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Abstract

With rapid advances in data collection technologies, many scientific fields are now
obtaining more detailed, complex, and structured data. Utilizing such structures
to extract more information is increasingly common in fields such as biology, an-
thropology, forensic science, and meteorology. A great deal of modern statistical
work focuses on developing tools for handling such data. Classic statistical tools
such as univariate or multivariate methods are often not suitable for such data and
in some situations, and in some cases applying them is not even possible because
of data structure.

In this dissertation, we propose Functional Manifold Data Analysis (FMDA),
a subbranch of Functional Data Analysis (FDA) which often extracts additional
information contained in the data structure, to deal with such modern complicated
data. FDA is a rapidly developing area of statistics for data which can be naturally
viewed as a smooth curves or functions. In FDA, the fundamental statistical
unit is now function or shape, not the vector of measurements, and the inherent
smoothness in the data can be exploited to achieve greater statistical efficiency than
typical multivariate methods. In particular, we present an inferential framework
when one of the variables being analyzed is a manifold, and thus we assume we have
as many manifolds as we have units. To achieve this, we utilize deformation maps
from shape analysis and dimension reduction techniques from manifold learning.
In doing so, we are able to represent each manifold as a deformation map, which
then can be analyzed using functional data methods. Currently, shape analysis
methods that go beyond an analysis of landmarks is a very active area of research,
but to date, little has been done in terms of shape-on-scalar regression, thus this
dissertation will open up exciting avenues for both shape and functional data
analysis.

To understand how the scalar covariates affect the manifolds, we propose a

iii



manifold-on-scalar regression, which is an extension of function-on-scalar regres-
sion in FDA. Different algorithms for estimating the parameter functions in the
manifold-on-scalar regression are presented and discussed. The optimality of pa-
rameter estimates for function-on-scalar regression over complex domains is also es-
tablished by finding the minimax lower bounds on the estimation rate and propos-
ing a minimax optimal estimator whose upper bounds match the developed lower
bounds.
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Chapter 1
Introduction

1.1 Background

1.1.1 Functional Data Analysis

Functional Data Analysis (FDA) is a branch of statistics that deals with theories

and analysis of the information on functions, curves, shapes, images, or objects.

Ramsay and Dalzell (1991) has provided the foundation of FDA and introduced the

analysis of infinite dimensional processes. Functional data are intrinsically infinite

dimensional, but they are measured with discrete points. Instead of treating these

measurements as a set of vectors, FDA considers them as continuous functions

and models them in function space. Ramsay and Silverman (2005) summarized

the aims of functional data analysis as 1) to present data to in ways that help

further analysis, 2) to display data in ways to highlight various characteristics, 3)

to understand pattern and variation among data, and 4) to explain variation in

dependent variable in association with independent variable information.

FDA has seen a precipitous growth in recent years, and its application can be
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found in many different fields including genetics for understanding human growth

patterns (Chen and Müller, 2012; Verzelen et al., 2012) or gene expression (Tang

and Müller, 2009), finance for credit card transaction volumes (Kokoszka and

Reimherr, 2012), geoscience for finding geomagnetic activity patterns (Gromenko

and Kokoszka, 2013), and neuroimaging (Reiss et al., 2011; Zipunnikov et al.,

2011), to name only a few. Some FDA methods and applications to real data

has been detailed in the textbook by Ramsay and Silverman (2007), and Horváth

and Kokoszka (2012) presented more recent methodologies and theories with more

focus on inference with applications to geosciences, finance, economics and biol-

ogy. As FDA becomes a common tool in Statistics, Kokoszka and Reimherr (2017)

published an introductory textbook to the field.

1.1.1.1 Basis Expansion

Classic functional data analysis involves the analysis of time series data, the func-

tions over time. A famous example of functional data analysis is the Canadian

weather data (Ramsay and Silverman, 2005) in Figure 1.1. At thirty-five weather

stations across Canada, the temperature is measured everyday over the course of a

year, and the mean monthly temperature is shown in Figure 1.1. The lines can be

considered as the temperature functions over time, i.e. {Xn(t) : n = 1, · · · , 35, t ∈

T } where T is from January to December, and each point on the plot Xnj is

considered as Xn(tj) + εnj, the function evaluated at one point with measurement

errors εnj.

A common way to represent this data is using nonparametric smoothing meth-

ods. We expand the functions using basis functions. In the systematic review of 84

FDA application articles, Ullah and Finch (2013) revealed that 72 studies (85.7%)

provided information about the type of smoothing techniques used, with B-spline
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Figure 1.1: Raw data for mean monthly temperatures at thirty-five Canadian
weather stations.

smoothing being the most popular and Fourier-basis smoothing being the second

most popular. Fourier basis functions are sine and cosine functions of increasing

frequency, so they are especially useful for periodic data like the Canadian weather

data. Examples of Fourier basis functions are shown in the left of Figure 1.2. We

can represent the temperature functions using the Fourier basis Bm(t):

Xn(t) ≈
M∑
m=1

cnmBm(t), 1 ≤ n ≤ 35, t ∈ T .

The coefficients cnm are estimated by minimizing

35∑
n=1

12∑
j=1

(
Xnj −

M∑
m=1

cnmBm(tj)

)2

+ λ

∫
L

[(
M∑
m=1

cnmBm(tj)

])2

dt

where L is an operator that measures the roughness of functions, and λ is the

smoothing parameter which governs the trade-off between the fit to the measure-

ments and the smoothness of resulting functional objects. The choice of λ is usually
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chosen using the generalized cross validation (Golub et al., 1979).

Figure 1.2: Temperature functional objects are shown on the right and these are
expanded with Fourier basis functions on the left.

FDA methods exploit what Ramsay and Silverman (2005) termed replication

and regularization. In particular, unlike classic nonparametric smoothing methods,

the data usually consist of as many functions as there are statistical units, while the

inherent smoothness in the data/parameters can be exploited to achieve greater

statistical efficiency than typical multivariate methods. By treating the data as

functions and by making a weak assumption that those functions are smooth, we

are able to exploit the smoothness and analyze the characteristics of functional

data such as the uses of derivatives in modeling (Ramsay, 2006). For the Cana-

dian weather data too, it is possible to check the rate of temperature change by

taking one derivative of the temperature functions. Another example would be

the growth curves of children which are height measurements over time (Kokoszka

and Reimherr, 2017) and by considering them as functions, it becomes possible to

analyze the rate of growth of children.

The functional objects Xn(t) are considered as the realizations of a random



5

function X(t), and its mean and covariance functions are defined as

µ(t) = E [X(t)] ,

Σ(t, s) = E [(X(t)− µ(t)) (X(s)− µ(s))] ,

and these two are estimated by

µ̂(tj) =
1

N

N∑
n=1

Xn(tj),

Σ̂(tj, tk) =
1

N

N∑
n=1

(X(tj)− µ̂(tj)) (X(tk)− µ̂(tk)) .

1.1.1.2 Functional Principal Component Analysis

Functional Principal Component Analysis (FPCA) is an extension of multivariate

PCA to the functional case. It played major role in the early FDA literature,

and it is still well-studied and considered important. As with multivariate PCA,

FPCA explores the covariance structure of the functional objects, and it identifies

functional principal components that explain the most variability of a sample of

curves. In addition to providing such information, FPCA also allows the functions

to be expanded with its orthonormal eigenfunctions, analogous to the orthogonal

eigenvectors in multivariate case. Using the expansion with eigenfunctions, we are

able to reduce down the dimension of functions, as the multivariate PCA is used for

linear dimension reduction. Previously functional objects are expanded using M

basis functions, and therefore there were M coefficients for each function, but after

FPCA, the functions can be represented with J ≤M number of eigenfunctions.
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Mercer’s theorem gives that the spectral decomposition of Σ as

Σ(t, s) =
∞∑
k=1

τkvk(t)vk(s)

where τk’s are eigenvalues in descending order and vk(t)’s are the corresponding

eigenfunctions. Karhunen and Loéve (Karhunen, 1946; Loéve, 1946) also found

independently that every square integrable function X can be represented as

X(t) = µ(t) +
∞∑
k=1

τkvk(t)

and this expansion is called Karhunen-Loéve expansion.

The estimation of the eigenvalues τk and eigenfunctions vk(t) is done by esti-

mating the covariance operator, evaluating it on a grid, and conducting a matrix

spectral decomposition on the grid-evaluated covariance. The convergence of the

estimated eigencomponents is obtained by integrating the results on the conver-

gence of the covariance estimates that are attained under regularity conditions

with perturbation theory (Kato, 1966).

FPCA also facilitates functional principal component regression. By project-

ing functional responses or predictors to their first few principal components, it

becomes possible to apply regression models with those vector responses or predic-

tors. FPCA is also useful for classification and clustering of functional data since

it is a crucial dimension reduction tool in FDA.

1.1.1.3 Functional Regression

In order to understand the relationship between functional data and other vari-

ables, functional regression models are developed. Depending on whether the func-

tional data are the predictors or the responses, the model structure changes.
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Scalar-on-function regression is when the functional data are included as the

predictors or the covariates and the response variable is scalar.

Yn =

∫
T
β(t)Xn(t)dt+ εn.

Function-on-scalar regression is when the functional data are included as the

response while the predictors are scalar.

Yn(t) =
P∑
p=1

xnpβp(t) + εn(t).

Function-on-function regression also follows the same rule. This is when both

the response and the predictor are functional data.

Yn(t) =

∫
T
β(t, s)Xn(s)ds+ εn(t).

Concurrent linear model is a special case of when both the response and the

predictor are functional data. The model looks like

Yn(t) = β0(t) + β1(t)Xn(t) + εn(t).

In this case, Yn at time tj is affected only by Xn at the same time tj whereas in

function-on-function regression model, Xn at time tj can affect Yn at all other tk

for k 6= j too.

It is also possible to have generalized linear model version of the models above.

With scalar-on-function case, it is easy to assume that the scalar response have

error distribution other than normal distribution. However, with functional re-

sponse, it is not conceptually intuitive. Current version dictates that Yn(t) satisfies

a generalized linear model with the scalar predictor at each point tj with the same
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density across t.

There are also random effects models and mixed effect models, but we are not

going to dwell on those. In many cases, FPCA is utilized to alleviate the curse of

dimensionality for the nonparametric procedures.

In this dissertation, we will propose an extension of function-on-scalar regres-

sion, which we call as manifold-on-scalar regression where the functional response

can be considered as manifolds that are sitting in RD with D > 1 and thus is a

D-dimensional vector of functions.

1.1.1.4 Recent Advances in Functional Data Analysis

FDA has seen a precipitous growth in recent years, due in part to the numerous

complex data that have emerged. With the growth and advance of modern data

collection technology, the need to understand the complex structures of data has

been increased. Wang et al. (2016) termed the functional data which are multivari-

ate, correlated, high-dimensional, and part of complex objects as next-generation

functional data.

An example of the next-generation functional data is the acoustic phonetic

data analyzed by Pigoli et al. (2018). They pre-process the samples of sound

recordings of different words in different languages pronounced by different speak-

ers to make them decibel functions in time and frequency domain, {Xn(ω, t) : n =

1, · · · , N, ω ∈ [0,Ω], t ∈ [0, T ]}. In classic FDA, the functions are defined on a sin-

gle one-dimensional domain, but Pigoli et al. (2018) move on to a two-dimensional

domain of time and frequency.

Examples of next-generation functional data can also be found in brain and

neuroimaging. Neurologists aim to map the neuron activity of the human brain

and measure signals over the whole brain. These signals can be viewed as functions
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over the brain.

In recent years there has also been an increased interest in exploring how man-

ifold structures impact functional data techniques. Chen and Müller (2012) con-

sider extending functional data techniques to data that are all lying on a single

manifold. Elhamifar and Vidal (2011) consider clusters of functional data with

each cluster lying on a different manifold. Ellingson et al. (2013) consider mean

estimation from functional data all lying on a common manifold. Dimeglio et al.

(2014) also try to find a template function using manifold embedding, considering

observed functions as variables with values on a single manifold. Additionally,

in 2014, SAMSI had a working group on Data Analysis on Hilbert Manifolds and

their Applications (Bunea et al., 2014), and Lila et al. (2016) provide a smooth

principal component analysis algorithm for functions on a two-dimensional man-

ifold. Ettinger et al. (2016) map the internal carotid artery on a planar domain,

which is also a manifold that is homeomorphic to a cylinder. The recent paper by

Lila and Aston (2017) proposed a framework for textured data on two-dimensional

manifold domain where domains are subject to variability from sample to sample

with an application to medical imaging. They consider the thickness of brain as

a function over the whole brain, meaning that they took the brain manifold as a

domain, and they also allow that the domain is subject to variability from sample

to sample.

FDA tools are also widely used in a very recently developing field called Object

Oriented Data Analysis (Marron and Alonso, 2014; Patrangenaru and Ellingson,

2015) which concerns the statistical analysis of samples of complex objects such

as shapes, images, and trees. Wang and Marron (2007) connected FDA to Object

Oriented Data Analysis (OODA) and introduced OODA for a tree-structured data

with an application to blood vessel dataset. Aydin et al. (2009) then developed
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a principal component analysis for tree-structured data which is a standard FDA

technique. A nonparametric regression model with tree-structured objects as re-

sponses has also been developed by Wang et al. (2012). Further analysis on tree

object data has been developed (Shen et al., 2014a; Skwerer et al., 2014b) but there

are few works concerning manifolds in OODA context (Marron, 2014). Therefore,

we believe our framework in Chapter 2 will be a valuable asset to OODA literature.

1.1.2 Reproducing Kernel Hilbert Space

Reproducing Kernel Hilbert Space (RKHS) refers to the special case of Hilbert

space where there exists a kernel that reproduces every function in the space,

meaning that when X(u) is in RKHS, then for any u in the set U where the

function is defined on, the evaluation of X at u can be performed by taking an

inner product with a kernel k, i.e. ∀u ∈ U ,∀X ∈ H, 〈X, k(·, u)〉H = X(u).

1.1.2.1 Benefits of using RKHS in FDA

RKHSs provide a variety of benefits for functional data analysis. The first is

that the kernel can be tailored to reflect certain beliefs or assumptions about the

parameters, e.g. smoothness or periodicity. The second is that the eigenfunctions

of the kernel can be used as a basis for approximating functional observations

and/or parameters estimates, though the reproducing property can also be used

to obtain parameter estimates. Lastly, commonly used spaces, such as Sobolev

spaces, as well as estimation techniques such smoothing splines can naturally be

viewed in an RKHS framework.

Let U ⊂ RD be a compact d-dimensional manifold with d ≤ D. A kernel

function, K : U ⊗ U → R+, is a bivariate function that is symmetric, positive

definite, and continuous. There is a one-to-one correspondence between RKHS
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and kernel functions. One can generate the RKHS from K by the following. Let

L2(U) denote the space of all square integrable functions from U to R. We will

write L2(U) as L2 for simplicity. Furthermore, any norm ‖ ·‖ or inner product 〈·, ·〉

written without subscript is understood to be with respect to L2. By Mercer’s

theorem we can write

K(u, u′) =
∞∑
j=1

τjvj(u)vj(u
′),

where vj ∈ L2 are orthonormal and {τj} is a positive, decreasing, summable se-

quence. We can define a set

AK =

{
f ∈ L2 :

∞∑
j=1

〈f, vk〉2

τj
<∞

}
.

We can then define an inner product on AK as

〈f, g〉K =
∑

τ−1j 〈f, vj〉〈g, vk〉.

Then we can say that K is an RKHS with kernel K.

1.1.2.2 Approximating Eigenfunctions of RKHS

Since in most cases it is not possible to get the eigenfunctions vj(u) of RKHS, we

need to approximate them. Basically we want to find τj and vj(u) such that

τjvj(u) =

∫
U
K(u, u′)vj(u

′)du′

for ∀u ∈ U and j ≥ 1. The eigenfunctions vj need to be orthonormal in L2(U),

meaning that
∫
U vj(u)vk(u)du = 1 only if j = k and

∫
U vj(u)vk(u)du = 0 otherwise,

and vj also need to be orthogonal in K with ‖vj‖K = 1
τj

.
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Pazouki and Schaback (2011) present an algorithm to approximate these vj’s.

Assume that there are sufficiently large number of points {u1, · · · , uM} so that the

integration over U can be approximated by

∫
U
f(u)du ≈

M∑
m=1

wmf(um).

Then

τjvj(ul) =

∫
U
K(ul, u)vj(u)du

becomes

τj
√
wlvj(ul) ≈

M∑
m=1

√
wlK(ul, um)

√
wm
√
wmvj(um).

By noting
√
wlvj(ul) = φ

(j)
l ,
√
wmvj(um) = φ

(j)
m , and

√
wlK(ul, um)

√
wm = blm,

the equation becomes a discrete eigenvalue problem:

τjφ
(j)
l =

M∑
m=1

blmφ
(j)
m .

Through this algorithm, we can approximate τj and vj, and we can expand

functions using these eigenfunctions vj as bases.

1.2 Contribution

With rapid advances in data collection technologies, many scientific areas are faced

with the challenge of extracting information from large, complex, and highly struc-

tured data sets. A great deal of modern statistical work focuses on developing tools

for handling such complex objects. In this dissertation, we present a new subfield

of Functional Data Analysis (FDA) that concerns the statistical analysis of sam-

ples where one or more variables measured on each unit is a manifold. We call this
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Functional Manifold Data Analysis (FMDA).

FMDA is motivated by the high-resolution 3D facial imaging data collected

from ADAPT study (Anthropology, DNA, and the Appearance and Perception of

Traits), an ongoing study at the Pennsylvania State University. Investigators of

ADAPT collected 3D facial images, alongside genetic information, from admixed

populations in the US, Brazil, and Cape Verde (Claes et al., 2014a,b) in order to

understand the variation of human facial structures.

Understanding the architecture of human facial diversity has been of long stand-

ing interest in a variety of fields including anthropology and forensic sciences. New

methodologies have been developed as more sophisticated bioimaging technologies

enable researchers to collect richer 3D facial images. There has been extensive re-

search on 3D facial analysis, but the methodologies have been primarily developed

in computer science, electrical engineering, and computer vision for face and facial

expression recognition (e.g Turk and Pentland, 1991; Ahonen et al., 2006; Jain

and Li, 2011; Taigman et al., 2014; Huang et al., 2014). There is a more limited

literature on 3D facial analysis using a statistical framework, and the few existing

methods are primarily concerned with classification or estimation based on facial

features, not on understanding the influence of different covariates on the 3D faces

themselves. Huang et al. (2014) introduce a local descriptor multi-modal (2D and

3D) for facial gender and ethnicity classification. Xia et al. (2013) adopt machine

learning techniques to find relationships between gender and facial asymmetry. Xia

et al. (2014) examine age effects using a random forest-based regression, but the

regression uses features of local shape deformation between facial curves, captured

by Dense Scalar Fields based on Riemannian shape analysis (Drira et al., 2012).

Kurtek and Drira (2015) provide a statistical shape analysis framework for 3D

faces which allows comparison, deformation, and expression and identity classifi-
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cation, but there has not yet been a corresponding regression method developed

that directly takes the whole 3D faces as variables.

Instead, we propose a novel functional data approach to analyze 3D faces,

which are viewed as smooth manifolds. By constructing 3D facial functional ob-

jects, we can utilize existing functional data analysis tools. Our goal is to build

statistical models that elucidate how different covariates affect patterns seen in

different faces. However, we do not reduce the faces down to a few quantitative

traits; instead we exploit inherently smooth structures in the face so that they can

be analyzed as a whole. This provides a unique approach that, for example, takes

whole manifolds as variables in a regression model. As a contrast, Fletcher (2013)

provides a geodesic regression that takes points on a manifold as the response.

Cao et al. (2014) explore a shape regression approach that uses a few landmarks

on shapes/manifolds. Yang and Dunson (2016) present a Bayesian manifold regres-

sion that assumes that the data lie in a subspace that is a single locally-Euclidean

compact Riemannian manifold.

FMDA has a unique stance in FDA literature too. Although there are increas-

ing interest towards associating functional data with manifolds, all data is assumed

to lie on a single manifold or a small number of manifolds in most previous FDA

work. In this dissertation, however, we assume that each unit is its own manifold,

meaning that we have as many manifolds as we have units. High-dimensional 3D

imaging is becoming more common in fields such as biology, kinesiology, engineer-

ing, and anthropology. In many of these cases, each image is actually a surface

sitting in 3D space, i.e. a manifold. However, from image to image, the manifold

changes and one cannot assume that all images lie on the same manifold.

Our approach utilizes deformation maps from shape analysis and dimension

reduction techniques from manifold learning, which allows us to represent each
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face/manifold as a function, which can then be analyzed using FDA techniques.

Currently, shape analysis methods that go beyond an analysis of landmarks is a

very active area of research; our hope is that building a connection with FDA

will open up exciting avenues for both shape and functional data analysis, while

providing powerful and flexible statistical tools.

We believe that these techniques will prove useful to a variety of applications.

As part of the big data revolution occurring in the sciences, many types of high-

frequency or high-resolution data are being collected. Data which include samples

of manifolds will become increasingly common, especially in biomedical imaging.

FDA tools naturally exploit smoothness and we thus believe they will be useful for

analyzing data involving manifolds.

1.3 Organization

The dissertation is organized as follows. In Chapter 2, we first present a novel

framework to embed a sample of manifolds in a real separable Hilbert space. Then

we introduce tools to analyze these functional manifolds such as a 2-step func-

tional principal component analysis (FPCA) algorithm and a manifold-on-scalar

regression model, which is an extension of function-on-scalar regression. We show

how to get a least square estimator as well as a penalized least square estimator

of parameter function and describe the testing methods. Then we apply these

methods to the ADAPT data of 3D facial images.

In Chapter 3, we present three algorithms for parameter estimation in manifold-

on-scalar regression in RKHS. The first one is a principal component regression

method, the second one is also a principal component regression but with smooth-

ness imposed on the covariance operator, and the third is a penalized regression

method. Their predictive performance are compared by 10-fold cross validation on
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the ADAPT data.

In Chapter 4, the optimality of parameter estimates for function-on-scalar re-

gression over complex domains is established. The minimax lower bounds on the

estimation rate are found and a minimax optimal estimator whose upper bounds

match the developed lower bounds is proposed. Through simulations we show how

the parameter estimation error converges in relation to the sample size and the

number of observed measurements per curve.



Chapter 2
Functional Manifold Data Analysis

2.1 Methodology

In this Section we present our approach for handling random samples of manifolds.

Our primary goal is to lay the foundation for analyzing such data using FDA tools.

To accomplish this, we use tools from shape analysis so that each manifold can be

associated with a particular deformation map, while we use tools from manifold

learning and FDA to carry out the described computations. A visual outline of

our approach can be found in Figure 2.1.

In Section 2.1.1 we introduce a statistical framework to embed a sample of man-

ifolds into a real separable Hilbert space, resulting in a sample of functional objects.

We then present a 2-step Functional Principal Component Analysis (FPCA) algo-

rithm in Section 2.1.2. In Section 2.1.3, we discuss a manifold-on-scalar regression

model and hypothesis testing methods for its coefficient functions.

2.1.1 Algorithm

In order to ensure the manifolds are comparable and that our algorithm can be

applied, we make the following assumptions.
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Figure 2.1: The strategy and process of Functional Manifold Data Analysis
(FMDA) are presented. Individual faces are considered as deformations maps of
a reference face, and using this reference face as domain, we construct functional
data objects. After that, we can apply functional principal component analysis
(FPCA), functional regression, or other FDA tools to analyze them.

Assumption 2.1.1. Let Y1, · · · ,YN be a random sample of manifolds. We assume

that, with probability one,

1. each Yn is a compact d-dimensional manifold that is a subset of RD with

d < D,

2. there exists a nonrandom compact d-dimensional C1 Riemannian manifold

M0 such that each Yn is homeomorphic to M0,

3. there exists an atlas for M0 with a single coordinate chart {(M0, ψ)} where

for any open set U ⊂M0, ψ : U → ψ(U) ⊂ Rd and M0 , ψ(M0),

4. to each manifold Yn, there exists a function Yn : M0 → RD such that

Yn(M0) = Yn, up to possibly a set of measure 0,

5. the functions Yn are elements of L2(M0) with probability one, i.e.∫
M0

Y>n (m)Yn(m)dm <∞.

The first assumption states that the sample consists of manifolds that are in

the same ambient space, RD. This can be generalized to other spaces, but we do
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not pursue that here given the scope of our intended applications. The second

guarantees that the manifolds are comparable by assuming that they can all be

parametrized by a common manifold,M0. This manifold is assumed to be C1 and

Riemannian so that integration over the manifold is well defined (Lee, 2003). The

third assumption lets us apply manifold learning methods to “unfold”M0 into the

simpler set M0. This is primarily for computational convenience, as M0 is an easier

domain to work with. If the third assumption does not hold, then the manifold,

M0, cannot be mapped to a set in Rd without tearing it in some way. Such an

assumption is reasonable for our facial applications, but, for example Ettinger et

al. (2016) utilize FDA methods for data measured on the internal carotid artery,

which is homeomorphic to a cylinder and thus would violate this assumption. The

fourth assumption simply allows us to identify the manifolds as functions, which

are commonly referred to as deformation maps in shape analysis, while the fifth

assumption allows us to view those functions as elements of a Hilbert space.

At the heart of our methodology is the view that each manifold can be identi-

fied with a function, and then properties such as smoothness can be defined and

exploited by utilizing these functions. The major difference between our setting

and traditional FDA is that the domain, M0, is not observed and must therefore be

constructed. The framework to construct Yn : M0 → RD from Yn is summarized

below.

1. Identify a reference manifold M0.

2. Embed M0 into a closed bounded connected region of Rd to construct M0.

3. Construct basis functions from M0 to RD and express Yn as a linear combi-

nation of these functions.

We now discuss each of the steps above. We assume that the raw data is of
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the form {ynpq : n = 1, · · · , N ; p = 1, · · · , P ; q = 1, · · · , D}, which consists of P

D-dimensional points observed on manifolds Y1, · · · ,YN . Notice that for 3D facial

data, D equals 3, P represents the number of points observed per face, and N

is the number of collected faces. We assume that each manifold is ultra-densely

sampled, and thus can be completely reconstructed with almost no error, which

is a common assumption in Dense Functional Data Analysis (Zhang and Wang,

2016). With the development of data collection technologies, these types of data

are increasingly common.

For the first step, the reference manifold M0 can be taken from an external

source, such as previous literature or a previously constructed library of objects,

one of the manifolds in the sample, or an average from the sample.

Once M0 is identified, we use manifold learning techniques on M0 to find

M0, the embedding of M0 in to Rd. The resulting points will be denoted as

{mpq : p = 1, · · · , P ; q = 1, · · · , d}, P . Manifold learning has been a very active

area of research, and there are a number of popular methods for carrying out this

step, including Isomap (Tenenbaum et al., 2000), Laplacian Eigenmaps (Belkin and

Niyogi, 2003), local linear embedding (Saul and Roweis, 2003, LLE), local tangent

space alignment (Zhang and Zha, 2004, LTSA), and Diffusion Map (Nadler et al.,

2006). All of these methods aim to find a low-dimensional representation of the

given data, but they utilize different strategies towards achieving it. Isomap finds

a lower-dimensional embedding that best preserves the geodesic distance between

all points, while Laplacian Eigenmaps tries to preserve local distances. LLE seeks

to maintain neighborhood distances. LTSA is algorithmically similar to LLE but

tries to learn local neighborhood geometry via tangent spaces and aligns them

to find the underlying manifold. Diffusion map uses a different perspective by

considering a random walk “diffusing” through the points, and uses a particular
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eigendecomposition related to that walk to obtain the low dimensional embedding.

Spanifold (Chenouri et al., 2015) sets up a tree on the manifold and tries to main-

tain pairwise distance relationships within the tree while flattening the manifold.

In Section 2.3.1 we will compare the performance of these different approaches on

the ADAPT data.

Once the domain, M0, is obtained, the next step is to construct Yn : M0 → RD

from Yn. As functional data are commonly expressed with basis functions, we fix

basis functions ej : M0 → RD and then we express the manifolds in functional

data format as

Yn ≡ Yn(m) ≈
J∑
j=1

bnjej(m) m ∈M0,

where bnj ∈ R. The number of basis functions J should be high enough so that

the original details are preserved. The b̂nj can be found by minimizing

P∑
p=1

|ynp −YJ
n(mp)|2 + λ

∫
M0

[L(YJ
n)(m)]2dm (2.1.1)

where ynp = (ỹnp1, · · · , ỹnpD)>, YJ
n(m) =

∑J
j=1 bnjej(m), λ is a smoothing param-

eter, and L is a linear differential operator. The resulting functional data would

be

Yn(m) ≈
J∑
j=1

b̂njej(m). (2.1.2)

In the ADAPT application we utilize felsplines (Ramsay, 2002) and expand each co-

ordinate, Ynj(m), separately, though other approaches including thin plate splines

could also be used.
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2.1.2 2-Step Functional Principal Component Analysis

We now introduce a 2-step functional principal component analysis (FPCA)

method to be carried out on the objects define in (2.1.2). In the first step,

we conduct FPCA on the pooled (across the D coordinates) sample to reduce

the number of basis functions and make them orthogonal. In the second step,

we conduct PCA on the resulting array to get eigenvalues λk and eigenfunctions

Vk(m). Computational tools for basis functions that map a set in lower dimension

M0 ∈ Rd to higher dimension, RD, are currently limited. Therefore, we start with

expanding each coordinate of Yn using basis functions {ej : M0 → R}, and then

obtain eigenfunctions Vk : M0 → RD in the second step.

The raw data, {ynpq}, is assumed to be an N × P × D array, while the basis

coefficients from (2.1.2) form an N × J × D array. Our second step consists

of tensor multiplication and singular value decompositions, which are substantial

computational burdens. Decreasing the dimension by lowering the number of

basis functions through the first step lessens the computational time substantially.

The burden of the second step is also decreased substantially by exploiting the

orthonormal structure of the bases from the first step.

Step 1. Without loss of generality, assume that the Yn(m) have been centered

and thus have mean zero. Each of the functions is expressed as

Yn(m) = [Yn1(m), · · · , YnD(m)]> ≈

[
J∑
j=1

b̂nj1ej(m), · · · ,
J∑
j=1

b̂njDej(m)

]>
,

for n = 1, . . . , N . We stack all of the coordinate-wise functions into a single vector

of functions with dimension ND. We denote the resulting functions as Yl(m) where

Yl(m) = Ynq(m) for l = N(q − 1) + n and n = 1, · · · , N , q = 1, · · · , D.
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We find the pairs of eigenvalues ηh and principal component functions ψh :

M0 → RD, for h = 1, . . . , H, which satisfy

ηhψh(m) =

∫
Φ(m,m′)ψh(m

′)dm′, (2.1.3)

‖ψh‖ = 1, (2.1.4)

where Φ(m,m′) = E[Yl(m)Yl(m
′)>] =

∑J
j1

∑J
j2
E[blj1blj2 ]ej1(m)ej2(m

′)>.

We now can expand Ynq(m) using the {ψh(m)}:

Ynq(m) =
H∑
h=1

cnhqψh(m) (2.1.5)

where H is much less than J and ψh(m)’s are orthonormal while ej(m) are not.

This purely serves to reduce the computational burden of the second step.

Step 2. From the representation (2.1.5), the coefficients c = {cnhq} form an

N ×H ×D array. The covariance operator of Yn(m) is given by

Γq,q′(m,m
′) = E[Ynq(m)Ynq′(m

′)] =
H∑

h1=1

H∑
h2=1

Σh1qh2q′ψh1(m)ψh2(m
′)

with Σh1qh2q′ = E[cnh1qc
>
nh2q′

], a H ×D ×H ×D tensor. Now we find the pairs of

eigenvalues λk and eigenfunctions Vk(m) that satisfy

λkVk(m) =

∫
Γ(m,m′)Vk(m

′)dm′, (2.1.6)

‖Vk‖ = 1. (2.1.7)

Details of the algorithm are enclosed in Section 2.4.1.
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2.1.3 Manifold-on-Scalar Regression

We now give a Manifold-on-scalar regression strategy by using the functional

manifold objects as responses and using scalar predictors, very similar to Function-

on-Scalar Regression (Ramsay and Silverman, 2005). The model is given by

Yn(m) = xn1β1(m) + xn2β2(m) + · · ·+ xnRβR(m) + εn(m), (2.1.8)

where there are R predictors for every manifold. Recall that Yn is the deformation

map associated with the manifold, Yn.

While least squares works well for finding β̂’s, it can often be improved by

penalizing the roughness of the resulting β̂’s. In this case the objective function

will be

N∑
n=1

∫
M0

∣∣∣∣∣Yn(m)−
R∑
r=1

xnrβr(m)

∣∣∣∣∣
2

dm+
R∑
r=1

λr

∫
M0

|Lβr(m)|2dm, (2.1.9)

where λr is tuning parameter and L is a roughness operator. It is important to

choose L carefully. Since we do not want the minimizer of (2.1.9) to change based

on the coordinate system, we need an operator that is invariant to rotation and

translation. For this reason Ramsay (2002) chose the Laplacian operator. In the

case where f : [M0 ⊂ R2]→ R3, the Laplacian operator of f is given by

4f = 4[f1, f2, f3]
> = [4f1,4f2,4f3]>

=

[
d2f1
dm2

1

+
d2f1
dm2

2

,
d2f2
dm2

1

+
d2f2
dm2

2

,
d2f3
dm2

1

+
d2f3
dm2

2

]>
,

where f1, f2, f3 correspond to each coordinate of f and m1 and m2 correspond

to each coordinate of M0. Yn and βr can both be expanded with PC functions
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Vk : [M0 ⊂ R2]→ R3 for k = 1, · · · , K:

N∑
n=1

∫
M0

∣∣∣∣∣
K∑
k=1

ynkVk(m)−
R∑
r=1

xnr

K∑
k=1

brkVk(m)

∣∣∣∣∣
2

dm

+
R∑
r=1

λr

∫
M0

∣∣∣∣∣
K∑
k=1

brk(4Vk(m))

∣∣∣∣∣
2

dm. (2.1.10)

Then objective (2.1.10) becomes to find B that minimizes

trace{(y −XB)>(y −XB)}+ trace{ΛBUB>},

where y is N ×K matrix of ynk’s, X is N ×R matrix of xnr’s, B is R×K matrix

of brk’s, Λ is a diagonal matrix of λr’s, and Uk1,k2 =
∫
M0

(4Vk1)
>(4Vk2)dm. Then

the least square estimate of B is

vec(B̂>) =
(
(X>X)⊗ IK + Λ⊗ U>

)−1
vec(y>X).

See Section 2.4.2 for further details.

Now we consider testing for β̂’s. Here we present two testing methods:

pointwise significance and overall significance. This will later be illustrated by

plots in Section 2.3.3. To test for the significance of β̂, we find the asymptotic

distribution of β̂. Assume that

Yn(m) = X>nβ(m) + εn(m),

where {Xn} are iid random elements of RR whose covariance matrix, ΣX, exists

and has full rank. Also assume that {εn} are mean zero iid elements of L2[M0] with

E‖εn‖2 < ∞, which implies the covariance function, Cε(m,m
′), of εn(m) exists.
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Assume that the sequences {Xn} and {εn} are independent of each other. Then

we have by the CLT for Hilbert spaces that

√
N(β̂ − β)

d−→ N (0,Cβ),

where Cβ(m,m′) is an R×D×R×D array at each pair (m,m′) ∈M0×M0 and

equals

Ci,j,k,l;β(m,m′) = (Σ−1)i,k;XCj,l;ε(m,m
′).

The covariance of the errors can be estimated as

Ĉε(m,m
′) =

1

N −R

N∑
n=1

(Yn(m)−X>n β̂(m))(Yn(m′)−X>n β̂(m′))>.

Notice this Ĉε corresponds with a P ×D×P ×D array because at every (mp,mp′),

Ĉε(mp,mp′) is D ×D matrix, and there are P points mp. For each βr(m),

√
N(β̂r − βr)

d−→ N (0,Cr
β),

and we estimate

Ĉr
β(m,m′) = N(X>X)−1r,r Ĉε(m,m

′).

We now test the significance of β̂r. We can do this pointwise, i.e. test β̂r(mp) at

each point, and we can also find the overall confidence region around the face using

the strategy of Choi and Reimherr (2018). We call this simultaneous confidence

region a confidence bubble as it forms a 3D region around the parameter estimates.

We first rotate β̂r and get β̂′r = (Ĉr
β(m,m))−1/2β̂r. Then

√
N(β̂′r − β′r)

d−→ N (0, C̃r
β)
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where

C̃r
β(m,m′) = (Ĉr

β(m,m))−1/2Ĉr
β(m,m′)(Ĉr

β(m′,m′))−1/2.

Pointwise we have

√
N(β̂′r(mp)− β′r(mp))

d−→ N (0, I3×3).

Therefore,

T ptnorm = N‖(β̂′r(mp)− β′r(mp)‖2
d−→ χ2(3).

We conclude by providing a strategy for constructing simultaneous confidence

ellipses for each β̂(m), which is based on a technique from Choi and Reimherr

(2018). We call a testing based on this as Choi test. The proof can be found in

Section 2.4.3.

Theorem 2.1.1. If
√
N(β̂r − βr) converges in distribution to a Gaussian process,

N (0,Cr
β), and the square-root of the eigenvalues, {λi}, of Cr

β are summable, then

P

√N |β̂r(m)− βr(m)| ≤

√√√√ξα

∞∑
j=1

√
λj |Uj(m)|2, for almost all m ∈M0

 ≤ α+o(1),

where {Uj} are the eigenfunctions of Cr
β, and ξα is such that P (

∑∞
j=1

√
λjZ

2
j >

ξα)
d−→ α.

2.2 Simulation Studies

In this Section, we compare the performance of manifold-on-scalar regression to

the performance of multivariate principal component regression, PCR, to show

that the functional approach works better than the multivariate approach. Our

only comparison is done with the multivariate PCR since no method is found such
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that takes a whole shape or manifold as a variable for regression. Most previous

methods extract some features from face and take them as variables or focus on

much localized parts of face.

We construct simulated faces using the following model:

Yn(mni) = δ ×X × β(mni) + ε(mni) + γni.

Here δ is a positive constant signifying the strength of the effect, X ∼ N (0, 1), β(m)

is a coefficient function, ε(m) is an error function, and γni is an iid measurement

noise. To ensure a realistic simulation, we take β(m) to be the estimated β(m) for

height from Section 2.3. A plot of this β is given in the top left of Figure 2.3. The

error, ε(m) is constructed by randomly selecting one of the faces from the ADAPT

study, while the γni is a vector of N (0, 0.002) displacements to each x, y, and z

coordinate. The examples of simulated faces are as in Figure 2.2. The plots shown

are based on δ = 20.

Figure 2.2: Examples of simulated faces for δ = 5 (top) and δ = 20 (bottom).

We repeated the simulation 1000 times for δ = 0, δ = 5, δ = 20, δ = 50,
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δ = 100, and δ = 200 and for each run N = 100 is taken. We compared the

rejection rates based on PCA test, Choi test, and norm test for multivariate

PCR and functional PCR. For multivariate PCR, we ran principal component

analysis on pooled data, stacking x-coordinate values, y-coordinate values, and z-

coordinate values of the 7150 quasi-landmarks on the faces. We then took principal

components that explain 99 % of the total variation, used them as our response,

and fit a linear regression model with predictor X. We have compared this to

our method, functional PCR. It is not very conventional to conduct a PCA test,

Choi test, or norm test in the multivariate case, since those tests target infinite

dimensional spaces. However, to make a proper comparison, we have used the

same testing methods.

The results are summarized in Table 2.1. It shows that the rejection rates for

δ = 0 is within 2 standard error of 0.05, the alpha level we took. As δ increases, the

rejection rate increases as expected, and when δ = 200 the rejection rate becomes

almost 1. In most of cases, the rejection rates for functional PCR are bigger than

the rejection rates for multivariate PCR, except a few cases like Choi test for

δ = 20.

Some examples of estimated betas from functional PCR and from multivariate

PCR are given in Figure 2.3. Red and yellow colors are where beta shows outward

effect, meaning that in those parts the face goes outward when predictor increases,

while blue and skyblue means that beta shows inward effect. Since it is the

coefficient function for height that we have used, the plot in left shows that the face

would become prolonged as the predictor increases. And the plots show that the

estimated beta from functional PCR picks up the smoothness of the original beta

and better resembles the original beta, while the estimated beta from multivariate

PCR shows rough edges and sometimes gives very different effect as in the bottom
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δ type rej rate PCA rej rate Choi rej rate norm
0 multivartate 0.044 0.061 0.038

functional 0.059 0.064 0.060
5 multivariate 0.054 0.070 0.049

functional 0.078 0.078 0.069
20 multivariate 0.063 0.090 0.061

functional 0.097 0.101 0.094
50 multivariate 0.136 0.221 0.181

functional 0.265 0.299 0.293
100 multivariate 0.474 0.739 0.596

functional 0.662 0.768 0.745
200 multivariate 0.989 1.000 0.997

functional 0.999 1.000 0.999

Table 2.1: The rejection rates based on three different tests (PCA test, Choi
test, and norm test) for different δ’s. For δ = 0 case, the rejection rates are
approximately 0.05, the alpha in this case, and for the other cases, the rejection
rates for functional PCR are higher than the rejection rates for multivariate PCR.

(δ = 20 case).

2.3 ADAPT Study

This Section presents the application of our methodologies from Section 2.1 to the

ADAPT data. We convert the 3D facial imaging data into functional objects in

Section 2.3.1, where we also discuss the details on how to apply each step of the

framework in Section 2.1.1. Section 2.3.2 presents the principal components of our

2-step FPCA from Section 2.1.2. Section 2.3.3 presents a regression model with the

3D faces as manifold outcomes and the covariates age, gender, height, weight, and

genetic ancestry; we discuss the effects and significances of the resulting coefficient

functions.
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Figure 2.3: Examples of estimated beta. The left is the beta used for simulation,
the middle is the estimated beta from multivariate PCR, and the right is the
estimated beta from functional PCR. The top row is for δ = 5 and the bottom row
is for δ = 20. Red and yellow means that beta shows outward effect while blue
and skyblue means that beta shows inward effect.

2.3.1 Facial Functional Object Construction

We view each face as a 2-dimensional manifold that is a subset of R3, and our goal

is to construct functional objects Yn : M0 → R3 from each face. There are 6564

faces, and each face is sampled densely with 7150 points in x, y, and z coordinates.

Therefore, the data is {ynpq : n = 1, · · · , 6564; p = 1, · · · , 7150; q = 1, 2, 3}. We

elaborate each step of constructing facial functional objects as below.

Step 1. We identified a reference faceM0 as the mean of the 6564 faces, that is,

{ȳpq : ȳpq = 1
N

∑N
n=1 ynpq; p = 1, · · · , 7150; q = 1, 2, 3}. This approach is possible

because the data were already aligned via Procrustes analysis; the resulting mean

face is given in Figure 2.4.

Step 2. We apply manifold learning techniques to the mean face to find

M0, the representation of mean face in R2. The resulting M0 is represented by
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Figure 2.4: Plots of mean face which is taken as a reference face. Green area
represents the area where finer mesh is taken for felspline basis functions. Examples
of mesh plots are as in Figure 2.5.

{mpq; p = 1, · · · , 7150, q = 1, 2, 3}. The choice of the manifold learning technique

for constructing M0 is important to obtain a reasonable functional object that is

close to the original data. Figure 2.5 shows how M0 changes with different man-

ifold learning techniques. Since smoothness is defined with distance along M0,

we believed that the manifold learning techniques that preserve local distances

would work best. In order to check our intuition, we tried several nonlinear di-

mension reduction techniques like local linear embedding (LLE, Saul and Roweis

(2003)), Laplacian eigenmaps (Belkin and Niyogi, 2003), Isomap (Tenenbaum et

al., 2000), local tangent space alignment (LTSA, Zhang and Zha (2004)), Diffu-

sion Map (Nadler et al., 2006), and Spanifold Chenouri et al. (2015) along with

a linear dimension reduction technique principal component analysis (PCA) for a

comparison.

Step 3. We construct basis functions ej : [M0 ⊂ R2] → R3, but given

the limitations in constructing such basis functions, we took basis functions
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ej : [M0 ⊂ R2]→ R to expand the functional objects marginally

Yn(m) =


Yn1

Yn2

Yn3

 (m) =
J∑
j=1


bnj1

bnj2

bnj3

 ej(m) (2.3.1)

where Yn1 corresponds to x coordinate of Yn, Yn2 corresponds to y coordinate of

Yn, and Yn3 corresponds to z coordinate of Yn. We find {b̂njq} for q = 1, 2, 3 by

minimizing (2.1.1). We used felsplines (Ramsay, 2002) which are designed for irreg-

ularly shaped domain with complex boundaries and use a finite element method,

meaning that the domain is divided into triangular meshes and piecewise linear and

quadratic functions are fit on each mesh. Therefore, we needed to create meshes

out of our domain. Ramsay (2002) uses all data points as vertices of the mesh,

but in our case that will return over twenty thousand basis functions. In order to

limit the number of basis functions to less than the number of observations per

face, which is 7150 in our data, we created new meshes using the R package INLA

(Lindgren and Rue, 2013).

There can be many different ways to create meshes, and the choice of mesh

is closely related to the number of basis functions, thus affecting how close the

functional objects are to the data. We took a finer mesh around periorbital,

perinasal, and perioral areas shown as the green area in Figure 2.4, as these

localized facial features are emphasized in (Hammond et al., 2005), and a coarser

mesh around the cheeks and forehead where the surface is more smooth. The

meshes for different manifold learning techniques are given in the bottom row of

plots of Figure 2.5.

Table 2.2 presents the average mean squared errors (AMSE) of 100 randomly
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Figure 2.5: The dimension-reduced reference manifold M0 and corresponding mesh
using different manifold learning techniques. The finer inner mesh correspond to
the area of green in Figure 2.4.

selected faces, which is a measure of how close the functional objects Yn(m) are

to the original data {ynpq}:

AMSE:
1

N

1

P

N∑
n=1

P∑
p=1

|ynp −Yn(mp)|2, (2.3.2)

where N = 100 and P = 7150. We stress that, at this stage, we are not aiming

for dimension reduction; our goal is to approximate the data using basis functions

with as little error as possible. Therefore, in this step we want the AMSE to be as

small as possible to minimize any information loss when converting to functional

objects. However, the Procustes Analysis used to initially align and scale the data

results in a unit-less scale for the coordinates of the face; the x-axis has been

rescaled to have a range of 1. This means that the AMSE values themselves are

difficult to interpret, and thus we focus on comparisons of the AMSE’s. The range

of the first coordinate of the domain points mn, {mp1}, is different for each M0

from the different manifold learning techniques, and thus we made the smoothing

parameter, λ, in (2.1.1) dependent on the range of x. The AMSE for LTSA with

λ3 is smallest, while the AMSE for LLE with λ1 is also similarly small. Both LTSA
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and LLE try to preserve neighborhood distances of the original manifold, which

confirms our intuition that they would best represent smoothness defined with

distances along M0 and thus give a good fit. Spanifold gives the largest AMSE,

which is not surprising given that the M0 is very irregular. This is because a

human face has many local peaks, and Spanifold works better with more regular

surfaces.

PCA LLE Laplacian LTSA Diffusion Map Spanifold

λ1 0.00247 0.00018 0.00423 0.00078 0.00056 0.00679
λ2 0.00084 0.00036 0.00167 0.00017 0.00078 0.00690
λ3 0.00058 0.00083 0.00114 0.00013 0.00142 0.00772

range(x) 0.046 3.900 0.041 0.051 3.906 5.671

Table 2.2: The pointwise mean squared errors of Y(m) of 100 randomly selected
faces as in (2.3.2) for different λ’s from mesh as in Figure 2.5. λ1 = range(x)/104,
λ2 = range(x)/105, λ3 = range(x)/106 where range(x) is the range of {mp1}.

For all subsequent analyses, we utilize the manifold objects constructed using

the presented LTSA mesh and used λ a little less than λ3 to recover the details

of face. Figure 2.7 shows that the facial functional objects are very close to the

original faces except for some smoothing. Figure 2.6 shows a heatmap of the

pointwise errors between functional objects and the original data. The tip of the

nose shows a relatively high pointwise error compared to the other areas, which

is due to smoothing. The boundary does not show much deviation and seems to

be stable. We believe the resulting objects are reasonable approximations of the

original faces.

2.3.2 Functional Principal Component Analysis

In this Section we apply the 2-step Functional Principal Component Analysis (2-

step FPCA) discussed in Section 2.1.2 to the ADAPT data. We take H = 200
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Figure 2.6: Plot shows pointwise mean squared errors across all 6564 faces. This
shows that the difference between the original faces and facial functional objects
are very small.

Figure 2.7: Top three plots are examples of facial data of ADAPT, {ynpq}, and
bottom three plots are corresponding facial functional objects, Yn(m). This shows
that the facial functional objects closely resembles the original faces.

principal components, or ψh(m), in the first step (pooling coordinates), which

accounts for 99.9% of the total variance. In the second step we then compute

the PCs without pooling coordinates,Vk(m), and Figure 2.8 shows the cumulative

proportion of explained variance. The first principal component V1(m) explains

31.27%, the second principal component V2(m) explains 12.43%, and the third

principal component V3(m) explains 10.59% of variation. The first 5 principal

components combined explain 66.71%, and the first 10 principal components

combined explain 81.26%.
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Figure 2.8: Cumulative proportion of variance for number of PCs. First 10 PCs
explain about 81.2% of total variance and first 18 PCs explain about 90.2% of total
variance.

In Figure 2.9, we demonstrate how each principal component affects the face,

which is a bit challenging to visualize given that we are working in 3D. We thus

compute the orthogonal vector, tp, to the tangent plane of each facial point, mp,

by conducting traditional PCA in a small neighborhood of mp (distance 0.1). As

the first and second principal components would be the two vectors spanning the

tangent plane, the third principal component would be the vector orthogonal to

the tangent plane. Note that PCA also gives |tp|2 = 1. We then calculated the

inner product 〈Vk(mp), tp〉 at each point for p = 1, · · · , 7150. The yellow to red

area in Figure 2.9 denotes a PC whose effect points outward while the lightblue to

blue area means that the effect of PC at that point is inward. Orange and lightblue

mean weaker effects and red and blue mean stronger effects.

As the top leftmost plot of Figure 2.9 suggests, the major difference between the
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Figure 2.9: The directional plots for PC 1-5 on the top and PC 6-10 on the
bottom. The color on the face shows the direction and the strength, from weakest
to strongest, of each PC effect on face: from lightblue to blue, inward, and from
yellow to red, outward.

mean face and the reconstructed faces using the first PC in Figure 2.10 is the sides

of the faces. The top face became thinner while the middle face became a little

rounder on the cheek. Figure 2.10 shows the progression of facial changes with more

PCs included. The rightmost faces are good approximations to the bottom plots

in Figure 2.7, explaining 91.39% of total variation. Thus we have now reduced the

dimension of the data from 7150 points to 20 principal components, while carefully

controlling the information loss.

2.3.3 Manifold-on-Scalar Regression

We conclude the application Section by carrying out Manifold-on-Scalar Regres-

sion, which represents a major strength of our methodology. We examine the effects

of sex, age, height, weight, and genetic ancestry the structure of human faces. Ge-

netic ancestry is measured as a proportion of a particular ethnic background, where

E.ASN refers to East Asian, S.ASN refers to South Asian, AMR refers to Native

American, W.AFR refers to West African, and S.EUR refers Southern European.
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Figure 2.10: Three facial functional objects expanded using different number of
PCs from the second step of FPCA. Leftmost plot is the mean face. The percentage
of variation explained is given at the top of each column.

There is also N.EUR which refers to Northern European, but since the sum of all

proportions is 1, it is removed from the covariates, meaning that it is acting as

the ancestral baseline, so all ancestral effects indicate differences from Northern

Europeans. For the response variable, we take the facial functional objects Yn(m)

expanded with K = 100 principal components from the FPCA in Section 2.3.2.

The model is as in (2.3.3). Since the genetic ancestry was not computed for all

individuals, the number of facial manifolds involved in the model is N = 3287.

The model also includes a N (0, 10) noise variable just as a check to make sure our

subsequent p-values have proper specificity.
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Yn(m) = β0(m) + β1(m)sexn + β2(m)agen + β3(m)heightn + β4(m)weightn

+ β5(m)pE.ASN
n + β6(m)pS.ASN

n + β7(m)pAMR
n + β8(m)pW.AFR

n + β9(m)pS.EUR
n

+ β10(m)(sexn × agen) + β11(m)(agen × weightn)

+ β12(m)(heightn × weightn) + β13(m)noisen + εn(m).

(2.3.3)

We estimated beta functions βr’s with regularization term as outlined in Section

2.1.3. The tuning parameter λr’s are determined using iterative 4-fold cross

validation.

The sizes and p-values of resulting β̂r are presented in Table 2.3. We utilize

three different tests as outlined in Choi and Reimherr (2018). Each test uses

slightly different normalizations of the estimated parameter functions. The first

test is based on the L2-norm, which ignores the covariance operator of the

parameter estimate (though it is used in calculating p-values). The other two

approaches attempt to normalize by the covariance operator, where the PC and

Choi approach normalize by the Moore-Penrose inverse of the covariance operator

and square-root of the covariance operator, respectively. Both approaches can

be phrased using PCA, and we refer the interested reader to Choi and Reimherr

(2018) for more details.

The asymptotic distribution of the PC approach is simply a chi-squared

distribution, while the norm and Choi approach are given by weighted sums of chi-

squares. We approximate p-values from the weighted distribution using Imhof’s

method (Imhof, 1961; Duchesne and Lafaye de Micheaux, 2010). The p-values

suggest that all beta functions are significant at 99% significance level except the

noise. Therefore, the tests seem to have discerned the effects from the true negative
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variable.

Predictor ‖β̂r‖2 p-value (PC) p-value (Choi) p-value (Norm)

β0 3.910e-05 < 1.110e-21 5.385e-15 2.631e-09
β1 sex 9.924e-07 < 1.110e-21 5.551e-16 1.443e-15
β2 age 4.443e-10 5.888e-11 3.053e-15 3.672e-04
β3 height 2.105e-09 < 1.110e-21 5.551e-17 3.514e-14
β4 weight 1.549e-09 9.826e-08 6.088e-06 1.173e-02
β5 pE.ASN 2.439e-06 < 1.110e-21 4.996e-15 3.164e-15
β6 pS.ASN 5.859e-07 1.332e-17 2.220e-16 1.720e-11
β7 pAMR 7.689e-07 1.418e-21 1.110e-16 1.357e-08
β8 pW.AFR 1.783e-06 < 1.110e-21 1.110e-15 7.772e-16
β9 pS.EUR 1.514e-06 < 1.110e-21 6.661e-16 8.826e-14
β10 sex × age 2.103e-10 1.988e-19 5.551e-17 2.034e-10
β11 age × weight 3.523e-14 7.790e-06 5.328e-11 9.143e-03
β12 height × weight 7.553e-14 3.521e-10 5.074e-07 1.488e-03
β13 noise 4.188e-12 3.419e-01 3.242e-01 5.647e-01

Table 2.3: The size of β̂r and p-values based on PC test, Choi test, and Norm test
are presented.

Now that we have carried out our hypothesis testing, it is important to visualize

and more fully understand the estimated beta functions. Since these functions

have domain of M0, plotting βr is challenging. Instead, we visualize the effects in

a manner similar to the PC functions in Section 2.3.2; at each point we examine how

strong the effect is in the orthogonal direction to the tangent plane (i.e. outward

or inward relative to the face).

We provide three different plot types: directional plots, pointwise significance

plots, and overall significance plots that control the Type 1 error rate simultane-

ously across the face. The directional plot shows how the beta function affects

the face, the pointwise significance plot shows the facial areas where each point is

tested positive (blue/red means positive at 99% level and lightblue/orange means

positive at 95% level), and the overall significance plot shows the facial areas that

have overall significance at 99% level. An advantage of applying functional data
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analysis tools to faces are these overall significance plots, which rely heavily on the

functional nature of the data.

We discuss only a few of the estimated effects here to highlight how to interpret

our results. For example, the middle plot of Figure 2.11 presents the effect for

sex, demonstrating the difference between the average male and female face, for a

subject that is 30 years old, 170cm tall, and weighs 70kg. Blue denotes an inward

effect, while red represents an outward effect. The female face is rounder than the

male’s as signified by the red parts around the cheek in the directional plot. It also

shows that the male has a more pronounced nose, and the female has a rounder

eye area with red on the eyelids and blue on the eyebrow area. Those areas are

shown as significant for both pointwise significance plot and overall significance

plot.

Figure 2.11: The left two plots are predicted faces of 30-year-old, 170cm-tall, 70kg-
heavy Northern European male and female. The right three plots show the effect
of beta of sex.

The effect of the proportion of East Asian descent is shown in Figure 2.12. As

Northern European proportion is taken as the base, the beta function indicates the

difference between Northern European and East Asian. We see that the average

East Asian face is rounder, has a lower nose, and a less pronounced eyebrow. The

overall significance plot (right most plot) shows that the nose, cheek, and forehead

area are still statistically significant at a 99% significance level when correcting for
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multiple testing across the entire face using our confidence bubbles.

Figure 2.12: The left two plots are predicted faces of 25-year-old, 165cm-tall, 65kg-
heavy Northern European and East Asian female. The right three plots show the
effect of the corresponding beta.

The effect of the proportion of Western African is shown in Figure 2.13. The

most features seem to be the nose and mouth, and those are picked up in the

overall significance plot. The nose of Western African is more flattened but wider

than that of Northern European, shown as the inward effect (blue) in the middle of

nose, and the outward effect (red) on the sides of nose. The lips are more outward,

and the lower cheek area difference is also picked up in the overall significance plot.

Figure 2.13: The left two plots are predicted faces of 25-year-old, 165cm-tall, 65kg-
heavy Northern European and Western African female. The right three plots show
the effect of beta of the corresponding beta.
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2.4 Technical Proofs

2.4.1 2-Step Functional Principal Component Analysis

Step 1. Without loss of generality, assume that the Yn(m) have been centered

and thus have mean zero. Each of the functions is expressed as

Yn(m) = [Yn1(m), · · · , YnD(m)]> ≈

[
J∑
j=1

b̂nj1ej(m), · · · ,
J∑
j=1

b̂njDej(m)

]>
,

for n = 1, . . . , N . We stack all of the coordinate-wise functions into a single vector

of functions with dimension ND. We denote the resulting functions as Yl(m) where

Yl(m) = Ynq(m) for l = N(q − 1) + n and n = 1, · · · , N , q = 1, · · · , D.

We aim to find the pairs of eigenvalues ηh and principal component functions

ψh : M0 → RD, for h = 1, . . . , H, which satisfy

ηhψh(m) =

∫
Φ(m,m′)ψh(m

′)dm′

where

Φ(m,m′) = E[Yl(m)Yl(m
′)>] =

J∑
j1

J∑
j2

E[blj1blj2 ]ej1(m)ej2(m
′)>

=
J∑
j1

J∑
j2

Πj1,j2ej1(m)ej2(m
′)>,

and ‖ψh‖ = 1.

We expand ψh using ej:

ψh(m) =
J∑
j=1

whjej(m).
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We then need to solve the following system of linear equations

ηh

J∑
j=1

whjej(m) =

∫
M0

(
J∑
j1

J∑
j2

Πj1,j2ej1(m)ej2(m
′)

)(
J∑
j3

whj3ej3(m
′)

)
dm′

=
J∑
j1

J∑
j2

J∑
j3

Πj1,j2

(∫
M0

ej2(m
′)ej3(m

′)dm′
)
ej1(m)

=
J∑
j1

J∑
j2

J∑
j3

Πj1,j2Zj2,j3ej1(m).

And ‖ψh‖ = 1 means

∫
M0

J∑
j1=1

J∑
j2=1

whj1ej1(m)whj2ej2(m)dm =
J∑

j1=1

J∑
j2=1

whj1whj2Zj1,j2 = 1.

Factor the matriz Z = G>G so that

J∑
j1=1

J∑
j2=1

whj1whj2Zj1,j2 =
J∑

j1=1

J∑
j2=1

J∑
j3=1

whj1whj2Gj1j3Gj3j2 =
J∑
j=1

a2hj,

where we define ahj =
∑J

j1=1whj1Gjj1 . We then have

J∑
j1

J∑
j2

J∑
j3

Πj1,j2Zj2,j3ej1(m) =
J∑
j1

J∑
j2

J∑
j3

J∑
j4

Πj1j2Gj2j4Gj4j3whj3ej1(m)

=
J∑
j1

J∑
j2

J∑
j4

Πj1j2Gj2j4ahj4ej1(m)

=
J∑
j1

J∑
j4

(
J∑
j2

Πj1j2Gj2j4

)
ahj4ej1(m).

So we obtain the relation

ηhwhj1 =
J∑
j2

(
J∑
j3

Πj1j3Gj3j2

)
ahj2
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and

ηhahj = ηh

J∑
j1

whj1Gj,j1 =
J∑
j1

J∑
j2

Gj,j1

(
J∑
j3

Πj1j3Gj3j2

)
ahj2 =

J∑
j2

Π̃j,j2ahj2 ,

where Π̃j,j2 =
∑J

j1

∑J
j3

Gj,j1Πj1j3Gj3j2 . So we the vector aj = {ahj} is the jth

eigenvector of the covariance matrix Π̃. Since we know

ahj =
J∑

j1=1

whj1Gjj1 ,

reversing it would give whj1 and then we can get

ψh(m) =
J∑
j=1

whjej(m).

Step 2. We now expand Ynq(m) using the {ψh(m)}:

Ynq(m) =
H∑
h=1

cnhqψh(m).

The coefficients c = {cnhq} form an N ×H ×D array. The covariance operator of

Yn(m) is given by

Γq,q′(m,m
′) = E[Ynq(m)Ynq′(m

′)] =
H∑

h1=1

H∑
h2=1

E[cnh1qc
>
nh2q′ ]ψh1(m)ψh2(m

′)

=
H∑

h1=1

H∑
h2=1

Σh1qh2q′ψh1(m)ψh2(m
′).

Now we find the pairs of eigenvalues λk and eigenfunctions Vk(m) that satisfy

λkVk(m) =

∫
Γ(m,m′)Vk(m

′)dm′
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where ‖Vk‖ = 1. We expand Vk using the ψh as well:

Vkq(m) =
H∑
h=1

vkhqψh(m),

where v = {vkhq} is a K ×H ×D array of coefficients. So we want to solve

λk

H∑
h=1

vkhqψh(m) =
D∑
q′=1

∫
M0

H∑
h1=1

H∑
h2=1

Σh1qh2q′ψh1(m)ψh2(m′)
H∑

h3=1

vkh3q′ψh3(m′)dm′

=

D∑
q′=1

H∑
h1=1

H∑
h2=1

H∑
h3=1

Σh1qh2q′

(∫
M0

ψh2(m′)ψh3(m′)dm′
)
vkh3q′ψh1(m)

=

D∑
q′=1

H∑
h1=1

H∑
h2=1

H∑
h3=1

Σh1qh2q′Wh2h3vkh3q′ψh1(m)

=
D∑
q′=1

H∑
h1=1

H∑
h2=1

Σh1qh2q′vkh2q′ψh1(m),

since W is the identity matrix as the ψh are orthogonal. Since ‖Vk‖ = 1 this

means that
D∑
q=1

H∑
h1=1

H∑
h2=1

vkh1qvkh2q = 1.

Therefore

λkvkhq =
D∑
q′=1

H∑
h2=1

Σhqh2q′vkh2q′ .

So we have that vk = {vkhq} is the kth eigenmatrix of the H×D×H×D covariance

tensor Σ.

2.4.2 Manifold-on-Scalar Regression with Regularization

Our objective is to find β’s that minimizes

N∑
n=1

∫
M0

∣∣∣∣∣Yn(m)−
R∑
r=1

xnrβr(m)

∣∣∣∣∣
2

dm+
R∑
r=1

λr

∫
M0

|Lβr(m)|2dm (2.4.1)



48

We can take λ = λ1 = · · · = λR, but we will keep them separate for now.

We need to choose roughness operator L carefully. Since we do not want

the minimizer of (2.4.1) to change depending on the coordinate system, we

need an operator that is invariant to rotation and translation. Ramsey (2002)

chooses Laplacian operator as such operator. Laplacian operator 4 is such that

4f = fxx + fyy.

Wtih f : [M0 ⊂ R2]→ R3, the Laplacian operator on f is as

4f = 4[f1, f2, f3]
> = [4f1,4f2,4f3]>

=

[
d2f1
dm2

1

+
d2f1
dm2

2

,
d2f2
dm2

1

+
d2f2
dm2

2

,
d2f3
dm2

1

+
d2f3
dm2

2

]>

where f1, f2, f3 correspond to each coordinate of f and m1 and m2 correspond to

each coordinate of M0.

Therefore (2.4.1) becomes

N∑
n=1

∫
M0

∣∣∣∣∣Yn(m)−
R∑
r=1

xnrβr(m)

∣∣∣∣∣
2

dm+
R∑
r=1

λr

∫
M0

| 4 βr(m)|2dm (2.4.2)

With PC basis functions Vk : [M0 ⊂ R2] → R3 for k = 1, · · · , K, Yn and βr

can both be expanded with V1, · · · ,VK :

N∑
n=1

∫
M0

∣∣∣∣∣
K∑
k=1

ynkVk(m)−
R∑
r=1

xnr

K∑
k=1

brkVk(m)

∣∣∣∣∣
2

dm

+
R∑
r=1

λr

∫
M0

∣∣∣∣∣
K∑
k=1

brk(4Vk(m))

∣∣∣∣∣
2

dm (2.4.3)
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The first term

N∑
n=1

∫
M0

∣∣∣∣∣
K∑

k=1

ynkVk −
R∑

r=1

xnr

K∑
k=1

brkVk

∣∣∣∣∣
2

dm

=

N∑
n=1

∫
M0

(
K∑

k=1

ynkVk −
R∑

r=1

xnr

K∑
k=1

brkVk

)>( K∑
k=1

ynkVk −
R∑

r=1

xnr

K∑
k=1

brkVk

)
dm

=

N∑
n=1

∫
M0

(
K∑

k=1

ynkVk

)>( K∑
k=1

ynkVk

)
−

(
R∑

r=1

xnr

K∑
k=1

brkVk

)>( K∑
k=1

ynkVk

)

−

(
K∑

k=1

ynkVk

)>( R∑
r=1

xnr

K∑
k=1

brkVk

)
+

(
R∑

r=1

xnr

K∑
k=1

brkVk

)>( R∑
r=1

xnr

K∑
k=1

brkVk

)
dm

=

N∑
n=1

K∑
k1=1

K∑
k2=1

ynk1
ynk2

∫
M0

V>
k1
Vk2

dm− 2

N∑
n=1

R∑
r=1

xnr

K∑
k1=1

K∑
k2=1

brk1
ynk2

∫
M0

V>
k1
Vk2

dm

+

N∑
n=1

R∑
r1=1

R∑
r2=1

xnr1xnr2

K∑
k1=1

K∑
k2=1

br1k1br2k2

∫
M0

V>
k1
Vk2dm

=

N∑
n=1

K∑
k=1

y2nk − 2

N∑
n=1

R∑
r=1

xnr

K∑
k=1

brkynk +

N∑
n=1

R∑
r1=1

R∑
r2=1

xnr1xnr2

K∑
k=1

br1kbr2k

=

N∑
n=1

K∑
k=1

(
y2nk − 2

R∑
r=1

xnrbrkynk +

R∑
r1=1

R∑
r2=1

xnr1xnr2br1kbr2k

)2

=

N∑
n=1

K∑
k=1

(
ynk −

R∑
r=1

xnrbrk

)2

The second term

R∑
r=1

λr

∫
M0

∣∣∣∣∣
K∑

k=1

brk(4Vk)

∣∣∣∣∣
2

dm

=

R∑
r=1

λr

∫
M0

(
K∑

k=1

brk(4Vk)

)>( K∑
k=1

brk(4Vk)

)
dm

=

R∑
r=1

λr

K∑
k1=1

K∑
k2=1

brk1
brk2

∫
M0

(4Vk1
)>(4Vk2

)dm

=

R∑
r=1

λr

K∑
k1=1

K∑
k2=1

brk1brk2Uk1,k2

where

Uk1,k2
=

∫
M0

(4Vk1
)>(4Vk2

)dm
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=

∫
M0

(4Vk1,1)2 + (4Vk1,2)2 + (4Vk1,3)2dm.

that is summing the three coordinates.

And from FPCA, we know

Vkq(m) =
H∑
h=1

vkhqφh(m)

and

φh(m) =
J∑
j=1

whjej(m)

where ej’s are the felsplines (Ramsey, 2002).

Then ∫
M0

(4Vk,q(m))2dm =

∫
M0

(
H∑
h=1

(4φh(m)

)2

dm.

And in order to get
∫
M0

(4φh(m))2dm, we need to consider the FEM theories.

Let fh(m) = −4 φh(m).

〈fh, ej〉 =

∫
M0

(−4 φh)ejdm

=

∫
M0

(5φh)(5ej) (∵ Green’s theorem)

=

∫
M0

(5
J∑

j1=1

whj1ej1)(5ej)

=
J∑

j1=1

whj1

∫
M0

(5ej1)(5ej)dm

And we have code for getting
∫
M0

(5ej1)(5ej)dm. The matrix with these

components is called stiffness matrix.
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Then using

fh(m) =
J∑
j=1

〈fh, ej〉ej(m) =
J∑
j=1

fhjej(m),

we can get

∫
M0

(4φh)2dm =

∫
M0

fh(m)2dm

=

∫
M0

(
J∑

j1=1

fhj1ej1(m))(
J∑

j2=1

fhj2ej2(m))dm

=
J∑

j1=1

J∑
j2=1

fhj1fhj2

∫
M0

ej1(m)ej2(m)dm.

The matrix with components of the inner product between ej1 and ej2

(
∫
M0

ej1(m)ej2(m)dm) is called mass matrix, and we have code for that too.

Let’s go back to getting the least square estimate of {brk}.

Let

Y =


y11 y12 · · · y1K

y21 y22 · · · y2K
...

...
...

...

yN1 yN2 · · · yNK


, X =


x11 x12 · · · x1R

x21 x22 · · · x2R
...

...
...

...

xN1 xN2 · · · xNR


,

B =


b11 b12 · · · b1K

b21 b22 · · · b2K
...

...
...

...

bR1 bR2 · · · bRK


, Λ = diag(λ1, λ2, · · · , λR).

Then our objective becomes to find B that minimizes

trace{(Y −XB)>(Y −XB)}+ trace{ΛBUB>} (2.4.4)
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Now let’s find the least square estimate of B.

Differentiate (2.4.4) and set it to 0:

−2X>Y + 2X>XB + 2ΛBU = 0.

We can cross 2 out:

−X>Y +X>XB + ΛBU = 0.

Take transpose of everything:

−Y >X +B>(X>X) + U>B>Λ = 0.

Vectorize the whole thing:

−vec(Y >X) + ((X>X)⊗ IK)vec(B>) + (Λ⊗ U>)vec(B>) = 0.

Then the least square estimate of B is:

vec(B̂>) =
(
(X>X)⊗ IK + Λ⊗ U>

)−1
vec(Y >X). (2.4.5)

Find covariance of vec(B̂>). Let

A =
(
(X>X)⊗ IK + Λ⊗ U>

)−1
.

cov
(

vec(B̂>)
)

= Acov
(
vec(Y >X)

)
A>

= Acov
(
(X> ⊗ IK)vec(Y >)

)
A>

= A(X> ⊗ IK)(IN ⊗ Σ)(X ⊗ IK)A>
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= A(X> ⊗ Σ)(X ⊗ IK)A>

= A
(
(X>X)⊗ Σ

)
A>

2.4.3 Proof of Theorem 2.1.1

Using the Karhunen-Loève (KL) expansion, we can write

√
N(β̂r(m)− βr(m)) =

∞∑
j=1

√
λjZjUj(m),

where the equality hold for almost all m ∈M0 since L2(M0) consists of equivalence

classes. By the Cauchy-Schwarz inequality,

N |β̂r(m)− βr(m)|2 ≤
∞∑
j=1

|λ
1
4
j Zj|2

∞∑
j=1

|λ
1
4
j Uj(m)|2

=
∞∑
j=1

√
λjZ

2
j

∞∑
j=1

√
λj|Uj(m)|2,

as desired.



Chapter 3
Manifold-on-Scalar Regression

Algorithms

3.1 Kernel Expansion

In this Chapter, we present the three algorithms that are for estimating the

parameter functions in manifold-on-scalar regression. Instead of using felspline

expansion in Chapter 2, we now use kernel expansion to embed the sample of

manifolds in a Reproducing Kernel Hilbert Space (RKHS). We used an exponential

kernel that is of the form

K(u, u′) = exp(−σ‖u− u′‖).

Exponential kernel is useful because it produces RKHS that is equivalent to a

Sobolev space. Exponential kernel is also a special case of Matérn kernel with its

smoothness parameter being 1/2.
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Penalized least squares is used to find the coefficients for the data.

N∑
n=1

P∑
p=1

(Ynp −
J∑
j=1

cnjK(up, uj))
2 + λ ‖cnjK(up, uj)‖2K

We tried a few different pairs of σ for the exponential kernel and λ and found

σ = 3.5 and λ = 10−4 give the lowest generalized cross-validation value. The

resulting manifolds would be

Yn(m) = [Yn1(m), · · · , YnD(m)]>

≈

[
J∑
j=1

ânj1K(mj,m), · · · ,
J∑
j=1

ânjDK(mj,m)

]>
.

The fitted faces are shown in Figure 3.1. The fit to the original data is

clearly much better with the kernel expansion than with felspline expansion. With

felspline expansion, the area around eyes and noses are a bit smoothed out, but

with kernel expansion, we are able to retain the features and curvatures of the

original data.

3.2 Algorithms

We now present three different algorithms for parameter estimation in manifold-

on-scalar regression. The first one is a principal component regression method, the

second one is also a principal component regression but with smoothness imposed

on the covariance operator, and the third is a penalized regression method.
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Figure 3.1: Example of faces with kernel eigenfunction expansion with comparison
to faces expanded using felsplines.

3.2.1 Principal Component Regression

We conduct a principal component analysis on the kernel-expanded functional data

and run a regression model on the principal components. Therefore, it is like a

principal component regression.

First we would centralize Ynq(m) for q = 1, · · · , D. The sample mean of Ynq(m)

is

µ̂q(m) =
1

N

N∑
n=1

J∑
j=1

ânjqK(mj,m) =
J∑
j=1

(
1

N

N∑
n=1

ânjq

)
K(mj,m),

Let Ỹnq(m) is the centralized Ynq(m). It is

Ỹnq(m) = Ynq(m)− µ̂q(m) =
J∑
j=1

[
ânjq −

(
1

N

N∑
n=1

ânjq

)]
K(mj,m)
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=
J∑
j=1

ãnjqK(mj,m).

The coefficients a = {ãnjq} form an N × J ×D array. The covariance operator of

Yn(m) is given by

Γq,q′(m,m
′) = E[Ỹnq(m)Ỹnq′(m

′)] =
J∑

j1=1

J∑
j2=1

E[ãnj1qãnj2q′ ]K(mj1 ,m)K(mj2 ,m
′)

=
J∑

j1=1

J∑
j2=1

Σj1qj2q′K(mj1 ,m)K(mj2 ,m
′).

Now we find the pairs of eigenvalues λk and eigenfunctions Vk(m) that satisfy

λkVk(m) =

∫
M0

Γ(m,m′)Vk(m
′)dm′

where ‖Vk‖ = 1. We expand Vk using the K(mj,m) as well:

Vkq(m) =
J∑
j=1

vkjqK(mj,m),

where v = {vkjq} is a K × J ×D array of coefficients. So we want to solve

λk

J∑
j=1

vkjqK(mj,m)

=
D∑
q′=1

∫
M0

J∑
j1=1

J∑
j2=1

Σj1qj2q′K(mj1 ,m)K(mj2 ,m
′),

J∑
j3=1

vkj3q′K(mj3 ,m
′)dm′

=
D∑
q′=1

J∑
j1=1

J∑
j2=1

J∑
j3=1

Σj1qj2q′

∫
M0

K(mj2 ,m
′), K(mj3 ,m

′)dm′vkj3q′K(mj1 ,m)

=
D∑
q′=1

J∑
j1=1

J∑
j2=1

J∑
j3=1

Σj1qj2q′Wj2,j3vkj3q′K(mj1 ,m),
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where W is J × J matrix of evaluated kernel inner product:

Wj2,j3 =

∫
M0

K(mj2 ,m)K(mj3 ,m)dm.

Since ‖Vk‖L2 = 1, this means that

∫
M0

V>k (m)Vk(m)dm =
D∑
q=1

J∑
j1=1

J∑
j2=1

vkj1qvkj2q

∫
M0

K(mj1 ,m)K(mj2 ,m)dm

=
D∑
q=1

J∑
j1=1

J∑
j2=1

vkj1qvkj2qWj1,j2 = 1.

Factor the matrix W = G>G so that

‖Vk‖L2 =
J∑

j1=1

J∑
j2=1

vkj1qvkj2qWj1,j2

=
J∑

j1=1

J∑
j2=1

J∑
j3=1

vkj1qvkj2q[G
>]j1,j3Gj3,j2

=
J∑

j1=1

J∑
j2=1

J∑
j3=1

vkj1qvkj2qGj3,j1Gj3,j2

=
J∑

j3=1

(
J∑

j1=1

vkj1qGj3,j1

)(
J∑

j2=1

vkj2qGj3,j2

)

=
J∑
j=1

b2kjq,

where we define bkjq =
∑J

j1=1 vkj1qGjj1 . We then have

D∑
q′=1

J∑
j1=1

J∑
j2=1

J∑
j3=1

Σj1qj2q′Wj2,j3vkj3q′K(mj1 ,m)

=
D∑
q′=1

J∑
j1=1

J∑
j2=1

J∑
j3=1

J∑
j4=1

Σj1qj2q′Gj4,j2Gj4,j3vkj3q′K(mj1 ,m)
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=
D∑
q′=1

J∑
j1=1

J∑
j4=1

(
J∑

j2=1

Σj1qj2q′Gj4,j2

)
bkj4q′K(mj1 ,m)

So we obtain the relation

λkvkj1q =
D∑
q′=1

J∑
j4=1

(
J∑

j2=1

Σj1qj2q′Gj4,j2

)
bkj4q′

and

λkbkjq = λk

J∑
j1=1

vkj1qGjj1

=
J∑

j1=1

[
D∑
q′=1

J∑
j4=1

(
J∑

j2=1

Σj1qj2q′Gj4,j2

)
bkj4q′

]
Gjj1

=
D∑
q′=1

J∑
j4=1

[
J∑

j1=1

J∑
j2=1

Gjj1 (Σj1qj2q′) Gj4,j2

]
bkj4q′

=
D∑
q′=1

J∑
j4=1

Σ̃jqj4q′bkj4q′

where Σ̃jqj4q′ =
∑J

j1=1

∑J
j2=1 Gjj1 (Σj1qj2q′) Gj4,j2 .

So we have that bk = {bkjq} is the kth eigenmatrix of J ×D × J ×D covariance

tensor Σ̃.

As bkjq =
∑J

j1=1 vkj1qGjj1 , reversing it would give us vkj1q and the

eigenfunctions Vkq(m) =
∑J

j=1 vkjqK(mj,m). We can write

Yn(m) =
K∑
k=1

cnkVk(m).
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3.2.2 Principal Component Regression with RKHS

penalty on Covariance Operator

We conduct a principal component regression in this algorithm also, but the

difference between this algorithm and the algorithm in Section 3.2.1 is that for

this we impose smoothness on the covariance operator. The covariance operator

of Yn(m) in Section 3.2.1 was

Γ̂ = arg min
Γ

{
N∑
n=1

‖Ỹn ⊗ Ỹn − Γ‖2L2

}
.

We look at this Γ coordinate-wise and put RKHS penalty on Γq,q′ .

The estimator of covariance operator Γ̂q,q′ is now the one that minimizes

1

N

N∑
n=1

‖Ỹnq · Ỹnq′ − Γq,q′‖2L2 + λ‖Γq,q′‖2HK
. (3.2.1)

We expand Γq,q′ : M0 ×M0 → R with tensor of kernel functions.

Γq,q′(m,m
′) =

K∑
k=1

L∑
l=1

γkqlq′K(mk,m)K(ml,m
′).

Therefore, now we want to find {γkl} that minimizes equation (3.2.1) which

becomes

1

N

N∑
n=1

∥∥∥∥∥
J∑

j1=1

J∑
j2=1

ãnj1qãnj2qKj1(m)Kj2(m
′)−

K∑
k=1

L∑
l=1

γkqlq′Kmk
(m)Kml

(m′)

∥∥∥∥∥
2

L2

+ λ

∥∥∥∥∥
K∑
k=1

L∑
l=1

γkqlq′K(mk,m)K(ml,m
′)

∥∥∥∥∥
2

HK

.
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This is

J∑
j1=1

J∑
j2=1

J∑
j3=1

J∑
j4=1

Σj1qj2q′Σj3qj4q′

∫
Kj1(m)Kj3(m)dm

∫
Kj2(m

′)Kj4(m
′)dm′

− 2
J∑

j1=1

J∑
j2=1

K∑
k=1

L∑
l=1

Σj1qj2q′γkqlq′

∫
Kj1(m)Kk(m)dm

∫
Kj2(m

′)Kl(m
′)dm′

+
K∑

k1=1

L∑
l1=1

K∑
k2=1

L∑
l2=1

γk1q,l1q′γk2q,l2q′

∫
Kk1(m)Kk2(m)dm

∫
Kl1(m

′)Kl2(m
′)dm′

+ λ

K∑
k1=1

L∑
l1=1

K∑
k2=1

L∑
l2=1

γk1q,l1q′γk2q,l2q′K(mk1 ,mk2)K(ml1 ,ml2).

Let Wj1,j2 be a matrix of evaluated
∫
Kj1(m)Kj2(m)dm for the sets (mj1 ,mj2).

Then the above, excluding the ones that does not depend on γkqlq′ , becomes

−2
J∑

j1=1

J∑
j2=1

K∑
k=1

L∑
l=1

Σj1qj2q′γkqlq′Wj1,kWj2,l

+
K∑

k1=1

L∑
l1=1

K∑
k2=1

L∑
l2=1

γk1q,l1q′γk2q,l2q′Wk1,k2Wl1,l2

+ λ
K∑

k1=1

L∑
l1=1

K∑
k2=1

L∑
l2=1

γk1q,l1q′γk2q,l2q′K(mk1 ,mk2)K(ml1 ,ml2).

Since we look at this for each (q, q′), let Σj1,j2 be the matrix corresponding to

Σj1,q,j2,q′ for a fixed (q, q′) and let γkl represent γkqlq′ .

Let

Akl =
∑
j1

∑
j2

Wj1kΣj1,j2Wj2,l.

Then the first line becomes

−2
J∑

j1=1

J∑
j2=1

K∑
k=1

L∑
l=1

Σj1j2γklWj1,kWj2,l = −2
K∑
k=1

L∑
l=1

γklAkl = −2 trace{γ>A}.
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The second line is

K∑
k2=1

L∑
l1=1

[
K∑

k1=1

γk1,l1Wk1,k2

][
L∑

l2=1

γk2,l2Wl1,l2

]
= trace

{[
γ>W k

]
l1,k2

[
γ(W l)>

]
k2,l1

}
.

And the third line is

λ

L∑
l1=1

K∑
k2=1

[
K∑

k1=1

γk1,l1K(mk1 ,mk2)

][
L∑

l2=1

γk2,l2K(ml1 ,ml2)

]

= λ trace
{[
γ>Kk

]
l1,k2

[
γ(K l)>

]
k2,l1

}
.

Therefore, we want to find γ that minimizes

−2 trace{γ>A}+ trace
{[
γ>W k

] [
γ(W l)>

]}
+ λ trace

{[
γ>Kk

] [
γ(K l)>

]}
.

Differentiate by γ would yield:

−2A+W kγ(W l)> + (W k)>γW l + λKkγ(K l)> + λ(Kk)>γK l = 0.

Vectorize the whole thing:

(W l ⊗W k)vec(γ) + (W l ⊗W k)>vec(γ) + λ(K l ⊗Kk)vec(γ)+λ(K l ⊗Kk)>vec(γ)

= 2vec(A).

Therefore,

vec(γ̂) = 2
{

(W l ⊗W k) + (W l ⊗W k)> + λ(K l ⊗Kk) + λ(K l ⊗Kk)>
}−1

vec(A).

If we assume that we have taken W k = W l = W and Kk = K l = K, meaning that
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we have taken same points (k1, k2) = (l1, l2), and W and K are symmetric, then

vec(γ̂) = {(W ⊗W ) + λ(K ⊗K)}−1 vec(A). (3.2.2)

Then we rearrange vec(γ̂) to get γ̂ and conduct singular value decomposition

on this γ̂ to get the eigenfunctions. We can then use the coefficients for those

eigenfunctions in regression.

3.2.3 Penalized Regression with RKHS Penalty

This time we do not conduct a principal component analysis but we impose an

RKHS penalty term on the β functions. Our objective is to find β’s that minimizes

`λ(β) =
N∑
n=1

∥∥∥∥∥Yn(·)−
R∑
r=1

xnrβr(·)

∥∥∥∥∥
2

L2

+
R∑
r=1

λr‖βr(·)‖2HK
(3.2.3)

Yn is expanded as:

Yn(m) = [Yn1(m), · · · , YnD(m)]> ≈

 J∑
j=1

ânj1K(mj ,m), · · · ,
J∑
j=1

ânjDK(mj ,m)

> .
The estimator β̂ then minimizes `λ(β). We take the expansion of βr as:

βr(m) = [βr1(m), · · · , βrD(m)]> =

[
L∑
l=1

brl1K(ml,m), · · · ,
L∑
l=1

brlDK(ml,m)

]>
.

So the goal becomes to find {b̂rlq} that minimizes `λ(β). It is possible to have

L = J and {ml} = {mj}. But let’s keep them separate for now.

We again look at this coordinate-wise. Then for each q = 1, · · · , D, the estimator
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β̂rq is the one that minimizes

`λ(β) =
N∑
n=1

∥∥∥∥∥Ynq(·)−
R∑
r=1

xnrβrq(·)

∥∥∥∥∥
2

L2

+
R∑
r=1

λr‖βrq(·)‖2HK
. (3.2.4)

The first part of (3.2.4) is

N∑
n=1

∥∥∥∥∥Ynq(·)−
R∑
r=1

xnrβrq(·)

∥∥∥∥∥
2

L2

=
N∑
n=1

〈
Ynq(·)−

R∑
r=1

xnrβrq(·),Ynq(·)−
R∑
r=1

xnrβrq(·)

〉
L2

=
N∑
n=1

〈Ynq(·),Ynq(·)〉L2 − 2
N∑
n=1

〈
Ynq(·),

R∑
r=1

xnrβrq(·)

〉
L2

+
N∑
n=1

〈
R∑
r=1

xnrβrq(·),
R∑
r=1

xnrβrq(·)

〉
L2

.

Excluding the ones that do not depend on β,

N∑
n=1

[
−2

〈
Yn(·),

R∑
r=1

xnrβr(·)

〉
L2

+

〈
R∑
r=1

xnrβr(·),
R∑
r=1

xnrβr(·)

〉
L2

]

= −2
N∑
n=1

J∑
j=1

L∑
l=1

R∑
r=1

ânjqbrlq

∫
K(mj,m)K(ml,m)dm

+
N∑
n=1

R∑
r1=1

R∑
r2=1

L∑
l1=1

L∑
l2=1

xnr1br1l1qxnr2br2l2q

∫
K(ml1 ,m)K(ml2 ,m)dm.

The second part of (3.2.4) is

R∑
r=1

λr‖βrq(·)‖2HK
=

R∑
r=1

λr

L∑
l1=1

L∑
l2=1

brl1qbrl2qK(ml1 ,ml2).
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Let

A(q) =


â11q â12q · · · â1Jq

â21q â22q · · · â2Jq
...

...
...

...

âN1q âN2q · · · âNJq


N×J

, X =


x11 x12 · · · x1R

x21 x22 · · · x2R
...

...
...

...

xN1 xN2 · · · xNR


N×R

,

B(q) =


b11q b12q · · · b1Lq

b21q b22q · · · b2Lq
...

...
...

...

bR1q bR2q · · · bRLq


R×L

, Λ = diag(λ1, λ2, · · · , λR),

[WJ×L]j,l =

∫
K(mj,m)K(ml,m)dm,

[WL×L]l1,l2 =

∫
K(ml1 ,m)K(ml2 ,m)dm,

Kl1,l2 = K(ml1 ,ml2).

The objective function (3.2.4) becomes to find B(q) that minimizes

trace{−2A(q)WJ×LB(q)>X> +XB(q)WL×LB(q)>X>}+ trace{ΛB(q)KB(q)>}.

Differentiate with regards to B(q) would yield:

−2X>A(q)WJ×L + 2X>XB(q)WL×L + 2ΛB(q)K = 0.

Divide by 2 and vectorize the whole thing:

(WL×L ⊗ (X>X))vec(B(q))− vec(X>A(q)WJ×L) + (K⊗ Λ)vec(B(q)) = 0.
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Therefore, the least square estimate of B(q) can be found by:

vec(B̂(q)) = (WL×L ⊗ (X>X) + K⊗ Λ)−1vec(X>A(q)WJ×L). (3.2.5)

3.3 Computation

The algorithms presented are very high-dimension and it is not easily tractable.

For example, with ADAPT data we have 7150 measurements per face, so in order to

solve for (3.2.2), we now have to take an inverse of (7150·7150)×(7150·7150) matrix.

In order to make this computation feasible, we intoduce using the eigenfunctions

of RKHS as basis functions. This means that we use vj that represent kernel as

K(u, u′) =
∞∑
j=1

τjvj(u)vj(u
′),

where τj are eigenvalues. The approximation of these eigenfunctions are discussed

earlier in Section 1.1.2.2.

With vj which are orthonormal in L2 and orthogonal in K with norms of 1/τj,

W becomes an identity matrix and K becomes a diagonal matrix with its diagonal

terms being 1/τj. This setup allows us to find β using the algorithms presented in

Section 3.2.

3.4 Comparison

In order to compare the prediction performance of the three algorithms, we take

10-fold cross validation and check the prediction errors. The covariates we took are

the same as in Section 2.3.3: sex, age, height, weight, the population proportions

from East Asian, South Asian, Southern European, Native American, and West
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African. The relative prediction error is calculated as

Relative Prediction Error:
SSEmean − SSEreg

SSEmean

where SSEmean is the sum of squared prediction errors when the model is only

with the coefficient function (i.e. mean estimation) whereas SSEreg is the sum of

squared prediction errors with the full model. This is similar to R2 and reveals

relatively how much errors are explained by the predictors in the model.

PCR smoothPCR smoothPCR penal reg
λ = 10−15 λ = 10−20

RPE 0.2944 0.2940 0.2944 0.1568
Computation Time 30min 2hr 2hr 10min

Table 3.1: Comparison between three algorithms using the mean relative prediction
error of 10-fold cross validation and computation time.

We took 99% PC level for both PCR and smooth PCR. The resulting mean

prediction error for PCR is 0.2944 with number of principal components being

about 100. The mean prediction error for smooth PCR depends on the smoothing

parameter. With the smoothing parameter of 10−20, it gives the mean relative

prediction error of 0.2944, same as PCR case. The number of principal components

is also very similar to be about 100. With the smoothing parameter of 10−15, the

model gives the mean relative prediction error of 0.2940, which is smaller but still

very close to that of 10−20. The mean prediction error for penalized regression

is 0.1568, which is much less than the previous two. This means that penalized

regression does the worst in terms of prediction. This is rather surprising because

we believe that the smoothing on beta would increase the prediction power. But

it may be because for penalized regression model, we predict each coordinate

separately, ignoring the dependencies between the three coordinates. This also
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emphasizes the importance of considering the three coordinates together when we

conduct an analysis on facial shape.

In terms of the computation time, each cross validation took about 30 minutes

for PCR, 2 hours for smooth PCR, and 10 minutes for penalized regression. The

time consumption of smooth PCR comes largely from the spectral decomposition

of the estimated covariance operator. Because the dimension of this covariance

operator is J×3×J×3 where J corresponds to the number of kernel eigenfunctions,

and for our case, J is 4002. The same computation is required for PCR too, but

we did a trick of conducting spectral decomposition on the kernel coefficients,

without constructing the covariance operator. When the kernel coefficients form a

matrix A, then the estimated covariance operator will be in the form of C = A>A
n−1

(assuming A is centered). This means that if we get spectral decomposition of A

such that A = USV >, then C = V SU>USV >

n−1 = V S2

n−1V
>. Thus we are able to get

the spectral decomposition on C by getting the spectral decomposition on A. Since

A in our case is of the dimension N ×J × 3, conducting spectral decomposition on

this instead of C which is of dimension J×3×J×3 reduces down the computation

time notably.

We apply the three algorithms to the whole ADAPT data and get the estimated

beta functions. When we check the directional plots as in Figure 3.2, the beta

estimated through PCR and smoothPCR are very similar although they are

somewhat different from the beta estimated using felspline as in Section 2.3.3.

However, the most notable difference comes from the beta estimates through the

penalized regression. Since penalized regression is the only method that has

not gone through the principal component analysis and the three coordinates

are considered separately, that may account for why the predictors in penalized

regression affect the response in somewhat different way from the PCR methods.
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However, the beta estimates from penalized regression still affect the faces in a

similar fashion. For sex effect, the cheek is rounder for the females, and that has

been captured on the top right plot of Figure 3.2. For height effect, a taller person

will have slender cheek if all the other predictors remain the same, and that is

also captured as blue on the cheek for the beta from penalized regression. But for

the population proportion from Western African, the tear-looking blue dots on the

cheek disappear on the penalized regression, but this disappearance may be due

to the smoothing on beta.
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Figure 3.2: Comparison between the estimated beta using directional plots. Red
means outward effect and blue means inward effect.



Chapter 4
Optimal Function-on-Scalar

Regression over Complex Domains

4.1 Introduction

In this Chapter we establish the optimality of parameter estimation for function-on-

scalar regression over complex domains by (1) establishing minimax lower bounds

on the estimation rate and (2) providing a minimax optimal estimator whose upper

bounds match the developed lower bounds.

We develop our theory under a fairly general structure:

Yij` = Yi`(uij) + δij` =
K∑
k=1

Xikβ`k(uij) + εij`(uij) + δij`. (4.1.1)

for i = 1, . . . , n, j = 1, . . . ,mi, and ` = 1, . . . , L. Here i indexes the subject,

j the observed domain point, and ` the coordinates of the functional outcomes.

Intuitively, this means that for each subject we have a L functional outcomes

Yi`(u) ∈ R that are only observed at points uij ∈ U . The domain U is most

commonly the interval [0, 1], but it may also be a more complex manifold, both of
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which are included in our theory. Lila and Aston (2017) consider the thickness of

the internal carotid artery meaning that U is a two dimensional manifold sitting

in 3D space and L = 1. In our FMDA framework as in Chapter 2, we consider

the shape of human faces, so our framework results in U being a two dimensional

manifold while L = 3 since the face is measured in 3D. The dimension of U plays

a critical role in the minimax estimation rates for the β`k(u), while, interestingly,

the value L does not. In addition, it was previously thought that, in simpler

settings such as mean estimation, it was necessary to control the smoothness of

the underlying functions Yi`(u), or equivalently the errors εij(t). However, we show

that this is actually unnecessary and establish all of our results under the very mild

assumption that E ‖εij‖2L2(U) <∞.

Another aspect of our work is to establish our convergence rates more broadly

than just making assumptions about derivatives. We only assume that the β`k lie

in an RKHS, and establish our rates relative to the rate of decay of the eigenvalues

of the kernel defining the RKHS. Under mild assumptions, we will show that the

optimal rate of converge is given by

OP

(
(nm)−

2h
2h+1 + n−1

)
,

where h is connected to the kernel of the RKHS. When the dimension of U is d and

the parameters β`k possess p derivatives, it can be shown that h = p/d resulting

in the rate

OP

(
(nm)−

2p
2p+d + n−1

)
,

thus we can clearly see how the dimension of U affects the convergence rates of our

estimators, with higher dimensions resulting in slower rates. This highlights why it

is so useful to exploit manifold structures that reside in higher dimensional spaces;
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the convergence rate is tied to the dimension of the manifold, not the ambient

space.

4.2 Modeling Assumptions

We now state our modeling assumptions one at a time. We will summarize at the

end of this Section with a quick reference of all of the assumptions made. We begin

with the relationship

Yi`(u) =
K∑
k=1

Xikβ`k(u) + εi`(u).

This represents the model for the underlying trajectories, which are not completely

observed. The parameters, β`k are assumed to lie within K. Regularity

assumptions about the β`k are introduced by making assumptions about K,

especially the rate at which the eigenvalues of K converge to zero.

We make only minimal assumptions about the regularity of the εi`(u). In

particular, we will establish our minimax rates under the mild assumption the

point-wise variance of the errors is bounded, supu∈U Var(εi(u)) <∞, which implies

(and is only slightly stronger than) E ‖εi`‖2 <∞. In Yuan and Cai (2010) the much

stronger assumption was made that E ‖εi`‖2K < ∞, which, by the reproducing

property implies our assumption. While seemingly innocent, this is an incredibly

strong assumption that would actually preclude achieving optimal convergence

rates in most settings. Practically, the data is usually much rougher than the

underlying mean parameters. However, Yuan and Cai (2010) requires that they

reside in the same space, meaning that the β`k could only be smoothed up to

the smoothness of the data. For example, if U = [0, 1] and βk` possessed two

derivatives, while the εi` only possessed one, then the rate given by Yuan and Cai



74

(2010) would be (nm)2/3+n−1, however, as we will show, this rate can be improved

to (nm)4/5 + n−1. Furthermore, in settings such as finance or the geosciences, the

εi` might not possess any derivatives or be part of any RKHS (e.g. Brownian

motion).

Lastly, we will treat the Xij as random variables with finite variance that are

independent of the εij`. The observed points uij will be assumed to be iid draws

from U , with density f(u) that is bounded away from 0 and∞. Note that since U

is a manifold, the density f(u) is with respect to Lebesgue measure over U . We also

assume that Yi` is observed with error, namely Yij` = Yi`(uij) = Yi`(uij)+ δij`. The

error δij` are assumed to be iid across i and j, though they can be dependent in `.

We assume these errors are centered and have finite variance. We now summarize

all of the assumptions introduced in this Section.

Assumption 4.2.1. We make the following modeling assumptions.

1. The observed data are {Yij`, Xi1, . . . , XiK} for i = 1, . . . , n, j = 1, . . . ,mi,

and ` = 1, . . . , L.

2. The observed data satisfy the linear model

Yij`(uij) =
K∑
k=1

Xikβ`k(uij) + εi`(uij) + δij`,

where u ∈ U ⊂ RD is a compact d-dimensional manifold with d ≤ D.

3. The mean parameters reside within the RKHS, β`k ∈ K, with continuous

kernel K(u, u′).

4. The sequences Xik ∈ R, εi` ∈ L2, uij ∈ U , and δij` are random and

independent of each other.
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5. The covariates Xik are potentially dependent across k, but iid across i. The

vector Xi = {Xik} is assumed to have a finite covariance matrix with full

rank.

6. The δij` represent measurement error and are iid across i and j, though

potentially dependent across `. They have mean zero and finite variance.

7. The stochastic processes εi` are iid across i, though potentially dependent

across `. They are assumed to have mean zero and to satisfy

supu∈U Var(εi`(u)) <∞.

4.3 Theoretical Results

We now provide three key theoretical results. The first is a lower bound on the best

possible estimation rate. This bound is obtained using an application of Fano’s

lemma. Second, we provide an estimator whose upper bound matches the lower

bound, implying that it is optimal in a minimax sense. Lastly, under slightly

stronger assumptions, we show that our estimator converges in distribution, which

will allow practitioners to carry out statistical inference on the βk`.

4.3.1 Lower Bound

Recall that when referring to a minimax rate, have to specify the loss function as

well as the class of models we are considering. In this case, our loss will be L2(U),

and we consider all models as outline in Assumption 4.2.1. In the minimax rate, the

distributions of the Xij, εi`, and δij` are fixed, and thus the models will be indexed

by the β`k, which we assume lie in a closed bounded ball of K: ‖β`k‖K ≤M0, which

will be denoted as BK.
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Before giving the minimax rate, it is useful to first define the excess risk:

Rn =
K∑
k=1

L∑
`=1

‖β̂`k − β`k‖2.

We say that the rate of convergence of β̂ is an if Rn = OP (an). The minimax

estimation risk is then defined as the optimal rate of convergence (i.e. the smallest

an) of the worst case modeling scenario. More precisely, we say the minimax rate

is an if

lim inf
n→∞

min
{β̂`k}

max
{β`k∈BK}

P (anε ≤ Rn ≤ anε
−1)→ 1 as ε→ 0.

The left hand side of the inequality is the lower bound, which indicates the lower

bound on the risk of the best possible estimator.

Theorem 4.3.1. Under Assumption 4.2.1 the excess risk satisfies

lim inf
n→∞

min
{β̂`k}

max
{β`k∈BK}

P (Rn ≥ ε((nm)−2h/(2h+1) + n−1))→ 1 as ε→ 0,

where the estimates {β̂`k} are functions of the observed data.

The proof of Theorem 4.3.1 is given in the appendix. It shows that no estimator

can achieve a rate faster than (nm)−2h/(2h+1)+n−1; we will show in the next Section

that is is bound is tight by giving an estimator that achieves the lower bound. The

proof is based on an application of Fano’s lemma. We show that a sequence of

parameters within the ball BK can be selected which are sufficiently far apart with

respect to the K norm. We then prove a bound the Kullback-Leibler divergence

between any pair of probability measures induced by this collection of parameters.

Combining these two bounds, we are able to apply Fano’s lemma to obtain the

desired result.
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4.3.2 Upper Bound

To prove the upper bound, we need only construct an estimator that achieves the

lower bound. We will then know that the lower bound is tight and that the selected

estimator is minimax. The estimator we propose here is a slight variant of the one

used in Section 4.4.2, however it makes the mathematical arguments clearer and

also shows how the minimax rate for function-on-scalar regression is intimately

tied to the minimax rate for mean estimation.

We construct our estimator in two parts by noticing that

β>(u) = C−1X CXY (u),

where CX = E[XiX
>
i ] and CXY = E[XiY

>
i (u)]. Notice β>(u) is a K × L matrix.

The first term is estimated using

ĈX =
1

n

n∑
i=1

XiX
>
i .

By Assumption 4.2.1, ĈX = CX + OP (n−1/2) where CX = E[X>i Xi], and since

CX has full rank Ĉ−1X = C−1X +OP (n−1/2) for n large.

The second quantity we estimate coordinate-wise. Notice that CXY (u) is a

K×L dimensional matrix of functions and by Assumption 4.2.1 each coordinate is

in K. As we will show in the Section 4.5, each coordinate can be estimated at the

rate (nm)−2h/(2h+1) +n−1, which combined with Slutsky’s lemma gives the desired

result.

Theorem 4.3.2. Assume that 4.2.1 holds and that β̂>(u) = Ĉ−1X ĈXY (u) as
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described above. Then the excess risk satisfies

lim inf
n→∞

min
{β̂`k}

max
{β`k∈BK}

P (Rn ≤ ε−1((nm)−2h/(2h+1) + n−1))→ 1 as ε→ 0.

Combining Theorems 4.3.1 and 4.3.2 we get that the minimax rate of converges

is (nm)−2h/(2h+1) +n−1. Furthermore, this rate holds quite broadly across different

K. We now discuss this rate in a bit more detail.

The phase-transition occurs when the rate becomes parametric, i.e., n−1.

Clearly this occurs if

(nm)−2h/(2h+1) � n−1 =⇒ m� n1/2h.

In other words, the rate becomes parametric if the (harmonic) average number

of points per curve is more than n1/h. If m is less, then the rate is slower than

parametric. In the worst case, when m is bounded, the rate becomes the classic

nonparametric rate n−h/(h+1).

Another major point concerns of the value of h. Currently, h has only been tied

to the rate of decay of the eigenvalues of the RKHS kernel. However, there are a

few settings where this rate can be made more interpretable. In particular, Sobolev

spaces with inner product norms are RKHS when certain kernels are taken, like

the Matérn kernel. If the functions possess p derivatives and the dimension of U

is d, then we have h = p/d, and thus the minimax rates become

(nm)
−2p
2p+d + n−1.

We can thus see the effect of the dimension of the domain on the rates. As we move

to higher dimensions the rates get worse, while they improve if the parameters have
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more derivatives.

4.4 Numerical Illustrations

In this Section we provide simulations in the case where the outcome is one

dimensional and there is one predictor:

Yi(u) = Xiβ(u) + εi(u).

We use this simplified setting to illustrate the effect of the dimension of the domain

on the estimation rates of β. We first present our simulation setting, briefly describe

how our estimators are computed, and then show the simulation results.

4.4.1 Simulation Setting

In this Section we show the convergence of the estimation error of βik using

simulations. There are two simulation settings taken: (1) U = [0, 1] ⊂ R case,

meaning that the domain is one-dimensional, and (2) U = [0, 1]× [0, 1] ⊂ R2 case,

meaning that the domain is two-dimensional.

The construction of Yij`(uij) is as

Yij`(uij) = Xiβ`(uij) + εi`(uij) + δij`,

where the covariate Xi are taken as iid N (10, 1) and the measurement errors taken

as iid N (0, 0.05).

The construction of β`(uij) is done using Fourier series. The degree of

smoothness of a function is implied by the rate of decay of its Fourier series

coefficients. If the decay is faster, the function would be smoother. When a
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function f(x) is Cn[0, 1] for some n > 0, meaning that its nth derivative is

continuous, then the fourier series coefficients ak = O
(

1
kn+1

)
. Therefore, we can

implicitly control the number of continuous derivatives of β` by choosing the power

of k. For one-dimensional U , β` is constructed as

β
(1)
` (u) =

100∑
k=1

1

πkα(1)
cos(kπu)

and for two-dimensional U , let u = (u1, u2),

β
(2)
` (u1, u2) =

100∑
k=1

100∑
r=1

1

π(kr)α(2)
cos(kπu1)cos(rπu2).

The superscripts (1) and (2) of β` and α stands for the one dimension case

and the two dimension case. This construction lets us to choose the number

of continuous derivatives of β` by choosing α since in each case the number of

derivatives is implied to be α − 1. Since we would like to set the rate of decay of

the eigenvalues of RKHS kernel (if the resulting RKHS is equivalent to a Sobolev

space) h is considered as p/d where p is the number of derivatives the function

possess and d is the dimension of the data.

Therefore, we take α(1) = 3, 4, 5 for the one-dimensional case, which implies

h = 2, 3, 4, and we take α(2) = 5, 7, 9 for the two-dimensional case, which also

implies h = 2, 3, 4. The corresponding β’s are visualized in Figure 4.1 and Figure

4.2. The change of α does not seem to make obvious change in the shape of the

resulting β functions, but with higher α, the β function is smoother.

The error function εi`(u) is taken as the linear combination of orthonormal

cosine bases, such that

ε
(1)
i` (u) =

10∑
k=1

e
(1)
k cos(kπu)
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Figure 4.1: The visualization of β(1) corresponding to α(1) = 3, 4, 5.

Figure 4.2: The visualization of β(2) corresponding to α(1) = 5, 7, 9.

for the one-dimensional case, and

ε
(2)
i` (u1, u2) =

5∑
k=1

5∑
r=1

e
(2)
kr cos(kπu1)cos(kπu2)

where e
(1)
k and e

(2)
kr are generated from N (0, 0.01).

We use Matérn kernel for the RKHS space since using Matérn kernel, we can

have the resulting RKHS equivalent to a Sobolev space. Matérn also allows us to

choose the smoothness parameter ν which dictates the smoothness of the space.
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The Matérn kernel has the form

Kν(u, u
′) = σ2 21−ν

Γ(ν)

(√
2ν
‖u− u′‖

ρ

)
Kν

(√
2ν
‖u− u′‖

ρ

)
,

where ‖u − u′‖ is the Euclidean distance between two points inputted. We have

chosen σ = 1 and ρ = 5 and try different ν’s like ν = 1/2, ν = 3/2, ν = 5/2. When

ν = 1/2, the kernel becomes equivalent to an exponential kernel.

The results of these simulation settings will be discussed after we talk about

the computation.

4.4.2 Computation

Using the representer theorem one can obtain an exact expression for the estimator.

However, this turns out to be very inefficient computationally as it involves solving

for
∑

imi parameters. Instead, we will express the estimator using the first R

eigenfunctions of K(u, u′):

βR(u) =
R∑
r=1

brvr(u).

We provide an exact form for the the coefficients {bjr}. As long as R is chosen large

enough, then the truncation error will be of a lower order than the convergence

rate. If the β all like in a K ball then the truncation error is of the order

‖β0 − βR‖2 =
∞∑

r=R+1

b2r =
∞∑

r=R+1

τr
b2r
τr
≤ τR‖β0‖2K � R−h.

Thus we see that as R� n1/h and R� (nm)1/(h+1) then the truncation error will

be asymptotically negligible. Of course, in practice, one can take R much larger

as long as the computational resources allow.
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For simplicity, we assume that mi ≡ m, but the general case can be handled

by reweighting the Xik and Yij and using m̄ in place of m. The target function is

now given by

`nm,λ(b) =
1

nm

n∑
i=1

mi∑
j=1

(
Yij −

K∑
k=1

R∑
r=1

Xikbkrvr(uij)

)2

+ λ
K∑
k=1

R∑
r=1

b2kr
τk
.

We will rewrite this expression using vector/matrix notation. First, let bv = vec(b),

where vec denote stacking the columns into a single vector. Properties of the vec

operation imply that

R∑
r=1

Xikbkrvr(uij) = X>i bVij = (V >ij ⊗X>i )bv.

Define

Yv = vec(Y) A =



(V >11 ⊗X>1 )

(V >21 ⊗X>2 )

...

(V >m1 ⊗X>m)

(V >21 ⊗X>1 )

(V >22 ⊗X>2 )

...


T =


τ1 0 . . . 0

0 τ2 . . . 0

...
. . . . . . 0

0 . . . 0 τR



Then the target function becomes

1

nm
(Yv −Abv)

>(Yv −Abv) + λb>v (T−1 ⊗ I)bv.
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The solution can then be expressed as

b̂v =
(
(nm)−1A>A + λ(T−1 ⊗ I)

)−1
(nm)−1A>Yv.

4.4.3 Simulation Results

The simulation results are shown in Figure 4.3 and Figure 4.4. The y-axis stands

for the median estimation error based on 500 simulation runs while the x-axis

stands for the sample size n for Figure 4.3 and the number of measurements per

curve m for Figure 4.4.

In both Figures, the top three plots correspond to one-dimensional cases while

the bottom three correspond to the two-dimensional cases. The columns represent

the choice of ν in Matérn kernel; the left plots are with ν = 1/2, the middle plots

are with ν = 3/2, and the right plots are with ν = 5/2. The color of lines represents

the size of m in Figure 4.3 and the size of n in Figure 4.4. The larger points on

the plots correspond to higher α values.

As expected, the estimation error decreases exponentially with increasing n, as

shown in Figure 4.3. Notice that we have plotted n up to 50 for the one-dimensional

cases on the top whereas we have plotted n up to 200 for the two-dimensional cases.

This implies that the convergence happens much slower with the higher dimension

of the domain. The estimation errors are mostly larger with smaller α, as the lower

α means that the β is rougher, except for the top middle and top right plots where

the order is reversed; the estimation error is highest with the largest α, meaning

the smoothest β, but this is when both n and m are very small (n = 5 and m = 5).

If we take only 5 points from 1,000 grid on the domain, and n is also very small,

this combination just cannot estimate the true β well. Except for those cases, the

estimation errors turned out to be as we expected.
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Figure 4.3: The plots show how the estimaton errors are affected by the number
of samples (n). The 1d cases are on the top and the 2d cases are on the bottom.
From left to right, the smoothness parameter ν of Matérn kernel is taken as 1/2,
3/2, 5/2.

With increasing m also, the estimation error decreases exponentially, as shown

in Figure 4.4. Here, for all one-dimensional cases on the top and two-dimensional

cases on the bottom, m is plotted up to 200. We can see here also that the

convergence of the estimation error happens much faster with one-dimensional

cases. It is also good to note that for large n, like n = 100 shown with the purple

color in the plot, the estimation error does not seem to change after certain level

of m. This shows that the n−1 term dominating (nm)
−2h
2h+1 term, and m does not

affect the estimation error as much.
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Figure 4.4: The plots show how the estimaton errors are affected by the number
of points per curve (m). The 1d cases are on the top and the 2d cases are on the
bottom. From left to right, the smoothness parameter ν of Matérn kernel is taken
as 1/2, 3/2, 5/2.

4.5 Technical Proofs

4.5.1 Proof of lower bound

Let mi ≡ m and define N = c(nm)1/(1+2r). Let b = (b1, . . . , bN) with bi ∈ {0, 1}.

Now define the functions, for some fixed M0,

gb(t) = M
1/2
0 N−1/2

2N∑
k=N+1

τ
1/2
k bk−Nvk(t).

Then we have that the K norm is given by

‖gb‖2K = M0N
−1

2N∑
k=N+1

τkbk−Nτ
−1
k ≤M0.
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If b′ is another sequence in {0, 1}N then

‖gb − gb′‖2 = M0N
−1

2N∑
k=N+1

τk(bk−N − b′k−N)2

≥M0N
−1τ2N

2N∑
k=N+1

(bk−N − b′k−N)2

≥ c0N
−1N−2rH(b, b′) = c0N

−(1+2r)H(b, b′),

where c0 is some constant. The Varshamov-Gilbert bound implies there exists

binary sequences b(i) ∈ {0, 1}N for i = 1, . . . ,M , with M ≥ 2N that satisfy

H(b(i), b(j)) ≥ N i 6= j.

In which case we have

‖gb(i) − gb(j)‖2 ≥ c0N
−2r.

We can also get a similar upper bound on the difference by noting that H(b, b′) ≤ N

which then implies

‖gb − gb′‖2 ≤M0N
−1τN+1H(b, b′) ≤ C0N

−1N−2rN = C0N
−2r.

Now consider the probability measure Pi over Rm which, conditioned

on T = (t1, . . . , tm)>, is multivariate normal with mean vector µi(T ) :=

(gb(i)(t1), . . . , gb(i)(tm))> and covariance matrix Σ(T ) := {C(tj, tk) + σ2
01j=k}.

Assume that the ti are iid uniform over T . We then have that the KL divergence

between Pi and Pj is given by

KL(Pi, Pj) = nE[(µi(T )− µj(T ))2Σ(T )−1(µi(T )− µj(T ))]
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≤ nσ−20

m∑
k=1

E[(gb(i)(tk)− gb(j)(tk)]2

= nmσ−20 ‖gb(i) − gb(j)‖2

≤ c0nmN
−1/2r.

We can now apply Fano’s lemma to obtain

max
1≤j≤M

Eg
b(j)
‖g̃λ − gb(j)‖ ≥ c0N

−r
(

1− log(c1nmσ
−2
0 N−2r) + log(2)

log(M)

)
� (nm)−r/(2r+1),

for any estimator g̃, which gives the desired lower bound.

4.5.2 Proof of upper bound

Assumption 4.5.1. We make the following assumptions.

1. Assume that

Yij = g0(tij) +Xi(tij) + εij,

for i = 1, . . . , n and j = 1, . . . ,mi. Let m = (n−1
∑
m−1i )−1 denote the

harmonic mean of the mi, Here we assume that tij ∈ T ⊂ Rd. The region

T is assumed to be compact with positive Lebesgue measure. The random

variables, tij, are assumed to have a density (wrt Lebesgue measure), which

is zero off of T and bounded above and below (from 0) on T . Without loss

of generality we will assume that T has Lebesgue measure 1 and that the tij

are drawn uniformly, so tij has density 1.

2. Let the Xi be iid mean zero elements of L2[0, 1] with covariance function

C(t, s).

3. The covariance function C(t, s) satisfies supt∈T C(t, t) < ∞, which implies

E ‖X1‖2 <∞.
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4. The errors εij are iid mean zero with 0 < Var(ε11) <∞.

5. The function K(t, s) is symmetric, positive definite, and continuous over

T × T . We let K denote the RKHS with kernel K(t, s).

6. The mean function g0 satisfies ‖g0‖K <∞.

7. The eigenvalues, τk, of K(t, s) are of the order τk � k−2r, for some r > 1,

where � denotes that the ratio is bounded below from zero and above from

∞.

We will use an RKHS framework for estimating g0(t). We assume the kernel

K(t, s) is continuous over T , which means it is also bounded. Using Mercer’s

theorem it admits the spectral decomposition

K(t, s) =
∞∑
i=1

τivi(t)vi(s). (4.5.1)

Recall that, by Mercer’s theorem, the convergence above occurs uniformly and

absolutely in t and s. We therefore have the following lemma, which will be used

throughout.

Lemma 4.5.1. If K(t, s) is a continuous, positive definite, and symmetric kernel

then it admits the eigen-decomposition (4.5.1), which satisfies

sup
t,s

τk|vk(t)vk(s)| → 0 as k→∞.

The functions vk(t) are normalized to have L2(T ) norm 1 (from here on we

notationally drop the domain T ), which also means they have K norm τ−1i . Recall
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that the K inner product can be expressed as

〈g, f〉K =
∞∑
i=1

〈f, vi〉〈g, vi〉
τi

,

where norms and inner products without subscripts will always denote the L2

norm. Define the target function as

`mn(g) =
1

n

n∑
i=1

1

mi

mi∑
j=1

(Yij − g(tij))
2 +λ‖g‖2K =

1

n

n∑
i=1

1

mi

mi∑
j=1

(Yij −〈g,Ktij 〉K)2 +λ‖g‖2K.

The minimizer, ĝ, can be obtained in a closed form using operator notation (as

opposed to the representer theorem). We can take the derivative with respect to

g (in the K topology) as

1

n

n∑
i=1

1

mi

mi∑
j=1

−2(Yij − 〈Ktij , g〉K)Ktij + 2λg,

where Ktij(t) := K(tij, t). Define

hnm =
1

n

n∑
i=1

1

mi

mi∑
j=1

YijKtij , (4.5.2)

and the linear operator Tnm : K→ K as

Tnm(f) =
1

n

n∑
i=1

1

mi

mi∑
j=1

f(tij)Ktij =
1

n

n∑
i=1

1

mi

mi∑
j=1

〈f,Ktij〉KKtij . (4.5.3)

Setting the derivative equal to zero we get the operator form for the estimator

−2hnm + 2Tmng + 2λg = 0 =⇒ ĝ = (Tnm + λI)−1hnm.

We now define the biased population parameter that will act as an intermediate
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value in our asymptotic derivation. Consider

`∞,λ = E[(Y11 − g(t11))
2] + λ‖g‖2K.

Taking the derivative with respect to g we get

∂

∂g
`∞,λ = −2 E[(Y11 − g(t11))Kt11 ] + 2λg.

Define the linear operator Tf := E[f(t11)Kt11 ] = E[〈Kt11 , f〉KKt11 ] and the

transformed mean function h = E[Y11Kt11 ] = E[g0(t11)Kt11 ] = Tg0. Notice that T

can also be expressed as an integral operator with kernel K(t, s):

[Tf ](t) := E[f(t11)Kt11(t)] =

∫
K(t, s)f(s) ds.

We can set the derivative equal to zero to obtain

−2h+ 2Tg + 2λIg = 0 =⇒ gλ = (T + λI)−1h = (T + λI)−1Tg0. (4.5.4)

We now define a final intermediate value as

g̃λ = gλ + (T + λI)−1(hnm − Tnm(gλ)− λgλ). (4.5.5)

To establish our convergence rates we break up the problem into three pieces:

ĝ − g0 = (gλ − g0) + (g̃λ − gλ) + (ĝ − g̃λ).

In order to establish bounds for the third term above, it will be necessary to bound

the second term in terms of the norm ‖f‖α = 〈K−α/2f,K−α/2f〉. When α = 0 this

is the L2 norm, when α = 1 it is the K norm, but we allow intermediate values
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α ∈ [0, 1].

Step 1: gλ − g0

Using (4.5.4) we have

gλ − g0 = [(T + λ)−1T − I]g0 = −λ(T + λI)−1g0.

Notice that the eigenvalues of (T + λI) are τk + λ and the eigenfunctions are vk

Applying Parceval’s identity yields

‖gλ − g0‖2 = λ2
∑
k

1

(τk + λ)2
〈g0, vk〉2

= λ2
∑
k

τk
(τk + λ)2

〈g0, vk〉2

τk

≤ λ2‖g0‖2K sup
τk

(τk + λ)2
.

To bound the sup consider the function f(x) = xγ(x + λ)−2, over x ≥ 0 and for

some fixed γ > 0. Notice that this function will attain its maximum at a finite

value of x if and only if γ < 2, for γ ≥ 2 the maximum is attained at infinity. The

derivative is given by

γxγ−1(x+ λ)−2 − 2xγ(λ+ x)−3.

Setting equal to zero we have

γ(λ+ x)− 2x = 0 =⇒ x =
γ

2− γ
λ.
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So we have

sup
τ γk

(τk + λ)2
≤ c0λ

γ−2. (4.5.6)

Note that throughout we take c0, c1, etc, to denote generic constants whose exact

values may change depending on the context. Taking γ = 1 we conclude that

‖gλ − g0‖2 ≤ c0λ‖g0‖2. (4.5.7)

Step 2: g̃λ − gλ

In this part we will bound the difference more generally using the α norm for

α < 1− 1/2r. First, recall that, by definition of gλ we have

Tgλ + λgλ = h =⇒ λgλ = h− Tgλ = T (g0 − gλ).

Plugging this into (4.5.5), the expression for g̃λ, we obtain

g̃λ − gλ = (T + λI)−1 [hnm − Tnmgλ − (Tg0 − Tgλ).] .

Using (4.5.2) notice that

E[hnm](t) = E[Y11Kt11(t)] = (Tg0)(t).

and similarly using (4.5.3)

E[Tnmgλ](t) = E[f(t11)Kt11(t)] = (Tgλ)(t),
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Using Parceval’s identity we get that the expected difference in the α norm is then

given by

E ‖g̃λ − gλ‖2α =
∑
k

1

ταk (τk + λ)2
Var(〈hnm − Tnmgλ, vk〉).

Using the assumed independence across i and the definitions (4.5.2) and (4.5.3) we

have

Var(〈hnm − Tnmgλ, vk〉) =
1

n2

∑
i

1

m2
i

Var

(∑
j

(Yij − gλ(tij))〈Ktij , vk〉

)
.

Using the representer theorem and that the vk are the eigenfunctions of K, we can

express 〈Ktij , vk〉 = τk〈Ktij , vk〉K = τkvk(tij), so the above becomes

τ 2k
n2

∑
i

1

m2
i

Var

(∑
j

(Yij − gλ(tij))vk(tij)

)
.

Conditioning on the sigma algebra generated by the locations, F = σ{tij}, we

get

Var

(∑
j

(Yij − gλ(tij))vk(tij)

)
= Var

(
E

[∑
j

(Yij − gλ(tij))vk(tij)
∣∣∣∣F
])

+ E

[
Var

(∑
j

(Yij − gλ(tij))vk(tij)
∣∣∣∣F
)]

.

The first term is given by

Var

(∑
j

(g0(tij)− gλ(tij))vk(tij)

)
= mi Var(g0(t11)− gλ(t11)vk(t11))

≤ mi E(g0(t11)− gλ(t11)vk(t11))2

= mi

∫
(g0(t)− gλ(t))2vk(t)2 dt
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≤ mi‖g0 − gλ‖2 sup
t
vk(t)

2

≤ c0miτ
−1
k ‖g0 − gλ‖

2 ≤ c0miτ
−1
k λ‖g0‖2K.

Note the last line follows from Lemma 4.5.1 and equation (4.5.7).

Turning to the second term, we have

Var

(∑
j

(Yij − gλ(tij))vk(tij)
∣∣∣∣F
)

=
∑
j`

Cov(Yij, Yi`|F)vk(tij)vk(ti`)

=
∑
j`

(C(tij, ti`) + σ21j=`)vk(tij)vk(ti`).

When j = ` we use the assumed bounded variance and the orthonormality of the

vk to obtain

E[(C(tij, tij) + σ2)vk(tij)
2] =

∫
C(t, t)vk(t)

2 dt+ σ2 ≤ c0.

When j 6= ` we use the definition of the covariance to obtain

E[(C(tij, ti`)vk(tij)vk(ti`)] =

∫
vk(t)C(t, s)vk(s)

= 〈vk, Cvk〉 = E〈X − g0, vk〉2 ≤ E〈X, vk〉2.

Using generic {ci} for the constants and recalling that m is the harmonic mean

of the mi we get the bound

E ‖g̃λ − gλ‖2α ≤
∞∑
k=1

τ 2−αk

(τk + λ)2
1

n2

n∑
i=1

1

m2
i

[
c0miλ

τk
+mic1 +m2

i E〈X, vk〉2
]

(4.5.8)

=
∞∑
k=1

τ 2−αk

(τk + λ)2
1

n

[
λ

mτk
c0 +

1

m
c1 + E〈X, vk〉2

]
. (4.5.9)

We bound each term in the summand separately. If τk � k−2r and γ > 1/2r is an
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arbitrary number then we have

∞∑
k=1

τ γk
(τk + λ)2

�
∫ ∞
0

x−2rγ

(λ+ x−2r)2
dx =

∫
x2r(2−γ)

(λx2r + 1)2
dx.

Let y = λx2r then x = λ−1/2ry1/2r and dx = λ−1/2r(1/2r)y1/2r−1dy. Then the

above becomes

∫
λ−(2−γ)y2−γ

(y + 1)2
λ−1/2r(1/2r)y1/2r−1dy =

λ−(2−γ+1/2r)

2r

∫
y1−γ+1/2r

(y + 1)2
dy

Notice the integral is finite as long as γ > 1/2r. We therefore have that, for any

γ > 1/2r,

∞∑
k=1

τ γk
(τk + λ)2

� λ−(2−γ+1/2r). (4.5.10)

Taking γ = 1− α and applying (4.5.10), which is greater than 1/2r as long as

α < 1− 1/2r, the first term in (4.5.9) is given by

∞∑
k=1

τ 1−αk

(τk + λ)2
λc0
nm

= O(λ−α−1/2r(nm)−1).

Turning to the second term in (4.5.9), take γ = 2 − α we have by the same

arguments

c2
nm

∑
k

τ 2−αk

(τk + λ)2
� (nm)−1λ−α−1/2r.

Turning to the last term in (4.5.9) we can use the assumption that E ‖X‖2 < ∞

to obtain
∞∑
k=1

τ 2−αk

(τk + λ)2
1

n
E〈X, vk〉2 ≤ E ‖X‖2n−1 max

k

τ 2−αk

(τk + λ)2
.
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Applying (4.5.6) with γ = 2− α the above becomes

E ‖X‖2n−1c0λ−α.

We thus conclude that

‖g̃λ − gλ‖2α = OP

(
(nm)−1λ−α−1/2r + n−1λ−α

)
.

There will be two values of α that are especially important. The first is when

α = 0, which we use to bound the L2 norm, while the second is for an arbitrary α

that satisfies 1/2r < α < 1− 1/2r, as this will be used to bound the last term in

the next subSection.

Step 3: ĝ − g̃λ

Recall that ĝ = (Tnm + λI)−1hnm and g̃λ = gλ + (T + λI)−1(hnm− Tnm(gλ)− λgλ).

Note that this also implies that hnm = (Tnm + λI)ĝ. So write

ĝ − g̃ = ĝ − gλ − (T + λI)−1(hnm − Tnm(gλ)− λgλ)

= (T + λI)−1 ((T + λI)(ĝ − gλ)− (hnm − (λI + Tnm)gλ)))

= (T + λI)−1 ((T + λI)(ĝ − gλ)− (Tnm + λI)(ĝ − gλ)) .

Computing the α norm we can apply Parseval’s and the definition of Tnm to obtain

‖ĝ − g̃‖2α =
∑
k

τ−αk
(τk + λ)2

[(τk + λ)〈ĝ − gλ, vk〉 − 〈(Tnm + λI)(ĝ − gλ), vk〉]2

=
∑
k

τ 2−αk

(τk + λ)2

[
〈ĝ − gλ, vk〉 −

1

n

n∑
i=1

1

mi

mi∑
j=1

(ĝ(tij)− gλ(tij))vk(tij)

]2
.

Notice that we can write ĝ(t) − gλ(t) =
∑∞

`=1 h`v`(t) where h` = 〈ĝ − gλ, v`〉.
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We can then write

(ĝ(tij)− gλ(tij))vk(tij) =
∞∑
`=1

h`v`(tij)vk(tij).

So the difference is given by

〈ĝ − gλ, vk〉 −
1

n

n∑
i=1

1

mi

mi∑
j=1

(ĝ(tij)− gλ(tij))vk(tij)

= hk −
1

n

n∑
i=1

1

mi

mi∑
j=1

∞∑
`=1

h`v`(tij)vk(tij)

=
∞∑
`=1

h`

[
〈vk, v`〉 −

1

n

n∑
i=1

1

mi

mi∑
j=1

v`(tij)vk(tij)

]
.

Let δ ∈ [0, 1] be another constant similar, but potentially different from α. We can

then apply CS to bound the above by

|〈ĝ − gλ, vk〉| ≤

(
∞∑
`=1

h2`
τ δ`

)
∞∑
`=1

τ δ`

[
〈vk, v`〉 −

1

n

n∑
i=1

1

mi

mi∑
j=1

v`(tij)vk(tij)

]2

= ‖ĝ − gλ‖2δ
∞∑
`=1

τ δ`

[
〈vk, v`〉 −

1

n

n∑
i=1

1

mi

mi∑
j=1

v`(tij)vk(tij)

]2
.

To get the asymptotic order of the summation term above, by Markov’s inequality,

it is enough to bound its expected value (since it is positive). Taking the expected

value of the summation we get that

∞∑
`=1

τ δ` E

[
〈vk, v`〉 −

1

n

n∑
i=1

1

mi

mi∑
j=1

v`(tij)vk(tij)

]2

=
∞∑
`=1

τ δ`
nm

Var(v`(t11)vk(t11))

≤
∞∑
`=1

τ δ`
nm

∫
v`(t)

2vk(t)
2 dt ≤

∞∑
`=1

τ δ`
nm

sup
t
vk(t)

2

∫
v`(t)

2 dt ≤
∞∑
`=1

c0τ
δ
`

nmτk
.
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Recall that τ` � `−2r, so the above sum is finite as long as δ > 1/2r. Putting

everything together and applying (4.5.6) we have the bound

‖ĝ − g̃‖2α ≤ OP (1)‖ĝ − gλ‖2δ
c0
nm

∑
k

τ 1−αk

(τk + λ)2
� OP (1)‖ĝ − gλ‖2δ(nm)−1λ−α−1/2r,

which holds for any 0 ≤ α < 1− 1/2r and any δ > 1/2r.

Assume that λ is such that (nm)−1λ−α−1/2r → 0, then it follows that ‖ĝ−g̃‖2α =

oP (‖ĝ − gλ‖2δ). A triangle inequality gives

‖g̃λ − gλ‖δ ≥ ‖ĝ − gλ‖δ − ‖ĝ − g̃‖δ = (1 + oP (1))‖ĝ − gλ‖δ.

This implies that

‖ĝ − gλ‖δ = OP (‖g̃λ − gλ‖δ).

Finally, take α = 0 and δ > 1/2r then we have that

‖ĝ − g̃‖2 = OP (1)(nm)−1λ−1/2r‖g̃λ − gλ‖2δ

= OP (1)(nm)−1λ−1/2r[(nm)−1λ−δ−1/2r + n−1λ−δ]

If we assume that λ is such that (nm)−1λ−δ−1/2r → 0 then the above simplifies to

oP (1)λδ[(nm)−1λ−δ−1/2r + n−1λ−δ] = oP (1)[(nm)−1λ−1/2r + n−1],

as desired.

Note that in the last paragraph, we made a more explicit assumption about

how quickly λ tends to zero. Note that the optimal rate is λ = (nm)2r/(1+2r). For

this value of λ we have that (nm)−1λ−α−1/2r → 0 for any value of α < 1 since

1 + 1/2r = (2r + 1)/2r.
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