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ABSTRACT 

Water is a vital resource, but also a source of hazards. Flooding poses considerable 

hazards to human lives and property. Dams and levee systems are key components of modern 

flood defenses. However, these flood defenses can fail catastrophically. This thesis addresses 

mixed distributions in statistical flood frequency analysis and implications for dam safety 

assessments. 

 

 Previous studies in dam safety assessment have established a variety of statistical and 

physical modeling methods (Swain et al., 2006). Statistical flood frequency analysis represents a 

popular, low cost method (Swain et al., 2006). However, current flood frequency methods can 

neglect mixed distributions and under predict true flood risk. Here, I improve on the standard 

flood frequency methods (England et al., 2018) by: 

A. implementing single and mixed distribution models to assess flood frequency analysis 

sensitivity to model choice and model structural uncertainty, 

B. statistically test for the presence of mixed distributions in peak flow data, and 

C. demonstrating the implications of accounting for mixed distribution peak flows in dam 

safety assessments. 

 

I find that current methods in flood frequency analysis can lead analysts to disregard 

mixed distributions of peak flows. Goodness-of-fit metrics can be used to identify mixed 

distributions of peak flows at a location. Additionally, implementing mixed distribution statistical 

flood frequency analysis at mixed distribution peak flow sites can produce better fits (as judged 

by statistical tests) and can greatly increase predicted flood risk. These findings have potential 

safety implications for flood-frequency analysis based dam safety assessments.  
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Chapter 1 
 

Introduction: A brief review of the history of flood risk assessments 

An age-old danger 

Beginning at the end of the last ice age, approximately 12,000 years ago, humans began 

to farm along rivers (Bianchi, 2016). Roughly 5,000 years ago, cities and civilizations had grown 

up along rivers. These early settlers cultivated crops on the fertile floodplains and used the rivers 

for water, irrigation, and transportation, among other uses (Bianchi, 2016). 

 

Humanity’s relationship with floods is as old as civilization itself. Early settlements could 

do little to stem the floodwaters when they came. Early water-management structures, including 

diversion and retention dams and irrigation ditches were built for agricultural purposes. As early 

as 5,100 years ago, early Chinese were already building a “large-scale complex of dams, levees, 

ditches, and other water controlling features” (Liu et al., 2017). Similar water management 

structures were implemented in Mesopotamia and Egypt (Bazza, 2007). 

 

In early dynastic China, approximately 4,000 years ago, concerted flood control efforts, 

in the form of earthen levees, began along the Yellow river (Clark, 1982). These are some of the 

earliest known flood control measures organized and implemented on a national scale. Flood 

control along the Yellow river has been a struggle with many successes and failures ever since 

(Chen et al., 2012). 
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An early history of risk assessment 

Contemporary flood control is driven by risk assessment. Flood control infrastructure is 

built to specific standards based on these risk assessments. These standards could be based on 

loss of life (England et al., 2006), a standard return period (Robinson et al., 2004), a cost benefit 

analysis (Van Dantzig, 1956), or another standard. Regardless of the standard chosen, each 

standard depends on flood risk assessments. Risk assessment itself, however, has a long and 

varied history that only in the 300 years has matured into the probability theory based risk 

assessments used today. 

 

The most basic form of Risk analysis can be found as early as the Asipu in ancient 

Mesopotamia, circa 5,200 years ago (Covello and Mumpower, 1984). The Asipu were consulted 

on important decisions, such as alliances or royal marriages, considered the possible outcomes, 

consulted the gods, and produced and risk assessment reports (Covello and Mumpower, 1984). 

Unlike modern risk assessment, however, The Asipu were priest-like interpreters of the gods 

(Covello and Mumpower, 1984). Current understanding of risk is deeply associated with 

probability theory, and thus did not develop about until advances in probability theory in the 

1700s (Covello and Mumpower, 1984). 

 

Discussions of probability may have begun with Plato’s Phaedo, published in the 4th 

century B.C., and a number of works following it (Covello and Mumpower, 1984). The works 

focused on risk in the afterlife associated with one’s actions on Earth. These works addressed the 

understanding of uncertainty associated with the afterlife and qualitative analysis of risk based on 

actions (Covello and Mumpower, 1984). 

 



3 

 

One of the first applications of expectation maximization, an important concept in 

modern risk analysis, was introduced by Arnobius the Elder in 4th century C.E. in North Africa 

(Covello and Mumpower, 1984). When Arnobius converted to Christianity, he published a 2x2 

matrix argument. The choices in the matrix are “remain pagan” and “become Christian”, and the 

states of the world are “(the Christian) God exists” and “(the Christian) God does not exist” 

(Covello and Mumpower, 1984). Arnobius argued that given the states of the world, choice to 

become Christian posed the highest expected value for the individual (Covello and Mumpower, 

1984). 

 

Pascal in the 17th century A.D. revised Arnobius’ argument using a modern 

understanding of probability (Covello and Mumpower, 1984). The following century experienced 

an explosion of probabilistic thinking, culminating in Laplace’s prototype of modern quantitative 

risk analysis, an analysis of the likelihood of death by whether someone received the Smallpox 

vaccine or not, in 1792 (Covello and Mumpower, 1984). 

 

The reason for this explosion of understanding and investigation in the area of 

probability, or the lack of knowledge prior to Pascal is not well understood (Covello and 

Mumpower, 1984). For this thesis it will is sufficient to understand that quantitative risk analysis 

in thought experiment or reality was not possible prior to the period from Pascal’s 17th century 

investigations to Laplace’s analysis in 1792 (Covello and Mumpower, 1984). 

 

While probability theory forms the basis of modern quantitative risk analysis and thus 

modern flood frequency analysis (England et al., 2018; Swain et al., 2006), it is not the only way 

risk may be considered and handled in financial situations. An example is insurance in the ancient 

world. Thousands of years prior to the development of the modern understanding of probability, 
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trade in Babylon and later Greece and the Roman Empire needed insurance for loans (Covello 

and Mumpower, 1984). This was typically charged as an insurance premium on top of the value 

of the loan. These were so important Hammurabi’s code of laws circa 1950 B.C. included 

regulations for trade insurance (Covello and Mumpower, 1984). The Romans further extended 

insurance to early forms of health and life insurance (Covello and Mumpower, 1984). Thus the 

ancient world possessed an intimate understanding of risk and developed detailed application to 

real world decisions despite no recorded understanding of probability theory itself. 

Origins of statistical flood frequency analysis 

Currently (2018), statistical flood frequency analysis is an efficient method of assessing 

flood risk. The method uses a statistical distribution fitted to peak flow data to create a flood 

frequency curve relating peak flows to return periods. The curve is then used to estimate the peak 

flows of uncommon (typically greater than 50 year return period) flooding events, and therefore 

the size of the necessary flood control infrastructure. 

 

Physical rainfall-flood relationships were derived as early as 1851 (Rossi et al., 1994), 

however statistical analyses of flood frequency were not investigated in detail until the early 20th 

century. Fuller (1913), Foster (1924), Hazen (1930), Gibrat (1932), and Supino (1934) laid much 

of the groundwork for modern flood frequency analysis, including identifying identical and 

independent distribution of data and stationarity as important assumptions in flood frequency 

analysis (Rossi et al., 1994). 

 

Early flood frequency analysis was viewed in a functional context. Distributions were 

chosen for their goodness-of-fit. Theoretical statistical justifications for one distribution over 
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another were typically not considered. Flood frequency models were chosen and used by how 

well they fit the data, not underlying theoretical justifications (Rossi et al., 1994). However, 

Gumbel (1941) proposes that annual peak flows resulted from a particular “parent” distribution, 

the Gumbel or Extreme Value distribution type 1 (EV1) distribution, which is rooted in extreme 

value theory as the maximum of a sufficiently large number of draws from identically and 

randomly distributed variables (Rossi et al., 1994). Later the EV1 was shown to be a special case 

of the more general, and aptly named, Generalized Extreme Value (GEV) distribution 

(McFadden, 1978). 

 

 The presence of outliers that could not be reconciled by these distributions lead 

to the Wakeby distribution (Houghton, 1978), Two-Component-Extreme-Value distribution 

(Rossi et al., 1984), a mixed lognormal distribution (Singh and Sinclair, 1972), and many other 

mixed distributions. These distributions accounted for outliers by using multiple shape parameters 

to be more flexible than past methods in the case of the Wakeby, or proposed that annual peak 

flows were in fact the result of two processes that could be modeled by a basic and outlier 

component (Rossi et al., 1994). 

An incomplete history of stream gaging 

Accurate peak flow records are essential for flood frequency analysis. The bulk of peak 

flow data for flood frequency analysis comes from stream gages. Stream gages typically operate 

by constructing a stream stage to discharge relationship known as a rating curve from coincident 

stream stage and flow measurements. The stream stage is then used to estimate stream flows. The 

relationship is typically updated on some interval to maintain or improve measurement accuracy. 
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Stream gaging has a long but sparse history. Measurements of yearly maximum stream 

stage are as old as the first Egyptian dynasty roughly 3,000 B.C.E. (Bell, 1970). However, the 

first stream gage to apply a rating curve and calculate daily discharge may have been in Basel, 

Switzerland, from 1809 to 1821 (Follansbee, 1919). The Basel stream gage and other early 

ventures in stream gaging used the slope method of calculating flow, though the Basel stream 

gage was supplemented with some flow measurements (Follansbee, 1919). The first daily 

discharge measurements by stream stage and velocity were conducted on the Ohio River in the 

summer and fall of 1849 (Follansbee, 1919). Finally, the first United States Geological Survey 

(USGS) stream gage in the United States was established in 1888 in Embudo, New Mexico, and 

provides the longest stream gage record in the United States (Frazier and Heckler, 1972). 

 

Water scarcity and importance of water budgeting for irrigation uses drove stream gage 

development across the western United States. While the Embudo stream gage served as testing 

ground for USGS stream gaging techniques, the states of California and Colorado independently 

experimented with stream gaging (Follansbee, 1919). The United States government approved 

funds for the USGS to begin stream gaging operations with no location restrictions in 1894 

(Frazier and Heckler, 1972). The stream gage on the Arkansas River in Pueblo, Colorado, was 

established the same year (Follansbee, 1919). 

Development of flood control and frequency analysis in the United States 

Flood control was originally a local problem in the United States (Wright, 2000). The 

Constitution neither authorized nor prohibited federal funding for internal improvements, 

including flood control infrastructure. As a result, local governments or organizations were left 

with the responsibility of flood control. 
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In the 1824 Gibbons v. Ogden decision, the United States Supreme Court ruled that the 

federal government could fund internal infrastructure projects, including flood prevention under 

the Commerce Clause. Almost immediately congress authorized the United States Army Corps of 

Engineers and appropriated funds, but river navigation projects were preferred over large flood 

control infrastructure projects (Wright, 2000). 

 

The flood control debate in the United States concentrated on the Mississippi and Ohio 

rivers, where flooding in 1903, 1912, and 1913 in killed many people and caused considerable 

damages. The 1913 flood alone killed 415 people and caused roughly $200 million in property 

damages (Wright, 2000). The river basins were economically valuable, but the local communities 

did not have the resources to protect themselves from large floods (Wright, 2000). It became clear 

local authorities could not control the Mississippi. The Federal government became increasingly 

involved in local flood control with the Flood Control Acts of 1917 and 1936. It became clear 

local authorities could not control the Mississippi (Wright, 2000). 

 

In 1965 the Water Resources Council was created as an independent agency with 

secretaries from six federal agencies. The council’s purpose was to address water resource 

planning and coordination, including flood related issues on a national scale (Wright, 2000). In 

1967, the Water Resources Council published Bulletin 15, A Uniform Technique for Determining 

Flood Flow Frequencies. The methods established in Bulletin 15 became the national standard for 

flood frequency analysis. The methods in Bulletin 15 have been updated in Bulletin 17, Bulletin 

17A, Bulletin 17B, and most recently Bulletin 17C (England et al., 2018). 
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The United States Bureau of Reclamation 

While flooding in the Ohio and Mississippi river valleys is mostly addressed by levees 

and floodplain management practices, the arid climate of the west required a different approach. 

Local and state governments lacked the necessary resources or skills to implement the large scale 

water management projects needed by local governments (United States Bureau of Reclamation, 

2011).  

 

In 1902, The United States Reclamation Service was created under the United States 

Geological Survey to build irrigation, water management, and flood control projects in the 

western United States. Reclamation Service’s mission was to “reclaim” the arid and difficult to 

farm regions in the western United States for development (United States Bureau of Reclamation, 

2011). 

 

The arid nature of the west, where snowpack and seasonal rainfall are often the main 

sources of water, means that dams, rather than levees, are needed for year around water 

management (Untied States Bureau of Reclamation, 2011). Dams protect against flooding in the 

wet season, and retain water for irrigation, industrial, and private use in the dry season. 

 

After a period of growth and learning from early difficulties, the Reclamation Service 

was separated into its own agency, The United States Bureau of Reclamation, under the 

Department of the Interior in 1923 (United States Bureau of Reclamation, 2011). The Bureau of 

Reclamation now oversees more than 180 water management projects in the seventeen western 

states, and for the most part has transitioned from construction and planning to maintenance and 
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management of existing projects. This includes carefully monitoring the safety of all dams under 

the Bureau’s oversight (United States Bureau of Reclamation, 2011). 

The Pueblo Dam 

The Pueblo Dam is the second largest Bureau of Reclamation dam in Colorado and the 

largest and terminal dam in the Fryingpan-Arkansas project (Rogers, 2006). The project was first 

considered by congress in 1952, but was not approved until 1962. The Pueblo Dam was finished 

in 1975 (Rogers, 2006). The Pueblo Reservoir provides water to Pueblo, Colorado, for industry, 

agriculture, and municipal use, and flood control to the city (Rogers, 2006).  

 

The Pueblo Dam was built to route the Probable Maximum Flood (PMF) without 

overtopping (United States Bureau of Reclamation, 1968a, 1968b). The PMF for Pueblo was 

revaluated in 1991 as part of the ongoing Safety of Dams Program (England et al., 2006). The 

Pueblo dam failed to safely route the PMF estimated in 1991 (Bullard and Leverson, 1991). 

 

New dam safety investigations were required, because the dam failed the PMF test. 

England et al. (2010) investigates paleofloods and historical floods throughout the upper 

Arkansas watershed above Pueblo, Colorado, and hypothesized a mixture of snowmelt and 

rainfall floods at Pueblo that complicated statistical flood frequency analysis. England et al. 

(2014) uses stochastic storm transpositioning with a rainfall runoff model to assess the 

overtopping return period of the dam. England et al. (2014) concludes the dam was safe to the 

regulation return period 400,000 years (England et al., 2006). This method avoids the 

complications of flood frequency analysis with mixed distributions by modeling rainfall floods, 
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which are hypothesized by England et al. (2010) to dominate the most extreme floods. However, 

the method is a great deal more expensive than flood frequency analysis from a worker hour and 

computational perspective (Swain et al., 2006) and is subject to watershed and storm 

characteristic uncertainties (England et al., 2014). 
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Chapter 2 
 

Effects of Mixed Distribution Statistical Flood Frequency Models on Dam 
Safety Assessments: A Case Study of the Pueblo Dam 

Abstract 

Statistical flood frequency analysis, coupled with hydrograph scaling, is commonly used 

for dam safety assessment. The results can be highly sensitive to the choice of statistical flood 

frequency model. Past studies typically use a single distribution model, often the Log Pearson 

Type III or Generalized Extreme Value distributions. Floods, however, may result from multiple 

physical processes such as snowmelt or intense rainstorms. Multiple processes can result in a 

mixed distribution of annual peak flows. Engineering design choices based on a single-

distribution statistical model may hence be vulnerable to the effects of this potential structural 

model error. Here I analyze observations from Pueblo, Colorado, for model testing, where 

summer snowmelt and intense summer rainstorms are key drivers of annual peak flows. I analyze 

the potential implications for the annual probability of overtopping induced failure of the Pueblo 

Dam as a didactic example. I address the temporal and physical cause separation problems by 

building on previous work of fitting mixed distributions directly to mixed distribution peak flows. 

I first use hydrograph scaling and a flood routing model to determine the smallest flood to cause 

overtopping. I then analyze annual peak flows, historical floods, and paleoflood records through 

both single and mixed distribution statistical models to estimate overtopping flood return periods. 

I first identify mixed distributions of peak flows using statistical flood frequency models and 

robust model choice criteria. I then identify the Mixed Generalized Extreme Value distribution as 

the best model for mixed distribution flood frequency analysis. Finally, I show that accounting for 

mixed distributions can greatly increase predicted flood risk. 
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Introduction 

People rely on dams for flood protection, and catastrophic dam failure can be devastating 

(Graham, 2009). Well known examples include the Johnstown Dam failure in 1977 that killed 40 

people and caused millions of dollars in damages, or the Teton Dam failure in 1976 that killed 11 

people and caused hundreds of millions of dollars in damages (Ellingwood et al., 1993). One of 

the primary modes of dam failure is overtopping (Foster et al., 2000). While this failure mode is 

most common in earthen embankment dams, it is a major cause of failure in all dam designs 

(Foster et al., 2000). The United States Bureau of Reclamation, uses seven methods for 

determining dam overtopping probability based on the available data and the safety needs of the 

dam (Swain et al., 2006). The probable maximum flood (PMF) is the initial dam safety 

assessment performed by the United States Bureau of Reclamation (England et al., 2011; Swain 

et al., 2006). The PMF represents the worst-case runoff scenario that can be reasonably expected 

to occur given the Probable Maximum Precipitation (PMP) (Swain et al., 2006). The PMP is the 

maximum precipitation event that can be reasonably expected to occur given current 

understanding of meteorological factors, and is derived from a meteorological assessment of the 

region (Bullard and Leverson, 1991). If a dam can route the PMF without overtopping, it is 

considered safe in all reasonably possible flood scenarios (England et al., 2011; Swain et al., 

2006). 

 

If the dam cannot route the PMF without overtopping, the dam cannot handle the largest 

reasonably expected flood, and methods to determine the overtopping return period are employed 

(Swain et al., 2006). A relatively quick and low cost approach is statistical flood frequency 

analysis (Swain et al., 2006). This approach fits a statistical distribution to a dataset of annual 
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peak flows, historical floods, and paleoflood bounds to create a flood frequency curve for peak 

flows (England et al., 2011; Swain et al., 2006). 

 

Statistical flood frequency analysis creates flood frequency curves. Flood frequency 

curves are made for extrapolating to return periods exceeding the time spanned by the 

observational record. However, dam safety depends on both the peak flow and the volume 

delivered over time. Hydrologic hazard curves relate peak flow and volume for specified 

durations to return periods to inform dam-safety assessments (Swain et al., 2006). To produce 

hydrologic hazard curves for dam safety assessments, peak flows are used to scale representative 

flood hydrographs (Swain et al., 2006). The scaled hydrographs are then routed through the 

reservoir using a hydrograph routing model to determine peak reservoir elevation in a method 

called hydrograph scaling (Swain et al., 2006). The combination of statistical flood frequency 

analysis and hydrograph scaling represents a reasonably fast and efficient method to determine 

the overtopping return period, and thus the safety of dams (Swain et al., 2006). 

 

Statistical flood frequency analysis typically operates under the assumption that annual 

peak flows, historical floods, and paleoflood bounds are derived from a single distribution 

(England et al., 2018). However, in some cases, a mixed distribution of peak flows can occur 

(England et al., 2018, 2010; Rossi et al., 1984). 

 

There are several procedures to identify mixed distributions in flood frequency analysis 

(England et al., 2018). The current state-of-the art in the United States requires prior knowledge 

about the specific causes of each observed peak flow (England et al., 2018). The data is separated 

based on physical cause, and a distribution is fitted to each individual distribution (England et al., 

2018). Then the two distributions are re-combined into a composite distribution (e.g., Jarrett and 
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Costa, 1988). However, in some cases this prior knowledge of physical cause may not be 

available due to sparse data records. 

 

In the current guideline for statistical flood frequency analysis in the United States, 

Bulletin 17C, England et al. (2018) identifies the need for further work on the identification and 

treatment of mixed distribution flood flows in flood frequency analysis. This study addresses both 

identification and treatment of mixed distributions at a study area where previous methods of 

separation by physical cause are not adequate due to sparse data. The study uses mixed 

distributions and robust goodness-of-fit criteria to statistically establish the presence of a mixed 

distribution and perform flood frequency analysis of it. 

 

This study demonstrates the method for the case of the Pueblo Dam at Pueblo, Colorado. 

The dam’s calculated safety has come under scrutiny since its construction in the 1970s (England 

et al., 2014, 2010; Bullard and Leverson, 1991). The dam was designed for the original PMF 

(United States Bureau of Reclamation, 1968a, 1968b). However, a revised PMF, calculated with 

updated watershed and extreme storm characteristics, would overtop the dam (Bullard and 

Leverson, 1991). The United States Bureau of Reclamation requires all its infrastructure to be 

safe to one life lost per 1,000 years of service (England et al., 2006). A loss of life study 

conducted on the Pueblo Dam and determined that between 131 and 376 people would die from 

catastrophic failure due to overtopping depending on whether failure occurred at night or during 

the day (England et al., 2006). As a result, the overtopping return period for the Pueblo Dam must 

be greater than 131,000 to 376,000 years to meet current standards. Safety analyses of the dam 

typically round this return period to 400,000 years (England et al., 2014, 2006). 
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A flood frequency assessment examined the return periods of peak design inflows and 

outflows (England et al., 2010). England et al. (2010) hypothesizes the presence of a mixed 

distribution of annual peak flows due to both snowmelt and rainfall peak flow distributions. 

However, England et al., (2010) is silent on the effects a mixed distribution may have on the 

flood frequency analysis.  

 

Statistical flood frequency analysis at the Pueblo Dam is complicated by the occurrence 

of both hypothesized distributions at the same time of year (England et al., 2010). Additionally, 

many of the peak flows are not explicitly attributed to a particular physical mechanism i.e. 

rainfall or snowmelt (England et al., 2010). Current methods require that mixed distributions be 

separable by individual cause, or by mechanisms that are separable by season (England et al., 

2018). 

In contrast to statistical flood frequency and PMF methods, England et al. (2014) uses 

stochastic storm transpositioning and the Two-dimensional Runoff, Erosion and Export (TREX) 

model. The study aims to represent a physically realistic watershed response to extreme rainfall 

storms in order to determine the safety of the Pueblo Dam from a physically-based perspective. 

England et al. (2014) concludes the Pueblo Dam overtopping return period meets Bureau of 

Reclamation safety standards. Physically-based rainfall-runoff models and stochastic storm 

transpositioning represent a more time consuming and computationally demanding method of 

safety assessment (England et al., 2014, 2011; Swain et al., 2006) and is subject to uncertainties 

in watershed and storm characteristics (England et al., 2014).  

 

In this study, I assess the effectiveness of using mixed distribution statistical flood 

frequency models to model the hypothesized mixed distribution peak flows, and the ability of 
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these models to identify hypothesized mixed distributions by statistical goodness-of-fit criteria. In 

doing so, I addresses three main research questions:  

1. Is a statistically identifiable mixed distribution present at Pueblo?  

2. Which distribution best fits the data?  

3. How would a mixed distribution affect assessments of dam safety? 

 

This study builds on prior work in likelihood functions (Stedinger and Cohn, 1984; 

O’Connell et al., 2002) and mixed distributions (Rossi et al., 1984; Raynal-Villasenor, 2012). I 

focus on model uncertainty and identification of mixed distributions. I then apply the methods to 

a didactic safety assessment of the Pueblo Dam. The didactic safety assessment illustrates the 

importance of considering physical motivations for statistical models and accounting for model 

uncertainty. 

Methods 

England et al. (2010) hypothesizes annual peak flows and Pueblo, Colorado, consist of 

two distributions caused by two physical processes (Fig. 2.1, Fig. 2.2). The smaller floods, with 

discharge less than 283 m3s-1 are predominantly due to summer snowmelt floods, while the larger 

floods, with discharge more than 283 m3s-1 were predominantly due to summer rainstorms (Fig. 

2.1, Fig. 2.2) (England et al., 2010). Based on the prior work, I formulate two main hypotheses:  

(1) A mixed distribution flood frequency model fits the annual peak flow, historical 

flood, and paleoflood data better than current single distribution models, as measured 

by Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC).  
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(2)  Accounting for the mixed distribution of peak flows at Pueblo with a mixed 

distribution model will decrease estimated dam safety by predicting larger rare 

(131,000 to 376,000 year return period) floods. 

 

 
Figure 2.1: Map of the upper Arkansas River watershed, upstream of Pueblo, CO. The watershed 

is divided into three zones by the physical mechanism of the largest floods in the zone. In the 

mountain headwaters, summer snowmelt is the dominant cause of flooding. At transitional 

elevations summer rainstorms and snowmelt can both contribute to the largest floods. Where the 

narrow valley opens into the plains, snowmelt floods may still be observed, but the largest floods 

are rainfall driven (England et al., 2014). 

 

I collect published stream gage, historical flood, and paleoflood data at Pueblo, Colorado. 

The data at Pueblo, Colorado, (Fig. 2.2) consists of an 81 year daily and annual peak flow gage 

record, three historical floods, and one paleoflood bound. The 81 year gage record is from USGS 
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gage 07099500 at Pueblo, with records from 1895 to 1975 (USGS, 2018). The discharges for the 

three historical floods in 1864, 1893, and 1894 are calculated and reported in Campbell (1922), 

Follansbee and Jones (1922), Baker and Hafen (1927), Hafen (1948), and England et al. (2010) 

based on historical records of peak flood elevations. The paleoflood bound is calculated in 

England et al. (2010) using the HEC-RAS hydraulic flow model on seven channel cross sections. 

 
Figure 2.2: Return period plot of annual peak flows (USGS, 2018), historical floods (Campbell, 

1922; Follansbee and Jones, 1922; Baker and Hafen, 1927; Hafen 1948; England et al., 2010), 

and the paleoflood (England et al., 2010) at Pueblo, Colorado. The hypothesized roughly 283 

m3s-1 transition from snowmelt to rainfall dominated flooding (England et al., 2010), corresponds 

to the roughly 11 year flood at Pueblo. The error bars represent the 95% confidence interval for 

flood magnitude and timing observations, estimated from generalized measurement error 

estimates in O’Connell et al. (2002).  
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I was unable to find complete uncertainty estimates for the USGS stream gage annual 

peak flows and for the historical floods. Additionally, while the paleoflood bound is estimated 

with upper and lower bounds (England et al., 2010), a probability distribution is not assigned to 

the estimated error. I estimate uncertainties for gaged annual peak flows and historical floods 

with uncertainty estimates for western United States stream gages and historical floods 

(O’Connell et al., 2002). Specifically, I assume normally distributed errors for annual peak flows 

and historical floods and assign a triangular probability distribution to the paleoflood bound based 

on the upper and lower bound discharge estimates and paleoflood age bound uncertainty 

distributions from O’Connell et al. (2002). 

 

 

Figure 2.3: Flow chart illustrating the overall workflow of the methods in this analysis. 

 

I use maximum likelihood estimates to fit the statistical flood frequency models to the 

annual peak flow, historical flood, and paleoflood data at Pueblo. I use adaptations of the standard 
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likelihood formula (1) to account for differences in timescales of annual, historical, and paleo 

observations (2) (Stedinger and Cohn, 1986), and for peak flow observation errors (3, 4) 

(O’Connell et al., 2002). Additionally, one can account for observation errors in the age of 

paleoflood events (5), however this method was not applied in this thesis (see caveats) 

(O’Connell et al., 2002). 

 

The likelihood function for continuous annual peak flow data from the gage record is 

𝐿𝐿(𝜃𝜃|𝑥𝑥) = ∏𝑓𝑓(𝑥𝑥𝑖𝑖),         (1)  

where L() is the likelihood, θ is the parameter set of the distribution, x is the annual peak flow 

magnitudes, and f() is the probability density function (pdf).  

 

The likelihood function for censored data (i.e. historical or paleo floods) incorporates a 

binomial distribution to account for threshold censoring and normalizes to the total probability 

mass of the flood frequency distribution above the peak flow threshold value. The likelihood 

function for censored data is then 

𝐿𝐿(𝜃𝜃|𝑦𝑦) = ��ℎ𝑘𝑘�𝐹𝐹(𝑋𝑋0)ℎ−𝑘𝑘[1 − 𝐹𝐹(𝑋𝑋0)]𝑘𝑘�∏𝑓𝑓(𝑦𝑦𝑖𝑖) [1 − 𝐹𝐹(𝑋𝑋0)]⁄ ,    (2)  

where F() is the cumulative density function (cdf), f() is the pdf, X0 is the peak flow threshold 

exceedance value, h is the record in years, k is the number of threshold exceedances, and y are the 

values of the threshold exceedances (i.e. recorded historical or paleo floods). 

 

The likelihood functions are also adapted to incorporate peak flow measurement 

uncertainty based on the methods by O’Connell et al. (2002). The likelihood function for annual 

peak flow gage data with uncertainty calculates the probability density for a number of possible 

values of each data point and multiplies the probability density by the values’ probability of being 
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the true value given an estimated distribution of the peak flow measurement error. The likelihood 

function is then 

𝐿𝐿(𝜃𝜃|𝑥𝑥) =  ∏ �∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑠𝑠𝑓𝑓(𝑥𝑥𝑖𝑖𝑖𝑖)𝑗𝑗 �𝑠𝑠
𝑖𝑖=1        (3)  

where L() is the likelihood, θ is the parameter set of the distribution, x is the annual maximum 

data, s is the length of the data, xij is a data point xi with an error from the Gaussian error 

distribution, and fs
ij is a discrete pdf of xij given the error distribution, i is the ith annual peak flow 

in the gage record, and j is the jth draw from the measurement error.  

 

The likelihood function for historical floods and paleofloods follows the same formula as 

(3). Thus, the likelihood function is 

𝐿𝐿(𝜃𝜃|𝑦𝑦) =  ∏ �∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝑦𝑦𝐿𝐿(𝜃𝜃|𝑦𝑦𝑖𝑖𝑖𝑖)𝑗𝑗 �𝑣𝑣

𝑖𝑖=1  ,      (4) 

where y is the historical flood or paleoflood data, v is the length of the data, yij is a data point yi 

plus an error from the Gaussian error distribution, and fs
ij is a discrete pdf of yij given the error 

distribution. Substitute (4) for the likelihood in (2),∏𝑓𝑓(𝑦𝑦𝑖𝑖), to account for both threshold 

exceedance and measurement error in historical flood and paleoflood data. 

 

Paleofloods contend with age uncertainty in addition to peak flow uncertainty. Paleoflood 

age and peak flow magnitude uncertainty may be accounted for simultaneously using the log 

likelihood function  

ln[𝐿𝐿(𝜃𝜃|𝑇𝑇)] = ∑ �∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛𝑖𝑖𝑖𝑖𝑗𝑗 � ln �∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 ∫ 𝐿𝐿(𝜃𝜃|𝑦𝑦)𝑡𝑡𝑡𝑡𝑡𝑡
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 �𝑡𝑡

𝑖𝑖=1  ,    (5) 

where T is the paleo event age data, t is the number of paleoflood event observations, ftn
ij is the 

discrete probability of an age nij, nij is the age of a paleoflood event ni plus an error from an error 

distribution, ftd
ik is the discrete pdf of the paleoflood bounds, tik are the ranges of the upper y 

limits for the paleoflood bounds, and ymin is the threshold exceedance value that dictates the 
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minimum observable paleoflood bound (O’Connell et al., 2002). However, errors in paleoflood 

age are considered secondary for this analysis, and neglected for computational reasons (See 

caveats). 

 

I consider three single distributions common in flood frequency analysis (Table 2.1): The 

log normal (LN2), the Log Pearson III (LP3), and the Generalized Extreme Value (GEV) 

distributions. The LN2 has a long history in flood frequency analysis (Rao and Hamed, 2000). 

The LP3 is the current government standard in the United States for flood frequency analysis 

(England et al., 2018), while the GEV is popular elsewhere (COST, 2013). 

 

The probability density function of the LN2 distribution is given by  

𝑓𝑓(𝑥𝑥|𝜇𝜇,𝜎𝜎) =  1
𝑥𝑥𝑥𝑥√2𝜋𝜋

𝑒𝑒−(ln(𝑥𝑥)−𝜇𝜇)2 2𝜎𝜎2⁄ ,      (6) 

where f() is the probability density function, x is the data, μ is the distribution log mean, and σ is 

the log standard deviation. 

  

 The probability density function of the LP3 distribution from Bulletin 17C (England et 

al., 2018) is given by  

𝑓𝑓(𝑥𝑥|𝜏𝜏,𝛼𝛼,𝛽𝛽) =  
�𝑥𝑥−𝜏𝜏𝛽𝛽 �

𝛼𝛼−1
𝑒𝑒

(−𝑥𝑥−𝜏𝜏𝛽𝛽 )

|𝛽𝛽|Γ(𝛼𝛼)
,        (7) 

where f() is the probability density function, x is the data, τ is the location parameter, and α is the 

shape parameter, and β is the scale parameter. 

 

The probability density function of the GEV distribution is given by 

𝑓𝑓(𝑥𝑥|𝜇𝜇,𝜎𝜎, 𝜁𝜁) = �1
𝜎𝜎
𝑡𝑡(𝑥𝑥)𝜁𝜁+1𝑒𝑒−𝑡𝑡(𝑥𝑥)�,       (8) 
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when t() is 

𝑡𝑡 (𝑥𝑥) = �1 + 𝜁𝜁 �𝑥𝑥−𝜇𝜇
𝜎𝜎
��  

−1
𝜁𝜁

     if 𝜁𝜁 ≠ 0        

𝑡𝑡 (𝑥𝑥) = 𝑒𝑒−
𝑥𝑥−𝜇𝜇
𝜎𝜎     if 𝜁𝜁 = 0 ,       

where f() is the probability density function, x is the data, μ is the location parameter, σ is the 

scale parameter, and ζ is the shape parameter. I use the GEV equations as implemented in the 

fExtremes R package (Wuertz, 2013). 

 

In addition to the single distributions, I consider three mixed distributions, the Two-

Component Extreme Value, the Mixed (Two-Population) Generalized Extreme Value, and the 

Mixed Log Pearson III distributions (Table 2.1). The Two-Component Extreme Value 

distribution, derived from a compound Poisson process, was popularized for flood frequency 

analysis when Rossi et al. (1984) applied it to Italian annual peak flows that struggled with 

outliers. Rossi et al. (1984) assumes that these outliers are the product of a second, upper flood 

distribution. 

 

The probability density function of the Two-Component Extreme Value distribution is 

given by 

𝑓𝑓�𝑥𝑥|Ʌ1,  𝜃𝜃1,Ʌ2,𝜃𝜃2� = 𝑒𝑒�−Ʌ1𝑒𝑒−𝑥𝑥 𝜃𝜃1⁄ −Ʌ2𝑒𝑒−𝑥𝑥 𝜃𝜃2⁄ ��Ʌ1 𝜃𝜃1⁄ 𝑒𝑒−𝑥𝑥 𝜃𝜃1⁄ + Ʌ2 𝜃𝜃2⁄ 𝑒𝑒−𝑥𝑥 𝜃𝜃2⁄ �,  (9)  

where f() is the probability density function, x is a mixture of two independent and identically 

distributed sets of data, Ʌ1 and Ʌ2 are the relative contributions of the two components, and θ1 

and θ2 are the exponential random variables of the components. 

 

The Mixed Generalized Extreme Value (Mixed GEV) distribution, also known as the 

Two-Population Generalized Extreme Value distribution was used by Raynal-Villasenor (2012) 
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to model annual peak flows in Mexico. The probability density function of the Mixed GEV is 

given by 

𝑓𝑓(𝑥𝑥|𝜇𝜇1,𝜎𝜎1, 𝜁𝜁1,𝜇𝜇2,𝜎𝜎2, 𝜁𝜁2,𝛼𝛼) = 𝛼𝛼 �1
𝜎𝜎
𝑡𝑡1(𝑥𝑥)𝜁𝜁1+1𝑒𝑒−𝑡𝑡1(𝑥𝑥)� + (1 − 𝛼𝛼) �1

𝜎𝜎
𝑡𝑡2(𝑥𝑥)𝜁𝜁2+1𝑒𝑒−𝑡𝑡2(𝑥𝑥)� (10) 

and t(x) is 

𝑡𝑡𝑖𝑖(𝑥𝑥) = �1 + 𝜁𝜁𝑖𝑖 �
𝑥𝑥−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖
��  

−1
𝜁𝜁𝑖𝑖

     if 𝜁𝜁𝑖𝑖≠ 0       

𝑡𝑡𝑖𝑖(𝑥𝑥) = 𝑒𝑒
−𝑥𝑥−𝜇𝜇𝑖𝑖𝜎𝜎𝑖𝑖     if 𝜁𝜁𝑖𝑖 = 0 ,      

where f() is the pdf, i is the distribution (i = 1, 2), x is a mixture of two independent and 

identically distributed sets of data, μ1 and μ2 are the location parameters for each GEV 

distribution, σ1 and σ2 are the scale parameters for each GEV distribution, ζ1 and ζ2 are the shape 

parameters for each distribution, and α is the relative contribution of the first distribution as a 

fraction of the whole distribution. 

  

The Mixed Log Pearson III (Mixed LP3) follows the same process as the Mixed GEV. It 

consists of two LP3 distributions added together with a weighting parameter. This distribution is 

not unlike the Mixed GEV, but to our knowledge has not been applied in flood frequency analysis 

before this study. 

𝑓𝑓�𝑥𝑥�𝜏𝜏1,𝛼𝛼1,𝛽𝛽1, 𝜏𝜏2,𝛼𝛼2,𝛽𝛽2,  𝛼𝛼� =   

  𝛼𝛼 �
�𝑥𝑥−𝜏𝜏1𝛽𝛽1

�
𝛼𝛼1−1

𝑒𝑒
(−𝑥𝑥−𝜏𝜏1𝛽𝛽1

)

|𝛽𝛽1|Γ(𝛼𝛼1)
� + (1 − 𝛼𝛼) �

�𝑥𝑥−𝜏𝜏2𝛽𝛽2
�
𝛼𝛼2−1

𝑒𝑒
(−𝑥𝑥−𝜏𝜏2𝛽𝛽2

)

|𝛽𝛽2|Γ(𝛼𝛼2)
�,   (11) 

where f() is the probability density function, x is a mixture of independent and identically 

distributed sets of data, τ1 and τ2 are the location parameters for each LP3 distribution, α1 and α2 

are the shape parameters for each LP3 distribution, β1 and β2 are the scale parameters for each 
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distribution, and α is the relative contribution of the first distribution as a fraction of the whole 

distribution. 

 

Table 2.1 Statistical model types considered in this study, numbers of parameters, and goodness-

of-fit criteria. The table shows the number of parameters in each model, whether or not it is a 

mixed distribution model, the goodness-of-fits, and the names of the model. The models are 

compared with two goodness-of-fit criteria, the Bayesian Information Criterion (BIC), and the 

Akaike Information Criterion (AIC). Both goodness-of-fit criteria are designed to protect against 

overfitting, however the BIC penalizes over parameterization more heavily than the AIC. The 

mixed generalized extreme value distribution produces the best fit based on both goodness-of-fit 

criteria, while the Log Pearson III is the 2nd best fit by the BIC and the 5th best fit by the AIC. 

 
Type Parameters BIC AIC Model 

Single 2 1091.850 1086.965 Log Normal (LN2) 

Single 3 1082.565 1075.237 Log Pearson III (LP3) 

Single 3 1080.856 1072.528 Generalized Extreme Value (GEV) 

Mixed 4 1066.097 1056.326 Two Component Extreme Value (TCEV) 

Mixed 7 1086.054 1068.955 Mixed LP3 

Mixed 7 1046.954 1029.856 Mixed GEV 
 

 I produce Maximum Likelihood Estimates (MLEs) for each statistical flood frequency 

distribution using the DEoptim package in R (Table 2.1) (Price, 2006). These MLEs use the 

annual peak flow, historical flood, and paleoflood bound measurements for Pueblo, Colorado, and 

account for estimated measurement uncertainty for each data type. 

 

 Mixed LP3 and Mixed GEV distributions have complex likelihood spaces due to strong 

parameter correlations. I compare two independent (starting from a different random seed) MLEs 
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for each distribution to assess the convergence of the algorithm to the global maximum. For the 

MLP3, the two MLEs differ by 0% at seven significant figures. For the MGEV, the two MLEs 

differ by 0.7002%. I calculate two more independent MLEs, show that predictions of the 100 and 

1,000 year return period floods do not differ largely (Supplementary Fig. S3), and use the highest 

log likelihood MLE of the four estimates. I calculate the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) for each model fit to determine goodness-of-fit for each 

distribution (Table 2.1). These goodness-of-fit criteria inform the assessment whether the model 

choice is subject to overfitting by penalizing models for both higher numbers of parameters and 

for lower likelihoods. 

 

 Dam safety depends on both the ability to attenuate flood peaks through storing large 

volumes of water, and to pass high peak flows through the emergency spillway. As a result, flood 

frequency analysis is combined with hydrograph scaling to produce dam safety assessments (Fig. 

2.3). Hydrograph scaling creates a flood time series by scaling a representative flood hydrograph 

to a peak flow (Appendix B). The method creates floods of constant durations, and volumes that 

scale with the peak flow. The scaled flood hydrographs are then routed through the reservoir to 

determine reservoir elevation. The return period of the peak flow that causes the reservoir to 

overtop is then calculated from the flood frequency curve. This return period is the dam safety for 

overtopping failure (Fig. 2.3). While a number of flood, earthquake, and static failure scenarios 

may be considered (England et al., 2006). For the simplicity of this didactic analysis, I consider 

only dam overtopping. 

 

 Uncertainty in the shape of the flood hydrograph is important to consider when 

performing hydrograph scaling. The duration of the flood and the volume delivered over the flood 

duration determines the flood peak attenuation capacity of the reservoir, and the magnitude of the 
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peak flow through the emergency spillway. I account for hydrograph uncertainty at Pueblo, 

Colorado, by using three potential extreme flood hydrographs drawn from different sources of 

data. The flood hydrographs each last three days, but differ in shape, resulting in different total 

flood volumes for the same peak flow (Fig. 2.4).  

 

Figure 2.4: Differing shapes of each considered flood hydrograph as a function of time. Each 

possible flood hydrograph was scaled to the same reference peak flow. 

 

 The 1921 “great flood” hydrograph (England et al., 2006) represents the highest peak 

flow on record. This hydrograph has the lowest volume to peak flow ratio of the three 

hydrographs (Fig. 2.4, Supplementary Fig. S4), meaning that for the same peak flow, the 

reservoir must accommodate a smaller volume of water. The TREX hydrograph is the direct 

output of the TREX model from stochastic storm transpositioning, and represents the physically 

modeled reaction of the system to extreme rainfall (England et al., 2014). The TREX hydrograph 

has the largest volume to peak flow ratio of the three hydrographs, and thus delivers the largest 
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volume for the same peak flow (Supplementary Fig. S4). The PMF hydrograph is a regionally 

generalized hydrograph meant to be generally representative across multiple watersheds (Bullard 

and Leverson, 1991). The volume to peak flow ratio is between the 1921 and TREX flood 

hydrographs and represents the middle estimate. 

 

 I route the three possible flood hydrographs through the Pueblo Reservoir to account for 

hydrograph uncertainty in the dam safety assessment. The hydrographs are routed with the United 

States Bureau of Reclamation FLROUT flood routing software (England et al., 2006) (Appendix 

B). Hydrograph scaling and routing determined the peak flows required for each flood 

hydrograph to overtop the Pueblo Dam (Fig. 2.3). I calculate the return periods of the overtopping 

peak flows for each statistical flood frequency model using the associated flood frequency curve. 

The return period of the overtopping peak flow determines the return period of dam overtopping 

and thus the safety of the dam (Fig. 2.3). Accounting for hydrograph uncertainty changes what 

would be a line of best estimate reservoir elevation for each flood frequency distribution into a 

cone of uncertainty (Fig. 2.6). 

 

 I classify the dam as “meets regulation”, “uncertain”, or “does not meet regulation” for 

each distribution based on the return periods of the overtopping floods (Fig. 2.3; Fig. 2.5; Fig. 

2.6). England et al. (2006) estimates between 131 and 376 deaths from a catastrophic failure of 

the Pueblo Dam due to overtopping. Thus the “uncertain” safety return period is between 131,000 

and 376,000 years, and the “meets regulations” return period beyond 376,000 years, while the 

“does not meet regulations” return period is less than 131,000 years. England et al.’s (2014) 

assessment of the safety rounds the “meets regulation” return period up to 400,000 years, 

corresponding to a 1 in 400,000 yearly failure chance. In this study, however, I consider the full 

range of uncertainty in regulations, from 131,000 to 376,000 year return periods. 
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Results 

The mixed distribution statistical flood frequency models performed better by the Akaike 

Information Criteria (AIC). The results are more mixed for the Bayesian Information Criteria 

(BIC). The Mixed Generalized Extreme Value (Mixed GEV) distribution, however, performed 

best by both goodness-of-fit criteria (Table 2.1). 

 

Both goodness-of-fit criteria are designed to protect against overfitting, however the 

Bayesian Information Criteria (BIC) penalizes over parameterization more heavily than the 

Akaike Information Criteria (AIC). The Mixed Generalized Extreme Value (Mixed GEV) 

distribution produces the best fit based on both goodness-of-fit criteria, while the Log Pearson III 

is the 5th best fit by the BIC and the 3rd best fit by the AIC (Table 2.1). 

 

The Mixed GEV presents the best fit for the data based on the goodness-of-fit criteria. 

Our findings are hence consistent with our first hypothesis that a mixed distribution better 

represents the peak flow data at Pueblo, Colorado (Table 2.1). 

 

The Mixed GEV model predicts larger greater than 112 year return period events than the 

current LP3 approach (England et al., 2010) with the greatest differences at the longer return 

periods. The increase in predicted greater than 112 year return period peak flows by accounting 

for the hypothesized mixed distribution at Pueblo, Colorado, confirms our second hypothesis. 

Note, however that our Mixed GEV model fit still underestimates the size of The Great Flood of 

1921 and the paleoflood bound. Nevertheless, the Mixed GEV model produces substantially 

smaller underestimation than the LP3 (Fig. 2.5).  
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Figure 2.5: Return period plot of the Log Pearson III (LP3) and Mixed Generalized Extreme 

Value (Mixed GEV) distributions for Pueblo, Colorado. The y-axis shows the peak flow in cubic 

meters per second, and the x-axis shows the peak flow return period in years. The Mixed GEV 

distribution predicts larger peak flows for the most extreme events (greater than 112 year return 

period). 

 

 Switching from the method currently recommended by regulation to the statistically 

better fitting model changes the dam safety classification. Specifically, LP3 estimates 

overtopping return periods of 123,000 to 664,000 years, spanning the range of current United 

States Bureau of Reclamation regulation return periods, 131,000 to 376,000 years (England et al., 

2006). However, Mixed GEV estimates are approximately one order of magnitude shorter, 25,000 

to 77,000 years, and do not meet current United States Bureau of Reclamation regulations in any 

of the three hydrograph scenarios (Fig. 2.6). 
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Figure 2.6. Return period plot of reservoir water surface elevation. The y-axis shows the 

reservoir elevation in meters over the base of the emergency spillway. The x-axis shows the 

return period in years. The bands of uncertainty show uncertainty in reservoir elevation for a 

given peak flow due to hydrograph choice (also see Supplementary Fig. S8). The Mixed 

Generalized Extreme Value distribution (Mixed GEV) predicts lower than regulation return 

periods of overtopping for the Pueblo Dam, while the Log Pearson III (LP3) predicts a range of 

overtopping return periods spanning the range of regulation return period uncertainty. 

 

Flood hydrograph uncertainty presents roughly half an order of magnitude of uncertainty 

in dam overtopping return periods. This is secondary to model structural uncertainty, which 

accounts for approximately one order of magnitude in dam overtopping return periods (Fig. 2.6). 

Still, this large source of uncertainty is critical for decisions about dam safety (Fig. 2.6). 
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Caveats 

This didactic case study focuses on method development, model testing, and making a 

case for further research. This raises a number of caveats, and the results are not to be used to 

inform actual risk assessments and decision making. For example, I explore the use of mixed 

distribution statistical flood frequency analysis as an improvement on the relatively fast and easy 

procedures of flood frequency analysis. This is only one method of dam safety assessment and is 

not necessarily the optimal method for the safety assessment of the Pueblo Dam (Swain et al., 

2006). Rather, the study presents the capabilities of mixed distribution flood frequency models to 

address mixed annual peak flows without prior knowledge of the physical causes of annual peak 

flows. Additionally, I argue for further consideration of mixed distributions based on the 

potentially large impacts on assessed flood infrastructure safety. 

 

I focus on Pueblo dam as a didactic case study because it is a well-studied area with an 

impactful safety question. The assessment of dam safety performed in the study is used for 

illustrative purposes. I present an argument for further investigation of mixed distributions, 

particularly the Mixed GEV, not a finished set of methods for flood frequency analysis and dam 

safety assessment. 

 

Statistical flood frequency analysis is an important aspect of dam and levee safety 

assessments, however extrapolation to return periods of 376,000 years from 81 years of gage 

data, three historical floods, and one approximately 785 year return period paleoflood bound is 

subject to extreme statistical and model structural uncertainty. For this reason the Bureau of 

Reclamation recommends physically based modeling approaches for such long return periods 
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(Swain et al., 2006; England et al., 2014). However, physically based methods are also subject to 

large uncertainties in watershed and storm behavior (England et al., 2014). 

 

I use the statistical method to identify mixed distributions in an area with two known 

physical mechanisms of floods and a hypothesized mixed distribution. More testing is necessary 

before it is applied without a strong physical justification, if it should ever be applied without a 

strong physical justification. 

 

Hydrograph uncertainty is considered by taking three available flood hydrographs 

determined by three independent methods and assuming each are equally likely, and considering 

no other hydrograph shapes. Further quantification of flood hydrograph variability and 

uncertainty is strongly recommended by this investigation. 

 

I encountered difficult implementing the paleoflood age uncertainty likelihood function 

from O’Connell et al. (2002) in R, and assumed the roughly 7% error corresponding to the 95% 

confidence interval in paleoflood age was secondary to the roughly 10% error in paleoflood 

magnitude corresponding to the same confidence interval. Inclusion of paleoflood age error may 

affect confidence intervals at large return periods, but I believe has sufficiently little effect on 

MLEs for this study. 

Discussion 

This thesis illustrates the importance of considering the physical context of statistical 

models and accounting for mixed distributions where they are present. It also proposes a method 

for using robust goodness-of-fit metrics to identify mixed distributions with statistical models. 
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Accounting for mixed distributions results in better statistics and potentially large changes in 

assessed safety. This has implications for flood risk at any locations where multiple physical 

drivers cause floods. 

 

In this analysis I consider the case of a Pueblo, Colorado, where snowmelt tends to 

dominate yearly peak flows, but the largest peak flows, most relevant to flooding and dam safety, 

tend to be rainfall dominated. I show how accounting for the mixed distribution changes the 

safety of the dam in a didactic example. However, mixed distributions may be present and 

unaccounted for in many other regions and types of flood prone areas. Mixed distribution are 

already well documented in the Front Range (England et al., 2010, Jarrett and Costa, 1988). 

Additionally, mixed distributions are posited in mountainous Italian watersheds due to multiple 

rainstorm distributions (Rossi et al., 1984), and there is the potential for mixed distributions 

where tropical cyclones dominate extreme rainfall such as the East Coast of the United States 

(Knight and Davis, 2009). This thesis has potentially broad implications for flood risk 

assessments across many regions and flood causes. 

 

I develop methods for identifying mixed distributions and illustrate the importance of 

accounting for mixed distribution in flood risk analysis, however, this thesis also illustrates the 

difficulties numerous difficulties of predicting the size of a roughly 100,000 to 400,000 year 

return period flood and building to it based on the very limited data available. The best fit 

statistical method suggests that the dam does not meet current safety regulations for overtopping 

return periods, while the stochastic storm tranpositioning and rainfall runoff model approach 

concludes the dam does meet safety regulations. Additionally, both assessments are associated 

with great and currently unquantified uncertainties. 
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 In the face of extreme statistical and model structural uncertainty, an alternative method 

may be to adopt adaptive safety standards focused on minimizing loss of life in the case of a 

disaster. These standards could include improved early warning systems, efficient evacuation 

plans, or encouraging non-housing development in the potential flood zone. These methods may 

be a more desirable options for the community given deep uncertainty and finite resources. This 

thesis does not address potential tradeoffs between dam safety and increased flood survivability, 

economic or social, however, these are open questions. 

Conclusions 

I use statistical flood frequency models and goodness-of-fit criteria that account for 

overfitting to assess the presence of a mixed distribution of annual peak flows at the Pueblo Dam. 

I confirm the presence of mixed distributions of annual peak flows with this method. While 

caution and further testing are clearly needed, this method may be used to test the existence of 

mixed distributions, and address them, at other locations where current methods are inadequate. 

These methods may help to solve problems raise in (England et al., 2018) by contributing to a 

better understanding of how to identify and deal with mixed distributions. 

 

I determine the mixed GEV is the best model for representing mixed distribution peak 

flows and for detecting mixed distributions of annual peak flows. I recommend this model for 

further investigation. However, the seven parameter nature of the distribution makes fitting it by 

maximum likelihoods difficult.  

 

Ignoring mixed distributions of peak flows where they are present can lead to serious 

underestimation of extreme events, as exemplified in this case-study. The LP3 distribution fit 
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shows the dam may be safe, uncertain, or unsafe, depending on the choice of flood hydrograph. 

However, in all flood hydrograph cases, the Mixed GEV predicts the dam does not meet current 

regulations based on United States Bureau of Reclamation safety regulations and the loss of life 

assessment (England et al., 2006). 

 

The LP3 distribution underestimates greater than roughly 110 year return period floods as 

compared to the Mixed GEV. Underestimations are larger at larger return periods. The 100 year 

flood calculated by the LP3 fit is a roughly 100 year flood based on the Mixed GEV fit, however, 

the 500 year flood calculated by the LP3 fit is a roughly 330 year flood based on the Mixed GEV 

fit, and the 1000 year flood calculated by the LP3 fit is a roughly 540 year flood based on the 

Mixed GEV fit. 

 

This study uses both AIC and BIC to assess goodness-of-fit. The metrics are derived 

from different assumptions and calculated with different equations, but are both widely used and 

accepted as model selection criteria that properly protect against overfitting. Due to the 

asymptotic nature of these metrics and the small sample size, I strongly recommend caution when 

these metrics do not clearly agree on a best fit distribution. 
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Chapter 3 
 

Research Opportunities and Needs 

Advancements made and to be made 

This thesis explores applications and methods for addressing mixed distributions in flood 

frequency analysis, and adds to current literature in identifying and addressing mixed 

distributions of annual peak flows. However, this is far from an exhaustive study. Many open 

challenges remain. This chapter discusses two broad directions for future work, uncertainty 

quantification and further testing and model comparison. 

Uncertainty quantification 

This thesis uses maximum likelihood estimates (MLEs) to fit each flood frequency 

distribution. MLEs are best estimates and do not quantify associated parameter uncertainties. 

Further work is needed to establish uncertainty bounds for the mixed distributions. This could 
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potentially be accomplished using Markov Chain Monte Carlo simulations with sampling 

methods designed to handle highly correlated parameter structures associated with mixed models. 

Preliminary work suggests both are difficult and require further work in statistical and 

computational implementation on this problem. 

 

This thesis assumes the three potential flood hydrographs (England et al., 2014, 2006; 

Bullard and Leverson, 1991) are all equally likely and scale reasonably to flood peak magnitudes 

unobserved in the known record (Swain et al., 2006). This assumption of point estimated equi-

probable flood hydrographs are made under unknown uncertainty.  

 

Peak flow data uncertainty is estimated based on generalized large flood uncertainty 

estimates in O’Connell et al. (2002) for stream gages and historical and paleofloods in the 

western United States. The generalized uncertainties may not reflect peak flow measurement 

errors in the study area. I recommend further investigation of annual peak flow, historical flood, 

and paleoflood uncertainties on both broad and local scales. 

 

This study only tests the three single distributions and three mixed distributions discussed 

in table 2.1. Peak over threshold approaches (Lang et al., 1999; Bezak et al., 2014) and other 

statistical flood frequency distributions, such as the Wakeby distribution (Houghton, 1978) or 

generalized logistic distribution (Ahmed et al., 1988) are not considered. 

 

This thesis assumes the Pueblo Dam can only fail by overtopping. However, other failure 

modes are possible (Foster et al., 2000; England et al., 2002). The dam could potential experience 

structural failure prior to overtopping due high water levels behind the dam. These failure 
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probabilities are not quantified or included in this study and constitute a continuing challenge in 

comprehensive dam safety assessments. 

Further testing and model comparison 

This thesis focuses on method development and testing using a real world problem for 

demonstration purposes. I make a case for further investigation into (i) using statistical 

distributions to gain insight into peak flow data and the hydrological system, (ii) using mixed 

distribution statistical models where mixed distributions of peak flows cannot be addressed by 

current composite methods (England et al., 2018), and (iii) the importance of hydrograph 

uncertainty on dam safety assessments. 

 

Bulletin 17C (England et al., 2018) outlines methods for handling potentially influential 

low flows (PILFs). A mixed distribution can be thought of as a case of PILFs, where the lower 

distribution is made up of PILFs. There are important questions about how these methods might 

handle a mixed distribution case differently from a mixed flood frequency distribution. 

 

Further study is necessary to fully investigate the advantages and disadvantages of mixed 

flood frequency distributions over alternative methods. For further studies, synthetic datasets may 

be helpful in creating a known testing environment for comparing the accuracy of eliminating 

PILFs and fitting a single distribution vs fitting a mixed distribution to the entire dataset. More 

investigation of the robustness of PILFs vs mixed distributions is important. While these methods 

have been investigated independently (England et al., 2018; Jarrett and Costa, 1988, Rossi et al., 

1984; Raynal-Villasenor, 2012) they have not been comprehensively compared. 
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Appendix A 

Supplementary figures

 

Figure S1: Log likelihood agreement between two independent MLE using DEoptim. Each 

independent MLE was calculated with 2,000 DEoptim iterations. The independent runs converge 

to the same log likelihood within 1,000 iterations, MLE parameter values differ by less than 

0.0001%. 
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Figure S2: Log likelihood agreement and disagreement between four independent MLEs using 

DEoptim. Each MLE is determined by 2,500 DEoptim iterations. The independent runs do not 

converge to a global maximum. For this analysis I use the highest log likelihood, run one. More 

iterations or a better optimizer for this problem could potentially produce improved MLEs. 

 



48 

 

 

Figure S3: Return period plot comparing the four independent Mixed GEV MLE fits. The four 

independent MLEs calculated by DEoptim are virtually identical in the magnitude of events up to 

1,000 year return periods. 
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Figure S4: Cumulative volume of water delivered over the duration of each considered flood 

hydrograph as a function of time. Each considered flood hydrograph was scaled to the same 

reference peak flow. 
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Figure S5: Reservoir water surface elevation response to each considered flood hydrograph 

scaled to the 1921 flood peak flow. Differences in cumulative water delivered by each flood 

hydrograph produce differing reservoir surface elevation responses, and different levels of 

hazard. The flood pool consists of the extra available storage in the reservoir allotted to flood 

control. The emergency spillway is at the top of the flood pool. The reservoir crest represents the 

maximum possible water surface elevation in the reservoir before overtopping. I used FLROUT 

to route the flood hydrographs. 
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Figure S6: Return period plot of each considered flood frequency model fit and the data at 

Pueblo, Colorado. 
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Figure S7: Return period plot of peak reservoir elevations for each of the considered flood 

frequency models. 
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Figure S8: Return period plot of reservoir water surface elevation. The y-axis shows the reservoir 

elevation in meters over the base of the emergency spillway. The x-axis shows the return period 

in years. The lines for a given peak flow and hydrograph shape. Three possible hydrographs were 

considered for each distribution, resulting in three possible reservoir elevation to return period 

curves for each. 
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Appendix B 

Hydrograph scaling

The hydrograph scaling in this study follows the methods described in Swain et al. 

(2006). Three suitable flood discharge hydrographs are obtained from three independent sources 

of information, a physical rainfall-runoff model (England et al., 2014), a regionally representative 

PMF hydrograph (Bullard and Leverson, 1991), and the flood of record (England et al., 2010). 

These hydrographs are time series of roughly durations of half hour average discharges in units of 

m3s-1, with the exception of the 1921 flood, which is linearly interpolated to half hour increments 

from roughly four hour increments due to poor temporal sampling during the flood. The 

hydrographs remain constant in duration and discharge is scaled linearly in so that the maximum 

half hour averaged discharge matches the peak flow the hydrograph is scaled to. 

Reservoir elevations are determined by FLROUT, the Bureau of Reclamation flood 

routing program (England et al., 2006). The program uses rating curves of reservoir volume-

elevation and elevation-discharge relationships to determine elevation and outflows given flood 

hydrograph inflows for each half hour time-step. 

For the dam safety assessment, overtopping peak flows are back calculated by scaling 

each of the three flood hydrographs to the smallest peak flow that causes dam overtopping, i.e. 

when the peak reservoir elevation exceeds the dam height. The return periods for each of the 

three peak flows are then calculated for each flood frequency model. The method produces three 

estimates of dam overtopping return period for each flood frequency model. These three 

estimates, based on hydrograph uncertainty, are considered to be the range of possible dam 

overtopping return periods for each flood frequency model. In the results I consider only the Log 

Pearson Type III and the Mixed Generalized Extreme Value distribution results. The results from 

all six models are included in Appendix A. 
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