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Abstract

Asphaltenes are a problematic fraction of crude oil known for their propensity
for aggregation during oil extraction and processing. This aggregation is an
expensive problem for the petroleum industry, as it is difficult to predict, prevent,
or reverse. Asphaltenes have been difficult to study via experimental methods
due to the complexity of the asphaltene fraction as well as its propensity for
aggregating at very low concentrations. As a result, computational techniques such
as molecular dynamics (MD) simulations are an appealing approach to studying
asphaltenes. However, simulating relatively large-scale, slowly evolving processes
such as mesoscale aggregation at an all-atom (AA) level of resolution is infeasible
using even the latest high-performance computing hardware. Coarse-grained (CG)
modeling has emerged as a method of reducing the computational complexity of AA
MD simulations by coarsening out degrees of freedom and grouping atoms together
into CG sites. This reduction in resolution simplifies simulations using the resulting
models, extending the length- and time-scales accessible by MD simulation.

In order to be useful for studying real systems, CG models must incorporate
the correct physics to accurately describe the system they represent. There are
two main methods for incorporating these physics into CG models via parame-
terization: top-down and bottom-up modeling. Top-down CG models use simple
functional forms for their interaction potentials and are parameterized to reproduce
experimentally observable properties of the target system. The resulting models
accurately reproduce the targeted properties and are transferable to other state
points, but may not accurately represent the fine structural details of the system.
Bottom-up CG models are parameterized using information from simulations of an
underlying AA model and may use more complex functional forms. The correct
potential for a bottom-up CG model is the potential of mean force (PMF). The
PMF contains all of the information necessary for the CG model to reproduce all
properties of the AA model at the CG level of representation. However, the PMF
is too complex to determine or use in simulation, so bottom-up models almost
always use a potential that is an approximation to the configuration-dependent
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portion of the PMF. As a result of neglecting the state-point dependence of the
PMF, these approximations generally do not provide accurate descriptions of the
thermodynamic properties of the underlying AA model and are not transferable
away from the state point of their parameterization.

This work implements methods for improving the thermodynamic accuracy
and transferability of bottom-up CG models and studies petrochemical systems
as examples for demonstrating these methods. Chapters 2, 3, and 4 of this work
examine the volume-dependence of the PMF using bottom-up CG models of the
the petrochemical solvents heptane and toluene as example systems. We implement
the volume-dependent pressure correction devised by Das and Andersen for use
with bottom-up CG models, and demonstrate that this method obtains qualitative
but not quantitative agreement with the PV equation of state of the underlying AA
model. We extend this pressure-matching method with a self-consistent iterative
procedure that generates CG models that quantitatively reproduce the PV equation
of state of the underlying AA model. We further demonstrate this method for use
in parameterizing a transferable CG model that is accurate across a range of system
compositions. Chapter 5 presents the open-source release of the BOCS software
package used to parameterize the bottom-up models in Chapters 2-4. Finally,
Chapter 6 presents a top-down toy model for asphaltenes to study nanoaggregate
formation over a range of solvent conditions and molecular structures.
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Chapter 1 |
Introduction

1.1 Molecular Simulation
Molecular dynamics (MD) simulation is a powerful technique for modeling chemical
systems at a high level of detail. Standard all-atom (AA) MD simulations represent
each atom in a system of interest as a point mass, and numerically integrate Newton’s
equations of motion to propagate the system through time.1 The interactions
between atoms in classical MD models are defined by force fields, which specify the
functional form and parameters of the bonded and nonbonded interactions between
atoms. Molecular-mechanics-type force fields are most commonly employed, and
include terms for bond stretching, angle stretching, dihedral torsion, and nonbonded
pair interactions. AA force fields also include a description of electrostatics, whether
by appropriately assigning charges to the point masses or by providing a more
sophisticated description that includes polarizability. However, AA MD simulations
are generally limited by their computational complexity to studying processes that
occur on nanometer length scales and sub-microsecond timescales.2,3 Simulations at
this scale can be useful for studying a wide variety of phenomena, but fall short of
what is necessary for studying phenomena that occur on longer length- or timescales
such as protein conformational changes or the mesoscale aggregation of molecules
in a dilute solution.4
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1.2 Coarse-Grained Modeling
Coarse-grained (CG) modeling is one method for extending the accessible length-
and timescales of MD simulations. CG models reduce the computational effort
required for simulation by grouping atoms together into CG sites and defining
interactions between these sites, thus reducing the number of degrees of freedom in
the resulting model.5–8 However, a CG model must incorporate the correct physics
in order to accurately model the underlying system. In practice, determining the
physics for a CG model can be a highly nontrivial task.

Unlike the case of AA models, there are no fully general purpose CG force
fields available for use with popular simulation packages. While there exist several
popular CG force fields that can be applied across a range of systems,9–12 these
models are generally limited in scope to biomolecular simulations and do not provide
a mechanism to freely adjust the level of coarsening. Instead, researchers typically
define and parameterize bespoke CG models for their systems of interest. This is
because CG models are generally system-specific, either because of the choice of
resolution and CG site definitions, or because of the lack of transferability of the
CG model away from the conditions where it was parameterized.

Two general approaches to parameterizing a CG model are “top-down” and
“bottom-up” modeling. In top-down CG modeling, the interactions between sites
take on simple functional forms with only a few parameters to tune. The parameter
values are selected so that the CG model reproduces one or more experimentally
observable properties of the target system, such as the surface tension, density,
or aggregation behavior.9,13–17 Top-down models accurately reproduce the ther-
modynamic properties targeted in their parameterization, but may not accurately
reproduce structural properties.18,19 Top-down models are also relatively transfer-
able to other state points without losing accuracy.

In contrast, bottom-up models use microscopic information from simulations
of a more detailed (often AA) model to parameterize the CG interactions. The
resulting models typically more accurately describe the structural properties of
the target system, but generally fail to capture its thermodynamic properties. In
principle, the many-body potential of mean force (PMF) is the correct potential for
bottom-up CG models, as it exactly incorporates all structural and thermodynamic
properties of the underlying AA model at the resolution of the CG model.20–25 The
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PMF (W ) is determined by the reference AA model and the CG mapping:

W (R) = −kBT ln z(R), (1.1)

z(R) =
∫
dr exp[−u(r/kBT )]δ(M(r)−R)) (1.2)

where M maps AA configurations r to their CG representation, r is the CG
configuration, u(r) is the potential for the AA model, and δ(M(r) − R) is zero
unless M(r) = R. Consequently, W weights each CG configuration R by the
corresponding Boltzmann weight for those atomistic configurations r that map to
R. However, the PMF is intractably complex to represent or parameterize, and
thus cannot be determined or used for simulation. As a result, bottom-up modeling
almost always uses approximations to the configuration-dependent portion of the
PMF. Due to the limitations of available simulation engines, these approximations
most frequently employ standard molecular mechanics interaction sets. This can
be thought of as projecting the PMF onto an incomplete basis set that is often
insufficient to describe structural cross-correlations between CG interactions, or
non-structural properties of the underlying AA system. Further, typical bottom-up
approaches do not take the state-point dependence of the PMF into account. This
leads to CG models that accurately reproduce the simple structure of the underlying
AA model,26–32 but which fail to accurately describe its thermodynamic properties
or more complex structural correlations.33,34 Further, this approximation is the
cause of the poor transferability observed for bottom-up CG models, as an accurate
approximation to the PMF at one state point may not be relevant at other state
points.33,35–43

The majority of this dissertation focuses on method and software development
centered around improving the thermodynamic accuracy of bottom-up CG models
derived using the multiscale coarse-graining method developed by Izvekov and
Voth.27 In particular, we focus on a general solution for correcting the description
of the pressure in CG models by implementing an extension of the pressure-matching
method developed by Das and Andersen.44 This method introduces an additional
volume-dependent degree of freedom to the CG model that approximates the volume-
dependence of the PMF. In this work we focus our attention on petrochemical
solvents, but the methodology is applicable to any system composition. We
demonstrate that this approach can be used to parameterize transferable bottom-
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up CG models that reproduce both the structure and the pressure-volume behavior
of the underlying AA model.

1.3 Simulation Studies of Asphaltenes
Asphaltenes are a class of molecules found in crude oil known for their high
propensity for aggregation. In particular, they are an expensive problem for the
petrochemical industry due to their tendency to crash out of solution and coat
surfaces, fouling heat-exchange equipment and clogging pipes.45–49 It is estimated
that asphaltene aggregation costs the petrochemical industry billions of dollars a
year.50–52

Asphaltenes are defined as the fraction of crude oil that is soluble in toluene
but insoluble in n-heptane. This definition as a solubility class means that there
are a wide variety of molecular structures represented in any given asphaltene
sample.45,53–57 This heterogeneity combined with their high propensity for aggrega-
tion has lead to difficulty in experimentally studying the structural properties of
asphaltene molecules. As a result, the molecular properties of asphaltenes have been
a topic of extensive debate,46,47,58–60 although the Yen-Mullins model of asphaltenes
has recently emerged as a popular description of asphaltene behavior.57,61 The Yen-
Mullins model for asphaltene aggregation proposes that asphaltenes are relatively
small molecules with an average molecular weight of approximately 750 g/mol,
comprised of a central aromatic core surrounded by alkyl tails.57,61 Figure 1.1
shows a space-filling representation of a prototypical Yen-Mullins-type asphaltene
molecule with the hydrogen atoms hidden. Further, the Yen-Mullins model proposes
that these molecules aggregate via a hierarchical mechanism where 7-10 individual
molecules form a nanoaggregate, which then cluster together and form networks of
larger particles that eventually crash out of solution.52,61

MD simulations of asphaltenes are appealing for the purpose of studying the
microscopic behavior of proposed model asphaltene compounds. The explicit track-
ing of atom positions throughout the simulation removes the ambiguity associated
with studying asphaltenes through experimental methods. However, experimentally
relevant asphaltene concentrations for studying the onset of aggregation range from
100 mg/L for the onset of nanoaggregate formation62–67 to 2-5 g/L for the onset of
cluster formation.68–70 At these low concentrations, simulating enough asphaltene
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Figure 1.1. A prototypical Yen-Mullins-type asphaltene molecule with hydrogen atoms
hidden. The aromatic core is colored in teal, while the alkyl tails are colored green.

molecules to form multiple nanoaggregates or clusters becomes prohibitively expen-
sive, as the number of solvent molecules in such systems grows quickly with the
number of asphaltenes.

CG models are therefore appealing in the study of asphaltenes, as they reduce
the computational effort involved in MD simulations. We considered both bottom-
up and top-down approaches for parameterizing CG models of asphaltenes and
related molecules. The models of heptane and toluene presented in Chapters 2
and 3 were motivated by the need for an efficient, accurate model of asphaltene
solvents. These bottom-up models were parameterized using a force- and pressure-
matching methodology that approximated the configuration- and volume-dependent
components of the PMF, and as a result accurately reproduced the structure and
density distributions of the underlying models. The top-down toy model for
asphaltene aggregation presented in Chapter 6 uses an implicit solvent model
that greatly enhances the efficiency of the resulting simulations. We performed a
parameter sweep for the nonbonded interactions in these models and examined the
aggregation behavior for each set of parameters. Each set of parameters corresponds
to a particular solvent quality for the asphaltene core and tail components. The
particular molecular structures selected were designed to represent typical Yen-
Mullins asphaltene structures.
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1.4 Outline
This dissertation explores method development for bottom-up CG modeling, and
targets molecules relevant to simulation of asphaltenes and other petrochemical
systems. Chapter 2 examines the impact of coarse-graining on the description
of the system pressure under the CG model, and implements a correction to
the CG pressure that allows bottom-up CG models to reproduce the density
and compressibility of the underlying AA models. As is typical for bottom-up
CG models, without correction the example CG models of heptane and toluene
overestimate the pressure of the underlying model with errors on the order of
103 bar. This work demonstrates that the pressure correction suggested by Das
and Andersen44 qualitatively but not quantitatively corrects the pressure of the
CG model. To address this, we implement a self-consistent iterative solution for
obtaining a pressure correction that allows CG models to quantitatively reproduce
the pressure-volume equation of state of their reference AA model. Chapter 3
extends this correction to mixtures of heptane and toluene, using an extended
ensemble approach that incorporates statistics from a range of systems with varying
ratios of heptane:toluene to parameterize a single CG force field. The resulting
CG force field and pressure correction optimally reproduces both the structure
and thermodynamics of the heptane:toluene mixtures over the range compositions
included in the ensemble. Chapter 4 describes a ‘van der Waals’ perspective on
CG modeling that suggests bottom-up models can simultaneously reproduce both
structural and thermodynamic properties of an AA model, given independent
variational principles for the thermodynamic quantities of interest. Chapter 5
presents the BOCS software used for deriving the CG models of heptane and
toluene in Chapter 2-4 to the research community as an open source project.
Chapter 6 uses toy model asphaltenes to study nanoaggregate formation over a
range of solvent conditions and molecular structures. Finally, Chapter 7 provides
concluding thoughts and considers the outlook of CG modeling of petrochemical
systems.
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Chapter 2 |
Bottom-up coarse-grained mod-
els that accurately describe the
structure, pressure, and com-
pressibility of molecular liquids
N. J. H. Dunn, W. G. Noid, J. Chem Phys 2016, 143 (24), 243148

2.1 Abstract
The present work investigates the capability of bottom-up coarse-graining meth-
ods for accurately modeling both structural and thermodynamic properties of
all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and
3-site coarse-grained (CG) models for heptane, as well as 1 and 3-site CG models
for toluene. For each model, we employ the multiscale coarse-graining (MS-CG)
method to determine interaction potentials that optimally approximate the config-
uration dependence of the many-body potential of mean force (PMF). We employ
a previously developed “pressure-matching” variational principle to determine a
volume-dependent contribution to the potential, UV (V ), that approximates the
volume-dependence of the PMF. We demonstrate that the resulting CG models
describe AA density fluctuations with qualitative, but not quantitative, accuracy.
Accordingly, we develop a self-consistent approach for further optimizing UV , such
that the CG models accurately reproduce the equilibrium density, compressibility,
and average pressure of the AA models, although the CG models still significantly
underestimate the atomic pressure fluctuations. Additionally, by comparing this
array of models that accurately describe the structure and thermodynamic pressure
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of heptane and toluene at a range of different resolutions, we investigate the impact
of bottom-up coarse-graining upon thermodynamic properties. In particular, we
demonstrate that UV accounts for the reduced cohesion in the CG models. Finally,
we observe that bottom-up coarse-graining introduces subtle correlations between
the resolution, the cohesive energy density, and the “simplicity” of the model.

2.2 Introduction
Atomically-detailed molecular dynamics (MD) simulations provide tremendous
insight into processes that occur on nanometer length scales and sub-microsecond
timescales.71 Nevertheless, despite great strides in computational methods and
resources, traditional all-atom (AA) simulations remain prohibitively inefficient
for simulating phenomena that occur on larger length and time scales.72 These
limitations have motivated tremendous interest in coarse-grained (CG) models
that provide much greater efficiency by representing systems in reduced detail.5–8

Unfortunately, it remains challenging to develop CG models that provide a realistic
description of both structural and thermodynamic properties.73–75

Studies with CG models often adopt either “top-down” or “bottom-up” strate-
gies.75 Top-down approaches generally model interactions with simple functional
forms that are parameterized to reproduce thermodynamic properties or other
experimental observables.9,14–17,76 The resulting models typically demonstrate rela-
tively good transferability for modeling a wide range of thermodynamic conditions.
However, they may provide a relatively poor description of structural properties.18,19

In contrast, bottom-up approaches employ microscopic information from an
underlying AA model to parameterize the interactions in the CG model.75 In prin-
ciple, the many-body potential of mean force (PMF) is the appropriate potential
for bottom-up models, since it exactly incorporates all structural and thermody-
namic properties of the AA model that can be observed at the resolution of the
CG model.20–22,24,25,77 In practice, though, the many-body PMF is too complex
to determine, represent, or simulate. Consequently, bottom-up approaches often
approximate the configuration-dependence of the PMF (at a single state point)
with potentials that accurately reproduce structural features of the AA model, such
as radial distribution functions.26–32 Unfortunately, the resulting models frequently
suffer from two major deficiencies.74
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First of all, bottom-up models often demonstrate limited and unpredictable
transferability. Because the many-body PMF is a function of the thermodynamic
state point, potentials that accurately approximate the PMF at one state point
may provide a poor approximation at other state points. Indeed, previous studies
have demonstrated that optimized structure-based potentials can vary significantly
with changes in composition, density, and temperature.33,35–43

Furthermore, bottom-up CG models often provide a poor description of ther-
modynamic properties.33,34 The van der Waals picture of liquids provides a simple
explanation for this deficiency, since the local structure of fluids is primarily de-
termined by repulsive short-ranged interactions, but relatively insensitive to the
attractive long-ranged interactions that are essential for describing thermodynamic
properties.78 Consequently, bottom-up methods that focus on local structural
features likely provide limited accuracy for determining these long-ranged inter-
actions.79 Indeed, the resulting structure-based potentials tend to dramatically
overestimate the internal pressure.28,80 More fundamentally, by integrating over
atomic degrees of freedom, bottom-up coarse-graining generates many-body in-
teractions between CG sites and transfers thermodynamic information from the
configuration space into the many-body PMF.81,82 Accordingly, it may be nec-
essary to explicitly account for these effects when computing the pressure and
other thermodynamic properties with effective CG potentials.23,83 In particular,
recent studies with integral equation theories have indicated the ramifications of
coarse-graining for describing thermodynamic properties with low resolution CG
polymer models.84–86

In practice, though, bottom-up approaches frequently modify structure-based
pair potentials in order to more accurately describe the thermodynamic pressure
with the standard virial expression. For instance, the iterative Boltzmann method
often modifies the structure-based pair potentials with a “linear ramp” correction
that increases the intermolecular cohesion and, thus, reduces the internal pressure
without significantly altering local structural features.28,34,87 Similarly, the multi-
scale coarse-graining (MS-CG) method often employs a virial constraint in order
to ensure that the calculated potentials accurately describe the pressure of the
AA model.27,88,89 Additionally, several groups have developed pair potentials that
vary with the density.37,89,90 However, linear ramp corrections can provide a poor
description of the system compressibility,34,87 while explicitly density-dependent
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potentials can lead to thermodynamic inconsistencies.37,91–93

Quite recently, Das and Andersen (DA) proposed a considerably different ap-
proach for modeling density fluctuations with bottom-up CG models.44 Rather
than directly modifying the interactions between sites, DA introduced into the
approximate CG potential a new term, UV , that depends upon the volume but is
independent of the configuration. Moreover, DA elegantly extended the MS-CG
approach to the isothermal-isobaric ensemble by determining UV via a variational
“pressure-matching” calculation. This approach is appealing because the result-
ing CG potential provides a variationally optimal approximation for both the
configuration-dependence and also the volume-dependence of the PMF.

DA demonstrated this pressure-matching method by developing a CG model
for a monatomic liquid of Lennard-Jones spheres in which 75% of the particles
had been eliminated. In this case, DA quite accurately reproduced the density
distribution sampled by the original Lennard-Jones fluid. However, they did not
demonstrate the method for more complex molecular systems.

In this work, we applied the DA pressure-matching method to develop CG
models for liquid heptane and toluene at several different resolutions. For each
system and for each resolution considered, the DA approach qualitatively, but
not quantitatively, reproduces the density fluctuations of the corresponding AA
model. Accordingly, we developed a self-consistent approach that quantitatively
reproduces the thermodynamic density and compressibility of the AA models,
while also preserving an accurate description of the AA structure, for each liquid
at each resolution. Given the resulting set of models, we examine the impact of
resolution upon the thermodynamic behavior of CG models. We demonstrate that
the magnitude of the pressure correction, FV = −dUV /dV , systematically increases
with coarsening and that this pressure correction correlates with the reduced
cohesion of the CG model. Additionally, we demonstrate that, even when accurately
reproducing atomic density fluctuations, CG models significantly underestimate
the pressure fluctuations of AA models, which has important ramifications for
calculating material properties with structure-based, bottom-up models. Finally,
we quantitatively assess the extent to which systematic bottom-up coarse-graining
“simplifies” the original atomic models.
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2.3 Theory

2.3.1 High resolution model

We first consider the isothermal-isobaric ensemble for a high resolution model with
n atoms at constant temperature T and external pressure P0.94 In the following, we
assume that the atomic and CG models do not include rigid constraints, although
we anticipate that this assumption could be easily relaxed.25,95 The Hamiltonian
for the atomic model may be expressed:

h(r,p;V ) = κ(p) + u(r;V ). (2.1)

The atomic kinetic energy, κ(p), is a function of the Cartesian momenta for the n
atoms, p = (p1, . . . ,pn),

κ(p) =
n∑
i=1

p2
i /2mi (2.2)

where mi is the mass of atom i. The atomic potential energy is a function of
the Cartesian coordinates for all n atoms, r = (r1, . . . , rn), and may usually be
decomposed

u(r;V ) = u2(r) + uθ(r) + uV (V ). (2.3)

In this expression, u2 is the set of potentials that depend upon the distance
between pairs of particles and includes both intramolecular and intermolecular
potentials. The second term, uθ, is the set of bonded potentials that depend
upon bending or dihedral angles, but do not depend upon inter-particle distances.
These two contributions in Eq. (2.3) depend upon the system volume, V , only
implicitly via periodic boundary conditions. In contrast, uV is independent of r, but
explicitly depends upon V . This term arises in, e.g., the correction that accounts
for truncating non-bonded pair potentials at a cutoff distance.1,96

The extended phase space distribution for r, p, and V factors into two statisti-
cally independent contributions. The atomic momenta are statistically independent
Gaussian random variables,

pp(p) ∝ exp [−βκ(p)] (2.4)
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where β = 1/kBT . The atomic configuration, r, and the volume, V , are coupled
random variables:

prV (r, V |P0) ∝ exp [−β (u(r;V ) + P0V )] (2.5)

for all r in the V -dependent atomic configuration space, DAA(V ).
The instantaneous internal pressure of the atomic model, PAA, may be ex-

pressed94

PAA(r,p, V ) = 2
3V κ(p) + 1

3V w2(r) + fV (V ). (2.6)

where

w2(r) =
∑
i>j

rijf2;ij(rij) (2.7)

fV (V ) = −duV (V )/dV. (2.8)

In Eq. (2.7), rij is the distance between atoms i and j, while f2;ij is the magnitude
of the corresponding force due to u2(r) in Eq. (2.3). Note that uθ does not directly
contribute to the scalar virial since it is invariant with uniform scaling of the
coordinates.97 The average of PAA equals the thermodynamic pressure P0:

〈PAA(r,p, V )〉 = P0 (2.9)

where the angular brackets indicate an average according to prV (r, V |P0)pp(p):

〈a(r,p, V )〉 =
∫ ∞

0
dV

∫
V n
dr
∫

dp prV (r, V |P0) pp(p) a(r,p, V ). (2.10)

In Eq. (2.10) and in the following, V n indicates an integration over the volume-
dependent atomic configuration space DAA(V ).

2.3.2 Mapped ensemble and consistency criteria

In order to relate the atomistic and CG models, we introduce a mapping, M, that
determines a CG configuration, R = (R1, ...,RN), for N sites as a linear function
of the atomic configuration, r, by determining the coordinates of each CG site I,
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i.e.,
RI = MI(r) =

n∑
i=1

cIiri. (2.11)

Equation (2.11) assumes appropriate application of periodic boundary conditions
and also that the mapping coefficients are normalized: ∑i cIi = 1 for each I =
1, . . . , N . For simplicity, we assume that this mapping partitions the atoms into
disjoint sets and associates each CG site with the mass center for one of these
atomic groups. However, this last assumption can be readily relaxed by appropriate
definition of the CG masses.25 The configuration mapping operator, M, also
implies a corresponding momentum mapping operator, MP, that determines the
CG momenta P = (P1, ...,PN ) as a function of the atomic momenta p.25 We define
the “mapped ensemble” by mapping each atomic microstate, (r,p, V ), to its CG
representation, (R,P, V ), i.e., r→ R = M(r), p→ P = MP(p), and V → V .

The CG momenta, PI , are statistically independent Gaussian random variables
in the mapped ensemble:

pP (P) =
∫

dp pp(p) δ(P−MP(p)) (2.12)

∝ exp
[
−

N∑
I=1

P2
I/2σ2

I

]
(2.13)

where the variances, σ2
I , are the sum of the variances for the corresponding atomic

momenta.25,98 The mapped ensemble distribution for CG configurations and
volumes is given by

pRV (R, V |P0) =
∫
V n
dr prV (r, V |P0) δ(R −M(r)). (2.14)

Our objective is to develop a CG model that accurately reproduces these proba-
bility distributions for the mapped ensemble. The mapped momenta distribution
is easily reproduced by determining each site mass to generate the correct vari-
ance. The mapped distribution of configurations and volumes is more difficult to
reproduce. The correct CG potential, W , for exactly matching this distribution is
defined to within a constant (that is independent of both V and R) by

exp [−βW (R, V )] = V N−n
0

∫
V n
dr exp [−βu(r;V )] δ(R −M(r)), (2.15)
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where V0 is an arbitrary reference volume that has been introduced for dimensional
consistency, while ensuring that W (R, V ) properly accounts for the “ideal gas”
contribution to the pressure. Thus, W is a volume-dependent many-body potential
of mean force (PMF):

−∂W (R, V )/∂RI = 〈fI(r)〉R;V (2.16)

−∂W (R, V )/∂V = (n−N)kBT/V + 〈w2(r)〉R;V + fV (V ). (2.17)

In these expressions, fI(r) is the net force on CG site I in the configuration r,
while the subscripted angular brackets denote a conditioned average for the atomic
model:

〈a(r, V )〉R;V =
∫
V n
dr prV (r, V |P0) δ(R −M(r)) a(r, V ) /pRV (R, V |P0) . (2.18)

It is worth noting that Eq. (2.17) may be re-expressed:

− ∂W (R, V )/∂V = 〈PAA(r,p, V )〉R;V −NkBT/V. (2.19)

Thus, the many-body PMF, W , incorporates the non-ideality that is necessary for
the CG model to reproduce the AA equation of state for the pressure. In particular,
in the special case that the AA model is an ideal gas with u(r;V ) = 0, the PMF
W (R, V ) = −(n−N)kBT ln (V/V0) accounts for the “apparent non-ideality” that
emerges in the CG model from integrating over the atomic degrees of freedom.44

Additionally, we note that W also depends upon T , although this dependence is
not explicitly considered in the present work.82

2.3.3 Approximate coarse-grained model

We next consider the isothermal-isobaric ensemble for an approximate CG model
with N sites at the same temperature T and external pressure P0. The Hamiltonian
for the model is

H(R,P, V ) = K (P) + U(R, V ). (2.20)

The kinetic energy is

K (P) =
N∑
I=1

P2
I/2MI . (2.21)
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The mass,MI , of site I is defined as the total mass of the corresponding atoms so that
the CG model will reproduce the corresponding mapped momentum distribution,
pP .25

In general, one expects that the many-body PMF, W (R, V ), couples the CG
coordinates and volume in a complex way. However, in practice, CG models
approximate the PMF with a potential, U , that is analogous to Eq. (2.3):

U(R, V ) = U2(R) + Uθ(R) + UV (V ), (2.22)

where U2 is a sum of bonded and non-bonded potentials that depend upon pair
distances, while Uθ is a sum of bonded potentials that depend upon bond angles or
dihedral angles. The first two contributions in Eq. (2.22) depend upon the system
volume, V , only implicitly via periodic boundary conditions. In contrast, UV is
independent of R, but explicitly depends upon V . Because CG interactions are
often assumed to be short-ranged, previous studies have generally neglected this
contribution. However, UV is the key contribution to the CG effective potential for
the DA pressure-matching algorithm.44

Given Eqs. (2.20)-(2.22), the instantaneous internal pressure of the CG model,
PCG may be expressed

PCG(R,P, V ) = 2
3V K (P) + 1

3V W2(R) + FV (V ) (2.23)

where

W2(R) =
∑
I>J

RIJF2;IJ(RIJ) (2.24)

FV (V ) = −dUV (V )/dV (2.25)

and RIJ is the distance between sites I and J , while F2;IJ is the corresponding
force magnitude due to U2(R) in Eq. (2.22). For future use, we also define

P 0
CG(R,P) = 2

3V K (P) + 1
3V W2(R), (2.26)

which is the equation for the instantaneous pressure in conventional structure-based
potentials that neglect UV , i.e. if U = U2 + Uθ. The instantaneous pressure of the
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CG model may then be expressed:

PCG(R,P, V ) = P 0
CG(R,P) + FV (V ). (2.27)

2.3.4 Pressure matching variational principle

DA demonstrated an elegant extension of the MS-CG variational approach25,27,88,99

to determine potentials that optimally approximate both the configuration-dependence
and also the volume-dependence of the many-body PMF,W (R, V ), for the isothermal-
isobaric ensemble.44 In practice, this involves the successive minimization of two
functionals. DA proposed to first determine the configuration-dependent potentials,
U2 and Uθ, by minimizing

χ2
1[U2, Uθ] =

〈
V 2/3

N∑
I=1

∣∣∣fI(r;V )− FI(M(r);V )
∣∣∣2〉 , (2.28)

where the angular brackets denote an average according to Eq. (2.10). The individual
terms in U2 and Uθ are represented by simple basis functions,100 such as spline
functions, and the corresponding parameters are obtained by minimizing χ2

1, e.g.,
by solving the corresponding normal system of linear equations.101 The functional
χ2

1 slightly differs from the standard MS-CG force-matching functional25 by the
factor of V 2/3 that reweights each configuration. This factor arises because DA
developed the pressure-matching variational principle in scaled coordinates.102

After determining the intra- and intermolecular contributions to the approximate
CG potential, DA proposed to parameterize UV by minimizing a second functional:

χ2
2[UV |U2, Uθ] =

〈∣∣∣δP0(r,p, V )− FV (V )
∣∣∣2〉 (2.29)

where
δP0(r,p, V ) = PAA(r,p, V )− P 0

CG(M(r),MP(p)). (2.30)

By minimizing χ2
2 with respect to UV at constant U2 and Uθ, the pressure-matching

algorithm determines the necessary additional contribution to the pressure such
that the approximate CG potential reproduces the atomic pressure equation of
state when averaged over the configurations sampled by the atomic model.

We note two slight differences between Eq. (2.29) and the functional proposed
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by DA: 1) Equation (2.29) explicitly includes the fluctuating kinetic contribution
to the instantaneous pressure, while DA employed the average of the kinetic
contributions and determined UV by minimizing the difference in the instantaneous
virials. Of course, these two procedures are equivalent for determining UV because
the momenta are statistically independent of the configuration and the volume. 2)
The functional in Eq. (2.29) accounts for contributions to the atomic pressure from
uV (V ), which were not considered by DA.

In order to numerically minimize χ2
2, DA proposed representing UV as a polyno-

mial in V/v̄ where v̄ is the average volume of the atomic model:

UV (V ) =
∑
d

ψdwd(V ), (2.31)

where

wd(V ) =

 N(V/v̄) for d = 1
N (V/v̄ − 1)d for d ≥ 2

(2.32)

Given this functional form for UV , χ2
2 becomes a quadratic form in ψd that we

minimize by solving the resulting normal system of linear equations.

2.3.5 Iterative correction

In order to obtain quantitative agreement between the density fluctuations of
the atomic and CG models, we developed a simple iterative approach for further
optimizing UV . After determining U2 and Uθ by minimizing χ2

1, we determined
our initial estimate, U (0)

V , for UV by minimizing χ2
2, as proposed by DA. We then

performed simulations that sampled the constant NPT ensemble for a CG model
with the potential U (0) = U2 + Uθ + U

(0)
V . From these simulations, we estimated

the pressure equation of state for the CG model, P̄ (0)
CG(V ). We then estimated the

error in the CG equation of state, δP̄ (V ), by comparison with the AA equation of
state, P̄AA(V ):

δP̄ (V ) = P̄AA(V )− P̄ (0)
CG(V ) (2.33)

Since FV directly impacts the pressure in Eq. (2.23), we employed this error to
determine a new estimate for UV : U (1)

V = U
(0)
V + δUV where δP̄ (V ) = δFV (V ) =

−dδUV (V )/dV . Simulations of the CG model with the modified potential, U (1) =
U2 +Uθ +U

(1)
V , determine a new equation of state P̄ (1)

CG(V ), which is compared again
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with the atomic equation of state to determine a new correction. This procedure is
iterated until the CG model satisfactorily reproduces the atomic equation of state.

2.4 Methods

2.4.1 Atomistic simulations

We performed all atomistic simulations with the Gromacs 4.5.3 simulation pack-
age,103 while employing double precision floating-point arithmetic. We modeled all
atomic interactions with the OPLS-AA force field,104 while treating electrostatic
interactions with the particle mesh Ewald method105 and a Fourier grid spacing of
0.08 nm-1. We truncated the short-ranged van der Waals (vdW) interactions and
the real-space contribution to electrostatic interactions at 1.2 nm. We employed
volume-dependent, long-ranged corrections to the energy and pressure to account
for the use of truncated vdW interactions in the AA simulations. We did not employ
any rigid constraints and integrated the equations of motion with the leapfrog
integrator, while employing a 1 fs time step. We performed atomistic simulations
for 2 systems: one containing 1200 heptane molecules and one containing 1600
toluene molecules. We simulated such large systems in order to avoid finite-size
effects in the CG models because the calculated potentials for the 1-site heptane
and toluene models do not vanish until nearly 3.0 nm.

We adopted the following procedure to equilibrate each system. We heated
the system to 1000 K over 10 ns, simulated at 1000 K for 2 ns, and then cooled
the system to 303 K over 10 ns. We next allowed each system to relax to its
equilibrium density during a 2 ns simulation in the constant NPT ensemble (303
K, 1.0 bar), while employing a Berendsen thermostat and barostat with coupling
constants of 0.1 and 1.0 ps, respectively.106 The resulting equilibrium densities were
672.7 kg/m3 for heptane and 860.7 kg/m3 for toluene, which compare favorably
with the experimentally measured densities of 679.5 kg/m3 and 862.3 kg/m3,
respectively.107

After equilibration, we performed a production simulation for each system in
the constant NPT ensemble. We employed the Nosé-Hoover thermostat to maintain
T=303 K with a coupling constant of 0.5 ps108,109 and employed the Parrinello-
Rahman barostat to maintain P0=1.0 bar with a coupling constant of 5 ps.110 The
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Figure 2.1. CG representations superimposed upon the corresponding atomistic
representations. The CG sites, which are indicated by transparent spheres, are associated
with the mass center for their constituent atoms, which are enclosed by the dashed circles.
The size of each sphere indicates the excluded volume diameter of the site, which is
estimated by the distance at which the corresponding site-site distribution vanishes in
the AA model.

heptane and toluene systems were simulated for 100 ns and 80 ns, respectively. We
discarded the first 10 ns of each simulation and employed the remainder of each
simulation in order to characterize the AA models and also to parameterize the
CG models.

2.4.2 CG models

We considered 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG
models for toluene. Figure 2.1 illustrates these CG representations. The dotted
circles indicate the atoms that are associated with each site. The CG mapping
defines each site position by the mass center for the atoms within the corresponding
dotted circle. The colored spheres indicate the excluded volume of each site, which
is defined by the distance at which the corresponding site-site radial distribution
functions vanish.

For each CG representation, we parameterized a MS-CG interaction potential
according to the theory described above. We employed bond potentials between each
pair of consecutive sites within the same molecule. We employed angle potentials in
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heptane to govern the intramolecular (CT-CM-CT) angles, but not in toluene. We
represented these intramolecular forces with linear spline functions, while employing
a grid spacing of 0.001 nm for bond potentials and 0.5 degrees for angle potentials.
Additionally, we employed short-ranged pair potentials to model the nonbonded
interactions between each pair of sites in distinct molecules. We represented these
pair forces with cubic splines, while employing a grid spacing of 0.02 nm. We
employed a cutoff of 1.4 nm for the pair potentials in the 3-site models and a cutoff
of 3.0 nm for the pair potentials in the 1 and 2-site models. We determined the
parameters for these potentials by minimizing the modified MS-CG functional, χ2

1,
in Eq. (2.28). In particular, we introduced the additional factor of V 2/3 into our
in-house force-matching software.31,111 We approximated the relevant ensemble
averages with the configurations sampled from the AA simulations.

Despite the large systems and long simulations, we observed traces of statistical
noise near the cutoff of the calculated pair forces. Since the pressure is very sensitive
to this region of the pair force, we attempted to mitigate this noise by smoothing
this region of the pair forces. First, we smoothed the entire calculated force function
with a centered running average over 0.06 nm windows. We then determined the
final potential by splicing together the original and smoothed potential at their
intersection, as indicated by supplemental figure S1.112 Figures S2-S6 present the
resulting potentials.112

In addition to these bottom-up models, we also considered the top-down 3-site
heptane model that was developed by Shinoda, DeVane, and Klein (SDK).113 The
SDKmodel treats the intramolecular bonds and angles with harmonic potentials that
were parameterized to reproduce the average intramolecular structure of heptane.
The SDK model treats non-bonded interactions with analytic 9-6 Lennard-Jones-
type pair potentials of the form

Unb(r) = 27
4 ε

[(
σ

r

)9
−

(
σ

r

)6
]
, (2.34)

which were parameterized to reproduce the experimental bulk density and liquid-
vapor interfacial tension of heptane.
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2.4.3 Pressure-matching

For each bottom-up CGmodel, we also determined a volume-dependent contribution,
UV , to the CG potential. In each case, we represented UV with the analytic basis
functions defined in Eqs. (2.31) and (2.32). We determined the coefficients, ψd, by
directly solving the normal system of linear equations that result from minimizing
the DA pressure-matching functional, χ2

2, in Eq. (2.29). We approximated the
necessary averages with the ensembles sampled by the AA simulations. In particular,
we determined P 0

CG by evaluating the calculated MS-CG force field for the mapped
ensemble. As previously observed by DA, our numerical calculations required only
two basis functions for UV .44 We observed that more detailed spline representations
for UV did not significantly improve the accuracy of the CG model and appeared
more sensitive to statistical noise in the simulated ensemble.

We developed an iterative approach that further optimizes UV in order to
quantitatively reproduce the AA volume distribution. In this approach, we first
minimized χ2

2 to determine an initial estimate U (0)
V for this volume-dependent

potential. We then simulated the resulting CG model in the NPT ensemble for
20 ns in order to estimate the resulting pressure equation of state. As described in
Eq. (2.33), we determined a correction, δUV , to U (0)

V by comparing the AA and CG
equations of state, while leaving the molecular mechanics contributions, U2 and Uθ,
to the CG potential unchanged. We repeated this procedure until the CG model
satisfactorily reproduced the AA equation of state. We found that UV converged
within fewer than six iterations for each system. Figures S7 and S8 describe the
calculated potentials and their convergence.112

2.4.4 CG simulations

All CG systems contained either 1200 heptane molecules or 1600 toluene molecules.
We simulated each CG model for 20 ns. Since our focus was on investigating the
thermodynamic properties of CG models, we employed a 1.0 fs time step in all of
the CG simulations reported below. With this time step and without any attempt
to optimize their efficiency, cursory investigations indicate that the bottom-up
CG models are approximately 30 times more efficient than the OPLS-AA model.
Additionally, we observe that the 1-site CG models appear stable with a 20 fs time
step. However, due to the fairly stiff CG bond potentials, the 2 and 3-site CG
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models become unstable when the simulation timestep is significantly larger than
1 fs.

We determined the initial configurations for the CG simulations by mapping a
simulated AA configuration to the relevant CG representation. This AA config-
uration was selected from the last 10 ns of the NPT production simulation and
sampled a volume within one standard deviation of the mean AA volume. We
discarded the first 1.0 ns of each CG simulation as an equilibration period and
analyzed the remainder of the trajectory.

We simulated all bottom-up models with a version of the LAMMPS software
package114 (17Jun13) that we modified to incorporate the pressure correction, FV ,
in calculating the internal pressure. We employed the velocity-Verlet algorithm
with a 1.0 fs timestep to integrate the Martyna-Tuckerman-Tobias-Klein equations
of motion96,115 at T=303 K and P0 = 1.0 bar with coupling constants of 0.1 ps and
1.0 ps for the thermostat and barostat, respectively, while employing a Nosé-Hoover
chain116 with the default length of three. The non-bonded pair potentials were
truncated at the non-bonded cutoffs adopted in the force-matching procedure.
The CG models did not include explicit electrostatic interactions. Aside from
the calculated volume-dependent potential, UV , we did not employ long-ranged
corrections for the energy or pressure.

We simulated the top-down 3-site SDK heptane model with Gromacs 4.5.3,
while adopting many of the same settings that were employed in the AA simulations.
The only differences between the simulation settings used for the AA and SDK
models were that 1) the SDK model does not include electrostatic interactions; 2)
the SDK model adopts a cutoff of 1.5 nm for the non-bonded pair potentials; and 3)
the SDK model does not include long-ranged corrections for the energy or pressure.

2.5 Results
In the following, we investigate the capability of bottom-up CG methods to accu-
rately model both the structure and thermodynamic properties of molecular liquids.
We first focus on bottom-up 3-site CG heptane models, which can be directly
compared with the top-down SDK model. We next analyze a series of bottom-up
models for both heptane and toluene at several different resolutions. Finally, having
developed an array of models that accurately model both the structure and density
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Figure 2.2. Comparison of the calculated MS-CG pair potentials (solid lines) and
the published SDK pair potentials (dashed lines) for 3-site CG heptane models. The
black, red, and green curves indicate the CM-CM, CT-CM, and CT-CT pair potentials,
respectively.

fluctuations of these liquids at different resolutions, we investigate the impact of
bottom-up coarse-graining upon thermodynamic properties.

Figure 2.2 compares the nonbonded pair potentials for two different 3-site
CG models for heptane. The solid curves indicate the calculated MS-CG pair
potentials, while the dashed curves indicate the published SDK pair potentials.
Figure S2 demonstrates that the additional V 2/3 factor in χ2

1 has minimal impact
upon the calculated MS-CG potentials.112 While the SDK potentials adopt a simple
Lennard-Jones-type form and are quite similar, the MS-CG potentials demonstrate
more complex features and greater differences. In the SDK model, the CM-CM
pair potential is most attractive and the CT-CT potential is least attractive, but
all three pair potentials have very similar minima. This trend is reversed and,
moreover, the differences in the minima are much more pronounced in the MS-CG
model. While the CT-CT MS-CG potential is more attractive than any of the SDK
potentials, the CM-CM MS-CG potential is almost purely repulsive. Moreover, the
site diameters demonstrate qualitatively different trends in the MS-CG and SDK
models. In particular, the CT site is smaller than the CM site in the SDK model,
while this trend is reversed in the MS-CG model.

Table 2.1 presents the calculated coefficients ψd for the pressure corrections,
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Table 2.1. Pressure correction coefficients for the DA basis representation. All coefficients
are given in units of J/mol.

Model ψ1 DA ψ1 DN ψ2 DA ψ2 DN
3-site hep 3.63 3.20 0.678 -4.54
2-site hep 12.8 12.7 -1.61 -6.33
1-site hep 40.0 39.9 -1.77 -1.52
3-site tol 4.94 5.30 1.14 -1.63
1-site tol 33.7 33.6 0.757 -1.47

FV = −dUV /dV , that are obtained from the Das-Andersen (DA) pressure matching
variational principle and from the iterative procedure that we develop in this work
(DN). According to Eq. (2.32), the resulting contribution to the CG pressure may
be expressed:

FV (V ) = −(N/v̄)
[
ψ1 + 2ψ2(V − v̄)/v̄

]
(2.35)

where N is the number of CG sites and v̄ is the average volume of the AA model.
Consequently, the coefficients ψ1 and ψ2 correspond to average corrections for the
pressure, ∆P̄ , and compressibility, ∆κT , respectively:

∆P̄ = −Nψ1/v̄ (2.36)

∆κ−1
T = 2Nψ2/v̄. (2.37)

Table I indicates that both the DA pressure-matching approach and the present
iterative approach (DN) determine very similar reductions in the average pressure.
However, for the 3-site model, the DA and DN approaches modify the compressibility
in qualitatively different manners.

Figure 2.3 presents the simulated volume distributions and compressibilities for
3-site heptane models at an external pressure P0=1 bar. In the absence of a virial
constraint or pressure correction, the MS-CG model (FM) overestimates the system
volume by more than 10%. (Note the discontinuity in the x-axis of Fig. 2.3.) After
including the DA pressure correction, the bottom-up model (DA) reproduces the
average AA volume within 1.2%. By iteratively refining this pressure correction
to self-consistency, the bottom-up model (DN) quantitatively reproduces the AA
volume distribution.

Figure 2.3 also presents an “experimental volume distribution” that is determined
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Figure 2.3. Simulated volume distributions for various heptane models. The solid black
curve presents the simulated distribution for the OPLS-AA model. The dashed-dotted
blue, solid green, dashed red, and dotted purple curves indicate simulated distributions
for the MS-CG, DA, DN, and SDK 3-site models, respectively. The dashed orange curve
indicates the normal distribution that is constructed from the experimentally known
density and compressibility of heptane.

by the Gaussian distribution with the correct mean and variance,

pe(V |P0) = 1√
2πσ2

e

exp
[
−(V − V̄e)2/2σ2

e

]
(2.38)

where V̄e = Nmol/ρe and σ2
e = kBT V̄e κT are determined from the number of

simulated molecules, Nmol, along with the experimentally known density, ρe, and
compressibility, κT , for heptane at T=303 K and P0 = 1 bar.107 The AA, DA, DN,
and SDK models all reproduce the experimental density and volume distribution
with similar accuracy.

Figure 2.4a presents local estimates of the pressure equations of state that are
obtained from simulating these heptane models. Figure 2.4a also presents a local
estimate of the experimental equation of state:

P̄e(V ) = P0 − κ−1
T

(
V/V̄e − 1

)
(2.39)

The AA model slightly underestimates the density and overestimates the compress-
ibility of heptane. As expected from Fig. 2.3, the DN model reproduces the AA
equation of state with nearly quantitative accuracy. The DA model underestimates
the compressibility of the AA model, while the SDK model is the most compress-
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Figure 2.4. Comparison of the pressure-volume behavior for the AA heptane model
and for different 3-site CG heptane models. The black, green, red, and purple curves
correspond to the models of Fig. 3. Panel a) presents the equation of state for each model,
which is estimated from the mean pressure at each volume in the simulated constant
NPT ensemble. The error bars indicate the standard error in the simulated means. The
orange curve indicates the equation of state that is determined from the experimentally
known density and compressibility of heptane. Panel b) presents a scatter plot of the
simulated pressure and volume. The cyan points correspond to the pressure, P 0

CG, that
is determined by applying the MS-CG potential to the mapped ensemble.

ible of these models. Interestingly, over the simulated range of thermodynamic
conditions, the bottom-up DN model matches the estimated experimental equation
of state with accuracy that is comparable to (or possibly better than) the top-down
SDK model, which was explicitly parameterized to reproduce the experimental
density and surface tension, but not the compressibility.

While the AA, DN, and SDK models demonstrate very similar volume fluctua-
tions, they sample significantly different pressure fluctuations. Figure 2.4b presents
simulated scatter plots of the instantaneous pressure and volume for the different
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Table 2.2. Standard deviations describing fluctuations in the pressure, σ, and non-ideal
contribution to the pressure, σW , for different heptane models. All standard deviations
are given in units of bar.

Model σ σW
AA 312 310
3-site mapped 118 117
3-site DA 116 115
3-site DN 113 113
3-site SDK 52 51
2-site mapped 72 72
2-site DN 69 68
1-site mapped 33 32
1-site DN 31 30

models. In Fig. 2.4b, the cyan points correspond to the pressure, P 0
CG, that is

determined by evaluating the MS-CG force field (without the pressure correction)
for the mapped ensemble. As expected from Fig. 2.3, P 0

CG dramatically overesti-
mates the internal pressure of the mapped AA configurations. More interestingly,
Fig. 2.4b and Table 2.2 demonstrate that all of the CG models dramatically un-
derestimate the magnitude of the pressure fluctuations in the AA model. Because
they employ the MS-CG potential to model interactions between sites, the MS-CG,
DA, and DN models all sample similar pressure fluctuations. In contrast, the SDK
model, which employs Lennard-Jones-type pair potentials, samples even smaller
pressure fluctuations. Consequently, the reduction in pressure fluctuations depends
significantly on both the model representation and the potential. We expect that
the differences in pressure fluctuations primarily reflect the relative smoothness of
the CG potential surfaces, since the majority of these fluctuations arise from the
virial contribution to the pressure.

We next assess the equilibrium structure that is generated by the DA, DN, and
SDK 3-site heptane models. Figure 2.5 compares the site-site radial distribution
functions (rdfs) for the mapped AA ensemble and for the CG models. Although
this is not explicitly incorporated in their parameterization, all three models
reasonably reproduce the AA structure. The MS-CG-based models reproduce the
AA site-site rdfs quite accurately.117 As discussed in our prior studies,117–119 the
slight discrepancies in the MS-CG site-site rdfs result from the inability of the
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Figure 2.5. Comparison of site-site rdfs for 3-site heptane representations. The solid
curves correspond to the mapped AA ensemble, while the green dotted, red dashed, and
purple dashed-dotted curves correspond to the DA, DN and SDK models, respectively.

approximate CG potential to reproduce higher order correlations in the mapped
ensemble. Despite slight differences in their density, the DA and DN models sample
nearly indistinguishable structural distributions. In contrast, the SDK model
appears to slightly underestimate the size of the CT site, which may be traced to
the shift in the potential minima of Fig. 2.1. Otherwise, the SDK model reproduces
the AA site-site rdfs with reasonable accuracy.
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Figure S10 compares the intramolecular structure of the heptane models.112 The
AA model samples a bimodal bond distribution and a trimodal angle distribution
with a maximum peak that corresponds to nearly linear conformations. The MS-
CG-based models quantitatively reproduce the AA bond distribution and also
reproduce the peak positions, but not the peak heights, of the complex AA angle
distribution. These discrepancies in the angle distributions of the MS-CG-based
models are due to the inability of the approximate potential to reproduce the
bond-angle correlations in the mapped AA ensemble.117,118,120–122 In contrast, the
harmonic bond and angle potentials of the SDK model generate simple Gaussian
distributions and cannot even qualitatively match the multimodal features of the
AA distributions.

Figure 2.6a demonstrates that both the bottom-up DN and top-down SDK
3-site heptane models qualitatively reproduce the center of mass (com) rdf for the
mapped AA ensemble. Because site-site and com rdfs are not directly related, the
accurate reproduction of site-site rdfs does not ensure accurate reproduction of com
rdfs.122 Indeed, neither CG model quantitatively reproduces the peak positions or
peak heights of the AA com rdf, although the DN model appears slightly more
accurate than the SDK model. We expect that these errors in the com rdfs may
stem from errors in modeling the intramolecular conformations. In particular, both
3-site CG models significantly underestimate the tendency of heptane to sample
nearly linear conformations. Since these linear conformations favor close contact
between molecules, this error in the angle distribution may also account for the
slight shift in the first peak of the com rdf.

We also employed the same bottom-up strategy to develop 1 and 2-site heptane
models. For each model, we minimized the modified MS-CG force-matching
functional to determine the interaction potentials, U2 + Uθ, and employed the
iterative pressure-matching method (DN) to optimize UV . Figure 2.6b presents the
com rdfs for the 1 and 2-site models.117 The 1-site model reproduces the mapped
AA com rdf with similar accuracy to the 3-site model. However, although Fig. S9
demonstrates that the 2-site model accurately reproduces both the AA site-site rdf
and bond distribution,112 Fig. 2.6b indicates that this model provides a significantly
less accurate description of the AA com rdf. We expect that this relatively large
discrepancy occurs because the 2-site model cannot describe the shape and, thus,
the packing of heptane molecules.
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Figure 2.6. Comparison of center-of-mass rdfs for a) 3-site heptane representations,
and b) 1- and 2-site heptane representations. In both panels, the solid black curves
correspond to the mapped AA ensemble. In panel a), the dashed-dotted red and dotted
purple curves correspond to the 3-site DN and SDK models, respectively. In panel b), the
dashed blue and solid green curves correspond to the 1 and 2-site DN models, respectively.

Figure 2.7 compares the volume distributions and pressure equations of state
that are estimated by constant NPT simulations of the AA model and the 1, 2,
and 3-site DN heptane models. Fig. 2.7a demonstrates that all three bottom-up
models quantitatively reproduce the AA volume fluctuations in the constant NPT
ensemble. Additionally, Fig. 2.7b demonstrates that the three DN models also
reasonably reproduce the AA pressure equation of state near the simulated pressure
of P0 = 1 bar.
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Figure 2.7. Comparison of the pressure-volume behavior for the AA heptane model
and for 1, 2, and 3-site bottom-up DN heptane models. Panel a) presents the volume
distribution sampled by each model in simulations at constant pressure. Panel b) presents
the equation of state for each model, which is estimated from the mean pressure at each
volume in the simulated constant NPT ensemble. The error bars indicate the standard
error in the simulated means.

We also applied the same bottom-up procedure to parameterize 1 and 3-site CG
models for toluene. Figure 2.8 demonstrates that both CG models also reasonably
reproduce the com rdf for the AA model. In particular, the 1-site model reproduces
the AA com rdf with nearly quantitative accuracy. Figures S11 and S12 demonstrate
that the 3-site model quite accurately reproduces the intramolecular structure and
site-site rdfs of the AA model.112 However, Fig. 2.8 demonstrates that this model
provides a somewhat less accurate description of the AA com rdf.123

Figure 2.9 compares the volume distributions and pressure equations of state
that are estimated by NPT simulations of these toluene models. Figure 2.9a
demonstrates that both CG toluene models reproduce the AA volume distribution
with nearly quantitative accuracy. Figure 2.9b demonstrates that the CG models
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also reasonably reproduce the simulated AA pressure equation of state for toluene,
although the 3-site model appears slightly more compressible than the AA model.

The comparison of the different bottom-up models leads to several interesting
observations: 1) Figures 2.2, S3, and S5 demonstrate that the calculated MS-CG
nonbonded pair potentials become increasingly long ranged and repulsive with
coarsening.112 2) Figure S7 suggests that the DN pressure corrections become
larger and often less volume-dependent with coarsening.112 3) Table I and Fig. S8
demonstrate that the variational DA approach often becomes increasingly accurate
with coarsening.112

Figure 2.10 investigates the correlation between the necessary DN pressure
correction per molecule,

〈
F̄V
〉
, and the difference in the intermolecular potential

between the AA and CG models, 〈∆Uinter〉. In each CG model, 〈∆Uinter〉 < 0 and〈
F̄V
〉
< 0. Furthermore, the required pressure correction and reduced intermolecular

potential are highly correlated and systematically increase in magnitude with
coarsening. Consequently, Fig. 2.10 quantifies an intuitive van der Waals perspective
upon bottom-up coarse-graining, i.e., the pressure correction provides the necessary
attractive force on the simulated volume in order to account for the cohesive energy
density that is lost in bottom-up structure-based coarse-graining.

Finally, Figure 2.11 assesses the impact of coarsening upon the “simplicity”
of bottom-up models. One mechanism for quantifying simplicity is the Pearson
correlation, R, between fluctuations in the virial and the total potential. Models
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Figure 2.9. Comparison of the pressure-volume behavior for the AA toluene model and
for different bottom-up DN toluene models. Panel a) presents the volume distribution
sampled by each model in simulations at constant pressure. Panel b) presents the equation
of state for each model, which is estimated from the mean pressure at each volume in
the simulated constant NPT ensemble. The error bars indicate the standard error in the
simulated means.

with a high correlation (R ≥ 0.9) are referred to as Roskilde-simple (R-simple) and
demonstrate intriguing relations between dynamic, structural, and thermodynamic
properties.124 While the origin of these correlations remains somewhat unclear,
simple liquids governed by a Lennard-Jones potential are known to be R-simple
at positive internal pressures due to the dominance of the repulsive term in the
potential.124,125 Indeed, the cyan and red crosses in Fig. 2.11 demonstrate the
impact of pressure upon R for a system of Lennard-Jones spheres that was previously
parameterized to reproduce the experimental density of heptane at 1 bar pressure.126

Figure 2.11 presents a scatter plot of the average intermolecular energy (per
molecule) and the R-simplicity for the two AA models and six CG models that have
been considered above. Figure 2.11 suggests a modest and nonlinear correlation
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between the intermolecular potential, model resolution, and R-simplicity. Among
these models, the AA models demonstrate the greatest cohesive attraction and
also the greatest complexity (i.e., the least simplicity). The 3-site CG models
demonstrate considerably reduced cohesion, but only slightly greater simplicity.
In these cases, the asymmetry and internal flexibility of the models preclude a
strong correlation between the energy and virial. Interestingly, the top-down SDK
3-site heptane model, which employs Lennard-Jones-type 9-6 potentials that have
been parameterized to reproduce the density and interfacial tension, demonstrates
only slightly greater R-simplicity and cohesion than the corresponding bottom-
up 3-site model. With further coarsening, though, the bottom-up potentials
become increasingly repulsive, which leads to diminishing intermolecular cohesion,
increasingly large pressure corrections, and greater R-simplicity. In the limit of
the 1-site models, the CG models become simple liquids experiencing high internal
pressures, P 0

CG, which are corrected by FV in order to preserve the liquid density.

2.6 Discussion
The present work investigates a recent proposal by Das and Andersen (DA) for
modeling the pressure with bottom-up models.44 This approach combines two key
ideas. Firstly, DA introduced an additional volume-dependent, but configuration-
independent, potential, UV , in order to approximate the volume-dependence of the
PMF and to account for its contribution to the thermodynamic pressure. Indeed, as
indicated in Eq. (2.3), such terms are frequently employed in AA models in order to
compensate for truncating Lennard-Jones pair potentials.1,94 However, they have
been generally neglected in CG potentials. Secondly, DA extended the multi-scale
coarse-graining (MS-CG) variational principle25 to the constant NPT ensemble
in order to parameterize UV . This MS-CG/DA approach appears particularly
appealing because it provides a variational framework for approximating both the
configuration-dependence and also the volume-dependence of the PMF.

Our calculations demonstrate that the DA approach significantly improves the
simulated pressure of (unmodified) MS-CG models. In the absence of a virial
constraint,27,88 the calculated MS-CG potentials dramatically over-estimate the
thermodynamic pressure and, consequently, the resulting models significantly
underestimate the equilibrium density of molecular liquids. For instance, the 3-site
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MS-CG heptane model underestimates the liquid density by more than 10%, while
the 1 and 2-site MS-CG heptane models quickly vaporize at 1 bar external pressure.
In each case that we considered, by incorporating volume-dependent potentials, UV ,
the MS-CG/DA approach reproduced the equilibrium density fluctuations of the
underlying AA model with qualitative, but not quantitative, accuracy. In particular,
the MS-CG/DA approach generally reproduces the average AA density within
approximately 1%. The discrepancies in the simulated MS-CG/DA densities appear
to result from subtle differences in the structural correlations that are present in
the mapped ensemble and in the ensemble sampled by the CG model, since UV is
parameterized to reproduce the atomic pressure when evaluated for the mapped
ensemble.

Accordingly, we developed an iterative, self-consistent approach that further
optimizes UV in order to reproduce the AA pressure equation of state for the
configurations that are sampled in CG simulations. In combination with the cal-
culated MS-CG interaction potentials, the iterative pressure matching approach
determined bottom-up CG (DN) models that accurately reproduced the corre-
sponding AA site-site radial distribution functions (rdfs) and bond distributions,
although they provided slightly less accurate descriptions of the AA center-of-mass
rdfs and angle distributions. More importantly, each DN model reproduced the
AA distribution of density fluctuations with quantitative accuracy and reproduced
with semi-quantitative accuracy the simulated AA pressure equation of state. In
particular, the bottom-up 3-site DN heptane model described the experimental
density and compressibility with comparable accuracy to a top-down 3-site model,
which SDK previously parameterized to reproduce the experimental density and
surface tension.113

The iterative pressure-matching approach can be seen as a simple adaptation
of iterative Boltzmann inversion (IBI)28,127 for reproducing the potential of mean
force (or, equivalently, the mean force117,119) that governs volume fluctuations.
Although one can envision more sophisticated algorithms that treat the correlations
between the CG configuration and volume,26,122,128,129 the present simple algorithm
appears satisfactory for the present work. As demonstrated in Fig. S8, this approach
rapidly converges and provides a semi-quantitative description of the AA density
fluctuations within two iterations.112 Importantly, each iteration requires a single
short and efficient CG simulation in order to estimate the resulting equation of
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state, but does not alter the intermolecular potentials and, consequently, minimally
impacts the equilibrium structure of the model.

This approach can be readily generalized in two important ways. While we
employed the MS-CG approach to optimize the intermolecular potentials directly
(i.e., noniteratively) from the original AA ensemble, the extended DA approach
can also be adapted for iterative structure-based CG methods.26,28,30,119,122,127–130

For instance, one could first iteratively optimize the interaction potential, U2 + Uθ,
in order to reproduce AA structural correlations in a constant volume ensemble
that corresponds to the average AA density. Given this structure-based interaction
potential, one could then estimate UV by minimizing the DA pressure-matching
functional over the mapped AA ensemble. If necessary, one could iteratively
optimize UV to reproduce the AA pressure equation of state. Furthermore, the
present approach could also be applied to reproduce a pressure equation of state
that has been determined experimentally, rather than from AA simulation. This
appears a promising hybrid bottom-up/top-down approach for accurately describing
both structure and thermodynamic properties.

In the course of this work, we developed a series of CG models that accurately
approximate both the configuration-dependence and volume-dependence of the
PMF for heptane and toluene at four different resolution. By comparing the different
models, we investigated the fundamental impact of bottom-up coarse-graining upon
thermodynamic properties. Table I demonstrates that, for each CG model, the
iteratively derived pressure correction decreases the pressure and compressibility
of the CG model relative to the (uncorrected) MS-CG model. This is consistent
with previous observations that bottom-up structure-based CG potentials tend
to generate higher pressures and also demonstrate greater compressibility than
the underlying AA model.33,34 Table I and Fig. S7 suggest that the iterative
DN pressure corrections become larger and, usually, less volume-dependent with
decreasing resolution.112 Interestingly, Fig. S8 demonstrates that the variational
DA approach often determines an increasingly accurate estimate of the optimized
DN pressure correction with coarsening.112 This presumably reflects the decreasing
significance of many-body correlations in the CG models with decreasing resolution
due to the corresponding decrease in site density. Furthermore, Figures 2.2, S13,
and S15 demonstrate that the calculated MS-CG interaction potentials become,
not only more repulsive, but also longer-ranged with coarsening.112
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The DN pressure correction that is necessary for reproducing AA density
fluctuations correlates quite strongly with the reduced cohesive energy of the CG
models, which is entirely consistent with the van der Waals picture of liquids.78

As the cohesive energy density of the model decreases, increasingly large pressure
corrections are necessary to prevent the material from expanding. This is also
consistent with the intuitive notion discussed in the introduction, i.e., structure-
based methods accurately determine repulsive short-ranged interactions that govern
local structure at the expense of attractive longer-ranged interactions that provide
this cohesion. However, it is worth noting that the PMF systematically increases
with coarsening, as entropy is transferred from the configurational space into
the effective interactions.82,131 Since the MS-CG potential is parameterized to
approximate the PMF, it is quite possible that this entropic effect also contributes
to this reduced cohesion.41,42

These observations are quite consistent with recent studies of thermodynamic
consistency by Guenza and coworkers.79,83–86 These studies employed integral
equation theories to determine effective pair potentials for low resolution CG
polymer models in which each site is “larger” than the polymer persistence length.
The resulting pair potentials are characterized by a soft Gaussian core with a
long-ranged repulsive tail and, at even greater distances, a very shallow attractive
well.84,85 At such low resolutions, the polymer potential determined from these
site-site pair potentials appears to provide a very accurate approximation to the
many-body PMF, such that the models accurately describe both structure and
thermodynamic properties.84,86 As discussed above, Guenza and coworkers have also
demonstrated the transfer of entropy from configurational space into the effective
interactions between CG sites.83,86 Moreover, the effective site-site potentials
become increasingly repulsive and long-ranged with increased coarsening,84,85 which
is very consistent with the MS-CG potentials that are calculated for heptane
and toluene in the present work. Guenza and coworkers have also emphasized
the distinct roles of the repulsive and attractive regimes of the CG potential for
governing the model structure and thermodynamic properties.85 Interestingly, the
pressure correction, UV , appears to perform a similar role for the present bottom-
up models as the very weak long-ranged attractions in the CG polymer models.
In both cases, these contributions provide the necessary cohesion for stabilizing
condensed phases. It is quite striking to observe such remarkable similarities in
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distinct coarse-graining approaches that address very disparate systems at very
different resolutions.

Conversely, it is also interesting that the thermodynamic impact of structure-
based coarse-graining depends upon the particular molecule considered. In particu-
lar, coarsening to a 3-site representation appears to have much greater effect upon
the thermodynamic properties of toluene than heptane. However, the 1-site heptane
and toluene models demonstrate quite similar energetic losses and require quite sim-
ilar pressure corrections to sample the correct density. These differences presumably
reflect the stronger aromatic interactions of toluene and the greater conformational
flexibility of heptane, although further analysis is necessary to decisively determine
the microscopic origins of their differing response to coarsening.

Intuitively, one expects that, since coarsening leads to increasingly simple repre-
sentations of molecular systems, the resulting models will demonstrate increasingly
simple thermodynamic behavior. One measure of simplicity, Roskilde (R)-simplicity,
considers the Pearson correlation (R) between fluctuations in the potential and
virial.124 R-simple systems, such as compressed Lennard-Jones fluids, are defined
by potential-virial correlations of R ≥ 0.9. The phase diagrams for R-simple
systems demonstrate “isomorphic curves,” along which the structure, dynamics,
and thermodynamic properties of the system are approximately invariant when
expressed in reduced units.132 If a CG model demonstrates R-simple behavior, then
a simulation at a single thermodynamic state point would be sufficient to predict
model properties along the associated isomorph. Thus, R-simplicity could prove a
practically useful property for predicting the transferability and thermodynamic
behavior of CG models.

Our results suggest that there is a modest nonlinear correlation between model
resolution, cohesive energy, and R for the present bottom-up models that reproduce
both structural and thermodynamic properties. Interestingly, the 3-site models,
including the SDK model with Lennard-Jones-type potentials, demonstrate only
slightly greater R-simplicity than the original atomic models. In contrast, the
bottom-up 1-site models demonstrate extremely high correlations between the
potential and virial fluctuations.

Our calculations suggest that this reflects two effects that occur with increasing
coarsening: 1) the MS-CG potentials become longer ranged and more repulsive;
and 2) an increasingly large pressure correction is necessary to preserve the AA
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density. These observations emphasize the near equivalence of the following two
types of simulations: 1) simulations that employ UV , which systematically reduces
the internal pressure of the CG model, to sample the constant NPT ensemble
at an external pressure P0 = 1 bar; and 2) simulations of the original MS-CG
potential (without the pressure correction) when performed at a correspondingly
higher external pressure that preserves the density of the original AA model. (Their
inequivalence results from the second term in UV , which preserves the compressibility
of the AA model.) In the 1-site models, this large pressure correction compresses
the system to such an extent that repulsive interactions dominate both the potential
and virial fluctuations, which causes R→ 1. Thus, it appears that structure-based
bottom-up approaches can simplify CG models to the extent that they demonstrate
R-simple behavior at sufficiently low resolution. This emphasizes that, without
appropriate care, bottom-up coarse-graining can fundamentally alter the character
of the model. This clearly motivates further work investigating how AA and CG
models respond to changes in thermodynamic state.133

Finally, although these bottom-up DN models accurately reproduce atomic den-
sity fluctuations, they dramatically underestimate the atomic pressure fluctuations,
which is primarily due to reduced fluctuations in the CG virial. This discrepancy
depends quite sensitively upon both the resolution and also the approximate po-
tential of the CG model. In particular, the top-down SDK model, which employs
Lennard-Jones-type potentials, demonstrates significantly smaller pressure fluctua-
tions than the bottom-up DN models, which employ MS-CG potential functions
with relatively greater complexity.

At a given volume and temperature, the variance in the pressure fluctuations
may be expressed1

〈
δP 2

〉
NV T

= kBT

V

(
2NkBT

3V + 〈P 〉NV T − κ−1
T + 〈χ〉NV T

V

)
. (2.40)

Since the bottom-up DN models reasonably reproduce both the pressure and the
compressibility, κT , at each volume, the reduced pressure fluctuations can be directly
traced to the reduced number of interacting particles, N , and to the ‘hypervirial’
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contribution to the compression modulus1

χ = 1
9

N∑
i<j

〈
rijf2;ij(rij) + r2

ijf
′
2;ij(rij),

〉
(2.41)

where rij is the distance between particles i and j, f2;ij is the two-body force between
the pair, and f ′2;ij indicates its derivative. Clearly, the reduced pressure fluctuations
will have important practical ramifications for modeling material properties, such
as the shear modulus and viscosity.134–137 (Of course, a realistic description of
viscosity also requires a more sophisticated treatment of CG dynamics.138–140) In
order to accurately describe these material properties with bottom-up CG models,
it will be necessary to introduce additional fluctuating forces into the model, e.g.,
with thermostats or fictitious particles.141–143

2.7 Conclusions
In closing, we note that this work demonstrates the promise of bottom-up modeling
approaches for accurately modeling both structural and thermodynamic properties
of molecular liquids in practice. Moreover, this work emphasizes the importance of
considering the state-point dependence and, in particular, the volume-dependence
of the PMF when describing thermodynamic properties with bottom-up models.
By developing a self-consistent extension of the DA variational procedure, we
determined volume-dependent potentials, UV , for bottom-up CG models that
quantitatively reproduced the equilibrium density and compressibility of AA models.
This volume-dependent potential accounts for the intermolecular cohesion that
is lost in structure-based potentials. This work also demonstrates that bottom-
up coarse-graining will tend to underestimate pressure fluctuations, which are
important for many material properties, and, in the limit of very low resolution,
tend to generate models that demonstrate R-simple behavior.

Finally, this work indicates many directions for future studies. For instance,
while the present approach accurately models density fluctuations of homogeneous
fluids, clearly further work is necessary to extend this approach for liquid-vapor
interfaces and other inhomogeneous systems. Similarly, although UV reasonably
approximates the effective density-dependent many-body contributions to the
pressure at a single pressure, further work is necessary to assess its transferability to
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significantly different densities. Additionally, further studies are necessary to assess
the potential transferability of this approach for modeling different temperatures
and compositions. Indeed, preliminary results suggest that by applying the extended
ensemble approach,39 along with simple, accurate descriptions of UV , it may be
possible to develop a single transferable potential for modeling both the equilibrium
structure and density fluctuations for a wide range of liquid mixtures. Finally,
this work strongly motivates further efforts to develop a simple “van der Waals
framework” that coherently treats both the structural and thermodynamic aspects
of bottom-up coarse-graining.
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Chapter 3 |
Bottom-up coarse-grained mod-
els with predictive accuracy and
transferability for both structural
and thermodynamic properties
of heptane-toluene mixtures
N. J. H. Dunn, W. G. Noid, J Chem Phys. 2016, 144, 204124

3.1 Abstract
This work investigates the promise of a “bottom-up” extended ensemble framework
for developing coarse-grained (CG) models that provide predictive accuracy and
transferability for describing both structural and thermodynamic properties. We
employ a force-matching variational principle to determine system-independent,
i.e., transferable, interaction potentials that optimally model the interactions in
five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent
pressure-matching approach to determine a system-specific pressure correction for
each mixture. The resulting CG potentials accurately reproduce the site-site rdfs,
the volume fluctuations, and the pressure equations of state that are determined
by all-atom (AA) models for the five mixtures. Furthermore, we demonstrate
that these CG potentials provide similar accuracy for additional heptane-toluene
mixtures that were not included their parameterization. Surprisingly, the extended
ensemble approach not only improves the transferability, but also the accuracy
of the calculated potentials. Additionally, we observe that the required pressure
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corrections strongly correlate with the intermolecular cohesion of the system-specific
CG potentials. Moreover, this cohesion correlates with the relative “structure”
within the corresponding mapped AA ensemble. Finally, the appendix demonstrates
that the self-consistent pressure-matching approach corresponds to minimizing an
appropriate relative entropy.

3.2 Introduction
Molecular dynamics (MD) simulations provide a powerful tool for investigating
and predicting the properties of soft materials.144 In particular, simulations with
all-atom (AA) models often describe structural and thermodynamic properties with
nearly quantitative accuracy.145,146 Nevertheless, the computational expense of AA
models continues to motivate tremendous interest in low-resolution coarse-grained
(CG) models that more efficiently address mesoscale phenomena.7,8, 72 Moreover,
coarse-graining offers researchers the opportunity to precisely tailor models for
specific phenomena. However, in order to realize these computational and con-
ceptual advantages, CG models must not only be efficient, but also predictive.
Thus, the challenge of systematic coarse-graining is to determine models that accu-
rately describe structural and thermodynamic properties, while also demonstrating
predictive transferability for modeling a wide range of systems across varying
thermodynamic conditions.73–75

Statistical thermodynamics provides a straightforward “bottom-up” framework
for addressing this challenge. The many-body potential of mean force (PMF) is the
central quantity in this framework.20–22,24,25,77 The PMF is a free energy function
that corresponds to the net Boltzmann weight for all AA configurations that map to
a particular CG configuration.147–149 Consequently, the PMF depends upon both the
CG configuration and the thermodynamic state point. This PMF is the appropriate
effective potential for a CG model that quantitatively preserves both the structure
and thermodynamic properties of an underlying AA model. Unfortunately, the PMF
cannot be determined for most interesting systems. Instead, bottom-up methods
often determine CG potentials as systematic approximations to the PMF.32 In
particular, bottom-up approaches often approximate the configuration-dependence
of the PMF with sufficient accuracy to reasonably reproduce simple structural
properties, e.g., radial distribution functions, of AA models.26,28–30
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However, bottom-up approaches have enjoyed less success for modeling thermody-
namic properties. The process of coarse-graining directly transfers thermodynamic
information from the AA configuration space into thermodynamic contributions
to the many-body PMF.81,82 These contributions must be addressed in order to
accurately describe thermodynamic properties with CG models.83,86,91–93 While
“top-down” approaches address these effects by explicitly parameterizing CG po-
tentials to reproduce target thermodynamic properties,9,113,150 structure-based
bottom-up approaches tend to provide a poor description of thermodynamic proper-
ties, such as the pressure.33,34 Consequently, bottom-up approaches often introduce
ad hoc corrections to the interaction potentials in order to accurately model the
pressure.27,28,80,88,89 Unfortunately, this approach can yield a poor description of
the compressibility.34,87

Quite recently, Das and Andersen pioneered a “pressure-matching” variational
principle in order to model the volume-dependence of the PMF.44 We demonstrated
that this approach provides a qualitative, but not quantitative, description of den-
sity fluctuations for molecular liquids.151 Moreover, we developed a self-consistent
pressure-matching approach that quantitatively reproduces the equilibrium den-
sity, compressibility, and pressure of molecular liquids.151 We demonstrate in
the appendix that this self-consistent pressure-matching approach corresponds to
minimizing a relative entropy with respect to a volume-dependent potential. More
generally, we expect that this approach may prove useful for accurately describing
many thermodynamic properties with CG models.

Similarly, it remains challenging to improve or predict the transferability of
bottom-up CG models. Since the PMF explicitly varies with thermodynamic
conditions, approximations that are optimized for one state-point will generally
provide a less accurate approximation at other state points. Indeed, many studies
have documented the sensitivity of optimized bottom-up potentials to variations
in, e.g., temperature and density.33,35–38,40–42,152,153 Accordingly, an increasing
number of CG models have adopted potentials that explicitly vary with thermody-
namic conditions.37,43,84,86,154–161 However, comparatively little progress has been
achieved via bottom-up approaches for parameterizing interaction potentials that
are transferable to chemically distinct systems. Previous bottom-up approaches have
attempted to develop transferable potentials by comparing or combining potentials
that were optimized for various model systems.162–167 Conversely, other studies have
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attempted to achieve greater transferability by minimizing the context-dependence
of the calculated interaction potentials.168–170

Alternatively, we have proposed a simple “extended ensemble” approach39 that
adopts a global optimization strategy for determining system-independent, i.e.,
transferable, potentials. We define extended ensembles as collections of chemically
distinct systems that are not at equilibrium with one another and that may be under
different thermodynamic conditions. We assume an atomic equilibrium ensemble, a
statistical weight, and a CG representation for each system. The resulting mapped
CG ensembles define a corresponding set of PMF’s. We then employ a variational
principle in order to determine potentials that provide an optimal approximation
to this set of PMF’s. The scheme is quite general and can be applied to develop
both transferable and system-specific contributions to the CG potentials.

However, previous studies have provided relatively little assessment of this
approach. We demonstrated that, in combination with a generalized-Yvon-Born-
Green theory,31,111 the extended ensemble approach quantitatively determined the
underlying potentials from a databank of structures for multiple model proteins.171

In addition to this proof of principle demonstration, we also applied the extended
ensemble approach to parameterize transferable interaction potentials for methanol-
neopentane liquid mixtures.39 In this case, the resulting potentials performed quite
reasonably for a range of mixtures, but appeared less accurate than potentials that
were optimized for specific systems. This analysis was relatively cursory, though,
and not expanded to other systems. Moreover, we developed the extended ensemble
approach at constant volume, which is quite unsatisfactory, since one must first
determine an appropriate density for each system.

In the present work, we further investigate the promise of bottom-up methods for
developing predictive CG models, i.e., transferable models that accurately describe
both structural and thermodynamic properties. In particular, we integrate the self-
consistent pressure-matching approach within the extended ensemble framework to
calculate transferable interaction potentials and system-specific volume-dependent
potentials for modeling a set of binary heptane-toluene mixtures. The resulting
potentials accurately describe the structure, density, and compressibility for these
liquid mixtures. We demonstrate that the system-specific volume-dependent poten-
tials can be readily predicted for other heptane-toluene mixtures. More importantly,
the resulting potentials accurately reproduce both structural and thermodynamic

46



properties of mixtures that were not included in the parameterization. Most sur-
prisingly, the transferable potentials can provide greater accuracy than chemically
specific potentials. Finally, we employ the resulting potentials to gain additional
insight into the effect of coarsening upon both the cohesive energy density and also
the “simplicity” of models.

The remainder of the manuscript is organized as follows: Section II derives
the extended ensemble theory; Section III summarizes the details of the present
calculations; Section IV presents results from these calculations; Section V discusses
these results; and Section VI reviews the key conclusions of this work. The appendix
demonstrates that the self-consistent pressure-matching method minimizes a relative
entropy for the extended configuration space, while the supplementary material172

provides a more extensive presentation of the results.

3.3 Theory
In this section, we develop the extended ensemble framework for determining
transferable potentials for CG models that accurately reproduce both the structure
and density fluctuations of AA models. We first introduce the notion of extended
ensembles in order to develop appropriate consistency criteria. We demonstrate
that a generalized potential of mean force (PMF) is the appropriate potential for
ensuring consistency between AA and CG models for the extended ensemble. We
employ a force-matching variational principle25,27,88,173,174 to determine transferable
interaction potentials that optimally approximate the configuration dependence
of this PMF. We employ a self-consistent pressure-matching approach44,151 to
determine system-specific volume dependent potentials that accurately reproduce
the volume-dependence of this PMF. The appendix briefly considers the extended
ensemble approach and, in particular, the self-consistent pressure-matching approach
in terms of minimizing a relative entropy.

3.3.1 Extended ensembles

We define an extended ensemble as a collection of equilibrium ensembles for multiple
distinct systems. In the present work, we shall assume that each system is at the
same temperature, T , and samples isotropic volume fluctuations at the same
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external pressure, P0. For simplicity, we shall also assume appropriate use of
periodic boundary conditions and that there are no rigid constraints.

3.3.1.1 Atomic extended ensemble

For each system in the extended ensemble, we assume an atomically detailed model
that specifies two distinct, but related components: 1) an abstract “topology” vari-
able, γ, that both labels the system and also specifies the number, nγ , connectivity,
and identity of the nγ atoms in the atomic model; and 2) an associated potential
function, uγ, that governs the interactions between these atoms. A configuration,
rγ, for the topology γ specifies the Cartesian coordinates of the nγ atoms in the
atomic model, rγ = {rγ1, . . . , rγnγ}.

A microstate, (γ, rγ, v), in the atomic extended ensemble specifies a particular
topology, γ, and a configuration, rγ , that is consistent with the volume, v. We model
γ as a quenched random variable that is sampled with probability pγ. For each
γ, we treat rγ and v as dynamical random variables that sample the equilibrium
distribution at the given temperature, T , and external pressure, P0:

prv|γ(rγ, v) = ∆−1
γ exp

[
−β

(
P0v + uγ(rγ, v)

)]
(3.1)

∆γ =
∫

dv
∫
vγ
drγ exp

[
−β

(
P0v + uγ(rγ, v)

)]
, (3.2)

with ∆γ = ∆γ(T, P0) and β = 1/kBT . In Eq. (3.2) and in the following, the
subscript vγ indicates integration over the volume-dependent configuration space
for the system γ. Thus, the atomic extended ensemble assigns a probability

pγrv(rγ, v) = pγprv|γ(rγ, v) (3.3)

for each microstate (γ, rγ, v). For any function aγ(rγ, v), we define conventional
ensemble averages for a single topology γ:

〈aγ(rγ, v)〉γ =
∫

dv
∫
vγ
drγ prv|γ(rγ, v)aγ(rγ, v). (3.4)

We define extended ensemble averages

〈aγ(rγ, v)〉 =
∑
γ

pγ 〈aγ(rγ, v)〉γ . (3.5)
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In particular, the instantaneous internal pressure of the AA model is

Pγ(rγ, v) = nγkBT/v + wγ(rγ, v) (3.6)

wγ(rγ, v) = − (∂uγ(rγ, v)/∂v)ργ , (3.7)

and the subscript indicates the derivative is evaluated at constant scaled coordinates,
ργ. In the extended ensemble at constant T and P0

P0 = 〈Pγ(rγ, v)〉γ = 〈Pγ(rγ, v)〉 . (3.8)

3.3.1.2 Coarse-grained extended ensemble

Similarly, for each system in the extended ensemble, we consider a CG model that
specifies two distinct, but related components: 1) an abstract topology variable, Γ,
that both labels the system and also specifies the number, NΓ, connectivity, and
identity of the NΓ sites in the CG model; and 2) an associated potential function,
UΓ, that governs the interactions between these sites. A configuration, RΓ, for the
topology Γ specifies the Cartesian coordinates of the NΓ sites in the CG model,
RΓ = {RΓ1, . . . ,RΓNΓ}.

A microstate, (Γ,RΓ, V ), in the CG extended ensemble specifies a particular
topology, Γ, and a configuration, RΓ, that is consistent with the volume, V . As for
the atomic extended ensemble, we model Γ as a quenched random variable with
probability PΓ, while RΓ and V are dynamic random variables that sample the
equilibrium distribution at constant T and P0:

PRV |Γ(RΓ, V ) ∝ exp
[
−β

(
P0V + UΓ(RΓ, V )

)]
. (3.9)

Thus, the CG extended ensemble assigns a probability

PΓRV (RΓ, V ) = PΓPRV |Γ(RΓ, V ) (3.10)

for each microstate (Γ,RΓ, V ).
The instantaneous internal pressure of the CG model is

PΓ(RΓ, V ) = NΓkBT/V + WΓ(RΓ, V ) (3.11)

WΓ(RΓ, V ) = − (∂UΓ(RΓ, V )/∂V )RΓ
, (3.12)
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and the subscript indicates the derivative is evaluated at constant scaled coordinates,
RΓ.

3.3.2 Mapped extended ensemble

We introduce two mappings that relate atomic and CG extended ensembles. First,
we define a “topology mapping,” µ, that maps each atomic topology, γ, to a
CG topology Γ = µ(γ). In particular, µ(γ) must define the number, type, and
connectivity of the sites in the CG representation of γ. Secondly, we define a
configuration mapping, Mγ, that maps each atomic configuration rγ for γ to a
CG configuration Rµ(γ) = Mγ(rγ) for Γ = µ(γ). In particular, Mγ determines the
Cartesian coordinates for each site I in the topology µ(γ) as a linear combination
of atomic coordinates:

Rµ(γ)I = MγI(rγ) =
∑
i

cγ;Iirγi. (3.13)

The notation indicates that the sum is performed over all atoms i that are defined
by γ. The mapping coefficients in Eq. (3.13) must be normalized, ∑i cγ;Ii = 1, for
each γ and relevant site I ∈ µ(γ). For simplicity, we assume that the mapping
associates the sites with disjoint sets of atoms and defines the site coordinates by
the mass centers for corresponding atomic sets. Thus, each microstate (γ, rγ, v)
in the atomic extended ensemble is mapped to a microstate (Γ,RΓ, V ) for a CG
extended ensemble with γ → Γ = µ(γ), rγ → Rµ(γ) = Mγ(rγ), and v → V = v.

These mappings then determine probability distributions for the “mapped
ensemble.” In particular,

pΓ =
∑
γ

pγ δµ(γ),Γ (3.14)

is the probability for sampling an atomic topology γ that maps to Γ. Similarly,

pΓRV (RΓ, V ) =
∑
γ

∫
dv
∫
vγ
drγ pγrv(rγ, v) δµ(γ),Γ δ(v− V ) δ (Mγ(rγ)−RΓ) (3.15)

is the probability for sampling an atomic microstate, (γ, rγ, v), that maps to
(Γ,RΓ, V ).
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3.3.3 Consistency criteria

Consistency between atomic and CG extended ensembles requires that the CG
extended ensemble sample the same microstate distribution as the mapped atomic
extended ensemble:

pΓRV (RΓ, V ) = PΓRV (RΓ, V ). (3.16)

The correct weighting for the different CG topologies can be easily achieved by
defining

PΓ = pΓ. (3.17)

It is more challenging to reproduce the distribution of configurations RΓ and volumes
V . According to Eqs. (3.9), (3.15) and (3.16), the appropriate CG potential, WΓ,
for a consistent CG model is defined to within a constant that is independent of
RΓ and V by

exp [−βWΓ(RΓ, V )] =
∑
γ

pγ|Γ v
NΓ+1
0 ∆−1

γ zγ(RΓ, V ) (3.18)

zγ(RΓ, V ) =
∫
Vγ
drγ exp [−βuγ(rγ, V )] δ (Mγ(rγ)−RΓ) , (3.19)

where pγ|Γ = pγ δµ(γ),Γ /pΓ and v0 is an arbitrary constant reference volume that is
introduced for dimensional consistency. For each Γ, WΓ is a many-body potential
of mean force (PMF) for both the configuration, RΓ, and for the volume, V :

−
(
∂WΓ(RΓ, V )

∂RΓI

)
V

=
〈
fγI(rγ, v)

〉
RΓ,V

(3.20)

−
(
∂WΓ(RΓ, V )

∂V

)
RΓ

= 〈Pγ(rγ, v)−NΓkBT/V 〉RΓ,V
. (3.21)

In these expressions, fγI(rγ, V ) denotes the net force on site I in microstate (γ, rγ, V )
and the subscripted angular brackets denote conditioned averages over the AA
extended ensemble:

〈aγ(rγ, v)〉RΓ,V
=
〈
aγ(rγ, v)δµ(γ),Γ δ(v − V )δ (Mγ(rγ)−RΓ)

〉
/pΓRV (RΓ, V ).

(3.22)
Note that, if µ maps multiple atomic topologies γ to a single CG topology Γ, then
WΓ reflects an averaging over this degeneracy.
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3.3.4 Variational principles

In constructing a CG model for the extended ensemble, we define a set of ap-
proximate potentials, U = {UΓ}, for the various systems, Γ, in the CG extended
ensemble. Following Das and Andersen,44 we introduce two functionals for varia-
tionally determining the potentials, UΓ, as optimal approximations to WΓ.

3.3.4.1 Force matching

First, we define an extended ensemble force-matching (FM) functional173,174 for
approximating the configuration dependence of W :

χ2
1[U ] =

〈
1

3Nµ(γ)
v2/3 ∑

I∈µ(γ)

∣∣∣fγI(rγ, v)− Fµ(γ)I(Mγ(rγ), v)
∣∣∣2〉 , (3.23)

where FΓI(RΓ, V ) = − (∂UΓ(RΓ, V )/∂RΓI)V . For each AA system, γ, the sum in χ2
1

is performed over the sites that are defined in the corresponding CG representation,
Γ = µ(γ). Also, note that Eq. (3.23) includes the v2/3 factor introduced in Ref. 44,
such that χ2

1 will weight more heavily contributions from the larger systems in
the extended ensemble. Consequently, the calculated potential may potentially
be biased towards more accurately approximating the PMF for larger systems at
the expense of smaller systems in the extended ensemble. However, in the present
calculations, this bias should be negligible since all systems sample very similar
volumes.

It follows from Eq. (3.20) that the set of generalized PMF’s, W = {WΓ},
minimizes χ2

1:

χ2
1[U ] = χ2

1[W ] +
〈

1
3Nµ(γ)

v2/3 ∑
I∈µ(γ)

∣∣∣∆Fµ(γ)I(Mγ(rγ), v)
∣∣∣2〉 (3.24)

≥ χ2
1[W ], (3.25)

where ∆FΓI = FΓI − F0
ΓI and F0

ΓI indicates the forces derived from the PMF, WΓ.
Thus, minimizing χ2

1 provides a variational procedure for determining potentials
that optimally approximate the configuration dependence of the many-body PMF
within the extended ensemble.
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3.3.4.2 Pressure matching

Secondly, we define an extended ensemble pressure-matching (PM) functional for
approximating the volume dependence of WΓ:

χ2
2[U ] =

〈∣∣∣Pγ(rγ, v)−Pµ(γ)(Mγ(rγ), v)
∣∣∣2〉 , (3.26)

where Pγ and PΓ are the internal pressures of AA and CG models, as defined in
Eqs. (3.6) and (3.11), respectively. It follows from Eq. (3.21) that W minimizes χ2

2

χ2
2[U ] = χ2

2[W ] +
〈∣∣∣∆Wµ(γ)(Mγ(rγ), v)

∣∣∣2〉 (3.27)

≥ χ2
2[W ], (3.28)

where ∆WΓ = WΓ−W 0
Γ and W 0

Γ is the volume derivative of the PMF: W 0
Γ (RΓ, V ) =

− (∂WΓ(RΓ, V )/∂V )RΓ
. Thus, minimizing χ2

2 provides a variational procedure for
determining potentials that optimally approximate the volume dependence of the
many-body PMF within the mapped extended ensemble.

3.3.5 Approximate potentials

In practice, we cannot determine the many-body PMF, WΓ. Rather, we employ
the FM and PM variational principles to determine a potential, UΓ, that optimally
approximates the configuration- and volume-dependence of WΓ. For each CG
topology, Γ, the approximate CG potential, UΓ, may be expressed:

UΓ(RΓ, V ) = UΓR(RΓ) + UΓV (V ). (3.29)

The “interaction potential,” UΓR, depends upon the volume, V , only implicitly via
periodic boundary conditions. We shall define UΓR by a sum of simpler “transferable,”
i.e., system-independent, potentials that each govern a particular type of interaction.
In contrast, the second term, UΓV , depends explicitly upon both the volume and
also the particular system, but is independent of the CG configuration. As proposed
by Das and Andersen,44 we first optimize UΓR by minimizing χ2

1. Then, given this
interaction potential, we optimize UΓV by minimizing χ2

2 for fixed UΓR.
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We shall further assume that UΓR adopts the common, simple form

UΓR(RΓ) = UΓ2(RΓ) + UΓθ(RΓ), (3.30)

where UΓ2 is a sum of transferable pair potentials that depend only upon the
distance between pairs of sites, while UΓθ is a sum of transferable bonded potentials
that depend upon bond or dihedral angles and, thus, do not directly contribute
to the isotropic pressure.97 The internal pressure of the CG model may then be
expressed:

PΓ(RΓ, V ) = PΓR(RΓ, V ) + FΓV (V ), (3.31)

where FΓV = −dUΓV (V )/dV is the “pressure correction” due to UΓV , while PΓR is
the internal pressure due to the interaction potential, UΓR:

PΓR(RΓ, V ) = NΓkBT/V + 1
3V

∑
(I,J)∈Γ

RIJF2;IJ(RIJ). (3.32)

In this expression, RIJ is the minimum image distance between the (I, J) pair of
sites, F2;IJ indicates the magnitude of the corresponding 2-body force, and the sum
is performed over all relevant pairs for Γ.

3.3.5.1 Interaction potential

For each Γ, we define UΓR as a sum of system-independent potentials, Uζ , each of
which depends upon a scalar function, ψζ , of the coordinates, RΓλ, for a particular
subset, λ, of sites in the CG topology, Γ:

UΓR(RΓ) =
∑
ζ

∑
λ∈Γ

Uζ(ψζ(RΓλ)). (3.33)

Thus, UΓR depends upon the CG topology, Γ, only for specifying the particular
interactions that are relevant for the system. In each system, we employ the same
transferable potential, Uζ , for modeling the ζ interaction.

Each transferable interaction potential, Uζ , is expressed as a linear combination
of simple system-independent basis functions, uζd(x), e.g., splines, with coefficients,
φζd:

Uζ(x) =
∑
d

φζduζd(x) (3.34)
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The force on each site, I, is then

FΓI(RΓ) =
∑
ζ

∑
d

φζdG ΓI;ζd(RΓ) (3.35)

where
G ΓI;ζd(RΓ) =

∑
λ∈Γ

fζd(ψζ(RΓλ)) ∂ψζ(RΓλ)/∂RΓI (3.36)

and fζd(x) = −duζd(x)/dx. For notational convenience, we introduce a “super-
index” D for identifying a particular combination ζd:

FΓI(RΓ) =
∑
D

φDG ΓI;D(RΓ). (3.37)

Given this basis set expansion for FΓ, χ2
1 becomes a simple quadratic form in

the potential parameters, φD:

χ2
1(φ) = χ2

1(0)− 2
∑
D

bDφD +
∑
D

∑
D′
GDD′φDφD′ (3.38)

where

bD =
〈

1
3Nµ(γ)

v2/3 ∑
I∈µ(γ)

fγI(rγ, v) · G µ(γ)I;D(Mγ(rγ))
〉

(3.39)

GDD′ =
〈

1
3Nµ(γ)

v2/3 ∑
I∈µ(γ)

G µ(γ)I;D(Mγ(rγ)) · G µ(γ)I;D′(Mγ(rγ))
〉
. (3.40)

The optimal interaction potential is then determined by the coefficients that satisfy
the normal system of linear equations

∑
D′
GDD′φD′ = bD. (3.41)

Because the same potential parameters, φD, are used for each system, these normal
equations average over multiple atomic systems.

3.3.5.2 Volume-dependent potential

While we assume that the interaction potentials are transferable, we shall determine
system-specific volume-dependent potentials, UΓV , for each CG topology, Γ. We
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define
UΓV (V ) =

∑
d

ψΓV d uΓV d(V ), (3.42)

where

uΓV d(V ) =

 NΓ(V/v̄Γ) for d = 1
NΓ (V/v̄Γ − 1)d for d ≥ 2

(3.43)

and v̄Γ is the average volume in the mapped ensemble for Γ. The pressure correction
FΓV (V ) = −dUΓV (V )/dV is then

FΓV (V ) =
∑
d

ψΓV d fΓV d(V ) (3.44)

where fΓV d(V ) = −duΓV d(V )/dV . In practice, we only include the d = 1 and 2
terms in this sum:

FΓV (V ) = − (NΓ/v̄Γ) [ψΓV 1 + 2ψΓV 2 (V − v̄Γ) /v̄Γ] (3.45)

where the two parameters correspond to corrections for the pressure, ∆PΓ, and the
inverse compressibility, ∆κ−1

T ;Γ, when V = v̄Γ:

∆PΓ = −NΓψΓV 1/v̄Γ (3.46)

∆κ−1
T ;Γ = 2NΓψΓV 2/v̄Γ. (3.47)

Having determined UΓR by minimizing χ2
1, we then determine the parameters

for UΓV by minimizing χ2
2:

χ2
2[UΓV |UΓR] =

∑
γ

pγ χ
2
2γ(ψµ(γ)) (3.48)

where χ2
2γ(ψΓ) is the PM functional for a single topology, γ:

χ2
2γ(ψµ(γ)) =

〈∣∣∣Pγ(rγ, v)−Pµ(γ)(Mγ(rγ), v)
∣∣∣2〉

γ
(3.49)

=
〈∣∣∣∣∣δPγR(rγ, v)−

∑
d

fµ(γ)V d(v)ψµ(γ)V d

∣∣∣∣∣
2〉

γ

, (3.50)

where δPγR(rγ, v) = Pγ(rγ, v) − Pµ(γ)R(Mγ(rγ), v), such that χ2
2 is a simple

quadratic form in ψΓV d. Since the parameters, ψΓV d, for UΓV are system-specific
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and we have assumed a 1-1 relationship between γ and Γ in this work, we perform
a separate pressure-matching calculation for each different AA topology, γ.

CG simulations with the parameters, ψΓV d, that minimize χ2
2 reproduce atomic

density fluctuations with qualitative, but not quantitative, accuracy. As discussed
in our prior work,151 since minimizing χ2

2 corresponds to matching the atomic
pressure over the mapped ensemble, we believe that this discrepancy results from
subtle differences between the mapped and simulated CG extended ensembles.
Consequently, we have adopted an iterative self-consistent procedure to further
optimize the parameters, ψΓV d, for each CG system, Γ. Given the pressure correction,
FΓV (V ), for Γ that is obtained from minimizing χ2

2, we perform a short simulation
at constant external pressure in order to estimate the pressure equation of state,
PΓ(V ), for the CG model. We compare PΓ(V ) with the AA pressure equation of
state, Pγ(V ), determined for the corresponding AA system, i.e., µ(γ) = Γ. The
difference between the AA and CG pressure equations of state determines the error
in the pressure correction,

δFµ(γ)V (V ) = Pγ(V )−Pµ(γ)(V ), (3.51)

and determines a corresponding correction to UΓV , δFΓV (V ) = −dδUΓV (V )/dV ,
such that the CG model more accurately reproduces the volume dependence of
the PMF. We then determine the pressure equation of the state for the CG model
with the modified pressure correction and repeat this procedure until the CG
model adequately reproduces the AA pressure equation of state. The appendix
demonstrates that this self-consistent pressure-matching approach corresponds to
a different variational approach for optimizing UΓV (V ) by minimizing a relative
entropy in the extended configuration space.

3.4 Computational Details

3.4.1 Atomistic Simulations Details

We employed the GROMACS 4.5.3 simulation package,103 while using double-
precision floating-point arithmetic, to perform atomically detailed simulations
for pure heptane, pure toluene, and for the 7 different heptane-toluene mixtures
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Table 3.1. Compositions of the simulated AA models, as well as the corresponding
probabilities for extended ensemble averages.

Hep:Tol Nhep Ntol pγ
0:1 0 642
1:9 30 267
1:4 119 476 0.2
2:3 221 321 0.2
1:1 267 267 0.2
3:2 302 208 0.2
4:1 392 98 0.2
9:1 267 30
1:0 461 0

that are described in Table 3.1. We adopted the OPLS-AA force field104 for
modeling all atomic interactions and employed the particle mesh Ewald method105

for treating electrostatic interactions. We employed the same equilibration and
simulation protocols that were reported for our previous constant NPT simulations
of pure heptane and toluene.151 In particular, we truncated both short-ranged
potentials and also the real space contribution to electrostatic interactions at
1.2 nm. After equilibration, we simulated each system for 100 ns in the constant
NPT ensemble, while employing the Parrinello-Rahman barostat110 and Nosé-
Hoover thermostat108,109 with coupling constants of 0.5 ps and 5 ps, respectively, to
maintain a constant external pressure P0 = 1.0 bar and temperature T = 303 K. We
employed these constant NPT trajectories both for calculating the CG potentials and
also for characterizing the equilibrium density fluctuations and pressure equations
of state for the AA models. In order to characterize the structural properties
of the AA models, we also simulated each system for an additional 50 ns in the
constant NVT ensemble at T = 303 K. We determined the initial configuration and
volume for these constant NVT simulations from the constant NPT simulations by
employing the last sampled configuration in which the instantaneous volume was
within one standard deviation of the average volume. We sampled configurations
every 1 ps and estimated standard errors by assuming that the configurations
provided statistically independent samples of the pressure.
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a) b)

Figure 3.1. CG mapping for toluene (a) and heptane (b). The coordinates for each site
are determined by the mass center of the corresponding atomic group, which is indicated
by the dashed circle. The transparent spheres indicate the position and size of each site,
which is estimated from the corresponding site-site rdf.

3.4.2 CG Representation

We developed CG models for each of the liquid systems described in Table 3.1. In
each case, we modeled heptane and toluene with the 3-site representations that are
illustrated in Fig. 3.1. The CG mapping associated each site with a corresponding
atomic group and determined the site coordinates by the corresponding mass center.
The dashed circles in Fig. 3.1 indicate these atomic groups, while the colored spheres
indicate the position and size of the CG sites.

3.4.3 Force-matching interaction potentials

The CG interaction potentials included both intramolecular and intermolecular
contributions. In order to describe intramolecular geometry and flexibility, we
employed bond potentials between adjacent CG sites in each molecule, as well as
an angle potential to model the three sites in heptane. We did not employ an angle
potential for modeling toluene. We represented these bond and angle potentials with
linear spline functions on grids with 0.01 nm and 0.5 degree spacings, respectively.
We modeled intermolecular interactions with short ranged pair potentials between
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each pair of sites in distinct molecules. We represented these potentials with cubic
spline functions on a grid with 0.001 nm spacing, while truncating these potentials
at 1.4 nm. The CG models did not include explicit electrostatic interactions or
rigid constraints.

We employed the MS-CG force-matching variational principle25,27,88 in order
to optimize these potentials for specific systems. Additionally, we employed the
extended ensemble force-matching variational principle39 in order to optimize a
single set of system-independent interaction potentials for heptane-toluene mixtures.
As indicated in Table 3.1, the extended ensemble included mixtures with 1:4, 2:3,
1:1, 3:2, and 4:1 heptane:toluene ratios, while assigning an equal weight pγ = 0.2 to
each mixture. We determined the optimal transferable parameters that minimize χ2

1

by numerically solving the linear system of equations in Eq. (3.41). We refer to the
resulting system-independent potentials as the extended ensemble (xn) interaction
potentials.

In all cases, we estimated the relevant ensemble averages with configurations
sampled from AA simulations. Despite the relatively extensive simulations, the
calculated non-bonded forces demonstrated traces of statistical noise. (See sup-
plementary material.172) Since this noise can impact the calculated pressures, we
smoothed the tails of these potentials via the same procedure described in our
previous work.151

3.4.4 Pressure-matching volume potentials

As described above, we determined two interaction potentials, UΓR, for each sys-
tem Γ in the CG extended ensemble: 1) a MS-CG potential optimized for each
specific system; and 2) an xn potential optimized for transferability across the
entire extended ensemble. Additionally, for each system, Γ, in the CG extended
ensemble, as well as for pure heptane and pure toluene, we determined two dis-
tinct volume-dependent potentials, UΓV , that were optimized independently for the
MS-CG and xn interaction potentials, UΓR. We optimized both of these volume-
dependent potentials via the iterative self-consistent pressure matching approach
that is described in Section 3.3.5.2.151 In brief, given a CG interaction potential,
UΓR, we first determined a volume-dependent potential, UΓV , by minimizing the
pressure-matching functional, χ2

2γ , for the corresponding AA system. We then iter-
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Table 3.2. Average pressure corrections and inverse compressibility corrections, as well
as the number of iterations required to converge the pressure correction. The corrections
to the pressures and inverse compressibilities are given in units of 103 bar. Models with
an asterisk (*) for NIter did not converge within 10 iterations. In these cases, the pressure
correction was determined according to the procedure described in the Methods section.

∆P ∆κ−1
T NIter

Hep:Tol MS-CG XN MS-CG XN MS-CG XN
0:1 -2.61 -1.64 -2.66 -0.45 * *
1:9 - -1.58 - -0.74 - -
1:4 -2.01 -1.52 -1.67 -1.22 2 6
2:3 -1.57 -1.45 -1.71 -1.81 4 2
1:1 -1.55 -1.42 -1.88 -1.51 * 1
3:2 -1.21 -1.39 -1.95 -1.75 2 6
4:1 -0.94 -1.36 -1.33 -2.25 4 4
9:1 - -1.33 - -2.79 - -
1:0 -0.75 -1.31 -2.04 -2.70 1 6

atively refined UΓV until constant NPT simulations with the CG model adequately
reproduced the pressure equation of state for the corresponding atomic model.

The volume-dependent potentials are determined by two parameters, ψΓV 1

and ψΓV 2, which correspond to average corrections for the pressure, ∆PΓ and for
the (inverse) compressibility, ∆κ−1

T ;Γ respectively. The iterative pressure matching
calculations converged quite rapidly in all but 3 of the 14 cases. However, in these 3
cases the calculated parameters oscillated about appropriate values. In these cases,
we determined the 2 parameters from different iterations that accurately modeled
the density and compressibility, respectively. Table 3.2 presents the optimized
parameters.

Finally, having optimized pressure corrections for heptane, toluene, and 5
different mixtures, we developed an approach for predicting pressure corrections for
other heptane-toluene mixtures. For a mixture Γ with heptane mole fraction, χhep,
and toluene mole fraction, χtol = 1 − χhep, we assume that the average pressure
correction may be expressed:

∆PΓ = χ2
hep∆Phep + χ2

tol∆Ptol + χhepχtol∆Pmix, (3.52)

where ∆Phep and ∆Ptol are the average pressure corrections for pure heptane and
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pure toluene, respectively. We determine the one empirical parameter, ∆Pmix,
according to

∆Pmix =
〈

1
χhepχtol

{
∆Pµ(γ) −

(
χ2
hep∆Phep + χ2

tol∆Ptol
)}〉

, (3.53)

where the angular brackets indicate an extended ensemble average over systems,
γ, and ∆Pµ(γ) is the average optimized pressure correction determined for the
corresponding CG model Γ = µ(γ). We apply the same scheme to predict a
corresponding correction for the inverse compressibility. These corrections then
determine a volume-dependent potential for any heptane-toluene mixture according
to Eqs. (3.42) - (3.47).

3.4.5 CG Simulation Details

We simulated each CG model in the constant NPT ensemble with external pressure
P0 = 1.0 bar and temperature T = 303 K in order to characterize the density
fluctuations and pressure equations of state for the CG models. We performed these
simulations with a modified version151 of LAMMPS (17Jun13)114 that incorporates
the pressure correction into the Martyna-Tuckerman-Tobias-Klein barostat.115

These simulations employed the same protocols and parameters that were reported
in our previous work.151 We also performed a series of simulations in the constant
NVT ensemble in order to assess the structural accuracy and transferability of the
various calculated CG potentials. We performed these simulations with GROMACS
4.5.3, while adopting the same simulation parameters as the constant NPT atomistic
simulations, except that the volume did not fluctuate and the CG model did not
include explicit electrostatic interactions. We performed each constant NVT CG
simulation for 15 ns and employed the last 14 ns for analysis.

3.5 Results
In this section, we investigate the accuracy and transferability of potentials obtained
from the extended ensemble framework. We first consider an extended ensemble
that includes 5 mixtures with 1:4, 2:3, 1:1, 3:2, and 4:1 heptane:toluene ratios. We
employ the MS-CG variational principle25 to optimize system-specific interaction
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potentials for each of these mixtures. Additionally, we employ the extended ensemble
framework39 to determine a single set of interaction potentials that provide optimal
transferability across the 5 mixtures. For each system and each potential, we employ
the self-consistent pressure-matching approach151 to optimize a pressure correction,
FΓV (V ) = −dUΓV (V )/dV , that reproduces the pressure equation of state for the
corresponding AA model. After presenting these potentials, we assess their accuracy
for modeling the structure and density fluctuations of the heptane-toluene mixtures
in the extended ensemble. We next evaluate their transferability for modeling other
heptane-toluene mixtures. Finally, we employ the resulting models to investigate
the effects of coarse-graining upon the model thermodynamic properties.

Figure 3.2 compares the system-specific MS-CG potentials with the transferable
extended ensemble (xn) potentials. In Fig. 3.2 and in the following, red curves
present results for pure toluene and violet curves present results for pure heptane,
while brown, orange, green, cyan, and blue curves present results for mixtures with
1:4, 2:3, 1:1, 3:2, and 4:1 heptane:toluene ratios.

Figure 3.2a compares the calculated pair potentials for the interaction between
the heptane terminal CT sites and toluene methyl CF sites. (The supplementary
material presents all of the calculated pair potentials.172) The CT-CF potential is
quite representative of the 15 different types of pair potentials, since it demonstrates
typical statistical uncertainty and variation with composition. All of the calculated
CT-CF potentials demonstrate two distinct attractive wells. The colored curves
demonstrate that the MS-CG potentials vary systematically with increasing heptane
content as the first minimum deepens and shifts to smaller distances. The black
curve presents the CT-CF xn potential, which is most similar to the MS-CG
potential optimized for the 1:1 mixture.

Figure 3.2b presents the optimized pressure corrections. For each system, the
solid and dashed lines correspond to the pressure corrections that were optimized
for the system-specific MS-CG interaction potentials and for the transferable xn
interaction potentials, respectively. As indicated in Eqs. (3.45)-(3.47), the midpoint
of each line indicates the average density and the average pressure correction for the
corresponding CG model, while the slope indicates the corresponding correction to
the compressibility. Table 3.2 presents the calculated parameters for each pressure
correction.

Figure 3.2b demonstrates that the calculated pressure corrections decrease the

63



0.65 0.7 0.75 0.8 0.85 0.9
Density (g/mL)

-3

-2.5

-2

-1.5

-1

F
V

 (
1
0

3
 b

ar
)

Tol
1:4
2:3
1:1
3:2
4:1
Hep

0.3 0.6 0.9 1.2 1.5
r (nm)

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

U
 (

k
J 

m
o
l-1

)
XN
1:4
2:3
1:1
3:2
4:1

a)

b)

Figure 3.2. Calculated interaction potentials and pressure corrections. Panel a)
presents calculated CF-CT pair potentials. In panel a), the colored curves indicate
system-specific MS-CG pair potentials for the various mixtures, while the black curve
indicates the corresponding transferable extended ensemble potential. Panel b) presents
calculated pressure corrections as a function of density. For each system, the solid line
indicates the pressure correction that is optimized for the corresponding system-specific
MS-CG potentials, while the dashed line indicates the pressure correction that is optimized
for the transferable extended ensemble potentials. In this figure, red and purple curves
indicate results for pure toluene and pure heptane, while brown, orange, green, cyan, and
blue curves indicate results for mixtures with 1:4, 2:3, 1:1, 3:2, and 4:1 heptane:toluene
ratio, respectively.
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internal pressure and compressibility of each CG model. The pressure corrections
generally increase in magnitude with increasing toluene content. In the case of
the xn pressure corrections, the density dependence also systematically decreases
with increasing toluene content. Since the same pair potentials are employed in
each xn model, the corresponding pressure corrections demonstrate relatively little
variation. In contrast, since the MS-CG pair potentials vary significantly between
systems, the corresponding pressure corrections also demonstrate much greater
variance.

For each of the 5 heptane-toluene mixtures in the extended ensemble, we
performed constant NVT simulations with each of the 5 system-specific MS-CG
potentials and also with the transferable xn potentials. In contrast to other
iterative structure-based approaches,26,28–30 the MS-CG method does not explicitly
ensure that the CG models accurately reproduce AA radial distribution functions
(rdfs).101,117 Figure 3.3 assesses the accuracy of the calculated potentials for
modeling the structure of these mixtures. As a representative example, Fig. 3.3a
presents simulated CT-CB rdfs for the 1:1 heptane:toluene mixture, while the
supplementary material presents a comprehensive analysis.172 As expected, in
comparison to MS-CG potentials that are optimized for other mixtures, the MS-CG
potential that is optimized for the 1:1 mixture appears to most accurately reproduce
the corresponding CT-CB rdf. Notably, the transferable xn potentials appear to
provide a similarly, or possibly even more, accurate reproduction of this AA rdf.

Figure 3.3b globally assesses the structural accuracy of each CG potential for
each heptane-toluene mixture in the extended ensemble. For each mixture, γ, and
each calculated CG potential, UΓ, we calculated the absolute error in the simulated
CG rdfs for each relevant pair of site types ζ ∈ µ(γ) at each distance r. We defined
the mean absolute error (MAE), MAE(γ;UΓ), by averaging this absolute error over
all distances and all relevant site pairs ζ ∈ µ(γ):

MAE(γ;UΓ) = 1
Nγ;ζ

∑
ζ∈µ(γ)

1
Nζ;r

∑
r

∣∣∣gγ;ζ(r)− gµ(γ);ζ(r;UΓ)
∣∣∣ , (3.54)

where gγ;ζ(r) is an AA rdf; gµ(γ);ζ(r;UΓ) is the corresponding rdf obtained from
CG simulations with potential UΓ; Nγ;ζ is the number of relevant site pairs; and
Nζ;r = 2.0nm/0.002nm = 1000 is the number of bins treated in tabulating the rdfs.

Figure 3.3b presents the MAE of each CG potential, UΓ, for modeling each
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Figure 3.3. Structural accuracy for modeling systems in the extended ensemble.
Panel a) presents CT-CB radial distribution functions (rdfs) from simulations of the
1:1 heptane:toluene mixture that employ various potentials. The solid black curve
corresponds to AA simulations. The solid red and dashed-dotted orange curves correspond
to simulations with system-specific MS-CG potentials that were optimized for the 3:2
and 1:1 mixtures, respectively. The dashed blue curve corresponds to simulations with
the transferable xn potentials. The inset highlights the first two peaks of the rdfs. Panel
b) presents an intensity map characterizing the mean absolute error (MAE) for modeling
the AA rdfs of each mixture with each force field. Warmer colors indicate larger error,
while cooler colors indicate smaller error.
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mixture, γ. As suggested by Fig. 3.3a, all of the CG potentials perform quite
well within the extended ensemble with relatively small errors, i.e., MAE ≈ 0.01.
Figure 3.3b also demonstrates two interesting results. First, given the MS-CG
variational approach for optimizing CG potentials and the MAE metric for structural
accuracy, system-specific MS-CG potentials do not necessarily provide optimal
accuracy. Even more interestingly, Fig. 3.3b demonstrates that the xn potential
appears not only most transferable, but also most accurate for each of the 5
heptane-toluene mixtures. This surprising accuracy may be partly due to the better
statistics obtained from the extended ensemble approach.175 In particular, the
supplementary material172 demonstrates that the MS-CG potentials for statistically
rare interactions can reflect modest statistical uncertainty even after 100 ns of
AA simulations with relatively large systems, although this uncertainty could be
somewhat mitigated by adopting more sophisticated inference techniques.176 More
fundamentally, though, the discussion section proposes that, by smoothing over
complex system-specific many-body correlations, the extended ensemble approach
may also address a basic approximation of the MS-CG variational principle.118

Figure 3.4 demonstrates that the CG models also accurately reproduce the
pressure, density fluctuations, and compressibility of the heptane-toluene mixtures
in the extended ensemble. In Figs. 3.4a and 3.4b, the solid curves present results
for constant NPT simulations with the OPLS-AA model,104 while the dashed and
dotted curves present results for constant NPT simulations with the system-specific
MS-CG potentials and with the transferable xn potentials, respectively. Figure 3.4a
demonstrates that the CG models reproduce the AA density fluctuations with nearly
quantitative accuracy. In particular, Table 3.3 demonstrates that the CG models
accurately model the liquid density and compressibility, which correspond to the
average and standard deviation of the volume distributions, respectively. Similarly,
Fig. 3.4b demonstrates that the CG models almost quantitatively reproduce the
AA pressure equations of state. Of course, the pressure corrections were explicitly
parameterized to reproduce the AA pressure equations of state for these 7 liquid
systems. Nevertheless, the level of agreement is quite satisfying.

We next assess the transferability of the calculated CG potentials for modeling
heptane-toluene mixtures that were not included in the parameterization extended
ensemble. Figure 3.5a presents CT-CT rdfs from constant NVT simulations of the
1:9 heptane:toluene mixture, since this rdf nicely distinguishes the performance of
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Figure 3.4. Simulated density distributions (a) and pressure equations of state (b)
for pure heptane, pure toluene, and the mixtures included in the extended ensemble.
The various systems are indicated by the color scheme of Fig. 3.2. In both panels, solid
curves indicate results for the OPLS-AA potential, dashed curves indicate results for
system-specific MS-CG potentials, and dotted curves indicate results for transferable xn
potentials. The bars in panel b) indicate the standard error in the simulated pressure
over each volume increment.

the different potentials. The system-specific MS-CG potentials that were optimized
for the 3:2 and 1:1 heptane:toluene mixtures underestimate the first two peaks in the
AA rdf. In comparison, the transferable xn potential more accurately reproduces
the first peak, although it still underestimates the second peak of the AA rdf.
The supplementary material presents a more exhaustive analysis of the simulated
rdfs.172

In analogy to Fig. 3.3b, Fig. 3.5b comprehensively assesses the transferability
of these potentials by presenting their MAE for modeling 4 additional liquids:
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Figure 3.5. Structural accuracy for modeling systems that were not included in
the extended ensemble. Panel a) presents CT-CT rdfs from simulations of the 1:9
heptane:toluene mixture that employ various potentials. The solid black curve corresponds
to AA simulations. The solid red and dashed-dotted orange curves correspond to
simulations with system-specific MS-CG potentials that were optimized for the 3:2 and
1:1 mixtures, respectively. The dashed blue curve corresponds to simulations with the
transferable xn potentials. The inset highlights the first two peaks of the rdfs. Panel b)
presents an intensity map of the MAE for modeling the AA rdfs of each mixture with
each force field. Warmer colors indicate larger error, while cooler colors indicate smaller
error.
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Table 3.3. Equilibrium densities (g/mL) and compressibilities (10-4 bar-1) obtained
from constant NPT simulations.

ρ κT
Hep:Tol AA MS-CG XN AA MS-CG XN

0:1 0.86 0.86 0.86 0.96 0.93 0.94
1:9 0.83 - 0.84 0.98 - 0.84
1:4 0.81 0.81 0.81 1.11 1.05 1.15
2:3 0.76 0.76 0.76 1.23 1.21 1.25
1:1 0.75 0.75 0.75 1.33 1.24 1.28
3:2 0.72 0.72 0.72 1.38 1.41 1.31
4:1 0.70 0.70 0.70 1.51 1.43 1.45
9:1 0.69 - 0.69 1.49 - 1.52
1:0 0.67 0.67 0.67 1.65 1.67 1.57

pure heptane and pure toluene, as well as 1:9 and 9:1 heptane:toluene mixtures.
As suggested by Fig. 3.5a, the potentials provide somewhat reduced accuracy for
modeling systems outside of the parameterization extended ensemble, although
typical errors remain quite small with MAE ≤ 0.02. More importantly, with the
exception of pure heptane, for which the 4:1 MS-CG potential is slightly more
accurate, the transferable xn potentials provide the greatest accuracy for modeling
these additional 4 liquid mixtures. Thus, among the calculated potentials, the
extended ensemble potentials appear to provide the best accuracy and transferability
for heptane-toluene mixtures.

While the xn potentials can be applied for modeling the interactions in any
heptane-toluene mixture, it remains necessary to predict the appropriate volume-
dependent potential, UΓV , as a function of composition. This potential is determined
by two parameters, ψΓV 1 and ψΓV 2, that correspond to average corrections for the
pressure, ∆PΓ, and (inverse) compressibility, ∆κ−1

T ;Γ, respectively, of the CG model.
As described in the methods section, we developed a simple empirical relation
for estimating these parameters as a function of the heptane mole fraction, χ.
Figure 2.6 compares this empirical relation with the system-specific parameters
that were optimized for compatibility with the transferable xn potentials and which
correspond to the dashed lines in Fig. 3.2b. The empirical relation provides a
reasonably accurate fit for the average pressure corrections, but appears slightly
less accurate for corrections to the compressibilities.
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Figure 3.6. Empirical fits for the average pressure correction (a) and the correction
to the inverse isothermal compressibility (b). The black circles indicate the calculated
corrections to the transferable xn potential for the various systems included in the
extended ensemble. The red curves present empirical fits to this data that employ one
free parameter for each correction.

We employed this empirical relation to predict pressure corrections for 1:9 and
9:1 heptane-toluene mixtures. We then performed constant NPT simulations of
these systems, while using the tranferable xn interaction potentials and the pre-
dicted pressure corrections. Figure 3.7 presents the simulated density distributions
and pressure equations of state. The solid and dotted lines indicate simulated
results for the AA and CG models. Importantly, these AA models were not used
for parameterizing either the xn interaction potentials or the pressure corrections.
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Figure 3.7. Simulated density distributions (a) and pressure equations of state (b) for
1:9 and 9:1 heptane:toluene mixtures. In both panels, solid curves indicate results for the
OPLS-AA model, while dotted curves indicate results for CG models that employ the
transferable xn interaction potentials with the pressure correction predicted from Fig. 3.6.
The bars in panel b) indicate the standard error in the average simulated pressure over
each volume increment.

Nevertheless, the CG models reproduce both the density distributions and the
pressure equations of state with remarkable accuracy. Consequently, the extended
ensemble approach appears capable of developing transferable models that demon-
strate predictive accuracy for both structural and thermodynamic properties of
heptane-toluene mixtures.

In our prior study, we considered the impact of resolution upon the thermo-
dynamic properties of 1-, 2-, and 3-site MS-CG models for pure heptane and
pure toluene. This study demonstrated that, with decreasing resolution, the
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Figure 3.8. Scatter plot correlating the missing cohesive energy ∆UInter with the
average pressure correction ∆P required for various CG models. The stars and crosses
indicate results for system-specific MS-CG potentials and for transferable xn potentials,
respectively. The various systems are indicated by the color scheme of Fig. 3.2.

MS-CG models demonstrated decreasing intermolecular cohesion, i.e., ∆UInter =
〈uInter〉AA − 〈UInter〉CG systematically decreased with coarsening. Simultaneously,
we observed a significant correlation between the missing cohesion and the required
pressure corrections for the MS-CG models. The following calculations further
investigate these effects for heptane-toluene mixtures.

Figure 3.8 analyzes the correlation between the missing cohesive energy ∆UInter

(per molecule) and the average pressure correction, ∆P, for the different CG
models. The system-specific MS-CG models for heptane-toluene mixtures, which
are indicated by stars, demonstrate very similar correlations to the MS-CG models
with varying resolution. The toluene MS-CG model demonstrates the greatest loss
in cohesion and requires the largest pressure correction. Conversely, the heptane
MS-CG model demonstrates the smallest loss in cohesion and requires the smallest
pressure correction. The MS-CG models for heptane-toluene mixtures interpolate
nearly linearly between the two pure liquids. In contrast, simulations with the
transferable xn force field, which are indicated by crosses, demonstrate very different
trends. In particular, the cohesive energy loss and the required pressure corrections
demonstrate much smaller variation in simulations with the xn force field. Moreover,
in striking contrast to the system-specific MS-CG models, the composition variation
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in the pressure correction is actually reversed for the xn models, i.e., the xn force
field requires the greatest pressure correction for pure heptane and the smallest
pressure correction for pure toluene.

In comparison to the CG models, the AA models for heptane-toluene mixtures
demonstrate very similar cohesive density. Consequently, we examined the CG
potentials and forces in order to interpret the correlations in Fig. 3.8 and, in
particular, the opposite trends observed for the MS-CG and xn force fields. For
each system, Γ, and each potential, UΓ, we defined the average pair potential, ŪΓ(r),
as a function of distance, r, by averaging over the relevant pair interactions ζ:

ŪΓ(r) =
∑
ζ∈Γ

NΓ;ζ(r)UΓ;ζ(r)/NΓ(r) (3.55)

where NΓ;ζ(r) = NΓ;ζ gΓ;ζ(r) is the average number of ζ-type pairs separated by a
distance r in corresponding AA simulations and NΓ(r) = ∑

ζ∈Γ NΓ;ζ(r). We defined
the average pair force from a corresponding average over the CG pair forces.

Figures 3.9b and 3.9d present the average pair potentials and pair forces for
the xn models. Since the xn models employ the same interaction potentials for
each mixture, the variation in Figs. 3.9b and 3.9d reflects the differences in site
composition and pair structure among the mixtures. Thus, in comparison to the
average MS-CG potentials, the average xn potentials vary relatively little between
different mixtures, which accounts for the relatively narrow variation in cohesion
among the xn models in Fig. 3.8. The supplementary material172 demonstrates that
the most attractive xn potential corresponds to the CT-CT interaction between
terminal heptane sites, while the least attractive xn potential corresponds to the
CB-CB interaction between ring toluene sites. Consequently, Fig. 3.9b demonstrates
that the average xn pair potentials become increasingly attractive with increasing
heptane content, which accounts for the trend in cohesive energy that is observed
in Fig. 3.8. Similarly, the supplementary material172 demonstrates that the CT
heptane site is the largest site in the xn force field, while the CB toluene site is
the smallest. Accordingly, Fig. 3.9d demonstrates that the average xn pair force
incorporates an increasingly large excluded volume with increasing heptane content.
This trend in the excluded volume appears to account for the increasingly large
pressure correction that is required for the xn models with increasing heptane
content in Fig. 3.8, which is opposite to the trend observed for the MS-CG models.
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Figure 3.9. Site-averaged pair potentials (top row) and pair forces (bottom row). The
left panels (a, c) correspond to system-specific MS-CG force fields, while the right panels
(b, d) correspond to the transferable xn force field. The various systems are indicated by
the color scheme of Fig. 3.2.

Figures 3.9a and 3.9c present the corresponding average pair potentials and pair
forces for the system-specific MS-CG force fields. As expected from Fig. 3.2, the
average MS-CG potentials become increasingly attractive with increasing heptane
content. Additionally, the average MS-CG potentials demonstrate much greater
variation than the average xn pair potentials. These two trends account for the
relatively large gain in cohesion observed in Fig. 3.8 for the MS-CG models with
increasing heptane content. In comparison to the average xn forces, the average
MS-CG forces demonstrate relatively little variation in their excluded volume.
However, the average MS-CG pair forces demonstrate increasingly large repulsion
at r ≈ 0.7 nm with increasing toluene content, which generates increasingly large
“desolvation barriers” and accounts for the significant differences in the minima of
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Figure 3.10. Example structure-less rdf (dashed red) used as a reference for quantifying
the structure in the CT-CT rdf (black) that is obtained from AA simulations of pure
heptane.

the various MS-CG potentials. In turn, this likely accounts for the increasingly
large pressure corrections that are observed for the MS-CG models in Fig. 3.8.

Figure 3.9 relates trends in the calculated potentials to the missing cohesion
and required pressure corrections for the various CG models. However, these
calculations do not provide a microscopic interpretation for the variation in the
CG potentials. We hypothesized that the variation in the calculated potentials
reflects variation in the “structure” observed in the AA rdfs. In particular, simple
Boltzmann inversion suggests that AA rdfs with particularly sharp peaks will result
in CG potentials with correspondingly deep potentials.32 In order to assess this
hypothesis, we defined a “structureless” reference rdf for each mapped AA rdf. As
illustrated in Fig. 3.10, this reference rdf is a step function with the same integral as
the corresponding mapped AA rdf. We then quantify the “structure” in a particular
mapped rdf by computing its MAE with respect to the corresponding structureless
reference rdf.

Figure 3.11 correlates this structural metric with the minima of the calculated
CG potentials. Panels a), b), and c) present results for heptane-heptane, toluene-
toluene, and heptane-toluene pair types, respectively. Symbols indicate different pair
types, while colors indicate system compositions. The xn structure is characterized
by the mean of the MAE for the 5 mixtures included in the extended ensemble. As
expected, for each pair type, the pair structure correlates with the well depth of the
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Figure 3.11. Scatter plot correlating the “structure” in AA site-site rdfs, as estimated
by the MAE relative to a corresponding structureless rdf, with the well depth of the
corresponding calculated system-specific MS-CG pair potential. Panels a, b, and c present
results for heptane:heptane, toluene:toluene, and heptane:toluene site pairs. The symbol
shapes indicate different pair types. The various systems are indicated by the color
scheme of Fig. 3.2. The black symbols indicate results for the transferable xn potentials.
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corresponding calculated CG potential. In particular, heptane rich systems generally
demonstrate greater structure and deeper potentials. Additionally, the CT-CT pair
corresponds to both the most structured rdfs and the deepest potential minima.
For each pair type, the xn rdfs demonstrate intermediate structure among the
various mixtures, while the xn potentials demonstrate corresponding intermediate
minima. Thus, while Fig. 3.9 correlates the observed trends in cohesion and pressure
corrections to trends in the calculated pair potentials, Fig. 3.11 relates these trends
to the structure of the mapped AA ensembles.

Finally, we employ the current models to further explore the impact of coarse-
graining for “simplifying” model properties. Our prior study investigated the
impact of coarsening upon R-simplicity, which considers the Pearson correlation (R)
between potential and virial fluctuations.151 In particular, R-simple liquids with
R > 0.9 reflect an approximate scale invariance in their potential energy surface
that results in strikingly simple dynamic and thermodynamic properties,124,132

which might prove useful for calibrating CG models and for predicting their trans-
ferability. However, while our prior study considered the constant NPT ensemble,
R-simple behavior is more appropriately related to correlations in the constant NVT
ensemble.177 Accordingly, in the following we compare potential-virial fluctations
in both ensembles.

Figure 3.12 presents scatter plots that correlate the intermolecular potential
(per molecule) with the Pearson potential-virial correlation. The top row compares
AA models with 1-, 2-, and 3-site MS-CG models for heptane and toluene. As
discussed in our prior study, coarsening leads to increasingly large potential-virial
correlations, although this correlation is somewhat diminished in the constant
NVT ensemble. The remaining rows consider the effects of composition upon the
R-simplicity of 3-site CG models. These high resolution CG models demonstrate
only weak potential-virial correlations. (Note the difference in the scale of the
x-axis.) The middle row demonstrates that, with increasing heptane content, the
transferable xn potentials generate increasing cohesion, while the potential-virial
correlations systematically decrease. In fact, this is opposite to the correlation
observed with varying resolution. The bottom row demonstrates no significant
trend in the system-specific MS-CG models. Thus, while coarsening generates
increasingly simple models as the interactions become increasingly repulsive, the
same correlation is not observed between different models at the same resolution.
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Figure 3.12. Scatter plot correlating the average cohesive energy density, 〈UInter〉
(per molecule), with the Pearson correlation coefficient R between the potential and
virial. The left and right columns correspond to calculations of this correlation in the
constant NPT and constant NVT ensembles, respectively. The top row present results for
OPLS-AA models of pure heptane and pure toluene, as well as for corresponding MS-CG
models at varying resolution. The bottom two rows present results for the different
heptane:toluene mixtures considered in this work, while employing the color scheme of
Fig. 3.2. The middle row presents results for the transferable xn force field, while the
bottom row presents results for the system-specific MS-CG force fields.

3.6 Discussion
The present work demonstrates the promise of bottom-up approaches for de-
veloping transferable CG potentials that accurately model both structural and
thermodynamic properties of liquid mixtures. We defined an extended ensemble of
5 heptane-toluene mixtures for parameterizing these potentials. We employed the
extended ensemble MS-CG variational principle to determine system-independent,
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i.e., transferable, interaction potentials that accurately reproduced the AA site-
site rdfs for these 5 mixtures. We employed a self-consistent pressure-matching
approach to determine system-specific pressure corrections that accurately repro-
duced the AA density, compressibility, and pressure equation of state for each of
these mixtures. More importantly, the transferable interaction potentials quite
accurately reproduced the AA site-site rdfs for an additional 4 heptane-toluene
mixtures that were not included in the parameterization. Furthermore, the ex-
tended ensemble approach predicted system-specific pressure corrections that very
accurately reproduced the pressure equations of state for the additional mixtures.
Thus, this bottom-up approach provides predictive accuracy and transferability for
both structural and thermodynamic properties of liquid heptane-toluene mixtures.

Intuitively, one expects that the extended ensemble approach will optimize
transferability at the cost of reduced accuracy for specific systems. Indeed, we pre-
viously demonstrated that AA site-site rdfs for methanol-neopentane mixtures were
more accurately modeled by the corresponding system-specific MS-CG potentials
than by extended ensemble potentials that were optimized for transferability across
a range of mixtures.39 Consequently, it is somewhat surprising that the transferable
extended ensemble potentials appear more accurate than system-specific MS-CG
potentials for reproducing the AA site-site rdfs of heptane-toluene mixtures. This
surprising accuracy may reflect the increased statistical sampling obtained by aver-
aging over configurations for multiple systems.175 More significantly, though, we
propose that, by averaging over system-specific features, the extended ensemble
approach may address a fundamental limitation of the MS-CG method.

In contrast to many other structure-based bottom-up approaches,26,28–30 the
MS-CG approach27,88 does not iteratively refine the CG potentials in order to
accurately reproduce AA rdfs. Instead, the MS-CG approach employs a generalized-
Yvon-Born-Green equation119 as a force balance relation for decomposing AA pair
potentials of mean force (or, more precisely, AA pair mean forces) into correlated
contributions from the various terms in the CG potential.117 However, the MS-CG
approach employs the many-body cross-correlations in the mapped AA ensemble
in order to estimate the cross-correlations that will arise in the simulated CG
ensemble. If the MS-CG model reasonably reproduces these cross-correlations, then
the MS-CG model will also reproduce the AA pair potentials of mean force and,
thus, the AA rdfs. In some cases, though, the simple molecular mechanics form of
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the approximate potential precludes the MS-CG model from reproducing the cross-
correlations that are observed in the mapped AA ensemble. For instance, molecular
mechanics potentials cannot reproduce the bond-angle correlations that arise when
mapping hexane from an AA representation to a 3-site CG representation.122,129

Consequently, 3-site MS-CG models provide a relatively poor description of the
hexane angle distribution.120 Similarly, by manually smoothing over complex many-
body cross-correlations for a disordered peptide, we determined MS-CG models that
more accurately reproduced the corresponding mapped AA structure ensemble.118

Accordingly, we propose that extended ensemble averages over multiple systems
may actually improve the accuracy of MS-CG models by smoothing over system-
specific structural correlations that cannot be accurately reproduced with simple
CG potentials. We speculate that this effect was not observed in our prior study
of methanol-neopentane mixtures39 because the system-specific MS-CG models
adequately reproduced the structural cross-correlations of these relatively simpler
molecules.

The present calculations also contribute additional insight into the thermody-
namic properties of CG models. In our previous study of pure heptane and pure
toluene, we demonstrated that MS-CG models systematically lose intermolecular
cohesion with decreasing resolution.151 Accordingly, increasingly coarse MS-CG
models require increasingly large pressure corrections in order to account for this
missing cohesion. The present study demonstrates even stronger correlations be-
tween the missing cohesion and the pressure corrections that are required for
system-specific MS-CG models of heptane-toluene mixtures. Moreover, the cohe-
sion in these MS-CG models correlates with the “structure” in the mapped AA
ensembles. This correlation between structure and cohesion provides a further ratio-
nalization for the observed correlations with varying resolution. One expects that
increasingly coarse representations will increasingly efface atomic structural details
from the mapped ensemble. These increasingly featureless mapped ensembles will
determine CG potentials with decreasing cohesion that, in turn, require increasingly
large pressure corrections. These correlations for approximate potentials are likely
practical manifestations of the more general result that coarsening systematically
transfers thermodynamic entropy and information from the configuration space
into the many-body PMF.81,82

However, the correlations between cohesion and pressure corrections can be
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weakened, or even reversed, if the same interaction potentials are applied for
modeling different systems. Indeed, CG models that employ the transferable
extended ensemble potentials demonstrate the opposite correlation between cohesion
and pressure corrections. In particular, the heptane terminal CT site is the largest
site, while the CT-CT interaction is the most attractive in the transferable force
field. Consequently, CG models that employ these potentials gain cohesion, but
also require larger pressure corrections with increasing heptane concentration.

Finally, the present work also builds upon several other results from our prior
studies of coarse-graining in the constant NPT ensemble. In particular, the Ap-
pendix demonstrates that the self-consistent pressure-matching method corresponds
to minimizing a relative entropy with respect to the volume dependence of the
approximate CG potential. Additionally, this work provides further evidence that
coarse-graining can “simplify” model properties, although three-site CG models
demonstrate only slightly greater simplicity than atomically detailed models.

3.7 Conclusion
In closing, we emphasize that this work demonstrates the promise of the extended
ensemble approach for developing highly efficient models that provide predictive
accuracy and transferability for describing both structural and thermodynamic
properties. By combining the MS-CG variational principle with the self-consistent
pressure-matching approach, we accurately reproduced the AA site-site rdfs, density
fluctuations, and pressure equations of state for five distinct heptane-toluene
mixtures within the parameterization extended ensemble. More importantly, the
resulting potentials provided similar accuracy for additional mixtures that were
not treated in the parameterization. Quite surprisingly, the extended ensemble
potentials appear both more transferable and also more accurate than MS-CG
potentials that were optimized for individual systems. We speculate that this
surprising accuracy results from the extended ensemble averaging, which effaces
system-specific many-body correlations that cannot be accurately modeled by
the CG potential and, thus, generate inaccuracies in the system-specific MS-
CG potentials. Furthermore, we also demonstrated that the required pressure
corrections correlate with the intermolecular cohesion of system-specific potentials.
This intermolecular cohesion, in turn, correlates with the relative structure within
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the corresponding mapped AA ensemble. However, these correlations do not persist
when the same transferable interaction potentials are applied to model multiple
systems. Finally, the appendix connects the present approach to approaches based
upon minimizing a relative entropy.

This work suggests several directions for future study. For instance, the extended
ensemble approach may improve the transferability of CG potentials for treating
multiple thermodynamic states, e.g., multiple temperatures and pressures. In
particular, preliminary studies suggest that this approach may enable transferable
CG models for ionomers at various temperatures and various chemical composi-
tions.178 Additionally, the present approach may also prove useful for addressing
other thermodynamic properties, e.g., the surface tension or chemical potential.
Finally, we anticipate that the present CG models may prove useful for investigating
self-assembly in hydrocarbon solvents.
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Appendix: Connection to Relative Entropy
In this work and in our prior study,151 we have employed a variational pressure-
matching approach44 to parameterize CG models that accurately model AA density
fluctuations at constant pressure. The pressure-matching variational principle
essentially parallels the MS-CG force-matching variational principle.25,27,88 Both
variational calculations approximate a potential of mean force for a mechanical
variable via a least squares fit to fluctuating atomic forces acting on the variable.
In the case of force-matching, the mechanical variables are the site coordinates and
the fluctuating forces are simply the net atomic forces on the sites. In the case of
pressure-matching, the mechanical variable is the volume and the fluctuating force
is the instantaneous internal pressure. Significantly, given a simple form for the CG
potential, the force- and pressure-matching variational principles do not guarantee
that the CG model will reproduce particular observables of the AA model.

In this appendix, we briefly consider the pressure-matching variational principle
in the context of a relative entropy,29 which corresponds to the information theoretic
Kullback-Leibler divergence.179 Previous studies have demonstrated that the relative
entropy is minimized with respect to a particular interaction potential, Uζ , when
the CG model reproduces the AA distribution function for the conjugate density
variable.29,81 For instance, the relative entropy is minimized with respect to a pair
potential when the CG model reproduces the corresponding AA pair distribution,
i.e., the radial distribution function. Below we develop three results that extend
these considerations for the isothermal-isobaric ensemble: (1) First, we demonstrate
that the many-body PMF minimizes the relevant relative entropy for the isothermal-
isobaric ensemble; (2) Secondly, we demonstrate that this relative entropy is
minimized with respect to a volume-dependent CG potential, UV (V ), when the
CG model matches the equilibrium volume distribution sampled by the AA model.
(3) Finally, we demonstrate that this is equivalent to the self-consistent pressure-
matching criteria. Consequently, the self-consistent pressure-matching method
provides a numerical scheme for minimizing the relative entropy with respect to UV .
We expect that similar analysis follows for other ensembles in which mechanical
variables fluctuate subject to constant conjugate intensive parameters.

The extended ensemble analysis appears to follow similarly for both force-
matching and relative entropy-based variational principles. In both cases the
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relevant correlation functions are generalized to include appropriate averages over
γ. Thus, we conduct our analysis for a single system.

1. For an expanded state space with fluctuations in both configuration and
volume, we define the relative entropy:

Srel =
∫

dV
∫
V N

dR pRV (R, V ) ln
[
pRV (R, V )

/
PRV (R, V )

]
(3.56)

where pRV (R, V ) is the probability for the AA model to sample a configuration
r that maps to R at the given volume V . Similarly, PRV (R, V ) is the
probability for the CG model to sample the configuration R and the volume V .
By the Gibbs inequality,32,180 Srel ≥ 0 and only vanishes when pRV (R, V ) =
PRV (R, V ) for all R and V , i.e., when the CG model is consistent with the
AA model in the isothermal-isobaric ensemble. Thus, minimizing the relative
entropy provides a second variational principle for optimizing CG models
at constant T and P0. In particular, the relative entropy is minimized at
constant temperature T and external pressure P0, when the approximate
CG potential U equals the many-body PMF W to within a constant that is
independent of both R and V .

2. We next assume the approximate potential adopts the form U(R, V ) =
UR(R) + UV (V ), where UR depends upon V only via periodic boundary
conditions. Then

δSrel

δUV (V ) = β
[
pv(V )− PV (V |U)

]
(3.57)

where pv is the equilibrium volume distribution for the AA model at the given
T and P0. Similarly, PV (V |U) is the corresponding volume distribution for
the CG model with a potential U . Thus, Srel is minimized with respect to
UV when the CG model reproduces the AA volume distribution:

PV (V |U) = pv(V ). (3.58)

3. We define

exp [−βa(V )] ≡ v−n0

∫
V n

dr exp [−βu(r, V )] (3.59)

exp [−βA(V |U)] ≡ v−N0

∫
V N

dR exp [−βU(R, V )] , (3.60)
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as the volume-dependent contributions to the Helmholtz potentials for the AA
and CG models. If we consider V as a mechanical variable, then a(V ) + P0V

and A(V |U) + P0V act as corresponding potentials of mean force for V in
the AA and CG models, respectively, i.e.,

pv(V ) ∝ exp [−β (a(V ) + P0V )] (3.61)

PV (V |U) ∝ exp [−β (A(V |U) + P0V )] (3.62)

Thus, Eq. (3.58) is equivalent to the criterion that, at the given T and P0,
the CG model should reproduce the volume dependence of the AA Helmholtz
potential:

A(V |U) = a(V ) + const, (3.63)

where const is independent of V . This is equivalent to the self-consistent
criterion for iterative pressure-matching:

PCG(V |U) = PAA(V ), (3.64)

i.e., iterative pressure-matching provides a numerical procedure for minimizing
Srel with respect to UV . (Note that the original pressure-algorithm does not
lead to this criterion, since χ2

2 is evaluated over the mapped AA ensemble
and not the simulated CG ensemble.)
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Chapter 4 |
van der Waals perspective on
coarse-graining: Progress towards
solving representability and trans-
ferability problems

N. J. H. Dunn, T. F. Foley, W. G. Noid, Acc. Chem. Res. 2016, 49 (12), 2832-2840

4.1 Abstract
Low-resolution coarse-grained (CG) models provide the necessary efficiency for
simulating phenomena that are inaccessible to more detailed models. However, in
order to realize their considerable promise, CG models must accurately describe the
relevant physical forces and provide useful predictions. By formally integrating out
the unnecessary details from an all-atom (AA) model, “bottom-up” approaches can,
at least in principle, quantitatively reproduce the structural and thermodynamic
properties of the AA model that are observable at the CG resolution. In practice,
though, bottom-up approaches only approximate this “exact coarse-graining” proce-
dure. The resulting models typically reproduce the intermolecular structure of AA
models at a single thermodynamic state point, but often describe other state points
less accurately and, moreover, tend to provide a poor description of thermodynamic
properties. These two limitations have been coined the “transferability” and “rep-
resentability” problems, respectively. Perhaps, the simplest and most commonly
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discussed manifestation of the representability problem regards the tendency of
structure-based CG models to dramatically over-estimate the pressure. Further-
more, when these models are adjusted to reproduce the pressure, they provide a
poor description of the compressibility. More generally, it is sometimes suggested
that CG models are fundamentally incapable of reproducing both structural and
thermodynamic properties. After all, there is no such thing as a “free lunch” - any
significant gain in computational efficiency should come at the cost of significant
model limitations.

At least in the case of structural and thermodynamic properties, though, we
optimistically propose that this may be a false dichotomy. Accordingly, we have
recently re-examined the “exact coarse-graining” procedure and investigated the
intrinsic consequences of representing an AA model in reduced resolution. These
studies clarify the origin and inter-relationship of representability and transferability
problems. Both arise as consequences of transferring thermodynamic information
from the high resolution configuration space and encoding this information into the
many-body potential of mean force (PMF), i.e., the potential that emerges from an
exact coarse-graining procedure. At least in principle, both representability and
transferability problems can be resolved by properly addressing this thermodynamic
information. In particular, we have demonstrated that “pressure-matching” provides
a practical and rigorous means for addressing the density-dependence of the PMF.
The resulting bottom-up models accurately reproduce the structure, equilibrium
density, compressibility, and pressure equation of state for AA models of molecular
liquids. Additionally, we have extended this approach to develop transferable
potentials that provide similar accuracy for heptane-toluene mixtures. Moreover,
these potentials provide predictive accuracy for modeling concentrations that were
not considered in their parameterization. More generally, this work suggests a
“van der Waals” perspective on coarse-graining, in which conventional structure-
based methods accurately describe the configuration-dependence of the PMF, while
independent variational principles infer the thermodynamic information that is
necessary to resolve representability and transferability problems.

88



4.2 Introduction
Low resolution coarse-grained (CG) models play an important and rapidly growing
role in science.8,74 By eliminating unnecessary details, CG models provide the
necessary efficiency for simulating length- and time-scales that remain inaccessible
to more detailed models.7 CG models also empower more systematic investigations
of the relevant experimental conditions, while simultaneously providing superior
statistical precision in simulated quantities. Furthermore, CG models more effec-
tively harness the intellectual horsepower of researchers by focusing attention on
the essential details of a particular phenomenon, which atomically detailed models
can easily obscure.15,16

Historically, CG models have been extensively employed for investigating the
emergent consequences of basic physical principles.13 More recently, though, many
coarse-graining approaches have been developed for modeling specific systems.75 By
formally integrating out unnecessary atomic details, “bottom-up” approaches can,
at least in principle, quantitatively reproduce the structural and thermodynamic
properties of a high resolution model that can be observed at the resolution of the
CG model, although thermodynamic properties require careful consideration.7,13 Of
course, this “exact coarse-graining” procedure cannot be accomplished in practice.
Rather, bottom-up models are often parameterized to accurately describe the
structure of a high resolution model at a single thermodynamic state point.32

Unfortunately, the resulting models often prove accurate over a relatively limited
range of thermodynamic conditions and, moreover, tend to provide a surprisingly
poor description of thermodynamic properties.75 These difficulties are termed
“transferability” and “representability” problems, respectively.

Transferability problems are not surprising. CG potentials are constructed to in-
corporate the effects of atoms that have been eliminated from the CG model. These
effects will certainly vary with thermodynamic state point. Thus, one intuitively
expects that CG potentials should depend upon thermodynamic conditions. Indeed,
many previous studies have documented the sensitivity of bottom-up potentials
to variations in state point.35,37,38,40–43,152,153,181,182 Consequently, one expects
that any approximate potential will accurately describe these effects only over a
relatively limited range of thermodynamic conditions.

Representability problems are more subtle. While recent studies introduced the
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term to describe thermodynamic inconsistencies in CG models,33,91 representability
problems are related to inconsistencies observed much earlier for effective potentials
employed in liquid state theories.183,184 Perhaps the simplest and most commonly
discussed representability problem regards the pressure-volume behavior of structure-
based CG models. Indeed, many studies have observed that structure-based CG
models generate unrealistically high pressures.79 For instance, under ambient
conditions, structure-based CG models overestimate the internal pressure of liquid
water by almost four orders of magnitude.33,80 Moreover, when these models are
modified to reproduce the pressure, they then provide a poor description of the
isothermal compressibility.34 Similarly, previous studies have also demonstrated
that CG models poorly describe the energetic and entropic contributions to free
energy differences.185–187 It has been suggested that representability problems reflect
fundamental limitations of state-point-dependent effective potentials and that, more
simply, CG models cannot accurately describe multiple conflicting observables, such
as the pressure and the compressibility.33,92 Alternatively, it has been proposed
that representability problems may be resolved by considering the effects of the
missing atomic degrees of freedom upon the CG representation of thermodynamic
observables.75,188 In particular, Guenza and coworkers have demonstrated the
importance of these effects for low resolution polymer models.83,84,86

This account summarizes our recent studies of representability and transferability
challenges.82,151,189 We have adopted the optimistic hypothesis that both challenges
can be resolved by carefully considering exact coarse-graining and the intrinsic con-
sequences of representing a system in reduced detail. Our analysis clarifies both the
origin and inter-relation of representability and transferability problems. Moreover,
our work demonstrates an extended ensemble pressure-matching approach39,44 for
determining transferable potentials that accurately model the structure, pressure,
and compressibility of molecular liquids in practice.

4.3 Exact coarse-graining

4.3.1 Atomic model

We first consider the canonical ensemble for an all-atom (AA) model that represents
a system with n atoms labelled i = 1, . . . , n in a volume, V , at a temperature,
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T .190 We indicate the atomic configuration, r = (r1, . . . , rn). The atoms interact
according to a conservative potential, u(r;V ), that generates a force, fi(r;V ), on
each atom i, as well as a force on the volume, i.e., the fluctuating internal pressure:

pint(r;V, T ) = nkBT/V − (∂u(r;V )/∂V )r̂ . (4.1)

The canonical ensemble average of pint(r;V, T ) equals the thermodynamic internal
pressure of the AA model, pint(V, T ).

The first term in Eq. (4.1) describes the kinetic, i.e., ideal, contribution to
the pressure. The second term defines the instantaneous excess (xs) pressure,
pxs(r;V ) = − (∂u(r;V )/∂V )r̂, while r̂ =

(
V −1/3r1, . . . , V

−1/3rn
)

denotes the
“scaled configuration.” This contribution is often calculated from the virial ex-
pression:

pxs(r;V ) = 1
3V

∑
i

fi(r;V ) · ri = 1
3V

∑
(i,j)

f2;ij(rij)rij, (4.2)

where the second sum is performed over all intra- and inter-molecular pairs (i, j)
that are separated by a distance rij and interact with a force of magnitude f2;ij(rij).
Both expressions for pxs(r;V ) assume that the atomic potential does not explicitly
depend upon the volume, i.e., (∂u/∂V )r = 0. The second expression also assumes
that the nonbonded potential is pair-additive. While angle-dependent bonded
potentials do not contribute to the virial, more complex non-bonded interactions
may introduce additional contributions.151,190

Finally, we consider the total differential describing variations in the atomic
potential, i.e., work:

du(r;V ) = −
∑
i

fi(r;V ) · (dri)V − pxs(r;V )dV, (4.3)

where (dri)V = V 1/3dr̂i. The first term in Eq. (4.3) quantifies changes in potential
energy due to configuration changes at constant volume. The second term quantifies
changes in potential energy due to isotropic compression or expansion.

4.3.2 Coarse-grained model

We next consider the canonical ensemble (at the same V and T ) for a CG model
that describes the same system with N “sites” that are labelled I = 1, . . . , N . We
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indicate the CG configuration, R = (R1, . . . ,RN). The sites interact according to
a conservative potential, U(R, V ), that generates a force, FI(R, V ), on each site I,
as well as a fluctuating internal pressure:

Pint(R, V ;T ;U) = NkBT/V − (∂U(R, V )/∂V )R̂ . (4.4)

The canonical ensemble average of Pint(R, V ;T ;U) equals the thermodynamic
internal pressure of the CG model, Pint(V, T ;U).

As above, the first term in Eq. (4.4) describes the ideal contribution for the
N ≤ n remaining CG particles. The second term defines the instantaneous
excess pressure of the CG model, Pxs(R, V ) = − (∂U(R, V )/∂V )R̂ , while R̂ =
(V −1/3R1, . . . , V

−1/3RN) denotes the scaled CG configuration. Our objective is
to parameterize U for accurately describing the structural and thermodynamic
properties of the atomic model.

4.3.3 The many-body Potential of Mean Force

In order to relate the AA and CG models, we introduce a mapping, M, that
determines the CG configuration as a function of the AA configuration: R = M(r).25

For simplicity, we assume the mapping associates the CG sites with the mass centers
of disjoint atomic groups. The central quantity in our analysis is the many-body
potential of mean force (PMF), which is the effective potential that results from
“exact coarse-graining” in the canonical ensemble:

exp [−W (R;V, T )/kBT ] = V −(n−N)
∫
V
dr exp[−u(r;V )/kBT ] δ(R −M(r)), (4.5)

where the integral is performed over the volume-dependent configuration space.20,22,77

The PMF is the appropriate potential for ensuring that the CG model samples
configurations according to the probability implied by the atomistic model and
the mapping at the given V and T .25 Moreover, the PMF encodes all information
and thermodynamic properties that are observable at the resolution of the CG
model. In particular, the PMF ensures that the CG model reproduces the excess
free energy of the AA model:

1
V N

∫
V
dR exp[−W (R;V, T )/kBT ] = 1

V n

∫
V
dr exp[−u(r;V )/kBT ]. (4.6)
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4.3.4 Energetic and entropic contributions

The PMF is not a conventional potential, but rather a free energy that depends
upon both the configuration and also the thermodynamic state.13 In collaboration
with the Shell group,82 we have examined the thermodynamic character of the PMF
and, in particular, derived its energetic, UW , and entropic, SW , components:

W (R;V, T ) = UW (R;V, T )− TSW (R;V, T ) (4.7)

UW (R;V, T ) ≡ 〈u(r;V )〉R;V,T (4.8)

SW (R;V, T ) ≡
〈
−kB ln

[
Ω1pr|R(r|R;V, T )

]〉
R;V,T

, (4.9)

where Ω1 = V n−N is the volume element of atomic configurations r that map to
R, pr|R(r|R;V, T ) is the conditioned probability density for AA configurations r
satisfying M(r) = R, and the subscripted angular brackets indicate corresponding
conditioned canonical averages.

The energetic contribution to the PMF, UW (R;V, T ), is simply the conditioned
average of the atomic potential for the atomic configurations that map to R.
This energetic contribution generates forces that bias the CG model to sample
low-energy configurations. The entropic contribution, SW (R;V, T ), quantifies the
excess entropy that is stored in the Boltzmann distribution of atomic configurations
that map to R. Thus, SW quantifies the information about the atomic distribution
that is “lost” when viewing this distribution at the CG resolution. By the Gibbs
inequality,191 −TSW ≥ 0, and only vanishes when pr|R = Ω1

−1, i.e., when all atomic
configurations that map to R have equal Boltzmann weight. Consequently, −TSW
generates forces that bias the CG model to sample high-entropy configurations, i.e.,
CG configurations for which the underlying atomic Boltzmann distribution, pr|R, is
more uniform.

This simple decomposition is fundamentally important for representing thermo-
dynamic properties with CG models. Since W is a free energy and incorporates
an entropic component, W cannot be directly employed to estimate atomic ener-
gies. Similarly, the configurational entropy of the atomic model cannot be directly
estimated from the configuration distribution sampled by the CG model.81 Never-
theless, at least in principle, UW and SW can be employed to quantify the excess
energy and excess entropy, respectively, of the atomic model, albeit at the resolution
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of the CG model.
In order to illustrate these considerations, we analytically derived the exact

PMF for the Gaussian Network model (GNM) as a function of the CG resolution.82

The GNM describes protein fluctuations away from an equilibrium structure with
a system of linear springs between nearby residues.192 For each of 7 proteins, we
constructed a high resolution GNM that explicitly represented 120 α carbons of
the protein. For each protein, we determined W for a series of N -site CG models
in which we mapped each consecutive 120/N α carbons to their mass center.

Figure 4.1 illustrates the impact of resolution uponW , UW , SW , and sR, i.e., the
excess entropy present in the configuration space. In the absence of coarse-graining,
i.e., N = 120, the PMF is simply the atomic potential, W = u, SW = 0, and the
excess entropy is stored in the atomic configurational distribution. Because UW is
simply a conditioned average of the atomic potential, its average magnitude does
not vary with coarsening, as indicated by the dashed horizontal line. However,
with successive coarsening, configurational entropy and, equivalently, information is
eliminated from the atomistic configuration space. The excess entropy is transferred
into SW , which results in a systematic increase inW with coarsening. In the extreme
limit of coarse-graining, N → 0, sR → 0, and the PMF becomes the configuration-
independent, excess Helmholtz potential of the atomic model. In this limit, UW
and SW become the thermodynamic excess energy and excess entropy, respectively.

4.3.5 Variation in the PMF

Further insight into representability and transferability issues can be gleaned from
the total differential of the PMF:

dW (R;V, T ) = −
∑
I

f I(R;V, T ) · (dRI)V − pxs(R;V, T ) dV − SW (R;V, T ) dT

(4.10)

f I(R;V, T ) ≡ 〈fI(r;V )〉R;V,T (4.11)

pxs(R;V, T ) ≡ 〈pxs(r;V )〉R;V,T (4.12)

where fI(r;V ) is the force on site I and (dRI)V = V 1/3dR̂I indicates changes in
the CG configuration at constant volume. While Eq. (4.3) describes variations in
an energy, Eq. (4.10) describes variations in a free energy, including both energetic
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Figure 4.1. Analysis of the PMF (top) and apparent configurational entropy (bottom)
as a function of the number, N , of sites considered. The top panel indicates the energetic
(horizontal dotted line) and entropic (vertical dotted line) contributions to the average of
the dimensionless PMF (solid line), 〈βW 〉, for each protein domain. The bottom panel
presents the absolute magnitude of the apparent configurational entropy for each protein
domain when viewed at the given resolution. Both panels employ a log x - log y scale.

and entropic contributions.
A few points should be noted:

1. Most importantly, Eq. (4.10) equates the configuration-, volume-, and temp-
erature-derivatives of the PMF to conditioned averages of the excess forces,
excess pressure, and excess entropy of the atomic model. Consequently, the
state-point dependence of the PMF, e.g., with respect to temperature or
volume change, is determined by the contributions of the missing atomic
degrees of freedom to the conjugate excess thermodynamic quantity, i.e., the
excess entropy or excess pressure, respectively. This is the origin of both
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transferability and representability problems.

2. The third entropic contribution to Eq. (4.10) is unique to the CG model.
Since SW ≤ 0, increasing temperature will cause the PMF to increase at each
R. In particular, the PMF will vary more rapidly with temperature for CG
configurations that correspond to highly structured atomic distributions.

3. Finally, these three contributions are all inter-related via Maxwell-type rela-
tions for mixed second derivatives of the PMF. For instance:

(
∂f I(R;V, T )

/
∂T
)

R,V
= (∂SW (R;V, T )/ ∂RI)T,V , (4.13)

which suggests that the temperature-transferability of CG force fields can be
maximized by minimizing the configurational dependence of SW .

4.3.6 Pressure and the constant NPT ensemble

According to Eq. (4.6), W accounts for the excess, but not the ideal, contributions
to the Helmholtz potential from the atoms that have been eliminated from the CG
model. Consequently, W does not reproduce the internal pressure and does not
provide appropriate Boltzmann weight for sampling different volumes at constant
external pressure, Pext. Accordingly, the PMF must be slightly modified in order
to model the atomic pressure and the constant NPT ensemble:

WP (R, V ;T ) = W (R;V, T )− (n−N)kBT ln (V/V0) , (4.14)

where V0 is an arbitrary reference volume. The second term in Eq. (4.14) accounts
for the ideal contributions to the free energy from the missing atomic degrees of
freedom. Although this term does not impact the configuration-distribution at a
given V , it ensures that WP provides the correct Boltzmann weight for each CG
microstate, (R, V ):

exp [−β (WP (R, V ;T ) + PextV )] =

V
−(n−N)

0

∫
V
dr exp[−β (u(r;V ) + PextV )] δ(R −M(r)), (4.15)
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where β = 1/kBT .44,151 Because

− (∂WP (R, V ;T )/∂V )R̂;T = − (∂W (R;V, T )/∂V )R̂,T + (n−N)kBT/V, (4.16)

according to Eq. (4.4), WP is the appropriate potential for reproducing the average
pressure of the atomic model in each CG microstate,

Pint(R, V ;T ;WP ) = 〈pint(r;V, T )〉R;V,T , (4.17)

and each thermodynamic equilibrium state:

Pint(V, T ;WP ) = pint(V, T ). (4.18)

4.4 Approximate coarse-graining
The preceding analysis not only clarifies their common origin, but also suggests
practical computational methods for resolving representability and transferability
challenges.

4.4.1 Pressure-matching

In practice, CG models commonly employ a relatively simple effective potential
that is independent of both temperature and volume, i.e., U = UR(R).32,75 The
excess pressure of the CG model is then

P 0
xs(R;V ) ≡ − (∂UR(R)/∂V )R̂ (4.19)

= 1
3V

∑
I

FI(R) ·RI = 1
3V

∑
(I,J)

F2;IJ(RIJ)RIJ , (4.20)

where the last expression sums over each pair (I, J), assuming that each nonbonded
interaction is modeled with a pair force function F2;IJ as a function of the pair
distance, RIJ .

Leading bottom-up methods parameterize UR to reproduce atomic structural dis-
tributions, such as radial distribution functions (RDFs), at a single thermodynamic
state point.32 While this structure-based approach addresses the configuration-
dependence of the PMF, it provides little or no insight into the volume- and
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temperature-dependence of the PMF. Consequently, there is no reason to expect
that the resulting model will accurately describe thermodynamic properties or
provide an accurate description at other state points.

In particular, in order for the CG model to accurately describe the pressure of
the atomic model, it is necessary that P 0

xs(R;V ), given by Eq. (4.20), accurately
approximates − (∂WP (R, V ;T )/∂V )R̂;T . However, while Eq. (4.20) assumes that
the CG interactions are pair-additive and do not explicitly depend upon the volume,
WP describes many-body interactions that explicitly depend upon the volume.
In fact, one expects that contributions to WP that vary only weakly with (or
are independent of) CG configuration provide cohesion that significantly reduces
the pressure.191,193 These contributions are effectively invisible to structure-based
methods that focus on reproducing RDFs, which are primarily determined by
short-ranged, rapidly varying repulsive potentials.78 Thus, it is unsurprising that
bottom-up CG models tend to dramatically over-estimate the internal pressure.34,79

Following Das and Andersen (DA),44 we have adopted a more general form for
the approximate potential in order to model the volume-dependence of the PMF151

U(R, V ) = UR(R) + UV (V ). (4.21)

The interaction potential, UR, is optimized to approximate the configuration de-
pendence of the PMF via standard structure-based methods.32 Since UR does not
explicitly depend upon V and is (usually) pair-additive, it contributes P 0

xs to the
pressure according to Eq. (4.20). Conversely, UV does not impact the equilibrium
configuration distribution of the CG model, but directly contributes to the pressure:

Pxs(R, V ) = P 0
xs(R;V ) + FV (V ), (4.22)

where FV = −dUV /dV is a “pressure correction.” Similarly, because
(
∂Pxs(R, V )

∂V

)
R̂

=
(
∂P 0

xs(R;V )
∂V

)
R̂
− d2UV (V )

dV 2 , (4.23)

the second derivative of UV directly contributes to the (inverse) compressibility.
Consequently, UV can be constructed to accurately model the pressure, the com-
pressibility, and more generally the pressure equation of state for the atomic model.
Note that employing a potential that “actively” varies with the density can intro-
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duce modifications to the chemical potential, which must be considered to reconcile
the virial and compressibility routes for calculating the pressure.93

Given a fixed interaction potential, UR, DA proposed optimizing UV by mini-
mizing a “pressure-matching” functional:

χ2
2[U ] =

〈
|pint(r;V, T )− Pint(M(r), V ;T ;U)|2

〉
PT
, (4.24)

in which the average is evaluated over the constant NPT ensemble for the atomic
model. Subsequently, we developed a self-consistent pressure-matching approach
that optimizes UV to quantitatively reproduce the atomic pressure equation of
state.151 This iterative pressure-matching approach corresponds to variationally
minimizing a relative entropy29 with respect to UV :189

Srel[U ] =
∫

dV
∫
V
dR pRV (R, V ) ln [pRV (R, V )/PRV (R, V ;U)] , (4.25)

where pRV (R, V ) and PRV (R, V ;U) are equilibrium distributions for the atomic
and CG models, respectively, at constant Pext and T . It should be noted that WP

minimizes both χ2
2 and Srel. However, given the approximate potential in Eq. (4.21),

minimizing Srel ensures that the CG model reproduces the atomic pressure equation
of state, while minimizing χ2

2 does not ensure such consistency.

4.4.2 Numerical results

Recently, we tested the pressure-matching approach for molecular liquids.151 Fig-
ures 4.2 and 4.3 compare the density fluctuations, pressure equations of state,
and pressure-volume fluctuations obtained from constant NPT simulations of the
OPLS-AA model for heptane104 and from simulations of several 3-site CG models.
The black points in Fig. 4.3b present a scatter plot of the volume and instantaneous
pressure sampled by the OPLS-AA model. The corresponding black curves in
Figs. 4.2 and 4.3a present the simulated volume fluctuations and pressure equation
of state, respectively.

Given these atomic simulations, we employed the multiscale coarse-graining
(MS-CG) variational principle25,27,88 to determine an interaction potential, UR, for
3-site CG models. This MS-CG potential quite accurately described the structure
of liquid heptane, but dramatically overestimated the pressure of the OPLS-AA
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Figure 4.2. Simulated volume distributions for various heptane models. The solid black
curve presents the simulated distribution for the OPLS-AA model. The dashed-dotted
blue, solid green, dashed red, and dotted purple curves indicate simulated distributions
for the MS-CG, DA, DN, and SDK 3-site models, respectively. The dashed orange curve
indicates the normal distribution that is constructed from the experimentally known
density and compressibility of heptane.

model. The cyan points in Fig. 4.3b present a scatter plot of the instantaneous
pressure that is generated by applying the MS-CG interaction potential to the
configurations sampled by the OPLS-AA model, i.e., NkBT/V + P 0

xs(M(r);V ).
Consequently, constant NPT simulations with the MS-CG interaction potential
(without including a pressure correction) overestimated the volume of the OPLS-AA
model by more than 10%, as indicated by the blue curve in Fig. 4.2.

Given this MS-CG interaction potential, we then employed the DA pressure-
matching variational principle44 to determine a volume-dependent potential, UV .
As indicated by the green curves in Figs. 4.2 and 4.3, the resulting DA model
much more accurately described the OPLS-AA pressure-volume behavior. Finally,
we iteratively refined UV via self-consistent pressure-matching. The red curves
in Figs. 4.2 and 4.3 demonstrate that the resulting DN model reproduced the
equilibrium density, pressure, and compressibility of the OPLS-AA model with
nearly quantitative accuracy.

Figures 4.2 and 4.3 also provide instructive comparisons with experiment and
with a top-down model. The orange curves present results inferred from experi-
mental measurements of the equilibrium density and compressibility of heptane.107

The purple curves present results for a top-down model, which Shinoda, Devane,
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Figure 4.3. Comparison of the pressure-volume behavior for the AA heptane model
and for different 3-site CG heptane models. The black, green, red, and purple curves
correspond to the models of Fig. 3. Panel a) presents the equation of state for each model,
which is estimated from the mean pressure at each volume in the simulated constant
NPT ensemble. The error bars indicate the standard error in the simulated means. The
orange curve indicates the equation of state that is determined from the experimentally
known density and compressibility of heptane. Panel b) presents a scatter plot of the
simulated pressure and volume. The cyan points correspond to the pressure, P 0

CG, that
is determined by applying the MS-CG potential to the mapped ensemble.

and Klein (SDK) parameterized to reproduce the bulk density and liquid-vapor
surface tension, but not the compressibility, of heptane.113 Because it accurately
describes the volume-dependence of the PMF, the bottom-up DN model repro-
duces experimental measurements of the equilibrium density and compressibility
with comparable, if not better, accuracy than the top-down SDK model. Thus,
Figs. 4.2 and 4.3 demonstrate the promise of bottom-up CG methods for accurately
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describing both structural and thermodynamic properties.
We have performed self-consistent pressure-matching for 1-, 2-, and 3-site CG

heptane models, for 1- and 3-site toluene models, and for 3-site models of heptane-
toluene mixtures. In each case, we reproduced the atomic density, compressibility,
and pressure equation of state with nearly quantitative accuracy. Interestingly, the
optimized pressure correction always dramatically reduced the internal pressure
of the CG model, while the ideal kinetic contribution from the “missing atoms”
corresponded to a much smaller increase in pressure. As illustrated in Fig. 4.4a,
increasingly large pressure corrections are required with increased coarsening, as the
MS-CG interaction potentials systematically lose cohesion, due to the increasingly
entropic character of the PMF,82 as reflected by reduced structure in the site-site
RDFs.189 Figure 4.4b demonstrates the same correlation between cohesion and
pressure correction among MS-CG models for heptane-toluene mixtures of varying
composition. Thus, the pressure correction appears to compensate for the cohesion
that is lost in structure-based potentials, as suggested by the classic van der Waals
picture.191,193

4.4.3 Transferability for mixtures

The state-point dependence of the PMF limits the transferability of approximate
CG potentials. We previously proposed an extended ensemble approach for de-
termining transferable potentials that optimally approximate the PMF across a
range of thermodynamic conditions.39 We have recently combined the extended
ensemble and pressure matching approaches to develop predictive CG models for
accurately modeling the structure and pressure-volume behavior of heptane-toluene
mixtures.189

We first employed a global force-matching variational principle to determine
a single set of system-independent, i.e., transferable, interaction potentials that
accurately approximate the configuration-dependence of the PMF for a range of
mixtures. Given this set of transferable interaction potentials, we then performed
self-consistent pressure-matching to determine an optimal pressure correction for
each mixture. Importantly, this pressure correction can be accurately predicted as
a function of the mixture composition. Figure 4.5 demonstrates that the resulting
CG models accurately reproduced the pressure-volume behavior not only for the
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Figure 4.4. Scatter plot correlating the missing cohesive energy density, 〈∆UInter〉,
with the average pressure correction, ∆P, required for various models. Panel a presents
results for AA (black), as well as 3-site (blue), 2-site (green), and 1-site (red) CG models
for heptane (crosses) and for toluene (circles). Panel b presents results for 3-site CG
models of liquid mixtures with varying heptane:toluene mole ratio. The slight differences
in the two panels for 3-site models of pure heptane and pure toluene reflect finite size
effects.44,151,189
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Figure 4.5. Simulated density distributions (top) and pressure-volume equations of
state (bottom) for AA (solid) and 3-site CG (dotted) models for various heptane-toluene
mixtures. Pure heptane, pure toluene, as well as the 2:3, 1:1, and 3:2 heptane:toluene
mixtures were included in parameterizing the CG potentials. The results for the 1:9
and 9:1 heptane:toluene mixtures were not included in the parameterization and reflect
predictions of the transferable model.

mixtures employed in the parameterization, but also for two additional mixtures
that were not included in the parameterization.

4.5 Conclusion: van der Waals perspective
In closing, we hope that this work helps clarify the origin and inter-relationship of the
representability and transferability problems that plague bottom-up coarse-graining
approaches. Both arise as a consequence of thermodynamic information that has
been extracted from the atomic configuration space and encoded into the many-
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body PMF. The key to resolving these problems lies in quantifying this information
and then incorporating it into the calculation of thermodynamic properties and
the prediction of transferable potentials. In particular, pressure-matching provides
a practical and rigorous way for determining the density dependence of the PMF
in order to accurately model the pressure equation of state. Thus, bottom-up
approaches can develop predictive, transferable potentials that accurately model
the structure, density fluctuations, pressure, and compressibility of atomic models.

More generally, this work suggests a “van der Waals” perspective for bottom-up
coarse-graining. From this perspective, current bottom-up approaches provide a
powerful means for approximating the configuration-dependence of the PMF, such
that the resulting models accurately model atomic structure. At the same time,
these approaches do not effectively address the thermodynamic information that
determines both the state-point dependence of the PMF and also the missing atomic
contribution to thermodynamic properties. Complementary variational principles,
such as pressure-matching, may provide an effective means for determining this
information, both to predict the transferability of approximate potentials and to
model thermodynamic properties.
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Chapter 5 |
BOCS: Bottom-up Open-source
Coarse-graining Software

N. J. H. Dunn, K. M. Lebold, M. R. Delyser, J. F. Rudzinski W. G. Noid, J Phys
Chem B 2018, 122 (13), 3363-3377

5.1 Abstract
We present the BOCS toolkit as a suite of open source software tools for parame-
terizing bottom-up coarse-grained (CG) models to accurately reproduce structural
and thermodynamic properties of high resolution models. The BOCS toolkit
complements available software packages by providing robust implementations of
both the multiscale coarse-graining (MS-CG) force-matching method and also the
generalized-Yvon-Born-Green (g-YBG) method. The g-YBG method allows one
to analyze and to calculate MS-CG potentials in terms of structural correlations.
Additionally, the BOCS toolkit implements an extended ensemble framework for
optimizing the transferability of bottom-up potentials, as well as a self-consistent
pressure-matching method for accurately modeling the pressure equation of state
for homogeneous systems. We illustrate these capabilities by parameterizing trans-
ferable potentials for CG models that accurately model the structure, pressure, and
compressibility of liquid alkane systems and by quantifying the role of many-body
correlations in determining the calculated pair potential for a one-site CG model of
liquid methanol.
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5.2 Introduction
By representing systems in reduced detail, coarse-grained (CG) models provide
the necessary computational efficiency for investigating length- and time-scales
that cannot be effectively addressed with all-atom (AA) models.7,72 Of course, CG
models must be carefully constructed to faithfully describe the relevant physical
forces if they are to provide useful predictions and insight. While one can imagine
many approaches for constructing CG models, they are often developed via “top-
down” or “bottom-up” approaches.8,73–75

Top-down approaches commonly parameterize relatively simple interaction
potentials to reproduce macroscopic thermodynamic properties. Because top-down
approaches often address multiple chemical systems and thermodynamic states,
the resulting parameters can be used to define a general purpose force field. For
instance, the Martini,9,194 SDK,,113 PLUM,195,196 and OxDna17,197 force fields each
employ a single set of parameters that is quite transferable, i.e., the parameters
reasonably describe thermodynamic properties for a fairly broad range of systems
and environments.

In contrast, bottom-up approaches commonly parameterize relatively complex
interaction potentials to reproduce the structural properties of a high resolution
model for a single chemical system in a single thermodynamic state point. Con-
sequently, bottom-up approaches do not usually provide transferable force fields,
but rather system-specific potentials that may require re-parameterization for each
system and state-point of interest.73,75 Accordingly, the practical application of
bottom-up methods requires appropriate software for parameterizing these po-
tentials. Fortunately, several software packages100,120,198,199 have been released
for implementing bottom-up approaches according to, e.g., iterative Boltzmann
Inversion,28 Inverse Monte Carlo,26 and the multiscale coarse-graining (MS-CG)
methods.25,27,88,99,200

Unsurprisingly, bottom-up approaches are currently limited by two common
deficiencies. As emphasized above, bottom-up models generally provide limited
transferability.33,35–39,41,42,44,153,182,201 Similarly, because they often focus on repro-
ducing structural properties, bottom-up approaches generally provide a rather poor
description of thermodynamic properties, such as the pressure.33,34,91 Recently, we
have examined the fundamental origin and interrelation between these transfer-
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ability and representability limitations.202 Moreover, we have developed rigorous
computational methods for addressing these limitations in practice. In particular,
the extended ensemble framework provides a principled bottom-up approach for
developing potentials that accurately describe multiple chemical systems or ther-
modynamic states.39,203 Additionally, self-consistent pressure-matching provides a
straight-forward approach for constructing CG models that accurately model the
pressure and compressibility of homogeneous systems.151,189

In this work, we present the Bottom-up Open-source Coarse-graining Software
(BOCS ) toolkit to complement the software packages that are currently available
for parameterizing bottom-up CG models. The BOCS toolkit includes software
written in C, C++, and python for use with the GROMACS103,204 and LAMMPS114

simulation packages. The BOCS toolkit includes a robust and stable implemen-
tation of the MS-CG force-matching method25,27 for determining CG potentials
directly from atomistic forces. Additionally, the BOCS toolkit implements the
generalized Yvon-Born-Green (g-YBG) framework31,111 for calculating MS-CG po-
tentials directly from structural data. Based upon the g-YBG framework, the BOCS
toolkit provides tools for interpreting the physical origin of these potentials in terms
of structural correlations generated by the high resolution model.117 Moreover, the
BOCS toolkit implements both the extended ensemble framework39 and also the
self-consistent pressure-matching method.151,189

We are releasing the BOCS toolkit as open source software under the GPLv3
license in the hope that the CG modeling community will use and modify these tools
according to its needs. Open source software is vital to reproducible computational
research, since it facilitates not only the examination of calculations performed
with the software, but also of the software itself. The ‘many eyes’ effect of open
source software can help to more quickly identify and correct errors in the software,
while also providing opportunity for other researchers to review and improve
the underlying algorithms. Finally, open source software lowers the barrier for
researchers entering the field of CG modeling, since new researchers can then
leverage and build upon prior work, rather than having to start from scratch.

The remainder of this manuscript is organized as follows. Section II outlines the
theoretical basis for the BOCS toolkit, while Section III describes its computational
implementation. Section IV illustrates the capabilities of the BOCS toolkit in
the context of parameterizing transferable interaction potentials for CG models
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that reasonably describe the structure and pressure-volume thermodynamics of
butane, heptane, decane, and a butane-decane mixture. We also present some
diagnostic capabilities of the BOCS toolkit using a one-site model of methanol as a
representative example. Finally, Section V presents concluding remarks.

5.3 Theory
In this section, we briefly outline the theoretical foundation that is employed by
the BOCS software package in parameterizing the potentials for a CG model from
a high resolution simulation. The BOCS software package can employ statistics
sampled from either the constant NVT or constant NPT ensemble to determine the
CG interaction potential. However, CG models will generally require an additional
volume-dependent potential to accurately calculate the pressure and to sample the
correct density in the constant NPT ensemble.44,151

5.3.1 High resolution AA model

We first consider a high resolution model with n particles, i = 1, . . . , n, which we
shall refer to as atoms.190 We indicate the atomic microstate by (r,p, v), where
the configuration r = (r1, . . . , rn) indicates the Cartesian coordinates of each atom,
p = (p1, . . . ,pn) indicates the corresponding set of momenta, and v indicates the
volume. We assume an atomic Hamiltonian:

h(r,p, v) = κ(p) + u(r, v) (5.1)

where the kinetic energy κ(p) = ∑
i p2

i /2mi, mi is the mass of atom i, and the
potential, u(r, v), may explicitly depend upon v, e.g., due to long-ranged interac-
tions.1,205,206 The potential determines a force fi = − (∂u/∂ri)v on each atom i and
also a force on the wall, i.e., the instantaneous excess pressure, pxs = − (∂u/∂v)r̂,
where the latter partial derivative is performed at constant scaled coordinates, r̂.
The fluctuating internal pressure of the AA model is then102,190

pint(r,p, v) = 2
3vκ(p) + pxs(r, v). (5.2)
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5.3.2 Low resolution CG model

We next consider a low resolution model with N ≤ n particles, I = 1, . . . , N , which
we shall refer to as CG sites. We indicate the CG microstate by (R,P, V ), where
the configuration R = (R1, . . . ,RN) indicates the Cartesian coordinates of each
site, P = (P1, . . . ,PN ) indicates the corresponding set of momenta, and V indicates
the volume. We assume a CG Hamiltonian:

H(R,P, V ) = K (P) + U(R, V ) (5.3)

where the kinetic energy K (P) = ∑
I P2

I/2MI , MI is the mass of site I, and the
potential, U(R, V ), may depend upon both R and also V , as indicated below.22,44,151

The potential determines a force FI = − (∂U/∂RI)V on each site I and also
the instantaneous excess pressure, Pxs = − (∂U/∂V )R̂, where the latter partial
derivative is performed at constant scaled CG coordinates, R̂. The fluctuating
internal pressure of the CG model is then

Pint(R,P, V ) = 2
3V K (P) + Pxs(R, V ). (5.4)

5.3.3 Mapped Ensemble

We intend for the CG model to reproduce the structural and thermodynamic
properties of the AA model that can be observed at the resolution of the CG
model. Accordingly, we define a mapped ensemble by mapping each AA microstate
(r,p, v) to a CG microstate (R,P, V ). The mapping preserves the volume of the
AA microstate, i.e., V = v.44,151 The mapped configuration, R = M(r), and
momenta, P = MP (p), are specified by determining the Cartesian coordinates, RI ,
and momenta, PI , of each site, I, as a linear combination of atomic coordinates, ri,
and momenta, pi:

RI = MI(r) =
∑
i

cIiri (5.5)

PI = MPI(p) = MI

∑
i

cIipi/mi. (5.6)

Note that Eq. (5.6) is equivalent to employing the same linear coefficients for
mapping both the coordinates and the velocities.25
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In principle, the mapping coefficients can be arbitrary positive constants that are
appropriately normalized, ∑i cIi = 1 for each I = 1, . . . , N .25 This normalization
ensures that if each atom is displaced by a constant vector, then each CG site is
displaced by the same vector. However, for simplicity, the BOCS package requires
that each atom is associated with at most one CG site, i.e., for each atom i, cIi is
non-zero for at most one CG site I. Given this restriction, the mapped atomistic
force on each CG site may be expressed

fI(r) =
∑
i∈I

fi(r) (5.7)

where the sum is performed over all atoms i that are “involved” in CG site, I, i.e.,
the atoms i for which cIi > 0.25

5.3.4 Consistency and the many-body potential of mean force

It is straightforward to ensure that the CG model samples the mapped momentum
distribution. (Of course, this does not imply that the CG model accurately describes
any other dynamical property.207,208) Because we have assumed that the CG sites
correspond to disjoint atomic groups, the mapped CG momenta are statistically
independent Gaussian random variables.98 The CG model will be consistent with
this mapped distribution if the site masses are given by

MI
−1 =

∑
i∈I

c2
Iimi

−1, (5.8)

which corresponds to ensuring that the Boltzmann distribution for the CG momenta
has the appropriate variance.25 Note that, if the mapping coefficients cIi determine
the CG coordinates as the mass center of each corresponding atomic group, then
MI = ∑

i∈I mi.
In order for the CG model to sample the mapped distribution for the config-

uration and volume, the Boltzmann weight for each CG configuration, R, must
equal the net Boltzmann weight for the atomic configurations, r, that map to R
at the given volume, V . Accordingly, the appropriate potential is the many-body
potential of mean force (PMF), W :

exp[−βW (R, V, T )] = V N−n
0

∫
V n

dr exp[−βu(r, V )] δ(R −M(r)), (5.9)
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where V0 is an arbitrary reference volume that ensures dimensional consis-
tency.21,22,44,77,82,151

The BOCS software package employs two variational principles to determine
the potential U for the CG model. The force-27,173 and pressure-44,151 matching
functionals are defined

χ2
1[U ] =

〈
1

3N
∑
I

|fI(r)− FI(M(r))|2
〉

(5.10)

χ2
2[U ] =

〈∣∣∣pint(r,p, v)− Pint(M(r),MP (p), v)
∣∣∣2〉 , (5.11)

where the angular brackets denote an equilibrium ensemble average for the high
resolution model. In practice we typically approximate these ensemble averages
with configurations sampled from high resolution simulations. By minimizing
the functionals χ2

1 and χ2
2, the BOCS toolkit determines U to approximate the

configuration- and volume-dependence of the PMF, respectively.25,44,101,151,209

Das and Andersen (DA) originally proposed weighting each configuration in χ2
1

by a factor of v2/3 in developing the pressure-matching method for systems in which
the volume isotropically fluctuates.44 Accordingly, the BOCS toolkit allows for the
option of including this scaling in χ2

1. However, this factor has no effect at constant
V and appears to have little practical significance for condensed phase systems
undergoing isotropic volume fluctuations at constant external pressure. Also, we
note that the equivalence of Eq. (5.11) to the original pressure-matching functional
proposed by Das and Andersen requires that the CG masses are consistently treated
according to Eq. (5.8).

5.3.5 Approximate Potentials

We assume the following form for the CG potential:

U(R, V ) = UR(R) + UV (V ), (5.12)

where the interaction potential, UR, and volume-dependent potential, UV , are
optimized to approximate the configuration- and volume-dependence of the many-
body PMF, respectively.44,151
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5.3.5.1 Interaction potential

The interaction potential, UR, is expressed as a sum of terms corresponding to
different interactions, ζ, involving groups of particles, λ, that depend on scalar
functions, ψζ , of the corresponding CG coordinates, Rλ:

UR(R) =
∑
ζ

∑
λ

Uζ(ψζλ(R)) (5.13)

where ψζλ(R) = ψζ(Rλ).99,111 The Appendix illustrates this general potential form
for a typical molecular potential. The resulting force on site I is then

FI(R) =
∑
ζ

∑
λ

Fζ(ψζλ(R))∇Iψζλ(R), (5.14)

where Fζ(x) = −dUζ(x)/dx and ∇I = ∂/∂RI . We represent each force function as
a linear combination of basis functions, fζd(x), with constant coefficients φζd:

Fζ(x) =
∑
d

φζdfζd(x). (5.15)

Given this representation of the force functions, we define force field “basis vec-
tors”99,111

G I;ζd(R) =
∑
λ

fζd(ψζλ(R))∇Iψζλ(R) (5.16)

such that the force on each site may be expressed:

FI(R) =
∑
ζ

∑
d

φζdG I;ζd(R) =
∑
D

φDG I;D(R) (5.17)

where, in the last expression, D is a “super-index” that specifies a combination
ζd. Given Eq. (5.17) for the CG forces, χ2

1 becomes a simple quadratic form in
the force field parameters. The parameters that minimize χ2

1 and, thus, provide an
optimal approximation to the configuration-dependence of the PMF are determined
by solving the normal system of linear equations31,99,101

∑
D′
GDD′φD′ = bD (5.18)
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where

bD =
〈

1
3N

∑
I

fI(r) · G I;D(M(r))
〉

(5.19)

GDD′ =
〈

1
3N

∑
I

G I;D(M(r)) · G I;D′(M(r))
〉
. (5.20)

Equation (5.18) can be interpreted as the projection of either the atomic force field
or the many-body PMF (more precisely, the corresponding force field) onto the
space of force fields spanned by the basis defined by Eq. (5.17).25,99,111,209,210 Note
that, if χ2

1 scales each configuration by v2/3, then bD and GDD′ both inherit this
scaling in Eqs. (5.18)-(5.20). In practice we then divide bD and GDD′ by

〈
v2/3

〉
in

order to preserve their original scale and dimensions.

5.3.5.2 Volume-dependent potential

According to Eq. (5.12), the pressure of the CG model may be expressed:

Pint(R,P, V ) = P 0
int(R,P, V ) + FV (V ) (5.21)

where

P 0
int(R,P, V ) = 2

3V K (P)−
(
∂UR(R)
∂V

)
R̂

(5.22)

includes the kinetic and virial contributions to the pressure from UR, and FV (V ) =
−dUV (V )/dV is a “pressure correction” for the CG model. Since UR is optimized
without regard to the pressure, P 0

int will tend to dramatically overestimate the
pressure of the underlying atomistic model.34,44,79,88,151 Consequently, UV can be
adjusted to ensure that the CG model provides appropriate Boltzmann weight for
each volume and, equivalently, that it accurately reproduces the pressure of the
atomistic model. Importantly, UV does not impact the configuration distribution
at a fixed volume.93

Das and Andersen44 suggested representing the volume-dependent potential as
a sum of basis functions:

UV (V ) =
∑
d

ψduV d(V ). (5.23)
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where ψd act as parameters for UV , uV d are basis functions of the form

uV d(V ) =

N(V/v̄), for d = 1

N(V/v̄ − 1)d, for d ≥ 2
(5.24)

and v̄ is the average volume of the reference AA ensemble. The BOCS toolkit can
also employ other basis functions for representing UV . However, in practice Eq. (5.24)
is quite convenient, since often only two basis functions are required to accurately
model equilibrium density fluctuations at constant external pressure.44,151 The two
coefficients then correspond to corrections for the pressure and the compressibility:

∆Pint = −Nψ1/v̄ (5.25)

∆κ−1
T = 2Nψ2/v̄. (5.26)

Given the interaction potential, UR, determined from Eq. (5.18), UV is then
determined by minimizing the pressure-matching functional χ2

2 in Eq. (5.11). Given
Eqs. (5.21)-(5.23) for the pressure of the CG model, this pressure-matching vari-
ational principle reduces to a linear least squares problem for the parameters ψd,
which is then solved by a normal system of equations analogous to Eq. (5.18).
The resulting UV significantly reduces the pressure of the CG model and will
often provide a qualitatively reasonable description of the AA pressure equation of
state.44,151

The BOCS toolkit implements an iterative self-consistent pressure-matching
method to further refine UV such that the CG model quantitatively reproduces the
AA pressure equation of state, pint(V ).151 In this method, one first simulates the
CG model in the constant NPT ensemble with a fixed interaction potential, UR,
and a trial estimate for UV . This simulation provides a local estimate of the CG
equation of state, Pint(V ). The discrepancy between the CG and AA equations
of state then determines a correction to FV (V ) in analogy to iterative Boltzmann
inversion: δFV (V ) = pint(V ) − Pint(V ). In practice this procedure often quickly
converges such that pint(V ) ≈ Pint(V ) quite accurately. This procedure corresponds
to determining UV by minimizing a relative entropy29,151,211 describing the overlap
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of AA and CG distributions for the constant NPT ensemble:

Srel[U ] =
∫

dV
∫
V

dR pRV (R, V ) ln [pRV (R, V )/PRV (R, V ;U)] (5.27)

where pRV and PRV are the distributions for the mapped ensemble and for the CG
model, respectively.

5.3.6 g-YBG formulation

In the canonical ensemble at constant volume, the normal equations for the MS-CG
potential parameters are equivalent to a generalization of the Yvon-Born-Green
equation from liquid state theory.119,191 This can be seen by representing the CG
force field with a continuous set of basis functions such that Eq. (5.17) can be
expressed31,111

FI(R) =
∑
ζ

∫
dx Fζ(x) G I;ζ(R;x). (5.28)

The normal MS-CG equations may then be expressed:

bζ(x) = ḡζ(x)Fζ(x) +
∑
ζ′

∫
dx′ Ḡζζ′(x, x′)Fζ′(x′) (5.29)

where

bζ(x) = 1
3N

〈∑
λ

(∑
I

fI(r) · ∇Iψζλ(M(r))
)
δ (ψζλ(M(r))− x)

〉
(5.30)

may be interpreted as an average atomic force along the ψζ order parameter, while

ḡζ(x) = 1
3N

〈∑
λ

(∑
I

|∇Iψζλ(M(r))|2
)
δ (ψζλ(M(r))− x)

〉
(5.31)

Ḡζζ′(x, x′) = 1
3N

〈∑
λ6=λ′

(∑
I

∇Iψζλ(M(r)) · ∇Iψζ′λ′(M(r))
)

× δ (ψζλ(M(r))− x) δ (ψζ′λ′(M(r))− x′)
〉

(5.32)

are ensemble averages describing equilibrium structural correlations. Eq. (5.29)
can provide insight into the physical origin of the calculated potential, Uζ(x), since
it decomposes bζ(x) into a direct contribution from Uζ(x) and correlated indirect
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contributions from every other interaction in the system.117,119

Moreover, we have previously demonstrated that bζ(x) can be directly calculated
from structures31,111

bζ(x) = kBT [dḡζ(x)/dx− Lζ(x)] (5.33)

where
Lζ(x) = 1

3N

〈∑
λ

(∑
I

∇2
Iψζλ(M(r))

)
δ (ψζλ(M(r))− x)

〉
. (5.34)

In particular, if Uζ(x) is a central pair potential, then

bζ(r) = −(2r2/cζ)w′ζ(r)gζ(r) (5.35)

where gζ(r) is the radial distribution function, wζ(r) = −kBT ln gζ(r) is the corre-
sponding pair potential of mean force,212 and cζ is a dimensioned normalization
constant. In this simple case, Eq. (5.29) may be re-expressed

− dwζ(r)/dr = Fζ(r) +
∑
ζ′

∫
dx ḡ−1

ζ (r)Ḡζζ′(r, x)Fζ′(x), (5.36)

in direct analogy to the YBG equation.119

These results also hold in the constant NPT ensemble as long as bζ and Gζζ′ are
defined according to Eqs. (5.19) and (5.20), respectively. However, if bζ and Gζζ′

include the v2/3 rescaling proposed in Ref. 44, then this analysis only approximately
holds in the constant NPT ensemble.

5.3.7 Extended Ensemble Formulation

The extended ensemble approach provides a simple framework for determining
interaction potentials that are transferable to multiple systems.39 An extended
ensemble is defined as a collection of multiple conventional ensembles that may
differ in chemical identity or in thermodynamic conditions. We assign a label, γ,
and a probability, pγ, for each ensemble. We define extended ensemble averages

〈aγ(rγ)〉 =
∑
γ

pγ 〈aγ(rγ)〉γ (5.37)
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where rγ indicates a configuration for ensemble γ and 〈· · ·〉γ indicates the corre-
sponding conventional equilibrium ensemble average. In practice, we simply assign
equal weight to each γ included in the extended ensemble. For each ensemble, γ, we
define a CG representation, Γ = µ(γ), and a corresponding configuration mapping:
RΓ = Mγ(rγ). This mapping then determines a weight, pΓ = ∑

γ pγδγ,µ(γ), and
also a many-body potential of mean force, WΓ, for each Γ. In practice, the CG
representation typically provides a one-to-one relationship between the atomistic
and CG ensembles, i.e., each CG ensemble Γ corresponds to a single atomistic
ensemble γΓ and pΓ = pγΓ

We seek to determine potentials UΓ that provide an optimal approximation to
WΓ for each Γ. The MS-CG force-matching variational principle can be readily
extended for this purpose by simply interpreting Eqs. (5.10) and (5.18)-(5.20) in
terms of extended ensemble averages. If the potentials UΓ are treated independently
for each Γ, then the extended ensemble approach determines independent MS-CG
models for each Γ. However, if the potentials share transferable parameters, then
these parameters are determined to provide an optimal approximation across the
entire extended ensemble.

5.4 Computational Methods
The BOCS toolkit provides software tools for parameterizing the potential, U(R, V ),
for a CG model based upon information from an AA trajectory. Table 5.1 summa-
rizes the primary input and output for these tools. Figure 5.1 outlines the workflow
for determining the interaction potential, UR, while Fig. 5.2 outlines the workflow
for determining the volume-dependent potential, UV .

The cgmap tool generates a mapped ensemble as the CG representation of
an AA ensemble. The cgmap tool requires an AA trajectory file that contains
atomically detailed configurations and, optionally, the corresponding velocities and
forces. The cgmap tool also requires 1) a plain text file that determines the mapping
coefficients, {cIi}, by specifying the CG representation for each type of molecule
in the system; and 2) a CG topology file that specifies the type and connectivity
of the sites in the CG model. Based upon the specified mapping coefficients, the
cgmap tool determines the CG representation of each AA configuration according
to Eq. (5.5). If the AA trajectory file includes velocity and force information, the
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Table 5.1. Tools included in the BOCS toolkit with their primary inputs and outputs

Tool Purpose Input Output

cgmap Maps AA
trajectory

AA trajectory,
CG and map
topologies

Mapped CG
trajectory

cgff
Determines
interaction
potential, UR

Mapped CG
trajectory, CG
potential
definition

Interaction
potential
parameters, φD

tables

Converts CG
potentials to
GROMACS
format

CG potential
parameters

GROMACS
table files

translate_table.py

Converts CG
potentials to
LAMMPS
format

GROMACS
table files

LAMMPS table
files

pmatch
Determines
volume
potential, UV

AA, CG
pressures and
volumes

Volume
potential
parameters, ψd

lmp_pmatch
Simulates CG
model with
U = UR + UV

LAMMPS table
files, pressure
correction

Simulated CG
trajectory

cgmap tool determines the mapped velocities and forces according to Eqs. (5.6)
and (5.7). The cgmap tool then provides a mapped CG trajectory file that can be
analyzed using standard GROMACS tools.

The cgff tool calculates the parameters for UR from the mapped CG trajectory
file. The cgff tool requires a plain text input file to specify the types of potentials,
Uζ , included in UR and also the basis functions, fζd, employed to represent each
Uζ . The cgff tool also requires a CG topology file to specify the instances, λ, of
each interaction. Assuming that the mapped CG trajectory contains explicit force
information, the cgff tool calculates the force correlation function, bD, and structural
correlation function, GDD′ , according to Eqs. (5.19) and (5.20), respectively, for
each pair of basis functions D = ζd and D′ = ζ ′d′. If forces are not present in the
mapped trajectory, the cgff tool calculates bD directly from structural information
according to Eq. (5.33). Although force-based calculations (i.e., via Eq. (5.19) )
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Figure 5.1. Workflow for the force-matching/g-YBG component of the BOCS toolkit.
Boxes with sharp corners denote files, while boxes with rounded corners indicate operations
performed on these files. Boxes filled with gray represent software tools provided in the
BOCS toolkit. The dashed box indicates the major output of this workflow: the CG
interaction potential, UR.

require less sampling to accurately determine bD, structure-based calculations (i.e.,
via Eq. (5.33) ) yield equivalent results for sufficiently well sampled systems31,39,171

and have proven quite useful for several applications.178,203 The cgff tool then solves
the normal system of linear equations, Eq. (5.18), for the potential parameters, φD.
Finally, the cgff tool outputs these parameters, as well as, bD, GDD′ , and additional
supplemental files that characterize the system and provide diagnostic information
about the calculation.

The cgff tool treats a fairly wide range of CG potentials that can be represented
according to Eq. (5.13), i.e., bond-stretch potentials, bond-angle potentials, dihedral
potentials, and short-ranged pair potentials. The cgff tool can represent each of these
potentials with either piecewise constant functions, piecewise linear functions, or B-
spline functions. The cgff tool also implements several standard analytic functional
forms, including harmonic bond-stretch or bond-angle potentials, Fourier-series
dihedral potentials, and Lennard-Jones-type pair potentials. Additionally, the cgff
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Figure 5.2. Workflow for the pressure-matching component of the the BOCS toolkit.
See legend of Figure 5.1 for the meaning of the box shapes and outlines. The dashed box
indicates the major output of this workflow: the CG volume potential, UV .

tool allows for fixed “reference potentials,” URef
R , that are specified by the user and

can be of arbitrary complexity.99,213 In this case, the user must supply an additional
trajectory file specifying the resulting reference force, FRef

I , on each CG site in each
mapped AA configuration. The cgff tool computes a corresponding contribution
to each force projection, bRef

D , from the reference potential, i.e., using FRef
I in the

place of fI in Eq. (5.19). The cgff tool then optimizes the remaining terms in UR
to match the remainder of each force projection, δbD = bD − bRef

D . In particular,
if Coulombic or other long-ranged potentials are defined as reference potentials,
then the cgff tool will determine the short-ranged potentials that, when combined
with the specified long-ranged potentials, provide an optimal approximation to the
many-body PMF.

The cgff tool provides several additional options for the calculation of φD and the
resulting output. The cgff tool can precondition the normal equations, Eq. (5.18), by
normalizing the GDD′ matrix according to the norm of each column, the max of each
row, the total variance in each column, or the variance in bD. The cgff tool can solve
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these normal equations via single value, Cholesky, UU, or LU decomposition.214

The cgff tool can regularize these methods according to Bayesian inference176 or
a simpler uncertainty estimation.122 The cgff tool also provides several options
for specialized diagnostic output, including error estimates, eigendecomposition of
ḠDD′ , and also decomposition of bD into contributions from different interactions
according to the g-YBG theory, i.e., Eq. (5.29).

Because it quantifies many-body structural correlations, the calculation of GDD′

can be quite time-consuming for large systems with many interacting CG sites. As
indicated by Eq. (5.32), the cgff tool calculates the correlation between the forces
generated on each site, I, from each pair, λ and λ′, of nonbonded interactions.
The cgff tool performs this calculation by looping over all triples of interacting
particles. For a CG model with N sites, this calculation scales as O(N3). We have
expedited this calculation by exploiting the symmetry of this loop and by employing
the OpenMPI framework to distribute the frames of the mapped trajectory over
multiple processors. This parallelization scales perfectly because each frame is
treated independently in calculating GDD′ and because this nested triple loop
typically dominates the time required for calculating φD.

We note that the MSCGFM code100 implements the normal equations, Eq. (5.18),
as well as several other numerical methods for minimizing χ2

1 to determine the MS-
CG force field. Lu et al. have provided an excellent discussion of various numerical
methods for minimizing χ2

1, including methods for solving an over-determined system
of linear equations with a block-averaging approximation.100 In comparison to this
block-averaging approach, the normal system of equations is more time consuming,
due to the nested triple loop discussed above, and also requires the numerical
inversion of a matrix with a relatively high condition number. Nevertheless, we find
that, with proper choices of solution method, preconditioning, and regularization,
our implementation performs well and, in test cases that we can rigorously test,
accurately determines the MS-CG potential. Additionally, because they correspond
to a g-YBG integral equation that is explicitly expressed in terms of equilibrium
ensemble averages, the normal equations facilitate molecular insight into the system
and the resulting CG potentials.117,119 Moreover, the normal equations allow for
the calculation of these potentials directly from structural information.31,111,171,203

The cgff tool separates the calculated potential parameters, {φD}, into files
corresponding to different interactions. For interactions represented with simple
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functional forms, such as bond-stretch interactions represented with harmonic
potentials, the resulting parameters can be immediately employed as input for
CG simulations. However, for potentials represented with more flexible functional
forms, such as non-bonded interactions represented with spline functions, the
calculated parameters may require additional processing. The tables tool performs
the necessary smoothing, extrapolation, and interpolation to generate input files
for use in GROMACS simulations.103,204 The lammps_tables.py script converts
these files for use in LAMMPS simulations.114

The cgff tool also implements the extended ensemble framework39 to determine
transferable potentials that provide an optimal approximation to the many-body
PMF’s for multiple mapped ensembles, Γ, that correspond to distinct chemical
systems or distinct thermodynamic state points. In this case, the cgff tool requires
a mapped CG trajectory file for each AA ensemble, as well as plain text and CG
topology files that specify the contributions to the interaction potential, UΓ, for
modeling each Γ. The cgff tool also requires the user specify the weight, pγ, for
each AA ensemble, γ, included in the extended ensemble. Given this input, the
cgff tool calculates bD and GDD′ as extended ensemble averages and determines
the optimal potential parameters, φD, from Eq. (5.18), as in the case of a single
system.

The cgmap and cgff tools have been historically developed for use with GRO-
MACS and currently employ several functions and data structures from the GRO-
MACS libraries.103,204 In particular, we currently employ GROMACS functionality
to read and write GROMACS trajectory and topology files, as well as for some
aspects of the user interface employed by the cgmap tool. In order to buffer these
tools from the GROMACS source code and in order to facilitate future compatibility,
we developed an interface that wraps all references to GROMACS functions and
addresses changes to relevant GROMACS libraries and files. The BOCS toolkit is
currently natively compatible with GROMACS 4.5.x, 4.6.x, 5.0.x, and 5.1.x.

The BOCS toolkit also provides tools for determining UV in order to simulate CG
models that sample isotropic volume fluctuations under constant external pressure.
The first step in this process is to estimate UV via pressure-matching.44,151 This
calculation requires a fixed CG interaction potential, UR, and a mapped CG
trajectory file containing the mapped configuration, M(rt), mapped momentum,
MP (pt), and volume, Vt, for each time t. We then evaluate, for each t, the pressure,
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P 0
int, that is defined by Eq. (5.22) and accounts for the kinetic and interaction

contributions to the instantaneous pressure of the CG model. In practice, this
can be done by post-processing the mapped CG trajectory file using the ‘-rerun’
option with the standard GROMACS mdrun tool. (Note that, if the CG potential
includes table files, then these files must be specified in the topology files for this
post-processing calculation and for subsequent CG simulations with GROMACS,
as indicated by * in Fig. 5.2.) Given the resulting set of CG pressures, {P 0

int(t)}, as
well as the corresponding AA pressures and volumes, {pint(t), Vt}, the pmatch tool
then determines UV to minimize χ2

2.
The resulting CG potential, U(R, V ) = UR(R) +UV (V ), can then be simulated

with lmp_pmatch, which is a modification of the LAMMPS distribution114 from
17 June 2013 that includes the contributions from UV in the barostat equation of
motion. These simulations determine an estimate for the pressure-volume equation
of state, Pint(V ), for the CG model. In practice, this CG model does not perfectly
reproduce the pressure equation of state, pint(V ), of the AA model.44,151,189 This
discrepancy presumably arises due to differences between the mapped and simulated
configurational distributions at each V . Consequently, if necessary, we perform
iterative self-consistent pressure-matching in order to refine UV .151,189 The CG and
AA pressure equations of state are provided as input to the pmatch tool, which
then estimates the necessary correction for UV (V ). This process can be iterated
until the CG model adequately reproduces the AA pressure equation of state. In
practice, this usually requires fewer than 10 iterations.151,189

There is no special workflow for determining UV for transferable potentials
obtained via the extended ensemble approach. In practice, we perform self-consistent
pressure-matching to determine a separate potential UV Γ for each mapped ensemble,
Γ. In principle, it may be possible to generalize the extended ensemble approach to
determine a transferable pressure correction for modeling multiple state points or
chemically distinct systems with similar interaction potentials. However, we have
not yet tested this possibility.

5.5 Results and Discussion
In this section we illustrate the capabilities of the BOCS toolkit for parameterizing
bottom-up CG models. In particular, we determine system-specific MS-CG poten-
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tials that accurately describe the structure of butane, heptane, and decane. We
employ the extended ensemble (XN) approach to determine a single set of trans-
ferable XN potentials for modeling the structure of all three liquids. Additionally,
we determine volume potentials, UV , for accurately modeling the pressure-volume
behavior of each alkane system. Finally, we also employ the BOCS toolkit to
characterize many-body correlations in liquid methanol and to investigate their
contribution to the pair potential of mean force.

We performed atomistic MD simulations of three alkane systems with 267 butane,
heptane, or decane molecules in order to parameterize three corresponding system-
specific MS-CG potentials as well as a single set of transferable XN potentials.
We also performed an atomistic MD simulation of a mixture with 134 butane
molecules and 134 decane molecules in order to assess the predictive capability of
the XN potential. We performed these simulations according to the procedures
described in Ref. 189, which we briefly summarize in the following. We performed
all atomistic simulations with GROMACS 4.5.3,103 while using double-precision
and a 1.0 fs timestep. We employed the OPLS-AA force field104 to describe all
interactions and employed the particle mesh Ewald method with a grid spacing of
0.08 nm to model electrostatic interactions.105 In order to equilibrate these systems,
we first heated each system to 1000 K and then cooled the system back to room
temperature at constant volume. We next equilibrated each system at constant
pressure, while employing the Berendsen thermostat and barostat.106 Finally, we
simulated each system at 1.0 bar pressure and an external temperature of 300 K,
using the Parrinello-Rahman barostat110 and the stochastic dynamics thermostat215

with an inverse friction constant of 0.1 ps. The production runs of the pure systems
were 45 ns in duration, while the production run of the mixture system was 70 ns.
We note that, although we performed these simulations in double precision, BOCS
can parameterize CG potentials from either single- or double-precision simulations.

We first employed the cgmap tool to map these AA trajectories to their CG
representation. Figures 5.3a, 5.3b, and 5.3c present the CG representations for
butane, heptane, and decane molecules, respectively. In each case, we represented
terminal CH2CH3 groups with ‘CT’ sites and internal CH2CH2CH2 groups with
‘CM’ sites. We employed a standard molecular mechanics CG potential to model
each system. The intramolecular potentials included bond-stretch and bond-angle
potentials between each pair and triple, respectively, of consecutive sites in the
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Figure 5.3. Mapping schemes for CG models superimposed upon the corresponding
all-atom models, which are indicated in ball-and-stick representation. The CG sites
(transparent spheres) are associated with the mass centers for the corresponding atomic
groups, which are enclosed by the dashed circles. The size of the CG spheres indicates
the distance at which the corresponding site-site radial distribution function vanishes,
providing an estimate of the excluded volume for each site.

same molecule. The intermolecular potentials included short-ranged pair potentials
between each pair of sites in distinct molecules. Table 5.2 lists the interactions
included in the CG models for each liquid. The interactions that are highlighted
in bold font were described by transferable potentials in the XN models, i.e., the
XN models employed the same potential function for modeling these interactions
in each alkane system. Note that the CG sites were not charged and that the
intramolecular potential for the CG model of decane did not include a dihedral
potential.

We next employed the cgff tool to determine system-specific MS-CG poten-
tials25,27 for each pure alkane system. Additionally, we also defined a parameter-
ization extended ensemble by assigning a weight pγ = 1/3 to each pure alkane
system. We then employed the cgff tool to determine a single set of transferable XN
potentials for optimally approximating the many-body PMF for all three systems.
We note that we employed the v2/3 rescaling in these calculations, although this
appears to have minimal impact upon the resulting potentials. The Supporting
Information section presents the calculated intramolecular potentials.

Figure 5.4 presents the calculated nonbonded pair potentials for CT-CT, CT-
CM, CM-CM pairs in panels a, b, and c, respectively. The red, blue, and green solid
curves in Fig. 5.4 indicate the system-specific MS-CG pair potentials for butane,
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Table 5.2. Contributions included in the interaction potential for each alkane system.
Highlighted interactions correspond to XN potential functions that are employed in
multiple alkane systems.

Molecule Bonds Angles Nonbonded
Butane CT-CT - CT-CT
Heptane CT-CM CT-CM-CT CT-CT

- - CT-CM
- - CM-CM

Decane CT-CM CT-CM-CM CT-CT
CM-CM - CT-CM

- - CM-CM

heptane, and decane, respectively. Each MS-CG potential reflects two characteristic
distances of approximately 0.5 nm and 0.8 nm. The CM-CM and CT-CM MS-CG
potentials demonstrate relatively weak attraction and are quite similar for heptane
and decane. The XN potentials are quite similar to the MS-CG potentials for
these interactions. In comparison to the CM-CM and CM-CT potentials, the
CT-CT potentials tend to be much more attractive and demonstrate much greater
variation between different liquids. In particular, the CT-CT MS-CG potentials
for butane and heptane are much more attractive than the CT-CM or CM-CM
MS-CG potentials. The XN CT-CT potential is most similar to the corresponding
MS-CG potential for butane.

We then employed the pmatch tool to determine the volume potential, UV ,
via pressure-matching.44,151 In particular, for each of the three pure liquid alkane
systems, we determined two distinct volume potentials for compatibility with
the system-specific MS-CG potential and the transferable XN potential. In each
case, we represented UV according to Eq. (5.24) with two basis functions that
correspond to corrections for the mean pressure and the compressibility according
to Eq. (5.25) and (5.26). The resulting potentials, UV , provided a qualitative, but
not quantitative description of the AA pressure-volume fluctuations. Consequently,
we employed the self-consistent pressure-matching approach described in Section III
to iteratively refine UV .151,189 Table 5.3 expresses the final parameters for UV
in terms of corrections to the mean pressure and compressibility. Table 5.3 also
presents the number of iterations required to optimize UV for each potential and
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Figure 5.4. Calculated nonbonded potentials for a) CT-CT, b) CT-CM, c) CM-CM
pair interactions. The solid red, blue, and green curves present MS-CG potentials
calculated for butane, heptane, decane, respectively. The dashed black curves present the
transferable XN potentials.

each system. In almost all cases, self-consistent pressure-matching converged within
6 iterations.

However, butane required special treatment during this pressure matching pro-
cedure. Because the CG model adopts a particularly high resolution for butane, the
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Table 5.3. Average corrections for the pressure and inverse compressibility, as well as
the number of iterations required by self-consistent pressure-matching. Pressures and
inverse compressibilities are given in units of 103 bar. The asterisk (*) indicates that the
pressure correction did not converge within 10 iterations and was manually determined
according to the procedure described in Section 5.5.

〈FV 〉 ∆κ−1
T NIter

System MS-CG XN MS-CG XN MS-CG XN
Butane -0.36 0.033 -0.86 -0.67 * 1
Heptane -0.77 -1.59 -1.57 -2.93 6 6
Decane -3.15 -2.46 -6.23 -6.23 4 6
But/Dec Mix - -1.55 - -3.50 - 3

necessary pressure correction is quite small and requires special care. In particular,
the first 10 iterations of self-consistent pressure-matching did not converge upon a
pressure correction for the MS-CG butane model that simultaneously reproduced
both the mean pressure and the compressibility of the AA model. Consequently,
we selected the ψ1 and ψ2 coefficients from two different iterations that accurately
modeled the mean pressure and the compressibility, respectively. Because the XN
potential for butane is more attractive than the corresponding MS-CG potential,
the XN butane model requires an even smaller pressure correction. Indeed, given
the XN interaction potential, the volume potential that minimized χ2

2 resulted in
the XN butane model vaporizing. Consequently, in order to accurately reproduce
the AA pressure-volume behavior with the XN butane model, we discarded the
parameters {ψ1, ψ2} obtained directly from pressure matching and performed itera-
tive pressure matching starting from the trial potential UV = 0. Starting from this
trial potential, the iterative pressure-matching determined a satisfactory pressure
correction with a single iteration.

All simulations of CG models were performed with the lmp_pmatch program
included in the BOCS toolkit. These CG simulations employed the MTTK baro-
stat205,216 and Nose-Hoover chain thermostat116 with the default chain length of 3.
Otherwise, these simulations employed equivalent parameters to the AA simulations.
Figures 5.5-5.6 quantify the equilibrium structure and pressure-volume behavior
of the CG models for the pure alkane liquids. The Supporting Information more
exhaustively compares the AA and CG models.

The system-specific MS-CG and transferable XN potentials reasonably describe
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Figure 5.5. Radial distribution functions for the CT-CT pair interactions in a) butane,
b) heptane, and c) decane. The dashed black, solid blue, and solid red curves present
results for the mapped atomistic ensemble, the system-specific MS-CG model, and the
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Figure 5.6. Simulated pressure-volume equations of state for a) butane, b) heptane,
and c) decane. The error bars indicate the standard error of the corresponding bin. The
dashed black, solid blue, and solid red curves present results for the mapped atomistic
ensemble, the system-specific MS-CG model, and the transferable XN model, respectively.
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the equilibrium structure for each pure liquid. Panels a, b, and c of Fig. 5.5
present the CT-CT nonbonded radial distribution functions for butane, heptane,
and decane, respectively. In each panel, the dashed line presents results for the
mapped AA ensemble, while the solid lines present results for the CG models. The
MS-CG models reproduce the AA CT-CT rdfs with nearly quantitative accuracy.
In particular, the MS-CG models describe the asymmetry in the first peak of
the AA butane rdf and also accurately reproduce the increasing structure in the
rdf that is observed with increasing chain length. Importantly, although the XN
models employ the same transferable potentials for modeling each liquid, the XN
models also reproduce the AA CT-CT rdfs with nearly quantitative accuracy. The
Supporting Information demonstrates that the MS-CG and XN models provide a
slightly less accurate, although still very satisfactory, description of the AA rdfs for
CM-CM and CM-CT pairs.

Figure 5.7 compares simulated distributions of the radius of gyration, RG, for
each pure alkane system. In each case, the MS-CG and XN models generate almost
identical distributions. In the case of butane, RG corresponds to the bond between
CG sites, which is accurately described by the CG models. In the cases of heptane
and decane, the CG models reasonably reproduce the overall shape of the AA
distributions and, moreover, reproduce the average RG of the AA models to within
approximately 1% error. However, the CG models fail to reproduce the fine details
of the AA distributions. In particular, the AA distributions are multimodal with
relatively sharp peaks at large RG, which correspond to all atomic torsions sampling
trans conformations, and long tails toward more compact conformations. In contrast,
the CG distributions are simpler unimodal distributions and, in particular, fail to
reproduce the sharp peaks of extended conformations. This discrepancy reflects the
tendency of the CG models to sample smaller angles (between triples of bonded
sites) than the AA models, as seen in Supporting Figures 7b and 8c. Ultimately,
this error reflects the inability of the simple molecular mechanics potential to
capture correlations between the bond-stretch and bond-angle in the mapped
ensemble.121,122 Interestingly, as the alkane chains become progressively longer, one
expects that the AA distribution will become increasingly simple as more dihedral
angles contribute to RG and, consequently, more similar to the CG distribution.

Figure 5.6 presents the average internal pressure of each model as a function of
the volume. As a consequence of the iterative self-consistent pressure-matching ap-
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Figure 5.7. Probability distributions for the radius of gyration in a) butane, b) heptane,
and c) decane. The dashed black, solid blue, and solid red curves present results for the
mapped atomistic ensemble, the system-specific MS-CG model, and the transferable XN
model, respectively.

proach, the CG models quantitatively reproduce the AA pressure-volume relations.
We briefly assessed the predictive power of the XN approach by considering a

50:50 butane:decane mixture, which was not considered in parameterizing the XN
potential. Figure 5.8 presents the intermolecular CT-CT rdfs obtained from AA
simulations and from CG simulations with the XN potential as the dashed black
and solid red curves, respectively. Panels a, b, and c of Fig. 5.8 correspond to CT
sites from butane-butane pairs, from butane-decane pairs, and from decane-decane
pairs. Although the XN potential was parameterized without information about
the interactions or packing in butane-decane mixtures, the XN model describes
the structure of this mixture quite accurately. The XN model overestimates the
AA CT-CT rdf for butane-butane pairs, but almost quantitatively reproduces
the AA CT-CT rdfs for butane-decane and decane-decane pairs. The Supporting
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Figure 5.8. CT-CT radial distribution functions in the 50:50 butane-decane mixture
for CT sites in a) butane-butane, b) butane-decane, and c) decane-decane pairs. The
dashed black and solid red curves present results for the atomistic model and for the
extended ensemble CG model, respectively.

134



64 66 68

Volume (nm
3
)

-150

0

150

300

P
re

ss
u

re
 (

b
a
r)

AA

XN

Figure 5.9. Pressure-volume equations of state for 50:50 butane-decane mixture. The
error bars indicate the standard error of the corresponding bin. The dashed black and
solid red curves present results for the atomistic model and for the extended ensemble
CG model, respectively.

Information demonstrates that the XN model also accurately reproduces the AA
CT-CM rdf for butane-decane and decane-decane pairs, as well as the CM-CM rdf
for decane-decane pairs. Figure 5.9 presents the results of self-consistent pressure
matching for this mixture. The CG model accurately reproduces the pressure-
volume behavior of the AA model by construction.

In addition to determining the interaction potential, UR, the cgff tool also
characterizes many-body correlations in the mapped AA ensemble and quantifies
their contribution to UR. In order to illustrate these features, we consider a
system of 968 methanol molecules. As illustrated in Fig. 5.3d, we represent each
methanol with a single site that corresponds to its mass center. We choose this
smaller molecule and simpler representation for convenience, since the many-body
correlations in the mapped ensemble are then simpler to analyze and interpret.
We performed AA simulations for the methanol system in the same manner as
described above for the alkane systems, except that the AA production simulation
lasted only 5 ns. We did not simulate the resulting CG potential, although previous
studies have demonstrated that the MS-CG 1-site model quite accurately describes
the structure of liquid methanol.88

Panel a of Fig. 5.10 employs Eq. (5.36) to decompose the pair mean force,
−w′(r), between methanol molecules into the direct force, F (r) = φ(r), between
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Figure 5.10. a) Contributions to the nonbonded ME-ME pair mean force for methanol.
The solid black curve presents the MS-CG pair force, F (r) = φ(r), that minimizes χ2

1. The
dashed red curve presents the corresponding pair mean force, −w′(r). The dashed-dotted
purple curve presents the 3-body (indirect) contributions to the pair mean force. Panel
b) presents the 3-body contributions to the metric tensor, Ḡ(r, r′). Red and blue regions
indicate positive and negative values, respectively.

the pair and an indirect “three-body” contribution from correlated interactions with
other particles in the environment. The pair mean force can be directly calculated
from the pair potential of mean force, w(r) = −kBT ln g(r), while the direct force
is determined via force-matching. The cgff tool uses Eq. (5.36) to decompose the
indirect contribution to the pair mean force into contributions from every other
type of interaction in the system.119 Note that the 3-body contribution is attractive
at short ranges, indicating that the environment forces particles closer together
once the pair approaches 0.6 nm of one another. It is also interesting that the
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2-body MS-CG force function includes a relatively large repulsion corresponding
to a desolvation barrier near 0.4 nm that is not so pronounced in the pair mean
force. This desolvation barrier in the 2-body force function is partially offset by
the contributions of correlated interactions from the environment, as described
by the the metric tensor, Ḡζζ′(r, z). We note that, although we included the v2/3

rescaling in calculating bζ and Ḡζζ′ , we find that Eq. (5.35) remains valid to within
the numerical precision of the calculations.

Because the one-site CG methanol model considers only one type of interaction,
the metric tensor reduces to a single block matrix that depends upon the distances,
r and r′, of a pair of sites from a single central site. Panel b of Fig. 5.10 presents
an intensity plot of this metric tensor, Ḡ(r, r′). As defined by Eq. (5.32), Ḡ(r, r′)
describes the contribution to the pair mean force at r from correlations with
particles a distance r′ away. In particular, Ḡ(r, r′) corresponds to the average
cosine of the angle formed between such triplets of particles.117 Red and blue
regions of this intensity plot indicate positive and negative elements of Ḡ, which
in turn correspond to acute and obtuse angles between triplets, respectively. As
previously described,117 the negative blue band along the diagonal r′ ≈ r indicates
the tendency of equidistant particles to form obtuse angles due to their excluded
volume. The positive red off-diagonal stripes along r′ ≈ r ± σ correspond to
correlated forces arising from molecules in adjacent solvation shells about a central
molecule, where σ characterizes the size of the molecules. The alternating red and
blue bands moving out from the diagonal reflect the successive solvation shells of
methanol molecules.

5.6 Conclusions
We are releasing the BOCS toolkit as open source software for parameterizing
bottom-up CG models. As we illustrated for alkane mixtures, the BOCS toolkit
provides a robust implementation of both the MS-CG and g-YBG methods for
determining interaction potentials. In principle, the g-YBG approach may be used
for determining potentials directly from experimentally determined structure en-
sembles.171 In this context, the g-YBG framework may prove useful for interpreting
and possibly improving the reference states employed in knowledge based potentials
that are empirically inferred from known protein structures.119,217,218 Moreover, the
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BOCS toolkit implements an extended ensemble approach for optimizing the trans-
ferability of these potentials and also a self-consistent pressure-matching method
for accurately modeling isotropic volume fluctuations at constant external pressure.
We have recently demonstrated that the resulting volume potential can also be
adapted219 as a function of the local density220–223 in order to model inhomogeneous
systems. Finally, the BOCS toolkit provides unique capabilities for interpreting
CG potentials and their relation to many-body correlations in condensed phases.

At the same time, it is worth noting several limitations of the BOCS toolkit.
First and most fundamentally, in contrast to iterative methods, such as Iterative
Boltzmann Inversion,28 the Inverse Monte Carlo method,26 or relative entropy min-
imization,29,211 the MS-CG25,27,88,99,200 and g-YBG methods31,111 do not guarantee
that the CG interaction potential will necessarily reproduce any particular struc-
tural features of the underlying mapped ensemble.32 In practice, the MS-CG and
g-YBG models often provide a very good description of intermolecular structure, as
illustrated in this work. More generally, though, the structural fidelity of MS-CG
and g-YBG models depends upon the adequacy of the approximate potential to
account for the relevant many-body correlations in the mapped ensemble.119,121,122

Consequently, we intend in future work to implement more complex potentials into
the BOCS toolkit and also develop more predictive tools for identifying appropri-
ate CG representations. Furthermore, it may be fruitful to develop an iterative
wrapper for the cgff tool in order to take advantage of iterative versions of the
MS-CG/g-YBG method that can provide improved accuracy for modeling complex
structure ensembles.118,122,128,129 Similarly, while the BOCS toolkit is currently
useful for accurately modeling the pressure equation of state for homogeneous sys-
tems, we anticipate developing tools for modeling other thermodynamic properties.
Additionally, the BOCS toolkit is currently limited by the requirement for simple
CG representations in which sites correspond to disjoint atomic groups and by the
restriction to systems that are either at constant volume or that sample isotropic
volume fluctuations. These limitations clearly motivate future work to further
develop the BOCS toolkit. Moreover, in future work we envision implementing
more efficient methods for calculating the GDD′ matrix, as well as checkpointing
methods for saving the results of partial calculations.

Finally, we note that the current version of the BOCS toolkit is incompatible
with the most recent versions of GROMACS and LAMMPS, as well as with the
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trajectory formats of other MD engines. However, we are currently developing the
next version of the BOCS toolkit, which will eliminate all GROMACS dependencies
from the cgmap and cgff codebase. Instead, these tools will employ a simpler
topology file format and be compatible with both plain text and binary trajectory
file formats. These formats can then be readily translated for use with Gromacs2016
or other MD engines. Moreover, we are also developing software for employing
barostats with CG pressure corrections in current and future distributions of the
LAMMPS package. These developments should significantly extend the utility of
the BOCS toolkit.

Nevertheless, despite the aforementioned limitations, we hope that the BOCS
toolkit will provide a useful complement to the software already available for
developing bottom-up CG models. The source code, as well as documentation
and tutorials, for the BOCS toolkit are available for download at https://github.
com/noid-group/BOCS under the terms of the GPLv3 license.

Appendix
The theory section employs rather abstract notation in order to address a corre-
spondingly general class of interaction potentials, UR. This appendix provides a
more concrete and explicit treatment of UR for a common molecular mechanics
potential with contributions from bond-stretch, bond-angle, dihedral, and pair
potentials. The potential in configuration R may be expressed

UR(R) =
∑
ζ

∑
λ

Uζ(ψζλ(R))

=
bonds∑
α

U
(b)
tb(α)(bα) +

angles∑
α

U
(θ)
tθ(α)(θα) +

dihedrals∑
α

U
(ψ)
tψ(α)(ψα) +

pairs∑
(I,J)

U
(2)
t2(I,J)(RIJ).

(5.38)

The first term in Eq. (5.38) describes all contributions from bond-stretch interactions.
In this first term, α is a label indexing each bond, the sum ranges over all bonds,
tb(α) indicates the type of bond α, U (b)

tb(α) is the bond-stretch potential governing
all bonds of type tb(α), and bα indicates the length of bond α in configuration
R. The second and third sums in Eq. (5.38) describe similar contributions from
bond-angles and dihedral angles with α indexing the bond-angles and dihedral
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angles, respectively. Finally, the fourth term describes all non-bonded contributions
from pair potentials. In this fourth term, (I, J) indicates a particular pair of sites,
the sum is performed over all non-bonded pairs, t2(I, J) specifies the particular
non-bonded potential, U (2)

t2(I,J), describing the interaction between the pair, and RIJ

is the distance between the pair in configuration R. Given this potential, the force
on each site K may be expressed

FK(R) =
∑
ζ

∑
λ

Fζ(ψζλ(R))∂ψζλ(R)
∂RK

=
bonds∑
α

F
(b)
tb(α)(bα) ∂bα

∂RK

+
angles∑
α

F
(θ)
tθ(α)(θα) ∂θα

∂RK

+
dihedrals∑

α

F
(ψ)
tψ(α)(ψα) ∂ψα

∂RK

+
pairs∑
(I,J)

F
(2)
t2(I,J)(RIJ)∂RIJ

∂RK

, (5.39)

where F
(b)
tb(α)(x) = −dU (b)

tb(α)(x)/dx is the bond-force function, while F
(θ)
tθ(α)(x),

F
(ψ)
tψ(α)(x), and F (2)

t2(I,J)(x) are corresponding force functions governing angles, dihe-
drals, and pair non-bonded interactions, respectively. Each of these force functions
is represented by a linear combination of basis functions. For instance, if tb spec-
ifies a particular type of bond governed by the potential function U (b)

tb , then the
corresponding bond-force function is represented

F
(b)
tb (x) =

∑
d

φ
(b)
tbd
f

(b)
tbd

(x), (5.40)

where d indexes parameters, φ(b)
tbd
, that describe the bond force function F (b)

tb (x),
while f (b)

tbd
(x) indicates the corresponding basis function of a single variable. Similar

expansions are adopted for the angle, dihedral, and non-bonded force functions.
Given this expansion the total force on site K may be expressed

FK(R) =
∑
D

φDGK;D(R)

=
b−types∑

tb

∑
d

φ
(b)
tbd

GK;tbd(R) +
θ−types∑

tθ

∑
d

φ
(θ)
tθd

GK;tθd(R)

+
ψ−types∑

tψ

∑
d

φ
(ψ)
tψd

GK;tψd(R) +
pair−types∑

t2

∑
d

φ
(2)
t2dGK;t2d(R). (5.41)
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In Eq. 5.41, the first double sum describes contributions from bond-stretch forces.
In this term, the first sum is over all types, tb, of bonds, while the second sum
ranges over the parameters φ(b)

tbd
describing the potential for bonds of type tb. The

corresponding force field basis vectors may be expressed

GK;tbd(R) =
∑
α∈tb

f
(b)
tbd

(bα) ∂bα
∂RK

, (5.42)

where the sum is performed over all bonds α of type tb. The remaining terms rep-
resent corresponding contributions from bond-angle, dihedral, and pair potentials.
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Chapter 6 |
Effect of solvent and structure
on asphaltene nanoscale aggre-
gation

N. J. H. Dunn, B. Gutama, W. G. Noid, In-progress manuscript

6.1 Abstract
We examined the aggregation behavior of model asphaltene compounds under
varied solvent conditions via coarse-grained molecular dynamics simulation. The
model asphaltenes studied spanned a variety of molecular structures, varying the
core flexibility and the aromatic:aliphatic ratio of the molecules. We observed the
formation of one-dimensional, rod-like nanoaggregates for those model asphaltenes
with a rigid core under solvents that promoted aromatic cohesion. These aggregates
were not observed for those model asphaltenes with a flexible core. Further, these
rod-like aggregates were observed to form more readily in mixed solvents that
promoted both aromatic and aliphatic cohesion than in solvents that only promoted
aromatic cohesion. Both core types were observed to form large, disordered
aggregates in solvents that promoted aliphatic cohesion, with those molecules
with longer tails aggregating more readily under these conditions. These results
support the Yen-Mullins model for asphaltene nanoaggregation behavior.
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6.2 Introduction
Asphaltenes, known as the ‘cholesterol of petroleum,’50 are a problematic class of
molecules found in crude oil that have a propensity for aggregating and coating the
surface of oil processing and transport equipment. These molecules are thought
to form colloidal suspensions in oil that flocculate into viscoelastic masses when
destabilized by a change in the processing conditions.45,61 These floccs are an
expensive issue for the petroleum industry due to their ability to clog pipes and
foul heat exchanging equipment.47–49 It is estimated that asphaltene flocculation
costs the petroleum industry billions of dollars a year.50–52

The precise molecular properties of asphaltenes have been a topic of extensive
debate.46,47,58–60 Asphaltenes are defined as the fraction of crude oil that is soluble
in toluene, and insoluble in n-heptane.47,50,58,224 Due to this definition as a
solubility class, there are a wide variety of molecular species represented in any
given asphaltene sample, making it difficult to determine specific information about
the molecular structures that are present.45,53–57 Further complicating matters,
the high propensity of asphaltenes to aggregate means that it can be difficult to
differentiate between the properties of single molecules and those of aggregates.225

Two main views have emerged for describing the average asphaltene molecule:45,226

continental (or island) asphaltenes are proposed to have a single aromatic core
surrounded by alkyl tails, while archipelago-type asphaltenes are proposed to have
several aromatic cores linked by alkyl chains. Recently, the continental model
has grown in popularity among asphaltene researchers,227–231 although there is
significant evidence to suggest that both archipelago and continental structures are
represented in the asphaltene fraction.232,233

The Yen-Mullins (or modified Yen) model has emerged as a leading theory that
describes both the average asphaltene molecule and asphaltene aggregation.57,61

The prototypical asphaltene molecule proposed by this model is an approximately
750 g/mol continental-type structure composed of an aromatic core surrounded
by alkyl chains.61 These molecules are proposed to aggregate via a hierarchical
mechanism, where 7-10 molecules form a nanoaggregate, and these nanoaggregates
then cluster together into larger particles.57,61 The nanoaggregates proposed by
the Yen-Mullins model are formed by stacking the aromatic cores against each
other to form short rod-like structures, which then cluster together into a fractal
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arrangement.57,61,234,235 Nanoaggregation is thought to begin around 100 mg/L
of asphaltenes in oil,62–67 while clustering begins around 2-5 g/L.68–70 This model
is supported by experimental studies employing such varied techniques as two-
step laser desorption ionization,227 NMR,65,228,229 alternating and direct current
conductivity,62–64 and centrifugation.66,67

Due to the difficulty in using experimental techniques to characterize molecule-
level details of asphaltene behavior, molecular simulation is often used to study
the behavior of proposed model asphaltenes. Most commonly, all-atom (AA)
molecular dynamics is the methodology of choice for such simulation studies.
These AA simulation studies have explored the nanoaggregation behavior236,237 of
various model asphaltenes under different solvents,49,54,238,239 at interfaces,47,240–243

and under different temperatures and pressures.56,237 However, these studies
are necessarily limited in size and in scope by the computational complexity of
simulating an AA system of solvated asphaltenes at a realistically low concentration,
although recent advances in molecular dynamics on GPUs are extending these
limits.244 At these low concentrations, the majority of the computation time is
spent on simulating the solvent, as the solvent molecules greatly outnumber the
asphaltenes.

Coarse-grained (CG) modeling is one approach for extending the accessible
scale of asphaltene simulation. CG models represent a target system at a reduced
resolution by mapping out atoms from an AA model.245–247 This can provide
a significant simulation speedup relative to an AA model, enabling larger scale
simulation studies that can explore physically larger systems and/or multiple
state points. Such CG models have been used in the context of asphaltene-like
molecules to study nano-aggregation,248 mesoscale clustering behavior,249,250 the
effect of solvent dependence,249,251 and to extend simulations to the microsecond
time scale.48,249–252

In this work, we use an implicit solvent CG toy model to explore the nanoag-
gregation behavior of several model asphaltene compounds. This model captures
the quality of the solvent for the model asphaltenes by scaling the attractive contri-
bution to the nonbonded pair potentials. The simplicity of this model allowed us
to simulate two replicates each of 106 distinct systems, for a total of over 80 µs of
simulation without accounting for dynamical speedup from coarsening. This wide
sweep of solvent conditions for several molecular structures allows us to charac-
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Figure 6.1. Structures of the model asphaltene compounds. The green and cyan sites
correspond to tail and core sites, respectively. a) has an ovalene-type core, while b) has a
bipyrene-type core. Both molecules shown have tail lengths of eight sites.

terize the impact of molecular structure on the solubility profile of these model
asphaltenes, and the effect of the solvent quality on the structure of the resulting
nanoaggregates.

The remainder of the paper is organized as follows. Section 6.3 provides the
key details of our simulation methods and characterization metrics. Section 6.4
presents an analysis of the resulting aggregation behavior. Section 6.5 discusses
these results in the context of the Yen-Mullins model and other recent studies.
Finally, Section 6.6 summarizes the main conclusions of our work and suggests
possible future work in this area.

6.3 Methods

6.3.1 Coarse-Grained Model

We used toy CG models of several model asphaltene compounds to simulate
asphaltene aggregation phenomena. In particular, we used six distinct model
asphaltene structures - three with ovalene-type cores, and three with bipyrene-type
cores, as seen in Figure 6.1. For each of these two core types, we used variant
molecules with tail lengths of five, eight, and eleven sites in order to vary the
aromatic to aliphatic ratio for these molecules. These structures are indicated with
the notation ovalene-N or bipyrene-N , where N denotes the length of the tails.
This representation places a single CG site at the location of each carbon atom in
a corresponding AA molecule, and omits the hydrogen atoms. Tail (green) sites
correspond to aliphatic sp3 carbons, while core (teal) sites correspond to aromatic
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components are shown in red dashed and blue dashed-dotted curves, respectively.

sp2 carbons. All bond, angle, and dihedral interactions are maintained from the
corresponding atom types in the OPLS-AA force field. This makes the cores of the
model asphaltenes rigid and planar, while their tails remain flexible. These two core
types were chosen in order to study the impact of internal flexibility of the cores of
model asphaltenes on their propensity to form Yen-Mullins-type nanoaggregates.

Importantly, these CG models do not explicitly include any solvent. Instead,
the nonbonded pair potentials are modified in order to capture the effect of solvent
quality on the different site types. The functional form of the pair potential
used is the Weeks-Chandler-Anderson (WCA) decomposition253 of the standard
Lennard-Jones 12-6 potential

ULJ(r) = 4ε
[(
σ

r

)12
−
(
σ

r

)6
]
. (6.1)

The WCA decomposition splits ULJ into purely attractive and repulsive components,
as shown in Figure 6.2. The attractive contribution is given by

Ua(r) =

−ε if r < 21/6σ

ULJ(r) if r ≥ 21/6σ
(6.2)
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while the repulsive contribution is given by

Ur(r) =

ULJ(r) + ε if r < 21/6σ

0 if r ≥ 21/6σ.
(6.3)

We defined distinct values of ε for core-core (εR) and tail-tail (εL) interactions,
while core-tail interactions were determined using the mixing rule εRL = √εRεL.
We kept the value of σ constant at 0.3525 nm for both core and tail sites. This
nonbonded potential was also applied to intramolecular nonbonded interactions
between sites separated by three or more bonds. Under this framework, a solvent is
defined by a pair of values εR,εL, indicating the quality of the solvent for aromatic
(core) and aliphatic (tail) components of the model asphaltenes. Each molecule
has a set of possible solvents (solvent space) defined by the possible combinations
of εR,εL. A poor solvent has ε > 0 and encourages aggregation through attractive
nonbonded interactions, while an ideal solvent has ε = 0, resulting in sites that
have purely repulsive nonbonded interactions. For ease of notation, we introduce
the scaled unitless ε̄R = εR/kBT and ε̄L = εL/kBT .

6.3.2 Coarse-Grained Simulations

We simulated all CG models in the NVT ensemble under full periodic boundary
conditions with temperature T=303 K, enforced by a stochastic dynamics ther-
mostat254 with a coupling constant of 0.5 ps. We selected constant volumes for
each model compound such that the resulting system would have a fixed 1.0 wt%
(6.8 g/L) asphaltenes, assuming the implicit solvent was pure heptane. Each sim-
ulation contained 25 model asphaltene molecules of a single type. We performed
these simulations using GROMACS 4.5.3255 compiled with double floating point
precision. Each simulation used a 2 fs time step and ran for up to 400 ns or until it
had reached a stable state lasting at least 50 ns. We implemented the nobonded
potentials as GROMACS table files that separated the attractive and repulsive
contributions into columns that could be independently parameterized according to
the solvent quality of the simulation. These table files were constructed such that
the force goes smoothly to zero at the cutoff of 1.2 nm. None of the CG models
included electrostatic interactions.

We selected the solvent conditions to simulate for each molecule by qualitatively
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exploring solvent space and observing the aggregation behavior at each state point.
We selected new state points in order to determine the boundaries of different
behavior regimes. We performed a total of 212 simulations, covering 106 state
points. For each of these state points we ran a pair of simulations, one with a
starting configuration where the molecules were placed on a regular grid within the
simulation box, and one where the starting configuration was taken from the end
of a short simulation with purely repulsive nonbonded potentials. Unless otherwise
specified, all metrics reported for a system are averaged between these replicate
simulations.

Simulations performed with these models enjoy a dynamical speedup relative to
a corresponding AA model due to a relative smoothing of the free energy landscape.9

While there is no AA simulation that corresponds exactly to these CG simulations
due to our treatment of the solvent, comparing the self-diffusion constant of our
model asphaltenes to AA simulations of similar molecules diffusing through heptane
and toluene249 estimates that our model has a speedup factor between 1.7 and 4.3.
Durations reported in the text of this paper are not scaled by this speedup factor
and reflect only the GROMACS timesteps taken.

6.3.3 Aggregate Analysis

In order to characterize the aggregation behavior for these model asphaltenes,
we adopted the three distance criteria defined by Wang et al.249 for aggregate
membership. These metrics are briefly summarized below.

6.3.3.1 Minimum Distance

The minimum distance criteria considers two molecules A and B to be part of the
same aggregate if any site on A is within rmin ≤0.49 nm of any site on B. This
cutoff was selected as 1.25*(21/6σ), based on the position of the attractive well in
the total nonbonded potential.

6.3.3.2 Minimum Core Distance

The minimum core distance criteria considers two molecules A and B to be part
of the same aggregate if any core site on A is within rcore ≤0.49 nm of a core site
on B. This cutoff is again based on the position of the attractive well in the total
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Figure 6.3. Demonstration of the difference between rmin (solid black) and rmaxmimin
(dashed black) distances for a pair of ovalene cores. Tail sites are hidden for clarity.

nonbonded potential. Tail sites are ignored for the purposes of this criterion. The
minimum core distance metric is used in conjunction with rmin to help distinguish
between aggregates that are driven by core-core attraction and those that are driven
by tail-tail or core-tail attraction.

For bipyrene-type molecules that have two cores each, there are four values of
rcore between the two molecules. In this case, the minimum of these values is used
to determine whether the molecules belong to the same aggregate.

6.3.3.3 Maximin Core Distance

The maximin core distance is a metric that captures an element of the core-core
orientation between a pair of molecules. For a pair of molecules A and B with core
sites indexed by a and b, this distance can be defined as

rmaximin = max
[(

max
a∈A

(min
b∈B

rab)
)(

max
b∈B

(min
a∈A

rab)
)]
. (6.4)

Algorithmically, this metric can be calculated by 1) finding the minimum distance
between each core site a to any core site b, 2) taking the maximum of those distances
to be rmaximin,1, 3) finding the minimum distance between each core site b to any
core site a, 4) taking the maximum of those distances to be rmaximin,2, and finally
5) take rmaximin = max (rmaximin,1, rmaximin,2).

This distance is illustrated in Figure 6.3. When rmaximin is small, the cores are
roughly parallel to each other and aligned face-to-face, indicating the presence of
ordered core-core stacking within an aggregate. Systems that count aggregates
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using this as the cutoff metric have contiguous, aligned stacks of cores, similar to
the Yen-Mullins-type nanoaggregate. Nanoaggregates that have a skewed angle
between cores or are stacked in an offset arrangement will not be counted under
this metric. As in the case of rcore, there are four values of rmaximin between a pair
of bipyrene-type molecules, and the minimum of these values is used to determine
aggregation.

6.3.3.4 Extent of Aggregation

We used the mass-averaged aggregation number g2
256 as an indicator for the extent

of aggregation in each system, where

〈g2(t)〉 =
〈∑

i ni(t)i2∑
i ni(t)i

〉
. (6.5)

Here t indicates a timestep, i is the size of an aggregate, and ni(t) is the number of
aggregates of size i at time t. The angular brackets indicate an average over the
set of equilibrated frames from both replicates of the system. For our systems, this
metric can vary from 1 for a completely non-aggregated system to 25 for a system
with a single aggregate containing all 25 molecules.

The value of g2 varies depending on the distance metric used to determine
aggregation. The different g2 metrics are labeled as Gmin, Gcore, and Gmaximin for
the minimum distance, minimum core distance, and maximin aggregation criteria.

6.3.3.5 Intra-Aggregate Alignment

We used the second Legendre polynomial of the cosine of the angle between cores
to further characterize the structure of aggregates:

〈P2(cosθ)〉 =
〈1

2
(
3cos2θ − 1

)〉
intra

(6.6)

Here, θ is the angle between the normal vectors of the planes formed by the molecule
cores. The subscripted angular brackets indicate an average over all intra-aggregate
pairs for all equilibrated time steps for both replicates of the system. This metric
will range from -0.5 for systems that prefer a perpendicular core-core alignment to
1.0 for systems that prefer parallel (or antiparallel) core stacking. A system with
no strong preference for the orientation between cores will show 0 for this metric.
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Each segment of the core of a bipyrene molecule contributes independently to
this average, giving a total of four contributing core orientations. Further, the
intramolecular alignment between the core segments in a single bipyrene molecule
also contributes to this average, but only when that molecule is part of an aggregate
containing at least two distinct molecules.

As in the case of g2, the different distance metrics lead to different values of
〈P2(cosθ)〉. The same subscripts are used with this metric as for g2 to indicate
which distance metric was used to determine aggregation.

6.4 Results
In the following, we examine the aggregation behavior of the CG model asphaltenes
under a range of implicit solvent conditions. We first examine the aggregation
behavior of the ovalene-8 and bipyrene-8 model compounds in a set of representative
solvents. Then, we focus on the behavior of ovalene-8 to introduce key features of
the solvent phase diagrams. Finally, we expand our scope to consider the behavior
of all six model compounds to see the impact of both the core flexibility and the
ratio of aromatic to aliphatic sites on aggregation behavior.

Figure 6.4 shows examples of what representative ovalene-8 (left column) and
bipyrene-8 (right column) aggregates look like under selected solvent conditions.
The top row corresponds to a solvent that strongly promotes aromatic cohesion, the
middle row to a solvent that promotes both aliphatic and aromatic cohesion, and
the bottom row to a solvent that strongly promotes aliphatic cohesion. Considering
the left-hand (ovalene-8) column first, we see strong columnar stacking in both
the strong aromatic cohesion case (Fig. 6.4a) and the mixed attraction case (Fig.
6.4c). Both of these aggregates closely resemble the prototypical Yen-Mullins
nanoaggregate,57,61 with an ordered, columnar core composed of stacked aromatic
segments surrounded by a layer of aliphatic tails. The aggregate formed under
strong aliphatic cohesion shown in Figure 6.4e has a markedly different structure,
with no apparent preference for stacking the aromatic core segments of the molecules.
Now considering the right-hand (bipyrene-8) column, the representative aggregates
shown in Figures 6.4b and 6.4d are smaller than the corresponding aggregates in
the ovalene-type systems and demonstrate no clear core stacking. In contrast, the
aggregates formed under strong aliphatic cohesion in Figure 6.4f are similar to
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Figure 6.4. Representative aggregates from selected solvent conditions. The solvents
shown are a+b) ε̄R = 0.11, ε̄L = 0, c+d) ε̄R = 0.06, ε̄L = 0.06 and e+f) ε̄R = 0, ε̄L = 0.21.
Ovalene-8 and bipyrene-8 molecules are shown in the left and right columns, respectively.

the corresponding ovalene-type system. This difference in aggregate structure in
aromatic-driven and mixed solvents is evidently due to the internal flexibility of the
bipyrene-type cores that allows these molecules to take on different conformations
that may not be conducive to contact between the core sites. In contrast, this
core flexibility has little effect on the structure of aggregates driven by cohesive
interactions between the aliphatic tails as seen in Figures 6.4e and 6.4f.

Figure 6.5 plots the probability that a molecule will belong to an aggregate
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Figure 6.5. Distributions for the probability that a molecule will belong to an aggregate
of size N for representative ovalene-8 and bipyrene-8 systems. The panels are laid out to
correspond to the organization of molecule types and solvents in Fig 6.4.

of size N for each of the systems represented in Figure 6.4. The structure and
solvent represented in each panel in Figure 6.5 are the same as in the corresponding
panel in Figure 6.4. The different curves in each panel correspond to the different
aggregation metrics. Figure 6.5a shows this probability distribution for ovalene-8 in
a solvent that promotes core-driven aggregation. The jagged nature of the curves
indicate that this system exists in a state where monomers are not able to freely
join and leave a set of aggregates of roughly constant size. We emphasize here that
these curves are averaged between two independent replicate simulations, and that
these curves qualitatively agree between the replicates (see SI 1). Further, the flat
nature of the time traces of each aggregation metric G (see SI 2) demonstrates that
the simulations have reached a state of local stability. This suggests that these
panels reflect metastable states that are a result of the molecular structure and the
solvent conditions, rather than occurring by chance.
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The low probability of belonging to an aggregate of size one indicates that
monomer dissociation and addition is rare compared to the formation of small
aggregates that later group into larger ones. This may be due to the small number
of monomers (N=25) in the system compared to the cohesive strength between
molecules. This contrasts with bipyrene-8 in the same solvent (Fig 6.5b), which
shows a relatively high probability of membership in an aggregate of size one that
smoothly decays to zero with increasing aggregate size. This smooth curve indicates
that there is sufficiently weak cohesion between molecules that it is possible for
monomers to join and leave an aggregate, and that the system is at equilibrium
with respect to its aggregation state. The probability distributions for a solvent
that promotes mixed cohesion (Figs 6.5c and 6.5d) are qualitatively similar to the
core-driven case, except that larger aggregates form on average in the mixed case.
This is likely due to the addition of attractive interactions between the tail sites in
the mixed case allowing aggregates to coalesce after forming, while the tail sites
act as purely repulsive barriers in the core-driven case.

Moreover, the probability curves for each aggregation criterion align completely
(rmin ≈ rcore ≈ rmaximin) for the ovalene cases in Figures 6.5a and 6.5c. This
corresponds to aggregate structures where the core sites of different molecules
are tightly packed together, and the cores are roughly parallel. Similarly, the
bipyrene systems in Figures 6.5b and 6.5d have min and core curves that closely
align, indicating that aggregates are often joined by contact between core molecules.
However, the curve corresponding to aggregation by the maximin distance shows a
consistently lower probability of aggregate membership, indicating a lack of strong
core-core alignment in these systems. It is important to note that the metrics
reported for bipyrene-type molecules reflect the minimum distance from the four
pairs of cores.

The solvents promoting tail-driven aggregation in Figures 6.5e (ovalene-8) and
6.5f (bipyrene-8) are distinct from the other systems, but similar to each other. In
both cases the probability curves defined by core-driven metrics demonstrate a high
probability of membership in a monomer and a smooth decay to zero, while the
probability curve defined by the global minimum distance demonstrates a peak for
large aggregates and a relatively low probability of membership in a monomer. This
suggests that the aggregates exist in metastable states, and that the aggregates are
held together by a network of aliphatic sites with only incidental contact between
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Figure 6.6. Phase diagram of 〈Gmin〉 for the ovalene-8 model as a function of core
site (horizontal) and tail site (vertical) affinity. This affinity is given by the depth of
the site-site attractive potential ε scaled by kBT to give unitless axes. The colors of
the circles indicate the value of 〈Gmin〉 for the solvent conditions corresponding to the
location of the center of the circle. Brighter colors indicate a higher value of 〈Gmin〉.

core sites. Given sufficient time, it seems likely that molecules in these systems
would coalesce into a single, large aggregate. Further, the relatively low probability
of membership in aggregates of size N > 1 by the maximin metric indicates that
there is no strong tendency towards aligning or stacking the aromatic cores in these
systems. This is consistent with the representative aggregates shown in Figure 6.4.

We use phase diagrams across solvent space to demonstrate the impact of the
solvent conditions on the aggregation behavior of the model asphaltenes. Figure 6.6
is such a phase diagram for ovalene-8, plotting the average extent of aggregation
(〈Gmin〉) as the point color against the quality of the solvent for aliphatic sites
(x-axis) and for aromatic sites (y-axis). The origin of the diagram is an ideal solvent
where the site-site potentials have an attractive well depth ε = 0, and solvent
quality decreases with distance from the origin. Darker points correspond to a
low extent of aggregation, while brighter points correspond to a higher extent of
aggregation. Points near the origin display low extents of aggregation as expected
for the ideal and nearly ideal solvents in this region of the phase diagram. We
observe an increased propensity for aggregation as the solvent quality decreases
away from the origin.

Looking at the set of solvents along ε̄L = 0, we observe the first solvent promoting
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significant aggregation at ε̄R = 0.11. In contrast, along ε̄R = 0 the first solvent
promoting significant aggregation is at ε̄L = 0.21. From this, we observe that
ovalene-8 aggregates readily for relatively small values of ε̄R compared to ε̄L. This
demonstrates that for this model asphaltene, attraction between the aromatic
sites is a stronger driving force towards aggregation than attraction between the
aliphatic sites. The different arrangement of the two site types is expected to
cause this difference. In particular, the rigid, planar core geometry allows for all
of the core sites to simultaneously interact without incurring much of an entropic
penalty, but the flexibility and linear geometry of the tails means that there is
a strong entropic penalty for the tails to align. Additionally, slightly increasing
either ε̄R or ε̄L decreases the aggregation threshold for the other, suggesting that
aromatic-aliphatic interactions may also be important for promoting aggregation
formation.

We can investigate the impact of different core types as well as different tail
lengths by comparing such phase diagrams between the different model molecules.
Figure 6.7 shows the extent of aggregation by plotting phase diagrams of 〈Gmin〉
over different solvent conditions for each molecule type. Here, ovalene-type cores
are on the left, while bipyrene-type cores are on the right. From top to bottom, the
rows correspond to tails of length 5, 8, and 11 sites. The colors correspond to the
value of 〈Gmin〉, with brighter colors corresponding to larger values and more highly
aggregated systems. Two overall trends emerge from this view. First, consider
the set of solvents along ε̄L = 0 that promote aromatic cohesion for each molecule
type. In each case, aggregation onsets at a lower value of ε̄R for the ovalene-type
molecules than for the bipyrene-type molecules. This demonstrates that the flexible
bipyrene-type cores do not aggregate as readily in solvents that promote aromatic
cohesion. Second, consider the solvent at (ε̄L = 0.21, ε̄R = 0) for each system. For
those molecules with tail lengths of 5 (panels 6.7a and 6.7b), there is no appreciable
aggregation in this solvent. However, as the tail length increases to 8 and 11, there
is significant aggregation observed in this solvent. Intuitively, increasing the amount
of aliphatic sites in a molecule type enhances the propensity of that molecule type
to aggregate in solvents that promote aliphatic-driven aggregation. Interestingly,
for ε̄R = 0, the bipyrene- and ovalene-type molecules behave similarly. This reflects
the fact that in both cases the tails are flexible and evenly arranged about a central
core, and the internal flexibility of the bipyrene core does not strongly impact the

156



0.00

0.05

0.10

0.15

R

a) b)

0.00

0.05

0.10

0.15
R

c) d)

0.0 0.1 0.2
L

0.00

0.05

0.10

0.15

R

e)

0.0 0.1 0.2
L

f)

0

2

4

6

8

10

12

G
m

in

Figure 6.7. Phase diagrams of 〈Gmin〉 for all model asphaltenes. The panels correspond
to a) ovalene-5, b) bipyrene-5, c) ovalene-8, d) bipyrene-8, e) ovalene-11, and f) bipyrene-
11. The color scheme is the same as in Fig 6.6. Note, however, the different maxima for
the color bars.

relative positions of the tails.
Differences in aggregate structure can also be observed from this type of compar-

ison. Figure 6.8 shows phase diagrams of the core alignment metric 〈P2(cosθ)〉min.
The panel layout is the same as in Figure 6.7. Here, brighter colors indicate a larger
value of 〈P2(cosθ)〉min and a higher degree of core alignment within an aggregate,
while darker colors indicate more disordered aggregates. The most general trends
to emerge are that all molecules form more ordered aggregates in solvents that
promote core-driven or mixed aggregation, and that this trend is stronger for the
ovalene-type molecules than for the bipyrene-type molecules. Indeed, there is only
a weak core alignment effect present for the bipyrene-type cores under any solvent
conditions. Interestingly, there is an onset of core alignment for ovalenes with
ε̄R > 0.5, and for smaller ε̄R there is little or no alignment observed. Further, this
threshold appears to be slightly smaller for molecules with shorter tails, reflecting
an entropic repulsion effect from the tails that increases with their length.

Figure 6.9 shows phase diagrams of the extent of core-driven aggregation via
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Figure 6.8. Phase diagrams of 〈P2(cosθ)〉min for all model asphaltenes. The panels are
laid out to correspond to the organization of molecule types in Fig 6.7. Brighter colors
indicate a higher value of 〈P2(cosθ)〉min. Note, however, the different maxima for the
color bars.

〈Gmaximin〉. As in the other aggregation phase diagrams, warmer colors indicate
a higher extent of aggregation. This figure uses the maximin metric to highlight
solvent regions that promote the formation of the ordered aggregates of size 7-10
predicted by the Yen-Mullins model.57,61 The panels are laid out in the same
configuration as in Figure 6.7. Note that none of the bipyrene-type molecules
demonstrate significant aggregation under this metric for any solvent conditions.
However, the ovalene-type molecules demonstrate significant ordered aggregation in
solvents promoting strong aromatic cohesion, as well as in mixed solvents. Mixed
solvents promote this type of aggregate at relatively lower values of ε̄R compared
to those promoting only aromatic cohesion, likely due to the tails’ role as purely
repulsive barriers in the aromatic-promoting solvent. This suggests that Yen-
Mullins-type aggregation is most favorable when the solvent is moderately poor for
both aromatic and aliphatic components of the model asphaltenes, or when the
solvent is extremely poor for aromatic components. It is notable that stacks larger
than 7-10 molecules are only rarely observed for the solvent conditions sampled here.
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Figure 6.9. Phase diagrams of 〈Gmaximin〉 for all model asphaltenes. The panels are
laid out to correspond to the organization of molecule types in Fig 6.7. The color scheme
is the same as in Fig 6.6. Note, however, the different maxima for the color bars.

This may be due to finite size effects - there are only 25 molecules in each simulation
at a relatively low concentration, so once a few small aggregates have formed there
are no longer any monomers available to continue their growth. However, this may
also be due to the entropic repulsion of the tails effectively capping the aggregate
stacks once a critical amount of tail sites are present in an aggregate.

6.5 Discussion
In this work we used CG toy models of model asphaltene compounds to investigate
the impact of solvent quality and molecular structure on asphaltene aggregation
behavior. We simulated a set of model asphaltenes under a variety of solvent
conditions implemented as nonbonded pair potentials between asphaltene sites
that varied in their cohesive strength. The simplicity of this model allowed us to
simulate a wide variety of solvent conditions for the selected model asphaltenes.
We then characterized the aggregation propensity of each system, as well as the
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structure of the resulting aggregates.
Our work demonstrates that for ovalene-type molecules, the rod-like Yen-Mullins

nanoaggregates form most readily in solvents that promote cohesion between both
the core and tail sites, as highlighted in Figure 6.9. In particular, solvents that have
approximately the same cohesive strength between all of the sites display the most
distinctive Yen-Mullins-type structures for the nanoaggregates. This is consistent
with expectations for a real crude oil system, where the crude oil mixture would
not be an ideal solvent for any component of the asphaltene molecule. This is also
consistent with observations of Yen-Mullins-type aggregates forming in previous
AA simulation studies on model asphaltenes in heptane and toluene,238,257 which
would both qualify as mixed solvents under our toy model.

Smaller versions of these aggregates also form under solvents that strongly
promote cohesion between the cores but are ideal solvents for the tails. In these
cases, it is expected that the tails interfere with the core-driven cohesion by
physically blocking the binding faces on an aggregate. The aggregate-limiting
behavior of longer alkyl tails has also been shown in a previous AA simulation
study.257 This may provide a mechanism by which Yen-Mullins nanoaggregates
would stop growing when they contain 7-10 molecules, if the crude oil mixture is a
worse solvent for the cores than for the tails.

The internally flexible bipyrene-type molecules display little to no Yen-Mullins-
like nanoaggregation behavior under any solvent regime investigated, and aggregate
much less readily in the core-driven and mixed cohesion regimes. So while as-
phaltenes with flexible cores are expected to be present in real crude oil, based
on these results we would not expect them to be the basis of Yen-Mullins-type
noaggregate formation in these systems. They may however, be involved in the
formation of clusters and networks of aggregates, or could form stacked aggregates
under solvent conditions not explored here. A recent study by Wang et al. ex-
plores the aggregation behavior of similar archipelago-type asphaltenes with 2-3
aromatic cores joined by aliphatic chains.258 Their results showed Yen-Mullins-type
aggregation for these model asphaltenes up to concentrations of 10 wt%, with
those asphaltenes possessing three cores aggregating more readily than those with
two. This discrepancy between our results and those of Wang et al. may be due
to the difference in the molecular structure of the modeled asphaltenes. Their
model compounds had larger aromatic cores and longer aliphatic links than our
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bipyrene-type molecules, which could offer different aggregation pathways to the
two molecule types. At archipelago asphaltene concentrations higher than 10 wt%,
Wang et al. observed aggregation that bypassed the Yen-Mullins aggregation hierar-
chy and immediately began forming distributed networks as a result of the flexible
aggregation pathways available to this type of molecule.258 It would be interesting
to test our bipyrene-type molecules in this concentration regime to see if this
structure also favors network formation under these conditions. Future work could
also explore the role of internally flexible model asphaltenes in systems containing a
variety of model asphaltene structures, as they may play a role in transitioning from
nanoaggregation to clustering, or in the termination of nanoaggregate formation.

In the tail-driven cohesion regime, both ovalene-type and bipyrene-type molecules
aggregate readily into large, loosely bound, disordered clusters. This regime corre-
sponds to a highly aromatic solvent that poorly solvates the asphaltene tails but
is a good solvent for the cores. Previous simulation studies have also shown that
aromatic solvents such as toluene lead to less ordered aggregates by associating
with the asphaltene cores.238,257 In our simulations, these clusters grew to contain
all of the asphaltene molecules present in the simulation box, and demonstrated
limited monomer association and dissociation behavior throughout the course of
the simulation. These clusters had little to no core alignment or other obvious
ordering, although it is expected that those model asphaltenes with longer tails
could eventually form micelle-like structures in systems with more molecules avail-
able. This solvent regime does not correspond to the expected composition of a
real crude oil system, which would be unlikely to be comprised of solely aromatic
compounds.

Compared to other nanoaggregation studies, the structures we observed for
ovalene-type molecules under solvents promoting aromatic cohesion are relatively
uniform and simple. We observed stacks of ovalene-type molecules of varying
sizes in these solvents, with the cores aligned in a face-on position. This is in
contrast to other simulation studies that have shown more variety in the structure of
nanoaggregates of model asphaltenes and asphaltene-like molecules. Nanoaggregate
archetypes not observed in this study include branched aggregates,237 curved
aggregates,259 helical aggregates,248 and aggregates containing t-shaped interfaces
between the aromatics cores.250,260 The lack of variety in our observed nanoaggregate
structures may result from the simplicity and symmetry of the model asphaltene
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compounds that we selected for this study. In particular, the symmetric placement
of the tails around the cores of the model asphaltenes we used precludes the
possibility of t-shaped interfaces between the cores, and discourages off-center
core stacking that might lead to branched or helical aggregates. Future studies
with this type of model could use model asphaltene molecules with varied and
asymmetric structures to observe the impact of these structural details on the
resulting nanoaggregates.

A recent study by Wang et al.250 used an explicit solvent CG model to study
the mesoscale clustering behavior of model asphaltenes under varying solvent
composition, temperature, and pressure. They identified regions of the resulting
phase space where nanoaggregation, clustering, and network formation occurred,
and characterized the resulting aggregate structure. In the region of their phase
space relevant to this study (300 K, 1 bar), they observed nanoaggregation to onset
in a 25% toluene / 75% heptane solvent, and clustering to onset in a 100% heptane
solvent. There is no direct correspondence between their solvent composition and
our solvent space, and their asphaltene concentrations were higher (20 wt% vs
1 wt%). However, their results suggest that there may be regions of solvent space
sampled in our study where clustering would occur, given a sufficient supply of
asphaltene molecules. Depending on the solvent, a concentration of 1 wt% is within
the regime where the onset of clustering has been experimentally observed. This
is consistent with our observation that metastable nanoaggregates form under
relatively poor solvents, as evidenced by Figures 6.5a and 6.5c. The solvent in these
systems is likely poor enough to promote clustering (or even network formation) in
a system with more asphaltene molecules available. Future work with our model
could focus on these regions of solvent space and simulate larger systems to observe
the clustering and network-formation behvaior of these model asphaltenes.

It should be noted that our phase diagrams across solvent space use temperature-
scaled coordinates to express the cohesion of the nonbonded potential. In this type
of simple toy model the cohesive interactions scale directly with temperature, so
changing the temperature effectively scales the solvent quality. Interestingly, this
property of the toy model is consistent with the more detailed CG simulations
of model asphaltenes by Wang et al., where the authors demonstrate that the
heptane:toluene solvent composition acts like an effective temperature for their
model.250 This supports the idea that the type of toy model we used in this study
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approximately captures the effect of solvent quality and its impact on asphaltene
nanoaggregation.

In this work, we have compared our toy models with more detailed simulations,
and with real crude oil systems. It is important to note, however, that there is only
a loose correspondence between the solvent quality as represented in this toy model
and real systems. In particular, there is no a priori correspondence between the
solvent conditions in our model and the composition of an actual solvent. Therefore
the trends observed here can can only be suggestive rather than prescriptive in
identifying specific mechanisms or conditions.

6.6 Conclusions
In conclusion, our use of toy model asphaltenes in implicit solvent has demonstrated
the effect of molecular structure and solvent conditions on the aggregation of
model asphaltene compounds. This work supports the Yen-Mullins model of
nanoaggregation for island-type asphaltenes in a crude oil mixture, where short rod-
like structures are formed by stacking the asphaltene cores. Further, the increased
propensity for this Yen-Mullins-type aggregation seen in mixed solvents compared
to solvents promoting only aromatic cohesion suggests that the asphaltene tails may
play a role in promoting aggregate formation. Moreover, this work demonstrates the
utility of CG toy models for qualitatively probing asphaltene aggregation behavior.
The range of solvents and structures examined here would not have been practical
to simulate at AA resolution, or even at CG resolution with an explicit solvent.

Finally, this work presents several directions for future studies in this area. For
example, it would be interesting to select a few solvent conditions to simulate
with hundreds or thousands of asphaltenes using this type of toy model to study
mesoscale clustering behavior. Further, it could also be informative to use such a
model to study the behavior of a mixture of molecular structures to investigate
how rigid and flexible core model asphaltenes interact.
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Chapter 7 |
Conclusions and Outlook

7.1 Overview
In this work we have presented several aspects of CG modeling of petrochemical
systems, as well as of CG modeling in general. In particular, we demonstrated
a general pressure-matching approach for quantitatively correcting the pressure
of bottom-up CG models. We applied this approach to CG models of heptane
and toluene both because these molecules are sufficiently complex to test the
method, and because they are solvents of interest in the context of asphaltene
simulations. We then extended this approach to an extended-ensemble across
system compositions with varying heptane:toluene ratios and demonstrated a
transferable CG force field and pressure correction across this range of mixtures.
This demonstrates the importance of considering the state-point dependence of the
PMF in creating thermodynamically accurate and transferable models. Next, we
discussed bottom-up CG modeling in the context of a ‘van der Waals’ perspective
where thermodynamic information from the underlying AA model is encoded into
the many-body PMF. This perspective suggests that thermodynamically accurate
and transferable bottom-up CG models can be parameterized given the appropriate
degrees of freedom. We then present the BOCS software package used for force
matching and pressure matching as an open-source project for use by the research
community at large. In particular, this provides an open-source implementation
of pressure-matching and extended-ensemble force matching, features which were
not previously available to the wider research community. Finally, we use toy
model asphaltenes to explore the aggregation behavior of several model asphaltenes
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across a range of solvent conditions. This study highlighted the importance of
core-core cohesion in forming Yen-Mullins-type nanoaggregates, and suggests ranges
of solvent quality where this behavior might be observed.

7.2 Future Work

7.2.1 Transferable Bottom-Up Models

In order for a bottom-up CG model to save computational effort compared to an
AA model, the CG model should enable studies that would be intractable with the
underlying AA model. In practice, computational cost of the AA sampling and
force matching calculation required to parameterize a CG model of a single system
are nearly as limiting as simply extending the AA simulation. A CG model derived
in this way may be productively put to use in the context of a larger scale or longer
simulation, but behavior not sampled during the reference AA simulation may be
poorly represented in the CG model.

In service of computational efficiency, transferable CG models are more appealing
as they can be parameterized once and used many times across their range of
relevance, saving significant computational effort relative to a purely AA study.
Traditional bottom-up models are not transferable beyond the conditions of their
parameterization, and so are less appealing than the more transferable top-down
models for researchers with limited computational resources. In this work we have
demonstrated pressure-matching and extended-ensemble approaches that can be
used to produce transferable bottom-up models, and considered the ‘van der Waals’
perspective on coarse-graining that suggests a similar approach may be useful in
the context of other thermodynamic properties. A direct extension of this method
could include treatment of anisotropic systems by considering the correction to
each component of the pressure tensor independently. This approach could then
be used for parameterizing CG models simulated under a constant surface tension
ensemble against a solid interface.

While the pressure-matching approach presented here is limited to bulk systems
without interfaces, recent work on bottom-up models with local density dependent
potentials provides an even more transferable approach towards accurately modeling
CG pressure and density that can be used in interfacial systems.219,223 This would
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allow, for instance, the simulation of bottom-up CG asphaltenes at an oil-water,
oil-rock, or oil-metal interface, where the clustering and network formation behavior
may differ from that seen in solution. These interfacial systems are of particular
interest to the petrochemical industry as they are present in several stages of
petroleum extraction and transportation.

7.2.2 BOCS Software Development

Maintenance and development of the BOCS software package will be an ongoing
project as new features are added and new edge cases with bugs are identified. The
project’s home on GitHub provides a forum for users to report issues and offer fixes
and features of their own. Engaging the community on these issues and additions
will be a vital part of maintaining BOCS as an effective open-source project moving
forward.

7.2.3 Asphaltene Modeling

The efficiency of the toy-modeling approach demonstrated in Chapter 6 allows for
future work in several directions. First, mesoscale simulation studies with hundreds
or even thousands of asphaltene molecules are feasible at any concentration using this
model. This opens the door for studies examining mesoscale clustering behavior,
and even the onset of viscoelastic network formation. These studies would be
interesting in the context of single model asphaltene structures to investigate the
clustering and network formation behavior of specific molecular structures. It
would also be informative to study this regime with a range of molecular structures
present, and to track the role of the different structural archetypes in cluster and
network formation. Further, simulating a larger system containing either a single
type of structure or a mixture of structures under different solvent regimes could
prove instructive as to the behavior of asphaltenes at different stages during oil
processing. Another research avenue suggested by this work would be to extend
the phase diagrams presented in Chapter 6 into another order parameter such as
concentration or aromatic core size. This would provide additional insight into
the state-point- and structure-dependence of the observed asphaltene aggregation
behavior.

Finally, this type of implicit-solvent toy model is not limited to the study of
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asphaltene aggregation. Simulation studies using similar models could be used to
study the aggregation and self-assembly behavior of a broad variety of molecules. If
the CG sites are not constrained to represent single atoms or small groups of atoms,
then this type of model could also be used to study self-assembly in nanoparticles
of varying shapes and dimensions.

7.3 CG Modeling and GPUs
Bottom-up CG models currently lag behind AA models in their ability to take
advantage of emerging computing technologies. At the time of writing features
required for simulating the bottom-up models presented in this work are not
supported in any major MD package when running on graphics processing units
(GPUs). In particular, the tabulated interactions required to represent the CG
potentials are not supported when running on a GPU.

MD simulations run on GPU can see performance enhancements of 3-10x
increase in ns/day sampling efficiency,2,261,262 comparable to the increase in sampling
efficiency seen for the heptane and toluene models presented in Chapters 2 and 3.
Further, while bottom-up CG models require an involved parameterization process
and access to high-performance computing resources, simulating AA models on a
GPU is becoming increasingly user-friendly and can be performed on a commodity
desktop with a $1000 graphics card. As a result, for a large-scale simulation study
it is currently more cost-effective to run AA simulations on GPUs than it is to
parameterize a CG model for this purpose.

Currently, some MD software packages such as GROMACS204 support GPU
simulations with CG models with simple functional forms for their interactions.
This has enabled large scale CG simulations with top-down forcefields such as the
Martini model194 and derivatives that would not be feasible running on CPUs alone.
Once implemented, the addition of GPU support for the tabulated nonbonded
interactions required for flexible CG models will open up a new regime of simulation
scale for bottom-up CG models. In the context of asphaltene simulation, this would
enable the use of bottom-up models to simulate cluster formation and mesoscale
network formation in an explicit CG solvent. Such studies would provide an
important complement to the current top-down approaches by more accurately
capturing the structural details of the nanoaggregates, which may impact the
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aggregation propensity and mechanism of the model asphaltenes.

7.4 Outlook
In conclusion, this work suggests that bottom-up CG models are poised to become
more widely applicable. The addition of thermodynamic degrees of freedom for
bottom-up CG models presents an interesting approach for continuing to improve the
accuracy and transferability of these models through the addition of the appropriate
degrees of freedom to the CG models. Local-density-dependent CG force fields
have already extended this idea to reproduce both pressure and interfacial tension
of reference AA systems.

The open-source BOCS software released as part of this work provides tools
for researchers to reproduce and extend our work on transferable bottom-up CG
models, and the software is still being actively developed and updated for broader
compatibility with MD codes and additional feature sets. It is our hope that the
research community will find BOCS useful as a tool for both investigating and
developing CG models in the coming years.

7.5 Supporting Information
The Supporting Information for this work provides additional description of the
methods and results described here, as well as some additional analysis of this
data. The Supporting Information is available online free of charge at https:
//pubs.acs.org and https://aip.scitation.org.
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