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Abstract: 
 

Palpation is an important clinical diagnostic practice which is based on the fact that 
tumors tend to be stiffer than the surrounding normal tissue. None of the modern, non-
invasive, imaging modalities (such as CT scan, Magnetic Resonance Imaging, or 
Ultrasound) used today by radiologists to find and diagnose tumors provides the critical 
information about the stiffness of the imaged tissues. The work presented in this thesis 
is based on the clinical observation of palpation and focuses on testing the following 
hypothesis: the Young’s modulus of tissues helps differentiating not only between 
normal and abnormal tissues but, most importantly, between benign (not cancerous) 
and malignant (cancerous) tumors. We will show some preliminary results on tumor 
classification and growth with the help of biomechanical modeling. First, we propose a 
novel mechanical model of differentiating between benign and malignant tumors based 
on their corresponding Young’s moduli obtained using information about tissue 
microstructure provided by imaging mass spectrometry. Imaging mass spectrometry is a 
new technology that can provide a molecular assessment of tumor progression and 
treatment obtained from biopsies, with the potential to identify tumor subpopulations and 
predict patient survival that is not evident based on the cellular phenotype determined 
histologically. Our second biomechanical model shows how the mechanical properties 
of tumors affect their growth. By replacing the first order temporal derivative in this 
mechano-growth model with a fractional order derivative we are able to predict for the 
first time when a benign tumor turns into cancer. We used the Adomian method to find 
analytic solutions to the non-linear classic and fractional-order ordinary differential 
equation corresponding to our second model.  
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Introduction  
 

1.1 Mechanical Properties of Biological Tissues 
 

For centuries, palpation has been an important medical diagnostic tool. Palpation is the 

method of feeling for abnormalities in the body using your hands. The abnormalities can 

include tumors and bruises. The efficacy of palpation is based on the fact that many 

diseases can change the mechanical properties of tissues. These changes are caused 

either by the exudation of fluids from the vascular into the extra- and intercellular space 

or by loss of lymphatic systems, as in the case of cancer [37]. The result is an increase 

in stiffness or elastic modulus of the tissue. Even today surgeons try to feel for lesions 

during surgery that have been missed by a CAT scan, ultrasound or magnetic 

resonance. None of these scans can provide the information about the elastic properties 

of tissue elicited by palpation.  

 

The elastic moduli of various human soft tissues are known to vary over a wide range, 

more than four orders of magnitude [37]. In contrast, most of the physical properties 

depicted by conventional medical imaging modalities are distributed over a much 

smaller numerical range. These observations have provided the motivation for many 

researchers to seek medical imaging technology that can estimate or assess the elastic 

moduli of tissues. The approaches to date have been to use conventional imaging 
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methods to measure the mechanical response of tissue to mechanical stress. The 

resulting strains have been measured using ultrasound, CT, or Magnetic Resonance 

Imaging (MRI) and the related elastic modulus has been computed from biomechanical 

models of tissues. In particular, the MR elastography method (MRE) using harmonic 

shear waves offers direct visualization and quantitative measurement of tissue 

displacements, high sensitivity to very small motions, a field of view unencumbered by 

acoustic window requirements, and the ability to obtain full three dimensional 

displacement information throughout a volume (see for example [19, 33, 37]).  

 

In order to recover the mechanical properties of biological tissues we need to invert the 

displacement data measured using MRE. This inversion process requires the use of an 

accurate biomechanical model for tissues. It was noticed experimentally that most 

biological tissues have incompressible viscoelastic features: they have a certain amount 

of rigidity that is characteristic to solid bodies, and also they flow and dissipate energy 

by frictional losses as viscous fluids do. The incompressibility assumption for soft 

tissues is based on the fact that most tissues are made primarily of water. In addition, 

since the displacements in MRE are very small (order of microns), a linear constitutive 

law is usually assumed [37]. However, despite the richness of the data set, the variety 

of processing techniques and simplifications made in the biomechanical model, it 

remains a challenge to extract accurate results at high resolution in complex, 

heterogeneous tissues from the intrinsically noisy data. Therefore, any improvement in 

the MRE data processing with the help of biomechanics and computational methods will 

be of significant importance to modern medicine. MRE can help in tumor detection, 

determination of characteristics of disease, and in the assessment of rehabilitation. 
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1.2 Research Goals 
 

The aim of this thesis is to formulate new biomechanical models that will be able to 

differentiate not only between normal and abnormal tissues, but more importantly, 

between benign and malignant tumors. As it can be seen in Fig.1-2.1, benign tumors 

 

 

 

 

 

 

 

 

 

 

tend to be more isotropic, and look more regularly shaped due in part to the presence of 

fibrous connective tissue shells that separate the benign tumors from the surrounding 

healthy tissue [12]. On the other hand, malignant tumors are diffusive, anisotropic and 

irregularly shaped. In order for the MRE method to correctly classify tumors as benign 

and malignant, the constitutive models of these two classes of tumors need to 

incorporate the chemo-mechanical differences between them. We believe that a more 

accurate formulation of the direct problem of MRE will help us not only to gain a better 

Figure 1-2.1 (a) Benign tumor: the fibrous connective tissue capsule (orange) 
separates the inside benign cells (black boundaries) from the outside normal 
cells (yellow). (b) Malignant tumor: the irregularly-shaped cancer cells (red 

boundaries) are diffusive and non-localized. [36] (inspired from [16]) 
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understanding of the tumors’ biomechanics but also to obtain more reliable elastic 

moduli by solving the inverse problem. Our objective is to link the mechanical and 

biochemical properties of biological tissues, and thus this research lies at  the frontiers 

between engineering sciences, mechanics and medicine (more precisely, diagnostic 

radiology). In this thesis we propose first a novel biomechanical model for the Young’s 

moduli of tumors that depend on the mass spectra of the proteins present in the tissues. 

Our model shows that the Young’s modulus of a high grade glioma is at least 10kPa 

higher than the Young’s modulus of a low grade glioma. In addition, we will use this 

model to investigate the effect of mechanics on the growth of tumors. The prediction of 

tumor growth is essential in treatment decision and planning. Our second mechano-

growth model is a non-linear evolution differential equation which is solved analytically 

using the Adomian method.  The time evolution is represented in two ways: (1) using a 

classic first-order derivative, and (2) using a fractional order derivative. The idea of 

using fractional order temporal derivatives to describe abnormal processes believed to 

be involved in the birth of tumors has been proposed in [59]. Unlike the classic integer 

order derivative, the fractional order derivative in our model appears to capture a very 

interesting temporal multi-scale effect of tumor transition from benign to cancer when a 

certain threshold of mechanical strain is reached in the tissue.  

 

1.3 Human Impact of Research 
 

Understanding the relationship between the mechanics and the biochemistry of 

biological tissues will have a tremendous impact on the development of advanced 

diagnostic and treatment clinical procedures. This work has the potential to play an 
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important role in developing better non-invasive imaging techniques capable not only to 

find but also to properly classify tumors, thus drastically reducing both - the very high 

health-related costs for medical diagnosis and treatments (economic component) and 

the number of deaths due to wrong diagnosis or delayed treatment (social component). 
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 Literature Review 
 

In this chapter, we present a few fundamental concepts on mass spectroscopy, MR 

elastography, and tumor grading. The chapter ends with a very brief review of some 

biomechanical models for tumors existing in the literature.   

 

2.1 Mass Spectroscopy 
 

Mass spectroscopy is one of the most accurate methods for determining the elemental 

composition of a substance or a molecule [1-3]. The primary principle for this method is 

to ionize the substance or the chemical compound by bombarding it with high energy 

electrons (Fig. 2-1.1). As a result, positively charged fragments are produced and are 

accelerated in a vacuum through a magnetic field and are sorted on the basis of mass 

to charge ratio. Since the bulk of the ions produced in the mass spectrometer carry a 

unit positive charge, the value m/e is equivalent to the molecular weight of the fragment. 

We use this feature of mass spectroscopy to relate the Young’s modulus to the 

concentration of proteins in the tissue. Tissue mass spectral analysis can be carried out 

through either a profiling or imaging approach. In the profiling approach, only specific 

locations within the tissue section are analyzed. In the imaging approach, protein 

distributions can be visualized over the entire tissue section. In recent years, mass 

spectrometry has become an indispensable tool for proteomic studies [1]. Desorption 
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and ionization techniques such as matrix-assisted laser desorption ionization mass 

spectrometry (MALDI MS) and electrospray ionization mass spectrometry (ESI MS) 

have literally revolutionized our ability to analyze proteins. These improvements offer 

levels of sensitivity and mass accuracy never before achieved for the detection, 

identification and structural characterization of proteins. It is now possible to routinely 

measure molecular weights above 200 kDa as well as obtain low parts per million mass 

measurement accuracies for the determination of peptides and proteins. Protein 

identification has been greatly facilitated because of the rapid expansion of protein and 

gene databases. Modern mass spectrometers can now rapidly map and fragment 

peptides that result from protease digestion in order to obtain sequence information and 

identify proteins [2]. MALDI MS is an ideal tool to investigate complex protein mixtures. 

It utilizes a matrix, a small acidic aromatic molecule that absorbs energy at the 

wavelength of the irradiating laser. The analyte molecule is mixed with the matrix in a 

ratio of typically 1/5000, deposited on a target plate and allowed to dry. During the 

drying process, matrix-analyte cocrystals form. These crystals are then submitted to 

very short laser pulses (typically UV laser light), resulting in desorption and ionization of 

the analyte molecule. Mostly intact protonated molecular ions are formed ([M+H], where 

M is the molecular weight of the analyte molecule). The mass-to-charge (m/z) of the ion 

is typically measured in a time-of flight mass analyzer [3].  
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One of the recent applications of MALDI MS is its use to profile and image proteins 

directly from thin tissue sections. MALDI imaging mass spectrometry (IMS) is a new 

technology that allows for simultaneous mapping of hundreds of peptides and proteins 

present in thin tissue sections with a lateral resolution of about 30–50 μm. Matrix is first 

uniformly deposited over the surface of the section, utilizing procedures optimized to 

minimize protein migration. Proteins are then desorbed from discrete spots or pixels 

upon irradiation of the sample in an ordered array or raster of the surface. Each pixel 

thus is keyed to a full mass spectrum consisting of signals from protonated species of 

molecules desorbed from that tissue region. A plot of the intensity of any one signal 

produces a map of the relative amount of that compound over the entire imaged 

surface. This technology provides an extremely powerful discovery tool for the 

investigation of biological processes [4-7, 10]. 

Figure 2-1.1 Classic mass spectroscopy setup.  



9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Direct tissue mass spectral analysis can be carried out through either a “profiling” or an 

“imaging” approach. In the profiling approach, only specific locations within the tissue 

section are analyzed often correlated with classical histology. In the imaging approach, 

protein distributions can be visualized over the entire tissue section. These processes 

are illustrated in Fig.2-1.2. In the profiling approach, matrix is deposited in discrete 

locations according to cell type to be analyzed across the tissue section, (Fig. 2-1.2A), 

and distinct mass spectra are obtained from each matrix spot (Fig. 2-1.2B). In the 

imaging approach, the matrix is deposited robotically in an array or uniformly coated 

across the tissue section, (Fig. 2-1.2C) and mass spectra are acquired systematically 

and are reconstructed into 2-D false color ion-density images (Fig. 2-1.2D). 

 

Figure 2-1.2: Profiling versus IMS demonstrated on human breast 
cancer tissue [18]. 
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In conclusion, the result of the profiling mass spectroscopy is a plot of the relative 

concentration (intensity) of the proteins found in the tissue versus the mass-to-charge 

ratio. On the other hand, image mass spectroscopy gives a map of the proteins’ 

densities in the tissue. More details on image mass spectroscopy can be found, for 

instance, in [10, 18]. 

 

2.2 Magnetic Resonance Elastography 
 

An elastogram is a mapping of material parameters (the Young’s modulus, for example) 

in an anatomically meaningful image. The approaches to date have been to use 

conventional imaging methods to measure the mechanical response of tissue to 

mechanical stress. The resulting strains have been measured using ultrasound, CT, or 

MRI and the related elastic modulus has been computed from biomechanical models of 

tissues. In particular, the MR elastography method (MRE) using harmonic shear waves 

offers direct visualization and quantitative measurement of tissue displacements, high 

sensitivity to very small motions, a field of view unencumbered by acoustic window 

requirements, and the ability to obtain full three dimensional displacement information 

throughout a volume [37]. The process of generating elastograms using MRI is as 

follows. MR images are recorded while a vibrating plate placed on the skin propagates 

mechanical shear waves in the tissue. By putting the magnetic field in tune with the 

mechanical vibrations, the wavelengths of the propagating shear waves can be 

calculated and used in a biomechanical model of the tissue to further calculate the 

corresponding Young moduli. In particular, to find the stiffness of the brain tissue, 

vibrations can be applied either as vertical displacements to the base of the head, or as 
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horizontal displacements to mouth via a bite block (Fig. 2-2.1, [19]). The Young’s moduli 

of the white and gray matters are approximately 14.2kPa, and 5.3kPa, respectively [19]. 

Experimental work is underway at Penn State to estimate stiffness values of brain 

tumors.  

            

 

 

2.3 Tumor Grading 
 

Tumor grading is a system used to classify cancer cells in terms of how abnormal they 

look under a microscope and how quickly the tumor is likely to grow and spread. 

Histological grade, also called differentiation, refers to how much the tumor cells 

resemble normal cells of the same tissue type. Finally, nuclear grade refers to the size 

and shape of the nucleus in tumor cells and the percentage of tumor cells that are 

dividing [11]. 

 

Figure 2-2.1: MRE experiment setup (left and center) and a 2D elastogram (right) [19]. 
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Based on the microscopic appearance of cancer cells, pathologists commonly describe 

tumor grade by four degrees of severity: Grades 1, 2, 3, and 4. Cells of Grade 1 

resemble normal cells, and tend to grow and multiply slowly. Grade 1 tumors are 

generally considered the least aggressive in behavior. However, cells of Grade 3 or 

Grade 4 do not look like normal cells of the same type. Grade 3 and 4 tumors tend to 

grow rapidly and spread faster than tumors with a lower grade. In Table 1 we show the 

guidelines for tumor grading recommended currently by the American Joint Commission 

on Cancer. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Thus, high grade tumors cannot be easily distinguished from the surrounding healthy 

tissue with the help of an imaging scanner. These are aggressive malignant tumors, 

which diffuse profusely to other parts of the body and are dangerous not only to leave 

them to grow in the body but also to remove them surgically. On the other hand, low 

grade tumors have fixed boundaries and can be well differentiated from the healthy 

Grade  Description 

GX  Grade cannot be assessed (Undetermined grade) 

G1  Well-differentiated (Low grade) 

G2  Moderately differentiated (Intermediate grade) 

G3  Poorly differentiated (High grade) 

G4  Undifferentiated (High grade) 

Table 1: Tumor grading [11]. 



13 
 

tissue, making their removal a safe and, in most of the cases, easy surgical procedure 

[12]. 

 

2.4 Review of Some Biomechanical Models for Tumors  
 

Over the past few decades, there has been extensive progress in employing 

mathematical modeling to study solid tumor growth, and this work has provided insight 

into the understanding of experimental and clinical data. Most models fall into two 

categories: discrete cell-based and continuum models (see for example some recent 

reviews [29, 38-41]). For example, models have been applied to brain cancer [42-44] 

and breast cancer [45-46]. Modeling has also shown that tumor morphology may serve 

as a predictor of invasiveness [29, 47-50]. In [51-53], the authors revealed that cell–cell 

adhesion and external nutrient concentration are key parameters controlling the stability 

of three-dimensional multi-cellular spheroids. While Greenspan [31] considered necrotic 

tumors in the avascular stage, where growth is regulated solely by nutrient in the 

surrounding micro-environment, Byrne & Chaplain [51] proposed a model for 

nonnecrotic tumors where nutrient is supplied through the surrounding vascularized 

environment. During this avascular growth, tumor cells receive oxygen, nutrients and 

growth factors via diffusion through the host tissue. This phase can be investigated by in 

vitro experiments where cancer cells are cultured in a three dimensional geometry [26-

29]. These experiments show that cancer cells organize into multi-cellular spheroidal 

colonies due to cell-cell adhesion. The outer layer of cells tends to expand and grow 

while the interior cells die due to the lack of nutrients. For example, the typical distance 
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an oxygen molecule will diffuse before being up taken is approximately 100μm. This 

limits the size to which a tumor spheroid can grow (1–2mm in diameter).  

  

All the continuum models for tumors are based on reaction–diffusion equations 

describing the evolutions of tumor cell density, extracellular matrix (ECM), matrix-

degrading enzymes (MDEs), and concentrations of cell substrates such as glucose, 

oxygen, and growth factors and inhibitors. For example, if we denote by Ω(t) the  

domain occupied by the tumor at time t, by ∑(t) the boundary between the tumor and 

the host tissue, n the unit outward normal vector to ∑ , and x  the position vector, then 

the concentrations of cell substrates, such as oxygen and nutrients, σ(x,t) in Ω satisfy  a 

reaction diffusion equation of the form: 

 

  𝑑𝜎
𝑑𝑡

= ∇. (𝐷∇𝜎) + Γ                                         (2.4.1)       

where D is the diffusion coefficient and Γ is the rate at which cell substrates are added 

to Ω accounting for all the sources and sinks of the substrates in the tumor volume. 

Usually, it is assumed that the tumor domain has constant cell density, and therefore 

mass changes are due to volume changes. Defining 𝑣 to be the cells’ velocity, the local 

rate of volume change is then given by: 

∇. 𝑣 = 𝜆𝑝                                                  (2.4.2) 
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 where 𝜆𝑝 is the net cell-proliferation rate depending on the rates of mitosis (cell 

division) and apoptosis (normal cell death) [32]. 

 

Different constitutive laws have been employed to describe the deformation and stress 

fields of the tissue. For example, the Darcy model, which models fluid flow through a 

porous medium, was considered in [31, 47, 51, 54], while Stokes’ law of fluids was 

studied in [55]. Both models were investigated in [56-58].  Other continuum models 

have used constitutive laws for (visco-) elastic solids to predict the growth of tumors 

[15]. More details on such models are given in [39].  

 

For example, if we assume that the nutrient diffusion is much faster than mitosis, then it 

can be shown that Darcy model reduces equation (2.4.1) to the following non-

dimensional equation [32]: 

∇. (∇𝜎) = 𝜎                                                (2.4.3) 

If we assume that the tumor interface ∑ evolves in the direction of the normal velocity: 

𝑑𝑥
𝑑𝑡 .𝑛 = 𝑛. 𝑣                                                 (2.4.4) 

then the evolution equation for the unperturbed tumor of radius r(t)=R is: 
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𝑑𝑅
𝑑𝑡 = (1 − 𝐵) �

1
tanh𝑅 −

1
𝑅� −

𝐴𝑅
3                         (2.4.5) 

where the unperturbed tumor radius depends on the apoptosis parameter A, and 

vasculature parameter B. The right hand side is the radial component of the velocity 

field, which can be obtained from the Darcy constitutive law [32].  
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Biomechanical Model based on Mass Spectra 

In this chapter we propose a novel mechanical model for estimating the Young’s 

modulus of a tissue based on its image mass spectrum. 

 

3.1 Young’s Modulus Estimation using Image Mass Spectroscopy 
 

In order to find the Young’s moduli of tumors that can be used to improve the 

noninvasive MRE method in the classification of tumors, we propose a novel 

biomechanical model based on image mass spectroscopy. Our aim is to relate the 

Young’s modulus of a tumor to the concentration of certain proteins which have been 

shown to have different concentrations depending on the tumor’s grade using the image 

mass spectroscopy approach [10]. In Fig. 3-1.1 we reproduce from [10] some image 

mass spectra of proteins concentrations found in low and high grade gliomas at different 

mass-to-charge ratios. In order to use the information provided by these images to 

estimate the Young’s moduli of low and high grade gliomas, we make the following 

assumptions: 

 The relative intensities of proteins given by IMS are proportional to the 

corresponding concentrations [20] 
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 The (apparent) Young’s modulus of a tissue sample is proportional to the 

concentrations of proteins present in that tissue [13]. 

Figure 3-1.1 is the imaging mass spectroscopy samples of two 12 µm sections that 

were obtained by MALDI MS method from a low-grade tumor and a high-grade tumor 

human glioma biopsy. These sections were coated with a matrix using the automated 

spotter while the images were acquired with a lateral resolution of 250 µm [10].  

In table 2 we show the averaged values of ion densities calculated from the images 

shown in Fig.3-1.1. 

 

 

Figure 3-1.1: Ion density maps obtained at different m/z values. White represents the highest 
protein concentration and black represents the lowest. [10] 
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Table 2: Mean values of ion densities calculated from images shown in Fig.3-1.1. 

m/z Value Mean Value from LG Image Mean Value from HG Image 
5826 31.0676 59.6307 
7380 66.4194 24.3150 

10092 23.3977 73.9165 
10625 70.2672 33.4180 
11068 28.3134 57.4372 

 

We propose the following expression for the apparent Young’s modulus E dependent on 

the concentrations  𝑐𝑛,𝑛 = 1,2, … .𝑁 of proteins shown in Fig. 3-1.1: 

𝐸 = �𝑐𝑛
𝛼𝑛�

𝑚
𝑧 �

𝑁

𝑛=1

                                           (3.1.1) 

The powers of the concentrations are assumed to depend on the corresponding mass 

to charge ratio (m/z) shown in Fig. 3-1.1 such that the apparent Young’s modulus in the 

healthy brain tissue is approximately equal to the white matter value found by the MRE 

technique of 14.2 kPa [19]. We investigated the following two cases (the Matlab code is 

given in Appendix A): 

I. 𝛼𝑛 = 1.8 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

II. 𝛼𝑛 = 1.6 + 1
ln�𝑚𝑧 �𝑛

 

The above cases have been inspired by the results presented in [13]. Experiments on 

agarose gel (usually used to build phantoms that mimic the mechanical behavior of 

biological tissues) reported in [13] show the existence of a direct proportionality between 

the Young’s modulus and the molar concentration of agarose. More precisely, the 
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Young’s modulus is proportional to fractional order powers of the molar concentration. 

The constants of 1.8 and respectively 1.6 have been in fact proposed in [13] by fitting 

experimental data to a power law of concentrations for the Young’s modulus. Finally, in 

both cases we have calibrated the coefficients such that the Young’s modulus of the 

regions of healthy tissue is 14.2kPa as reported in the MRE literature [19].  

 

The elastograms using formula (3.1.1) for the two cases are shown in Figs.3-1.2, 3-1.3. 

  

Figure 3-1.2 Elastograms of high grade (left) and low grade (right) gliomas for case I. 

Figure 3-1.3: Elastograms of high grade (left) and low grade (right) gliomas for case II. 
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From Figs. 3-1.2 and 3-1.3 we conclude that high grade gliomas are at least 10kPa 

stiffer than low grade gliomas. To the best of our knowledge, this is the first time when 

such a biomechanical model linking the stiffness of a tissue and the concentrations of 

proteins present in the tissue and, more importantly, when such a clear differentiation 

between low and high grade gliomas based on their stiffness values have been 

established. These results have been published in [36]. 
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Mechano-Growth Model: Linear Case 
 

In this chapter, we will investigate the effect of mechanics on tumor growth. 

 

4.1 Statement of the Problem 
 

For simplicity we will consider the case of one-dimensional growth under applied uni-

axial stretch λ (Fig.4-1.1). The tumor’s growth is not caused by the applied stretch, it is 

assumed to happen independently of the mechanics. 

 

 

In order to make some progress in this challenging research area, we assume the 

growth to be volumetric and isotropic (the growth depends only on the time variable). As 

 

Figure 4-1.1: Schematic of the uni-axial stretch applied on a tissue with a growing tumor. 
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in [21], a volumetric growth describes only geometric changes, the material points are 

dense during growth, and the intrinsic mechanical properties of the material do not 

change during growth. In addition, we assume for now that the tissue is an isotropic, 

homogeneous, linear elastic solid material. 

 
If we denote by Fd, G, and 𝐹 = 𝐹𝑑𝐺−1  the deformation gradient of the applied uni-axial 

stretch, the growth tensor, and, respectively, the total deformation gradient (Fig. 4-1.2), 

then the Cauchy stress tensor is given by Hooke’s law: 

 

𝜎 = 𝐸 � 𝜆
𝑔(𝑡)

− 1�                        (4.1.1) 

where E is the Young’s modulus and g(t) is the isotropic growth function.  

Figure 4-1.2: Kinematics of the coupled growth-deformation of a tumor. 
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If we replace the above expression of the stress in the equation of growth proposed in 

[14] (the equation is obtained from assumptions regarding the growth of viscoelastic 

cytoskeletal networks), we obtain the following first order, nonlinear differential equation:  

 

𝑑𝑔(𝑡)
𝑑𝑡

= 𝐾 exp�
𝛾𝐸� 𝜆

𝑔(𝑡)−1�

𝑘𝐵𝑇
�𝑔(𝑡)                (4.1.2) 

 

where 𝑇, 𝑘𝐵 ,   𝛾 are the absolute temperature, Boltzman constant, and a parameter 

depending on the bio-chemical reactions involved in the growth process, respectively. 

The constant parameter K has units of 𝑠−1 and is found experimentally [14]. Since we 

do not have experimental data, we assume for simplicity that 𝐾 = 1𝑠−1 and omit this 

parameter from our further calculations.  

 

We will like to notice here that the model proposed in [14] is simpler than the models we 

presented in our literature review (chapter 2). The atomistic models of tumor growth 

consider only diffusion and reaction of chemical species, without accounting for 

mechanical behavior of the tumor due to cellular mechano-transduction processes. On 

the other hand, the continuum models of solid tumors are computationally very 

demanding: they involve solving a system of coupled hyperbolic and parabolic partial 

differential equations that account for both, mechanics and diffusion-reaction processes.  

In contrast, the model proposed in [14] is a somehow simpler continuum model that has 

the following advantages: (1) incorporates small incremental growth and deformation, 
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which converts an intrinsically nonlinear problem into a linear one with cumulative 

elastic quantities; (2) the deformation decomposition is developed for viscoelastic media 

which is applicable to the cytoskeletal network, and (3) the development allows for 

coupling of any physically relevant phenomena such as the local stress in the material 

or local G-actin concentration with the growth tensor. From a computational point of 

view, this model requires to solve only one differential equation.  

 

In particular, if the solid is assumed to be linear elastic with a volumetric growth and the 

problem is considered one-dimensional, the model proposed in [13] reduces to equation 

(4.1.2). This is a non-linear first order differential equation that we will solve analytically 

in the next chapter. For the beginning, we consider the linearized form of equation 

(4.1.2). The initial condition used in all of the numerical simulations is: 𝑔(0) = 1.  

 

4.2 The Classic Linear Case 
 

The linearized form of equation (4.1.2) is: 

 

𝑑(ln (𝑔(𝑡))
𝑑𝑡

= exp �𝛾𝐸(𝜆−1)
𝑘𝐵𝑇

� �1 − 𝛾𝐸𝜆
𝑘𝐵𝑇

ln (𝑔(𝑡))�     (4.2.1) 

 

with the solution given by: 
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𝑔(𝑡) = exp�
exp�𝛾𝐸(𝜆−1)

𝑘𝐵𝑇
�

𝛾𝐸𝜆
𝑘𝐵𝑇

�1 − exp �− exp �𝛾𝐸(𝜆−1)
𝑘𝐵𝑇

� 𝛾𝐸𝜆
𝑘𝐵𝑇

𝑡���     (4.2.2) 

 

Solution (4.2.2) is represented in Fig.4-2.1 for different values of the stretch λ for low 

and high grade gliomas (the Matlab code used to generate these plots is given in 

Appendix A). We use the following known physical parameters [14]:   

 

 

We plot the growth function ( )g t as given by formula (4.2.2) for a low grade glioma of 

averaged stiffness 35kPa lowE = and for a high grade glioma of averaged Young’s 

modulus 50kPa highE = . These averaged stiffness values were estimated from Figs. 3-

1.2 and 3-1.3. 

 

We note that for small stretches 0 < λ ≤1 the growth of a low grade glioma appears to 

be as fast as that of a high grade glioma. However, as the stretch increases and we 

approach the limits of validity of the linearity assumption for the tissue, the low grade 

glioma increases much faster than the high grade glioma and both types of tumors will 

reach limiting sizes after which they will stop growing. These sizes are determined by 

the applied stretch.  

 

26 3 23 2 21.3 10 m ,  1.3 10 m Kg/(s K), 298KBk T− −= × = × × × =γ
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However, it is expected that our assumption of a linear elastic tumor will limit the 

applicability of the growth function (4.2.2) for large but finite stretches, so the behavior 

seen in Fig. 4-2.1 when λ = 10, is most likely unphysical.  
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Figure 4-2.1: Growth functions given by formula (4.2.2) of low grade (blue) and high grade 
(red) glioma versus a normalized time scale for (a)λ =0.1, (b) λ =1, (c) λ =5, and (d) λ =10. 
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4.3 The Fractional Order Linear Case 
 

We replace now the first order temporal derivative in equation (4.2.1) by the left sided 

Riemann-Liouville fractional order derivative and we obtain the following growth 

equation:  

 

𝐷𝛼(ln�𝑔(𝑡)� = exp �𝛾𝐸(𝜆−1)
𝑘𝐵𝑇

� �1 − 𝛾𝐸𝜆
𝑘𝐵𝑇

ln�𝑔(𝑡)��       (4.3.1) 

             

By definition, the left-sided Riemann-Liouville fractional order derivative of order  

α ∈ (0, 1] of a function f  ∈ L1([0, ∞)) is:       

 

𝐷𝛼𝑓(𝑡) =

⎩
⎨

⎧ 1
Γ(1 − 𝛼)

𝑑
𝑑𝑡
�

𝑓(𝑠)𝑑𝑠
(𝑡 − 𝑠)𝛼 ,𝛼𝜖(0,1)

𝑡

0
𝑑
𝑑𝑡 𝑓

(𝑡),𝛼 = 1

� 

 

where Γ(𝑠) = ∫ 𝑒−𝑡𝑡𝑠−1𝑑𝑡∞
0   is the gamma function. Note that equation (4.2.1) is a 

particular case of equation (4.3.1) for α = 1. Lately, fractional order derivative models 

have been used in a wide range of engineering and science problems such as signal 

and image processing, economics, control theory, dynamical systems, pattern 

recognition, viscoelastic behaviors of materials (especially polymers and biological 

tissues like lung and brain).   
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 We apply the Laplace transformation method to solve equation (4.3.1). If we denote by 

L(f(t)) the Laplace transform of f and use the fact that: 

L�Dαf(t)� = sαL�f(t)�,   L−1�1/s1−αk� =  t−αk

Γ(1−αk)
, 

we obtain (after a few simple algebraic manipulations): 

 

𝑔(𝑡) = exp�∑ (−1)𝑘

�exp�𝛾𝐸(𝜆−1)
𝑘𝐵𝑇

��
𝑘
�𝛾𝐸𝜆𝑘𝐵𝑇

�
𝑘+1

∞
𝑘=0

𝑡−𝛼𝑘

Γ(1−𝛼𝑘)
�   (4.3.2) 

  

We use the same values for the physical parameters as in section 4.2 to plot the growth 

function given by formula (4.3.2) for a uni-axial stretch value of λ=10 and different 

values of fractional order α (see Fig. 4-3.1). 
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Using formula (4.3.2) we noticed that for small values of applied stretch λ (but not very 

small since the series given by (4.3.2) diverges in these cases) and for values of α 

between 0 and 1, the growth remains constant for both types of gliomas. However, as 

the stretch becomes large but finite, the growth functions of low grade and high grade 

gliomas not only increase with time but also show that at a certain moment, a low grade 

glioma can grow faster than a high grade glioma signaling its transformation into cancer. 

As it can be seen in Fig. 4-3.1, as α increases, not only that the very sharp growth of 

both low and high grade gliomas starts later, but also the time when the low grade 

Figure 4-3.1: Growth functions given by formula (4.3.2) of low grade (blue) and high grade (red) 
glioma versus a normalized time scale for λ = 10 and: a) α = 0.25; b) α = 0.5; c) α = 0.75; d) α = 0.9. 
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becomes a high grade tumor is delayed. Also, since the growth behavior shown in Fig. 

4-3.1 is noticed for a relatively large stretch (approximately λ > 5) where the linear 

elasticity assumption might not be valid anymore, we believe that the fractional order 

temporal derivative could account for some of the microscopic heterogeneity and 

material nonlinearities which are not captured by the macroscopic Hooke’s law. In 

materials with evolving microstructure the fractional order α might connect not only 

multiple time scales but also time and length scales.  We believe that our fractional 

order mechano-growth model incorporates an inhomogeneous clock that connects the 

macroscopic global and the microscopic local time (and possibly length) scales through 

the presence of a fractional order temporal derivative. In this form, the model is able to 

predict the time when a low grade tumor transforms into cancer at large but finite 

stretches. The results presented in this chapter have been published in [36]. 
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Mechano-Growth Model: Non-Linear Case 

In this chapter we turn our attention to solving the original non-linear differential 

equation we proposed in the previous chapter as our mechano-growth model. We will 

use the Adomian decomposition method to find analytical solutions to both – the classic 

first order and the corresponding generalized fractional order – nonlinear differential 

equations.  

 

5.1 Brief Review of the Adomian Decomposition Method 
 

Almost thirty years ago, Adomian proposed a new decomposition method to obtain 

analytical solutions to a wide class of both deterministic and stochastic ordinary and 

partial differential equations “without linearization or weak nonlinearity assumptions, 

closure approximations, perturbation theory, or restrictive assumptions on stochasticity” 

[35].  In many recent publications dealing with solutions to nonlinear partial differential 

equations, the Adomian method proved to be as fast and as accurate as numerical 

methods usually used to solve differential equations such as the finite element method 

(see, for instance, [60]) .  

 

 In what follows we will present the main steps of the Adomian method used in solving 

an equation of the form: Fu(t) = g(t), where F represents a general nonlinear ordinary 
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differential operator involving both linear and nonlinear terms. The linear term is 

decomposed into L + R, where L is easily invertible and R is the remainder of the linear 

operator. For convenience, L is usually taken to be the highest order derivative which 

avoids difficult integrations which result when complicated Green’s functions are 

involved. Thus the equation may be written as [35]: 

 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔                                   (5.1.1) 
 
 

where Nu represents the nonlinear term. Since the linear operator L is invertible, 

equation (5.1.1) can be re-written as:  

 

𝐿−1𝐿𝑢 = 𝐿−1𝑔 + 𝐿−1𝑅𝑢 − 𝐿−1𝑁𝑢                      (5.1.2) 
 
 
If this corresponds to an initial-value problem, the integral operator 𝐿−1 may be a definite 

integral. If L is a second-order operator, L-1 is a twofold integration operator and L-1 Lu = 

u - u(t0) - (t – t0) u’( t0). Solving equation (5.1.2) gives [35]: 

 

𝑢 = 𝐴 + 𝐵𝑡 + 𝐿−1𝑔 − 𝐿−1𝑅𝑢 − 𝐿−1𝑁𝑢                (5.1.3) 

 

We assume now that the following decomposition of the nonlinear term Nu is valid:   

𝑁𝑢 = �𝐴𝑛

∞

𝑛=0

, 
(5.1.4) 
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where An are special polynomials of the following form: 

𝐴0 = 𝑓(𝑢0) 

𝐴1 = 𝑢1 �
𝑑
𝑑𝑢0

� 𝑓(𝑢0 )       

𝐴2 = 𝑢2 �
𝑑
𝑑𝑢0

� 𝑓(𝑢0) + �
𝑢12

2!��
𝑑2

𝑑𝑢02
� 𝑓(𝑢0) 

were, as in [35], we denote by Nu=f(u). 

Then the analytic solution (5.1.3) can be written as a series solution of the form 

∑ 𝑢𝑛∞
𝑛=0  , with u0=A+Bt+L-1g and: 

�𝑢𝑛 = 𝑢0 − 𝐿−1𝑅�𝑢𝑛 − 𝐿−1�𝐴𝑛                     (5.1.5)
∞

𝑛=0

∞

𝑛=0

∞

𝑛=0

 

From (5.1.5) it follows that: 

𝑢1 = −𝐿−1𝑅𝑢𝑜 − 𝐿−1𝐴0 

𝑢2 = −𝐿−1𝑅𝑢1 − 𝐿−1𝐴1 

… 
𝑢𝑛+1 = −𝐿−1𝑅𝑢𝑛 − 𝐿−1𝐴𝑛 

 

(5.1.6) 
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It has been shown that the Adomian method series solution 𝑢 = ∑ 𝑢𝑛∞
𝑛=0 , where 

𝑢𝑛,𝑛 = 0,1, … are given by formulas (5.1.6), converges relatively fast to the exact 

solution of equation (5.1.1) [35]. 

5.2 The Classic Non-Linear Case 

We consider again equation (4.1.2) for 𝐾 = 1𝑠−1 , namely:  

 

𝑑𝑔(𝑡)
𝑑𝑡

= exp�
𝛾𝐸� 𝜆

𝑔(𝑡)−1�

𝑘𝐵𝑇
�𝑔(𝑡)                        (5.2.1) 

 

We used Mathematica to solve this equation using the Adomian decomposition method 

(the code can be found in Appendix A). The physical parameters used with the Adomian 

method are given in Table 3 (the average Young’s modulus values for low (Elow) and 

high (Ehigh) grade gliomas are taken from chapter 2). 

 

Parameter Value 

𝜸 1.3 × 10−26 m3 

kB 1.3 × 10−23 m2*Kg/(s2*K) 

T  298 K 

Elow 30 × 103𝑃𝑎 

Ehigh 40 × 103𝑃𝑎 

g0 1 

 

Table 3: Physical parameters used with the Adomian method. 
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The Adomian method series solution converges to the exact solution of equation (5.2.1) 

in only 4 terms: 

 

g(t) = g0 + 𝑒
γ�−1+ λ

g0
�E

𝑘𝐵𝑇 g0𝑡 + 𝑒

2γ�−1+ λ
g0
�E

𝑘𝐵𝑇 𝑡2(𝑘𝐵g0𝑇−γλE)
2𝑘𝐵𝑇

+

𝑒

3γ�−1+ λ
g0
�E

𝑘𝐵𝑇 𝑡3�𝑘𝐵2g02𝑇2−2γ𝑘𝐵λg0𝑇E+2γ2λ2E2�
6𝑘𝐵2g0𝑇2

+

𝑒

4γ�−1+ λ
g0
�E

𝑘𝐵𝑇 𝑡4�𝑘𝐵3g03𝑇3−3γ𝑘𝐵2λg0
2𝑇2E+4γ2𝑘𝐵λ2g0𝑇E2−6γ3λ3E3�

24𝑘𝐵3g02𝑇3
(5.2.2) 

 

By replacing the values of the Young’s modulus E in equation (5.2.2) by the values of 

Elow and Ehigh given in Table 3, we plot the growth functions for low and high grade 

gliomas against time for various stretch values λ as shown in Figs.5-2.1, 5-2.2, 5-2.3 

and respectively 5-2.4.  
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Figure 5-2.1: Growth functions given by formula (5.2.2) of high-grade (red) and low 
grade (blue) gliomas versus a normalized time scale for λ=0.25. 
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Figure 5-2.2: Growth functions given by formula (5.2.2) of high-grade (red) and low 
grade (blue) gliomas versus a normalized time scale for λ=3. 
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Figure 5-2.3: Growth functions given by formula (5.2.2) of high-grade (red) and low grade 
(blue) gliomas versus a normalized time scale for λ=5. 
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Figure 5-2.2: Growth functions given by formula (5.2.2) of high-grade (red) and low grade 
(blue) gliomas versus a normalized time scale for λ=10. 



39 
 

 

From these graphs we can see that at low stretches λ the high-grade gliomas grow 

more aggressively than the low-grade gliomas (Fig.5-2.1), while as the stretch 

increases, the low-grade gliomas grow a little bit more than the high-grade gliomas 

(Figs. 5-2.2 and 5-2.3). At large but finite stretches the linearity of the material no longer 

holds true, so equation (5.2.1) is not valid anymore and its solution (5.2.2) becomes 

unphysical (Fig.5-2.4).  

5.3 The Fractional-Order Non-Linear Case 
 

We consider now the corresponding generalized fractional order differential equation to 

equation (5.2.1): 

𝐷𝛼𝑔(𝑡) = exp�
𝛾𝐸� 𝜆

𝑔(𝑡)−1�

𝑘𝐵𝑇
�𝑔(𝑡) 

The Adomian decomposition method can be applied again to solve equation (5.3.1). As 

in [61], we apply first the inverse (integral) operator 𝑫−𝜶  to equation (5.3.1) and then 

follow the same steps as in the classic Adomian method. The terms in the Adomian 

method series solution to equation (5.3.1) have been again computed using 

Mathematica and given the length and complexity of these terms we will not reproduce 

it here. 

In our numerical simulations we used λ=0.25, and λ = 5, and for each λ value, three 

different α values were considered: α=0.25, α=0.5, and α=0.9.  The results are shown in 

Figs.5-3.1, 5-3.2, 5-3.3 for λ=0.25, and in Figs. 5-3.4, 5-3.5, 5-3.6 for λ=5. 

(5.3.1) 
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Figure 5-3.1: Growth functions for high-grade (red) and low grade (blue) gliomas versus a 
normalized time scale for for λ=0.25 and α = 0.25. 

Figure 5-3.2: Growth functions for high-grade (red) and low grade (blue) gliomas versus a 
normalized time scale for for λ=0.25 and α = 0.5. 
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Figure 5-3.4: Growth functions for high-grade (red) and low grade (blue) gliomas versus a 

normalized time scale for for λ=5 and α = 0.25. 

Figure 5-3.3: Growth functions for high-grade (red) and low grade (blue) gliomas versus a 
normalized time scale for for λ=0.25 and α = 0.9. 
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Figure 5-3.5: Growth functions for high-grade (red) and low grade (blue) gliomas versus a 
normalized time scale for for λ=5 and α = 0.5. 

Figure 5-3.6: Growth functions for high-grade (red) and low grade (blue) gliomas versus a 
normalized time scale for for λ=5 and α = 0.9. 
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From these graphs we see again as in the linearized case that for larger stretch values 

λ the growth of a low grade glioma can become larger than the growth of a high grade 

glioma. Unlike the linearized case, we were able to find convergent Adomian series for 

small stretch values and every value of the fractional order α. We also notice that for a 

fixed stretch value, the convexity of the growth functions changes with increasing α (the 

curve is concave for α<0.5, and it becomes convex for α>0.5). Such information could 

be of crucial importance for treatment decisions and planning. Finally, by comparing 

Figs.5-3 for the fractional order model and Figs.5-2 for the classic model we see that the 

trend noticed in the linearized case is maintained: the classic case does not capture the 

transition of a tumor from low grade to high grade.     
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Conclusion and Future Work 
 

In this thesis we proposed two novel biomechanical models: one that estimates the 

Young’s moduli of low and high grade tumors (we considered here only gliomas) based 

on the concentrations of proteins as given by image mass spectroscopy, and another 

model that predicts the growth behavior of these two types of brain tumors under uni-

axial stretch. Our first model showed that we can differentiate between low and high 

grade gliomas based on their (apparent) stiffness, a high grade being at least 10kPa 

stiffer than a low grade glioma. Such information can play an important role in the 

development of better, non-invasive diagnostic and treatment planning procedures 

based on image elastography. The next step will be to validate this model 

experimentally on tumors from different types of tissues.  

 

Our mechano-growth model showed how an applied uni-axial stretch λ can affect the 

growth of low and high grade gliomas. For simplicity we assumed that the tissue is an 

isotropic homogeneous linear elastic solid for which the stress-strain relationship is 

given by Hooke’s law and that tumor growth is regulated by the growth of the 

viscoelastic cytoskeletal networks present in the tissue. This assumptions lead to a non-

linear first order evolution equation similar to the one proposed in [14]. We generalized 

this equation by replacing the first order temporal derivative by a fractional order one. 

We have shown that by using a fractional order temporal derivative instead of a first 
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order one, we can predict when a low grade glioma becomes a high grade (cancerous) 

tumor. While the idea of using fractional order temporal derivatives to describe 

abnormal processes believed to be involved in the birth of tumors is not new (see, for 

example, [59]), our study on the effect of the fractional derivative on the coupling 

between the growth and biomechanics of tumors is, to the best of our knowledge, novel.  

Living biological materials are dynamic materials whose microstructure is evolving 

continuously. The fractional order α can be seen as modeling an inhomogeneous clock 

that connects the macroscopic global time scale and the microscopic local time and 

length scales.  We have solved first the linearized equations and then we used the 

Adomian decomposition method to find analytical solutions to both the classic and the 

generalized fractional order non-linear evolution equations. While the classic model 

predicts that the high grade tumors grow somehow faster than the low grade ones, the 

fractional order model captures the transition of a low grade tumor to a high grade one 

regardless of the amount of mechanical stretch applied. Also, the size of the fractional 

order α appears to play an important role in this growth process: the shape of the 

growth curve changes from concave to convex as α increases. This piece of information 

could prove crucial in treatment decisions and planning. In our further work we plan to 

investigate how this fractional order relates to bio-chemical processes (described by 

diffusion-reaction differential equations) taken place in tissues and tumors. A multi-scale 

approach might have to be considered.  
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Appendix – Computational Codes 
 

MATLAB Codes 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program builds elastograms (images of the Young modulus) at a certain mass- 
%per-charge (m/z) ratio using images of mass spectroscopy. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
m=imread('5826.jpg'); 
n=imread('7380.jpg'); 
o=imread('10625.jpg'); 
p=imread('10092.jpg'); 
q=imread('11068.jpg'); 
b=rgb2gray(m); 
c=rgb2gray(n); 
d=rgb2gray(o); 
e=rgb2gray(p); 
f=rgb2gray(q); 
newb=double(b); 
newc=double(c); 
newd=double(d); 
newe=double(e); 
newf=double(f); 
figure, imagesc(newb); 
impixelinfo; 
alpha_b=0.6+log(1/5826); 
alpha_c=0.6+log(1/7380); 
alpha_d=0.6+log(1/10625); 
alpha_e=0.6+log(1/10092); 
alpha_f=0.6+log(1/11068); 
Young_Modulus=newb.^alpha_b+newc.^alpha_c+newd.^alpha_d+newe.^alpha_e+newf. 
^alpha_f; 
figure, imagesc(Young_Modulus); %elastogram 
22 
%%%%%%%%%%%%%%%%%%%%%%%% 
%This program builds elastograms (images of the Young modulus) at 
%a certain mass-per-charge (m/z) ratio using images of mass spectroscopy. 
%%%%%%%%%%%%%%%%%%%%%%%% 
m=imread('5826.jpg'); 
n=imread('7380.jpg'); 
o=imread('10625.jpg'); 
p=imread('10092.jpg'); 
q=imread('11068.jpg'); 
b=rgb2gray(m); 
c=rgb2gray(n); 
d=rgb2gray(o); 
e=rgb2gray(p); 
f=rgb2gray(q); 
newb=double(b); 
newc=double(c); 
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newd=double(d); 
newe=double(e); 
newf=double(f); 
figure, imagesc(newb); 
impixelinfo; 
alpha=0.6; 
Young_Modulus=newb.^alpha+newc.^alpha+newd.^alpha+newe.^alpha+newf.^alpha; 
figure, imagesc(Young_Modulus); %elastogram 
23 
%%%%%%%%%%%%%%%%%%%%%%% 
% This code is for the mechano-growth model. 
%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc 
K0=1; 
gamma=1.3*10^(-26); %m^3 
kB=1.3*10^(-23); %m^2*Kg/(s^2*K) 
T=298; %K 
alpha=gamma/(kB*T); 
E_lg=30*10^(3); %Pa=Kg/(s^2*m); low grade 
E_hg=40*10^3; %high grade 
K_lg=K0*exp(-alpha*E_lg); 
K_hg=K0*exp(-alpha*E_hg); 
lambda=1; 
beta_lg=K_lg*exp(alpha*E_lg*lambda); 
beta_hg=K_hg*exp(alpha*E_hg*lambda); 
t=0:0.001:1; %normalized time scale 
%the growth functions are dimensionless 
g_lg=exp(beta_lg/(alpha*E_lg*lambda).*(1-exp( beta_lg*alpha*E_lg*lambda.*t))); 
g_hg=exp(beta_hg/(alpha*E_hg*lambda).*(1-exp(-beta_hg*alpha*E_hg*lambda.*t))); 
plot(t, g_lg, 'b', t, g_hg, 'r', 'LineWidth', 2) 
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Polynomials
 

Lambda at various values for high grade and low grade tumors:

� Explanation of the constants used in the model:

Gamma = 1.3*10^(-26) [Constant that depends on the bio-chemical reactions involved in growth process]

k = 1.3*10^(-23) [Boltzman constant]

T = 298 K [Absolute temprature]

Yong_lg = 30*10^3 Pa [Youngs modulus of a low-grade tumor tissue]

Young_hg = 40*10^3 Pa [Youngs modulus of a high-grade tumor tissue]

 
Gam = 1.3 * 10^H-26L
1.3 ´ 10-26

k = 1.3 * 10^H-23L
1.3 ´ 10-23

T = 298

298

Younglg = 30 * 10^3

30 000

Younghg = 40 * 10^3

40 000

Lamb = 4

4

Clear@Azero, Aone, Atwo, Athree, Rzero, Rone, RtwoD
Rzero = 1 H*This is the initial condition*L
1



Azerolg = Exp@Gam * Younglg * HHLamb � RzeroL - 1L � Hk * TLD * Rzero

1.35258

Azerohg = Exp@Gam * Younghg * HHLamb � RzeroL - 1L � Hk * TLD * Rzero

1.49583

Ronelg = Kà Azerolg âtO
1.35258 t

Ronehg = Kà Azerohg âtO
1.49583 t

Aonelg = Ronelg ã

Gam -1+
Lamb

Rzero
Younglg

k T -
ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero T

1.09277 t

Aonehg = Ronehg ã

Gam -1+
Lamb

Rzero
Younghg

k T -
ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero T

1.03617 t

Rtwolg = à Aonelg ât

0.546386 t2

Rtwohg = à Aonehg ât

0.518084 t2

Atwolg = Rtwolg ã

Gam -1+
Lamb

Rzero
Younglg

k T -
ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero T
+

1

2
Ronelg2 -

2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero2 T
+

Rzero
2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam2 Lamb2 Younglg2

k2 Rzero4 T2

0.64206 t2
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Atwohg = Rtwohg ã

Gam -1+
Lamb

Rzero
Younghg

k T -
ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero T
+

1

2
Ronehg2 -

2 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero2 T
+

Rzero
2 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam2 Lamb2 Younghg2

k2 Rzero4 T2

0.841301 t2

Rthreelg = Kà Atwolg âtO
0.21402 t3

Rthreehg = Kà Atwohg âtO
0.280434 t3
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Athreelg = Rthreelg ã

Gam -1+
Lamb

Rzero
Younglg

k T -
ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero T
+

Ronelg Rtwolg -
2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero2 T
+

Rzero
2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam2 Lamb2 Younglg2

k2 Rzero4 T2
+

1

6
Ronelg3 3

2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam2 Lamb2 Younglg2

k2 Rzero4 T2
+

Rzero -
6 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero4 T
-

6 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam2 Lamb2 Younglg2

k2 Rzero5 T2
-

ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam3 Lamb3 Younglg3

k3 Rzero6 T3

0.027212 t3
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Athreehg = Rthreehg ã

Gam -1+
Lamb

Rzero
Younghg

k T -
ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero T
+

Ronehg Rtwohg -
2 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero2 T
+

Rzero
2 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam2 Lamb2 Younghg2

k2 Rzero4 T2
+

1

6
Ronehg3 3

2 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam2 Lamb2 Younghg2

k2 Rzero4 T2
+

Rzero -
6 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero4 T
-

6 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam2 Lamb2 Younghg2

k2 Rzero5 T2
-

ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam3 Lamb3 Younghg3

k3 Rzero6 T3

-0.322343 t3

Rfourlg = Kà Athreelg âtO
0.00680301 t4

Rfourhg = Kà Athreehg âtO
-0.0805858 t4

Rhg = Rzero + Ronehg + Rtwohg + Rthreehg + Rfourhg

1 + 1.49583 t + 0.518084 t2 + 0.280434 t3 - 0.0805858 t4

Rlg = Rzero + Ronelg + Rtwolg + Rthreelg + Rfourlg

1 + 1.35258 t + 0.546386 t2 + 0.21402 t3 + 0.00680301 t4

Plot@8Rhg, Rlg<, 8t, 0, 1<, PlotStyle ® 8Thickness@0.008D, 8Red<, 8RGBColor@0.3, 0, 0.7D<<,
AxesLabel ® 8Time , Growth<, LabelStyle ® Directive@Blue, BoldDD
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Lambda at various values for high grade and low grade tumors:

� Explanation of the constants used in the model:

Gamma = 1.3*10^(-26) [Constant that depends on the bio-chemical reactions involved in growth process]

k = 1.3*10^(-23) [Boltzman constant]

T = 298 K [Absolute temprature]

Yong_lg = 30*10^3 Pa [Youngs modulus of a low-grade tumor tissue]

Young_hg = 40*10^3 Pa [Youngs modulus of a high-grade tumor tissue]

 
alpha = 0.9

0.9

Gam = 1.3 * 10^H-26L
1.3 ´ 10-26

k = 1.3 * 10^H-23L
1.3 ´ 10-23

T = 298

298

Younglg = 30 * 10^3

30 000

Younghg = 40 * 10^3

40 000



Lamb = 5

5

Clear@Azero, Aone, Atwo, Athree, Rzero, Rone, RtwoD
Rzero = 1 H*This is the initial condition*L
1

Azerolg = Exp@Gam * Younglg * HHLamb � RzeroL - 1L � Hk * TLD * Rzero

1.49583

Azerohg = Exp@Gam * Younghg * HHLamb � RzeroL - 1L � Hk * TLD * Rzero

1.71072

Ronelg = H1 � Gamma@alphaDL à
0

t

Azerolg � HHt - sL^H1 - alphaLL âs

1.39977 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

Ronehg = H1 � Gamma@alphaDL à
0

t

Azerohg � HHt - sL^H1 - alphaLL âs

1.60085 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

Aonelg = Ronelg ã

Gam -1+
Lamb

Rzero
Younglg

k T -
ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero T

1.03989 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

Aonehg = Ronehg ã

Gam -1+
Lamb

Rzero
Younghg

k T -
ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero T

0.900616 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

Rtwolg = H1 � Gamma@alphaDL à
0

t

Aonelg � HHt - sL^H1 - alphaLL âs

0.973104 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

2
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Rtwohg = H1 � Gamma@alphaDL à
0

t

Aonehg � HHt - sL^H1 - alphaLL âs

0.842777 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

2

Atwolg = Rtwolg ã

Gam -1+
Lamb

Rzero
Younglg

k T -
ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero T
+

1

2
Ronelg2 -

2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero2 T
+

Rzero
2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam2 Lamb2 Younglg2

k2 Rzero4 T2

1.09421 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

2

Atwohg = Rtwohg ã

Gam -1+
Lamb

Rzero
Younghg

k T -
ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero T
+

1

2
Ronehg2 -

2 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero2 T
+

Rzero
2 ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam Lamb Younghg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younghg

k T Gam2 Lamb2 Younghg2

k2 Rzero4 T2

1.4615 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

2

Rthreelg = H1 � Gamma@alphaDL à
0

t

Atwolg � HHt - sL^H1 - alphaLL âs

1.02394 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

3

Rthreehg = H1 � Gamma@alphaDL à
0

t

Atwohg � HHt - sL^H1 - alphaLL âs

1.36764 IfBt > 0, 1.11111 t0.9, IntegrateB
1

H-s + tL0.1
, 8s, 0, t<, Assumptions ® t £ 0FF

3
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Athreelg = Rthreelg ã

Gam -1+
Lamb

Rzero
Younglg

k T -
ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero T
+

Ronelg Rtwolg -
2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero2 T
+

Rzero
2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam2 Lamb2 Younglg2

k2 Rzero4 T2
+

1

6
Ronelg3 3

2 ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam Lamb Younglg

k Rzero3 T
+

ã

Gam -1+
Lamb

Rzero
Younglg

k T Gam2 Lamb2 Younglg2

k2 Rzero4 T2
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PlotStyle ® 8 Thickness@0.008D, 8Red<, 8RGBColor@0.3, 0, 0.7D, Thick<<,
AxesLabel ® 8Time , Growth<, LabelStyle ® Directive@Blue, BoldDD
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