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ABSTRACT 

 The diversity and composition of the bacterial community inhabiting the human 

gastrointestinal tract contributes to the evolutionary fitness of the host through its role in 

extracting energy from diet and producing signaling molecules (e.g., short chain fatty 

acid [SCFA] and bile acid) to regulate metabolic and immunological function. Further, 

the gut microbiome composition and function can be perturbed by environmental 

stressors (xenobiotics, toxicants, drugs), change in diet (nutrition) or lifestyle (smoking, 

exercise, stress), and thus greatly influence the host metabolic phenotype and disease 

risk. A better understanding of how the xenobiotic-microbiome-host interaction 

contributes to disease risk may identify new therapeutic targets for metabolic and 

inflammatory disorders like obesity and diabetes. 

 High-throughput metabolomics approaches including liquid chromatography 

coupled with mass spectrometry (LC-MS), gas chromatography coupled with mass 

spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy inform 

metabolic changes by creating a “metabolite dictionary” to decipher the metabolite 

chatter between the host and the gut microbiota. Moreover, robust genomics approaches, 

including 16S rRNA gene sequencing, metagenomics and metatranscriptomics, provide 

an additional perspective to view and understand the microbiome community structure 

and function. By combining those approaches, the correlation between microbial 

community structure, metabolic profiles and phenotypes of microbiome and host can be 

established to develop a deeper understanding of microbiota-host interaction. Therefore, 

the central hypothesis of the dissertation is metabolomics in addition with other 
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informative techniques enables the comprehensive and complementary understanding of 

the mechanistic interplay between the host and microbiome. 

 Given the biological and clinical significance of microbiota and microbial-derived 

metabolites like SCFAs and bile acids, reliable and efficient metabolomics platforms and 

methods to provide robust detection and quantitation results with improved analytical 

confidence is highly demanded. Four different methods for SCFA extraction and 

quantitation were evaluated and compared using two independent platforms GC-MS and 

1H NMR spectroscopy. MS-based methods, especially after derivatization, have 

incomparable sensitivity and precision thus they are highly recommended for 

trace/ultratrace detection. GC-MS acidified water method, because of the easier sample 

preparation and short run time is most suitable for studies with large sample numbers. 

Alternatively, NMR-based methods, while exhibiting high repeatability and relatively 

low sensitivity, are suitable for cecal and fecal samples with both global and target 

analysis purpose. The application of three mutually independent methods, GC-MS, NMR, 

and bomb calorimetry in the germ free (GF) mice study showed consistent results, 

demonstrating the feasibility of the techniques used in metabolomics studies and the 

critical role that gut microbiome play in host energy balance and metabolic status. 

 To investigate the metabolic functional roles of gut microbiome and how to target 

the microbiome for potential pharmaceutical application, a typical xenobiotic and 

antioxidant tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) with anti-obesity 

and microbiome-modulation effect was investigated in conventionally-raised (CONV-R) 

and GF mouse models. The metabolic changes were evaluated with metabolomics tools 

combined with biochemistry and molecular biological techniques. The results 
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demonstrated tempol exerts its metabolic regulatory role on host through changing gut 

microbiota metabolism. Tempol decreases gut energy availability by inhibiting bacterial 

SCFAs production in a dose-dependent manner, and the restricted gut SCFAs availability 

impacts overall host metabolism by promoting energy expenditure. This study provides 

insight into a possible mechanism for the anti-obesity effect of tempol mediated by gut-

microbiota, which sheds light on the pharmaceutical and therapeutic potential of tempol 

for obesity treatment and prevention. 

 The gut microbiome affects the bioavailability and toxicity of xenobiotics and can 

be modulated physiologically, compositionally and metabolically by xenobiotics. To 

further investigate the causal relationship between xenobiotic exposure and changes in 

gut microbiota metabolism, a novel approach combining in vitro bacterial incubation, 

single-cell flow cytometry, and global metabolomics tools including Orbitrap LC-MS and 

1H NMR were developed to elucidate the direct impact of xenobiotics on the microbiome 

physiology and metabolism. This multi-platform approach identified the unique 

physiological and metabolic biomarkers for microbial membrane damage and metabolism 

disruption. The result also revealed that the disrupted metabolic activity of the gut 

microbiota is strongly correlated with the bacterial membrane damage by direct 

xenobiotic exposure. Importantly, in vitro and in vivo results were highly consistent thus 

indicating the in vitro methods can be a convenient, economic approach to better 

understand and/or predict in vivo physiological and metabolic responses to xenobiotics 

for future screening and risk assessment application.  

 Together, the research presented in the dissertation demonstrates valuable 

metabolomics tools combined with other techniques are elegant approaches to study 
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xenobiotics-microbiome-host interactions, therefore opening up avenues for better risk 

assessment and toxicity study during drug discovery to minimize undesirable side effects.  
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Microbiome is Important for Human Health 

 The microbiome consists of microbial organisms that reside in the human body, 

making up to approximately 1-5 pounds of the human body weight. The microbiome 

plays essential roles in development, nutrition, metabolism, physiology, and immunity of 

the host. The gut microbiome is the most well-studied community compared to 

microbiomes at other body sites (e.g., skin, lung). Disrupted gut microbiome-host 

interactions have been implicated in numerous diseases including metabolic disorders 

(obesity, diabetes), immune disorders (inflammatory bowel disease (IBD), allergies, 

asthma), cancer, and, potentially, autism (1). As the diversity and composition of gut 

microbiome can be perturbed by environmental factors including diet composition, 

xenobiotic exposure (drugs, environmental toxicants, antibiotics) and life-style (smoking, 

exercise, stress, social interactions) (2-4), a better understanding of functional role of 

microbiome and its regulation of host metabolic responses is an important prerequisite for 

designing microbiome-specific therapeutic strategies to combat disease.  

 

Dynamic Distribution of Normal Microbiota 

 Microbes start colonizing the human body at birth, newborn handling (e.g., 

through contact with the caregiver including nurses, doctors and parents), and feeding 

after birth, leading to a stable, regular community. The microbiome remains throughout 

life and participates in maintaining health without causing disease under normal 

circumstances (5). In the healthy human body, the microbiome resides at surface tissues 

like skin, the digestive tract (mouth, stomach, and intestinal tract), respiratory tract (nose 

and lung), genital tract (urinary and vaginal tract) and other mucous membranes 
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(conjunctiva), while the internal tissues like brain, circulation system (blood, heart), 

muscles are considered microorganism-free (Figure 1-1). Importantly, the microbiome is 

characterized by relatively stable, body region-specific microbial inhabitants during 

particular life periods of an individual. For example, major inhabitants of the skin include 

Staphylococcus epidermidis, Staphylococcus aureus, Micrococcus luteus and 

Diphtheroids. The resident oral microbiota include a wide spectrum of anaerobic bacteria 

including Streptococcus mutans, Viridans streptococci, Staphylococci, Fusiform bacilli, 

Treponemes and Lactobacilli. The predominate inhabitants Staphylococcus epidermidis, 

Staphylococcus aureus and diphtheroids are found in the oropharynx and nose. The 

resident microbiota in the vagina depends on pH, hormonal level, and life stage of the 

female. Lactobacillus spp. is the predominate bacteria in female infant (vaginal pH=5) 

during the first month after birth. As the pH changes during the prepubescent phase 

(vaginal pH=7), diphtheroids, Staphylococcus epidermidis, Streptococci, and E. coli 

become the major inhabitants. At puberty, pH drops and adult vaginal microbiota 

contains Lactobacillus acidophilus, Peptostreptococci, Staphylococci, Streptococci, 

Corynebacterium and Bacteroides. After menopause, pH increases to neutral level similar 

to prepubescent, and the postmenopausal microbiota resembles that before puberty (5).  

 

 Microbiota in the gastrointestinal tract is the most diverse and relatively well-

explored region. Currently more than 1000 gut microbial species have been 

characterized (6). Compared to the stomach where the acidic environment is hostile for 

bacteria, the intestinal tract is a relative hospitable environment for bacteria growth 

especially anaerobic genera such as Bacteroides, Bifidobacterium, Streptococcus, 
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Eubacterium, Peptostreptococcus, and Clostridium (5, 7, 8). Actinobacteria and 

Proteobacteria are the dominate phyla at early development stage, then the microbial 

diversity increases and resembles normal adult human microbial community, which is 

dominated by Bacteroidetes and Firmicutes at the end of the first 3-5 developmental 

years (9, 10). Notably, it has been suggested early life microbial development is critical 

for adulthood metabolic phenotypes. Microbial disruption during critical early 

developmental windows by antibiotics can cause tremendous and enduring metabolic 

consequences in later life, even though the microbial community recovers to normal after 

cessation of antibiotic treatment in mice model (11). In addition to pH and age, the 

quantity, distribution and composition of the microbiome are influenced by chemical, 

nutritional, and immunological gradients along the gut. In the small intestine of mice, the 

environment is hostile with higher concentrations of acidic digestive juices, oxygen, 

antimicrobials (host-derived bile acids and antimicrobial peptides) and a shorter transit 

time. The resistant, facultative, fast growing bacteria like Lactobacillaceae with the 

ability to adhere to epithelia or mucus thrives in the challenging environment (12). On the 

contrary, the cecum and colon environment are more hospitable to support a denser and 

more diverse microbial community, where the lower level of antimicrobials, slower 

transit time, and abundant complex carbohydrate sources favor the growth of 

fermentative polysaccharide-degrading anaerobic bacteria, like Bacteroidaceae and 

Clostridiaceae. The mouse cecum is dominated by Ruminococcaceae, Lachnospiraceae 

and Rikenellaceae, while Bacteroidaceae, Prevotellaceae and Rikenellaceae are enriched 

in the colon (12). In addition, the viscosity gradient of the mucus from the proximal to 

distal colon affects the local microbial composition, characterized with more abundant 
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mucus-associated bacteria in the proximal region (13). In addition to mucus-associated 

bacterial communities, digesta-associated and crypt-associated communities have been 

observed in different animal models and humans (14-17), indicating the complexity of 

the highly organized and niche-specific gut microbial community.  

  

Functions of the Gut Microbiome 

 Normal gut microbiota usually exists as commensals and is relatively harmless 

providing benefit to the host, and thus separated from the pathogenic microbes, viruses, 

and parasites. However, a dysregulated and imbalance of the gut microbiome 

composition or function referred to as dysbiosis, has been linked to various human 

chronic diseases including IBD, colorectal cancer, asthma, diabetes and obesity (1, 18). 

The development of high throughput gene sequencing technology, metabolomics, and 

bioinformatics has enabled functional analysis of the gut microbiome thus providing 

mechanistic explanations of the beneficial or detrimental effect of gut microbiome to host 

(19).  

 

Nutrient Metabolism 

 The gut microbiome directly participates in host nutrient metabolism. Comparison 

between conventionally-raised (CONV-R) and germ free (GF) rats revealed that with the 

help of microbial partners, CONV-R rats required 30% less caloric intake to maintain 

body weight relative to GF counterparts. This suggests the gut microbiome significantly 

contributes  to host nutritional status (20). An important function of gut microbiome is 

metabolizing non-digestible carbohydrates to salvage extra energy from food to fuel the 
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host while producing short chain fatty acids (SCFAs) as end products. SCFAs play 

tremendous functional roles including energy sources (21), biosynthesis substrates and 

precursors (22), and signaling molecules for membrane receptors like G protein-coupled 

receptors (GPR) to regulate host metabolic and immunological pathways (23-25). An 

obese microbiome characterized with an increased ratio of Firmicutes to Bacteroidetes, 

and an increased energy harvest ability has been implicated into the pathophysiology of 

obesity (26). The gut microbiome can also metabolize proteins and amino acids with 

microbial enzymes including histamine decarboxylases encoded by microbial hdcA 

genes, which catalyze the conversion of histidine to histamine (27), and glutamate 

decarboxylases encoded by microbial gadB genes, which convert glutamate to γ-amino 

butyric acid (28). Some amino acid fermenting microbes (Clostridium, the Bacillus-

Lactobacillus-Streptococcus groups, and Proteobacteria) are able to uptake and utilize 

peptides and amino acids to produce SCFAs, branched-chain amino acids (BCAAs) and 

ammonia (29, 30). It has been reported that ruminal bacteria ( Prevotella bryantii B14, 

Selenomonas ruminantium HD4, and Streptococcus bovis ES1) contribute to de novo 

synthesis of amino acids (31). Moreover, metagenomics analysis has found that the 

human colonic microbiome is enriched with genes involved in essential amino acid 

biosynthesis (32), and a more recent study has identified biosynthetic genes in human 

microbiome for essential amino acid threonine biosynthesis (32). The gut microbiome is 

involved in the synthesis of vitamin K and water-soluble B vitamins, including biotin, 

cobalamin, folate, niacin, panthothenate, pyridoxine, riboflavin and thiamine (33, 34), 

which act as essential coenzymes and cofactors for numerous host metabolic functions 

such as DNA synthesis and regulation, glucose, fatty acid and amino acid metabolism (35, 
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36). Additional studies also revealed the gut microbiome is involved in breaking down 

and transforming dietary polyphenols to active compounds. The active products can be 

absorbed by the host via portal vein circulation to carry out antimicrobial and metabolic 

functions. For example,  isoflavone is transformed to (S)-equol by a mixture of human 

microbes including Bacteroides ovatus, Ruminococcus productus and Streptococcus 

intermedius or Lactobacillus mucosae, Enterococcus faecium, Finegoldia magna and 

Veillonella spp. (37), which have anti-microbial, anti-oxidative, anti-androgenic, and 

anti-cancerous effects (38). 

 

Drug and Xenobiotic Metabolism 

 Extensive evidence suggests that the gut microbiome affects the bioavailability 

and metabolism of drugs and xenobiotics through direct and indirect mechanisms. In 

vitro and in vivo evidence has revealed that the gut microbiome is capable of 

metabolizing at least 50 drugs (39, 40). Direct mechanisms involved in the microbial 

biotransformation of drugs into active, inactive, or toxic products occur primarily via 

reduction and hydrolysis with microbial enzymes. For example, the azo bond-containing 

prodrugs require microbial reduction for activation. The anti-inflammatory drug 

sulfasalazine and antibacterial drug prontosil contain azo bonds, which are reduced by 

microbial azoreductases, liberating the biologically active metabolites 5-aminosalicylic 

acid and sulfanilamide, respectively (40). Another typical example is the 

reduction/inactivation of digoxin by Eggerthella lenta. The cardiac glycoside digoxin 

used for the treatment of congestive heart failure and arrhythmias, was found to be 

reduced by Eggerthella lenta into the inactive metabolite dihydrodigoxin. The digoxin-
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induced high cardiac glycoside reductase (cgr) operon activity in Eggerthella lenta was 

discovered and proven to be necessary for the reduction/inactivation of digoxin (41). 

Microbial hydrolysis of the chemotherapeutic drug by microbial β-glucuronidases can 

lead to undesirable side effects. The anti-cancer drug SN-38 and non-steroidal anti-

inflammatory drugs are subject to host glucuronidation in the liver for detoxification, 

then are transported to the gut where glucuronides can be hydrolyzed by microbial β-

glucuronidases to toxic metabolites, resulting in side effects such as diarrhea and small 

intestinal injuries (39, 40).  

 Besides directly impacting drug metabolism through microbial enzymes, the gut 

microbiome can affect host gene expression and receptor activity involved in xenobiotics 

metabolism. More than 100 differentially expressed genes have been identified between 

CONV-R and GF mice, predominately the cytochrome P450 family, the important 

enzymes involved in the metabolism of drugs, xenobiotics, chemical carcinogens and 

toxicants (42). Another RNA-sequencing study revealed the differentially expressed 

xenobiotic metabolism-associated genes in the GF mouse liver compared to CONV-R 

counterpart, as well as significantly altered xenobiotic receptor activity in GF mice liver, 

including increased peroxisome proliferator-activated receptor alpha (PPARα) and aryl 

hydrocarbon receptor (AHR), and decreased pregnane X receptor (PXR) and constitutive 

androstane receptor (CAR) (43). In addition, the gut microbiome can affect drug efficacy 

and xenobiotic metabolism indirectly through the disposition of bacterial-derived 

metabolites to compete with host xenobiotic-metabolizing enzymes, resulting in 

diminished host capacity to metabolize xenobiotics and drugs (44).  
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Immunological Function 

 It has been increasingly appreciated that gut microbiome plays a fundamental role 

in induction, education and regulation of the host immune system. The immune system 

consists of a complex network of innate and adaptive responses, which requires a delicate 

balance between attacking invading pathogens and maintaining tolerance to avoid 

harming self-tissue (45). The crosstalk between the host immune system and the gut 

microbiome is mediated by recognition of microbe-associated molecular patterns. 

Absence (germ free) or disruption (antibiotic-treated, deliberately colonized) of the gut 

microbiome has been implicated in the dysregulated innate and adaptive immune 

responses and autoimmune diseases (46). However, normal gut microbiome under 

homeostatic condition do not trigger inflammatory responses. This specific 

immunological tolerance is likely associated with the anti-inflammatory cytokine 

interleukin 10 (IL-10) secreting dendritic cells (DCs) at Peyers’s patches (lymphoid 

follicles located in the ileum region) (47) and unique “inflammation anergy” phenotype 

of the intestinal macrophages (48). It has been suggested that the early interactions 

between commensals and immune system set the tone of the mucosal and systemic 

immune system for the appropriate response to pathogens and commensals long term. 

Microbial exposure during early life is critical for establishing persistent mucosal natural 

killer T cell (iNKT) tolerance to prevent autoimmune diseases later in life (49). A recent 

study suggested microbial inhibitory sphingolipids directly inhibited iNKT cell 

development during early life, and the restricted colonic iNKT cell number persisted and 

conferred protection against oxazolone-induced colitis in adulthood (50). Commensals 

contribute to secondary and lymphoid structure development postnatal, including a 
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smaller gut-associated lymphoid tissues, reduced number of CD4+T cells and 

immunoglobulin A (IgA) producing plasmocytes (51, 52). The gut microbiome is critical 

for the development and differentiation of naïve CD4+ cells, revealed by the bacterial 

polysaccharide-induced correction of systemic CD4+ cells deficiency and T helper 1 

(Th1) and Th2 imbalance, and the consequently restored appropriate immunological 

functions in Bacteroides fragilis-colonized GF animal (53). Other studies have shown 

segmented filamentous bacteria is a key inducer of pro-inflammatory Th17 cell in the 

small intestine, and enhances the production of IgA (54, 55), while Clostridia clusters 

promote colonic regulatory T cells (Tregs) (56). These findings suggest different 

microbial members might have distinct regulatory roles in directing T cell responses, 

therefore a compositional change of gut microbiome might lead to either pathological or 

beneficial effects. Additional immune-regulatory roles mediated by microbial-derived 

metabolites (SCFAs and bile acids) important for directly sustaining or harming 

colonocytes, regulating mucosa proliferation, maintaining intestinal lining integrity and 

gut barrier function, modulating the anti-inflammatory activity of intestinal epithelial 

cells, macrophages and DCs, and activating receptor-dependent signaling pathways will 

be discussed in detail in the following sections.  

 

Metabolic Signaling 

The gut microbiome indirectly regulates host metabolic pathways including glucose, 

lipid, energy, xenobiotic metabolism and immunological functions through producing 

microbial-derived metabolic signaling molecules like SCFAs (23-25). Another group of 

critical microbial-derived metabolic and immunological signaling molecules are bile 
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acids (57), whose pool size and composition are intimately related to host physiological 

and metabolic health (58-62), and can be readily shaped by the microbiome through 

deconjugation, dehydroxylation, oxidation and epimerization, and other 

biotransformation reactions (63-66). The microbial-associated biosynthesis and 

biotransformation, functional significance, metabolism involvement, diseases association 

and therapeutic opportunity of microbial-derived metabolites (SCFAs and bile acids) will 

be reviewed below.  

 

SCFAs: A Chemical Bridge Between Microbiota Activity to Host 

Physiology 

 
SCFAs are those carboxylic acids with aliphatic tails less than six carbons. In 

human, SCFAs are largely derived from anaerobic bacterial activity in the gut referred to 

as “fermentation”. During the fermentation process, bacteria utilize non-digestible dietary 

fibers, and resistant starches as energy sources for growth, producing SCFAs as end-

products, which can be absorbed and utilized by the host to carry out a wide range of 

physiological, metabolic, and immunological functions (Figure 1-2). The primary 

fermentation-derived SCFAs are acetic acid (C2), propionic acid (C3) and butyric acid 

(C4). Ninety percent of SCFAs derived by bacterial fermentation are reabsorbed rapidly 

in the colon (67), utilized by the host as energy sources (21), anabolic substrates or 

precursors for biogenic synthesis (22) and signaling molecules for metabolic (23) and 

immunological regulation  (24). Therefore, SCFAs are a chemical bridge to link bacteria 

activity to the host metabolic phenotype. Human fecal SCFAs levels vary however the 

molar ratio is fairly constant, approximately acetate:propionate:butyrate =60:20:20 (68). 

The physiological functions of three primary SCFAs are distinct but can overlap or 
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sometimes even counteract each other. Acetate is the most abundant SCFA in colon 

where it is transported to the liver and transformed into acetyl-CoA, a precursor for 

lipogenesis (22) and gluconeogenesis (69). Further, acetic acid is reported to be involved 

in central appetite regulation for energy intake control (70, 71). Propionic acid provides 

beneficial effects including anti-lipogenic (72, 73), anti-cholesterogenic (73, 74), anti-

inflammatory (75, 76), anti-carcinogenic (75, 77) and energy homeostasis regulation 

activity . Butyric acid serves as a preferred nutrient for colonocytes (78, 79) and is 

implicated in colonic mucosa proliferation, intestinal lining integrity maintenance (79, 

80), colonic inflammation attenuation (81, 82), and colonic cancer prevention (81, 83) 

and treatment (84, 85). 

   

SCFAs are Preferable Energy Sources 

Mammals are unable to digest dietary fibers and resistant starches due to lack of 

necessary enzymes; however, the gut bacteria possess the enzymes to break down non-

digestible fibers readily. From the host perspective, the bacteria fermentation turns non-

usable carbon molecules into absorbable, transportable, and usable SCFAs, thus helping 

the host to salvage more energy from food and fueling the physiological and metabolic 

activity. Bacterial-derived SCFAs account for about 5-10% of daily energy intake of the 

host (86). Colonocytes utilize SCFAs, especially butyrate as a preferred primary energy 

source (78). GF mice who are unable to produce SCFAs due to lack of microbiota are in a 

constant energy deprived state and show a significant downregulation of critical enzyme 

expression in the Krebs cycle and downstream consequences including decreased 

NADH/NAD+, oxidative phosphorylation, ATP levels, which lead to autophagy (87). 
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Interestingly, butyrate supplementation can rescue disrupted  mitochondrial respiration 

and prevent autophagy occurrence (88). Additional evidence demonstrated butyrate is not 

only a preferred nutrition source, but also a prerequisite for colonocytes to maintain 

normal homeostasis and physiological function. Lacking luminal butyrate or lacking the 

ability to metabolize butyrate causes a nutritional deficiency of colonic epithelium, which 

might lead to mucosal atrophy in short term and “nutritional colitis” in long term (89). 

Recent evidence suggest SCFAs, especially butyrate is critical for intestinal epithelial to 

maintain gut barrier function (90, 91), which is essential to protect against intraluminal 

entities including foreign antigens, microorganisms and their toxic metabolites and to 

ensure the selective absorption of essential dietary nutrients, electrolytes and water (92). 

Microbial-derived acetate enters circulation, serves as an oxidizable substrate throughout 

the body (93),  particularly 70% is taken up by the liver and undergoes further catabolism 

as energy substrates or biosynthesis as anabolic substrates (94).  

 

SCFAs Serve as Building Blocks for Anabolism 

SCFAs are not only direct energy substrates for tissues but also substrates for 

biosynthesis including glucose, cholesterol, and lipids. Propionate is a well-known 

precursor for hepatic gluconeogenesis (95, 96), which in the liver is first converted to 

propionyl-CoA and then to succinyl-CoA. Succinyl-CoA enters the Krebs cycle to 

generate oxaloacetate, the direct precursor for gluconeogenesis. Acetate and butyrate 

enter Krebs cycle as acetyl-CoA (butyrate is converted to acetyl-CoA through 

mitochondrial fatty acid oxidation), then is incorporated into oxaloacetate for synthesis of 

glucose, amino acids, cholesterol and fatty acids. Interestingly, palmitate and cholesterol 

file:///C:/Users/juc313/Box%20Sync/Jingwei/Thesis/JINGWEI/Thesis%20Jingwei%20AP/180518%20(b).%20CHAPTER%201%20AP.docx%23h.3as4poj
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are mostly synthesized from acetate and butyrate but not propionate, suggesting the 

distinct metabolic fate of propionate versus acetate and butyrate (68). Additional 

evidence using stable isotopes showed gut-derived SCFAs reached to the liver and 

incorporated into long chain fatty acid palmitate aggravated metabolic syndrome in toll-

like 5 receptor knockout mice, suggesting excessive gut-derived SCFAs promote 

augmented hepatic lipogenesis might potentiate metabolic syndrome (97).  

 

SCFAs Act as Signaling Molecules through Receptors 

SCFAs can function as integrated signaling regulators which trigger signaling 

cascades systemically via GPRs like free fatty acid receptor FFAR2 (GPR43), FFAR3 

(GPR41), GPR109a and Olfactory Receptor 78 (Olfr78) (25, 98). FFAR2 and FFAR3 are 

two main SCFAs sensors with different affinity for different SCFAs. Specifically, 

FFAR2 preferentially binds to shorter SCFAs, the order of affinity for FFAR2 is acetate 

= propionate > butyrate. Whereas FFAR3 is favorably activated by relatively longer 

SCFAs with the order of affinity butyrate = propionate > acetate (25, 99). Besides the 

SCFAs binding specificity, FFAR2 and FFAR3 also differ by tissue distribution and 

activation mechanism. FFAR2 and FFAR3 are generally expressed broadly throughout 

the human body including spleen, intestine, liver, immune cells and adipocytes (99). 

FFAR2 is highly expressed in immune cells, especially neutrophils, monocytes, and 

polymorphonuclear cells (100, 101), suggesting FFAR2 could have important function in 

the SCFAs-mediated differentiation and activation of immune cells. FFAR3 is 

abundantly expressed in white adipose tissue and has been implicated in SCFAs-

stimulated leptin secretion in adipocytes (102). The two receptors showed different 
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coupling preference during activation. Upon activation, FFAR3 only couples to pertussis 

toxin sensitive Gai/o family while FFAR2 couples to both Gai/o and pertussis toxin-

insensitive Gaq family (100). The SCFAs-FFAR signaling pathways regulate glucose, 

lipid and energy homeostasis and immunological response extensively. GPR109a is a 

nicotinate receptor that recognizes butyrate as a ligand with low affinity. A recent study 

suggested colon tumor suppressive effect of butyrate is mediated via GPR109a activation 

(103). A newly discover SCFA receptor Olfr78 activated by acetate and propionate might 

play a potential role in SCFAs-mediated blood pressure control (104). There is an 

increasing appreciation of SCFAs receptors as pivotal mediators that mediating the 

crosstalk between gut microbiome and host physiology, through regulating glucose, lipid, 

energy metabolism and modulating immune response of the host.    

 

SCFA Regulation of Lipid Metabolism 

SCFAs play significant roles in fatty acid synthesis, fatty acid oxidation 

lipogenesis and cholesterol metabolism. In the liver, acetate transforms into acetyl-CoA 

and contributes to de novo lipogenesis and cholesterogenesis while propionate exhibits 

anti-lipogenic effects and inhibits hepatic fatty acid and cholesterol synthesis (105, 106). 

Therefore, the ratio of pro-lipogenic acetate and anti-lipogenic propionate in the liver 

might be critical for the overall physiological effect of SCFAs in lipid synthesis. Another 

independent study demonstrated SCFAs supplemented with a high propionate ratio 

inhibits hepatic lipogenesis and improves insulin-sensitivity in high-fat diet induced 

obesity (107). The anti-lipogenic property of propionate was confirmed with an acute 

randomized, controlled cross-over human study, wherein 10 g/day inulin-propionate ester 
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supplementation significantly reduced weight gain, visceral and liver fat in overweight 

adult humans (72). Propionate also inhibits cholesterol synthesis in vivo and in vitro, 

likely through suppressing 3-hydroxy-3-methylglutaryl CoA synthase and 3-hydroxy-3-

methylglutaryl-CoA reductase, the critical enzymes for cholesterol biosynthesis (108, 

109). The lipid modulatory effect of SCFAs is largely carried out through FFAR 

signaling. It is indicated that SCFAs-mediated FFAR2 activation promotes leptin 

secretion (110), stimulates adipogenesis (111), while inhibiting lipolysis in adipocytes, 

resulting in reduced plasma free fatty acids, energy control, and improved metabolic 

phenotype (112). A recent study using mice lacking FFAR2 and overexpressing FFAR2 

in adipocytes demonstrated the lipid, glucose and energy metabolism is associated with 

suppressed insulin signaling via SCFAs-mediated activation FFAR2 in adipocytes (113). 

FFAR3 is also found in high expression in human adipose tissue (25) and reported to 

promote leptin production in primary mouse white adipose tissue (114). However, other 

studies unable to detect FFAR3 in murine adipose tissue suggested FFAR2, rather than 

FFAR3 is the leptin inducer (110, 111).  

 

SCFA Regulation of Glucose Metabolism 

SCFAs supplementation improved glycemic control in animal studies (115-117), 

although the human studies showed inconclusive and somehow contradictory results 

(118-120). Oral administration of acetic acid improved fasting plasma glucose and 

HbA1c levels in diabetic KK-A(y) mice is likely associated with AMP-activated protein 

kinase (AMPK) -dependent inhibition of hepatic enzyme involved in gluconeogenesis 

and lipogenesis including glucose-6-phosphatase (G6pase), phosphoenolpyruvate 
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carboxykinase (Pepck) and sterol regulatory element binding protein-1 (Srebp-1c). A 

recent study suggested SCFAs ameliorate high fat diet (HFD)-induced obesity and insulin 

resistance by promoting fat oxidation via peroxisome proliferator-activated receptor γ 

(PPARγ) dependent activation of uncoupling protein 2 (UCP2) -AMPK- acetyl coenzyme 

A carboxylase (ACC) pathway (121). In addition, SCFAs are involved in appetite, 

glucose and insulin regulation by stimulating enteroendocrine L cells-secreted gut 

hormone glucagon-like peptide-1 (GLP-1) and peptide YY (PPY) via FFAR2 and FFAR3 

(122). GLP-1 is incretin hormone which is strongly insulintropic and plays a critical 

regulatory role in energy balance and glucose homeostasis (123). PPY is a satiety 

hormone for appetite regulation and improves insulin sensitivity (124). Intracolonic 

infusion of SCFAs or intake of fibers increases circulating GLP-1 and PPY and enhances 

hormonal physiological effects (125-127). In addition, Ffar2 and Ffar3 knockout mice 

showed a reduction in SCFA-induced GLP-1 secretion in vitro and in vivo, and impaired 

glucose tolerance (123), suggesting FFAR2 and FFAR3 are critical for SCFA-induced 

gut hormone secretion. Moreover, SCFAs-activated FFAR2 and FFAR3 play crucial 

physiological roles on pancreatic β cell functions, including glucose stimulated insulin 

secretion, response to insulin resistance, and mass regulation of pancreatic β cells, 

another possible mechanism of SCFAs to impact glucose and energy metabolism 

dependent on FFAR activity (128). A recent study suggested propionate and butyrate 

exert body weight and glucose control through activating intestinal gluconeogenesis 

(IGN) via complementary mechanisms (129). Glucose released by IGN induces a nervous 

signal through portal vein glucose sensor and transmits to the brain for food intake and 

glucose regulation (130). Dietary SCFAs and fructo-oligosaccharides markedly 
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stimulated intestinal glucose production and ING gene expression including G6pase and 

Pepck, and significantly improved glucose tolerance and insulin sensitivity. Interestingly, 

butyrate activates IGN gene expression via cAMP-dependent mechanism while 

propionate induce IGN via a gut-brain neural circuit mediated by FFAR3.  

 

SCFA Regulation of Energy Homeostasis 

SCFAs increase energy expenditure and regulate energy homeostasis through 

multiple pathways. First, SCFAs induced FFAR-dependent leptin secretion improves 

metabolic rate and regulates energy homeostasis. Leptin is a potent adipose-derived 

hormone that regulates the appetite, metabolic rate and variety of other physiological and 

immunological functions (131). Leptin is involved in regulation of energy expenditure by 

controlling feeding behavior to reduce food intake (131) while stimulating fatty acid 

oxidation and thermogenesis through increasing the AMP/ATP ratio and AMPK activity 

in liver and muscle tissue (132, 133). Second, SCFAs activate AMPK in liver and muscle 

(134, 135), a critical enzyme that induces peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α) -dependent regulation of critical transcription 

factors including PPARα, PPARβ/δ, farnesoid X receptor (FXR) and liver X receptor 

(LXR), all play critical roles in the maintenance of glucose, lipid and energy homeostasis 

(136). The SCFAs-mediated AMPK activation promotes hepatic fatty acid oxidation, 

ketogenesis, skeletal muscle fatty acid oxidation and glucose uptake, inhibits lipolysis 

and lipogenesis in the adipocytes and modulates insulin secretion by pancreatic β-cells 

(137). SCFAs activate AMPK either via SCFAs-FFAR2 mediated leptin pathway 

aforementioned or via leptin-independent mechanism by directly increase AMP/ATP 



 20 

ratio (138). Lastly, SCFAs promote metabolic and energy homeostasis via neural system. 

SCFAs regulate appetite via central homeostatic mechanism, wherein hypothalamus, 

acetate increases the glutamate–glutamine, gamma-aminobutyric acid neuroglial cycles 

and changes the expression profiles of the regulatory neuropeptides that favor appetite 

suppression (70). It is also shown SCFAs initiate neural gut-brain circuits involving 

sympathetic activity and intestinal gluconeogenesis to exert glucose and energy control 

(129).  

 

SCFA Regulation of Immune Response 

Gut-derived SCFAs have been greatly appreciated in the regulation of intestinal 

homeostasis and pathogenesis of IBD (24). Butyrate and propionate supplementation or 

fiber-rich diets have been demonstrated to ameliorate IBD in both animal and human 

studies (139, 140). The anti-inflammatory properties of SCFAs, especially butyrate, has 

been associated with: 1) preferred energy substrates for colonocytes proliferation and 

differentiation and gut barrier maintenance; 2) inhibition of histone deacetylase to 

regulate the anti-inflammatory activity of intestinal epithelial cells, macrophages and 

DCs; and, 3) activation of GPCRs to regulate the gene expression, proliferation 

differentiation, chemotaxis and apoptosis of different immune cells. A lack of SCFAs 

often lead to rectosigmoid colitis, suggesting local nutritional deficiency in the gut leads 

to an inflammatory state, while local application of SCFAs significantly ameliorates 

inflammatory symptoms in colitis patients (139). As a histone deacetylase inhibitor,  

butyrate directly modulates macrophage function by inhibiting lipopolysaccharide (LPS)-

induced pro-inflammatory mediators including nitric oxide  production of IL-6 and IL-10 
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via histone deacetylase inhibition independent of toll-like receptor and GPR signaling 

(141). Through inhibition of histone deacetylation, butyrate also prevents the proteasome-

dependent degradation of IκBα to suppress pro-inflammatory transcription factor nuclear 

factor κB (NF-κB) (142). The suppression of NF-κB results in downregulation of 

proinflammatory factors including tumor necrosis factor alpha (TNF-α), IL-1β, and IL-6 

to achieve anti-inflammatory effect (143). SCFAs modify the recruitment, chemotaxis 

and effector function of neutrophils, another critical component of the innate immune 

response, dependent on the activation of GPRs (144). Acetate induced apoptosis in 

neutrophils a dose-dependent and a GPR43-dependent manner. Also inflammatory 

response and surface expression of pro-inflammatory receptors such as complement 

fragment 5a receptor and C-X-C chemokine receptor were markedly reduced with acetate 

stimulation (145). SCFAs modulate neutrophil recruitment through regulating the pro-

inflammatory cytokines like TNF-α and neutrophil-chemoattractants including cytokine-

induced neutrophil chemoattractant-2 released by neutrophil (146). SCFAs modulate the 

function of DCs, a critical cell population that initiates the adaptive immune response by 

processing and presenting antigens to T cells, and producing cytokine response to 

immunological signals. In vitro studies demonstrated that propionate and butyrate 

significantly reduced pro-inflammatory cytokines and chemokines including TNF-α, IL-

12B, IL-6, C-C motif chemokine ligand-5, CXC chemokine ligand (CXCL)-9, CXCL-10, 

CXCL-11 released by LPS-induced human monocyte-derived DC (147). Another in vitro 

study indicates non-toxic doses of butyrate inhibited the cytokine-driven phenotypic 

differentiation process of monocyte-derived DCs and macrophages, and altered the 

terminal maturation of DC with a decreased ability to prime alloreactive naive T cells, 
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thus exerting anti-inflammatory effect (148). A recent study suggested that butyrate and 

propionate-dependent induction of indoleamine 2,3-dioxygenase 1 and aldehyde 

dehydrogenase 1A2 in DCs potentiates the ability of DCs to encourage naïve T cells 

convert into immunosuppressive Tregs than pro-inflammatory interferon gamma (IFN-γ)-

producing cells (149). Consistent with the in vitro results, animal studies confirmed that 

SCFAs ameliorate  central nervous system autoimmunity through promoting Tregs 

differentiation via suppression of the c-Jun N-terminal protein kinase 1 and p38 pathway 

(150). A possible mechanism of butyrate-regulated Tregs differentiation is the 

upregulation of histone H3 acetylation of Foxp3 locus by butyrate (151). GPRs might 

have a chemoattractant effect for Tregs, as SCFAs induced anti-inflammatory cytokine 

secretion and Tregs suppressor activity is FFAR3 (GPR41) dependent (152). SCFAs, 

especially butyrate, have shown anti-carcinogenic effects in vitro and in vivo. Multiple 

animal and cell line studies have demonstrated the butyrate prevents the development of 

colon adenoma and cancer (81, 83, 153, 154). Possible molecular mechanisms by which 

butyrate inhibits colon carcinogenesis include: 1) histone deacetylases inhibition-

mediated regulation of carcinogenesis-related transcription factors including p53, 

retinoblastoma protein, Stat3, NF-κB and estrogen receptors (155); 2) GPR signaling 

dependent apoptotic, anti-proliferative and anti-inflammatory effects (103, 156); and, 3) 

the acidic colonic environment due to accumulation of SCFAs decreases the level of 

toxic and tumorigenic secondary bile acids through promoting calcium binding of free 

bile acids, decreasing solubility of bile acids, and inhibiting bacterial 7a-dehydroxylase to 

prevent secondary bile acids formation from primary bile acids (68).  
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In summary, the anti-inflammatory and anti-cancerous roles of SCFAs can be 

achieved via multiple mechanisms, including nutritional function, direct immune-

modulatory effects, receptor-mediated effects, oxidative stress remission effects, 

benefiting immune cell proliferation, differentiation, migration, activation and cytokine 

expression. 

 

Metabolomics Methods for SCFAs quantitation 

Reliable, reproducible, and affordable methods for SCFAs quantitation are highly 

important for experimental and clinical application. Multiple techniques have been 

employed for SCFA quantitation, including capillary electrophoresis (157, 158), high 

pressure liquid chromatography coupled with ultraviolet detection (HPLC-UV) (159, 

160), liquid chromatography coupled with mass spectrometry (LC-MS) (161), gas 

chromatography coupled with flame ionization (GC-FID) and mass spectrometry (GC-

MS) (162, 163), and nuclear magnetic resonance (NMR) spectroscopy (164, 165). 

Among these techniques, gas chromatography is most widely employed for its separation 

power, choice of detectors, and the relatively inexpensive cost of the instrumentation. 

Multiple extraction methods have been developed based on GC-MS techniques including 

acidified water extraction (166, 167), organic reagent extraction (168), ultrafiltration 

(169, 170), steam distillation (171, 172), vacuum evaporation stripping (173), purge and 

trap (174, 175), headspace single-drop microextraction (176), and derivatization to 

decrease polarity and improve volatility (177, 178). NMR spectroscopy is commonly 

used in metabolomic fingerprinting studies due to its high reproducibility and simple 

preparation process(179). NMR spectroscopy has been used for SCFAs profiling in 
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extracts from mouse cecal content and feces as well (180, 181). A combination of MS- 

and NMR- based SCFAs quantitation method has been employed to provide 

comprehensive and complementary views of SCFAs status and overall metabolic changes 

in the CONV-R and GF mice feces study (182).  

 

Bile Acids: Microbial-derived Signals in Host Homeostasis and Disease 

 Bile acids are a group of steroid acids, which are initially synthesized from 

cholesterol in the liver and then undergo extensively bacterial transformation as they 

move along the intestinal tract. The combined host and microbiota enzymatic activities 

give rise to a bile acid pool with great diversity. Bacterial-transformed bile acids 

profoundly impact host metabolic and immunological functions as they are able to 

activate different bile acid receptors to regulate signaling pathways with a broad coverage 

of complex symbiotic metabolism networks, including lipid metabolism, glucose 

metabolism, xenobiotics metabolism and energy homeostasis. Disrupted bile acid 

signaling due to perturbed gut microbiome or dysregulated gut microbiome-host 

interaction has been associated with pathogenesis and progression of metabolic disorders. 

Given the physiological significance of bile acids signaling, bile acids might represent 

novel and exciting therapeutic solutions in the treatment of metabolic and immunological 

diseases.  

 

Bacterial modulation of bile acid de novo synthesis and biotransformation 

The gut microbiota plays a well-documented role in the synthesis, transformation 

and regulation of bile acids (63). Bile acids are hydroxylated sterols which are initially 
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synthesized from cholesterol in the liver via either the classical (neutral) pathway 

initiated by 7α-hydroxylase (CYP7A1) (183) or alternative (acidic) pathway initiated by 

sterol-27-hydroxylase (CYP27A1) (184), and released into duodenum to aid in the 

solubilization and absorption of dietary lipids and lipid-soluble nutrients (63, 185). In a 

process known as enterohepatic circulation, more than 95% of bile acids are reabsorbed 

into the portal circulation and returned to liver by active transport in the ileum and 

passive transport throughout the length of the gastrointestinal tract (186). Bile acids 

escaping reabsorption are secreted mainly into feces (~0.2-0.6 g/day) and urine (~0.5 

mg/day), and replenished by de novo bile acid synthesis from cholesterol in the liver, a 

process which is regulated by a bile acid controlled feedback mechanism via FXR (185). 

At least 17 enzymes are involved in bile acid de novo synthesis and the gut microbiota 

participates in the regulation of some of these key participant enzymes, including 

CYP7A1 (rate-limiting enzyme), CYP7B1, CYP8B1 and CYP27A1 (187-189) (Figure 

1-3). Importantly, primary bile acids (cholic acid (CA) and chenodeoxycholic acid 

(CDCA)) are conjugated with glycine (extensively in human, 75%) or taurine 

(exclusively in murine, 95%) in the liver (190, 191) before undergoing extensive 

biotransformation as they pass through the intestine as the result of bacterial mediated 

enzymatic activity, transformed into a variety of secondary bile acids (deoxycholic acid 

(DCA) and lithocholic acid (LCA)), deconjugated bile acids (removal of the glycine or 

taurine ),  bile acid isomers (ursodeoxycholic acid (UDCA), isodeoxycholic acid), bile 

acid esters, and unsaturated bile acids  (Table 1-1).  

 

Deconjugation 
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Microbial bile acid deconjugation was first identified in “B.Coli” in 1934 (65, 

192) and occurs through the hydrolysis of amino acid side chain of taurine and glycine 

conjugates with the bacterial enzyme bile salt hydrolase (BSH). Through a bacteria 

culture supernatants assay and functional metagenomics analysis, functional BSH activity 

has been detected in Lactobacillus (193-196), Bacteroides (196-198), Bifidobacterium 

(193, 196, 199),  Clostridium (196, 200, 201),  Listeria (202, 203), and Enterococcus 

(204-206). As conjugated bile acids are antimicrobial (207, 208), the enriched gut 

microbiota BSH is a microbial adaptation to detoxify intestinal bile acids (196). 

Importantly, microbial deconjugation regulates host metabolism via FXR, which will be 

reviewed in detail in next section. Deconjugated free bile acids are subsequently available 

to various microbial mediated biotransformation activities, including dehydroxylation, 

epimerization, desulfatation, esterification and unsaturation (Table 1-1), which generates 

bile acid pools with great structural diversity.  

 

Dehydroxylation 

Specifically, deconjugated primary bile acids are transformed to secondary bile 

acids through dehydroxylation catalyzed by bacterial 7α-dehydroxylase possessed by 

mainly Firmicutes phylum genera Clostridum XIVa and XI (66, 209) and Eubacterium 

(210, 211). Bile acid-inducible genes which encode enzymes in the bile acid 7α-

dehydroxylation pathways has been characterized in Eubacterium sp. strain VPI 12708 

(212), Clostridium hylemonae, and Clostridium scindens (64). Importantly, the secondary 

bile acids DCA and LCA, which predominate in human feces (66) and have been 

associated with obesity (213), cholesterol gallstone disease (214, 215), liver and colon 
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cancer pathogenesis (216-220), indicate that 7α-dehydroxylation is the most 

quantitatively and physiologically important bacterial bile acid biotransformation in the 

human intestine. Importantly, deconjugation and dehydroxylation of bile acid increases 

the hydrophobicity and enhances absorption, thus slowing the bile acid turnover, which 

leads to multiple physiological and pathological effects. For example, conversion of 

primary bile acid into secondary bile acid via on gut bacteria alters host metabolism via 

bile acid receptor G protein-coupled bile acid receptor 1 (GPBAR1/TGR5), PXR and 

vitamin D receptor (VDR). 

 

Oxidation and Epimerization 

Another critical microbial transformation occurs through reversible oxidation of 

3α-,7α-, or 12α- hydroxyl groups of bile acid catalyzed by bacterial hydroxysteroid 

dehydrogenase (HSDH) (65), generating ketonic (oxo-) bile acid, which can undergo 

epimerization through the subsequent stereospecific reduction of the oxo group to yield 

β-hydroxyl bile acid or iso-bile acid (66). Major bacterial phyla including Bacteroidetes 

(genus: Bacteroides), Firmicutes (genera: Clostridium, Eubacterium, Peptostreptococcus 

and Ruminococcus), Proteobacteria (genera: Bifidobacterium, Egghertella) and 

Proteobacteria (genera: Enterobacter, Escherichia) (65, 66, 221-223) are known to 

exhibit either α-, β- or both HSDH enzyme activity. Epimerization is a microbial 

adaptation mechanism results in more hydrophilic, less toxic iso-bile acids that in turn 

increase microbial resistance in the highly competitive and hostile intestinal environment 

(224, 225). Interestingly, iso-bile acids function as a potential modulator for both gut 

microbial composition and host metabolism. For example, iso-DCA was reported to favor 
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the growth of bacterial genus Bacteroides (224), a critical genus  involves in obesity and 

metabolic disorders (226, 227). Of note, UDCA (iso-CDCA) was reported to protect 

against cytotoxicity in vitro studies (228, 229) and cholestatic liver diseases clinically 

(230) (231). Curiously, human liver class I alcohol dehydrogenase γγ isozyme presented 

3β-HSDH activity (232), indicating the interplay between liver and bacterial 

biotransformation and the co-contribution of host and bacteria to the diversity of the bile 

acid pool.  

 

Desulfatation, Esterification and Unsaturation 

Bile acid ethyl esters account for approximately 10 to 30% of the human total bile 

acid pool in feces (221). In vitro human fecal isolates studies have shown the bacterial 

esterification activity to covert bile acids to C-24 ethyl esters present in genera 

Bacteroides, Eubacterium, Lactobacillus, Citrobacter and Peptostreptococcus (233, 234). 

Bile acid sulfatase activity was found in the bacteria genera Clostridium,  Peptococcus, 

Fusobacterium, and Pseudomonas (221, 235-237), converting bile acid sulfates into less 

polar and more efficiently absorbed desulfated bile acids, indicating that the desulfating 

bacteria regulate enterohepatic circulation and lengthens metabolic half-life of bile acids 

(238, 239). Desulfation results in a more toxic and longer half-life substrate than the 

sulfated counterpart, which might be involved in hepatobiliary and intestinal toxicity, like 

cholestasis (a decrease in bile flow and biliary bile acid excretion) and colon cancer 

(239). In vitro studies have demonstrated that the gut bacteria genus Clostridium (240, 

241) possesses dehydrogenase activity, which is capable of introducing a double bond in 

the bile acid nucleus. However, it is uncertain if bacterial unsaturation transformation 
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occurs in vivo given the fact that unsaturation reaction reported are from fecal isolates 

and the unsaturated bile acids are rarely found in human feces (65).  

 

Bile Acid Activated Receptors and Signaling Metabolism Networks 

Bile acids are not only detergents, but critical signaling molecules that activate 

nuclear receptors including FXR, PXR, LXR, VDR and GPBAR1/TGR5 (57). The 

receptor activated cell-signaling pathways regulate complex symbiotic metabolism 

networks, including lipid metabolism (58), glucose metabolism (59), xenobiotic 

metabolism (60, 61) and energy homeostasis (62). As the size and composition of the bile 

acid pool directly regulates de novo bile acid synthesis via negative feedback control 

(242) and affects receptors activation (57, 225), by modulating bile acid pool through 

microbial biotransformation, gut microbiota has an essential participation in bile acid 

self-regulation signaling and receptor-dependent symbiotic metabolism network signaling 

(225, 243) (Table 1-2). 

 

Farnesoid X Receptor (FXR)  

FXR is the major bile acid receptor in the liver and intestine, which regulates bile 

acid, glucose, insulin, lipoprotein, triglyceride, drug, xenobiotic, and energy metabolism 

upon activation (60, 244) . FXR regulates de novo bile acid synthesis through negative 

feedback (242). In the liver, activated FXR forms a heterodimeric complex with the 

retinoid X receptor (RXR) to target the nuclear receptor small heterodimer partner (SHP), 

which binds to and inactivates liver-related homolog-1 (LRH-1) and an oxysterol-

activated nuclear receptor LXRα to inhibit transcription of CYP7A1 and CYP8B1, both 
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encode critical enzymes in the classical (neutral) bile acid synthesis pathway. Besides 

inhibition of bile acid synthesis, FXR activation enhances bile acid elimination via 

induction of bile salt efflux pump bile salt excretory pump (BSEP) (known as 

triphosphate-binding cassette transporter (ABCB11)) (245), conjugate export pump multi 

drug resistant protein 2 (MRP2)  (246),  organic solute transporters α and β (OST α and 

β) (247), while downregulating hepatocyte basolateral bile acid uptake via repression 

Na+ taurocholate co-transporting peptide (NTCP/ SLC10A1) (248, 249) and organic 

anion transport polypeptides OATP1B1/SLCO1B1 (known as OATP-C) and 

OATP1B3/SLCO1B3 (formerly known as OATP8/ SLC21A8) (244, 250). Together, 

liver FXR activation negatively regulates hepatic bile acid pools by reducing bile de novo 

synthesis and influx while enhancing excretion. FXR activation in the distal ileum results 

in regulation of the expression of a series of ileal bile acid transporters, which move bile 

acids from the intestine into the portal circulation. Apical sodium dependent transporter 

(ASBT) transfers bile acids into the ileal enterocyte brush border membrane, and its 

expression is decreased upon bile acid mediated FXR activation via the SHP (251).  Bile 

acids are shuttled from the apical to the basolateral membrane of enterocytes by intestinal 

bile acid-binding protein (I-BABP; also known as fatty acid-binding protein 6 (FABP6)), 

and transported into blood vessels by the OSTα and OSTβ, all of which are positively 

regulated by FXR (252). Additionally, intestinal enterocytes can directly suppress hepatic 

bile acid synthesis via fibroblast growth factor 19 (FGF19) in humans (its homolog Fgf15 

in mouse), which is secreted and circulated to the liver in response to bile acid activation 

of FXR, binding to the FGF receptor type 4 (FGF-R4) and β-Klotho complex to trigger 

mitogen-activated protein kinase MARK /extracellular signal-regulated kinase ERK1/2 
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pathway, ultimately repressing expression of the gene encoding CYP7A1 (253, 254). 

FGF19 has also been shown to activate hepatic glycogen synthesis and inhibit hepatic 

gluconeogenesis independent of insulin signaling, directly linking FXR to the regulation 

of carbohydrate metabolism (255, 256). Notably, FGF19 also negatively regulates bile 

acid synthesis and intestinal and hepatic bile acid transporters, which mediate absorption 

of dietary lipids and adiposity (257), thus altered FXR-FGF signaling impacts lipid 

homeostasis was shown in Fxr null and Fgf19 transgenic studies (258-260). 

Bile acids are the endogenous ligands for FXR and show a striking diversity in 

FXR activation which is correlated with hydrophobicity (261). The bile acid ligands 

binding affinity of FXR in order of potency is CDCA>LCA=DCA>CA (262, 263). As 

gut microbiota readily transforms bile acids structurally, by altering the bile acid pool 

composition, the gut microbiota is capable of altering FXR signaling and tuning the host 

physiology and metabolism. Multiple studies revealed that the gut microbiota regulates 

bile acids and host metabolism in an FXR-dependent manner (187, 264). GF mice and 

Fxr knockout mice studies suggest the gut microbiota regulates FXR signaling not only 

by converting bile acids to more or less potent FXR ligands, but also by controlling bile 

acid synthesis and pool size. It was reported germ free and antibiotic-treated mice 

exhibited changes in the bile acid pool size and profile as well as the gene expression 

involved in FXR-dependent pathways like Cyp7a1 and Fgf 15 (187, 265), Bsep, Mrp2, 

multidrug resistance protein 3 (Mdr3) and ATP-binding cassette (Abcg5/Abcg8) (266). 

Tissue specific Fxr knockout studies have shown intestinal FXR inhibition by elevated  

FXR antagonist tauro-β-muricholic acid (TβMCA)(187) levels via modulating microbiota 

to reduce bacterial BSH activity (264, 267). Interestingly, the gut microbiota modulation 
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of FXR signaling is intestine-specific (264, 267). As intestinal FXR inhibition with 

elevated TβMCA ameliorates adiposity and attenuates hepatic gluconeogenesis, 

enhancing FXR antagonism by targeting BSH producing bacteria (e.g., Lactobacillus and 

Clostridium IV and XIV) provides a potential therapeutic treatment of obesity and 

diabetes (264, 268). However, the translational application to human remains unknown as 

muricholic acid (MCA) is restricted to mouse species (269).  

 

FXR Signaling Mediated Glucose Metabolism 

Emerging evidence suggests the regulatory role of bile acid-induced FXR activity 

in glucose metabolism. Activating FXR by administration of bile acids or synthetic FXR 

agonist inhibits gluconeogenesis by repressing the expression of gene encoding G6pase, 

Pepck, and fructose 1,6-bis phosphatase via hepatocyte nuclear factor 4 (Hnf4) and 

forkhead box protein O1 (Foxo1) in an SHP-dependent fashion (270, 271). Over 

expressed hepatic G6pase and Pepck were identified in response to suppressed FXR 

signaling in GF and antibiotic-treated rats (266). Diabetic model studies demonstrated 

FXR activation promotes glucose metabolism and enhances insulin sensitivity (272, 273). 

FXR promotes insulin sensitivity via protein kinase B (Akt) signaling cascade, which 

inactivate glycogen synthase kinase 3β (Gsk3β) through phosphorylation to upregulate 

glycogenesis (272) and activating glucose transporter Glut2 translocation at pancretic β 

cell membrane and Glut4 in hepatocyte to promote insulin transcription and secretion 

(274, 275). Interestingly and controversially, FXR deficiency through genetic knockouts 

or bile acid sequestrant administration appears to promote glucose metabolism through 



 33 

activating GLP-1 synthesis, a critical hormone involving in glucose homeostasis and 

energy balance (276).  

 

FXR Signaling Regulates Lipid Metabolism 

FXR deficient mice have disrupted lipid homeostasis as shown by elevated levels 

of hepatic cholesterol, phospholipid, triglycerides, and pro-atherogenic lipoprotein-

containing serum (277), indicating the regulatory role that FXR plays in lipid 

metabolism. Bile acid activated FXR/SHP pathway lowers triglyceride levels by 

negatively regulating the expression of enzyme involved in lipogenesis including fatty 

acid synthethase (Fas) via repression of lipogenic protein Srebp-1c (278). Moreover, bile 

acid-activated FXR promotes lipoprotein lipase (LPL)-mediated triglyceride clearance of 

triacylglycerol-rich lipoproteins such as very low density lipoprotein (VLDL) and 

chylomicrons through repression of LPL inhibitor apolipoprotein CIII (Apo-CIII) (279), 

while inducing LPL cofactor/activator ApoC-II (280) and APOA-V promotor (human) 

(281) dependent on FXR/RXR heterodimerization, and upregulates expression of VLDL 

receptor (282), and transmembrane protein syndecan-1 (283). In addition, a transgenic 

mice study described the lipoprotein regulatory role of FXR in mediating bile acid-

induced transcriptional downregulation of thrombosis and atherogenesis-related 

lipoprotein(a) encoding human APOA by directly binding and repressing APOA 

promoter activity (284, 285). FXR activation also regulates PPARα, a nuclear receptor 

that upon activation promotes fat oxidation to reduce triglycerides (286). Together, 

hepatic FXR activation up-regulates the expression of genes involved in VLDL and 

chylomicron clearance such as syndecan-1, VLDL receptor, ApoC-II and APOA-V, 
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while reducing liver triacylglycerol levels through suppression of Fas expression via 

Srebp-1c and enhanced fatty acid β-oxidation via PPARα expression. 

 

FXR Signaling Promotes Cholesterol Metabolism 

FXR participates in cholesterol metabolism as it is the primary regulator of bile 

acid homeostasis and serves as the intimate linkage between bile acid de novo synthesis 

and biliary cholesterol elimination (287). Induction of CYP7A1 activity through bile acid 

regulated-FXR modulation stimulates cholesterol de novo synthesis and biliary 

cholesterol secretion (288). Bile acid-activated FXR enhances biliary and fecal 

cholesterol excretion by regulating transporters and enzymes, as evidence show FXR 

natural (bile acid) and synthesized ligands induce expression of ATP-binding cassette 

transporters Abcg5 and Abcg9 in mice and rat hepatoma cells (289), and promote 

macrophage reverse cholesterol transportation and hepatic CYP8B1 inhibition-dependent 

reduction of intestinal cholesterol absorption (290). Additional evidence in Fxr knockout 

mice has shown impaired cholesterol clearance indicated by increased plasma 

cholesterol, reduced hepatic high density lipoprotein (HDL)-mediated cholesterol ester 

clearance, and increased intestinal cholesterol absorption, resulting from a deceased 

cholesteryl ester hydrolase (Ceh)-mediated cholesterol mobilization,  sterol carrier 

protein (Scp)-mediated intra-cellular transport, scavenger receptor BI (SrbI)-mediated 

HDL cholesterol ester clearance, and transporter Abcg5/8-mediated free cholesterol 

biliary secretion (287). 

 

FXR Signaling Involves In Xenobiotics Metabolism 
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In human hepatocytes, bile acid mediated-FXR activation induced gene 

expression involve in bile acid and xenobiotics detoxification, including Cytochrome 

P450 Family 3A4 (CYP3A4) (291), DHEA sulfotransferase (SULT2A1) (292), UDP-

glucuronosyltransferase 1A3 (UGT1A3) (293) and UDP-glucuronosyltransferase 2B4 

(UGT2B4) (294). Long lived little mice studies revealed more FXR-activated xenobiotic 

genes enconding  Abcb1, Flavin containing monooxygenase 3 (Fmo3) and Glutathione S-

transferase A2 (Gsta2) (61). Together, these studies heightened the FXR-dependent bile 

acid regulation in phase I and II xenobiotics and drug metabolism.  

 

FXR Signaling Modulates Energy Metabolism 

FXR signaling regulates metabolism of glucose and lipid, which are two major 

energy sources in human and other organisms, thus serves as an important modulator in 

energy metabolism and homeostasis. The antioxidant drug tempol (4-hydroxy-2,2,6,6-

tetramethylpiperidine-N-oxyl) inhibits BSH-producing bacteria Lactobacillus to favor T

βMCA production (an FXR antagonist) and thus promote FXR inhibition, which leads 

to a more catabolic state to ameliorate obesity (264, 295). Fxr knockouts have revealed 

important regulatory roles that FXR plays in Ucp1-driven thermogenesis due to low 

metabolic fuels like glucose and triglyceride (296). Intestinal FXR agonism enhances 

thermogenesis and white adipose tissue browning via expression of genes involved in 

thermogenesis, mitochondrial biogenesis and fatty acid oxidation including peroxisome 

proliferator-activated receptor γ coactivator 1α and β (Ppargc1α and Ppargc1β, encoding 

Pcg1α and β), Ucp1 and Fabp1 (297). FGF19 (Fgf15 in mouse), is an FXR-dependent 

key regulator of energy expenditure to increase metabolic rate, restore mitochondrial 
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function, reduce adiposity and ameliorate hyperglycemia by upregulating expression of 

phosphofructokinase (Pfk-1), ATP citrate lyase (Acly), stearoyl CoA desaturase (Scd) 

and Pgc-1 while repressing Acc2 has been identified in transgenic and diet-induced 

obesity mice model (298, 299). The FXR agonist GW4046 attenuates mitochondrial 

dysfunction and oxidative injury via repression of  microRNAs miR-199a-3p to increase 

liver kinase B1 (Lkb1) (300), while CDCA treatment induced antioxidant and detoxifying 

enzymes via  AMPK and ERK-mediated CCAAT enhancer binding protein β (C/EBPβ) 

phosphorylation (301). However, activated FXR may induce mitochondrial dysfunction, 

apoptosis and cell death in certain cell lines with distinct phenotypes including 

cardiomyocyte and cancer cell line (302, 303). Together, FXR-dependent signaling 

pathways coordinate energy metabolism via regulating glucose and lipid metabolism to 

promote mitochondrial and cellular function and catabolism.  

 

G-Protein-Coupled Receptor-1 (GPBAR1/TGR5) 

TGR5 (GPBAR1), the first identified G-coupled protein receptor specific for bile 

acid ligand (304), is expressed extensively in tissues including liver, skeletal muscle, 

kidney, gall-bladder, with prominent expression in the enteric nervous system in the 

intestine (305). TGR5 is in low-affinity state at rest condition and is activated with 

greater potency by secondary bile acids LCA and DCA (304). Importantly, conversion of 

less potent primary bile acid ligands CA and CDCA to more potent secondary bile acid 

ligands DCA and LCA is bacterial deconjugation (to free primary bile acid) and 

dehydroxylation (to dehydroxylate primary bile acid)-dependent, therefore emphasizing 

the critical regulatory role that BSH and 7α-dehydroxylase active bacteria have in TGR5 
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signaling pathways. Bile acid-activated TGR5 stimulates intracellular cAMP level to 

activate protein kinase A (PKA), resulting in the cAMP-dependent upregulation of gene 

expression involves in energy expenditure, glucose and lipid metabolism and NO 

production (62, 306, 307).  

 

TGR5 Regulates Energy Homeostasis and Inflammation 

Bile-acid-activated TGR5 regulates lipid metabolism, energy homeostasis and 

prevents diet-induced obesity through activation of cAMP-dependent thyroid hormone 

activating enzyme deiodinase-2 (DIO2), which converts inactive thyroid hormone 

throxine (T4) into its active counterpart (T3), therefore promoting mitochondrial oxygen 

consumption and energy expenditure in mice brown adipose tissue (BAT) and human 

skeletal myocytes, the most thermogenically important tissues of rodents and human (62). 

The TGR5-dependent thermogenesis and energy expenditure boosting effect of bile acids 

was confirmed in a CDCA oral supplementation human study. Two-day CDCA 

supplementation to 12 healthy female promotes BAT activity and whole-body energy 

expenditure with an enhanced mitochondrial uncoupling UCP1 and DIO2 expression 

(308). FXR is unlikely involved in cAMP-DIO2 pathway as the FXR is neither expressed 

nor induced in the metabolic responding BAT tissue, plus the evidence suggests FXR 

specific agonist GW4046 fails to induce the similar energy expenditure promotion effect 

(309). Bile acid-activated TGR5 stimulates NO via upregulating expression of nitric 

oxide synthase (NOS) in liver sinusoidal endothelial cells, a possible protective 

mechanism to against oxidative stress and lipid peroxidation induced by excessive bile 

acids (307, 310). Bile acid activated TGR5/cAMP signaling also inhibits inflammatory 
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cytokines induced by LPS via repression NF-B pathway and attenuates colon 

inflammation in colitis mouse model, revealing the anti-inflammatory role and intestinal 

barrier protection effect that bile acids have through TGR5-dependent signaling pathways 

(311, 312).  

 

TGR5 Promotes Glucose Metabolism and Insulin Sensitivity 

TGR5 signaling promotes glucose metabolism and insulin sensitivity mainly 

through stimulating incretin hormone GLP-1, which is driven by elevated intracellular 

ATP/ADP ratio and a subsequent intracellular calcium influx (293). GLP-1 regulates 

glucose metabolism and energy balance through promoting pancreatic insulin production, 

inhibiting gastric empty and acid secretion, delaying intestinal transit, and reducing food 

intake by enhanced satiety (313, 314). GLP-1-mediated physiological benefits can be 

achieved by bile acids (e.g., CDCA) and bile acid sequestrants (e.g., colesevelam) 

treatment through TGR5-dependent signaling pathway (315). Notably, gut microbiota 

regulates GLP-1 not only through bacterial modulated bile acid TGR5 signaling, but also 

via bacterial derived SCFAs signal through GPR41/43 (316), and microbial modifiable 

endocannabinoid-like compounds (e.g., 2-oleoylglycerol-activated GPR119 pathway 

(317, 318), emphasizing the importance of microbial tuning in host metabolic regulation.  

 

Pregnane X Receptor (PXR) 

PXR is highly expressed in the intestine and liver,  functions as a master 

xenobiotic receptor as it transcriptionally regulates phase I and phase II enzymes and 

transporters (319). Evidence demonstrated RXR also serves as a bile acid sensor, which 
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can be activated by bile acid with the potency order: 3-keto-LCA > LCA > DCA= CA 

(246, 320). Upon activation by the efficacious and toxic LCA and its 3-keto metabolite, 

PXR coordinately regulates gene expression involved in bile acid biosynthesis (e.g., 

Cyp7a1), transport (e.g., Oatp2) and detoxification (e.g., Cyp3a) in mice (320). PXR 

regulated detoxification enzymes in human include UDP-glucuronosyltransferases 

(UGTs, UGT1A1, UGT1A6, UGT1A3 and UGT1A4), sulfotransferases (SULTs,  

SULT2A1), glutathione S-transferases (GSTs, GSTA1, GSTA2, GSTM1), cytochromes 

P450 family (CYP3A4, CYP3A11 and  CYP1A) , multidrug resistance associated 

proteins (MRP2, MRP3, MRP4, and MRP5) and SLC/OATP family 

(SLCO1A2/OATP1A2, SLCO1B1/OATP1B1, SLCO1B3/OATP1B3), multidrug 

resistance 1 or P-glycoprotein (MDR1/P-gp) (320-323). Of note, the PXR ligand, 

synthetic pregnane pregnenolone 16α-carbonitrile and the antibiotic rifampicin, have 

anti-hepatotoxic and anti-cholestatic effects. The possible underlying mechanism 

involves PXR-mediated de novo bile acid synthesis regulation through CYP7A1 

signaling pathway, and promoted bile acid transportation via upregulated basolateral 

transporters and bile acid detoxification through CYP3A-dependent 6-hydroxylation of 

the toxic bile acid. Recently studies revealed LCA or rifampicin activated PXR in bile 

acid and cholesterol metabolism is related to HNF4α/PGC-1α -induced CYP7A1 

inhibition and FGF19-dependent CYP7A1 repression in human hepatocytes (324, 325). 

In addition to xenobiotic and bile acid metabolism, PXR activation has been associated 

with transcriptional regulation of gene expression involves in gluconeogenesis, 

thermogenesis, cholesterol, and fatty acid in high-fat diet-induced obesity and knockout 
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mice models, revealing the additional physiological function that PXR in glucose, lipid 

and energy metabolism (322, 323, 326).  

 

Vitamin D Receptor (VDR) 

VDR, a vitamin D hormone 1,25-dihydroxyvitamin D3 (1α,25-(OH)2-D3) 

activated transcriptional factor also functions as a bile acid sensor which can be activated 

by secondary bile acids LCA and 3-keto-LCA (327). The responsive genes expression 

activated  via VDR-dependent transactivation includes CYP2, CYP3A, SULT2A1, 

MDR1, MRP3, CYP7A1 (328-332), coordinately regulates xenobiotics and drugs, 

glucose, lipid, and energy metabolism with other bile acid-activated receptors like FXR 

and PXR in the nuclear receptor regulatory networks (185). LCA also upregulates 

vitamin D-induced gene expression of calbindin D9K, Ca2+ ATPase, transient receptor 

potential vanilloid (TRPV6) and CYP24. LCA-treated vitamin D-deficient mice restored 

vitamin D-sufficient phenotype, indicating LCA might serve as a vitamin D substitute 

and regulates calcium absorption, mobilization and homeostasis in intestine, kidney, bone 

and serum (327, 333). Additionally, VDR is also participates in cell proliferation, 

differentiation, and immunomodulation, as VDR signaling induces apoptosis in 

keratinocytes, psoriatic plaques, breast cancer cells and pre-malignant colonic epithelium 

(334-337), inhibits antigen-induced T cell proliferation, enhances Tregs function, 

attenuates pro-inflammatory cytokine expression (338-340). These studies illustrated the 

anti-proliferative and anti-informatory effect of VDR, and the importance of natural or 

synthetic VDR agonists as immunoregulators for potential therapeutic applications 

against inflammatory and autoimmune diseases.  
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Gut Microbiota-Modulated Bile Acids and Associated Diseases 

The diversity and composition of the bacterial community inhabiting the human 

gastrointestinal tract is a newly appreciated key factor that contributes to the evolutionary 

fitness of the host, and its quantity or structural perturbation caused by environmental 

stressors (xenobiotics, toxicants, drugs), change in diet (nutrition) or lifestyle (smoking, 

exercise, stress), will greatly influence the host metabolic phenotype and disease risk (2, 

3). Microbial-modulated bile acids are major signaling molecules capable of fine-tuning 

host metabolism for the benefit of the microbiota. It is well appreciated that microbial 

composition perturbation and the resultant altered bile acid pool size and composition is 

involved in metabolic and immunological disorders. A better understanding of how 

microbiota-modulated bile acids contribute to disease risk and health will enlighten the 

way to new therapeutic applications for metabolic and inflammatory disorders, like 

obesity, diabetes, fatty liver disease, cholestatic disease and inflammation.  

 

Obesity and Associated Metabolic Complications 

The rising prevalence of obesity and obesity-associated metabolic complications 

like type 2 diabetes (T2D) has becoming an international epidemic, with a rate projected 

to increase by 33% in obesity and 54% in diabetes by 2030 in United States (341, 342). It 

is well established that the co-regulation of first genome (host) and second genome 

(microbiome) determines the host metabolic phenotype, and disrupted microbiome and 

microbiome-host interaction play a critical role for obesity and subsequent metabolic 

complications (343, 344). A diabetic animal study revealed the alterations in bile acid 
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pool size and composition while a clinical study confirmed elevated post-prandial 

circulating bile acids in obese patients with T2D compared to normoglycemic controls 

(345, 346). A discordant twin study demonstrated obese phenotype was correlated with a 

robust bile acid decrease, resulting from activated mouse host ileal FXR-Fgf15 signaling, 

and corresponding downregulation of liver bile acid de novo synthesis via suppression of 

Cyp7a1 (347).  

Bile acids involved in obesity and related metabolic disorders mainly through 

three routes; 1) microbial-modulated bile acid signaling through bile acid receptor; 2) 

antimicrobial bile acids modulate the gut microbiome composition and function; 3) 

accumulation of toxic bile acids causes toxicity of the cells and organs. The first route 

highlights the microbial transformation of bile acid and the signaling role that certain 

transformed bile acids act through bile acid receptors to achieve metabolic regulatory 

function, especially through FXR, TGR5 and PXR (Table 1-2). Interestingly, 

controversial results showed Fxr-deficient mice are protected from diet- or genetic- 

induced obesity and hyperglycemia compared with wild-type counterparts. Recent studies 

demonstrated that intestinal upregulation of the FXR antagonist TβMCA by manipulating 

BSH active microbiome (e.g., Lactobacillus) or directly inhibiting bacterial BSH (caffeic 

acid phenethyl ester (CAPE)) improves obesity and hyperglycemia (264, 267). The 

second route emphasizes the microbial modulating effect of bile acids, which pool size 

and composition can regulate the structure of microbial community. The antimicrobial 

effect of bile acids can be achieved directly through damaging bacterial membrane,  

disturbing macromolecule stability and increasing oxidative stress, or indirectly through 

FXR-dependent antimicrobial peptides (348). Toxic and hydrophobic primary and 
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secondary bile acids directly damage the bacterial membrane, resulted in taxonomic 

alteration, which favors bile acid-metabolizing and resistant bacteria like Firmicutes, 

representing from 54% to 95% of the total microbiome while inhibiting bile acid 

intolerant bacteria like Bacteroidetes and Actinobacteria, reduced from 33% to less than 

1% in CA-supplemented rats (349). It seems increased bile acid toxicity in the gut favors 

the growth of gram-positive bacteria as the protective peptidoglycan layer is thicker and 

more resistant to the harsh environment compared with gram-negative bacteria (350). 

Another study observed a 1000-fold increase of the bile acid 7α-dehydroxylating bacteria 

with CA treatment, which all belong to Clostridium cluster XIVa from Firmicutes 

phylum, indicating the conversion of primary bile acids to more toxic secondary bile 

acids by 7α-dehydroxylating bacteria might be an adaptation mechanism to inhibit 

nutrients competitors to favor their own growth in the highly competitive gut 

environment (351). Interestingly, expansion of Firmicutes and shrinkage of Bacteroidetes 

is the characteristic structure of an obesity-associated microbial community with an 

elevated energy-harvest ability (26). The third route accentuates the cytotoxic and 

genotoxic property of hydrophobic bile acids. In addition to membrane damage, bile 

acids disrupt intracellular activity by interfering with the transporters (352), inducing 

DNA damage, ER stress, protein malfolding and denaturation, which is involved in 

multiple diseases, including cholestasis and cancer (353, 354) 

 

Nonalcoholic Liver Disease (NAFLD)   

NAFLD refers to a broad spectrum of non-alcohol relevant liver pathologies (<20 

g of alcohol intake/day) ranging from simple steatosis due to excessive hepatic lipid 
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accumulation to severe non-alcoholic hepatosteatosis (NASH), progressive fibrosis, 

cirrhosis and even hepatocellular carcinoma, which affects up to 25% of population 

worldwide with an astonishing estimated 33.5% prevalence among the adult population 

in 2030 (355, 356). NAFLD is highly correlated with obesity, insulin resistance and T2D 

mellitus. The co-occurrent rate of obesity/T2D and NAFLD is up to 70%-80%, and 

NAFLD is 100% presented in patients with combined obesity and T2D (357, 358). As 

pathogenesis of NAFLD is intimately associated with glucose, lipid, energy and 

immunity dysregulation, it is expected that bile acids are involved in NAFLD through 

modulating hepatic and extrahepatic lipid, carbohydrate and inflammation pathways by 

targeting bile acid receptors. Fxr-deficient mice exhibit the full spectrum of NAFLD 

pathology including hepatocellular carcinoma, and manipulating FXR expression or 

administering natural or synthetic FXR agonist improves NAFLD manifestation 

including steatosis, inflammation, fibrosis and carcinogenesis and regenerative capacity 

in both pre-clinical in vivo models and human clinical trials (359). Controversially, 

emerging evidence suggested intestine-specific Fxr deficiency might protect against 

HFD-induced NAFLD by reducing hepatic lipid accumulation via repression of 

ceramides/Srebp1-c/Cidea (cell death activator) pathway (360). Tgr5 deficiency is 

implicated in obesity, hypercholesterolemia, NAFLD, and atherosclerosis mainly due to 

lack of glucose, energy metabolism and inflammation modulation with deficient 

TGR5/GLP-1 signaling, TGR5/cAMP/PKA thermogenesis signaling and 

TGR5/cAMP/NF-B anti-inflammatory signaling. In agreement with the TGR5 

deficiency phenotype, TGR5 agonist like INT-777 (a semisynthetic bile acid, also known 

as obeticholic acid (OCA); 6α-ethyl-CDCA), reverses HFD-induced hepatosteasosis and 
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LPS-induced atherosclerosis (306, 361). Additionally, bile acid transporters have been 

implicated in NAFLD pathogenesis, as the influx and efflux bile acid transporters control 

local and systemic bile acid levels, bile acid enterohepatic cycling and distribution, thus 

regulating the strength of the bile acid receptor activation and downstream signaling 

including glucose and lipid homeostasis. Evidence indicates bile acid transporters like 

BSEP, ASBT, NTCP and MRP2 are relevant in NAFLD pathogenesis in both animal and 

human studies (362, 363), while inhibition of ileal bile acid uptake by disrupting ASBT 

with ASBT inhibitor has protective effect against HFD-induced NAFLD, a potential 

therapeutic target to ameliorate NAFLD and NASH (364).  

 

Hepatobiliary Diseases -Cholestasis and Gallstone Diseases 

Cholestasis and gallstone disease are associated with impaired bile flow excretion 

due to impaired hepatocytes, bile duct or gallbladder, and dysregulated cholesterol 

metabolism. Cholestasis describes a medical condition characterized by a decrease in bile 

flow due to either impaired hepatocyte secretion or obstructed bile ducts (365). 

Cholestasis occurring during pregnancy is called obstetric cholestasis or intrahepatic 

cholestasis of pregnancy (ICP), a disorder with 1/140 incidence among UK pregnancies 

with an increased level of maternal and fetal circulating bile acids due to restriction of the 

hepatic bile excretion. ICP has been highly associated with incidence of stillbirth, 

perinatal complications and intra-uterine fetal death (366). Cholestasis is highly 

associated with cholestatic bile acids like CA, CDCA, LCA and DCA, which are highly 

hydrophobic thus eliminated inefficiently in the liver and cause hepatotoxicity and bile 

acid accumulation. Significant elevation of cholestatic bile acids in circulation is the 
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common manifestation with ICP conditions, indicating the impairment of the 

enterohepatic circulation (367, 368). Sufficient elimination of toxic bile acids relies on 

well-controlled bile acid de novo synthesis, enzymatic hydroxylation/detoxification to 

convert hydrophobic bile acids into more hydrophilic and less toxic molecules, and 

functional bile acid transportation system for efficient excretion. Both bile acid de novo 

synthesis, detoxification (Phase I and II enzymes) and transportation (Phase III 

transporters) are tightly regulated by bile acid receptors including FXR, PXR and VDR. 

Under cholestatic conditions, activation of those bile acid receptors exert protective 

effects by decreasing hepatic bile acid output and uptake, stimulating hepatic bile acid 

efflux, and inducing bile acid metabolizing, conjugating enzymes and transporters. 

Multiple studies have demonstrated bile acid receptor agonism is the potential therapeutic 

strategy for the treatment of cholestasis and hepatobiliary-related diseases (369).     

Cholesterol gallstone formation is highly associated with hypersecretion of 

cholesterol resulting from dysregulated bile acid, which can obstruct the bile duct leading 

to diminished hepatic bile acid outflow and ultimately cholestasis. The inactivation of 

CYP7A1 (limiting enzyme of bile acid synthesis from cholesterol) has been reported to 

cause gallstone formation, proven by Apobec-1−/− mice with Cyp7a1 deficiency 

phenotype that readily develop lithogenic diet-induced gallstone, and the human 

hypercholesterolemic phenotype due to loss of CYP7A1 function with a homozygous 

deletion mutation (370, 371). A correlation has been established between decreased bile 

acid synthesis and increased biliary cholesterol secretion (372). Hydrophobic bile acid 

DCA and CA have been reported to promote cholesterol crystallization, a pre-stage of 

gallstone. Female gallstone patients showed a significantly smaller bile acid pool size 
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with an enhanced CA to DCA biotransformation comparing to the healthy female 

controls. Additional human studies confirmed cholesterol gallstone prevalence is 

associated with raised proportion of DCA and CA (373, 374). Bile acid receptor FXR, 

PXR and VDR are implicated in gallstone diseases by inhibiting bile acid synthesis to 

eliminate hepatic cholesterol through repressing transactivation or transcription of 

CYP7A1 (287, 324, 332). Moreover, studies revealed Tgr5 knockout mice were protected 

from lithogenic diet-induced gallstone diseases, indicating TGR5 activation is involved in 

gallstone pathogenesis. The possible mechanism is related to promotion of gallbladder 

filling by inducing gallbladder smooth muscle relaxation via TGR5-cAMP-protein kinase 

A-KATP channel pathway (375, 376).  

Interestingly, microbiota is involved in cholestasis and gallstone formation not 

only by regulating bile acid receptors, but also by directly converting bile acids to more 

or less cholestatic/hydrophobic forms. For example, microbiota contributes to 

hepatobiliary diseases pathogenesis by dehydroxylation of primary bile acid to more 

hydrophobic and toxic secondary bile acid via 7α-dehydroxylase activity, and 

deconjugation of more hydrophilic conjugated bile acids to free and toxic bile acids by 

BSH activity. Meanwhile, bacteria participates in the protection against cholestasis and 

gallstone by transforming cholestatic bile acids to less hydrophobic and toxic iso-bile 

acids form through oxidation and epimerization by HSDH activity. 

 

Apoptosis, Inflammation and Autoimmunity  

Bile acids are increasingly appreciated as immunological modulators in regulation 

of apoptosis, inflammation, and immunity. Accumulation of hydrophobic bile acids is the 
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major inducer of hepatic inflammation, cholestasis, fibrosis and carcinogenesis. Besides 

liver, systemic bile acids levels cause damage in extrahepatic organs including gut and 

kidney as well (377, 378). One mechanism, which bile acids lead to hepatocyte damage 

and inflammation involve bile acid-induced oxidative stress and endoplasmic reticulum 

stress through ligand independent epidermal growth factor receptor and FAS receptor-

mediated caspase activation or hydrophobicity-caused direct mitochondria damage. 

(379). Another mechanism involves the bile acid-activated proinflammatory mediators 

including early growth response factor-1, which stimulates the proinflammatory signaling 

and effector including cytokine (TNF-α, IL-23, IL-17A), chemokine (Macrophage 

Inflammatory Protein-2) (380), and adhesion molecules (intercellular adhesion molecule-

1) (380, 381). The most recognized mechanism that bile acids exert immunomodulatory 

effect is through bile acid receptors including FXR, TGR5, and VDR. Bile acid-activated 

FXR and TGR5 induce hepatic, colonic and cardiovascular anti-inflammatory signaling 

by inhibiting pro-inflammatory cytokines and enzymes including IL-1α, IL-1β, IL-6, 

TNF-α,  IFN-γ, cycloxygenase (COX)-1, COX-2 and iNOS through antagonizing NF-kB 

dependent pathway (311, 312, 382). FXR modulates renal inflammation and fibrosis 

through repressing Srebp-1c-mediated fatty acid synthesis, profibrotic growth factor 

TGF-β, and pro-inflammatory cytokines and chemokines including TNF-α, IL-6 and 

monocyte chemoattractant protein-1 (383). VDR has been implicated in the prevention of 

IBD and colorectal cancer as it exhibits regulatory role in cell proliferation, 

differentiation, immunomodulation and pro-inflammatory signaling attenuation in 

epidermal cells, malignant breast cells, pre-malignant colonic epithelium and immune 

cells (334-337, 339). Due to the beneficial immunomodulatory effects, bile acid receptor 
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antagonism represents the promising therapeutic strategy in the treatment of 

inflammatory and autoimmune diseases.  

 

Bile Acid Measurement Approaches  

Bile acids have great clinical significance as the pool size and composition is 

intimately related to their metabolic and immunological function, and disrupted gut 

microbiome-host interaction. Increased serum bile acid especially hydrophobic bile acid 

indicates problems with intrinsic clearance and detoxification deficiency thus is critical 

for liver disease diagnosis including ICP, hepatitis and cirrhosis (384-386). Given the 

biological and clinical significance of bile acids, a reliable and efficient platform and 

method to provide robust detection and quantitation  with improved analytical confidence 

is highly important for disease diagnosis and prognosis. However, the development of 

sensitive and accurate analytical methods remains challenging due to the structural 

diversity of BAs, broad spectrum of biological concentration (>106 magnitude), as well as 

the molecular complexity of the biological matrix like plasma, urine, bile, and stool, 

which can contain mixtures of lipid,  protein, carbohydrates, mineral salts, vitamins 

,various trace element, and other interfering components (387). Various methods using 

different platforms have been utilized for bile acid separation, detection and quantitation 

in the past decades, including enzymatic assays, thin layer chromatography, gas 

chromatography (GC), gas liquid chromatography (GLC), HPLC, GC-MS, LC-MS, and 

NMR spectroscopy. Reviewing and evaluating the analytical and practical performance 

of the emerging techniques will be advisable for clinical practice of bile acid 

measurement and disease diagnosis.  
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Enzymatic assays 

Enzymatic assays offer a relative simple, specific and rapid measurement for total 

bile acids, thus they are most widely used in clinical laboratories for direct total bile acid 

measurement in patient serum with liver diseases. The general enzymatic reaction is 

initiated by adding dehydrogenase enzyme like NAD-linked 3α-hydroxysteroid 

dehydrogenase (3α-HSD) to catalyze the oxidation reaction of bile acid, either generating 

NADH to react with nitrotetrazolium blue to form fluorescent formazan dye with the 

presence of diaphorase enzymes (3rd generation method) or forming fluorescent reduced 

coenzyme thio-NADH with the presence of coenzyme thio-NADH (5th generation, also 

known as enzymatic cycling), followed by fluorometric measurement with ultraviolet 

spectrophotometry or fluorimetry (388, 389). Despite that enzymatic assays are 

extensively used for their cost and ease of use, the drawbacks that they are dependent on 

enzyme purification and certain bile acids may hinder the accuracy and thus reduce 

extensive application of the measurement (390).  

 

Chromatography-based techniques  

Besides total bile acid levels, individual bile acids serve important physiological 

function and clinical significance, especially hydrophobic secondary bile acids like LCA 

and DCA, which in high concentration are hepatotoxic and carcinogenic. Elevated LCA 

and DCA levels have been implicated in the promotion of colon cancer, chronic 

inflammation and hepatobiliary diseases like cholestasis and gallstone formation (369). 

Therefore, highly selective techniques for accurate specific bile acid quantitation is 
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required for clinical practice. Chromatographic techniques depend on the selective 

retention of the migrating components in the column by the stationary phase, thus 

providing good separation to purify individual bile acid from the complex biological 

matrices, which means this methodology can be extensively applied clinically for 

individual bile acid measurement (391).  

 

Thin-Layer Chromatography (TLC) 

TLC methods have mostly used in routine clinical separation of primary and 

secondary bile acids and their glycine or taurine conjugates for the relatively simple 

procedure (391). However, the relative low sensitivity and separation difficulties hinder 

the extensive application of this method to samples with low quantity and more complex 

constituents. High performance TLC,  an over-pressured TLC technique with the 

improved separation, has been applied to the conjugated bile acid analysis of lower 

volume serum samples in children with cystic fibrosis (392). High performance TLC with 

fluorescence indicators has also been used for the rapid and accurate quantitation of free 

and conjugated bile acids in duodenal juices (393). In clinical practice, TLC is still a 

reliable, simple and time-effective alternative to other more advanced bile acid 

quantitation methods, like gas chromatography.  

 

High Performance Liquid Chromatography (HPLC) 

HPLC techniques with a high-pressure pump achieves better sensitivity and 

separation of the analytes in a complex matrix, thus HPLC has been developed 

extensively to analyze bile acids in biological fluids. Modification of chromatography 
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and choice of detectors and columns coupled with HPLC is dependent on sample type 

and analysis purpose. For samples with high bile acid concentrations (mM), HPLC 

coupled with refractive index or ultraviolet detectors yields satisfactory measurement. 

For samples with low bile acid concentrations (pM) or more unconjugated bile acids with 

poor spectroscopic absorption,  the use of pre-column derivatization by esterification with 

derivatization reagent like 4-bromomethyl-7-methoxycoumarin and 1-

bromoacetylpyrene, or the post–column immobilized 3α-HSD enzymatic reactions using 

octadecyl-silica column significantly improved the sensitivity and resolution of the bile 

acid detected by either UV or fluorescence detector (391). For determination of 

conjugated bile acid in serum, improved HPLC using paired-ion chromatography or ion-

exchange chromatography on piperidinohydroxy-propyl-sephadex LH-20 were developed 

for better separation and selectivity (394, 395). However, the main disadvantages of 

HPLC including matrix effect and restricted specificity of the detectors limit the 

suitability for the measurement of the non-principal bile acid species in more complex 

biological matrix.  

 

Gas/Gas-Liquid Chromatography (GC/GLC)  

GC is a separation technique for volatile constituent in a mixed sample as it 

passes through carrier gas stream. The earliest GC application for bile acid series analysis 

was described in 1960, with only four methyl-bile acid derivatives detected (396). The 

development of capillary columns like glass or metal columns packed with liquid phase 

and inert fused-silica columns, improved the derivatization methods to derivatize the 

carboxyl group, hydroxyl group, or oxo group, and the diverse detection techniques 
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including electron capture detection, flame ionization detection and selected ion 

monitoring mass spectrometry enable the wider research application for bile acid 

derivatives analysis in bile, serum, urine and feces (391, 397). However, the time-

consuming sample preparation procedure involving extraction, purification, hydrolysis, 

derivatization, and the inaccurate identification of stereoisomeric forms of bile acid with 

single column of GLC technique have posed practical difficulty for extensive application 

for bile acid quantitation.  

 

Mass Spectrometry-based Techniques  

The continuous utilization of mass spectrometry techniques for bile acid analysis 

is attributed to its structural elucidation, definitive quantitation and isotopic 

differentiation capacity. Various mass spectrometry ionization techniques have been used 

for bile acid analysis, including electron impact ionization, chemical ionization, fast atom 

bombardment, atmospheric pressure chemical ionization, matrix-assisted laser desorption 

ionization, thermospray ionization, ion spray and electrospray ionization (398). Choices 

of coupled mass analyzers are based on analytical purposes, including qualitative ion 

trap, orbitrap, time-of-flight and quantitative triple/tandem quadrupole.  

 

Gas Chromatography-Mass Spectrometry (GC–MS) 

GC-MS, as a robust, simple method, which has been extensively utilized for bile 

acid separation and quantitation, especially for bile acid structure elucidation (399). 

Compared to LC-MS, the obvious advantage of GC-MS is the relative inexpensive 

instrumentation and lower carry-over on columns. However, the drawbacks of GC-MS 
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for bile acid analysis include the requirement of time-consuming and variation-

introducing conjugation cleavage and carboxyl or hydroxyl group 

derivatization/methylation. GC-MS recently has been used as a complementary approach 

to LC-MS to validate methods, increase metabolome coverage or to verify the biomarker 

identification (400, 401).  

 

Liquid Chromatography-Mass Spectrometry (LC-MS) 

LC-MS and LC-tandem mass spectrometry (LC-MS/MS) has been the most 

sensitive and widely used analytical tools for accurate bile acid quantitation in urine, 

plasma, serum, bile, intestinal content, liver and feces. Currently, most available LC-MS 

and LC-MS/MS methods are reverse-phase chromatography and atmospheric pressure 

ionization dependent, which allow wider choices of flow rates and column dimensions 

(387, 402). A buffered mobile phase is usually introduced to maintain a certain pH range 

to achieve better ionization and chromatographic response based on the analytical 

purpose. For example, bile acids are predominately in the deprotonated form under 

neutral pH environment. As the pH decreases to pH=4 by adding acetic or formic acid, 

taurine conjugated bile acids become deprotonated while glycine and free bile acids are 

in their ionized from predominately (403). Moreover, the highly specific and sensitive 

LC-MS/MS provides direct, reliable and accurate measurement of conjugated bile acid by 

simultaneous monitoring the parent and daughter ions with multiple reaction monitoring 

(MRM) method, which has been applied for bile acid profile screening and taurine, 

glycine, sulfated, and glucuronidated bile acid quantitation (387, 399, 401, 404). The 

improved ultra-high pressure liquid chromatography (UHPLC) system using columns 
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packed with particles smaller than 2 μm allows for faster flow rate, shorter elution time, 

better LC performance and increased peak capacity over HPLC. 21 and 55-66 different 

bile acids species in mouse and human samples have been quantified with UPLC-MS/MS 

system by different research groups, respectively (387, 405). 

 

Nuclear Magnetic Resonance (NMR) Spectroscopy based Assays 

As the most reproducible, reliable and simplest sample preparation analytical 

method, high field NMR spectroscopy has been exploited for bile acid identification and 

quantification. However, due to the relative low sensitivity and complexity of the matrix, 

the application has been limited to quantitation of total bile acids and several highly 

concentrated conjugated bile acid species (406, 407).   

 

Manipulate Microbiome Therapeutically to Treat Metabolic Disease 

 

The critical metabolic and immunological roles of microbial-derived metabolites for 

human health has led to therapeutic approaches to manipulate SCFAs and bile acids pool 

size, composition and function by targeting microbiome or microbial-derived metabolites 

like BSH via different strategies like bariatric surgery, dietary supplement and 

xenobiotic/drug intervention. 

 

Bariatric Surgery 

Bariatric surgery has been the most effective intervention for the treatment of 

obesity and glycemic control of T2D, with over 30,000 bariatric surgery procedures being 

undertaken annually (408). Roux-en-Y gastric bypass (RYGB), laparoscopic adjustable 
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gastric banding (LAGB) and vertical sleeve gastrectomy (VSG) operations are most 

common bariatric surgery procedures, which lead to glucose normalization, insulin 

resistance resolution and T2D remission strikingly within hours to days after the surgery, 

well before any significant weight loss has occurred (409). The molecular mechanisms 

underlying the metabolic improvement of bariatric surgery have not been well delineated, 

however recent data suggests that postsurgery improvement is not merely an effect of 

weight loss due to decreased stomach volume, but is intimately associated with 

significant alteration of gut microbiome, SCFAs and bile acid signals resulting from 

surgical re-routing of ingested nutrients and digestive juices (410-412). Increased anti-

lipogenesis propionate and decreased pro-lipogenesis acetate in RYGB-recipient mice 

were likely responsible for the beneficial changes in lipid metabolism and promoted 

energy homeostasis(413). Elevated systemic bile acid following RYGB and VSG were 

reported in both clinical studies and animal models, suggesting an enhanced 

enterohepatic bile acid signaling after surgery (410, 414).  

Emerging animal and human studies have shown a remodeling of gut microbiome 

structure after RYGB, with a substantial shift of the main phyla from predominant 

Firmicutes and Bacteroidetes towards γProteobacteria, specifically family 

Enterobacteriaceae (415, 416). Inoculation of GF recipients with gut microbes from 

RYGB donors resulted in significant lower fat mass and weight gain compared to 

recipients inoculated from sham surgery donors, indicating restructured gut microbiome 

after RYGB directly contributes to postsurgery metabolic improvement (413). The 

remodeling of microbiome after RYGB has been implicated in alteration of bile acid-

regulated pathways through bile acid receptors. FXR and FGF19/21 signals, which are 
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known to modulate bile acid, glucose and lipid metabolism, have been observed in higher 

levels three months after RYGB (417). FXR-signaling was reported as a molecular target 

in mediating beneficial metabolic response to the gastric bypass alternative procedure 

VSG, and the genetic disruption of FXR lead to substantial reduction of therapeutic 

efficacy of  VSG (418). Remarkably, the functional change of microbial community 

postsurgery is Fxr-genotype dependent, as the prevalence of specific bacteria genera 

(e.g., Bacteroides, Roseburia) known as critical systemic metabolism modulators whose 

abundance is associated with weight loss and improved glucose control were altered 

differently by VSG Fxr knockout mice. In addition to FXR signaling, another bile-acid 

regulated receptor TGR5 is activated after RYGB, which potentiates GLP-1 secretion 

from enteroendocrine L cells. GLP-1 is a major incretin hormone to promote glucose 

metabolism, insulin sensitivity and energy expenditure to achieve glycaemia and energy 

control, which is rapidly increased after RYGB in plasma (419, 420). Gastric bypass 

alternative procedure VSG induced elevation in energy expenditure was reported to be 

TGR5 independent in mice. However, Tgr5 deficiency attenuated improved glucose 

tolerance, insulin signaling and metabolism in bile acid profiles after VSG, suggesting 

TGR5 signaling contributes to the postsurgery glucoregulatory benefits by promoting 

metabolically favorable shifts in gut microbial and circulating bile acid profiles (421). 

Notably, the inconsistency in post-prandial bile acid changes after RYGB, VSG, and 

LAGB might suggest different enterohepatic bile acid signaling, while the concrete 

mechanism of each surgical type remains to be elucidated. The variability in the 

composition of the bile acid pool among independent studies indicates the analytical 
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limitation and unreliability of bile acid quantitation protocols with inconsistent sampling 

timing, analytical technique, statistical analysis, and reporting (422).  

 

Dietary Control  

Dietary factors have both direct modulatory effect on SCFAs/bile acids kinetics 

and indirect effects through shaping the gut microbiome and remodeling the microbiome-

metabolite-host interactions. The SCFAs concentration depends on the type and the 

quantity of fiber consumed with a non-linear pattern. It has been observed that elevated 

cecal SCFAs levels with 10% of dietary wheat starch replaced by inulin, while decreased 

when replaced by 20% inulin (423). Additionally, inulin shifted SCFAs composition 

from acetate to beneficial propionate and butyrate (424). A recent human study suggested 

a fiber-rich diet like the typical Mediterranean diet is linked to an elevated level of health 

promoting SCFAs and an expansion of SCFAs- producing bacteria including 

Lachnospira and Prevotella (425). Dietary factors directly affect bile acid metabolism 

and kinetics through regulating the rate of gallbladder emptying, the gut transit time, the 

fractional turnover rate, and bile acid pool size in response to a meal. Dietary fat content 

and composition have been shown to influence the response of CYP7A1 to dietary 

cholesterol during de novo bile acid synthesis thus affecting bile acid metabolism in 

animal models, though human studies showed less consistent links between dietary fat 

intake and bile acid kinetics (426). Dietary factors indirectly modulate bile acid 

composition and signaling by reshaping the microbial community structure and 

selectively favoring or inhibiting species involved in bile acid synthesis, regulation, and 

biotransformation. The dynamic interplay between gut microbiome and bile acids/SCFAs 
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which could be modified by dietary components leading to host metabolic alterations, 

supports the notion that dietary therapeutic solutions for metabolic disease can be 

explored. 

 

Probiotics 

Probiotics of the genera Lactobacillus and Bifidobacterium have been widely used 

as food ingredients and over-the-counter supplements for gut microbiota homeostasis, 

general health improvement, and medical condition treatment including diarrhea and 

hypercholesterolemia (427). According to a recent meta-analysis of randomized 

controlled trails including a total of 1971 patients from public database dating from 2007 

to 2017, probiotics administration has been shown to significantly reduce total cholesterol 

levels in serum between 9.8 to 16.74% with 95% confidential interval in the random-

effect model analysis (428). Evidence suggests that probiotics exert their metabolic and 

immunological benefits through modifying bile acid composition as probiotic stains with 

BSH activity generate various bile acid species with different signaling functions (427). 

A recent study reported the probiotic cocktail formulation VSL#3 caused significant 

microbial composition shift towards Firmicutes and Actinobacteria at the expense of 

Bacteroidetes and Proteobacteria, along with enhanced ileal bile acid deconjugation and 

fecal excretion corresponding with increased fecal BSH activity, as well as upregulated 

Cyp7a1 and Cyp8b expression and consequently enhanced hepatic bile acid synthesis via 

FXR-Fgf15 suppression dependent pathway (429). In a 2,4,6-trinitrobenzenesulfonic 

acid-induced colitis rodent model, VSL#3 administration corrected the inflammation-

driven metabolic dysfunction through bile acid-regulated nuclear receptors FXR, PXR as 
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well as PPARγ (430). Despite the growing body of health- promoting evidence for BSH-

positive probiotic strain supplementation, safety concerns may arise knowing microbial 

BSH could be potentially detrimental as BSH catalyzed deconjugation is the prerequisite 

for generation of toxic secondary bile acids via microbial-mediated 7α/β-

dehydroxylation. Therefore, a better understanding of the role of BSH and attentive 

selection of specific strain that is incapable of further modifying unconjugated bile salts, 

or is unlikely to produce harmful products of BSH deconjugation are necessary to address 

the medical concerns about the possible side effects associated with BSH-positive 

probiotic supplementation (431).  

 

Prebiotics 

Prebiotic refers to a substrate that is selectively utilized by host microorganisms 

conferring a health benefit (432). Prebiotics are reported to improve gastrointestinal 

disorders (e.g., irritable bowel syndrome) and metabolic disorders (e.g., 

hypercholesterolaemia), prevent carcinogenesis and lower tumor incidence (433). 

Saccharolytic fermentation by bacteria lead to SCFAs production that are recognized as 

preferred energy substrates for colonic epithelium to maintain gut barrier function and 

positive metabolic and immunological modulators. Prebiotics like inulin-type fructans 

selectively favor growth of specific microbial genera like Bifidobacteria and Lactobacilli, 

which have relatively lower xenobiotic-metabolizing enzymes, might beneficially reduce 

carcinogen, pre-cancerous lesions and tumor formation (433). A recent study using 

apolipoprotein E knockout (Apoe−/−) mice model with endothelial dysfunction in 

mesenteric arteries has shown inulin-type fructans supplementation upregulated gene 
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expression involved in bile acid metabolism including Cyp7a1, Slc10a2, Fabp6, 

Slc51a/b, and modulated the plasma and cecal BA profiles with an increase in primary 

bile acids (CA, CDCA), MAC and UDCA, but a decrease in secondary bile acids (DCA) 

and tauro-conjugated bile acids, which are correlated with marked decrease of 

Ruminococcaceae and Lachnospiraceae families and expended Bifidobacteriaceae and 

Erysipelotrichaceae families and Akkermansia genus. The expended NO-producing 

bacteria, elevated circulating bile acids, increased L cells density and promoted glucagon-

like peptide 1 production might co-contribute to the improvement of enteric vascular 

dysfunction through activation of the endothelial NOS–nitric oxide pathway (434).  

 

Xenobiotic/Drug Targeting of Microbial-Derived Signaling 

Increased understanding of microbial-derived signaling routes and effects 

covering physiological, metabolic and immunological functions, have drawn vast interest 

in the development of novel therapeutic approaches by targeting gut microbiome-

metabolite-receptors axis for metabolic and inflammatory diseases treatment. One most 

popular strategy is therapeutically targeting FXR signaling. A 6-α ethyl derivative of 

CDCA (6-ECDCA), also knowns as OCA, a semi-synthetic steroidal dual FXR/TGR5 

agonist with a 100-fold greater FXR selectivity compared to CDCA (435), has been used 

as a first-in-class selective FXR agonist under double-blinded, placebo-controlled clinical 

phase 2 trails in the treatment of NAFLD and NASH. Other FXR agonists including 

WAY-362450 (FXR-450), PX-102, PX-104, LJN452, GS-9674, are already completed or 

under active clinical trials ranging from phase 1 to 2 (436). Other developed FXR 

agonists like GW4064 or INT-767 have shown promising effect for the improvement of 
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insulin resistance, steatosis, and fibrosis in diet-induced diabetic and NASH animal 

models (271, 437). Follow-up clinical trials are currently underway but no convincing 

efficacy data as of yet has been reported.  

Interestingly, gut-restricted FXR agonism might offer a safer therapeutic 

alternative in the treatment of metabolic syndrome with beneficial systemic efficacy and 

minimum systemic toxicity. A gut-restricted drug fexaramine, which is administered 

orally while poorly absorbed into the circulation, counters obesity and metabolic 

syndrome, promotes energy expenditure and fat browning, and improves insulin response 

in diet-induced obesity mice, likely through FXR-Fgf15 signaling and alterations in bile 

acid composition (297). The role of selective FXR agonism/antagonism in metabolic 

disorders is controversial and complicated, as the comparative analysis of liver-specific 

and intestine-specific Fxr knockout mice revealed distinct metabolic outcomes in diet-

induced or genetic obese/diabetic mice models (267, 272, 360, 438, 439). Emerging 

evidence revealed the intestinal-specific FXR antagonism attenuated HFD-induced 

hepatic steatosis and ameliorated HFD-induced hyperglycemia, suggesting the potential 

therapeutic strategy of tissue specific FXR inhibition for obesity-related metabolic 

disorders (267, 360). The antioxidant tempol which has anti-obesity and metabolic 

beneficial effects in mice (181, 440), increases FXR antagonist levels, specifically 

TβMCA in the intestinal bile acid pool by inhibiting BSH producing Lactobacillus. By 

knocking out BSH, tempol inhibits the deconjugation process (hydrolysis of tauro-

conjugated bile acid to free bile acid) to upregulate TβMCA and intestinal FXR 

inhibition. Another new orally available, synthesized bile acid analog glycine-β-

muricholic acid (GMCA) was developed as a more potent intestine-specific FXR 
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inhibitor as it is not hydrolyzed by BSH. GMCA induced intestine-specific FXR 

inhibition prevents diet-induced and genetic obesity and hepatic steatosis in mice through 

intestinal FXR-ceramide axis, whereby intestinal FXR regulated-ceramides enter 

circulation and regulate hepatic de novo fatty acid synthesis via the Srebp1-c/Cidea 

signaling pathway (441). A newly discovered BSH inhibitor CAPE reverses 

hyperglycemia in HFD fed mice by selectively suppressing intestinal FXR-ceramides 

signaling (267). Additional pre-clinical and clinical experiments need to be done to fully 

determine if FXR antagonism can be therapeutically exploited in the treatment of 

metabolic syndrome in human.  

The antidiabetic, anti-inflammatory and energy expenditure effects of TGR5 

uncovers a therapeutic avenue through TGR5 agonism to conquer type 2 diabetes, 

atherosclerosis and other obesity-related metabolic disorders (62, 293). Mice studies have 

revealed TGR activation by administering synthetic TGR5 agonist like INT-777 and 

TRC210258 addresses the multiple metabolic and immunological abnormalities related to 

obesity and diabetes, including dyslipidemia, hyperglycemia, diabetic nephropathy, renal 

damage and kidney disease (442, 443). However, controversial results and potential risk 

of TGR5 agonism have been reported (444-447), indicating the challenges for 

pharmaceutical application of TGR5 agonist-based therapy.  

Although animal studies have identified the great therapeutic potential by 

manipulating microbial-derived signals in the treatment of enterohepatic and metabolic 

disorders, including cholestasis, nonalcoholic liver disease (NAFLD and NASH) and 

diabetes (448-450), the clinically available therapies targeting microbial-derived 

signaling (SCFAs and bile acids) are limited, and promising drug candidates are still 
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under development phase and early clinical trials. More fundamental and translational 

investigations will be needed to elucidate microbial-derived signaling and xenobiotics-

microbiome-host interactions to fully exploit the therapeutic potential of microbial-

derived metabolites and their signaling in the treatment of metabolic and immunological 

disorders. 

 

Research Objectives 

 The central hypothesis is metabolomics in addition with other informative 

techniques enables the comprehensive and complementary understanding of the 

mechanistic interplay between xenobiotic and host-associated microbiome. By testing the 

hypothesis, this dissertation explores the application of MS- and NMR-based 

metabolomics combined with molecular biology, biochemistry, flow cytometry and other 

elegant approaches to quantify bacterial-derived metabolites, characterize the xenobiotic 

induced-microbial modulation of host metabolic profiles, evaluate impact of xenobiotic 

on microbiome function and host metabolism, and discover xenobiotics-microbiome-host 

interactions for potential therapeutic application. In chapter 2, reliable and dependable 

metabolomics methods for SCFAs quantitation were investigated. Different SCFAs 

quantitation methods using two independent metabolomics platform GC-MS and 1H 

NMR were compared, optimized and combined for accurate quantitation, feasibility 

validation and extensive application. In chapter 3, the metabolic functional roles of gut 

microbiome and how to target microbiome therapeutically to achieve metabolic 

improvement on host was elucidated by investigating anti-obesity mechanism of a 

xenobiotic tempol. The effect of tempol on microbial fermentation and host metabolic 
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profiles and energy homeostasis were fully investigated with the global and targeted 

metabolomics methods developed. A xenobiotic-microbiome-host interaction was 

established for microbiome-targeting therapeutic strategy development. In chapter 4, a 

novel approach combining in vitro bacterial incubation, single-cell flow cytometry, and 

global metabolomics tools was developed to characterize microbiome viability, 

physiology, and metabolic activity following direct xenobiotic tempol exposure, aiming 

to understand the direct impact of xenobiotic/toxicants on microbiome toxicity  for better 

inform risk assessment and drug screening. Chapter 5 thoroughly discussed the key 

findings of the work and future directions with the powerful metabolomics tools to 

uncover xenobiotic-microbiome-host interactions, the role of the gut microbiome in the 

context of human diseases and the best ways to manipulate the microbiome 

therapeutically to achievement health benefits in host.  

 

 

 

 

 

 

 

 

 

 

 



 66 

REFERENCE 

1. Guinane CM, and Cotter PD. Role of the gut microbiota in health and chronic 

gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances 

in Gastroenterology. 2013;6(4):295-308. 

2. Conlon MA, and Bird AR. The Impact of Diet and Lifestyle on Gut Microbiota and 

Human Health. Nutrients. 2015;7(1):17-44. 

3. Clemente Jose C, Ursell Luke K, Parfrey Laura W, and Knight R. The Impact of the Gut 

Microbiota on Human Health: An Integrative View. Cell. 2012;148(6):1258-70. 

4. Claus SP, Guillou H, and Ellero-Simatos S. The gut microbiota: a major player in the 

toxicity of environmental pollutants? Npj Biofilms And Microbiomes. 2016;2(16003. 

5. Davis C. Chapter 6: Normal Flora. Medical Microbiology. 4th edition. . Galveston (TX): 

University of Texas Medical Branch at Galveston; 1996. 

6. Rajilic-Stojanovic M, and de Vos WM. The first 1000 cultured species of the human 

gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38(5):996-1047. 

7. Hayashi H, Sakamoto M, and Benno Y. Phylogenetic analysis of the human gut 

microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. 

Microbiology and immunology. 2002;46(8):535-48. 

8. Thursby E, and Juge N. Introduction to the human gut microbiota. Biochemical Journal. 

2017;474(11):1823-36. 

9. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, and Reddy DN. 

Role of the normal gut microbiota. World Journal of Gastroenterology : WJG. 

2015;21(29):8787-803. 

10. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, 

Narbad A, Jenmalm MC, et al. The composition of the gut microbiota throughout life, 

with an emphasis on early life. Microbial Ecology in Health and Disease. 

2015;26(10.3402/mehd.v26.26050. 

11. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao 

Z, Mahana D, et al. Altering the intestinal microbiota during a critical developmental 

window has lasting metabolic consequences. Cell. 2014;158(4):705-21. 

12. Gu S, Chen D, Zhang JN, Lv X, Wang K, Duan LP, Nie Y, and Wu XL. Bacterial 

community mapping of the mouse gastrointestinal tract. PloS one. 2013;8(10):e74957. 

13. Swidsinski A, Sydora BC, Doerffel Y, Loening-Baucke V, Vaneechoutte M, Lupicki M, 

Scholze J, Lochs H, and Dieleman LA. Viscosity gradient within the mucus layer 

determines the mucosal barrier function and the spatial organization of the intestinal 

microbiota. Inflammatory bowel diseases. 2007;13(8):963-70. 

14. Pedron T, Mulet C, Dauga C, Frangeul L, Chervaux C, Grompone G, and Sansonetti PJ. 

A crypt-specific core microbiota resides in the mouse colon. MBio. 2012;3(3). 

15. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, and Lochs H. Spatial organization 

and composition of the mucosal flora in patients with inflammatory bowel disease. 

Journal of clinical microbiology. 2005;43(7):3380-9. 

16. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, 

Nelson KE, and Relman DA. Diversity of the human intestinal microbial flora. Science. 

2005;308(5728):1635-8. 

17. Malmuthuge N, Griebel PJ, and Guan le L. Taxonomic identification of commensal 

bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of 

preweaned calves. Appl Environ Microbiol. 2014;80(6):2021-8. 

18. Koh JH, and Kim W-U. Dysregulation of gut microbiota and chronic inflammatory 

disease: from epithelial defense to host immunity. Experimental & Molecular Medicine. 

2017;49(5):e337. 



 67 

19. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, and Nageshwar 

Reddy D. Role of the normal gut microbiota. World journal of gastroenterology. 

2015;21(29):8787-803. 

20. Wostmann BS, Larkin C, Moriarty A, and Bruckner-Kardoss E. Dietary intake, energy 

metabolism, and excretory losses of adult male germfree Wistar rats. Laboratory animal 

science. 1983;33(1):46-50. 

21. Mcneil NI. The Contribution of the Large-Intestine to Energy Supplies in Man. Am J Clin 

Nutr. 1984;39(2):338-42. 

22. Zambell KL, Fitch MD, and Fleming SE. Acetate and butyrate are the major substrates 

for de novo lipogenesis in rat colonic epithelial cells. The Journal of nutrition. 

2003;133(11):3509-15. 

23. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, and Kimura I. Dietary Gut 

Microbial Metabolites, Short-chain Fatty Acids, and Host Metabolic Regulation. 

Nutrients. 2015;7(4):2839-49. 

24. Sun M, Wu W, Liu Z, and Cong Y. Microbiota metabolite short chain fatty acids, GPCR, 

and inflammatory bowel diseases. Journal of Gastroenterology. 2017;52(1):1-8. 

25. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, 

Wigglesworth MJ, Kinghorn I, Fraser NJ, et al. The Orphan G protein-coupled receptors 

GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J 

Biol Chem. 2003;278(13):11312-9. 

26. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, and Gordon JI. An 

obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 

2006;444(1027. 

27. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, 

Kalkum M, and Versalovic J. Histamine derived from probiotic Lactobacillus reuteri 

suppresses TNF via modulation of PKA and ERK signaling. PloS one. 2012;7(2):e31951. 

28. De Biase D, and Pennacchietti E. Glutamate decarboxylase-dependent acid resistance in 

orally acquired bacteria: function, distribution and biomedical implications of the gadBC 

operon. Molecular microbiology. 2012;86(4):770-86. 

29. Smith EA, and Macfarlane GT. Enumeration of amino acid fermenting bacteria in the 

human large intestine: effects of pH and starch on peptide metabolism and dissimilation 

of amino acids. FEMS microbiology ecology. 1998;25(4):355-68. 

30. Dai ZL, Wu G, and Zhu WY. Amino acid metabolism in intestinal bacteria: links 

between gut ecology and host health. Frontiers in bioscience (Landmark edition). 

2011;16(1768-86. 

31. Atasoglu C, Valdes C, Walker ND, Newbold CJ, and Wallace RJ. De novo synthesis of 

amino acids by the ruminal bacteria Prevotella bryantii B14, Selenomonas ruminantium 

HD4, and Streptococcus bovis ES1. Appl Environ Microbiol. 1998;64(8):2836-43. 

32. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman 

DA, Fraser-Liggett CM, and Nelson KE. Metagenomic analysis of the human distal gut 

microbiome. Science. 2006;312(5778):1355-9. 

33. Hill MJ. Intestinal flora and endogenous vitamin synthesis. European journal of cancer 

prevention : the official journal of the European Cancer Prevention Organisation (ECP). 

1997;6 Suppl 1(S43-5. 

34. Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. Journal 

of gastroenterology and hepatology. 2013;28 Suppl 4(9-17. 

35. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, and Ventura M. Bacteria 

as vitamin suppliers to their host: a gut microbiota perspective. Current opinion in 

biotechnology. 2013;24(2):160-8. 

36. Yamada K. In: Sigel A, Sigel H, and Sigel RKO eds. Interrelations between Essential 

Metal Ions and Human Diseases. Dordrecht: Springer Netherlands; 2013:295-320. 



 68 

37. Decroos K, Vanhemmens S, Cattoir S, Boon N, and Verstraete W. Isolation and 

characterisation of an equol-producing mixed microbial culture from a human faecal 

sample and its activity under gastrointestinal conditions. Archives of Microbiology. 

2005;183(1):45-55. 

38. Marín L, Miguélez EM, Villar CJ, and Lombó F. Bioavailability of Dietary Polyphenols 

and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed research 

international. 2015;2015(905215. 

39. Haiser HJ, and Turnbaugh PJ. Developing a metagenomic view of xenobiotic 

metabolism. Pharmacological research : the official journal of the Italian 

Pharmacological Society. 2013;69(1):21-31. 

40. Spanogiannopoulos P, Bess EN, Carmody RN, and Turnbaugh PJ. The microbial 

pharmacists within us: a metagenomic view of xenobiotic metabolism. Nature Reviews 

Microbiology. 2016;14(273. 

41. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, and Turnbaugh PJ. 

Predicting and manipulating cardiac drug inactivation by the human gut bacterium 

Eggerthella lenta(). Science (New York, NY). 2013;341(6143):295-8. 

42. Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, and Pettersson S. Intestinal 

microbiota regulate xenobiotic metabolism in the liver. PLoS One. 2009;4(9):e6958. 

43. Selwyn FP, Cui JY, and Klaassen CD. RNA-Seq Quantification of Hepatic Drug 

Processing Genes in Germ-Free Mice. Drug metabolism and disposition: the biological 

fate of chemicals. 2015;43(10):1572-80. 

44. Clayton TA, Baker D, Lindon JC, Everett JR, and Nicholson JK. Pharmacometabonomic 

identification of a significant host-microbiome metabolic interaction affecting human 

drug metabolism. Proc Natl Acad Sci U S A. 2009;106(34):14728-33. 

45. Wu H-J, and Wu E. The role of gut microbiota in immune homeostasis and 

autoimmunity. Gut Microbes. 2012;3(1):4-14. 

46. Smith K, McCoy KD, and Macpherson AJ. Use of axenic animals in studying the 

adaptation of mammals to their commensal intestinal microbiota. Seminars in 

immunology. 2007;19(2):59-69. 

47. Iwasaki A, and Kelsall BL. Freshly isolated Peyer's patch, but not spleen, dendritic cells 

produce interleukin 10 and induce the differentiation of T helper type 2 cells. The Journal 

of experimental medicine. 1999;190(2):229-39. 

48. Smythies LE, Shen R, Bimczok D, Novak L, Clements RH, Eckhoff DE, Bouchard P, 

George MD, Hu WK, Dandekar S, et al. Inflammation anergy in human intestinal 

macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB 

inactivation. The Journal of biological chemistry. 2010;285(25):19593-604. 

49. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron 

RM, Kasper DL, et al. Microbial exposure during early life has persistent effects on 

natural killer T cell function. Science. 2012;336(6080):489-93. 

50. An D, Oh SF, Olszak T, Neves JF, Avci F, Erturk-Hasdemir D, Lu X, Zeissig S, 

Blumberg RS, and Kasper DL. Sphingolipids from a symbiotic microbe regulate 

homeostasis of host intestinal natural killer T cells. Cell. 2014;156(0):123-33. 

51. Mazmanian SK, Liu CH, Tzianabos AO, and Kasper DL. An immunomodulatory 

molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 

2005;122(1):107-18. 

52. Belkaid Y, and Hand T. Role of the Microbiota in Immunity and inflammation. Cell. 

2014;157(1):121-41. 

53. Mazmanian SK, Liu CH, Tzianabos AO, and Kasper DL. An Immunomodulatory 

Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell. 

2005;122(1):107-18. 



 69 

54. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet 

V, Pisi A, De Paepe M, Brandi G, et al. The Key Role of Segmented Filamentous 

Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses. Immunity. 

2009;31(4):677-89. 

55. Lecuyer E, Rakotobe S, Lengline-Garnier H, Lebreton C, Picard M, Juste C, Fritzen R, 

Eberl G, McCoy KD, Macpherson AJ, et al. Segmented filamentous bacterium uses 

secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell 

responses. Immunity. 2014;40(4):608-20. 

56. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, 

Yamasaki S, Saito T, Ohba Y, et al. Induction of Colonic Regulatory T Cells by 

Indigenous Clostridium Species. Science (New York, NY). 2011;331(6015):337-41. 

57. Fiorucci S, and Distrutti E. Bile Acid-Activated Receptors, Intestinal Microbiota, and the 

Treatment of Metabolic Disorders. Trends in molecular medicine. 2015;21(11):702-14. 

58. Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, and Chiang JY. Bile 

acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile 

acid markers linked to anti-obesity and anti-diabetes in mice. Biochimica et biophysica 

acta. 2015;1851(1):19-29. 

59. Claudel T, Staels B, and Kuipers F. The Farnesoid X receptor: a molecular link between 

bile acid and lipid and glucose metabolism. Arteriosclerosis, thrombosis, and vascular 

biology. 2005;25(10):2020-30. 

60. Fiorucci S, Rizzo G, Donini A, Distrutti E, and Santucci L. Targeting farnesoid X 

receptor for liver and metabolic disorders. Trends in molecular medicine. 

2007;13(7):298-309. 

61. Jiang Y, Jin J, Iakova P, Hernandez JC, Jawanmardi N, Sullivan E, Guo GL, Timchenko 

NA, and Darlington GJ. Farnesoid X receptor directly regulates xenobiotic detoxification 

genes in the long-lived Little mice. Mechanisms of ageing and development. 

2013;134(9):407-15. 

62. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq 

N, Harney JW, Ezaki O, Kodama T, et al. Bile acids induce energy expenditure by 

promoting intracellular thyroid hormone activation. Nature. 2006;439(484. 

63. Gropper SS, and Smith JL. Advanced nutrition and human metabolism. Belmont, OH: 

Cengage Learning; 2012. 

64. Ridlon JM, Kang D-J, and Hylemon PB. Isolation and characterization of a bile acid 

inducible 7α-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe. 

2010;16(2):137-46. 

65. Macdonald IA, Bokkenheuser VD, Winter J, McLernon AM, and Mosbach EH. 

Degradation of steroids in the human gut. J Lipid Res. 1983;24(6):675-700. 

66. Ridlon JM, Kang DJ, and Hylemon PB. Bile salt biotransformations by human intestinal 

bacteria. J Lipid Res. 2006;47(2):241-59. 

67. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, and Schmitt MG, Jr. Absorption of short-

chain fatty acids by the colon. Gastroenterology. 1980;78(6):1500-7. 

68. Wong JM, de Souza R, Kendall CW, Emam A, and Jenkins DJ. Colonic health: 

fermentation and short chain fatty acids. Journal of clinical gastroenterology. 

2006;40(3):235-43. 

69. Wolever TMS. Short-Chain Fatty-Acids and Carbohydrate-Metabolism. Falk Symp. 

1994;73(251-9. 

70. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, 

Ghourab S, Hankir M, Zhang S, et al. The short-chain fatty acid acetate reduces appetite 

via a central homeostatic mechanism. Nature Communications. 2014;5(3611. 



 70 

71. Byrne CS, Chambers ES, Morrison DJ, and Frost G. The role of short chain fatty acids in 

appetite regulation and energy homeostasis. International journal of obesity. 

2015;39(1331. 

72. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, 

MacDougall K, Preston T, Tedford C, Finlayson GS, et al. Effects of targeted delivery of 

propionate to the human colon on appetite regulation, body weight maintenance and 

adiposity in overweight adults. Gut. 2015;64(11):1744-54. 

73. Weitkunat K, Schumann S, Nickel D, Kappo KA, Petzke KJ, Kipp AP, Blaut M, and 

Klaus S. Importance of propionate for the repression of hepatic lipogenesis and 

improvement of insulin sensitivity in high-fat diet-induced obesity. Mol Nutr Food Res. 

2016. 

74. Anderson JW, and Siesel AE. Hypocholesterolemic effects of oat products. Advances in 

experimental medicine and biology. 1990;270(17-36. 

75. Hosseini E, Grootaert C, Verstraete W, and Van de Wiele T. Propionate as a health-

promoting microbial metabolite in the human gut. Nutr Rev. 2011;69(5):245-58. 

76. Tong LC, Wang Y, Wang ZB, Liu WY, Sun S, Li L, Su DF, and Zhang LC. Propionate 

Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier 

Function and Reducing Inflammation and Oxidative Stress. Front Pharmacol. 

2016;7(253. 

77. Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Buc 

Calderon P, Feron O, Muccioli GG, et al. Gut microbiota-derived propionate reduces 

cancer cell proliferation in the liver. Br J Cancer. 2012;107(8):1337-44. 

78. Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. 

Gastroenterology. 1982;83(2):424-9. 

79. Velazquez OC, Lederer HM, and Rombeau JL. Butyrate and the colonocyte. Production, 

absorption, metabolism, and therapeutic implications. Advances in experimental medicine 

and biology. 1997;427(123-34. 

80. Frankel W, Lew J, Su B, Bain A, Klurfeld D, Einhorn E, MacDermott RP, and Rombeau 

J. Butyrate increases colonocyte protein synthesis in ulcerative colitis. J Surg Res. 

1994;57(1):210-4. 

81. Qiao Y, Qian J, Lu Q, Tian Y, Chen Q, and Zhang Y. Protective effects of butyrate on 

intestinal ischemia-reperfusion injury in rats. J Surg Res. 2015;197(2):324-30. 

82. Cushing K, Alvarado DM, and Ciorba MA. Butyrate and Mucosal Inflammation: New 

Scientific Evidence Supports Clinical Observation. Clin Transl Gastroenterol. 

2015;6(e108. 

83. Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, 

Stein K, and Glei M. Mechanisms of primary cancer prevention by butyrate and other 

products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res. 

2009;682(1):39-53. 

84. Blouin JM, Penot G, Collinet M, Nacfer M, Forest C, Laurent-Puig P, Coumoul X, 

Barouki R, Benelli C, and Bortoli S. Butyrate elicits a metabolic switch in human colon 

cancer cells by targeting the pyruvate dehydrogenase complex. Int J Cancer. 

2011;128(11):2591-601. 

85. Pouillart PR. Role of butyric acid and its derivatives in the treatment of colorectal cancer 

and hemoglobinopathies. Life Sci. 1998;63(20):1739-60. 

86. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin 

Nutr. 1984;39(2):338-42. 

87. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, and Bultman SJ. 

The microbiome and butyrate regulate energy metabolism and autophagy in the 

mammalian colon. Cell metabolism. 2011;13(5):517-26. 



 71 

88. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, and Bultman SJ. 

The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the 

Mammalian Colon. Cell metabolism. 2011;13(5):517-26. 

89. Roediger WE. The starved colon--diminished mucosal nutrition, diminished absorption, 

and colitis. Diseases of the colon and rectum. 1990;33(10):858-62. 

90. Peng L, Li Z-R, Green RS, Holzman IR, and Lin J. Butyrate Enhances the Intestinal 

Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein 

Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition. 2009;139(9):1619-25. 

91. VanHook AM. Butyrate benefits the intestinal barrier. Science Signaling. 

2015;8(378):ec135-ec. 

92. Groschwitz KR, and Hogan SP. Intestinal Barrier Function: Molecular Regulation and 

Disease Pathogenesis. The Journal of allergy and clinical immunology. 2009;124(1):3-

22. 

93. Knowles SE, Jarrett IG, Filsell OH, and Ballard FJ. Production and utilization of acetate 

in mammals. Biochemical Journal. 1974;142(2):401-11. 

94. Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA, and Dejong 

CH. Short chain fatty acids exchange across the gut and liver in humans measured at 

surgery. Clin Nutr. 2009;28(6):657-61. 

95. Roy CC, Kien CL, Bouthillier L, and Levy E. Short-chain fatty acids: ready for prime 

time? Nutr Clin Pract. 2006;21(4):351-66. 

96. Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, and Penner GB. 

Gluconeogenesis in Dairy Cows: The Secret of Making Sweet Milk from Sour Dough. 

Iubmb Life. 2010;62(12):869-77. 

97. Singh V, Chassaing B, Zhang L, Yeoh BS, Xiao X, Kumar M, Baker MT, Cai J, Walker 

R, Borkowski K, et al. Microbiota-Dependent Hepatic Lipogenesis Mediated by Stearoyl 

CoA Desaturase 1 (SCD1) Promotes Metabolic Syndrome in TLR5-Deficient Mice. Cell 

metabolism. 2015;22(6):983-96. 

98. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut 

Microbes. 2014;5(2):202-7. 

99. Layden BT, Angueira AR, Brodsky M, Durai V, and Lowe WL, Jr. Short chain fatty 

acids and their receptors: new metabolic targets. Translational research : the journal of 

laboratory and clinical medicine. 2013;161(3):131-40. 

100. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, 

Dupriez V, Vassart G, Van Damme J, et al. Functional characterization of human 

receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J 

Biol Chem. 2003;278(28):25481-9. 

101. Senga T, Iwamoto S, Yoshida T, Yokota T, Adachi K, Azuma E, Hamaguchi M, and 

Iwamoto T. LSSIG is a novel murine leukocyte-specific GPCR that is induced by the 

activation of STAT3. Blood. 2003;101(3):1185-7. 

102. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, and 

Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through 

the G protein-coupled receptor GPR41. Proceedings of the National Academy of Sciences 

of the United States of America. 2004;101(4):1045-50. 

103. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, 

Mellinger JD, Smith SB, Digby GJ, Lambert NA, et al. GPR109A is a G-protein-coupled 

receptor for the bacterial fermentation product butyrate and functions as a tumor 

suppressor in colon. Cancer research. 2009;69(7):2826-32. 

104. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, 

Rey F, Wang T, et al. Olfactory receptor responding to gut microbiota-derived signals 

plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 

2013;110(11):4410-5. 



 72 

105. Nishina PM, and Freedland RA. Effects of propionate on lipid biosynthesis in isolated rat 

hepatocytes. J Nutr. 1990;120(7):668-73. 

106. Demigne C, Morand C, Levrat MA, Besson C, Moundras C, and Remesy C. Effect of 

propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated 

rat hepatocytes. The British journal of nutrition. 1995;74(2):209-19. 

107. Weitkunat K, Schumann S, Nickel D, Kappo KA, Petzke KJ, Kipp AP, Blaut M, and 

Klaus S. Importance of propionate for the repression of hepatic lipogenesis and 

improvement of insulin sensitivity in high‐fat diet‐induced obesity. Molecular nutrition 

& food research. 2016;60(12):2611-21. 

108. Rodwell VW, Nordstrom JL, and Mitschelen JJ. Regulation of HMG-CoA reductase. 

Advances in lipid research. 1976;14(1-74. 

109. Bush RS, and Milligan LP. Study of the mechanism of inhibition of ketogenesis by 

propionate in bovine liver. Can J Anim Sci. 1971;51(1):121-7. 

110. Zaibi MS, Stocker CJ, O'Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, 

Smith DM, and Arch JR. Roles of GPR41 and GPR43 in leptin secretory responses of 

murine adipocytes to short chain fatty acids. FEBS Lett. 2010;584(11):2381-6. 

111. Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng 

DD, Chen C, Lee HG, et al. Acetate and propionate short chain fatty acids stimulate 

adipogenesis via GPCR43. Endocrinology. 2005;146(12):5092-9. 

112. Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, and Li Y. Activation 

of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and 

suppression of plasma free fatty acids. Endocrinology. 2008;149(9):4519-26. 

113. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara 

D, Hirano K, Tani T, et al. The gut microbiota suppresses insulin-mediated fat 

accumulation via the short-chain fatty acid receptor GPR43. Nature communications. 

2013;4(1829. 

114. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, and 

Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through 

the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A. 2004;101(4):1045-50. 

115. Boillot J, Alamowitch C, Berger AM, Luo J, Bruzzo F, Bornet FR, and Slama G. Effects 

of dietary propionate on hepatic glucose production, whole-body glucose utilization, 

carbohydrate and lipid metabolism in normal rats. The British journal of nutrition. 

1995;73(2):241-51. 

116. Heimann E, Nyman M, and Degerman E. Propionic acid and butyric acid inhibit lipolysis 

and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat 

adipocytes. Adipocyte. 2015;4(2):81-8. 

117. Berggren AM, Nyman EM, Lundquist I, and Bjorck IM. Influence of orally and rectally 

administered propionate on cholesterol and glucose metabolism in obese rats. The British 

journal of nutrition. 1996;76(2):287-94. 

118. Todesco T, Rao AV, Bosello O, and Jenkins DJ. Propionate lowers blood glucose and 

alters lipid metabolism in healthy subjects. Am J Clin Nutr. 1991;54(5):860-5. 

119. Wolever TM, Spadafora P, and Eshuis H. Interaction between colonic acetate and 

propionate in humans. Am J Clin Nutr. 1991;53(3):681-7. 

120. Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, Morrison DJ, 

Preston T, Wallis GA, Tedford C, et al. The diet-derived short chain fatty acid propionate 

improves beta-cell function in humans and stimulates insulin secretion from human islets 

in vitro. Diabetes Obes Metab. 2017;19(2):257-65. 

121. den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer 

MH, Jonker JW, Groen AK, Reijngoud DJ, et al. Short-Chain Fatty Acids Protect Against 

High-Fat Diet-Induced Obesity via a PPARgamma-Dependent Switch From Lipogenesis 

to Fat Oxidation. Diabetes. 2015;64(7):2398-408. 



 73 

122. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, 

Bloom SR, and Frost G. The short chain fatty acid propionate stimulates GLP-1 and PYY 

secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity 

(2005). 2015;39(3):424-9. 

123. Drucker DJ. The biology of incretin hormones. Cell metabolism. 2006;3(3):153-65. 

124. van den Hoek AM, Heijboer AC, Corssmit EP, Voshol PJ, Romijn JA, Havekes LM, and 

Pijl H. PYY3-36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. 

Diabetes. 2004;53(8):1949-52. 

125. Cherbut C, Ferrier L, Roze C, Anini Y, Blottiere H, Lecannu G, and Galmiche JP. Short-

chain fatty acids modify colonic motility through nerves and polypeptide YY release in 

the rat. Am J Physiol. 1998;275(6 Pt 1):G1415-22. 

126. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, 

Tripathy S, Hegsted M, and Keenan MJ. Dietary resistant starch upregulates total GLP-1 

and PYY in a sustained day-long manner through fermentation in rodents. American 

Journal of Physiology - Endocrinology and Metabolism. 2008;295(5):E1160-E6. 

127. Freeland KR, and Wolever TM. Acute effects of intravenous and rectal acetate on 

glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-

alpha. The British journal of nutrition. 2010;103(3):460-6. 

128. Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, and Layden BT. SCFA Receptors 

in Pancreatic β Cells: Novel Diabetes Targets? Trends in Endocrinology & Metabolism. 

2016;27(9):653-64. 

129. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, 

Bäckhed F, and Mithieux G. Microbiota-Generated Metabolites Promote Metabolic 

Benefits via Gut-Brain Neural Circuits. Cell. 2014;156(1):84-96. 

130. Soty M, Penhoat A, Amigo-Correig M, Vinera J, Sardella A, Vullin-Bouilloux F, Zitoun 

C, Houberdon I, and Mithieux G. A gut–brain neural circuit controlled by intestinal 

gluconeogenesis is crucial in metabolic health. Molecular Metabolism. 2015;4(2):106-17. 

131. Brennan AM, and Mantzoros CS. Drug Insight: the role of leptin in human physiology 

and pathophysiology--emerging clinical applications. Nature clinical practice 

Endocrinology & metabolism. 2006;2(6):318-27. 

132. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, and Kahn BB. Leptin 

stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 

2002;415(6869):339-43. 

133. Yu X, McCorkle S, Wang M, Lee Y, Li J, Saha AK, Unger RH, and Ruderman NB. 

Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: 

prevention of diabetes and ectopic lipid deposition. Diabetologia. 2004;47(11):2012-21. 

134. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, and Ye J. Butyrate 

Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes. 

2009;58(7):1509-17. 

135. Hu GX, Chen GR, Xu H, Ge RS, and Lin J. Activation of the AMP activated protein 

kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect 

of a high fiber diet on the metabolic syndrome. Medical hypotheses. 2010;74(1):123-6. 

136. Lin J, Handschin C, and Spiegelman BM. Metabolic control through the PGC-1 family of 

transcription coactivators. Cell Metab. 2005;1(6):361-70. 

137. Winder WW, and Hardie DG. AMP-activated protein kinase, a metabolic master switch: 

possible roles in type 2 diabetes. Am J Physiol. 1999;277(1 Pt 1):E1-10. 

138. Kondo T, Kishi M, Fushimi T, and Kaga T. Acetic acid upregulates the expression of 

genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J Agric 

Food Chem. 2009;57(13):5982-6. 



 74 

139. Harig JM, Soergel KH, Komorowski RA, and Wood CM. Treatment of diversion colitis 

with short-chain-fatty acid irrigation. The New England journal of medicine. 

1989;320(1):23-8. 

140. Jiminez JA, Uwiera TC, Abbott DW, Uwiera RRE, and Inglis GD. Butyrate 

Supplementation at High Concentrations Alters Enteric Bacterial Communities and 

Reduces Intestinal Inflammation in Mice Infected with <em>Citrobacter 

rodentium</em>. mSphere. 2017;2(4). 

141. Chang PV, Hao L, Offermanns S, and Medzhitov R. The microbial metabolite butyrate 

regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl 

Acad Sci U S A. 2014;111(6):2247-52. 

142. Place RF, Noonan EJ, and Giardina C. HDAC inhibition prevents NF-kappa B activation 

by suppressing proteasome activity: down-regulation of proteasome subunit expression 

stabilizes I kappa B alpha. Biochem Pharmacol. 2005;70(3):394-406. 

143. Meijer K, de Vos P, and Priebe MG. Butyrate and other short-chain fatty acids as 

modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 

2010;13(6):715-21. 

144. Sina C, Gavrilova O, Forster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, 

Scheller J, Rehmann A, et al. G protein-coupled receptor 43 is essential for neutrophil 

recruitment during intestinal inflammation. Journal of immunology. 2009;183(11):7514-

22. 

145. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, 

Mackay F, Artis D, et al. Regulation of inflammatory responses by gut microbiota and 

chemoattractant receptor GPR43. Nature. 2009;461(7268):1282-6. 

146. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, and Curi R. Suppressive 

effect of short-chain fatty acids on production of proinflammatory mediators by 

neutrophils. The Journal of nutritional biochemistry. 2011;22(9):849-55. 

147. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, Biagi E, 

Andersen MH, Brigidi P, Ødum N, et al. The effect of short-chain fatty acids on human 

monocyte-derived dendritic cells. Scientific reports. 2015;5(16148. 

148. Millard AL, Mertes PM, Ittelet D, Villard F, Jeannesson P, and Bernard J. Butyrate 

affects differentiation, maturation and function of human monocyte-derived dendritic 

cells and macrophages. Clinical and Experimental Immunology. 2002;130(2):245-55. 

149. Gurav A, Sivaprakasam S, Bhutia YD, Boettger T, Singh N, and Ganapathy V. Slc5a8, a 

Na(+)-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumor 

suppressor in colon that protects against colitis and colon cancer under low-fiber dietary 

conditions. The Biochemical journal. 2015;469(2):267-78. 

150. Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee D-H, 

May C, Wilck N, et al. Dietary Fatty Acids Directly Impact Central Nervous System 

Autoimmunity via the Small Intestine. Immunity. 2015;43(4):817-29. 

151. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, 

Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the 

differentiation of colonic regulatory T cells. Nature. 2013;504(446. 

152. Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, Piersigilli A, Menin L, 

Walker AW, Rougemont J, et al. The Intestinal Microbiota Contributes to the Ability of 

Helminths to Modulate Allergic Inflammation. Immunity. 2015;43(5):998-1010. 

153. Gonçalves P, Araújo JR, Pinho MJ, and Martel F. In Vitro Studies on the Inhibition of 

Colon Cancer by Butyrate and Polyphenolic Compounds. Nutrition and cancer. 

2011;63(2):282-94. 

154. McIntyre A, Gibson PR, and Young GP. Butyrate production from dietary fibre and 

protection against large bowel cancer in a rat model. Gut. 1993;34(3):386-91. 



 75 

155. Gonçalves P, and Martel F. Regulation of colonic epithelial butyrate transport: Focus on 

colorectal cancer. Porto Biomedical Journal. 2016;1(3):83-91. 

156. Tang Y, Chen Y, Jiang H, Robbins GT, and Nie D. G‐protein‐coupled receptor for short‐
chain fatty acids suppresses colon cancer. International Journal of Cancer. 

2011;128(4):847-56. 

157. Arellano M, Jomard P, El Kaddouri S, Roques C, Nepveu F, and Couderc F. Routine 

analysis of short-chain fatty acids for anaerobic bacteria identification using capillary 

electrophoresis and indirect ultraviolet detection. Journal of Chromatography B. 

2000;741(1):89-100. 

158. Arellano M, ElKaddouri S, Roques C, Couderc F, and Puig P. Capillary electrophoresis 

and indirect UV detection as a fast and simple analytical tool for bacterial taxonomy. J 

Chromatogr A. 1997;781(1-2):497-501. 

159. Stein J, Kulemeier J, Lembcke B, and Caspary WF. Simple and rapid method for 

determination of short-chain fatty acids in biological materials by high-performance 

liquid chromatography with ultraviolet detection. J Chromatogr. 1992;576(1):53-61. 

160. de Sa LRV, de Oliveira MAL, Cammarota MC, Matos A, and Ferreira-Leitao VS. 

Simultaneous analysis of carbohydrates and volatile fatty acids by HPLC for monitoring 

fermentative biohydrogen production. Int J Hydrogen Energ. 2011;36(23):15177-86. 

161. Han J, Lin K, Sequeira C, and Borchers CH. An isotope-labeled chemical derivatization 

method for the quantitation of short-chain fatty acids in human feces by liquid 

chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;854(86-94. 

162. Bachmann C, Colombo JP, and Beruter J. Short chain fatty acids in plasma and brain: 

quantitative determination by gas chromatography. Clin Chim Acta. 1979;92(2):153-9. 

163. Murase M, Kimura Y, and Nagata Y. Determination of portal short-chain fatty acids in 

rats fed various dietary fibers by capillary gas chromatography. J Chromatogr B Biomed 

Appl. 1995;664(2):415-20. 

164. Lewandowski ED, Chari MV, Roberts R, and Johnston DL. NMR studies of beta-

oxidation and short-chain fatty acid metabolism during recovery of reperfused hearts. The 

American journal of physiology. 1991;261(2 Pt 2):H354-63. 

165. Jensen PR, Peitersen T, Karlsson M, In 't Zandt R, Gisselsson A, Hansson G, Meier S, 

and Lerche MH. Tissue-specific short chain fatty acid metabolism and slow metabolic 

recovery after ischemia from hyperpolarized NMR in vivo. The Journal of biological 

chemistry. 2009;284(52):36077-82. 

166. Zhao G, Nyman M, and Jonsson JA. Rapid determination of short-chain fatty acids in 

colonic contents and faeces of humans and rats by acidified water-extraction and direct-

injection gas chromatography. Biomed Chromatogr. 2006;20(8):674-82. 

167. Hillman RE. Simple, rapid method for determination of propionic acid and other short-

chain fatty acids in serum. Clin Chem. 1978;24(5):800-3. 

168. Garcia-Villalba R, Gimenez-Bastida JA, Garcia-Conesa MT, Tomas-Barberan FA, Carlos 

Espin J, and Larrosa M. Alternative method for gas chromatography-mass spectrometry 

analysis of short-chain fatty acids in faecal samples. J Sep Sci. 2012;35(15):1906-13. 

169. Bjork JT, Soergel KH, and Wood CM. Composition of Free Stool Water. 

Gastroenterology. 1976;70(5):864-. 

170. Vernia P, Breuer RI, Gnaedinger A, Latella G, and Santoro ML. Composition of fecal 

water. Comparison of "in vitro" dialysis with ultrafiltration. Gastroenterology. 

1984;86(6):1557-61. 

171. Innocente N, Moret S, Corradini C, and Conte LS. A rapid method for the quantitative 

determination of short-chain free volatile fatty acids from cheese. Journal of agricultural 

and food chemistry. 2000;48(8):3321-3. 



 76 

172. Dejong C, and Badings HT. Determination of Free Fatty-Acids in Milk and Cheese - 

Procedures for Extraction, Clean up, and Capillary Gas-Chromatographic Analysis. Hrc-J 

High Res Chrom. 1990;13(2):94-8. 

173. Ren YP, Wang JJ, Li XF, and Wang XH. Reactive Extraction of Short-Chain Fatty Acids 

from Synthetic Acidic Fermentation Broth of Organic Solid Wastes and Their Stripping. 

J Chem Eng Data. 2012;57(1):46-51. 

174. Boswell CE. Fast and efficient volatile compound analysis by purge-and-trap GC-MS. Lc 

Gc N Am. 2000;18(7):726-+. 

175. Heikes DL, Jensen SR, and Flemingjones ME. Purge-and-Trap Extraction with Gc-Ms 

Determination of Volatile Organic-Compounds in Table-Ready Foods. Journal of 

agricultural and food chemistry. 1995;43(11):2869-75. 

176. Chen Y, Li Y, Xiong Y, Fang C, and Wang X. An effective pre-treatment method for the 

determination of short-chain fatty acids in a complex matrix by derivatization coupled 

with headspace single-drop microextraction. J Chromatogr A. 2014;1325(49-55. 

177. Henningsson AM, Nyman EMGL, and Bjorck IME. Short-chain fatty acid content in the 

hindgut of rats fed various composite foods and commercial dietary fibre fractions from 

similar sources. J Sci Food Agr. 2002;82(4):385-93. 

178. Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, Xie G, Ore BM, Qiao S, Spencer MD, 

et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain 

amino acids. Metabolomics. 2013;9(4):818-27. 

179. Savorani F, Rasmussen MA, Mikkelsen MS, and Engelsen SB. A primer to nutritional 

metabolomics by NMR spectroscopy and chemometrics. Food Res Int. 2013;54(1):1131-

45. 

180. Jacobs DM, Deltimple N, van Velzen E, van Dorsten FA, Bingham M, Vaughan EE, and 

van Duynhoven J. H-1 NMR metabolite profiling of feces as a tool to assess the impact 

of nutrition on the human microbiome. Nmr Biomed. 2008;21(6):615-26. 

181. Cai J, Zhang L, Jones RA, Correll JB, Hatzakis E, Smith PB, Gonzalez FJ, and Patterson 

AD. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut 

Microbiota. J Proteome Res. 2016;15(2):563-71. 

182. Cai J, Zhang J, Tian Y, Zhang L, Hatzakis E, Krausz KW, Smith PB, Gonzalez FJ, and 

Patterson AD. Orthogonal Comparison of GC–MS and 1H NMR Spectroscopy for Short 

Chain Fatty Acid Quantitation. Analytical Chemistry. 2017;89(15):7900-6. 

183. Myant NB, and Mitropoulos KA. Cholesterol 7 alpha-hydroxylase. J Lipid Res. 

1977;18(2):135-53. 

184. Bjorkhem I. Mechanism of degradation of the steroid side chain in the formation of bile 

acids. J Lipid Res. 1992;33(4):455-71. 

185. Chiang JY. Bile acid metabolism and signaling. Comprehensive Physiology. 

2013;3(3):1191-212. 

186. Zwicker BL, and Agellon LB. Transport and biological activities of bile acids. The 

international journal of biochemistry & cell biology. 2013;45(7):1389-98. 

187. Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, Angelin B, 

Hyotylainen T, Oresic M, and Backhed F. Gut microbiota regulates bile acid metabolism 

by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR 

antagonist. Cell metabolism. 2013;17(2):225-35. 

188. Chiang JY. Negative feedback regulation of bile acid metabolism: impact on liver 

metabolism and diseases. Hepatology. 2015;62(4):1315-7. 

189. Jones SA. Physiology of FGF15/19. Adv Exp Med Biol. 2012;728(171-82. 

190. Elliott WH. In: Danielsson H, and Sjövall J eds. New Comprehensive Biochemistry. 

Elsevier; 1985:303-29. 

191. Chiang JYL. Bile acid metabolism and signaling in liver disease and therapy. Liver 

research. 2017;1(1):3-9. 



 77 

192. Basu KP, and S. C. Chakravarty. Action of B. coli on conjugated bile acids. Indian J Mpd 

Res. 1934;21(691-4 

 

193. Shimada K, Bricknell KS, and Finegold SM. Deconjugation of bile acids by intestinal 

bacteria: review of literature and additional studies. The Journal of infectious diseases. 

1969;119(3):273-81. 

194. Tannock GW, Dashkevicz MP, and Feighner SD. Lactobacilli and bile salt hydrolase in 

the murine intestinal tract. Appl Environ Microbiol. 1989;55(7):1848-51. 

195. Tanaka H, Doesburg K, Iwasaki T, and Mierau I. Screening of lactic acid bacteria for bile 

salt hydrolase activity. J Dairy Sci. 1999;82(12):2530-5. 

196. Jones BV, Begley M, Hill C, Gahan CG, and Marchesi JR. Functional and comparative 

metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc 

Natl Acad Sci U S A. 2008;105(36):13580-5. 

197. Kawamoto K, Horibe I, and Uchida K. Purification and characterization of a new 

hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from 

Bacteroides vulgatus. Journal of biochemistry. 1989;106(6):1049-53. 

198. Stellwag EJ, and Hylemon PB. Purification and characterization of bile salt hydrolase 

from Bacteroides fragilis subsp. fragilis. Biochim Biophys Acta. 1976;452(1):165-76. 

199. Grill J, Schneider F, Crociani J, and Ballongue J. Purification and Characterization of 

Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536. Appl Environ 

Microbiol. 1995;61(7):2577-82. 

200. Maddox RHACS. Hydrolysis of bile acid conjugates by Clostridium bifermentans. Eur J 

Appl Microbiol. 1982;14(1):41-5. 

201. Coleman JP, and Hudson LL. Cloning and characterization of a conjugated bile acid 

hydrolase gene from Clostridium perfringens. Applied and environmental microbiology. 

1995;61(7):2514-20. 

202. Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P, and 

European Listeria Genome C. Listeria monocytogenes bile salt hydrolase is a PrfA-

regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. 

Molecular microbiology. 2002;45(4):1095-106. 

203. Begley M, Sleator RD, Gahan CG, and Hill C. Contribution of three bile-associated loci, 

bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria 

monocytogenes. Infect Immun. 2005;73(2):894-904. 

204. Norman A, and Grubb R. Hydrolysis of conjugated bile acids by Clostridia and 

enterococci; bile acids and steroids 25. Acta pathologica et microbiologica Scandinavica. 

1955;36(6):537-47. 

205. Franz CM, Specht I, Haberer P, and Holzapfel WH. Bile salt hydrolase activity of 

Enterococci isolated from food: screening and quantitative determination. Journal of food 

protection. 2001;64(5):725-9. 

206. Chand D, Ramasamy S, and Suresh CG. A highly active bile salt hydrolase from 

Enterococcus faecalis shows positive cooperative kinetics. Process Biochemistry. 

2016;51(2):263-9. 

207. Lorenzo-Zuniga V, Bartoli R, Planas R, Hofmann AF, Vinado B, Hagey LR, Hernandez 

JM, Mane J, Alvarez MA, Ausina V, et al. Oral bile acids reduce bacterial overgrowth, 

bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology. 2003;37(3):551-7. 

208. Hofmann AF, and Eckmann L. How bile acids confer gut mucosal protection against 

bacteria. Proc Natl Acad Sci U S A. 2006;103(12):4333-4. 

209. Kitahara M, Takamine F, Imamura T, and Benno Y. Clostridium hiranonis sp. nov., a 

human intestinal bacterium with bile acid 7alpha-dehydroxylating activity. International 

journal of systematic and evolutionary microbiology. 2001;51(Pt 1):39-44. 



 78 

210. Takamine F, and Imamura T. Isolation and characterization of bile acid 7-

dehydroxylating bacteria from human feces. Microbiology and immunology. 

1995;39(1):11-8. 

211. Mallonee DH, White WB, and Hylemon PB. Cloning and sequencing of a bile acid-

inducible operon from Eubacterium sp. strain VPI 12708. Journal of bacteriology. 

1990;172(12):7011-9. 

212. Doerner KC, Takamine F, LaVoie CP, Mallonee DH, and Hylemon PB. Assessment of 

fecal bacteria with bile acid 7 alpha-dehydroxylating activity for the presence of bai-like 

genes. Appl Environ Microb. 1997;63(3):1185-8. 

213. Lei S, Huang F, Zhao A, Chen T, Chen W, Xie G, Zheng X, Zhang Y, Yu H, Zhang P, et 

al. The ratio of dihomo-gamma-linolenic acid to deoxycholic acid species is a potential 

biomarker for the metabolic abnormalities in obesity. FASEB journal : official 

publication of the Federation of American Societies for Experimental Biology. 

2017;31(9):3904-12. 

214. Berr F, Pratschke E, Fischer S, and Paumgartner G. Disorders of bile acid metabolism in 

cholesterol gallstone disease. The Journal of clinical investigation. 1992;90(3):859-68. 

215. Mamianetti A, Garrido D, Carducci CN, and Vescina MC. Fecal bile acid excretion 

profile in gallstone patients. Medicina (B Aires). 1999;59(3):269-73. 

216. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima 

K, Morita H, Hattori M, et al. Obesity-induced gut microbial metabolite promotes liver 

cancer through senescence secretome. Nature. 2013;499(7456):97-101. 

217. Milovic V, Teller IC, Murphy GM, Caspary WF, and Stein J. Deoxycholic acid 

stimulates migration in colon cancer cells. European journal of gastroenterology & 

hepatology. 2001;13(8):945-9. 

218. Pai R, Tarnawski AS, and Tran T. Deoxycholic acid activates beta-catenin signaling 

pathway and increases colon cell cancer growth and invasiveness. Molecular biology of 

the cell. 2004;15(5):2156-63. 

219. Baijal PK, Fitzpatrick DW, and Bird RP. Comparative effects of secondary bile acids, 

deoxycholic and lithocholic acids, on aberrant crypt foci growth in the postinitiation 

phases of colon carcinogenesis. Nutrition and cancer. 1998;31(2):81-9. 

220. Ajouz H, Mukherji D, and Shamseddine A. Secondary bile acids: an underrecognized 

cause of colon cancer. World journal of surgical oncology. 2014;12(164. 

221. Gerard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 

2013;3(1):14-24. 

222. Kisiela M, Skarka A, Ebert B, and Maser E. Hydroxysteroid dehydrogenases (HSDs) in 

bacteria: a bioinformatic perspective. The Journal of steroid biochemistry and molecular 

biology. 2012;129(1-2):31-46. 

223. Edenharder R, and Mielek K. Epimerization, oxidation and reduction of bile acids by 

Eubacterium lentum. Systematic and Applied Microbiology. 1984;5(3):287-98. 

224. Devlin AS, and Fischbach MA. A biosynthetic pathway for a prominent class of 

microbiota-derived bile acids. Nature chemical biology. 2015;11(9):685-90. 

225. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, and Hylemon PB. Consequences of bile 

salt biotransformations by intestinal bacteria. Gut microbes. 2016;7(1):22-39. 

226. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, and Gordon JI. Obesity 

alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070-5. 

227. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, and Gordon JI. An 

obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 

2006;444(7122):1027-31. 

228. Rodrigues CM, Fan G, Ma X, Kren BT, and Steer CJ. A novel role for ursodeoxycholic 

acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. The 

Journal of clinical investigation. 1998;101(12):2790-9. 



 79 

229. Im E, and Martinez JD. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid 

(DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon 

cancer cells. J Nutr. 2004;134(2):483-6. 

230. Kardorff R, Melter M, Rodeck B, and Brodehl J. [Long-term ursodeoxycholic acid 

treatment of cholestatic liver diseases in childhood--clinical and biochemical effects]. 

Klinische Padiatrie. 1996;208(3):118-22. 

231. Festi D, Montagnani M, Azzaroli F, Lodato F, Mazzella G, Roda A, Di Biase AR, Roda 

E, Simoni P, and Colecchia A. Clinical efficacy and effectiveness of ursodeoxycholic 

acid in cholestatic liver diseases. Current clinical pharmacology. 2007;2(2):155-77. 

232. Marschall HU, Oppermann UC, Svensson S, Nordling E, Persson B, Hoog JO, and 

Jornvall H. Human liver class I alcohol dehydrogenase gammagamma isozyme: the sole 

cytosolic 3beta-hydroxysteroid dehydrogenase of iso bile acids. Hepatology. 

2000;31(4):990-6. 

233. Edenharder R, and Hammann R. Deoxycholic Acid Methyl Ester — a Novel Bacterial 

Metabolite of Cholic Acid. Systematic and Applied Microbiology. 1985;6(1):18-22. 

234. Kelsey MI, and Thompson RJ. The biosynthesis of ethyl lithocholate by fecal 

microorganisms. Journal of Steroid Biochemistry. 1976;7(2):117-24. 

235. Robben J, Van Eldere J, and Eyssen H. In: De Clercq E ed. Frontiers in Microbiology: 

From Antibiotics to AIDS. Dordrecht: Springer Netherlands; 1987:241-3. 

236. Robben J, Janssen G, Merckx R, and Eyssen H. Formation of delta 2- and delta 3-

cholenoic acids from bile acid 3-sulfates by a human intestinal Fusobacterium strain. 

Appl Environ Microbiol. 1989;55(11):2954-9. 

237. Tazuke Y, Matsuda K, Adachi K, and Tsukada Y. Purification and properties of a novel 

sulfatase from Pseudomonas testosteroni that hydrolyzed 3 beta-hydroxy-5-cholenoic 

acid 3-sulfate. Bioscience, biotechnology, and biochemistry. 1998;62(9):1739-44. 

238. Eyssen H, van Eldere J, Parmentier G, Huijghebaert S, and Mertens J. Influence of 

microbial bile salt desulfation upon the fecal excretion of bile salts in gnotobiotic rats. 

Journal of Steroid Biochemistry. 1985;22(4):547-54. 

239. Alnouti Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. 

Toxicological sciences : an official journal of the Society of Toxicology. 

2009;108(2):225-46. 

240. Goddard P, and Hill MJ. Degradation of steroids by intestinal bacteria: IV. The 

aromatisation of ring A. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid 

Metabolism. 1972;280(2):336-42. 

241. Aries VC, and Hill MJ. The formation of unsaturated bile acids by intestinal bacteria. 

Biochemical Journal. 1970;119(5):37P-8P. 

242. Chiang JYL. Negative feedback regulation of bile acid metabolism: impact on liver 

metabolism and diseases. Hepatology (Baltimore, Md). 2015;62(4):1315-7. 

243. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annual review 

of biochemistry. 2003;72(137-74. 

244. Eloranta JJ, and Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid 

homeostasis and drug metabolism. Archives of biochemistry and biophysics. 

2005;433(2):397-412. 

245. Arrese M, and Ananthanarayanan M. The bile salt export pump: molecular properties, 

function and regulation. Pflügers Archiv. 2004;449(2):123-31. 

246. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer 

S, Willson TM, and Edwards PA. Regulation of multidrug resistance-associated protein 2 

(ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, 

and constitutive androstane receptor. J Biol Chem. 2002;277(4):2908-15. 

247. Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai S-Y, Moustafa T, Zollner G, Lee JY, 

and Ballatori N. Upregulation of a basolateral FXR-dependent bile acid efflux transporter 



 80 

OSTα-OSTβ in cholestasis in humans and rodents. American Journal of Physiology-

Gastrointestinal and Liver Physiology. 2006;290(6):G1124-G30. 

248. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, 

and Karpen SJ. The Orphan Nuclear Receptor, shp, Mediates Bile Acid-Induced 

Inhibition of the Rat Bile Acid Transporter, ntcp. Gastroenterology. 2001;121(1):140-7. 

249. Zollner G, Wagner M, Fickert P, Geier A, Fuchsbichler A, Silbert D, Gumhold J, 

Zatloukal K, Kaser A, Tilg H, et al. Role of nuclear receptors and hepatocyte-enriched 

transcription factors for Ntcp repression in biliary obstruction in mouse liver. American 

Journal of Physiology-Gastrointestinal and Liver Physiology. 2005;289(5):G798-G805. 

250. Jung D, Podvinec M, Meyer UA, Mangelsdorf DJ, Fried M, Meier PJ, and Kullak–Ublick 

GA. Human organic anion transporting polypeptide 8 promoter is transactivated by the 

farnesoid X receptor/bile acid receptor. Gastroenterology. 2002;122(7):1954-66. 

251. Shneider BL. Intestinal bile acid transport: biology, physiology, and pathophysiology. 

Journal of pediatric gastroenterology and nutrition. 2001;32(4):407-17. 

252. Coppola CP, Gosche JR, Arrese M, Ancowitz B, Madsen J, Vanderhoof J, and Shneider 

BL. Molecular analysis of the adaptive response of intestinal bile acid transport after ileal 

resection in the rat. Gastroenterology. 1998;115(5):1172-8. 

253. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, 

Mansfield TA, Kliewer SA, et al. Definition of a novel growth factor-dependent signal 

cascade for the suppression of bile acid biosynthesis. Genes & Development. 

2003;17(13):1581-91. 

254. Song KH, Li T, Owsley E, Strom S, and Chiang JY. Bile acids activate fibroblast growth 

factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene 

expression. Hepatology. 2009;49(1):297-305. 

255. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, 

Xu HE, Gerard RD, Finck BN, et al. FGF15/19 regulates hepatic glucose metabolism by 

inhibiting the CREB-PGC-1alpha pathway. Cell Metab. 2011;13(6):729-38. 

256. Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT, Stefanovski D, Bergman RN, 

Wasserman DH, and Schwartz MW. FGF19 action in the brain induces insulin-

independent glucose lowering. The Journal of clinical investigation. 2013;123(11):4799-

808. 

257. Zhang F, Yu L, Lin X, Cheng P, He L, Li X, Lu X, Tan Y, Yang H, Cai L, et al. 

Minireview: Roles of Fibroblast Growth Factors 19 and 21 in Metabolic Regulation and 

Chronic Diseases. Molecular endocrinology. 2015;29(10):1400-13. 

258. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, and Gonzalez FJ. Targeted 

Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. 

Cell. 2000;102(6):731-44. 

259. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-

Braxton L, French D, et al. Transgenic Mice Expressing Human Fibroblast Growth 

Factor-19 Display Increased Metabolic Rate and Decreased Adiposity. Endocrinology. 

2002;143(5):1741-7. 

260. Miyata M, Sakaida Y, Matsuzawa H, Yoshinari K, and Yamazoe Y. Fibroblast Growth 

Factor 19 Treatment Ameliorates Disruption of Hepatic Lipid Metabolism in Farnesoid X 

Receptor (Fxr)-Null Mice. Biological and Pharmaceutical Bulletin. 2011;34(12):1885-9. 

261. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, 

Willson TM, Zavacki AM, Moore DD, et al. Bile acids: Natural ligands for an orphan 

nuclear receptor. Science. 1999;284(5418):1365-8. 

262. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, 

Mangelsdorf DJ, and Shan B. Identification of a Nuclear Receptor for Bile Acids. 

Science. 1999;284(5418):1362-5. 



 81 

263. Li Y, Jadhav K, and Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. 

Biochemical Pharmacology. 2013;86(11):1517-24. 

264. Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, 

and Gonzalez FJ. Microbiome remodelling leads to inhibition of intestinal farnesoid X 

receptor signalling and decreased obesity. Nature communications. 2013;4(2384. 

265. Miyata M, Takamatsu Y, Kuribayashi H, and Yamazoe Y. Administration of ampicillin 

elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth 

factor 15 expression. J Pharmacol Exp Ther. 2009;331(3):1079-85. 

266. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, and 

Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue 

compartments. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(4523-30. 

267. Xie C, Jiang C, Shi J, Gao X, Sun D, Sun L, Wang T, Takahashi S, Anitha M, Krausz 

KW, et al. An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates 

Hepatic Gluconeogenesis in Mice. Diabetes. 2017;66(3):613-26. 

268. Shyng S-L. Targeting the Gut Microbiota–FXR Signaling Axis for Glycemic Control: 

Does a Dietary Supplement Work Magic? Diabetes. 2017;66(3):571-3. 

269. Russell DW. The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. Annual 

review of biochemistry. 2003;72(1):137-74. 

270. Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, and Fukamizu 

A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-

mediated repression of hepatocyte nuclear factor 4 and Foxo1. The Journal of biological 

chemistry. 2004;279(22):23158-65. 

271. Ma Y, Huang Y, Yan L, Gao M, and Liu D. Synthetic FXR agonist GW4064 prevents 

diet-induced hepatic steatosis and insulin resistance. Pharmaceutical research. 

2013;30(5):1447-57. 

272. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, and Edwards 

PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia 

in diabetic mice. Proceedings of the National Academy of Sciences of the United States of 

America. 2006;103(4):1006-11. 

273. Zhang HM, Wang X, Wu ZH, Liu HL, Chen W, Zhang ZZ, Chen D, and Zeng TS. 

Beneficial effect of farnesoid X receptor activation on metabolism in a diabetic rat model. 

Molecular medicine reports. 2016;13(3):2135-42. 

274. Renga B, Mencarelli A, Vavassori P, Brancaleone V, and Fiorucci S. The bile acid sensor 

FXR regulates insulin transcription and secretion. Biochimica et Biophysica Acta (BBA) - 

Molecular Basis of Disease. 2010;1802(3):363-72. 

275. Shen H, Zhang Y, Ding H, Wang X, Chen L, Jiang H, and Shen X. Farnesoid X receptor 

induces GLUT4 expression through FXR response element in the GLUT4 promoter. 

Cellular physiology and biochemistry : international journal of experimental cellular 

physiology, biochemistry, and pharmacology. 2008;22(1-4):1-14. 

276. Trabelsi M-S, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI, Perino A, Brighton 

CA, Sebti Y, Kluza J, et al. Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 

Production by Enteroendocrine L-cells. Nature communications. 2015;6(7629-. 

277. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, and Gonzalez FJ. Targeted 

disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. 

Cell. 2000;102(6):731-44. 

278. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore 

DD, and Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, 

SHP, and SREBP-1c. The Journal of clinical investigation. 2004;113(10):1408-18. 

279. Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, Fruchart JC, 

Gonzalez FJ, and Staels B. Farnesoid X receptor agonists suppress hepatic apolipoprotein 

CIII expression. Gastroenterology. 2003;125(2):544-55. 



 82 

280. Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, Gonzalez FJ, Willson 

TM, and Edwards PA. Farnesoid X-Activated Receptor Induces Apolipoprotein C-II 

Transcription: a Molecular Mechanism Linking Plasma Triglyceride Levels to Bile 

Acids. Molecular endocrinology. 2001;15(10):1720-8. 

281. Prieur X, Coste H, and Rodríguez JC. The Human Apolipoprotein AV Gene Is Regulated 

by Peroxisome Proliferator-activated Receptor-α and Contains a Novel Farnesoid X-

activated Receptor Response Element. J Biol Chem. 2003;278(28):25468-80. 

282. Sirvent A, Claudel T, Martin G, Brozek J, Kosykh V, Darteil R, Hum DW, Fruchart J-C, 

and Staels B. The farnesoid X receptor induces very low density lipoprotein receptor 

gene expression. FEBS Letters. 2004;566(1):173-7. 

283. Anisfeld AM, Kast-Woelbern HR, Meyer ME, Jones SA, Zhang Y, Williams KJ, Willson 

T, and Edwards PA. Syndecan-1 expression is regulated in an isoform-specific manner by 

the farnesoid-X receptor. J Biol Chem. 2003;278(22):20420-8. 

284. Chennamsetty I, Claudel T, Kostner KM, Baghdasaryan A, Kratky D, Levak-Frank S, 

Frank S, Gonzalez FJ, Trauner M, and Kostner GM. Farnesoid X receptor represses 

hepatic human APOA gene expression. The Journal of clinical investigation. 

2011;121(9):3724-34. 

285. Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart J-C, Dallongeville 

J, Hum DW, Kuipers F, et al. Bile acid-activated nuclear receptor FXR suppresses 

apolipoprotein A-I transcription via a negative FXR response element. The Journal of 

clinical investigation. 2002;109(7):961-71. 

286. Lefebvre P, Cariou B, Lien F, Kuipers F, and Staels B. Role of bile acids and bile acid 

receptors in metabolic regulation. Physiological reviews. 2009;89(1):147-91. 

287. Lambert G, Amar MJA, Guo G, Brewer HB, Gonzalez FJ, and Sinal CJ. The Farnesoid 

X-receptor Is an Essential Regulator of Cholesterol Homeostasis. J Biol Chem. 

2003;278(4):2563-70. 

288. Li T, Matozel M, Boehme S, Kong B, Nilsson LM, Guo G, Ellis E, and Chiang JY. 

Overexpression of cholesterol 7alpha-hydroxylase promotes hepatic bile acid synthesis 

and secretion and maintains cholesterol homeostasis. Hepatology. 2011;53(3):996-1006. 

289. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, and Mangelsdorf DJ. 

Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver 

X receptors alpha and beta. J Biol Chem. 2002;277(21):18793-800. 

290. Xu Y, Li F, Zalzala M, Xu J, Gonzalez FJ, Adorini L, Lee Y-K, Yin L, and Zhang Y. 

FXR Activation Increases Reverse Cholesterol Transport by Modulating Bile Acid 

Composition and Cholesterol Absorption. Hepatology (Baltimore, Md). 2016;64(4):1072-

85. 

291. Gnerre C, Blattler S, Kaufmann MR, Looser R, and Meyer UA. Regulation of CYP3A4 

by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. 

Pharmacogenetics. 2004;14(10):635-45. 

292. Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, and Chatterjee B. 

Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid 

X receptor. J Biol Chem. 2001;276(45):42549-56. 

293. Erichsen TJ, Aehlen A, Ehmer U, Kalthoff S, Manns MP, and Strassburg CP. Regulation 

of the human bile acid UDP-glucuronosyltransferase 1A3 by the farnesoid X receptor and 

bile acids. Journal of Hepatology. 2010;52(4):570-8. 

294. Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, Kuipers F, 

Kosykh V, Fruchart JC, and Staels B. FXR induces the UGT2B4 enzyme in hepatocytes: 

a potential mechanism of negative feedback control of FXR activity. Gastroenterology. 

2003;124(7):1926-40. 



 83 

295. Cai J, Zhang L, Jones RA, Correll JB, Hatzakis E, Smith PB, Gonzalez FJ, and Patterson 

AD. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut 

Microbiota. J Proteome Res. 2016. 

296. Cariou B, Bouchaert E, Abdelkarim M, Dumont J, Caron S, Fruchart JC, Burcelin R, 

Kuipers F, and Staels B. FXR-deficiency confers increased susceptibility to torpor. FEBS 

Lett. 2007;581(27):5191-8. 

297. Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto 

S, Lukasheva Y, et al. Intestinal FXR agonism promotes adipose tissue browning and 

reduces obesity and insulin resistance. Nature medicine. 2015;21(2):159-65. 

298. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, 

Corpuz R, Moffat B, et al. Fibroblast growth factor 19 increases metabolic rate and 

reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145(6):2594-603. 

299. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-

Braxton L, French D, et al. Transgenic mice expressing human fibroblast growth factor-

19 display increased metabolic rate and decreased adiposity. Endocrinology. 

2002;143(5):1741-7. 

300. Lee CG, Kim YW, Kim EH, Meng Z, Huang W, Hwang SJ, and Kim SG. Farnesoid X 

Receptor Protects Hepatocytes From Injury by Repressing miR-199a-3p, Which 

Increases Levels of LKB1. Gastroenterology. 2012;142(5):1206-17.e7. 

301. Noh K, Kim YM, Kim YW, and Kim SG. Farnesoid X receptor activation by 

chenodeoxycholic acid induces detoxifying enzymes through AMP-activated protein 

kinase and extracellular signal-regulated kinase 1/2-mediated phosphorylation of 

CCAAT/enhancer binding protein beta. Drug metabolism and disposition: the biological 

fate of chemicals. 2011;39(8):1451-9. 

302. Alasmael N, Mohan R, Meira LB, Swales KE, and Plant NJ. Activation of the Farnesoid 

X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration 

potential. Cancer letters. 2016;370(2):250-9. 

303. Pu J, Yuan A, Shan P, Gao E, Wang X, Wang Y, Lau WB, Koch W, Ma XL, and He B. 

Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and 

contributes to myocardial ischaemia/reperfusion injury. European heart journal. 

2013;34(24):1834-45. 

304. Duboc H, Taché Y, and Hofmann AF. The bile acid TGR5 membrane receptor: From 

basic research to clinical application. Digestive and Liver Disease. 2014;46(4):302-12. 

305. Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, 

and Corvera CU. Expression and function of the bile acid receptor GpBAR1 (TGR5) in 

the murine enteric nervous system. Neurogastroenterology & Motility. 2010;22(7):814-

e228. 

306. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, 

Yamamoto H, Mataki C, Pruzanski M, et al. TGR5-Mediated Bile Acid Sensing Controls 

Glucose Homeostasis. Cell metabolism. 2009;10(3):167-77. 

307. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, Häussinger D, and 

Kubitz R. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal 

endothelial cells. Hepatology. 2007;45(3):695-704. 

308. Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, Schaart G, 

Kouach M, Charton J, Deprez B, et al. The Bile Acid Chenodeoxycholic Acid Increases 

Human Brown Adipose Tissue Activity. Cell Metab. 2015;22(3):418-26. 

309. Thomas C, Auwerx J, and Schoonjans K. Bile acids and the membrane bile acid receptor 

TGR5--connecting nutrition and metabolism. Thyroid : official journal of the American 

Thyroid Association. 2008;18(2):167-74. 



 84 

310. Reinehr R, Becker S, Keitel V, Eberle A, Grether–Beck S, and Häussinger D. Bile Salt–

Induced Apoptosis Involves NADPH Oxidase Isoform Activation. Gastroenterology. 

2005;129(6):2009-31. 

311. Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B, Bifulco G, Baldelli F, Donini 

A, and Fiorucci S. The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of 

Intestinal Barrier and Immune Response to Experimental Colitis. PloS one. 

2011;6(10):e25637. 

312. Wang Y-D, Chen W-D, Yu D, Forman BM, and Huang W. The G-Protein-coupled bile 

acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response 

through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-

κB) in mice. Hepatology. 2011;54(4):1421-32. 

313. MacDonald PE, El-kholy W, Riedel MJ, Salapatek AMF, Light PE, and Wheeler MB. 

The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion. 

Diabetes. 2002;51(suppl 3):S434-S42. 

314. Tong J, and D’Alessio D. Give the Receptor a Brake: Slowing Gastric Emptying by GLP-

1. Diabetes. 2014;63(2):407-9. 

315. Hansen M, Scheltema MJ, Sonne DP, Hansen JS, Sperling M, Rehfeld JF, Holst JJ, 

Vilsboll T, and Knop FK. Effect of chenodeoxycholic acid and the bile acid sequestrant 

colesevelam on glucagon-like peptide-1 secretion. Diabetes Obes Metab. 

2016;18(6):571-80. 

316. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, 

Grosse J, Reimann F, and Gribble FM. Short-chain fatty acids stimulate glucagon-like 

peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 

2012;61(2):364-71. 

317. Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF, Andersen UB, 

Holst JJ, and Hansen HS. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 

release in humans. J Clin Endocrinol Metab. 2011;96(9):E1409-17. 

318. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien 

M, Muccioli GG, Delzenne NM, et al. Cross-talk between Akkermansia muciniphila and 

intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy 

of Sciences. 2013;110(22):9066-71. 

319. Wang J, Dai S, Guo Y, Xie W, and Zhai Y. Biology of PXR: role in drug-hormone 

interactions. EXCLI J. 2014;13(728-39. 

320. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu 

Y, Klaassen CD, Brown KK, Reinhard J, et al. The nuclear receptor PXR is a lithocholic 

acid sensor that protects against liver toxicity. Proceedings of the National Academy of 

Sciences. 2001;98(6):3369-74. 

321. Xu C, Li CY-T, and Kong A-NT. Induction of phase I, II and III drug 

metabolism/transport by xenobiotics. Archives of Pharmacal Research. 2005;28(3):249. 

322. Hoekstra M, Lammers B, Out R, Li Z, Van Eck M, and Van Berkel TJC. Activation of 

the Nuclear Receptor PXR Decreases Plasma LDL-Cholesterol Levels and Induces 

Hepatic Steatosis in LDL Receptor Knockout Mice. Molecular pharmaceutics. 

2009;6(1):182-9. 

323. Ihunnah CA, Jiang M, and Xie W. Nuclear receptor PXR, transcriptional circuits and 

metabolic relevance. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 

2011;1812(8):956-63. 

324. Li T, and Chiang JY. Mechanism of rifampicin and pregnane X receptor inhibition of 

human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest 

Liver Physiol. 2005;288(1):G74-84. 



 85 

325. Wistuba W, Gnewuch C, Liebisch G, Schmitz G, and Langmann T. Lithocholic acid 

induction of the FGF19 promoter in intestinal cells is mediated by PXR. World journal of 

gastroenterology. 2007;13(31):4230-5. 

326. Ma Y, and Liu D. Activation of Pregnane X Receptor by Pregnenolone 16 α-carbonitrile 

Prevents High-Fat Diet-Induced Obesity in AKR/J Mice. PloS one. 2012;7(6):e38734. 

327. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, and 

Mangelsdorf DJ. Vitamin D Receptor As an Intestinal Bile Acid Sensor. Science. 

2002;296(5571):1313-6. 

328. Drocourt L, Ourlin J-C, Pascussi J-M, Maurel P, and Vilarem M-J. Expression of 

CYP3A4, CYP2B6, andCYP2C9 Is Regulated by the Vitamin D Receptor Pathway in 

Primary Human Hepatocytes. J Biol Chem. 2002;277(28):25125-32. 

329. Echchgadda I, Song CS, Roy AK, and Chatterjee B. Dehydroepiandrosterone 

Sulfotransferase Is a Target for Transcriptional Induction by the Vitamin D Receptor. 

Molecular pharmacology. 2004;65(3):720-9. 

330. Saeki M, Kurose K, Tohkin M, and Hasegawa R. Identification of the functional vitamin 

D response elements in the human MDR1 gene. Biochem Pharmacol. 2008;76(4):531-42. 

331. McCarthy TC, Li X, and Sinal CJ. Vitamin D receptor-dependent regulation of colon 

multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem. 

2005;280(24):23232-42. 

332. Han S, and Chiang JYL. Mechanism of Vitamin D Receptor Inhibition of Cholesterol 7α-

Hydroxylase Gene Transcription in Human Hepatocytes. Drug Metabolism and 

Disposition. 2009;37(3):469-78. 

333. Nehring JA, Zierold C, and DeLuca HF. Lithocholic acid can carry out in vivo functions 

of vitamin D. Proceedings of the National Academy of Sciences of the United States of 

America. 2007;104(24):10006-9. 

334. van de Kerkhof PC. Reduction of epidermal abnormalities and inflammatory changes in 

psoriatic plaques during treatment with vitamin D3 analogs. The journal of investigative 

dermatology Symposium proceedings. 1996;1(1):78-81. 

335. Hashimoto K, Matsumoto K, Higashiyama M, Nishida Y, and Yoshikawa K. Growth-

inhibitory effects of 1,25-dihydroxyvitamin D3 on normal and psoriatic keratinocytes. 

The British journal of dermatology. 1990;123(1):93-8. 

336. Kozoni V, Tsioulias G, Shiff S, and Rigas B. The effect of lithocholic acid on 

proliferation and apoptosis during the early stages of colon carcinogenesis: differential 

effect on apoptosis in the presence of a colon carcinogen. Carcinogenesis. 

2000;21(5):999-1005. 

337. Mathiasen IS, Lademann U, and Jaattela M. Apoptosis induced by vitamin D compounds 

in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. 

Cancer research. 1999;59(19):4848-56. 

338. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, and O'Garra A. 1alpha,25-

Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the 

development of Th2 cells. Journal of immunology. 2001;167(9):4974-80. 

339. Vojinovic J. Vitamin D receptor agonists’ anti-inflammatory properties. Annals of the 

New York Academy of Sciences. 2014;1317(1):47-56. 

340. Adorini L, and Penna G. Control of autoimmune diseases by the vitamin D endocrine 

system. Nature clinical practice Rheumatology. 2008;4(8):404-12. 

341. Rowley WR, Bezold C, Arikan Y, Byrne E, and Krohe S. Diabetes 2030: Insights from 

Yesterday, Today, and Future Trends. Population Health Management. 2017;20(1):6-12. 

342. Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, and Dietz W. 

Obesity and Severe Obesity Forecasts Through 2030. American Journal of Preventive 

Medicine. 2012;42(6):563-70. 



 86 

343. Grice EA, and Segre JA. The Human Microbiome: Our Second Genome. Annual review 

of genomics and human genetics. 2012;13(151-70. 

344. Wang B, Yao M, Lv L, Ling Z, and Li L. The Human Microbiota in Health and Disease. 

Engineering. 2017;3(1):71-82. 

345. Vincent RP, Omar S, Ghozlan S, Taylor DR, Cross G, Sherwood RA, Fandriks L, Olbers 

T, Werling M, Alaghband-Zadeh J, et al. Higher circulating bile acid concentrations in 

obese patients with type 2 diabetes. Annals of Clinical Biochemistry. 2013;50(4):360-4. 

346. Herrema H, Meissner M, van Dijk TH, Brufau G, Boverhof R, Oosterveer MH, 

Reijngoud DJ, Muller M, Stellaard F, Groen AK, et al. Bile salt sequestration induces 

hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-

controlled metabolic pathways in mice. Hepatology. 2010;51(3):806-16. 

347. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, 

Henrissat B, Bain JR, et al. Gut Microbiota from Twins Discordant for Obesity Modulate 

Metabolism in Mice. Science. 2013;341(6150). 

348. Begley M, Gahan CGM, and Hill C. The interaction between bacteria and bile. FEMS 

Microbiology Reviews. 2005;29(4):625-51. 

349. Islam KBMS, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, and 

Yokota A. Bile Acid Is a Host Factor That Regulates the Composition of the Cecal 

Microbiota in Rats. Gastroenterology. 2011;141(5):1773-81. 

350. Silhavy TJ, Kahne D, and Walker S. The Bacterial Cell Envelope. Cold Spring Harbor 

Perspectives in Biology. 2010;2(5):a000414. 

351. Ridlon JM, Alves JM, Hylemon PB, and Bajaj JS. Cirrhosis, bile acids and gut 

microbiota: Unraveling a complex relationship. Gut Microbes. 2013;4(5):382-7. 

352. Mekhjian HS, and Phillips SF. Perfusion of the canine colon with unconjugated bile 

acids. Effect on water and electrolyte transport, morphology, and bile acid absorption. 

Gastroenterology. 1970;59(1):120-9. 

353. Fickert P, Fuchsbichler A, Marschall H-U, Wagner M, Zollner G, Krause R, Zatloukal K, 

Jaeschke H, Denk H, and Trauner M. Lithocholic Acid Feeding Induces Segmental Bile 

Duct Obstruction and Destructive Cholangitis in Mice. The American Journal of 

Pathology. 2006;168(2):410-22. 

354. Bernstein H, Payne CM, Bernstein C, Schneider J, Beard SE, and Crowley CL. 

Activation of the promoters of genes associated with DNA damage, oxidative stress, ER 

stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett. 1999;108(1):37-

46. 

355. Zhu Y, Liu H, Zhang M, and Guo GL. Fatty liver diseases, bile acids, and FXR. Acta 

Pharmaceutica Sinica B. 2016;6(5):409-12. 

356. Estes C, Razavi H, Loomba R, Younossi Z, and Sanyal AJ. Modeling the epidemic of 

nonalcoholic fatty liver disease demonstrates an exponential increase in burden of 

disease. Hepatology. 2018;67(1):123-33. 

357. Tolman KG, and Dalpiaz AS. Treatment of non-alcoholic fatty liver disease. 

Therapeutics and Clinical Risk Management. 2007;3(6):1153-63. 

358. Sattar N, Forrest E, and Preiss D. Non-alcoholic fatty liver disease. BMJ : British 

Medical Journal. 2014;349( 

359. Carr RM, and Reid AE. FXR Agonists as Therapeutic Agents for Non-alcoholic Fatty 

Liver Disease. Current Atherosclerosis Reports. 2015;17(4):16. 

360. Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang ZZ, 

Takahashi S, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty 

liver disease. The Journal of clinical investigation. 2015;125(1):386-402. 

361. Pols Thijs WH, Nomura M, Harach T, Lo Sasso G, Oosterveer Maaike H, Thomas C, 

Rizzo G, Gioiello A, Adorini L, Pellicciari R, et al. TGR5 Activation Inhibits 



 87 

Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cell 

Metabolism. 2011;14(6):747-57. 

362. Okushin K, Tsutsumi T, Enooku K, Fujinaga H, Kado A, Shibahara J, Fukayama M, 

Moriya K, Yotsuyanagi H, and Koike K. The intrahepatic expression levels of bile acid 

transporters are inversely correlated with the histological progression of nonalcoholic 

fatty liver disease. Journal of Gastroenterology. 2016;51(8):808-18. 

363. Lionarons DA, Heger M, van Golen RF, Alles LK, van der Mark VA, Kloek JJ, de Waart 

DR, Marsman HA, Rusch H, Verheij J, et al. Simple steatosis sensitizes cholestatic rats to 

liver injury and dysregulates bile salt synthesis and transport. Scientific reports. 

2016;6(31829. 

364. Rao A, Kosters A, Mells JE, Zhang W, Setchell KDR, Amanso AM, Wynn GM, Xu T, 

Keller BT, Yin H, et al. Inhibition of Ileal Bile Acid Uptake Protects Against Non-

alcoholic Fatty Liver Disease in High Fat Diet-fed Mice. Science translational medicine. 

2016;8(357):357ra122-357ra122. 

365. Rodríguez-Garay EA. Cholestasis: human disease and experimental animal models. Ann 

Hepatol. 2003;2(4):150-8. 

366. Fisk NM, and Bruce Storey GN. Fetal outcome in obstetric cholestasis. BJOG: An 

International Journal of Obstetrics & Gynaecology. 1988;95(11):1137-43. 

367. Geenes V, and Williamson C. Intrahepatic cholestasis of pregnancy. World Journal of 

Gastroenterology : WJG. 2009;15(17):2049-66. 

368. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, 

and Evans RM. An essential role for nuclear receptors SXR/PXR in detoxification of 

cholestatic bile acids. Proceedings of the National Academy of Sciences. 

2001;98(6):3375-80. 

369. Li T, and Apte U. Bile acid metabolism and signaling in cholestasis, inflammation and 

cancer. Advances in pharmacology (San Diego, Calif). 2015;74(263-302. 

370. Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, Verhagen A, Rivera 

CR, Mulvihill SJ, Malloy MJ, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) 

deficiency has a hypercholesterolemic phenotype. The Journal of clinical investigation. 

2002;110(1):109-17. 

371. Xie Y, Blanc V, Kerr TA, Kennedy S, Luo J, Newberry EP, and Davidson NO. 

Decreased expression of cholesterol 7alpha-hydroxylase and altered bile acid metabolism 

in Apobec-1-/- mice lead to increased gallstone susceptibility. J Biol Chem. 

2009;284(25):16860-71. 

372. Bertolotti M, Gabbi C, Anzivino C, Carulli L, and Carulli N. Changes in bile acid 

synthesis in gallstone disease: Cause, consequence, or neither? Hepatology. 

2007;46(5):1664-. 

373. Marcus SN, and Heaton KW. Deoxycholic acid and the pathogenesis of gall stones. Gut. 

1988;29(4):522-33. 

374. Wang J, Gåfvels M, Rudling M, Murphy C, Björkhem I, Einarsson C, and Eggertsen G. 

Critical role of cholic acid for development of hypercholesterolemia and gallstones in 

diabetic mice. Biochemical and Biophysical Research Communications. 

2006;342(4):1382-8. 

375. Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, 

Tetzloff G, Levitan D, Murgolo NJ, et al. Targeted deletion of Gpbar1 protects mice from 

cholesterol gallstone formation. The Biochemical journal. 2006;398(3):423-30. 

376. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, and Mangelsdorf DJ. 

The G Protein-Coupled Bile Acid Receptor, TGR5, Stimulates Gallbladder Filling. 

Molecular endocrinology. 2011;25(6):1066-71. 



 88 

377. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, Thomas G, Barbu 

V, Humbert L, Despras G, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut 

inflammation in inflammatory bowel diseases. Gut. 2013;62(4):531-9. 

378. Herman-Edelstein M, Weinstein T, and Levi M. Bile acid receptors and the kidney. 

Current opinion in nephrology and hypertension. 2018;27(1):56-62. 

379. Zhu C, Fuchs CD, Halilbasic E, and Trauner M. Bile acids in regulation of inflammation 

and immunity: friend or foe? Clin Exp Rheumatol. 2016;34(4 Suppl 98):25-31. 

380. Kim ND, Moon J-OK, Slitt AL, and Copple BL. Early Growth Response Factor-1 Is 

Critical for Cholestatic Liver Injury. Toxicological Sciences. 2006;90(2):586-95. 

381. O'Brien KM, Allen KM, Rockwell CE, Towery K, Luyendyk JP, and Copple BL. IL-17A 

Synergistically Enhances Bile Acid–Induced Inflammation during Obstructive 

Cholestasis. The American Journal of Pathology. 2013;183(5):1498-507. 

382. Shaik FB, Prasad DVR, and Narala VR. Role of farnesoid X receptor in inflammation 

and resolution. Inflammation Research. 2015;64(1):9-20. 

383. Jiang T, Wang XX, Scherzer P, Wilson P, Tallman J, Takahashi H, Li J, Iwahashi M, 

Sutherland E, Arend L, et al. Farnesoid X receptor modulates renal lipid metabolism, 

fibrosis, and diabetic nephropathy. Diabetes. 2007;56(10):2485-93. 

384. Walker IA, Nelson-Piercy C, and Williamson C. Role of bile acid measurement in 

pregnancy. Annals of Clinical Biochemistry. 2002;39(2):105-13. 

385. Skrede S, Solberg HE, Blomhoff JP, and Gjone E. Bile acids measured in serum during 

fasting as a test for liver disease. Clinical Chemistry. 1978;24(7):1095-9. 

386. Morita T, Matsuyama Y, Fujimoto T, Higuchi M, Tsujii T, and Matsuoka Y. Clinical 

significance of serum bile acid measurement in liver diseases. Gastroenterologia 

Japonica. 1978;13(6):491-502. 

387. Sarafian MH, Lewis MR, Pechlivanis A, Ralphs S, McPhail MJW, Patel VC, Dumas M-

E, Holmes E, and Nicholson JK. Bile Acid Profiling and Quantification in Biofluids 

Using Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. 

Analytical Chemistry. 2015;87(19):9662-70. 

388. Zhang G-H, Cong A-R, Xu G-B, Li C-B, Yang R-F, and Xia T-A. An enzymatic cycling 

method for the determination of serum total bile acids with recombinant 3α-

hydroxysteroid dehydrogenase. Biochemical and Biophysical Research Communications. 

2004;326(1):87-92. 

389. Mashige F, Tanaka N, Maki A, Kamei S, and Yamanaka M. Direct spectrophotometry of 

total bile acids in serum. Clinical Chemistry. 1981;27(8):1352-6. 

390. Niu XY, Xu Y, Yang QL, Tang XW, Yang L, and Wang ZT. Analytical methods for 

characterization of bile acids and its application in quality control of cow-bezoar and bear 

bile powder American Journal of Applied Chemistry. 2014;2(6):96-104. 

391. Street JM, and Setchell KDR. Chromatographic methods for bile acid analysis. 

Biomedical Chromatography. 1987;2(6):229-41. 

392. Robb TA, Davidson GP, and Kirubakaran C. Conjugated bile acids in serum and 

secretions in response to cholecystokinin/secretin stimulation in children with cystic 

fibrosis. Gut. 1985;26(11):1246-56. 

393. Robb TA, and Davidson GP. Analysis of Individual Bile Acids and Their 

Glycine/Taurine Conjugates by High-Performance Thin-Layer Chromatography and 

Densitometry. Annals of Clinical Biochemistry. 1984;21(2):137-40. 

394. Onishi S, Itoh S, and Ishida Y. Assay of free and glycine- and taurine-conjugated bile 

acids in serum by high-pressure liquid chromatography by using post-column reaction 

after group separation. Biochemical Journal. 1982;204(1):135-9. 

395. Hernanz A, and Codoceo R. An improved high-performance liquid-chromatographic 

determination of conjugated bile acids in serum using paired-ion chromatography. 

Clinica Chimica Acta. 1985;145(2):197-203. 



 89 

396. VandenHeuvel WJA, Sweeley CC, and Horning EC. Microanalytical separations by gas 

chromatography in the sex hormone and bile acid series. Biochemical and Biophysical 

Research Communications. 1960;3(1):33-6. 

397. Batta AK, and Salen G. Gas chromatography of bile acids. Journal of Chromatography 

B: Biomedical Sciences and Applications. 1999;723(1):1-16. 

398. Roda A, Piazza F, and Baraldini M. Separation techniques for bile salts analysis. Journal 

of Chromatography B: Biomedical Sciences and Applications. 1998;717(1):263-78. 

399. Humbert L, Maubert MA, Wolf C, Duboc H, Mahé M, Farabos D, Seksik P, Mallet JM, 

Trugnan G, Masliah J, et al. Bile acid profiling in human biological samples: Comparison 

of extraction procedures and application to normal and cholestatic patients. Journal of 

Chromatography B. 2012;899(135-45. 

400. Nezami Ranjbar MR, Luo Y, Di Poto C, Varghese RS, Ferrarini A, Zhang C, Sarhan NI, 

Soliman H, Tadesse MG, Ziada DH, et al. GC-MS Based Plasma Metabolomics for 

Identification of Candidate Biomarkers for Hepatocellular Carcinoma in Egyptian 

Cohort. PloS one. 2015;10(6):e0127299. 

401. Kakiyama G, Muto A, Takei H, Nittono H, Murai T, Kurosawa T, Hofmann AF, Pandak 

WM, and Bajaj JS. A simple and accurate HPLC method for fecal bile acid profile in 

healthy and cirrhotic subjects: validation by GC-MS and LC-MS. J Lipid Res. 

2014;55(5):978-90. 

402. Griffiths WJ, and Sjövall J. Bile acids: analysis in biological fluids and tissues. J Lipid 

Res. 2010;51(1):23-41. 

403. Griffiths WJ, and Sjovall J. Bile acids: analysis in biological fluids and tissues. Journal of 

lipid research. 2010;51(1):23-41. 

404. Perwaiz S, Tuchweber B, Mignault D, Gilat T, and Yousef IM. Determination of bile 

acids in biological fluids by liquid chromatography-electrospray tandem mass 

spectrometry. J Lipid Res. 2001;42(1):114-9. 

405. Suzuki Y, Kaneko R, Nomura M, Naito H, Kitamori K, Nakajima T, Ogawa T, Hattori H, 

Seno H, and Ishii A. Simple and rapid quantitation of 21 bile acids in rat serum and liver 

by UPLC-MS-MS: effect of high fat diet on glycine conjugates of rat bile acids. Nagoya 

journal of medical science. 2013;75(1-2):57-71. 

406. Nagana Gowda GA, Shanaiah N, Cooper A, Maluccio M, and Raftery D. Bile Acids 

Conjugation in Human Bile Is Not Random: New Insights from 1H-NMR Spectroscopy 

at 800 MHz. Lipids. 2009;44(6):527-35. 

407. Ijare OB, Somashekar BS, Gowda GA, Sharma A, Kapoor VK, and Khetrapal CL. 

Quantification of glycine and taurine conjugated bile acids in human bile using 1H NMR 

spectroscopy. Magnetic resonance in medicine. 2005;53(6):1441-6. 

408. Jain AK, Roux CW, Puri P, Tavakkoli A, Gletsu‐Miller N, Laferrère B, Kellermayer R, 

DiBaise JK, Martindale RG, and Wolfe BM. Proceedings of the 2017 ASPEN Research 

Workshop—Gastric Bypass: Role of the Gut. Journal of Parenteral and Enteral 

Nutrition. 2018;42(2):279-95. 

409. Noel OF, Still CD, Argyropoulos G, Edwards M, and Gerhard GS. Bile Acids, FXR, and 

Metabolic Effects of Bariatric Surgery. Journal of Obesity. 2016;2016(8. 

410. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, and Klein S. Weight Loss 

Induced by Roux-en-Y Gastric Bypass But Not Laparoscopic Adjustable Gastric Banding 

Increases Circulating Bile Acids. The Journal of Clinical Endocrinology & Metabolism. 

2013;98(4):E708-E12. 

411. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, 

Dore J, Henegar C, et al. Differential adaptation of human gut microbiota to bariatric 

surgery-induced weight loss: links with metabolic and low-grade inflammation markers. 

Diabetes. 2010;59(12):3049-57. 



 90 

412. Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ, and Kaplan LM. 

Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and 

Adiposity. Science translational medicine. 2013;5(178):178ra41-ra41. 

413. Liou AP, Paziuk M, Luevano JM, Jr., Machineni S, Turnbaugh PJ, and Kaplan LM. 

Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and 

adiposity. Sci Transl Med. 2013;5(178):178ra41. 

414. Myronovych A, Kirby M, Ryan KK, Zhang W, Jha P, Setchell KD, Dexheimer PJ, 

Aronow B, Seeley RJ, and Kohli R. Vertical sleeve gastrectomy reduces hepatic steatosis 

while increasing serum bile acids in a weight-loss-independent manner. Obesity. 

2014;22(2):390-400. 

415. Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, Bloom SR, Darzi A, 

Athanasiou T, Marchesi JR, et al. Metabolic surgery profoundly influences gut 

microbial–host metabolic cross-talk. Gut. 2011;60(9):1214-23. 

416. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, 

Crowell MD, Wing R, Rittmann BE, et al. Human gut microbiota in obesity and after 

gastric bypass. P Natl Acad Sci USA. 2009;106(7):2365-70. 

417. Jansen PL, van Werven J, Aarts E, Berends F, Janssen I, Stoker J, and Schaap FG. 

Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass 

surgery. Digestive diseases (Basel, Switzerland). 2011;29(1):48-51. 

418. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns 

R, Wilson-Perez HE, Sandoval DA, Kohli R, Backhed F, et al. FXR is a molecular target 

for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183-8. 

419. Korner J, Bessler M, Inabnet W, Taveras C, and Holst JJ. Exaggerated glucagon-like 

peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated 

with Roux-en-Y gastric bypass but not adjustable gastric banding. Surgery for obesity 

and related diseases : official journal of the American Society for Bariatric Surgery. 

2007;3(6):597-601. 

420. Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, and Olivan B. 

Incretin Levels and Effect Are Markedly Enhanced 1 Month After Roux-en-Y Gastric 

Bypass Surgery in Obese Patients With Type 2 Diabetes. Diabetes Care. 

2007;30(7):1709-16. 

421. McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, Ley RE, 

Chouinard ML, and Cummings BP. TGR5 contributes to glucoregulatory improvements 

after vertical sleeve gastrectomy in mice. Gut. 2016. 

422. Cole AJ, Teigen LM, Jahansouz C, Earthman CP, and Sibley SD. The Influence of 

Bariatric Surgery on Serum Bile Acids in Humans and Potential Metabolic and Hormonal 

Implications: a Systematic Review. Current Obesity Reports. 2015;4(4):441-50. 

423. Levrat MA, Remesy C, and Demigne C. High propionic acid fermentations and mineral 

accumulation in the cecum of rats adapted to different levels of inulin. J Nutr. 

1991;121(11):1730-7. 

424. Hedemann MS, Theil PK, and Bach Knudsen KE. The thickness of the intestinal mucous 

layer in the colon of rats fed various sources of non-digestible carbohydrates is positively 

correlated with the pool of SCFA but negatively correlated with the proportion of butyric 

acid in digesta. The British journal of nutrition. 2009;102(1):117-25. 

425. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, 

Di Cagno R, Ferrocino I, Lazzi C, et al. High-level adherence to a Mediterranean diet 

beneficially impacts the gut microbiota and associated metabolome. Gut. 

2016;65(11):1812-21. 

426. Bisschop PH, Bandsma RHJ, Stellaard F, ter Harmsel A, Meijer AJ, Sauerwein HP, 

Kuipers F, and Romijn JA. Low-fat, high-carbohydrate and high-fat, low-carbohydrate 



 91 

diets decrease primary bile acid synthesis in humans. The American Journal of Clinical 

Nutrition. 2004;79(4):570-6. 

427. Pavlović N, Stankov K, and Mikov M. Probiotics—Interactions with Bile Acids and 

Impact on Cholesterol Metabolism. Applied Biochemistry and Biotechnology. 

2012;168(7):1880-95. 

428. Wang L, Guo MJ, Gao Q, Yang JF, Yang L, Pang XL, and Jiang XJ. The effects of 

probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine. 

2018;97(5):e9679. 

429. Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, and Moschetta A. Microbiota 

Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of 

the Fxr-Fgf15 Axis in Mice. Cell Reports. 2014;7(1):12-8. 

430. Mencarelli A, Distrutti E, Renga B, D'Amore C, Cipriani S, Palladino G, Donini A, Ricci 

P, and Fiorucci S. Probiotics Modulate Intestinal Expression of Nuclear Receptor and 

Provide Counter-Regulatory Signals to Inflammation-Driven Adipose Tissue Activation. 

PloS one. 2011;6(7):e22978. 

431. Begley M, Hill C, and Gahan CG. Bile salt hydrolase activity in probiotics. Appl Environ 

Microbiol. 2006;72(3):1729-38. 

432. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, 

Stanton C, Swanson KS, Cani PD, et al. Expert consensus document: The International 

Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the 

definition and scope of prebiotics. Nature Reviews Gastroenterology &Amp; Hepatology. 

2017;14(491. 

433. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, 

Watzl B, Szajewska H, Stahl B, et al. Prebiotic effects: metabolic and health benefits. 

British Journal of Nutrition. 2010;104(S2):S1-S63. 

434. Catry E, Bindels LB, Tailleux A, Lestavel S, Neyrinck AM, Goossens J-F, Lobysheva I, 

Plovier H, Essaghir A, Demoulin J-B, et al. Targeting the gut microbiota with inulin-type 

fructans: preclinical demonstration of a novel approach in the management of endothelial 

dysfunction. Gut. 2018;67(2):271-83. 

435. Pellicciari R, Costantino G, Camaioni E, Sadeghpour BM, Entrena A, Willson TM, 

Fiorucci S, Clerici C, and Gioiello A. Bile acid derivatives as ligands of the farnesoid X 

receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and 

side chain modified analogues of chenodeoxycholic acid. Journal of medicinal chemistry. 

2004;47(18):4559-69. 

436. Arab JP, Karpen SJ, Dawson PA, Arrese M, and Trauner M. Bile acids and nonalcoholic 

fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 

2017;65(1):350-62. 

437. Roth JD, Feigh M, Veidal SS, Fensholdt LKD, Rigbolt KT, Hansen HH, Chen LC, 

Petitjean M, Friley W, Vrang N, et al. INT-767 improves histopathological features in a 

diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. 

World journal of gastroenterology. 2018;24(2):195-210. 

438. Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H, Velagapudi VR, Dumont J, 

Bouchaert E, Van Dijk TH, Lucas A, et al. Farnesoid x receptor deficiency improves 

glucose homeostasis in mouse models of obesity. Diabetes. 2011;60(7):1861-71. 

439. Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim 

M, Caron S, Torpier G, Fruchart J-C, Gonzalez FJ, et al. The Farnesoid X Receptor 

Modulates Adiposity and Peripheral Insulin Sensitivity in Mice. J Biol Chem. 

2006;281(16):11039-49. 

440. Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, 

and Gonzalez FJ. Microbiome remodelling leads to inhibition of intestinal farnesoid X 

receptor signalling and decreased obesity. Nature communications. 2013;4(2384. 



 92 

441. Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson 

WH, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related 

metabolic dysfunction. Nature communications. 2015;6(10166. 

442. Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, Adorini L, 

D’Agati VD, Levi J, et al. G Protein-Coupled Bile Acid Receptor TGR5 Activation 

Inhibits Kidney Disease in Obesity and Diabetes. Journal of the American Society of 

Nephrology : JASN. 2016;27(5):1362-78. 

443. Zambad SP, Tuli D, Mathur A, Ghalsasi SA, Chaudhary AR, Deshpande S, Gupta RC, 

Chauthaiwale V, and Dutt C. TRC210258, a novel TGR5 agonist, reduces glycemic and 

dyslipidemic cardiovascular risk in animal models of diabesity. Diabetes, metabolic 

syndrome and obesity : targets and therapy. 2013;7(1-14. 

444. Perides G, Laukkarinen JM, Vassileva G, and Steer ML. Biliary Acute Pancreatitis in 

Mice is Mediated by the G-Protein−Coupled Cell Surface Bile Acid Receptor Gpbar1. 

Gastroenterology. 2010;138(2):715-25. 

445. Vassileva G, Golovko A, Markowitz L, Abbondanzo Susan J, Zeng M, Yang S, Hoos L, 

Tetzloff G, Levitan D, Murgolo Nicholas J, et al. Targeted deletion of Gpbar1 protects 

mice from cholesterol gallstone formation. Biochemical Journal. 2006;398(3):423-30. 

446. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, and Mangelsdorf DJ. 

The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Molecular 

endocrinology. 2011;25(6):1066-71. 

447. Briere DA, Ruan X, Cheng CC, Siesky AM, Fitch TE, Dominguez C, Sanfeliciano SG, 

Montero C, Suen CS, Xu Y, et al. Novel Small Molecule Agonist of TGR5 Possesses 

Anti-Diabetic Effects but Causes Gallbladder Filling in Mice. PloS one. 

2015;10(8):e0136873. 

448. Schaap FG, Trauner M, and Jansen PLM. Bile acid receptors as targets for drug 

development. Nature Reviews Gastroenterology &Amp; Hepatology. 2013;11(55. 

449. Sepe V, Distrutti E, Limongelli V, Fiorucci S, and Zampella A. Steroidal scaffolds as 

FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future 

Medicinal Chemistry. 2015;7(9):1109-35. 

450. Finamore C, Festa C, Renga B, Sepe V, Carino A, Masullo D, Biagioli M, Marchianò S, 

Capolupo A, Monti MC, et al. Navigation in bile acid chemical space: discovery of novel 

FXR and GPBAR1 ligands. Scientific reports. 2016;6(29320. 

 

 

 

 

 

 

 

 

 

 



 93 

Figure 1-1  

 

Figure 1-1. Dynamic Distribution of Normal Microbiota. Normal microbiota refers to 

a stable, regular microorganism community acquired during birth, newborn handling and 

feeding after birth. The microbiome remains throughout life and participates in the health 

maintenance without causing disease under normal circumstance. In the healthy human 

body, the microbiome inhabits at mucous membrane (conjunctiva), surface tissues like 

skin, digestive tract (mouth, stomach and intestinal tract), respiratory tract (nose primarily 

and lung) and genital tract (urinary and vaginal tract). The internal tissues like brain, 

circulation system (blood, heart), and muscles are considered microorganism-free. 

Normal microbiome is characterized with body region-specific, life stage-, pH- and 

hormonal level- dependent microbial inhabitants. 
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Figure 1-2. SCFAs involved in metabolic and immunological functional pathways 

 

Figure 1-2. SCFAs Involved in Metabolic and Immunological Functional Pathways. 

The primary fermentation-derived SCFAs acetic acid (C2), propionic acid (C3) and 

butyric acid (C4) are utilized by the colon epicedium as energy source to maintain gut 

barrier function. SCFAs serve as anabolic substrates or precursors for biogenic synthesis 

in the liver including lipogenesis and gluconeogenesis. SCFAs also function as signaling 

molecules to activate GPRs/FFARs for metabolic and immunological regulation.  
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Figure 1-3 

 

Figure 1-3. Bile Acid Synthesis, Biotransformation and Regulation. Primary Bile 

acids CA and CDCA are initially synthesized from cholesterol in the liver, and undergo 

extensively bacterial transformation as moving along the intestinal tract, eventually form 

a bile acid pool with great diversity. Bacterial-transformed bile acids activate different 

bile acid receptors FXR, TGR5, PXR and VDR to regulate signaling pathways with a 

broad coverage of complex symbiotic metabolism networks, including lipid metabolism, 

glucose metabolism, xenobiotics metabolism, energy homeostasis and inflammation. 
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Table 1-1. Bacterial Transformation of Bile Acids 

 

 

 

Main Bacteria 

Genera 

Transformation and enzyme 

regulated*/produced 

 by bacteria 

Initial metabolite End metabolites Location 

 

bile acid de novo synthesis 

CYP7A1*,CYP7B1*, 

CYP8B1*,CYP27A1* 

Cholesterol 

Primary bile acid 
CA,CDCA (in human) 

CA,CDCA, 

UDCA,MCA (murine) 

Liver 

Clostridum XIVa, 

Clostridum XI 

Eubacterium 

bile acid dehydroxylation 

7α-dehydroxylase 

Primary bile acid 
CA,CDCA (human) 

CA,CDCA UDCA,MCA 

(murine) 

Secondary bile acid 
DCA,LCA (human) 

DCA,LCA,MDCA 

(murine) 

Intestine 

Lactobacillus, 

Bacteroides, 

Bifidobacterium, 

Clostridium, 

Listeria, 

Enterococcus, 

Brevibacillus 

Bile acid deconjugation 

Bile salt 

hydrolases (BSH) 

Conjugated bile acid 
T(G)CA,T(G)CDCA, 

T(G)DCA,T(G)UDCA 

Tα/β/ωMCA (murine) 

Free bile acid 
CA,LCA,DCA UDCA 

α/β/ωMCA (murine) 

Intestine 

Bacteroides, 

Clostridium, 

Eubacterium, 

Peptostreptococcus, 

Ruminococcus, 

Bifidobacterium, 

Egghertella, 

Enterobacter, 

Escherichia 

Bile acid oxidation and 

epimerization 

hydroxysteroid 

dehydrogenase (HSDH) 

α-Hydroxyl bile acid 
DCA, LCA, UDCA, 

CDCA 

β-hydroxyl (Iso) bile 

acid 
isoDCA, isoLCA, 

isoUDCA 

isoCDCA 

UDCA (7β isomer of 

CDCA) 

Intestine 

Clostridium, 

Fusobacterium, 

Peptococcus, 

Pseudomonas 

Bile acid desulfatation 

bile salt sulfatases 
Bile acid sulfate ester Unsulfated bile acid Colon 

Bacteroides, 

Eubacterium, 

Lactobacillus, 

Citrobacter, 

Peptostreptococcus 

Bile acid esterification Unesterfied bile acid 
Fatty acid ethyl 

esterified bile acid 
In vitro 

Pseudomonas, 

Clostridium 

Bile acid unsaturation of the 

steroid ring A 

Nuclear dehydrogenase 

(NDH) 

Saturated bile acid Unsaturated bile acid In vitro 
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Table 1-2. Bile Acid Receptors and Signaling Pathways. 

Receptor Ligand potency Signaling pathway  
Transcriptional 

regulation 

Physiological and 

metabolic effect 

Metabolism  

regulated 

FXR 
CDCA>LCA=DCA>CA 

TβMCA (antagonist) 

 

FXR/SHP/LRH-

1/LXRα  

 

FXR/FGF19(15)/FGF-

R4 

CYP7A1↓, CYP8B1↓, 

 

BSEP↑, MRP2↑, 

MDR3↑, OST α and β↑, 

I-BABP↓ 

NTCP↓, OATP1B1↓, 

OATP1B3↓, ASBT↓,  

Inhibited de novo bile acid 

synthesis  

 

Enhanced  bile acid export 

 

Decreased of Bile acid 

influx 

Bile acid  

 

FXR/Shp/Hnf4 and 

Foxo1 

 

PI3K/Akt/Gsk3β 

 

FXR deficiency 

 

G6pase↓, Pepck↓,  

Gsk3β phosphorylation↑ 

 

Glut2↑, Glut4↑ 

 

Proglulcagon↑ 

 

Decreased  

gluconeogenesis  

Increased glycogenesis 

 

Improved insulin 

transcription and secretion 

Improved glycaemia 

Hepatic 

Glucose 

 

FXR/SHP/Srebp-1c 

FXR/RXR 

 

 

 

 

 

FXR depletion  

 

Fas↓  

ApoC-II↑, 

APOA(human)↑ VLDL-

R↑, syndecan-1↑,  

ApoC-III↓, PPARα↑,  

Abcg5↑, Abcg8↑,  

Ceh↑, Scp↑, SrbI↑ 

 

Cyp7a1↑ 

Decreased serum TG 

Promoted VLDL and 

chylomicrons clearance 

Promoted fat oxidation 

Enhanced cholesterol 

reverse transportation and 

clearance 

 

Stimulated cholesterol de 

novo synthesis 

Lipid, 

Cholesterol 

FXR 

Human: CYP3A4↑, 

SULT2A1↑, UGT1A3↑, 

UGT2B4↑ 

Mouse: Abcb1↑, 

Fmo3↑,Gsta2↑ 

Promoted Phase I and II 

detoxification 

Drugs and 

xenobiotic 

FXR/FGF19(15)/FGF-

R4 

AMPK-ERK1/2-

C/EBPβ 

Pfk-1↑, Acly↑, Scd↑, 

Acc2↓, Pgc1α ↑, Pgc1β 

↑, Ucp1↑, 

Fabp1↑,Esrrg↑, 

Glut4↑,Aox↑,DIO2↑ 

Lkb1↑, AMPK↑ 

GCS↑, MnSOD↑, 

UGT1A↑, HO-1↑, 

GSTA2↑, Mrp2↑ 

Increased metabolic rate 

Enhanced thermogenesis, 

mitochondrial biogenesis 

and fatty acid oxidation 

Reduced adiposity 

Ameliorated 

hyperglycemia 

Energy 

metabolism 

TGR5 
LCA≥DCA>CDCA>CA 

  

TGR5-cAMP-PKA 

DIO2↑, PGC-1α↑, PGC-

1β↑, UCP-1↑, UCP-3↑, 

ACO↑,mCPT-I↑ 

Enhanced thermogenesis 

and energy expenditure  

Energy 

metabolism 

TGR5-cAMP-NF-kB 
IL-1α↓, IL-1β↓, IL-6↓, 

TNF-α↓, IFN-γ↓ 
Attenuated inflammation inflammation 

TGR-5/cAMP/Ca
2+

 Proglulcagon↑,   

promoted insulin secretion 

inhibited gastric empty and 

acid secretion delayed 

intestinal transit 

reduced food intake, 

enhanced satiety  

Glucose 
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Table 1-2. Continued 

Receptor Ligand potency Signaling pathway  Transcriptional regulation 
Physiological and 

metabolic effect 

Metabolism  

regulated 

PXR 
3-keto-LCA > 

LCA > DCA = CA 

 

PXR/HNF4α/PGC1α 

PXR/FGF19 

 

CYP7A1↓ 

 

OATPs↑ (OATP1B1, OATP1B3, 

OATP2), MRPs↑(MRP2, MRP3, 

MRP4, and MRP5), MDR1↑ 

 

CYPs↑(CYP3A, 

CYP2B,CYP2C, CYP1A) 

UGTs↑ (UGT1A1, UGT1A6, 

UGT1A3, UGT1A4), 

SULTs↑(SULT2A1), 

GSTs↑(GSTA1,GSTA2,GSTM1) 

 

Inhibited de novo bile 

acid synthesis  

 

Enhanced xenobiotics 

and bile acid transport 

 

 

 

Promoted Phase I and II 

detoxification 

 

Xenobiotics 

and bile acid 

detoxification 

 

PXR/Creb and Foxo1 

PXR/Hnf4α/Pgc1α 

 

G6pase↓, Pepck↓,  

 

 

Decreased  

gluconeogenesis  

 

Hepatic 

Glucose 

 

PXR 

 

PXR/Foxa2 

 

PXR 

 

Cd36↑,Pparγ2↑, Scd1↑ 

 

Cpt1a↓, Hmgcs2↓ 

 

 

Cyp27a1↑, Abca1↑, Abcg1↑, 

ApoA1↑ 

 

Promoted lipogenesis  

 

Suppressed  β-oxidation 

and ketogenesis 

 

Enhanced cholesterol 

detoxification  

 

 

Lipid, 

Cholesterol 

 

Dio2, Pgc-1α, Pgc-1β, Cidea, 

and Ucp-3 

 

Increased energy 

expenditure 

 

Energy 

metabolism 

VDR LCA>DCA>CA 

 

VDR/RXR 

 

 

 

 

 

VDR/HNF4α 

 

CYP2↑, CYP3A↑, SULT2A1↑ 

 

 

MDR1↑, MRP3↑ 

 

 

CYP7A1↓ 

Promoted Phase I and II 

detoxification 

 

Promoted xenobiotics 

transportation 

 

Inhibited of de novo bile 

acid synthesis  

 

 

Xenobiotics 

and bile acid 

detoxification 

 

Calbindin D
9K

, Ca
2+

ATPase, 

TRPV6, CYP24 

Elevated serum calcium 

originating from 

enhanced intestinal 

absorption and bone 

mobilization 

 

Calcium 

metabolism 

 

IFN-γ↓, IL-2↓, IL-17↓, IL-23↓, 

IL-10↑ 

 

Attenuated inflammation 

 

inflammation 

 

EGF-R, c-MYC, K16 

 

Induced apoptosis 

Inhibited proliferation 

 

Proliferation 
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ABSTRACT 

Short chain fatty acids (SCFAs) are important regulators of host physiology and 

metabolism and may contribute to obesity and associated metabolic diseases. Interest in 

SCFAs has increased in part due to the recognized importance of how production of 

SCFAs by the microbiota may signal to the host. Therefore, reliable, reproducible, and 

affordable methods for SCFA profiling are required for accurate identification and 

quantitation. In the current study, four different methods for SCFA (acetic acid, propionic 

acid, and butyric acid) extraction and quantitation were compared using two independent 

platforms including gas chromatography coupled with mass spectrometry (GC-MS) and 

1H nuclear magnetic resonance (NMR) spectroscopy. Sensitivity, recovery, repeatability, 

matrix effect, and validation using mouse fecal samples were determined across all 

methods. The GC-MS propyl esterification method exhibited superior sensitivity for 

acetic acid and butyric acid measurement (LOD<0.01 µg mL-1, LOQ<0.1 µg mL-1) and 

recovery accuracy (99.4%-108.3% recovery rate for 100 µg mL-1 SCFA mixed standard 

spike in and 97.8%-101.8% recovery rate for 250 µg mL-1 SCFAs mixed standard spike 

in). NMR methods by either quantitation relative to an internal standard or quantitation 

using a calibration curve, yielded better repeatability and minimal matrix effects 

compared to GC-MS methods. All methods generated good calibration curve linearity 

(R²>0.99) and comparable measurement of fecal SCFA concentration. Lastly, these 

methods were used to quantitate fecal SCFAs obtained from conventionally-raised 

(CONV-R) and germ free (GF) mice. Results from global metabolomic analysis of feces 

generated by 1H NMR and bomb calorimetry were used to further validate these 

approaches. 
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INTRODUCTION 

It is generally appreciated that compositional and functional changes in the gut 

microbiota promote or modify metabolic diseases (1, 2). The gut microbiota impact host 

metabolism by producing or catabolizing metabolites (e.g., short chain fatty acids, 

SCFA), generating a barrier against pathogens (3, 4), and altering the physiological 

activity of the host (5, 6). An important activity of the gut microbiota is fermentation of 

non-digestible dietary fibers to produce SCFAs. SCFAs are fatty acids with an aliphatic 

tail less than six carbons and the primary fermentation-derived SCFAs are acetic acid 

(C2), propionic acid (C3) and butyric acid (C4). Ninety percent of SCFAs derived by 

bacterial fermentation are reabsorbed rapidly in the colon (7), utilized by the host as an 

energy source (8), and serve as anabolic substrates or precursors for biogenic synthesis 

(9). Acetate is the most abundant SCFA in colon where it is transported to the liver and 

transformed into acetyl-CoA, a precursor for lipogenesis (9) and gluconeogenesis (10). 

Further, acetic acid was reported to be involved in central appetite regulation for energy 

intake control (11, 12). Propionic acid provides beneficial effects including anti-

gluconeogenic (13, 14), anti-lipogenic (14, 15), anti-cholesterogenic (15, 16), anti-

inflammatory (17, 18) and anti-carcinogenic (17, 19) activity. Butyric acid serves as a 

preferred nutrient for colonocytes (20, 21) and is implicated in colonic mucosa 

proliferation, intestinal lining integrity maintenance (21, 22), colonic inflammation 

attenuation (23, 24), and colonic cancer prevention (23, 25) and treatment (26, 27). The 

discovery of the metabolic, immunological, and physiological implications of SCFAs has 

strengthened the demand for effective and precise quantitation approaches.  
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Given the biological significance of SCFAs, MS- and NMR-based metabolomics 

are utilized for SCFAs measurement in the past decades. A basic analytical question is 

therefore raised regarding the complementarity and reproducibility of quantitation 

methods. Or to what extent can current techniques (GC-MS or NMR) be combined to 

increase the analytical confidence and minimize irreproducible measurements. To 

compare the quantitative performance of GC-MS-based and NMR-based techniques for 

SCFAs measurement in biological samples, four common SCFA quantitation methods 

were assessed including GC-MS-based propyl esterification method (28), GC-MS-based 

acidified water extraction method (29, 30), 1H NMR-based quantitation relative to the 

reference compound sodium 3-trimethylsilyl [2,2,3,3-d4] propionate (TSP-d4), and 1H 

NMR based quantitation with calibration curve (Figure 2-1). Validation indices 

including sensitivity, recovery accuracy, repeatability, matrix effect, and biological 

concentrations were compared and evaluated across all methods. The methods were also 

applied to a comparison of conventional and germ-free mouse feces and further validated 

by NMR metabolic fingerprinting profiling and bomb calorimetry. 

 

MATERIALS AND METHODS 

Chemical and Reagents  

 Acetic acid, propionic acid and butyric acid, 1- 13C acetate, 1-13C propionate, 1-

13C butyrate, 1-propanol, pyridine sodium chloride, K2HPO4, and NaH2PO4 were 

purchased from Sigma-Aldrich Chemical Co. Ltd. (St. Louis, MO). Hexane and methanol 

were purchased from EMD Chemicals Inc (Gibbstown, NJ). Internal standard hexanoic 

acid-6,6,6-d3 was obtained from C/D/N Isotopes Inc (Pointe-Claire, Quebec, Canada). 
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Sodium 3-trimethylsilyl [2,2,3,3-d4], propionate (TSP-d4) and D2O (99.9% in D) were 

purchased from Cambridge Isotope Laboratories (Miami, FL). Standard benzoic acid 

pellets were obtained from Parr Instrument Company (Moline, IL). All compounds were 

of the highest grade available. 

 

Animal Samples  

 For the method assessment experiment, feces obtained from conventionally- 

raised C57BL/6J wild-type male mice (Jackson Laboratory, Bar Harbor, Maine) were 

pooled and measured. For method validation experiments, fresh feces were obtained from 

conventionally- raised mice and germ free mice (The Pennsylvania State University 

Gnotobiotic Facility).  

 

Gas Chromatography–Mass Spectrometry (GC-MS) Analysis Procedure  

Preparation of Standard SCFAs and Calibration for GC-MS Methods  

 Acetic acid, propionic acid and butyric acid stock solutions at 10 mg mL-1 and 

internal standard hexanoic acid-6,6,6-d3 solution at 100 µg mL-1 were prepared by 

dissolving individual SCFAs or internal standard in the calculated amount of HPLC water 

based on the initial stock density of each compound. The three 10 mg mL-1 SCFAs 

solutions and the 100 µg mL-1 internal standard solution were pooled together then to 

generate a final concentration 500 µg mL-1 of each SCFAs containing 10 µg mL-1 internal 

standard. Pooled solution was further diluted by 10 µg mL-1 internal standard solution to 

obtain 500 µg mL-1, 250 µg mL-1, 100 µg mL-1, 50 µg mL-1, 25 µg mL-1, 10 µg mL-1, 5 

µg mL-1, 1 µg mL-1, 0.5 µg mL-1 0.1 µg mL-1 SCFAs containing 10 µg mL-1 internal 
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standard. The calibration curve was constructed by plotting relative peak area of each 

SCFA (peak area of SCFA was normalized to peak area of internal standard) to the 

corresponding concentration of SCFA standard. By normalizing the peak area to that of 

the internal standard, the potential variabilities in the instrument conditions, injection 

volumes and mass spectrometer response would expected be corrected. 

 

GC-MS Sample Preparation  

Fresh feces collected randomly from wild type mice was pooled and spiked with 1-13C 

SCFAs at different concentration levels (250 µg mL-1, 100 µg mL-1, 10 µg mL-1). For the 

propyl esterification method (28), 50 mg of 1-13C SCFAs spiked feces were mixed with 1 

mL of 0.005 M NaOH (containing 10 µg mL-1 internal standard hexanoic acid-6,6,6-d3), 

homogenized (Bertin Technologies, Rockville, MD) at 6500 rpm, 1 cycle, 60s with 1.0 

mm diameter Zirconia/Silica beads (BioSpec, Bartlesville, OK) added and then 

centrifuged (Eppendorf, Hamburg, Germany) at 13,200 x g, 4 °C, 20 min. The 

supernatant was collected and mixed with an aliquot of 500 µL of 1-propanol/pyridine 

(v/v=3:2) mixture. 100 µL of propyl chloroformate subsequently was added following a 

brief vortex for 1 minute. Samples were derivatized in an incubator (Thermo Scientific, 

Marietta OH) at 60 °C for an hour. The derivatized samples were extracted with a two-

step hexane extraction (300 µL + 200 µL). A total 500 µL volume of extracts were 

obtained and stored at -20 °C for GC-MS quantitation. For the acidified water-extraction 

method, 50 mg of 1-13C SCFAs spiked fecal samples were mixed with 1 mL HPLC water 

containing 10 µg mL-1 internal standard hexanoic acid-6,6,6-d3. The mixture then was 

homogenized and the pH of the suspension was adjusted to 2-3 by adding 12 M HCl (29). 
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The suspension was kept at room temperature for 10 min with occasional shaking then 

centrifuged at 13200 x g, 4 °C, 20 min. The supernatant was transferred to autosampler 

and stored at 4°C for GC-MS analysis.  

 

Experimental Condition for GC-MS Methods  

 SCFAs were quantified with an Agilent 7890A gas chromatograph coupled with 

an Agilent 5975 mass spectrometer (Agilent Technologies Santa Clara, CA). The 

experimental conditions of propyl esterification method and acidified water extraction 

method are as previously described (28, 30).  

 For propyl esterification method, a HP-5 ms (5%-Phenyl-methylpolysiloxane) 

capillary GC column (30 m x 250 μm i.d. 0.25 μm film thickness, Agilent Technologies) 

was employed with helium as the carrier gas at a constant flow rate of 1 mL/min. samples 

(0.5 uL) were injected using a pressure pulsed split mode (10 psi) with a split ratio of 

10:1. The initial column oven temperature was 50ºC for 2 min and then increased to 70ºC 

at a rate of 10ºC /min, and then increased to 85ºC at a rate of 3 ºC/min, then increased to 

110ºC at a rate of 5ºC /min, and then increased at a rate of 30ºC/min to a final 

temperature of 290ºC where it was held for 5 min. The temperatures of the front inlet, 

transfer line and mass source were set at 260ºC, 290ºC, and  230ºC, respectively. The 

total run time was 25 min and the mass spectral data was collected in full scan mode with 

a mass range 30-300 m/z.  

 For the acidified water extraction method2, a NUKOL (cross-linked and bonded 

acid-modified polyethylene glycol) capillary GC column, (30m × 250µm × 0.25µm, 

Supelco, Bellefonte, PA) was employed, with helium as carrier gas at a constant flow rate 
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of 1 mL/min. Samples (0.5 μL) were injected using a pressure pulsed split mode (10 psi) 

with a split ration of 10:1. The initial column oven temperature was 100 ºC for 1min, and 

then increased to 120 ºC at a rate of 10ºC/min and held for 5 min, then increased to a final 

temperature of 220 ºC at a rate of 30ºC/min and held for 3 min. The total run time was 

14.3 min and all the data was collected in full scan mode with a mass range of 40-300 

m/z. 

 

GC-MS Spectra Data Processing 

All data were processed with Enhanced Chemstation (Agilent MSD chemstation). 

The peak area of extracted ions and retention time of each peak signal were calculated by 

the ion integration tools in Enhanced Chemstation. Standard SCFAs were identified by 

matching mass spectra in NIST 2011 Library with a match index over 90 and further 

confirmed by comparing spectra and retention time with reference (28) (Figure 2-2). 

Sample SCFAs were identified by comparing spectra retention time with standard 

SCFAs. The following extracted ions and retention time were used for determining the 

concentration of unlabeled and 1-13C labeled of SCFAs (Figure 2-3). For the propyl 

esterification method (Figure 2-3 A-C), m/z 43 at 2.73 min for unlabeled acetic acid, m/z 

44 at 2.73 min for [1-13C acetic acid]; m/z 57 at 4.01 min for unlabeled propionic acid, 

m/z 58 at 4.01 min for [1-13C propionic acid]; and, m/z 71 at 5.66 min for unlabeled 

butyric acid, m/z 72 at 5.66 min for [1-13C butyric acid]. For the acidified water extraction 

method (Figure 2-3 D-F), m/z 43 at 5.62 min for unlabeled acetic acid, m/z 44 at 5.66 

min for [1-13C acetic acid]; m/z 74 at 7.40 min for unlabeled propionic acid, m/z 75 at 

7.47 min for [1-13C propionic acid]; and m/z 60 at 9.27 min for unlabeled butyric acid, 
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m/z 61 at 9.31 min for [1-13C butyric acid];. The integrated areas for all SCFAs were 

normalized with the internal standard and quantified with standard curve constructed.  

 

GC Method Validation 

Sensitivity 

  Sensitivity is expressed by three indexes; limit of detection (LOD), limit of 

quantitation (LOQ), and linear range (LR). LOD represents the lowest detectable 

concentration of an individual SCFA in a sample with a signal-to-noise ratio greater than 

three. LOQ is the lowest concentration of SCFA in a sample which can be quantitatively 

determined with a signal-to-noise ratio above ten (31). LR is defined as the concentration 

range where the calibration curve displays linearity with correlation coefficient R2 >0.99. 

 

Precision  

 Precision was expressed as recovery rate determined at three concentrations (250 

µg mL-1, 100 µg mL-1, 10 µg mL-1). Six fecal samples spiked with 1-13C SCFAs were 

analyzed. The fecal suspension without adding the SCFA standards was also analyzed to 

determine the initial amount of targeted compound present in the sample. Recovery rate 

was calculated by comparing calculated 1-13C standards concentration with the nominal 

concentration. Specifically, percent recovery (%R) was calculated using the following 

equation: %R = (quantified 1-13C SCFAs standards spiked in fecal sample-initial amount 

of 1-13C SCFAs present in the fecal samples)/ nominal standards conc.× 100. 

 

Repeatability  
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 Repeatability was expressed by intra-day and inter-day relative standard deviation 

(%RSD). Intra-day repeatability was determined by running the same standard samples 

five times a day within a 24 hour interval. Inter-day precision measurement was 

performed on the same samples on five different days. Mean and standard deviation of 

peak area of extracted ions for each injection were obtained. %RSD = standard deviation/ 

mean × 100.  

 

Matrix Effect  

 Matrix effect was evaluated by comparing the response of the pure SCFA 

standards dissolved in extract solvent with the response of the SCFAs in the fecal matrix. 

Different concentrations of pure 1-13C SCFAs standards were spiked in either fecal 

suspensions or extract solvent. Unspiked samples were also analyzed to substrate the 

initial amount of SCFAs present in the samples out. The percent Matrix Effect (%ME) = 

(Normalized area of SCFA in spiked fecal samples - normalized area of SCFAs of the 

unspiked fecal samples)/ normalized area of SCFA in extract solvent. 

 

Nuclear Magnetic Resonance (NMR) Spectroscopy  

SCFA Standard and Sample Preparation  

 Fecal samples (50-60 mg) were extracted with 1 mL of phosphate buffer 

(K2HPO4/NaH2PO4, 0.1 M, pH 7.4, 50% v/v D2O) containing 145.1 µM TSP-d4 as a 

chemical shift reference (δ 0.00). The samples were freeze-thawed three times with liquid 

nitrogen then homogenized (6500 rpm, 1 cycle, 60s) and centrifuged (11,180 x g, 4°C, 10 

min). The supernatants were transferred to a new tube, and another 600 µL of PBS was 
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added to the pellets followed by the same procedure described above. Fecal supernatants 

were combined and centrifuged (max speed, 4°C, 10 min), then spiked with the SCFA 

standards at three final concentrations (250 µg mL-1, 100 µg mL-1, 10 µg mL-1 ),  and 600 

µL of spiked fecal extract was transferred to a 5 mm NMR tube (Norell, Morganton, 

NC). Unspiked fecal supernatants were also analyzed to determine the initial amount of 

each SCFA presented in the sample. 

 

 1H NMR Spectra Acquisition 

In detail, All of the 1H NMR spectra were recorded at 298 K on a Bruker NMR 

spectrometer (600 MHz for 1H) equipped with a 5-mm inverse cryogenic probe as 

previously described (32). A standard one-dimensional pulse sequence noesypr1d 

(recycle delay-90°-t1-90°-tm-90°-acquisition) was used with a 90 pulse length of 

approximately 10 μs (-9.6 dbW). 64 transients were collected into 65,536 data points for 

each spectrum, with a spectral width of 9.6 KHz. Receive gain was automatically set to 

12. Water suppression was achieved with a weak irradiation during the recycle delay (4 s) 

and mixing time (50 ms). The spectra were acquired without spinning the NMR tube in 

order to avoid artifacts, such as spinning side bands of the first or higher order. Chemical 

shifts are reported in ppm from TSP (δ = 0.00). For quantitation purpose, a repetition 

time ≥ 5T1 are typically used to ensure quantitative results. The total repetition time 

(relaxation delay of 5s, recycle delay of 4s, and acquisition time of 3.4 s) is 12.4 s (5 × the 

longest relaxation time of 2.4s T1 of acetic acid) was therefore used here. For the 

resonance assignment, two-dimensional 1H–1H total correlation spectroscopy (TOCSY) 

NMR spectroscopy (Figure 2-4) and 1H-13C heteronuclear single quantum correlation 
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(HSQC) NMR spectroscopy (Figure 2-5) spectra were acquired. In TOSCY experiment, 

pulse sequence dipsi2phpr was used with the mixing time of 60 ms. 64 transients were 

collected into 2K data points for each of the 256 increments, and the spectral widths were 

6009 Hz for both 1H dimensions. In HSQC experiment, a Bruker standard pulse sequence 

hsqcetgpsisp2.2 was employed. Globally alternating optimized rectangular pulses was 

employed for 13C-decoupling during the acquisition period, 360 transients for each of 150 

increments were collected into 2K data points with spectral width of 6009 in F2 

dimension (1H) and 26409 HZ in the F1 dimension (13C).   

 

1H NMR Quantitation Analysis 

Quantitation relative to TSP-d4 reference Due to the basic NMR theory that the 

integrated area of a given 1H NMR signal is proportional to the proton number, the 

concentration of target metabolites can be measured by equating the integral areas of the 

target metabolites and a reference compound with known proton number and 

concentration (33). TSP-d4 area of one sharp singlet (Regions δ 0.00) formed by three 

methyl groups (9H) of TSP-d4 were chosen as a reference for quantitation. Acetate, 

propionate and butyrate were identified with 2D 1H-1H TOCSY NMR spectroscopy 

(Figure 2-4) and 2D 1H-13C HSQC NMR spectroscopy (Figure 2-5). Regions of δ 1.91 

(acetate-methyl group, 3H), δ 1.06 (fully resolved left peak of propionate-methyl group 

triplet, which account for ¼ of the total area of the methyl-group, 3H), δ 0.90 (butyrate-

methyl group, 3H) were integrated. Concentration of acetate, propionate and butyrate 

were calculated using the following formula based on the basic NMR quantitation 

equation previously described (33) 
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Molarity of acetate or butyrate= (9 × Molarity of TSP-d4 × Area of acetate or 

butyrate)/ (3× Area of TSP-d4);  

Molarity of propionate=4 × (9 × Molarity of TSP-d4 × Area of propionate)/ (3 × 

Area of TSP-d4) 

Quantitation with calibration curve A stock solution containing the mixture of 

SCFAs standards in 0.1 M phosphate buffer containing 145.1 µM TSP-d4 was diluted to 

obtain a calibration curve ranging from 250 µg mL-1 to 1 µg mL-1. Peak area of each 

SCFAs was calculated with represented regions described above. All integrated area was 

normalized to the signal area of TSP-d4 (δ 0.00). The calibration curve was constructed 

by plotting the normalized peak area versus concentration of individual SCFAs. The 

relative peak area of the SCFAs in fecal extract was integrated and the concentration of 

SCFAs in fecal extract was calculated by the calibration curve. 

 

1H NMR Spectra processing and Multivariate Data Analysis  

 Quality of all 1H NMR Spectra were improved by manually adjusting phase and 

baseline using Topspin 3.0 (Bruker Biospin, Germany). The chemical shift was 

referenced to the TSP-d4 (δ 0.0 The spectra were bucketed into 0.004 ppm bins by AMIX 

3.9.14 software (Bruker Biospin, Germany). The residual water signal (region δ 4.2-5.2) 

was removed prior to normalization. The binned spectral data were normalized to the sum 

of total intensity of the spectrum to compensate for the overall concentration differences. 

Multivariate data analysis was performed with SIMCA 13 (Umetrics, Sweden). 

Orthogonal Projection to Latent Structures with Discriminant Analysis (OPLS-DA) were 

used to process NMR data. To perform OPLS-DA, a binary variable for Y is created and 
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assigned when defining a class (in this case, conventionally raised mice group is 0, germ-

free mice group is 1) before importing to SIMCA. After importing the data in SIMCA, 

OPLS-DA was selected for modelling with UV scaling. A 7-fold cross validation method 

was employed to validate the OPLS-DA models and the R2X and Q2 values generated 

from the method represent the predictive power and validity of the models, respectively. 

The validation of the OPLS-DA model was further confirmed by ANOVA of the cross-

validated residuals (CV-ANOVA) analysis (implemented in SIMCA 13) (34).To 

facilitate interpretation of the results, color-coded loading plots were generated from the 

OPLS-DA to facilitate result interpretation as previously described (32). 

 

Bomb Calorimetry  

 Bomb calorimetry was performed on a 6200 isoperibol calorimeter (Parr 

Instrument Company, Moline, IL). Fecal samples (100 mg) were weighed and ground in 

a clean mortar and pestle. Ground samples were pressed into ¼ inch diameter pellets 

(Parr 2812 Pellet Press, Moline, IL). Extra moisture content was removed from pellet 

using speedvac concentrator (Thermo Fish Scientific, Marietta, OH). ¼ inch diameter 

benzoic acid pellets were used for standardization. Samples were placed in a tared fuel 

capsule (208AC) in the 1109A semi-micro oxygen bombs (Parr Instrument Company, 

Moline, IL) and fixed by a coiled 10 cm of NiCr fuse wire (PN 45C10). A minimum 

99.5% purity oxygen was provided with 420 psig pressure to the bomb. Prepared Semi-

micro bomb was set on a ring support in the A604DD twin-chambered calorimeter 

bucket. Gross heat of samples was determined by temperature change   recorded by 
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calorimeter resulting from energy released by the combustion, expressed as calories/gram 

feces. Each gross heat was averaged from duplications.                                                  

                                                                

Method Validation and Application  

 1H NMR-based SCFAs quantitation methods based on TSP-d4 as a reference or on 

the calibration curve were validated by measurement of accuracy, repeatability, 

sensitivity, and matrix effect. Further, the methods described were applied to investigate 

the SCFAs level and metabolic status differences between CONV-R and GF mice 

combined with bomb calorimetry technique. 

 

Statistical Analysis 

 Graphical illustrations and statistical analyses were performed using Prism 

version 6. All data values were expressed as mean ± SEM. Statistical significance was 

defined as p<0.05. 

 

RESULTS AND DISCUSSION 

Linearity and Sensitivity of GC-MS-Based and NMR-Based Methods 

 The linearity (i.e., the correlation between numerical points), calibration range, 

LOD, LOQ, and calibration curve are extremely critical to assess the sensitivity and 

application of an analytical method. As summarized in Table 2-1, all calibration curves 

generated from four orders of magnitude of SCFA standard mixture demonstrated 

satisfactory linearity (R2>0.99) thus indicating that these methods could be employed 

extensively for quantifying SCFAs in biological samples with a wide range of 
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concentrations. The GC-MS propyl esterification method yielded the lowest LOD and 

LOQ for acetic acid (LOD = 0.002 µg mL-1, LOQ = 0.02 µg mL-1) and butyric acid (LOD 

= 0.01 µg mL-1, LOQ = 0.09 µg mL-1). Propionate LOD/LOQ was not calculated as it 

could be detected in the background due to impurity in the derivatization solvent (28), 

whereas the GC-MS acidified water method (non-derivatization) showed a relatively high 

LOD and LOQ for acetic acid (LOD = 0.5 µg mL-1, LOQ = 5 µg mL-1), propionic acid 

(LOD = 0.8 µg mL-1, LOQ = 3 µg mL-1) and butyric acid (LOD = 0.2 µg mL-1, LOQ = 1 

µg mL-1). LOD and LOQ detected were comparable with previous studies using the 

acidified water extraction method (29, 30). Comparison of LOD and LOQ between 

derivatization and non-derivatization methods suggested that the improved volatility with 

derivatization increased the sensitivity compared to the non-derivatization method. Due 

to the high sensitivity of the derivatization approach, concentrations above 250 µg mL-1 

saturated the detector thus compromising linearity. However, the acidified water method 

could quantify higher concentrations due to the relatively low sensitivity. Detectable 

SCFAs concentrations for the NMR method are approximately 2 µg mL-1, 100 fold less 

sensitive than GC-MS methods, which ranged from 0.002-0.01 µg mL-1. Quantifiable 

SCFAs levels by the NMR method started from 4 µg mL-1, significantly higher than GC-

MS propyl esterification method which started from 0.02 µg mL-1.  

 

Recovery and Matrix Effect of Measurement Based on Spiked Sample Matrix 

 Recovery assessment was done by measuring a known amount of SCFA spiked 

into the biological matrix. Recovery is an informative indicator of whether the method 

presents satisfactory precision with interference from the biological matrix and bias 
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created during sample preparation and analysis. In the current study, 250 µg mL-1, 100 µg 

mL-1, and 10 µg mL-1 of 1-13C SCFAs mixture was spiked in pooled fecal extracts and 

recovery was investigated by comparing the SCFA levels quantified by different methods 

and the expected concentration. GC-MS propyl esterification method was superior as 

almost 100% of 100 µg mL-1 and 250 µg mL-1 spiked concentration were recovered for 

all three SCFAs (Table 2-2). The GC-MS acidified water method showed better recovery 

at higher concentrations, ranging from 87.6% to 118.9%; however it was inferior to the 

GC-MS propyl esterification method at lower concentrations. The two NMR-based 

methods showed very similar recovery, demonstrating the stability of the NMR-based 

technique. However, the recovery rate is inferior to the GC-MS propyl esterification 

method. The matrix effect is defined as the difference between the response of standards 

in solvents and those in a biological matrix which is known to interfere with the 

chromatographic efficiency and introduce error in the mass spectroscopy-based technique 

(35, 36). Specific to the GC-MS based technique, matrix components may cause 

enhancement (37) or suppression (38) of the analyte signal thus severely affecting 

quantitative analysis. Numerous factors might contribute to the matrix effect including 

matrix components, extraction reagents, the procedure itself, the purity of the reference 

standards, analyte physico-chemical properties (stability, mass, charge, concentration), 

column used, and myriad other factors. To minimize matrix effect, both GC-MS based 

methods used reagents and standards of the highest grade available and the use of an 

internal standard to eliminate possible instrumentation errors. As shown in Table 2-2, the 

signal is suppressed by the matrix with GC-MS-based methods with a signal loss up to 

24%, suggesting the accumulation of non-volatile matrix components from fecal extracts 
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like phospholipids and protein in the injection liner and column. The matrix effect 

introduced in NMR is usually due to pH, temperature, ionic strength, and protein content, 

resulting in peak position shifts and line width variations (39). The NMR quantitation 

method has reduced matrix effect compared to the GC-MS quantitation method, most 

likely due to the fact that it is less sensitive to matrix constituents and solvents and due to 

the simple extraction procedure (typically only requires dilution using phosphate buffer 

solution). In the present study, the NMR-based method demonstrated signal enhancement 

up to 18%, the majority of matrix effects are around 10% signal enhancement, except 10 

µg mL-1 spiked in butyric acid, which exhibited significant matrix effect (36% signal 

suppression), likely due to interference signals from the branched chain amino acids 

(valine, leucine, isoleucine) with a resonance located δ 0.9, and compromised sensitivity 

in the low concentration range for the NMR-based quantitation method.  

 

Intraday and Interday Repeatability Revealed Reliability of Different Methods

 Repeatability assessment is a critical aspect of investigating alternative analytical 

methods for reliable and robust quantitation. High repeatability also increases 

quantitative accuracy and efficiency by minimizing experimental replicates. Repeatability 

is assessed for each measurement method separately from replicated measurement on the 

same set of samples and described by within-subject relative standard deviation (RSD). 

In the current study, replicated measurements of different concentrations of SCFAs 

standard mixture were performed five times either within the same day (intraday) or on 

five different days (interday) by the four different measurement methods (Table 2-3). 

Generally, the NMR-based techniques generated the smallest intraday and interday RSD 
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ranging from 0.3% to 6.7%, with 80% of the RSD below 3%. The GC-MS propyl 

esterification method presented better intraday and interday repeatability compared to 

GC-MS acidified water method, except for propionic acid. Due to introduction of 

propionate to the background with the GC-MS propyl esterification solvent (28), 

propionic acid measurement was inconsistent at the lowest concentration 10 µg mL-1. The 

RSD for intraday and interday measurement reached 12.2% and 21.3%, respectively. 

Aside from the reduced impact from the matrix, the most attractive feature for NMR-

based analytical techniques is the high repeatability. It is partially due to the unbiased 

detection nature of the NMR technique where the peak integrals relate directly to the 

chemical structure of the compound (number of protons giving rise to the peak in 1H 

NMR), thus less interference from instrumentation and other external environmental 

factors would be introduced during intraday and interday repeated measurement. Further, 

the simple extraction process, non-volatile extraction solution, and non-destructive 

detection platform maintain the maximum level of integrity and stability of the samples, 

contributing to the high repeatability especially during interday measurement. 

Conversely, MS-based methods are highly dependent on instrumentation (injector, 

column, inlet, liner) and chromatographic conditions (40), sample preparation and storage 

(especially for highly volatile samples after derivatization), which raise issues with data 

repeatability and reproducibility between different research groups and research facilities 

(41). In the current study, GC-MS repeatability was improved (intraday and interday 

RSD of propyl esterification method ranging from 1.2% to 21.3% with 71% of the RSD 

below 7%, intraday and interday RSD of acidified water extraction method ranging from 

2.4% to 12.6% with 67% of the RSD below 7%) through optimization of the instrument 
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parameters, chromatographic conditions, normalization with internal standards as well as 

the addition of multiple washes pre and post injection and blank samples run between 

injections to eliminate carryover. However extra attention for low level of propionic acid 

measurement using GC-MS propyl esterification methods is warranted (12.2% and 21.3% 

for intraday and interday RSD at 10 μg mL-1, respectively), additional replicates or blank 

samples are requisite to minimize and/or understand background interference.  

 

Application and Validation of SCFAs Quantitative Methods in CONV-R and GF 

Mice Feces Study 

 The SCFAs methods were used to quantify SCFAs levels in feces obtained from 

CONV-R and GF mice. SCFAs were measurable but significantly lower in GF mice feces 

compared to CONV-R mice feces (p<0.001, Figure 2-6), consistent with the level and 

proportion of SCFAs in GF mice previously reported. For example,  Hoverstad et al (42) 

reported the following concentrations using the GC-MS acidified water method with 

additional steps including vacuum distillation, alkalization, evaporation, and dissolution: 

acetic acid=990±380 µmol/kg (equivalent to 59.4±22.8 µg/g), propionic acid=17±5.8 

µmol/kg (equivalent to 1.3±0.4 µg/g), and butyric acid=7.1±3.6 µmol/kg (equivalent to 

0.6±0.3 µg/g). For CONV-R mice, as shown in Figure 2-7, biological concentration of 

SCFAs determined with GC-MS and NMR techniques were not significantly different, 

providing further validation for the applicability of the methods compared in the current 

study. The GC-MS acidified water method captured the broadest range of the biological 

concentration for all three SCFAs measured, indicating the greatest variation and least 

stability. The SCFAs concentrations quantified with different methods in this study 
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(Figure 2-7) were in good agreement with reported proportion and quantity of three 

primary SCFAs in fecal samples measured with other methods. For example, Lu et al 

(43) reported mouse fecal SCFAs concentrations using modified GC-MS acidified water 

direct injection method as: acetic acid=1468±299 µg/g, propionic acid=285±94 µg/g, 

butyric acid=192±55 µg/g; García-Villalba et al (44) reported the following SCFAs 

concentrations in rat fecal samples extracted with ethyl acetate: acetic acid=2818.3 ± 

720.7 µg/g, propionic acid= 268.5 ± 73.6 µg/g, butyric acid ranging from 1387.8 ± 613.3 

µg/g. In addition, the global metabolic profile between CONV-R and GF mice feces 

generated by 1H NMR (Figure 2-8) also revealed significant differences based on 

discriminant analysis (OPLS-DA, described by R2X=0.58, Q2=0.976) and CV-ANOVA 

test (p<0.0001), supporting a dramatically different metabolic status imparted by the gut 

microbiota. Moreover, PLS-DA using only the SCFAs regions (the chemical shift [ppm] 

at 1.92 [acetate], 1.06 [propionate] and 0.9 [butyrate]) obtained via the 1H NMR approach 

were performed (Figure 2-9). The groups are clearly and significantly separated by only 

SCFAs (R2X=0.859, Q2=0.972, CV-ANOVA p<0.0001), suggesting SCFAs themselves 

are sufficient to distinguish CONV-R and GF mice. GF mice showed a significantly 

lower level of fermentation end products SCFAs (acetate, propionate, butyrate), branched 

chain amino acids (valine, leucine, isoleucine) and bacterial-associated metabolites like 

taurine (45). Moreover, reduced glucose, phenylalanine, tyrosine, tryptophan, urocanate, 

hypoxanthine, inosine, uracil, and increased histidine were seen in feces of GF mice 

comparing to CONV-R mice, indicating altered glucose, amino acid, and nucleotide 

metabolism due to lack of microbial activity. Further, fermentation substrates like 

raffinose, stachyose and many oligosaccharides were excreted in significantly higher 
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levels into feces for GF mice, demonstrating the reduced metabolism of those substrates 

due to the absence of gut microbiota. Fecal energy quantitation was conducted with bomb 

calorimetry to further investigate the metabolic status in GF and CONV-R mice feces. 

The gross heat of feces from GF mice was 4110±38.2 calorie per gram feces, 

approximately 140 calorie per gram higher than the gross heat of feces from CONV-R 

mice, which was 3970±12.2 calorie per gram (Figure 2-10). Excessive fecal energy 

excretion in GF mice is consistent with high level of fecal dietary fibers determined by 

1H NMR global metabolites profile. Because of the absence of bacterial fermentation in 

GF mice, host energy harvest capability and metabolic efficiency is reduced. Dietary 

fibers as potential energy sources are no longer accessible in the germ free gut and are 

excreted intact. The results are in good agreement with the previous studies from lean and 

obesity-resistant GF mice (46, 47), suggesting the feasibility of the described methods for 

metabolic studies.  

 

CONCLUSION 

High-throughput metabolite profiling approaches including GC-MS and 1H NMR 

provide excellent platforms for quantitative detection of SCFAs in complex biological 

matrices. While MS-based methods, especially after derivatization, have incomparable 

sensitivity and precision, they can be influenced by matrix interference thus impacting 

repeatability. In practical applications, GC-MS propyl esterification method is highly 

recommended for trace/ultratrace detection of SCFAs in biological fluid(48) (plasma and 

urine) or intracellular SCFAs in cell culture and intestinal tissue. Because of the easier 

sample preparation procedure and short run time, GC-MS acidified water method is most 
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suitable for studies with large quantity, including samples from biodigesters or large-

scale human studies. Alternatively, NMR-based methods, while exhibiting relatively low 

sensitivity, exhibit high repeatability and low matrix effect due to the nondestructive and 

noninvasive sample preparation and measurement technique. Additionally, NMR 

spectroscopy provides informative metabolic profiles of the overall metabolic 

characteristics, thus it is best suited to measure cecal or fecal samples (higher SCFA 

concentration). In the CONV-R and GF mice feces study, the combination of GC-MS and 

NMR provided comprehensive and complementary views of SCFAs status and overall 

metabolic profile. Bomb calorimetry further confirmed the compromised energy 

harvesting capability of GF mice. Three mutually independent methods, GC-MS, NMR, 

and bomb calorimetry led to consistent results, demonstrating the feasibility of the 

techniques used in metabolomics studies and the critical function that gut microbiota play 

in host energy balance and metabolic status. 
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Figure 2-1 

 

Figure 2-1. Experimental Scheme for Orthogonal Comparison of SCFA 

Quantitation Methods 
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Figure 2-2 

 

 

Figure 2-2. Total Ion Chromatogram of SCFAs Standard Mixture (100 µg/mL) with 

Caproic Acid-6,6,6-d3 as Internal Standard (IS) (10 µg/ml). (A) propyl esterification 

method and (B) acidified water method 
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Figure 2-3 
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Figure 2-3. Continued 
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Figure 2-3. Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3. Fragmentation Pattern and Extract Ion Chromatogram for Unlabeled 

and 1-13C Labeled SCFAs Standard. (A-C) propyl esterification method and (D-F) 

acidified water method. 
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Figure 2-4 

 

 

Figure 2-4. 2D 1H-1H TOCSY NMR Spectroscopy of Mice Feces. 
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Figure 2-5 

 

 

Figure 2-5. 2D 1H-13C HSQC NMR Spectroscopy of Mice Feces. Reference spectra 

were obtained from Human Metabolome Database (HMDB). Acetate (HMDB00042), 

Propionate (HMDB00237) and Butyrate (HMDB00039). 
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Figure 2-6 

 

Figure 2-6. Biological Concentrations of SCFAs in Germ Free (GF) and 

Conventionally Raised (CONV-R) Fecal Samples Measured by GC-MS Propyl 

Esterification Method. Values are expressed as the mean ± sd. (n=5). Significance was 

determined using a two-tailed Student t-test. 
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Figure 2-7 

 

Figure 2-7. Biological Concentrations of Fecal SCFAs in CONV-R Mice (n=10 per 

group) Measured by GC-MS Propyl Esterification Method, GC-MS Acidified Water 

method, and 1H NMR Quantitation Method. Values are expressed as the mean ± 95% 

CI. Data was analyzed using ANOVA with Bonferroni’s correction. Biological 

concentrations measured by different methods were not significantly different. 
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Figure 2-8 

 

 
 

Figure 2-8. Global Metabolic Profiling of Feces from Germ Free (GF) and 

Conventionally Raised (CONV-R) Mice Determined by 1H NMR. OPLS-DA scores 

represent indicative power of models, p-value (CV-ANOVA) demonstrates the 

significance testing of OPLS model. Correlation coefficient-coded loadings plots for the 

models (right) from NMR spectra fecal extracts displaying changes and significance. The 

upward-pointed peak indicates the metabolite that peak represents (metabolite labeled) 

presented in higher level in GF mice. Peak pointing downward represents the metabolite 

presented more in CONV-R mice. The color-coded correlation coefficient indicates the 

significance of that change, the significance increases, as color gets warmer. A cutoff 

value of |r| > 0.754 (r > 0.754 and r < -0.754) is chosen for correlation coefficient as 

significant based on the discrimination significance (p ≤ 0.05). 
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Figure 2-9 

 

 

Figure 2-9. PLS-DA of Fecal SCFAs Profiling from Germ Free (GF) and Conventionally 

Raised (CONV-R) mice determined by 1H NMR. 
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Figure 2-10 

 

 

Figure 2-10. Quantitation of Gross Heat of Feces from Conventionally Raised 

(CONV-R) and Germ Free (GF) Mice by Bomb Calorimetry (n=8 mice per group). 

Data was analyzed using a two-tailed Student t-test. P<0.05 was considered significant.  
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Table 2-1. Linearity and Sensitivity of Different Methods. Calibration curve: 

x=concentration µg/ml, y=target peak area relative to internal standards. Linear range 

(LR), limit of detection (LOD) and limit of quantitation (LOQ) expressed as µg/ml. 

 

 
 

*LOD and LOQ of propionic acid were not calculated in GC-MS propyl esterification 

method as propyl propionate could be detected in background which is introduced by 

impurity of derivatization solvents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GC-MS Propyl Esterification Method

Compounds Target ion Calibration curve R² LR (µg/ml) LOD (µg/ml) LOQ (µg/ml)

Acetic Acid 43 y = 0.4588x - 1.1311 0.9946 LOQ-250 0.002  0.02 

Propionic Acid 57 y = 0.3324x + 1.042 0.9937 LOQ-250 * *

Butyric Acid 71 y = 0.2704x - 1.654 0.9913 LOQ-250 0.01  0.09 

GC-MS Acidified Water Method

Compounds Target ion Calibration curve R² LR (µg/ml) LOD (µg/ml) LOQ (µg/ml)

Acetic Acid 43 y = 0.0503x - 0.0295 0.9992 LOQ-500 0.5 5 

Propionic Acid 74 y = 0.0287x - 0.059 0.9998 LOQ-500 0.8  3

Butyric Acid 60 y = 0.0849x - 0.4245 0.9992 LOQ-500 0.2 1 

1H NMR Quantitation Method

Compounds Chemical shift (ppm) Calibration curve R² LR (µg/ml) LOD (µg/ml) LOQ (µg/ml)

Acetic Acid 1.91 (CH3) y = 0.0374x - 0.1722 0.9949 LOQ-250 2 4 

Propionic Acid 1.06 (CH3) y = 0.0098x - 0.0613 0.9916 LOQ-250 2 4

Butyric Acid 0.90 (CH3) y = 0.0261x - 0.1549 0.9916 LOQ-250 3 4
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Table 2-2. Recovery and Matrix Effect of SCFAs from Fecal Extracts Spiked with 

Different Concentration of SCFAs Standards by Different Quantitation Methods. 

Values are expressed as mean ± SD. n=6 per group. 

 

 

GC-MS Propyl Esterification Method

Compounds
Spiked amount 

(µg/ml)
Amount recovered 

(µg/ml)
%Recovery %RSD %Matrix effect

Acetic Acid

10 6.7 1.0 66.9 14.9 76.3

100 108.3 15.0 108.3 13.9 94.4

250 254.5 16.3 101.8 5.9 92.7

Propionic Acid

10 7.2 1.2 72.3 16.9 74.2

100 100.2 17.6 100.2 17.5 84.2

250 244.5 36.6 97.8 15.0 92.7

Butytic Acid

10 6.7 1.1 67.0 11.2 77.7

100 99.4 20.4 99.4 20.6 88.2

250 249.7 38.1 99.8 15.3 97.4

GC-MS Acidified Water Method

Compounds
Spiked amount 

(µg/ml)
Amount recovered 

(µg/ml)
%Recovery %RSD %Matrix effect

Acetic Acid

10 7.5 1.9 74.8 25.1 116.8
100 108.7 14.9 108.7 13.7 95.7
250 226.1 19.2 90.4 8.5 76.2

Propionic Acid

10 7.5 1.2 75.4 16.0 95.1
100 106.3 10.7 106.3 10.1 80.3
250 297.2 23.1 118.9 7.8 76.2

Butyric Acid

10 5.2 0.4 52.2 6.8 89.6
100 87.6 17.0 87.6 20.6 76.2
250 291.7 24.3 116.7 8.3 79.7

1H NMR Quantitation Relative to TSP Method

Compounds
Spiked amount 

(µg/ml)
Amount recovered 

(µg/ml)
%Recovery %RSD %Matrix effect

Acetic Acid

10 8.4 0.4 83.7 4.2 90.6

100 97.7 4.3 97.7 4.4 118.5

250 271.7 16.0 108.7 5.9 111.7

Propionic Acid

10 10.1 0.6 101.4 6.0 107.2

100 116.6 5.5 116.6 4.7 116.1

250 332.1 15.3 132.8 4.6 104.8

Butyric Acid

10 5.4 0.8 54.2 14.7 64.1

100 92.9 4.6 92.9 5.0 118.1

250 263.2 14.7 105.3 5.6 106.8

1H NMR Quantitation with Calibration Curve Method

Compounds
Spiked amount 

(µg/ml)
Amount recovered

(µg/ml)
%Recovery %RSD

Acetic Acid

10 8.6 0.4 85.6 4.2

100 98.7 5.1 98.7 5.2

250 277.9 16.3 111.2 5.9

Propionic Acid

10 8.0 0.48 80.2 6.0

100 91.4 4.6 91.4 5.0

250 262.7 12.1 105.1 4.6

Butyric Acid

10 5.4 0.8 54.1 14.7

100 92.0 4.7 92.0 5.1

250 263.0 14.7 105.2 5.6
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Table 2-3. Intraday and Interday Repeatability of Standard SCFAs Samples (10, 25, 

100, 250 µg/ml) by Different Quantitation Methods. Expressed as the relative standard 

deviation (%RSD). 

 

 

GC-MS Acidified Water Method

Compounds
No. of 

injections
Intraday Interday

10 µg/ml 25 µg/ml 100 µg/ml 250µg/ml 10 µg/ml 25 µg/ml 100 µg/ml 250 µg/ml

Acetic Acid

1 9.6 24.0 89.1 247.2 9.6 24.0 89.1 247.2

2 11.3 25.3 89.9 227.1 11.9 22.7 89.4 224.3

3 13.8 28.4 100.5 247.7 9.5 20.7 91.9 240.8

4 13.3 28.8 98.3 262.0 10.5 20.9 95.5 212.3

5 12.7 26.3 99.0 246.6 9.1 21.3 80.2 230.7

Mean 12.1 26.6 95.4 246.1 10.1 21.9 89.2 231.1

SD 1.5 1.8 4.9 11.1 1.0 1.2 5.1 12.3

%RSD 12.6 6.8 5.1 4.5 9.8 5.6 5.7 5.3

Propionic Acid

1 9.9 23.2 95.3 248.2 9.3 23.1 96.0 249.7

2 11.4 29.1 101.7 252.6 11.0 23.7 105.3 275.3

3 11.6 26.3 109.4 273.5 11.7 23.2 118.4 284.4

4 11.6 25.8 105.2 287.9 12.2 25.4 118.9 303.5

5 10.4 26.9 108.0 262.1 11.6 28.3 109.5 313.9

Mean 11.0 26.3 103.9 264.9 11.2 24.7 109.6 285.4

SD 0.7 1.9 5.1 14.4 1.0 1.9 8.6 22.4

%RSD 6.4 7.2 4.9 5.4 8.9 7.9 7.8 7.9

Butyric Acid

1 11.1 23.5 92.8 242.8 11.1 23.5 92.8 242.8

2 11.5 25.5 99.0 246.7 12.3 22.4 93.7 260.2

3 11.0 25.1 106.9 267.9 11.4 20.8 102.1 259.2

4 11.2 22.8 105.4 280.9 11.0 23.3 105.4 298.3

5 10.6 24.8 102.6 254.0 10.8 25.3 107.4 290.4

Mean 11.1 24.4 101.3 258.5 11.3 23.1 100.3 270.2

SD 0.3 1.0 5.1 14.1 0.5 1.5 6.0 20.8

%RSD 2.4 4.2 5.0 5.5 4.7 6.4 6.0 7.7

GC-MS Propyl Esterification Method

Compounds
No. of 

injections
Intraday Interday

10 µg/ml 25 µg/ml 100 µg/ml 250µg/ml 10 µg/ml 25 µg/ml 100 µg/ml 250 µg/ml

Acetic Acid

1 11.4 24.5 101.0 251.0 10.4 22.9 91.1 253.0

2 10.9 24.4 85.4 252.4 11.8 21.7 74.0 259.9

3 10.1 23.7 99.2 257.8 11.3 21.5 70.3 245.9

4 11.0 24.6 91.7 244.7 10.6 20.7 72.7 244.7

5 10.4 22.9 91.1 267.3 11.1 21.1 72.4 267.3

Mean 10.7 24.0 93.7 254.7 11.0 21.6 76.1 254.1

SD 0.5 0.6 5.7 7.6 0.5 0.7 7.6 8.5

%RSD 4.3 2.7 6.1 3.0 4.5 3.5 10.0 3.4

Propionic Acid

1 11.0 23.5 109.8 248.1 9.5 22.4 95.3 263.1

2 12.2 24.2 89.1 240.0 16.7 25.3 80.5 250.1

3 8.7 25.3 105.2 253.1 11.8 21.3 70.9 218.0

4 11.5 26.4 94.6 236.7 11.3 22.2 76.3 232.3

5 9.5 22.4 95.3 276.5 15.9 21.2 71.8 276.5

Mean 10.6 24.4 98.8 250.9 13.0 22.5 79.0 248.0

SD 1.3 1.4 7.6 14.0 2.8 1.5 8.9 20.9

%RSD 12.2 5.7 7.7 5.6 21.3 6.5 11.2 8.4

Butyric Acid

1 13.7 24.2 98.8 252.1 13.6 25.0 89.7 281.6

2 14.0 26.0 84.9 247.0 16.3 27.7 84.7 240.5

3 13.8 26.3 97.3 254.0 14.5 24.2 77.9 233.2

4 14.0 26.7 88.5 239.4 15.1 27.1 86.2 256.3

5 13.6 25.0 89.7 266.8 16.8 25.4 83.0 266.8

Mean 13.8 25.6 91.9 251.9 15.3 25.9 84.3 255.7

SD 0.2 0.9 5.3 9.0 1.2 1.3 3.9 17.5

%RSD 1.2 3.5 5.8 3.6 7.7 5.1 4.6 6.9
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Table 2-3. Continued 

 
1H NMR Quantitation Relative to TSP

Compounds
No. of 

injections
Intraday Interday

10 µg/ml 25 µg/ml 100 µg/ml 250 µg/ml 10 µg/ml 25 µg/ml 100 µg/ml 250 µg/ml

Acetic Acid

1 6.8 17.1 81.7 245.7 6.8 17.1 81.7 245.7

2 7.2 16.7 81.8 235.3 6.9 19.7 81.8 243.5

3 7.1 16.6 82.2 242.4 6.5 19.9 82.2 243.7

4 7.0 16.9 82.4 249.2 7.0 19.4 82.4 241.6

5 7.1 15.0 82.3 243.5 6.9 19.2 82.3 242.0

Mean 7.1 16.5 82.1 243.2 6.8 19.0 82.1 243.3

SD 0.1 0.8 0.3 4.6 0.2 1.0 0.3 1.4

%RSD 1.7 4.6 0.3 1.9 2.6 5.3 0.3 0.6

Propionic Acid

1 7.9 19.6 99.8 319.2 7.9 19.6 99.8 319.2

2 8.4 19.2 95.1 303.9 7.8 20.8 95.8 308.9

3 8.1 19.4 100.7 312.6 7.7 20.1 97.1 308.0

4 8.8 19.5 102.3 330.8 7.6 21.0 97.0 302.1

5 8.1 19.7 99.4 318.4 7.9 20.2 97.0 303.0

Mean 8.2 19.5 99.5 317.0 7.8 20.3 97.3 308.2

SD 0.3 0.2 2.4 8.8 0.1 0.5 1.3 6.1

%RSD 3.8 0.9 2.4 2.8 1.4 2.4 1.4 2.0

Butyric Acid

1 7.5 16.0 79.0 251.5 7.5 16.0 79.0 251.5

2 6.7 16.2 76.0 240.0 6.7 17.0 78.8 237.1

3 6.7 15.8 78.0 240.0 6.7 17.0 80.2 235.7

4 7.1 16.5 79.0 249.8 7.1 16.1 79.7 257.1

5 7.0 14.4 77.8 250.7 6.7 16.6 78.7 259.5

Mean 7.0 15.8 78.0 246.4 6.9 16.5 79.3 248.2

SD 0.3 0.7 1.1 5.3 0.3 0.4 0.6 10.0

%RSD 4.3 4.5 1.4 2.1 4.5 2.6 0.7 4.0

1H NMR Quantitation with Calibration Curve

Compounds
No. of 

injections
Intraday Interday

10 µg/ml 25 µg/ml 100 µg/ml 250 µg/ml 10 µg/ml 25 µg/ml 100 µg/ml 250 µg/ml

Acetic Acid

1 11.6 22.1 88.2 255.9 11.6 22.1 88.2 255.9

2 12.0 21.7 85.2 245.3 11.7 24.7 88.3 253.6

3 11.8 21.6 88.3 252.5 11.2 25.0 88.7 253.9

4 11.8 21.8 89.9 259.5 11.7 24.4 88.9 251.8

5 11.9 18.3 87.8 253.7 11.7 24.3 88.8 252.2

Mean 11.8 21.1 87.9 253.4 11.6 24.1 88.6 253.5

SD 0.1 1.4 1.5 4.7 0.2 1.0 0.3 1.5

%RSD 1.1 6.7 1.7 1.8 1.6 4.3 0.3 0.6

Propionic Acid

1 12.5 21.8 85.2 258.7 12.5 21.8 85.2 258.7

2 12.9 21.4 81.5 246.7 12.5 22.7 82.0 250.6

3 12.6 21.6 86.0 253.6 12.4 22.2 83.1 249.9

4 13.2 21.7 87.2 267.9 12.3 22.9 83.0 245.2

5 12.7 21.8 84.9 258.1 12.5 22.2 83.0 245.9

Mean 12.8 21.7 84.9 257.0 12.4 22.4 83.3 250.1

SD 0.3 0.1 1.9 7.0 0.1 0.4 1.0 4.8

%RSD 2.0 0.7 2.3 2.7 0.7 1.7 1.3 1.9

Butyric Acid

1 13.4 21.9 84.9 257.1 13.4 21.9 84.9 257.1

2 12.6 22.1 81.9 245.7 12.6 22.9 84.7 242.8

3 12.6 21.7 83.8 245.6 12.6 22.9 86.1 241.4

4 13.0 22.4 84.8 255.5 13.0 22.0 85.6 262.8

5 12.9 20.3 83.7 256.4 12.6 22.5 84.6 265.1

Mean 12.9 21.7 83.8 252.1 12.8 22.4 85.2 253.8

SD 0.3 0.7 1.1 5.2 0.3 0.4 0.6 10.0

%RSD 2.3 3.2 1.3 2.1 2.4 1.9 0.7 3.9
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ABSTRACT 

 Recent studies have identified the important role of the gut microbiota in the 

pathogenesis and progression of obesity and related metabolic disorders. The antioxidant 

tempol was shown to prevent or reduce weight gain and modulate the gut microbiota 

community in mice; however, the mechanism by which tempol modulates weight 

gain/loss with respect to the host and gut microbiota has not been clearly established. 

Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal 

bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. 

Liver 1H NMR-based metabolomics identified a dose-dependent decrease in glycogen 

and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), 

and increased activation of the glycolysis pathway. Serum 1H NMR-based metabolomics 

indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression 

was significantly altered as demonstrated by an increase in Pepck and G6pase and a 

decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the 

liver and serum metabolomic profiles were observed in germ-free mice thus establishing 

a significant role for the gut microbiota in mediating the beneficial metabolic effects of 

tempol. These results demonstrate that tempol modulates the gut microbial community 

and its function resulting in reduced host energy availability and a significant shift in 

liver metabolism towards a more catabolic state. 

 

INTRODUCTION 

Obesity and related metabolic disorders are major public health concerns. 

Previous studies identified the gut microbiota as an important factor involved in 
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metabolic homeostasis due to their role in extracting energy from the diet (1), interfering 

with metabolic signaling (2), and modulating gut inflammation (3). The population and 

functions of the gut microbiota can be manipulated by xenobiotics (e.g., antibiotics) (4, 

5), pathogens (e.g., diarrhea-causing organisms) (6), drugs (7), and host genetic factors 

(8). Additionally, the gut microbiota has been identified as a promising target for 

therapeutic intervention to treat metabolic disorders including obesity (9).  

Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) is a water soluble 

nitroxide, stable free radical, which has been reported to be an effective antioxidant in 

detoxifying reactive oxygen species in cell culture and animal studies (10, 11) . Tempol 

was reported to inhibit body weight gain in mice (12) and can dramatically influence non-

alcoholic fatty liver disease (NAFLD) through alterations in signaling between the gut 

microbiota and the farnesoid X receptor (FXR) (13). The protective effects of tempol 

against NAFLD were found to be mediated specifically through changes in the 

composition of the gut microbiota, attenuated FXR signaling, and inhibition of hepatic 

SREBP1C and de novo lipogenesis (14). Based on these previous studies, the anti-obesity 

effect of tempol is strongly associated with alterations in the gut microbiota and host 

signaling axis.   

The gut microbiota has been implicated in host metabolic status mainly through 

its control of energy availability by fermenting non-digestible dietary fiber into available, 

absorbable, and transportable short chain fatty acids (SCFAs). SCFAs are saturated fatty 

acid with aliphatic tails with less than six carbons, among which acetate (C2), propionate 

(C3), butyrate (C4) are primary ones with most abundance (15). Acetate is the most 

abundant SCFAs in the gut compare to propionate and butyrate (16). Bacterial-
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fermentation-origin SCFAs account for about 5-10% of daily energy intake of the host 

(17). Overall the host reabsorbs and utilizes SCFAs as an energy source or as anabolic 

substrates for processes including de novo lipogenesis (18).  

In the current study, modulation of host energy metabolism by tempol through 

changes in gut microbiota fermentation was explored. To test the hypothesis, cecal and 

fecal SCFA concentrations, fecal energy excretion, liver and serum metabolite profiles 

were investigated via combined 1H NMR-based metabolomics, targeted GC-MS 

profiling, bomb calorimetry, and hepatic gene expression was measured in mice after 5 

day intragastric administration of tempol. Notably, a dose-dependent decrease in bacterial 

fermentation was found in tempol-treated mice along with significant changes in liver 

metabolism. Metabolic changes were found to be microbial dependent. This study 

provides an additional mechanism for the anti-obesity effect of tempol mediated by the 

gut microbiota. 

 

MATERIALS AND METHODS 

Chemicals 

  Tempol, short chain fatty acids, 1-propanol, propyl chloroformate, pyridine, 

sodium chloride, K2HPO4, and NaH2PO4 were purchased from Sigma-Aldrich Chemical 

Co. Ltd. (St. Louis, MO). Hexane and methanol were purchased from EMD Chemicals 

Inc (Gibbstown, NJ ). The internal standard hexanoic acid-6,6,6-d3 was obtained from 

C/D/N Isotopes Inc (Pointe-Claire, Quebec, Canada). Sodium 3-trimethylsilyl [2,2,3,3-d4] 

propionate (TSP-d4) and D2O (99.9% in D) were purchased from Cambridge Isotope 

Laboratories (Miami, FL). Standard benzoic acid pellets were purchased from Parr 
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Instrument Company (Moline, IL). All compounds were of the highest analytical grade 

possible.  

Tempol Treatment and Sample Collection 

 C57BL/6J wild-type male mice (4-week-old) were purchased from the Jackson 

Laboratory (Bar Harbor, Maine). The mice were housed in polypropylene cages with 

corncob bedding in a well-controlled environment (temperature, 65-75°F; relative 

humidity, 30%-70%; photoperiod, 12 h light/dark cycle). Water and regular chow were 

supplied ad libitum. Mice were randomly grouped after one-week acclimatization before 

treatment. Tempol (dissolved in 0.9% saline) was administered in the morning by gavage 

for 5 consecutive days. The control group was administered an equivalent amount of 

0.9% saline. Mice were transferred to nalgene metabolic cage systems (Tecniplast, USA) 

and housed individually for 24 hours during the acclimatization period and treatment 

period every other day for fecal sample collection. Mice were weighed in the mornings 

and killed on day 6. Liver, cecum, and serum samples were collected immediately 

following CO2 asphyxiation. All samples were quickly placed in liquid nitrogen then 

stored at -80 °C for future analysis. All procedures were performed in accordance with 

the Institute of Laboratory Animal Resources guidelines and approved by the 

Pennsylvania State University Institutional Animal Care and Use Committee. Germ free 

mice wild-type C57Bl/6J mice were bred and maintained by the Pennsylvania State 

University Gnotobiotic Facility, housed in germ free isolators, and fed an autoclaved diet. 

All materials and supplies were sterilized before transfer into the isolators. Germ free 

status was monitored continuously and confirmed through a series of culture based 

assays. 
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Gas Chromatography–Mass Spectrometry (GC-MS) Analysis 

  SCFAs level in tissues were measured with a targeted metabolomics protocol as 

described previously (19). 50 mg of cecal content/ feces were mixed with 1 mL of 0.005 

M aqueous NaOH containing internal standard hexanoic acid-6,6,6-d3 (5 µg/mL), 

homogenized (Bertin Technologies, Rockville, MD) at 6500 rpm,1 cycle, 60s and then 

centrifuged (Eppendorf, Hamburg, Germany) at 13,200 x g at 4 °C for 15 min. The 

supernatant was collected and an aliquot of 500 µL of a solvent mixture of 1-propanol 

/pyridine (3/2, v/v) and 100 µL of propyl chloroformate was subsequently added into 

supernatant and briefly vortexed. Samples were heated (Thermo Scientific, Marietta, OH) 

at 60 °C for 1 hour. The derivatized samples were extracted with a two-step hexane 

extraction. 300 µL of hexane was added to the sample, vortexed for 30 s, and then 

centrifuged (2000 x g, 4 °C for 5 min). 300 µL of the upper layer was transferred to a 

glass auto sampler vial for GC-MS analysis. Another 200 µL of hexane was added to the 

sample and the extraction repeated. Samples were analyzed using a 7890A gas 

chromatograph coupled with an Agilent 5975C mass selective detector (Agilent 

Technologies, Santa Clara, CA). A HP-5-MS (5 %-diphenyl 95%-methylpolysiloxane) 

capillary GC column (30 m x 250 μm i.d. 2.5μm film thickness, Agilent Technologies) 

was used with helium as the carrier gas at a constant flow rate of 1 mL/min. 0.5 μL 

sample was injected onto the column using a pressure pulsed split (10 psi, split ratio 10/1) 

The initial column temperature was set at 55 ºC for 0.5 min and then increased to 70 ºC at 

a rate of 10 ºC /min, increased to 85 ºC at a rate of 3 ºC /min, increased to 110 ºC at a rate 

of 5 ºC /min, increased to a final temperature of 290 ºC at a rate of 30 ºC/ min which was 

held for 5 minutes. The temperatures of the front inlet, transfer line and mass source were 
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set at 260 ºC, 290 ºC, 230 ºC. Mass spectral data was collected in a full scan mode over 

the a mass range 35-500 m/z with an electron energy of 70eV. All raw data were 

processed with Enhanced Chemstation (Agilent Technologies) for mass spectral 

visualization, identification, and quantitation. The integrated areas of the SCFAs were 

normalized to the internal standard and quantified with a standard curve constructed from 

serial dilutions (2500 µM, 1250 µM, 625 µM, 315 µM, 156.25 µM, 78.125 µM, 0) of 

SCFAs .    

 

Nuclear Magnetic Resonance (NMR) Spectroscopy Sample Preparation 

 Cecal content or fecal samples (50 mg-100 mg) was mixed with 800 µL of 

phosphate buffer (K2HPO4/NaH2PO4,  0.1 M, pH 7.4, 50% v/v D2O) containing 0.005% 

TSP-d4 as a chemical shift reference (δ 0.00 ppm). The sample was freeze/thawed three 

times with liquid nitrogen then homogenized (Precellys 24, Bertin Technologies, 

Rockville, MD) and centrifuged (13,200 x g, 4 °C) for 10 min. The supernatant was 

transferred to a new microcentrifuge tube and another 400 µL of PBS was added to the 

pellets and the above procedure repeated. The supernatants were combined, centrifuged 

(13,200 x g, 4 °C, 10 min), and 550 µL was transferred to NMR tubes. Liver tissues (50 

mg) were extracted three times with 600 µL of precooled methanol-water mixture (2/1, 

v/v) using the Precellys tissue homogenizer (Bertin Technologies). After homogenization 

and centrifugation (13,200 x g, 4 °C, 10 min), the combined supernatants were dried and 

reconstituted in 600 µL phosphate buffer (K2HPO4/NaH2PO4, 0.1M, pH 7.4, containing 

50% D2O and 0.005% TSP-d4). After centrifugation (13,200 x g, 4 °C, 10 min), 550 μL 

of each extract was transferred into an NMR tube for analysis. Serum samples (200 µL) 
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were combined with 400 µL of phosphate buffer (K2HPO4/NaH2PO4, 45mM, pH 7.4, 

50% v/v D2O containing 0.9% NaCl) and centrifuged (13,200 x g, 4 °C, 10 min). 550 µL 

of supernatant was transferred into NMR tubes for analysis. 

 

1H NMR Spectroscopy, Spectral Data Processing, and Multivariate Data Analysis 

 1H NMR-based metabolomic analysis was performed as previously described 

(20). Color-coded loading plots were generated from the OPLS-DA models using a script 

for MATLAB (The Mathworks Inc.; Natick, MA). OPLS-DA scores represent the model 

power and the color-coded correlation coefficient indicates the significance of the 

metabolite contribution to the class separation, with a “hot” color (e.g., red) being more 

significant than a “cold” color (e.g., blue). In this study, a cutoff value of |r| > 0.707 (r > 

0.707 and r < -0.707) was chosen for correlation coefficient as significant based on the 

discrimination significance (p ≤ 0.05). SCFAs in cecal content and feces were assigned 

with two dimensional 1H-1H total correlation spectroscopy (TOCSY) NMR (Figure 3-1). 

Relative content of each SCFA is determined by NMR peak area of SCFA relative to 

internal standard (TSP-d4). 

 

Bomb Calorimetry 

 Bomb calorimetry was performed using a 6200 isoperibol calorimeter (Parr 

Instrument Company, Moline, IL). Dried fecal samples (100 mg) were weighed and 

ground in a clean mortar and pestle. Ground samples were pressed into ¼ inch diameter 

pellets (Parr 2812 Pellet Press, Moline, IL). The remaining moisture content was 

removed from the fecal pellet using a speedvac concentrator (Thermo Fisher Scientific, 
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Marietta, OH). Benzoic acid pellets were used for standardization and optimization of the 

bomb calorimeter. Samples were placed in a tared fuel capsule (208AC) in the 1109A 

semi-micro oxygen bombs (Parr Instrument Company, Moline, IL) and fixed by a coiled 

10 cm of NiCr fuse wire (PN 45C10). A minimum 99.5% purity oxygen was provided 

with 420 psi pressure to the bomb. Prepared semi-micro bomb were set on a ring support 

in the A604DD twin-chambered calorimeter bucket. Gross heat of samples were 

determined by the temperature change recorded during combustion and expressed as 

calories/gram feces.  

 

Quantitative PCR analysis 

  RNA of liver (50mg) were extracted using TRIzol reagent (Invitrogen, Carlsbad, 

CA). DNA concentration was determined by Nanodrop. cDNA was synthesized from 1 

µg of total RNA using qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD) 

and then were diluted to 1µg/µL before subjected to quantitative PCR. QPCR was 

performed using SYBR green QPCR master mix on an ABI Prism 7900HT Fast Real-

Time PCR sequence detection system (Applied Biosystems, Foster City, CA). QPCR 

conditions were 95°C for 20 s; 95 °C for 0.01 s; 60 °C for 20 s; 95 °C for 15 s; 60 °C for 

15 s and 95 °C for 15 s, 40 cycles. The reactions were analyzed according to the ΔΔCT 

method. All targeted mRNA were normalized to the GADPH mRNA as an internal 

control. Primer sequences for qPCR analysis of genes were listed in Table 3-1.  

 

Statistical Analysis 
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  Graphical illustrations and statistical analysis were performed using Prism 

GraphPad version 6. All data values were expressed as mean ± SEM. p<0.05 was 

considered significant. 

 

RESULTS 

Tempol Influences Weight Gain and Preserves Liver Function in a Dose-Dependent 

Manner 

 To determine if the observed anti-obesity effect of tempol is dose-dependent, 

mice were treated with tempol (0, 1, 10, 50 mg/kg) by gavage for 5 consecutive days. The 

control group and 1 mg/kg tempol group mice showed a 1.5% increase in body weight 

per day over the treatment period (Figure 3-2A). However, the body weight gain for 10 

mg/kg tempol treated mice showed a similar rate (1.5% per day) for the first two days, 

and then decreased to 0.47% per day from day 2 to day 5. The 50 mg/kg tempol-treated 

mice showed significant weight loss over the entire study (1.65% per day). This data 

demonstrates that the body weight gain is inversely associated with the tempol dose. 

Change in body weights were not due to toxicity, as no change in wet liver weight to 

body weight ratio was observed (Figure 3-2B). Additionally, liver histology (Figure 3-

2C) showed no morphological difference between control and tempol treated groups, 

further indicating that tempol treatment did not cause substantial physiological and 

histological abnormalities. 

 

Tempol Modulates SCFAs Availability in Gut  

 It was reported that fecal SCFA concentrations are significantly higher in obese 

than lean counterparts (21, 22). In agreement with this finding, decreased cecal SCFAs 
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were found in 100 mg/kg, tempol-treated mice (Figure 3-3), suggesting that tempol 

inhibits bacterial fermentation and decreases SCFAs availability in the lower gut. To 

determine whether the SCFAs inhibition effect of tempol is dose-dependent, SCFA levels 

were measured in mice treated with different doses of tempol by global 1H NMR 

metabolomics and targeted GC-MS metabolomic analysis. As shown in Figure 3-4, a 

dose-dependent decrease of SCFAs was observed in extracts from the cecal and feces 

upon tempol with the most significant decrease observed in the 50 mg/kg dose group. 

Specifically, when compared with control, the 50 mg/kg group exhibited a 41%, 25% and 

39% decrease in cecal acetate, propionate, and butyrate, respectively, as identified by 1H 

NMR. These changes were confirmed by GC-MS revealing a 28%, 63% and 37% 

decrease in cecal acetate, propionate and butyrate, respectively. In feces, a 50%, 36%, 

21% decrease of acetate, propionate and butyrate and a 42%, 41%, 33% decrease of 

acetate, propionate and butyrate were identified by 1H NMR and GC-MS, respectively. In 

general, higher amount of SCFAs were measured in the cecal contents than from feces by 

GC-MS quantification, indicating the SCFAs reabsorption and utilization occurred as the 

cecal contents passed through the colon. Interestingly, in the 50 mg/kg tempol group, an 

increase of amino acids (tyrosine and phenylalanine), nitrogenous bases (uracil) and the 

nitrogenous base derivative (hypoxanthine) were identified as being significantly 

changed in the cecum (Figure 3-5A) suggesting further alterations in amino acid and 

nucleotide metabolism in the small intestine.   

 

Tempol-Treated Mice Excrete More Energy 

  Analysis of fecal metabolites revealed a dose-dependent increase of glucose and 

oligosaccharides in tempol-treated groups (Figure 3-4C) which are substrates for 
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microbial fermentation. This observation suggests decreased microbial fermentation 

ability of tempol-treated mice. To further validate these findings, bomb calorimetry was 

performed to determine the energy loss into feces (Figure 3-6). The feces collected from 

metabolic cages after the final dosing with tempol was used for gross heat measurements. 

The results demonstrated that as the tempol dose increased, there was a proportional 

increase in the total gross heat measured in the fecal pellets. Specifically, one gram of 

feces from the 50 mg/kg tempol treated mice contains, on average, 139 more calories 

compared to control mice. The increased fecal energy excretion is consistent with the 

decreased energy availability revealed by lower SCFA production after tempol treatment.  

 

Tempol-Mediated Metabolic Changes in Liver Are Microbiota Dependent 

 To further determine the impact of tempol on energy metabolism, the liver 

metabolome was measured by 1H NMR. No hepatic metabolite differences were 

identified for the 1 mg/kg dose (Figure 3-7A). However, at the 50 mg/kg dose, reduced 

glycogen, sugars and amino acids were identified and indicative of increased hepatic 

energy storage mobilization. The glucogenic and ketogenic amino acids phenylalanine 

and tyrosine, which promote catabolism for energy availability (23) were increased. 

Additionally, uridine, a nucleoside involved in glycolysis was upregulated in the 50 

mg/kg tempol group compared to control. Another immunoprotective and 

neuroprotective nucleoside, inosine (24),  was upregulated. These results suggest that the 

overall liver metabolism balance shifted from energy storage to energy generation.  

Although observations in the current and previous studies suggested that tempol 

changes the gut microbiota and causes metabolic alterations in the liver, it is unclear 

whether these changes are a direct effect of tempol administration or are microbiota-
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mediated. The germ-free mouse liver metabolome was not changed by 50 mg/kg tempol 

treatment as observed in conventionally-raised mice (Figure 3-7B), indicating the 

microbiota play a vital role in directing metabolic alterations with tempol. 

 

Tempol-Altered Microbiota Result in Altered Serum Metabolites 

  Similar to the 1H NMR metabolomics profiles of the liver, a significant dose-

dependent effect was identified in the serum of conventionally-raised mice (Figure 3-

8A). No significant changes were seen in the 1 mg/kg tempol treated mice, while a 

variety of metabolites were altered in the 10 mg/kg and 50 mg/kg groups. Specifically, 

pyruvate, lactate, and citrate were increased while glucose was markedly decreased, 

indicating upregulation of glycolysis. However, the germ free mouse serum profile was 

not significantly changed compared to control (Figure 3-8B), again demonstrating that 

the induced metabolic shifts by tempol are microbiota-dependent. 

 

Tempol Alters Hepatic Gene Expression Involved in Glucose and Lipid Metabolism 

  To further investigate the molecular mechanisms associated with the observed 

metabolic changes, the expression of genes associated with glucose and lipid metabolic 

pathway were analyzed by QPCR. The 50 mg/kg tempol treatment group had 

significantly increased hepatic expression of Pepck and G6pase mRNA by one to two 

fold in conventionally-raised mice (Figure 3-9A), indicating upregulation of 

gluconeogenesis and glycolysis. Moreover, an overall decrease or decreased trend of 

hepatic expression of Hnf4a, ChREBP, Fabp1, Fabp2, Fabp5, and Cd36 mRNAs 

encoding adipogenic transcription factors and proteins were detected in the conventional 

50 mg/kg tempol treated mice (Figure 3-9B). These results suggest upregulation of de 
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novo lipogenesis and improvement of lipid metabolism, consistent with the adiposity-

resistant phenotype observed with tempol. No significant changes in the expression of 

these genes were identified in germ-free tempol-treated mice, again demonstrating the 

effects of tempol are highly dependent on the gut microbiota.   

 

DISSCUSION 

 Here we have proposed that tempol restricts energy availability in the host 

through inhibition of microbial SCFA production. Other studies reported greater colonic 

SCFA production in overweight and obese individuals compared to lean counterparts in 

humans independent of dietary intake (21, 22, 25) . These observations indicate SCFA 

metabolism plays a significant role in obesity. Consistently, the anti-obesity compound 

tempol decreases cecal and fecal acetate, propionate, and butyrate levels in a dose-

dependent manner. Moreover, the substrates for microbial fermentation, glucose and 

oligosaccharides, were excreted in greater quantities into feces in tempol treated mice. 

Thus it is likely that the reduced energy-harvesting potential of tempol-altered gut 

microbiota contributes to the metabolic improvements observed in models of diet-

induced obesity (2, 26).  

In addition to the restriction in energy availability, tempol profoundly impacts the 

overall metabolism of the host. SCFAs are not only direct energy substrates for tissues 

but also substrates for gluconeogenesis (e.g., propionate) (27, 28) and lipogenesis (18). 

For gluconeogenesis, propionate acts as a precursor (29, 30) which is first converted to 

propionyl-CoA and then to succinyl-CoA. Succinyl-CoA enters the citrate cycle to 

generate oxaloacetate, the direct precursor for gluconeogenesis. Therefore, a restricted 



 157 

SCFAs availability would be expected to lead to downregulated glucose anabolism and 

decreased anabolic product like glycogen and glucose. As expected, with tempol 

treatment, an overall decrease in glycogen, sugars, and amino acid reserves in were 

observed in liver, suggesting decreased glucose anabolism and increased glucose 

catabolism, consistent with a lean phenotype and the previously described insulin 

sensitivity improvement effect of tempol (31). Moreover, elevated hepatic acetate levels 

suggest increased fatty acid catabolism, as acetate is an end product of fatty acid 

oxidation in liver peroxisomes (32, 33). The glucogenic and ketogenic essential amino 

acids phenylalanine and tyrosine are important for energy generation and they are also 

precursors of thyroid hormone and catecholamines (e.g., dopamine, epinephrine, 

norepinephrine) that act on adipose tissue to modulate lipolysis and thermogenesis (23). 

An upregulation of phenylalanine and tyrosine in tempol treated mice might indicate an 

alteration in energy production and lipid metabolism. Previous mouse studies suggested 

the serum glucose levels were decreased by restricting calories (34, 35). Serum glucose 

levels are also positively correlated with body mass index (BMI) observed in human 

studies (36, 37). Tempol serum metabolite profiles identified decreased glucose and 

amino acids levels consistent with the decreased hepatic glucose and amino acid reserves, 

improved insulin sensitivity, and lean phenotype. Lactate is derived from anaerobic 

glycolysis and subcutaneous fat (38, 39), which is also a major precursor for 

gluconeogenesis. Elevated lactate is consistent with upregulated glucose utilization and 

fat mobilization.  

Alterations in the expression of key hepatic genes associated with glucose and 

lipid metabolic pathways further confirmed the metabolic changes revealed by 
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metabolomics. PEPCK is a rate-controlling enzyme in gluconeogenesis and its mRNA 

was upregulated in the 50 mg/kg tempol treated livers of conventional mice. mRNA 

encoding G6Pase, the key enzyme in gluconeogenesis and glycogenolysis that 

hydrolyzes glucose-6-phosphate to free glucose that can then enter circulation (40), was 

increased in the 50 mg/kg tempol group. Glycogenolysis and gluconeogenesis are two 

pathways to generate glucose from either glycogen or non-carbohydrate precursors. Both 

pathways are upregulated in tempol-treated group likely due to an adaptive response of 

liver in attempt to restore glucose level. As glucose utilization is accelerated with tempol 

treatment, hepatic glucose are deprived. Since glycolysis is upregulated, glucose is 

utilized quicker, and hepatic glucose is depleted. In order to keep up with the demand for 

glucose utilization, liver mobilizes both glucogenic pathways. Primarily, glycogenolysis 

is upregulated to free glucose from glycogen. Secondarily, gluconeogenesis is activated 

to generate more glucose from non-carbohydrate substrates. The upregulated 

glycogenolysis and gluconeogenesis indicated by hepatic gene expression with tempol 

treatment are consistent with the decreased hepatic glycogen reserves and increased 

hepatic gluconeogenic precursors (phenylalanine and tyrosine) revealed by 1H NMR-

based liver metabolites profiling. There was an increasing trend of Glut2 mRNA as well, 

typically increased with improved insulin sensitivity as seen in type II diabetes (41). 

Besides glucose metabolism related genes, mRNAs encoding transcription factors Hnf4a 

and ChREBP, and lipogenic proteins Fabp1 and Cd36 were downregulated. The 

downregulation of genes involved in lipid metabolism in conventional tempol treated 

mice reveals inhibition of de novo lipogenesis by tempol which also explains the 

observed adiposity-resistant phenotype of conventional tempol treated mice.  
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Metabolic profiling of conventional tempol-treated mice suggests an energy 

balance shift from energy storage to substrate breakdown and energy generation, 

including glycogen catabolism, upregulating lipolysis, glycolysis for energy expenditure 

to compensate SCFAs restriction. It is likely that the combined effects of these pathways 

all contribute to the observed anti-obesity phenotyped in tempol-treated mice. 

Furthermore, these effects were highly dependent on the gut microbiota as germ free 

mice treated with tempol had no significant changes in their serum or liver metabolomics 

profile. 

Obese microbiota profiling generated from mice and human studies were 

characterized as an elevated Firmicutes to Bacteriodetes ratio (26, 42-44) indicative of 

better fermentability with greater energy harvesting potential from the microbial 

community. Consistent with previous studies (13), a decreased Firmicutes to 

Bacteriodetes ratio was observed in the 50 mg/kg tempol group on a normal chow diet 

(Figure 3-10B). Other microbial changes reported with tempol treatment including 

decreasing abundance of β-Proteobacteria and Lactobacillus spp, were also confirmed in 

this study (Figure 3-10C, 3-10D). Overall, tempol helps modulate a more obesity 

resistant microbial community which provides a better gut environment for energy 

restriction and metabolic regulation. 

 

CONCLUSION 

The anti-obesity effects of tempol have been associated with its anti-oxidative 

stress properties (31, 45). Here, by comparing conventionally-raised and germ-free mice, 

the current studies demonstrated that tempol exerts its anti-obesity effect through 
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interactions with the gut microbiota and the host. Further, the tempol-altered microbiota 

is sufficient to promote the obesity resistant phenotype by causing metabolic changes 

from energy storage to expenditure.  
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Figure 3-1 

 

 

Figure 3-1. Two Dimensional 1H-1H Total Correlation Spectroscopy (TOCSY) NMR 

for SCFAs Identification. The cross peaks of propionate and n-butyrate are highlighted 

with red and blue dotted lines, respectively. 
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Figure 3-2 

 

Figure 3-2. Tempol-Associated Weight Loss is Not Associated with Any Gross 

Histological Changes in the Liver. (A) Body weight change over 5 day tempol 

treatment (0.9% saline, 1 mg/kg, 10 mg/kg, 50 mg/kg) on a normal chow diet (n=5 mice 

per group). (B) Liver to body weight ratios in mice after gavage with tempol (n=5 mice 

per group). (C) Hepatic histology of representative hematoxylin and eosin-stained liver 

sections. All data are presented as mean ± SEM and analyzed using one-way ANOVA 

with Tukey’s correction or two-tailed student’s t-test. ***p<0.001, ****p<0.0001. 
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Figure 3-3 

 

 

Figure 3-3. Tempol Causes Pronounced Changes in Bacteria Fermentation. (A-B) 

GC-MS quantification of cecal SCFAs and BCAAs in mice gavaged with 100 mg/kg 

tempol for 5 days (n=6 mice per group). Mann-Whitney test. Groups with different letters 

are significantly different (p<0.05). All data are presented as mean ± SEM. (C) Cecal 

metabolites change determined by 1H NMR. OPLS-DA scores (left) represent indicative 

power of models and correlation coefficient-coded loadings plots for the models (right) 

from NMR spectra displaying changes and significance (n=6 mice per group). 
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Figure 3-4 

 

Figure 3-4. Tempol Inhibits Bacteria Fermentation in a Dose-Dependent Manner. 
(A and C) Cecal and fecal metabolites changes were determined by 1H NMR. Relative 

content of metabolites were determined by NMR peak integration compared to the 

internal standard TSP in the cecal content and feces. Groups labeled with different letters 

are statistically significant (p<0.05), while groups sharing at least one letter are not 

significantly different. Groups without labels are not significantly different from other 

groups. (B and D) Quantification of SCFAs by GC-MS analysis was performed to 

validate results obtained via 1H NMR. All data are presented as mean ± SEM. (n=5 mice 

per group) and analyzed using one-way ANOVA with Tukey’s correction. 
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Figure 3-5 

 

Figure 3-5. Tempol Causes Pronounced Changes in Cecal and Fecal Metabolites 

Determined by 1H NMR. OPLS-DA scores (left) and correlation coefficient-coded 

loadings plots for the models (right) from NMR spectra of (A) cecal content, (B) feces 

obtained from different dose of tempol treated mice, displaying changes of metabolites 

between control group (black circles) and tempol treated group (red squares). (n=5 mice 

per group). 
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Figure 3-6 

 

 
Figure 3-6. Quantification of Gross Heat of Feces by Bomb Calorimetry. Each Gross 

heat was averaged from duplications (n=5 mice per group). Groups with different letters 

are significantly different (p<0.05). Groups without labels are not significantly different 

from the other groups. One-way ANOVA with Tukey’s correction. All Data are 

presented as mean ± SEM. 
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Figure 3-7 

 
 

Figure 3-7. Liver Metabolism Shifts to a More Catabolic State in Conventionally 

Raised (CONV-R) Mice Treated with Increasing Doses of Tempol. (A) 

Conventionally-raised mouse liver metabolic profiles of control group (black circles) and 

1 mg/kg (red squares), 10 mg/kg (blue squares), and 50 mg/kg (purple asterisks) tempol 

groups determined by 1H NMR. OPLS-DA scores (left) and coefficient-coded loadings 

plots (right) for the models obtained from the 1H NMR liver spectra (n=5 mice per 

group). (B) Comparison of germ-free mice liver metabolites between control group (back 

circles) and 50 mg/kg tempol group (red squares) determined by 1H NMR (n=5 mice per 

group). 
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Figure 3-8 

 

Figure 3-8. Serum Metabolites are Associated with Increased Glycolysis in 

Conventionally Raised (CONV-R) Mice Treated with Increasing Doses of Tempol. 

(A) Comparison of serum metabolic profiles of conventionally-raised mice between 

control group (black circles) and 1 mg/kg (red squares), 10 mg/kg (blue squares), and 50 

mg/kg (purple asterisks) tempol groups determined by 1H NMR. OPLS-DA scores (left) 

and the coefficient-coded loadings plots (right) for the models obtained from the NMR 

spectra of serum extracts (n=5 mice per group). (B) Comparison of serum metabolites 

between control group (black circles) and 50 mg/kg tempol group (red squares) 

determined by 1H NMR in germ-free mice (n=5 mice per group). 
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Figure 3-9 

 

Figure 3-9. Tempol Altered Hepatic Expression of Genes Involved in Glucose and 

Lipid Metabolism. QPCR analysis of hepatic mRNA levels of (A) glucose metabolism 

related genes, (B) lipid metabolism related genes in conventionally-raised and germ-free 

mice after 5-day tempol treatment. Groups with different letters are significantly different 

(p<0.05). Groups without labels are not significantly different from other groups. All data 

are presented as mean ± SEM (n=5 mice per group) and analyzed using one-way 

ANOVA with Tukey’s correction, or two-tailed Student’s t-test. 
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Figure 3-10 

 

Figure 3-10. Tempol Modulates Bacterial Community Quantitatively and 

Compositionally (A) Quantitative PCR analysis of universal 16s rRNA gene of fecal 

microbiome using universal primers after 5-day tempol treatment at gradient dose (n=5 

per group). Groups with different superscript letters were different with statistic 

significance (p<0.05). One-way ANOVA with Tukey’s correction. All data are presented 

as mean ± SEM. (B-D) qPCR quantification of targeted 16s rRNA genes using specific 

primers after 5-day gradient tempol treatment (n=5 per group). Groups with different 

superscript letters were different with statistic significance (p<0.05). Group without label 

is not significantly different from other groups. One-way ANOVA with Tukey’s 

correction. All data are presented as mean ± SEM. 
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Table 3-1. Primer Sequences for QPCR Analysis of (A) genes associated with 

glucose and lipid metabolic pathway, related to Figure 3-9. (B) Bacterial primer 

sequences, related to Figure 3-10. 

 

 

A 
 
species gene 

name 

sequence 5'-3' sequence 3'-5' 

mouse GADPH CCTCGTCCCGTAGACAAAATG TGAAGGGGTCGTTGATGGC 

mouse G6Pase CCATGCAAAGGACTAGGAACAA TACCAGGGCCGATGTCAAC 

mouse Pepck CCACAGCTGGTGCAGAACA GAAGGGTCGATGGCAAA 

mouse Glut2 GTCCAGAAAGCCCCAGATACC GTGACATCCTCAGTTCCTCTTAG 

mouse Hnf4a TGAGCACCTGCTGCTTGGA TCGAGGATGCGAATGGACAC 

mouse ChREBP CTGGGGACCTAAACAGGAGC GAAGCCACCCTATAGCTCCC 

mouse Fabp1 TCAAGCTGGAAGGTGACAATAA GTCTCCATTGAGTTCAGTCACG 

mouse Fabp2 TCGGTTCCTGAGGATACAAGAT TTTGATGACTGTGGGATTGAAG 

mouse Fabp5 ACAGGGTTTTTGCATTCCTG TTGGTTCTTTCGAACCTTG 

mouse Cd36 TGGCCTTACTTGGGATTGG CCAGTGTATATGTAGGCTCATCCA 

mouse IL-1β TCGCTCAGGGTCACAAGAAA CATCAGAGGCAAGGAGGAAAA 

mouse Lcn-2 ATTTCCCAGAGTGAACTGGC AATGTCACCTCCATCCTGGT 

mouse TNF-α AGGCTGCCCCGACTACGT GACTTTCTCCTGGTATGAGATAGCAAA 

mouse IFN-γ  CAGCAACAGCAAGGCGAA CTGGACCTGTGGGTTGTTGAC 

mouse cyp1a1 GGTTAACCATGACCGGGAACT TGCCCAAACCAAAGAGAGTGA 

 

 

B 

 
target group forward primer reverse primer 

All bacteria AGAGTTTGATCCTGGCTCAG (8F) CTGCTGCCTCCCGTAGGAGT (338R) 

Lactobacillus.spp AGCAGTAGGGAATCTTCCA (LabF362) CACCGCTACACATGGAG (LabR677) 

Firmicutes GCAGTAGGGAATCTTCCG (Lgc353) ATTACCGCGGCTGCTGG (Eub518) 

Bacteroidetes GTACTGAGACACGGACCA(Cfb319) ATTACCGCGGCTGCTGG (Eub518) 

αProteobacteria ACTCCTACGGGAGGCAGCAG (Eub338) TCTACGRATTTCACCYCTAC 

(Alf685) 

βProteobacteria ACTCCTACGGGAGGCAGCAG (Eub338) TCACTGCTACACGYG (Bet680) 

Actinobacteria CGCGGCCTATCAGCTTGTTG (Actino235) ATTACCGCGGCTGCTGG (Eub518) 
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ABSTRACT 

 The gut microbiome can be considered an environmental and dietary sensor as it 

is extremely susceptible to modulation by environmental stimuli. Recent evidence 

suggests that xenobiotics can disrupt the intimate relationship between the microbiome 

and host. Here, we describe a novel approach that combines in vitro microbial incubation 

(isolated cecal contents from mice), flow cytometry, mass spectrometry- and 1H NMR-

based metabolomics to evaluate the effect of xenobiotics on microbial toxicity. A typical 

xenobiotic tempol known to remodel the microbial structure in vivo and improve host 

metabolism with unclear mechanism was assessed. The microbial cells were isolated 

from mouse cecal content and exposed to tempol for 4h under strict anaerobic condition 

in vitro.  The flow cytometry data suggested DiBAC+ and PI+ cells were significantly 

increased with tempol exposure, indicating excessive membrane depolarization and loss 

of membrane integrity. CFDA+ cells were significantly decreased with tempol exposure, 

indicating compromised metabolic activity. NMR metabolic profiling revealed a unique, 

strong and direct correlation of microbial physiology and microbial metabolites, 

including short chain fatty acids, branched chain amino acids, amino acids, glucose and 

oligosaccharides, suggesting the disrupted microbial metabolic activity is strongly 

correlated with the microbial membrane damage by direct xenobiotic exposure. Orbitrap-

LC-MS analysis identified over 40 significantly changed microbial metabolites with a 

broad coverage of metabolic pathways, providing additional biomarkers for microbial 

membrane damage and metabolism disruption following xenobiotic exposure. In 

addition, an in vivo mouse study with tempol (5 days gavage) showed similar microbial 

physiological and metabolic phenotypes, indicating the translational application of the in 
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vitro approach.  Our results, through phenotypic evaluation of microbial viability, 

physiology and metabolism, and comparison of in vitro and in vivo exposures with 

representative xenobiotics like tempol, suggests this novel multi-platform physiological 

and metabolic phenotyping provides unique insight into gut microbiome toxicity to better 

inform risk assessment and drug screening.  

 

INTRODUCTION  

 Trillions of microbes reside in the gastrointestinal tract and can significantly 

influence host health, by producing metabolites or molecules that function as available 

energy sources (e.g., short-chain fatty acid (SCFA)) (1, 2), metabolic signals (e.g., bile 

acid) (3, 4) and immune signals (e.g., lipopolysaccharides (LPS))(5, 6). The gut 

microbiota is also profoundly involved in xenobiotic metabolism (drug, environmental 

toxicants), through altering xenobiotic-metabolizing enzymes levels (7, 8), regulating the 

activation of nuclear receptors like the aryl hydrocarbon receptor (AHR) (9, 10), or 

executing direct microbial biotransformation (11). Emerging metagenomic and 

taxonomic tools like long read sequencing with the Pacific Biosciences Sequel system 

(12), online user interfaces like Microbiome Analysist (13), and machine learning 

prediction algorithms (14) have enabled the exploration of the diverse and complex 

microbial community structure. Additionally, metabolomics approaches, including MS- 

and NMR-based techniques provide valuable data to inspect the metabolic fingerprints 

and investigate the correlations between the metabolic profile and physiological or 

metabolic phenotype. Despite metagenomics and metabolomics have revealed a critical 

xenobiotic-microbiome-host axis (9), direct microbial toxicity caused by xenobiotic 
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exposure remains unexplored.  Microbial toxicity assessment is important to understand 

the potential for drugs and other xenobiotics to influence the microbiome directly. This is 

especially true for pharmaceutical chemicals whose metabolic fate and risk are not fully 

elucidated (e.g., tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl)). 

Single-cell techniques, including flow cytometry opens the door for investigating 

physical and chemical characteristics of microbial communities on a cellular level. Flow 

cytometric analysis has been employed to study biochemical activity of a microbial 

population within environmental systems including waste water (15, 16) and aquatic 

ecosystems (17, 18), characterize the physiological structure of the gut microbiota (19, 

20), and assess the microbial response to xenobiotic (21-23) and physical stress (24-26). 

Physiological and metabolic status can be characterized with different fluorescent dyes 

(Figure 4-1). One critical physiological parameter is nucleic acid content. Generally, 

cells with high nucleic acid content indicate more rapid transcriptional and metabolic 

activity and higher growth rate than cells with low nucleic acid content (27, 28). Nucleic 

acid-labeling with the fluorescent dye like SYBR Green stains single and double stranded 

nucleic acids with relatively high affinity regardless of cell membrane status. The 

microbial membrane status is a vital physiological indicator of cellular damage, as the 

loss of membrane integrity and polarity resulting in compromised selective permeability 

and functionality. Propidium iodide (PI) is the most commonly used red nucleic acid dye 

to determine viability of cell (29, 30), as it cannot penetrate intact cell membrane due to 

its biochemical properties unless the membrane is severely damaged and unable to 

prevent the dye from leaking in and staining the nucleic acid. Oxonol dyes like Bis-(1,3-

Dibutylbarbituric Acid) Trimethine Oxonol (DiBAC) can be used to assess loss of 
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membrane polarity (31, 32), another indicator of moderate cell damage. Typically, 

DiBAC is excluded from the cell as both the dye and phospholipid membrane are 

negatively charged. Once the membrane is depolarized and loses membrane potential, 

DiBAC enters and binds to the cellular lipid-containing component. Another indicative 

physiological feature of bacteria is metabolic activity, which can be measured by 

fluorogenic esterase substrates like carboxyfluorescein diacetate (CFDA) (15, 33, 34) and 

carboxyfluorescein diacetate succinimidyl ester (CFSE) (35). Fluorogenic esterase 

substrate is passively loaded into cell where it is converted by intracellular esterases into 

fluorescein analogs which are retained by cells. The strength of fluorescence corresponds 

to the enzymatic/metabolic activity. Labeling bacteria with esterified fluorogenic 

substrates followed by flow cytometric analysis offers a rapid measurement of 

metabolically active bacteria.  

The rapid development of metabolomics techniques have successfully achieved 

high throughput and quantitative measures of small metabolites in complex biological 

matrices in biomedical studies for exploration of the metabolic effects of pharmaceutical 

(36, 37), environmental (38, 39) and dietary factors (40, 41). Mass spectrometry (MS) 

and nuclear magnetic resonance (NMR) spectroscopy are the most widely used platforms 

for global and targeting metabolomics research, and each technique has its own merits 

and limitations. MS-based metabolomics techniques like gas chromatography-mass 

spectrometry (GS-MS) and liquid chromatography-mass spectrometry (LC-MS) have 

excellent sensitivity and efficiency but relatively complicated extraction processes and 

less reproducibility; whereas NMR excels in high reproducibility and simple preparation 

procedure however is hampered by relative insensitivity (42, 43). Metabolome profiling 
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with combined MS and NMR techniques provides complementary insight into the 

characteristic changes of the metabolic, enzymatic pathways and networks following 

xenobiotic exposure. Metabolomics approaches also provide systemic tools to investigate 

global metabolites within microorganisms and monitoring the consequences of the 

interactions between microbiota and the external stressor (44, 45).   

In the current study, microbial toxicity was evaluated physiologically and 

metabolically with isolated gut microbiota following short-term exposure to the 

xenobiotic tempol (Figure 4-2). 1H NMR and Orbitrap LC-MS global metabolomics and 

flow cytometric analysis were performed to characterize the metabolic and physiological 

changes following tempol exposure. Combining the accurate snapshot of the microbial 

physiological state provided by flow cytometry and the metabolic status profiled with 

global metabolomics, the study revealed the direct effect of tempol on microbial 

physiology and metabolism. Importantly, this study supports the potential of integrated 

multi-platform physiological and metabolic phenotyping for microbial toxicity.  

 

MATERIALS AND METHODS 

Microbiome Incubation and Collection 

 6-week-old wild-type male C57BL/6J mice (Jackson Laboratory, Bar Harbor, 

Maine) were transferred into anaerobic chamber (Coy Laboratory Products, Inc., Grass 

Lake, MI) following CO2 asphyxiation. All the following procedures were performed 

under strict anaerobic conditions with an oxygen level below 20 ppm. The cecal content 

was collected and diluted 1:10 (1 g in 10 mL) with brain heart infusion (BHI) broth 

(Sigma, St. Louis, MO). Each suspension was prepared in triplicate (one for flow 
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experiment, the other two replicates for metabolomics analysis). The cecal content 

suspension was treated with tempol at a final concentration 0.01 mg/mL, 0.1 mg/mL and 

1 mg/mL, following a brief centrifuge and incubation at 37 °C for 4 h in dark. The 

negative control group was treated with 12 mM HCl to reach a pH=4.  After incubation, 

two sets of samples were stored at -80 °C for future metabolomics analysis. The other 

samples were centrifuged (700 g, 4 °C for 1 min). 600 µL of the microbial supernatant 

were transferred to a new tube and then centrifuged (6000 g, 4 °C for 3 min). Supernatant 

were discarded and the microbial pellet was washed with pre-filtered (0.2 µm) reduced 

PBS (1X PBS solution containing 137 mM sodium chloride, 2.7 mM potassium chloride, 

10 mM phosphate buffer, 1 mg/mL L-cysteine and 1 µg/mL the oxygen indicator 

resazurin), centrifuged (6000 g, 4 °C for 2 min) and resuspended in 600 µL reduced PBS. 

The wash step was repeated two times until the microbial suspension was colorless. Then 

the microbial cell suspension was diluted 120 fold with reduced PBS. A 500 µL diluted 

microbial suspension was transfer to an FCM tube to be stained for physiology 

assessment.  

 

Microbial Physiology Profiling with Flow Cytometry 

 Four distinct florescent dyes that stain cells based on nucleic acid content (SYBR 

Green I, final concentration 1×, 15 min), membrane damage (PI, final concentration 40 

µg/mL, 15 min; and DiBAC, final concentration 1 µg/mL, 10 min) and biochemical 

activity (CFDA, final concentration 10 µM, 30 min) were applied to microbial 

suspension in the dark and under strict anaerobic condition. All cytometric analyses were 

made using an Accuri C6 flow cytometer (Becton Dickinson, Franklin Lakes, NJ) 
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equipped with a solid state 488 nm laser with standard filter setup. SYBR Green I 

(488/520), DiBAC (488/516), CFSE (488/517) fluoresce in the green channel (FL1) and 

PI (488/620) fluoresces in yellow channel (FL2). Data were analyzed with FlowJo 

software (V10, FlowJo, LLC). Cell growth and transcriptional activity was assessed by 

SYBR Green; metabolic activity was indicated by CFSE; PI and DiBAC were used as 

indicators of a compromised membrane and cell damage. Microbial suspension with a pH 

adjusted to pH=4 with 12 M HCl was used as a negative control for damaged microbial 

cell.  

 

1H NMR Metabolomics Profiling 

 The microbial suspension saved after 4h incubation were used for 1H NMR 

spectroscopy. 1 mL of microbial suspension was centrifuged at low speed (700 g, 4 °C 

for 1 min) to pellet down large particles. Maximum volume of microbial supernatants 

were transferred to a new tube, centrifuged at high speed (6000 g, 4 °C for 3 min) to 

pellet down bacteria. The microbial pellet was washed two times with PBS. After the 

third wash, 1 mL of pre-cooled methanol:H2O (v/v = 2:1) and 1.0 mm diameter 

zirconia/silica beads (BioSpec, Bartlesville,OK) were added to the microbial pellet, 

followed by homogenization (6500 rpm, 1 cycle, 60 s) using the Precellys tissue 

homogenizer ((Bertin Technologies, Rockville, MD). The homogenized sample was 

freeze-thawed three times with liquid nitrogen and 37 °C water bath, then was 

homogenized again and sonicated for 15 min at 250W (ultrasonic 1 min, stop 1 min, 

repeat 8 times) to rupture microbial cell walls and release intracellular metabolites. The 

sample was centrifuged (11180g, 4 °C, and 10 min) and the supernatants was transferred 
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to a new 2 mL tube. Another 1 mL methanol:H2O (v/v = 2:1) was added to the pellets and 

the extraction procedure was repeated. All supernatants were combined, dried down and 

reconstituted in 600 μL of PBS (K2HPO4/NaH2PO4, 0.1M, pH 7.4, containing 50% D2O 

and 0.005% TSP-d4 as internal standard). Following centrifugation (13 000g, 4 °C, 

10min), 550 μL of each extract was transferred into a 5 mm NMR tube for analysis.  

 1H NMR spectra of extracted samples were acquired at 298 K on a Bruker NMR 

spectrometer (600 MHz for 1H) configured a 5 mm inverse cryogenic probe as previously 

described (9). In brief, a standard one-dimensional NOESY – presaturation pulse 

sequence (Bruker 1D noesygppr1d pulse sequence) was employed with irradiation at the 

water frequency during the recycle and mixing time delays to suppress water signal. The 

90° pulse length was adjusted to approximately 10 μs (9.6 dbW) and 64 transients were 

collected into 64 k data points for each spectrum with spectral width of 16 ppm. For the 

resonance assignment, a series of two-dimensional NMR spectroscopy were performed, 

including 1H–1H correlation spectroscopy (COSY), 1H–1H total correlation spectroscopy 

(TOCSY), 1H- 13C heteronuclear single quantum correlation (HSQC) and 1H-13C 

heteronuclear multiple-bond correlation (HMBC) spectra.  

Quality of 1H NMR spectra were improved by phase, baseline correction and 

calibration referenced to TSP-d4 (δ 0.0) using Topspin 3.0 (Bruker Biospin, Germany). 

The NMR spectra then were processed by AMIX 3.9.14 software (Bruker Biospin, 

Germany). The spectral region at δ 0.5- δ 9.0 was bucketed into 0.004 ppm bins. The 

residual water signal (region δ 4.2-5.2) was discarded prior to normalization. The binned 

spectral data were normalized to the sum of total intensity of the spectrum to compensate 

for the overall concentration differences. Multivariate data analysis was performed on the 
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normalized binned NMR data with SIMCA 13 (Umetrics, Sweden). Principal component 

analysis (PCA) was done first with the scores plots showing intergroup separation and the 

possible presence of outliers.  Then orthogonal projection to latent structures with 

discriminant analysis (OPLS-DA) was performed with a 7-fold cross validation method 

using UV scaling. To perform OPLS-DA, a binary variable for Y is created and assigned 

when defining a class (in this case, control group is 0, tempol treatment group is 1) before 

importing to SIMCA. After the model fitting, R2X and Q2 values generated represent the 

predictive power and validity of the models, respectively. The validation of the OPLS-

DA model was further confirmed by CV-ANOVA analysis (implemented in SIMCA 13). 

To facilitate interpretation of the results, color-coded loading plots using Pearson linear 

correlation coefficients of variables from OPLS-DA loadings were generated by 

MATLAB (The Mathworks Inc., Natwick, MA). The hotness of the color represents the 

significance of the metabolite contribution to intergroup separation, with a “hot/red” 

color being more significant than a “cold/blue” color. A cutoff value of |r| > 0.754 (r > 

0.754 and r < −0.754) was used as significant based on the discrimination significance (p 

≤ 0.05). 

 

LC-MS Metabolomics Profiling  

 600 µL of bacteria suspension after 4h incubation was centrifuged (700 g, 4 °C 

for 1 min) and supernatants were transferred to a new tube, centrifuged (6000 g, 4 °C for 

3 min) and washed 3 times with PBS. After the final centrifuge, 1 mL cold 50% aqueous 

methanol containing 1 µM chlorpropamide and 1.0 mm diameter zirconia/silica beads 

(BioSpec, Bartlesville,OK) were added to the microbial pellet, following with the 
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homogenization (6500 rpm, 1 cycle, 60 s). The sample was freeze-thawed three times 

with liquid nitrogen to break tough microbial cell wall. Then the sample was centrifuged 

(max speed, 4 °C, and 10 min), supernatants were transferred to a new EP tube, dried 

down and resuspended in 200 µL 3% aqueous methanol. After a final spin (max speed, 4 

°C, and 10 min), 150 µL supernatants were transferred to autosampler for LC-MS 

analysis. 

Metabolomics profiling was performed with a Dionex Ultimate 3000 quaternary 

high-performance liquid chromatography (HPLC) pump, column compartment and 

autosampler coupled Exactive plus Orbitrap mass spectrometer controlled by Xcalibur 

2.2 software (Thermo Fisher Scientific, Waltham, MA). LC-MS was run with a modified 

ion pairing reversed phase negative ion electrospray ionization method (46). A total 

volume of 10 µL sample is injected and separated on a Phenomenex (Torrance, CA) 

Hydro-RP C18 column (100 × 2.1 mm, 2.5 µm particle size) using a water/methanol 

gradient with tributylamine and acetic acid added to the aqueous mobile phase to enhance 

separation. The HPLC column is maintained at flow rate of 200 µL/min with the 

temperature of 30 °C. Solvents and gradient are as follows: Solvent A is 3% aqueous 

methanol with 10 mM tributylamine and 15 mM acetic acid; solvent B is 100% methanol. 

The gradient is 0 min, 0% B; 5 min, 20% B; 7.5 min, 20% B; 13 min, 55% B; 15.5 min, 

95% B; 18.5 min, 95% B; 19 min, 0% B; and 25 min, 0% B. The Exactive plus is 

operated in negative ion mode at maximum resolving power (140,000), and scanned from 

m/z 72 -1000 for the first 90 sec and then from m/z 85-1000 for the remainder of the 

chromatographic run for the detection of small molecule metabolites. The automatic gain 

control target is 3E6 with a maximum injection time of 100 us, the nitrogen sheath gas 
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flow rate is set at 35, the auxillary gas at 10 and the sweep gas at 1. The capillary voltage 

is 3.2 kV and both the capillary and heater set at 200 °C, the S-lens was 55.  

 Orbitrap-LC-MS data was analyzed with the open-source software pipeline MS-

Dial (47). An in-house library generated from 288 pure metabolite standards were used 

for peak identification with a strict accurate mass tolerance 0.002 Da (5 ppm at mass of 

400) and retention time tolerance 0.5 min. Raw integrated data was normalized to 

chlorpropamide (m/z: 275.0262, RT:16.91). Filtering methods were applied to remove 

features with greater than 50 % gap-filling and their peak areas were less than 

background signal of blank injection. Chemical and biochemical similarity among 

identified compounds was calculated with MetaMapp (48). Biochemical mapping was 

calculated based on the KEGG reactant pairs database and chemical mapping was 

obtained from substructure comparison in PubChem database using Tanimoto chemical 

similarity. For the visualization of biochemical and chemical mapping, Cytoscape is used. 

P-value from statistical t-test and fold change can show node color (related to up- and 

down-regulation) and node size related to absolute value of fold change. MetaboAnalyst 

(http://metaboanalyst.ca)(49) is used for metabolite set enrichment analysis, which 

identify a collection of pre-curated metabolite pathways using KEGG pathway 

information. Significant pathway of globaltest’s p-value less than 0.05 are selected for 

visualization by rendering PathView package (50). For the metabolic profile visualized 

with heatmap, Z-scores were created with the equation z=((x- x ̅))/(sd(x)). All shown 

identified metabolites are significant at P<0.05 from a student’s t test in high tempol 

group relative to control. Heatmaps were created with the heatmap.2 function from the 

gplots package in R. 

http://metaboanalyst.ca/
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Quantitative PCR Analysis 

Standard curve construction 

E.coli (WT MG1655) was cultured in Luria Bertani media at 37°C, 220 rpm in 

the incubator overnight. Spectrophotometer readings at OD600 were obtained (Eon™ 

Microplate Spectrophotometer, BioTek) to estimate bacteria number. A series of diluted 

E.coli media (dilution degree is based on estimated bacteria number) were cultured on LB 

agar plates under the same conditions (24h at 37°C). All plate cultures analyzed in 

triplicate. The countable colonies counts were averaged to determine the total bacteria 

number, represented as colony-forming units (CFU). In parallel, DNA from the same 

E.coli culture was extracted using E.Z.N.A stool DNA kit (Omega BioTek). Quantitative 

PCR assays were carried out using 16S rRNA universal primers (8F: 5’-

agagtttgatcctggctca-3’, 338R: 5’-ctgctgcctcccgtaggagt-3’) on serially diluted DNA with 

FastSYBR green QPCR master matrix on an ABI Prism 7900HT Fast Real-Time PCR 

sequence detection system (Applied Biosystems, Foster City, CA). The reactions were 

analyzed according to the ΔΔCT method.  QPCR conditions were 95°C for 20 s; 95 °C 

for 3s; 60 °C for 30 s, 45 cycles. Standard curve was constructed with CT value versus 

microbial number.  

 

Bacteria quantification 

Microbial DNA from cecal content (50 mg) were extracted using E.Z.N.A stool 

DNA kit (Omega Bio-tek). DNA concentration was determined by Nanodrop and diluted 

in DEPC water at a concentration of 1 ng/µL. DNA was then subjected to quantitative 
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PCR using FastSYBR green with indicated universal 16S rRNA primers, PCR condition 

and ΔΔCT method above. Ct values were substituted into standard curve. Finally results 

were expressed as bacteria number per mg of microbial pellet. For relative specific 

bacteria quantification, specific primers were utilized instead of the universal primer.  

 

Statistical Analysis 

 Graphical illustrations and statistical analyses were performed using Prism 

version 6. Microsoft Excel (2016) and R studio (1.1.419). All data values were expressed 

as mean ± sd.  Statistical significance was defined as p<0.05.  Pearson correlation 

analysis was used to investigate the relationships between stain intensity and metabolite 

levels across all three doses (low, medium and high). Statistical significance was 

determined by transforming the Pearson r values into t values and then using t 

distributions to determine P values. The equation used to find the statistical significant 

cutoff was r=t÷√((t^2+n-2)), where r is the correlation value and n is the number of 

subjects. In this experiment, n was equal to 24. The t value was found by using the Excel 

function tinv (0.05,22), where 0.05 represents a P value of 0.05 and 24 is the degrees of 

freedom for this experiment (n-2). Results were shown using the heatmap.2 function from 

the gplots package in R. 

 

RESULTS 

Short Term Exposure of Xenobiotic in Vitro Directly Impacts Microbial Physiology 

in a Dose-Dependent Manner 
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 First, microbial physiology after short-term exposure of the xenobiotic tempol in 

vitro was examined using a flow cytometric approach (Figure 4-3).  Microbiota isolated 

directly from the mouse cecum were incubated in BHI broth containing different doses of 

tempol (0.01 mg/mL, 0.1 mg/mL and 1 mg/mL) under strict anaerobic condition for 4 

hours. A pH=4 group was introduced as a positive control by treating microbiota with 12 

mM HCl to reach a pH=4. Acid treatment caused direct, severe damage to microbial 

membranes indicated by a significant high percentage of PI+ cells (40.7% PI+ cells with 

pH=4 treatment versus 12.5% in control in average, p<0.0001, Student's t-test) and 

DiBAC+ cells (81.3% DiBAC+ cells in pH=4 group versus 39.2% in control group in 

average, p<0.0001, Student's t-test). Additionally, pH=4 group showed a significant slow 

growth rate indicated by a decrease of SYBR Green-stained cells (an average of 85.8 % 

SYBR+ cells in pH=4 group compared to 91.9% in control group; p<0.0001, Student's t-

test), and drastically decreased metabolic activity revealed by very low percent of 

CFDA+ cells (2.3 % averaged CFDA+ cells in pH4 group comparing to 36.5% in control 

group; p<0.0001, Student's t-test). The negative control with the anticipated compromised 

physiology and metabolic activity validated the feasibility of the flow cytometry method. 

Flow cytometry analysis revealed a significant increase of DiBAC+ cells following high 

dose tempol exposure (1 mg/mL) and an marked elevation of PI+ cells at medium and 

high dose of tempol exposure (0.1 and 1 mg/mL) in vitro, indicating excessive membrane 

depolarization and loss of membrane integrity of microbiota in response to tempol. A 

significant decrease of CFDA+ cells were observed with all three different doses of 

tempol exposure (0.01 mg/mL, 0.1 mg/mL and 1 mg/mL) compared to control in vitro, 

suggesting the compromised metabolic activity of tempol-exposed microbiome. These 
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data together demonstrated tempol directly impacts membrane health and metabolic 

activity of microbiome in vitro without the involvement of host component. Notably, the 

impact of tempol on microbial physiology in vitro is dose-dependent with a 100-fold dose 

range (0.01 - 1 mg/mL).   

 

Xenobiotic Tempol Directly Alters Microbial Metabolism in Vitro  

 We did metabolic profiling of tempol-exposed microbiota in vitro with global 1H 

NMR metabolomics. NMR analysis revealed a dose-dependent decrease of microbial-

derived metabolites including acetate, propionate, butyrate, valine, leucine and 

isoleucine, suggesting the inhibition of microbial fermentation by direct tempol exposure 

in vitro (Figure 4-4). In addition, energy metabolites and the fermentation substrates 

glucose and oligosaccharides were at higher concentration in microbiota exposed at high 

dose tempol, consistent with the low metabolic activity of tempol-exposed microbiome 

revealed by decreased CFDA fluorescence by flow cytometric analysis in vitro. 

Moreover, a significant change in amino acid profiles characterized with a decrease of 

phenylacetate and an increase of aromatic amino acids including tyrosine and 

phenylalanine were identified. It has been reported microbial enzymes and genes 

participate in aromatic amino acid catabolism, emphasizing the significant role of 

microbiome in phenylalanine and tyrosine degradation (51). Moreover, It has been 

elucidated microbial enzymes involve in the anaerobic oxidation of phenylalanine to 

generate phenylacetate (52). Therefore, the compromised microbial metabolism with a 

low microbial enzyme activity after tempol exposure might explain the increased 

aromatic amino acid substrates phenylalanine and tyrosine, and decreased degradation 
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product phenylacetate in the metabolic profile. The most versatile amino acid threonine 

serving as a precursor for SCFAs synthesized by microbiome (53), was also significantly 

increased with tempol exposure, together with the low SCFAs production, confirms the 

compromised microbial metabolic activity. Interestingly, the integration of physiological 

and metabolic biomarkers revealed a unique, strong and direct correlation of microbial 

physiology and metabolites following direct tempol exposure in vitro (Figure 4-5). 

Specifically, the inactivation physiological biomarkers (membrane damage indicators) PI 

and DiBAC are positively correlated with inactivation metabolic biomarkers (catabolism 

substrates) including glucose, oligosaccharides and amino acids, while negatively 

correlated with activation metabolic biomarkers (catabolism products) including SCFAs 

and branched-chain amino acids (BCAAs). These data suggested the compromised 

microbial metabolic activity is strongly correlated with the disrupted microbial membrane 

by direct xenobiotic exposure. 

 

Agreed Physiological and Metabolic Profiles of Tempol-Exposed Microbiome in 

Vivo and in Vitro 

 To further validate the viability of the described multi-platform approach in vitro, 

an in vivo exposure model was developed by gavaging tempol to mice with a dose of 100 

mg/kg.  The in vivo effect of tempol on microbial physiology and metabolism was 

analyzed with the microbial isolates from the tempol-treated mouse cecum following the 

same procedure performed for in vitro analysis. Consistent with in vitro results, the 

microbial physiological status characterized by increased severe membrane damage 

(higher percentage of PI+ cells, p<0.01, Student's t-test) and decreased metabolic activity 
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(lower percentage of CFDA+ cells, p<0.05, Student's t-test) were observed in vivo with 

tempol treatment (Figure 4-3B). Noted, the proportion of DiBAC+ cells, which showed a 

significant increase in vitro, remained unchanged in vivo with a greater variation of 

staining percentage. As DiBAC stains for membrane depolarization which might be more 

sensitive to mild environmental stress, the likely additional mild environmental stress 

introduced during longer preparation procedure of in vivo samples results in observed 

larger variation and loss of statistical significance during DiBAC staining.  

 Microbial metabolic profiling after in vivo tempol exposure by 1H NMR revealed 

similar metabolic fingerprints with in vitro exposure, characterized by a lower level of 

SCFAs and BCAAs and a higher level of glucose and oligosaccharides (Figure 4-6B). 

The consistent results in vitro and in vivo suggested the in vitro method could be a 

convenient and economic in vivo alternative to predict the in vivo microbial toxicity upon 

a xenobiotic exposure using flow cytometric and global metabolomics analysis. 

 

Xenobiotics Tempol Modulates Microbial Composition Directly in Vitro 

 It is well-established that the microbiome composition is intimately related to 

microbial functional roles and host metabolic outcomes.  Having defined the 

physiological and metabolic changes of tempol-exposed microbiome in vitro, we then 

investigated the microbial community composition following tempol exposure in vitro by 

QPCR analysis (Figure 4-7). First, total bacterial quantitation revealed a significant 

decrease in total bacterial population in medium and high dose of tempol exposure in 

vitro, consistent with the decreased total gut microbiota quantified in the in vivo model 

(54). Consistent with previous in vivo studies of tempol (4, 54), a significant decrease of 
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β-proteobacteria, Clostridium coccoides, Closteridum leptum Subgroup and Lactobacillus 

spp., were confirmed in the tempol-exposed in vitro model. This data suggested the 

observed microbial composition change in tempol-treated mice (54) is likely due to 

primary impact of tempol on microbiome directly without necessarily involvement of 

host components, as the tempol exposure in vitro have induced the similar modulatory 

effect on microbial quantitation and composition.  

  

Orbitrap-LC-MS Revealed Metabolic Biomarkers in the Functional Networks 

 To provide an in-depth view of xenobiotic-altered microbial metabolic features 

and pathways, LC-MS was performed for additional metabolic biomarker identification 

and metabolic network assessment. Orbitrap-LC-MS analysis identified over 40 

significantly changed microbial metabolites in the tempol-treated group, providing 

additional metabolic biomarkers for microbial membrane damage and metabolism 

disruption following tempol exposure (Figure 4-8). KEGG functional pathway analysis 

(Table 4-1) revealed a broad coverage of metabolic pathway being altered by tempol 

exposure, especially nucleotide, amino acid and sugar metabolism suggesting the 

compromised physiological and metabolic activity. Metabolite network suggested a dose-

dependent change of the tempol-treated microbial profiles relative to control (Figure 4-

9). Specifically, a significant downregulation of deoxyribose, ribose nucleotides and 

derivatives including dAMP, dCMP, dGMP, dTMP, GDP, uridine and uric acid was 

spotted. Nucleotides are used not only as backbone material for RNA and DNA 

synthesis, but also as energy donors for many cellular function including amino acid, 

proteins and cell membrane and component synthesis and transportation (55). The 
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downregulation of nucleotides with tempol exposure agreed with the altered aminoacyl-

tRNA biosynthesis, amino acid, pyrimidine and purine metabolism annotated by KEGG. 

Moreover, a marked change in amino acids metabolism identified by KEGG pathway 

analysis was visualized in heatmap (Figure 4-8) and functional network metamap 

(Figure 4-9). High tempol exposure induced an overall decrease of essential amino acids 

(leucine, isoleucine, tryptophan, methionine), conditionally essential and non-essential 

amino acids (arginine, aspartate, taurine, proline, glutamate), amino acids derivatives 

(acetyl-glycine, acetyl-alanine, acetyl-glutamine, acetyl-ornithine, valyl-asparate). As 

amino acids carry out important nutritional and physiological roles in proteins and 

coenzymes synthesis, cell signaling and gene regulation (56),  a perturbed amino acids 

pool serve as indicative biomarkers of the compromised physiological and metabolic 

function of microbiome with tempol exposure. In addition, a significant decrease of 

glucose-6-phosphate was seen in microbiome exposed with all three different tempol 

doses, suggesting a compromised glucose metabolism with tempol exposure as glucose-

6-phosphate is the initiating molecule of two major glucose metabolic pathways 

including glycolysis and pentose phosphate pathway (57).  Importantly, decreased 

glucose metabolism revealed by LC-MS is in agreement with the high level of sugar 

substrates like glucose and oligosaccharides detected by NMR, together suggesting 

compromised microbial energy source catabolism with tempol exposure. Moreover, 

significantly decreased hydroxyphenylacetate, phenylpyruvate and hydroxybenzoate 

revealed the decreased microbial anaerobic metabolism of aromatic compounds (58, 59), 

consistent with the NMR results showing a decrease of phenylacetate and an elevated 

aromatic substrates.  Altogether, the tempol-disrupted microbial metabolism is revealed 
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with a wide range of biomarkers participating in nucleotide, amino acid and glucose 

metabolism by LC-MS in addition to NMR, suggesting a profound and extensive 

microbial toxicity of tempol. The compromised microbial metabolism revealed by 

metabolomics is in agreement with tempol-disrupted membrane physiology and 

metabolic rate characterized by flow cytometry, demonstrating the intimately direct 

relationship between microbial physiology and metabolism, as well as the feasibility of 

assessing microbial toxicity of xenobiotic exposure with the physiological and metabolic 

biomarkers by multi-platform functional phenotyping approach. 

 

DISCUSSION 

 The well-established link between disease and disrupted gut microbiome-host 

interactions empowers the microbiota-targeted therapies (60). Thorough study of the 

potential toxicity of new compounds to the microbiome may identify new off target 

effects and improve risk assessment. This study took advantage of high-throughput 

metabolomics, combined with flow cytometry and in vitro bacteria culture, to extensively 

investigate the physiological and metabolic toxicity of the microbiome exposed with a 

typical xenobiotic tempol. The multi-platform functional phenotyping revealed a direct 

influence of short-term tempol exposure on microbial membrane health and metabolic 

activity, providing additional insight into the application of the gut microbiome as a 

screening tool to better understand the mode of action of xenobiotics to better inform risk 

assessment and drug screening. 

 A human microbiome study demonstrated that membrane damage indicated by 

membrane depolarization and integrity loss is significantly increased with environmental 
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hazards like high heat and oxygen exposure (61). In the current study, we observed 

disrupted membrane physiology characterized with excessive loss of polarity (DiBAC+) 

and integrity (PI+) by flow cytometry with xenobiotic tempol exposure, implying tempol 

directly targets the microbiome to introduce environmental stress to microbial membrane. 

Membrane physiology including membrane potential, integrity and energy metabolism is 

the prerequisite for its function, including ions, proteins, nucleic acids, nutrients and 

metabolites passive permeability and active transportation, extracellular environment and 

intercecullar  communication and signal transduction (62). Thus, the disrupted membrane 

physiology could lead to profound and extensive physiological and metabolic 

consequences. We confirmed the disrupted biochemical and metabolic activity along with 

damaged membrane with both physiological and metabolic biomarkers using flow 

cytometry and metabolomics. With flow cytometric analysis, physiological biomarker 

CFDA, which is readily retained and fluorescent in cells with an intact membrane and 

highly active enzymatic activity (15), showed a significantly weaker fluorescent signal 

after tempol exposure, confirming the disrupted membrane physiology and subsequently 

compromised enzymatic and biochemical activity.  

 In addition to physiological biomarkers, informative microbial metabolic 

biomarkers and the altered metabolic functional pathways with tempol exposure were 

identified with high-throughput MS- and NMR-based metabolomics. The combination of 

MS- and NMR-based metabolomics surpasses the limitation of MS or NMR when 

performed alone (63) and permits a broader view of the metabolic alterations with 

improved metabolite identification confidence (64). NMR analysis identified 

significantly inhibited microbial fermentation and catabolic activity revealed by a 
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decrease of degradation products (SCFAs) and an increase of fermentation/degradation 

substrates (glucose, oligosaccharides) and precursors (threonine). More sensitive LC-MS 

analysis identified over 40 significantly changed metabolites with tempol exposure in 

addition to NMR. Many of the metabolites are involved in the critical metabolic 

pathways of nucleotide synthesis (dAMP, dCMP, dGMP, dTMP and UMP), amino acids 

(leucine, isoleucine, tryptophan, methionine, arginine, aspartate, taurine, proline, 

glutamate), amino acid derivatives (acetyl amino acid, dipeptide and tripeptide) and sugar 

derivatives (glucose-6-phosphate, lactate) identified with KEGG, suggesting the marked 

and profound systemic metabolic response of microbiota to tempol exposure. We have 

reported tempol promotes host energy homeostasis and glucose metabolism in mice by 

inhibiting microbial fermentation, hence shifts host energy balance from energy reserving 

to expenditure as an adaptive response of the host to the restricted intestinal microbial-

derived SCFAs (54). Consistent with the in vivo finding, a significant inhibition of 

microbial fermentation activity with short-term tempol exposure was observed in vitro as 

well, demonstrating the tempol-induced host energy metabolism regulation via 

modulating microbiome is likely through direct microbiome-targeting mechanism rather 

than host-targeting mechanism. It has been suggested different microbial species 

contribute differently to the synthesis of essential amino acids and non-essential amino 

acids in response to the environmental stimulations (65). Given tempol modulates 

microbial composition readily in vivo (66) and in vitro (Figure 4-7), the alterations in 

amino acids profile in vitro is anticipated. Tempol has been reported to scavenge reactive 

oxygen species to protect nucleic acid, protein and lipid against oxidative stress, and 

increase the NAD+/NADH ratio to promote energy metabolism against obesity in vivo 
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with animal models (67). This is the first time, the direct impact of tempol on microbial 

energy metabolism was reported. Notably, the altered metabolic pathways are 

functionally interconnected and mutually dependent. For example, nucleotides serve as 

both building blocks for nucleic acids synthesis and energy donors for cellular 

physiological and metabolic function. The altered nucleotide metabolism by tempol 

impacts the microbial growth revealed by total bacteria counts, and disturbs the energy 

supply that other metabolic pathways dependent on, leading to disrupted amino acids 

metabolism and sugar metabolism observed. On the other hand, nucleotide metabolism 

requires sugar units as the backbone component and amino acid-formed protein to 

catalyze the reaction, thus the alteration in sugar and amino acid metabolism due to 

tempol also cause perturbation in nucleotides metabolism. Sugars provide the critical 

energy source for microbiome, however requires nucleotide adenosine triphosphate 

(ATP) for energy storage to support cellular work. Therefore, the changed nucleotide 

metabolism with tempol exposure could interfere with the sugar metabolism.  In addition, 

the compromised amino acid metabolism with tempol exposure could be either the result 

of the depleted energy supply due to disrupted nucleotide and carbohydrate metabolism, 

or the cause of the compromised energy metabolism, as the nucleotide and carbohydrate 

metabolic pathways are heavily dependent on the protein-based enzymes and co-factors 

triggered catalytic reactions, which are synthesized from amino acids.  

 The normal intracellular metabolism is dependent on healthy membrane for 

toxicant exclusion, nutrients and metabolites transportation, signaling transduction and 

intercellular communication, while replenish and maintenance of normal membrane 

physiology require biological molecules and energy fueled from metabolic activity. With 
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the in vitro model, direct and strong correlations between physiological and metabolic 

biomarkers were established in gut microbiome community. The physiological 

biomarkers indicating membrane damage (DiBAC+ and PI+) are positively correlated 

with inactivation metabolic biomarkers (energy substrates like glucose and 

oligosaccharides) and negatively linked to activation metabolic biomarkers (catabolism 

products like SCFAs and BCAAs). Similarly, the physiological biomarkers (CFDA+) and 

metabolic biomarkers, which indicates activation, are positively correlated. As the health 

membrane and normal metabolic activity are mutually dependent, the integrated 

physiological and metabolic profiles revealed by multi-platform approach provide 

informative functional assessment of the microbial response to xenobiotic in addition to 

the compositional change evaluated with sequencing or QPCR based techniques. 

Notably, the practical applicability of the described multi-platform approach for 

microbial toxicity in vitro was validated with in vivo mice model. The consistent results 

of the multi-platform functional phenotyping with in vitro and in vivo tempol exposure 

model demonstrated the in vitro method could be a convenient and economic alternative 

to represent and predict the microbial response to xenobiotic exposure in vivo.   

 The gut microbiome is extremely susceptible to modulation from environmental 

toxicants and orally ingested xenobiotics, indicating the gut microbiome can be used as a 

valuable screening tool to better understand the mode of action and potential toxicity of 

xenobiotics and drugs. The gut microbiome has been incorporated into drug screening 

recently with 40 human microbial stain representatives being selected to screen more than 

1000 non-antibiotic drug (68). An astonishing 24% of non-antibiotic drugs presented 

antimicrobial or microbial modulatory effects, uncovering the potential risk of non-
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antibiotics promoting antibiotic resistance. The current work confirmed the gut 

microbiome as a valuable drug and xenobiotic screening tool by assessing functionally 

informative physiological and metabolic phenotype of gut microbiome, and validating the 

translational application from in vitro to in vivo.  

 

CONCLUSION 

 The gut microbiome can be associated with disease pathogenesis and is 

increasingly appreciated as promising therapeutic target. Using the gut microbiome as a 

screening tool opens the door for better understanding the underlying mechanism and 

potential toxicity of the microbiome-targeted xenobiotic/drug. This work presented a 

novel multi-platform functional phenotyping approach that combines in vitro culturing, 

flow cytometry and global metabolomics for the integrated characterization of the 

physiological and metabolic phenotype of the microbiome in response to xenobiotic 

exposure. The study discovered the physiological and metabolic biomarkers, 

demonstrated the direct correlation between physiology and metabolism in the response 

of gut microbiome to xenobiotic stimuli, and validated the in vitro multi-platform 

functional phenotyping as a feasible in vivo alternative to evaluate microbial toxicity.  
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Figure 4-1 

 

 

Figure 4-1. Flow Cytometry Provides a Snapshot of the Microbial Physiological 

States. Four fluorescent dyes are used to evaluating different physiological parameters. 

Nucleic acid-labeling fluorescent SYBR Green indicates growth rate, Bis-(1,3-

Dibutylbarbituric Acid) Trimethine Oxonol (DiBAC) assesses membrane depolarization 

(moderate damage), Propidium iodide (PI) determines loss of membrane integrity (severe 

damage) , carboxyfluorescein diacetate (CFDA)/carboxyfluorescein diacetate 

succinimidyl ester (CFSE) measures metabolic activity.  
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Figure 4-2 

 

 

 

Figure 4-2. Experimental Scheme of the Microbial Toxicity Assessment. Microbes 

isolated from mouse gut are incubated with xenobiotic (tempol) for 4h under strict 

anaerobic conditions (O2 < 20 parts per million). Microbial toxicity is evaluated by 

characterizing microbial physiological and metabolic status. Microbial physiological 

status is evaluated by flow cytometry with different fluorescent dyes indicating 

membrane damage and biochemical activity. Microbial metabolism is assessed by global 

NMR- and LC-MS-based metabolomics. 
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Figure 4-3 

 

Figure 4-3. Xenobiotic Tempol Directly Impacts Microbial Physiology. Microbial 

physiology was evaluated by flow cytometry after tempol exposure via (A) 4h short-term 

incubation of microbial isolates with different doses of tempol (0.01, 0.1. 1 mg/mL) in 

vitro; (B) 5-day gavage of tempol (100 mg/kg) to mice in vivo. p**<0.01, p***<0.001, 

p****<0.0001. One-way ANOVA with Tukey’s correction. pH4 group is introduced as a 

control. All data are presented as mean ± sd.  (n=6 isolates per group) 
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Figure 4-4 

 
Figure 4-4. Xenobiotic Tempol Directly Impacts Microbial Metabolic Profiles 

Characterized by 1H NMR. Relative concentration of microbial metabolites with 

different doses of tempol exposure in vitro were measured by 1H NMR analysis. 

p**<0.01, p***<0.001, p****<0.0001 compared to control. One-way ANOVA with 

Tukey’s correction. All data are presented from min to max ranges with box and whisker 

plots.  (n=6 isolates per group) 
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Figure 4-5 

 

 

Figure 4-5. Strong Correlations Between Microbial Physiology and Metabolism. 

Pearson correlation analysis was performed between physiological biomarkers and 

metabolic biomarkers characterized with flow cytometric and NMR analysis, respectively 

and visualized using the heatmap.2 function from the gplots package in R. Positive 

correlation is indicated by  “hot” color (e.g., red)  while negative correlation is indicated 

by “”cold” color (e.g., blue). 
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Figure 4-6 

 

Figure 4-6. Similar Microbial Metabolic Fingerprints between in Vivo and in Vitro 

Exposure of Tempol Revealed by 1H NMR. OPLS-DA scores plots (left) indicating 

model quality and coefficient plots (right) displaying metabolites changes, are generated 

using 1H NMR spectra of microbial extract from (A) microbial isolates after 4h short-

term incubation with tempol (1 mg/ml) in vitro (n=6 isolates per group); (B) microbial 

isolates from mice gavaged tempol (100 mg/kg) in vivo (n=4 mice per group). The 

hotness of the color is corresponding to the discrimination significance of the metabolite 

contributed to the model separation. Positive peak indicates the metabolite presented in 

higher concentration in tempol treatment group, while negative peak indicates the 

metabolite is in higher level in control group. 
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Figure 4-7 

 

Figure 4-7. Xenobiotics Tempol Modulates Microbial Composition Directly in Vitro. 

Quantitative PCR analysis 16s rRNA gene in the microbial isolates exposed to tempol in 

vitro with (A) universal primers for absolute quantification of total bacteria with a 

standard curve (B) targeted primers for relative quantitation of specific bacteria. p*<0.05, 

p**<0.01, p***<0.001, p****<0.0001 relative to control. One-way ANOVA with 

Tukey’s correction. All data are presented as mean ± sd.  (n=6 isolates per group) 
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Figure 4-8 

 

Figure 4-8. LC-MS Revealed Altered Microbial Metabolic Profile in Response to 

Tempol. Metabolomic changes are illustrated with z scores showing the number of 

standard deviations each metabolic level is away from the mean for each sample. Red 

colors represent metabolites that are increased or above the mean and blue colors 

represent metabolites that are decreased or below the mean. 
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Figure 4-9 

 
Figure 4-9. Metabolic Network Changes of Microbiome in Response to Tempol 

Exposure. Network map was drawn with MetaMapp (for chemical and biochemical similarity) 

and Cytoscape (for visualization) using normalized LCMS data (to internal standard). The blue 

and red of stand for significant down- and up-regulated compounds compared with control group 

respectively, but green color means no significant difference, which are calculated from T-test. 

The size of node is dependent on the absolute value of fold change. The orange peel (#FF9900) 

and Egg blue (#00CCCC) colors stands for Tonimoto coefficient and KEGG reaction pairs 

obtained from MetaMapp package, respectively. 
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Table 4-1. Primer Sequences of Bacteria for QPCR Analysis  

 
target group forward primer reverse primer 

Universal AGAGTTTGATCCTGGCTCAG (8F) CTGCTGCCTCCCGTAGGAGT (338R) 

Lactobacillus.spp AGCAGTAGGGAATCTTCCA (LabF362) CACCGCTACACATGGAG (LabR677) 

αProteobacteria ACTCCTACGGGAGGCAGCAG (Eub338) TCTACGRATTTCACCYCTAC (Alf685) 

βProteobacteria ACTCCTACGGGAGGCAGCAG (Eub338) TCACTGCTACACGYG (Bet680) 

γProteobacteria CMATGCCGCGTGTGTGAA (γ395f) ACTCCCCAGGCGGTCDACTTA (γ 871r) 

Actinobacteria CGCGGCCTATCAGCTTGTTG (Actino235) ATTACCGCGGCTGCTGG (Eub518) 

Firmicutes GCAGTAGGGAATCTTCCG (Lgc353) ATTACCGCGGCTGCTGG (Eub518) 

Bacteroidetes GTACTGAGACACGGACCA (Cfb319) ATTACCGCGGCTGCTGG (Eub518) 

Clostridium 

coccoides group 

AAATGACGGTACCTGACTAA  

(g-Ccoc-F) 

CTTTGAGTTTCATTCTTGCGAA 

(g-Ccoc-R) 

Clostridium 

leptum subgroup 

GCACAAGCAGTGGAGT 

(Sg-Clept-F) 

CTTCCTCCGTTTTGTCAA 

(Sg-Clept-R3) 
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Table 4-2. KEGG Functional Pathway Analysis.  

 

Normalized LCMS data (to internal standard) were mapped to the KEGG orthology 

database using MetaboAnalyst. The denominator and numerate are the number of 

compounds shown in each pathway and the number of compounds shown in the LCMS 

data. The p-value is estimated from global test based on hypergeometric test for the 

probability of having n-number metabolites of a pathway in the input list, and the Holm 

adjust and FDR are applied for multiple comparison. Here the top-ranked pathways are 

selected in each comparison. 

Control vs Tempol High 
Pathway Match Status Raw p -log (p) Holm adjust FDR Impact 
Aminoacyl-tRNA biosynthesis 8/69 0.000172 8.666 0.014133 0.014133 0 
Ascorbate and aldarate metabolism 2/9 0.019142 3.9559 1 0.46498 0 
Arginine and proline metabolism 4/44 0.02099 3.8637 1 0.46498 0.23975 
Phenylalanine metabolism 2/11 0.028353 3.563 1 0.46498 0.24074 
Valine, leucine and isoleucine biosynthesis 2/11 0.028353 3.563 1 0.46498 0.66666 
Histidine metabolism 2/15 0.05089 2.9781 1 0.69549 0 
Valine, leucine and isoleucine degradation 3/38 0.064532 2.7406 1 0.75477 0 
Pyrimidine metabolism 3/41 0.077566 2.5566 1 0.75477 0.10996 
Purine metabolism 4/68 0.08284 2.4908 1 0.75477 0.04842 
              

Control vs Tempol Medium 
Pathway Match Status Raw p -log (p) Holm adjust FDR Impact 
Pyrimidine metabolism 3/41 0.009695 4.6362 0.79497 0.74959 0.18496 
Starch and sucrose metabolism 2/19 0.018283 4.0018 1 0.74959 0 
Purine metabolism 3/68 0.037788 3.2758 1 1 0.04607 
              

Control vs Tempol Low 
Pathway Match Status Raw p -log (p) Holm adjust FDR Impact 
Amino sugar and nucleotide sugar metabolism 2/37 0.012832 4.3558 1 1 0.04649 
beta-Alanine metabolism 1/17 0.081183 2.511 1 1 0 
Glycerolipid metabolism 1/18 0.085777 2.456 1 1 0.0256 
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The dissertation is a thorough investigation of the high-throughput metabolomics 

approaches including GC-MS, LC-MS and NMR, which covers method development, 

optimization, validation and extensive application combined with other biochemical and 

bioinformatics approaches to explore the impact of xenobiotics on the microbiome-

metabolite-host interaction to fully elucidate the therapeutic and toxicity potential of 

microbiome-targeting xenobiotics.  

 

NMR and MS-based metabolomics is one of the most powerful bioanalytical tools 

to study the biological and metabolic consequences of complex environmental stimuli 

like drugs, toxicants, and diet for the understanding the link between environment, gut 

microbiome, and health (1-3). The rapid development of metabolomics techniques in the 

past decade has permitted high throughput and efficient quantitative detection of small 

molecule metabolites within complex systems. Metabolomics represents an excellent 

option to study microbial-derived metabolites and microbiome-host co-metabolites to 

understand the metabolite chatter between the host and the gut microbiome (4-7). MS- 

and NMR-based approaches are extensively utilized in metabolomics, however the 

inherent insensitivity issue for NMR and low reproducibility problem for MS have raised 

accuracy and reliability concerns (8). In chapter 2, confident metabolomics methods 

using both NMR and GC-MS for SCFAs quantitation with improved analytical 

performance and comparable quantitation results were developed and confirmed. First, 

four different SCFAs quantitation methods were thoroughly investigated and optimized 

from extraction, instrumentation and data integration using two independent platforms. 

The optimized methods were applied to quantify the SCFAs level in pooled mice feces 
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and the comparable quantitation results from different methods demonstrated the methods 

are dependable and reliable. Second, the analytical performance including sensitivity, 

accuracy and reproducibility were compared orthogonally and suitable applications were 

assigned for each method accordingly (Table 5-1). The GC-MS-based derivatization 

method with superior sensitivity and accuracy yet slow sample preparation and data 

acquisition procedure is recommended for the trace/ultratrace SCFAs detection within 

small sample size. The MS-based acidified water method is the fastest method with 

relative high sensitivity thus is suitable for large-scale human studies with larger sample 

size. NMR-based methods exhibits higher repeatability with relative lower sensitivity, 

and more importantly yields global metabolic profiles beyond SCFAs, thus are most 

suitable for the studies with higher SCFAs concentration in samples, and with both global 

and target analysis purposes. Finally, a highly reliable and complementary approach was 

established by combining global NMR-based and targeted MS-based method and 

validated in germ free mice study. The consistent results from three mutually independent 

methods GC-MS, NMR and bomb calorimetry demonstrated significantly reduced 

SCFAs levels, increased fermentation substrates, and energy excretion in feces of germ 

free mice compared to conventionally-raised mice. These results correspond to the 

absence of bacteria that are responsible for fermenting fiber to produce SCFAs. 

 

The gut microbiome impacts host metabolic status mainly through its control of 

intestinal energy availability by contributing to the fermentation of non-digestible dietary 

fiber (oligosaccharides) into absorbable and reusable short chain fatty acids (SCFAs) in 

the gut. SCFAs produced by bacterial fermentation contribute 5-10% to daily energy 
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intake of the host (9). The SCFAs feed back into the host metabolic system as energy 

source or anabolic substrates (10). Therefore, oligosaccharides and SCFAs are good 

indicators for microbial fermentation activity, host energy availability and metabolic 

phenotype. The combination of GC-MS, NMR and bomb calorimetry provides a reliable, 

complementary and comprehensive view of bacterial fermentation activity. Chapter 3 

took advantage of the combined metabolomics approach aforementioned to study the 

impact of a xenobiotic tempol on microbiome fermentation and host energy metabolism. 

Nitroxide radical tempol is an antioxidant, exhibits beneficial metabolic improvements 

through modulating the gut microbiome composition, specifically inhibiting BSH 

producing bacteria Lactobacillus, which resulted in higher intestinal TβMCA level and 

stronger FXR antagonism (11). Focusing on the microbiome modulation effect of tempol, 

the bacteria fermentation activity of mice following 5-day gavage of tempol was 

evaluated by NMR and GC-MS metabolomics in combination with bomb calorimetry. 

The results suggested short-term tempol administration by gavage lead to the inhibition 

of bacteria fermentation characterized by decreased SCFAs and increased 

oligosaccharides level in the intestine in a dose dependent manner. As SCFAs serve as 

energy source and anabolic substrates for biosynthesis to the host (10), the restricted 

intestinal SCFAs availability due to tempol-inhibited bacteria fermentation profoundly 

impacts the host overall energy metabolism towards a catabolic state revealed by 

metabolic and gene expression profiles in the liver (Figure 5-1). The metabolic profiles 

were characterized with the depleted energy source pool and upregulated metabolites 

involved in catabolism. Analysis of the glucose and lipid metabolism associated gene 

expression further confirmed the promoted glycogenolysis and glycolysis, and suppressed 
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lipogenesis by tempol. Overall, metabolic pathways altered by tempol-modulated gut 

microbiome favor energy expenditure. Interestingly, tempol failed to induce any observed 

metabolism improvement in germ free mice, suggesting the metabolic regulatory function 

of tempol is mediated through microbiome. In summary, this study provides a 

microbiome-dependent mechanism of tempol, which achieves its beneficial metabolic 

improvement effects through inhibiting bacteria fermentation to decrease energy harvest 

of the host and shifts host energy homeostasis from energy reservation to expenditure. 

This work not only presented a promising strategy to target gut microbiome for obesity 

and metabolic disorder treatment and prevention, but also demonstrated the practical 

applicability of combined global NMR-based and targeted MS-based metabolomics 

approaches to generate a complementary and comprehensive view for a better 

understanding the crosstalk among gut microbiome, metabolites and host.  

 

Xenobiotic refers to a foreign chemical substance that is not endogenously 

produced or expected to be present within the organism. Xenobiotics like environmental 

toxicants, antibiotics, drugs and other chemicals have been known to alter gut 

microbiome physiology, composition and gene expression (12), and the functional 

interactions between xenobiotics and gut microbiome has been implicated in drug 

efficacy, chemical toxicity, and human disease pathogenesis and progression (13). 

Microbiome-targeted therapies have been exploited in the treatment of diseases related to 

dysregulated xenobiotic-microbiome-host interactions. However, the functional 

interactions between xenobiotic and host-associated gut microbiome are never 

unidirectional. Gut microbiome affects xenobiotic/drug efficacy and toxicity through 
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direct modification of the chemical compound or indirect modulation of host 

xenobiotic/drug metabolism via bacterial-derived signaling. Xenobiotics also impact the 

gut microbiome composition and health which can cause profound microbial-associated 

metabolic consequences to the host (14). Therefore, a better understanding of how the 

xenobiotic impacts the host-associated microbiome will enlighten the molecular 

mechanism, pharmaceutical potential, as well as the toxicity of the xenobiotic for better 

microbiome-targeted therapy development and risk assessment. 

 

Chapter 4 introduced a novel multi-platform in vitro approach that combines high 

throughput global metabolomics with in vitro microbial culturing and flow cytometry to 

evaluate the effect of xenobiotics on microbial toxicity characterized with functional 

physiological and metabolic indicators. Xenobiotic tempol was chosen as it is known to 

modulate microbial structure and improve host metabolism yet is microbiome modulating 

effects are unclear and unexplored (11, 15). Using flow cytometry, microbial physiology 

including nucleic acid content, membrane damage and enzymatic /biochemical activity 

was profiled with different florescent dyes. The flow cytometric analysis revealed a direct 

impact to microbial physiology in response to short-term tempol exposure in vitro, 

characterized with excessive membrane damage (higher percent Pi+ and DiBAC+ cells) 

and suppressed biochemical activity (lower percent CFDA+ cells). Taking advantage of 

combination of NMR- and MS- based metabolomics, a comprehensive and 

complementary metabolic profiles was created. The metabolic profiling with independent 

platforms revealed a consistent low microbial metabolic activity following  tempol 

exposure in vitro, including decreased microbial fermentation, degradation, energy 
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generation and biosynthesis, which broadly covered many critical metabolic pathways 

like nucleotide, amino acid, sugar, and aromatic compounds anaerobic metabolism. 

Comprehensively, the disrupted microbial physiology and compromised microbial 

metabolism induced by tempol are highly correlated, demonstrating the mutually 

dependent relationship between a healthy membrane and normal metabolic activity. As 

the membrane provides a selective barrier against environmental hazardous substances 

from impacting normal intracellular metabolic activity, while the normal metabolic 

activity supplies molecular components and energy required for membrane synthesis and 

maintenance, the integrated physiological and metabolic profiles revealed by multi-

platform approach provide informative functional assessment of the microbial response to 

xenobiotic. Critically, the application of the multi-platform physiological and metabolic 

phenotyping is further validated with the consistent results using in vitro and in vivo 

tempol exposure models. Together, the multi-platform functional phenotyping described 

in Chapter 4 represents a novel approach to evaluate microbial toxicity and xenobiotic 

risks in vitro, which holds great potential as a translational tool for drug screening and 

xenobiotic risk assessment. 

 

Future Directions  

Combining high-throughput metabolomics with other informative techniques, the 

work in the dissertation revealed the interplay between xenobiotic/drug and host-

associated gut microbiome for mode of action characterization, toxicity evaluation and 

risk assessment. A recent study has started to incorporate the gut microbiome into drug 

screening, and discovered an astonishing 24% of human targeted, non-antibiotic 
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compounds exhibited antimicrobial or microbial modulatory effects, which is correlated 

with the antibiotic-like side effects in human studies. This finding reflects the off-target 

effects of non-antibiotic compounds on gut microbiome, implying the potential risk of the 

antibiotic resistance introduced by human-targeted drugs (16). Another study has 

attempted to use MS-based metabolomics as a prediction tool to classify the mode of the 

action of antimicrobial compounds for early drug discovery (17). Our study expanded on 

the idea of using the gut microbiome for drug screening and developed the multi-platform 

functional phenotype approach by using MS- and NMR- based metabolomics and flow 

cytometry. This multi-platform approach out-performs the single MS-metabolomics 

approach by providing the comprehensive and complementary functional phenotypic 

assessment containing physiological and metabolic profiles. This comprehensive 

approach opens up new paths for translational applications in risk assessment for existing 

drugs, and identification of the modes of action for new compounds. In fact, we have 

already expanded the investigation to generate the integrated functional phenotypic 

database of microbiome using the antibiotics with distinct mechanisms. The selected 

antibiotics include ampicillin, ciprofloxacin, tetracycline, and rifampin, with each having 

a distinct mechanism of action (Figure 5-2). Ampicillin prevents the synthesis of the 

bacterial cell wall by inhibiting the required enzyme transpeptidase and will cause a loss 

of membrane potential and cell damage. Ciprofloxacin inhibits DNA synthesis through 

inhibiting DNA gyrase and prevents bacteria from replicating. Tetracycline is a protein 

synthesis inhibitor, which prevents the binding of aminoacyl-tRNA to the mRNA-

ribosome complex. Rifampin inhibits DNA-dependent RNA synthesis via inhibiting 

bacterial DNA-dependent RNA polymerase (18). In addition to the flow cytometry and 
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metabolomics to characterize the whole microbial community, it would be more 

informative to assess the physiological structure, taxonomic and functional changes of the 

microbial community subsets by introducing fluorescence-activated cell sorting and 

downstream sequencing based approaches. After introducing the different fluorescent 

dyes to the microbial community, a fluorescence-activated cell sorter will be used to sort 

microbes based on the physiological status indicated by fluorescent intensity. Then the 

taxonomic composition and gene expression profile of each physiological category subset 

community will be analyzed with downstream sequencing-based approaches including 

16S rRNA gene sequencing, metagenomics, and metatrascriptomics. The physiological 

and metabolic profiles characterized with the novel multi-platform functional 

phenotyping approach, together with the incorporation of taxonomic and transcriptomic 

profiles characterized with sequencing-based approaches, will help screen and 

characterize future compounds of interest that have an unknown mode of action, or help 

identify current known compounds that have potential antimicrobial activity (Figure 5-

3). Moreover, the multi-platform functional phenotyping approach could be applied to 

assess the effect of xenobiotic to specific bacteria strain associated with health and 

diseases such as Clostridium difficile (19),  Helicobacter pylori (20) and Lactobacillus 

spp. (21), assist the elucidation of the  xenobiotic mode of action as well as the health 

impact of xenobiotics the microbiome. 

 

In summary, the findings in this dissertation demonstrated the valuable 

metabolomics tools in combination with other informative techniques enables the 

comprehensive and complementary understanding of the mechanistic interplay between 
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xenobiotic and host-associated microbiome, paving the ways to the discovery and 

development of potent and safe microbiome-targeted compounds for human disease 

treatment. 
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Figure 5-1  

 
 

Figure 5-1 Metabolic Pathways Modulated by Tempol-Altered Functional Change 

of Gut Microbiome Favor Energy Expenditure and Catabolism.  
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Figure 5-2 

  

Figure 5-2 Mechanism of Action of Different Antibiotics. Ampicillin inhibits bacterial 

cell wall synthesis through inhibiting the required enzyme transpeptidase. Ciprofloxacin 

inhibits DNA synthesis and consequently cell division by inhibiting DNA gyrase. 

Rifampicin Inhibits DNA- dependent RNA synthesis thus preventing inhibiting bacterial 

DNA-dependent RNA polymerase. Tetracycline inhibits protein synthesis through 

inhibiting binding of aminoacyl-tRNA to the mRNA-ribosome complex. 
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Figure 5-3 

 

 
 

 

Figure 5-3. Combining Multi-Platform Tools to Study Xenobiotic Toxicity on 

Microbiome 
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Table 5-1 Orthogonal Comparison of SCFA Quantitation Methods. 
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ABSTRACT 

Characterizing the reciprocal interactions between toxicants, the gut microbiota and the 

host, holds great promise for improving our mechanistic understanding of toxic 

endpoints. Advances in culture-independent sequencing analysis (e.g., 16S rRNA gene 

amplicon sequencing) combined with quantitative metabolite profiling (i.e., 

metabolomics) have provided new ways of studying the gut microbiome and have begun 

to illuminate how toxicants influence the structure and function of the gut microbiome. 

Developing a standardized protocol is necessary for establishing robust, reproducible and 

importantly, comparative data. This protocol can be used as a foundation for examining 

the gut microbiome via sequencing-based analysis and metabolomics. Two main units 

follow: 1) Analysis of the gut microbiome via sequencing-based approaches; and 2) 

Functional analysis of the gut microbiome via metabolomics. 
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INTRODUCTION 

Alterations to any area of the microbiome will occur in almost all toxicological 

studies. The gut microbiome will be altered with any oral exposure of xenobiotics (1). 

The microbiome protecting the lungs and airways will be altered when exposed to 

aerosolized compounds like polycyclic aromatic hydrocarbons (2). Even the resilient 

protective microbiome on the skin is being constantly altered by the xenobiotics 

individuals are exposed to every day (3). Despite the importance of the various 

microbiomes in toxicology, the majority of toxicological studies neglect to include an 

investigation of the appropriate microbiome. A major reason for the missing microbiome 

studies is the fact that there is no universal protocol to refer to when completing the 

microbiome analysis. Below is a step by step, nine-part protocol created to start the 

process of incorporating gut microbiome analysis into any applicable toxicological study. 

Even though this protocol only includes one area of the microbiome, it will provide an 

avenue for other complete protocols describing how to investigate the other areas of the 

microbiome.  

The following unit describes the process of bacterial DNA extraction from mouse 

cecal contents. A flow chart describing the following unit can be seen in Figure A-1. The 

bacterial DNA isolation kit used in this protocol can also be used for bacterial DNA 

isolation of rodent fecal pellets or human stool samples and the data generation and 

analysis protocols also apply to human fecal bacterial DNA. Integration of microbiome 

analyses in to toxicology studies can provide insights into cryptic or previously 

uncharacterized toxic endpoints. It is a common misconception that only a computer 

scientist can conduct microbiome analyses, but the reality is that only basic terminal 
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commands and basic R programming are needed for a comprehensive microbiome 

analysis. There are many online resources that can be used; for example, the R cookbook, 

a comprehensive manual for R programming, is a freely available, 

(http://www.cookbook-r.com/) and there are many websites for terminal-based coding. 

This unit will cover 16S rRNA gene analysis using the mothur software package (4) and 

also metagenomic sequence analysis using the HUMAnN2 (Human microbiome project 

Unified Metabolic Analysis Network) software package (5). The resulting files from 16S 

rRNA gene analysis are a taxonomic distribution that can be used to create graphs 

illustrating significant changes. The resulting files from the metagenomic analysis 

represent pathways that are present in the gut microbiome and demonstrate if the relative 

abundance of these pathways have increased or decreased in response to a specific 

treatment. Importantly, sequence analyses revealing the presence of a given panel of 

genes associated with specific metabolic pathways does not imply phenotypic expression 

of the pathway, additional functional assessment is required. Such functional verification 

will be covered in Unit 2. Overall this unit will provide a comprehensive and easy to 

follow method of gut microbiome analysis.  

 Sample data, a script for the mother analysis, and a R mark down file for 

GUnifrac analysis have been included and made available to accompany this protocol in 

a zip file (test_data.zip). Other sample data can be found on the mothur wiki site 

(https://www.mothur.org/wiki/MiSeq_SOP) and sample data for HUMAnN2 can be 

found (https://bitbucket.org/biobakery/humann2/wiki/Home) on the HUMAnN2 bit 

bucket page. To run the included sample script, simply unzip the sample folder, open 

terminal, and navigate to the test_data directory. Type ./mothur/mothur 

http://www.cookbook-r.com/
https://www.mothur.org/wiki/MiSeq_SOP
https://bitbucket.org/biobakery/humann2/wiki/Home)
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./Mothur.test.batch.txt. This script should take roughly 15 min (script specifies two 

processors, it can be edited for more processors if more are available) and will result in a 

summary table, which includes the taxonomic distribution for the test data. It should be 

noted that the commands to make a phylogenic tree with mothur are included but will not 

run without removing the hashtags before the commands. These commands are not run 

because these commands will add an extra 30 min to the run time of this script and the 

resulting.tre and count files WILL NOT work for GUnifrac analysis due to the small size 

of the subset. Instead both a separate .tre file and a count file are provided to illustrate the 

GUnifrac analysis with the R mark down file in a folder called GUnifrac_data. Also, the 

included mothur script is a guide and each user should modify the file names and 

parameters as necessary.  

 

 

SEQUENCING-BASED PROTOCOLS 

Basic Protocol 1: Bacterial DNA Extraction  

 

Introduction 

Basic Protocol 1 explains the process of bacterial DNA isolation from mouse 

cecal contents. For information on how to extract cecal contents see Support Protocol 1. 

This protocol is adopted from the Omega-BioTek E.Z.N.A stool isolation kit and has 

been used extensively within our laboratory(6-9). The PowerSoil DNA Isolation kit 

(moBio) has also been used and can be implemented instead of the Omega-BioTek 

E.Z.N.A kit. A recent study has shown that the use of different bacterial DNA isolation 

kits leads to less variation than the use of different 16S rRNA gene primers (V3-V4 
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yields different results than V4-V5) (10). Listed below is a modified version of the 

protocol provided Omega-BioTek provided protocol.  

Materials 

  Sterile 10 - 200 L pipette (Denville) 

  Sterile 1000 L pipette (Denville) 

  1 Omega-BioTek E.Z.N.A Stool DNA kit (200 preps) 

  1 Centrifuge (Eppendorf 5409 R) 

  1 set of sterile sample labeled 1.5 mL screw cap homogenizer tubes 

(VWR) 

  3 sets of sterile sample labeled 2 mL nuclease-free Eppendorf tubes 

(Eppendorf) 

  Benchmark Multi-Therm Shaker with Heating  

  Vortexer (any brand) 

  100% Ethanol (Any brand as long as it meets USP specifications)  

  Ice bath 

  Zirconia/Silica 1.0mm diameter homogenization beads (BioSpec 

Products) 

  Precellys 24 lysis and homogenization (Bertin Technologies) (Optional) 

Protocol Steps 

1. Dilute the DNA Wash Buffer from the E.Z.N.A kit with 80 mL of 100% 

Ethanol (only if the 200 prep kit is purchased). If this was previously done 

go to step three. 

 

2. Dilute the VHB Buffer from the E.Z.N.A kit with 84 mL of 100% Ethanol 

(only if the 200 prep kit is purchased). If this was previously done go to 

step three. 

 

3. Set one incubator to 70C.  

 



 239 

4. If a second incubator is available, set it to 95C. 

 

5. Place the HTR Reagent from the E.Z.N.A kit into the ice bath. 

 

6. Take between 50 and 100 mg of cecal contents (can be as high as 200 mg) 

and deposit it into the labeled screw cap tubes. 

 

7. Add 10 - 30 Zirconia/Silica beads to each tube and place tube into the ice 

bath.  

 

8. Add 540 L of the SLX-Mlus Buffer from the E.Z.N.A kit to each tube. 

 

9. If homogenizer is available, homogenize samples at 6,500 rpm for 15 

seconds, pause for 30 seconds, then homogenize for another 15 seconds. 

Samples will look foamy. Go to step 11. 

 

10. If homogenizer is not available, vortex each sample for at least 10 min or 

until each sample is thoroughly homogenized.  

 

11. Add 60 L of the DS Buffer and 20 L of the Proteinase K Solution from 

the E.Z.N.A kit. Vortex for 30 seconds to mix. 

 

12. Place samples in the incubator (70 C) for 10 min. Vortex each sample 

twice for 15 s during the incubation, once at minute 2 and once at minute 

7. 

 

13. Immediately after incubation place the samples in the 95 C incubator for 

5 min. This step is optional but improves DNA isolation from gram-

positive bacteria.  

 

14. Add 200 L SP2 Buffer from the E.Z.N.A kit and vortex for 30 sec to mix. 

Place samples in ice bath for 5 min. 

 

15. Centrifuge at maximum speed (at least 13,000 x g) for 5 min. 

 

16. While the samples are spinning, transfer 5 mL of the Elution Buffer to 

separate Eppendorf tubes and incubate them at 65 C until needed.  

a. Each sample requires 150 L of elution buffer will be needed for 

each sample at the end of this protocol, so adjust the total amount 

of elution buffer accordingly.  

 

17. Remove 400 L of the supernatant from step 15, and transfer it to the first 

set of labeled Nuclease-free Eppendorf tubes. Be careful when transferring 

to not disturb the pellet. 
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18. Make sure the cap is secure on the HTR Buffer and shake it vigorously to 

completely mix the buffer. Cut the tip off of a 1000 L pipette tip (this 

helps pipetting the HTR Buffer) and transfer 200 L of the HTR Buffer to 

each sample.  

 

19. Incubate at room temperature for 2 min and then centrifuge at maximum 

speed for 2 min. 

 

20. Remove 250 L of the supernatant, and place it in the second set of 

labeled Eppendorf tubes. 

 

21. Add 250 L of the BL buffer from the E.Z.N.A kit and 250 L of 100% 

ethanol to each sample and vortex for 10 s to mix. 

 

22. Place one HiBind DNA Mini Column into a 2 mL collection tube, both 

provided in the E.Z.N.A kit. Label each column appropriately. 

 

23. Transfer the entire sample from step 21 into each respective column 

(including any precipitates). Centrifuge at maximum speed for 1 min. 

 

24. Discard the filtrate and collection tube. Transfer the column into a new 

collection tube and add 500 L of VHB Buffer from the E.Z.N.A kit. 

 

25. Centrifuge for 30 s at maximum speed. Discard the filtrate but reuse the 

collection tube. 

 

26. Add 700 L o f the DNA Wash Buffer to each sample. Centrifuge at 

maximum speed for 1 min. Discard the filtrate but reuse the collection 

tube.  

 

27. Repeat step 26 to wash the DNA once again.  

 

28. Centrifuge at maximum speed for 2 min to dry out the column and remove 

any excess wash buffer.  

 

29. Transfer the column to the third set of labeled Eppendorf tubes. 

 

30. Add 150 L of the heated Elution buffer to each sample and incubate them 

at room temperature for 2 min. 

 

31. Centrifuge at maximum speed for 1 min. 

a. Note: Do not be alarmed if some of the Eppendorf caps come off 

during the centrifugation. Since the caps of the Eppendorf tubes 

cannot be closed during the centrifugation, the g-force will 

sometimes rip them off.  
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32. Samples can be stored at -20 C.  

 

 

Basic Protocol 2: V4-V4 Amplification for 16S rRNA Gene Sequencing 
 

After DNA isolation, samples can either be directly submitted for bacterial 

metagenomic shotgun sequencing (see Alternative Protocol 1 for metagenomic analysis) 

or they can be further modified for 16S rRNA gene sequencing. Here the process for 

PCR amplification of the fourth variable region of the 16S rRNA gene is described. The 

V4 region of the 16S rRNA gene has been reported to provide the most taxonomic 

information of the 8 variable regions present in the 16S rRNA gene, but other variable 

regions like V5, and V6 can provide comparable results (11). Also, if there is access to a 

long read sequencer like the Pacbio Sequel II system, the entire variable region can be 

amplified and sequenced. Sequencing the entire variable region is the only way to get 

reliable species level taxonomy assignment (12). Using V4-V4 16S rRNA gene 

sequencing provides reliable genus level sequencing (4). This protocol will describe how 

to amplify the V4 region of the 16S rRNA gene by PCR and sequence it.  

 

Materials 

  Ice bath 

Isolated DNA from Basic Protocol 1 

  NanoDrop UV-Vis Spectrophotometer Lite (Thermo-Scientific) 

  Sterile 0.5 L – 10 L pipette (Denville)  

  Sterile 10 - 200 L pipette (Denville) 

  Sterile 1000 L pipette (Denville) 

  V4-V4 primer set (515F and 806R) (10 M concentration) 

  Nuclease free water (Any Brand) 
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Invitrogen Platinum SuperFi Enzyme Kit (ThermoFisher Scientific) 

Sterile 0.2 mL Thin Wall PCR Tubes, strips of 8 tubes  (Denville) 

  T100 Thermocycler (Bio rad)  

  1X TAE (Tris base, acetic acid and EDTA) buffer  

  Omnipur Agarose (Calbiochem) 

  Gel electrophoresis box (Labnet) 

  GelRed dye (Biotium) 

  Gel loading dye 6X, no SDS (Biolabs) 

  100 bp DNA ladder (Omega) 

  ChemiDoc XRS+ (BioRad)    

Protocol Steps 
  

1. Thaw the isolated bacterial DNA from Protocol 1  

 

2. Measure DNA concentration on the NanoDrop 

a. This requires only 1 L of isolated bacterial DNA. Concentration 

values typically range from 100 ng/L to 400 ng/L. Also the 

NanoDrop gives only an estimate of the total bacterial DNA 

concentration. For a more accurate result, submit samples for 

quantification on a Bioanalyser. 

 

3. Create a 100 L aliquot at 10 ng/L concentration. 

a. The easiest way to complete this is to first figure out how much 

original DNA to add and then subtract that from 100 to figure out 

how much nuclease free water to add. To find out how much 

original bacterial DNA to add simply divide 1,000 by the average 

concentration. For example, if the average concentration was 254 

ng/L, take 1000/254 = 3.94. Add 3.94 l of original bacterial 

DNA sample to (100 - 3.94 = 96.06) 96.06 L of nuclease free 

water.  

 

4. Place aliquots on ice and create 10 M solutions of forward (515F) and 

reverse primers (806R).  
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5. Place 10 L of the Platinum Superfi Enzyme mix, 0.4 L of the forward 

primer (10 M), 0.4 L of the reverse primer (10 M) and 8.7 L of 

nuclease free water to each PCR tube. 

a. It is important to prepare a master mix. As an example, a master 

mix for 20 samples can be prepared as follows:  The 20 sample 

master mix should be prepared for 23 samples (for blanks as well 

as to account for imprecise pipetting) samples and would contain 

230 L (10 x 23) of Platinum Superfi enzyme mix, 9.2 L (0.4 x 

23) of forward primer, 9.2 L (0.4 x 23) of reverse primer and 

200.1 L (8.7 x 23) of nuclease free water. Then 19.5 L of the 

master mix is placed in each of the 21 PCR tubes (20 samples + 1 

blank)  

 

6. Add 0.5 L of the 10 ng/L aliquot of bacterial DNA and pipette to mix. 

 

7. Place the caps on the PCR tubes and place the sealed tubes into the PCR 

machine. Run the PCR machine at these settings: 

 

a. 1 cycle at 98 C for 2 min  

b. 25 cycles of: 

i. 98 C for 10 sec  

ii. 56.5 C for 20 sec  

iii. 72 C for 15 sec  

c. 1 cycle at 72 C for 5 min  

d. Infinite hold at 4 C 

e. Note that over amplification can affect the results. The more cycles 

of initial amplification completed, the more populated the 

abundant species become and it makes it much more difficult to 

observe the rare species. Also as the number of cycles increases, 

there is a greater chance of contamination amplification.  

 

8. While the PCR is running, create a 1X agarose gel by mixing 1 g of 

Omnipur Agarose in 100 mL of 1X TAE buffer and microwaving for 2 

min.  

 

9. Before the gel sets, add 10 L (10 L per 100 mL of gel) of GelRed dye to 

the liquid gel. 

a. GelRed can be used instead of ethidium bromide for several 

reasons: First, it is much safer to use in the lab. Second, there is no 

need to add extra dye to the running buffer, so the buffer can be 

reused multiple times. Third, and most importantly, the gels are 

much clearer and there is no ethidium bromide band in the gel.  

 

10. Once PCR is finished add 5 L of the PCR sample to 4 L of 6x loading 

dye (BioLabs) and 6 L of nuclease free water in a separate tube.  
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11. Fill the gel electrophoresis box with 1X TAE buffer and add 5 L of 100 

bp DNA ladder to the edges of the gel. Add the entire sample from step 10 

to the empty wells. Run at 80 Volts for 50 min to an hour. The gel run will 

be complete when the purple band is ¾ of the way down the gel. The gel 

can also be placed back into the gel box for further running if the bands 

have not separated enough.   

 

12. When the bands are at least ¾ the way down the gel, remove the gel and 

analyze it with the ChemiDoc. The correct band length should be 350 bp.  

a. Do not be alarmed if the bands are not very bright (Figure A-2). 

Duller bands are preferred because another round of PCR will be 

completed before sequencing. 

 

13.  Submit samples to a sequencing core or a sequencing company and 

request 250 x 250 paired end sequencing on the Illumina Miseq.  

a. Important: Each sequencing core or sequencing company is 

different and may require a different end product for sample 

submission. Most will take the sample after the first round of PCR 

because this generates amplicons of the 16S rRNA gene variable 

region of the users choosing. If they require more PCR follow the 

detailed instructions provided by the sequencing core or company 

of the users choosing.  

b. Depth is also an important specification to decide prior to 

sequencing. Typically, the Illumina Miseq will provide 10 million 

reads split across each of the user’s samples. This means if the user 

has 50 samples in one run on the Illumina Miseq the user will get 

roughly 200,000 reads per sample. Depth preference is generally 

between 50,000 and 100,000 reads per sample (13) 

c. When the data is returned, it should be demultiplexed, generating 

two files for each sample in FASTQ format.  

 

 

Basic Protocol 3: 16S rRNA Gene Amplicon Data Analysis  
 

The following protocol is directly based on the mothur miseq SOP created by Dr. 

Patrick Schloss. The website can be found here, 

https://www.mothur.org/wiki/MiSeq_SOP, and if this method is used, the 2013 paper by 

Kozich et al must be cited (4). The following command progression is exactly how it 

appears in the Schloss SOP, but the file names, values and explanations are different. For 

a more detailed explanation, please see the above website and consult the Wiki. This 

https://www.mothur.org/wiki/MiSeq_SOP
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protocol covers the basic mothur analysis, normalization, identification of significantly 

different bacterial taxa, and Generalized unifrac analysis. If one chooses, QIIME is an 

alternative 16S rRNA gene sequence analysis pipeline, and more information can be 

found at https://qiime2.org/ (14).  

 This protocol requires that the analysis be performed within a Mac or PC Linux 

environment through the application terminal. PC environments do have a command line 

tool called command prompt, but the computing language the command prompt uses is 

very different from the terminal/Linux computing language. It is also recommended that 

at least 8 processors with at least 100 Gb of memory be used. This analysis can be done 

on a personal laptop, but it is extremely time consuming; therefore, the use of an external 

server or a computing cluster is highly recommended. Since mothur is terminal-based, 

basic command line knowledge is required for this analysis. Also, all graphing and some 

statistical analysis can be done with R studio, thus basic R knowledge or an alternative 

statistical/graphing software is required.  

The mothur github site and SOP describes how to download and install this 

software on a PC (https://github.com/mothur/mothur/releases/tag/v1.39.5 and 

https://mothur.org/wiki/MiSeq_SOP). If one is using an external server or a computing 

cluster, the download is a little more complicated because the user does not have 

administrative privileges. The easiest way to “install” mothur on an external server is first 

by downloading the most recent version on the mothur github site. There are multiple 

options of how to download mothur, and the one used for this procedure is 

mothur.linux_64.zip. This file can be copied over to the external server of a cloud 

cluster and unzipped there. Then simply add the mother folder to the user’s path with the 

https://qiime2.org/
https://github.com/mothur/mothur/releases/tag/v1.39.5
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command export PATH="$PATH:~/mothur". To run mothur, simply type mothur in the 

command line.  

Also on the mothur miseq SOP, there are several files that are required for the 

analysis. The first is the SILVA alignment file, which can be found under the Logistics 

section of the mothur miseq SOP. This provides a zip file, and only the 

silva.bacteria.fasta file is needed for this analysis. The SILVA alignment file is regularly 

updated and new versions of this file can be downloaded from the Silva database website 

(https://www.arb-silva.de/). The next two necessary files can be found right below the 

SILVA link, in a link titled mothur-formated version of RDP training set. This will 

provide a second zip file that contains only two files; both are needed for this analysis. 

Like the SILVA alignment file, the RDP trainsets are also updated regularly and can be 

found at the RDP website (https://rdp.cme.msu.edu/misc/resources.jsp#aligns). Once all 

three files are obtained (silva.bacteria.fasta, trainset9_032012.pds.fasta, and 

trainset9_032012.pds.tax), create a work folder on the external server or computing 

cluster for the mother analysis and move these files into it. For this analysis the provided 

RDP trainsets and the provided SILVA alignment files from the mothur miseq SOP 

(version 9) will be used. For future use, RDP and SILVA regularly puts out new trainsets 

and alignment files, as mentioned above.  

 

Materials 
  Mac computer (or Windows with Linux environment)  

 

External server or computing cluster with an allocation of at least 100 GB 

and 8 processors (can use personal computer but will drastically increase 

computational time) 

 

Sequenced data from Protocol 2  

 

https://www.arb-silva.de/)
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Protocol steps 

 

1. Before the analysis, be sure to read the above information and have 

mothur installed and acquire all the necessary files.  

 

2. With the raw data make a stability file. This is a file that will help mothur 

know what two paired end files to combine and name it according to the 

user created sample names.  

a. This file can be made with a text editor and will look like the 

example below (and an example stability file can be found in the 

provided sample data). 

 

501 501_S21_L001_R1_001.fastq

 501_S21_L001_R2_001.fastq 

502 502_S22_L001_R1_001.fastq

 502_S22_L001_R2_001.fastq 

503 503_S23_L001_R1_001.fastq

 503_S23_L001_R2_001.fastq 

504 504_S24_L001_R1_001.fastq

 504_S24_L001_R2_001.fastq 

505 505_S25_L001_R1_001.fastq

 505_S25_L001_R2_001.fastq 

 

b. The first column contains the sample names; in this case they are 

501, 502, 503, 504, and 505. After each sample name, it is 

important to tab, not space, to the next column. The second column 

contains the first file name for each pair. In this case, 

501_S21_L001_R1_001.fastq is the name of the first file of the 

501 pair. Again tab to create the third column, the second file name 

for each pair. In this case 501_S21_L001_R2_001.fastq is the 

second file name for the 501 pair. Continue this for each sample in 

the run. 

c. This file should be named after the user’s project. In this example 

this file will be named Test.stab.txt. This file should then be sent to 

the mothur work folder along with all the FASTQ data and the 

required files mentioned above.  

  

3. Execute mothur and run make.contigs(file=Test.stab.txt, processors=8) 

a. Notice how the stability file created in the previous step is directly 

used and how mother needs to be told to use 8 processors. If 

mothur is not instructed how many processors to use, the default is 

1.  

b. This process will take about 1 minute per sample and will result in 

six files. The only two required for this analysis are 

Test.stab.trim.contigs.fasta and Test.stab.contigs.groups   



 248 

c. Notice how the first part of these file names are the name of the 

stability file. This is why it is important to name the stability file 

something related to the experiment.  

 

4. With the output files, run a summary with the command 

summary.seqs(fasta= Test.stab.trim.contigs.fasta) 

a. The result will be a table that breaks down the fasta file from step 

3. An example of this can be seen in Table A-1. 

b. The rows break down the data into various segments defined by 

the different columns. For example, the 25%-tile row says that 

25% of the data has a start site at 1, an end site at 292, they are all 

at least 292 bases long with 0 ambiguous sites, an average of 3 

polymers and has 670164 sequences in this group. This is typical, 

and the only column that is important from this specific summary 

file is the NBases column. Since the above protocol resulted in a 

350 bp insert of the V4 region in Protocol 2, the user would expect 

the average base length of the sequences to be around 320 base 

pairs long.  

  

5. Screen the sequences with the command screen.seqs(fasta= 

Test.stab.trim.contigs.fasta, group=Test.stab.contigs.groups, 

maxambig=0, maxlength=320) 

a. This command screens the data and trims off any bad reads. The 

maxambig=0 part of the command indicates that this command 

will cut any sequence with ambiguous bases. Referring back to the 

above table the user can see that 128 sequences have ambiguous 

bases. Also this command cuts anything larger than 320 bases 

(maxlength=320). 320 was picked because according to the above 

table, 97.5% of the data is 311 base pairs long or smaller and it is 

recommended on the mothur miseq wiki to go a few base pairs 

higher than the number at the 97.5% mark.  

b. The screen.seqs command specifications is very dependent on the 

data, so the max length will change depending on which variable 

region is used and the type of Illumina miseq run is completed 

(150x150 or 250x250). As a general rule, the user wants the max 

length to be at least the nBases number for the 97.5-tile group.  

 

6. Remove duplicate sequences by running unique.seqs(fasta= 

Test.stab.trim.contigs.good.fasta)  

a. This step is included to save computational time by condensing the 

data. The resulting files represent a fasta file with only unique 

sequences and a name file that includes how many times each 

sequence occurred. This way when aligning and cleaning the data, 

each sequence is only seen once.  
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7. Combine the resulting name file from step 6 and the group file from step 

3 to form a count table with the command count.seqs(name= 

Test.stab.trim.contigs.good.names, group=Test.stab.contigs.good.groups)  

a. This command will now create a count table that will have the 

names for every unique sequence and how many times they occur 

in each sample.  

 

8. Optional: To save on computational time, the silva.bacteria.fasta file can 

be modified to only include alignment for the V4-V4 region of the 16S 

rRNA gene with the command pcr.seqs(fasta=silva.bacteria.fasta, 

start=11894, end=25319, keepdots=F, processors=8) 

a. This step will only work if the V4 region was sequenced but this 

step is not necessary for this analysis and will only save 

computational time. 

 

9. Align the raw reads to the SILVA database with the command 

align.seqs(fasta=Test.stab.trim.contigs.good.unique.fasta, reference= 

silva.bacteria.pcr.fasta, flip=t) 

a. The reference file used in this example is the edited one from 

Optional Step 8. If Optional Step 8 is not completed the file for 

the reference option will simply be silva.bacter.fasta 

b. With the optional step 8 the alignment time was about 9 min for 

1618841 sequences. 

c. Without the optional step 8 the alignment time was 30 min to align 

1618841 sequences.  

d. The flip=t option is included to attempt to align the reverse 

complement of sequences that do not align in the forward 

direction. This option will also produce more alignments and a 

more comprehensive look at the microbiome composition. 

 

10.  Investigate the alignment with another summary command, 

summary.seqs(fasta=Test.stab.trim.contigs.good.unique.align, count= 

Test.stab.trim.contigs.good.count_table) 

a. The purpose of this step is to further clean the data by picking 

reads that start and end at particular values.  

b. The summary table will be the same format as the one obtained in 

step 4 but the values will be different. Table A-2 provides an 

example of this summary table. 

c. When using the modified SILVA file, the start sequence will 

almost always be 1. The important variables to look at are the End 

and the NBases column. The Nbases column will show how large 

the sequences are and they should be similar to the cutoffs from 

step 4. In this case nothing should be larger than 320 and there 

should be no ambiguity. The end column will be used in the next 

step. 
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11. Screen the sequences again for poor alignment and any alignment errors 

with the command 

screen.seqs(fasta=Test.stab.trim.contigs.good.unique.align, 

count=Test.stab.trim.contigs.good.count_table, start=1, end=13424, 

maxhomop=8) 

a. The values for the start, end, and maxhomop options can be found 

in the summary file generated in step 10. The start option will 

select any sequence that starts at or before this value. The end 

value will select any sequence that ends at or after any value and 

the maxhomop removes any sequences that have more than 8 

homopolymers. These details are important to know because 

occasionally the summary from step 10 will show that 50% of the 

values have an end site of 13424 and 50% will have an end site of 

13425. Picking the higher value makes logical sense but this 

command actually wants the lower value because it selects any 

sequence that ends at or after the selected value. Deciding the 

threshold of homopolymers is completely arbitrary and 8 is used in 

this methods paper because 8 are used in the miseq SOP (4).  

 

12.  Filter the raw data to remove any overhangs from the alignment with the 

command filter.seqs(fasta=Test.stab.trim.contigs.good.unique.good.align, 

vertical=t) 

a. The vertical option is used to ignore certain characters like the ‘-‘ 

and ‘.’ to prevent them from being removed.  

 

13. Remove any duplicate sequences that resulted from the alignment with a 

second unique command, 

unique.seqs(fasta=Test.stab.trim.contigs.good.unique.good.filter.fasta, 

count=Test.stab.trim.contigs.good.good.count_table) 

a. Like step 6, this step saves only the unique sequences and updates 

the count file with the number of times each sequence appears in 

each sample.  

 

14. Further clean the data by addressing minor sequencing errors and 

combining sequences that are only different by 2 nucleotides with the 

command pre.cluster( 

fasta=Test.stab.trim.contigs.good.unique.good.filter.unique.fasta, 

count=Test.stab.trim.contigs.good.unique.good.filter.count_table, diffs=2) 

a. The pre.cluster command is based off an algorithm developed for 

pyrosequencing by Sue Huse (15). 

 

15. Remove chimeras from the data with the command 

chimera.uchime(fasta=Test.stab.trim.contigs.good.unique.good.filter.uniq

ue.precluster.fasta, count=Test.stab.trim.contigs.good.unique.good.filter 

.unique.precluster.count_table, dereplicate=t) 



 251 

a. Depending on the version of mothur, this command may be called 

something else. Later versions of mothur use the command 

chimera.vsearch, but the options within the command are the exact 

same.  

b. If this command discovers a chimera present in one sequence in 

one sample, the default option is to remove that sequence from 

every other sample in the data set, regardless of the presence of 

chimeras. To prevent this, the dereplicate=t option is implemented. 

This pulls out all identified sequences with chimeras and what 

sample they are present in. The next command will remove the 

chimeric sequences only from the samples where they were 

discovered.  

 

16.  Remove the chimeras from the FASTA file with the command 

remove.seqs(fasta=Test.stab.trim.contigs.good.unique.good.filter.unique.p

recluster.fasta, 

accnos=Test.stab.trim.contigs.good.unique.good.filter.unique.precluster.d

enovo.uchime.accnos) 

 

17. Optional: Change the file names to something smaller with the commands 

system(cp 

Test.stab.trim.contigs.good.unique.good.filter.unique.precluster.pick.fasta 

test.final.fasta) and system(cp 

Test.stab.trim.contigs.good.unique.good.filter.unique.precluster.denovo.uc

hime.pick.count_table test.final.count) 

a. This step is used to clean up the file names. Having long file names 

can lead to frustration and errors. At this point the data cleaning is 

completed and the file names can be shortened with the above 

commands if desired. 

b. Also at any time, instead of typing in the entire FASTA or count 

name, one can use “current” to call the most recent FASTA or 

count file. For example, instead of typing 

summary.seqs(fasta=Test.stab.trim.contigs.good.unique.good.filter

.fasta, count=Test.stab.trim.contigs.good.good.count_table), one 

could type summary.seqs(fasta=current, count=current) to get the 

same output.  

 

18. Classify the sequences to the RDP trainsets with the command 

classify.seqs(fasta=Test.stab.trim.contigs.good.unique.good.filter.unique.p

recluster.pick.fasta, 

count=Test.stab.trim.contigs.good.unique.good.filter.unique.precluster.de

novo.vsearch.pick.count_table, reference=trainset9_032012.pds.fasta, 

taxonomy=trainset9_032012.pds.tax, cutoff=75)  

a. The FASTA and count names can vary depending on whether 

Optional step 17 was completed. 



 252 

b. As mentioned in the introduction of Basic protocol 3, the 

taxonomy and reference files can vary depending on which version 

is used. 

c. The cutoff value is, again, arbitrary. This value provides a 

threshold of classification. As it is now, only 75% of the sequence 

has to align to the RDP trainset to be classified. This value can be 

higher leading to a more stringent analysis, or lower leading to a 

less stringent analysis.  

 

19. Create a text file of the taxonomic summary obtained from step 18 with 

the command system(mv 

Test.stab.trim.contigs.good.unique.good.filter.unique.precluster.pick.pds.

wang.tax.summary Test.summary.txt) 

a. This command creates a text file that now can be opened on a 

personal computer. 

b. This file can be copied and pasted into excel for normalization. To 

normalize this data, simply divide all taxonomic values in each 

sample by the root value in each respective sample. This 

normalization will show the percentage each taxa for each 

taxonomic level. This means that the members of each taxonomic 

level (phyla, class, order, family, genus) will add up to 100%.  

c. Significance can be found with a students’ T-test.  

 

20. Proceed to Support protocol 2 for population based gut microbiome 

analysis, if needed.  

 

 

Support Protocol 1: Cecal Contents Extraction  

 

The cecum is used in order to obtain the greatest concentration of intestinal 

microbiota. It is important to note that other protocols call for colonic contents instead of 

cecal contents because in humans the greatest concentration of intestinal microbiota is in 

the colon but when using mice, the cecum has the highest concentration of gut 

microbiota.  

 The mice are transferred to a euthanasia chamber (Patterson Scientific) for CO2 

asphyxiation which is then followed by cervical dislocation. The cecal contents are 

obtained immediately during the mouse dissection. The cecum is the intraperitoneal 

pouch connected to the junction of the small and large intestines. It is located at the 
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beginning of the ascending colon of the large intestine. Once the cecum is identified, it 

will be resected with a surgical scissors  from the rest of the digestive tract and placed on 

a piece of foil. Then, roll the cecum using a sterile pipette tip (1000 L tip works the 

best), and the contents will easily come out. Use the same pipette tip to then scrape up the 

cecal contents and place them in a 1.5 mL screw top vial. The foil allows for an easy 

collection of the cecal contents once they have been removed from the cecum. All 

procedures must be performed in accordance with the Institute of Laboratory Animal 

Resources guidelines and, in the case of this protocol, were approved by the Pennsylvania 

State University Institutional Animal Care and Use Committee.  

 

Support Protocol 2: Community-Based Analysis of the Gut Microbiome 

 

This protocol is intended to describe the steps for a Generalized Unifrac analysis 

with the R package GUniFrac. Generalized unifrac is a measure that combines weighted 

and unweighted unifrac (16). Weighted unifrac is a measure used to analyze differences 

in abundant species within several populations. Unweighted unifrac is a measure of the 

differences in rare species within several populations. Generalized unifrac combines 

these measures to look at both rare and abundant species between two or more 

populations. This algorithm works by aligning a table of raw sequence reads to a 

customized hierarchal phylogenic tree. The output will be a graph showing the two 

populations (control and treatment) and how distinctly different, or similar they are. This 

protocol will only address using two populations (control and treatment) but GUniFrac 

analysis can be done with many groups as well. As mentioned above a R markdown file 

and sample files have been included with this unit discussion to aide in understanding.  
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Materials: 
  

  Computer with R Studio installed  

 

  Analyzed raw sequence reads from Protocol 3 

  

External server or computing cluster with an allocation of at least 100 GB 

and 8 processors (can use personal computer but will drastically increase 

computational time) 

 

Protocol Steps:   

 

 

1. Return to the folder with the mothur output files via terminal and create a 

new folder for GUnifrac analysis. 

 

2. Move the Test.stab.trim.contigs.good.unique.good.filter.unique.precluster. 

pick.fasta (or test.final.fasta)and the 

Test.trim.contigs.good.unique.good.filter.unique.precluster.denovo.vsearc

h.pick.count_table (or test.final.count) file to the new folder. 

a. It is recommended to rename these files as described in Basic 

Protocol 3 step 17. Shortening the names of these files makes the 

downstream analysis much simpler. 

 

3. Start mothur and create a distance table with the command 

dist.seqs(fasta=test.final.fasta, output=lt, processors=8)  

a. This command will take several hours and may crash. If it does 

crash, the command line will say “killed”, and the mothur program 

will close. In the event that dist.seqs crashes, follow the following 

steps: 

i. Take a subsample of the fasta and the count files with the 

command sub.sample( fasta=test.final.fasta, 

count=test.final.count)  

ii. This command will take a random 10% of  test.final.fasta 

and the same random 10% from test.final.count and create 

files with the name test.final.subsample.fasta and 

test.final.subsample.count. 

iii. If a larger subsample is desired, run the command 

count.groups(count=test.final.count). This will show how 

many sequences are in each group and how many total 

sequences are present (shown below). 

 

501 contains 20554. 

502 contains 4474. 

503 contains 19336. 

504 contains 2101. 
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505 contains 11445. 

601 contains 23595. 

602 contains 22541. 

603 contains 22195. 

604 contains 12943. 

605 contains 13733. 

 

Total seqs: 152917.  

 

iv. Note that the above sequences are uneven for each group. 

This occurs because the Illumina miseq provides 10 million 

reads, randomly distributed between the samples of the run. 

The above example data comes from a 50 sample run, 

giving each sample about 150,000 to 200,000 reads. 

Concordantly step iii takes a 10% subsample of the data. 

This means that each sample should have between 15,000 

and 20,000 reads. The above data table is variable, but most 

samples are around that range.  

v. The total sequences are 152917. For a 50% subsample take 

50% of 152917, which is 76459. Run the command 

sub.sample(fasta=test.final.fasta, count=test.final.count, 

size=76459) 

vi. The size option tells the command to take 76459 random 

sequences from both the files, thus resulting in a 50% 

random sampling. 

vii. Rerun dist.seqs(fasta=test.final.subsample.fasta, output=lt, 

processors=8) 

viii. If it crashes again, take a smaller subsample. 

ix. Note this protocol will use file names that have not been 

subsampled. If a subsample is needed, change the names 

accordingly. 

 

4. Create a phylogenic tree with the command 

clearcut(phylip=test.final.phylip.dist) 

a. When this command is running, it will appear that the command 

line is frozen, but that is completely normal. When it is complete, 

this command will result in test.final.phylip.tre. 

 

5. Exit mothur and change directories on terminal to be in the directory with 

all the GUnifrac files. Convert the count file to a text file with the 

command cp test.final.count test.final.count.txt 

 

6. Create a meta file containing sequence names and group identification. 

a. This can be done in excel where the first column, labeled 

‘samples’, are the respective sample names and the second column, 

labeled ‘treatment’, are the treatment groups (control, treatment).  
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b. For this analysis the meta file will be named test.meta.txt. 

 

7. Open R studio and install the GUnifrac package. 

 

8. Import the resulting tree file from step 4 with the command 

read.tree(file="//Users/setup/Desktop/mothur_files/test.final.phylip.tre")-

>test.tre.  

a. The file path is where the tree file is on the computer.  

 

9. Search the imported tree for nodes by typing test.tre in the R command 

line. 

a. This is very important because a tree with nodes will not work with 

the GUnifrac command. 

b. If a tree has nodes, it will be only one sequence and can be found 

under ‘Node labels’ in the output. 

c. If there are no ‘Node labels’ or if ‘Node labels’ does not show any 

sequence id’s then proceed to step 11 

 

10. Open test.final.count.txt and search (using command f) for the node label 

from Step 9. When found, delete this sequence and the entire row 

associated with it, and save. 

 

11. Import test.final.count.txt into R studio, making sure the first column is 

used as row names with the command 

read.delim(“~/Desktop/mothur_files/test.final.count.txt”, row.names=1)-

>test.count. 

a. Again the file path will be different for everyone, adjust 

accordingly.  

b. This command imports the count table into the variable test.count. 

c. This file will also be referred to as the OTU table by the GUniFrac 

software. 

 

12. Test the row names and column names with the commands 

head(row.names(test.count)) and colnames(test.count) respectively.  

a. The head modifier is used with the row names because there will 

be over 100,000 rows in this file.  

b. The row names should look like “M00946_96_000000000-

AEE8U_1_1119_3781_11413”. 

c. The column names should be the sample names. If the sample 

names are numbers, for example: 501, 502, 503 … 605. They will 

appear different after the colnames command. They will look like 

“X501, X502, X503 … X605”. This occurs because when 

importing, R puts an X in front of the column names to distinguish 

them from numbers. To fix this issue run the command 

colnames(test.count)=c("501", "502", "503",…,“605). 
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13. Transpose the rows and columns with the command 

t(test.count)=test.transpose.count. Check the column names with the 

command head(colnames(test.transpose.count)). 

a. A second check is required because occasionally the row names do 

not get transposed to the column names.  

b. If they did not get transferred, use the command 

colnames(test.transpose.count) = row.names(test.count). 

 

14. Run GUnifrac with the command GUniFrac(test.transpose.count, test.tre, 

alpha=c(0,.5,1))$unifracs -> TestUni 

a. This command will take roughly half an hour to run, and will most 

likely end in an error. If it immediately ends with the error 

“Warning message: In GUniFrac(test.transpose.count, test.tre, 

alpha=c(0,.5,1)) : The tree has more OTU than the OTU table!” 

there is a problem, please see the above troubleshooting, or the 

Troubleshooting section at the end of this protocol. 

b. If the above error is seen at the end of 10 to 30 min, then the 

command worked. This is because the command will work if there 

are less sequences in the count table then are represented on the 

tree, but it will not work if there are more sequences in the count 

table than are represented on the tree. When deleting the node label 

from the count table, the user is reducing the count table by 1. The 

count table is now one less than the mapped tree, thus this error 

will be reported at the end of the analysis.  

c. The alpha value is used to tell how much weight to put on 

abundance species, so in this example alphas of 0, 0.5, and 1 are 

being used. An alpha of 0 will put no weight on abundance species, 

an alpha of 0.5 will put half the weight on abundant species, and an 

alpha value of 1 will put all of the weight on abundant species. For 

this analysis the most important alpha value is 0.5 because this 

corresponds to a generalized unifrac measure. 

d. The resulting data frames will be in the variable TestUni. 

 

15.  Extract the generalized unifrac data frame with the command TestUni[, , 

“d_0.5”]->TestGU 

a. If interested, the weighted and unweighted unifrac analysis can be 

extracted with the command TestUni[, , “d_1”]->TestW and 

TestUni[, , “d_UW”]->TestUW respectively.  

 

16. Import the meta file and create a meta variable with the command 

read.delim(“~/Desktop/mothur_files/test.meta.txt”)$treatment->meta. 

a. This command will import the treatment groups into a variable 

called meta. 
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17. Create a color and a shape variable with the commands coul= coul<-

c("red", "blue") and shape= c(15, 15, 15, 15, 15, 16, 16, 16, 16,16) 

respectively. 

a. The colors can be changed to any color desired 

b. The shape codes come from the PCH table 

(http://www.endmemo.com/program/R/pchsymbols.php), which 

has numerical values for different shapes. In this case they are 

squares (15) and circles (16).  

 

18. Plot the results with the command s.class(cmdscale(TestGU, k=2), 

fac=meta, cpoint=1, pch=shape, col=coul). 

a. An example of a GUniFrac graph can be seen in Figure A-3. 

b. Since there are no axes measurements, the “d=0.1” measurement 

represents the length of each axis in the graph space.  

 

19. Check for statistical significance with the command 

Adonis(as.dist(TestGU) ~ meta). 

a. The Adonis command computes a multivariate analysis of variance 

using distance matrices. Since GUnifrac is a measurement of 

phylogenic distance, the Adonis command is the logical choice for 

statistical significance. Adonis is also recommended for use in the 

GUnifrac package details and will result in a p-value (16).  

 

 

Alternative Protocol 1: Metagenomic Analysis of the Gut Microbiome 
 

This protocol describes the process of metagenomic analysis with the HUMAnN2 

software from the Huttenhower lab (5). HUMAnN2 is a powerful pipeline combining a 

taxonomic analysis through the software Metaphlan2 (17), alignment of raw sequences to 

a bacterial reference genome with Bowtie2 (18), and a secondary alignment to a protein 

database for unmapped reads with DIAMOND (19). Together these programs work 

together to produce a comprehensive list of metabolic pathways present in the gut 

microbiome. This information can be used to help predict and validate metabolic changes 

seen in the host. Significantly different pathways will be discovered with the use of 

LEfSe (Linear discriminant analysis Effect Size) which combines statistical significance 

and biological relevance with the Wilcoxon and the Kruskal-Wallace statistical tests, 
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respectively (20). This protocol uses the bacterial DNA isolated in Protocol 1.There is 

also an online manual for HUMAnN2 

(https://bitbucket.org/biobakery/humann2/wiki/Home).  

 

Materials 
  

  Bacterial DNA isolates from Protocol 1  

 

  Sequencing core facility or an Illumina Hiseq 2500  

   

External server or computing cluster with an allocation of at least 100 GB 

and 8 processors (can use personal computer but will drastically increase 

computational time) 

 

HUMAnN2 installed with all required dependencies (can be found at 

https://bitbucket.org/biobakery/humann2/wiki/Home#markdown-header-

requirements) 

 

Internet connection and access to the Huttenhower galaxy site  

 

NanoDrop UV-Vis Spectrophotometer Lite (Thermo-Scientific) 

Excel or Numbers  

 

Protocol Steps: 

 

1. Measure DNA concentration on the NanoDrop 

a. This requires only 1 L of isolated bacterial DNA. Concentration 

values should range from 100 ng/L to 400 ng/L. 

i. If values exceed 400 ng/L, this is not an issue and less 

input bacterial DNA will be used. Also most sequencing 

cores will test the quality of DNA before sequencing  

ii. If values are lower than 100 ng/L, then PCR may be 

required to increase the input material before sequencing. 

This is not an issue but can introduce PCR bias into the 

results. PCR bias occurs when abundant species are 

amplified and end up masking rarer species. PCR can also 

amplify contaminants which can skew results 

b. With metagenomic shotgun sequencing, no PCR is needed before 

submission as long as there is at least 1-2 g of DNA.  

 

https://bitbucket.org/biobakery/humann2/wiki/Home)
https://bitbucket.org/biobakery/humann2/wiki/Home#markdown-header-requirements)
https://bitbucket.org/biobakery/humann2/wiki/Home#markdown-header-requirements)
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2. Submit the DNA isolates to a sequencing core or an independent company 

for Illumina hiseq 150x150 sequencing with the PCR-free library 

construction kit.  

a. Please note that HUMAnN2 cannot run both partners of a paired 

end read simultaneously. This protocol will go through using only 

one partner from each pair. Due to this, single end sequencing can 

be completed instead of paired end sequencing if HUMAnN2 is the 

only analytical pipeline being used. If, however, further analysis is 

required, it is recommended to use the paired end sequencing 

because most analytical pipelines require paired end sequencing.  

 

3. Install HUMAnN2 according to instructions, making sure that all 

dependencies are installed. 

a. The dependencies include: MetaPhlAn2, Bowtie2, Diamond, and 

python (at least version 2.7). They should be automatically 

installed when installing HUMAnN2. 

b. This can be difficult without administrative permissions. This will 

be the case if an external server or a computing cluster is being 

used for analysis.  

i. To get around this, import the latest humann2.tar.gz file on 

to the server. 

ii. Decompress the file, enter the resulting directory and run 

python setup.py install --user. 

iii. This will put all the dependencies in a /.local directory, 

bypassing the need for administrative permissions 

iv. The user must also run export 

PATH=”$PATH:~/.local/bin”  

 

4. Install the chocophlan and uniref databases using the commands 

humann2_databases –download chocophlan full $Path_to_install and 

humann2_databases –download uniref  uniref90_diamond 

$Path_to_install. 

a. The $Path_to_install will be modified to the path of the desired 

location of the database. This is important because the 

configuration file that is used to run HUMAnN2 will be updated 

with this command, so do not move the databases once installed. 

b. Also together both databases are about 20 GB  

c. It is also important to make sure that the version of HUMAnN2 

being used is v 0.11.1 or higher. This command will not work with 

earlier versions of HUMAnN2. 

 

5. Import raw sequence file from the Illumina Hiseq to the server or 

computer cluster being used.  

 

6. Create a directory for the output. 
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7. Run HUMAnN2 with the command humann2 --input 

./Raw_sequence_files/Test1.R1.fastq --output ./output_files --metaphlan 

./metaphlan2/ --threads 8 

a. The paths to the input and the output depends on the environment 

being used and will be different for everyone. 

b. It is important to tell HUMAnN2 where to find metaphlan2, 

because when running on the external server adding the location of 

metaphlan2 to the /.local directory does not work. Thankfully, the 

HUMAnN2 command allows the user to specify where the 

metaphaln2 dependencies are.  

c. At any point HUMAnN2 crashes and has an error describing that 

bowtie2 or diamond cannot be found, they can also be added to the 

above HUMAnN2 command. 

i. The resulting command could potentially read,  humann2 --

input ./Raw_sequence_files/Test.R1.fastq --output 

./output_files --metaphlan ./metaphlan2/--bowtie2 

~/bowtie2-2.2.5 --diamond ~/diamond-0.7.9/bin  --threads 

8 

ii. This will work as long as the bowtie and diamond 

dependencies are at the ~ (home) location. 

d. With 8 processors, this process will take 12 hours to run. The run 

time can be shortened with more available processors. 

e. The resulting files will be a pathway abundance file, a pathway 

coverage file and a gene families file. The pathway abundance file 

has abundance values for all HUMAnN2 identified pathways. The 

pathway coverage file contains the percentage of each pathway 

present. This is represented with a value from 0-1, with 1 being 

100% covered and every gene family present in the pathway. The 

gene families file contains all the gene families identified with 

HUMAnN2. 

i. This analysis will not utilize the gene families file but the 

gene families file could be used for de novo pathway 

creation. 

 

8. Transport all pathway abundance files and all coverage files off of the 

external server and onto the desktop. 

 

9. Install the latest version of HUMAnN2 onto the computer in use, but do 

not install the databases.  

 

10. Combine the pathway abundance and pathway coverage file for each 

sample with the command humann2_join_tabels --input ./test.1 --output 

./test.1.combo.txt. 

a. Each sample should get its own directory and each respective 

pathway abundance and pathway coverage file will be placed into 

that directory. In this case the directory is called test.1. This 
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directory contains the files test.1.pathwayabundance.txt and 

test.1.pathwaycoverage.txt.  

b. When combined the resulting file will be called test.1.combo.txt 

and will contain the pathway abundances and respective coverages 

for all pathways discovered in sample test.1.  

 

11. Copy and paste the contents of the combo files into Excel or Numbers. 

Sort the table by coverage (high to low), remove all pathways below a 0.3 

(30%) coverage and create a new text file with the trimmed data. 

a. The 0.30 (30%) cut off is completely arbitrary and can be higher or 

lower depending on the needs of the experiment.  

b. The reason a cutoff value is needed is because multiple gene 

familes can belong to multiple pathways, so the less the coverage 

is, the less likely the pathway is to be actually present.  

c. The edited combo file should be placed in a directory called 

test.edits.  

 

12. Combine all edited combo files into one file which contains all the 

pathway abundances with at least a 30% coverage with the command 

humann2_join_tabels --input ./test.edits --output ./Test.whole.txt. 

a. Test.whole.txt contains all the pathway abundances with at least a 

30% coverage for the experiment. 

b. Depending on the version of HUMAnN2, the coverages may or 

may not be combined with the pathway abundances. If this is the 

case just delete the coverage columns, leaving only the pathway 

abundances.  

 

13. Open Test.whole.txt and clean up the labels by replacing the column 

names with the sample names (test1, test2, test3 … testn). Also add a new 

row directly below the column names and title the row ‘Treatment’ and 

add the appropriate treatments to each sample. 

a. The Test.whole.txt file example can be seen in Table A-3. 

b. A cleaned version can be seen in Table A-4. 

 

14. Export the cleaned version of Test.whole.txt as Test.whole.clean.txt and 

import it to the Huttenhower galaxy page 

(https://huttenhower.sph.harvard.edu/galaxy/)  

 

15. Go to LeFSe tab A) and select the uploaded file. Make sure that rows are 

selected as the vector option and select ‘Treatment’ for the class option 

and ‘Sample’ as the subject option. Click execute. 

 

16. Move to LeFSe tab B) and select the file created from the previous step. 

Adjust the alpha values if needed (default is p = 0.05). Click execute. 

 

https://huttenhower.sph.harvard.edu/galaxy/)
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17. Move to LeFSe tab C) select the resulting file from B and adjust the DPI if 

necessary and click execute.  

a. The resulting file will show the significantly different and 

biologically relevant pathways from the gut microbiome. 

 

 

METABLOMICS-BASED PROTOCOLS 

Basic Protocol 4: Cecal Content Extraction for LC-Orbitrap-MS 

 

LC-Orbitrap-MS offers high throughput, high-resolution, accurate-mass 

performance, and has been extensively utilized as a powerful metabolomics tool to detect 

a wide range of compounds, especially small metabolic molecules during global and 

target analysis. Cecal content contains most abundant and active bacteria, thus metabolic 

profile of cecal content indicates not only bacterial activity and host metabolism, but also 

informs the co-metabolic status of the host and bacteria. This protocol describes an 

untargeted hydrophilic phase extraction method of cecal content for LC-Orbitrap-MS 

(Thermo) analysis.   

 

Materials 

  10 - 200 L pipette (Denville) 

 

  1000 L pipette (Denville) 

 

  1 Centrifuge (Eppendorf 5430R) 

 

  1 set of sample labeled 2 mL screw cap homogenizer tubes (VWR) 

 

  1 sets of sample labeled 1.5 mL Eppendorf tubes (Eppendorf) 

 

                        250 μL autosampler vials (Thermo Fisher)  

 

  Vortexer (Any Brand)  

 

                        Precellys 24 lysis and homogenization (Bertin Technologies) 

 

Savant SPD121P SpeedVac Concentrator (Thermo Scientific)  
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  37 C water bath 

 

                        Liquid nitrogen 

 

   1 mm Silica homogenization beads (BioSpec) 

 

                        HPLC graded methanol (Sigma-Aldrich) 

 

                        HPLC graded water (Sigma-Aldrich) 

 

                        Chlorpropamide (Sigma-Aldrich) 

                            

Protocol Steps 

 

1. Cecal content (~50 mg) is mixed with 10 - 15 1 mm silica homogenization 

beads first, then extracted with 1 mL of ice-cold methanol (50% v/v) 

containing 1 M chlorpropamide.  

 

2. Vortex the sample briefly, then homogenize thoroughly (after 

homogenizing for 1 min, stop for 2 min to prevent overheating).  

 

3. Freeze and thaw three times with liquid nitrogen.  

 

4.  Centrifuge for 10 min, 12,000 x g, 4 C.  

 

5. Transfer the supernatants to a new 1.5 mL tube. 

 

6. Re-extract cecal contents by adding an additional 500 L of ice-cold 

methanol (50% v/v) containing 1 M chlorpropamide, repeat step 2 - 4. 

 

7. Combine the supernatants. 

 

8. Dry down the samples in speedvac (takes about 3 hours). 

 

9. Suspend the pellet in 200 μL 3% methanol. 

 

10. Centrifuge for 10 min, 13000xg, 4 C. 

 

11. Transfer 150 μL of the supernatants to a 250 μL autosampler vials and 

store at -20°C until ready to be run. 

 

12. Pool 10 μL of each sample to a new tube for quality control. Pooled 

samples are prepared in triplicate. 

 

13. See support protocol 3 for how to set up the LC-Orbitrap-MS.  
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Support Protocol 3: LC-Orbitrap-MS Instrumentation Settings 

 

The LC-MS system consists of a Dionex Ultimate 3000 quaternary HPLC pump, 

a Dionex 3000 column compartment, a Dionex 3000 autosampler, and an Exactive plus 

Orbitrap mass spectrometer controlled by Xcalibur 2.2 software (all from Thermo Fisher 

Scientific, Waltham, MA). Extracts are analyzed by LC-MS using a modified version of 

an ion pairing reversed phase negative ion electrospray ionization method (21). A volume 

of 10 μL sample is injected and separated on a Phenomenex (Torrance, CA) Hydro-RP 

C18 column (100 × 2.1 mm, 2.5 µm particle size) using a water/methanol gradient with 

tributylamine and acetic acid added to the aqueous mobile phase. The HPLC column is 

maintained at 30 °C, and at flow rate of 200 μL/min. Solvent A is 3% aqueous methanol 

with 10 mM tributylamine and 15 mM acetic acid; solvent B is methanol. The gradient is 

0 min, 0% B; 5 min, 20% B; 7.5 min, 20% B; 13 min, 55% B; 15.5 min, 95% B; 18.5 

min, 95% B; 19 min, 0% B; and 25 min, 0% B. The Exactive plus is operated in negative 

ion mode at maximum resolution (140,000) and scanned from m/z 72 to m/z 1000 for the 

first 90 sec and then from m/z 85 to m/z 1000 for the remainder of the chromatographic 

run. The AGC target is 3 x 106 with a maximum injection time of 100 ms, the nitrogen 

sheath gas is set at 35, the auxillary gas at 10 and the sweep gas at 1. The capillary 

voltage is 3.2 kV and both the capillary and heater set at 200 °C, the S-lens was 55. To 

aid in the detection of metabolites, a homemade database generated from 288 pure 

metabolite standards using the same instrument and method to determine detection 

capability, mass/charge ratio (m/z), and retention time for each metabolite is used as a 

primary database for metabolites identification. 
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Basic Protocol 5: LC-Orbitrap-MS Data Analysis with MS-Dial 

 

MS-DIAL, an open-source software pipeline is used for untargeted metabolomics 

analysis (22).  

 

1. Start up a project 

a. Before performing analysis, LC-Orbitrap-MS Data (.raw) needs to be 

converted to mzML format with open source software Proteowizard 

(23).  

b. In the MS-DIAL interface, click “File-New project” and open “Start 

up a project” window. Select a directory that contains the converted 

mzML format MS files. Choose the “Soft Ionization” as ionization 

type; “Conventional LC/MS or data dependent MS/MS” as method 

type; “Profile data” as data type for MS1 and MS/MS; choose 

“Negative ion mode” as ion mode and “Metabolomics” as target 

omics, click next. 

c. Browse the analysis file paths, change the file format to mzML file 

(*.mzml) and select all the mzML format files to be analyzed. Choose 

the correct type for each sample (sample, standard, quality control or 

blank). Then based on the group information, add the corresponding 

Class ID for each sample (Control, low dose treatment, high dose 

treatment, etc.). Uncheck any samples under “Included” for exclusion 

if necessary, then click next. 

 

2. Peak detection, identification, and alignment setting 

a. Under “Analysis parameter setting” window, click “Identification” tab, 

select the “MSMS-AllPublic-Curated-Neg” MSP file from Public 

MSPs folder included in the software package.  

b. Based on the accuracy of mass and retention time of the Orbitrap 

instrument, select the retention time tolerance within range of 0.2~0.5 

min, accurate mass tolerance from 0.001~0.005 Da (2~10 ppm at 200 

m/z).  

c. If an in-house library generated from a list of pure metabolite 

standards using the same instrument and methods, then select the text 

file (an accurate database) containing name, mass-to-charge ratio (m/z) 

and retention time for each metabolite. Select the stricter tolerance 

setting such as retention time tolerance ≤ 0.2 min and accurate mass 

tolerance ≤ 0.002 Da.  

d. Click “Alignment” tab, choose a non-blank sample as a reference file 

for alignment. Recommended reference file:  a pooled sample, or 

intermediate sample in injection sequence order. Recommended 

tolerance setting: RT tolerance of 0.2~0.5 min and MS1 tolerance of 

0.0025~0.003 Da. 
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e. Click “Finish” and peak detection, identification and alignment starts. 

Those processing steps take several hours based on sample number 

and computer capacity. 

 

3. Browse the result window and export alignment results 

a. Double click “Alignment navigator” at the left bottom of the result 

window. 

b. Apply normalization method by clicking statistical analysis-

normalization (optional). 

c. Perform PCA analysis by clicking statistical analysis-principal 

component analysis (optional). 

d. At the Peak spot navigator window, select “Identified display filter” 

(identified peaks with the database generated from a list of pure 

metabolite standards using the same instrument and method). Check 

the number of the alignment in “Peak spot navigator “with identified 

display filter. If the number is too low, check the “Annotated display 

filter” (identified the peaks with the public MSP file without MS/MS) 

or return to 2c and 2d to increase accurate mass and retention time 

tolerance. 

e. Click individual spot in “Alignment spot viewer” window at the 

middle bottom, check the peak and compound information (right top 

window), bar chart of aligned spots (middle top window) and the MS1 

spectrum (left bottom). 

f. Click export-alignment result, select a folder for import, choose export 

format as “txt”, the most important files for import are “Raw data 

matrix (Area)”, “Parameters” and “normalized data matrix” (If 

normalization method is applied). 

 

4. Post processing alignment result 

a. Check the data quality. 

i. Check Coefficient of variation value of the internal 

standard (chlorpropamide) and replicated pooled samples. 

ii. Check if the pooled samples are close to biological 

averaging. 

iii. Check the fill % (Percentage of samples having good 

shape, otherwise, apply “Gap Filling”). 

b. Apply additional filter if necessary to clean the data.  

i. Subtract blank values from averaged sample values and 

filter the compound only with positive values.  

ii. Filter the compound with fill % > 0.3 - 0.5 (good 

alignment).  

 

     

 

Basic Protocol 6: Cecal Content Extraction for NMR 
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1H NMR is a reliable, stable and cost-effective tool for global metabolomics 

analysis. The non-destructive, non-invasive and instrument-independent nature of NMR 

techniques guarantees high reproducibility. The protocol below describes a cecal content 

extraction, data processing, and statistical analysis protocol for NMR spectroscopy.  

 

Materials 

  10-200 L pipette (Denville) 

 

  1000 L pipette (Denville) 

 

  1 Centrifuge (Eppendorf 5430 R) 

 

  1 set of sample labeled 2 mL screw cap homogenizer tubes (VWR) 

 

  1 sets of sample labeled 1.5 mL Eppendorf tubes (Eppendorf) 

 

                        5 mm NMR tube and lid (Norell) 

 

  Vortexer (Any Brand)   

 

                        Precellys 24 lysis and homogenization (Bertin Technologies) 

 

                        Liquid nitrogen 

 

  1 mm silica homogenization beads (BioSpec) 

 

                       Potassium phosphate dibasic (K2HPO4) (Sigma-Aldrich) 

 

                       Sodium phosphate monobasic (NaH2PO4) (Sigma-Aldrich) 

 

                       3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP-d4) (Sigma-

Aldrich) 

 

                       Distilled Water 

 

                       Deuterium oxide (D2O) (Cambridge Isotope Laboratories) 

                                              

   

Protocol Steps 
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1. Extract cecal content (~50 mg) with 1 mL of phosphate buffer 

(K2HPO4/NaH2PO4, 0.1 M, pH 7.4, 50% v/v D2O) containing 50 μg/mL 

(290 μM) TSP-d4 as a chemical shift reference (δ 0.00). 

 

2. Freeze-thaw three times with liquid nitrogen.  

 

3. Homogenize for 1 min, 6,500 rpm, 1 cycle and centrifuge for 10 min, 

11,180 x g, 4 C. 

 

4. Transfer the supernatants to a new 1.5 mL tube 

 

5. Add another 600 L PBS to the pellets, vortex for 1 min. 

 

6. Centrifuge for 10 min, 11,180 x g, 4 C. 

 

7. Transfer the additional supernatants to the 1.5 mL (combined supernatants 

are around 1.2 mL in total volume). 

 

8. Centrifuge the combined supernatants for 10 min, 11,180 x g, 4 C. 

 

9. Transfer the supernatants to a 5 mm NMR tube, and store at 4 °C until 

performing NMR spectroscopy.  

 

10. See Support Protocol 4 for information on acquisition settings.  

 

 

Support Protocol 4: NMR Spectra Acquisition Setting 

 

All 1H spectra are recorded at 298K on a Bruker NMR spectrometer (600 MHz 

for 1H) configured with a 5-mm inverse cryogenic probe. A standard one-dimensional 

pulse sequence noesypr1d (recycle delay-90°-t1-90°-tm-90°-acquisition) is used with a 

90 pulse length of approximately 10 μs (-9.6 dbW) and 64 transients are recorded into 

32k data points with a spectral width of 9.6 KHz. For quantitation purposes, a relaxation 

delay (5s) and a recycle delay (4s) are added to the cycle to ensure the total repetition 

time (relaxation time, recycle delay and acquisition time) is more than 5 times the 

longitudinal relaxation time (T1) of the compounds (24). Quantitation analysis is 

performed based on either TSP-d4 reference with known concentration (25) or calibration 
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curve. To facilitate NMR resonance assignments, two-dimensional (2D) NMR spectra 

including 1H-1H total correlation spectroscopy (TOCSY), 1H-1H correlation spectroscopy 

(COSY), J-resolved (JRES), 1H-13C heteronuclear single quantum correlation (HSQC), 

and 1H-13C heteronuclear multiple bond correlation (HMBC) are acquired. Chemical 

shifts are reported in ppm from TSP (δ = 0.00). 

 

Basic Protocol 7: NMR Spectra Processing 

 

Protocol Steps 

 

1. NMR spectra processing with Topspin 3.0 (Bruker Biospin, Germany) 

a. Before performing statistical analysis, an exponential window function 

(command code: efp) is applied with a line-broadening factor of 1 Hz 

(command code: lb 1) prior to Fourier Transformation.  

 

b. Then all 1H NMR spectra qualities are improved by correcting the 

phase (command code: ph), baseline (command code: bas) and 

referencing to TSP (δ 0.00) (command code: cal) automatically or 

manually (manually recommended). 

 

2. Further process the spectra with AMIX software version: 3.9.14 (Brucker 

Biospin, Germany) 

a. Import the data and check quality 

i. Open Amix-File-Open TOPSPIN 1D file, choose the right 

directory where the 1H NMR spectra are stored and select 

all the spectra for analysis. 

ii. Check the layered spectra for proper overlay. If the spectra 

are not overlaid properly, repeat 1b to improve spectra 

phase, baseline, and calibration.  

 

b. Bucketing  

i. Click “Amix-Tools-Bukcets,Statistics-Statistics-Bucket 

Table-New”. 

ii. Choose 1D NMR and simple rectangular buckets. 

iii. Change bucket width to 0.004 ppm (2.4 Hz). 

iv. Change the scaling mode to either scaling to total intensity 

(non-quantitative purpose) to compensate the overall 

concentration differences (26), or no scaling then normalize 

to the tissue weight later (for quantitative purpose) (24).  

v. Select “edit exclusions” and remove the interference 

signals including the residual water signal (region δ 4.2 - 
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5.2), other contamination signal, like methanol (region δ 

3.3 - 3.4), ethanol (region δ 1.1 - 1.2, 3.6 - 3.7) and 

Polyethylene glycol (δ 3.6 - 3.8).  

vi. Select a directory to save the bucket table. 

vii. Select data source from TOPSPIN data tree and reselect all 

the spectra again. 

viii. Choose “no” for “select next” window, close the file 

display window. 

ix. Click “Statistic-Bucket table-Import”, rename the txt file, 

choose “table (spectrum per column)” as “output format”; 

Choose “blanks, commas, tables” as “delimiters used in 

table output”.  

x. The imported txt file is under default path of Bruker-Amix 

directory.  

 

 

Basic Protocol 8: Universal Profiling of NMR Data 

 

Multivariate data analysis is performed with SIMCA 13 (Umetrics, Sweden). 

Before performing statistical analysis, import the bucketed .txt file into Excel, delete the 

regions with a number 0 (the exclusion regions edited in Amix), save as “Excel 2003-

2007 workbook” as other formats cannot be recognized by SIMCA. 

 

Protocol Steps 

 

1. Principal component analysis (PCA) 

a. Open SIMCA, create a new regular project, select the saved 

Excel file as data source. 

b. At import data wizard window, click “Edit-Transpose” to 

transpose the spread sheet. Now the first column is the data ID 

and first row is the ppm ID  

c. Click the arrows on the first column and row, choose primary 

observation ID and primary variable ID, respectively. Click 

“File-Save as-Finish import”. 

d. Click “New model”, under “observations” tab, select all the 

samples from one treatment group, click “Set class”, then 

select another group click “Set class”, until all samples are 

assigned. Under “Scale” tab, select “Ctr” as scaling type, 

choose “PCA-X” as “Model type”.  

e. Click “Two First” to calculate the first two components. 

f. Click “Overview” to create summary plots. 
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i. Check Score Scatter Plot for outliers and other 

abnormalities.  

ii. If a sample is significantly away from the rest of the 

samples, check loading scatter plot for the contributed 

specific primary IDs (ppm IDs). Confirm this 

abnormality by checking the ppm regions from the 

original spectra with topspin. The data points could be 

removed if the signals are contamination or external 

signals.   

iii. Loading plot also reveals the significant contributors 

(metabolites) for the group separation. Future targeted 

analysis could be applied if necessary.  

 

2. Orthogonal projection to latent structure-discriminant analysis (OPLS-

DA) 

a. Follow the same step described in 1a-c. Before import, insert 

one new column at position 2, select the column name as “Y 

variable”. This binary variable Y is created and assigned to 

defining a group. (For example control group is 0, treatment 

group is 1). 

b.  Same as 1d, select “UV” instead of “Ctr” as scaling type for 

OPLS-DA analysis. A 7-fold cross validation method is 

employed to validate the OPLS-DA models. The quality of the 

model is indicated by the parameters R2X (predictive power) 

and Q2 (validity of the model). The validity of the OPLS-DA 

model is further assessed with CV-ANOVA tests by clicking 

“Analyze-CV-ANOVA” for significance with p <  0.05(27).  

 

 

Basic Protocol 9: Quantitative Analysis of NMR Data  
 

Quantitative analysis is performed with the software Chenomx NMR suite 

(Chenomix, Inc).  

 

Protocol Steps 

 

1. Converting and processing native spectra in a batch with Chenomx 

Processor 

a. Convert native spectrum formats to Chenomx file format with 

the application named Chenomx processor within Chenomx 

NMR suite.  
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i. Click “Tools-Batch Import” and select files or a fold 

that contains all native spectra to be processed. Click 

next.  

ii. Choose “Bruker 1r” as the type of data. Click next. 

iii. Select “TSP” as a Chemical Shape Indicator (CSI), the 

concentration is 0.29 mM. Click next.  

iv. Select “Automatic Phase Correction” and “Automatic 

Baseline Correction- Spline”. Click next. 

v. Choose a folder to save the converted files. 

b.   Manually check the batch-processed spectra for ensured 

quality. 

i. Click “File-Open” and select the converted files 

generated from last step. 

ii. Click “Processing history-Files”, a list of converted 

spectra shows at the left window. Go through those 

spectra to make sure the quality of the spectra are 

satisfied. If necessary, click the “Phase Correction” and 

“Baseline correction” below the spectrum window to 

adjust the processing parameters manually to improve 

the quality of the spectrum. 

iii. Click “File-Send to Profiler” for metabolites 

identification and quantitation. 

 

2. Identifying and quantifying the metabolites in a batch with Chenomx 

Profiler  

a. The converted NMR spectra are transferred to Chenomx 

Profiler, a function named “batch fit” allows to identify and 

quantify the metabolites across whole datasets with 

sophisticated computer-assisted fitting routines using a default 

Chenomx's spectral library or a library with only targeted 

metabolites generated by the user manually.  

i. Click “Tools-Batch Fit-Add Folder” and select a folder 

that contains all processed spectra. Click next.  

ii. Choose a list of interested compounds from:  

1. A profiled spectrum (a library with only 

targeted metabolites generated by the user 

manually).  

2. Chenomx Reference Compounds at 600 HZ 

(Default Chenomx's spectral library). Click next 

(if choosing ii-1, jump to 3 to learn how to 

generate a library with only targeted metabolites 

manually). 

iii. Refine the previous compound selection by moving the 

interested compounds from the left to the right window. 

Click next and finish. It takes from several min to 
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several hours to process, depending on the number of 

compounds selected and the computer’s capacity. 

b.   Manually check the batch-fitted spectra for accurate 

quantitation. 

i. Review the fitted spectra list on the left to make sure 

the peak fitting is correct. Adjust the fitting manually if 

necessary. 

ii. Click “File-Export-Compound Table” to export the 

quantified results. 

 

3. Manually generate a profiled spectrum with only targeted metabolites 

(Do this step first if choose a-ii-1) 

a. Open a good representative spectrum within the spectra batch 

with Chenomx Profiler. 

b. Search for targeted compounds either by typing the metabolite 

name or the reference chemical shift at the “Find in Table” 

input box below the spectrum. 

c. Select the targeted compound name in the candidate list below 

the spectrum. Once a compound name is selected, a 

corresponding reference peak in purple will appear in the 

spectrum window. Zoom in to adjust the purple arrow 

vertically and horizontally to fit the peak. 

d. After fitting all targeted compounds, click “File-Save as”, 

name the file as “targeted library”. 

e. Follow all of step 2, except in a-ii, choose a-ii-2, use the 

profiled spectrum generated in this step as a reference.       

 

 

Reagents and Solutions: 

 

 50X TAE: 

   

  Tris   121 g 

  

  Acetic Acid  28.55 mL 

  

  0.5 M EDTA  50 mL 

 

  Distilled Water 500 mL 

 

Mix all ingredients and stir until fully dissolved (about 1-2 hours). Dilute to 1X 

by adding 20 mL of the 50X solution to 980 mL of distilled water. 

 

 

COMMENTARY  
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Background Information  
  

There is a growing importance surrounding microbiome analyses and coupling 

them with toxicological studies. This, combined with the misconception that microbiome 

analyses are only for computational biologists, is creating missed opportunities in novel 

pathway discovery, toxic effects, and risk factors. The above microbiome analysis is also 

not the only way to investigate the microbiome; QPCR methods have been established to 

analyze specific phyla or species of bacteria, and how they change with a given 

treatment. QPCR methods can and should be coupled with the above protocol because 

they can validate the bioinformatics results. Also, QPCR can use fecal pellets as a source 

of bacterial DNA if a study has run out of cecal contents. If a group wants a deeper 

analysis of the microbiome RNAseq studies have started to become a more popular way 

to investigate the metatranscriptome of the gut microbiome. This does involve an 

extensive isolation protocol and a 16S rRNA degradation protocol. Current 

metatranscriptomic results only report microbial transcripts expressed as a whole, but 

there is the potential to link mRNA expression to specific gut bacterial species. The key 

to this linkage is a combination of classical metabolomic strategies and bioinformatics. 

The above protocol is the first step in wide spread implementation of bioinformatics in 

classical toxicology labs. 

This wide spread implementation is important to growing the knowledge base for 

the gut microbiome. As it stands now, microbiome analysis is still in its infancy, meaning 

there is not a standard protocol, reference base, or even a normal gut composition. The 

more research put into microbiome analysis, helps this knowledge base grow. It is also 

important for toxicologists to implement microbiome analysis to help validate results. 
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Most labs will do either a toxicological study or a bioinformatics microbiome analysis, 

making it almost impossible to link the two. With this protocol, combining classic 

toxicological studies and new microbiome analyses should become more common, which 

will lead to more validation and a better understanding of the microbiome’s role in drug 

metabolism, dietary changes, and other toxicological studies. 

 

Critical Parameters 

 

As previously discussed, some basic training in terminal-based coding and R 

programming is needed to get the most out of a microbiome analysis. This training does 

not need to be extensive. For terminal coding, all that is needed are the skills to connect 

to and move around an external server or computing cluster within terminal and how to 

move files to and from a server. R coding should be used for graphing and statistics, but 

any software can be used instead of R. Also it is highly recommended that this analysis 

be done on a server or a computing cluster. Microbiome analyses can be done on a 

personal computer but it could take up to a month to complete, compared to a few hours 

on a server or computing cluster. Most major schools and universities have a computing 

cluster to be used for computationally intensive commands, like microbiome analyses. If 

there is not a computing cluster available, the amazon cloud is cost-affordable and will 

work just as well as a university computing cluster.  

It is also extremely important to use blanks and method controls. The method 

controls will show what is picked up during the extraction and amplification. Also since 

16S rRNA gene sequencing uses PCR, a very small amount of contamination could grow 

exponentially. To account for this, sequence the method blank to make sure the 

contamination seen in the blank is not in the samples. Also, if possible, run a mock 
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community with the samples on the sequencer. A mock community involves a known 

quantity of bacteria, usually about 12 - 15 different species. Mothur uses the mock 

community from BEI resources and is called HM-782D. Another mock community that 

can be used is from ZymoBIOMICS called the Microbial Community DNA Standard 

#D6305. These mock communities can be used to validate any other methods of 16S 

rRNA gene classification. Mothur has certain commands in the software that can be used 

to obtain an error rate based on the composition of mock communities. This can also help 

discover any sequence errors or any human errors in the analytic pipeline.  

 

Troubleshooting 
 

As with most computational workflows, there will be errors not mentioned in this 

protocol. If an error is not mentioned in this protocol, refer back to the miseq wiki 

(https://www.mothur.org/wiki/MiSeq_SOP), the HUMAnN2 bitbucket page 

(https://bitbucket.org/biobakery/humann2/wiki/Home), or the HUMAnN2 google group 

(https://groups.google.com/forum/#!forum/humann-users). This next section will discuss 

common errors that were not discussed in the above protocols. 

1. “X…num.temp is blank. Please correct.” Error from mothur. This is a 

very common error that results in a segmentation fault and an exit from 

the mothur program. When this error occurs, it is a notification that the 

server or the computer has run out of space. This happens more times on a 

personal computer than a server, but it has happened on a server. The best 

way to fix this is to delete all the files that are not needed any more, 

especially dist files. Dist files can sometimes be over 100 GB, so deleting 

them will free up a lot of space.  

2. After any command in mothur, there is an error of X sequence that is 

not present in Y file but is present in Z file. This could also have to do 

with memory but can usually be fixed by deleting all the files in the 

working directory expect for the starting files (raw FASTQ files, stability 

file, silva.bacteria.fasta, and the two trainsets). When rerunning, this error 

should go away. This also sometimes occurs after a subsample has been 

taken. If this is the case, delete the subsample files and take a new 

https://www.mothur.org/wiki/MiSeq_SOP)
https://bitbucket.org/biobakery/humann2/wiki/Home)
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subsample. If this error is obtained multiple times, delete the files and start 

over from the beginning.  

3. Negative sequence lengths after summary.seqs command in mothur. 
This will not give a segmentation fault but the results will be corrupted. 

This is caused by a mistake in the first step (make.contigs) and is usually 

due to one of the FASTQ files missing or misspelling in the stability file. 

There is an error present with this, but it usually comes up too quickly to 

notice. This is another important reason to do summary.seq commands 

with every run. To fix this, double check all the FASTQ files and make 

sure that both parts of the pair are present. Also check the stability file to 

make sure the format and the spelling are correct. 

4. OTU’s do not match the tree error from GUnifrac. This was briefly 

mentioned in the above sections, but a different way to solve this can be 

done all in R. Use the following commands to fix the problem within R. 

Test.count <- read.delim("~/Desktop/count_table.txt", 

row.names=1) 

row.names(Test.count)->A 

Test.tre$tip.lable->B 

setdiff(A,B)->C 

Test.count.update<-Test.count [! row.names(Test.count) %in% C,] 

 

These commands will find all the different names between the count table 

and the tree file and remove them. This sometimes works better than the 

steps outlined in Support Protocol 2, because, occasionally, there are 

more sequence differences in the count_table than just the tree node. The 

above commands will find these difference and remove them. 

 

Anticipated Results 

As mentioned above, this protocol will result in a summary file that has the 

taxonomic distribution of the gut microbiome. This file can be used for statistical tests to 

adequately describe the taxonomic shifts. If the alternative protocols are completed, a 

figure will be generated showing how different the two populations are based on 

distances mapped onto a phylogenic tree, as well as a list of pathways that are 

significantly different between a control and treatment group. With these outputs, many 

other applications can be done. A popular application is correlations between taxonomic 
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changes and metabolomic changes. This can show relationships between bacterial genera 

and metabolites and can be used to validate the metagenomic results. Also this 

information can be used for modeling and predictive software.  

 

Time Constraints 

Basic Protocol 1 will take about 5 - 8 hours of bench work, depending on the 

number of samples. Basic Protocol 2 will take about 3 - 4 hours. The sequencing can 

take 1 week to 4 weeks, depending on the queue or if samples are sent to private 

sequencing companies. Basic Protocol 3 will take between a day and a month depending 

on what is used for the analysis. If performed on an external server or computing cluster, 

Basic Protocol 3 will only take about a day but if the analysis is done on a personal 

laptop, then it could take up to a month to complete. Support Protocol 3 will take 

another day to a week, depending on the number of samples, size of the subsample, and 

what is being used to do the analysis. Dist.seqs is a command that can take a while and 

may be killed if the file being created is too large. Again this also depends on the 

computing power used for this analysis. Alternative Protocol 1 will take 1 week to a 

month. The Illumina Hiseq takes considerably more time to sequence than the Illumina 

Miseq, one should factor in at least twice the Illumina Miseq sequencing run time for an 

Illumina Hiseq run. Also the actual analysis is easier but each HUMAnN2 command can 

take between 12 hours and a day on an external server. A time estimate for a HUMAnN2 

run on a personal computer cannot be provided. NMR sample preparation for 30 samples 

will take approximately 5 hours. NMR sample acquisition for 30 samples will take 
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approximately 15 hours and the analysis of the 30 samples will take an additional 5 

hours.  
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Figure A-1 

 

 
 

Figure A-1. Microbiome Analysis Flow Chart. Analysis flow chart using sequence- 

and metabolomics-based analysis to uncover structural and functional changes in the gut 

microbiome. 
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Figure A-2 

 

 
 

 

Figure A-2. An Example of the 1X Gel Used to Check the Size of the Amplified 16S 

V4V4 Region. The white arrows show the 100 base pair ladder used to check the length 

of the amplicons. The orange arrow show the 350 base pair location and all amplicons are 

350 base pairs long. The blue arrow shows the method blank sample with no 

amplification and the pink arrows show wells with no material added.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 285 

Figure A-3 

 

 
 

Figure A-3. An Example of Gunifrac Output. The use of different colors and shapes 

make the population level differences clear and easy to see. The p-value must be 

manually added to the graph after running adonis.  
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Table A-1. Example of Output From the Summary.seqs Command Described in 

Basic Protocol 3 Step 4 

 

 

 

 

Table A-2. Example of Output From the Summary.seqs Command Described in 

Basic Protocol 3 Step 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Start End NBases Ambigs Polymer NumSeqs 

Minimum 1 90 90 0 3 1 

2.5%-tile 1 292 292 0 3 67017 

25%-tile 1 300 300 0 4 670164 

Median 1 301 301 0 4 1340328 

75%-tile 1 307 307 1 5 2010492 

97.5%-tile 1 311 311 13 6 2613639 

Maximum 1 602 602 128 300 2680655 

# of Seqs 2680655      

 Start End NBases Ambigs Polymer NumSeqs 

Minimum 1 1984 25 0 3 1 

2.5%-tile 1 13424 290 0 3 46530 

25%-tile 1 13424 292 0 4 465299 

Median 1 13424 292 0 4 930597 

75%-tile 1 13424 292 0 5 1395895 

97.5%-tile 1 13425 293 0 5 1814663 

Maximum 10024 13425 312 0 10 1861192 

# of Seqs 1618841      
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Table A-3. Example of the First Four Rows of Test.Whole.txt 

 
 Test1_R1_abundance Test2_R1_abundance Test3_R1_abundance Test4_R1_abundance 

PWY-6531:  

mannitol cycle 
1795.5782225069 1725.7504704103 2029.9612805819 2440.9453481149 

PWY-5097:  

lysine biosynthesis VI 
2323.3379572841 2022.8473314703 1611.7329672909 1280.1021528578 

PWY-5100:  

pyruvate fermentation to 

acetate and lactate II 

1675.2226101548 1792.6844298156 2250.1729447694 2139.3626834727 

VALSYN-PWY:  

valine biosynthesis 
1577.5178609018 1469.8751222891 1902.6320681466 2261.7115189351 

 

 

 

 

 

 

 

Table A-4: Example of the First Four Rows of Test.whole.clean.txt 

 

 

Sample Test 1 Test 2 Test 3 Test 4 

Treatment Control Control Treatment Treatment 

PWY-6531:  

mannitol cycle 
1795.5782225069 1725.7504704103 2029.9612805819 2440.9453481149 

PWY-5097:  

lysine biosynthesis VI 
2323.3379572841 2022.8473314703 1611.7329672909 1280.1021528578 

PWY-5100:  

pyruvate fermentation 

to acetate and lactate II 

1675.2226101548 1792.6844298156 2250.1729447694 2139.3626834727 

VALSYN-PWY: valine 

biosynthesis 
1577.5178609018 1469.8751222891 1902.6320681466 2261.7115189351 
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