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ABSTRACT 

 

Hybrid fiber composites offer designers a means of tailoring the stress-strain behavior of 

lightweight materials used in high performance structures. While much experimental and 

analytical work has been done to characterize the behavior of hybrid composites in the direction 

parallel to the fibers, relatively little information is available on the direction transverse to the 

fibers. The objective of the current investigation is to evaluate several modeling approaches for 

the transverse properties of hybrid glass/carbon fiber composites based on comparisons with 

experimental data and investigate the load sharing mechanisms among different constituents in 

hybrid fiber composites under transverse stress. The experimental data include the transverse 

elastic properties and Poisson’s ratio of unidirectional composites with all-glass, all-carbon, and 

three different mix ratios of glass/carbon. Included in the models are a finite element approach and 

closed-form micromechanical models with and without empirically determined fitting parameters. 

The finite element approach was used to evaluate the effects of voids in the matrix and allowed 

the transverse properties of carbon fibers to be backed out using experimental data. The finite 

element approach with voids modelled as empty cylinders can accurately simulate the 

experimentally measured modulus and Poisson’s ratio. Of the two semi-empirical closed form 

models evaluated, the “modified iso-stress model” fit the transverse modulus data best, followed 

by the “modified Halpin-Tsai model”. In order to investigate the load sharing mechanisms among 

different constituents in all-glass, all-carbon and hybrid composites stress partitioning, strain 

partitioning and energy partitioning parameters were analyzed. This analysis revealed that the 

fibers do not carry the same load when the proportions of glass-to-fiber ratio is varied. Also, in a 

composite where equal proportion of carbon fibers and glass fibers are mixed, the carbon fibers 
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undergo larger deformation than in any composite under transverse loading. This can be due to the 

presence of relatively stiff glass fibers adjacent on both sides. To gain more insights, the stress 

level, strain level, and energy level in each constituents were compared. The stress and strain level 

in the matrix could be modeled as springs in parallel and series, respectively, when the glass-to-

carbon ratio was increased. 
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Chapter 1  
 

INTRODUCTION 

Laminated fiber reinforced polymer composites find widespread use in aerospace, 

mechanical, and civil engineering on account of their high strength/weight and stiffness/weight 

ratios along with their tailorable mechanical properties attainable by variation of fiber orientation. 

Another useful method of tailoring the mechanical behavior of composites is to combine two or 

more fiber types into a common matrix material, thereby creating “hybrid fiber composites” as 

shown in.  The incorporation of multiple fiber types into the composite can balance the properties 

and cost of one type of fiber against the others. For example, it is known that carbon fibers have 

high longitudinal modulus, low longitudinal rupture strain, low transverse modulus, low mass 

density, and high cost in comparison to glass fibers (Daniel and Ishai, 2006). By combining both 

carbon and glass fibers, a balance in modulus, strain at failure and cost can be achieved. As a 

consequence, hybrid composites provide cost effective design solutions. Hybridization can also be 

used to improve the out-of-plane impact resistance and adjust the coefficient of thermal expansion 

of laminates (Short and Summerscales, 1980) and to model a pseudo-ductile failure mode in 

unidirectional composites under longitudinal (fiber direction) loading (Bakis et al., 2001). 

Composite flywheels have been used as energy storing devices primarily in the automotive, 

satellite and electrical utility sectors (Genta, 1985). Ross (2013) showed that composite flywheels 

have higher specific energy and specific power than chemical batteries. Arvin and Bakis (2006) 

presented that minimizing residual stresses in rings can simplify a rotor design by reducing the 

number of rings required to maximize the specific energy. Therefore, flywheels can be an excellent 
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design substitute for chemical batteries. Nonetheless, there are limitations relating to the maximum 

strength which makes them susceptible to energy storage applications. Based on classical kinetic 

energy equation, stress distribution due to centrifugal field varies quadratically with angular 

velocity. Solving the field equations for stress by tailoring the hoop modulus of hoop-wound rims 

can optimize the performance of flywheels. Utilizing high strength composites for this application 

can be also favorable choice. However, these materials are inherently anisotropic, particularly if 

unidirectional composites are used, the low strength in the transverse direction constrain them for 

this application. By using a hybrid with a tailored hoop modulus that increases with increasing 

radius, the outer regions of the flywheel confine the inner regions and reduce the magnitude of 

tensile radial stress that otherwise would reduce the speed of the rotor. If a hybrid composite with 

stiffer reinforcements is used in order to increase the strength in weaker directions, the maximum 

strength of the material can be improved. S-glass is a cheaper material and has high specific 

strength, however, it has low Young’s modulus and fatigue strength. Although Kevlar has high 

fatigue strength and Young’s modulus than glass, it has low longitudinal compressive strength and 

it is susceptible to degradation from sunlight and moisture. Carbon fibers have higher longitudinal 

modulus and superior bonding strength than Kevlar. However, carbon fibers are anisotropic and 

the transverse modulus is lower than glass, as shown in Table 1. For utilizing these materials in 

various applications, it is important to know the Young’s modulus of elasticity transverse to the 

fibers, 𝐸2. 
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Experimental data on the longitudinal modulus of elasticity of unidirectional hybrid 

composites is abundant in the literature (Bunsell and Harris, 1974; Kretsis, 1987; Short and 

Summerscales, 1980; Bakis et al. 2001; Jalalvand et al. 2015). The experimental longitudinal 

modulus agrees well with simple predictive micromechanical models such as volumetric averaging 

of the constituent moduli (rule of mixtures). While a few micromechanical models have been 

developed and validated for the transverse properties of non-hybrid fiber composites, very little 

data is available in the literature and, correspondingly, little is known about the accuracy of 

micromechanical models for simulating the transverse properties of hybrid fiber composites. 

Halpin and Tsai provided an analytical model based on the “self-consistent 

micromechanics method” to predict 𝐸2 non-hybrid fiber composites (Halpin and Kardos, 1976). 

Based on this work Bannerjee and Sankar (2012) developed a modified Halpin-Tsai model 

(MHTM) to include a second set of fibers, and determined the fitting parameter based on reference 

values provided by two-dimensional (2D) finite element analysis (FEA) predictions of 𝐸2 of 

carbon/glass hybrids. However, they did not assess their predictions with experimental data.  

A number of investigators (e.g., Sun and Vaidya, 1996; Gusev et al., 2000; Wongsto and 

Li, 2005; Barbero, 2013) used FEA to predict all five independent properties of unidirectional fiber 

composites with isotropic and orthotropic fibers but only Banerjee and Sankar (2012) examined 

unidirectional hybrid fiber composites with FEA. Invariably, all the papers using FEA neglected 

the presence of voids, which can be important for transverse properties. These and other 

investigations also used estimated transverse properties of carbon fibers or else backed out 𝐸2 of 

carbon fibers from experimental data assuming no voids (Sun and Vaidya, 1996; King et al., 1992; 

Gipple and Hoyns, 1994; Grimes et al., 1980; Cairns and Adams, 1981). 
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The iso-stress model (ISM) (Daniel and Ishai, 2006) and doubly periodic model (DPM) 

(Van Fo Fy, 1969) have also been used to simulate 𝐸2 of hybrid composites. The ISM is known to 

produce a lower bound estimate of modulus (Hashin and Shtrickman, 1963). DPM has been 

developed only for isotropic phases, which excludes carbon and other orthotropic fibers. 

Tarnopol'skii et al. (1991) developed an anisotropic matrix model for 𝐸2 of hybrid 

composites, where one set of fibers forms an intermediate composite according to the principles 

of minimum potential energy theory. The intermediate composite properties are used as the 

properties of an anisotropic matrix which can be reinforced by second set of fibers. This model 

includes orthotropic constituents, but like ISM it is also a lower bound estimate of 𝐸2 (Christensen, 

1979). 

Ha et al. (2012) proposed a so-called modified iso-stress model (MISM) to predict 𝐸2 of 

hybrid composites with isotropic or orthotropic constituents. The MISM includes stress 

partitioning parameters (SPPs), which are defined as the ratio of transverse stresses in the fiber to 

transverse stress in the matrix. Ha et al. (2012) determined the SPPs by best-fitting the model to 

experimental data for all-carbon and all-glass composites and used the SPPs to predict 𝐸2 of 

carbon/glass hybrids without experimental validation.  

None of the previous investigations concerned with the transverse properties of hybrid 

composites validated predictions with experimental data from hybrids. Recently, Bakis and Ripepi 

(2013) reported 𝐸2 data for a family of glass and carbon hybrids ranging from 100% carbon (C100) 

to 100% glass (G100). The transverse moduli of the five composites—named C100, C75G25, 

C50G50, C25G75, and G100 according the volume percent of each fiber—were modeled using 

the ISM, MISM, and MHTM. Good results were obtained by the fitted models (MISM and 

MHTM), although ISM under-predicted 𝐸2 as expected. The effects of voids on the inputted elastic 
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properties of the matrix were not considered and an estimated value was used for the transverse 

modulus of carbon fiber, 𝐸2𝑐. The longitudinal modulus of unidirectional composites, 𝐸1, can be 

predicted accurately using the volumetric rule of mixtures (ROM) because (a) the iso-strain 

assumption inherent in the ROM is quite realistic for longitudinal behavior, (b) the fiber’s 

longitudinal modulus can be readily measured, and (c) the effects of voids on the matrix modulus 

are relatively unimportant. However, to-date no effort have been made to model 𝐸2 and 𝜈23 with 

consideration given to matrix voids, including the transverse properties of carbon fiber, 𝐸2𝑐 and 

𝜈23𝑐, which have been back-calculated with the same consideration given to matrix voids. 

Therefore, the objectives of the current investigation are to re-analyze the transverse modulus 

glass, carbon, and glass/carbon hybrid data by Bakis and Ripepi (2013), taking into account voids 

in the matrix and using values of 𝐸2𝑐 and 𝜈23𝑐 that are consistent with the data. Also, the transverse 

stress and strain distributions in the matrix and the uniaxially aligned glass and/or carbon fibers 

under transverse loading conditions are calculated and discussed.  

The remainder of the thesis is organized as follows. In Chapter 2, the micromechanical 

modeling approaches for the transverse Young’s modulus of hybrid composites are presented. 

First, the finite element models and the boundary conditions pertinent to fiber packing arrangement 

and, the void modelling techniques are evaluated. Next, the governing equations utilized to 

develop the ISM, MISM and MHTM are analyzed.  

In Chapter 3, the measurement of the elastic properties and volume fraction of the 

constituent material properties are discussed. The transverse moduli used in the current 

investigation came from Ripepi (2013), while the transverse Poisson’s ratios were measured as 

part of the current investigation. The transverse Poisson’s ratio of the composite are required for 

backing out the carbon fiber’s transverse modulus and Poisson’s ratio using FEA. 
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In Chapter 4, the results of experimentally measured transverse Poisson’s ratio are 

presented. Next, the preliminary finite element models for fiber packing arrangement and void 

modeling techniques are assessed. Based on this information, the transverse elastic properties of 

carbon fiber properties are obtained from the carbon/epoxy composite properties using an inverse 

method. Mesh convergence studies are conducted to get the right mesh size that satisfactorily 

balances the accuracy of the solution and computing resources. Subsequently the transverse elastic 

properties of the hybrids obtained from FEA and the analytical models are reported. Stress 

partitioning parameters, strain partitioning parameters and energy partitioning parameters from the 

FE models of the composites are analyzed. Finally in Chapter 5, conclusions from the investigation 

are reported.  
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Chapter 2  
 

MICROMECHANICAL MODELING APPROACH FOR TRANSVERSE YOUNG’S MODULUS 

The transverse Young’s modulus is modeled utilizing closed form models such as ISM, 

closed form models with semi-empirical parameters such as MISM and MHTM and finite element 

models. The voids in the composite are modeled both implicitly, by homogenizing the matrix using 

micromechanical equations and, explicitly by placing circular cylindrical holes in the matrix, 

whereas the closed-form models use only the homogenized matrix properties.  

Finite element analysis (FEA) 

Repeating unit cell (RUC) 

Typically, numerical methods used to analyze the properties of the heterogeneous materials 

are developed based on concept of representative volume element (RVE) or repeating unit cell 

(RUC) as shown in Figure 1, Figure 2 and Figure 3. The RVE characterizes the heterogeneous 

material based on a statistically homogeneous microstructure whereas the RUC characterizes 

periodic heterogeneous material. These both concepts are based on different heterogeneous micro-

structure and require different boundary conditions for micromechanical analysis of smallest sub-

volume whose response is indistinguishable from that of a material at large scale level. Particularly 

the RVE enforces homogeneous traction or displacement boundary condition for micromechanical 

analysis, and RUC is based on periodic boundary conditions (Drago and Pindera, 2006). 
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Figure 1. Representative volume element of a heterogeneous system with random array of fibers 

 

 

 

Figure 2. Repeating unit cell of a heterogeneous system with square array of fibers 

 

 

 

Figure 3. Repeating unit cell of a heterogeneous system with hexagonal array of fibers 

 

The elastic properties of an RVE of heterogeneous material can be obtained from 

homogenization theory or standard mechanics. In homogenization theory, the material response is 
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modeled based on partial differential equations with rapidly oscillating coefficients. There are two 

major assumptions made in homogenization theory. First, the displacement field varies on multiple 

scales of the RVE and second, the microstructure is spatially periodic. In the asymptotic 

homogenization method, the displacements are asymptotically expanded as the sum of the average 

displacements of the RVE and oscillations in the displacements due to the chosen RVE size. In the 

standard mechanics approach, the RVE is subjected to uniform traction or uniform displacement 

boundary conditions. These boundary conditions are chosen so as produce an average strain or 

average stress within a homogeneous material of the same RVE size. Hollister and Kikuchi (1992) 

showed that prediction of stiffness by the standard mechanics approach using RVEs with an 

increasing number of unit cells converged to the homogenization prediction obtained with an RVE 

consisting of one unit cell. This is because the stiffness of the RVE from standard mechanics 

approach is dependent on the RVE size due to St. Venant’s effect associated with the applied 

displacement or traction boundary condition. However, Drago and Pindera (2006) showed that the 

prediction of stiffness by the standard mechanics approach will not vary with an increasing number 

of unit cells if the microstructure of the composite is represented using an RUC with periodic 

boundary conditions. Since each RUC is indistinguishable from the next, the response of the entire 

array under macroscopically uniform loading is identical to the response of an arbitrary RUC under 

the same loading. Also, using the standard mechanics approach and representing the 

microstructure of the composite as an RUC with periodic boundary conditions is useful to 

understand the interactions among the constituents of the composites. Hence, the standard 

mechanics approach with periodic boundary conditions is adopted in the current investigation. 

Usually, unidirectional composite materials are approximated by an RVE of periodic arrays 

of circular fibers arranged in square or hexagonal arrays (Sun and Vaidya, 1995). This 
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microstructure can be represented by a single fiber-matrix RUC adaptable to analysis by the finite 

element method. In any of the square and hexagonal packing systems, there exists many geometric 

symmetries. Due to these geometric symmetries, the application of homogeneous traction or 

displacement boundary conditions along with the geometric symmetry constraints on an RVE of 

square or hexagonal packing systems, is equivalent to the periodic boundary conditions enforced 

on an RUC with the same fiber arrangements. However, in unidirectional hybrid composites, the 

geometric symmetries no longer exist because the unit cell includes fibers with different material 

properties and diameters. The analysis of multi-fiber-matrix system cannot be restricted to the 

concept of RVE because some stress components show symmetric characteristics while others are 

asymmetric (Li, 2000). Therefore, the hybrid models are developed based on the concept of RUC.  

 Adams and Doner (1967) provided finite difference elasticity solutions for the transverse 

modulus of a glass/epoxy composite system using the RUC approach. Two important variables, 

filament cross section (circular and elliptical) and filament volume content (𝑣𝑔 = 0.2 to 0.75) were 

investigated. They showed that the prediction of transverse stiffness from the finite difference 

model was in good agreement with experimental data for a square array of circular fibers.  

Gusev et al. (1999) measured the elastic constants of an E-glass fiber/913 epoxy resin 

composite with a fiber volume content of 54 % and compared the results to FEA predictions. They 

used periodic boundary conditions on RVE of hexagonal, square and random fiber arrays and 

found that the fiber packing arrangement had significant influence on the predicted transverse 

Young’s modulus. They showed that hexagonal and random arrays under-predict 𝐸2 by 11.7 % 

and 6.4 %, respectively, while the square array over-predicts with 6.4 % difference. However, 

without considering the void volume fraction, they conclude that random array predicts the elastic 

properties most accurately. 
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Sun and Vaidya (1995) used hexagonal and square arrays to predict the transverse Young’s 

modulus of AS4/3501-6 composite with a fiber volume content of 60%. In order to evaluate the 

elastic properties of the arrays, they used homogeneous strain boundary conditions on the square 

and hexagonal RUCs. They showed that the hexagonal and square models both under-predict the 

experimentally measured transverse Young’s modulus by 6.8% and 10.7% respectively. It appears 

that square model is always stiffer than hexagonal model even when the voids are not considered. 

Also, the properties of the carbon fibers used for the finite element models were obtained from a 

questionable source. In the current investigation, the best array for modeling transverse properties 

is determined by comparing experimental data with FEA results, for hexagonal and square arrays.  

Transverse elastic properties of composite  

In the current investigation, finite element models were developed using C3D8 mesh 

elements in ABAQUS 6.14 (Dassault Systèmes Americas Corp., Waltham, MA). C3D8 mesh 

elements are three dimensional continuum, 8-node linear bricks with 222 integration points. 

The C3D8 mesh element is defined with the isoparametric coordinate system with μ, τ and ζ as the 

axes, Figure 4. The shape functions used to interpolate discrete nodal quantities across the element 

are given by equations (1-(8). The node numbering scheme follows the convention as shown in 

Figure 4 and the integration points are numbered according to Figure 5. 
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Figure 4. C3D8, three dimensional, 8-node linear brick element. 
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𝑁8 = 

1

8
(1 + 𝜏)(1 − 𝜇)(1 − 𝜁) (8) 

 

  

 

 

 

Figure 5. 2x2x2 integration points in the linear brick element 

 

In general, composites with parallel fibers reinforcing a matrix exhibit transverse isotropy 

at the meso-scale (lamina level). The hexagonal RUC shown in Figure 3 exhibits hexagonal 

isotropy, thus it predicts the same modulus in any direction in the 2-3 plane. However, the square 

RUC in Figure 2 has only tetragonal isotropy in the 2-3 plane, meaning that the 2- and 3-direction 

moduli are the same as each other, but different than the moduli in other directions in the 2-3 plane. 

The reduced effective stiffness matrix, 𝐶𝑖𝑗, which relates the volume averaged normal stresses and 

normal strains, is given by equation (9), 
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{
𝜎11

𝜎22

𝜎33

} = [

𝐶1̅1 𝐶1̅2 𝐶1̅3

𝐶2̅1 𝐶2̅2 𝐶2̅3

𝐶3̅1 𝐶3̅2 𝐶3̅3

] {
𝜀1̅1

𝜀2̅2

𝜀3̅3

} (9) 

where, 

1-axis is aligned with the fiber direction.  

𝜎11, 𝜎22, 𝜎33: average stresses in the composite in 1, 2 and 3 directions 

𝜀1̅1, 𝜀2̅2, 𝜀3̅3: average strains in the composite in 1, 2 and 3 directions 

 

If the components of the elastic stiffness matrix are known, the four transverse elastic 

properties of the composite can be obtained from the reduced effective compliance matrix,𝑆̅, as 

shown in equation (10), 

 

[𝐶̅]−1 = 𝑆𝑖̅𝑗 =

[
 
 
 
 

1

𝐸1

−𝜈21

𝐸2

−𝜈31

𝐸3

−𝜈12

𝐸1

1

𝐸2

−𝜈32

𝐸3

−𝜈13

𝐸1

−𝜈23

𝐸2

1

𝐸3 ]
 
 
 
 

  (10) 

 

where, 

𝐸1: longitudinal Young’s modulus of the composite 

𝐸2: transverse Young’s modulus of the composite 

𝜈12, 𝜈13: longitudinal major Poisson’s ratios of the composite 

𝜈23, 𝜈32: transverse Poisson’s ratios of the composite 

𝜈21, 𝜈31: longitudinal minor Poisson’s ratios of the composite 
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In order to evaluate the reduced stiffness tensor, 𝐶𝑖̅𝑗, the RUC is subjected to uniaxial 

average strains, 𝜀𝑖̅𝑖, on the RUC in the 1-, 2-, and 3-directions in sequence, Figure 6. The three 

components of normal strains 𝜀𝑖̅𝑖 are applied on the RUC by enforcing the periodic boundary 

conditions given in Table 2. The constraint equations for the enforcing periodicity are automated 

using HOMTOOLs, a toolbox for ABAQUS developed by Lejeunes and Bourgeosis (2011). 

 

 

 

Figure 6. Composite material with fibers oriented in longitudinal or 1-direction. 

 

 

 

 

 

 

 



17 

 

 

Table 2. Periodic boundary conditions for determining the effective Young’s moduli and 

Poisson’s ratios of the RUC by applying uniaxial average strains in the 1-, 2-, and 3-directions. 

1-direction 

𝑢1(𝑎𝑥, 𝑦, 𝑧) − 𝑢1(0, 𝑦, 𝑧) = 𝑎𝑥𝜀1̅1 for 0 ≤ 𝑦 ≤ 𝑎𝑦, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢2(𝑥, 𝑎𝑦, 𝑧) − 𝑢2(𝑥, 0, 𝑧) = 0 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢3(𝑥, 𝑦, 𝑎𝑧) − 𝑢3(𝑥, 𝑦, 0) = 0 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑎𝑦 

2-direction 

𝑢1(𝑎𝑥, 𝑦, 𝑧) − 𝑢1(0, 𝑦, 𝑧) = 0 for 0 ≤ 𝑦 ≤ 𝑎𝑦, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢2(𝑥, 𝑎𝑦, 𝑧) − 𝑢2(𝑥, 0, 𝑧) = 𝑎𝑦𝜀2̅2 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢3(𝑥, 𝑦, 𝑎𝑧) − 𝑢3(𝑥, 𝑦, 0) = 0 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑎𝑦 

3-direction 

𝑢1(𝑎𝑥, 𝑦, 𝑧) − 𝑢1(0, 𝑦, 𝑧) = 0 for 0 ≤ 𝑦 ≤ 𝑎𝑦, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢2(𝑥, 𝑎𝑦, 𝑧) − 𝑢2(𝑥, 0, 𝑧) = 0 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢3(𝑥, 𝑦, 𝑎𝑧) − 𝑢3(𝑥, 𝑦, 0) = 𝑎𝑧𝜀3̅3 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑎𝑦 

The terms in the above table represent, 

𝑢1, 𝑢2, 𝑢3: elemental displacements in 1, 2 and 3 directions 

𝑎𝑥, 𝑎𝑦, 𝑎𝑧: length of the RUC in x, y and z directions 

𝑥, 𝑦, 𝑧: Cartesian coordinates 

Thus, the components of 𝐶𝑖̅𝑗 are determined by solving three elastic models of the RUC 

subjected to the periodic boundary conditions in Table 2, where only one component of the 

strain, 𝜀𝑖̅𝑖, is different from zero for each of the six problems (Barbero (2013)). By choosing a unit 

value of applied strain, it is possible to compute the stress field, 𝜎𝑖𝑖, whose volume average gives 

the components of 𝐶𝑖̅𝑗 one column at a time, given by (11), 

 𝐶𝑖̅𝑗 = 𝜎𝑖𝑖 =
1

𝑉
∫ 𝜎𝑖𝑖𝑑𝑉

𝑉

0
 (no summation implied) with 𝜀𝑖̅𝑖 = 1 (11) 

where, 
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𝜎𝑖𝑖: elemental axial stresses 

𝑉: volume of the entire RUC, including voids 

 

The integral in (11) is evaluated at each mesh element in finite element method. To expedite 

the calculation, the average stresses and volume over the entire RUC are computed using 

automated Python scripts. Example scripts are provided in Appendix A.  

Determination of stress partitioning parameters (SPPs) 

Stresses in the fiber and matrix are unequal under transverse loading. Characterizing these 

stresses in the constituent materials can give a physical understanding of the composite behavior. 

The stress partitioning parameter (SPP) is defined as the ratio of the volume-averaged 2-direction 

stress in a particular type of fiber to the volume-averaged 2-direction stress in the matrix when a 

uniaxial 2-direction stress is applied to the RUC with appropriate periodic boundary conditions. 

The SPPs for glass and carbon fibers are given by equations (12) and (13), respectively, 

 

𝜂𝜎𝑔 =

1
𝑉𝑔

∫𝜎22𝑔(𝑥, 𝑦, 𝑧)𝑑𝑉𝑔

1
𝑉𝑚 + 𝑉𝑣

∫𝜎22𝑚 (𝑥, 𝑦, 𝑧)𝑑𝑉𝑚+𝑣

 (12) 

  

𝜂𝜎𝑐 =

1
𝑉𝑐

∫𝜎22𝑐(𝑥, 𝑦, 𝑧)𝑑𝑉𝑐

1
𝑉𝑚 + 𝑉𝑣

∫𝜎22𝑚 (𝑥, 𝑦, 𝑧)𝑑𝑉𝑚+𝑣

 (13) 

where, 

𝜂𝜎𝑔, 𝜂𝜎𝑐: stress partitioning parameters for glass and carbon fibers, respectively, for 

transverse normal stress 
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𝜎22𝑔, 𝜎22𝑐, 𝜎22𝑚: 2-direction stresses in glass and carbon fibers and in the matrix, 

respectively 

𝑉𝑔, 𝑉𝑐, 𝑉𝑚, 𝑉𝑣: volume of glass, carbon, matrix and voids, respectively 

 

The matrix volume in the denominator of the denominator in equations (12) and (13) includes 

solid matrix material and empty void space, regardless whether the voids are modeled implicitly 

or explicitly.  

The periodic boundary conditions for determining the stress partitioning parameters when 

𝜎22 is applied to the RUC are given in equation (14), 

𝑢1(𝑎𝑥, 𝑦, 𝑧) − 𝑢1(0, 𝑦, 𝑧) = −𝑎𝑥𝜈21𝜀2̅2 for 0 ≤ 𝑦 ≤ 𝑎𝑦, 0 ≤ 𝑧 ≤ 𝑎𝑧 

(14) 𝑢2(𝑥, 𝑎𝑦, 𝑧) − 𝑢2(𝑥, 0, 𝑧) = 𝑎𝑦𝜀2̅2 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢3(𝑥, 𝑦, 𝑎𝑧) − 𝑢3(𝑥, 𝑦, 0) = −𝑎𝑧𝜈23𝜀2̅2 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑎𝑦 

where, 𝜀2̅2 is taken as unity and 𝜈21 and 𝜈23 are the Poisson’s ratios of the composite from 

equation (10).  

Explicit modeling of voids 

The shape of voids can have significant influence on the elastic properties of fiber 

composites. Goldsmith et al. (2013) modeled the voids in woven ceramic matrix composites as 

cuboids using FEA. They varied the aspect ratio (ratio of length to height), the number of voids, 

and the position of voids and predicted the transverse stiffness of the voidy matrix. However, this 

work was done to gain only a preliminary insight into the variability in void size and distribution 
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in woven ceramic matrix composites, as compared to unidirectional composites. Moreover, no 

experimental data for validation were provided for comparisons. 

Talreja and Huang (2005) used FEA and Eshelby’s equivalent inclusion theory to study the 

effect of void geometry and distribution on the elastic properties of carbon/epoxy composites with 

a fiber volume content of 40 %. They modeled the voids as prolate ellipsoids, flattened in the 

through-thickness direction.  

In the current investigation, voids are explicitly modeled as infinitely long cylindrical holes 

based on their approximate shapes as seen in photomicrographs of the materials (Figure 7 and 

Figure 8). The images were taken by Mr. Rudy Haluza and the polishing procedures are explained 

in Appendix B.  

 

 

 

Figure 7. Photomicrograph of a polished plane of a unidirectional ASD4 carbon/epoxy composite 

(C100) perpendicular to the fibers. The darkest regions are voids. 



21 

 

 

 

 

Figure 8. Photomicrograph of a polished plane of a unidirectional ASD4 carbon/epoxy composite 

(C100) nearly parallel to the fibers. The darkest regions are voids. 

Implicit modeling of voids 

For the implicit model of voids, the effective hexagonally transversely isotropic elastic 

properties of the matrix material containing an array of parallel cylindrical voids of a known 

volume fraction within the matrix volume, 𝑣𝑣𝑚, are calculated using the “generalized self-

consistent method” (GSCM) by Christensen (1993), as shown in equations (15)-(21), 

 

 𝐸1𝑚
𝑒𝑓𝑓

𝐸𝑚
= 1 − 𝑣𝑣𝑚 (15) 

  𝜈12𝑚
𝑒𝑓𝑓

= 𝜈𝑚 (16) 
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  𝐾23𝑚
𝑒𝑓𝑓

𝐺𝑚
=

1 − 𝑣𝑣𝑚

1 − 2𝜈𝑚 + 𝑣𝑣𝑚
 (17) 

  𝐺12𝑚
𝑒𝑓𝑓

𝐺𝑚
=

1 − 𝑣𝑣𝑚

1 + 𝑣𝑣𝑚
 (18) 

  𝐸2𝑚
𝑒𝑓𝑓

𝐸𝑚

=
𝑣𝑣𝑚(1 − 2𝑣𝑣𝑚 − 𝑣𝑣𝑚

2) + √[(1 + 𝑣𝑣𝑚 + 𝑣𝑣𝑚
2 + 𝑣𝑣𝑚

3)2 − 12𝑣𝑣𝑚
2]

1 + 5𝑣𝑣𝑚 + 2𝑣𝑣𝑚
2

 

(19) 

  
𝐺23𝑚

𝑒𝑓𝑓
=

−𝐾23𝑚
𝑒𝑓𝑓

1 + 4𝐾23𝑚
𝑒𝑓𝑓

(
(𝜈12𝑚

𝑒𝑓𝑓
)
2

𝐸1
−

1
𝐸2

)

 
(20) 

  
𝜈23𝑚

𝑒𝑓𝑓
 = 1 −

𝐸2𝑚
𝑒𝑓𝑓

2𝐺23𝑚
𝑒𝑓𝑓

 (21) 

where, 

𝐸1𝑚
𝑒𝑓𝑓

, 𝐸2𝑚
𝑒𝑓𝑓

: effective Young’s moduli of matrix with cylindrical voids in longitudinal 

direction 

𝐺𝑚: shear modulus of the isotropic matrix 

𝐺12𝑚
𝑒𝑓𝑓

: effective shear modulus of the matrix in the longitudinal direction 

𝐾23𝑚
𝑒𝑓𝑓

: effective plane strain bulk modulus of the matrix in the 2-3 plane 

𝑣𝑣𝑚: volume fraction of void in the matrix (not the entire composite) 

𝑣𝑚: volume fraction of matrix in the composite 

𝜈𝑚: Poisson’s ratio of the isotropic matrix 

𝜈12𝑚
𝑒𝑓𝑓

, 𝜈23𝑚
𝑒𝑓𝑓

 : effective Poisson’s ratios of the matrix in the longitudinal and transverse 

planes, respectively 
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Transverse elastic properties of carbon fiber  

Carbon fibers are commonly assumed to have transversely isotropic elastic properties 

(Daniel and Ishai, 2006). Although the elastic modulus and sometimes the Poisson’s ratio of 

carbon fibers in the longitudinal direction are available, the modulus and Poisson’s ratio in the 

transverse plane have not been directly measured, even though they are of high importance for 

modeling the transverse elastic properties of fiber composites. This information can be obtained 

either from nano-indentation techniques or by backing out from the experimental data (volume 

fraction and elastic properties) by utilizing FEA. 

Huson et al. (2014) used instrumented indentation testing to obtain the modulus of IM7, 

P25, and Panex 35 carbon fibers. The modulus was obtained by analyzing the unloading region of 

the load-displacement curves using unmodified Olive-Pharr (O_P) methodology. However, this 

methodology is derived for a flat isotropic half-plane and cannot be used to model heterogeneous 

materials like carbon fibers.  

Maurin et al. (2008) measured the transverse modulus of three high modulus (M40, M46 

and K63712) carbon fibers using nano-indentation measurements and compared it to moduli back-

calculated by applying micromechanical modelling to experimental measurements on 

unidirectional composites. They report that the micromechanics-derived moduli were similar to 

but tended to underestimate the directly measured nano-indentation values. This may result from 

using simplified assumptions such as the unmodified O-P equations.  

One of the primary assumptions of the standard Oliver-Pharr theory is that the fiber is flat, 

semi-infinite half space. Cole et al. (2016) modified the O-P equations by accounting for curvature 

of tested single fibers and structural compliance due to sample geometry (as opposed to material 
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compliance). Although they modified the O-P equations for fibers that are not semi-infinite half 

spaces, the assumption of isotropy in the fibers is still there.  

In general, though attempts have been made to measure the transverse modulus of carbon 

fiber using nano-indentation techniques, the models used to extract the transverse fiber modulus 

from the indentor’s load-displacement behavior are based on isotropic target materials, which 

raises questions about the validity of the results for carbon fibers. In the current investigation, the 

carbon fiber properties are back calculated utilizing FEA based on the knowledge of the fiber 

volume content and matrix elastic properties (e.g., Maurin et al., 2008; Miyagawa et al., 2016). 

Although, unlike the previous investigations, an effort is made to include the effects of matrix 

voids on the back-calculated carbon properties. 

Closed form micromechanical models 

Iso-stress model  

Iso-stress model provides a lower bound estimate for elastic properties in the transverse 

direction. In this method, the composite system is subjected to uniform stress in the direction 

perpendicular to fiber and, to a first approximation, the fibers and the matrix have the same 

homogeneous uniaxial stress in the transverse direction yet different strains (Hashin and 

Shtrickman, 1963). The expression for the transverse modulus is given by equation (22). 

 1

𝐸2
=

(𝑣𝑚 + 𝑣𝑣)

𝐸2𝑚
𝑒𝑓𝑓

+
𝑣𝑔

𝐸𝑔
+

𝑣𝑐

𝐸2𝑐
 (22) 

where,  
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𝑣𝑣 , 𝑣𝑐, 𝑣𝑔, 𝑣𝑚: volume fractions of void, carbon fibers, glass fibers and matrix, 

respectively, in the composite  

Banerjee and Sankar (2012) used a similar expression in their work on carbon/glass hybrids, 

although they used the modulus of the fully dense matrix, 𝐸𝑚, rather than the effective transverse 

modulus of the matrix including voids, 𝐸2𝑚
𝑒𝑓𝑓

, because voids were not considered in their 

investigation.  

Modified iso-stress model 

The modified iso-strain model (MISM) for the transverse modulus of carbon/glass hybrids 

is shown in equations (23)-(25). 

 1

𝐸2
= (

(𝑣𝑚 + 𝑣𝑣)

𝐸2𝑚
𝑒𝑓𝑓

+
𝜂𝑔𝑣𝑔

𝐸𝑔
+

𝜂𝑐𝑣𝑐

𝐸2𝑐
) (𝑣𝑚 + 𝑣𝑣 + 𝜂𝑔𝑣𝑔  + 𝜂𝑐𝑣𝑐  )⁄  (23) 

  
𝜂𝑔 =

𝜎22𝑔

𝜎22𝑚
 (24) 

  
𝜂𝑐 =

𝜎22𝑐

𝜎22𝑚
 (25) 

Ha et al. (2012) used the MISM equations with the modulus of fully dense matrix, 𝐸𝑚, 

without including the effect of voids. They determined the stress partitioning parameters for carbon 

and glass (𝜂𝑐 and 𝜂𝑔, respectively), based on undisclosed experimental data from all-carbon and 

all-glass composites. As well, their source for the carbon fiber’s transverse modulus was not 

disclosed. The values of 𝜂𝑐 and 𝜂𝑔 found by Ha et al. were 1.48 and 3.78, respectively.  
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Modified Halpin-Tsai model 

The modified Halpin-Tsai model (MHTM) for the transverse modulus of carbon/glass 

hybrids is given in equations (26)-(28). 

 𝐸2

𝐸2𝑚
𝑒𝑓𝑓

=
1 + 𝜉(𝛽𝑔𝑣𝑔 + 𝛽𝑐𝑣𝑐)

1 − (𝛽𝑔𝑣𝑔 + 𝛽𝑐𝑣𝑐)
 (26) 

  

𝛽𝑔 =

𝐸𝑔

𝐸2𝑚
𝑒𝑓𝑓 − 1

𝐸𝑔

𝐸2𝑚
𝑒𝑓𝑓 + 𝜉

 (27) 

  

𝛽𝑐 =

𝐸2𝑐

𝐸2𝑚
𝑒𝑓𝑓 − 1

𝐸2𝑐

𝐸2𝑚
𝑒𝑓𝑓 + 𝜉

 (28) 

where,  

𝜉: Halpin-Tsai semi-empirical parameter for transverse normal stress 

 

Banerjee and Sankar (2012) determined the fitting parameter, 𝜉, based on FEA predictions of 𝐸2, 

assuming a void-free matrix (i.e. 𝐸2𝑚
𝑒𝑓𝑓

= 𝐸𝑚) and carbon fiber transverse modulus of uncertain 

provenance. The RUC used for their FEA consisted of 50 fibers carbon and glass fibers with 

combined volume fraction of 60% distributed randomly in the matrix. They found that 𝜉=1.14 

gave the best fit to the virtual data. The MHTM model cannot explicitly account for voids. The 

only way to include voids is by adjusting the transverse modulus of matrix. Results of this analysis 

along with the modified Halpin-Tsai model are tabulated in Table 3.  
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Table 3. Results of FEA and modified Halpin-Tsai equation for glass/carbon hybrid composite 

(Banerjee and Sankar, 2012) 

Composite 𝑉𝑐 (%) 𝑉𝑔  (%) FEA, 𝐸2 (GPa) Modified 

Halpin-Tsai, 𝐸2 

(GPa)  

Difference1 (%) 

Carbon/Epoxy 60 0 8.77 8.59 2.1 

Carbon and 

Glass Epoxy 

Hybrids 

54 6 9.05 8.88 1.9 

42 18 9.66 9.52 1.5 

30 30 10.33 10.22 1.1 

18 42 11.05 11 0.5 

6 54 11.82 11.86 -0.3 

Glass/Epoxy 0 60 12.21 12.33 -1.0 

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  
𝐸2

𝐹𝐸𝐴−𝐸2
𝑀𝐻𝑇𝑀

𝐸2
𝐹𝐸𝐴 · 100 % 
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Chapter 3  
 

SPECIMEN PREPARATION AND TESTING 

Ripepi (2013) manufactured carbon and glass hybrid fiber composites in-house using a wet 

filament winding process. Also, he measured the transverse Young’s modulus of the composite in 

flexure and the volume fractions of the constituents using a resin digestion method. All these 

findings were used in the current analytical and finite element investigations.  

Specimen preparation

Hybon 2022 low-boron E-glass fibers of 1100 g/km tex from PPG (Pittsburgh, PA, USA), 

AS4D-GP-12K carbon fibers of 765 g/km tex from Hexcel (Stamford, CT, USA), and Epon 

862/Epikure W epoxy (Momentive, Columbus, OH, USA) were used to wind the rings. The 

selected fiber tex values provide roughly similar cross-sectional fiber areas. The isotropic E-glass 

fiber is assumed to have an elastic modulus (𝐸𝑔) of 80.0 GPa and a Poisson’s ratio (𝜈𝑔) of 0.26 

based on personal communication with the manufacturer. For the carbon fiber, the longitudinal 

modulus (𝐸1𝑐) and Poisson’s ratio (𝜈12𝑐) are assumed to be 245 GPa and 0.2, respectively, based 

on data provided by the manufacturer (Hexcel, 2013). Nominal proportions of fibers of 100% 

carbon (C100), 75% carbon/25% glass (C75/G25), 50% carbon/50% glass (C50/G50), 25% 

carbon/75% glass (C25G75), and 100% glass (G100) were obtained by pulling various 

combinations of tows through the resin bath and onto the mandrel at once, resulting in ring cross-

sections as shown in Figure 9 (a-e) for the five types of composites. For example, the C75G25 ring 
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was made by winding three tows of carbon and one tow of glass side-by-side on the mandrel. 

Additional details about the manufacturing procedures are available in Ripepi (2013). 

 

 
 

(a) C100 (b) C75G25 

  

(c) C50G50 (d) C25G75 

 

 

(e) G100 (f) Beam test geometry (mm) 

Figure 9. Photographs of axially-cut cross sections of as-wound composite rings before 

machining (a-e) and 4-point-loaded beam geometry for measurement of transverse modulus 

(f). Scale marker in photographs is 10 mm (Ripepi, 2013).  

 

For three-dimensional (3D) finite element analysis, it is important to know the transverse 

Poisson’s ratio, 𝜈23,  of the composite and this data is not reported by Rippepi. Therefore, in the 

present investigation additional beam specimens were cut from the filament wound rings and tested 

using biaxial strain gages. They were prepared by grinding procedures similar to those followed 

by Ripepi (2013). 
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One specimen from each of the five hybrid rings were extracted using a Felker 41-AR table 

saw with a water-cooled, diamond-edged cutting wheel. The specimens were ground until a 

constant cross section was achieved using a Norton General Purpose 100 Fine Grit, 6-in. dia., 0.5-

inch wide, Alundum grinding wheel, in the Composites Manufacturing Technology Center at Penn 

State University-UP. In order to prevent damage in the specimen due to excessive heating, water 

cooling applied to the surface being ground. The top and bottom surfaces of each specimen were 

ground until planar parallel surfaces was achieved. After the grinding procedure was complete, the 

specimens were placed in a convection oven for 3 hours that was maintained at 155 °F temp. This 

assured that the specimens were dry and prepared for testing. The average beam dimensions of 

each specimen used for Poisson’s ratio, 𝜈23, measurement are shown in Table 4. 

 

Table 4. Average beam dimensions of the composites used for measurement of the transverse 

Poisson’s ratio, 𝜈23. 

 Length, l (mm) Width, b (mm) Height, h (mm) 

C100 74.4 13.2 9.3 

C75G25 75.2 6.6 11.4 

C50G50 75.2 6.9 9.6 

C25G75 75.2 8.4 8.6 

G100 74.4 6.2 15.5 

 

Testing methods 

Transverse modulus measurements by Ripepi (2013) 

The 𝐸2 measurements used for comparison with models in the present investigation were 

obtained by Ripepi (2013) using four-point-loaded beams. Between six and 13 specimens of each 
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type were tested.  Strain in the longitudinal direction of the beam was measured using a 9.5-mm 

clip-on extensometer. To calculate 𝐸2, Ripepi used a chord modulus measurement between two 

strains corresponding to roughly 25% and 50% of ultimate. For Ripepi’s composite specimens, the 

fibers were oriented perpendicular to the long axis of the beam, in the horizontal plane (Figure 9 

(f)). Ripepi showed in preliminary testing that the modulus of G100 was the same in tension and 

compression. Therefore, all of his 𝐸2 results are based on tensile strain measurements. However, 

Ripepi had an error in his load cell calibration, resulting in all his moduli being 5% low. This error 

has been corrected in the current investigation. 

Transverse Poisson’s ratio measurements 

For the transverse Poisson’s ratio measurements obtained in the present investigation (𝜈23), 

one composite beam of each type was tested with the fibers oriented transverse to the longitudinal 

direction of the beam, in the vertical plane (Figure 10). The tests were performed on a servo-

hydraulic load frame with a 13.34 kN load cell (Figure 11 and Figure 12). The displacement rate 

of the actuator was set to 1.27 mm/minute. Initially the strains in 2 and 3 direction in C100 and 

G100 beam were tested with FCA-1-11-1LT biaxial strain gage procured from Tokyo Sokki 

Kenkyujo Co., Ltd. The strain gages were attached to the tensile side of the beam. The gage length 

of this strain gage is 1 mm. In order to check if the gage length influenced the Poisson’s ratio 

measurement, a FCA-2-11-3L biaxial strain gage procured from Tokyo Sokki Kenkyujo Co., Ltd 

was used to record the biaxial strains in G100 beam. The gage length of this strain gage is 2 mm 

and the transverse sensitivity is 0.2%. For the subsequent testing of the hybrids, the FCA-2-11-3L 

biaxial strain gage were used because it had better transverse sensitivity (0.1%). Reference values 
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of the transverse Young’s modulus, 𝐸2, were calculated from these tests only for a rough check of 

the corrected 𝐸2 data by Ripepi (2013). These strain-gage-based values of 𝐸2 were not used as the 

basis of comparison with models in the current in this investigation. Certain specimens were 

repeatedly tested up to three times with the single biaxial strain gages located on the tension side 

and three more times with the gages on the compression side. This was done to check for 

repeatability as well as differences in the strains measured in tension and compression. However, 

rigorous calculation of different tensile and compressive moduli (as in Ripepi, 2013) was not done. 

Load and strain data were recorded using a National Instruments SCB-68 data acquisition board. 

The flexural loading set up is shown in Figure 11 and Figure 12. 

 

 

 

 

Figure 10. Four-point-loaded beam geometry for measurement of transverse Poisson’s ratio, 𝜈23.  
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Figure 11. Flexure test setup of G100 specimen with load frame and, biaxial strain gage attached 

to the tension side of the beam. 
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Figure 12. Flexure test setup of C100 specimen with load frame and, biaxial strain gage attached 

to the tension side of the beam. 

 

The modulus was calculated using classical Euler-Bernoulli beam theory, based on a linear 

regression of the stress-strain data. For a 4-point-loaded beam with an outer span L, inner span 

3L/5, and shear span L/5, the flexural stress is given by 

 
𝜎22 =

3𝑃𝐿

5𝑏ℎ2
 (29) 

where, 

𝑃: total applied load 
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𝐿: outer load span 

𝑏: width of the beam 

ℎ: height of the beam 

 

With the stress in the beam with equation (29) and the strains from the biaxial strain gage, the 

transverse modulus and transverse Poisson’s ratio were determined from equations (30) and (31), 

respectively, 

 𝐸2 =
𝜎22

𝜀22
 (30) 

 𝜈23 = −
𝜀33

𝜀22
 (31) 

where, 

𝜀22 and 𝜀33 : strains in the 2- and 3-directions, respectively  

 

An FE analysis of a G100 beam specimen was carried out to verify that the experimentally 

measured strains would reflect the actual properties of the material. The results of this analysis, 

detailed in Appendix D, indicate that the selected beam geometry provides an accurate measure of 

the modulus and Poisson’s ratio of the material.  

Carbon, glass, matrix, and void volume fractions of the composites were measured and 

reported by Ripepi (2013) using acid digestion (ASTM D3171-09, 2009). Carbon and glass volume 

fractions were individually calculated from the total fiber mass using the known tex values and 

mass densities for the two kinds of fiber.   
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Chapter 4  
 

RESULTS 

Transverse Poisson’s ratio measurements 

Mean volume fractions from three replicates of each material from the acid digestion tests by 

Ripepi (2013) are reported in Table 7. The volume fraction of voids in the matrix, 𝑣𝑣𝑚, found by dividing 

𝑣𝑣 by 𝑣𝑚, is used when calculating effective matrix properties according to the GSCM discussed earlier. 

The stress-strain curves of the transverse Poisson’s ratio measurements obtained from the biaxial gages 

attached on the tensile and compressive side are presented in Appendix C. The results from the Tensile 

side test and compressive side test of G100 beam showed that there was no influence of the gage length 

on the Poisson’s ratio measurement.  

Ripepi calculated and confirmed that measuring the elastic properties of the material by attaching 

the strain gages on the tensile side of the beam is an accurate test method. Therefore, the average 

Poisson’s ratio results (Table 5) obtained from the biaxial strain measurements on the tensile side of the 

beam are used in the closed-form models and the finite element validation.  Although the transverse 

Young’s modulus from the biaxial strain gage measurement was not used in the present investigation, 

the values obtained from the strain gage measurements on the tensile side of the beam are compared to 

the corrected data by Ripepi (2013), in Table 6. 
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Table 5. Experimental transverse Poisson’s ratio,𝜈23, of composite beams from current 

investigation.   

 Transverse Poisson’s Ratio 

 𝜈23 

C100 0.49 

C75G25 0.41 

C50G50 0.42 

C25G75 0.42 

G100 0.32 

Neat Resin 0.381 
1Henry (2015) 

 

Table 6. Experimental modulus of elasticity of beams from current investigation and Ripepi 

(2013). 

 Modulus 

 
𝐸2 (GPa) from current 

investigation 

𝐸2 (GPa)* (corrected values from 

Ripepi, 2013) 

C100 10.6 11.50.31 

C75G25 14.6 13.70.67 

C50G50 17.3 17.80.53 

C25G75 21.8 19.90.51 

G100 30.8 29.01.80 

Neat Resin - 3.070.15 

*Meanstd. dev. 

Table 7. Constituent volume fractions from Ripepi (2013). 

 𝑣𝑐 𝑣𝑔 𝑣𝑚 𝑣𝑣 𝑣𝑣𝑚 

C100 0.688 0.000 0.275 0.037 0.14 

C75G25 0.536 0.176 0.263 0.025 0.095 

C50G50 0.352 0.346 0.289 0.013 0.045 

C25G75 0.176 0.518 0.274 0.032 0.120 

G100 0.000 0.761 0.219 0.020 0.091 

  

The 𝐸2 of the specimens increases monotonically with higher proportions of glass fiber in 

the composite. This is attributed to the inclusion of glass fibers in the hybrids which have higher 

fiber modulus, 𝐸2𝑔= 80 GPa, than carbon fibers, 𝐸2𝑐= 25.3 GPa. The 𝜈23 of the all-glass composite 

is lower than all-carbon and the hybrids. The reason for the low Poisson’s ratio of the all-glass 
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material may be due to a lower glass fiber transverse Poisson’s ratio, 𝜈23𝑔= 0.26 compared to 

carbon fibers, 𝜈23𝑐= 0.85. The transverse modulus and transverse Poisson’s ratio of carbon are 

determined in the “Transverse elastic properties of AS4D carbon fibers” subsection later in this 

chapter.  

The Poisson’s ratio of the epoxy resin was not measured in the present investigation. 

Rather, the value of 0.38±0.14 obtained by Henry et al. (2015) using tensile tests on the same resin 

system was used. 

FEA of hybrid composites 

RUC fiber packing array 

The fiber packing array used for the majority of the modeling was selected based on a 

preliminary model of the G100 composite without consideration of voids. Accordingly, the fiber 

and matrix volume fractions were set to 0.761 and 0.239, respectively. Square and hexagonal 

packing arrays were considered (Figure 13 (a) and (b)) using the dimensions shown in Table 8. 

Considering hexagonal symmetry, the hexagonal array predicts the same modulus in any direction 

in the 2-3 plane. The square array has only tetragonal symmetry in the 2-3 plane. Thus, modulus 

for the square array was evaluated along the direction of minimum inter-fiber distance (Figure 13 

(b)) as well as along the direction of maximum inter-fiber distance (Figure 13(c)). The isotropic 

properties of the fully dense matrix material used for this part of the investigation are reported in 

Table 5 and Table 6. The modulus was calculated along the 2-axis in each RUC. In order to validate 

the periodicity boundary conditions used  to model the 𝐸2 and 𝜈23, the periodicity boundary 



39 

 

conditions in Table 2 were prescribed to a square RUC developed by Sun and Vaidya (1995) for a 

carbon epoxy (AS4/3501-6) composite with fiber volume fraction of 0.6. The given material 

properties were taken as the input properties of the validation RUC and the transverse elastic 

properties were computed. The computed values presented in Appendix E showed that the 

periodicity conditions used in the present analysis are correct.  Based on these results the 

periodicity conditions were used to model subsequent finite element models of all-carbon, all-glass 

and hybrid composites. 

 

   

(a)  (b)  (c) 

Figure 13. RUCs for different fiber packing arrays and modulus directions: (a) hexagonal; (b) 

square, minimum inter-fiber distance; (c) square, maximum inter-fiber distance. Modulus was 

calculated along the 2-axis in each RUC.   

 

Table 8. Dimensions of RUC of hexagonal; square array, minimum inter-fiber distance and 

square array, maximum inter-fiber distance.  

Property Hexagonal array Square array, 

minimum inter-fiber 

distance 

Square array, 

maximum inter-

fiber distance 

Length, 𝑎𝑥 (μm) 18.2 17.3 17.27 

Breadth, 𝑎𝑦 (μm) 32.2 17.3 24.4 

Height, 𝑎𝑥 (μm) 18.2 17.3 24.4 

Glass fiber radius, 𝑅𝑔 (μm) 8.5 8.5 8.5 
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The periodicity boundary conditions were enforced on the square and hexagonal RUCs, 

and the results of the study are shown in Table 9. These results reveal significant under-predictions 

of the transverse modulus, relative to the experimental reference value, for the hexagonal array 

and the square array along the maximum inter-fiber distance. These results are coherent with the 

results obtained by Gusev et al. (1999) and, Sun and Vaidya (1995). The modulus for the square 

array along the minimum inter-fiber distance is slightly higher than the experiment, which might 

be expected considering that voids were ignored in this particular analysis. The transverse 

Poisson’s ratio was not predicted very well by any of the three models. As with the present results, 

Foye (1966) also found that a square array under-predicted 𝜈23 of a glass/epoxy composite at 

comparable fiber volume fractions. Since modeling of the transverse modulus is given greater 

importance than transverse Poisson’s ratio in the overall investigation, the model in Figure 13 (b) 

was selected for use in the remainder of the investigation. 

 

Table 9. Predictions of 𝐸2 and 𝜈23 of the G100 composite based on different fiber packing 

arrays, neglecting voids. 

 𝐸2 (GPa) (Difference1) 𝜈23 (Difference1) 

Experimental  29.0 0.32 

Hexagonal array 20.4 (-42.2) 0.38 (18.7) 

Square array (min. fiber distance) 31.6 (9.0) 0.24 (-25.0) 

Square array (max. fiber distance) 19.1 (-34.1) 0.51 (59.4) 

1 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝐹𝐸𝐴−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 % 

Modeling approach for voids 

Three different approaches for modeling the effect of voids on transverse properties were 

compared using the G100 composite as a case study. In each case, uniaxial stress in the 2-direction 
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is imposed on the model. Approach 1, shown in Figure 14 (a), homogenizes the voids in the matrix 

according to the GSCM discussed earlier, with the fraction of voids in the composite, 𝑣𝑣, taken as 

0.02 and the fraction of voids in the matrix, 𝑣𝑣𝑚, taken as 0.091 according to Table 7. The effective 

matrix properties for the G100 composite according to the GSCM are given in Table 11. 

   

(a) (b) (c) 

Figure 14.  RUCs including the effects of voids:  (a) Approach 1, fiber and homogenized 

effective matrix; (b) Approach 2, fiber, matrix, and discrete voids; (c) Approach 3 (first step), 

determination of effective matrix properties from FEA of matrix with discrete voids. 

 

Table 10. Matrix properties from GSCM used for various preliminary empirical and finite 

element models.  

Model 𝐸1𝑚
𝑒𝑓𝑓

 (GPa) 𝐸2𝑚
𝑒𝑓𝑓

 (GPa) 𝜈12𝑚
𝑒𝑓𝑓

 𝜈23𝑚
𝑒𝑓𝑓

 𝐺12𝑚
𝑒𝑓𝑓

 (GPa) 𝐾23𝑚
𝑒𝑓𝑓

 (GPa) 

C100 2.66 2.07 0.38 0.385 0.88 2.65 

C75G25 2.78 2.33 0.38 0.385 0.95 3.11 

C50G50 2.79 2.35 0.38 0.385 0.96 3.16 

C25G75 2.71 2.18 0.38 0.384 0.91 2.84 

G100 2.79 2.35 0.38 0.384 0.96 3.15 

 

Approach 2 assumes one discrete cylindrical void in each of the four corners of the RUC, 

midway between the fiber and the corner, as shown in Figure 14 (b). Void fractions 𝑣𝑣 and 𝑣𝑣𝑚 

have the same values as in Approach 1, and the matrix is modelled as fully dense, isotropic resin 

as indicated in Table 5 and Table 6. Four smaller holes with their centroids at the mid-position 
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between the fibers and the corner were also modelled as a variant of Approach 2, but were found 

to give the same results as one hole in each corner and the model and the results are discussed in 

Appendix F.  

Approach 3 is essentially a check on Approach 1 in that FEA, rather than GSCM, is used 

to determine the effective properties of the matrix with cylindrical voids Figure 14 (c) shows the 

RUC for the first step of this approach, where a single cylindrical void is modelled in fully dense, 

isotropic matrix with properties as given in Table 5 and Table 6. Periodicity conditions in Table 2 

were applied to RUC in order to obtain all the constitutive properties an RUC of an isotropic matrix 

with single cylindrical void. The next step applies the resulting effective matrix properties to the 

same RUC configuration as was used in Approach 1 (Figure 14 (a)) to determine the transverse 

properties of the composite.  

The transverse properties of G100 resulting from the three void modeling approaches are 

summarized in Table 11. Approaches 1 and 3, which homogenize the matrix with cylindrical voids 

according to GSCM and FEA, respectively, both predict 𝐸2 values considerably less than the 

experimental 𝐸2. FEA therefore confirms the GSCM model for the effective matrix properties. 

Approach 2 with discrete voids in the corners of the RUC over-predicts 𝐸2 by only 1.5 GPa (~5%). 

It is believed that Approaches 1 and 3 under-estimate 𝐸2 because the matrix material in the critical 

region along the shortest path between adjacent fibers is excessively softened due to 

homogenization. The contour plot of 2-direction stress in Figure 15 and Figure 17 show that the 

2-direction elemental stresses in the region where adjacent fibers nearly touch each other in 

Approach 1 are lower than in Approach 2. Also, the contour plot of 2-direction displacements in 

Figure 16 and Figure 18 show that the 2-direction elemental displacements in the region where 

adjacent fibers nearly tough each other between the fibers and matrix in the 2-direction in 
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Approach 1 are relatively higher than in Approach 2, respectively.  This conformed that the critical 

region between along the shortest path between adjacent fibers is excessively softened. Approach 

2 was chosen for subsequent modeling since it predicts 𝐸2 closest to the experimental data. 

 

Table 11. Predictions of 𝐸2 and 𝜈23 of the G100 composite based on different approaches for 

modeling voids. 

 𝐸2 (GPa) (Difference1) 𝜈23 (Difference1) 

Experimental 29.0 0.32 

Approach 1  25.1 (-13.4) 0.22 (-31.2) 

Approach 2 30.5 (5.2) 0.20 (-37.5) 

Approach 3  25.3 (-12.8) 0.21 (-34.4) 
1 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  

𝐹𝐸𝐴−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 % 

 

 

 

 

 

Figure 15. Contour of 2-direction stress for void modeling Approach 1—fiber and homogenized 

effective matrix (𝜎22 = 500 Pa) 
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Figure 16. Contour of 2-direction displacement for void modeling Approach1—fiber and 

homogenized effective matrix (𝜎22 = 500 Pa) 

 

 

 

Figure 17. Contour of 2-direction stress for void modeling Approach 2—fiber, matrix, and 

discrete voids (𝜎22 = 500 Pa) 
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Figure 18. Contour of 2-direction displacement for Approach 2, fiber, matrix, and discrete voids  

(𝜎22 = 500 Pa) 

Transverse elastic properties of ASD4 carbon fibers 

Measuring the transverse elastic properties of carbon fibers is practically impossible, 

however, these properties can be backed out using the experimental data for C100 (Table 5 and 

Table 6) and the validated FEA approach. It was shown earlier that modeling discrete voids in the 

corners of the RUC (Figure 14 (b)) gave the best agreement with G100 experimental data, hence 

this same modeling approach was taken for backing out the transverse elastic properties of AS4D 

fibers based on consideration of the C100 experimental data, with the constituent volume fractions 

as listed in Table 7 and matrix properties listed in Table 5 and Table 6.  

The transverse Poisson’s ratio (𝜈23𝑐) and transverse Young’s modulus (𝐸2𝑐) of AS4D fiber 

were systematically varied from 0.5 to 0.9 and 24.3 GPa to 25.5 GPa, respectively while 𝜈23 and 

𝐸2 of the composite were determined by FEA. From Figure 19, we can observe that 𝜈23𝑐 varies 

linearly with 𝜈23 and does not vary significantly with 𝐸2𝑐. Subsequently the measured value of 𝜈23 
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of 0.49 for C100 was substituted into the equation in Figure 19, and the corresponding best value 

of  𝜈23𝑐 was found to be 0.85.  Using this value of 𝜈23𝑐 and the measured 𝐸2 of 11.5 GPa, the best 

value of 𝐸2𝑐 was found to be 25.3 GPa from the equation in Figure 20. The entire data set of 𝐸2𝑐 

and 𝜈23 for the parametric study are given in Appendix G. 

 

 

 

Figure 19. Backed-out transverse Poisson’s ratio of carbon fiber as a function of the transverse 

Poisson’s ratio of the C100 composite and the transverse Young’s modulus of AS4D fiber. 
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Figure 20. Backed-out transverse Young’s modulus of AS4D fiber as a function of the transverse 

Young’s modulus of the C100 composite and transverse Poisson’s ratio of AS4D fiber. 

 

Sun and Vaidya (1996), King et al. (1992), Gipple and Hoyns (1994), Cairns and Adams 

(1981) and Grimes et al. (1980), back-calculated values of 𝑣23𝑐 = 0.25 for standard-modulus 

carbon fibers using FEA and experimental data; however, their analyses did not consider void 

content. The AS4D fiber properties obtained in the present investigation, summarized in Table 12, 

satisfy all the thermodynamic constraints for positive-definite stress-strain relationships (Jones, 

1975), as detailed in Appendix H. Therefore, we can proceed with confidence to analyze hybrid 

composites with these material properties.   

 

Table 12. Table of elastic properties of AS4D fiber.  

 𝐸1𝑐 (GPa) 𝐸2𝑐 (GPa) 𝜈12𝑐 𝜈23𝑐 

Elastic constants 245 25.3 0.2 0.85 
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Convergence 

A convergence study was conducted by varying the model mesh size and observing the 

transverse Young’s modulus,𝐸2, and transverse Poisson’s ratio,𝜈23, of the G100 and C100 

materials for signs of convergence. Table 13 and Table 14 summarize the results of the mesh 

sensitivity study for G100 and C100 composites, respectively, including explicit voids.  Percent 

change is computed using the difference between results of the current and previous (coarser) 

mesh divided by results of previous mesh. 

 

Table 13. FE mesh sensitivity analysis for G100 composite.  

Number of elements 𝐸2  (GPa) Change (%) 𝜈23 Change (%) 

21,975 30.71 - 0.21 - 

35,640 30.72 0.03 0.21 0.00 

57,330 31.12 1.28 0.22 4.54 

69,502 30.48 -2.10 0.20 -10.0 

99,502 31.83 4.24 0.25 20.0 

113,940 30.46 -4.50 0.20 -25.0 

148,127 30.45 -0.03 0.20 0.00 

190,620 30.45 0.00 0.20 0.00 

233,392 30.44 -0.03 0.20 0.00 

286,998 30.44 0.00 0.20 0.00 

322,240 30.43 -0.03 0.20 0.00 
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Table 14. FE mesh sensitivity analysis for C100 composite. 

Number of elements 𝐸2  (GPa) Change (%) 𝜈23 Change (%) 

13,083 11.63 - 0.50 - 

23,946 11.56 -0.61 0.50 0.00 

39,494 11.53 -0.26 0.49 -2.04 

48,411 11.53 0.00 0.49 0.00 

61,488 11.53 0.00 0.49 0.00 

78,640 11.51 -0.17 0.49 0.00 

114,480 11.50 -0.08 0.49 0.00 

133,488 11.50 0.00 0.49 0.00 

171,288 11.50 0.00 0.49 0.00 

197,670 11.49 -0.09 0.49 0.00 

272,548 11.49 0.00 0.49 0.00 

323,310 11.49 0.00 0.49 0.00 

 

 

The results do not appear to be converging in the classical sense for G100 from 21,975 to 99,502 

elements because of the discontinuous material properties in the model, which give rise to 

singularities in some stress components at the material interfaces. It can be seen that 𝐸2, for 

example, oscillates within this region. Since the changes between the solutions are not large after 

this region, 148,127 and 171,288 elements for G100 and C100 models, respectively, were selected 

and the resulting “converged” transverse properties are compared with the experimental data in 

Table 13 and Table 14. The C100 results are in perfect agreement because of the way the AS4D 

transverse properties were back-calculated using the experimental data for 𝐸2 and 𝜈23. No such 

“fitting” procedure was done for the G100 model, however, and the model and data modulus still 

agree within 5%. The converged mesh densities were used subsequently to model hybrid 

composites.  
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Table 15. Comparison of transverse properties of C100 and G100 from experiments and FEA 

using converged meshes.  

 

Experimental 𝐸2 

(GPa) 

Experimental 

𝜈23 

FEA 𝐸2  (GPa) 

(Difference1) 

FEA 𝜈23 

(Difference1) 

 

C100 11.5 0.49 11.5 (0.0) 0.49 (0.0)  

G100 29.0 0.32 30.5 (5.2) 0.20 (-37.5)  

1𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  
𝐹𝐸𝐴−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 %   

Transverse elastic properties of hybrid composites 

Three hybrid models were constructed with varying compositions of carbon and glass 

fibers (C25G75 – 25% carbon and 75% glass, C50G50 – 50% carbon and 50% glass, C75G25 – 

75% carbon and 25% glass) based on the constituent volume fractions from Table 7. The RUC of 

each hybrid model is illustrated in Figure 21 (a)-(d). The radius of glass fiber was taken to be 8.5 

μm (PPG, Pittsburgh, PA, USA). The carbon fiber radius and, the dimensions of the square RUC 

in 2- and 3-direction were computed according to the constituent volume fraction data in Table 7. 

In the hybrid RUCs, the length in the 1-direction was one-fourth of the length in 2- and 3-direction 

in order to reduce computational cost (Table 16). Each fiber was positioned in the RUC in such a 

way that its centroidal axis coincides with the centroidal axis of each quadrant in the RUC. These 

RUCs are approximations of the actual microstructure of the hybrids shown in Figure 9. Periodicity 

conditions presented in Table 2 were applied onto the hybrid RUCs. The contour plots of stresses 

and displacements of C75G25 RUC can be found in Appendix I. 

Although the C50G50 model was constructed based on the material constituent data, 

careful attention should be given to the positioning of the glass and carbon fibers in the composite 

micro-structure. In order to investigate if the fiber positioning has any influence on the finite 
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element modeling of C50G50, RUCs with fibers (a) arranged symmetric and (b) arranged anti-

symmetric about a plane that is rotated +/-45 degrees about the 1-axis through the center of the 

RUC and the voids positioned at the mid-point between the fiber and corner, were developed. 

These models are shown in Figure 21 (b) and (c). Applying periodic boundary conditions on these 

models revealed that only the symmetric C50G50 model preserved the same Young’s modulus in 

the 2- and 3-directions. Moreover, the stress partitioning parameters, 𝜂𝑐 and 𝜂𝑔, defined as ratio of 

stresses in fibers to matrix retained the same value when load is applied in either transverse 

direction. Therefore, this model is chosen to simulate the C50G50 composite. The details of this 

analysis are reported in Appendix J.  
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a) C75G25 b) C50G50-symmetric 

  

c) C50G50-antisymmetric d) C25G75 

Figure 21. RUC with various for various hybrids (C = carbon fiber; G = glass fiber) 

 

Table 16. Dimensions of hybrid RUCs used for FEA. 

Property C75G25 C50G501 C25G75 

Length, 𝑎𝑥 (μm) 9.0 9.05 9.05 

Breadth, 𝑎𝑦 (μm) 36.0 36.2 36.2 

Height, 𝑎𝑧 (μm) 36.0 36.2 36.2 

Carbon fiber radius, 𝑅𝑐 (μm) 8.5 8.5 8.58 

Glass fiber radius, 𝑅𝑔 (μm) 8.6 8.6 8.5 

Void radius, 𝑅𝑣 (μm) 0.8 0.58 0.92 
1both symmetric and anti-symmetric RUCs have the same dimensions 
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𝐸2 and 𝜈23 are computed using the boundary conditions in Table 2 and compared with 

available experimental data (Table 5 and Table 6, Figure 22). The correlation between 

experimental data and models was measured with the coefficient of determination (Wikipedia, 

2013), 𝑅2, given by (28-31),  

 
𝑦̅ =  

1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 
(28) 

 
𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − 𝑓𝑖)

2

𝑛

𝑖=1

 
(29) 

 
𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 
(30) 

 
𝑅2 = 1 −

𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

(31) 

where, 

𝑛: number of samples 

𝑦𝑖: value of sample 𝑖 

𝑦̅: average value of samples 𝑦𝑖 

𝑓𝑖: experimental value corresponding to 𝑖 

In general, good agreement is observed between the FE model and experimental transverse 

Young’s modulus with a maximum difference of -11.2% (C50G50) and 𝑅2 = 0.95. The transverse 

stiffness of all-glass composite was clearly greater than all-carbon and the hybrid composites. The 
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transverse Poisson’s ratio has 𝑅2 = 0.89. The 𝜈23 of  G100 RUC under-predicts the experimental 

𝜈23 by 37.5%. This is because the square array was chosen as the preliminary finite element model 

based on the agreement between the transverse Young’s modulus obtained from FEA and 

experiment. Foye (1966) also found that a square array under-predicted 𝜈23 of a glass/epoxy 

composite at comparable fiber volume fractions.  

 

Table 17. Comparison between experimental and FEA transverse properties for all composites. 

 Experimental  FEA  

 
𝐸2 (GPa) 𝜈23 𝐸2 (GPa) 

(Difference1) 
𝜈23 (Difference1) 

C100 11.5 0.49 11.5 (0.0) 0.49 (0.0) 

C75G25 13.7 0.41 14.2 (3.7) 0.46 (12.2) 

C50G50 17.8 0.43 15.8 (-11.2) 0.44 (2.3) 

C25G75 19.9 0.42 18.1 (-9.1) 0.28 (-33.3) 

G100 29 0.32 30.45 (5.0) 0.2 (-37.5) 

𝑅2 - - 0.948 0.89 
1𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  

𝐹𝐸𝐴−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 %  
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Figure 22. Comparison of transverse Young’s modulus from FEA and corrected experimental 

values from Ripepi (2013). Error bars represent one standard deviation. 

Stress partitioning parameters 

Stress partitioning parameters (𝜂𝜎𝑐  and 𝜂𝜎𝑔) (SPPs) can be used as an index to understand 

the behavior or materials. In order to validate the finite element modeling for SPPs, the volume 

average of stresses in the 1-direction and 3-direction were computed. These stresses have a zero 

magnitude since the boundary conditions for this case since it simulates a uniaxial tensile loading. 

Therefore the volume average of the lateral stresses are zero. This validation is given in detail in 

Appendix K.  

For the composites manufactured by Ripepi (2013), 𝜂𝜎𝑔  is greater than 𝜂𝑐 for G100, 

C25G75 and C75G25 models (Table 18). For the first two models, the volume fraction of the 

stiffer fibers (glass), is higher than the softer fibers (carbon). Therefore, most of the load is carried 

by the glass fibers. In C50G50 model, 𝜂𝜎𝑔 lower than any other hybrid model because the void 
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volume fraction (𝑣𝑣  = 0.013) is the lowest and the volume fraction of matrix (𝑣𝑚 = 0.289) is 

highest, of all the hybrid models. Therefore the matrix is stiffer and also more stress is distributed 

to the matrix than in other models.  

 

Table 18. Stress partitioning parameters of the manufactured composites, obtained by FEA 

 Stress partitioning parameters 

Model 𝜂𝜎𝑐 𝜂𝜎𝑔 

C100 1.84 - 

C75G25 1.61 1.80 

C50G50 1.70 1.67 

C25G75 1.69 2.03 

G100 - 3.15 

 

Load sharing mechanism among constituents in hybrid composites 

In an effort to further to understand the load sharing mechanism by the fibers in composites 

with variable ratios of carbon and glass fibers, without the complications of slightly variable 

overall fiber, matrix, and void contents as seen in the manufactured materials, a series of FE models 

were evaluated using a fixed overall fiber volume fraction of 0.7 and no voids. Otherwise, the 

matrix properties are listed in Table 5 and Table 6; the carbon fiber properties are in Table 12; and 

the glass fiber is taken to have an elastic modulus (𝐸𝑔) of 80.0 GPa and a Poisson’s ratio (𝜈𝑔) of 

0.26. The synthesized RUCs were analyzed for (a) stress partitioning parameters (b) strain 

partitioning parameters (EPP) and (c) strain energy density partitioning parameters (SEDPP). 

Respectively, these RUCs were subjected to (a) the same uniaxial unit stress in the 2-direction, (b) 

different uniaxial stresses in the 2-direction so that all materials have a unit strain in the 2-direction 
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and (c) different uniaxial stresses in the 2-direction so that a unit of work is applied to the RUC 

for all materials.  

The SPP was computed in the usual way as presented in equations (12) and (13). However, 

EPP was computed by taking the ratio of volume average of 2-direction strain in the fiber to the 

volume average of 2-direction strain in the matrix. Similarly SEDPP was computed by taking the 

volume average of 2-direction strain energy density in the fiber to the volume average of 2-

direction strain energy density in the matrix.  

To compute the SPP and EPP, periodicity conditions presented in equation (14) were 

applied on to the RUC by taking 𝜀2̅2 as unity. In order to simulate the SEDPP, the same periodicity 

conditions in equation (14) were applied on to the RUC and the value of 𝜀2̅2 can be obtained by 

first considering the volumetric average of strain energy density, 𝜓̅, for uniaxial stress in the 2-

direction, 

 
𝜓̅ =  

1

2
𝜎22𝜀2̅2 

(32) 

which can be expressed in terms of the 2-drection modulus and strain as, 

 
𝜓̅ =  

1

2
𝐸2(𝜀2̅2)

2 
(33) 

For a unit value for 𝜓̅, the expression for 𝜀2̅2 is then 

 
𝜀2̅2 = √2

𝐸2
⁄  

(34) 

The SPPs, EPPs (𝜂𝜀𝑐 and 𝜂𝜀𝑔) and SEDPPs (𝜂𝜓𝑐 and 𝜂𝜓𝑔) computed from FEA are 

presented in Table 19.  The SPPs results show that 𝜂𝜎𝑐 is nearly the same in the C100, C75G25, 

C25G75 and G100 models. In C50G50 model, 𝜂𝜎𝑐 is equal to 𝜂𝜎𝑔. 𝜂𝜎𝑔 is the highest for G100 
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composite and lowest in C25G75 model.  The 𝜂𝜀𝑐 in C50G50 model is the highest. This can be 

due to the excessive deformation in carbon fibers when overly stiff glass fibers are placed adjacent 

to the carbon fibers. Similarly, 𝜂𝜓𝑐 in C50G50 model is the highest.  

In order to compare the stress state of each constituent in the all-carbon, all-glass and hybrid 

RUCs, the volume average of 2-direction stresses in the constituents were normalized with respect 

to the volume average of 2-direction stress of the entire RUC, Table 20. The strain-state and 

energy-state in each of the constituents are presented in Table 21 and Table 22, respectively. The 

results in Table 20 show that the 2-direction stresses in the matrix decrease when the glass-to-

carbon fiber ratio in the composite is increased. This behavior is similar to springs attached in 

parallel. When stiffer springs are progressively added to a system the overall stress in the softer 

spring progressively decreases. The results in Table 22 show that the 2-direction strains in matrix 

increase when glass-to-carbon fiber ratio in the composite is increased. This behavior can be 

modeled as springs attached in series. The deformation in the softer spring is more when stiffer 

springs are progressively added to the system. In C50G50 model the stress levels (Table 21) in 

carbon and glass fibers are the same, but the strains in carbon fibers are 3.3 times higher than glass 

fibers (Table 22). This is because the transverse modulus in the glass fiber, 𝐸2𝑔 = 80 GPa, is 3.2 

times higher than the transverse modulus of carbon fibers, 𝐸2𝑐 = 25.3 GPa. The results from Table 

22 show that the strain energy density in matrix is always greater than carbon fibers followed by 

glass fibers for any combination of glass-to-carbon fiber ratio. 
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Table 19. Stress partitioning (SPP) vs. strain partitioning (EPP) vs. strain energy density 

parameter (SEDPP) for synthesized composites with an overall fiber volume fraction of 0.7 and 

no voids. 

 
Carbon 

SPP, 𝜂𝜎𝑐 

Glass 

SPP, 𝜂𝜎𝑔 
Carbon 

EPP, 𝜂𝜀𝑐 

Glass 

EPP, 𝜂𝜀𝑔 

Carbon 

SEDPP, 

𝜂𝜓𝑐 

Glass 

SEDPP, 

𝜂𝜓𝑔 

C100 1.81 - 0.33 - 0.57 - 

C75G25 1.82 2.17 0.33 0.12 0.53 0.24 

C50G50 1.99 1.98 0.38 0.11 0.67 0.19 

C75G25 1.79 2.05 0.31 0.20 0.41 0.30 

G100 - 2.33 - 0.14 - 0.25 

 

Table 20. Volume-averaged transverse stresses in the constituents under uniaxial transverse 

stress, normalized by the transverse stress, for synthesized composites with an overall fiber 

volume fraction of 0.7 and no voids.   

 𝜎22𝑐 𝜎22𝑔 𝜎22𝑚 

C100 1.16 - 0.64 

C75G25 1.11 1.33 0.61 

C50G50 1.18 1.17 0.59 

C25G75 0.99 1.13 0.55 

G100 - 1.20 0.51 

 

Table 21. Volume-averaged transverse strains in the constituents under unit transverse strain, for 

synthesized composites with an overall fiber volume fraction of 0.7 and no voids. 

 𝜀2̅2𝑐 𝜀2̅2𝑔 𝜀2̅2𝑚 

C100 0.62 - 1.88 

C75G25 0.67 0.25 2.02 

C50G50 0.80 0.24 2.12 

C25G75 0.74 0.46 2.34 

G100 - 0.36 2.50 
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Table 22. Strain energy density in the constituents under unit work, for synthesized composites 

with an overall fiber volume fraction of 0.7 and no voids. 

 Volume 

averaged strain 

energy density in 

carbon fiber 

Volume 

averaged strain 

energy density in 

glass fiber 

Volume 

averaged strain 

energy density in 

matrix 

 𝜓̅22𝑐 𝜓̅22𝑔 𝜓̅22𝑚 

C100 0.82 - 1.44 

C75G25 0.86 0.39 1.62 

C50G50 1.13 0.31 1.67 

C25G75 0.81 0.59 1.99 

G100 - 0.53 2.11 

 

Analysis of closed-form micromechanical models 

Iso-stress model 

The results for the ISM are shown in Table 23 and Figure 23, with a best coefficient of 

determination (𝑅2) of -3.239. The properties of the matrix are obtained from Table 5 and Table 6. 

No curve fitting was done in this case and the negative value for 𝑅2implies a bad estimate for 

elastic properties. 
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Table 23. Comparison between experimental and ISM 𝐸2, of hybrid models. 

 Experimental  ISM  

 
𝐸2 (GPa) 𝐸2 (GPa) (Difference1) 

C100 11.5 5.6 (-51.2) 

C75G25 13.7 6.8 (-50.4) 

C50G50 17.8 6.8 (-61.7) 

C25G75 19.9 6.5 (-67.3) 

G100 29 9.0 (-69.0) 

𝑅2 - -3.239 
1𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  

𝐼𝑆𝑀−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 % 

 

 

 

 

Figure 23. Transverse Young’s modulus calculated from ISM and measured in experiments. Error 

bars represent one standard deviation. 
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Modified iso-stress model 

Figure 24 shows all possible combinations of 𝜂𝜎𝑐  and 𝜂𝜎𝑔 for 𝑅2 and the predicted 𝐸2 by 

MISM are shown in Table 25. The properties of the matrix are obtained from Table 10. 

Initially 𝜂𝜎𝑐 was set to 3.79 for C100 and 𝜂𝜎𝑔 was set to 5.59 for G100 and the overall 

coefficient of determination (𝑅2) for all the five materials was computed to be 0.97. After adjusting 

the 𝜂𝜎𝑐 to 3.4 and 𝜂𝜎𝑔 to 5.7, based on the data search from the surface plot, these values gave a 

better 𝑅2—that is, 0.985.   

 

 

 

 

Figure 24. Surface plot for 𝑅2 based on MISM with 𝜂𝜎𝑐 and 𝜂𝜎𝑔 as parameters. 
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Table 24. Comparison between experimental and MISM 𝐸2, of hybrid models. 

 Experimental  MISM  

 
𝐸2 (GPa) 𝐸2 (GPa) (Difference1) 

C100 11.5 10.9 (-5.3) 

C75G25 13.7 14.9 (9.0) 

C50G50 17.8 17.3 (-2.7) 

C25G75 19.9 19.2 (-3.5) 

G100 29 29.4 (1.2) 

𝑅2 - 0.985 
1𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  

𝑀𝐼𝑆𝑀−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 % 

 

 

 

 

Figure 25. Transverse Young’s modulus calculated from MISM and measured in experiments. 

Error bars represent one standard deviation. 

 

 The SPP from MISM are higher than the values from FEA (𝜂𝜎𝑐 = 1.8 and 𝜂𝜎𝑔 = 

3.2). This discrepancy is hypothesized to be due to the use relatively soft effective matrix 

properties to account for voids implicitly in the MISM, thus leading to higher SPPs required to 
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match the experimental 𝐸2 values. To test this hypothesis, the FEA of G100 composite was re-run 

with effective matrix properties as given in Table 10; and the stress partitioning parameters were 

computed according to the equations in (12) and (13). The 𝐸2 and 𝜂𝜎𝑔 computed from this case 

were 25.1 GPa and 2.96 respectively. This confirmed that MISM requires higher SPP to match the 

experimental 𝐸2 values.  

Modified Halpin-Tsai model  

Table 25, Figure 26 and Figure 27 show the results of MHTM by substituting the matrix 

properties from Table 10; and fiber modulus into equations (26)-(28). Considering all 5 materials, 

the 𝑅2 is 0.97, and the best-fit value of 𝜉 is 5.5. This value for 𝜉 is higher than the value obtained 

by Banerjee and Sankar (2012) (𝜉 = 1.14) since the matrix is softened by voids. 

 

Table 25. Comparison between experimental and MHTM 𝐸2, of hybrid models. 

 Experimental  MHSM  

 
𝐸2 (GPa) 𝐸2 (GPa) (Difference1) 

C100 11.5 12.5 (8.3) 

C75G25 13.7 15.8 (15.1) 

C50G50 17.8 17.7 (0.8) 

C25G75 19.9 19.3 (-2.9) 

G100 29 29.0 (-0.1) 

𝑅2 - 0.970 
1𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  

𝑀𝐻𝑇𝑀−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 % 
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Figure 26.  Transverse Young’s modulus calculated from MHTM and measured in experiments. 

Error bars represent one standard deviation. 

 

 

 

Figure 27. Coefficient of determination (R2) as a function of ξ based on MHTM 
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Summary of micromechanical models 

 

In general, an RUC model with square packing array where the fibers are positioned in 

minimum inter-fiber distance and voids modeled as discrete holes for all-carbon, all-glass and 

hybrid models have good estimates of 𝐸2 in comparison to experimental data, Figure 28. The 

coefficient of determination,𝑅2, is equal to 0.95. Also 𝜈23 of the hybrids were computed and 

compared with the experimental data in Table 26. The comparison showed that the 𝜈23 was 

predicted progressively worse in composite with progressively higher proportions of glass fiber. 

This is due to the fact that the best FE fiber packing array was not selected to match 𝜈23. On the 

other hand, since the carbon fiber transverse modulus and Poisson’s ratio were back-calculated 

to match the experimental properties of C100, the predictions of properties of composite with 

progressively higher proportions of carbon fiber were generally better.   

Three closed-form models were used to model 𝐸2 of all-carbon, all-glass and hybrid 

composites. Out of the three models, ISM has poorly predicts the transverse modulus with 𝑅2 = 

-3.239. MISM has the best prediction of 𝐸2 with 𝑅2 = 0.985. MHTM has the next best prediction 

with 𝑅2 = 0.97.  
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Figure 28. Transverse Young’s modulus calculated from FEA, MISM, ISM, MHTM and 

measured in experiments. Error bars for the experimental results represent one standard 

deviation. 

 

Table 26. Comparison between experimental, empirical and FEA properties of hybrid models  

 

 Experimental  FEA  ISM  MISM  MHTM  

 

𝐸2, 

GPa 
𝜈23 

𝐸2, GPa (% 

Difference)

* 

𝜈23 (% 

Difference)* 

𝐸2, GPa (% 

Difference)

* 

𝐸2, GPa (% 

Difference)

* 

𝐸2, GPa (% 

Difference)

* 

C100 11.5 0.49 11.5 (0.0) 0.49 (0.0) 5.6 (-51.2) 10.9 (-5.3) 12.5 (8.3) 

C75G25 13.7 0.41 14.2 (3.7) 0.46 (12.2) 6.8 (-50.4) 14.9 (9.0) 15.8 (15.1) 

C50G50 17.8 0.43 15.8 (-11.2) 0.44 (2.3) 6.8 (-61.7) 17.3 (-2.7) 17.7 (0.8) 

C25G75 19.9 0.42 18.1 (-9.1) 0.28 (-33.3) 6.5 (-67.3) 19.2 (-3.5) 19.3 (-2.9) 

G100 29 0.32 30.45 (5.0) 0.2 (-37.5) 9.0 (-69.0) 29.4 (1.2) 29.0 (-0.1) 

𝑅2 -  0.948 0.89 -3.239 0.985 0.970 

*% Difference =  
Predicted−Exp

Exp
· 100 % 
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Chapter 5  
 

CONCLUSIONS 

In this study, the transverse Young’s modulus of hybrid composites reinforced with 

glass and carbon fibers are simulated by applying micromechanics. The five hybrid 

composites that were evaluated are 100% carbon (C100), 75% carbon and 25% glass 

(C75G25), 50% carbon and 50% glass (C50G50), 25% carbon and 75% glass (C25G75), and 

100% glass (G100). In this process, the effect of voids on composite properties were simulated 

explicitly as regularly spaced, discrete cylindrical holes in the matrix, and implicitly using 

micromechanical equations to obtain the effective (homogenized) properties of the void-

containing matrix.  

From the finite element analysis (FEA), it was observed that a square array of packing 

arrangement with voids dispersed as circular cylinders in the matrix showed good 

correspondence with experimental data for transverse modulus of the all-glass fiber 

composite. Validation of this model allowed the back-calculation of the transverse Young’s 

modulus and transverse Poisson’s ratio of AS4D carbon fiber. This exercise also allowed for 

the determination of best way to model voids in fiber composites—i.e., discretely rather than 

homogenized. When the matrix is homogenized using “generalized self-consistent model” 

GSCM, there is too much softening in the critical tight space between the fibers. Therefore, 

transverse stresses are carried more in the fibers than in the matrix.  With the material 

properties and the best void modeling technique in hand, the transverse properties and the 

stress partitioning parameters (SPP) (𝜂𝜎𝑔 and  𝜂𝜎𝑐) of the hybrid glass/carbon composites 

were obtained. It was observed that 𝜂𝜎𝑔  is greater than 𝜂𝜎𝑐 for G100, C25G75 and C75G25 
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models. This is due to the fact that the volume fraction of the stiffer fibers (glass), is higher 

than the softer fibers (carbon). Therefore, most of the load is carried by the glass fibers. 

However, in C50G50 model, the SPPs are nearly equal. In order to further investigate the load 

sharing mechanisms in hybrid composites under transverse loads, a series of FE models with 

fiber volume fraction equal to 0.7 and no voids were evaluated for the stress partitioning 

parameters, strain partitioning parameters (𝜂𝜀𝑐 𝑎𝑛𝑑 𝜂𝜀𝑔) and strain energy density partitioning 

parameters (𝜂𝜓𝑐  𝑎𝑛𝑑 𝜂𝜓𝑔). The SPPs results show that 𝜂𝜎𝑐 is nearly the same in the C100, 

C75G25, C25G75 and G100 models. It was observed that 𝜂𝜀𝑐 in C50G50 model is the highest. 

This could be attributed to extreme deformation in carbon fibers when relatively stiff glass 

fibers are placed adjacent to the carbon fiber. To obtain further insights on the load sharing 

mechanisms of all-carbon, all-glass and hybrid composites under transverse loads, the stress, 

strain and energy in each constituents were analyzed. The analysis revealed that the transverse 

stress in the matrix decreases when the glass-to-carbon fiber ratio increases, which is similar 

to springs attached in series. However the transverse strain in the matrix increases when glass-

to-carbon fiber ratio increases. This behavior is very similar to springs attached in parallel.  

In the FE simulation of a square array of circular fibers, careful attention should be 

given to the direction in which the transverse modulus is measured. Depending on the angle 

at which uniaxial stress is applied in the transverse plane, the measured transverse modulus 

can vary. When the stress is along a direction with a larger amount of matrix between adjacent 

fibers, the modulus is less than it is along a direction with less matrix between the fibers.  

Mathematically, the modified iso-stress model (MISM) model has the best 

correspondence with a coefficient of determination, R2 = 0.985. The stress partitioning 
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estimates (SPP) from this model (𝜂𝜎𝑐 = 3.4 and 𝜂𝜎𝑔 = 5.7) are higher than the values obtained 

by Ha et al. (2012) (𝜂𝜎𝑐  =1.48 and 𝜂𝜎𝑔= 3.78), however, voids were apparently not addressed 

by Ha et al.  As a consequence, the matrix used by Ha et al. is stiffer and the matrix carries a 

larger proportion of the transverse stress. The SPP values from MISM were also greater than 

the SPPs from FEA in the current investigation (𝜂𝜎𝑐 = 1.84 for C100 and 𝜂𝜎𝑔= 3.15 for G100). 

This discrepancy to be due to the use of relatively soft effective matrix properties to account 

for voids implicitly in the MISM., thus requiring higher SPPs required to match the 

experimental transverse Young’s modulus values. 

The best-fit value of 𝜉  in the modified Halpin-Tsai model (MHTM) is 5.5 (R2 = 0.97), 

which is much greater than the best-fit value obtained by Banerjee and Sankar (2012) (𝜉 = 

1.14). Though, the transverse properties of carbon fiber was obtained from an unknown 

source. They used a hexagonal array of carbon/glass fibers with a combined fiber volume 

fraction of 60%, this array type predicts a lower 𝐸2 for hybrid composites. Also, since they 

did not consider the void content in the matrix, their model predicts a lower best-fit value of 

𝜉. 

The iso-stress model (ISM), which has no fitting parameters, consistently and 

significantly under-predicted the experiments and did not show agreement with even the non-

hybrid composites. This result can be expected because the iso-stress assumption provides a 

lower bound on stiffness according to micromechanics theory. 
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Appendix A 

Python script for post processing the finite element results 

The finite element models for the hybrid composites are analyzed in ABAQUS 6.14 

(Dassault Systèmes Americas Corp., Waltham, MA) using C3D8 mesh element. The C3D8 is a 

three dimensional, continuum, 8-noded linear brick element as given in Figure 4. Each element 

has 2x2x2 integration points (Figure 5) where all the elemental stresses and strains components 

are outputted. The default coordinate system used by ABAQUS is given in Table A- 1. 

Table A- 1. Sign convention in ABAQUS. 

1 - 2 - 3 axes x - y - z axes 

1 - direction x - direction (transverse direction) 

2 - direction y - direction (transverse direction) 

3 - direction z - direction (fiber direction) 

 

In post processing the finite element results, if one wishes to evaluate the volume averaged 

stresses over the entire RUC like in equations (12) and (13); the procedure becomes very time 

consuming and prone to error. Therefore, these calculations are automated using Abaqus Python 

scripts. These scripts are provided by Barbero (2013) and can also be found at http://barbero.cadec-

online.com/feacm-abaqus/  

#Begin Post Processing 

#Open the Output Data Base for the current Job 

from visualization import * 

#test32.obd is the output database file that is computed from the running finite element analysis 

odb = openOdb(path=Jobname.odb'); 

myAssembly = odb.rootAssembly; 

 

#Creating a temporary variable to hold the frame repository provides the same functionality and 

speeds up the process 

frameRepository = odb.steps['Step-1'].frames; 

frameS=[]; 

frameIVOL=[]; 
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#Get only the last frame [-1] 

frameS.insert(0,frameRepository[-

1].fieldOutputs['S'].getSubset(position=INTEGRATION_POINT)); 

frameIVOL.insert(0,frameRepository[-

1].fieldOutputs['IVOL'].getSubset(position=INTEGRATION_POINT)); 

#Total Volume 

#Note the total volume should also include the volume of the holes in order to be consistent with 

the equation 11 in “Transverse elastic properties of composites” subsection in Chapter 2 

Tot_Vol=36.2*36.2*9.05; 

#Stress Sum 

Tot_Stress=0; 

# 

for II in range(0,len(frameS[-1].values)): 

     Tot_Stress=Tot_Stress+frameS[0].values[II].data * frameIVOL[0].values[II].data; 

 

#Calculate Average 

Avg_Stress = Tot_Stress/(Tot_Vol); 

#print 'Abaqus/Standard Stress Tensor Order:' 

#From Abaqus Analysis User's Manual - 1.2.2 Conventions - Convention used for stress and 

strain components 

#print 'Average stresses Global CSYS: 11-22-33-12-13-23'; 

#print Avg_Stress; 

C11 = Avg_Stress[2]#z-component,1-direction 

C21 = Avg_Stress[0]#x-component,2-direction 

C31 = Avg_Stress[1]#y-component,3-direction in Figure 6 

 

#Srecover macro--need to make this into a Python function 

#Creating a temporary variable to hold the frame repository provides the same functionality and 

speeds up the process 

frameRepository = odb.steps['Step-2'].frames; 

frameS=[]; 

frameIVOL=[]; 

#Get only the last frame [-1] 

frameS.insert(0,frameRepository[-

1].fieldOutputs['S'].getSubset(position=INTEGRATION_POINT)); 

frameIVOL.insert(0,frameRepository[-

1].fieldOutputs['IVOL'].getSubset(position=INTEGRATION_POINT)); 

#Total Volume 

Tot_Vol=36.2*36.2*9.05; 

#Stress Sum 

Tot_Stress=0; 

# 

for II in range(0,len(frameS[-1].values)): 

    Tot_Stress=Tot_Stress+frameS[0].values[II].data * frameIVOL[0].values[II].data; 
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#Calculate Average 

Avg_Stress = Tot_Stress/Tot_Vol; 

#print 'Abaqus/Standard Stress Tensor Order:' 

#From Abaqus Analysis User's Manual - 1.2.2 Conventions - Convention used for stress and 

strain components 

#print 'Average stresses Global CSYS: 11-22-33-12-13-23'; 

#print Avg_Stress; 

C12 = Avg_Stress[2]#z-component,1-direction 

C22 = Avg_Stress[0]#x-component,2-direction 

C32 = Avg_Stress[1]#y-component,3-direction in Figure 6 

 

#Srecover.py 

#Creating a temporary variable to hold the frame repository provides the same functionality and 

speeds up the process 

frameRepository = odb.steps['Step-3'].frames; 

frameS=[]; 

frameIVOL=[]; 

#Get only the last frame [-1] 

frameS.insert(0,frameRepository[-

1].fieldOutputs['S'].getSubset(position=INTEGRATION_POINT)); 

frameIVOL.insert(0,frameRepository[-

1].fieldOutputs['IVOL'].getSubset(position=INTEGRATION_POINT)); 

#Total Volume 

Tot_Vol=36.2*36.2*9.05; 

#Stress Sum 

Tot_Stress=0; 

# 

for II in range(0,len(frameS[-1].values)): 

     Tot_Stress=Tot_Stress+frameS[0].values[II].data * frameIVOL[0].values[II].data; 

 

#Calculate Average 

Avg_Stress = Tot_Stress/Tot_Vol; 

#print 'Abaqus/Standard Stress Tensor Order:' 

#From Abaqus Analysis User's Manual - 1.2.2 Conventions - Convention used for stress and 

strain components  

#print 'Average stresses in Global CSYS: 11-22-33-12-13-23'; 

#print Avg_Stress; 

C13 = Avg_Stress[2]#z-component,1-direction 

C23 = Avg_Stress[0]#x-component,2-direction 

C33 = Avg_Stress[1]#y-component,3-direction in Figure 6 

 

EL=C11-2*C12*C21/(C22+C23)              # Longitudinal E1 modulus 

nuL=C12/(C22+C23)                       # 12 Poisson coefficient 

ET=(C11*(C22+C23)-2*C12*C12)*(C22-C23)/(C11*C22-C12*C21) 

                                        # Transversal E2 modulus 
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nuT=(C11*C23-C12*C21)/(C11*C22-C12*C21) # 23 Poisson coefficient 

GT=(C22-C23)/2 # or GT=ET/2/(1+nuT)     # 23 Shear stiffness 

 

print "If Moduli are entered in GPa and dimensions in microns, results are in GPa" 

print "E1=",EL,"GPa" 

print "E2=",ET,"GPa" 

print "PR12=",nuL 

print "PR23=",nuT 
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Appendix B 

 

Specimen preparation for microscopy 

Three samples from the all-carbon and all-glass filament wound rings were prepared by 

Mr. Rudy Haluza to analyze the shape of the voids in a plane, parallel and perpendicular to the 

fiber direction. Once the specimens were extracted from the filament wound rings using a Felker 

41-AR table saw with a water-cooled, diamond-edged cutting wheel, they were polished and 

observed under a modified optical microscope. The polishing procedure was done as follows. 

 The extracted samples were placed in a puck-shaped mold. The desired edge from the cut 

section was placed faced down in the mold. Next E862 epoxy resin and Jeffamine D403 hardener 

were mixed at a room temperature and poured into the mold. Once the resin system cured, the 

samples were taken to a polishing station. 

The specimens were polished at Materials Research Institute at Penn State University-UP. 

Deionized water was used during sanding in order to produce a smooth, wet-sanded finish. The 

table and spindle both rotated the same way, but at different speeds listed in Table B- 1. 

Monocrystalline diamond suspension 3 μm and 1 μm particles were used in conjunction with a 

polishing cloth to produce a micro-polish finish on the surface of the puck. After the end of each 

cycle, the sanding disc or polishing was replaced and the next cycle was initiated.  
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Table B- 1. Polishing parameters including disc grits, spindle speed, pressure and cycle times  

Sanding Disc 

Grit 

Spindle Speed 

(rpm) 

Table Speed 

(rpm) 

Pressure (lbf) Cycle Time 

(min) 

320 65 120 1 2 

800 65 120 1 2 

1200 65 150 1 2 

2400 80 150 2 2 

4000 80 150 2 2 

Polishing Cloth Spindle Speed 

(rpm) 

Table Speed 

(rpm) 

Pressure (lbf) Cycle Time 

(min) 

3 μm 80 300 2 3 

1 μm 80 300 2 3 

 

Once polishing was finished the pucks were analyzed with a modified optical microscope. 

The optical microscope was equipped with a 3.1 Megapixel digital camera for imaging. The photo-

micrographs in Figure 7, Figure 8 and Figure B- 1 confirmed that the voids in the filament wound 

rings are circular cylindrical in shape.  
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Figure B- 1. Photomicrograph of a polished 1-2 plane of unidirectional G100 composite nearly 

parallel to the fibers at 50x magnification. The dark regions are voids. 
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Appendix C 

 

Beam test data obtained in present investigation 

 

  

 

 (a) (b)  

Figure C- 1. C100 tensile side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-plane strain 

vs in-plane strain 

 

  

 

 (a) (b)  

Figure C- 2. C75G25 tensile side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-

planestrain vs in-plane strain 
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 (a) (b)  

Figure C- 3. C75G25 tensile side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain  

 

  

 

 (a) (b)  

Figure C- 4. C75G25 tensile side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain  
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 (a) (b)  

Figure C- 5. C75G25 compressive side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs in-plane strain 

 

 

  

 

 (a) (b)  

Figure C- 6. C75G25 compressive side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs in-plane strain 
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 (a) (b)  

Figure C- 7. C75G25 compression Test 3 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 

 

 

 
 

 

 (a) (b)  

Figure C- 8. C50G50 tensile side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 
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 (a) (b)  

Figure C- 9. C50G50 tensile side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 

 

  

 

 (a) (b)  

Figure C- 10. C50G50 tensile side Test 3 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 
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 (a) (b)  

Figure C- 11. C50G50 compressive side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs. in-plane strain 

 

  

 

 (a) (b)  

Figure C- 12. C50G50 compressive side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs. in-plane strain 
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 (a) (b)  

Figure C- 13. C50G50 compressive side Test 3 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs. in-plane strain 

 

  

 

 (a) (b)  

Figure C- 14. C75G25 tensile side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 
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 (a) (b)  

Figure C- 15. C75G25 tensile side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 

 

 

  

 

 (a) (b)  

Figure C- 16. C75G25 compressive side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs in-plane strain 
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 (a) (b)  

Figure C- 17. C75G25 compressive side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs in-plane strain 

 

 

  

 

 (a) (b)  

Figure C- 18. C75G25 compressive side Test 3 (a) transverse stress vs. strain (in-plane) (b) out-

plane strain vs in-plane strain 
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 (a) (b)  

Figure C- 19. G100 tensile side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 

 

 

 
 

 

 (a) (b)  

Figure C- 20. G100 tensile side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 
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 (a) (b)  

Figure C- 21. G100 tensile side Test 3 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 

 

 

  

 

 (a) (b)  

Figure C- 22. G100 compressive side Test 1 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 
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 (a) (b)  

Figure C- 23. G100 compressive side Test 2 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 

 

 

  

 

 (a) (b)  

Figure C- 24.G100 compressive side Test 3 (a) transverse stress vs. strain (in-plane) (b) out-plane 

strain vs in-plane strain 
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Table C- 1. Transverse Young’s modulus and Poisson’s ratio of C100 from biaxial measurement. 

Test 𝐸2 (GPa) 𝜈23 
1Tensile side Test1 10.6 0.49 
1 FCA-2-11-3L biaxial strain gage 

 

Table C- 2. Transverse Young’s modulus and Poisson’s ratio of C75G25 from strain gages. 

Test 𝐸2 (GPa) 𝜈23 
1Tensile side Test1 14.5 0.42 
2Tensile side Test2 14.4 0.41 
2Tensile side Test3 14.8 0.41 

Tensile side average 14.6 0.41 
1Compressive side Test1 15.6 0.43 
2Compressive side Test2 16.2 0.43 
2Compressive side Test3 16.0 0.42 

Compressive side average 15.9 0.43 
1FCA-1-11-1LT biaxial strain gage; 2FCA-2-11-3L biaxial strain gage 

 

Table C- 3. Transverse Young’s modulus and Poisson’s ratio of C50G50 from strain gages. 

Test 𝐸2 (GPa) 𝜈23 

Tensile side Test1 16.7 0.44 

Tensile side Test1 17.1 0.42 

Tensile side Test3 18.1 0.43 

Tensile side average 17.3 0.42 

Compressive side Test1 16.0 0.44 

Compressive side Test2 16.6 0.44 

Compressive side Test3 16.5 0.42 

Compressive side average 16.4 0.43 

 

Table C- 4. Transverse Young’s modulus and Poisson’s ratio of C25G75 from strain gages. 

Test 𝐸2 (GPa) 𝜈23 

Tensile side Test1 21.9 0.42 

Tension side Test 2 21.3 0.42 

Tensile side average 21.8 0.42 

Compressive side Test1 25.6 0.45 

Compressive side Test2 24.7 0.42 

Compressive side Test3 25.0 0.43 

Compressive side average 25.1 0.43 
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Table C- 5. Transverse Young’s modulus and Poisson’s ratio of G100 from strain gages. 

Test 𝐸2 (GPa) 𝜈23 

Tensile side Test1 34.3 0.34 

Tensile side Test2 28.7 0.31 

Tensile side Test3 29.3 0.30 

Tensile side average 30.8 0.32 

Compressive side Test1 32.9 0.35 

Compressive side Test2 31.0 0.33 

Compressive side Test3 33.4 0.34 

Compressive side average 32.4 0.34 
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Appendix D 

 

FEA of flexure-test of G100 beam in ABAQUS 

In order to check if the dimensions of the beam influences the strains on the tensile and 

compressive surface of a beam in 4 point bending, a three dimensional finite element model of 

glass/epoxy composite was set up in ABAQUS 6.14 with the dimensions presented in Table 4 and 

load span , L = 55. The beam was modeled with C3D8I mesh elements. The C3D8I elements are 

three-dimensional, 8-node linear brick, incompatible model elements suitable for simulating 

bending. Fully integrated elements like C3D8 experience overly stiff behavior in bending 

dominated problems. This causes ‘shear locking’. On the other hand reduced integration elements 

like C3D8H cannot detect strains at the integration point due to bending. C3D8I are fully integrated 

elements with incompatible deformation modes that eliminate the ‘parasitic shear stresses’ thereby 

eliminating the shear locking phenomenon. Therefore, these elements are used. 

The elastic properties of glass/epoxy composite were obtained from Daniel and Ishai (2006) 

and was used as the input properties of the beam shown in Figure D- 1. The longitudinal and 

transverse direction of the beam was oriented along 1- and 2- direction of the rectangular Cartesian 

coordinates shown in Figure D- 1, respectively. 
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Figure D- 1. FEA of bend test of unidirectional G100 composite beam. 3-direction is oriented 

orthogonal to the 1-2 plane. 

 

Boundary conditions were prescribed on the top surface of the beam as concentrated vertical 

total force of 20 N as shown in Figure D- 1. The translational degrees of freedom of the bottom 

edges were constrained to simulate a roller support.  Once the model was run in ABAQUS, the 2-

direction stress and the 2-direction (in-plane) strain were outputted from a node on the top and 

bottom surface of the beam located at the half-span, in order to compute the transverse Young’s 

modulus, 𝐸2. Also the 3-direction (out-plane) strain was outputted from the same nodes in order to 

compute the transverse Poisson’s ratio, 𝜈23. The computed transverse elastic properties of the beam 

matched with the elastic properties inputted at the beginning of the analysis. This confirmed that 

the beam is well-designed. 
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Appendix E 

 

Validation of finite element approach for modeling transverse Young’s modulus and 

transverse Poisson’s ratio  

In order to validate the periodicity conditions presented in Table 2, these boundary 

conditions were prescribed to the square RUC developed by Sun and Vaidya (1995). Sun and 

Vaidya modeled unidirectional AS4/3501-6 carbon/epoxy composite with fiber volume fraction 

of 0.6. The elastic modulus of the 3501-6 epoxy is 𝐸𝑚 = 4.8 GPa and the Poisson’s ratio is 𝜈23 = 

0.34. The properties of the fiber are given in Table E-1. RUC with the same fiber volume fraction 

and material properties were constructed in ABAQUS. In order to determine the transverse elastic 

properties of the RUC, Sun and Vaidya (1995) applied a distributed 2-direction force to the 

opposite faces, 𝑦 = 0, 𝑎, (Figure E-1) such that the 2-direction elongation between the faces is 

constant for all 𝑥 and 𝑧. In order to enforce compatibility and periodicity, the displacements of all 

six sides of the RUC were constrained so that the RUC remains a right rectangular cuboid after 

deformation.  

The transverse elastic properties of the composite computed by Sun and Vaidya (1995) and 

in the current investigation are compared in Table E- 2. The periodicity conditions utilized in this 

study simulated a value for 𝐸2 and 𝜈23 of the composite that was only slightly different from the 

transverse elastic properties obtained by Sun and Vaidya (1995). Therefore, the finite element 

approach to model RUCs using the periodicity conditions presented in Table 2 is valid.  

Table E-1. AS4 carbon fiber properties used by Sun and Vaidya (1995) to model AS4/3501-6 

carbon/epoxy composite. 

 𝐸1𝑐 (GPa) 𝐸2𝑐 (GPa) 𝜈12𝑐 𝜈23𝑐 

Elastic constants 245 14 0.2 0.25 
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Figure E- 1. RUC quadrant for square array of AS4/3501-6 carbon/epoxy composite used by 

Sun and Vaidya (1995). 

 

Table E- 2. Comparison of transverse elastic properties of AS4/3501-6 carbon epoxy 

composite between Sun and Vaidya (1995), and periodicity boundary conditions in the current 

approach. 

 Sun and Vaidya (1995) FEA using periodicity conditions 

𝐸2 (GPa) 9.60 9.61 

𝜈23  0.35 0.35 
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Appendix F 

 

FEA analysis of G100 model with four holes in each corner 

In order to check the effect of the number of voids in the matrix on the transverse elastic 

properties of the composite, four circular cylinder holes were placed at each corner of a G100 RUC 

as shown in Figure F- 1. The volume fractions of the constituents are in Table 7, and the matrix 

properties are listed in Table 5 and Table 6. The isotropic E-glass fiber is assumed to have an 

elastic modulus (𝐸𝑔) of 80.0 GPa and a Poisson’s ratio (𝜈𝑔) of 0.26. The periodicity conditions 

from Table 2 were applied to the RUC with converged mesh size of 173,043 elements. The results 

are compared with Approach 2, i.e an RUC with one void in each corner, in Table F- 1. Based on 

this study we can conclude that there is no effect on the number of voids on the transverse elastic 

properties of the composite. 

 

 

 

 

Figure F- 1. RUC of G100 model with four holes as voids at each corner.  
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Table F- 1. Results of FEA on effect of number of voids on transverse elastic properties of the 

composite.  

 𝐸2 (GPa) (Difference1) 𝜈23 (Difference1) 

Experimental 29.0 0.32 

RUC with four holes at each corner 30.5 (5.2) 0.20 (-37.5) 

RUC with one hole at each corner 30.5 (5.2) 0.20 (-37.5) 
1 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =  

𝐹𝐸𝐴−𝐸𝑥𝑝

𝐸𝑥𝑝
· 100 % 
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Appendix G 

 

Data set for parametric study for backing out carbon fiber properties 

Table G- 1. Transverse Young’s modulus (𝐸2) and Poisson’s ratio (𝜈23) of the all-carbon composite as a function of 

transverse Young’s modulus (𝐸2𝑐) and Poisson’s ratio (𝜈23𝑐) of carbon fiber. 

Poisson’s 

ratio of fiber, 

𝜈23𝑐  

Young’s modulus of fiber, 𝐸2𝑐 (GPa) 

 24.3 24.5 24.7 24.9 25.1 25.3 25.4 

  𝐸2 
(GPa) 

𝜈23 
𝐸2 

(GPa) 
𝜈23 

𝐸2 
(GPa) 

𝜈23 
𝐸2 

(GPa) 
𝜈23 

𝐸2 
(GPa) 

𝜈23 
𝐸2 

(GPa) 
𝜈23 

𝐸2 
(GPa) 

𝜈23 

0.5 11.46 0.35 11.51 0.35 11.57 0.35 11.61 0.35 11.67 0.35 11.72 0.35 11.76 0.34 

0.6 11.40 0.39 11.45 0.39 11.50 0.39 11.54 0.39 11.60 0.39 11.65 0.39 11.70 0.39 

0.7 11.34 0.43 11.39 0.43 11.43 0.43 11.48 0.43 11.54 0.43 11.59 0.43 11.64 0.43 

0.8 11.28 0.48 11.32 0.47 11.38 0.47 11.42 0.47 11.48 0.47 11.52 0.47 11.58 0.47 

0.9 11.22 0.52 11.28 0.52 11.33 0.52 11.37 0.51 11.42 0.51 11.47 0.51 11.53 0.51 

 

 

 

 



105 

 

 

Appendix H 

 

Checks on thermodynamic constraints for positive definiteness of stress-

strain relationships 

The thermodynamic constraints for positive-definite stress-strain relationships provided by 

Jones (1975) are given in equations H-1 through H-6, 

 |𝑆23| < (𝑆22𝑆33)
1

2⁄  (H-1) 

 |𝑆13| < (𝑆11𝑆33)
1

2⁄  (H-2) 

 |𝑆12| < (𝑆22𝑆11)
1

2⁄  (H-3) 

 𝐶11, 𝐶22, 𝐶33 > 0 (H-4) 

 𝑆11, 𝑆22, 𝑆33 > 0 (H-5) 

 𝛥̅ = 1 − 𝜈12𝑐𝜈21𝑐 − 𝜈23𝑐𝜈32𝑐 − 𝜈31𝑐𝜈13𝑐 − 2𝜈21𝑐𝜈32𝑐𝜈13𝑐  > 0 (H-6) 

where,  

𝑆11, 𝑆22, 𝑆33, 𝑆12, 𝑆13, 𝑆23: Components of compliance matrix 

𝐶11, 𝐶22, 𝐶33: Components of stiffness matrix 

 

The stiffness matrix and compliance matrix were constructed by substituting the carbon 

fiber properties (Table 12) in equations (H-1) through (H-6). The components (Table H- 1) of these 

matrices satisfied all the thermodynamic constraints (Table H-2). Therefore, the backed out elastic 

properties of carbon fibers are feasible. 
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Table H- 1. Parameters used to check thermodynamic constraints. 

 Values 

𝐶11 (Pa) 2.59E+11 

𝐶22 (Pa) 9.61E+10 

𝐶33 (Pa) 9.61E+10 

𝑆11 (m/N) 4.08E-12 

𝑆22 (m/N) 3.95E-11 

𝑆33 (m/N) 3.95E-11 

𝑆12 (m/N) -8.16E-13 

𝑆13 (m/N) -8.16E-13 

𝑆33 (m/N) -3.36E-11 

𝛥̅ 1.67E-33 

 

Table H-2. Evaluation of compliance and stiffness terms presented in equations (H-1) to (H-6). 

Equation Inequality Evaluation 

(H-1) 3.36x10-11 < 3.95x10-11 Satisfied 

(H-2) 8.16x10-13 < 1.27x10-11 Satisfied 

(H-3) 8.16x10-11 < 1.27x10-11 Satisfied 

(H-4) 2.6x10-11, 9.61x10-10, 9.61x10-10 > 0 Satisfied 

(H-5) 4.08x10-12, 3.95x10-11, 3.95x10-11 > 0 Satisfied 

(H-6) 1.67x10-33 > 0 Satisfied 
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Appendix I 

 

Contour plots of stresses and displacements of C75G25 RUC based on periodicity 

conditions 

The dimensions of the C75G25 RUC can be found in Table 16. The volume fractions of 

the constituents are in Table 7, and the matrix properties are listed in Table 5 and Table 6. The 

isotropic E-glass fiber is assumed to have an elastic modulus (𝐸𝑔) of 80.0 GPa and a Poisson’s 

ratio (𝜈𝑔) of 0.26, and the carbon fiber properties are presented in Table 12. The boundary 

conditions presented in Table 2 are enforced on the RUC in FEA. 

Figure I-1, Figure I-7 and Figure I-9 represent the elemental stresses in 1-, 2- and 3-

directions, respectively, when unit normal strains are applied sequentially in 1-, 2- and 3-

directions. Figure I-2, Figure I-8 and Figure I-10 represent the displacement field in these 

conditions. Figure I-3 and Figure I-5 represent the elemental stresses in 2 and 3-direction when 

unit normal strain is applied in 1-direction. Under the same loading condition, Figure I-4 and 

Figure I-6 represent the elemental displacements in 2- and 3-direction. Although unit strains were 

applied to the RUC, they were enforced in an average sense. Therefore, the 𝑦 = 0 and 𝑦 =  𝑎𝑦 and 

𝑧 = 0 and 𝑧 =  𝑎𝑧 boundaries will not deform planar. This is because the geometric symmetries 

no longer exist because the unit cell includes fibers with different material properties and 

diameters. The stiffness and compliance matrix obtained by enforcing the periodicity conditions 

in Table 2, given by (I-1) and (I-2), 

 
𝐶𝑖̅𝑗 = [

147.28 6.72 6.72
6.72 18.22 8.52
6.72 8.52 18.22

] x109 Pa 
(I-1) 
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𝑆𝑖̅𝑗 =  [

6.95 −1.74 −1.74
−1.74 0.071 −0.032
−1.74 −0.032 0.071

] x10-12 (Pa)-1 
(I-2) 

 

show that the matrices are diagonally symmetric and the material exhibits transverse isotropy, as 

expected.  

 

 

 

Figure I-1. Contour plot of 1-direction elemental stresses in C75G25 RUC when 𝜀1̅ = 1 

 

 

 

Figure I-2. Contour plot of 1-direction elemental displacements in C75G25 RUC when 𝜀1̅ = 1 
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Figure I-3. Contour plot of 2-direction elemental stresses in C75G25 RUC when 𝜀1̅ = 1 

 

 

 

Figure I-4. Contour plot of 2-direction elemental displacements in C75G25 RUC when 𝜀1̅ = 1 
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Figure I-5. Contour plot of 3-direction elemental stresses in C75G25 RUC when 𝜀1̅ = 1 

 

 

 

Figure I-6. Contour plot of 3-direction elemental displacements in C75G25 RUC when 𝜀1̅ = 1 
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Figure I-7. Contour plot of 2-direction elemental stresses in C75G25 RUC when 𝜀2̅ = 1 

 

 

 

Figure I-8. Contour plot of 2-direction elemental displacements in C75G25 RUC when 𝜀2̅ = 1 
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Figure I-9. Contour plot of 3-direction elemental stresses in C75G25 RUC when 𝜀3̅ = 1 

 

 

 

Figure I-10. Contour plot of 3-direction elemental displacements in C75G25 RUC when 𝜀3̅ = 1 
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Appendix J 

 

FEA of C50G50 model based on fiber positioning about diagonal plane 

Stress partitioning parameter parameters (𝜂𝜎𝑐 and 𝜂𝜎𝑔) are defined as the ratio of the 

volume averaged 2-direction stress in fibers to the volume averaged 2-direction stress matrix. This 

analysis is performed on C50G50 model to check if (a) the material is rectangularly transversely 

isotropic (b) the SPPs vary with the positioning of carbon and glass fiber in the RUC.  

In order to compute the transverse Young’s moduli (𝐸2 and 𝐸3), and the SPPs in 2-

direction, the periodic boundary conditions presented in equations (J-1) were applied, respectively, 

onto the RUC shown in Figure 21 (b) and (c). To get the SPPs in 3-direction, 𝜀3̅3 was taken as 1 

to simulate uniaxial tension in 3-direction, equation (J-2). The geometry of the model is presented 

in Table 16 and, the matrix properties are obtained from Table 5 and Table 6. The SPPs were 

computed as the ratio of volume average of 2-direction stress in fiber to the volume average of 2-

direction stress in matrix, given in equations (J-1) and (J-2). Similarly the SPPs were computed 

for 3-direction uniaxial tension based on the equations in (J-3) and (J-4).  

𝑢1(𝑎𝑥, 𝑦, 𝑧) − 𝑢1(0, 𝑦, 𝑧) = −𝑎𝑥𝜈21𝜀2̅2 for 0 ≤ 𝑦 ≤ 𝑎𝑦, 0 ≤ 𝑧 ≤ 𝑎𝑧 

(J-1) 𝑢2(𝑥, 𝑎𝑦, 𝑧) − 𝑢2(𝑥, 0, 𝑧) = 𝑎𝑦𝜀2̅2 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢3(𝑥, 𝑦, 𝑎𝑧) − 𝑢3(𝑥, 𝑦, 0) = −𝑎𝑧𝜈23𝜀2̅2 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑎𝑦 

𝑢1(𝑎𝑥, 𝑦, 𝑧) − 𝑢1(0, 𝑦, 𝑧) = −𝑎𝑥𝜈31𝜀3̅3 for 0 ≤ 𝑦 ≤ 𝑎𝑦, 0 ≤ 𝑧 ≤ 𝑎𝑧 

(J-2) 𝑢2(𝑥, 𝑎𝑦, 𝑧) − 𝑢2(𝑥, 0, 𝑧) = −𝑎𝑦𝜈32𝜀3̅3 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑧 ≤ 𝑎𝑧 

𝑢3(𝑥, 𝑦, 𝑎𝑧) − 𝑢3(𝑥, 𝑦, 0) = 𝑎𝑧𝜀3̅3 for 0 ≤ 𝑥 ≤ 𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑎𝑦 
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𝜂2𝜎𝑐 =

1
𝑉𝑐

∫𝜎22𝑐(𝑥, 𝑦, 𝑧)𝑑𝑉𝑐

1
𝑉𝑚 + 𝑉𝑣

∫𝜎22𝑚 (𝑥, 𝑦, 𝑧)𝑑𝑉𝑚+𝑣

 (J-1) 

  

𝜂2𝜎𝑔 =

1
𝑉𝑔

∫𝜎22𝑔(𝑥, 𝑦, 𝑧)𝑑𝑉𝑔

1
𝑉𝑚 + 𝑉𝑣

∫𝜎22𝑚 (𝑥, 𝑦, 𝑧)𝑑𝑉𝑚+𝑣

 (J-2) 

 

𝜂3𝜎𝑐 =

1
𝑉𝑐

∫𝜎33𝑐(𝑥, 𝑦, 𝑧)𝑑𝑉𝑐

1
𝑉𝑚 + 𝑉𝑣

∫𝜎33𝑚 (𝑥, 𝑦, 𝑧)𝑑𝑉𝑚+𝑣

 

(J-3) 

  

𝜂3𝜎𝑔 =

1
𝑉𝑔

∫𝜎33𝑔(𝑥, 𝑦, 𝑧)𝑑𝑉𝑔

1
𝑉𝑚 + 𝑉𝑣

∫𝜎33𝑚 (𝑥, 𝑦, 𝑧)𝑑𝑉𝑚+𝑣

 

(J-4) 

where, 

𝜂2𝜎𝑐 , 𝜂2𝜎𝑔: carbon and glass stress partitioning when uniaxial load is applied in 2-direction 

𝜂3𝜎𝑐 , 𝜂3𝜎𝑔: carbon and glass stress partitioning when uniaxial load is applied in 3-direction  

 

The results of the finite element analysis for the anti-symmetric and symmetric RUC of 

C50G50 composite are shown in Table I- 1 and Table I- 2. 

 

Table I- 1. Stress partition parameters of C50G50 model for fibers positioning about the 

transverse plane. 

Direction from which the SPP is computed 2-direction 3-direction 

SPP from FEA 𝜂2𝜎𝑐 𝜂2𝜎𝑔 𝜂3𝜎𝑐 𝜂3𝜎𝑔 

Symmetric C50G50 RUC 1.70 1.67 1.70 1.67 

Anti-symmetric C50G50 RUC 1.49 2.92 1.96 1.99 
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Table I- 2.Transverse elastic modulus obtained from FEA and experiment for C50G50 model 

 FEA  Experimental 

 
𝐸2 (GPa) 𝐸3 (GPa) 𝐸2 (GPa) 

Symmetric C50G50 RUC 15.8 15.8 
17.8 

Anti-symmetric C50G50 RUC 17.8 16.9 

 

In the anti-symmetric C50G50 RUC the SPPs do not retain the same value when the loads 

are applied in 2- or 3- direction. Also 𝐸2 of the model is not equal to 𝐸3 . This is due to the 

antisymmetric arrangement of fibers about the transverse plane. Therefore, the symmetric C50G50 

RUC was taken as the right micro-structure to model the C50G50 hybrid composite.  
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Appendix K 

 

Validation of finite element approach for stress partitioning parameters 

This exercise is performed to validate the boundary conditions presented for uniaxial stress 

𝜎22 such that 𝜀2̅2 in equation (14) is equal to unity. The boundary conditions are applied to the 

C50G50 RUC and the volume averaged stresses and displacements in 1-, 2- and 3- directions are 

analyzed. Since the boundary conditions in equation (14) simulate uniaxial tension of the RUC in 

the 2-direction, the volume averaged stresses in the 1- and 3-directions are approximately zero, 

within numerical error, and the volume averaged stress in the 2-direction is equal to the transverse 

Young’s modulus of the composite (Table K- 1). The contours of 1-, 2- and 3-direction stresses 

are plotted in Figure K-3, Figure K-4 and Figure K-4, respectively. Although unit strain is applied 

to the RUC, it is enforced in an average sense. Therefore, the boundaries of the RUC are wavy 

(Figure K-6, Figure K-7 and Figure K-7), but overall, the RUC is periodic in nature.  

The transverse elastic properties of the composite can also be obtained by averaging the 

field variables on the boundaries, as follows. The averaged 2-direction stress on the y = 0 and y = 

36 μm surfaces of the RUC is 15.3 GPa.  This value differs slightly from that obtained by volume 

averaging the 2-direction stress (15.6 GPa) due to numerical error. Table K- 2 lists the averaged 

2-direction nodal displacements on y = 0 and y = 36 μm surfaces, the difference of these 

displacements (i.e., the elongation in the 2-direction), and the averaged strain in the 2-direction 

(i.e., the elongation divided by the 2-direction length of the RUC). Similarly, the averaged 3-

direction nodal displacements, elongation, and strain are given in Table K- 3 and the averaged 1-

direction nodal displacement, elongation, and strain are given in Table K- 4. Based on these 

boundary stresses and strains, 𝐸2, 𝜈23, and 𝜈21 are calculated and compared to the same parameters 
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calculated using periodicity boundary conditions (Table 2) in Table K- 5. 𝐸2, 𝜈23, and 𝜈21 values 

obtained from these two methods match closely.  

 

Table K- 1. Volume averaged 2-direction normal stresses in C50G50 RUC when 𝜀2̅2 = 1. 

 𝜎11(GPa) 𝜎22 (GPa) 𝜎33 (GPa) 

C50G50 0.2 15.6 0.1 

 

Table K- 2. Averaged 2-direction nodal displacements, elongation, and strain in the C50G50 

RUC when 𝜀2̅2 = 1.  

𝑢̅2  

at y = 0 μm at y = 36 μm Elongation 𝜀2̅2 

-25.4  μm 10.0 μm 35.4 μm 0.983 

 

Table K- 3. Averaged 3-direction nodal displacements, elongation, and strain in the C50G50 

RUC when 𝜀2̅2 = 1. 

𝑢̅3  

at z = 0 μm at z = 36 μm Elongation 𝜀3̅3 

10.4  μ -5.4 μm -15.8 μm -0.44 

 

Table K- 4. Averaged 1-direction nodal displacements, elongation, and strain in the C50G50 

RUC when 𝜀2̅2 = 1. 

𝑢̅1  

at x = 0 μm at x = 9 μm Elongation 𝜀1̅1 

0 μm -0.32 μm -0.32 μm -0.036 

 

Table K- 5. Comparison of transverse modulus and Poisson’s ratios obtained from boundary 

averaging method in SPP analysis when 𝜀2̅2 = 1 and periodic boundary conditions from Table 2. 

Boundary Averages From Table 2 

𝐸2 (GPa) 𝜈23  𝜈21 𝐸2 (GPa) 𝜈23  𝜈21 

15.6 0.44 0.036 15.8 0.44 0.036 
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Figure K-1. RUC of C50G50 composite (C = carbon; G = Glass) 

 

 

 

 

Figure K-2. Contour plot of 1-direction elemental stresses of C50G50 RUC in SPP analysis 
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Figure K-3. Contour plot of 2-direction elemental stresses of C50G50 RUC in SPP analysis 

 

 

 

Figure K-4. Contour plot of 3-direction elemental stresses of C50G50 RUC in SPP analysis 
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Figure K-5. Contour plot of 1-direction elemental displacements of C50G50 RUC in SPP 

analysis 

 

 

 

 

Figure K-6. Contour plot of 2-direction elemental displacements of C50G50 RUC in SPP 

analysis 

 



121 

 

 

 

 

Figure K-7. Contour plot of 3-direction elemental displacements of C50G50 RUC in SPP 

analysis 
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Non-Technical Abstract 

Unidirectional hybrid composites are material systems consisting of two or more fiber 

types, when combined have superior mechanical performance and properties than the constituents. 

As a consequence, hybrid composites provide cost effective design solutions. For utilizing hybrid 

composites in various applications, it is important to know the Young’s modulus of elasticity 

transverse to the fibers.  

Little experimental data is available on the available in literature and very few 

micromechanical models haven been developed and validated for the transverse Young’s modulus 

of hybrid composites. In the current investigation finite element and closed-form models with and 

without empirically determined fitting parameters have been developed to simulate the transverse 

Young’s modulus of all-carbon, all-glass and hybrid composites. Unlike other investigations, the 

effect of voids are included in the analysis. Also, using the finite element approach, the load 

sharing mechanisms among the carbon fibers, glass fibers and the matrix are evaluated. It was 

observed that the finite element analysis predicts the transverse Young’s modulus of the hybrid 

composites very well. The semi-empirical models have good predictions of the transverse Young’s 

modulus but they could not give deeper insights on the load sharing mechanisms between the fibers 

and matrix. Finite element models revealed that when equal proportions of glass and carbon fibers 

are mixed, the carbon fibers undergo larger deformation that the glass fibers due to the presence 

of relatively stiff glass gibers placed next to it. The stress and strain level in the matrix could be 

modeled as springs in parallel and series, respectively, when the glass-to-carbon ratio was 

increased. 


