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Abstract 

Railroad ballast serves different functions including draining water from track and 

distribution of the train loads. The ballast layer deteriorates and becomes fouled with time 

due to ballast particle abrasion and breakage as well as subgrade soil intrusion. Ballast 

fouling has become one of the most commonly seen track defects that can lead to 

inconsistent track performance. In the case of fouling, the ballast strength will decrease 

when it is wet (usually referred to as “mud-spot”) due to the lack of particle interlocking 

and lubrication effect of fine materials. However, both of the ballast strength and stiffness 

will increase dramatically when it is in dry condition as the ballast particles are well 

confined (Qian, 2016). This inconsistency in track behavior can cause higher deterioration 

rate of other track components such as rail and sleeper. Therefore, identifying mud spots 

in a timely manner is a critical issue in ballasted track maintenance.  

 

The main purpose of this thesis is using advanced sensor networks and statistical pattern 

recognition techniques to identify ballast fouling by studying the relationship between 

ballast fouling condition and ballast particle movement. To that end, several field 

experiments were carried out with the aim of monitoring and recording the particle 

movements under different ballast conditions. In particular, two sections with the same 

traffic but different track conditions: one with clean ballast and the other with mud 

pumping, were chosen. The SmartRock (Liu, 2015) is used to obtain ballast particle 

movement information under traffic. The SmartRock is a wireless sensor device built using 

the 3D printing technology and resembles the real ballast particles in terms of shape, inter 

particle friction and specific gravity. This sensor device has the ability to record 
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translational and rotational movement of a single ballast particle under dynamic loading 

and transfer the real-time data via Bluetooth to a base station. The autoregressive (AR) 

model was then applied to each of the acceleration and rotation time histories collected 

from the SmartRocks embedded in the two sections, during which the autoregressive 

coefficients will be obtained. Those coefficients will serve as damage indicators to identify 

ballast fouling severities.  The results and important findings are highlighted in this thesis. 

 

Keywords: Ballast Fouling, Railway, SmartRock, Statistical Pattern Recognition Analysis 
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1 Introduction 

1.1 Background  

 Rail transportation is considered as one of the most economic and efficient modes of 

transportation for both passengers and freight. A typical railroad track (Figure 1-1) has 

two structural components: superstructure including rail, fasteners and sleeper and 

substructure consisting of ballast, sub-ballast, and subgrade.  

 

The Ballast layer, depending on their locations within a track, can be divided into 3 main 

parts. The part between two adjacent ties which is called crib; the part outside the end of 

ties which are called shoulder ballast; and the part under the bottom of the tie (Zarembski, 

2014). 

 

The function of ballast layer includes but not limited to: distributing the train vertical load 

to protect the subgrade and providing drainage. In this regard, the ballast layer plays a key 

Figure 1-01: Track structure components (Selig and waters, 1994) 
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role in track performance. Various criteria including ballast layer thickness, particle size, 

and distribution can affect the ability of the ballast to fulfill its own function (Li, 2015). 

 

Fouling is the condition when the voids in ballast become occupied by the smaller particles 

generated mainly from the ballast particle breakage. It is believed to significantly affect 

the stiffness and strength of the ballast. (Indraratna et al., 2013) Therefore, frequent 

evaluation of ballast and monitoring its condition are necessary from the efficiency and 

safety point of view.  

 

Particle size distribution, normally obtained by sieve analysis, is one of the most common 

approaches to evaluate the ballast condition. A gap graded ballast assembly will create 

large enough voids to provide the track with proper drainage.  A typical ballast grain size 

distribution suggested by AREMA is depicted in the following figure.  

 
 
 

 

 

 

 

 

 

 

 

 

Figure1- 2: #24 and #4 ballast particle gradation ranges based on AREMA (LI, 2015) 
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Although sieve analysis offers ground truth for the severity of ballast fouling, it is time 

consuming to conduct onsite sampling and sieving, not even mention the interruption of 

the daily traffic operation. A non-destructive and real time monitoring system with 

advanced statistical algorithms to accurately detect ballast fouling in a timely manner is in 

great need. 

 

Nowadays, the inspection and monitoring of the structures are of a great interest in the 

railway area. A great number of advanced sensors and technologies have been developed 

in order to achieve more efficient inspection and monitoring system. These emerging 

technologies provide a vast amount of data from real-time monitoring of track 

infrastructure.  Extracting efficient knowledge required for the maintenance planning 

from these data is the next challenge.  

 

 

1.2 Research Objective  

The primary objective of this research is to develop an algorithm for evaluating the ballast 

condition through real-time particle movement data recorded using the SmartRock. This 

objective is reached by applying the statistical pattern recognition techniques on the data 

collected from two different structural conditions of ballasted track in order to find the 

best damage detection approach. 

 

1.3 Outline  

This thesis is presented in five chapters. Chapter 1 includes an introduction to the subject 

and research objectives. Chapter 2 presents a literature review of the current state of 
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research in ballast fouling and structural health monitoring. Chapter 3 describes the 

procedures for site selection and the instrumentation plan of the project. Chapter 4 

presents the analysis procedure in order to develop the damage detection algorithm and 

the result of applying these analyses on the data collected from the field. Chapter 5 

provides suggestions for future research.  



5 
 

2 Literature Review  

2.1 Previous studies on ballast fouling 

ballast layer consists of “the uniformly graded angular material” and is the top layer in the 

track substructure. This layer’s main function is distribution of train loads and also draining 

water from the superstructure. The ballast gradation is a key factor in achieving the 

drainage task. According to Selig and Waters, a few of these factors affecting the ballast 

gradation are the following:  

1) “Mechanical particle degradation during construction and maintenance work, and 

under traffic loading”  

2) “Chemical and mechanical weathering degradation from environmental changes”  

3) “Migration of fine particles from the surface and the underlying layers” (Selig and 

Waters, 1994) 

 

 Fouling is an unfavorable condition for the ballast layer in a railroad track, detrimentally 

affecting the ballast performance.  Fouling can be described as the condition in which the 

voids between the ballast particles in a ballast layer become occupied by smaller materials 

or fouling agents, commonly resulting from “ballast particle breakage or from subgrade 

soil intrusion, or from the contamination coming from outside of the track such as coal 

dust” (Huang, 2011). The finer fouling particles fill the void spaces between the ballast 

particles; as the percentage of these tiny fouling particles increases, the fouling can lead 

to the loss of the ballast layer’s open-graded characteristics and therefore the loss of 

drainage capacity. Internal studies conducted by railroad companies have found that 

“Breaking the ballast aggregate commonly generates almost all fouling fines in the railroad 

track” (CN 1987).  
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According to Selig and Waters, the share of each source of fouling in a ballasted track is as 

follows: “on the average, up to 76% of the ballast fouling is due to ballast particle 

breakage; the second factor is infiltration from subballast that accounts for 13% of fouling; 

7% infiltration from ballast surface; 3% subgrade intrusion; and 1% due to tie wear.” (Selig 

and Waters, 1994) 

 

In terms of the stability and load bearing capacity of ballast layer, Huang and his colleagues 

(Huang et al., 2009) mentioned three various stages of ballast layer fouling based on the 

volume of fine materials in the void space of ballast. Figure 2-3(a) shows a ballast sample 

that is clean or very slightly fouled (Phase I), in which the load is carried by the ballast 

particle surface interaction. As shown in Figure 2-3(b), ballast fouling will reach Phase II 

when the number of fine particles increases to the point where the voids in between 

aggregates are filled; however, all the aggregates are still in contact with each other. At 

the ultimate level of fouling (Phase III), the particles lose their surface contact as a result 

of the increased number of fine particles. In this condition, the finer particles are those 

that define the particle movements (see Figure 2-3(c)).  In order to better plan for 

maintenance activities like ballast cleaning, it is worth studying the point when ballast 

enters the second phase of fouling and how each fouling agent and fine particle volume 

will affect the ballast layer’s physical properties. (Huang et al., 2009). 
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Several studies have attempted to quantify the level of fouling and have introduced 

methods for assessing the ballast fouling condition. Fouling index (FI), as suggested by 

Selig and Waters (Selig, 1994), is a parameter that defines ballast fouling based on ballast 

particles’ gradations. It can be calculated by the following equation:   

 

𝐹𝐼 = 𝑃4 + 𝑃200                                                (1) 

 

In this equation, P4 and P200 are defined as the percentages of ballast particles passing the 

sieve size number 4 (4.75 mm) and number 200 (0.075 mm), respectively. An index related 

to FI is the percentage of fouling (% fouling), which is the ratio of the dry weight of material 

passing a 9.5 mm sieve to the dry weight of the total sample (Selig and Waters,1994). A 

limitation of this method is that the type of fouling material is not considered in developing 

the parameter. Therefore, evaluating a fouling situation based on FI is not applicable for 

all materials. In cases that  ballast fouled by a great percentage of particles finer than 0.075 

mm, for instance, care should be taken (Indraratna, 2011). 

 

 Figure 2-3: ballast fouling phases: (a) Phase I (clean ballast), (b) Phase II (partially 
fouled ballast), and (c) Phase III (heavily fouled ballast) (Huang et al., 2009) 
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Feldman and Nissen (2002) considered the void reduction in ballast due to fouling and 

presented the Percentage Void Contamination (PVC) parameter: 

 

𝑃𝑉𝐶 =
𝑉𝑣𝑓

𝑉𝑣𝑏
∗ 100                                                     (2) 

 

where 𝑉𝑣𝑏 is defined as the total volume of void exist between ballast particles and 𝑉𝑣𝑓 is 

the total volume of fouling material (particles passing 9.5 mm sieve), in the re-compacted 

ballast (Feldman, 2002). The problems with this approach is that the volume measurement 

is time-consuming. Moreover, the author did not take the distribution of fouling particles 

into account, which could result in an overestimation of the fouling level (Indraratna, 

2011). 

 

Indraratna et al. (2011) studied the existing approaches for estimating the fouling level in 

ballast, such as FI and PVC, and as a result of this study, another parameter is developed. 

This parameter called the relative ballast fouling ratio, (Rbf) which can be defined by the 

following equation: 

 

𝑅𝑏𝑓 =
𝑀𝑓∗(

𝐺𝑏−𝑓
𝐺𝑠−𝑓

⁄ )

𝑀𝑏
∗ 100%                                         (3) 

 

This parameter is the ratio of the fouling particles volume to the volume of ballast 

particles. The sieve size 9.5 mm separates fouling material and ballast particles. In this 

equation, M is the dry mass and Gs is specific gravity. Subscripts f and b define whether 

the variable refers to ballast properties or to the fouling material. Following this study, the 
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authors also defined levels of fouling based on the three most common fouling parameters 

including relative ballast fouling ratio, FI and PVC. The results are demonstrated in Table 

2-1 (Indraratna, 2011). 

 

Table 2-1: levels of fouling based on the common fouling parameters (Indraratna, 2011) 

Category Fouling index (Selig 

and Waters 1994) 

(%) 

Percentage of 

fouling (%) 
Relative ballast 

fouling ratio (%) 

Clean <1 <2 <2 

Moderately clean 1 to <10 2 to <9.5 2 to <10 

Moderately fouled 10 to <20 9.5 to <17.5 10 to <20 

Fouled 20 to <30 17.5 to <34 20 to <50 

Highly fouled ≥40 ≥34 ≥50 

 

  A study by Tennakoon et al. (Tennakoon et al., 2012) examined the change in ballast 

draining capacity due to fouling. This study introduced a modification to the PVC called 

the void contamination index (VCI). This new parameter defines the percentage of the 

total ballast voids occupied by the fouling material and considers the effect of various 

aspects of both the fouling material and bllast layer including gradations, void ratios, and 

specific gravities: 

 

𝑉𝐶𝐼 =
1+𝑒𝑓

𝑒𝑏
∗

𝐺𝑠𝑏

𝐺𝑠𝑓
∗

𝑀𝑓

𝑀𝑏
∗ 100                                                 (4) 

 

where 
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𝑒𝑏 is void ratio of clean ballast; 𝑒𝑓 is fouling material void ratio; 𝐺𝑠𝑏 is specific gravity of 

clean ballast; 𝐺𝑠𝑓 is specific gravity of fouling material; 𝑀𝑏 is dry mass of clean ballast; and 

𝑀𝑓  is dry mass of fouling material (Tennakoon et al., 2012). 

the authors attempted to relate the hydraulic conductivity of fouled to the VCI parameter. 

To do so, a series of “large-scale constant-head hydraulic conductivity tests” were carried 

out on ballast samples with changing the stages of fouling. As a result of this study, a design 

chart was established (figure 2-4) to offer guidelines for decision-making regarding ballast 

maintenance. The experimental studies concluded that an increase in VCI results in the 

decrease of hydraulic conductivity. The chart illustrates that track maintenance measures 

should begin when the clay fouled ballast reaches a VCI over 50%, which is considered 

critical condition. The authors found that a small increase in VCI will decrease the ballast 

hydraulic conductivity significantly until VCI reaches a limit of 50% and 90% for the fouling 

materials coal and clay, respectively. Beyond this point, the hydraulic conductivity of 

fouled ballast can be considered equal to that of the fouling material itself (Tennakoon, 

2012). 
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A 2009 study by Huang et al. investigated the strength and also deformation features of 

ballast material made up of granite (Huang et al., 2009). The authors applied large direct 

shear (shear box) tests on two groups of samples, one with clean ballast and the other 

with samples of ballast fouled by different materials. The fouling agents in this study 

included “Coal dust, plastic clay, and non-plastic mineral filler” (Huang et al., 2009). Based 

on the results of the direct shear tests, this study concluded that fouling could affect the 

shear strength by decreasing the friction angles and cohesion intercepts of samples and 

that, as a result, the shear strengths were lower compared with the clean ballast samples. 

Samples tested under wet conditions had lower ballast shear strengths in comparison to 

the sample fouled with dry Coal dust. The most severe reductions in shear strength were 

in the coal dust sample at high fouling levels. An appropriate point to begin maintenance 

measures was determined to be 15% dry coal dust fouling by weight of ballast, a level 

Figure 2-4: flow chart for ballast maintenance decision making (Tennakoon, 2012) 
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sufficient to cause critical fouling and make a considerable reduction in the ballast strength 

(Huang et al. ,2009). 

 

Huang et al. in 2011 conducted another study investigating the field performance of track 

fouled by coal dust. In this study, the authors chose coal dust as the fouling material in 

consideration of past study results, stating, Coal dust fouling agent has the most 

detrimental effect on ballast strength. For analysis of the results, a numerical method 

called “image-aided discrete element modeling (DEM)” was used (Huang et al. ,2009). 

Based on the authors’ explanation, “the DEM is a modeling appropriate for solving 

problems that express discontinuous behavior and the general behavior of a granular 

assembly will be defined by modeling the particles individually and stimulating their 

motion. This behavior which may include permanent deformations, dilation, and 

anisotropy, is modeled implicitly.” In this study, a ballasted track was simulated using DEM 

approach to investigate the track settlement for two various fouling scenarios, fouling in 

track shoulder and also in track center, under repeated loading. Prior to the DEM 

simulation, Direct shear strength tests were done on the clean and coal dust fouled 

samples in order to validate the DEM simulation model results and define the various 

parameters in the model to make it consistent with the results of the corresponding 

laboratory tests. (Huang et al., 2011) 
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Figure2- 5: coal dust fouled Half-track DEM model (Huang et al., 2011) 

 

 
The results of this study demonstrated that shoulder fouling had the worst effect on track 

settlement regardless of the level of fouling (partially or fully fouled ballast). Moreover, it 

was observed that fouled samples had higher settlement potential than clean ballast 

samples. In other words, the authors concluded, “within a relatively short amount of time, 

a fouled part of the track will accumulate more settlement comparing to the clean part. 

This issue may lead to the scenario often referred as “hanging tie”” (illustrated in Figure 

2-6) (Huang et al., 2011). 

 

Figure 2-6: Hanging tie happened as a result of ballast fouling (Huang et al., 2011) 

 

This section has reviewed the various studies previously conducted to examine the effect 

of fouling on ballast behavior. All previous ballast fouling studies focused on particle size 

and material properties. However, as a direct cause of track instability, ballast particle 

movement (or movability) has never been studied. For this reason, the development of a 

continuous monitoring system that would give insight into ballast particle movement in 

real time would improve the maintenance and efficiency of the track operation. The 
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current study uses remote sensors called SmartRock (explained in detail later in this 

chapter) in an attempt to record the ballast particle movement in a section of track with 

fouled ballast and in another section with clean ballast. Ultimately, an algorithm for 

detecting fouling in ballast through interpretation of the SmartRock data is proposed. 

 

2.2 Previous studies on structural health monitoring (SHM)  

Structural Health Monitoring (SHM) is a research topic that currently has wide application 

in mechanical, aerospace, and civil engineering. Many structures continue to operate 

despite their aging, and damage will potentially accumulate in these structures. Therefore, 

monitoring and tracking their structural condition is increasingly important and crucial for 

safety and economic reasons. Therefore, improving efficiency and developing an effective 

maintenance plan are incentives for research in the area of SHM. The main purpose of 

SHM is to distinguish, locate, and evaluate structural damage through the changes in 

structural response (Samwanshi, 2016).  

 

From a civil engineering standpoint, SHM is an efficient and effective approach for 

providing an infrastructure asset management system in order to support and maintain 

social interactions and economic development. structural deterioration with age seems 

inevitable, and failure of such civil infrastructure can have important harmful impacts on 

society. Therefore, the current situation of these structures must be understood and 

managed in order to preserve their functional integrity and serviceability(Samwanshi, 

2016). 
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 Visual inspection is one of the common methods of detecting structural anomalies but is 

expensive and time-consuming. An SHM method employing a wireless sensor network 

(WSN) not only enhances the safety and reliability of civil infrastructure but also decreases 

the amount of time and money spent on structural monitoring, helping to facilitate 

maintenance planning and decision making (Samwanshi, 2016). 

 

In a 1999 study, Farrar et al. discussed “vibration-based damage detection” as one of the 

approaches that has been a main focus of research related to structural monitoring. 

Sohn (2001) asserts: 

 “Damage identification based upon variation in dynamic response is one of the few 

methods that monitor changes in the structure on a global basis. The foundation of 

vibration-based damage diagnosis is that any alteration in the physical properties will 

cause changes in the measured dynamic response of the structure” (Sohn, 2001). 

 

Farrar pointed out that in the process of employing a strategy for making a distinction 

between damaged and undamaged structures, the term “damage” should be defined 

(Farrar, 1999). Generally, damage can be explained by comparing the two different 

conditions of the structure. In this regard, changes in the response measurements 

compared to the initial and often undamaged state can be interpret as damage in the 

system (Farrar, 1999). 

 

In an article published in 1999, Farrar et al. stated that the SHM problems can be 

fundamentally explained through statistical pattern recognition. 
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In their review of SHM studies, Sohn et al. state: 

“The damage identification in the statistical pattern recognition framework can be 

described as a four-step process: 

 (1) Operational Evaluation,  

(2) Data Acquisition, Fusion, and Cleansing,  

(3) Feature Extraction and Information Condensation 

 (4) Statistical Model Development for Feature Discrimination” (Sohn, 2002) 

 

Based on the above definitions of damage and the pattern recognition approach, the 

process of structural health monitoring includes recognizing what damage can potentially 

occur in the structure, then observing the system over a period of time and measuring the 

response periodically. In the next step, the damage-sensitive features should be extracted 

from the measurements; the condition of the structure can then be determined by 

analyzing those features. The functionality of the system despite degradation caused by 

the aging and operational environments should be measured periodically in order to 

obtain updated information as the output of SHM (Farrar, 1999). Figure 2-7 demonstrates 

the steps of SHM in the framework of pattern recognition. Each step is then summarized 

in the discussion that follows (Farrar, 1999). 
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 Figure 2-7: Flow chart for the sequence of applying a SHM program (Farrar, 1999) 
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Operational evaluation 

first step mentioned by Sohn et al.  in SHM is operational evaluation. This step consider 

the safety or economic benefit of the monitoring in the structure of interest and the 

limitations exist for data collection. Most of the previous studies on SHM neglected to 

discuss this step because they took place in a laboratory environment with no considerable 

operational or environmental inconsistency. In these studies, the damage was created 

through a controlled approach and the safety or economic motivations for monitoring the 

system were not a focus of the researchers’ attention. 

The authors believed that this step should be emphasized in order for SHM to move from 

being a theoretical research topic to being applicable in the real world (Sohn et al., 2002). 

 

Data acquisition and cleansing 

Sohn et al. (2002) explain this part of the structural health monitoring procedure as 

follows: 

 “This aim of this step is to define the types of sensors, their placement, the number of 

sensors to be used, and also the data acquisition system and data collection frequency.”  

 

The conditions of environment and the way the structure is used can cause significant 

variations in the dynamic features of the structure, the environmental and operational 

effects “can disguise the changes caused by structural deterioration” (Gul, 2009). In 

mitigation, by “normalizing any obtained data prior to selecting the damage sensitive 

feature, the signal changes caused by operational and environmental alteration of the 

system can be distinguished from structural deterioration or degradation” (Sohn, 2001).  
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Feature extraction and information condensation 

This step includes defining and deriving the appropriate damage-sensitive features that 

enable us to make distinctions between the data coming from undamaged and damaged 

structural responses.  

 

A huge amount of data is produced as a result of various technologies used to monitor and 

measure the system response and damage diagnosis. The difference between the data 

related to various stages of the structure’s health condition is not always straightforward 

to detect. Therefore, features that are sensitive to the changes in data and happened as a 

result of damage should be defined. The features for anomaly detection typically depend 

on the system application, and numerous features are often recognized for a structure 

and gathered into a “feature vector” (Sohn et al., 2002).  Data compression is an inherent 

part of feature extraction. As a result of this step, data compresses into the small-

dimension feature vectors that simplify the evaluation of their distribution and anomaly 

detection. Generally, a low dimensional feature vector is preferable (Sohn et al., 2002). 

 

Statistical model development 

The statistical model development focuses on developing the algorithms to define the 

damage condition of the system using the features extracted prior to this step. As a result 

of the SHM, based on the level of knowledge that must be acquired from the structure, 

the purpose of damage detection can be defined as locating the damage, severity, and 

type of damage and in the system and, ultimately, determining the remaining useful life 

of the structure (Farrar, 1999). 
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A 2002 paper by Sohn et al. (Sohn et al., 2002) reviewed the previous studies conducted 

on SHM. The authors categorize the algorithm for analyzing the monitoring into three 

approaches that vary based on whether the data from both the undamaged and damaged 

conditions of the structure are obtainable at the time of analysis. The class of algorithms 

appropriate for instances where data from both conditions of the system is available is 

supervised learning, including group classification and regression analysis. Unsupervised 

learning algorithms should be applied when the data does not contain information from 

the damaged condition. Finally, a significant part of the statistical process is examining 

models developed based on real data in order to determine the model’s sensitivity and 

prediction accuracy for the selected damage indicator feature. In this step, the likelihood 

of false indications of damage is studied.  

 

According to Sohn (Sohn, 2001), there are two types of false damage warning: 

1) “False-positive damage indication (the indication of damage when none is present)” 

2) “False-negative damage indications (no indication of damage when damage is present)” 

Brownjohn et al. conducted a study in 2007 concerning the problems and limitations in 

the advancement of civil infrastructure monitoring systems.  

 

They asserted:  

 “Some key problems exist on the way to safe and effective automation of structural 

monitoring and maintenance managing through SHM approaches. This issues that need 

to be considered include but are not limited to maintaining the low-cost for the 

maintenance and monitoring system, defining the critical locations in the structure for 
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damage detection, determining the best plan for sensor placement and efficient sensor 

distribution and considering the environmental factors and noises that disturb the 

effective damage diagnosis process.” (Brownjohn, 2007) 

 

2.2.1 The statistical analysis approaches for defect detection  

From life-safety and financial viewpoints, the capability of monitoring the structural health 

of many mechanical, civil, and aerospace engineering structures has become increasingly 

important, since these systems continue to be used in spite of their age and the related 

risk of damage occurring (Sohn, 2001). 

 

After selecting the appropriate feature for damage indication in the structural health 

monitoring procedure, regression, classification, and outlier detection are the most 

common statistical models used to distinguish the difference between the feature of a 

control data and the damaged one. The algorithms in this step can be classified into two 

main groups, supervised and unsupervised. The supervised algorithm requires data from 

both damaged and undamaged structures, while the unsupervised algorithm requires only 

undamaged structure data. It can be concluded from the discussion above that the 

unsupervised algorithms are preferred, since data from both the damaged and 

undamaged condition is not available for all structures in the real world. The statistical 

model should make a distinction between the features developed in the last step to 

recognize the damage occurrence (Sohn, 2002). 
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2.2.1.1 Statistical pattern recognition  
 

In the domain of SHM and damage identification, one of the most popular methodologies 

among scholars is statistical pattern recognition. The majority of the SHM studies 

employing statistical pattern recognition apply an amalgamation of “the time series 

analysis with a statistical detection methods (outlier detection)” (Gul, 2009). 

 

Gul (2009) examined the statistical pattern recognition methods for detecting the 

structural change on “a highly redundant steel grid structure.” In the experiment, the test 

specimen was densely instrumented with 12 accelerators. The ambient vibration was 

created by “random hand tapping”. While applying various damage situations to the test 

structure, the acceleration data was collected. In this study, the author used 

autoregressive (AR) model coefficients as damage indicator features. Prior to applying the 

AR model, Gul processed the data by using normalized random decrement (RD) in order 

to “eliminate the effect of random loading obtaining free decay response.”  In the next 

step, the 10th order of the AR model was fitted based on the result of the partial 

autocorrelation function (PACF). The feature vectors that formed the steps of this 

approach are illustrated schematically in Figure 2-8. 
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 The subsequent step was the outlier detection, for which the Mahalanobis distance 

method was used to set thresholds to identify the changes in the structure. The results 

indicated that this methodology is generally capable of detecting damage, because when 

the severity of the damage increases, the number of false negatives decreases. Figure 2-9 

illustrates an example of the results of this study related to the Scour case––the most 

severe type of damage. It is notable that the scour is clearly recognized as a changed 

 Figure 2-8: Summary of the methodology: (a) forming feature vector using AR model and (b) 
outlier detection of the obtained features (Gul, 2009) 
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structural state, subsequently all the features related to the damaged condition are above 

the threshold rate (Gul, 2009).   

 

 

 

 

 

 

 

 

 

 

 

 

              

In another study by Sohn et al. (2000), the authors attempted to apply statistical pattern 

recognition techniques to distinguish the plastic deformation in a bridge’s concrete 

column. For this, a concrete column was built in the lab. A load was applied to that column 

in five different levels of damage, and data was collected by forty accelerometers attached 

to the column. The time history data collected from the experiment went through the 

pattern recognition steps in order to build up an algorithm capable of determining the 

damage in the column. Since the experiment was done in the lab environment, there was 

no source of variation in data in terms of operational and environmental conditions. First, 

a third-order autoregressive (AR) model was fit to the recorded time histories as the 

damage-indicator feature. The autoregressive model is a regression in time series data 

Figure 2-9:outlier detection using Mahalanobis distance (Gul, 2009)   
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that predicts a value of time series data based on the previous values. The general p order 

form of AR is shown by the equation as below:  

𝑥(𝑡) = ∑ 𝜑𝑥𝑗𝑥(𝑡 − 𝑗) + 𝑒𝑥(𝑡)𝑝
𝑗=1                                          (6) 

In this equation, e is the random error, and φ is the AR coefficient (Sohn, 2000). 

With the aim of damage indication, a technique called statistical process control (SPC) 

referred to as an ‘‘X-bar control chart’’ was applied to the feature vector. A control chart 

offers a statistical framework for observing forthcoming quantities and measurements to 

assure the new data is consistent with the past data. Control limits of the X-bar control 

chart were based on the attributes acquired from the original structure. Lastly, the AR 

coefficients of the models that were fit to the subsequent new data were monitored 

comparative to the control limits.  A sign indicating a system shifting from a healthy state 

to a damaged state is when a statistically significant number of features are outside the 

control limits (Sohn, 2000).  

 

In this study (Sohn, 2000) plotting X-bar control chart using the single AR coefficient did 

not clearly indicate the damage in the structure. To enhance the model, various projection 

techniques like linear or quadratic projection and PCA were applied to the feature vectors. 

The discriminant analysis is a process that defines the combination of the features to 

project the multidimensional AR coefficients into a 1D feature space and maximize the 

class separation.  
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Sohn et al. (2000) explained in more detail their projection technique as the last stage of 

their study:  

 “[… ] prior to feature extraction, PCA is applied on all response data in order to reduce the 

data’s dimension. That is, all the time series from multiple measurement points are 

projected onto the first principal component, and the subsequent feature selection is 

performed using this compressed time series. This technique improved the accuracy of 

control chart analysis compared to the damage detection with utilizing only the individual 

AR coefficient” (Sohn, 2000). 

 The final result of this experiment is illustrated in Figure 2-10. It is notable that in the 

higher level of damage, the outlier is significantly increased. 

 

 

 

Figure 2-10: The outlier detection using the  X-bar chart for the AR coefficient (Sohn, 2000) 
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Sohn et al. conducted a study (Sohn, 2001) on three strain signals collected from two 

various structural situations of a “surface-effect fast patrol boat” using “fiber optic strain 

gauges”. The first two sets of signals (Signals 1 and 2) were captured when the structural 

condition was the same, but Signal 3 was recorded in a dissimilar structural condition than 

Signals 1 and 2.  

 

What makes this study unique compared to the other SHM studies is that data was 

collected under varying environmental and operational conditions including but not 

limited to sea states, the thermal condition related to water and air, and ship speed. In the 

first step of this study, “a novel data normalization approach, combining AR and AR with 

exogenous inputs (ARX) techniques, is developed so that the effect of structural damage 

could be separated from the effects of environmental and operational conditions (Sohn, 

2001).”  

 

More specifically, this procedure begins by assuming that there are previously recorded 

signals acquired from “unknown operational and environmental condition but from 

known structural condition,” and, based on the result of the autocorrelation function, a 

30-order autoregressive (AR) model is applied to them. An AR model will also be developed 

for a newly obtained signal from unknown structural condition(Sohn, 2001).  

 

As a result, if a new signal (assume y(t)) and the one recorded from a known structural 

condition ((x(t)) are from the same operational and environmental condition, the following 

difference will be minimized: 
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𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  ∑ (𝜑𝑥𝑗 − 𝜑𝑦𝑗)2𝑝
𝑗=1                                      (7) 

 

Two features are employed for the damage indication in this study (Sohn, 2001). First, an 

ARX model is applied in order to create the input/output connection between ex(t) and 

x(t) in the AR model. The standard deviation ratio of the residual errors (
𝜎(Ɛ𝑦)

𝜎(Ɛ𝑥)
⁄ ) is 

considered the damage-sensitive feature (Sohn, 2001). The equation below explains this: 

 

Ɛ𝑥(𝑡) = 𝑥(𝑡) − ∑ 𝛼𝑖(𝑥(𝑡 − 𝑖)) − ∑ 𝛽𝑖𝑒𝑥 (𝑡 − 𝑗)                          (8) 

 

In above equation 𝛼 is the AR coefficient, e is random error, and 𝜀 is the residual error for 

the AR model. This approach yields the results displayed in Figure 2-11 (Sohn, 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11: discrimination of the 3 signals using the ARX residual errors(Sohn, 
2001) 
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Another statistical analysis that can be used on these 30-dimensional AR coefficient 

vectors is Mahalanobis distance. The Mahalanobis squared distance measure is given in 

the following equation used as the discordance test:  

 

𝐷𝜁 = (𝑋𝜁 − �̅�)
𝑇

𝑆−1(𝑋𝜁 − �̅�)                                         (9) 

 

Where 𝑋𝜁  is the possible outlier, �̅� is the mean of the sample observation, and S is the 

covariance matrix. The result of this outlier detection is shown in Figure 2-12, which 

reveals that this approach proved to be efficient in distinguishing Signals 1 and 2 from the 

undamaged structure and Signal 3 from the damaged one (Sohn, 2001). 

 

 

 

 

 

 

 

 

 

 

Figure 2-12: threshold for damage detection with the Mahalanobis criteria (Sohn, 2001) 

 

In another study by Farrar et al. (1999), the test structure was a concrete bridge column 

subjected to quasi-static cyclic loading, with forty accelerometers mounted on it record 
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data. The authors describe their methodology for defining damage-sensitive attribute as 

follows: 

“Third-order AR model coefficients was selected as the damage indicators. For the 

statistical analysis a group classification method called linear discriminant operator 

referred to as “fisher’s discriminant” was introduced.  As illustrated in Figure 2-13, when 

Fisher’s discriminant is applied to data from the vibration tests conducted on the 

undamaged columns and from the vibration tests conducted after the first level of 

damage, there is a statistically significant separation between the LPC coefficients for the 

undamaged and damaged cases.” (Farrar, 1999) 

 

 

 

 

 

 

 

 

 

 

  

Data from both the undamaged and damaged structures is required to be available for 

applying this group classification method, while other statistical models that detect 

outliers can be used when data are available only from the undamaged structure. A 

Figure 2-13: Distribution of feature produced using LPC mapped onto the Fisher coordinate 

(Farrar, 1999) 
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significant aspect of classification is that a probability of damage is assigned, which can be 

used to rank systems for inspection in order of priority. (Farrar, 1999) 

 

2.3 Ballast inspection 

Railroad track inspection is a requirement for ensuring a safe track performance.  A 

scheduled traditional visual track inspection is labor intensive, time-consuming, and 

sometimes is not able to detect defects in time. For these reasons, the international 

railroad community has begun noteworthy research with the aim of developing advanced 

technologies using cameras, sensors, computer processors, and other techniques to 

improve the inspection process, better plan for maintenance, and move towards the 

automatization of inspection tasks.  

 

The ballast layer plays a vital role in track stability and in maintaining proper track 

geometry and should therefore be considered during track inspection. Conventional 

methods of ballast inspection have included regular visual assessment to look for signs of 

deficiency such as fouling or water accumulation and controlling the ballast gradation with 

lab sieve analysis. More recently, new inspection technologies that depend on the 

geometry of cars and on the gage, alignment, level, and modulus of the track have helped 

us understand deteriorated or failed ballast and/or subgrade conditions (Zarembski, 

2014). 

Today, new inspection technologies including ground-penetrating radar (GPR), LIDAR, and 

cone penetrometers enable inspectors to obtain more accurate insights into the ballast 

and substructure condition. 
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The name LIDAR is an abbreviation for Light Detection and Ranging or Laser Imaging 

Detection and Ranging. The technique employs optical remote sensing technology capable 

of measuring the distance to targets as well as other properties of objects. The mechanism 

of LIDAR involves the illumination of the target by laser light and the analysis of the 

backscattered light.  In the railroad industry, LIDAR technology has been used “in 

measuring and mapping the surface of the track, and in particular, the ballast profile of 

the track structure” (Zarembski, 2014). 

 

The technique of GPR can be used to identify the ballast condition as well as the condition 

of sub-ballast and subgrade. The goal of GPR is to locate “potentially problematic areas for 

further evaluation or maintenance.” Due to the drastic changes in track conditions over a 

short distance, GPR can be considered “an optimal tool for the inspection of the ballast 

and subgrade. GPR can be used to identify trapped water areas with low bearing capacity, 

inappropriate ballast thickness, fouled ballast, and permanent deformations in the 

subgrade” (Zarembski, 2014). 

 

A cone penetrometer is another technology for “a standard soil test procedure that has 

been adapted for use in inspection of ballast and subgrade conditions. Cone penetration 

test (CPT) is used to directly measure stiffness, strength, and thickness of the substructure 

layers” (Zarembski, 2014). 

In recent years, various creative systems have been developed to monitor and inspect the 

condition of rail tracks and railway track components beyond the technologies discussed 

above. Researchers at the Institute of Intelligent Systems for Automation (ISSIA) in Italy 
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are working on a system for detecting a defect within the ballast surface using 2D images 

captured by high-definition cameras and converting them to 3D images.  The methods 

used for processing the images demand high computational power; therefore, these 

methods are expensive and not particularly feasible. Hence, the goal of future work will 

be “improving the analysis technique in order to make the system feasible for revenue 

service” (Camargo, 2011). 

 

The past several years has witnessed a rapid “expansion in condition monitoring of 

systems, structures, vehicles, and machinery using sensors” due to the wide production of 

sensing technologies with low price. (Hodge, 2015) In a 2015 paper, Hodge reviewed the 

range of WSNs used for inspection and condition monitoring in the railway industry 

(Hodge, 2015). Until recently, inspection had been conducted visually. Visual inspection 

has several limitations, including the fact that objects could be examined only superficially 

and intermittently and that “the analysis needs to be interpreted by an expert, who can 

be subjective” (Hodge, 2015). In contrast to humans, “sensors are objective and can 

provide data from the entire object (including internally) to allow the whole object’s health 

to be fully assessed and to analyze its durability and remaining lifetime” (Hodge, 2015). 

Table 2-2 demonstrates the broad range of railway monitoring sensors that provide an 

extensive range of data and allow monitoring of different structures, vehicles, and 

machinery. 
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2.3.1 SmartRock 
 

Dr. Hai Huang, an associate professor at the Pennsylvania State University designed a 

wireless sensor called SmartRock which provides the possibility of studying the 

translational and rotational movement of ballast particles. (Liu, 2015)  

The comparison of the shape of a SmartRock with a real ballast particle and also the DEM 

model built in order to develop the SmartRock and the internal unit of the SmartRock is 

depicted in figure 2-14. 

Table2- 2: various common sensors in railway monitoring (Hodge,2015) 
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The SmartRock design was developed using the DEM element to resemble a real ballast 

particle in terms of shape, and then “3D-printing technology” was used in its production 

(Huang 2010). In order to enable the SmartRock to measure the rotation, translation, and 

orientation movement of a ballast particle with a maximum sampling frequency of 500 Hz, 

“a sensor with 9 degrees of freedom made up of a tri-axial gyroscope, a tri-axial 

accelerometer, and a tri-axial magnetometer was placed as the internal unit.”  The raw 

data collected using the SmartRock can be sent to a base station wirelessly via Bluetooth, 

and the data can either be processed there or kept as time-stamped files within the 

SmartRock. 

The features of the SmartRock wireless sensor are as follows: 

On-board sensors 

 Triple axis gyroscope – Selectable range up to 2000°/s. 

 Triple axis accelerometer –Selectable range up to 8 g 

 Triple axis magnetometer 

 Thermometer 

 Battery voltage level 

 Calibrated real-time clock 

Figure 2-14: SmartRock comparison to real ballast (Liu, 2015) 
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 Selectable data rates up to 128 Hz 

On-board algorithms 

 6-axis and 9-axis algorithms provide real-time measurement of orientation 

relative to the Earth 

Connectivity 

 USB 

 Bluetooth – Class 1, 100m range 

 Flash data storage 

Power options 

 USB – lightening charging 

 LiPo battery – On-board charging 

 Lower power consumption depending on settings and usage 

Other features 

 Motion-triggered wake-up and sleep timer 

 Real-time clock and calendar 

 Configurable command button 

 

Figure 2-15 explains how the SmartRock monitoring system operates remotely. The 

system is composed of a cloud computing center which connects to the hosts – data 

collection systems located on the side of the track – and each host is linked to up to seven 

SmartRocks via Bluetooth.  With remote monitoring, the SmartRocks start to collect the 
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data and then transmit them to the hosts; afterward, the hosts will pass the data to the 

cloud server.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15: SmartRock data acquisition network(Liu, 2015) 

 

Liu et al. (2015-2017) have conducted studies confirming the ability of the SmartRock for 

recording real-time rotational and translational accelerations. This capability made the 

possibility of monitoring the ballast particle movement in railroad engineering. In addition, 

ballast particles have translational as well as rotational modes under cyclic loading, both 

of which are proved to be important for understanding the ballast behavior based on 

particle movements. (Liu et al., 2017) 

 

According to a 2015 study by Liu and colleagues (Liu et al., 2015), the authors of the study 

utilized the SmartRock to monitor ballast particle movement inside the ballast layer under 

cyclic loading. The SmartRock is beneficial for railroad ballast research because (1) it works 

wirelessly, and (2) its physical appearance is very close to the real ballast particle’s shape 

in contrast to traditional accelerometers which do not share that same shape with real 
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ballast particles. In Liu’s study (Liu et al., 2015), two different approaches were employed 

to examine ballast particle movement: the first was DEM modeling, while the second 

utilized an experimental test with SmartRocks. In the DEM numerical analysis, ballast 

particles were simulated as uniform angular particles of one inch in diameter based on the 

average of No. 4 particle size distribution defined by AREMA. In the experimental test, 

SmartRock was buried underneath the tie in a ballast box constructed based on a half-

section of a typical railroad track structure (Liu et al., 2015). Comparing the results of these 

two approaches, Figure 2-16 demonstrates the similar trends in the simulated and 

recorded motions, even though the magnitudes are different. This discrepancy can be 

further explained by the fact that the DEM model was not capable of reproducing the 

same test conditions, such as ballast placement, ballast gradation, and particle shapes. 

Nevertheless, the agreement in trends suggests that the SmartRock is capable of capturing 

the movement of individual ballast particles realistically and can therefore be used as a 

validation tool for DEM simulations in railroad ballast research (Liu et al., 2015). 
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Quantifying the advantage of utilizing geogrids in rail track bed structure to reinforce the 

substructure in its place has been a significant topic for researchers in recent years.  One 

of the most current studies has been performed by Liu and colleagues (Liu et al., 2016), 

with the goal of investigating the impact of the geogrid on particle movement, “such as 

particle translational and angular accelerations, inside railroad ballast layers during initial 

compaction phase” (Liu et al., 2016). The experiment set consists of a ballast box 

containing a ballast layer, two crossties, and a rail (I-beam) which was created to simulate 

the structure of a half-section of railroad track. Two ballast box tests were conducted: one 

with a geogrid, and, for the purpose of baseline scenario, one without a geogrid. In 

addition, two wireless “SmartRock” devices were implanted in the ballast box, one 

beneath the rail seat and the other below the edge of a tie, to screen separate ballast 

particle movement under cyclic loading.  As a result of this study, it has been concluded 

Figure 2- 16: comparison of The DEM and LAB test result: a) vertical acceleration; b) horizontal 
acceleration; c) angular acceleration (Liu et al., 2015) 
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that “particle translational movement and rotation” are higher underneath the edge of 

the tie than below the rail seat, since at the incline and in hilly conditions there is less 

confinement which results in more vivid translational and rotational movement of 

particles (Liu et al., 2016).  

 

Another result obtained in this study is that the SmartRocks installed in the ballast layer 

have the ability to provide kinematic information of ballast particles. Hence, the 

SmartRock can be considered as a potential monitoring tool because it can provide an 

easy, durable, and repeatable means to assess ballast behavior and performance. 

Regarding the effects of the geogrid on ballast particle movement, as demonstrated in 

Figure 2-17 the primary vertical displacement of the ballast layer for a load under 500 

cycles declined significantly in the ballast box equipped with a geogrid (Liu et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 
So far, it has been discussed that ballast movement, comprised of translation and rotation, 

has an important effect on track performance. Excessive movement of ballast particles 

Figure 2- 17: Vertical displacement vs. load cycles (Liu et al., 2016) 
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leads to track geometry unevenness, e.g., hanging ties, and thus raises the potential for 

damage and deterioration of rails, ties, and fastening components (Liu et al., 2017). In this 

regard, Liu et al. 2017 investigated ballast particle movement at different locations 

beneath a crosstie using SmartRock. In this study, three tests were conducted by using a 

ballast box which simulates a half-section of a typical railroad track. Two SmartRocks were 

placed beneath the middle of the tie and the edge of the tie, respectively, but at different 

depths during each test: directly under the tie, 12 cm beneath the tie, and 25 cm beneath 

the tie. Figure 2-18 schematically illustrates the test procedure. (Liu et al., 2017) 

 
 
 
 
 
 
 
 
 
 

In this study (Liu et al., 2017), the effects of two parameter – position corresponding the 

tie and burial depth – were assessed by analyzing the recorded data of the SmartRocks at 

different depths in the ballast. The study determined that smart rocks were beneath the 

edge of the tie had higher rotation compared to those beneath the middle of the tie. 

ballast depth significantly reduced Particle translational movement and rotation while 

load cycles are fewer than 500 (Liu et al., 2017).  

 

In 2018, Huang et al. conducted a field experiment to investigate particle movement under 

different ballast conditions using a battery-powered remote-monitoring system 

containing multiple SmartRocks. This study was conducted in an attempt to gain insight 

Figure 2- 18: The location of the SmartRocks in ballast box (Liu et al., 2017) 
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into the mechanism of mud pumping through monitoring ballast particle movement that 

cannot be inspected visually.  The authors compared the movement pattern of ballast 

particle from two sections: a control section with clean ballast, and a mud-spot section 

with a known mud-pumping problem. Both sections were constantly observed under 

passenger and freight train passages and also under wet and dry ballast conditions. The 

statistical results of the acceleration and rotation data of ballast particles in the clean and 

mud-spot sections are compared in Table 2-3.  According to the analysis of variance 

(ANOVA), the standard deviations and the ranges of acceleration and rotation were 

statistically different. The ranges of acceleration and rotation in the mud-spot section 

were over 1.5 times greater than those in the clean section. This factor can serve as an 

important reference value for researchers in the field who are interested in identifying 

abnormal ballast particle movement (Huang et al. 2018). 

 

Table 2- 3: Statistical analysis of ballast particle movement (Huang et al. 2018) 
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In the same study, the authors also assessed the approach to diagnosing abnormal ballast 

particle movements by using the Arias intensity, which measures the intensity of the 

ballast response and is defined as the energy dissipated per unit mass. Figure 2-19 

presents the result of this approach. As seen in this figure, for the same train passage, the 

Arias intensity values at the mud-spot section were approximately 3.6 times greater than 

of the clean section based on the linear regression. For the passenger trains, the Arias 

Intensity values at both sections are generally small due to smaller acceleration 

amplitudes and shorter duration of the train passages. Under the freight trains, the Arias 

Intensity values are less than 1 in the clean section but can reach over 4 in the mud-spot 

section, suggesting lower energy dissipation and unstable ballast particles in the latter. 

(Huang et al. 2018) 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2- 19: Comparison of Arias intensity between clean and mud-spot 
sections (Huang et al. 2018) 
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3 Project descriptions 

 

 In the previous chapter, fouling is discussed as a defect in the ballast layer which adversely 

affects the ballast’s functionality. As the top layer of track substructure that is in direct 

contact with superstructure components, the ballast layer is proven to have a key role in 

track stability and performance. Therefore, proper ballast maintenance planning is vital to 

ensure a safe and reliable track operation. This study has been conducted in an effort to 

investigate the effects of fouling in particle movements recorded using the SmartRock, 

with a further step providing an algorithm to detect the fouling from the SmartRock data. 

For this purpose, two sections with similar traffic but different track conditions, one with 

clean ballast and the other with mud pumping, were chosen in an under-operation track. 

Several SmartRocks were installed in both sections and a set of real field experiments were 

conducted. The SmartRock was placed in a crib and also in the shoulder part of the ballast; 

data representing the ballast particle rotational and translational movement were 

collected both for freight and passenger train over a span of one week.  In the following 

sections, the characterization of the site and the detailed instrumentation are discussed. 

 

 

3.2 Site Selection 

In this study, two test sections, one clean and one mud-spot, of a ballasted track with 

wood ties located in Bellwood, Pennsylvania were chosen. In this track, despite regular 

maintenance, mud pumping at this section is a recurring problem.   
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The two chosen sections are located in close distance on the same tangent track; they are 

considered identical in terms of the traffic load and environmental conditions (Huang et 

al., 2018).  

 

Figure 3-20 provides a comparison of the clean section and the mud-spot section. There 

is a severe mud pumping appears to be visible in Figure 3-20 (b). In the preliminary visual 

inspection of the mud-spot section, several observations were made during the field 

instrumentation installation. ponded water is noticeable underneath the tie and as a 

result, the ballast is completely penetrated by subgrade materials. Beside the mud 

pumping area, a gap was found to exist at the tie-ballast interface and the ties were poorly 

supported. Additionally, in some areas, the problematic ties were hanging on the ballast; 

these ties create high dynamic forces upon wheel load (Huang et al., 2018). 

 

 

Figure3- 20: Comparison of two sections: (a) clean section; (b) mud-spot section (Huang et al, 2018) 
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3.3 Instrumentation plan  

 

Similar instrumentation was used in both sections to provide real-time data processing 

and viewing.  A wireless system powered by a battery was utilized to automatically collect 

data and transfer that data remotely. This system consisted of multiple devices including 

SmartRocks, a data acquisition system, a Wi-Fi hotspot, an antenna, a remote monitoring 

device, a solar panel and DAQ box for a storage battery, and a power inverter. The 

SmartRock monitoring system is fully illustrated in Figure 3-21 (Huang et al., 2018). 

 

As illustrated in this Figure, the DAQ box in the SmartRock monitoring system works as a 

trackside “host” to communicate with the SmartRocks. It is worth mentioning that this 

monitoring system is set up for remote operation. The remote monitoring device 

empowers the SmartRocks to start collecting and transmitting data. Next, the hosts will 

pass the SmartRock data to a cloud-based computer center using Wi-Fi. The power 

management system at the SmartRock node level allows the SmartRocks to sleep between 

readings to save battery life (Huang et al., 2018). 
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Figure 3- 21: A photo of instrumentation: (a) SmartRocks and ballast particles; (b) illustration of SmartRock 
monitoring system (Huang et al., 2018) 

 

  As Figure 3-22(b) indicates, five SmartRocks were mounted underneath the tie and in the 

crib 10 cm below the ballast surface in each section to capture and compare the particle 

movement under train passages. In this study the data collected from both freight trains 

(around 40 km/h), with an average axle load of 32,000 kg, and passenger trains (AMTRAK) 

(around 115 km/h), with an average axle load of 16,150 kg (Huang et al., 2018).  

 

 During the installation process the following procedure happened: 

▪  The ballast was excavated by shovel 

▪ The SmartRocks were located at the desired locations 

▪  The ballast was filled and compacted by an electric jackhammer 

 

The field installation was planned in such a way that it took a minimum amount of time 

(installation in one hour) and crew without requiring heavy machinery or dismantling the 

Solar Panel

DAQ Box

Antenna

“SmartRocks”

Remote Monitoring Device

(a) (b) 



48 
 

track. Despite the partial removal of the ballast, train operations continued. No rail 

compaction was needed because no major excavation was conducted. In addition, the 

installation did not disrupt train traffic because the subject area has busy traffic with a 

train passage approximately every half-hour. After the installation of the SmartRocks, the 

performance of the data acquisition system was evaluated for three days prior to the 

commencement of data collection (Huang et al., 2018). 

 

 

Figure 3-22: Instrumentation installation: (a) internal measurement unit mounted on tie; (b) SmartRocks installed in 
crib (Huang et al., 2018) 

 



49 
 

4. Data analysis and results 

 Maintenance of the railway track is crucial for a safe and reliable track operation. The 

frequent inspection of track components using various technologies generates a huge 

amount of data. extracting the information regarding the track condition from this data 

has been considered as a challenge for researchers. Generally, the maintenance 

approaches in railway can be classified into three categories. The first approach is 

corrective maintenance, which involves waiting until failures occur and performing 

maintenance in order to fix the problem; this approach is expensive and involves 

unexpected service interruptions, which makes it inefficient.  The second approach is 

preventive maintenance, in which the maintenance task is planned regularly based on 

certain criteria in order to prevent failure from happening. In this approach, the 

maintenance is scheduled in specific intervals. Therefore, the advantage is that the time 

of service interruption is predictable, but on the other side there is a possibility of replacing 

a part before it becomes inoperative. condition-based maintenance is the third approach 

that becomes possible by using real-time analysis of the data generated from inspection 

technologies. In this approach, the future condition of the asset can be predicted. 

Moreover, as a result of continuous monitoring of the asset, maintenance tasks are 

performed as soon as the potential for degradation is detected. (Ghofrani, 2018) 

 

This study aimed to develop an algorithm for real-time evaluation of the ballast condition 

using the translational and rotational particle movement data collected by SmartRocks. 

The SmartRocks were installed within the ballast layer and the data was acquired by 

monitoring the two track sections — one clean section and the other the mud spot — over 
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a period of one week. Figure 4-23 illustrates the direction of the acceleration and rotation 

recorded by the SmartRocks. The translational acceleration is recorded in three directions: 

vertical, in alignment with track, and also in tie direction. Yaw, roll, and pitch are the 

directions of the rotational movements (Huang et al., 2018). 

 

 

 

 

 

 

in following figures, the raw time histories data obtained from the SmartRocks placed in 

the crib ballast are plotted to gain some initial insight into the signal. These time histories 

were recorded with the sampling interval of 0.016 seconds. The red color represents the 

data from the mod spot and the blue refers to the clean ballast data. 
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Figure 4- 23: Convention direction for SmartRock ((Huang et al. 2018) 
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Based on these plots, no consistent trend (upward or downward) in ballast particle 

movements over the entire span of the time has been found. Comparing the data from 

two different sections reveals that in the mud spot area, the SmartRocks experienced 

higher peak vertical acceleration, especially under freight train load.  

 

 In the plotted raw time series, three various patterns are recognizable in the recorded 

acceleration, including “the group effect of four closely-spaced wheels, impulse-like peak 

accelerations caused by dynamic impact from the wheel load and small or no accelerations 

from the middle of each car”. (Huang et al., 2018) 

In pre-processing the data as the preliminary step, each group effect was considered as a 

time window in further analysis. Moreover, since in a train set the weight of each car is 

different, each group effect scaled between -1 to 1.  
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Figure 4-24: The vertical acceleration recorded from the SmartRock in shoulder ballast: a) in the railseat under 
freight train load; b) in the railseat under passenger train load; c) at the end of the tie under freight train load; d) 
at the end of the tie under passenger train loading 
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Based on the previously mentioned studies in the literature of this study, four-step SHM 

procedure consists of “operational evaluation, data acquisition and cleansing, feature 

selection, and statistical model development” (Sohn et al., 2001).  

  

In this study, since each time window consisted of the data collected over a few seconds, 

the environmental like temperature could be considered as constant. Therefore, in 

operational evaluation step, it was assumed that the variation caused by environmental 

and operational condition change was negligible.  These considerations led to the decision 

not to normalize the data and focus on feature extraction and statistical modeling for 

feature discrimination. 

 

Feature extraction is the process in which an attribute that is sensitive to the damage is 

identified. A feature should be defined and examined to separate these data because 

recognizing whether data was collected from a damaged or undamaged structural 

condition is often difficult by data visualization alone (Sohn et al., 2002).  One of the most 

common approaches in time series data for feature selection is to use the autoregressive 

(AR) model, also referred to as linear predictive coding (LPC) (Farrar et al., 1999).  

 

In this study, the vertical acceleration from the SmartRocks in the crib ballast was used 

and the AR model was built for each group effect; the coefficients of AR models were then 

selected as damage-sensitive features.  Prior to applying the AR model, all the signals were 

standardized by subtracting the mean from individual data and next dividing by the 

standard deviation. This standardization procedure was applied to all signals used in this 

study so that the data would be rescaled to a dataset with a mean of zero and a standard 
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deviation of one.  The AR model tries to predict one variable using a linear combination of 

past values of the variable. In the AR(n) model, “n” is the order of the regression which 

represents the number of previous data points used to model the current data point. The 

equation below presents the general definition of a “p” order AR model (Sohn et al. 2000)  

 

𝑌(𝑡) = ∑ 𝜑𝑗
𝑝
𝑗=1 𝑌(𝑡 − 𝑗) + 𝑒𝑡                                            10 

 

where y(t) = is the measured data at time t; 𝜑𝑗 is unknown AR coefficient and e(t) is the 

random error. 

 

The partial autocorrelation function (PACF) is used to define the most efficient order of 

the AR. In time series data, the PACF defines the partial correlation of a single value with 

its own lagged values when removing the effect of the other values in between these two 

lags (Gul, 2009).  If the AR model is appropriate for the data, the PACF plot should cut off 

after p lags and the Pth lag is the most significant lag that will be used for making the 

prediction. 

 

The PACF plot of the data recorded by the SmartRocks in the rail seat and also in the tie 

end area under the passenger train is provided in Figure 4-25. Examining these PACF plots, 

it can be seen that the correlation of the third lag is significant in both plots and the 

following lags are not significant. It can be concluded that there was an autoregressive 

term in the data, and also that the third order is the best for the AR model. Therefore, a 
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third order AR model was applied on vertical acceleration signals recorded by the 

SmartRocks in the crib part.   

Figure 4-25: The partial autocorrelation function plot for the first car a) tie end SmartRock and b) railseat SmartRock 
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Statistical model development is related to developing the algorithms and applying them 

to the obtained features to define the structural condition of the monitored structure. 

“Group classification, regression analysis, and outlier detection” are the common 

approaches for damage detection processes (Sohn, 2001). 

 

This study proposed two different methods based on the statistical analysis of the 

measured data so as to investigate how mud pumping affects the ballast layer in terms of 

particle movement. The first approach is the statistical chart control for the outlier 

detection and the second is the classification by linear discriminant analysis. 

 

a) Statistical control chart 

 

When it comes to the continuous monitoring of a structure, control charts are among the 

most popular outlier detection approaches for damage detection.  After identifying the 

damage-sensitive features, any damage that occurs in the system is expected to change 

the mean or the variation of these features. Therefore, using the control chart makes it 

possible to distinguish the inconsistency in the new data comparing to the past data (Sohn 

et al. 2000).  

 

In this study, a X-bar chart is used, after extracting the sensitive feature by fitting the AR 

model, for the anomaly detection. The X-bar chart includes three control lines, the central 

line (CL), the upper control line (UCL), and the lower control line (LCL), in order to track 

any abnormal changes in the data (Sohn et al. 2000).  The centerline is the mean of the 
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extracted features and two control limits is defined by setting a = 0.01 in the following 

equation (Sohn et al. 2000): 

 

𝑈𝐶𝐿, 𝐿𝐶𝐿 = 𝐶𝐿 ± 𝑇𝛼
2⁄

𝑆

√𝑛
                                                              11 

 

 

The features are standardized prior to plotting them in the control chart. Control charts 

generally assume that the data distribution is normal, but it has been proven that defining 

control limits works also if the features is not exactly normal (Sohn, 2000). 

In this study, we had two sets of features obtained from the reference data and the mud 

spot. The control limits were defined based on features of the clean section, and the AR 

coefficients of the mud-spot section were then evaluated relative to the previously 

defined control limits. From the statistical viewpoint, those features that are outside the 

control limits in the control charts are referred to as outliers, and a substantial number of 

outliers indicates that the system is experiencing damage (Sohn et al. 2000). 

 

In this study, the coefficients of the third order AR model were defined as damage 

indicator attributes and were used in the following control chart analysis. In Figure 4-26, 

AR coefficients extracted from individual measurements of the ballast particles’ vertical 

acceleration are plotted in the X-bar control chart. The data utilized in the control chart 

are from the SmartRock placed in crib ballast in two areas; at the tie end and the railseat. 
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Table 4- 4: Summary of the number of outliers in the X-bar control chart for the tie end and rail seat SmartRock 

Tie end rail seat 

AR coefficient Clean section Mud spot Clean section Mud spot 

A1 0/6 3/6  (50%) 2/6 3/6  (50%) 

A2 1/6 5/6  (83%) 1/6 5/6  (83%) 

A3 1/6 4/6  (83%) 2/6 5/6  (67%) 

 

The measured vertical acceleration for the passenger train included six group effects; 

applying AR (3) to each of them resulted in six sets of AR coefficients. Figure 4-26 displays 

the anomaly detection results using each coefficient of the AR (3) model in the X-bar chart 

control.  

 

In the X-bar chart, upper and lower control limits and centerline were represented by UCL, 

LCL, and CL sign, respectively. The control limits and the center line correspond to the 99% 

confidence interval and mean of the data (Sohn et al. 2000). These control limits were 

constructed from the time series data collected from the reference section with clean 

ballast. The standardization process was performed on the features prior to plotting the 

control chart by subtracting the mean and dividing by the standard deviation of the feature 

(Sohn et al. 2000). Therefore, the CL in all of the previously mentioned X-bar charts is equal 

to zero. After establishing the control limits and centerline, features obtained from the 
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mud-spot data were plotted relative to the control limits and centerline obtained from the 

reference data (Sohn et al. 2000). 

 

Table 4-4 summarizes the results of the damage diagnosis using the AR coefficients. From 

these results, evident outliers can be seen in the mud spot features. Moreover, it can be 

determined that the second AR coefficient is more indicative in term of damage, while the 

first coefficient is less sensitive to damage. 

b) LDA classification  

In this section, the vertical acceleration data from the SmartRocks in the crib ballast are 

analyzed using the linear discriminant technique. The linear discriminant analysis (LDA), 

also known as “Fisher’s Discriminant”, is a classification algorithm introduced in the 

literature of this study as one of the approaches used for the structural anomaly detection. 

Generally, the classification methods are among the supervised learning approaches that 

need data from both structural conditions available while in the outlier detection, the 

algorithm can be developed with just the reference data (Farrar, 1999).  

 

LDA tries to determine the best linear classifier and achieve the most separability between 

various classes in the feature space. To that end, the LDA algorithm tries to apply 

hyperplane projection in a way that, for the projected data, the between-class mean is 

maximized and the variance of the within-class data minimized (welling, 2005). Figure 4-

27 schematically depicts how the LDA separates the classes of the data by finding a linear 

combination of the features.   
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The LDA initial concept is to classify the data by projecting the feature space in a direction 

that maximizes the separation of different classes (Bishop, 2006). For algorithm of the LDA 

(Bishop, 2006), first assume a set of observation (𝑥) with two classes of data. The mean of 

each class is �⃗�1  and �⃗�2 . Assume �⃗⃗⃗� as the matrix project the x data into scalar y as follows:  

𝑦 = 𝑤𝑇𝑥                                                                             12 

the projected features would have a mean equal to �⃗⃗⃗�. 𝜇𝑖. In order to define the separation 

of linear classifies between these 2 classes of data through LDA, the ratio of the variance 

between the classes to the variance within the classes should be calculated with the 

following equation 

F{w} =
(μ1−μ2)2

S1
2+S2

2                                                            13 

Which 𝑆𝑖is the within class variance of the projected data is calculated using the equation 

below: 

𝑆𝑖
2 = ∑(𝑦𝑛 − 𝜇𝑖)

2                                                                     14 

Figure 4-27: LDA projection 

(from http://sebastianraschka.com/Articles/2014_python_lda.html) 
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This equation based on the W can be written as follows:  

 

𝐹{𝑤} =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑤𝑤
                                                              15 

 

In this equation; 

𝑆𝐵 is the between class covariance matrix as  

 

𝑆𝐵 = (𝜇1 − 𝜇2)(𝜇1 − 𝜇2)𝑇                                                     16 

 

And 𝑆𝑤 is the within class covariance matrix as: 

 

𝑆𝑤 = ∑(𝑋𝑛 − 𝜇2)(𝑋𝑛 − 𝜇2)𝑇 + ∑(𝑋𝑛 − 𝜇1)(𝑋𝑛 − 𝜇1)𝑇            17 

 

Furthermore, it can be demonstrated that with the maximum separation proper �⃗⃗⃗� is 

proportional to: 

 

�⃗⃗⃗� ∝ 𝑆𝑤
−1. (μ1 − μ0)                                                    18 

 

In this classification method, the response variable should be categorical, and this 

algorithm attempts to assign an individual observation to one of the categories in the 
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response variable. Generally, for building a classification model, a set of training data is 

needed. The classifier will be defined based on these training data; the model 

performance will subsequently be evaluated by applying the algorithm to a new set of data 

(called test data) and predicting the class of each individual observation in test data. 

Finally, the accuracy of the model can be determined by comparing these predicted class 

and the true class of test data. 

 

In this study, the features extracted from the vertical acceleration data for both tie end 

area and rail seat were standardized in the first step prior to any subsequent analysis. The 

mean and the standard deviation of the features are zero and one, respectively. 

Afterward, through random selection, 70% of the features were selected as the training 

data and the remaining 30% considered as the test data.  The model was initially fitted on 

the training data set and then applied to the test set in order to evaluate the accuracy of 

the model. The LDA was applied to the extracted AR coefficients and the results are 

provided in Table 4-5. By constructing a confusion matrix, it is possible to compare the 

LDA predictions and the true classes and define the type of errors in prediction.  
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Table 4- 5: The confusion matrix of LDA on extracted features a) at tie end, both freight and passenger train; b) at rail 
seat, both freight and passenger train; c) at tie end, just passenger train data; d) at Rail seat, just passenger train 
data 

 

Tie end Clean Mud Total 

True 34 24 58 

Prediction 19 39 58 

   

Rail Seat Clean Mud Total 

True 28 27 55 

Prediction 33 22 55 

Tie end Clean Mud Total 

True 4 3 7 

Prediction 3 4 7 

Rail Seat Clean Mud Total 

True 4 4 8 

Prediction 7 1 8 

a) 

b) 

c) 

d) 
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Considering the confusion matrixes above, combining the features from the freight train 

and passenger train for the rail seat SmartRock, the LDA model resulted in 67.1% accuracy, 

while for the tie end SmartRock the accuracy of the model was 45.48%. Proceeding with 

the model, with only the passenger train, features resulted in 74% and 55% accuracy for 

the tie end and rail seat, respectively. 
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5. Conclusions and recommendations 

This research focused on developing an approach to identify the mud spot by using 

advanced sensor networks and statistical analysis.  SmartRock is a battery-powered 

remote sensor that can provide insight into the ballast structural condition by capturing 

the movement characteristics of ballast particles. The ballast layer is responsible for 

providing support and drainage for the superstructure components. In this regard, ballast 

can be considered as the component that plays the most vital role in maintaining track 

stability. Ballast consists of aggregate particles and its particle size distribution is one of 

the most important properties that define ballast behavior. Fouling is one of the ballast 

defects and occurs as a result of particle breakage, or shipping of fine particles from 

outside the track. The fouled ballast loses the ability to function properly and maintenance 

actions become necessary to maintain the efficiency and safety of track operation. 

Therefore, monitoring the ballast condition is a crucial measure that should be taken to 

guarantee a safe and reliable track performance. For this purpose, statistical pattern 

recognition techniques were proposed in this research in order to design an algorithm that 

can analyze the rotational and translational movement of ballast particles recorded using 

SmartRocks and ultimately distinguish between data from a mud spot and that from a 

clean ballast. In the field experiment, data were collected from two different sections of a 

ballasted track with identical traffic and environmental conditions but one with clean and 

the other muddy ballast. Two types of algorithms were applied to the data: first, the 

statistical control chart for outlier detection, and second, the LDA for classification of the 

data. Important findings and recommendations for future research are summarized in the 

following sections. 
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 5.1 Conclusion 
 

Many studies have been conducted on structural health monitoring utilized statistical 

pattern recognition techniques for damage detection (Farrar, 1999). This research sought 

to develop an algorithm to distinguish the SmartRock data from different ballast structural 

conditions. The analysis of the previously-mentioned field experiment has led to following 

conclusions: 

 

1. The initial visualization of data indicates that in the vertical acceleration recorded 

by the SmartRocks embedded in the crib ballast, the particles in the mud spot 

experienced higher peak vertical acceleration comparing to those in clean ballast. 

2.  Based on the PACF results, it was discovered that there is an autoregressive term 

in the data, and also that the third lag is the most significant term in the AR model. 

Therefore, a third order AR was applied to the data and the autoregressive 

coefficients were chosen as the damage-sensitive features. 

3. Statistical control charts are considered one of the outlier detection approaches 

that are suitable for continuous monitoring. Applying this approach to the 

passenger train data from the crib ballast, the features extracted from the mud 

spot indicated obvious outliers. Among the AR coefficients, the second coefficient 

was revealed to be more sensitive regarding the damage detection while the first 

coefficient was the least sensitive one. 

4. In the linear classification algorithm development, the data was divided into 

groups of training and test data. Following to the training the algorithm, the 

evaluation of its accuracy using the test data indicated that the model considering 
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only the passenger train features resulted in 74% and 55% accuracy for the tie end 

and rail seat, respectively. Combining the features from the freight train and 

passenger train, the LDA model for the SmartRock placed in the railseat resulted 

in 67.1% accuracy and for the tie end SmartRock the accuracy of the model was 

45.48%. 

 

 

 

5.2 Future recommendations 
The conclusions drawn from this research study regarding the development of an 

algorithm for ballast damage detection is only the beginning for an improved 

understanding of ballast behavior. The recommended future research areas are as 

follows: 

 

1. The SmartRock is a sensor that resembles a real ballast particle in terms of shape 

and other physical properties such as specific gravity. This sensor was developed 

in order to record ballast particle rotation, translation, and orientation. The 

SmartRock features various work modes including reset, sleep, and wake-on-

motion. Currently, the change between these modes should be done manually. In 

order to introduce the SmartRock as a sensor for continuous monitoring of the 

ballast condition, further studies should be done in order to enable the sensor to 

be fully automatic. 
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2. Additional field experiments are needed to collect more data and improve the 

data set to be able to develop more accurate and valid results. In order to 

develop a comprehensive algorithm to work jointly with the SmartRock sensor as 

a ballast condition monitoring system a comprehensive data set including data 

from various ballast conditions and levels of fouling are required. Moreover, for 

obtaining more accurate result the algorithm should account for environmental 

and operational variability such as temperature.  

 

3. In further studies, other statistical analysis approaches should be examined in 

order to determine the most efficient approach that works with the data. 

Moreover, by having data from various environmental and operational 

conditions, conducting data normalization will enable the development of a more 

comprehensive algorithm. 

 

developing a ballast monitoring system called “ballast real-time information system 

(BRIS)” is the ultimate objective of this research. Future studies should be conducted in a 

direction to achieve this goal. This system is considered to be able to detect ballast defects 

which is not recognizable visually (usually early stage) and predict the future ballast 

condition.to this end when the train is passing SmartRocks start to collect the data. 

Afterward, the data will be passed to a cloud computing center wirelessly. The cloud 

computing is where the damage detection algorithms will be applied to the data in order 

to examine the ballast condition and indicate the risk of damage or failure in ballast. 

Hereby, BRIS is expected to greatly enhance rail operation safety and maintenance 

planning efficiency. 
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