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Abstract

This dissertation studies the feature screening and two-sample mean testing proce-
dures for high-dimensional data. Firstly, a new feature screening procedure based
on the joint quasi-likelihood is proposed for generalized varying coe�cient models.
Secondly, we propose a new testing method considering the correlation structure
for high-dimensional mean vectors.

Generalized varying coe�cient models are particularly useful for examining
dynamic e↵ects of covariates on a continuous, binary or count response. This
dissertation is concerned with feature screening for generalized varying coe�cient
models with ultrahigh dimensional covariates. The proposed screening procedure
is based on joint quasi-likelihood of all predictors, and therefore is distinguished
from marginal screening procedures proposed in the literature. In particular, the
proposed procedure can e↵ectively identify active predictors that are jointly depen-
dent but marginal independent of the response. In order to carry out the proposed
procedure, we propose an e↵ective algorithm and establish the ascent property
of the proposed algorithm. We further prove that the proposed procedure pos-
sesses the sure screening property. That is, with probability tending to one, the
selected variable set includes the actual active predictors. We examine the finite
sample performance of the proposed procedure and compare it with existing ones
via Monte Carlo simulations, and illustrate the proposed procedure by a real data
example.

Testing the population mean is fundamental in statistical inference. The tra-
ditional Hotelling’s T 2 test becomes practically infeasible due to the singular-
ity of sample covariance matrix when the dimensionality of the data is larger
than the sample size. For a symmetric positive definite W matrix, we consider
T “ px

1

´ x
2

qTW px
1

´ x
2

q for the two sample problem. We first prove that in or-
der to maximize the asymptotic power of T , W “ �⌃´1 for some positive constant
�. The goal is to model correlation matrix and use the correlation to improve the
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power of a test. We consider linear structure models for the inverse of correlation
matrix ⌦“̂R´1: ⌦p✓q “ ✓

1

G
1

` ∞L
l“2

✓lGl. An estimation procedure for ✓ is pro-
posed and the asymptotic power of the proposed test by incorporating correlation
information is demonstrated. We compare the performances of the proposed test
and the existing methods via Monte Carlo simulations, and a real data example is
also given.
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Chapter 1
Introduction

1.1 An Overview of Variable Selection and Fea-

ture Selection

High-dimensional data analysis problems have arisen in the areas such as genomics,

proteomics, finance, biomedical imaging, tomography and tumor classifications.

The classical statistical methods are challenged when the number of features can

be much greater than the sample size, which motivates the statisticians to de-

velop new methodologies for the analysis of high-dimensional data. Fan and Li

(2007) gave a comprehensive overview of statistical challenges of high dimension-

ality and Fan (2014a) introduced the challenges in the analysis of big data prob-

lems. Variable selection and feature selection have been the most popular topics

in high-dimensional data analysis in the last two decades.

Traditional variable selection methods such as AIC, BIC and Mallow’s Cp

are not applicable to high-dimensional data due to their tremendous computa-

tional cost. Penalized regression methods such as nonnegative garrote (Breiman,

1995), least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996),

smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) and minimax con-

cave penalty MCP (Zhang, 2010) can select significant variables and estimate re-

gression coe�cients simultaneously and have been widely used in high-dimensional

analysis. However, since modern applications in some areas such as genomics and

proteomics generate ultrahigh-dimensional data whose number of predictors grows
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exponentially with sample size, the aforementioned variable selection techniques

may fail due to the computational complexity.

The di�culty in the analysis of ultrahigh-dimensional data motivates researchers

to create new statistical methods. Donoho (2005; 2006) proved the individual

equivalence of the minimal L
1

-norm and the minimal L
0

-norm solutions. Candes

and Tao (2007) proposed the Dantzig selector for a linear model with much more

predictors than observations. On the other hand, several feature screening meth-

ods based on marginal utilities have also been proposed. Fan and Lv (2008) first

introduced the concept of sure screening property in ultrahigh-dimensional data

analysis and proposed the sure independence screening (SIS) and the iterated sure

independence screening (ISIS) for linear regression models. Hall and Miller (2009)

proposed a feature ranking method using a generalized empirical correlation learn-

ing and extended the feature selection method to nonlinear models. Fan et al.

(2009) and Fan and Song (2010) further extended SIS and ISIS from linear regres-

sion model to generalized linear regression models. Fan et al. (2011) developed

the nonparametric feature screening technique based on B-spline expansion for the

ultrahigh-dimensional additive model. Zhu et al. (2011) proposed a sure inde-

pendence ranking and screening (SIRS) procedure to select important predictors

in the multi-index model; Li et al. (2012b) proposed a model-free sure indepen-

dence screening procedure based on the distance correlation (DC-SIS). However,

the marginal screening methods fail to identify the active predictors which are

marginally independent but jointly dependent of response. Sometimes the marginal

screening methods select the inactive predictors which are highly correlated with

the important predictors.

Varying coe�cient models with ultrahigh-dimensional covariates (features) could

be very useful for analyzing genetic study data to examine varying gene e↵ects.

The collected data set frequently has an ultrahigh dimensionality p that is al-

lowed to diverge at a nonpolynomial (NP) rate with the sample size n, namely

logppq “ Opnaq for some a ° 0. Traditional statistical methods confront sig-

nificant challenges in dealing with such high-dimensional data sets. Fan et al.

(2014b) extended the nonparametric B-spline method for varying coe�cient mod-

els and proposed a marginal sure screening procedure. Liu et al. (2014) proposed

another marginal sure screening procedure based on the conditional correlation co-
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e�cient for varying coe�cient models. But those two methods also have the same

drawbacks as other marginal screening methods. Wang (2009) proposed a forward

regression approach to feature screening in ultrahigh dimensional linear models,

Xu and Chen (2014) proposed a feature screening procedure for generalized linear

models via the sparsity-restricted maximum likelihood estimator and Yang et al.

(2016) proposed sure joint screening for the Cox’s model. As demonstrated in

Wang (2009), Xu and Chen (2014) and Yang et al. (2016), their approaches can

perform better than the marginal screening procedures, and can e↵ectively identify

predictors that are jointly dependent but marginally independent of the response.

In this thesis, we propose a new feature screening procedure for ultrahigh-

dimensional generalized varying coe�cient linear models. The proposed procedure

is distinguished from the existing sure independence screening (SIS) procedures

(Fan and Song, 2010, Fan, Ma and Dai, 2014b, Liu et al., 2014) in that the

proposed procedure is based on joint likelihood of potential active predictors, and

therefore is not a marginal screening procedure. We also demonstrate that the

newly proposed procedure can outperform the marginal screening procedure for

the ultrahigh-dimensional generalized varying coe�cient linear models. This thesis

makes the following major contributions to the literature.

(a) We propose a sure joint screening (SJS) procedure for ultrahigh dimensional

generalized varying-coe�cient models. We further propose an e↵ective algo-

rithm to carry out the proposed screening procedure, and demonstrate the

ascent property of the proposed algorithm.

(b) We establish the screening property for the proposed joint screening proce-

dure.

The proposed procedure can e↵ectively identify active predictors that are jointly

dependent but marginally independent of the response without performing an iter-

ative procedure. We develop a computationally e↵ective algorithm to carry out the

proposed procedure and establish the ascent property of the proposed algorithm.

We further prove that the proposed procedure possesses the sure screening prop-

erty. That is, with probability tending to one, the selected variable set includes

the actual active predictors.
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1.2 A Brief Introduction of Two Sample Mean

Testing Problems in High-dimensional Data

Analysis

The research of testing the equivalence of two-sample mean vectors has been well

developed in classical multivariate analysis, but it confronts the new challenge in

high dimensional data analysis. Suppose that for i “ 1, 2, txij, j “ 1, ¨ ¨ ¨ , Niu is a

random sample from a population xi with finite mean vectors µi and finite positive

definite covariance matrix ⌃. The two sample mean testing problem is to test

H
0

: µ
1

“ µ
2

vs. H
1

: µ
1

‰ µ
2

. (1.2.1)

The classical Hotelling’s T 2 test is used in the two-sample mean testing problem

when n “ pN
1

` N
2

´ 2q ° p and xij „ Nppµi,⌃q, i “ 1, 2. The test statistic is

defined by

T 2 “ N
1

N
2

N
1

` N
2

px̄
1

´ x̄
2

qTS´1px̄
1

´ x̄
2

q (1.2.2)

where x̄i “ 1

Ni

Ni
∞

j“1

xij, i “ 1, 2, and S “ 1

n

2

∞

i“1

Ni
∞

j“1

pxij ´ x̄iqpxij ´ x̄iqT .
Under the null hypothesis H

0

,

n ´ p ` 1

np
T 2 „ Fp,n`1´p, (1.2.3)

hence we reject the null hypothesis when

T 2 ° Fp,n`1´pp↵q, (1.2.4)

where Fp,n`1´pp↵q is the 1 ´ ↵ quantile of the distribution Fp,n`1´p.

Testing the hypothesis in (1.2.1) becomes challenging for high-dimensional data

and attracts lots of researchers to create new testing methods. The traditional

Hotelling’s T 2 test given by (1.2.2) is not well defined because of the singularity

of S when p ° N
1

` N
2

. Bai and Saranadasa (1996) and Pan and Zhou (2011)

demonstrated that the power of the Hotelling’s T 2 test can be adversely a↵ected

even when p is close toN
1

`N
2

, since S is nearly not invertible. Bai and Saranadasa
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(1996), Srivastava and Du (2008), Srivastava (2009) developed several new theories

and methodologies in the two-sample mean testing problems in a large dimensional

setting with p{N Ñ  P p0, 1q. Lee et al. (2012), Srivastava et al. (2013), Chen

and Qin (2010) and Thulin (2014) extended their research into a high-dimensional

setting without imposing condition  Ñ p0, 1q. Chen et al. (2011) proposed to

use a ridge-type covariance matrix estimator S ` �Ip to replace S in (1.2.2) and

introduced regularized Hotelling’s T 2 test. Some researchers considered projecting

the high-dimensional samples to a low-dimensional space and then processing the

classical Hotelling’s T 2 test. Lopes et al. (2011a; 2011b) constructed the random

projection test and suggested projecting the high-dimensional sample to a rn{2s(the
integer part of n{2)-dimensional space. Li et al. (2015) derived the theoretical

optimal direction with which the projection test possesses the best power under

alternatives and used a sample-splitting strategy to construct an exact t-test.

The aforementioned test methods included approximations of the covariance

matrix ⌃. Bai and Saranadasa 1996, Srivastava and Du (2008), and Chen and

Qin (2010) replaced the covariance matrix by diagonal estimators that make no

essential use of correlation structure. Chen et al. (2011) and Li et al. (2015) used

a ridge-type covariance matrix estimator S ` �Ip. However, those estimates may

not be accurate enough and may a↵ect the power of corresponding tests. This

thesis proposes to model the correlation matrix (R) and toimprove the power of

a test that involves the correlation matrix. This thesis assumes the inverse of

the correlation matrix R´1 can be represented as a linear combination of a set of

matrix bases:

R´1 “ ✓
1

A
1

` ¨ ¨ ¨ ` ✓KAK .

We propose estimating ✓ by minimizing the following quadratic loss

min
✓

trrR̂p✓
1

A
1

` ¨ ¨ ¨ ✓KAKq ´ Ips2, (1.2.5)

where R̂ is the sample correlation matrix.

The thesis shows that as the sample size goes to infinity, the ratio between the

minimizer of (1.2.5) and the true ✓ goes to a constant and the asymptotic joint

distribution of ✓̂k, k “ 1, 2, ¨ ¨ ¨ , K is a normal distribution.

In practical implementation, we may introduce a relative large number of Aks
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into the model (1.2.5) to reduce approximation error. Thus, we introduce regular-

ization method to reduce model complexity of model (1.2.5). The contribution of

this project can be summarized as follows:

(1) We propose a new hypothesis testing method for two sample mean problem

of high dimensional by considering the linear structure of the precision matrix;

(2) We derive the limiting null distribution of the new test statistic under both the

null hypothesis and the alternative hypothesis;

(3) We also propose the idea of using regularization method to select the matrix

bases;

(4) The numerical studies show the outstanding performance of the new method

when there exists strong correlations among variables.

1.3 Organization of this dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides a literature

review of feature screening methods and existing two-sample mean testing meth-

ods in high-dimensional data analysis. Chapter 3 proposes a new feature screening

method for the ultrahigh-dimensional generalized varying-coe�cient linear models

and further demonstrates the ascent property of the proposed algorithm carry-

ing out the proposed feature screening procedure. It further studies the sampling

property of the proposed procedure and establish its sure screening property. In

addition, it presents numerical comparisons, an empirical analysis of a real data ex-

ample, and some discussions. Chapter 4 proposes the theoretical properties of the

regularization method for precision matrix estimation and provides the application

of such an estimate to test the two-sample mean problem. It then demonstrates

the gain in power by incorporating correlation information. A real data example

is shown to compare our test to other existing testing methods. Chapter 5 sum-

marizes the research in this thesis and discusses the possible applications of the

proposed methods in the future.



Chapter 2
Literature Review

In this chapter, we give a brief literature review on three topics: (1) variable

selection via penalized regression methods; (2) feature screening procedures for

ultrahigh-dimensional data and (3) two-sample mean testing techniques for high-

dimensional data. First, we review some penalized regression methods and related

algorithms. Second, we briefly review some feature screening procedures based

on di↵erent models such as linear models, generalized linear models and time

varying coe�cient models, and also introduce some feature screening procedures

considering the joint e↵ect among predictors; and finally, we review some statistical

methods for the two-sample mean testing problems in the high-dimensional data

analysis.

2.1 Variable Selection via Penalized Regression

Methods

Although the subset selection procedures based on the classical criteria admit nice

sampling properties (Barron, Birge and Massart, 1999), they are infeasible when

the number of predictors is large due to the heavy computational cost. To address

this issue, researchers advocate using penalized regression approaches to select the

important variables and estimate the regression coe�cients simultaneously. In this

section, we mainly introduce the penalized methods and numerical algorithms used

in the thesis.
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Consider linear model

Y “ X� ` ✏, (2.1.1)

whereY “ pY
1

, ......, YnqT is an n-element response vector, X “ px
1

, ......,xnqT is an

n ˆ p design matrix and x
1

, ......,xn are independently and identically distributed

(IID), � “ p�
1

, ......, �pqT is a p-vector and ✏ “ p✏
1

, ......, ✏nqT is a random error

vector with n IID elements. The penalized least square function is defined by

Qp�q “ 1

2n
||Y ´ X�||2 `

p
ÿ

j“1

p�p|�j|q, (2.1.2)

where p�p¨q is the penalty function and � • 0 is a tuning parameter controlling

the amount of shrinkage applied to the estimate. The basic idea of penalized least

squares methods is to minimize (2.1.2).

Fan and Li (2001) advocated three properties of the penalized least squares

method:

1. Unbiasedness: The estimator is nearly unbiased for the truly large coe�cients

to reduce model bias.

2. Sparsity: The estimator automatically sets small estimated coe�cients to zero,

to reduce model complexity.

3. Continuity: The estimator is continuous in the data, in order to guarantee the

model prediction to be stable.

Furthermore, Antoniadis and Fan (2001) proposed that the penalized least squares

estimator possesses the following three properties:

1. Approximate unbiasedness if p
1
�ptq “ 0 for large t;

2. Sparsity if mint•0

tt ` p
1
�ptqu ° 0;

3. Continuity if and only if argmint•0

tt ` p
1
�ptqu “ 0 .
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2.1.1 Least Absolute Shrinkage and Selection Operator

Tibshirani (1996) proposed the least absolute shrinkage and selection operator

(LASSO) for variable selection in linear models. The penalty function correspond-

ing to LASSO is

p�p|t|q “ �|t|. (2.1.3)

With this penalty function, the penalized least squares function

Qp�q “ 1

2
||Y ´ X�||2 ` �

p
ÿ

j“1

|�j|. (2.1.4)

This is equivalent to minimizing the residual sum of squared errors subject to the

constraint
p

∞

j“1

|�j| † s, by which the model size is controlled and the sparsity is

guaranteed. Provided that � is su�ciently large, a portion of the values that make

up � will be exactly 0 for the LASSO penalty function. Thus, the LASSO provides

a continuous subset selection procedure. LASSO is also consistent for estimating

� under appropriate conditions, which was investigated in Knight and Fu (2000).

On the other hand, LASSO has some drawbacks at the same time. First of

all, LASSO cannot handle collinearity problem since it tends to select only one

variable from the group and ignore the rest when the pairwise correlations exist

among a group of variables. Besides, LASSO is not suitable for general factor

selection since it can only select individual input variables. Another drawback of

LASSO estimator is that it equally penalizes all the coe�cients, resulting in the

biasness of large coe�cients.

2.1.2 Smoothly Clipped Absolute Deviation (SCAD) Penalty

Fan and Li (2001) proposed the smoothly clipped absolute deviation (SCAD)

penalty function to select variables and estimate coe�cients simultaneously. The

SCAD penalty function is defined by

p
1
�p|t|q “ �Ip|t| § �q ` pa� ´ |t|q`Ip|t| ° �q

a ´ 1
. (2.1.5)
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The penalty function above is continuous and symmetric, leaving large values of

the parameter � not excessively penalized. The penalty function also satisfies all

conditions for the aforementioned advocated properties, and Fan and Li (2001)

suggested a practical choice for a ° 2, and often a “ 3.7 in SCAD from the view of

Bayes risks. Furthermore, Fan and Li (2001) proved the SCAD penalized estimator

possesses the oracle property. In other word, the non-zero component is estimated

as well as it would have been if the correct model were known in advance. In

addition, when a component of the true parameter is 0, it is estimated as 0 with

probability tending to one.

2.1.3 Minimax Concave Penalty (MCP)

Zhang (2010) proposed the minimax concave penalty (MCP) and it is defined by

p�p|t|q “ �p|t| ´ |t|2{2a�qIp|t| † a�q ` a�2

2
Ip|t| • a�q (2.1.6)

where a ° 0. MCP is motivated by and rather similar to SCAD. The MCP enjoys

the aforementioned three desired properties and the oracle property. Zhang (2010)

discussed the issue of choosing a in depth; a “ 3 is suggested for penalized linear

regression and a “ 30 is suggested for penalized logistic regression.

2.1.4 Coordinate Descent Algorithms

It is hard to optimize aforementioned penalized least squares function due to the

nonconvexity. However, some convex functions can be used to approximate them,

thus, the nonconvex problem can be solved via convex optimization algorithms.

Fan and Li (2001) proposed a unified local quadratic approximation (LQA) algo-

rithm for optimizing nonconvex penalized least squares, the idea of which is to

locally and iteratively approximate Qp�q in (2.1.2) by a quadratic function. Zou

and Li (2008) introduced the local linear approximation to the nonconvex penalty

functions. Efron et al. (2004) proposed a fast and e�cient Least Angle Regres-

sion (LARS) algorithm. In this section, we mainly focus on coordinate descent

algorithm which successively optimizes on coordinate at a time. The procedure of

coordinate descent algorithm can be summarized as:
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(1) Set the initial value �
0

.

(2a) Successively optimizes Qp�q in (2.1.2) from the first, the second,......, and

the p-th coordinate while keeps other coordinates fixed.

(2b) Repeat 2a until some convergence criterion is satisfied.

Denote X´j and p�´j,0 as X and p�
0

with the j-th column and j-th component

removed, respectively. When we are optimizing the j-th component �j fixing other

components at their current value �
0

in (2a), we update the component by

�j “ argmin
�j

Qjp�jq “ argmin
�j

p 1

2n
||Rj ´ xj�j||2 ` p�p|�j|q ` cq (2.1.7)

where xj is the j-th component, Rj “ Y ´ X´j
p�´j,0 and c “ ||p�p|p�´j,0q||

1

is a

constant. For an orthonormal design where XTX “ nIp, Qjp�jq can be simplified

to

Qjp�jq “ 1

2
p�j ´ pcjq2 ` p�p|�j|q, (2.1.8)

where pcj “ n´1XT
j Rj. For LASSO, the solution to (2.1.8) is

p✓LASSO “ sgnp�jqp|�j| ´ �q`. (2.1.9)

For SCAD, the solution to (2.1.8) is

p✓SCAD “

$

’

’

&

’

’

%

sgnp�jqp|�j| ´ �q` when |�j| § �;

sgnp�jqrpa ´ 1q|�j| ´ a�s{pa ´ 2q when 2� † |�j| § a�;

�j when |�j| ° a�.

(2.1.10)

And for MCP, the solution to (2.1.8) is

p✓MCP “
#

sgnp�jqp|�j| ´ �q`{p1 ´ 1{aq when |�j| § a�;

�j when |�j| ° a�.
(2.1.11)

Wu and Lange (2008) first applied coordinate descent algorithm to LASSO,

and Friedman et al. (2007) showed that coordinate descent algorithm is very

competitive with LARS algorithm for computing the solution path.
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2.2 Feature Screening for Ultrahigh-dimensional

Data

The penalized regression methods reviewed in last section have been successfully

applied in high-dimensional data analysis, but when the dimensionality of data

grows exponentially with the sample size, they are challenged in terms of statis-

tical accuracy, algorithm stability and computational complexity. Such ultrahigh-

dimensional data analysis has gained much popularity in the modern scientific

fields such as genomics and proteomics, economics and finance. In this section, we

briefly introduce feature selection procedures for di↵erent models, and both the

strengths and weaknesses of each method are demonstrated.

2.2.1 Linear Models and Transformed Linear Models

We first review some feature selection methods for linear models based on Pearson

correlation, and for transformed linear models based on generalized correlation and

rank correlation.

2.2.1.1 Pearson Correlation

Fan and Lv (2008) introduced the concept of sure screening and proposed the sure

independence screening(SIS) method based on the correlation learning. The SIS

method can shrink the dimensionality from high to a moderate level.

Consider a linear model (2.1.1), if all the variables are standardized with mean

0 and standard deviation 1,

! “ XTY (2.2.12)

is the marginal correlations of predictors with response variables. Fan and Lv

(2008) proposed that by sorting the p componentwise magnitudes of ! in a de-

creasing order, a submodel

M� “ t1 § i § p : |!i| is among the first r�ns largest of allu (2.2.13)

can be obtained, where � P p0, 1q and r�ns is the integer part of �n. Hence
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the full model is shrunken to the submodel M� with size d “ r�ns according

to the marginal correlations of the predictors with the response variable. Let

M˚ “ t1 § i § p : �i ‰ 0u be the true model with size s, and suppose we have

the following four conditions:

1. p ° n and logppq “ Opn⇠q for some ⇠ P p0, 1 ´ 2q, where  ° 0.

2. Denote z “ ⌃´1{2X and Z “ X⌃´1{2, where X “ px
1

, ......,xpq and ⌃ “
covpXq, then z has a spherically symmetric distribution. If there are c, c

1

° 1

and C
1

° 0 such that the deviation inequality

P t�
max

pp̃´1Z̃Z̃
T q ° c

1

or �
min

pp̃´1Z̃Z̃
T q ° 1{c

1

u § expp´C
1

nq

holds for any n ˆ p̃ submatrix Z̃ of Z with cn † p̃ § p.

3. varpY q “ Op1q and, for some  • 0 and c
2

, c
3

° 0,

min
iPM˚

|�i| • c
2

n and min
iPM˚

|covp�´1

i Y,Xiq| • c
3

.

4. There are some ⌧ • 0 and c
4

• 0 such that

�
max

p⌃q § c
4

n⌧

Then SIS is proved to have the sure screening property as follows:

Theorem 2.2.1. If 2` ⌧ † 1, then there is some ✓ † 1´ 2´ ⌧ such that, when

� „ cn´✓, we have, for some C ° 0,

P pM˚ Ä M�q “ 1 ´ Orexpt´Cn1´2{ logpnqus

it indicates that P pM˚ Ä M�q Ñ 1 as n Ñ 8.

Since SIS method enjoys the sure screening property, Fan and Lv (2008) imple-

mented a two-stage selection method. First, we use SIS to reduce the dimension-

ality to a moderate level, so the full model t1, ......, pu is shrunken to a submodel

M� with size d † n, and then apply a lower dimensional model selection method

to the submodel M� such as SCAD, LASSO, adaptive LASSO and the Dantzig

Selector. From the results of their numerical studies, SIS-SCAD outperforms other
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combinations and generates smaller and more accurate models. They also showed

that SIS-SCAD has the oracle properties.

However, SIS is not a perfect model selection method and has some drawbacks.

First, some unimportant predictors which are highly correlated with the impor-

tant predictors will be included, and other important predictors that are relatively

weakly correlated with the response will be neglected; Second, the important pre-

dictors that are marginally independent of the responses but jointly dependent

of the responses cannot be selected by the SIS; Another drawback is that the

collinearity among the predictors make the variable selection more di�cult. In

order to overcome these drawbacks, Fan and Lv (2008) proposed an iterative SIS

method, that is to apply SIS method iteratively and in each step the residual from

the model selected in the previous step is treated as the response.

2.2.1.2 Generalized Correlation and Rank Correlation

The SIS method works well for the linear regression model with ultrahigh-dimensional

predictors, however, the Pearson correlation cannot be directly used to do the fea-

ture selection in the nonlinear model. In order to capture both linearity and

nonlinearity, Hall and Miller (2009) proposed a feature selection method based on

the generalized correlations between the response and predictors.

Hall and Miller (2009) defined the generalized correlation between the j-th

predictor and Y by:

⇢gpXj, Y q “ sup
hPH

covthpXjq, Y u
a

varthpXjquvarpY q (2.2.14)

where H is a vector space generated by any given set of functions h. If we restrict

H to a space of constant and linear functions, ⇢gpXj, Y q is the absolute value

of Pearson correlation between Xj and Y . Assume that Y “ pY
1

, ......, YnqT is

an n-element response vector, X “ px
1

, ......,xnqT is an n ˆ p design matrix and

x
1

, ......,xn are IID, ⇢jpXj, Y q can be estimated by

p⇢gpXj, Y q “ sup
hPH

∞n
i“1

thpXijq ´ h̄jupYi ´ Ȳ q
∞n

i“1

th2pXijq ´ h̄2

ju
∞n

i“1

pYi ´ Ȳ q2 , (2.2.15)

where h̄j “ n´1

∞n
i“1

hpXijq and Ȳ “ n´1

∞n
i“1

Yi. In addition,
∞n

i“1

pYi ´ Ȳ q2 does
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not depend on j, so

p�gpXj, Y q “ sup
hPH

∞n
i“1

thpXijq ´ h̄jupYi ´ Ȳ q
∞n

i“1

th2pXijq ´ h̄2

ju
(2.2.16)

can be used instead.

The generalized correlation reflects both the linear and nonlinear relationships

between the predictors and the response. Hall and Miller (2009) proposed a new

feature screening method using generalized correlations as the marginal utility,

which is ranking all the predictors based on the magnitude of the estimated gen-

eralized correlation of each predictor. Hall and Miller (2009) also introduced a

bootstrap method to assess the authority of ranking all predictors. Let prj denotes

the rank of the j-th predictors based on the magnitude of the estimated generalized

correlation of the j-th predictor. Compute the generalized correlation p⇢˚
gpXj, Y q

of j-th predictor in the bootstrapped sample, and calculate the rank pr˚pjq of the

bootstrapped sample. Given a level ↵, a nominal p1 ´ ↵q two-sided, equal tailed

prediction interval rpr´pjq, pr`pjqs is computed based on the distribution of pr˚pjq’s
of the bootstrapped samples. Hall and Miller (2009) suggested the j-th predictor

is considered as influential if pr`pjq † 1

2

p. The rule assumes that the total number

of important predictors is less than p, and more than half of all the predictors

are rejected by this rule. Hall and Miller (2009) also indicated that there may

exist high rate of false positives under this rule. Thus 1

2

p can be replaced by some

smaller fraction of p.

Hall and Miller’s method is based on making transformation on the covariates,

an alternative way to characterize the nonlinearity is to make transformations on

the response. Li et al. (2012a) defined a marginal rank correlation

!j “ 1

npn ´ 1q
ÿ

i‰l

IpXij † XljqIpYi † Ylq ´ 1

4
, (2.2.17)

to measure the importance of the j-th predictor Xj. According to the magnitude

of !j’s, a feature selection procedure selects a submodel xM�n “ t1 § j § p : |!j| °
�nu, where �n is a threshold value.

Li et al. (2012a) proposed that the feature screening procedure based on the

rank correlation is robust against heavy-tailed distribution and invariant under
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monotonic transformations and enjoys sure screening property under some tech-

nical conditions. The feature selection method is also robust to the outliers and

influence points in the observations.

2.2.2 Generalized Linear Models

Generalized linear models have been widely used in statistical research and appli-

cations. Thus, it is necessary to extend the feature selection procedures from linear

models to generalized linear models. In recent years, researchers have developed

some feature selection methods for generalized linear models.

2.2.2.1 Marginal Likelihood Screening

Fan et al. (2009) extended the SIS method to generalized linear models(GLIM) by

ranking the marginal likelihood of each predictor. Assume the conditional density

function of y with the canonical form is given by:

fpy|Xq “ expty✓pXq ´ bp✓pXqq ` cpyqu (2.2.18)

where bp¨q and cp¨q are known functions and ✓pXq “ XT�. Assume that EpY |Xq “
b

1p✓pXqq “ g´1p�
0

` XT�q. X is a n ˆ p matrix px
1

, ......,xpq, and each column

is standardized with mean zero and standard deviation one. Denote the nega-

tive likelihood function of the i-th observation is lp�
0

` xT
i �, Yiq, so the marginal

likelihood of j-th feature is

Lj “ min
�
0

,�j

n
ÿ

i“1

lp�
0

` xij�j, Yiq (2.2.19)

The SIS idea in this situation is first to compute the marginal likelihood L “
pL

1

, ......, LpqT and then select the important predictors by ranking the marginal

likelihood. A submodel

M� “ t1 § i § p : |Li| is among the first r�ns smallest of allu (2.2.20)

is obtained, where � P p0, 1q and r�ns is the integer part of �n. After implementing

this method, the full model t1, ......, pu is reduced to a moderate level d “ r�ns, then
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some well-developed variable selection methods such as LASSO, adaptive LASSO,

SCAD and Dantzig Selector can be used.

If we partition the sample in two parts and apply SIS to each partition, and

denote the two active indices by M̃
1

and M̃
2

, which satisfies |M̃ “ M̃
1

XM̃
2

| “ d.

The method also possesses the sure screening property.

Theorem 2.2.2. If 2 ` ⌧ † 1, where  ° 0 and ⌧ ° 0, then for some C ° 0, it

follows

P pM˚ Ä M̃q “ 1 ´ Orexpt´Cn1´2{ logpnq ` logppqus

As shown in Section 2.2.1.1, the marginal feature screening methods fail when

the predictor is marginally uncorrelated but jointly related to the response, or

jointly uncorrelated with the response but highly correlated with some important

predictors. Fan et al. (2009) proposed an iterative feature screening method under

generalized linear model which follows 4 steps:

1. Calculate the marginal likelihood vector pL
1

, ......, Lpq and obtain a submodel
xM

1

“ t1 § j § p : Lj is among the first k
1

smallest of allu. Then apply

some well developed variable selection methods such as LASSO and SCAD

to select a new subset xM.

2. Then apply the SIS method to the model t1, ......, pu{ xM, which is to compute:

Lp2q
j “ min

�
0

,�
xM,�j

n
ÿ

i“1

lp�
0

` XT
i, xM� xM ` Xij�j, Yiq (2.2.21)

where XT
i, xM is the sub-vector of Xi containing the elements in M. Select a

subset xM
2

“ tj P t1, ......, pu{ xM : Lp2q
j is among the first k

2

smallest of allu.

3. Some large dimensional variable selection methods such as LASSO and SCAD

is applied to the set xM Y xM
2

to update the subset xM.

4. Repeat step 2 and 3 until | xM| • d. So the final selected model is xM.

Fan et al. (2009) also proved that the iterative method possesses the sure screening

property.
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2.2.2.2 Maximum Marginal Likelihood Estimator

Fan and Song (2010) proposed a screening method by ranking the magnitude

of the maximum marginal likelihood estimator (MMLE). The generalized linear

model and the negative log-likelihood function are same as those in section 2.2.2.1.

When p ° n, the minimizer of the negative log-likelihood is not well defined.

Assume that the predictors are standardized with mean zero and deviation one,

the MMLE x�j

M
of the j-th predictor is defined as

x�j

M “ pp�M
0

, p�M
1

q “ arg min
�j0,�j1

n
ÿ

i“1

lp�j0 ` Xij�j1, Yiq. (2.2.22)

This could be computed quickly and the implementation is robust. Then Fan and

Song (2010) also gave the definition of the population version of MMLE:

x�j

M “ pp�M
0

, p�M
1

q “ arg min
�j0,�j1

Elp�
0

` Xij�j, Y q, (2.2.23)

where E is the expectation under the true model.

Based on the magnitude of MMLE, a submodel could be selected:

xM� “ t1 § j § p : |p�M
j1 | • �nu (2.2.24)

where �n is a predefined value. Fan and Song (2010) also established the theoretical

properties of MMLE. Define the true model as M˚ “ t1 § j § p : �j • 0u with

size d. Fan and Song (2010) first proved that the marginal regression parameter
p�M
j1 “ 0 if and only if covpY,Xjq “ 0, which shows that the marginal regression

parameter is in fact a measurement of the correlation between the covariate and

the response. In order to prove sure screening property of MMLE, Fan and Song

(2010) first established the following result:

Theorem 2.2.3. If |covpY,Xjq| • c
1

n´ for j inM˚ and a positive constant

c
1

° 0, then there exists a positive constant c
2

such that min j P M˚|�j1| • c
2

n´

if b
2p¨q is bounded or EGpa|Xj|q|Xj|Ip|Xj| • n⌘q † dn´, where 0 † ⌘ † , and

some small positive constants a and d, where Gp|x|q “ sup|u|§|x| |b1puq|.

Theorem 3 reveals that the marginal signals are stronger than the stochastic
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noise when Xj’s are correlated with the response. Then Fan and Song (2010)

established the uniform convergence and sure screening property of MMLE under

some technical conditions.

Theorem 2.2.4. (1). If n1´2{pk2

nK
2

nq Ñ 8, then for any c
3

° 0, there exits a

positve constant c
4

such that

P pmax
1§j§p

|p�M
j1 ´�M

j1 | • c
3

n´q § ptexpp´c
4

n1´2{pk2

nK
2

nqq`nm
1

expp´m
0

K↵
n qu.

(2.2.25)

(2). By taking �n “ c
5

n´ with c
5

§ c
2

{2, we have

P pM˚ Ä xM�nq • 1 ´ dtexpp´c
4

n1´2{pk2

nK
2

nqq ` nm
1

expp´m
0

K↵
n qu,

where d “ |M˚|, the size of the true model; kn “ b
1pKnB ` Bq ` m

0

K↵
n {s

0

with s
0

,m
0

° 0, B is the upper bound of the true value of �M
j1 and Kn is the

supremum norm of X.

Fan and Song (2010) also indicated that the marginal screening method by

ranking the magnitude of MMLE can handle the NP-dimensionality logppq “
opnp1´2q↵{p↵`2qq, with ↵ “ 8 for the case of bounded covariates. This is weaker

than SIS proposed by Fan and Lv (2008) when the covariates are normal, but

the method allows nonnormal covariates and other error distributions. Fan and

Song (2010) showed that the number of selected variables | xM�n | is bounded by

Otn2�
max

p⌃qu, where �
max

p⌃q is the largest eigenvalue of ⌃ with probability ap-

proaching one under some regularity conditions, so the value of  determines the

threshold �n.

Fan and Song (2010) also proposed that the MMLE screening method is equiv-

alent to the method stated in Section 2.1 since both of them have sure screening

property and the number of selected variables are of the same order of magnitude.

2.2.3 Varying Coe�cient Model

Ultrahigh dimensional varying coe�cient models have become more and more im-

portant in statistical research as a useful extension of linear models. In this model,

the regression coe�cients are changed over di↵erent subjects featured by certain
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covariates. Since the number of predictors is much larger than the sample size,

feature selection is fundamental for the analysis of ultrahigh dimensional vary-

ing coe�cient models. In this section, we review two existing statistical feature

selection methods for the varying coe�cient models.

2.2.3.1 Nonparametric Independence Screening

The varying coe�cient model is an important class of nonparametric regression

model. It is defined as

Y “
p

ÿ

j“1

�jpuqXj ` ✏, (2.2.26)

where �ipuq’s are coe�cient functions.

Feature screening methods are needed when the number of covariates is large.

Fan et al. (2014b) proposed a nonparametric independence screening (NIS) by

ranking the nonparametric marginal utility of each covariate given u.

Denote the true model M˚ “ tj : 1 § j § p, Er�2

j puqs ° 0u with the size

d “ |M˚|. Fan et al. (2014b) first fitted the marginal regression of each covariate

given u, then find ajpuq and bjpuq which minimize EtpY ´ ajpuq ´ bjpuqXjq2|uu.
The expressions of the minimizers are bjpuq “ covrXj ,Y |us

varrXj |us and ajpuq “ ErY |us ´
bjpuqErXj|us. Let a

0

puq “ ErY |us, the nonparametric marginal utility of each

covariate

uj “ Epajpuq ` bjpuqXjq2 ´ Epa
0

puqq2 “ ErpcovrXj, Y |usq2
varrXj|us s. (2.2.27)

Let ajpuq and bjpuq be approximated by splines method. Define

Bpuq “ tB
1

puq, ......, BlnpuquT

be a normalized B-spline basis, pajpuq “ BpuqT p⌘j,pbjpuq “ BpuqT p✓j, and pa
0

puq “
BpuqT p⌘

0

. It can be shown that pp⌘Tj , p✓Tj qT “ pQT
njQnjq´1QT

njY, p⌘
0

“ pBT
nBnq´1BT

nY,

where Qnj “ pBn,�njq “

¨

˚

˚

˝

Bpu
1

qT Xj1Bpu
1

qT
...

...

BpunqT XjnBpunqT

˛

‹

‹

‚

nˆ2ln

, Bn “

¨

˚

˚

˝

Bpu
1

qT
...

BpunqT

˛

‹

‹

‚

nˆln
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and Y “

¨

˚

˚

˝

Y
1

...

Yn

˛

‹

‹

‚

nˆ1

. Thus, the estimate of the marginal utility

puj “||pajpuq ` pbjpuqXj||2n ´ ||pa
0

puq||2n

“ 1

n

n
ÿ

i“1

ppajpuiq ` pbjpuiqXjiq2 ´ 1

n

n
ÿ

i“1

ppa
0

puiqq2.
(2.2.28)

A submodel M�n “ t1 § j § p : puj • �nu can be selected, where �n is a predefined

threshold. Fan et al. (2014b) also showed that it is equivalent to ranking the

covariates by the residual sum of squares of marginal nonparametric regression,

which is

pvj “ ||Y ´ pajpuq ´ pbjpuqXj||2n, (2.2.29)

and a submodel M⌫n “ t1 § j § p : pvj § ⌫nu, where ⌫n is a predefined threshold.

Fan et al. (2014b) proved the sure screening property of the proposed method

under some regularity condition. However, the proposed method also su↵ers

the weakness of SIS such as failure of selecting important variables which are

marginally independent of Y and select unimportant variables which are highly

correlated with important variables. Thus, Fan et al. (2014b) adopted two iter-

ative methods, conditional-INIS and greedy-INIS to improve the performance of

the proposed method. A group penalty is needed because an estimated coe�cient

function vanishes if and only if all of the coe�cient in the corresponding spline

expansion are zero. Fan et al. (2014b) implement group-SCAD in the paper.

2.2.3.2 Conditional Correlation Learning

Liu et al. (2014) proposed a new feature selection method for the varying coe�-

cient models based on conditional correlation coe�cient (CC-SIS). The conditional

correlation between the response and the j-th predictor Xj given u is defined to

be

⇢pXj, Y |uq “ covpXj, Y |uq
a

covpXj, Xj|uqcovpY, Y |uq , (2.2.30)
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and the marginal utility is

⇢˚
j0 “ Et⇢2pXj, Y |uqu. (2.2.31)

In order to estimate ⇢pXj, Y |uq, we need to estimate five conditional means such

as EpY |uq, EpY 2|uq, EpXj|uq, EpX2

j |uq and EpXjY |uq. Liu et al. (2014) used the

kernel smoothing method to estimate those conditional means. The estimation of

EpY |uq is

pEpY |uq “
n

ÿ

i“1

Khpui ´ uqyi
n
∞

i“1

Khpui ´ uq
, (2.2.32)

where Kptq is a kernel function, h is a bandwidth and Khptq “ h´1Kpt{hq.
The kernel regression estimates of the other four conditional means have the

similar definitions. The estimation of the conditional covariance xcovpXj, y|uq “
pEpXjy|uq ´ pEpXj|uq pEpy|uq, and the estimation of the conditional correlation is

p⇢pXj, Y |uq “ xcovpXj, Y |uq
a

xcovpXj, Xj|uq xcovpY, Y |uq . (2.2.33)

The kernel regression can guarantee xcovpXj, Xj|uq • 0 and xcovpY, Y |uq • 0, and

the bandwidth h of the five conditional means are required to be same.

The plug-in estimate of ⇢˚
j0 is

p⇢˚
j “ 1

n

n
ÿ

i“1

p⇢2pXj, Y |uiq. (2.2.34)

Based on the magnitude of p⇢˚
j ’s, the screened submodel is defined as

xM “ tj : 1 § j § p : p⇢˚
j is among the first d largestu, (2.2.35)

where | xM| “ d is taken to be smaller than the sample size n. Thus, the full

model is reduced to a moderate scale. Liu et al. (2014) indicated we can set

d “ rn4{5{ logpn4{5qs for ultrahigh-dimensional varying coe�cient models.

Denote the true model and its complement by M˚ and Mc
˚. To establish the
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ranking consistency property, some regularity conditions are needed:

1. The population level unconditioned-squared correlation cannot be too small.

2. u, X and " are independent given XT
M˚�M˚puq and the linearity condition is

satisfied:

EtX|XT
M˚�M˚puq, uu “covpX,XT

M˚ |uq�M˚puqtcovpXT
M˚ |uqu´1 ˆ �T

M˚puqXM˚ .

(2.2.36)

3. The density function of u has continuous second-order derivatives.

4. The kernel function Kp¨q is symmetric and uniformly bounded on its finite

support.

5. Xj and Y satisfy the sub exponential tail probability uniformly in p.

6. All conditional means and their corresponding first and second derivatives are

finite and the conditional variances are significantly greater than zero.

Under Conditions 1-6, Liu et al. (2014) proved the ranking consistency property:

lim
nÑ8

inftmin
jPM˚

p⇢˚
j ´ max

jPMc˚
p⇢˚
j u ° 0 in probability, (2.2.37)

which states all the true predictors have larger p⇢˚’s than the unimportant ones.

Liu et al. (2014) also established the Sure Screening Property under conditions

3-6, that is P pM˚ Ä xMq Ñ 1 as n Ñ 8.

CC-SIS is based on a marginal utility. Thus it may fail to identify the important

variables which are marginally uncorrelated to the response but jointly correlated

to the response. Liu et al. (2014) proposed an iterative CC-SIS that can overcome

this weakness.

2.2.4 Joint E↵ects

The aforementioned feature screening procedures are based on the marginal utili-

ties between response and predictors. They may fail to select the active variables

which are marginally uncorrelated with the responses but jointly correlated with
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the responses and some inactive variables may be selected if they are highly cor-

related with the active ones. The screening methods considering the joint e↵ects

between predictors overcome the aforementioned weakness. In this section, two

feature selection procedures accounting for the joint e↵ect of features are reviewed.

2.2.4.1 Sparse MLE

The marginal screening methods fail to select the important variables which are

marginally independent of the response and remove the unimportant variables

which are highly correlated with the important ones. Iterative SIS methods im-

prove the performance of the marginal screening method, however, they have higher

computational cost and increased complexity. Xu and Chen (2014) proposed a

new method via the sparsity-restricted maximum likelihood estimator (SMLE) for

the generalized linear models, which considers the joint e↵ects of features in the

screening process. The new method overcomes the weakness of marginal screening

methods and also enjoys lower computational cost.

Consider a random sample of size n from a generalized linear model, the log-

likelihood function of � is given by

`np�q “
n

ÿ

i“1

tpXT
i �qYi ´ bpXi�qu (2.2.38)

under the canonical link. The SMLE is defined by

p�rks “ argmax
�

`np�q subject to ||�||
0

§ k (2.2.39)

where || ¨ ||
0

denotes the number of nonzero components of a vector and k is larger

than the cardinality of the true model |M˚|. Let xM “ t1 § j § p : p�rksj ‰ 0u be

the nonzero components of p�rks. The SMLE method is a joint-likelihood-supported

screening method that accounts for the joint e↵ects between features.

In order to obtain the SMLE with a low computational cost, Xu and Chen

(2014) developed an iterative hard-thresholding algorithm (IHT) to estimate the

SMLE. For a given �, the log-likelihood function `np�q is approximated by

hnp�;�q “ `np�q ` p� ´ �qTSnp�q ´ pu{2q||� ´ �||2
2

(2.2.40)
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for some scaling parameter u ° 0, where || ¨ ||
2

is the L
2

norm and Snp�q is the

score function. The first two terms are given by Taylor’s expansion and the third

term is a regularization term. It can be seen that hnp�;�q approximates `np�q
very well when � is close to � and in fact hnp�;�q “ `np�q.

In the iterative process, �ptq is updated by

�pt`1q “ argmax
�

hnp�;�ptqq subject to ||�||
0

§ k. (2.2.41)

The regularization term in (2.2.41) prevents �pt`1q far away from �ptq which makes

�pt`1q a nongreedy update for obtaining p�rks. Thus, the iteration is started with

an initial �p0q and stopped until ||�pt`1q ´ �ptq||
2

falls below some tolerance level.

The solution to (2.2.41) is

�pt`1q “ Hp�ptq ` u´1XT ty ´ b
1pX�ptqqu; kq, (2.2.42)

where Hp�; kq “ rHp�
1

; rq, ..., Hp�p; rqs and Hp�; rq “ �Ip|�| ° rq with r as the k-

th largest component of �. Xu and Chen (2014) showed the increment property of

SMLE method, so the sequence �pt`1q based on IHT algorithm increases the value

of `np¨q and necessarily converges to a local maximum of `np¨q. The increment

property guarantees that the SMLE method is a promising method for feature

screening. Xu and Chen (2014) also proved the sure screening property of SMLE

method under some technical conditions, which means that ppM˚ Ä xMq Ñ 1, as

n Ñ 8.

2.2.4.2 Sure Joint Screening

Yang et al. (2016) proposed a feature screening method based on the joint partial

likelihood for the Cox’s model:

hpt|Xq “ h
0

ptq exppXT�q, (2.2.43)

where h
0

ptq is an unspecified baseline hazard function and T is the survival time.

Denote the observed time by Z “ minpT,Cq and the event indicator by � “ IpT †
Cq, where C is the censoring time. Suppose that tpXi, Zi, �iqu is an IID random
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sample from model (2.2.43) and t0
1

† ¨ ¨ ¨ † t0N are the ordered failure times. Denote

the risk set right before the time t0j by Rj:

Rj “ ti : Zi • t0ju. (2.2.44)

Let N failures at time t0
1

† ¨ ¨ ¨ † t0N be xp1q, ¨ ¨ ¨ ,xpNq, the partial likelihood

function of the random sample is

`pp�q “
N
ÿ

j“1

rXT
pjq� ´ logt

ÿ

iPRj

exppXT
i �qus. (2.2.45)

Denote the true model by M˚. From here, it is for survival data. Yang et

al. (2016) proposed a screening method for the Cox model by maximize the con-

strained partial likelihood

p�m “ argmax
�

`pp�q subject to ||�m||
0

§ m, (2.2.46)

where m ° |M˚|. Since it is impossible to maximize the constrained partial

likelihood in the high dimensional setting, Yang et al. (2016) considered a proxy

of the partial likelihood function

`pp�q « `pp�q ` p� ´ �qT `1
pp�q ` 1

2
p� ´ �qT `2

pp�qp� ´ �q, (2.2.47)

where `
1
pp�q “ B`pp�q{B�|�“� and `

2
pp�q “ B2`pp�q{B�B�T |�“�. For the setting

of large p and small n, `
2
pp�q is not invertible. Thus, the authors proposed to use

the following approximation for `
2
pp�q

gp�|�q “ `pp�q ` p� ´ �qT `1
pp�q ´ u

2
p� ´ �qTW p� ´ �q, (2.2.48)

where u is a scaling constant and W “ diagt´`2
pp�qu. The authors approximated

`
2
pp�q by udiagt`2

pp�qu.
It can be seen that gp�|�q is an additive function of �j for any given � since W
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is a diagonal matrix. Thus, the maximizer of the following maximization problem

max
�

gp�|�q subject to ||�||
0

§ m (2.2.49)

is p�j “ �̃jIt|�̃j| ° |�̃pm`1q|u :“ Hp�̃j;mq, where �̃ “ �`u´1W´1`
1
pp�q and |�̃pm`1q|

is the m ` 1-th largest among t�̃
1

, ¨ ¨ ¨ , �̃pu.
The algorithm for the feature screening procedure is:

1. Set the initial �p0q “ 0.

2. Set t “ 0, 1, 2, ¨ ¨ ¨ and iteratively conduct 2a and 2b until some convergence

criterion is satisfied.

Step 2a. Compute �̃ptq “ p�̃ptq
1

, ¨ ¨ ¨ , �̃ptq
p qT “ �ptq ` u´1

t W´1p�ptqq`1
pp�ptqq and

�̃
ptq “ pHp�̃ptq

1

;mq, ¨ ¨ ¨ , Hp�̃ptq
p ;mqq :“ Hp�̃ptq;mq.

Set St “ tj : �̃j ‰ 0u, the nonzero elements of �̃
ptq
.

Step 2b. Update � by �pt`1q as follows. If j R St, set �
pt`1q
j “ 0; otherwise, set

t�pt`1q
j : j P Stu be the maximum likelihood estimate of the submodel St.

The proposed method can select the important variables that are marginally in-

dependent but jointly dependent of the survival time and is considered to perform

better than the marginal screening method. In addition, it can be carried out with

low computational cost. Yang et al. (2016) also demonstrated the increment prop-

erty and the sure screening property of the proposed method under some certain

conditions.

2.3 Review of Two Sample Mean Testing in High-

dimensional setting

In this section, we focus on two-sample mean testing methods. These methods

can be directly applied to the one-sample mean testing problems. Suppose that

x
1

“ tx
11

, ¨ ¨ ¨ ,x
1N

1

u and x
2

“ tx
21

, ¨ ¨ ¨ ,x
2N

2

u are two independent p-dimensional

random samples with means µ
1

and µ
2

and covariance matrices ⌃
1

and ⌃
2

, respec-

tively. We assume that ⌃
1

“ ⌃
2

“ ⌃ and the two sample mean testing problem is
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to test the null hypothesis

H
0

: µ
1

“ µ
2

vs. H
1

: µ
1

‰ µ
2

. (2.3.50)

All the testing methods reviewed in this section can be extended to the one-sample

testing problem.

2.3.1 Classical Hotelling’s T 2 Test

The classical Hotelling’s T 2 test is used in the two sample mean testing problems

when n “ pN
1

` N
2

´ 2q ° p and xij „ Nppµi,⌃q, i “ 1, 2. The test statistic is

defined by

T 2 “ N
1

N
2

N
1

` N
2

px̄
1

´ x̄
2

qTS´1px̄
1

´ x̄
2

q (2.3.51)

where x̄i “ 1

Ni

Ni
∞

j“1

xij, i “ 1, 2, and S “ 1

n

2

∞

i“1

Ni
∞

j“1

pxij ´ x̄iqpxij ´ x̄iqT .
Under the null hypothesis H

0

,

n ´ p ` 1

np
T 2 „ Fp,n`1´p, (2.3.52)

hence we reject the null hypothesis when

T 2 ° Fp,n`1´pp↵q, (2.3.53)

where Fp,n`1´pp↵q is the 1 ´ ↵ quantile of the distribution Fp,n`1´p.

Bai and Sranadasa (1996) derived the approximation of the power function of

Hotelling’s T 2 test for the two sample problem.

Theorem 2.3.1. If yn “ p{n Ñ y P p0, 1q, N
1

{pN
1

` N
2

q Ñ  P p0, 1q and

||�|| “ op1q, then

�Hp�q ´ �p´⇠↵ `
b

np1´yq
2y p1 ´ q||�||2q Ñ 0,

where � “ ⌃´1{2pµ
1

´ µ
2

q and �Hp�q is the power function of Hotelling’s T 2 test.
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Denote n||�||2 Ñ a ° 0, and Theorem 5 shows that the limiting power of

Hotelling’s T 2 test is slowly increasing for y close to 1 as a increases. However, the

Hotelling’s T 2 test cannot be used when p ° n, since the matrix S is not invertible.

2.3.2 Dempster’s Test

Under the normality assumption xi “ txij : xij „ Nppµi,⌃q, i “ 1, 2, j “
1, ¨ ¨ ¨ , Niu and XT “ px

11

, ¨ ¨ ¨ ,x
1N

1

,x
21

, ¨ ¨ ¨ ,x
2N

2

q and x
1

and x
2

are indepen-

dent, Dempster (1958; 1960) proposed a non-exact test for the two-sample mean

testing problems with p ° n. Consider a matrix with N
1

`N
2

orthogonal columns

B “ pb
1

, ¨ ¨ ¨ ,bN
1

`N
2

q in a Euclidean space, where

b
1

“
c

1

N
1

` N
2

1N
1

`N
2

,

b
2

“ p
d

N
2

N
1

pN
1

` N
2

q1N
1

,´
d

N
1

N
1

pN
1

` N
2

q1N
2

q
(2.3.54)

and bi, i “ 3, ¨ ¨ ¨ , N
1

` N
2

are chosen to ensure the orthogonality of B. Denote

Y “ BTX “ py
1

, ¨ ¨ ¨ ,yN
1

`N
2

qT . It is seen that Epy
1

q “ pN
1

µ
1

`N
2

µ
2

q{pN
1

`N
2

q,
Epy

2

q “
a

pN
1

N
2

q{pN
1

` N
2

qpµ
1

´µ
2

q and tyi, i “ 3, ¨ ¨ ¨ , N
1

`N
2

u are distributed
asNp0,⌃q. Thus, y

2

is the di↵erence between the sample means, and y
2

„ Np0,⌃q
under H

0

.

Dempster (1958; 1960) defined the nonexact test statistic by

F “ Q
2

N
1

`N
2

∞

i“1

Qi{n
, (2.3.55)

where Qi “ yT
i yi. Dempster (1958; 1960) assumed that Qi is distributed as m�2

r

and m and r can be solved by the method of moments, the distribution of F is

Fr,nr.

Dempster (1960) provided two methods for estimating r as follows:

1. Assume that Qi „ m�2

r, denote a su�cient statistic

t “ nrlogp 1
n

N
1

`N
2

ÿ

i“3

Qiqs ´
N

1

`N
2

ÿ

i“3

Qi (2.3.56)
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that depends only on r and when r is small, its distribution can be approxi-

mated by

t „ r1
r

` 1 ` 1{n
3r2

s�2

n´1

. (2.3.57)

Thus, the first estimate of r is defined by the solution of the following equa-

tion

t “ r 1
pr
1

` 1 ` 1{n
3pr2

1

spn ´ 1q. (2.3.58)

2. The second estimate of r is constructed by using the angles between yi and

yj, which is denoted by ✓ij with 3 § i † j § pN
1

` N
2

q. Let

uij “ ´ logpsin2p✓ijqq „ p1
r

` 3

2r2
q�2

1

, (2.3.59)

and the second estimate of r can be obtained by solving

t `
ÿ

3§i†j§pN
1

`N
2

q
uij “ p 1

pr
2

` 3

2pr2
2

q
˜

n

2

¸

` r 1
pr
2

` 1 ` 1{n
3pr2

2

spn ´ 1q.(2.3.60)

Bai and Saranadasa (1996) suggested that

r “ ptr⌃q2
tr⌃2

and m “ tr⌃2

tr⌃
, (2.3.61)

and if nS „ Wpp⌃, nq,

n2

pn ` 2qpn ´ 1qrtrS2 ´ ptrSq2{ns (2.3.62)

is an unbiased and ratio-consistent estimator of tr⌃2. Thus, we can obtain another

estimate of r

pr “ ptrSq2
n2

pn`2qpn´1qrtrS2 ´ ptrSq2{ns . (2.3.63)

Bai and Saranadasa (1996) also gave the approximation of the power function of
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Dempster’s test.

Theorem 2.3.2. If yn “ p{n Ñ y P p0, 1q, N
1

{pN
1

` N
2

q Ñ  P p0, 1q and r is

known, when pµ
1

´µ
2

qT⌃pµ
1

´µ
2

q “ opp1{N
1

`1{N
2

qtr⌃2q and �
max

“ op
?
tr⌃2q,

we have

�TDpµ
1

´ µ
2

q ´ �p´⇠↵ ` p1´q||µ
1

´µ
2

||2?
2trp⌃2q

q Ñ 0,

where �
max

is the maximum eigenvalue of ⌃ and �TDpµ
1

´µ
2

q is the power function
of the Dempster’s test.

Theorem 6 reveals that if y is close to 1, the asymptotic power of the Dempster’s

test increases much faster than that of the Hotelling’s Test as the non-central

parameter increases.

2.3.3 Testing Methods Using Diagonal Estimators for ⌃

In this section, we review some testing methods using diagonal estimators of co-

variance matrix ⌃. These methods have been shown to be more powerful than

the classical Hotelling’s T 2 test when the dimension is close to the sample size. In

addition, they can also be used for the high-dimensional data.

2.3.3.1 Bai-Saranadasa Test (BS test)

The Hotelling’s T 2 test and Dempster’s test depend on the normality assumption

and Dempster’s test involves a complicated estimation of r. Bai and Saranadasa

(1996) proposed a new test for H
0

without the normality assumption to simplify

the testing procedure. The new test is based on the following assumptions:

1. xij “ �zij, i “ 1, 2, j “ 1, ¨ ¨ ¨ , Ni, where � is a pˆmmatrix satisfying ��T “ ⌃,

and zij are IID random m-vectors satisfying Epzijq “ 0, Varpzijq “ Im,

Epzijkq † 8, k “ 1, ¨ ¨ ¨ ,m, Epz4ijkq “ 3 `� † 8 and whenever
m
∞

k“1

⌫k “ 4,

E
m
±

k“1

z⌫kijk equals 0 when at least one ⌫k equals 1 and equals 1 when there are

two ⌫k’s equal to 2.

2. yn “ p{n Ñ y P p0, 1q, N
1

{pN
1

` N
2

q Ñ  P p0, 1q.
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3. pµ
1

´ µ
2

qT⌃pµ
1

´ µ
2

q “ opp1{N
1

` 1{N
2

qtr⌃2q and �
max

“ op
?
tr⌃2q.

Bai and Saranadasa (1996) first constructed a statistic

Tn “ px̄
1

´ x̄
2

qT px̄
1

´ x̄
2

q ´ p 1

N
1

` 1

N
2

qtrS. (2.3.64)

Under the null hypothesis H
0

, EpTnq “ 0 and VarpTnq “ �2

Tn
“ 2p 1

N
1

` 1

N
2

q2p1 `
1

nqtr⌃2 under the normality assumption and VarpTnq “ �2

Tn
p1 ` op1qq without the

normality assumption but assumptions 1-3 are satisfied.

The authors proved that under Assumption 1-3,

Tn?
VarTn

„ Np0, 1q, as n Ñ 8. (2.3.65)

They also showed that (2.3.62) is an unbiased and ratio-consistent estimator of

tr⌃2. Hence, the test statistic is defined by

TBS “ Tn?
VarTn

“
p 1

N
1

` 1

N
2

qpx̄
1

´ x̄
2

qT px̄
1

´ x̄
2

q ´ trS
b

2pn`1qn
pn`2qpn´1qrtrS2 ´ ptrSq2{ns

, (2.3.66)

and TBS „ Np0, 1q.
Bai and Saranadasa (1996) derived the asymptotic power of their test,

�TBSpµ
1

´ µ
2

q ´ �p´⇠↵ ` p1 ´ q||µ
1

´ µ
2

||2?
2tr⌃2

q Ñ 0, (2.3.67)

under the assumptions 1-3, which is same as the asymptotic power of Dempster’s

test.

BS test is also more powerful than Hotelling’s T 2 test when y is close to 1, and

it simplifies the Dempster’s test by avoiding estimating r. BS test is sightly more

powerful than Dempster’s test because an error may be caused by the estimation

of r in Dempster’s test.

2.3.3.2 Chen and Qin Test(CQ test)

BS test reveals the restriction on n, p and the largest eigenvalue �p of ⌃ are needed

to control the terms
Ni
∞

j“1

xT
ijxij, i “ 1, 2 in px̄

1

´ x̄
2

qT px̄
1

´ x̄
2

q. Chen and Qin (2010)
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proposed a test (CQ test) that avoid the e↵ect of
Ni
∞

j“1

xT
ijxij, i “ 1, 2. The authors

assumed the following factor-like model structure :

xij “ �izij, i “ 1, 2, j “ 1, ¨ ¨ ¨ , Ni (2.3.68)

where each �i is a p ˆ m matrix for some m ° p such that �i�T
i “ ⌃i, and zij

are IID random m-vectors satisfying Epzijq “ 0, Varpzijq “ Im. In addition, it is

required that Epz4ijkq “ 3 `� † 8 and

Epz↵1

ijl
1

z↵2

ijl
2

¨ ¨ ¨ z↵q

ijlq
q “ Epz↵1

ijl
1

qEpz↵2

ijl
2

q ¨ ¨ ¨Epz↵q

ijlq
q (2.3.69)

for some q ° 0 such that
q

∞

l“1

↵l § 8 and l
1

‰ l
2

‰ ¨ ¨ ¨ ‰ lq. We can see that CQ

test does not require ⌃
1

“ ⌃
2

.

Chen and Qin (2010) proposed to use a test statistic

TnCQ “

N
1

∞

i‰j
xT
1ix1j

N
1

pN
1

´ 1q `

N
2

∞

i‰j
xT
2ix2j

N
2

pN
2

´ 1q ´ 2

N
1

∞

i“1

N
2

∞

j“1

xT
1ix2j

N
1

N
2

, (2.3.70)

with EpTnCQq “ 0, and

VarpTnCQq Ñ 2

N
1

pN
1

´ 1qtrp⌃
2

1

q ` 2

N
2

pN
2

´ 1qtrp⌃
2

2

q ` 4

N
1

N
2

trp⌃
1

⌃
2

q(2.3.71)

under H
0

. If the following conditions

N
1

{pN
1

` N
2

q P p0, 1q, as n Ñ 8,

pµ
1

´ µ
2

qT⌃ipµ
1

´ µ
2

q “ orn´1trp⌃
1

` ⌃
2

q2s for i “ 1, 2,

trp⌃i⌃j⌃k⌃lq “ ortr2pp⌃
1

` ⌃
2

q2qs
(2.3.72)

are satisfied, then

TCQ “ TnCQ
a

VarpTnCQq Ñ Np0, 1q (2.3.73)

underH
0

. The power function under condition pµ
1

´µ
2

qT⌃ipµ
1

´µ
2

q “ orn´1trp⌃
1

`



34

⌃
2

q2s is

�CQpµ
1

´ µ
2

q “ �p´⇠↵ ` np1 ´ q||µ
1

´ µ
2

||2
b

2trp⌃̃2

q
q, (2.3.74)

where ⌃̃ “ p1 ´ q⌃
1

` ⌃
2

.

Chen and Qin (2010) also proposed the ratio-consistent estimators for trp⌃2

i q
and trp⌃

1

⌃
2

q:

{trp⌃2

i q “ rNipNi ´ 1qs´1trt
Ni
ÿ

j‰k

pxij ´ x̄ipj,kqqxT
ijpxik ´ x̄ipj,kqqxT

iku (2.3.75)

and

{trp⌃
1

⌃
2

q “ pN
1

N
2

q´1trt
N

1

ÿ

l“1

N
2

ÿ

k“1

px
1l ´ x̄

1plqqxT
1lpx2k ´ x̄

2pkqqxT
2ku, (2.3.76)

where x̄ipj,kq is the ith sample mean after excluding xij and xik and xiplq is the ith

sample mean without xil.

2.3.3.3 Srivastava and Du Test (SD test)

Srivastava and Du (2008) proposed another test for two-sample mean problems un-

der the normality assumption: xi “ txij : xij „ Nppµi,⌃q, i “ 1, 2, j “ 1, ¨ ¨ ¨ , Niu,
and x

1

and x
2

are independent.

Define the diagonal matrix of ⌃ “ p�ijq and sample covariances by

D� “ diagp�
11

, ¨ ¨ ¨ , �ppq (2.3.77)

DS “ diagps
11

, ¨ ¨ ¨ , sppq, (2.3.78)

where tsii, i “ 1, ¨ ¨ ¨ , pu are the diagonal elements of sample covariance matrix S.

Then the sample correlation matrix is defined by

R “ D
´ 1

2

S SD
´ 1

2

S . (2.3.79)

and denote �ip, i “ 1, ¨ ¨ ¨ , p are the eigen values of sample correlation matrix R.
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Srivastava and Du (2008) constructed a test statistic

TSD “
N

1

N
2

N
1

`N
2

px̄
1

´ x̄
2

qTD´1

S px̄
1

´ x̄
2

q ´ np
n´2

r2ptrR2 ´ p2

n qcp,ns 1

2

, (2.3.80)

where cp,n Ñ 1 in probability as pn, pq Ñ 8, and

cp,n “ 1 ` trR2

p3{2 . (2.3.81)

The authors showed that TSD „ Np0, 1q and derived the asymptotic function of

SD test

�TSDpµ
1

´ µ
2

q Ñ �p´⇠↵ ` N
1

N
2

N
1

` N
2

pµ
1

´ µ
2

qTD´1

� pµ
1

´ µ
2

q?
2trR2

q, as n, p Ñ 8,

(2.3.82)

when

n “ Opp⇣q with
1

2
† ⇣ § 1 and N

1

{pN
1

` N
2

q Ñ  P p0, 1q;

0 † lim
pÑ8

trRi

p
† 8, i “ 1, ..., 4 and lim

pÑ8
max
1§i§p

�ip?
p

“ 0;

pN1

` N
2

nN
1

N
2

qpµ
1

´ µ
2

q § M, M does not depend on p.

(2.3.83)

Srivastava and Du (2008) also showed that under the conditions (2.3.83), �TSDpµ
1

´
µ

2

q • �TBSpµ
1

´µ
2

q » �TDpµ
1

´µ
2

q with strictly inequality unless �
11

“ ¨ ¨ ¨ “ �pp.

2.3.4 Projection Methods

The test methods using diagonal estimators of the covariance matrix ⌃ may lose

power because of the limited use of the covariance structure. We can use the

covariance structure more e↵ectively by projecting the high-dimensional data to a

lower dimensional space and then use the classical Hotelling’s T 2 test. We give a

brief overview of some projection testing methods in this part.
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2.3.4.1 Lopes, Jacob and Wainwright Test (LJW test)

The classical Hotelling’s T 2 test is not well defined when p ° n since S is not

invertible. BS, SD and CQ test formed estimates of ⌃ by some diagonal matrices

which are easily invertible. However, the limited use of covariance structure sac-

rifices power when non-trivial correlation exists. Lopes et al. (2011a) proposed a

testing method with projected samples in a space of lower dimension that utilizes

the covariance structure more e↵ectively.

LJW test is processed under the normality assumptions with ⌃
1

“ ⌃
2

when

p • n{2. Let P T
k be a k ˆ p projection matrix with IID Np0, 1q entries, where

k is suggested to take rn{2s. The projected samples tP T
k x11

, ¨ ¨ ¨ , P T
k x1N

1

u and

tP T
k x21

, ¨ ¨ ¨ , P T
k x2N

2

u are IID NpP T
k µi, P

T
k ⌃Pkq respectively, with i “ 1, 2. The

Hotelling’s T 2 test can be processed to the two projected samples since n ° k:

Hp0 : P
T
k µ1

“ P T
k µ2

vs. Hp1 : P
T
k µ1

‰ P T
k µ2

(2.3.84)

The corresponding Hotelling’s T 2 test statistic

T 2

Hp “ N
1

N
2

N
1

` N
2

px̄
1

´ x̄
2

qTPkpP T
k SPkq´1P T

k px̄
1

´ x̄
2

q, (2.3.85)

and n´k`1

kn T 2

Hp „ Fk,n´k`1

. The formula of T 2

Hp shows that its distribution is the

same under both Hp0 and H
0

, so we can reject H
0

if T 2

Hp ° kn
n´k`1

Fk,n´k`1

p↵q,
where Fk,n´k`1

p↵q is the 1 ´ ↵ quantile of Fk,n´k`1

.

Suppose that pµ
1

´ µ
2

qT⌃´1pµ
1

´ µ
2

q “ op1q and N
1

N
1

`N
2

Ñ  P p0, 1q, the
authors showed that under all sequences of projections P T

k , the asymptotic power

function of LJW test

�ppµ
1

´ µ
2

q,⌃, P T
k q ´ �p´⇠↵ ` p1 ´ q?

2

?
n�2

kq Ñ 0 as n Ñ 8, (2.3.86)

where �2

k “ pµ
1

´ µ
2

qTPkpP T
k SPkq´1P T

k pµ
1

´ µ
2

q.
Lopes et al. (2011b) refined their first projection test method by computing

the average of the matrix PkpP T
k SPkq´1P T

k over the ensemble Pk. The test statistic
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is defined by

T̄ 2

Hp “ N
1

N
2

N
1

` N
2

px̄
1

´ x̄
2

qTEPK rPkpP T
k SPkq´1P T

k spx̄
1

´ x̄
2

q. (2.3.87)

For choosing the number of independent copies of Pk, Lopes et al. (2011b) sug-

gested T̄ 2

Hp statistic stabilizes after averaging 30 projections.

Let yn “ k{n, where k P t1, ¨ ¨ ¨ ,minpn, pqu and the authors suggested k “
rn{2s, µ̄n “ yn

1´yn
n and �̄n “

b

2yn
p1´ynq3

?
n, the authors proved that if yn “ y `

op 1?
nq for a constant y P p0, 1q,

T̄ 2

Hp ´ µ̄n

�̄n
Ñ Np0, 1q as pn, pq Ñ 8, (2.3.88)

under H
0

. If the two conditions pµ
1

´ µ
2

qT⌃´1pµ
1

´ µ
2

q “ op1q and N
1

N
1

`N
2

Ñ  P
p0, 1q are also satisfied, as pn, pq Ñ 8, the asymptotic power function of the test is

�Hppµ
1

´ µ
2

,⌃q “ �p´⇠↵ ` p1 ´ q
c

1 ´ y

2y

?
n�̄kq ` op1q, (2.3.89)

where �̄k “ EPk
r�ks.

2.3.4.2 Optimal Direction (OD test)

Li et al. (2015) proposed another projection test and also derived the optimal

projection direction with the best power under the alternatives. Suppose that

xij, i “ 1, 2 and j “ 1, ¨ ¨ ¨ , Ni is a random sample from population xi with mean

µi and covariance ⌃. Let A be a p ˆ k nonzero constant projection matrix with

k ! p, and AT x̄i Ñ NpATµi, A
T⌃Aq in distribution and ATSA ´ AT⌃A Ñ 0 in

probability. Define the projection Hotelling’s T 2 test to be

T̄ 2

A “ N
1

N
2

N
1

` N
2

px̄
1

´ x̄
2

qTApATSAq´1AT px̄
1

´ x̄
2

q, (2.3.90)

which is a two sample Hotelling’s T 2 test based on yij “ ATxij. Thus, we have

N
1

` N
2

´ k ´ 1

kn
T̄ 2

A „ Fk,N
1

`N
2

´k´1

(2.3.91)
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under H
0

. The authors proved that the projection test T̄ 2

A reaches its best power

at k “ 1 and A “ a “ ⌃´1pµ
1

´ µ
2

q.
In order to construct T̄ 2

a in practice, a sample-splitting strategy is used. The

random sample xij, i “ 1, 2 and j “ 1, ¨ ¨ ¨ , Ni is partitioned into two separate sets:

Si1 “ xi1, ¨ ¨ ¨ ,xiNi1 and Si2 “ xi1, ¨ ¨ ¨ ,xiNi2 , where Ni1 ` Ni2 “ Ni. Si1, i “ 1, 2

is used to estimate a and Si2 is used to construct T̄ 2

a . Let x̄
11

´ x̄
21

and S
1

be

the sample mean di↵erence and pooled sample covariance matrix obtained from

Si1, i “ 1, 2, respectively. Since S
1

is not invertible when p ° n, the authors

estimate a by pa “ pS
1

`�Dq´1px̄
11

´x̄
21

q, whereD “ diagpS
1

q and � is a parameter.

Thus, the projection test with the optimal direction is

T̄ 2

pa “ N
12

N
22

N
12

` N
22

px̄
12

´ x̄
22

qTpappaTS
2

paq´1

paT px̄
12

´ x̄
22

q, (2.3.92)

where x̄
11

´x̄
21

and S
1

are the sample mean di↵erence and pooled sample covariance

matrix obtained from Si2, i “ 1, 2. Since pa is independent of Si2 and T̄ 2

pa follows

a central F
1,N

12

`N
22

´1

distribution, T̄ 2

pa is equivalent to an exact t-test based on

ATxij, where xij P Si2, i “ 1, 2. Li et al. (2015) suggested that we may choose

Ni2 “ 0.6Ni and � “ pN
11

` N
21

q´⌧ with ⌧ “ 0.5 in practice.

The authors also demonstrated that under the local alternative:

H
1

: µ
1

´ µ
2

“ �

c

1

N
1

` 1

N
2

(2.3.93)

where ⌘ “ �T⌃´1�, the asymptotic power of the OD test is no less than those of

BS, DS and CQ test under certain conditions.



Chapter 3
Group Feature Selection in Ultrahigh

Dimensional Generalized

Varying-coe�cient Linear Models

3.1 Background

Let Y be the response variable and tx, Uu its associated covariates, where x “
pX

1

, ¨ ¨ ¨ , Xpq and U be p-dimensional and univariate covariates respectively. Fur-

ther, let µpx, Uq “ EpY |x, Uq. The GVCM assumes that

⌘px, Uqp“gtµpx, Uqu “ xT↵pUq, (3.1.1)

where gp¨q is a known link function and ↵p¨q is a vector consisting of unspecified

smooth regression coe�cient functions. Here it is assumed that all ↵jp¨q’s are

nonparametric functions and the support of U is finite and denoted by ra, bs.
Suppose that tUi,xi, Yiu, i “ 1, . . . , n, constitute an independent and identi-

cally distributed sample and that conditionally on tUi,xiu, the conditional quasi-

likelihood of Yi is QtµpUi,xiq, Yiu, where the quasi-likelihood function is defined by

Qpµ, yq “
≥y

µ
s´y
V psqds, or equivalently

BQpµ,yq
Bµ “ y´µ

V pµq , for a specific variance function

V psq. Denote by `t↵p¨qu the quasi-likelihood (McCullagh and Nelder, 1989) of the
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collected data tpUi,xi, Yiq, i “ 1, . . . , nu. That is

`t↵p¨qu “
n

ÿ

i“1

Qrg´1txT
i ↵pUiqu;Yis. (3.1.2)

To estimate the nonparametric regression coe�cient, we use B-spline regression

method. Let Sn be the space of polynomial splines of degree l • 1 and t jk, k “
1, . . . , dnju denote a normalized B-spline basis with } jk}8 § 1 and dnj “ Opn1{5q,
where } ¨ }8 is the sup norm. For any ↵nj P Sn, we have

↵njpUq “
dnj
ÿ

k“1

�jk jkpUq “ �T
j  jpUq, j “ 1, ¨ ¨ ¨ , p, (3.1.3)

for some coe�cients t�jkudnj

k“1

. Here dnj increases with n. We allow dnj to be di↵er-

ent for di↵erent j since di↵erent coe�cient functions may have di↵erent smooth-

ness. Under some conditions, each nonparametric coe�cient function ↵jpUq, j “
1, ¨ ¨ ¨ , p can be well approximated by functions in Sn.

Substituting (3.1.3) into (4.1.4), the maximum quasi-likelihood estimate of

(4.1.4) is to maximize

`p�qp“
n

ÿ

i“1

Q

«

g´1

#

p
ÿ

j“1

�T
j  jpUiqXij

+

;Yi

�

“
n

ÿ

i“1

Qrg´1pzTi �q;Yis, (3.1.4)

with respect to �, where zi “ pXi1 
1

pUiqT , ¨ ¨ ¨ , Xip ppUiqT qT and � “ p�T
1

, ¨ ¨ ¨ ,�T
p qT .

With slight abuse notation, we use `t↵p¨qu in (4.1.4) and `p�q in (4.1.5). However,

the notation will be clear in the context. In the presence of ultrahigh dimensional

covariate x, the corresponding optimization problem becomes ill-posed. It is typ-

ical to assume sparsity. That is, only a few x-covariates are significant, and the

others do not have impact on the response. We next propose a feature screening

procedure for model (4.1.4).
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3.2 A New Feature Screening Procedure

Denote }↵jpUq}
2

“ rE↵2

j pUqs1{2, the L
2

-norm of ↵jpUq. For ease of presentation, s
denotes an arbitrary subset of t1, . . . , pu, xs “ txj, j P su and ↵spUq “ t↵jpUq, j P
su. For a set s, ⌧psq stands for the cardinality of s. Suppose the e↵ect of x is

sparse, and the true value of ↵pUq is ↵˚pUq, so � is corresponding to �˚. Denote

s˚ “ tj : }↵jpUq}
2

° 0u. By sparsity, we means that ⌧ps˚q is much less than

p. The goal of feature screening is to identify a subset s such that s˚ Ä s with

overwhelming probability and ⌧psq is also much less than p. Theoretically we may

formulate this problem to be an optimization problem as below:

max
↵p¨q

`t↵p¨qu subject to ⌧ptj : }↵jp¨q}2
2

° 0uq § m, (3.2.5)

for a pre-specified m, which is presumed to be much less than p.

When the approximation error is negligible, we construct a feature screening

procedure by considering the following maximization problem:

max
↵np¨q

`t↵np¨qu subject to ⌧ptj : }↵njp¨q}2
2

° 0uq § m. (3.2.6)

Note that }↵njpUq}2
2

“ �T
j Et jpUq jpUqT u�j. Under the assumption that Et jpUq jpUqT u

is finite positive definite for all j “ 1, ¨ ¨ ¨ , p, the maximization problem in (4.1.6)

is equivalent to

max
�

`p�q subject to ⌧ptj : }�j}2
2

° 0uq § m. (3.2.7)

For high dimensional problems, it becomes almost impossible to solve the con-

strained maximization problem (3.2.7) directly. Alternatively, we consider a proxy

of the quasi-likelihood function. It follows by the Taylor expansion for the quasi-

likelihood function `p�q at � lying within a neighbor of � that

`p�q « `p�q ` p� ´ �qT `1p�q ` 1

2
p� ´ �qT `2p�qp� ´ �q,

where `1p�q “ B`p�q{B�|�“� and `2p�q “ B2`p�q{B�B�T |�“�. Denote Pt “
∞p

j“1

dnj. If `2p�q is invertible, the computational complexity of calculating the
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inverse of `2p�q is OpP 3

t q. For large Pt, small n problems (i.e. Pt " n), `2p�q
becomes not invertible. Low computational cost is always desirable for feature

screening. To cope with singularity of the Hessian matrix and save computational

cost, we propose using the following approximation for `2p�q

hp�|�q “ `p�q ` p� ´ �qT `1p�q ´ u

2
p� ´ �qTW p�qp� ´ �q, (3.2.8)

where u is a scaling constant to be specified and W p�q “ diagpW
1

p�q, ¨ ¨ ¨ ,Wpp�qq,
a block diagonal matrix with Wjp�q being a dnj ˆdnj matrix. Here we allow W p�q
to depend on �. This implies that we approximate `2p�q by ´uW p�q. Throughout
this paper, we will use Wjp�q “ ´B2`p�q{B�jB�T

j .

It can be seen that hp�|�q “ `p�q, and under some conditions, hp�|�q § `p�q
for all �. This ensures the ascent property. See Theorem 1 below for more details.

Since W p�q is a block diagonal matrix, hp�|�q is an additive function of �j for any

given �. The additivity enables us to have a closed form solution for the following

maximization problem

max
�

hp�|�q subject to ⌧ptj : }�j}2
2

° 0uq § m, (3.2.9)

for given � and m. Define �̃j “ �j ` u´1W´1

j p�jqB`p�q{B�j for j “ 1, ¨ ¨ ¨ , p, and
�̃ “ p�̃T

1

, ¨ ¨ ¨ , �̃T
p qT “ � ` u´1W´1p�q`1p�q is the maximizer of hp�|�q. Denote

gj “ �̃T
j Wjp�jq�̃j for j “ 1, ¨ ¨ ¨ , p, and sort gj so that gp1q • gp2q • ¨ ¨ ¨ • gppq.

The solution of maximization problem (3.2.9) is the hard-thresholding rule defined

below

p�j “ �̃jItgj ° gpm`1qu.

This enables us to e↵ectively screen features by using the following algorithm.

Step 1. Set the initial value �p0q
j “ 0, j “ 1, ¨ ¨ ¨ , p.

Step 2. Set t “ 0, 1, 2, ¨ ¨ ¨ , iteratively conduct Step 2a and Step 2b below until

the algorithm converges.

Step 2a. Calculate �̃ptq
j “ �ptq

j ` u´1

t W´1

j p�jqB`p�ptqq{B�j, and gptq
j “

t�̃ptq
j uTWjp�ptqq�̃ptq

j . Let gptq
p1q • gptq

p2q • ¨ ¨ ¨ • gptq
ppq, the order statistics

of gptq
j s. Set St “ tj : gptq

j • gptq
pm`1qu, the nonzero index set.
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Step 2b. Update � by �pt`1q “ p�pt`1q
1

, ¨ ¨ ¨ ,�pt`1q
p qT as follows. If j R St, set

�pt`1q
j “ 0, otherwise, set t�pt`1q

j : j P Stu be the maximum likelihood

estimate of the submodel St.

Remark: Unlike the screening procedures based on marginal partial likelihood

methods, our proposed procedure is to iteratively update � using Step 2. This

enables the proposed screening procedure to incorporate correlation information

among the predictors through updating `1
pp�q and `2

pp�q. Thus, the proposed

procedure is expected to perform better than the marginal screening procedures

when there are some predictors that are marginally independent. Meanwhile, since

each iteration in Step 2 can avoid large-scale matrix inversion and, therefore, it

can be carried out with low computational costs.

Conditioning on St containing all actively predictors, one may directly apply

existing results in spline regression for �pt`1q
j and p↵j. Without conditioning on St,

it is very challenging in establishing theoretical properties for �pt`1q
j s.

Theorem 3.2.1. Let t�ptqu be the sequence defined in Step 2b in the above algo-

rithm. Denote

⇢ptq “ sup
�

”

�
max

tW´1{2p�ptqqt´`2p�quW´1{2p�ptqqu
ı

.

Here and hereafter �
max

pAq and �
min

pAq stands for the maximal and the minimal

eigenvalues of a matrix A, respectively. If ut • ⇢ptq, then

`p�pt`1qq • `p�ptqq,

where �pt`1q is defined in Step 2b in the above algorithm.

Theorem 3.2.1 claims the ascent property of the proposed algorithm if ut is

appropriately chosen. That is, the proposed algorithm may improve the cur-

rent estimate within the feasible region (i.e. ⌧ptj : }↵jpUq}
2

° 0uq § m), and

the resulting estimate in the current step may serve as a refinement of the last

step. This theorem also provides us some insights about choosing ut in practi-

cal implementation. For varying coe�cient models: EpY |U,xq “ xT↵pUq, we

may set `t↵p¨qu “ ´2´1

∞n
i“1

tYi ´ xi↵pUiqu2. In this case, `p�q in (4.1.5) is
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`p�q “ ´2´1

∞n
i“1

pYi ´ zTi �q2. Thus, ´`2p�q “ ∞n
i“1

zizTi “ ZTZ, where Z is

n ˆ pt matrix with i-th row being zTi . Thus,

⇢ptq “ �
max

pdiagpZTZq´1{2pZTZqdiagpZTZq´1{2q,

which does not depend on the step of iteration t. If zi’s are marginally standardized

so that its marginal sample mean and sample standard deviation equal 0 and 1,

respectively, then diagpZTZq´1{2pZTZqdiagpZTZq´1{2 is the corresponding sample

correlation matrix of zi’s. Thus, ⇢ is the largest eigenvalue of the sample correlation

matrix.

3.3 Sure Screening Property

For a subset s of t1, . . . , pu with size ⌧psq, recall notation xs “ txj, j P su and

associated coe�cients ↵spUq “ t↵jpUq, j P su corresponding to �s “ t�j, j P su
with �j “ p�j1, . . . , �jdnjq. We denote the true model by s˚ “ tj : E↵2

j pUq ° 0, 1 §
j § pu with ⌧ps˚q “ q. The objective of feature selection is to obtain a subset ps

such that s˚ Ä ps with very high probability.

We now provide some theoretical justifications for the screening procedure for

the GVCM. The sure screening property (Fan and Lv, 2008)) is referred to as

Prps˚ Ä psq ›Ñ 1, as n Ñ 8. (3.3.10)

To establish this sure screening property for the proposed feature screening method,

we introduce some additional notations as follows. For any model s, let `1p�sq “
B`p�sq{B�s and `2p�sq “ B2`p�sq{B�sB�T

s be the score function and the Hessian

matrix of `p¨q as a function of �s, respectively. Assume that a screening procedure

retains m out of p features such that ⌧ps˚q “ q † m. So, we define

Sm
` “ ts : s˚ Ä s; }s}

0

§ mu and Sm
´ “ ts : s˚ Ç s; }s}

0

§ mu (3.3.11)

as the collections of the over-fitted models and the under-fitted models. We inves-

tigate the asymptotic properties of p�m under the scenario where p, q, m and �˚ are

allowed to depend on the sample size n. We impose the following conditions, some



45

of which are purely technical and only serve to facilitate theoretical understanding

of the proposed feature screening procedure.

(C1) The support of U is bounded and is assumed to be ra, bs.

(C2) The functions t↵jpUqupj“1

belong to a class of functions F , whose rth deriva-

tive ↵prq
j exists and is Lipschitz of order ⌘,

F “
!

↵jp¨q : |↵prq
j psq ´ ↵prq

j ptq| § K|s ´ t|⌘ for s, t P ra, bs
)

,

for some positive constant K, where r is a nonnegative integer and ⌘ P p0, 1s
such that � “ r ` ⌘ ° 0.5.

(C3) There exists w
1

, w
2

° 0 and for some non-negative constants ⌧
1

, ⌧
2

such that

⌧
1

` ⌧
2

† 2{5 with

min
jPs˚

}↵jpUq}
2

• w
1

n´⌧
1 and q † m § w

2

n⌧
2 .

(C4) log p “ Opn{dnq for some 1{5 §  † 1 ´ 2p⌧
1

` ⌧
2

q and dn “ Opn1{5q.

(C5) µ1p¨q{V p¨q is bounded by some constant M ° 0, where µt¨u and V p¨q are the

mean and variance functions used for the quasi-likelihood function, respec-

tively.

(C6) There exist constants C
1

, C
2

° 0, � ° 0, such that for su�ciently large n,

C
1

d´1

n § �
min

r´n´1`2p�sqs § �
max

r´n´1`2p�sqs § C
2

d´1

n ,

for �s P t� : }�s ´ �˚
s}

2

§ �u and s P S2m
` , where �

min

r¨s and �
max

r¨s denote
the smallest and largest eigenvalues of a matrix.

(C7) There exists positive constants a and b such that P p|XjY | • xq § a expp´bxq
for all x ° 0 .

Under Conditions (C1) and (C2), the following two properties of B-splines are

valid.
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(a) (de Boor, 1978) For k “ 1, . . . , dn,  jkpUq • 0 and
∞dn

k“1

 jkpUq2 “ 1,

U P ra, bs. In addition, there exist positive constants C
3

and C
4

such that

C
3

d´1

n § E 2

jkpUq § C
4

d´1

n .

(b) (Stone, 1982, 1985) If t↵j, j “ 1, 2, ¨ ¨ ¨ , pu is a set of functions in F described

in condition (C2), there exists a positive constant C
5

that does not depend

on ↵jpUq so that the uniform approximation error has the following bound.

⇢ “ supUPra,bs }↵jpUq ´ ↵njpUq}
2

§ C
5

d´�
n , @j, as dn Ñ 8.

Conditions (C1) and (C2) ensure properties (a) and (b), which are required for the

B-spline approximation and establishing the sure screening properties.

Note that }↵njpUq}2
2

“ �T
j Et jpUq jpUqT u�j, based on the properties (a),

(b) and Condition (C3), we can derive that

min
jPs˚

}�j}2 • w
1

dnn
´⌧

1 . (3.3.12)

Condition (C3) states a few requirements for establishing the sure screening

property of the proposed procedure. The first one is the sparsity of �˚ which

makes the sure screening possible with ⌧ppsq “ m ° q. Condition (C3) requires

that the signal of the active components p}↵jpUq}
2

, j P s˚q does not vanish. This is
referred to as minimal signal condition in the literature. Minimal signal condition

is a commonly-imposed assumption in existing work on marginal feature screening

for other model (e.g, Liu, et al., 2014). By (3.3.12), it is equivalent to requiring that

the minimal component in �˚ does not degenerate too fast, so that the signal is

detectable in the asymptotic sequence. Condition (C4) has p diverge with n at up

to an exponential rate. Meanwhile, together with (C6), it confines an appropriate

order of m that guarantees the identifiability of s˚ over s for ⌧psq § m. For varying

coe�cient model discussed in Section 2.1, Condition (C6) requires

C
1

d´1

n § �
min

rn´1ZT
s Zss § �

max

rn´1ZT
s Zss § C

2

d´1

n ,

where Zs is the corresponding design matrix of model s. We establish the sure

screening property of the quasi-likelihood estimation by the following theorem.

Condition C7 indicates that there exists a positive constant t
0

and g such that for

all |t| § t
0

, EtexprtpXjY ´ EpXjY qsu † exppgt2{2q uniformly for j “ 1, ¨ ¨ ¨ , p.
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Theorem 3.3.1. Suppose we have n independent observations with p candidate

features from model (4.1.2) and conditions (C1)—(C7) are satisfied. Let ps be the

features obtained by (3.2.5) of size m. Then, we have

Prps˚ Ä psq Ñ 1, as n Ñ 8.

The proof is given in the Appendix. The sure screening property is an appealing

property of a screening procedure since it ensures that the true active predictors

are retained in the model selected by the screening procedure. We establish the

sure screening property under weaker conditions imposed in Fan, et al. (2014) and

Xia, et al. (2016).

One has to specify the value of m in practical implementation. As to the

choice of m, there are two scenarios. The first one chooses m by a data-driven

method that described in Section 2.3. The second one is an ad hoc method. In the

literature of feature screening, it is typical to set m “ rn{ logpnqs for a parametric

model, where ras indicates the integer part of a (Fan and Lv, 2008). Since we use a

linear combination of dn B-spline bases in our proposed screening procedure for the

GVCM, we set m “ rpn{dnq{ logpn{dnqs throughout in Examples 3.1, 3.2 and 3.3.

Although it is an ad hoc choice, it works reasonably well in our numerical examples.

With this choice of m, one is ready to further apply existing methods such as the

penalized quasi-likelihood method to further remove inactive predictors. To be

distinguished from the SIS procedure, the proposed procedure is referred to as

sure joint screening (SJS) procedure.

3.3.1 Choice of m

Feature screening may be used in various contexts. In some contexts, people may

treated m as a pre-specified value. For example, due to budget constraint, a

biologist may be able to examine up to m genes that potentially associate with a

certain phenotype. In other contexts, people may treat m as a tuning parameter

to control model complexity. In such cases, it is desirable to develop an automatic

data-driven method to determine m. We propose to select m by minimizing the
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high-dimensional BIC score:

HBICpmq “ ´2`pp�mq ` dnm
Cn logpdnpq

n
,

where p�j “ pp�j1, . . . , p�jdnq, j “ 1, . . . ,m, and Cn is a sequence of numbers that di-

verges to 8. Wang, et al. (2013) proposed the HBIC for selecting tuning parameter

in the penalized least squares method for high dimensional linear models. Here we

modified their proposal for high dimensional generalized varying-coe�cient mod-

els. In our simulation, we take Cn “ log log n, and compare its performance with

AIC and BIC tuning parameter selectors defined in the same manner. It is worth

to noting that the proposed tuning parameter HBIC selector requires to search

over m “ 1, 2, ¨ ¨ ¨ , rn{dns. This is distinguished from that the classical AIC and

BIC used for subset selection requires to search over subsets. Thus, the tuning

parameter selector does not require expensive computational cost.

Recall notation Sm
` and Sm

´ defined in (3.3.11). Theorem 3.3.2 below shows

that the HBIC selects the right model size almost surely.

Theorem 3.3.2. Suppose we have n independent observations with p candidate

features from model (4.1.2) and conditions (C3)—(C6) are satisfied. Let ps be the

features obtained by (4.1.5) and (3.2.7) of size m. Then, we have

Pr

"

min
sPSm

´
HBICp⌧psqq § HBICpqq

*

›Ñ 0, (3.3.13)

where q “ ⌧ps˚q, and

Pr

"

min
sPSm

` ,s �“s˚
HBICp⌧psqq § HBICpqq

*

›Ñ 0. (3.3.14)

In Example 3.4, we will examine the performance of the proposed HBIC tuning

parameter selector.

3.4 Numerical Studies

In this section, we conduce numerical studies to examine the finite sample per-

formance of the proposed feature screening procedures and compare it with the
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existing ones. All simulation are conducted by using R code.

3.4.1 Simulation Studies

In our simulation, the covariate u and x are generated as follows: first draw

pU˚,xqT from a p ` 1 dimensional normal distribution Np0,⌃q. Then set U “
�pU˚q, where �p¨q is the cumulative distribution function of Np0, 1q. Thus, U

follows a uniform distribution Up0, 1q and is correlated with x, and all the predic-

tors X
1

, ..., Xp are correlated with each other. In our simulation, we consider two

scenarios for ⌃ “ p�ijq

⌃
1

: Compound symmetric correlation structure: �ij “ 1 if i “ j and ⇢ otherwise.

⌃
2

: AR(1) correlation structure: �ij “ ⇢|i´j|.

In our numerical studies, we set the number of B-spline basis functions to be

dn “ 5 for each coe�cient function and set the threshold in (??) m “ rn{ logpnqs.
We use the following two criteria to assess the performance of the proposed pro-

cedure.

Pa: The proportion of submodels xM with size d that contain all the true predictors

among 1000 simulations.

Pj: The proportion of submodels xM with size d that contain Xj among 1000

simulations.

Example 3.2.1.1. This example is designated to compare the proposed screening

procedure with existing SIS procedures for VCM. Since the proposal of Fan, Ma

and Dai (2014) shares the same spirit as that of Liu, Li and Wu (2014), and Song,

Yi and Zou (2014) and Chu, Li and Reimherr (2016) were proposed for longitudinal

data, we will concentrate on our comparison with CC-SIS proposed by Liu, Li and

Wu (2014). Given tU,xu, we generate a continuous response from

Y “ ↵
1

pUqX
1

` ↵
2

pUqX
2

` ↵
3

pUqX
3

` ↵
4

pUqX
4

` ", (3.4.1)

where " „ Np0, 1q. Model (3.4.1) implies that ↵jp¨q “ 0 for j ° 4 and M˚ “
t1, 2, 3, 4u. We consider two sets of coe�cient functions:
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↵
1

: Let ↵
1

puq “ ↵
2

puq “ ↵
3

puq “ 2 ` 2 sin2p2⇡uq, and ↵
4

puq “ ´3⇢ ˚ ↵
1

puq.

↵
2

: ↵
1

puq “ ´p3 ` 2 cos2p⇡
2

uqq, ↵
2

puq “ ´p3 ` 3uq, ↵
3

puq “ p2 ´ uq2 ` 2,

↵
4

puq “ 3 ` 2 sin2p⇡
2

uq.

In this example, we consider p “ 1000 and 2000, and the sample size n “ 200

and 400. All simulation results are based on 1000 replications. Simulation results

are summarized in Tables 3.4.1—3.4.2.

Table 3.4.1 shows the values of P
1

, ¨ ¨ ¨ ,P
4

and Pa for continuous response

with ⌃ “ ⌃
1

. Under the design of ↵
1

, X
4

is jointly dependent but marginally

independent of Y . In this setting, the marginal screening procedure always fails to

identify X
4

. As shown in Table 3.4.1, when there exists marginal independence, it

is hard for CC-SIS to detect X
4

whose values of P
4

and Pa are small as expected.

However, our method can identify X
4

in this setting and the corresponding values

of P
4

and Pa are close to one. Therefore, our new procedure outperforms CC-SIS

in the marginal independence setting. Under the design of ↵
2

, there is no predictor

that is jointly dependent but marginal independent of Y . The performances of both

CC-SIS and the proposed procedure are good, as the detecting probabilities are

close to one. However, CC-SIS performs better when the sample size increases and

the dimensionality decreases. On the other hand, those factors have less influences

on the new procedure than CC-SIS. Furthermore, the corresponding values of Pjs

and Pa of our new procedure are closer to one in every case in this setting. In a

word, when ⌃ “ ⌃
1

, regardless of whether marginal independence exists, our new

procedure outperforms CC-SIS which suggests its sure screening property.

Table 3.4.2 shows the values of Pjs and Pa for continuous response with ⌃ “
⌃

2

. There is no predictor that is jointly dependent but marginal independent of

Y . Hence both of the CC-SIS and the new procedure perform well, as most of

the values of Pa are greater than 0.9. Table 3.4.2 also indicates that when the

sample size increases and the dimensionality decreases, both CC-SIS and our new

procedure perform better. Futhermore, this table also shows that those factors

have less e↵ect on our new procedure. For instance, when n “ 200, some values of

Pa obtained by CC-SIS are less than 0.8, but the corresponding values of Pa of the

new procedure are close to one. Besides, Table 3.4.2 shows that the new procedure

performs better than CC-SIS in every case, which is consistent with our theoretical
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analysis since our new procedure has the sure screening property. Hence, our new

procedure also beats CC-SIS in the setting of ⌃ “ ⌃
2

.

In addition, comparing the two methods with di↵erent ⇢’s, Table 3.4.1 and

Table 3.4.2 show that when ⇢ increases, the performance of CC-SIS and the new

procedure become worse. This is because when the predictors are highly correlated,

the unimportant predictors may be selected due to their strong correlations with

the true predictors.

Table 3.4.1. The proportions of Pjs and Pa for Continuous Response with ⌃ “ ⌃
1

CC-SIS New (SJS)
n p ⇢ ↵p¨q P

1

P
2

P
3

P
4

Pa P
1

P
2

P
3

P
4

Pa

200 1000 1/3 ↵
1

1 1 1 0 0 1 1 1 1 1
↵

2

0.995 1 1 0.992 0.987 1 1 1 1 1
200 1000 1/2 ↵

1

1 1 1 0.015 0.015 1 1 1 1 1
↵

2

0.994 0.999 0.996 0.979 0.970 1 1 1 1 1
200 1000 2/3 ↵

1

0.995 0.997 0.995 0.302 0.297 1 1 0.999 1 0.999
↵

2

0.976 0.995 0.984 0.942 0.909 1 1 1 1 1
200 2000 1/3 ↵

1

1 1 1 0.001 0.001 1 1 1 1 1
↵

2

0.992 0.999 0.998 0.989 0.979 1 1 1 1 1
200 2000 1/2 ↵

1

0.999 0.997 0.998 0.008 0.008 1 1 1 1 1
↵

2

0.991 0.998 0.994 0.973 0.958 1 1 1 1 1
200 2000 2/3 ↵

1

0.989 0.987 0.985 0.284 0.274 1 1 0.993 1 0.993
↵

2

0.974 0.999 0.976 0.932 0.892 1 1 1 1 1
400 1000 1/3 ↵

1

1 1 1 0 0 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 1000 1/2 ↵

1

1 1 1 0.023 0.023 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 1000 2/3 ↵

1

1 1 1 0.623 0.623 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 2000 1/3 ↵

1

1 1 1 0 0 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 2000 1/2 ↵

1

1 1 1 0.011 0.011 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 2000 2/3 ↵

1

1 1 1 0.549 0.549 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1

Our method has advantages in terms of the computing e�ciency as well. Table

3.4.3 shows the medians and MADs of computing time (seconds), and the number

of iterations for continuous responses. When p “ 1000, most of the medians of the

computing times are below 5 seconds, and the MAD is pretty small; when p “ 2000,

the computing times become larger, but the medians are still mostly below 9

seconds and the MADs are also small. In general, the algorithm converges faster as

the sample size increases. As shown in Table 3.4.3, the algorithm always converges
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Table 3.4.2. The proportions of Pjs and Pa for Continuous Response with ⌃ “ ⌃
2

CC-SIS New (SJS)
n p ⇢ ↵p¨q P

1

P
2

P
3

P
4

Pa P
1

P
2

P
3

P
4

Pa

200 1000 1/3 ↵
1

1 1 1 0.644 0.644 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
200 1000 1/2 ↵

1

1 1 1 0.887 0.887 1 1 1 1 1
↵

2

1 1 0.996 0.999 0.995 1 1 1 1 1
200 1000 2/3 ↵

1

1 1 0.741 0.990 0.731 1 1 0.952 1 0.952
↵

2

1 0.745 0.999 1 0.744 1 1 0.998 1 0.998
200 2000 1/3 ↵

1

1 1 1 0.551 0.551 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
200 2000 1/2 ↵

1

1 1 0.997 0.858 0.855 1 1 1 1 1
↵

2

1 0.991 0.999 1 0.990 1 1 1 1 1
200 2000 2/3 ↵

1

1 1 0.678 0.991 0.669 1 1 0.903 1 0.903
↵

2

0.999 0.693 0.999 1 0.692 1 1 0.996 1 0.996
400 1000 1/3 ↵

1

1 1 1 0.982 0.982 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 1000 1/2 ↵

1

1 1 1 1 1 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 1000 2/3 ↵

1

1 1 0.993 1 0.993 1 1 1 1 1
↵

2

1 0.996 1 1 0.996 1 1 1 1 1
400 2000 1/3 ↵

1

1 1 1 0.951 0.951 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 2000 1/2 ↵

1

1 1 1 0.999 0.999 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
400 2000 2/3 ↵

1

1 1 0.991 1 0.991 1 1 1 1 1
↵

2

1 0.986 1 1 0.986 1 1 1 1 1

after 5 iterations when n “ 400 and it usually converges after 10 iterations when

n “ 200. All of the facts above show that our new procedure is highly e�cient.

Example 3.2.1.2. This example is designated to examine the performance of

the proposed procedures for binary response. Given tU,xu, we generate a binary

response with the probability of Y “ 1 being ppU,xq defined below.

logittppU,xqu “ ↵
1

pUqX
1

` ↵
2

pUqX
2

` ↵
3

pUqX
3

` ↵
4

pUqX
4

, (3.4.2)

where logitptq “ logtt{p1 ´ tqu, the logit link in the logistic regression. Model

(3.4.2) implies that ↵jp¨q “ 0 for j ° 4 and M˚ “ t1, 2, 3, 4u. In this example, the

coe�cients are set to be the same as those in Example 3.2.1.1.

In this example, we consider p “ 1000 and 2000, and the sample size n “ 300

and 500. All simulation results are based on 1000 replications, and are summarized

in Tables 3.4.4—3.4.5.
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Table 3.4.3. Computing times (Seconds) and the Number of Iterations for Continuous
Response

⌃
1

⌃
2

↵
1

↵
2

↵
1

↵
2

⇢ Time Iterations Time Iterations Time Iterations Time Iterations
pn, pq “ p200, 1000q

1/3 3.97(0.17) 10(0) 4.10(0.36) 10(0) 4.13(0.45) 10(0) 3.90(0.20) 10(0)
1/2 4.22(0.24) 10(0) 5.03(0.87) 10(0) 3.98(0.83) 10(0) 4.25(0.37) 10(0)
2/3 3.93(0.11) 10(0) 4.08(0.83) 10(0) 4.25(0.36) 10(0) 4.21(0.32) 10(0)

pn, pq “ p200, 2000q
1/3 7.87(0.47) 10(0) 7.37(0.63) 10(0) 8.04(0.70) 10(0) 7.24(0.20) 10(0)
1/2 7.91(0.59) 10(0) 8.40(0.53) 10(0) 7.98(0.53) 10(0) 7.25(0.21) 10(0)
2/3 7.75(0.61) 10(0) 7.03(0.64) 10(0) 8.05(0.35) 10(0) 7.15(0.39) 10(0)

pn, pq “ p400, 1000q
1/3 2.73(0.37) 5(1) 2.03(0.3) 4(1) 2.98(0.41) 5(1) 2.89(0.46) 5(0)
1/2 2.20(0.21) 4(0) 1.44(0.10) 3(0) 2.91(0.40) 5(1) 2.86(0.46) 5(1)
2/3 1.98(0.30) 4(1) 1.50(0.22) 3(0) 2.42(0.39) 5(1) 2.58(0.33) 5(1)

pn, pq “ p400, 2000q
1/3 4.87(0.67) 5(1) 3.73(0.47) 4(0) 4.87(0.57) 5(1) 6.01(0.98) 5(1)
1/2 3.69(0.29) 4(0) 3.34(0.55) 3(0) 5.97(1.05) 5(1) 6.03(0.93) 5(1)
2/3 3.18(0.43) 4(0) 2.34(0.68) 3(0) 4.67(0.68) 5(1) 6.54(1.72) 5(1)

Table 3.4.4 shows the values of Pjs and Pa for the binary responses. Under the

design of ⌃
1

and ↵
1

, X
4

is jointly dependent but marginally independent of Y . As

shown in Table 3.4.4, the values of P
4

and Pa are very close to one, which means

our method is able to identify the predictor that is jointly important but marginally

independent of the response. In general, P
4

is the largest and this is because the

absolute value of ↵
4

pUq is no less than those of the other three coe�cient functions,

which makes X
4

much easier to be identified. If there is no marginal independence,

the values of Pjs and Pa are very close to one. From the table, we see that the

values of Pa are mostly greater than 0.9. In addition, our procedure performs

better as the sample size increases and the dimensionality decreases, which is also

consistent to the sure screening property of the new method.

Furthermore, comparing the performance of the new procedure under di↵erent

⇢’s, Table 3.4.4 shows that the new procedure performs better as the value of ⇢

decreases. This is the same as that happened in linear regression model setting.

The reason is also that the unimportant predictors may be detected because of

their strong correlations with the true predictors.

The computing e�ciency of the proposed procedure for binary response can be

seen from Table 3.4.5, where the medians and MADs of computing time (seconds)
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Table 3.4.4. The proportions of Pjs and Pa for Binary Response
⌃ “ ⌃

1

⌃ “ ⌃
2

n p ⇢ ↵p¨q P
1

P
2

P
3

P
4

Pa P
1

P
2

P
3

P
4

Pa

300 1000 1/3 ↵
1

0.999 0.998 1 1 0.997 1 1 0.998 0.994 0.992
↵

2

0.999 1 1 1 0.999 1 1 1 1 1
300 1000 1/2 ↵

1

0.983 0.987 0.987 1 0.958 1 1 0.984 1 0.984
↵

2

1 1 1 1 1 1 1 0.996 1 0.996
300 1000 2/3 ↵

1

0.925 0.928 0.946 1 0.813 1 1 0.896 0.996 0.894
↵

2

0.995 1 0.996 0.994 0.988 1 0.997 0.976 1 0.973
300 2000 1/3 ↵

1

1 1 1 1 1 1 1 0.998 0.99 0.988
↵

2

1 1 1 1 1 1 1 1 1 1
300 2000 1/2 ↵

1

0.974 0.98 0.984 1 0.941 0.998 1 0.955 0.999 0.952
↵

2

0.999 1 1 0.998 0.997 1 1 0.994 1 0.994
300 2000 2/3 ↵

1

0.898 0.903 0.923 1 0.75 0.998 0.999 0.821 0.994 0.816
↵

2

0.991 1 0.996 0.99 0.979 1 0.99 0.952 1 0.943
500 1000 1/3 ↵

1

1 1 1 1 1 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
500 1000 1/2 ↵

1

1 1 1 1 1 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
500 1000 2/3 ↵

1

0.998 0.998 0.998 1 0.994 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
500 2000 1/3 ↵

1

1 1 1 1 1 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
500 2000 1/2 ↵

1

1 1 1 1 1 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
500 2000 2/3 ↵

1

0.987 0.995 0.998 1 0.980 1 1 0.998 1 0.998
↵

2

1 1 1 1 1 1 1 1 1 1

and the number of iterations for binary response are recorded. In general, the

computing times become larger as the sample size and the dimension of predictors

increases. The algorithm converges in 5 iterations and it is not influenced by

the sample sizes and the dimension of the predictors, which also shows the high

e�ciency of the proposed method.

Example 3.2.1.3. This example is designated to examine the performance of

the proposed procedures for count response. Given tU,xu, we generate a count

response from a Poisson distribution with mean �pU,xq defined below.

logt�pU,xqu “ ↵
1

pUqX
1

` ↵
2

pUqX
2

` ↵
3

pUqX
3

` ↵
4

pUqX
4

. (3.4.3)

Model (3.4.3) implies that ↵jp¨q “ 0 for j ° 4 and M˚ “ t1, 2, 3, 4u. In this

example, the ↵jp¨qs are set to be 1

4

↵jp¨q as those in Example 1.
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Table 3.4.5. Computing times (Seconds) and the Number of Iterations for Binary
Response

⌃
1

⌃
2

↵
1

↵
2

↵
1

↵
2

⇢ Time Iterations Time Iterations Time Iterations Time Iterations
pn, pq “ p300, 1000q

1/3 15.65(2.51) 5(1) 13.18(2.37) 4(1) 12.36(1.69) 4(1) 14.52(2.62) 4(0)
1/2 17.39(2.56) 4(0) 8.17(0.28) 3(0) 14.70(2.39) 4(1) 14.48(2.67) 4(0)
2/3 15.44(2.39) 4(0) 9.19(1.75) 3(0) 14.55(1.98) 4(1) 16.76(3.19) 4(1)

pn, pq “ p300, 2000q
1/3 23.63(4.09) 5(1) 19.80(3.31) 4(1) 17.76(3.55) 4(1) 16.93(3.21) 4(1)
1/2 17.70(1.08) 4(0) 13.54(0.39) 3(0) 22.61(4.13) 5(1) 18.79(3.60) 4(1)
2/3 16.94(1.94) 4(0) 13.46(0.64) 3(0) 22.24(3.89) 5(1) 21.50(3.56) 4(1)

pn, pq “ p500, 1000q
1/3 75.23(11.43) 5(0) 50.36(8.00) 4(0) 55.09(8.95) 5(1) 55.03(7.53) 5(1)
1/2 64.40(8.98) 4(0) 33.64(3.32) 3(0) 62.36(8.52) 5(1) 56.10(9.03) 5(1)
2/3 55.52(8.34) 4(0) 31.63(3.18) 3(0) 63.35(8.16) 5(1) 56.07(9.19) 5(1)

pn, pq “ p500, 2000q
1/3 112.07(18.07) 5(0) 57.70(4.09) 4(0) 70.14(12.46) 5(1) 71.20(10.52) 5(1)
1/2 75.85(13.67) 4(0) 49.28(7.43) 3(0) 69.76(11.67) 5(1) 70.23(12.71) 5(1)
2/3 78.53(11.51) 4(0) 44.31(3.67) 3(0) 79.09(13.66) 5(1) 72.74(11.21) 5(1)

In this example, we consider p “ 1000 and 2000, and the sample size n “
300, and 500. All the simulation results are based on 1000 replications, and are

summarized in Tables 3.4.6—3.4.7.

Table 3.4.6 shows the values of Pjs and Pa for the count responses. In most

cases, the values of Pjs and Pa are very close to one, regardless of whether there

exists the marginal independence. We find that if there exists a significant di↵er-

ence between the absolute values of the coe�cient functions, our proposed method

can easily detect the one with the larger absolute value, but sometimes fails to de-

tect others, which makes some values of Pa small. In general, our new procedure

performs better when the sample size increases and the dimensionality decreases,

which is consistent to the sure screening property of the new procedure. In ad-

dition, the new procedure has a better performance with smaller ⇢’s, which is

happened in both linear and logistic setting, this is also because our new method

mistakenly selects some unimportant predictors due to their high correlations with

the true ones.

The computing e�ciency of the proposed procedure for count responses can be

seen from Table 3.4.7. Compared to the binary response, the computing time is
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relatively shorter. In general, the computing times also become larger as n and

p increases. The algorithm converges in fewer steps than the binary case, which

indicates the high e�ciency of the proposed method when dealing with count

responses.

Table 3.4.6. The proportions of Ps and Pa for Count Response
⌃ “ ⌃

1

⌃ “ ⌃
2

n p ⇢ ↵p¨q P
1

P
2

P
3

P
4

Pa P
1

P
2

P
3

P
4

Pa

300 1000 1/3 ↵
1

0.982 0.976 0.978 0.983 0.942 0.998 0.998 0.983 0.989 0.975
↵

2

0.998 0.999 1 0.997 0.996 1 0.998 0.998 0.998 0.995
300 1000 1/2 ↵

1

0.945 0.941 0.928 0.989 0.842 0.999 1 0.884 0.994 0.883
↵

2

0.982 0.988 0.994 0.98 0.95 1 0.981 0.979 0.999 0.968
300 1000 2/3 ↵

1

0.815 0.848 0.808 0.979 0.554 0.993 0.998 0.622 0.994 0.617
↵

2

0.866 0.917 0.894 0.852 0.626 1 0.825 0.793 0.997 0.703
300 2000 1/3 ↵

1

0.965 0.966 0.956 0.973 0.895 0.998 1 0.966 0.97 0.955
↵

2

0.987 0.994 0.997 0.989 0.976 1 0.99 0.99 0.999 0.987
300 2000 1/2 ↵

1

0.897 0.895 0.88 0.994 0.739 0.996 0.997 0.811 0.991 0.806
↵

2

0.962 0.982 0.985 0.964 0.909 0.999 0.95 0.938 0.997 0.913
300 2000 2/3 ↵

1

0.744 0.743 0.748 0.986 0.421 0.992 0.99 0.489 0.988 0.479
↵

2

0.811 0.879 0.858 0.806 0.534 1 0.694 0.676 0.995 0.54
500 1000 1/3 ↵

1

1 1 1 1 1 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
500 1000 1/2 ↵

1

0.999 0.999 1 1 0.998 0.999 1 0.991 1 0.990
↵

2

1 1 1 1 1 1 1 1 1 1
500 1000 2/3 ↵

1

0.989 0.983 0.991 1 0.965 0.999 1 0.958 1 0.958
↵

2

0.996 1 1 0.993 0.989 1 0.996 0.997 1 0.994
500 2000 1/3 ↵

1

1 1 1 1 1 1 1 1 1 1
↵

2

1 1 1 1 1 1 1 1 1 1
500 2000 1/2 ↵

1

0.999 1 0.999 1 0.998 1 1 0.988 1 0.988
↵

2

1 1 1 1 1 1 1 1 1 1
500 2000 2/3 ↵

1

0.981 0.976 0.972 1 0.933 1 1 0.929 1 0.929
↵

2

0.988 0.995 0.996 0.994 0.974 1 0.987 0.979 1 0.973

Example 3.2.1.4 E↵ect of minimum model size. We also examine the e↵ect of m

for our new method. In this example, we consider the following scenario:

(1) ↵ “ ↵
2

;

(2) n “ 300, 500, p “ 1000, 2000 and ⇢ “ 0.5;

(3) m “ 4, 5, 6, 7, 8, 9.

We examine continuous, binomial and count responses in this example, and the

simulation results are based on 100 replicates. The results are presented in Table

3.4.8, 3.4.9 and 3.4.10.
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Table 3.4.7. Computing times (Seconds) and the Number of Iterations for Count
Response

⌃
1

⌃
2

↵
1

↵
2

↵
1

↵
2

⇢ Time Iterations Time Iterations Time Iterations Time Iterations
pn, pq “ p300, 1000q

1/3 13.62(2.44) 4(1) 11.10(2.10) 4(1) 16.17(2.40) 5(1) 11.86(2.39) 4(1)
1/2 10.51(2.23) 4(1) 12.61(2.03) 3(1) 12.90(2.46) 5(1) 15.39(2.65) 5(1)
2/3 9.76(0.67) 3(0) 11.15(1.51) 3(0) 12.84(2.46) 5(1) 13.04(2.44) 5(1)

pn, pq “ p300, 2000q
1/3 17.24(3.16) 4(1) 18.50(3.96) 4(1) 22.47(3.79) 5(1) 20.40(3.48) 5(1)
1/2 17.12(3.23) 4(1) 16.64(2.84) 4(1) 20.38(3.67) 5(1) 20.53(3.61) 5(1)
2/3 13.84(0.62) 3(0) 13.67(0.51) 3(0) 19.84(3.73) 5(1) 21.20(3.98) 5(1)

pn, pq “ p500, 1000q
1/3 56.39(9.94) 4(1) 43.94(6.90) 4(1) 54.58(8.08) 5(1) 63.15(9.99) 5(1)
1/2 43.14(6.40) 4(0) 39.69(6.17) 4(1) 51.78(9.01) 5(1) 52.92(8.86) 5(1)
2/3 47.08(7.45) 4(1) 29.25(1.14) 3(0) 51.12(9.04) 5(1) 52.86(8.80) 5(1)

pn, pq “ p500, 2000q
1/3 77.70(11.08) 4(1) 53.43(10.93) 4(1) 70.14(12.30) 5(1) 71.47(12.31) 5(1)
1/2 61.36(8.73) 4(0) 52.00(11.15) 4(1) 70.80(12.03) 5(1) 74.42(10.20) 5(1)
2/3 50.81(11.06) 4(1) 50.32(8.40) 3(0) 70.83(11.98) 5(1) 76.46(11.58) 6(1)

Table 3.4.8. The proportions of Pa for continuous response
⌃

1

n p ⇢ ↵p¨q m=4 m=5 m=6 m=7 m=8 m=9
300 1000 1/2 ↵

2

0.97 1 1 1 1 1
300 2000 1/2 ↵

2

0.96 1 1 1 1 1
500 1000 1/2 ↵

2

1 1 1 1 1 1
500 2000 1/2 ↵

2

1 1 1 1 1 1
⌃

2

n p ⇢ ↵p¨q m=4 m=5 m=6 m=7 m=8 m=9
300 1000 1/2 ↵

2

1 1 1 1 1 1
300 2000 1/2 ↵

2

1 1 1 1 1 1
500 1000 1/2 ↵

2

1 1 1 1 1 1
500 2000 1/2 ↵

2

1 1 1 1 1 1

Based on the results in the three tables, we can see that there is no significant

relationship between m and the success probability. Sometimes the success proba-

bilities under smaller m are larger than those under larger values of m. However,

we need the value of m to be larger than the true model size. When m “ 4, which

is the true model size, the values of success probability for the count response are

not satisfying. When m is larger than the true model size, we can always have

great chance to select all the important variables.
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Table 3.4.9. The proportions of Pa for binary response
⌃

1

n p ⇢ ↵p¨q m=4 m=5 m=6 m=7 m=8 m=9
300 1000 1/2 ↵

2

0.99 1 1 1 1 1
300 2000 1/2 ↵

2

1 1 1 1 1 1
500 1000 1/2 ↵

2

1 1 1 1 1 1
500 2000 1/2 ↵

2

1 1 1 1 1 1
⌃

2

n p ⇢ ↵p¨q m=4 m=5 m=6 m=7 m=8 m=9
300 1000 1/2 ↵

2

0.97 1 1 1 1 1
300 2000 1/2 ↵

2

1 0.99 0.99 1 1 1
500 1000 1/2 ↵

2

1 1 1 1 1 1
500 2000 1/2 ↵

2

1 1 1 1 1 1

Table 3.4.10. The proportions of Pa for count response
⌃

1

n p ⇢ ↵p¨q m=4 m=5 m=6 m=7 m=8 m=9
300 1000 1/2 ↵

2

0.75 0.93 0.98 0.99 0.99 0.96
300 2000 1/2 ↵

2

0.66 0.87 0.93 0.96 0.94 0.97
500 1000 1/2 ↵

2

0.98 1 1 1 1 1
500 2000 1/2 ↵

2

0.98 0.98 1 1 1 1
⌃

2

n p ⇢ ↵p¨q m=4 m=5 m=6 m=7 m=8 m=9
300 1000 1/2 ↵

2

0.92 0.99 0.98 0.93 0.98 0.99
300 2000 1/2 ↵

2

0.86 0.90 0.97 0.92 0.98 0.92
500 1000 1/2 ↵

2

0.97 0.99 1 1 1 1
500 2000 1/2 ↵

2

1 1 1 1 1 1

Example 3.2.1.5. This example is designed to examine the performance of HBIC

tuning parameter selector. We set n “ 500, p “ 1000, 2000, ⌃ “ ⌃
2

with ⇢ “ 0.5

and ↵ “ ↵
2

is the coe�cient functions. We set Cn “ logplog nq in HBIC, and

compare the performance of HBIC with those of the AIC and BIC tuning parameter

selectors. The following three criteria are used to evaluate the performances:

1. P: the probability that the true model is selected;

2. C: the number of correctly selected predictors from four active predictors;

3. I: the number of predictors incorrectly selected as active ones from all inactive

predictors.

The simulation results based on 200 replications are summarized in Table 4.2.8.
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Table 3.4.11. Comparing AIC, BIC and HBIC (mean and sd)

Continuous response Binary response Count response
p=1000 p=2000 p=1000 p=2000 p=1000 p=2000

AIC P 0.100 0.060 0.055 0.020 0.420 0.370
C 4(0) 4(0) 4(0.100) 4(0) 4(0) 4(0.141)
I 10.200(7.366) 9.850(7.262) 11.425(6.889) 13.63(6.030) 1.64(2.242) 2.030(2.901)

BIC P 0.745 0.715 0.760 0.710 0.665 0.570
C 4(0) 4(0) 4(0.571) 4(0) 4(0.262) 4(0.278)
I 0.305(0.560) 0.325(0.549) 0.300(0.481) 0.220(0.503) 0.530(0.956) 0.720(1.161)

HBIC P 0.970 0.975 0.915 0.710 0.700 0.620
C 4(0) 4(0) 3.73(0.954) 4(0) 4(0) 4(0)
I 0.030(0.171) 0.025(0.157) 0.005(0.171) 0.320(0.509) 0.600(1.143) 0.660(1.002)

Table 3.4.11 shows that the AIC, BIC and HBIC tuning parameter selectors

can reduce model complexity significantly, while retain all active predictors. As

seen from Table 3.4.11, the HBIC performs much better than the AIC and theBIC

in terms of controlling the false positives in linear varying coe�cient model. For

the HBIC, the probability of obtaining the true model is close to one and the

number of false positives is close to zero. For logistic model and Poisson model,

the HBIC performs much better than the AIC and the BIC in terms of selecting

the true model. The BIC also works well for logistic model and Poisson model,

since the probabilities of obtaining the true model are very close to those of the

HBIC.

3.4.2 An Application

We illustrate the proposed methodology by an empirical analysis of a subset of data

collected the Framingham Heart Study (FHS, for short) See Dawber, Meadors, and

Moore (1951) and Jaquish (2007) for details about FHS. The data subset consists

of data for 977 subjects. Of interest is to investigate the impact of dynamic genetic

e↵ects on obesity. In our analysis, we focus on nonrare SNPs. Here, nonrate SNPs

are referred to those SNP whose the minor allele frequency of a SNP is great than

0.05. In our analysis, we include 4395 nonrare SNPs with missing rates being less

than 0.02. Define the response variable to be 1 if this subject’s BMI is greater

than 25 and 0 oterwise. The goal is to identify the SNPs strongly associated with

the obesity. To examine the dynamic (age-dependent) e↵ect of SNPs and gender
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Figure 3.1. AIC and BIC versus �

on obesity. We consider a logistic varying coe�cient models with u being age,

and 8791 covariates since for each SNP, both dominant e↵ect and additive e↵ect

are considered, in addition to include gender as a covariate in our analysis. This

leads to high-dimensional logistic varying coe�cient model with the sample size

n “ 977.

We first apply the proposed screening procedure to the logistic varying co-

e�cient model with the number of knots being dn “ rlogpnqs “ 6 and m “
rpn{dnq{ logpn{dnqs “ 28 where ras indicates the integer part of a. Note that the

gender variable is not subject to screening. Thus, there are total 29 variables after

screening.

We further apply SCAD (Fan and Li, 2001) (group SCAD) to the model

obtained from the screening procedure. Both Akaike information criterion (AIC)

and Bayesian information criterion (BIC) are used to select the tuning parameter

in the SCAD. Figure 3.1 provides the plots of AIC and BIC scores versus �. The

optimal values for � of SCAD-AIC and SCAD-BIC are 6.6 and 7.6, respectively.

The SCAD-AIC selects a model with 13 SNPs, while the SCAD-BIC selects a

model with 12 SNPs. All SNPs selected by the SCAD-BIC are selected by the

SCAD-AIC, which also selects SS66164135 A. Figures 3.2 and 3.3 depict the plots
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Figure 3.2. Estimated Coe�cient Functions for � “ 6.6

of the estimated coe�cient functions, and their pointwise confidence intervals.
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Figure 3.3. Estimated Coe�cient Functions for � “ 7.6

3.5 Discussions

We have proposed a sure joint screening (SJS) procedure for feature screening in

the generalized varying-coe�cient models with ultrahigh dimensional covariates.

The proposed SJS is distinguished from the existing SIS in that SJS is based on the

joint likelihood of potential candidate features. We propose an e↵ective algorithm
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to carry out the feature screening procedure, and show that the proposed algorithm

possesses an ascent property. We study the sample property of GVCM-SJS, and

establish the sure screening property for GVCM-SJS.

Theorem 3.2.1 ensures the ascent property of the proposed algorithm under

certain conditions, but it does not implies that the proposed algorithm converges

to the global optimizer. If the proposed algorithm converges to a global maximizer

of (3.2.5), then Theorem 3.3.1 shows that such a solution enjoys the sure screening

property. We have simply set m “ rn{ logpnqs and m “ rpn{dnq{ logpn{dnqs in our

numerical studies. It is of interest to derive a data-driven method to determine m

and reduce false positive rate in the screening stage.

3.6 Technical Proof

Proof of Theorem 3.2.1. It follows by the Taylor expansion for the quasi-

likelihood function `p�q at � lying within a neighbor of � that

`p�q “ `p�q ` p� ´ �qT `1p�q ` 1

2
p� ´ �qT `2p�̃qp� ´ �q,

where �̃ lies between � and �. For p� ´ �qT `2p�̃qp� ´ �q term, we have

p� ´ �qT t´`2p�̃qup� ´ �q
“ p� ´ �qTW 1{2p�qW´1{2p�qt´`2p�̃quW´1{2p�qW 1{2p�qp� ´ �q
§ �

max

rW´1{2p�qt´`2p�̃quW´1{2p�qsp� ´ �qTW p�qp� ´ �q,

where W p�q is a block diagonal matrix with Wjp�q being a dnj ˆdnj matrix. Since

´`2p�q is non-negative definite, �
max

rW´1{2p�qt´`2p�̃quW´1{2p�qs • 0 Thus, if

u ° �
max

rW´1{2p�qt´`2p�̃quW´1{2p�qs,

then

`p�q • `p�q ` p� ´ �qT `1p�q ´ u

2
p� ´ �qTW p�qp� ´ �q “ hp�|�q.
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Thus it follows that `p�q • hp�|�q and `p�q “ hp�|�q by the definition of hp�,�q.
The solution of Bhp�|�q{B� “ 0 is � “ � ` u´1W p�q`1p�q. Hence, under the

conditions of Theorem 3.2.1, it follows that

`p�˚pt`1qq • hp�˚pt`1q|�ptqq • hp�ptq|�ptqq “ `p�ptqq.

The second inequality is due to the fact that ⌧ptj : }�˚pt`1q
j }

2

° 0uq “ ⌧ptj :

}�ptq
j }

2

° 0uq “ m, and �˚pt`1q “ argmax� hp�|�ptqq subject to ⌧ptj : }�j}2 °
0uq § m. By definition of �pt`1q, `p�pt`1qq • `p�˚pt`1qq and ⌧ptj : }�pt`1q

j }
2

°
0uq “ m. This proves Theorem 1.

Proof of Theorem 3.3.1. For a given model s, a subset of t1, . . . , pu, let p↵sp¨q
be the unrestricted maximum likelihood estimation of ↵sp¨q based on the spline

approximation. It su�ces to show that

Pr

„

max
sPSm

´
`tp↵spUqu • min

sPSm
`
`tp↵spUqu

⇢

›Ñ 0, (A.1)

as n Ñ 8.

We approximate ↵jpUq by

↵njpUq “
dn
ÿ

k“1

�jk jkpUq “ �T
j  jpUq, j “ 1, ¨ ¨ ¨ , p, (A.2)

where  jkpUq, k “ 1, . . . , dn, are basis functions and dn is the number of basis

functions, which is allowed to increase with the sample size n.

Let Sj denote all functions that have the form
∞dn

k“1

�jk jkpUq for a given set

of basis t jk, k “ 1, . . . , dnu. For ↵njpUq, define the approximation error by

⇢jpUq “ ↵jpUq ´ ↵njpUq “ ↵jpUq ´
dn
ÿ

k“1

�jk jkpUq, j “ 1, . . . , p.

Let distp↵jp¨q,Sjq “ inf
↵njpUqPSj

sup
UPra,bs

}⇢jpUq}
2

, and take ⇢ “ max
1§j§p

distp↵jp¨q,Sjq.
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Let ↵npUq “ p↵n1pUq, . . . ,↵nppUqqT and ↵pUq “ p↵
1

pUq, . . . ,↵ppUqqT . For any s,

↵spUq “

¨

˚

˚

˝

 
1

pUq
. . .

 spUq

˛

‹

‹

‚

sˆsdn

¨

˚

˚

˝

�
1

...

�s

˛

‹

‹

‚

sdnˆ1

`

¨

˚

˚

˝

⇢
1

pUq
...

⇢spUq

˛

‹

‹

‚

p“  spUq�s ` ⇢spUq,

where  spUq “ diagp 
1

pUq, . . . , spUqq with  jpUq “ p j1pUq, . . . , jdnpUqq and

�j “ p�j1, . . . , �jdnqT , j “ 1, . . . , s.

For any s P Sm
´ , define s1 “ s Y s˚ P S2m

` . So, we have

`t↵s1pUqu ´ `t↵˚
s1pUqu

“ `t s1pUq�s1 ` ⇢s1pUqu ´ `t s1pUq�˚
s1 ` ⇢˚

s1pUqu
“ `t s1pUq�s1u ` `1t s1pUq�̃s1u⇢s1pUq ´ `t s1pUq�˚

s1u ´ `1t s1pUq�̃˚
s1u⇢˚

s1pUq,

where �̃s1 and �̃
˚
s1 are two immediate values. Denote

�
1

“ `p�s1q ´ `p�˚
s1q, �

2

“ `1p�̃s1q⇢s1pUq, �
3

“ `1p�̃˚
s1q⇢˚

s1pUq.

Thus,

`t↵s1pUqu ´ `t↵˚
s1pUqu “ �

1

`�
2

´�
3

.

For �
2

, by the Cauchy-Schwartz inequality, we have

E|�
2

| “ E|`1p�̃s1q⇢s1pUq| §
b

E}`1p�̃s1q}2
a

E}⇢s1pUq}2.

According to the property of quasi-likelihood, we have

E}`1p�̃s1q}2 “ trEt`1p�̃s1q`1p�̃s1qT u “ ´trE`2p�̃s1q.

By condition (C6) and Corollary 1 in Wei, Huang, and Li (2011), it follows �
2

“
opp1q. Similarly �

2

, we have �
3

“ opp1q.
Next, we consider �

1

. By Wedderburn (Part 5, 1974), the quasi-score function
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of �s is given by

Snp�sq “ B`p�sq
B�s

“
n

ÿ

i“1

µ1pzTis�sq
V pzTis�sq

rYi ´ EpYi|ziqszis,

where µ1ptq is the first-order derivative of µptq. Let Hnp�sq “ ´B2`p�sq{B�sB�T
s

be the Hessian matrix of `p�sq corresponding to �s.

Under (C3), we consider �s1 close to �˚
s1 such that }�s1 ´ �˚

s1} “ w
1

dnn´⌧
1 for

some w
1

, ⌧
1

° 0. Clearly, when n is su�ciently large, �s1 falls into a neighborhood

of �˚
s1 , so that condition (C6) becomes applicable. Thus, it follows by Condition

(C6) and the Cauchy-Schwarz inequality that, we have

�
1

“ `p�s1q ´ `p�˚
s1q

“ r�s1 ´ �˚
s1sTSnp�˚

s1q ´ p1{2qr�s1 ´ �˚
s1sTHnp�̃s1qr�s1 ´ �˚

s1s
§ r�s1 ´ �˚

s1sTSnp�˚
s1q ´ pC

1

{2qnd´1

n }�s1 ´ �˚
s1}2

2

§ w
1

dnn
´⌧

1}Snp�˚
s1q}

2

´ pC
1

{2qd´1

n w2

1

d2nn
1´2⌧

1 , (A.3)

where �̃s1 is an intermediate value between �s1 and �˚
s1 . Thus, we have

Prt`p�s1q ´ `p�˚
s1q • 0u § Prt}Snp�˚

s1q}
2

• pC
1

w
1

{2qn1´⌧
1u

§
ÿ

jPs1
PrtS2

njp�˚
s1q • p2mq´1pC

1

w
1

{2q2n2´2⌧
1u

§
ÿ

jPs1

dn
ÿ

k“1

PrtS2

njkp�˚
s1q • p2mdnq´1pC

1

w
1

{2q2n2´2⌧
1u,

where

�
4

“ Snjkp�˚
s1q “

n
ÿ

i“1

µ1pzTis1�s1q
V pzTis1�s1q rYi ´ EpYi|ziqszijk.

We assume that zi is marginally standardized. Since µ1pzTis1�s1q{V pzTis1�s1q is

bounded by constant M under condition (C5), so according to the property of

B-splines and condition (C7), there exists a positive constant t
1

“ t
0

{M and g

such that for all |t| § t
1

, Etexpptµ
1pzT

is1�s1 q
V pzT

is1�s1 q rYi ´ EpYi|ziqszijkqu † egt
2{2.
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By Petrov Exponential Inequalities (Lin and Bai, 2009, Page 68), we have

Prt�
4

• pC
1

w
1

{2qp2dnmq´1{2n1´⌧
1u

§ Prt�
4

• pC
1

w
1

{2qp2w
2

q´1{2n´0.5⌧
2n1´⌧

1d´1{2
n u

§ exp
`

´pc2{2qn1´2⌧
1

´⌧
2d´1

n

˘

, (A.4)

where c “ C
1

w
1

{p2M?
2w

2

q. Also, by the same arguments, we have

Prt�
4

§ ´pC
1

w
1

{2qp2mq´1{2n1´⌧
1u § exp

`

´pc2{2qn1´2⌧
1

´⌧
2d´1

n

˘

, (A.5)

The inequalities (A.4) and (A.5) imply that,

Prt`p�s1q • `p�˚
s1qu § 4mdn exp

`

´pc2{2qn1´2⌧
1

´⌧
2d´1

n

˘

.

So under condition (C4), we have

Pr

"

max
sPSm

´
`p�s1q • `p�˚

s1q
*

§
ÿ

sPSm
´

Prt`p�s1q • `p�˚
s1qu

§ 4mdnp
m expt´0.5c2n1´2⌧

1

´⌧
2d´1

n u
“ 4 exptlogm ` m log p ´ 0.5c2n1´2⌧

1

´⌧
2d´1

n ` 1{5 log nu
§ 4 exptlogw

2

` p⌧
2

` 1{5q log n ` w
2

n⌧
2 log p ´ 0.5c2n1´2⌧

1

´⌧
2d´1

n u
“ 4w

2

expt⌧
2

log n ` w
2

n⌧
2 log p ´ 0.5c2n1´2⌧

1

´⌧
2d´1

n u
“ op1q as n Ñ 8. (A.6)

By Condition (C6), `p�s1q is concave in �s1 , (A.6) holds for any �s1 such that

}�s1 ´ �˚
s1} “ w

1

dnn´⌧
1 .

For any s P Sm
´ , let �̆s1 be p�s augmented with zeros corresponding to the

elements in s1zs˚ (i.e. s1 “ ts Y ps˚zsqu Y ps1zs˚q). By Condition (C1), it is seen

that }�̆s1 ´�˚
s1}

2

“ }�̆s˚Yps1zs˚q ´�˚
s˚Yps1zs˚q}2 “ }�̆s˚Yps1zs˚q ´�˚

s˚}
2

• }�˚
s˚Yps1zs˚q ´

�˚
s˚}

2

• }�˚
s1zs˚}

2

“ w
1

dnn´⌧
1 . Consequently,

Pr

"

max
sPSm

´
`pp�sq • min

sPSm
`
`pp�sq

*

§ Pr

"

max
sPSm

´
`pp�̆s1q • `pp�˚

s1q
*

“ op1q.
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So, we have shown that

Pr

„

max
sPSm

´
`tp↵spUqu • min

sPSm
`
`tp↵spUqu

⇢

›Ñ 0,

as n Ñ 8. The theorem is proved.

Proof of Theorem 3.3.2. According to the definition of HBIC, for any model s,

HBICp⌧psqq § HBICpqq implies that

`pp�sq ´ `pp�s˚q • dnt⌧psq ´ quCn logpdnpq
2n

• ´dnq
Cn logpdnpq

2n
. (A.7)

We show that the probability that (A.7) occurs at any s P Sm
´ goes to 0. For any

s P Sm
´ , let s̃ “ s Y s˚. To consider those �s̃ near �

˚
s̃ , we have

`p�s̃q ´ `p�˚
s̃ q “ t�s̃ ´ �˚

s̃uT `1p�˚
s̃ q ´ 1

2
t�s̃ ´ �˚

s̃uT r´`2p�̃˚
s̃ qst�s̃ ´ �˚

s̃u,

for some �̃
˚
s̃ between �s̃ and �

˚
s̃ . By Condition (C6),

t�s̃ ´ �˚
s̃uT r´`2p�̃˚

s̃ qst�s̃ ´ �˚
s̃u • C

1

d´1

n n}�s̃ ´ �˚
s̃}2.

Therefore,

`p�s̃q ´ `p�˚
s̃ q § t�s̃ ´ �˚

s̃uT `1p�˚
s̃ q ´ C

1

2
d´1

n n}�s̃ ´ �˚
s̃}2.

Hence, for any �s̃ such that }�s̃ ´ �˚
s̃} “ w

1

dnn´⌧
1 , we have

`p�s̃q ´ `p�˚
s̃ q § w

1

dnn
´⌧

1}`1p�˚
s̃ q} ´ C

1

2
d´1

n npw
1

dnn
´⌧

1q2.

By (A.4), (A.5) and (A.6), we can get

Pr

#

sup
sPSm

´
`p�s̃q • `p�˚

s̃ q
+

“ op1q.

Now let �̆s̃ be p�s augmented with zeros corresponding to the elements in s̃zs.
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It can be seen that

}�̆s̃ ´ �˚
s̃} • }�˚

s˚zs} “ w
1

dnn
´⌧

1 ,

by (C3). Therefore, uniformly over s P Sm
´ and with probability tending to 1,

Pr

#

sup
sPSm

´
`pp�s̃q • `p�˚

s̃ q
+

§ Pr

#

sup
sPSm

´
`p�̆s̃q • `p�˚

s̃ q
+

“ op1q.

Hence, the probability that (A.7) occurs at any s P Sm
´ tends to 0 which is (3.3.13).

On the other hand, for s P Sm
` , let k “ ⌧psq´q. It su�ces to consider a fixed k,

since k takes only the values 1, . . . ,m´q. By definition, HBICp⌧psqq § HBICpqq
if and only if

`pp�sq ´ `pp�s˚q • kdn
Cn logpdnpq

2n
.

We show that, uniformly in s P Sm
` with ⌧psq “ k ` q, this inequality does not

occur. For large n, by condition (C6),

`pp�sq ´ `pp�s˚q § `pp�sq ´ `p�˚
s q

§ tp�s ´ �˚
suT `1p�˚

s q ´ 1

2
tp�s ´ �˚

suT r´`2p�̃˚
s qstp�s ´ �˚

su

§ tp�s ´ �˚
suT `1p�˚

s q ´ 1

2
C

1

d´1

n ntp�s ´ �˚
suT tp�s ´ �˚

su.

where �̃
˚
s lies between p�s and p�

˚
s . Denote � “ p�s ´ �˚

s , and define

fp�q “ �T `1p�˚
s q ´ 1

2
C

1

d´1

n n�T�.

So, we have
Bfp�q

B� “ `1p�˚
s q ´ C

1

d´1

n n� “ 0.

This implies that fp�q reaches its maximum at � “ dn`1pp�
˚
s q{pC

1

nq. Thus,

`pp�sq ´ `pp�s˚q § 1

2
pC

1

nd´1

n q´1`1p�˚
s qT `1p�˚

s q.

Hence, we show that, uniformly over s P Sm
` with ⌧psq “ k ` q,

1

2
pC

1

nd´1

n q´1`1p�˚
s qT `1p�˚

s q • kdn
Cn logpdnpq

2n
,
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occurs with diminishing probability. Thus, under conditions (C4) and (C6), by

Markov inequality, for each s P Sm
` , we have

Pr

„

1

2
pC

1

nd´1

n q´1`1p�˚
s qT `1p�˚

s q • kdn
Cn logpdnpq

2n

⇢

“ Pr
“

`1p�˚
s qT `1p�˚

s q • C
1

kCn logpdnpq
‰

§ Er`1p�˚
s qT `1p�˚

s qs
C

1

kCn logpdnpq “ Er`1p�˚
s qT `1p�˚

s qs
C

1

kCnplogpdnq ` nq ›Ñ 0.

the number of models in Sm
` is lower than p, we have shown that

Pr

„

1

2
pC

1

nd´1

n q´1`1p�˚
s qT `1p�˚

s q • kdn
Cn logpdnpq

2n
, @s P Sm

`

⇢

›Ñ 0,

This completes the proof.



Chapter 4
New Test on High-Dimensional

Mean Vectors With Consideration of

Correlation Structure

4.1 New Test Method Considering the Linear

Structure of Precision Matrix

Suppose that for k “ 1, 2, xki, i “ 1, ¨ ¨ ¨ , nk, is a random sample from a p-

dimensional population with mean µk and covariance matrix ⌃, which is assumed

to be finite and positive definite. We use x̄k “ n´1

k

∞nk
i“1

xki to be the sample mean

of the k-th sample, and S “ pn
1

` n
2

´ 2q´1

∞

2

k“1

∞nk
i“1

pxki ´ x̄kqpxki ´ x̄kqT to be

the pooled sample covariance matrix. The two-sample mean problem is to test

H
0

: µ
1

“ µ
2

versus H
1

: µ
1

‰ µ
2

. (4.1.1)

In multivariate analysis, the Hotelling test statistic for the two sample problem is

defined as

Th “ px̄
1

´ x̄
2

qTS´1px̄
1

´ x̄
2

q,
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whose power function is an increasing function of µT
d⌃

´1µd, where µd “ µ
1

´ µ
2

.

However, when p ° n
1

` n
2

´ 2, S is not invertible. Thus, Hotelling test is not

well-defined for high dimensional data.

Bai and Sarandasa (1996) suggested the following test for the two sample prob-

lem

Tbs “ }x̄
1

´ x̄
2

}2

and show that the power of Tbs is an increasing function of }µd}2{
a

2trp⌃2q. It

can be shown that

}µd}2{
a

2trp⌃2q § µT
d⌃

´1µd (4.1.2)

for any µd. This implies that the power of Tbs increases not as fast as Hotelling’s

type test because Tbs ignores the correlations among the variables. For a given

constant symmetric positive definite W matrix, we consider the following test

statistic

T “ npx̄
1

´ x̄
2

qTWpx̄
1

´ x̄
2

q (4.1.3)

to improve power over Tbs, where the weight matrix W is properly chosen and n “
n
1

` n
2

. Assume that for any a with }a} “ 1,
?
naT⌃´1{2px̄

1

´ x̄
2

q asymptotically

follows a normal distributionNp?
naTµd, pn{n

1

`n{n
2

qq. As shown in the technical

proof, the best choice of W should be proportional to ⌃´1. This motivates us to

model the precision matrix ⌃´1 first.

4.1.1 Modelling precision matrix

If we decompose the covariance matrix ⌃ “ D1{2RD1{2, where D is the diagonal

matrix with j-diagonal element being �ii, and R is the correlation matrix. The

natural estimator of D is diagpSq. Thus, it su�ces to model R´1 in order to

estimate ⌃´1. Before we pursue further, let us examine some commonly-used

correlation structures. Compound correlation matrix Rcs “ p1 ´ ⇢qIp ` ⇢1p1T
p ,

where Ip is the identity matrix and 1p is the p-dimensional column vector with all

elements being 1. ThenR´1

cs “ a
1

A
1

`a
2

A
2

withA
1

“ Ip,A2

“ 11T
p , a1 “ p1´⇢q´1

and a
2

“ ´tpp´ 1q⇢` 1u⇢{p1´ ⇢q. The correlation matrix Rar from AR(1) model

has its pi, jq-element ⇢|i´j|. Let b
1

“ p1 ` ⇢2q{p1 ´ ⇢2q, b
2

“ ´⇢{p1 ´ ⇢2q and
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b
3

“ ´⇢2{p1 ´ ⇢2q. Then R´1

ar “ b
1

A
1

` b
2

A
2

` b
3

A
3

, where A
1

“ Ip, A2

has 1 on

the two main o↵-diagonals and 0 elsewhere, A
3

has 1 on pp, pq and p1, 1q, and 0

elsewhere. These examples motivate us to assume that R´1 can be represented as

a linear combination of a set of matrix bases to achieve a parsimonious model for

R, that is

R´1 “ ✓
1

A
1

` ¨ ¨ ¨ ` ✓KAK .

Since the diagonal elements of R equal to 1, the linear representation implicitly

imposes p constraints. To avoid solving constraint optimization problem, we pro-

pose a more flexible model for R´1. Let A
1

, ¨ ¨ ¨ ,AK be a set of known symmetric

matrix bases and ✓
1

, . . . , ✓K be K unknown parameters. Assume that R´1 has the

following structure

R´1 “ ✓
1

A
1

` ¨ ¨ ¨ ` ✓KAK . (4.1.4)

It is worth pointing out that there always exists such a representation for the

inverse of any correlation matrix. SinceR´1 is a positive definite symmetric matrix,

therefore R´1 “ ∞p
j“1

rp´1q
jj Ejj ` ∞

1§i†j§p r
p´1q
ij Eij, where R´1 “ prp´1q

ij q and Eij is

a matrix with the pi, jq- and pj, iq-elements being 1 and all other elements being 0.

We first propose an estimation procedure for ✓ “ p✓
1

, ¨ ¨ ¨ , ✓KqT . Denote by pR

the sample correlation matrix, where pR “ rdiagpSqs´1{2SrdiagpSqs´1{2 and diagpSq
is the diagonal matrix from the diagonal elements of S. We propose estimating ✓

by minimizing the following quadratic loss

min
✓

trr pRp✓
1

A
1

` ¨ ¨ ¨ ✓KAKq ´ Ips2. (4.1.5)

Denote B to be a K ˆ K matrix with pk, lq-element being p´1trp pRAk
pRAlq and

b to be a K ˆ 1 vector with k-the element being p´1trp pRAkq. The minimizer of

(4.1.5) has p✓ “ B´1b.

Theorem 4.1.1. Suppose that txki, i “ 1, ¨ ¨ ¨ , nku, k “ 1, 2, is a random sample

from a p-dimensional population xpkq, which can be represented as xpkq “ ⌃1{2w `
µk, where the components of w “ pw

1

, . . . , wpqT are independent and identically

distributed, and having the eighth moment with Epwjq “ 0, Epwjq2 “ 1, Epwiq4 “
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. It follows that

p✓k Ñ p1 ` yq´1✓k, k “ 1, . . . , K

where y “ limnÑ8 pn{pn ´ 2q and n “ n
1

` n
2

.

Theorem 4.1.1 implies that if y ° 0, p✓k is not consistent estimate for ✓k, but

rpn ` p ´ 2q{pn ´ 2qsp✓k is consistent. The joint distribution of ✓k’s is derived by

Theorem (4.1.2)

Theorem 4.1.2. Under the conditions of Theorem 4.1.1, for any constants p⇡
1

, . . . , ⇡Kq,
we have

�´1

#

p
K
ÿ

k“1

⇡krp✓k ´ p1 ` yn´2

q´1✓ks ´ ⌫

+

Ñ Np0, 1q,

where y “ limnÑ8 pn{pn ´ 2q, n “ n
1

` n
2

,

⌫ “ trRD
1

´ n

pn ´ 2q2
„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` npn ´ 1q
4pn ´ 2q3 trD0

D
1

` 3npn ´ 1q
4pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

eTkRD
1

ek

p
ÿ

`“1

peT` R1{2ekq4
⇢

´ 1

1 ` yn´2

ˆ

n2 ´ 3n ` 4

pn ´ 2q2 ` pn ´ 4qp
pn ´ 2q2 ` pn

1

´ 1qp
n
1

pn ´ 2q2 ` pn
2

´ 1qp
n
2

pn ´ 2q2 ` �wn

pn ´ 2q2
˙

trRD
1

`p1 ` yn´2

q´1

nr3pn ´ 1q ` ps
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` npn ´ 1q
p1 ` yn´2

qpn ´ 2q3
„

2trRD
1

R ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2eke

T
kRD

1

R1{2e`peT` R1{2ekq2
⇢

`p1 ` yn´2

q´1

n

pn ´ 2q3 trRD
1

„

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2ekpeTkR1{2e`q3

⇢

´3npn ´ 1qp ` 6npn ´ 1qpn ´ 2q
4p1 ` yn´2

qpn ´ 2q4

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

´p1 ` yn´2

q´1

3npn ´ 1qtrRD
1

4pn ´ 2q4

«

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4
�

´p1 ` yn´2

q´1

2npn ´ 1q
4pn ´ 2q3

«

2trRD
1

` �w

p
ÿ

i“1

eTi RD
1

ei

p
ÿ

k“1

peTkR1{2eiq4
�
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´p1 ` yn´2

q´1

npn ´ 1q
4pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i RD

1

Rej

«

2peTi Rejq2

`�w
p

ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

´p1 ` yn´2

q´1

npn ´ 1qtrRD
1

4pn ´ 2q4
p

ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i Rej

«

2peTi Rejq2

`�w
p

ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

´p1 ` yn´2

q´1

npn ´ 1qp3n ´ 6 ` pq
4pn ´ 2q4

p
ÿ

i“1

p
ÿ

j“1

eTi D1

eje
T
i Rej

«

2peTi Rejq2

`�w
p

ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

.

and

�2

“
ˆ

1 ` 2y

1 ´ y

˙

2

ˆ

2n´1trpRD
1

q2 ` �wn
´1

p
ÿ

`“1

peT` R1{2D
1

R1{2e`q2
˙

`
ˆ

1 ` 2y

1 ´ y

˙

2 1

n

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

r2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2s

´2

ˆ

1 ` 2y

1 ´ y

˙

2

n´1

p
ÿ

`“1

eT` RD
1

e`r2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2 ¨ eTkR1{2D
1

R1{2eks

`p1 ` yq´2pn´1trRD
1

q2p2 ´ 2y ´ �wyq ` 2p1 ` yq´2yrn´1trpRD
1

q2s

`p1 ` yq´2pn´1trRD
1

q2p2n´1trR2 ` �wyq

´ 2

p1 ` yq2 pn´1trRD
1

q
`

2n´1trR2D
1

` �wn
´1trRD

1

˘

` 2

p1 ` yq2 pn´1trRD
1

qn´1

p
ÿ

`“1

eT` RD
1

e`
“

2eT` R
2e` ` �w

‰

.

B “ tp´1trRAkRA``yn´2

pp´1trRAkqpp´1trRA`quKk,`“1

, D
1

“ ⌘
1

A
1

`. . .`⌘KAK,

p⌘
1

, . . . , ⌘Kq “ p⇡
1

, . . . , ⇡KqB´1, D
0

is the p ˆ p dimensional matrix with the pi, jq
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element being uij “ 2peTi Rejq3 ` �weTi Rej
∞p

`“1

peT` R1{2eiq2peT` R1{2ejq2, and ek is

the k-column of the p ˆ p identity matrix and �w “  ´ 3.

In practical implementation, we may introduce a relative large number of Aks

into the model (4.1.4) to reduce approximation error. For example, we may in-

clude bases for both the compound symmetric correlation structure and the AR

correlation structure into model (4.1.4) if we are not sure which basis should be

included. Thus, we introduce regularization method to reduce model complexity

of model (4.1.4). Specifically, we consider the following penalized method

trt pRp✓
1

A
1

` ¨ ¨ ¨ ✓KAKq ´ Ipu2 `
K
ÿ

k“1

p�p|✓k|q, (4.1.6)

where p�p¨q is a penalty function with a tuning parameter �. Minimizing (4.1.6)

with respect to ✓ results in a penalized estimator.

For a given estimate p✓, define the estimate of R with linear structure (4.1.4)

to be pRL “ pp✓
1

A
1

` ¨ ¨ ¨ ` p✓KAKq´1. As a result, we estimate the population

covariance matrix by

p⌃ “ rdiagpSqs1{2
pRLrdiagpSqs1{2.

The estimate of the population precision matrix ⌦ “ ⌃´1 is

p⌦ “ rdiagpSqs´1{2
pR´1

L rdiagpSqs´1{2, (4.1.7)

where S is the pooled sample covariance matrix.

4.1.2 Limiting null distribution and power comparison

By replacing W in (4.1.3) by p⌦, we obtain the test statistics

Tn “ px̄
1

´ x̄
2

qT p⌦px̄
1

´ x̄
2

q. (4.1.8)
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We next study the limiting distributions under both null hypothesis and alternative

hypothesis.

Theorem 4.1.3. Suppose that txki, i “ 1, ¨ ¨ ¨ , nku, k “ 1, 2, is a random sample

from a p-dimensional population xpkq, which can be represented as xpkq “ ⌃1{2w `
µk, where the components of w “ pw

1

, . . . , wpqT are independent and identically

distributed and having the eighth moment with Epwjq “ 0, Epwjq2 “ 1, Epwiq4 “
. Denote �w “  ´ 3, then under H

0

and as y “ limnÑ8 pn{pn ´ 2q, it follows
that

nTn ´ pcpµ
0

pcp�
0

H
0Ñ Np0, 1q,

where R̃ “ tdiagrRLsu´1{2RLtdiagrRLsu´1{2,

�2

0

“ p2p ` pn´1

1

qn
2

n2

1

` p2p ` pn´1

2

qn
2

n2

2

` 4n2p

n
1

n
2

`
ˆ

n

n2

1

` n

n2

2

˙ „

4trR2 ` 2p�w ` 2
p

ÿ

h“1

eThR
2ehe

T
hR

´1eh ` �wtrR
´1

⇢

,

and

µ
0

“ nppn´1

1

` n´1

2

q ´ n

n ´ 2

`

n´1

1

` n´1

2

˘

rp ` �w

p
ÿ

`“1

peT` R1{2e`q3eT` R´1{2e`s

`3npn ´ 1q
4pn ´ 2q2

`

n´1

1

` n´1

2

˘

r2p ` �w

p
ÿ

h“1

p
ÿ

`“1

peThR1{2e`q4s

` npn ´ 1q
4pn ´ 2q2

`

n´1

1

` n´1

2

˘

trR´1A
0

.

ek is the k-column of the identity matrix Ip, A
0

is a p ˆ p matrix with ph, `q-
element being ah,` “ 2peThRe`q3 `�weThRe`

p
∞

f“1

peTf R1{2ehq2peTf R1{2e`q2, and pµ
0

, p�2

0

and the estimate of A
0

are obtained by replacing R in µ
0

, �2

0

and A
0

by R̃ and

pc “ 1

1`p{pn´2q .

This theorem proves that under the null hypothesis, the asymptotic distribution



78

of Tn is normal distribution. We next derive the limiting distribution of Tn under

the alternative hypothesis.

Theorem 4.1.4. Under conditions of Theorem 4.1.3 and H
1

: µ
1

‰ µ
2

, it follows

that

nTn ´ cµ
0

´ cn�n

c
a

�2

0

` 4n2pn´1

1

` n´1

2

q�n
Ñ Np0, 1q

where y “ limnÑ8 pn{pn ´ 2q, c “ p1 ` yq´1, �n “ µT
d⌃

´1µd with µd “ µ
1

´ µ
2

.

Furthermore, the asymptotic power function of Tn is

Qp�n, �0|↵q “ �

˜

´z↵�0 ` n�n
a

�2

0

` 4n2pn´1

1

` n´1

2

q�n

¸

where �p¨q is the cumulative distribution function of Np0, 1q and �p´z↵q “ ↵.

Theorem 4.1.4 implies that Tn is an unbiased test (i.e., Qp�n, �0|↵q • ↵ for any

�n and �
0

) since

�

˜

´z↵�0 ` n�n
a

�2

0

` 4n2pn´1

1

` n´1

2

q�n

¸

• �p´z↵q.

In fact, Bai and Saranadasa (1996) and Chen and Qin (2010) also studied the

two sample mean testing problem H
0

: µ
1

“ µ
2

v.s. H
1

: µ
1

�“ µ
2

. When the

two population covariance matrices of xp1q and xp2q are equal, Bai and Saranadasa

(1996) and Chen and Qin (2010) have the same asymptotic powers as follows

Qbspµd,⌃|↵q “ �

ˆ

´ z↵ ` }µd}2
pn´1

1

` n´1

2

q
?
2tr⌃2

˙

.

In fact, when �n “ op1q and n, p is large enough, we have

Qp�n, �0|↵q • Qbspµd,⌃|↵q.

Especially, when ⌃ is the identity matrix, we approximately have Qp�n, �0|↵q “
Qbspµd,⌃|↵q.



79

4.2 Simulation

4.2.1 Performance of selecting basis matrices

In this part, we use our proposed method to estimate the precision matrix of X

from Np0,⌃q. In our motivation example, we consider two scenarios for ⌃ “ p�ijq:

⌃
1

: Compound symmetric correlation structure: �ij “ 1 if i “ j and ⇢ otherwise.

⌃
2

: Correlation structure from AR(1): �ij “ ⇢|i´j|.

In the first scenario, R´1 can be written as ✓
1

A
1

` ✓
2

A
2

, where A
1

is the

identity matrix, A
2

“ 1p1T
p is a matrix with 0 on the diagonal and 1 o↵ the

diagonal, ✓
1

“ ´rpp´ 2q⇢` 1s{✓
0

and ✓
2

“ ⇢{✓
0

, with ✓
0

“ pp´ 1q⇢2 ´ pp´ 2q⇢´ 1.

In the second scenario,R´1 can be written as a combination of three basis matrices:

R´1 “ ✓
1

A
1

` ✓
2

A
2

` ✓
3

A
3

, whereA
1

is the identity matrix, A
2

is a matrix with 0

on the diagonal and 1 o↵ the diagonal, A
3

has the pp, pq and p1, 1q elements being

1 and other elements being zeros, ✓
1

“ p1 ` ⇢2q{✓
0

, ✓
2

“ ´⇢{✓
0

and ✓
3

“ ´⇢2{✓
0

with ✓
0

“ 1 ´ ⇢2.

First, we evaluate the performance of (4.1.6). Let the basis matrices beA
1

, . . . ,Ar2n1{3s,

A
1

, . . . ,A
4

are the basis matrix for compound symmetric and AR(1) covariance

structure, and for k • 5, Ak has the tpi, jq : |i ´ j| “ k ´ 3u elements being 1 and

other elements being zeros, where r2n1{3s is truncated integer of 2n1{3. (4.1.6) will

be used to select the basis matrices Aj. In the simulations, the following criteria

will be reported.

• || pR´1 ´ R´1||
2

where } ¨ }
2

is the quadratic norm;

• C: median of number of selected basis matrices;

• I: median of number of wrongly selected basis matrices.

In the simulation setup, ⇢ is taken as ⇢ “ 0.25, 0.5, 0.75. The sample size is

n
1

“ n
2

“ 100, 200 and the dimension is p “ 500, 1500. The distribution of wij

is Gaussian. We use the new estimate method under four di↵erent situations as

follows:

1. Only the true basis matrices are included;
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2. Redundant basis matrices are not removed;

3. Regularization method using MCP (Zhang, 2007) penalty;

4. Regularization method using SCAD (Fan and Li, 2001) penalty;

which are denoted by True, Full, MCP and SCAD. The simulation results based

on 1000 replicates are given in Table 4.2.1-4.2.2. Table 4.2.1 show that when the

full model is used to estimate ✓, } pR´1 ´ R}
2

is much greater than TRUE, MCP

and SCAD because the number of true basis matrices is smaller than the number

of full models and full model leads to over-fit. Moreover, TRUE, MCP and SCAD

have similar } pR´1 ´R}
2

which shows that MCP and SCAD can almost select true

basis matrices. Table 4.2.2 shows that the number of selected basis matrices is

close to the number of true basis matrices, so the two selection methods perform

very well.

Table 4.2.1. Precision Matrix Estimation

⌃
1

⌃
2

n=100, p=500 n=100, p=500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

|| pR´1 ´ R´1||
2

True 0.0278(0.0208) 0.0828(0.0600) 0.2429(0.1854) 0.0922(0.0667) 0.0920(0.0620) 0.1257(0.0646)
Full 0.1168(0.0548) 0.1801(0.0707) 0.4219(0.2052) 0.1392(0.0679) 0.1359(0.0556) 0.2668(0.1064)
MCP 0.0275(0.0199) 0.0813(0.0589) 0.2422(0.1800) 0.0668(0.0051) 0.1214(0.0743) 0.1442(0.0870)
SCAD 0.0274(0.0198) 0.0810(0.0583) 0.2405(0.1782) 0.0666(0.0051) 0.1451(0.0843) 0.1678(0.0916)

n=200, p=500 n=200, p=500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

|| pR´1 ´ R´1||
2

True 0.0186(0.0143) 0.0577(0.0433) 0.1663(0.1267) 0.0458(0.0328) 0.0485(0.0301) 0.0695(0.0361)
Full 0.0723(0.0243) 0.1275(0.0484) 0.2974(0.1308) 0.0764(0.0312) 0.0908(0.0292) 0.1966(0.0727)
MCP 0.0193(0.0145) 0.0577(0.0432) 0.1656(0.1279) 0.0689(0.0271) 0.0584(0.0319) 0.0760(0.0443)
SCAD 0.0193(0.0144) 0.0579(0.0427) 0.1669(0.1255) 0.0596(0.0195) 0.0585(0.0409) 0.0897(0.0542)

n=100, p=1500 n=100, p=1500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

|| pR´1 ´ R´1||
2

True 0.0275(0.0195) 0.0849(0.0617) 0.2379(0.1817) 0.1526(0.1119) 0.1565(0.1111) 0.1771(0.1070)
Full 0.1665(0.0993) 0.2125(0.1051) 0.4130(0.1915) 0.2157(0.1099) 0.1878(0.0988) 0.2667(0.1015)
MCP 0.0280(0.0197) 0.0804(0.0599) 0.2435(0.2141) 0.0657(0.0031) 0.2080(0.1044) 0.2112(0.1023)
SCAD 0.0279(0.0196) 0.0799(0.0590) 0.2432(0.2122) 0.0654(0.0030) 0.2197(0.1023) 0.2444(0.0973)

n=200, p=1500 n=200, p=1500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

|| pR´1 ´ R´1||
2

True 0.0194(0.0141) 0.0565(0.0428) 0.1674(0.1267) 0.0797(0.0576) 0.0749(0.0549) 0.0864(0.0537)
Full 0.0918(0.0490) 0.1320(0.0544) 0.2824(0.1343) 0.1099(0.0551) 0.1016(0.0445) 0.1720(0.0581)
MCP 0.0192(0.0140) 0.0581(0.0436) 0.1703(0.1272) 0.0663(0.0022) 0.1013(0.0501) 0.1105(0.0537)
SCAD 0.0192(0.0140) 0.0585(0.0434) 0.1718(0.1283) 0.0661(0.0022) 0.0994(0.0544) 0.1380(0.0543)
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Table 4.2.2. Precision Matrix Estimation and Basis Selection
⌃

1

⌃
2

n=100, p=500 n=100, p=500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

MCP C 2 2 2 2 5 3
I 0 0 0 0 2 0

SCAD C 2 2 2 2 4 3
I 0 0 0 0 1 0

n=200, p=500 n=200, p=500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

MCP C 2 2 2 5 5 3
I 0 0 0 2 2 0

SCAD C 2 2 2 5 5 3
I 0 0 0 3 2 0

n=100, p=1500 n=100, p=1500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

MCP C 2 2 2 2 6 5
I 0 0 0 0 3 2

SCAD C 2 2 2 2 5 5
I 0 0 0 0 3 2

n=200, p=1500 n=200, p=1500
⇢ 0.25 0.5 0.75 0.25 0.5 0.75

MCP C 2 2 2 2 9 6
I 0 0 0 0 6 3

SCAD C 2 2 2 2 8 6
I 0 0 0 0 5 3

4.2.2 Performance of the testing statistic Tn

Three scenarios for ⌃ “ p�ijq are considered:

⌃
1

: Compound symmetric correlation structure with the diagonal elements being

1 and other elements being ⇢;

⌃
2

: Correlation structure from AR(1): �ij “ ⇢|i´j|;

⌃
3

: 0.5⌃
1

` 0.5⌃
2

.

The parameter ⇢ is taken as ⇢ “ 0.25, 0.50, 0.75. Without loss of generality, n
1

“
n
2

is assumed. The dimension is p “ 500, 1500 and the sample size is nk “
100, 200, k “ 1, 2. wij is from Np0, 1q or Gammap4, 2q ´ 2. In the simulations,

µ
1

“ 0p and µ
2

“ cp1T
10,0

T
p´10qT and we consider c “ 0, 0.5, 1. We compare

the newly proposed method with other seven methods proposed before. In the

simulation, we examine the performance of the proposed method under di↵erent

settings as follows
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1. Only the true basis matrices are included;

2. Redundant basis matrices are not removed;

3. Regularization method using MCP (Zhang, 2007) penalty;

4. Regularization method using SCAD (Fan and Li, 2001) penalty;

We compare those four methods with the other existing methods which are pro-

posed by Bai and Saranadasa (1996), Chen and Qin (2010), Srivastava and Du

(2008) with or without modification, Lopes, Jacob and Wainwright (2011, 2012)

and Srivastava, Li and Ruppert (2014). The 11 di↵erent methods are denoted by

New(true), New(full), New(MCP), New(SCAD), BS, CQ, SD1, SD2, LWJ1, LWJ2

and RAPTT. All the simulation results are based on 10, 000 replications and are

summarized in Table 4.2.3-4.2.8.

Table 4.2.3 and Table 4.2.6 report the simulation results for the compound

symmetric covariance structure for both the normal distribution and the gamma

distribution. The new test methods return the type I error rate very well and the

powers of the four new methods are extremely high when c ° 0 and increase as ⇢,

c and n{p increase. All the new test methods outperform other existing methods.

LWJ1, LWJ2 and RAPTT present the similar pattern to the proposed methods,

however, LWJ2 fails to control the type I error rate. BS, CQ, SD1 and SD2 are

a↵ected by the value of ⇢ and their powers decrease significantly as ⇢ increases,

since BS, CQ, SD1 and SD2 ignore the correlation among variables. In particular,

when c “ 0.5, the powers of these four test methods are always less than 0.3.

Table 4.2.4 and Table 4.2.7 present the simulation results for auto regressive

correlation structure for the normal distribution and gamma distribution. Under

this setting, the newly proposed method return the type I error rate very well and

the powers of these new tests increase as c and n{p increase but decrease as ⇢

increases. LWJ1, LWJ2 and RAPTT tests also have the similar patterns as the

new tests, but the new test methods outperform these methods. For the auto

regressive covariance structure, the correlation between variables are weak if ⇢ is

not large enough. BS, CQ, SD1 and SD2 beat the new methods in this setting.

However, the performances of these methods are supposed to be good when the

correlation between variables are weak since they neglect the correlation structure
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Table 4.2.3. Power Comparison for Nppµ
1

,⌃
1

q and Nppµ
2

,⌃
1

q
c “ 0 c “ 0.5 c “ 1

⇢ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
n “ 100, p “ 500

New(true) 0.0610 0.0463 0.0710 0.9979 1 1 1 1 1
New(full) 0.0613 0.0466 0.0720 0.9978 1 1 1 1 1
New(MCP) 0.0606 0.0456 0.0705 0.9979 1 1 1 1 1
New(SCAD) 0.0599 0.0427 0.0663 0.9978 1 1 1 1 1

BS 0.0676 0.0669 0.0680 0.1333 0.0954 0.0843 0.9570 0.2628 0.1665
CQ 0.0676 0.0669 0.0680 0.1333 0.0952 0.0843 0.9571 0.2630 0.1665
SD1 0.0311 0.0103 0.0026 0.0589 0.0145 0.0033 0.4731 0.0315 0.0061
SD2 0.0688 0.0681 0.0684 0.1367 0.0964 0.0845 0.9599 0.2653 0.1666
LWJ1 0.0528 0.0523 0.0525 0.4032 0.6189 0.9578 0.9958 1 1
LWJ2 0.0002 0.0002 0.0002 0.5188 0.9468 1 1 1 1

RAPTT 0.0521 0.0517 0.0515 0.4006 0.6269 0.9582 0.9943 1 1
n “ 200, p “ 500

New(true) 0.0517 0.0386 0.0560 1 1 1 1 1 1
New(full) 0.0509 0.0387 0.0564 1 1 1 1 1 1
New(MCP) 0.0513 0.0379 0.0550 1 1 1 1 1 1
New(SCAD) 0.0498 0.0344 0.0510 1 1 1 1 1 1

BS 0.0663 0.0662 0.0668 0.2496 0.1291 0.1014 1 0.9937 0.4166
CQ 0.0664 0.0663 0.0668 0.2494 0.1290 0.1014 1 0.9937 0.4169
SD1 0.0308 0.0088 0.0022 0.1075 0.0151 0.0030 1 0.0973 0.0104
SD2 0.0674 0.0666 0.0668 0.2522 0.1302 0.1017 1 0.9936 0.4179
LWJ1 0.0517 0.0518 0.0518 0.9697 0.9990 1 1 1 1
LWJ2 0.0019 0.0019 0.0019 1 1 1 1 1 1

RAPTT 0.0508 0.0508 0.0506 0.9735 0.9992 1 1 1 1
n “ 100, p “ 1500

New(true) 0.0677 0.0547 0.0704 0.9099 0.9925 1 1 1 1
New(full) 0.0681 0.0544 0.718 0.9090 0.9921 1 1 1 1
New(MCP) 0.0669 0.0524 0.0652 0.9091 0.9922 1 1 1 1
New(SCAD) 0.0652 0.0464 0.0575 0.9046 0.9913 1 1 1 1

BS 0.0721 0.0727 0.0732 0.0889 0.0807 0.0781 0.1661 0.1073 0.0966
CQ 0.0720 0.0727 0.0731 0.0891 0.0806 0.0781 0.1661 0.1071 0.0966
SD1 0.0225 0.0039 0.0004 0.0302 0.0044 0.0004 0.0512 0.0065 0.0006
SD2 0.0729 0.0733 0.0735 0.0913 0.0813 0.0782 0.1697 0.1086 0.0969
LWJ1 0.0476 0.0473 0.0474 0.1241 0.1809 0.4019 0.5606 0.8116 0.9943
LWJ2 0 0 0 0.0003 0.0112 0.5523 0.9518 1 1

RAPTT 0.0540 0.0535 0.0536 0.1348 0.1912 0.4151 0.5652 0.8086 0.9933
n “ 200, p “ 1500

New(true) 0.0552 0.0394 0.0643 1 1 1 1 1 1
New(full) 0.0554 0.0396 0.0644 1 1 1 1 1 1
New(MCP) 0.0543 0.0381 0.0623 1 1 1 1 1 1
New(SCAD) 0.0520 0.0323 0.0527 1 1 1 1 1 1

BS 0.0717 0.0719 0.0715 0.1059 0.0873 0.0817 0.4382 0.1612 0.1207
CQ 0.0717 0.0720 0.0715 0.1059 0.0873 0.0817 0.4384 0.1613 0.1207
SD1 0.0224 0.0050 0.0005 0.0347 0.0055 0.0006 0.1122 0.0105 0.0011
SD2 0.0732 0.0722 0.0716 0.1070 0.0877 0.0818 0.4441 0.1624 0.1211
LWJ1 0.0510 0.0510 0.0511 0.4069 0.6439 0.9745 0.9981 1.0000 1.0000
LWJ2 0.0001 0.0001 0.0001 0.4381 0.9669 1.0000 1.0000 1.0000 1.0000

RAPTT 0.0471 0.0472 0.0473 0.4123 0.6458 0.9714 0.9979 1.0000 1.0000
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Table 4.2.4. Power Comparison for Nppµ
1

,⌃
2

q and Nppµ
2

,⌃
2

q
c “ 0 c “ 0.5 c “ 1

⇢ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
n “ 100, p “ 500

New(true) 0.0641 0.0618 0.0543 0.8106 0.5503 0.4228 1 1 0.9996
New(full) 0.0639 0.0624 0.0547 0.8117 0.5502 0.4234 1 1 0.9995
New(MCP) 0.0641 0.0619 0.0538 0.8154 0.5511 0.4227 1 1 0.9996
New(SCAD) 0.0641 0.0611 0.0523 0.8152 0.5585 0.4198 1 1 0.9995

BS 0.0524 0.0580 0.0600 0.9491 0.8564 0.6158 1 1 1
CQ 0.0523 0.0580 0.0602 0.9492 0.8565 0.6158 1 1 1
SD1 0.0437 0.0471 0.0456 0.9387 0.8307 0.5606 1 1 1
SD2 0.0553 0.0611 0.0639 0.9488 0.8619 0.6225 1 1 1
LWJ1 0.0496 0.0500 0.0515 0.2661 0.2407 0.2119 0.9497 0.9159 0.8780
LWJ2 0.0001 0.0009 0.0048 0.1863 0.1575 0.1562 1 0.9998 0.9934

RAPTT 0.0499 0.0510 0.0489 0.2715 0.2449 0.2201 0.9511 0.9268 0.8871
n “ 200, p “ 500

New(true) 0.0588 0.0564 0.0529 0.9973 0.9363 0.8465 1 1 1
New(full) 0.0589 0.0568 0.0535 0.9973 0.9363 0.8470 1 1 1
New(MCP) 0.0589 0.0565 0.0527 0.9975 0.9360 0.8458 1 1 1
New(SCAD) 0.0589 0.0554 0.0514 0.9975 0.9361 0.8434 1 1 1

BS 0.0525 0.0539 0.0584 0.9999 0.9982 0.9608 1 1 1
CQ 0.0524 0.0540 0.0584 0.9999 0.9982 0.9608 1 1 1
SD1 0.0479 0.0463 0.0444 0.9999 0.9975 0.9476 1 1 1
SD2 0.0545 0.0554 0.0591 0.9999 0.9983 0.9615 1 1 1
LWJ1 0.0510 0.0501 0.0503 0.8035 0.6705 0.5403 1 1 0.9999
LWJ2 0.0025 0.0054 0.0106 0.9612 0.8414 0.6521 1 1 1

RAPTT 0.0498 0.0494 0.0502 0.8063 0.6843 0.5595 1 1 0.9999
n “ 100, p “ 1500

New(true) 0.0705 0.0664 0.0571 0.4952 0.3100 0.2294 1 0.9858 0.9309
New(full) 0.0710 0.0670 0.0574 0.4959 0.3103 0.2302 1 0.9847 0.9309
New(MCP) 0.0705 0.0666 0.0567 0.5002 0.3111 0.2285 1 0.9853 0.9306
New(SCAD) 0.0701 0.0656 0.0551 0.4997 0.3138 0.2241 1 0.9864 0.9228

BS 0.0531 0.0550 0.0572 0.6694 0.5332 0.3390 1 0.9999 0.9934
CQ 0.0531 0.0550 0.0571 0.6696 0.5332 0.3391 1 0.9999 0.9934
SD1 0.0388 0.0402 0.0419 0.6204 0.4811 0.2818 1 0.9999 0.9879
SD2 0.0552 0.0586 0.0592 0.6784 0.5422 0.3471 1 0.9999 0.9927
LWJ1 0.0499 0.0488 0.0502 0.0993 0.1009 0.1022 0.4026 0.3931 0.3719
LWJ2 0 0 0.0002 0.0001 0.0002 0.0044 0.5294 0.4724 0.4385

RAPTT 0.0527 0.0492 0.0503 0.1043 0.1066 0.1037 0.4129 0.3995 0.3851
n “ 200, p “ 1500

New(true) 0.0637 0.0619 0.0566 0.9004 0.6393 0.4985 1 1 1
New(full) 0.0643 0.0623 0.0563 0.9005 0.6396 0.4995 1 1 1
New(MCP) 0.0636 0.0623 0.0562 0.9052 0.6389 0.4974 1 1 1
New(SCAD) 0.0634 0.0613 0.0543 0.9051 0.6381 0.4922 1 1 1

BS 0.0551 0.0555 0.0565 0.9879 0.9420 0.7359 1.0000 1.0000 1.0000
CQ 0.0551 0.0555 0.0565 0.9879 0.9420 0.7359 1.0000 1.0000 1.0000
SD1 0.0459 0.0459 0.0436 0.9854 0.9316 0.6971 1.0000 1.0000 1.0000
SD2 0.0558 0.0560 0.0581 0.9873 0.9433 0.7404 1.0000 1.0000 1.0000
LWJ1 0.0487 0.0462 0.0487 0.2638 0.2397 0.2232 0.9641 0.9484 0.9265
LWJ2 0.0000 0.0000 0.0012 0.1065 0.1065 0.1298 1.0000 1.0000 0.9994

RAPTT 0.0487 0.0489 0.0491 0.2657 0.2487 0.2357 0.9653 0.9506 0.9355
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Table 4.2.5. Power Comparison for Nppµ
1

,⌃
3

q and Nppµ
2

,⌃
3

q
c “ 0 c “ 0.5 c “ 1

⇢ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
n “ 100, p “ 500

New(true) 0.0643 0.0527 0.0294 0.9408 0.8411 0.5719 1 1 1
New(full) 0.0648 0.0563 0.0383 0.9326 0.8040 0.5843 1 1 1
New(MCP) 0.0643 0.0527 0.0397 0.9423 0.8558 0.5884 1 1 1
New(SCAD) 0.0644 0.0521 0.0416 0.9420 0.8570 0.6047 1 1 1

BS 0.0654 0.0677 0.0680 0.2663 0.1319 0.1063 1 0.9272 0.4432
CQ 0.0653 0.0676 0.0681 0.2665 0.1320 0.1062 1 0.9273 0.4432
SD1 0.0481 0.0304 0.0169 0.1900 0.0590 0.0255 1 0.4625 0.0896
SD2 0.0673 0.0686 0.0694 0.2744 0.1346 0.1079 1 0.9292 0.4566
LWJ1 0.0459 0.0463 0.0467 0.3173 0.3401 0.3528 0.9761 0.9863 0.9894
LWJ2 0.0002 0.0006 0.0018 0.2837 0.3524 0.4032 1 1 1

RAPTT 0.0468 0.0508 0.0487 0.3123 0.3406 0.3665 0.9745 0.9841 0.9904
n “ 200, p “ 500

New(true) 0.0554 0.0448 0.0222 1 0.9992 0.9687 1 1 1
New(full) 0.0554 0.0505 0.0363 0.9999 0.9980 0.9733 1 1 1
New(MCP) 0.0550 0.0482 0.0370 1 0.9990 0.9736 1 1 1
New(SCAD) 0.0547 0.0445 0.0401 1 0.9993 0.9749 1 1 1

BS 0.0647 0.0661 0.0654 0.8724 0.2521 0.1588 1 1 1
CQ 0.0647 0.0661 0.0654 0.8724 0.2522 0.1587 1 1 0.9999
SD1 0.0491 0.0293 0.0135 0.7281 0.1091 0.0363 1 1 0.5085
SD2 0.0658 0.0666 0.0662 0.8774 0.2557 0.1594 1 1 1
LWJ1 0.0497 0.0502 0.0499 0.8965 0.8808 0.8327 1 1 1
LWJ2 0.0023 0.0037 0.0050 0.9945 0.9893 0.9628 1 1 1

RAPTT 0.0469 0.0471 0.469 0.8969 0.8878 0.8493 1 1 1
n “ 100, p “ 1500

New(true) 0.0687 0.0586 0.0367 0.6716 0.5170 0.2954 1 1 0.9966
New(full) 0.0692 0.0592 0.0459 0.6556 0.4739 0.3026 1 1 0.9950
New(MCP) 0.0570 0.0447 0.0339 0.7842 0.5248 0.3047 1 1 0.9965
New(SCAD) 0.0577 0.0424 0.0283 0.7912 0.5275 0.3286 1 1 0.9991

BS 0.0689 0.0689 0.0696 0.1054 0.0856 0.0794 0.4611 0.1605 0.1208
CQ 0.0690 0.0690 0.0696 0.1054 0.0856 0.0794 0.4611 0.1602 0.1208
SD1 0.0438 0.0221 0.0105 0.0671 0.0276 0.0114 0.2542 0.0495 0.0161
SD2 0.0705 0.0710 0.0708 0.1088 0.0883 0.0806 0.4767 0.1651 0.1232
LWJ1 0.0515 0.0523 0.0467 0.1131 0.1201 0.1358 0.4626 0.5313 0.6227
LWJ2 0.0000 0.0000 0.0001 0.0003 0.0010 0.0092 0.7636 0.8929 0.9465

RAPTT 0.0507 0.0518 0.0530 0.1149 0.1276 0.1429 0.4609 0.5326 0.6293
n “ 200, p “ 1500

New(true) 0.0583 0.0489 0.0257 0.9837 0.9273 0.6698 1 1 1
New(full) 0.0591 0.0533 0.0375 0.9801 0.8952 0.6916 1 1 1
New(MCP) 0.0582 0.0483 0.0389 0.9846 0.9394 0.6946 1 1 1
New(SCAD) 0.0590 0.0483 0.0409 0.9846 0.9367 0.7354 1 1 1

BS 0.0686 0.0636 0.0642 0.1616 0.1016 0.0868 1.0000 0.4438 0.2214
CQ 0.0686 0.0636 0.0642 0.1616 0.1016 0.0868 1.0000 0.4438 0.2212
SD1 0.0446 0.0218 0.0084 0.1040 0.0288 0.0128 0.9934 0.1038 0.0240
SD2 0.0700 0.0638 0.0648 0.1644 0.1038 0.0876 1.0000 0.4516 0.2228
LWJ1 0.0526 0.0508 0.0528 0.3140 0.3480 0.3852 0.9896 0.9932 0.9978
LWJ2 0.0000 0.0000 0.0006 0.2038 0.3150 0.4406 1.0000 1.0000 1.0000

RAPTT 0.0512 0.0544 0.0522 0.3283 0.3665 0.4075 0.9858 0.9926 0.9976
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Table 4.2.6. Power Comparison for Gamma (4,2) with ⌃
1

c “ 0 c “ 0.5 c “ 1
⇢ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

n “ 100, p “ 500
New(true) 0.0580 0.0395 0.0634 0.9975 1 1 1 1 1
New(full) 0.0589 0.0396 0.0664 0.9976 1 1 1 1 1
New(MCP) 0.0573 0.0384 0.0625 0.9975 1 1 1 1 1
New(SCAD) 0.0561 0.053 0.0586 0.9973 1 1 1 1 1

BS 0.0699 0.0701 0.0696 0.1350 0.0973 0.0875 0.9405 0.2644 0.1693
CQ 0.0702 0.0704 0.0699 0.1357 0.0975 0.0877 0.9421 0.2662 0.1701
SD1 0.0306 0.0096 0.0028 0.0613 0.0135 0.0030 0.4948 0.0314 0.0057
SD2 0.0711 0.0706 0.0698 0.1392 0.0980 0.0875 0.9426 0.2677 0.1697
LWJ1 0.0543 0.0547 0.0547 0.3937 0.6207 0.9545 0.9956 0.9999 1
LWJ2 0 0.0001 0.0001 0.5232 0.9478 1 1 1 1

RAPTT 0.0497 0.0502 0.0500 0.4098 0.6317 0.9596 0.9936 1 1
n “ 200, p “ 500

New(true) 0.0505 0.0358 0.0574 1 1 1 1 1 1
New(full) 0.0504 0.0359 0.0588 1 1 1 1 1 1
New(MCP) 0.0501 0.0348 0.0560 1 1 1 1 1 1
New(SCAD) 0.0487 0.0325 0.0511 1 1 1 1 1 1

BS 0.0664 0.0682 0.0686 0.2590 0.1331 0.1053 1 0.9870 0.4300
CQ 0.0664 0.0682 0.0686 0.2597 0.1335 0.1056 1 0.9877 0.4316
SD1 0.0299 0.0074 0.0023 0.1149 0.0153 0.0032 0.9999 0.1030 0.0105
SD2 0.0672 0.0686 0.0686 0.2621 0.1336 0.1057 1 0.9859 0.4304
LWJ1 0.0529 0.0529 0.0526 0.9730 0.9994 1 1 1 1
LWJ2 0.003 0.003 0.003 1 1 1 1 1 1

RAPTT 0.0521 0.0520 0.0522 0.9728 1 1 1 1 1
n “ 100, p “ 1500

New(true) 0.0579 0.0459 0.0547 0.9041 0.9940 0.9791 1 1 1
New(full) 0.0579 0.0456 0.0674 0.9034 0.9936 0.9804 1 1 1
New(MCP) 0.0571 0.0441 0.0520 0.9031 0.9934 0.9797 1 1 1
New(SCAD) 0.0551 0.0394 0.0464 0.9004 0.9919 0.9785 1 1 1

BS 0.0721 0.0727 0.0723 0.0871 0.0804 0.0942 0.1641 0.1075 0.0942
CQ 0.0724 0.0731 0.0732 0.0874 0.0805 0.0777 0.1649 0.1079 0.0947
SD1 0.0223 0.0049 0.0012 0.0511 0.0055 0.0013 0.0729 0.0070 0.0016
SD2 0.0729 0.0736 0.0724 0.0886 0.0808 0.0774 0.1677 0.1090 0.0944
LWJ1 0.0498 0.0494 0.0498 0.1292 0.1919 0.4161 0.5648 0.8074 0.9944
LWJ2 0 0 0 0.0011 0.0109 0.5475 0.9515 1 1

RAPTT 0.0500 0.0501 0.0502 0.1337 0.1923 0.4153 0.5672 0.8078 0.9931
n “ 200, p “ 1500

New(true) 0.0513 0.0344 0.0594 0.9999 1 1 1 1 1
New(full) 0.0514 0.0346 0.0630 0.9999 1 1 1 1 1
New(MCP) 0.0506 0.0332 0.0568 0.9999 1 1 1 1 1
New(SCAD) 0.0481 0.0279 0.0470 0.9999 1 1 1 1 1

BS 0.0664 0.0664 0.0664 0.1007 0.0814 0.0758 0.4475 0.1564 0.1169
CQ 0.0664 0.0664 0.0665 0.1008 0.0814 0.0763 0.4491 0.1573 0.1176
SD1 0.0216 0.0031 0.0006 0.0314 0.0034 0.0007 0.1080 0.0074 0.0009
SD2 0.0670 0.0665 0.0664 0.1018 0.0817 0.0764 0.4577 0.1584 0.1173
LWJ1 0.0484 0.0484 0.0483 0.4081 0.6394 0.9729 0.9978 0.9999 1
LWJ2 0 0 0 0.4363 0.9595 1 1 1 1

RAPTT 0.0501 0.0498 0.0498 0.4046 0.6431 0.9736 0.9978 0.9998 1
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Table 4.2.7. Power Comparison for Gamma (4,2) with ⌃
2

c “ 0 c “ 0.5 c “ 1
⇢ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

n “ 100, p “ 500
New(true) 0.0653 0.0617 0.0547 0.8110 0.5516 0.4168 1 1 0.9993
New(full) 0.0660 0.0617 0.0553 0.8112 0.5532 0.4190 1 1 0.9993
New(MCP) 0.0648 0.0612 0.0539 0.8172 0.5536 0.4175 1 1 0.9993
New(SCAD) 0.0647 0.0612 0.0525 0.8170 0.5599 0.4152 1 1 0.9993

BS 0.0527 0.0529 0.0568 0.9472 0.8545 0.6135 1 1 1
CQ 0.0535 0.0534 0.0569 0.9481 0.8554 0.6137 1 1 1
SD1 0.0441 0.0434 0.0405 0.9390 0.8327 0.5575 1 1 1
SD2 0.0572 0.0573 0.0612 0.9504 0.8618 0.6227 1 1 1
LWJ1 0.0499 0.0486 0.0470 0.2660 0.2388 0.2092 0.9471 0.9181 0.8792
LWJ2 0.0002 0.0008 0.0033 0.1837 0.1559 0.1544 1 0.9997 0.9937

RAPTT 0.0516 0.0520 0.0536 0.2751 0.2470 0.2182 0.9462 0.9228 0.8838
n “ 200, p “ 500

New(true) 0.0644 0.0624 0.0596 0.9978 0.9410 0.8463 1 1 1
New(full) 0.0649 0.0625 0.0594 0.9979 0.9421 0.8465 1 1 1
New(MCP) 0.0646 0.0623 0.0591 0.9978 0.9413 0.8457 1 1 1
New(SCAD) 0.0645 0.0617 0.0572 0.9978 0.9412 0.8427 1 1 1

BS 0.0568 0.0596 0.0609 0.9999 0.9988 0.9625 1 1 1
CQ 0.0570 0.0599 0.0612 0.9999 0.9988 0.9625 1 1 1
SD1 0.0526 0.0525 0.0465 0.9999 0.9981 0.9485 1 1 1
SD2 0.0599 0.0612 0.0631 0.9999 0.9987 0.9619 1 1 1
LWJ1 0.0513 0.0494 0.0509 0.7978 0.6711 0.5388 1 1 1
LWJ2 0.0030 0.0061 0.0111 0.9646 0.8420 0.6547 1 1 1

RAPTT 0.0500 0.0480 0.0510 0.8060 0.6852 0.5590 1 1 1
n “ 100, p “ 1500

New(true) 0.0695 0.0679 0.0599 0.4939 0.3075 0.2311 0.9999 0.9864 0.9377
New(full) 0.0702 0.0685 0.0603 0.4921 0.3099 0.2314 0.9999 0.9860 0.9371
New(MCP) 0.0694 0.0680 0.0596 0.4988 0.3096 0.2305 0.9999 0.9865 0.9373
New(SCAD) 0.0690 0.0676 0.0578 0.4978 0.3108 0.2256 0.9999 0.9872 0.9366

BS 0.0509 0.0502 0.0549 0.6690 0.5424 0.3442 1 1 0.9927
CQ 0.0517 0.0506 0.0550 0.6706 0.5438 0.3446 1 1 0.9927
SD1 0.0377 0.0383 0.0374 0.6248 0.4892 0.2848 1 1 0.9872
SD2 0.0529 0.0530 0.0578 0.6851 0.5541 0.3522 1 1 0.9920
LWJ1 0.0505 0.0492 0.0525 0.1022 0.1001 0.0936 0.4069 0.3891 0.3799
LWJ2 0 0 0.0001 0 0.0005 0.0035 0.5262 0.4733 0.4396

RAPTT 0.0531 0.0502 0.0465 0.1075 0.1040 0.1008 0.4045 0.3923 0.3823
n “ 200, p “ 1500

New(true) 0.0647 0.0629 0.0583 0.9025 0.6508 0.5075 1 1 1
New(full) 0.0643 0.0629 0.0589 0.9025 0.6511 0.5078 1 1 1
New(MCP) 0.0646 0.0628 0.0580 0.9067 0.6503 0.5063 1 1 1
New(SCAD) 0.0645 0.0618 0.0557 0.9065 0.6505 0.5018 1 1 1

BS 0.0548 0.0545 0.0549 0.9883 0.9439 0.7379 1 1 1
CQ 0.0549 0.0546 0.0549 0.9883 0.9439 0.7381 1 1 1
SD1 0.0449 0.0438 0.0432 0.9861 0.9330 0.6976 1 1 1
SD2 0.0547 0.0563 0.0558 0.9885 0.9440 0.7396 1 1 1
LWJ1 0.0510 0.0485 0.0484 0.2716 0.2491 0.2232 0.9656 0.9498 0.9308
LWJ2 0 0 0.0013 0.1151 0.1065 0.1279 1 1 0.9993

RAPTT 0.0534 0.0524 0.0500 0.2732 0.2526 0.2348 0.9670 0.9522 0.9346
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Table 4.2.8. Power Comparison for Gamma (4,2) with ⌃
3

c “ 0 c “ 0.5 c “ 1
⇢ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

n “ 100, p “ 500
New(true) 0.0648 0.0530 0.0319 0.9417 0.8412 0.5675 1 1 1
New(full) 0.0644 0.0577 0.0419 0.9353 0.8003 0.5785 1 1 1
New(MCP) 0.0647 0.0530 0.0423 0.9433 0.8554 0.5831 1 1 1
New(SCAD) 0.0646 0.0526 0.0433 0.9428 0.8571 0.6009 1 1 1

BS 0.0731 0.0741 0.0744 0.2717 0.1396 0.1116 1 0.9162 0.4524
CQ 0.0735 0.0741 0.0748 0.2731 0.1401 0.1118 1 0.9186 0.4549
SD1 0.0549 0.0342 0.0181 0.1931 0.0661 0.0277 0.9998 0.4772 0.1004
SD2 0.0745 0.0748 0.0761 0.2805 0.1426 0.1141 1 0.9188 0.4644
LWJ1 0.0485 0.0493 0.0522 0.3100 0.3344 0.3566 0.9746 0.9835 0.9893
LWJ2 0.0001 0 0.0012 0.2845 0.3491 0.3988 1 1 1

RAPTT 0.0504 0.0496 0.0497 0.3162 0.3477 0.3702 0.9777 0.9871 0.9925
n “ 200, p “ 500

New(true) 0.0564 0.0469 0.0253 1 0.9990 0.9673 1 1 1
New(full) 0.0582 0.0507 0.0384 1 0.9986 0.9713 1 1 1
New(MCP) 0.0564 0.0487 0.0163 1 0.9986 0.8559 1 1 1
New(SCAD) 0.0560 0.0469 0.0140 1 0.9992 0.9028 1 1 1

BS 0.0670 0.0685 0.0692 0.8707 0.2667 0.1678 1 1 0.9998
CQ 0.0671 0.0687 0.0692 0.8719 0.2676 0.1682 1 1 0.9998
SD1 0.0522 0.0310 0.0162 0.7306 0.1147 0.0395 1 1 0.5238
SD2 0.0678 0.0688 0.0695 0.8734 0.2690 0.1704 1 1 0.9997
LWJ1 0.0491 0.0484 0.0493 0.8969 0.8850 0.8354 1 1 1
LWJ2 0.0024 0.0032 0.0070 0.9966 0.9898 0.9624 1 1 1

RAPTT 0.0525 0.0510 0.0511 0.8929 0.8841 0.8485 1 1 1
n “ 100, p “ 1500

New(true) 0.0683 0.0617 0.0412 0.6796 0.5276 0.2981 1 1 0.9965
New(full) 0.0679 0.0642 0.0503 0.6636 0.4822 0.3057 1 1 0.9961
New(MCP) 0.0566 0.0454 0.0371 0.7803 0.5311 0.3019 1 1 0.9979
New(SCAD) 0.0570 0.0441 0.0334 0.7901 0.5332 0.3287 1 1 0.9997

BS 0.0736 0.0730 0.0727 0.1089 0.0881 0.0842 0.4717 0.1737 0.1299
CQ 0.0740 0.0734 0.0730 0.1089 0.0889 0.0847 0.4740 0.1746 0.1306
SD1 0.0474 0.0247 0.0097 0.0734 0.0298 0.0109 0.2734 0.0550 0.0170
SD2 0.0751 0.0741 0.0735 0.1112 0.0898 0.0858 0.4862 0.1790 0.1313
LWJ1 0.0535 0.0529 0.0536 0.1121 0.1264 0.1379 0.4675 0.5267 0.6150
LWJ2 0 0 0 0.0002 0.0012 0.0098 0.7534 0.8866 0.9417

RAPTT 0.0568 0.0534 0.0503 0.1217 0.1295 0.1396 0.4778 0.5501 0.6251
n “ 200, p “ 1500

New(true) 0.0573 0.0467 0.0262 0.9864 0.9240 0.6733 1 1 1
New(full) 0.0573 0.0510 0.0389 0.9825 0.8926 0.6967 1 1 1
New(MCP) 0.0570 0.0462 0.0401 0.9868 0.9371 0.7009 1 1 1
New(SCAD) 0.0575 0.0466 0.0419 0.9870 0.9348 0.7392 1 1 1

BS 0.0674 0.0678 0.0679 0.1631 0.1028 0.0901 0.9998 0.4508 0.2226
CQ 0.0674 0.0678 0.0680 0.1635 0.1030 0.0902 0.9998 0.4518 0.2231
SD1 0.0430 0.0189 0.0083 0.1019 0.0298 0.0095 0.9848 0.1113 0.0255
SD2 0.0679 0.0682 0.0683 0.1651 0.1038 0.0908 0.9998 0.4593 0.2251
LWJ1 0.0506 0.0512 0.0487 0.3142 0.3567 0.4003 0.9867 0.9940 0.9969
LWJ2 0 0 0.0001 0.2031 0.3147 0.4329 1 1 1

RAPTT 0.0485 0.0476 0.0488 0.3179 0.3601 0.4051 0.9873 0.9945 0.9970
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between variables. We can see that as ⇢ increases, the powers of these four methods

also decrease significantly.

To make a fair comparison, we consider the mixture structure of compound

symmetric and auto regressive structure, and the simulation results are reported

in Table 4.2.5 and Table 4.2.8. The basis matrices we used for ⌃
3

is the union of

the basis matrices for ⌃
1

and ⌃
2

, which are actually not the real basis matrices for

⌃
3

. However, the newly proposed methods outperform all other existing methods.

The type I error rates are controlled very well and the power increases as c and n{p
increase. For instance, when pn, p, cq “ p100, 1500, 0.5q, all other methods almost

have no powers.

In general, the power of the new test is better for the compound symmetric

structure than auto regressive structure when other situations are same. For ex-

ample when pn, p, cq “ p200, 1500, 0.5q, the power for the compound symmetric

structure and autoregressive structure are 0.905 and 0.52, respectively. There-

fore, the performances of the new proposed methods are a↵ected by the covariance

structure of the variables.

The performances of the four di↵erent sorts of new proposed methods are very

close in the simulation for ⌃
1

amd ⌃
2

, since the true basis matrices are always

considered in the estimation procedure. For ⌃
3

, the New (full) method controls

the type I error rate better, but the when we compare the power of the results,

other three methods beat the New(full). Hence, the regularization methods help

increasing the power of the test when the true basis matrices are unknown. The

fact shows the necessity of the regularization procedure in the new test technique.

4.3 Real data example

To examine the e↵ectiveness of our newly proposed method, we apply our method

to a high resolution microcomputed tomography dataset. The data were collected

by the Center for Quantitative X-ray Imaging at The Pennsylvania State Uni-

versity, which contains the bone volume measured at di↵erent density levels in a

genetic study. Our target is to detect the di↵erence of bone density patterns for

the mice with di↵erent genotypes. The data are normalized by dividing the bone
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Figure 4.1. Histogram of the correlations

volume at each density level by the total bone volume, so that the bone size e↵ect

is removed. Let µ
1

and µ
2

be the population bone volumes for genotype T0A0 and

T1A1, respectively. The hypothesis test is

H
0

: µ
1

“ µ
2

vs. H
1

: µ
1

‰ µ
2

.

In the selected data set, there are p “ 120 measurements of bone volume for each

observation, and there are n
1

“ 16 mice with genotype T0A0 and n
2

“ 13 with

T1A1 in the data set. It is a two sample mean testing problem for high-dimensional

data, since p ° n
1

` n
2

´ 2. Figure 1 is the histogram of the o↵-diagonal elements

of the correlation matrix, which shows the high correlation between variables. It

implies the irrationality of using diagonal matrix to approximate the correlation

matrix. We consider using r2Newn1{3s basis matrices selected by following the

same rule stated in the simulation studies. We apply the new test methods with-

out and with the regularization process to the high resolution microcomputed

tomography dataset, and compare the results with those of BS, CQ, SD1, SD2,

LWJ1, LWJ2 and RAPTT. The results are summarized in Table 4.3.1.
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Table 4.3.1. P-values of the tests
Method P-value Method P-value
New(full) 0 New(MCP) 0

New(SCAD) 0 BS 0.2003
CQ 0.2579 SD1 0.4313
SD2 0.3310 LWJ1 0.0458
LWJ2 0.5712 RAPTT 0.0495

Table 4.3.1 shows that the new method with or without regularization process

can reject H
0

and the p-values are 0, which is a strong evidence showing that

the di↵erence of bone volume between two di↵erent genotypes has been detected.

BS, CQ, SD1 and SD2 cannot reject H
0

as we expected, because they neglect the

correlation structure between variables. For the three projection methods, LWJ2

fails to rejectH
0

and other two methods can rejectH
0

. However, the corresponding

p-values are very close to 0.05. The results imply the e↵ectiveness of our proposed

method when the high correlations between variables and the proposed method is

also more powerful than the existing methods.

4.4 Technical Proofs

Proof of (4.1.2). Let ⌃ “ �⇤�T , the eigen-decomposition of ⌃, where � is a pˆp

orthogonal matrix and ⇤ is a diagonal matrix with k-th element �k. We represent

µd in the coordinate system of � as µd “ �a. Then

µT
d⌃

´1µd “
p

ÿ

k“1

a2k{�k,

where a “ pa
1

, ¨ ¨ ¨ , apqT and

}µd}2{
a

2trp⌃2q “
p

ÿ

k“1

a2k{p2
p

ÿ

k“1

�2kq1{2.
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Note that p2∞p
k“1

�2kq1{2 • �k for every k. Thus,

}µd}2{
a

2trp⌃2q § µT
d⌃

´1µd

for any µd. This is (4.1.2).

The best choice of W . By the property of noncentral �2-distribution, it can be

shown that the asymptotic mean and variance of T are

EapT q “ pn{n
1

` n{n
2

qtrp⌃1{2W⌃1{2q ` ✏TnW✏n,

and

VarapT q “ 2pn{n
1

` n{n
2

q2trp⌃W⌃Wq ` 4pn{n
1

` n{n
2

q✏TnW⌃W✏n

where ✏n “ ?
nµd. Then the asymptotic power function of T can be expressed as

�

$

&

%

´z↵
b

2p n
n
1

` n
n
2

q2trp⌃W⌃Wq ` ✏TnW✏n
b

2p n
n
1

` n
n
2

q2trp⌃W⌃Wq ` 4p n
n
1

` n
n
2

q✏TnW⌃W✏n

,

.

-

“ �

$

&

%

´ z↵
b

1 ` 2p n
n
1

` n
n
2

q´1

⌫TA2⌫
trpA2q

` ⌫TA⌫
b

2p n
n
1

` n
n
2

q2trpA2q ` 4p n
n
1

` n
n
2

q⌫TA2⌫

,

.

-

p“ �p⌫,Aq (4.4.1)

where ⌫ “ ⌃´1{2✏n and A “ ⌃1{2W⌃1{2. Denote by ⌘
0

“ ⌫T⌫ “ ✏Tn⌃
´1✏n, and

by �
min

pDq and �
max

pDq the minimal and maximal eigenvalues of D, respectively.

Note that
�2
min

pAq
�2
max

pAq
⌘
0

p
§ ⌫TA2⌫

trpA2q § �2
max

pAq
�2
min

pAq
⌘
0

p

and
�
min

pAq
�
max

pAq
⌘
0

b

2ppp n
n
1

` n
n
2

q ` 2⌘
0

q
§ ⌫TA⌫

b

2p n
n
1

` n
n
2

qtrpA2q ` 4⌫TA2⌫
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⌫TA⌫
b

2p n
n
1

` n
n
2

qtrpA2q ` 4⌫TA2⌫
§ �

max

pAq
�
min

pAq
⌘
0

b

2ppp n
n
1

` n
n
2

q ` 2⌘
0

q
.

Let cpAq “ �
min

pAq
�
max

pAq . Then

�p⌫,Aq • �

$

’

’

&

’

’

%

´ z↵
c

1 ` 2
´

n2

n
1

n
2

¯´1

c2pAq⌘
0

p

` cpAq⌘
0

b

2r pn4

n2

1

n2

2

` n2

2⌘
0

n
1

n
2

s

,

/

/

.

/

/

-

(4.4.2)

and

�p⌫,Aq § �

$

’

’

&

’

’

%

´ z↵
c

1 ` 2
´

n2

n
1

n
2

¯´1

c´2pAq⌘
0

p

` c´1pAq⌘
0

b

2r pn4

n2

1

n2

2

` n2

2⌘
0

n
1

n
2

s

,

/

/

.

/

/

-

(4.4.3)

where n{n
1

` n{n
2

“ n2{pn
1

n
2

q. Since 0 § cpAq § 1, then when cpAq “ 1, the

right side of (4.4.2) achieve the maximum value and

�p⌫,Aq “ �

$

’

’

&

’

’

%

´ z↵
c

1 ` 2
´

n2

n
1

n
2

¯´1

⌘
0

p

` ⌘
0

b

2r pn4

n2

1

n2

2

` n2

2⌘
0

n
1

n
2

s

,

/

/

.

/

/

-

.

In order to maximize the asymptotic power of T in the worst scenario, cpAq
should be taken to be 1 since 0 § cpAq § 1. cpAq “ 1 implies that W “
�⌃´1 for some positive constant �. This leads to the asymptotic power function

�tr´z↵pn{n
1

` n{n
2

q?
2p ` ⌘

0

s{
a

2ppn{n
1

` n{n
2

q2 ` 4pn{n
1

` n{n
2

q⌘
0

u.
Proof of Theorem 4.1.1. We have R´1 “ ✓

1

A
1

` . . . ` ✓KAK . Now, we

compute the following optimal problem as follows min
✓
1

,...,✓k
trr pRp✓

1

A
1

`. . .`✓KAKq´
Ips2. Then we have

$

’

’

&

’

’

%

p✓
1

trpRA
1

pRA
1

` p✓
2

trpRA
1

pRA
2

` . . . ` p✓KtrpRA
1

pRAK “ trpRA
1

...
p✓
1

trpRAK
pRA

1

` p✓
2

trpRAK
pRA

2

` . . . ` p✓KtrpRAK
pRAK “ trpRAK .

(4.4.4)
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That is, the estimate p✓ “ pp✓
1

, . . . , p✓KqT satisfies

p✓ “ pB
´1

p↵ (4.4.5)

where p↵ “ pp´1trpRA
1

, . . . , p´1trpRAKqT and pB is a K ˆ K dimensional matrix

with the pk
1

, k
2

q element being pp´1trpRAk
1

pRAk
2

q. To obtain the limit of p✓, we

will obtain the limits of p´1trpRAk and p´1trpRAk
1

pRAk
2

for k, k
1

, k
2

“ 1, . . . , K.

Step 1. Proving p´1trpRAk ´p´1trRAk “ opp1q for k “ 1, . . . , K. Because pR is

not related to diagp⌃q, then without loss of generality, we assume that diagp⌃q “
Ip. Then we have

p´1trpRAk “ p´1trrdiagpSqs´1{2SrdiagpSqs´1{2Ak

“ p´1trSAk ` p´1trtrdiagpSqs´1{2 ´ IpuSrdiagpSqs´1{2Ak

`p´1trStrdiagpSqs´1{2 ´ IpuAk

“ n

n ´ 2
p´1

n
ÿ

i“1

rTi R
1{2AkR

1{2ri ´ n

n ´ 2
p´1n

1

r̄T
1

R1{2AkR
1{2r̄

1

´ n

n ´ 2
p´1n

2

r̄T
2

R1{2AkR
1{2r̄

2

` opp1q
“ p´1trRAk ` opp1q

where n “ n
1

` n
2

, r̄
1

“ n´1

1

∞n
1

i“1

ri, r̄
2

“ n´1

2

∞n
1

`n
2

i“n
1

`1

ri, ri “ n´1{2w
1i for

i “ 1, . . . , n
1

and ri`n
1

“ n´1{2w
2i for i “ 1, . . . , n

2

. Then p´1trpRAk´p´1trRAk “
opp1q for k “ 1, . . . , K.

Step 2. Proving p´1trpRAk
1

pRAk
2

´p´1trRAk
1

RAk
2

´yn´2

pp´1trRAk
1

qpp´1trRAk
2

q “
opp1q for k

1

, k
2

“ 1, . . . , K. We have

p´1trpRAk
1

pRAk
2

“ p´1tr

ˆ

rdiagpSqs´1{2SrdiagpSqs´1{2Ak
1

rdiagpSqs´1{2SrdiagpSqs´1{2Ak
2

˙

“ p´1trSAk
1

SAk
2

` opp1q

“ n2

pn ´ 2q2p
´1

n
ÿ

i“1

rTi R
1{2Ak

1

R1{2rir
T
i R

1{2Ak
2

R1{2ri
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` n2

pn ´ 2q2p
´1

ÿ

i �“j

rTi R
1{2Ak

1

R1{2rjr
T
j R

1{2Ak
2

R1{2ri

´2
n2

pn ´ 2q2p
´1n

1

n
ÿ

i“1

rTi R
1{2Ak

1

R1{2r̄
1

r̄T
1

R1{2Ak
2

R1{2ri

´2
n2

pn ´ 2q2p
´1n

2

n
ÿ

i“1

rTi R
1{2Ak

1

R1{2r̄
2

r̄T
2

R1{2Ak
2

R1{2ri

` n2

pn ´ 2q2p
´1n2

1

r̄T
1

R1{2Ak
1

R1{2r̄
1

r̄T
1

R1{2Ak
2

R1{2r̄
1

` n2

pn ´ 2q2p
´1n2

2

r̄T
2

R1{2Ak
1

R1{2r̄
2

r̄T
2

R1{2Ak
2

R1{2r̄
2

`2
n2

pn ´ 2q2p
´1n

1

n
2

r̄T
1

R1{2Ak
1

R1{2r̄
2

r̄T
2

R1{2Ak
2

R1{2r̄
1

` opp1q

“ npn ´ 1q
pn ´ 2q2 p

´1trRAk
1

RAk
2

` pn

pn ´ 2q2 pp´1trRAk
1

qpp´1trRAk
2

q ` opp1q

“ p´1trRAk
1

RAk
2

` yn´2

pp´1trRAk
1

qpp´1trRAk
2

q ` opp1q.

That is, p´1trpRAk
1

pRAk
2

´ p´1trRAk
1

RAk
2

´ yn´2

pp´1trRAk
1

qpp´1trRAk
2

q “
opp1q for k

1

, k
2

“ 1, . . . , K. Let ↵ “ pp´1trRA
1

, . . . , p´1trRAKqT and A be a

K ˆ K dimensional matrix with the pk
1

, k
2

q element being p´1trRAk
1

RAk
2

for

k
1

, k
2

“ 1, . . . , K. Then we have

p✓ “ pB
´1

p↵

“ pA ` y↵↵T q´1↵` opp1q
“ pA´1 ´ A´1↵↵TA´1py´1 `↵TA´1↵q´1q↵` opp1q
“ A´1↵p1 ` y↵TA´1↵q´1 ` opp1q
“ ✓p1 ` y↵TA´1↵q´1 ` opp1q
“ p1 ` yq´1✓ ` opp1q

where ✓ “ p✓
1

, . . . , ✓KqT , p1` y↵TA´1↵q´1 “ p1` yq´1 and yn´2

“ p{pn´ 2q Ñ y

as p, n Ñ 8.

Then the proof of Theorem 4.1.1 is completed.

Proof of Theorem 4.1.2. We will prove the CLT of p
∞K

k“1

⇡krp✓k ´ p1 `
yn´2

q´1✓ks for any constant vector p⇡
1

, . . . , ⇡KqT . Step 1 will prove p
∞K

k“1

⇡krp✓k ´
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p1 ` yn´2

q´1✓ks “ trpRD
1

´ p1 ` yn´2

q´1trpRD
1

pRR´1 where ⌘ “ p⌘
1

, . . . , ⌘KqT “
B´1p⇡

1

, . . . , ⇡KqT , B “ A ` yn´2

↵↵T and D
1

“ ⌘
1

A
1

` . . . ` ⌘KAK . Step 2

will prove the CLT of ptrpRD
1

´EpRD
1

, trpRD
1

pRR´1 ´EtrpRD
1

pRR´1q. Step 3 will

obtain the CLT of p
∞K

k“1

⇡krp✓k ´ p1 ` yn´2

q´1✓ks.
Step 1. We have pB

´1 “ B´1 ´ B´1ppB ´ BqpB
´1

. Thus

p✓ “ pB
´1

p↵

“ B´1

p↵´ B´1ppB ´ BqpB
´1

p↵

“ B´1

p↵´ B´1ppB ´ Bqp✓

“ B´1

p↵´ p1 ` yn´2

q´1B´1ppB ´ Bq✓ ` oppp´1q

where ppB´Bq✓ is theK-dimensional vector with the kth element being p´1trpRAk
pRR´1´

p1 ` yn´2

qp´1trRAk for k “ 1, . . . , K. That is,

ppp✓ ´ p1 ` yn´2

q´1✓q
“ pB´1p p↵´↵q ´ p1 ` yn´2

q´1pB´1ppB ´ Bq✓
“ B´1rtrpRA

1

´ p1 ` yn´2

q´1trpRA
1

pRR´1, . . . , trpRAK ´ p1 ` yn´2

q´1trpRAK
pRR´1sT .

Then we have p⇡T rp✓ ´ p1 ` yn´2

q´1✓s “ trpRD
1

´ p1 ` yn´2

q´1trpRD
1

pRR´1.

Step 2. We will prove the CLT of ptrpRD
1

´EpRD
1

, trpRD
1

pRR´1´EtrpRD
1

pRR´1q.
It is easy to verify that tpEi´Ei´1

qtrpRD
1

, i “ 1, . . . , nu and tpEi´Ei´1

qtrpRD
1

pRR´1, i “
1, . . . , nu are two martingale di↵erence sequences and satisfying Lindeberg condi-

tions and Ei is the conditional expectation based on r
1

, . . . , ri´1

. We will first

derive ⌫ “ pE⇡T rp✓ ´ p1 ` yn´2

q´1✓s “ ⌫
1

´ p1 ` yn´2

q´1⌫
2

where ⌫
1

“ EpRD
1

and

⌫
2

“ EtrpRD
1

pRR´1. We have

trpRD
1

“ trSD
1

` trpdiag´1{2pSq ´ IpqSdiag´1{2pSqD
1

` trSpdiag´1{2pSq ´ IpqD
1

“ trSD
1

´ 1

2
trpdiagpSq ´ IpqSD

1

`1

4
trpdiagpSq ´ IpqSpdiagpSq ´ IpqD

1

` 3

8
trpdiagpSq ´ Ipq2SD

1
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´1

2
trD

1

SpdiagpS ´ Ipqq ` 3

8
trD

1

SpdiagpSq ´ Ipq2 ` opp1q
“ trSD

1

´ trpdiagpSq ´ IpqSD
1

`1

4
trpdiagpSq ´ IpqSpdiagpSq ´ IpqD

1

` 3

4
trpdiagpSq ´ Ipq2SD

1

` opp1q

where

trpdiag´1{2pSq ´ IpqSdiag´1{2pSqD
1

“ ´1

2
trpdiagpSq ´ IpqSdiag´1{2pSqD

1

` 3

8
trpdiagpSq ´ Ipq2Sdiag´1{2pSqD

1

“ ´1

2
trpdiagpSq ´ IpqSD

1

` 1

4
trpdiagpSq ´ IpqSpdiagpSq ´ IpqD

1

`3

8
trpdiagpSq ´ Ipq2SD

1

` opp1q

and

trD
1

Spdiag´1{2pSq´Ipq “ ´1

2
trD

1

SpdiagpS´Ipqq` 3

8
trD

1

SpdiagpSq´Ipq2 `opp1q.

Thus we have

⌫
1

“ EtrpRD
1

“ EtrSD
1

´ EtrpdiagpSq ´ IpqSD
1

`1

4
EtrpdiagpSq ´ IpqSpdiagpSq ´ IpqD

1

` 3

4
EtrpdiagpSq ´ Ipq2SD

1

` op1q

“ trRD
1

´ n

pn ´ 2q2
„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` npn ´ 1q
4pn ´ 2q3 trD0

D
1

` 3npn ´ 1q
4pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

eTkRD
1

ek

p
ÿ

`“1

peT` R1{2ekq4
⇢

` op1q

because ESD
1

“ trRD
1

,

EtrSD
1

pdiagpSq ´ Ipq

“ n2

pn ´ 2q2EtrR
1{2FnR

1{2D
1

pdiagpR1{2FnR
1{2q ´ Ipq ` op1q
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“ n2

pn ´ 2q2
n

ÿ

i“1

n
ÿ

j“1

p
ÿ

k“1

EeTkR
1{2rir

T
i R

1{2D
1

ekpeTkR1{2rjr
T
j R

1{2ek ´ n´1q ` op1q

“ n2

pn ´ 2q2
n

ÿ

i“1

n
ÿ

j“1

p
ÿ

k“1

ErTi R
1{2D

1

eke
T
kR

1{2riprTj R1{2eke
T
kR

1{2rj ´ n´1q ` op1q

“ n

pn ´ 2q2
„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

eke
T
kR

1{2e` ¨ eT` R1{2eke
T
kR

1{2e`

⇢

` op1q

“ n

pn ´ 2q2
„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` op1q

EtrD
1

SpdiagpSq ´ Ipq2

“ n3

pn ´ 2q3
n

ÿ

i“1

n
ÿ

j“1

n
ÿ

h“1

p
ÿ

k“1

EeTkD1

R1{2rir
T
i R

1{2ekpeTkR1{2rjr
T
j R

1{2ek ´ n´1q ` op1q

peTkR1{2rhr
T
hR

1{2ek ´ n´1q

“ n3

pn ´ 2q3
n

ÿ

i“1

n
ÿ

j“1

n
ÿ

h“1

p
ÿ

k“1

ErTi R
1{2eke

T
kD1

R1{2riprTj R1{2eke
T
kR

1{2rj ´ n´1q ` op1q

prThR1{2eke
T
kR

1{2rh ´ n´1q

“ npn ´ 1q
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

eTkRD
1

ek

p
ÿ

`“1

peT` R1{2eke
T
kR

1{2e`q2
⇢

` op1q

“ npn ´ 1q
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

eTkRD
1

ek

p
ÿ

`“1

peT` R1{2ekq4
⇢

` op1q

and

EtrpdiagpSq ´ IpqSpdiagpSq ´ IpqD
1

“ n3

pn ´ 2q3EtrpdiagpR1{2FnR
1{2q ´ IpqR1{2FnR

1{2pdiagpR1{2FnR
1{2q ´ IpqD

1

` op1q

“ n3

pn ´ 2q3
p

ÿ

k“1

p
ÿ

`“1

n
ÿ

i“1

n
ÿ

j“1

n
ÿ

m“1

EpeTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR1{2rjr
T
j R

1{2e`

peT` R1{2rmr
T
mR

1{2e` ´ n´1qeT` D1

ek ` op1q

“ npn ´ 1q
pn ´ 2q3 trD0

D
1

` op1q
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where Fn “ ∞n
i“1

rirTi , D0

is the p ˆ p dimensional matrix with the pi, jq element

being uij “ 2peiRejq3 ` �wrij
∞p

`“1

peT` R1{2eiq2peT` R1{2ejq2.
Moreover we have

trp pRR´1

pRD
1

q
“ trrSR´1 ` pdiag´1{2pSq ´ IpqSdiag´1{2pSqR´1 ` Spdiag´1{2pSq ´ IpqR´1s

¨rSD
1

` pdiag´1{2pSq ´ IpqSdiag´1{2pSqD
1

` Spdiag´1{2pSq ´ IpqD
1

s
“ trpSR´1SD

1

q ´ trrpdiagpSq ´ IpqSR´1SD
1

s ´ trrpdiagpSq ´ IpqSD
1

SR´1s
`1

4
trpdiagpSq ´ IpqSpdiagpSq ´ IpqD

1

SR´1

`1

4
trpdiagpSq ´ IpqSpdiagpSq ´ IpqR´1SD

1

`3

4
trpdiagpSq ´ Ipq2D

1

SR´1S

`3

4
trpdiagpSq ´ Ipq2R´1SD

1

S

`1

4
trpdiagpSq ´ IpqSR´1pdiagpSq ´ IpqSD

1

`1

4
trpdiagpSq ´ IpqSR´1SpdiagpSq ´ IpqD

1

`1

4
trpdiagpSq ´ IpqR´1pdiagpSq ´ IpqSD

1

S

`1

4
trpdiagpSq ´ IpqR´1SpdiagpSq ´ IpqD

1

S. (4.4.6)

Then in the following, we will derive EtrpSR´1SD
1

q, EtrrpdiagpSq´IpqSR´1SD
1

s,
EtrrpdiagpSq´IpqSD

1

SR´1s, EtrpdiagpSq´IpqSpdiagpSq´IpqD
1

SR´1, EtrpdiagpSq´
IpqSpdiagpSq´IpqR´1SD

1

, EtrpdiagpSq´Ipq2D
1

SR´1S, EtrpdiagpSq´Ipq2R´1SD
1

S,

EtrpdiagpSq´IpqSR´1pdiagpSq´IpqSD
1

, EtrpdiagpSq´IpqSR´1SpdiagpSq´IpqD
1

,

EtrpdiagpSq ´ IpqR´1pdiagpSq ´ IpqSD
1

S and EtrpdiagpSq ´ IpqR´1SpdiagpSq ´
IpqD

1

S. Because

EtrpR1{2FnFnR
1{2D

1

q “
n

ÿ

i“1

n
ÿ

j“1

EtrR1{2rir
T
i rjr

T
j R

1{2D
1

“
n

ÿ

i“1

n
ÿ

j“1

EtrR1{2rir
T
i rjr

T
j R

1{2D
1
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“ n ´ 1

n
trRD

1

` p

n
trRD

1

` 1

n

ˆ

2trRD
1

` �wtrRD
1

˙

“ n ` 1 ` p ` �w
n

trRD
1

,

then we have

EtrSR´1SD
1

“ n2

pn ´ 2q2EtrR
1{2pFn ´ n

1

r̄
1

r̄T
1

´ n
2

r̄
2

r̄T
2

qpFn ´ n
1

r̄
1

r̄T
1

´ n
2

r̄
2

r̄T
2

qR1{2D
1

“ n2

pn ´ 2q2EtrR
1{2FnFnR

1{2D
1

´ n2n
1

pn ´ 2q2EtrR
1{2r̄

1

r̄T
1

FnR
1{2D

1

´ n2n
2

pn ´ 2q2EtrR
1{2r̄

2

r̄T
2

FnR
1{2D

1

´ n2n
1

pn ´ 2q2EtrR
1{2Fnr̄1r̄

T
1

R1{2D
1

´ n2n
2

pn ´ 2q2EtrR
1{2Fnr̄2r̄

T
2

R1{2D
1

` n2n2

1

pn ´ 2q2 trR
1{2r̄

1

r̄T
1

r̄
1

r̄T
1

R1{2D
1

` n2n2

2

pn ´ 2q2 trR
1{2r̄

2

r̄T
2

r̄
2

r̄T
2

R1{2D
1

` n2n
1

n
2

pn ´ 2q2 trR
1{2r̄

1

r̄T
1

r̄
2

r̄T
2

R1{2D
1

` n2n
1

n
2

pn ´ 2q2 trR
1{2r̄

2

r̄T
2

r̄
1

r̄T
1

R1{2D
1

“ npn ´ 1q
pn ´ 2q2 trRD

1

` np

pn ´ 2q2 trRD
1

` n

pn ´ 2q2
ˆ

2trRD
1

` �wtrRD
1

˙

´4pn ´ 1q
pn ´ 2q2 trRD

1

´ 4

pn ´ 2q2 trRD
1

` p

ˆ

n
1

´ 1

n
1

pn ´ 2q2 ` n
2

´ 1

n
2

pn ´ 2q2
˙

trRD
1

“ n2 ´ 3n ` 4

pn ´ 2q2 trRD
1

` p

ˆ

n ´ 4

pn ´ 2q2 ` n
1

´ 1

n
1

pn ´ 2q2 ` n
2

´ 1

n
2

pn ´ 2q2
˙

trRD
1

` �wn

pn ´ 2q2 trRD
1

“
ˆ

n2 ´ 3n ` 4

pn ´ 2q2 ` pn ´ 4qp
pn ´ 2q2 ` pn

1

´ 1qp
n
1

pn ´ 2q2 ` pn
2

´ 1qp
n
2

pn ´ 2q2 ` �wn

pn ´ 2q2
˙

trRD
1

. (4.4.7)

EtrrpSR´1SD
1

qpdiagpSq ´ Ipqs

“ n3

pn ´ 2q3
n

ÿ

i“1

n
ÿ

j“1

n
ÿ

h“1

p
ÿ

k“1

EeTkR
1{2rir

T
i rjr

T
j R

1{2D
1

ekpeTkR1{2rhr
T
hR

1{2ek ´ n´1q ` op1q

“ npn ´ 1q
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢
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`npn ´ 1q
pn ´ 2q3

p
ÿ

k“1

„

2eTkReke
T
kRD

1

ek ` �w

p
ÿ

`“1

eT` R
1{2D

1

eke
T
kR

1{2e`peT` R1{2ekq2
⇢

` np

pn ´ 2q3
„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` op1q

“ nr2pn ´ 1q ` ps
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` op1q. (4.4.8)

EtrrSD
1

SR´1pdiagpSq ´ Ipqs

“ n3

pn ´ 2q3
n

ÿ

i“1

n
ÿ

j“1

n
ÿ

h“1

p
ÿ

k“1

EeTkR
1{2rir

T
i R

1{2D
1

R1{2rjr
T
j R

´1{2ek

¨peTkR1{2rhr
T
hR

1{2ek ´ n´1q ` op1q

“ npn ´ 1q
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

`npn ´ 1q
pn ´ 2q3

„

2trRD
1

R ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2eke

T
kRD

1

R1{2e`peT` R1{2ekq2
⇢

` n

pn ´ 2q3 trRD
1

„

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2ekpeTkR1{2e`q3

⇢

` op1q (4.4.9)

EtrpdiagpSq ´ IpqSpdiagpSq ´ IpqR´1SD
1

(4.4.10)

“ EtrpdiagpSq ´ IpqSpdiagpSq ´ IpqD
1

SR´1

“ npn ´ 1q
pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi Reje
T
i D1

ej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

` op1q

EtrpdiagpSq ´ Ipq2D
1

SR´1S

“ npn ´ 1q
pn ´ 2q3

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

`npn ´ 1qp
pn ´ 2q4

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

` op1q
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“ npn ´ 1qpn ´ 2 ` pq
pn ´ 2q4

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

` op1q(4.4.11)

EtrpdiagpSq ´ Ipq2R´1SD
1

S

“ npn ´ 1q
pn ´ 2q3

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

`npn ´ 1qtrRD
1

pn ´ 2q4

«

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4
�

(4.4.12)

EtrpdiagpSq ´ IpqSR´1pdiagpSq ´ IpqSD
1

“ EtrpdiagpSq ´ IpqR´1SpdiagpSq ´ IpqD
1

S

“ npn ´ 2q
pn ´ 1q3

«

2 ` �w

p
ÿ

i“1

eTi RD
1

ei

p
ÿ

k“1

peTkR1{2eiq4
�

` op1q (4.4.13)

EtrpdiagpSq ´ IpqR´1pdiagpSq ´ IpqSD
1

S (4.4.14)

“ npn ´ 1q
pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i RD

1

Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

`npn ´ 1qtrRD
1

pn ´ 2q4
p

ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

and

EtrpdiagpSq ´ IpqD
1

pdiagpSq ´ IpqSD
1

S (4.4.15)

“ npn ´ 1q
pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi D1

eje
T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

`npn ´ 1qp
pn ´ 2q4

p
ÿ

i“1

p
ÿ

j“1

eTi D1

eje
T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

“ npn ´ 1qpn ´ 2 ` pq
pn ´ 2q4

p
ÿ

i“1

p
ÿ

j“1

eTi D1

eje
T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

.
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By (4.4.6)-(4.4.15), we have

⌫
2

“ trEpRR´1

pRD
1

“
ˆ

n2 ´ 3n ` 4

pn ´ 2q2 ` pn ´ 4qp
pn ´ 2q2 ` pn

1

´ 1qp
n
1

pn ´ 2q2 ` pn
2

´ 1qp
n
2

pn ´ 2q2 ` �wn

pn ´ 2q2
˙

trRD
1

´nr2pn ´ 1q ` ps
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

´npn ´ 1q
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

´npn ´ 1q
pn ´ 2q3

„

2trRD
1

R ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2eke

T
kRD

1

R1{2e`peT` R1{2ekq2
⇢

´ n

pn ´ 2q3 trRD
1

„

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2ekpeTkR1{2e`q3

⇢

` npn ´ 1q
2pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi Reje
T
i D1

ej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

`3npn ´ 1qpn ´ 2 ` pq
4pn ´ 2q4

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

`3npn ´ 1q
4pn ´ 2q3

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

`3npn ´ 1qtrRD
1

4pn ´ 2q4

«

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4
�

`2npn ´ 1q
4pn ´ 2q3

«

2trRD
1

` �w

p
ÿ

i“1

eTi RD
1

ei

p
ÿ

k“1

peTkR1{2eiq4
�

` npn ´ 1q
4pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i RD

1

Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

`npn ´ 1qtrRD
1

4pn ´ 2q4
p

ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

`npn ´ 1qpn ´ 2 ` pq
4pn ´ 2q4

p
ÿ

i“1

p
ÿ

j“1

eTi D1

eje
T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

.
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That is,

⌫
2

“
ˆ

n2 ´ 3n ` 4

pn ´ 2q2 ` pn ´ 4qp
pn ´ 2q2 ` pn

1

´ 1qp
n
1

pn ´ 2q2 ` pn
2

´ 1qp
n
2

pn ´ 2q2 ` �wn

pn ´ 2q2
˙

trRD
1

´nr3pn ´ 1q ` ps
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

´npn ´ 1q
pn ´ 2q3

„

2trRD
1

R ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2eke

T
kRD

1

R1{2e`peT` R1{2ekq2
⇢

´ n

pn ´ 2q3 trRD
1

„

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2ekpeTkR1{2e`q3

⇢

`3npn ´ 1qp ` 6npn ´ 1qpn ´ 2q
4pn ´ 2q4

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

`3npn ´ 1qtrRD
1

4pn ´ 2q4

«

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4
�

`2npn ´ 1q
4pn ´ 2q3

«

2trRD
1

` �w

p
ÿ

i“1

eTi RD
1

ei

p
ÿ

k“1

peTkR1{2eiq4
�

` npn ´ 1q
4pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i RD

1

Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

`npn ´ 1qtrRD
1

4pn ´ 2q4
p

ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

`npn ´ 1qp3n ´ 6 ` pq
4pn ´ 2q4

p
ÿ

i“1

p
ÿ

j“1

eTi D1

eje
T
i Rej

«

2peTi Rejq2 ` �w

p
ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

.

Thus we have

⌫ “ ⌫
1

´ p1 ` yn´2

q´1⌫
2

“ trRD
1

´ n

pn ´ 2q2
„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` npn ´ 1q
4pn ´ 2q3 trD0

D
1

` 3npn ´ 1q
4pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

eTkRD
1

ek

p
ÿ

`“1

peT` R1{2ekq4
⇢
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´ 1

1 ` yn´2

ˆ

n2 ´ 3n ` 4

pn ´ 2q2 ` pn ´ 4qp
pn ´ 2q2 ` pn

1

´ 1qp
n
1

pn ´ 2q2 ` pn
2

´ 1qp
n
2

pn ´ 2q2 ` �wn

pn ´ 2q2
˙

trRD
1

`p1 ` yn´2

q´1

nr3pn ´ 1q ` ps
pn ´ 2q3

„

2trRD
1

` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
1{2D

1

ekpeTkR1{2e`q3
⇢

` npn ´ 1q
p1 ` yn´2

qpn ´ 2q3
„

2trRD
1

R ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2eke

T
kRD

1

R1{2e`peT` R1{2ekq2
⇢

`p1 ` yn´2

q´1

n

pn ´ 2q3 trRD
1

„

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

eT` R
´1{2ekpeTkR1{2e`q3

⇢

´3npn ´ 1qp ` 6npn ´ 1qpn ´ 2q
4p1 ` yn´2

qpn ´ 2q4

«

2trD
1

R ` �w

p
ÿ

k“1

eTkD1

Rek

p
ÿ

`“1

peTkR1{2e`q4
�

´p1 ` yn´2

q´1

3npn ´ 1qtrRD
1

4pn ´ 2q4

«

2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4
�

´p1 ` yn´2

q´1

2npn ´ 1q
4pn ´ 2q3

«

2trRD
1

` �w

p
ÿ

i“1

eTi RD
1

ei

p
ÿ

k“1

peTkR1{2eiq4
�

´p1 ` yn´2

q´1

npn ´ 1q
4pn ´ 2q3

p
ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i RD

1

Rej

«

2peTi Rejq2

`�w
p

ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

´p1 ` yn´2

q´1

npn ´ 1qtrRD
1

4pn ´ 2q4
p

ÿ

i“1

p
ÿ

j“1

eTi R
´1eje

T
i Rej

«

2peTi Rejq2

`�w
p

ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

´p1 ` yn´2

q´1

npn ´ 1qp3n ´ 6 ` pq
4pn ´ 2q4

p
ÿ

i“1

p
ÿ

j“1

eTi D1

eje
T
i Rej

«

2peTi Rejq2

`�w
p

ÿ

k“1

peTkR1{2eiq2peTkR1{2ejq2
�

.

Moreover, we have

�
110

“
n

ÿ

i“1

Ei´1

ptrEi
pRD

1

´ Ei´1

pRD
1

q2
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“ 2n´1trpRD
1

q2 ` �wn
´1

p
ÿ

`“1

peT` R1{2D
1

R1{2e`q2

`n´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

˜

2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
¸

´2n´1

p
ÿ

`“1

eT` RD
1

e`

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2 ¨ eTkR1{2D
1

R1{2ek

¸

�
220

“
n

ÿ

i“1

Ei´1

ptrEi
pRR´1

pRD
1

´ Ei´1

pRR´1

pRD
1

q2

“ pyn ` 2q2n´1

«

2trpRD
1

q2 ` �w

p
ÿ

`“1

peT` R1{2D
1

R1{2e`q2
�

`pn´1trRD
1

q2p2 ´ 2yn ´ �wynq
`2ynrn´1trpRD

1

q2s

`p2 ` ynq2n´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

„

2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
⇢

`pn´1trRD
1

q2
n

„

2trR2 ` �wp

⇢

´2p2 ` ynq2n´1

p
ÿ

`“1

eT` RD
1

e`

«

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

�

´2p2 ` ynqpn´1trRD
1

qn´1

p
ÿ

`“1

«

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

�

`p4 ` 2ynqpn´1trRD
1

qn´1

p
ÿ

`
1

“1

eT`
1

RD
1

e`
1

„

2eT`
1

R2e`
1

` �w

⇢

�
120

“
n

ÿ

i“1

Ei´1

rptrEi
pRD

1

´ Ei´1

pRD
1

qptrEi
pRR´1

pRD
1

´ Ei´1

pRR´1

pRD
1

qs

“ p2 ` ynqn´1p2trRD
1

RD
1

` �w

p
ÿ

`“1

eT` R
1{2D

1

R1{2e`e
T
` R

1{2D
1

R1{2e`q

`pn´1trRD
1

qpn´1trRD
1

qp2 ` �wq



107

´p1 ` ynqn´1

p
ÿ

`“1

eT` RD
1

e`

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

¸

´n´1

p
ÿ

`“1

eT` RD
1

e`

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2 ¨ eTkR1{2D
1

R1{2ek

¸

´pn´1trRD
1

qn´1

p
ÿ

`“1

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

¸

´p2 ` ynqn´1

p
ÿ

`“1

eT` RD
1

e`

„

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

⇢

´pn´1trRD
1

qpn´1trRD
1

qp2 ` �wq

`p1 ` ynqn´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

«

2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
�

`n´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

«

2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
�

`n´1trRD
1

n

p
ÿ

`
1

“1

eT`
1

RD
1

e`
1

“

2eT`
1

R2e`
1

` �w
‰

“ p2 ` ynqn´1p2trRD
1

RD
1

` �w

p
ÿ

`“1

eT` R
1{2D

1

R1{2e`e
T
` R

1{2D
1

R1{2e`q

´p4 ` 2ynqn´1

p
ÿ

`“1

eT` RD
1

e`

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

¸

´pn´1trRD
1

qn´1

p
ÿ

`“1

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

¸

`p2 ` ynqn´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

«

2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
�

`n´1trRD
1

n

p
ÿ

`
1

“1

eT`
1

RD
1

e`
1

“

2eT`
1

R2e`
1

` �w
‰



108

�2 “ �
110

` p1 ` yq´2�
220

´ 2p1 ` yq´1�
120

“ 2n´1trpRD
1

q2 ` �wn
´1

p
ÿ

`“1

peT` R1{2D
1

R1{2e`q2

`n´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

˜

2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
¸

´2n´1

p
ÿ

`“1

eT` RD
1

e`

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2 ¨ eTkR1{2D
1

R1{2ek

¸

`p1 ` yq´2py ` 2q2n´1

«

2trpRD
1

q2 ` �w

p
ÿ

`“1

peT` R1{2D
1

R1{2e`q2
�

`p1 ` yq´2pn´1trRD
1

q2p2 ´ 2y ´ �wynq ` 2yp1 ` yq´2rn´1trpRD
1

q2s

`p1 ` yq´2p2 ` yq2n´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

„

2peT`
1

Re`
2

q2

`�w
p

ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
⇢

` p1 ` yq´2

pn´1trRD
1

q2
n

„

2trR2 ` �wp

⇢

´2p1 ` yq´2p2 ` yq2n´1

p
ÿ

`“1

eT` RD
1

e`

«

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

�

´2p1 ` yq´2p2 ` yqpn´1trRD
1

qn´1

p
ÿ

`“1

«

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

�

`p1 ` yq´2p4 ` 2yqpn´1trRD
1

qn´1

p
ÿ

`
1

“1

eT`
1

RD
1

e`
1

„

2eT`
1

R2e`
1

` �w

⇢

´2p1 ` yq´1p2 ` yqn´1p2trRD
1

RD
1

` �w

p
ÿ

`“1

eT` R
1{2D

1

R1{2e`e
T
` R

1{2D
1

R1{2e`q

`2p1 ` yq´1p4 ` 2yqn´1

p
ÿ

`“1

eT` RD
1

e`

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

¸

`2p1 ` yq´1pn´1trRD
1

qn´1

p
ÿ

`“1

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2eTkR1{2D
1

R1{2ek

¸

´2p1 ` yq´1p2 ` yqn´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

«

2peT`
1

Re`
2

q2
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`�w
p

ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
�

´2p1 ` yq´1

n´1trRD
1

n

p
ÿ

`
1

“1

eT`
1

RD
1

e`
1

“

2eT`
1

R2e`
1

` �w
‰

That is,

�2 “
ˆ

1 ` 2y

1 ´ y

˙

2

ˆ

2n´1trpRD
1

q2 ` �wn
´1

p
ÿ

`“1

peT` R1{2D
1

R1{2e`q2
˙

`
ˆ

1 ` 2y

1 ´ y

˙

2

n´1

p
ÿ

`
1

“1

p
ÿ

`
2

“1

eT`
1

RD
1

e`
1

eT`
2

RD
1

e`
2

˜

2peT`
1

Re`
2

q2 ` �w

p
ÿ

k“1

peTkR1{2e`
1

q2peTkR1{2e`
2

q2
¸

´2

ˆ

1 ` 2y

1 ´ y

˙

2

n´1

p
ÿ

`“1

eT` RD
1

e`

˜

2eT` RD
1

Re` ` �w

p
ÿ

k“1

peTkR1{2e`q2 ¨ eTkR1{2D
1

R1{2ek

¸

`p1 ` yq´2pn´1trRD
1

q2p2 ´ 2y ´ �wynq
`2p1 ` yq´2yrn´1trpRD

1

q2s
`p1 ` yq´2pn´1trRD

1

q2p2n´1trR2 ` �wynq
´ 2

p1 ` yq2 pn´1trRD
1

q
`

2n´1trR2D
1

` �wn
´1trRD

1

˘

` 2

p1 ` yq2 pn´1trRD
1

qn´1

p
ÿ

`
1

“1

eT`
1

RD
1

e`
1

“

2eT`
1

R2e`
1

` �w
‰

.

Step 3: Thus we have that rp�ij0q2i,j“1

s´1{2ptrpRD
1

´ ⌫
1

, trpRD
1

pRR´1 ´ ⌫
2

qT is

asymptotically distributed as bivariate normal distribution with mean zero and

identity covariance matrix. By the delta method, we have that �´1p
∞K

k“1

⇡krp✓k ´
p1 ` yn´2

q´1✓ks is asymptotically distributed as N(0, 1).

The proof of Theorem 4.1.2 is completed.

Proof of Theorem 4.1.3. Let the estimate of R´1 be

yR´1 “ pp✓
1

A
1

` . . . ` p✓KAKq.

where yR´1 “ r{R´1{2s2 and the estimate of R1{2 is p{R´1{2q´1. Because the ex-
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pression px̄
1

´ x̄
2

qT rdiagpSqs´1{2 remains the same for any variances of x, then we

assume that diagp⌃q “ Ip without loss of generality. Thus we have

Tn “ px̄
1

´ x̄
2

qT rdiagpSqs´1{2
yR´1rdiagpSqs´1{2px̄

1

´ x̄
2

q

“ c
K
ÿ

j“1

✓jpx̄1

´ x̄
2

qT rdiagpSqs´1{2AjrdiagpSqs´1{2px̄
1

´ x̄
2

q

`
K
ÿ

j“1

pp✓j ´ c✓jqpx̄
1

´ x̄
2

qT rdiagpSqs´1{2AjrdiagpSqs´1{2px̄
1

´ x̄
2

q

“ c
K
ÿ

j“1

✓jpx̄1

´ x̄
2

qT rdiagpSqs´1{2AjrdiagpSqs´1{2px̄
1

´ x̄
2

q ` Oppp´1q

“ cpx̄
1

´ x̄
2

qT rdiagpSqs´1{2R´1rdiagpSqs´1{2px̄
1

´ x̄
2

q ` Oppp´1q
“ cpx̄

1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q ` cpx̄
1

´ x̄
2

qT trdiagpSqs´1{2 ´ IpuR´1rdiagpSqs´1{2px̄
1

´ x̄
2

q
`cpx̄

1

´ x̄
2

qTR´1trdiagpSqs´1{2 ´ Ipupx̄
1

´ x̄
2

q ` Oppp´1q
“ cpx̄

1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q ` 2cpx̄
1

´ x̄
2

qT trdiagpSqs´1{2 ´ IpuR´1px̄
1

´ x̄
2

q
`cpx̄

1

´ x̄
2

qT trdiagpSqs´1{2 ´ IpuR´1trdiagpSqs´1{2 ´ Ipupx̄
1

´ x̄
2

q ` Oppp´1q
“ cpx̄

1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q ´ cpx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q
`3c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q

` c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q ` Oppp´1q.

Because

Varpnpx̄
1

´x̄
2

qTR´1px̄
1

´x̄
2

qq “ p2p`pn´1

1

qn
2

n2

1

`p2p`pn´1

2

qn
2

n2

2

` 4pn2

n
1

n
2

, (4.4.16)

then let

p2pq´1{2nTn

“ p2pq´1{2cnpx̄
1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q
´p2pq´1{2cnpx̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q
`p2pq´1{2n

3c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q

`p2pq´1{2n
c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q ` Oppp´1q.(4.4.17)
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Because p2pq´1{2cnpx̄
1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q is the quadratic form of x̄
1

´ x̄
2

, then

p2pq´1{2cnpx̄
1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q ´ Ep2pq´1{2cnpx̄
1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q follows

a central limit theorem. In the following, we will prove that ´p2pq´1{2cnpx̄
1

´
x̄
2

qT tdiagpSq´IpuR´1px̄
1

´ x̄
2

q “ Er´p2pq´1{2cnpx̄
1

´ x̄
2

qT tdiagpSq´IpuR´1px̄
1

´
x̄
2

qs ` opp1q. Similarly, it can be proved that

p2pq´1{2n
3c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q

´Ep2pq´1{2n
3c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q “ opp1q

and

p2pq´1{2n
c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q

´Ep2pq´1{2n
c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q “ opp1q.

Then we have

c�

„

p2pq´1{2nTn ´ p2pq´1{2cnEpx̄
1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q

`p2pq´1{2cnEpx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q (4.4.18)

´p2pq´1{2n
3c

4
Epx̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q

´p2pq´1{2n
c

4
Epx̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q
⇢

Ñ Np0, 1q (4.4.19)

where

�2 “ Var

„

p2pq´1{2nEpx̄
1

´ x̄
2

qTR´1px̄
1

´ x̄
2

q
⇢

`Var

„

p2pq´1{2npx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q
⇢

.

In fact, it will be proved that Var

„

p2pq´1{2cnpx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´
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x̄
2

q
⇢

“ op1q.
Step 1. We will show that under H

0

, we have

´p2pq´1{2cnpx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q

“ ´p2pq´1{2cn
n ´ 2

ˆ

1

n
1

` 1

n
2

˙

˜

2p ` �w

p
ÿ

`“1

p
ÿ

k“1

peT` R1{2ekq3eT` R´1{2ek

¸

` opp1q

p2pq´1{2n
3c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q

“ 3cnpn ´ 1q
4pn ´ 2q2?2p

ˆ

1

n
1

` 1

n
2

˙

r2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4s ` opp1q

p2pq´1{2n
c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q

“ cnpn ´ 1q
4pn ´ 2q2?2p

ˆ

1

n
1

` 1

n
2

˙

trR´1

˜

2peThRe`q3 ` �we
T
hRe`

p
ÿ

f“1

peTf R1{2ehq2peTf R1{2e`q2
¸p

h,`“1

`opp1q

and

Var

„

p2pq´1{2ncpx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q
⇢

“ nc2

2p

ˆ

1

n2

1

` 1

n2

2

˙

«

4trR2 ` 2p�w ` 2
ÿ

k
1

eTk
1

R2ek
1

eTk
1

R´1ek
1

` �wtrR
´1

�

.

We have

p2pq´1{2npx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q
“ p2pq´1{2nx̄T

1

tdiagpSq ´ IpuR´1x̄
1

`p2pq´1{2nx̄T
2

tdiagpSq ´ IpuR´1x̄
2

´2p2pq´1{2nx̄T
1

tdiagpSq ´ IpuR´1x̄
2



113

“ n3

n2

1

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

ÿ

i“1

n
1

ÿ

j“1

n
1

ÿ

k“1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

` n3

n2

1

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

n
1

ÿ

j“1

n
1

ÿ

k“1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

` n3

n2

2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

ÿ

i“1

n
1

`n
2

ÿ

j“n
1

`1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

` n3

n2

2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

n
1

`n
2

ÿ

j“n
1

`1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

´ 2n3

n
1

n
2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

ÿ

i“1

n
1

ÿ

j“1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

´ 2n3

n
1

n
2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

n
1

ÿ

j“1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

“ n3

n2

1

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

1§i§n
1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rir
T
i R

1{2e`

` n3

n2

1

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

1§i �“j§n
1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
j R

1{2e`

` n3

n2

1

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

1§i �“j �“k§n
1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

` n3

n2

1

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

n
1

ÿ

j“1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
j R

1{2e`

` n3

n2

1

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

ÿ

1§j �“k§n
1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

` n3

n2

2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

ÿ

i“1

n
1

`n
2

ÿ

j“n
1

`1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
j R

1{2e`

` n3

n2

2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

n
1

ÿ

i“1

ÿ

n
1

`1§j �“k§n
1

`n
2

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

` n3

n2

2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

n
1

`1§i§n
1

`n
2

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2ririR
1{2e`
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` n3

n2

2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

n
1

`1§i �“j§n
1

`n
2

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
j R

1{2e`

` n3

n2

2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

n
1

`1§i �“j �“k§n
1

`n
2

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

´ 2n3

n
1

n
2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

1§i§n
1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rirkR
1{2e`

´ 2n3

n
1

n
2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

1§i �“j§n
1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`

´ 2n3

n
1

n
2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

n
1

`1§i§n
1

`n
2

n
1

ÿ

j“1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjriR
1{2e`

´ 2n3

n
1

n
2

pn ´ 2qp2pq´1{2
p

ÿ

`“1

ÿ

n
1

`1§i �“k§n
1

`n
2

n
1

ÿ

j“1

teT` R1{2rir
T
i R

1{2e` ´ n´1ueT` R´1{2rjr
T
kR

1{2e`.

Then we have

´p2pq´1{2cnpx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q

“ ´p2pq´1{2cn
n ´ 2

ˆ

1

n
1

` 1

n
2

˙

˜

2p ` �w

p
ÿ

`“1

p
ÿ

k“1

peT` R1{2ekq3eT` R´1{2ek

¸

` opp1q

Because

Var

˜

p
ÿ

k“1

ÿ

1§i �“j§n
1

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
j R

1{2ek

`
p

ÿ

k“1

ÿ

1§i �“j �“`§n
1

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
` R

1{2ek

¸

“ n3

1

n4

p2trR2 ` �wpq

`n3

1

n4

ÿ

k
1

,k
2

r2peTk
1

Rek
2

q2 ` �w

p
ÿ

h“1

peThR1{2ek
1

q2peThR1{2ek
2

q2seTk
1

R´1ek
1

`n3

1

n4

p2trR2 ` �wpq ` op1q

“ 2n3

1

n4

p2trR2 ` �wpq ` n3

1

n4

ÿ

k
1

r2eTk
1

R2ek
1

` �wseTk
1

R´1ek
1

` op1q
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“ n3

1

n4

«

4trR2 ` �w2p ` 2
ÿ

k
1

eTk
1

R2ek
1

eTk
1

R´1ek
1

` �wtrR
´1

�

` op1q,

Var

˜

p
ÿ

k“1

ÿ

n
1

`1§i �“j§n

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
j R

1{2ek

`
p

ÿ

k“1

ÿ

n
1

`1§i �“j �“`§n

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
` R

1{2ek

¸

“ n3

2

n4

«

4trR2 ` �w2p ` 2
ÿ

k
1

eTk
1

R2ek
1

eTk
1

R´1ek
1

` �wtrR
´1

�

` op1q,

Var

˜

p
ÿ

k“1

n
1

ÿ

i“1

n
ÿ

j“n
1

`1

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
j R

1{2ek

`
p

ÿ

k“1

n
1

ÿ

i“1

ÿ

n
1

`1§j �“`§n

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
` R

1{2ek

¸

“ n
1

n2

2

n4

«

4trR2 ` �w2p ` 2
ÿ

k
1

eTk
1

R2ek
1

eTk
1

R´1ek
1

` �wtrR
´1

�

` op1q,

and

Var

˜

p
ÿ

k“1

n
ÿ

i“n
1

`1

n
1

ÿ

j“1

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
j R

1{2ek

`
p

ÿ

k“1

n
ÿ

i“n
1

`1

ÿ

1§j �“`§n
1

peTkR1{2rir
T
i R

1{2ek ´ n´1qeTkR´1{2rjr
T
` R

1{2ek

¸

“ n
2

n2

1

n4

«

4trR2 ` �w2p ` 2
ÿ

k
1

eTk
1

R2ek
1

eTk
1

R´1ek
1

` �wtrR
´1

�

` op1q,

then we have

Var

„

p2pq´1{2cnpx̄
1

´ x̄
2

qT tdiagpSq ´ IpuR´1px̄
1

´ x̄
2

q
⇢
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“ nc2

2p

ˆ

1

n2

1

` 1

n2

2

˙

«

4trR2 ` 2p�w ` 2
ÿ

k
1

eTk
1

R2ek
1

eTk
1

R´1ek
1

` �wtrR
´1

�

Ñ 0.

Thus we have

p2pq´1{2n
c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q

“ cnpn ´ 1q
4pn ´ 2q2?2p

ˆ

1

n
1

` 1

n
2

˙

trR´1

˜

2peThRe`q3 ` �we
T
hRe`

p
ÿ

f“1

peTf R1{2ehq2peTf R1{2e`q2
¸p

h,`“1

`opp1q. (4.4.20)
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Similarly, we have

p2pq´1{2n
3c

4
Epx̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q

“ 3cnpn ´ 1q
4pn ´ 2q2?2p

ˆ

1

n
1

` 1

n
2

˙

r2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4s ` opp1q(4.4.21)

where

p2pq´1{2n
3c

4
Epx̄

1

´ x̄
2

qT tdiagpSq ´ Ipu2R´1px̄
1

´ x̄
2

q

“ p2pq´1{2n
3c

4
Ex̄T

1

tdiagpSq ´ Ipu2R´1x̄
1

`p2pq´1{2n
3c

4
Ex̄T

2

tdiagpSq ´ Ipu2R´1x̄
2

´2p2pq´1{2n
3c

4
Ex̄T

1

tdiagpSq ´ Ipu2R´1x̄
2

“ n4p2pq´1{2

n2

1

pn ´ 2q2
3c

4
E

p
ÿ

`“1

n
1

ÿ

i“1

n
1

ÿ

j“1

n
1

ÿ

k“1

teT` R1{2rTi riR
1{2e` ´ n´1u2eT` R´1{2rjrkR

1{2e`

`n4p2pq´1{2

n2

1

pn ´ 2q2
3c

4
E

p
ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

n
1

ÿ

j“1

n
1

ÿ

k“1

teT` R1{2rTi riR
1{2e` ´ n´1u2eT` R´1{2rjrkR

1{2e`

`n4p2pq´1{2

n2

2

pn ´ 2q2
3c

4
E

p
ÿ

`“1

n
1

ÿ

i“1

n
1

`n
2

ÿ

j“n
1

`1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rTi riR
1{2e` ´ n´1u2eT` R´1{2rjrkR

1{2e`

`n4p2pq´1{2

n2

2

pn ´ 2q2
3c

4
E

p
ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

n
1

`n
2

ÿ

j“n
1

`1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rTi riR
1{2e` ´ n´1u2eT` R´1{2rjrkR

1{2e`

´ 2n4p2pq´1{2

n
1

n
2

pn ´ 2q2
3c

4
E

p
ÿ

`“1

n
1

ÿ

i“1

n
1

ÿ

j“1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rTi riR
1{2e` ´ n´1u2eT` R´1{2rjrkR

1{2e`

´ 2n4p2pq´1{2

n
1

n
2

pn ´ 2q2
3c

4
E

p
ÿ

`“1

n
1

`n
2

ÿ

i“n
1

`1

n
1

ÿ

j“1

n
1

`n
2

ÿ

k“n
1

`1

teT` R1{2rTi riR
1{2e` ´ n´1u2eT` R´1{2rjrkR

1{2e` ` op1q

“ 3cnpn ´ 1q
4pn ´ 2q2?2p

ˆ

1

n
1

` 1

n
2

˙

r2p ` �w

p
ÿ

k“1

p
ÿ

`“1

peTkR1{2e`q4s ` op1q

Moreover, we have

p2pq´1{2n
c

4
px̄

1

´ x̄
2

qT tdiagpSq ´ IpuR´1tdiagpSq ´ Ipupx̄
1

´ x̄
2

q
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“ p2pq´1{2n
c

4
trR´1tdiagpSq ´ Ipupx̄

1

´ x̄
2

qpx̄
1

´ x̄
2

qT tdiagpSq ´ Ipu

“ p2pq´1{2n4

pn ´ 2q2n2

1

c

4
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Similar to (4.4.20), it is obtained that
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Step 2. UnderH
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The proof of Theorem 4.1.3 is completed.
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where �n “ µT
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2
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H
0

: µ
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where ´z↵ is the critical value of Np0, 1q at the level ↵ and � is the cdf of Np0, 1q.
Then we have Qp�n, �0|↵q • �p´z↵q. That is, the test Tn is asymptotically unbi-

ased.

Power Comparison: We consider the Gaussian case. The power function of

the proposed test in this paper is approximately equal to

Qp�n, �0|↵q « �
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2pn2pn´1

1

` n´1

2

q2 ` 4n2pn´1

1

` n´1

2

q�n

¸

.

Bai and Saranadasa (1996)’s test has the power as follows
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˜

´z↵ ` }µd}2
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2pn´1

1

` n´1
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2
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When⌃ is the identity matrix, we approximately have Qp�n, �0|↵q “ Qbspµd,⌃|↵q.
Moreover, Qbspµd,⌃|↵q is the increasing function of }µd}2{r

?
2tr⌃2pn´1

1

` n´1

2

qs.
Let ⌃ “ �⇤�T , the eigen-decomposition of ⌃, where � is a p ˆ p orthogonal

matrix and ⇤ is a diagonal matrix with k-th element �k. We represent µd in the
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coordinate system of � as µd “ �a. Then

�n{?
p “ µT

d⌃
´1µd “ p´1{2

p
ÿ

k“1

a2k{�k,

where a “ pa
1

, ¨ ¨ ¨ , apqT and

}µd}2{
a
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p

ÿ
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ÿ
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By Cauchy-Schwarz inequality pp´1

∞p
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∞p
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∞p
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∞p
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∞p
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p
ÿ
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p
ÿ
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p
ÿ
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Then we have
p

ÿ
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a2k{�k •
∞p

k“1

a2k
a

∞p
k“1

�2k{p
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a

2ppn´1

1

` n´1

2

qs • }µd}2{r
?
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1

` n´1

2

qs.

Thus we have

Qp�n, �0|↵q • Qbspµd,⌃|↵q.

The proof of Theorem 4.1.4 is completed.



Chapter 5
Conclusion and Extension

5.1 Conclusion

In the first project, we propose a new joint feature screening method for generalized

time varying coe�cient model. The new method considers the joint e↵ect among

the predictors, so it can outperform the existing marginal methods when there

exists some important variables that are marginally independent of the response.

We also propose an e�cient algorithm to carry on the whole screening process, and

we also show that this algorithm possesses the accent property. The sure screening

property of the new method is established which guarantees the important variables

could be selected with an overwhelming probability. The numerical studies show

that the new method can perform very well even if some important variables are

marginally independent of the response.

In the second project, we proposed a new testing method for two sample mean

problem for high dimension data which involves a new estimation method for the

covariance matrix. We first prove the accuracy of our estimation method, and

then the asymptotic distributions of the test statistic under both the null and

alternative hypothesis are derived. Based on both the simulation studies and the

real data example, we can see that the new method can outperform other existing

methods when the variables are strongly correlated.
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5.2 Extension

For the first project, we propose a new joint feature screening method for gener-

alized time varying coe�cient model. The new method considers the joint e↵ect

among the predictors, it does not possesses the ranking consistency. That means

the new method would select some wrong predictors in the screening stage. In

the future, we can focus on developing another joint screening method considering

the e↵ect among the predictors, and it also possesses the ranking consistency so

the unimportant variables can be separated from important predictors provided

an ideal cuto↵.

For the second one, we proposed a new testing method for two sample mean

problem for high dimension data which involves a new estimation method for the

covariance matrix. In the portfolio risk estimation and optimization problems, a

good estimator for the volatility matrix is very important. We may extend our new

estimation method in the application of portfolio risk estimation and optimization.
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