ai > 0
are constants, p(t), pi(t) are increasing functions without bound and r(x), ri(x) are
class K functions. �

Remark 6.8.1 indicates that if functions βi(·) are exponential functions, then β(·)
is also an exponential function.
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Chapter 7 |
Conclusion and future work

7.1 Conclusion
The objective of this dissertation is to design practical distributed controller-
s/mechanisms for CPS. We have investigated three emerging problems: cyber-
physical security, cyber-physical economics, and smart grid. In particular, we have
designed a multi-mode algorithm, where each mode is associated with a state and
attack vector estimator, and the mode estimator chooses the most likely mode to
generate the estimates of system states and attacker vectors. Attack-resilient ma-
chine learning algorithm has been proposed by incorporating attack-resilient state,
attack vector and mode estimator with Gaussian process regression for a class of
partially unknown nonlinear systems. We have proposed a bi-level lottery having
user’s heterogeneity parameter and social planner’s perturbation parameter, and
formulate an optimal bi-level lottery design problem where a Nash equilibrium
of a lottery game is coincident with a socially optimal payoff or a greater payoff
with least reward and perturbations. A convex approximation of the optimal bi-
level lottery design problem is presented, where the approximation is exact under
mild sufficient conditions. We have also proposed distributed controllers in smart
power grid, with the integration of demand response. The proposed distributed
controllers regulate angular frequencies to a desired common constant, rejecting
the impact of unknown net loads.
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7.2 Future work
In this section, we discuss possible future works and extensions, as follows.

1. Distributed attack-resilient estimation. We consider an extension of
the NISME presented in Chapter 2 to distributed attack-resilient estima-
tion, integrating consensus algorithms. The idea is motived by distributed
Kalman filter for sensor networks [20, 172], where multiple sensors estimate
states of the system in a distributed way. Distributed Kalman filter con-
sists of a bank of Kalman filters and they share the outputs/covariance ma-
trices via consensus algorithms, so that all local Kalman filters have the
same estimates of states and covariance matrices. Likewise, the NISME can
be distributed with embedding consensus algorithms. Distributed attack-
resilient estimation would provide scalability of the algorithm and requires
small communication bandwidths because it only requires local communica-
tion for consensus. Moreover, it is expected that distributed attack-resilient
estimation is resistant to attacks targeting the estimator, because neighbor-
ing estimators would detect attacks when some of them fail. One limitation
of distributed Kalman filter is that local Kalman filters estimate the network-
wide states. This is computationally expensive and also needs network-wide
information. There is an attempt to partition the network [173], so that local
Kalman filers estimate partial states. Since it is realistic for a local system to
have limited information and communication, our distributed attack-resilient
estimation would base on partitioned distributed Kalman filter introduced
in [173]. There are several challenges to address: (1) attack vectors might
change faster before local authorities consent to their estimates; (2) shared
covariance matrices are subject to local linearization points for nonlinear
systems.

2. Distributed attack-resilient control. We have studied attack-resilient
estimation in Chapters 2 and 3. It would be interesting to study attack re-
sponse; i.e., attack-resilient distributed control. We consider attacks target-
ing communication channels between local control authorities and actuators
such as replay attacks and denial-of-service attacks. The attacker hinders
actuators from receiving generated control commands, and eventually ac-
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tuators execute compromised control commands. We propose to adopt the
methodology of model predictive control (MPC) [174]. A local control au-
thority generates a sequence of control signals for several future steps. If
no attack occurs, actuators execute newly generated control commands, and
store future commands in local memories. If the system is under attack, the
stored control commands are executed instead. The above idea has been ap-
plied to centralized control for linear systems [69] and distributed control for
second-order mobile robots [68], where local systems are decoupled. When
attack-resilient control is applied to distributed coupled systems, we face
the challenges that (1) physical relations result in a cooperative game/non-
cooperative game (2) stored control commands may destabilize the systems.
To address the issues, the system operator desires to design a robust MPC
with a mechanism, where the mechanism is supposed to help neighbors when
they are under attacks, maintaining the network-wide performance.

3. Attack-resilient machine learning. Stability analysis of attack-resilient
machine learning in Chapter 4 is performed by breaking the coupling between
state estimation errors and function approximation errors. State estimation
errors are independent from function approximation errors as analyzed in
Theorem 4.5.1, while function approximation errors are subject to estimation
errors in Theorem 4.5.2. We address the limitations of the current design
and analysis as follows. Decoupling the errors induces Assumption 4.5.1.
Assumption 4.5.1 is a sufficient condition of that used in the unknown input
and output estimation for fully-known linear systems (Theorem 5 in [89]).
The assumption may be restrictive in some cases, although it may be true
for some CPS such as mobile robots. The assumption would be relaxed if
two stability analysis are combined.

4. Attack-resilient estimation. In Chapter 2, we consider a class of systems
subject to additive noises. Since Cyber-physical systems connect many het-
erogeneous systems, it would be practical to extend the existing estimation
algorithm to robust to multiplicative and additive noises. The idea of parti-
cle filter and Unscented Kalman filter could be used, because they are robust
extension of Kalman filter. The both filters use multiple testing points to
compute accurate posterior distributions of the internal states, while Kalman
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filter use only one testing point (mean).

5. Attack-resilient estimation for nonlinear systems. Attack-resilient es-
timation is an emerging research area and most of the literature consider
linear systems. To apply existing algorithms to nonlinear systems, it is re-
quired to linearize the target systems. The proposed tool is the feedback
linearizion, where the nonlinear system is transformed to equivalent linear
system with the change of variables. To apply the feedback linearization,
one needs to investigate whether linearization points/transformation are ap-
proximated, and investigate how the feedback linearization errors affect the
performance.
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