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Abstract

Spacecraft having extended configurations must be stowed for launch compactly,
with final stiffness adequate to maintain shape and stability under dynamic dis-
turbances. The proposed research focuses on deployable booms, one-dimensional
beam-like structures comprising a lightweight, structurally-efficient assemblage of
finer-scale structural members. In particular, tensegrity structures are considered
for their potential to provide a new kind of deployable boom for space applications.

Tensegrity structures (or “tensegrities”) comprise a self-equilibrating assemblage
of 1-D compression members (struts) and tension members (tendons or cables)
connected via frictionless ball joints at member ends (nodes). Tensegrities can
also carry external loads very efficiently. In a classical tensegrity structure, struts
are connected only to cables; however, in a generalization of the concept, struts
can meet at nodes, and can be classified based on the maximum number of struts
connected at a single node. A classical tensegrity is thus “Class-1”, and one in
which two struts meet at a node would be “Class-2”.

Existing approaches to the analysis and design of tensegrity structures are
reviewed, including: various methods of form-finding such as numerical and semi-
analytical; as well as methods of force finding (from a given geometry). The
behavior of tensegrity structures under external loads is studied using a nonlinear
finite element model in which unique characteristics such as the effect of pre-
stress and cable slackness are taken into account. Effect of pre-stress is observed
as stiffening while cable slackness reduces the overall stiffness. Free vibration
properties are investigated, and substantial effects of pre-stress levels on vibration
modes associated with infinitesimal mechanisms are revealed. Vibration modes
associated with infinitesimal mechanisms are governed by pre-stress levels. The
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results indicate that corresponding natural frequencies increase proportionally
with the square root of the pre-stress levels. Furthermore, effective beam stiffness
properties are determined for use in preliminary design; these stiffnesses depend on
pre-stress levels. Axial and torsional rigidities are found to increase substantially as
pre-stress levels are increased; however, bending and shear rigities do not increase
as much as the axial and torsional rigidities.

A primary concern regarding the use of classical tensegrity structures for space
applications is inferior stiffness, due mainly to the small cross-sectional areas of
tendons. Structural stiffness can be increased by allowing strut-to-strut connections,
but this decreases packaging efficiency. Two examples of deployable “cylindrical”
tensegrity booms are investigated in detail: one, a Class-1 tensegrity, the three-
strut Snelson type configuration, which is also known as “SVD” (Saddle-Vertical-
Diagonal) configuration; and the other, a Class-2 tensegrity comprising pairs of
mirror-image “triplex” configurations. Strut lengths are fixed, and deployment is
achieved conceptually via actuation of cable lengths. Generalization to n-strut
cylindrical tensegrities is achieved, and example deployments are simulated.

The primary focus of the dissertation is a concept for a deployable cylindrical
tensegrity boom that begins as a Class-1 tensegrity having high packaging efficiency
and, through a multi-stage deployment process, ends as a Class-2 tensegrity having
higher stiffness. Realizing this structural concept requires consistent connectivity,
augmented by additional cable actuation to achieve the transition at an appropriate
stage of deployment. An initial physical realization of this concept (configuration
and deployment process) is demonstrated. As a result, it is found that axial and
torsional rigidities are increased by factors of 4.5 and 3 for the selected tensegrity
boom example, respectively. Whereas the improvements in bending and shear
rigidities are obtained as 36% and 63%, respectively. Another important benefit of
the transformation is also identified as the increase in the total height of the boom.

Sizing and prestress optimization of tensegrity booms, with consideration of
member buckling and yielding, are achieved by implementing a heuristic opti-
mization algorithm, Particle Swarm Optimization (PSO). A trade-off study was
conducted with the number of bays varied, and its influence on several properties
including bending and torsional stiffnesses, mass and stiffness-to-mass ratios is
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discussed. The results show that the bending stiffness-to-mass ratio of the optimized
tensegrity booms are greater than the bending stiffness-to-mass ratio of most of
state of the art deployable boom concepts. A multi-stage optimal deployment path
in terms of stiffness is also obtained for a selected case by evaluating effective beam
stiffness parameters.

The proposed deployment strategy involving a transformation between Class-1
to Class-2 tensegrities promises significant improvements in the structural efficiency
of deployable tensegrity booms. The final stiffness-to-mass ratio is found to be
greater compared to state of the art deployable boom concepts. This deployment
strategy has the potential to increase the claims on tensegrity structures to be
one of the best candidates for deployable structures. Alongside parallel advances
in cable actuation, tensegrity structures can replace the conventional deployable
structures in real space missions.

v



Table of Contents

List of Figures viii

List of Tables xiv

List of Symbols xv

Acknowledgments xviii

Chapter 1
Introduction 1
1.1 Deployable Booms . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Thin-Walled Tubular Booms . . . . . . . . . . . . . . . . . . 3
1.1.2 Telescopic Boom . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Coilable Booms . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Articulated Trusses . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Tensegrity Structures for Space Applications . . . . . . . . . . . . . 6

Chapter 2
Mechanics of Tensegrity Structures 9
2.1 Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Rank Deficiency Conditions . . . . . . . . . . . . . . . . . . 14
2.1.2 Static and Kinematic Indeterminacy . . . . . . . . . . . . . 15

2.2 Form Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Numerical Form-Finding . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Semi-Analytical Form Finding . . . . . . . . . . . . . . . . . 23

2.3 Force Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3
Static and Dynamic Analyses of Tensegrity Structures 34
3.1 Nonlinear Finite Element Model . . . . . . . . . . . . . . . . . . . . 37

vi



3.2 Static Analyses Under External Loads . . . . . . . . . . . . . . . . 44
3.3 Free Vibration Problem . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Effective Stiffness Properties of Tensegrity Booms . . . . . . . . . . 52

3.4.1 Energy Equivalency Method . . . . . . . . . . . . . . . . . . 53
3.4.2 Modified Energy Equivalency Method . . . . . . . . . . . . . 58
3.4.3 Nonlinear Finite Element Validation . . . . . . . . . . . . . 65

Chapter 4
Deployment of Cylindrical Tensegrity Booms 70
4.1 Deployment of Class-1 Tensegrity Booms . . . . . . . . . . . . . . . 71

4.1.1 Deployment of n-strut Class-1 Tensegrity Booms . . . . . . . 78
4.2 Deployment of Class-2 Tensegrity Booms . . . . . . . . . . . . . . . 84

4.2.1 Deployment of n-strut Class-2 Tensegrity Booms . . . . . . . 92

Chapter 5
A Novel Deployment Strategy Involving Transformation 99
5.1 Deployment Simulations . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Stiffness Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 6
Optimization of Tensegrity Booms 117
6.1 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . 119
6.2 Sizing and Pre-stress Optimization of Deployed Tensegrity Booms . 122
6.3 Optimization of Deployment/Transformation Path . . . . . . . . . . 130

Chapter 7
Conclusions and Future Work 147
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendix A
Optimization of Deployment Path for 8 bays, R=0.254 m 152

Appendix B
Optimization Results, R=0.56 m 158

Appendix C
MATLAB Codes 167

Bibliography 168

vii



List of Figures

1.1 Storable Tubular Extendible Member [1] . . . . . . . . . . . . . . . 3
1.2 Collapsible Tubular Mast [1] . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Telescopic Boom [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Coilable boom [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Articulated boom [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 The first tensegrity structure by Snelson, X-Piece [12] . . . . . . . . 7

2.1 Force balance at a node . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Three-Strut Cylindrical Tensegrity “Triplex” . . . . . . . . . . . . . 18
2.3 Triplex Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Triplex Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 First set of force-densities: Top view . . . . . . . . . . . . . . . . . 26
2.6 First set of force-densities: Side view . . . . . . . . . . . . . . . . . 26
2.7 Second set of force-densities: Top view . . . . . . . . . . . . . . . . 27
2.8 Second set of force-densities: Side view . . . . . . . . . . . . . . . . 27
2.9 Two Stage Triplex Boom . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Two Stage Triplex Boom: Top View . . . . . . . . . . . . . . . . . . 31
2.11 Two Stage Triplex Boom: Side View . . . . . . . . . . . . . . . . . 31

3.1 Two Noded Space Truss Element . . . . . . . . . . . . . . . . . . . 38
3.2 Four-Strut Tensegrity Unit - Quadruplex . . . . . . . . . . . . . . . 47
3.3 Behavior of the quadruplex unit under traction and compression . . 49
3.4 Triplex Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 First mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Second mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Fourth mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Sixth mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Axes shown on a long boom . . . . . . . . . . . . . . . . . . . . . . 55
3.10 Two Stage Three-Strut Tensegrity Boom . . . . . . . . . . . . . . . 63
3.11 Two Stage Four-Strut Tensegrity Boom . . . . . . . . . . . . . . . . 63

viii



3.12 Two Stage Five-Strut Tensegrity Boom . . . . . . . . . . . . . . . . 63
3.13 Two Stage Six-Strut Tensegrity Boom . . . . . . . . . . . . . . . . . 63
3.14 Variation of axial rigidity . . . . . . . . . . . . . . . . . . . . . . . . 64
3.15 Variation of bending rigidity . . . . . . . . . . . . . . . . . . . . . . 64
3.16 Variation of shear rigidity . . . . . . . . . . . . . . . . . . . . . . . 64
3.17 Variation of torsional rigidity . . . . . . . . . . . . . . . . . . . . . 64
3.18 Comparison of results for axial rigidity . . . . . . . . . . . . . . . . 68
3.19 Comparison of results for bending rigidity . . . . . . . . . . . . . . 68
3.20 Comparison of results for shear rigidity . . . . . . . . . . . . . . . . 68
3.21 Comparison of results for torsional rigidity . . . . . . . . . . . . . . 68

4.1 Three-strut Snelson type tensegrity . . . . . . . . . . . . . . . . . . 72
4.2 SVD Side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 SVD Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Equilibrium surface in terms of overlap . . . . . . . . . . . . . . . . 75
4.5 Equilibrium surface in terms of total height . . . . . . . . . . . . . 76
4.6 Deployment path of SVD . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7 Deployment sequence, 1/4 . . . . . . . . . . . . . . . . . . . . . . . 77
4.8 Deployment sequence, 2/4 . . . . . . . . . . . . . . . . . . . . . . . 77
4.9 Deployment sequence, 3/4 . . . . . . . . . . . . . . . . . . . . . . . 77
4.10 Deployment sequence, 4/4 . . . . . . . . . . . . . . . . . . . . . . . 77
4.11 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.12 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 78
4.13 Connectivity chart for Class-1 tensregrity booms . . . . . . . . . . . 80
4.14 Equilibrium surface of four-strut SVD in terms of overlap . . . . . . 82
4.15 Equilibrium surface of four-strut SVD in terms of height . . . . . . 82
4.16 Deployment sequence, 1/4 . . . . . . . . . . . . . . . . . . . . . . . 83
4.17 Deployment sequence, 2/4 . . . . . . . . . . . . . . . . . . . . . . . 83
4.18 Deployment sequence, 3/4 . . . . . . . . . . . . . . . . . . . . . . . 83
4.19 Deployment sequence, 4/4 . . . . . . . . . . . . . . . . . . . . . . . 83
4.20 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.21 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 84
4.22 Two stage, three-strut Class-2 cylindrical tensegrity boom . . . . . 85
4.23 Class-2 tensegrity boom, Top view . . . . . . . . . . . . . . . . . . 85
4.24 Class-2 tensegrity boom, Side view . . . . . . . . . . . . . . . . . . 85
4.25 Illustration of α, γ, rbase and r . . . . . . . . . . . . . . . . . . . . . 87
4.26 The relationship between α and h . . . . . . . . . . . . . . . . . . . 88
4.27 Deployment sequence, 1/4 . . . . . . . . . . . . . . . . . . . . . . . 89
4.28 Deployment sequence, 2/4 . . . . . . . . . . . . . . . . . . . . . . . 89
4.29 Deployment sequence, 3/4 . . . . . . . . . . . . . . . . . . . . . . . 89

ix



4.30 Deployment sequence, 4/4 . . . . . . . . . . . . . . . . . . . . . . . 89
4.31 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.32 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 89
4.33 Deployment sequence, 1/4 . . . . . . . . . . . . . . . . . . . . . . . 91
4.34 Deployment sequence, 2/4 . . . . . . . . . . . . . . . . . . . . . . . 91
4.35 Deployment sequence, 3/4 . . . . . . . . . . . . . . . . . . . . . . . 91
4.36 Deployment sequence, 4/4 . . . . . . . . . . . . . . . . . . . . . . . 91
4.37 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.38 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 91
4.39 Connectivity chart for Class-2 tensegrity booms . . . . . . . . . . . 94
4.40 The relationship between α and h, n=4 . . . . . . . . . . . . . . . . 95
4.41 Deployment sequence, 1/4 . . . . . . . . . . . . . . . . . . . . . . . 96
4.42 Deployment sequence, 2/4 . . . . . . . . . . . . . . . . . . . . . . . 96
4.43 Deployment sequence, 3/4 . . . . . . . . . . . . . . . . . . . . . . . 96
4.44 Deployment sequence, 4/4 . . . . . . . . . . . . . . . . . . . . . . . 96
4.45 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.46 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 96
4.47 Deployment sequence, 1/4 . . . . . . . . . . . . . . . . . . . . . . . 97
4.48 Deployment sequence, 2/4 . . . . . . . . . . . . . . . . . . . . . . . 97
4.49 Deployment sequence, 3/4 . . . . . . . . . . . . . . . . . . . . . . . 98
4.50 Deployment sequence, 4/4 . . . . . . . . . . . . . . . . . . . . . . . 98
4.51 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.52 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 98

5.1 Three-strut SVD tensegrity boom . . . . . . . . . . . . . . . . . . . 100
5.2 Three-strut Class-2 tensegrity boom . . . . . . . . . . . . . . . . . . 100
5.3 Equilibrium surface in terms of overlap . . . . . . . . . . . . . . . . 101
5.4 Equilibrium surface in terms of total height . . . . . . . . . . . . . 101
5.5 Initial deployment path on the equilibrium surface . . . . . . . . . . 102
5.6 Initial deployment, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7 Initial deployment, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.8 Initial deployment, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.9 Initial deployment, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.10 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.11 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 103
5.12 Activation of the reinforcing cables . . . . . . . . . . . . . . . . . . 104
5.13 Rotation Phase, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.14 Rotation Phase, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.15 Rotation Phase, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.16 Rotation Phase, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



5.17 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.18 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 105
5.19 Transition Phase, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.20 Transition Phase, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.21 Transition Phase, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.22 Transition Phase, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.23 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.24 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 107
5.25 Transformed Class-2 tensegrity boom . . . . . . . . . . . . . . . . . 108
5.26 Final Deployment, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.27 Final Deployment, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.28 Final Deployment, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.29 Final Deployment, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.30 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.31 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 109
5.32 Class-1 Deployment, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . 110
5.33 Class-1 Deployment, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . 110
5.34 Class-1 Deployment, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . 110
5.35 Class-1 Deployment, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . 110
5.36 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.37 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 111
5.38 Top plane of the tensegrity booms showing the loading conditions . 111
5.39 Fully Deployed SVD Initial Configuration . . . . . . . . . . . . . . . 113
5.40 Transformed Class-2 Initial Configuration . . . . . . . . . . . . . . . 113
5.41 Fully Deployed SVD y Bending, 250 N . . . . . . . . . . . . . . . . 114
5.42 Transformed Class-2 y Bending, 250 N . . . . . . . . . . . . . . . . 114
5.43 Fully Deployed SVD y Bending, 500 N . . . . . . . . . . . . . . . . 114
5.44 Transformed Class-2 y Bending, 500 N . . . . . . . . . . . . . . . . 114
5.45 Fully Deployed SVD x Bending, 250 N . . . . . . . . . . . . . . . . 114
5.46 Transformed Class-2 x Bending, 250 N . . . . . . . . . . . . . . . . 114
5.47 Fully Deployed SVD x Bending, 500 N . . . . . . . . . . . . . . . . 115
5.48 Transformed Class-2 x Bending, 500 N . . . . . . . . . . . . . . . . 115

6.1 Movement of a particle in a two-dimensional search space . . . . . . 120
6.2 45-bar truss bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Variation of bending stiffness . . . . . . . . . . . . . . . . . . . . . 126
6.4 Variation of bending stiffness per unit mass . . . . . . . . . . . . . 126
6.5 Variation of torsional stiffness . . . . . . . . . . . . . . . . . . . . . 126
6.6 Variation of torsional stiffness per unit mass . . . . . . . . . . . . . 126
6.7 Variation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xi



6.8 Variation of tip deflection . . . . . . . . . . . . . . . . . . . . . . . 127
6.9 Variation of length of struts . . . . . . . . . . . . . . . . . . . . . . 127
6.10 Equilibrium surface with respect to overlap . . . . . . . . . . . . . . 133
6.11 Equilibrium surface with respect to height . . . . . . . . . . . . . . 133
6.12 Feasible points on equilibrium surface with respect to overlap . . . . 134
6.13 Feasible points on equilibrium surface with respect to height . . . . 134
6.14 Equilibrium surface with respect to axial rigidity . . . . . . . . . . . 135
6.15 Equilibrium surface with respect to bending rigidity . . . . . . . . . 135
6.16 Equilibrium surface with respect to shear rigidity . . . . . . . . . . 136
6.17 Equilibrium surface with respect to torsional rigidity . . . . . . . . 136
6.18 Optimized deployment path . . . . . . . . . . . . . . . . . . . . . . 137
6.19 Initial deployment, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.20 Initial deployment, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.21 Initial deployment, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.22 Initial deployment, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.23 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.24 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 138
6.25 Activation of reinforcing cables . . . . . . . . . . . . . . . . . . . . 139
6.26 Rotation Phase, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.27 Rotation Phase, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.28 Rotation Phase, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.29 Rotation Phase, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.30 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.31 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 140
6.32 Transformation Phase, 1/4 . . . . . . . . . . . . . . . . . . . . . . . 141
6.33 Transformation Phase, 2/4 . . . . . . . . . . . . . . . . . . . . . . . 141
6.34 Transformation Phase, 3/4 . . . . . . . . . . . . . . . . . . . . . . . 141
6.35 Transformation Phase, 4/4 . . . . . . . . . . . . . . . . . . . . . . . 141
6.36 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.37 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 141
6.38 Transformed Class-2 tensegrity boom . . . . . . . . . . . . . . . . . 142
6.39 Final Deployment, 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.40 Final Deployment, 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.41 Final Deployment, 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.42 Final Deployment, 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.43 Variation of the lengths . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.44 Variation of the force-densities . . . . . . . . . . . . . . . . . . . . . 143

A.1 Equilibrium surface with respect to overlap . . . . . . . . . . . . . . 152
A.2 Equilibrium surface with respect to height . . . . . . . . . . . . . . 153

xii



A.3 Feasible points on equilibrium surface with respect to overlap . . . . 153
A.4 Feasible points on equilibrium surface with respect to height . . . . 154
A.5 Equilibrium surface with respect to axial rigidity . . . . . . . . . . . 154
A.6 Equilibrium surface with respect to bending rigidity . . . . . . . . . 155
A.7 Equilibrium surface with respect to shear rigidity . . . . . . . . . . 155
A.8 Equilibrium surface with respect to torsional rigidity . . . . . . . . 156

B.1 Variation of bending stiffness . . . . . . . . . . . . . . . . . . . . . 158
B.2 Variation of bending stiffness per unit mass . . . . . . . . . . . . . 158
B.3 Variation of torsional stiffness . . . . . . . . . . . . . . . . . . . . . 159
B.4 Variation of torsional stiffness per unit mass . . . . . . . . . . . . . 159
B.5 Variation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.6 Variation of tip deflection . . . . . . . . . . . . . . . . . . . . . . . 159
B.7 Variation of length of struts . . . . . . . . . . . . . . . . . . . . . . 159
B.8 Equilibrium surface with respect to overlap . . . . . . . . . . . . . . 162
B.9 Equilibrium surface with respect to height . . . . . . . . . . . . . . 162
B.10 Feasible points on equilibrium surface with respect to overlap . . . . 163
B.11 Feasible points on equilibrium surface with respect to height . . . . 163
B.12 Equilibrium surface with respect to axial rigidity . . . . . . . . . . . 164
B.13 Equilibrium surface with respect to bending rigidity . . . . . . . . . 164
B.14 Equilibrium surface with respect to shear rigidity . . . . . . . . . . 165
B.15 Equilibrium surface with respect to torsional rigidity . . . . . . . . 165

xiii



List of Tables

3.1 Node locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Element Connectivity and Properties . . . . . . . . . . . . . . . . . 48
3.3 Natural Frequencies of Triplex Unit . . . . . . . . . . . . . . . . . . 51
3.4 Pre-stress values in the elements . . . . . . . . . . . . . . . . . . . . 63

4.1 Location of the nodes in a two stage cylindrical Class-1 boom . . . 79
4.2 Nodal locations of two stage, three-strut Class-2 cylindrical tenseg-

rity boom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Node locations of a two stage cylindrical Class-2 tensegrity boom . 93

5.1 Pre-stress in each type of element . . . . . . . . . . . . . . . . . . . 112
5.2 Deflection comparison of SVD and Class-2 booms . . . . . . . . . . 112
5.3 Effective stiffness properties of the tensegrity booms . . . . . . . . . 116

6.1 Optimal cross sectional areas (in2) for the truss design example . . 123
6.2 Bending and torsional stiffnesses of optimized booms . . . . . . . . 128
6.3 Optimized design variables for tensegrity booms . . . . . . . . . . . 129
6.4 Packaging properties of optimized booms . . . . . . . . . . . . . . . 131
6.5 Maximum length, force, stress and total mass data . . . . . . . . . 144
6.6 Comparsion of different deployable boom concepts . . . . . . . . . . 145

A.1 Maximum length, force, stress and total mass data . . . . . . . . . 156

B.1 Bending and torsional stiffnesses of optimized booms . . . . . . . . 160
B.2 Optimized design variables for tensegrity booms . . . . . . . . . . . 161
B.3 Maximum length, force, stress and total mass data . . . . . . . . . 166

xiv



List of Symbols

Symbols

A Cross-sectional area

A Equilibrium matrix

cij Coupling terms

C Connectivity matrix

D Length of diagonal cables

D Force-density matrix

E Modulus of elasticity

EA Axial rigidity

EI Bending rigidity

F Internal force vector

GA Shear rigidity

GJ Torsional rigidity

h Overlap between two stages

KL Linear stiffness matrix

KNL Geometric stiffness matrix

KT Tangent stiffness matrix

xv



K∗ Stiffness matrix of the equivalent continuum beam

lb Length of struts

L Length of the continuum beam

L0 Rest length of elements

m Number of elements

M Mass matrix

n Number of nodes

ns Number of state of self-stress

nm Number of mechanisms

Peu Euler buckling load

Ps Pre-stress coefficient

P External force vector

q Force-density

q Force-density vector

r Radius of circumscribing circles of intermediate plane

rbase Radius of circumscribing circles of bottom and top plane

R Length of reinforcing cables

S Length of saddle cables

T Transformation matrix

U Strain energy

U Nodal coordinates

∆U Nodal displacements in each iteration

V Length of vertical cables

α Twist angle

xvi



αij Azimuth angle of the strut between nodes i and j

δij Declination angle of the strut between nodes i and j

ρ Density

σcr Critical stress for wall buckling

ω Angular frequency

Acronyms

ABC Artificial Bee Colony

PSO Particle Swarm Optimization

SVD Saddle-Vertical-Diagonal Configuration

xvii



Acknowledgments

First and foremost, I would like to gratefully thank my advisor, Dr. George A.
Lesieutre for his continuous support, guidance and never-ending encouragement
during my doctoral studies at Penn State. He introduced me to tensegrity structures,
and without his interest, understanding and feedback, this dissertation would not
have been possible. The regular meetings we had, broadened my way of thinking
and they will be missed.

I also would like to thank my doctoral committee members, Dr. Joseph P.
Cusumano, Dr. Robert G. Melton and Dr. Namiko Yamamoto for their valuable
suggestions and comments. I also gratefully acknowledge the financial support of
TUBITAK - BIDEB 2213 scholarship for my doctoral studies.

During my graduate studies at Penn State, I have experienced many difficulties
and I am grateful to have my friends who helped me along the way and cheered me
up. Especially, I would like to thank my roommates Evren Yenigelen and Zulkuf
Yavuz for always being there for me. I also wish to thank Dr. Seher Eken who
encouraged and inspired me.

Most importantly, I would like to thank my parents Fatma and Kamuran Yildiz
for everything since the beginning of my life. Their priceless love and continuous
support made me who I am. Last but not least, I would like to thank my fiancée
Yeliz Saka for believing in, supporting and actually, waiting for me. She was always
there for me and helped me get over any difficulties I experienced.

Kaan Yildiz
University Park, Pennsylvania

August, 2018

xviii



Dedication

to my parents and fiancée...

xix



Chapter 1 |
Introduction

One of the most important challenges in launching a spacecraft is to deal with
heavy payloads and large volumes. The capability of putting big structures into
orbit is highly limited by their weight and shapes due to current rocket technology.
In order to address the volume challenge, deployable structures have been used
widely in space applications and missions for several decades. However, even though
structural systems adapted for launch can be stowed into smaller volumes and
then deployed, the payload weight remains limited by current rocket technology.
Therefore, development of a new deployable structural system for space applications
that is efficient in terms of weight and stiffness could decrease the weight of the
structure, resulting in reduced fuel requirements for space missions. In this work,
tensegrity structures for space applications as deployable booms are considered.

Tensegrity structures emerged as an architectural concept in the 1950s and
over time have found applications and explanatory power within various fields of
engineering and science. From an engineering point of view, they can be defined as
pre-stressed, pin-jointed structural systems. They are composed solely of axial load-
carrying members - each of which carries either tension or compression - connected
to each other via ideal ball joints. By definition, the struts are discontinuous,
and the structural integrity and stability are maintained by pre-stress introduced
in cables. The members do not experience bending loads individually, and the
structure bends as a whole.

Tensegrity structures are proposed to be great candidates for deployable struc-
tures by many researchers. Therefore, in this dissertation, a method has been
proposed to design and deploy tensegrity structures for space applications. The
method proposed here develops an innovative and adaptive tensegrity structure that
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can adjust to different environments by exhibiting high stiffness or high packing
density when required.

In this chapter, state-of-the-art of deployable boom concepts are reviewed, and
applications of tensegrity structures for space missions are investigated.

1.1 Deployable Booms
One of the oldest known examples of a deployable structure is the umbrella. It
is transformed to an operational configuration to provide shelter from rain when
desired and stowed into a compact volume for transportation purposes. Retractable
roofs, tents, folding chairs, deployable bridges, and portable structures for shelters
are other common examples of deployable structures.

The essential feature of a deployable structure is ease of storage for transporta-
tion. The requirements may vary based on application; however, deployability and
retractibility are typically standard except in some applications in which permanent
deployment is acceptable. Regarding space applications, the deployment process
should be autonomous and reliable in order to avoid any malfunctions that can
threaten the mission.

The first applications of deployable space structures were developed to stabilize
spacecraft using long deployable booms (gravity-gradient stabilization). In this way,
the orientation of the spacecraft could be controlled passively, and communication
between the spacecraft and the ground station located on Earth could be maintained
using antennas. As more complex and larger spacecraft were developed, more
powerful and reliable deployable structures were needed. Deployable structures find
many applications in the aerospace industry; a few examples are large solar arrays,
communication reflectors, telescopes, solar sails, etc. [1–3]. Researchers continue to
pursue less complex and more reliable deployable space structures.

Deployable booms are structures that deploy in one dimension. They are mostly
used to isolate electronic components to reduce interference between the spacecraft
and the scientific instruments or to support other structures [1]. Other applications
include communication antennas, gravity-gradient stabilization, and actuation of
deployment and retraction of solar arrays [3].

Deployable booms are generally classified into four different groups: thin-walled
tubular booms, telescopic booms, coilable booms, and articulated trusses [4]. A
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few review papers on deployable booms can be found in the literature [3–5].

1.1.1 Thin-Walled Tubular Booms

Thin-walled tubular booms were one of the first developed deployable boom concepts
that can be deployed and retracted. They take advantage of elastic deformation
capabilities of thin-walled shells.

The earliest member of the family of thin-walled tubular booms is the Storable
Tubular Extendible Member (STEM), which was developed in Canada in the 1960s [6].
It provides a substantial axial stiffness; however, due to its open cross-section, it
exhibits low torsional stiffness. The Collapsible Tubular Mast (CTM), developed by
the German Aerospace Center (DLR), consists of two STEMs bonded at the edges,
thus closing the cross-section. As a result, it provides better torsional stiffness than
STEMs. They have been used in various space missions [2]. These two deployable
boom example concepts are shown in Figures 1.1 and 1.2.

Figure 1.1: Storable Tubular Extendible Member [1]
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Figure 1.2: Collapsible Tubular Mast [1]

1.1.2 Telescopic Boom

Telescopic booms are made of thin-walled cylindrical tubes by placing one inside an-
other. They can be deployed either sequentially or synchronously. Their limitations
are due to tube thickness and overlap length [1].

A motor located at the bottom controls a spindle that drives the deployment of
the booms as shown in Figure 1.3. Each nut located in a tube engages with the
spindle and is being forced to move outwards until it reaches the end of the spindle.

Figure 1.3: Telescopic Boom [3]

1.1.3 Coilable Booms

The first coilable boom was developed in 1967 by H. R. Mauch [7]. The coilable
boom is a lattice truss that consists of a number of parallel rods, called longerons,
lateral battens and bracing cables [2]. The battens are designed in such a way
that they always carry compression, pre-stressing the structure. They are mostly
designed to have a triangular cross-section and are stowed by coiling the longerons
as shown in Figure 1.4.
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Figure 1.4: Coilable boom [1]

Deployment of coilable booms can be achieved by two distinct strategies. The
first option uses an axial cable for restraining the deployment rate where the deploy-
ment is driven by the stored elastic energy in the structure. During deployment, the
tip of the structure rotates and it does not exhibit full stiffness until the deployment
is completely executed. The second option utilizes a canister and a motor for
controlling the deployment. As the deployment occurs, the portion of the structure
that leaves the canister has already been rotated and therefore its full stiffness is
acquired. Coilable deployable booms are very efficient in terms of packing as they
can be stowed into 2-3% of their deployed lengths [1].

1.1.4 Articulated Trusses

Articulated trusses have found many applications as deployable space structures.
They offer the highest stiffness among the four groups in addition to their efficiency
and accuracy. They consist of longerons, battens and diagonals. The longerons are
connected to each other with revolute hinges, and pre-stressed diagonal cables are
placed at the faces of each bay. The deployment is generally driven by the strain
energy stored in the structure during folding. One of the main advantages they
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have is constant diameter during deployment. As the deployment occurs, each bay
maintains its full strength as they leave the protective canister.

The most notable example of articulated trusses that have flown to space is
the Able Deployable Articulated Mast (ADAM). It has been developed for space
missions that require very long and stiff booms. A 60 m long ADAM flew into
orbit for NASA’s Shuttle Radar Topography Mission (SRTM). Figure 1.5 shows an
articulated truss example [2].

Figure 1.5: Articulated boom [2]

1.2 Tensegrity Structures for Space Applications
Tensegrity structures emerged as an architectural concept in the 1950s as a result
of a collaborative work of the artist Kenneth Snelson and the famous architect
Buckminster Fuller. The very first definition was made by Fuller [8] as “an
assemblage of tension and compression components arranged in a discontinuous
compression system”. The name tensegrity is a combination of words tensile and
integrity, coined by Buckminster Fuller. A long-continuing debate was settled
recently, and credit was given to Kenneth Snelson for his invention [9–11]. Figure
1.6 shows the first tensegrity structure built by Snelson.
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Figure 1.6: The first tensegrity structure by Snelson, X-Piece [12]

Over the years tensegrity structures have been considered in many fields besides
architecture and art. Mathematics, civil engineering, biology, and science are a few
examples of application fields. Motro [13] claims that tensegrity structures are the
“structural systems for the future”.

From an engineering perspective, tensegrity structures are pre-stressed, pin-
jointed structural systems. They consist of axial load-carrying members, each of
which carries either tension or compression, connected to each other with frictionless
ball joints. Tension- and compression- carrying members are called cables and
struts, respectively, and pretension is applied to these members in order to stabilize
the structure and satisfy self-equilibrium. Since the members carry only pure axial
loads, none of them experience bending moments, resulting in extremely rigid
structures relative to their mass. Additionally, compressive elements are mostly
discontinuous, and thus complex joints are avoided. As a result, the structure can
be folded and stowed into compact volumes.

Such structures offer potential advantages over alternatives, including light
weight and high packing density. These two unique features kindle the idea of using
tensegrity structures as deployable structures for space applications. They are also
very flexible, and their configuration can be controlled easily. Cables can serve as
sensors and actuators while also carrying loads. Therefore, a control system may
readily be integrated using cables.

The idea of deployable tensegrity structures for space applications was first
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proposed by Furuya [14]. He examined deployment of tensegrity structures con-
ceptually and made important contributions. Hanaor [15] considered double-layer
tensegrity grids as deployable structures. Sultan and Skelton [16] investigated the
deployment of tensegrity structures using cable actuation. Tibert and Pellegrino [17]
made contributions to deployment of tensegrity structures in which the deployment
rate is controlled by a telescopic strut. A different type of tensegrity boom was
investigated by Pinaud et al. [18] using cable actuation with the aim of increased
stiffness and reduced number of actuators. More recently, Murata et al. [19] and,
Russell and Tibert [20] considered inflatable tensegrity structures for deployable
space structures.

In spite of the increasing number of works devoted to deployment of tensegrity
booms, not a single tensegrity boom has ever flown into space. This is mainly
due to the relatively low stiffness of tensegrity structures. In order to address this
problem, a novel deployment strategy is proposed in this dissertation. It involves
a transformation between different types of tensegrity configurations in order to
increase stiffness without discarding initial high packing capabilities.

This dissertation is organized as follows. The mechanics of tensegrity structures
is reviewed, and important problems including form and force finding are addressed
in Chapter 2. In Chapter 3, a nonlinear finite element model is described, and static
and dynamic analyses of fixed-configuration tensegrity structures are investigated.
Deployment of different types of tensegrity booms are described, and deployment
simulations are conducted in Chapter 4. Chapter 5 introduces a novel multi-stage
deployment strategy for tensegrity booms which yields high packing density and
high stiffness, in order to increase their utilization for space applications. In Chapter
6, sizing and pre-stress optimization of tensegrity structures is studied, and the
multi-stage deployment strategy is optimized. Many additional references are
included in their corresponding chapters.
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Chapter 2 |
Mechanics of Tensegrity
Structures

After the invention of tensegrity structures, a considerable amount of attention was
paid to them by artists and researchers from different fields including engineering and
biology. Over time, systematic methods have been developed to study the mechanics
of tensegrities. Due to their unique features of light weight, reconfigurability and
flexibility, they have been mostly studied by engineers with a hope to find solutions
to problems in various challenging areas.

Tensegrity structures can be classified according to the maximum number of
struts connected at a single node [21]. Even though compression members in a
classical tensegrity are described as discontinuous, contact between k compression
members can be envisioned [22]. Classical Class-1 tensegrity systems have relatively
low stiffness, which is their greatest disadvantage in many applications. However,
this disadvantage can be overcome in principle by employing Class-k tensegrity
concepts. Class-1 tensegrities are superior, however, to Class-k tensegrities in terms
of packaging efficiency.

In this chapter, tensegrity structures and their mechanics are investigated from
an engineering point of view. Self-equilibrium equations of tensegrity structures
are derived, and the relation between static and kinematic indeterminacies and
self-equilibrium is explained. Furthermore, two important problems regarding
tensegrity equilibrium, namely form and force finding, are addressed, and solution
methods are briefly reviewed.
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2.1 Equilibrium Equations
Tensegrity structures are self-equilibrated structures due to the presence of pre-
stress in the members. This means at each node of the structure, force balance is
satisfied in three directions. Therefore, in the absence of external forces, tensegrity
structures are also free standing, meaning that a fixed node and external actions
such as external forces or constraints are not necessary.

Before discussing and deriving the self-equilibrium equations and the mechanics
of tensegrity structures, key terms are defined here. Nodes are spatial points located
at each end of struts. Elements or Members represent any of the structural members:
tension and compression carrying members, cables or struts. Connectivity gives the
information about which node is connected to which other node by which element.
The force-density matrix is a matrix which enables the equilibrium equations to be
expressed at each node in matrix form in terms of nodal coordinates. Analogously,
the equilibrium matrix represents the equilibrium equations in terms of force-
densities in each element.

The important assumptions for derivation of the equilibrium equations are as
follows:

1. The connectivity of the system is known

2. Members are connected to each other with ideal ball joints

3. The self-weight of the structure is neglected

4. External forces act only at nodes

The method of joints can be used to write down the equilibrium equations for
a tensegrity structure at each node. A small part of a two-dimensional tensegrity
structure is illustrated in Figure 2.1. Node i is connected to nodes j and k with
elements, either cables or struts. The lengths of these elements are represented
by l while pre-stress and applied external forces are represented by f and f e.
Furthermore, the nodal coordinates are also indicated by x and y.

Then the self-equilibrium equations at node i can be written as:

(xi − xj)fi,j/li,j + (xi − xk)fi,k/li,k = f ei,x

(yi − yj)fi,j/li,j + (yi − yk)fi,k/li,k = f ei,y
(2.1)

10



where ∆xi,j/li,j and ∆yi,j/li,j are direction cosines and li,j =
√

∆x2
i,j + ∆y2

i,j.

Figure 2.1: Force balance at a node

The equilibrium equations given in Equation 2.1 are nonlinear in the nodal
coordinates. Since the length of each member depends on the nodal locations,
quadratic terms appear when lengths are represented in terms of nodal coordinates.
An attempt was made by Schek [23] to “linearize” the equations by the use of
a quantity called, force density. In other words, this new term force density is
the force carried by members per unit length, i.e. qi,j = fi,j/li,j. By treating the
force density terms as a new independent variable, the equilibrium equations are
linearized as shown below:

(xi − xj)qi,j + (xi − xk)qi,k = f ei,x

(yi − yj)qi,j + (yi − yk)qi,k = f ei,y
(2.2)

Equation 2.2 can be rearranged and put into a form that allows a matrix
representation of the equilibrium equations.

(qi,j + qi,k)xi − qi,jxj − qi,kxk = f ei,x

(qi,j + qi,k)yi − qi,jyj − qi,kyk = f ei,y
(2.3)
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In order to represent the equilibrium equations compactly, a connectivity matrix
is suggested [23] which carries the information of the links between nodes. The
entries in the connectivity matrix, C, (∈ Rmxn) take values of 1, -1 or 0 where m
and n are the number of elements and nodes, respectively. Each row represents an
element while columns stand for nodes. If an element connects two nodes, one of
the entries at a node-column for this element-row takes the value of +1, while the
other entry takes the value of -1. All other entries of the matrix in that row take
the value of 0.

Assuming element k connects nodes i and j, then, the connectivity matrix can
be constructed as follows:

C(k,p) =


1 if p = i

−1 if p = j

0 if otherwise
(2.4)

The equilibrium equations for tensegrity structures can be compactly written
as below using the connectivity matrix [23]

CTQCxi = fex,i (2.5)

Here fex,i and xi denote the applied external load vector in the ith direction and
nodal coordinates, respectively. Q is a diagonal square matrix which carries the
force-density information as

Q = diag(q) (2.6)

where q(∈ Rm) is the force-density vector, representing the force-densities in
each element

q = [q1, q2, q3, ...., qm]T (2.7)

For a small part of the structure shown in Figure 2.1, the connectivity matrix,
C, and the diagonal square matrix, Q, are written as

C =
1 −1 0

1 0 −1

 Q =
qi,j 0

0 qi,k

 (2.8)

The equilibrium equations in x direction can be written as
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CTQCx =


qi,j + qi,k −qi,j −qi,k
−qi,j qi,j 0
−qi,k 0 qi,k



xi

xj

xk

 =


f ei,x

...

...

 (2.9)

Equation 2.9 can be expanded into three-dimensional space to represent the
equilibrium equations compactly with matrix notation. In Equation 2.9, only a
small part of the structure is considered; therefore, no information about the forces
acting at the ith and jth nodes are available.

Under the assumption of no external force acting on the structure, Equation
2.5 can be written as in Equation 2.10, which are called self-equilibrium equations,
by defining a new matrix called the force-density matrix [24–26]. Vassart and
Motro [27] suggest a method to directly construct the force-density matrix which
does not involve the connectivity matrix.

Dxi = 0 (2.10)

where D(∈ Rnxn) is the force-density matrix given below.

D = CTQC (2.11)

The force-density matrix is symmetric and singular. The first application of
the force-density matrix was on cable net structures which consist solely of tension
carrying members, and therefore it is always positive definite [23]. On the other
hand, since tensegrity structures also host compressive elements, the force-density
matrix becomes positive semi-definite [35]. For a three-dimensional space, the final
form of the self-equilibrium equations are

D[x y z] = [0 0 0] (2.12)

Similarly, another representation of the self-equilibrium equations can be ob-
tained after rearranging Equation 2.12. This representation is in terms of nodal
coordinates and a new matrix, the equilibrium matrix, is introduced.

CTQCxi = Aiq = 0 (2.13)

where A(∈ Rdnxm) is the equilibrium matrix. In three-dimensional space, the
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equilibrium matrix is given as [13]

A =


CTdiag(Cx)
CTdiag(Cy)
CTdiag(Cz)

 (2.14)

Equations 2.12 and 2.13 are linear homogeneous versions of the self-equilibrium
equations and, in fact, they are the same with different representations. Equation
2.12 represents the self-equilibrium equations in terms of nodal coordinates while
Equation 2.13 is in terms of force-densities. For a tensegrity structure, these
equations have to be satisfied simultaneously in order to ensure a self-equilibrated
geometry.

2.1.1 Rank Deficiency Conditions

In order to generate a d-dimensional self-equilibrated tensegrity configuration, two
rank conditions need to be satisfied alongside the equilibrium equations [13, 24,
28]. These rank conditions are on the equilibrium and the force-density matrices.
Potential solutions for the nodal coordinates and the force-densities are obtained
from the nullspace of the corresponding matrices. The first rank deficiency condition
ensures that a d-dimensional structure is generated, while the second condition
allows the determination of the force-density vector.

The first rank deficiency condition is given as

nD ≥ d+ 1 (2.15)

where

nD = n− rD (2.16)

where n and rD are the number of nodes and the rank of the force-density
matrix. This condition ensures that at least d particular solutions can be obtained
for Equation 2.12, generating a d-dimensional structure [25, 26, 29]. For a d-
dimensional tensegrity structure, the largest possible rank of D is rD = n− d− 1
for geometric embedding into Rd [25, 26,29].

The second rank deficiency condition is

14



nA = m− rA ≥ 1 (2.17)

where m and rA are the number of members and the rank of the equilibrium
matrix. This condition is the prestressability condition for a tensegrity structure
and ensures that the structure has at least one force-density vector or state of self-
stress that satisfies equilibrium. This rank deficiency or nullity allows a non-trivial
solution for Equation 2.13 to be found from the nullspace of the equilibrium matrix.

These two rank deficiency conditions play key roles in generating a d-dimensional,
self-equilibrated tensegrity configuration. In the literature, several publications are
devoted to this matter, explaining the mathematical theory behind it [24,25,28,29].
Another explanation can be sought in terms of static and kinematic indeterminacies,
given in the next subsection.

2.1.2 Static and Kinematic Indeterminacy

A structure is said to be statically determinate if the number of available independent
equilibrium equations is equal to the number of unknown forces. This allows the
forces to be determined from the equilibrium equations uniquely. However, if the
number of unknowns is greater than the number of equilibrium equations, the
forces cannot be uniquely determined, and the system is then called statically
indeterminate. In such systems, in order to determine the forces, compatibility
equations are required.

If a structure exhibits additional modes of deformation other than rigid body
motion, then it is said to be kinematically indeterminate. Another explanation is
that the locations of the joints cannot be uniquely determined by the length of the
members. Kinematically indeterminate structures exhibit infinitesimal mechanisms,
a type of mechanism in which the length variations of the individual members are
infinitesimal of a lower order than the order of the displacements [2].

The level of static and kinematic indeterminacies are governed by Maxwell’s
rule [30]. In a d dimensional space, Maxwell’s rule is

dn−m− nb = nm − ns (2.18)

where ns is the number of independent states of self-stress, nm is the total
number of infinitesimal mechanisms, n is the number of joints or nodes, m is the
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number of bars/elements in the structure, and nb is the number of rigid body
motions. If either of ns and nm is found, then the other can be determined by
Maxwell’s Rule.

On the other hand, the number of independent states of self-stress and the
total number of infinitesimal mechanisms can be obtained by the matrix analysis
developed by Pellegrino and Calladine [31]. The matrix analysis utilizes the rank of
the equilibrium matrix and the number of members present in the structure. They
are given as

ns = m− rA (2.19)

nm = dn− nb − rA (2.20)

which satisfy Maxwell’s Rule. Based on these parameters, pin-jointed structures
can be classified as follows [30,31]:

• ns = 0, nm = 0: Statically and kinematically determinate

• ns = 0, nm ≥ 1: Statically determinate and kinematically indeterminate

• ns ≥ 1, nm = 0: Statically indeterminate and kinematically determinate

• ns ≥ 1, nm ≥ 1: Statically and kinematically indeterminate

Tensegrity structures show static indeterminacy, which is imperative for self-
equilibrium. The self-equilibrium is satisfied by the state of self-stress found from
the nullspace of the equilibrium matrix. On the other hand, tensegrity structures
are often kinematically indeterminate, which reduces the overall stiffness of the
structure due to mechanisms found in the structure. The effects of infinitesimal
mechanisms on the stiffness of tensegrity structures are discussed in more depth in
Chapter 3.

2.2 Form Finding
The form-finding problem of tensegrity structures is an essential part of the tenseg-
rity design problem. It seeks a solution to Equations 2.12 and 2.13 with a predefined
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or known connectivity. The solution yields a geometric shape and a force-density
vector that satisfy the self-equilibrium equations as well as the rank deficiency
conditions. The obtained nodal locations and the force-density values are relative
and can be normalized in different ways. Over the years, numerous form finding
methods have been developed and new methods are sought for designing mostly
irregular tensegrity structures.

The most commonly used methods for form-finding include analytical methods
(mostly applicable to simple and symmetrical tensegrities), non-linear programming
and energy methods. A small list of the form finding methods can be given as

• Analytical methods

• Non-linear programming

• Dynamic relaxation

• Reduced coordinates

• Energy method

• Force-density method

• Algebraic method

More information about the methods listed above can be found in the review
paper published by Tibert and Pellegrino [26]. In this dissertation, the force-density
method for the form-finding problem is chosen due to its straightforwardness and
relative ease of implementation. Search of new tensegrity configurations is not the
focus of this dissertation, and the form-finding problem is mostly used for validation
purposes.

The force-density method was first suggested by Schek in 1974 for the form
finding problem of cable net structures [23]. This method introduces force-densities
to equilibrium equations for linearization purposes, qi = fi/li. Then, the method is
extended for the form-finding problem of tensegrity structures. In the literature,
many applications of the force-density method are available which employ analytical,
semi-analytical, and numerical approaches [27, 32–34]. In the last decade, novel
numerical force-density methods emerged in order to reduce the complexity of the
problem [24,25,29,35].
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As more powerful computers were developed, the research on force-density
form-finding methods shifted to numerical and semi-analytical approaches rather
than analytical methods. The increased computational power allowed researchers
to develop iterative algorithms to find self-equilibrated geometries. Furthermore,
modified numerical methods allowed the search of complex and irregular tensegrity
geometries. A form-finding method which specializes in designing tensegrity struc-
tures with partially defined geometry and a known set of force-densities is called
unique configuration search [25, 35].

In the following subsections, numerical and semi-analytical force-density form-
finding methods are investigated in further detail. For demonstration purposes,
the simplest three-dimensional tensegrity structure, the triplex, is selected and the
form finding problem is solved with numerical and semi-analytical methods. The
geometry of the triplex is shown in Figure 2.2.
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Figure 2.2: Three-Strut Cylindrical Tensegrity “Triplex”

Figures 2.3 and 2.4 provide the top and side views of the triplex. The structure
has 9 cables and 3 struts which are represented with black and thick red lines. Each
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Figure 2.4: Triplex Side View

node is numbered and shown on the figures, while element numbers are indicated
by numbers with brackets.

The results obtained from form-finding methods can be scaled by multiplying
force-density values and/or nodal coordinates by a constant since they are relative.
The scaling of force-densities is achieved with a coefficient known as the pre-stress
coefficient. To find the actual forces in members, the force-densities are multiplied
by the lengths of elements. Then, forces in elements are given as follows:

f = PsLq (2.21)

where f is a column vector which stores the forces in each element. Ps is the
pre-stress coefficient, q is the force-density vector, and L is a diagonal square matrix
of member lengths.

2.2.1 Numerical Form-Finding

This numerical force-density form-finding method is developed by Estrada [24],
and it exploits computational power to iteratively update the force-densities and
nodal coordinates until the self-equilibrium equations are satisfied. The required
information for the numerical force-density form finding method is connectivity and
element type (cable or strut). Force-density values of +1 and -1 are assigned to
corresponding elements, and the force-density vector is constructed. The algorithm
updates force-densities and nodal coordinates until the generated configuration
has at least one state of self-stress and the self-equilibrium equations are satisfied
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alongside with rank deficiency conditions.
The initial step in numerical form finding is to intuitively guess the connectivity

between the nodes and the connecting element types. Then, the connectivity matrix
can be constructed and, with the assignment of force-densities to corresponding
elements, the numerical form-finding process can be started. The triplex shown
in Figure 2.2 has 12 elements and 6 nodes; therefore, the connectivity matrix is
12× 6, as given:

C =



1 −1 0 0 0 0
0 1 −1 0 0 0
1 0 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 1 0 −1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 −1 0 0



(2.22)

The force-density vector is 12× 1, and the corresponding entries for cables and
struts are assigned with +1 and -1, respectively.

q =
[

1 1 1 1 1 1 1 1 1 −1 −1 −1
]T

(2.23)

Then, the force-density matrix can be constructed as

D =



2 −1 −1 −1 1 0
−1 2 −1 0 −1 1
−1 −1 2 1 0 −1
−1 0 1 2 −1 −1
1 −1 0 −1 2 −1
0 1 −1 −1 −1 2


(2.24)
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The initial force-density matrix does not satisfy the first rank deficiency condition
(Equation 2.15) and is not positive semi-definite because of the arbitrarily assigned
force-densities. Then, the force-density matrix is decomposed into its eigenvalues
and eigenvectors, Λ and Φ, respectively.

D = ΦΛΦT (2.25)

The nodal locations can be approximated from the eigenvector columns as long
as two conditions are satisfied. An eigenvector column is a candidate for nodal
locations as long as none of the members have zero length, and that column and Ii,
the ith column vector of the identity matrix, are linearly independent (where I is
the identity matrix). The projected lengths can be calculated as

L = CΦ = [(Cφ1) (Cφ2) . . . (CφnD
)] (2.26)

The candidate eigenvector columns are removed if one of the following conditions
on linear dependency and zero length members, respectively, are satisfied.

Cφi = 0 (2.27)

det|LdLTd | = 0 (2.28)

where in three dimensional space

Ld =
√

(Cφi)2 + (Cφj)2 + (Cφk)2 (2.29)

After removing the corresponding columns, the remaining first three columns
are selected as nodal locations. Most commonly, the eigenvectors of the smallest
eigenvalues are selected, and they are iteratively updated until the eigenvalues are
zero, satisfying the rank deficiency condition [24,35].

Then, the selected eigenvectors are used as nodal coordinates to construct
the equilibrium matrix, A, using Equation 2.14. Singular value decomposition is
applied to the equilibrium matrix as in Equation 2.30, in order to obtain the left
and right nullspace vectors and the singular values.

A = UVWT (2.30)
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U and W are unitary matrices that also include the left and right nullspace
vectors, respectively, while V is the diagonal matrix in which the singular values
are stored. The last column of W is the right nullspace vector of the equilibrium
matrix and can be chosen as the force-density vector.

However, in the beginning of the iterations, the equilibrium matrix is unlikely
to be rank deficient as required and has no nullspace. In this case, none of the
columns of W is a solution to Equation 2.13. The column whose signs of entries are
identical to the ones determined initially for the force-density vector is selected. If
none of the columns are in such a condition, then more than one column is required
to approximate an updated force-density vector, q. Using a least square fit, it is
possible to calculate q̃, that minimizes the following quantity:

∥∥∥∥∥[wj . . . wm]q̃− q
∥∥∥∥∥

2

(2.31)

where the updated force-densities

q∗ = [wj . . . wm]q̃ (2.32)

This procedure, if needed, starts by taking the two rightmost column vectors of
W and increases the number of column vectors until the sign of the entries of q∗

matches the sign of the entries of q. Then q∗ becomes the updated force-density
vector and the force-density matrix is calculated again with the updated force-
densities. This process iteratively continues until the rank deficiency conditions are
satisfied and the structure has at least one state of self-stress.

As a result of the iterations in the present example, the force-density vector
converges to:

q =
[

1 1 1 1 1 1
√

3
√

3
√

3 −
√

3−
√

3−
√

3
]T

(2.33)

Then, the final form of the force-density matrix (having a nullity of 4) is obtained
as
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D =



2 −1 −1
√

3 0 −
√

3
−1 2 −1 −

√
3

√
3 0

−1 −1 2 0 −
√

3
√

3
√

3 −
√

3 0 2 −1 −1
0

√
3 −

√
3 −1 2 −1

−
√

3 0
√

3 −1 −1 2


(2.34)

The nodal locations are then obtained from the right nullspace vector of the
force-density matrix, and the generated geometry is shown in Figures 2.2, 2.3 and
2.4. As can be seen from the figures, the structure is symmetric and has different
members carrying the same loads. In this example, these members are the top and
bottom cables, vertical cables, and struts. These members have the same lengths
and the same force-density values. The grouping of members is discussed in the
semi-analytical form-finding and force-finding subsections in more depth.

In summary, with only minimal knowledge of the investigated tensegrity system,
this numerical method enables searching for valid tensegrity configurations. If the
force-density vector is defined to consist of +1 and -1, the obtained configurations
are mostly regular and symmetrical tensegrities. It is also possible to alter the
initial force-density matrix q in a way that the signs of the entries are preserved
while the numbers are changed, say to random values. This time the resulting
configuration may be irregular; however, it is likely to end with a trivial result or
to diverge.

2.2.2 Semi-Analytical Form Finding

Semi-analytical form finding methods differ from numerical force-density form
finding methods by assigning symbolic variables instead of numerical values [27].
The force-density vector and the force-density matrix are constructed symbolically.
After construction of the force-density matrix, the first rank deficiency condition
is imposed to the force-density matrix, and the solution is obtained for the force-
densities. Finally, with knowledge of the force-density values, the nodal coordinates
can be obtained from Equation 2.12 by calculating the nullspace vector of the
force-density matrix.

Symbolically constructed force-density matrix can be reduced to upper echelon
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form by employing Gaussian elimination. In order to achieve the rank deficiency
condition on the force-density matrix, all the entries in the required number of rows
can be set to zero, yielding a symbolic solution. However, this approach is mostly
limited to symmetrical tensegrity structures due to the difficulty in obtaining the
upper echelon form.

After careful investigation of symmetric tensegrity structure, the members which
carry identical force-densities can be identified and they can be assigned the same
symbolic force density. Going through the construction of the force-density matrix
and the application of the rank deficiency condition yields the ratio between the
force-densities in different groups of members.

The triplex example investigated with the numerical form-finding method is
considered again. The connectivity matrix remains the same; however, the force-
density vector is replaced with a symbolic one given in Equation 2.35 below. Careful
examination shows that a geometric symmetry can exist in the structure. Given
such symmetry, similarly positioned, identical members are identified. Based on
that, the force-densities are assigned as follows:

1. Cables between nodes 1-2-3: qt (Top cables)

2. Cables between nodes 4-5-6: qb (Bottom cables)

3. Cables between nodes 1-4, 2-5, 3-6: qv (Vertical cables)

4. Struts between nodes 1-5, 2-6, 3-4: −qs (Struts)

q =
[
qt qt qt qb qb qb qv qv qv −qs −qs −qs

]T
(2.35)

When the bottom and the top triangles are assumed to be horizontal, in order
to satisfy the force balance, by inspection, it can be seen that qs = −qv. Using
this relation, the force-density matrix is constructed using MATLAB’s symbolic
toolbox, MuPAD, as follows:
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D =



2qt −qt −qt −qv qv 0
−qt 2qt −qt 0 −qv qv

−qt −qt 2qt qv 0 −qv
−qv 0 qv 2qb −qb −qb
qv −qv 0 −qb 2qb −qb
0 qv −qv −qb −qb 2qb


(2.36)

Employing Gaussian elimination, the upper echelon form of the force-density
matrix is obtained by MuPAD

D =



qv −qv 0 −qb 2qb −qb
0 qt −qt −σ1 2σ1 − qv−σ1 +qv
0 0 0 σ2 −2σ2 σ2

0 0 0 0 σ3 −σ3

0 0 0 0 0 0
0 0 0 0 0 0


(2.37)

where

σ1 = qbqt
qv

σ2 = 3qbqt − q2
v

qv

σ3 = 3qbqt − q2
v

qt

(2.38)

In order to satisfy the rank deficiency condition of the force-density matrix, the
required nullity is 4 (for a three dimensional structure), meaning that all the entries
in 4 rows must be zero. In this case, two rows already satisfy this condition while
two more rows are required. Therefore, the solution can be obtained by setting
σ2 = 0 and σ3 = 0. This yields,

qt = q2
v

3qb
(2.39)

qb = qb (2.40)

qv = qv (2.41)
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qs = −qv (2.42)

The results show that two of the assigned force-densities can be selected arbi-
trarily while the other two are represented in terms of the selected ones. These
expressions allow free selection of some force-densities and computation of the
others. Then using the feasible force-densities found here, the geometry of the
structure can be obtained from Equation 2.12.

In this example, selecting qb = 1 and qv = 1, qt is calculated and the equilibrium
equations are solved. The resulting geometry is shown in Figures 2.5 and 2.6.
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Figure 2.5: First set of force-densities:
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Figure 2.6: First set of force-densities:
Side view

Figures 2.5 and 2.6 show that the configuration is clearly different from the one
found using numerical form finding as it has an inscribed top triangle. Additionally,
by varying the free selected force-densities with the expressions obtained (Equations
2.39, 2.40, 2.41 and 2.42), it is possible to reconfigure the structure.

Selecting the force-densities as qb = 1 and qv = 1/2, and solving the equilibrium
equations yield a different tensegrity configuration, which is shown in Figures 2.7
and 2.8. These two different force-density cases show that it is possible to have
some control over the length ratios of the elements by adjusting the force-densities.
This could be achieved in practice (in principle) via cable actuation and allows
deployment or shape modifications which are addressed in the next chapter.

Even though the semi-analytical form finding method offers some advantages,
it requires high computation power for larger tensegrities in computing the upper
echelon form when it is difficult to identify the symmetry and assign appropriate
force-densities.
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2.3 Force Finding
The force finding method is another tool used for design of tensegrity structures,
and it differs from form finding methods by definition. The force finding method,
as revealed by the name, looks for the force-densities that satisfy force balance at
each node for a predefined configuration (connectivity and nodal locations). This
method is also known as initial self-stress design [36].

Known connectivity and nodal coordinates allow the construction of the equi-
librium matrix with Equation 2.14, which does not require any information of
force-densities in the members. By calculating the rank of the equilibrium matrix,
the number of independent state of self-stress can be obtained from Equation 2.19.
Similar to the numerical form finding method, singular value decomposition is
applied to the equilibrium matrix as in Equation 2.43.

A = UVWT (2.43)

As noted before, the last ns columns of matrix W are the right nullspace vectors
of the matrix A. Then, based on the number of independent state of self-stress,
two possibilities occur.

Case I

If the number of states of self-stress is equal to 1 (ns = 1), there is only one vector
in the right nullspace, and it satisfies the self-equilibrium equations, Equation 2.13.
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Due to distinct computational approaches taken by different software, the obtained
force-density vector, q, might be found in a way that all cables carry compression
and struts carry tension. Since the force-density values are relative, in order to
satisfy unilateral behavior of elements, the force-density vector can be multiplied
by -1.

Case II

If the number of states of self-stress is greater than one (ns > 1), there are ns
number of independent state of self-stress, and, individually, they do not necessarily
satisfy the unilateral behavior of elements. Then, the force-density vector needs
to be expressed as a linear combination of the last ns columns of matrix W as in
Equation 2.44.

q = c1wm−ns+1 + c2wm−ns+2 + c3wm−ns+3 + · · ·+ cnswm (2.44)

where c is the coefficient vector for ns independent self-stress modes. For
convenience and simplicity, the last ns columns of matrix W is also stored in a
matrix G.

c =
{
c1 c2 · · · cns

}
(2.45)

W =
[
w1 w2 · · · wrA

|wm−ns+1 wm−ns+2 · · · wm

]
(2.46)

G =
[
g1 g2 · · · gns

]
=
[
wm−ns+1 wm−ns+2 · · · wm

]
(2.47)

Then, the force-density vector can be written as

q = Gc (2.48)

The columns of G do not necessarily satisfy the unilateral behavior of elements
since the equilibrium matrix does not carry the information of element type. In
order to overcome this problem, the members that carry the same amount of force
density are sought for [36]. A geometric symmetry can be found by identifying
the members in similar positions with same length, carrying identical force density.
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This symmetry can be used to create h groups among the elements. Following that,
the force-density vector can be written as

q =
{
q1 q1 · · · qi qi · · · qh qh

}T
=



1 0 0 0 0
... 1 0 0 0
0 ... 1 0 0
0 0 ... 1 ...
0 0 0 ... 1





q1
...
qi
...
qh


(2.49)

More compactly,

q =
{
q1 · · · qi · · · qh

}T
=
[
e1 · · · ei · · · eh

]


q1
...
qi
...
qh


(2.50)

where qi is the force density in the members of the ith group end ei is a column
vector whose entries corresponding to ith group are 1 while the others are 0, i.e. a
basis vector. Substitution of Equation 2.50 into Equation 2.48 yields

c1g1 + c2g2 + · · ·+ cnsgns
− e1q1 − e2q2 − · · · − ehqh = 0 (2.51)

In matrix notation

Ḡc̄ = 0 (2.52)

where

Ḡ =
[
g1 g2 · · · gns

−e1 · · · −ei · · · −eh
]

(2.53)

c̄ =
{
c1 c2 · · · cns q1 · · · qi · · · qh

}T
(2.54)

The solution to this system, Equation 2.52, lies in the nullspace of the matrix
Ḡ, and it is a column vector in which the coefficients, ci’s and the force-densities of
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each group of element are defined. However, if the nullity or rank deficiency of Ḡ is
greater than one, there is more than one solution. On the other hand, if the nullity
of Ḡ is equal to zero, then the solution is trivial. Therefore, a proper grouping of
the elements by taking into account the symmetry is vital.

The force finding method has been implemented in static and dynamic analyses of
tensegrity structures, investigated in Chapter 3. This method allows determination
of the initial self-stress state of a tensegrity structure before the application of
external loads. Another application of the force finding method is the deployment
simulations conducted in Chapters 4 and 5, in order to track the forces in each
elements during deployment. By doing so, it is possible to ensure that cables are
always in tension and do not go slack.

Numerical Example

The force finding method is applied to a two-stage triplex tensegrity boom as shown
in Figure 2.9. Top and side views are also illustrated in Figures 2.10 and 2.11. In
this structure, four groups of elements can be identified, namely top and bottom
cables, vertical cables, saddle cables, and struts. For sake of clarity in the figures,
these groups of elements are indicated with different colors. Black, blue, and green
lines represent top and bottom, vertical, and saddle cables, respectively, while thick
red lines denote struts.
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Figure 2.9: Two Stage Triplex Boom
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Based on the symmetry explained above, the force-density vector is 21× 1, and
for compactness, it is given in the following form in which multiplicities are shown
in brackets. qtb, qv, qs and qst represent the force-densities in the top and bottom
cables, vertical cables, saddle cables, and struts, respectively.

q =
[
qtb(6) qv(6) qs(3) qst(6)

]T
(2.55)
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Figure 2.10: Two Stage Triplex Boom:
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Figure 2.11: Two Stage Triplex Boom:
Side View

For this numerical example, the nodal coordinates are given as

x =



10
−5
−5
0

8.6603
−8.6603

10
−5
−5



, y =



0
8.6603
−8.6603
−10

5
5
0

8.6603
−8.6603



, z =



0
0
0
15
15
15
30
30
30



(2.56)

The equilibrium matrix is constructed with Equation 2.14, which has a nullity
of 2. Equation 2.19 reveals that the number of independent state of self-stress, ns,
is equal to 2. This problem falls into Case II, and therefore, the solution to the
force-density matrix is a linear combination of the last ns columns of matrix W, as
in Equation 2.44. Application of Equation 2.52 yields
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Ḡc̄ =



0.1205 0.1667 −1 0 0 0
0.1205 0.1667 −1 0 0 0
0.1205 0.1667 −1 0 0 0
−0.1805 0.0987 −1 0 0 0
−0.1805 0.0987 −1 0 0 0
−0.1805 0.0987 −1 0 0 0
0.2087 0.2888 0 −1 0 0
0.2087 0.2888 0 −1 0 0
0.2087 0.2888 0 −1 0 0
−0.3126 0.1710 0 −1 0 0
−0.3126 0.1710 0 −1 0 0
−0.3126 0.1710 0 −1 0 0
−0.0600 0.2655 0 0 −1 0
−0.0600 0.2655 0 0 −1 0
−0.0600 0.2655 0 0 −1 0
−0.2087 −0.2888 0 0 0 −1
−0.2087 −0.2888 0 0 0 −1
−0.2087 −0.2888 0 0 0 −1
0.3126 −0.1710 0 0 0 −1
0.3126 −0.1710 0 0 0 −1
0.3126 −0.1710 0 0 0 −1





c1

c2

qtb

qv

qs

qst


= 0 (2.57)

And the nullspace of matrix Ḡ yields the solution to c̄

c̄ =
{
c1 c2 qtb qv qs qst

}T
=
{

0.2009 −0.8891 −0.1240 −0.2148 −0.2481 0.2148
}T (2.58)

The obtained force-density results show that the unilateral behavior of elements
is not satisfied. However, the obtained force-density vector can be normalized to
the first group of elements, and the results are given in Equation 2.59, satisfying
unilateral behavior.

q =
[
qtb qv qs qst

]T
=
[
1 1.7321 2 −1.7321

]T
(2.59)
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One important point worth mentioning here is that the saddle cables, which
are located at the interface of two triplex units, contribute to the equilibrium of
both stages. Therefore, the force-density values in the saddle cables are generally
greater than the force-densities of the top and bottom cables. Because of the equal
lengths of the top, bottom, and saddle cables in this case, the force-density values
of the saddle cables are greater by a factor of two.

In the next chapter, static and dynamic analyses of tensegrity structures are
investigated. The developed finite element model is explained and utilized to
investigate the behavior of tensegrity structures under external loads. The free
vibration problem is studied, and effective stiffness properties are also obtained.
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Chapter 3 |
Static and Dynamic Analyses
of Tensegrity Structures

Design of tensegrity structures not only involves form-finding, but also requires
determination of the response under external loads. In order to understand how
tensegrity structures behave under external loads, determining how much they
deflect is very important from a design point of view. Dynamic behavior of tensegrity
structures also requires attention in order to avoid unwanted vibration problems.
Therefore, it is important to develop tools to study the static and dynamic behavior
of tensegrity structures.

Tensegrity structures are unique, spatially reticulated systems [37]. Generally
speaking, the dynamic behavior of spatial reticulated systems is studied by lin-
earizing the systems about its equilibria, and for most applications, the results are
considered to be sufficient [38]. However, based on the mechanical properties of
the materials or the type of applied loads (such as, for example, following forces),
different approaches are taken. Such cases require nonlinear models to analyze
deflections and behavior. The encountered nonlinearities in solid mechanics are
geometric and material nonlinearities.

Tensegrity structures inherently exhibit geometric nonlinearity due to the exist-
ing pre-stress in the members which stabilize the structure. The pre-stress present
in tensegrity structures presents a unique feature that is not present in typical
structures. It contributes to the overall stiffness of the structure, and the effect is
proportional to pre-stress levels. As deformation occurs, the force distribution in
the structure varies due to external loads, considering the force balance at each
node, and as a result, the effective stiffness of the structure changes. Therefore,
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nonlinear models and solution methods are mandatory for the static and dynamic
analyses of tensegrity structures.

The earliest nonlinear model for pre-stressed structures which takes into account
large displacements was developed by Argyris [39]. Motro [40] enhanced this
method and applied it to tensegrity structures for static analyses. A nonlinear finite
element approach was developed by Bathe [41], which can account for material
and geometric nonlinearities using total or updated Lagrangian formulations. The
nonlinear finite element method depends on an incremental analysis to address any
possible changes that may occur such as elastic-to-plastic transition of materials
when the strains reach a certain level. For tensegrity structures, this approach has
to be considered for cable slackness and/or large-scale stiffness changes due to large
deformations and/or displacements. Cable slackness poses a challenge since it is a
non-smooth nonlinearity and is mostly addressed numerically.

More recently, Kebiche et al. [38] presented a numerical, geometrical nonlinear
analysis of a quadruplex tensegrity unit (four-strut cylindrical tensegrity) under
various load cases. Tran and Lee [42] studied nonlinear analysis of a quadruplex
grid under vertical loads using both total and updated Lagrangian formulations.
Nuhoglu and Korkmaz [43] proposed a practical approach for the nonlinear analysis
problem. A Co-Rotational Method was developed to carry out geometrical nonlinear
analyses by Faroughi and Lee [44].

On the other hand, detailed nonlinear analyses to study the behavior of a
structure under external loads are usually expensive in terms of computational
power and time. The larger the structure is, the more tedious are the analyses
required. One solution to alleviate this difficulty is the use of continuum modeling.
Long lattice or repeating structures or in this case, tensegrities, can be modeled as
continuum beams, and their effective stiffness properties such as bending, torsional,
and axial rigidities can be evaluated. Such effective stiffness properties permit
analysis of the approximate behavior of tensegrity systems under external loads,
and making a fair comparison between different structures.

Long lattice structures or repeating tensegrity booms can be modeled as three
dimensional continuum beams. This reduces the number of degrees of freedom in
the model, and the governing six parameters, called the effective stiffness properties,
can be obtained, allowing for rapid and accurate estimation of the global behavior.
These beam models contain the same amount of strain energy when deformed as
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the actual structure. This method is called energy equivalency, and a few variations
have been developed and studied by many researchers.

Noor et al. [45] developed a symbolic method to obtain the total strain energy
accumulated in a relatively simple repetitive three dimensional lattice structure
under an assumed displacement field. Taylor series expansion along the longitudinal
axis takes strain and strain gradients into consideration for a fairly accurate model.
The variation of the displacement field assumption by Noor and Andersen [46]
allowed them to account for warping and the distortion of cross-sections. Anisotropic
stiffness properties are also considered in another study by Noor and Russell [47].
However, Noor abandoned his symbolic approach as he develops a numerical
method [48] since more complex lattice structures require more computational
power and exhibit anisotropic stiffness properties.

Dow et al. [49] developed a more general approach than Noor’s in terms of
displacement field assumptions. The displacements at each node in three different
directions are approximated with a full cubic polynomial having 60 coefficients.
This approximation is evaluated at the origin of the local coordinate system, and the
coefficients are determined in terms of rigid body displacement, rotations, strains,
and strain gradients. Then the procedure starts by isolating the repeating cell and
developing a finite element model. A transformation matrix is used to relate nodal
displacements to continuum displacements, which are used to express strain energy
of the continuum model. Based solely on the configuration of the repeating cell, the
number of coefficients is reduced by identifying the strain and/or strain gradients
which cannot be exhibited by the structure; the equivalent stiffness properties are
obtained through four transformation steps.

Kebiche et al. [50] follows Dow’s work by applying their method to tensegrity
structures by considering the pre-stress. The total strain energy is obtained by
considering both elastic rigidity (linear portion) and initial self-stress (nonlinear
portion). The initial selfstress levels are varied, and the change in effective stiffness
properties is observed. Lee [51] developed a method which uses spectral elements to
determine the effective stiffness properties of truss-type space structures. McCallen
and Romstad [52] also use energy equivalency for a geometrically nonlinear two
dimensional problem by developing an expression for the generalized stress.

In this chapter, mathematical formulations of the developed finite element
model are derived. The solution method for static analyses under external loads
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is explained, and a numerical example taken from the literature is investigated.
Dynamic analyses of tensegrity structures are also included in this chapter, and
the free vibration problem is addressed. Then, continuum beam modeling for
tensegrity structures is studied, and a nonlinear finite element validation procedure
is provided.

3.1 Nonlinear Finite Element Model
The nonlinearity exhibited by tensegrity structures originates from two primary
sources. The first one is the self-stress present in the structure. It contributes to
the stiffness and, after the application of external loads, as the force distribution
in the structure varies, the stiffness is affected. The second one is the large
deformations and/or displacements that result when a large external load is applied.
As the deformations and/or displacements occur, the nodal locations change,
resulting in a change of length of elements which, in turn, affect stiffness. The
effect of pre-stress appears linearly in the stiffness matrix; however, due to large
displacements/rotations, it varies remarkably. Furthermore, material nonlinearity,
which is not considered in this dissertation, is a different source that occurs when
the strains of individual elements reach yield strain, and the transition from elastic
to plastic response takes place.

Therefore, in order to capture possible critical transitions such as a cable going
slack or substantial changes in stiffness levels due to large deformations and/or
displacements that occur under applied external loads, an incremental iterative
analysis with a modified Newton-Raphson method is crucial.

The developed nonlinear model for tensegrity structures is similar to truss
structures except it includes geometric nonlinearity. The individual elements (either
cables or struts) are modeled as one-dimensional space truss elements. An arbitrarily
oriented space truss element is shown in Figure 3.1. The important assumptions
for the developed nonlinear model are as follows:

• Materials are linear elastic.

• Elements carry solely axial loads.

• Cables and struts are capable of carrying only tension and compression,
respectively (unilateral element behavior).
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• Loads are applied at the nodes.

Figure 3.1: Two Noded Space Truss Element

The space truss element shown in Figure 3.1 has two nodes, one at each end,
and the local axes are shown with x̂, ŷ and ẑ. Then, the strain energy of the space
truss element is written as in Equation 3.1.

Ue = 1
2

∫ L

0
σx̂εx̂Adx̂ (3.1)

where L and A are the length and the cross-sectional area of the element,
respectively. σ and ε are axial stress and strain quantities. The linear elastic
material assumption gives a relationship between stress and strain as

σx̂ = Eεx̂ (3.2)

where E is the modulus of elasticity of the material. Substituting Equation 3.2
into 3.1 yields

Ue = 1
2

∫ L

0
EAε2

x̂dx̂ (3.3)

In order to account for large deformations and/or displacements, quadratic
terms in the strain expression are retained. The axial strain is then written as

ε = ∂û

∂x̂
+ 1

2

[(
∂û

∂x̂

)2
+
(
∂v̂

∂x̂

)2
+
(
∂ŵ

∂x̂

)2]
(3.4)
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where û, v̂ and ŵ are displacements in x̂, ŷ and ẑ directions, respectively. The
displacements û, v̂ and ŵ linearly vary along the truss element and, therefore, the
displacement derivatives in Equation 3.4 can be written in terms of the displacements
as follows:

∂û

∂x̂
= ∆û

∆x̂ = x̂2 − x̂1

L
∂v̂

∂x̂
= ∆v̂

∆x̂ = ŷ2 − ŷ1

L
∂ŵ

∂x̂
= ∆ŵ

∆x̂ = ẑ2 − ẑ1

L

(3.5)

Equations 3.4 and 3.5 are substituted into Equation 3.3 and, ignoring the cubic
and higher order terms, yields

Ue = 1
2EAL

[(
x̂2 − x̂1

L

)2
+ ∂û

∂x̂

{(
x̂2 − x̂1

L

)2
+
(
ŷ2 − ŷ1

L

)2
+
(
ẑ2 − ẑ1

L

)2}]
(3.6)

Rearranging Equation 3.6 gives

Ue = 1
2
EA

L

[
(x̂2 − x̂1)2 + ∂û

∂x̂

{
(x̂2 − x̂1)2 + (ŷ2 − ŷ1)2 + (ẑ2 − ẑ1)2

}]
(3.7)

Additionally, the term ∂û/∂x̂ in Equation 3.7 can be represented as

∂û

∂x̂
≈ εx̂ = σx̂

E
= T

EA
(3.8)

where T is the pre-stress force in the element. T is always positive for a cable
in tension. As a result, the strain energy of the two-noded space truss element is
written in the following form:

Ue = 1
2
EA

L
(x̂2 − x̂1)2 + 1

2
T

L

{
(x̂2 − x̂1)2 + (ŷ2 − ŷ1)2 + (ẑ2 − ẑ1)2

}
(3.9)

Defining a nodal displacement vector as q̄ = {x̂1, ŷ1, ẑ1, x̂2, ŷ2, ẑ2}T , the quadratic
terms found in Equation 3.9 can be represented in the following manner:
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(x̂2 − x̂1)2 = (x̂2 − x̂1)T (x̂2 − x̂1) = q̄T



−1
0
0
1
0
0



{
−1 0 0 1 0 0

}
q̄ (3.10)

(x̂2 − x̂1)2 =



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.11)

Similarly for ŷ and ẑ directions

(ŷ2 − ŷ1)2 =



0 0 0 0 0 0
0 1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 1 0
0 0 0 0 0 0


(3.12)

(ẑ2 − ẑ1)2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 1


(3.13)

Substituting Equations 3.11, 3.12 and 3.13 into Equation 3.9 yields the final
form of the strain energy.

Ue = 1
2 q̄

T K̄Lq̄ + 1
2 q̄

T K̄NLq̄ (3.14)
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where K̄L and K̄NL are the linear and geometric stiffness matrices [38,41,42]
respectively, with respect to local coordinates. The linear stiffness matrix results
from the axial stiffness of the element while the geometric stiffness matrix is a
result of the pre-stress in the structure. Their expressions are given as follows:

K̄L = EA

L



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.15)

K̄NL = T

L



1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1


(3.16)

The geometric stiffness matrix shows the effect of pre-stress, and it is “isotropic”
at each node [53,54]. Przemieniecki [55] suggests employing an approximation of
large deformation with “moderate rotation” since it is more economical in terms of
computational time. This approximation modifies the geometric stiffness matrix by
eliminating the displacements in local x̂ direction caused by pre-stress. However,
considering the computational power of modern computers, this precaution is not
necessary.

The stiffness matrices are expressed with respect to local coordinates. In order to
obtain the full stiffness matrix of the assemblage of the elements, local coordinates,
q̄, need to be expressed in terms of global coordinates q. This is achieved via
transformation matrices. The relationship between local and global coordinates
can be formed as

q̄ = Tq (3.17)

where T is the transformation matrix as given below

41



T =



l1 m1 n1 0 0 0
l2 m2 n2 0 0 0
l3 m3 n3 0 0 0
0 0 0 l1 m1 n1

0 0 0 l2 m2 n2

0 0 0 l3 m3 n3


(3.18)

The direction cosines in the first and fourth rows of the transformation matrix
are given as

l1 = x2 − x1

L

m1 = y2 − y1

L

n1 = z2 − z1

L

(3.19)

where x, y and z are the global nodal coordinates. For space truss elements,
the other direction cosines are unimportant since they do not appear in the final
expression of the stiffness matrix. Similarly, the applied external forces in local
coordinates can be expressed by the forces in global coordinates.

P̄ = TP (3.20)

where P̄ and P are the external load vectors in local and global coordinates. For
a typical structural system, the displacement-force relationship in local coordinates
is written by the stiffness equation as follows:

P̄ = K̄q̄ (3.21)

Substitution of Equation 3.17 and 3.20 into Equation 3.21 yields

TP = K̄Tq (3.22)

By rearranging,

P = T−1K̄Tq (3.23)

Transformation matrices are orthogonal matrices with the property of, T−1 =
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TT . Therefore,

P = TT K̄Tq (3.24)

As a result, the stiffness matrix in terms of global coordinates is defined as
follows:

K = TT K̄T (3.25)

Both the linear and geometric stiffness matrices of individual elements need to be
represented in nodal coordinates associated with global axes, using transformation
matrices. After the transformation into the global coordinate system, the linear and
geometric stiffness matrices are summed to obtain the overall stiffness matrix of
the element, which is known as the tangent stiffness matrix. Then, the traditional
finite element assembly process can be carried out to compute the global stiffness
matrix.

KT = KL + KNL (3.26)

One important thing to note here is that the geometric stiffness matrix is
invariant to transformation and, therefore, application of Equation 3.25 is not
required.

KNL = K̄NL (3.27)

Additionally, since the space truss element is pre-stressed, an internal force
vector is generated. As a result of the pre-stress, the element internal force vector
with respect to local coordinates can be written as

F̄ = T
{
−1 0 0 1 0 0

}
(3.28)

The internal force vector can be transformed to global coordinates with the
same transformation matrix T as follows

F = TT F̄ (3.29)

Similar to assembly of the global stiffness matrix, the global internal force vector
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can be assembled. Under no external load, the internal force vector generates a
null vector, since tensegrity structures are self-equilibrated with pre-stress.

Additionally, the consistent mass matrix of the space truss element is written
as in Equation 3.30. Many studies address its derivation and, therefore, it is not
given here [55, 56].

M̄ = ρAL

6



2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1
1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2


(3.30)

The element mass matrix is also referred to local coordinates. The coordinates
can be transformed to the global coordinates by the transformation matrix given
in Equation 3.18. The element mass matrix in global coordinates is calculated as

M = TTM̄T (3.31)

However, similar to the geometric stiffness matrix, the element mass matrix of
the space truss element is also invariant to transformation of coordinates [55,56]
and, therefore, it is not required to use Equation 3.31. Analogously, the global
mass matrix of the structure can be constructed by assembling the element mass
matrices.

3.2 Static Analyses Under External Loads
Study of deflections or the behavior of tensegrity structures under external loads
requires a nonlinear solution method. Due to applied external loads, the structure
may undergo large deformations and/or displacements, resulting in substantial
changes in the stiffness level of the structure. At some load levels, cables may also
go slack, decreasing the stiffness of the structure, or the force distribution in the
structure may change considerably, affecting stiffness.

In order to account for such cases, the nonlinear static problem is investigated
using an incremental iterative analysis with the Newton-Raphson method. The
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applied loads are increased iteratively, and the solution is obtained for each iteration.
The stiffness matrix of the structure is recalculated based on the deformed geometry.

The nonlinear force-displacement relationship can be written as follows:

KT∆U = P− F (3.32)

whereKT is the tangent stiffness matrix of the structure, ∆U is the displacement
vector, P is the external load vector, and F is the internal load vector due to pre-
stress.

In more detail, the static analyses of tensegrity structures under external loads
consist of iterations and sub-iterations in which the stiffness matrix of the structure
is continuously recalculated. In each iteration, external forces are increased while
in each sub-iteration, convergence is sought. The analysis starts with calculating
the tangent stiffness matrix and the internal force vector (initially null). Then
a fraction of the external loads is applied, starting the first iteration. During
each iteration, the system given in Equation 3.32 is solved for ∆U, and the nodal
coordinates are updated. Based on updated nodal coordinates, the stiffness matrix
and internal force vector are recalculated. Then force balance at each node is
checked by controlling the norm of the right-hand side of Equation 3.32. These
steps are called sub-iterations. If force balance is satisfied at each node, called
convergence, then the sub-iterations end, and the analysis moves on to next iteration.
The solution method can be clarified with the following procedure.

Procedure:

• Step 0: Calculate the tangent stiffness matrix and internal force vector

• Step 1: Increase the applied load and calculate the external load vector

• Step 2: Solve Equation 3.32 and obtain the ∆U vector

• Step 3: Update nodal locations using the ∆U vector

• Step 4: Update the pre-stress force using the linear elastic material assumption

• Step 5: Calculate the tangent stiffness matrix and the internal force vector

• Step 6: Check convergence
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1. norm(P− F) < tolerance, go to Step 1

2. norm(P− F) ≥ tolerance, go to Step 2

The procedure ends when the applied load reaches the actual external load
value. In the procedure, Step 0 is the initialization process, Steps 1 to 6 refer to an
iteration, and Steps 3 to 6 represent a sub-iteration.

Calculation of the tangent stiffness matrix and internal force vector were ex-
plained in the previous section. Increasing the applied load can be achieved in
different ways. The most commonly employed way divides the actual external load
by a total number of iterations, and in each iteration, the applied load is increased
by that value. Nodal locations are updated using Equation 3.33, in which U is the
nodal locations vector.

U = U + ∆U (3.33)

The pre-stress force can be updated for the deformed geometry using Hooke’s
Law for linear elastic materials [44]. During the initialization process, the rest length
of the members should be computed. To do so, after the selection of pre-stress
coefficient, Ps, a relationship can be written as

PsqiLi = fi = EiAi
L0,i

(Li − L0,i) (3.34)

The relationship given in Equation 3.34 is analogous to application of Hooke’s
law to linear springs, f = kx. Subscript i indicates the individual elements, and
the term EiAi/L0,i is the axial stiffness of the element. L0,i is the rest length of the
element, the length at which the element carries no pre-stress. Therefore, Li − L0,i

represents how much the element is deformed. Equation 3.34 can be solved for the
rest length of the elements as follows:

L0,i = EiAiLi
EiAi + fi

= EiAiLi
EiAi + PsqiLi

(3.35)

Equation 3.35 expresses the rest length of the ith element in terms of its axial
stiffness, cross-sectional area, and initially designed pre-stress. The rest length of
the elements are calculated from the initial geometry and, as deformation occurs
under external loads, the pre-stress force variations can be calculated with Equation
3.34.
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Additionally, the possibility of cable slackness is treated in the following way.
In each subiteration, individual lengths of the elements are calculated and, if the
length of a cable reaches a value lower than its rest length, the cable becomes slack.
Then, the pre-stress force in this cable is set to zero, fi = 0, as well as the axial
stiffness, EiAi = 0. As long as the length of the cable is shorter than its actual rest
length, the pre-stress and the axial stiffness remain this way since the cable has no
contribution to stiffness, either linear or geometrical.

Numerical Example

The procedure described for static analyses of tensegrity structures under external
loads is applied to a quadruplex unit, which is a tensegrity structure with four
struts. The geometry of the quadruplex unit is shown in Figure 3.2. This example
problem was studided by Kebiche et al. [38], Tran and Lee [42], and Faroughi and
Lee [44].
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Figure 3.2: Four-Strut Tensegrity Unit - Quadruplex

The structure has square cross-sections at the bottom and top planes, which
are parallel to each other. The node locations and the connectivity information are
given in Tables 3.1 and 3.2.

The quadruplex unit consists of 12 cables (black lines) and 4 struts (red lines).
In order to determine the force-density vector, the force finding method is used
since the nodal locations and the connectivity are defined. The pre-stress coefficient
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Table 3.1: Node locations

Nodes x y z Nodes x y z
1 0 100 0 5 50 0 50
2 0 0 0 6 100 100 0
3 0 50 50 7 100 0 0
4 50 100 50 8 100 50 50

is selected as, Ps =55 N/cm. The force-density vector and the initial pre-stress
forces in each element are given in Table 3.2.

Table 3.2: Element Connectivity and Properties

Element Node 1 Node 2 Element
Type

Force
Density

Length /
Rest Length

[cm]

Initial
Force [N]

1 1 6
Bottom
Cables

1 100 / 99.51 5500
2 2 7 1 100 / 99.51 5500
3 1 2 1 100 / 99.51 5500
4 6 7 1 100 / 99.51 5500
5 3 4

Top
Cables

2 70.71 / 70.22 7778.17
6 3 5 2 70.71 / 70.22 7778.17
7 4 8 2 70.71 / 70.22 7778.17
8 5 8 2 70.71 / 70.22 7778.17
9 2 5

Vertical
Cables

2 70.71 / 70.22 7778.17
10 7 8 2 70.71 / 70.22 7778.17
11 4 6 2 70.71 / 70.22 7778.17
12 1 3 2 70.71 / 70.22 7778.17
13 3 6

Struts

-2 122.47 / 122.73 -13472.19
14 2 8 -2 122.47 / 122.73 -13472.19
15 1 5 -2 122.47 / 122.73 -13472.19
16 4 7 -2 122.47 / 122.73 -13472.19

The cross-sectional areas of cables and struts were chosen as 0.28 cm2 and 0.325
cm2, respectively. The elasticity modulus of cables and struts are 40 GPa and 200
GPa, respectively. Node 1 is completely fixed, node 2 is restricted in the x and z
directions, while node 3 is only restricted in the x direction. Then, P = ±2 kN
nodal forces are applied at nodes 6, 7 and 8 in the x direction. These cases are
referred to as traction and compression, respectively.

Figure 3.3 shows the analysis results for both cases in terms of average displace-
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ments of nodes 6, 7 and 8 in the x direction versus the applied loads (3P ). The
results provided by Kebiche et al. [38] are also included in the same figure, showing
the validity of the results and modeling approach. The solid lines indicate the
compression case while the dashed lines represent the traction case.
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Figure 3.3: Behavior of the quadruplex unit under traction and compression

The structure responds to the traction and compression loads quite differently
due to its nonlinear nature. As the applied traction loads are increased, the
structure becomes stiffer due to increased pre-stress which affects the geometric
stiffness matrix. On the other hand, under the applied compression loads, the
structure becomes softer as the level of pre-stress forces in the members decrease.
These effects are known as “stiffening” and “softening”. The slopes of the solutions
given in Figure 3.3 are identical in the beginning for applied small loads. However,
as the loads are increased, the two solutions differ substantially from each other.
Based on these findings, it can be said that the quadruplex unit shows “anisotropic
behavior” [38].
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3.3 Free Vibration Problem
Dynamic behavior of tensegrity structures is of great importance for deployable
boom designs. Under dynamic disturbances, deployable booms should maintain
stability and not exceed allowable deformation limits given for the mission. Res-
onance effects must be avoided, and any dynamic couplings must be prevented.
Therefore, the dynamic behavior of tensegrity structures plays a crucial role on the
overall performance of spacecraft and should be investigated carefully.

Modal analyses can be conducted to study the dynamic behavior of tensegrity
structures. Considering harmonic motion in the form of x = Xeiωt, the generalized
eigenvalue problem can be written as follows:

KTX = ω2MX (3.36)

where x is the nodal displacements, X is the amplitude, and ω is the angular
frequency of the system. The tangent stiffness matrix and the mass matrix defined
by Equations 3.26 and 3.31 are utilized for the modal analyses.

Since tensegrity structures often kinematically indeterminate, infinitesimal
mechanisms may be present and affect the dynamic behavior. The infinitesimal
modes typically exhibit very low natural frequencies compared to other vibration
modes. Additionally, infinitesimal mechanisms are stiffened by pre-stress, and the
corresponding vibration modes are susceptible to changes with the level of pre-stress.
More specifically, it has been found that the associated natural frequencies increase
proportionally to the square root of the level of pre-stress [53,54]. Higher vibration
modes are governed by the axial stiffness of individual members, and they are not
as affected by the pre-stress as infinitesimal mechanism modes are.

Numerical Example

Modal analyses are conducted for a triplex unit shown in Figure 3.4. The height
and the radius of the structure are chosen as 1 m. All the cables and struts are
assumed to be made of steel with modulus of elasticity and density of E = 200
GPa and ρ = 7860 kg/m3, respectively. The cables have solid circular cross-section
with radius of 0.001 m, and the struts are hollow-shaped with outer and inner radii
of 0.015 m and 0.01 m, respectively.
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Figure 3.4: Triplex Unit

The pre-stress values in the struts are varied between 0.4 MPa and 2 MPa and
the natural frequencies are obtained for six modes. The natural frequencies of the
triplex unit are tabulated and given in Table 3.3.

Table 3.3: Natural Frequencies of Triplex Unit

Pre-stress
[MPa]

First
Mode
[Hz]

Second
Mode
[Hz]

Third
Mode
[Hz]

Fourth
Mode
[Hz]

Fifth
Mode
[Hz]

Sixth
Mode
[Hz]

0.4 1.0549 34.9923 34.9923 68.4403 68.4403 74.3909
0.8 1.4918 35.0036 35.0036 68.4487 68.4487 74.3947
1.2 1.8271 35.0148 35.0148 68.4570 68.4570 74.3985
1.6 2.1097 35.0261 35.0261 68.4654 68.4654 74.4023
2 2.3586 35.0373 35.0373 68.4738 68.4738 74.4061

Table 3.3 shows the natural frequencies. The first vibration mode is an infinites-
imal mechanism mode, and its natural frequency is very low compared to the other
modes. The natural frequency associated with this mode is also found to increase
proportionally with the square root of the level of pre-stress. The other modes
are not affected very much by the level of pre-stress. Furthermore, the second and
the third modes and the fourth and the fifth modes are the same vibration modes
in different directions, respectively. The corresponding mode shapes are shown in
Figures 3.5, 3.6, 3.7, and 3.8.
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3.4 Effective Stiffness Properties of Tensegrity Booms
A fair comparison between deployable booms in terms of stiffness can be achieved
by evaluating the effective stiffness properties of the structures such as bending,
torsional, and axial rigidity. Continuum beam models which contain the same
amount of strain energy when deformed as tensegrity booms can be obtained. This
method is called energy equivalency, and a few variations which implement symbolic
and numerical approaches for truss structures have been developed. The symbolic
approaches are abandoned by researchers since they are not effective when dealing
with a complex lattice structure. This led to numerical approaches thanks to high
available computational power.
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The symbolic approaches start with a displacement field assumption of the cross-
section in terms of rigid body motion and rotation, and strain terms. Employing
small strain assumptions leads to strain components. The axial strain in each
member in the structure can be derived from the strain components, and they
are expanded into a Taylor series along the longitudinal axis in order to generate
a fairly accurate model. Then strain energy is written in terms of strain and
strain gradient terms, and conditions on zero energy local deformations within
structure are imposed. As a result, the strain energy is represented in terms of the
fundamental strain terms exhibited by a three dimensional beam. The coefficients
of the fundamental strain terms yield the effective stiffness properties as shown by
Noor [45,46].

A numerical approach developed by Dow et al. [49] uses a generalized version
of Noor’s displacement field. The displacement field assumption consists of 60
coefficients which are obtained in terms of rigid body displacements, rotations,
strains, and strain gradients by evaluating the displacement field assumptions at
the origin of the structure. Effective stiffness properties are constant throughout
the lattice structure and, therefore, the smallest repeating cell is isolated. A finite
element model is developed and four transformation matrices are used to reduce
the size of the stiffness matrix to the size of a three dimensional beam’s. The terms
found in the reduced stiffness matrix are identified as effective stiffness properties
and associated coupling terms [47,48]. Application of Dow’s numerical approach to
tensegrity structures is achieved by Kebiche et al. [50] considering pre-stress. The
influence of pre-stress is introduced by using the geometric stiffness matrix derived
previously.

In this section, Dow’s numerical approach is explained, and a simple method is
developed to determine the effective stiffness properties of tensegrity booms. The
method developed here reduces the number of transformations rather than going
through four transformation steps.

3.4.1 Energy Equivalency Method

The energy equivalency method developed by Dow et al. [49] starts with an ap-
proximation of displacement field in three different directions to determine effective
stiffness properties. In Dow’s previous work [49], these extensive displacement field
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assumptions are given as follows:

u(x, y, z) = u+ εxx+
(1

2γxy − r
)
y +

(1
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z + 1

2εx,xx
2 + εx,yxy
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)
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(3.37)

v(x, y, z) = v +
(
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)
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(
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2

(
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(3.38)
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x+
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(3.39)

where u is the displacement in axial direction, and v and w are the displacements
in lateral directions. The axial and lateral directions are shown on a long boom in
Figure 3.9.

Dow suggests an application of four transformations to the global stiffness
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Figure 3.9: Axes shown on a long boom

matrix of the repeating cell. These transformations reduce the stiffness matrix to
6 × 6, which is represented in terms of the fundamental strains that govern the
motion of a three dimensional beam. The final form is given as:



N

My

Mz

Vy

Vz

Mx


=



EA c12 c13 c14 c15 c16

c12 EIy c23 c24 c25 c26

c13 c23 EIz c34 c35 c36

c14 c24 c34 GAy c45 c46

c15 c25 c35 c45 GAz c56

c15 c26 c36 c46 c56 GJ





ε0
x

k0
y

k0
z

γxy

γxz

k0
t


(3.40)

where EA, EIy, EIz, GAy, GAz, and GJ are the effective stiffness properties
while the cij’s are the coupling terms. N , My, Mz, Vy, Vz, and Mx are the axial
force, bending moments in y and z axes, shear forces in y and z axes, and torsional
moment. On the other hand, ε0

x, k0
y, k0

z , γ0
xy, γ0

xz, and k0
t denote the longitudinal

strain, bending curvatures, transverse shear strains, and twist. For a symmetrical
beam (zero couplings), the strain energy per unit length can be computed as

U = 1
2EA(ε0

x)2 + 1
2EIy(k

0
y)2 + 1

2EIz(k
0
z)2 + 1

2GAy(γ
0
xy)2 + 1

2GAz(γ
0
xz)2 + 1

2GJ(k0
t )2

(3.41)
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where

k0
y = εx,y; k0

z = εx,z; k0
t = 1

2(γxy,z − γxz,y) (3.42)

Kebiche et al. [50] noted that the total strain energy of a pre-stressed and
pin-jointed structure can be written as

U = 1
2{u}

T [KT ]{u} (3.43)

where {u} is the nodal displacement vector. The nodal displacement vector
needs to be transformed into continuum displacement parameters, which are found
in Equations 3.40 and 3.41. A transformation matrix, T1 (3k × 60) is formed by
the displacement field assumptions to achieve this transformation where k is the
number of nodes. The first transformation is given as

{u} = [T1]{u}ε (3.44)

The total strain energy in terms of the continuum strain vector {u}ε is

U = 1
2{u}

T
ε [T1]T [KT ][T1]{u}ε (3.45)

The second transformation, T2, reduces the number of variables (strains and
strain gradients) found in the continuum strain vector {u}ε. This elimination
depends solely on the configuration of the structure. Some parameters may not
be exhibited by the structure or they may be linearly dependent. Identification of
these parameters may be confusing - yet is crucial - and two methods are explained
by Dow et al. [49]. The second transformation is given as

{u}ε = [T2]{µ}ε (3.46)

where {µ}ε is the reduced continuum strain vector. Then, the total strain
energy can be expressed in terms of {µ}ε:

U = 1
2{µ}

T
ε [T2]T [T1]T [KT ][T1][T2]{µ}ε (3.47)

The third transformation reorders the variables and creates two groups in the
reduced continuum vector {µ}ε. It locates the fundamental strain terms to the
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first six rows while the order of the remaining variables is arbitrary. Therefore, the
third transformation matrix [T3] has to be created somewhat manually for each
configuration and may be tedious. The third transformation is given as

{µ}ε = [T3]


α

β


ε

(3.48)

where α is 6× 1 vector which consists of the fundamental strain terms found in
Equations 3.40 and 3.41. The total strain energy is

U = 1
2


α

β


T

ε

[T3]T [T2]T [T1]T [KT ][T1][T2][T3]


α

β


ε

= 1
2


α

β


T

ε

[S]


α

β


ε

(3.49)
The fourth transformation is static condensation. The vector {β}ε is written in

terms of the vector {α}ε by setting the forces associated with {β}ε to zero

α

β


ε

= [T4]{α}ε (3.50)

The final form of the total strain energy is found as

U = 1
2{α}

T
ε [T4]T [S][T4]{α}ε = 1

2{α}
T
ε [K∗]{α}ε (3.51)

where [K∗] is the stiffness matrix of the equivalent continuum beam with
dimensions of 6× 6. After dividing it by the length of the repeating unit, it can
directly be compared with the matrix given in Equation 3.40 to determine the
effective stiffness properties and the coupling terms. From the static condensation
or the fourth transformation, [K∗] is computed as

[K∗] = [S11 − S12S
−1
22 S21] (3.52)

where S11, S12, S22 and S21 are the submatrices of matrix [S] in Equation 3.49.
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3.4.2 Modified Energy Equivalency Method

The method proposed here is a modified version of Dow’s method [49] to make the
procedure more straightforward and systematic. It also accounts for self-stress as
suggested by Kebiche et al. [50] to determine effective stiffness properties of tenseg-
rity structures. The third transformation is eliminated since the displacement field
assumptions given by Dow are rearranged, and a systematic approach is suggested
to identify the strain and strain gradients that will be retained through the second
transformation. The first transformation is solely based on the cubic displacement
field assumptions and, therefore, [T1] is slightly modified as displacement field
assumptions are rearranged. The fourth transformation is a static condensation
which is the same for any configuration. The modified energy equivalency method
eliminates the second and the third transformations, and the whole process becomes
more straightforward.

Similar to the previous method, the initial step is to approximate the displace-
ment field at the nodes. Rearranged and rewritten displacement field assumptions
are

u(x, y, z) = εxx+ εx,yxy + εx,zxz + 1
2γxyy + 1
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(3.53)
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(3.55)

The first transformation matrix can be formed while retaining the fundamental
strains in the first six rows of the continuum strain vector as follows:
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(3.56)
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Application of the first transformation (Equation 3.45) increases the size of
the equivalent stiffness matrix to 60× 60. The next step is the determination of
the strains and strain gradients by investigating the configuration of the structure.
They either cannot be exhibited by the structure or are linearly dependent on each
other. Two methods are suggested by Dow et al. [49] to determine strain and strain
gradient terms that will be not be retained for the analysis: calculating the rank
of T1 or utilizing the Love-Kirchoff approximations. In any case, the elimination
process may be confusing when there are plentiful elements in the configuration.
In this work, kinematic assumptions made by Noor et al. [45] are implemented to
determine the coefficients retained.

The displacement components have a linear variation in the plane of a cross-
section and are approximated as

u(x, y, z) = u0 − yφ3 + zφ2 (3.57)

v(x, y, z) = v0 + yε0
y + z

(
− φ1 + 1

2γ
0
yz

)
(3.58)

w(x, y, z) = w0 + y
(
φ1 + 1

2γ
0
yz

)
+ zε0

z (3.59)

where the superscript 0 indicates a quantity evaluated at the center of the
cross section y = 0, z = 0 and φi is the rotation around the ith axis. Using
strain-displacement relations the strain components are obtained as follows:

εx = ε0
x − yκ0

y + zκ0
z (3.60)

εy = ε0
y (3.61)

εz = ε0
z (3.62)

γxy = γ0
xy + yε0

y,x + z
(
− κ0

t + 1
2γ

0
yz,x

)
(3.63)

γxz = γ0
xz + y

(
κ0
t + 1

2γ
0
yx,x

)
+ zε0

z,x (3.64)
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γyz = γ0
yz (3.65)

Then, strain components are expanded into Taylor Series about the center of
the lattice, x = 0. The Taylor Series expansions are:
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γyz = γ0
yz + xγ0

yz,x + 1
2x

2γ0
yz,xx (3.71)

The number of Taylor expansion terms should be chosen based on the number
of bays in the repeating unit. The detailed discussion can be found in the work by
Noor et al. [45]. All the coefficients that appear in Noor’s Taylor Series expansion
are retained for the analysis. Then, the rows and columns associated with the
strain and strain gradient terms that will be eliminated can be removed directly,
similar to application of boundary conditions in finite element analysis. The result
is a reduced stiffness matrix which is r × r, where r is the number of coefficients
retained.

The first six rows and columns of the reduced stiffness matrix are directly
associated with the fundamental strains. Therefore, the third transformation is
not required, and the static condensation procedure may proceed. The static
condensation or the fourth transformation (second in this case) is already given
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in Equation 3.52 where [S] = [Kreduced]. Finally, [K∗] is divided by the length of
the repeating unit, and the diagonal terms provide the effective stiffness properties,
while the off-diagonal terms are the coupling terms.

In summary, the proposed method here utilizes two transformation and one
reduction in stiffness matrix to determine effective stiffness properties. The first
transformation relates discrete nodal displacements to continuum strains and strain
gradients. Then, a reduction is applied to the continuum stiffness matrix (60× 60)
by eliminating the coefficients which are not exhibited by the structure or are
linearly dependent. Then, the second transformation is the static condensation
which reduces the stiffness matrix further to 6× 6 in terms of fundamental strains.
Since the global stiffness matrix of the repeating unit may include the effects of
pre-stress, the procedure can be applied to structures with self-stress states such as
tensegrities.

Numerical Example

Yildiz and Lesieutre [57] studied a numerical example in which the modified energy
equivalency method was applied to two stage cylindrical tensegrity booms with
three, four, five, and six struts in each stage, as shown in Figures 3.10, 3.11, 3.12,
and 3.13. The booms consist of 3n nodes, 2n struts, and 5n cables where n is the
number of struts.

The radius of the tensegrity booms are chosen as 50
√

2 cm and the total height
is 200 cm. The modulus of elasticity of the cables and struts are 40 GPa and
200 GPa. The cross-sectional areas of the cables and struts are selected as 0.28
cm2 and 3.25 cm2. Then, the pre-stress coefficient, Ps is varied between 0 and
150, and the analyses are repeated to see the effect of the pre-stress values on the
effective stiffness properties. After the form finding procedure, the force-densities
are normalized so that the top and bottom cables carry unit force density. Then,
force-densities are multiplied by the length of members and the pre-stress coefficient
to calculate pre-stress forces. Table 3.4 shows the pre-stress values in the elements
for each case.
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Figure 3.13: Two Stage Six-Strut
Tensegrity Boom

Table 3.4: Pre-stress values in the elements

Pre-stress [kN]
Element Type n=3 n=4 n=5 n=6

Top-Bottom Cables 1.2247Ps 1.0000Ps 0.8313Ps 0.7071Ps
Vertical Cables 1.8444Ps 1.6080Ps 1.3970Ps 1.2247Ps
Saddle Cables 2.4495Ps 2.0000Ps 1.6625Ps 1.4142Ps

Struts −2.9322Ps −2.3268Ps −1.8911Ps −1.5811Ps

Figures 3.14, 3.15, 3.16, and 3.17 show the variation of effective stiffness proper-
ties of the two stage tensegrity booms.
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Figures 3.14 and 3.17 reveal that the axial and torsional rigidities of the investi-
gated tensegrity booms are zero unless the structure is pre-stressed. The reason for
this behavior is that the infinitesimal mechanisms exhibited by the structure act in
the axial and torsional directions, making the associated rigidities zero unless it is
self-stressed, as also noted by Kebiche et al. [50]. On the other hand, bending and
shear rigidities are non-zero even if the structure is not pre-stressed. Furthermore,
due to symmetry about the yz plane, all of the coupling terms are found to be zero.

The influence of self-stress implementation and variation of pre-stress levels on
effective stiffness properties are found to be different. Axial and torsional rigidities
are affected significantly as they are prone to variation of self-stress. This is mostly
due to existence of mechanisms acting in these directions. Conversely, bending and
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shear rigidities are not affected by the changes in self-stress as axial and torsional
rigidities are.

Figures 3.14, 3.15, 3.16, and 3.17 reveal another interesting result. One may
anticipate that the rigidities would increase with increasing number of struts;
however, the results reveal otherwise. Axial and torsional rigidities reach a maximum
level when the number of struts is three. As the number of struts increases, the
axial and torsional rigidities subsequently decrease with each increment. However,
the maximum bending and shear rigidities are observed when the number of struts
is four. These rigidities are found to be decreasing with increasing number of struts
when n ≥ 4.

The main reason for this type of behavior can be explained with the increased
number of mechanisms with increasing number of struts. A two-stage cylindrical
tensegrity structure exhibits 2n−4 mechanisms and 2 states of self-stress. Therefore,
as the number of struts increase, the number of mechanisms also increases. It
is clear that the increased number of struts affects the structure by softening it
because of the mechanisms.

3.4.3 Nonlinear Finite Element Validation

Nonlinear finite element analyses described in previous sections can also be used
to determine the effective stiffness properties of tensegrity booms. Appropriate
boundary conditions can be imposed to tensegrity booms, and their behavior
under external forces which create pure axial, bending, shear, or torsion can be
applied [58,59]. The total strain energy of tensegrity booms under external loads
can be obtained from the incremental iterative solution scheme.

Sun et al. [58] show examples of boundary conditions and loading cases for
beam-like lattice structures. They state that a typical substructure (repeating
unit) can be considered, and finite element analyses can be carried out. In order
to determine the axial rigidity of a structure, axial loads can be applied at the
free end while the other end is completely fixed. Then, a relationship between the
applied the axial load and axial rigidity can be written as:

EA = NL

δ
(3.72)

where N , L and δ are applied axial loads, length of the substructure, and axial
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displacement.
A similar approach can be taken for torsional rigidity. Nodal forces can be

applied to the free end that create a pure torsional moment and no resultant force
while the other end is completely fixed. Then, a relationship between the rotation
of the free end, θ and generated torsional moment can be written as:

GJ = MxL

θ
(3.73)

where Mx is the generated torsional moment.
Determination of bending and torsional rigidities require different boundary

conditions in order to account for possible distortion of cross-sections. The approach
provided by Sun et al. [58] states that one of the nodes in the corresponding end
should be fixed completely while the others should be restrained in the axial
direction.

In order to determine bending rigidity, axial loads can be applied to generate a
bending moment with zero resultant force. Then, the rotation angle due to bending,
φ can be calculated, and a relationship can be formed as:

EI = ML

φ
(3.74)

where M is the bending moment.
Applying shear loads always generates bending moments and, therefore, deter-

mination of shear rigidity is troublesome. In an attempt to create a pure shear
load case, Sun et al. [58] modify the boundary conditions by constraining the free
end in the axial direction. Then, shear loads can be applied and analogously, the
following relationship can be formed:

GA = V L

vb
(3.75)

where V and vb are the shear load and lateral displacement.
On the other hand, the effective stiffness properties or rigidities can also be

obtained by calculating total strain energy. From finite element analyses, the total
strain energy can be obtained, and effective stiffness properties can be determined
from the following strain energy expressions:
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U = 1
2
N2L

EA
(3.76)

U = 1
2
M2L

EI
(3.77)

U = 1
2
V 2L

GA
(3.78)

U = 1
2
M2

xL

GJ
(3.79)

However, the procedure becomes complex when the focus is tensegrity structures.
Tensegrity structures exhibit initial strain energy due to pre-stress which must be
considered. Furthermore, applied external loads have to be in the same order of
magnitude as pre-stress levels. Since the effective stiffness properties are only valid
in the proximity of the initial configuration, application of larger loads do not yield
accurate results as the structure deforms greater. Furthermore, the reaction forces
at the fixed end should be checked to ensure they are consistent with applied loads.

At the end of the nonlinear finite element analyses, final strain energy is
computed, and the difference between final and initial strain energy is used to
determine the effective stiffness properties. For different loading scenarios of pure
loading, the difference in final and initial strain energies related to effective stiffness
properties are

Udiff = 1
2

∫
V
σT εdV = 1

2
N2L

(EA)eff
(3.80)

Udiff = 1
2

∫
V
σT εdV = 1

2
M2L

(EI)eff
(3.81)

Udiff = 1
2

∫
V
σT εdV = 1

2
V 2L

(GA)eff
(3.82)

Udiff = 1
2

∫
V
σT εdV = 1

2
M2

xL

(GJ)eff
(3.83)

where Udiff is the difference in the final and initial strain energy.
Nonlinear finite element analyses are applied to the tensegrity booms, and sample

results are presented below in Figures 3.18, 3.19, 3.20, and 3.21 for tensegrity booms
with three and four struts in each stage.

Figure 3.18, 3.19, 3.20, and 3.21 show the finite element results alongside energy
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Figure 3.21: Comparison of results
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equivalency results. The results show excellent agreement between finite element
and energy equivalency for axial and torsional rigidities, Figures 3.18 and 3.21. On
the other hand, a discrepancy occurs between the results for bending and shear
rigidities, Figures 3.19 and 3.20. The maximum errors between the results are
obtained as 2% for axial rigidity, 7% for bending and shear rigidity, and less than
1% for torsional rigidity.

Potential reasons for the error between the results in Figures 3.19 and 3.20 are
identified as inappropriate boundary conditions and inaccurate loading. It is a
known fact that generating pure shear loading is nearly impossible since shear loads
also result in bending moments. The results are also very sensitive to boundary
conditions, and distortion of the cross-section at the base should also be considered.
Another important point is the applied level of loads since these effective stiffness
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properties are only valid in the close proximity of the initial configuration. If the
external loads are selected relatively higher than the internal loads (pre-stress
levels), the structure deforms more, leading to inconsistent results due to geometric
nonlinearity.

The modified energy equivalency method reduces the complexity of computing
the effective stiffness properties of a tensegrity boom, and it may be applied to truss
type structures as well. Rather than requiring four transformations, the number
of transformations is reduced, and an algorithm which is easier to implement has
been developed. The results are compared to the nonlinear finite element results,
and excellent agreement in axial and torsional rigidities are obtained while bending
and shear rigidities are good.

In summary, application of the modified energy equivalency method enables
straightforward optimization and comparison of different booms. For a given ge-
ometry, the optimum beam may be designed in terms of maximum stiffness or
stiffness-to-mass ratio. Furthermore, instead of carrying out a full scale nonlin-
ear finite element analysis for geometrically nonlinear problems, effective stiffness
properties may iteratively be obtained and used to determine the behavior of
the structure under external loads. In Chapter 6, the modified energy equiva-
lency method is implemented for optimization of tensegrity structures to design a
tensegrity boom with maximum stiffness-to-mass ratio.
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Chapter 4 |
Deployment of Cylindrical
Tensegrity Booms

Tensegrity structures have been considered as deployable space structures since the
early 1990s. The idea of deployable tensegrity structures was first proposed and
conceptually examined by Furuya [14]. They have been identified as very promising
deployable structures for space applications due to certain advantages including
light weight and high packing density. Further, most of the traditional deployable
structures experience difficulties due to complex joints or the use of telescopic
struts. In tensegrity structures, compressive elements are mostly discontinuous;
thus complex joints are avoided. These advantages pave the way for utilization of
tensegrity structures for space applications.

Two distinct strategies have been proposed for the deployment of tensegrity
structures, namely cable-mode and strut-mode deployment [2, 13]. Sultan and
Skelton [16,60–62] investigated a Snelson-type tensegrity boom with three struts
and made important contributions using tendon control deployment. The same
Snelson-type tensegrity boom was also investigated by Tibert and Pellegrino [17],
and strut-mode deployment is demonstrated using telescopic struts. The advantages
and disadvantages of each method were pointed out in detail by Tibert and
Pellegrino [17]. Deployment of a three-strut Class-2 cylindrical tensegrity boom was
examined by Pinaud et al. [18] using cable-mode deployment. More recently, this
deployment concept was also utilized for bridge constructions in which deployment
starts with two bases that are connected to each other at the middle when the full
deployment is achieved [63–65].

Cable-mode deployment controls the lengths of the cables with small motors
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attached to struts (internally or externally). Cables can be rolled over or released
from small wheels to alter the lengths of the cables [16, 62]. In this way, as long as
the lengths of the cables are controlled in a prescribed manner, the self-equilibrium
of the structure can be maintained, exhibiting stiffness to some extent. Struts
are stiffer and heavier compared to cables; therefore, they remain rigid during
deployment.

The strut-mode deployment arises from the idea of struts being the longest
elements in the structures [17]. Therefore, greater packaging efficiency may be
acquired by folding the struts. However, this deployment strategy requires additional
devices to deploy tensegrity booms since they are not self-equilibrated when stowed
this way. An additional rod which controls the rate of deployment by increasing
the height of the structure can be used. Furthermore, as the height of the boom is
increased, the cables should be pre-stressed to gain stiffness.

Cable-mode deployment is reported to be superior since the tensegrity structure
remains stiff while deploying and no additional stiffening devices are required [17].
Furthermore, if the controls are frozen at some instant of deployment, the structure
will remain self-equilibrated and the deployment can be restarted.

In this chapter, deployments of tensegrity booms with different topologies are
addressed. Deployment of Class-1 three-strut tensegrity booms is investigated
with a cable-mode deployment strategy, and a generalization procedure for n-strut
tensegrity boom deployment is given. Then, deployment of Class-2 three-strut
tensegrity booms is explained, and another generalization procedure for n-strut
Class-2 tensegrity towers is illustrated. For demonstration purposes, deployment
examples of n-strut Class-1 and Class-2 tensegrity booms are simulated.

4.1 Deployment of Class-1 Tensegrity Booms
Deployment of Class-1 tensegrity booms was first studied by Sultan and Skelton
[16,62]. They investigated a three-strut, two-stage SVD tensegrity boom which is
also known as a Snelson-type tensegrity. An SVD tensegrity structure is a Class-1
tensegrity system in which no contact between struts occur. The investigated SVD
tensegrity boom consists of 6 struts and 24 cables (3 bottom, 3 top, 6 saddle, 6
vertical, and 6 diagonal), and it is named after saddle, vertical and diagonal cables.
The structure has equilateral triangular top and bottom bases while an overlap at

71



the intersection of two stages satisfies the prestressability conditions. The geometry
of the SVD tensegrity boom is shown in Figure 4.1.
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Figure 4.1: Three-strut Snelson type tensegrity

Black, blue, green, and teal lines represent top and bottom, vertical, saddle,
and diagonal cables, respectively. In addition, struts are denoted with thick red
lines. The overlap is the vertical distance between the nodes at the intersection,
seen in Figure 4.2, while the top view of the structure is shown in Figure 4.3.
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Figure 4.3: SVD Top view

Sultan noted that each node can be represented in terms of three independent
parameters: azimuth angle of struts, αij , declination angle of struts, δij , and overlap,
h [61, 66]. Here, i and j represent the nodes that are connected with a strut. For a
symmetrical, three-strut SVD tensegrity boom as shown in Figure 4.1, all of the

72



declination angles are the same, while the azimuth angles of consecutive struts
differ by 60°, due to symmetry.

Sultan defined an equilibrium matrix in terms of the independent parameters
and obtained the solution analytically. The equilibrium matrix is given as follows:

A =



∂S

∂α

∂V

∂α

∂D

∂α

∂S

∂δ

∂V

∂δ

∂D

∂δ

∂S

∂h

∂V

∂h

∂D

∂h


(4.1)

where S, V and D are the lengths of saddle, vertical, and diagonal cables,
respectively. These length expressions are derived by Sultan analytically as follows:

S =
√
h2 + b2

3 + l2 sin2(δ)− 2√
3
lb sin(δ) cos

(
α− π

6

)
(4.2)

V =
√
l2 + b2 − 2lb sin(δ) sin

(
α + π

6

)
(4.3)

D =
√
l2 + b2

3 + h2 − 2lh cos(δ)− 2√
3
lb sin(δ) sin(α) (4.4)

where l is the length of struts, and b is the length of top and bottom cables
(side length of the equilateral triangles). Since the structure is in a symmetric
configuration, the saddle, vertical, and diagonal cables have the same length,
respectively. Therefore, the azimuth angle of any of the struts can be used for the
length expressions.

The prestressability condition can be written as:

A(α, δ, h)T = 0 (4.5)

where T is the normalized force vector of the saddle, vertical, and diagonal
cables. The non-trivial solution is obtained from

det(A(α, δ, h)) = 0 (4.6)

Equation 4.6 is solved for the overlap analytically, yielding:
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h =


cos(δ)

2 sin(δ) cos(α + π/6)

(
−b√

3
+ p+

√
b2

3 − 3p2

)
if α 6= π

3
l cos(δ)

2 if α = π

3

(4.7)

where p = l sin(δ) cos(α + π/6). The prestressability condition, Equation 4.5,
can be solved for force values in individual group of members. The solution is given
as

T =
[
Ts Tv Td

]T
(4.8)

Tv =


V

D

1√
3 cos(α + π/6)

((
l cos(δ)
h

− 1
)

sin
(
α− π

6

)
− cos(α)

)
Td if α 6= π

3
V

D

( 3l
2b sin(δ)− 1

)
Td if α = π

3
(4.9)

Ts =


S

D

(
l cos(δ)
h

− 1
)
Td if α 6= π

3
Td if α = π

3

(4.10)

Td = 1 (4.11)

Then, force balance at each node yields the force carried by struts, Tst as follows:
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Tst =



Td
6Dh sin(π/3− α)

2
√

3hb sin(δ)−
√

3
2 lb sin(2δ)

+ 6h2 cos(δ) sin
(
α− π

3

)
− 6lh

(
cos2(δ) sin

(
α− π

3

)

− 1√
3

sin
(
α + π

6

))
+ 2
√

3l2 cos(δ) cos(α)

+ 6l2 cos3(δ) sin
(
α− π

3

)

if α 6= π

3

Td
D

(3l2
2b sin(δ)− l

2

)
if α = π

3

(4.12)

The overlap expression given in Equation 4.7 can be evaluated for selected l
and b values. The results can be represented as equilibrium surfaces with respect
to overlap and total height. For numerical values of l = 0.4 m and b = 0.27 m, the
equilibrium surfaces are shown in Figures 4.4 and 4.5. Note that the equilibrium
surface is found by using α14, the azimuth angle of the strut between nodes 1 and
4 (Figure 4.1).
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Figure 4.4: Equilibrium surface in terms of overlap

A self-equilibrated Class-1 SVD tensegrity boom is generated only if the pa-
rameters of α14 and δ, the azimuth angle of the strut between nodes 1 and 4, and
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the declination angle, are on the equilibrium surface. For an example deployment
simulation, the initial and final parameters are chosen as α14,i = 219°, δi = 85°,
α14,f = 200°, and δf = 55°. The deployment path is illustrated on the equilibrium
surface with respect to height in Figure 4.6. The sequence of the deployment
simulation can be seen in Figures 4.7, 4.8, 4.9, and 4.10.
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Figure 4.6: Deployment path of SVD
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During deployment, using a force finding method, force-densities in each type of
member are tracked. Figures 4.11 and 4.12 show the variation of the lengths of and
the force-densities carried by the elements in the structure, respectively. Figure
4.11 reveals that the top and bottom cables as well as the struts maintain their
lengths, the saddle and diagonal cables are shortened, while the vertical cables
are lengthened, increasing the total height of the structure. The variation of the
force-densities, Figure 4.12, shows that cables and struts are always under tension
and compression, respectively.

The same deployment procedure can be applied to longer tensegrity booms
with more than two stages. In order to construct tensegrity booms longer than two
stage, the tensegrity units can be stacked in such a way that there is an overlap for
each pair of intersecting intermediate planes.
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Additionally, it is also possible to increase the number of struts in one stage
to address different concerns. This is achieved with a generalization procedure ex-
plained in the following subsection, and the deployment of n-strut Class-1 tensegrity
booms is investigated.

4.1.1 Deployment of n-strut Class-1 Tensegrity Booms

In this section, the generalization of deployment of n-strut cylindrical tensegrity
booms is developed. In order to generalize n-strut cylindrical Class-1 tensegrity
structures, nodal locations and connectivity information need to be defined in terms
of some parameters. The nodal coordinates and connectivity information are found
to follow a pattern and, following this pattern, cylindrical Class-1 tensegrity booms
with n struts in each stage can be constructed.

The generalization procedure starts with defining the nodal locations in terms
of length of struts, radii of circumscribing circles of top and bottom stages, azimuth
and declination angles. The fundamental idea is that nodes are distributed in the
xy plane on a circle. For a two-stage cylindrical Class-1 tensegrity boom, the nodes
are located on four different positions on the z axis, called levels. These positions
are bottom, top, lower intersection, and upper intersection. The pattern given in
Table 4.1 is valid for two-stage cylindrical Class-1 tensegrity booms with n struts
in each stage.

These types of tensegrities typically have 4n nodes (n nodes in each level) and
10n elements.
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where rbase is the radii of the circumscribing circles of top and bottom levels,
α1 is the azimuth angle of the strut that connects the nodes 1 and n+ 1, δ is the
declination angle, and lb is the length of struts. Additionally, h is the overlap and
γ = 2π/n.

The number of stages may be increased easily by following Table 4.1. For
example, in order to add another stage, the top level will be the second upper
intersection level, and two new levels will be added. One of these new levels will be
the second lower intersection level whose nodes overlap with the bottom level in xy
plane with the height of 2lb cos(δ)− 2h, while the second new level will have the
same node projection as the upper intersection level in xy plane with the height of
3lb cos(δ)− 2h.

In order to define the full geometry of a n-strut cylindrical tensegrity boom, a
connectivity chart can be generated as in Figure 4.13 for the connectivity informa-
tion.
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Figure 4.13: Connectivity chart for Class-1 tensregrity booms

In Figure 4.13, each node is represented with a circle, and the edge color
of each circle indicates which level the node belongs to. Bottom, top, lower
intersection, and upper intersection levels are indicated with black, blue, green, and
red circles. Furthermore, each double-headed arrow defines a connection between
the associated nodes. Three circular layers are generated to account for bottom, top
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and intersection levels. In order to avoid overlapping of the arrows, the first nodes
of the bottom and top levels are located at the upper point of the corresponding
layer such as 1 and 2n+ 1, while the intersection layer is rotated 90° in the counter-
clockwise direction. Additionally, each color of the double-headed arrows indicate
a different type of element. Black, blue, green, teal, and red arrows represent top
and bottom, vertical, saddle, diagonal cables, and struts respectively.

Similar to nodal locations, this chart can also be generated for cylindrical Class-1
tensegrity booms with more than two stages. In order to add another stage, the
outer layer can be modified by adding n more circles to make it similar to the
intersection layer, and another layer can be added to the exterior. Then, the
connectivity between these layers can be established by replicating the connectivity
in the interior layers.

In order to generate the equilibrium surface for n-strut cylindrical Class-1
tensegrity booms, a numerical approach is adopted rather than the analytical
approach employed by Sultan [61]. MATLAB’s symbolic toolbox is utilized to define
the nodal locations symbolically, and the lengths of saddle, vertical, and diagonal
cables are obtained. These symbolic length expressions are then differentiated with
respect to azimuth and declination angles, and overlap. The derivatives can be
substituted into Equation 4.1, and the determinant of the equilibrium matrix can
be evaluated symbolically.

Equation 4.6 is quadratic in overlap, h, and therefore, two solutions exist. Then,
selecting numerical values for rbase and lb, the solutions will only be a function
of α1 and δ. The solutions are evaluated for each (α1, δ) pair, overlap values are
computed, and the force finding method is employed to check if the unilateral
element behavior is preserved. If unilateral element behavior is satisfied for one of
the solutions, then this (α1, δ) pair is stored with the overlap information. Finally,
the combination of these points yields the equilibrium surface, and deployment is
achieved by moving on it.

The procedure explained above is applied to a two-stage four-strut tensegrity
boom. The length of struts and the radius of the circumscribing circle of top and
bottom levels are chosen as the same as the previous example; rbase = 0.1559 m
(b = 0.27 m) and lb = 0.4 m. Then, equilibrium surfaces, one with respect to
overlap and the other with respect to height, are generated and shown in Figure
4.14 and 4.15. The deployment path chosen is also visible on Figure 4.15 with
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initial and final parameters of α1,i = 230°, δi = 85°, α1,f = 210° and δf = 55°
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Figure 4.14: Equilibrium surface of four-strut SVD in terms of overlap
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Figure 4.15: Equilibrium surface of four-strut SVD in terms of height

The deployment simulations are conducted with the selected initial and final
parameters. The sequence of deployment simulation is shown in Figures 4.16, 4.17,
4.18, and 4.19. Similarly, force-densities in each type of member are tracked by
the force finding method as the deployment proceeds. Figures 4.20 and 4.21 show
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the variation of the lengths of the elements and the force-densities in the structure,
respectively.
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4.2 Deployment of Class-2 Tensegrity Booms
Tensegrity booms can also be constructed by stacking cylindrical tensegrity units on
top of each other so that struts touch. Deployment of Class-2 cylindrical tensegrity
booms was studied by Pinaud et al. [18], in which the tensegrity boom is constructed
by stacking two triplex units. The units are connected to each other at nodes,
therefore generating a Class-2 geometry. The same tensegrity units are placed in
an alternating clockwise and anticlockwise sense in order to maintain symmetry in
the xy plane.

The tensegrity boom studied by Pinaud et al. [18] is a two stage Class-2
cylindrical tensegrity boom that consists of three struts in each unit. The tensegrity
boom has equilateral triangles at the bottom and top planes. Figures 4.22, 4.23,
and 4.24 show the tensegrity boom and its top and side views, respectively. The
structure has 6 struts and 21 cables (3 bottom, 3 top, 6 vertical, 3 saddle, and 6
optional reinforcing cables) and, due to symmetry, each group of elements carry the
same force density. The groups of elements are illustrated in Figures 4.22, 4.23, and
4.24 by using different colors. Bottom and top cables, vertical cables, saddle cables,
and struts are represented with black, blue, green, and thick red lines. Additionally,
reinforcing cables are also indicated with orange dashed lines since they may not
exist depending on the twist angle and the deployment strategy.

The prestressability conditions of Class-2 cylindrical tensegrity booms are
satisfied if and only if the twist angle, α, between the two stacked units is defined
as α = π

6 . On the other hand, the addition of reinforcing cables yields an interval
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α =
(
π
6 ,

π
2

)
for the twist angle that satisfies the prestressability conditions rather

than a single value. It is possible to deploy Class-2 cylindrical tensegrity booms
with and without employing reinforcing cables. These two deployment strategies
are reviewed here.

Deployment with Constant Reinforcing Cables

Pinaud et al. [18] utilized reinforcing cables in order to reduce the number of
actuators. The deployment strategy employed in their work is to keep the length
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of the reinforcing cables the same throughout the deployment. Since reinforcing
cables are not actively controlled, the number of required actuators is reduced.
Then, the deployment is achieved by varying the twist angle within the feasible
range, resulting in a rotation and deployment of the structure.

In order to determine the configuration of the structure at any instance, it was
found that the nodal locations can be represented in terms of four parameters.
These parameters are as follows: the radii of circumscribing circles of the top and
bottom triangles, rbase; the radius of circumscribing circle of the intersection plane,
r; twist angle, α; and the height of one stage, h. Then, nodal locations can written
as shown in Table 4.2.

Table 4.2: Nodal locations of two stage, three-strut Class-2 cylindrical tensegrity
boom

Nodes x y z

Bottom
Level

1 rbase 0 0
2 rbase cos(γ) rbase sin(γ) 0
3 rbase cos(2γ) rbase sin(2γ) 0

Intersection
4 r cos(α− γ) r sin(α− γ) h

5 r cos(α) r sin(α) h

6 r cos(α + γ) r sin(α + γ) h

Top
Level

7 rbase 0 2h
8 rbase cos(γ) rbase sin(γ) 2h
9 rbase cos(2γ) rbase sin(2γ) 2h

where γ = 2π
3 for Class-2 tensegrity booms with three struts per stage. During

deployment, rbase remains constant while r decreases as the structure extends
in order to keep the length of the struts constant. Figure 4.25 illustrates the
parameters mentioned in Table 4.2 on the top view of the Class-2 tensegrity boom.

Using the node locations defined in Table 4.2, expressions for the lengths of
the saddle, vertical and reinforcing cables can be found by calculating the distance
between nodes. The saddle cable length can be calculated from the locations of
nodes 4 and 5 as

S =
√(

r cos(α− γ)− r cos(α)
)2

+
(
r sin(α− γ)− r sin(α)

)2
= r
√

3 (4.13)
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Similarly, the vertical cable length is calculated from the distance between the
nodes 1 and 5.

V =
√(

r cos(α)− rbase
)2

+
(
r sin(α)

)2
+ h2 (4.14)

Finally, the reinforcing cable length can be found by calculating the distance
between the nodes 1 and 4 as follows:

R =
√(

r cos(α− γ)− rbase
)2

+
(
r sin(α− γ)

)2
+ h2 (4.15)

Using the law of cosines, a relationship between r and h can be formed as
follows:

(lb − h)2 = r2
base + r2 − 2rrbase cos

(2π
3 + α

)
(4.16)

Equation 4.16 can be solved using the quadratic formula, and the positive r
solution can be obtained as

r = rbase cos
(2π

3 + α
)

+
√
r2
base cos2

(2π
3
)

+ l2b − h2 − r2
base (4.17)

Then, Equation 4.17 can be substituted into Equation 4.15 to obtain an expres-
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sion for R, which is independent of r. Assuming a constant length for reinforcing
cables, R, a direct relationship between α and h can be formed.

After selection of rbase and lb values, this relationship can be solved by using a
Newton-Raphson Method for various fixed reinforcing cable lengths. The results are
represented by solution curves shown in Figure 4.26 with parameters rbase = 3.45
cm and lb = 12.8 cm.
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Figure 4.26: The relationship between α and h

Figure 4.26 shows that with a fixed reinforcing cable length, the height of one
stage increases with an increasing twist angle. Therefore, by varying the twist angle,
deployment can be achieved. Even though the feasible range for α is reported to
be α =

(
π
6 ,

π
2

)
, the solutions are given in the α =

(
π
6 ,

π
3

)
. The reason for that is

struts intersect at the center, and it is not physically possible to increase α further.
This deployment strategy is limited by the constant lengths of reinforcing cables.

Each curve has an upper limit to which the structure can be deployed. From
Figure 4.26, the constant reinforcing cable length is chosen as R = 10 cm and, with
selections of αi = 34 ° and αf = 55 °, deployment is simulated. Figures 4.27, 4.28,
4.29 and 4.30 show the deployment sequence.

Similarly, using a force finding method, force-densities in each element are
tracked during deployment. The length variation of elements and the force-density
variation are shown in Figures 4.31 and 4.32, respectively.
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In general, addition of constant reinforcing cables serves two purposes. The
first of which is to obtain a non-unique twist angle which can be varied to achieve
deployment. The other is to increase stiffness of the structure by locking infinitesimal
mechanism modes. Therefore, a potentially higher stiffness-to-mass ratio can be
obtained [18]. However, even if the use of constant reinforcing cables provides a
strategy for deployment of Class-2 tensegrity booms, the introduced complexities
may decrease the maximum possible final-to-initial height ratio since reinforcing
cables are constant.

Deployment without Constant Reinforcing Cables

Another deployment strategy for cylindrical Class-2 tensegrity booms which is not
limited by the constant reinforcing cable length is explained here. This deployment
strategy can be applied to Class-2 tensegrity booms with or without reinforcing
cables. In this deployment strategy, if reinforcing cables are not used, the twist angle
has to be set to α = π

6 during deployment in order to satisfy the prestressability
conditions. On the other hand, if they are introduced to the structure, the twist
angle can be selected from the feasible range given previously.

The height of one stage, h, can be found by calculating the distance between
two nodes connected by a strut as follows:

h =
√
l2b + (xa − xb)2 + (ya − yb)2 (4.18)

where a and b denote the end nodes of any strut. As the deployment occurs, the
height of one stage increases, affecting the position of the nodes in the intermediate
plane. Since x and y components of these nodes are not independent from each
other, the radius of the circumscribing circle of the intermediate plane, r, can be
solved from Equation 4.18 and Table 4.2. In this way, the position of each node
can be found at any instance, and the deployment can be simulated.

Using the relationship given in Equation 4.18, the initial and final heights of
the tensegrity boom are selected as hi = 1 cm and hf = 10 cm, and the deployment
is simulated. The deployment sequence for the same tensegrity boom without
reinforcing cables can be seen in Figures 4.33, 4.34, 4.35, and 4.36. Similar to
previous deployment simulations, variations of lengths and force-densities are also
provided in Figures 4.37 and 4.38.

90



2

3

8

5

1

7

0
1
2

Z
 [c

m
]

6

4
2

9

50

Y [cm]

-2

X [cm]

4

0-4
-6

-5-8

Figure 4.33: Deployment sequence,
1/4

5

12
0

2

4

7

4

8

3

6

Z
 [c

m
]

2

6

50

Y [cm]

-2

X [cm]

0

9

-4

4

-6
-5-8

Figure 4.34: Deployment sequence,
2/4

5

12
0

2

4

2 3
5

6

0

8

6

Z
 [c

m
]

Y [cm]

7

X [cm]

-2

10

8

0

12

-4
-6 -5

4

9

Figure 4.35: Deployment sequence,
3/4

120

3

5

6

2

5

40

Y [cm]

2

X [cm]

0-2

10

-2

Z
 [c

m
]

-4 -4

15

7

4

820

9

Figure 4.36: Deployment sequence,
4/4

Step
2

4

6

8

10

12

14

16

18

20

Le
ng

th
 [c

m
] Top-Bottom

Vertical
Saddle
Strut
Total Height

Figure 4.37: Variation of the lengths

Step
-1.5

-1

-0.5

0

0.5

1

1.5

F
or

ce
 D

en
si

ty

Top-Bottom
Vertical
Saddle
Strut

Figure 4.38: Variation of the force-
densities

91



In the next section, the latter deployment strategy is generalized for n-strut
tensegrity booms. Since it also can be applied to tensegrity booms with reinforcing
cables, it is found to be more favorable. On the other hand, the applicability of the
first deployment strategy is very limited for an increased number of struts in each
stage, and it is found to be not very efficient. The ratio between the maximum
height and the initial height decreases with an increased number of struts; therefore,
the first deployment strategy is abandoned, and more attention is paid to the latter
one.

4.2.1 Deployment of n-strut Class-2 Tensegrity Booms

A generalization procedure is developed for deployment of Class-2 cylindrical
tensegrity booms as well by following a pattern for nodal locations similar to
the one given in Table 4.1. In order to provide a full generalization procedure,
connectivity information has to be defined for Class-2 tensegrity booms. As a result,
a Class-2 tensegrity boom with an n-strut in each stage can be created.

The generalization procedure starts with defining the nodal locations in terms
of the following: radii of the circumscribing circles of bottom and top planes; radius
of the circumscribing circle of the intermediate plane; and the twist angle. The
radius of the circumscribing circle of the intermediate plane can be obtained from
the relation given in Equation 4.18 at any instant for a given length of struts. Table
4.3 shows the pattern of nodal locations of Class-2 cylindrical tensegrity booms
with n struts in each stage. These types of tensegrities typically have 3n nodes (n
nodes in each level) and 7n or 9n elements depending on the presence of reinforcing
cables.

where γ = 2π
n
, rbase is the radii of the circumscribing circles of bottom and top

levels, r is the radius of the circumscribing circle of intermediate level and h is the
height of one stage. On the other hand, the twist angle is α = π

2 −
π
n
. However, the

addition of reinforcing cables defines a feasible range for twist angle α = (π2 −
π
n
, π2 )

rather than a single value.
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Table 4.3: Node locations of a two stage cylindrical Class-2 tensegrity boom

Node x y z

Bottom
Level

1 rbase 0 0
2 rbase cos(γ) rbase sin(γ) 0
3 rbase cos(2γ) rbase sin(2γ) 0
· · · · · · · · · 0
n-1 rbase cos((n− 2)γ) rbase sin((n− 2)γ) 0
n rbase cos((n− 1)γ) rbase sin((n− 1)γ) 0

Intermediate
Level

n+1 r cos(α− γ) r sin(α− γ) h
n+2 r cos(α) r sin(α) h
n+3 r cos(α + γ) r sin(α + γ) h
· · · · · · · · · h
2n-1 r cos(α + (n− 3)γ) r sin(α + (n− 3)γ) h
2n r cos(α + (n− 2)γ) r sin(α + (n− 2)γ) h

Top
Level

2n+1 rbase 0 2h
2n+2 rbase cos(γ) rbase sin(γ) 2h
2n+3 rbase cos(2γ) rbase sin(2γ) 2h
· · · · · · · · · 2h
3n-1 rbase cos((n− 2)γ) rbase sin((n− 2)γ) 2h
3n rbase cos((n− 1)γ) rbase sin((n− 1)γ) 2h

The number of stages may be increased readily by extending Table 4.3. It is
obvious that the nodes will overlap each other in xy plane in every second level. For
example, two more stages can be added directly by copying the nodal locations of
the intermediate and top level except for their positions in z direction. The height
of each added level will be greater than the previous one by h. In order to define
the full geometry of the tensegrity structure, a connectivity chart is presented in
Figure 4.39.

93



1

2

3

· · ·

n-1

n

n+1

n+2

n+3

· · ·

2n-1

2n

2n+1

2n+2

2n+3

· · ·

3n-1

3n

Figure 4.39: Connectivity chart for Class-2 tensegrity booms

In Figure 4.39, each node is represented with a circle, and the edge color of each
circle indicates which level the node belongs to. Bottom, top, and intermediate
levels are indicated with black, blue, and green circles. Furthermore, each double-
headed arrow defines a connection between the corresponding nodes. Three circular
layers are generated to account for the bottom, top, and intermediate levels. In
order to get a clearer picture of the connectivity by preventing overlapping between
arrows, the first nodes of the bottom and top levels are located at the upper
point of the layer such as 1 and 2n+ 1, while the intermediate layer is rotated in
the counter-clockwise direction. Black, blue, green, dashed orange, and red lines
represent top and bottom, vertical, saddle, reinforcing cables (optional), and struts,
respectively.

The deployment strategy which employs constant reinforcing cables is applied
to a four-strut Class-2 tensegrity boom with rbase = 3.45 cm and lb = 12.8 cm.
In order to determine the relationship between the twist angle and the height of
one stage, an expression for the constant reinforcing cable length can be obtained
by calculating the distance between nodes 1 and 4. Using the law of cosines, the
relationship between r and h can be formed as

(lb − h)2 = r2
base + r2 − 2rrbase cos

(π
2 + α

)
(4.19)
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which can be solved for r using the quadratic formula as follows:

r = rbase cos
(π

2 + α
)

+
√
−h2 + l2b −

1
2r

2
base −

1
2r

2
base cos(2α) (4.20)

The expression obtained for r can be substituted into the expression of reinforcing
cable length, and the solution curves are obtained. The feasible twist angle range
is α =

(
π
4 ,

π
2

)
, and the solution curves are shown in Figure 4.40.

45 50 55 60 65 70 75 80 85 90

 [Degrees]

0

1

2

3

4

5

6

7

8

9

10

H
ei

gh
t o

f o
ne

 s
ta

ge
 [c

m
]

66.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

Figure 4.40: The relationship between α and h, n=4

Then, the constant reinforcing cable length is chosen as R = 8.1 cm, and the
initial and final twist angle are selected as αi = 46° and αf = 80°; the deployment
is simulated. Figures 4.41, 4.42, 4.43, and 4.44 illustrate the deployment sequence.

Similarly, the variation of lengths and force-densities are also shown in Figures
4.45 and 4.46.
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Figure 4.42: Deployment sequence,
2/4
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The deployment strategy without constant reinforcing cables can be applied
by using the parametric form of the nodal locations, which allows deployment to
be achieved by varying the height of one stage and calculating the positions of
the nodes in the intermediate plane. Equation 4.18 is used to determine the x
and y positions of the intermediate nodes. Since x and y components are directly
related to r, as the height increases, the radius of the circumscribing circle of the
intermediate plane decreases.

This generalization procedure is applied to the same four-strut Class-2 tensegrity
boom, and the deployment is simulated. For demonstration purposes, the tensegrity
boom is assumed to have actively controlled reinforcing cables and a twist angle of
α = π

3 . Then, the initial and final height of one stage are selected as hi = 1 cm
and hf = 10 cm, and the deployment is simulated as shown in Figures 4.47, 4.48,
4.49, and 4.50. Variation of lengths and force-densities of elements are also shown
in Figures 4.51 and 4.52.

In the next chapter, the deployment strategies described here are utilized to
devise a novel deployment strategy which involves a transformation. This novel
deployment strategy employs Class-1 and Class-2 deployment in order to exploit
high packaging density and improved stiffness. It may be used to provide a
solution to realization of deployment tensegrity structures in space and increase
their utilization.
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Chapter 5 |
A Novel Deployment Strategy
Involving Transformation

Tensegrity structures typically suffer from inferior stiffness when they are deployed
in Class-1 configuration since there is no contact between hard members, struts [21].
On the other hand, employing a Class-1 configuration results in high packing
density; and therefore, the initially packed configuration can be stowed into very
small volumes. However, the low stiffness when deployed creates an obstacle for
their realization in space applications.

Contrary to Class-1 configurations, Class-k tensegrity configurations offer better
stiffness properties due to the jointed connection between struts at nodes, as noted
by many researchers [21,67]. However, this jointed connection also limits the packing
capabilities of Class-k tensegrities. For a Class-k configuration, the angle between
two connected struts cannot be lower than a certain value due to cross-sectional
areas of struts and/or imperfections in ball joints.

In this section, a novel deployment strategy is proposed for tensegrity structures.
The proposed deployment strategy aims to initially maintain high packing density
and to obtain better stiffness properties by going through a transformation from
Class-1 to Class-2 as deployment occurs. As a result, this deployment strategy can
be utilized to design and deploy tensegrity booms without discarding high stiffness
or high packing density.

The developed adaptive tensegrity boom starts as a Class-1, and as it is deployed,
some of the cables are shortened until struts touch each other at the ends and
are locked. In this way, the structure transforms into a Class-2 tensegrity while
maintaining high packing density in the beginning.
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The initial step in devising such a deployment strategy is to determine the
initial and final tensegrity configurations. The configurations have to show some
similarities to make a transformation possible between them. Since the idea behind
the transformation is to shorten some of the cables to zero length, cable mode
deployment should be employed. During deployment and transformation, the
self-equilibrated geometry must be retained in order to avoid reduced stiffness or
even collapse, having at least one stable state of self-stress. Significant attention
should be paid, or cables could go slack and the structure could collapse.

The initial configuration of the tensegrity boom is selected as a three-strut SVD
structure investigated by Sultan [61,66], and the final configuration is chosen as
a three-strut Class-2 tensegrity boom including reinforcing cables, examined by
Pinaud et al. [18]. The selected geometries are shown in Figures 5.1 and 5.2.
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Figure 5.2: Three-strut Class-2
tensegrity boom

The resemblance between the two structures allows a transformation between
them by shortening three saddle cables to zero length. Cables between nodes
4-10, 5-11, and 6-12 can be shortened, and struts touch each other and are locked.
Nevertheless, the deployment strategy remains complex due to several restrictions.

Since the tensegrity boom is Class-1 initially, its configuration is governed by
the equilibrium surface. After the initial deployment on the equilibrium surface,
in order to prevent loss of the self-stress state, additional reinforcing cables are
required. These reinforcing cables are added to the structure slackly and activated
at the end of the initial deployment phase by shortening them until they are
neither slack nor carrying pre-stress, discarding the dependence on the equilibrium
surface. The next step is to satisfy the twist angle condition for a self-equilibrated
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Class-2 tensegrity boom for the upcoming transformation phase. Therefore, the
intermediate plane needs to be rotated until the twist angle is in the determined
allowable range, which was defined previously. When the required rotation is
completed, the transition from Class-1 to Class-2 can begin. The corresponding
saddle cables can be shortened until the struts touch each other at the nodes and
are locked. Finally, the structure becomes Class-2, and further deployment can be
executed.

The phases of the deployment strategy can be summarized as follows:

1. Initial Deployment of the Class-1 Tensegrity Boom

2. Activation of the Reinforcing Cables

3. Rotation of the Intermediate Plane

4. Transition from Class-1 to Class-2

5. Final Deployment of the Class-2 Tensegrity Boom

5.1 Deployment Simulations
Deployment simulations begin with the free selection of the radii of the circum-
scribing circles of the top and bottom planes, rbase, and the lengths of the struts, lb.
Selecting rbase = 3.45 cm and lb = 12.8 cm, the equilibrium surfaces with respect
to overlap and total height are given in Figures 5.3 and 5.4, respectively.
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The parameters for initial deployment are chosen as α14,i = 216°, δi = 88°,
α14,f = 207°, and δf = 60°. The deployment path is shown in Figure 5.5 on the
equilibrium surface with respect to total height.

14
 [Degrees]

0
180

5

10

15

H
ei

gh
t [

cm
]

0200

20

20

25

40

 [Degrees]

220 60
80

240 100

Equilibrium Surface
Deployment Path

Figure 5.5: Initial deployment path on the equilibrium surface

For clarity in the following figures of deployment simulations; black, blue, green,
teal, and orange lines represent the top and bottom, vertical, saddle, diagonal, and
reinforcing cables, respectively. In addition, struts are denoted with thick red lines.
The sequence of the initial deployment simulation can be seen in Figures 5.6, 5.7,
5.8, and 5.9.

Figures 5.10 and 5.11 show the variation of the lengths of and the force-densities
carried by the elements in the structure, respectively. Figure 5.10 reveals that the
top and bottom cables as well as the struts maintain their lengths, while saddle
cables are shortened. The variation of the force-densities, Figure 5.11, shows that
cables and struts are always under tension and compression, respectively.
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Figure 5.8: Initial deployment, 3/4
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Figure 5.9: Initial deployment, 4/4
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Figure 5.10 shows that the initial configuration has almost zero height, which
explains the selection of α14,i and δi. Once the initial Class-1 deployment is achieved,
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the reinforcing cables (in orange) are activated, as shown in Figure 5.12.
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Figure 5.12: Activation of the reinforcing cables

Then, in order to satisfy the twist angle range constraint for the Class-2 tensegrity
boom, the middle plane (lower and upper intersection) starts to rotate until the
twist angle reaches 5π

12 , which is in the feasible range of the twist angle defined
previously. This twist angle is determined arbitrarily, which allows the rest of the
deployment to be accomplished without losing the state of self-stress. Even though
the feasible twist angle range is defined as (π6 ,

π
2 ), collision between struts occurs at

π
3 . Considering this fact and any possible cable entanglements, the twist angle is
selected to be between (π3 ,

π
2 ). As a result, this rotation sequence is illustrated in

Figures 5.13, 5.14, 5.15, and 5.16.
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Figure 5.13: Rotation Phase, 1/4
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Figure 5.14: Rotation Phase, 2/4
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Figure 5.15: Rotation Phase, 3/4
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Figure 5.16: Rotation Phase, 4/4

Similar to initial deployment, variation of the lengths of the elements are tracked
and are shown in Figure 5.17 as well as the force-densities carried by the elements
as in Figure 5.18.
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Figure 5.17: Variation of the lengths
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Figure 5.17 shows that the total height of the tensegrity boom initially decreases
and comes to a rest as the rotation occurs. On the contrary, the overlap is not
affected by the rotation since the intermediate plane is rotated as a whole without
any distortion. Figure 5.18 illustrates the level of force-densities carried by each
group of element. Additionally, it shows that the force-densities carried by the
reinforcing cables start from zero and increase. This means the reinforcing cables
are redundant before the rotation sequence begins. The rotation sequence is a very
important step for the transformation, and it makes the configuration drift away
from the equilibrium surface obtained before, meaning that the structure loses the
state of self-stress. The actual reason of the introduction of the reinforcing cables
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is to make the rotation sequence possible by increasing the number of states of
self-stress.

When the rotation is completed, the transition between Class-1 and Class-2
starts. In this case, nodes 4, 5, and 6 maintain their locations and nodes 10, 11,
and 12 approach nodes 4, 5, and 6, respectively. The transition sequence is shown
in Figures 5.19, 5.20, 5.21, and 5.22.
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Figure 5.19: Transition Phase, 1/4
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Figure 5.20: Transition Phase, 2/4
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Figure 5.21: Transition Phase, 3/4
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Figure 5.22: Transition Phase, 4/4

Similarly, Figures 5.23 and 5.24 show the variation of element lengths and the
normalized force-densities in the elements. Figure 5.23 reveals that the transition
sequence is not symmetric since the same type of cables in different stages have
different lengths and force densities. Therefore, the number of groups in the
structure increases. Since three saddle cables are shortened to zero length while the
other three fill their gap simultaneously, asymmetric reconfiguration makes the same
members of the group of elements act differently in different stages. The distinction

106



between these groups is visible in Figures 5.23 and 5.24 in terms of both length and
force density. Since the force-densities are force-per-unit length by definition, as
the lengths of one group of saddle cables approach zero, the force-densities increase
significantly. However, the actual pre-stress carried by that group of cables is of
the same order of magnitude of the pre-stress in other elements.
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Figure 5.23: Variation of the lengths
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Explicitly, each group of vertical and reinforcing cables creates two different
groups during the transition phase. However, at the end of this phase, their lengths
become the same again, satisfying the symmetrical shape. On the other hand, two
groups created by the diagonal cables coincide with different types of elements.
For instance, in the bottom stage, the diagonal cables coincide with struts while
in the top stage, the diagonal cables coincide with the vertical cables. Therefore,
as they approach very close to each other, motors can increase the length of one
kind of cable, preferably diagonal cables, to allow them go slack. In this way, the
connectivity of the structure changes, and when the struts touch each other at
nodes, the structure becomes a Class-2 tensegrity boom as shown in Figure 5.25.

Now, the resulting configuration is a Class-2 tensegrity system, and since all of
the cables are actively controlled so far, there is no restriction on the number of
actuators. Therefore, the final deployment can be executed by actuating all cables
until r is approximately the same as rbase to obtain a uniform cross section along the
longitudinal axis, which will be referred to as full deployment. The final deployment
sequence is shown in Figures 5.26, 5.27, 5.28, and 5.29. Additionally, Figures 5.30
and 5.31 show the variation of lengths of and force densities in elements.
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Figure 5.25: Transformed Class-2 tensegrity boom
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Figure 5.26: Final Deployment, 1/4
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Figure 5.27: Final Deployment, 2/4
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Figure 5.28: Final Deployment, 3/4
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Figure 5.29: Final Deployment, 4/4
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Figure 5.30: Variation of the lengths
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As a result, the final configuration becomes a Class-2 tensegrity boom with
additional reinforcing cables. Strut-to-strut contact occurs, and bending stiffness of
the tensegrity boom is increased. Furthermore, the number of mechanism modes is
also decreased due to the addition of reinforcing cables, and infinitesimal mechanisms
are locked. Another important feature of this deployment strategy is the increment
of the total height. The overlap found in Class-1 tensegrity configuration is not
necessary anymore and during transformation this overlap adds to the total height
of the structure, increasing the deployment efficiency in terms of the ratio between
the final height and the initial height of the boom.

5.2 Stiffness Comparison
In order to justify the claim of bending stiffness improvement, two differently
deployed tensegrity booms are investigated using nonlinear finite element analyses.
The first example is the Class-1 SVD boom and the second example is the trans-
formed Class-2 tensegrity boom examined in this chapter. Final configurations
are selected in such a way that they resemble a cylindrical boom with a constant
radius. Since the radii of the circumscribing circles of the top and bottom planes
are constant, this resemblance is controlled by the radius of the circumscribing
circle of the intermediate plane. The deployment of the first example starts with
the same Class-1 tensegrity boom given in Figure 5.6 and is achieved by moving on
the equilibrium surface until the radius of the circumscribing circle of the interme-
diate plane is almost equal to rbase. The initial and final azimuth and declination
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angles are selected as α14,i = 216°, δi = 88°, α14,f = 197°, and δf = 31°, and the
deployment sequence is shown in Figures 5.32, 5.33, 5.34, and 5.35.
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Figure 5.33: Class-1 Deployment, 2/4
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Figure 5.34: Class-1 Deployment, 3/4
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Figure 5.35: Class-1 Deployment, 4/4

Similarly, the variation of the lengths of the members and the force-densities
carried by the elements are shown in Figures 5.36 and 5.37.

Nonlinear finite element analyses are conducted to compare the bending stiffness
properties of the two aforementioned tensegrity booms in Figures 5.29 and 5.35.
The cross sectional areas of cables and struts are chosen as 10 mm2 and 1 cm2,
respectively. Cables and struts are assumed to be made of steel and aluminum with
modulus of elasticity of 200 GPa and 70 GPa. The bottom nodes of the booms
are completely fixed, and 25 N, 250 N, and 500 N of nodal forces are applied at
the top nodes generating three different load cases. The loading conditions, which
simulate bending around x and y axes are depicted in Figure 5.38 with dashed and
solid lines, respectively.
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Figure 5.38: Top plane of the tensegrity booms showing the loading conditions

The normalized force-densities carried by the elements are multiplied by the
pre-stress coefficient and the length of each element to determine the pre-stress
force. The pre-stress coefficient is chosen in such a way that the struts carry 1 kN
of pre-stress in each case. The length of each type of element and the pre-stress
forces carried by them are given in Table 5.1.

The displacement of the center of the top plane in the corresponding direction,
which will be referred to as tip displacement, is obtained from nonlinear finite
element analyses, and the results are given in Table 5.2 for fully deployed SVD and
transformed Class-2 tensegrity booms. It is revealed that for each loading condition,
the tip displacement is decreased with the proposed transformation between Class-1
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Table 5.1: Pre-stress in each type of element

Fully Deployed SVD Transformed Class-2
Element Length [cm] Pre-stress [N] Length [cm] Pre-stress [N]

Top-Bottom
Cables 5.976 242.336 5.976 241.661

Vertical
Cables 11.081 712.345 11.136 636.889

Saddle
Cables 3.662 447.030 5.976 483.310

Diagonal/
Reinforcing

Cables
10.804 168.613 11.605 242.941

Struts 12.800 -1000.000 12.800 -1000.000

and Class-2.
The improvement in the stiffness properties of the tensegrity tower results from

not only strut-to-strut contact but also the additional reinforcing cables. Even
though the reinforcing cables are employed to make rotation and transition phases
possible in this case, they also lock infinitesimal mechanisms and enhance stiffness
properties in specific directions. The matrix analysis developed by Pellegrino and
Calladine [31] indicates that the fully deployed SVD boom has one mechanism,
nm = 1, while the transformed Class-2 boom has none. Furthermore, in the case of
longer booms with more than two stages, the number of mechanisms will be greater
for Class-1 configurations.

Table 5.2: Deflection comparison of SVD and Class-2 booms

Fully Deployed SVD Transformed Class-2
Applied
Load

Loading
Type

Tip
Displacement [mm]

Tip
Displacement [mm]

F = 25 N y Bending 0.110 0.058
x Bending 0.110 0.058

F = 250 N y Bending 7.345 1.218
x Bending 8.767 1.291

F = 500 N y Bending 12.634 2.941
x Bending 14.860 3.129
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The results given in Table 5.2 reveal the geometric nonlinearity that is present
in tensegrity structures. Under the applied load of F = 25 N, none of the cables in
either tensegrity system goes slack, and displacement values in different directions
indicate symmetric behavior. On the other hand, when the applied load is increased
to F = 250 N, some of the cables go slack and the displacements increase significantly.
As the applied load reaches F = 500 N, the number of slack cables remains the
same for the fully deployed SVD while it increases for the transformed Class-2.
Therefore, the displacement values in the transformed Class-2 booms increase with
an even greater rate. Additionally, regardless of the tensegrity boom type, since
cable slackness occurs, the symmetric behavior disappear due to nonlinear behavior.

Initial and deflected geometries of the investigated tensegrity booms for loading
cases of F = 250 N and F = 500 N are shown in Figures 5.39, 5.40, 5.41, 5.42,
5.43, 5.44, 5.45, 5.46, 5.47, and 5.48. For clarification, all cables are denoted with
black lines while struts are represented with thick red lines. Under the applied load,
some of the cables in the tensegrity systems became slack and their contribution
to the stiffness of the whole structure was eliminated in the associated iteration.
These cables are denoted with dashed black lines in the following figures.
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Figure 5.39: Fully Deployed SVD
Initial Configuration
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Figure 5.40: Transformed Class-2
Initial Configuration
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Figure 5.41: Fully Deployed SVD
y Bending, 250 N
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Figure 5.42: Transformed Class-2
y Bending, 250 N
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Figure 5.43: Fully Deployed SVD
y Bending, 500 N
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Figure 5.44: Transformed Class-2
y Bending, 500 N
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Figure 5.45: Fully Deployed SVD
x Bending, 250 N
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Figure 5.46: Transformed Class-2
x Bending, 250 N

114



12

11
12

0

5

5

3

6

5

Y [cm]

10

0

X [cm]

Z
 [c

m
]

0

5

7

15

10

-5 -5

4

20
8 9

Figure 5.47: Fully Deployed SVD
x Bending, 500 N
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Figure 5.48: Transformed Class-2
x Bending, 500 N

In spite of having more slack cables than the fully deployed SVD boom, the
transformed Class-2 boom is much stiffer. This behavior can be explained in terms
of the number of mechanisms. Since no mechanisms exist in the transformed
Class-2 boom, the structure does not soften as much as the fully deployed SVD
boom. Additionally, examining the the values of the tip displacements reveals that
the deployment strategy performed here is able to reduce the displacements in
each loading case. Quantification of these reductions is tricky since each loading
case gives a different ratio between tip displacements. Nevertheless, the stiffness
improvement is undeniable, regardless of applied load levels.

Furthermore, the effective stiffness properties of these differently deployed
tensegrity booms are evaluated as explained in Chapter 3, and the results are given
in Table 5.3. The results indicate that the maximum improvement is attained
in axial and torsional rigidities, which is mostly due to locking of infinitesimal
mechanisms in these directions. Bending and shear rigidities in orthogonal directions
are found to be the same, suggesting symmetry in the xy plane. These rigidities
are also improved by 36% and 63%, respectively.

It is important to note that these effective stiffness properties are valid for the
undeformed configurations. As the deformation occurs under applied loads, due
to variation of the pre-stress in the members and potential cable slackness, these
effective stiffness properties change, and the aforementioned symmetry disappears.
Especially, cable slackness affects the stiffness properties significantly by softening
the structure.
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Table 5.3: Effective stiffness properties of the tensegrity booms

Fully Deployed
SVD

Transformed
Class-2

Percent
Difference

EA [N] 3.76× 106 1.70× 107 +352%
EIx [N.cm2] 3.21× 107 4.38× 107 +36%
EIy [N.cm2] 3.21× 107 4.38× 107 +36%
GAx [N] 1.43× 106 2.33× 106 +63%
GAy [N] 1.43× 106 2.33× 106 +63%
GJ [N.cm2] 3.15× 106 9.57× 106 +204%

All the results are obtained for the example structures studied in this section,
and greater improvement in stiffness properties may be obtained for structures
made of different materials and with different sizing. In the next chapter, the
optimization of tensegrity structures is studied in order to obtain maximum bending
stiffness per mass per unit length. Additionally, the transformation path, which
was selected arbitrarily in this case, is optimized considering stiffness.
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Chapter 6 |
Optimization of Tensegrity
Booms

Deployable booms for space applications need to be designed very carefully to
meet the demands of the missions. The features sought in a deployable boom for
space applications are typically lightweight, high stiffness and easy deployment.
Tensegrity structures are shown to be lightweight and easy to deploy by many
researchers [13,14,16,60,62]. Masic et al. [67] optimized tensegrity structures to
obtain the maximum stiffness-to-mass ratio using nonlinear programming. The
results indicate that the stiffness-to-mass ratio of tensegrity structures may be
increased by three ways: increasing pre-stress, adding extra elements to lock
mechanisms, and changing to a Class-2 structure. Inspired by these facts, a novel
deployment strategy was presented in the previous chapter. Additionally, with
proper selection of materials and geometry, stiffness of tensegrity structures can be
increased even further.

Optimization of tensegrity structures was first studied by De Jager and Skelton
[68] by studying the stiffness optimization problem of two dimensional tensegrity
structures symbolically. Masic and Skelton [69] studied pre-stress selection for
optimal LQR performance of tensegrity structures using a gradient method and
attained a linear decrease in the objective function. Raja and Narayanan [70]
employed a genetic algorithm for simultaneous optimization of structure and control
of tensegrity structures. Genetic algorithm has also been used by Ali et al. [71]
to obtain optimum design of a tensegrity footbridge satisfying static and dynamic
requirements. Dalilsafaei et al. [72] investigated sizing and pre-stress optimization
of tensegrity structures using a genetic algorithm and made a comparison between
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tensegrities and truss structures. Topology optimization of tensegrity structures
has been investigated by Kanno [73, 74], Marzari [75], and more recently by Xu
et al. [76]. There are also works devoted to energy optimization of deployable
tensegrtiy structures by Li et al. [77] and zero energy shape modifications by
Caluwaerts and Carbajal [78].

In this chapter, optimization of tensegrity structures is studied from different
aspects. Considering that the deployed configuration of the tensegrity structure
is defined as a Class-2, sizing and pre-stress optimization of tensegrity booms is
achieved. The aim is selected to be maximizing the stiffness-to-mass ratio, and
cross sectional areas of members and pre-stress level are determined. Therefore,
the designed tensegrity boom can be compared to the state-of-the-art deployable
booms, and its advantages and disadvantages can be concluded.

The optimization problem of tensegrity structures is a complex problem due
to their nonlinear behavior. The static analyses of tensegrity structures under
external loads are achieved through nonlinear finite element analyses and, therefore,
employing traditional optimization techniques such as gradient methods is too
computationally expensive. In order to solve optimization problems related to
tensegrity structures, particle swarm optimization (PSO) is utilized. Particle swarm
optimization is a stochastic optimization technique developed by Eberhart and
Kennedy [79]. It is similar to genetic algorithm (GA) techniques, since it starts with
a population in the search space and looks for the optimum solution by iteratively
updating potential solutions based on the current best solutions. It does not require
any gradient calculation and has proven to work robustly by many researchers in
several applications [80–83]. A review paper by Poli [84] gives detailed information
about applications of particle swarm optimization in different fields.

Furthermore, a deployment path that allows transformation between Class-1
and Class-2 tensegrity booms was discovered using parameters selected arbitrarily.
Therefore, it is also possible to optimize the proposed deployment path by deter-
mining the arbitrarily selected parameters. In order to achieve the optimization of
the deployment path, the final configuration obtained from sizing and pre-stress op-
timization of the deployed tensegrity boom is considered. Then potential paths that
allow the transformation are determined, and their characteristics are investigated.

In this chapter, particle swarm optimization is explained, and an application
to a structural problem is studied. Then, particle swarm optimization is applied
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to tensegrity booms for sizing and pre-stress optimization purposes. The obtained
results are compared to the state of the art booms and discussed. Finally, using the
final configuration of tensegrity booms determined by particle swarm optimization,
the deployment path is optimized based on maximum stiffness properties.

6.1 Particle Swarm Optimization
Particle swarm optimization is a heuristic, global optimization tool developed
by Eberhart and Kennedy [79] in 1995. It is a nature-inspired, population-based
optimization technique, and the point of origin is similar to other swarm optimization
techniques such as ant colony optimization [85] and artificial bee colony algorithm
[86] in terms of mimicking the animal behavior. While trying to model the behavior
of a bird flock searching for food, Eberhart and Kennedy ended up by developing a
new optimization tool.

The algorithm randomly generates a population in the search space in which
each individual is called a particle. Each particle is initially assigned a position
and a velocity. For each particle, a fitness function, which is the quality measure
of potential solutions, is evaluated based on the particle’s position. Then, using
simple mathematical expressions, each particle’s position and velocity is updated
with the knowledge of its best previous position and the best previous position in
the swarm. The mathematical expressions for updating velocity and position of
each particle are given as follows:

vk+1
i,j = vki,j + c1r1(xbestki,j − xki,j) + c2r2(xgbestkj − xki,j) (6.1)

xk+1
i,j = xki,j + vk+1

i,j (6.2)

where xki,j and vki,j are the ith particle’s position and velocity components in
jth direction, respectively. k represents the iteration number while r1 and r2 are
random numbers between (0, 1). xbesti and xgbest are the best positions obtained
by the ith particle and the whole population up to the kth iteration.

The parameters c1 and c2 determine the velocity characteristics of particles and
they were set to 2 initially by Eberhart and Kenneth. Higher values of c1 make the
particles go towards their best obtained positions while higher values of c2 attract
the particle to the best position obtained by the swarm.
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Over the years, the fundamental PSO algorithm has been modified considering
convergence and search efficiency. The most important modifications are consid-
ered to be maximum velocity, Vmax, and inertia weight, w. Eberhart et al. [83]
recommended the use of a maximum velocity so that the particles will not be able
to leave the search space and diverge. It is also concluded by Shi and Eberhart [87]
that the previous velocity of the particle can be multiplied with an inertia weight,
and based on the selection, global or local minima can be sought. Eberhart and
Shi [88] stated that by using a linearly decreasing inertia weight from 0.9 to 0.4, the
performance of the algorithm is increased. Based on that, the modified updating
rules are given as follows:

vk+1
i,j = wvki,j + c1r1(xbestki,j − xki,j) + c2r2(xgbestkj − xki,j) (6.3)

xk+1
i,j = xki,j + vk+1

i,j (6.4)

Based on Equations 6.3 and 6.4, movement of a particle in a two-dimensional
search space can be depicted as in Figure 6.1. Red and blue nodes represent the
global and local best positions. Black and green nodes indicate current and updated
positions.

vki

xgbesti

xk
i

xk+1
i

xbesti

vk+1
i

Current motion influence

Particle memory influence

Swarm influence

Figure 6.1: Movement of a particle in a two-dimensional search space

For constrained optimization problems, different approaches may be used with
heuristic algorithms. The one taken in this dissertation is called the penalty
approach. The penalty approach checks each constraint and, if any of them is
violated, adds a relatively large number, called a penalty, to the fitness function
value, making the solution worse compared to other potential solutions.

The algorithm of particle swarm optimization can be summarized as follows:
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Algorithm

• Initialization

• Step 1: Initialize xi, vi

• Step 2: Evaluate fitness function for each particle

• Step 3: Determine xbesti for each particle and xgbest

• Iteration

• Step 4: Update velocity and position of each particle using Equations 6.3 and
6.4

• Step 5: Evaluate fitness function for each particle

• Step 6: Check if f(xi) is better than f(xbesti)

1. Yes, Update xbesti = xi

2. No, Keep xbesti

• Step 7: Check if any f(xi) is better than f(xgbest)

1. Yes, Update xgbest by assigning the best xi

2. No, Keep xgbest

• Step 8: Check if maximum number of iterations is reached

1. Yes, Stop

2. No, go to Step 4

Numerical Example

Particle swarm optimization is applied to a truss bridge design example studied
by Hadidi et al. [89] using an artificial bee colony (ABC) algorithm in order to
minimize the weight of the structure. The truss consists of 45 bars and is 2000 in.
long. The geometry is predefined as in Figure 6.2, and sizing of the bars is studied.
Nodes 1 and 20 are completely fixed, and vertical loads of 10 kips are applied at
nodes 3, 5, 7, 9, 11, 13, 15, 17, and 19. The stress limit of the bars is given as ±30
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ksi for all the bars. The displacements in the lateral and vertical directions are also
limited to ±2 inches. The modulus of elasticity and the material density are given
as 30,000 ksi and 0.283 lb/in3. The structure is symmetric and the bars are divided
into 23 groups, which are the design variables. Design variables also have a lower
bound of 0.1 in2.
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Figure 6.2: 45-bar truss bridge

A function was developed to conduct finite element analyses of the designed
truss in order to determine displacements at each node and stress values in the
bars. The main program calls the function to evaluate the fitness function for each
potential solution. The population size was selected to be 300, and 10 different
runs were performed, each consisting of 300 iterations. The optimal cross-sectional
areas of the bars of each group and the weight of the overall structure are shown in
Table 6.1. It also presents the results obtained from the PSO algorithm and the
ones obtained from regular and modified artificial bee colony algorithms.

Table 6.1 proves the robustness of the particle swarm optimization algorithm.
The minimized weight obtained by the particle swarm optimization algorithm is
almost the same as the optimal solution obtained by ABC algorithms.

In the next section, particle swarm optimization is applied to tensegrity booms
for sizing and pre-stress optimization in order to maximize bending stiffness per
unit mass.

6.2 Sizing and Pre-stress Optimization of Deployed
Tensegrity Booms
In order to design a tensegrity boom for space applications, particle swarm opti-
mization is utilized in this section. Since bending stiffness of a deployable boom for
space applications is stated to be one of the most important parameters [91], the
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Table 6.1: Optimal cross sectional areas (in2) for the truss design example

Design
Variables Members ABC [89] MABC [89] SOPT [90] PSO

G1 1, 44 5.4746 4.5996 4.6279 4.5850
G2 2, 45 4.5989 3.7966 3.6981 3.6963
G3 3, 43 4.1703 3.0497 3.202 3.1711
G4 4, 39 3.7872 3.2841 3.3323 3.2694
G5 5, 41 0.1000 0.1069 0.1003 0.1000
G6 6, 40 4.1735 3.9279 3.9324 3.9518
G7 7, 42 0.9497 0.9649 0.9287 0.9153
G8 8, 38 1.5902 1.2133 1.2041 1.1925
G9 9, 34 6.2656 7.6553 7.6821 7.7047
G10 10, 36 2.2039 2.1993 2.2417 2.3316
G11 11, 35 1.3925 1.1929 1.1930 1.1685
G12 12, 37 0.1000 0.1001 0.1004 0.1000
G13 13, 33 0.1000 0.1008 0.1000 0.1000
G14 14, 29 9.0689 9.5360 9.3600 9.4470
G15 15, 31 1.5310 1.2173 1.2055 1.2678
G16 16, 30 1.6245 1.4190 1.3068 1.3541
G17 17, 32 2.9146 2.5513 2.5968 2.5859
G18 18, 28 0.1000 0.1000 0.1001 0.1000
G19 19, 24 9.0685 11.5439 11.7376 11.5595
G20 20, 26 1.6352 1.2807 1.2362 1.2402
G21 21, 25 0.1000 0.1010 0.1000 0.1000
G22 22,27 4.4798 3.7598 3.7531 3.7386
G23 23 0.1000 0.1017 0.1020 0.1000

Weight (lb) 8267.21 7968.95 7968.59 7969.03

objective function is selected to be bending stiffness per unit mass. The aim is to
design a tensegrity boom with high bending stiffness to mass ratio. The constraints
are determined to be unilateral element behavior (no cable slackness), stress limits
for cables, and strut buckling.

The cables are assumed to be made of Kevlar 49 resin impregnated strands
since it provides a great tensile strength of σY = 3, 600 MPa. The modulus of
elasticity of Kevlar 49 is given as E = 124 GPa, and the density is ρ = 1440 kg/m3.
Unidirectional Mitsubishi K13C2U UHN /epoxy (60% fiber volume fraction) is
chosen for struts due to its low density and high modulus of elasticity [72, 91]. The
modulus of elasticity, Poisson’s ratio, and the density are E = 536 GPa, ν = 0.39,
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and ρ = 1840 kg/m3.
The Canister Astromast [92] is selected as an example deployable boom for

comparison. It is 14 meters long and has a radius of the cross-section of 0.254 m.
Specific information about external loads acting on Cannister Astromast is not
available to the public and it also depends on the mission. Garrett and Pike [93]
note that typically, the amplitude of disturbance forces acting on a spacecraft due
to operating equipment is between 0.001 and 10 N. Therefore, the following example
loading case is considered: Lateral loads of 20 N in the x direction are applied at
the nodes on the top plane, and the nodes on bottom plane are fixed.

The tensegrity boom is chosen to consist of three strut per stage since it has
the least number of mechanisms (soft modes) [17]. The optimization problem is
applied to the transformed Class-2 configuration since it is the final operational
form of the structure. Struts are assumed to be hollow-tubes while cables have
solid circular cross-sections. Then, the design variables are chosen as follows: the
radii of different groups of cables; the inner and outer radii of struts; pre-stress
coefficient; twist angle; and number of bays, for a total of nine design variables.

The unilateral element behavior constraint is treated by ensuring that cables
and struts are always in tension and compression, respectively. The stress limit
constraint for cables is considered by

σci
≤ σY (6.5)

where σci
is the axial stress value in the ith cable. For the strut buckling con-

straint, both global (Euler buckling) and local (wall) buckling cases are considered.
The global buckling of individual struts can be represented as

Tst,i ≤ Peu (6.6)

where Tst,i is the compression force in the ith strut and Peu is the Euler buckling
load for a simply supported - simply supported column:

Peu = π2EI

L2 (6.7)

The local buckling constraint for thin-walled tubular columns can be written as

σst,i ≤ σcr (6.8)
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where σst,i is the axial stress value in the ith strut. σcr is the critical stress for
wall buckling [94]:

σcr = γE√
3(1− ν2)

ro − ri
ro

(6.9)

where γ is a correlation coefficient as follows:

γ = 1− 0.901(1− e−φ) (6.10)

φ = 1
16

√
ro

ro − ri
(6.11)

where ro and ri are the outer and inner radii, respectively.
Then, the main MATLAB program calls a function that carries out nonlinear

finite element analyses under applied external loads and evaluates the effective
stiffness properties of the boom. The lower and upper bounds for radii of cables,
inner and outer radii of struts, and the pre-stress coefficient are selected as 2 and
10 mm, 1 and 30 mm, and, 0.1 and 20 N/mm, respectively. Bounds of the twist
angle are determined to be 62° and 88° since struts collide at 60° and vertical cables
are slack at 90°. For the constrained optimization problem, a penalty approach
is employed for constraint handling as explained in the previous section. The
optimization problem can be stated as follows:

minimize
X

− EI(X)/M(X)

subject to − q(i) < 0, for cable

σc,i ≤ σY , for cable

q(i) < 0, for strut

Tst ≤ Peu, for strut

σst ≤ σcr, for strut

(6.12)

Initial results reveal that the maximum bending stiffness is obtained with
the smallest number of bays that requires longer struts. However, longer struts
mean wider volume for the undeployed configuration to account for strut lengths.
Considering the available space during launch, an increased number of bays seems
to be more convenient. Therefore, in order to get a better understanding of how the
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number of bays affects the bending stiffness of the structure, optimization analyses
are conducted for fixed numbers of bays.

Fixing the number of bays reduces the design variables by one, and optimization
analyses are conducted with number of bays between 2 and 50. The population size
is selected as 200, and three analyses with 100 iterations are conducted for each
case. Figures 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 show the variations of bending stiffness,
bending stiffness per unit mass, torsional stiffness, torsional stiffness per unit mass,
mass, and tip deflection, respectively. The results are also shown in Table 6.2.
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Figure 6.3: Variation of bending stiff-
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Figure 6.4: Variation of bending stiff-
ness per unit mass
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Figure 6.5: Variation of torsional stiff-
ness
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Figure 6.6: Variation of torsional stiff-
ness per unit mass
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Figure 6.7: Variation of mass
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Figure 6.8: Variation of tip deflection

Additionally, decreases in lengths of struts with increasing number of bays is
shown in Figure 6.9. The results indicate that strut lengths decrease substantially
with increased number of bays for small number of bays; however, this decrease
slows down for greater numbers of bays while the decrease in bending stiffness per
unit mass is linear. Therefore, the number of bays should be selected carefully
based on the requirements of the mission. One might compromise the bending
stiffness for the torsional stiffness, which can be accomplished by increasing the
number of bays with a slight increase in the mass.
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Figure 6.9: Variation of length of struts
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Table 6.2: Bending and torsional stiffnesses of optimized booms

Number
of bays

Number
of struts EI [Nm2] GJ [Nm2] Mass [kg] EI/Mass GJ/Mass

2 6 5.43×106 1.48×104 104.938 5.17×104 1.41×102
4 12 5.57×106 5.97×104 54.340 1.03×105 1.10×103
6 18 5.44×106 1.32×105 46.076 1.18×105 2.86×103
8 24 5.32×106 2.31×105 44.026 1.21×105 5.26×103
10 30 4.67×106 3.08×105 39.779 1.17×105 7.73×103
12 36 3.94×106 3.01×105 34.710 1.13×105 8.86×103
14 42 3.49×106 2.97×105 32.175 1.09×105 9.24×103
16 48 3.47×106 4.07×105 33.572 1.04×105 1.21×104
18 54 3.34×106 4.69×105 34.251 9.74×104 1.37×104
20 60 3.13×106 4.75×105 35.129 8.90×104 1.35×104
22 66 3.04×106 6.10×105 35.826 8.48×104 1.70×104
24 72 2.83×106 5.93×105 36.532 7.75×104 1.62×104
26 78 2.71× 106 6.85×105 37.455 7.23×104 1.83×104
28 84 2.64×106 8.87×105 39.453 6.68×104 2.25×104
30 90 2.43×106 8.12×105 39.412 6.16×104 2.06×104
32 96 2.25×106 9.09×105 39.854 5.65×104 2.28×104
34 102 2.13×106 9.48×105 41.211 5.16×104 2.30×104
36 108 1.98×106 1.05×106 42.401 4.68×104 2.48×104
38 114 1.91×106 1.24×106 45.371 4.22×104 2.74×104
40 120 1.79×106 1.10×106 45.888 3.90×104 2.40×104
42 126 1.68×106 1.11×106 47.112 3.56×104 2.36×104
44 132 1.58×106 1.17×106 48.878 3.22×104 2.38×104
46 138 1.44×106 1.19×106 48.901 2.94×104 2.43×104
48 144 1.25×106 1.28×106 48.374 2.58×104 2.65×104
50 150 1.19×106 1.07×106 48.962 2.43×104 2.19×104

The optimization results reveal that the maximum bending stiffness per unit
mass is obtained when the number of bays is 8. Furthermore, bending stiffness and
bending stiffness per unit mass decrease as the number of bays increases, as shown
in Figures 6.3 and 6.4. This is mostly due to the increased number of ball joints
for the connection of struts. Design variables of each optimized case are also given
in Table 6.3.
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Furthermore, the stowed configuration of deployable tensegrity booms is another
concern. The initial, undeployed configuration of a tensegrity boom in a self-stress
state is quite wide and not really practicable. Therefore, a stowing approach for
optimization purposes is proposed here. The struts can be packed into a cylinder,
positioned vertically. Since they are hollow-tubes, the cables can be placed inside
the struts and other volume that remain empty inside the cylinder. The package
areas can be minimized by employing optimum packaging solutions of circles in a
larger circle. Based on the number of struts, the solutions to optimum packaging
problem are provided by many researchers [95–100]. Then, for the proposed stowing
approach, required volumes are calculated for each case, and the results are given
in Table 6.4.

In Table 6.4, the radius ratio represents the ratio between the outer radii of
struts and the radius of the cylinder. These numbers are optimum values for the
given number of struts and were obtained from several studies [95–100]. The results
reveal that package radius, area, and volume all increase with the increasing number
of struts.

Starting from a stowed configuration, the tensegrity boom can be put into its
initial, undeployed configuration using some sort of mechanism. The tensegrity
boom can be attached to a moving base plate, which can be used to bring the
boom out of the circular package or canister, and cables can be tightened to apply
self-stress. Then, the deployment can be achieved by cable actuation as described
in the previous chapters.

The next section deals with the optimization of the deployment/transformation
path. The transformation example studied in the previous chapter was achieved
with arbitrarily selected parameters which are feasible for the problem. The selection
of these parameters is studied in the next section to optimize the deployment/-
transformation path.

6.3 Optimization of Deployment/Transformation Path
The optimization of deployment/transformation path can be achieved by different
means based on the requirements. The aforementioned deployment strategy that
involves a transformation from Class-1 to Class-2 consists of five phases. Out of
these five phases, three can be stated as autonomous or predefined, which means

130



Table 6.4: Packaging properties of optimized booms

Number
of struts

Radius
Ratio

Strut
Length
[mm]

Strut
Radius
[mm]

Package
Radius
[mm]

Package
Area
[mm2]

Package
Volume
[mm3]

6 0.33333 7018.40 30 9.00×101 2.54×104 1.79×108
12 0.24816 3536.70 30 1.21×102 4.59 ×104 1.62×108
18 0.20560 2388.00 30 1.46×102 6.69×104 1.60×108
24 0.17694 1822.20 30 1.70×102 9.03×104 1.65×108
30 0.16135 1488.70 30 1.86×102 1.09×105 1.62×108
36 0.14822 1269.10 30 2.02×102 1.29×105 1.63×108
42 0.13611 1116.50 30 2.20×102 1.53×105 1.70×108
48 0.12835 1006.10 30 2.34×102 1.72×105 1.73×108
54 0.12189 922.12 30 2.46×102 1.90×105 1.75×108
60 0.11566 856.33 30 2.59×102 2.11×105 1.81×108
66 0.10994 805.88 30 2.73×102 2.34×105 1.89×108
72 0.10555 763.74 30 2.84×102 2.54×105 1.94×108
78 0.10144 730.16 30 2.96×102 2.75×105 2.01×108
84 0.09853 703.40 30 3.04×102 2.91×105 2.05×108
90 0.09482 679.05 30 3.16×102 3.14×105 2.14×108
96 0.09188 659.86 30 3.26×102 3.35×105 2.21×108
102 0.08931 642.87 30 3.36×102 3.54×105 2.28×108
108 0.08677 628.96 30 3.46×102 3.75×105 2.36×108
114 0.08478 616.85 30 3.54×102 3.93×105 2.43×108
120 0.08275 605.00 30 3.63×102 4.13×105 2.50×108
126 0.08053 595.04 30 3.73×102 4.36×105 2.59×108
132 0.07882 586.69 30 3.81×102 4.55×105 2.67×108
138 0.07714 579.70 30 3.89×102 4.75×105 2.75×108
144 0.07548 574.56 30 3.97×102 4.96×105 2.85×108
150 0.07429 567.00 30 4.04×102 5.12×105 2.90×108

no arbitrary selection of parameters. The phases that can be optimized are the
initial deployment phase and the rotation phase. Activation of reinforcing cables,
transformation, and the final deployment phases are predetermined even though
they are affected by the other two phases. In this dissertation, the deployment/-
transformation path is optimized to maximize bending stiffness during deployment,
considering any possible dynamic disturbances.

The initial deployment phase is governed by the equilibrium surface, and feasible
pairs of azimuth and declination angles generate a self-equilibrated tensegrity
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structure. On this equilibrium surface, the points that allow a transformation
without experiencing a slack cable can be determined. After determination of these
points on the equilibrium surface, effective stiffness properties can be evaluated,
and the final point of the initial deployment that provides the maximum bending
stiffness can be selected, accomplishing the first step of deployment/transformation
path optimization.

After the initial deployment is achieved, the reinforcing cables can be activated,
and the rotation phase can be started. Since the final configuration of the trans-
formed Class-2 is optimized, the twist angle is known. Therefore, the rotation phase
ends when the optimized twist angle is achieved, completing the optimization of
the deployment/transformation path.

As the rotation phase is completed, the transformation from Class-1 to Class-2
takes place. Finally, the transformed Class-2 tensegrity boom can be deployed even
further until the boom has a uniform cross-section.

Azimuth and declination angle pairs that allow a transformation from Class-1
to Class-2 can be determined by running several deployment simulations. For each
point on the equilibrium surface, deployment simulations can be conducted, and
the force finding method can be applied in order to track force-densities. If any of
the cables carry compression during deployment, the simulations stop and mark the
point as infeasible. Furthermore, during the rotation, total height of the structure
may decrease. If, as a result of this decrease, any nodes other than the bottom ones
fall below the bottom plane, the corresponding point on the equilibrium surface is
also marked as infeasible. All of the remaining pairs are candidate feasible points,
allowing a transformation from Class-1 to Class-2.

A selection can be made based on the effective stiffness properties to determine
the optimum initial deployment path, assuming linear variation of azimuth and
declination angles. However, deployment simulations need to be conducted with
these remaining candidate points, and careful visual inspection is required to detect
any cable entanglements or element collisions. Any of these problems makes the
deployment unrealistic. Therefore, starting from the candidate point that yields
the maximum bending stiffness, deployment simulations are conducted, unrealistic
cases are determined, and these points are eliminated. From the final feasible set
of points, the one which possesses the maximum minimum bending stiffness along
the deployment path is selected.
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For demonstration purposes, the case from the sizing optimization example in
which the package diameter and height are almost equal to each other is selected.
In this way, the shape of the package resembles a cube, which may be useful while
placing it into the launch vehicle. The selected case is a tensegrity boom with 32
bays and the length of struts is 659.86 mm with a package diameter of 653 mm.
The equilibrium surfaces with respect to overlap and height are shown in Figures
6.10 and 6.11.
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Figure 6.10: Equilibrium surface with respect to overlap

0
180

500H
ei

gh
t [

m
m

]

20200

1000

14
 [Degrees]

40

1500

 [Degrees]

220 60
80

240 100

Figure 6.11: Equilibrium surface with respect to height

Then, after several deployment simulations, the candidate feasible pairs of
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azimuth and declination angles are identified. These pairs are shown in Figures
6.12 and 6.13 with filled green circles.
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Figure 6.12: Feasible points on equilibrium surface with respect to overlap
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Figure 6.13: Feasible points on equilibrium surface with respect to height
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After the feasible points are determined for the transformation, effective stiffness
properties are evaluated on the equilibrium surface. The equilibrium surfaces with
respect to axial, bending, shear, and torsional rigidities are shown in Figures 6.14,
6.15, 6.16, and 6.17, respectively.
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Figure 6.14: Equilibrium surface with respect to axial rigidity
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Figure 6.15: Equilibrium surface with respect to bending rigidity
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Figure 6.16: Equilibrium surface with respect to shear rigidity
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Figure 6.17: Equilibrium surface with respect to torsional rigidity

Figure 6.14 shows that the axial rigidity has some sort of symmetry around
α14 = 210°. It increases with decreasing declination angle, δ. Figure 6.15 reveals
that the bending rigidity is superior for higher azimuth angle, α14. Figure 6.16
indicates that the shear rigidity is maximum when the azimuth angle is high and
the declination angle is moderate, and it decreases as declination angle decreases.
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Figure 6.17 reveals that the torsional rigidity shows a similar behavior to bending
rigidity. It is greater for higher azimuth angles, α14.

From Figure 6.15, the azimuth and declination angles pair that yields the
maximum bending rigidity is identified as α14 = 220° and δ = 44°. However, after
simulating the deployment with this pair, during deployment, cable entanglements
occur, making this point infeasible. After running several deployment simulations,
the feasible point which yields the maximum bending rigidity is found as α14 = 214°
and δ = 56°.

On the other hand, From Figure 6.11, the initial point is determined to be
α14 = 218° and δ = 88°, since it provides a very compact height. Then, assuming a
linear variation between these start and end points, the deployment is achieved.
Figure 6.18 illustrates the optimized deployment path for the initial deployment.
Figures 6.19, 6.20, 6.21, and 6.22 show the optimized initial deployment sequence.

20
0

40180

500

190

 [Degrees]

60

H
ei

gh
t [

m
m

]

200

14
 [Degrees]

1000

210 80220

1500

230 100240

Equilibrium Surface
Deployment Path

Figure 6.18: Optimized deployment path

Variation of the lengths of the elements and the force-densities are shown
in Figures 6.23 and 6.24. The results show that unilateral element behavior is
preserved. The saddle and diagonal cables are shortened, and the vertical cables
are lengthened while the top and bottom cables, and struts maintain their lengths.
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Figure 6.19: Initial deployment, 1/4
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Figure 6.20: Initial deployment, 2/4
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Figure 6.21: Initial deployment, 3/4
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Figure 6.22: Initial deployment, 4/4
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Figure 6.23: Variation of the lengths
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After the initial deployment is achieved, reinforcing cables (in orange) are
activated in order to suppress dependence on the equilibrium surface. Activation of
the reinforcing cables is shown in Figure 6.25.
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Figure 6.25: Activation of reinforcing cables

Then, the rotation phase starts, and continues until the twist angle α reaches
87.9°, which is obtained from the sizing and pre-stress optimization problem. The
rotation phase is illustrated in Figures 6.26, 6.27, 6.28, and 6.29.
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Figure 6.26: Rotation Phase, 1/4
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Figure 6.27: Rotation Phase, 2/4
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Figure 6.28: Rotation Phase, 3/4
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Figure 6.29: Rotation Phase, 4/4

Similarly, the variation of the lengths of the members and the force-densities
are shown in Figures 6.30 and 6.31.
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Figure 6.30: Variation of the lengths
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When the rotation sequence is completed, transformation from Class-1 to Class-2
begins. Nodes 10, 11, and 12 approach nodes 4, 5, and 6, respectively. As a result,
three saddle cables are shortened to zero length, allowing a strut-to-strut contact
at the nodes. The transformation sequence is shown in Figures 6.32, 6.33, 6.34,
and 6.35.

During the transformation phase, as noted before, some of the elements in
different stages act differently, and symmetry is partially lost. The variation of the
lengths of the members and the force-densities are shown in Figures 6.36 and 6.37,
respectively.
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Figure 6.33: Transformation Phase,
2/4
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Figure 6.34: Transformation Phase,
3/4
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Figure 6.35: Transformation Phase,
4/4
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Figure 6.36: Variation of the lengths
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Figure 6.36 shows that diagonal cables overlap with the vertical cables in the
top stage and struts in bottom stage. Therefore, they may be slackened just before
the transformation phase is completed. Vertical and reinforcing cables also act
differently in the transformation phase; however, at the end of the transformation
phase, symmetry becomes clear again. Additionally, Figure 6.37 indicates that
force-densities in one group of saddle cables increase substantially. However, this is
due to the fact that they are shortened to zero length. Careful investigation shows
that the forces in these cables are of the same order of magnitude of the forces in
other cables.

As the struts touch each other, they are locked, and the tensegrity boom becomes
a Class-2 configuration as shown in Figure 6.38.
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Figure 6.38: Transformed Class-2 tensegrity boom

Then, final deployment is executed until the uniform cross-section of the tenseg-
rity boom is satisfied. The final deployment sequence is shown in Figures 6.39, 6.40,
6.41, and 6.42.

The variation of the lengths of the elements and the force-densities are shown
in Figures 6.43 and 6.44, respectively.
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Figure 6.39: Final Deployment, 1/4
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Figure 6.40: Final Deployment, 2/4
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Figure 6.41: Final Deployment, 3/4
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Figure 6.42: Final Deployment, 4/4

Step
300

400

500

600

700

800

900

Le
ng

th
 [m

m
] Top-Bottom

Vertical
Saddle
Reinforcing
Strut
Total Height

Figure 6.43: Variation of the lengths

Step
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

F
or

ce
 D

en
si

ty Top-Bottom
Vertical
Saddle
Reinforcing
Strut

Figure 6.44: Variation of the force-
densities

The same deployment strategy can be achieved in the remaining 30 bays, either
sequentially or simultaneously. As a result, the final configuration of the structure
is 14 m long with a radius of cross-section of 254 mm. It has a bending rigidity of
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2.25×106 Nm2 and a torsional rigidity of 9.09×105 Nm2.
The maximum lengths of the cables are tracked during deployment, and the

total mass of the designed boom is calculated. Additionally, starting with the
pre-stress coefficient obtained from sizing and pre-stress optimization, the maximum
forces in each type of element is also obtained and, based on that information,
cross-sectional areas of diagonal cables are determined, considering stress limits for
cables. The maximum lengths of the elements, their contribution to the total mass,
and the maximum force, and stress they encounter during deployment are given in
Table 6.5.

Table 6.5: Maximum length, force, stress and total mass data

Element
Type

Total
Number

Maximum
Length
[mm]

Mass
[kg]

Maximum
Force
[N]

Maximum
Stress
[MPa]

Top and Bottom
Cables 6 439.94 1.194 3.93×103 12.51

Vertical Cables 96 459.58 7.574 6.93×103 58.13
Saddle Cables 93 646.50 8.410 7.83×103 80.61
Diagonal Cables 96 659.86 * 9.39×103 *

Reinforcing Cables 96 632.59 27.473 6.89×103 21.93
Struts 96 659.86 3.698 -1.72×104 -542.09

The maximum force experienced by the struts is found to be -1.72×104 N during
the transformation phase, creating a stress value greater than the critical stress
associated with local buckling. In order to avoid that, the overall pre-stress levels
can be reduced during transformation in order to prevent any failure.

Since the cross-sectional areas of the diagonal cables are not determined by the
sizing and pre-stress optimization problem, in Table 6.5, their contribution to the
total mass and the maximum stress are denoted with *.

The results show that the mass of the structure, excluding the diagonal cables
which are not considered in the final configuration, is 48.350 kg, which is different
than the one obtained from sizing and pre-stress optimization. Sizing and pre-stress
optimization does not take into account the length changes during deployment, and
the total mass of the structure is calculated as 39.854 kg by considering only the
lengths of members in the final configuration.

In order to determine the cross-sectional areas of the diagonal cables and their
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contribution to the total mass of the structure, the tensile strength of the cables is
taken into account. The tensile strength of the material which the cables are made of
is 3,600 MPa. The stress limit can hardly be exceeded with very low cross-sectional
area values and, therefore, the radius of the diagonal cables is selected as the lower
limit of design variables, 2 mm, which results in 186.8 MPa. Then, its contribution
to the total mass of the structure is calculated as 1.146 kg, summing to 49.496 kg.

The bending stiffness to mass ratio of the designed tensegrity boom is found
to be 4.55×104 Nm2/kg, which is 36 times greater than the Canister Astromast’s.
In order to observe how the designed tensegrity boom compares with the state
of the art deployable boom concepts (whose data are provided by Murphey [91]),
comparison of bending stiffness to mass per unit length ratio is made. The results
are shown in Table 6.6.

Table 6.6: Comparsion of different deployable boom concepts

Deployable Boom
EI

[Nm2]
w

[kg/m]
EI/w

[Nm3/kg]
R
[m]

EI/w/R2

[Nm/kg]
S-2 Coilable 1.00×105 0.42 2.38×105 0.68 5.15×105

ATK-ABLE GR1 8.14×104 0.07 1.16×106 0.197 3.00×107

ATK-ABLE GR2 1.12×104 0.032 3.49×105 0.12 2.43×107

Ultra Boom 1 1.17×104 0.1445 8.12×104 0.09 1.00×107

Ultra Boom 2 6.51×103 0.0655 9.93×104 0.09 1.23×107

FMI Isogrid 5.84×103 0.023 2.54×105 0.159 1.00×107

FMI Slit Tape Truss 3.67×104 0.0577 6.63×105 0.2 1.59×107

AFRL DECSMAR 9.20×104 0.157 5.86×105 0.1476 2.69×107

ATK-COI TriLok 1.20×106 0.14 8.59×106 0.5 3.43×107

L’Garde SSP Truss 1.54×106 0.7 2.19×106 0.68 4.76×106

Canister Astromast 2.10×104 1.2 1.75×104 0.254 2.71×105

Transformed Tensegrity
n=32

2.25×106 3.5354 6.36×105 0.254 9.86×106

Transformed Tensegrity
n=8

5.32×106 3.3752 1.58×106 0.254 2.44×107

ATK-ABLE SRTM 1.58×107 5.232 3.02×106 0.56 9.63×106

Transformed Tensegrity
n=6

2.54×107 3.9443 6.44×106 0.56 2.05×107
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The table shows that the designed tensegrity boom performs well by comparison
to state of the art deployable boom concepts. Greater bending stiffness-to-mass
ratio value can be obtained when the number of bays is selected as 8. Optimizing
the deployment path and considering the diagonal cables and maximum lengths of
elements, bending stiffness to mass per unit length ratio is shown in Table 6.6. The
optimization of the deployment path results are also given in Appendix A. However,
the radii of the selected deployable booms have a direct influence on the bending
rigidity values [91]. Therefore, in order to make a fair comparison, for each of the
given deployable boom concepts’ dimensions, pre-stress and sizing optimization,
and optimization of deployment path should be repeated for tensegrity booms. For
example, the radius of ATK-ABLE SRTM from Table 6.6 is 0.560 m, which is more
than double the radius of the tensegrity boom considered. In order to approximate
the influence of the radii of the deployable booms on bending stiffness, EI/w/R2

parameter is also evaluated for the booms.
Furthermore, Table 6.6 includes information for different deployable boom

categories mentioned in Chapter 1. All of these deployable boom concepts excel for
different reasons in specific applications. Tensegrity structures fall into the category
of articulated booms and, therefore, their stiffness is found to be greater compared
to the other ones given in Table 6.6 except ATK-ABLE SRTM.

The ATK-ABLE SRTM boom is selected as the second example, and its radius
is used to optimize a 20-meter long tensegrity boom. The sizing and pre-stress
optimization and the optimization of the deployment path are repeated, and the
results are provided in Appendix B. The results show that maximum bending
stiffness-to-mass per unit length ratio is obtained with 6 bays. The results in
Table 6.6 show that the transformed tensegrity boom with 6 bays has a bending
stiffness-to-mass per unit length ratio more than 2 times greater than ATK-ABLE
SRTM’s.

In summary, a novel multi-stage deployment strategy is proposed for cylindrical
tensegrity booms. The structure starts in Class-1 configuration and, as the deploy-
ment occurs, the configuration is transformed into a Class-2 one, increasing stiffness.
Sizing and pre-stress optimization is conducted for a predefined connectivity using
a Particle Swarm Optimization algorithm, and the effect of the number of bays on
several parameters is investigated. Finally, the deployment path is optimized to
maximize bending stiffness during deployment.
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Chapter 7 |
Conclusions and Future Work

In this dissertation, deployable booms for space applications were reviewed briefly
in four different categories. Their deployment techniques, advantages, and disad-
vantages were explained. A relatively new structural concept, called tensegrity, is
introduced, and its unique features were presented. The applications in aerospace
engineering field were discussed with a focus given to deployable tensegrity boom
designs for space missions.

Tensegrity structures are pre-stressed and pin-jointed and are in self-equilibrium
with no external forces or constraints applied. They consist solely of axial load-
carrying members, cables, and struts. For large deployable space structures, tenseg-
rity structures offer the potential of high packaging efficiency and good structural
performance. These deployable, stiff tensegrity structures could be excellent candi-
dates for space structures where high stiffness-to-mass ratio and ease of deployment
are important.

The mechanics of tensegrity structures were addressed in detail, starting with
the derivation of equilibrium equations. Necessary rank conditions for generating
a self-equilibrated tensegrity structure were described, and static and kinematic
indeterminacies were explained with Maxwell’s rule. One of the most important
steps in the mechanics of tensegrity structures, the form-finding problem, was
addressed, and recent solution techniques were investigated. Another method
called force finding, in which force densities in each element of the structure are
determined with given connectivity and nodal coordinates, was described.

Static and dynamic analyses of tensegrity structures were investigated next.
Geometric nonlinearity in tensegrity structures due to pre-stress was explained,
and its stiffening effect on the behavior of tensegrity structures was discussed. A
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nonlinear finite element model was described to account for geometric nonlinearity,
and an incremental iterative solution method was employed in order to take any
possible slack cables into account. The solution method was explained in detail,
and a numerical example of a tensegrity unit under external loads was investigated.
The results indicate that tensegrity structures respond differently to applied forces
in opposite directions, which is called “anisotropic” behavior. Using the finite
element model, the free vibration problem was studied, and natural frequencies
were obtained. For kinematically indeterminate tensegrity structures, natural
frequencies of vibration modes associated with infinitesimal mechanisms are found
to be very low compared to those of other vibration modes. Additionally, the
results reveal that corresponding natural frequencies increase proportionally with
the square root of the pre-stress levels. Furthermore, long tensegrity booms were
modeled as a three-dimensional beam, and their effective stiffness properties were
calculated. For this purpose, the energy equivalency method was described, and
a modified version was developed to reduce the complexity in its implementation.
Nonlinear finite element analyses were also used for validation purposes, and their
application procedure was explained. Excellent agreement in axial and torsional
rigidities are obtained while bending and shear rigidities are good.

Then, deployment actuation methods of tensegrity structures, namely cable-
mode and strut-mode deployment, were discussed, and their advantages and disad-
vantages were described. Cable-mode deployment was investigated further, and two
deployable tensegrity booms with three struts in each stage, Class-1 SVD tensegrity
boom and Class-2 tensegrity boom, were examined with their deployment mech-
anisms. The deployment simulations were carried out, and the aforementioned
force-finding method was utilized to track force-densities in the elements to check
unilateral element behavior (cables carry tension and struts carry compression).
Generalization procedures were devised for deployment of n-strut Class-1 and
Class-2 tensegrity booms.

In order to improve stiffness of tensegrity booms, an attempt was taken which
aims not only to design structurally efficient tensegrity booms for space applications
but also to deploy them. Exploiting the resemblance between Class-1 and Class-2
tensegrity booms, a deployment/transformation path has been discovered. The
transformation from Class-1 to Class-2 tensegrity booms promises increased stiffness
due to strut-to-strut contact and additional reinforcing cables. An example was
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studied, and the results were provided, showing increased stiffness. Additionally,
since the initial tensegrity configuration is a Class-1, high packaging density is
not discarded. The resulting structure becomes an adaptive tensegrity boom that
exhibits high packaging density and high stiffness when deployed.

Finally, particle swarm optimization was employed to optimize the bending
stiffness-to-mass ratio of tensegrity booms. A 14-meter long tensegrity boom was
designed and optimized to obtain maximum stiffness-to-mass ratio. The design
variables were selected as cross-sectional areas of individual groups of elements, pre-
stress coefficient, and twist angle between two modules. The results show that the
transformed tensegrity booms can easily compete with the state of the art deployable
booms in terms of stiffness-to-mass ratio. Additionally, the transformation path
was also optimized in order to maximize bending stiffness during the deployment
and transformation.

Overall, the proposed transformation from Class-1 to Class-2 tensegrity configu-
rations promises significant improvements in the structural efficiency of deployable
tensegrity booms. This deployment strategy has the potential to increase the
claims on tensegrity structures to be one of the best candidates for deployable
structures. Alongside parallel advances in cable actuation and development of a
locking mechanism, tensegrity structures can replace the conventional deployable
structures in real space missions.

7.1 Future Work
In this dissertation, it was shown that stiffness-to-mass ratio of tensegrity structures
can be better than those of conventional deployable booms. Nevertheless, there are
some questions that need to be answered. These questions can be addressed in two
different groups.

Performance Related

In order to design structurally more efficient tensegrity booms specialized for a
space mission, design variables and their lower and upper bounds can be selected
more meticulously. Furthermore, fairer comparison between tensegrity booms and
conventional deployable boom concepts should be achievable by conducting sizing
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and pre-stress optimization for each boom’s geometry. The radius of a boom has a
direct effect on its bending stiffness and, therefore, in general, comparing different
booms which have different radii is not quite correct.

One of the constraints selected for sizing and pre-stress optimization is unilateral
element behavior to avoid any cable slackness. However, cable slackness may be
allowed for sizing optimization to see its influence on the bending stiffness-to-mass
ratio.

On the other hand, packaging efficiency may require some improvements so that
tensegrity booms can be stowed more compactly into smaller volumes. Since the
deployment mode is selected as cable actuation, initial configurations of tensegrity
booms require wide volumes, which may not be provided by the launch vehi-
cle. Therefore, a combination of cable-mode and strut-mode deployment may be
considered.

Implementation Related

In order to achieve transformation perfectly, a locking mechanism is required to
lock the struts while serving as a ball joint when struts touch each other at nodes.
Rather complex designs will be required if the transformation is planned with more
than three struts per stage in order to host several elements at nodes.

Another concern is the active control of the cables for reconfiguration and
deployment. Advances in cable actuation techniques may be required to achieve
thorough control over the structure. Work should be devoted to optimal placement
of small motors on the structure to alleviate possible difficulties and increase control
performance. In order to reduce the number of actuators found in the structure,
some of the cables can be clustered in such a way that they run through more than
two nodes. Since symmetric deployment is employed, the total number of actuators
may be reduced with a well-designed control strategy. Other potential challenges
of implementation of tensegrity booms on a satellite may arise due to coupling
with attitude control systems and, therefore, more comprehensive designs may be
required, considering vibration characteristics during deployment.

Tape spring hinges can also be introduced to struts to fold them, reducing
the stowed volume. The best way to stow and deploy tensegrity booms seems
to be starting with a “pile of sticks and strings” and, with the help of additional
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mechanisms putting them into self-equilibrated configuration, sequentially deploying
and transforming them. However, this idea is complex, and additional advances
and designs are needed.
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Appendix A|
Optimization of Deployment
Path for 8 bays, R=0.254 m

In this Appendix, the optimization of deployment path results for the tensegrity
boom with 8 bays are given. The length of struts is 1822.2 mm, and the equilibrium
surfaces with respect to overlap and height are shown in Figures A.1 and A.2,
respectively.
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Figure A.1: Equilibrium surface with respect to overlap
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Figure A.2: Equilibrium surface with respect to height

Then, after several deployment simulations, the candidate feasible pairs of
azimuth and declination angles are identified. These pairs are shown in Figures
A.3 and A.4 with filled green circles.
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Figure A.3: Feasible points on equilibrium surface with respect to overlap
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Figure A.4: Feasible points on equilibrium surface with respect to height

After the feasible points are determined for the transformation, effective stiffness
properties are evaluated on the equilibrium surface. The equilibrium surfaces with
respect to axial, bending, shear, and torsional rigidities are shown in Figures A.5,
A.6, A.7, and A.8, respectively.
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Figure A.5: Equilibrium surface with respect to axial rigidity
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Figure A.7: Equilibrium surface with respect to shear rigidity

From Figure A.6, the point that yields the maximum bending stiffness without
any element collision is identified as α14 = 216° and δ = 35°. This point is used
to optimize the initial deployment step, and the twist angle, α = 62° obtained
from sizing and pre-stress optimization is used to optimize the rotation of the
intermediate plane step.

155



0
240

0.5

1

100

1.5

1013

G
J 

[N
m

m
2
]

220

2

80

14
 [Degrees]

2.5

60

 [Degrees]

3

200 40
20

180 0

Figure A.8: Equilibrium surface with respect to torsional rigidity

The maximum lengths of the cables are tracked during deployment, and the
total mass of the designed boom is calculated. Additionally, starting with the
pre-stress coefficient obtained from sizing and pre-stress optimization, the maximum
forces in each type of element is also obtained and, based on that information,
cross-sectional areas of diagonal cables are determined, considering stress limits for
cables. The maximum lengths of the elements, their contribution to the total mass,
and the maximum force, and stress they encounter during deployment are given in
Table A.1.

Table A.1: Maximum length, force, stress and total mass data

Element
Type

Total
Number

Maximum
Length
[mm]

Mass
[kg]

Maximum
Force
[N]

Maximum
Stress
[MPa]

Top and Bottom
Cables 6 439.94 0.375 2.74×102 2.78

Vertical Cables 24 1767.20 19.187 1.17×103 3.72
Saddle Cables 21 1574.90 3.341 5.49×102 7.83
Diagonal Cables 24 1822.20 * 1.84×102 *

Reinforcing Cables 24 1772.00 19.239 1.04×103 3.30
Struts 24 1822.20 4.319 -2.27×103 -42.37
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The results show that the mass of the structure, excluding the diagonal cables
which are not considered in the final configuration, is 46.462 kg. The minimum
possible cross-sectional areas of diagonal cables that yield a stress value lower than
the stress limit are selected, their mass contribution is calculated, and the total
mass of the structure is obtained as 47.253 kg.

Then bending stiffness-to-mass ratio of the designed tensegrity boom and
bending stiffness-to-mass per unit length ratio are found to be 1.13×105 Nm2/kg
and 1.58×106 Nm3/kg, respectively.
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Appendix B|
Optimization Results,
R=0.56 m

In this Appendix, the optimization results for the second example are given. The
radius of the ATK-ABLE SRTM boom, which is R = 0.56 m, is selected, and
sizing and pre-stress optimization results are obtained. Figures B.1, B.2, B.3, B.4,
B.5, and B.6 show the variations of bending stiffness, bending stiffness-to-mass,
torsional stiffness, torsional stiffness-to-mass, mass, and tip deflection, respectively.
Additionally, variation of lengths of struts is shown in Figure B.7. The results are
also tabulated in Table B.1. The design variables of each optimized case is also
given in Table B.2.
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ness per unit mass
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Figure B.6: Variation of tip deflection
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Figure B.7: Variation of length of struts
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Table B.1: Bending and torsional stiffnesses of optimized booms

Number
of bays

Number
of struts EI [Nm2] GJ [Nm2] Mass [kg] EI/Mass GJ/Mass

2 6 2.73×107 1.74×105 205.671 1.33×105 8.44×102
4 12 2.60×107 6.64×105 86.474 3.01×105 7.68×103
6 18 2.54×107 1.49×106 73.331 3.46×105 2.03×104
8 24 2.39×107 2.56×106 70.131 3.40×105 3.66×104
10 30 2.22×107 3.85×106 70.333 3.15×105 5.47×104
12 36 1.71×107 3.31×106 59.504 2.87×105 5.56×104
14 42 1.48×107 3.23×106 56.949 2.60×105 5.68×104
16 48 1.39×107 3.76×106 60.353 2.31×105 6.23×104
18 54 1.29×107 3.84×106 64.761 2.00×105 5.93×104
20 60 1.15×107 4.86×106 64.511 1.78×105 7.53×104
22 66 1.08×107 5.53×106 69.798 1.55×105 7.92×104
24 72 9.76×106 5.67×106 72.950 1.34×105 7.78×104
26 78 8.71×106 5.39×106 75.851 1.15×105 7.11×104
28 84 7.95×106 5.53×106 80.513 9.88×104 6.87×104
30 90 7.20×106 5.85×106 84.820 8.49×104 6.89×104
32 96 6.42×106 5.80×105 88.042 7.30×104 6.59×104
34 102 5.54×106 6.03×106 88.588 6.25×104 6.81×104
36 108 5.27×106 7.04×106 98.151 5.37×104 7.17×104
38 114 4.38×106 6.00×106 95.227 4.60×104 6.30×104
40 120 4.49×106 6.28×106 112.379 4.00×104 5.59×104
42 126 4.06×106 6.05×106 117.768 3.45×104 5.14×104
44 132 3.77×106 6.72×106 126.157 2.99×104 5.32×104
46 138 3.63×106 5.42×106 144.505 2.51×104 3.75×104
48 144 3.14×106 5.83×106 139.004 2.26×104 4.20×104
50 150 2.63×106 5.46×106 133.178 1.98×104 4.10×104
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The selected case is a tensegrity boom with 6 bays and the length of struts is
3516.4 mm. The equilibrium surfaces with respect to overlap and height are shown
in Figures B.8 and B.9, respectively.
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Figure B.8: Equilibrium surface with respect to overlap
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Figure B.9: Equilibrium surface with respect to height
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Then, after several deployment simulations, the candidate feasible pairs of
azimuth and declination angles are identified. These pairs are shown in Figures
B.10 and B.11 with filled green circles.
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Figure B.10: Feasible points on equilibrium surface with respect to overlap
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Figure B.11: Feasible points on equilibrium surface with respect to height

After the feasible points are determined for the transformation, effective stiffness
properties are evaluated on the equilibrium surface. The equilibrium surfaces with
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respect to axial, bending, shear, and torsional rigidities are shown in Figures B.12,
B.13, B.14, and B.15, respectively.
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Figure B.12: Equilibrium surface with respect to axial rigidity
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Figure B.13: Equilibrium surface with respect to bending rigidity
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Figure B.14: Equilibrium surface with respect to shear rigidity
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Figure B.15: Equilibrium surface with respect to torsional rigidity

From Figure B.13, the point that yields the maximum bending stiffness without
any element collision is identified as α14 = 217° and δ = 36°. This point is used
to optimize the initial deployment step, and the twist angle, α = 62° obtained
from sizing and pre-stress optimization is used to optimize the rotation of the
intermediate plane step.
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The maximum lengths of the cables are tracked during deployment, and the
total mass of the designed boom is calculated. Additionally, starting with the
pre-stress coefficient obtained from sizing and pre-stress optimization, the maximum
forces in each type of element is also obtained and, based on that information,
cross-sectional areas of diagonal cables are determined, considering stress limits for
cables. The maximum lengths of the elements, their contribution to the total mass,
and the maximum force, and stress they encounter during deployment are given in
Table B.3.

Table B.3: Maximum length, force, stress and total mass data

Element
Type

Total
Number

Maximum
Length
[mm]

Mass
[kg]

Maximum
Force
[N]

Maximum
Stress
[MPa]

Top and Bottom
Cables 6 969.95 0.885 1.99×102 1.89

Vertical Cables 18 3377.30 27.501 7.36×102 2.34
Saddle Cables 15 3083.60 5.925 3.99×102 4.48
Diagonal Cables 18 3516.40 * 1.59×102 *

Reinforcing Cables 18 3426.30 27.900 6.53×102 2.08
Struts 18 3516.40 15.530 -1.45×103 -10.84

The results show that the mass of the structure, excluding the diagonal cables
which are not considered in the final configuration, is 77.741 kg. The minimum
possible cross-sectional areas of diagonal cables that yield a stress value lower than
the stress limit are selected, their mass contribution is calculated, and the total
mass of the structure is obtained as 78.886 kg.

Then bending stiffness-to-mass ratio of the designed tensegrity boom and
bending stiffness-to-mass per unit length ratio are found to be 3.22×105 Nm2/kg
and 6.44×106 Nm3/kg, respectively.
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Appendix C|
MATLAB Codes

Fundamental MATLAB codes developed for tensegrity deployment simulations,
deflection analysis and free vibration problem can be found in the following link:

• http://www.datacommons.psu.edu/commonswizard/MetadataDisplay.aspx?
Dataset=6166

The MATLAB codes can be cited using the following DOI number:

• doi:10.18113/D3BH3T
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